-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpylexa.py
214 lines (166 loc) · 6.6 KB
/
pylexa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import replicate
import openai
import subprocess
import pyaudio
import wave
from image import create_image
from termcolor import colored
from explain import explain_image
from gtts import gTTS
model = replicate.models.get("openai/whisper")
version = model.versions.get("30414ee7c4fffc37e260fcab7842b5be470b9b840f2b608f5baa9bbef9a259ed")
openai.api_key = "YOUR_API_KEY"
record_seconds=5
number_lines=-5 #must be negative
#before you start make sure you get your replicate.com api key and add as an env variable
#{type this into console} export REPLICATE_API_TOKEN='token'
def record_audio(record_time):
# Set the parameters for recording
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 44100
CHUNK = 1024
RECORD_SECONDS = record_time
# Create an instance of the PyAudio class
audio = pyaudio.PyAudio()
# Open a new stream to record audio
stream = audio.open(format=FORMAT, channels=CHANNELS,
rate=RATE, input=True,
frames_per_buffer=CHUNK)
print(colored("Recording audio...",'red'))
# Create a list to store the audio frames
frames = []
# Record audio in chunks and append to frames list
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
print(colored("Finished recording.",'green'))
# Stop the stream and close the PyAudio instance
stream.stop_stream()
stream.close()
audio.terminate()
# Save the recorded audio as a WAV file
WAVE_OUTPUT_FILENAME = "recorded_audio.wav"
waveFile = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
waveFile.setnchannels(CHANNELS)
waveFile.setsampwidth(audio.get_sample_size(FORMAT))
waveFile.setframerate(RATE)
waveFile.writeframes(b''.join(frames))
waveFile.close()
print("Audio saved as {}.".format(WAVE_OUTPUT_FILENAME))
return WAVE_OUTPUT_FILENAME
def generate_text_completion(prompt):
completions = openai.Completion.create(
engine="text-davinci-003",
prompt=f' {prompt}',
max_tokens=80,
n=1,
stop=None,
temperature=0.7,
)
message = completions.choices[0].text.strip()
return message
def synthesize_text_with_gtts(text):
# Create gTTS object
tts = gTTS(text=text, lang='en')
# Save audio stream to file
filename = 'output.mp3'
tts.save(filename)
return filename
filename=record_audio(record_seconds)
# https://replicate.com/openai/whisper/versions/30414ee7c4fffc37e260fcab7842b5be470b9b840f2b608f5baa9bbef9a259ed#input
inputs = {
# Audio file
'audio': open('recorded_audio.wav', "rb"),
# Choose a Whisper model.
'model': "base",
# Choose the format for the transcription
'transcription': "plain text",
# Translate the text to English when set to True
'translate': False,
# language spoken in the audio, specify None to perform language
# detection
# 'language': ...,
# temperature to use for sampling
'temperature': 0,
# optional patience value to use in beam decoding, as in
# https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to
# conventional beam search
# 'patience': ...,
# comma-separated list of token ids to suppress during sampling; '-1'
# will suppress most special characters except common punctuations
'suppress_tokens': "-1",
# optional text to provide as a prompt for the first window.
# 'initial_prompt': ...,
# if True, provide the previous output of the model as a prompt for
# the next window; disabling may make the text inconsistent across
# windows, but the model becomes less prone to getting stuck in a
# failure loop
'condition_on_previous_text': False,
# temperature to increase when falling back when the decoding fails to
# meet either of the thresholds below
'temperature_increment_on_fallback': 0.2,
# if the gzip compression ratio is higher than this value, treat the
# decoding as failed
'compression_ratio_threshold': 2.4,
# if the average log probability is lower than this value, treat the
# decoding as failed
'logprob_threshold': -1,
# if the probability of the token is higher than this
# value AND the decoding has failed due to `logprob_threshold`,
# consider the segment as silence
'no_speech_threshold': 0.6,
}
# https://replicate.com/openai/whisper/versions/30414ee7c4fffc37e260fcab7842b5be470b9b840f2b608f5baa9bbef9a259ed#output-schema
output = version.predict(**inputs)
# Extract transcription from output
transcription = output["transcription"]
# Format transcription into a sentence string
sentence ='User: ' + transcription
if "image" in sentence:
# Call another function or do something else
print(colored("Image/Picture found!","blue"))
synthesize_text_with_gtts("I am creating your image gimme one sec. I need my crayons. ")
filename=create_image(transcription,'image')
sentence1=explain_image(filename)
#
print(colored(sentence1,'light_blue','on_black'))
subprocess.run(['mpg321','output.mp3'])
# Save sentence to file
with open("trans.txt", "a") as f:
f.write(f'{sentence}\n')
print(colored(sentence,'light_blue'))
with open("trans.txt", "r") as f:
prev = f.readlines()[number_lines:]
last_3_lines = ''.join(prev)
#sentence = 'Continue the conversation you are having: ' + last_3_lines
#answer= generate_text_completion(sentence)
#modified_string = answer.replace("AI:", "")
#synthesize_text_with_polly(modified_string)
#print(colored(modified_string,'green'))
answer1= f'AI: See I generated an image of {sentence1}'
answer=f'See I generated an image of {sentence1}'
synthesize_text_with_gtts(answer)
with open("trans.txt", "a") as f:
f.write(f'{answer1}\n')
print(answer1)
subprocess.run(['mpg321','output.mp3'])
else:
# Do something else
print(colored("Image not found","yellow"))
# Save sentence to file
with open("trans.txt", "a") as f:
f.write(f'{sentence}\n')
print(colored(sentence,'light_blue','on_green'))
with open("trans.txt", "r") as f:
prev = f.readlines()[-5:]
last_3_lines = ''.join(prev)
sentence = 'Continue the conversation you are having: ' + last_3_lines
answer= generate_text_completion(sentence)
modified_string = answer.replace("AI:", "")
synthesize_text_with_gtts(modified_string)
print(colored(modified_string,'green'))
answer= 'AI: ' + modified_string
with open("trans.txt", "a") as f:
f.write(f'{answer}\n')
subprocess.run(['mpg321','output.mp3'])