-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathparametersGenetic.json
executable file
·136 lines (135 loc) · 3.84 KB
/
parametersGenetic.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
{
"layers": {
"Dense": {
"in" : "vector",
"out" : "vector",
"parameters": {
"kernel_initializer" : {
"values" : ["uniform", "lecun_uniform", "normal", "zero", "glorot_normal", "glorot_uniform", "he_normal", "he_uniform"],
"type" : "categorical"
},
"activation" : {
"values" : ["relu", "softmax", "softplus", "softsign", "tanh", "sigmoid", "hard_sigmoid", "linear"],
"type" : "categorical"
},
"units" : {
"values" : [10, 500, 10],
"type" : "range"
}
}
},
"Dropout" : {
"in" : "vector",
"out" : "vector",
"parameters" : {
"rate": {
"values": [0.1, 0.8],
"type": "rangeDouble"
}
}
},
"Convolution2D" : {
"in" : "matrix4D",
"out" : "matrix4D",
"parameters" : {
"filters" : {
"values" : [5, 50, 5],
"type" : "range"
},
"kernel_size" : {
"values" : [3, 15, 2],
"type" : "range"
},
"kernel_initializer" : {
"values" : ["uniform", "lecun_uniform", "normal", "zero", "glorot_normal", "glorot_uniform", "he_normal", "he_uniform"],
"type" : "categorical"
},
"activation" : {
"values" : ["relu", "softplus", "softsign", "tanh", "sigmoid", "hard_sigmoid", "linear"],
"type" : "categorical"
},
"padding" : {
"values" : ["same"],
"type" : "categorical"
},
"use_bias" : {
"type" : "boolean"
},
"data_format" : {
"values" : ["channels_last"],
"type" : "categorical"
}
}
},
"MaxPooling2D" : {
"in" : "matrix4D",
"out" : "matrix4D",
"parameters" : {
"pool_size" : {
"values" : [2,6,1],
"size" : 2,
"type" : "2Drange"
},
"strides" : {
"values" : [2, 3, 4, 5, 6, null],
"type" : "categoricalNumeric"
},
"padding" : {
"values" : ["same"],
"type" : "categorical"
},
"data_format" : {
"values" : ["channels_last"],
"type" : "categorical"
}
}
},
"Reshape" : {
"in" : "vector",
"out" : "matrix",
"parameters" : {
"target_shape" : {
"aspect_ratio" : 1.0,
"type" : "matrixRatio"
}
}
},
"Flatten" : {
"in" : "matrix",
"out" : "vector"
}
},
"global_parameters" : {
"optimizer" : {
"values" : ["adam", "sgd", "rmsprop", "adagrad", "adamax", "nadam"],
"type" : "categorical"
},
"epochs": {
"values" : [2, 20, 2],
"type" : "range"
},
"batch_size": {
"values" : [100, 5000, 100],
"type" : "range"
},
"number_layers": {
"values" : [3, 20, 1],
"type" : "range"
}
},
"fsm": {
"alphabet": ["Reshape", "Dense", "Dropout", "Convolution2D", "MaxPooling2D", "Flatten"],
"states": ["inicial", "Dense", "Reshape", "Dropout", "Flatten", "Convolution2D", "MaxPooling2D", "Dense_"],
"initial": "inicial",
"finals": ["Dense"],
"map": {
"inicial": {"Dense": "Dense_", "Reshape": "Reshape", "Dropout": "Dropout"},
"Dense": {"Dense": "Dense", "Reshape": "Reshape", "Dropout": "Dropout"},
"Reshape": {"Convolution2D": "Convolution2D"},
"Dropout": {"Reshape": "Reshape", "Dense": "Dense"},
"Flatten": {"Dense": "Dense", "Dropout": "Dropout"},
"Convolution2D": {"Flatten": "Flatten", "Convolution2D": "Convolution2D", "MaxPooling2D": "MaxPooling2D"},
"MaxPooling2D": {"Flatten": "Flatten", "Convolution2D": "Convolution2D"},
"Dense_": {"Dense": "Dense", "Dropout": "Dropout", "Reshape": "Reshape"}}
}
}