-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path03_analyze_sens.R
678 lines (557 loc) · 26.8 KB
/
03_analyze_sens.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
setwd(dirname(rstudioapi::getSourceEditorContext()$path))
# clean up
rm(list = ls())
graphics.off()
cat("\14")
library(dplyr)
library(tidyr)
library(ggplot2)
library(ggpubr)
library(gridExtra)
library(ggExtra)
library(ggdendro)
library(akima)
##-------------- read in data ----------------------------------------------
# source settings script
source("0_Settings.R")
# load results of sensitivity analysis
res <- read.csv("sensitivity_analysis/res_sens.csv")
# filter metrics that are set in 0_Settings.R
res <- filter(res, var %in% p_metrics)
# save oiriginal results for plots
res_o <- res
# load results of latin hypercube calibration
res_cali <- read.csv("data/results_lhc.csv")
# load lake meta data
meta <- readRDS("data_derived/lake_meta_data_derived.RDS")
meta_desc <- readRDS("data_derived/lake_meta_desc_derived.RDS")
# data frame with all metrics for best set per lake and per model
best_all <- readRDS("data_derived/best_par_sets.RDS")
# set sensitivity values that are smaller than the dummy variable
# to zero
res <- group_by(res, lake, model, var) |>
reframe(delta = ifelse((delta - delta_conf) <=
(delta[names == "dummy"] + delta_conf[names == "dummy"]),
0, delta),
S1 = ifelse((S1 - S1_conf) <=
(S1[names == "dummy"] + S1_conf[names == "dummy"]),
0, S1),
names = names,
delta_conf = delta_conf,
S1_conf = S1_conf)
##----------------- first plots ---------------------------------
# plot delta sensitivity metrics for one lake
res |> filter(lake == "Annie" & var == "rmse") |> ggplot() +
geom_col(aes(y = delta, x = names)) +
geom_errorbar(aes(x = names, ymin = delta - delta_conf/2,
ymax = delta + delta_conf), col = 2) +
theme_pubr() + grids() + facet_wrap(~model, scales = "free_x") +
theme(axis.text.x=element_text(angle = -90, hjust = 0)) +
xlab("parameter") + ggtitle("Annie")
# correlation between S1 and delta
res_o |> ggplot(aes(x = delta, y = S1, col = model), size = 0.6,
alpha = 0.666) +
geom_abline(aes(intercept = 0, slope = 1), col = "grey42", lty = "dashed") +
geom_point() +
facet_grid(var ~ names) + theme_pubr(base_size = 17) + grids() +
xlim(0, 1) + ylim(0, 1)
##-------------- interaction measure ---------------------------------------
# interactions measure: S_interact = 1 - sum(S1_i)
dat_iat <- res_o |> group_by(lake, model, var) |> reframe(iat = 1 - sum(S1)) |>
left_join(meta, by = c("lake" = "Lake.Short.Name"))
dat_iat |>
mutate(var = ifelse(var == "bias", var, toupper(var))) |>
ggplot() + geom_boxplot(aes(x = model,
y = iat, fill = var)) +
thm + xlab("Model") + ylab("Interaction measure") +
scale_fill_viridis_d("Performance metric", option = "H")
dat_iat <- res_o |> group_by(lake, model, var) |> reframe(iat = 1 - sum(S1)) |>
left_join(meta, by = c("lake" = "Lake.Short.Name"))
# same plot but split to clusters
dat_iat |>
mutate(var = ifelse(var == "bias", var, toupper(var))) |>
ggplot() + geom_boxplot(aes(x = model,
y = iat, fill = var)) +
facet_wrap(~kmcluster) +
thm + xlab("Model") + ylab("Interaction measure") +
scale_fill_viridis_d("Performance metric", option = "H")
ggsave("Plots/interaction_clust.pdf", width = 11, height = 8)
dat_iat |> filter(iat > 0.2) |> ggplot() +
geom_histogram(aes(x = 1, fill = model, y = after_stat(count/sum(count)))) +
scale_fill_viridis_d("Model", option = "C", end = 0.9) + thm
dat_iat |> filter(iat > 0.2) |> ggplot() +
geom_histogram(aes(x = var, fill = model), stat = "count") +
scale_fill_viridis_d("Model", option = "C", end = 0.9) +
facet_wrap(.~kmcluster) + thm
# compare iat with observed data
dat_iat |>
ggplot() + geom_point(aes(x = Duration, y = iat, col = kmcluster), size = 3) +
facet_grid(~model) + xlab("Years with observations (-)") +
ylab("Interaction measure (-)") +
thm + scale_color_viridis_d("Cluster")
ggsave("Plots/iat_obs_duration.pdf", width = 13, height = 5)
# relate iat to most sensitive parameter
res_o |> group_by(lake, model, var) |> reframe(max_d = max(delta),
max_S1 = max(S1)) |>
left_join(dat_iat) |> ggplot() +
geom_point(aes(iat, max_d, col = kmcluster)) + facet_grid(.~model) +
scale_color_viridis_d("Cluster") + thm
##--------- single most sensitive parameter ---------------------------
# boxplots of sensitivity metrics
res_o |> pivot_longer(cols = c(delta, S1)) |> filter(names != "dummy") |>
mutate(name = case_match(name,
"delta" ~ "\u03B4",
"S1" ~ "S1")) |>
mutate(var = ifelse(var == "bias", var, toupper(var))) |>
ggplot() +
geom_boxplot(aes(x = names, y = value, fill = name)) +
facet_grid(var ~ model, scales = "free") +
scale_fill_manual("Sensitivity \n measure",
values = c("#45B2DD", "#72035F")) +
thm + xlab("parameter") +
theme(axis.text.x=element_text(angle = -60, hjust = 0))
ggsave("Plots/sens_value.pdf", width = 12, height = 12, device = cairo_pdf)
# calculate single most sensitive parameter for each lake and model
res_mip <- res |> group_by(lake, model, var) |>
reframe(par_d = names[delta == max(delta)],
par_S1 = names[S1 == max(S1)]) |> select(-par_S1)
# plot distribution of single most sensitive parameter over all lakes and models
# for all measures
res_mip |> pivot_longer(cols = par_d) |>
mutate(name = case_match(name,
"par_d" ~ "\u03B4",
"par_S1" ~ "S1")) |> ggplot() +
geom_histogram(aes(x = value, fill = name), stat = "count",
position = "dodge", col = 1) +
facet_grid(var~model, scales = "free_x") + thm +
grids() + xlab("parameter") +
theme(axis.text.x=element_text(angle = -60, hjust = 0),
legend.position = "none") +
scale_fill_manual("", values = c("#72035F"))
ggsave("Plots/sens_single.png", width = 11, height = 9)
# look at cluster
res_mip |> pivot_longer(cols = par_d) |>
mutate(name = case_match(name,
"par_d" ~ "\u03B4",
"par_S1" ~ "S1")) |>
left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
mutate(var = ifelse(var == "bias", var, toupper(var))) |>
ggplot() +
geom_histogram(aes(x = value, fill = kmcluster),
stat = "count", position = "dodge", col = 1) +
facet_grid(var~model, scales = "free_x") + thm +
grids() + xlab("parameter") +
theme(axis.text.x=element_text(angle = -60, hjust = 0)) +
scale_fill_viridis_d("Cluster")
ggsave("Plots/sens_single_clust.png", width = 11, height = 9)
##--------- group of most sensitive parameters -------------------------------
# calculate group of most sensitive parameters for each lake and model
# function to return all values in a vector that contribute to frac (default 75)
# percent of the sum of all values
gmiv <- function(x, frac = .75) {
tmp <- sort(x, decreasing = TRUE)
id <- which(cumsum(tmp)/sum(tmp) < frac)
if(length(id) > 0) {
im <- (max(id)) + 1
} else {
im <- 1
}
id <- 1:im
return(tmp[id])
}
# for each model, lake, and measure return the most sensitive parameters
res_gip <- res |> group_by(lake, model, var) |>
reframe(par_d_05 = paste0(names[delta %in% gmiv(delta, .5)], collapse = ", "),
n_par_d_05 = length(names[delta %in% gmiv(delta, .5)]),
par_S1_05 = paste0(names[S1 %in% gmiv(S1, .5)], collapse = ", "),
n_par_S1_05 = length(names[S1 %in% gmiv(S1, .5)]),
par_d_75 = paste0(names[delta %in% gmiv(delta, .75)], collapse = ", "),
n_par_d_75 = length(names[delta %in% gmiv(delta, .75)]),
par_S1_75 = paste0(names[S1 %in% gmiv(S1, .75)], collapse = ", "),
n_par_S1_75 = length(names[S1 %in% gmiv(S1, .75)]),
par_d_1 = paste0(names[delta %in% gmiv(delta, 1)], collapse = ", "),
n_par_d_1 = length(names[delta %in% gmiv(delta, 1)]),
par_S1_1 = paste0(names[S1 %in% gmiv(S1, 1)], collapse = ", "),
n_par_S1_1 = length(names[S1 %in% gmiv(S1, 1)]))
# plot distribution of most sensitive parameters over all lakes and models
# for both measures
delta_gip <- res_gip |> pivot_longer(seq(4, 12, by = 4)) |>
filter(grepl("par_d_.*", name)) |>
mutate(frac = gsub(".*_", "", name)) |>
group_by(model, var, frac, lake) |> reframe(par = unlist(strsplit(value, ", ")),
meas = "\u03B4")
S1_gip <- res_gip |> pivot_longer(seq(6, 14, by = 4)) |>
filter(grepl("par_S1_.*", name)) |>
mutate(frac = gsub(".*_", "", name)) |>
group_by(model, var, frac, lake) |> reframe(par = unlist(strsplit(value, ", ")),
meas = "S1")
#rbind(delta_gip, S1_gip)
delta_gip |> filter(frac == "1") |>
mutate(var = ifelse(var == "bias", var, toupper(var))) |>
ggplot() +
geom_histogram(aes(x = par, fill = meas), stat = "count", position = "dodge") +
facet_grid(var~model, scales = "free_x") + thm +
grids() + xlab("parameter") +
theme(axis.text.x=element_text(angle = -55, hjust = 0),
legend.position = "none") +
scale_fill_manual("Sensitivity \n measure", values = c("#72035F"))
ggsave("Plots/count_sens.png", width = 14, height = 11)
# also plot for the different cluster
#rbind(delta_gip, S1_gip) |>
delta_gip |> filter(frac == "1") |>
left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
mutate(var = ifelse(var == "bias", var, toupper(var))) |>
ggplot() + geom_histogram(aes(x = par, fill = kmcluster),
stat = "count", position = "dodge",
col = 1) +
facet_grid(var~model, scales = "free_x") + thm + grids() +
scale_fill_viridis_d("Cluster") +
theme(axis.text.x=element_text(angle = -55, hjust = 0)) +
xlab("Parameter")
ggsave("Plots/count_sens_clust.pdf", width = 14, height = 11)
# different plot with frequencies
#rbind(delta_gip, S1_gip)
delta_gip |> filter(frac == "1") |>
left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
group_by(model, kmcluster, var, par) |> reframe(cnt = length(var)) |>
group_by(model, kmcluster, var) |> mutate(cnt = cnt/sum(cnt)) |>
ungroup() |>
#complete(model, kmcluster, var, par) |>
mutate(var = ifelse(var == "bias", var, toupper(var))) |>
ggplot() + geom_tile(aes(x = par, y = kmcluster, fill = cnt)) +
facet_grid(var~model, scales = "free_x") + thm + grids() +
scale_fill_viridis_c("Frequency", option = "C") +
theme(axis.text.x=element_text(angle = -55, hjust = 0)) +
xlab("Parameter") + ylab("Cluster")
ggsave("Plots/freq_sens_clust.pdf", width = 14, height = 11)
## plot distribution of number of sensitive parameters
# rbind(delta_gip, S1_gip)
delta_gip |> group_by(model, var, frac, lake, meas) |>
reframe(n = n()) |> mutate(frac = factor(frac, levels = c("1", "75", "05"),
labels = c("100%", "75%", "50%"))) |>
mutate(var = ifelse(var == "bias", var, toupper(var))) |>
ggplot() + geom_histogram(aes(x = n, fill = frac),
stat = "count", position = "dodge") +
facet_grid(var~model) + thm + grids() +
scale_fill_viridis_d("Fraction of total sum", option = "D") +
xlab("Number of parameters contributing")
ggsave("Plots/count_imp_par.pdf", width = 14, height = 11)
## alternative plot
# rbind(delta_gip, S1_gip)
delta_gip |> group_by(model, var, frac, lake, meas) |>
reframe(n = n()) |> mutate(frac = factor(frac, levels = c("1", "75", "05"),
labels = c("100%", "75%", "50%"))) |>
group_by(model, frac, var, n) |> reframe(cnt = length(var)) |>
complete(model, frac, var, n) |>
ggplot() + geom_tile(aes(x = n, y = frac, fill = cnt)) +
facet_grid(var~model) + theme_pubr(base_size = 17) + grids() +
scale_fill_viridis_c("count", option = "C") +
ylab("Fraction of total sum") +
xlab("Number of parameters contributing")
ggsave("Plots/count_imp_par2.png", width = 14, height = 11)
## relate number of sensitive parameters to interaction measure
rbind(delta_gip, S1_gip) |> filter(frac == "1") |> group_by(model, var, frac, lake, meas) |>
reframe(n = n()) |> #pivot_wider(names_from = meas, values_from = n) |>
left_join(dat_iat) |> #mutate(d_n = δ - S1) |>
ggplot() + geom_point(aes(x = n, y = iat, col = kmcluster), size = 3) +
facet_grid(var~model) + scale_color_viridis_d("Cluster") + thm
# lok at number of sensitive parameters, maximum sensitivity value and iat
res_o |> group_by(lake, model, var) |> reframe(max_d = max(delta),
max_S1 = max(S1)) |>
left_join(dat_iat) |> left_join(delta_gip |> filter(frac == "1") |> group_by(model, var, lake) |>
reframe(n = n())) |>
ggplot() + geom_point(aes(x = iat, y = max_d, col = kmcluster), size = 2.5) +
facet_grid(n ~ model) + scale_color_viridis_d("Cluster") + thm
# plot iat against metric value of best performing parameter set
rbind(S1_gip) |> filter(frac == "1") |> group_by(model, var, frac, lake, meas) |>
reframe(np = n()) |> left_join(best_all, by = c("lake" = "lake",
"model" = "model",
"var" = "best_met")) |>
left_join(dat_iat, by = c("lake" = "lake",
"model" = "model",
"var" = "var")) |>
select(lake, model, var, iat, np, kmcluster, rmse, r, bias, nse) |>
pivot_longer(cols = 7:10) |> filter(var == name) |> select(-name) |>
ggplot() + geom_point(aes(y = iat, x = value)) +
facet_grid(.~var, scales = "free_x") +
thm
##--------------- look at sensitivity of scaling factors -----------
# look at different cluster wind speed
res |> left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
mutate(delta = ifelse(delta > 1, 1, delta)) |>
filter(names == "wind_speed") |> ggplot() +
geom_boxplot(aes(x = as.numeric(kmcluster), y = delta, fill = kmcluster)) +
facet_grid(var~model) + thm +
scale_fill_viridis_d("Cluster") + xlab("Cluster") +
ylab("Delta sensitivity wind scaling")
ggsave("Plots/sensitivity_wind_clust_model.png", width = 13, height = 9)
res |> left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
mutate(delta = ifelse(delta > 1, 1, delta)) |>
filter(names == "wind_speed") |> ggplot() +
geom_boxplot(aes(x = model, y = delta, fill = model)) +
facet_grid(var~kmcluster) + thm +
scale_fill_viridis_d("Model", option = "C", end = 0.9) + xlab("Cluster") +
ylab("Delta sensitivity wind scaling") +
theme(axis.text.x = element_text(angle=90, vjust=.5, hjust=1))
ggsave("Plots/sensitivity_wind_clust.png", width = 13, height = 9)
# look at different cluster swr
res |> left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
mutate(delta = ifelse(delta > 1, 1, delta)) |>
filter(names == "swr") |> ggplot() +
geom_boxplot(aes(x = as.numeric(kmcluster), y = delta, fill = kmcluster)) +
facet_grid(var~model) + thm +
scale_fill_viridis_d("Cluster") + xlab("Cluster") +
ylab("Delta sensitivity swr scaling")
ggsave("Plots/sensitivity_swr_clust_model.png", width = 13, height = 9)
res |> left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
mutate(delta = ifelse(delta > 1, 1, delta)) |>
filter(names == "swr") |> ggplot() +
geom_boxplot(aes(x = model, y = delta, fill = model)) +
facet_grid(var~kmcluster) + thm +
scale_fill_viridis_d("Model", option = "C", end = 0.9) + xlab("Cluster") +
ylab("Delta sensitivity swr scaling") +
theme(axis.text.x = element_text(angle=90, vjust=.5, hjust=1))
ggsave("Plots/sensitivity_swr_clust.png", width = 13, height = 9)
# look at different cluster Kw (use same plot as for calibrated Kw values
# per cluster in script 02_)
res |> left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
mutate(delta = ifelse(delta > 1, 1, delta)) |>
filter(names == "Kw") |> ggplot() +
geom_boxplot(aes(x = as.numeric(kmcluster), y = delta, fill = kmcluster)) +
facet_grid(var~model) + thm +
scale_fill_viridis_d("Cluster") + xlab("Cluster") +
ylab("Delta sensitivity Kw scaling")
ggsave("Plots/sensitivity_Kw_clust_model.png", width = 13, height = 9)
res |> left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
mutate(delta = ifelse(delta > 1, 1, delta)) |>
filter(names == "Kw") |> ggplot() +
geom_boxplot(aes(x = model, y = delta, fill = model)) +
facet_grid(var~kmcluster) + thm +
scale_fill_viridis_d("Model", option = "C", end = 0.9) + xlab("Cluster") +
ylab("Delta sensitivity Kw scaling") +
theme(axis.text.x = element_text(angle=90, vjust=.5, hjust=1))
ggsave("Plots/sensitivity_Kw_clust.png", width = 13, height = 9)
##--------- GOTM and kmin -----------------------------------------
# look at cluster for GOTM
p_sens_kmin <- res_o |> pivot_longer(cols = c(delta, S1)) |>
filter(names == "turb_param.k_min") |>
filter(model == "GOTM") |>
mutate(name = case_match(name,
"delta" ~ "\u03B4",
"S1" ~ "S1")) |>
mutate(var = ifelse(var == "bias", var, toupper(var))) |>
left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
ggplot() +
geom_boxplot(aes(x = kmcluster, y = value, fill = kmcluster)) +
facet_grid(var ~ name, scales = "free") +
scale_fill_viridis_d("Cluster") +
thm + xlab("") +
theme(axis.text.x=element_text(angle = -60, hjust = 0),
legend.position = "none") + ylab("Value")
p_kmin <- best_all |> filter(model == "GOTM") |>
left_join(meta, by = c("lake" = "Lake.Short.Name")) |>
mutate(best_met = ifelse(best_met == "bias", best_met, toupper(best_met))) |>
mutate(nm = "k_min") |> ggplot() +
geom_boxplot(aes(x = kmcluster, y = turb_param.k_min, fill = kmcluster)) +
scale_fill_viridis_d("Cluster") + thm + facet_grid(best_met~nm) +
theme(axis.text.x=element_text(angle = -60, hjust = 0),
legend.position = "none") + ylab("Value") + xlab("")
ggarrange(p_kmin, p_sens_kmin, labels = c("(A)", "(B)"))
ggsave("Plots/GOTM_kmin.pdf", width = 13, height = 7, device = cairo_pdf)
##---------- plots for single models -----------------------------
#visual comparison of heatmaps against the calculated sensitivity metrics
# function to plot heatmaps for model performance along the different parameter
my_sens_plot <- function(m = "GLM", l = "Zurich", res_cali, res_sens,
smet = "rmse", contour = FALSE, n_contour = 5) {
sens <- res_sens |> filter(lake == l & model == m & var == smet)
pars <- unique(sens$names)
pars_s <- pars
pars <- pars[pars!="dummy"]
log <- rep(FALSE, length(pars))
log[pars == "turb_param.k_min"] <- TRUE
dat <- filter(res_cali, model == m & lake == l)
# calculate interaction quantity
S_interaction <- 1 - sum(sens$S1)
if (smet == "rmse") {
dat_best <- filter(dat, rmse < quantile(rmse, 0.1, na.rm = TRUE))
}
if (smet == "r") {
dat_best <- filter(dat, r > quantile(r, 0.9, na.rm = TRUE))
}
if (smet == "nse") {
dat_best <- filter(dat, nse > quantile(nse, 0.9, na.rm = TRUE))
}
if (smet == "bias") {
dat_best <- filter(dat, abs(bias) < quantile(abs(bias), 0.1, na.rm = TRUE))
}
thm <- theme_pubr(base_size = 13) + grids()
pl <- lapply(combn(pars, 2, simplify = FALSE), function(p) {
# interpolate for contour plot
dat_tmp <- dat |> select(all_of(p[1]), all_of(p[2]), all_of(smet)) |>
setNames(c("x", "y", "z"))
xm <- mean(dat_tmp$x)
ym <- mean(dat_tmp$y)
dat_tmp <- mutate(dat_tmp, x = x/xm, y = y/ym)
dat_tmp <- with(dat_tmp, interp(x = x, y = y, z = z, nx = 100, ny = 100, extrap = FALSE))
cnt <- data.frame(dat_tmp$z)
colnames(cnt) <- dat_tmp$y
cnt$x <- dat_tmp$x
cnt <- pivot_longer(cnt, cols = -x, names_to = "y") |>
mutate(y = as.numeric(y)) |> mutate(x = x*xm, y = y*ym)
# plot
plt <- ggplot(dat_best) +
geom_point(aes_string(x = p[1], y = p[2], color = smet), shape = 15,
size = 2, alpha = 0) +
geom_point(data = dat,
aes_string(x = p[1], y = p[2], color = smet), shape = 15,
size = 1.5, alpha = 0.75) +
scale_colour_viridis_c() + thm +
theme(legend.position = "none",
plot.margin = margin(t = 20, # Top margin
r = 30, # Right margin
b = 10, # Bottom margin
l = 10))
if(contour) {
plt <- plt + geom_contour(data = cnt, aes(x = x, y = y, z = value),
col = alpha("black", 0.5), lwd = 0.85, bins = n_contour)
}
if(log[pars %in% p[1]]) {
plt <- plt + scale_x_log10()
}
if(log[pars %in% p[2]]) {
plt <- plt + scale_y_log10()
}
return(plt)
})
t <- ggplot(dat) +
geom_point(data = dat,
aes_string(x = "swr", y = "wind_speed", color = smet), shape = 15,
size = 1.5, alpha = 0.75) +
scale_colour_viridis_c()
legend <- get_legend(t)
t <- as_ggplot(arrangeGrob(text_grob(paste0("model: ", m,
"\n lake: ", l,
"\n metric: ", smet)),
legend, ncol = 2))
pl2 <- rep(list(NULL), (length(pars)-1)^2)
ps1 <- sens |> filter(names != "dummy") |> ggplot() +
geom_col(aes(y = delta, x = names), fill = "#45B2DD") +
geom_errorbar(aes(x = names, ymin = delta - delta_conf/2,
ymax = delta + delta_conf),
col = "#0D3D20", lwd = 1.25, width=.5) +
geom_hline(data = filter(sens, names == "dummy"),
aes(yintercept = delta), col = "grey42",
lty = "dashed", linewidth = 1.25) +
geom_hline(data = filter(sens, names == "dummy"),
aes(yintercept = delta + delta_conf), col = "grey42",
lty = "dashed", linewidth = 1) +
geom_hline(data = filter(sens, names == "dummy"),
aes(yintercept = delta - delta_conf), col = "grey42",
lty = "dashed", linewidth = 1) +
theme_pubr() + grids() +
theme(axis.text.x=element_text(angle = -65,
hjust = 0, size = 9),
plot.margin = margin(t = -40, # Top margin
r = 10, # Right margin
b = -70, # Bottom margin
l = 10)) + # Left margin
xlab("") + ylab("")
ps2 <- sens |> filter(names != "dummy") |> ggplot() +
geom_col(aes(y = S1, x = names), fill = "#72035F") +
geom_errorbar(aes(x = names, ymin = S1 - S1_conf/2,
ymax = S1 + S1_conf),
col = "#03DE67", lwd = 1.25, width=.5) +
geom_hline(data = filter(sens, names == "dummy"),
aes(yintercept = S1), col = "grey42",
lty = "dashed", linewidth = 1.25) +
geom_hline(data = filter(sens, names == "dummy"),
aes(yintercept = S1 + S1_conf), col = "grey42",
lty = "dashed", linewidth = 1) +
geom_hline(data = filter(sens, names == "dummy"),
aes(yintercept = S1 - S1_conf), col = "grey42",
lty = "dashed", linewidth = 1) +
theme_pubr() + grids() +
theme(axis.text.x=element_text(angle = -65,
hjust = 0, size = 9),
plot.margin = margin(t = -40, # Top margin
r = 10, # Right margin
b = -70, # Bottom margin
l = 10)) + # Left margin
xlab("") + ylab("")
k <- 1
for (i in 1:(length(pars)-1)^2) {
if(lower.tri(matrix(1:(length(pars)-1)^2,
ncol = (length(pars)-1),
nrow = (length(pars)-1),
byrow = TRUE),
diag = TRUE)[i]) {
pl2[[i]] <- pl[[k]]
k <- k+1
if(!(i %in% c(1:(length(pars)-2),
length(pars)-1))) {
pl2[[i]] <- pl2[[i]] + ylab("")
}
if(!(i %in% c(seq(length(pars)-1, (length(pars)-1)^2, by = length(pars)-1),
length(pars)-1))) {
pl2[[i]] <- pl2[[i]] + xlab("")
}
if(i %in% seq(1, (length(pars)-1)^2, by = length(pars))) {
pl2[[i]] <- ggMarginal(pl2[[i]], type = "densigram")
}
}
}
pl2[[21]] <- as_ggplot(text_grob("\u03B4"))
pl2[[16]] <- as_ggplot(text_grob("S1"))
pl2[[22]] <- ps1
pl2[[17]] <- ps2
pl2[[6]] <- t
pl2[[11]] <- as_ggplot(text_grob(paste0("S_interaction = ",
round(S_interaction, 3))))
do.call(grid.arrange, c(pl2, ncol = length(pars)-1, as.table = FALSE) )
}
png("Plots/GOTM_kivu.png", width = 17, height = 12, units = "in", res = 300)
my_sens_plot(m = "GOTM", l = "Kivu", res_cali = res_cali,
res_sens = res_o)
dev.off()
png("Plots/GLM_biel.png", width = 17, height = 12, units = "in", res = 300)
my_sens_plot(m = "GLM", l = "Biel", res_cali = res_cali,
res_sens = res_o)
dev.off()
png("Plots/FLake_stechlin.png", width = 17, height = 12, units = "in", res = 300)
my_sens_plot(m = "FLake", l = "Stechlin", res_cali = res_cali,
res_sens = res_o)
dev.off()
png("Plots/Simstrat_erken.png", width = 17, height = 12, units = "in", res = 300)
my_sens_plot(m = "Simstrat", l = "Erken", res_cali = res_cali,
res_sens = res_o)
dev.off()
# look at some of the lakes with large interaction measure
dat_iat |> filter(iat > 0.35) |> select(lake, model, var, iat) |>
print(n = Inf)
png("Plots/FLaket_allequash.png", width = 17, height = 12, units = "in", res = 300)
my_sens_plot(m = "FLake", l = "Allequash", res_cali = res_cali,
res_sens = res_o, n_contour = 7, contour = FALSE)
dev.off()
my_sens_plot(m = "GOTM", l = "Bosumtwi", res_cali = res_cali,
res_sens = res_o, smet = "rmse")
my_sens_plot(m = "FLake", l = "Delavan", res_cali = res_cali,
res_sens = res_o, smet = "nse")
png("Plots/Simstrat_erken.png", width = 17, height = 12, units = "in", res = 300)
my_sens_plot(m = "Simstrat", l = "Tarawera", res_cali = res_cali,
res_sens = res_o, smet = "nse")
dev.off()
my_sens_plot(m = "Simstrat", l = "Chao", res_cali = res_cali,
res_sens = res_o, smet = "r")
my_sens_plot(m = "GLM", l = "Tarawera", res_cali = res_cali,
res_sens = res_o, smet = "nse", contour = FALSE)
# look at some of the lakes with small interaction measure
dat_iat |> filter(iat > 0.35) |> select(lake, model, var, iat) |>
print(n = Inf)
my_sens_plot(m = "GLM", l = "Zurich", res_cali = res_cali,
res_sens = res_o, smet = "nse", contour = TRUE, n_contour = 7)
my_sens_plot(m = "Simstrat", l = "Vendyurskoe", res_cali = res_cali,
res_sens = res_o, smet = "r", contour = TRUE, n_contour = 7)
my_sens_plot(m = "GOTM", l = "Rotorua", res_cali = res_cali,
res_sens = res_o, smet = "rmse", contour = TRUE, n_contour = 7)
my_sens_plot(m = "FLake", l = "Tahoe", res_cali = res_cali,
res_sens = res_o, smet = "nse", contour = TRUE, n_contour = 7)