-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmovie_predict.py
106 lines (79 loc) · 3.94 KB
/
movie_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import tensorflow as tf
import pandas as pd
import numpy as np
from tensorflow.keras import metrics,Model,layers,Sequential,losses,optimizers,utils
from connect_db import Session,engine
from data_models import Movie,User,Rating
import json
from melu_model import MeluGlobal,MeluLocal
from sqlalchemy import func
from math import floor
MOVIE_MIN_YEAR=1919
MOVIE_MAX_YEAR=2000
MAX_USER_ID=6040
def main():
session=Session()
# query with condition? alternative
all_users=session.query(User).all()
all_movies=session.query(Movie).all()
user_rating_counts=session.query(Rating.user_id,func.count(Rating.user_id)).group_by(Rating.user_id).all()
# user with more than 40 ratings
user_filtered=filter(lambda x: x[1]>45,user_rating_counts)
actual_users_index=[elem[0] for elem in user_filtered]
actor_dict,director_dict,rated_dict,genre_dict=get_movie_dict('movie_dict.json')
#author_dict,publisher_dict=get_book_dict('book_dict.json')
with open('movie_user_zipcodes.json','r') as f:
zipcodes=json.load(f)
zipcode_dict=dict(zip(zipcodes,range(len(zipcodes))))
all_users_id=[elem.id for elem in all_users]
all_users_data=[{'gender':elem.gender,'occupation':elem.occupation,'age':elem.age,'zipcode':elem.zipcode} for elem in all_users]
all_users_df=pd.DataFrame(all_users_data,index=all_users_id)
# occupation doesn't need hashing
occu_dict_size=all_users_df.occupation.max()+1
all_users_df.gender=(all_users_df.gender=='M').astype(int)
all_users_df.zipcode=all_users_df.zipcode.apply(lambda x: zipcode_dict[x])
user_ages=sorted(all_users_df.age.unique())
# age may be quantifiable, but every person in their age periods has their own culture and style
age_dict=dict(zip(user_ages,range(len(user_ages))))
all_users_df.age=all_users_df.age.apply(lambda x:age_dict[x])
all_movies_id=[elem.id for elem in all_movies]
all_movies_data=[{
'year':elem.year,'actor':elem.actor,'title':elem.title,'rated':elem.rated,
'director':elem.director,'genre':elem.genre
} for elem in all_movies]
all_movies_df=pd.DataFrame(all_movies_data,index=all_movies_id)
all_movies_df.actor=all_movies_df.actor.apply(lambda x: actor_dict[x])
all_movies_df.director=all_movies_df.director.apply(lambda x: director_dict[x])
all_movies_df.rated=all_movies_df.rated.apply(lambda x: rated_dict[x])
all_movies_df.genre=all_movies_df.genre.apply(lambda x: genre_dict[x])
all_movies_df.year=all_movies_df.year - MOVIE_MIN_YEAR
existing_movies_df=all_movies_df[all_movies_df.year<1998-MOVIE_MIN_YEAR]
new_movies_df=all_movies_df[all_movies_df.year>1997-MOVIE_MIN_YEAR]
#user_mask=np.random.rand(len(all_users_df)) < 0.8
#user_existing=all_users_df[user_mask]
#user_new=all_users_df[~user_mask]
user_existing=all_users_df[all_users_df.index.isin(actual_users_index)]
user_new=all_users_df[~all_users_df.index.isin(actual_users_index)]
#To do : test exsiting movie with new user
#To do : test new movie with existing user
#To do : test new movie with new user
def get_movie_dict(movie_dict_file):
with open(movie_dict_file,'r') as f:
movie_dict=json.load(f)
actor_dict=dict(zip(movie_dict['actors'],range(len(movie_dict['actors']))))
director_dict=dict(zip(movie_dict['directors'],range(len(movie_dict['directors']))))
rated_dict=dict(zip(movie_dict['rateds'],range(len(movie_dict['rateds']))))
genre_dict=dict(zip(movie_dict['genres'],range(len(movie_dict['genres']))))
return actor_dict,director_dict,rated_dict,genre_dict
def get_book_dict(book_dict_file):
with open(book_dict_file,'r') as f:
book_dict=json.load(f)
author_dict=dict(zip(book_dict['authors'],range(len(book_dict['authors']))))
publisher_dict=dict(zip(book_dict['publishers'],range(len(book_dict['publishers']))))
return author_dict,publisher_dict
def ndcg(label,pred):
pass
def dcg():
pass
if __name__=='__main__':
main()