-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_adaptation.py
212 lines (156 loc) · 8.33 KB
/
test_adaptation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import pickle
import os
import open_clip
import copy
import random
import ast
import torch
import json
import pandas as pd
import numpy as np
import deeplake
import torch.nn.functional as F
from torchvision.datasets import CIFAR10, CIFAR100
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
from decouple import config
from torch.utils.data import DataLoader, TensorDataset, Dataset
from torchvision.datasets import CIFAR10
from model import evaluate_model, train_model_camelyon, train_model_cifar, evaluate_model_freeze, evaluate_model_cam_ensemble_freeze, averaging_model, tent_cifar
from utils import generate_results, Paths, generate_and_save_plot, bar_plot_diff, block_diff, generate_particles
from preprocessor import load_data_camelyon, load_data_cifar, load_data_places
from src.heads import get_classification_head
from src.linearize import LinearizedImageEncoder
from src.modeling import ImageClassifier, ImageEncoder
from src.linearize import LinearizedImageEncoder
from wilds import get_dataset
from wilds.common.data_loaders import get_train_loader
from bayes_wrap import BayesWrap, generate_freezed_particles, train_model_wrap_cifar, generate_lora_particles
random.seed(2295)
''' ----------------------- Set path ------------------------------'''
paths = Paths(config)
paths.create_path()
''' ----------------------- loading CLIP ViT ------------------------------'''
device = "cuda" if torch.cuda.is_available() else "cpu"
# mdl, preprocess = clip.load('ViT-B/32', device)
mdl, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
download_path = os.path.expanduser("/media/rokny/DATA1/Afshar/data")
if config('dataset_name').upper() == "CAMELYON":
dataset = get_dataset(dataset="camelyon17", download=True, root_dir=download_path)
train_data = dataset.get_subset(
"train",
transform=preprocess
)
val_data = dataset.get_subset(
"val",
transform=preprocess
)
test_data = dataset.get_subset(
"test",
transform=preprocess
)
print('camelyon loaded')
trainloaders = [torch.utils.data.DataLoader(train_data, batch_size=int(config('batch_size')), shuffle=True) for i in range(int(config('opt')))]
valloader = torch.utils.data.DataLoader(val_data, batch_size=int(config('batch_size')), shuffle=False)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=int(config('batch_size')), shuffle=False)
elif config('dataset_name').upper() == "CIFAR10":
''' ----------------------- Loading the Data ----------------------- '''
root = os.path.expanduser("/media/rokny/DATA1/Afshar/Data/" + "cifar-10-batches-py")
train = CIFAR10(root, download=True, train=True)
test = CIFAR10(root, download=True, train=False, transform=preprocess)
# corrupted_testset = np.load("Data/shot_noise.npy")
# lbls = np.load("Data/labels.npy")
# test.data = corrupted_testset
# test.targets = lbls
# test.transform = preprocess
# print(f'len test zahra: {len(test)}')
print('cifar10 loaded')
# trainloaders, validation_loader, test_loader = load_data_cifar(preprocess, train, test, device)
elif config('dataset_name').upper() == "CIFAR100":
''' ----------------------- Loading the Data ----------------------- '''
root = os.path.expanduser("/media/rokny/DATA1/Afshar/Data/" + "cifar-100-batches-py")
train = CIFAR100(root, download=True, train=True)
test = CIFAR100(root, download=True, train=False, transform=preprocess)
print('cifar100 loaded')
trainloaders, validation_loader, test_loader = load_data_cifar(preprocess, train, test, device)
elif config('dataset_name').upper() == "DOMAINNET":
''' ----------------------- Loading the Data ----------------------- '''
train_data = deeplake.load("hub://activeloop/domainnet-real-train")
test_data = deeplake.load("hub://activeloop/domainnet-real-test")
print('Domainnet has been loaded')
print(f'len train is {len(train_data)}')
print(f'len test is {len(test_data)}')
trainloaders, validation_loader, test_loader = load_data_places(preprocess, train_data, test_data, test_data, device)
#####################################################################################################
############################### Domain Adaptation CIFAR-10-C ############################################
if config('dataset_name').upper() == "CIFAR10":
mdl, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
model_address = [f for f in os.listdir('./nmdl/') if f[-3:]=='.pt']
print(f'number of checkpoints is {len(model_address)}')
average_model, ensemble = averaging_model(model_address)
particles=[]
particles.append(average_model.to(device))
delta_models = generate_lora_particles(particles)
noise_std = [0]
# i = 0
corrupted_address = [f for f in os.listdir("./Data/") if f[-4:]=='.npy']
# print(f'corrupted is {corrupted_address}')
performance=[]
for i, corr in enumerate(corrupted_address):
if corr != "labels.npy":
print(f'noise is {corr.split(".")[0]}')
perf=[]
corrupted_testset = np.load("Data/" + corr)
lbls = np.load("Data/labels.npy")
test.data = corrupted_testset
test.targets = lbls
test.transform = preprocess
print(f'len {corr} is {len(test)}')
trainloaders, validation_loader, test_loader = load_data_cifar(preprocess, train, test, device)
perf.append(corr.split(".")[0])
all_scores, all_labels = evaluate_model_freeze(average_model, test_loader, device)
# all_scores, all_labels= evaluate_model_cam_ensemble_freeze(delta_models, test_loader, device)
accuracy = generate_results(all_scores, all_labels, noise_std[0], i, paths = paths.path_results)
perf.append(accuracy)
test_load = []
test_load.append(test_loader)
ten_acc = tent_cifar(delta_models, test_load, test_loader, noise_std, config)
perf.append(ten_acc)
performance.append(perf)
performance_path = f"Model/tent_cifar10.json"
with open(performance_path, 'w') as fp:
json.dump(performance, fp, indent=2)
print(performance)
#####################################################################################################
############################### Domain Adaptation Domainnet ############################################
if config('dataset_name').upper() == "DOMAINNET":
mdl, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='laion2b_s34b_b79k')
model_address = [f for f in os.listdir('./nmdl/') if f[-3:]=='.pt']
print(f'number of checkpoints is {len(model_address)}')
average_model, ensemble = averaging_model(model_address)
particles=[]
particles.append(average_model.to(device))
delta_models = generate_lora_particles(particles)
noise_std = [0]
i=0
## print(f'corrupted is {corrupted_address}')
domainnet=['clip', 'paint', 'sketch', 'info', 'quick']
performance=[]
for i, corr in enumerate(domainnet):
print(f'data is {corr}')
perf=[]
test = deeplake.load(f"hub://activeloop/domainnet-{corr}-test")
print(f'len {corr} is {len(test)}')
trainloaders, validation_loader, test_loader = load_data_places(preprocess, train_data, test, test, device)
perf.append(corr)
all_scores, all_labels = evaluate_model_freeze(average_model, test_loader, device)
accuracy = generate_results(all_scores, all_labels, noise_std[0], i, paths = paths.path_results)
perf.append(accuracy)
test_load = []
test_load.append(test_loader)
ten_acc = tent_cifar(delta_models, test_load, test_loader, noise_std, config)
perf.append(ten_acc)
performance.append(perf)
performance_path = f"Model/tent_domainnet.json"
with open(performance_path, 'w') as fp:
json.dump(performance, fp, indent=2)
print(performance)