In a simple way, JSON Schema is an object with validation keywords.
The keywords and their values define what rules the data should satisfy to be valid.
[[toc]]
This version is provided as default export:
```javascript const Ajv = require("ajv") const ajv = new Ajv() ``` ```typescript import Ajv from "ajv" const ajv = new Ajv() ```::: tip draft-07 has better performance Unless you need the new features of later versions, you would have more efficient generated code with this draft. :::
Ajv supports all new keywords of JSON Schema draft-2019-09:
- unevaluatedProperties
- unevaluatedItems
- dependentRequired
- dependentSchemas
- maxContains/minContains
- $recursiveAnchor/$recursiveRef
To use draft-2019-09 schemas you need to import a different Ajv class:
```javascript const Ajv2019 = require("ajv/dist/2019") const ajv = new Ajv2019() ``` ```typescript import Ajv2019 from "ajv/dist/2019" const ajv = new Ajv2019() ```You can use draft-07 schemas with this Ajv instance as well, draft-2019-09 is backwards compatible. If your schemas use $schema
keyword, you need to add draft-07 meta-schema to Ajv instance:
::: warning draft-2020-12 is not backwards compatible You cannot use draft-2020-12 and previous JSON Schema versions in the same Ajv instance. :::
Ajv supports all keywords of JSON Schema draft-2020-12:
- prefixItems that replaced array form of items keyword
- changed items keyword that combined parts of functionality of items and additionalItems
- $dynamicAnchor/$dynamicRef
To use draft-2020-12 schemas you need to import a different Ajv class:
```javascript const Ajv2020 = require("ajv/dist/2020") const ajv = new Ajv2020() ``` ```typescript import Ajv2020 from "ajv/dist/2020" const ajv = new Ajv2020() ```You can use JSON Schema draft-06 schemas with Ajv v7/8. If your schemas use $schema
keyword, you need to add draft-06 meta-schema to Ajv instance. This example shows how to support both draft-06 and draft-07 schemas:
const ajv = new Ajv() ajv.addMetaSchema(draft6MetaSchema)
</code-block>
<code-block title="TypeScript">
```typescript
import Ajv from "ajv"
import * as draft6MetaSchema from "ajv/dist/refs/json-schema-draft-06.json"
const ajv = new Ajv()
ajv.addMetaSchema(draft6MetaSchema)
You can use JSON Schema draft-04 schemas with Ajv from v8.5.0 and the additional package ajv-draft-04 (both ajv and ajv-draft-04 should be installed).
```javascript const Ajv = require("ajv-draft-04") const ajv = new Ajv() ``` ```typescript import Ajv from "ajv-draft-04" const ajv = new Ajv() ```::: warning Ajv cannot combine multiple JSON Schema versions You can only use this import with JSON Schema draft-04, you cannot combine multiple JSON Schema versions in this ajv instance. :::
Ajv supports these additional OpenAPI specification keywords:
- nullable - to avoid using
type
keyword with array of types. - discriminator - to optimize validation and error reporting of tagged unions
type
keyword requires that the data is of certain type (or some of types). Its value can be a string (the allowed type) or an array of strings (multiple allowed types).
Type can be: number
, integer
, string
, boolean
, array
, object
or null
.
Examples
-
schema:
{type: "number"}
valid:
1
,1.5
invalid:
"abc"
,"1"
,[]
,{}
,null
,true
-
schema:
{type: "integer"}
valid:
1
,2
invalid:
"abc"
,"1"
,1.5
,[]
,{}
,null
,true
-
schema:
{type: ["number", "string"]}
valid:
1
,1.5
,"abc"
,"1"
invalid:
[]
,{}
,null
,true
All examples above are JSON Schemas that only require data to be of certain type to be valid.
Most other keywords apply only to a particular type of data. If the data is of different type, the keyword will not apply and the data will be considered valid.
In v7 Ajv introduced Strict types mode that makes these mistakes less likely by requiring that types are constrained with type keyword whenever another keyword that applies to specific type is used.
This keyword can be used to allow null
value in addition to the defined type
.
Ajv supports it by default, without additional options. These two schemas are equivalent, but the first one is better supported by some tools and is also compatible with strictTypes
option (see Strict types)
{
"type": "string",
"nullable": true
}
and
{
"type": ["string", "null"]
}
::: warning nullable does not extend enum and const
If you use enum or const keywords, "nullable": true
would not extend the list of allowed values - null
value has to be explicitly added to enum
(and const
would fail, unless it is "const": null
)
This is different from how nullable
is defined in JSON Type Definition, where "nullable": true
allows null
value in addition to any data defined by the schema.
:::
The value of keyword maximum
(minimum
) should be a number. This value is the maximum (minimum) allowed value for the data to be valid.
The value of keyword exclusiveMaximum
(exclusiveMinimum
) should be a number. This value is the exclusive maximum (minimum) allowed value for the data to be valid (the data equal to this keyword value is invalid).
::: warning NO support for boolean keyword values
Boolean values for keywords exclusiveMaximum
(exclusiveMinimum
) are not supported.
:::
Examples
-
schema:
{type: "number", maximum: 5}
valid:
4
,5
invalid:
6
,7
-
schema:
{type: "number", minimum: 5}
valid:
5
,6
invalid:
4
,4.5
-
schema:
{type: "number", exclusiveMinimum: 5}
valid:
6
,7
invalid:
4.5
,5
The value of the keyword should be a number. The data to be valid should be a multiple of the keyword value (i.e. the result of division of the data on the value should be integer).
Examples
-
schema:
{type: "number", multipleOf: 5}
valid:
5
,10
invalid:
1
,4
-
schema:
{type: "number", multipleOf: 2.5}
valid:
2.5
,5
,7.5
invalid:
1
,4
The value of the keywords should be a number. The data to be valid should have length satisfying this rule. Unicode pairs are counted as a single character.
Examples
-
schema:
{type: "string", maxLength: 5}
valid:
"abc"
,"abcde"
invalid:
"abcdef"
-
schema:
{type: "string", minLength: 2}
valid:
"ab"
,"😀😀"
invalid:
"a"
,"😀"
The value of the keyword should be a string. The data to be valid should match the regular expression defined by the keyword value.
Ajv uses new RegExp(value, "u")
to create the regular expression that will be used to test data.
Example
schema: {type: "string", pattern: "[abc]+"}
valid: "a"
, "abcd"
, "cde"
invalid: "def"
, ""
The value of the keyword should be a string. The data to be valid should match the format with this name.
Ajv does not include any formats, they can be added with ajv-formats plugin.
Example
schema: {type: "string", format: "ipv4"}
valid: "192.168.0.1"
invalid: "abc"
The value of the keywords should be a number. The data array to be valid should not have more (less) items than the keyword value.
Example
schema: {type: "array", maxItems: 3}
valid: []
, [1]
, ["1", 2, "3"]
invalid: [1, 2, 3, 4]
The value of the keyword should be a boolean. If the keyword value is true
, the data array to be valid should have unique items.
Example
schema: {type: "array", uniqueItems: true}
valid: []
, [1]
, ["1", 2, "3"]
invalid: [1, 2, 1]
, [{a: 1, b: 2}, {b: 2, a: 1}]
::: warning items keyword changed in JSON Schema draft-2020-12
This section describes items
keyword in all JSON Schema versions prior to draft-2020-12.
:::
The value of the keyword should be a schema or an array of schemas.
If the keyword value is a schema, then for the data array to be valid each item of the array should be valid according to the schema. In this case the additionalItems
keyword is ignored.
If the keyword value is an array, then items with indices less than the number of items in the keyword should be valid according to the schemas with the same indices. Whether additional items are valid will depend on additionalItems
keyword.
Examples
-
schema:
{type: "array", items: {type: "integer"}}
valid:
[1,2,3]
,[]
invalid:
[1,"abc"]
-
schema:
{ type: "array", items: [{type: "integer"}, {type: "string"}] }
valid:
[1]
,[1, "abc"]
,[1, "abc", 2]
,[]
invalid:
["abc", 1]
,["abc"]
The schema in example 2 will log warning by default (see strictTuples
option), because it defines unconstrained tuple. To define a tuple with exactly 2 elements use minItems
and additionalItems
keywords (see example 1 in additionalItems
).
::: warning items keyword changed in JSON Schema draft-2020-12
This section describes items
keyword in JSON draft-2020-12.
:::
The value of the keyword must be a schema.
For the data array to be valid:
- if prefixItems keyword is not used in the schema, then each item of the array must be valid according to the schema in
items
. - if prefixItems keyword is used in the schema, then each item with the index starting from the size of
prefixItems
schema must be valid according to the schema initems
Examples
-
schema:
{type: "array", items: {type: "integer"}}
valid:
[1,2,3]
,[]
invalid:
[1,"abc"]
-
schema:
{ type: "array", prefixItems: [{type: "integer"}, {type: "integer"}], minItems: 2 items: false }
valid:
[1, 2]
invalid:
[]
,[1]
,[1, 2, 3]
,[1, "abc"]
(any wrong number of items or wrong type) -
schema:
{ type: "array", prefixItems: [{type: "integer"}, {type: "integer"}], items: {type: "string"} }
valid:
[]
,[1, 2]
,[1, 2, "abc"]
invalid:
["abc"]
,[1, 2, 3]
_valid_: `[1]`, `[1, "abc"]`, `[1, "abc", 2]`, `[]` _invalid_: `["abc", 1]`, `["abc"]`
The schema in example 3 will log warning by default (see strictTuples
option), because it defines unconstrained tuple. To define a tuple with exactly 2 elements use minItems
and items
keywords (see example 2).
The value of the keyword must be an array of schemas.
For the data array to be valid, the items with indices less than the number of schemas in this keyword must be valid according to the schemas with the same indices. Whether additional items are valid will depend on items
keyword.
Examples
schema:
{
type: "array",
prefixItems: [{type: "integer"}, {type: "string"}]
}
valid: [1]
, [1, "abc"]
, [1, "abc", 2]
, []
invalid: ["abc", 1]
, ["abc"]
The schema in example will log warning by default (see strictTuples
option), because it defines unconstrained tuple. To define a tuple with exactly 2 elements use minItems and items keywords (see example 2 in items).
::: warning additionalItems is not supported in JSON Schema draft-2020-12 To create and equivalent schema in draft-2020-12 use keywords prefixItems and the new items keyword :::
The value of the keyword should be a boolean or an object.
If items
keyword is not present or it is an object, additionalItems
keyword should be ignored regardless of its value. By default Ajv will throw exception in this case - see Strict mode
If items
keyword is an array and data array has not more items than the length of items
keyword value, additionalItems
keyword is also ignored.
If the length of data array is bigger than the length of "items" keyword value than the result of the validation depends on the value of additionalItems
keyword:
false
: data is invalidtrue
: data is valid- an object: data is valid if all additional items (i.e. items with indices greater or equal than "items" keyword value length) are valid according to the schema in "additionalItems" keyword.
The schemas in examples 2-3 log warning by default, use option strictTuples: false
to allow)
Examples
-
schema:
{ type: "array", items: [{type: "integer"}, {type: "integer"}], minItems: 2 additionalItems: false }
valid:
[1, 2]
invalid:
[]
,[1]
,[1, 2, 3]
,[1, "abc"]
(any wrong number of items or wrong type) -
schema:
{ type: "array", items: [{type: "integer"}, {type: "integer"}], additionalItems: true }
valid:
[]
,[1, 2]
,[1, 2, 3]
,[1, 2, "abc"]
invalid:
["abc"]
,[1, "abc", 3]
-
schema:
{ type: "array", items: [{type: "integer"}, {type: "integer"}], additionalItems: {type: "string"} }
valid:
[]
,[1, 2]
,[1, 2, "abc"]
invalid:
["abc"]
,[1, 2, 3]
The value of the keyword is a JSON Schema. The array is valid if it contains at least one item that is valid according to this schema.
Example
schema: {type: "array", contains: {type: "integer"}}
valid: [1]
, [1, "foo"]
, any array with at least one integer
invalid: []
, ["foo", "bar"]
, any array without integers
The value of these keywords should be an integer.
Without contains
keyword they are ignored (logs error or throws exception in ajv strict mode).
The array is valid if it contains at least minContains
items and no more than maxContains
items that are valid against the schema in contains
keyword.
Example
schema:
{
type: "array",
contains: {type: "integer"},
minContains: 2,
maxContains: 3
}
valid: [1, 2]
, [1, 2, 3, "foo"]
, any array with 2 or 3 integers
invalid: []
, [1, "foo"]
, [1, 2, 3, 4]
, any array with fewer than 2 or more than 3 integers
The value of this keyword is a JSON Schema (can be a boolean).
This schema will be applied to all array items that were not evaluated by other keywords for items (items
, additionalItems
and contains
) in the current schema and all sub-schemas that were valid for this data instance. It includes:
- all subschemas schemas in
allOf
and$ref
keywords - valid sub-schemas in
oneOf
andanyOf
keywords - sub-schema in
if
keyword - sub-schemas in
then
orelse
keywords that were applied based on the validation result byif
keyword.
The only scenario when this keyword would be applied to some items is when items
keyword value is an array of schemas and additionalItems
was not present (or did not apply, in case it was present in some invalid subschema).
Some user-defined keywords can also make items "evaluated".
Example
schema:
{
type: "array",
items: [
{type: "number"},
{type: "number"}
],
unevaluatedItems: false,
anyOf: [
{items: [true, true, {type: "number"}]},
{items: [true, true, {type: "boolean"}]}
]
}
valid: [1, 2, 3]
, [1, 2, true]
invalid:
[1, 2]
- the third item is not present[1, 2, "3"]
- the third item is "unevaluated"
See tests for unevaluatedItems
keyword for other examples.
The value of the keywords should be a number. The data object to be valid should have not more (less) properties than the keyword value.
Example
schema: {type: "object", maxProperties: 2 }
valid: {}
, {a: 1}
, {a: "1", b: 2}
invalid: {a: 1, b: 2, c: 3}
The value of the keyword should be an array of unique strings. The data object to be valid should contain all properties with names equal to the elements in the keyword value.
Example
schema: {type: "object", required: ["a", "b"]}
valid: {a: 1, b: 2}
, {a: 1, b: 2, c: 3}
invalid: {}
, {a: 1}
, {c: 3, d: 4}
The value of the keyword should be a map with keys equal to data object properties. Each value in the map should be a JSON Schema. For data object to be valid the corresponding values in data object properties should be valid according to these schemas.
::: warning Properties are not required
properties
keyword does not require that the properties mentioned in it are present in the object (see examples).
:::
Example
schema:
{
type: "object",
properties: {
foo: {type: "string"},
bar: {
type: "number",
minimum: 2
}
}
}
valid: {}
, {foo: "a"}
, {foo: "a", bar: 2}
invalid: {foo: 1}
, {foo: "a", bar: 1}
The value of this keyword should be a map where keys should be regular expressions and the values should be JSON Schemas. For data object to be valid the values in data object properties that match regular expression(s) should be valid according to the corresponding schema(s).
When the value in data object property matches multiple regular expressions it should be valid according to all the schemas for all matched regular expressions.
::: warning Unexpected validation results
patternProperties
keyword does not require that properties matching patterns are present in the object (see examples).- By default, Ajv does not allow schemas where patterns in
patternProperties
match any property name inproperties
keyword - that leads to unexpected validation results. It can be allowed with optionallowMatchingProperties
. See Strict mode :::
Example
schema:
{
type: "object",
patternProperties: {
"^fo.*$": {type: "string"},
"^ba.*$": {type: "number"}
}
}
valid: {}
, {foo: "a"}
, {foo: "a", bar: 1}
invalid: {foo: 1}
, {foo: "a", bar: "b"}
The value of the keyword should be either a boolean or a JSON Schema.
If the value is true
the keyword is ignored.
If the value is false
the data object to be valid should not have "additional properties" (i.e. properties other than those used in "properties" keyword and those that match patterns in "patternProperties" keyword).
If the value is a schema for the data object to be valid the values in all "additional properties" should be valid according to this schema.
Examples
-
schema:
{ type: "object", properties: { foo: {type: "number"} }, patternProperties: { "^.*r$": {type: "number"} }, additionalProperties: false }
valid:
{}
,{foo: 1}
,{foo: 1, bar: 2}
invalid:
{a: 3}
,{foo: 1, baz: 3}
-
schema:
{ type: "object", properties: { foo: {type: "number"} }, patternProperties: { "^.*r$": {type: "number"} }, additionalProperties: {type: "string"} }
valid:
{}
,{a: "b"}
,{foo: 1}
,{foo: 1, bar: 2}
,{foo: 1, bar: 2, a: "b"}
invalid:
{a: 3}
,{foo: 1, baz: 3}
-
schema:
{ type: "object", properties: { foo: {type: "number"} }, additionalProperties: false, anyOf: [ { properties: { bar: {type: "number"} } }, { properties: { baz: {type: "number"} } } ] }
valid:
{}
,{foo: 1}
invalid:
{bar: 2}
,{baz: 3}
,{foo: 1, bar: 2}
, etc.
This keyword is deprecated. The same functionality is available with keywords dependentRequired
and dependentSchemas
.
The value of the keyword is a map with keys equal to data object properties. Each value in the map should be either an array of unique property names ("property dependency" - see dependentRequired
keyword) or a JSON Schema ("schema dependency" - see dependentSchemas
keyword).
For property dependency, if the data object contains a property that is a key in the keyword value, then to be valid the data object should also contain all properties from the array of properties.
For schema dependency, if the data object contains a property that is a key in the keyword value, then to be valid the data object itself (NOT the property value) should be valid according to the schema.
Examples
-
schema (property dependency):
{ type: "object", dependencies: { foo: ["bar", "baz"] } }
valid:
{foo: 1, bar: 2, baz: 3}
,{}
,{a: 1}
invalid:
{foo: 1}
,{foo: 1, bar: 2}
,{foo: 1, baz: 3}
-
schema (schema dependency):
{ type: "object", dependencies: { foo: { properties: { bar: {type: "number"} } } } }
valid:
{}
,{foo: 1}
,{foo: 1, bar: 2}
,{a: 1}
invalid:
{foo: 1, bar: "a"}
The value of this keyword should be a map with keys equal to data object properties. Each value in the map should be an array of unique property names.
If the data object contains a property that is a key in the keyword value, then to be valid the data object should also contain all properties from the corresponding array of properties in this keyword.
Example
schema:
{
type: "object",
dependentRequired: {
foo: ["bar", "baz"]
}
}
valid: {foo: 1, bar: 2, baz: 3}
, {}
, {a: 1}
invalid: {foo: 1}
, {foo: 1, bar: 2}
, {foo: 1, baz: 3}
The value of the keyword should be a map with keys equal to data object properties. Each value in the map should be a JSON Schema.
If the data object contains a property that is a key in the keyword value, then to be valid the data object itself (NOT the property value) should be valid according to the corresponding schema in this keyword.
Example
schema:
{
type: "object",
dependentSchemas: {
foo: {
properties: {
bar: {type: "number"}
}
}
}
}
valid: {}
, {foo: 1}
, {foo: 1, bar: 2}
, {a: 1}
invalid: {foo: 1, bar: "a"}
The value of this keyword is a JSON Schema.
For data object to be valid each property name in this object should be valid according to this schema.
Example
schema (requires email
format from ajv-formats):
{
type: "object",
propertyNames: {
format: "email"
}
}
valid: {"[email protected]": "any", "[email protected]": "any"}
invalid: {foo: "any value"}
The value of this keyword is a JSON Schema (can be a boolean).
This schema will be applied to all properties that were not evaluated by other keywords for properties (properties
, patternProperties
and additionalProperties
) in the current schema and all sub-schemas that were valid for this data instance. It includes:
- all subschemas schemas in
allOf
and$ref
keywords - valid sub-schemas in
oneOf
andanyOf
keywords - sub-schema in
if
keyword - sub-schemas in
then
orelse
keywords that were applied based on the validation result byif
keyword.
Some user-defined keywords can also make properties "evaluated".
Example
schema:
{
type: "object",
required: ["foo"],
properties: {foo: {type: "number"}},
unevaluatedProperties: false,
anyOf: [
{
required: ["bar"],
properties: {bar: {type: "number"}}
}
{
required: ["baz"],
properties: {baz: {type: "number"}}
}
]
}
valid: {foo: 1, bar: 2}
, {foo: 1, baz: 2}
, {foo: 1, bar: 2, baz: 3}
invalid:
{foo: 1}
- neitherbar
norbaz
are present{foo: 1, bar: 2, boo: 3}
-boo
is unevaluated{foo: 1, bar: 2, baz: "3"}
- not valid against the 2nd subschema, sobaz
is "unevaluated".
See tests for unevaluatedProperties
keyword for other examples.
Ajv has a limited support for discriminator
keyword: to optimize validation, error handling, and modifying data with oneOf keyword.
Its value should be an object with a property propertyName
- the name of the property used to discriminate between union members.
When using discriminator keyword only one subschema in oneOf
will be used, determined by the value of discriminator property.
::: warning Use option discriminator
To use discriminator
keyword you have to use option discriminator: true
with Ajv constructor - it is not enabled by default.
:::
Example
schema:
{
type: "object",
discriminator: {propertyName: "foo"},
required: ["foo"],
oneOf: [
{
properties: {
foo: {const: "x"},
a: {type: "string"},
},
required: ["a"],
},
{
properties: {
foo: {enum: ["y", "z"]},
b: {type: "string"},
},
required: ["b"],
},
],
}
valid: {foo: "x", a: "any"}
, {foo: "y", b: "any"}
, {foo: "z", b: "any"}
invalid:
{}
,{foo: 1}
- discriminator tag must be string{foo: "bar"}
- discriminator tag value must be in oneOf subschema{foo: "x", b: "b"}
,{foo: "y", a: "a"}
- invalid object
From the perspective of validation result discriminator
is defined as no-op (that is, removing discriminator will not change the validity of the data), but errors reported in case of invalid data will be different.
There are following requirements and limitations of using discriminator
keyword:
mapping
in discriminator object is not supported.- oneOf keyword must be present in the same schema.
- discriminator property should be required either on the top level, as in the example, or in all
oneOf
subschemas. - each
oneOf
subschema must have properties keyword with discriminator property. The subschemas should be either inlined or included as direct references (only$ref
keyword without any extra keywords is allowed). - schema for discriminator property in each
oneOf
subschema must be const or enum, with unique values across all subschemas.
Not meeting any of these requirements would fail schema compilation.
The value of the keyword should be an array of unique items of any types. The data is valid if it is deeply equal to one of items in the array.
Example
schema: {enum: [2, "foo", {foo: "bar" }, [1, 2, 3]]}
valid: 2
, "foo"
, {foo: "bar"}
, [1, 2, 3]
invalid: 1
, "bar"
, {foo: "baz"}
, [1, 2, 3, 4]
, any value not in enum
The value of this keyword can be anything. The data is valid if it is deeply equal to the value of the keyword.
Example
schema: {const: "foo"}
valid: "foo"
invalid: any other value
The same can be achieved with enum
keyword using the array with one item. But const
keyword is more than just a syntax sugar for enum
. In combination with the $data reference it allows to define equality relations between different parts of the data. This cannot be achieved with enum
keyword even with $data
reference because $data
cannot be used in place of one item - it can only be used in place of the whole array in enum
keyword.
Example
schema:
{
type: "object",
properties: {
foo: {type: "number"},
bar: {const: {$data: "1/foo"}}
}
}
valid: {foo: 1, bar: 1}
, {}
invalid: {foo: 1}
, {bar: 1}
, {foo: 1, bar: 2}
The value of the keyword should be a JSON Schema. The data is valid if it is invalid according to this schema.
Example
schema: {type: "number", not: {minimum: 3}}
valid: 1
, 2
invalid: 3
, 4
The value of the keyword should be an array of JSON Schemas. The data is valid if it matches exactly one JSON Schema from this array. Validators have to validate data against all schemas to establish validity according to this keyword.
Example
schema:
{
type: "number",
oneOf: [{maximum: 3}, {type: "integer"}]
}
valid: 1.5
, 2.5
, 4
, 5
invalid: 2
, 3
, 4.5
, 5.5
The value of the keyword should be an array of JSON Schemas. The data is valid if it is valid according to one or more JSON Schemas in this array. Validators only need to validate data against schemas in order until the first schema matches (or until all schemas have been tried). For this reason validating against this keyword is faster than against "oneOf" keyword in most cases.
Example
schema:
{
type: "number",
anyOf: [{maximum: 3}, {type: "integer"}]
}
valid: 1.5
, 2
, 2.5
, 3
, 4
, 5
invalid: 4.5
, 5.5
The value of the keyword should be an array of JSON Schemas. The data is valid if it is valid according to all JSON Schemas in this array.
Example
schema:
{
type: "number",
allOf: [{maximum: 3}, {type: "integer"}]
}
valid: 2
, 3
invalid: 1.5
, 2.5
, 4
, 4.5
, 5
, 5.5
These keywords allow to implement conditional validation. Their values should be valid JSON Schemas (object or boolean).
If if
keyword is absent, the validation succeeds.
If the data is valid against the sub-schema in if
keyword, then the validation result is equal to the result of data validation against the sub-schema in then
keyword (if then
is absent, the validation succeeds).
If the data is invalid against the sub-schema in if
keyword, then the validation result is equal to the result of data validation against the sub-schema in else
keyword (if else
is absent, the validation succeeds).
Examples
-
schema:
{ type: "object", if: {properties: {foo: {minimum: 10}}}, then: {required: ["bar"]}, else: {required: ["baz"]} }
valid:
{foo: 10, bar: true }
{}
{foo: 1, baz: true }
invalid:
{foo: 10}
(bar
is required){foo: 10, baz: true }
(bar
is required){foo: 1}
(baz
is required)
-
schema:
{ type: "integer", minimum: 1, maximum: 1000, if: {minimum: 100}, then: {multipleOf: 100}, else: { if: {minimum: 10}, then: {multipleOf: 10} } }
valid:
1
,5
,10
,20
,50
,100
,200
,500
,1000
invalid:
-1
,0
(<1)2000
(>1000)11
,57
,123
(any integer with more than one non-zero digit)- non-integers
JSON Schema specification defines several metadata keywords that describe the schema itself but do not perform any validation.
title
anddescription
: information about the data represented by that schema$comment
: information for developers. With option$comment
Ajv logs or passes the comment string to the user-supplied function. See Options.default
: a default value of the data instance, see Assigning defaults.examples
: an array of data instances. Ajv does not check the validity of these instances against the schema.readOnly
andwriteOnly
: marks data-instance as read-only or write-only in relation to the source of the data (database, api, etc.).contentEncoding
: RFC 2045, e.g., "base64".contentMediaType
: RFC 2046, e.g., "image/png".
::: warning Ignored keywords
Ajv does not implement validation of the keywords examples
, contentEncoding
and contentMediaType
but it reserves them. If you want to create a plugin that implements any of them, it should remove these keywords from the instance.
:::