-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
238 lines (219 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =======================================================================================
import os
# os.system('pip install gensim -i https://pypi.tuna.tsinghua.edu.cn/simple/')
# os.system('pip install ruamel.yaml -i https://pypi.tuna.tsinghua.edu.cn/simple/')
# os.system('pip install logzero -i https://pypi.tuna.tsinghua.edu.cn/simple/')
# os.system('pip install gensim -i https://pypi.tuna.tsinghua.edu.cn/simple/')
# os.system('pip install ruamel.yaml -i https://pypi.tuna.tsinghua.edu.cn/simple/')
# os.system('pip install logzero -i https://pypi.tuna.tsinghua.edu.cn/simple/')
import click
import numpy as np
import argparse
import ast
from pathlib import Path
from ruamel.yaml import YAML
from sklearn.model_selection import train_test_split
from logzero import logger
from mindspore import nn
from mindspore import Model
from mindspore import ops
from mindspore.profiler import Profiler
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.callback import ModelCheckpoint, LossMonitor, TimeMonitor, CheckpointConfig
from deepxml.dataset import MultiLabelDataset
from deepxml.data_utils import get_data, get_mlb, get_word_emb, output_res
from deepxml.xmlcnn import XMLCNN, CorNetXMLCNN
from deepxml.trainonestep import XMLTrainOneStepCell
from deepxml.models import CoreModel
from deepxml.callback import EvalCallBack
import mindspore.dataset as ds
from mindspore import context
import mindspore as ms
# context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
parser = argparse.ArgumentParser(description='Train CorNet')
parser.add_argument('--run_modelarts', type=ast.literal_eval, default=False, help='train modelarts')
parser.add_argument('--is_distributed', type=ast.literal_eval, default=False, help="use 8 npus")
parser.add_argument('--device_id', type=int, default=0)
parser.add_argument('--data_url', type=str, default='/opt_data/lh', help="root path to data directory")
parser.add_argument('--train_url', type=str, default='log')
parser.add_argument('--device_target', type=str, default='Ascend')
parser.add_argument('--train_valid', type=ast.literal_eval, default=True)
parser.add_argument('--dataset_path',
type=str,
default="/mnt/nvme1/deep_data",
help='path where the dataset is saved')
parser.add_argument('--save_checkpoint_path',
type=str,
default="./ckpt",
help='if is test, must provide\
path where the trained ckpt file')
args = parser.parse_args()
model_dict = {
# 'AttentionXML': AttentionXML,
# 'CorNetAttentionXML': CorNetAttentionXML,
# 'MeSHProbeNet': MeSHProbeNet,
# 'CorNetMeSHProbeNet': CorNetMeSHProbeNet,
# 'BertXML': BertXML,
# 'CorNetBertXML': CorNetBertXML,
'XMLCNN': XMLCNN,
'CorNetXMLCNN': CorNetXMLCNN,
# 'CorNetXMLCNN': CorNetXMLCNN(dropout=0.5, labels_num=3801,dynamic_pool_length=8, bottleneck_dim=512, num_filters=128, vocab_size=500, embedding_size=300)
}
class EvalNet(nn.Cell):
def __init__(self, network, k):
super(EvalNet, self).__init__()
self.network = network
self.loss_fn = nn.BCEWithLogitsLoss()
self.topk = ops.TopK()
self.k = k
def construct(self, x, y):
logits = self.network(x)
loss = self.loss_fn(logits, y)
score, index = self.topk(logits, self.k)
return loss, index
if __name__ == '__main__':
yaml = YAML(typ='safe')
if args.run_modelarts:
import moxing as mox
current_dir = os.path.dirname(os.path.abspath(__file__))
data_cnf = os.path.join(current_dir, 'configure/datasets/EUR-Lex.yaml')
model_cnf = os.path.join(current_dir,'configure/models/CorNetXMLCNN-EUR-Lex.yaml')
data_cnf, model_cnf = yaml.load(Path(data_cnf)), yaml.load(Path(model_cnf))
obs_data_url = args.data_url
args.data_url = '/home/work/user-job-dir/inputs/data/'
obs_train_url = args.train_url
args.train_url = '/home/work/user-job-dir/outputs/model/'
try:
mox.file.copy_parallel(obs_data_url, args.data_url)
print("Successfully Download {} to {}".format(obs_data_url,
args.data_url))
except Exception as e:
print('moxing download {} to {} failed: '.format(
obs_data_url, args.data_url) + str(e))
args.dataset_path = args.data_url
args.save_checkpoint_path = args.train_url
data_cnf_embedding_emb_init = os.path.join(args.dataset_path,'deep_data/EUR-Lex/emb_init.npy')
data_cnf_train_texts = os.path.join(args.dataset_path,'deep_data/EUR-Lex/train_texts.npy')
data_cnf_train_labels = os.path.join(args.dataset_path, 'deep_data/EUR-Lex/train_labels.npy')
data_cnf_labels_binarizer = os.path.join(args.dataset_path, 'deep_data/EUR-Lex/labels_binarizer')
else:
data_cnf = 'configure/datasets/EUR-Lex.yaml'
model_cnf = 'configure/models/CorNetXMLCNN-EUR-Lex.yaml'
data_cnf, model_cnf = yaml.load(Path(data_cnf)), yaml.load(Path(model_cnf))
# data_cnf_embedding_emb_init = data_cnf['embedding']['emb_init']
# data_cnf_train_texts = data_cnf['train']['texts']
# data_cnf_train_labels = data_cnf['train']['labels']
# data_cnf_labels_binarizer = data_cnf['labels_binarizer']
data_cnf_embedding_emb_init = os.path.join(args.dataset_path, './EUR-Lex/emb_init.npy')
data_cnf_train_texts = os.path.join(args.dataset_path, './EUR-Lex/train_texts.npy')
data_cnf_train_labels = os.path.join(args.dataset_path, 'EUR-Lex/train_labels.npy')
data_cnf_labels_binarizer = os.path.join(args.dataset_path, './EUR-Lex/labels_binarizer')
args.save_checkpoint_path = './'
mode = None
if args.is_distributed:
device_id = int(os.getenv('DEVICE_ID'))
device_num = int(os.getenv('RANK_SIZE', '1'))
context.set_context(device_id=device_id)
ms.set_auto_parallel_context(device_num=device_num, parallel_mode=ms.ParallelMode.DATA_PARALLEL,
gradients_mean=True)
init()
rank_id = get_rank()
ckpt_save_dir = os.path.join(args.save_checkpoint_path, "ckpt_" + str(rank_id) + "/")
else:
device_id = int(os.getenv('DEVICE_ID','0'))
context.set_context(device_id=device_id)
rank_id = 0
device_num = 1
ckpt_save_dir = os.path.join(args.save_checkpoint_path,'./')
# profiles = Profiler()
model, model_name, data_name = None, model_cnf['name'], data_cnf['name']
model_path = os.path.join(model_cnf['path'], F'{model_name}-{data_name}')
emb_init = get_word_emb(data_cnf_embedding_emb_init)
logger.info(F'Model Name: {model_name}')
if mode is None or mode == 'train':
logger.info('Loading Training and Validation Set')
train_x, train_labels = get_data(data_cnf_train_texts, data_cnf_train_labels)
if 'size' in data_cnf['valid']:
# print(data_cnf['valid'])
random_state = data_cnf['valid'].get('random_state', 1240)
train_x, valid_x, train_labels, valid_labels = train_test_split(train_x, train_labels,
test_size=data_cnf['valid']['size'],
random_state=random_state)
else:
valid_x, valid_labels = get_data(data_cnf['valid']['texts'], data_cnf['valid']['labels'])
mlb = get_mlb(data_cnf_labels_binarizer, np.hstack((train_labels, valid_labels)))
train_y, valid_y = mlb.transform(train_labels), mlb.transform(valid_labels)
labels_num = len(mlb.classes_)
logger.info(F'Number of Labels: {labels_num}')
logger.info(F'Size of Training Set: {len(train_x)}')
logger.info(F'Size of Validation Set: {len(valid_x)}')
logger.info('Training')
train_dataset = MultiLabelDataset(train_x, train_y)
valid_dataset = MultiLabelDataset(valid_x, valid_y, training=True)
train_ds = ds.GeneratorDataset(train_dataset, column_names=["data", "label"], shuffle=True,
num_parallel_workers=16,num_shards=device_num, shard_id=rank_id)
train_ds = train_ds.batch(model_cnf['train']['batch_size'], drop_remainder=True,
num_parallel_workers=16)
#valid
valid_ds = ds.GeneratorDataset(valid_dataset, ["data", "label"], shuffle=False,
num_parallel_workers=16)
valid_ds = valid_ds.batch(model_cnf['valid']['batch_size'], drop_remainder=False,
num_parallel_workers=16)
valid_ds_size = valid_ds.get_dataset_size()
logger.info("labels_num:" + str(labels_num))
logger.info(F"dataset size: {train_ds.get_dataset_size()}")
network = model_dict[model_name](labels_num=labels_num, emb_init=emb_init,
**data_cnf['model'], **model_cnf['model'])
loss_fn = nn.BCEWithLogitsLoss() # 定义损失函数
net_with_loss = nn.WithLossCell(network, loss_fn)
net_with_loss.set_train(True)
valid_net = EvalNet(network, k=5)
lr = nn.exponential_decay_lr(
1e-3,
0.9,
int(train_ds.get_dataset_size() * model_cnf['train']['nb_epoch']),
int(train_ds.get_dataset_size()),
1,
is_stair=False
)
optimizer = nn.Adam(params=network.trainable_params(), learning_rate=lr)
train_net = XMLTrainOneStepCell(net_with_loss, optimizer=optimizer)
save_steps = train_ds.get_dataset_size()
time_cb = TimeMonitor()
loss_cb = LossMonitor()
cb = [time_cb, loss_cb]
if rank_id == 0:
config_ckp = CheckpointConfig(save_checkpoint_steps=save_steps, keep_checkpoint_max=20)
ckpt_cb = ModelCheckpoint(prefix='corenet', directory=ckpt_save_dir,
config=config_ckp)
cb.append(ckpt_cb)
if args.train_valid:
eval_cb = EvalCallBack(valid_net, valid_ds, valid_ds_size, valid_y, 1, ckpt_save_dir, rank_id, tt=args.train_url)
cb.append(eval_cb)
model = Model(train_net)
num_epochs = model_cnf['train']['nb_epoch']
logger.info(F"epoch size: {num_epochs}")
model.train(num_epochs, train_ds, callbacks=cb, dataset_sink_mode=True)
if args.run_modelarts:
try:
mox.file.copy_parallel(args.train_url, obs_train_url)
print("Successfully Upload {} to {}".format(args.train_url,
obs_train_url))
except Exception as e:
print('moxing upload {} to {} failed: '.format(args.train_url,
obs_train_url) + str(e))
logger.info('Finish Training')