diff --git a/README.md b/README.md index 8b13789..0634d23 100644 --- a/README.md +++ b/README.md @@ -1 +1,3 @@ +# Muse LSL +This is a collection of script to use the muse 2016 BLE headset with LSL. diff --git a/lsl-record.py b/lsl-record.py index 2ca3c81..0caffbf 100755 --- a/lsl-record.py +++ b/lsl-record.py @@ -1,4 +1,4 @@ -"""Test.""" +#!/usr/bin/env python import numpy as np import pandas as pd from time import time, strftime, gmtime @@ -71,7 +71,6 @@ res = np.concatenate(res, axis=0) timestamps = np.array(timestamps) res = np.c_[timestamps, res] -print res.shape data = pd.DataFrame(data=res, columns=['timestamps'] + ch_names) data['Marker'] = 0 diff --git a/lsl-viewer.py b/lsl-viewer.py old mode 100644 new mode 100755 index 60c5048..3dded02 --- a/lsl-viewer.py +++ b/lsl-viewer.py @@ -1,4 +1,4 @@ -"""Test.""" +#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt from scipy.signal import butter, filtfilt @@ -34,7 +34,6 @@ (options, args) = parser.parse_args() figsize = np.int16(options.figure.split('x')) -print figsize print("looking for an EEG stream...") streams = resolve_byprop('type', 'EEG', timeout=2) @@ -78,7 +77,7 @@ k += 1 dur = time() - t_init data = np.concatenate(res, axis=0) -print data.shape + if options.avgref: data -= np.atleast_2d(data.mean(1)).T ffts = np.abs(np.fft.fft(data[:, 0:], n=128, axis=0)) @@ -98,7 +97,7 @@ lines = [] impedances = np.log(ffts[ix_noise].mean(0)) / np.log(ffts[ix_signal].mean(0)) -print impedances + for i, ix in enumerate(picks): line, = axes.plot(time[::subsample], data[::subsample, ix] - (i * options.scale * 2), diff --git a/muse_lsl.py b/muse-lsl.py similarity index 100% rename from muse_lsl.py rename to muse-lsl.py diff --git a/muse_record.py b/muse-record.py similarity index 100% rename from muse_record.py rename to muse-record.py