forked from taewookim0812/C-3PO_Motion_Retargeting_Module
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMR_Demo.py
279 lines (224 loc) · 10.5 KB
/
MR_Demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""
Description: A class for Motion Retargeting Demo
Author: Tae-woo Kim
Contact: [email protected]
"""
try:
import vrep
except:
print ('--------------------------------------------------------------')
print ('"vrep.py" could not be imported. This means very probably that')
print ('either "vrep.py" or the remoteApi library could not be found.')
print ('Make sure both are in the same folder as this file,')
print ('or appropriately adjust the file "vrep.py"')
print ('--------------------------------------------------------------')
print ('')
import argparse
import os
import numpy as np
import torch
from model import MLPPolicy
from vae_model import VAE, VAE_SK
from robots.NAO_MIMIC import NAO_MIMIC
from robots.BAXTER_MIMIC import BAXTER_MIMIC
from robots.C3PO_MIMIC import C3PO_MIMIC
# imports for V-REP
from ExpCollector import ExpCollector
from arguments import get_args
robot_dict = {'NAO': NAO_MIMIC(), 'BAXTER': BAXTER_MIMIC(), 'C3PO': C3PO_MIMIC()}
env__list = ['CHREO', 'VREP']
class MR_Demo:
def __init__(self, target_robot, target_env, tcp_port):
if target_env not in env__list:
raise Exception('Unknown env. Please choose the env among ', env__list)
if target_robot not in robot_dict.keys():
raise Exception('Unknown robot. Please choose the robot among ', robot_dict.keys())
self.target_env = target_env
self.target_robot = target_robot
self.myrobot = robot_dict[target_robot]
self.nao_tcp_port = tcp_port
self.env = ExpCollector(self.myrobot, portNum=23876, comm=None, enjoy_mode=True, motion_sampling=False)
self.args = self.init_args()
self.actor_critic = self.load_policy()
self.sModel = self.load_skeleton_VAE()
self.rModel = self.load_robot_VAE()
self.current_obs = None
self.current_state = None
self.masks = None
if self.target_env == 'VREP':
self.vrep = self.init_vrep()
def init_args(self):
args = get_args()
args.algo = 'ppo'
args.num_stack = 1
args.env_name = self.myrobot.robot_name + '_UNI' '(1M_3L_512_ReLU_inf)'
args.vis = True
args.cuda = False
args.cyclic_policy = True
args.symm_policy = False
args.LbD_use = False
args.phase = 'phase3' if args.LbD_use else 'phase2'
args.env_name += '(cyclic)' if args.cyclic_policy else '(acyclic)'
args.env_name += '(sym)' if args.symm_policy else '(asym)'
args.env_name += '(local_3)' # choose among: [single, local_#, global]
args.env_name += '(LbD)' if args.LbD_use else ''
args.tr_itr = '(487)'
# shape initialization
obs_shape = self.env.robot.observation_space.shape
args.obs_shape = (obs_shape[0] * args.num_stack, *obs_shape[1:])
state_shape = self.env.robot.state_space.shape
args.state_shape = (state_shape[0] * args.num_stack, *state_shape[1:])
args.action_shape = self.env.robot.action_space.shape
args.full_state_shape = (state_shape[0] * args.num_stack, obs_shape[1] + state_shape[1])
if args.symm_policy:
args.full_state_shape = state_shape
return args
def update_current_state(self, state, current_state):
shape_dim0 = current_state.shape[-1]
state = torch.from_numpy(state).float()
current_state[:, -shape_dim0:] = state
def update_current_obs(self, _obs, current_obs):
shape_dim0 = current_obs.shape[-1]
obs = torch.from_numpy(_obs).float()
if self.args.num_stack > 1:
current_obs[:, :-shape_dim0] = current_obs[:, shape_dim0:]
current_obs[:, -shape_dim0:] = obs
return current_obs
def load_skeleton_VAE(self):
load_path = os.path.join('./trained_models', 'vae')
load_name = 'Skel_vae_Superset'
state_dict = torch.load(os.path.join(load_path, load_name + '.pt'), map_location='cpu')
sModel = VAE_SK(75, 75, use_batch_norm=False, activation='ReLU')
sModel.load_state_dict(state_dict)
sModel.eval()
return sModel
def load_robot_VAE(self):
if self.target_robot == 'BAXTER':
load_name = '[Baxter]Motion_vae_Superset'
elif self.target_robot == 'NAO':
load_name = '[NAO]Motion_vae_Superset'
elif self.target_robot == 'C3PO':
load_name = '[C3PO]Motion_vae_Superset'
else:
print('Unknown robot..')
raise ValueError
load_path = os.path.join('./trained_models', 'vae')
state_dict = torch.load(os.path.join(load_path, load_name + '.pt'), map_location='cpu')
rModel = VAE(14, latent_dim=np.prod(self.args.action_shape), use_batch_norm=False, activation='Tanh')
rModel.load_state_dict(state_dict)
rModel.eval()
print('Motion VAE Load Success!')
if not self.args.symm_policy:
self.myrobot.rModel = rModel
return rModel
def load_policy(self):
actor_critic = MLPPolicy(self.args.obs_shape[1], self.args.full_state_shape[1], self.env.robot.action_space,
symm_policy=self.args.symm_policy)
print(os.path.join(self.args.load_dir + self.args.algo, self.args.phase, self.args.env_name, self.args.env_name
+ self.args.tr_itr + ".pt"))
state_dict, ob_rms, st_rms, ret_rms = \
torch.load(
os.path.join(self.args.load_dir + self.args.algo, self.args.phase, self.args.env_name,
self.args.env_name
+ self.args.tr_itr + ".pt"),
map_location='cpu')
actor_critic.load_state_dict(state_dict)
actor_critic.train(False)
actor_critic.eval()
self.env.robot.ob_rms = ob_rms
return actor_critic
def init_vrep(self):
return self.env.simStart(gui_on=True, autoStart=True, autoQuit=True, epiNum=1000000)
def do_retargeting(self, skeleton_frame):
skels = np.array(skeleton_frame) # the last element is the class number
# Initialized only once
if self.current_obs is None:
with torch.no_grad():
mu, logvar = self.sModel.encode(torch.from_numpy(skels).unsqueeze(0).float())
z = self.sModel.reparameterize(mu, logvar)
z = z.cpu().numpy()
obs = self.env.robot._obfilt(z)
self.current_obs = torch.zeros(1, *self.args.obs_shape)
self.current_state = torch.zeros(1, *self.args.full_state_shape)
self.masks = torch.zeros(1, 1)
update_current_obs(obs, self.current_obs)
if self.args.cyclic_policy:
with torch.no_grad():
mu, logvar = self.sModel.encode(torch.from_numpy(skels).unsqueeze(0).float())
z = self.sModel.reparameterize(mu, logvar)
skels = self.sModel.decode(z).reshape(75, -1).squeeze().numpy()
else:
skels = skels[:-1] # the last number is a phase value
# get latent vector
with torch.no_grad():
mu, logvar = self.sModel.encode(torch.from_numpy(skels[:]).unsqueeze(0).float())
z = self.sModel.reparameterize(mu, logvar)
z = z.cpu().numpy()
with torch.no_grad():
value, action, action_log_prob, states, _, _ = self.actor_critic.act(
self.current_obs,
self.current_state,
self.masks,
deterministic=True)
# get trajectory of NAO by decoding
with torch.no_grad():
x_hat_rj = self.rModel.decode(action).reshape(-1, 14)
next_obs = self.env.robot._obfilt(z)
update_current_obs(next_obs, self.current_obs)
return x_hat_rj.squeeze(0).cpu().numpy().tolist()
def do_retargeting_vrep(self, skeleton_frame):
if self.vrep == -1: return False
skels = np.array(skeleton_frame) # the last element is the class number
# Initialized only once
if self.current_obs is None:
with torch.no_grad():
mu, logvar = self.sModel.encode(torch.from_numpy(skels).unsqueeze(0).float())
z = self.sModel.reparameterize(mu, logvar)
z = z.cpu().numpy()
obs, state = self.env.reset(z, None)
self.current_obs = torch.zeros(1, *self.args.obs_shape)
self.current_state = torch.zeros(1, *self.args.full_state_shape)
self.masks = torch.zeros(1, 1)
update_current_obs(obs, self.current_obs)
full_state = np.concatenate((np.random.normal(0.0, 0.1, self.args.obs_shape[1]), # initial obs
state[0])) # initial state
if self.args.symm_policy:
full_state = state
update_current_state(full_state, self.current_state)
# Main loop
if self.args.cyclic_policy:
with torch.no_grad():
mu, logvar = self.sModel.encode(torch.from_numpy(skels).unsqueeze(0).float())
z = self.sModel.reparameterize(mu, logvar)
skels = self.sModel.decode(z).reshape(75, -1).squeeze().numpy()
else:
skels = skels[:-1] # the last number is a phase value
# get a latent vector
with torch.no_grad():
mu, logvar = self.sModel.encode(torch.from_numpy(skels[:]).unsqueeze(0).float())
z = self.sModel.reparameterize(mu, logvar)
z = z.cpu().numpy()
with torch.no_grad():
value, action, action_log_prob, states, _, _ = self.actor_critic.act(
self.current_obs,
self.current_state,
self.masks,
deterministic=True)
# get trajectory of NAO by decoding
with torch.no_grad():
x_hat_rj = self.rModel.decode(action).reshape(-1, 14)
obs, next_state, reward, done, info, true_rew = self.env.step(x_hat_rj, z, skels) # 0.02 sec, 50Hz
self.masks.fill_(0.0 if done else 1.0)
if self.current_obs.dim() == 4:
self.current_obs *= self.masks.unsqueeze(2).unsqueeze(2)
else:
self.current_obs *= self.masks
self.current_state *= self.masks
update_current_obs(obs, self.current_obs)
# make full state
full_state = np.concatenate((self.current_obs.numpy().flatten(),
next_state[0].flatten()))
if self.args.symm_policy:
full_state = state
update_current_state(full_state, self.current_state)
return True