diff --git a/.vscode/cspell.json b/.vscode/cspell.json index 6f3eae5e..d12ead35 100644 --- a/.vscode/cspell.json +++ b/.vscode/cspell.json @@ -51,7 +51,6 @@ "jaxtyping", "kaiming", "keepdim", - "logit", "lognormal", "loguniform", "loguniformvalues", @@ -74,7 +73,6 @@ "neox", "nonlinerity", "numel", - "onebit", "openwebtext", "optim", "penality", @@ -118,7 +116,6 @@ "venv", "virtualenv", "virtualenvs", - "wandb", - "zoadam" + "wandb" ] } diff --git a/poetry.lock b/poetry.lock index f98130e5..ce2b723f 100644 --- a/poetry.lock +++ b/poetry.lock @@ -2,13 +2,13 @@ [[package]] name = "accelerate" -version = "0.26.1" +version = "0.25.0" description = "Accelerate" optional = false python-versions = ">=3.8.0" files = [ - {file = "accelerate-0.26.1-py3-none-any.whl", hash = "sha256:04df826b84ac7bad8a0a8ab90e6aeacdecb1ea5a2d744d7e94f6735c29183227"}, - {file = "accelerate-0.26.1.tar.gz", hash = "sha256:bf63716b6bd9460d87da970cf4d833abb824ca0aa633be36b741e63a1b504f89"}, + {file = "accelerate-0.25.0-py3-none-any.whl", hash = "sha256:c7bb817eb974bba0ff3ea1ba0f24d55afb86d50e3d4fe98d6922dc69cf2ccff1"}, + {file = "accelerate-0.25.0.tar.gz", hash = "sha256:ecf55b0ab278a1dac8539dde0d276977aff04683f07ede73eaf02478538576a1"}, ] [package.dependencies] @@ -367,22 +367,19 @@ test-tox-coverage = ["coverage (>=5.5)"] [[package]] name = "beautifulsoup4" -version = "4.12.3" +version = "4.12.2" description = "Screen-scraping library" optional = false python-versions = ">=3.6.0" files = [ - {file = "beautifulsoup4-4.12.3-py3-none-any.whl", hash = "sha256:b80878c9f40111313e55da8ba20bdba06d8fa3969fc68304167741bbf9e082ed"}, - {file = "beautifulsoup4-4.12.3.tar.gz", hash = "sha256:74e3d1928edc070d21748185c46e3fb33490f22f52a3addee9aee0f4f7781051"}, + {file = "beautifulsoup4-4.12.2-py3-none-any.whl", hash = "sha256:bd2520ca0d9d7d12694a53d44ac482d181b4ec1888909b035a3dbf40d0f57d4a"}, + {file = "beautifulsoup4-4.12.2.tar.gz", hash = "sha256:492bbc69dca35d12daac71c4db1bfff0c876c00ef4a2ffacce226d4638eb72da"}, ] [package.dependencies] soupsieve = ">1.2" [package.extras] -cchardet = ["cchardet"] -chardet = ["chardet"] -charset-normalizer = ["charset-normalizer"] html5lib = ["html5lib"] lxml = ["lxml"] @@ -769,41 +766,6 @@ files = [ {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, ] -[[package]] -name = "deepspeed" -version = "0.12.6" -description = "DeepSpeed library" -optional = false -python-versions = "*" -files = [ - {file = "deepspeed-0.12.6.tar.gz", hash = "sha256:69ea07c65ef6414f9cd67746672f1c23b4b629dc14c9177de103ac0c5b2e0ce4"}, -] - -[package.dependencies] -hjson = "*" -ninja = "*" -numpy = "*" -packaging = ">=20.0" -psutil = "*" -py-cpuinfo = "*" -pydantic = "*" -pynvml = "*" -torch = "*" -tqdm = "*" - -[package.extras] -1bit-mpi = ["mpi4py"] -all = ["accelerate", "autodoc_pydantic", "clang-format (==16.0.2)", "coverage", "deepspeed-kernels", "diffusers", "docutils (<0.18)", "future", "google", "hjson", "importlib-metadata (>=4)", "lm-eval (==0.3.0)", "mpi4py", "mup", "neural-compressor (==2.1.0)", "packaging", "pre-commit (>=2.20.0)", "protobuf", "psutil", "py-cpuinfo", "pydantic (<2.0.0)", "pytest", "pytest-forked", "pytest-randomly", "pytest-xdist", "recommonmark", "sphinx", "sphinx-rtd-theme", "sphinx_rtd_theme", "tabulate", "tensorboard", "torch", "torchvision", "tqdm", "transformers (>=4.32.1)", "transformers[sentencepiece]", "triton (==1.0.0)", "triton (>=2.1.0)", "wandb", "xgboost"] -autotuning = ["tabulate"] -autotuning-ml = ["hjson", "tabulate", "xgboost"] -dev = ["accelerate", "clang-format (==16.0.2)", "coverage", "deepspeed-kernels", "docutils (<0.18)", "future", "importlib-metadata (>=4)", "mup", "pre-commit (>=2.20.0)", "pytest", "pytest-forked", "pytest-randomly", "pytest-xdist", "recommonmark", "sphinx", "sphinx-rtd-theme", "tensorboard", "torchvision", "transformers (>=4.32.1)", "wandb"] -inf = ["google", "lm-eval (==0.3.0)", "protobuf", "transformers (>=4.32.1)", "transformers[sentencepiece]"] -readthedocs = ["autodoc_pydantic", "docutils (<0.18)", "hjson", "packaging", "psutil", "py-cpuinfo", "pydantic (<2.0.0)", "recommonmark", "sphinx_rtd_theme", "torch", "tqdm"] -sd = ["diffusers", "triton (>=2.1.0)"] -sparse = ["neural-compressor (==2.1.0)"] -sparse-attn = ["triton (==1.0.0)"] -triton = ["triton (>=2.1.0)"] - [[package]] name = "defusedxml" version = "0.7.1" @@ -1117,46 +1079,35 @@ smmap = ">=3.0.1,<6" [[package]] name = "gitpython" -version = "3.1.41" +version = "3.1.40" description = "GitPython is a Python library used to interact with Git repositories" optional = false python-versions = ">=3.7" files = [ - {file = "GitPython-3.1.41-py3-none-any.whl", hash = "sha256:c36b6634d069b3f719610175020a9aed919421c87552185b085e04fbbdb10b7c"}, - {file = "GitPython-3.1.41.tar.gz", hash = "sha256:ed66e624884f76df22c8e16066d567aaa5a37d5b5fa19db2c6df6f7156db9048"}, + {file = "GitPython-3.1.40-py3-none-any.whl", hash = "sha256:cf14627d5a8049ffbf49915732e5eddbe8134c3bdb9d476e6182b676fc573f8a"}, + {file = "GitPython-3.1.40.tar.gz", hash = "sha256:22b126e9ffb671fdd0c129796343a02bf67bf2994b35449ffc9321aa755e18a4"}, ] [package.dependencies] gitdb = ">=4.0.1,<5" [package.extras] -test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest (>=7.3.1)", "pytest-cov", "pytest-instafail", "pytest-mock", "pytest-sugar", "sumtypes"] +test = ["black", "coverage[toml]", "ddt (>=1.1.1,!=1.4.3)", "mock", "mypy", "pre-commit", "pytest", "pytest-cov", "pytest-instafail", "pytest-subtests", "pytest-sugar"] [[package]] name = "griffe" -version = "0.39.0" +version = "0.38.1" description = "Signatures for entire Python programs. Extract the structure, the frame, the skeleton of your project, to generate API documentation or find breaking changes in your API." optional = false python-versions = ">=3.8" files = [ - {file = "griffe-0.39.0-py3-none-any.whl", hash = "sha256:b5e2f249d86feaad1d3068b33b1c8c2ecf39cb870bf292f2af3a4311891a4835"}, - {file = "griffe-0.39.0.tar.gz", hash = "sha256:34461730c975a31c4ffa413bdad841f217a5d1a1c611b95f6110ed0f2b2fc04d"}, + {file = "griffe-0.38.1-py3-none-any.whl", hash = "sha256:334c79d3b5964ade65c05dfcaf53518c576dedd387aaba5c9fd71212f34f1483"}, + {file = "griffe-0.38.1.tar.gz", hash = "sha256:bd68d7da7f3d87bc57eb9962b250db123efd9bbcc06c11c1a91b6e583b2a9361"}, ] [package.dependencies] colorama = ">=0.4" -[[package]] -name = "hjson" -version = "3.1.0" -description = "Hjson, a user interface for JSON." -optional = false -python-versions = "*" -files = [ - {file = "hjson-3.1.0-py3-none-any.whl", hash = "sha256:65713cdcf13214fb554eb8b4ef803419733f4f5e551047c9b711098ab7186b89"}, - {file = "hjson-3.1.0.tar.gz", hash = "sha256:55af475a27cf83a7969c808399d7bccdec8fb836a07ddbd574587593b9cdcf75"}, -] - [[package]] name = "huggingface-hub" version = "0.20.2" @@ -1213,13 +1164,13 @@ files = [ [[package]] name = "ipykernel" -version = "6.29.0" +version = "6.28.0" description = "IPython Kernel for Jupyter" optional = false python-versions = ">=3.8" files = [ - {file = "ipykernel-6.29.0-py3-none-any.whl", hash = "sha256:076663ca68492576f051e4af7720d33f34383e655f2be0d544c8b1c9de915b2f"}, - {file = "ipykernel-6.29.0.tar.gz", hash = "sha256:b5dd3013cab7b330df712891c96cd1ab868c27a7159e606f762015e9bf8ceb3f"}, + {file = "ipykernel-6.28.0-py3-none-any.whl", hash = "sha256:c6e9a9c63a7f4095c0a22a79f765f079f9ec7be4f2430a898ddea889e8665661"}, + {file = "ipykernel-6.28.0.tar.gz", hash = "sha256:69c11403d26de69df02225916f916b37ea4b9af417da0a8c827f84328d88e5f3"}, ] [package.dependencies] @@ -1242,17 +1193,17 @@ cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] pyqt5 = ["pyqt5"] pyside6 = ["pyside6"] -test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (==0.23.2)", "pytest-cov", "pytest-timeout"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] [[package]] name = "ipython" -version = "8.20.0" +version = "8.19.0" description = "IPython: Productive Interactive Computing" optional = false python-versions = ">=3.10" files = [ - {file = "ipython-8.20.0-py3-none-any.whl", hash = "sha256:bc9716aad6f29f36c449e30821c9dd0c1c1a7b59ddcc26931685b87b4c569619"}, - {file = "ipython-8.20.0.tar.gz", hash = "sha256:2f21bd3fc1d51550c89ee3944ae04bbc7bc79e129ea0937da6e6c68bfdbf117a"}, + {file = "ipython-8.19.0-py3-none-any.whl", hash = "sha256:2f55d59370f59d0d2b2212109fe0e6035cfea436b1c0e6150ad2244746272ec5"}, + {file = "ipython-8.19.0.tar.gz", hash = "sha256:ac4da4ecf0042fb4e0ce57c60430c2db3c719fa8bdf92f8631d6bd8a5785d1f0"}, ] [package.dependencies] @@ -1352,13 +1303,13 @@ testing = ["Django", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] [[package]] name = "jinja2" -version = "3.1.3" +version = "3.1.2" description = "A very fast and expressive template engine." optional = false python-versions = ">=3.7" files = [ - {file = "Jinja2-3.1.3-py3-none-any.whl", hash = "sha256:7d6d50dd97d52cbc355597bd845fabfbac3f551e1f99619e39a35ce8c370b5fa"}, - {file = "Jinja2-3.1.3.tar.gz", hash = "sha256:ac8bd6544d4bb2c9792bf3a159e80bba8fda7f07e81bc3aed565432d5925ba90"}, + {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, + {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, ] [package.dependencies] @@ -1394,13 +1345,13 @@ files = [ [[package]] name = "jsonschema" -version = "4.21.0" +version = "4.20.0" description = "An implementation of JSON Schema validation for Python" optional = false python-versions = ">=3.8" files = [ - {file = "jsonschema-4.21.0-py3-none-any.whl", hash = "sha256:70a09719d375c0a2874571b363c8a24be7df8071b80c9aa76bc4551e7297c63c"}, - {file = "jsonschema-4.21.0.tar.gz", hash = "sha256:3ba18e27f7491ea4a1b22edce00fb820eec968d397feb3f9cb61d5894bb38167"}, + {file = "jsonschema-4.20.0-py3-none-any.whl", hash = "sha256:ed6231f0429ecf966f5bc8dfef245998220549cbbcf140f913b7464c52c3b6b3"}, + {file = "jsonschema-4.20.0.tar.gz", hash = "sha256:4f614fd46d8d61258610998997743ec5492a648b33cf478c1ddc23ed4598a5fa"}, ] [package.dependencies] @@ -1503,13 +1454,13 @@ test = ["flaky", "pexpect", "pytest"] [[package]] name = "jupyter-core" -version = "5.7.1" +version = "5.7.0" description = "Jupyter core package. A base package on which Jupyter projects rely." optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_core-5.7.1-py3-none-any.whl", hash = "sha256:c65c82126453a723a2804aa52409930434598fd9d35091d63dfb919d2b765bb7"}, - {file = "jupyter_core-5.7.1.tar.gz", hash = "sha256:de61a9d7fc71240f688b2fb5ab659fbb56979458dc66a71decd098e03c79e218"}, + {file = "jupyter_core-5.7.0-py3-none-any.whl", hash = "sha256:16eea462f7dad23ba9f86542bdf17f830804e2028eb48d609b6134d91681e983"}, + {file = "jupyter_core-5.7.0.tar.gz", hash = "sha256:cb8d3ed92144d2463a3c5664fdd686a3f0c1442ea45df8babb1c1a9e6333fe03"}, ] [package.dependencies] @@ -1562,13 +1513,13 @@ jupyter-server = ">=1.1.2" [[package]] name = "jupyter-server" -version = "2.12.5" +version = "2.12.2" description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." optional = false python-versions = ">=3.8" files = [ - {file = "jupyter_server-2.12.5-py3-none-any.whl", hash = "sha256:184a0f82809a8522777cfb6b760ab6f4b1bb398664c5860a27cec696cb884923"}, - {file = "jupyter_server-2.12.5.tar.gz", hash = "sha256:0edb626c94baa22809be1323f9770cf1c00a952b17097592e40d03e6a3951689"}, + {file = "jupyter_server-2.12.2-py3-none-any.whl", hash = "sha256:abcfa33f98a959f908c8733aa2d9fa0101d26941cbd49b148f4cef4d3046fc61"}, + {file = "jupyter_server-2.12.2.tar.gz", hash = "sha256:5eae86be15224b5375cdec0c3542ce72ff20f7a25297a2a8166a250bb455a519"}, ] [package.dependencies] @@ -1695,13 +1646,13 @@ files = [ [[package]] name = "markdown" -version = "3.5.2" +version = "3.5.1" description = "Python implementation of John Gruber's Markdown." optional = false python-versions = ">=3.8" files = [ - {file = "Markdown-3.5.2-py3-none-any.whl", hash = "sha256:d43323865d89fc0cb9b20c75fc8ad313af307cc087e84b657d9eec768eddeadd"}, - {file = "Markdown-3.5.2.tar.gz", hash = "sha256:e1ac7b3dc550ee80e602e71c1d168002f062e49f1b11e26a36264dafd4df2ef8"}, + {file = "Markdown-3.5.1-py3-none-any.whl", hash = "sha256:5874b47d4ee3f0b14d764324d2c94c03ea66bee56f2d929da9f2508d65e722dc"}, + {file = "Markdown-3.5.1.tar.gz", hash = "sha256:b65d7beb248dc22f2e8a31fb706d93798093c308dc1aba295aedeb9d41a813bd"}, ] [package.extras] @@ -1940,13 +1891,13 @@ mkdocs = ">=1.0.3" [[package]] name = "mkdocs-material" -version = "9.5.4" +version = "9.5.3" description = "Documentation that simply works" optional = false python-versions = ">=3.8" files = [ - {file = "mkdocs_material-9.5.4-py3-none-any.whl", hash = "sha256:efd7cc8ae03296d728da9bd38f4db8b07ab61f9738a0cbd0dfaf2a15a50e7343"}, - {file = "mkdocs_material-9.5.4.tar.gz", hash = "sha256:3d196ee67fad16b2df1a458d650a8ac1890294eaae368d26cee71bc24ad41c40"}, + {file = "mkdocs_material-9.5.3-py3-none-any.whl", hash = "sha256:76c93a8525cceb0b395b9cedab3428bf518cf6439adef2b940f1c1574b775d89"}, + {file = "mkdocs_material-9.5.3.tar.gz", hash = "sha256:5899219f422f0a6de784232d9d40374416302ffae3c160cacc72969fcc1ee372"}, ] [package.dependencies] @@ -2021,13 +1972,13 @@ python-legacy = ["mkdocstrings-python-legacy (>=0.2.1)"] [[package]] name = "mkdocstrings-python" -version = "1.8.0" +version = "1.7.5" description = "A Python handler for mkdocstrings." optional = false python-versions = ">=3.8" files = [ - {file = "mkdocstrings_python-1.8.0-py3-none-any.whl", hash = "sha256:4209970cc90bec194568682a535848a8d8489516c6ed4adbe58bbc67b699ca9d"}, - {file = "mkdocstrings_python-1.8.0.tar.gz", hash = "sha256:1488bddf50ee42c07d9a488dddc197f8e8999c2899687043ec5dd1643d057192"}, + {file = "mkdocstrings_python-1.7.5-py3-none-any.whl", hash = "sha256:5f6246026353f0c0785135db70c3fe9a5d9318990fc7ceb11d62097b8ffdd704"}, + {file = "mkdocstrings_python-1.7.5.tar.gz", hash = "sha256:c7d143728257dbf1aa550446555a554b760dcd40a763f077189d298502b800be"}, ] [package.dependencies] @@ -2051,34 +2002,6 @@ markdown = ">=3.3.3" mkdocs = ">=1.5.0" nbconvert = ">=6.0.0" -[[package]] -name = "mpi4py" -version = "3.1.5" -description = "Python bindings for MPI" -optional = true -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" -files = [ - {file = "mpi4py-3.1.5-cp27-cp27m-win32.whl", hash = "sha256:dbc47296a560d2a5aa50d716cb9bf90552349687ee068a493d646e3f6c20a9a4"}, - {file = "mpi4py-3.1.5-cp27-cp27m-win_amd64.whl", hash = "sha256:b3e06c9ef1d0a2da3d5c7431bbf4af50a01ac9915fb4ab33409a21cd9e67be9c"}, - {file = "mpi4py-3.1.5-cp310-cp310-win32.whl", hash = "sha256:f39df0d985cb6fb342ee6c6902cadf21b2d828d7df00b182573da0242646b715"}, - {file = "mpi4py-3.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:aec0e6238ed76c930c07df7dcea19f3be5ca958fb76353e668b19511ed4c86d7"}, - {file = "mpi4py-3.1.5-cp311-cp311-win32.whl", hash = "sha256:f73686e3ff8f76bacb9ecacba0515f84392ad4c561b76603f9680f0fe64ef0ed"}, - {file = "mpi4py-3.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:d854dae2e62042a0355fa24ef7bea50b5380414806319240a57e654be1e59d9c"}, - {file = "mpi4py-3.1.5-cp312-cp312-win32.whl", hash = "sha256:17cc793bf2fe3921f2c3cda59a2a708d2e0c68ce07c8b9d2b6ee1a9adc28fe3d"}, - {file = "mpi4py-3.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:8b38ad45a843bcbd7d11e23fd901016bb8069f35a9d4500666090465a2f734f2"}, - {file = "mpi4py-3.1.5-cp35-cp35m-win32.whl", hash = "sha256:61d6c5df1803002cf6c61523417d48f9ecf64b55808e3d9d47815c174d7125dd"}, - {file = "mpi4py-3.1.5-cp35-cp35m-win_amd64.whl", hash = "sha256:de6291eb7587e09637bc56f0e00d94863a1253f9d06b2ee97937bb9d49b53615"}, - {file = "mpi4py-3.1.5-cp36-cp36m-win32.whl", hash = "sha256:dd7ebe2d9c52330670e2424ba3a535df999e57bdaf3a93a8967fede1d2d5927d"}, - {file = "mpi4py-3.1.5-cp36-cp36m-win_amd64.whl", hash = "sha256:0de523428e15b453539da14208489a19f9fc7570cc8f9d1a3365175e441bba8e"}, - {file = "mpi4py-3.1.5-cp37-cp37m-win32.whl", hash = "sha256:9cc87b70ce7164fbc521c45bbc4f5fb9acce8ea70d3503da0768ef67ba52186a"}, - {file = "mpi4py-3.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:8574fe09d34d89531be6e640d18b54f7b7a046514de069f18c181bafeff51108"}, - {file = "mpi4py-3.1.5-cp38-cp38-win32.whl", hash = "sha256:265f4c0a9cfdd606701fa36e0b373afae5930bedbf03c8360fd62f8c38639bf6"}, - {file = "mpi4py-3.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:edf2224fa9c4416f891ac87f8e5b8a754ab45bc31dcfc4fbc8e29d6c643084c9"}, - {file = "mpi4py-3.1.5-cp39-cp39-win32.whl", hash = "sha256:c4e6e776e183dbf3aa0945679303120716bb3f0826faeeb740dc5a055fcff3a8"}, - {file = "mpi4py-3.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:3a2853b7b41899a17c3f1e6ad27e48a30e98d49d12830b345672fef3a6dcc8d6"}, - {file = "mpi4py-3.1.5.tar.gz", hash = "sha256:a706e76db9255135c2fb5d1ef54cb4f7b0e4ad9e33cbada7de27626205f2a153"}, -] - [[package]] name = "mpmath" version = "1.3.0" @@ -2231,13 +2154,13 @@ test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>= [[package]] name = "nbconvert" -version = "7.14.2" +version = "7.14.0" description = "Converting Jupyter Notebooks" optional = false python-versions = ">=3.8" files = [ - {file = "nbconvert-7.14.2-py3-none-any.whl", hash = "sha256:db28590cef90f7faf2ebbc71acd402cbecf13d29176df728c0a9025a49345ea1"}, - {file = "nbconvert-7.14.2.tar.gz", hash = "sha256:a7f8808fd4e082431673ac538400218dd45efd076fbeb07cc6e5aa5a3a4e949e"}, + {file = "nbconvert-7.14.0-py3-none-any.whl", hash = "sha256:483dde47facdaa4875903d651305ad53cd76e2255ae3c61efe412a95f2d22a24"}, + {file = "nbconvert-7.14.0.tar.gz", hash = "sha256:92b9a44b63e5a7fb4f6fa0ef41261e35c16925046ccd1c04a5c8099bf100476e"}, ] [package.dependencies] @@ -2289,13 +2212,13 @@ test = ["pep440", "pre-commit", "pytest", "testpath"] [[package]] name = "nest-asyncio" -version = "1.5.9" +version = "1.5.8" description = "Patch asyncio to allow nested event loops" optional = false python-versions = ">=3.5" files = [ - {file = "nest_asyncio-1.5.9-py3-none-any.whl", hash = "sha256:61ec07ef052e72e3de22045b81b2cc7d71fceb04c568ba0b2e4b2f9f5231bec2"}, - {file = "nest_asyncio-1.5.9.tar.gz", hash = "sha256:d1e1144e9c6e3e6392e0fcf5211cb1c8374b5648a98f1ebe48e5336006b41907"}, + {file = "nest_asyncio-1.5.8-py3-none-any.whl", hash = "sha256:accda7a339a70599cb08f9dd09a67e0c2ef8d8d6f4c07f96ab203f2ae254e48d"}, + {file = "nest_asyncio-1.5.8.tar.gz", hash = "sha256:25aa2ca0d2a5b5531956b9e273b45cf664cae2b145101d73b86b199978d48fdb"}, ] [[package]] @@ -2316,33 +2239,6 @@ doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9. extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"] test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] -[[package]] -name = "ninja" -version = "1.11.1.1" -description = "Ninja is a small build system with a focus on speed" -optional = false -python-versions = "*" -files = [ - {file = "ninja-1.11.1.1-py2.py3-none-macosx_10_9_universal2.macosx_10_9_x86_64.macosx_11_0_arm64.macosx_11_0_universal2.whl", hash = "sha256:376889c76d87b95b5719fdd61dd7db193aa7fd4432e5d52d2e44e4c497bdbbee"}, - {file = "ninja-1.11.1.1-py2.py3-none-manylinux1_i686.manylinux_2_5_i686.whl", hash = "sha256:ecf80cf5afd09f14dcceff28cb3f11dc90fb97c999c89307aea435889cb66877"}, - {file = "ninja-1.11.1.1-py2.py3-none-manylinux1_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:84502ec98f02a037a169c4b0d5d86075eaf6afc55e1879003d6cab51ced2ea4b"}, - {file = "ninja-1.11.1.1-py2.py3-none-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:73b93c14046447c7c5cc892433d4fae65d6364bec6685411cb97a8bcf815f93a"}, - {file = "ninja-1.11.1.1-py2.py3-none-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:18302d96a5467ea98b68e1cae1ae4b4fb2b2a56a82b955193c637557c7273dbd"}, - {file = "ninja-1.11.1.1-py2.py3-none-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:aad34a70ef15b12519946c5633344bc775a7656d789d9ed5fdb0d456383716ef"}, - {file = "ninja-1.11.1.1-py2.py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:d491fc8d89cdcb416107c349ad1e3a735d4c4af5e1cb8f5f727baca6350fdaea"}, - {file = "ninja-1.11.1.1-py2.py3-none-musllinux_1_1_i686.whl", hash = "sha256:7563ce1d9fe6ed5af0b8dd9ab4a214bf4ff1f2f6fd6dc29f480981f0f8b8b249"}, - {file = "ninja-1.11.1.1-py2.py3-none-musllinux_1_1_ppc64le.whl", hash = "sha256:9df724344202b83018abb45cb1efc22efd337a1496514e7e6b3b59655be85205"}, - {file = "ninja-1.11.1.1-py2.py3-none-musllinux_1_1_s390x.whl", hash = "sha256:3e0f9be5bb20d74d58c66cc1c414c3e6aeb45c35b0d0e41e8d739c2c0d57784f"}, - {file = "ninja-1.11.1.1-py2.py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:76482ba746a2618eecf89d5253c0d1e4f1da1270d41e9f54dfbd91831b0f6885"}, - {file = "ninja-1.11.1.1-py2.py3-none-win32.whl", hash = "sha256:fa2ba9d74acfdfbfbcf06fad1b8282de8a7a8c481d9dee45c859a8c93fcc1082"}, - {file = "ninja-1.11.1.1-py2.py3-none-win_amd64.whl", hash = "sha256:95da904130bfa02ea74ff9c0116b4ad266174fafb1c707aa50212bc7859aebf1"}, - {file = "ninja-1.11.1.1-py2.py3-none-win_arm64.whl", hash = "sha256:185e0641bde601e53841525c4196278e9aaf4463758da6dd1e752c0a0f54136a"}, - {file = "ninja-1.11.1.1.tar.gz", hash = "sha256:9d793b08dd857e38d0b6ffe9e6b7145d7c485a42dcfea04905ca0cdb6017cc3c"}, -] - -[package.extras] -test = ["codecov (>=2.0.5)", "coverage (>=4.2)", "flake8 (>=3.0.4)", "pytest (>=4.5.0)", "pytest-cov (>=2.7.1)", "pytest-runner (>=5.1)", "pytest-virtualenv (>=1.7.0)", "virtualenv (>=15.0.3)"] - [[package]] name = "nodeenv" version = "1.8.0" @@ -2837,22 +2733,22 @@ wcwidth = "*" [[package]] name = "protobuf" -version = "4.25.2" +version = "4.25.1" description = "" optional = false python-versions = ">=3.8" files = [ - {file = "protobuf-4.25.2-cp310-abi3-win32.whl", hash = "sha256:b50c949608682b12efb0b2717f53256f03636af5f60ac0c1d900df6213910fd6"}, - {file = "protobuf-4.25.2-cp310-abi3-win_amd64.whl", hash = "sha256:8f62574857ee1de9f770baf04dde4165e30b15ad97ba03ceac65f760ff018ac9"}, - {file = "protobuf-4.25.2-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:2db9f8fa64fbdcdc93767d3cf81e0f2aef176284071507e3ede160811502fd3d"}, - {file = "protobuf-4.25.2-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:10894a2885b7175d3984f2be8d9850712c57d5e7587a2410720af8be56cdaf62"}, - {file = "protobuf-4.25.2-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:fc381d1dd0516343f1440019cedf08a7405f791cd49eef4ae1ea06520bc1c020"}, - {file = "protobuf-4.25.2-cp38-cp38-win32.whl", hash = "sha256:33a1aeef4b1927431d1be780e87b641e322b88d654203a9e9d93f218ee359e61"}, - {file = "protobuf-4.25.2-cp38-cp38-win_amd64.whl", hash = "sha256:47f3de503fe7c1245f6f03bea7e8d3ec11c6c4a2ea9ef910e3221c8a15516d62"}, - {file = "protobuf-4.25.2-cp39-cp39-win32.whl", hash = "sha256:5e5c933b4c30a988b52e0b7c02641760a5ba046edc5e43d3b94a74c9fc57c1b3"}, - {file = "protobuf-4.25.2-cp39-cp39-win_amd64.whl", hash = "sha256:d66a769b8d687df9024f2985d5137a337f957a0916cf5464d1513eee96a63ff0"}, - {file = "protobuf-4.25.2-py3-none-any.whl", hash = "sha256:a8b7a98d4ce823303145bf3c1a8bdb0f2f4642a414b196f04ad9853ed0c8f830"}, - {file = "protobuf-4.25.2.tar.gz", hash = "sha256:fe599e175cb347efc8ee524bcd4b902d11f7262c0e569ececcb89995c15f0a5e"}, + {file = "protobuf-4.25.1-cp310-abi3-win32.whl", hash = "sha256:193f50a6ab78a970c9b4f148e7c750cfde64f59815e86f686c22e26b4fe01ce7"}, + {file = "protobuf-4.25.1-cp310-abi3-win_amd64.whl", hash = "sha256:3497c1af9f2526962f09329fd61a36566305e6c72da2590ae0d7d1322818843b"}, + {file = "protobuf-4.25.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:0bf384e75b92c42830c0a679b0cd4d6e2b36ae0cf3dbb1e1dfdda48a244f4bcd"}, + {file = "protobuf-4.25.1-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:0f881b589ff449bf0b931a711926e9ddaad3b35089cc039ce1af50b21a4ae8cb"}, + {file = "protobuf-4.25.1-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:ca37bf6a6d0046272c152eea90d2e4ef34593aaa32e8873fc14c16440f22d4b7"}, + {file = "protobuf-4.25.1-cp38-cp38-win32.whl", hash = "sha256:abc0525ae2689a8000837729eef7883b9391cd6aa7950249dcf5a4ede230d5dd"}, + {file = "protobuf-4.25.1-cp38-cp38-win_amd64.whl", hash = "sha256:1484f9e692091450e7edf418c939e15bfc8fc68856e36ce399aed6889dae8bb0"}, + {file = "protobuf-4.25.1-cp39-cp39-win32.whl", hash = "sha256:8bdbeaddaac52d15c6dce38c71b03038ef7772b977847eb6d374fc86636fa510"}, + {file = "protobuf-4.25.1-cp39-cp39-win_amd64.whl", hash = "sha256:becc576b7e6b553d22cbdf418686ee4daa443d7217999125c045ad56322dda10"}, + {file = "protobuf-4.25.1-py3-none-any.whl", hash = "sha256:a19731d5e83ae4737bb2a089605e636077ac001d18781b3cf489b9546c7c80d6"}, + {file = "protobuf-4.25.1.tar.gz", hash = "sha256:57d65074b4f5baa4ab5da1605c02be90ac20c8b40fb137d6a8df9f416b0d0ce2"}, ] [[package]] @@ -2908,17 +2804,6 @@ files = [ [package.extras] tests = ["pytest"] -[[package]] -name = "py-cpuinfo" -version = "9.0.0" -description = "Get CPU info with pure Python" -optional = false -python-versions = "*" -files = [ - {file = "py-cpuinfo-9.0.0.tar.gz", hash = "sha256:3cdbbf3fac90dc6f118bfd64384f309edeadd902d7c8fb17f02ffa1fc3f49690"}, - {file = "py_cpuinfo-9.0.0-py3-none-any.whl", hash = "sha256:859625bc251f64e21f077d099d4162689c762b5d6a4c3c97553d56241c9674d5"}, -] - [[package]] name = "pyarrow" version = "14.0.2" @@ -3127,13 +3012,13 @@ typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" [[package]] name = "pydoclint" -version = "0.3.9" +version = "0.3.8" description = "A Python docstring linter that checks arguments, returns, yields, and raises sections" optional = false python-versions = ">=3.8" files = [ - {file = "pydoclint-0.3.9-py2.py3-none-any.whl", hash = "sha256:41e2db41e8b0e5259437d9773e56f1e892312da5aca26335729bad15c84be60c"}, - {file = "pydoclint-0.3.9.tar.gz", hash = "sha256:22864e6788f8051a11d10296957238b86b7ac7081dde0853531abfffb441f797"}, + {file = "pydoclint-0.3.8-py2.py3-none-any.whl", hash = "sha256:8e5e020071bb64056fd3f1d68f3b1162ffeb8a3fd6424f73fef7272dac62c166"}, + {file = "pydoclint-0.3.8.tar.gz", hash = "sha256:5a9686a5fb410343e998402686b87cc07df647ea3ab92528c0b0cf8505584e44"}, ] [package.dependencies] @@ -3177,26 +3062,15 @@ pyyaml = "*" [package.extras] extra = ["pygments (>=2.12)"] -[[package]] -name = "pynvml" -version = "11.5.0" -description = "Python Bindings for the NVIDIA Management Library" -optional = false -python-versions = ">=3.6" -files = [ - {file = "pynvml-11.5.0-py3-none-any.whl", hash = "sha256:5cce014ac01b098d08f06178f86c37be409b80b2e903a5a03ce15eed60f55e25"}, - {file = "pynvml-11.5.0.tar.gz", hash = "sha256:d027b21b95b1088b9fc278117f9f61b7c67f8e33a787e9f83f735f0f71ac32d0"}, -] - [[package]] name = "pyright" -version = "1.1.347" +version = "1.1.344" description = "Command line wrapper for pyright" optional = false python-versions = ">=3.7" files = [ - {file = "pyright-1.1.347-py3-none-any.whl", hash = "sha256:14dd31b594aa3ec464894f66b8a2d206ebef1501e52789eb88cf2a79b0907fbe"}, - {file = "pyright-1.1.347.tar.gz", hash = "sha256:17ea09322f60080f82abc4e622e43d1a5ebaa407ba86963b15b2bc01cca256e0"}, + {file = "pyright-1.1.344-py3-none-any.whl", hash = "sha256:ab7117a911ce25fcd317f42272579f9ae53a6abc8b8a15f6aa069a11281953ee"}, + {file = "pyright-1.1.344.tar.gz", hash = "sha256:ab7c962f00dd8141a5a0192c1060fb34b92d1f9047ad70dda45229938051922b"}, ] [package.dependencies] @@ -3615,13 +3489,13 @@ test = ["pytest (>=6,!=7.0.0,!=7.0.1)", "pytest-cov (>=3.0.0)", "pytest-qt"] [[package]] name = "referencing" -version = "0.32.1" +version = "0.32.0" description = "JSON Referencing + Python" optional = false python-versions = ">=3.8" files = [ - {file = "referencing-0.32.1-py3-none-any.whl", hash = "sha256:7e4dc12271d8e15612bfe35792f5ea1c40970dadf8624602e33db2758f7ee554"}, - {file = "referencing-0.32.1.tar.gz", hash = "sha256:3c57da0513e9563eb7e203ebe9bb3a1b509b042016433bd1e45a2853466c3dd3"}, + {file = "referencing-0.32.0-py3-none-any.whl", hash = "sha256:bdcd3efb936f82ff86f993093f6da7435c7de69a3b3a5a06678a6050184bee99"}, + {file = "referencing-0.32.0.tar.gz", hash = "sha256:689e64fe121843dcfd57b71933318ef1f91188ffb45367332700a86ac8fd6161"}, ] [package.dependencies] @@ -3796,136 +3670,136 @@ jupyter = ["ipywidgets (>=7.5.1,<9)"] [[package]] name = "rpds-py" -version = "0.17.1" +version = "0.16.2" description = "Python bindings to Rust's persistent data structures (rpds)" optional = false python-versions = ">=3.8" files = [ - {file = "rpds_py-0.17.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:4128980a14ed805e1b91a7ed551250282a8ddf8201a4e9f8f5b7e6225f54170d"}, - {file = "rpds_py-0.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ff1dcb8e8bc2261a088821b2595ef031c91d499a0c1b031c152d43fe0a6ecec8"}, - {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d65e6b4f1443048eb7e833c2accb4fa7ee67cc7d54f31b4f0555b474758bee55"}, - {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a71169d505af63bb4d20d23a8fbd4c6ce272e7bce6cc31f617152aa784436f29"}, - {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:436474f17733c7dca0fbf096d36ae65277e8645039df12a0fa52445ca494729d"}, - {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:10162fe3f5f47c37ebf6d8ff5a2368508fe22007e3077bf25b9c7d803454d921"}, - {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:720215373a280f78a1814becb1312d4e4d1077b1202a56d2b0815e95ccb99ce9"}, - {file = "rpds_py-0.17.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:70fcc6c2906cfa5c6a552ba7ae2ce64b6c32f437d8f3f8eea49925b278a61453"}, - {file = "rpds_py-0.17.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:91e5a8200e65aaac342a791272c564dffcf1281abd635d304d6c4e6b495f29dc"}, - {file = "rpds_py-0.17.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:99f567dae93e10be2daaa896e07513dd4bf9c2ecf0576e0533ac36ba3b1d5394"}, - {file = "rpds_py-0.17.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:24e4900a6643f87058a27320f81336d527ccfe503984528edde4bb660c8c8d59"}, - {file = "rpds_py-0.17.1-cp310-none-win32.whl", hash = "sha256:0bfb09bf41fe7c51413f563373e5f537eaa653d7adc4830399d4e9bdc199959d"}, - {file = "rpds_py-0.17.1-cp310-none-win_amd64.whl", hash = "sha256:20de7b7179e2031a04042e85dc463a93a82bc177eeba5ddd13ff746325558aa6"}, - {file = "rpds_py-0.17.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:65dcf105c1943cba45d19207ef51b8bc46d232a381e94dd38719d52d3980015b"}, - {file = "rpds_py-0.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:01f58a7306b64e0a4fe042047dd2b7d411ee82e54240284bab63e325762c1147"}, - {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:071bc28c589b86bc6351a339114fb7a029f5cddbaca34103aa573eba7b482382"}, - {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:ae35e8e6801c5ab071b992cb2da958eee76340e6926ec693b5ff7d6381441745"}, - {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:149c5cd24f729e3567b56e1795f74577aa3126c14c11e457bec1b1c90d212e38"}, - {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e796051f2070f47230c745d0a77a91088fbee2cc0502e9b796b9c6471983718c"}, - {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:60e820ee1004327609b28db8307acc27f5f2e9a0b185b2064c5f23e815f248f8"}, - {file = "rpds_py-0.17.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1957a2ab607f9added64478a6982742eb29f109d89d065fa44e01691a20fc20a"}, - {file = "rpds_py-0.17.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8587fd64c2a91c33cdc39d0cebdaf30e79491cc029a37fcd458ba863f8815383"}, - {file = "rpds_py-0.17.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4dc889a9d8a34758d0fcc9ac86adb97bab3fb7f0c4d29794357eb147536483fd"}, - {file = "rpds_py-0.17.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:2953937f83820376b5979318840f3ee47477d94c17b940fe31d9458d79ae7eea"}, - {file = "rpds_py-0.17.1-cp311-none-win32.whl", hash = "sha256:1bfcad3109c1e5ba3cbe2f421614e70439f72897515a96c462ea657261b96518"}, - {file = "rpds_py-0.17.1-cp311-none-win_amd64.whl", hash = "sha256:99da0a4686ada4ed0f778120a0ea8d066de1a0a92ab0d13ae68492a437db78bf"}, - {file = "rpds_py-0.17.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:1dc29db3900cb1bb40353772417800f29c3d078dbc8024fd64655a04ee3c4bdf"}, - {file = "rpds_py-0.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:82ada4a8ed9e82e443fcef87e22a3eed3654dd3adf6e3b3a0deb70f03e86142a"}, - {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d36b2b59e8cc6e576f8f7b671e32f2ff43153f0ad6d0201250a7c07f25d570e"}, - {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3677fcca7fb728c86a78660c7fb1b07b69b281964673f486ae72860e13f512ad"}, - {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:516fb8c77805159e97a689e2f1c80655c7658f5af601c34ffdb916605598cda2"}, - {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:df3b6f45ba4515632c5064e35ca7f31d51d13d1479673185ba8f9fefbbed58b9"}, - {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a967dd6afda7715d911c25a6ba1517975acd8d1092b2f326718725461a3d33f9"}, - {file = "rpds_py-0.17.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dbbb95e6fc91ea3102505d111b327004d1c4ce98d56a4a02e82cd451f9f57140"}, - {file = "rpds_py-0.17.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:02866e060219514940342a1f84303a1ef7a1dad0ac311792fbbe19b521b489d2"}, - {file = "rpds_py-0.17.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:2528ff96d09f12e638695f3a2e0c609c7b84c6df7c5ae9bfeb9252b6fa686253"}, - {file = "rpds_py-0.17.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:bd345a13ce06e94c753dab52f8e71e5252aec1e4f8022d24d56decd31e1b9b23"}, - {file = "rpds_py-0.17.1-cp312-none-win32.whl", hash = "sha256:2a792b2e1d3038daa83fa474d559acfd6dc1e3650ee93b2662ddc17dbff20ad1"}, - {file = "rpds_py-0.17.1-cp312-none-win_amd64.whl", hash = "sha256:292f7344a3301802e7c25c53792fae7d1593cb0e50964e7bcdcc5cf533d634e3"}, - {file = "rpds_py-0.17.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:8ffe53e1d8ef2520ebcf0c9fec15bb721da59e8ef283b6ff3079613b1e30513d"}, - {file = "rpds_py-0.17.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:4341bd7579611cf50e7b20bb8c2e23512a3dc79de987a1f411cb458ab670eb90"}, - {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2f4eb548daf4836e3b2c662033bfbfc551db58d30fd8fe660314f86bf8510b93"}, - {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b686f25377f9c006acbac63f61614416a6317133ab7fafe5de5f7dc8a06d42eb"}, - {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4e21b76075c01d65d0f0f34302b5a7457d95721d5e0667aea65e5bb3ab415c25"}, - {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b86b21b348f7e5485fae740d845c65a880f5d1eda1e063bc59bef92d1f7d0c55"}, - {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f175e95a197f6a4059b50757a3dca33b32b61691bdbd22c29e8a8d21d3914cae"}, - {file = "rpds_py-0.17.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1701fc54460ae2e5efc1dd6350eafd7a760f516df8dbe51d4a1c79d69472fbd4"}, - {file = "rpds_py-0.17.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:9051e3d2af8f55b42061603e29e744724cb5f65b128a491446cc029b3e2ea896"}, - {file = "rpds_py-0.17.1-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:7450dbd659fed6dd41d1a7d47ed767e893ba402af8ae664c157c255ec6067fde"}, - {file = "rpds_py-0.17.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:5a024fa96d541fd7edaa0e9d904601c6445e95a729a2900c5aec6555fe921ed6"}, - {file = "rpds_py-0.17.1-cp38-none-win32.whl", hash = "sha256:da1ead63368c04a9bded7904757dfcae01eba0e0f9bc41d3d7f57ebf1c04015a"}, - {file = "rpds_py-0.17.1-cp38-none-win_amd64.whl", hash = "sha256:841320e1841bb53fada91c9725e766bb25009cfd4144e92298db296fb6c894fb"}, - {file = "rpds_py-0.17.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:f6c43b6f97209e370124baf2bf40bb1e8edc25311a158867eb1c3a5d449ebc7a"}, - {file = "rpds_py-0.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5e7d63ec01fe7c76c2dbb7e972fece45acbb8836e72682bde138e7e039906e2c"}, - {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:81038ff87a4e04c22e1d81f947c6ac46f122e0c80460b9006e6517c4d842a6ec"}, - {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:810685321f4a304b2b55577c915bece4c4a06dfe38f6e62d9cc1d6ca8ee86b99"}, - {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:25f071737dae674ca8937a73d0f43f5a52e92c2d178330b4c0bb6ab05586ffa6"}, - {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aa5bfb13f1e89151ade0eb812f7b0d7a4d643406caaad65ce1cbabe0a66d695f"}, - {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dfe07308b311a8293a0d5ef4e61411c5c20f682db6b5e73de6c7c8824272c256"}, - {file = "rpds_py-0.17.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:a000133a90eea274a6f28adc3084643263b1e7c1a5a66eb0a0a7a36aa757ed74"}, - {file = "rpds_py-0.17.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:5d0e8a6434a3fbf77d11448c9c25b2f25244226cfbec1a5159947cac5b8c5fa4"}, - {file = "rpds_py-0.17.1-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:efa767c220d94aa4ac3a6dd3aeb986e9f229eaf5bce92d8b1b3018d06bed3772"}, - {file = "rpds_py-0.17.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:dbc56680ecf585a384fbd93cd42bc82668b77cb525343170a2d86dafaed2a84b"}, - {file = "rpds_py-0.17.1-cp39-none-win32.whl", hash = "sha256:270987bc22e7e5a962b1094953ae901395e8c1e1e83ad016c5cfcfff75a15a3f"}, - {file = "rpds_py-0.17.1-cp39-none-win_amd64.whl", hash = "sha256:2a7b2f2f56a16a6d62e55354dd329d929560442bd92e87397b7a9586a32e3e76"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a3264e3e858de4fc601741498215835ff324ff2482fd4e4af61b46512dd7fc83"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:f2f3b28b40fddcb6c1f1f6c88c6f3769cd933fa493ceb79da45968a21dccc920"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9584f8f52010295a4a417221861df9bea4c72d9632562b6e59b3c7b87a1522b7"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c64602e8be701c6cfe42064b71c84ce62ce66ddc6422c15463fd8127db3d8066"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:060f412230d5f19fc8c8b75f315931b408d8ebf56aec33ef4168d1b9e54200b1"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9412abdf0ba70faa6e2ee6c0cc62a8defb772e78860cef419865917d86c7342"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9737bdaa0ad33d34c0efc718741abaafce62fadae72c8b251df9b0c823c63b22"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:9f0e4dc0f17dcea4ab9d13ac5c666b6b5337042b4d8f27e01b70fae41dd65c57"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:1db228102ab9d1ff4c64148c96320d0be7044fa28bd865a9ce628ce98da5973d"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:d8bbd8e56f3ba25a7d0cf980fc42b34028848a53a0e36c9918550e0280b9d0b6"}, - {file = "rpds_py-0.17.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:be22ae34d68544df293152b7e50895ba70d2a833ad9566932d750d3625918b82"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:bf046179d011e6114daf12a534d874958b039342b347348a78b7cdf0dd9d6041"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:1a746a6d49665058a5896000e8d9d2f1a6acba8a03b389c1e4c06e11e0b7f40d"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0b8bf5b8db49d8fd40f54772a1dcf262e8be0ad2ab0206b5a2ec109c176c0a4"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f7f4cb1f173385e8a39c29510dd11a78bf44e360fb75610594973f5ea141028b"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7fbd70cb8b54fe745301921b0816c08b6d917593429dfc437fd024b5ba713c58"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9bdf1303df671179eaf2cb41e8515a07fc78d9d00f111eadbe3e14262f59c3d0"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fad059a4bd14c45776600d223ec194e77db6c20255578bb5bcdd7c18fd169361"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3664d126d3388a887db44c2e293f87d500c4184ec43d5d14d2d2babdb4c64cad"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:698ea95a60c8b16b58be9d854c9f993c639f5c214cf9ba782eca53a8789d6b19"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:c3d2010656999b63e628a3c694f23020322b4178c450dc478558a2b6ef3cb9bb"}, - {file = "rpds_py-0.17.1-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:938eab7323a736533f015e6069a7d53ef2dcc841e4e533b782c2bfb9fb12d84b"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:1e626b365293a2142a62b9a614e1f8e331b28f3ca57b9f05ebbf4cf2a0f0bdc5"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:380e0df2e9d5d5d339803cfc6d183a5442ad7ab3c63c2a0982e8c824566c5ccc"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b760a56e080a826c2e5af09002c1a037382ed21d03134eb6294812dda268c811"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5576ee2f3a309d2bb403ec292d5958ce03953b0e57a11d224c1f134feaf8c40f"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1f3c3461ebb4c4f1bbc70b15d20b565759f97a5aaf13af811fcefc892e9197ba"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:637b802f3f069a64436d432117a7e58fab414b4e27a7e81049817ae94de45d8d"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffee088ea9b593cc6160518ba9bd319b5475e5f3e578e4552d63818773c6f56a"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3ac732390d529d8469b831949c78085b034bff67f584559340008d0f6041a049"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:93432e747fb07fa567ad9cc7aaadd6e29710e515aabf939dfbed8046041346c6"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:7b7d9ca34542099b4e185b3c2a2b2eda2e318a7dbde0b0d83357a6d4421b5296"}, - {file = "rpds_py-0.17.1-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:0387ce69ba06e43df54e43968090f3626e231e4bc9150e4c3246947567695f68"}, - {file = "rpds_py-0.17.1.tar.gz", hash = "sha256:0210b2668f24c078307260bf88bdac9d6f1093635df5123789bfee4d8d7fc8e7"}, + {file = "rpds_py-0.16.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:509b617ac787cd1149600e731db9274ebbef094503ca25158e6f23edaba1ca8f"}, + {file = "rpds_py-0.16.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:413b9c17388bbd0d87a329d8e30c1a4c6e44e2bb25457f43725a8e6fe4161e9e"}, + {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2946b120718eba9af2b4dd103affc1164a87b9e9ebff8c3e4c05d7b7a7e274e2"}, + {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:35ae5ece284cf36464eb160880018cf6088a9ac5ddc72292a6092b6ef3f4da53"}, + {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3dc6a7620ba7639a3db6213da61312cb4aa9ac0ca6e00dc1cbbdc21c2aa6eb57"}, + {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8cb6fe8ecdfffa0e711a75c931fb39f4ba382b4b3ccedeca43f18693864fe850"}, + {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6dace7b26a13353e24613417ce2239491b40a6ad44e5776a18eaff7733488b44"}, + {file = "rpds_py-0.16.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1bdbc5fcb04a7309074de6b67fa9bc4b418ab3fc435fec1f2779a0eced688d04"}, + {file = "rpds_py-0.16.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f42e25c016927e2a6b1ce748112c3ab134261fc2ddc867e92d02006103e1b1b7"}, + {file = "rpds_py-0.16.2-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:eab36eae3f3e8e24b05748ec9acc66286662f5d25c52ad70cadab544e034536b"}, + {file = "rpds_py-0.16.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:0474df4ade9a3b4af96c3d36eb81856cb9462e4c6657d4caecfd840d2a13f3c9"}, + {file = "rpds_py-0.16.2-cp310-none-win32.whl", hash = "sha256:84c5a4d1f9dd7e2d2c44097fb09fffe728629bad31eb56caf97719e55575aa82"}, + {file = "rpds_py-0.16.2-cp310-none-win_amd64.whl", hash = "sha256:2bd82db36cd70b3628c0c57d81d2438e8dd4b7b32a6a9f25f24ab0e657cb6c4e"}, + {file = "rpds_py-0.16.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:adc0c3d6fc6ae35fee3e4917628983f6ce630d513cbaad575b4517d47e81b4bb"}, + {file = "rpds_py-0.16.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ec23fcad480e77ede06cf4127a25fc440f7489922e17fc058f426b5256ee0edb"}, + {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07aab64e2808c3ebac2a44f67e9dc0543812b715126dfd6fe4264df527556cb6"}, + {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:a4ebb8b20bd09c5ce7884c8f0388801100f5e75e7f733b1b6613c713371feefc"}, + {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a3d7e2ea25d3517c6d7e5a1cc3702cffa6bd18d9ef8d08d9af6717fc1c700eed"}, + {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f28ac0e8e7242d140f99402a903a2c596ab71550272ae9247ad78f9a932b5698"}, + {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:19f00f57fdd38db4bb5ad09f9ead1b535332dbf624200e9029a45f1f35527ebb"}, + {file = "rpds_py-0.16.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:3da5a4c56953bdbf6d04447c3410309616c54433146ccdb4a277b9cb499bc10e"}, + {file = "rpds_py-0.16.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:ec2e1cf025b2c0f48ec17ff3e642661da7ee332d326f2e6619366ce8e221f018"}, + {file = "rpds_py-0.16.2-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e0441fb4fdd39a230477b2ca9be90868af64425bfe7b122b57e61e45737a653b"}, + {file = "rpds_py-0.16.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:9f0350ef2fba5f34eb0c9000ea328e51b9572b403d2f7f3b19f24085f6f598e8"}, + {file = "rpds_py-0.16.2-cp311-none-win32.whl", hash = "sha256:5a80e2f83391ad0808b4646732af2a7b67550b98f0cae056cb3b40622a83dbb3"}, + {file = "rpds_py-0.16.2-cp311-none-win_amd64.whl", hash = "sha256:e04e56b4ca7a770593633556e8e9e46579d66ec2ada846b401252a2bdcf70a6d"}, + {file = "rpds_py-0.16.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:5e6caa3809e50690bd92fa490f5c38caa86082c8c3315aa438bce43786d5e90d"}, + {file = "rpds_py-0.16.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2e53b9b25cac9065328901713a7e9e3b12e4f57ef4280b370fbbf6fef2052eef"}, + {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:af27423662f32d7501a00c5e7342f7dbd1e4a718aea7a239781357d15d437133"}, + {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:43d4dd5fb16eb3825742bad8339d454054261ab59fed2fbac84e1d84d5aae7ba"}, + {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e061de3b745fe611e23cd7318aec2c8b0e4153939c25c9202a5811ca911fd733"}, + {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3b811d182ad17ea294f2ec63c0621e7be92a1141e1012383461872cead87468f"}, + {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5552f328eaef1a75ff129d4d0c437bf44e43f9436d3996e8eab623ea0f5fcf73"}, + {file = "rpds_py-0.16.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:dcbe1f8dd179e4d69b70b1f1d9bb6fd1e7e1bdc9c9aad345cdeb332e29d40748"}, + {file = "rpds_py-0.16.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:8aad80645a011abae487d356e0ceb359f4938dfb6f7bcc410027ed7ae4f7bb8b"}, + {file = "rpds_py-0.16.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:b6f5549d6ed1da9bfe3631ca9483ae906f21410be2445b73443fa9f017601c6f"}, + {file = "rpds_py-0.16.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d452817e0d9c749c431a1121d56a777bd7099b720b3d1c820f1725cb40928f58"}, + {file = "rpds_py-0.16.2-cp312-none-win32.whl", hash = "sha256:888a97002e986eca10d8546e3c8b97da1d47ad8b69726dcfeb3e56348ebb28a3"}, + {file = "rpds_py-0.16.2-cp312-none-win_amd64.whl", hash = "sha256:d8dda2a806dfa4a9b795950c4f5cc56d6d6159f7d68080aedaff3bdc9b5032f5"}, + {file = "rpds_py-0.16.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:071980663c273bf3d388fe5c794c547e6f35ba3335477072c713a3176bf14a60"}, + {file = "rpds_py-0.16.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:726ac36e8a3bb8daef2fd482534cabc5e17334052447008405daca7ca04a3108"}, + {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e9e557db6a177470316c82f023e5d571811c9a4422b5ea084c85da9aa3c035fc"}, + {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:90123853fc8b1747f80b0d354be3d122b4365a93e50fc3aacc9fb4c2488845d6"}, + {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a61f659665a39a4d17d699ab3593d7116d66e1e2e3f03ef3fb8f484e91908808"}, + {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cc97f0640e91d7776530f06e6836c546c1c752a52de158720c4224c9e8053cad"}, + {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:44a54e99a2b9693a37ebf245937fd6e9228b4cbd64b9cc961e1f3391ec6c7391"}, + {file = "rpds_py-0.16.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:bd4b677d929cf1f6bac07ad76e0f2d5de367e6373351c01a9c0a39f6b21b4a8b"}, + {file = "rpds_py-0.16.2-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:5ef00873303d678aaf8b0627e111fd434925ca01c657dbb2641410f1cdaef261"}, + {file = "rpds_py-0.16.2-cp38-cp38-musllinux_1_2_i686.whl", hash = "sha256:349cb40897fd529ca15317c22c0eab67f5ac5178b5bd2c6adc86172045210acc"}, + {file = "rpds_py-0.16.2-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:2ddef620e70eaffebed5932ce754d539c0930f676aae6212f8e16cd9743dd365"}, + {file = "rpds_py-0.16.2-cp38-none-win32.whl", hash = "sha256:882ce6e25e585949c3d9f9abd29202367175e0aab3aba0c58c9abbb37d4982ff"}, + {file = "rpds_py-0.16.2-cp38-none-win_amd64.whl", hash = "sha256:f4bd4578e44f26997e9e56c96dedc5f1af43cc9d16c4daa29c771a00b2a26851"}, + {file = "rpds_py-0.16.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:69ac7ea9897ec201ce68b48582f3eb34a3f9924488a5432a93f177bf76a82a7e"}, + {file = "rpds_py-0.16.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a9880b4656efe36ccad41edc66789e191e5ee19a1ea8811e0aed6f69851a82f4"}, + {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ee94cb58c0ba2c62ee108c2b7c9131b2c66a29e82746e8fa3aa1a1effbd3dcf1"}, + {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:24f7a2eb3866a9e91f4599851e0c8d39878a470044875c49bd528d2b9b88361c"}, + {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ca57468da2d9a660bcf8961637c85f2fbb2aa64d9bc3f9484e30c3f9f67b1dd7"}, + {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ccd4e400309e1f34a5095bf9249d371f0fd60f8a3a5c4a791cad7b99ce1fd38d"}, + {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80443fe2f7b3ea3934c5d75fb0e04a5dbb4a8e943e5ff2de0dec059202b70a8b"}, + {file = "rpds_py-0.16.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4d6a9f052e72d493efd92a77f861e45bab2f6be63e37fa8ecf0c6fd1a58fedb0"}, + {file = "rpds_py-0.16.2-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:35953f4f2b3216421af86fd236b7c0c65935936a94ea83ddbd4904ba60757773"}, + {file = "rpds_py-0.16.2-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:981d135c7cdaf6cd8eadae1c950de43b976de8f09d8e800feed307140d3d6d00"}, + {file = "rpds_py-0.16.2-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:d0dd7ed2f16df2e129496e7fbe59a34bc2d7fc8db443a606644d069eb69cbd45"}, + {file = "rpds_py-0.16.2-cp39-none-win32.whl", hash = "sha256:703d95c75a72e902544fda08e965885525e297578317989fd15a6ce58414b41d"}, + {file = "rpds_py-0.16.2-cp39-none-win_amd64.whl", hash = "sha256:e93ec1b300acf89730cf27975ef574396bc04edecc358e9bd116fb387a123239"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:44627b6ca7308680a70766454db5249105fa6344853af6762eaad4158a2feebe"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:3f91df8e6dbb7360e176d1affd5fb0246d2b88d16aa5ebc7db94fd66b68b61da"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d904c5693e08bad240f16d79305edba78276be87061c872a4a15e2c301fa2c0"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:290a81cfbe4673285cdf140ec5cd1658ffbf63ab359f2b352ebe172e7cfa5bf0"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b634c5ec0103c5cbebc24ebac4872b045cccb9456fc59efdcf6fe39775365bd2"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a297a4d08cc67c7466c873c78039d87840fb50d05473db0ec1b7b03d179bf322"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b2e75e17bd0bb66ee34a707da677e47c14ee51ccef78ed6a263a4cc965a072a1"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f1b9d9260e06ea017feb7172976ab261e011c1dc2f8883c7c274f6b2aabfe01a"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:162d7cd9cd311c1b0ff1c55a024b8f38bd8aad1876b648821da08adc40e95734"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:9b32f742ce5b57201305f19c2ef7a184b52f6f9ba6871cc042c2a61f0d6b49b8"}, + {file = "rpds_py-0.16.2-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:ac08472f41ea77cd6a5dae36ae7d4ed3951d6602833af87532b556c1b4601d63"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-macosx_10_12_x86_64.whl", hash = "sha256:495a14b72bbe217f2695dcd9b5ab14d4f8066a00f5d209ed94f0aca307f85f6e"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:8d6b6937ae9eac6d6c0ca3c42774d89fa311f55adff3970fb364b34abde6ed3d"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a61226465bda9283686db8f17d02569a98e4b13c637be5a26d44aa1f1e361c2"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5cf6af100ffb5c195beec11ffaa8cf8523057f123afa2944e6571d54da84cdc9"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6df15846ee3fb2e6397fe25d7ca6624af9f89587f3f259d177b556fed6bebe2c"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1be2f033df1b8be8c3167ba3c29d5dca425592ee31e35eac52050623afba5772"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96f957d6ab25a78b9e7fc9749d754b98eac825a112b4e666525ce89afcbd9ed5"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:088396c7c70e59872f67462fcac3ecbded5233385797021976a09ebd55961dfe"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:4c46ad6356e1561f2a54f08367d1d2e70a0a1bb2db2282d2c1972c1d38eafc3b"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-musllinux_1_2_i686.whl", hash = "sha256:47713dc4fce213f5c74ca8a1f6a59b622fc1b90868deb8e8e4d993e421b4b39d"}, + {file = "rpds_py-0.16.2-pp38-pypy38_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:f811771019f063bbd0aa7bb72c8a934bc13ebacb4672d712fc1639cfd314cccc"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:f19afcfc0dd0dca35694df441e9b0f95bc231b512f51bded3c3d8ca32153ec19"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:a4b682c5775d6a3d21e314c10124599976809455ee67020e8e72df1769b87bc3"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c647ca87fc0ebe808a41de912e9a1bfef9acb85257e5d63691364ac16b81c1f0"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:302bd4983bbd47063e452c38be66153760112f6d3635c7eeefc094299fa400a9"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bf721ede3eb7b829e4a9b8142bd55db0bdc82902720548a703f7e601ee13bdc3"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:358dafc89ce3894c7f486c615ba914609f38277ef67f566abc4c854d23b997fa"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cad0f59ee3dc35526039f4bc23642d52d5f6616b5f687d846bfc6d0d6d486db0"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cffa76b385dfe1e38527662a302b19ffb0e7f5cf7dd5e89186d2c94a22dd9d0c"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:83640a5d7cd3bff694747d50436b8b541b5b9b9782b0c8c1688931d6ee1a1f2d"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-musllinux_1_2_i686.whl", hash = "sha256:ed99b4f7179d2111702020fd7d156e88acd533f5a7d3971353e568b6051d5c97"}, + {file = "rpds_py-0.16.2-pp39-pypy39_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:4022b9dc620e14f30201a8a73898a873c8e910cb642bcd2f3411123bc527f6ac"}, + {file = "rpds_py-0.16.2.tar.gz", hash = "sha256:781ef8bfc091b19960fc0142a23aedadafa826bc32b433fdfe6fd7f964d7ef44"}, ] [[package]] name = "ruff" -version = "0.1.13" +version = "0.1.11" description = "An extremely fast Python linter and code formatter, written in Rust." optional = false python-versions = ">=3.7" files = [ - {file = "ruff-0.1.13-py3-none-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:e3fd36e0d48aeac672aa850045e784673449ce619afc12823ea7868fcc41d8ba"}, - {file = "ruff-0.1.13-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:9fb6b3b86450d4ec6a6732f9f60c4406061b6851c4b29f944f8c9d91c3611c7a"}, - {file = "ruff-0.1.13-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b13ba5d7156daaf3fd08b6b993360a96060500aca7e307d95ecbc5bb47a69296"}, - {file = "ruff-0.1.13-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9ebb40442f7b531e136d334ef0851412410061e65d61ca8ce90d894a094feb22"}, - {file = "ruff-0.1.13-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:226b517f42d59a543d6383cfe03cccf0091e3e0ed1b856c6824be03d2a75d3b6"}, - {file = "ruff-0.1.13-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:5f0312ba1061e9b8c724e9a702d3c8621e3c6e6c2c9bd862550ab2951ac75c16"}, - {file = "ruff-0.1.13-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2f59bcf5217c661254bd6bc42d65a6fd1a8b80c48763cb5c2293295babd945dd"}, - {file = "ruff-0.1.13-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e6894b00495e00c27b6ba61af1fc666f17de6140345e5ef27dd6e08fb987259d"}, - {file = "ruff-0.1.13-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a1600942485c6e66119da294c6294856b5c86fd6df591ce293e4a4cc8e72989"}, - {file = "ruff-0.1.13-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:ee3febce7863e231a467f90e681d3d89210b900d49ce88723ce052c8761be8c7"}, - {file = "ruff-0.1.13-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:dcaab50e278ff497ee4d1fe69b29ca0a9a47cd954bb17963628fa417933c6eb1"}, - {file = "ruff-0.1.13-py3-none-musllinux_1_2_i686.whl", hash = "sha256:f57de973de4edef3ad3044d6a50c02ad9fc2dff0d88587f25f1a48e3f72edf5e"}, - {file = "ruff-0.1.13-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:7a36fa90eb12208272a858475ec43ac811ac37e91ef868759770b71bdabe27b6"}, - {file = "ruff-0.1.13-py3-none-win32.whl", hash = "sha256:a623349a505ff768dad6bd57087e2461be8db58305ebd5577bd0e98631f9ae69"}, - {file = "ruff-0.1.13-py3-none-win_amd64.whl", hash = "sha256:f988746e3c3982bea7f824c8fa318ce7f538c4dfefec99cd09c8770bd33e6539"}, - {file = "ruff-0.1.13-py3-none-win_arm64.whl", hash = "sha256:6bbbc3042075871ec17f28864808540a26f0f79a4478c357d3e3d2284e832998"}, - {file = "ruff-0.1.13.tar.gz", hash = "sha256:e261f1baed6291f434ffb1d5c6bd8051d1c2a26958072d38dfbec39b3dda7352"}, + {file = "ruff-0.1.11-py3-none-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:a7f772696b4cdc0a3b2e527fc3c7ccc41cdcb98f5c80fdd4f2b8c50eb1458196"}, + {file = "ruff-0.1.11-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:934832f6ed9b34a7d5feea58972635c2039c7a3b434fe5ba2ce015064cb6e955"}, + {file = "ruff-0.1.11-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ea0d3e950e394c4b332bcdd112aa566010a9f9c95814844a7468325290aabfd9"}, + {file = "ruff-0.1.11-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:9bd4025b9c5b429a48280785a2b71d479798a69f5c2919e7d274c5f4b32c3607"}, + {file = "ruff-0.1.11-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e1ad00662305dcb1e987f5ec214d31f7d6a062cae3e74c1cbccef15afd96611d"}, + {file = "ruff-0.1.11-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:4b077ce83f47dd6bea1991af08b140e8b8339f0ba8cb9b7a484c30ebab18a23f"}, + {file = "ruff-0.1.11-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4a88efecec23c37b11076fe676e15c6cdb1271a38f2b415e381e87fe4517f18"}, + {file = "ruff-0.1.11-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5b25093dad3b055667730a9b491129c42d45e11cdb7043b702e97125bcec48a1"}, + {file = "ruff-0.1.11-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:231d8fb11b2cc7c0366a326a66dafc6ad449d7fcdbc268497ee47e1334f66f77"}, + {file = "ruff-0.1.11-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:09c415716884950080921dd6237767e52e227e397e2008e2bed410117679975b"}, + {file = "ruff-0.1.11-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:0f58948c6d212a6b8d41cd59e349751018797ce1727f961c2fa755ad6208ba45"}, + {file = "ruff-0.1.11-py3-none-musllinux_1_2_i686.whl", hash = "sha256:190a566c8f766c37074d99640cd9ca3da11d8deae2deae7c9505e68a4a30f740"}, + {file = "ruff-0.1.11-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:6464289bd67b2344d2a5d9158d5eb81025258f169e69a46b741b396ffb0cda95"}, + {file = "ruff-0.1.11-py3-none-win32.whl", hash = "sha256:9b8f397902f92bc2e70fb6bebfa2139008dc72ae5177e66c383fa5426cb0bf2c"}, + {file = "ruff-0.1.11-py3-none-win_amd64.whl", hash = "sha256:eb85ee287b11f901037a6683b2374bb0ec82928c5cbc984f575d0437979c521a"}, + {file = "ruff-0.1.11-py3-none-win_arm64.whl", hash = "sha256:97ce4d752f964ba559c7023a86e5f8e97f026d511e48013987623915431c7ea9"}, + {file = "ruff-0.1.11.tar.gz", hash = "sha256:f9d4d88cb6eeb4dfe20f9f0519bd2eaba8119bde87c3d5065c541dbae2b5a2cb"}, ] [[package]] @@ -4065,13 +3939,13 @@ win32 = ["pywin32"] [[package]] name = "sentry-sdk" -version = "1.39.2" +version = "1.39.1" description = "Python client for Sentry (https://sentry.io)" optional = false python-versions = "*" files = [ - {file = "sentry-sdk-1.39.2.tar.gz", hash = "sha256:24c83b0b41c887d33328a9166f5950dc37ad58f01c9f2fbff6b87a6f1094170c"}, - {file = "sentry_sdk-1.39.2-py2.py3-none-any.whl", hash = "sha256:acaf597b30258fc7663063b291aa99e58f3096e91fe1e6634f4b79f9c1943e8e"}, + {file = "sentry-sdk-1.39.1.tar.gz", hash = "sha256:320a55cdf9da9097a0bead239c35b7e61f53660ef9878861824fd6d9b2eaf3b5"}, + {file = "sentry_sdk-1.39.1-py2.py3-none-any.whl", hash = "sha256:81b5b9ffdd1a374e9eb0c053b5d2012155db9cbe76393a8585677b753bd5fdc1"}, ] [package.dependencies] @@ -4097,7 +3971,7 @@ huey = ["huey (>=2)"] loguru = ["loguru (>=0.5)"] opentelemetry = ["opentelemetry-distro (>=0.35b0)"] opentelemetry-experimental = ["opentelemetry-distro (>=0.40b0,<1.0)", "opentelemetry-instrumentation-aiohttp-client (>=0.40b0,<1.0)", "opentelemetry-instrumentation-django (>=0.40b0,<1.0)", "opentelemetry-instrumentation-fastapi (>=0.40b0,<1.0)", "opentelemetry-instrumentation-flask (>=0.40b0,<1.0)", "opentelemetry-instrumentation-requests (>=0.40b0,<1.0)", "opentelemetry-instrumentation-sqlite3 (>=0.40b0,<1.0)", "opentelemetry-instrumentation-urllib (>=0.40b0,<1.0)"] -pure-eval = ["asttokens", "executing", "pure_eval"] +pure-eval = ["asttokens", "executing", "pure-eval"] pymongo = ["pymongo (>=3.1)"] pyspark = ["pyspark (>=2.4.4)"] quart = ["blinker (>=1.1)", "quart (>=0.16.1)"] @@ -4620,13 +4494,13 @@ test = ["argcomplete (>=3.0.3)", "mypy (>=1.7.0)", "pre-commit", "pytest (>=7.0, [[package]] name = "transformer-lens" -version = "1.12.1" +version = "1.12.0" description = "An implementation of transformers tailored for mechanistic interpretability." optional = false python-versions = ">=3.8,<4.0" files = [ - {file = "transformer_lens-1.12.1-py3-none-any.whl", hash = "sha256:ab11cc0089d29e59954c641ff1763752406b22c78b90cad5cc56ee87a6ccaef2"}, - {file = "transformer_lens-1.12.1.tar.gz", hash = "sha256:98ba181fe6173085dd9f2c0d23a34d75db48c73c20439ac6ddc328f260c7f22e"}, + {file = "transformer_lens-1.12.0-py3-none-any.whl", hash = "sha256:764740fc3bdf2ed5390d27cd2422eb9b161587ae39420722130a62f322aeef22"}, + {file = "transformer_lens-1.12.0.tar.gz", hash = "sha256:8e9022e1c72deecc9b02eead0d4465d96361fecf1aa9f5a0179d363a850f6d79"}, ] [package.dependencies] @@ -4755,13 +4629,13 @@ test = ["mypy", "pytest", "typing-extensions"] [[package]] name = "types-python-dateutil" -version = "2.8.19.20240106" +version = "2.8.19.14" description = "Typing stubs for python-dateutil" optional = false -python-versions = ">=3.8" +python-versions = "*" files = [ - {file = "types-python-dateutil-2.8.19.20240106.tar.gz", hash = "sha256:1f8db221c3b98e6ca02ea83a58371b22c374f42ae5bbdf186db9c9a76581459f"}, - {file = "types_python_dateutil-2.8.19.20240106-py3-none-any.whl", hash = "sha256:efbbdc54590d0f16152fa103c9879c7d4a00e82078f6e2cf01769042165acaa2"}, + {file = "types-python-dateutil-2.8.19.14.tar.gz", hash = "sha256:1f4f10ac98bb8b16ade9dbee3518d9ace017821d94b057a425b069f834737f4b"}, + {file = "types_python_dateutil-2.8.19.14-py3-none-any.whl", hash = "sha256:f977b8de27787639986b4e28963263fd0e5158942b3ecef91b9335c130cb1ce9"}, ] [[package]] @@ -4818,13 +4692,13 @@ zstd = ["zstandard (>=0.18.0)"] [[package]] name = "wandb" -version = "0.16.2" +version = "0.16.1" description = "A CLI and library for interacting with the Weights & Biases API." optional = false python-versions = ">=3.7" files = [ - {file = "wandb-0.16.2-py3-none-any.whl", hash = "sha256:6b119cf3c01f35e7276b62d052128e5320621d182c9eb5796a12cf62a9b3134f"}, - {file = "wandb-0.16.2.tar.gz", hash = "sha256:e40cd79ea6272fe4762a80b9f47b172e141daeb3b56eb9d1e192ebd10752e64e"}, + {file = "wandb-0.16.1-py3-none-any.whl", hash = "sha256:1d7423f92520984585bae9693bb637ae08d3e0c1d75ad4b34215bc44431f114c"}, + {file = "wandb-0.16.1.tar.gz", hash = "sha256:ffe6e8dd8cc8fcd72010c1246fb3d6d226b37c4f111f3f94308a1c0ae28a2fec"}, ] [package.dependencies] @@ -4844,10 +4718,11 @@ setuptools = "*" async = ["httpx (>=0.23.0)"] aws = ["boto3"] azure = ["azure-identity", "azure-storage-blob"] +core = ["wandb-core (>=0.17.0b2)"] gcp = ["google-cloud-storage"] kubeflow = ["google-cloud-storage", "kubernetes", "minio", "sh"] -launch = ["PyYAML (>=6.0.0)", "awscli", "azure-containerregistry", "azure-identity", "azure-storage-blob", "boto3", "botocore", "chardet", "google-auth", "google-cloud-aiplatform", "google-cloud-artifact-registry", "google-cloud-compute", "google-cloud-storage", "iso8601", "kubernetes", "kubernetes-asyncio", "nbconvert", "nbformat", "optuna", "pydantic", "typing-extensions"] -media = ["bokeh", "moviepy", "numpy", "pillow", "plotly (>=5.18.0)", "rdkit-pypi", "soundfile"] +launch = ["PyYAML (>=6.0.0)", "awscli", "azure-containerregistry", "azure-identity", "azure-storage-blob", "boto3", "botocore", "chardet", "google-auth", "google-cloud-aiplatform", "google-cloud-artifact-registry", "google-cloud-compute", "google-cloud-storage", "iso8601", "kubernetes", "kubernetes-asyncio", "nbconvert", "nbformat", "optuna", "typing-extensions"] +media = ["bokeh", "moviepy", "numpy", "pillow", "plotly", "rdkit-pypi", "soundfile"] models = ["cloudpickle"] perf = ["orjson"] sweeps = ["sweeps (>=0.2.0)"] @@ -4893,13 +4768,13 @@ watchmedo = ["PyYAML (>=3.10)"] [[package]] name = "wcwidth" -version = "0.2.13" +version = "0.2.12" description = "Measures the displayed width of unicode strings in a terminal" optional = false python-versions = "*" files = [ - {file = "wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859"}, - {file = "wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5"}, + {file = "wcwidth-0.2.12-py2.py3-none-any.whl", hash = "sha256:f26ec43d96c8cbfed76a5075dac87680124fa84e0855195a6184da9c187f133c"}, + {file = "wcwidth-0.2.12.tar.gz", hash = "sha256:f01c104efdf57971bcb756f054dd58ddec5204dd15fa31d6503ea57947d97c02"}, ] [[package]] @@ -5236,10 +5111,7 @@ cffi = {version = ">=1.11", markers = "platform_python_implementation == \"PyPy\ [package.extras] cffi = ["cffi (>=1.11)"] -[extras] -deepspeed = ["deepspeed", "mpi4py"] - [metadata] lock-version = "2.0" python-versions = ">=3.10, <3.12" -content-hash = "73aa3dca010ec93be401cec32ecfcc67003fb95736c2e4c73835c66ab8a96e92" +content-hash = "ecbd7cbeb4c7821efd7a3279e20893011882715222f6230b5fb552db82e83ffb" diff --git a/pyproject.toml b/pyproject.toml index edc5ac57..347bb10f 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -7,12 +7,9 @@ readme="README.md" version="0.0.0" - # Note: Zstandard is required for downloading datasets such as The Pile [tool.poetry.dependencies] datasets=">=2.15.0" - deepspeed={version=">=0.12.6", extras=["deepspeed"], optional=false} einops=">=0.6" - mpi4py={version=">=3.1.5", extras=["deepspeed"], optional=true} pydantic=">=2.5.2" python=">=3.10, <3.12" strenum=">=0.4.15" @@ -20,7 +17,7 @@ torch=">=2.1.1" transformers=">=4.35.2" wandb=">=0.16.1" - zstandard=">=0.22.0" + zstandard=">=0.22.0" # Required for downloading datasets such as The Pile [tool.poetry.group] [tool.poetry.group.dev.dependencies] @@ -57,9 +54,6 @@ pymdown-extensions=">=10.5" pytkdocs-tweaks=">=0.0.7" -[tool.poetry.extras] - deepspeed=["deepspeed", "mpi4py"] - [tool.poetry.scripts] join-sae-sweep='sparse_autoencoder.train.join_sweep:run' diff --git a/sparse_autoencoder/__init__.py b/sparse_autoencoder/__init__.py index 53c258e5..963bb548 100644 --- a/sparse_autoencoder/__init__.py +++ b/sparse_autoencoder/__init__.py @@ -9,7 +9,6 @@ from sparse_autoencoder.metrics.train.capacity import CapacityMetric from sparse_autoencoder.metrics.train.feature_density import TrainBatchFeatureDensityMetric from sparse_autoencoder.optimizer.adam_with_reset import AdamWithReset -from sparse_autoencoder.optimizer.deepspeed_adam_with_reset import ZeroOneAdamWithReset from sparse_autoencoder.source_data.pretokenized_dataset import PreTokenizedDataset from sparse_autoencoder.source_data.text_dataset import TextDataset from sparse_autoencoder.train.pipeline import Pipeline @@ -84,5 +83,4 @@ "TensorActivationStore", "TextDataset", "TrainBatchFeatureDensityMetric", - "ZeroOneAdamWithReset", ] diff --git a/sparse_autoencoder/activation_resampler/activation_resampler.py b/sparse_autoencoder/activation_resampler/activation_resampler.py index 1524c879..e2562bcd 100644 --- a/sparse_autoencoder/activation_resampler/activation_resampler.py +++ b/sparse_autoencoder/activation_resampler/activation_resampler.py @@ -2,13 +2,11 @@ from dataclasses import dataclass from typing import Annotated, NamedTuple -from deepspeed import DeepSpeedEngine from einops import rearrange from jaxtyping import Bool, Float, Int64 from pydantic import Field, NonNegativeInt, PositiveInt, validate_call import torch from torch import Tensor -from torch.nn.parallel import DataParallel from torch.utils.data import DataLoader from sparse_autoencoder.activation_resampler.utils.component_slice_tensor import ( @@ -19,6 +17,7 @@ from sparse_autoencoder.loss.abstract_loss import AbstractLoss from sparse_autoencoder.tensor_types import Axis from sparse_autoencoder.train.utils.get_model_device import get_model_device +from sparse_autoencoder.utils.data_parallel import DataParallelWithModelAttributes @dataclass @@ -208,7 +207,7 @@ def _get_dead_neuron_indices( def compute_loss_and_get_activations( self, store: ActivationStore, - autoencoder: SparseAutoencoder | DataParallel[SparseAutoencoder] | DeepSpeedEngine, + autoencoder: SparseAutoencoder | DataParallelWithModelAttributes[SparseAutoencoder], loss_fn: AbstractLoss, train_batch_size: int, ) -> LossInputActivationsTuple: @@ -441,7 +440,7 @@ def renormalize_and_scale( def resample_dead_neurons( self, activation_store: ActivationStore, - autoencoder: SparseAutoencoder | DataParallel[SparseAutoencoder] | DeepSpeedEngine, + autoencoder: SparseAutoencoder | DataParallelWithModelAttributes[SparseAutoencoder], loss_fn: AbstractLoss, train_batch_size: int, ) -> list[ParameterUpdateResults]: @@ -531,7 +530,7 @@ def step_resampler( self, batch_neuron_activity: Int64[Tensor, Axis.names(Axis.COMPONENT, Axis.LEARNT_FEATURE)], activation_store: ActivationStore, - autoencoder: SparseAutoencoder | DataParallel[SparseAutoencoder] | DeepSpeedEngine, + autoencoder: SparseAutoencoder | DataParallelWithModelAttributes[SparseAutoencoder], loss_fn: AbstractLoss, train_batch_size: int, ) -> list[ParameterUpdateResults] | None: diff --git a/sparse_autoencoder/autoencoder/model.py b/sparse_autoencoder/autoencoder/model.py index 34e031e6..0ae8a9a9 100644 --- a/sparse_autoencoder/autoencoder/model.py +++ b/sparse_autoencoder/autoencoder/model.py @@ -276,7 +276,7 @@ def load( The loaded model. """ # Load the file - serialized_state = torch.load(file_path, map_location=torch.device("cpu")) + serialized_state = torch.load(file_path) state = SparseAutoencoderState.model_validate(serialized_state) # Initialise the model diff --git a/sparse_autoencoder/optimizer/adam_with_reset.py b/sparse_autoencoder/optimizer/adam_with_reset.py index 0f83bd34..4401c29f 100644 --- a/sparse_autoencoder/optimizer/adam_with_reset.py +++ b/sparse_autoencoder/optimizer/adam_with_reset.py @@ -42,7 +42,7 @@ def __init__( # (extending existing implementation) lr: float | Float[Tensor, Axis.names(Axis.SINGLE_ITEM)] = 1e-3, betas: tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, - weight_decay: float = 0.0, + weight_decay: float = 0, *, amsgrad: bool = False, foreach: bool | None = None, diff --git a/sparse_autoencoder/optimizer/deepspeed_adam_with_reset.py b/sparse_autoencoder/optimizer/deepspeed_adam_with_reset.py deleted file mode 100644 index 3365eb6a..00000000 --- a/sparse_autoencoder/optimizer/deepspeed_adam_with_reset.py +++ /dev/null @@ -1,194 +0,0 @@ -"""Deepspeed Zero One Adam Optimizer with a reset method. - -This reset method is useful when resampling dead neurons during training. -""" -from collections.abc import Iterator -from typing import final - -from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam -from jaxtyping import Int -from torch import Tensor -from torch.nn.parameter import Parameter -from torch.optim.optimizer import params_t - -from sparse_autoencoder.optimizer.abstract_optimizer import AbstractOptimizerWithReset -from sparse_autoencoder.tensor_types import Axis - - -@final -class ZeroOneAdamWithReset(ZeroOneAdam, AbstractOptimizerWithReset): - """Deepspeed Zero One Adam Optimizer with a reset method. - - https://deepspeed.readthedocs.io/en/latest/optimizers.html#zerooneadam-gpu - - The :meth:`reset_state_all_parameters` and :meth:`reset_neurons_state` methods are useful when - manually editing the model parameters during training (e.g. when resampling dead neurons). This - is because Adam maintains running averages of the gradients and the squares of gradients, which - will be incorrect if the parameters are changed. - - Otherwise this is the same as the standard ZeroOneAdam optimizer. - - Warning: - Requires a distributed torch backend. - """ - - parameter_names: list[str] - """Parameter Names. - - The names of the parameters, so that we can find them later when resetting the state. - """ - - _has_components_dim: bool - """Whether the parameters have a components dimension.""" - - def __init__( - self, - params: params_t, - lr: float = 1e-3, - betas: tuple[float, float] = (0.9, 0.999), - eps: float = 1e-8, - weight_decay: float = 0.0, - *, - named_parameters: Iterator[tuple[str, Parameter]], - has_components_dim: bool, - ) -> None: - """Initialize the optimizer. - - Warning: - Named parameters must be with default settings (remove duplicates and not recursive). - - Args: - params: Iterable of parameters to optimize or dicts defining parameter groups. - lr: Learning rate. A Tensor LR is not yet fully supported for all implementations. Use a - float LR unless specifying fused=True or capturable=True. - betas: Coefficients used for computing running averages of gradient and its square. - eps: Term added to the denominator to improve numerical stability. - weight_decay: Weight decay (L2 penalty). - named_parameters: An iterator over the named parameters of the model. This is used to - find the parameters when resetting their state. You should set this as - `model.named_parameters()`. - has_components_dim: If the parameters have a components dimension (i.e. if you are - training an SAE on more than one component). - - - Raises: - ValueError: If the number of parameter names does not match the number of parameters. - """ - # Initialise the parent class (note we repeat the parameter names so that type hints work). - super().__init__( - params=params, - lr=lr, - betas=betas, - eps=eps, - weight_decay=weight_decay, - ) - - self._has_components_dim = has_components_dim - - # Store the names of the parameters, so that we can find them later when resetting the - # state. - self.parameter_names = [name for name, _value in named_parameters] - - if len(self.parameter_names) != len(self.param_groups[0]["params"]): - error_message = ( - "The number of parameter names does not match the number of parameters. " - "If using model.named_parameters() make sure remove_duplicates is True " - "and recursive is False (the default settings)." - ) - raise ValueError(error_message) - - def reset_state_all_parameters(self) -> None: - """Reset the state for all parameters. - - Iterates over all parameters and resets both the running averages of the gradients and the - squares of gradients. - """ - # Iterate over every parameter - for group in self.param_groups: - for parameter in group["params"]: - # Get the state - state = self.state[parameter] - - # Check if state is initialized - if len(state) == 0: - continue - - # Reset running averages - exp_avg: Tensor = state["exp_avg"] - exp_avg.zero_() - exp_avg_sq: Tensor = state["exp_avg_sq"] - exp_avg_sq.zero_() - - # If AdamW is used (weight decay fix), also reset the max exp_avg_sq - if "max_exp_avg_sq" in state: - max_exp_avg_sq: Tensor = state["max_exp_avg_sq"] - max_exp_avg_sq.zero_() - - def reset_neurons_state( - self, - parameter: Parameter, - neuron_indices: Int[Tensor, Axis.names(Axis.LEARNT_FEATURE_IDX)], - axis: int, - component_idx: int = 0, - ) -> None: - """Reset the state for specific neurons, on a specific parameter. - - Args: - parameter: The parameter to be reset. Examples from the standard sparse autoencoder - implementation include `tied_bias`, `_encoder._weight`, `_encoder._bias`, - neuron_indices: The indices of the neurons to reset. - axis: The axis of the state values to reset (i.e. the input/output features axis, as - we're resetting all input/output features for a specific dead neuron). - component_idx: The component index of the state values to reset. - - Raises: - ValueError: If the parameter has a components dimension, but has_components_dim is - False. - """ - # Get the state of the parameter - state = self.state[parameter] - - # If the number of dimensions is 3, we definitely have a components dimension. If 2, we may - # do (as the bias has 2 dimensions with components, but the weight has 2 dimensions without - # components). - definitely_has_components_dimension = 3 - if ( - not self._has_components_dim - and state["exp_avg"].ndim == definitely_has_components_dimension - ): - error_message = ( - "The parameter has a components dimension, but has_components_dim is False. " - "This should not happen." - ) - raise ValueError(error_message) - - # Check if state is initialized - if len(state) == 0: - return - - # Check there are any neurons to reset - if neuron_indices.numel() == 0: - return - - # Move the neuron indices to the correct device - neuron_indices = neuron_indices.to(device=state["exp_avg"].device) - - # Reset running averages for the specified neurons - if "exp_avg" in state: - if self._has_components_dim: - state["exp_avg"][component_idx].index_fill_(axis, neuron_indices, 0) - else: - state["exp_avg"].index_fill_(axis, neuron_indices, 0) - - if "exp_avg_sq" in state: - if self._has_components_dim: - state["exp_avg_sq"][component_idx].index_fill_(axis, neuron_indices, 0) - else: - state["exp_avg_sq"].index_fill_(axis, neuron_indices, 0) - - # If AdamW is used (weight decay fix), also reset the max exp_avg_sq - if "max_exp_avg_sq" in state: - if self._has_components_dim: - state["max_exp_avg_sq"][component_idx].index_fill_(axis, neuron_indices, 0) - else: - state["max_exp_avg_sq"].index_fill_(axis, neuron_indices, 0) diff --git a/sparse_autoencoder/source_model/replace_activations_hook.py b/sparse_autoencoder/source_model/replace_activations_hook.py index e1e56e80..e0cf6874 100644 --- a/sparse_autoencoder/source_model/replace_activations_hook.py +++ b/sparse_autoencoder/source_model/replace_activations_hook.py @@ -1,37 +1,33 @@ """Replace activations hook.""" from typing import TYPE_CHECKING -from deepspeed import DeepSpeedEngine -from jaxtyping import Float from torch import Tensor -from torch.nn.parallel import DataParallel from transformer_lens.hook_points import HookPoint from sparse_autoencoder.autoencoder.model import SparseAutoencoder +from sparse_autoencoder.utils.data_parallel import DataParallelWithModelAttributes if TYPE_CHECKING: from sparse_autoencoder.tensor_types import Axis +from jaxtyping import Float def replace_activations_hook( value: Tensor, hook: HookPoint, # noqa: ARG001 - sparse_autoencoder: SparseAutoencoder | DataParallel[SparseAutoencoder] | DeepSpeedEngine, + sparse_autoencoder: SparseAutoencoder | DataParallelWithModelAttributes[SparseAutoencoder], component_idx: int | None = None, - n_components: int | None = None, ) -> Tensor: """Replace activations hook. - This should be pre-initialised with `functools.partial`. - Args: value: The activations to replace. hook: The hook point. - sparse_autoencoder: The sparse autoencoder. + sparse_autoencoder: The sparse autoencoder. This should be pre-initialised with + `functools.partial`. component_idx: The component index to replace the activations with, if just replacing activations for a single component. Requires the model to have a component axis. - n_components: The number of components that the SAE is trained on. Returns: Replaced activations. @@ -47,8 +43,11 @@ def replace_activations_hook( ) if component_idx is not None: - if n_components is None: - error_message = "The number of model components must be set if component_idx is set." + if sparse_autoencoder.config.n_components is None: + error_message = ( + "Cannot replace for a specific component, if the model does not have a " + "component axis." + ) raise RuntimeError(error_message) # The approach here is to run a forward pass with dummy values for all components other than @@ -57,7 +56,7 @@ def replace_activations_hook( # components. expanded_shape = [ squashed_value.shape[0], - n_components, + sparse_autoencoder.config.n_components, squashed_value.shape[-1], ] expanded = squashed_value.unsqueeze(1).expand(*expanded_shape) diff --git a/sparse_autoencoder/source_model/tests/test_replace_activations_hook.py b/sparse_autoencoder/source_model/tests/test_replace_activations_hook.py index 165c74df..efee221f 100644 --- a/sparse_autoencoder/source_model/tests/test_replace_activations_hook.py +++ b/sparse_autoencoder/source_model/tests/test_replace_activations_hook.py @@ -66,12 +66,7 @@ def test_hook_replaces_activations_2_components() -> None: fwd_hooks=[ ( "blocks.0.hook_mlp_out", - partial( - replace_activations_hook, - sparse_autoencoder=autoencoder, - component_idx=1, - n_components=2, - ), + partial(replace_activations_hook, sparse_autoencoder=autoencoder, component_idx=1), ) ], ) diff --git a/sparse_autoencoder/train/pipeline.py b/sparse_autoencoder/train/pipeline.py index 39fcbb04..bccad468 100644 --- a/sparse_autoencoder/train/pipeline.py +++ b/sparse_autoencoder/train/pipeline.py @@ -5,12 +5,10 @@ from tempfile import gettempdir from typing import TYPE_CHECKING, final -from deepspeed import DeepSpeedEngine from jaxtyping import Float, Int, Int64 from pydantic import NonNegativeInt, PositiveInt, validate_call import torch from torch import Tensor -from torch.nn.parallel import DataParallel from torch.optim.lr_scheduler import LRScheduler from torch.utils.data import DataLoader from tqdm.auto import tqdm @@ -34,6 +32,7 @@ from sparse_autoencoder.source_model.zero_ablate_hook import zero_ablate_hook from sparse_autoencoder.tensor_types import Axis from sparse_autoencoder.train.utils.get_model_device import get_model_device +from sparse_autoencoder.utils.data_parallel import DataParallelWithModelAttributes if TYPE_CHECKING: @@ -52,15 +51,9 @@ class Pipeline: activation_resampler: ActivationResampler | None """Activation resampler to use.""" - autoencoder: SparseAutoencoder | DataParallel[SparseAutoencoder] | DeepSpeedEngine + autoencoder: SparseAutoencoder | DataParallelWithModelAttributes[SparseAutoencoder] """Sparse autoencoder to train.""" - n_input_features: int - """Number of input features in the sparse autoencoder.""" - - n_learned_features: int - """Number of learned features in the sparse autoencoder.""" - cache_names: list[str] """Names of the cache hook points to use in the source model.""" @@ -88,7 +81,7 @@ class Pipeline: source_dataset: SourceDataset """Source dataset to generate activation data from (tokenized prompts).""" - source_model: HookedTransformer | DataParallel[HookedTransformer] + source_model: HookedTransformer | DataParallelWithModelAttributes[HookedTransformer] """Source model to get activations from.""" total_activations_trained_on: int = 0 @@ -104,15 +97,13 @@ def n_components(self) -> int: def __init__( self, activation_resampler: ActivationResampler | None, - autoencoder: SparseAutoencoder | DataParallel[SparseAutoencoder] | DeepSpeedEngine, + autoencoder: SparseAutoencoder | DataParallelWithModelAttributes[SparseAutoencoder], cache_names: list[str], layer: NonNegativeInt, loss: AbstractLoss, optimizer: AbstractOptimizerWithReset, source_dataset: SourceDataset, - source_model: HookedTransformer | DataParallel[HookedTransformer], - n_input_features: int, - n_learned_features: int, + source_model: HookedTransformer | DataParallelWithModelAttributes[HookedTransformer], run_name: str = "sparse_autoencoder", checkpoint_directory: Path = DEFAULT_CHECKPOINT_DIRECTORY, lr_scheduler: LRScheduler | None = None, @@ -133,8 +124,6 @@ def __init__( optimizer: Optimizer to use. source_dataset: Source dataset to get data from. source_model: Source model to get activations from. - n_input_features: Number of input features in the sparse autoencoder. - n_learned_features: Number of learned features in the sparse autoencoder. run_name: Name of the run for saving checkpoints. checkpoint_directory: Directory to save checkpoints to. lr_scheduler: Learning rate scheduler to use. @@ -157,8 +146,6 @@ def __init__( self.source_data_batch_size = source_data_batch_size self.source_dataset = source_dataset self.source_model = source_model - self.n_input_features = n_input_features - self.n_learned_features = n_learned_features # Create a stateful iterator source_dataloader = source_dataset.get_dataloader( @@ -188,10 +175,9 @@ def generate_activations(self, store_size: PositiveInt) -> TensorActivationStore raise ValueError(error_message) # Setup the store + n_neurons: int = self.autoencoder.config.n_input_features source_model_device: torch.device = get_model_device(self.source_model) - store = TensorActivationStore( - store_size, self.n_input_features, n_components=self.n_components - ) + store = TensorActivationStore(store_size, n_neurons, n_components=self.n_components) # Add the hook to the model (will automatically store the activations every time the model # runs) @@ -239,9 +225,9 @@ def train_autoencoder( learned_activations_fired_count: Int64[ Tensor, Axis.names(Axis.COMPONENT, Axis.LEARNT_FEATURE) ] = torch.zeros( - (self.n_components, self.n_learned_features), + (self.n_components, self.autoencoder.config.n_learned_features), dtype=torch.int64, - device=torch.device("cpu"), + device=autoencoder_device, ) for store_batch in activations_dataloader: @@ -274,7 +260,7 @@ def train_autoencoder( # Store count of how many neurons have fired with torch.no_grad(): fired = learned_activations > 0 - learned_activations_fired_count.add_(fired.sum(dim=0).cpu()) + learned_activations_fired_count.add_(fired.sum(dim=0)) # Backwards pass total_loss.backward() @@ -372,7 +358,6 @@ def validate_sae(self, validation_n_activations: PositiveInt) -> None: replace_activations_hook, sparse_autoencoder=self.autoencoder, component_idx=component_idx, - n_components=self.n_components, ) with torch.no_grad(): diff --git a/sparse_autoencoder/train/sweep.py b/sparse_autoencoder/train/sweep.py index d318421b..2adbdc43 100644 --- a/sparse_autoencoder/train/sweep.py +++ b/sparse_autoencoder/train/sweep.py @@ -1,16 +1,13 @@ """Sweep.""" -from functools import partial from pathlib import Path import re import sys import traceback -import deepspeed -from deepspeed import DeepSpeedEngine import torch -from torch.nn.parallel import DataParallel from torch.optim.lr_scheduler import CosineAnnealingLR, LRScheduler, ReduceLROnPlateau from transformer_lens import HookedTransformer +from transformer_lens.utils import get_device from transformers import AutoTokenizer import wandb @@ -25,13 +22,13 @@ SparseAutoencoder, ) from sparse_autoencoder.autoencoder.model import SparseAutoencoderConfig -from sparse_autoencoder.optimizer.abstract_optimizer import AbstractOptimizerWithReset from sparse_autoencoder.source_data.abstract_dataset import SourceDataset from sparse_autoencoder.source_data.text_dataset import TextDataset from sparse_autoencoder.train.sweep_config import ( RuntimeHyperparameters, SweepConfig, ) +from sparse_autoencoder.utils.data_parallel import DataParallelWithModelAttributes def setup_activation_resampler(hyperparameters: RuntimeHyperparameters) -> ActivationResampler: @@ -74,14 +71,14 @@ def setup_source_model(hyperparameters: RuntimeHyperparameters) -> HookedTransfo ) -def setup_autoencoder_optimizer_scheduler( - hyperparameters: RuntimeHyperparameters, *, use_deepspeed: bool -) -> tuple[DeepSpeedEngine | SparseAutoencoder, AdamWithReset, LRScheduler | None]: +def setup_autoencoder( + hyperparameters: RuntimeHyperparameters, device: torch.device +) -> SparseAutoencoder: """Setup the sparse autoencoder. Args: hyperparameters: The hyperparameters dictionary. - use_deepspeed: Whether to use deepspeed. + device: The computation device. Returns: The initialized sparse autoencoder. @@ -94,12 +91,41 @@ def setup_autoencoder_optimizer_scheduler( n_learned_features=autoencoder_input_dim * expansion_factor, n_components=len(hyperparameters["source_model"]["cache_names"]), ) + return SparseAutoencoder(config).to(device) - model = SparseAutoencoder(config) +def setup_loss_function(hyperparameters: RuntimeHyperparameters) -> LossReducer: + """Setup the loss function for the autoencoder. + + Args: + hyperparameters: The hyperparameters dictionary. + + Returns: + The combined loss function. + """ + return LossReducer( + LearnedActivationsL1Loss( + l1_coefficient=hyperparameters["loss"]["l1_coefficient"], + ), + L2ReconstructionLoss(), + ) + + +def setup_optimizer( + autoencoder: SparseAutoencoder, hyperparameters: RuntimeHyperparameters +) -> tuple[AdamWithReset, LRScheduler | None]: + """Setup the optimizer for the autoencoder. + + Args: + autoencoder: The sparse autoencoder model. + hyperparameters: The hyperparameters dictionary. + + Returns: + The initialized optimizer & learning rate scheduler. + """ optim = AdamWithReset( - params=model.parameters(), - named_parameters=model.named_parameters(), + params=autoencoder.parameters(), + named_parameters=autoencoder.named_parameters(), lr=hyperparameters["optimizer"]["lr"], betas=( hyperparameters["optimizer"]["adam_beta_1"], @@ -122,37 +148,7 @@ def setup_autoencoder_optimizer_scheduler( T_max=10, ) - if use_deepspeed: - model_engine, optimizer_engine, _dataset, scheduler = deepspeed.initialize( - args={"local_rank": -1}, - model=model, - optimizer=optim, - lr_scheduler=lr_scheduler, # type: ignore - config={ - "train_batch_size": hyperparameters["pipeline"]["train_batch_size"], - }, - ) - - return (model_engine, optimizer_engine, scheduler) # type: ignore - - return (model, optim, lr_scheduler) - - -def setup_loss_function(hyperparameters: RuntimeHyperparameters) -> LossReducer: - """Setup the loss function for the autoencoder. - - Args: - hyperparameters: The hyperparameters dictionary. - - Returns: - The combined loss function. - """ - return LossReducer( - LearnedActivationsL1Loss( - l1_coefficient=hyperparameters["loss"]["l1_coefficient"], - ), - L2ReconstructionLoss(), - ) + return optim, lr_scheduler def setup_source_data(hyperparameters: RuntimeHyperparameters) -> SourceDataset: @@ -261,10 +257,10 @@ def stop_layer_from_cache_names(cache_names: list[str]) -> int: def run_training_pipeline( hyperparameters: RuntimeHyperparameters, - source_model: HookedTransformer | DataParallel[HookedTransformer], - autoencoder: SparseAutoencoder | DataParallel[SparseAutoencoder] | DeepSpeedEngine, + source_model: HookedTransformer | DataParallelWithModelAttributes[HookedTransformer], + autoencoder: SparseAutoencoder | DataParallelWithModelAttributes[SparseAutoencoder], loss: LossReducer, - optimizer: AbstractOptimizerWithReset, + optimizer: AdamWithReset, lr_scheduler: LRScheduler | None, activation_resampler: ActivationResampler, source_data: SourceDataset, @@ -307,11 +303,6 @@ def run_training_pipeline( run_name=run_name, num_workers_data_loading=hyperparameters["pipeline"]["num_workers_data_loading"], lr_scheduler=lr_scheduler, - n_input_features=hyperparameters["source_model"]["hook_dimension"], - n_learned_features=int( - hyperparameters["autoencoder"]["expansion_factor"] - * hyperparameters["source_model"]["hook_dimension"] - ), ) pipeline.run_pipeline( @@ -324,28 +315,28 @@ def run_training_pipeline( ) -def train(*, use_deepspeed: bool) -> None: - """Train the sparse autoencoder using the hyperparameters from the WandB sweep. - - Args: - use_deepspeed: Whether to use deepspeed. - """ +def train() -> None: + """Train the sparse autoencoder using the hyperparameters from the WandB sweep.""" try: # Set up WandB hyperparameters = setup_wandb() run_name: str = wandb.run.name # type: ignore + # Setup the device for training + device = get_device() + # Set up the source model source_model = setup_source_model(hyperparameters) - # Set up the autoencoder, optimizer and learning rate scheduler - autoencoder, optimizer, lr_scheduler = setup_autoencoder_optimizer_scheduler( - hyperparameters, use_deepspeed=use_deepspeed - ) + # Set up the autoencoder + autoencoder = setup_autoencoder(hyperparameters, device) # Set up the loss function loss_function = setup_loss_function(hyperparameters) + # Set up the optimizer + optimizer, lr_scheduler = setup_optimizer(autoencoder, hyperparameters) + # Set up the activation resampler activation_resampler = setup_activation_resampler(hyperparameters) @@ -356,7 +347,7 @@ def train(*, use_deepspeed: bool) -> None: run_training_pipeline( hyperparameters=hyperparameters, source_model=source_model, - autoencoder=autoencoder, + autoencoder=DataParallelWithModelAttributes(autoencoder), loss=loss_function, optimizer=optimizer, lr_scheduler=lr_scheduler, @@ -370,12 +361,7 @@ def train(*, use_deepspeed: bool) -> None: sys.exit(1) -def sweep( - sweep_config: SweepConfig | None = None, - sweep_id: str | None = None, - *, - use_deepspeed: bool = False, -) -> None: +def sweep(sweep_config: SweepConfig | None = None, sweep_id: str | None = None) -> None: """Run the training pipeline with wandb hyperparameter sweep. Warning: @@ -384,19 +370,16 @@ def sweep( Args: sweep_config: The sweep configuration. sweep_id: The sweep id for an existing sweep. - use_deepspeed: Whether to use deepspeed. Raises: ValueError: If neither sweep_config nor sweep_id is specified. """ if sweep_id is not None: - wandb.agent( - sweep_id, partial(train, use_deepspeed=use_deepspeed), project="sparse-autoencoder" - ) + wandb.agent(sweep_id, train, project="sparse-autoencoder") elif sweep_config is not None: sweep_id = wandb.sweep(sweep_config.to_dict(), project="sparse-autoencoder") - wandb.agent(sweep_id, partial(train, use_deepspeed=use_deepspeed)) + wandb.agent(sweep_id, train) else: error_message = "Either sweep_config or sweep_id must be specified." diff --git a/sparse_autoencoder/train/tests/test_pipeline.py b/sparse_autoencoder/train/tests/test_pipeline.py index b6416244..fbb46588 100644 --- a/sparse_autoencoder/train/tests/test_pipeline.py +++ b/sparse_autoencoder/train/tests/test_pipeline.py @@ -70,8 +70,6 @@ def pipeline_fixture() -> Pipeline: source_dataset=source_data, source_model=src_model, source_data_batch_size=10, - n_input_features=src_model.cfg.d_model, - n_learned_features=int(src_model.cfg.d_model * 2), ) diff --git a/sparse_autoencoder/train/tests/test_sweep.py b/sparse_autoencoder/train/tests/test_sweep.py index fbf8a772..4647ff75 100644 --- a/sparse_autoencoder/train/tests/test_sweep.py +++ b/sparse_autoencoder/train/tests/test_sweep.py @@ -2,10 +2,11 @@ import pytest from syrupy.session import SnapshotSession +import torch from sparse_autoencoder.train.sweep import ( setup_activation_resampler, - setup_autoencoder_optimizer_scheduler, + setup_autoencoder, setup_loss_function, ) from sparse_autoencoder.train.sweep_config import ( @@ -29,7 +30,7 @@ def dummy_hyperparameters() -> RuntimeHyperparameters: "optimizer": { "adam_beta_1": 0.9, "adam_beta_2": 0.99, - "adam_weight_decay": 0.0, + "adam_weight_decay": 0, "amsgrad": False, "fused": False, "lr": 1e-05, @@ -80,9 +81,7 @@ def test_setup_autoencoder( dummy_hyperparameters: RuntimeHyperparameters, snapshot: SnapshotSession ) -> None: """Test the setup_autoencoder function.""" - autoencoder, _, _ = setup_autoencoder_optimizer_scheduler( - dummy_hyperparameters, use_deepspeed=False - ) + autoencoder = setup_autoencoder(dummy_hyperparameters, device=torch.device("cpu")) assert snapshot == str(autoencoder), "Autoencoder string representation has changed." diff --git a/sparse_autoencoder/train/utils/get_model_device.py b/sparse_autoencoder/train/utils/get_model_device.py index 82a265aa..0d49bbd5 100644 --- a/sparse_autoencoder/train/utils/get_model_device.py +++ b/sparse_autoencoder/train/utils/get_model_device.py @@ -1,11 +1,9 @@ """Get the device that the model is on.""" -from deepspeed import DeepSpeedEngine import torch from torch.nn import Module -from torch.nn.parallel import DataParallel -def get_model_device(model: Module | DataParallel | DeepSpeedEngine) -> torch.device: +def get_model_device(model: Module) -> torch.device: """Get the device on which a PyTorch model is on. Args: @@ -17,10 +15,6 @@ def get_model_device(model: Module | DataParallel | DeepSpeedEngine) -> torch.de Raises: ValueError: If the model has no parameters. """ - # Deepspeed models already have a device property, so just return that - if hasattr(model, "device"): - return model.device - # Check if the model has parameters if len(list(model.parameters())) == 0: exception_message = "The model has no parameters." diff --git a/sparse_autoencoder/train/utils/wandb_sweep_types.py b/sparse_autoencoder/train/utils/wandb_sweep_types.py index a8530041..5df4aa5b 100644 --- a/sparse_autoencoder/train/utils/wandb_sweep_types.py +++ b/sparse_autoencoder/train/utils/wandb_sweep_types.py @@ -165,7 +165,7 @@ class Distribution(LowercaseStrEnum): class Controller: """Controller.""" - type: ControllerType + type: ControllerType # noqa: A003 @dataclass @@ -180,7 +180,7 @@ class HyperbandStopping: HyperbandStopping(type=hyperband) """ - type: HyperbandStoppingType | None = HyperbandStoppingType.HYPERBAND + type: HyperbandStoppingType | None = HyperbandStoppingType.HYPERBAND # noqa: A003 eta: float | None = None """ETA. @@ -286,10 +286,10 @@ class Parameter(Generic[ParamType]): Specifies the single valid value for this hyperparameter. Compatible with grid. """ - max: ParamType | None = None + max: ParamType | None = None # noqa: A003 """Maximum value.""" - min: ParamType | None = None + min: ParamType | None = None # noqa: A003 """Minimum value.""" distribution: Distribution | None = None diff --git a/sparse_autoencoder/utils/data_parallel.py b/sparse_autoencoder/utils/data_parallel.py new file mode 100644 index 00000000..4895b412 --- /dev/null +++ b/sparse_autoencoder/utils/data_parallel.py @@ -0,0 +1,40 @@ +"""Data parallel utils.""" +from typing import Any, Generic, TypeVar + +from torch.nn import DataParallel, Module + + +T = TypeVar("T", bound=Module) + + +class DataParallelWithModelAttributes(DataParallel[T], Generic[T]): + """Data parallel with access to underlying model attributes/methods. + + Allows access to underlying model attributes/methods, which is not possible with the default + `DataParallel` class. Based on: + https://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html + + Example: + >>> from sparse_autoencoder import SparseAutoencoder, SparseAutoencoderConfig + >>> model = SparseAutoencoder(SparseAutoencoderConfig( + ... n_input_features=2, + ... n_learned_features=4, + ... )) + >>> distributed_model = DataParallelWithModelAttributes(model) + >>> distributed_model.config.n_learned_features + 4 + """ + + def __getattr__(self, name: str) -> Any: # noqa: ANN401 + """Allow access to underlying model attributes/methods. + + Args: + name: Attribute/method name. + + Returns: + Attribute value/method. + """ + try: + return super().__getattr__(name) + except AttributeError: + return getattr(self.module, name)