-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstorm_locations_training.py
executable file
·232 lines (189 loc) · 9.78 KB
/
storm_locations_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python
import numpy as np
import datetime as dt
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm, ListedColormap,BoundaryNorm
from scipy.ndimage.filters import gaussian_filter
from scipy.stats import pearsonr
from scipy import spatial
from netCDF4 import Dataset, MFDataset
import os, time
import cPickle as pickle
import pandas as pd
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.cross_validation import train_test_split
from sklearn.calibration import CalibratedClassifierCV, calibration_curve
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from mpl_toolkits.basemap import *
import cartopy
from cartopy.geodesic import Geodesic
from matplotlib.path import Path
def computeshr01(row):
if model == 'NSC3km-12sec': return np.sqrt(row['USHR1-potential_mean']**2 + row['VSHR1-potential_mean']**2)
if model == 'NCAR': return np.sqrt(row['UBSHR1-potential_mean']**2 + row['VBSHR1-potential_mean']**2)
def computeshr06(row):
if model == 'NSC3km-12sec': return np.sqrt(row['USHR6-potential_mean']**2 + row['VSHR6-potential_mean']**2)
if model == 'NCAR': return np.sqrt(row['UBSHR6-potential_mean']**2 + row['VBSHR6-potential_mean']**2)
def computeSTP(row):
lclterm = ((2000.0-row['MLLCL-potential_mean'])/1000.0)
lclterm = np.where(row['MLLCL-potential_mean']<1000, 1.0, lclterm)
lclterm = np.where(row['MLLCL-potential_mean']>2000, 0.0, lclterm)
shrterm = (row['shr06']/20.0)
shrterm = np.where(row['shr06'] > 30, 1.5, shrterm)
shrterm = np.where(row['shr06'] < 12.5, 0.0, shrterm)
stp = (row['SBCAPE-potential_mean']/1500.0) * lclterm * (row['SRH01-potential_mean']/150.0) * shrterm
return stp
def read_csv_files():
# read in all CSV files for 1km forecasts
tdate = sdate
all_files = []
while tdate <= edate:
yyyymmdd = tdate.strftime('%Y%m%d')
csv_file = '/glade/work/sobash/NSC_objects/track_data_ncarstorm_3km_csv_preprocessed/track_step_NCARSTORM_d01_%s-0000_13_time2_filtered.csv'%(yyyymmdd)
if os.path.exists(csv_file): all_files.append(csv_file)
tdate += dt.timedelta(days=1)
print 'Reading %s files'%(len(all_files))
df = pd.concat((pd.read_csv(f) for f in all_files))
# compute various diagnostic quantities
df['shr01'] = df.apply(computeshr01, axis=1)
df['shr06'] = df.apply(computeshr06, axis=1)
if model == 'NSC3km-12sec': df['stp'] = df.apply(computeSTP, axis=1)
#if model == 'NSC3km-12sec': df['datetime'] = pd.to_datetime(df['Valid_Date'])
#if model == 'NCAR':
# df['datetime'] = pd.to_datetime(df['Date'])
# df['Run_Date'] = pd.to_datetime(df['Date']) - pd.to_timedelta(df['Forecast_Hour'])
df['datetime'] = pd.to_datetime(df['Valid_Date'])
df['year'] = df['datetime'].dt.year
df['month'] = df['datetime'].dt.month
df['dayofyear'] = df['datetime'].dt.dayofyear
if model == 'NCAR': df = df[df['Forecast_Hour']>12]
return df, len(all_files)
def print_scores(labels, predictions):
cm = confusion_matrix(labels, predictions)
#print cm
hits = cm[1,1]
false_alarms = cm[0,1]
misses = cm[1,0]
correct_neg = cm[0,0]
hits_random = (hits + misses)*(hits + false_alarms) / float(hits + misses + false_alarms + correct_neg)
ets = (hits-hits_random)/float(hits + false_alarms + misses - hits_random)
bias = (hits+false_alarms)/float(hits+misses)
pod = hits/float(hits+misses)
far = false_alarms/float(hits+false_alarms)
pofd = false_alarms/float(correct_neg + false_alarms)
print 'BIAS=%0.3f, POD=%0.3f, FAR=%0.3f, POFD=%0.3f, ETS=%0.3f'%(bias,pod,far,pofd,ets)
def writeOutputSparse():
if not os.path.exists(out_dir): os.mkdir(out_dir)
outnc = Dataset('%s/ssr_sparse_grid81_%s_RANDOM-FOREST%dkm_%s.nc'%(out_dir,model,d,yyyymmddhh), 'w')
outnc.description = 'Surrogate Severe Forecast Data'
outnc.source = model
outnc.field = 'RANDOM-FOREST'
outnc.grid = 81
outnc.thresh = 0
outnc.numens = 1
outnc.fhours = 37
outnc.lats = 93
outnc.lons = 65
outnc.history = 'Created '+ time.ctime(time.time())
ssrindx = np.flatnonzero(ssr81_all)
outnc.createDimension('ssrindx', ssrindx.size)
#outnc.createDimension('numthresh', len(threshList))
if ssrindx.size > 0:
if ssrindx.max() > 4290000000: type = 'u8' #64-bit unsigned int
else: type = 'u4' # 32-bit unsigned int
else: type = 'u4'
ssrloc = outnc.createVariable('ssrloc', type, ('ssrindx',), zlib=True)
ssrmag = outnc.createVariable('ssrmag', 'f4', ('ssrindx',), zlib=True)
#thresh = outnc.createVariable('thresh', 'f4', ('numthresh',), zlib=True)
#ssrs = outnc.createVariable('ssrs', type, ('ssrindx',))
#thresh = outnc.createVariable('thresh', 'f4', ('numthresh',))
ssr81_all_flat = ssr81_all.flatten()
#ssrs[:] = ssrindx
ssrloc[:] = ssrindx
ssrmag[:] = ssr81_all_flat[ssrindx]
#thresh[:] = threshList
outnc.close()
def grid_storms(storms):
lats, lons, fh = storms['Centroid_Lat'].values, storms['Centroid_Lon'].values, storms['Forecast_Hour'].values
uh = storms['UP_HELI_MAX_max'].values
# map storm predictions to 80km grid
if grid_ssrs:
x, y = awips(lons, lats)
print 'making 80-km grid'
nngridpts = tree.query(zip(x.ravel(), y.ravel()))
ssr81_all = np.zeros((1,37,65*93), dtype='f')
for i in range(len(storms)):
ssr81_all[0,fh[i],nngridpts[1][i]] += 1
ssr81_all = ssr81_all.reshape((1,37,65,93))
#ssr81_all = np.amax(ssr81_all[:,13:37,:], axis=(0,1))
return ssr81_all
def plot_forecast(storms, yyyymmdd):
#test = readNCLcm('MPL_Greys')[25::] + [[1,1,1]] + readNCLcm('MPL_Reds')[10::]
#test = readNCLcm('perc2_9lev')[1::]
#cmap = ListedColormap(test)
lats, lons, fh = storms['Centroid_Lat'].values, storms['Centroid_Lon'].values, storms['Forecast_Hour'].values
uh = storms['UP_HELI_MAX_max'].values
predictions = storms['predict_proba'].values
fig, axes, m = pickle.load(open('/glade/work/sobash/NSC_objects/hwt2019_domain.pk', 'r'))
x, y = m(lons, lats)
cmap = plt.get_cmap('RdGy_r')
norm = BoundaryNorm(np.arange(0,1.1,0.1), ncolors=cmap.N, clip=True)
a = m.scatter(x, y, s=40, c=predictions, lw=0.25, edgecolors='k', cmap=cmap, norm=norm)
#x81, y81 = m(lon_coarse, lat_coarse)
#a = m.pcolormesh(x81, y81, np.ma.masked_less(np.amax(ssr81_all[0,13:37,:], axis=0), 0.5), alpha=0.8, edgecolor='None', linewidth=0.05, cmap=cmap, norm=norm, ax=axes)
# ADD TITLE
fontdict = {'family':'monospace', 'size':12, 'weight':'bold'}
x0, y1 = axes.transAxes.transform((0,1))
x0, y0 = axes.transAxes.transform((0,0))
x1, y1 = axes.transAxes.transform((1,1))
axes.text(x0, y1+10, 'NCAR Ensemble 24-hr Random Forest Severe Weather Guidance', fontdict=fontdict, transform=None)
initstr = sdate.strftime('Init: %a %Y-%m-%d %H UTC')
validstr1 = (sdate+dt.timedelta(hours=12)).strftime('%a %Y-%m-%d %H UTC')
validstr2 = (sdate+dt.timedelta(hours=36)).strftime('%a %Y-%m-%d %H UTC')
validstr = "Valid: %s - %s"%(validstr1, validstr2)
fontdict = {'family':'monospace', 'size':10 }
axes.text(x1, y1+20, initstr, horizontalalignment='right', transform=None, fontdict=fontdict)
axes.text(x1, y1+5, validstr, horizontalalignment='right', transform=None, fontdict=fontdict)
axes.text(x0, y0-15, 'Circles denote locations of storm centroids with w > 10 m/s for all members', fontdict=fontdict, transform=None)
axes.text(x0, y0-28, 'Fill color denotes prob. of any severe report w/in 120-km using a random forest trained with 3-km CAM forecasts', fontdict=fontdict, transform=None)
axes.text(x0, y0-41, 'Questions/Feedback: [email protected]', fontdict=fontdict, transform=None)
fontdict = {'family':'monospace', 'size':11, 'weight':'bold' }
axes.text(x0+600, y0+60, 'Total storms: %d'%len(predictions), fontdict=fontdict, transform=None)
axes.text(x0+600, y0+45, 'Severe storms: %d'%len(predictions[predictions>0.5]), fontdict=fontdict, transform=None)
axes.text(x0+600, y0+30, 'Average prob: %0.2f'%np.mean(predictions), fontdict=fontdict, transform=None)
# ADD COLORBAR
cax = fig.add_axes([0.02,0.1,0.02,0.3])
cb = plt.colorbar(a, cax=cax, orientation='vertical', extendfrac=0.0)
cb.outline.set_linewidth(0.5)
cb.ax.tick_params(labelsize=10)
plt.savefig('random_forest_severe_%s_day1.png'%yyyymmddhh)
#return ssr81_all
grid_ssrs = True
if grid_ssrs:
awips = Basemap(projection='lcc', llcrnrlon=-133.459, llcrnrlat=12.19, urcrnrlon=-49.38641, urcrnrlat=57.2894, lat_1=25.0, lat_2=25.0, lon_0=-95, resolution=None, area_thresh=10000.)
lon_coarse,lat_coarse,x_coarse,y_coarse = awips.makegrid(93, 65, returnxy=True)
tree = spatial.KDTree(zip(x_coarse.ravel(),y_coarse.ravel()))
model = 'NSC3km-12sec'
sdate = dt.datetime(2010,1,1,0,0,0)
edate = dt.datetime(2017,12,31,0,0,0)
dateinc = dt.timedelta(days=1)
df, numfcsts = read_csv_files()
ssr81_all = grid_storms(df)
plotting = True
if plotting:
fig, axes, m = pickle.load(open('/glade/u/home/wrfrt/rt_ensemble_2019hwt/python_scripts/ch_pk_files/00z/rt2015_CONUS.pk', 'r'))
x81, y81 = m(lon_coarse, lat_coarse)
x81 = (x81[1:,1:] + x81[:-1,:-1])/2.0
y81 = (y81[1:,1:] + y81[:-1,:-1])/2.0
cmap = plt.get_cmap('RdGy_r')
norm = BoundaryNorm(np.arange(0,50,5), ncolors=cmap.N, clip=True)
a = m.pcolormesh(x81, y81, np.ma.masked_less(np.amax(ssr81_all[0,13:37,1:,1:], axis=0), 0.5), alpha=0.8, edgecolor='None', linewidth=0.05, cmap=cmap, norm=norm, ax=axes)
# ADD COLORBAR
cax = fig.add_axes([0.02,0.1,0.02,0.3])
cb = plt.colorbar(a, cax=cax, orientation='vertical', extendfrac=0.0)
cb.outline.set_linewidth(0.5)
cb.ax.tick_params(labelsize=10)
plt.savefig('storm_locations_training.png')