diff --git a/docs/graph/predictor.html b/docs/graph/predictor.html index 5fd570e4f..5d876ff94 100644 --- a/docs/graph/predictor.html +++ b/docs/graph/predictor.html @@ -52,10 +52,12 @@
ktrain.graph.predictor
ktrain.graph.predictor
ktrain.graph.predictor
ktrain.graph.predictor
ktrain.graph.predictor
-def predict(self, G, edge_ids, return_proba=False)
+def predict(self, G, edge_ids, return_proba=False, verbose=0)
Performs link prediction
@@ -215,7 +217,7 @@ Methods
Expand source code
-def predict(self, G, edge_ids, return_proba=False):
+def predict(self, G, edge_ids, return_proba=False, verbose=0):
"""
```
Performs link prediction
@@ -226,7 +228,7 @@ Methods
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
- preds = self.model.predict(gen)
+ preds = self.model.predict(gen, verbose=verbose)
preds = np.squeeze(preds)
if return_proba:
return [[1 - pred, pred] for pred in preds]
@@ -278,10 +280,12 @@ Inherited members
def get_classes(self):
return self.c
- def predict(self, node_ids, return_proba=False):
- return self.predict_transductive(node_ids, return_proba=return_proba)
+ def predict(self, node_ids, return_proba=False, verbose=0):
+ return self.predict_transductive(
+ node_ids, return_proba=return_proba, verbose=verbose
+ )
- def predict_transductive(self, node_ids, return_proba=False):
+ def predict_transductive(self, node_ids, return_proba=False, verbose=0):
"""
```
Performs transductive inference.
@@ -292,11 +296,11 @@ Inherited members
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
- preds = self.model.predict(gen)
+ preds = self.model.predict(gen, verbose=verbose)
result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds]
return result
- def predict_inductive(self, df, G, return_proba=False):
+ def predict_inductive(self, df, G, return_proba=False, verbose=0):
"""
```
Performs inductive inference.
@@ -308,7 +312,7 @@ Inherited members
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
- preds = self.model.predict(gen)
+ preds = self.model.predict(gen, verbose=verbose)
result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds]
return result
@@ -333,7 +337,7 @@ Methods
-def predict(self, node_ids, return_proba=False)
+def predict(self, node_ids, return_proba=False, verbose=0)
@@ -341,12 +345,14 @@ Methods
Expand source code
-def predict(self, node_ids, return_proba=False):
- return self.predict_transductive(node_ids, return_proba=return_proba)
+def predict(self, node_ids, return_proba=False, verbose=0):
+ return self.predict_transductive(
+ node_ids, return_proba=return_proba, verbose=verbose
+ )
-def predict_inductive(self, df, G, return_proba=False)
+def predict_inductive(self, df, G, return_proba=False, verbose=0)
Performs inductive inference.
@@ -356,7 +362,7 @@ Methods
Expand source code
-def predict_inductive(self, df, G, return_proba=False):
+def predict_inductive(self, df, G, return_proba=False, verbose=0):
"""
```
Performs inductive inference.
@@ -368,13 +374,13 @@ Methods
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
- preds = self.model.predict(gen)
+ preds = self.model.predict(gen, verbose=verbose)
result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds]
return result
-def predict_transductive(self, node_ids, return_proba=False)
+def predict_transductive(self, node_ids, return_proba=False, verbose=0)
Performs transductive inference.
@@ -384,7 +390,7 @@ Methods
Expand source code
-def predict_transductive(self, node_ids, return_proba=False):
+def predict_transductive(self, node_ids, return_proba=False, verbose=0):
"""
```
Performs transductive inference.
@@ -395,7 +401,7 @@ Methods
gen.batch_size = self.batch_size
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(gen)
- preds = self.model.predict(gen)
+ preds = self.model.predict(gen, verbose=verbose)
result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds]
return result
diff --git a/docs/tabular/predictor.html b/docs/tabular/predictor.html
index 26563a0a2..ea3020959 100644
--- a/docs/tabular/predictor.html
+++ b/docs/tabular/predictor.html
@@ -55,13 +55,14 @@ Module ktrain.tabular.predictor
def get_classes(self):
return self.c
- def predict(self, df, return_proba=False):
+ def predict(self, df, return_proba=False, verbose=0):
"""
```
Makes predictions for a test dataframe
Args:
df(pd.DataFrame): a pandas DataFrame in same format as DataFrame used for training model
return_proba(bool): If True, return probabilities instead of predicted class labels
+ verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
```
"""
if not isinstance(df, pd.DataFrame):
@@ -73,7 +74,7 @@ Module ktrain.tabular.predictor
# get predictions
tseq = self.preproc.preprocess_test(df, verbose=0)
tseq.batch_size = self.batch_size
- preds = self.model.predict(tseq)
+ preds = self.model.predict(tseq, verbose=verbose)
result = (
preds
if return_proba or multilabel or not self.c
@@ -248,13 +249,14 @@ Classes
def get_classes(self):
return self.c
- def predict(self, df, return_proba=False):
+ def predict(self, df, return_proba=False, verbose=0):
"""
```
Makes predictions for a test dataframe
Args:
df(pd.DataFrame): a pandas DataFrame in same format as DataFrame used for training model
return_proba(bool): If True, return probabilities instead of predicted class labels
+ verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
```
"""
if not isinstance(df, pd.DataFrame):
@@ -266,7 +268,7 @@ Classes
# get predictions
tseq = self.preproc.preprocess_test(df, verbose=0)
tseq.batch_size = self.batch_size
- preds = self.model.predict(tseq)
+ preds = self.model.predict(tseq, verbose=verbose)
result = (
preds
if return_proba or multilabel or not self.c
@@ -554,25 +556,27 @@ Methods
-def predict(self, df, return_proba=False)
+def predict(self, df, return_proba=False, verbose=0)
Makes predictions for a test dataframe
Args:
df(pd.DataFrame): a pandas DataFrame in same format as DataFrame used for training model
return_proba(bool): If True, return probabilities instead of predicted class labels
+ verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
Expand source code
-def predict(self, df, return_proba=False):
+def predict(self, df, return_proba=False, verbose=0):
"""
```
Makes predictions for a test dataframe
Args:
df(pd.DataFrame): a pandas DataFrame in same format as DataFrame used for training model
return_proba(bool): If True, return probabilities instead of predicted class labels
+ verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
```
"""
if not isinstance(df, pd.DataFrame):
@@ -584,7 +588,7 @@ Methods
# get predictions
tseq = self.preproc.preprocess_test(df, verbose=0)
tseq.batch_size = self.batch_size
- preds = self.model.predict(tseq)
+ preds = self.model.predict(tseq, verbose=verbose)
result = (
preds
if return_proba or multilabel or not self.c
diff --git a/docs/text/ner/anago/preprocessing.html b/docs/text/ner/anago/preprocessing.html
index 2421bc26b..7a3b96605 100644
--- a/docs/text/ner/anago/preprocessing.html
+++ b/docs/text/ner/anago/preprocessing.html
@@ -790,7 +790,6 @@ Ancestors
- sklearn.base.BaseEstimator
- sklearn.base.TransformerMixin
-- sklearn.utils._set_output._SetOutputMixin
Static methods
diff --git a/docs/text/predictor.html b/docs/text/predictor.html
index ab78deb12..d7c4f24bd 100644
--- a/docs/text/predictor.html
+++ b/docs/text/predictor.html
@@ -53,7 +53,7 @@ Module ktrain.text.predictor
def get_classes(self):
return self.c
- def predict(self, texts, return_proba=False):
+ def predict(self, texts, return_proba=False, verbose=0):
"""
```
@@ -68,6 +68,7 @@ Module ktrain.text.predictor
A single tuple of the form (str, str) is automatically treated as sentence pair classification, so
please refrain from using tuples for text classification tasks.
return_proba(bool): If True, return probabilities instead of predicted class labels
+ verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
```
"""
@@ -82,7 +83,7 @@ Module ktrain.text.predictor
tseq = self.preproc.preprocess_test(texts, verbose=0)
tseq.batch_size = self.batch_size
tfd = tseq.to_tfdataset(train=False)
- preds = self.model.predict(tfd)
+ preds = self.model.predict(tfd, verbose=verbose)
if hasattr(
preds, "logits"
): # dep_fix: breaking change - also needed for LongFormer
@@ -95,7 +96,9 @@ Module ktrain.text.predictor
preds = preds[0]
else:
texts = self.preproc.preprocess(texts)
- preds = self.model.predict(texts, batch_size=self.batch_size)
+ preds = self.model.predict(
+ texts, batch_size=self.batch_size, verbose=verbose
+ )
# process predictions
if U.is_huggingface(model=self.model):
@@ -120,7 +123,7 @@ Module ktrain.text.predictor
else:
return result
- def predict_proba(self, texts):
+ def predict_proba(self, texts, verbose=0):
"""
```
Makes predictions for a list of strings where each string is a document
@@ -128,7 +131,7 @@ Module ktrain.text.predictor
Returns probabilities of each class.
```
"""
- return self.predict(texts, return_proba=True)
+ return self.predict(texts, return_proba=True, verbose=verbose)
def explain(self, doc, truncate_len=512, all_targets=False, n_samples=2500):
"""
@@ -230,7 +233,7 @@ Classes
def get_classes(self):
return self.c
- def predict(self, texts, return_proba=False):
+ def predict(self, texts, return_proba=False, verbose=0):
"""
```
@@ -245,6 +248,7 @@ Classes
A single tuple of the form (str, str) is automatically treated as sentence pair classification, so
please refrain from using tuples for text classification tasks.
return_proba(bool): If True, return probabilities instead of predicted class labels
+ verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
```
"""
@@ -259,7 +263,7 @@ Classes
tseq = self.preproc.preprocess_test(texts, verbose=0)
tseq.batch_size = self.batch_size
tfd = tseq.to_tfdataset(train=False)
- preds = self.model.predict(tfd)
+ preds = self.model.predict(tfd, verbose=verbose)
if hasattr(
preds, "logits"
): # dep_fix: breaking change - also needed for LongFormer
@@ -272,7 +276,9 @@ Classes
preds = preds[0]
else:
texts = self.preproc.preprocess(texts)
- preds = self.model.predict(texts, batch_size=self.batch_size)
+ preds = self.model.predict(
+ texts, batch_size=self.batch_size, verbose=verbose
+ )
# process predictions
if U.is_huggingface(model=self.model):
@@ -297,7 +303,7 @@ Classes
else:
return result
- def predict_proba(self, texts):
+ def predict_proba(self, texts, verbose=0):
"""
```
Makes predictions for a list of strings where each string is a document
@@ -305,7 +311,7 @@ Classes
Returns probabilities of each class.
```
"""
- return self.predict(texts, return_proba=True)
+ return self.predict(texts, return_proba=True, verbose=verbose)
def explain(self, doc, truncate_len=512, all_targets=False, n_samples=2500):
"""
@@ -456,7 +462,7 @@ Args
-def predict(self, texts, return_proba=False)
+def predict(self, texts, return_proba=False, verbose=0)
@@ -471,12 +477,13 @@ Args
A single tuple of the form (str, str) is automatically treated as sentence pair classification, so
please refrain from using tuples for text classification tasks.
return_proba(bool): If True, return probabilities instead of predicted class labels
+ verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
Expand source code
-def predict(self, texts, return_proba=False):
+def predict(self, texts, return_proba=False, verbose=0):
"""
```
@@ -491,6 +498,7 @@ Args
A single tuple of the form (str, str) is automatically treated as sentence pair classification, so
please refrain from using tuples for text classification tasks.
return_proba(bool): If True, return probabilities instead of predicted class labels
+ verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
```
"""
@@ -505,7 +513,7 @@ Args
tseq = self.preproc.preprocess_test(texts, verbose=0)
tseq.batch_size = self.batch_size
tfd = tseq.to_tfdataset(train=False)
- preds = self.model.predict(tfd)
+ preds = self.model.predict(tfd, verbose=verbose)
if hasattr(
preds, "logits"
): # dep_fix: breaking change - also needed for LongFormer
@@ -518,7 +526,9 @@ Args
preds = preds[0]
else:
texts = self.preproc.preprocess(texts)
- preds = self.model.predict(texts, batch_size=self.batch_size)
+ preds = self.model.predict(
+ texts, batch_size=self.batch_size, verbose=verbose
+ )
# process predictions
if U.is_huggingface(model=self.model):
@@ -545,7 +555,7 @@ Args
-def predict_proba(self, texts)
+def predict_proba(self, texts, verbose=0)
Makes predictions for a list of strings where each string is a document
@@ -556,7 +566,7 @@ Args
Expand source code
-def predict_proba(self, texts):
+def predict_proba(self, texts, verbose=0):
"""
```
Makes predictions for a list of strings where each string is a document
@@ -564,7 +574,7 @@ Args
Returns probabilities of each class.
```
"""
- return self.predict(texts, return_proba=True)
+ return self.predict(texts, return_proba=True, verbose=verbose)
diff --git a/docs/version.html b/docs/version.html
index 5d399b19c..df754c88a 100644
--- a/docs/version.html
+++ b/docs/version.html
@@ -27,7 +27,7 @@ Module ktrain.version
Expand source code
__all__ = ["__version__"]
-__version__ = "0.33.3"
+__version__ = "0.33.4"
diff --git a/docs/vision/index.html b/docs/vision/index.html
index 956b485e9..d6c9cef42 100644
--- a/docs/vision/index.html
+++ b/docs/vision/index.html
@@ -1182,7 +1182,7 @@ Classes
x = np.expand_dims(x, axis=0)
return eli5.show_prediction(self.model, x)
- def predict(self, data, return_proba=False):
+ def predict(self, data, return_proba=False, verbose=0):
"""
```
Predicts class from image in array format.
@@ -1192,9 +1192,11 @@ Classes
if not isinstance(data, np.ndarray):
raise ValueError("data must be numpy.ndarray")
(generator, steps) = self.preproc.preprocess(data, batch_size=self.batch_size)
- return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator(
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
+ )
- def predict_filename(self, img_path, return_proba=False):
+ def predict_filename(self, img_path, return_proba=False, verbose=0):
"""
```
Predicts class from filepath to single image file.
@@ -1206,9 +1208,11 @@ Classes
(generator, steps) = self.preproc.preprocess(
img_path, batch_size=self.batch_size
)
- return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator(
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
+ )
- def predict_folder(self, folder, return_proba=False):
+ def predict_folder(self, folder, return_proba=False, verbose=0):
"""
```
Predicts the classes of all images in a folder.
@@ -1220,13 +1224,13 @@ Classes
raise ValueError("folder must be valid directory")
(generator, steps) = self.preproc.preprocess(folder, batch_size=self.batch_size)
result = self.predict_generator(
- generator, steps=steps, return_proba=return_proba
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
)
if len(result) != len(generator.filenames):
raise Exception("number of results does not equal number of filenames")
return list(zip(generator.filenames, result))
- def predict_generator(self, generator, steps=None, return_proba=False):
+ def predict_generator(self, generator, steps=None, return_proba=False, verbose=0):
# loss = self.model.loss
# if callable(loss): loss = loss.__name__
# treat_multilabel = False
@@ -1238,7 +1242,7 @@ Classes
return_proba = True
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(generator, steps=steps)
- preds = self.model.predict(generator, steps=steps)
+ preds = self.model.predict(generator, steps=steps, verbose=verbose)
result = (
preds
if return_proba or multilabel
@@ -1251,17 +1255,19 @@ Classes
else:
return result
- def predict_proba(self, data):
- return self.predict(data, return_proba=True)
+ def predict_proba(self, data, verbose=0):
+ return self.predict(data, return_proba=True, verbose=verbose)
- def predict_proba_folder(self, folder):
- return self.predict_folder(folder, return_proba=True)
+ def predict_proba_folder(self, folder, verbose=0):
+ return self.predict_folder(folder, return_proba=True, verbose=verbose)
- def predict_proba_filename(self, img_path):
- return self.predict_filename(img_path, return_proba=True)
+ def predict_proba_filename(self, img_path, verbose=0):
+ return self.predict_filename(img_path, return_proba=True, verbose=verbose)
- def predict_proba_generator(self, generator, steps=None):
- return self.predict_proba_generator(generator, steps=steps, return_proba=True)
+ def predict_proba_generator(self, generator, steps=None, verbose=0):
+ return self.predict_proba_generator(
+ generator, steps=steps, return_proba=True, verbose=verbose
+ )
def analyze_valid(self, generator, print_report=True, multilabel=None):
"""
@@ -1427,7 +1433,7 @@ Methods
-def predict(self, data, return_proba=False)
+def predict(self, data, return_proba=False, verbose=0)
Predicts class from image in array format.
@@ -1437,7 +1443,7 @@ Methods
Expand source code
-def predict(self, data, return_proba=False):
+def predict(self, data, return_proba=False, verbose=0):
"""
```
Predicts class from image in array format.
@@ -1447,11 +1453,13 @@ Methods
if not isinstance(data, np.ndarray):
raise ValueError("data must be numpy.ndarray")
(generator, steps) = self.preproc.preprocess(data, batch_size=self.batch_size)
- return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator(
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
+ )
-def predict_filename(self, img_path, return_proba=False)
+def predict_filename(self, img_path, return_proba=False, verbose=0)
Predicts class from filepath to single image file.
@@ -1461,7 +1469,7 @@ Methods
Expand source code
-def predict_filename(self, img_path, return_proba=False):
+def predict_filename(self, img_path, return_proba=False, verbose=0):
"""
```
Predicts class from filepath to single image file.
@@ -1473,11 +1481,13 @@ Methods
(generator, steps) = self.preproc.preprocess(
img_path, batch_size=self.batch_size
)
- return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator(
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
+ )
-def predict_folder(self, folder, return_proba=False)
+def predict_folder(self, folder, return_proba=False, verbose=0)
Predicts the classes of all images in a folder.
@@ -1487,7 +1497,7 @@ Methods
Expand source code
-def predict_folder(self, folder, return_proba=False):
+def predict_folder(self, folder, return_proba=False, verbose=0):
"""
```
Predicts the classes of all images in a folder.
@@ -1499,7 +1509,7 @@ Methods
raise ValueError("folder must be valid directory")
(generator, steps) = self.preproc.preprocess(folder, batch_size=self.batch_size)
result = self.predict_generator(
- generator, steps=steps, return_proba=return_proba
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
)
if len(result) != len(generator.filenames):
raise Exception("number of results does not equal number of filenames")
@@ -1507,7 +1517,7 @@ Methods
-def predict_generator(self, generator, steps=None, return_proba=False)
+def predict_generator(self, generator, steps=None, return_proba=False, verbose=0)
@@ -1515,7 +1525,7 @@ Methods
Expand source code
-def predict_generator(self, generator, steps=None, return_proba=False):
+def predict_generator(self, generator, steps=None, return_proba=False, verbose=0):
# loss = self.model.loss
# if callable(loss): loss = loss.__name__
# treat_multilabel = False
@@ -1527,7 +1537,7 @@ Methods
return_proba = True
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(generator, steps=steps)
- preds = self.model.predict(generator, steps=steps)
+ preds = self.model.predict(generator, steps=steps, verbose=verbose)
result = (
preds
if return_proba or multilabel
@@ -1542,7 +1552,7 @@ Methods
-def predict_proba(self, data)
+def predict_proba(self, data, verbose=0)
@@ -1550,12 +1560,12 @@ Methods
Expand source code
-def predict_proba(self, data):
- return self.predict(data, return_proba=True)
+def predict_proba(self, data, verbose=0):
+ return self.predict(data, return_proba=True, verbose=verbose)
-def predict_proba_filename(self, img_path)
+def predict_proba_filename(self, img_path, verbose=0)
@@ -1563,12 +1573,12 @@ Methods
Expand source code
-def predict_proba_filename(self, img_path):
- return self.predict_filename(img_path, return_proba=True)
+def predict_proba_filename(self, img_path, verbose=0):
+ return self.predict_filename(img_path, return_proba=True, verbose=verbose)
-def predict_proba_folder(self, folder)
+def predict_proba_folder(self, folder, verbose=0)
@@ -1576,12 +1586,12 @@ Methods
Expand source code
-def predict_proba_folder(self, folder):
- return self.predict_folder(folder, return_proba=True)
+def predict_proba_folder(self, folder, verbose=0):
+ return self.predict_folder(folder, return_proba=True, verbose=verbose)
-def predict_proba_generator(self, generator, steps=None)
+def predict_proba_generator(self, generator, steps=None, verbose=0)
@@ -1589,8 +1599,10 @@ Methods
Expand source code
-def predict_proba_generator(self, generator, steps=None):
- return self.predict_proba_generator(generator, steps=steps, return_proba=True)
+def predict_proba_generator(self, generator, steps=None, verbose=0):
+ return self.predict_proba_generator(
+ generator, steps=steps, return_proba=True, verbose=verbose
+ )
diff --git a/docs/vision/predictor.html b/docs/vision/predictor.html
index c68fad643..81737d9eb 100644
--- a/docs/vision/predictor.html
+++ b/docs/vision/predictor.html
@@ -91,7 +91,7 @@ Module ktrain.vision.predictor
x = np.expand_dims(x, axis=0)
return eli5.show_prediction(self.model, x)
- def predict(self, data, return_proba=False):
+ def predict(self, data, return_proba=False, verbose=0):
"""
```
Predicts class from image in array format.
@@ -101,9 +101,11 @@ Module ktrain.vision.predictor
if not isinstance(data, np.ndarray):
raise ValueError("data must be numpy.ndarray")
(generator, steps) = self.preproc.preprocess(data, batch_size=self.batch_size)
- return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator(
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
+ )
- def predict_filename(self, img_path, return_proba=False):
+ def predict_filename(self, img_path, return_proba=False, verbose=0):
"""
```
Predicts class from filepath to single image file.
@@ -115,9 +117,11 @@ Module ktrain.vision.predictor
(generator, steps) = self.preproc.preprocess(
img_path, batch_size=self.batch_size
)
- return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator(
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
+ )
- def predict_folder(self, folder, return_proba=False):
+ def predict_folder(self, folder, return_proba=False, verbose=0):
"""
```
Predicts the classes of all images in a folder.
@@ -129,13 +133,13 @@ Module ktrain.vision.predictor
raise ValueError("folder must be valid directory")
(generator, steps) = self.preproc.preprocess(folder, batch_size=self.batch_size)
result = self.predict_generator(
- generator, steps=steps, return_proba=return_proba
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
)
if len(result) != len(generator.filenames):
raise Exception("number of results does not equal number of filenames")
return list(zip(generator.filenames, result))
- def predict_generator(self, generator, steps=None, return_proba=False):
+ def predict_generator(self, generator, steps=None, return_proba=False, verbose=0):
# loss = self.model.loss
# if callable(loss): loss = loss.__name__
# treat_multilabel = False
@@ -147,7 +151,7 @@ Module ktrain.vision.predictor
return_proba = True
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(generator, steps=steps)
- preds = self.model.predict(generator, steps=steps)
+ preds = self.model.predict(generator, steps=steps, verbose=verbose)
result = (
preds
if return_proba or multilabel
@@ -160,17 +164,19 @@ Module ktrain.vision.predictor
else:
return result
- def predict_proba(self, data):
- return self.predict(data, return_proba=True)
+ def predict_proba(self, data, verbose=0):
+ return self.predict(data, return_proba=True, verbose=verbose)
- def predict_proba_folder(self, folder):
- return self.predict_folder(folder, return_proba=True)
+ def predict_proba_folder(self, folder, verbose=0):
+ return self.predict_folder(folder, return_proba=True, verbose=verbose)
- def predict_proba_filename(self, img_path):
- return self.predict_filename(img_path, return_proba=True)
+ def predict_proba_filename(self, img_path, verbose=0):
+ return self.predict_filename(img_path, return_proba=True, verbose=verbose)
- def predict_proba_generator(self, generator, steps=None):
- return self.predict_proba_generator(generator, steps=steps, return_proba=True)
+ def predict_proba_generator(self, generator, steps=None, verbose=0):
+ return self.predict_proba_generator(
+ generator, steps=steps, return_proba=True, verbose=verbose
+ )
def analyze_valid(self, generator, print_report=True, multilabel=None):
"""
@@ -295,7 +301,7 @@ Classes
x = np.expand_dims(x, axis=0)
return eli5.show_prediction(self.model, x)
- def predict(self, data, return_proba=False):
+ def predict(self, data, return_proba=False, verbose=0):
"""
```
Predicts class from image in array format.
@@ -305,9 +311,11 @@ Classes
if not isinstance(data, np.ndarray):
raise ValueError("data must be numpy.ndarray")
(generator, steps) = self.preproc.preprocess(data, batch_size=self.batch_size)
- return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator(
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
+ )
- def predict_filename(self, img_path, return_proba=False):
+ def predict_filename(self, img_path, return_proba=False, verbose=0):
"""
```
Predicts class from filepath to single image file.
@@ -319,9 +327,11 @@ Classes
(generator, steps) = self.preproc.preprocess(
img_path, batch_size=self.batch_size
)
- return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator(
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
+ )
- def predict_folder(self, folder, return_proba=False):
+ def predict_folder(self, folder, return_proba=False, verbose=0):
"""
```
Predicts the classes of all images in a folder.
@@ -333,13 +343,13 @@ Classes
raise ValueError("folder must be valid directory")
(generator, steps) = self.preproc.preprocess(folder, batch_size=self.batch_size)
result = self.predict_generator(
- generator, steps=steps, return_proba=return_proba
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
)
if len(result) != len(generator.filenames):
raise Exception("number of results does not equal number of filenames")
return list(zip(generator.filenames, result))
- def predict_generator(self, generator, steps=None, return_proba=False):
+ def predict_generator(self, generator, steps=None, return_proba=False, verbose=0):
# loss = self.model.loss
# if callable(loss): loss = loss.__name__
# treat_multilabel = False
@@ -351,7 +361,7 @@ Classes
return_proba = True
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(generator, steps=steps)
- preds = self.model.predict(generator, steps=steps)
+ preds = self.model.predict(generator, steps=steps, verbose=verbose)
result = (
preds
if return_proba or multilabel
@@ -364,17 +374,19 @@ Classes
else:
return result
- def predict_proba(self, data):
- return self.predict(data, return_proba=True)
+ def predict_proba(self, data, verbose=0):
+ return self.predict(data, return_proba=True, verbose=verbose)
- def predict_proba_folder(self, folder):
- return self.predict_folder(folder, return_proba=True)
+ def predict_proba_folder(self, folder, verbose=0):
+ return self.predict_folder(folder, return_proba=True, verbose=verbose)
- def predict_proba_filename(self, img_path):
- return self.predict_filename(img_path, return_proba=True)
+ def predict_proba_filename(self, img_path, verbose=0):
+ return self.predict_filename(img_path, return_proba=True, verbose=verbose)
- def predict_proba_generator(self, generator, steps=None):
- return self.predict_proba_generator(generator, steps=steps, return_proba=True)
+ def predict_proba_generator(self, generator, steps=None, verbose=0):
+ return self.predict_proba_generator(
+ generator, steps=steps, return_proba=True, verbose=verbose
+ )
def analyze_valid(self, generator, print_report=True, multilabel=None):
"""
@@ -540,7 +552,7 @@ Methods
-def predict(self, data, return_proba=False)
+def predict(self, data, return_proba=False, verbose=0)
Predicts class from image in array format.
@@ -550,7 +562,7 @@ Methods
Expand source code
-def predict(self, data, return_proba=False):
+def predict(self, data, return_proba=False, verbose=0):
"""
```
Predicts class from image in array format.
@@ -560,11 +572,13 @@ Methods
if not isinstance(data, np.ndarray):
raise ValueError("data must be numpy.ndarray")
(generator, steps) = self.preproc.preprocess(data, batch_size=self.batch_size)
- return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator(
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
+ )
-def predict_filename(self, img_path, return_proba=False)
+def predict_filename(self, img_path, return_proba=False, verbose=0)
Predicts class from filepath to single image file.
@@ -574,7 +588,7 @@ Methods
Expand source code
-def predict_filename(self, img_path, return_proba=False):
+def predict_filename(self, img_path, return_proba=False, verbose=0):
"""
```
Predicts class from filepath to single image file.
@@ -586,11 +600,13 @@ Methods
(generator, steps) = self.preproc.preprocess(
img_path, batch_size=self.batch_size
)
- return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator(
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
+ )
-def predict_folder(self, folder, return_proba=False)
+def predict_folder(self, folder, return_proba=False, verbose=0)
Predicts the classes of all images in a folder.
@@ -600,7 +616,7 @@ Methods
Expand source code
-def predict_folder(self, folder, return_proba=False):
+def predict_folder(self, folder, return_proba=False, verbose=0):
"""
```
Predicts the classes of all images in a folder.
@@ -612,7 +628,7 @@ Methods
raise ValueError("folder must be valid directory")
(generator, steps) = self.preproc.preprocess(folder, batch_size=self.batch_size)
result = self.predict_generator(
- generator, steps=steps, return_proba=return_proba
+ generator, steps=steps, return_proba=return_proba, verbose=verbose
)
if len(result) != len(generator.filenames):
raise Exception("number of results does not equal number of filenames")
@@ -620,7 +636,7 @@ Methods
-def predict_generator(self, generator, steps=None, return_proba=False)
+def predict_generator(self, generator, steps=None, return_proba=False, verbose=0)
@@ -628,7 +644,7 @@ Methods
Expand source code
-def predict_generator(self, generator, steps=None, return_proba=False):
+def predict_generator(self, generator, steps=None, return_proba=False, verbose=0):
# loss = self.model.loss
# if callable(loss): loss = loss.__name__
# treat_multilabel = False
@@ -640,7 +656,7 @@ Methods
return_proba = True
# *_generator methods are deprecated from TF 2.1.0
# preds = self.model.predict_generator(generator, steps=steps)
- preds = self.model.predict(generator, steps=steps)
+ preds = self.model.predict(generator, steps=steps, verbose=verbose)
result = (
preds
if return_proba or multilabel
@@ -655,7 +671,7 @@ Methods
-def predict_proba(self, data)
+def predict_proba(self, data, verbose=0)
@@ -663,12 +679,12 @@ Methods
Expand source code
-def predict_proba(self, data):
- return self.predict(data, return_proba=True)
+def predict_proba(self, data, verbose=0):
+ return self.predict(data, return_proba=True, verbose=verbose)
-def predict_proba_filename(self, img_path)
+def predict_proba_filename(self, img_path, verbose=0)
@@ -676,12 +692,12 @@ Methods
Expand source code
-def predict_proba_filename(self, img_path):
- return self.predict_filename(img_path, return_proba=True)
+def predict_proba_filename(self, img_path, verbose=0):
+ return self.predict_filename(img_path, return_proba=True, verbose=verbose)
-def predict_proba_folder(self, folder)
+def predict_proba_folder(self, folder, verbose=0)
@@ -689,12 +705,12 @@ Methods
Expand source code
-def predict_proba_folder(self, folder):
- return self.predict_folder(folder, return_proba=True)
+def predict_proba_folder(self, folder, verbose=0):
+ return self.predict_folder(folder, return_proba=True, verbose=verbose)
-def predict_proba_generator(self, generator, steps=None)
+def predict_proba_generator(self, generator, steps=None, verbose=0)
@@ -702,8 +718,10 @@ Methods
Expand source code
-def predict_proba_generator(self, generator, steps=None):
- return self.predict_proba_generator(generator, steps=steps, return_proba=True)
+def predict_proba_generator(self, generator, steps=None, verbose=0):
+ return self.predict_proba_generator(
+ generator, steps=steps, return_proba=True, verbose=verbose
+ )