-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
112 lines (103 loc) · 4.64 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =======================================================================================
import os
import click
import numpy as np
from pathlib import Path
from ruamel.yaml import YAML
from sklearn.model_selection import train_test_split
from logzero import logger
from mindspore import nn
from mindspore import Model
from mindspore import ops
from mindspore.profiler import Profiler
from mindspore.train.callback import ModelCheckpoint, LossMonitor, TimeMonitor, CheckpointConfig
from mindspore.train import load_checkpoint, load_param_into_net
from deepxml.dataset import MultiLabelDataset
from deepxml.data_utils import get_data, get_mlb, get_word_emb, output_res
from deepxml.xmlcnn import XMLCNN, CorNetXMLCNN
from deepxml.trainonestep import XMLTrainOneStepCell
from deepxml.models import CoreModel
import mindspore.dataset as ds
from mindspore import context
import mindspore
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=4)
model_dict = {
# 'AttentionXML': AttentionXML,
# 'CorNetAttentionXML': CorNetAttentionXML,
# 'MeSHProbeNet': MeSHProbeNet,
# 'CorNetMeSHProbeNet': CorNetMeSHProbeNet,
# 'BertXML': BertXML,
# 'CorNetBertXML': CorNetBertXML,
'XMLCNN': XMLCNN,
'CorNetXMLCNN': CorNetXMLCNN,
# 'CorNetXMLCNN': CorNetXMLCNN(dropout=0.5, labels_num=3801,dynamic_pool_length=8, bottleneck_dim=512, num_filters=128, vocab_size=500, embedding_size=300)
}
class EvalNetWork(nn.Cell):
def __init__(self, network, top_num):
super(EvalNetWork, self).__init__()
self.network = network
self.topk = ops.TopK()
self.sigmoid = ops.Sigmoid()
self.k = top_num
def construct(self,x):
data_x = self.network(x)
scores, labels = self.topk(data_x, self.k)
data_pred = self.sigmoid(scores)
return data_pred, labels
if __name__ == '__main__':
yaml = YAML(typ='safe')
data_cnf = 'configure/datasets/EUR-Lex.yaml'
model_cnf = 'configure/models/CorNetXMLCNN-EUR-Lex.yaml'
mode = None
# profiles = Profiler()
data_cnf, model_cnf = yaml.load(Path(data_cnf)), yaml.load(Path(model_cnf))
model, model_name, data_name = None, model_cnf['name'], data_cnf['name']
model_path = os.path.join(model_cnf['path'], F'{model_name}-{data_name}')
emb_init = get_word_emb(data_cnf['embedding']['emb_init'])
logger.info(F'Model Name: {model_name}')
logger.info('Loading Training and Validation Set')
test_x, _ = get_data(data_cnf['test']['texts'], None)
logger.info(F'Size of Test Set: {len(test_x)}')
mlb = get_mlb(data_cnf['labels_binarizer'])
labels_num = len(mlb.classes_)
test_dataset = MultiLabelDataset(test_x, training=False)
test_ds = ds.GeneratorDataset(test_dataset, column_names=["data"], shuffle=False,
num_parallel_workers=16)
test_ds = test_ds.batch(1, drop_remainder=True,
num_parallel_workers=16)
logger.info("labels_num:" + str(labels_num))
logger.info(F"dataset size: {test_ds.get_dataset_size()}")
network = model_dict[model_name](labels_num=labels_num, emb_init=emb_init,
**data_cnf['model'],**model_cnf['model'])
network.set_train(False)
params = load_checkpoint('/mass_store/zjc/CorNet/CorNetXMLCNN-EUR-Lex.ckpt')
load_param_into_net(network, params)
logger.info('Load Checkpoint Success......')
eval_net = EvalNetWork(network, top_num=100)
score_list = []
label_list = []
logger.info('Start Evaluation......')
for idx, data in enumerate(test_ds.create_dict_iterator()):
logger.info(F'Evaluate Index {idx}')
predict, labels = eval_net(data['data'])
score_list.append(predict.asnumpy())
label_list.append(labels.asnumpy())
logger.info('Start Save Result.....')
score_lists = np.concatenate(score_list)
label_lists = np.concatenate(label_list)
labels = mlb.classes_[label_lists]
output_res(data_cnf['output']['res'], F'{model_name}-{data_name}', score_lists, labels)
logger.info('Finish Training')