-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbuild_pointcloud.py
173 lines (129 loc) · 4.78 KB
/
build_pointcloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import glob
import open3d as o3d
from PIL import Image
import numpy as np
import os
import tqdm
import cv2
import json
import pprint
import pandas as pd
from plyio import write_ply
join = os.path.join
basename = os.path.basename
def read_color_scannet(fn):
return np.array(Image.open(fn))
def read_depth_scannet(fn):
return np.array(Image.open(fn), dtype='u2')
def save_color_scannet(color, filename):
color=color*255
Image.fromarray(color.astype(np.uint8)).save(filename)
def save_depth_scannet(depth, filename, scale=1000):
out=depth*scale
out[out<-1]=0
Image.fromarray(out.astype(np.uint32)).save(filename)
def get_poses_scannet(n_frames):
poses=[]
for frame_id in range(n_frames):
poses.append(np.loadtxt(join(args.input, 'pose', f'{frame_id}.txt')))
return poses
def get_frame_scannet(frame_id):
depth=read_depth_scannet(join(args.input, 'depth', f'{frame_id}.png'))
color=read_color_scannet(join(args.input, 'color', f'{frame_id}.jpg'))
return color,depth,poses_scannet[frame_id]
def get_intrinsics_scannet():
K=np.loadtxt(join(args.input, 'intrinsic', f'intrinsic_depth.txt'))
intr_path=join('/tmp', f'{args.input.__hash__()}.json')
json.dump({
"width": 640,
"height": 480,
"intrinsic_matrix": list(K[:3,:3].T.flatten())
}, open(intr_path,'w'))
print(json.load(open(intr_path)))
return o3d.read_pinhole_camera_intrinsic(intr_path)
def to_rgbd(color, depth, depth_scale, depth_trunc):
if color.shape[:2] != depth.shape[:2]:
color = cv2.resize(color, (depth.shape[1], depth.shape[0]))
rgbd = o3d.create_rgbd_image_from_color_and_depth(o3d.Image(color), o3d.Image(depth),
convert_rgb_to_intensity=False, depth_scale=depth_scale, depth_trunc=depth_trunc)
return rgbd
def write_as_ply(path, pcd):
xyz = np.array(pcd.points, np.float32)
normals = np.array(pcd.normals, np.float32)
colors = np.array(pcd.colors, np.float32)
if np.array(pcd.colors).dtype == np.uint8:
colors /= 255.
df = {
'x': xyz[:,0],
'y': xyz[:,1],
'z': xyz[:,2],
'nx': normals[:,0],
'ny': normals[:,1],
'nz': normals[:,2],
'red': colors[:,0],
'green': colors[:,1],
'blue': colors[:,2],
}
df = pd.DataFrame(df, columns=[
'x','y','z',
'nx','ny','nz',
'red','green','blue'])
write_ply(path, points=df, as_text=False)
def jitter(pcd, mag):
pcd = o3d.PointCloud(pcd)
pts = np.array(pcd.points)
pts_j = pts + np.random.rand(*pts.shape) * mag - 0.5 * mag
pcd.points = o3d.Vector3dVector(pts_j)
return pcd
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--input', type=str, required=True)
parser.add_argument('--take-each', type=int, default=1)
parser.add_argument('--voxel-size', type=float, default=0.01)
parser.add_argument('--no-jitter', action='store_true')
args = parser.parse_args()
args.jitter = not args.no_jitter
print(args.jitter)
pprint.pprint(args)
n_frames = len(os.listdir(join(args.input, 'color')))
poses_scannet = get_poses_scannet(n_frames)
get_frame = get_frame_scannet
depth_scale = 1000.
depth_trunc = 3
intr = get_intrinsics_scannet()
pcd_combined = o3d.PointCloud()
poses = []
print('building point cloud...')
for i in tqdm.tqdm(range(n_frames)):
pose = poses_scannet[i]
if not np.isfinite(pose).all():
print('skip ', i)
continue
poses.append(pose)
if i % args.take_each != 0:
continue
color, depth, _ = get_frame(i)
rgbd = to_rgbd(color, depth, depth_scale, depth_trunc)
pcd = o3d.create_point_cloud_from_rgbd_image(rgbd, intr)
pcd.transform(pose)
pcd_combined += pcd
print('COMBINED')
print(pcd_combined)
print('downsampling...')
pcd_combined = o3d.voxel_down_sample(pcd_combined, args.voxel_size)
print(pcd_combined)
print('calculating normals...')
o3d.estimate_normals(pcd_combined)
if args.jitter:
# apply small jitter to points to destroy grid pattern, which *probably* could lead to model overfitting
pcd_combined = jitter(pcd_combined, args.voxel_size)
os.makedirs(join(args.input, 'out'), exist_ok=True)
get_name = lambda ext: 'downsample_te_{}_vs_{}{}.{}'.format(args.take_each, args.voxel_size, '_jit' if args.jitter else '', ext)
name_pcd = join(args.input, 'out', get_name('pcd'))
print(name_pcd)
o3d.write_point_cloud(name_pcd, pcd_combined)
name_ply = join(args.input, 'out', get_name('ply'))
print(name_ply)
write_as_ply(name_ply, pcd_combined)
o3d.draw_geometries([pcd_combined])