-
Notifications
You must be signed in to change notification settings - Fork 3
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Mainlining rM1 #6
Comments
Awesome! I always wanted to get pmOS running on the rM2, but with the way the eInk controller is setup I never had any luck. For mainlining the kernel. First I split out all of the reMarkable patches on top of the NXP kernel. That gave me about 300 patches that reMarkable wrote. Mainline works fine on the i.MX, so you don't need the NXP patches. Although NXP does have better power saving support. Then I squashed the patches into subsystems, while also trying to remove ones that aren't required. The idea is to get a small-ish number of large patches. I think I had about 20. Then I rebased that onto the latest mainline kernel. Hopefully the rebase isn't too hard and most features work. That gives you a good starting place. From there it's just a matter of spiting up the patches and submitting them upstream, or removing the patch and using some new upstream mechanism instead (like the Wacom touchscreen for example). It's mostly just a lot of testing. Try to remove something or change something and test that it doesn't break anything. You should be able to narrow the patches down to just adding drivers and the device tree. From there you can prepare for sending the patches to LKML. As much as possible narrow down the changes on mainline to be as small as possible. A lot of the reMarkable patches aren't required, at least for the majority of functionality. |
Syzkaller reported a lockdep splat: ============================================ WARNING: possible recursive locking detected 6.11.0-rc6-syzkaller-00019-g67784a74e258 #0 Not tainted -------------------------------------------- syz-executor364/5113 is trying to acquire lock: ffff8880449f1958 (k-slock-AF_INET){+.-.}-{2:2}, at: spin_lock include/linux/spinlock.h:351 [inline] ffff8880449f1958 (k-slock-AF_INET){+.-.}-{2:2}, at: sk_clone_lock+0x2cd/0xf40 net/core/sock.c:2328 but task is already holding lock: ffff88803fe3cb58 (k-slock-AF_INET){+.-.}-{2:2}, at: spin_lock include/linux/spinlock.h:351 [inline] ffff88803fe3cb58 (k-slock-AF_INET){+.-.}-{2:2}, at: sk_clone_lock+0x2cd/0xf40 net/core/sock.c:2328 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(k-slock-AF_INET); lock(k-slock-AF_INET); *** DEADLOCK *** May be due to missing lock nesting notation 7 locks held by syz-executor364/5113: #0: ffff8880449f0e18 (sk_lock-AF_INET){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1607 [inline] #0: ffff8880449f0e18 (sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_sendmsg+0x153/0x1b10 net/mptcp/protocol.c:1806 #1: ffff88803fe39ad8 (k-sk_lock-AF_INET){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1607 [inline] #1: ffff88803fe39ad8 (k-sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_sendmsg_fastopen+0x11f/0x530 net/mptcp/protocol.c:1727 #2: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:326 [inline] #2: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:838 [inline] #2: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: __ip_queue_xmit+0x5f/0x1b80 net/ipv4/ip_output.c:470 #3: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:326 [inline] #3: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:838 [inline] #3: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: ip_finish_output2+0x45f/0x1390 net/ipv4/ip_output.c:228 #4: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: local_lock_acquire include/linux/local_lock_internal.h:29 [inline] #4: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: process_backlog+0x33b/0x15b0 net/core/dev.c:6104 #5: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire include/linux/rcupdate.h:326 [inline] #5: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: rcu_read_lock include/linux/rcupdate.h:838 [inline] #5: ffffffff8e938320 (rcu_read_lock){....}-{1:2}, at: ip_local_deliver_finish+0x230/0x5f0 net/ipv4/ip_input.c:232 #6: ffff88803fe3cb58 (k-slock-AF_INET){+.-.}-{2:2}, at: spin_lock include/linux/spinlock.h:351 [inline] #6: ffff88803fe3cb58 (k-slock-AF_INET){+.-.}-{2:2}, at: sk_clone_lock+0x2cd/0xf40 net/core/sock.c:2328 stack backtrace: CPU: 0 UID: 0 PID: 5113 Comm: syz-executor364 Not tainted 6.11.0-rc6-syzkaller-00019-g67784a74e258 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:93 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:119 check_deadlock kernel/locking/lockdep.c:3061 [inline] validate_chain+0x15d3/0x5900 kernel/locking/lockdep.c:3855 __lock_acquire+0x137a/0x2040 kernel/locking/lockdep.c:5142 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5759 __raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline] _raw_spin_lock+0x2e/0x40 kernel/locking/spinlock.c:154 spin_lock include/linux/spinlock.h:351 [inline] sk_clone_lock+0x2cd/0xf40 net/core/sock.c:2328 mptcp_sk_clone_init+0x32/0x13c0 net/mptcp/protocol.c:3279 subflow_syn_recv_sock+0x931/0x1920 net/mptcp/subflow.c:874 tcp_check_req+0xfe4/0x1a20 net/ipv4/tcp_minisocks.c:853 tcp_v4_rcv+0x1c3e/0x37f0 net/ipv4/tcp_ipv4.c:2267 ip_protocol_deliver_rcu+0x22e/0x440 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x341/0x5f0 net/ipv4/ip_input.c:233 NF_HOOK+0x3a4/0x450 include/linux/netfilter.h:314 NF_HOOK+0x3a4/0x450 include/linux/netfilter.h:314 __netif_receive_skb_one_core net/core/dev.c:5661 [inline] __netif_receive_skb+0x2bf/0x650 net/core/dev.c:5775 process_backlog+0x662/0x15b0 net/core/dev.c:6108 __napi_poll+0xcb/0x490 net/core/dev.c:6772 napi_poll net/core/dev.c:6841 [inline] net_rx_action+0x89b/0x1240 net/core/dev.c:6963 handle_softirqs+0x2c4/0x970 kernel/softirq.c:554 do_softirq+0x11b/0x1e0 kernel/softirq.c:455 </IRQ> <TASK> __local_bh_enable_ip+0x1bb/0x200 kernel/softirq.c:382 local_bh_enable include/linux/bottom_half.h:33 [inline] rcu_read_unlock_bh include/linux/rcupdate.h:908 [inline] __dev_queue_xmit+0x1763/0x3e90 net/core/dev.c:4450 dev_queue_xmit include/linux/netdevice.h:3105 [inline] neigh_hh_output include/net/neighbour.h:526 [inline] neigh_output include/net/neighbour.h:540 [inline] ip_finish_output2+0xd41/0x1390 net/ipv4/ip_output.c:235 ip_local_out net/ipv4/ip_output.c:129 [inline] __ip_queue_xmit+0x118c/0x1b80 net/ipv4/ip_output.c:535 __tcp_transmit_skb+0x2544/0x3b30 net/ipv4/tcp_output.c:1466 tcp_rcv_synsent_state_process net/ipv4/tcp_input.c:6542 [inline] tcp_rcv_state_process+0x2c32/0x4570 net/ipv4/tcp_input.c:6729 tcp_v4_do_rcv+0x77d/0xc70 net/ipv4/tcp_ipv4.c:1934 sk_backlog_rcv include/net/sock.h:1111 [inline] __release_sock+0x214/0x350 net/core/sock.c:3004 release_sock+0x61/0x1f0 net/core/sock.c:3558 mptcp_sendmsg_fastopen+0x1ad/0x530 net/mptcp/protocol.c:1733 mptcp_sendmsg+0x1884/0x1b10 net/mptcp/protocol.c:1812 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x1a6/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2597 ___sys_sendmsg net/socket.c:2651 [inline] __sys_sendmmsg+0x3b2/0x740 net/socket.c:2737 __do_sys_sendmmsg net/socket.c:2766 [inline] __se_sys_sendmmsg net/socket.c:2763 [inline] __x64_sys_sendmmsg+0xa0/0xb0 net/socket.c:2763 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f04fb13a6b9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 01 1a 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffd651f42d8 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f04fb13a6b9 RDX: 0000000000000001 RSI: 0000000020000d00 RDI: 0000000000000004 RBP: 00007ffd651f4310 R08: 0000000000000001 R09: 0000000000000001 R10: 0000000020000080 R11: 0000000000000246 R12: 00000000000f4240 R13: 00007f04fb187449 R14: 00007ffd651f42f4 R15: 00007ffd651f4300 </TASK> As noted by Cong Wang, the splat is false positive, but the code path leading to the report is an unexpected one: a client is attempting an MPC handshake towards the in-kernel listener created by the in-kernel PM for a port based signal endpoint. Such connection will be never accepted; many of them can make the listener queue full and preventing the creation of MPJ subflow via such listener - its intended role. Explicitly detect this scenario at initial-syn time and drop the incoming MPC request. Fixes: 1729cf1 ("mptcp: create the listening socket for new port") Cc: [email protected] Reported-by: [email protected] Closes: https://syzkaller.appspot.com/bug?extid=f4aacdfef2c6a6529c3e Cc: Cong Wang <[email protected]> Signed-off-by: Paolo Abeni <[email protected]> Reviewed-by: Matthieu Baerts (NGI0) <[email protected]> Reviewed-by: Mat Martineau <[email protected]> Signed-off-by: Matthieu Baerts (NGI0) <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Jakub Kicinski <[email protected]>
If ufshcd_rtc_work calls ufshcd_rpm_put_sync() and the pm's usage_count is 0, we will enter the runtime suspend callback. However, the runtime suspend callback will wait to flush ufshcd_rtc_work, causing a deadlock. Replace ufshcd_rpm_put_sync() with ufshcd_rpm_put() to avoid the deadlock. Fixes: 6bf999e ("scsi: ufs: core: Add UFS RTC support") Cc: [email protected] #6.11.x Signed-off-by: Peter Wang <[email protected]> Link: https://lore.kernel.org/r/[email protected] Reviewed-by: Bart Van Assche <[email protected]> Signed-off-by: Martin K. Petersen <[email protected]>
Hi! I'm working on porting postmarketOS on the first reMarkable tablet, which was based on the i.MX6 platform. I've already got most of the legwork done through packaging reMarkable's branches of u-boot and the kernel, and I'm now working on getting the flash procedure down to something simpler. I would like to eventually mainline the kernel, and I was wondering if you had any pointers since you did so with the rM2. This is a first time mainlining for me, I'm more of a system administrator than a programmer.
The text was updated successfully, but these errors were encountered: