-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
386 lines (309 loc) · 19.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import os
import sys
import copy
import argparse
import torch
from torch import optim
import torch.nn as nn
import mlflow.pytorch
from torch.utils.data import DataLoader
from torchvision.models import resnet18
import torchvision.transforms as T
from pytorch_lightning.metrics.functional import accuracy
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from utils.base import AuxLoss, WeightedLoss, display_mlflow_run_info, l2_regularization, str2bool, fetch_from_mlflow, get_name, data_loader_mean_and_std
from utils.dataset_utils import k_fold
from utils.augmentation import get_augmentation
from dataset import Subset, get_dataset
from processing.pipeline_numpy import RawProcessingPipeline
from processing.pipeline_torch import append_additive_layer, raw2rgb, RawToRGB, ParametrizedProcessing, NNProcessing
from model import log_tensor, resnet_model, LitModel, TrackImagesCallback
import segmentation_models_pytorch as smp
from utils.ssim import SSIM
# args to set up task
parser = argparse.ArgumentParser(description='classification_task')
parser.add_argument('--tracking_uri', type=str,
default='http://deplo-mlflo-1ssxo94f973sj-890390d809901dbf.elb.eu-central-1.amazonaws.com', help='URI of the mlflow server on AWS')
parser.add_argument('--processor_uri', type=str, default=None,
help='URI of the processing model (e.g. s3://mlflow-artifacts-821771080529/1/5fa754c566e3466690b1d309a476340f/artifacts/processing-model)')
parser.add_argument('--classifier_uri', type=str, default=None,
help='URI of the net (e.g. s3://mlflow-artifacts-821771080529/1/5fa754c566e3466690b1d309a476340f/artifacts/prediction-model)')
parser.add_argument('--state_dict_uri', type=str,
default=None, help='URI of the indices you want to load (e.g. s3://mlflow-artifacts-601883093460/7/4326da05aca54107be8c554de0674a14/artifacts/training')
parser.add_argument('--experiment_name', type=str,
default='classification learnable pipeline', help='Specify the experiment you are running, e.g. end2end segmentation')
parser.add_argument('--run_name', type=str,
default='test run', help='Specify the name of your run')
parser.add_argument('--log_model', type=str2bool, default=True, help='Enables model logging')
parser.add_argument('--save_locally', action='store_true',
help='Model will be saved locally if action is taken') # TODO: bypass mlflow
parser.add_argument('--track_processing', action='store_true',
help='Save images after each trasformation of the pipeline for the test set')
parser.add_argument('--track_processing_gradients', action='store_true',
help='Save images of gradients after each trasformation of the pipeline for the test set')
parser.add_argument('--track_save_tensors', action='store_true',
help='Save the torch tensors after each trasformation of the pipeline for the test set')
parser.add_argument('--track_predictions', action='store_true',
help='Save images after each trasformation of the pipeline for the test set + input gradient')
parser.add_argument('--track_n_images', default=5,
help='Track the n first elements of dataset. Only used for args.track_processing=True')
parser.add_argument('--track_every_epoch', action='store_true', help='Track images every epoch or once after training')
# args to create dataset
parser.add_argument('--seed', type=int, default=1, help='Global seed')
parser.add_argument('--dataset', type=str, default='Microscopy',
choices=['Drone', 'DroneSegmentation', 'Microscopy'], help='Select dataset')
parser.add_argument('--n_splits', type=int, default=1, help='Number of splits used for training')
parser.add_argument('--train_size', type=float, default=0.8, help='Fraction of training points in dataset')
# args for training
parser.add_argument('--lr', type=float, default=1e-5, help='learning rate used for training')
parser.add_argument('--epochs', type=int, default=3, help='numper of epochs')
parser.add_argument('--batch_size', type=int, default=32, help='Training batch size')
parser.add_argument('--augmentation', type=str, default='none',
choices=['none', 'weak', 'strong'], help='Applies augmentation to training')
parser.add_argument('--check_val_every_n_epoch', type=int, default=1)
# args to specify the processing
parser.add_argument('--processing_mode', type=str, default='parametrized',
choices=['parametrized', 'static', 'neural_network', 'none'],
help='Which type of raw to rgb processing should be used')
# args to specify model
parser.add_argument('--classifier_network', type=str, default='ResNet18', choices=['ResNet18', 'ResNet34', 'Resnet50'],
help='Type of pretrained network')
parser.add_argument('--classifier_pretrained', action='store_true',
help='Whether to use a pre-trained model or not')
parser.add_argument('--smp_encoder', type=str, default='resnet34', help='segmentation models pytorch encoder')
parser.add_argument('--freeze_processor', action='store_true', help='Freeze raw to rgb processing model weights')
parser.add_argument('--freeze_classifier', action='store_true', help='Freeze classification model weights')
# args to specify static pipeline transformations
parser.add_argument('--sp_debayer', type=str, default='bilinear',
choices=['bilinear', 'malvar2004', 'menon2007'], help='Specify algorithm used as debayer')
parser.add_argument('--sp_sharpening', type=str, default='sharpening_filter',
choices=['sharpening_filter', 'unsharp_masking'], help='Specify algorithm used for sharpening')
parser.add_argument('--sp_denoising', type=str, default='gaussian_denoising',
choices=['gaussian_denoising', 'median_denoising', 'fft_denoising'], help='Specify algorithm used for denoising')
# args to choose training mode
parser.add_argument('--adv_training', action='store_true', help='Enable adversarial training')
parser.add_argument('--adv_aux_weight', type=float, default=1, help='Weighting of the adversarial auxilliary loss')
parser.add_argument('--adv_aux_loss', type=str, default='ssim', choices=['l2', 'ssim'],
help='Type of adversarial auxilliary regularization loss')
parser.add_argument('--adv_noise_layer', action='store_true', help='Adds an additive layer to Parametrized Processing')
parser.add_argument('--adv_track_differences', action='store_true', help='Save difference to default pipeline')
parser.add_argument('--adv_parameters', choices=['all', 'black_level', 'white_balance',
'colour_correction', 'gamma_correct', 'sharpening_filter', 'gaussian_blur', 'additive_layer'],
help='Target individual parameters for adversarial training.')
parser.add_argument('--cache_downloaded_models', type=str2bool, default=True)
parser.add_argument('--test_run', action='store_true')
args = parser.parse_args()
os.makedirs('results', exist_ok=True)
def run_train(args):
print(args)
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
training_mode = 'adversarial' if args.adv_training else 'default'
# set tracking uri, this is the address of the mlflow server where light experimental data will be stored
mlflow.set_tracking_uri(args.tracking_uri)
mlflow.set_experiment(args.experiment_name)
os.environ['AWS_ACCESS_KEY_ID'] = '#TODO: fill in your aws access key id for mlflow server here'
os.environ['AWS_SECRET_ACCESS_KEY'] = '#TODO: fill in your aws secret access key for mlflow server here'
dataset = get_dataset(args.dataset)
print(f'dataset: {type(dataset).__name__}[{len(dataset)}]')
print(f'task: {dataset.task}')
print(f'mode: {training_mode} training')
print(f'# cross-validation subsets: {args.n_splits}')
pl.seed_everything(args.seed)
idxs_kfold = k_fold(dataset, n_splits=args.n_splits, seed=args.seed, train_size=args.train_size)
# start mlflow parent run for k-fold validation (optional)
with mlflow.start_run(run_name=args.run_name) as parent_run:
# start mlflow child run
for k_iter, (train_indices, valid_indices) in enumerate(idxs_kfold):
print(f'K_fold subset: {k_iter+1}/{args.n_splits}')
if args.processing_mode == 'static':
# only needed if processor outputs should be normalized (might help for classifier training / testing against torch pipeline)
if args.dataset == 'Drone' or args.dataset == 'DroneSegmentation':
mean = torch.tensor([0.35, 0.36, 0.35])
std = torch.tensor([0.12, 0.11, 0.12])
elif args.dataset == 'Microscopy':
mean = torch.tensor([0.91, 0.84, 0.94])
std = torch.tensor([0.08, 0.12, 0.05])
# numpy pipeline doesn't use torch batched transformations. Transformations are applied individually to dataloader
dataset.transform = T.Compose([RawProcessingPipeline(
camera_parameters=dataset.camera_parameters,
debayer=args.sp_debayer,
sharpening=args.sp_sharpening,
denoising=args.sp_denoising,
),
T.Normalize(mean, std)
])
processor = nn.Identity()
# fetch processor from mlflow
if args.processor_uri is not None and args.processing_mode != 'none':
print('Fetching processor: ', end='')
processor = fetch_from_mlflow(args.processor_uri, type='processor',
use_cache=args.cache_downloaded_models)
else:
print(f'processing_mode: {args.processing_mode}')
normalize_mosaic = None # normalize after raw has been transformed to rgb image via raw2rgb
# not strictly necessary, but for processing_mode=='none' this will ensure normalized outputs for the classifier
# and for processing_mode=='neural_network', the processing segmentation model receives normalized inputs
# could be evaded via an additional batchnorm!
# XXX
if args.dataset == 'Microscopy':
mosaic_mean = [0.5663, 0.1401, 0.0731]
mosaic_std = [0.097, 0.0423, 0.008]
normalize_mosaic = T.Normalize(mosaic_mean, mosaic_std)
# track individual processing steps for visualization
track_stages = args.track_processing or args.track_processing_gradients
if args.processing_mode == 'parametrized':
processor = ParametrizedProcessing(
camera_parameters=dataset.camera_parameters, track_stages=track_stages, batch_norm_output=True)
elif args.processing_mode == 'neural_network':
processor = NNProcessing(track_stages=track_stages,
normalize_mosaic=normalize_mosaic, batch_norm_output=True)
elif args.processing_mode == 'none':
processor = RawToRGB(reduce_size=True, out_channels=3, track_stages=track_stages,
normalize_mosaic=normalize_mosaic)
if args.classifier_uri: # fetch classifier from mlflow
print('Fetching classifier: ', end='')
classifier = fetch_from_mlflow(args.classifier_uri, type='classifier',
use_cache=args.cache_downloaded_models)
else:
if dataset.task == 'classification':
classifier = resnet_model(
model=args.classifier_network,
pretrained=args.classifier_pretrained,
in_channels=3,
fc_out_features=len(dataset.classes)
)
else:
classifier = smp.UnetPlusPlus(
encoder_name=args.smp_encoder,
encoder_depth=5,
encoder_weights='imagenet',
in_channels=3,
classes=1,
activation=None,
)
if args.freeze_processor and len(list(iter(processor.parameters()))) == 0:
print('Note: freezing processor without parameters.')
assert not (args.freeze_processor and args.freeze_classifier), 'Likely no parameters to train.'
if dataset.task == 'classification':
loss = nn.CrossEntropyLoss()
metrics = [accuracy]
else:
# loss = utils.base.smp_get_loss(args.smp_loss) # XXX: add other losses to args.smp_loss
loss = smp.losses.DiceLoss(mode='binary', from_logits=True)
metrics = [smp.utils.metrics.IoU()]
loss_aux = None
if args.adv_training: # setup for failure mode search
assert args.processing_mode == 'parametrized', f"Processing mode ({args.processing_mode}) should be set to 'parametrized' for adversarial training"
assert args.freeze_classifier, 'Classifier should be frozen for adversarial training'
assert not args.freeze_processor, 'Processor should not be frozen for adversarial training'
# copy, so that regularization in rgb space between adversarial and original processor can be computed
processor_default = copy.deepcopy(processor)
processor_default.track_stages = args.track_processing
processor_default.eval()
processor_default.to(DEVICE)
for p in processor_default.parameters():
p.requires_grad = False
if args.adv_noise_layer: # optional additional "noise" layer in processor
append_additive_layer(processor)
if args.adv_aux_loss == 'l2':
regularization = l2_regularization
elif args.adv_aux_loss == 'ssim':
regularization = SSIM(window_size=11)
else:
NotImplementedError(args.adv_aux_loss)
loss = WeightedLoss(loss=loss, weight=-1)
loss_aux = AuxLoss(
loss_aux=regularization,
processor_adv=processor,
processor_default=processor_default,
weight=args.adv_aux_weight,
)
augmentation = get_augmentation(args.augmentation)
model = LitModel(
classifier=classifier,
processor=processor,
loss=loss,
lr=args.lr,
loss_aux=loss_aux,
adv_training=args.adv_training,
adv_parameters=args.adv_parameters,
metrics=metrics,
augmentation=augmentation,
is_segmentation_task=dataset.task == 'segmentation',
freeze_classifier=args.freeze_classifier,
freeze_processor=args.freeze_processor,
)
state_dict = vars(args).copy()
# get train_set_dict
if args.state_dict_uri:
state_dict = mlflow.pytorch.load_state_dict(args.state_dict_uri)
train_indices = state_dict['train_indices']
valid_indices = state_dict['valid_indices']
track_indices = list(range(args.track_n_images))
if dataset.task == 'classification':
state_dict['classes'] = dataset.classes
state_dict['device'] = DEVICE
state_dict['train_indices'] = train_indices
state_dict['valid_indices'] = valid_indices
state_dict['elements in train set'] = len(train_indices)
state_dict['elements in test set'] = len(valid_indices)
if args.test_run:
train_indices = train_indices[:args.batch_size]
valid_indices = valid_indices[:args.batch_size]
train_set = Subset(dataset, indices=train_indices)
valid_set = Subset(dataset, indices=valid_indices)
track_set = Subset(dataset, indices=track_indices)
train_loader = DataLoader(train_set, batch_size=args.batch_size, num_workers=16, shuffle=True)
valid_loader = DataLoader(valid_set, batch_size=args.batch_size, num_workers=16, shuffle=False)
track_loader = DataLoader(track_set, batch_size=args.batch_size, num_workers=16, shuffle=False)
with mlflow.start_run(run_name=f"{args.run_name}_{k_iter}", nested=True) as child_run:
if k_iter == 0:
display_mlflow_run_info(child_run)
mlflow.pytorch.log_state_dict(state_dict, artifact_path=None)
hparams = {
'dataset': args.dataset,
'processing_mode': args.processing_mode,
'training_mode': training_mode,
}
if training_mode == 'adversarial':
hparams['adv_aux_weight'] = args.adv_aux_weight
hparams['adv_aux_loss'] = args.adv_aux_loss
mlflow.log_params(hparams)
with open('results/state_dict.txt', 'w') as f:
f.write('python ' + ' '.join(sys.argv) + '\n')
f.write('\n'.join([f'{k}={v}' for k, v in state_dict.items()]))
mlflow.log_artifact('results/state_dict.txt', artifact_path=None)
mlf_logger = pl.loggers.MLFlowLogger(experiment_name=args.experiment_name,
tracking_uri=args.tracking_uri,)
mlf_logger._run_id = child_run.info.run_id
reference_processor = processor_default if args.adv_training and args.adv_track_differences else None
callbacks = []
if args.track_processing:
callbacks += [TrackImagesCallback(track_loader,
reference_processor,
track_every_epoch=args.track_every_epoch,
track_processing=args.track_processing,
track_gradients=args.track_processing_gradients,
track_predictions=args.track_predictions,
save_tensors=args.track_save_tensors)]
trainer = pl.Trainer(
gpus=1 if DEVICE == 'cuda' else 0,
min_epochs=args.epochs,
max_epochs=args.epochs,
logger=mlf_logger,
callbacks=callbacks,
check_val_every_n_epoch=args.check_val_every_n_epoch,
)
if args.log_model:
mlflow.pytorch.autolog(log_every_n_epoch=10)
print(f'model_uri="{mlflow.get_artifact_uri()}/model"')
t = trainer.fit(
model,
train_dataloader=train_loader,
val_dataloaders=valid_loader,
)
globals().update(locals()) # for convenient access
return model
if __name__ == '__main__':
model = run_train(args)