-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimport_models.py
362 lines (287 loc) · 17 KB
/
import_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
import torch
#from models_dir.p_s_s.models import duc_hdc, fcn8s, fcn16s, fcn32s, gcn, psp_net, seg_net, u_net
from efficientnet_pytorch import EfficientNet
def import_models(download):
"""
Commented out models do not have pre-trained variants available.
This function will load and cache all of these models if they are not already cached.
On CRC we can just run this initially as its own python script to download and cache the models.
Afterwards, this function will be implemented into some other testing code that will call it in
a similar fashion to what is shown below.
"""
print("Loading or checking if models are cached...\n")
print("This may take a while. Progress will be shown if models are being downloaded.\n ", flush=True)
############################################################################################
# Image Classification
alexnet = models.alexnet(pretrained=download, progress=True)
squeezenet1_0 = models.squeezenet1_0(pretrained=download, progress=True)
squeezenet1_1 = models.squeezenet1_1(pretrained=download, progress=True)
vgg16 = models.vgg16_bn(pretrained=download, progress=True)
vgg19 = models.vgg19_bn(pretrained=download, progress=True)
resnet18 = models.resnet18(pretrained=download, progress=True)
resnet34 = models.resnet34(pretrained=download, progress=True)
resnet50 = models.resnet50(pretrained=download, progress=True)
resnet101 = models.resnet101(pretrained=download, progress=True)
resnet152 = models.resnet152(pretrained=download, progress=True)
densenet121 = models.densenet121(pretrained=download, progress=True, memory_efficient=False)
densenet161 = models.densenet161(pretrained=download, progress=True, memory_efficient=False)
densenet201 = models.densenet201(pretrained=download, progress=True, memory_efficient=False)
densenet121_efficient = models.densenet121(pretrained=download, progress=True, memory_efficient=True)
densenet161_efficient = models.densenet161(pretrained=download, progress=True, memory_efficient=True)
densenet201_efficient = models.densenet201(pretrained=download, progress=True, memory_efficient=True)
googlenet = models.googlenet(pretrained=download, progress=True)
shufflenet_v2_1 = models.shufflenet_v2_x1_0(pretrained=download, progress=True)
shufflenet_v2_0_5 = models.shufflenet_v2_x0_5(pretrained=download, progress=True)
#shufflenet_v2_1_5 = models.shufflenet_v2_x1_5(pretrained=download, progress=True)
#shufflenet_v2_2 = models.shufflenet_v2_x2_0(pretrained=download, progress=True)
mobilenet_v2 = models.mobilenet_v2(pretrained=download, progress=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=download, progress=True)
resnext101_32x8d = models.resnext101_32x8d(pretrained=download, progress=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=download, progress=True)
wide_resnet101_2 = models.wide_resnet101_2(pretrained=download, progress=True)
mnasnet1_0 = models.mnasnet1_0(pretrained=download, progress=True)
mnasnet0_5 = models.mnasnet0_5(pretrained=download, progress=True)
#mnasnet0_75 = models.mnasnet0_75(pretrained=download, progress=True)
#mnasnet1_3 = models.mnasnet1_3(pretrained=download, progress=True)
print("Checking efficientnet", flush=True)
efficientnet_b0 = EfficientNet.from_pretrained('efficientnet-b0')
efficientnet_b1 = EfficientNet.from_pretrained('efficientnet-b1')
efficientnet_b2 = EfficientNet.from_pretrained('efficientnet-b2')
efficientnet_b3 = EfficientNet.from_pretrained('efficientnet-b3')
efficientnet_b4 = EfficientNet.from_pretrained('efficientnet-b4')
efficientnet_b5 = EfficientNet.from_pretrained('efficientnet-b5')
efficientnet_b6 = EfficientNet.from_pretrained('efficientnet-b6')
efficientnet_b7 = EfficientNet.from_pretrained('efficientnet-b7')
###########################################################################################
# Video Classification
# resnet_3d = models.video.r3d_18(pretrained=download, progress=True)
# resnet_mixed_conv = models.video.mc3_18(pretrained=download, progress=True)
# resnet_2_1D = models.video.r2plus1d_18(pretrained=download, progress=True)
###########################################################################################
# Object Detection
fasterrcnn_resnet50 = models.detection.fasterrcnn_resnet50_fpn(pretrained=download, progress=True, num_classes=91, pretrained_backbone=True)
maskcnn_resnet50 = models.detection.maskrcnn_resnet50_fpn(pretrained=download, progress=True, num_classes=91, pretrained_backbone=True)
keypointrcnn_resnet50 = models.detection.keypointrcnn_resnet50_fpn(pretrained=download, progress=True, num_classes=2, num_keypoints=17, pretrained_backbone=True)
###########################################################################################
# Semantic Segmentation
fcn_resnet50 = models.segmentation.fcn_resnet50(pretrained=False, progress=True, num_classes=21, aux_loss=None)
fcn_resnet101 = models.segmentation.fcn_resnet101(pretrained=download, progress=True, num_classes=21, aux_loss=None)
deeplabv3_resnet50 = models.segmentation.deeplabv3_resnet50(pretrained=False, progress=True, num_classes=21, aux_loss=None)
deeplabv3_resnet101 = models.segmentation.deeplabv3_resnet101(pretrained=False, progress=True, num_classes=21, aux_loss=None)
###########################################################################################
# Generative Adversarial Networks
###########################################################################################
checking_input = True
while (checking_input):
model_type = int(input("Choose the type of model you want:\n1 (Image Classification)\n2 (Video Classification)\n3 (Object Detection)\n4 (Semantic Segmentation)\n5 (GAN)\nInput: "))
print(model_type)
# Convolutional Neual Networks
if model_type == 1:
models_dict = {
"alexnet" : alexnet,
"squeezenet1_0" : squeezenet1_0,
"squeezenet1_1": squeezenet1_1,
"vgg16" : vgg16,
"vgg19" : vgg19,
"resnet18" : resnet18,
"resnet34" : resnet34,
"resnet50" : resnet50,
"resnet101" : resnet101,
"resnet152" : resnet152,
"densenet121" : densenet121,
"densenet161" : densenet161,
"densenet201" : densenet201,
"densenet121_efficient": densenet121_efficient,
"densenet161_efficient": densenet161_efficient,
"densenet201_efficient": densenet201_efficient,
"googlenet" : googlenet,
"shufflenet_v2_1" : shufflenet_v2_1,
"shufflenet_v2_0_5": shufflenet_v2_0_5,
#"shufflenet_v2_1_5": shufflenet_v2_1_5,
#"shufflenet_v2_2": shufflenet_v2_2,
"mobilenet_v2" : mobilenet_v2,
"resnext50_32x4d" : resnext50_32x4d,
"resnext101_32x4d": resnext101_32x8d,
"wide_resnet50_2" : wide_resnet50_2,
"wide_resnet101_2" : wide_resnet101_2,
"mnasnet1_0" : mnasnet1_0,
#"mnasnet1_3": mnasnet1_3,
"mnasnet0_5": mnasnet0_5,
#"mnasnet0_75": mnasnet0_75,
"efficientnet_b0" : efficientnet_b0,
"efficientnet_b1" : efficientnet_b1,
"efficientnet_b2" : efficientnet_b2,
"efficientnet_b3" : efficientnet_b3,
"efficientnet_b4" : efficientnet_b4,
"efficientnet_b5" : efficientnet_b5,
"efficientnet_b6" : efficientnet_b6,
"efficientnet_b7" : efficientnet_b7
}
checking_input = False
return models_dict
# Video Classification
elif model_type == 2:
checking_input = False
models_dict = {
"resnet_3d" : resnet_3d,
"resnet_mixed_conv" : resnet_mixed_conv,
"resnet_2_1D" : resnet_2_1D
}
return models_dict
# Object Detection
elif model_type == 3:
checking_input = False
models_dict = {
"fasterrcnn_resnet50" : fasterrcnn_resnet50,
"maskcnn_resnet50" : maskcnn_resnet50,
"keypointrcnn_resnet50" : keypointrcnn_resnet50
}
return models_dict
# Semantic Segmentation
elif model_type == 4:
checking_input = False
models_dict = {
"fcn_resnet50" : fcn_resnet50,
"fcn_resnet101" : fcn_resnet101,
"deeplabv3_resnet50" : deeplabv3_resnet50,
"deeplabv3_resnet101" : deeplabv3_resnet101
}
return models_dict
# Generative Adversarial Networks
elif model_type == 5:
checking_input = False
models_dict = {
}
return models_dict
else:
print("You did not choose a valid input...")
def import_all(download):
"""
Commented out models do not have pre-trained variants available.
This function will load and cache all of these models if they are not already cached.
On CRC we can just run this initially as its own python script to download and cache the models.
Afterwards, this function will be implemented into some other testing code that will call it in
a similar fashion to what is shown below.
"""
print("Loading or checking if models are cached...\n")
print("This may take a while. Progress will be shown if models are being downloaded.\n ")
############################################################################################
# Image Classification
alexnet = models.alexnet(pretrained=download, progress=True)
squeezenet1_0 = models.squeezenet1_0(pretrained=download, progress=True)
squeezenet1_1 = models.squeezenet1_1(pretrained=download, progress=True)
vgg16 = models.vgg16_bn(pretrained=download, progress=True)
vgg19 = models.vgg19_bn(pretrained=download, progress=True)
resnet18 = models.resnet18(pretrained=download, progress=True)
resnet34 = models.resnet34(pretrained=download, progress=True)
resnet50 = models.resnet50(pretrained=download, progress=True)
resnet101 = models.resnet101(pretrained=download, progress=True)
resnet152 = models.resnet152(pretrained=download, progress=True)
densenet121 = models.densenet121(pretrained=download, progress=True, memory_efficient=False)
densenet161 = models.densenet161(pretrained=download, progress=True, memory_efficient=False)
densenet201 = models.densenet201(pretrained=download, progress=True, memory_efficient=False)
densenet121_efficient = models.densenet121(pretrained=download, progress=True, memory_efficient=True)
densenet161_efficient = models.densenet161(pretrained=download, progress=True, memory_efficient=True)
densenet201_efficient = models.densenet201(pretrained=download, progress=True, memory_efficient=True)
googlenet = models.googlenet(pretrained=download, progress=True)
shufflenet_v2_1 = models.shufflenet_v2_x1_0(pretrained=download, progress=True)
shufflenet_v2_0_5 = models.shufflenet_v2_x0_5(pretrained=download, progress=True)
#shufflenet_v2_1_5 = models.shufflenet_v2_x1_5(pretrained=download, progress=True)
#shufflenet_v2_2 = models.shufflenet_v2_x2_0(pretrained=download, progress=True)
mobilenet_v2 = models.mobilenet_v2(pretrained=download, progress=True)
resnext50_32x4d = models.resnext50_32x4d(pretrained=download, progress=True)
resnext101_32x8d = models.resnext101_32x8d(pretrained=download, progress=True)
wide_resnet50_2 = models.wide_resnet50_2(pretrained=download, progress=True)
wide_resnet101_2 = models.wide_resnet101_2(pretrained=download, progress=True)
mnasnet1_0 = models.mnasnet1_0(pretrained=download, progress=True)
mnasnet0_5 = models.mnasnet0_5(pretrained=download, progress=True)
#mnasnet0_75 = models.mnasnet0_75(pretrained=download, progress=True)
#mnasnet1_3 = models.mnasnet1_3(pretrained=download, progress=True)
efficientnet_b0 = EfficientNet.from_pretrained('efficientnet-b0')
efficientnet_b1 = EfficientNet.from_pretrained('efficientnet-b1')
efficientnet_b2 = EfficientNet.from_pretrained('efficientnet-b2')
efficientnet_b3 = EfficientNet.from_pretrained('efficientnet-b3')
efficientnet_b4 = EfficientNet.from_pretrained('efficientnet-b4')
efficientnet_b5 = EfficientNet.from_pretrained('efficientnet-b5')
efficientnet_b6 = EfficientNet.from_pretrained('efficientnet-b6')
efficientnet_b7 = EfficientNet.from_pretrained('efficientnet-b7')
#
#
# ###########################################################################################
# # Video Classification
# # resnet_3d = models.video.r3d_18(pretrained=download, progress=True)
# # resnet_mixed_conv = models.video.mc3_18(pretrained=download, progress=True)
# # resnet_2_1D = models.video.r2plus1d_18(pretrained=download, progress=True)
#
# ###########################################################################################
# # Object Detection
#
fasterrcnn_resnet50 = models.detection.fasterrcnn_resnet50_fpn(pretrained=download, progress=True, num_classes=91, pretrained_backbone=True)
maskcnn_resnet50 = models.detection.maskrcnn_resnet50_fpn(pretrained=download, progress=True, num_classes=91, pretrained_backbone=True)
keypointrcnn_resnet50 = models.detection.keypointrcnn_resnet50_fpn(pretrained=download, progress=True, num_classes=2, num_keypoints=17, pretrained_backbone=True)
#
# ###########################################################################################
# # Semantic Segmentation
#
fcn_resnet50 = models.segmentation.fcn_resnet50(pretrained=False, progress=True, num_classes=21, aux_loss=None)
fcn_resnet101 = models.segmentation.fcn_resnet101(pretrained=download, progress=True, num_classes=21, aux_loss=None)
deeplabv3_resnet50 = models.segmentation.deeplabv3_resnet50(pretrained=False, progress=True, num_classes=21, aux_loss=None)
deeplabv3_resnet101 = models.segmentation.deeplabv3_resnet101(pretrained=False, progress=True, num_classes=21, aux_loss=None)
###########################################################################################
# Generative Adversarial Networks
###########################################################################################
models_dict = {
"alexnet" : alexnet,
"fcn_resnet50" : fcn_resnet50,
"fcn_resnet101" : fcn_resnet101,
"deeplabv3_resnet50" : deeplabv3_resnet50,
"deeplabv3_resnet101" : deeplabv3_resnet101,
"squeezenet1_0" : squeezenet1_0,
"squeezenet1_1": squeezenet1_1,
"vgg16" : vgg16,
"vgg19" : vgg19,
"resnet18" : resnet18,
"resnet34" : resnet34,
"resnet50" : resnet50,
"resnet101" : resnet101,
"resnet152" : resnet152,
"densenet121" : densenet121,
"densenet161" : densenet161,
"densenet201" : densenet201,
"densenet121_efficient": densenet121_efficient,
"densenet161_efficient": densenet161_efficient,
"densenet201_efficient": densenet201_efficient,
"googlenet" : googlenet,
"shufflenet_v2_1" : shufflenet_v2_1,
"shufflenet_v2_0_5": shufflenet_v2_0_5,
#"shufflenet_v2_1_5": shufflenet_v2_1_5,
#"shufflenet_v2_2": shufflenet_v2_2,
"mobilenet_v2" : mobilenet_v2,
"resnext50_32x4d" : resnext50_32x4d,
"resnext101_32x4d": resnext101_32x8d,
"wide_resnet50_2" : wide_resnet50_2,
"wide_resnet101_2" : wide_resnet101_2,
"mnasnet1_0" : mnasnet1_0,
#"mnasnet1_3": mnasnet1_3,
"mnasnet0_5": mnasnet0_5,
#"mnasnet0_75": mnasnet0_75,
"efficientnet_b0" : efficientnet_b0,
"efficientnet_b1" : efficientnet_b1,
"efficientnet_b2" : efficientnet_b2,
"efficientnet_b3" : efficientnet_b3,
"efficientnet_b4" : efficientnet_b4,
"efficientnet_b5" : efficientnet_b5,
"efficientnet_b6" : efficientnet_b6,
"efficientnet_b7" : efficientnet_b7,
}
# "maskcnn_resnet50" : maskcnn_resnet50,
# "keypointrcnn_resnet50" : keypointrcnn_resnet50,
# "fasterrcnn_resnet50" : fasterrcnn_resnet50,
# "resnet_3d" : resnet_3d,
# "resnet_mixed_conv" : resnet_mixed_conv,
# "resnet_2_1D" : resnet_2_1D,
return models_dict