-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhof_turbo.html
850 lines (850 loc) · 56.1 KB
/
hof_turbo.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="A Fast Forward Error Correction Toolbox (AFF3CT)">
<meta name="author" content="Adrien CASSAGNE">
<title>AFF3CT - A Fast Forward Error Correction Toolbox</title>
<link rel="stylesheet" href="./css/lib/bootstrap-4.1.1.min.css">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.0.13/css/all.css" integrity="sha384-DNOHZ68U8hZfKXOrtjWvjxusGo9WQnrNx2sqG0tfsghAvtVlRW3tvkXWZh58N9jp" crossorigin="anonymous">
<link rel="stylesheet" href="./css/bootstrap_carousel.css">
<script src="./js/lib/jquery-3.3.1.min.js"></script>
<script src="./js/lib/popper-1.14.3.min.js"></script>
<script src="./js/lib/bootstrap-4.1.1.min.js"></script>
<script src="./js/lib/sorttable-2.0.full.js"></script>
<script> /* Google Analytics */
if (window.location.host == "aff3ct.github.io") {
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-78973823-1', 'auto');
ga('send', 'pageview');
}
</script>
<script>
/**
* Function that tracks a click on an outbound link in Analytics.
* This function takes a valid URL string as an argument, and uses that URL string
* as the event label. Setting the transport method to 'beacon' lets the hit be sent
* using 'navigator.sendBeacon' in browser that support it.
*/
var trackOutboundLink = function(url, isExternal = true) {
var params = {};
if (!isExternal) {
params.hitCallback = function () {
document.location = url;
}
}
if (window.location.host == "aff3ct.github.io")
ga('send', 'event', 'outbound', 'click', url, params);
return isExternal;
}
</script>
<style>
.vl { border-left: solid 1px #ddd; }
.tt { border-bottom: 1px dotted #888; display: inline-block; }
.excl { color:#EA5678; }
</style>
</head>
<body>
<nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark">
<a class="navbar-brand" href="index.html">AFF3CT</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarCollapse" aria-controls="navbarCollapse" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbarCollapse" class="collapse navbar-collapse">
<ul class="navbar-nav mr-auto">
<li class="nav-item"><a class="nav-link" href="index.html"><i class="fas fa-home" aria-hidden="true"> </i>Home</a></li>
<li class="nav-item"><a class="nav-link" href="publications.html"><i class="fa fa-newspaper" aria-hidden="true"> </i>Publications</a></li>
<li class="nav-item"><a class="nav-link" href="contributors.html"><i class="fa fa-users" aria-hidden="true"> </i>Contributors</a></li>
<li class="nav-item"><a class="nav-link" href="download.html"><i class="fas fa-download" aria-hidden="true"> </i>Download</a></li>
<li class="nav-item"><a class="nav-link" href="https://aff3ct.readthedocs.io" target="_blank" onclick="return trackOutboundLink('https://aff3ct.readthedocs.io');"><i class="fas fa-book" aria-hidden="true"> </i>Documentation</a></li>
<li class="nav-item"><a class="nav-link" href="https://github.com/aff3ct/aff3ct" target="_blank" onclick="return trackOutboundLink('https://github.com/aff3ct/aff3ct');"><i class="fab fa-github" aria-hidden="true"> </i>GitHub Repository</a></li>
<!--
<li class="nav-item"><a class="nav-link" href="consortium.html"><i class="fas fa-hands-helping" aria-hidden="true"> </i>Consortium <span class="excl"><i class="fas fa-exclamation"></i></span></a></li>
-->
</ul>
<ul class="navbar-nav navbar-right">
<li class="nav-item"><a class="nav-link" href="comparator.html"><i class="fas fa-chart-bar" aria-hidden="true"> </i>BER/FER Comparator</a></li>
<li class="nav-item"><a class="nav-link" href="turbo_reader.html"><i class="fas fa-code-branch" aria-hidden="true"> </i>Turbo Code Reader</a></li>
<li class="nav-item dropdown active">
<a class="nav-link dropdown-toggle" href="#" id="dropdown_hof" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"><i class="fa fa-list" aria-hidden="true"> </i>Software Decoders Hall of Fame </a>
<div class="dropdown-menu dropdown-menu-right" aria-labelledby="dropdown_hof">
<h6 class="dropdown-header">Synoptic tables</h6>
<a class="dropdown-item active" href="hof_turbo.html">Turbo Codes</a>
<a class="dropdown-item" href="hof_ldpc.html">LDPC Codes</a>
<a class="dropdown-item" href="hof_polar.html">Polar Codes</a>
</div>
</li>
</ul>
</div>
</nav>
<div class="jumbotron">
<div class="container marketing">
<h1 class="display-4">FEC Software Decoders Hall of Fame</h1>
<p class="lead">This page presents <b>a Channel Coding Software Decoders "Hall of Fame"</b>. It allows to see at a glance what has been achieved, what can be expected from today software decoders, and easily compare their respective characteristics. For now, three wide code families are considered: <b>the Turbo codes (LTE, LTE-Advanced, CCSDS, etc.), the Low-Density Parity-Check (LDPC) codes (5G, Wi-Fi, WiMAX, CCSDS, WRAN, DVB-S2, etc.), and the more recently introduced Polar codes (5G)</b>.</p>
<p class="lead">All the presented results, collected from the state-of-the-art research papers published in the field, consider a <b>BPSK (Bit Phase-Shift Keying) modulation/demodulation</b> and an <b>AWGN (Additive White Gaussian Noise) channel</b>.</p>
<p class="lead"><b>This Hall of Fame strives to present results as fairly as possible</b>: for example, early termination criteria are not taken into consideration while computing throughput, in order to compare raw performances using a consistent method. It remains possible, however, for typos/glitches/mistakes to have inadvertantly made it to the scoreboard. In that eventuality, do not hesitate to contact us. If you would like to have your decoder listed as well in the Hall of Fame: <b>please send us the corresponding research paper references, and we will be delighted to add them</b>.</p>
<p class="lead">In <span class="bg-info text-white">blue</span>, the results simulated or reproducible with <a href="index.html">AFF3CT</a>: our Open-source communication chain dedicated to the Forward Error Correction (FEC) simulations.</p>
<p class="lead text-right">
<i>Last update: 2021-05-17.</i>
</p>
<hr>
<p>Do you like the FEC Software Decoders Hall of Fame? Is it useful in your research works? If yes, you can thank us by citing the following journal article: <strong>A. Cassagne et al., “<a href="https://doi.org/10.1016/j.softx.2019.100345" target="_blank" onclick="return trackOutboundLink('https://doi.org/10.1016/j.softx.2019.100345');">AFF3CT: A Fast Forward Error Correction Toolbox!</a>,“ <i>SoftwareX</i>, 2019</strong>. <a title="PDF Article" href="https://hal.inria.fr/hal-02358306/file/Cassagne2019a%20-%20AFF3CT%3A%20A%20Fast%20Forward%20Error%20Correction%20Toolbox.pdf" target="_blank" onclick="return trackOutboundLink('https://hal.inria.fr/hal-02358306/file/Cassagne2019a%20-%20AFF3CT%3A%20A%20Fast%20Forward%20Error%20Correction%20Toolbox.pdf');"><i class="fas fa-file-pdf" aria-hidden="true"></i></a> <a title="Bibtex Entry" href="resources/bibtex/Cassagne2019a%20-%20AFF3CT:%20A%20Fast%20Forward%20Error%20Correction%20Toolbox.bib" target="_blank" onclick="return trackOutboundLink('resources/bibtex/Cassagne2019a%20-%20AFF3CT:%20A%20Fast%20Forward%20Error%20Correction%20Toolbox.bib');"><i class="fas fa-file-alt" aria-hidden="true"></i></a></p>
</div>
</div>
<div class="container marketing">
<ul class="nav nav-tabs">
<li class="nav-item"><a class="nav-link active" href="hof_turbo.html">Turbo</a></li>
<li class="nav-item"><a class="nav-link" href="hof_ldpc.html">LDPC</a></li>
<li class="nav-item"><a class="nav-link" href="hof_polar.html">Polar</a></li>
</ul>
<div class="mb-4"></div>
<div id="turbo-codes" class="codes">
<div class="bs-example" data-example-id="panel-without-body-with-table">
<p class="lead"><strong>Maximum A Posteriori (MAP) - <i>8-state trellis</i></strong></p>
<div class="table-responsive">
<table class="table sortable table-hover table-striped">
<thead>
<tr>
<th>Work</th>
<th id="year1">Year</th>
<th class="vl">Platform</th>
<th>Implem.</th>
<th><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Precision in bits">Pre.</span></th>
<th><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Inter frame level: number of frames computed in parallel">Inter</span></th>
<th><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Number of information bits in the frame"><math><mi>K</mi></math></span></th>
<th>
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Code rate:
<math>
<mi>R</mi>
<mo>=</mo>
<mfrac>
<mi>K</mi>
<mi>N</mi>
</mfrac>
</math>">
<math><mi>R</mi></math>
</span>
</th>
<th><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Number of iteration in the decoding process"><math><mi>i</mi></math></span></th>
<th class="vl"><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Latency in micro seconds: time to decode one frame"><math><mi>Lat.</mi></math></span></th>
<th>
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Information throughput in Mbps:<br/>
<math>
<mi>Thr.</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>K</mi>
<mo>×</mo>
<mi>Inter</mi>
</mrow>
<mi>Lat.</mi>
</mfrac>
</math>">
<math><mi>Thr.</mi></math>
</span>
</th>
<th class="vl" id="nthr1">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Normalized throughput in Mbps:<br/>
<math>
<mi>NThr.</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mrow><mi>Thr.</mi></mrow>
<mo>×</mo>
<mrow><mi>i</mi></mrow>
</mrow>
<mrow>
<mi>6</mi>
</mrow>
</mfrac>
</math>">
<math><mi>NThr.</mi></math>
</span>
</th>
<th>
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Throughput under Normalized Decoding Cost:<br/>
<math>
<mi>TNDC</mi>
<mo>=</mo>
<mfrac>
<mrow><mi>NThr.</mi></mrow>
<mrow>
<mrow><mi>Cores</mi></mrow>
<mo>×</mo>
<mrow><mi>Freq.</mi></mrow>
<mo>×</mo>
<mrow><mi>SIMD</mi></mrow>
</mrow>
</mfrac>
</math>">
<math><mi>TNDC</mi></math>
</span>
</th>
<th>
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Energy-per-bit (in nano Joules): <br />
<math>
<mrow><msub><mi>E</mi><mi>d</mi></msub></mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>TDP</mi>
</mrow>
<mrow>
<mi>NThr.</mi>
</mrow>
</mfrac>
<mo>×</mo>
<msup>
<mn>10</mn>
<mn>3</mn>
</msup>
</math>">
<math><msub><mi>E</mi><mi>d</mi></msub></math>
</span>
</th>
</tr>
</thead>
<tbody>
<tr>
<td><a class="tt" href="#ref1" data-toggle="tooltip" data-placement="top" data-html="true" title="M. Wu, Y. Sun, and J. R. Cavallaro, <b>Implementation of a 3GPP LTE Turbo Decoder Accelerator on GPU</b>, <i>in Proceedings of the IEEE International Workshop on Signal Processing Systems (SiPS)</i>, October 2010.">[1]</a></td>
<td>2010</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: Tesla C1060<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Tesla<br />
<u>Frequency</u>: 1.30 GHz<br />
<u>SMX/Cores</u>: 15<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 16<br />
<u>TDP</u> : 200 Watts">
Tesla C1060
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="max-log-MAP algorithm (based on the BCJR)">ML-MAP</span></td>
<td>32</td>
<td>100</td>
<td>6144</td>
<td>1/3</td>
<td>5</td>
<td class="vl">76800</td>
<td>8.0</td>
<td class="vl">6.7</td>
<td>0.021</td>
<td>29851</td>
</tr>
<tr>
<td><a class="tt" href="#ref2" data-toggle="tooltip" data-placement="top" data-html="true" title="M. Wu, Y. Sun, G. Wang, and J. R. Cavallaro, <b>Implementation of a High Throughput 3GPP Turbo Decoder on GPU</b>, <i>Springer Journal of Signal Processing Systems (JSPS)</i>, September 2011.">[2]</a></td>
<td>2011</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: GeForce GTX 470<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Fermi<br />
<u>Frequency</u>: 1.22 GHz<br />
<u>SMX/Cores</u>: 14<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 32<br />
<u>TDP</u> : 215 Watts">
GTX 470
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="max-log-MAP algorithm (based on the BCJR)">ML-MAP</span></td>
<td>32</td>
<td>100</td>
<td>6144</td>
<td>1/3</td>
<td>5</td>
<td class="vl">20827</td>
<td>29.5</td>
<td class="vl">24.6</td>
<td>0.045</td>
<td>8740</td>
</tr>
<tr>
<td><a class="tt" href="#ref3" data-toggle="tooltip" data-placement="top" data-html="true" title="L. Huang and Y. Luo and H. Wang and F. Yang and Z. Shi and D. Gu, <b>A High Speed Turbo Decoder Implementation for CPU-Based SDR System</b>, <i>in Proceedings of the IEEE International Conference on Communication Technology and Applications (ICCTA)</i>, October 2011.">[3]</a></td>
<td>2011</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: CPU<br />
<u>Full name</u>: Core i7-960<br />
<u>Vendor</u>: Intel<br />
<u>Architecture</u>: Nehalem<br />
<u>Frequency</u>: 3.20 GHz<br />
<u>SMX/Cores</u>: 4 (only 1 used)<br />
<u>SIMD type</u>: SSE4.2 (128-bit)<br />
<u>SIMD length</u>: 8 (16-bit/elmt)<br />
<u>TDP</u> : 130 Watts">
i7-960
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="max-log-MAP algorithm (based on the BCJR)">ML-MAP</span></td>
<td>16</td>
<td>1</td>
<td>1008</td>
<td>1/3</td>
<td>8</td>
<td class="vl">138</td>
<td>7.3</td>
<td class="vl">9.7</td>
<td>0.380</td>
<td>13402</td>
</tr>
<tr>
<td><a class="tt" href="#ref4" data-toggle="tooltip" data-placement="top" data-html="true" title="D. Yoge and N. Chandrachoodan, <b>GPU Implementation of a Programmable Turbo Decoder for Software Defined Radio Applications</b>, <i>in Proceedings of the IEEE International Conference on VLSI Design (VLSID)</i>, January 2012.">[4]</a></td>
<td>2012</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: GeForce 9800 GX2<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Tesla<br />
<u>Frequency</u>: 1.50 GHz<br />
<u>SMX/Cores</u>: 16<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 16<br />
<u>TDP</u> : 197 Watts">
9800 GX2
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="max-log-MAP algorithm (based on the BCJR)">ML-MAP</span></td>
<td>32</td>
<td>1</td>
<td>6144</td>
<td>1/3</td>
<td>5</td>
<td class="vl">3072</td>
<td>2.0</td>
<td class="vl">1.7</td>
<td>0.0043</td>
<td>115882</td>
</tr>
<tr>
<td><a class="tt" href="#ref5" data-toggle="tooltip" data-placement="top" data-html="true" title="S. Chinnici and P. Spallaccini, <b>Fast Simulation of Turbo Codes on GPUs</b>, <i>in Proceedings of the IEEE International Symposium on Turbo Codes and Iterative Information Processing (ISTC)</i>, August 2012.">[5]</a></td>
<td>2012</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: Tesla C2050<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Fermi<br />
<u>Frequency</u>: 1.15 GHz<br />
<u>SMX/Cores</u>: 14<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 32<br />
<u>TDP</u> : 247 Watts">
Tesla C2050
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="log-MAP algorithm (based on the BCJR)">L-MAP</span></td>
<td>32</td>
<td>32</td>
<td>11918</td>
<td>1/3</td>
<td>5</td>
<td class="vl">108965</td>
<td>3.5</td>
<td class="vl">2.9</td>
<td>0.0057</td>
<td>85172</td>
</tr>
<tr>
<td><a class="tt" href="#ref6" data-toggle="tooltip" data-placement="top" data-html="true" title="S. Zhang, R. Qian, T. Peng, R. Duan, and K. Chen, <b>High Throughput Turbo Decoder Design for GPP Platform</b>, <i>in Proceedings of the IEEE International Conference on Communications and Networking in China (CHINACOM)</i>, August 2012.">[6]</a></td>
<td>2012</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: CPU<br />
<u>Full name</u>: Xeon X5670<br />
<u>Vendor</u>: Intel<br />
<u>Architecture</u>: Westmere<br />
<u>Frequency</u>: 2.93 GHz<br />
<u>SMX/Cores</u>: 6<br />
<u>SIMD type</u>: SSE4.2 (128-bit)<br />
<u>SIMD length</u>: 16 (8-bit/elmt)<br />
<u>TDP</u> : 95 Watts">
X5670
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Enhanced max-log-MAP algorithm (based on the BCJR)">EML-MAP</span></td>
<td>8</td>
<td>6</td>
<td>5824</td>
<td>1/3</td>
<td>3</td>
<td class="vl">157</td>
<td>222.6</td>
<td class="vl">111.3</td>
<td>0.396</td>
<td>854</td>
</tr>
<tr>
<td><a class="tt" href="#ref7" data-toggle="tooltip" data-placement="top" data-html="true" title="J. Xianjun, C. Canfeng, P. Jaaskelainen, V. Guzma, and H. Berg, <b>A 122Mb/s Turbo Decoder using a Mid-Range GPU</b>, <i>in Proceedings of the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC)</i>, July 2013.">[7]</a></td>
<td>2013</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: GeForce GTX 480<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Fermi<br />
<u>Frequency</u>: 1.40 GHz<br />
<u>SMX/Cores</u>: 15<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 32<br />
<u>TDP</u> : 250 Watts">
GTX 480
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Enhanced max-log-MAP algorithm (based on the BCJR)">EML-MAP</span></td>
<td>32</td>
<td>1</td>
<td>6144</td>
<td>1/3</td>
<td>6</td>
<td class="vl"><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="It is unclear if the CPU/GPU data transfer times have been taken into account.">50</span></td>
<td>122.8</td>
<td class="vl">122.8</td>
<td>0.183</td>
<td>2036</td>
</tr>
<tr>
<td><a class="tt" href="#ref8" data-toggle="tooltip" data-placement="top" data-html="true" title="X. Chen, J. Zhu, Z. Wen, Y. Wang, and H. Yang, <b>BER Guaranteed Optimization and Implementation of Parallel Turbo Decoding on GPU</b>, <i>in Proceedings of the IEEE International Conference on Communications and Networking in China (CHINACOM)</i>, August 2013.">[8]</a></td>
<td>2013</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: GeForce GTX 580<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Fermi<br />
<u>Frequency</u>: 1.54 GHz<br />
<u>SMX/Cores</u>: 16<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 32<br />
<u>TDP</u> : 244 Watts">
GTX 580
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="max-log-MAP algorithm (based on the BCJR)">ML-MAP</span></td>
<td>32</td>
<td>1</td>
<td>6144</td>
<td>1/3</td>
<td>6</td>
<td class="vl">1660</td>
<td>3.7</td>
<td class="vl">3.7</td>
<td>0.0047</td>
<td>63946</td>
</tr>
<tr>
<td><a class="tt" href="#ref9" data-toggle="tooltip" data-placement="top" data-html="true" title="C. Liu, Z. Bie, C. Chen, and X. Jiao, <b>A Parallel LTE Turbo Decoder on GPU</b>, <i>in Proceedings of the IEEE International Conference on Communication Technology (ICCT)</i>, November 2013.">[9]</a></td>
<td>2013</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: GeForce GTX 550 Ti<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Fermi<br />
<u>Frequency</u>: 1.80 GHz<br />
<u>SMX/Cores</u>: 6<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 32<br />
<u>TDP</u> : 116 Watts">
GTX 550 Ti
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Enhanced max-log-MAP algorithm (based on the BCJR)">EML-MAP</span></td>
<td>32</td>
<td>1</td>
<td>6144</td>
<td>1/3</td>
<td>6</td>
<td class="vl"><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="It is unclear if the CPU/GPU data transfer times have been taken into account.">72</span></td>
<td>85.3</td>
<td class="vl">85.3</td>
<td>0.247</td>
<td>1360</td>
</tr>
<tr>
<td><a class="tt" href="#ref10" data-toggle="tooltip" data-placement="top" data-html="true" title="M. Wu, G. Wang, B. Yin, C. Studer, and J. R. Cavallaro, <b>HSPA+/LTE-A Turbo Decoder on GPU and Multicore CPU</b>, <i>in Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers (ACSSC)</i>, November 2013.">[10]</a></td>
<td>2013</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: GeForce GTX 680<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Kepler<br />
<u>Frequency</u>: 1.01 GHz<br />
<u>SMX/Cores</u>: 8<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 192<br />
<u>TDP</u> : 195 Watts">
GTX 680
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Enhanced max-log-MAP algorithm (based on the BCJR)">EML-MAP</span></td>
<td>32</td>
<td>16</td>
<td>6144</td>
<td>1/3</td>
<td>6</td>
<td class="vl">2657</td>
<td>37.0</td>
<td class="vl">37.0</td>
<td>0.024</td>
<td>5270</td>
</tr>
<tr>
<td><a class="tt" href="#ref10" data-toggle="tooltip" data-placement="top" data-html="true" title="M. Wu, G. Wang, B. Yin, C. Studer, and J. R. Cavallaro, <b>HSPA+/LTE-A Turbo Decoder on GPU and Multicore CPU</b>, <i>in Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers (ACSSC)</i>, November 2013.">[10]</a></td>
<td>2013</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: CPU<br />
<u>Full name</u>: Core i7-3770K<br />
<u>Vendor</u>: Intel<br />
<u>Architecture</u>: Ivy Bridge<br />
<u>Frequency</u>: 3.5 GHz<br />
<u>SMX/Cores</u>: 4<br />
<u>SIMD type</u>: SSE4.2 (128-bit)<br />
<u>SIMD length</u>: 8 (16-bit/elmt)<br />
<u>TDP</u> : 77 Watts">
i7-3770K
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Enhanced max-log-MAP algorithm (based on the BCJR)">EML-MAP</span></td>
<td>16</td>
<td>4</td>
<td>6144</td>
<td>1/3</td>
<td>6</td>
<td class="vl">323</td>
<td>76.2</td>
<td class="vl">76.2</td>
<td>0.680</td>
<td>1011</td>
</tr>
<tr>
<td><a class="tt" href="#ref11" data-toggle="tooltip" data-placement="top" data-html="true" title="Y. Zhang and Z. Xing and L. Yuan and C. Liu and Q. Wang, <b>The Acceleration of Turbo Decoder on the Newest GPGPU of Kepler Architecture</b>, <i>in Proceedings of the IEEE International Symposium on Communications and Information Technologies (ISCIT)</i>, September 2014.">[11]</a></td>
<td>2014</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: Tesla K20c<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Kepler<br />
<u>Frequency</u>: 0.71 GHz<br />
<u>SMX/Cores</u>: 13<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 192<br />
<u>TDP</u> : 225 Watts">
Tesla K20c
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="max-log-MAP algorithm (based on the BCJR)">ML-MAP</span></td>
<td>32</td>
<td>1</td>
<td>6144</td>
<td>1/3</td>
<td>5</td>
<td class="vl">1097</td>
<td>5.6</td>
<td class="vl">4.7</td>
<td>0.0026</td>
<td>47872</td>
</tr>
<tr>
<td><a class="tt" href="#ref12" data-toggle="tooltip" data-placement="top" data-html="true" title="R. Li, Y. Dou, J. Xu, X. Niu, and S. Ni, <b>An Efficient Parallel SOVA-Based Turbo Decoder for Software Defined Radio on GPU</b>, <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i>, 2014.">[12]</a></td>
<td>2014</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: GeForce GTX 580<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Fermi<br />
<u>Frequency</u>: 1.54 GHz<br />
<u>SMX/Cores</u>: 16<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 32<br />
<u>TDP</u> : 244 Watts">
GTX 580
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="BER optimized Soft Output Viterbi Algorithm (BR-SOVA) algorithm">BR-SOVA</span></td>
<td>8</td>
<td>4</td>
<td>6144</td>
<td>1/3</td>
<td>5</td>
<td class="vl"><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="It is unclear if the CPU/GPU data transfer times have been taken into account.">192</span></td>
<td>127.8</td>
<td class="vl">106.5</td>
<td>0.135</td>
<td>2291</td>
</tr>
<tr>
<td><a class="tt" href="#ref13" data-toggle="tooltip" data-placement="top" data-html="true" title="A. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, <b>Implementation of a Fully-Parallel Turbo Decoder on a General-Purpose Graphics Processing Unit</b>, <i>IEEE Access, May 2016.</i>, June 2016.">[13]</a></td>
<td>2016</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: GeForce GTX 680<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Kepler<br />
<u>Frequency</u>: 1.01 GHz<br />
<u>SMX/Cores</u>: 8<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 192<br />
<u>TDP</u> : 195 Watts">
GTX 680
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Enhanced max-log-MAP algorithm (based on the BCJR)">EML-MAP</span></td>
<td>32</td>
<td>1</td>
<td>6144</td>
<td>1/3</td>
<td>7</td>
<td class="vl">817</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Following the formula, the throughput should be lower but the authors performed a specific data transfers overlapping with CUDA streams allowing to reach higher throughput.">8.2</span></td>
<td class="vl">9.6</td>
<td>0.0062</td>
<td>20313</td>
</tr>
<tr class="table-info">
<td class="vl"><a class="tt" href="#ref14" data-toggle="tooltip" data-placement="top" data-html="true" title="A. Cassagne, T. Tonnellier, C. Leroux, B. Le Gal, O. Aumage, and D. Barthou, <b>Beyond Gbps Turbo Decoder on Multi-Core CPUs</b>, <i>in Proceedings of the IEEE International Symposium on Turbo Codes and Iterative Information Processing (ISTC)</i>, September 2016.">[14]</a></td>
<td>2016</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: CPU<br />
<u>Full name</u>: 2 x Xeon E5-2680v3<br />
<u>Vendor</u>: Intel<br />
<u>Architecture</u>: Haswell<br />
<u>Frequency</u>: 2.5 GHz<br />
<u>SMX/Cores</u>: 24<br />
<u>SIMD type</u>: SSE4.2 (128-bit)<br />
<u>SIMD length</u>: 8 (16-bit/elmt)<br />
<u>TDP</u> : 240 Watts">
2xE5-2680v3
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Enhanced max-log-MAP algorithm (based on the BCJR)">EML-MAP</span></td>
<td>16</td>
<td>192</td>
<td>6144</td>
<td>1/3</td>
<td>6</td>
<td class="vl">2657</td>
<td>443.7</td>
<td class="vl">443.7</td>
<td>0.924</td>
<td>541</td>
</tr>
<tr class="table-info">
<td class="vl"><a class="tt" href="#ref14" data-toggle="tooltip" data-placement="top" data-html="true" title="A. Cassagne, T. Tonnellier, C. Leroux, B. Le Gal, O. Aumage, and D. Barthou, <b>Beyond Gbps Turbo Decoder on Multi-Core CPUs</b>, <i>in Proceedings of the IEEE International Symposium on Turbo Codes and Iterative Information Processing (ISTC)</i>, September 2016.">[14]</a></td>
<td>2016</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: CPU<br />
<u>Full name</u>: 2 x Xeon E5-2680v3<br />
<u>Vendor</u>: Intel<br />
<u>Architecture</u>: Haswell<br />
<u>Frequency</u>: 2.5 GHz<br />
<u>SMX/Cores</u>: 24<br />
<u>SIMD type</u>: SSE4.2 (128-bit)<br />
<u>SIMD length</u>: 16 (8-bit/elmt)<br />
<u>TDP</u> : 240 Watts">
2xE5-2680v3
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Enhanced max-log-MAP algorithm (based on the BCJR)">EML-MAP</span></td>
<td>8</td>
<td>384</td>
<td>6144</td>
<td>1/3</td>
<td>6</td>
<td class="vl">3293</td>
<td>716.4</td>
<td class="vl">716.4</td>
<td>0.746</td>
<td>335</td>
</tr>
<tr>
<td class="vl"><a class="tt" href="#ref15" data-toggle="tooltip" data-placement="top" data-html="true" title="B. Le Gal and C. Jégo, <b>Low-latency and High-throughput Software Turbo Decoders on Multi-core Architectures</b>, <i>Springer Annals of Telecommunications</i>, August 2019.">[15]</a></td>
<td>2019</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: CPU<br />
<u>Full name</u>: 2 x Xeon E5-2680v3<br />
<u>Vendor</u>: Intel<br />
<u>Architecture</u>: Haswell<br />
<u>Frequency</u>: 2.5 GHz<br />
<u>SMX/Cores</u>: 24<br />
<u>SIMD type</u>: AVX2 (256-bit)<br />
<u>SIMD length</u>: 32 (8-bit/elmt)<br />
<u>TDP</u> : 240 Watts">
2xE5-2680v3
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Enhanced max-log-MAP algorithm (based on the BCJR) + implementation specialized for the regular structure of the LTE interleaver">EML-MAP</span></td>
<td>8</td>
<td>24</td>
<td>6144</td>
<td>1/3</td>
<td>6</td>
<td class="vl">84</td>
<td>1735.0</td>
<td class="vl">1735.0</td>
<td>0.904</td>
<td>138</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="mb-4"></div>
<div class="bs-example" data-example-id="panel-without-body-with-table">
<p class="lead"><strong>Fully-Parallel Turbo Decoder (FPTD) - <i>8-state trellis</i></strong></p>
<div class="table-responsive">
<table class="table sortable table-hover table-striped">
<thead>
<tr>
<th>Work</th>
<th id="year2">Year</th>
<th class="vl">Platform</th>
<th>Implem.</th>
<th><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Precision in bits">Pre.</span></th>
<th><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Inter frame level: number of frames computed in parallel">Inter</span></th>
<th><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Number of information bits in the frame"><math><mi>K</mi></math></span></th>
<th>
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Code rate:
<math>
<mi>R</mi>
<mo>=</mo>
<mfrac>
<mi>K</mi>
<mi>N</mi>
</mfrac>
</math>">
<math><mi>R</mi></math>
</span>
</th>
<th><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Number of iteration in the decoding process"><math><mi>i</mi></math></span></th>
<th class="vl"><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Latency in micro seconds: time to decode one frame"><math><mi>Lat.</mi></math></span></th>
<th>
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Information throughput in Mbps:<br/>
<math>
<mi>Thr.</mi>
<mo>=</mo>
<mfrac>
<mrow>
<mi>K</mi>
<mo>×</mo>
<mi>Inter</mi>
</mrow>
<mi>Lat.</mi>
</mfrac>
</math>">
<math><mi>Thr.</mi></math>
</span>
</th>
<th class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Energy-per-bit (in nano Joules): <br />
<math>
<mrow><msub><mi>E</mi><mi>d</mi></msub></mrow>
<mo>=</mo>
<mfrac>
<mrow>
<mi>TDP</mi>
</mrow>
<mrow>
<mi>Thr.</mi>
</mrow>
</mfrac>
<mo>×</mo>
<msup>
<mn>10</mn>
<mn>3</mn>
</msup>
</math>">
<math><msub><mi>E</mi><mi>d</mi></msub></math>
</span>
</th>
</tr>
</thead>
<tbody>
<tr>
<td><a class="tt" href="#ref13" data-toggle="tooltip" data-placement="top" data-html="true" title="A. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, <b>Implementation of a Fully-Parallel Turbo Decoder on a General-Purpose Graphics Processing Unit</b>, <i>IEEE Access, May 2016.</i>, June 2016.">[13]</a></td>
<td>2016</td>
<td class="vl">
<span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="
<u>Device type</u>: GPU<br />
<u>Full name</u>: GeForce GTX 680<br />
<u>Vendor</u>: Nvidia <br />
<u>Architecture</u>: Kepler<br />
<u>Frequency</u>: 1.01 GHz<br />
<u>SMX/Cores</u>: 8<br />
<u>SIMD type</u>: SIMT<br />
<u>SIMD length</u>: 192<br />
<u>TDP</u> : 195 Watts">
GTX 680
</span>
</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Fully-Parallel Turbo Decoder algorithm">FPTD</span></td>
<td>32</td>
<td>1</td>
<td>6144</td>
<td>1/3</td>
<td>36</td>
<td class="vl">403</td>
<td><span class="tt" data-toggle="tooltip" data-placement="top" data-html="true" title="Following the formula, the throughput should be lower but the authors performed a specific data transfers overlapping with CUDA streams allowing to reach higher throughput.">18.7</span></td>
<td class="vl">10428</td>
</tr>
</tbody>
</table>
</div>
</div>
<h2>References</h2>
<ol>
<li id="ref1" >M. Wu, Y. Sun, and J. R. Cavallaro, “<a target="_blank" href="https://doi.org/10.1109/SIPS.2010.5624788" onclick="return trackOutboundLink('https://doi.org/10.1109/SIPS.2010.5624788' );">Implementation of a 3GPP LTE Turbo Decoder Accelerator on GPU</a>,” <i>in Proceedings of the IEEE International Workshop on Signal Processing Systems (SiPS)</i>, October 2010.</li>
<li id="ref2" >M. Wu, Y. Sun, G. Wang, and J. R. Cavallaro, “<a target="_blank" href="https://doi.org/10.1007/s11265-011-0617-7" onclick="return trackOutboundLink('https://doi.org/10.1007/s11265-011-0617-7' );">Implementation of a High Throughput 3GPP Turbo Decoder on GPU</a>,” <i>Springer Journal of Signal Processing Systems (JSPS)</i>, September 2011.</li>
<li id="ref3" >L. Huang and Y. Luo and H. Wang and F. Yang and Z. Shi and D. Gu, “<a target="_blank" href="https://doi.org/10.1049/cp.2011.0622" onclick="return trackOutboundLink('https://doi.org/10.1049/cp.2011.0622' );">A High Speed Turbo Decoder Implementation for CPU-Based SDR System</a>,” <i>in Proceedings of the IEEE International Conference on Communication Technology and Applications (ICCTA)</i>, October 2011.</li>
<li id="ref4" >D. Yoge and N. Chandrachoodan, “<a target="_blank" href="https://doi.org/10.1109/VLSID.2012.62" onclick="return trackOutboundLink('https://doi.org/10.1109/VLSID.2012.62' );">GPU Implementation of a Programmable Turbo Decoder for Software Defined Radio Applications</a>,” <i>in Proceedings of the IEEE International Conference on VLSI Design (VLSID)</i>, January 2012.</li>
<li id="ref5" >S. Chinnici and P. Spallaccini, “<a target="_blank" href="https://doi.org/10.1109/ISTC.2012.6325199" onclick="return trackOutboundLink('https://doi.org/10.1109/ISTC.2012.6325199' );">Fast Simulation of Turbo Codes on GPUs</a>,” <i>in Proceedings of the IEEE International Symposium on Turbo Codes and Iterative Information Processing (ISTC)</i>, August 2012.</li>
<li id="ref6" >S. Zhang, R. Qian, T. Peng, R. Duan, and K. Chen, “<a target="_blank" href="https://doi.org/10.1109/ChinaCom.2012.6417597" onclick="return trackOutboundLink('https://doi.org/10.1109/ChinaCom.2012.6417597');">High Throughput Turbo Decoder Design for GPP Platform</a>,” <i>in Proceedings of the IEEE International Conference on Communications and Networking in China (CHINACOM)</i>, August 2012.</li>
<li id="ref7" >J. Xianjun, C. Canfeng, P. Jaaskelainen, V. Guzma, and H. Berg, “<a target="_blank" href="https://doi.org/10.1109/IWCMC.2013.6583709" onclick="return trackOutboundLink('https://doi.org/10.1109/IWCMC.2013.6583709' );">A 122Mb/s Turbo Decoder using a Mid-Range GPU</a>,” <i>in Proceedings of the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC)</i>, July 2013.</li>
<li id="ref8" >X. Chen, J. Zhu, Z. Wen, Y. Wang, and H. Yang, “<a target="_blank" href="https://doi.org/10.1109/ChinaCom.2013.6694588" onclick="return trackOutboundLink('https://doi.org/10.1109/ChinaCom.2013.6694588');">BER Guaranteed Optimization and Implementation of Parallel Turbo Decoding on GPU</a>,” <i>in Proceedings of the IEEE International Conference on Communications and Networking in China (CHINACOM)</i>, August 2013.</li>
<li id="ref9" >C. Liu, Z. Bie, C. Chen, and X. Jiao, “<a target="_blank" href="https://doi.org/10.1109/ICCT.2013.6820447" onclick="return trackOutboundLink('https://doi.org/10.1109/ICCT.2013.6820447' );">A Parallel LTE Turbo Decoder on GPU</a>,” <i>in Proceedings of the IEEE International Conference on Communication Technology (ICCT)</i>, November 2013.</li>
<li id="ref10">M. Wu, G. Wang, B. Yin, C. Studer, and J. R. Cavallaro, “<a target="_blank" href="https://doi.org/10.1109/ACSSC.2013.6810402" onclick="return trackOutboundLink('https://doi.org/10.1109/ACSSC.2013.6810402' );">HSPA+/LTE-A Turbo Decoder on GPU and Multicore CPU</a>,” <i>in Proceedings of the IEEE Asilomar Conference on Signals, Systems, and Computers (ACSSC)</i>, November 2013.</li>
<li id="ref11">Y. Zhang and Z. Xing and L. Yuan and C. Liu and Q. Wang, “<a target="_blank" href="https://doi.org/10.1109/ISCIT.2014.7011900" onclick="return trackOutboundLink('https://doi.org/10.1109/ISCIT.2014.7011900' );">The Acceleration of Turbo Decoder on the Newest GPGPU of Kepler Architecture</a>,” <i>in Proceedings of the IEEE International Symposium on Communications and Information Technologies (ISCIT)</i>, September 2014.</li>
<li id="ref12">R. Li, Y. Dou, J. Xu, X. Niu, and S. Ni, “<a target="_blank" href="https://doi.org/10.1587/transfun.E97.A.1027" onclick="return trackOutboundLink('https://doi.org/10.1587/transfun.E97.A.1027' );">An Efficient Parallel SOVA-Based Turbo Decoder for Software Defined Radio on GPU</a>,” <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i>, 2014.</li>
<li id="ref13">A. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “<a target="_blank" href="https://doi.org/10.1109/ACCESS.2016.2586309" onclick="return trackOutboundLink('https://doi.org/10.1109/ACCESS.2016.2586309' );">Implementation of a Fully-Parallel Turbo Decoder on a General-Purpose Graphics Processing Unit</a>,” <i>IEEE Access</i>, June 2016.</li>
<li id="ref14">A. Cassagne, T. Tonnellier, C. Leroux, B. Le Gal, O. Aumage, and D. Barthou, “<a target="_blank" href="https://doi.org/10.1109/ISTC.2016.7593092" onclick="return trackOutboundLink('https://doi.org/10.1109/ISTC.2016.7593092' );">Beyond Gbps Turbo Decoder on Multi-Core CPUs</a>,” <i>in Proceedings of the IEEE International Symposium on Turbo Codes and Iterative Information Processing (ISTC)</i>, September 2016.</li>
<li id="ref15">B. Le Gal and C. Jégo, “<a target="_blank" href="https://doi.org/10.1007/s12243-019-00727-5" onclick="return trackOutboundLink('https://doi.org/10.1007/s12243-019-00727-5' );">Low-latency and High-throughput Software Turbo Decoders on Multi-core Architectures</a>,” <i>Springer Annals of Telecommunications</i>, August 2019.</li>
</ol>
</div>
<div class="mb-4"></div>
<hr>
<footer class="container">
<p class="float-right"><a href="#"><i class="fa fa-level-up-alt" aria-hidden="true"> </i>Back to top</a></p>
<!--
<p>Funded by <a href="http://www.agence-nationale-recherche.fr/" target="_blank" onclick="return trackOutboundLink('http://www.agence-nationale-recherche.fr/');">ANR</a>: <a href="http://www-labsticc.univ-ubs.fr/~boutillon/NAND/" target="_blank" onclick="return trackOutboundLink('http://www-labsticc.univ-ubs.fr/~boutillon/NAND/');">NAND</a> (ANR-15-CE25-0006-01) and <a href="http://cpu.labex.u-bordeaux.fr/" target="_blank" onclick="return trackOutboundLink('http://cpu.labex.u-bordeaux.fr/');">CPU LabEx (Bordeaux)</a> (ANR-10-IDEX-03-02).</p>
-->
</footer>
</div>
<script type="text/javascript">
$( document ).ready(function() {
$('[data-toggle="tooltip"]').tooltip();
sorttable.innerSortFunction.apply(document.getElementById('year1'), []);
sorttable.innerSortFunction.apply(document.getElementById('year2'), []);
});
</script>
</body>
</html>