-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_analytical_example_2.py
executable file
·58 lines (48 loc) · 1.27 KB
/
main_analytical_example_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from bernstein_optimizer import BernsteinOptimizer
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams.update(
{
"text.usetex": True,
"font.family": "serif",
}
)
import sys
from analytical_examples.example_2 import *
opt = BernsteinOptimizer(
dynamicsf=xdot,
costf=costf,
constraints=constraints,
u_sz=u_sz,
x_sz=x_sz,
u_is_sigm_limited=False,
n_max=3,
u_bounds=[-10, 10],
tf_is_variable=False,
init_is_random=False,
n_is_adaptive=False,
initial_dynamics=initial_dynamics,
tf=tf,
)
p = opt.minimize()
print(p)
x, u, s = opt.get_s_of_t(p)
# plotting
t = np.linspace(0, tf, 100)
s_values = np.array([s(ti) for ti in t])
analytical_s_values = np.array([analytical_s(ti) for ti in t])
for i in range(s_values.shape[1]):
plt.figure()
if i < x_sz:
ylabel = "$x_" + str(i + 1) + "$"
else:
ylabel = "$u_" + str(i - x_sz + 1) + "$"
plt.plot(t, analytical_s_values[:, i], label="analytical " + ylabel)
plt.plot(t, s_values[:, i], label="experimental " + ylabel, linestyle="--")
plt.xlabel("$t$")
plt.ylabel(ylabel)
plt.legend()
plt.grid()
plt.gca().set_aspect("auto")
plt.savefig("figures/" + sys.argv[0][:-3] + "_" + ylabel[1:-1] + ".pdf")
plt.show()