-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathsubmission.py
76 lines (67 loc) · 2.42 KB
/
submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python3
"""Generates submission"""
import pickle
from os.path import join
import numpy as np
from utils import load_data
import pandas as pd
import argparse
MODELS_DIR = "models/LGBMs"
DEFAULT_PREPROCESSED_ROOT = "data/preprocessed/test/"
DEFAULT_SUBMISSION_FILE = "submission/submission.csv"
N_FOLDS = 10
N_SEEDS = 5
N_CLASSES = 4
CLASSES = ["Normal", "Benign", "InSitu", "Invasive"]
AUGMENTATIONS_PER_IMAGE = 50
MODELS = [
"ResNet-0.5-400",
"ResNet-0.5-650",
"VGG-0.5-400",
"VGG-0.5-650",
"Inception-0.5-400",
"Inception-0.5-650",
]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg("--features",
required=False,
default=DEFAULT_PREPROCESSED_ROOT,
metavar="feat_dir",
help="Feature root dir. Default: data/preprocessed/test")
arg("--submission",
required=False,
default=DEFAULT_SUBMISSION_FILE,
metavar="submission",
help="Submission file. Default: submission/submission.csv")
args = parser.parse_args()
PREPROCESSED_ROOT = args.features
SUBMISSION_FILE = args.submission
scores = []
files = None
len_x = None
for fold in range(N_FOLDS):
for model_name in MODELS:
name, scale, crop = model_name.split("-")
for seed in range(N_SEEDS):
x, fl = load_data(join(PREPROCESSED_ROOT, "{}-{}-{}".format(name, scale, crop)))
if files is None:
files = fl
len_x = len(x)
else:
np.testing.assert_array_equal(fl, files)
assert len(x) == len_x
model_file = "lgbm-{}-{}-{}-f{}-s{}.pkl".format(name, scale, crop, fold, seed)
with open(join(MODELS_DIR, name, model_file), "rb") as f:
model = pickle.load(f)
sc = model.predict(x)
sc = sc.reshape(-1, AUGMENTATIONS_PER_IMAGE, N_CLASSES)
scores.append(sc)
scores = np.stack(scores) # N_FOLDS*N_MODELS*N_SEEDS x N x AUGMENTATIONS_PER_IMAGE x N_CLASSES
scores = scores.mean(axis=(0, 2))
y_pred = np.argmax(scores, axis=1)
labels = [CLASSES[i] for i in y_pred]
df = pd.DataFrame(list(zip(map(lambda s: s.replace(".npy", ".tif"), files), labels)), columns=["image", "label"])
df = df.sort_values("image")
df.to_csv(SUBMISSION_FILE, header=False, index=False)