forked from liuyuan-pal/Gen6D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare.py
102 lines (88 loc) · 4.36 KB
/
prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import argparse
from pathlib import Path
import cv2
import torch
from skimage.io import imsave
from tqdm import tqdm
from colmap_script import build_colmap_model_no_pose
from dataset.database import parse_database_name, get_database_split
from estimator import Gen6DEstimator
from network import name2network
from utils.base_utils import load_cfg, save_pickle
def video2image(input_video, output_dir, interval=30, image_size = 640, transpose=False):
print(f'split video {input_video} into images ...')
Path(output_dir).mkdir(parents=True, exist_ok=True)
vidcap = cv2.VideoCapture(input_video)
success, image = vidcap.read()
count = 0
while success:
if count % interval==0:
h, w = image.shape[:2]
ratio = image_size/max(h,w)
ht, wt = int(ratio*h), int(ratio*w)
image = cv2.resize(image,(wt,ht),interpolation=cv2.INTER_LINEAR)
if transpose:
v0 = cv2.getVersionMajor()
v1 = cv2.getVersionMinor()
if v0>=4 and v1>=5:
image = cv2.flip(image, 0)
image = cv2.flip(image, 1)
else:
image = cv2.transpose(image)
image = cv2.flip(image, 1)
image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
imsave(f"{output_dir}/frame%d.jpg" % count, image) # save frame as JPEG file
success, image = vidcap.read()
count += 1
return count
def prepare_validation_set(ref_database_name, que_database_name, ref_split, que_split, estimator_cfg):
ref_database = parse_database_name(ref_database_name)
que_database = parse_database_name(que_database_name)
_, que_ids = get_database_split(que_database, que_split)
estimator_cfg = load_cfg(estimator_cfg)
estimator_cfg['refiner']=None
estimator = Gen6DEstimator(estimator_cfg)
estimator.build(ref_database, split_type=ref_split)
img_id2det_info, img_id2sel_info = {}, {}
for que_id in tqdm(que_ids):
# estimate pose
img = que_database.get_image(que_id)
K = que_database.get_K(que_id)
_, inter_results = estimator.predict(img, K)
det_scale_r2q = inter_results['det_scale_r2q']
det_position = inter_results['det_position']
self_angle_r2q = inter_results['sel_angle_r2q']
ref_idx = inter_results['sel_ref_idx']
ref_pose = estimator.ref_info['poses'][ref_idx]
ref_K = estimator.ref_info['Ks'][ref_idx]
img_id2det_info[que_id]=(det_position, det_scale_r2q, 0)
img_id2sel_info[que_id]=(self_angle_r2q, ref_pose, ref_K)
save_pickle(img_id2det_info,f'data/val/det/{que_database_name}/{estimator.detector.cfg["name"]}.pkl')
save_pickle(img_id2sel_info,f'data/val/sel/{que_database_name}/{estimator.detector.cfg["name"]}-{estimator.selector.cfg["name"]}.pkl')
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--action', type=str, required=True)
# for video2image
parser.add_argument('--input', type=str, default='example/video/mouse-ref.mp4')
parser.add_argument('--output', type=str, default='example/mouse/images')
parser.add_argument('--frame_inter', type=int, default=10)
parser.add_argument('--image_size', type=int, default=960)
parser.add_argument('--transpose', action='store_true', dest='transpose', default=False)
# for sfm
parser.add_argument('--database_name', type=str, default='example/mouse')
parser.add_argument('--colmap_path', type=str, default='colmap')
# for sfm
parser.add_argument('--que_database', type=str, default='linemod/cat')
parser.add_argument('--que_split', type=str, default='linemod_test')
parser.add_argument('--ref_database', type=str, default='linemod/cat')
parser.add_argument('--ref_split', type=str, default='linemod_test')
parser.add_argument('--estimator_cfg', type=str, default='configs/gen6d_train.yaml')
args = parser.parse_args()
if args.action == 'video2image':
video2image(args.input,args.output,args.frame_inter,args.image_size, args.transpose)
elif args.action=='sfm':
build_colmap_model_no_pose(parse_database_name(args.database_name),args.colmap_path)
elif args.action=='gen_val_set':
prepare_validation_set(args.ref_database,args.que_database,args.ref_split,args.que_split,args.estimator_cfg)
else:
raise NotImplementedError