-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrun.py
469 lines (410 loc) · 17.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# --------------------------------------------------------
# What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? (https://arxiv.org/abs/2403.06090)
# Github source: https://github.com/aim-uofa/GenPercept
# Copyright (c) 2024, Advanced Intelligent Machines (AIM)
# Licensed under The BSD 2-Clause License [see LICENSE for details]
# Author: Guangkai Xu (https://github.com/guangkaixu/)
# --------------------------------------------------------------------------
# This code is based on Marigold and diffusers codebases
# https://github.com/prs-eth/marigold
# https://github.com/huggingface/diffusers
# --------------------------------------------------------
# If you find this code useful, we kindly ask you to cite our paper in your work.
# Please find bibtex at: https://github.com/aim-uofa/GenPercept#%EF%B8%8F-citation
# More information about the method can be found at https://github.com/aim-uofa/GenPercept
# --------------------------------------------------------------------------
import argparse
import logging
import os
import os.path as osp
import shutil
from pathlib import Path
import numpy as np
import torch
from omegaconf import OmegaConf
from PIL import Image
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from genpercept import GenPerceptPipeline
from src.util.seeding import seed_all
from src.dataset import (
BaseDataset,
DatasetMode,
get_dataset,
get_pred_name,
)
from src.customized_modules.ddim import DDIMSchedulerCustomized
from safetensors.torch import load_model, save_model, load_file
from torch.nn import Conv2d
from torch.nn.parameter import Parameter
from diffusers import UNet2DConditionModel
from peft import LoraConfig
from transformers import DPTConfig
from genpercept.models.dpt_head import DPTNeckHeadForUnetAfterUpsample, DPTNeckHeadForUnetAfterUpsampleIdentity
from diffusers import AutoencoderKL
from genpercept.models.custom_unet import CustomUNet2DConditionModel
EXTENSION_LIST = [".jpg", ".jpeg", ".png"]
def get_image_paths(folder_path):
return [str(file) for file in Path(folder_path).rglob('*') if file.suffix.lower() in {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff'}]
def _replace_unet_conv_in(unet):
# replace the first layer to accept 8 in_channels
_weight = unet.conv_in.weight.clone() # [320, 4, 3, 3]
_bias = unet.conv_in.bias.clone() # [320]
_weight = _weight.repeat((1, 2, 1, 1)) # Keep selected channel(s)
# half the activation magnitude
_weight *= 0.5
# new conv_in channel
_n_convin_out_channel = unet.conv_in.out_channels
_new_conv_in = Conv2d(
8, _n_convin_out_channel, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)
)
_new_conv_in.weight = Parameter(_weight)
_new_conv_in.bias = Parameter(_bias)
unet.conv_in = _new_conv_in
logging.info("Unet conv_in layer is replaced")
# replace config
unet.config["in_channels"] = 8
logging.info("Unet config is updated")
return unet
if "__main__" == __name__:
logging.basicConfig(level=logging.INFO)
# -------------------- Arguments --------------------
parser = argparse.ArgumentParser(
description="Run single-image depth estimation using Marigold."
)
parser.add_argument(
"--checkpoint",
type=str,
default="prs-eth/marigold-v1-0",
help="Checkpoint path or hub name.",
)
parser.add_argument(
"--input_rgb_dir",
type=str,
required=True,
help="Path to the input image folder.",
)
parser.add_argument(
"--output_dir", type=str, required=True, help="Output directory."
)
# inference setting
parser.add_argument(
"--denoise_steps",
type=int,
default=None,
help="Diffusion denoising steps, more steps results in higher accuracy but slower inference speed. For the original (DDIM) version, it's recommended to use 10-50 steps, while for LCM 1-4 steps.",
)
parser.add_argument(
"--ensemble_size",
type=int,
default=5,
help="Number of predictions to be ensembled, more inference gives better results but runs slower.",
)
parser.add_argument(
"--half_precision",
"--fp16",
action="store_true",
help="Run with half-precision (16-bit float), might lead to suboptimal result.",
)
# resolution setting
parser.add_argument(
"--processing_res",
type=int,
default=None,
help="Maximum resolution of processing. 0 for using input image resolution. Default: 768.",
)
parser.add_argument(
"--output_processing_res",
action="store_true",
help="When input is resized, out put depth at resized operating resolution. Default: False.",
)
parser.add_argument(
"--resample_method",
choices=["bilinear", "bicubic", "nearest"],
default="bilinear",
help="Resampling method used to resize images and depth predictions. This can be one of `bilinear`, `bicubic` or `nearest`. Default: `bilinear`",
)
# # depth map colormap
# parser.add_argument(
# "--color_map",
# type=str,
# default=None,
# help="Colormap used to render depth predictions.",
# )
# other settings
parser.add_argument(
"--seed",
type=int,
default=None,
help="Reproducibility seed. Set to `None` for unseeded inference.",
)
parser.add_argument(
"--batch_size",
type=int,
default=0,
help="Inference batch size. Default: 0 (will be set automatically).",
)
parser.add_argument(
"--apple_silicon",
action="store_true",
help="Flag of running on Apple Silicon.",
)
parser.add_argument(
"--archs",
type=str,
default='marigold',
choices=['marigold', 'genpercept', 'rgb_blending'],
help="Flag of running on Apple Silicon.",
)
parser.add_argument(
"--unet",
type=str,
default=None,
help="Unet checkpoint path or hub name.",
)
parser.add_argument(
"--scheduler",
type=str,
default=None,
help="Scheduler path or hub name.",
)
parser.add_argument(
"--mode",
type=str,
default='depth',
choices=['depth', 'normal', 'matting', 'dis', 'seg'],
help="",
)
parser.add_argument(
"--lora_rank",
type=int,
default=0,
help="",
)
args = parser.parse_args()
mode = args.mode
if args.archs == 'genpercept':
args.denoise_steps = 1
args.ensemble_size = 1
if args.mode == "depth":
args.color_map = 'Spectral'
else:
args.color_map = None
checkpoint_path = args.checkpoint
input_rgb_dir = args.input_rgb_dir
output_dir = args.output_dir
denoise_steps = args.denoise_steps
ensemble_size = args.ensemble_size
if ensemble_size > 15 and args.archs != 'genpercept':
logging.warning("Running with large ensemble size will be slow.")
half_precision = args.half_precision
processing_res = args.processing_res
match_input_res = not args.output_processing_res
if 0 == processing_res and match_input_res is False:
logging.warning(
"Processing at native resolution without resizing output might NOT lead to exactly the same resolution, due to the padding and pooling properties of conv layers."
)
resample_method = args.resample_method
color_map = args.color_map
seed = args.seed
batch_size = args.batch_size
apple_silicon = args.apple_silicon
if apple_silicon and 0 == batch_size:
batch_size = 1 # set default batchsize
# -------------------- Device --------------------
if apple_silicon:
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
device = torch.device("mps:0")
else:
device = torch.device("cpu")
logging.warning("MPS is not available. Running on CPU will be slow.")
else:
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
logging.warning("CUDA is not available. Running on CPU will be slow.")
logging.info(f"device = {device}")
# -------------------- Data --------------------
# rgb_filename_list = glob(os.path.join(input_rgb_dir, "*"))
# rgb_filename_list = [
# f for f in rgb_filename_list if os.path.splitext(f)[1].lower() in EXTENSION_LIST
# ]
rgb_filename_list = get_image_paths(input_rgb_dir)
rgb_filename_list = sorted(rgb_filename_list)
n_images = len(rgb_filename_list)
if n_images > 0:
logging.info(f"Found {n_images} images")
else:
logging.error(f"No image found in '{input_rgb_dir}'")
exit(1)
# -------------------- Model --------------------
if half_precision:
dtype = torch.float16
variant = "fp16"
logging.info(
f"Running with half precision ({dtype}), might lead to suboptimal result."
)
else:
dtype = torch.float32
variant = None
# NOTE: deal with guangkaixu/genpercept-models. It cannot detect whether customized head is used or not.
if 'genpercept-models' in args.unet:
unet_model_subfolder = ""
if 'unet_disparity_dpt_head_v2' in args.unet:
args.load_decoder_ckpt = osp.dirname(args.unet)
else:
args.load_decoder_ckpt = None
else:
unet_model_subfolder = 'unet'
args.load_decoder_ckpt = args.unet
pre_loaded_dict = dict()
if args.load_decoder_ckpt: # NOTE: path to the checkpoint folder does not contain 'vae' or 'customized_head'
if 'dpt_head_identity' in os.listdir(args.load_decoder_ckpt):
sub_dir = "dpt_head_identity"
dpt_config = DPTConfig.from_pretrained("hf_configs/dpt-sd2.1-unet-after-upsample-general")
loaded_model = DPTNeckHeadForUnetAfterUpsampleIdentity(config=dpt_config)
load_model(loaded_model, osp.join(args.load_decoder_ckpt, sub_dir, 'model.safetensors'))
pre_loaded_dict['customized_head'] = loaded_model.to(dtype=dtype).to(device=device)
elif 'dpt_head' in os.listdir(args.load_decoder_ckpt):
sub_dir = "dpt_head"
dpt_config = DPTConfig.from_pretrained("hf_configs/dpt-sd2.1-unet-after-upsample-general")
loaded_model = DPTNeckHeadForUnetAfterUpsample(config=dpt_config)
load_model(loaded_model, osp.join(args.load_decoder_ckpt, sub_dir, 'model.safetensors'))
pre_loaded_dict['customized_head'] = loaded_model.to(dtype=dtype).to(device=device)
elif 'vae_decoder' in os.listdir(args.load_decoder_ckpt) and 'vae_post_quant_conv' in os.listdir(args.load_decoder_ckpt):
vae = AutoencoderKL.from_pretrained(checkpoint_path, subfolder='vae')
load_model(vae.decoder, osp.join(args.load_decoder_ckpt, 'vae_decoder', 'model.safetensors'))
load_model(vae.post_quant_conv, osp.join(args.load_decoder_ckpt, 'vae_post_quant_conv', 'model.safetensors'))
pre_loaded_dict['vae'] = vae.to(dtype=dtype).to(device=device)
if args.unet:
if 'customized_head' in pre_loaded_dict.keys():
unet = CustomUNet2DConditionModel.from_pretrained(checkpoint_path, subfolder='unet')
del unet.conv_out
del unet.conv_norm_out
else:
unet = UNet2DConditionModel.from_pretrained(checkpoint_path, subfolder='unet')
if (8 != unet.config["in_channels"]) and (args.archs == 'marigold'):
unet = _replace_unet_conv_in(unet)
if osp.exists(osp.join(args.unet, unet_model_subfolder, 'diffusion_pytorch_model.bin')):
unet_ckpt_path = osp.join(args.unet, unet_model_subfolder, 'diffusion_pytorch_model.bin')
elif osp.exists(osp.join(args.unet, unet_model_subfolder, 'diffusion_pytorch_model.safetensors')):
unet_ckpt_path = osp.join(args.unet, unet_model_subfolder, 'diffusion_pytorch_model.safetensors')
else:
print('Warning!!! the saved checkpoint does not contain U-Net. Load U-Net from pretrained models...')
unet_ckpt_path = osp.join(checkpoint_path, 'unet', 'diffusion_pytorch_model.safetensors')
ckpt = load_file(unet_ckpt_path)
if 'customized_head' in pre_loaded_dict.keys():
ckpt_new = {}
for key in ckpt:
if 'conv_out' in key:
continue
if 'conv_norm_out' in key:
continue
ckpt_new[key] = ckpt[key]
else:
ckpt_new = ckpt
if args.lora_rank > 0:
unet_lora_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
# Add adapter and make sure the trainable params are in float32.
unet.add_adapter(unet_lora_config)
unet.requires_grad_(False)
unet.load_state_dict(ckpt_new)
pre_loaded_dict['unet'] = unet.to(dtype=dtype).to(device=device)
else:
unet = UNet2DConditionModel.from_pretrained(checkpoint_path, subfolder='unet')
if args.archs == 'marigold' or args.archs == 'rgb_blending':
if args.scheduler is not None:
pre_loaded_dict['scheduler'] = DDIMSchedulerCustomized.from_pretrained(args.scheduler, subfolder='scheduler')
genpercept_pipeline = False
pipe: GenPerceptPipeline = GenPerceptPipeline.from_pretrained(
checkpoint_path, variant=variant, torch_dtype=dtype, rgb_blending=(args.archs != 'marigold'), genpercept_pipeline=genpercept_pipeline, **pre_loaded_dict
)
elif args.archs == 'genpercept':
pre_loaded_dict['scheduler'] = DDIMSchedulerCustomized.from_pretrained('hf_configs/scheduler_beta_1.0_1.0')
genpercept_pipeline = True
pipe: GenPerceptPipeline = GenPerceptPipeline.from_pretrained(
checkpoint_path, variant=variant, torch_dtype=dtype, genpercept_pipeline=genpercept_pipeline, **pre_loaded_dict
)
else:
raise NotImplementedError
del pre_loaded_dict
try:
pipe.enable_xformers_memory_efficient_attention()
except ImportError:
logging.debug("run without xformers")
pipe = pipe.to(device)
# Print out config
logging.info(
f"Inference settings: checkpoint = `{checkpoint_path}`, "
f"with denoise_steps = {denoise_steps or pipe.default_denoising_steps}, "
f"ensemble_size = {ensemble_size}, "
f"processing resolution = {processing_res or pipe.default_processing_resolution}, "
f"seed = {seed}; "
f"color_map = {color_map}."
)
# -------------------- Inference and saving --------------------
with torch.no_grad():
os.makedirs(output_dir, exist_ok=True)
for rgb_path in tqdm(rgb_filename_list, desc="Estimating depth", leave=True):
# Output directories
rgb_rel_folder = (osp.normpath(osp.dirname(rgb_path)) + '/').split(osp.normpath(input_rgb_dir) + '/')[-1]
output_dir_i = osp.join(output_dir, rgb_rel_folder)
os.makedirs(output_dir_i, exist_ok=True)
# Read input image
input_image = Image.open(rgb_path)
# Random number generator
if seed is None:
generator = None
else:
generator = torch.Generator(device=device)
generator.manual_seed(seed)
pipe_out = pipe(
input_image,
denoising_steps=denoise_steps,
ensemble_size=ensemble_size,
processing_res=processing_res,
match_input_res=match_input_res,
batch_size=batch_size,
color_map=color_map,
show_progress_bar=True,
resample_method=resample_method,
generator=generator,
mode=mode,
)
pred_np: np.ndarray = pipe_out.pred_np
pred_colored: Image.Image = pipe_out.pred_colored
# Save as npy
rgb_name_base = os.path.splitext(os.path.basename(rgb_path))[0]
pred_name_base = rgb_name_base + "_pred"
npy_save_path = os.path.join(output_dir_i, f"{pred_name_base}.npy")
if os.path.exists(npy_save_path):
logging.warning(f"Existing file: '{npy_save_path}' will be overwritten")
np.save(npy_save_path, pred_np)
png_save_path = os.path.join(output_dir_i, f"{pred_name_base}.png")
if os.path.exists(png_save_path):
logging.warning(f"Existing file: '{png_save_path}' will be overwritten")
if mode in ['depth']:
# Save as 16-bit uint png
pred_to_save = (pred_np * 65535.0).astype(np.uint16)
Image.fromarray(pred_to_save).save(png_save_path, mode="I;16")
else:
pred_to_save = (pred_np * 255.0).astype(np.uint8)
Image.fromarray(pred_to_save).save(png_save_path)
if pred_colored is not None:
# Colorize
colored_save_path = os.path.join(
output_dir_i, f"{pred_name_base}_colored.png"
)
if os.path.exists(colored_save_path):
logging.warning(
f"Existing file: '{colored_save_path}' will be overwritten"
)
pred_colored.save(colored_save_path)
# save rgb images
shutil.copyfile(rgb_path, osp.join(output_dir_i, osp.basename(rgb_path)))