diff --git a/slides/siam-may24.md b/slides/siam-may24.md
index 11935cfc..215b917b 100644
--- a/slides/siam-may24.md
+++ b/slides/siam-may24.md
@@ -9,6 +9,8 @@ class: title, middle
## Crystal-GFN
### Sampling crystals with desirable properties and constraints
+Presenting: Alex Hernández-García (he/il/él)
+
Mila AI4Science: Alex Hernandez-Garcia, Alexandre Duval, Alexandra Volokhova, Yoshua Bengio, Divya Sharma, Pierre Luc Carrier, Yasmine Benabed, Michał Koziarski, Victor Schmidt, Pierre-Paul De Breuck
.turquoise[SIAM Conference on Mathematical Aspects of Materials Science ([MS24](https://www.siam.org/conferences/cm/conference/ms24)), May 22th 2024]
@@ -173,7 +175,11 @@ Instead of optimising the atom positions by learning from a small data set, we d
---
## GFlowNets as the generative framework
-### 3 key ingredients
+### A brief introduction
+
+--
+
+#### 3 key ingredients
--
@@ -681,6 +687,7 @@ Bengio et al. [Flow network based generative models for non-iterative diverse ca
.context[Compositional generation of crystals in the space of crystallographic properties.]
+
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_init.png)]
---
@@ -691,6 +698,7 @@ count: false
.context[Compositional generation of crystals in the space of crystallographic properties.]
+
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_sg.png)]
---
@@ -701,6 +709,7 @@ count: false
.context[Compositional generation of crystals in the space of crystallographic properties.]
+
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_sg_output.png)]
---
@@ -711,6 +720,7 @@ count: false
.context[Compositional generation of crystals in the space of crystallographic properties.]
+
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_comp.png)]
---
@@ -721,6 +731,7 @@ count: false
.context[Compositional generation of crystals in the space of crystallographic properties.]
+
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_comp_output.png)]
---
@@ -731,6 +742,7 @@ count: false
.context[Compositional generation of crystals in the space of crystallographic properties.]
+
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_lp.png)]
---
@@ -741,6 +753,7 @@ count: false
.context[Compositional generation of crystals in the space of crystallographic properties.]
+
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_lp_output.png)]
---
@@ -751,6 +764,7 @@ count: false
.context[Compositional generation of crystals in the space of crystallographic properties.]
+
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_all.png)]
---
@@ -761,6 +775,7 @@ count: false
.context[Compositional generation of crystals in the space of crystallographic properties.]
+
.center[![:scale 100%](../assets/images/slides/crystals/crystalgfn_all.png)]
.conclusion[Crystal-GFN binds multiple spaces representing crystallographic and material properties, setting intra- and inter-space hard constraints in the generation process.]
@@ -801,10 +816,6 @@ We have tested the following properties:
- .highlight1[Electronic band gap] [eV] (squared distance to a target value, 1.34 eV), via a pre-trained machine learning model.
- .highlight1[Unit cell density] [g/cm3], calculated _exactly_ from the GFN outputs.
---
-
-.highlight1[Coming soon]: pre-trained machine learning model to predict the ionic conductivity [S/cm].
-
---
## Crystal-GFlowNet