-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllmlogic.py
42 lines (31 loc) · 1.46 KB
/
llmlogic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from huggingface_hub import InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# client=InferenceClient("TheBloke/Mistral-7B-v0.1-GGUF")
def format_prompt(message):
system_prompt = "As a seasoned legal expert specialized in the Indian Penal Code (IPC), your task is to provide a meticulously response. For the given scenario, furnish the relevant IPC sections along with a brief, line-by-line description of each section and the corresponding punishments. Ensure clarity and coherence in your response, presenting the information in a well-organized manner."
prompt = f"<s>[SYS] {system_prompt} [/SYS]"
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt,temperature=0.2, max_new_tokens=None, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
# yield output
# print(output)
return output