-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpusnet-p.py
214 lines (173 loc) · 8.94 KB
/
pusnet-p.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import torch.nn as nn
import torch.optim as optim
import argparse
import os
from torch.optim.lr_scheduler import MultiStepLR
from tqdm import tqdm
import logging
import numpy as np
import math
from torchvision.utils import save_image
from models.PUSNet import pusnet
from utils.terminal import MetricMonitor
from utils.logger import logger_info
from utils.image import calculate_psnr, calculate_ssim, calculate_mae, calculate_rmse
from utils.dataset import load_dataset
from utils.dirs import mkdirs
import config as c
from utils.model import load_model
from utils.proposed_mothod import generate_sparse_mask, init_weights, remove_adapter
os.environ["CUDA_VISIBLE_DEVICES"] = c.pusnet_device_ids
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
mkdirs('results/pusnet-p')
logger_name = 'pusnet-p'
logger_info(logger_name, log_path=os.path.join('results', logger_name, c.mode + '.log'))
logger = logging.getLogger(logger_name)
logger.info('#'*50)
logger.info('model: pusnet')
logger.info('train data dir: {:s}'.format(c.train_data_dir))
logger.info('test data dir: {:s}'.format(c.test_data_dir))
logger.info('mode: {:s}'.format(c.mode))
logger.info('noisy level: {:s}'.format(str(c.pusnet_sigma)))
logger.info('sparse ration: {:s}'.format(str(c.sparse_ratio)))
model_tmp = pusnet()
init_weights(model_tmp, random_seed=1)
sparse_mask = generate_sparse_mask(model_tmp, sparse_ratio=c.sparse_ratio)
for idx in range(len(sparse_mask)):
sparse_mask[idx] = sparse_mask[idx].to(device)
model = pusnet().to(device)
model = nn.DataParallel(model)
remove_adapter(model, sparse_mask)
train_loader, test_loader = load_dataset(c.train_data_dir, c.test_data_dir, c.pusnet_p_batch_size_train, c.pusnet_p_batch_size_test, c.pusnet_sigma)
if c.mode == 'test':
model.load_state_dict(torch.load(c.test_pusnet_p_path))
with torch.no_grad():
N_psnr = []; N_ssim = []; N_mae = []; N_rmse = []
DN_psnr = []; DN_ssim = []; DN_mae = []; DN_rmse = []
model.eval()
stream = tqdm(test_loader)
for idx, (data, noised_data) in enumerate(stream):
data = data.to(device)
noised_data = noised_data.to(device)
clean = data[data.shape[0]//2:]
noised = noised_data[noised_data.shape[0]//2:]
################## forward ####################
denoised = model(noised, None, 'denoising')
############### save images #################
if c.save_processed_img == True:
super_dirs = ['noisy', 'denoised']
for cur_dir in super_dirs:
test_data_name = c.test_data_dir.split('/')[-1]
mkdirs(os.path.join('results/pusnet-p', test_data_name, cur_dir))
image_name = '%.4d.' % idx + 'png'
save_image(noised, os.path.join('results/pusnet-p', test_data_name, super_dirs[0], image_name))
save_image(denoised, os.path.join('results/pusnet-p', test_data_name, super_dirs[1], image_name))
############### calculate metircs #################
clean = clean.detach().cpu().numpy().squeeze() * 255
np.clip(clean, 0, 255)
noised = noised.detach().cpu().numpy().squeeze() * 255
np.clip(noised, 0, 255)
denoised = denoised.detach().cpu().numpy().squeeze() * 255
np.clip(denoised, 0, 255)
psnr_temp = calculate_psnr(clean, noised)
N_psnr.append(psnr_temp)
psnr_temp = calculate_psnr(clean, denoised)
DN_psnr.append(psnr_temp)
mae_temp = calculate_mae(clean, noised)
N_mae.append(mae_temp)
mae_temp = calculate_mae(clean, denoised)
DN_mae.append(mae_temp)
rmse_temp = calculate_rmse(clean, noised)
N_rmse.append(rmse_temp)
rmse_temp = calculate_rmse(clean, denoised)
DN_rmse.append(rmse_temp)
ssim_temp = calculate_ssim(clean, noised)
N_ssim.append(ssim_temp)
ssim_temp = calculate_ssim(clean, denoised)
DN_ssim.append(ssim_temp)
logger.info('testing, noise_avg_psnr: {:.2f}, denoise_avg_psnr: {:.2f}'.format(np.mean(N_psnr), np.mean(DN_psnr)))
logger.info('testing, noise_avg_mae: {:.2f}, denoise_avg_mae: {:.2f}'.format(np.mean(N_mae), np.mean(DN_mae)))
logger.info('testing, noise_avg_rmse: {:.2f}, denoise_avg_rmse: {:.2f}'.format(np.mean(N_rmse), np.mean(DN_rmse)))
logger.info('testing, noise_avg_ssim: {:.4f}, denoise_avg_ssim: {:.4f}'.format(np.mean(N_ssim), np.mean(DN_ssim)))
else:
denoising_loss = nn.MSELoss().to(device)
# according to pusnet_p #2 and pusnet_p #3
opt2 = torch.optim.Adam(model.parameters(), lr=c.lr, betas=c.betas, eps=1e-6, weight_decay=c.weight_decay)
opt3 = torch.optim.Adam(model.parameters(), lr=c.lr)
optimizer = opt2
# optimizer = opt3
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, c.weight_step, gamma=c.gamma)
for epoch in range(c.epochs):
epoch += 1
dn_loss = []
loss_history=[]
###############################################################
# train #
###############################################################
model.train()
metric_monitor = MetricMonitor(float_precision=4)
stream = tqdm(train_loader)
for batch_idx, (data, noised_data) in enumerate(stream):
data = data.to(device)
noised_data = noised_data.to(device)
clean = data[data.shape[0]//2:]
noised = noised_data[noised_data.shape[0]//2:]
################## forward ####################
denoised = model(noised, None, 'denoising')
################### loss ######################
DN_loss = denoising_loss(clean, denoised)
loss = c.pusnet_lambda_DN * DN_loss
################### backword ##################
loss.backward()
idx_m = 0
for m in model.modules():
if isinstance(m, nn.Conv2d):
m.weight.grad.data = torch.mul(m.weight.grad.data, sparse_mask[idx_m])
idx_m += 1
elif isinstance(m, nn.Linear):
m.weight.grad.data = torch.mul(m.weight.grad.data, sparse_mask[len(sparse_mask)-1])
optimizer.step()
optimizer.zero_grad()
################## record ##################
dn_loss.append(DN_loss.item())
loss_history.append(loss.item())
metric_monitor.update("DN_loss", np.mean(np.array(dn_loss)))
metric_monitor.update("T_Loss", np.mean(np.array(loss_history)))
stream.set_description(
"Epoch: {epoch}. Train. {metric_monitor}".format(epoch=epoch, metric_monitor=metric_monitor)
)
epoch_losses = np.mean(np.array(loss_history))
###############################################################
# val #
###############################################################
model.eval()
if epoch % c.test_freq == 0:
with torch.no_grad():
N_psnr = []
DN_psnr = []
for (data, noised_data) in test_loader:
data = data.to(device)
noised_data = noised_data.to(device)
clean = data[data.shape[0]//2:]
noised = noised_data[noised_data.shape[0]//2:]
################## forward ####################
denoised = model(noised, None, 'denoising')
############### calculate psnr #################
clean = clean.detach().cpu().numpy().squeeze() * 255
np.clip(clean, 0, 255)
noised = noised.detach().cpu().numpy().squeeze() * 255
np.clip(noised, 0, 255)
denoised = denoised.detach().cpu().numpy().squeeze() * 255
np.clip(denoised, 0, 255)
psnr_temp = calculate_psnr(clean, noised)
N_psnr.append(psnr_temp)
psnr_temp = calculate_psnr(clean, denoised)
DN_psnr.append(psnr_temp)
logger.info('epoch: {}, training, T_loss: {:.5f}'.format(epoch, epoch_losses))
logger.info('epoch: {}, noise_avg_psnr: {:.2f}, denoise_avg_psnr: {:.2f}'.format(epoch, np.mean(N_psnr), np.mean(DN_psnr)))
if epoch % c.save_freq == 0 and epoch >= (c.save_start_epoch):
model_save_dir = os.path.join(c.model_save_dir, 'pusnet-P-'+ str(c.sparse_ratio))
mkdirs(model_save_dir)
torch.save(model.state_dict(), os.path.join(model_save_dir, 'checkpoint_%.4i' % epoch + '.pt'))
scheduler.step()