-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathL5_Parameter_Optimization.py
201 lines (152 loc) · 5.21 KB
/
L5_Parameter_Optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# ----------------
# User Instructions
#
# Implement twiddle as shown in the previous two videos.
# Your accumulated error should be very small!
#
# Your twiddle function should RETURN the accumulated
# error. Try adjusting the parameters p and dp to make
# this error as small as possible.
#
# Try to get your error below 1.0e-10 with as few iterations
# as possible (too many iterations will cause a timeout).
# No cheating!
# ------------
from math import *
import random
# ------------------------------------------------
#
# this is the robot class
#
class robot:
# --------
# init:
# creates robot and initializes location/orientation to 0, 0, 0
#
def __init__(self, length = 20.0):
self.x = 0.0
self.y = 0.0
self.orientation = 0.0
self.length = length
self.steering_noise = 0.0
self.distance_noise = 0.0
self.steering_drift = 0.0
# --------
# set:
# sets a robot coordinate
#
def set(self, new_x, new_y, new_orientation):
self.x = float(new_x)
self.y = float(new_y)
self.orientation = float(new_orientation) % (2.0 * pi)
# --------
# set_noise:
# sets the noise parameters
#
def set_noise(self, new_s_noise, new_d_noise):
# makes it possible to change the noise parameters
# this is often useful in particle filters
self.steering_noise = float(new_s_noise)
self.distance_noise = float(new_d_noise)
# --------
# set_steering_drift:
# sets the systematical steering drift parameter
#
def set_steering_drift(self, drift):
self.steering_drift = drift
# --------
# move:
# steering = front wheel steering angle, limited by max_steering_angle
# distance = total distance driven, most be non-negative
def move(self, steering, distance,
tolerance = 0.001, max_steering_angle = pi / 4.0):
if steering > max_steering_angle:
steering = max_steering_angle
if steering < -max_steering_angle:
steering = -max_steering_angle
if distance < 0.0:
distance = 0.0
# make a new copy
res = robot()
res.length = self.length
res.steering_noise = self.steering_noise
res.distance_noise = self.distance_noise
res.steering_drift = self.steering_drift
# apply noise
steering2 = random.gauss(steering, self.steering_noise)
distance2 = random.gauss(distance, self.distance_noise)
# apply steering drift
steering2 += self.steering_drift
# Execute motion
turn = tan(steering2) * distance2 / res.length
if abs(turn) < tolerance:
# approximate by straight line motion
res.x = self.x + (distance2 * cos(self.orientation))
res.y = self.y + (distance2 * sin(self.orientation))
res.orientation = (self.orientation + turn) % (2.0 * pi)
else:
# approximate bicycle model for motion
radius = distance2 / turn
cx = self.x - (sin(self.orientation) * radius)
cy = self.y + (cos(self.orientation) * radius)
res.orientation = (self.orientation + turn) % (2.0 * pi)
res.x = cx + (sin(res.orientation) * radius)
res.y = cy - (cos(res.orientation) * radius)
return res
def __repr__(self):
return '[x=%.5f y=%.5f orient=%.5f]' % (self.x, self.y, self.orientation)
# ------------------------------------------------------------------------
#
# run - does a single control run.
def run(params, printflag = False):
myrobot = robot()
myrobot.set(0.0, 1.0, 0.0)
speed = 1.0
err = 0.0
int_crosstrack_error = 0.0
N = 100
# myrobot.set_noise(0.1, 0.0)
myrobot.set_steering_drift(10.0 / 180.0 * pi) # 10 degree steering error
crosstrack_error = myrobot.y
for i in range(N * 2):
diff_crosstrack_error = myrobot.y - crosstrack_error
crosstrack_error = myrobot.y
int_crosstrack_error += crosstrack_error
steer = - params[0] * crosstrack_error \
- params[1] * diff_crosstrack_error \
- int_crosstrack_error * params[2]
myrobot = myrobot.move(steer, speed)
if i >= N:
err += (crosstrack_error ** 2)
if printflag:
print myrobot, steer
return err / float(N)
def twiddle(tol = 0.2): #Make this tolerance bigger if you are timing out!
############## ADD CODE BELOW ####################
# -------------
# Add code here
# -------------
params = [0, 0, 0]
dp = [1, 1, 1]
err = run(params)
best_err = err
while sum(dp) > tol:
print err
for i in range(len(params)):
params[i] += dp[i]
err = run(params)
if err < best_err:
best_err = err
dp[i] *= 1.1
else:
params[i] -= 2 * dp[i]
err = run(params)
if err < best_err:
best_err = err
dp[i] *= 1.1
else:
params[i] += dp[i]
dp[i] *= 0.9
# print params
return run(params)
print twiddle()