-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathqxx_start_configuration.py
438 lines (342 loc) · 14.7 KB
/
qxx_start_configuration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import random
import networkx as nx
import math
import time
def get_distance_coupling(c1, c2, coupling_object):
"""
:param c1:
:param c2:
:param coupling_object:
:return:
"""
idx1 = coupling_object.coupling.physical_qubits[c1]
idx2 = coupling_object.coupling.physical_qubits[c2]
dist = coupling_object.coupling_dist[idx1][idx2]
return dist
def get_distance_linear(c1, c2):
"""
:param c1:
:param c2:
:return:
"""
return abs(c1 - c2)
def get_distance_offsets(circ_q1, circ_q2, offsets, local_circuit_to_phys,
coupling_object, div_dist):
minq = min(circ_q1, circ_q2)
maxq = max(circ_q1, circ_q2)
if not minq in offsets.keys():
offsets[minq] = 0
if not maxq in offsets.keys():
offsets[maxq] = 0
phys_idx1 = local_circuit_to_phys[circ_q1]
phys_idx2 = local_circuit_to_phys[circ_q2]
dist = abs(coupling_object.coupling_dist[phys_idx1][phys_idx2] - offsets[minq] - offsets[maxq])
if dist > 1:
rest = dist - (dist / div_dist) + 1
offsets[minq] += dist / div_dist - 1
offsets[maxq] -= rest
# offsets[minq] += dist // 2 - 1
# offsets[maxq] -= dist // 2 - 1
return dist
def eval_cx_collection(cx_collection,
local_circuit_to_phys,
circ_qub_idx_limit,
coupling_object,
parameters,
plus_or_minus):
"""
This is the heuristic cost function to evaluate the cost
for a mapping configuration
:param cx_collection: list of tuples representing CNOT qubits;
control/target does not matter
:param local_circuit_to_phys: permutation of circuit wires
:param circ_qub_idx_limit: physical qubit index threshold to skip;
gates that operate on qubits
with index higher than limit are not considered
:param attenuate: Boolean - if later changes in the layout
should not affect the beginning of the circuit
:return: evaluated cost of a mapping (ordering)
"""
sum_eval = 0
nr_ops_skipped = 0
nr_ops_active = 0
circ_qub_accumulated_offsets = {}
"""
Effectively saying that this number of CNOTs was activated by increasing
the qubit index to phys_qub_idx_limit
"""
nr_ops_at_idx_limit = 0
for q_tuple in cx_collection:
if q_tuple[0] > circ_qub_idx_limit or q_tuple[1] > circ_qub_idx_limit:
# increment the number of skipped gates from the collection
nr_ops_skipped += 1
# else:
# nr_ops_active += 1
if q_tuple[0] <= circ_qub_idx_limit and q_tuple[1] <= circ_qub_idx_limit:
# increment the number of skipped gates from the collection
nr_ops_active += 1
if q_tuple[0] == circ_qub_idx_limit or q_tuple[1] == circ_qub_idx_limit:
nr_ops_at_idx_limit += 1
nr_gate = 0
for cnot_index, q_tuple in enumerate(cx_collection):
if q_tuple[0] > circ_qub_idx_limit or q_tuple[1] > circ_qub_idx_limit:
continue
nr_gate += 1
# this is a linear distance between the qubits
# it does not take into consideration the architecture
"""
TODO: Different types of distances
"""
# part1 = get_distance_linear(c1, c2)
# part1 = get_distance_coupling(c1, c2, coupling_object)
part1 = get_distance_offsets(q_tuple[0],
q_tuple[1],
circ_qub_accumulated_offsets,
local_circuit_to_phys,
coupling_object,
parameters["div_dist"])
if parameters["opt_att"]:
# Go Gaussian
# x \in [0, 1]
# x = cnot_index/len(cx_collection)
x = nr_gate/nr_ops_active
# b \in [0, 100]
b = parameters["att_b"]
# c \in [0, 1]
c = parameters["att_c"]
amplitude = math.exp(-b * (x - c) ** 2)
part1 *= amplitude
sum_eval += plus_or_minus * part1
# if attenuate:
# # each additionally considered qubit should enable
# # as many CNOTs as possible
# # if not, penalise the cost function
# sum_eval += skipped * 200# * len(order)
# print(limit, sum_eval)
# print("check", qubit, "tmp sum", temp_cost, "order", order)
if parameters["option_skip_cx"]:
sk_factor = nr_ops_skipped #/ len(cx_collection)
sk_factor *= parameters["penalty_skip_cx"]
sum_eval += plus_or_minus * sk_factor
"""
If the index increase did not add any additional CNOTs...math.inf cost?
"""
if parameters["opt_div_by_act"]:
# if nr_ops_at_idx_limit > 0:
# sum_eval /= nr_ops_at_idx_limit
# else:
# sum_eval = math.inf
# Average cost per CNOT
if nr_ops_at_idx_limit > 0:
sum_eval /= nr_ops_at_idx_limit
# else:
# # sum_eval = math.inf
# sum_eval = math.inf
return sum_eval
'''
Main
'''
def cuthill_order(dag_circuit, coupling_object, parameters):
"""
Implementation below should be a kind of BFS similar to Cuthill
https://en.wikipedia.org/wiki/Cuthill%E2%80%93McKee_algorithm
From Wikipedia:
The Cuthill McKee algorithm is a variant of the standard breadth-first
search algorithm used in graph algorithms. It starts with a peripheral
node and then generates levels R i {\displaystyle R_{i}} R_{i}
for i = 1 , 2 , . . {\displaystyle i=1,2,..} i=1, 2,..
until all nodes are exhausted.
The set R i + 1 {\displaystyle R_{i+1}} R_{i+1} is created
from set R i {\displaystyle R_{i}} R_i by listing all vertices
adjacent to all nodes in R i {\displaystyle R_{i}} R_{i}.
These nodes are listed in increasing degree. This last detail is
the only difference with the breadth-first search algorithm.
:param dag_circuit:
:param coupling_object:
:return:
"""
nr_nisq_qubits = parameters["nisq_qubits"]
nr_circ_qubits = dag_circuit.num_qubits()
# the start configuration is 0...nrq
# order = list(range(nrq))
#
# Create a list of qubit index tuples representing the cnots
# from the dag_circuit
#
# the cnot collection is initialised to empty
cx_collection = []
# use qiskit topological sort
# nodes_collection = dag_circuit.topological_nodes()
# each gate is transformed into a tuple of qubit indices
for gate in dag_circuit.gate_nodes():
# gate = dag_circuit.multi_graph.nodes[node]
# gate = nodes_collection[node]
if gate.name not in ["cx", "CX"]:
continue
q1 = int(gate.qargs[0].index)
q2 = int(gate.qargs[1].index)
cx_collection.append((q1, q2))
# sume = eval_cx_collection(cx_collection, order, nrq)
# print("naive start:", sume)
'''
A tree of nodes representing the qubits/wires of the circuit
The idea is to find a permutation that minimises a given cost function
'''
options_tree = nx.DiGraph()
# the id of the node in the tree
maximum_nr_node = 0
# add the first node to the tree
# its name is ZERO and has cost zero
# this is not correct actually, because the returned permutations will be
# always starting with zero
options_tree.add_node(maximum_nr_node, name=0, cost=0)
maximum_nr_node += 1
# order = [math.inf for x in order]
curr_mapping = [math.inf] * nr_circ_qubits
curr_mapping[0] = 0 #random.randint(0, nr_nisq_qubits - 1)
# take each index at a time.
# start from 1
# the current limit is node_index
for circ_qub_idx in range(1, nr_circ_qubits):
# determine the leafs of the options_tree and store them in a list
all_leafs = [x for x in options_tree.nodes() if options_tree.out_degree(x) == 0]
'''
Cut-Off search heuristic for placement
'''
if (circ_qub_idx % parameters["max_depth"] == 0) and (circ_qub_idx > 0):
minnode, mincost = cuthill_evaluate_leafs(all_leafs, options_tree)
'''
Clean the tree and leave only the best path
'''
all_nodes = list(options_tree.nodes())
all_nodes.remove(minnode)
p_prev_leaf = minnode
#this is the path to keep in the tree
while len(options_tree.pred[p_prev_leaf]) == 1:
p_prev_leaf = list(options_tree.pred[p_prev_leaf])[0]
all_nodes.remove(p_prev_leaf)
options_tree.remove_nodes_from(all_nodes)
#update the leafs to be used further
all_leafs = [minnode]
# print("limit", limit)
# print("--------")
for prev_leaf in all_leafs:
# Long computations should be interrupted
if time.time() - parameters["TIME_START"] > parameters["TIME_LIMIT"]:
return None
# setup ordering based on parents of this node
cuthill_set_partial_perm(circ_qub_idx, options_tree, curr_mapping, prev_leaf)
# print(circ_qub_idx, curr_mapping)
# Where to store candidates
local_minimas = []
# # is the processing past the limit?
# # which is a ratio (e.g. 1/3) of the total number of qubits
# # the idea being that initially, up to this index limit, the costs have to increase
# # afterwards the costs have to decrease
#
reverse_cond = 1
if parameters["opt_max_t_min"]:
if circ_qub_idx < nr_nisq_qubits / parameters["qubit_increase_factor"]:
# this condition is checked
# if the cost should be maximised -> towards start of permutation
reverse_cond = -1
# the variable is used to store the evaluated cost
hold_sum = reverse_cond * math.inf
# This is the list of all NISQ qubits used for mapping by now
leaf_ancestors = [options_tree.nodes[x]["name"]
for x in nx.ancestors(options_tree, prev_leaf)]
leaf_ancestors.append(options_tree.nodes[prev_leaf]["name"])
# print("ancestors", leaf_ancestors)
# Use all the qubits which are not predecessors of the current leaf
for phys_qubit in range(nr_nisq_qubits):
if phys_qubit in leaf_ancestors:
# This nisq qubit has already been used
# print("skip ", phys_qubit)
continue
# else:
# print("consider ", phys_qubit)
#place previously unused qubit on index limit
curr_mapping[circ_qub_idx] = phys_qubit
# # the cost of the leaf is stored in prev_sum
# prev_cost = options_tree.nodes[prev_leaf]["cost"]
# evaluate the cost of the cnots touching the qubits before limit
temp_cost = eval_cx_collection(cx_collection,
curr_mapping,
circ_qub_idx,
coupling_object,
parameters,
reverse_cond)
# the question is: is the computed cost less than the hold_sum?
condition = (reverse_cond * temp_cost) < (reverse_cond * hold_sum)
# if the condition is true
# store the candidate node in the local_minimas
# if temp_cost != prev_cost:
if condition:
hold_sum = temp_cost
local_minimas.clear()
local_minimas.append(phys_qubit)
elif temp_cost == hold_sum \
and len(local_minimas) < parameters["max_children"]:
local_minimas.append(phys_qubit)
# reset placement
# curr_mapping[circ_qub_idx] = math.inf
# reset entire ordering
# cuthill_set_partial_perm(math.inf, options_tree, curr_mapping, prev_leaf)
# add leafs to the node that generated these permutations
# print("add leafs ", local_minimas, " to the parent ", prev_leaf)
for lmin in local_minimas:
new_node_name = maximum_nr_node
maximum_nr_node += 1
# print(lmin, hold_sum)
options_tree.add_node(new_node_name, name=lmin, cost=hold_sum)
options_tree.add_edge(prev_leaf, new_node_name)
# print("hold", hold_qubit, "for sum", hold_sum)
# print("local minimas", local_minimas)
# placed_qubits.append(hold_qubit)
# order[hold_qubit] = limit
# the final evaluation of the options_tree leafs
all_leafs = [x for x in options_tree.nodes() if options_tree.out_degree(x) == 0]
minnode, mincost = cuthill_evaluate_leafs(all_leafs, options_tree)
# the final order permutation is computed.
# this will be returned and used by the placement
cuthill_set_partial_perm(nr_circ_qubits, options_tree, curr_mapping, minnode)
# print("sum eval:", mincost, eval_cx_collection(cx_collection, order, nrq))
# print(order)
return curr_mapping
def cuthill_evaluate_leafs(all_leafs, options_tree):
"""
Return leaf with minimum cost and its cost
:param all_leafs: collection of leafs to analyse
:param options_tree: tree where the leafs are from
:return: leaf with minimum and its cost
"""
minnode = -1
mincost = math.inf
for nd in all_leafs:
if options_tree.nodes[nd]["cost"] < mincost:
mincost = options_tree.nodes[nd]["cost"]
minnode = nd
if mincost == math.inf:
# If no minimum was found, return the last leaf in the list
minnode = all_leafs[-1]
return minnode, mincost
def cuthill_set_partial_perm(circ_qubit_idx_limit, options_tree, curr_mapping, prev_leaf):
"""
Construct the mapping backwards: from the highest circuit qubit
index to the lowest
:param circ_qubit_idx_limit:
:param options_tree:
:param curr_mapping:
:param prev_leaf:
:return:
"""
# TODO: Adapt for multiple qubits on nisq
circ_qubit = circ_qubit_idx_limit - 1
p_prev_leaf = prev_leaf
while circ_qubit >= 0:
# save the prev_leaf index
phys_qubit = options_tree.nodes[p_prev_leaf]["name"]
curr_mapping[circ_qubit] = phys_qubit
circ_qubit -= 1
if circ_qubit >= 0:
p_prev_leaf = list(options_tree.pred[p_prev_leaf])[0]