-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfs_preservation.v
80 lines (61 loc) · 1.62 KB
/
fs_preservation.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Require Import syntax.
Require Import partial.
Require Import heap.
Require Import classTable.
Require Import sframe.
Require Import reductions.
Require Import typing.
Require Import namesAndTypes.
Require Import preservation.
Require Import wf_env.
Import ConcreteEverything.
Section Preservation.
Variable P: Program.
Definition subtypeP := subtype P.
Definition fldP := fld P.
Definition ftypeP := ftype P.
Definition t_frame1' := t_frame1 P.
Definition WF_Frame' := WF_Frame P.
Definition Reduction_SF' := Reduction_SF P.
Definition Reduction_FS' := Reduction_FS P.
Definition fieldsP := fields P.
Definition TypeChecksP := TypeChecksTerm P.
Definition Heap_okP := Heap_ok P.
Notation "[ H , x , tau ## FS ]" := (WF_FS P (Some (x, tau)) H FS) (at level 0).
Notation "[ H ## FS ]" := (WF_FS P None H FS) (at level 0).
Theorem multiple_frame_WF_ENV_preservation :
forall H H' FS FS',
Reduction_FS' (H, FS)
(H', FS') ->
Heap_okP H ->
[ H ## FS ] ->
[ H' ## FS' ] * (Heap_okP H').
intros.
inversion X.
(* 4 goals, based on reduction rule:
* E-frame-stack,
* E-return1
* E-return2
* E-open
*)
(* CASE E-frame-stack,
* H, F -> H', F',
* H, F :: FS --> H', F' :: FS
*)
admit.
(* TODO put in own theorem *)
(* Case E-return *)
admit.
(* Case E-open-return *)
rewrite <- H4 in *.
rewrite <- H6 in *.
rewrite <- H5 in *.
clear H5 H6 H3 H1.
split.
inversion X0;
assumption.
assumption.
(* Case E-open *)
admit.
Admitted.
End Preservation.