-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA3CModel.cpp
417 lines (341 loc) · 13.5 KB
/
A3CModel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#include "A3CModel.h"
#include <stdexcept>
#include <memory>
// Oletetaan että A3CWorker-luokka on määritelty muualla
// Tässä tarvitaan forward-deklaraatio A3CWorker-luokalle
class A3CNetwork;
class A3CWorker;
A3CModel::A3CModel(A3CWorker& w) : worker(w) {}
void A3CModel::forward(float state[/*STATE_SIZE*/], float action[/*ACTION_SIZE*/], float& value) {
worker.forward(state, action, value);
}
void A3CModel::collectExperience(float state[/*STATE_SIZE*/], float action[/*ACTION_SIZE*/],
float reward, float value) {
worker.collectExperience(state, action, reward, value);
}
void A3CModel::update(float nextStateValue, bool isTerminal) {
worker.updateGlobalNetwork(nextStateValue, isTerminal);
}
bool A3CModel::shouldUpdate() const {
return worker.shouldUpdate();
}
size_t A3CModel::getRewardsSize() const {
return worker.getRewardsSize();
}
std::string A3CModel::getName() const {
return "A3C";
}
float A3CModel::getLastAdvantage() const {
return worker.getLocalNetwork().lastAdvantage;
}
float A3CModel::getLastWeightUpdate() const {
return worker.getLocalNetwork().lastWeightUpdate;
}
float A3CModel::getTDError() const {
return worker.getLocalNetwork().prevTDError;
}
int A3CModel::getUpdateCounter() const {
return worker.getLocalNetwork().updateCounter;
}
void A3CModel::setUpdateFrequency(int freq) {
worker.setUpdateFrequency(freq);
}
const HyperParameters& A3CModel::getHyperParams() const {
return worker.getLocalNetwork().hyperParams;
}
void A3CModel::setHyperParams(const HyperParameters& params) {
worker.setHyperParams(params);
}
bool A3CModel::saveModel(const std::string& filename) const {
try {
// Tallenna A3C-verkon painot
worker.getLocalNetwork().saveWeights(filename);
return true;
} catch (const std::exception& e) {
std::cerr << "Virhe tallennettaessa A3C-mallia: " << e.what() << std::endl;
return false;
}
}
bool A3CModel::loadModel(const std::string& filename) {
try {
// Lataa A3C-verkon painot
worker.getLocalNetwork().loadWeights(filename);
return true;
} catch (const std::exception& e) {
std::cerr << "Virhe ladattaessa A3C-mallia: " << e.what() << std::endl;
return false;
}
}
// Staattinen metodi, joka luo ja lataa A3C-mallin
std::unique_ptr<RLModel> A3CModel::createAndLoad(A3CWorker& worker, const std::string& filename) {
auto model = std::make_unique<A3CModel>(worker);
if (model->loadModel(filename)) {
std::cout << "A3C-malli ladattu onnistuneesti." << std::endl;
} else {
std::cout << "A3C-mallin lataus epäonnistui, käytetään oletusarvoja." << std::endl;
}
return model;
}
// A3CNetwork-luokan toteutukset
A3CNetwork::A3CNetwork(float lr, float g, float t)
: learningRate(lr), gamma(g), tau(t) {
// Alusta globaali verkko
globalNetwork.initialize(42);
}
void A3CNetwork::initializeWorker(ActorCritic& worker) {
std::lock_guard<std::mutex> lock(globalNetworkMutex);
copyNetworkWeights(globalNetwork, worker);
}
void A3CNetwork::copyNetworkWeights(const ActorCritic& source, ActorCritic& target) {
// Kopioi actor-verkon painot
for (int i = 0; i < STATE_SIZE; i++) {
for (int j = 0; j < HIDDEN_SIZE; j++) {
target.actorInputWeights[i][j] = source.actorInputWeights[i][j];
target.criticInputWeights[i][j] = source.criticInputWeights[i][j];
// Kopioi myös target-verkkojen painot
target.targetActorInputWeights[i][j] = source.targetActorInputWeights[i][j];
target.targetCriticInputWeights[i][j] = source.targetCriticInputWeights[i][j];
}
}
for (int i = 0; i < HIDDEN_SIZE; i++) {
for (int j = 0; j < ACTION_SIZE; j++) {
target.actorHiddenWeights[i][j] = source.actorHiddenWeights[i][j];
target.targetActorHiddenWeights[i][j] = source.targetActorHiddenWeights[i][j];
}
target.criticHiddenWeights[i][0] = source.criticHiddenWeights[i][0];
target.targetCriticHiddenWeights[i][0] = source.targetCriticHiddenWeights[i][0];
}
}
void A3CNetwork::updateGlobalNetwork(ActorCritic& worker) {
std::lock_guard<std::mutex> lock(globalNetworkMutex);
// Laske gradienttien keskiarvo ja päivitä globaali verkko
for (int i = 0; i < STATE_SIZE; i++) {
for (int j = 0; j < HIDDEN_SIZE; j++) {
globalNetwork.actorInputWeights[i][j] += worker.momentum[i][j] * learningRate;
globalNetwork.criticInputWeights[i][j] += worker.criticMomentum[i][j] * learningRate;
}
}
for (int i = 0; i < HIDDEN_SIZE; i++) {
for (int j = 0; j < ACTION_SIZE; j++) {
globalNetwork.actorHiddenWeights[i][j] += worker.momentumHidden[i][j] * learningRate;
}
globalNetwork.criticHiddenWeights[i][0] += worker.criticMomentumHidden[i][0] * learningRate;
}
// Päivitä target-verkot soft-update-menetelmällä
updateTargetNetworks();
// Päivitä tilastot
totalUpdates++;
}
void A3CNetwork::updateTargetNetworks() {
for (int i = 0; i < STATE_SIZE; i++) {
for (int j = 0; j < HIDDEN_SIZE; j++) {
globalNetwork.targetActorInputWeights[i][j] =
(1 - tau) * globalNetwork.targetActorInputWeights[i][j] +
tau * globalNetwork.actorInputWeights[i][j];
globalNetwork.targetCriticInputWeights[i][j] =
(1 - tau) * globalNetwork.targetCriticInputWeights[i][j] +
tau * globalNetwork.criticInputWeights[i][j];
}
}
for (int i = 0; i < HIDDEN_SIZE; i++) {
for (int j = 0; j < ACTION_SIZE; j++) {
globalNetwork.targetActorHiddenWeights[i][j] =
(1 - tau) * globalNetwork.targetActorHiddenWeights[i][j] +
tau * globalNetwork.actorHiddenWeights[i][j];
}
globalNetwork.targetCriticHiddenWeights[i][0] =
(1 - tau) * globalNetwork.targetCriticHiddenWeights[i][0] +
tau * globalNetwork.criticHiddenWeights[i][0];
}
}
void A3CNetwork::pullGlobalNetworkWeights(ActorCritic& worker) {
std::lock_guard<std::mutex> lock(globalNetworkMutex);
copyNetworkWeights(globalNetwork, worker);
}
void A3CNetwork::saveGlobalWeights(const std::string& filename) {
std::lock_guard<std::mutex> lock(globalNetworkMutex);
globalNetwork.saveWeights(filename);
// Tallenna myös tilastot erilliseen tiedostoon
std::string statsFilename = filename + ".stats";
std::ofstream statsFile(statsFilename);
if (statsFile.is_open()) {
statsFile << totalUpdates.load() << " " << averageReward.load() << " "
<< learningRate << " " << gamma << " " << tau;
statsFile.close();
}
}
void A3CNetwork::loadGlobalWeights(const std::string& filename) {
std::lock_guard<std::mutex> lock(globalNetworkMutex);
try {
globalNetwork.loadWeights(filename);
// Yritä ladata myös tilastot
std::string statsFilename = filename + ".stats";
std::ifstream statsFile(statsFilename);
if (statsFile.is_open()) {
int updates;
float avgReward, lr, g, t;
statsFile >> updates >> avgReward >> lr >> g >> t;
totalUpdates.store(updates);
averageReward.store(avgReward);
learningRate = lr;
gamma = g;
tau = t;
statsFile.close();
}
} catch (const std::exception& e) {
std::cerr << "Virhe ladattaessa painoja: " << e.what() << std::endl;
}
}
void A3CNetwork::updateLearningRate(float newLR) {
// Varmista että oppimisnopeudella on minimi
if (newLR < 0.0003f) { // Nostettu minimiä 0.0001f -> 0.0003f
newLR = 0.0003f;
}
learningRate = newLR;
}
void A3CNetwork::updateAverageReward(float reward) {
// Tarkista onko palkkio NaN
if (std::isnan(reward)) {
reward = 0.0f;
}
float currentAvg = averageReward.load();
// Alusta keskimääräinen palkkio ensimmäisellä kerralla
if (std::isnan(currentAvg)) {
averageReward.store(reward);
return;
}
// Käytä liukuvaa keskiarvoa
float newAvg = currentAvg * 0.99f + reward * 0.01f;
// Varmista ettei uusi arvo ole NaN
if (!std::isnan(newAvg)) {
averageReward.store(newAvg);
}
}
float A3CNetwork::getAverageReward() const {
return averageReward.load();
}
int A3CNetwork::getTotalUpdates() const {
return totalUpdates.load();
}
float A3CNetwork::getLearningRate() const {
return learningRate;
}
// A3CWorker-luokan toteutukset
A3CWorker::A3CWorker(int id, A3CNetwork& global, float g, int updateFreq)
: workerId(id), globalNetwork(global), gamma(g) {
// Alusta paikallinen verkko globaalin verkon painoilla
globalNetwork.initializeWorker(localNetwork);
// Aseta päivitystaajuus
localNetwork.hyperParams.updateFrequency = updateFreq;
// Varmista että kohinavektorit on alustettu
localNetwork.initializeNoise();
// Alusta gradienttien keräämiseen tarvittavat vektorit
states.reserve(localNetwork.hyperParams.updateFrequency * STATE_SIZE);
actions.reserve(localNetwork.hyperParams.updateFrequency * ACTION_SIZE);
rewards.reserve(localNetwork.hyperParams.updateFrequency);
values.reserve(localNetwork.hyperParams.updateFrequency);
}
void A3CWorker::forward(float state[STATE_SIZE], float action[ACTION_SIZE], float& value) {
// Lisää satunnaisuutta toimintoihin
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<float> dist(-0.4f, 0.4f); // Pienennetty satunnaisuutta (-0.8f -> -0.4f)
std::uniform_real_distribution<float> smallDist(-0.2f, 0.2f); // Pienennetty satunnaisuutta (-0.5f -> -0.2f)
std::uniform_real_distribution<float> shootDist(0.0f, 1.0f);
// Suorita eteenpäinkulku
localNetwork.forward(state, action, value);
// Varmista että value ei ole nolla tai NaN
if (std::isnan(value) || std::abs(value) < 0.001f) {
value = 0.01f; // Aseta pieni ei-nolla arvo
}
// Lisää satunnaisuutta toimintoihin
for (int i = 0; i < ACTION_SIZE; i++) {
// Lisää satunnaisuutta vain jos toiminto on lähellä nollaa
if (std::abs(action[i]) < 0.3f) { // Säilytetään kynnys
action[i] += dist(gen);
} else {
// Lisää vähemmän satunnaisuutta jos toiminto on jo merkittävä
action[i] += smallDist(gen);
}
// Varmista että toiminto on järkevällä alueella
action[i] = std::tanh(action[i]);
}
// Lisää erityisesti ampumistoimintoon satunnaisuutta
// Tämä auttaa tankkia oppimaan ampumisen hyödyt
if (shootDist(gen) < 0.2f) { // Pienennetty todennäköisyyttä (25% -> 20%)
action[2] = 1.0f; // Pakota ampumistoiminto
}
}
void A3CWorker::collectExperience(float state[STATE_SIZE], float action[ACTION_SIZE],
float reward, float value) {
// Tallenna tila
for (int i = 0; i < STATE_SIZE; i++) {
states.push_back(state[i]);
}
// Tallenna toiminto
for (int i = 0; i < ACTION_SIZE; i++) {
actions.push_back(action[i]);
}
// Tallenna palkkio ja arvo
rewards.push_back(reward);
values.push_back(value);
}
void A3CWorker::updateGlobalNetwork(float nextStateValue, bool isTerminal) {
// Laske advantage ja päivitä gradientit
float R = isTerminal ? 0.0f : nextStateValue;
// Käy läpi kerätyt kokemukset käänteisessä järjestyksessä
for (int t = rewards.size() - 1; t >= 0; t--) {
R = rewards[t] + gamma * R;
float advantage = R - values[t];
// Päivitä gradientit paikallisessa verkossa
int stateOffset = t * STATE_SIZE;
int actionOffset = t * ACTION_SIZE;
float state[STATE_SIZE];
float action[ACTION_SIZE];
// Kopioi tila ja toiminto vektoreista
for (int i = 0; i < STATE_SIZE; i++) {
state[i] = states[stateOffset + i];
}
for (int i = 0; i < ACTION_SIZE; i++) {
action[i] = actions[actionOffset + i];
}
// Päivitä gradientit
localNetwork.calculateGradients(state, action, advantage, R);
}
// Päivitä globaali verkko
globalNetwork.updateGlobalNetwork(localNetwork);
// Päivitä paikallinen verkko globaalin verkon painoilla
globalNetwork.pullGlobalNetworkWeights(localNetwork);
// Varmista että updateCounter kasvaa
localNetwork.updateCounter++;
// Päivitä keskimääräinen palkkio
float avgReward = 0.0f;
for (float r : rewards) {
avgReward += r;
}
avgReward /= rewards.size();
globalNetwork.updateAverageReward(avgReward);
// Tyhjennä gradienttien keräämiseen käytetyt vektorit
states.clear();
actions.clear();
rewards.clear();
values.clear();
}
bool A3CWorker::shouldUpdate() const {
return rewards.size() >= localNetwork.hyperParams.updateFrequency;
}
int A3CWorker::getId() const {
return workerId;
}
ActorCritic& A3CWorker::getLocalNetwork() const {
return const_cast<ActorCritic&>(localNetwork);
}
void A3CWorker::setUpdateFrequency(int freq) {
localNetwork.hyperParams.updateFrequency = freq;
}
size_t A3CWorker::getRewardsSize() const {
return rewards.size();
}
void A3CWorker::setHyperParams(const HyperParameters& params) {
localNetwork.hyperParams = params;
}