forked from louisnino/RLcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtutorial_TD3.py
503 lines (401 loc) · 21.8 KB
/
tutorial_TD3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
'''
Twin Delayed DDPG (TD3)
------------------------
DDPG suffers from problems like overestimate of Q-values and sensitivity to hyper-parameters.
Twin Delayed DDPG (TD3) is a variant of DDPG with several tricks:
* Trick One: Clipped Double-Q Learning. TD3 learns two Q-functions instead of one (hence “twin”),
and uses the smaller of the two Q-values to form the targets in the Bellman error loss functions.
* Trick Two: “Delayed” Policy Updates. TD3 updates the policy (and target networks) less frequently
than the Q-function.
* Trick Three: Target Policy Smoothing. TD3 adds noise to the target action, to make it harder for
the policy to exploit Q-function errors by smoothing out Q along changes in action.
The implementation of TD3 includes 6 networks: 2 Q-net, 2 target Q-net, 1 policy net, 1 target policy net
Actor policy in TD3 is deterministic, with Gaussian exploration noise.
Reference
---------
original paper: https://arxiv.org/pdf/1802.09477.pdf
Environment
---
Openai Gym Pendulum-v0, continuous action space
https://gym.openai.com/envs/Pendulum-v0/
Prerequisites
---
tensorflow >=2.0.0a0
tensorflow-probability 0.6.0
tensorlayer >=2.0.0
&&
pip install box2d box2d-kengz --user
To run
-------
python tutorial_TD3.py --train/test
'''
import argparse
import math
import random
import time
import gym
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
from IPython.display import clear_output
import tensorlayer as tl
from tensorlayer.layers import Dense
from tensorlayer.models import Model
tfd = tfp.distributions
Normal = tfd.Normal
tl.logging.set_verbosity(tl.logging.DEBUG)
random.seed(2)
np.random.seed(2)
tf.random.set_seed(2) # reproducible
# add arguments in command --train/test
parser = argparse.ArgumentParser(description='Train or test neural net motor controller.')
parser.add_argument('--train', dest='train', action='store_true', default=True)
parser.add_argument('--test', dest='test', action='store_true', default=False)
args = parser.parse_args()
##################### hyper parameters ####################
# choose env
ENV = 'Pendulum-v0'
action_range = 1. # scale action, [-action_range, action_range]
# RL training
max_frames = 40000 # total number of steps for training
test_frames = 300 # total number of steps for testing
max_steps = 150 # maximum number of steps for one episode
batch_size = 64 # udpate batchsize
explore_steps = 500 # 500 for random action sampling in the beginning of training
update_itr = 3 # repeated updates for single step
hidden_dim = 32 # size of hidden layers for networks
q_lr = 3e-4 # q_net learning rate
policy_lr = 3e-4 # policy_net learning rate
policy_target_update_interval = 3 # delayed steps for updating the policy network and target networks
explore_noise_scale = 1.0 # range of action noise for exploration
eval_noise_scale = 0.5 # range of action noise for evaluation of action value
reward_scale = 1. # value range of reward
replay_buffer_size = 5e5 # size of replay buffer
############################### TD3 ####################################
class ReplayBuffer:
'''
a ring buffer for storing transitions and sampling for training
:state: (state_dim,)
:action: (action_dim,)
:reward: (,), scalar
:next_state: (state_dim,)
:done: (,), scalar (0 and 1) or bool (True and False)
'''
def __init__(self, capacity):
self.capacity = capacity #buffer的最大值
self.buffer = [] #buffer列表
self.position = 0 #当前输入的位置,相当于指针
def push(self, state, action, reward, next_state, done):
#如果buffer的长度小于最大值,也就是说,第一环的时候,需要先初始化一个“空间”,这个空间值为None,再给这个空间赋值。
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = int((self.position + 1) % self.capacity) # as a ring buffer
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch)) # stack for each element
'''
the * serves as unpack: sum(a,b) <=> batch=(a,b), sum(*batch) ;
zip: a=[1,2], b=[2,3], zip(a,b) => [(1, 2), (2, 3)] ;
the map serves as mapping the function on each list element: map(square, [2,3]) => [4,9] ;
np.stack((1,2)) => array([1, 2])
'''
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)
#在代码中没有用到,但我们可以学习下,这里是直接修改gym环境的动作输出,把输出归一化。
class NormalizedActions(gym.ActionWrapper):
''' normalize the actions to be in reasonable range '''
def _action(self, action):
low = self.action_space.low #动作空间最小值
high = self.action_space.high #动作空间最大值
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def _reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return action
class QNetwork(Model):
''' the network for evaluate values of state-action pairs: Q(s,a) '''
def __init__(self, num_inputs, num_actions, hidden_dim, init_w=3e-3):
super(QNetwork, self).__init__()
input_dim = num_inputs + num_actions
# w_init = tf.keras.initializers.glorot_normal(seed=None)
w_init = tf.random_uniform_initializer(-init_w, init_w)
self.linear1 = Dense(n_units=hidden_dim, act=tf.nn.relu, W_init=w_init, in_channels=input_dim, name='q1')
self.linear2 = Dense(n_units=hidden_dim, act=tf.nn.relu, W_init=w_init, in_channels=hidden_dim, name='q2')
self.linear3 = Dense(n_units=1, W_init=w_init, in_channels=hidden_dim, name='q3')
def forward(self, input):
x = self.linear1(input)
x = self.linear2(x)
x = self.linear3(x)
return x
class PolicyNetwork(Model):
''' the network for generating non-determinstic (Gaussian distributed) action from the state input '''
def __init__(self, num_inputs, num_actions, hidden_dim, action_range=1., init_w=3e-3):
super(PolicyNetwork, self).__init__()
# w_init = tf.keras.initializers.glorot_normal(seed=None)
w_init = tf.random_uniform_initializer(-init_w, init_w)
self.linear1 = Dense(n_units=hidden_dim, act=tf.nn.relu, W_init=w_init, in_channels=num_inputs, name='policy1')
self.linear2 = Dense(n_units=hidden_dim, act=tf.nn.relu, W_init=w_init, in_channels=hidden_dim, name='policy2')
self.linear3 = Dense(n_units=hidden_dim, act=tf.nn.relu, W_init=w_init, in_channels=hidden_dim, name='policy3')
self.output_linear = Dense(n_units=num_actions, W_init=w_init, \
b_init=tf.random_uniform_initializer(-init_w, init_w), in_channels=hidden_dim, name='policy_output')
self.action_range = action_range
self.num_actions = num_actions
def forward(self, state):
x = self.linear1(state)
x = self.linear2(x)
x = self.linear3(x)
output = tf.nn.tanh(self.output_linear(x)) # unit range output [-1, 1]
return output
def evaluate(self, state, eval_noise_scale):
'''
generate action with state for calculating gradients;
eval_noise_scale: as the trick of target policy smoothing, for generating noisy actions.
'''
state = state.astype(np.float32) #状态的type整理
action = self.forward(state) #通过state计算action,注意这里action范围是[-1,1]
action = self.action_range * action #映射到游戏的action取值范围
# add noise
normal = Normal(0, 1) #建立一个正态分布
eval_noise_clip = 2 * eval_noise_scale #对噪声进行上下限裁剪。eval_noise_scale
noise = normal.sample(action.shape) * eval_noise_scale #弄个一个noisy和action的shape一致,然后乘以scale
noise = tf.clip_by_value(noise, -eval_noise_clip, eval_noise_clip) #对noisy进行剪切,不要太大也不要太小
action = action + noise #action加上噪音
return action
#输入state,输出action
def get_action(self, state, explore_noise_scale):
''' generate action with state for interaction with envronment '''
action = self.forward([state]) #这里的forward函数,就是输入state,然后通过state输出action。只不过形式不一样而已。最后的激活函数式tanh,所以范围是[-1, 1]
action = action.numpy()[0] #获得的action变成矩阵。
# add noise
normal = Normal(0, 1) #生成normal这样一个正态分布
noise = normal.sample(action.shape) * explore_noise_scale #在正态分布中抽样一个和action一样shape的数据,然后乘以scale
action = self.action_range * action + noise #action乘以动作的范围,加上noise
return action.numpy()
def sample_action(self, ):
''' generate random actions for exploration '''
a = tf.random.uniform([self.num_actions], -1, 1)
return self.action_range * a.numpy()
class TD3_Trainer():
def __init__(
self, replay_buffer, hidden_dim, action_range, policy_target_update_interval=1, q_lr=3e-4, policy_lr=3e-4
):
self.replay_buffer = replay_buffer
# initialize all networks
# 用两个Qnet来估算,doubleDQN的想法。同时也有两个对应的target_q_net
self.q_net1 = QNetwork(state_dim, action_dim, hidden_dim)
self.q_net2 = QNetwork(state_dim, action_dim, hidden_dim)
self.target_q_net1 = QNetwork(state_dim, action_dim, hidden_dim)
self.target_q_net2 = QNetwork(state_dim, action_dim, hidden_dim)
self.policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim, action_range)
self.target_policy_net = PolicyNetwork(state_dim, action_dim, hidden_dim, action_range)
print('Q Network (1,2): ', self.q_net1)
print('Policy Network: ', self.policy_net)
# initialize weights of target networks
# 把net 赋值给target_network
self.target_q_net1 = self.target_ini(self.q_net1, self.target_q_net1)
self.target_q_net2 = self.target_ini(self.q_net2, self.target_q_net2)
self.target_policy_net = self.target_ini(self.policy_net, self.target_policy_net)
self.update_cnt = 0 #更新次数
self.policy_target_update_interval = policy_target_update_interval #策略网络更新频率
self.q_optimizer1 = tf.optimizers.Adam(q_lr)
self.q_optimizer2 = tf.optimizers.Adam(q_lr)
self.policy_optimizer = tf.optimizers.Adam(policy_lr)
#在网络初始化的时候进行硬更新
def target_ini(self, net, target_net):
''' hard-copy update for initializing target networks '''
for target_param, param in zip(target_net.trainable_weights, net.trainable_weights):
target_param.assign(param)
return target_net
#在更新的时候进行软更新
def target_soft_update(self, net, target_net, soft_tau):
''' soft update the target net with Polyak averaging '''
for target_param, param in zip(target_net.trainable_weights, net.trainable_weights):
target_param.assign( # copy weight value into target parameters
target_param * (1.0 - soft_tau) + param * soft_tau
# 原来参数占比 + 目前参数占比
)
return target_net
def update(self, batch_size, eval_noise_scale, reward_scale=10., gamma=0.9, soft_tau=1e-2):
''' update all networks in TD3 '''
self.update_cnt += 1 #计算更新次数
state, action, reward, next_state, done = self.replay_buffer.sample(batch_size) #从buffer sample数据
reward = reward[:, np.newaxis] # expand dim, 调整形状,方便输入网络
done = done[:, np.newaxis]
# 输入s',从target_policy_net计算a'。注意这里有加noisy的
new_next_action = self.target_policy_net.evaluate(
next_state, eval_noise_scale=eval_noise_scale
) # clipped normal noise
# 归一化reward.(有正有负)
reward = reward_scale * (reward - np.mean(reward, axis=0)) / (
np.std(reward, axis=0) + 1e-6
) # normalize with batch mean and std; plus a small number to prevent numerical problem
# Training Q Function
# 把s'和a'堆叠在一起,一起输入到target_q_net。
# 有两个qnet,我们取最小值
target_q_input = tf.concat([next_state, new_next_action], 1) # the dim 0 is number of samples
target_q_min = tf.minimum(self.target_q_net1(target_q_input), self.target_q_net2(target_q_input))
#计算target_q的值,用于更新q_net
#之前有把done从布尔变量改为int,就是为了这里能够直接计算。
target_q_value = reward + (1 - done) * gamma * target_q_min # if done==1, only reward
q_input = tf.concat([state, action], 1) # input of q_net
#更新q_net1
#这里其实和DQN是一样的
with tf.GradientTape() as q1_tape:
predicted_q_value1 = self.q_net1(q_input)
q_value_loss1 = tf.reduce_mean(tf.square(predicted_q_value1 - target_q_value))
q1_grad = q1_tape.gradient(q_value_loss1, self.q_net1.trainable_weights)
self.q_optimizer1.apply_gradients(zip(q1_grad, self.q_net1.trainable_weights))
#更新q_net2
with tf.GradientTape() as q2_tape:
predicted_q_value2 = self.q_net2(q_input)
q_value_loss2 = tf.reduce_mean(tf.square(predicted_q_value2 - target_q_value))
q2_grad = q2_tape.gradient(q_value_loss2, self.q_net2.trainable_weights)
self.q_optimizer2.apply_gradients(zip(q2_grad, self.q_net2.trainable_weights))
# Training Policy Function
# policy不是经常updata的,而qnet更新一定次数,才updata一次
if self.update_cnt % self.policy_target_update_interval == 0:
#更新policy_net
with tf.GradientTape() as p_tape:
# 计算 action = Policy(s),注意这里是没有noise的
new_action = self.policy_net.evaluate(
state, eval_noise_scale=0.0
) # no noise, deterministic policy gradients
#叠加state和action
new_q_input = tf.concat([state, new_action], 1)
# ''' implementation 1 '''
# predicted_new_q_value = tf.minimum(self.q_net1(new_q_input),self.q_net2(new_q_input))
''' implementation 2 '''
predicted_new_q_value = self.q_net1(new_q_input)
policy_loss = -tf.reduce_mean(predicted_new_q_value) #梯度上升
p_grad = p_tape.gradient(policy_loss, self.policy_net.trainable_weights)
self.policy_optimizer.apply_gradients(zip(p_grad, self.policy_net.trainable_weights))
# Soft update the target nets
# 软更新target_network三个
self.target_q_net1 = self.target_soft_update(self.q_net1, self.target_q_net1, soft_tau)
self.target_q_net2 = self.target_soft_update(self.q_net2, self.target_q_net2, soft_tau)
self.target_policy_net = self.target_soft_update(self.policy_net, self.target_policy_net, soft_tau)
def save_weights(self): # save trained weights
tl.files.save_npz(self.q_net1.trainable_weights, name='model_q_net1.npz')
tl.files.save_npz(self.q_net2.trainable_weights, name='model_q_net2.npz')
tl.files.save_npz(self.target_q_net1.trainable_weights, name='model_target_q_net1.npz')
tl.files.save_npz(self.target_q_net2.trainable_weights, name='model_target_q_net2.npz')
tl.files.save_npz(self.policy_net.trainable_weights, name='model_policy_net.npz')
tl.files.save_npz(self.target_policy_net.trainable_weights, name='model_target_policy_net.npz')
def load_weights(self): # load trained weights
tl.files.load_and_assign_npz(name='model_q_net1.npz', network=self.q_net1)
tl.files.load_and_assign_npz(name='model_q_net2.npz', network=self.q_net2)
tl.files.load_and_assign_npz(name='model_target_q_net1.npz', network=self.target_q_net1)
tl.files.load_and_assign_npz(name='model_target_q_net2.npz', network=self.target_q_net2)
tl.files.load_and_assign_npz(name='model_policy_net.npz', network=self.policy_net)
tl.files.load_and_assign_npz(name='model_target_policy_net.npz', network=self.target_policy_net)
def plot(frame_idx, rewards):
clear_output(True)
plt.figure(figsize=(20, 5))
plt.title('frame %s. reward: %s' % (frame_idx, rewards[-1]))
plt.plot(rewards)
plt.xlabel('Episode')
plt.ylabel('Episode Reward')
plt.savefig('td3.png')
# plt.show()
if __name__ == '__main__':
# initialization of env
# env = NormalizedActions(gym.make(ENV))
env = gym.make(ENV).unwrapped #环境
action_dim = env.action_space.shape[0] #动作空间
state_dim = env.observation_space.shape[0] #状态空间
# initialization of buffer
replay_buffer = ReplayBuffer(replay_buffer_size)
# initialization of trainer
td3_trainer=TD3_Trainer(replay_buffer, hidden_dim=hidden_dim, policy_target_update_interval=policy_target_update_interval, \
action_range=action_range, q_lr=q_lr, policy_lr=policy_lr )
# set train mode
td3_trainer.q_net1.train()
td3_trainer.q_net2.train()
td3_trainer.target_q_net1.train()
td3_trainer.target_q_net2.train()
td3_trainer.policy_net.train()
td3_trainer.target_policy_net.train()
# training loop
if args.train:
frame_idx = 0 #总步数
rewards = [] #记录每个EP的总reward
t0 = time.time()
while frame_idx < max_frames: #小于最大步数,就继续训练
state = env.reset() #初始化state
state = state.astype(np.float32) #整理state的类型
episode_reward = 0
if frame_idx < 1: #第一次的时候,要进行初始化trainer
print('intialize')
_ = td3_trainer.policy_net([state]) # need an extra call here to make inside functions be able to use model.forward
_ = td3_trainer.target_policy_net([state])
# 开始训练
for step in range(max_steps):
if frame_idx > explore_steps: #如果小于500步,就随机,如果大于就用get-action
action = td3_trainer.policy_net.get_action(state, explore_noise_scale=1.0) #带有noisy的action
else:
action = td3_trainer.policy_net.sample_action()
# 与环境进行交互
next_state, reward, done, _ = env.step(action)
next_state = next_state.astype(np.float32)
env.render()
done = 1 if done ==True else 0
#记录数据在replay_buffer
replay_buffer.push(state, action, reward, next_state, done)
#赋值state,累计总reward,步数
state = next_state
episode_reward += reward
frame_idx += 1
#如果数据超过一个batch_size的大小,那么就开始更新
if len(replay_buffer) > batch_size:
for i in range(update_itr): #注意:这里更新可以更新多次!
td3_trainer.update(batch_size, eval_noise_scale=0.5, reward_scale=1.)
if frame_idx % 500 == 0:
plot(frame_idx, rewards)
if done:
break
episode = int(frame_idx / max_steps) # current episode
all_episodes = int(max_frames / max_steps) # total episodes
print('Episode: {}/{} | Episode Reward: {:.4f} | Running Time: {:.4f}'\
.format(episode, all_episodes, episode_reward, time.time()-t0 ))
rewards.append(episode_reward)
td3_trainer.save_weights()
if args.test:
frame_idx = 0
rewards = []
t0 = time.time()
td3_trainer.load_weights()
while frame_idx < test_frames:
state = env.reset()
state = state.astype(np.float32)
episode_reward = 0
if frame_idx < 1:
print('intialize')
_ = td3_trainer.policy_net(
[state]
) # need an extra call to make inside functions be able to use forward
_ = td3_trainer.target_policy_net([state])
for step in range(max_steps):
action = td3_trainer.policy_net.get_action(state, explore_noise_scale=1.0)
next_state, reward, done, _ = env.step(action)
next_state = next_state.astype(np.float32)
env.render()
done = 1 if done ==True else 0
state = next_state
episode_reward += reward
frame_idx += 1
# if frame_idx % 50 == 0:
# plot(frame_idx, rewards)
if done:
break
episode = int(frame_idx / max_steps)
all_episodes = int(test_frames / max_steps)
print('Episode: {}/{} | Episode Reward: {:.4f} | Running Time: {:.4f}'\
.format(episode, all_episodes, episode_reward, time.time()-t0 ) )
rewards.append(episode_reward)