-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrainbow.py
156 lines (115 loc) · 5.41 KB
/
rainbow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
class Ambient(object):
def __init__(self, e_r=1, mu_r=1, name=''):
if not isinstance(e_r, (int, float, complex)):
raise TypeError('e_r(relative permittivity) of the ambient must be a int, flat or complex')
if not isinstance(mu_r, (int, float, complex)):
raise TypeError('mu_r(relative permeability) of the ambient must be a int, flat or complex')
if not isinstance(name, str):
raise TypeError('name must be a string')
self.__e_r=e_r
self.__mu_r=mu_r
self.__name=name
@property
def info(self):
return self.__e_r, self.__mu_r, self.__name
def __repr__(self):
return f'Ambient {self.__name} Relative Permittivity:{self.__e_r} Relative Permeability:{self.__mu_r}'
class Substrate(object):
def __init__(self, e_r=1, mu_r=1, name=''):
if not isinstance(e_r, (int, float, complex)):
raise TypeError('e_r(relative permittivity) of the substrate must be a int, flat or complex')
if not isinstance(mu_r, (int, float, complex)):
raise TypeError('mu_r(relative permeability) of the substrate must be a int, flat or complex')
if not isinstance(name, str):
raise TypeError('name must be a string')
self.__e_r=e_r
self.__mu_r=mu_r
self.__name=name
@property
def info(self):
return self.__e_r, self.__mu_r, self.__name
def __repr__(self):
return f'Substrate {self.__name} Relative Permittivity:{self.__e_r} Relative Permeability:{self.__mu_r}'
class ThinLayer(object):
def __init__(self, d, e_r=1, mu_r=1, name=''):
if not isinstance(e_r, (int, float, complex)):
raise TypeError('e_r(relative permittivity) of the ThinLayer must be a int, flat or complex')
if not isinstance(mu_r, (int, float, complex)):
raise TypeError('mu_r(relative permeability) of the ThinLayer must be a int, flat or complex')
if not isinstance(name, str):
raise TypeError('name must be a string')
self.__d=d
self.__e_r=e_r
self.__mu_r=mu_r
self.__name=name
@property
def info(self):
return self.__d, self.__e_r, self.__mu_r, self.__name
def __repr__(self):
return f'ThinLayer {self.__name} Thickness:{self.__d*1e9} nm Relative Permittivity:{self.__e_r} Relative Permeability:{self.__mu_r}'
class Stack(object):
def __init__(self):
self.__layers=[]
self.__ambient=None
self.__substrate=None
self.__eta=[]
self.__n=[]
self.__radiation=None
self.__tm=None
@property
def stack(self):
return self.__ambient, self.__layers, self.__substrate
def add(self, arg):
if isinstance(arg, (list, tuple)):
for argv in arg:
self.add(argv)
elif isinstance(arg, Ambient):
self.__ambient=arg
elif isinstance(arg, Substrate):
self.__substrate=arg
elif isinstance(arg, ThinLayer):
self.__layers.append(arg)
else:
raise TypeError('Only an Ambient, ThinLayer or Substrate can be added')
def Radiation(self, wavelenght, theta=0, polarisation_mode='TM'):
if polarisation_mode=='TE':
pm=0
elif polarisation_mode=='TM':
pm=1
else:
raise ValueError('Polarization mode must be string of "TE" or "TM"')
self.__radiation = np.math.pi*2/wavelenght, np.sin(theta), pm #wavenumber, theta, polarisaton_mode
def render(self):
self.__n_layers=len(self.__layers)
_= self.__n_layers-1
self.__eta=[np.sqrt(self.__ambient.info[1]/self.__ambient.info[0])]+[np.sqrt(self.__layers[i].info[2]/self.__layers[i].info[1]) for i in range(self.__n_layers)]+[np.sqrt(self.__substrate.info[1]/self.__substrate.info[0])]
self.__n=[np.sqrt(self.__ambient.info[0]*self.__ambient.info[1])]+[np.sqrt(self.__layers[i].info[2]*self.__layers[i].info[1]) for i in range(self.__n_layers)]+[np.sqrt(self.__substrate.info[0]*self.__substrate.info[1])]
for i in range(_,-1,-1):##From Ref[1]
n_2=self.__n[i+1]
l=self.__layers[i].info[0]
r_12=self.__r(i, i+1)
r_23=self.__r(i+1, i+2)
pa=np.exp(1j*n_2*self.__radiation[0]*l)
na=np.conj(pa)
M_i=1/(1-r_23)/(1-r_12)*np.array([[pa+r_12*r_23*na, -r_12*pa-r_23*na], [-r_12*na- r_23*pa , na+r_12*r_23*pa]])
if i!=_:
self.__tm=np.dot(self.__tm, M_i)
else:
self.__tm=M_i
def __r(self, i ,j):##From Ref[2]
if self.__radiation[2]==0:
return (self.__eta[j]/self.__cos_theta_(j)-self.__eta[i]/self.__cos_theta_(i))/(self.__eta[j]/self.__cos_theta_(j)+self.__eta[i]/self.__cos_theta_(i))
elif self.__radiation[2]==1:
return (self.__eta[j]*self.__cos_theta_(j)-self.__eta[i]*self.__cos_theta_(i))/(self.__eta[j]*self.__cos_theta_(j)+self.__eta[i]*self.__cos_theta_(i))
def __cos_theta_(self, i):
return np.sqrt(1 - (self.__n[0].real/self.__n[i].real*self.__radiation[1])**2 )
@property
def reflectance(self):
return abs(self.__tm[1,0]/self.__tm[0,0])**2
@property
def transmittance(self):
return abs(1/self.__tm[0,0])**2
@property
def TransferMatrix(self):
return self.__tm