forked from zama-ai/concrete-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preprocessor.py
191 lines (152 loc) · 6.65 KB
/
preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""Graph pre-processor for automatic rounding.
"""
from copy import deepcopy
from typing import Callable, Dict, Optional, Union
import networkx as nx
import numpy as np
from concrete.fhe import Exactness, round_bit_pattern
from concrete.fhe.dtypes import Integer
from concrete.fhe.representation import Graph, GraphProcessor, Node, Operation
def is_node_tlu(node: Node) -> bool:
"""Determine if a graph node is a table lookup.
Args:
node (Node): graph node to check
Returns:
bool: boolean indicating whether the node is a TLU
"""
return node.converted_to_table_lookup
def bit_width(x):
return Integer.that_can_represent(x).bit_width
def add_rounding_node(
a_node: Node,
lsbs_to_remove: int,
graph: nx.DiGraph,
rounding_function: Callable = round_bit_pattern,
exactness=Exactness.EXACT,
overflow_protection: bool = False,
) -> Node:
"""Modify a computation graph to include a rounding node.
Args:
a_node (Node): the node whose output will be rounded
lsbs_to_remove (int): the number of least significant bits to remove
graph (nx.DiGraph): the graph containing the node
rounding_function (Callable): the function to use for rounding
exactness: FHE rounding mode, either Exactness.EXACT or Exactness.APPROXIMATE
overflow_protection (bool): use FHE overflow protection
Returns:
Node: the rounding node that was added to the graph
"""
if lsbs_to_remove <= 0:
# No rounding node to add
return a_node
# Sanity check and mypy check
assert isinstance(a_node.output.dtype, Integer)
# Adding rounding node
rounding_kwargs: Dict[str, Union[Exactness, int, bool]] = {
"lsbs_to_remove": lsbs_to_remove,
"overflow_protection": overflow_protection,
}
attributes = {
"overflow_protection": overflow_protection,
}
# Only round_bit_pattern support exactness for now
if rounding_function.__name__ == "round_bit_pattern":
rounding_kwargs["exactness"] = exactness
output_value = deepcopy(a_node.output)
new_bounds_arr = rounding_function(np.array(a_node.bounds, dtype=np.int64), **rounding_kwargs)
output_value.dtype = Integer.that_can_represent(new_bounds_arr)
rounding_node = Node.generic(
name=rounding_function.__name__,
inputs=[deepcopy(a_node.output)],
output=output_value,
operation=rounding_function,
kwargs=rounding_kwargs,
attributes=attributes,
)
rounding_node.properties["final_lsbs_to_remove"] = lsbs_to_remove
rounding_node.properties["overflow_detected"] = False
rounding_node.properties["original_rounded_bit_width"] = a_node.output.dtype.bit_width
rounding_node.properties["overflow_protection"] = overflow_protection
# Compute new bounds and bit-width
assert a_node.bounds is not None
rounding_node.bounds = (new_bounds_arr[0], new_bounds_arr[1])
rounding_node.properties["resulting_bit_width"] = output_value.dtype.bit_width
if output_value.dtype.bit_width > a_node.output.dtype.bit_width:
rounding_node.properties["overflow_detected"] = True
# Add edge between node and rounding node
graph.add_edge(a_node, rounding_node, input_idx=0)
# Replace a -> o_i by rounding_node -> o_i
edges = list(graph.out_edges(nbunch=a_node)) # type: ignore
for in_node, out_node in edges:
if out_node == rounding_node:
continue
# We should preserve the input_idx
edge_data: Dict[int, Dict[str, int]] = dict(graph.get_edge_data(in_node, out_node))
graph.remove_edge(in_node, out_node)
input_idx: int = edge_data[0]["input_idx"]
graph.add_edge(rounding_node, out_node, input_idx=input_idx)
return rounding_node
class InsertRounding(GraphProcessor):
"""
InsertRounding graph processor, to add rounding before TLUs if desired.
"""
rounding_threshold: Optional[int]
def __init__(
self,
msbs_to_keep: Optional[int],
exactness: Exactness = Exactness.APPROXIMATE,
overflow_protection: bool = True,
rounding_function=round_bit_pattern,
):
self.rounding_threshold = msbs_to_keep
self.exactness = exactness
self.overflow_protection = overflow_protection
self.rounding_function = rounding_function
assert self.rounding_function.__name__ in {"round_bit_pattern", "truncate_bit_pattern"}
if self.rounding_function.__name__ == "truncate_bit_pattern":
assert exactness == Exactness.EXACT
def apply(self, graph: Graph):
if self.rounding_threshold is None:
# No rounding if None
return
# Get all nodes that will be converted to LUTs
tlu_nodes = graph.query_nodes(
custom_filter=is_node_tlu,
ordered=True,
)
for tlu_node in tlu_nodes:
# Predecessor nodes of LUT node
pred_nodes = graph.ordered_preds_of(tlu_node)
# Only take into accound predecessor's that aren't constants
variable_input_indices = []
for pred_index, pred_node in enumerate(pred_nodes):
if pred_node.operation != Operation.Constant:
variable_input_indices.append(pred_index)
# Only one input should be non-constant per LUT
if len(variable_input_indices) != 1:
continue
pred_node = pred_nodes[variable_input_indices[0]]
# Continue if the predecessor node is rounding node
if pred_node.properties["name"] in {"round_bit_pattern", "truncate_bit_pattern"}:
continue
# Continue if the node itself is a rounding node
if tlu_node.properties["name"] in {"round_bit_pattern", "truncate_bit_pattern"}:
continue
# Sanity check
if not isinstance(pred_node.output.dtype, Integer):
raise ValueError(f"{pred_node.output.dtype=} is not 'Integer'")
if pred_node.output.dtype.bit_width <= self.rounding_threshold:
# No need to do anything if the bit-width is actually lower or equal
# to the rounding threshold value
continue
# Compute lsbs to remove
lsbs_to_remove = pred_node.output.dtype.bit_width - self.rounding_threshold
# Add rounding node
add_rounding_node(
pred_node,
lsbs_to_remove=lsbs_to_remove,
graph=graph.graph,
rounding_function=self.rounding_function,
exactness=self.exactness,
overflow_protection=self.overflow_protection,
)