-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.c
executable file
·250 lines (201 loc) · 4.61 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
/*
* Flickering LED Candle
* (C) 2011 Akafugu Corporation
*
* This program is free software; you can redistribute it and/or modify it under the
* terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
* PARTICULAR PURPOSE. See the GNU General Public License for more details.
*
*/
/*
* Pinout:
* PB0 (pin 5) - LED
* PB1 (pin 6) - LED
* PB2 (pin 7) - LED
* PB3 (pin 2) - LED
* PB4 (pin 3) - NC
* PB5 (pin 1) - Reset
*
*/
#define LED_PORT PORTB
#define LED_DDR DDRB
#define LED_BIT PB0
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdbool.h>
#define DELAY 100
// for counting seconds
volatile uint8_t int_counter;
// for tracking which pattern to show
volatile uint8_t pattern;
#define MAX_PATTERN 6
void (*function_list[MAX_PATTERN+1])(void);
// random number seed (will give same flicker sequence each time)
//volatile uint32_t lfsr = 0xbeefcace;
volatile uint32_t lfsr = 0xbeefdead;
uint32_t rand(void)
{
// http://en.wikipedia.org/wiki/Linear_feedback_shift_register
// Galois LFSR: taps: 32 31 29 1; characteristic polynomial: x^32 + x^31 + x^29 + x + 1 */
lfsr = (lfsr >> 1) ^ (-(lfsr & 1u) & 0xD0000001u);
return lfsr;
}
///
/// HELPER FUNCTIONS
///
// turn a specific led off
void led_off(uint16_t i)
{
uint8_t idx = i % 4;
if (idx == 0)
PORTB &= ~(1 << PORTB1);
else if (idx == 1)
PORTB &= ~(1 << PORTB0);
else if (idx == 2)
PORTB &= ~(1 << PORTB2);
else
PORTB &= ~(1 << PORTB3);
}
// turn a specific led on
void led_on(uint16_t i)
{
uint8_t idx = i % 4;
if (idx == 0)
PORTB |= (1 << PORTB1);
else if (idx == 1)
PORTB |= (1 << PORTB0);
else if (idx == 2)
PORTB |= (1 << PORTB2);
else
PORTB |= (1 << PORTB3);
}
// rotate leds clockwise
void led_rotate_cw(uint8_t i, uint8_t reset, uint8_t inverse)
{
uint8_t port = i % 4;
if (reset) PORTB = 0;
if (inverse) led_off(port);
else led_on(port);
}
// rotate leds counterclockwise
void led_rotate_ccw(uint8_t i, uint8_t reset, uint8_t inverse)
{
uint8_t port = i % 4;
if (reset) PORTB = 0;
if (inverse) led_off(port);
else led_on(port);
}
///
/// PATTERNS
///
// blink all with shrinking delay
void blink_all(void)
{
static uint8_t direction = 0;
static uint8_t delays = 255;
if (delays % 2 == 0)
PORTB = 0b1111;
else
PORTB = 0;
for (uint8_t i = 0; i < delays; i++)
_delay_ms(2);
if (direction) {
delays+=5;
if (delays >= 250) direction = 0;
}
else {
delays-=5;
if (delays <= 5) direction = 1;
}
}
void rotate_cw(void)
{
static uint16_t counter = 0;
led_rotate_cw(counter++, true, false);
_delay_ms(DELAY);
}
void rotate_ccw(void)
{
static uint16_t counter = 0xFFFF;
led_rotate_ccw(counter--, true, false);
_delay_ms(DELAY);
}
void chase(void)
{
PORTB = 0;
_delay_ms(DELAY);
for (uint8_t i = 0; i < 4; i++) {
led_rotate_cw(i, false, false);
_delay_ms(DELAY);
}
_delay_ms(DELAY);
for (uint8_t i = 4; i > 0; i--) {
led_rotate_ccw(i-1, false, true);
_delay_ms(DELAY);
}
}
void chase_reverse(void)
{
PORTB = 0;
_delay_ms(DELAY);
for (uint8_t i = 4; i > 0; i--) {
led_rotate_ccw(i-1, false, false);
_delay_ms(DELAY);
}
_delay_ms(DELAY);
for (uint8_t i = 0; i < 4; i++) {
led_rotate_ccw(i, false, true);
_delay_ms(DELAY);
}
}
void blink_staggered(void)
{
static uint8_t i = 0;
if (i == 0) {
led_off(0);
led_on(1);
led_off(2);
led_on(3);
i = 1;
}
else {
led_on(0);
led_off(1);
led_on(2);
led_off(3);
i = 0;
}
_delay_ms(DELAY);
}
ISR(TIM0_OVF_vect)
{
if (++int_counter == 0xFF) {
pattern = (rand()>>24) % MAX_PATTERN;
}
}
void main(void) __attribute__ ((noreturn));
void main(void)
{
// Inititalize timer
TCCR0B = (1<<CS01); // Set Prescaler to clk/8 : 1 click = aprox 2us (using 4.6MHz internal clock)
TIMSK0 |= (1<<TOIE0); // Enable Overflow Interrupt Enable
TCNT0 = 0; // Initialize counter
DDRB |= (1 << 0)|(1 << 1)|(1 << 2)|(1 << 3);
PORTB = 0;
function_list[0] = &rotate_cw;
function_list[1] = &rotate_ccw;
function_list[2] = &chase;
function_list[3] = &chase_reverse;
function_list[4] = &blink_staggered;
function_list[5] = &blink_all;
sei();
while(1) {
function_list[pattern]();
}
}