diff --git a/docs/graph/predictor.html b/docs/graph/predictor.html index 5fd570e4f..5d876ff94 100644 --- a/docs/graph/predictor.html +++ b/docs/graph/predictor.html @@ -52,10 +52,12 @@

Module ktrain.graph.predictor

def get_classes(self): return self.c - def predict(self, node_ids, return_proba=False): - return self.predict_transductive(node_ids, return_proba=return_proba) + def predict(self, node_ids, return_proba=False, verbose=0): + return self.predict_transductive( + node_ids, return_proba=return_proba, verbose=verbose + ) - def predict_transductive(self, node_ids, return_proba=False): + def predict_transductive(self, node_ids, return_proba=False, verbose=0): """ ``` Performs transductive inference. @@ -66,11 +68,11 @@

Module ktrain.graph.predictor

gen.batch_size = self.batch_size # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(gen) - preds = self.model.predict(gen) + preds = self.model.predict(gen, verbose=verbose) result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds] return result - def predict_inductive(self, df, G, return_proba=False): + def predict_inductive(self, df, G, return_proba=False, verbose=0): """ ``` Performs inductive inference. @@ -82,7 +84,7 @@

Module ktrain.graph.predictor

gen.batch_size = self.batch_size # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(gen) - preds = self.model.predict(gen) + preds = self.model.predict(gen, verbose=verbose) result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds] return result @@ -107,7 +109,7 @@

Module ktrain.graph.predictor

def get_classes(self): return self.c - def predict(self, G, edge_ids, return_proba=False): + def predict(self, G, edge_ids, return_proba=False, verbose=0): """ ``` Performs link prediction @@ -118,7 +120,7 @@

Module ktrain.graph.predictor

gen.batch_size = self.batch_size # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(gen) - preds = self.model.predict(gen) + preds = self.model.predict(gen, verbose=verbose) preds = np.squeeze(preds) if return_proba: return [[1 - pred, pred] for pred in preds] @@ -166,7 +168,7 @@

Classes

def get_classes(self): return self.c - def predict(self, G, edge_ids, return_proba=False): + def predict(self, G, edge_ids, return_proba=False, verbose=0): """ ``` Performs link prediction @@ -177,7 +179,7 @@

Classes

gen.batch_size = self.batch_size # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(gen) - preds = self.model.predict(gen) + preds = self.model.predict(gen, verbose=verbose) preds = np.squeeze(preds) if return_proba: return [[1 - pred, pred] for pred in preds] @@ -205,7 +207,7 @@

Methods

-def predict(self, G, edge_ids, return_proba=False) +def predict(self, G, edge_ids, return_proba=False, verbose=0)
Performs link prediction
@@ -215,7 +217,7 @@ 

Methods

Expand source code -
def predict(self, G, edge_ids, return_proba=False):
+
def predict(self, G, edge_ids, return_proba=False, verbose=0):
     """
     ```
     Performs link prediction
@@ -226,7 +228,7 @@ 

Methods

gen.batch_size = self.batch_size # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(gen) - preds = self.model.predict(gen) + preds = self.model.predict(gen, verbose=verbose) preds = np.squeeze(preds) if return_proba: return [[1 - pred, pred] for pred in preds] @@ -278,10 +280,12 @@

Inherited members

def get_classes(self): return self.c - def predict(self, node_ids, return_proba=False): - return self.predict_transductive(node_ids, return_proba=return_proba) + def predict(self, node_ids, return_proba=False, verbose=0): + return self.predict_transductive( + node_ids, return_proba=return_proba, verbose=verbose + ) - def predict_transductive(self, node_ids, return_proba=False): + def predict_transductive(self, node_ids, return_proba=False, verbose=0): """ ``` Performs transductive inference. @@ -292,11 +296,11 @@

Inherited members

gen.batch_size = self.batch_size # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(gen) - preds = self.model.predict(gen) + preds = self.model.predict(gen, verbose=verbose) result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds] return result - def predict_inductive(self, df, G, return_proba=False): + def predict_inductive(self, df, G, return_proba=False, verbose=0): """ ``` Performs inductive inference. @@ -308,7 +312,7 @@

Inherited members

gen.batch_size = self.batch_size # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(gen) - preds = self.model.predict(gen) + preds = self.model.predict(gen, verbose=verbose) result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds] return result
@@ -333,7 +337,7 @@

Methods

-def predict(self, node_ids, return_proba=False) +def predict(self, node_ids, return_proba=False, verbose=0)
@@ -341,12 +345,14 @@

Methods

Expand source code -
def predict(self, node_ids, return_proba=False):
-    return self.predict_transductive(node_ids, return_proba=return_proba)
+
def predict(self, node_ids, return_proba=False, verbose=0):
+    return self.predict_transductive(
+        node_ids, return_proba=return_proba, verbose=verbose
+    )
-def predict_inductive(self, df, G, return_proba=False) +def predict_inductive(self, df, G, return_proba=False, verbose=0)
Performs inductive inference.
@@ -356,7 +362,7 @@ 

Methods

Expand source code -
def predict_inductive(self, df, G, return_proba=False):
+
def predict_inductive(self, df, G, return_proba=False, verbose=0):
     """
     ```
     Performs inductive inference.
@@ -368,13 +374,13 @@ 

Methods

gen.batch_size = self.batch_size # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(gen) - preds = self.model.predict(gen) + preds = self.model.predict(gen, verbose=verbose) result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds] return result
-def predict_transductive(self, node_ids, return_proba=False) +def predict_transductive(self, node_ids, return_proba=False, verbose=0)
Performs transductive inference.
@@ -384,7 +390,7 @@ 

Methods

Expand source code -
def predict_transductive(self, node_ids, return_proba=False):
+
def predict_transductive(self, node_ids, return_proba=False, verbose=0):
     """
     ```
     Performs transductive inference.
@@ -395,7 +401,7 @@ 

Methods

gen.batch_size = self.batch_size # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(gen) - preds = self.model.predict(gen) + preds = self.model.predict(gen, verbose=verbose) result = preds if return_proba else [self.c[np.argmax(pred)] for pred in preds] return result
diff --git a/docs/tabular/predictor.html b/docs/tabular/predictor.html index 26563a0a2..ea3020959 100644 --- a/docs/tabular/predictor.html +++ b/docs/tabular/predictor.html @@ -55,13 +55,14 @@

Module ktrain.tabular.predictor

def get_classes(self): return self.c - def predict(self, df, return_proba=False): + def predict(self, df, return_proba=False, verbose=0): """ ``` Makes predictions for a test dataframe Args: df(pd.DataFrame): a pandas DataFrame in same format as DataFrame used for training model return_proba(bool): If True, return probabilities instead of predicted class labels + verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line) ``` """ if not isinstance(df, pd.DataFrame): @@ -73,7 +74,7 @@

Module ktrain.tabular.predictor

# get predictions tseq = self.preproc.preprocess_test(df, verbose=0) tseq.batch_size = self.batch_size - preds = self.model.predict(tseq) + preds = self.model.predict(tseq, verbose=verbose) result = ( preds if return_proba or multilabel or not self.c @@ -248,13 +249,14 @@

Classes

def get_classes(self): return self.c - def predict(self, df, return_proba=False): + def predict(self, df, return_proba=False, verbose=0): """ ``` Makes predictions for a test dataframe Args: df(pd.DataFrame): a pandas DataFrame in same format as DataFrame used for training model return_proba(bool): If True, return probabilities instead of predicted class labels + verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line) ``` """ if not isinstance(df, pd.DataFrame): @@ -266,7 +268,7 @@

Classes

# get predictions tseq = self.preproc.preprocess_test(df, verbose=0) tseq.batch_size = self.batch_size - preds = self.model.predict(tseq) + preds = self.model.predict(tseq, verbose=verbose) result = ( preds if return_proba or multilabel or not self.c @@ -554,25 +556,27 @@

Methods

-def predict(self, df, return_proba=False) +def predict(self, df, return_proba=False, verbose=0)
Makes predictions for a test dataframe
 Args:
   df(pd.DataFrame):  a pandas DataFrame in same format as DataFrame used for training model
   return_proba(bool): If True, return probabilities instead of predicted class labels
+  verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
 
Expand source code -
def predict(self, df, return_proba=False):
+
def predict(self, df, return_proba=False, verbose=0):
     """
     ```
     Makes predictions for a test dataframe
     Args:
       df(pd.DataFrame):  a pandas DataFrame in same format as DataFrame used for training model
       return_proba(bool): If True, return probabilities instead of predicted class labels
+      verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
     ```
     """
     if not isinstance(df, pd.DataFrame):
@@ -584,7 +588,7 @@ 

Methods

# get predictions tseq = self.preproc.preprocess_test(df, verbose=0) tseq.batch_size = self.batch_size - preds = self.model.predict(tseq) + preds = self.model.predict(tseq, verbose=verbose) result = ( preds if return_proba or multilabel or not self.c diff --git a/docs/text/ner/anago/preprocessing.html b/docs/text/ner/anago/preprocessing.html index 2421bc26b..7a3b96605 100644 --- a/docs/text/ner/anago/preprocessing.html +++ b/docs/text/ner/anago/preprocessing.html @@ -790,7 +790,6 @@

Ancestors

  • sklearn.base.BaseEstimator
  • sklearn.base.TransformerMixin
  • -
  • sklearn.utils._set_output._SetOutputMixin

Static methods

diff --git a/docs/text/predictor.html b/docs/text/predictor.html index ab78deb12..d7c4f24bd 100644 --- a/docs/text/predictor.html +++ b/docs/text/predictor.html @@ -53,7 +53,7 @@

Module ktrain.text.predictor

def get_classes(self): return self.c - def predict(self, texts, return_proba=False): + def predict(self, texts, return_proba=False, verbose=0): """ ``` @@ -68,6 +68,7 @@

Module ktrain.text.predictor

A single tuple of the form (str, str) is automatically treated as sentence pair classification, so please refrain from using tuples for text classification tasks. return_proba(bool): If True, return probabilities instead of predicted class labels + verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line) ``` """ @@ -82,7 +83,7 @@

Module ktrain.text.predictor

tseq = self.preproc.preprocess_test(texts, verbose=0) tseq.batch_size = self.batch_size tfd = tseq.to_tfdataset(train=False) - preds = self.model.predict(tfd) + preds = self.model.predict(tfd, verbose=verbose) if hasattr( preds, "logits" ): # dep_fix: breaking change - also needed for LongFormer @@ -95,7 +96,9 @@

Module ktrain.text.predictor

preds = preds[0] else: texts = self.preproc.preprocess(texts) - preds = self.model.predict(texts, batch_size=self.batch_size) + preds = self.model.predict( + texts, batch_size=self.batch_size, verbose=verbose + ) # process predictions if U.is_huggingface(model=self.model): @@ -120,7 +123,7 @@

Module ktrain.text.predictor

else: return result - def predict_proba(self, texts): + def predict_proba(self, texts, verbose=0): """ ``` Makes predictions for a list of strings where each string is a document @@ -128,7 +131,7 @@

Module ktrain.text.predictor

Returns probabilities of each class. ``` """ - return self.predict(texts, return_proba=True) + return self.predict(texts, return_proba=True, verbose=verbose) def explain(self, doc, truncate_len=512, all_targets=False, n_samples=2500): """ @@ -230,7 +233,7 @@

Classes

def get_classes(self): return self.c - def predict(self, texts, return_proba=False): + def predict(self, texts, return_proba=False, verbose=0): """ ``` @@ -245,6 +248,7 @@

Classes

A single tuple of the form (str, str) is automatically treated as sentence pair classification, so please refrain from using tuples for text classification tasks. return_proba(bool): If True, return probabilities instead of predicted class labels + verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line) ``` """ @@ -259,7 +263,7 @@

Classes

tseq = self.preproc.preprocess_test(texts, verbose=0) tseq.batch_size = self.batch_size tfd = tseq.to_tfdataset(train=False) - preds = self.model.predict(tfd) + preds = self.model.predict(tfd, verbose=verbose) if hasattr( preds, "logits" ): # dep_fix: breaking change - also needed for LongFormer @@ -272,7 +276,9 @@

Classes

preds = preds[0] else: texts = self.preproc.preprocess(texts) - preds = self.model.predict(texts, batch_size=self.batch_size) + preds = self.model.predict( + texts, batch_size=self.batch_size, verbose=verbose + ) # process predictions if U.is_huggingface(model=self.model): @@ -297,7 +303,7 @@

Classes

else: return result - def predict_proba(self, texts): + def predict_proba(self, texts, verbose=0): """ ``` Makes predictions for a list of strings where each string is a document @@ -305,7 +311,7 @@

Classes

Returns probabilities of each class. ``` """ - return self.predict(texts, return_proba=True) + return self.predict(texts, return_proba=True, verbose=verbose) def explain(self, doc, truncate_len=512, all_targets=False, n_samples=2500): """ @@ -456,7 +462,7 @@

Args

-def predict(self, texts, return_proba=False) +def predict(self, texts, return_proba=False, verbose=0)

@@ -471,12 +477,13 @@ 

Args

A single tuple of the form (str, str) is automatically treated as sentence pair classification, so please refrain from using tuples for text classification tasks. return_proba(bool): If True, return probabilities instead of predicted class labels + verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line)
Expand source code -
def predict(self, texts, return_proba=False):
+
def predict(self, texts, return_proba=False, verbose=0):
     """
     ```
 
@@ -491,6 +498,7 @@ 

Args

A single tuple of the form (str, str) is automatically treated as sentence pair classification, so please refrain from using tuples for text classification tasks. return_proba(bool): If True, return probabilities instead of predicted class labels + verbose(int): verbosity: 0 (silent), 1 (progress bar), 2 (single line) ``` """ @@ -505,7 +513,7 @@

Args

tseq = self.preproc.preprocess_test(texts, verbose=0) tseq.batch_size = self.batch_size tfd = tseq.to_tfdataset(train=False) - preds = self.model.predict(tfd) + preds = self.model.predict(tfd, verbose=verbose) if hasattr( preds, "logits" ): # dep_fix: breaking change - also needed for LongFormer @@ -518,7 +526,9 @@

Args

preds = preds[0] else: texts = self.preproc.preprocess(texts) - preds = self.model.predict(texts, batch_size=self.batch_size) + preds = self.model.predict( + texts, batch_size=self.batch_size, verbose=verbose + ) # process predictions if U.is_huggingface(model=self.model): @@ -545,7 +555,7 @@

Args

-def predict_proba(self, texts) +def predict_proba(self, texts, verbose=0)
Makes predictions for a list of strings where each string is a document
@@ -556,7 +566,7 @@ 

Args

Expand source code -
def predict_proba(self, texts):
+
def predict_proba(self, texts, verbose=0):
     """
     ```
     Makes predictions for a list of strings where each string is a document
@@ -564,7 +574,7 @@ 

Args

Returns probabilities of each class. ``` """ - return self.predict(texts, return_proba=True)
+ return self.predict(texts, return_proba=True, verbose=verbose)
diff --git a/docs/version.html b/docs/version.html index 5d399b19c..df754c88a 100644 --- a/docs/version.html +++ b/docs/version.html @@ -27,7 +27,7 @@

Module ktrain.version

Expand source code
__all__ = ["__version__"]
-__version__ = "0.33.3"
+__version__ = "0.33.4"
diff --git a/docs/vision/index.html b/docs/vision/index.html index 956b485e9..d6c9cef42 100644 --- a/docs/vision/index.html +++ b/docs/vision/index.html @@ -1182,7 +1182,7 @@

Classes

x = np.expand_dims(x, axis=0) return eli5.show_prediction(self.model, x) - def predict(self, data, return_proba=False): + def predict(self, data, return_proba=False, verbose=0): """ ``` Predicts class from image in array format. @@ -1192,9 +1192,11 @@

Classes

if not isinstance(data, np.ndarray): raise ValueError("data must be numpy.ndarray") (generator, steps) = self.preproc.preprocess(data, batch_size=self.batch_size) - return self.predict_generator(generator, steps=steps, return_proba=return_proba) + return self.predict_generator( + generator, steps=steps, return_proba=return_proba, verbose=verbose + ) - def predict_filename(self, img_path, return_proba=False): + def predict_filename(self, img_path, return_proba=False, verbose=0): """ ``` Predicts class from filepath to single image file. @@ -1206,9 +1208,11 @@

Classes

(generator, steps) = self.preproc.preprocess( img_path, batch_size=self.batch_size ) - return self.predict_generator(generator, steps=steps, return_proba=return_proba) + return self.predict_generator( + generator, steps=steps, return_proba=return_proba, verbose=verbose + ) - def predict_folder(self, folder, return_proba=False): + def predict_folder(self, folder, return_proba=False, verbose=0): """ ``` Predicts the classes of all images in a folder. @@ -1220,13 +1224,13 @@

Classes

raise ValueError("folder must be valid directory") (generator, steps) = self.preproc.preprocess(folder, batch_size=self.batch_size) result = self.predict_generator( - generator, steps=steps, return_proba=return_proba + generator, steps=steps, return_proba=return_proba, verbose=verbose ) if len(result) != len(generator.filenames): raise Exception("number of results does not equal number of filenames") return list(zip(generator.filenames, result)) - def predict_generator(self, generator, steps=None, return_proba=False): + def predict_generator(self, generator, steps=None, return_proba=False, verbose=0): # loss = self.model.loss # if callable(loss): loss = loss.__name__ # treat_multilabel = False @@ -1238,7 +1242,7 @@

Classes

return_proba = True # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(generator, steps=steps) - preds = self.model.predict(generator, steps=steps) + preds = self.model.predict(generator, steps=steps, verbose=verbose) result = ( preds if return_proba or multilabel @@ -1251,17 +1255,19 @@

Classes

else: return result - def predict_proba(self, data): - return self.predict(data, return_proba=True) + def predict_proba(self, data, verbose=0): + return self.predict(data, return_proba=True, verbose=verbose) - def predict_proba_folder(self, folder): - return self.predict_folder(folder, return_proba=True) + def predict_proba_folder(self, folder, verbose=0): + return self.predict_folder(folder, return_proba=True, verbose=verbose) - def predict_proba_filename(self, img_path): - return self.predict_filename(img_path, return_proba=True) + def predict_proba_filename(self, img_path, verbose=0): + return self.predict_filename(img_path, return_proba=True, verbose=verbose) - def predict_proba_generator(self, generator, steps=None): - return self.predict_proba_generator(generator, steps=steps, return_proba=True) + def predict_proba_generator(self, generator, steps=None, verbose=0): + return self.predict_proba_generator( + generator, steps=steps, return_proba=True, verbose=verbose + ) def analyze_valid(self, generator, print_report=True, multilabel=None): """ @@ -1427,7 +1433,7 @@

Methods

-def predict(self, data, return_proba=False) +def predict(self, data, return_proba=False, verbose=0)
Predicts class from image in array format.
@@ -1437,7 +1443,7 @@ 

Methods

Expand source code -
def predict(self, data, return_proba=False):
+
def predict(self, data, return_proba=False, verbose=0):
     """
     ```
     Predicts class from image in array format.
@@ -1447,11 +1453,13 @@ 

Methods

if not isinstance(data, np.ndarray): raise ValueError("data must be numpy.ndarray") (generator, steps) = self.preproc.preprocess(data, batch_size=self.batch_size) - return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator( + generator, steps=steps, return_proba=return_proba, verbose=verbose + )
-def predict_filename(self, img_path, return_proba=False) +def predict_filename(self, img_path, return_proba=False, verbose=0)
Predicts class from filepath to single image file.
@@ -1461,7 +1469,7 @@ 

Methods

Expand source code -
def predict_filename(self, img_path, return_proba=False):
+
def predict_filename(self, img_path, return_proba=False, verbose=0):
     """
     ```
     Predicts class from filepath to single image file.
@@ -1473,11 +1481,13 @@ 

Methods

(generator, steps) = self.preproc.preprocess( img_path, batch_size=self.batch_size ) - return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator( + generator, steps=steps, return_proba=return_proba, verbose=verbose + )
-def predict_folder(self, folder, return_proba=False) +def predict_folder(self, folder, return_proba=False, verbose=0)
Predicts the classes of all images in a folder.
@@ -1487,7 +1497,7 @@ 

Methods

Expand source code -
def predict_folder(self, folder, return_proba=False):
+
def predict_folder(self, folder, return_proba=False, verbose=0):
     """
     ```
     Predicts the classes of all images in a folder.
@@ -1499,7 +1509,7 @@ 

Methods

raise ValueError("folder must be valid directory") (generator, steps) = self.preproc.preprocess(folder, batch_size=self.batch_size) result = self.predict_generator( - generator, steps=steps, return_proba=return_proba + generator, steps=steps, return_proba=return_proba, verbose=verbose ) if len(result) != len(generator.filenames): raise Exception("number of results does not equal number of filenames") @@ -1507,7 +1517,7 @@

Methods

-def predict_generator(self, generator, steps=None, return_proba=False) +def predict_generator(self, generator, steps=None, return_proba=False, verbose=0)
@@ -1515,7 +1525,7 @@

Methods

Expand source code -
def predict_generator(self, generator, steps=None, return_proba=False):
+
def predict_generator(self, generator, steps=None, return_proba=False, verbose=0):
     # loss = self.model.loss
     # if callable(loss): loss = loss.__name__
     # treat_multilabel = False
@@ -1527,7 +1537,7 @@ 

Methods

return_proba = True # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(generator, steps=steps) - preds = self.model.predict(generator, steps=steps) + preds = self.model.predict(generator, steps=steps, verbose=verbose) result = ( preds if return_proba or multilabel @@ -1542,7 +1552,7 @@

Methods

-def predict_proba(self, data) +def predict_proba(self, data, verbose=0)
@@ -1550,12 +1560,12 @@

Methods

Expand source code -
def predict_proba(self, data):
-    return self.predict(data, return_proba=True)
+
def predict_proba(self, data, verbose=0):
+    return self.predict(data, return_proba=True, verbose=verbose)
-def predict_proba_filename(self, img_path) +def predict_proba_filename(self, img_path, verbose=0)
@@ -1563,12 +1573,12 @@

Methods

Expand source code -
def predict_proba_filename(self, img_path):
-    return self.predict_filename(img_path, return_proba=True)
+
def predict_proba_filename(self, img_path, verbose=0):
+    return self.predict_filename(img_path, return_proba=True, verbose=verbose)
-def predict_proba_folder(self, folder) +def predict_proba_folder(self, folder, verbose=0)
@@ -1576,12 +1586,12 @@

Methods

Expand source code -
def predict_proba_folder(self, folder):
-    return self.predict_folder(folder, return_proba=True)
+
def predict_proba_folder(self, folder, verbose=0):
+    return self.predict_folder(folder, return_proba=True, verbose=verbose)
-def predict_proba_generator(self, generator, steps=None) +def predict_proba_generator(self, generator, steps=None, verbose=0)
@@ -1589,8 +1599,10 @@

Methods

Expand source code -
def predict_proba_generator(self, generator, steps=None):
-    return self.predict_proba_generator(generator, steps=steps, return_proba=True)
+
def predict_proba_generator(self, generator, steps=None, verbose=0):
+    return self.predict_proba_generator(
+        generator, steps=steps, return_proba=True, verbose=verbose
+    )
diff --git a/docs/vision/predictor.html b/docs/vision/predictor.html index c68fad643..81737d9eb 100644 --- a/docs/vision/predictor.html +++ b/docs/vision/predictor.html @@ -91,7 +91,7 @@

Module ktrain.vision.predictor

x = np.expand_dims(x, axis=0) return eli5.show_prediction(self.model, x) - def predict(self, data, return_proba=False): + def predict(self, data, return_proba=False, verbose=0): """ ``` Predicts class from image in array format. @@ -101,9 +101,11 @@

Module ktrain.vision.predictor

if not isinstance(data, np.ndarray): raise ValueError("data must be numpy.ndarray") (generator, steps) = self.preproc.preprocess(data, batch_size=self.batch_size) - return self.predict_generator(generator, steps=steps, return_proba=return_proba) + return self.predict_generator( + generator, steps=steps, return_proba=return_proba, verbose=verbose + ) - def predict_filename(self, img_path, return_proba=False): + def predict_filename(self, img_path, return_proba=False, verbose=0): """ ``` Predicts class from filepath to single image file. @@ -115,9 +117,11 @@

Module ktrain.vision.predictor

(generator, steps) = self.preproc.preprocess( img_path, batch_size=self.batch_size ) - return self.predict_generator(generator, steps=steps, return_proba=return_proba) + return self.predict_generator( + generator, steps=steps, return_proba=return_proba, verbose=verbose + ) - def predict_folder(self, folder, return_proba=False): + def predict_folder(self, folder, return_proba=False, verbose=0): """ ``` Predicts the classes of all images in a folder. @@ -129,13 +133,13 @@

Module ktrain.vision.predictor

raise ValueError("folder must be valid directory") (generator, steps) = self.preproc.preprocess(folder, batch_size=self.batch_size) result = self.predict_generator( - generator, steps=steps, return_proba=return_proba + generator, steps=steps, return_proba=return_proba, verbose=verbose ) if len(result) != len(generator.filenames): raise Exception("number of results does not equal number of filenames") return list(zip(generator.filenames, result)) - def predict_generator(self, generator, steps=None, return_proba=False): + def predict_generator(self, generator, steps=None, return_proba=False, verbose=0): # loss = self.model.loss # if callable(loss): loss = loss.__name__ # treat_multilabel = False @@ -147,7 +151,7 @@

Module ktrain.vision.predictor

return_proba = True # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(generator, steps=steps) - preds = self.model.predict(generator, steps=steps) + preds = self.model.predict(generator, steps=steps, verbose=verbose) result = ( preds if return_proba or multilabel @@ -160,17 +164,19 @@

Module ktrain.vision.predictor

else: return result - def predict_proba(self, data): - return self.predict(data, return_proba=True) + def predict_proba(self, data, verbose=0): + return self.predict(data, return_proba=True, verbose=verbose) - def predict_proba_folder(self, folder): - return self.predict_folder(folder, return_proba=True) + def predict_proba_folder(self, folder, verbose=0): + return self.predict_folder(folder, return_proba=True, verbose=verbose) - def predict_proba_filename(self, img_path): - return self.predict_filename(img_path, return_proba=True) + def predict_proba_filename(self, img_path, verbose=0): + return self.predict_filename(img_path, return_proba=True, verbose=verbose) - def predict_proba_generator(self, generator, steps=None): - return self.predict_proba_generator(generator, steps=steps, return_proba=True) + def predict_proba_generator(self, generator, steps=None, verbose=0): + return self.predict_proba_generator( + generator, steps=steps, return_proba=True, verbose=verbose + ) def analyze_valid(self, generator, print_report=True, multilabel=None): """ @@ -295,7 +301,7 @@

Classes

x = np.expand_dims(x, axis=0) return eli5.show_prediction(self.model, x) - def predict(self, data, return_proba=False): + def predict(self, data, return_proba=False, verbose=0): """ ``` Predicts class from image in array format. @@ -305,9 +311,11 @@

Classes

if not isinstance(data, np.ndarray): raise ValueError("data must be numpy.ndarray") (generator, steps) = self.preproc.preprocess(data, batch_size=self.batch_size) - return self.predict_generator(generator, steps=steps, return_proba=return_proba) + return self.predict_generator( + generator, steps=steps, return_proba=return_proba, verbose=verbose + ) - def predict_filename(self, img_path, return_proba=False): + def predict_filename(self, img_path, return_proba=False, verbose=0): """ ``` Predicts class from filepath to single image file. @@ -319,9 +327,11 @@

Classes

(generator, steps) = self.preproc.preprocess( img_path, batch_size=self.batch_size ) - return self.predict_generator(generator, steps=steps, return_proba=return_proba) + return self.predict_generator( + generator, steps=steps, return_proba=return_proba, verbose=verbose + ) - def predict_folder(self, folder, return_proba=False): + def predict_folder(self, folder, return_proba=False, verbose=0): """ ``` Predicts the classes of all images in a folder. @@ -333,13 +343,13 @@

Classes

raise ValueError("folder must be valid directory") (generator, steps) = self.preproc.preprocess(folder, batch_size=self.batch_size) result = self.predict_generator( - generator, steps=steps, return_proba=return_proba + generator, steps=steps, return_proba=return_proba, verbose=verbose ) if len(result) != len(generator.filenames): raise Exception("number of results does not equal number of filenames") return list(zip(generator.filenames, result)) - def predict_generator(self, generator, steps=None, return_proba=False): + def predict_generator(self, generator, steps=None, return_proba=False, verbose=0): # loss = self.model.loss # if callable(loss): loss = loss.__name__ # treat_multilabel = False @@ -351,7 +361,7 @@

Classes

return_proba = True # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(generator, steps=steps) - preds = self.model.predict(generator, steps=steps) + preds = self.model.predict(generator, steps=steps, verbose=verbose) result = ( preds if return_proba or multilabel @@ -364,17 +374,19 @@

Classes

else: return result - def predict_proba(self, data): - return self.predict(data, return_proba=True) + def predict_proba(self, data, verbose=0): + return self.predict(data, return_proba=True, verbose=verbose) - def predict_proba_folder(self, folder): - return self.predict_folder(folder, return_proba=True) + def predict_proba_folder(self, folder, verbose=0): + return self.predict_folder(folder, return_proba=True, verbose=verbose) - def predict_proba_filename(self, img_path): - return self.predict_filename(img_path, return_proba=True) + def predict_proba_filename(self, img_path, verbose=0): + return self.predict_filename(img_path, return_proba=True, verbose=verbose) - def predict_proba_generator(self, generator, steps=None): - return self.predict_proba_generator(generator, steps=steps, return_proba=True) + def predict_proba_generator(self, generator, steps=None, verbose=0): + return self.predict_proba_generator( + generator, steps=steps, return_proba=True, verbose=verbose + ) def analyze_valid(self, generator, print_report=True, multilabel=None): """ @@ -540,7 +552,7 @@

Methods

-def predict(self, data, return_proba=False) +def predict(self, data, return_proba=False, verbose=0)
Predicts class from image in array format.
@@ -550,7 +562,7 @@ 

Methods

Expand source code -
def predict(self, data, return_proba=False):
+
def predict(self, data, return_proba=False, verbose=0):
     """
     ```
     Predicts class from image in array format.
@@ -560,11 +572,13 @@ 

Methods

if not isinstance(data, np.ndarray): raise ValueError("data must be numpy.ndarray") (generator, steps) = self.preproc.preprocess(data, batch_size=self.batch_size) - return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator( + generator, steps=steps, return_proba=return_proba, verbose=verbose + )
-def predict_filename(self, img_path, return_proba=False) +def predict_filename(self, img_path, return_proba=False, verbose=0)
Predicts class from filepath to single image file.
@@ -574,7 +588,7 @@ 

Methods

Expand source code -
def predict_filename(self, img_path, return_proba=False):
+
def predict_filename(self, img_path, return_proba=False, verbose=0):
     """
     ```
     Predicts class from filepath to single image file.
@@ -586,11 +600,13 @@ 

Methods

(generator, steps) = self.preproc.preprocess( img_path, batch_size=self.batch_size ) - return self.predict_generator(generator, steps=steps, return_proba=return_proba)
+ return self.predict_generator( + generator, steps=steps, return_proba=return_proba, verbose=verbose + )
-def predict_folder(self, folder, return_proba=False) +def predict_folder(self, folder, return_proba=False, verbose=0)
Predicts the classes of all images in a folder.
@@ -600,7 +616,7 @@ 

Methods

Expand source code -
def predict_folder(self, folder, return_proba=False):
+
def predict_folder(self, folder, return_proba=False, verbose=0):
     """
     ```
     Predicts the classes of all images in a folder.
@@ -612,7 +628,7 @@ 

Methods

raise ValueError("folder must be valid directory") (generator, steps) = self.preproc.preprocess(folder, batch_size=self.batch_size) result = self.predict_generator( - generator, steps=steps, return_proba=return_proba + generator, steps=steps, return_proba=return_proba, verbose=verbose ) if len(result) != len(generator.filenames): raise Exception("number of results does not equal number of filenames") @@ -620,7 +636,7 @@

Methods

-def predict_generator(self, generator, steps=None, return_proba=False) +def predict_generator(self, generator, steps=None, return_proba=False, verbose=0)
@@ -628,7 +644,7 @@

Methods

Expand source code -
def predict_generator(self, generator, steps=None, return_proba=False):
+
def predict_generator(self, generator, steps=None, return_proba=False, verbose=0):
     # loss = self.model.loss
     # if callable(loss): loss = loss.__name__
     # treat_multilabel = False
@@ -640,7 +656,7 @@ 

Methods

return_proba = True # *_generator methods are deprecated from TF 2.1.0 # preds = self.model.predict_generator(generator, steps=steps) - preds = self.model.predict(generator, steps=steps) + preds = self.model.predict(generator, steps=steps, verbose=verbose) result = ( preds if return_proba or multilabel @@ -655,7 +671,7 @@

Methods

-def predict_proba(self, data) +def predict_proba(self, data, verbose=0)
@@ -663,12 +679,12 @@

Methods

Expand source code -
def predict_proba(self, data):
-    return self.predict(data, return_proba=True)
+
def predict_proba(self, data, verbose=0):
+    return self.predict(data, return_proba=True, verbose=verbose)
-def predict_proba_filename(self, img_path) +def predict_proba_filename(self, img_path, verbose=0)
@@ -676,12 +692,12 @@

Methods

Expand source code -
def predict_proba_filename(self, img_path):
-    return self.predict_filename(img_path, return_proba=True)
+
def predict_proba_filename(self, img_path, verbose=0):
+    return self.predict_filename(img_path, return_proba=True, verbose=verbose)
-def predict_proba_folder(self, folder) +def predict_proba_folder(self, folder, verbose=0)
@@ -689,12 +705,12 @@

Methods

Expand source code -
def predict_proba_folder(self, folder):
-    return self.predict_folder(folder, return_proba=True)
+
def predict_proba_folder(self, folder, verbose=0):
+    return self.predict_folder(folder, return_proba=True, verbose=verbose)
-def predict_proba_generator(self, generator, steps=None) +def predict_proba_generator(self, generator, steps=None, verbose=0)
@@ -702,8 +718,10 @@

Methods

Expand source code -
def predict_proba_generator(self, generator, steps=None):
-    return self.predict_proba_generator(generator, steps=steps, return_proba=True)
+
def predict_proba_generator(self, generator, steps=None, verbose=0):
+    return self.predict_proba_generator(
+        generator, steps=steps, return_proba=True, verbose=verbose
+    )