Skip to content

Latest commit

 

History

History
363 lines (291 loc) · 11.2 KB

tcg_p1.md

File metadata and controls

363 lines (291 loc) · 11.2 KB

A deep dive into QEMU: The Tiny Code Generator (TCG), part 1

This blog post details some internals of the QEMU TCG engine, the machinery responsible for executing target instructions on the host.

You should have already read Execution loop and Breakpoints handling blog posts to have some pointers.

Be kind rewind

The vCPU thread executes instructions through tcg_cpu_exec which finds and/or generates translated blocks.

As previously explained, tb_gen_code will generate intermediate representation (IR) code thanks to gen_intermediate_code and then host architecture assembly instructions with tcg_gen_code:

TranslationBlock *tb_gen_code(CPUState *cpu,
                              target_ulong pc, target_ulong cs_base,
                              uint32_t flags, int cflags)
{
    tb = tb_alloc(pc);
...
    /* generate IR code */
    gen_intermediate_code(cpu, tb, max_insns);
...
    /* generate machine code */
    gen_code_size = tcg_gen_code(tcg_ctx, tb);
...
}

The QEMU TCG has a notion of frontend and backend operations. The frontend-ops are the generated intermediate code which is what QEMU will execute. The backend-ops are the operations implemented on the host CPU, which is where the code is executed.

Generating Intermediate Representation (IR)

The QEMU git tree has a README introduction about the TCG which details the IR language. It's an interesting read for sure.

Overview

The gen_intermediate_code function is a VM architecture dependent wrapper to the translator_loop generic function. Let's imagine we were emulating PowerPC code on an Intel x86 host.

The gen_intermediate_code would look like:

static const TranslatorOps ppc_tr_ops = {
    .init_disas_context = ppc_tr_init_disas_context,
    .tb_start           = ppc_tr_tb_start,
    .insn_start         = ppc_tr_insn_start,
    .breakpoint_check   = ppc_tr_breakpoint_check,
    .translate_insn     = ppc_tr_translate_insn,
    .tb_stop            = ppc_tr_tb_stop,
    .disas_log          = ppc_tr_disas_log,
};

void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns)
{
    DisasContext ctx;

    translator_loop(&ppc_tr_ops, &ctx.base, cs, tb, max_insns);
}

While the translator_loop remains the same for any architecture, it relies on target specific translator operators. In our case, the PowerPC ones (ppc_tr_ops).

void translator_loop(const TranslatorOps *ops, DisasContextBase *db,
                     CPUState *cpu, TranslationBlock *tb, int max_insns)
{
    ops->init_disas_context(db, cpu);
...
    gen_tb_start(db->tb);
    ops->tb_start(db, cpu);

    while (true) {
        ops->translate_insn(db, cpu);
    }
...
    ops->tb_stop(db, cpu);
    gen_tb_end(db->tb, db->num_insns - bp_insn);
}

Each TB has a prologue (tb_start), and an epilogue (tb_end) with a generic and target specific part (if needed). Usually epilogues are placeholders for block chaining, which is an optimization feature of the TCG that enables TBs to be called successively after execution, without the need to get back to the QEMU code and look for the next TB to execute.

Disassembly context

The architecture dependent DisasContext is created alongside a generic DisasContextBase.

For the PPC target, the ppc_tr_init_disas_context handler will record current cpu state information. This means that TBs are highly contextual and might not be reused in any situation where we execute at a previously translated location.

static void ppc_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cs)
{
    DisasContext *ctx = container_of(dcbase, DisasContext, base);
    CPUPPCState *env = cs->env_ptr;
    int bound;

    ctx->exception = POWERPC_EXCP_NONE;
    ctx->spr_cb = env->spr_cb;
    ctx->pr = msr_pr;
    ctx->mem_idx = env->dmmu_idx;
    ctx->dr = msr_dr;
...
    ctx->insns_flags = env->insns_flags;
    ctx->insns_flags2 = env->insns_flags2;
    ctx->access_type = -1;
    ctx->need_access_type = !(env->mmu_model & POWERPC_MMU_64B);
    ctx->le_mode = !!(env->hflags & (1 << MSR_LE));
    ctx->default_tcg_memop_mask = ctx->le_mode ? MO_LE : MO_BE;
    ctx->flags = env->flags;
...

Translated Block prologue/epilogue

The generic TB prologue is generated from gen_tb_start

static inline void gen_tb_start(TranslationBlock *tb)
{
    TCGv_i32 count, imm;

    tcg_ctx->exitreq_label = gen_new_label();
    if (tb_cflags(tb) & CF_USE_ICOUNT) {
        count = tcg_temp_local_new_i32();
    } else {
        count = tcg_temp_new_i32();
    }

    tcg_gen_ld_i32(count, cpu_env,
                   -ENV_OFFSET + offsetof(CPUState, icount_decr.u32));

    if (tb_cflags(tb) & CF_USE_ICOUNT) {
        imm = tcg_temp_new_i32();
        /* We emit a movi with a dummy immediate argument. Keep the insn index
         * of the movi so that we later (when we know the actual insn count)
         * can update the immediate argument with the actual insn count.  */
        tcg_gen_movi_i32(imm, 0xdeadbeef);
        icount_start_insn = tcg_last_op();

        tcg_gen_sub_i32(count, count, imm);
        tcg_temp_free_i32(imm);
    }

    tcg_gen_brcondi_i32(TCG_COND_LT, count, 0, tcg_ctx->exitreq_label);

    if (tb_cflags(tb) & CF_USE_ICOUNT) {
        tcg_gen_st16_i32(count, cpu_env,
                         -ENV_OFFSET + offsetof(CPUState, icount_decr.u16.low));
    }

    tcg_temp_free_i32(count);
}

It injects instructions to check for instruction count and an exit condition.

The epilogue is generated from gen_tb_end. It injects instructions to exit from the TB (tcg_gen_exit_tb).

static inline void gen_tb_end(TranslationBlock *tb, int num_insns)
{
    if (tb_cflags(tb) & CF_USE_ICOUNT) {
        /* Update the num_insn immediate parameter now that we know
         * the actual insn count.  */
        tcg_set_insn_param(icount_start_insn, 1, num_insns);
    }

    gen_set_label(tcg_ctx->exitreq_label);
    tcg_gen_exit_tb(tb, TB_EXIT_REQUESTED);
}

The TB_EXIT_REQUESTED is a special value that tells QEMU to use the exitreq_label created during the prologue. This label will eventually be updated with the address of the next TB to be executed.

Translating instructions

The operator used to translate target instructions to IR is translate_insn (ppc_tr_translate_insn for PowerPC). This function makes use of the target CPU opcodes handlers table which implements IR generation for every target native instructions.

static void ppc_tr_translate_insn(DisasContextBase *dcbase, CPUState *cs)
{
    opc_handler_t **table, *handler;

    table = cpu->opcodes;
    handler = table[opc1(ctx->opcode)];
...
    (*(handler->handler))(ctx);
}

struct PowerPCCPU {
...
    /* Those resources are used only during code translation */
    /* opcode handlers */
    opc_handler_t *opcodes[PPC_CPU_OPCODES_LEN];
...
}

static opcode_t opcodes[] = {
GEN_HANDLER(cmp, 0x1F, 0x00, 0x00, 0x00400000, PPC_INTEGER),
GEN_HANDLER(cmpi, 0x0B, 0xFF, 0xFF, 0x00400000, PPC_INTEGER),
GEN_HANDLER(cmpl, 0x1F, 0x00, 0x01, 0x00400001, PPC_INTEGER),
...
GEN_LDS(lbz, ld8u, 0x02, PPC_INTEGER)
GEN_LDS(lha, ld16s, 0x0A, PPC_INTEGER)
...
};

For the PowerPC cmp instruction, the associated handler will be gen_cmp which will emit the following IR instructions:

static void gen_cmp(DisasContext *ctx)
{
    if ((ctx->opcode & 0x00200000) && (ctx->insns_flags & PPC_64B)) {
        gen_op_cmp(cpu_gpr[rA(ctx->opcode)], cpu_gpr[rB(ctx->opcode)],
                   1, crfD(ctx->opcode));
    } else {
        gen_op_cmp32(cpu_gpr[rA(ctx->opcode)], cpu_gpr[rB(ctx->opcode)],
                     1, crfD(ctx->opcode));
    }
}

static inline void gen_op_cmp(TCGv arg0, TCGv arg1, int s, int crf)
{
    TCGv t0 = tcg_temp_new();
    TCGv t1 = tcg_temp_new();
    TCGv_i32 t = tcg_temp_new_i32();

    tcg_gen_movi_tl(t0, CRF_EQ);
    tcg_gen_movi_tl(t1, CRF_LT);
    tcg_gen_movcond_tl((s ? TCG_COND_LT : TCG_COND_LTU),
                       t0, arg0, arg1, t1, t0);
    tcg_gen_movi_tl(t1, CRF_GT);
    tcg_gen_movcond_tl((s ? TCG_COND_GT : TCG_COND_GTU),
                       t0, arg0, arg1, t1, t0);

    tcg_gen_trunc_tl_i32(t, t0);
    tcg_gen_trunc_tl_i32(cpu_crf[crf], cpu_so);
    tcg_gen_or_i32(cpu_crf[crf], cpu_crf[crf], t);

    tcg_temp_free(t0);
    tcg_temp_free(t1);
    tcg_temp_free_i32(t);
}

Example PowerPC basic block translation

The PowerPC code here after shows 3 types of operations:

  • simple instructions: arithmetic, immediate operands (lis, ori, xor)
  • a memory write (stw)
  • a system register write (mtmsr)
0xfff00100:  lis    r1,1

0xfff00104:  ori    r1,r1,0x409c

0xfff00108:  xor    r0,r0,r0

0xfff0010c:  stw    r0,4(r1)

0xfff00110:  mtmsr  r0

The following code gives the TCG IR equivalent:

0xfff00100:  movi_i32    r1,$0x10000

0xfff00104:  movi_i32    tmp0,$0x409c
             or_i32      r1,r1,tmp0

0xfff00108:  movi_i32    r0,$0x0

0xfff0010c:  movi_i32    tmp1,$0x4
             add_i32     tmp0,r1,tmp1
             qemu_st_i32 r0,tmp0,beul,3

0xfff00110:  movi_i32    nip,$0xfff00114
             mov_i32     tmp0,r0
             call        store_msr,$0,tmp0
             movi_i32    nip,$0xfff00114
             exit_tb     $0x0
             set_label   $L0
             exit_tb     $0x7f5a0caf8043

We notice that the memory write operation as well as the MSR access are translated into strange IR opcodes:

  • qemu_st_i32
  • call store_msr

We will detail them in a blog post dedicated to TCG helpers.

Also notice the operands of the exit_tb opcode. The first one is $0x0 and might eventually be fixed with the absolute host address of the next TB to be executed.

The last one is also a host address ($0x7f5a0caf8043) where code is directly executed by the physical CPU. In this case, it goes back to the QEMU translator.

At this point however, no target translated code is still executed. We only end up with IR code which needs a final translation step to the host architecture.