forked from daekeun-ml/sm-kornlp-usecases
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
262 lines (213 loc) · 9.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
FULL_TRAINING = False
import os
import sys
import json
import logging
import argparse
import torch
from torch import nn
import numpy as np
import pandas as pd
import evaluate
from tqdm import tqdm
from IPython.display import display, HTML
from pynvml import *
from torch.utils.data import Dataset
from PIL import Image
from transformers import (
AutoTokenizer, VisionEncoderDecoderModel, TrOCRProcessor,
Seq2SeqTrainer, Seq2SeqTrainingArguments, set_seed, default_data_collator
)
from sklearn.model_selection import train_test_split
from transformers.trainer_utils import get_last_checkpoint
from datasets import load_dataset, load_metric
logging.basicConfig(
level=logging.INFO,
format='[{%(filename)s:%(lineno)d} %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
cer_metric = evaluate.load("cer")
wer_metric = evaluate.load("wer")
class OCRDataset(Dataset):
def __init__(self, dataset_dir, df, processor, tokenizer, max_target_length=32):
self.dataset_dir = dataset_dir
self.df = df
self.processor = processor
self.max_target_length = max_target_length
self.tokenizer = tokenizer
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
# get file name + text
file_name = self.df['file_name'][idx]
text = self.df['text'][idx]
# prepare image (i.e. resize + normalize)
image = Image.open(os.path.join(self.dataset_dir, file_name)).convert("RGB")
pixel_values = self.processor(image, return_tensors="pt").pixel_values
# add labels (input_ids) by encoding the text
labels = self.tokenizer(text, padding="max_length",
stride=32,
truncation=True,
max_length=self.max_target_length).input_ids
# important: make sure that PAD tokens are ignored by the loss function
labels = [label if label != self.tokenizer.pad_token_id else -100 for label in labels]
encoding = {"pixel_values": pixel_values.squeeze(), "labels": torch.tensor(labels)}
return encoding
def print_gpu_utilization():
nvmlInit()
handle = nvmlDeviceGetHandleByIndex(0)
info = nvmlDeviceGetMemoryInfo(handle)
print(f"GPU memory occupied: {info.used//1024**2} MB.")
def print_summary(result):
print(f"Time: {result.metrics['train_runtime']:.2f}")
print(f"Samples/second: {result.metrics['train_samples_per_second']:.2f}")
print_gpu_utilization()
def compute_metrics(pred):
labels_ids = pred.label_ids
pred_ids = pred.predictions
pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)
cer = cer_metric.compute(predictions=pred_str, references=label_str)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"cer": cer, "wer": wer}
def parser_args(train_notebook=False):
parser = argparse.ArgumentParser()
# Default Setting
parser.add_argument("--epochs", type=int, default=1)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--train_batch_size", type=int, default=16)
parser.add_argument("--eval_batch_size", type=int, default=16)
parser.add_argument("--max_length", type=int, default=64)
parser.add_argument("--stride", type=int, default=32)
parser.add_argument("--warmup_steps", type=int, default=100)
parser.add_argument("--logging_steps", type=int, default=100)
parser.add_argument("--learning_rate", type=str, default=4e-5)
parser.add_argument("--disable_tqdm", type=bool, default=False)
parser.add_argument("--fp16", type=bool, default=True)
parser.add_argument("--debug", type=bool, default=False)
# SageMaker Container environment
parser.add_argument("--output_data_dir", type=str, default=os.environ["SM_OUTPUT_DATA_DIR"])
parser.add_argument("--model_dir", type=str, default=os.environ["SM_MODEL_DIR"])
parser.add_argument("--n_gpus", type=str, default=os.environ["SM_NUM_GPUS"])
parser.add_argument("--train_dir", type=str, default=os.environ["SM_CHANNEL_TRAIN"])
parser.add_argument('--chkpt_dir', type=str, default='/opt/ml/checkpoints')
if train_notebook:
args = parser.parse_args([])
else:
args = parser.parse_args()
return args
def main():
is_sm_container = True
if os.environ.get('SM_CURRENT_HOST') is None:
is_sm_container = False
train_dir = 'train'
model_dir = 'model'
output_data_dir = 'data'
src_dir = '/'.join(os.getcwd().split('/')[:-1])
#src_dir = os.getcwd()
os.environ['SM_MODEL_DIR'] = f'{src_dir}/{model_dir}'
os.environ['SM_OUTPUT_DATA_DIR'] = f'{src_dir}/{output_data_dir}'
os.environ['SM_NUM_GPUS'] = str(1)
os.environ['SM_CHANNEL_TRAIN'] = f'{src_dir}/{train_dir}'
args = parser_args(train_notebook=True)
print(args)
if os.environ.get('SM_CURRENT_HOST') is None:
args.chkpt_dir = 'chkpt'
n_gpus = torch.cuda.device_count()
if os.getenv("SM_NUM_GPUS")==None:
print("Explicitly specifying the number of GPUs.")
os.environ["GPU_NUM_DEVICES"] = n_gpus
else:
os.environ["GPU_NUM_DEVICES"] = os.environ["SM_NUM_GPUS"]
logger.info("***** Arguments *****")
logger.info(''.join(f'{k}={v}\n' for k, v in vars(args).items()))
os.makedirs(args.chkpt_dir, exist_ok=True)
os.makedirs(args.model_dir, exist_ok=True)
os.makedirs(args.output_data_dir, exist_ok=True)
df = pd.read_csv(f'{args.train_dir}/labels.txt', header=None, sep="^(\d+\.jpg)", engine='python')
df = df.drop(df.columns[[0]], axis=1)
df.rename(columns={1: "file_name", 2: "text"}, inplace=True)
df['text'] = df['text'].str.strip()
# Just for hands-on lab
if not FULL_TRAINING:
df = df.sample(n=100, random_state=42)
if FULL_TRAINING:
vision_hf_model = 'facebook/deit-base-distilled-patch16-384'
nlp_hf_model = "klue/roberta-base"
# Reference: https://github.com/huggingface/transformers/issues/15823
# initialize the encoder from a pretrained ViT and the decoder from a pretrained BERT model.
# Note that the cross-attention layers will be randomly initialized, and need to be fine-tuned on a downstream dataset
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(vision_hf_model, nlp_hf_model)
tokenizer = AutoTokenizer.from_pretrained(nlp_hf_model)
else:
trocr_model = 'daekeun-ml/ko-trocr-base-nsmc-news-chatbot'
model = VisionEncoderDecoderModel.from_pretrained(trocr_model)
tokenizer = AutoTokenizer.from_pretrained(trocr_model)
train_df, test_df = train_test_split(df, test_size=0.1)
train_df.reset_index(drop=True, inplace=True)
test_df.reset_index(drop=True, inplace=True)
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
train_dataset = OCRDataset(
dataset_dir=args.train_dir,
df=train_df,
tokenizer=tokenizer,
processor=processor,
max_target_length=args.max_length
)
eval_dataset = OCRDataset(
dataset_dir=args.train_dir,
df=test_df,
tokenizer=tokenizer,
processor=processor,
max_target_length=args.max_length
)
print("Number of training examples:", len(train_dataset))
print("Number of validation examples:", len(eval_dataset))
# set special tokens used for creating the decoder_input_ids from the labels
model.config.decoder_start_token_id = tokenizer.cls_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.config.vocab_size = model.config.decoder.vocab_size
# set beam search parameters
model.config.eos_token_id = tokenizer.sep_token_id
model.config.max_length = args.max_length
model.config.early_stopping = True
model.config.no_repeat_ngram_size = 3
model.config.length_penalty = 2.0
model.config.num_beams = 4
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True,
evaluation_strategy="steps",
per_device_train_batch_size=args.train_batch_size,
per_device_eval_batch_size=args.eval_batch_size,
num_train_epochs=args.epochs,
fp16=args.fp16,
learning_rate=float(args.learning_rate),
output_dir=args.chkpt_dir,
#logging_dir="./logs",
#logging_steps=10,
save_steps=5000,
eval_steps=5000,
)
# instantiate trainer
trainer = Seq2SeqTrainer(
model=model,
tokenizer=tokenizer,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=default_data_collator,
)
trainer.train()
# Saves the model to s3 uses os.environ["SM_MODEL_DIR"] to make sure checkpointing works
tokenizer.save_pretrained(args.model_dir)
trainer.save_model(output_dir=args.model_dir)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()