diff --git a/.gitignore b/.gitignore
index b6e47617..6880001d 100644
--- a/.gitignore
+++ b/.gitignore
@@ -127,3 +127,11 @@ dmypy.json
# Pyre type checker
.pyre/
+
+# temporary files
+## IDEA
+.idea/
+## vscode
+.vscode/
+## vim
+*.sw?
diff --git a/LICENSE b/LICENSE
index 7c7a466e..ca822bb5 100644
--- a/LICENSE
+++ b/LICENSE
@@ -1,29 +1,201 @@
-BSD 3-Clause License
-
-Copyright (c) 2021, Multimodal Lab @ Samsung AI Center Moscow
-All rights reserved.
-
-Redistribution and use in source and binary forms, with or without
-modification, are permitted provided that the following conditions are met:
-
-1. Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
-
-2. Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
-
-3. Neither the name of the copyright holder nor the names of its
- contributors may be used to endorse or promote products derived from
- this software without specific prior written permission.
-
-THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
-FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+
+ 1. Definitions.
+
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+
+ END OF TERMS AND CONDITIONS
+
+ APPENDIX: How to apply the Apache License to your work.
+
+ To apply the Apache License to your work, attach the following
+ boilerplate notice, with the fields enclosed by brackets "[]"
+ replaced with your own identifying information. (Don't include
+ the brackets!) The text should be enclosed in the appropriate
+ comment syntax for the file format. We also recommend that a
+ file or class name and description of purpose be included on the
+ same "printed page" as the copyright notice for easier
+ identification within third-party archives.
+
+ Copyright [2021] Samsung Research
+
+ Licensed under the Apache License, Version 2.0 (the "License");
+ you may not use this file except in compliance with the License.
+ You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+ Unless required by applicable law or agreed to in writing, software
+ distributed under the License is distributed on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ See the License for the specific language governing permissions and
+ limitations under the License.
diff --git a/README.md b/README.md
index 7fb530d9..e640e1a0 100644
--- a/README.md
+++ b/README.md
@@ -1 +1,329 @@
-# lama
\ No newline at end of file
+# 🦙 LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions
+
+Official implementation by Samsung Research
+
+by Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
+Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, Victor Lempitsky.
+
+
+ 🔥🔥🔥
+
+
+LaMa generalizes surprisingly well to much higher resolutions (~2k❗️) than it saw during training (256x256), and achieves the excellent performance even in challenging scenarios, e.g. completion of periodic structures.
+
+
+[[Project page](https://saic-mdal.github.io/lama-project/)] [[arXiv](https://arxiv.org/abs/2109.07161)] [[Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf)] [[BibTeX](https://senya-ashukha.github.io/projects/lama_21/paper.txt)] [[Casual GAN Papers Summary](https://www.casualganpapers.com/large-masks-fourier-convolutions-inpainting/LaMa-explained.html)]
+
+
+
+
+
+
+ Try out in Google Colab
+
+
+
+
+
+
+
+
+
+
+
+# Non-official 3rd party apps:
+(Feel free to share your app/implementation/demo by creating an issue)
+- [https://cleanup.pictures](https://cleanup.pictures/) - a simple interactive object removal tool by [@cyrildiagne](https://twitter.com/cyrildiagne)
+- Integrated to [Huggingface Spaces](https://huggingface.co/spaces) with [Gradio](https://github.com/gradio-app/gradio). See demo: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/lama) by [@AK391](https://github.com/AK391)
+# Environment setup
+
+Clone the repo:
+`git clone https://github.com/saic-mdal/lama.git`
+
+There are three options of an environment:
+
+1. Python virtualenv:
+
+ ```
+ virtualenv inpenv --python=/usr/bin/python3
+ source inpenv/bin/activate
+ pip install torch==1.8.0 torchvision==0.9.0
+
+ cd lama
+ pip install -r requirements.txt
+ ```
+
+2. Conda
+
+ ```
+ % Install conda for Linux, for other OS download miniconda at https://docs.conda.io/en/latest/miniconda.html
+ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
+ bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda
+ $HOME/miniconda/bin/conda init bash
+
+ cd lama
+ conda env create -f conda_env.yml
+ conda activate lama
+ conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch -y
+ pip install pytorch-lightning==1.2.9
+ ```
+
+3. Docker: No actions are needed 🎉.
+
+# Inference
+
+Run
+```
+cd lama
+export TORCH_HOME=$(pwd) && export PYTHONPATH=.
+```
+
+**1. Download pre-trained models**
+
+Install tool for yandex disk link extraction:
+
+```
+pip3 install wldhx.yadisk-direct
+```
+
+The best model (Places2, Places Challenge):
+
+```
+curl -L $(yadisk-direct https://disk.yandex.ru/d/ouP6l8VJ0HpMZg) -o big-lama.zip
+unzip big-lama.zip
+```
+
+All models (Places & CelebA-HQ):
+
+```
+curl -L $(yadisk-direct https://disk.yandex.ru/d/EgqaSnLohjuzAg) -o lama-models.zip
+unzip lama-models.zip
+```
+
+**2. Prepare images and masks**
+
+Download test images:
+
+```
+curl -L $(yadisk-direct https://disk.yandex.ru/d/xKQJZeVRk5vLlQ) -o LaMa_test_images.zip
+unzip LaMa_test_images.zip
+```
+
+ OR prepare your data:
+1) Create masks named as `[images_name]_maskXXX[image_suffix]`, put images and masks in the same folder.
+
+- You can use the [script](#test_datasets) for random masks generation.
+- Check the format of the files:
+ ```
+ image1_mask001.png
+ image1.png
+ image2_mask001.png
+ image2.png
+ ```
+
+2) Specify `image_suffix`, e.g. `.png` or `.jpg` or `_input.jpg` in `configs/prediction/default.yaml`.
+
+
+
+
+**3. Predict**
+
+On the host machine:
+
+ python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/LaMa_test_images outdir=$(pwd)/output
+
+**OR** in the docker
+
+The following command will pull the docker image from Docker Hub and execute the prediction script
+```
+bash docker/2_predict.sh $(pwd)/big-lama $(pwd)/LaMa_test_images $(pwd)/output device=cpu
+```
+Docker cuda: TODO
+
+# Train and Eval
+
+⚠️ Warning: The training is not fully tested yet, e.g., did not re-training after refactoring ⚠️
+
+
+Make sure you run:
+
+```
+cd lama
+export TORCH_HOME=$(pwd) && export PYTHONPATH=.
+```
+
+Then download models for _perceptual loss_:
+
+ mkdir -p ade20k/ade20k-resnet50dilated-ppm_deepsup/
+ wget -P ade20k/ade20k-resnet50dilated-ppm_deepsup/ http://sceneparsing.csail.mit.edu/model/pytorch/ade20k-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth
+
+
+## Places
+On the host machine:
+
+ # Download data from http://places2.csail.mit.edu/download.html
+ # Places365-Standard: Train(105GB)/Test(19GB)/Val(2.1GB) from High-resolution images section
+ wget http://data.csail.mit.edu/places/places365/train_large_places365standard.tar
+ wget http://data.csail.mit.edu/places/places365/val_large.tar
+ wget http://data.csail.mit.edu/places/places365/test_large.tar
+
+ # Unpack and etc.
+ bash fetch_data/places_standard_train_prepare.sh
+ bash fetch_data/places_standard_test_val_prepare.sh
+ bash fetch_data/places_standard_evaluation_prepare_data.sh
+
+ # Sample images for test and viz at the end of epoch
+ bash fetch_data/places_standard_test_val_sample.sh
+ bash fetch_data/places_standard_test_val_gen_masks.sh
+
+ # Run training
+ # You can change bs with data.batch_size=10
+ python bin/train.py -cn lama-fourier location=places_standard
+
+ # Infer model on thick/thin/medium masks in 256 and 512 and run evaluation
+ # like this:
+ python3 bin/predict.py \
+ model.path=$(pwd)/experiments/__lama-fourier_/ \
+ indir=$(pwd)/places_standard_dataset/evaluation/random_thick_512/ \
+ outdir=$(pwd)/inference/random_thick_512 model.checkpoint=last.ckpt
+
+ python3 bin/evaluate_predicts.py \
+ $(pwd)/configs/eval_2gpu.yaml \
+ $(pwd)/places_standard_dataset/evaluation/random_thick_512/ \
+ $(pwd)/inference/random_thick_512 $(pwd)/inference/random_thick_512_metrics.csv
+
+
+
+Docker: TODO
+
+## CelebA
+On the host machine:
+
+ # Make shure you are in lama folder
+ cd lama
+ export TORCH_HOME=$(pwd) && export PYTHONPATH=.
+
+ # Download CelebA-HQ dataset
+ # Download data256x256.zip from https://drive.google.com/drive/folders/11Vz0fqHS2rXDb5pprgTjpD7S2BAJhi1P
+
+ # unzip & split into train/test/visualization & create config for it
+ bash fetch_data/celebahq_dataset_prepare.sh
+
+ # generate masks for test and visual_test at the end of epoch
+ bash fetch_data/celebahq_gen_masks.sh
+
+ # Run training
+ python bin/train.py -cn lama-fourier-celeba data.batch_size=10
+
+ # Infer model on thick/thin/medium masks in 256 and run evaluation
+ # like this:
+ python3 bin/predict.py \
+ model.path=$(pwd)/experiments/__lama-fourier-celeba_/ \
+ indir=$(pwd)/celeba-hq-dataset/visual_test_256/random_thick_256/ \
+ outdir=$(pwd)/inference/celeba_random_thick_256 model.checkpoint=last.ckpt
+
+
+Docker: TODO
+
+## Places Challenge
+
+On the host machine:
+
+ # This script downloads multiple .tar files in parallel and unpacks them
+ # Places365-Challenge: Train(476GB) from High-resolution images (to train Big-Lama)
+ bash places_challenge_train_download.sh
+
+ TODO: prepare
+ TODO: train
+ TODO: eval
+
+Docker: TODO
+
+## Create your data
+On the host machine:
+
+Explain explain explain
+
+ TODO: format
+ TODO: configs
+ TODO: run training
+ TODO: run eval
+
+**OR** in the docker:
+
+ TODO: train
+ TODO: eval
+
+# Hints
+
+### Generate different kinds of masks
+The following command will execute a script that generates random masks.
+
+ bash docker/1_generate_masks_from_raw_images.sh \
+ configs/data_gen/random_medium_512.yaml \
+ /directory_with_input_images \
+ /directory_where_to_store_images_and_masks \
+ --ext png
+
+The test data generation command stores images in the format,
+which is suitable for [prediction](#prediction).
+
+The table below describes which configs we used to generate different test sets from the paper.
+Note that we *do not fix a random seed*, so the results will be slightly different each time.
+
+| | Places 512x512 | CelebA 256x256 |
+|--------|------------------------|------------------------|
+| Narrow | random_thin_512.yaml | random_thin_256.yaml |
+| Medium | random_medium_512.yaml | random_medium_256.yaml |
+| Wide | random_thick_512.yaml | random_thick_256.yaml |
+
+Feel free to change the config path (argument #1) to any other config in `configs/data_gen`
+or adjust config files themselves.
+
+### Override parameters in configs
+Also you can override parameters in config like this:
+
+ python3 bin/train.py -cn data.batch_size=10 run_title=my-title
+
+Where .yaml file extension is omitted
+
+### Models options
+Config names for models from paper (substitude into the training command):
+
+ * big-lama
+ * big-lama-regular
+ * lama-fourier
+ * lama-regular
+ * lama_small_train_masks
+
+Which are seated in configs/training/folder
+
+### Links
+- All the data (models, test images, etc.) https://disk.yandex.ru/d/AmdeG-bIjmvSug
+- Test images from the paper https://disk.yandex.ru/d/xKQJZeVRk5vLlQ
+- The pre-trained models https://disk.yandex.ru/d/EgqaSnLohjuzAg
+- The models for perceptual loss https://disk.yandex.ru/d/ncVmQlmT_kTemQ
+- Our training logs are available at https://disk.yandex.ru/d/9Bt1wNSDS4jDkQ
+
+
+### Training time & resources
+
+TODO
+
+## Acknowledgments
+
+* Segmentation code and models if form [CSAILVision](https://github.com/CSAILVision/semantic-segmentation-pytorch).
+* LPIPS metric is from [richzhang](https://github.com/richzhang/PerceptualSimilarity)
+* SSIM is from [Po-Hsun-Su](https://github.com/Po-Hsun-Su/pytorch-ssim)
+* FID is from [mseitzer](https://github.com/mseitzer/pytorch-fid)
+
+## Citation
+If you found this code helpful, please consider citing:
+```
+@article{suvorov2021resolution,
+ title={Resolution-robust Large Mask Inpainting with Fourier Convolutions},
+ author={Suvorov, Roman and Logacheva, Elizaveta and Mashikhin, Anton and Remizova, Anastasia and Ashukha, Arsenii and Silvestrov, Aleksei and Kong, Naejin and Goka, Harshith and Park, Kiwoong and Lempitsky, Victor},
+ journal={arXiv preprint arXiv:2109.07161},
+ year={2021}
+}
+```
diff --git a/bin/analyze_errors.py b/bin/analyze_errors.py
new file mode 100755
index 00000000..a11f9478
--- /dev/null
+++ b/bin/analyze_errors.py
@@ -0,0 +1,316 @@
+#!/usr/bin/env python3
+import cv2
+import numpy as np
+import sklearn
+import torch
+import os
+import pickle
+import pandas as pd
+import matplotlib.pyplot as plt
+from joblib import Parallel, delayed
+
+from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset, load_image
+from saicinpainting.evaluation.losses.fid.inception import InceptionV3
+from saicinpainting.evaluation.utils import load_yaml
+from saicinpainting.training.visualizers.base import visualize_mask_and_images
+
+
+def draw_score(img, score):
+ img = np.transpose(img, (1, 2, 0))
+ cv2.putText(img, f'{score:.2f}',
+ (40, 40),
+ cv2.FONT_HERSHEY_SIMPLEX,
+ 1,
+ (0, 1, 0),
+ thickness=3)
+ img = np.transpose(img, (2, 0, 1))
+ return img
+
+
+def save_global_samples(global_mask_fnames, mask2real_fname, mask2fake_fname, out_dir, real_scores_by_fname, fake_scores_by_fname):
+ for cur_mask_fname in global_mask_fnames:
+ cur_real_fname = mask2real_fname[cur_mask_fname]
+ orig_img = load_image(cur_real_fname, mode='RGB')
+ fake_img = load_image(mask2fake_fname[cur_mask_fname], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]]
+ mask = load_image(cur_mask_fname, mode='L')[None, ...]
+
+ draw_score(orig_img, real_scores_by_fname.loc[cur_real_fname, 'real_score'])
+ draw_score(fake_img, fake_scores_by_fname.loc[cur_mask_fname, 'fake_score'])
+
+ cur_grid = visualize_mask_and_images(dict(image=orig_img, mask=mask, fake=fake_img),
+ keys=['image', 'fake'],
+ last_without_mask=True)
+ cur_grid = np.clip(cur_grid * 255, 0, 255).astype('uint8')
+ cur_grid = cv2.cvtColor(cur_grid, cv2.COLOR_RGB2BGR)
+ cv2.imwrite(os.path.join(out_dir, os.path.splitext(os.path.basename(cur_mask_fname))[0] + '.jpg'),
+ cur_grid)
+
+
+def save_samples_by_real(worst_best_by_real, mask2fake_fname, fake_info, out_dir):
+ for real_fname in worst_best_by_real.index:
+ worst_mask_path = worst_best_by_real.loc[real_fname, 'worst']
+ best_mask_path = worst_best_by_real.loc[real_fname, 'best']
+ orig_img = load_image(real_fname, mode='RGB')
+ worst_mask_img = load_image(worst_mask_path, mode='L')[None, ...]
+ worst_fake_img = load_image(mask2fake_fname[worst_mask_path], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]]
+ best_mask_img = load_image(best_mask_path, mode='L')[None, ...]
+ best_fake_img = load_image(mask2fake_fname[best_mask_path], mode='RGB')[:, :orig_img.shape[1], :orig_img.shape[2]]
+
+ draw_score(orig_img, worst_best_by_real.loc[real_fname, 'real_score'])
+ draw_score(worst_fake_img, worst_best_by_real.loc[real_fname, 'worst_score'])
+ draw_score(best_fake_img, worst_best_by_real.loc[real_fname, 'best_score'])
+
+ cur_grid = visualize_mask_and_images(dict(image=orig_img, mask=np.zeros_like(worst_mask_img),
+ worst_mask=worst_mask_img, worst_img=worst_fake_img,
+ best_mask=best_mask_img, best_img=best_fake_img),
+ keys=['image', 'worst_mask', 'worst_img', 'best_mask', 'best_img'],
+ rescale_keys=['worst_mask', 'best_mask'],
+ last_without_mask=True)
+ cur_grid = np.clip(cur_grid * 255, 0, 255).astype('uint8')
+ cur_grid = cv2.cvtColor(cur_grid, cv2.COLOR_RGB2BGR)
+ cv2.imwrite(os.path.join(out_dir,
+ os.path.splitext(os.path.basename(real_fname))[0] + '.jpg'),
+ cur_grid)
+
+ fig, (ax1, ax2) = plt.subplots(1, 2)
+ cur_stat = fake_info[fake_info['real_fname'] == real_fname]
+ cur_stat['fake_score'].hist(ax=ax1)
+ cur_stat['real_score'].hist(ax=ax2)
+ fig.tight_layout()
+ fig.savefig(os.path.join(out_dir,
+ os.path.splitext(os.path.basename(real_fname))[0] + '_scores.png'))
+ plt.close(fig)
+
+
+def extract_overlapping_masks(mask_fnames, cur_i, fake_scores_table, max_overlaps_n=2):
+ result_pairs = []
+ result_scores = []
+ mask_fname_a = mask_fnames[cur_i]
+ mask_a = load_image(mask_fname_a, mode='L')[None, ...] > 0.5
+ cur_score_a = fake_scores_table.loc[mask_fname_a, 'fake_score']
+ for mask_fname_b in mask_fnames[cur_i + 1:]:
+ mask_b = load_image(mask_fname_b, mode='L')[None, ...] > 0.5
+ if not np.any(mask_a & mask_b):
+ continue
+ cur_score_b = fake_scores_table.loc[mask_fname_b, 'fake_score']
+ result_pairs.append((mask_fname_a, mask_fname_b))
+ result_scores.append(cur_score_b - cur_score_a)
+ if len(result_pairs) >= max_overlaps_n:
+ break
+ return result_pairs, result_scores
+
+
+def main(args):
+ config = load_yaml(args.config)
+
+ latents_dir = os.path.join(args.outpath, 'latents')
+ os.makedirs(latents_dir, exist_ok=True)
+ global_worst_dir = os.path.join(args.outpath, 'global_worst')
+ os.makedirs(global_worst_dir, exist_ok=True)
+ global_best_dir = os.path.join(args.outpath, 'global_best')
+ os.makedirs(global_best_dir, exist_ok=True)
+ worst_best_by_best_worst_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'best_worst_score_diff_max')
+ os.makedirs(worst_best_by_best_worst_score_diff_max_dir, exist_ok=True)
+ worst_best_by_best_worst_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'best_worst_score_diff_min')
+ os.makedirs(worst_best_by_best_worst_score_diff_min_dir, exist_ok=True)
+ worst_best_by_real_best_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_best_score_diff_max')
+ os.makedirs(worst_best_by_real_best_score_diff_max_dir, exist_ok=True)
+ worst_best_by_real_best_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_best_score_diff_min')
+ os.makedirs(worst_best_by_real_best_score_diff_min_dir, exist_ok=True)
+ worst_best_by_real_worst_score_diff_max_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_worst_score_diff_max')
+ os.makedirs(worst_best_by_real_worst_score_diff_max_dir, exist_ok=True)
+ worst_best_by_real_worst_score_diff_min_dir = os.path.join(args.outpath, 'worst_best_by_real', 'real_worst_score_diff_min')
+ os.makedirs(worst_best_by_real_worst_score_diff_min_dir, exist_ok=True)
+
+ if not args.only_report:
+ block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
+ inception_model = InceptionV3([block_idx]).eval().cuda()
+
+ dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs)
+
+ real2vector_cache = {}
+
+ real_features = []
+ fake_features = []
+
+ orig_fnames = []
+ mask_fnames = []
+ mask2real_fname = {}
+ mask2fake_fname = {}
+
+ for batch_i, batch in enumerate(dataset):
+ orig_img_fname = dataset.img_filenames[batch_i]
+ mask_fname = dataset.mask_filenames[batch_i]
+ fake_fname = dataset.pred_filenames[batch_i]
+ mask2real_fname[mask_fname] = orig_img_fname
+ mask2fake_fname[mask_fname] = fake_fname
+
+ cur_real_vector = real2vector_cache.get(orig_img_fname, None)
+ if cur_real_vector is None:
+ with torch.no_grad():
+ in_img = torch.from_numpy(batch['image'][None, ...]).cuda()
+ cur_real_vector = inception_model(in_img)[0].squeeze(-1).squeeze(-1).cpu().numpy()
+ real2vector_cache[orig_img_fname] = cur_real_vector
+
+ pred_img = torch.from_numpy(batch['inpainted'][None, ...]).cuda()
+ cur_fake_vector = inception_model(pred_img)[0].squeeze(-1).squeeze(-1).cpu().numpy()
+
+ real_features.append(cur_real_vector)
+ fake_features.append(cur_fake_vector)
+
+ orig_fnames.append(orig_img_fname)
+ mask_fnames.append(mask_fname)
+
+ ids_features = np.concatenate(real_features + fake_features, axis=0)
+ ids_labels = np.array(([1] * len(real_features)) + ([0] * len(fake_features)))
+
+ with open(os.path.join(latents_dir, 'featues.pkl'), 'wb') as f:
+ pickle.dump(ids_features, f, protocol=3)
+ with open(os.path.join(latents_dir, 'labels.pkl'), 'wb') as f:
+ pickle.dump(ids_labels, f, protocol=3)
+ with open(os.path.join(latents_dir, 'orig_fnames.pkl'), 'wb') as f:
+ pickle.dump(orig_fnames, f, protocol=3)
+ with open(os.path.join(latents_dir, 'mask_fnames.pkl'), 'wb') as f:
+ pickle.dump(mask_fnames, f, protocol=3)
+ with open(os.path.join(latents_dir, 'mask2real_fname.pkl'), 'wb') as f:
+ pickle.dump(mask2real_fname, f, protocol=3)
+ with open(os.path.join(latents_dir, 'mask2fake_fname.pkl'), 'wb') as f:
+ pickle.dump(mask2fake_fname, f, protocol=3)
+
+ svm = sklearn.svm.LinearSVC(dual=False)
+ svm.fit(ids_features, ids_labels)
+
+ pred_scores = svm.decision_function(ids_features)
+ real_scores = pred_scores[:len(real_features)]
+ fake_scores = pred_scores[len(real_features):]
+
+ with open(os.path.join(latents_dir, 'pred_scores.pkl'), 'wb') as f:
+ pickle.dump(pred_scores, f, protocol=3)
+ with open(os.path.join(latents_dir, 'real_scores.pkl'), 'wb') as f:
+ pickle.dump(real_scores, f, protocol=3)
+ with open(os.path.join(latents_dir, 'fake_scores.pkl'), 'wb') as f:
+ pickle.dump(fake_scores, f, protocol=3)
+ else:
+ with open(os.path.join(latents_dir, 'orig_fnames.pkl'), 'rb') as f:
+ orig_fnames = pickle.load(f)
+ with open(os.path.join(latents_dir, 'mask_fnames.pkl'), 'rb') as f:
+ mask_fnames = pickle.load(f)
+ with open(os.path.join(latents_dir, 'mask2real_fname.pkl'), 'rb') as f:
+ mask2real_fname = pickle.load(f)
+ with open(os.path.join(latents_dir, 'mask2fake_fname.pkl'), 'rb') as f:
+ mask2fake_fname = pickle.load(f)
+ with open(os.path.join(latents_dir, 'real_scores.pkl'), 'rb') as f:
+ real_scores = pickle.load(f)
+ with open(os.path.join(latents_dir, 'fake_scores.pkl'), 'rb') as f:
+ fake_scores = pickle.load(f)
+
+ real_info = pd.DataFrame(data=[dict(real_fname=fname,
+ real_score=score)
+ for fname, score
+ in zip(orig_fnames, real_scores)])
+ real_info.set_index('real_fname', drop=True, inplace=True)
+
+ fake_info = pd.DataFrame(data=[dict(mask_fname=fname,
+ fake_fname=mask2fake_fname[fname],
+ real_fname=mask2real_fname[fname],
+ fake_score=score)
+ for fname, score
+ in zip(mask_fnames, fake_scores)])
+ fake_info = fake_info.join(real_info, on='real_fname', how='left')
+ fake_info.drop_duplicates(['fake_fname', 'real_fname'], inplace=True)
+
+ fake_stats_by_real = fake_info.groupby('real_fname')['fake_score'].describe()[['mean', 'std']].rename(
+ {'mean': 'mean_fake_by_real', 'std': 'std_fake_by_real'}, axis=1)
+ fake_info = fake_info.join(fake_stats_by_real, on='real_fname', rsuffix='stat_by_real')
+ fake_info.drop_duplicates(['fake_fname', 'real_fname'], inplace=True)
+ fake_info.to_csv(os.path.join(latents_dir, 'join_scores_table.csv'), sep='\t', index=False)
+
+ fake_scores_table = fake_info.set_index('mask_fname')['fake_score'].to_frame()
+ real_scores_table = fake_info.set_index('real_fname')['real_score'].drop_duplicates().to_frame()
+
+ fig, (ax1, ax2) = plt.subplots(1, 2)
+ ax1.hist(fake_scores)
+ ax2.hist(real_scores)
+ fig.tight_layout()
+ fig.savefig(os.path.join(args.outpath, 'global_scores_hist.png'))
+ plt.close(fig)
+
+ global_worst_masks = fake_info.sort_values('fake_score', ascending=True)['mask_fname'].iloc[:config.take_global_top].to_list()
+ global_best_masks = fake_info.sort_values('fake_score', ascending=False)['mask_fname'].iloc[:config.take_global_top].to_list()
+ save_global_samples(global_worst_masks, mask2real_fname, mask2fake_fname, global_worst_dir, real_scores_table, fake_scores_table)
+ save_global_samples(global_best_masks, mask2real_fname, mask2fake_fname, global_best_dir, real_scores_table, fake_scores_table)
+
+ # grouped by real
+ worst_samples_by_real = fake_info.groupby('real_fname').apply(
+ lambda d: d.set_index('mask_fname')['fake_score'].idxmin()).to_frame().rename({0: 'worst'}, axis=1)
+ best_samples_by_real = fake_info.groupby('real_fname').apply(
+ lambda d: d.set_index('mask_fname')['fake_score'].idxmax()).to_frame().rename({0: 'best'}, axis=1)
+ worst_best_by_real = pd.concat([worst_samples_by_real, best_samples_by_real], axis=1)
+
+ worst_best_by_real = worst_best_by_real.join(fake_scores_table.rename({'fake_score': 'worst_score'}, axis=1),
+ on='worst')
+ worst_best_by_real = worst_best_by_real.join(fake_scores_table.rename({'fake_score': 'best_score'}, axis=1),
+ on='best')
+ worst_best_by_real = worst_best_by_real.join(real_scores_table)
+
+ worst_best_by_real['best_worst_score_diff'] = worst_best_by_real['best_score'] - worst_best_by_real['worst_score']
+ worst_best_by_real['real_best_score_diff'] = worst_best_by_real['real_score'] - worst_best_by_real['best_score']
+ worst_best_by_real['real_worst_score_diff'] = worst_best_by_real['real_score'] - worst_best_by_real['worst_score']
+
+ worst_best_by_best_worst_score_diff_min = worst_best_by_real.sort_values('best_worst_score_diff', ascending=True).iloc[:config.take_worst_best_top]
+ worst_best_by_best_worst_score_diff_max = worst_best_by_real.sort_values('best_worst_score_diff', ascending=False).iloc[:config.take_worst_best_top]
+ save_samples_by_real(worst_best_by_best_worst_score_diff_min, mask2fake_fname, fake_info, worst_best_by_best_worst_score_diff_min_dir)
+ save_samples_by_real(worst_best_by_best_worst_score_diff_max, mask2fake_fname, fake_info, worst_best_by_best_worst_score_diff_max_dir)
+
+ worst_best_by_real_best_score_diff_min = worst_best_by_real.sort_values('real_best_score_diff', ascending=True).iloc[:config.take_worst_best_top]
+ worst_best_by_real_best_score_diff_max = worst_best_by_real.sort_values('real_best_score_diff', ascending=False).iloc[:config.take_worst_best_top]
+ save_samples_by_real(worst_best_by_real_best_score_diff_min, mask2fake_fname, fake_info, worst_best_by_real_best_score_diff_min_dir)
+ save_samples_by_real(worst_best_by_real_best_score_diff_max, mask2fake_fname, fake_info, worst_best_by_real_best_score_diff_max_dir)
+
+ worst_best_by_real_worst_score_diff_min = worst_best_by_real.sort_values('real_worst_score_diff', ascending=True).iloc[:config.take_worst_best_top]
+ worst_best_by_real_worst_score_diff_max = worst_best_by_real.sort_values('real_worst_score_diff', ascending=False).iloc[:config.take_worst_best_top]
+ save_samples_by_real(worst_best_by_real_worst_score_diff_min, mask2fake_fname, fake_info, worst_best_by_real_worst_score_diff_min_dir)
+ save_samples_by_real(worst_best_by_real_worst_score_diff_max, mask2fake_fname, fake_info, worst_best_by_real_worst_score_diff_max_dir)
+
+ # analyze what change of mask causes bigger change of score
+ overlapping_mask_fname_pairs = []
+ overlapping_mask_fname_score_diffs = []
+ for cur_real_fname in orig_fnames:
+ cur_fakes_info = fake_info[fake_info['real_fname'] == cur_real_fname]
+ cur_mask_fnames = sorted(cur_fakes_info['mask_fname'].unique())
+
+ cur_mask_pairs_and_scores = Parallel(args.n_jobs)(
+ delayed(extract_overlapping_masks)(cur_mask_fnames, i, fake_scores_table)
+ for i in range(len(cur_mask_fnames) - 1)
+ )
+ for cur_pairs, cur_scores in cur_mask_pairs_and_scores:
+ overlapping_mask_fname_pairs.extend(cur_pairs)
+ overlapping_mask_fname_score_diffs.extend(cur_scores)
+
+ overlapping_mask_fname_pairs = np.asarray(overlapping_mask_fname_pairs)
+ overlapping_mask_fname_score_diffs = np.asarray(overlapping_mask_fname_score_diffs)
+ overlapping_sort_idx = np.argsort(overlapping_mask_fname_score_diffs)
+ overlapping_mask_fname_pairs = overlapping_mask_fname_pairs[overlapping_sort_idx]
+ overlapping_mask_fname_score_diffs = overlapping_mask_fname_score_diffs[overlapping_sort_idx]
+
+
+
+
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('config', type=str, help='Path to config for dataset generation')
+ aparser.add_argument('datadir', type=str,
+ help='Path to folder with images and masks (output of gen_mask_dataset.py)')
+ aparser.add_argument('predictdir', type=str,
+ help='Path to folder with predicts (e.g. predict_hifill_baseline.py)')
+ aparser.add_argument('outpath', type=str, help='Where to put results')
+ aparser.add_argument('--only-report', action='store_true',
+ help='Whether to skip prediction and feature extraction, '
+ 'load all the possible latents and proceed with report only')
+ aparser.add_argument('--n-jobs', type=int, default=8, help='how many processes to use for pair mask mining')
+
+ main(aparser.parse_args())
diff --git a/bin/blur_predicts.py b/bin/blur_predicts.py
new file mode 100755
index 00000000..a14fcc28
--- /dev/null
+++ b/bin/blur_predicts.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python3
+
+import os
+
+import cv2
+import numpy as np
+import tqdm
+
+from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset
+from saicinpainting.evaluation.utils import load_yaml
+
+
+def main(args):
+ config = load_yaml(args.config)
+
+ if not args.predictdir.endswith('/'):
+ args.predictdir += '/'
+
+ dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs)
+
+ os.makedirs(os.path.dirname(args.outpath), exist_ok=True)
+
+ for img_i in tqdm.trange(len(dataset)):
+ pred_fname = dataset.pred_filenames[img_i]
+ cur_out_fname = os.path.join(args.outpath, pred_fname[len(args.predictdir):])
+ os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True)
+
+ sample = dataset[img_i]
+ img = sample['image']
+ mask = sample['mask']
+ inpainted = sample['inpainted']
+
+ inpainted_blurred = cv2.GaussianBlur(np.transpose(inpainted, (1, 2, 0)),
+ ksize=(args.k, args.k),
+ sigmaX=args.s, sigmaY=args.s,
+ borderType=cv2.BORDER_REFLECT)
+
+ cur_res = (1 - mask) * np.transpose(img, (1, 2, 0)) + mask * inpainted_blurred
+ cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
+ cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR)
+ cv2.imwrite(cur_out_fname, cur_res)
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('config', type=str, help='Path to evaluation config')
+ aparser.add_argument('datadir', type=str,
+ help='Path to folder with images and masks (output of gen_mask_dataset.py)')
+ aparser.add_argument('predictdir', type=str,
+ help='Path to folder with predicts (e.g. predict_hifill_baseline.py)')
+ aparser.add_argument('outpath', type=str, help='Where to put results')
+ aparser.add_argument('-s', type=float, default=0.1, help='Gaussian blur sigma')
+ aparser.add_argument('-k', type=int, default=5, help='Kernel size in gaussian blur')
+
+ main(aparser.parse_args())
diff --git a/bin/calc_dataset_stats.py b/bin/calc_dataset_stats.py
new file mode 100755
index 00000000..5086fea1
--- /dev/null
+++ b/bin/calc_dataset_stats.py
@@ -0,0 +1,88 @@
+#!/usr/bin/env python3
+
+import os
+
+import numpy as np
+import tqdm
+from scipy.ndimage.morphology import distance_transform_edt
+
+from saicinpainting.evaluation.data import InpaintingDataset
+from saicinpainting.evaluation.vis import save_item_for_vis
+
+
+def main(args):
+ dataset = InpaintingDataset(args.datadir, img_suffix='.png')
+
+ area_bins = np.linspace(0, 1, args.area_bins + 1)
+
+ heights = []
+ widths = []
+ image_areas = []
+ hole_areas = []
+ hole_area_percents = []
+ known_pixel_distances = []
+
+ area_bins_count = np.zeros(args.area_bins)
+ area_bin_titles = [f'{area_bins[i] * 100:.0f}-{area_bins[i + 1] * 100:.0f}' for i in range(args.area_bins)]
+
+ bin2i = [[] for _ in range(args.area_bins)]
+
+ for i, item in enumerate(tqdm.tqdm(dataset)):
+ h, w = item['image'].shape[1:]
+ heights.append(h)
+ widths.append(w)
+ full_area = h * w
+ image_areas.append(full_area)
+ bin_mask = item['mask'] > 0.5
+ hole_area = bin_mask.sum()
+ hole_areas.append(hole_area)
+ hole_percent = hole_area / full_area
+ hole_area_percents.append(hole_percent)
+ bin_i = np.clip(np.searchsorted(area_bins, hole_percent) - 1, 0, len(area_bins_count) - 1)
+ area_bins_count[bin_i] += 1
+ bin2i[bin_i].append(i)
+
+ cur_dist = distance_transform_edt(bin_mask)
+ cur_dist_inside_mask = cur_dist[bin_mask]
+ known_pixel_distances.append(cur_dist_inside_mask.mean())
+
+ os.makedirs(args.outdir, exist_ok=True)
+ with open(os.path.join(args.outdir, 'summary.txt'), 'w') as f:
+ f.write(f'''Location: {args.datadir}
+
+Number of samples: {len(dataset)}
+
+Image height: min {min(heights):5d} max {max(heights):5d} mean {np.mean(heights):.2f}
+Image width: min {min(widths):5d} max {max(widths):5d} mean {np.mean(widths):.2f}
+Image area: min {min(image_areas):7d} max {max(image_areas):7d} mean {np.mean(image_areas):.2f}
+Hole area: min {min(hole_areas):7d} max {max(hole_areas):7d} mean {np.mean(hole_areas):.2f}
+Hole area %: min {min(hole_area_percents) * 100:2.2f} max {max(hole_area_percents) * 100:2.2f} mean {np.mean(hole_area_percents) * 100:2.2f}
+Dist 2known: min {min(known_pixel_distances):2.2f} max {max(known_pixel_distances):2.2f} mean {np.mean(known_pixel_distances):2.2f} median {np.median(known_pixel_distances):2.2f}
+
+Stats by hole area %:
+''')
+ for bin_i in range(args.area_bins):
+ f.write(f'{area_bin_titles[bin_i]}%: '
+ f'samples number {area_bins_count[bin_i]}, '
+ f'{area_bins_count[bin_i] / len(dataset) * 100:.1f}%\n')
+
+ for bin_i in range(args.area_bins):
+ bindir = os.path.join(args.outdir, 'samples', area_bin_titles[bin_i])
+ os.makedirs(bindir, exist_ok=True)
+ bin_idx = bin2i[bin_i]
+ for sample_i in np.random.choice(bin_idx, size=min(len(bin_idx), args.samples_n), replace=False):
+ save_item_for_vis(dataset[sample_i], os.path.join(bindir, f'{sample_i}.png'))
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('datadir', type=str,
+ help='Path to folder with images and masks (output of gen_mask_dataset.py)')
+ aparser.add_argument('outdir', type=str, help='Where to put results')
+ aparser.add_argument('--samples-n', type=int, default=10,
+ help='Number of sample images with masks to copy for visualization for each area bin')
+ aparser.add_argument('--area-bins', type=int, default=10, help='How many area bins to have')
+
+ main(aparser.parse_args())
diff --git a/bin/debug/analyze_overlapping_masks.sh b/bin/debug/analyze_overlapping_masks.sh
new file mode 100755
index 00000000..4a4727b0
--- /dev/null
+++ b/bin/debug/analyze_overlapping_masks.sh
@@ -0,0 +1,31 @@
+#!/bin/bash
+
+BASEDIR="$(dirname $0)"
+
+# paths are valid for mml7
+
+# select images
+#ls /data/inpainting/work/data/train | shuf | head -2000 | xargs -n1 -I{} cp {} /data/inpainting/mask_analysis/src
+
+# generate masks
+#"$BASEDIR/../gen_debug_mask_dataset.py" \
+# "$BASEDIR/../../configs/debug_mask_gen.yaml" \
+# "/data/inpainting/mask_analysis/src" \
+# "/data/inpainting/mask_analysis/generated"
+
+# predict
+#"$BASEDIR/../predict.py" \
+# model.path="simple_pix2pix2_gap_sdpl_novgg_large_b18_ffc075_batch8x15/saved_checkpoint/r.suvorov_2021-04-30_14-41-12_train_simple_pix2pix2_gap_sdpl_novgg_large_b18_ffc075_batch8x15_epoch22-step-574999" \
+# indir="/data/inpainting/mask_analysis/generated" \
+# outdir="/data/inpainting/mask_analysis/predicted" \
+# dataset.img_suffix=.jpg \
+# +out_ext=.jpg
+
+# analyze good and bad samples
+"$BASEDIR/../analyze_errors.py" \
+ --only-report \
+ --n-jobs 8 \
+ "$BASEDIR/../../configs/analyze_mask_errors.yaml" \
+ "/data/inpainting/mask_analysis/small/generated" \
+ "/data/inpainting/mask_analysis/small/predicted" \
+ "/data/inpainting/mask_analysis/small/report"
diff --git a/bin/evaluate_predicts.py b/bin/evaluate_predicts.py
new file mode 100755
index 00000000..a4c182a5
--- /dev/null
+++ b/bin/evaluate_predicts.py
@@ -0,0 +1,79 @@
+#!/usr/bin/env python3
+
+import os
+
+import pandas as pd
+
+from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset
+from saicinpainting.evaluation.evaluator import InpaintingEvaluator, lpips_fid100_f1
+from saicinpainting.evaluation.losses.base_loss import SegmentationAwareSSIM, \
+ SegmentationClassStats, SSIMScore, LPIPSScore, FIDScore, SegmentationAwareLPIPS, SegmentationAwareFID
+from saicinpainting.evaluation.utils import load_yaml
+
+
+def main(args):
+ config = load_yaml(args.config)
+
+ dataset = PrecomputedInpaintingResultsDataset(args.datadir, args.predictdir, **config.dataset_kwargs)
+
+ metrics = {
+ 'ssim': SSIMScore(),
+ 'lpips': LPIPSScore(),
+ 'fid': FIDScore()
+ }
+ enable_segm = config.get('segmentation', dict(enable=False)).get('enable', False)
+ if enable_segm:
+ weights_path = os.path.expandvars(config.segmentation.weights_path)
+ metrics.update(dict(
+ segm_stats=SegmentationClassStats(weights_path=weights_path),
+ segm_ssim=SegmentationAwareSSIM(weights_path=weights_path),
+ segm_lpips=SegmentationAwareLPIPS(weights_path=weights_path),
+ segm_fid=SegmentationAwareFID(weights_path=weights_path)
+ ))
+ evaluator = InpaintingEvaluator(dataset, scores=metrics,
+ integral_title='lpips_fid100_f1', integral_func=lpips_fid100_f1,
+ **config.evaluator_kwargs)
+
+ os.makedirs(os.path.dirname(args.outpath), exist_ok=True)
+
+ results = evaluator.evaluate()
+
+ results = pd.DataFrame(results).stack(1).unstack(0)
+ results.dropna(axis=1, how='all', inplace=True)
+ results.to_csv(args.outpath, sep='\t', float_format='%.4f')
+
+ if enable_segm:
+ only_short_results = results[[c for c in results.columns if not c[0].startswith('segm_')]].dropna(axis=1, how='all')
+ only_short_results.to_csv(args.outpath + '_short', sep='\t', float_format='%.4f')
+
+ print(only_short_results)
+
+ segm_metrics_results = results[['segm_ssim', 'segm_lpips', 'segm_fid']].dropna(axis=1, how='all').transpose().unstack(0).reorder_levels([1, 0], axis=1)
+ segm_metrics_results.drop(['mean', 'std'], axis=0, inplace=True)
+
+ segm_stats_results = results['segm_stats'].dropna(axis=1, how='all').transpose()
+ segm_stats_results.index = pd.MultiIndex.from_tuples(n.split('/') for n in segm_stats_results.index)
+ segm_stats_results = segm_stats_results.unstack(0).reorder_levels([1, 0], axis=1)
+ segm_stats_results.sort_index(axis=1, inplace=True)
+ segm_stats_results.dropna(axis=0, how='all', inplace=True)
+
+ segm_results = pd.concat([segm_metrics_results, segm_stats_results], axis=1, sort=True)
+ segm_results.sort_values(('mask_freq', 'total'), ascending=False, inplace=True)
+
+ segm_results.to_csv(args.outpath + '_segm', sep='\t', float_format='%.4f')
+ else:
+ print(results)
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('config', type=str, help='Path to evaluation config')
+ aparser.add_argument('datadir', type=str,
+ help='Path to folder with images and masks (output of gen_mask_dataset.py)')
+ aparser.add_argument('predictdir', type=str,
+ help='Path to folder with predicts (e.g. predict_hifill_baseline.py)')
+ aparser.add_argument('outpath', type=str, help='Where to put results')
+
+ main(aparser.parse_args())
diff --git a/bin/evaluator_example.py b/bin/evaluator_example.py
new file mode 100644
index 00000000..669e3c53
--- /dev/null
+++ b/bin/evaluator_example.py
@@ -0,0 +1,76 @@
+import os
+
+import cv2
+import numpy as np
+import torch
+from skimage import io
+from skimage.transform import resize
+from torch.utils.data import Dataset
+
+from saicinpainting.evaluation.evaluator import InpaintingEvaluator
+from saicinpainting.evaluation.losses.base_loss import SSIMScore, LPIPSScore, FIDScore
+
+
+class SimpleImageDataset(Dataset):
+ def __init__(self, root_dir, image_size=(400, 600)):
+ self.root_dir = root_dir
+ self.files = sorted(os.listdir(root_dir))
+ self.image_size = image_size
+
+ def __getitem__(self, index):
+ img_name = os.path.join(self.root_dir, self.files[index])
+ image = io.imread(img_name)
+ image = resize(image, self.image_size, anti_aliasing=True)
+ image = torch.FloatTensor(image).permute(2, 0, 1)
+ return image
+
+ def __len__(self):
+ return len(self.files)
+
+
+def create_rectangle_mask(height, width):
+ mask = np.ones((height, width))
+ up_left_corner = width // 4, height // 4
+ down_right_corner = (width - up_left_corner[0] - 1, height - up_left_corner[1] - 1)
+ cv2.rectangle(mask, up_left_corner, down_right_corner, (0, 0, 0), thickness=cv2.FILLED)
+ return mask
+
+
+class Model():
+ def __call__(self, img_batch, mask_batch):
+ mean = (img_batch * mask_batch[:, None, :, :]).sum(dim=(2, 3)) / mask_batch.sum(dim=(1, 2))[:, None]
+ inpainted = mean[:, :, None, None] * (1 - mask_batch[:, None, :, :]) + img_batch * mask_batch[:, None, :, :]
+ return inpainted
+
+
+class SimpleImageSquareMaskDataset(Dataset):
+ def __init__(self, dataset):
+ self.dataset = dataset
+ self.mask = torch.FloatTensor(create_rectangle_mask(*self.dataset.image_size))
+ self.model = Model()
+
+ def __getitem__(self, index):
+ img = self.dataset[index]
+ mask = self.mask.clone()
+ inpainted = self.model(img[None, ...], mask[None, ...])
+ return dict(image=img, mask=mask, inpainted=inpainted)
+
+ def __len__(self):
+ return len(self.dataset)
+
+
+dataset = SimpleImageDataset('imgs')
+mask_dataset = SimpleImageSquareMaskDataset(dataset)
+model = Model()
+metrics = {
+ 'ssim': SSIMScore(),
+ 'lpips': LPIPSScore(),
+ 'fid': FIDScore()
+}
+
+evaluator = InpaintingEvaluator(
+ mask_dataset, scores=metrics, batch_size=3, area_grouping=True
+)
+
+results = evaluator.evaluate(model)
+print(results)
diff --git a/bin/extract_masks.py b/bin/extract_masks.py
new file mode 100755
index 00000000..d114e0fe
--- /dev/null
+++ b/bin/extract_masks.py
@@ -0,0 +1,63 @@
+import PIL.Image as Image
+import numpy as np
+import os
+
+
+def main(args):
+ if not args.indir.endswith('/'):
+ args.indir += '/'
+ os.makedirs(args.outdir, exist_ok=True)
+
+ src_images = [
+ args.indir+fname for fname in os.listdir(args.indir)]
+
+ tgt_masks = [
+ args.outdir+fname[:-4] + f'_mask000.png'
+ for fname in os.listdir(args.indir)]
+
+ for img_name, msk_name in zip(src_images, tgt_masks):
+ #print(img)
+ #print(msk)
+
+ image = Image.open(img_name).convert('RGB')
+ image = np.transpose(np.array(image), (2, 0, 1))
+
+ mask = (image == 255).astype(int)
+
+ print(mask.dtype, mask.shape)
+
+
+ Image.fromarray(
+ np.clip(mask[0,:,:] * 255, 0, 255).astype('uint8'),mode='L'
+ ).save(msk_name)
+
+
+
+
+ '''
+ for infile in src_images:
+ try:
+ file_relpath = infile[len(indir):]
+ img_outpath = os.path.join(outdir, file_relpath)
+ os.makedirs(os.path.dirname(img_outpath), exist_ok=True)
+
+ image = Image.open(infile).convert('RGB')
+
+ mask =
+
+ Image.fromarray(
+ np.clip(
+ cur_mask * 255, 0, 255).astype('uint8'),
+ mode='L'
+ ).save(cur_basename + f'_mask{i:03d}.png')
+ '''
+
+
+
+if __name__ == '__main__':
+ import argparse
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('--indir', type=str, help='Path to folder with images')
+ aparser.add_argument('--outdir', type=str, help='Path to folder to store aligned images and masks to')
+
+ main(aparser.parse_args())
diff --git a/bin/filter_sharded_dataset.py b/bin/filter_sharded_dataset.py
new file mode 100755
index 00000000..b3c2b490
--- /dev/null
+++ b/bin/filter_sharded_dataset.py
@@ -0,0 +1,69 @@
+#!/usr/bin/env python3
+
+
+import math
+import os
+import random
+
+import braceexpand
+import webdataset as wds
+
+DEFAULT_CATS_FILE = os.path.join(os.path.dirname(__file__), '..', 'configs', 'places2-categories_157.txt')
+
+def is_good_key(key, cats):
+ return any(c in key for c in cats)
+
+
+def main(args):
+ if args.categories == 'nofilter':
+ good_categories = None
+ else:
+ with open(args.categories, 'r') as f:
+ good_categories = set(line.strip().split(' ')[0] for line in f if line.strip())
+
+ all_input_files = list(braceexpand.braceexpand(args.infile))
+ chunk_size = int(math.ceil(len(all_input_files) / args.n_read_streams))
+
+ input_iterators = [iter(wds.Dataset(all_input_files[start : start + chunk_size]).shuffle(args.shuffle_buffer))
+ for start in range(0, len(all_input_files), chunk_size)]
+ output_datasets = [wds.ShardWriter(args.outpattern.format(i)) for i in range(args.n_write_streams)]
+
+ good_readers = list(range(len(input_iterators)))
+ step_i = 0
+ good_samples = 0
+ bad_samples = 0
+ while len(good_readers) > 0:
+ if step_i % args.print_freq == 0:
+ print(f'Iterations done {step_i}; readers alive {good_readers}; good samples {good_samples}; bad samples {bad_samples}')
+
+ step_i += 1
+
+ ri = random.choice(good_readers)
+ try:
+ sample = next(input_iterators[ri])
+ except StopIteration:
+ good_readers = list(set(good_readers) - {ri})
+ continue
+
+ if good_categories is not None and not is_good_key(sample['__key__'], good_categories):
+ bad_samples += 1
+ continue
+
+ wi = random.randint(0, args.n_write_streams - 1)
+ output_datasets[wi].write(sample)
+ good_samples += 1
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('--categories', type=str, default=DEFAULT_CATS_FILE)
+ aparser.add_argument('--shuffle-buffer', type=int, default=10000)
+ aparser.add_argument('--n-read-streams', type=int, default=10)
+ aparser.add_argument('--n-write-streams', type=int, default=10)
+ aparser.add_argument('--print-freq', type=int, default=1000)
+ aparser.add_argument('infile', type=str)
+ aparser.add_argument('outpattern', type=str)
+
+ main(aparser.parse_args())
diff --git a/bin/gen_debug_mask_dataset.py b/bin/gen_debug_mask_dataset.py
new file mode 100755
index 00000000..738f7687
--- /dev/null
+++ b/bin/gen_debug_mask_dataset.py
@@ -0,0 +1,61 @@
+#!/usr/bin/env python3
+
+import glob
+import os
+
+import PIL.Image as Image
+import cv2
+import numpy as np
+import tqdm
+import shutil
+
+
+from saicinpainting.evaluation.utils import load_yaml
+
+
+def generate_masks_for_img(infile, outmask_pattern, mask_size=200, step=0.5):
+ inimg = Image.open(infile)
+ width, height = inimg.size
+ step_abs = int(mask_size * step)
+
+ mask = np.zeros((height, width), dtype='uint8')
+ mask_i = 0
+
+ for start_vertical in range(0, height - step_abs, step_abs):
+ for start_horizontal in range(0, width - step_abs, step_abs):
+ mask[start_vertical:start_vertical + mask_size, start_horizontal:start_horizontal + mask_size] = 255
+
+ cv2.imwrite(outmask_pattern.format(mask_i), mask)
+
+ mask[start_vertical:start_vertical + mask_size, start_horizontal:start_horizontal + mask_size] = 0
+ mask_i += 1
+
+
+def main(args):
+ if not args.indir.endswith('/'):
+ args.indir += '/'
+ if not args.outdir.endswith('/'):
+ args.outdir += '/'
+
+ config = load_yaml(args.config)
+
+ in_files = list(glob.glob(os.path.join(args.indir, '**', f'*{config.img_ext}'), recursive=True))
+ for infile in tqdm.tqdm(in_files):
+ outimg = args.outdir + infile[len(args.indir):]
+ outmask_pattern = outimg[:-len(config.img_ext)] + '_mask{:04d}.png'
+
+ os.makedirs(os.path.dirname(outimg), exist_ok=True)
+ shutil.copy2(infile, outimg)
+
+ generate_masks_for_img(infile, outmask_pattern, **config.gen_kwargs)
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('config', type=str, help='Path to config for dataset generation')
+ aparser.add_argument('indir', type=str, help='Path to folder with images')
+ aparser.add_argument('outdir', type=str, help='Path to folder to store aligned images and masks to')
+
+ main(aparser.parse_args())
diff --git a/bin/gen_mask_dataset.py b/bin/gen_mask_dataset.py
new file mode 100755
index 00000000..6e2ce3a9
--- /dev/null
+++ b/bin/gen_mask_dataset.py
@@ -0,0 +1,130 @@
+#!/usr/bin/env python3
+
+import glob
+import os
+import shutil
+import traceback
+
+import PIL.Image as Image
+import numpy as np
+from joblib import Parallel, delayed
+
+from saicinpainting.evaluation.masks.mask import SegmentationMask, propose_random_square_crop
+from saicinpainting.evaluation.utils import load_yaml, SmallMode
+from saicinpainting.training.data.masks import MixedMaskGenerator
+
+
+class MakeManyMasksWrapper:
+ def __init__(self, impl, variants_n=2):
+ self.impl = impl
+ self.variants_n = variants_n
+
+ def get_masks(self, img):
+ img = np.transpose(np.array(img), (2, 0, 1))
+ return [self.impl(img)[0] for _ in range(self.variants_n)]
+
+
+def process_images(src_images, indir, outdir, config):
+ if config.generator_kind == 'segmentation':
+ mask_generator = SegmentationMask(**config.mask_generator_kwargs)
+ elif config.generator_kind == 'random':
+ variants_n = config.mask_generator_kwargs.pop('variants_n', 2)
+ mask_generator = MakeManyMasksWrapper(MixedMaskGenerator(**config.mask_generator_kwargs),
+ variants_n=variants_n)
+ else:
+ raise ValueError(f'Unexpected generator kind: {config.generator_kind}')
+
+ max_tamper_area = config.get('max_tamper_area', 1)
+
+ for infile in src_images:
+ try:
+ file_relpath = infile[len(indir):]
+ img_outpath = os.path.join(outdir, file_relpath)
+ os.makedirs(os.path.dirname(img_outpath), exist_ok=True)
+
+ image = Image.open(infile).convert('RGB')
+
+ # scale input image to output resolution and filter smaller images
+ if min(image.size) < config.cropping.out_min_size:
+ handle_small_mode = SmallMode(config.cropping.handle_small_mode)
+ if handle_small_mode == SmallMode.DROP:
+ continue
+ elif handle_small_mode == SmallMode.UPSCALE:
+ factor = config.cropping.out_min_size / min(image.size)
+ out_size = (np.array(image.size) * factor).round().astype('uint32')
+ image = image.resize(out_size, resample=Image.BICUBIC)
+ else:
+ factor = config.cropping.out_min_size / min(image.size)
+ out_size = (np.array(image.size) * factor).round().astype('uint32')
+ image = image.resize(out_size, resample=Image.BICUBIC)
+
+ # generate and select masks
+ src_masks = mask_generator.get_masks(image)
+
+ filtered_image_mask_pairs = []
+ for cur_mask in src_masks:
+ if config.cropping.out_square_crop:
+ (crop_left,
+ crop_top,
+ crop_right,
+ crop_bottom) = propose_random_square_crop(cur_mask,
+ min_overlap=config.cropping.crop_min_overlap)
+ cur_mask = cur_mask[crop_top:crop_bottom, crop_left:crop_right]
+ cur_image = image.copy().crop((crop_left, crop_top, crop_right, crop_bottom))
+ else:
+ cur_image = image
+
+ if len(np.unique(cur_mask)) == 0 or cur_mask.mean() > max_tamper_area:
+ continue
+
+ filtered_image_mask_pairs.append((cur_image, cur_mask))
+
+ mask_indices = np.random.choice(len(filtered_image_mask_pairs),
+ size=min(len(filtered_image_mask_pairs), config.max_masks_per_image),
+ replace=False)
+
+ # crop masks; save masks together with input image
+ mask_basename = os.path.join(outdir, os.path.splitext(file_relpath)[0])
+ for i, idx in enumerate(mask_indices):
+ cur_image, cur_mask = filtered_image_mask_pairs[idx]
+ cur_basename = mask_basename + f'_crop{i:03d}'
+ Image.fromarray(np.clip(cur_mask * 255, 0, 255).astype('uint8'),
+ mode='L').save(cur_basename + f'_mask{i:03d}.png')
+ cur_image.save(cur_basename + '.png')
+ except KeyboardInterrupt:
+ return
+ except Exception as ex:
+ print(f'Could not make masks for {infile} due to {ex}:\n{traceback.format_exc()}')
+
+
+def main(args):
+ if not args.indir.endswith('/'):
+ args.indir += '/'
+
+ os.makedirs(args.outdir, exist_ok=True)
+
+ config = load_yaml(args.config)
+
+ in_files = list(glob.glob(os.path.join(args.indir, '**', f'*.{args.ext}'), recursive=True))
+ if args.n_jobs == 0:
+ process_images(in_files, args.indir, args.outdir, config)
+ else:
+ in_files_n = len(in_files)
+ chunk_size = in_files_n // args.n_jobs + (1 if in_files_n % args.n_jobs > 0 else 0)
+ Parallel(n_jobs=args.n_jobs)(
+ delayed(process_images)(in_files[start:start+chunk_size], args.indir, args.outdir, config)
+ for start in range(0, len(in_files), chunk_size)
+ )
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('config', type=str, help='Path to config for dataset generation')
+ aparser.add_argument('indir', type=str, help='Path to folder with images')
+ aparser.add_argument('outdir', type=str, help='Path to folder to store aligned images and masks to')
+ aparser.add_argument('--n-jobs', type=int, default=0, help='How many processes to use')
+ aparser.add_argument('--ext', type=str, default='jpg', help='Input image extension')
+
+ main(aparser.parse_args())
diff --git a/bin/gen_mask_dataset_hydra.py b/bin/gen_mask_dataset_hydra.py
new file mode 100755
index 00000000..4f4fdea5
--- /dev/null
+++ b/bin/gen_mask_dataset_hydra.py
@@ -0,0 +1,124 @@
+#!/usr/bin/env python3
+
+import glob
+import os
+import shutil
+import traceback
+import hydra
+from omegaconf import OmegaConf
+
+import PIL.Image as Image
+import numpy as np
+from joblib import Parallel, delayed
+
+from saicinpainting.evaluation.masks.mask import SegmentationMask, propose_random_square_crop
+from saicinpainting.evaluation.utils import load_yaml, SmallMode
+from saicinpainting.training.data.masks import MixedMaskGenerator
+
+
+class MakeManyMasksWrapper:
+ def __init__(self, impl, variants_n=2):
+ self.impl = impl
+ self.variants_n = variants_n
+
+ def get_masks(self, img):
+ img = np.transpose(np.array(img), (2, 0, 1))
+ return [self.impl(img)[0] for _ in range(self.variants_n)]
+
+
+def process_images(src_images, indir, outdir, config):
+ if config.generator_kind == 'segmentation':
+ mask_generator = SegmentationMask(**config.mask_generator_kwargs)
+ elif config.generator_kind == 'random':
+ mask_generator_kwargs = OmegaConf.to_container(config.mask_generator_kwargs, resolve=True)
+ variants_n = mask_generator_kwargs.pop('variants_n', 2)
+ mask_generator = MakeManyMasksWrapper(MixedMaskGenerator(**mask_generator_kwargs),
+ variants_n=variants_n)
+ else:
+ raise ValueError(f'Unexpected generator kind: {config.generator_kind}')
+
+ max_tamper_area = config.get('max_tamper_area', 1)
+
+ for infile in src_images:
+ try:
+ file_relpath = infile[len(indir):]
+ img_outpath = os.path.join(outdir, file_relpath)
+ os.makedirs(os.path.dirname(img_outpath), exist_ok=True)
+
+ image = Image.open(infile).convert('RGB')
+
+ # scale input image to output resolution and filter smaller images
+ if min(image.size) < config.cropping.out_min_size:
+ handle_small_mode = SmallMode(config.cropping.handle_small_mode)
+ if handle_small_mode == SmallMode.DROP:
+ continue
+ elif handle_small_mode == SmallMode.UPSCALE:
+ factor = config.cropping.out_min_size / min(image.size)
+ out_size = (np.array(image.size) * factor).round().astype('uint32')
+ image = image.resize(out_size, resample=Image.BICUBIC)
+ else:
+ factor = config.cropping.out_min_size / min(image.size)
+ out_size = (np.array(image.size) * factor).round().astype('uint32')
+ image = image.resize(out_size, resample=Image.BICUBIC)
+
+ # generate and select masks
+ src_masks = mask_generator.get_masks(image)
+
+ filtered_image_mask_pairs = []
+ for cur_mask in src_masks:
+ if config.cropping.out_square_crop:
+ (crop_left,
+ crop_top,
+ crop_right,
+ crop_bottom) = propose_random_square_crop(cur_mask,
+ min_overlap=config.cropping.crop_min_overlap)
+ cur_mask = cur_mask[crop_top:crop_bottom, crop_left:crop_right]
+ cur_image = image.copy().crop((crop_left, crop_top, crop_right, crop_bottom))
+ else:
+ cur_image = image
+
+ if len(np.unique(cur_mask)) == 0 or cur_mask.mean() > max_tamper_area:
+ continue
+
+ filtered_image_mask_pairs.append((cur_image, cur_mask))
+
+ mask_indices = np.random.choice(len(filtered_image_mask_pairs),
+ size=min(len(filtered_image_mask_pairs), config.max_masks_per_image),
+ replace=False)
+
+ # crop masks; save masks together with input image
+ mask_basename = os.path.join(outdir, os.path.splitext(file_relpath)[0])
+ for i, idx in enumerate(mask_indices):
+ cur_image, cur_mask = filtered_image_mask_pairs[idx]
+ cur_basename = mask_basename + f'_crop{i:03d}'
+ Image.fromarray(np.clip(cur_mask * 255, 0, 255).astype('uint8'),
+ mode='L').save(cur_basename + f'_mask{i:03d}.png')
+ cur_image.save(cur_basename + '.png')
+ except KeyboardInterrupt:
+ return
+ except Exception as ex:
+ print(f'Could not make masks for {infile} due to {ex}:\n{traceback.format_exc()}')
+
+
+@hydra.main(config_path='../configs/data_gen/whydra', config_name='random_medium_256.yaml')
+def main(config: OmegaConf):
+ if not config.indir.endswith('/'):
+ config.indir += '/'
+
+ os.makedirs(config.outdir, exist_ok=True)
+
+ in_files = list(glob.glob(os.path.join(config.indir, '**', f'*.{config.location.extension}'),
+ recursive=True))
+ if config.n_jobs == 0:
+ process_images(in_files, config.indir, config.outdir, config)
+ else:
+ in_files_n = len(in_files)
+ chunk_size = in_files_n // config.n_jobs + (1 if in_files_n % config.n_jobs > 0 else 0)
+ Parallel(n_jobs=config.n_jobs)(
+ delayed(process_images)(in_files[start:start+chunk_size], config.indir, config.outdir, config)
+ for start in range(0, len(in_files), chunk_size)
+ )
+
+
+if __name__ == '__main__':
+ main()
diff --git a/bin/gen_outpainting_dataset.py b/bin/gen_outpainting_dataset.py
new file mode 100755
index 00000000..72f6fc16
--- /dev/null
+++ b/bin/gen_outpainting_dataset.py
@@ -0,0 +1,88 @@
+#!/usr/bin/env python3
+import glob
+import logging
+import os
+import shutil
+import sys
+import traceback
+
+from saicinpainting.evaluation.data import load_image
+from saicinpainting.evaluation.utils import move_to_device
+
+os.environ['OMP_NUM_THREADS'] = '1'
+os.environ['OPENBLAS_NUM_THREADS'] = '1'
+os.environ['MKL_NUM_THREADS'] = '1'
+os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
+os.environ['NUMEXPR_NUM_THREADS'] = '1'
+
+import cv2
+import hydra
+import numpy as np
+import torch
+import tqdm
+import yaml
+from omegaconf import OmegaConf
+from torch.utils.data._utils.collate import default_collate
+
+from saicinpainting.training.data.datasets import make_default_val_dataset
+from saicinpainting.training.trainers import load_checkpoint
+from saicinpainting.utils import register_debug_signal_handlers
+
+LOGGER = logging.getLogger(__name__)
+
+
+def main(args):
+ try:
+ if not args.indir.endswith('/'):
+ args.indir += '/'
+
+ for in_img in glob.glob(os.path.join(args.indir, '**', '*' + args.img_suffix), recursive=True):
+ if 'mask' in os.path.basename(in_img):
+ continue
+
+ out_img_path = os.path.join(args.outdir, os.path.splitext(in_img[len(args.indir):])[0] + '.png')
+ out_mask_path = f'{os.path.splitext(out_img_path)[0]}_mask.png'
+
+ os.makedirs(os.path.dirname(out_img_path), exist_ok=True)
+
+ img = load_image(in_img)
+ height, width = img.shape[1:]
+ pad_h, pad_w = int(height * args.coef / 2), int(width * args.coef / 2)
+
+ mask = np.zeros((height, width), dtype='uint8')
+
+ if args.expand:
+ img = np.pad(img, ((0, 0), (pad_h, pad_h), (pad_w, pad_w)))
+ mask = np.pad(mask, ((pad_h, pad_h), (pad_w, pad_w)), mode='constant', constant_values=255)
+ else:
+ mask[:pad_h] = 255
+ mask[-pad_h:] = 255
+ mask[:, :pad_w] = 255
+ mask[:, -pad_w:] = 255
+
+ # img = np.pad(img, ((0, 0), (pad_h * 2, pad_h * 2), (pad_w * 2, pad_w * 2)), mode='symmetric')
+ # mask = np.pad(mask, ((pad_h * 2, pad_h * 2), (pad_w * 2, pad_w * 2)), mode = 'symmetric')
+
+ img = np.clip(np.transpose(img, (1, 2, 0)) * 255, 0, 255).astype('uint8')
+ img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
+ cv2.imwrite(out_img_path, img)
+
+ cv2.imwrite(out_mask_path, mask)
+ except KeyboardInterrupt:
+ LOGGER.warning('Interrupted by user')
+ except Exception as ex:
+ LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}')
+ sys.exit(1)
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('indir', type=str, help='Root directory with images')
+ aparser.add_argument('outdir', type=str, help='Where to store results')
+ aparser.add_argument('--img-suffix', type=str, default='.png', help='Input image extension')
+ aparser.add_argument('--expand', action='store_true', help='Generate mask by padding (true) or by cropping (false)')
+ aparser.add_argument('--coef', type=float, default=0.2, help='How much to crop/expand in order to get masks')
+
+ main(aparser.parse_args())
diff --git a/bin/make_checkpoint.py b/bin/make_checkpoint.py
new file mode 100755
index 00000000..32214748
--- /dev/null
+++ b/bin/make_checkpoint.py
@@ -0,0 +1,79 @@
+#!/usr/bin/env python3
+
+import os
+import shutil
+
+import torch
+
+
+def get_checkpoint_files(s):
+ s = s.strip()
+ if ',' in s:
+ return [get_checkpoint_files(chunk) for chunk in s.split(',')]
+ return 'last.ckpt' if s == 'last' else f'{s}.ckpt'
+
+
+def main(args):
+ checkpoint_fnames = get_checkpoint_files(args.epochs)
+ if isinstance(checkpoint_fnames, str):
+ checkpoint_fnames = [checkpoint_fnames]
+ assert len(checkpoint_fnames) >= 1
+
+ checkpoint_path = os.path.join(args.indir, 'models', checkpoint_fnames[0])
+ checkpoint = torch.load(checkpoint_path, map_location='cpu')
+ del checkpoint['optimizer_states']
+
+ if len(checkpoint_fnames) > 1:
+ for fname in checkpoint_fnames[1:]:
+ print('sum', fname)
+ sum_tensors_cnt = 0
+ other_cp = torch.load(os.path.join(args.indir, 'models', fname), map_location='cpu')
+ for k in checkpoint['state_dict'].keys():
+ if checkpoint['state_dict'][k].dtype is torch.float:
+ checkpoint['state_dict'][k].data.add_(other_cp['state_dict'][k].data)
+ sum_tensors_cnt += 1
+ print('summed', sum_tensors_cnt, 'tensors')
+
+ for k in checkpoint['state_dict'].keys():
+ if checkpoint['state_dict'][k].dtype is torch.float:
+ checkpoint['state_dict'][k].data.mul_(1 / float(len(checkpoint_fnames)))
+
+ state_dict = checkpoint['state_dict']
+
+ if not args.leave_discriminators:
+ for k in list(state_dict.keys()):
+ if k.startswith('discriminator.'):
+ del state_dict[k]
+
+ if not args.leave_losses:
+ for k in list(state_dict.keys()):
+ if k.startswith('loss_'):
+ del state_dict[k]
+
+ out_checkpoint_path = os.path.join(args.outdir, 'models', 'best.ckpt')
+ os.makedirs(os.path.dirname(out_checkpoint_path), exist_ok=True)
+
+ torch.save(checkpoint, out_checkpoint_path)
+
+ shutil.copy2(os.path.join(args.indir, 'config.yaml'),
+ os.path.join(args.outdir, 'config.yaml'))
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('indir',
+ help='Path to directory with output of training '
+ '(i.e. directory, which has samples, modules, config.yaml and train.log')
+ aparser.add_argument('outdir',
+ help='Where to put minimal checkpoint, which can be consumed by "bin/predict.py"')
+ aparser.add_argument('--epochs', type=str, default='last',
+ help='Which checkpoint to take. '
+ 'Can be "last" or integer - number of epoch')
+ aparser.add_argument('--leave-discriminators', action='store_true',
+ help='If enabled, the state of discriminators will not be removed from the checkpoint')
+ aparser.add_argument('--leave-losses', action='store_true',
+ help='If enabled, weights of nn-based losses (e.g. perceptual) will not be removed')
+
+ main(aparser.parse_args())
diff --git a/bin/mask_example.py b/bin/mask_example.py
new file mode 100644
index 00000000..59e25ca8
--- /dev/null
+++ b/bin/mask_example.py
@@ -0,0 +1,14 @@
+import matplotlib.pyplot as plt
+from skimage import io
+from skimage.transform import resize
+
+from saicinpainting.evaluation.masks.mask import SegmentationMask
+
+im = io.imread('imgs/ex4.jpg')
+im = resize(im, (512, 1024), anti_aliasing=True)
+mask_seg = SegmentationMask(num_variants_per_mask=10)
+mask_examples = mask_seg.get_masks(im)
+for i, example in enumerate(mask_examples):
+ plt.imshow(example)
+ plt.show()
+ plt.imsave(f'tmp/img_masks/{i}.png', example)
diff --git a/bin/paper_runfiles/blur_tests.sh b/bin/paper_runfiles/blur_tests.sh
new file mode 100755
index 00000000..8f204a4c
--- /dev/null
+++ b/bin/paper_runfiles/blur_tests.sh
@@ -0,0 +1,37 @@
+##!/usr/bin/env bash
+#
+## !!! file set to make test_large_30k from the vanilla test_large: configs/test_large_30k.lst
+#
+## paths to data are valid for mml7
+#PLACES_ROOT="/data/inpainting/Places365"
+#OUT_DIR="/data/inpainting/paper_data/Places365_val_test"
+#
+#source "$(dirname $0)/env.sh"
+#
+#for datadir in test_large_30k # val_large
+#do
+# for conf in random_thin_256 random_medium_256 random_thick_256 random_thin_512 random_medium_512 random_thick_512
+# do
+# "$BINDIR/gen_mask_dataset.py" "$CONFIGDIR/data_gen/${conf}.yaml" \
+# "$PLACES_ROOT/$datadir" "$OUT_DIR/$datadir/$conf" --n-jobs 8
+#
+# "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats"
+# done
+#
+# for conf in segm_256 segm_512
+# do
+# "$BINDIR/gen_mask_dataset.py" "$CONFIGDIR/data_gen/${conf}.yaml" \
+# "$PLACES_ROOT/$datadir" "$OUT_DIR/$datadir/$conf" --n-jobs 2
+#
+# "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats"
+# done
+#done
+#
+#IN_DIR="/data/inpainting/paper_data/Places365_val_test/test_large_30k/random_medium_512"
+#PRED_DIR="/data/inpainting/predictions/final/images/r.suvorov_2021-03-05_17-08-35_train_ablv2_work_resume_epoch37/random_medium_512"
+#BLUR_OUT_DIR="/data/inpainting/predictions/final/blur/images"
+#
+#for b in 0.1
+#
+#"$BINDIR/blur_predicts.py" "$BASEDIR/../../configs/eval2.yaml" "$CUR_IN_DIR" "$CUR_OUT_DIR" "$CUR_EVAL_DIR"
+#
diff --git a/bin/paper_runfiles/env.sh b/bin/paper_runfiles/env.sh
new file mode 100644
index 00000000..f3052f0e
--- /dev/null
+++ b/bin/paper_runfiles/env.sh
@@ -0,0 +1,8 @@
+DIRNAME="$(dirname $0)"
+DIRNAME="$(realpath ""$DIRNAME"")"
+
+BINDIR="$DIRNAME/.."
+SRCDIR="$BINDIR/.."
+CONFIGDIR="$SRCDIR/configs"
+
+export PYTHONPATH="$SRCDIR:$PYTHONPATH"
diff --git a/bin/paper_runfiles/find_best_checkpoint.py b/bin/paper_runfiles/find_best_checkpoint.py
new file mode 100755
index 00000000..42f5e0f9
--- /dev/null
+++ b/bin/paper_runfiles/find_best_checkpoint.py
@@ -0,0 +1,54 @@
+#!/usr/bin/env python3
+
+
+import os
+from argparse import ArgumentParser
+
+
+def ssim_fid100_f1(metrics, fid_scale=100):
+ ssim = metrics.loc['total', 'ssim']['mean']
+ fid = metrics.loc['total', 'fid']['mean']
+ fid_rel = max(0, fid_scale - fid) / fid_scale
+ f1 = 2 * ssim * fid_rel / (ssim + fid_rel + 1e-3)
+ return f1
+
+
+def find_best_checkpoint(model_list, models_dir):
+ with open(model_list) as f:
+ models = [m.strip() for m in f.readlines()]
+ with open(f'{model_list}_best', 'w') as f:
+ for model in models:
+ print(model)
+ best_f1 = 0
+ best_epoch = 0
+ best_step = 0
+ with open(os.path.join(models_dir, model, 'train.log')) as fm:
+ lines = fm.readlines()
+ for line_index in range(len(lines)):
+ line = lines[line_index]
+ if 'Validation metrics after epoch' in line:
+ sharp_index = line.index('#')
+ cur_ep = line[sharp_index + 1:]
+ comma_index = cur_ep.index(',')
+ cur_ep = int(cur_ep[:comma_index])
+ total_index = line.index('total ')
+ step = int(line[total_index:].split()[1].strip())
+ total_line = lines[line_index + 5]
+ if not total_line.startswith('total'):
+ continue
+ words = total_line.strip().split()
+ f1 = float(words[-1])
+ print(f'\tEpoch: {cur_ep}, f1={f1}')
+ if f1 > best_f1:
+ best_f1 = f1
+ best_epoch = cur_ep
+ best_step = step
+ f.write(f'{model}\t{best_epoch}\t{best_step}\t{best_f1}\n')
+
+
+if __name__ == '__main__':
+ parser = ArgumentParser()
+ parser.add_argument('model_list')
+ parser.add_argument('models_dir')
+ args = parser.parse_args()
+ find_best_checkpoint(args.model_list, args.models_dir)
diff --git a/bin/paper_runfiles/generate_test_celeba-hq.sh b/bin/paper_runfiles/generate_test_celeba-hq.sh
new file mode 100755
index 00000000..7e04bba4
--- /dev/null
+++ b/bin/paper_runfiles/generate_test_celeba-hq.sh
@@ -0,0 +1,17 @@
+#!/usr/bin/env bash
+
+# paths to data are valid for mml-ws01
+OUT_DIR="/media/inpainting/paper_data/CelebA-HQ_val_test"
+
+source "$(dirname $0)/env.sh"
+
+for datadir in "val" "test"
+do
+ for conf in random_thin_256 random_medium_256 random_thick_256 random_thin_512 random_medium_512 random_thick_512
+ do
+ "$BINDIR/gen_mask_dataset_hydra.py" -cn $conf datadir=$datadir location=mml-ws01-celeba-hq \
+ location.out_dir=$OUT_DIR cropping.out_square_crop=False
+
+ "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats"
+ done
+done
diff --git a/bin/paper_runfiles/generate_test_ffhq.sh b/bin/paper_runfiles/generate_test_ffhq.sh
new file mode 100755
index 00000000..a1b79cb0
--- /dev/null
+++ b/bin/paper_runfiles/generate_test_ffhq.sh
@@ -0,0 +1,17 @@
+#!/usr/bin/env bash
+
+# paths to data are valid for mml-ws01
+OUT_DIR="/media/inpainting/paper_data/FFHQ_val"
+
+source "$(dirname $0)/env.sh"
+
+for datadir in test
+do
+ for conf in random_thin_256 random_medium_256 random_thick_256 random_thin_512 random_medium_512 random_thick_512
+ do
+ "$BINDIR/gen_mask_dataset_hydra.py" -cn $conf datadir=$datadir location=mml-ws01-ffhq \
+ location.out_dir=$OUT_DIR cropping.out_square_crop=False
+
+ "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats"
+ done
+done
diff --git a/bin/paper_runfiles/generate_test_paris.sh b/bin/paper_runfiles/generate_test_paris.sh
new file mode 100755
index 00000000..66056017
--- /dev/null
+++ b/bin/paper_runfiles/generate_test_paris.sh
@@ -0,0 +1,17 @@
+#!/usr/bin/env bash
+
+# paths to data are valid for mml-ws01
+OUT_DIR="/media/inpainting/paper_data/Paris_StreetView_Dataset_val"
+
+source "$(dirname $0)/env.sh"
+
+for datadir in paris_eval_gt
+do
+ for conf in random_thin_256 random_medium_256 random_thick_256 segm_256
+ do
+ "$BINDIR/gen_mask_dataset_hydra.py" -cn $conf datadir=$datadir location=mml-ws01-paris \
+ location.out_dir=OUT_DIR cropping.out_square_crop=False cropping.out_min_size=227
+
+ "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats"
+ done
+done
diff --git a/bin/paper_runfiles/generate_test_paris_256.sh b/bin/paper_runfiles/generate_test_paris_256.sh
new file mode 100755
index 00000000..67061298
--- /dev/null
+++ b/bin/paper_runfiles/generate_test_paris_256.sh
@@ -0,0 +1,17 @@
+#!/usr/bin/env bash
+
+# paths to data are valid for mml-ws01
+OUT_DIR="/media/inpainting/paper_data/Paris_StreetView_Dataset_val_256"
+
+source "$(dirname $0)/env.sh"
+
+for datadir in paris_eval_gt
+do
+ for conf in random_thin_256 random_medium_256 random_thick_256 segm_256
+ do
+ "$BINDIR/gen_mask_dataset_hydra.py" -cn $conf datadir=$datadir location=mml-ws01-paris \
+ location.out_dir=$OUT_DIR cropping.out_square_crop=False cropping.out_min_size=256
+
+ "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats"
+ done
+done
diff --git a/bin/paper_runfiles/generate_val_test.sh b/bin/paper_runfiles/generate_val_test.sh
new file mode 100755
index 00000000..d9b2a370
--- /dev/null
+++ b/bin/paper_runfiles/generate_val_test.sh
@@ -0,0 +1,28 @@
+#!/usr/bin/env bash
+
+# !!! file set to make test_large_30k from the vanilla test_large: configs/test_large_30k.lst
+
+# paths to data are valid for mml7
+PLACES_ROOT="/data/inpainting/Places365"
+OUT_DIR="/data/inpainting/paper_data/Places365_val_test"
+
+source "$(dirname $0)/env.sh"
+
+for datadir in test_large_30k # val_large
+do
+ for conf in random_thin_256 random_medium_256 random_thick_256 random_thin_512 random_medium_512 random_thick_512
+ do
+ "$BINDIR/gen_mask_dataset.py" "$CONFIGDIR/data_gen/${conf}.yaml" \
+ "$PLACES_ROOT/$datadir" "$OUT_DIR/$datadir/$conf" --n-jobs 8
+
+ "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats"
+ done
+
+ for conf in segm_256 segm_512
+ do
+ "$BINDIR/gen_mask_dataset.py" "$CONFIGDIR/data_gen/${conf}.yaml" \
+ "$PLACES_ROOT/$datadir" "$OUT_DIR/$datadir/$conf" --n-jobs 2
+
+ "$BINDIR/calc_dataset_stats.py" --samples-n 20 "$OUT_DIR/$datadir/$conf" "$OUT_DIR/$datadir/${conf}_stats"
+ done
+done
diff --git a/bin/paper_runfiles/predict_inner_features.sh b/bin/paper_runfiles/predict_inner_features.sh
new file mode 100755
index 00000000..864c1a0f
--- /dev/null
+++ b/bin/paper_runfiles/predict_inner_features.sh
@@ -0,0 +1,20 @@
+#!/usr/bin/env bash
+
+# paths to data are valid for mml7
+
+source "$(dirname $0)/env.sh"
+
+"$BINDIR/predict_inner_features.py" \
+ -cn default_inner_features_ffc \
+ model.path="/data/inpainting/paper_data/final_models/ours/r.suvorov_2021-03-05_17-34-05_train_ablv2_work_ffc075_resume_epoch39" \
+ indir="/data/inpainting/paper_data/inner_features_vis/input/" \
+ outdir="/data/inpainting/paper_data/inner_features_vis/output/ffc" \
+ dataset.img_suffix=.png
+
+
+"$BINDIR/predict_inner_features.py" \
+ -cn default_inner_features_work \
+ model.path="/data/inpainting/paper_data/final_models/ours/r.suvorov_2021-03-05_17-08-35_train_ablv2_work_resume_epoch37" \
+ indir="/data/inpainting/paper_data/inner_features_vis/input/" \
+ outdir="/data/inpainting/paper_data/inner_features_vis/output/work" \
+ dataset.img_suffix=.png
diff --git a/bin/paper_runfiles/update_test_data_stats.sh b/bin/paper_runfiles/update_test_data_stats.sh
new file mode 100755
index 00000000..ff77d586
--- /dev/null
+++ b/bin/paper_runfiles/update_test_data_stats.sh
@@ -0,0 +1,30 @@
+#!/usr/bin/env bash
+
+# paths to data are valid for mml7
+
+source "$(dirname $0)/env.sh"
+
+#INDIR="/data/inpainting/paper_data/Places365_val_test/test_large_30k"
+#
+#for dataset in random_medium_256 random_medium_512 random_thick_256 random_thick_512 random_thin_256 random_thin_512
+#do
+# "$BINDIR/calc_dataset_stats.py" "$INDIR/$dataset" "$INDIR/${dataset}_stats2"
+#done
+#
+#"$BINDIR/calc_dataset_stats.py" "/data/inpainting/evalset2" "/data/inpainting/evalset2_stats2"
+
+
+INDIR="/data/inpainting/paper_data/CelebA-HQ_val_test/test"
+
+for dataset in random_medium_256 random_thick_256 random_thin_256
+do
+ "$BINDIR/calc_dataset_stats.py" "$INDIR/$dataset" "$INDIR/${dataset}_stats2"
+done
+
+
+INDIR="/data/inpainting/paper_data/Paris_StreetView_Dataset_val_256/paris_eval_gt"
+
+for dataset in random_medium_256 random_thick_256 random_thin_256
+do
+ "$BINDIR/calc_dataset_stats.py" "$INDIR/$dataset" "$INDIR/${dataset}_stats2"
+done
\ No newline at end of file
diff --git a/bin/predict.py b/bin/predict.py
new file mode 100755
index 00000000..7d801629
--- /dev/null
+++ b/bin/predict.py
@@ -0,0 +1,90 @@
+#!/usr/bin/env python3
+
+# Example command:
+# ./bin/predict.py \
+# model.path= \
+# indir= \
+# outdir=
+
+import logging
+import os
+import sys
+import traceback
+
+from saicinpainting.evaluation.utils import move_to_device
+
+os.environ['OMP_NUM_THREADS'] = '1'
+os.environ['OPENBLAS_NUM_THREADS'] = '1'
+os.environ['MKL_NUM_THREADS'] = '1'
+os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
+os.environ['NUMEXPR_NUM_THREADS'] = '1'
+
+import cv2
+import hydra
+import numpy as np
+import torch
+import tqdm
+import yaml
+from omegaconf import OmegaConf
+from torch.utils.data._utils.collate import default_collate
+
+from saicinpainting.training.data.datasets import make_default_val_dataset
+from saicinpainting.training.trainers import load_checkpoint
+from saicinpainting.utils import register_debug_signal_handlers
+
+LOGGER = logging.getLogger(__name__)
+
+
+@hydra.main(config_path='../configs/prediction', config_name='default.yaml')
+def main(predict_config: OmegaConf):
+ try:
+ register_debug_signal_handlers() # kill -10 will result in traceback dumped into log
+
+ device = torch.device(predict_config.device)
+
+ train_config_path = os.path.join(predict_config.model.path, 'config.yaml')
+ with open(train_config_path, 'r') as f:
+ train_config = OmegaConf.create(yaml.safe_load(f))
+
+ train_config.training_model.predict_only = True
+ train_config.visualizer.kind = 'noop'
+
+ out_ext = predict_config.get('out_ext', '.png')
+
+ checkpoint_path = os.path.join(predict_config.model.path,
+ 'models',
+ predict_config.model.checkpoint)
+ model = load_checkpoint(train_config, checkpoint_path, strict=False, map_location='cpu')
+ model.freeze()
+ model.to(device)
+
+ if not predict_config.indir.endswith('/'):
+ predict_config.indir += '/'
+
+ dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset)
+ with torch.no_grad():
+ for img_i in tqdm.trange(len(dataset)):
+ mask_fname = dataset.mask_filenames[img_i]
+ cur_out_fname = os.path.join(
+ predict_config.outdir,
+ os.path.splitext(mask_fname[len(predict_config.indir):])[0] + out_ext
+ )
+ os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True)
+
+ batch = move_to_device(default_collate([dataset[img_i]]), device)
+ batch['mask'] = (batch['mask'] > 0) * 1
+ batch = model(batch)
+ cur_res = batch[predict_config.out_key][0].permute(1, 2, 0).detach().cpu().numpy()
+
+ cur_res = np.clip(cur_res * 255, 0, 255).astype('uint8')
+ cur_res = cv2.cvtColor(cur_res, cv2.COLOR_RGB2BGR)
+ cv2.imwrite(cur_out_fname, cur_res)
+ except KeyboardInterrupt:
+ LOGGER.warning('Interrupted by user')
+ except Exception as ex:
+ LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}')
+ sys.exit(1)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/bin/predict_inner_features.py b/bin/predict_inner_features.py
new file mode 100755
index 00000000..4f9f7a11
--- /dev/null
+++ b/bin/predict_inner_features.py
@@ -0,0 +1,119 @@
+#!/usr/bin/env python3
+
+# Example command:
+# ./bin/predict.py \
+# model.path= \
+# indir= \
+# outdir=
+
+import logging
+import os
+import sys
+import traceback
+
+from saicinpainting.evaluation.utils import move_to_device
+
+os.environ['OMP_NUM_THREADS'] = '1'
+os.environ['OPENBLAS_NUM_THREADS'] = '1'
+os.environ['MKL_NUM_THREADS'] = '1'
+os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
+os.environ['NUMEXPR_NUM_THREADS'] = '1'
+
+import cv2
+import hydra
+import numpy as np
+import torch
+import tqdm
+import yaml
+from omegaconf import OmegaConf
+from torch.utils.data._utils.collate import default_collate
+
+from saicinpainting.training.data.datasets import make_default_val_dataset
+from saicinpainting.training.trainers import load_checkpoint, DefaultInpaintingTrainingModule
+from saicinpainting.utils import register_debug_signal_handlers, get_shape
+
+LOGGER = logging.getLogger(__name__)
+
+
+@hydra.main(config_path='../configs/prediction', config_name='default_inner_features.yaml')
+def main(predict_config: OmegaConf):
+ try:
+ register_debug_signal_handlers() # kill -10 will result in traceback dumped into log
+
+ device = torch.device(predict_config.device)
+
+ train_config_path = os.path.join(predict_config.model.path, 'config.yaml')
+ with open(train_config_path, 'r') as f:
+ train_config = OmegaConf.create(yaml.safe_load(f))
+
+ checkpoint_path = os.path.join(predict_config.model.path, 'models', predict_config.model.checkpoint)
+ model = load_checkpoint(train_config, checkpoint_path, strict=False)
+ model.freeze()
+ model.to(device)
+
+ assert isinstance(model, DefaultInpaintingTrainingModule), 'Only DefaultInpaintingTrainingModule is supported'
+ assert isinstance(getattr(model.generator, 'model', None), torch.nn.Sequential)
+
+ if not predict_config.indir.endswith('/'):
+ predict_config.indir += '/'
+
+ dataset = make_default_val_dataset(predict_config.indir, **predict_config.dataset)
+
+ max_level = max(predict_config.levels)
+
+ with torch.no_grad():
+ for img_i in tqdm.trange(len(dataset)):
+ mask_fname = dataset.mask_filenames[img_i]
+ cur_out_fname = os.path.join(predict_config.outdir, os.path.splitext(mask_fname[len(predict_config.indir):])[0])
+ os.makedirs(os.path.dirname(cur_out_fname), exist_ok=True)
+
+ batch = move_to_device(default_collate([dataset[img_i]]), device)
+
+ img = batch['image']
+ mask = batch['mask']
+ mask[:] = 0
+ mask_h, mask_w = mask.shape[-2:]
+ mask[:, :,
+ mask_h // 2 - predict_config.hole_radius : mask_h // 2 + predict_config.hole_radius,
+ mask_w // 2 - predict_config.hole_radius : mask_w // 2 + predict_config.hole_radius] = 1
+
+ masked_img = torch.cat([img * (1 - mask), mask], dim=1)
+
+ feats = masked_img
+ for level_i, level in enumerate(model.generator.model):
+ feats = level(feats)
+ if level_i in predict_config.levels:
+ cur_feats = torch.cat([f for f in feats if torch.is_tensor(f)], dim=1) \
+ if isinstance(feats, tuple) else feats
+
+ if predict_config.slice_channels:
+ cur_feats = cur_feats[:, slice(*predict_config.slice_channels)]
+
+ cur_feat = cur_feats.pow(2).mean(1).pow(0.5).clone()
+ cur_feat -= cur_feat.min()
+ cur_feat /= cur_feat.std()
+ cur_feat = cur_feat.clamp(0, 1) / 1
+ cur_feat = cur_feat.cpu().numpy()[0]
+ cur_feat *= 255
+ cur_feat = np.clip(cur_feat, 0, 255).astype('uint8')
+ cv2.imwrite(cur_out_fname + f'_lev{level_i:02d}_norm.png', cur_feat)
+
+ # for channel_i in predict_config.channels:
+ #
+ # cur_feat = cur_feats[0, channel_i].clone().detach().cpu().numpy()
+ # cur_feat -= cur_feat.min()
+ # cur_feat /= cur_feat.max()
+ # cur_feat *= 255
+ # cur_feat = np.clip(cur_feat, 0, 255).astype('uint8')
+ # cv2.imwrite(cur_out_fname + f'_lev{level_i}_ch{channel_i}.png', cur_feat)
+ elif level_i >= max_level:
+ break
+ except KeyboardInterrupt:
+ LOGGER.warning('Interrupted by user')
+ except Exception as ex:
+ LOGGER.critical(f'Prediction failed due to {ex}:\n{traceback.format_exc()}')
+ sys.exit(1)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/bin/report_from_tb.py b/bin/report_from_tb.py
new file mode 100755
index 00000000..9a444e6c
--- /dev/null
+++ b/bin/report_from_tb.py
@@ -0,0 +1,83 @@
+#!/usr/bin/env python3
+
+import glob
+import os
+import re
+
+import tensorflow as tf
+from torch.utils.tensorboard import SummaryWriter
+
+
+GROUPING_RULES = [
+ re.compile(r'^(?Ptrain|test|val|extra_val_.*?(256|512))_(?P.*)', re.I)
+]
+
+
+DROP_RULES = [
+ re.compile(r'_std$', re.I)
+]
+
+
+def need_drop(tag):
+ for rule in DROP_RULES:
+ if rule.search(tag):
+ return True
+ return False
+
+
+def get_group_and_title(tag):
+ for rule in GROUPING_RULES:
+ match = rule.search(tag)
+ if match is None:
+ continue
+ return match.group('group'), match.group('title')
+ return None, None
+
+
+def main(args):
+ os.makedirs(args.outdir, exist_ok=True)
+
+ ignored_events = set()
+
+ for orig_fname in glob.glob(args.inglob):
+ cur_dirpath = os.path.dirname(orig_fname) # remove filename, this should point to "version_0" directory
+ subdirname = os.path.basename(cur_dirpath) # == "version_0" most of time
+ exp_root_path = os.path.dirname(cur_dirpath) # remove "version_0"
+ exp_name = os.path.basename(exp_root_path)
+
+ writers_by_group = {}
+
+ for e in tf.compat.v1.train.summary_iterator(orig_fname):
+ for v in e.summary.value:
+ if need_drop(v.tag):
+ continue
+
+ cur_group, cur_title = get_group_and_title(v.tag)
+ if cur_group is None:
+ if v.tag not in ignored_events:
+ print(f'WARNING: Could not detect group for {v.tag}, ignoring it')
+ ignored_events.add(v.tag)
+ continue
+
+ cur_writer = writers_by_group.get(cur_group, None)
+ if cur_writer is None:
+ if args.include_version:
+ cur_outdir = os.path.join(args.outdir, exp_name, f'{subdirname}_{cur_group}')
+ else:
+ cur_outdir = os.path.join(args.outdir, exp_name, cur_group)
+ cur_writer = SummaryWriter(cur_outdir)
+ writers_by_group[cur_group] = cur_writer
+
+ cur_writer.add_scalar(cur_title, v.simple_value, global_step=e.step, walltime=e.wall_time)
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('inglob', type=str)
+ aparser.add_argument('outdir', type=str)
+ aparser.add_argument('--include-version', action='store_true',
+ help='Include subdirectory name e.g. "version_0" into output path')
+
+ main(aparser.parse_args())
diff --git a/bin/sample_from_dataset.py b/bin/sample_from_dataset.py
new file mode 100755
index 00000000..31593b32
--- /dev/null
+++ b/bin/sample_from_dataset.py
@@ -0,0 +1,87 @@
+#!/usr/bin/env python3
+
+import os
+
+import numpy as np
+import tqdm
+from skimage import io
+from skimage.segmentation import mark_boundaries
+
+from saicinpainting.evaluation.data import InpaintingDataset
+from saicinpainting.evaluation.vis import save_item_for_vis
+
+def save_mask_for_sidebyside(item, out_file):
+ mask = item['mask']# > 0.5
+ if mask.ndim == 3:
+ mask = mask[0]
+ mask = np.clip(mask * 255, 0, 255).astype('uint8')
+ io.imsave(out_file, mask)
+
+def save_img_for_sidebyside(item, out_file):
+ img = np.transpose(item['image'], (1, 2, 0))
+ img = np.clip(img * 255, 0, 255).astype('uint8')
+ io.imsave(out_file, img)
+
+def save_masked_img_for_sidebyside(item, out_file):
+ mask = item['mask']
+ img = item['image']
+
+ img = (1-mask) * img + mask
+ img = np.transpose(img, (1, 2, 0))
+
+ img = np.clip(img * 255, 0, 255).astype('uint8')
+ io.imsave(out_file, img)
+
+def main(args):
+ dataset = InpaintingDataset(args.datadir, img_suffix='.png')
+
+ area_bins = np.linspace(0, 1, args.area_bins + 1)
+
+ heights = []
+ widths = []
+ image_areas = []
+ hole_areas = []
+ hole_area_percents = []
+ area_bins_count = np.zeros(args.area_bins)
+ area_bin_titles = [f'{area_bins[i] * 100:.0f}-{area_bins[i + 1] * 100:.0f}' for i in range(args.area_bins)]
+
+ bin2i = [[] for _ in range(args.area_bins)]
+
+ for i, item in enumerate(tqdm.tqdm(dataset)):
+ h, w = item['image'].shape[1:]
+ heights.append(h)
+ widths.append(w)
+ full_area = h * w
+ image_areas.append(full_area)
+ hole_area = (item['mask'] == 1).sum()
+ hole_areas.append(hole_area)
+ hole_percent = hole_area / full_area
+ hole_area_percents.append(hole_percent)
+ bin_i = np.clip(np.searchsorted(area_bins, hole_percent) - 1, 0, len(area_bins_count) - 1)
+ area_bins_count[bin_i] += 1
+ bin2i[bin_i].append(i)
+
+ os.makedirs(args.outdir, exist_ok=True)
+
+ for bin_i in range(args.area_bins):
+ bindir = os.path.join(args.outdir, area_bin_titles[bin_i])
+ os.makedirs(bindir, exist_ok=True)
+ bin_idx = bin2i[bin_i]
+ for sample_i in np.random.choice(bin_idx, size=min(len(bin_idx), args.samples_n), replace=False):
+ item = dataset[sample_i]
+ path = os.path.join(bindir, dataset.img_filenames[sample_i].split('/')[-1])
+ save_masked_img_for_sidebyside(item, path)
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('--datadir', type=str,
+ help='Path to folder with images and masks (output of gen_mask_dataset.py)')
+ aparser.add_argument('--outdir', type=str, help='Where to put results')
+ aparser.add_argument('--samples-n', type=int, default=10,
+ help='Number of sample images with masks to copy for visualization for each area bin')
+ aparser.add_argument('--area-bins', type=int, default=10, help='How many area bins to have')
+
+ main(aparser.parse_args())
diff --git a/bin/side_by_side.py b/bin/side_by_side.py
new file mode 100755
index 00000000..8ba7a42a
--- /dev/null
+++ b/bin/side_by_side.py
@@ -0,0 +1,76 @@
+#!/usr/bin/env python3
+import os
+import random
+
+import cv2
+import numpy as np
+
+from saicinpainting.evaluation.data import PrecomputedInpaintingResultsDataset
+from saicinpainting.evaluation.utils import load_yaml
+from saicinpainting.training.visualizers.base import visualize_mask_and_images
+
+
+def main(args):
+ config = load_yaml(args.config)
+
+ datasets = [PrecomputedInpaintingResultsDataset(args.datadir, cur_predictdir, **config.dataset_kwargs)
+ for cur_predictdir in args.predictdirs]
+ assert len({len(ds) for ds in datasets}) == 1
+ len_first = len(datasets[0])
+
+ indices = list(range(len_first))
+ if len_first > args.max_n:
+ indices = sorted(random.sample(indices, args.max_n))
+
+ os.makedirs(args.outpath, exist_ok=True)
+
+ filename2i = {}
+
+ keys = ['image'] + [i for i in range(len(datasets))]
+ for img_i in indices:
+ try:
+ mask_fname = os.path.basename(datasets[0].mask_filenames[img_i])
+ if mask_fname in filename2i:
+ filename2i[mask_fname] += 1
+ idx = filename2i[mask_fname]
+ mask_fname_only, ext = os.path.split(mask_fname)
+ mask_fname = f'{mask_fname_only}_{idx}{ext}'
+ else:
+ filename2i[mask_fname] = 1
+
+ cur_vis_dict = datasets[0][img_i]
+ for ds_i, ds in enumerate(datasets):
+ cur_vis_dict[ds_i] = ds[img_i]['inpainted']
+
+ vis_img = visualize_mask_and_images(cur_vis_dict, keys,
+ last_without_mask=False,
+ mask_only_first=True,
+ black_mask=args.black)
+ vis_img = np.clip(vis_img * 255, 0, 255).astype('uint8')
+
+ out_fname = os.path.join(args.outpath, mask_fname)
+
+
+
+ vis_img = cv2.cvtColor(vis_img, cv2.COLOR_RGB2BGR)
+ cv2.imwrite(out_fname, vis_img)
+ except Exception as ex:
+ print(f'Could not process {img_i} due to {ex}')
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('--max-n', type=int, default=100, help='Maximum number of images to print')
+ aparser.add_argument('--black', action='store_true', help='Whether to fill mask on GT with black')
+ aparser.add_argument('config', type=str, help='Path to evaluation config (e.g. configs/eval1.yaml)')
+ aparser.add_argument('outpath', type=str, help='Where to put results')
+ aparser.add_argument('datadir', type=str,
+ help='Path to folder with images and masks')
+ aparser.add_argument('predictdirs', type=str,
+ nargs='+',
+ help='Path to folders with predicts')
+
+
+ main(aparser.parse_args())
diff --git a/bin/split_tar.py b/bin/split_tar.py
new file mode 100755
index 00000000..ac1692ad
--- /dev/null
+++ b/bin/split_tar.py
@@ -0,0 +1,22 @@
+#!/usr/bin/env python3
+
+
+import tqdm
+import webdataset as wds
+
+
+def main(args):
+ input_dataset = wds.Dataset(args.infile)
+ output_dataset = wds.ShardWriter(args.outpattern)
+ for rec in tqdm.tqdm(input_dataset):
+ output_dataset.write(rec)
+
+
+if __name__ == '__main__':
+ import argparse
+
+ aparser = argparse.ArgumentParser()
+ aparser.add_argument('infile', type=str)
+ aparser.add_argument('outpattern', type=str)
+
+ main(aparser.parse_args())
diff --git a/bin/train.py b/bin/train.py
new file mode 100755
index 00000000..be9ca8c6
--- /dev/null
+++ b/bin/train.py
@@ -0,0 +1,72 @@
+#!/usr/bin/env python3
+
+import logging
+import os
+import sys
+import traceback
+
+os.environ['OMP_NUM_THREADS'] = '1'
+os.environ['OPENBLAS_NUM_THREADS'] = '1'
+os.environ['MKL_NUM_THREADS'] = '1'
+os.environ['VECLIB_MAXIMUM_THREADS'] = '1'
+os.environ['NUMEXPR_NUM_THREADS'] = '1'
+
+import hydra
+from omegaconf import OmegaConf
+from pytorch_lightning import Trainer
+from pytorch_lightning.callbacks import ModelCheckpoint
+from pytorch_lightning.loggers import TensorBoardLogger
+from pytorch_lightning.plugins import DDPPlugin
+
+from saicinpainting.training.trainers import make_training_model
+from saicinpainting.utils import register_debug_signal_handlers, handle_ddp_subprocess, handle_ddp_parent_process, \
+ handle_deterministic_config
+
+LOGGER = logging.getLogger(__name__)
+
+
+@handle_ddp_subprocess()
+@hydra.main(config_path='../configs/training', config_name='tiny_test.yaml')
+def main(config: OmegaConf):
+ try:
+ need_set_deterministic = handle_deterministic_config(config)
+
+ register_debug_signal_handlers() # kill -10 will result in traceback dumped into log
+
+ is_in_ddp_subprocess = handle_ddp_parent_process()
+
+ config.visualizer.outdir = os.path.join(os.getcwd(), config.visualizer.outdir)
+ if not is_in_ddp_subprocess:
+ LOGGER.info(OmegaConf.to_yaml(config))
+ OmegaConf.save(config, os.path.join(os.getcwd(), 'config.yaml'))
+
+ checkpoints_dir = os.path.join(os.getcwd(), 'models')
+ os.makedirs(checkpoints_dir, exist_ok=True)
+
+ # there is no need to suppress this logger in ddp, because it handles rank on its own
+ metrics_logger = TensorBoardLogger(config.location.tb_dir, name=os.path.basename(os.getcwd()))
+ metrics_logger.log_hyperparams(config)
+
+ training_model = make_training_model(config)
+
+ trainer_kwargs = OmegaConf.to_container(config.trainer.kwargs, resolve=True)
+ if need_set_deterministic:
+ trainer_kwargs['deterministic'] = True
+
+ trainer = Trainer(
+ # there is no need to suppress checkpointing in ddp, because it handles rank on its own
+ callbacks=ModelCheckpoint(dirpath=checkpoints_dir, **config.trainer.checkpoint_kwargs),
+ logger=metrics_logger,
+ default_root_dir=os.getcwd(),
+ **trainer_kwargs
+ )
+ trainer.fit(training_model)
+ except KeyboardInterrupt:
+ LOGGER.warning('Interrupted by user')
+ except Exception as ex:
+ LOGGER.critical(f'Training failed due to {ex}:\n{traceback.format_exc()}')
+ sys.exit(1)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/colab/LaMa_inpainting.ipynb b/colab/LaMa_inpainting.ipynb
new file mode 100644
index 00000000..268bb9bd
--- /dev/null
+++ b/colab/LaMa_inpainting.ipynb
@@ -0,0 +1,391 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "name": "LaMa-inpainting.ipynb",
+ "provenance": [],
+ "collapsed_sections": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ },
+ "accelerator": "GPU"
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "_pRpIwnaOnb3"
+ },
+ "source": [
+ "# 🦙 **LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions**\n",
+ "\n",
+ "[[Project page](https://saic-mdal.github.io/lama-project/)] [[GitHub](https://github.com/saic-mdal/lama)] [[arXiv](https://arxiv.org/abs/2109.07161)] [[Supplementary](https://ashukha.com/projects/lama_21/lama_supmat_2021.pdf)] [[BibTeX](https://senya-ashukha.github.io/projects/lama_21/paper.txt)]\n",
+ "\n",
+ "\n",
+ "Our model generalizes surprisingly well to much higher resolutions (~2k❗️) than it saw during training (256x256), and achieves the excellent performance even in challenging scenarios, e.g. completion of periodic structures.\n",
+ "
\n",
+ "\n",
+ "# Try it yourself!👇\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "RwXRMaNHW4r5",
+ "cellView": "form"
+ },
+ "source": [
+ "#@title Run this sell to set everything up\n",
+ "print('\\n> Cloning the repo')\n",
+ "!git clone https://github.com/saic-mdal/lama.git\n",
+ "\n",
+ "print('\\n> Install dependencies')\n",
+ "!pip install -r lama/requirements.txt --quiet\n",
+ "!pip install wget --quiet\n",
+ "\n",
+ "print('\\n> Changing the dir to:')\n",
+ "% cd /content/lama\n",
+ "\n",
+ "print('\\n> Download the model')\n",
+ "!curl -L $(yadisk-direct https://disk.yandex.ru/d/ouP6l8VJ0HpMZg) -o big-lama.zip\n",
+ "!unzip big-lama.zip\n",
+ "\n",
+ "print('\\n> Init mask-drawing code')\n",
+ "import base64, os\n",
+ "from IPython.display import HTML, Image\n",
+ "from google.colab.output import eval_js\n",
+ "from base64 import b64decode\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import wget\n",
+ "from shutil import copyfile\n",
+ "import shutil\n",
+ "\n",
+ "\n",
+ "\n",
+ "canvas_html = \"\"\"\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ " \n",
+ "\n",
+ "Finish \n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "def draw(imgm, filename='drawing.png', w=400, h=200, line_width=1):\n",
+ " display(HTML(canvas_html % (w, h, w,h, filename.split('.')[-1], imgm, line_width)))\n",
+ " data = eval_js(\"data\")\n",
+ " binary = b64decode(data.split(',')[1])\n",
+ " with open(filename, 'wb') as f:\n",
+ " f.write(binary)"
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "23WaUHiJeyBO"
+ },
+ "source": [
+ "\n",
+ "Predefined photo : uncomment any line\n",
+ " \n",
+ "Local file : leave the fname = None \n",
+ " "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "IFIDDD4IhPXd"
+ },
+ "source": [
+ "fname = None\n",
+ "# fname = 'https://ic.pics.livejournal.com/mostovoy/28566193/1224276/1224276_original.jpg' # <-in the example\n",
+ "# fname = 'https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/images/1010286.jpeg'\n",
+ "# fname = 'https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/images/1010287.jpeg'\n",
+ "# fname = \"https://raw.githubusercontent.com/senya-ashukha/senya-ashukha.github.io/master/images/alex.jpg\""
+ ],
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "-VZWySTMeGDM",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "cellView": "form",
+ "outputId": "c42a411e-e84a-415c-ea2c-182abf34324c"
+ },
+ "source": [
+ "#@title Draw a Mask, Press Finish, Wait for Inpainting\n",
+ "\n",
+ "if fname is None:\n",
+ " from google.colab import files\n",
+ " files = files.upload()\n",
+ " fname = list(files.keys())[0]\n",
+ "else:\n",
+ " fname = wget.download(fname)\n",
+ "\n",
+ "shutil.rmtree('./data_for_prediction', ignore_errors=True)\n",
+ "! mkdir data_for_prediction\n",
+ "\n",
+ "copyfile(fname, f'./data_for_prediction/{fname}')\n",
+ "os.remove(fname)\n",
+ "fname = f'./data_for_prediction/{fname}'\n",
+ "\n",
+ "image64 = base64.b64encode(open(fname, 'rb').read())\n",
+ "image64 = image64.decode('utf-8')\n",
+ "\n",
+ "print(f'Will use {fname} for inpainting')\n",
+ "img = np.array(plt.imread(f'{fname}')[:,:,:3])\n",
+ "\n",
+ "draw(image64, filename=f\"./{fname.split('.')[1]}_mask.png\", w=img.shape[1], h=img.shape[0], line_width=0.04*img.shape[1])\n",
+ "#@title Show a masked image and save a mask\n",
+ "import matplotlib.pyplot as plt\n",
+ "plt.rcParams[\"figure.figsize\"] = (15,5)\n",
+ "plt.rcParams['figure.dpi'] = 200\n",
+ "plt.subplot(131)\n",
+ "with_mask = np.array(plt.imread(f\"./{fname.split('.')[1]}_mask.png\")[:,:,:3])\n",
+ "mask = (with_mask[:,:,0]==1)*(with_mask[:,:,1]==0)*(with_mask[:,:,2]==0)\n",
+ "plt.imshow(mask, cmap='gray')\n",
+ "plt.axis('off')\n",
+ "plt.title('mask')\n",
+ "plt.imsave(f\"./{fname.split('.')[1]}_mask.png\",mask, cmap='gray')\n",
+ "\n",
+ "plt.subplot(132)\n",
+ "img = np.array(plt.imread(f'{fname}')[:,:,:3])\n",
+ "plt.imshow(img)\n",
+ "plt.axis('off')\n",
+ "plt.title('img')\n",
+ "\n",
+ "plt.subplot(133)\n",
+ "img = np.array((1-mask.reshape(mask.shape[0], mask.shape[1], -1))*plt.imread(fname)[:,:,:3])\n",
+ "_=plt.imshow(img)\n",
+ "_=plt.axis('off')\n",
+ "_=plt.title('img * mask')\n",
+ "plt.show()\n",
+ "\n",
+ "print('Run inpainting')\n",
+ "if '.jpeg' in fname:\n",
+ " !PYTHONPATH=. TORCH_HOME=$(pwd) python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/data_for_prediction outdir=/content/output dataset.img_suffix=.jpeg > /dev/null\n",
+ "elif '.jpg' in fname:\n",
+ " !PYTHONPATH=. TORCH_HOME=$(pwd) python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/data_for_prediction outdir=/content/output dataset.img_suffix=.jpg > /dev/null\n",
+ "elif '.png' in fname:\n",
+ " !PYTHONPATH=. TORCH_HOME=$(pwd) python3 bin/predict.py model.path=$(pwd)/big-lama indir=$(pwd)/data_for_prediction outdir=/content/output dataset.img_suffix=.png > /dev/null\n",
+ "else:\n",
+ " print(f'Error: unknown suffix .{fname.split(\".\")[-1]} use [.png, .jpeg, .jpg]')\n",
+ "\n",
+ "plt.rcParams['figure.dpi'] = 200\n",
+ "plt.imshow(plt.imread(f\"/content/output/{fname.split('.')[1].split('/')[2]}_mask.png\"))\n",
+ "_=plt.axis('off')\n",
+ "_=plt.title('inpainting result')\n",
+ "plt.show()\n",
+ "fname = None"
+ ],
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Will use ./data_for_prediction/1224276_original.jpg for inpainting\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ "\n",
+ " \n",
+ "\n",
+ "Finish \n",
+ "\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {}
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAACT0AAAIaCAYAAADoGXvLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdedQn2V3f9/f3Vv2WZ+nu6RltaLE0R+ATgQAFMHBii80CKSEnxo5tMNgHWwmyhQMR3uIgfOQ4jixOcGxjB5twMBxMJNYjbLBlICBWYyHbIEBIIEuMNmY00zO9PMtvqar7zR93qXp6unu6Z+vu6c/rnJ55nt9Tv6pbt24t9/utW2XujoiIiIiIiIiIiIiIiIiIiIiIyO0i3OwCiIiIiIiIiIiIiIiIiIiIiIiI3Ajd9CQiIiIiIiIiIiIiIiIiIiIiIrcV3fQkIiIiIiIiIiIiIiIiIiIiIiK3Fd30JCIiIiIiIiIiIiIiIiIiIiIitxXd9CQiIiIiIiIiIiIiIiIiIiIiIrcV3fQkIiIiIiIiIiIiIiIiIiIiIiK3Fd30JCIiIiIiIiIiIiIiIiIiIiIitxXd9CQiIiIiIiIiIiIiIiIiIiIiIrcV3fQkIiIiIiIiIiIiIiIiIiIiIiK3Fd30JCIiIiIiIiIiIiIiIiIiIiIitxXd9CQiIiIiIiIiIiIiIiIiIiIiIrcV3fQkIiIiIiIiIiIiIiIiIiIiIiK3Fd30JCIiIiIiIiIiIiIiIiIiIiIitxXd9CQiIiIiIiIiIiIiIiIiIiIiIrcV3fQkIiIiIiIiIiIiIiIiIiIiIiK3Fd30JCIiIiIiIiIiIiIiIiIiIiIitxXd9CQiIiIiIiIiIiIiIiIiIiIiIrcV3fQkIiIiIiIiIiIiIiIiIiIiIiK3Fd30JCIiIiIiIiIiIiIiIiIiIiIitxXd9CQiIieY2feamed/f/5ml0dERERERJ48Znbf5Hr/JTe7PCIiIiIicmN0TS+3C+WbROTpoJueRERERERERERERERERETkGavcLHazyyEiIk8u3fQkIiIiIiIiIiIiIiIiIiIiIiK3Fd30JCIiIiIiIiIiIiIiIiIitz0z2386viMiIrcG3fQkIiIiIiIiInKHcPeXuLvlf/fd7PKIiIiIiMiN0TX9Y3qHmf24mb30sSY0s+ea2fcC/8nMFk990URE5Mmmm55EREREREREREREREREROS2ZmbPA/aB/xZ4r5n972a2c4XpWjN7A/A7wNeScuaPeZOUiIjcenTTk4iIiIiIiIiIiIiIiIiI3Nbc/QHgs4CvBj4KfAvwPjP7E2UaM/si4NeBfwCsgL8MvMzdf/tpL7CIiDxhuulJRO5YZubl3+SzV5jZPzWz3zGzw/zvXWb29WbWXmEen2Nm32tm7zOzIzN72MzeaWZfc51lCGb2SjP7O2b2U2b2ETM7NrONmd1vZj9rZm80s2fdwHq9yMzeZGa/YGafyPPa5rK9x8zeamavzyMenhAze5WZHUzq8jvNTOcWEREREZFblJndN7l+f8kV/v5zk79/Uf7sk3If49fM7BEzW5vZ+83sLWZ29xXm8UIze3Oe/nzuM/y6mX3zlUZZX6OsO2b2TWb2y2Z2zsxWZvZBM3ubmf3R610nEREREZFnkuu5/r2Tr+s9eRvwMuDrgTnwo8CL8yTvBF4IvBF4qbt/h7t3j3d5uezKNz1ByjeJyONl7v7YU4mIPANNLz7d3czsbwBvBpqrfOUngT/m7hsza4B/DLz+Gov4AeDPuvtwleXPgN8DXnAdxT0C/pK7f/+1JjKz1wH/ELieDscvu/sfucI8vpf0OFeAv+Du33uVZf1p4F+QOgwAb3b3N17HckVERERE5CYxs/sYg/33uvt9l/3954AvzL9+Mel6/63APVeZ5YeBL3T3D+fvvxb4DmBxlenfC3yxuz/0GOX8dODtXPsVE98JfAPwAa6xTiIiIiIizySPdU2fp/k5dF1fynAP8PPAp+WPHgBe6e7/+cmYf16G8k3KN4nITfKou0hFRO5EZvYXgW/Nv/4G6dGmA/B5wKfmz18NfDvwF0kX+68DIvBu4H2kp+e9Erg3T/9VwHuAt1xlsQ3jBeghqZPwIeASMCONNPh84DSwB/wLM+vc/Qevsg5fQeocFJeAXwE+BvTAGeAPAi9nvHB8XMzs60kX4QFw4K+4+z98IvMUEREREZFbzitIgfodUr/il4EDUr/ilYCRkhLvyMmMrwS+O3/3A8CvAmvg04HPzZ9/GimY/ZqrLdTMPhn4GeDZk49/k9RPi7lcn0nqmx08wXUUEREREXmmuyOv6/PTlF4LvAl4/uRPzwPebWbfCvwjd189yctVvukGKN8kIk+UbnoSEUn+Eenu/j/j7j83/YOZ/VXg2/KvrzWz95MuQN+Xp3/PZNomT/uG/NEbzewfu/vRFZYZge8Bvo90F/yjHp9qZgvgG0kdkhb4Z2b2r9398Arze9Pk538C/C/ufnyFee4D/zXw2VeYx2MyszcBfzv/2pPuzr/miAAREREREbktvYUUeP7LwD9z91j+YGZfCPxrUsD8ZcDfAL6ZFAx/rbv/6HRGeeTuW0nB+Feb2Re4+y9cvkAzM1KCpSRGHga+xt1/8rLpvgR4G/BXgSf0KgoRERERkWe4O+q6Pi/7TwJ/l3Rjzkfy73+fdHPXF5NyKH8P+AYz+9+Af+7u/ZOxfJRvum7KN4nIk0HvwRQRSRx41eUXoADu/veB/y//2gL/F/Ag8EXTC9A87QD8NeB38kf7wJdfcYHuW3d/rbv/3NXeF+3uG3f/P4FvyR/dBfy5y6fLF5avyL9+FPjGK12A5nkeuvsPu/vfvNLfrya/D/r/ZrwAXZEev6oLUBERERGRZ6YF8Hp3/45pYgTA3X+elCQo3kxKlPzxyxMjefofIgXhi6+6yjJfDXxB/jmS+hw/eflE7v6zpL5W5AmOLBYREREReYa7Y67rzey5pCdT/RDpBqf/A3jZdF1yHugVwF8h5XC+E3ivmb3siS6/LALlm65J+SYReTLppicRkeQ73f291/j72y77/c3u/uCVJswXoj80+ehzrzTdDZp2Il51hb+fnvz8sLv7FaZ53MxsTqqDr88fnQe+1N3/zZO5HBERERERuaW8x92/+xp/v7yf9C9z0uJ6pr9aP+l/mPz8A+7+y1ebmbv/B9JIZhERERERubo76br+QWBDenrVp7n7t1zphh137939H5CeBPV9pJz57z1JZVC+6RqUbxKRJ5tebycikvzIY/z9N29w+t+a/HzvVafKzCyQHv/5CtK7lU+T3rN8Ja+4wmfnSO/UXgIvN7M/fK1OxI3Id/W/nfHi9/eBV7v7b139WyIiIiIi8gxwzX6Pu3/IzI5II8Efc3qur5/0hZOfr2eU7/cDf+E6phMRERERuVPdMdf17u5m9pqrvLLtStN/AvhaM9t39/UTXX6mfNPVy6Z8k4g86XTTk4hI8lgXVOcnP190948/xvSPTH4+fbWJzKwlvUP5m0gXn9fjWZd/4O5bM/sx0qNkW+BnzewHSRfLv+DuF65z3lda1s8Cfyj//gHgy9z9vsc5PxERERERuX1cT+D5AmNy5FqjmeEx+klm9gLg2ZOP3nUdy3836fURdh3TioiIiIjcie6o6/rrveHpiX7nGpRvuvqylG8SkSedbnoSEUkuPsbf+xuY9vLpr3gHvZktgH8FfNl1zG/q1FU+/ybS3fufQnr39Z/L/6KZvRf4ReCngXe4++Y6l/X3GM8Vv0F6xOgVH7MqIiIiIiLPODfa97nm9O7em9UcxpViUtPEyLG7P3KFaS6f54GZXQTueqxpRURERETuULquf3op33RlyjeJyFMi3OwCiIjcCm7wncRP1vuL38R4AerADwJ/GngZcAaYu7uVf5PvXXGkg7s/AHwO8HeBT0z+FIBPJ70f+e3A/Wb2N82suY4ydpOfn8sV7voXEREREZFnrBvt+zzRvtL+5OfjG/jekzkqW0RERETkmUbX9YC7v+SyXMtTtRzlm65M+SYReUropicRkZsg33X/DZOP/ry7f5W7/7C7v9/dL7l7N5n+anfbn5C/97eAFwCfD/x14MdI72AuzpLuqP9RmwzHuIr/FfjV/PNzSY8x/dTrKYuIiIiIiMgNmiY5dm/ge3uPPYmIiIiIiDxNdF3/NFK+SUTudLrpSUTk5vhcxtEO73X373uM6V98IzN398Hd3+Xu3+buf5x0AflK0uNNiz8G/PePMauLpNEBl1+IvuxGyiMiIiIiInIdpsHzXTM7+1hfMLN9nhmvwBAREREReabQdf3TS/kmEbmj6aYnEZGb4/mTn3/zOqb/gieyMHeP7v5LwFeQ3rNc/HfX8d1yIfru/NFzgXfqQlRERERERJ5M7v4xTiZIPu86vvY5XOWVDCIiIiIi8vTTdf3TTvkmEbmj6aYnEZGbI05+vubjXc0sAK97Mhaa3yX945OPnnud37sIfCm6EBURERERkafWz09+/prrmP7PPlUFERERERGRx03X9U8f5ZtE5I6mm55ERG6OD01+/kIzO3ONaf868JnXmpmZnTKz+XUu+0WTnx+8zu9c7UJUjx4VEREREZEn0z+f/PzVZvb5V5vQzD4L+NqnvkgiIiIiInKDdF3/9FG+SUTuaLrpSUTk5vg14OP55zPAD5vZ9BGkmNnCzP4O8Bbg6DHm99nAfWb2t83sU680gZk1ZvaVwDdMPn7HjRT6Co8efR66EBURERERkSfPO4Bfyj8H4MfN7FWXT2RmXwT8G6ABtk9b6URERERE5Hrouv7po3yTiNzR2ptdABGRO5G7RzP7W4yjHb4U+F0z+3fAh4F7gC8Czua/vw74fx9jtp8EvAl4k5k9APw68ADQk+6S/2xOvtv5F4EfeBxlv2BmX0Z6V/PnMF6IfrG7v/9G5yciIiIiIlK4u5vZa4FfIfWLngX8tJm9h9THgTQy+RX5528D/hTw4vz79NUOIiIiIiJyE+i6/umjfJOI3Ol005OIyE3i7t9jZp8MfHP+aI90MTq1Bt7g7m81s2tdhK5IF5vluP484DXXmP5HgNe6++PqOOQL0S/l5IXoO3UhKiIiIiIiT5S7f8DM/ijwduDe/PFn8ujXMPw/pP7UV08+u/TUl1BERERERB6LruufPso3icidTDc9iYjcRO7+RjN7B/A/AX8EeDZwAHwM+LfAd7v7B65jPu8ys+cAr8rz+S+Bl5Lu4G9IHYQPAv8e+H53/9Unoey6EBURERERkaeEu7/HzF4O/CXSiO8/COwC9wO/CnyXu/8MgJmVEcsRJUdERERERG4Zuq5/+ijfJCJ3KnP3m10GERERERERERGRG2ZmnwL8bv71/e7+sptZHhERERERuXG6rhcRkccr3OwCiIiIiIiIiIiIPE5fOfn53TetFCIiIiIi8kToul5ERB4X3fQkIiIiIiIiIiK3HTO7F/hrk4/eerPKIiIiIiIij4+u60VE5InQTU8iIiIiIiIiInJLMbOfMrPXmFl7lb9/OfBLwJn80a8DP/V0lU9ERERERB6brutFROSpZu5+s8sgIiIiIiIiIiJSmVkJWJ0H/hPwUWALPAv4XOCFk8kPgD/s7r/5tBZSRERERESuSdf1IiLyVNNNTyIiIiIiIiIickuZJEceyweAP+Xu73kqyyMiIiIiIjdO1/UiIvJUu+KjBEVERERERERERG6ilwNfAfxXwItJI8HvBtbAQ8CvAj8B/IC7DzerkCIiIiIick26rhcRkaeUnvQkIiIiIiIiIiIiIiIiIiIiIiK3lXCzCyAiIiIiIiIiIiIiIiIiIiIiInIjdNOTiIiIiIiIiIiIiIiIiIiIiIjcVnTTk4iIiIiIiIiIiIiIiIiIiIiI3FZ005OIiIiIiIiIiIiIiIiIiIiIiNxWdNOTiIiIiIiIiIiIiIiIiIiIiIjcVnTTk4iIiIiIiIiIiIiIiIiIiIiI3FZ005OIiIiIiIiIiIiIiIiIiIiIiNxWdNOTiIiIiIiIiIiIiIiIiIiIiIjcVtone4Zm5k/2PEVEbhVt2/Lt3/7tvP71r7/ZRQHgda97Hd/1Xd91s4shInJbcXe72WWQW9v3/aufd8NwwAHL/8CIHsGMsREZaSyJEwEIGJFgjnnAp9NZyHOM9Ztm+ZPSLC2keXgEizRAJC3PcTBwWhwIeC2g4Xge05J+TiVxwM3AvS7LADcw58R6mMHgTjDL6+MYgeAB3PFALj/TbzHgGEbIMzUzIo7X+acfGjdiWaJ5nZUD0VLJGg+5dmKuVc/LCXlmPtkmRk8k5PrBDPfx75Sfg50otnNy9M+kdsuc8LrktGx3wGL9Xvmbe1pfH2dW203jaQ1S9Q9EI9Wtk2rMwcq2ycuOde5Wt5e7jw3FDTfHzQmk75Y/RystsdSHY5M6bzCcmJcxbnsjtciGgOc2k0ritZ0EjOCp3XitvHEdfLK93RxziDSYxbo+UOop1VlZZ/O0/T1PkcqT2rM5BEvLhzJdri/PzcggWl5HN9KuZLinVmyp9ZRmSJ/LHoG2tCmD6KVBet130v5Q9upcRnPSYSCMq4an7eROyG11yAs0z+3LGbdOXl6wkNpQaThGWntL+1Xj+ftWa44GYzBnyN8zz22lzMfSvtvUlp3roOxbVrZwJFraBiGWenPMYtqmXgqUj1ueWs4wON5E7vuNd3HX2ecR2jn3f/yj/NKPfw+v+vKv5KWf9yWYN7muyOvd4Dbk3T7Vd1O2to9lLuUu+3TdH4zc8Hz8ZwAh11Fqd6UdhbzPGqltNHm5aTeKtVVYaqV43fdSWcJ0l8srYpaPQw4xfy/V17jHmI1HFs/tfNzLxiOP5eNf2g8mB+JyjvDJ0WgyreftZfm454R8XpgeyZ1olpcdc103RI91v0urmfekCDDQbXu26w2HBwc88sg5zp9/iM3qgAYjxi19t8F8oGkC0Z0hwmrb0zdL9pansdk+GwKRGaf2TxOaFvdAE1IbHjyCx3ymdLwbiP2WrjuiW6/BeywOqbw7Z5gtF8Ro9AHaAY6PjmgXS1pr8ZjaTWTA6VgPG9rZkrZsFQPzga6LdH0PzYx5s8eAE+OGxnp2F3PadoGHFoLl82as7YeYjpx93NKvN4T5DKylbdM2DER67+lXxxwfXmTWRNx3mIfAct5ibcNAz2I5x6Ix9Fu2m0MWO/s085a9xYKAs7uzw12nTuE2Y39vj/lySWhn+QAXCNbgRj7+jtcgoRwPPZW8HXKpysHRB4wmn8tiahOAxXwNUy5FcpuK9fya26TntlGPPflcXI8NEPNxo/Fx/63XIz4ec8xi3Z9D3qfKcc1zPZfF1fMaEPN+3ZRzuafjsE2OGZ6PuTHtmPlcEetuFz2ma6PJ+dY95rqJOEO6zvJ09Il5b3Yvdebp+swM8yEdNTydg6M7wcu2SG0ylzxfj0TMrZ7voVxZpX3czbCYzzfR62EuzdfztUJuCuWckg9/jhMN/sc/82r1aeSq1J9Rf0b9GfVnnsn9mWGIfM8//VZ++id+hFvB1/3Pb+SL/5s/of6M+jPqz6g/o/7MTezPPOk3PYmIPFMtl0ve8pa38HVf93U3uygiIiLyFCoJgvRzUoPAOeBcb53LAV7IQdvcy5sGbrxGy8fwbOlKlgDvdOyIlQ5mCVzlqI75GPiy8eNctjAJDDtmYbIOKZBVg9B+cr1q4Nrzz6TOeCiBBGKJnU2CUWMwvmFyw8SktszKckqAF4whB+is1qHl0qf/p3WPJUg2XV4tn9caLKG+FCAdgxi4YyEFYH2s2rpO0XLlQ53fyfUaEwepwqaB/PopFsLJdpBnmT6NtS25hRNB/VpBOfBT48OT+hoTD1bL6qEECcfyp/ZjNKVM+Z97DlzmOZVyj0HCcf7mTgl0l/Y4Bk1LIqeu6lhvNtYHtZiWgh/TtZpsNztx32nZTyyHavO3LCUlsLSVo9XNMCptFVKCCigpiVC2R54meilrKYozG+Mtuf2M61SKFkJOPJXl1yKXoK+Ve4hymUIN/kyDOVaLMq572e9K2zMr2yjtjE0JOE/3Ey8JNWhqIallGEPRY4vOKZKUXKI0u5LYy0G9SdbMSnIrz97Nx98BPBK84fTZ5/CLP/MT/Of77iNuLrA9PuKDH/xt7v2sV9K0odZjCmZHcCNYjUtSMlupLCk50NQyeK1/89SW3Ur7Tdsx+JjILQmxacsqKYWmHGQhJz6nx9Cy/+b6yxVZ6urEHwH3gUCobajUt584VqXvWG0Ype2nz0/u6zAm5jwlh+uGqC0s/WzjdnZL54JoJTVMPmeQk3ql9Kk9lv1h8Eg39PhmS79ZsVptODy+xMOf+AQP/P7Hib5KRzh3QjPD2pY2zNlaS2jOYm3Lzt6zCPM5DS3zIbLaHtM2O+kYZJEhJxCi9wzR8dgTt1u22w1NOyPGnuhOjOBxYFiv2XrPcnefZh4hbtistthqTbuzS2gXDBbY2T2DW5NaVAt4Q+MRDwO7to8NkRidvt8wbDc07YJ2vkezM6OxgEcIHjGb0cSedYz4eov5mraB2XxOO5vRhkVqT5bqvmVG3y4Z+g7ve/phoO/XdJs1bpG2mbHcv5vGwL2hbWfEEpz2jtXGmc8X9N4Q5gt6j2w2xnq1Ydgcslgs+ej959n2x5w5fZZZE1gEY9hu2NldcvrMPYTGWcxadpZ7tO2MgUC7mBGaNgeyQ0rg5pQ9Xo6l5YgS8k0BJbmcg+35mBRL8PlE24y4hdIC0xl30sbLdU297qjT5b00X/OEyfE+JWvH8yc4FkpCt4TXU2I2teN0FvX8BS/7rI3pdDerSQfPmWPzfK6NfuJclPJtJbmWvhsJmA+YNdSbKTzgIScq6zVXOrLGnHhzoK3n97xeVleMkuiDdD5yDLdYk7luhvmYPPGQypEvt+oxy+t5MB0HrZ6MpgsTuTL1Z1B/Jh+Y1J+x2sbUn6Fu49u5P9N1W9763d/Oz7zj7dxK1J9Rf0b9GfVn1J8pdWqT2Tx9/Rnd9CQich12dnZ485vfzDd+4zdedgEoIiIizzQ5XEodPQRQRtYw7eDmz+tNATm5D5QobOpIj6NnU7DQcsTVLvtu6iLXDmAN/Fke1RZqeSyPiEpLKp3T6eibSUC4lDgHMMs8S9+9xP5LEqCMNrWy2n7ZvMqyxjhp7gRTA1Unx2hTg+xprLXV/vR0lpCqxW0atKeOxLIagZiMgC5/y8seA+djcNom01oJ2paVLhvFp7UGKTQRcmCkBM9T0iEyJlNqoMTGwP20g1+nqdvA6p/GEc9jYLp+dlk5mLafHEQun5XwSmofYyB13LqTGDYlKH5Z3eY/Wg46untNqJSAyOXBTRiD73XeNp1mEiTN9RTd83jUUpYyVu4ky+FbLwHSWqXjNistys1qYijWoX6TxjnZHiWWEyab5GTmoYwjLr+WoNrJNRobypgQqMnFXKdNrsdoj66R6fKszHCyTazULSGPoC5BvbzO7rUN1jrL85mWzyd/81pv+TMvNTIG6MouFh2ChbFuLO8LpQ1j3P3s57OIGzYHD2H9ho6W+z/6exydf5DTz35Rbu7jkW1cto+BzDCt/nwcnO7DJeEy1u4YOM+/jaPmIwOp3EYasRjNCB5zqHQMqhklkG4MliqjyXVtkwSB1bZErsB0jC6jHSc1Tn1KQjlW5ZKdaGqM55BpQygjH+vHNs5/ssXSPpTrabBSvmm9jsm8tNP2rA+P2a6O6FeHHB4dsFkf03Vrjo5XRAtcPFzRDUtWzWmi7WIYbWhY7pzC2h3a2YzlbMngkf74kNWmZ9hEZmFOT48PzmZzTB8HiE7sIzZrCaHJo01j+tyN0Pc0GNvthmHY0M52OH3mLJ/50l1ecu+MM6f2OXf/Q/y731hz7qCj7yPdds1x3LCYLZnNd2mbNo18L8elAbp+TbddYW3LPMyZ7+3RzuY01jKU5EVM7a3r0r7Whqa29SEacd2x3hzTeoDQc9dyycBAt42su4Gu7+mHnnnbMmvntPMlXb+laQJN3oBD7Om3PdtuTTOb0zQzLDqbYUukJ/ZbdnZ2CR4Zhsjh0TE9gdl8B7MFFw+O8aFn1szo40C4uMIevJASQg7uG07v7DF45O6zZ2mDsbe7w2JnJ5WpaWksEFqj73sWe/tYO09H3BgglFsM8/+DQRyvXcqxIw3Qt/HcNzmOj8eU6V5oxHxHw/SGh3TcPnFVVPfecmOB+3hTRn12zInTYI3Sp5sk88kg5qN9SSx6vfhJe1q09M/K02zyzuj13JlvtvRJneSy1uS+T5MMnqdJR510bMrXb5H04IZy/vNyXh/38zISvTxJpFyDeKkLTyOdg4PFfEtJSVBDTR5Yyvakc8D0DgiRK1B/Rv0Z9WfUn8kb5BnVn9lu17zte/4J//Zf/sCkXd4q1J+pH6s/o/6M+jPjXMq5X/2Zp7w/o5ueRESuw2d8xmfwhje84WYXQ0RERJ4OJfiC5eB5Cti4XfYqiNxBrME2S48YTp24iLulYAYlgFRG8xjp1QINk7BtDYJaDkSnGwJySMyM8ojhEjJLo4PCGEyq8dNJgH3y0zRQTi5TmPZgzWrwuERTJ4N7TgTmaoAmBxMC0+lKKaZB90nZfJyf5yi0Teabgnup4x58fBkG1CqYJCIYA8I+Br3HcESeNkccysjZptYHeVQWdXtTg31jh7++BiJ34usSpttjGmwAKImdSQKgxAxK0qgElcdVKTUxqaNcnvIIbKuB0zHwaXXk2xhKtUm1jWMvJ3KgpSSfrAbM7UTt1SB2LQ+URwPV9SmB2rLu5mPgswZXbRzZbqRRXtONlINBpbZLIqGO+vVxveo65u1eRoCXZNckhj+ZnhqLL6Pqy74+JtUm62U5meFM/j4GZm06LxuXNV0Oub2UIH/9w4kJcy1aWocSBLN8fCmjBFNllecK5C002T9ru8+BqvHpDYH0arq8rDJ9Xvey9tOAdgrQl9HIY3BwmlyaL09x78s/i4/c934eOL8htMbF4zUPfui3uOvZL5yMokwr0JS2DPVpAJPNUic92U5t3ElzXU+Tt/XIkVe4qW3YaxA9lkQc1Cdb1GOKlydRpVdJWA3eTcvm43HfyzZNo/W9ttkxuVHLXTbtFd4n2r4AACAASURBVLZ5OWbXVEA5bpUdovxcg5RAfRXReLwsxycz6lM0IhG2PZfOX+Chc/dz7tw5ovfMG6MfnJ6GSEPvZ+l9iZ9esGha5gSCxXTG8oHBI0O35tLREUcHD3Dh8DxhiDSzGcvlaZY7ezTzOWYz8EiwhtA00DTEkMrUeE+MaYT70K/Ybo7pPWCNs7ezz7xdsDs3tocbTsc97v/ww7z3QxsubIwmLGlCZCASOqfverbb88SuIw4dWDq7hqZltlgQ2gWNGR57+g62qxXpcfxAk16hZMHZ9gPr1YqmbWiaNp9G8/EJuHjpIpcOH2TRtIR2xmy5S7u3z3K+R2stse/oPNJhbDcDs8EIs4bgDcMw5FdBzTg8WrO7TK/BCAZ9vyH2PdveOTi+xOroAi0Rv3COnd1dTp8+TdvsYSGk1xw1cyxA3w/M2xaGyGY7cOnokJ29U1w46Fh3a+btAcFmRB+w2NHMFwz9Fuh51pkzLJa7NKFhZ7mkDcZssWS23CWEfOZo2joCurbMWK5//ESLLUljvJw/y40Q6SluuI83GUzb/HTfmBwr082V6ePo1ISsW1mmn9z/rez/6femzCsfMSLT179YfXJAU/bdslvl6QfSK54CMNTR0if3S/OYnobg+cyeX/kwnuvKyoaULCgpkZrQnaw3lp9cM7lOgPFGhvK0h0B6TUYo5/e8dSZ1VbaDyDVZOd+pP6P+zGT90o/qz6QLgzqFTb6h/szJ5WC3Vn/mwx/6AO94+9u4FZX6OtlO7eT1DOV6pvw17y95hdWfUX9G/Rn1Z9Sfefx005OIyHXQ051ERETuJGOIlEngrX447ZjlANEYKPX8Cqc8jXkOFlsO5pSodHqk8RjQDXlRZewwk0cZl88nQSY3oKnlMitj/6wGuWv/OvW+c5ApvTQg9d/H0bZ5gVh5kHj+7hguHru0dSRsCQhQkga15Lmz7aRHtBueHz8dzOoooPo6iBIcTYutrxcIuRD1LzngPg3yjoG1tA4pOFEC0SV0MNZbScSMcevLosh5fiXAUANyk6RBKe80kjg+WnuyxGmUflJvaTEnwvWMAT/GllTqvzQZS0kdr0Os0jbADIuTIEINzpTWVWszBz8maaQc8Jgmv0rgo5bBwSZJAUr9+xiQnoTd08jnyfrl8AklcDqtu/Fh9jlZMZnXNFA7RndKdDi98KCMrK6B3Vx/Y7mpyRXPbSlM58kYhCmCU6eFMjowL3Y6Zan/6dzqzsOJEeeT9GA5sOR55EKnDZyTCZMgdt7XJyml9LuN2/LKZStbO215n9R5mATharNnsm1zmeoRxcfETLAUhPOcrXvBiz6Zu0/fxYXDYwiOdRs++P7/yCd/9pdgs0V9/YZbYKij7cdWNH2lwzgCfSx7WpW6s16W+KIG60qixep2yzXiKd5ZRkufeM1M3k+mx4iaMMr7FaVV5+PVWEdet6dTmuWY4KmFLL+fODaU+eWAf0k2G5Pj9rgtBx84Pjokdj133X3P2A7qFGlf9D5ydHiRi0cHHB+vWXdGtH3mp/c4OD6AMGPDltV6Q8Oc2XKPtjGIAx43dNstQ7+hJaTXOIRI121Zd5EhLDhz9kU0w4bQLHEGNqsVw9EhbTvDgrNc7tLMlsybwEDEafFobIcVfbei8Z75fEZo57SEPNI3crwxfvv+yEfPfZzDzZaL6y2bbcSaQB97ovfp1OWw2qzYrLY07ZxAYB6cxc4ucxqsCRCMhpYBwFvMIo0F+tik/SCP3m6WC5p8TGqbhhi3bLpDVqsVfb9l/8wegxs7zZKz+6e41Pesjg8IIbC7OIXNlyw8MJvv5TaTjjlNTDf3RSLLRSQy5NfOOE0MDHbMtu/YWeywmC3oNiu2fce6j8TDDTvLlkU7Y2exi4eWwaGnI7ozN9jfWfCCU3MOuw2H655utWFo5zQ25KcCgA0dBMO3kQ9d+n1m85YQlvT9Md26Y95EFvOWDphbw+kz+wRraELDXWdOs3f6bkJo2JktCYsF3pQXz0z2G8ZEHaSgdZPPv2PS3ev5efpUkvReKM/nU2M8+5ckRTpGeL6popysY562vEJhvMUi31Tg41FhyMf/NhemHN8Gi3U5jqdRyCXA77E+tSU9/cBJL38Zr3HK8aokEz3fzJDOj+kvoRxxfUyUT15eQSlQecVReuVFPi6P756gJEPcxusFr3WUz5InnuohciU2/lf9mbya6s+oPzOtSfVnav1P51Z3Hm7J/sytfPZTfwb1Z9SfUX8G9WfKhcbN6M/opicREREREZGJ+qh4A2rnL4davQS5bQxYkgPuJepdO8ZQgtWUr0wjXNgYzKsxIcNzAcrNAV4fkpx+KwHU0pcckwaTWcP4pBUzUhCWHDnN3WQndYGtxMS8dkBtMr/pfL10oi0Hjj13VGtw1B/1pRwCyyUtge1cNxjusRZ6Ouq0fNfyukxHsI5fGJMoftkymYRbp6ajnMcEBJfNf/zmuGppXS1v3BjHxIDVAOZlAc7JsvDx98uXNamAMVDCZDxz/rwG8Gv7G7dHji7WLTWG4idtMQc30ve81l+oRQ+1bOMYzJhGGOZ2WsuVAyTuaQTXOIo4zy+3v8D4ndLuSx2WAJCV0W4lMGv5Qd9ekhGlRCW55vWpAWPwlboNpk2y/r0GWjix7PLt0hZSELeMQE6P6B6TZXl71m1BnWcJdzHZ1ka6SchKI7hspOB0ZOAkjpwf+V+WlNtPrsMxWJ3qpdZtPUSkROVQ1mWSYCwB6tIWSlFK3dXj2+QAk9qH13UOxBR098De3c/lv/hDr+SRX3knm21kttznYBO4cO7jnP2ke+v8Qm2EY71NR7BP99JxO4Rat275t/oFoz6m3iD6mEAoIzLLcbwE9iYH5dRm8zxqe/TxsfXTbV3/TgkoWg7uBdziJDE0to66hWxco0cfUfNfcnnTkxXy8wCi0w8Dw9BjbvTrDZcOL3DX2XuwEGr5Y4wcXjpgu+25tNpweOmYzqHzhhjBfcD7gc1mYOsRa1vadkEg0MQVe23HhdWabhjwCG0IhBDo+oHjowNo5syaHeYtWDCckPLbTcOiuQuGLYN19H3HanWJ9eEBWEfTzunWW/phgHnDbDYjDs5mPdCwZU3Par2hbWZYmOeEcHptxDbv22FItd6EgA89q24Lw4xTd5/FbU6bt/2mX3F4cCkF0ffOYIsU8A6kEdohOjOPRAynxZqWOUuMga7vuHR0ge3qPNtuQ9vO2d9pefUrnsPv3n+BM8sF773vQS5tIYSWNsD6+ICd3X3aNr2eIjSzfF5tIKTE/YwZuNP1xwz9ik3fE7fHGJHOe8IwpFdlOGk0NzO6rme1eoh5aNiZLVgsFsyXu8zmM5p2QYNjoeFiF9n2S2gC7e4Mj06MhnnH0A1sVlv6IdL1W4botG2kacGj0TS7uMO2SyPZB2B9YcswRFqPnDtY0dg5zHqWYc5id4fZomUejL29u5gvFoQmEAwWO7uEkNZ53JfCeH7PCYWYm3hDSTTUHQPzmL4XIfZHhGZBDCHv61ZvGHD3eszsuxVh2MJ8Fwtt3q/GJHMdXcyQjhtOSviXGwByOcPkSFOOAgAN6bUy6bhVDlKxXDpRjsPltUlu5Bsixn2/5FLS9c54aCjXMvV4kEeWlzyilx/qNVo+qAWrI7FL4nN6PBO5GvVnxmVP5StN9WfyxlV/Rv2Z8kEpya3en3n0iwRvDSduCKzbQf0Z9WfUn1F/Rv2Zp7M/o5ueREREREREpsxqULcG+ctoY8pncCLsU/prfiK0zBgQLcE8L7NgOiqojkgmB4lzQDEFImN+1LLV0GF+7nDuiOeRkrkTXeLEue+dy1ZWaBIEr1HJ8UkulJGm5jk8TI78Wl3nHBqui6/BSofJWMFJqHocVZgC0yEvJQd7QxmNmOb+6H7vGJQeZ5/TGZNAd4n7Tmu+jMIeb7g4Gew1C0Qfg6gnFj29K2O6rnkr5arHPFCTIz7Wq5fve9kGZbtTP5wurwSdU9Ag1CCoWxn96bhdPgqYMUBjNVyci18SKGPAuo4Wz4Hk2iLsZHnK7K2seJ1tCq2EOp3ngG3ZPiX4M0nq2NhiajPMMwyT5E7ZQjWg6+k1CqkcAcuBoOhGqKPE0+YN06xSLmcKHJ0I/Y+bKTcY91gDV+PfcqDWY050pJKVspSUXcTrNhr3es/lDilAZmMIqgSuvUxHeU1J2dfTNi5zK/XQWNmbJs1/0mhKsqb8vbazsi1KsGmycWtAajLdeMwr/xsTMXHyB3eDmEahtosdnvfCT+E1X/4c9ndPY03DufOP8NEPvpczz3sJIaRWUB6pPozVOW70yXax0sasJKZSEjNQUqVeR62PhzSrbSHNI7fxkMo/plvyX6eH7byvlmIN9Rhqdb8qx5Xp3pGqLie38qeRcjwo03gd9Vj2o+n+XoKl7jBse8498iBn77mHEBp8iHgcCKEhAnu7p1gfX2J1fIn5zh7dZuDgeMWFgwMefvhh2maHrQUYHA+GxYGhG9hu1wxDTxf79PSEzYYublg0DctlQ+sNy3ZBE2ATI0MfOT5aEX3LvF3QtAusTfXbx0Df7uXRxQP4BvceH7aYDwx9z9HxEceHB7hBN/TMZ6fY3T9D1w1pnwhOoMGZsVwuc1tsx4BpHJh5l54IZuB9z/p4zTZGdvbOEJplenS/x9oiZvMdQtMS+56jwwN8dUDbNpzeOUM738VDg7vTmNNEo48Dm+0lDi8+RN8P4NC0RtO0uDvdEPmZ//BxtsCyXXPp8AhrFgyDEy3ioaENEJsVq80FdhenmDVzgrWE2ZKh37Dp13R9h8cNYRgwDwzDBgP6oafvNizCjLZJaaEhPUKNtpnTtA29GdvNGl+vCQFmsznz+YL5YodVMILN6eIahsjQd3SbSykZawG3wLbvwCPz2QKzGYYR2oY2GHHoaG1OjA5NS+MNzkDfGv0mHUuHCI+sHmJnvo/PWtbdmlPL84SQ95Vhy97+PvNZoHFoZ8bpM3cxm+WkwmIfa2Yp0G4N+XaE/JaJfEzOSZJ+6OnWHY+c+yh3P/uFNPMl5fkQDjT1FQsNcRi4cOEiy6ZnYTuEJr2+xOs5N9RzbTrNpAR2SRBYvrYZLxTG464zfSpGThLUA61Nrl+mx+l0nh7KscfSU0HMT95s4mVJ5Vzs5ZxNTbxHHGuoN3zUpHm+FsuP3Knn+eDjU2RErkr9GfVn6npPfj2xzdWfqVtG/RnGvf426M/citSfUX9G/Rn1Z9Sfuen9Gd30JCIiIiIiMnEysFzCVifCO2XKPJo0/55HWg6cnHQMU8UxmDiJxlr+bh2P6m2Ju+fRObHOe3wdQqgT1FGsFmoAMpV8Gk0+GSGsq5eDuBDGKLXZZGRm+uxRSYY6ynMSgi0jVnNkejq6OnhOGjhjp5dJ3V2hbvPtEmBjgDDE9JeQZ+alw24pqDsAjQdKgiWt5/j++vL45LpUn46/HEvgdfmThFAeUVVi3CVl42W7eg4s4vXR9g5pJGGNgvqkZtMyyhOg85/r38bC5KRNeTy2pdeCxRr8LyM6S+KmBEDGNlyC2wFjYFxgCVykkNvYTsoTAGJ5sUn+z3QUF5bKPg2IGmlE7mApkF+aTCp/qcNpRU9aqY3LL3VQRoaVrdbHDjOjsZZNvwGPzGbLk3VW63ZcTB0lX9psbpvBmhpomSZb3McAcGk3nrdsSdiUEHwNxU9HKef6Kb+VAFTaZdPWCjkUduL4YWUfK8tOWzcdF8qI83E59ekHk21K/rwEnsq61WNMzRecTFqCE0OpO6tJx9Ioy8j59FqX9KSFgHHmWc+hf2DNfLnLfO8UvRnv+8B/hPWauLuXRnTmeqvtuwTxyrpNCl8SPpEUaQu1DZTXZUy2raWAW5q312Z/xaSgjcmAMgJ6elRzStJm3CZ1K1idca3vEoi8cpiurF2Z3WXHubJTpXci0A0bDi4+zF17+7BYYDjDsGV7vOLw4gUefvD3efD+j7B/9/Nh59lsojPEQNO2uBtN1+M4m82a1eaYo4MD2mbJ7s4ujtM2DYu2wWaBHUuvHdxG58EVWITtdsXR+piA0zaBWbPAQss9p1q2QyRunYc2x2z6Nauj43QMatKWC6Ghsch60zHElt1Tz0/tNjgWO7bbDat+ze7OHvP5Dh7KeS3kIHI6d5CP1Y3NMd+y3qzpojFfnGLZGmaLnBxsavKbEAjuEGbEtoHZnGiwWh3w8OoTtO2c5c6C5WJJPxjr1UUO1hewwbDQEGYzZs2cGDvcjG0f6cOci0NP487xpmc232W1WtO0kf2dJd3Qszo8YNOvuevUPl234oHz51mtjpnvnqY7XrHc32Pv1BkGGvq+Y2YtsQ003rBebdjf3QMatrFLidIQaID16hgLM8zmtE2TkjE4227LweFhOkYOHd5vmLVzdvfO0C7mNItd+qFn0TSEYMznLdvNlsac+Qywjn4whi61kRg6Qjuj63sspLODbXsWzYxmuUN0Zx2NfnuJ/eYs89k+a48Mm4GWNOr+kQcvMWtg0/f03cDuznk8BmZhy6m9HeaLGfPGOH36LM2sZTFfpHNtMGK/ZffUXYSwYDBLCZQQmTUhBd4J6bxqTgwD7iG3qcBmc8zeXbuEpsEsPRVh8Ly3+5COjA7r9QEhblnuncXCrF4bleMwZvWYMZw4ppY93/LxemDMPOQnzMTx2EFJCNTzKCWrmP/n+ZoqH3FLJrFcB+VMt+UT6+WJ53rMyefe+nYvu9qxR2Sk/oz6M+rPqD/zjOzP3AYnQPVn1J9Rf0b9GfVnbk5/Rjc9iYiIiIiITIxB0fGDEjKKJYbkaYTeiVFztS/nTEfBTcPPuTtOvd0gB4BzxAMoo0XHTmT6fqid3zqYMs+tyXMrjyZ3Qg7epmWGEHPntMTPQg1+TsNkFmySrMjfDuT3sk+6o+4p8O2hxuPcp0HgGjatAblQ5mpjkDPVI2D17fa1I09Igdr0Hvn01zTyy2teowQL62gkS4/WnlRafWTzNLlROu2UwMKk3KWM0+hfKW0Z6xsn23QcDZ7qJeY2kRIYadkBG0c71SQPdboasB8jnJMkTqyB7RLgTI/JLuUBJkGFGk436vLHUDc5mFLaznS08LTe8isQzB41Mqy8DiNaTvzYWO4xYTaOEzYMD2OofAzuWm5XdiIBVxMy48Zj6HuGIbLdbvjAB36LF/2Be3nWs57L/R//GBcvPcSnfMqnsdzZp8Rxa8y9/ocT27sGfcs2mU42KUjJcZT9FZyBmpKjvmIlj46j1EXJQ5CCR3XUHGmkdP251E95NcGk5saWkIKpkZzMMSYj4qb17JOVKGmvvO09JZh8Mk9ya/JSHqMGscZjjE2a55gQc4tg41jl5d4ZDg8eYei2fNLpM5zau4vTe0vOf+JD3HPvy8dEkHk9NpYRw15H709TZ5M2Uj7JiZuy74VaKk4cm0LZV8ouzbjsMr1T9gvGxkI6Lo6PiC/7bqjLx8u4fSs7b20rZYOX49HU9NeyTMfxGImxS4/yt8CZ02c4uHAOfODihXNcfPh+Lpx/mG0fOffIRY63W/YvwT0vfjZtO0/bo4du2NBtLnLp4kW6zZbZcknsnW5YE71j1s6hmeFDS2jSUyliMDwafdexsCPoOmbWMOCsu8gQV6zXW0K/x6VNTzcEOu9o3FnMZgzmhDYQCBwfHtMPPaHdxRYLhjjZD2Yts9mWdpix3a5ZbTcsmsDu7h7W7uZRqJHWUrv1Ycv6+JBNt2Zv/wyzeZsSA2aYxfR0Ah/ydh/GxFlIo563/ZbtsMU8JRMPDy/w8IOXMO8Y3JktZhgNe6fPEEnrMwsN26Fnu1mx3axZLo1u09EPzna7wXcX9D4Q+8h6A6vtQN8PdMNAt73I/s4uXViwc8+zadoZy92U8BiGQLNomc9Pp/OVDRCM3fmC6EZjDY1DjF2KGbcDy9N7mLXgA06Xkq8GwwCzNr12op3PuPjIwN6pu9kOkW7TsVjOiWHOlgWxj5g7nQfoB9axwWgY4kAkEpoFR9uexmHWGPSR3ge87+hDoNkeceFozXZ7iHtktXPEcrHLbLlksIYQWprZjHY+I1hgbsacSNME9k63XFhFNn3L8brj4MLHaO9/iJ2dUzQ09IMzxA7zgdO7DWfO3sXp/bsYhoFhfcywOmC+68SQngBifZ+uuTwS3IkeaW3DfPYsmjDg3uTjASU8D0Si92xXa2bB2cYec8dCw5wmH/fSzRdl12yweoytV2JueIj1ksbzUxYaL9cq+ZkHgXSN4pEm5MO/l3NxuvIxM4jja69qIiJ/z0MZeZ3P62X/KZeV+VgWDZp8TeSWyi1yLerPqD+j/oz6M8/E/swte9eTjTckqj+j/oz6M+rPqD/DTenP6KYnERERERGRR7GTP9VkwBjEyg9FqaPf8q+YpS5rmbbJoacatIMatEzBvRzEzaMifRpV8vz9/FkKNsccF6vjhSfLK0GysvQecpA61s+pIwrTKM00RrMmO0porvRaawAyP2oZw7w8FD+vlZVgfF4XP9lpT680KB3wSXIlB+8iVm+KSIHTMRRbAvl5EPQYaJ6UNj3yedw26eHRPiZaPCcT6hQ5COml3KlOxlGY48hzm9RLqRPLUfgyarYEw3EfRy35idqswcFU9kAZEl3C+3WtbPJbbh5lJNc0gDpZlbyEy+ZTg5u1AmpdkusYSizCajCkLDNtt1KmvAo1ajEtVw5Y57oOVtppaV+MyykB0jryuIw6TjNzD3Vad+N4teLBT/w+z3nOc2la4/DgYT7ye2seefATdP1Av4WmnU2C+2nrnXhtRirJGNixkrLy+jcm7ayMei7B4voEAs+vp6gHgrwP5/32RB5tEkAOeRme20+gBJzzVrPL2kmtgaS02XEvn/51bEP1k7reZaPl0He56SinPYiO5WbYlMBUmBzhJqPES9trjLpXl5GLtDP2zz6XRbOE2ZLd3VPc9Ukv5aMffD93/4GXYe0sDXzNbZh8LEhPEsh1MAn6j3Xvk31vXL965Mn7dNnB62v6TrQ1Tnw7HT3JdV72B+pxINbFTJIN5XhUEr9125VjiNefH8VObhcnQoQ+DlhOephH1pcu8Mi5+3n4/g+zPb7EarNm20U6lsSwYHnX8zl75tl4P7BoAzQNcbuh367ohhXr1UBol5xanKINDX0+ZjsDQ3QuHR3Q910abxoHBu/YrjZYO2e5M2egATOiNwRmhGbGfLHkkU0Am2NtGhHr3mMOMw/02zUHqwtAy6I9DQEac6yFLqZXGTYWgBnNDKxd0g89sdtw6dIBbXNMWM5Ztrv0w5bVeouHgcWsZTlf4r4l9gOLeWC32fLwYaT3kF5/4Glf7uIW7weW7Zx0Q57l5L3RuNFHh2aH+e5z2MYB4pp+veLS+UuEBtyMWdMzxB4DGptzcPGIwcF8IOJsD1dpOw2R9aqnITBbzlnM52z7gTg7zenFLlggxp4wbzGMLT2b9RriilmAdragbeYECzQGQz6+hjAnkJIGsTxego6h6+j7gT5umDdpJHDfDxyvjrE2cLw+ghjZ2dtjfXiRdrbkuL/EbLFP286ZL5dED1h0zBqCR2K+kcBmnuurgRBphoGODVtf0QzGzt5Zlrtn2KyPGWyLNztsOyeEnoN+xWK5Q2MdFg1sYNV17O82fOr+DpfOwybOMeugW9Hu3QPNgo5ACAaxpWkbDoct23MX+dhHPs6wPeS4j3TvfhfLeUMMRuwjcUjtt48DFp1hGHj+C57F+/pf48yZs+yf2uXM/imWe6eYLfeYzfdomjldCAxDx3LvDCGEtO/FSIfTEjEaoll6VYUPKbnv4y0A47WFpekIDMTJOTjfEFAORJ6ubKKnV3fFyY0QQ7rTYjyv23jzQsTTQXVyLi6HjXSuyMl3AlikqTNIR7Zy7BG5NvVn1J9Rf0b9mXEjPCP6M9yaSp9D/Rn1Z9SfAfVn1J+5Wf0Z3fQkIiIiIiIyUYNVJahbA6RJin8aVt9HnmNBZbQdlwWNPI6B2ZwwqH/KSywB1ipH+soY5hQEy4HrUq4cJDMv87P8mnQfy12jpCVkX8Jv5JGA5RUSVoP6ZaR2YAyW1vX0EuSN+THeeZ4+jYfZiUWPAbcxlBnzyPIANRBYkyhlRjm+HBg71+Rg9skuNXV0bvkk2JiSGQOwVhM70+3EZPtN5x+cWpZy48f4ZT+xfqUOqfVP3aY+mbaELafbp9ayTdM+OZBs1EdWM1lselJO+sWnwYpptZRXdjgEK4mqMdFSylZD1DYGTUv1BxsTD9MbU0qglhN/GRv1dHR9mNZhmX7aNmyydYx0g4wZwZ314QEf/+iHmM/n9F3HbLbHuYce4l3//hf40tf8SXoiwfL4sJrdyBEWJom5HC32mNuAXb4GaVtPE011xLxPfsdzQsrrazTqprHJHMdGNwn8jLcLef0p15WPdTh5iwql9uur5nLQKOTyl9Hv1G/XhjZuA481yJ1uaqo5o5rkGBMfJwp28hByorI4Ud67n/MiDh55gNXxITuLOS+49xX88jt/jO7okOXpu3CbJj+tJlRKIO5KoS6zkA8tXuu3PolgMgMve9AkWF9Xw50QrI6S5sT+NCYQ0/emS58mHS4rnY1toSzv0WWf7hFG1225cPECp/f3iSGNtyZGVhfP88DHf5fzD3+CBx96iAD0Q2TrDT4/y/7dL6JtlwTvIcw5Hs5xfPwIbbOkHyKbzZohBrAlsyY9rWAor8zJoy2jDcxmM7DI0cERB8cHhCYdY+ZtS/SG/eUObg19TCNNozkNVvf/5TyNgDVvOFwf89ClS3jsaWYNjTW0TU/bzJi3Dd0w2VfcGdxw7xmiE+KQEm2h4Xh9xOb8g3i/hei0yzPM93bpuyFtywDB5my2gYeIeEzL8hDBGtydtmkJ8wAMqe2HGY0PbDZHdF1Pu9hlvpuSiAucptkl7gysD86z3RyyM5+xCB1u6TVOA+DD/8/emz1bllznfb+VmXs4w723qrqrqqvR+E6vlQAAIABJREFU3UQDBAeQBARSEsGwZQ0UqXCIloNmhB1hPTjCL37xX8AX6cHvDr86FHpx2BGyKdOWI2hL1kRZpmmIFEkQBAigBwDdXT3VcKcz7L0zc/khM/fetwDSfGKDHXt1dFXdc/fJcWWes74vv5UxqYtFGFTHtWacw1qbVc6CEcPm5ARxNRojapSgCdSuTI3BULkWq8ohHNkf9lR6YN22uGaVCJS8XVXGYcQgEuj9nuvrS4bDFet2xdArpo3sdwfWq5pjUByKhh7vFT0c8X3HqhWOXcdtW3G1f0q72oBx1G6FiEn/Y4gScaJIjMToGbo9Q+hBhdo4orEQemIUnBiuuw6RI8Y22NrhbIXg6LqOcj2CMyveu+r4F7/fYesGiR3W9RxCIBw7nBqIYKKnO1xyPFxx2F8zHK45dAd8d8SrZYgWNY6qqkEh+gM+FFI3ETnvXxy5dXbKRQfuyY7r49vI0LFqHbUzbNc1Z9sTXnhwH+0F526jtgZNGVSSrt4jKnjxaPBU1uaPf5M3gkQmo0k9Xa4tKepoGbcgoZCw5SBDyPuTkHzKkID3eUaV4rFpjZCV1CXjQ8xXPc0y8cSSHUAJmhuUd6fFFvvjbIlnlnhmiWeWeOZjGc9891fv7xt79pN5iWeWeGaJZ5Z4Zoln/nTjmeXQ02KLLbbYYosttthiiy222Mw0g7UyZjqZoHXJQLOOquI5JptSBZcYbg5sozGrNTNQF2fAcSYQ0o+xvFhKnX7MAbkWsLsgvSXV+Yib3QStZnjlCIbGZ1SxBQ+V3DdT1KCiiDGMCunS1qKyLNlaCnBe6hmB5lkQOyqKC/gpeYxz0YXG0ASwT1JTk+ZE05mNMFb3DDkxA/Vu4rtCUa8W8qd0tqhnx6pkGpf04wRQTiSEjPNU1NWp4Cnds2jJp5NeUy2J5scRH0uxmRSIGbFMivUMNJSxoFwVksZ01BvPOlraUggXzURDGpaS1j41bu4rIxBd+pfJnBFGL4BEJqRuzHQhFmY+911HWMoYl6fmDglITH6mGMwofc8gobW88Y2v8Na3/pBPfuqzPH70HqdnZ/zcz/9HbE5Oee7eA5yzFHcIPmBtVk0OPRcX59y9+2AELWPwqFGMrQtmzHhVxzMK1z9adTaRUdNVIjdNnu1kGYiZT5qJUxnH5CZBwOjfkuuKWnIsJBAz5TQoc1/IwfRvM2+bkVklemN7MbNmKmm96+j3RfGdyiuAuc3+GHN97XrL7pESj0e66Gm3t7n13F0ev/cGnzj9yTT3enNEhIlAilpWRwbOpFBaZiRrx6EpAPR8z8k+++ycmbKmyrr7HozA9+JNxvEse1MB/aUo4/W7J+x7mAIxBo7HI08ev8u2+QFs3bK7eMzDb3+NDx5+Bx9hQIh2zcXuHOtWnD33KuvTexhrIUI/9ERVmvaUaC2H3nNxdUVTNThjseLSPmOEEIEYGHzHcTgQ8RiJCXw3woMX73Jra3hh6+h2e771/pGn5zusbajqDVXtaC2sK8vaKc4Kd7aKCcLvvfWYDy6vaOoVmAoRsMZQm7THxujxIWLUE4aeq64D49AY8dEn4DT71DB4MA317bvIcGQIgaiKrdeIqUZfC3knTfuToupSKnzV/HmrYNM6iF3PbvcEI5bV5iwTY4JTg5rU/9Y0VHfuEcIdum7H1e4C33eotThrECwqFmPAWaWuGpwxVMbQdZ6mrpFmBaK4nPfEukT/92JADUYiRjPJYivWlaPWSPSBbujYDQcqY7mzaqnamtoYrvZXdMORGAc2q5ZL36P5ag0nSmWV1hh2eQ+P/gBmjaksoYtEBkLs2R+vud7vWDUN+6sLfF0RQgRjaJoTQuyR0APgbI1Yi6ijqVr6foexka4bWNUtXYzUtsEPB0xUjFnR+4EQanrfsWpWDDHQtDWb0IAVLJYQB/BHmmrF/vop3Ydv4buO7rDn0O0JfU/XdwxYTLXi+dsvcP/+D1Ftb1FZRyURPxwIweNcRdCI9z19f6BSj6kq2lVNVbWszgzBBwxwOO54MkQuHnc8uXqb8/M/4MH9Uz71yU+xOb0DtgbrEskuENRw/fQR0dQ4DrQn96idA2vSd5v8WSoBogkpc0r57iYxfw+E3g/E66fUJ6eIcQh2zPZi8n5hdPpkjCgzzjh9xkeDqs+ZNNK1LZJZgiiav5OBmLwPR72xjy222PeyJZ5Z4pklnlnimY9nPPP9bUs8s8QzSzyzxDNLPPPRxTPLoafFFltsscUWW2yxxRZbbLGZWWQE2+KMGBAx+Z70DFjloC+BeErR79wAGdUksU1Oc1/S6xcE0OS/E+GQYdSoE/YkMz2qJHWYZHW0yARDlnbMYHq+C8zMbRKdVNIJBEsq1IRLS76WQlAzYWGM9RSoO/1ZBIKaVTtoAl1LW8zY+owUzxSgGYFmvAKiDI0yVSpmAr51dj1BDqwlSYRTGvCRUMmlTaxHBov0hop0TnaMVxuMxEUcG3MTAE8A9HeprjMgO4fMS3slz3fpRwJx46wdmXLQnP557EsBEvKBkUxazeHn8dqMEcefaIyx7Qqa1VZz7ygY6+SzRfU+kSkyG5s5mG3GtcGN8ZnbrCUzYijOfACu9zvquqJ2dYZFUtprYvKHd99+nW/8wb8hhI6n7z3k3ksvcbbZYuuai4srkAo5Ja8xYX/Y8+Xf/k2Chc//5BcxNs2xaDpY8967b1E3Nc89/yLW2BFsL8pZmYHsN/oyWz+qjFebTOq4PBdlHmAcw3lZJru9asHvdSRQtPjtOGYKZbzmoLaU+sqe8Sw4nublBkFHXoOT4zBXEN+YNU2E3AiQzwi0dHhp3JHyz0oUi9uccPXB26xO79CuT3nxwSu8/+bXePHTPwG2mo9K3jdy8vUZYTlRKLmZGYibtW72FDdJQrg5Ts/0voyuyft15Hs8O5uvMZPDM0DcRAyZm8/daFcEjfgQ0BhxlWW73nL59EOefvgWb73zBr4PWNfQRcPVxVO8Rp574UdZ3bpP6D0xGrymLBSa1dT9oByvr+lDYN2sMqhtUCI+RLw/cNxfImKwtaVyNV0f2Xeprk/crviFn77D06sdh53jkTc0K6WtBN8fubw+x0nkbNNSr07wpiJq5J33r3j3/JKrQZN61g+ECJURdkPPlRhELF4ViRbEg0aiSVcfGGdwOEAIXY8OkbrZ4NyaaATjWioN+OOO60cPce2a9vQMKzWGhNkihqCKBVyMKAlULetwd7imH45stltMBuqdSQRzFKGyLYoQNSBUrO2Ktt7i17c57nd0h0vCcKByyklbsV0Lq3ZLtI6rqz1ehfXZCYJDRLE5swgAMdJhUpYGESRkojJ0iO2pxGINGAnUFWgUzvcXvPnBd7A6pAMEpqGuW6pmzcEPaIQu62dj39EfO462YmVc3otrjLPgBzR6jscD1jpiAGcqnl5d4INC7xm6geCPVPZJwpaNsmo3uLocPLB4PxBVqdRy3O8wvk/zCXT9EVuZdJWID7jugBjHYCJ98FR2T9cLVa340FFFcOEJK6usThyPfM07H7zP8foSJ5bN5g6379/i9Pn7nG7uYP0OqhWubsEIMQZqt0WIoAEfPc4om6YCo8Sg+AhWLajFWItqQF1LbQzWQDSW5nTFzhu+9q3H9IfvYOIRa4Qw7HBtwwvP3yOoEEzL6abG2cdEV+Ncla4ZsnXemwNEYYDZ4c8Iagldz+HQcf7+Qx6sz3AKSCSqIASCSBrH/FlRPjKm71KACjF2nH/4hLPmCO0dnGsQY/P3gZg/e/Int0TU3Dywuthi38uWeGaJZ5Z4ZolnbvTl4xLPfB/bEs8s8cwSzyzxzBLPfLTxzHLoabHFFltsscUWW2yxxRZbbGZJ1SwzdauOSmeBpI7JMGCUKY2vIPnnBMKXNP0FwEcFMUnTqjwDhhcSAQrrAOMzWVVNJhxGBXEcAazUrln7c8UJzJ1sDmgBRC0ESIboclpsAIkJnCzXQ6Q2F/Vsalu5kmAC9+RmACzzX2clZ1YKFQWzIBgVQiE18ikLU8rJYLcaRgh+JFsKMKuK5LTMoxKy8BBF7ZzJi6LG1qxaLkG6jK8ldiT1L8/1ONbjCZCRGGB6JREuMnshtw0SpFiucUgUgI4K95FQKdxIfnPM/lPKDPlqEWH2Yhm3mfIKBAsj4F+IhjIcc+VnIXJKvSJZuVWIIJSU8po8LxNBMvZTn/n3DCyfTT+iJrts5M3Xv8lrf/g7HMLAX/+5X2Sz2hKJiajKmdKfu/cit56/x1uvf4XXv/Fvef/dN/l9gZc++SP84I/+JOu24dDtaeoWMYY3XvsDfuf3fp2HD98EPfKpz/w5Yl4HDx++zZd++1/xEz/+5zk5u8uqNSPBUabyRlfMNB9jV2cK3O+Nz6SCdLZmynBM4zUp7DVvLCrjChvnQZFxHU/kjczWkxkzMd2cguwHM9JCC5guiQQzRohxIjTT9RYTASVlfc1JjNn0lvbG0lIRTs/u8u43fof25BYAz919ka/+zr/m4skHnN19QMoBUMY6j8zo7yTAVaZ+jv4zX2cFxM/tNkIi+kYSalIzj+MxJ1qz3Sh/9tv53lj+PV+j0wzI93gH9MfDuGBVY8rm4Cxh6PC7K77+jd/l0A/0Q0CwDNfnqLOs77xIu7mD2jVdP4DWVKZBNJBIM8/1/pLj8UjbtLRO6PsjYTB4jahakLSSm9XJmEHhendF13tWzSnr2lEZwz/97QsuD8IxRoxx6UoVA1W95lbdMMSey/2BR08fUtvI7voaFQdVgzgHBDAOMYJXR7R1UmYbwUjAksg3Q0zkd95bvR+4vr7A2TZdGWAbAiR1swUjlnq9grrmMBw5Xj3mVrNBmppKGjAGr+CHmNogoBo4Hi65HnZsN2dsmi1OIKikKxZshRiDrYWmajDqQBPQfewTkWONYbs9odms6LsD3cU5h6tzttWWx4dzOrU0dYuxgov50ojMZ151T9BoWDcNPgwQhV3X0dY1MXiGYWC7adn1gRg93aFHpOdkc4Z6xYuj2t7BIvTeg62onaOuLG6VrogwCEYit09vU1lDZSKqkcokcWyInnCyxpMIpUEjfbA4DJ7IvuvZiWVtz3BVi0bPIQ4MgHqlsg5bOaJzVLYCW7E2NQbFGUOIUDeasrsZRSvotaemoguGIMKui4hafC8cj0rs9xyffMB2DWenG158/oyXP/F5jh6GXvBUGNsSJSKi7PzApl7jhx0S8/cD7bHWQoxUUqNVg6rSDQEnAbF5bZuIhqSfX9WWwSu+7xI4H4VhiHDoieKwnBEH5djX1GI5f+ixVaRxA4/PDfrOY6w1VK6mdYUNjjS15eRkzWq1xdYtiKOqBLEtxhnOn15w+84WiR5jHYpg894d83fDtGskoF9Ic1eE1iEE1Pc8eXrB6YtrbFUBdtz7QQmZWS7ZdYIqUSOLLfbH2RLP5GeXeGaJZ5Z45ob9WY9n/qgDah+1pYOlSzyzxDNLPLPEM0s881HGM8uhp8UWW2yxxRZbbLHFFltssRumIxBKTvcr5FT8asg3JYwKaYsgEsdDBEnFq9gkwZvS98tNWGk6WJAUsaXgAvJNiuEESOlICGRdZmlYAQlnmGYBgjOWwYyauNmGWbvm7ZPMYoxQaC7vpgxRk+K7AOE6Af/p7UlxnTiVNCaxoPJSelXaHserGVJTngGuszy3gP+lwQUATx3WTARkALwQFcwVyzoO2wjUUlItT2M9khUZfCz33M/gXUgC3jw8uSUZsS0K7GeB9IhO8zXOxaRgT0nFMxggMo1TUVbl12ACCwoimsZ9gosVk+crAwmqzEmickVCqXnW82l8imMk1utGX0aAncnPZSzlJniapnw2warsLh/xza/+Fp/53F9EjJ3mWvKVKwh3n7vLq6/+CB++/xb+cMXFk8f4GLjaHanqFfjIBx885JOvfpq7zz/gE69+hr/kfoH//u//1/zzf/wrrJot956/x6AwHA985jOfxQfP9eUTVu0DpjRG6dDNHFieLt3IIHKZk3m/vktFnYH50S/KGktjEvN4SgbDUz1lTjMYXsAjYSS0xn0iz1l6eQ56z/+eWIOScTzeWLf5OjmZykh7R/IrK+Ym6VMalOdtqmUGl4vi1mvOXnyVdrVhd/GUunE8/8qnefzOt7h198G0ekbyYmpTUpvH7Ev5ONXMz3Rs/5QFoFz1MJWjN+ZjniVg7ulkHxvXrOa+CGgm4eZjKmWcvmtilZzLIClGQ+Tq6pymbhBXU1tL9J4P33/IG298hauLS4bg2F/tgSPr7XOc3XkF32wxUmFwKTW/CKhB1IMGDt2ew+ESo1BZ6LoDQ0zgbFtVOLEoQiQB9JGAP3ZcHa7BCG27prbp0pl3j4lsro3FWs/zW+H6qFweA0N/ZAhH+ghd14NP6mNsTcRQ2VW6psEKWMWKw1IRBMh5QayYTCRbjApRDCqRbr8n+Miqvg2VwYjg8p5qiDQGVAUvjugMrTPge57uLojXgdPNbV64dYZxwrXxWI08uug59NeY2nJrcxsnYFVQMXggRMXanhpLHAy9D2iAYdghBIaQlOfeK4SksPahp6cjRnj/MhJ8R107dscDq/WKfd/TWEtVrdl113g/QDD4/kD0gRCVQaHvdmhMwPXT4cgQFGscTV3jg2V3CNjNKafb5wiiuGCoG4DIwR+4vL7k1mbDerVGrMWKTX4ch0So2BqrEY0DguAkgcgxpsuSRJV9d+Bit8etzli1J0QCMUZUBGtbHAYrgc73hO4aW1dQN7gq5o0j1YsJWFuh+fqBSiOGFmMsUSNGLAZhGHqOhz1NtaK6dQ8jHmuEq6Hn+GiHdVecbGq2qxZrlc53DNEwxAZja7rBM/QBtMMZQTVgjXI8XNBWJ0TXYIzFGMPQd1hjOd/v6I/XSFQqK/gAVeUwdY1WNcZVtFWN21QUoluDZ8sKwaa9UCSr0JU4DFiFTmHvhRjy5/he0fMdjdml98RAJZ7tdkNb1zx+coWLDucaqNeIc/mzrFwLWmElfxKLRchXbiFgEkm38w4be6jv4uNAZW1aVwqCIYgy5nNQsLMDHYst9kfbEs8s8QxLPFNchiWeoczBxyGe+T609Em9xDNLPLPEM0s8s8QzH2U8sxx6WmyxxRZbbLHFFltsscUWm5kTIegEKpuMehdgTjNYLipohhYLyJSw1Cn1uGgOEgumn5Enm8mHgnnDBFaNxwpmqutiSlbslvfqHCIr5RWgLKXOpoDj+bnSnwI+CrNCKG28CbRRiITICF5rflimN40g3Zx8EJ2IipF2yACpoYB4QiyDk5WP6blRB545lKwqKs2fAe3TmGUQfS53LSMkU31ljEypfxyLEWrNQGWkaN+nQWKsdVJhx5EgSHXnFo7g/WycSmkKxRF0XrTJfS6vFsAz+51IIZUSSTOBnnGc2nL1QgIiykGTPFp5WMprmkFQjZloyUBq6peO4GkibOaA6wTAFlX1DWfiJliLgB88jy4+AIS7L3+az37+L3B+eU77fJPUyEzPO1vzmR/5HFfX5zx86w3e+tabxCFSR+GrX/m3fPvNb2AM/Ojnv8i/+1f+Jn3f8eClV/mZv/Tz/Kt/+b/xL//JP8Q0Kzbtmm+++XV+6qf+HdZ1QxgP3hgYPUZvtrsQNrN+FJ8aQflnAOnR8gOGNEVz1bqUhTrWo+PVEEX1HzMAnsiEiQzTPHEjcA05a8Ks4lk34ux949qUqZyJd8oLQyeV8cimzSbZiIzruZByAckKV+HWnRfQMNB11xix3LnzgLdf+zKv/sRfRJwZV+uUeir3u6yRXOWY5WF6Rwbb0oGtcYwlZVows2benIuZmry8MpJv04pTjWl7MDLOh5R9v6zzcT3nFhUyMnqGvifGSFuv2O3OWa9OeO1b3+ThO99iCHA8HLneXSBOOD27R6w3HAaDmDUyCOIq1AjB++wjgf54zcX5OdEYnGswWMRYjK2oq7SjGrFECVSadrLB91ycf4AzFXVdY6zDWYcRYcDgRLDiOfaXdLs911eKF/BqMUaprSP4QOVqVqsWYwSzheOwZ7e/pt/3rDe3qW1NZRwBoRLFSlIZR1Eskj9jhP3+gv3hGludULerNBPWUInFGWEgIDGn1R+vgcl5RlxFvUlK3svDgcvrp2wqoanXXO+vGKRms65S9oC+p48Vqp4gkWN3wASlqh1InTKE6ICGSJBIVVWgDjWpvc4ZMII/Cm29xq3vIpXFxYHBH/GHa/YXF4AhGsNRejRnM/ES0T6ATzSXqtKrggacq7HRYq1hu1oRUAhCuznBVDU+hlRm9tXK1uAc0VquQ+DqfIexUNcNzlUYY7CdYMUS0ocxGlO2iRA80SvHbo+PgWBr7Po5Wlvnz2uD2vQp56JiyVcK1C6RSyocjh3s91QibDYbTJWuvhAV1FrEWgiK8QGj6XqIQ7dDEZytuLW9xaZpadqBaxWk2uK1ZugiMRz44HpHfHyJ1T1rJ9w623K6PeGsbdBouTLCMbb4rgM1aBzww5HONGgUxFk0JiWxxIFh6FDT0LQb1CV/7YaeKn9OEQ2HfqAaApgq6fV9IPgjq9oQyzckSfuCMUrXeSoX8aZOiv5+oHYuKfOjQQohQ8XhfI+aI4jy5qMj777/HcQoIQ4QIqKeVVvRthtEAsbAdrMFwDmLiQF1NY2JiD2htTtkeIzRDRr2KQOBWMBhTJrD8rmlKM7Md7bFFvtuW+KZsbQlnlnimSWemfXjz3o8M89M9n1lwo39cIlnlnhmiWeWeGaJZ/7045nl0NNiiy222GKLLbbYYostttjMVEcULgF1RV884eWjik8KoJzRcCWB2rGA/zJBUQX4EiSlCy9KwAxk8QyYWkDxdGl9qiRBmilEjLl8Cqg/O0RgClmAYhSsCH6Cqm+QE0oB02fgV4bWxmfKIYUMXgMTeJ9HqID/5QmTofwxPfsM2CxQPeO4zYD5cVSSRabpkKnFzEH/cdzGOqcyZfZOowUQz8SAFoCAWY1lXHUqePbvXFJOxT8De6UorzMNkccxzbOZ1J0zRfP0TH5d52D+zDRS6JLS4UnNWcqbNPBRZKbzneu5dVLyFhdnNraTU4x9LqTQDRcbx2XWUrn5+hysLSB1jIHf+7e/wa7f8fLLn+Yv/+zf4uz0Nu+9/x7eB+q6ytWncXv37e/w4bsPuffCK3z+C1/km3/4+/z6P/5faVpLf7jm6BLo6K3l5PQEH1acnpzy53/6r/HGN/6Ab7/+NV77w9/nr/78f8BfeellqmbF0HU462YNzh0uA6A32zzvA+hIAs6fmZ7VGQ5ffCGVrTk9wqi8nQH2RhJxo0X1XjYQgdkqHNdq4hnMfLjzv2czOuteqdOIPPPs/PF0vQ2z9pu8B6lOKmuRAtyb8TmrIKq02xM+/NbXaVcrTNVw57mWt373Ce+99hUe/PCfY1SCjw2btyb1HZVnZ+a7/j2q+iVTeyOjN81VWoZlfuYK9olELNd6mNl7b6yD2as6f0ISsRBDQACL4dF7b1Gv1gzHnt/8/X/New+/RaSiXZ/RNFvunD2P947rwdNUZ9xeC5V6rrqBYxhSWn/fc7y+Yre7pB+ONNWGdr0F12Jtg4rBWMVIuhLASSCqEqKy311xHA7UTYuzFmsc/RDYHXY45wBliJ6gEUdPUzlM1bCyFc4adocjl4cDtaxZVSuieg4BLBFjarbbM4b2wHDcEy531G2DtCtETd5XbQI+jeLDwNXlBSF6VuvnQRxiwBihcpaTVYUPSqM1zilD19F3Sohx/HxTfEqTHzyEjtB3vP3oKdY5sI7tyR28d8lnjQFjAUtgwK22OE3q1GAgeW+FiQGX24KQwfHA4XhF7JVm1XC6qakqIRBpnWN/3LJvVvTHa/r9JUNI6tRKA50/Jn+2dfIsI2AtTg3QUNWW7WrN4bCjD5663bKtTfa3gBVDVHBWqFwFBmIUnDSoCUi9YogDu90er9es2zVtvcbUJn2qaMql4X3P7nDF0B0w1ZpqtcWIpqs5DJA1tFY1q50Vmw9DEDPgbAFTozj6/sDV7oKVMbQrR2VbMGvCEGhN4BgG9odzBq+Ii6xWZ1jbYCpHU3l++mVLvLfh9KTlg8OK33r9yH5okOoMWUHfX3J5vOL8yY7q8XusauH29oTT9YZbroJtw9OjEo4B3BZsi8Vy6K6JQ0StxboV7fYObb0CYzLJaKB1OYON0g0d3aHDMtC0Lc60GGuo7AZPJGrOeqeZZPeB6GGIAhIwJmKAzid/VIXD4RJiJBz3HPcXbE9vI6JU7Rp1DWoiaiwSDVYcUdfsr0LyDSM8ut4Ro+D7PainritqA9f9Q6Tb8eT8iqqyVDYyaEXrkv+2NmXm2axrBhxNA1EXSH+xP96WeGaJZ5Z4ZurzEs9MP/9Zj2e+63DW94kJ5L10iWeWeGaJZ5Z4ZolnPqp4ZomQFltsscUWW2yxxRZbbLHFZlY4gqTKlRH8H4HULHGO6Ur4BMSbrK5UySBiQU/LAYEEahlJhwNSyD4HwwtUy4wQkBHQBiZVZkLUMlmRkFszO4CQirh5CUTC0AyqiinK4xEX1RvgPFCSDk8tmxMYY5l5VG6oj5MV9bVoSYE8G4PZ+yd4egbBlWczP1L6mpqa+m9mALXO6ittiaV1IxAex+T+Jj+XyknPxKzmNjqpUqf+JzIozf0MIJaSoWaqd5rF2XyOAGMBJsdBnT2X57sA8nnMS7tEJPtaBjYLUTCrt1A3JvdXyhzNJy37gajeuIFg9AcxadCzQpQMnphZu28AzSOiWsrTiRDROAK3Ioks8v3A6e3bvPfae7z++lf54R/+MXa7hgf3XyDdqjbNGSIEiZzvnvLBO2/xrTe+yrrZUjnH7uopL7/6g3z2cz/Dl3/nS3zus58H76nrFoPh9ukd7t79BO+//w4//oWf4u5z9zDiCBp5+uEjTs7OUipzUwDlrIKO02qV/Dudr9Lc/zkxosXRCxkjhTqbiICyhjSDUiKMqmfGecoJ0egRAAAgAElEQVQ1jWRcqbdkWhjZl+8C0efroVwDk8qfuaFOe1gc/awwIokENXncp0wDM3+/0SIQTWsq/a1glKZZpZT0JoPyGji98xzv/OFv8+BTP4bU1eT6lGwHZbkJ5Wa9iQzIFw2oJkW0MKZRL2vA5PEu41IIm1TH7Ko+QEzZH0HitJeUPsZxnc/2vVxOIR5EUzp4NKYU76p0hwPvPnyLt978Jk8uLtjeeYE7L3ya7a0XELMi+I5Df4TO8wP3W57bwqmtePNxoDOC9z1RB7rec+wH1uvbrCuDxkjfDewvH1PhqCrhR+639NFyPjg0WvaHA7vuOo2JMXivdP1AVI8zUFvLytXUTrHUiFGMbgkmrdUhCk+vz7neH6nbMwIuAaTWUOEx+YodYxxitkk12vec78+pDx22XWGaFVag73pC6JI61VS4ugaTUt8bEULs0+ffYFg5Q2vgfD/gfY/pexpbUVdJyW0sOLF4hMNeeXwQ7p7co3I1g+/p+h3HvqduVzi7AjGZZEtEowTBimBFkwJaDC7PdOWScvZ46DgeLgl+YLU5o6mET91x/I0/f48Pn+xpa8P/8luP6QdLbM6g3hJ9hz/s8f0RkQrnaoJJTmyMwSK0mxViK4g9192eqm6p6hprLBYhiiCmwgRPZSBKxIpQG8eBHnUW1KY9NFZgWioVglj2ux1cX1HVQlU17PfXdNFT1w2r9Una+dVjxFIRUQVrBKeRoB4i9MHjxGJsam8flBiGfLjR4fBEEXa9Z9d1DMMTVk2FGKE/9tja4lYntK3DWEfUHhsFGw3XB+FffPXA+eNHbNZrqmZNsA2oR9QQNWJty3rbotwBf6Qbrnh4ecQ9vUBjZKU929M1Ylbc31TsgGM/0LZn2NOW2tYEAxIFDR7RgFElSiLDDPk7ga2xq3RthVfAD0Qd8ENP21isW2OtwxhDjIqqRceriWzeY1K2Au89MXqoNtSuJq7vUT8X0/6jifTZe4+JffqcjgOubtGdxw+edeNQY4gaIIZEuNSGfa+cdx1VU0O1pe8U6RUdBpoq8lQsvh/S9RrO0FzVhKjUNuL7gcUW++NsiWeWeGaJZ5Z45uMaz3w/muZUeEs8s8QzSzyzxDNLPPPRxTPLoafFFltssT+DdnFxwWuvvcajR48+6qYstthiiy222MfOEsg6A6+1XMsERTVcENYCwkqBvgt4SwIe0aTyEpnAcpUMV2tS7I0ArKTDCFJA2VmbCkCtI6CVgdmMUk/KzAmQLoBmQb3GXjxDOsi8khEco3Tk5rMFRM9o6A1Aj+nZFDLLKKaeiBOZ4coZsJsBr3GEV6d2aFY7JwCVG78rYHIBEEcAO09F6XMC4EvnJth1RnUk0mUarkwWJTCpHM4oVMp4G9gNxfB4VCQ3IY7ES7m+ooz/eKxkrC+TSzoB5aqF/JCpQwU0no9D7oUpb5rB2nM8H2bEUPERJAHMM7/BTOC2kXktGfAffe/Z+dLp6hKJI9kxZ0+qpuEzP/wTvPzKq/zaP/oH/KN/+D/wl3/ub/EjP/QTXF1fcfv284hERA2osj094cd/7C/wf3zzazy9OOdwOFC1KzYn97DVCddXOx49eo9/9Ct/n5/5mb/GCy+9yosPXuG9d79Dd7xm1bQYsUl1rBFi4OT0hMPxwGq9RsSS72tIKc9H8mUiqsr1DVrW27goyNfC5bGaq+SZkWO57waZrjIY/UhHML8o3G8qeDNpkjcII5Iv/MiZC7JfanZC1UKyjEzU2B5mpY7XuMx/k8HgcV3I9I7R31TodpdcXT7h9M4duqtz3v/Gb3Hn0z9F/YlXiUZ47hOvcrw8p6lWDP2OH/ixL/J//e//gMfvfou7P/CZ8cBTWQyCzF7L/RIz+pYWFiSTTtN1NbPxvrEvFP+Xcd9MJJXktVrWbNm1p7wMqb7Jo8vVD+XnGJRQysDSdzsevv0d3vr2G+yGgYuu5/aDT3L7+VeoVqdoUPxhx8XxiNiKdd3ymbtrPrge+NpjpesCR39Eg+dw3DH0gbY9xVmbiCtR3NqBUaIG/HDk9Q/2hP5I1/UMqhw9NJsznKuoBZxraFyFrSpqESoJRBMTOayWXj0dkRgNh67nYneNqsU1JwiKGGhqizVKCEJQobYNbV3TD56+D9jGsmpagvdc7S65vnxCXTsOuyOuXlE1VQJbvQHTpWterFKLsFbDRiK3m4q2gpWtiXFNIBKi0mskxEgI0PUD54cj0dRsNltUDY0xNNZRVTXHfsfF+WPa9YrTzSl102KNJSL4XokkBbA1gqsslYXKRCDy9OKa/fGAtTXOtdQW1s5wuVf+53/9kF0PG2vx0YAVHALREZsKW2+R4chwuGLou5yFQnDW0K5a6rZlf30Ea2naU6xAZQzWkK8SAMJQWEdcFLrQIxIwvkMIWCtcd5Gh7xIBITnXSOy53u3ofUddt2jscdUaa1siMR1o9BGjgZ78uW20sJ5oCPR+oLLpChJRD+ohRtQYRCzpwkqDRqgqB0PkycU5Vb0i+o4tlrpxDF7p+h7FsFmf0F2f065a9see3TEQ6ki3v8LIAZFI5RyqkcvLK9p1zcq2mMoSTUvnFWnWXF9e8fjqCvPkmhiOPHjhNqdnd3n+bIu4QBd6DsETB8uQr6eSGNAQwQSsSZ/6kQEhJJV99FTGJWIGh8GmLAHDHhGDlQpr099qDRICGo70RHwY8rULSflvqRAiTiIYN34XEBzqGkJoCINHXEUwFlCcCF4EDQPONQRT4aPh8W5HWxucbSEKA2TiUbCm5ogy9APHI2iAuoowRMIwYIZAXd34gF9sse+yJZ5Z4pklnlnimY9rPPP9ZOvNlgefeJlbt27lg1tLPLPEM0s8s8QzSzzzUcUzy6GnxRZbbLE/gb322mv85m/+Jl/84hc/6qYA8KUvfYlf+IVfoO/7j7opiy222GKLLfaxMysx341eQMMZKAf5cogECxRcMBYAXASVOCoeRwJgBKUnMLCAkJRyhLEOKUDhDNDXOaBf0F5N4KNkcFELcl4A5tL6DDQaCpA80gwZfJsRHblBE8is43vGdmZw0oy4ewYvcz0JwJzA7Amfz3+O/RuhaUCSamwc8ek3pdkJ8J+IibG/Y1E5vfuoFC+vZLC/vIcE8CoTwVJSw0vuuJCuTrDI9J7SkTKjGeQZ8fBpysa5nMiOPK8ZaDYFGC7P566YDBqPxEUe1wnIHDuG5ItB5vOqN8Zj+nk66JLLMpN/3GAPxoMvkgma8nJ+XgusmmdDYulStpyiH5lVXtpj0BAICp/98S/w+NG7fOLFl6ico6pc6nsGvA+HI9/+9ptcPH6fd99/n832hOefv01TWx689AOcX17w9Mljnrv/gONxx//zm/+cv/E3/2Pef/897r34Micnt3FVzeHyimEIOCf44Fm1Gy6urjC2+HhyaEURNZOaWad+z6+GKGTBPJ/AfI0VIm+6KiStrEL+FScZiYhpKTO6B1mtnVIpjbNefGBSxE8kTZnAonQvDJRAVg0W5kunPaZM3NQsSm0TLZS8roi1H379d3jz13+VF1+6g/hL+mPH+hM/RNkq2vUp73zzy9x/8RWiKs3mFrcevMz+6jFRX8WKG9s25zJGYiWP3XSdSSFBRk8a/z1f5dNOxAy405HcK0CukhTQZvxJpmdma6b4hipIjMSY/NwIBB947923+dbrf0hHxEtDMIZP/vDPUDUn+OHI4eIJUm24OnZgLbV1uKriy985crm7RkhqWNHIfn/Ax4q62iD5qgewGGtxVtKKioqVihhrjtGw6yKqHkJAgmezXtE6hzUOawyGgImWDsVruvomxIiIZRiU84unBKNYY7BqEFFWTU3lqqRE956D76ltQwiG68NAbcBJxEdP5yMx9lhRLrsjw2DQoWO9XXPrdMu63uKco8qkMSb5v2gkauS8i8hR6BR6LwwIMW/+R285XD+liwOnJ/ewuLJ50wXByIARaFcrmrai95HL60tO/BVnJ1uqZkOwFYdhIPi0JoIP4IU+Hnj05BHiVrh2hfiAtQbnLDjhIAajBq0ce7KC2CuqERMjahJ5ZG2D3Viq1UDo9hx3FwkY7uF8t8fULVYMQQMShSEqB01keQyeGMFWFQclHSggsCeRCMYotqwHMYgVrImsxOB7S92sWJ3ewzYrQuiRvkdDwDmDsxa1ligGg2DVZGIiYqkwDkwdIUaiDmn/ihZMyLdeCS5nkQBPOHSotmxu3aKyBq9KjD0+GoboWTcthooQerowIH1PPyhN23J+/oR2tcWHgDEGH2MGyi3D4BHfEQcIIVHqft/Tq9CcvciqqjkenrALSn++o7re09aO9WrNuqoR29JXDV1s8GFFMAENBu8D6IDqgCXQDR0h9rQmEKRJYy0GEUPA4PsBJwOuqvD9OYMfICiuUqrVmhgUKpvHxoD2oCF/D2zyhhHT4QmTPr9dY1ExWJJPqQp9d0z7eRywxuKMxaw2xH5P0B2mWVG7FRFPOBwJBqzWIJbNtsY6wUiVlNUtaf6yinuxxf4oW+IZlnhmiWdY4pmp3x+XeObBiy/xQz/643zja1/h+8E+88M/xi//V/8NVVXPvG2JZ5Z4ZolnlnhmiWc+inhmOfS02GKLLfYnsEePHvHaa6993xx6+tmf/Vn+7t/9u/zyL//yR92UxRZbbLHFFvvYmYq9cTigXJdQVIeWBBZHLZBtVtRJAZFtAqhEiRqTAq8ofzUdHyjwcVH/ieTU5PnKqIlcKIAkE7GQUfoCKOYzA+OfVkvpOr0v33GRipy3dYbtFnUxRUGr4/tGGD+DnAYdQdSiLhzB+vzzCIimwqc/MyA3KhyVrNAikxszhfKzSlQmNWhMctIRjC+K9qJzfBasH0FTLZDiNHJjCnnmhz5m/X5mjOfPzfgBRknzDZu9cyQo5mVmtTk6khEjvlzGiJvvS6C0oDEpGUt7y5yPILbKzX6YXI+m341Xc0y468xmI1TaIVNbwOTrFEqXzchMjOB37k9Es68qjz58ly/97v9LbYQHL3+Sy8tzbt26ndaJRqJJgOXu+pKh2/Od77zG5uSE0/WWxx8+wm+3hBipXMX9ew9YrRo+ePdtXv6Bz/DC8y/y5MkH/Nqv/BMevvcG55dPePL4Pa6unnJ2docQPc4Zhn7P08cfcuf5+yPQnlxNUzcEYpwTQdM8GJ2NpxQqRbPvyThu4wTO/EolEXVx9JUC6qfJnRNgE6E0uUKZ51jWkMzyJKQUA2ntToXc8MIyB+Xl4pkTUTa/CkZH1XypX1FcA5uq5/ztd9jcanBnL3D2/AuZl1Csddy59wlEBCuO4XDFi/df5snbr3P/1R9nvT0ZMwWU8RlXnMSRDCz+PB/Rst+V/WlMGjDuPTP/lEJGTgRC2bEnAlUo2RqmvT7vcWLS3PgE2kcjqEYev/uQ17/5VS4PV5jqlFifsl7dYiuO7rjn4Ttf59at59n1PVZr6mqLcYBGLg57Ynegsp62OeFwHHhyeUHt2qSGNhFjBaixeVdTPNoPHGKHEUf0gagNm9OWWiBGz6Hb8+Hjt1jVGzbbU1y1wllDZQVvDMY6bFAchqcX51xdn2OcoTZCyH5pTU6b3+04emHwkRB6juGI4qkaRyHCkRqpa+Lg8abi1v1Xsdai3uO7Ky6vrmAjuKrFmIoekxXnHiOKx2KwGIkEzb4vBh89++5Itz9Q1Ss2botoTCvGWNQlUvRwDFRisIAzLXZliM2Kw/GS/Qfn3NoqdbtJ/mAMgx/QENgfLzAitG26NsEkLTEqSlQhesuBgca6RIYQEVVcHLjeH8G65G9GieqJMaARhjAQcHRBOPYD1loqa3GmQW2FiMGYCqugGrE64ChXSioqERtnBLjxiaCWRHjXFmzoCMcdRtZ8/lP36EQwpuH+fcOXv/aEfTfQHa+JQ0/dbHDNJn/vyPNLA1IxaDf6etrnFDEGJzLm8hj8wOH6mqqqqTcnWBoqAbFggieaht5VhKjsfI/2PXUtbFYbggptlb73VNtbqEAlQogDqsnfunDEGkuQANGiAUIc8Bja9R3Wq3UihuJAs71FUI/3Oy4OBx5fPsZaS+uE7brm9skdaFd0UtPHDUdv8dGiYYA44KSmjR4JT4i2ArWoEYwYjDhkrYT+yPXhQPDKenMbMcqxG+j6HmscBMGKQWMifVRT1hvxATFCjJGoyjB0qEZqa7G5DmyEaLEaiQS6IflzDJHD/sBwuIDuiqhHVttbWNdS1zWr9QY1kdoYjDE0Vrh7Enl6VA67A97UMCPxF1vse9kSzyzxzBLPcHOElnhmnIc/y/HM6a3bvPDiy983h56+/Lv/hv/xv/tv+U//8/8SMEs8s8QzSzwDSzyzxDMfWTyzHHpabLHFFvsT2t/5O3+Hz33uc3zuc5/7qJuCMYa//bf/Nn/v7/093njjjY+6OYsttthiiy328TNJKaMVwcqkfEwp71OqZDFFxQxoSqVcgFEpGr8C/qafRsC2wLkFrJJS5RyTlwyyFtBMZATwC4RWoOyprtLq8uIM/B3ltrkCzS0qwOIIwOlYoE7FjEBpeUakpKZPyuECu5UM+XOoFGRSMeqsVJ0A8ZK6+yZ4H8drDiZt+U3AfXplPsqartaYvcEoGcxNzxiEMJIiCa1NV1ekeozOVacz1abMqYNnQEwmFXXhTUoTjCYyQJnAoATu3nxu3sebMzxxECPlMklDRygUpjkUA0mOxajwJZNW5U3z8R7HfUZ26FhvnoGSKYjSeLlBMJWCRWT0fyOFVBHazYZXXv4UL7/4EpfnTxkGDwjOOkJRDnrlS7/xT3n99a/w+Z/69zh/+hiIBBO4decW73zndTbtlrcvHvP1b/w+3bHjlR/5LM/df5G2bfnq136by4sLgka+9pXf4v7dT7D6lOX3vvrbnJ6col7w3vNcPqyjpS8mz+c490kF+Sz0n64JKVTTNIJCPjSUp6asxfT6NDcFvCtjOb+GoiivY8muQCYARsl7unoiUtbK7NqE0sZx7d5A0EdGoqi342yu0jzrDU8oa7q8xyA8+NQXeO/hd9iIUt26D5vnWN+6R5CsABdhe+ce773xFUQMq80Jm+2Wt7/xLt3VOe1qgzUmZ1mY7Yez7aKMTbFyzcik9i/gZ2mrPDNH0xzM6a+yBkx26ohM/pw6mLkwTcBfzAe/RNgfrvnmV3+PJ4/fZ6BhN1i22w3r9jbEQOf3UIGtW66vOuxqBQaCHqHzBI3UBqptg9GKD88fsx8CtWsS+GoEaytiFHzo2B+vwQi1WKqqopaa60OHisXaRCH0GtKaWm1ZNVvC0PHk4hx4xJ3b91mfnibwXhN4fXFxQdcfqF0aPx+zrwXP9eGKqqoSsa0V6mpMVWEbh9hEbivgxBD7gcPlFVpXVKvnqMViJTLUDlvXhGHPo/NznKlx29vUVUNgQDBs25rTtUvXK6BEHIJydf2Ep08+wLqG1WqbCQkwVrDGgjH0XnEGonNEYLVesa0N10NEYqSxjrAKXHtPePw+RiKrzYbuMLDvDtjKYawQQpd8QDUpgL3QD9fEVQPWMrgOJxXH0Kd1poG6dThTkyjBBKdb03A4dvTRsDq5Q2Xz71WJPhB8h2kVsQ0YxUbFSxg/zwxCMIqJETGJNDHGJ/WuGoYY8DFyuLziOAxs17dZ1w2HbuDl51Y8uuz5wfWKd08q3uoVaU9wDQQ/cNzvqY0glaOyFWICXkPO+QJqDBod1lpKJoXgD/SHIyi0J7eonCMai8skj6KQlfNeDWIcVb2F2mPEcz10qS8obWVAWoJGevWgDqOKc4qrN9SSDgQcuwP7KKxP71PVFcZWmKgcw8AQPUYNpjpBqhNsE7HDAfVHroYd+ydHnl68zXpTcbI94fbmBG1XHFnRhYYuVPgu0DJw3D/FSQ3WYQSG2NMdrugOB+rVhvX2DGMqjLGogK2UkHdZ/ID3PcNwxOJpViuMq4mmQtRgohIErG3SNwUNaU+xFtWAcQJqMDESjaIxoBqwNnK0jtjcBhF84zCugsoxRItEBfHgB/pKuLyyWAziWjQIElhssf9/W+KZJZ5Z4pmx3CWe+fjEM//Jf/Zf8O03X+Pbb3yTj9o0Rn79n/0af/3f/w+5/+Cl6fUlnlnimSWeWeKZJZ75U49nlkNPiy222GJ/QnvjjTf4xV/8RX7lV36FL3zhCx91c3jllVf41V/9VX7pl36J11577aNuzmKLLbbYYot9bMwISfkCJB1jBi5ViQJRElwiGaxPf0kCNVBUBkRTqCVZaScJg85gaYIMzQg2F+xeC6o7ghAF5Cv/laoiCVS6gbKPZemorL6hXpYJwg1MgG4BgYvMcI69K2Q1rhDHVPflDWSVp4yAeAFDRTLoNgNQNYOU5Rkzq6soZyewGSTqCFZPvc99jGPDiJmYKT0q/5sRY9SJH5m9ltqdYfgR9GVGYhSgXrMSFeZYbQJ7J7C/qIHHaStlSBnJBO4iN8vQoszMgxGnIgrWecPKnJQK5gTDVJ8w/TnyO1MbS1n52em5pIZXyf6iTH3PYKrRQoRo9u9Sho5/qmgG2hPxMioqge32lE996jNsViusdZyfP0FjAk6OXUfTtDx+9CHf+NpXePzhW/yf7/9PPHjwEn/1r/4Cv/F//zPWJ7c43V3x2te/wtOn73E49Px/7L1p0HXZVd/3W3s459x7n+mde1Z3q6WWBJKYpIBiIVnggAHjioA4gRSVUBTlKqpSSUGwKxQFpMpUQoCUKCiGclIpE77ExthGxgYhEBgERkhobNHqeXj7nd9nuNMZ9pAP+0zP2wQHDGoQZ314u597z9l77bXX3ueu//+svazNyHXG0c3bPP7pj/Lw/Y/y+Mc/yqUz57jrvvs4Wh/hJUJdce3q81y69AD33/8Ay6NDds8ctONLx3b3pwJ0xEZHoLV2C/0cdcDpyO+kJQBV8v/O3l2Jk/E8D3nUw7x2RMuwMkd7RDfprYOMiaZhp0rKxn7NSEsEpYuHLG/Vat/1HXsfOZWePdYtphzwYmeXB9/8Lla3X+LSpXvJF2ega6vdI/L5DjEKOzt7mCxnPtthfukhTm5dYXFwFlUsTrUtdCcitOC+dB71ch/u/uhPAmj3jdivrY5aGwYRJbZ7cDzVZ7cv9c1GwHt8THuxFqGpKy4//wzPPP8ULsJJCcYo9s7eg1KGGCJoi9GWTVlhi32IQl03xFCxU8zJrcJoQaE4Xm+4uTwiRotVpt0rIwRHXTfUvkbwaK3J84KoYL2pKatApnQiNcQRsYQYMZKyMEOMWDtjYQtcDJxsS5Ynh8zmc7z3nByvk20zTYNGlAWtUUqjlSGziQDXSlAqHUPf+VyAVNogOMrVCa6qKWY7oHNEpbn3gFGCVQZkQTy7S+kbNtsTylVFsbNH1AuWZaByDfNckWWGELecnBxzvFxj8l2yTKEiiDHsL2YYoynrQFkFrCiM8mgLTQgscoXVkYVAVTrqukZCjfaO2tWstxuWJ4cQwRYLCAaxBUECohQqQK4CSjR6kZEbjRFJZRXQHOiiLQsZkCiE6HBRE4IlNBWHyzW1KIrZLiYaFIKLyVZiNM43VJslyApbzDFKg0qkR4KgE9lT2JzCRPYymJsMqxU+RJ65vuZwtcHmBfP5PipYogjbRvEHL2xognDjozVaK4oswztP8BFlDGIjhEDtKsrtit15Qa4LnFiUSjNmrCHXsG0a1ptjNpuSncUBKiu6hzgSFZrQwuWCKI2OoERjdQaxPdECi9EatCb4QBkDMTRY5dDW4OuAbxJVqoPgJOIlYIoDzuwVRJ1B1IDCxQojnmg0ZxeWwiq2ISdIJGTnaE42aF8hsSbWJ2zqFdsbh+hbR+wtcubzXeZFgSrmrExOXUVitkBlO4S6ZrU8xvmabDZj/+AcRms8up1nDzHtpv1vD6VAMkTPkNBQVQ7NFlSZMr+VoLMCjEaiTmWFpN0V25INMUQiDaGq2G42uOBROmKVoIqcKAYrHnykwRNUwDkHOpUFmjtNKQ15ltasEYPYqbzdJH+yTPHM0NYUz0zxzBTPfG7FM5fuvpfv+YEf4Uf+5+/hmScf55WWm9ev8r/8wHfzD77/f+Ou+x6Y4pkpnpnimSmemeKZVyiemV56mmSSSSb5U8jTTz/Nu9/9bt7//vfz8MMPv9Lq8KY3vYnv/u7v5ju/8zvxfkr1m2SSSSaZZJI/F5FIl8eoWpC7A8f1KTg2DqixgMQOCkzHmqf7aSkGRoBvaMEXnYLQvj9hQLM72HkAu4b8zAS8ptNR7iQI2n868HvQ9DSw3H7QkQmhRdC7UgkqDmAbLfCZwID2flHEGAYEr82U7tC37gQZ1dtgaDvZpYM2B1KgG2OfVd0Prc1M74D2DgztvpXThECPwstgtQFATQRDX+WCFjjsCZ/Yt9nZbADBuyZHJ+O0c9b5SOwQ2T4rO/bERKTzkwHYjzIqydDaqidh4jgDmf6mISO9BZxPZXAPaHYPfo7mpdOlT2aOA4EUgRhDTyZ1vtTNVOeRcWAc2mRi6TNVg8R+DAHVkwgdQeMRtFLszBfEGLEiWJsy0UyWce2ll9jZ36PILV/wpV/Gjcv389LlZ3n+6c/w0hvexKsffSMX7nqA8ugWH/vY77N1jsX+AT54/uiTH8Yqy7NPfZovfMuXMZ/P2Nvb4+KFe7FiuPrCi9Te82Vv/1vcuHqNpqy5duMK890dlDGd9Vp/75xjMMSpzHLSGoCUQX+ndKVNklWSEVXrGv3cddeNfK1PdW8bGGZ1yIIeVIvDnI5YJRndIbRrO0ZUlL6dU+snxp5cEEANtecS4dDtP23XShnuuecBLjclYnNmi0V6YaklVpKfKGa7B2xXt9k7fy9Rae6+/0FuXHmeC/c/QpbNEaXaEhajBUDsSZR+qEJv9+HYiJGtu1ELRFH9bsH40s7/2/XRn5rQ7t+JBHYQWv9VEecdN65e4YknPknZeLalY7095sz5h5nNL1BHh7EpkzP6wMnyEO8ctIjoNEUAACAASURBVBnEeZ4zt3MyHYghEIPixskRx8sVymZoJTi3oXSCMjlaWbRWZDZPILMYvPcsj1dAAq67p4klYrMarTUXDyy6Ea6s0oxvm4bgA85vKGvP0eoG3lfMdMHO/jlslhHQxABBZ6CFGCKmNVtUESMK0CgiQQIuRLRv2GwOURiyvX100CgleBTRCLnJWBiFsZpN3VA1EWMsu9bQlCu2my0SS8JiDx9yysZhwjHb8hiUIs+L3nuVEXZnllwC5XZLQOGaGhdAhYa6Limdo65n7X6l+n1UEQiiwRTMd+dki310KKnKNT5EMonMCkumhFxAJCBakyuF0WC1TvOF4GiIMVL7NE6PovGw2WzYbLcoPSPLLJBKBDQEVIwoJYgyZFpT2BlVjLhmS1WugEgxm2FMjhONBEVQCsSw9TXbxpOL5+jkJrc2kcV8n6gMWhTGKjJtuV02BDRKK5ZO473DREG1pJOPARU9ASiyOWQzqlCx2SwxSmOMJbM54uF4fULVOGxmObM3Q6mMqFJZHqM0M5M2+nUtuG7dxEBuE3lQ49u1k+yIxJYoiohYvLOs1ye47SHzzBKioq5rVJ6T5zlRBXyzhdCA2JRxDYhvsOIRVxJihpXAmx4QZo/cx6++7ybRO4JW6MVd5L5CwgpXbThabThc3WK72aJ9ye7enGLnLHMFGk+pNbOzuwRSaQeFJgSPbu3lfZN2VxFUEJTo9h0QhbKC+Jxc0vgiiqZx1E2J8RuiaslAbVGiof2dFHxJWVZU2w1GKbJZxlxrXCNEW5KZDBdT6Q/nUj52uSnxribPckQr1jWo4NiUgtaSiAL98mfPJJOckimemeKZKZ6Z4pmx3T/H4pm77r6Xf/D9P8L3f8/f59qVyy/T/7Mtzz39BP/y//knfPt/9w/R7VxM8cwUz0zxzBTPTPHMZzeemV56mmSSSSb5U8qzzz7Lz/3cz/F93/d97VvFr6x827d9Gx/72Mf46Z/+6eH45kkmmWSSSSaZ5M8sngS+JhC+g2W6TOWEPKWMyATs9xmLCgijA8hjANGkgDO2mZIDyCddWYkxlC/pRYB0v/QZyynjsj1cPo6QwS5rqwWmpEfLT+cSn4bWQp9J3KlzGsCPp/ql/5wRARDaFxyEEEPf1rgn4XS/nTZhMFDSsgXD+zcm4nBvb5n28ygQYjzdeI+id1ZsM6p7m98BLArDixX9rMa+sYF3aeetBUYkJgW6TMyuTAV0mG5MKZ10WcHjETA6ur6lF+Q0ORDoMtbpbTJoNR7CYN+ekxgoi0HHkcQW+O5LdcSBKOjGgySwvzdNHOksqic9umzqPuOZjhQYawd9fZPOPoBqO18tj7l58xr7u/uEpqHcbji5dciv/8q/4vPe/Ca++K1v551/8+sI3vO+X/nnPP3Mkzz5mcf4G2/7z5jP5+QinD1zhqrcMp/NWZ7c5tmnH+elKy/yznd9DUoUX/G1fw/fNHzg3/wzRBku3H0/++fPUmRzjg5vs79/jtV6ydHqhPP759vcv3ZeRse1j60eZJibO2UY48iAp8YvvZ06AJ/R3Ke/AyJ6KOfR/dPzWNL3k+a6pbXiyI9Haxk6Ak2GJdpd1+qXSpRITwidWi392owDsSSCxIDNZ8yL2eCbrW9J6y9n7nmQ2y86BGjqLWf3z/Dik5/CNyWbesN8tgsMpRmQ2Nq7R/R7q4xt2l3ekyKDmek2j46QGVb54I79CVdqIPCC9+2+kLbtF59/kRcvP8XtG9cRnXN0fJvZ/jnuuv/zUHqBqJyZLgh4yu2a9WaN8iDakBlDZgWrhBA9tXOUlePo6Igm1mhlqGoHUSNqQT4rsFqljqMHScDkZluxKldYrTFGJaJTIBfLrhUevWB53X2ap643XD4M2NhwtC2pQ2gJ3ogt5szPnKUwngt54OqNJbsho1QZtbJo0biomFtNZhVRQWEMhTI0QWhcYLk8YXlyC5TBZDNyk4EShFRGQAdFiILVmsYHau9BaSSCJuCVIS/OYIpAsz2mvP0SQRTKpRIZel5gM0tVVe1carwylOU6AcERlEmlB5QxIAZbWIwyBO1Tli6mJbwbms0G5zx2viDTJj07dcbeTkbjaurtCU255czOHmLnRNE0ETZErCiKTKO05mBucXXD1kHdkqjN9oSbJxuUzTHFXiIOJRKipGz+EImi8aT9ssXXyY3FaCAz1OWWsq7RzpNZ0NmcMgB1w9wGTpbHbMstOtthvrCpTJLKQGuiCpTB44hkWhCt8UEwLalhpD0xLUYan8gp3z1nQgK6N5s1uC1GBBdCArTNHGOgIRDCBrxGSSJNto1QVY5tXaOKOSZAiB5Xp5cmYkhZ6KgMa2conRFVWteCYCUB2pW31GXAZotEKG9qtLKsKofCQcwIrkJbQ+0cRhtC5fCypCo9xmqObmwo//B5XNAsy4AhICYjhBqjc1zVkGc5ro6EOMNXnsPLt4nhOgdn9jnY33Jmfw9jHQ5D5WBdOera4ySnrktcnciJLC9wTUBpjYQtGJsy3wMEAtYuCNGjUATvqaMQfMMmOsptzcx4ZlnOybZJ9JJkmMxii4IqOPABrS3eteumLgmhZmexi3fCzM5pTEFwNfNc00TBVY753FAHjbhI6SfsZ5I/WaZ4Zopn+pameCb1NcUzn3PxzMW77uIdX/k1/NP/+x//peBEfu3f/ite9erX8re//hvTC2VTPDPFM1M8M8UzUzzzWY1nppeeJplkkkn+DPJDP/RDKKX43u/93lf8xSdrLT/2Yz+GUoqf/MmffEV1mWSSSSaZZJLPBUkHNLf5vG2WqO7APhhl1XXX+ZStGiOxB55UC0S3xx+jSJk0CXjvyAdEtQREkjgGv+iO1++kRW2lowBir2fK1ox9aQQR1SOCHdAcT4Hro7Y7zoExMC/DzQCievC0A++EAUxNfcRTwNyd0unQZfMq6YtqjWkSOiC6/6bNXO6yOpNVZchI7eaizwi+U4M7Moy7Wzg97v7zEHsiIY5IgE63Tv8BWO2V7YF99ccA9XdQBqkMRGd7ScBtB7x3ZSb6HmSwd0cKSAv0j4bVjp9TfatRJvcYC+5oiPHYVAs294q1/vRyu8WhJARD1jlEXONRSqHMcFR1NyeRwAvPPs3TT32a3XPnuHXjGg8++DBPPPaHfObxT1M3Jzz9zJPcf9/9aJ1x6a77eeeXfzWZsXz4Q7/LzZvXuWA1v/Er/5KrV17EasPq5DZ5MSPPDTabce3KZR77w9/jnvsepFjs8uLV55nv7HHhrru5eOmejgqgclte/ZrXM8/nQMC7iLZpkKpF1AcChsEWEkaE2DDpHQEzLOFucjogv507JS15RW8z3Tl8jBD8qeXXJwXHwV9HnjfWkJ70Gq3pfrZH/jy+u2+xHVNXzqVrdFg33VpI67NyDkR1udyp1EnrBxGYF3OeOzmhWh6h84LGFuztHXDr2kvc9apdYnAolUjSYV8Z1lunV5d13+U8D2V02tkZll/fROiM0Oo72jrbCyLO+wRkao2IoIHNes0TT3yKZ55+goClWh2D1uyfv5/Z3t0YO0tkWgzU5YbrN67jfGRn5yx5YbBGMDhEAs4HygaOl8csl7dQaLTOiTqnKHKwJj1XIvjYoEWhTcrKPVydQPDsZBqjVDsnkUwblMDWeT50eclT1z0vnXhoj+83GowoytJj7YxXX8z5mndexB9uuXptza9uPddOTijrNXNTsNjZZ1YY5oXC+4DWCdxvnKP0AVctOTq5ic73MNYy1/DQXRmvuttQaMNvfbJkWSskwGbbEH1DVMMpCz46gq9TuYDg8OUWYoP4SMBBtmBvvovKZgRJZEOaNJVKs0gqRxDFp3WpDBFPjBkajZaAknR+Sb3dUK5ukM122dnZI6rUlg8eJeCIiNUYvQ/ss3SO4806MUpZjtGKgGbmhd0iY9MITcgJElCx5vbN66yqhtl8jyiaGB1gkJakT8RJyihPPwFUe1KEEFV6JmudkWlL4wPeO5p6zXZ9G5NbSjJO1itClpFlc7RJZRUS1hDBO3zt2FZrdASfZ3ijEK+oY3qJgOBovCMztl0LKVtZa0G0EL3FhBmb4IjzAhsM3lWoTGGzGcZYXCQ9gwCn2l8htqHI5iht0g7jPTEGRGlcdMwyj8eQaYVoi251zgTKsgYPly7dg7YZoNEi+MpTuRJbr8k1oA3LkwaVF0TfkBlF6XfwPuC1SeuJHBMN3nnmsxnVtia3ltW2weTQ1IpCZ8z3d3FuS5XtYIsHCdsVkgvHzrG5vcKaVB5jXszY2cloZEbp4GhloChYVR6PI1hLcI6mUphQIxgyHShdQKSm8ZBpqEJARcEoQ6YtwacTCpCzmANLvS1RAtpGEI2xhiiaIKDE4iSgJEdLpEGjrEeibjPdI00MaS5nO5Sq2zfDKRJ7kkn+OJniGfp/p3hmimemeOZzN575xv/q24gx8s9+/v94xV988t7xf/30/06Mka/7u3+v/XSKZ6Z4Zopnpnhmimc+W/HM9NLTJJNMMsmfQeq65id+4if41m/9Vl71qle90upQFAU//MM/DMBP/dRPEUL4D9wxySSTTDLJJJP8f0mC7RNE20H4bQ4vdMB8e4x4AkmHI8iHqwbQVGKX/SwpkO+OZe9R6xZ6jS342r9G0H4n3VHwCqRrafSsHwGKCkngCgPI3QHzIkMGZpsb2AOKsWugs8A4M5NRjrUkcD62REdHjvQg3SmwfgClpX+LYhzUqh7Q6zKPpcvOJfYlJYQOZG7bENCRAaSOLUza9tfN1mgK0neScst768aBojiV69q22wHyKkoK0KXVtR8Pw1jbGep5ixF+PJ6mAVseyJFREYo+uX4gA+7Ir5bBk5AxKTP0NCY/eji1n08ZzQe9b/V59Kq7q/2sT6MegO+R+n0fnb0RaFyNzTIUui0rMlyvIly98SJ7585xzz0PEWMC/37nA7+KzTL29g6IvuHajatcvHg3tXdkswX33ns/j//Rx7l27UUeec1ruXV4nW3VYHTyxUU+4/z5e7l49108/5nHuHV4lXMXLvHgax7l4PxdKAms1yse//gncHpO1jQ0Vcn7PvAr3Hvfw3zJ296JUpEbV68xn++ws3fQ6xxiR8h0RM1pYKZfyz2B1rlG7PkjofOdUzRRmvOWXeiz1Tt70u82Lcg9ZoTiqJ1hrY19pT9AodVyTGrJ6N5uJ+jXq9wxlHYf6cffrrlZUaCUvoONGIrXBCLn732A6vgmexfuJctmYDOefuoJ7n/NG9lWWxbzRe/9MUbUmNxUI8+Ow7C7NdT7Mv1W3K6LYS76fWF06kIMkePj2xRFgVYWGxWhrnj6uad4/vmnqXygriPLoxeg2OPM+YfQxS7OO+rqBAmO45NjgqTsUSuB7eoG5HO2vkYZEAybcsPy+JjgHXZnj/lsD61NGpeXdq+IIAGtNCEEqrphvVlhVGCeawiKKjRE5/B4ypiBaIIKBBXYVAY9K1JWrgh15agqj1aawgg7KvLB37vJs7e3mKBxkmN37yHzkbpcc+PWZRazXaqdPVA2Ad1RaKotm7pEdGC2WGBVKj2wMJoH5poHM9jUG3K/5LjU1E2DDw1NUxONIrMWQVBakRlNJorGCyEW5HsXKfYsuYUZjqvXTjBBsMZSSk4tWbsveTJRaAERjRFB60ghNj1/0rbMaltxsrwNIbDYPYPRM7RWeAmEIChtWt9onx0m4kNAjMYozbZe02w2aGPIzIwG4aSsqZyn0IqqWXLrZEUUhZ0VRHFYgaAjRneUoyZEoXZC8OkXgwkNKMGIxjU1oZ1DhUvkVIgE7/DeUR2eIDrHN5FCZ4QoZEG1J1Uk4ka0x2qLNbsInlxZJMsxSvf7QYwxnVTiy/Y55fFKIARwnmW1RZRl7+Bu8twAGh8ddfA0dWRbrhEVyWyBzhZAQKLH6KzdZyJKLEoZQowEgUI0ElKJK4mCRI9GiE3JyfoQXZzl/ME5XntJeN1Du6w3Hmcsv/nRIzwapXZpmorN6hhrNYXN8Day9WuK+ZxyU5HlhmXlmeUGV5c4DJmA2IwQwWQLoms4c7CPr0qW62NsNmO+e4BonTKu52fRSiDU1E3J0UnFzcNDtHh255ZiVnDv7gxRmioolmtLUJrlBqwSXLlBsQGTY7OMxnkKa6mcZ5HZ9HslNBweLZkXuxycvYCxOSEECmvTc0QiMSpCcERfo0IDjcfOLJIViEq+qiQCptU37W8qQrTd74VAJJWymGSSP0mmeGaKZ6Z4Zopn/jrEM8Zavubr/wt+833/muvXrvBKS11X/JOffQ8K4av+7je15D5TPDPFM1M8M8UzUzzzWYhnppeeJplkkkn+jHL9+nW+4Ru+gV/4hV/4S/Hi03w+50d/9EcJIfCzP/uzeO9faZUmmWSSSSaZ5K+khBaA7Y93hx7Q70D2eMc9A8wrp0oIpMCw/T62dEKf3hiJolpouCUDYgfixlG7LXpIoEULSaAfHboOUY20iiM8Pbb9ddRAB0AOgGaM0gOU3aBPn77SUSYdMDciAjpgPw7ZxwMU2eHhI7agly4rO55+Z2J8RRzB5DHp0ZEz3YsXnY3GxRdi7MCMAbgeDzm24xSk7aPNvowdMD7omJKDu8ziOHTQz5EagfkjoqArv0BbIaK3S2ffgRga7NPCxu1XarjqlI6q00uGvPnTsHV310AQjcw+6NED38OLKqcJh7GN6ctfRBls3ffYcQ5RiH7I2BrIoTS6IMIXfeGXoa2lqkpWyyXV8oQin1NtN9worzHbmbHYOWCxe8B6u0a858pLl1nMdiA6bt26zqVLr+Lqiy9SzGYs14cc3rxO0wSWq5tcufosZw8ucHR0yM5ij3d/03/L4a0bvO+Xf4Gz587x9rsuYULgpcuXme/uoXJL05Q8++STfOz3/x2f/9Yv5fM//y3tXMSBGOmX4sj/R+NXnPbzzmdk5HucAu5TC350fSD5bedHA7Y9zFDXTu8LkJK1hbZUXbtO41BSJP05mjcZ1levb5uJmk4t6D4fLxxGntLuCtLq1AH0vSiiBPbOXuKwKimKOaujW+yfv4vw5ONs1ieoPMc7hzIWoX3haeR+ne2Hzbadi9E6Hr4efJbeVwdipeO6fAg0VYUymuPVCWd2z3Dlygt85rGPUlYe5z2bcoWLQpztUezdxXznDGhBmwKtPeXWgynYm+20VhCUmJbUTED5ZnnIplwRiJhMY7zD+g0uGgIaEZV8RtKZG84FlusTvK+YW0MmgW3lqZzCBQGjyOw+SlsQj4jDhlQ8RkQIPrLcrJJvKYU1EELkqUPQ4il9W7ZHZRgMooRYWGSWU5cV5eExEc9isUu9OqYOIPOcTAzeR4KvcHXDWuDXP60Jn2oIWtOIEJRCZQWGHLtos/5VQKNQWiG+pqxrgsw4sz/jrY/u88ZHF7jjmucun/DbpebWZsPm+CZG77C/s4OoDJMZcvEYoxHRqChoHbBiqH0kesft46usSoc2BlMUaG3QRHybSa2VoNsNNWIQ8e3BAy0RLUKe72ALIboGV63w1ZL5bEaz9dyutgRlMNqCtBRzjBAb6qZETE5E8KECNCG0vxLEs25qtBgapdBaExVoZUA0EiNGaaRuQGXM9i+wsAXbqsS5hnTSiWee52S6IEjE2AKRtLOGELBEtFIECTgcGosPDh+EoJOeQTIkeNYnK1bllmxxnvliTggRLypl40fNTAtBeSTm1HVD6RoqdxujDcZk6TQHBCNZO96aIJEQPRIgoFEScTFA41hXx7gYyRfnsLagjnC8iXzwE8esy4r7dg1WgSiFREEZ2FmcxcdI2QjQIDED8eRFhrIZWTBEtwIpyFVgW9fYYk4Igf15wXbtKVcrdDZn/8w+gqSTYmJAdCSEgFZzospR2QwxDSbWyY/Wa+LxCquOWMxydheas/MFSmUUBraVUNoD/PKQQikMijgrUFqzmMF2vaLxDsn3OXPxLFo0iEqn6OjkuxIDPgYUgVwXoDI8Hqeg8g3iGpQ0GElZ7MqCiCGqdJqeEiG0REwQBdEkkn2SSf4EmeKZKZ7pdJzimaHFKZ7hczKeOThzlu/5/h/mf/2B/5Eb16/ySktVlfyfP/1jIPBVf+cb0aoj9qd4ZopnpnhmimemeOYvMp6ZXnqaZJJJJvmPkA9/+MO8+93v5pd+6Ze45557Xml1yPOc97znPYQQ+Jmf+ZlXWp1JJplkkkkm+SspSjQxJkA6EfrSg1I9GD4GDtusxg4MHrJypSXyB5Q6gamphATSZZ522djSg3djaBVOQ2BJK5WybNr+EjAxJi9ij4yNj/MfNTn6o4WhY6f/CJQckQcSh2zqU8B/38eQLd39f4e4n+YB2tGN+hvUiaeuktbIAm3APwa8B/RdOrtLgoOkBfOHy2MLuA6WjHGkVz+vtORIpIdkR0PtsrC7XOKO8BknxYq0AHF3bQ/Gj8iXrq/2e1pyord3a6Ne255PkDvG1Y+mJRVGbXdz0bc9IpG6z7r57xwudvZuyZJWF6H1pVb/OGY+RE75bCTRWRrp9ewspgBH4Nb1Kzz1mT/ikUffwOOPfwofGipX8eQTn+DBhx7hEx/+Pcx8waseeoRCZdy8eYUnnvoE1XrNb3/gfZg8Jy8yzp+/i/N338PtmzcJrqKuGkA4t3+Bqm5437/9Re6/+wH2zlxIAPB6hQqeg72zXL96mS9+y99gsbNPUcw5c7DP9etXeOnys7z29W8mM9mp9SS0II0M67u3dxw5YmeX0fwlE6vRmhmIlUQIpTaCjOZdxsRTR/YM+0Hvy6NpVd28c3quX7b8W98fl7A4pe/Ys0713a6HvqhG69d9+ZPY816IYLM8HeFf1ywOzhJCYG+ecf3Zx3no8/8TmmrDzO6163vYD/uhdSRNXwZntA7aQXT99uQHJJIwKlQkgZlKCN4jMWKNASlwmy0vvvAMH/r9fwdiKfbOcXDmHnIHW9dwvlhwePM61uSIUfjg2FYVjY/MihleQFSGUgnQdd6jvKOuNwTg3JkF+zuWB/Ysn7pccbSuqOo10dVYa9EmR+czvPMcnxzj/JbdYk7toVQF2uYUuQaEoAWJmtASH0ZFjNXMlKHabri5WZNKWghGCYVWnN8pKLRh3QjbUBOjJogl0dIBrcBHjTYaUcJmdczm+DoqRor9i8wkx+ocJ4IRi25LGTYRtBgQjwEUgURSe6J4BNBkiAqU6xOqbUW+c45M5xTGsLxd8y/ef8TRFnasBjHM8gVGLHVdsjy+ieA4c+48qijQOkv9AShFFYTj1SGHy2N0iMwXi/ZEjYgoTZFnbOqA8hDwNMGRaZuymb2jo/p9jLjQEENEt89gcYG63rJdHgMBnWUU2YyEaGdoyfASaIJCmZygNU7SaR5GFDb4BJaLxsSAao/x1zonBIciohS4ckvpKnS+YJYn22qtKTIhWItHUzVb6sPbzGeW2WIXCQsCkSgeGzVOCy4xBoQINR4XheAiRIs1mm25YrVcgc2Y7R+gpSCIxhtPjBEXFVa3LycowUggMxYlOVVTUTdr6vVtMh8wu7tYcyaRvQE0enipQQneBar1MVW9pdg7YJbNEBEMDUZpnj3yEDwSFcdVKgdV6JxNiCRMPf2+0FEINqP0gW29Yq4CmVKoXNM0M7Iip1pvyTLFPCswAsv1CS7C/sEllLXE0PVVQUzkq9YQY4MxBQ5N8EKMhqA9xswR54Ata19zfKtE+RtkVmOskOeKu3Z3cfsL1psaJ4q9nTmrdcWtky1B58z2DhBdgKj2p5eglMKTSFwRi4hHIejQfg+YTBFiKvtAABcatlWJbpZYaxFlUGKgPSUiRoXEmrou2W62L9uxJ5lkLFM8M8UzUzwzxTN/neKZh1/zev7hD/wI/+j7/ntu37rJKy1NU/OPf/JHEKX46q//pimemeKZ5BhTPDPFM1M88xcaz0wvPU0yySST/EfKRz7yEd773vfyHd/xHa+0KgBYa/n2b/92fvEXf5Hr16+/0upMMskkk0wyyV85OVXKQUbgLwkMIIb21PwIKEIUENWDpXSAbBzdDHQprwlwVe0R5uF0BqyAtCDGndh+DxxLlwU9Knsw6ufUPe0XSmI/ri5LsCcIIn1f3UsMXXddL931XWb3kE3bdTrYDLqhS/9dB/bHroTGGHiX8VH1CdJULUKdyBp1pyFOZacONESb3dwC/KEfzTAnfQbznUf6y1A6I82q6v9fWqN15Ew3su77TgnVghHjuRyjxnF0cTdfXdbyYIthPKeA3Q7LvyMjvethKE9xx5igLYEho+uHsY/7GufWi5y+QkbtDZnq3RWtfRkyb2VEZ+n2hZgOrl4dHvHB334/Lz7/Ga7eusIszzl76R7Ox4DKLC88+wTnLl5h4c4SXMXZ++/j7V/+VcxnMz76kd/lwjlLvrPP9etXefUjj3Bw5gJPfvqTfPKxP2BVwute9wVYnXPzmSdQJvLMcxvkxeewojg6PuRDv/tb3P+qV3Pm7DnquuHkxRe5dM/dXLv8PDt7uxwfHdJUFYXJ2rMIuiz+kd1aND6Vbzm9Gsa+PP4skUf0wHZHxHTXd+tqdFdLEJDWfLeOZFxAZCCQOoC8R9JHc92RDt067calunnt1+gw59AB8qr/JI6uMbRkWhyTTdKvdd3etbN/wM0rz3Nw6T6Cd9x997089YkP8fCb3ppIjcaDMT0RhdyhM4PdRNoNjI4IHCymWufr6ZHx3y4M60Qprr10ld/9nd8guIp8vs+5i/cx27vIZrUm6MA8n2G1ZWf3gM3miPnuHptNRYhgVYYxqXRCDCEd6R8dRMfxakXTOO7eN3zd287z8cfXrLcGjKbY2aGIBomRqlyyXl1je+MyVYjkswP2FpfIMkvUFi+K/oSFKMTgERy5VmRakWczYuO4cv0aTkvKsk2TiTGW3SKnDpp1owjBk+uc46aE0KAj+FgjRDIrIJ4VisX+XWTFDB8c5WaDbxqsyVFZ3s6mIApyQCuNKIWXSKYEnzilnwAAIABJREFUFaAOERcNLgRiU1Ft1/ggZIszaASlPOs68NgNRTSahsDGeXIxLXgfybIZMcuoXcmtoyW5WXH+4By7u3O0ErarDVeOTih9g8k0M61QIRHkolI2uK/XhKrBN4KXVLLAUaNjoGkqtDaozKZjBIgURmOVgtCgvEGyfRazHSRGGl+mfTE2GGtAG6IoIgYJIZ1EEFxaq+2pEYhKRIy0ZaNIpSm0VoSm4WS5RCHkOweQFTR1jSfiY0CrjBAiWmlm9gDys1TNhvXJhkxvsSbZLjeL9DKDEhQm+bZOwLPzDldtOb59TFCCWexhRCHaoBQoFRDxQIaRDKM8USJVndaZChpNQKxC2RliNdF5Nk2Ja26TGY2onKjbolLiCduKcrvCGMXu/hm0LYgiZNogBCpXU4eAhIARRZQMH4UQAsZA5QNBAjYqfPCICHObEewewVWUUeObLfgGV5bUdcP+3oLNyQ3EFGSLBTNl0BpQHhGN1oamiQRXUjYBW64x2QwX0t7nY8Ti8T5Qu0RkaLWDGEHLhhAqythAE7hya8Vnjp9lf65Z7O2RFTlebVGScenCgi1z6gZUjEh0RMCHSAwKV22xVqVnBib1TUzlQAg416BCQKwliCJKJMsUBMH7mlhtKcsGwWFo0GJZrjZks4xstvuyZ80kk4xlimeG7qZ4Zopnxn1M8Uw75s/BeObh176OL/nSL+dX//U/f5n+r4R47/i1f/MveNvbv4KDM2eneGaKZ6Z4ZopnpnjmLziemV56mmSSSSb5c5Dv+q7v4pFHHuFd73rXK60KAF/yJV/Cz//8z/Mt3/It04tPk0wyySSTTPKnlB7ABXrQG0lZsUJ7xHhARLVHgA/wehzf05/7Hns8voNPuzPhlShiD8+mI4MHdiBlm/XQa+wA607R/rYemB3D5sgA2nbI2VBuoruuBcC7Nsaot3RdxO7dBkKrFe0YZKTD+L/dNX1uaMdMdNngvZap/wS6D0PvCzx05MLo/3ugvx9H7O/pVRiBh3IH2RA7cFFiqisvAzE0zFg4RbzcCd33pIrEtq8uCzgBsadh4hZm7omPbqwj0Hlkn24MA73AiJRKomSA9PtSFSMiYOg59pqP4OJW91EP8eVkzXjkcXztGMo+9Xn6j9XpuHPVOZ4MJwuAcO78BV790COcvXCWZ554nMMAb3z9F1H7ipu3bnHvAw/y5e/8akyWc/XyC3zgyV/mvvP3srOzjytLvvgd70CJYXVyzO988ANcOHcX1156gaZxZKbg0qX7uHj+bggBj+PFp59iub6O1ZqdM2d57oVnAHjisY9x49plotK86c1v5bmnP8MDr3k1X/TWd7Az3+0UHtmlBfrHJurGNvpMKTXYcfwST0sMxG4/6MiCPtO6K7xyh/1fxhYmwDu9McTQ/2j9dB125F66Znixadhx6MfVzfYdLjQeaj/T0rYSEUI7Bhld010ZEbL5AZJdp9g9QwieplxBvuD49g32z91FWW4ozO7LyKuOlErmaonF0fbX9aE6mrXfOzoFk529T6UBlES893zyscf4yB9+iM3yiAdf9TBf+IbX88JxYLXZECPYfIYojWsqssJw68Zttl7IbU5hDUpbYgyU2xNCDFibsykrlutjBMUsM8yM5rf+cMuVlUZQKDXDiKfxDhcrvG8Iasbi3Bl2ROG9Y7M9ptwG8sVZrJ2hVcSF5EtKwUxpMqMIeI5OjlhvlgQd0KIRpVNmq9JkRrP2nug9ggcfIHosDUVuMUphlSUQOT5Zs2kis8UOyggaRYGhsAXb7SEnJ1ew2T7Fzi4Hu4tU/EZBZhRKDF0xkxAjMz/jZL2lXB7hiChr0Voj4hDx+GiQbIbRqp1XTyDiowaVkeFT1i6OTOUggbrZ8PzVF5jf1FijWC63BGXJZjPEOyqnIXqiaIyBGLb4llQTa8hE2rIbCkLEFAuMaJroAY+JqXxEXa+J3rO7v8uDFxecOTCI8wQ/47HLDSerkvX6CIkGO99DTExlBhByFfGkDHblfbue2rIukqXngWvwztFUJUWxIMsKgs4hNAlAFoNSCq0tAYVyihgDjYpoO0NpwYct6+0WGz1x7smyXUyeU0UQH9LpFN5TL48o65Jstou1M4YnN3gcwQe0EgrtcCHiYnr+GKVS9nx0dCWQMhxKR6LS6Dijjp5t5XHVIcFVZNZSbo5RWYbOC8Rk6XSH0GBE4VVbzsQ7qnpJrjVeMkJwECKZQBUjPgrV6gibFygsUacM+xBDIk20pa5rYohs155qfUxdOqKK2CIQ1mCzBY3yifpUOu19QQjB4PUBiogPBtUoIpHgGzwBFzVNI+QmZZgLAipHqYIQHKIV8/09TL7L8uQmN6+smM/heH2FnXnBzu6M3WIHbwsaryiDwbuCJiiC9zRe4yUmO0ZPmwCNhLQGYtR4IPpIQXq+eHz7kgOEqIlagy9Zrmuy3GMWZ5PNtlN5u0n+ZJniGfpGp3hmZI++pymemeKZYfyfS/HMf/P3/weuXH6BT3z0Qy/T45WQJx9/jB/9R/8T3/W9P8TBmTNTPDPFM1M8M8UzUzzzFxjPTC89TTLJJJP8OchqteLHf/zHecc73oHW+j98w2dBvvIrv5Jv/uZv5j3vec8fG/BNMskkk0wyySR/vKjYZiaTsp1jj4QPcLR0MHj7VQLZQg8E9y8IxNgCVDKCa8dAc5d3mSC7/mjzHnxt2xuB5O0VdI302bLdAOIIvIcEjvc9jL/gFDDew73SIent53E4vSW2yKaMbkgkQgdQj9v2EFUPzqeufWu9kSZ92i8goQVhFacIgbY0R4cSngIC+2kIPRCbZiMBNTJmH9pbpAfuO9KgzayMcsoenQb933G4fjxDaRgdCcId0s3h6CY6UidluncE00jFdE2Prsc7gOLhj9BniA+AfHdFmqdEhpwmCFp7dWPrSY87lU9tjiiJNBrptKf/VCSRXD46qrJkPz9D8KBUS8gIEBXeOf7oM5+mKHJe++jnceXGNXb2FvzGr30AOyu4/9zDPP/8U7z64Uf4/Q/+OmfPXuA3/+gTPPro5/P2r/jbvOqhz+Pm1ZfYme9SV0suX1lTbRusES5cPM+bv+AtvPj0s9w8usXd99xPQ0O0YLTl/IV7UUp4/NMf521vewezecb5C/dy69YN3vG3vpYHXv0a9nfOICHluEeRFtHpZugOKrBf/4N/jS0YZezn3QoaMpzHS6335A7Yl7Y8xCgLfqxBTzzFrgxESxqodOXp0wbuUJjThNT4m9Hu0vqG9L7d69beINJmgHbk5rgtkeR3WpPnBaHe4lxDPtvlwdd9IS899yQH5+9O46wqTF709updr9dKXuajHZAJLdlHWp86pbISI7jg+z2yWm/53Y/8AddeukK1rXjD61/LvXffw5NXblPFHK0NJsvaOWjQuaVaOvLZmVS+QadyC3VdQnBoozFiOTw+pt5uMcZgM0NuM+og4A2ZUmxdg6u3uOiwRmjqBochn5/FoggErHFYq3F1Q11tKNdHzAuDyffR1rQkZKSpK26uj3C+xkjamyORGDw6JLLBFQqbFRRWY61C64ASwYhvj8mH45Mtt5cr1HyPbFZggG6VhygoERY7F8l2Ar4sKddLbteHHOzuEiSjqi3GeJSAc4Gy9pSbJa7ZEK1BKY2WBD6n/SlglEFpR4waMEgUQuMJcUUQwccAvqbxniCeTDSRBsSyLkuULYjKks0KZrM5UUzSOAhOQVAK5cFIREM6hp9UwkVFRdQRLYaGBtWm0YdtxXJ9gi52KRa7LPKcB/ctm6bheOU5mGnyDCSzZJwh4iirErXdYEykyHJsloBxiSlrGmIqj9CCweXmhE25ZL44YL67ixhFUBbjA5lRaKNBNKIMWjQ+GrzyhCaB/14cymgUMwqVA5HS15TLE2QlmMwwyy3b1ZZyu0RnC2aLPaKAwYHotpyAwccGmopAZKtARBNEMAS0KCR6lusVaIV02fnKk0oXhHTyh49YbViuKryrQQq0ylDRok2R2sTjsRAMRjIwgZnK0CZlDFutCVHhfY2OYBSog3Pp2aIMEiJIIpHSJqlRRlGuGhDh3H2vwdo5m3KNkVTyBcCYLJG0opCo0OREPCF3KAkEdCrRIBEVC3wM5HiyucF5IUSNVwrEoSLphILQQHA4NPMLD7KIHpPnhHLJUVVyUq+ZmZp5BrN5wTzLkfmMmhlVyKhikUpPhNCxwhBCu6dmRBF0bJ/j4iFGdCwwMf2uCtS4zRGByLmLFzHaoiI4pYnhZT82JpnklEzxzBTPDG1O8cwUz/DXJp6ZzeZ87X/+X/Kpj3+YEAJ/GeRjH/n3/Nb7f5mv/8b/GpjimSmemeKZKZ6Z4pm/qHhmeulpkkkmmeTPST760Y8SQvhL89ITwA/+4A/y1FNP8d73vnd68WmSSSaZZJJJ/n+KiLS5hx0IGkdgXgurdmUN0g2MocGUQR2JqFGmL317HQ47amH0lwxlCCS0AGGC1bsnuWpbGkoajGFhGMD67o5EemggttBJR0jIiJDoj6xvAanBHgPw3gGd3ThTcXeFRKFLD+2zF7vz2PtRyinComuwLzfREwRj26d2xvqkK1KRg24sAwraZSqD7jsaQ/AD6dMdt54u64iMZKtEFozs2jEEokY6jEHy2OtwOgd5NFbpyJ4wApQ7XdpiEzK2Tad5N69D4YEequ7rSMRWTSHE2AP5vSeMwOyU0TfYC1HE0Ks4tNePY5RxTlcOJLa+qfuxChGtFLPZgts3b+B2AiGEFtgCiREvEWsMb3jjm7l94xqL2QKpGn7vd36d7WbJ7dvXeWGz5p6HHuHipQe4/8FHefT1b+C5Z59iuT7mLW/4mwmw8Q5jFUZZvDRYk7z83N0PcP7ivTz5+OO87rWfx+Ur14hByKLFNTXnzp8FFAujqauat3zZu/jwh3+PN37xf8rDr36UxWwBYZhDFYY1m/yq84VE/IV28GFEzMXedAGJqrVrNxPS24oxF3eKPEr/BtLx4v1cdP+JA+kY43gPimmldy4h/Y5Cz7uNqB7Vfn9nKZbT/jr4zcAoJCX6P/t9o/W/jrxoWxOBvTMXOLl1jXxWMN+7gMnnfOZjH2T9mjewM9/n6rXnuPf+144MkcYt7Voc7DLspKfIGNXNU9LNh4CEtOd573nu+Rf4yKc/yXZ5wurokAcfegO75y5y+XBFlByrLEoZwKCMJjrh+PaSGANFLhA8jRMaPFortM7YuIaTw5s0zpFnFqMzkMCu1eQCR9uSbePxOpAVM4zXHJ9s8EonMLOzcQQkw+oCa8CrSHAN6/Vt/PY6syynKPao6pKT1TGZsbhYo/IFKjNYm1OYglxbrNEUWrAalHg0Hh8izoNzUJcN15dLyhDIZnNQhkwCUcCjEXQ/rxqFFsjmltmsYFVvuXa8xcQ1uzt7zMwOEFmWK5bLoxboTqd5EEMqmxAVrnE0wVPkDlYZIRgwEEKDr2qiAWsKtHXkaJTKUETW25Itjtl8B2POgjIQBV9t2W42SAwU+Rxjc8AmvTXE6PsnnkQwQjp+XxliFHIyhJqj49tEUeQ7+1hjsSK4puHfPx9ooiJ4hVKBEA1GKZRNB/JrK3jvqcsTms2KzM+YzTTGKPCaSDrmv6pO2GzXWGP4f9l711jbruu+7zfmY639POfcF3kvn6JE0nqLlizZimPHUd08WqNwbaO1YcNAEdkwkqJNDQRGa/RTURQo0KJf0gYtULSFY6AIYlRu7DhOXLlJJFuxHpQoUqIkkhLJS97Xueec/VyvOUc/zLXW3udScYJYhWhzDQKX55y9HnPNOeZce/z/8z/G0eEhmXUElCYqhoi3BiNpLnvv0veO0BA04KXBeqGOAULqzyYGkqY3YCKoNtR1zWKxAq1oGmU0nrSlfyJiPJXRpLCXDNGK2DTUIeLdGIMhxBojEMSBxvR+mEyRKIgRVEL//cABnkARtpR1zezKNfJshjGOplrThIaqKsmcxbsM6zOMcRixgEkAvUYyI0Rj2nIJAYySSY03QqOCxoZIwOBwkqiJzfqMsF3hJjMODq70xPp8MiOIQaISYk1RVcRqTSaG8ewInCHEiJWAsY5EdSg2AsaSmTHeBFw8I0iOIUtUiGREjbgmsjy5RV2XZPMDUMWIQnaAc3NcqEC31E3J3aKA5Rrrzhg7yzT3TCcTDrIJjc8pNacKObXaVj2eiAMVScC8SWUigEQiEKi2BevNlnzkOZjPQV0qeaIR1ZjaMthgf4wN8cwQzwzxzBDPwFsznnns8SdJJTTfHJueAH79f/s7XHvwET78536IPk7a+3yIZ4Z4ZohnhnhmiGf+5DZsehpssMEG+zNsBwcH/Nqv/Ro///M/zyc+8YnvdnMGG2ywwQYb7E+J7YA1UUVjg9qsVf/GPXC5DdA6BJYWdDfsAfjdIboD5BX2yxWwD9ID++rUfRVgBx+eK0EhpFIH+22XNh39PhgtOxC/P7JHfhU6lexeCnxU21IJHfQtbYEK7UH7TuPcURjK/vF0UHbfT3K+u/aec++5909R3cGq0jW6xet3R7U3jewUrN2ztT2l3Zh2REJbiqM9R0VbDHWf8AkJ6GpJIqQlgM41cjc++6rznUh8Bw53x+ne5y1tcZ44Um39Rfqr7v2z6zM4lxmn678OkFZ256T2xZYo6M7viIZ7fe782Ow4mJbkUHbtizGBz8YihKSqdAbvPcV6xXR+CK2qXTuyKbM8ePURXvjqcyDC+7/3I/zfv/F/sDg75tbdO+Tec7Bc8el/9kne/j3v5Ml3vo+iqOHWa3zq//1HPPaOJzk7PeHS5asEbQgxIFgeeuRRPvJ9P8x4OuND3/9DfPPFr/ONrz1PUZUcTA7ZFBuee/aLjJ1lvTqjFsPVqw9yfOM1fvPr/zu/8Nf/FrPxJPnJPrknim2HO0hSq2lHDMCOdpNzW4ZSD8s9JTa0I1S6MdqnkmR3AHvrw/5a0nEU8Q3usJvjnZq65bS+ve5B0Kh7tV14Q1v3eKIdF9W1VASDSUNPp7HvZmo6xmikkbQ22NGYs9NbXDZX2JzcwhjDhctX2K6XzC9c4cKVazRNhclyRKUHv/azSOzPzHMTqO89g8ZEENBCtVXd8LnPfZaXXnmFoigoyoInn/wAswuXWZYV0eSEJuCdwWYjjDWcnS7YlltG1lA1FdGMEevxNilFFeVks2S1XOBEGLssAXxakYtlXdYsxYDL8Y5EGJycsi1r8nyawGtJGQOMWOpGMJZU0kHBt4SHm16kCSXbzYrbt15FxTI+uMBkMsE7R2YtmbVYseTWYEVahWhAUOoAm2gIDayLLavlGWXT4DKHzXNEHbk1GJ9hjaeMKZOECRAUbMtYJjzVc2E8oclLis2KOyd3OD1+HdGaCgdqcOMpWIMXT7CGzHmM85hxUpQbK+TW4Y0STfvOCQ1OBJVIKi9kKVYFp2cnVDZnPLqAtR40YLVJK2LmsH5ELLZstyuk3JLnY/LRGGcslQqqBiMZ2hKiRhTrLcWmYL28BQZcPsU6i1WwNpVlCtalZ9CMaBoQwalBCGxUyKxHYyTawMhfoq4rKqlZrhdofcwk89hswunduzivTHxOnicFd1Wn8gtBBCGwLbZ477DOtFPeEKIkgkUDMQaaqHifo2JwklT/IgKZIGGEbgO5HDCZHUCTymc4Y8i9x7oJxmZEoJGIMRkxgwxFomk3Q+SEpgBqnFEiHheVaOuWKOyIeKUoVpTLFXYyYzSfQ9uvgmK9Y5R5to1DY6Aot4TtKSOXMZocYFye1M4IGINKwEpIPxsDVEhI7yhnpzQaMFpjdcvd0zPAM7l4P8bmGBwQse173MaAGMG4DGcNweWE2LCpCkK9wYlFXI5RRZxN31hcykKXltEaNJWRsN6n9UxLNsszzlYrsiwjH49pYkksKvx8iiBEY2mMQRhhvGJDCfWWqBUnq7vcuHGTUW657/77UJORG5hlHnWexkyozYRKM2K0aaNoDKmEBkpZFmwWx9jpmPmlC2SmXXu0ad/kbR4D3VvABxvs29oQzwzxDAzxzO5GQzzTesRbIJ65d/jfDLbZrPnv/uv/gl/+z/8rPvpDHxvimSGeGeKZIZ4Z4pn/H+KZYdPTYIMNNtifcTs4OOBv/s2/ySc/+UkWi8V3uzmDDTbYYIMN9qY3bZFsEUHDlpvXX+Tg4lUm0zkiSZ3VwXsGOa8f3AOpd2pUgJYkaH9KwOkO+03YXgvr6u7z/rLpij0U30N5PUFgejhaWzV1D2P3UuXzYHC6RqeS3Qczd3B3D0ADXXYXi7bPvAM4e8xSpC9PsTNzDg6VjmTpyxi0PdP93pEc3dVljzdQbUFcswP/+/7bA/371ksLnsbzvIQkNXYC2Q3Soq49KE+LsL4B9NUWm4x9n++Q2+7S3TktkdONeodp7gP+/fU6GF/6DR66f+2eTkg/673A/j5B8W1ojH0CRvdKd+z3VPI5pVdrsgPKpRvDtm0xBO4c3+b69Ve4/8EHuf/KAxhjQAJGhXySE6O2gFdSJXYtE4TJZALAnbt3+f4f+GE+8MGP8luf+Lt453j4sSeYzg758Ed/hIsX7mM8mXDt2jXuHt/ia1//Mp/5g99jMpsgwfDwQ09gMsvR7IgHHn4bQQOb7ZY7t6/z/Jc/z60bryKNok2FwXDflatU1YaT5YLbd25Q1VuuXX2Q9XYFRrl18zrjyYz57KAfPdOOd9ros2NzdsrkzmtiC7TvOa7sgfbt2LLX6915nb/3ynjdeWK6196Y703MftT7XUm9t6U14LzT9wRQX7qk+2SfYNorP9HdpCeJJKm1RROgjECUzjN7KiqRpC3xpu11j67cT2yUfDIlClx94HFefelrXH7gUUbjEcV6y8gnJWVHxPQ37zdBpev2z22091ViJIaYiEyN3Llzhy8++wzHd+6yWi8YjyY8+c6PYFxOWTQIDmMibjwlzzJQ5Wx1Sllv8QaqCMbPcNkIjAFtqEPN4uyEoirwEtOaQ0CjJctnjPJRKn9CwIhQVhXHZ6eEqLh8BCJkxiFOUgp8EYwnKa9jRdPUWBpiXZE5RzSWbHaRg8P7IJZsii3b1RluPCafzPGS1J5NbChRYgsaemOpYmQbAsVqzenZLfJsjB9P8M4izjHNcvLMk7mcbdUQysjYQkNNqKDpUvKHBtWSQCoXoNWSUNf4UU4ZDE4do/GU2ewQ4y2OVPIwswZjLUbAkUBpqwGVQK2BgEGtbfl2oSgLTs9OKUPA50eM7QSVmoaqdQHBGk3abXHEyTzNpKamDiXF3VPGkzk+m5J53/qNRRDqumJ9dpumWpJPxuByICnnxRqsTSUwNEClEaTC2fQui6GhiTUaArVq8rNYETUQtYYAzWYDBO6cHaOZR4KAnSAYojiMGKJxGAeZEUIAM/U441pFbCTR7xlCKg+QaYMxiYQ0mnKBZDZiJLJZr2hCzdWjIy5cmlAH5XDqKMo5r95cs6xqtDhBosF6IfNjGvEYYzDiks8GBanJrENFGcUFa5lixGIlB2MxIhTVhu3yhCbC+OBiKssRQY2QGaXWgMQIxuONQ6zD+REhlDR1zWJ1irOOzI9xNk+krpikdDeKxgqhIahFbJaWnKZkszomNoHR7AI+m6JG0pzFEoCaBhdJqnWxBAlE9WAjVn1L+iul1qzLCi1OmMzGuGyKtzmRpHxX9eAcYsZECTTbFWfHr2GcZ3pwiGggNAFpAs4qzgpK1c61VILKiRCsICanXm1BDQ8++CBlVeBHY6IbE6qSzabEscKaU3JnmedTVtGwNYdEO6MpC1arM2KomF48IvNTYjv2KZtFJGj3rpZ7NogMNtgbbYhnhnhmiGd2TzDEM2+xeOZNapvNmk/8/V/n/R/6CNPpdIhnhnhmiGeGeGaIZ77DNmx6GmywwQZ7C9iP/MiP8Lf/9t/ml37pl1iv19/t5gw22GCDDTbYm9qkBeWQSBRHuVzymW/c4vDwIk998P0Y04HTCbDrgL2o2kP1grbgfFfeof15/x4t6JfOuAf5g1ZpyXnwvlcEpoNMd34LNO+DlD0oqTtQsIMVO1LiHATeA4R7QGEbkEqrGFZ0p3BFEliuCUROpRQ68HH3VB0dsYee7jZWnEeyExGxJ/vswcu9tpzHPTsgtIOzd8/e3asjLVosKn3a9VdLThikHdM9OkM6ALIjInb6Z+lICtqNHzuMdtdv3RjuP/c5EqIt7dGr31u9Uw8q3+MX+9SB6O545Nz1exV758coxLYve+LjjeBCB+DDDt/efbbfv8p6ccoXP/dpJHMsFidkYrly3wN9+/MsoywKQiixfoTthzq1LR9P+PBHfhDJLBYLjRKpec+73s/BpQeYHx1y7eqDFMsVq9UK4zIee8f3MB6P+Ce/+wlUAuviDIzlbQ8+jhtljCYT7rt8jbuvv87v/vZvcPP6KwQNBFU0RN7+9id49/d+hJM7t1kvjinO7vJPP/nbPPb4uyi2Gz71T3+f+6/cx/s++GGatj96XeA54qolCCXRA6YH/feHXlpwP/b92o1FP3c09p3cq9m1LfexJ2nurm26UiRy/k4pU0NLWGinvBd2dVm6O/Yusueou3vfO+eS7UmwZW8t6lxJpF3DuoVm/3zT3jeB6RcuPMDJ7evYLGdz9xbzo8tsn3+GcrVgenAhlWGoKyQb9Y+5t72pHYeWbGnXj9j1aohp/RUhhsj1117ls1/4AquyYLNacfXqQzzyyBM0Ac4Wy6SwzHOyzGME6rJgsVymVPlmgrMZmfNtOY+QUs2XaxaLE4gNBkXE4HzOKB+TuRxrMqyNOBPRuuL4dMFyW2BcjvMZYtpxF1Aq6gZCU7b92YBVplmOtWNql1NWEYxl6g0Xx0pVZ2RuRB0DZbnmzukxGIfLc67Mp+ReMEYxwVHHyHq55mxxgtjA7GAOJoHVPnPMfIa3hrKJFFXBtthSN4FKS5qmoCFjlHucgnGKMw6NSl1EbH7AxXkGNmduDKEJ1NthKfLaAAAgAElEQVQlZ4vbTLIx+ewA5z3OmuSzkjbGOTE0QamjoYhClmU4I9TFitOzWyw3NcZn+NEcUYNIwFuY2pxgI0TwxlA1SmxCAmdVUOeJzqB+Tgwlm/USIwumsxl+POL09BZlUeGcZTSeIDaVPogCEg0hBNarNVnuUOOwxhMsNJVSq2KiEpoaI4IzgpqAJHYBIoQmUI5yaoXD2SWsz5EQqUINGnFNwI/G4LKkqtYabJrPBogScI0iNGRSUatLpRoIxEZbAsMmsrIoWazOsDZnMh5zeZ7xQ49N+cbtDRdnGU0Ny0VGrZYKS10WNHVDU69S6Y98jHglszneQyVCJjmiNRJKJjIBFRrSelysTjlZLZhPjvD5hPSmNBijiQQSwaqgLicY2txvKTuL9Tnkaf1omsimWqKbJVk+IvNjvMkTWSaeUAYwYG1GXRQsFjfwfsr0YIY3DozBJI03SIMHnCgaayLgxOFCg9h240as2jE2jExD9Aq5InFJtbyNHXly42lind49o1k6Vk+J61OuzR3WWZp4F9Uak1vsyFAXNVaWGFnSNK0q3KWcd5tyS55Z5lOFcYbGQD7NoS6pVxvyzDB2Ql1JKoWhkbpesFqtUXeM+DknywY3GjObH2BiwIay3zyg2nLOUYGGoBGptgw22B9nQzwzxDPdtYd4pvtsiGfeMvHMGzzjzWPPPP1Z/qf/4b/hP/7PfpXxZDLEM0M8M8QzQzwzxDPfQRs2PQ022GCDfYfMe//dbsIfaz/7sz+LMYaPf/zjbLcDQDbYYIMNNthg/zJLSsgEvjlnuPb4u5BLJQfTCcQawbZga0co0CtyYQ847i7Yq1ATmNwppe0bgLo9kr/HHLtSAS3Mp9qfv49Iy662Q08G9LCk7MDqvoWyDwbqG5SS+21K6u8WJO5B9l16/56IuIdc6Pum+2Qf8OcegkDbftP9k7UFw/un3/EM++U4eiWv9PekI2n6Y/aav3fbfUXp/nEJdG2LdnWqVc4Vt9hduwUM+3Hr8dnOR3bj1GnEu9t2OO6+IntXyKEFd7t+kNir3KU9+R7KhF5+LXvFL1oSRHXXb12LOujlXjoiIRKm7VeFNq16jKBa89yXv8CLLz7LUx/6QV751iu8MMrwWU6WOfLxDGcM26Lg0mSGk1QAjZZYaeqKP/z0P+XgYMrly1e4cfNlbh2/yrve80GabaTabnm9WPLqKy8wtiNuXY9cefBBXnr+Oc6Oj/mhP/8xzjYrvvz057h7+3U+e3yXj/7AR/n6l7/I889/hY9+/w/znvd9L4vlKUc257Ubr9JEZVsUvPLNl7ASuf/aQ9x49VXqEPnCZ/+A1XbNjX/w63zwIz/Etfuu8cLJV7n6tkd44Oo1VKXPWFRUJVVZM59Nkt91RJK04yGJUBH25pt8m769xwTt1wbRzve743eU3L6TvpE8uMeTZF9Bv/OpHqjea8f+Od08lPaZunulzAN7VNcekdUvUa3XRzqiIp0nCj4fJVB1u2E+nRNDYD4ecXLjm8wOLjDKx2zXKzKXI9IWqGnrr3RLXjcHOxIyhpDKcmjS7hfbgq+/+AJfeu5ZtpsarPDe930f89kFtkVBUUey0RSbjRCTVrY7t+5QbNdM5geM/QiDbedFg0iDNjVnZydstkswhpEfpfIDPse4pATOLHgbUQOrVcXNWzeoyMj8AdEAhP69UocCawJWFWMNWZYjbowYS1FUrNcB1VTmwRqT1LtqCaKoASM509kYJVIUW4rtmuOmYT7Jmc5GnGw3nN29zaYK2DwBmU2IxJDKRDQqrJdLnJsg1mONYNyI3AaQHCsTpmLwAqKGJjQsFwsasYxGB3jrEdMkX40WnJAdHFGGJvXxyR3G2YiLl47I86S07ZxfLMS6QVUoiorN+i4nJ8fk0yl2MsOKTf0vSu4smbMgqVxGbhzeeOoQqMqCsmkIERyCGkODAxHqZk1Vr1lev40xQpCAy8aI5NjM4sgxRLwI1js0Nrj8EO893qWyCyLte1aVEGvQDJUG0YhgUQxl2bAoC9ZBGY2OmDjX+6ZaQyZjojbU2xWLu9exPmM0OcJYh1VFtUYRMgHrHcKYPC5APcY6HBlRLCY2NNWGs/USYxzj2UXEebCB43XNbz19wraxRFniRIjq8RYCFjFZUuqrEBql3K4ImxWz2RF+kjPzI5wAaom1Q92YJkSazYrT01uMsjFHVx7EtMSiVYszJm06NGBVEaM4SdkIxEQsMfWbBqwohkgwDXaiiBHKzQJTH5PZEbY2xBgoo8crjOKWTVny8KHB25LQbFulPQiRdVEzzj2CUpYVmTWoSSREVdU4bzARiqIicwIEmirQxJiSG4RIWdU01rbXK7EijOcHlI2hcYagFm0cUFGFiBBxokQRYhWIZ4GmKbBuhLSq8roqKcuKcZ4TNZVzcN6iKkQFq4ZIIkI0RAiRSMSoslivMOJw4wv4w4to7SjCkmhyJiOLOouqhXSFpMJWpVKHePuGd8lgg+3bEM+cb9MQzwzxzBDPvHXimRCaN7TvzWSf/N3fgqj8p3/rv8RkfohnhnhmiGeGeGaIZ75DNmx6GmywwQb7Dtmv/uqvvqk3PokIP/3TPw3AL/7iLw4ZnwYbbLDBBhvsX2Yd+N3C7KN8xpG5zctf/iO2/iJPfd+fI+9S57eAnemgwb2c/wm621PT0qqB2yufR8k701ZxuWuM7n3W4+iyf6awD0Lul17oD+oB8t09uxak+N/swHVJCs3+cNE9gLylC/ZU1ElF3l2pU/e27ejwSW0/3wMutQP6da+1skeUdNfQ7j47siURG/TgfmRHgECnGFeCKgne36mbRXbg+hv6qe+u82Brd+fz5+2NjeqOyWCfopHdZ3sHdN3Xl7pQoSss0nuOdn6o/fV6qLcF76VtX+8YHdC8D/p3hBZpLKUbrr5JnSeY1I/atWEHLneK8qYu+cqXP88ffvqTPPDooxzfucUHPvx9OOvJvAGF1WLBKLO4dgxiN5ta4Pv49uv80Wd+j8v33c/J3WNWi2PGo5wnn3iKz3zq96le+yY/9TP/Ed986SVe/tbXePyJ93JwdJFnn/sC1197ib/0l36M5579Ejde+yZNaDiYX+JLT/8RWOXw8CJXrt7PBz70Yd77vg/ye7/9Cd717vfw2c98itPTU977vR/h4GDO9ZfHHB/fZbspsN5ykB9Qrbd8+Uv/glu3bvD+D3yEJ9//bixJ1YlCsd7yj//x/8V6s+Yn/8Ofxxm/p7TXdmbs5nr33zn/Zg/e39V+QNRgOpKpPab/rPMp7Xxw50t7I7Q3v7VdkQTpshWo6d1vp9DeeXLy8d2Gp+R/aa6IthkQWr81bckBlXZk22OknyHpb2ZvamgLuPrxiJe+8jSXr16lqRuuXL3G9Ve+yUNPfgDEYTNP2RTkWSJhorRAZNvUfp4LlHXJ6WLFZDrCGcdqu+Xpp7/Ia7duUmwKJrMZj7/zA1gV7ty5RTaaYH2ORqWp1myWa4qyoKlKRqMp9XaNuiaVMTEWQkndRFaLE4zLmM/vI8syrAFrDM4YvFVEAqhhW9XcPVuwLUrIJgkIjg1NUxOJjEdjvMsY2TFdyRhjLCKOqqlZnh0TahjlY9REnBisEaoo3CgFo4K3tu1vBW3Ix1Oy8Zhmu+bmretsXyuQssDkOfn4Enk+Tmn9TYZaC2JxGDSXtIYLaAxprASiUZw6RJQmRspiRVFsET9llI/xYnCiVGJBIRDJJCmgc+vJpyMkRqrNkldfeYWLh0dMjg7xbgQaiRohKGeLEzabJZn1TI8utf5kMZq0tXnmElipSQFt1VI3DXUo2G43rMsSl4/w4ttcZA25F9AKF5VCR8yOxmR5zrqqCTGQu5xZPiF36fm8y3ACTdziMDgjGFGsNDShQJjQkEo+hCiIMURViLBYr1gs17h8ymQyxxpPHRQLNDYBt5lYnFhkZJB8jCqEYkMRGzJrsM7hsnHqu7aMhlfLZDSjCoYmKmVVc3J6kzoqo9EEsRlqDSoQ1bFqLMY5jDFpijsPqlgd4ZsaEyqsESRC7WqmoxGiFWV5QtMEJvNEzIiFmoiNC2x9QihPePTCFG8rqnqBcy6p2KuAU8VYITSRpqk4cAko36wrsiz17boocCJYgaquqapA5gxBlfVmizXCSiN1VRGjkOVT1mXNZD7l7t1jXNiiCCFEUINKRKMQYyAqRG2I2pbqESUAhDRGiYSPWJM2akRp89UYgxUPRvCS5l5sGpSMiRkT7BRWp6k8hWzwFozxRG0LUDiPBk3EhxlRRSG2GxGMjHDZmIKAcQZrc1AwkrIbaEObGSG2X5UEEwOxLhnnRxzc9wB+PCUGS1lDjBWikaquyUWxzmKMIRqBCBk5EywhDuXtBvtX2BDPDPHMEM/0PdG1c4hn3hrxzN/79f/1Tb/x6fd/7x/ShIaf/YX/hIuXjoZ4ZohnhnhmiGeGeOY7YMOmp8EGG2yw74A99dRT/PiP//h3uxn/SjPG8DM/8zPEGPkbf+NvsFgsvttNGmywwQYbbLA3tSUQFqwTnn3hBtm1KzzVRHAJaY29+pUdyCewX5vcCC3ontR7O820cK+lvQF67vceZ4c+e0q6jd57Zv+Tka4MBa2ytwXH1Zw7PNWJlx1q3d9f++N6sFo6DW13yx0Aeh54jD1Y3alDO5WZaNeuHfjZEQe6185eZdr+fM8jtv3aqU93Gy92fdD+v+uHDjzvzmmfa++hd320RxB0Y7U/Iju6ohsFoeVFUtmF9pmkB/P3z9+nc/Y+aEtuCK1KnVZ125EhPVHS/tv52Y6F6Us4dNBx9wznvEzpS3vsl9boCKDuCbvnS0ruCDhUIi7zjKdzzMhx5aFHeOLx93DtvmtoDLzy6ivcvvkt3vXeD1FUDVVVUpUl2di0oKjBCMyPLvLRj36MZ7/8BdbLM16/9TIPXnuMb3zjOfxszgNHF7n+rZfwxnL79k0eftvj1LHho3/h38IY+PQ/+R2+9fILRFL68MPDCzz88KM89uT3cHZ6SlmUHB0eccOMMX7M3eMTZvMDNtsNt66/wotfOWN+NGcyOSCWNaebE47ml1k1d5nN5lSbJaoV4/GUpAZMRIE44ez0Ji9842t85bkP8v53P4XathiE6J5vtZkEet9tqZ7O7zp/073sSec2F+0D/vtjv0dMtkBxGqeWnujntOmpgh1RBGhMZS3aRW1/Okl/n73naP2sryrR+0oivUJM5SycKJdnkBnhbBtYVYJge19KrpZm1eTwImbkmB1dwudjyu2KF174JpvFCZOjy+TZmO3mjMyPQRLhGCVlqzCAk5RdYluVhFARqoIC5e7JKc9/7essF2cslksevPYwVx96jLKsuHF8kyybEsstWep2losF27pmPr+AVyEQaZKHEpqKKmxYnN1BgkE14FVomgXEnMlogjUBLwZipAwVi8WWO+stzjq8sUSJZMaADUx8jrFjsKNE2GmJSsBoUnRuN2eEuiBzYMceNQpiEbEgDpEEmIsEpmNDHRrKoqautkQioiXVdkOIgYODy4RQQYh4UzPL5+T5lFodIaQMBYGWym3HW42ktVQM3gh1XVNtV9RVjfeG2TSVknDtcTHCQWaYS6TA4sUS1LCqAkEjEcinU/xkyirWHN+6gY2Bi7MZ4Dg+vkVjLNkoB0wiKcQiIRVhUQlUhVATMcZgWrBXsVgEm005zOeIsYhACE2aHdWGdbHB2YzJZNS+FwyTcfKlpomsy4KqjIx9hgBBkvK8DDUbAHFkRlLZBtMgxtDEnEYNTaNUxRnlZksUj5sdkTmPxohKTWazlLYfwdlE0hEFYzy+LZNjvaduaqq6pKwqfIR8NGdkctQZNDSIHeG0pCwWbJZ3mI0txudIbPAmYMQQQ4NzaU5UdSCzBieBclnjXVpnqzogMZUr0NBQVDWZSxkyYlmQZZbtyV222xJjHH48pqyVUJesl3dZO0vTNBRVhW3Xn7Kq0/kaiA002mDbt0RolCApU0PsNkuY7huBIYN+M4JY04P00Y6Yy4jopmxOt9Q6RsXhvCezjuDGWBRrHDFG1AnO0BKfHqzBiKURxYpHJMHcRiLS+o4VSxCDwxPZlbowavCjMWoMxs/wcjl9V4uRSgsyBecsVgzis56sh4jFgfUEjaANXg21CUDKLmFVsdSoSfMjfQcJiBhCUbJanDG+fI2j8Qw1GSitWl8BT6QmxkgRFC22hPWKLNNU0sNanHXEOED6g/3r2xDPDPHMuWce4pkhnvkzHM+89I3n+cN//vu82U1V+Wef/F2qquKv/fVfZlOUQzwzxDNDPDPEM0M88ye0IUIabLDBBvsO2Gw24+jo6LvdjH8tExF+7ud+DoBf+qVfGjI+DTbYYIMNNtg91gF9nYkYqm3Bhz/2V7l64RDvOvD+vLq4PbsHpJUdoL9D5DQBu/0fux81pZxX2btWC5J3oHBqXAIISeB/B0zuofLnSQXOn9pfV7vW7xov7MpS6f51WoWrdIrt7kK6D5jvVMNGkgo5dhladjft20ULGveg/l4b9pHr3RU6UFX2xmjX+I4g6LpVu1v0/Md5EDeROEqnGu4Inp3auiNAOgV3B7jv67Pjzg901/D99Pu7Djj3JP0HRru0/13ftuPSPWd7qEACXrpea8/pKA32+lpbJbacG/B7CIOu7/pyBucJqw5gjtKVwegIBMtjj30Pf+3jv0wUw8HskEQKeS4dXeLFl77CfHKIWMOt11/nG994jsfe9g7Ej8iyDO8M49GY9z/1YR598kme/dIXWZze4JlnPpcUqQ3cPb7Nl577PHUTePTRx3jbQ48Ty8DDDz9GsVrxwCOPYnLH8c2brFZLfuKnfpZPfer/4c6N17h+/WUU5R2Pv5MmBlabBa9866vUZUFU+PrzT/PQ2x5nlOX4zHLn7jEH40NCDFShpthumMyv8LZ3vBPnDMSWANAEDD36yOOs1isuHMzpsxm1fRR7H5C9sW5V7S1p2BGAO/JKe1/qiAJpSbNEFPXLRu83aR7GPntSP7y6vw7Fth2GfeU7gGjc8ytpiaM0zzs/7ijNfk71V07tMyjSzqGJE9777icYZTmvXn+VZ1+8i7blQ7TLQiDpelk+5sr9D+OyEVWxwbiM+x56lNdffpEnDq6AUXKXU5VbsvEYaVvdze6omtSJxqGhIcs8n3/689y6fpMgkdPFgre//d0cHV3htRuvkU0OuP/+RzgYW7aNUNQ1222BzeccTCzGGjSCJY1FvV0RQ4UGZX5widxmIELUSIiRplHW2wVNVaI01GVFqCo2Tc10doHZeAJWwBisCiGWSLnC2hylIYpNsyg6VsszNuUan+X4kcd6g1VQdahYMJa6qajCCi1LYthCnaPGY1BGmaOolLKGfHrA2x4wHM4dl+Yjym3gq6+sOT25S4injKaXcPkIY5NK1Amk8iyCYhGJWDxlsaRa32LsLG40R6zDG0MUhzEZGIvESENStkZVGo0YI0xyqGpDGUvq0CAhYjRgGyi3S167ezsREaMxk1HOyHusGSWs17p2/VWMUWIMqMak748BjE3p+JuIxiaVOIiRGJXQbFitz9CojCcXyKynQak1IGrwrTdbm+NlRqMNy3JJ3GzAGaa5xxtLEV0qv6A1c29x+RQlkmnNeluxWJ4Q1TLLj4g2+baxFmd9SvOPY+RHzK2hQdGoJOGqok3drdxkNmOUz4kEylBQVhXhdMVkBCoNdVWSxzNYnnA5cwiW9eIYY9PcK8uaugmIBOpQo40yzoXVtmazqZI6OCpVU0EUolEkRJqg7feRlDHEmpQBpYmKzWa4+WVCEJrtCbGpyJ3BWI+YlnAxFs0FxOCsQcXiEYzJECcILpUwsY4gYBGiAWcMGMGKoOLITEbUitXyBJtnZJP7sLEi82Oc9YRQsS621E2BNYbReIq1WQLlERqbMklojBjjCe1mBZGAU6HWyEQDypatJgW3QfDisCib7ZLl6oTx7JBxPqGuthhRVBqwY7wIGhUrhppIUQViU+HrBucMWWb6EidWFGsygjoiERctUUuMc1gVbAyosRjj0hrdGJaLU8oI46P7sVneEoKCGJf8WyJWDBpIZJMoBkftLhGagiZGCA2V1ve+tgcb7A02xDNDPDPEM0M881aMZ7bbLevVkj8t9plP/T7bbcG73/cR8GaIZ4Z4ZohnhnhmiGf+BDZsehpssMEGe4vaz/3cz2GM4eMf/zjb7fa73ZzBBhtssMEGe9OY7CFzSbkYqSJsl8e8cPNl3vO9H05BXAsA7vSke2pfWn2pdPBqAs/3iQHd+60j9rtbn6cKaFWykFL2d3DDHpDc/b9VTPZbFVpC4V61c3eGagczdxsdWkUvncJT6CW3sAdit0CmpEIMCdwUoqaNCV1pK9prJqBth03vEyt9GS06MDwB3D3wKnu8xE7ivHtu6dq9B4qrSapB2LWlVVHHfWW0gmlB1K7/ur4xbVmMfXB/10ddb8b9O7TPttfXfb/2PdH/ZjRtBFGN7BSvrXq8vWEa9zaddct8dEr13aBr3x+7Pj0PGCeIuAWE257prmHYafW71qnsKJyu/YkwioxGjjw/SBkD9lS5Fy9c4GN/8cfwNsEMuTf87u/8fQ4PLvHO932Ia1cf4OrVBxlNxkwPD5gezolFxW/8vX/BfZevsS0aChZILTRlw6bYcOvmLY7v3uLKtWtsN4bNdss7nnwPb3/i3fwv/+N/z9HFK7zwta8ym8x522NPUhN5/fXXeO7Ln6MoSt795LuwseaZ579IUzX48QH3P/I4X/38Z3j7E4/zwtefZ7lYkE8z5rMjQl2jlIyyMavVitl0iqgBDXzlmad57ivPMpodslgtUCNE0ZSSXPfV9PvjfT4LwHnepvVO3Rs5uafP9RyVdm5V6DcTqfTkQ/K8mKbI3iqjLdMksaXz2kHWvXnXKeF7wk26shLni610x0pUrKarGyNgaqBGJGm1VdsMTS2DIRpRUeYXrrBdnDGbH6DA0WzEi88+w2PveQovOS7LqdYLVDPEpNLh0vaxhjbrQlSWp2d8/unPcff2LV555RX8dMw73/cDHEyPKKqao0sP8PgDU3INbKuGs03JZhsJ0eEyQaxDohJpiKEECRiJFGqw3pBZj3Eei9BoSm3vY0XTOMRaTk9uYwXsaMSBjBBtiPWCcXaU1KMYkrIZolRYlBzDsigoNgXBKLOZT9cgUDeRbdAWJPQgAVFl7ATrJ1g7J9UnsWy3BSerJc5YMu+4djDir7zvAsfbwNkakJp8ZJjYGUVZsN6cwqpkOp0ymlxEvUtrTxSMRjbFhnWxwJua+WSG2FbxjMV7i6jBmsg2RKomoE1N0ECkZFOU5HaMzWxbYkLxAuRAUyN1ZDQ9YH7loRb8L6mLQFlWTHJD5vI2iYAh9OugoQkNXmrqcokbzTDRg8Qu1QghFKzWC+q6ZJTNyLKsfb8ERC1I3oLigiEpceuWXLPZDCdCEQvubtZ4Y5iM5+TeobHLHuIJTcXd5RnLJpBNJ+RkSSXuYOQck3wM1rApGlQNUSJRIXdJmdsQaUKDSqBpoI5KjE0igwxYDXhdsdmcsN4GXjm+Q1NHEKFYHmNoduWhBKy1GHEYA95ajBMmmcOKwxnDZDrFW4eISaA+gLV466ljS5CLw4ghhIZFUeKyS4wmRxjTEN2Upqmp65Kq3JC5DJdNcK4lt6zF4GjacUYEiYJoQ9MyplYcEhtqGgSDk5hKA0n6mWLB7ZMTDo/u48rhnIszIQZFiOQTxzdfL4kywURP0zSsz1aIaTB+xDifIOpALJGYyjFoIkJsjAQViBXeVyw2JdhJUhCjaKhYLJfEGDg4uIh1I2K3MBuDtx410mYOSG9IB+AtjRsRY6RpasqywhCwVsm9x43mGGNxxoIRjM2JjRJDiWjE2FQmabm4y2a9wo+PmM7GGDwaIhojk1xRC9s6pO9AqojYlsJLpT5GYmjMDNEaEEKM1E3FYIP9cTbEM0M8M8QzQzzzVoxnzmeP+9NhX/r8H3Lj5mu850Pfz7uf+sEhnhnimSGeGeKZIZ75N7Rh09Nggw022FvYfvqnfxqAX/iFX2Cz2XyXWzPYYIMNNthgbw4zSErJrUkVayTgjOG++4746uujBBzvgcm2h9haqLfNmCL7adqhR6V7lfE50LyDic+D0tqrb1PL2sNbwLY7v1Mo74BuaQFEbc+SfVB9718ju986YLO7ZgJXkiK3h717kFqxHchJf3JPJkQUk+RiiHTt3iMv2qOAvi+75++Uv7EFTztewLSEzK6dCUyJ7f0EbYFwOQfMnrc9RXV/X2nxDunB8k5znFSxph9hvk1/6XlEfvd8ohiVNkX4DnztQN++p3oCqL2epDuoxFaVTHuM7l+9H3HTNagH2HY+t1M9d33S9ZK2ClwF6XrW7D2b9r4ZWyJlH7hOvrcjJqT9J5MdpH146RLvfe/38cyzn+Mf/YP/k8fe/iR/5d/9KWK8QBUCly5ewPqMd777A9xZHvMf/Oi/x6uvvMwnf+c3+eG/8KP880//M+azGc4bis0KsQ03X/8WL37tOc7WW+6/dpXrr3yL57zhL37srzKaHvLkEx/ia8/8EZ//7B/w0KOPMxrPcN4zNiNWrHjggQe5MD9gVawpy5pHH34HZ6fHrJst1WbL0fSA49s3+J//zn/Le97zffzVv/ITPPzIo7z8rRf5zKc/yauvfYtSIx/70R8jErHajVnbG9r1pCZVNZI2BGkCtHZzS3vC5g3AP9BVNjHduNFmVNijp/Ypg+64LmvCbpYl8C0pBzvXMa3SO5WG6DhA03GIkoAyoVOE2xbEbWeHJsBvtVlyifvaVOcR1NDE0C9MpvUF6ZSLJD/KR1NufutrTMY5TaOMZzMkrNge38Lf9zBiEhh59+YNLl97ABACSoiKEaGuS77y1ed47rnnePmlFxmNRjz8jieZzi+R+ymbumI8u8zBSBhJ5NXTipsnC0LMEJNhvMUbITPKDkEAACAASURBVDaBGAu8UUJQlpuKRhVnLdY5MJ4oKd1/3VRos0KkIQbQELh4eMiFw4zcCFemwvOvl2yqgsV6SWgilsBsMiICs0yZmDV3TrYUhWKcQ4wSG0c0hlrAmRFjp0STYcQkskBjypplEkmxqSs2qzNMVLJ8hDOGw8yxrR2/+fSaKoKKY+Qc0QpeDUhO7mfEGNgWK7Ynx4xGOflohpfIneNbNBrIJxO8m9IgECDEQKOBs+UWCQaX5USb0vRbawkt8Ts5OMBKUr8aUcQI9XbFdr3FScbhbMqTD464/1BxYjlZbHnu5YazzZbj09vkowmj8QzvJwQUDQVNVAwRY8BYgzMCpkHwNDGyWpxR1wV2dMA4P0jlEIyi6kAyjDFkEmm0xAPWQowlYwJWAqHpSitE1DVYIkY2hDJQNIJmI0ZERErC4RQpI3Wd5o1GRYKhlshyuWK9PcOKpxbBGosknT1opKEh1g3WZDifgTgMFmMCdbMhVguoV6xPTnj97jEHF+/jwkPvZLu8gxtfYOprZrM5uR9hJAHZ1mftd5R2LosFDAfigAbVkBTRojTBgASCgokRMY4QIovTO9TBM770MMZ6mmJNbtp3uncY58nHh2isUkmIosBZg5Ex0ca0JtC+/4X0DpGAbctaRgSLw9qUIUClpijWbJenSU0+vUyjsNhueceh42t3loyM4eGZ45uxoaoFTJqHdpoRqQhRWayWqDRkxuC9x+ZjnMnRoEgUGm1Am0QK2Cyto7FhuzymLEr87IhZdkDTbmaQTjXtPNZY1KT3o1VNpTTFgTGJiG0qxDlsSAtmHSrqEMg2BWNv0GyUVPIiWG9pRIha0dSW9fKEIgoHF68hkqEmle40JpHEZUhkr7eOpv3u1K3uQdIKaAS8WGKUlGXPWLy1DDbYH2dDPMMQzwzxzBDPvAXjmW87Zf4U2K3rL3Pp8jXe+9SPDPHMEM8M8cwQzwzxzL+hDZueBhtssMHewmaM4Sd/8if5lV/5lWHT02CDDTbYYIO1pi3ZrzFgRIlxw9c+/w+59MRf5kNPPoa3nYowqaNVFaM7UB7ogegOnk1/BFXpbrJTS7bAcMKGlTdaBxR2Kd47KHFXyqDFKpNKE1pdzw7024HUOxhQiSm437ulaf+uHTjctrVHjNtnu1e53cHeZg9i7gDR/ilkrw3a9eG90Pfuam2HtCRH6hsjKahu9abtebGlFnZkyI6M6ED9HtLv2y4tCdR9gu5Ik1453be7a4e0Kfx3wP5OzX4PyKpp88ju2faoAtn9ZUfv7MDf7voqgsSWXGn7oL/vHrnRXVN0T+W8xwr1pJHo3gcJXN6/e3+plmzo1eQkQWJXNqB/TpFWQb7XDlqQG0NmLd7nvOv9H+T27du8futVrl59CCkKqm3BfDIly3N+4J0/yNGFy2xWBcbZBC45S90EXrt+nfViwaausSqcnS549bWXaeqKyXjCj//Ez3Dh8v2cHd/l9mvXeeXGq1y8eIEXvvFlTo5vM8pysjxjJmOyfMRzz3yWstpy5/gW84M5i7MTyrLCeceDDz/GF57+A+7eXlAWG5w3/MU//2/zxaf/iEjgL/87/z53F6dcuXzfOXLLfDsnNr0LI2p2CmdtxzilL+odqCf4VPvB2HE/rYeromJ6P6QjrrSlF/eA/p7o6X7SHflmzJ4fnHP2tukqqElsk9HOczvnSDTIIw8/hveOOjR89TOfoVwuKKeHqD1KwGC7vtAqtXsywhhmFy6BzZkfzlifKpOrj/LKS9/gPVceQMWRjyc0VYmESBSS8lxhtVzx9Rdf5JmvfIXtckEVlEcefpxH3v4ubt95DZNPGI3GWDGsNmue30JRVISYgE9jLLFpqJqA94KzwmpRsK1TanVrHNZYwNKoIuWGOmxwVsi8oSigbhTnHG+7NOIvfPAif/jMXcrak/scNWMm9QpYoM2CcFYT1LItLOPDMRcmwsh7CmbUJiOKQ8SiapBYINUG6w04T5S03hvjqMqCxXqN0QbjDcZlrRrWsg2mXScMeeaYupz53JIZpawiN8+2lJqo1MyPWMeK05NbxPIlGirGowNG08uM/SwRUdYhKjhr8KJk+UH75jGYVnFrUCKhLzmT+GKhqQPF6SlNKPCjGSOXcTGzXDSO07sldTSEYBBv8aM583xGiJHlZkOsTpmMcrLcp3T7JiOIYmyO82OwSrXZstmckvuc+fQAZxSnJcYKThqIqTxFZoQYGqp6Q+4dsYwU2wLnIEZlvSoQhCZUbDcb6hgJdUlZ1WA8s4MjLl+4wH2X5zx6aNG55/YGFqWjbATF0wQlasDll7HGYDRgyIgiSFuywAnoJOJUULGo1ki9otncIjYFq/+PvTd9vuw66/0+zxr23mf4nd/Yv1ZL3a1ZQpJtWbIx176+wSbYMeRCxY7hVipVDlV+46L4B3iZd4QbQoVwKy7qFr5OGKriC5jgosAGDNhcD8K2PEiy1Jp7Hn7jmfa01sqLtfc5p2Ug2Ayy0P6qJHWfYc1rnf18v+t5nuN9rly/ge6NOHXHwwwyTX8wZK0/pPYVRT5l7AqK0tFPeygzAJtQe4cLgdorQnAICice8QrlHU4kRj1RgvOqST1jqIqc+eQIsZa014+/ALUnBEVRO4KU0ataFFYDOkOUI6iS2uVM5sdIEJLEYqwFZQlKoTCLc0LweO/QCkxQ1FXF0fFVXF2SDNfQJoE6XmLEO774UkGFhSDsvVigm0PTBxAxKO3Q0sOicUkghJpinlPMZiSVQ5kKYywog5Yo4sQVKhS1I58eAZb+5gZiLE6pJgpdFEW0JIhWoDR9m+GDIq/KBVnvQ0zPgM1AaqhBa0UaMgIa5x1V8MzzmlAc4Oocmyq0TSnG+0xyz3B9h35mCJgYdSTEs7XGx4uczqNCGcXk5sdAtz8N3qOAWsX950NAfCNwub/pebFDhyU6e6azZzp7prNnXs/2zGsRz3zrK/zwT3yIrdFOZ8909kxnz3T2TGfPfA/oLj116NChwz8CPvzhD7/aTejQoUOHDh06/CNBhZqDK88xPZ5QJdts2qt8/ouPUXz1Aj/+gf+JN95/P1maAA4R1RCvLZe3oJwXxHFYMn0s6HVZEsZKGhJ7mfOApYfjK+n4BZ0bS2suBCjUgrxuKfEFSR+WMkO8xBDL90iM0LK4kbDCFQZZeOWuek+33sESXskmtn1rRYLms02qh9VPrLSGmApLLcLZL8jPljxt+xEaMWWRaiLWo5p6pCGq23JWW7VKhvrQygmNSNKKCI23qmonjuj9Hny8dLGa3qIlycMKYb+sa/m3BW+8mPol0btcH0sZqf2GBBC1lDeCtCSvp01VEhpB6JViQ7tiWpHlleLFzULMzQkMhFXf6LbdS5/pViBQzZth4b0lrHr0L7zH65IXXnyWBx56mLe+5Z2URc7XH/8y1Q/kzA/2+OSnf5+6Lrjz3gdIVIIrSzY31kmt4dxT36LIJxTzCb1Bj9vvfYDf+93f4OGH38rWLafoj/p841tfYz6e8a1vfI23/at3s7GxxfjogJ3dLTbXtrl06TwGuPjyM3gMSmsuvfwCNu0RvDAdz3jgoUc4PjzicLxPOZ/zxJOP4wPYzOLqgrIY8/u/93Em02Pe/NZ385Z3vJt+miKhTZXiFyKWD6sj2aaKWFmPrbjiafbQUjRYTGUjDKwKd+3Att7R0u6r9rhoti9huU7bfRGratZrq/vI6opoPaIbwUyWe6gV0RYaYWjLEBBPmqYEhPHsmN/+v/8jz734Ej/49vfwnp/8QOyfCD600Q/adRglzY2tWzi4cZW036fMZ9zz0A/y+Bf+DF8W6Cx2IBuuMZnNyHp9vPNcuHiexx9/nGt7+xRVSVmW3HX3Xexs7zIvKrZ278IajRZQOLwIR7Myeo4aAV8TcNgkQWlhPi+YjKfgA1bH806LwvuAr3O0jqHcTWLJ5yXzWY0XITGWXppQFPBHX9hjPJsTqhnUx2TKMy9KXFBMipob1/aogkdpw+C6ZmdzjRMbI0ZZQPSAKUOmtaIsXSTnCYiKZ7KIQkng+Hif6eSYrDcEMRit0EpiX5XBORX3qYe8ckid4z2IK6ldRV6VFC6mFYh0boX0Usz2Dvg6pkBRAYcntX2CJCuya1hZS2EhmIpAogSNwmgoy5qD433qqiIxlkG6hlLRW/m4Djx2MY6JxyNiwFvEBFSIcSN6RkM2pC5yxtMSmyT0+h6lNaqqScqrlOWUvlSs9zR5cYh2ClXDbDaPvzfeczSZUDsP3jHP51TexbQIPlBXJVpFkaMGrDbNOFoQA6kh3dhhMNhGtDCuS45fvMDm8Bond06w2R9wy9qAeZ1wWGpmpaao1UKKS0L8TREfL/zF9AcaiOkgpD6iyvdR1YTJ8QE3ru9TBcvmLfcz2roFLUJd7FMWM0QnAPTSHiFkzMtj9mdzzGSOzfpYa+PvplIkSqMUVC5Q14LUBTbJwBhEBOUCwdcczo4IQZMM1jDKEL2qIQSPDzXWpCTKktc1iMMpid7YShGsQdkhmoB3AVeWlHWOVTOU7WG0RcQQtAZRaK0xvsaXM8bjQ5IsxdgNgrIEHKI9qShK8bjEooPCi6JofhszG6jR1KJRYqP0EDwGMCSoQULwCd5B7WrqPMf7AiOeJOtRVhXHkwJfC1l/SGJ1E63FoQg4aaTvoHGAcTUSSoJ2JBi8ipEsymJOHWqC99TlnMQkBCyeSNIjtkm/1f7YKmY11MdH1Pk+Hk9v61Rc95VHqKOY5j0x+UkbgaVJPRF8fCoRvRD7PR4VNMHVTaQa3947Rfzqk0mHDt+Jzp7p7JnOnunsmdejPfPpP/x9XrMQSJIUK9LZM50909kznT3T2TPfA7pLTx06dOjwD4QxhocffvjVbkaHDh06dOjQ4R8J89kejz/xDNPxmHpwD286eZVL44okm/PNxx+j3r/MvW9+Oztb6zFyCTF0tzTEMm3I6FWSW5ZpDW4mAJfkeksKiywJ+yXVvKCcm0sHija9xKKOlU8pXsEyLjj3sELeB5C2faverSt0/uK1ppVhxfP2b0Xrl92ipaqX9HwrbizkB2nbGcPWa5GbSlwl5KX1KF2pI4Q2cUbsuxJpSNsV0WaFsG29meFmopxFf5tUCUoWJG4scylmrHqULnu2kB1QQcVxVU0KkBA94FUjhEh7gSRE7yiIxHObTqAdsTbSzYLul1ZmaWSGhnBepniQxXB6WR0/xTLrQ+Nd3n5wOZArqR6avjXe435lLFfnNYTWO7+RKQIEUSRpxo/95L9jls8ZrY+4cOmY+x56EzZJ2D6xy9kzd/Dlv/5zLl94iW/vPs6b3vKv2dzYoprPyfopDz7wAGlvwKC/hvae0fqIe+99gHlec/999/LWc0/z2//pP/Lggw8z2hgxPjqmzEvKWcmV8SXuuvs+vvhXf4TSmo3RBkXhGG6e4G3veBf/5XOfYWfnBDsnb+HULWfJ6zlZkpH01rh0+QXuuvterl69wsZom28+9zxvfuvbufu+B+hnPSTEyEWRy11V1qQh3MNyfoXFOEIj7jQHgGu98m/ybI5rZTGBsvJFWh/1pjzVLuKlB3Qr1rRi3mKhLxTLFcGrERwWYsWKbLWaoiSeWUvRqhU4AyoSZXVNlipsLyGvClDR01JagbAV/ZpuSCCSmL5mfnCD0dZJag9ZYhhfv8zmmTvxPqDQEDzHx0e8dOESzz37NIdHB1RVQVXVnLr1DBsb2+hsSDockWjBaHBVyf7hDCUJvq5RSrBJhu0laG0oypzD/Ql1mWNF8H5O8B7EEEwfrSw2sYjW5FXB7GgW0yXohFQLlhKZH3E8mVCXM5TW5DXktVCXBfl0yryuCL11su07GCUDyrog6484mNzg2kv7DGzN7tY6m+tDBtpQ9TK8GjJ2ltKVOCCfzSjzKWihv9ZD8BgP+EBqFJkWZmVB4VQkNKucNOkzMzArAkYCSiw2SRHvKPI5RR2w2SbWxHD+Gk1IaoKvyYsp08khvXSdrD9CjInnvQugAxowVmOUkCiNNeDKnBuHB+RljlhDqjVGRfKd4GM6DW2il26Ih4MnnqvB++boj2UiYEyK+JLZ8XmqfI7zwvT4OonNmBwfUpUzQvDULkYviWkYFVo02miwFiMaaxOy4YDMGLRN0DYFNKIVWhmCtWgVPcvz+ZzaC2trO2yPhtx3j+X42iWS3lkSdytPPXed5y5co6ovs7Y25K4zt7FjA8lwjYO5Ya8wFLWN51+IBLk0ZK/gwOe4/AbleJ+6mnHpyhXmNWydvJOT6yexSRLTDOCpK4vTGiPgKk/QChFPmgzwJs69czX5eExd5fTW1tHpGjWaIBajYTY9RusEpTVl5chnx9TllLQ/QtIMHzwSwGhFzxpqUViXIspiA5TaEvAkOp45Gt14EoMOjtoIYjUShKosKYo5tT9GAqRrJ+JYFznXDi+TZX36o2288jjv0L4geI8WoZ95Hnr0dl749jUmk5JJs1cRTRkCOihEAs7n+KpGIXgRChQecM5BcOgmNUOYz5krRzWbsH98BW97jDZOUYyPKY2gkxSlovgGCo3GEdfguJhhbECbAi0Z4KlDQ8oT/xPEgtLxDBVNolLQBpQDAkYUCk9VzykksL57BmUVIRkRKoWqA2iHVQqSDIWh8YOO52zzHKBE41BNSg0hhBqNUHkHeFQImOZXRS1CcnTo8Dejs2c6e6azZzp75vVmzzhX88Jz53gtIzWgQmfPdPZMZ8909kxnz3wv6C49dejQocM/EB/4wAd44xvf+Go3o0OHDh06dOjwj4RksM0dDz2CtyMUNfoosNkbMKlrhre9gednFfcPhi2LvyCwl8T3UiCIPPXSG3qBBQm+Qhg3RPEilcFNPPsqQduEjGe1Xr+kCiUG644ETMMMLsjGsCh31Y85LMjD1esPi8ZCQ3DHbiyli1WCMv5PNaS3aryu/7Yym0gwK+SyrJD6PoSGOF8OV+vzuyD7V8jz1su39VJfdllW6mMRvrx9XYk0nk1hIfIs6fhlSgZoBAJZERX+Jq/XVvhoPQhvEmvCchxbNl1kId7QeG375acX86MWTW4vprRReJYE9cJXuU1p0a4TCYs6FnO/4I7DUgRhKQjFz6ibRY/m9TYpyWJttfWHSDQbmzR9FG677TSXL13m+vWr7O6cxAt450iTHqULPHvuaVye8+xz3+a5F57l9tO34wXOnL2HH/rhH+Vb33qcZ595iunkkHvvegM+aLZPbDDPc24/exc2zSiLOdSOiy+/hE01dah561vfzu7JU9TzPZ599jkuXLiI14qf+O//R+6890HO3n4nZ2+9nQsvnePS4HlO33oPB4f7nL71Dn7wh97OeDLh3nvfxMUXnmXv2lWeeeopHnrLv44CQYjj1mZU8NKOz3KtKdWKByv+542Y04o3wjKNhG98UaNPJYu15NtxFqDZT3H/tedMswNvEgHbKWnXpBAkng+yEIXiulj6tscjJixEp1aUaEQ5lmnuWrKuFZSUVpw8sc3lgynpYNAU1AqQodlTYXFutGvPZhnXLr7IyTN3gCh2T53l/AvnWL/1LHWzDseTGeeee55L+zeYTmZMpjnB1/TSPkm2xmD9BC4EMmvJrDCZzpjMyhjynRqbpqS9AVppvCs5OrpBPssJZQ7BUYulDp5sOMLqFBGFFkXlaibjGVU9JwuOzJdYf4it58yLCq9T5kXF3t4xXoOqKhCN0opa9xhu3o1JetQogne4oqByinR0mv7maepyzsuHlzl/+SVGg4QTWyOGwzG57jO0wpWjI+ZFDUph0FAGiroiZAlWGXIXqIMgZg2bpCgV6AXfCKgOCVFMcgSmkxl1kdMfbKJs0oiPrplJQZk+iCdLN/ECVTnneLKHdzmD4RZJ2kcpjVVCZhRKQV6V3Dg4IK/mWNGkJsUT858oFclSNFS+RNeRQA0qULoaXExloPAohJqAD1VMY1CMsX7GfHzEpf3rVKT0BmvU0zEqBAaDTbL+AG17iPQh0WhtUSpFVAKmPRsVGsFTo0OFiEYpRVGXaIliQTGfMp2PUTplNNyibxU/sCPcPzT89Ys1qfLsbIy4vpNQ2S2OJxPGsyO+8q1zDFPN7vYmp06dZF0DyYj9XJiUmqIOKC/4uqCcX0aVRxSzKVeuXeW4KNneuZ0TO2exaT8S8c6TpQmJrxlubOF1j+AUpS4JweNw6GBBC7UEdACT9Ai+pi4d42pMYhU2GaBtRpIoQMhnh8zzGUma0V/fATzBe6xSJAZSrUmsQQchFUF0THVCcKjmmUZbcK6kciXiJXq7h0DpA9oHgneIczjxlHnOOH8e7QNVVdHb2EV0Sj4+jl68qaUMDhM0SqCnNfXRmMO9PaZ5ic6GhBq8trjgKF1MDRFCha8CylqCTnC+bs6XgCiFdg5JDJKMmI2PKaoKtXYCm44Ylzn9tI9NeyQ2QSmiZ77oSLSHQAlkwwzlwUvAYuJa9Q7T/IJbDIJQhwLbeH+XzmMloCRgRYCSq9dvkCrNIw/eiU4z8ukRTnrMSk9RQ11VTOYlRuYkWqOSBNHR31upJr2XxN/YEGIkhlhvfKYChVcuPq+JvOIySIcO34nOnunsmc6e6eyZ15s9818+92e8+MKzvJZRFiVHdPZMZ8909kxnz3T2zPeC7tJThw4dOvwDkaYpxnTHaYcOHTp06PAvBUY0p7Y20EoTMFzZLxnu3IX1hkff/Chn1hVZGhrCWUDUCnkt0fMVWNLwS0Nu9RIAwDLE/5LIX6QPWCH0WSlFJMSQ0w3T25K9kf9TK+1afKEpYCVVwKI9N196WLSxqTA05LW07LUQqczmvdB4ESsawj7EL4bgWJCRN9W0rH3pydyQ9wILWlRYVkgUQWgJ8MWYuKY/jbEsMd2Dl7DoQ3thoyW6l1pJMw8NUR/a2xjNOLWT0HqLLwj7RTslpo6g5YLbEO6rw962XxZe4LLKq8eer8xvSwaH5bi0XtSoZq20NPDNvuftWlkIVLGxzbwsyf+lI2/8gxIV0xawTJOxEBBWVZ2lK/nSoxuiGNS06OLFl0kzy9bmLt470rQXw1YT2NzYQClNWZTYfp+yKrh67QqTyYwqL0ELa0VO4SsGgz6VCzz++OM8d+4Jrl16mSee+CpvePhR7rn7Hs499U1OnbqNe+9/kMFgwJVrVyjygufOPcXZs3dxxx33cNdd9/HVx/6K8+cvceLEGS5cvM7ZM3eQJBlrWZ+XnnsWXQeK0jGbHfHS809yOD5gf/8yw/67eeKpb3D/fQ/z+Ne/hnjHydNn2Nncpq4rrLaoINAEJ4j7XVbyQbTiF4s1GNoNtthjzbS1fL0sfd3xzckhfkWkaoWHm5bMoqyF0MRKwSt6mLR7GKIvXisgtnt2IR61ntmr3vsQmrXc/l01JG8IQsw90CwYpW8WImjWaxPJQREIEqWJza0TTA/3sUmGtpaN7V3OnXuaO44Osf0+Vy9f5eWLl7ly4wa4msOjG0gQ1tbXOXn6Tkbrt9DLUqzViA/sHU6Y5xWiNb0sQ0yCVoqKinpyxPHxQUwVgMImKb6ek4w2I2noHEbH0P359IhqfkTm5/RdjtGBaVkxDwl7pWM6LwnFIYJHJSmD4Q6qt07VkIDDwQhNgvc1EmqstdSJJTWaLEtRBHTSIxms4+op8+MbPPXCC2wMMpIk4+TOiDs3U2oSpn7A1Gc4bBw30XFM6xnGVTjdpIJoBMOW3K0qx6zIASGxGWm21ni4BoIEEp0gjZeoKEVwjtrVCAqdZAy0EOo+dVVznB9itGMt7TEJnsPJIRWaxFgSleGoKKkRF8+TWVlB7UmTrDkTS8oQU2toie01xqBEocVT1RV+PqGYHVAWU16+do2yrhlt3Mrp0w9QVROM7VOHgCtn4D3KJPT764i1xAyKCk/03vaAC54gBq16BD9rokUEVNDMZ3NKX6OMRfe3seJAKuoKvnah5hsXjhhPKrJhTu8AyqIiYOn1RqS9TebrpyjyQ164dp2XL19lZ9Rnd3eXExtrbJiU0mWcv7pPne+R51P2929wOJ4y2DzFmTvOMuoNUSbFB9BaQAnOeyqxKJ0CgcQolDIUVU3wYHR8zsB7Qgg4FUXFNPXghKoqmU8u008Ma33FlRsv4LBkg3WCFoq6ihFDQjyrJuKZItT5DE3Apj2UBEoUZR0AR9VEeynnc0zWQwWN6LizGwd9nAJwJMZie5o8z0nW1ugFFz2m6wlpb500XUcrFT3iAxgRjgN88/kcl2zSS+K5E3+PEmyoCMGjxOCpoNdE4AiBIJ4qeCQkeOcwRlHUjsnxEdr0WFs/ga4n0Nti6EO8QOED5XyKBE+SWJRJCcYgorCL30gdU0XgkKAaT+dG5A2O2nuCQOVjChN8BeIhePJixt7hAelom7t2R/zEgxlHNawnKReqjM9+q8CVJRiNVwk+JMzrmpBXqDBHG0svsYhNo8AVNCAYEbxSK89GGi8VoBCvmnO5Q4e/HZ0909kznT3T2TOvN3umrEq8c7xmEeB4VjBKR50909kznT3T2TOdPfM9oFPpO7wusbW1xeHhId53JEGHfxiSJOFnfuZnXu1mdOjQoUOHDh3+EREk4PM5c6/o9XuU8ynrfcOpe9/O7tDQTyC4ChdAa7VMD7XqNduQqqtkoIRVji8Sf0ti9yaKL4oODbnXMvYtwSxAUEtxINLNS2a39ZqFlfp5Ba3clrNkrBcfDr6tT5bfWZDQsiCiI+3iW5YcubnEV45qrGbFq3kppcTxitFgmnJuIj2XBHfLtDcc+KLsVgpQsky7EZsdbiK1V6eHVZGjrX+lrbGfmlZcaD21fePR19a9TKGx7E94xd9jhX6lcomTuJpcQ/zK2C6GvREJGjFpIeD4pqim3WoxODeNyLJ9y/IiN7ycJdWKMoFFGYEmbUG79l7Zn1aaabx1nasIAsO1LQ6uX+evv/YlHnrDo5w8eZK6mOP9GlWVc3x8yGhjRJIkPPjAG/mrmFgR9gAAIABJREFUv/gMR/4Ioz2nTp3mve/57/itj/8HMptxsiy4fOklkqSHJ/DS8+f4UvpZHn7b2wlNWOzhoMf0+BCjDOOjI77+zce5+44z/PGn/jPX9y5z6cKLZGvXKfIJG+tDvvLFz9FLM3Z3d9kYbXLhpRe5cvUi0/kEbTSz2THfePzL2HTI/Q8+wMsvPcPVS+ehzPnjT/0uDz30KPf/wIMMBv1mnUaP+TaFy+p6WAznclgXGtBind40V365TxvmX1xzdiz2g1rUIWFFiFipKk5SW1IgiAOvms+rFfEsimHtvo6e9PE0WaykZm+rhohuBaiYkaVpp29KDYJRKyLpooOx3NCqas16FRu9XpWyTMfH4D29fp+XXnwGrwZcurHP0eSIuqy4evElkjRh++Rpdk/fRX+wTmZTrMD+wVUm04q0P6LX7yOmGX9fU85m7O9dw5UlveGIxCQoZfEqUM48qU2hLvHVGGZH+PIYN5+SGMO8CEwLR1FXlEVJCDWptfT662Q7t5L21kD6zKuC+XyGEkXW7yPKoNGRCFcQ6hySPqlRWEpUYlFlTlmVWB0gG2LWTpHbIaUK7L94kfWB5eT2iM2hYycN5CIclj3y2kAAr1JceYikI7R4tAr4oKkrx8HBHh5pvEGz5RwHh4iQJIZMW/qJQWzA19FjdlIIVVXjfR1nSYHW4OqS8eE+Rz7g6oKst4ZJU5TJQIHBIMGjlWBUQmaHKO9QpjmrlEYZwYYYeQItaIkk8mxyg/l8SjkZc23vGkUl9DZvZWf7Vnr9teglmtdIZjECqRbqsqT2jvH4AKMNKjFokzUrWxG0wTSiKgG0SnF1TVHOmY0PwRqy/hpBNMgyFY+kCdYmQM3W9klEJwiaXqYpQkCVnspDKgmJ6VP2N6CccvngCheePMda33Jy5wS7J05AdZ3969e4fuMG6XCLW+9+mOFgHWMsuvGyVcFRFxWumiNaUSqFAmoPyjs8Fc47QlVS+0CWjSBoalcSqFGiqJtzQInHJpaj4xuMb0wp0JhsRAglVgZYHc/qEtAIRmuCd9heQlCCKA0ejIBJoEawCDpAlnqCCWiix7vzHguUKiBoQuIp8gmV94w2ttga9nHBczjNcEUOlaMOY7CWNOkTlMGHCuPjmeO1NBEiNCKCUeD88ndXo3A+pmYIKl4uSFAxMogLTMaH5FVBNjqJMhYVoue9uAoJMQqFTVKCVvgqJy8K3HRGYhN0moCxJCqmwFASowVEMW35+9v+1sYIeB4fwAehqGqm4zFOFGs7Z8mMYlYEPvPUnMNZgQqezUFFz/bIbUrpHGiNDiGuXREcceyPy5Iwn5BSY9MEnfQISoPEFBEEhSjQOkVCQIc4Oh06/F3o7Jm2vs6e+X62Z46PjxiujeKzYWfPdPbMTQv8u7Nnqrriz/7oU7zW0ev16A0yOnums2c6e6azZzp75rtHd+mpw+sSP//zP883v/lNfuM3fqO7+NThHwStNQ8++OCr3YzvwGOPPcZv/dZv/b0+65zj8PDwn7hFHf6poJTiQx/6EPv7+/zBH/zBTUZ/hw4dOnT43nDx0nn6/TW0Nbg6xzlH38y58OIzHFy/n9GpIcd7V9HJAJ0MGA7Xl1TvgsiPTHUkBFsKkMWFgAXnt0IIr5J9bYKDIDQekg3pKNFYVSF6JrVexKGpjxBFjjYtQOsFu6COm8pWRYlF/U0nlmHjuYnobD3P2jIIS0/jtvrVQVgJTM/C77Pp74LIF4mXJ2g9mVfJTrn5T+0A3FTX8hNREGjGKqgoDjQfDAuRo724sUrgt71ui2qEg1YEWYxKdC3Vr5ixNqWCNO7jyxlWK99daDjI4qKJX4xxO/eyUD9WVJvFoCxloeXL4ab+3dSFV8g1gSbNBvIdqTYWn23+HIWDVjiRRiRarlBp3m/XsNEpZ2+9nf29G/z55z7DlUsXOX36NFcun2c6m3JbPid4zx333BfrDrDWG3Dm9rP82ENv5tnnnuDwcJ/Pf/6PYvo0V/PSc8+wubXFI4+8k6eeeIyeMWxun2QtW+NP/+QP6dk+g7U1rl67xBve8Ba+/eQ3OXnrLgcHh1y8/CL9wZCdnV3uvPcB/uovP8vlS+eZzuY4hHf88H/Nia2TvPltb+PSlRf59Kf/gLIsmB6PuXzlMrVT/O4nP8HVCy9jLTz/4jOcPnsPSWY49+zTvPFND6ONIbiAWszDUlQhNJeIJG5Uad2SV+YxRlNoCEoJCwngJoFMEUOiN6skniErwtMKgdWug1jEqje/NHMPolwMK75YGrJcS15octg177RrShbCRtv+IEKMwtDsjKBRCFoMrZTWLt+F93fbi0X/AtlwxLWrF0l7MVx7b7TN0dxx9dqL5FVOOc85PD5gY2OTndvuYPvE7djUEghMxwdMJkeURUGvt04IniKf4l2Jd56jg+sUxRSjDKY3wnmFsQZRGh1qeklgxAGHBxc5OjxArCavhPG0oC4mCA6xKf3hBoOdbfq9DYxJ4swFx2R8xGR+lSSJUX9F6ybVgMZojRIDwUVBt55TuAlGepTOYJMU6xPmsylB9VjbvR/xghPPtCopswHnrlwlDXuc2Fxna2vE6axPYXrMfJ86KHJnSdIAOMoycDQ5pi7mWG2wSQ+vAooSiGeh1gqCEFxNjWJeOqhyJuMjJC4yah89T5UISkNVF4h4hv0RydoadZXjy5wgARMqjO7H/R9AxKODRxQYZVHMUaHxug01AdDWUuRz9g8vUuVzDo8PuLa3j6scWzu3ccv2WXR/gEjAowguB9G4ukLbFKX76H4PFRw6CKGuKaYHwASbpmTpAKtiuofgQJQin86YTg/QqWYwGi5SM/pQA0KiEtIknupVXaK1JSiFqh3eV9TexX1ae0DHVAWVw/saTUKyfgqfjDiY7XHj+Ze4ePU6s7xkf5KzdevdDNZ20VkfEY3zgbp2GPEEKoqqBO+wSvAOvGgCHqcN2oMylmAsRinAoJUmCRolCqUEkdiO+bzEecuJ03eTVsfQO0XlPHU9jx7vouLYIEj8FcfVdVQFlFo8J6gAWjQpgRBKtAQQ05wjMbKbMhYfAkagmE3I5zk665ONeigCZQUVCjEW3T6TeE9ZzcnH+4gJ9IabiLHxzFAGE92eEfGo4BDTpEDwnswWzIpIjjtRKLE4cRT5jP3j61QehpvbCKZJT+Fjf1xNEBuljeCj4qX76LRHH0UdHFVVUuUzKh+FNp1atBmgxeBQIH5xBiofn8XaiwXFfMrRjWusb2+xNtwk+lVXTLymmDry2uPVkKvjeBxaI1ir0GIJxHk2gFEaHYSsP8ApRV2WzOdz/HhGqmpSDfSGoFIMlr6xMSKJ+JiiqkOHvwOdPdPZM68Fe+YTv/1/ccddd/Ou9/xYExVqZTQ6e6azZ9q19fewZ7wPvPzSC3y/YX1zm9tuv5t+f8Bgc5deOogBb5xjOh1TVAVpkqHQTZqowOxov7NnXoP2zOb2KYq9fQjQXxvFZ77Onunsmc6e+We1Z7pLTx1el8iyjI9+9KOICB//+Mdf7eZ0eA3j0Ucfpd/vv9rNuAlf/epX+eAHP8jLL7/8ajelwz8DfvZnf5Zf+qVfoixLPvShD/F7v/d7r3aTOnTo0OE1jz/4z7/JxtqIN7/zJ7n9RMGX/vLPePk4pbdds3d8RH7hc/zhZ/6KdLTLv3rP/8CjD62jVUv4sWRrV4jVsErQ036s8W6U1bQErTiwJADVSpkSAgTPInXA8ipBJBlXCPyW4A2tCyaseBPHhrQJC9RN5KVq2UVAUOKYHF3j/LUD7r3nwei93BbUplUgLPpAU5Sotj8tid6KBxIbGgLBR5JVQsA3tPmqJ++CvG9Y9tC+FloSdCmmRGfP9rtuMR+tp7E0ospCOGkElXYwYm+XdYcFWd+0QkJTR9tPtfLN0HhNsYj6H5u86mARyeDW+3tZ+s0LQySmtWhfWl4+aVsor5jIVblnIQfdVHbr+azVivhw03dvrp+mmzRzqxbvNSUHCMEv+OwiL9Ea1kYj7r37fm6//XZ6ScZXvvR5Ll98mbQ35N9+4N/Reu4jnnTQRymFzRKCUoyn+xTnZoyP9un31pnMcx65/z7e/PBbuf/+B/jKl7/Aiy88y7PPfJtJMWb/eA8tFlfWrG9tsn1il0cfeQcf//X/HSWB07fdTlUGetka/eGA7RMnuf70Ob75+F+jjeXSnRd533v/Lev9ETubG+zunuFzn/8LAsJkPOb5bz+N957tExsMh5usr21gRHPmzG2YhmiXZh23d4UWy6NdrEITAt034lsjhi1EP78Qn1S7l5vpVe3Z0FwgkuW3lppOc0wEvxTgosd9iOuVKABcunSeg73r3HPPD5AN+iwduVfEolahaPZ+m9JOyTKdCY3IqdpGCPjg8aqOK121cqAsUqdIs27aJdaeE955prMZzz/zTdY3ttDpkEkZ2L+xRxDNtRvXSbVi58Qp0mSATYfMxvtUR446BKxJ6Q232dmxgKJwClzF3v6M8XTMYH2XNW1wrqSqCpSvKQ7Oo9wRhIAjcPn5A45LTTk7ppck6CQj6Y0Y7GyT9NdJzCAScko17Q7Uec4kPyYEYTgYoUQQpXA+UBY5vUQTfEKlKgglGkdvbUAIFUVdQ/AcT0skWaPX3yFIJGl9qKmrEqMMSMbw5BsIfsb1gytcvPYSo37KqZNbbIzWcMpwVWp6Wrhy/YBxWSPKkCRpPI+bdeWCg7LC+zKmwJCA8lCKxyhNUB50QIlFdCCJyipFWVIXHk2GzhRWEhDQdoAkPYJ31GXOfLKPVhqTpWRZikajlYnLKOiYnkIMQQnzcszR/gXK2ZjJ8TFX9q7hvWJr+1YGWydJegNEBI3DBY1zsU+iEvppRgiK2tUEFRapLEzWx1qDI6azmBc5fnJMv5ehcewfj3HaopMM0ZrC+SYdYxTLVIB5WXM0KUiSSMQrZRFlwTvEC7Xy+CYNQy8dEESBcdiQoAAjFklTfJoQ1nbRyYCsdtyyKyAGqw2pTVDK4MXRpumBFG1SvNAQzM3ZGxwiNCKEgK/xIjFNgBK0Tgg+oMMMl0+YlJ6N4YD7Tq1x/xu2Ge+9zNz3mB1UnLuiGec103xKMb2GFkXSHyHGoPG4EMBFn+d2TF2ocHWOVg6tA5VPQRTeOZQ2KGVwVcl4fB2LIukPAY2vPaUEgs9BFM6BQsc1Zy3GW5SkuLpiOhlTG9hILYP+AJSOAhZE+tw7EqXjOCswOqYdsiIInqOjA8bjMXrQx5gUAjiKmCaLGm3ino0R6SqUtwgGYw3eQx2qKICkGZoE7TzzYoKf5FjrUcagbIKIjhc6JeCIUTBM8IwP96lrx9aps/QSS1CmiWCR4kVTKYWYNXwwuMbj2itFCIrUCBIUvjl+Fap5htIkWhGSAWFtjeADeVUxm8xwkzGGnDTLUKRomyDaoBcXETp0+JvR2TOdPQPf//ZMWeb8h1/+X4DAj7z3x1nW2tkznT3z3dkzzz3zbYoi5/sJo81tfujd7+PEydOkyYDh1gmMCJVfsWd6QwbZK+2Z650985qzZ3a5+OyTPPnXf4JozaPv/iAnzt7f2TOdPdPZM//M9kx36anD6xa9Xo9f/dVfRSnFxz72sVe7OR1eg0jTlI985COMRqNXuykLfPnLX+aDH/wg58+ff7Wb0uGfGCLCz/3cz/ELv/ALJElCkiR87GMfwxjDJz7xiVe7eR06dOjwmsbR5a9z7sYj3Hr3Uzz9+S9wYZrypkffyontHl/89P/DfQ89RBkqnr845p3rWwvPmaU20IaHjy+oEBZkvETrP35ulSZuidkFid2QfqEltxu6uSF745ea7zdewDGPQwyK3ThcrggEsni9rbWluZecvFoULiF6Yc6Pr/GFz32Kw3HNW971fmgM3ngJ4hVe2e132/oX/HNMT7FCvzfqhMSUA42A8h0pG6Ah0JZCwKKExYUKaflQFuxqkBWSfjmWcVhb8QSCUivlLUWM5RwuB1xYaDaLoY/kbUvFLz3XaearzU8fFj1rVsGqdzwgrYf0yni1VbdE/UKMCcv3Vr/UtjW09awINi2R3/ZBxLNUVVYKi4xF7Htoh1Ma8noxc8tZasa/rEo++9k/Yn044NqNG8ynR9x65gxPX71Kr9+jqgr2j/ahduzv7WGspSgrnnnmSV548VkuXzlPPjsi7Q3xSeDU7XexPtjC2oTZbM4Xv/jn3HLLrcxmYy5deZGiyLnt9N186xtf5vLLL9Nf3+Rwbw+rNQcHB/QGQ+pixvnzL5MXU/7w00/S6w3YGG5Tlo9jrObUqVMU+YR//+//Z27ZPsHWiZPkrqDXS3jTw2/ha195jPF0wmh9nXf8Vz+C9p5zz3ybf/Ou95KtDRERlA/4Zj8t16ZCSRTMFHEtesJibcmK+NMMIASPBMXNGmMjPUnzHc9ivqR5fWX1Igi+2XiySCuiwAeeefZJPvm7H+f6lUv82Pvez4++9/2gTFwnqhEZAigVVlTDdgE2a1U16e2CLOptd0sg4ENo0mI0Z0u7/lYFyubzBHBVRVXVpGmfbH2b0vS4cv2Y4xs3qH3Njf09kizj5Jm72Nw8QXCx/4GADZos6XF6e8BWX5EpzdOXJ5R5zjwvQFtGmyfj8NYVyuVk9SF1PiWzlqkkHBxMItnZ22FnY4uynONF0R9sokwWvae1ieHhBYwIRTHnqJjia9A6I0hNcBVBWUQpjAFt+6RpFiNehQD0QQUCjlk+J58f41yN7a2jbYZDIRL/tVajjKbIj0BptM2AhOSWEb36DPPjG3z7hfNk6hK3ndqFIPQHgVPrCnXkGNc1QQ9QKkW0QaEioZ6AdTPQCUppyjonBEFLIIgmSIoRTQg1ZV4xz8eYJMGqhOBrtAhOAtoLGsGLRpQizSw26eHqnHE+pyoL+mmPYFU8tyVBuRpXjMmn15lP9phPx1y/fg0xCRvbt7K2dQu9bJ1axd86E+J6MgqUGJxzpEkayXEV0FqoncL5itrVeD9BBGoqvHO4ssTnBVePriHKgIJkuB33qzagDOIdCo0STe0rRCwZ64iOu86KJehI2qsgGAKio3ju8Y0IZ6KIV5XM8xm1c9hsnbQXvYa19aRiAY/zcDTZJ7gSaxT9bESQHkHiHBhRzfb2MbWD8iThiKmMCFh8qHHisSGG/nd1yXR+hCuO2cgGnN7aZLMX2M3gVJWjqkDi5yhxDLWjVuDTjEKEuq4pZocoMRirSGyKUtIIv57SV4h3aAVWGwhF3McS0NpQB09xtE/tY3+N0tGb3sffQ+8D1sSdHjzUgKjQJLoBb6IHeqZTfAjs5TnXptdJqRn0NtBpvxH1Dd4HFI6+9ZQMQAJFMeP6/nWcCP3RBgqJQpiAoFESBQXMkMqr6D0vMf2FNJS6Uh4VdBQAVEChUFpIjI2CAlA7T1nWlD4H70gSizE98nxGfrzHYG2dje1d0DoKv8qCEgQHkuJFNc8hAYtGaYXCxOcWFRAVhQEtggTTPEcJQSmMAiGmIkkzQa+tUcmJ2J7pjKPpDNwhvVRjbEfpd/i70dkznT3zWrFnyrLg//yV/5UQPD/63/xkM0adPdPZM39/e6YoCj71+59gNp3y/YL1rR3e9q73cft9b+jsmX/h9kyWrnPuyS/y5GN/ivcOvONrn/0dHnnX+zl1x4OdPdPZM509889oz3QWUofXNYbDIb/yK7+Cc65Lddfhu8bu7i4//dM//Wo3Y4EvfelL/NRP/VR34el1AK01H/nIR/jFX/xFsixbvL6+vs6v/dqvEULgd37ndxYhgTt06NChw3eHaxPFiTsDX/yz3yV3GWVxzF/88e+zPuxTJutMv/iXHI2PeOQdP849t2xGb9Pgl+S7qJvKa58w2wsBYYVYXrwRlgRgE1+e+EdpCMf4nqfxmqaJpLIgeFfLeSVp35D5iwsJ8bMt+f4dF2dCIKjoLf3c01/hy088za1nH+bUzlYk9VsRJKwS/y2W5DREkrklziMvHQDVGPWrJHW46U8tsd2MwsooLstcCAAr9S7q80JQf8Pv4KICWXlhOTdtiarxCF6ZmiWpL7Lo5tIDGWKonPYayFICiq++kmoPK72+ufzIiIK04s/i9bZsWZLNzTy2ooa04oa0KtFCtWh71pYQ/wlh0WIFSxGCdq0EglrOiixW7TItRZ7nPPWtryFGMTk+Yl6NyefHDDe2CNqyubXLXfdu0utlnHv6ScYH+9xy222cuu0WtjY3GK5tMjnqceq2swwHa8wnE67duM7p07dzfOMqm+sjvvylF3j6qW+gLKylfV56/mmeF9hc22By9RKf/H9/ixNbJ/jMp5/mfT/+fj73l3/Ks889GUOYO8fW1jYVDmss99/3EP/mXe/lLz7zKZ5++nHOJxaUY9jb4O3vfDeC5u577+Hc00+xvbPNf/sTH6Sczri295948fln8M5x5o67sUo366AVXBTShNOXxYaLY9x68rcjt+q3HmR1fJtXm724EHha0UaFxT2i9v/RE7Zd0ss9Fam/wGjYY2tzi8nRETa1zIo5g95gcUYoWbZhEZVgZW8v1nFYad9Ne6H5bPDLc6bdCysLOCA473GuQqFACaV3OBIuvHiFy9cvY42iLiu2T+xy6ra7GaxvoUTjvcd5R1WD1oZRalhPDVf2JuzPHNPxmFo0IhlG1YTiGPJDpBrHwVOG0glHlYJknf7mCTCGfHpAOtgkWztJ5SqUwKyYgqsRiWlOtE0o5lO8c4ixVL4kzfpom2BIUUYhxiBBx8tf4hBfE0QhwVNMZxzPjqidI0n6qH6KUY0AgUYpjVYKrYVCDOujHYwEvK8QFCEIXlLS9VMkWZ/xjfOcvzFjPttn/2Cf07fscnYzwyQDCpdxY2IoJUVpHcUkX2LFU/gCTw9rM7xvI054PMJ8PiMvZxiE1Fq0TvAelDIEaYVCB2JQVqN8nN+gEozpo1IHwTEucqrZGG0NSaowswMm0z0Oj8bs710HEdZP3MZo+wxJluGR6HHrFWUxwyHoxOKKHI+A0giKyXxCqF0c88bj1VCDDhhrsGKo8pxc19BbY3vrDC5AXU+pg4O6RJv4Xa9U9C4WIa0FCRYxFocjiuAOQ00RTOyzc81OUiAKFQIuVMznx+TTMSZJsb01rEpxzi0FuuDwEtAKhtk6RTWlKnPG42OsycmyBDEWKxYxgbJ2ECxpIjCdYeyQgGuESEUVKurJjLqqsBZGo00S08MFxSSveelGQeXgltGQi/sVlw4D09LgAK08iUnQ2kDo41ygqiaU8zG9xNLrreNVglGCC6Alip1GJQSdUbs55WzMdHyE6Y0YDbfx4qlcDcGhVPztCCpQu3hEeNVGH1EEL6gQoje6jd7VHtC2B25AXkwpcvCzMdoY0iQFgZ5V9BTUdc1kPGU82yNJB6RJggRPjY+pYBBEgdUar+IzktLgfECJxgXwOFLvQeKzmvMOFdpf6JjuygBKAtbCQCuOpiXj+ZTiuEShmBUV/V4Kvub4aJ+0l0bhQxlMACWKmgKDXaQdqYsSnYCyCT6uMLQGJZogKqadIKCC4F2FpBmiDEFpRHkQRUogMRDWM6phn6LMqcZ7TCaHdOjwd6GzZzp75rVhz8Q38/mcj/4f/xtKGd79o+9DqfbhtrNnOnvm/9+eOT464PN//id8v2B79xZ++H3v585739TZM//C7RnnA88/8SWe+OJn8K5erIG6Knj8Lz5J7Wpuu/3Bzp7p7JnOnvlnsme6S08dXvcYDod89KMfJYTAb/7mb3YXnzp8V7g5XPGrh8cee6y78PQ6woc//GF++Zd/GWvtd7y3sbHBr//6r+Oc45Of/GR38alDhw4dvgdsnbqT3vqtkA6Y3LjB7i1neeHyIZII4koOD85z6foc//UvMH/3v2Ez3VwYhK/07o18dEM4h4Dg42eEeEkACOgm/cMqdx29iaMna/TSWpDVwROUYyWAPJEUVAvip30FJYiPBqhrPCuVSAwDTUvUN6U03rSxTdE4PXHbA7znR7c4ddsZrF4lkCNtEol/aTyfVjxAV0jQxgl6hTZfGZubqPJFcofmpSVD3zrytt/2LUl/c5GvUBlufrGlTVef31bTYyy8t1tCFlbmNCyb2TRk0cvF59sxbGtdzk4rDHwH2jlvRJtYfCuCRGXlZoo+LNsSFaWGkPYrhD+LTy+WWkM0RUd0RUxtoZarR1rVZeXvNGMsqzMVG6xYRgKw1vDOH3kvm+sjLl54mce+9Dke//pXuf+hR/j/2HvToNmO+7zv18vZZnv3u68ALkAABIFLASQBgiIJiiK1iw6psh2bcZUVV1KVKn1JKp+Uz05UURxKjMRUqYQCqbJD2SIthZYlcxNBkSBAgNhxL4B7cffl3d/Zztrd+dDnzDuAIJhKRAII56kC6s68M+f06dPdZ/7P08//L2zFnv37edcd7+bsmbOMx32+feoHfOzn/wsGWzt8+r/6b1nfWKPd7iJkwMbGKoPNDc6fP8PmxhrGGTq9HmWaIUXF8vJ+lnrLPPvME5R1qyIV0XYt1jc3eOnlF+H//jMIFHeefC/XLpzn2vXzhEox2u6zNLfCYHOTr/zpF7h+5SrtKMKUOxgnuLQzZJQa7r33ft598n2cffklWu0Wa+sb7FnZy8033kF/MOCR7z1CaRyLCwsIFCvLy+CgNCWnX3ieQ4eO0ut1EcJnR5q++01Jkt37Nxlok3HvnJ0SEn3q+7qwQ122pfm+mHJM75aKcKKZnwKkRMqQza0ho+GQ7z3yLXa2d/jFT/xjdE2uTcaqa2brrmBYjzCajAK1eZ5JpgGcb28zJOuxQb12NVcmcBhrape4oqwMly9d4LlnnmNn2Ge4vY2UklYyz55bbmJ+fo8XR5WiKkuG45wkaqMCibIVw3TEqQyoLKO0wFiFcxkiv46oBhRlQVFUSBUwGI3IKks8d4Cwu4IQEVjrXZQ6oShTgkgQRTHGGbqqB86QlTnpYICjwlpB0p6jnbTqUtUxAAAgAElEQVTQQYIRqhYSBVDW60Tpb2c9D/NsRH+wQVlZ2p0FQuFwKvSu6Xr+CQTGFKiqZFSkFKaiE7WoXIkrM8K4g5QKYx1plmKMoL3vVuJAo4arDPurPPvKGomyrCx22beyRFIOWO7tZSOPyIhwOvZp7JXASo2x1s9fZxkOUyqRE0hBOw5wxoIKMYBW3qmthSfHBeCkwlnQGjCSwlVYW9UOVdChQMmKarRGlVv6O5sM+wN2xjm9xf3MLe71jm+tqSqDQvtjO0sQxl6EkBolLE4rtFJYB6ouz+CsBQxWWJzTBDKgLDOyPEWgSFp7qRCYei3WqkcoDM5YijwjGw8JwgRi7dc4qeunZoVzFg0ImRLJEksPJSQiDOu5ZbFVwSgdMipGKJkQdxdR+GwmovLCkJShXzOdFx0sDqcUghaJ7mBchaxy0uEW1lq63Q7dcB6rIqrCYipLVRiErCbjqczHpGkfCJjrzSMl5FZQGUdgDUb4/Bqyn5NbRT+1VDZAKi80i8ogpEA6gRRekApCjaNHXlTkoxwhK+IwRMl4Im4gC2xVMtrZxlpDd3EFKQMqV1JZ7/qWQiKlwjmHAUondudGvY75Z6vACuEzeNXldBwgpSQM6xI11mGqgsFoG1ONUZ02g6LgwrULhGFCO2lhpaAqC7+yCFWvLhKpvUt6PEpRokAqX5pBSQlS4ayjLywRmsI6TJWTxG2klJ7cl1DVgrqUGmcrMkqMqgjCFu3eHlpCsbO9ic1z2t2IpNNFBF2clHXWAIkWAikUwnrBqDQSJfAZK5xE+hUF4wzG+fW1ovRiIAGicmhKHBXCWRAl2AqqCpOnZCanGGUMt1eJ1K6wNsMMr4dZPDOLZ94W8cwUZ5mlKb/72/8ScHz4Zz6OkGoWz8zimR8qnhGvMyzfLOw/fJxf+Sf/DfsPHJ/FMz8B8cy555/g2Uf+Euf+pqZcFhnPPPxnRGHCkRMnEdbO4plZPDOLZ37E8cxs09MMM+BL3X3uc59DCMFDDz30ZjdnhrcR3gobSp544olZSbufMNx///2vu+GpQbfb5aGHHuLTn/40X/rSl36MLZthhhlm+P8H5kSfgyuLvPc9P8v6xggtdyjlAq2g4uxzj/Klr1xl6fBxgt4Bzqyn7F+e8xS9oCaJHcZ5d5Sc2p8yKXlQs+aNu/jV1ltZu4d51d4WT9pPZWKZCsB3ncr+M9N+5YZYd1MHaxy/DYk9dcQpt7T/6559hxj3r/PKi88z31ugnbQQ02w9TIjQVwsku+RoQ6R7wnmqzQ15v/sWAhDImph29eu683D+XNOnb0jw5j3RSBHT5/HX7HhN/02JGY2henIbJlckJn0npoh8/1dHk8O/kVp2+d/XiiF29+gNwUsjnrzmPjWCUV2aYfd6634RtdPduYnQNC22TLd5+h44IbC2BOMoTYbWIVqHr3LYT/drc3l/Q/h6jTKTJC3u+an34YRDBxHfevhrjMsxC0vznH7+FGG7zeraOipQ3HPf/axfP4EONK04QSDZt3KYlT0rCKUxZUExLojaCXv2HeT4sRN85T/8X+zdu8RNt7yTrEhxQvKRj/0KZ8+8xPLKHh797re55773s//gcVavX2N1/SrvuvMk1giurV6ist4/NxqPEMJyfe08F66fo9uZJ80yqlyiQ+gmHe659z18/GO/zGPffRjjHOfPneX//J3fYmFphVfOnmJhbhEdBvS3zmNKwQcf+EVWlhbp9/t869tf5bFHHuaW207yq5/4NZIwnowJHFi3e+8m9WGcJ8YmA3lakKlFhMnYtvUYxK8dtnbK+yFhcbVyJmph0W9Uspx+8TkuXTqNNaClZmPjKjsbq8RJl1bLk2SvEoemx019vObf0/pG4/V39RikLh3yap3Ot99Y60els1SmYm19kx88+wLnzp2jTIfsXVkhWVji8I3vQgBFVUBZUjpfWkAHAcaVuNKBFNiyYDTYBiNwdogsBhRVhdGKvKhIhwNMleOkRsbLtBf3o6MYKTVSKLBegIhMQlVlnqirBignSIsSJQMqq+gtHUALC9ZQmoLBcBOHI0x6REELKUHIep1wDmssRT5iPN7COUkUx4QoBBUGgR3tUElLpAOMlAQyREmNk5K41aEtJChNWMtKWToizUZYIQjDLkHk+7PC4GSMbh+gt2eO0oy5snqBS1dOsTzfIg41c8KxkvRw0TJp2SIvS0SQUOY5w+E2WZ4ShhAqhbWeaHUyQAhBqBUtHfgkFk5ijMU4QZVlpPmIOIyQzosEzjiqKsNUI1TZJ1CCdGeb1c0NhA5odfewd75Fq5MQJTFat7BorLOUzqBl6IVRGQASKxyuzBFK4pTypHZlqZz1gpnwJR2Mg+FgizRNSTqLCB1SCV2vfmpSMsW6ChcoAp1AmVFVGcPBKlEQ0Gu30WFCXhlc5RDa0YtjYuddudY5SmdQSIajEavrVwiiNjruokTgy1dI0EKhnCJQgHSUBiLtZ0PhHDgvyUklCESECTQyamGrimGeMsp3kDoiCEICoRAOjNDkZclg2Mc5S5h0kEGIwWdkcNIhlaasMy8oa+lnkBkYFYrKBbX0WKGDEFeVvj4DEqE0zmqkgCjKIIwwVjAuRpTjTcJAo1uK0XCbQSHodbuEYULpHIUpaqGJer4rJIaiTKksnpA3FleXoxHCgrUUwmGryrc1COrEDI3r3gIVOIUzGTZPEVKwce0qeTmGYA7nJGlREYYtQq38pgsZecVK+v5VUqDjDlKBliFGSoT0ZSEsFicdul5TmiUXKeuNGAJTZWTjPnk6wDlFa36JxdYxdKgRSiKcYH7vXqrSkg36bA/7JHqdbm+OqNNFyAiBRiiQBCB8P3iBTdS/A2oBxVpcVeIwOFNRmRRTFth8hMlyxv1NyrwPQF6UOFMhTEFZSayQBEIgZcIMM7wRZvHMLJ5p/vVWjmdeE2ZQFDm/+9v/MwAPfPTnX3P+WTwzi2deP555q+DA4eP82r/4H+n1erN45ickntnevPa6G54aVGXO97/2RQKp2X/s1lk8M4tnZvHMjziemW16mmGGGkmS8NnPfhalFH/4h3/4Zjdnhhl+KDz66KN86lOf4sKFC292U2Z4i6HT6fDggw8SBAFf/OIX3+zmzDDDDDO8rZDMH+Wll1/iyN459hy+mZe+8xcEB26nTK+R5xU//fP/mIVozIm7HuD43jk8e8eE/PWcX1MSwjU08yTpsJAKB1gnUJNIlZoWMj6bSh08N/SJMwWj8YBW0kUFEQ2d7vAplqlFBHC4uoyAQzCpiCAEEleXk/CkgtilyJkuzdCUBhgOVhEILpw/T3vvLSRRhGyI8EbXmHZ0T0pRyAmZPnEb02yecH9DZNhl6Hdb1AgENC17lTggYCJMTG3CaPZr7O7b8OdiWgCYMN/+qkVD9NcCgp0WZupWNCrHVB81jZn2PjP110a4aTaMvOZr/gpd03G7xxfTjXf+nu2Sxa923k/cy65hnOt72vDSTQ0B5x32EsswTbl47gynTz3DybvvYf/+Y4RBSJPCfFeUmWpbLZB4N/XunWn6USAQoh411vGJX/oUTz3/JLfffpJDe49hnOHalcsgHHmRcc899xKECX/x51/m4MGj3HziVtbWVnnise+xtn4FhGK+s8ThI0c4eOgQD3z0F9iztMK3H/46N918C/fe/QH+8i/+I3fcfhcvnn6BymasX7+GdJI8HXDy7vs4cOAo33/iOxw7doLtjVWuXbxIELdZWJjnnSfv48qVi1y5dBElBCKKqKqSE7fcxi/+0j+EynLu0gUCrSldxdLyPBfPvYwrC6x1DLf7nDr1FIcO34xQjmG/z0svP0Oe9QkjjTEV2/0dopXYC4cWVq+v8sKzT3HfBz+E0hoESOewtVjoGqGgGftiSqCq76WoB3hzfyS16Oaa7Exyal65SUaGpaUFer05FrrLXLtyjf37j7CxucXykuLatSucOHHLJNOAz4zgpkSzepw3AtlkWDRiRjMv60xjE0ekf99Zs7sWWBgNh7z48su8cu4VNncGBKFicfEIR4+dIGrN40pDVY58Yn4RgajJSBUglYIqZ+v6KxQ7aySRv95hWlAYiasMlcmJopCwu4IVLWTQQQcRQiqU8lmEnHOU1mBMhXMFptxEO4XULQoDKpBIGdCWIKRfz4TWhDYmiFogFFVVkvbXcQKCMEarkKpK2VhfxQFJEiG1xZkSFQiUDAhUiIy6XlhAI6QvBYFxOOl9/tIJnKsoyoo8HZFXhnZ7AaMCpHDeOWotjpAwrEiH16C3lzjs0jm2j6rYZvvyc2yeOks3jllZzpmbHzMXdzFBSL+4zsb2gFBa2rHGWKhKT2JbYamsoczGaB1QRTG+scqvr0icM0Rhgl9NnC9bYQbYbBvpDIPBkNFohzAMecett6FFjG4tEdiUzXHOcDCgJUfoZB6URghVr3rKp+JXktJWnrhFYw0IDBaL0gKpJFmWkQ4HCAlCK+LuHKiAQpRoY5FS12KcX8+sMAh8iR2URqqEINC4ImdjY50wDIhbbbQIMZUgy3KiROJ90hWj0TY7/QFWBujuEloFuHqeSKnQMiASEuPqUpHSIYwlkBqtBJECUylyITHCP5+dC1FSIoOCMNA4QtKsT7ZxjSqClhizde0iI2OJW13CIAK8uOVciZPK91VpsGVBWpXYSDFSEpkJxiVIClASYS3WCtIsRQA6iLBK4WqHvBOWylicM5jSUJUl49EGa5c3UGGHoDPPcFygSkegQ4RSaPxmtEo4L5SUBioIA4VSCud8WQYtBEI6lNRIlL8LTiFVvalCOF/WwVoiYZFYjAkZa8XWIKOzuMxCICldQpmnhFKhA0EQBlgdEurEZwGRvuSDJ/utd2YL70j2v31q7b1ey+qKVEgCnKsYZ2Py8ZA8y4nihPnlgwRxB6UlQmis9JkUlPUb8UgU3e48pTGMxkMGgx22ty7SDizx/BIqbKNkiLUVgfQZ7pypMHlBlY9IsyHZaMhoewcZSpSxVFXl7y9e2EAHSBUQhiGdJCTUGq01VjoCKUFon5FnhhneALN4ZhbPvB3imVd3okdR5Pwf//tvYY3lox//RZp0WLN4ZhbP/G3xzNzc3N8YRz9uHDp6gk/9s9+gnbQpx/1ZPPMTEs/I11nDXouqzHnkq/+a93z4kxy77eQsnpnFM7N45kcYz8w2Pc0wwxQ6nQ6f+cxnsNby+c9/flbqboY3xK//+q+/YbadHzW+973vzUrazfCG6PV6fO5zn8M5xx//8R+/2c2ZYYYZZnjbIOweplVd5fmLQ+b3jdFzyzz+xOOM04qPPPAhqivrhMkS3aCCdIN+ljO3uA+QE8Ff1IRq49RtyO6JD8g1JB675LFwNdEuaxK7dgY7i7WwubHGdmI5vG/FO64nLujKk0sCLMqnp673wXjy178QSJRwODe1cQagJiv9G3X7reEbX/1ThjtrVOkYvb7NbccO0ZlfqL8n/TW5hnif2gbhdsn0CWGOJzSFs94JKupSBHX2mF3ysxZc6r5oShr4EgY1jS4a8tT3lXefWizU1yYazYFGTAEm32k+MaH3hfNHqUWeaUHAJ7ie+rTYpelrTWZCGNVfmHJfM+UErwne3X1IE0JX7HbXq0WFxvk6EWLcpM8nf28EBJq/e9HD0VzCrvNcYmnHCb35Hs+ffg6r4IG5JR577gdoFXDyp95LUhOAbqIu7QotOIep/IYEqRXCiYlT2zgY93eYn1/g+LEbuPHm2wjCgPGhMRfOvcRff+ubXL5+nve9736C5COUozG3334SJxz/4U//hKDT4tZbbsNJx2g04PrVizzxxHe5evUS3bkF5ucXef/7H6A/HtGem6fVbtGbm6PVaeOcZO/KMtdXL6GjiLWNdd55+7s5dOgI4/6AcDkkHZ5hca7HfT/9EeKoxZ59exkNhqxvrBElMb3OMocOH6OXdNjYWOfqpfMUWY6OI979rntYvXQREylKMyItM4Ru8773fZh23OXJJx5BBJpb7ziJChOef/ZZ/uob/5FPfOIfEWrNhTNneOKJ73LoyFGsrVBO4t3/fhbtjrvdKTh1V3fXARoxqxmb9XiRtVjTCFyvEXduf8dd/MZv/E9cPH+Wb3/zqxy/8QRBEJKnI3rtmDIv0GFAk/J/V7fcnTdi6riv1veEj5mdqgVL30ZnwVWmHusW6xwbq5t85/uPUaQjlKtQQnL8hnewsHKIOGqTZQOyLMdYh7AFJZYojAjiCKqU0dYaZrSFKEYY68iNJsuGjNKMpN0lWVlB6S6DrCSIl0EIn6ZdWCQKax1FmaIxKAlx1ELpLhtrBVs7I+JuG6skgZIoKRFS45A+pT4KKWty0Tm0DEgWIopyzPbaZfJijC1zVBQSthdoJV2EDgmCCKc0UkjvALbSC7W2mZ6lX1OcwNqCIhuT52OEDhBxm44MwAkUxrtQpQIVILBUNkIEyqezV35MqaRHsu82hCsYrL7M+pkLzHVjut0u8/PzLM336C7DuJBs5QFWBEgpkCrEOYcCWkl7asT5czppUJXECYtA4UxKlm1RFTvIYsTmdp90mBNGMXv2HOeOY4t84L37eObZy+zb2+XMpZLNrCBsd6mMZJznWDsiDGOSMCbRoRdTAklpFHnm3aJWePE3DABjWL1+CSdC4qSFkrvlbJCKsHZ1++dA86yz/nmIxDqLUwKs8On5gxipYkqTUw6GgCEOItxci9I4tofbDAZblKqFDjteUJTeeY1xCAmRBiUq7wR2gtJZlJC4CjJKlHFUtiJPMyorCeIWDocxxsssQiGwOJdSFCUujNnpr3N54yyFjOktHCYQmkBHWCXQtYtXycAXlhLCixaqIhMOQYhSCuXVCoQAJTTWCZLEIl3p56jUaAemFk+s82U2jDXkScjmuqG93KHVniMrLRpJGIXEUYRWEUIoEIKqLlEjXAloX0ZC1GtBTXZbDIIAJR3WVci61JRx1l+7ccRS0pEW4TKu9AcIlfDumw8St31BDWSLbJizvpMxzC39wZggzJFthQ4CQNRlH/CilhT1GisRErTw662QfqF0CExRMBpuUBQpqJiwt8D83gSlQyQapEAJ7/+2wiGo8AMHpDVIZQmoCGPHzjhjbbTBIB0RXruEDgOMtRTDEUr4zBygvDtaSnQQEgQJnbklRBgQBBotFaHyY0w6Ccp6ERlZb/bw66hzk0c7wVupls8Mb0nM4plZPPO2iGd2P/kqZGnK5373txFC8JGf/bk6M+ksnpnFM68fz/z7f/dFjDGvO5Z+HDh49Cb+0X/9PxAlEVmazuKZn6B4pqrKH2qMlEXGY3/17+gP1th3/F0ks3hmFs/M4pkfSTwz2/Q0wwyvQafT4fd+7/dwzvGFL3xhtvFphr8Vt9xyy6uCwB8nHnvssdmGpxl+KMzPz/MHf/AHVFXFl7/8Zd4KJRlnmGGGGd7qeNfJu0h3DmKiBfrnnyPs7edXP/E+zrzwFHkONx9q8d1vf51qeJX9Kwe5WsZ89L79hFJMEdCeXHVOTF5PM8DeNesmRJ835dZuLr9vBZyduB+1DpmfW2Hs9BT5bWsaR9UOaoGsyXUn/WtPMEpk7f51jdsWJq7rxjnkm2YRTuIEzM3P8cR3v8aV9Q0OHh3z51//C37llz9JpENg12XkK2B4QtuLJNOOYN8nsib2HTWp2RDvDWnekOG4mljfJeqla74rak3BExNNYuXJd1zt8H7V7zPfnoaV8+fYJV5d45IW1M7jqQ0fwl+XmE5XLhqGvxYdhJsIJl4QcpPv7uI1bRJMrm3Sj7Va5KY/1owdt+uun3zPTR2q7kt/PU3/iUlzm760TiC04sCBo5z8qftYXbvIn33pX/PUU4/Qm18hiEJO3vketA4n961ptwM2rq/xta9+hRtPnOCdd95DEsVIIbA4qiJnnA44deoUd7zzDlSY0I5i8ixDyYD9B/aTm4z3vecD9Le3efn5p+nOLfD0D77P0899n7nlfYz6O1y++BJFXrEz6rOYL/HBD36U0y+eokzHxEmbTrfHqReeJ89TfvDkY54MUoK55f2s7DvK1uYOL59+gZ9+/4c5fuQmBsMtvvm1P+fgscPEUY+nn3qcG298B7fedhdPP/o4a9VVslHKkf03csuJd7C2eo2vf+OrlK5ChyEL80uEUYJTIbZMseWIQ/sPgoy5+ZbbKYuc5QMH2bN3H+2kzdq1NR74yEdZWtyDEj5Zem+uzdz8PP3tAZevXEFYy7EbbmRys5vhPhHLdu9qrYPtskKyXlua33NqV2RyzW13UyVeHOjIb2g6e+Yl3vWud3Pg4BF6vS46UAz7Q3STmn2i1E2N23oMTt6fErcmTa/JV4dE4TCmZDQcUxYl7U4bWxlefPkVnnruaeI4xlqLcIZb3nEr7c4KzjpslZFmBVZ7AlTkFVHUJh+usrO+TpmNSEuHs4LKlORVSds55hYOsnxsH0K3GI8zsjIjardwtiJNx4RBgIpbKAVCBb6UmnA44yiLguFwgNQd4lgitCQElAwRSvtMFkZQVhVQeuLTVn7OO0NRlBR5TtiZo5scRApLmWWM0hE7Oxt0envQYYiwNdGHxLqqdlvXmTKcwVlIxzsMx33CVpuo1fbEvADnCpwVaBl6ca5e44UUOKVoteepxhvYMMFacKJCSoPAEXb3IYM5cldRFYZLL51jvp1w+OBeup2Q+U5EagRrI0luwVQCpcBZ4wlWa0FJPwYqizUlwpbk2SaqGlOMhwxGfUbDFBFE9PbsZW5uhSQO2UoV/+nbq1zaSolXrxEJSaxjpJOUQhAF4GxBng7JBluouTm6wTxKhhgzVeoER2VLhpvbCCBodwlkhBXSE67OIkWIUhGBtAitsMZ5N7AzGOsIlUQpgXOWorBk1mCtwBpTP6cD0CFVOWAw2MKMVlkvUwZVQthdQArBeKePFJIgCkAFlMKhBJjcUVlBUZUkoUaKgEJ6h6u1YnINSgXoUNflQxQuAqyeZJxwVoBx5EVJPL8fY8fs2XMbBomtCkpr6CY9gjDGCIFuNigifSaWes6bWkSUkwUBdP2clULjDGAKnKjlAWuRKvDriimwVc6w32dh8SBVNUbHHTrtEGWhyIcMttfRUhOEGpV0kCrEWoNwoKTv48qW+IFUYav6mShybOUXEEcxRcBb74wuCs71N6kqy/zyHvb3Wnzg5haHDieUQkEpuXAl59nLOdcHhtRYShswLkfYwTrSVnTmlgjbXaQMUaIu3yBV80MFKRVVMSYd7DBKhwg0SbdLvLhCJCV+54WutfkCbIUxjrJIyceb2PEYF2hsmVHkKbbIKQuDKwpyU2KEQuoAqwMEiijs0t4/jw4jIh2iVIjQzW9EXwDDZxuwE0FYOl9exGfKYPf3XP3bhyarjat/s00y8Mwww+tjFs/M4pm3RTzzBhRlmo757L/6X5BS8OGPfhwpxSyemcUzrxvPXL925U3juw8dvYn/8tf/e9rdDjvD0Sye+QmLZ/4u0mCRpbzw2DdodZZoHb8Np+QsnpnFM7N45u8Zs01PM8zwOkiShM997nMAPPTQQ29ya2aY4dV44okn+OQnPznb8DTDD41ut8tDDz3Epz/9ab70pS+92c2ZYYYZZnjLoxxcYmd9m5VDXeIWfOVPHuLkfb/AiePHWTp4lK//yf/Kpc2CZy48yj//736Tnz0yTygbHs/VRPbuphMfBIJD+hTIzk0EAikUtiYSpHPTFdKbKgX1sQwm30HpTv03gQ8xQTjjSwKJAKXkJOOPbMhqZ2lyITcChKu9OvWZ/Ymwk40LzlhefukU1zZGGBMT95aZm1/2BIz2pLx0TWjbCB0C0ziHa2e4LxWwS5ZMnGv1f2Jyjb6d1tXO54nDuRYOoPnGRICYiDGT17tc/G6RhlqIYLqUgq2Dbh9ge2f3FEnalKdwU+1zIEVNyDSiD/VJnb8/4F1rEyGIpnFi0t5dIcHDlwSY0g1kczyYuOoduy746X0pTTNfIz7tHt+XGfC3XkzGCkLy0Qc+TlaknDlzmrWtdU698DQPPfQ5zD8x3H3X+5AqQOhdgaCylu9+5684deoZxuUQFSS845ZbiVsJUkrCIODFl17k61/7Ck8+/Ri/+quf4uL5s/zln/8pe/fvZbi9xf49Bzlw4ADZqOTll06zvLLE/PwCTihMkfKDpx/FlTmmFMSdhPFwwLkzL3PLidsYZRnPPv0ELghY7M5z5sXnaPV6PPfkD3Cl5dFH/porl14hVAGHDx4izTPOnn6BHzz1CE5I8qJiY/MC61vXOHfmGR753rfRwnLs+CF2tkZcvniGL/3bP2L/0aNcvXKJssi46cZbOXDkCE8++TgWRzrMCBcXuPWd7+b++x9g7779gCQdDohbbap0zI033sy+vftQOkA479qfX97PO26/i53tDQ4ePAjWz8dp8dALAs38b0q2NOO5FrKau/rasVnfI+TunPLri0M4iTWWJ594lCtXX+HowUNcuniRQ4c1OlAIa8myMa1W25/HuSmhamoNmxrUTXYCX5KiEefqOS3AGoMtMq5fv8IKh3j08acYDAcsLi2Q5hUHbjhMLDX5uI8rB7gqYzQaoqwhxOCsIctS1oYpw/4WTieYPCfUAh236K0coNVbIYwXKIqM8XhIUQ4Rwpc/k1Kjo4S400MHAape95B+He7vbFOWlb8PGmSkUUgQNXHpoMqGSFFSjEYQxrSSEBV4gTYbV+TZGBW0aPU64ByBDHx/tyJU2MbakjQbkV3fQjhDq7dEEHcRKKQBpTRlWZBnA8qyhEDQnV+pN/JInDGUxQhrLVKFQIUQJSUWiUM5g7UFodToKEYpVa9riqyoKLICp0LiXhspNbYqEUpjVMjpc1eJpWFlaYG9+5Y5NhczymCnkGwOSnJTIZ3xpTNMRaIj8qrEVCMCl5OOM/qDPoPBNnHcZWHPQeL2PFHQolIxg6oidxI3yimsoMoEWRBjkRhXorAooSGYI1RtaGVkZWeQ5EYAACAASURBVE6+tYUO+oBGqJBxOqDIc1woSZIO0lkq6zDOly6QRmGqHOwIFYZUAl9qwRoMvrSANRUjZ6jyiiAOQPiMDsYWWCeQyq/BSrdxLiHLx4BGa/9ML9IdOqEinl9Bq9CXHhCSwBkUgJAgvQNX4jBOIjF1NhI/v8B40d7VZZtkiXMaGUicdWSjPoM0JQzn6cwtUZkCFUYEUZtEKHCGvCrY7m+hkLTjCKFjrApBCoStcFhKZ2sHrc+/IoTDUJeAshYnJTjjSw5YixUSZRXGVUgE6WibrZ0tWu15hDOYKsWmGqsKrAShJKo1h7GGbDQgGqcQK+K4S6hCSpvjKoMKwBlfHqN0DgwowEiLROOEJJLQDQyDtGScjhiMMzq9ebpxi0hrFIanL6UMM8PxvQGPX4S1vmBoQ1QsaOHLIrZEC2uWyMuKNMtJt7bQWpAkCWGy6H+TWEc2GJCnA0yZEbW79BYWfBkt4XDpFuN8RH9zHeFKTCmoqhG2NFTWYY1DaoHWmiCIUEGIDmLC9hxKawIVEEiFlT5PC9JnIfGbLRry3/+m8a+bUqBMEuE45yabN5x1GARSaKxQSK2RugVhSBxqwjBBRx1cGBJEITPM8EaYxTOzeObtEs+8EYoi53d++1+CgAc++nOzeGYWz7xuPPNmJS3Yt28///Cf/nM6kWG4eXEWz/wExjNKxX+nMVOVBY9/499ykk9w4Og7Z/HMLJ6ZxTN/z5htepphhr8FcRzz2c9+FiklDz744JvdnBl+wrG2toYQgrNnz/KpT32KCxcuvNlNmuFthk6nw4MPPsjKysrfacPcxsYGjz766I+wZTPMMMMMbz185+G/ZGVxLy5ZpMc262PBqbOvcH1zmw/GLY6e/BS3/8weysJw4uACkWpI4pqgm0rH7km7hmzdJYeb92ztbvZvenPOq0y0AkyZce78y1w4f55k+Qgre/ZMiMCaimDz+gWS7l7avS4Ih7QCKeyEnPZcdU0+NseeIt8bZ25DYjsheN9P/yJlchAz2mJcOHS5ztXL57nphhvBqZrchGkntqxZ+0YYadLeNw5xb6MWTeGM3XIS1B5uISbfRciJW7lx4O4S8G63gwSImlhvJIXdcgvN9bqmcIR3oQtqx/OrCkO8SsiY3MSaqLU07ura0TVpua3LSUz827sEwJTV2fFqMlZM/tdchqtFiKmbv9uK5vbQlIUAfGYd52Wlptpdc6xpIaO5vwKHFZYg1ERBjztvv4ud7U2uXbvITTfdynPPPMXZ06d5//0f4sjhG1CB9keqKobjPu+57/1cvnSZhx/+KkeOHUIFkkF/yOULZ9FScN+991M5hw4Chjs7XL56jqSTcODQUc6de4k/+qMHuf22uzj90gvo6A5aYcJ8p8Ott93JU089zur6Nd5xx50szC/yxCN/TZalHDxwiFOnnuXAkaPs2bsfKQQvvfQi9953H+tXrnH56hXOnjlNVeR02x1+4Rd+iTjs8f31v8KaCqdDglYLMxhijWM0HpMXlwnDhECExK0uy0sJhpLhzg4Ywzgv2Nze5OiNJ7h29TLbm1uUZUVWltxy+0n27zuGFMoLfkoz7PfZ3lxHKkVlHDpQWFuxdv0aL77wHNubm+w5sI8wCH1K8kbwmRZ6BHUGAyZjdnotmShhztW2WoGw/jOTsSN2Z4erMxRoqfjYz/wCH7z/Qzz62Hd49JFvcedd93Dw0CG67R7Xrl/m+PGb67T5u3OonsC1SLYrevr2+MY7hycgXU08WrDWESUt1tc2ePbFs3RbXVqhhGybxXYXu3ORzXTEeDhGBQopNJX1LtaqshhnGW/vsD1KSZIWYRLR7i3QXdyHjNoEgabIKq5deZG0GLOwtJ9Wq4fWCWgFQnsRVQiEM3WGCkeRpaTjEXmRIwOFUhJTVVjrCHWMcg60QCtHojWBDKDTRuoQayyDYZ+NzR263SWCZAUlFUL6OW+FAusQQqIDjXMRKmghkpyqykjTHcaDdVABSTxPOtpinI9Jknl02MJZyPPKp9B3pXd0ioA4Dgh1XKeBz3BSoPBrv64nu6s13iLN2N7eIIgTlGwTYJHCYYyjwiCVhmSedtLD5QOubm1w8fpp9iz12L+8xHIcshwJslJhZRsrI4p8yKi/TZoPsKXh2sYWO6MhUbfH8qGbiFoLhDrASYWTklA4pAhxAirtaEtF6aCsit0sGEL5tPo2w5T5ZCwVpWNcjCj6myilSE1GHM1RVgHCZUipvJijqO+pLzRgpCOyDhlGfiOejlHCITFY4zAUJImuJXC/NhsipAp9X5YVWVYinGNu4RhxAMLmON2mLCrSbECZDmm1eoShRguNJQRnqUyJcsZPRwzOOYyjPr+jNBXKVhhpfWmK+pkkpaJMDcOddYqyJJ5bIFCGIu/jTIFwYNIBlQCkQwqIozamTBlsrZJXGa3uIlGrg0bjhJfefSYNhRG+HAPSUjlBqBRCyfo5Zchyi3UWqxxVVWLHKTtbV2i1FxDSIWyFrsuAiHpDAoBU2hPjYYI0tVt6sEOiAirtSye0iLDKCxbOSUprkU5gcDhREdSudTUacn0wIurMMb//YO1O1lgFVocUTpAWsDkKyAmpYoEpBVKremHy5S6EVUQtQadbkqUj8v4261evIbmKVDAeDhHCUlUlgTQUOxE7tvLZxJxAOwlKY7Ui1jFJW6P1IqFWiEASiBChHE56st+vtl5sbzZW4EBjazGAWgTGl+ipxVvbKLn1dQoVoIIQGQSIoEUYJagkIUgS4iRBtxJ0FBBqBUohMSiTQ5mhqgyTZQzH28wwwxthFs/M4pm3Qzzzn9nzBEBRFHz2X/0W1lh+9uO/NItnZvHM34hnyrL4IUbS3w+SJAEc3W6PD3/4g4y2LpBuz+KZn9R4xtkfrrzdNKqy4Aff+DLZ3UOCJMFgiGSEDuqNZyLwz0Bh63imRAlNmMcs7z0yi2dm8cwsnnkDzDY9zTDDG6DT6fCZz3wGay2f//znZ2WhZnjT8P3vf5/f/M3f5Pr161y6dOnNbs4Mb1P0er1JFrsfFl//+tf5yEc+8iNq0QwzzDDDWxOba+u89PIZei++yO0338p7PvgJDh/egypHnHvpeT7w4Y8RBCFRICcuxyaIfj3ituHumuwoTfmxZu9Kw/tZ4eqyCTUZ7CzTJRSiwHD+0kXuuetO1ITeh6oqOXPxKiv7NIfCiCQKcbLxV/uyCVJ4knqXt3Z4usmC80SAcJ6gd8DZl5+krSS/9ku/zHB7nS//6Rf46p9/j1u3Ck7ceBPSWVxlsEIipWepvLjg0xU3ZREEFufk7kYKWffBlM3TNgILu+S/m7S8+Yt3jjcvhaMugVRfS+38piHy6yPJST97p5hr3m/0BlF3SN1uKVyjY7BrVa6d1DBJze9fi7pkg5v0bUPe++O/euMRNSkxsbTWFyIdSLxDGrsr4jjsxL3dkMqe+PTnQ0jMZKOKJ6W8mOGdVoi6ua5plZsaoM6fWwfcffe9VFVJp9Xh2Wef4vkXn+T66jV+5Vc/xY03vgOEoCxyjh+/iSCOCMOE8xcvcO78Ge4+eS/PX3qGixfOUFUVz596iiSO6SQxS4t7OX70GIHSbA62affmeenFFxiNhyyt7OfSxVdY31glDlsYZ9l/4Aj9bMjhI0c5ceOtXLtymeF4wL//8oPccOydpFnKvR/4EKP1Lbq9OdZXNwjjNlJIOt02C/PHuHztEhcuXmaw/RxIfy/n2m0GG2uM+1soreiEXT7wwY9w6vRpLl68xNK+fSz25hBBybtPfoBvP/ww77n/nWhriMOEO+++h8HDX0dnjm7cIktLclciSomSGlcVXLr4Cq9cOMsdt72LIKgFNCVZX7vCKy8+x133vJe5xcV6rjA1xprx5CZrQXOr3a7S9RrxqhGI3IQgFnWZFyvEZGALwEmfhSGKIoIgIFABCwvzXLrwCkeOHmF9Y5Wbb7mNhvraHenTJV1229p8ztUTaGtrk0F/x88R4UA6+jtDfvDkD+hvrZJoh85KimyAtYKBsSA0/cGYbDhCKY0OYkxVUFYVcW8PSweOsrA/Y78VBJ1FhAyx+RgZKrY3N+j3S4KwhY4j5loJxliKwtQdUaGFRUiJlWDKgiIrSfMx1lYIASpQKKGRMkCHMYGKiMMQLQRKOaQoUCJAI6nKnI3+gFE2BhHQWdjjXchCIIRCSYVUUBqHdZVvQ+1WVdTlFFAYYyizPqbIScV18iKnt3SIOIrRUYKSge9fWW9eFN6p7SsKVEjrkAR4ItqgtETXWd3GoxHDdIxzBVHcRkm/wQfpSzpoHXjC16SARUgN0RwqmsOUA7bH62y/eJZOp82elUWWFnsIUXJtY8DV9VVc5bi+vkaa5URJj33HbqbVWkBJ7UemUCCsl1Gtw1HhMEhnsLbCGEOaFzhXkcQdrFJgLSECLRVaCYzwc6AYFMS9ZVQYQToEZ2knHXSYEAQRQgbeRdoMTispKQgQWCFwrkI7i3VgnUQogUShJRhjcFKDClBYrCkYDHYQ1iJ1SBh3kTqhdBmqHFM5iRABUdTCmoJseJ3RZkHUnieOWoDEOUMlHYHUWOu1D1OL85VriGGHtRZN/Xw1huF4QIVBJS2ixM+sypQIQDmDTuZBK4wtkU5hpUA6hxSKsD2HqBKKypBtriK1pBV3CXVU/wyxWOfLQlgjQfkNA1r60kXGetHMi02CMhsxHm7TWTyAEholLFGgiGVIECQ4B4WBonJ1mQdAKIQUBEEHaVsURUY+2gFhcUmLKOqgdUAiNYFwlIWtn00VtjQMxkOyIGb+wH6iJKmzwCiEBqEUVglKBevWsbWt2aw0FRKqgrIcYYT1zuVsTFXmlHWJhlF/ByUk1vnfNVoFBGGACCI6ukcQhkRKoZRGBAohA5QQSCFxwqJodno2Jahc/fvCekd9vQ4qJ+vfUgqJwEiQBAih/SaJUCNViA4Sok4b1Zmjm3SJui3iVkycJERxQBj4shXOWZSx4ErK8YBiNKAcr9G/vkkx6rOzuc2Z06fIBpuU4x06NqUXSVrdAP7pJ5lhhr8Ns3hmFs+8LeKZHxJZmvL7v/PbSCn4mY/+3O75Z/HMLJ7ZWCVP0x96LP1/xfLevdxz7wcxpqB0ks3t8Sye+QmOZ4Qw/6/GUVXmPPPdr/ydvrNy6AY++Cv/YhbPzOKZWTzzBphtepphhv8Mut0uv//7vw/AF77whTctXeYMby1orYmi6Md6zscff/zHer4ZZphhhhlm+EnF+997K1/66tOkJTx2ruSfPXAvt8zv8Ef/5htsXL9AmSzxgbvvpBqMMOEivW7MlBV3AosXBqarlDefqvleTz8757NEq5pUx4fT61fPMzSSPcuLPPWtL/Lc9ZAP3P8AzhY46cNZiaNyjoXA8Mg3/4L3f+wfcMP+5clmF2h4eZ9+2FYVxjm0DLCSmpi0rF0+R2kdK/uOIpSkNJav/fXD3HH7HRTDPnPdZc7pVXa2NxllKe0k5Jmnvk+ysMxNR2/w3BiOqqksUadVnxDn9Sacpk1O1GW0nMW7jL1XWkyI8pocFb5/hNuVELyjidoR6gl7nPXpluvO3hVlLLYpUQHTtL1PvW5rAtZJLManExfTJHzjwpr6Xp2q3znra9AL74ialolcfVWiFudFY5UWctIGV3eQnEoN3TikG+LYWYsQqj6x31TSnP/Vo6ohlXevXzZ96KynPISciB2NGOKEpd1q8+EPfZwsy3jh9HPcfsedrK2u8u2//ho33nAzQig2N9Z46fTz3HHnXZy8690cOnSUUTpECsnhg8fYWL1KFCXkjz/ClfPnOHb8BI8+8h1uue12jh67mVYS87u/+79x5OgRNlbXMVXJzmCNu++5l4vnL/LMM09yx113czAdMhrtkOcpDocxBVevX2E4yomCgNXLl1le3sPW1gYvnn6GlcVlwPGeu9/P3e99P//miw/y6GPfpN3uMdjawCoY1se0OConUVGL0Shja2OdPUvz3HrrHVR5zmC8TVEZPvqRj/PM6WcYbG8TRhGPfe+b5PkQ4yANxjz59Pe58aYTnF89w/4DBxgNh/RHQxbm51lY2UOgg8loeeW5Z1ha6HL4yA0o5XMpubrOi5uoBJPCJvXYqyn+2l3ZlIloFITJFHNTxVKEqN3AzSGbiVZ/wzkQmtveeReXLp6n3Wlx9uxplpf2Mj83NznOZN5NtexVg61R1jx3Rpam9IdbNILetatrbK9+lSrvY/KCy4MB84v7yNIcJwSLBw+SdBZpHwwRFnaunkUFEdZpgtYicauH0r78wbC/inIKUxVIGVBkliieJ1mIEVKhKj93KsAKgclGVFlBKgVFmiGEZDjaQciYTqdFHHVQYUigQgIpkNILvHpCoILAIJwiTVOurK5TSo2OWoTxXF0i0mc9EIEm0hLtHKUrKdIxVWVxokJj6lXJu1WtKZHCErbm6e3pIZQiz1KyrCRNB4TWEbU6KBFAVeGE8eulFihjkMKhBEjlPAFqBHmVszkYYk2JE5JABYD06ePrDFzCObTWxKFGOIONQpyWlCiElDgkYbiE7CwjbUE2uM7Zcxe5cEFxww1HGQ53uH79Ov3BiDhss7T3KLLVQQWxd7BT4RQ4m2OrijAKUEIRBBqlIwIp0BKcK7CVRWqBVKHfXGf9miuEYlTmjIYjnGzRWZjza74MiVqLuHJMkQ2pxutYkdSlLzRG+gxhwpQIWWLr0gu+3E1BZUO00LUbV1A6kDpEGoOrCtI0pcj6qDAk6cxjKod1JVW+hRYWaysqUxLUZRCkTAi0IG47bFExHG4jhCIOFVEUoiQ4qRFYVOWzZpQO1EQ8lpSmoL+zjhICnXRROvQlhiqLVAFSAtYQa42QLYwwKC+9EIYJphI4FNZkqCBESYWmQ1EVDP4f9t4syLLjPvP75XK2u9Wtrau70XujgcbS2AmCICHuIClRNBWiYxzhmRi/6GEiPGE/OPzsN4/lkDXmhMQIRdjBgCRrRostURMcUhRBjgAKBEhsbDSWRu/dtXRtt27d7WyZ6Yc891ZDDmEkUAOawv2iH7qq7jknT548mff/ffn9//0eUnSJwogwTpAyxgiBlBApibVQlA4hDKUblxkq6e10GQ53aM4f8G0wFqRGRyFREKOkRApH5BSFExgnyYq9clUhNYSTmCgmSerkeUaeDSl2dwkjxXyrTSOp0RWGUV4w6u2gBLT3H6DeaiOVwjqLMyXCAmXBsN8ht4aOLVmzOXlZYDJDluX00yHCGXSovUAnA1QQoHRAUmsx05onDDVSKrRWnsQXfq3GiWpN9O+lL88APl9YlSVFCF8uo5pKpVB+C4DQOKH9O6oDdOzJ/6jRoN5oUW/ENBsJM40aYS2hkUTEUejFlsDiMNiiJBsVDLod0uEmo0HJ9UsX6a6vsr21jh3uENiCH529SDHqc+bYDINcsTss2RoWrKxtEEqJsRZnHUGgmZtvMcUU74ZpPDONZ36+4pn/NEajIf/mN38dgeBTn/08WolpPDONZ5htL1CrJX+/wfRTQAc1Tt77GETTeGYaz0hC/f6VGxb4jUPTeGYaz0zjmb8d001PU0zxd0CSJJPsKE899dTPuDVT/P8BDz30EF/84hd/1s2YYooppphiiin+M6DcvESeFzzwqS/z5C/cz+GFOspGPPjEZ3j6//4/ubK8wSceC9nq7NDeHzP2/d5KgoMnqf+mdODN0XvORmEzRr0Nzl9a4cx9H0Iqv0klHXa4dO0aS0dPMxx2+fGlPqfvf5zNtat87weWJz78EeLA09JaOHQyw/4jp9nXbk0oR4QXEqwoMemQtZVlVm+usrT/IFbHHDp0CIHA5CNeePUVwtnb+NjSMcphH2Nh39I+/vqVs3zmiY8z1xvypV/+L1hfW2Fj5QosLLH/8EmiRrNyXjvMeNOE8EUqxpKIpMoMg0A5/yk32ZZjJj00ps6VZ+Cp6PtqM8b4E9WnhHd5CeeFBU+UOmzVt55ctd4d5sZ+a4H0/lHf905WJH5V3mGcVn98POyJG/hyErYieK0YP083IWv3pIhK6rk1Vc744VcE/zvGRHVXyjFxrbux2154uWE8kFy16UTc0heT/wvpibCxDOEsCMW4EMZYUBHcKkgIkI5ACFQt4oEHHuDtC28yynrce/gMUnoh6+CBQzzxC59mYWkfURQxN7eEkF4EWVic566772fU73H85N089OGPEoYRm5119NWQxx/7JK+++hJPPPEJ1jZX+dCHH0dLiZSevPnJSy+y2+/zxrlX2di8xsaa4vWzryKQFGVKkZes9K8jpeTixbeIohpLS4tsrq9w9coFjDGsrq3x9f/jtxnlO1gpGI5SdgZDlA4A4VOSK4nLC7r9LZ754feQCFQQ0N3dprPR4fa77uTmxgpi3tG9eZOXzr5Ee24fw3SEcxatFKYoKNMBVy+e545Td+CcozXTot44TWd7jWazBQKU8a66z335v0RqTb/bZ/nGdeIkIYhrVaaCd6hmlWG9Gs/OZ0nYey+4pazMXgGTseu/OsXkZ1udWwCjdMS1q5c4efIU7fYCWV6ws3yZO06dYX5uEaREVgLEZMhWbRBVFod3DtYqL4CAxcVFVq68gVQBYMlGHaJWQq4igvk59s8sMOp1aczvo7FwCB3WEQKkUuRpD11rETb2EYW1SkADk+doJXGmYNTfQjcWsUhkqFFSI5VFS4nQfvbQWFxZopOEtJuRDXuEUYTAUq8lOAKUcySBJgg0WnoxAGH8m+4cZSkw1jEY9ukPBxhn0EmdSCcIITGmoCxHaCdxUqJySx+DBazJsUVGGNWQKvbvjCnIRgPyPAXhiKIGghBnJdYpwrAFqqDMeqS9LfJRlzCMCEONCjXGWZTRKASBVAjpxcIsyxkM+gwGfZyUBHHdZ4kAlAxRdjwT+flRqwAtBUppXNBGWktmLHlpsGVJ7oqxPEupG5jmQdJ+l7PnrzPq7ZA7zZHj9xK35tAywAmJDAK8H1SipEHj3bxCgpSSSCoMJUo4jIXSWmQksQKs1VgM1hiy0ZBufwcbJgS6hlZy8l4oAc7mWGeqEgSCLM8oh0O0UoggJtAR1jlCJ7HCgKgy7RuDkgbrHFJGBNKXiSjzjCwdkLmSSEXEtQbIACMURhRgHM4YnPQFfsCX+HDOgbJoQj+7RgWB1pQmY3ewQzBSzLXa1OMGRihS6x3iWgqfccpYBqNdTFGgwxpRGPm5REqsE6hQoAKJthInC4IwQFpDUUissCAlkRJeXCpKSgDr53ErBTpMaAQhRTliNOiTZxlR0iCI6oRxjFYSIyzG+bXCWZBSMOgNKcqMmbkF757GZ3OgEu8dktJalAwwdryG+kwAAocSCqEUGOHFqyBAJTGJbWFKy7C/zfKNyzRqASKssbO1SZREJPU25WCdnd4qZVnisozS5Djr11nlTLW5LSDQATqKSOo1Gu2QRa3QMkBKiZN+c4FCTCYtg50IpBM59ZbvB14wFfjCsH5jgZWBL7cQRIi4hk7q/nqNmHqzRqPepNlq0GoktGoRjZqmESnqSqErUT8vDelwSDrs0t+9wvr1bc5dX2Zna4ft9VW2N7bIiyFrqx163U1uOzjLXfc/zOXlLqPuFt3uFs4UmNKyvr5DFEpWbmoaiaYdKQYjv3HZVpsRnJZkxjIYpkwxxbthGs9M45mfp3jm74o8y/jq//avEAg+/bkvIKfxzAc+nulsbvP8D5/7e42jnwZCaVQYT+OZaTxDNhqSpe9fljFrLcNhbxrPTOMZpvHM347ppqcppvg7Io5jfuu3fgspJV//+td/1s2Z4meM++67D62nU+gUU0wxxRRT/GPEud4+dENwYsHyV//2f6F+8HF+5UufIr/0V9x5/0c4t9JDBjGHjx7xjkRgQswIGBNPgCf6/kaJZClc5cMxLF97ixsrW4T1eVZX11haaNLf3aFz8xLn3jzP+toN7rrvYf7Jf/MvWWzWSEcjao06QeCDU1NkfPcvv4GRIQLN1uYy0f5DRGFUlXYQOGM4/9ZPuHrlEuudlEuXznP09KMcvu0QCkGn22PpxH08eMdJAiHIrGJ2dpH7z7Q4czrHOMtWZ435g4e5vrJK/7t/wcKBg5w58whzc7NIJ8jzEUoFSB1U5KRntS1Ubs+xm3evL+Q7umVMfI4T3kvGuYoMk0rz3LoFw1ERo1TOaTEWGAAnEWJPkJhs+pnoOcKnzGZcSqJq7cSBfQvlP94FwqQaROWXHj/bcUGIcVEQV4kNY+LXiw7ilh0llrEDloq8GLtd8W5r9vpw7JIVzoG0COf7xjBWG3xrteMWQYXK9WVRjFNXW+QtvehlCFvRiQ6k5MC+Q3zz3/8BpYOFuX10Oh0ajRZaKfYfOEBSqyNkdbTwd3nl4gX+7R8+RavR5Cv/5J8xN7fICz98hiOHb2eY9Xn++R8wu9Dm3jOf4K+ff5ZWs8WB/bfxzW/8MQcO7mc0HNJqznDoyFFubl1hlBbUkpjRoCTLcnqjPnEtIgpiXjv3KraElZVlwiRgp1MipeD8+XOYIkfpgM9/8Yvc3NhkbWWVJNDs27ef9ZurLO2/jatXLoEVFMWIZnuGpNbgk098ij946nfpdTtcvPQaz3W6aBny0COPsN0b0u1uYExGq9kmiUNm2236/R0WFpe4cP5tZufnaTVbzM/N+6c1Ie4dcb1Bp9Ph0sXzrK+t0tnZ4mO/8GlPttq9MeAqnkuIvfE0eT3GGQAm4tJemRQxKS1yy7vh/Dzk08FbXn31BV4/92NqtZhma5btzjLZaMjOdoe19RXmF5bYt3SA8Uam8fUnLv1qnOdlTlmWBCpARwHOlCg7YN/iHC/duEIQhdTbC+w/ehodxxjjuLm8Qr2+j7g2QxjXybI+M61Z0nyEVC1mFvYjlEI4h3QZ1pSUgcM6i7ERVgcoodEyBOX1PIHwgqQrMaXx1KC1ZEWGDiOipIaWuhJbDKXxnxuO+pieIQw0SZIgtK6y5ng1fwAAIABJREFURRiG/V2yNMUpEIEmdAHGWMqyj3WWIssRcUioY5wGKTVCxDhAkvi+F2CNYzDcodtZpxbXiZIZSk9HIkWEURrnLKUpEUjCpE2YCGxRMBrs0OtvUK81kWETpQyxrsZCUZJlKaN0iJSSJI6xUo9nNZ/+3pTg/AxgcAgLw3JAmgq0lOTWopyrxBHvGFUYpNZYNDhBEEhq8wvIOKBdZFgHWTEiSwfosE4tCkEalDBeJhAgXIm0XhjB5OTE1ZxtKa0Drf0zRpLZkuFoQJ5lCGsQSY1A1yYKlx93EcIZjClwAnSgcU4TRsHkPSjKAWbU9YJbnKArIjsMSygkQVhHypBR4V3Ow0GX4W6HWqNNEtQR0s//EokthoBBoUFJbJkitWYmiZBOkJaO3FmQCiE1yitTxEFIHCYIC/0sY5jtoAOFRaBUgsIyHO6QpgUqigjrtckq56RAK+lFM6FxxoAtcc5RlBbpFEqB8HX/UK4kUA6hIHcBtnI3OwfWCoxwBDokbLQxWEwJWXeHPFM0GjVkEPtsKM6LYf1+l6Ic0pyZ8yVIhCUU0osaYq8MghOSotohK4Uv/yFNjrUlSvpyUkXps2cZk2HyFGdKSpOTDga4smBkFVZ0qUmJKkeYgUEFESrUxEkd3Zoh0hFSKaT0z0BXa2AgfHERv8JJXxLH+W9Pfg71G32dBOlT0fgSHEJipUYqidAhQRAi44S4XiOqxdTrdZrNFq1Wg3Yzod0IaUWaJAyIA00k3SRzTZnlpP0eg911Osu7rKQZN1eX6Wxvsbu7y7CfMRj1GWxtcrg+wpiCs1c7XLy+TRg1cE6Spn3/fc06tILNzoittRs0mks8cEjzxnKDjbWbbO3sUFIQ2IirnYKgmxJIybD02RaCQJIXhjgQaDvOiDDFFH87pvHMNJ75eYhn3gvyPOff/OtfxznLk1/44jSe+YDHM2dfexVj3luJsfcEAfWkPo1npvEMwhpfjvF9gjMGHNN4ZhrPTOOZd8FUsZ9iir8HGo0GX/3qV3HO8dRTT72jhMQUHyz82q/92s+6CVNMMcUUU0wxxX8muHiBw0spP/zWH/DWlQ3a+0dErs+NHUVcMzx+3wlGg12SRo1QBzghEBJA7OkBt5aBGBMhzlNKYL3L1jqGmaV14CQH2w12+0M2t9d5+aUXKfvbrK+vc/7iLo1jD3LHfklEyrVrlwhbbRIF7dY8Dsf8zCx//cILuFqbfum4u9vl9D0PVgSO4/zLz/KdZ1+g1l7ClJbdUnH/4j7v3tKOhcWDzC2CsAVnX36G5196kf0LS7z2kxfY3C159BOfZaa9j+7WTU7ecS9vvfZjSh3wRHsWiWRnZ41Ll69x+MSdLLZnkMITMAjvnBV2z7kJ0pd3mAgCYkLHS6qSa4wtnt41LYWszufAuUo68ETYWIqYlFOoHNlCjN3PPmsIE4HC7hH5lYAjXJUeGnBCoJyoUr+7icDzjrJfYiw7WMZlLyRjsai6jrAoAaI6lxuTx+NrV4LS2B0rkDhhcbdcp9p/4u+9aq+YSCWucoS5iRACtnJUi+reqTL4jD/hwHk3mT+vJ5Jl1caytJx/63UKU/DYwx+n3+3zw+ee4aMf+wRllrGxvcGdp++tnpi/GWMsb7z5GqurVzn9mc+T1GrU4ohTt5/GIdi3b5HVtWWKvKTdbiFL6HS2uHrhAjdWr5GWI/Yd2M+11atsra9xz6mHuXTxTT75yV/ixR8/z6nTd/PCC8+zu9th/sAsm2trXAzr7Nt3kM0tzZXiMkhHPYnQrTo73ZRLFy6RFzlRFHHsyHEoBGVu2O32iKKIRr3B0uIptBYMBylbN9dptZusrlxnZXWZ0jjOnD7D9voqw6LkvgcfQAnF/fd/iNuW9mOQHDtyHCkUMzMthCiJo3DyjnvSvyr7IASD3S4vP/8MH/v4J0mNJc2GRHGdSmdhnDkJNybmJhpDVQalIsmq31dVQaofmPxS3DLXSOfboJTigYce4djhI+goJogDvvhLX+GP/uj/YnauzdrGiNfPvcr15Rs8cP9DBCoYj57JmLfW0u92WFlZZqe7QxjGLB08CMWQhdkEawp2doc06zPEcZOicFiTkhmotxYoTUYcJwRBgJItRrnAkRAknsjXErRUKBEyygXpYIRBkrRmQWhE9Y5ZYymzAWWZUq81EEIxzEfIivgUIiAMA98H41I3LiZQkiA0YC3GFpS2YHs4JO9sIQPNqL8DBNRabXSQEKgQ4SQqkCAlSkjipgShqudh/Dwlje8lC0WRMhp0KW2KFJr2zDzowKejRyK0JFAhWCjKEoIQIf1sJRw4K9DNOWJaZPmAvLdBWeaYRpssHZJlA4KoRhhGGOvnR2stlgJhJU4KXNUuKxWB8E5an/VhLFJUxKqvXVCJkoI0zTE2Iw7rxHEdV4mYIohRVUmJshgwHG4x7EGtNUMUaYSK/Vg0DkRAEoU0lcEAW3lEQYTWAVGkkcLQ291hd5jiZESYJLhyVGWJUBhhKZ1AqwCLxZoShMIah9YR1pUoLZEiQOAIbUBaFhjrGI4yoiQkCiJQCcINETqiSHP6u1tYkyHDmGZ7Aas1DgUuw1hDaf08quS4lyCKE6IgQEuFFYJIWgIncAQ4C1m1WhnrcM4QCIkLQso8Y9TrUgz8ZqzUpAgHtaSNdRZrLRq/JoY6IJCgA4kpLQUFmcn8Oy8MZjyArc9ykBaOPC/8mmkFgZIoqTBWkruS8QrkJEgkOtSEYUxZZOzsdHDW0mq2iaMG3Z1lSmuYbS9U65NFSIVxJWVpMGVB4QqKMPRjx+RYJ7GlwZoCm2dkeU6gBVb6sgxaSAg0WmnCKKSuaszP7kNqhVIKLSVKaZQDqUK/j1KWSCe9UDQW28V49vHrk0FU710lulelTBDSj28VoMIIGYXopEGjXieZaTHXbtFuJsw2NI0oop5E1CNNHCi0rMqCmII8G5ENhqR5n34/Y6OzyY0bN7h4+Qqb65tsrm+xvdOh3+uTjvqko5yF2Trr611CKVFRyEyrSbtRQ6qAYqfL2taA9e0htrQ4nYOTSC0xWQ7W4HRAWRZcurxCrTHCJYYjBxfR2QyXlzcoSkckLaOiwGiBURGd3hahdEgszWaNmUjSbiYsLDSYYop3wzSemcYzPw/xzHvdLpCmI37rq78BAj77uc8jUdN45gMaz1y/ev09jqL3BoGcxjPTeGYSz0jx3jZvvqexpxQijqfxzDSemcYz74Lppqcppvh7otls8rWvfQ1rLb//+7+PtfY/fdAUU/wUcM7xh3/4hz/rZkwxxRRTTDHFBwZB7zqrV9+mn5c4FTDa3eLpl67w3/4P/yOD7jYnj9xGrGCn06FZq1FrNt5B7nr8fzfH35qFB+EQUnPs5BlsmbJ8Y5WDh48iil36WclGN2OUDxipNqePHuZHP/g2s0tHUNph8hGXl5e5q95mtHOTi2+9Qk7Cpz78MdaX3+Dc25c5fPsZWklAng/Z6hUcOnQ7x0+eZGFunnTUY9jdIDx0wAscFbVeGsuAOifveZy/+NafIWv7eeDRU9Sk4Nog48OnH+bQ/kUOHjjEzc4WO+s3yHc3+cHzz3H3g48z06jhXXpjitv+DWK86hdBZR6oyOZJHvs9N/CeB7ki+yflEUxFjPrNOpUNtSJXBAhbuaTHj0BMPr/3fARCeDHBO1J924TzLisvAlQNF0wItTEpK8YnHwsZApzzpM74kj7t9Fh8EBNn9DhNP0JMykhUbGZVbsIfMTmbG3ug/WccotrItDfEvNghqmdZ3W7Vz1KM+9dO+r6yX/sedr7khBP+vDPzczz+xOe4/NYF5vtDbj91F85YvvvdbzO/f5477zpDXmSEOvDlFJCcuv1OXj17mIX2Aq7IKK1h/6FDLCwtMugPaNXrXLx8HhwEsebt187RbDb55V/6MptbG2Bhe2ebY8dOsDi3n0G/S6vVZm52gbvuvJvhYMhbb7/OsSMnuXTxGhsbm2zcXGFrZwtbGhyS9uwixuQYqxgNBmSjAQtzs9xcWabfGyG1oD/coh43OXXsGEeP30Wj3qKzs8Hiwiw3blxkp7dObXaGO47fyx0n7mBl7TrXr13nE499io2NTY4fP8Vcc5YXfvQDThw74Uk553yZLWsocoNSEqX8WHWmpNfvI5TiyS/9KlEc0dvZxRmQVbp14dzErc87nh/40hDjhy0qElPgyyaYSSkSf0Q1iithcJKxQQiiqMbCvsO8/OIP6Q971JOAhx/+EEmrzd2LB7lw/hxvvv06Z+45Q6h1VVJlnBXMUaS7rNy4ynangy0ztjaus7W1zNzcIlLswwE31zfJsozW/qPINEMjabRaqEgz6Gb0hgN0INCBwpUFGEvU0kRKIZ1ja3sTIzXGSYRICDBYm+NsgRQKITRaSeJ6DSfrZKOM4WiXorCEYexLnonqvXbgSuOzD7gcaQzOGRzWnyvPKbp9pA4QOkCHNaSShFFAEEYEMqx2CwY4J/dSzNtx7gOJVgLnFNlgm+3OFkESEUYxgYxwQiKExgBSBEihK2I+wxhQUiKVL/ngbIkpMywlxmRYW2DSEWWRU2Q5/WKTNB1Qa7aphxEyiHAixKEQwqGMFzalCpGuRNiC0nmaXyhd9YOXU7WsxMpKtMyyjDwdEsURSdxGCYGzltJZjPPOaj8CDFLERI0aAsXQFHS7KYoRjarsgHAOKaA0iiiJkWVMWViKckhvOKDIR9i8II5bWCzSOKwMKN04E4ZCqgAlQ0prqznUYOUeUSxlAFJVZHOE0N7Rb3HkxS7p1hZKQ+QMQ7PFMCuQQYSKEpSu+cxReQZOIVyOtSm2cBQYoiBACIVDUAKuSDGAsc4LbkWBCyKk9llPnLPV6lVghKS0kiztk4/6JKFGagicIMtLoCRQvt3OWZQTmKzAokgzU03HliL38oOTCYETlK5knGWkNCU4A85Rlt7ZHsc+Q5ZxJdI5rJM4V2KcRVOSFhnFsIdSEmNhe7hLGGhMOiKuNdldv05Z5v7dwWGt8YK5VIRSU0QxOtAIrUi0Rkc1hJaEQYhSIUJ7B7OQ0gt1wr820loEYASYiaDphdDS+lJKWvgNE1ZUxbSk8OusoBKzFE6HEIUESY24XqM206LdbDLTimjUEmZqNZqNhEYSUQsFsRJEQqABVxYURcHIOrZ7PVavXyHt7TLY6dAfpXS2O5x9/U3Wlq8z6A0JKEi0obPTZ/lmB1Tg31UETkr/PjmBtZZ0MPSbQKKEREtKB2udDo04ZoAltxKkxpGRFzlpXlAPNKPCgC0ItEIhSELJcNhlW7fZXe6TpTkHlvZxceRLyGRZhjSOYZrjSgOBRGtNrCVpUaLIGHSnXOQU745pPDONZ34u4plbRtvfF6PRkK/+5q8jheAzT34OhJ7GMx/AeCaIovc8ht4LTj/wEcw0npnGM1U8g1Tv29hzzmKn8cw0npnGM++K6aanKaZ4D0iShN/5nd8B4Hd/93d/xq2Z4h87nHM899z7V5t6iimmmGKKKT7oePHllzEiRAhQYUJ7foGjj3yK40uzJAfbFTlo0TMzjApLTfggckxUWzEmncfJn/16Lsa8t9j7fRwoCGIarSZJoHjj3Eusbdzk449/BisKgsYS++dn+eznvsT3v/UHXO9Y5psNlo7fRawVHRexmztee+1lsv42tcWD3Hb7vdRiDTik0txxz30Ely6ggpC52VncXJtummIkBAgsBiEkOox45KEP4zDcf/99DLubvPrD7zPTPsHiTIuFuqZIR9x3912EYch3vv2nDNOM0/d/mNuPHSPSckLzU5U+EM4T/bcUP+CdHPeEza/coP5nxy1E/S1/9+7nPafo2M3m3ZMCn8moOloo/1zYI/YdFYHqrKdcpbtFzxm7lf0R4xTUCJ9uXgn9jmfnpRU7fqjVuW11lMR5r7cXCPyIuEUE8SKDqIgRUYkmshJXxgSvc27iDHVu3D4HTt3ShxYj/N/k2PFIJXhMrPqyKjUAYxea/+c/43BIrXno/ke4efMI8619fOe73yJpzmBNQVyLeOyxT2CN4zvf+iZnzpzh8JETSCmZn1vkC5//EsN+n7IoefbZZ7j7rjtpzyzQ2drkz7/xx1xdfsunqzeWKI7pdLfZ2NpkbmmJnfWbPPLgR3nl1ZdwrqDMU/7i299ESs2//7M/pjU7Q57ucvHS6zz+kY/zo5deZTDskaWpb7sznDh1Nz/86x/gdElhCtpz+zh0+DDf+953kBJ0oDBYZKBotecYjga8+PIP+ewXvkx73wGSKGRnJGnW56nFbR574tM8/+z3ee755/iTP/1DHJJOr8vczCyz821Gwz6NRpOyLLl6+RJKKV780Qv0+30+9OhHOHbyJMJZVq9f5+KFN+n1+uRFipSS+qszPProRzl0/HglBims2BOF9pSmW4Q2YcFV4wCLk8ILDLLKKFCNXzd2SFMRdvhcAG9dOIezOYGwHD5ynFjXeOvyRZI4Ym5+ls2tDfJ0RBIn/rLV2MNZ0tEuWVHw6BMfRwLr6zc5+/KP2Vi5SqQMUajHrzsqrDE7t0AtDjAl9IcjShET10MCGaICjU4sWkgclsEwZTjKKa2uSiwYRqMdakmNIKwhpAZVpWbPCwajglGeIpxDo1BR4NPZ48AKjEtJsxFllpJEsSd4A42QAWWZMkpLhHC05uYItQYJrf2zOJOxcrNDv+dTuAdJExnWcU6glU/Nj3I4V2JNRtrvMxr1ETajNdtCyYjC+VwO0oJhhJARxhbgMmRqsLbEOMNoOEDHNWIkVhrQoJQgkoosT5GBRlGj3V7AuYKmnaXMR6RFRkOGqFCQAxqNkWWlVaZEIkcyZCh8u7E5QoKUCmf92qSEI89SitIhdUDcmEVTYm1K4fy8GAYaZ71gWTq/IVIhfCkEGVLXMSapk4367A56yCyj3pyhUDXSLEemGickWbZLmva8810rdKxw0iKExFnn+8oJjDMYHLFS5KZAWIctc4TLKZ1hVBhPZKsQiSGXEiW80GYxSAmJ3UGFBRtbPTaHPQpdI6nNYoocISymyLCqmgdliBSCSEagvYCjJFgJCl1J1JYA6UsqCYeUdSQCI6R3czvI85RR7iitRaBIai3qrRkCqVFKYwsDzlKWBUWZI7UiimsomYAQKCVwTiJ8yj2ieoEzIGSEcyUhwouJwlG4DFX6aaGssnlIHKO8T5YOqAcRwjiKIseVKSNXUjqLy1Ny69BBiKhKi8SthEApZmbahDpEhBFahyitiKRESIUSElNlDZzk4nDjspduUpBmslK7cU4SsLIaL1QJCpzfuOakoBR+3LkwIoojVK1BXGtQbybUmwmtep12o8nMTINWPaQVQ10qYq0JJeAs1jkK6xikQzrbm1y7skp/a5s07XNxrcPG5k22bq7T314nCjQ3bmyQDnucOn6cze0ud91+nPMXb7CyvIyxOfV6xMkDC6xvj7i+1kXJkNRY1OTric+g6ExJAaS5pRZKAi2JkpD5uTZxUqMwkobIWYy3OHvFcnmtQEiFDv17LZAIFeAEzDYU9yyFnOuFdLa3sNbP11lhCSgATSNUSCwKi44V1jkC5TOlFMZxZSPFuRFTTPFumMYz03jm5yae+SmQZxn/+jf+FQCffvIL03jmAxjPDPr9n3oc/V0hhODEnffRbNWn8cw0nqlK4L2PcA5n82k8M41npvHMu2C66WmKKd4j4jjmt3/7t1FK8fWvf/1n3Zwp3kccOnSI2dnZ9+16ly9fpv8+foGfYooppphiig861OK9PP7I3dx46yc0lk6S5yVf/uSj1KQndn2qdUlUi4ktuHxEng9RSYtA+vB4TOYKPNErpWefbeUKLsuSQOuKgNE0mwkowf7bH+EL80d59tt/yuyRB/nkY7ejhCGJQx788KdZefo/cuf9j7F/aQkpBQf3LXHv3Q/TGVqsU3zmc1/h9kNzKOldl4EOmZ9psb1wG/v2zROGAVIqWo0mY1+uk3LigtNVibTZRpPzrz7Ppc0+bL5Gu6Z4/sUf87kvfIVFYTF5yvHb7+LStevce/upyknovJPL2zonasA7qHE3/s3e3psJqzkmR/d+YFx2oYrVvQtZ7BHtckzwi8mvJpy/rE4zLkOxR7j6P0hsJTpUpxDjK/oTiclFwZkSIRRjHWMsTkgUnjKxjIvMjcla72R248tNMjFNXKtYEL7khZv0kptc2znvFhvDn8eNGzq5D3AoVNXlXpSgat3exavjJoJI1U48aTcWMRCKfUtLmDKnXa/z9ls/ocyOc+ToHWgEN65eIoo0g2EfKQVKOub3LdBstkjzEdkopUxHnH/rDWxpWbl5hVHaxWa7fOvPf597HnyCBx/4EM/84GlWV67T73Z44OEPEeqEoyeO8e1v/jmrnR22t64TacXi/oOIYUZpoD/Y5ccvvcRMax/bm+s0G02GoxFKSs6de4XBYIeCkiMHj2MtvP322yghcUKTD3MIBGEQs7R0iM2NdbCW55/9PufPvsIwG1GUjq2bGyin+X/+6N9Rq4XY0vDmG68TRDFrNy5z170P8qUv/gorK2tsbWxx4PBhGq0ar509y8WrbxPHdc6f/wnOZoyGGa25Wa5fvUhUq/Hohz9KEMbEScLSbQeRsvLAWxCmRNoR0g5x5YjBYESnm9IZpAyGafVUA1QQEMU1avU6M80GjVaDKAy84CQUYyelcI4szQiiCIdj9eYNrl18kztO3c2lSxdJ4oRhf4f11Q7N2TZLhw8S15JbylP4cW7wzt0oDMFYNje7rNzcpXXgTmpui1pY+lIMOJSAehxhy4Ll5XXC2gwqCIhrdQJZ+fttQTYasDNKKYwAoSsiLUZr7YnURtOna69c40Vh6e90SIuUMAh9RgSX44T2ZtGqXIx0DiUdoXYkuo4MQpyDQX+Xoughwxph3CAJ4PSBhPtuj3nz6oi5WPDGiqQ2GxMaGKa79DprCKGIohozrTpaxb6MX3ebIhugtCRJNMYGFHnGqDSU1mCKlMwUNOIW6BInFUIpAinRUhM6TTQTIoREqqqMkLEUWc5w2MNJST1sUG/B4QXBoK84uS/g7WXJSreg39vCCk2ctIjiBEWJdQVaBygFZjgiiBMsGox3uQqhyC30+7vY0hA2GoSxRjmHpcqW5PwUHumIMJY4KyhLx6goEWhMNXeV+PKYzkIcNwmiGhSG/s4mYjelEYOxIeu7KUUQopQvi1IYhxYKa51PiW8txpbkaR8dhqA1o9K7T7UA5wxKOAQFSWBRKkIokGgcxpPsUqB1yNEjTf75V/4pz73wPP/h6Wuo4S5QUoxSUJJAe9e6rURXJRV6/J7IEFRAgSG0BkQ1n7sM52Qlxvm52AJlUZIbS5YPKI2h0ZglVFHlnC99JioZ4KzFqoJQamTo0MaQZUO6O7soNaDWaOJEjLTGZ6ASfkz7UkkZZZmCs5hsyO5glzBQVbUYgzUGh/ElEqTDCU1pCwItqTUSQt1AhyFKBwQ6QClNICRIgRMapF+7ArzQaIWonup4fbG+bIgVXpd0drKOjkVIIXwuOITESomSGhEEqDAkCENUHJHUYoK4Tr2eUG82aDZqhFHAQiOiGSuaSpOEmkBLXxYFRwmURU46HDDobrBxvcvrnR3Wul06nR16uz1EWbB67QqdzZukmeXG5QsY4wCNEwpjLcpYAl3SaLbo9VIQoIXgxJGjAMT1BB2ERFjm6iHX1jbpZgKrIozJ0QhUJZLEYQBKez5GCEKtqKYzTGnp7+6QRDGtZo1uJ2dOi+o7iuPwoQNk0SyRGZGnlhvXrxPJnH/+2ROk4QKPLsX86K0hdHt0O1ssbw7Y8MlCCLRChk3mZhr0R4bu5ip5aQmlRSqoNeaoi4Ippng3TOOZaTzzcxHP/AMgz3O++pv/K8Y5PveFX57GMx+geGZna53h8P3TTNoLS9RCRT7cncYz03gGY0tf8ut9gpCKMKpN45lpPDONZ94F001PU0zxU6DRaPDVr34V5xxPPfVUldZ2in/seOKJJzh16tT7dr1vfvObLC8vv2/Xm2KKKaaYYooPOn75V/8ZycYz7M7u5/DRwzx412lmIuedZiiQ3sFqTMnKhRd45SdnWVnb5vHP/9fcferIRBigEgsmEJ5LEELgjIFAT9zAGolEstCeZXdjmTseeZJ+d4O09CSOcIKF+UU+++nPMt9sUq/FCOmJm7vve5iFQ4d568YGJw/OUQsDTzULX1ZARzHHbjtALalRljmFHW908d9dpRMI6XDGsbpyiTCqszB/gAcf/hj3PfQ41y+/yZW3X2Onn3Htyhv86JVn+NQvfJr1lYukvQG7vW2aM7P4dPZjl7CY7LFx43u2Eypi3B3erTY2CrMnHAjhFRXvxBIVmW8n0sEEcvy3W9QBAZ55HbuR94QGYKI2iDFpPz7GVT6wyg1YsTIIBFk6ggiCIKw+7g9wzjCpzzBxdY95fInATEQjxun82St7MRYTxn1GlSb7VrFlT2KpGupcRUIwSf3v2zI+flyAwuyJImJ8FnHLvd5yJ2L8s+PSxQuce/0ljh49wbk3X+UHz32f5sw8L730Y0aDXR5+5DFaMzMgBGlW8OpPXgGTcu+Zh8kHQ1ZXrtHpbOCs5PrqBbKsx/6lg6zcWOb8W+co8oLdfofWzGEW5hbZt3iAWn2GZ5/7Pp3eTXDe0V/YEmdLLl+5AqIAcoYrV2j0djDWcejAbQgMKzdvYoocrQRaRJx74ydIIQiEZG5unu2tbXAOW5T0Blt87+lvgIXcSbq9Hmdfe5mTd9xJv8i44+S93HXnnYRKc/zUHTz7zF/RkwPKfETPaS7fOM/Tf/lNgjDk0PETFM5w8vgJbjt4gCef/EUUgnoj5vbT96GlpChKrrx5jjfO/ojGzOc5cfIeZCUgeue7oDAF/Y0rsLvM2xcucHNjm+1un51hRm4gLzKsU/RTQ16UGKtwSOr1GguLizxw//38wsceIwircWYteVGQZhlBHOF5aMvXZDd5AAAgAElEQVTZ117ilVde5NCxw3zlV/8pOoy489Qd7A4GREGN9Zs3OXT4iHfij8eDdThrGOQFb11ZJR2l5IVhd9AnaUEYNtjqdLjtyBGyNCPLMrLNLVQYMurtEIQxzli0kgzTIXk6IMsKgmab1swCOgiRQvuc8dZOhLnSlKRZRjpMMSZHAHEQgDOURUmWZTQas+hAY6UgqOYJIUEJCaWjN+hRZjlCSuKkjpQxYaCoJ4LBQPCDsxkruxIpQbgaqByJIYmbREGNLB+Q9ra4unWFJKozHGUgQ2pJTD1KSI0GGSC1INTeGRrYCCEDnI78e4p/94QEYbzUo6TACoFwhqLXo7/bIYgTX5pCagINJxdDFpuSs9tD+gOFFRFOB8iZBqooyNMBxWgLGYXESc1vABKGQCtcHFNaRV7kFEaQDYcYU6DCiLgWo7AIV60rVuBUSKwkSkosEiX9OCqMn1NLLMJZDBZrjBekrMVKP7MOR32UEGzt7rK50ac0At1aINYhYRQgZIiQCucEgRmn+69K/DRnccI718dzpBQCa0qEMMS2wGIxTiOcxTlTiRSONO1jbMrtjx7myP4jPFs+gxEhWnhndtBIsFaQ532KNAUtSWp1pNN+Gh3T0sbPmVa4yToxznphSosxJXlZ+N8KiVCCelID4VDCARnOeqk4cBLjDBKfHcM6hy1LbJnish5FPqQsC8reOlESY8uCdLCLCDRKKqRwaCEQUiG1QuuAudk6QRChdYAOImSgCZRCS41SCiNBCU3gHEaCcGoiOJuqbIVAYHAoJ/14rJbL8XOQk6VFIaRASuVd4EGA0gEqjAiSmCAOqdVqJK06M40GjXpMM9E0w4BGEJBEIUEYEGhBIKj6x99XUZZ0h31sOqK7M+Rif8Tm9iarN2+ytbrC9tYGvc11EpuyubnF1s6QNCtZ2rfE/PwirUaDIPBrZh1Je/9R3nj7bQIsToVkucNRIp1AScvxhTrHDyzw7PkVRmnB+vo6rXZOuzXD0lyb/k4XbQXbuyPWt3uEUQ1T5khRfXcRoAXEUYiKEtLSkWd9v2Y6gdZegMvykt3eDlG9ztFjJ+ivlRizgxQWme+Q9YdsDwbYssCZnJET/MnTF+kM32YmgKMHGmwNYXW3YHNkMEYglKPUIVpLsqKkKAqs81kuHLBvbo4jJ+/kxvIGU0zxbpjGM9N45ucjnvmH0VLSdMRv/++/gRCCJ5/8RS5dmsYzH4R4ptcf0tvt/YOMob8Ljt5+N91uh2x9fRrPTOMZhBBEcfK+jT/nDMKZaTwzjWem8cy7YLrpaYopfko0m02+9rWv4Zzj937v97D2fU1qOMUUU0wxxRRTTDHFPzBass+hR77EPY9LvvWX36EY7jDciUmbR4mlhcrHUw53ePr73+XHFwaIIqdxeYN7bj+Gkw4x3kVS8biCihipyGxXbVbR1UYVV7lhBXD05D2ckJbOzg7D7jZpViMKQ5SDehKjpGfUpT8RUivuvP00R287gtSehB8XIkC4ipzyxLv/a+V+cpULWPjPCkqeee571NqHePguw9LSItoJrlx8k+//+DU+9vjHuXrjMvsWltjd6TLo56yuXOH7P/iPfPELv+KD63En7nHsewS8GBPkY4d09dFbymZMuHn2XMSM2zyh5pkIHLgx4WERYlwagirP+PjY6vu5GJPw/m9jw8Ke5FCR/OMSEcK3DWBtZYVGe4b9+w5gTOkdhlHs+24iCO0VsLiV3Be3tPsdmKTu3xMXJu2pOskJh7ullJ1w41645Z4mwoqd9K+85Xy37Gjau38xbpt/SNJV4gSO2dk29565jz/5kz/g8rXzBCrm4sW3iMMaOtTcMThDo9FEhICwDIZdpIBRNqTWavLZJ3+J//Ctb3Du7Mtsbq9x5oH7+cVf+q+4dOFtXnrxR5w79xqt2TYrN25w4tgpfvLKS6RZzoWLbzAYDQmDmKNHj7B6Y4XWzAwlkrX1a8hAoqTDZAOsEywsLaBdwOqNazQadQzw6U9+lm/82Z8wGPVZWjrAhz70GE//xbex0pE7Q5aO6IscYx3ZSLGwuEQjqrG+fJXCWN48/zrXblzgF3/xyzQaM/yLf/Ev+Y3f+J/p9XpEYUSaDrmxdoH//r/7nxgNBly4fImDBw5y4LbD7FtcAqGoNeqTvtU64NGPfBSKlPn5eaq0CjgxTrIOpsh5+vt/xZuvvcJ2t0uWZdUc4QuJFGVBWVqMK7FOYZ0Apeh2AtbWVlheXuGhB88wF4aMRkNeP3uWnV6HBx/4kHcwWseR2w5z222HGXR7PPjAh7l69SrXLr/JoL8frTUfvech2jMtpBhvfROYsiTPMiwwyjN2N26SDkdEkSebnTIsL2/yyquv0u1uIWTE/LF7mVs6SFGWXoyzhq3tLdIspdFoEDXnSZoBxmRkwwG5TBFSEkUxUhiMtXQ7W+wMh8S6ThxolApBhWilkVIS1xV1JSszqt8c4+cQwTDzZRpsYdFaE8R1BKCUREqJc47eQDIQBoukxEFhcTbH2AJT9CiN31gz7PdxDmqteaS1iLwgrs/QbM0jlUALh8NnS1BoclsSmBQh3CSVvq1SyQsnEJQY56C0DAZdTJGhpCSuN6s3VhAoSaIVV9Ydb64OyQvYGmSUEnCKQCiclsi6AhuTFQVFP2MmcYS1BOtSjAkoi5Jed0CJJI5iCCSRlChhcdZgERgHpsxwpSGIQorSkTkoCihKn7GhtCVlYUiSBCn9+yeEQ0uNkwolJZGW9HodkuYcyeIBXFkwsgooiVVEHCdIJGlpsNoLDa4SVA0CLRVSympNUpTWIB0Y58tnCFviTIEUEusseTpiONwlDDWNxhyukHQ7K6ysdyiLEmstQmq01litkKHCmRGD4ZD+wBBGTWIdgrD++sJiq2x3Fk9mkxmw/y97bxojWXbd+f3u8rbYMnKtfelau6r3nWw2KXEoSi2RI5lDewRjMLYwNmB4xsZ4keeLP9gYG/AYsA1ZA2Eg2OOhKVjWaKyR5dFOiiLZZDe7m71VV1VX115dlZV7ZGZsb7uLP7yIrKoWRRl2s2k24w9UZcbLiPfuu+8ucc7//M/JMUIilEIHmqpmBATOYX2OHRP44wwb1pE7C65SyXtbYmyBtRaFQ3pPLCVBpNGBJlAQTrUId82jwhgVhGitEUqiRVCt6VKgBLgRse19VXrKAkpUim05Is/deH8dlaNyUqCcHB1XCO9AabzUuCBABiFxEhM1Emr1JrVGTKOW0KrFNKOQWhJRr8XU45BaIImUIKIi0qX0eOcw1lIWJakp6RY5qxsbDIcDer0ey7cXcWYACA62E4aDlH/2u39Mmeasrm+xtLqEyUsCIWiFYZWNy2QIV30fiupNdBDR6w6IlCbRklAnaBWiRur9qVabJDoBssb5CxdwzuFlRfWkqs7VtZSyrNaHbn9If1iwur5JPdIEPmV1o89mbrFSMSzynWBPD+A8QgtKZ2nHIaWYYXM1BwwSgTMWqTymNHT7Q6LNDbZWV5Gmh3cGIQSBLxkMUvLUgKzIHxDcTiNyC6uDIZe3tghDDSKkdFEVljD6CmJKQ7c0lFlR7c5OEEYhe/buweYZ0/X3f6mYYIJ7MbFnJvbMj4w98wEhTYf84//hv0UCjz3xxMSe+TGwZ1aW3/tAx9BfCSEm9szEnrnHnvlgwjb/n8E5R3/QndgzE3tmYs98H0yCniaY4ANAkiT8+q//OgBf/vKXf8itmeCjhkkg3QQTTDDBBBN8uDh18gh79xygETjaX/h5epsddHsf9UBy89JbRNMHWFiYJzOOuLafY8cEjz3+MCdPPwSicgZ4OVbkUhmeVTxK5ZgfGfEKMcr2P1LCeo+UEq091uRkndt8+9XXuf+hJ3jw1AMYZ1FCVbm7xchN7B1KKTQSJQTeO4yx5IWhWatXOq+REk0KMUrrPXJOCzdyco0CZ6TiJ557nnNvv8KFC6/znW8tMbv3KEdPPsj5m6vUA8nxU49xa2mRRq0BOoSgxv0PPFapC3cc/HcpeccZiRg7RavvNULIkXN9/JodhfO4LMP4VCN/G9XLO+UVxqRDxcfc5Tj3ow+MP7uDu9XEo0wjO/Ugxu0du/TvKMe8dySNJnFSByEo0oLc5ARRvPPenU+Iu8o/eF/dJxWJcSf4yO9ci/e9HL+3+ktV0uMeZ9rd5Mv4tfB3Mj6NiA3nx+cTO9cRfnx/1Rk9f7F/BILZ6Rlu37pFkac8+7FPcuXyFVpTU8RJg1MnH8A6g/GWSEAYRTz22DP0tjeYarXpdrvMzs/xM89/DqThW9/u8Nxzz3N4/xFmm7Ng4OqVy+zdv5/1jTWW19Z59ulP8C9++zdYX1/DGyDyrKwtIhWcOHkSKQP+4E9uU+YlBkEReKZnpwl1zNlzr1F4uHHzvSoQxxsOHDjArZs3CYKQi+++izEGEYCznkQkHD1yP+9du4LVQ7JigNVQDIcYJ4EM5yTffvGbbK1WadittZw4dZpHHn6UxdvXaTaatKam2b/vAPO7dlNYSygUJoyI4wjn78qqJT0HDh8lCGs0p2aQledvZ/4hBIPeFmfffotOp4O3pkpnLhVKQmkNDpBBBEZRFinGVGrHfDS+kljTH/aYnW4jBEglqEcReZ7S3dpis7fJO+de4+/8O3+PM2fOkKY9mo0mu/Yf5ND+Q4CgNd2m0ZoaZSEQDAcZ71w4z/x0k1qtSb2esriyTrO9QKMxhRCKNM/oxTHTezvM1eHdmx28r9T/WkhK57DO02zPMqsFUSwQaBpa0kubDA0UZUba7dPvrDFM++QmQ4cJzdYszbgNWuNlla5ey4DKretwgPAepQTGSYbDPv3eFs5DnDQIolHGBVGtJxaLt0WlFPUluckYDoYEWleZLrQgEAGoyulq8ow4qRPEjWrNFSVJy1NmKZ21m3gszfYudFAjVJLSlXhvsd4gnUArjxUO6SpFsPeeMhvS394CVSleZRADDisVCoUUYLykk3qc9wSqcsQbARhbzWdV5VvwTmM1RGEDfMlWv0NaDGjJkl7nNt1hQRjHYAU2s+iwKm1Qeo0T4ISs1iipEF5TEiC1JqayPXXgUQoiqUCCk+C8JEQihR2VCHAMtjeItGLvwjRaSjwlzVDgnWSr5+hsrZBvLRMmUxBEWDzeB1SudahK7DhKl1cp9k2JB0ps5fAFlAjx3tDPUqzJCbSgPjWFEhoQvPTKOV746r+iGx5EyBYWgxaSwhq0FkgURtept2rgHKbI2drqoJWv2iUUFkHhDHmZIVEoIdHSo4XBmAxRGNJ0gDclZaAQtsTiwEucBiU1WioiHaKiSkmswohIV85/qQICKRFSgKqKkEpAyeo3N+qPnUKjo/XdUe0/YkQUe1mVNFJe4Pw450c1R1AaF0XoMKZWiwnqNWr1GrVGRDOp0arVaTbrNJOQehTQjKAmFYEUKFl9N/GjOVsIKE1JWhQMtre5urrCsLdJnmVcvLXMYNBjptmi1x3S6ayxsrTMlYsXSQcpx/bOsnthCmMsc4lg7+F5vn0+IB8Ybp2/SBwoYiQ2KxAWrHeUyhF6KEpHsz1Nt9tDpEMCJRmmKbeyjKW1DaYaNXYtzDE7PY0KA3bNz+DcFOcu3awCI4THW4vTnjBpkRclTmiMz6lHkv2zNZa7GXk6wDrPdlZWhK2vvqF47/GSUb9WwRPeOtbW1qnVatV6UVi8EGRlge0UBFoxHAzY7GwjvCFSIFW1D7dCz/0HZ7ix4Zmfm+XS5feQJiUIAvqDbWbmpjCyxsbie9RqjsPHDvPm1hb4Am88UJENviyq70bKo7Xi2o1FanFEoD5Mmm2CH0VM7JmJPbPz7v8f2zP33NoHgDzP+ZX//h/x9//jf8CevXsn9sxH3J6pt9of8Aj6/ojjmIX59sSemdgzjO0ZPkTeTumAWn1qYs9M7JmJPfN9MAl6mmCCDwhxHPNrv/ZrSCn50pe+9MNuzgQfEXS7XX7lV37lh92MCSaYYIIJJvixwm/+r1/m7/+nv4yOYvbPt1ka3ObS219nz8c/zfLiFS6+foGnnnqGY0eO8VM/9zm++d130GFCuJM9R4xUr3fUu34UbCKFx/sqiwWIO05gOVLujTwExjgu33qPRmuBtL9Nmhco51G+oCwMURkiVEhhC3QUYrGVMtgJttZuIWvTtOp1pPA4P0rBjQfvEGNiYOSVFlRp2B0wMz3LxvaAS1cusnDgBCtXrxM3p3nmsSfQwrG8fIvHT57k8uWz9HvbHDl6P4f27a+cn+9zuItRAE7VC/casx53lwSJe3iFMTsgR6Ue7jj3x0rue893V+WGnUw1VXPues/oOdx70fEbueu4Z1yTYnwrAsmevXtIhwMEgnTYRQWVIrIS+PmdRohRuuaKLJB3efIFd5p+50bv0QbuEB93NdrfKdtxp533QoyIJ19FQI3IiTudI3aec9XU8eXvvZQYxUx5nFQcOX6CX/q3/wM2OussXl/iwJ79PPTwk9Sbo8AYB9jqGQVasH/PPlSo0UrhnWff3gP8m7/4d1BBgisdN69d5xsvfIPtQYeDew9w6tRpBoMhOgzAw1R7msP7D1FvNbly5R3qjRYmt9TCOjIMCeOQJK5hreGpJ5/l9uIy7148T5HnyECjowBrLS+/9AKZKTl1+n6On3iAF1/4Js12m0/+5E/w3Tdepre5zfrqNsY6kiCmPTXPletXkdITKs3CroMsLt8Aa3nljW8z05qi2Z7lkUefZvf8DEEU8sTjz1Sp2VVAEibIMgc8tigQUTQaN9Xc9gi8AK8k3e0+jVqNMI7ReJyv8hcIqUizFOcMQaAIlQIP1gmEVijtKI2ncILKhWMqxa2rUth3+z3WOuvs370PWxqCMODShWu89sYrfPZnP08QhGRFyetvvs7S4i3iQHPk4HEipdi9ey8rq6tMt6aRUjAcDllcWqOzuc1Uq8b0TIthmlMLY2bbs6ikxqCXY1WVCl3rmKRWR/sGgk2sKRn0uggd4PEoFdJONA/sT7B4rtwuKG2JcWCtwZQlWTHECktrdg7nJcIJiqJkfXCbemOqUo1qjTEGhwEcwgsyk5ENeuRZgQwjgrgaS96VlLYkT3tEoUbIECklgZSgJQpPEmhq7alK4Sskxln62xvkZYkO68S1BRCqcuR68FQBNmEoaE3HGFOS9bdwYqvKGBDXkK5y+ArpCSNNZjzeGtJsSJbmWFGiazWE1jiTI7zBKoFyldPRoXC+ujecofQC4TKcVNU66j3SgPE51lmE9OTDLQIcWoIvHbc7i6Q+JGws0Gw2CVUNJyoFuPAO4SUlo73JVcpt6Tyo6ph1vjomVeUwxeOdAOeQ3pB70A7SXoeiSGm3FohrAXM1yacemmV5rYPwAa3Q840Ljn59BmsEaZGTDzsoGaKDCBFGIBTCUalsvSd3o3XKOxwK6zXO9Bl014h0jajWQsUJkRiTxdXaWDiLkJIyN7gwRwgFKkBKiUCBd5V62Jmq35wh0BKTbpNnA2xZ4HBV2RTviIMILxwlAqUUUgu0UrSaEfWwjYpCVBCS6AihQggUUijUaM47WZVjGJPXAiqHvvA7O5kaEeLVtuZ3yAHPqEwpokq8J8GpGKUCtE5QUYSqxQSNhFqjSb1Rp9msMVWv06wFNGNFPdAkWhGJ6vNQla4qy5Iiz9jcXOb69jbDoqCXpnQ2N+lub7G1ucHtpdsMt7d4+MhRknoN6SzOeG4vr/DupQuI0rC0ukGr2eLxxx6tyI2yYFoH6NwisoI0c1y5eIPPPrQPnygOLUQ8eizgnSs5f+pLjJO02i3q/SFZf4h3UBqDsQbnCppJSKDnGHS3qNVqLOzZy8ZWn36/R2erR7c/4Ga0ytxsi+mpaXppytr62jjcAGtK8J4kCqoxJgRKShZ272ezu4W3OSudLkEQYoGyNHgEahQy4fEE3o1IG1BSUZQlna1NFB4rBU5Cbh1patjXCikQBNrSTGIyH9Dr9fF4klAQyD7txizpMMOVGVoJllfXaTRaNOpNNro5QyLSzjbq6iWEL0hqIc3Z3WxtbbHd2UC4lGBEKvZ7Q8JQMt1UrK4N/sL3gQkmuBsTe2Ziz/xo2DMfPOFZFAX/+H/87/h3/71/f2LPfMTtmVaj8YGPn78MjXqdX/pb/wZ9F0zsmYk9s2PPfJipCoR3VanEiT0zsWcm9sxfiknQ0wQTfIBoNBr86q/+KouLi3zlK1/5YTdngo8AnHNsbm7+sJsxwQQTTDDBBD9WeG91hQvnzhA/8gTpygX+9Pf/JRc2PO1Dj9Dc8whP7HN858WvMjc9y8zsPJ//7BSXr1xnKonQQuKEo+htsnTzKrXWbmbn9iDCyg3gqVTPneX3iA4cJ4qiyjFgK2WdkBKsRQJ7F3bz8vlbPHHkFEoFmHyLi2fe4NZWyn2HD/PgqUcos4x6a2akXpOYsuTy1UvUZg4yNzszcjxYEIKb1y6Ql459h49Uzmhxl/PdV9RBnNT5hb/+N3n97Bsc3Hcf0zPTmCLl1TNnOTw3wz//7f+N5Y0NQm+4dvMmx06cpCxykqBSu4mxc37sOL8Hd5zjd3zn1W/e3zkm7jp255N3ncsDI2X1mC8Qd53rfaceXfcuEmAsQb7rPf7uw2PVoHMVcTM6S5EXUIdvfusrhEmNn/+5fx03Zgp8dbIxT+J3yoTduScxIjzukCZ+7MO5y93/Pse/uOfHTlvv9MpIw+WrNODsUAr3lqcQ4/4U9/bjDtEh7jwDIaqSU/mgz/zsPE8983G63W1MURDqkNIUhEFAaXKkDLhy9Qp7FhaYn99NvZZgjEHKmEAHPPPYM+R5xq7dC+zbt5ftc4vs2r2H5eUVptvTzM7N06g3OLD3EHMzs+zeu5eZ9hxT0zMMu0O+892XOLjvIDPtBfI0Y7PT4cjREwgZcfPWNTJncWVJWqbU6w2c1Pzcz32OG9eukqU5B48c4dxbb3P4vpP0e0MuvPMmNk8J4hpFUbK5uY4WAlMYCmHACYRVrK+uMr97L6EOqDdbtJoNtjtr6CAgjuKq9IkQeCWwhSfNC6I4xouxwq5SL0tf9astSt567WWefOpp5qJdCCF3xrQKNEcO7SNRC0ShxDnH2laPzW6O0hE6iIiimE43Y6s3JM2GFIWhMCVlUVCUFlMYzr71Ol/92p+w++BeNlau8dqbb/DII49z+qHHuXzlEvv3HWSYDSgzjxMGj+LmrZtcuXSWjz/9Cc6/c4nV1TV6vT7N9hSPntqPKQuErcqLOWfJ+n2CeIZAgEOBLgmFxHiFlVWaei8qwlPKEKkEg0HOdy+XCOEY2MoBjoG8sHgHcWOaKjuEqBzzUhAmHmtzTFHQ3VpB64BYhojAY8qCrZU18BYRxQRRgLUlWAi8RYc1vAIdh8TxFDoIkYpK1auqbGZeGAQSayy9/oDtXpfCljQaM4RhA6TEOzeaXVUyCrxAKE2gBUGYEIY18nJIOuwh84wwauDDhMCX9PuGNBswSLsoFVWlTLzGSY83Bco7vK2IJYIAh0OJOxNT4XCmcuwGSRMVKLwvCWRQOe1FghUKITSmKImSGoHyaGVoBwmphX5vkzgq0UFSrTSyKifi0aNV3+JxOFGtdd6ZnbXKeZBegKhIC+Et3lmMLegN+gjviGtNSukReUavL/iz12+z0TMUWUar2cK4OkrllB6CJEFHCcNswFavSxzHJFEDqTUehxRVFgiDBQfe5JRFRhgIZqbmUUGEExrnbLWWugLvDc6BjzxKaaQPsCajzAaoOAHnSK1DuAJpM0pKqhoYDqkFoRQoFRLXmqgkJohi4tF8C7REKoVUEVKAktVaqlDYu5bQ6nc3WokrEkaN9icn7ip9NCIIEGKHEEBUTwAdIlSED0JUECHjCJ00ULUacT1B1xOSWkyYRESBJtICrQSJNAhbUhYZ2bDD6nqfYb/HsN+js7GGsjl1ralLRVYM2e50MVnO2fNnuXHjJrEOmZufR0hBr9fHZAN6vT5CCJJBRrvdIopjGrU67VpCO5ni2so1yrzE1RzCgvcFb555m+lGowpylNU4fufaCtmwTxgGfOfMLdpTNXbPt/ECtFbs2bVAPy252UuxQFF6srwACysrqxw5cpjeYMDWdo99ew2P3H+cNC9YXllnc2uDNM+4tThgaXmVNK/mGv5OuVbvPOtrS0xNzVCrJ3S3MrY7K5RZzlJngIqabHS7OFvtm360VwoxpgM9epSFTEioJxHOQKQUvRKKIkd4QQks9QpmZ2cYDjOMMSRxVbbReYl10NCG3vY63aHHO0PhBa1Gg3o9wRFRD0raUy2WsyGr612ktzivKYddlDe4okBrOSJBAnJrmKvXWN3o0dnuM8EE3w8Te2Ziz/yo2DM/CGRZxv/yP/06Wkoef+qZiT3zEbVnPszqGMZ5rq1bbJhN7JmJPXPHnvkBrWHfC77MMJ3rE3tmYs9M7Jnvg0nQ0wQTfMC4du0aV65c+WE3Y4IfELTW/OIv/uIPuxkTTDDBBBNMMMEPEJF2vHZhhaefFJjGHMNonoXj+9m3dzdzMbz71gvcuHGVP/n6n/NTP/lp5tshnfWbbO05wGyzBs6yeP0MX/rff4fZ+UN87hf+FscO78bjcWVB0V/n9/6Pf8bRBz/J889/HmEz3jnzXeb2HmXf7mmunHuFtFQoHeC2rvPKCwM+/smfZrB2jT/66h8xvesQPgg4ceQ4aW5py0phKX0lpbLO8uqFd3j49CmUcFhj6Hc3+e4br1Naxe79hyHyO2ptP1Zne4szJbUk5mNPPE1pHVEY4uOIT3/s45w7+wq1UHH+rVe5/9RDHLn/IU499ARhFDFOgO/H6t2x832sFh+raUce/Z2SCyOP919UBN/7ogrquVcVfIdy+Mvc5WLnL0LsuOsrN70QO23e+fvoGh6HEAJrK8V49a8iC5y3PPb4s2xsdvBulH7aV8qru5iPqn3iTguF/x73IO52+O+0BDd6HlWpsXH/jakFx731Me69Th4hihwAACAASURBVHWKseJa3tVbd73v/WUodq4vRppJz6uvfoff/d3fpBZrplrToATN9jR7egPqjYjp5ixKSWrNiGNHjlGLYrzz5HlFdoFnaXmRF779dZSEjfU1jh69j4X5aaKkySBL6W5vA5Z+EHNr8TrDYZcrFy8Qt1pcunwRbyxr62sgLfUoYbOzyszMLMu3lkiCiN279nPtxrXKEdNqEmhFr9/j2qXrSCHQWtOoTZEN+/zu7/xzAp2z2rkNCKQKya1BCoN3AuvASsPi8hWarRkKU7Awt8Du2QWe3LPA7j2HmG+3ufDuRdZX11mYm6vKEQi4vbTE6tISTz39NHEYjJxNYqSUF3R7W/z5V/+YT33600zPzo86vFLoWmCq2eLTn3qOG5fOkaUpJi/QYoDGI6VCCInSAYEGpQt0EILQhHGEdRIVBORZyv/1B7/DkZMneezRJ/GnHsV4wTAd8NZbr2Gc5bU3XkEJ2B5scevWdZqtKd58/SWmZxc4885l+oMBnc46zdY0x48cItIOW+RYm+Fshi8LyiKlVptGR5qsMBhjSQuDsB7hJaFUKKWque4NpfOUZUGoYrzVpP2UNEuJkxZIDdKjlUIgcU6ghABhsDZHSkUUJQgJ/e4GncEKtswp0wFxo0HcmCFImgRBgJQK6T2kK6OU+Z6p6VmUDlE4lKyUr4WrHN5ZXtDtDcgLg9chUX2aUCqk0gihq3kgQ5QG5wt8WYLwxEGAEoLMeYQIULqBjmtk+YBedxOzukWiLAMfIpHIIEEnGu8sSAgEVckfYpwy4BRhFCKERmhPIPzIOS9wwgEWicYrhfQRg2FGWRpK55A6INIxgVJVZgtnCHWAk5JER1hdkuVdTH8Dh6TVnELJGCVNRQ94iRKM0uEDQuMw6NEa4BBVugxv8KYgTbs454iiBCskSI0alblZ6YPrW4x1eBvSTUMUoNUUYRIgsJQIGrU5GjMem6f0hl3IS2r1OmFYoyyHDLpraCEIFSRhgJSVetuWoxKeJme7v4XWngCFc5ZGA7CCsr+EE5BIgbIGHYTUkoggiImCWQIdonSICCRCayQaJRTCy4ogllW2Dumre3eiGtOjHQGJx/g7amc/3pcYl3gSjDNjeBzCKYwXeFllP/AywCsNMsDrELQGqfG1BBcESB3gpKgyUpU55cYt3FKJyYeIos92r0t3e51Br0tTCigHpL0+m1tdetubbG+tE6iAJIiQQvGTn3iaA/v2kCMos5TCwXCYk21tUXZ7iChhg1XuP36cffPzFHnJxSuX6XW3yYuMXg82N7fQSmCdIwqiak9xriKNMHQ2Nlm6dZtes4GWmtI7NtY20NJxc6VHc6rFardLrZOy2skwucXIktXl23hbgJLgDNbBMC+JAkWa5ywtL7Nnbjcba4tcu/4e01PTTLWatBoHycp9rHW2WF1bZdDbotcb4EYlcpSGIE5I0x79QcqJww26vSEulPQG26xu5dTqDba6fayrMiJ6Ua07IVXfB0GABXAS4SVaCOq1hHpzgXqjRXeYc/XKpZ291wnB3FREb3qBjaXbCKtw0iOkQwhPqD2RdkgPznmiQBAoQS2O2N7aZGq6zYwDv2s/G7evoKi+m/UHOZ31JaSUgKrmRaiJdMTmdsrq+taHmllggh9NTOyZiT3zo2DP+O990x8IdBDwh3/8e7z8yp9P7JmPoD1z/cYVrl66/IMbQO+DR5BZjekXE3tmYs/s2DN5WXxoYzBOapw48dDEnpnYMxN75vtgEvQ0wQQfIM6ePcsXv/hFrl69+sNuygQ/ICileOqpp37YzZhgggkmmGCCCX6A+M/+w7/LlX5Cf3uNKKrzk89+imT3cWZjjcLSmFrggSc+x/0nD7J44wqd93q4oEktCkYphBXTuw6z/8gDHD79NDaKUEJgXcnr3/0zFq9d5cz5Rc4vfoVHn3iO2brnjfPv8kBjN7cXL/Py629ya3GV+QPHODw/xY2ldfpf/zNqrs/hB56FICBNSy5dPM+e/fchRKXeU9LjvOH+R57hgaSJkI7Ll88Sxk2whs7WBtuZ4NbSMvcfPYIcKbbEqFTElYuvc+7yNX7uZ/8G7107S6M+Rzi/C6k0SivuO3yMWr2JjBJurG7yd//Gv8WBhdlRCYaRw91XjhbhxVgiXLXPQyUTFePDd5TNIweL96Oz3KV0fj+JIEfHfHURxqU3kCOnrL/zXudFdXhHjQxjcmGsXh47fISnUjlXV0HgkILRfVX6vSisSiZtrK+ysr6M5XG8l3hbolWMG5nsfudK7s4LOb6fURt2lNN3/T66b7mToWlcps7foxKv+uN9EUs7xASVo8p78BXJUfX5nQAoce+pxo2t7nSk5jt9+gG+/cICZ985w+NP7qXX26azucHFCxc5dfo0g7k+9VqdA/U6Wki6W1sgJS++9AIPPvgwSile+ObXefnVr/Dcsz+NEJ4gjPj4J36SpcUlvvTl/5leb4vpZosnnnmWz3zmZ/it3/ynbHTX+OVf+i/4jd/8Eh97+uP8we//IStLNxEavJQIJI89+QRaxUzPzHHz5hKlzTh26ARnz51hfmEX77x7lumpKYZpj117DuCFZbO7ihBDpPSUJRhTgPRIbRFBSCgUUoEOHIO8hzOOGzdvsP/QMZ549GlKa+lvb3H71g1uLC5y6OBBtIqxzvHSi19jtt3mxRe+yec+/9fx3uOERIzIkjiOOX7yOPWkznZnk1qzQS3W4AVKeIRWaBWPSDQQqhouxntCL0Zj3qGUJ9QheVHujH0hQOuEA/sOEEWKh06ephnWWe93+PjTn+b8hbf4xHOf4TN/7XmUEvzR7/9LGrUGc7P7WV07Rxg3GQwda1ubxLUWew8dw5SGbLjNSlGwsrrB+kaf7UFKVlpEWKM5s5ftQU6/l6HDiKI0iNICAicUXoZIJZECtPM4ZekPMoxzKKWp16eqWagEekx4eZDCYW0O3uC8AeuwZUme9fBmSNyqE8dzlEVGPuxTZClSKmphG4FHKwFhQHdzhXp7V7WeOEPpoTDgvKc/6LHRWSMKGuhmG51olBeARgiHF7pyjnuBBeyoTAAepJCU1mGFIaagk1mE8+SlYbjdwdiSuNlgsLWMTiLa7b0kSROvwVmDxCERBKJao6S3SGFQCKSo1k3lAWwVuOirch/OlWSDlEGa0UtT4iRBj0sO+AItBM5bpPdEOsB4hUJRSomKI3zsKG1BlnVRPiUIY0QYVUFEI/Kyyp6hRunwRwSksxhrKNJtBoMural5oiDAO4eWAikUFoHxEqFinJDoUCJkjJfV3XovKYRBigCFrVSfzkCgiOMapkjZWlsiCBR5vo3AkVtDKRRBIJHeoAQV4aIkOtS0W5owiKuMAaEiERndTsrhYydJao1K6Uo0WusFlkrhLkfEsBfVs5W+IkecHCmb/ShzSTUiRyuqAxQ4Czi8d1gn8NbinMP4EoyjpCrFZHw1B5zwOKkrcrkaTjvP17uSshiSZmkVVGhyNrtbmOEAnxcsLt/GpkO8LWjVazRqLeIAjHOsbG5TS2LyZh0vBKYoyXNDPuhjBzlW5LjI0kyaXLx0kaWlWzjvsdYRBAH9wZCV5RU8Eu8tg16PyxcvsmvXPHEY461BIEjTFFPk9Pt9ysKAgkjH1OOI4UAxHKSceess6xsdrLEMeylhpNBJgo5icmMRzjFMhzz56IN0c8/NG+/hrAdfjY16pEnikJ4xVU9bj1Eg8Qy7ffrdy1hTogPNtRs3OH3/aVSgiUPNvoUZ9sxNc3Ntg43Nt5Cj/c1Zg/MFIDgyHXBt8SbZoEBLWFzrU6vV2djqU7oq+4wHAilpJgn93oB6LSROYryX5KWhzDOCMEAIUAgCHN6WCARRHDMVhgjpGGSWUyenuBpozGCbwXoHhcA6QVYa5psRKU36aYED+r2U4XCRJIkpyoyZqSkSOSRMprDpFmVW0ut3R2uYQ8dxtcU7i/aO9a0BQRiRFR8eyTbBjyYm9szEnvlRsGfE+459UDh0+D7+k1/+B/z+v/qdiT3zUbVnZvaxvLz6Axk/3wvee7aHQ2q11sSemdgzO/aMDj68EAupApJ6Y2LPTOyZiT3zfTAJeppggg8IZ8+e5Qtf+AKXL394EeYTfPRx9uxZyrL8YTdjggkmmGCCCX6ssH/vAWbSlJU+nNiXkDRisvWruPZxsrzLMMvYNxfR0iXXli9yZvEGAxMyFYY89MhjDHvLvPKdb0JtD5/92JMgLAIPztGo1VjLAx557nkGm9e4cGuNn3ryBJ987lPsO3ySVniSfPMGpx94il3zC+yam2Z1fZVrF1/jwo01jtyXsNBqcf8Dj3Dl2lWEruq440ephtM+zdYscRJjTUHSnOPtt8+wd2EXj33ieULh0DrccT4zUgL7IqebK9ZX1uh1+/RSx2tnX+RTz32GXbMzlbFqCprNJvvbbVq7DnFwdgYpPG5MCuAZcwOVwqzqT+fuCtIZWeZjFTDj9zPSMYtxxiF2yrHtOM79KH+RqJxYzoEX7g5BMDrZjgZ6TBAIfycQ6K5SEFUPeO40ogoNcqPfpPQY69BBFcDhR2nST51+mKPlKaTUlFnGZneThd17K6W08zulAtzd6u2RYrxq45gUuFf9fKcPKiXe3cSAlFX7q898//HrvRsRD+Ku89+lUB/drqRSdY9LVwhf/fMjlkYGAqUEN65dYm7XXg4eOMJwMGTQ6/HylYvMzs0yv2sBLTXGG1558SXmd+3ijddfoTUzz9rGbXbv2c2FCxexuSFKEvbtO4gxJdkwJQgCgiTi9u0leo0eZVEyP7dAoCN+4id+ls76CnEgSVVIXg5xUtG3m5x7+w0+89c+zxUPDz/0EK+++m0uX76IVgG7FnZx5szrLC/fotlu0B/08NIyyLZRSlJaqpIPwiOFI1SVo9M7QRRo2rPTrKwuI4QiSzP27tqNCgKcsbzzzhkeevBB3r14EY9HKkF/e8Cp0w/z6KOPI72gKCzr6+ssr9xm7/4DJFFEEGjaU3MMswEz03Nk6ZB6nFQpyIUfOaAVDo+U4JXCS1E9G+8qwmo0Xb33VQCIkDhXfVZIT1JvcnD/MWZmd7G8dJuXXn2BPXP7mGq0uHbpXfYdOsLm5irNVpM8c3zta19hefU2+46eoOj1iJIas/N7SPOU61ff5txbK5z5zrdxLqdVj1ha28Y6zYNP/wS1hUMgEwIdgVcY41DWVUF2gSbUCmNLOp0uxkEQRiAVgZQ47xHSIhyI0mOdxZiCPO0S1xK0ivDeY8qUNM2qGRNEJFENNXJMq6hGEk5RlAXD4SZb6z2CKCAMoqrMQhCw2R8Qy6hSXhpLlg5J8wIZhNRnDiBUQCAkFod1Hi8KlPMY77DGVvPMG3JfYtI+AqqAGi1BKIyKCEJLUViE9EzN7ULqAOk8gXBEYY1iuE7WW6VRq5E0aiipqgCecSkQYRFYcH4nSDGvaEO8tQyzDGM9uZcIFSCVJmm0Kl8hsqIufaXq9zikDChMifMjwlUphPQor5E6JgzrGGsxwy793jr1WpsgSEBqpAhwUuG8QzqBp3ouadYl1pqZmXlQIUhQUiJkCF4h8Tid4HU0IhhAOjDZAOstHk9hUuygjxcG50uES3HGUhY5URBSl1VmielWhI5CwjBGBQlhGKGUqkozCFntBULes4YJ4RGDdfreEwQRUinGpFO1xVWl8xyuKtogQGLROwpmD95ijMXh8M7iTI43FmerchyFybBFiTGOwpY4bymtq/hw73ClIxcW7zzG2tEe4Fnf2iQf9qqSHlIw267xzKcfpl2L+PafvsIw87hqs8F6y3CQIzwUm2sYY6q9K67hraebpQzzkulGjSiKcN4hPNgRs+6sx9pqHERBFbza76eUZclOpgbAWkcYRRS5xRjHIE8Z9PvcWFwmCAVaSqIwpN/rIaWk1+sxTHOc8yitmW438DiGWcmt1WtYa8E5pDRMqRrKOvIyx0tNURjS7pDl1XUOHzrMZqfJVpYRRJqDBw/SHwzpDg2DQY7z1ZyzxiMDCVi8FdRbbUKl2ex0WFtbYnp2nqIoqNUaAAy3N7G2rAgdbwmFoDCWRw7VcVow5Uu2TMZSp4/SIdu9DHMXma+lZPf8LI2paU6226S9DmlvG+8FW8OCIs8xhcE46KYbyE4HSo/0jkhL4hAgoLSWzY0VTh85zvl3S6TrgIdYSqQNmEkcsjnHaqeLcAVBUsOWhkGag8wZDlIC4YkpSQFbGpwtCbUk0EH1/Q6Jlo7tQUHpDApJqO4EM08wwffCxJ6Z2DM/GvbMX2HY/L/Affcd4R/+1/+IqJZM7JmPsD3z9a//GcN08IGPn78Mc7v2E+momqcTe2Ziz4zsGZt2P7QxCOCEmNgzE3sGmNgzfxkmQU8TTPAB4MyZM3zxi1+cBDxN8IHjt37rtxgOhz/sZkwwwQQTTDDBjxW2ly/S2HOa0/N1bLrG6pWXubohePOVP6RwdR742PNMNQsKr1gdGFZWVrl6awVf38P9959k0N9meuE+WlM5a+vr7JmfxgNF2eeb3/hTrt4cct8DT9E6cIRWq46SAjfocPvGZdLEc/72kINzN3jl/Cs8/YnnCX2Hzc4WsjXFwmydP/zq1xBhSG9zlfLE6UohJzzn3nqR1988z7PPfYajx08Q6oC5ZoP9c3XOXr7Cp558jI3ugPuOnbgTFOMdV6+8SeFjdDmg3l4grjU5dfw4517/BlfOf5e15hRHjp3m5vULXLhwltr0Ln726GluLV4CoTl4+CgwEih7QVlk2LIgSuoopUY++JHT3I8SZvuROnrc6R6kHCmedyTSI5++Gznud4iHkVpajt36jNIXjV3+YybCj8iLcQmI0Vvf71sft8Ozk17ZCRBS4ozBI5De0e2sooQnietVmQygnw3pdTfZs2svzoPxDoS6Q1SML+hHpSMqb8YOIVL9+Y4S2nlGhMb3aOfovWNiQdxDNlRXGx8Xo166Q0SMu9nfkWCPggDu5Ul8RZQUhvXVVZIoZmZugfb0HN999SWm29OcPfcW290OW702Hx98mlqU8N716zz88KNcu36NPfv2cOz4aQ7u38/6+jL/5J/8KoNuh+s3rrJn734Wb9zivcXrLMzNUtQbNGsJZ958lWE64NjxE3S7fb7z4gtsbiwzHAzYf/gIYRDx9rm3ULHj5ZdfwFvPxYuXcMaSxJo869OeWuChBx/h7bNv4myJK3KuXL9AUVicdFjlcNajhKLdbJPmWyA9wiqmWi2efOoZhHF01r6KUIrdc/M0GzV2zc3zxuuv0e0POXrsBPsOHqLVapJElfNm394DpL0BU+1pSpNz8fIF3j7zBu3WND/108+ztrHGO+dfRyrJz//C3yTQwYgIq5LMixFZJyRIJbHeI2QASuBkNQ61FiNnohk5xKgchUjw1Rx4/ImP8d3vvsJzz36SA3sOcv36JeJ6nYP3HavIOx1W5JcQGG0JQ82Ny+fxecbMroMMUotQiisXXufg0RPIKOKJUwc4dXQXv/G7L7LVdUzt2oOK2wgkWmik9GwKQWlHelIn6Pd6mLwAUxIEIZRDsizFe0MS1vGBRKoQoTQiUARBRBTPYJxj2B/S620TJy1UWEcJECi81KOMAZWK1XlHECVMRS0Kk1IMugx7KbFSJIFh0EsxUjHMBuAFURASao1AYLIhXkgcgtIZhumAuFYjVDWkAhEo9Oi6gYwI6k2ElDtEzrDXZdgb4MlQOgQhkd5i8x7OebQX4AxBpAm8pzQptjNEKU2URAilkbJS21okarToWKB0lrIoGOZ9nFAkQYJStUqhKyxQBfXI0XgZP3spJM4LMlOVDpFCVipXCUJVqeSd0AQygLYmNhaT5xR5DykTVBAjpcN5KK0hy3oEEupJAt4jlcKKisjwTmJtick2MbYgCBOMdThb4FxBZC1lPkQpiYxkVUIjVARhgo5bhFGbSIUoHaBklcEJGaJkpSj23uJR4KjU22LELXuqPWS0n4BAuEq77Dx4L8FVZRzwlXLZ4cBYjDNYayhsAUVBUVpskZGXOcbkmKKs7slYvDfY0mCtxVhbLYzGkWYZuS1Jwog0z+n1ejhXYhyjfcLjvaMeRbQaLVbX1siyFIGjWa9x5KHd/Jf/0X/O5Rtv860/eQGswjqoFNfV5mOrupCIURYILwSlyel0B1X5jzCsKih4j3MOrK1II++rgEJf7XbVHAFT2tG+5kZlBRyBUhRYrHDk1iGcw9oSmwviKCYUiqIw5GVBv59ibYkXgtlWg6KsSAFjfSXM8qO8IQLwgrI0RKFifrrFamebsnQoKVhcvE49DugI6A9SOhvrKB0wPz9D6gydtQ7WW5wDU3rS0hJKgS1SGgsLbG+tcfnaVRora7gyo1ZPWNi1wPLyGt65ilpzFqEgjDSZgc4wpZuWrHX6IEIwttp7ha/mLNBMIh48eZRmq43SAefObWKFqsi70a4slSCOIwpTYB0MTIHx1X1V628VDrC63mdhep19+3azePs20ks8VemHsiwI5BYKTxwpTt1/H/1csLa+zbDfIR+mpNZQrTDghK9KOyLwQo3CCzzDwtLNHVonCCHQk5inCf4KTOyZiT3zo2DPfNAxT0eOHuMf/lf/DQf272dpaXliz3yE7ZlSVd/XPiwcPPYQRX9zYs9M7Jl77JmV6++ydOvahzIGrSnZ2lqd2DMTe2Ziz3wfTIKeJpjg/yPOnDnDF77whUlJux8TNBqN0QY7wQQTTDDBBBN8VPFPv/zbfOFv/z0ePlFjs7PE119+m0MnHuPNt99hz/FnUINlSOqkGxscXGjy7uUWRx88ThIFfPMbX2Nre43bi8vsPvooR6OYsWJXqhpPf+Zvc9/GBqvdgp/+1NNIXznQZ/fcRxnUSJRFddd48d0LiOYCn5ie4e2v/ykXrtzmscce48p7N2nuOsTlK++S5fCJOAEh8GXOq6++xHfeeJf1zPO8CtnTrvOVr/4R6WBAnNT4P//wD2gvHGD/fSeYazVx3lOUGZfeW+bYgQNc3djg8SeewRYD8myT8xfO8dVvvc5Djz3FZ6MpotoMB489wkPPPMdMPeTPX36VvQeOcPDw0R2neDbs8dv/4ksQxPzM8/8au2fnK7XcXaUZxg7/ShU6Mn/HKmbEqAwDO+UYxF3ecnHX/56xknnEKNyJ5dlRIu8QCjufGavBK6jRz3tryUu8s0gpd9pgvePylXfYW6QcPXQ/1lmybgctZaVic5Vzx3mHFHrkjBilVadSVY8okDsQOw29p51Vmv8qW5PzlXTu/UFO45/3Bj79xSCou/82vv5Of46CCfBu5IwYtQnP5tYmh+67nyjSPPbk09g0YzDo897N97h16xpPPPksM3NtNrc22PaSuBazd99+pNToSDM/M0+gAr71za/zyKOP8fGPPceFC+9WHa08n3j2WRqNaZSUvPzKt8mLFCECWu1pijwHVzIzM0OeG5q1FnhQWpDbkqy3wZ/82e9BqWg1WwgJui459dD93HfkKAf2H+bm4lVMCXlZoIMA7zOc8QirkdozTIfE9VqlwnUSJQR4SZ6mCC9pxC0++zOf52NPPQt4Ws0mD5w6ze3FRfYfOMg4dqzX62FtSdiaopkkWOeRvlLvHzp6lCAOmZ1uM91o02i3efut13jiyY/j8chRNgE7KhsiDOAV3leZFIS/o7L3VIrLypEI3o1LFlb/Dwd9cI7lpVtcvHie+44e4dbiNa5fv0QUJRw8dJKXXvq/2XvTIMmy8zzvOctdcqusrbuqurq7eu+Znh2DATALMFgIAiIIgARoLZZs2SGHHRTDli0rFP6lH6YoKsKOsK2ww6EwLdpBkRTFBYBJLJwZLEMAswCzT/cs3T29d1V3bZlZudz1nOMf51ZVj0hBBEAOA0C+EdWdlZXLuTfPPSe/7/3e7/0aYVBj39I8w9GI673zGBy12iTTswtsXD9Hq9FkamqWm8tXccYy3EpZWe6graQoUwACB0J6Vbc1JbbIcBhvl5AkmHKEdTku7aGYQMiYuNEkEBoR+PPvrNyZk2Va0Ot3KKxFKkV9oo0SGiWUtwARGif8/8I6HAVSSxAacIRKEAV1RqMe5WiNUecmndUNEnGDiT37iaIaoY5QUiNViJO66g4hqCNpTe7FCQlWIqRFOgeSWz4jwEAy6pMkHfKkTxjW0IHC2QIpBMaaiqiUWKkwpvSdigiwyiFdwXC0xaBIqdfqCBV6CxokpszAlpTOIBAooYjidlVUFnh1vHRYJ/3a6ap/hMK5qnBR+NSwCmsgLBaJCuq+QEhI30YCnyAVEsIgAKkpsIzSHv3OTepRg1JCNhohtPZKYQyF8SpNWxpKW6BxKAFaOWIdUtMQxyE6aqCiaWIVowKN1Aq0rJxwNM74Nd9VbOx2waWT1pMdwhc5OSdQzoKVOOEVyFZUa7zdXfusM5R5ijYJxjk2V69jbUFWZNgiIysKbJlji4LElghjKI2lNAZrHc6UhGHAcDAkNyXKWYqiwFrHYNAnzQoKawmiOrHWDEYdhJTMTc2SpTm9YQ/lJFYIb/3iBEiJDbyphKDquFf5DB0/cgQd1Pj8F36XK1c7JJlPLgvhd7BGreE7YOCQsuqY4Py1YgrLRDMkyQqEsOAcxjmc9V0zrPPnSDjh97KKSXQ7G47DWIuSEof1XRf8lPAEQ7WgOettGQaDhDSvzqErmZqcJJBQGIepXlRJiTR2p2DWG2n4azKOAmZnJuknKa1mndX1TSQ5qiJSrl67DsDs3B6mp9ps9XpY48dlTEnflghTIkYZ/dE5hCxRWkApiIOQ/ihhcvIKqQl21uI8y3BFQb0es5VoholleXMLpSNAVEVwft0MtQbr0FJRq8c0mjX6g5Q8z6s5WM1NJwmiiH0LiwzyjOGgjzGOIkuIYo3UETZL/Tpm4MKVFY4faxLWmtjRJlYaZGAQhUDnW94SRklakWZ2ssmB2RZvnE3pupI00/T7HZQAh6YoBZICXcJ55wAAIABJREFUJRVSK7RQOAvtRuyvKSn+7EqCMca4BeN4ZhzP/CjEM7vP/eFx5Ogx/sdf+ecsLu7HjeOZH/t4ptvt7VwT7wR0FDHRmh3HM+N45m3xjFTvXInFcNDl9RefGccz43hmHM98D4yLnsYY44fA6dOn+exnPzsuePoJwi/+4i8yPz//Vz2MMcYYY4wxxhjjLxHXkpjL630Ozm6QpSn1SPDSc08RNqc4/cqLLB67h/miw9MvvsTq5dcwQZuP3HMvd977IM6WbPU3COUrWFcwWw8R0gexcRxz/50nGA76ZCZgeqqFM4ZrK8sk2YjDC4u88uyX2Xv8Xp4793nuvvMRtlYuErdm2dx4idWh4+MPf4R4YoZ88yJfeOLbbG1usLcdc/bMs1y9sUm9NYMKm0xMTJL0V6jX6ly7vsLUxBzv+cD7ObZ0kKlWHYkgL3ICFfLAve/j3/zOvySP9vLQI1NcvniO9uQUjblj/NzHH+bdxw7y6pmXWNyzhxNHj/EzDz9IZ2OVvXvnWF1dwVnrVYMCRv0Om5sbvP+Dn2DP9OxOUmtHKVyppHHOq7WEhEotbb3Ey9utiVuS+7u5/l1bo0op5KrbbudhFdXgH0RlEuHHcEuivcr97yRRBNsKL5/EsKZEyqCyobAoFfDggx/h4oU3efPsy2gZ8Njjn+PEiXvYWL/Ogf0HqNUn2FhbZW5hX9XyvRoz22Orkv3VibjlsHaJJAE+e0NFAlT3V+SJcxXhcIt0+m3HdGvSQFR/s64iHth9/+rlLb6zU6Ulr/4u2L9/P//F3/uvCHXA1598gjgKWb6+zDPPP8XBfftYOnCI61ev8ZY4y9HDJ1haOsxrr73O4sI8W/0BWTvl5ZdfILcjpqamObJ0hKuXrvBrv/FrfOpjn+Rd972Hxx5/jOvXL1Br1PjoT3+CL37h80RhxNzCHO//4Ee5dOEt3rrwBufPD1lc2E+70aY37AKOLCup6xrTU3voDztIIThy5AgbN1eZm91LMtpicnKW1197lTCOMELictCBINACFUgWZhZptfewudGlP+zy9a89hjWWZqvJe973EI88/MjOvNJas7a2wYpZYW5+jiDQrNxY4Quf+xx7F+a47753MTU9gxCCO+66m1O33U5rYpIg0pjWBE+u3uT82Re5+/737M5JAQ6Lqj74slJJCsSOwlFLgZYKkJQUvghEgBMGZ/0MKos+X/ri52i3Jmi1p7j91F0ooZls7+HqxXMsX7sCuoFSNeJGg1pjikJE5MYQhzETzSZb3TXmDx4jHQ5oNSeZP3yc7s11siLn2o01lIZQKw4cPky/s44pS5wwlZJ3hN4m34RDakcUNihcgoxiVNDAWItGULgCV4AtDP3OGrkFHTRQYYOakmjhLQxwCicDkN5ywFmHKbPKEkYgKDFugLAaIUqwJaNhhywdofMCg2Ny7z6a9UnqU9NEOvZdB0To1wXhk7He0tEnV0tpEM54xbn1StM8zUlGG5i8AOHnT7PuVYm2ssKRQvmE/bZJgyiRAiQRzhX+uheKenMKrCMvEoadDW/HhqRMU4SSBPUaUgVYDMI4jMTbDeBbQ5iyJM1TarUGWgqkETgZVGpar5R3zlCkGVJqRK2BFQqfnfcWBYYCW2YUecrW6k3iWg2pQJclSdoDKYmCAOG8rVykBO16SBjVCaOYMKihwxpCeacNJyqyxlX2hg6/mojKugaFkz4JrWRlPVQtb9b5rgD+arCI0tsp5HlKkReUeUGRJ169nOeUWU5mM6YmJ6mFIXmWcnN9nYWZBsZYLr51htFoSGktwpSAwZqcojQUZYktM4wLMCiSJMGajMNLB7l29RrOWWIdUBiH1oqiyNFSkRSWUb/LSAiUBOX9PKq8v7cGddLhTKVWr8huXHWseMIQBBs3c/7XX/0nfPHLT7HVzyir/UYrAXqbHvY7hnMCr7gFi8Hi6HS2ENKxYzQkNXEc0KrXPZFktzdHv1GkWYLILNY6hFQ4axEVQ++QSKkJhKPEUVivikf7zTrLc8rSUFrLVHuCKNTkzmKt3NlnhYWy2kh0lYCnuladstQCRT1uMkiGTLYnGSUpBocrDTiLcY7RYEi9VqcRBGAcWVHinAYhKS0oIdjKCwIhCIwg0JrcWIxx9IYlYaS9WY6zjLIcQsVkGLM1KtnYSglUjBBQYne6jURBwHSrRae/hXOOpD+gFoYUWYFnsV1lqeJAGgajhCLbYqY9w3R7EsNNBv0BjSig0WqxtpbjTAFItoY5Z89fpMyHSAH9YUGsJVpJ6toQCIOwkiJNMIVhY6ODKEc06iHrFVGqtUJJQRyBIgIhEcKr5JWUO6SM/z60XeYwxhh/NsbxzDie+VGIZ24tBvthcOjwEX75l/8Zi/sWx/HMT0g888Ybb/lOLe8QlNRopcbxzDieeVs8804iSYZcunRhHM+M45lxPPM9MC56GmOMHxCnT5/m53/+58eWdj9hCILgr3oIY4wxxhhjjDHGXzL+o7/1d7hnT4+vf+k3yETk2xf3R4RJwsE7HuWBu29jbrLG4VP38/JTj/HiG+f5ymNfZm2zy8//zM8wXF7mrQsXuNnNue3O+7nj0F6SZEgtrrN89RwXrt7k2Ik7KEeGorTMzc0xyDMQAj11iHun+7zx0hxCOBbm95GmQ46fvI0y6TMqS7YuvEx/sMVEu0aGT4BfWF7DqBqyBnffdRJRDvmTb36NldUO8Z4DnDpykFoANuuTUhI3mphyxBtnXqC0AT/7s3+HqekZWvU66vBxwijmH/7if8vLLz3Js898k8mG4dtPPk3U2Mu3vvkYh47cxsbGGhcvX+LkyVM0GxNIIXjx5RdYXlvnmeef5u477yGKAux2UptblMECJLKyd9iFkKJSDG7DJ8qd8Pd7dbXHdhr+VlWz3CYMnMU63zJdOSp2wicxZJWM8So9diwaXKVC3U7vOOeQUmFKiwjBFjkvPv9N4sYEBxcOMioN7clJlleuYIwlzzI2NjssLCxWuZrqaJ1/H1kduKuOYLfh0q5S225bRVS3q6wT1RB3CIc/SxFV5a12iZPqObI6pu37xM7jq/cV25p0sXM+JifaIMBYy5Glw8zu3cfa6iqf+Pgn6fa67JmeZTgcEEQxE+0JblxfZnKywUS7jbOGehyzZ888E606J0/eQZpmXL54iV7nJjqUPP3sU1xbuUpZ5oik4Jlv/wmjZItLFy5y/NhtzExO85tP/Rr9QcLUlOLG6gWWDpzg4nXHxsY69VoDCsvemVlu3jhPvyi4ePkyo62Em8vXUUHAYGuDuB5SFjlRXOP+997Pa2dfoVFr4krHRm/A8o11nLOkRYKQJVJrWq0205NTRGFUnXfHpUuXeP7lbzO7Z56LFy5w8OBBnnn6ac6fP80w3eDCxbcAuPeue9gzM01pSpJRSiQjVq5fZaOzyY3li9xx77vJs4QoqnkCDQnCIqUA6SjynEGSsJUlPpGnJEJJtApQsgQgVJKylH7eWkeZp/S6Hd547QWOHj/FmVdfI6g30HGLoNag1+1QXHyDfYdvR4URy1cvETda5EUKrqDWPM7FC28wLAqaURMv1FacuO+DPP+NL9DvrpHmJXe9+/0oQiwGggChImQ2xJYlSvp0ZqwjiBqUtsSiUcZglQNXYLTE5N7yoSxyVFinFsQESvkEsy0x1q+Jfu5KpBOkZFAYijKnXm+gAoXUAUqEmNJRZL4rUHtqgTCYp2FWyNM+hw4dZ72bcHl5mZKQdnsGoy1OWK+SrDoJaYWnajz7As6SJQndzirYglotIogl0jlCYfGsb6VKFwKtNdYaikqJr6RCCENhE7QzVc5W4Kxl0NvCKUEQ1JDGkaYdGvUmKm6gw8irmKUAAmyljtWAFAHUHJFtIEWI9OlWpAgwrvAEiLMoJzFKUpQlo94KsdIoBcZC4Qwah9CSWDvqi7MEcUhNaVQQo6MaURSigwCDRFfrhidVHNLKavGQVeclh7IO3ynOr2BSCMrtZPc2qVkVIRnrLQSKPCHLMvIkIUmGpGnGKBmQpQlpllKkuSc2rMVY41Pkzq/tB48eYs/UBMlwSFnk6CBEypCizLi51mFtYx1jCgKXersMquS3A2ktujaBsSU2SxFaMjM5SWd9gyRNkTqkWQtQSmJtja1en0ApirJECDDOEVbWHw6DVJJGvU6oJFbkxIEEV6v2LJ9EF9XmVK81aU60ePzpV1m+McLgP2apPCkmjU/cGwvOKqz1a4InlgVC+E4C7UnDqO9vl2aX/PakhP+9mjb0+yOMzT15IPGqZyuIAk2t3kTiyK2tisR84t8CzlmSrMAYS3uiTi0MsNbinKUsqs9ZCpyUOOMJC2MrVbZ1lNagKxKuoWtMRBKNoTMagANjHBiH1Ioiz8EJVKCpS4kuPNkkBVgXI5xXMjthCbUkiGtoIZFR4kkVrSmKksKUxIFi71QTZy39UUEQRGS28OfGORSCiUaTE8ePMkgK1oYjrHN0tnokeU6SFThrcNuWHM6irKAsLTdWNzlWn0AGflMVOKYm2yzsP0IhYtZXrlQEvqM7GFJkCaESrG6VTDcVYSSwxpCWBUoFDHsdUutIRhnGWpI0R1XWLX71dSgVM9eS2CCknxRYU5FtViCkBCEozdt7uowxxr+LcTwzjmd+FOOZHwSHDh/mn/7TX2Vx//6dIqxxPPPjH8+M+t2/kPnz54XAYlQ5jmfG8czb4pnhOzgPTWnJ8mIcz4zjmXE88z0wLnoaY4wfAK+88gqf/exnxwVPY4wxxhhjjDHGGD+GWH7pCU5fe5Xn31qhFYXMLp2gVR+Q2ID5dkizVqNZa+CGHQ4tLtGsBTwlQp598TmuXjxLJBxJKQjjmI3Ndd5Kb/D6+bNMzh/j1JH92LDLF37n/yQIW8wdexcf+sD72TsxgRKGaHSdzz3+LcqwxYmjx5mdbHEu2eKudz9CLYxZnJvjxeW3OHdzwN2334/CgFR86IMfw6kauZEcm5/j1Vdewso658+/wFR3yLGFvcQm4xsvPsvBo6c4cmiR7zz7Da6vrXLy7keQy+d4/tnH+MhPfYZGo05ZlgTSEUcTnH3rKS5dOENRlExNDhmJOrWozsTsPGkJX3ziS5w4eJQ777yb+9/zMI3peb7zwrOcu3SWu07ehXS2apm9q0oWlUp4t0QHrxDdEQP7DJPYyYpXnWTAJxRhx0Jiuy2+v73dwt2r1MROgt3tEAzilh/DLUn3nWSLT3ZY51BSUhYF2WiLP/6jX6d78wL7j7+PM2dP8+gjH+OlV15ACBgOB7TbUxw7fgwhhCcrqvkktlXQlerY7pAllZqu+hvVMe3qqN9epLR9trZvy1vuk/xppfS27nBbLLf97J2zLqp8pN0lNITYft2qO5SUHDp0lEuXL7K8vMLRI0ucOn6K+X37OXz8JBsbG8RxxBNfe4xHHnqE5WvXmZufwzrHdLvNY889zcmTd5BnCfP75rl0/Rx/9OXPo2TI0tIhLlw8R5oP2Oiuo0LB7NwchTEcO7RIszXJ2voqjYk23Y0VGo0GEGAMDEcpzlrOXTxLkQukCnj19Cu0G3VkCOlWiilz6lGDj3/8E3z1G4+ztrbO4UO30+1soEJHtztgfeMmtWaItVALQw4cOkYoYr797W8yPb2X+991P2VR8nuf+y2CQPPQA49y7eplbrvtdu699z6efe4ZTGHZtzhNLYp9css6slHKoLdFs9Fg3/w8D77/Ubqd29jYWGc06BLHtd1P2PnZP0xHnD5zGqFCDIDTCKGQWqO1RlW0mCAlDiDJfHcBoRu0mpNcKRLOvnma0ggeeuSnufDW6ygtKZKStc4qh4/fQ6M1Q18sk+cJeZEz2V5Exg1MkhLVpsiGA4aDLeKZWWbn5njXoz9FnhbEUZ2pfUewLkQEAhWECDRBGJNFEdJmOCRpMiLLblKvt1A6wJYjrNIko5QsTXFSEqqQKK6hpL+Wy7wgz70NR1BvoFUIgUK5ACEcjronUoRX3FI4NrvrlIUliGsEMiYMNNN1wUMnNXOTmmvXVmjWFX/SUbSmD5CkKTc7a5RFSmOiRVSr4xAoqaqiGIMzlsGwT5ElgCWuSWqqVil6Dc4aSuuTqBaLcwrtFHmeAiV5kqKVQAURgQow5EgrsM4nUy2SRnvKJ/S1QoiA0E5iipS0yJFOEscNQl3fsXgzrtixzRClxTqDKXtYW1LmGcIa4tCTTUpKpHQopWlNxEw1pgijEBVECK1RSqGl9CpuBRpPnPouC6oicR1IUE4gnaMUCumctywQDoXctQ6oLAmMNVhjsUVBWZSkeUKejsgGIwajPulowCBNKbIUk+fkZUFpjT8WYyp/E4eUUJQZxnoyLJKWUZZRWoEWkqnZaZb270cri3MFg0GX0SinpyWDJCFNU2xRIim8Cr8sfCJe+PXcCY1UmsIUSCU4eGAf77rzJO1mi++88BJKSJIsZardpMwNuSmp1WLf1ayyUhBCYqoFVKOpR4pm0ydsgyDGFTXSLMdYh62qrawQ7J2fZ5TlZElCu91Ch4pQKd/1QPgdbDjKMKW5hTQW3poAh44ljRDCWokMQwIdM+gZlFB+/3OeTHDCmzJY4SiM8Ql5JymNRQmBdILCChrCExJFub3S+x3HYLHOkpcGa0q2+pbOYLCzf2uhmWw2kEAQRQgrURWBoYOAMFBYJyiN35fTvKQ30igKLJIwqoG0iMrqZZiDNjlSCJQTmDJHSIVWod+SrUNY6zsjWEHoQCtJs9lgVOQgNFoqjC2YrjcYpaUngqSmKAsqxylPskhBqByagpmpFuevaqQWxLUJ8qIgSwuc8+8lBFCRNMJBb5ByY+0m+/YtoAAn/JwMNOyf38NmdxOTDJBOUDqDMWCUpJsa8txhEWRliapIs84wIYg0LmgxGGxgTEkzCNBIXJYShJr21Ayj0ZDJAPrDrNqTFShPIxjjKtX9GGP8+zGOZ8bxzI9CPPPD4siRo/zyr/wq+/ft33mXcTzzkxHPhEH0FzCD/vxI04y1G2vjeGYcz7wtnlnfWH3H5qCQahzPjOOZcTzzH8C46GmMMb5PLC8v80u/9EuMRiP27dv3H3x8nuesr6+/AyMb48cNy8vLPPHEE3/VwxhjjDHGGGOMnzhs3rjKylAz0Z6ht7FKtDVic6OPqLfoDgeMSm+bs7qxRtc2aO65jf/y732U088/xr/69d+hP0hwCO5/8AN0OuscnqjzxFcf58i9JWJ4lY0bKzz57edYPPke3vXhJRpxwMZKj/Vuh+9e2qQ1Pc8H7r6LIt3kjdd6vPzmW3zmMw/Q3Vxlut3mgbvuYWn/Ft1uh1GSkBtLFIZMNzVrW+BUSJoOWF1fIxmN2Lx8keJJKAYdRqXgP9t/iHNvvs7+w3cRTa7x/vvfzbee/gZnr6wxdeYMD95zJ9999utkqsGJw0f4uU//x/zm7/w/9Dtdjt31bj7zyZ/lzJnTHFlY5BcOH2VtfY0/+P3foNmsc/DgIe44foIDi/sx2nfI9ElyAcIn9ytRnS+0qRL6TrgqUVG1aK+S1lIK3E5G/Babtuoe4bZt2yw7+fXqkdu/OhxCVml7zzL4hLtwu8l8t/va4JBUCi0ZUOQpLz/3JN9+6kmcy6FxgCBqUhYZD733Qa5eu87G5ioLiwdRFfnhZJV4sW6bhajOgVdoue3z4t6e7t9N13gyQe4QIbcSKNUR7vwuq3Pqds/1DnaLody2+htPyFi3nYq6hRTYYVEqNZkQvPTaac6df42VG9d47c2X+IXP/g1Wlq/RnmxzaOkoW/0tFILP/9EfcHTpCHv3zDEajbhy5SIrG6ucfu0VvvXkVzl+9AQH9h/i8rULSKX50Ps/TDYa0huss3LjBvMze7n7rnt5/fW3aDZaHFk6yqUL51nf3AKjePo7T+GEQqJwxiK0o9vtUuAoypK0t0ma9YmDGj/90x8Hq3jyG0+yf98SaZJSbzaZbs9y+cpFIjRSQCNUBM4hahJjC5avn2c0smgl+cIf/luaE3VcATJQdPo9RkXCyZO3oZT07fmzhPXNHu9930McOXIY52BtZYUnvvyH7Nl/gHqzTrPeoNVocfzkbbQm2kghdwrWRDX3L129xvWVm0xONciHBakxjAoLzhFuz10cSsIw2UCHLQQW4UrqYZ1+khDXWmAFUVRjY20NU8DiwdvRN2/Q6Szz5plnOXbyPYRxjBWKhfkjLCweAaGZntlHHER0XYdao0U57HD+8lmyPOOOez4GUqOjBgiJlAohBSDBOsIgICwDpHPEzTahiEiTIb3OMknSR0ST5BZaE9PUa020lGgZYJRCCAhQ1CbmQEq2+xzY6lp1xhfAWOt84jkZYkwJUhA3mmihCJQi1A4tJG9eKXn+9E0uXOswMd1ARA3AEgYBenKaNO0zHG4xGPaJ4xpRFJHmGUm3AwqUFARKe8WzE0ijcC7EEJAkJUprZBAQ6hApNNaVIEoUMbWo6ZPmWJJkCEVGqQICIREqRoUKgUE6AzIAJ3FIRKwQRUiWbjEcdDHNCU/+FCl5ntCs15BaIoSmoQNUPSAIagRBG6E1gdYoqUFqlBKVOtl3iTB4xarEIpzAye31xYIQmGpd2e5Q4cX2tko6A9ZgrMXZkiLPyLOU0SghGQ4YDPskoxHJaEiWJCRpSlFk2CrBbGyJsF5va8R2t4oCKQPCIMYJxWCrhzOWej2m3W6wsr5OmucopSjwiluEojER8I//8S8RK3jpudN0Nm6wtnqDJC2RQpOkI4TLkc4i8DZ5Skm/hklFEGi0CpE6wBiLEAF5nnLmzFnWOlteHV8WZPmIjU5KXSrqWnprEHzSfXvvwIES0hNBLmGYJFgX06yDrGhngcAKT0I5ITl++ACdbg+pBTPTbeT2JkhFKDtHkmSVMtmhZeCJKM/joIQkrnn1fb2laEaTNGLIkoIityAcGolxnmRQTtCst7w020mccGgJQmu2rRxcZXsihAChCLUkDkKE0MRxzZPxShAIhUIglVdoqyBECmhJibMlURDgpH9dZyzJKEdKiRCOGhIjAmr1GkFuCW2OEyUTzQbdQY61fnwSSekKAq0Igpjc+u8GRjgC6VDKE4bVCUJJQSgVxoEKNVq36PcHbPVHhIH23ejY+XqBRFBmOZ0iZ3klYG5+H8oaamGNpQP7yK3j4qVl+sP+zucnUJQCFloBaVGwutahXW9QlN4aprQl3W6XZJRRCzRbSfUdx/kVTKFxKmBzmDEjA9Kssr4S/kep0BMgzqvgp9qTbHRHJHmGNQaTD6nXNJ2tIXlaoKMQJysyp5qX84sLjDHG98I4nhnHMz8K8cwPU/o0OzvLP/jv/hG1KGZjY323uKr6rHz3K18A/eIrL/LWhTfH8cyPUTyTDIc/8Nz5flFrtGhOzeJw43hmHM+8LZ6xZfmOzUOlJME4nhnHM+N45ntiXPQ0xhjfJxYWFr6vQpRnn32WRx999C9xRGP8uKLX63H27Nm/6mGMMcYYY4wxxk8c9p+8l2kTYNNNnnvmTzh46Agz0zOoKObwgYOwdZ2vfvsZsrJgc8vxwIMfZqZd59jJe/nYL8S8+Ny3We+lXLl8nvm5KR6/lvHJv/mLBDJnOBhQqDqNiQkm2tO0ajHGWOqRYe3KCg/ecTtfevwJvvyVP2RtY8CdJ0/y8Ic/RSgyLrx1ltHGClbGHD91L7I5yclDh4i1pMwzBibkYx95mJXrZ3n4fQ9xcHGJ9p791AO4cP4CK6MBS/v38Njjf0gU1vm5v/F3+egHPgII3vvAIzS0ImzN8NLpl6nvOUR/7SZrnQ4H9y/xs3/tk1x46zz7lk7QDCXve9d91JsTIODA3jn27D1At9cjvHGVKJ7g4L5FrHMMtzaJGg0CGeGkq5L6XunncPjW6rcU3VQJ/O0wfVcl7FGl93dIhG1LByG8asg53yN75/nbZIR/8g7eZk1RJX9Elcy3lX2DtZbCFVy6dIEnnvwyKrAMU8XVa2/Rak0zHG7xmU99FnVAc/TIUeT2c51PfAA7x+oH8vZ5tq0M/3e1TduGFEJsp4bZTeb4B1Qqc1cRKNsECzuFT29TVG8TEaIiYISoEie3npZb9deiIk38+b79tlOcOnWKk8fu4Nd/6//ij778BYosY2Z2jk9/6jMIo4jrEY/e+SHWbizTHw348pc/R6+3zv6lo3zj61/i1G13s7nZpd/vsrm6yac++WmKrGBzbZWsTMmzhOFwhDMp777/Ht44d5awFtCYqHNk6RBrN1bpdTdACMqiIFAKJQRZmeGERDnB3Nw+9uydYfnGGvVai36nz57ZWQ4fPcJke4obyyv0u33ec9/7+No3Hkc4R6tuKUowLkRaKEY+0YVQSKHIs5Rmo8V/8rf+c8IwYGn/IVZX1/nus9/hm996EmtKjh45QndjA1sUCB0yMTnJ/Q8+zOWrl3n1pRe44667aDRb1Js+qS3w00PYbTII4kbI7N499DbXMWwxNdmkt9whLzOctWAdxmYMk0100KBeD2k2azhryNMcW5TsWzzOxNQems0JVlYu0ZpuEKiAOIpZXDjMYJSSWwlRnTIdYvKS0aCLtXDg8FFMmTK5d4HBjWVWlq+SFSntvYd45qn/j4OH7mZh6XbietPPUCHxzcktcRSgFTgpKIqS/rBPYQoak3MkyZAortOqT9GcmEKrCCskCq+2BYVwvguBLVIocpxweMtFSZYOyEdDjPN2BlEQonSI1NpPYGGrrlWOQSJYSyKSvkBPHSSVNUTpqseBLS3CakBiy5y1m5vU6w3yZIQ1OWEUETYnEDrEKYWVAUpIJCFIRT2qI50E6Qu/DBbpBNJpnCkpyozSlORljjMFcdQg1rG/piwURUaRjYhjDUVSJeNLXJEgjWWmUUO1W0ShptZoIGUAOiCUCqRCCIUSEij9ulcpYeWOMY6qiFdLgMC7ALjtw/dzbluIv20zY0oKW5BnJUWakeYjRv0+g9GQ4WBAMkoYJX2SJKHMMrJ9HtjWAAAgAElEQVQi9ypvZ3fa10sEEkNeZCAkuckICLA2Rxo/L4QW2G2SVOGbUJgcUxpPhFpLURrmZ2ZJ85wsy3EItgYDFGALy7So86G/9vOcOvo0/+xX/jn9fh8hAzY2l1E6ZnqigXIWawwIA0LihCDS2l8nxqGsQTlDECp6nT4vbLyGVIpGFGIDiUr9GTPGIqW30RBCeNW5cEhhfecoIchdRmgF2ikcEue88hqRVe5DAic1jVrMwt49vPzaeUxp0MpbIVm8WtlZR2krmxL8ba0kSnqyKo6hEIZhnkNeUFcaZEYcx5gSysKTESpQSCcJpASpmG42fGJdVAWuzu7sB1nu33tqoolxFkpLEGiiWt1bDQDGlhgg0CFKCLbdQKTWOKFQSMpSY7CeyBQCKx0uyzFlgZCa0mjyJGVkverYFwoIavWAZFQwyEucshhT+k4kYYSO6tisxAmDqgorwSIElMKh8cW4SimcMWip/PFFDbQFV+Ze7e/89wNhHYGS5AKGaclmZwspFMIYpAKwxEGIklWRgJBY5zDWk7R1LchzSJKUcxevkjoHxnHp+jrtQY4SDg1orTGlt9TASQwC4yTrI81k7Mduqq1WaU1va8hwlIJzRHFMoxbRG2T4oj3LcDSiEWs6vSFhqMGJnQKLLC84sLCHmfYEY4zxvTCOZ8bxzI9CPCP+1DP//NjY2OAf/cN/sP1ynly/dWzs/m6M4cTJk/z9v//fjOOZH5N4Zphu/cBz5/tFGNVZXLqdVnt6HM+M45m3xzPvoN2wdXYczzCOZ8bxzPfGuOhpjDG+TwghiKI/f/vMMAz/EkczxhhjjDHGGGOMMcZfNJrT+3j4tiVeeuarzC/dQb/TY3bPHt770AfoDRKMkVxe6/Od517GyDpTB27nwNJBDiwu8aHBMhPmOHuXTvKF3/9tbm6sM5Gv8UJvxN23H2NoNBfPv0Y/KejdeINXXn6examH2OgmbOSOV19/ijvvvZ9mLeIrX/06L79+mvs++NOEShO2Z7m6vsrc/CQzM7McbYY4Ib3irMzYt2eOoned3/y//zdS1yQMFCkBWoZIZzBFn4sXbjAYFtxx1/24PMEVOVleYE3C+Ytv8sEPncC1Yt548wzl1jp9rakdjTgw2+bGJYcqEy5fuUI00eZIs4VCIGTApz/xSbY6Xd449wZzi0vsnc3pbd7gj5/4Yx55/0eYmZqh2WpXyZQdXbMnBYRPmoAP6nFiJ2FPpXDa/m3n1naS69YPTvgkiKhkp85tq762S4J2zSO87YJXYvrku/ee37aNsMaBLdFasHhgib/9t/9rfv/3/xXp8jJra2uY0rJ6c43vPvcM+xf2k+cZSbLMU9/6Gu998FHm5g/ujnVbUcfumLwA2/2p5LyozoFznshgmygR7Kq3t19N7NIE28TK9qvdYkZR/dWyo8Lbfq2qmxO3kA+43ecL4T+TWi1CIDh69AiNsMb5i5cIdEgyGvHyC08xOb2Pc+de47bjt3Nw6TBaaO65+910Nm+SFDk/9eFPcO3KNSRQ5BlzcwusbXQ4deoUw9EWnW4HEUg6nTV+5/f+NSdO3MOlS5coipw9s/MESvDg+95LMsz5znefwjYEwpYEkcJYRZamIAX1Wszk5Dxnz17gd3/339Bs1Dh86BgXzl/gnnvfxRtvnKbZqPPC89+hxKBwDIuYMKpRlCkgaTRqtKKAYW+LVrvF/NwCp07eyfWVZYqs4NzZcxw7cZzzF19nc/Mm3e4mo0GfQX/E9evXOXL0OFFc48iJk4zShLfOnUUFmumpaW93sg27+7mBwxnHjas3SPIBWkVkwxIdRPQHffbOztPtd7m6fA4D1KMmm1srtOt7mJxaoGfXmD+8xMH9t9Hr3ODlp7/Khz/+1+lubdHZWKNIRkSTM8xOLdLfvEoy6NGcXSRJ+2RFk+m9B7h5/RoTew/hhikbq1cozYje5hpFKVhcuo2bV89w88Yr3PvApwiVY6LZwCIpnEGEeIUvAickrZn9KOUIhKLMRzSmFun1Vlm+vsZEYy9xvU6gFEift3RCUJqc0likkghjyPIhaZJSFjk69hYRUkAYBEgRIFEgLM4ZhBYIqbGmpLe5Rp5sEdUEQeAoywItNSIMwTmy0pAXlqg+xcL0EkoYnDNIVyIsGGGxpqAsIUk7iFodIQxGeDJHOosS4LTACIUrctLNdQQWFQagJaGQqEAgxQhlc2+xIh31CIg1YRwSqmpMKiCQokpQKoSQSAlOSqypFOIIlLCVNYD13dq2LW926FVAOKzz46QsKE1JmedkRUqeenvBLBkxGowYpn3SZEiWZCTZkDzLMXmJtSXOGow15FZgrUFLgTUltizRSqG0IMtK6vUatUBiq9b/zlqEcGincVisdUgdIYTvtuSsQwmf7LTWkGYp1hUY4xA5BCOB1prSOIrCkKY5CAUI0tzyv/yL/52JWsy7P/Ix3vvhh1kZPs/GjWUiCTLQ5EAcaYzR7K74BqUETmhqVZVnGNT8VRdK5I5HkCVWAUJuK4e9wj0GtFYUpUEI4y1JJNTigHptgiwfYsoI56BbDJlqKZwTGCtRSmJdyeLCXkqTM8oylIBAKt/1wnlrDescWVaRgVISRTVwDlmdNyUD4lqASS1WGJJMgLKIPMUagVOKeiMmjiKs8+OVUYRVAaHyM0hLKnLHYa1ABd5exZZ+XllhKQFl/F7hBL5DloRGK0YqhUPgCkNpHcZZT34rRekE0voFTStBFIWU1iGdBSxZWYDwn6mrCME8N2RFhrQFJpM4J0FFXoVvLHGgyJ1XoQuJt5eQfi+3OJSxmMq7KCsLjIUwlGhdZzQUuDwFASY33roiDDGlwDrBYJiCWycrPVEzHGwxGA7pbt6kLDKcFThhKUyOEpKVbo5wKdY50jwnMSWxCpAY4sDSaLVpNhoYK3n93GVMnmCFQzhLEEhUY5rErGOcACy1SONkTH/URzhLo95E64jhMKEsi4qA09QCxXp3ROks2vkiBmMhLQrajRoL83t3CwfGGOPfg3E8M45nfhTimR+8z5MfR1Hkf+7Hj+OZH694ptZs/xCz5/uEgKIcsHx9fRzPjOOZt8Uzzr1zRU9KSMJAjeOZcTwzjme+B8ZFT2OMMcYYY4wxxhhjjDHGGLdgTy3nzAvf4vr6FvfddYr9++f54le+Qo0hzbphuh2zNL9I+Kn7iM2IbDSg31mnm23y3JkL/NvPP8YHH+oxOb3A/n17uHjNEs0d4/idD9BsNohJeOP8FZbXNzl7/jXWr57h/R/5NMPVS7z80iu8+MpbfPDh+5ibarC08AB//Pnf4q9/8tMsLe4n2reHc1duYrMRohkjne+SceXS63TXenz1Dx7nxdPXUDri8G2nuOe+e2lIwcWbN8jyLlevl5SmZK2zySunX6JM+7QmJtjsbnH7qXfz3af+mP4wYeHgKQZuyNEDR+is3eCLX/ojXnj5VT75C/8p7z1+gmTUx5mMzW6PZmuSUGkazSZHlg5z8OAS33jycbSSjFTISy8/T709w0fe/8FbVLiVygd21dBiN+21g21fAnh7QFwll7wS0Cspt3Ppu093t9ICIATSeXXeLiS3QmyTB87y6pnvsmd6lrxwZFnCybvfRxmc4eJb55mcmmZ1dZONziZSKg4fO87FC2fZShLW1teJGy0mmpOVQm67I5OojmGXvPDqbecVbO7W8d9SfLTzvN3j8oTG9v3b5+iWc3XrabhFa47ctaBwbBc8bRMY7BQ6uWpcZVGitEQoRaNR58DBQ3T7G2z1BwyHKV/7k29y9OgJjh06xMVL51jYt4+1m6tcvnyRw0cOsXRgia1el2ef/RaD0RbveeB9hHGD9Y1Nzp97gz3zi3S6PVwJzjquXrnOW5cuAZqD+w/SnJhCiIDRoODs+TcxtqS0OaGSlHmBcyWBVqSuJIgV165eIElHoMH2M27cuMmlCxeYac/Q3xpy5doVpIDZ2T30OusUJbzn3vuJwojNzXW0tNxcXSXXkqvXLvJ//Mt/wf/w3/8TlJKsrd+g1+8yPTPFnpk5jp68neTVV9jorJFcHXLl+kXeePMs8wtz7Nt/gDOvPs9zTz3JQx/4KWZm3lspVB3CSbIi9dYCQvD8s9/htTMvMjU1Qe9iFz0Z0I5bGAeTk1MEgWZ1c5VRkhCoCBFZmuEEYeTtDA4fOUWr1sIJw5XL5ylxXLh6kbgxhQDi1iyjYY89cwdZvXKOvByhkwHDPKFcvkqapEgraMweJB92vRoybhNGA7Jki7mFg2xtXGVj9QKNGCabU0gsnd6AzvoG09pU88a3bUd5+wpblihnMUVGa2Iv9abDlQWbG1cIwph6e5pQRRWJYCnyhCJLwElvGVBrETQlCg3OkRcDhlt9orgOTiGlQmqNFAFYh1OaWqtN1GoS6BgtBOloQL/fpx7GqLBOPW7RaE8hZYBEoqTauegEjsJlaGtw1lFvtJHSefVymTMcdSmTHk5qgkCCkARCEE4ItIgIooggCom0RujAv4eQoEFv294oCUJgdqxxKqsP4ZBut2zRlg4hvbrTgudKncEZizEFpS0p8pw0TylHKWmSkgyH9EcDRqM+aZqSZSPKoqDIC6wpcKWjdAZrDaUzOGOQzhc+lsZiHThbeIWrq3pHOIsChPJjK8sCZQSmdBSFxtoS79jhKG2BkhrhLMZapAKrvHLbGP8YUxYYazClIc99F4tGo0GodZWELUizjLIoq54R/kcHmtX+Fr/8P/9P3PeVP+CVK9dYW+7hrGV+7z62MsNW1698qvK2sNZW5IvEYnCAlMpbEGyvsFUnCyEVhSlRUuAd9SRKKbCOiSDCmALrSkRVhFWvRcxMtRglOb3eFlpLcmvwqXODE45aHKNNwdFjh1nvjkjTDGMLCuvHJoTAWocpDWVpEDpEWUmrWUMJQRAXaBEhdURLBQzMMnkZUIqAUSGIZEgUKLSGrEhwUiJUgA5DlPBWCUKHKGmwpdlho72CWpBbR4l7G+NsrUFK7Yko6TuujEYJ9UYDrSSF9EpuuV0wu921wVnCMMTgmGjWKn8R/1jhDLJaDwDKomCzOyDNS5yzBDrEim25vMDkOUGsvTuM2SX+nRQ4KZFC4jBI5yidBakROJRwCCWpN5qMhCMbDjF5hg5jEJI0L0FYytKwlThkoCkyw7MvvspwOADnLzMlvFVQUfhrYZDnZNnQW65YhXQgNSxN1Ti5OAFxRGqhOyppNCLKPPNFCha6WwmNKGZgtwsgJKPUYNY3kQimZ2bZt3+RLDNsdnvIUemtRJVgkBUkRemV+Ph5nJcl1sBEM6bb7VHmP0ypwBg/CRjHM+N45kchnvnhyp6+PwjBOJ75MYpnbvGMfAfmjqA1sZdGi3E8M45n3hbPOPvOfh+TUo7jmXE8M45nvgfGRU9jjDHGGGOMMcYYY4wxxhi3YGJ2ge8+/TXWmWblpZc5eftdnDx2jCe++hWC+gzNZosPPvpRHp1tk+cFG90OyajHN77+BHP7lji4fy9vXl5h8cSdrBeSX/ibf5cji/sw6YBWo0703vdx8UYPZw3XXvsuz1y4znKn5IHb97PV6zMxEfB7v/8FhsMRe2anaLTa/Os/+Bwf+dinOHVogQfnDyOV5M1XvktzcpbezYv8v7/924yykgtXV7BWIIsCa1LOvvIco0GfUoX0tzaRDqb/f/be7MmS677z+5wlM+9e+9bVewNoAI2tGwABEiQEAtzE0UIto1FMzBIe+8FhR/jB4Uf/BX6xxxGOGcvhcYRiJFIjDiVS4iZxhUiCINZudDd637t6qapbdfdczuKHk7e6QVm0HyxEkHG/D11dVbduncw8ebJ+3+/5/r5zCzz/wksceeRRHnvwQYoiZ242tEQ/f85z6uJlDhx6gsMHD7Frrskf//H/xuHDz3L++nU6nXWKPOPUpfO04pi1O+t86pOfxuYeiSeuVMhGQx5/4iniKOYRC1vb2+zdszeQ9cEcNJYFENKVhP+93kSUxP/YJTwmzv3OZh0Yi+HjeDe83CHYwldEIN4RgQTa6Wbky7e/z2ddEh7jjRtjceHixUt859tfRviI1lSLJ5/+BPqBB2nEGiEi5ud3s2/3KsY67t5eY2Zujo/v2c/1q5c5cOBAiKgQYzf0/bzs+AjETiTE+LDxH5BI7jN1+x1xY+enhfi59ysJHxwhM+r+zVDhOHUc2o1TSO6drQBZChbIcH7W1m7y9W/8Jb/++c+ze/cBpFQce/IYjz/2KHc3N7l65RJpOmR7u0d/MGKrc4UHHnqEP/oP/55ef5vLN87TTGo89thRBqMt0JJma4bHnjjGqD9kMOrx4+//kGatyiAd4oRECI8UMcZZLl2/xNzMPKNRylS9QbuzTawFkQZnLNZ4Ws0pjMsgK7h46SxSJTSbTYwpMKMR9UaDlz/7Wa5dvsDUTJP17m0UkiJNOfrE07z5xltcvnSZhw8fYWlpN8pa2psdCmfQVlGr1/nOD77DKy+9wuLiMqfeP8t2e4sjTzzBnVt3uXv9KruXF1hfX+PtN39CbiO++o1L/OEf/AuOPfMsu3Yt0dnqcufWbVZ37aVar5MO+4yyDGstc/MLHDi0n1bjsxx/41XMKGWYdanVE+6021gnGIwMM9PL3FnfJo5iCmOpVRskSZXO1gbeQ3NqntPv/Iz5xWXyQZdr50/Qml1iZmaFgTH02puc6HyfarVFOspI1y5SbzTotNtMz+1CCMn0zDym2WRrc43BYJ1qY5pqrUk9suzetUKicwbb2xRDQWoMXiiixhyy2AIXnJyx0lin8BQ4GaGTBliHUIpIK1Ca2blV8nxAt30TM7JUqy26vTZFNiSpT1FrzhPpCkJpnPAoGQXp0DviepO4UkMqiVRREAZ9EOIcMOwDeUbuMnIXWro355dCtIIzWB/iEZR34Au8U+AKBv0OWlkiJTCEjgHa20A8akElktRmEuLFVbSKQISNgEqFiAYvQqcr54PTFAG+7PcgxvdtueaM42GUpyTJg2PVOIc3hiLLGYxGjEYZ2WhAf9BnNOiTjnrk2ZBhmpLlGd7kWBMiFQrnEJbQ2t+FDg/WW5wLAoD3rowEAC1cWBdcWD/DPsf7w3hkIGS9KUWKsWAZvl84U8ZSeJSSCAF5ZjHGYSmQhPeXMirXXkWaFQjpGWYZlC5XDzQqdSKlwTsK60izDOcC1S6EQAqoVqsksaIoPHfaQ77+w+NI77FeoFXEdLNG4dPAS48jdoQoBdqyA9n9Twbh8ULgvURJcK5cnx04b8sVU2OtQ/jgaveeECEgJFKI0gkO1UoV4aEwOcLkSGkxaoAUDWanplBxhX27ljl7+SbOGpIkQas4zEMV1uAsyxEqwllPYUPnKy0NScOSpyO0rKBUjWqySFyJGA1zBKVzXoIunfJOeHR5zqSSWGPIMqhGIMK0QGmNc+Vzx4dVXwpfXm8QUpbXNEQtOCmwxjEa5dQrlRABgSsjDzxhO5nAOIhEEL1CpxMQOIQSWCcYDjOyvEDpICRgy9gEJCrWSC8weYHA4Xwgw6M4wsoQ4yFkiB0ZP6M9El+KeUqXz3AX1gItBfVaFW8dRW6QUiBliIEJ174cn4BhZkj7A5wNM986jxDhZ7yHehRhPBRW4pzFKo8SCo/n0t2cvu2wfzZl/2KTeg3S2RqDkUHJLiAwBu5udnE1QSWRoeuJEFjn0LGi2agy6HQYjTLywZDYW5IkLv8OUNQbdQShW4JUGiVBa097s0N7s4MVE0p/gl+MST0zqWd+KeqZn6tH/nEhJvXMr1A90+9sfnhTxwukVyitJ/UMk3rm/npmbBr7MHBvw+mknpnUM5N65h/CpEKaYIIJJphgggkmmGCCCSa4D8vzLVpzuzh27NPUYov2lk888zTHI4NtLJIN+3Q7WyTpXZL6NEmkqdXmOHT0o7RqU7ygKjRn53nwwEF2zc0wGPQR6TZXzp+mXmkwu7DMP/ut32Q43OaPrp6iVqtw+r3jbN25ymZnRDJbodKaZqs7ZK3dJ8o0/90f/lfUYpAqZqZRJdaan554l4vnLlOdbjGK54nqggXj2bpzGw8Mt7e5eGcDY3KSRovp6Srd0Qa7Fvfw4Mo8p955i11TU+RmyGg4xON57plPML+yj8b8InPNBtlowMzSQdLeBtVIMjSOeqvJ80efJUtHNKcX8dZhCsOgP0DqCKUjEhXxs5++Rm1unheeeY4gAjiEE5g8Jzc5lUodJe4jwhlv0fGla7gk1gXhnzKKLdAEY2I/EAc7ERPle8nyZ/x9X9v5PiHmbSwGwNgRfe/3V5OERw8/yms/+is6nYKllWWqrXO8d+Y4Dz1wmHxUkESK90+doL21xWuvKz7zqc9y7Mk93PCW7a0t6vVWSQyO4y1KYWRHBCkFgrFdfDyQ+0SFwDe64IwKPx1+xoMQDpCMG8KPRZWwa4kPHBeAFIJDBxbJC8mVy7cCmSjujWd8grzz5EXGj1/7AecuvsfKiVVmZmZp1Joszi/ivGVlaTcvvfAiSSXhz//8i7xz/G2EEPzk7xpUqhGt5iIrK7s5e+40g0Gfl195BSE1u3fv5cDePWxstjl/dp3ZpVkW7jRRA023n+HMAOPBGkeiI7a3thB4bvcHOOHQcUQUaYSOyYqUwXBIHGmazVlqjSo3b94izTOEFEjvaXe3+PKf/zlFkdLrdBHOU1hHr9Nl7cYt9q7uJqk3OfX+O8Sx4NFHjnLggQd44ujjtNtb3F6/w9nz73Nw3wHeevsNnnzqcdJ0xIkT7/L1b32F4WCdZm2B6dkFPIr3T/+MhV17mG5WadanWWOD3nATvbXJ2TOnWd61i+npafCebDQkSwdUa02yzNIdpgxMwd4Dh1nvDugM2jgi9uzVWONZWdzF9qBNo9oiHaUs7NqPdRYKy9ZWmwsX3mNltJ9ed5NdqwdpNuc4d+qn9PptlNSM0h59vUVcrVCt1FnZf4S3X/sbrC0YDVKMt9TrU+xa2o9KBG/97Lu05la5dv0yNrPIeJrNToe5+Tl81CzJb4cyCi8kxsvgiPQFztuSeBVYXxBHBdIWpCZl2O9jspRqJcI0NJgBkSyoz06hophIGoQrEFKgaw2UD2R7lFRQeBCqbKPvsHmGKTKEdVib089S6pU6sY5wtggO0O07COlQCrAWIT1OCLR2KCVJpKLeBF0Jc0vqFlpopJQ7jRO8k/iSHBVufE/etzaVa4nYWXdC5wcvHNgw5wpjKLIRaZoyGg0YDQYMB0NGgwGDYY90NGSUDikyQ2FynCkAi8XhbThe54MLFet37tncWIwPhLYut/eElAOB9T68dGfjo0fftxiOO0fsHEY4WHDl670DIfE+RFMIWbqLcQzTFEEVKUBHmtzk5EWBVgIpBcaFaA1rPcaY8Ln3NGtVdBTRGwwRwmFsRl4YisLdJwB7lJRU4ggJGBPctal1KCVAKbRUzM3PIqVCKV06T4MwJGXZh8B7hJThcw/WGrTWOC93rpmUpbwsBdoLrLcIPFLKnWVRyCCSVipVrAvjMzYstSLSVLSj393CFRbrRihZ4KJpllrLSCkZDlKk0Fg/II4iEl0D70mzAikjlJbgDZVI0awb+oMuaXdA6jLwVZSWtFqzSBnTizKGw0EYv/OgIJK6FNsVToTjFc6R5SOU0GipQhc2KYPb2IWpLSVooTHOhntDCbQKMZVCl1S/ExjrGOQpFR2HjWSuFPGDGoZUCjxEIrjmo0hhnQnrXJ6TWlOKCuGZbcczT4Vr5/DIsjuGUA7jJMq5QNZbgRIghQ7iBTbciyJs1JVWoLQkc1kpTkickNSadYSOEUWKVkE48dbjCI7qmNCZwiNR5VqmdYTWilqjSjrKEc6Ec6ViPBYhFZHWyCiiwNNLHaduDzl+bRulwCBwBlqtJs5Y4koQJ/oeskLQbMoQC+Q9JjNcvnoLvMP7sJnBI1Aq/D1TkRqhggCpZFhTIhXWJS0UUaxQ0YTSn+AXY1LPTOqZX4Z65t5B/eMjPH38pJ75FalnTJ5+aHMnzNcCac2knpnUMx+oZ0It8eHAe4+1dlLPTOqZST3zCzCpkCaYYIIJJphgggkmmGCCCe7De++cYW7xAPUkZtdURLu9yVa/x/GTJ9h38DFclLB2/RQ/vXCOoUk4+tTTPPb44zy6exUZN3jqkQe5fvU8a+fPIMyDtGoRo8E23/7mlzl5qc2vffKzPPXwQ+R5n6mqotsfsvfIUzz5+BGimfPsnq+BnWM4HPLZz32Wq9dvwfYab547z42lBSq1Jo89+TQvPn2Mq9duUJ+e5+MPP8lw4zqXtGTQ3iZptrh5+zajNGdl916clPz2F/6Ay1fPcePSZb7y5f+EqtSYmpvlxY99glFxi7dff5UHHn6Khx86QqtRRTiJ1k0+8dzzfPvrX2GrO+DTBw7R3dpmNOqjpGR5dpY8G1CpVLlyfYtDBx+kWkm4077LzMpuVleWMVnGjbVrgABbcOXaVabm53nogYdp1BvBOSlKV964U0dJPogPEHD3nIX3iHbufdyBvMehC/+BjT/siA7h444f24MX5Ti8Yn39OkJCNUnY9hnGWs5fvcjzz7zA2bOnyog4z93tDbbbGzz+5DEee+IpoiTh7kabfQfGQkcpafj7f3Fwcon7h7Pjnrw3pnvRdZSusPEBjMc+Hnj58T4xZMcFuPMbglsy7fXxVAKhJEpysFRSPGNxJbxJJangnaReTyjyglTmSKk5efIUx449hZQxly9d59y586zu3k0laXHz1nUiEbNraZnnP/IC3e6ASq3G40c+wuLiClmWkReWxYUlhBNoqfBFj6GRfO/VbyNxxDpGSMHC7Ayb7Q6Fz5CJZG5qgeGwjzeBgKrXa/TaA6zyGGeoxDHTjTrDvKAx1WRrY4ObN6/S3lqn3myE9uJCBpYXyfrGHRaXF7h58wJeeuZmpzl54nXmFvfwzntrfObll0Er2hsbfO2r/4mV3Xvodoa8++4JfvDqd9gebtj4KFYAACAASURBVFNJIkQMxhZcunyWF198mbnZORYXFkniKqfee4OzF04x3Vrk8eEm166f5xMvfpbCOqq1BtvtbW6u3eTNN1/j7PmLPPLwE7T2PMTGhZMs7drD9naPtTvXSeJZllf3sawOIoTCoXn4yZc5f+pN1u+eYWpuF0oprlw8zuruQ6S9AbeuXqbbu4sQMSv7HqXf22Dj1lVspvFxxHRjjoWZZeJYIpzi+vm3SeKYuDbF9tptpmeXmJlboj9MuXH1LJU4obO1RaO1iyiJ8FhsYXBY8MHpawpDJ9+iWmkRR4qkWmU06OGMwUsJskKtGSNaHu0VaImQEVNCIglxBd5luDzH2D6un1F4Cy4IkUlcRemEIh3S795l0B/SmJoiiRQCyxQelXbxBdRihYokUeyJKhEyjtFaESuNEDrw4CK4LKUL7lJbrhdlOguu/FcIX7o+XSDKncRai8OV0QY5WZqTpSnD4ZDRcMBw0GU46DMcDMlGffI8Iy9GFC44lcet8p1zWCTS2+COdhbnABfEQWcL8GFbY+Ed3jm0CGOVCKxjZ/0UsiTDfVgnnRc4IRAlAYkDpAIc1o2J8JIoF65M2REITBBe5ViadOW5Kp3TPpCtaZZjjSVOdBCBpdw5f8ZYvDGACY5TKZiZnqWeaDq9AQKwzpFlFuPGWzfDOhbriDgK0QvW5kRRxPz8DL/+uVd47OEHaTQazM42aW9s85+/+rfUbILwQZwQUpciCXjvxosqSigEoKRCSYlzviRmwYtwbSPhkULjrEDoCIQqncZjcReq9SoCj65UkZ5AopsCg0ErhXKSalKQIViYm6XX6TEadUjTLlFs0XXJrvlZrHPcaXcY9QbEsaIwBoWhn28xMgbhY2Ik3hlMmiKTBCU9zXqVWEvSNIWSSI+SCO0I3dVkOO44jjDDDGcUcbOGI2g/whoQBeCJI12eqEDYSyHQpQhkgXotIs09ufXkxmJ9TiWKUdIhlceiEDikEMEtXz6zcgegyPMcYwWgiJIIpQXKKCoVRc8ahBCoSGOLgjiJyV2KEBInPEXpjpZa4Z0L0lsZrSREkLasL0BqnHXEMibLM6S0CCGIpSZpKKzRCGuoVRJcuQlOK4iiCB1pWkqjRdiwGQSDMO11JcL6mKoQTDfq5bhAiRBJAYZRnjOeucFhH57TcaQQWuKJwQvGQSGJUOHVApASqRRa6hDRoRRCSiKlUVGEVBEVrfDehee/F0SV0CUiiULUzIfXV2CCX1ZM6plJPfPLUM98mHDWkaaTeuZXpZ5ROvnwJo8P0VZeqUk9M6lnPlDPfJjrmBACrfSknpnUM5N65hdgsulpggkmmGCCCSaYYIIJJpjgPlwfxTx9eJWFlmQwSrl95RRnrlxlo71Ju3+Sx595nql6lZPvn2Bu32P89M23iaRnanaeA3vr4DxT1QqXBxv8zV/8iF43pbXrAD1TJY0q3L5xide7bR46/DApFR7/+Kd48egjXHjvbfYvzvHu6fc4uP9Bnn3pM5w+fZrq/AKv/uTHnLt4haee/ShPPLHCGz/+W958903anZSZ5gz5+k1u3LyJHQ4QWrM8O4sZ9Vhc3cfnXvk0xmZMxYZH9++jVatz+eYane42G7cuc+50naNPPsvWo0eZbbXotjdp1laJtMBay/LcAg88+DBxpYU1jqmpFm+/8V3udlMeOfAg69ttPvaRT6BVTJLECKlYWVhkaXaeG9ev8KVvfZ3VQw+hvOXk2dM88/RHWN13gHqtfh9RVIoDY2Lcf1AYCJEN4fqI8WYeQUka+HuRDojQctmXLbsJjsGxr5j7XcjBmxXIMzF+hcU6izEFVy6eJ80KdAKmyPi1Z57n9Z/8kK32GtVqi8JJQFKr1njgwIOs377N7EOP8tiRx5lqTiO5T/gQYQxiLAGMWUjujSUc5715uOPW/jkD9M/JC/dtgNp5AeMNT4HeC8Rnnmf8L//2S3zipY+zuLgbvCzP3b33CuMV5EXB4vIKi6uLXLl0jeNvH2d5ZQnhI9Y31nnxEy9w69Yab7/zOgce2M+t27fJRm0uXDxLVJE8PPUwu3bt5eWXPkO32+X1N3/C0SeeZXZ6jmuXLqB1wt9+55vMLU3zsZc+z9r1G7z5xo/Ji5RIN3DWYApBvZGQG1CqQToYMTe1wHanjU4Sjh19ju99/2+REpTUPPfsx1m7u8ZWe4sbty6hpSCOBEcefZQv/MZv82df/jMKV1CLqtjCko1GZKbA2gxjJb1el6qW3Fq7ADrhkYcfZ//eh/j3/+e/pdPd4tLNcxx/702WZhe5duMGv/+7X0DrhO3tLU68e4KPfvSTZP2US6cvcXdti488/zE++fJnefKZY/zN1/6M+eVdRLqJlJJ6nCCl4ML5c/zgh98nzQYIHbG51aXdfZvm1By7dj3IVvc4qY8RRKwcfpq7a9cYbd9mz6EnKbKUtRtnWF5YpNaYZtTvsbB8kHpzjltXLyJiyfzSYYS0rN+8zOzKHhZXNf3ugCIfceH9t9BRhUgnVJpNkqSBMQVumLO1eYc4AYdjz+4jWONYu/ous/NLYLNwjUSIRdCFxqAQ0gOWalxBGccg3QaTYVBIoVEqCq5AOXbeBuJVigQhwLkc4RSSBKEUwguwA8ygS5b20VqQDwWRAudzZhpVFqYT6tWIuJKgtUYridQaoxSREGgEykusKL3MfnzvlWQ3PuhzsnQ9+3EfAvDWYowhLzJGaUE6GpD2Bwy6XTqdbbr9LqM0OJ1tllKYnNxYnLdI73DO7nQ3CJEPFuF9MKbacGNbEe5T5z1aBPLe43EufE1KifX2XgSBNUgZyETpwzi1cDjUfdExYMt4m/CKYINV5cainfVRgZCBvJc7C7HHOI9SCulMWCvFeAEqYyacK9cmhzEWiwht94FICuIoIk2LED8hRHCwSoi1DnEmHrI8CB9ZbrAeZCl4CCCOYpJEhigJoFJr8j/89/8tx46sUksiOr2MV//uJK1alcOH96FUjPc5CI/1PswBBXiJlDFeCCA4Sn3It0DHMc4ZXGGw5doshUNSijRCoOMKgZp2O2ukdY7hcEi1GjaOOg+FzRiM2kRKhk1XrkZ32KVa1yzMtrh64zzrnfMoX8flAryjmiR0+ilSJFSqgghDSgZWg5tBS4PzOSp2RCoDk7O+0aE5NUOtMkU1FngS8jQrSXoonEfr8P7OGXQ1JjYxxnuEVCRa4TykJkRbSHzYiAgIGTaYRQKElFTjhGGaIaSi1UpIiyCEqnJjmQGki4i8wGqJkmUck5Q4whzRItyLSRSRRArnLMbkxDoiUYpMW6yXaKlw2oPziCiisBYlwwY17z2RUrjyYSiFQKIR3iKlJLM2bCYQoCVYrXDOh84GQoS4D6kwhaBRV9jyPZWwRCoGKZBaonc2Kcggarrwt4EWcC8mqpT8vSgjVHT5XgqhNUopIhXIfql0+VERa42KYxIVcjmipIJ24QFfb04hPSjhgpPcWYy1JJVKiHAxljwbIcvI2SiK8N4ipcYY86F2FpjglxOTemZSz/xy1DMfHu7cWeMvvvrFST3zK1LP5OndD2/yCHBCo1Q8qWcm9cwH6hnnPrx1TEpFXG9O6plJPTOpZ34BJpueJphgggkmmGCCCSaYYIIJ7sPy4iy+e4vXj1/n4BMfZTjY4PLlK9xqj6hMO/buPsh83bC85xDNqQqdnuHWrat0Nq7xnW/+BZ//3X/J1rnXuHS7y5mzZzl1s8N/8W8+yh9+7GOsba1z6fwFzGCbr37tL3j66aeRwnH38jmGVjJfTTi8/xCHHnucp448ghWv0BAF/+u/+3foSo3+oMvFc6c5d+YEjeY8SU1xZe0mtfmjXL9xhZtrbZJKjbXNNlvdPoPhNb79ja9w4NADXLlgqUwvcXjfHpbnF6nHlr/8q69w4/o1Vlb2cmh1hSiKOXf+HDNTLZrLC2xsdLh55SIbdzfpt7dYu3qZcwstBlvr9DY3OZXl1KfmOPv+CaLGFHjPsNfmS1/8vzhw4GGGac7DTz3NIw8cIlKaY88+RyNJkCUxcz8BHj4vhQHxweJ35+s7m33uOZ7vFxLCx7Hu4NmRB0pSa2xQFgTyy/uxQOB2xmKLnNde/yHHj78OKuKBgwdod7dYnJqmsIalld3cuXWHuDKkGPZIKp5z504ghWRxboEk1lQrNUCUHUdkKQ7cGw+ekkT7f5+PwZB370SNnVg7wsLO/8bHeU9s2YnMALI0Z5RbkqRenodyw5O/568SpZDSqteJVUyrMsX21ibd3jZKOzqdAYVxpFmKdTkLy/NM1ae5eOkyd9fXGaQZLz/3Caan5rhw/iJXrlzkyJFHmJ45xPun32f36ipnTp/iwtVz3Fq/SvPKDLfvbnH27GlMnuKsYau7yezcHOvtDYS0IYKv2GBmbprNzbuM8hSpYk6eOEUl1hifk+aS7736XZTSxHFELARKwcLMNAf3HqC/nTPYSnnhIx+joivcuXOXs2dOY7KM3BicVXRMRmvXEi7tkY9G/MkX/yOFySlMipBQFIbhqMd6T1OvT3H18g3OnTlOpVojzzOOv/kWc7NTXL96jvZwwOFHD2EyS73e5JVP/zbZMKe2EGFNgZAxZ85e5OSZszz69LMMBynXL16gOdXi0BNP8e2/+BOWl2aZml0hqTTY98AxavUWiwuL3LUpeW+TQkVIqehujxhld0gqmgMPPsGVs28SxTGZBy8lnY1b4A3Li7txqsK5468BkI/6pIM+1WqM1JJBr8uov0FrapapqSm2t68g3AI6jth36Amqdc2efc9QbcyF+WtyvDUoPEVJIGeDPhmeOElQUuG0piIUShRgLd6FVvveO7A52JQsH1Gp14kUKAFKg44UKhFEWqHmZ5FqCSEFQkqsDNFmEokDlBc44YOo4D1OQASlm1mUm15cGc0SCMBApDqstZiiIBuO6A76DLtdup0ttvs9Bt0eab/PMO0xyjJsXuBcgStJcl/6poMO6IPp2Hucc+HeK3+XBzQC4zwChxmPyXucsMQlwWoc4ML4w+0Z4hxcKag4PN5LvB0LGQ5VrpUh2k3sCKuyXARl6XSWQqAiQoM3ATiJ0KE9vxK+FEiCE1r6ME5fEqeRUhhjyjGDF76kS+XOeuZLt3RhPIUNrmpVxsppFWFtho7iQHx6SxwppIRIRRgf3OdKamTpVPe+DAwQmunZRQ4fOkhVGgbdIadOX+HMtRvcvtth8d3TeNMnSx1RFFOv1ahWE0ZZymiUIoQqo+5U6fQOm6nyPMULiLRi3IXDlx06nCQ4+a1FqECeCxHWcKFkiGBwDuk9xhq8N2gpURQoWacQjsw5WrFhuhbx1uZNKhVNqzJHNUrYtbzMMB2x1enQ76cYIYkSVa7tAukrJMqDquAYUIkEqRmSWY8uuqAKFDGVeJpEJqRpHq6FCMKUcMHFrxA06nV6o4xBmtGo1wPJLmW59gukB1POtTAlBV6AjmK0MVgLynrqSQIiwXvC9bUGAOUEkfdjc3V4hpTP2MKa4Jb2liI3OB9odikVeQFJVMF5x2g4xCmQXoSojnKMQgRRxjuPEmXPwlIYA4f1IriijQUco1JQMIWlsCOEEERag5Q4D1oqNIT7U4TICB8GhZcCULjxDSJV2RVAlfFDOsRcxTEqqRAlFZK4SjVReCS1JEJFVSItKEYp1VoFkJg8I4l0WIuEQDoojKHX71FrNIiiBG8KvLPlvS/QpRvaW4MpDLI0nI+7wSipdyIcfWhlMMEE/yAm9cyknvllqGeE+P/ww/8/Ic1S1tdvTeqZX5F6Jk7iD23ugECLAmHdpJ6Z1DMfqGfSkST70KahQOtoUs9M6plJPfMLMNn0NMEEE0wwwQQTTDDBBBNMcB8OPbDK3Qt3eOfd47ip/YwqKxx4rMELDz/NfGxZXNnH1um/YWO74OjRw7z2o+/w6tUz1KenKArLn//JH2FGXd67eBO8Ym52ju998xsc2v1f8/juVbK7N7mDZTTY5Ct//de0WrM0ahHFqMubP2tTb87QqGpeu7vG0WNPs1kMeOFjH2c7NTzywIN4nTBXV/zozZP0hzmNhWX2ru7iTL2C3LObQ4ce4uhjh/njL/5Hbq/doT0Y0T71Pr/7hd/hoQMH+dH3/orT58+SqIy8skRcm+L0jZs8dWA3165fwRQ57e0+Kyu7cCbjp6dOMtWY4sqtm3Ryy57VFhcuX0ZVajSTKtZa/vQ/f5GPvvASB/bsYf3OXW53B3zvS3/Ksx95nt/4zS8QWBiocW+rztgxOHY134/x5/eI8Hvf/+Drx6LBPQSTn6fsjX5fjIL/uffzCGHBy7KLdYgJuHTxLBcvn+Ozv/57XL92he2NTYwxfO2vv8ggTUmieVZXdnP+2jVqtQRMzJWL71PkI6wzzM7Ps3ffgfL33iPzxXicY4e3CK67v4dyk9I9YWSHNWTsqPb33u3eMf8/nL9735P0BgO8lMSVGI8NRJ+X91zl498FOG+5ePk8nW6bF198ic72gDfeeJXlpUWurm1R5IZuu83RI8e4cPECS/OLtBotTr9/mltrt7h25TLbvU1qjVkOHDiIjjJOnT7BdmeD9sYGvXwbJ0FHkvmFGd4/U2C9oyjAOU97s4uUAi8D2bS6sot6s0Ge3SKu17BOkZsCHSdYOyCKNQcfOMCFS+eJheb2dhuBpinrnL94ke//4LuB6D1u6Ay2cIUhzw2zczNU61VskeEzg/CeemuBzbUrXLl5nunmLM3GDKM8RUnF3OIyv/P53+db3/gGnUGHldUVsuGQYbqNigxPHn2OW2s3cWaLb3zjK3z+c79HZ6tNtVHl4EOHuHmrzamL16gkDfrW8eTHPoXHI4VleXkvQ+uR8RSHj77AiZ9+lXpjgahW4b0ffxNHTq01R7e7zeLSPjIbM0oL2r3LLK+sEusKxlkaU0tkgx7KWsCitMc7jRUaL2OSRpNssAURVJsV5lf3kQ8yRBSRDzZCt5wkQUd1bly/SFr8kPnFPVQqc2Byss4GhckoihSKgmbTYIMURxJLtBkgRRqIcT+gWakSRTFCKRIt0FqC0ihVRekWUoS2+8oHKc3udA1QZYcEW97LYLHYsbbmg0BgyzgYf99sF3ic9eTGUGQZo+GQUb9Pp9Oh29mi2+nQ63fo9fuMRkOK0QhjM6wP5KeWEqkVzjry3ITuCd6GO0lJrHEU1gZS0QtMeY8mJdnpMEhVxiaIMpJBhuMK3lGBVALjCbEQEqy36NLNGchih/MChERKTxxL8pErox4EWkiUKo/cCly5RgRSMQgJWkhUuR7e2wAZBFIBGD8WOgRSlE5xKUoSshQ2paNS1WSFxXkROhEoGdy1UqGUplRewzVULpDBKkbJQLB7aiipsC7HO4iSKnGkqdeqZFlOlqVBBBEhZgPvMMahlcViuXLjNnnTUFjH1mBArVbhzu3TrN+G5584xHY6Yt+BPcxNNRkMh2z3MlS3T7+3gbcKr0AIFSaJ8ygVroLDIUVw0yoBzgfBY+woF6LshocOorMLc6AoCtrbBd6DVgp8DS9SrDVEKmKqMc/8zBKF9VjTIFEaU0Cv6HPz1g2K3NIdpAwzR7VSZ25qkW5vhHPhmmsI66Ow5NYhVESiHcZ6sjxFCQe+h0DjvAldsWR4PoS1XZAVNrjoPZg8p48gUhpnLTqK8CFHhFhKLKWF33uMcQz7w7AueRhmGZGFEIcabMgSiZQRBoszrpzn4b4JenwQDiwh9tJ6EFKXjzKH9xKhJMILtLBY53dEeuXBWRviVnzp1BcCJHghQzcUKOerwGY5lUhghMIWBi0EubUkcYRUEiFkEM1kKZYJgRYKpRVSCpSOiOKYOElAaYSOiJMaFR1RbbSoJxqpY4QzVBstKvUWwhhMniGFZ3u7TbNeD+KHMYh8RBwp8mGGlgJdRqpYZ3FCUpgCqSTVpEJhLYXNyzgXgTOGpFLBGIOzITZGKY2xBVIEAdKXHQ6kElj79/98mGCC+zGpZyb1zC9DPXP/Rqh/bFSSKtvb7Uk98ytSz7gP8UGopWehmoauL5N6ZlLP3FfPDPpDBgw+lHm48xiY1DOTemZSz/yDmGx6mmCCCSaYYIIJJphgggkmuA/TiWTgRuRJk6IYcPjAg+z95EGm6k2kT+kPU0ZTs6gkoTco2Le0zGjvo3Run2ejn3Jhc42Zpd38ky88z5lzV/j4k4f48VsnOH36JLMvPEdcq9MqLC996vN8/8c/ZGF6ia2tDfrdHoM0Y2S2+NtXf0Kc1GkurrI8N8P+pUXeOnOWwdYmlQjeeONN8iGs7jvIv/6dL/DO239Hu5cx05rj7Z/9hNMnfkasKzRac0w1amRZwd997xtcWN7DnVtX2Njusri0i9/7vX/JKx/9KFpJjp/4KX/zg2/y65/7p2xv3eb27RpJpcanf+1TXL5wij1793Lp2i2sqPGZ3/rXfOtbf4m1BYvz83zmU5/n0SOPcuPaZdLM8Adf+H2+Vv8WR48ew+PKzHgHKMaCgZBjt+I9iLKgHpPkO8TWzwkJ9z6/R8L//de6D7iHQ1vnewKEtaE9fJYHEb3X63H1+hVu37rBwUMPMtOaZuGp5zn9/nGu37xOnMyQ924xyjIGwx7TrWkW52a4s7HGgT0HWV7Zzc9+9iNeeOGT9Ht9snSdhYWlQKLdv7EoGJwYH6n394/z5wUCoCTu7hdK/M4xjT+TP/cz979G4Lxj0OtRq1RRKkIIFZyQojwfwu0QsUKAs4Zup0ukNe+++y7N+jTeRShdYWVhkR+99iqmGDHIM/J0yP69+5lfWOZf/fN/wf/xv//PbGzfROoEDbx94k0unLnIsBiysDjLemeLFz/2KS6cP8snPv5x5md3E8uIL33pT7DWEScReZYjhMY5h1SSXnfA1kaHAwf3Mz07zeb2JtcvXsZLixEgfZ8bN9aoRE02tjYhl3itGQ1GnGwfR0qwRtAf9GnENYa2h/ECVxQkSZW9+w+QDQu6/W1S5ZFRhakkYf/+B+l22vR7W2TGs7XR4dKlK0xNz3L23HmSJObw4Qc5fPhx3n77R5w6+Sa1eo1jq89hRcat2zc4ffI4USw5vP0S/U6f1GYsLO7l0OEjdLs92lsbGOfIBznNZoW5hRUOHz7GjQsnadZjtGqwodfx1lBpzlBpTlOvtBCkKNthde9eavV5oqjByTd/QGEMS0uraOXobN0h629SbUxz9uTPOHD4WUbdLcxwSFyrUKvXuHr2bZIo4tmjxzi54dhYv0OzUSfLghN4++Z7rN8+zQP7H4SqJarUaVQqyBrEKiHOA+EqBSwvtmjWKnilQst0HxylkuCclH4sdHm8UIGs9mHWW+9KMh689OBdiFTxqkwkCD0GrAvEtrOWojBkaUp/mDHo9eh1O3S6HfqdDp3OJv1el2E6wGRZcI0KMNaCEMRxaNWudUxtpk4UT5NEiiK3OAStVouNjTvcvH2bso88Wiq8ECitiRJNOkxLp3FIuAgrjEMFph8v7q1549btzoPSAuEdsQPpJWiIvAAX4iC8KKMgCo8qYxuk8MQJFCac63GEQ2hJf08ckOXCEAmJwSOUDCwtAu/KDZPBUE0sFVLJ4HEWEqkilGDHeSmlRGuJFJKW0NiyjT3C4Z0jiSPq9Rbd/jC0py/lmsIYjHOgY4QQKFESxNaADI5+KyXGSaSOoUiRXoYoHoLbOI4TpFBs3d3E5Rlzi3MUhWV6Y4i40WY46NGoVYgTSaIFC/NzmGxELD2VyOPrCSZPQjSFyVBC48r4Hykl2nssoITESx86MPgCUTpsRSl+SKlCFwtfvsYF8jZ1Hi2jcHxSEbFApEOkQu48S3OrdPs94soUo6HESRAY2ttt8Jpeb4j3EqMihumoJMIVkQYhXCD6M4WzOfV6FWdSsuGQrs2oxnWiKAvX3NVwPkQaOO8QUiGkoigsQrod0dkWeSCex0KRCnEHSmsUAmcDMY0I96qXHm8cCoGMNd6Wz5vSoRvuT42Vbvwku/8RhUaEbgFK4ct5Hd4YvHfh+Us4Tus8eItxEAmH0hF5WoS/AQArIJJRiEWRIWYhrAgepWpUk4RWLQYRESU1XBm5EScVKkkFD+h6Da0r4ZijCjKOUVpTqSREQhIrReENUVzBI1DegXMIZ9je2qZWqRBVq0ghMC5H4kiHKXESI6MKAhh1e1SrVVxR4LwjjpIQQyMF0gvywpCORjQbDYwxZNkIhUDocB+PshGuFHmMMSgpcdZhjSGq1AkXJ/w95ZxjlH5ofQUm+CXFpJ6Z1DO/FPXMh7fniThOJvXMr1A948yH1/FQa8XS8uJOF6FJPTOpZ8b1zIeYbofHY20xqWcm9cyknvkFmGx6mmCCCSaYYIIJJphgggkmuA+vf+9bVBrTfOTxQwys5sS5azz66JMIN+LcmXcQlSWqzRX+6W+8wve+/jVcfYnH9rT45vFNPvLSP4HeLX76+jvM1p/imUcPsH73JtUkIaloHJrH9y/zP/5Pf8Zv/ebvc3h5kVtbfWaadXqbMRJJFCcgHJ3tbf7qL7/MQw88wML8POeuXGH3vodpr53gxsYW6chx+MlnuHThPFOL+1iafZ8Ll66QjYZ0h4r5hSpzszPcXruBdQWZqVOr99js9vDW8PChhzm4a5UkUuAFrshYu3meu3fXuHn5MtZZnnn6I2g1Cu7AfMjRx54i0oI8G/FrL77MxatXOXPxLNevr3HkyBHyLOOtt1/nwrWr/Jf/5r/h4J599xx35QadD0QjlNy3kPdEAO/HjugPEuMf/NoHN/jc+z474kH4GiUJPxYpwiaMUZby/sl3WN29n7sb66wsLdPpdciKjNNnznHkyCNsdzo0Gx7pHdVqxIXrVylsQX+Usrq4zOryHtqba6yu7KafFQhd4bHHj7Iwt8T63dvU6jVGoyHNVqscj9sZ39gl7fmgGDA+/vKIyo+OsQN8fI5CDJS/73X+A+cqkDbheL134D29XpdarRrcitwjj/z4loKpXQAAIABJREFUvcrW0kJItFZ88pO/xvmL5/jWN7/GM88+h/OGtVt3iEWFO3dvkqYjTr3/Lsee/Cit1hR5mnL83XfpDnP6ucQXBl0tkELQmqrQoM7+/Qd56523+Pq3/ppPv/QKP/npm8zPXOH999+jUqmgZEZcqzAcpiRRxHZ/gJSSTrcDCC5cusij8SPcvXsHqz0mDURykXg2Nm6D1+Asc9Mz3N3YZmu0hU8CUWpzS3W+gjOOuYVFstSw1WmT5wUL0xrrBGu32/ikoJHUWd21xLEnn+DypQtcunyO5tQ0eTri9Nnjwfm4MMPGxm2uXHifx3/zd/jMp36L1b0HGYxSXv/xj7HO8M7bPyEdZEwvLvDOG99h/8EnuXvjGkIrWpuz/Oj732X97jXwhoWpJsde+BTWFbz50++hag2WDz3JnZuXEUqysvcptI6IVRVjLbXGNMee+xzt9hZeWNrrXRSWwg5wRUG90WIk2iS1WeaX97PRvkEx3MCSB1eiEEReMsj6SFFn4+46aTZAC9i9cgDciGZzkXSQMre0zJGHH2d2aQ9KqjBnpcIVOfnmJhaBRaGVRuqonFuhc8+YPAyJBYEo9CI4cSkJV4vF2TI+wRpyaymMw2Y5aZYxSkeMRimjfo92p8NWp8Oo22Ew7JCPhmRFuuMmdN7hSoFRK1iYm6W6sIhEko5GbG51qFRrzLSm0FphjUEnCVEUobUiHab0Bj2GwxHtdptICKJGTJameOfAeaKkgrM2uIe9I4nCR6k1RW6JAoeJ8pLCGIRQjLl6IQnRbl7igmaI9S64MqF0OIe7FxnudSElZcf4QCKX64gcu62FQOrwSyUCJWUgi7Uk0kGwCNdNlUKBI1Jhk1GrXsc4z2CYUjgJErTzGB9iL4xzREphvSIrozAEEqU01mmUTGg0Nb3eIHi+rQkiACCFQiDxHozJwYtAvsvQ3t84S6JDrId1BmMLvIBYV9FaY21Y5QajlN5Iko4so0Kgq02MDedVOI83Q3rdgvnpGgvTdWxRod3PcWaIy7vkDpwt8EIGh6/X5bPIU3gBQiFFOEfOebwI9LX0955ZCNCCQOFaQVzOFy0GFIUDX8cWAi8tMqqwODfL1eu3gttaSpwr8E4jpKI5O89gdBMpBXGcMBjlIe7EhygTJDhRpao8kY4BiUoMzseYkUfKGEyMiivlJCnXbeHxUqJkFMzq4/tcxhR5hgO0kjhXCuqRxEsZhDqhkcKhEXhv8d7iNNjC4rMML1SIIfFBrPPOkRpDUWQIW269HbuNhUc4S63WIDNuJ24idCqRKFk6gXFIqYhkiBbRQhLFikq1jvEerxSxjpCVhEq1SRwlRAKiWg0lI3Qs0WiUlniladSbOKXAFiG6gRBvaKwhSioY5yiKgkZrirSwRAJsnmNthrOGSFRK0UggrANnybMc5QtEVEFrjclThAlrzCgf0mw0wRYYY8FlSKqM8hQPFLaAogjxNjpEAVlrw3iQZKOUZqOO94IsT/HeEus4uKVluMfSdITWcRktJZBKY60N5380ZIIJfhEm9cyknvllqGd+7vD/UdHrdSf1zK9QPVMU5sObPJR/60zqmUk983P1jHUfYtyw93hXTOqZST0zqWd+ASabniaYYIIJJphgggkmmGCCCe7Df/jTP+GxYx/nhWef5ZH9DzI/P432GVvtde70PQfmm6TbfXYt7uG5l3+LTreLKAbYdMjGhfdZmG0x6vf5y7/6OhUMd7a2cUgatSr7Vvdxc+sMt27e5ruv/hA77NDNPdZJnn3517l56SwyaTA3PcO7x99ARFXWB/83e2/2LMd133l+zpKZtd176+4LNgIEQOwkIYkiSJHa3V6ibXf3dHfYjp6xIxx6mOeZiImYP8Gv47eZiZnpjpj22GqP221KsqyFFElRFESQ2AFeAPdeLHffasvKzLPMw8kLULJs90S0aLVU3wfyFqoqKzPr5Mn6fb/n+/v2OfH8YU6PDPP8ySP8L9/6KtNTM9y6tcDi4h3aq3fJVIOd9W3yfpc0y6nUR3jmyFM8WllGxgKbQtbPcSZF+Zzjx8+Bh8Wl+5w8ehRXtlkvrOTipUt88rnzVOIau61tTJESxTFDI+NsrT/iYWSpDQ2xu73OyZNn0E8d5tr1f8vV61dZvr/ExtYmx585zdzsFFGkSpcvCK9+YplOSZyXZPeTmLXwOBBwlNx5cF8hHlM2j8l0IZ5s8UmMROnCIhBawhPIISFwWB7cX+DNd9/kxNYmJ06eZGHhFkONJtubGzxYu0etFnHl2hVefukV1leWUEpQiSTCRyS1Bvv2H+DAvoOcOHaY9y/9iIcrjxhuTqCVYGp8mn7W45OHXiJKIpwLTre9/d7Lsn+iZXxEDAkMXjhUIT4iGITXPens5B9LCHvvDa7wPZFk71yE4DHnPK32LrVGjfIkhtfgQgcesXeiA9kJgqnJWRYWFjl5+jif+uSLrK6u02wO8+7Fd8l6HU6cOkm/3eLM2RPcu7vE2uoKDkEvzSmcozk0wvbWFq+++HnGRid5+Oghf/Jn/w/t/i4zE3PcvHGHDxevoyhIexbQxFGMLQqGazVa3S5JRWO9DcScD+7ZhYcL9LMOuTFEsUaY0vEpNf20i0Lz6suf4evf+BrGGhpRxNHjx4n1MHfu3gMsp06+yBtvf49Gtc6R009x49YlpEoQUqK8Zmq8jsn71GojLC6sYJ1nq7WJljFb2+tMj43RFo7nnz3H6NAQN65c5Fd+9bdpDI3S7m5y4Yv/lNs3LzH/4TWy3JOMTFBNNJnps/zgHt3eLvsPHMP02+xur6FVwcRog6hxkBuXr3P9+hscPnwS7SU26xCphPGhMXbWH1JtJhhpydubSAEi3WJ1fQ1fdKlXE6TvU/R2MJFkbGIaheDAzCyz05MkSQVvnuLh4gJRrMiBI08dI0szUgTjEzN0On06nZTpqX3oSJHEOWfPfop6tUESJeUCuSD8OSFK0l9hy/gVZ205vFxwPDqPtYbCOIosJ8369PspWS+l00tJu106vS69foe81yNP+/TyPkWeYfMcY3OMsVhn8d6VLsvSdVy6qT2udK+WrkHvkUIwPT3HwX37MV7RaffY2NihWqky1KjhbE43K3DOkliLrFVRIsY4S5r12d1ZR0pIqjHOOYKmYRFCkOedsOBGlmJneTUZW4AUYV9Kxr+iNUqEaBOFDJECFnJnUUI9XrzobQiH0VrhnQ+xAEqiSgFAxzq4mCONlhIlJEqHdv5xtUq70y8XLgqMc4+nEpzBekOWF+CD+CKEDz2PNMRJhVpliDQXqCJnb2KSQoXFaz64u50H9Vi8EFDGJqRFn1gKVBT2G2eRAuye6Cs83nmMDWKDECEmwBtL7hy1uEKkJP28QAuFFEHgCGkFEpTgO+/8iKmT51GjDSaqB3j3ztcojMHanCLrsb29RiRqHD83wfmXL9Ac3c/uTos//T//L97u9rApOB3mwcLmeGdDpIWKMT6INh7/eIzhHdK7EPUgg4jgnANngmM8qgIFiC2yLKfINXGtUSo8klhHVGNNN82x3iFEjqeF1glFIdnZ3qA+PEoURUgvg9veZyA0xmuk6pFnBVKD99VwPqxHUZAXBcONKrgYoRJ0FAh760sPvlRIrYLTXcoQR+BtOE5hEc4RixiDxRobJHvngwBWmp7F3r3Be4wxREJg8BhsEBGEwCHwxuFM6OyhtUJHEXGkiJQK98xKlZqI0FFEVInROgYhqQ8Pk1Tq6Ch085IqCG+Vao0oToLoJTzSCXQUoeMaXgmybgclIKo16Hd2qdaqFP2MAoEXUE0qGOuxJg/XlgjXlSivvaIoSJIK1oKSEm8dxhZhYabxxNUI5wpcYfHWIoyj12oRxyE+o+j1SgHFkfdTEgEmS7FCkPZS6tUEa4IIUGsMY6zDGQNKY42lKAqiKAgp/SInSSKEUpi8wBSGaqX6+K6ulcZ7Ubq/FdZ7TJERxyHiIssKkkT9tJ+wAwzwGIN6ZlDP/NdQz3ycGB4eYaQ5OqhnfkHqmfvz9z62seOdI+12MNYP6plBPfNj9Yz3H+OiJ8KcOqhnBvXMoJ75uzFY9DTALx0mJye5cOHCP/ZuDDDAAAMMMMAAAwzwc4puPyPNDau7LY7ECRXhaK0vcfvDBQ4fOcWh2TGWvGF2vMnsRJ2v/+VXWV7eZHe3xTs/fJeJsTEOH3+GkydOcvPmDcbHtrl09Savv/FttnfajNZzLBG2gObYOKMoJqdmOHfyGV594XmmJyfZ2ljj6L5hvn/9Pr/68nniRh3Sde7euES1MsT95bsQadpZn8nmGFNjY2yu3CG3Dic13hje+P6bzEyMI62lcAJpHCsbW+x76jheRsxOz7C2vkaWZ8Sxolat004Lbn14k5GhBtZ6rt0e4eSJ03TTjP3T4ywtPmBoqEF9bITZ2X1s7raYHB5GxZrG0DD79x/g0uVLHDl+giTSIFwowBHl3+JxBEQgzkvC28vy3z4a57DngH7ihPZ4RPlaxEfJ8idOa4FACB9cenuKg38iSvT7PUyRo5KIvsl5uLTIB5cv8vz5Czz/7PPsbC0zf2+Bo4cOY/Oc1Y0VumnB1NgkW60eRdFn/8ws8/PznD72DN1el+PHTnHimRNMT86ytb7C6GiT5eVF2q0OBw4+RXNsrHSflccmPiIMfMQxHY6LjzwupQUf3IyUi5p+0hW+B+/9Y5Fhb1MCgXOOdqfH/oP7kULS6XZZWnxArV7j4P45vNblNvfONdRqVU6dPMnMvhkuvvc++/bPsG9mPyeOn+F7r3+D8+c+Sa/bY272IFvrHd75/tssb2yAt8xNzbKxtYZznj/98z9lbt8BpienccLgMsfu7jZp2mNiZIyd9UUquoqQFRCetJ8jpMNaEw7FSmJVRoPYgl6vi0oSXN9hfDkM3BMiMvMFr33rPxFr8DJianyKnc0eed5ie2uDWrPBjz74ATutbYaqFe4/eIjEkec5kRZUanV22xZbFLz++nd5tPEAlShc4SkKQyQ1DsHO9hpCw8H9RzFO89bb73L87HlkUieu1MkLSZTUQOXsbN5n+tRzHDv7Mi51TMzOcfndN6jFjonmMN3OFlok0F3DtO8R0Wf/xAgzw4LNyDO/fp/G6dPsO3WCbtqn1+vS67VZWnnIxsYKzeExDh06ijGOnfYWm2trrK49oLB9kriKrtTI+zlJJWZjdZFao0q306MxUmdza4uRoSaVap0HGxv0u30Ka4i0oNZosH/uEEuLDzh99izG5jgvMSbH5hlpL6PiLMJ6YjwL9+6xtrpCnqakaY9+P6Wfdun1c0yRYYqM3BQ4Y8m9RbjgjoSStJah57x1JcPtQxeyIARY8AJTtkv3HmT5bLh0wqC31qKUYm5mhn2zc4Ai6+esri4DjpGhZogY2d1FyECCGmPo5R2kUGy1NrEuw+YeqcBbsHZvXwRSQOE8CosToJGBEFcSYcO8poRARIASeFsS5RaUFGgZobQmSSRCKZJIUk9q9HIDQqBLkUEQIb3F4rAWvHVktkB6T5YVSDxOOhIdM1qpkxeGPOvhIMQCCIn1IF3ZicJZIEQwSCFAg3GCPPfUaiGuwpdRHSHaIogAQgQnrfeA3BM6A7FtcPTygtpwgwRJhMQpgXMKjEVHIS4B55BYtI7wUoXPCDQ0RZFRS6JAckuNtYGcdnic8Ajr+cEPfsgPLl5CRTEuz8D0KHz4Hiq1Cl4keCQvfuE3OXn2SwihSYs2Q4e/ib2ygpdhHgwxEOCcI88KojjEPQgXiO8wwcoQxyDCnKuEwrowLqXSSKVBK2zRwZg2SE2e9/CRoBI1UDJBCMvSw2U6vQ2KrI2xfUzRRccZXkTEchQhg0VeSoXyHpn2EHGM05IiT2l3t6kkDZKoiY4bQIKq5AyZjDiqhVVcSgSxSniE+4gD2Vm0cBgjMCJ0HMjynEjk+KhOLjKED5GoKHAuQ6B57LJGooUGKYmTKpHwqEoVj0ArjVCSJE4QUoU4CS0ZHm4ikyqRliRRTJLUiGsVKpUKwlq8rgTxIAIV11Fa4/Gk7Q7OFOi4RlKtkGcpeZ4ivMBZS6VWR0iFKQrAoisVtAvkfuFqSBFEEl12V/HWEukY4y2xiklNlzhSWG8xeZ8ogryfh0RX4RHe4kyO7WcYDFmaIiOJEgqTG7xwJHEdL8DkGVIKjLX0ej3qtTpCqeCeFh6pItKsh4pilNAYl6IjjZJBIM7zgmolRgpNlrcYGWrgHHTTHgJPklTJ+mmIBkWQFxlRFDrrORfEqzwP82C/n9JoVP7hH7QD/FJjUM8M6pmf93pmZ2eH69ev/0zG/09DXvQH9cwvUj0zVGd7e/djGTs7Ozv8H//b/zqoZwb1zN+qZx5Pdh8HRKhdBvXMoJ4Z1DN/NwaLngb4pcP4+Djnz5//x96NAQYYYIABBhhggAF+TvHZz36R1dVVYh1TtWtcf/8BV658wM1HbV76bJWDczPMDkv+4t//76x1c+7ceI/VHcfI6Axbm6ssPHzE8uYWi7evMTE+xvLqI7z3FA5WdzscOnAQHd0kTze4u9qm08+Znljh/uI89XqdanWIp488xaO1bWoip5rUeP31b3Pz2lW6ueMzn/si/9P//Nto6Xm4cJOlpWU2Vlc4ceZ5dnfe5uixkxycGuGt73+PTtZGR4oamrg+wn/3h1/hE2dO8cHF73Dv/gYvn32ezc0NpqenOXTwaX7rn/42t27Nc/b089SaQxyY2Ude9Mn6HWpJzNCHC4zPzNDdXccmdV544VUWlu5w8uQ5ltc2eOkTn2KjtUsnTQnlpih9g+4x2QeyLIJhjyTyj/8TCJw9UQB8aYguhQUfHFsQeHYhFK6Mb3uy2sc/XhjkS0e1lMHylfV7fOv1b/Pi+Rf4tc/9Oh9+eI1btz+g221T9Fp8+5t/yermDtdv3wDrOPHMSWrVEdJil5HmNDvtOwzVGqyvb5L1ely5fpnRsQnStEckJbESnDlznq2tDV577ascOnKCp48/89ix+FFD857J2T8+FvHk6fKE+D2JRQQyfO/vn4YQexGOU4QNhvPpPabI6XbaJHFMnuV89ztvcPP2HdpZwW/9xhc5/+y5j+xVOI9KKaamZrh48T1WHt7l937n35BUhvjg/ffJMsedO7eYntvP+toWRw4fZqTZpMCSdnpUo4TR+hhpkbKZ7nD/4RJrGw8ZHR5jeLbJU4fmWFi4w4njp7DHngEHZ0+eYenhA775rW+y2+4ghWDf7ByNxgi72zs8WHmABLSI8FYQ6QhsQZ5bhkdHGB4epd1qIaUE6SmcxynF+laLnd02+/btw3tHv9shT7vEsSIrUh6td6hVBMLBxMQMU5OzXPvwGu1OwaONLSSCRmOYqX2TLDxcpNvr8sHVS+QmpRCOb3/327TbW0jluffgNsOjcxw98Syrqwvs7G6hSwFucvoA6/OXOX32JDdvXCXtbDAyPMpnXv0C1y6/x1MHjxDrDGf7SCIOPPUMI8MTzM4dpJfuYr1gfWuTewvzFFnBiVNncI/uUa8mJJHm6o33OXPm0/iWp1+k7J/bz9raMt1+xo1rPwRRksA4askQWlVAGSYmp+m2dum2euxub9OoDbG2/pDJyVno9Lh79xZ5brm/eJfC9UhTS57nmH4fvOKf/caFxwP05u2r3L76Ph6BUqCjmEqiGKlFdPJucEQbCXhqsWc3yx6Lelb4kmQPc4bH41QYjs6W8RXCh05ApThkEXgbSPrgBPYoKTg0M8vU+CR5ZvDOsrq2TppmDA+XsWg2zCOtVivESEiPsRYlAkkaCDlRigMCrMMLH8h3K9BKIcpORPVKjIo0ToISiiSOiRLwVgIqEMtShZlPSCC0p8c7rHcoJLP75uimnkcP79HOeiAFWmQIFAiDdS5EvYlArTsX5jYJFLnFFDnVaowzoS19cFZ7hA7zp3fBKU7YIsggxAjhMdZgLDTqFfp59ngafdLFIsxBrpyshNxr6CCQShCrCISiEgms1OhY421BXhjiaj1IQLYAGyGjGCGjsgOEwzqL8gYHNJMhlI4o8pxWexdVkvlWBFHImgJhXBmPIZDOESuN0gmN4VG6aZuFmw8ZG7lJq7vNW+98ix+8/SFeBDe2M7YUX4KzFCkwJieOY7wPYoj3LohVIjhtPcHZ77wjy4LIIR3gHEpUSaI5iiInjltEMg5ku1JMjk+wvDJPnqfYfJdemiJkTN8YGtUqlSh0fBAuJqklZGmfXNWQQLe3Qb+3ibOCzLXQUR36GQiB85JmbQrvPNZm5HkPpWK0rJb3DwEuHIuVvhwjEqk8OhJEImJ4bJTcCUyeUhRdvDQgcvbPPUOtUoGSrI6TCkm1Ad6hIk2lUg2iidYMjwyHgYDGW4/SCmssOk5CtwDvyPKceq2BNZ4s71KtDeNsDlohYoWzHumhyDIqlQpxrUqRF5gixzkLVoTrChDO0eu00ElEJCO63RQdV3GFKcelJ47rGDx51kcqEFLQ6YbfP4gIUxRYb8izPlponHdhbCAosoIoCdcmgPQS5SHtZ1STCniDsSbEygpNnvfRSiJU2E6edanX6uEatY5qvYZ1BmstSbVCYSxpL0WrcN/KTHBjZ3mBNTkmz2k0auE6d678HjRZ3kcpXeqlZYSH1KRpP7iqefxDaoABfioG9cygnvl5r2d2d3e5ffv2f9Fx//ehXqvwuZc/N6hnfkHqmfRjjHmVwjNc7Q/qGQb1zE/WM631Vbof10D0HmcH9cygnhnUM38fBoueBhjgZ4z5+fl/7F0YYIABBhhggAEGGOD/Bz774qf4m7/+j9y8+gNef+3fURk7xPTEGN6kXL9yiSpdlq59j6uLLYaaI+zkNbJ8jZ12F6kkz33iRaaHBG//8D38bofxyX2ISp/Tzz7H+bOnuPzuG1iTsb6xTdrp4bxjobsEeOpDw3Q7bd57f5T6cI0sK8iMIxYphelTbc7gPAy5nLX1FbqdPjZLWV1dZ2S4hrWOz754gbNPzTBSr7K0NM/1W/dCq2ZfsLl0m63xBtMzh1jd7rO+tUa1GhFJuHrlTe7NP2By9iDVWDF/4xrnnjlFnidUkhhT5Bw7dpyTzxxjZ3ubdrdDu7NDvdLg/MlTHDh0CITnpU9+mrcvvUfaaZGMjHDvzm3W1tc4/PQzjE9MIiXs5RwEHaAkBcUTl/NeTJsUAPKJa1h+RAzwgfiXAPJJLBulAzlABC7DBxeUijQnjh1ncfEu33rjrzBpxlMHj7D08B7L6/f5/Gd+nZXbN5mbmuXuwgL37j+gUakghWf1wRL1apXNVosszyiKnOW1VZojTV668Ar9fs7yg7ukvR7NsXGOn3qW88++QCWq8uDBEvv3H/qoRgCilD72ujN99Cn2nNy+PCNl1yZP6eD7SYgfM1t7/+RdAsiyjLTf5+KPfsTDpft8OH+bre1NemnG69+/yKED+5kYH3/yeaV5u93qsLQwT7M5Tr3epFKtcvbZszxcXuTQoQOcPHGWra02KtL8q3/5O7zzztscO36cN773Jj/80bs888zTmCLDOcGFly6wub7N+FiTl1/6DK+/HnNg/37GxmZYW18hLRzvvf8+nVYntPOuJHQ7XaanZtnZ2ERKiXcwNFJje6tDURSgHCoRzE3NMjE9zeLSQnDfxQJXeJr1EY4eOsLDlYcokZAbhzAWKUoCSgqiKEYjGWo2mRgbJesuU1U5hazgfM7J489y7MgxOr0e62vr5KJDbvoYJ0nzlLx4RK1iKVLPxuo8a6uLPHx4k9nJ/YyPj5H1OzSHp5gdn2ZzbZUrVz7g+vvf5ewnP81QfYh6rcbZZy+gkDgrOHHiWbyzVOM6AsHcvkMklZh+N2dza4Vet0V7t829hTvUa01GGmPcWbhJP21z5fJb9HodhFRATJY7IhmTmwJjc5RKQCmyfkHmDWnWYTvawuU5G6ubFKbAuQJrLCvLKzSqMbmzUDhyazEyRStNJBKyzJOoGOVDe38EYEuC1Tmk0IRnFDutDr1um7RwWCGReHq5R0m3J/mFcScEQoo9U3SIfijjVAQKVzp3pVehjT5gnAMX5EDrQXpNYaBf5HgU29ub7O5uI7Um63fY2UnxGASeIrd4HK50PFcqCm8FXkcA6ChCKolSEZEIbkmlNForkBJBEAwOHDzAVjtld3MdkxdkfYsUYd7yhUPJ8nhEiJt8HEGJwDnPdqtPdaiJSKrEoqT+vAPnMD7E2Oi4vC69QGBxBOFBSUE/zxlpjtLvFXifhW17gfPBMQruyWxioLRHo6SisDmdXpvxZhMdR+S5RStFoiP6eY5wZU+J8twHoUHgpaSSJFSi0II/iTWFtSXBXnrWfdnZwQXvO0I9nqC8C50yVFxFOMveIcdxQq1ao9ftlPJEBHgiEeZwnEEKifEOX8ZSCAHTB4/yrTe/z4dLS6S5ZWs3pdaYxW8sILx9Mm96cLgQB4EG7xDCkmc5kRIgJE6I4CiXQRgCT1HkIRZEBEe7koJER2ipsJFH6gZZf5tYtNjZFazvrOMdGO9QUZV+2kdFYGxG2jMIBFEVlh9thSgIqfHOk4kWvvT/m1wTZx2QwbVsbJ8My+hQQq+3gfEG56pEcUFj6ADVWoNatYbUGlPk7LYeoUXE2sYDhBRU6jWGm1W00jxa3qSXrwKaT7/wJU6evkCWpvSKjMnpmcdxIDbrI5MKwnvauztU6w0q1Zi028UJhdRBdDGA1IpIShySwjqklBjXR2mJVxLnyuvHSxwOk+coJfFSYPKCPO/hnEF6iS2yMjokp9/rIqUgjisUHnpZj3q9gUMirCCOIiwqdDzZW+9bdhNQtRrOCUxRoJVCSYWzDhXFGGfAWZQCpXRwOCsJ3lI4wnUjJbkPUSqCCFNk9Pt9hodqSKWwmcGJIPwZYxHlDpgsJ1IR3iuE9xR5Qb1eRWlNv9Mh0hGxjmjnPSpxRBwlpP0UpSRCaHpZjoo0EDoJCC+QKsI6i7OGSi2hyLOf8ltZIsp6AAAgAElEQVRggAGeYFDPDOqZn/d65u/qXPuzwsTE9KCe+QWqZ/Y6q30ccN6xszuoZwb1zN+uZ9xPzHs/U+wZ2wb1zKCeGdQzfycGi54G+KXDH/zBH3ysP6r/+I//+GP7rAF+tlBKMTIy8o+9GwMMMMAAAwwwwM8YTx+Y5M3GBKo5RVwfozk5w1gNJiZnwBoUlvmVLRa3cj577gWemqzw2hubjIzEbG1ss3TrKmuRo93ukHb7FHloix2lO1x85x2eOXqKB2vbrK0uUxgDCCr1CnnWp1pJEFiMTqgNjXHy1CF++MPvo7Rmq2M4MKr59Msvo4UhGppkXzLEw7s3WXz4iEfLy0ip+JvX/oK3E8nWzhbtTkG1OU5dKzppyvuXLnN3cYEHy4/4l7/1z/jwxmVmJid479JF7q9s8sKFV5hoJqR9Q6FicmtotXbYXNugWqtirCGKEs6ePMX1GzfY2tymu7NNL+3SqCh20j4XXvwMM1MzvPmDdzh38iRvfu/bXLp2lXOfusDv/PN/RSxFSZCX1PdjQaBsWy4EeBce+z0XHpTePMJDD8g9H/RjYUCUiy9KLuuxb8jL8BprLLdu3+L+gwXSdJeH95dZW19jqNHkwkuv0mp3aLfW6XcNn/zEJxBI7nx4CyEtHs0Lp57l9e+9zsK9exiT0e31QXXJ8xwVRxw9+Szf/vZf4b3h5QtfojCGXq/DSGM4uJgCQ/h4n8NOlgRpKRY8kTfKfS//9kIgvABvP3JSnrjBwz89lhPwT4zlpP2UVqvN6bNHOfLUQW7evsnm+hrGWu7d+ZCr127w+VdfLs/sk8VSIyPD/Df/4l9w/eYtHj5aZmSkwfr6FleuXqVar3NhZJSbN27xtde+x4H9R7l06SK9Xof33nuTseER9s/OUUkUa2sbPH/ukxR5wY1bV9nZ7vDyS6/wH/78q7R6HSZGJ1jdWGdtdQlrBUpJxpojyEhw+fJ7OCfIUkNUiajGdT71ufM4FfG1r72GlI6t9Q1GhseoRJLc5SijObj/EKMjozx37jxahjbuG1ur7HS6GOew/RwZaSq1BvV6jdm5/SzcvU6zljNUV6CGkfTodztst7t8cPl9Nnc3cd5hvSCOIwQKLwzV6gj7Z+aIpePOvZvsLHeYbo4xPT1Lv7tDnsGVK5dARezsrGMwpN0Or7zymzjrWLy3gMXw6OFDxicnGZ/cx+LiA7KiT6fXYXdzmdZ2C+ug292l2+kwf+MaUkm8N/SyLs4b+mkf5yyFhW77Ml5qFBItFEp4IiWJK4pe5wl5bDLo9w1C9MO37yIir+hlfVxFIL1E6IiKVqQ2QxqFwyE9gdBSAl+E8RhFgmqscCicD6SyyXLwhqhSR1d4fH06Z5HegVR4AvkqhaQocnLrKKx7vJBPAYUHWRJuEKYJSSDJpQhORo9Ay0BE9tKU7dYuvW4XrRSR9jhvaNRqJFWNQOKcoFpLmJyYYGN7F2ctwkuM81hnseZJRwfhghnUA5kFV4TOalIKej3D5PRhtna6ZHYXKTR7QRYgsOW0pqQIEQsuSCPBxQqdTofaUI04SsgNSAzOW5xQCKcI04VDCgc4lNTI8hwIHMYEl3R9qEF7p8ApT+xFKX6oIMb4IFw4Uc6ZOKQKsQy9NKVRrdJIKmx0djGJoKYUWki8sHgR9FmPDA7rkiCv6pg0S0niCsJDIgCl8d6xF/YTPi1E2Qjv8c7gvUVIDUphH3+XBustUkTU60MgJd12J9wLytdYa0PXJijd3qCk5NDcPr78K5/n7bfepqCOjCOmZxVxpcn9xQc4l5eWboFwPhDTzuHL2BGlFb4w5MYRRUEEwVu8D108Il2lWlEosSdkhe/DO1PeZxRYQ5q3yYtw7FmR88zhU+w8vEuPiEaSkJleiMjwoVuVUp56VeNMD0MQzxqNKVrtFoV1jAyPU6/WqdSrjI6OM3/3ErvdHbyeAgHV2NFJ29iK4diJIxw5cpZKpU6WddndWee73/kRnVYOaM48e4G02+LG/A0imTE9fYi11ZyhsTGGx6fRsSLvGZpjE+haHbzAZgWqUgEhsXkRrvE4xjoRnO9JhJARRRbmUq01pshIs4x6tYbzniLPcN7i7S5OSHxUD8KTh6wIMRDGWtJ0l6hcQCARZLZAEYdIFFdQbYziHPSzlEQrEAopBM4r0DoQ+3mOEg4hI/K8QCUhesFZh3AFOo7xKKzIgxghPP1+nyhSWKEwRRclw/jtd9rElRiEwhY5WgmsDddlNdJEKgm/SFxBvVrFuQIF6CTBW4f0jjiK8cJTmBADEScVnA3370qlSmEsRZ4x3BjCGBsc91FUnreCWkVjrcVa97hTTNbPS7d3eS0OMMDfg0E9M6hnft7rmddee+3JQrCPAWfOnB7UM78g9UyUSDYK87GNHed8iP8e1DODeuYn6hkpP87OmwKkGtQzg3pmUM/8PRgsehrglw7nzp37h180wAA/BTMzM3zlK1/5x96NAQYYYIABBhjgZwybdmjGntmjp/mNVz7FTrfH7toDFlZ2sESceXqaH/zoRzw3O0a1tcjbl66hdZ2kVmFsUtLe2qXTd+ybmmKrm7FvcozrHy7wzZUVms0mO8tLzB0+zcRQjYvdm/T7GUoJnPBs7WxRias8vW+OI4cmkVHCsSNPo4XlUWOIytAw080R9k+M8YzyvPvW37CTweTYCO1uTtptcffeAlKHNuTjY6M06hH9XsGFTzxPXBtmqNlgcWGRr3/zr2mOT7Da7tIYG+fLJ0/TT1Mq9RrTkaazu4PygkqcsLm9ybipMH93kU+eOcnrr3+LSr2Bs/DWO2+y227xze98g0+8/Hk++YlPU6lVOP/cc3x44ypZluIizW98+deJo2jPA8kTGjw89h8h//aek6Xj+TFJTrmuh/BHaJH8k2T5Xmtvu7exx++RQKNSZXhsiBc/9Xv8yZ/93zx6cJ/p6f1o4P1Lb9Dq9PAmtFlfXX9ArTHM0aef5umnj1GkGUJCmnWxWcpYc4yJqSlWllcYG5vg5s3bvH/5A+YO7OPi+z/ilVeGsHlOY6iOKXKiKOLxIqWy/bgond9PzkY4N977oNP70kMpKCPs9si3sLiJ0iy+R2DubWPvNAoh6PV6xEnMKy+9QiVJ+N3f/de88cYbXHz3h5x99iSfeO50cJqHs/e45buSktm5Qyw9WOHqtfe4c2+R/bOzOAym6NHpdimKgvGJcSanJqnUEx48WKTWqDA7t49bt+/gfJu07/nqX3yVL332y1STIcCzf99BZmZnuPnm37C1tYYQggKH0gopNe3eDhNjUxhny/b9FhxsbG5w/vy/Aaf57re+jY36dPMW733wFs56okTjUXQ7HYarQ3z9G99kdKLJ5ESNzLbQkcQVYJ0Fp7nw/PM8WF5mfulDCu94avoYuxtrrGzuUKnWSV2LsaLP5MwEre42vT5UtSTSmswaIlnj2NHzCCXZun+XJFYMjYzRHJ/ixpXLZFmfudkGaxuP2FxbJqlWsd6xuf6Qv/qPX6XVysiyXQqXkeUFxvSxJsUXCV4YVASRVnS7jiQKbtZgBi4osj4KUCLGWIvWMkR/CUVhLJ1OG+08I0N1Ii2JdYSwHq1BS4WQ0E17FIVDa/F4ERPa4TOLMwbnI5T2CF8gDQih0FqDyIJ45v0TvUsKlNII4YmkQBL2V6sGDodzwUjivcO6Ai0lQkocEOkYIcHkln6e47xHCo9zBUURIhEKY/EOarUaiY5BeqoVjfdgrEdIGT5PxlhnmRifxI9PIX0QEHNrcC6IBUXhcCiM1QyNTGOTcRbv3sS7HIQKx7RnBi47ESkUUgVxMhyrBCfY3NlBRhJvM5QMx4fwKC9xvhQZCK3ikRovJMbZPX2QNAuxJkPDI2z217FWIGWEw+NkKaJiETicFzhfQEnECy+Q1pGmGUNDQ3TabTBh7tAojA/kbhBgAzmNDxEc0jt8Kbam/S4jI00i5SnSlK0sRSiJFuE7ksjSTS1QUUSlmoCXZbt8QeE8cRwF8tIL8hA8EcaHF0jhsUWOlxKpIqTS7AUECaHw3qKVxnoHSoX7i4deu/u45b/zkkhYcKXQLDRIAomcKHQU3LhFYSjygizNQot+WRLK5dwoKac7HeG8Q3pBNamQ5xnee2zIAcEZsEoSO4/LC7yUIBxCeoR0OJFhTEEkG1ifkxcZw5UqHklFK3y+zYHRCrdWt5kY38fw7HEmmuOYokGlUkNFgoU7t1m4s87EzAz7Dh6jkmjuzF9ndfsR3WyFxvBhdtpbVIZrJJFCeFhaXmaiXkcisd4yVBtjpDFELYmRkSRLPZP7n+Llz/9rFuc/5O6tyywvL3Lw4DGOP30WKSyN4VF2t7cwecrawyXmpvbhhSCuVPAWvAvkfBLHWO/p9TpIJcBa8iIL0TxS4p2hMD0iGeFzRXt3F5mEWJA0N/TyLsNJHakj+tahpQLvyNIMLSUGi3QOfA7EwYmcFQilkFqR54aoWkGoED1RZFm45l2BRKK0AqlwRVjAgVR4L/CmQMoKeVaEaERAKk0/TRFSIGxB1u0jtceLBLxDJzFCalw/AwlKa5xzoVuBjIKbu7CoOMIjyPJ+uE97F8akEkQ6Js+DaGKRCG+wtqCSVJCEBchJHCOFotNroWW4FvtphtKgtaafF0gszkqyfo7SAq1jjAku7mq1ipCKQnycItsA/zViUM8M6pmf93rm7p07/2UG+38m4rgyqGd+QeoZkxnarY8tVAwlFcP1ZvhtPqhnBvXMR+qZH78H/OwhQpvBQT0zqGcG9czfgcGipwEGGGCA/0yEle8DYmmAAQYYYIABftHxH//6DZpzR3mwcItb0yOcPHWGsaEGB57yOJPivOYrf/gVVh4u8PoPf8TpT73E9WsfcOLUcyzdeo9eapHpLg9W1sHBfJ5TmBzvLRsba2xub/K7X/4ySafHxUsFzkNzfJqJSOFtxvKDZS5ffo9rNxJOPXMKHUM3GuJXXj3Ft15/k6W7C9RcysqjRf7tv/9/aY6NsdvaZbQ5SpZ1aYw0GW3UyDy8cuEC7Y15Ht25x71785w6fophPcrRE+e48OKLTE9Pc+LwIVSk+eHb30DKGiMjR7kzf4UPrl7j3LkXGB9uMjxU5fKtm7R3evz1t/+K5YcPOPfcy1y/fpWtbpuZ2YMcPnqUZ8+c4buvf4ODswfoZwV/8bW/JMsNf/D7f8j4aDO0vC+7ESkXWox7+LFOrHtZ74Fc+ogAUPaIFwIoW60/eZt4zDcFwt3/2Db3tiel4My5c7zS/Cxrq2tolXD++U9QrzZ44+3v8mh1haHmON5oGvUqz537VT64/B4eSy2u8sMrl5iZmObu/UW8hQOjowzXh2mODnPt5lXarR2EjHj4aJVOv2D//qcoTMFTB/czPj7F1NQ0+LIlurCl89N/ZCFT+f89gWDv/JTHJeXe8ZWW0XKhEmIvCsN/pNvTk55NvW6PWq1CHMUIoZgYn+C3f/O3+Sdf/ifUqhW00h9xnZebpjRtS8H+/Qe4fvMKGxsPmZsdo5d2GZ8YZ3tzk8WleW7euMK+uadJOylf/tIXUPpV8rzg7uICnd1dEIqhkRof3r3JscNPc+LESbY2t1i4O49UAmsdUZJQiapIFEVhkV4zN32Afr/NdqdNPanSiKt84dVX6Pa6vHfpA3CeLDVIYXFO4JGcPnaK1ZUNOt1d7ucZc3OHmZ+/we15g4wEiSgoCo3UipGROp/93Oe5ePED1t5dR8gC4jpDowe5s3SZbtZiuDHE2PA058+9RMzfoBPBowfzeLq0eoJIKrbWNzA2I4obqKhJq1vw/pWrpGmLWpywunyPbiEQwuH7PeoVQbe7waO1NmlmmRqu0csL0DG2yNBoKqM1ut1NtI7wGJS0IAlxBVKR9w3GeXRVYQtLJCXWGaSK8dbgnEMi0EmC8R7pBf2+QcogIPZ6KZlLkUIQRxW8d3hvSE2G8DFJNULKHKzCkiG9R0mB1oDMUTKnKARKhnQB4QV5UVAUBUoJsrwI7uZy4ZOzDu88xjqMKYiTiCSOUDJCKEHX9vHlartGvUa9UgUZyHTnAnErUOhIoVSEFBJrc0bHR2mOTvLg0TJFr4d1NiQeiAjhBRaP8Q6JR8oEgwEfEcUORDiXm+UYjXUcWux7UQoBQSXwXiMo49T2WqghkUKhI4EpDFpoRkfH2FhdQxIiW+xe84eyy4MTsow1CZEL+CfXd6+9y8TkFFuRxnqL9aCQKAnG+dIFHRza6EoQDp1FeIvznm6aMdxsElWrFB0btus9WmiMtxgvkG5vOaRAENr4q9J1nWcZ3jlqwzU2N3fAeZR3eKUx1iORSK8hikJshrEQaVw5D1vn8E5ibR9vHBaPdA7pDXgfIhBRxDICFeIA9uYvj0Oi0ULhvAEP0joSHZFrSVEU6NI5LIQC5ZBWU40VwsFwLUIrT7NeQcYK5wy5AyE9YMAarHdYaxBSYk25WM85pBIYPCPDwzgfPksISaQjpBBoLYmjiKHmCEpECAGVRh0hYXHpCvXhEerREEdOPsf2zga97U2WVx+AMhS9DXZ6DuPglU+f4vf/+/+B3UeLfO3du1R0g36vzf0HS0zuP4IzKWNjE2T9Fi9/5otcfPe7dLsdkrhCZajC0cOnGKvW6F65iLF9KhVJ3o9whWV1Y4OF+wvMHXiGzvYmV6+9x4VXvsSdG1fo5xmFLeh1WmxuLXPsyFnmDh6ktd1mYmofH966Sp5n5Fkfk1tMr4OQPYzJqdSblKkIYHOq9UY4t0WB0gohJEWeghAoKbE+wwtHtVJFech6KZGOsToIYyqKQswEniLLieIIZw3OFCipsNYhhSQvcqpxjHKePOtTqcYhZiU3KKVQUuOcwpgCKTyFMZgsoxbHWAT9vI+1OUlcxyOxhSdOIghaXxm34rHeUqvUMV4gvEbL0E0sz/rESUyIzbFIFQWx2oXODY1qrbzfhu5hOE8/zxlqNLDG4pxBRzFSeNLMIpyHSIaP954kqZAXBikgqVRwZaeIRFeRQpEVPeqVBCkU1nZJ4iRcJcaGjhwyiBfWuH/o5+wAv+QY1DODeubnvZ75mNcKcGD/QR6tLA3qmV+AesbaENf1ccE6x3arNahnBvUMf6ue+RjHofcO0+8O6plBPTOoZ/4eDBY9DTDAAAP8nOKP/uiPPtY2vwMMMMAAAwwwQMCZT3+BT5w9xXtvvcaf/dXX+R+fOkqtFlORkHtHP+2iig4PP7xMpCo8e+4YTdVh2/U4feYsc72CH7z9Nipp0N7epJWmqDimUamxs9tCes/O4k1+/dNHeXvfLXZywRdefoFbNy8yMXqQ3c1tumlKkRfcW1zgi1/6MvvnZrhz9R1WV1Z4/fVvcOfaGGuPHpI5wdVbH9Ltdun1UoRUCCTdbguZCBYXr/Po4RI2h4nhId66+C4HDz3N7//ef8vs3CRaKrZWH6Gk5MrVS3RSx4u5ozk+zZHDHRYW79CfmmJoZIJXP/Mqf/If/pxK7ShEO4xOTpHEmkP7DrBvZpqjhw9RV5Jvffc77Dt4iBOHj7Pv0BF22y3m5+dJhOTY0WeQWgeHXKzZ6y30Ufxkh+O9lvASylbmlMS6KH8r7akDH31vWAT0Y7HWEuI4YXJyGpyntbNBtZqwsb1Dllta7RZjo1OYwhMLx3CjTnNohBPHT3N/aZ47d28yNTXD3aV71KoNTJbx6NEDDj91iJ3tDb70uVf5T6/9JYVxPH3kCJ97+XP0s4zpyRmOHjmBjgPB5HGliFHu9F48BATnYuli3Gv/vEcwhpcH13d4p3+sjTxesFS6yveElrB5Qbfbo1ZvPF7AL71HaMnQUAP/OAfPlsShIFB6qtRlHHjH3OwsX/rSF3jrre+zs7PNX/zl15gcfYft7RXqww2WVx+wvb3FTqvPs6ePs7LykBPHnmFqaoaFO/McOHSIP/nqv+PlT79I3s8YGWnyyU+9wPLXVzC5RXsYao6zs7NNYQqkV8zNHgAhuHT9XYwDqWLOnDlPtTbM/OKf4UVOJCUmd4EsQnJg/2GeO32ed37wXWRcQUnF2PgY61u7REpSuAJVlYyPDPNrv/bPuXNvhcVH98FbhuIKsahwZ/U6Mg6DZqQ5zrVbV7gzf5vV5YeMNpuAIusrijQlNT3SbpdapR5cdg6ca9PrbVMRkOgKaa6JfAY6QkhBr5th/TCFU0w3G0wO1Zhffgi2jbAGoZqYooP1HfKsTjUSiFhhjEcDRZ5ReB9EN2NRUXDq5bmjqkJr+1ocESuNcQ7hPSZ3iMjR66SoSOId4fVJjFQSFYngiPSh3X9mCqpSUkHT8X0cinavj1KWuBqD8VS0QAuBF+H851mftN9CSBHIaCFJdEKtloDQRFqXY0oitaYSR+zbf5BHq2t02m2c+//Ye7Nnya7zyu+3p3NOjneuqlvzXKhCAYWRIAkSlChSU1NWd4ej1ZJss2X7qcNPjnC/6R/wk/1gR7gdlq2pJXWo2ZJISk2RkkgQE4ECUEChCjVP996685Djmfbgh5NVgKw2O+yQilOuF1Qk8uY9eXLvffP71rfWcljvSW2g6GeIkYOZD1U0hHcem1niyKOEJNaGYCVK1WhMzDIM6/ggHqqOvfNUtv0CfEUK1CQoJRBS4Hw1KCiCp91skrfblEWBo3q+954qpa8i6GQQD2MOgq+GwCrrAkFnkNJst+n2e/iyRASBIVTK6Ie2a9W+lEqjRRVjYYwcRbeBFJZ2u8nOjiMQqCcREuj2UgiCIOToPKwIIIQGVa2pICp1eHtymiLNK6JopJwWSLQUSCFwoQrTQahqr4sqEsE6x3AwpNFus9PtV2d0qEgRRTWMZH01QDToW4SOiRJbuYNJjRKSrCxJjCIvSoJz2LKoIhQCKCFQauS45D8W6SGq96UQlepYK8rSgvPkRYaUEm3MSJ0ucd7jSzciXaiGpKiG76QKJEn1Hp0POFviXKUsjaRB6YQoitEmRhtDHMfEUUQUGRqNRtWkVhpnHfVGjYlWkxBgmPZpTMwSAXmWgdIM0g6bq+9Ti2sQcvbM7qIexdzY2UCEghAKNvuetF8w057jk8dfolWf4CuvvkYtOVJRNVIwOzHFycfOsLl8h/0HDrK+dI31tXtsbqzgbWAw2IEoYal9j5NHT3FvcZGyvMPqyjpIxczcXo4ee4yjx09SZH02t9a5fvVDVpcXWLx3HaE0IuTsP3iAzZXbnD37LFFUx0QFc602Bw4fJ+QZuS0RYeRcUBZIbRBGE5wnz9LRZ6XwXmJLS5LUcdaRlhlaK5SKGA66CCHQxpAWBUWZ0ozrKJOQDgfEcUQ5tBSlxfmCMi/RUpMO+kTajJrnJRKP0JK8LKvfqyIibej1+jQbTUoCUimEL5FSo6ytHAlQ1TrxkqjeQKkYl2coJVEqoUwz8AEhNWWZo2KND5LgPMFVxF1RFNjg0Sqpzp3RtwnvA2UxBFdQlIai6FUuDFphnauiGYLA2hyh5Oh7isDmFeGhtaE3GBLFCUGMztc4Jo4T+v0eUWQwJiLNC2KtUEqRZSVKS4RSePeRs4EAXGkRj5BkG+NHE+N6ZlzP/CjUM48SQjCuZ35c6plByqOkTGamJ2jUIxBmXM+M65m/Vc88ym9jSkra7ea4nhnXM+N65vtgPPQ0xhj/gOj3+2RZ9oO+jDH+nvDlL395ZOH7aLC8vPzIftcYY4wxxhhjjPERDs9Pc/vqRWKj6W9c57U3X+PIbJOZfUcxKuP8q9/mO999nfuDwGMnDvPGKzepKcHz5w7xwdsf0ut7GpPTHD58kLffeIVB5pAh0On3UEpSqzX49jff4L23PqTVqtHWcPfmFa5evcP57A4heBq1ZmW3rSP27d2NLzPaM7O44Hj1tddRprIvNrWERr3+UBlkrWVrYw0pFXErJmrM8fRzR7l97SqD/ha2yNne2ODll7/F2dNnOHrsKH/4J3+IzTOOHHuMs3sO0Bum7J/ZzWNCs7G9QxCCtN/Dac3BfYc4ML+HQXcH5Sp7b1NrkBY53/qrb/H4mcd57rkX2dhcYX1tkReeOsep46d4//IHdLOU69cuk2UpQkecfeLJyk591OivhnRGUQjwMN/9oQL6QWSCEKN4h5Gt9+hzC6PnS6jikKpH/zYRIaufta7gzXde4dmnnuG1N7/H9ZtXIJQENNvdHtJ7tl/5Nq+/eZ6SkjIb0G40mZnew0R9kp2teyMVF9y5d5tsOGRqYopWvcnUrt08dvIEhBKjDTs7mzhvMSNVXXVN1XsUPoxIAx4yHCF8XCkuIYxcnD5OKoz+LR941j9gUvjo9cWIWXDOMxwMaTcblU27LRkMB9jS0m42iGtx9ROyGoaqGsiyuv9CIPDMz8+R1D/B9naX996/gJaSPNuhLCP2zs1x+NTjHDlwnKWlRb735svcuX2H06dO4Wwg+GXiWsI3vvUXLNy/BTrw4ZUrSOX5z770j2m12vzBH/8erszpbJdYn+F9BrHh6s1r3L+/yKljp9g9t5trN27xW7//25x97HGOHjjI+v3lyvkFSxxFNJsJszMzDLsD2s0J6q0JOptdfukXf5nf/YPfIS1KhBLMzO5CqojbtxfYt+8An33pC7zyzQ4Ly/e49MH7BFHSiC0hFGxs3CZIgS8cOpIMlrpMTjdQKgGRQ8jxwZFlOUZ7kmiKelMzLEsIMZOTc7TbgbTfoZd1yUNOVgbsYIcoVgTRoNVsUavXGPYyVNSuGpXO0u8A9CmVotaIcV4gBJS2auLlA4tzkkatIp8eOCpFKKy3KBVhhEAaBUGilaTTKYhFpa6TCKRUhBDwrlLKBu8R0qOkIHOa3OegBFJodBTTaLXwziKNZmpiCqkVgmogpT0xwfSu+So6T0ikVFVDHrDV7BzOg3eBogiktmSXMuw6eJz1Dy7g/EiBi8CPiMHqH1VzXBqF9p7ClShVqWzz0tLtrVGmOW6kMHywh6SkagJWbX3wHmkkoAheEFzABXB5wUQ7VJXBjQoAACAASURBVFEd1qFGuykoXe0nIRFUrxuQo0HAgBRUpJ0Q4EtirZlsNSjSDGsdeVZQ+hLnffWasmoeRlqBFLgQKJwiuEBmLUJqGo0mW1vblN5T9AYEHxABpAijaBgenhOMCEQ5ugZTa5BIRa/ZJx8MUc7hg8dXrAah2tIVDSkkUgmEF3gENljSLKPVnqDWmqDX6RCcrT6PkZuXD47gFZYC6x2ZHaClqT5naRAKookWXjikkHhbVqebBCEMwZYUWGQQOFdivR1dn8NIhUQwMdlmY2OFbm9IGF1nu9WgUYvpDwbkzqKkpBZH1OsR0606/dwiZMBogdESoyO0zqg1m3zmp79IpAxaSaLYIKVBG0PwYOKoUvFKST5MyWxOHMXsbG6iY830zCw2L+jsbKMiQy2OCc6jkxrNdpvTjz1PlhVI6VHGkA56xLFG6Rb75o+ytHgbExdM1CN27E3+6N/cwss9REBWDDEmIjaakJdMzexhZfEGVz94nfWtZXCObJjiTQOtIopiyIeXzxNczlR7itVBl9IJyuEQO+jR3+6ydPcuy+ubTE7MUqvHSJGw0+0yt2c3z7/ws9y4donmxAzSREglkFphkhp5kVOWBcbUYeSIpWvNipQOgnzYI44SvNYUeY4xmuAtRZrjy4IoaRNCoMgLhFE4G8iyAToogtBIqcjyHC3BaIO3ZfX3ZXReETwiMmAM5XCIjmtIHdFP+8QmRghNmqVEkYRIoR1kRYlGQHD40hKZhFK4aj+GSmXsrcVbSxxpgi0pbY40MUIIsiylFitcnpHnKXGtjnOOsswIzhJJjZOSYB3eWUKAPC9o1Wp4PBIwSozIWUuSxFUUhVREWuODpyhtJaAGrHcEbzFJA+s83lpqtRrWeoLzmEaNQKAsCxKjEULinCWKIpz3uNKhtSJSEYNsCNYhpPr/9N12jJ88jOuZcT3zw17PPErUajUOHtjL3O7d43rmx6CeGaTpI10/k9NTNFvtcT3DuJ75f9Yzriwf2Tqcnpnm537hH43rmXE9M65nvg/GQ09jjPEPiK9//etcuHDhB30ZY/w94ezZs+N4uzHGGGOMMcb4CUAzifnzV79BNw0sLNznf/vX/yv7dk1z7PhZfuFnv8g7l67iaxNs3b5Kb6rFW++9yzCzfPXl13FWEDUanDv7FM+dPMja3VkWVju0pvdSUxn37t3nUy++BHmXXl5y/colSqe4v7JGrdnmsYPz3Lh5FYej1WoyO9Xij37/dzh1+izpsMfh/fNs9nJUCOSlJ8sz0qyg2Wwx9AHrKkVdQFCUgjNnz7FHp3zw9mvkeZ9QpKxuGf7mOy+zvL7N3kvvcGj+AJc/eI2btzUvPP8iSa3G5MQEE7WIV177NnOTE2yu3WVtbYuhV3T6XXSSsLm5xp6DRzl0+DDnTj7GlVu3MJHiuSee4tvf/S6/8we/i5aam9evEjfqHNl/gG9952XuLa3wG//iv0WKqmH2oB3+gAwQoWqGVY5D1WMhhJFzTPXchz30kSoR4GErUIys3HnQUKuIAYnAjn5ft9tlbWuNyal5+t0davUGq6vLyJHNvA2WwkFNQJE7lIjoDlJ6/VsYLfDBoYwks56tzR1MJAlIdnpDBvldIhVz785d8qzgk5/4JPfvL3LsyHFG8spRCl14SGz4UDUxH5AfD+aYwoM3+/B+jN726L3L0dMJVbRGaT3L99fRSrB79xxCa7zLSLOMyakWQTiWl5dY31hFa0MnqXP0+ImqYTR6HSEqBVZlGe9BgFQKbz0rK4s4VzVDm0mbWq3Bpz/7M2xtbLFrdo7CB7Z6fZbX3+Wdixf4mZc+xXsXN5mdmeLKtUscmN/HdGuKb3ztr5mYavCFL/w8n33xc7zxxiusry6xvt2HALGOaSaK2/cu4XPFM09+ibKwvPfhZbr9HZL6M+zf8zivv/Y2wVuEkDzzzNPEpkZwnvXVFf75r36Z3//d3+epp5+kXqujtMYETeEKRPDsrK/ROPMk6+urbGyssbI1YKfvSUyfVuIwumSQJwgRGJYl9ZZEeMFwULK+vU0zMUilEVojSVFCYYTE2hSbpbhcIIxBqogzZ55gafEeV269gywLIqNQskQKzVbf4VcTAg5LZVnvI08IARO3sOUQoQKREXgrcdbigsSlJSEItDIgR8334JDKQpCUIqCkR1pTqQEReOdRSiJHClsTaaSpFH2BikSIjYbgSW2lkhTKkbSmcYWl2ZrEuUBWbBMZxczsHFLH4B1eeKwTGFOj3axXv897XBCUzlZ7ygfCSBVrRcAHz87mFsrEOGfxzuNDNcwnZDV4pwATJAhF6SvCTAOxlOAtO90uQUKj1WRjfYuydAgRKnWiHw0GCj9yFALnJJBjfaUUFqPH+70ejWaTfq9P8A4ZBEqOpNnBQ6hiHKTyKC1Rsnr96j1WLlfDfp9mvUU3L0jLAVlZ4kdnshOAq9wcbFERBB6BQqCUxAnY7PU4PDlBnMS4wRAXHgQ3hNFn9PCwfJhsGQRVI1NKlpaXmd+9h6TRpMwLEBUZUQsBvAU8zjtCqAgPLRW5LavTMshqQDIdMjvRrojhQOX5JhVKxihTDclpZSpChpFi3Qt88JB7er0BzXqNXtZhkKXV/XGuIlZG6nQhAkpplNZoJVFGIUVEnMRMT7aZaLfInacWxzQbDaammmgC69sd4voUM3NzaGBuoob2W0RElYJbVm4bXniEVERxxPy+A0hRKZq1jrA2x9oMbRK0DEgl8aWjsAW1pIYjoOsx9Shh0OkilETXagjnQRoGxQAtcppqisNHziKFZnNjg1rcYnZmN+Vgk2zuAOeeeo6Fu9cIwrM6SPlffvvfMrf/OD/1U/+U5dU7vP3O33Dw0BnSvuXC5e8RgmdyYoZWa5a17Q3S4YAg4NTpJzl9+nmEEFy79Dar6/fRSiKUZmpyEq0i7t5bRNIiswW3r1+u1PjeMjU5w0wkeOapTzE5Mcvzn/4C2sQEXzXmpYDgHM4GiqKk2Y6rhrj12CLHlRWR44oC1Wg8PEMIDhccedYnihOENhRFRQhN1FsQAlZITGSIaxFZmhLJUTSNrSh8FdVQUtDf2UZrjdGGoiwqsiuK8L4ixqqhgEDa79Kcmq7+NHlLcDkiTqq1b3OsUng8Ps+JdDVwmeZVzIVQCTjQWoEMlEWBAiQaJzVCGZSJKbMhtixJTFSReM4jggNRRdkE70FqfJ4ilURGCWVeEV1JXMMWBWr0d1kKySDPUEqgtCYb5hhtsN6SZzmx1ggpSAcDTByhdMxwMEAh0DqiLC1RZJBS4l0gyIBSqvJVcTy8R2OM8f0wrmfG9cwPez3zKPHii5/m1OlTbKxtjeuZH4N6xjn3SNePUjFBReN6ZlzP/J16Ji8eneGFMTETEzPjemZcz4zrme+D8dDTGD9x+FuWsP/AGEeTjfH/F4uLiywsLPygL2OMMcYYY4wxfiLRbiT4UKcmUtZ3OujmHuaC5MbSHXYGOfOzTdZvLhCk4/wH12jWGniZkxcWj6fMLJcuvM0HH14muIJac5Ije+p01vpEUcT9uzeYbMR84tlPsbq6wtryCt55Ds5MceLgHNdvXCFNUxYWlojrx5nbs48gFPv27ufChVUaxnB/dYO43iKOEl544RmuXf6AtWFKFgp0ZGg06gSj+Nqf/SEtDVGzxZ69u7m/tsmTx55kdqKGMobOxhqvXDhPUmuypy5ot5osLt5B2JJBd5udrVX+8Gtf4doHF6lFCZ966Yt86ef/MX/z19/g/voaZ0+f4Z23XqOzusyzzz/HpQ8u8FYx5KlzT7O4dI9X3nydgGJubhcXP7zMvt17eebZZzl26FDVtHv4fXk0ZPOxqZ6qhSY+apQ/1DgHPPAgEuKj7/dVcz08GAYaKZAfqK09ARkUQjgEgampXexsbbFv7zy1egspJCdPPca1m3eIVGBldYtma4LMe7JhSqQF+/buZ2V5Be9LtNYUZUEvH3Jw9iD9QcFw0GdXc47ltTWmJ5sURU5Uq1XW6M6itRmpzaprUlRBclI8eI8fvx8PUD3+gD+oCBCBDx9jTCrRJ987/z5vnn+Pfr/LT33u03zmk8+SpgXDdMD8vl0QAgcPHuTQgQOURcnVa5fZ2tpg19zciGyplKlhdB89gWFvyN179/i9f/M7LK8soo1gs9uj3Z7l53/2SyzcW6Tb3WF7Z4N6EvP5z36a/XsPs7y8zP79BwjhQ4rCk+cljojz599HqJLFlSU21ldYW9vmU5/8HH/9V98gLRy9/pCJiRlOnTzOlavvsZXlfOOvv0kcAdJhi5RXXn+dTz//ArW6pCgELodDB4/y3e+9zI1716nX6ty7u8Tx44eRUZM//OOvMDM9QzpsMLCWYS8n4Hnze9+l6A0JwmGiQKQkjViCCORFTFlGoCwex2BQ4L0mTaGuDU4nWJsR1RqcOfoU25ur5PkOWT+jTAEZI0XB1vY93r9cUOYWZTVBTkFICVITvKCWGPI8R0tJbFqI4HBhQKQMCEG9FVF6SVL3+KApM08zqjHo55TCoo0miIBSAisV1oeRnbgmzVNatQZl4UBopAxMTU1RWotzYKQZ7bLRmvIBbwM+VP9PSyitZ3ujUqDXa3Wsa4BKcE5R5GGkuK3a3U4IrJd0BxnWBpwvcR4sVOtLVtbqDwbsEIJer8/hg1NEcZ08HeCDq/aEDwRVPR9AhMryXSCItQI83oMLgeFgwNT0NHGSkJddhK8U0kKISlUdBDaEKk4mBORI2yilwjlPEIFuv8/eyQm0MeTDEhsCqrrw0YkjRmdU1bYXI0WywBN8RRxk6QCTTDEoCwZZjvNu1OSsziEvKgpXVl5slbIaX5kfSElRWvI0Y2KyTZbmBOeqe+YhhBHRUdlGjGYdAzJ85CoRrGM46DPVnmDY64EK+LIcNfMVWhiUGp2bVHs8jqMRAVmRJT4o6lHM/MwsO50uLlSfsSurMyyEHCnFyKq/isMUqoqb0MoQMExOVQ5g7aJ4aHMfxTWatTpxrImSBKMMjXqDKIoxcUQIDi0lPgjqjRplbjHGsLm5Sgglw0GPUKaUuWH39GM451jbWGLfpCMbFFy6dptOL2cmqRIBgpejBI6KDIpNjAuWyxffYGtngf0HTtOcnOPgwVNV/AxVjEhRFATn2di6z87mBv3+kNb0LmYnp9jprPPt736FielJzp04R6PRRMe7MXFE0qhh8xaRjmnXJCtLt6s96S17j5zFph12zx8lSEGjPcNgsMWNqxeYmt1HPtymN3R0eh2Ey/A2A+cRRtHrrPDhpe+xvLrAVGue/fMH2e6s02w3OXHyOfJBl+72DpcuvUlWBnwowRccPvYYM9P7OHX6CUxcwzpLLUnwzuGcRShNnmYYEzPM+iRRDS01ZVkgIo1RBrynN+hVLi0mASFRBFRcRyqDFX3qSR0hFcOsTxzFGF2nKAuE95ikjheKwTClnkTgAz4IHAIjRbU2gyeq1RBCkacDtJZ4AWVeoKRGUqmgy7IkywaVE0AQSC0QQVKWaUXUKo0tKyeAJGphERTWEid1tImwWEIQKCnIrUXHESKK8MOCJKlX698FlJToOKlUxy6tvm94yLKUdqMOIVROB8oQHOSlJU5iCmexRQ5UUS2eSqGdxAkBgY51FdclIFASxYbSOZSEOIkJAawtqSUxWivKsiSKEkIIlGVaEZNak+UZUaQQQhPEoyV8x/jRw7ieGdczP+z1zKOcfvLe8+Hla+N65seknpGPMB5RGc2gKMl7w3E9M65n/k4988orr3D92vVHsharPxNuXM+M65lxPfN9MB56GuMnCi+++CIvvvjiD/oyxhjjP4kPPviAS5cu/aAvY4wxxhhjjDF+IrHRSXnhpZ/m0re/QhQ3eOmlz3Hj3bcoXeD3/u0fsX82YasfOPnE02wu3KJvFcZuENdiUnJ6/QGpgPnJaaIysNbtcPduztLKOrE2LC0tIQ9MUnj47/6b3+B/+p//R4qy5ObNm2xsbGAiSaxrCGVwQXDyxElmZqaRNqUsLHdW12i1Wkw0I/Is59L7l5menmF5Zb1qKjbqHD5ylJ//mS9y6dp7fPfVlzm0b4ZsmNPt5izev8f05Alu3Fvgpz/zWU4+8zynjxzh7rUPee07f8mHt65z4uRTbKzepdfPeezUMe7d+JDVtTUEkol2m/kD+8h9QOkYFzV49tnniOstnn/209y5d5MLb7/BoNfnCy99kbzIuLN0j8OHjpGlA3bPzRBp9beiER50wMWICAijh8SDpjgPQiJGzuvhIwX0x+XVoupDjor0CqP2Ot46ut0drC345t/8OYNexiDdYuH+Ekf3H+X5c8/hteC//JV/zoV3P8CWl4hixSeePMfr599EBMGxQycosoKFlUW0SPCyINaG5fv3Wbq7wOzcLHNzc3z+pc9TuqoBePzwCZy3DPp9GqI5UhkKnHWUBLRSMHpPD0kAPk58fMQMPKRKHvi6P9DBC0GZl1y5/AG9zho7Ox3+4i/+A8NBj3yQ0+v1aNTqI5VldaO893R7KVs7F5ib/QJCVo3PMFKSCgTpMOf8O2/z1a//CQtLS6TpkEazSRTVEcHxyndeYafboTWR0O+fpG4apMOSxYUVup0tLl+7iCsVRw8e5PChw/hQcn/tDoUPTLYnee/iJVaW7nLr3m3SbIBAk0QxWZqytdmhXm8zyDbpDtapY3BlpRrbv3c3NiuxRVnZ1MuS777xXbK8Q/AFWu3m9o3L/OIv/RPuLq9josD9lSUoJc57Su8QUcAOCiJtmG4l7KQpu+YmkM7STS25S9FSkqUBFQcKAUZJak2FlqBFNeSzd9cs3c4aWgWa09Pc6S6TFQKdSIySJLWY4AOdrUUKO0QZiRAeERKUyFClxcoIKZsQBkjlUCEjiJKAod6I6fYDvZ4ZNbFitI5oNGPQEiEs3lmMNkRogvUopRHKgTBYB877aq0ISVYMUQi8hyjWxJEkG+ao2FTN6NEQnRJqtAoLElVnWKTkhUOqAuklGE93MBhFEshRzAD08wxBFauICMjR60gpCKONHUYLWSDo50Oc8ExMNNgo0odrXo3IDD9SRyZG4XxFDHjn8ap6LSkkzgeKLKferNPv9ynLkgCj6AePFgolBEZKhBQEL9EBlBAIDUJppFC43NKs13FZhgsWKSWR1tXnbSr1ppBgi5K0KOnnebWerKua7j4jrjdJGk06nV6lph6dT2G0X+UDywPxMBSmcoXw1V7udDvsmd/HRtLBDjOEdw/v1QOFu+CBIURFECghkEIilSYgmZqYpnCOJIlZXlrCeof0AhH8yJXBg3ME7/C+BOuwBEIIuEzgmw2mJtrsdLdJIkMtqpHENbTRRCamFhtkpDBRTGQS4jiqIuSMRmuJNjVqSYIrHUmjhjGSyESVWjVN0VpjvSeOEuI4wY3s9W2RY0tHlMT0fQ/vS7a3V8mGfbrdjEHap9lIuXfnCnGckPW7iMkpVrc3uPjyRc6cOMBsrY7xDudzlK0o5YCg9JbVpbvcWbzL5vYCkY44eOAU3kLhLUZX69flJb3tFa5cew2TTDMze5hhb4f7gw6Fs2TDkqLc4Hz6Hnt372F+V0maW9xiya2r5xls9+jtDJjePUGzXSP4hMlmjVBX3F+4xPLiVfbsPYwPikG2wfatBfLCY3SLYW+IMYpd0/vY2LiPjhOaE3PsP3CaEDT79x3mysXX0dLTbtaZnZvl/StvkGYl9VoDEQYIBblv4EPOoSMnmd9/CAKU1iJ8dT+y7jZKRWDkSCUdqDWaBCrFszE1AtVZgZTEtTYKKPIUFwJGKvJhn0hqjK7UziI4kqSGw1V7B0XwMOzsQJGim3N4NDYfIIXH43ChiqSITULwjrJ01JsTVTNdVY4CKE3eHxDX62gV4UPAOY82NXxQhCCJkjoBcGUfE8fVXrMWGRxaxQhfEV1SabwtCQJUlCAIOOHRRuLzvCL5IoOJE8qiwOUZQUq8F+ALlEoobEmQinqjjRMal6ckJqEoMpx3JFEEUpKVjlotxmjDMM2Ik4jgBWlZEEcaoSQ2L0jiGBkkwzTFaIWJIrKiwJgqPso7BwSiKB4poQVSVYdteHRpKmP8iGJcz4zrmR/meubixYtcvHjxH2bx/0ewuLjIb/32/z6uZ35M6pmPbNL+4RHFCdJEBOfH9cy4nvk79cw77zy6lJ/gA8uL43pmXM+M65nvh/HQ0xg/UWi1WjSbzR/0ZYwxxhhjjDHGGGOM8UOMq9dvs3H9Nb76nfcIssZg7R5T+47QSkpyq1FuwP6Tj3OskfOn1yU/94WX+Muv/xmdbkpSq+FciWlM0EwESztDhFJk1jKxZx+7JzR7nzjJPzs3wfuX7xCXk0y264g8pzf0DIcFtUaTpNbg4P4DHDx+jF/6/GcZ9rZ5843XWFndxAFTu/dwZN8s7737PjvbXT77uZeQpLz97hVKV0WSCRFoNaZ55tyznH/7Ilmasmd+N8ePH+Pnv/iP2NxaZ6pR5+7CIm+++Rp/9c1/z07qmZme5/Spp9ju9rixuIB1HucFU3O72NhYJ8syHj/1BNkgZ6rV4HOfeZGtjTUO1JssLt7lyuUPuXLrNncXlhimGQcP7aNwluGgx1SrzbWrV3j23HNMT0yN2t48bFyKB83/ED5SRfOxlnl4IAqu1IUPfuiByo9QEQSESm08GKTcunuXuZkplNL8+z//SzqdDu225MiRE0RRxCc/9VneffsCykTkgz5zE7vIykBa5qyvb7G4tEhWDjEy4r1LF8jzlHZjkiIHKTRHDx6jOxwyP7ebqZkpNIJOp8fZs+dIjKHfG7DT32F9Y5OkVgMPU5Mz3F5YQRrD3j1z7J2bod1qoJVEVjLpqqE6ouwlcqSm/uj9/y0yIVQ3Z2nhLovLSwQEx47u58TR/dy+s0hYh9KWlZocKJ3jzt3blEXOk08+VallPQQ5Um6O1JyNWkwURWx3Njl6ZD/pcMj0zBwL9xZIXcmFD97hxMkTPPf8Jzj12Gk+uHKZb7/6MulwQKte58Chg0xNNPnsS5/Fvyq5v7TKwsIKnd4OnX4f76DdmOTa7VuUecnh/ftYXd6k2+9QFhl5YWk2m5QhY5gV4AxFGTjz2GmuXr6FkwKHJQqaRClKFdNJCyabknPPPM3N24u8/J1vs7a+jPAB7yxCByITIykZ5gOSmmTv3DSbt/usdbaYqMFwYFAmAqnBOJyHWlxjz8wBgrWsrK+SpymlK7i1cJtjew/wL//lv+LevUXeeucdPrz+HlMTk3S21gihxvbOFhYwMuB9iZMNcCVCgVeGsrCVWpqSgCJ3ddLCo5UgtzFa5nhnkKaGFIIoUrihRSDxISeJIiSKZi2w1XM4X1J1vxMIFu+LqvcuNcF7SgdeBTJnmTSThODIiwItJCgB0lE6i5YxwUuUipGhwJcOzUhxrBy4FBk8YkTwGVEgyPDB4B/sRVmpef1of1dkQRipeSG4QK83YLo9SWdrG0vVBHS+aryjJD4ESldFIEglEbIi4IRSqJFzwCAd0Jxo0+/WCXFJQCC1xEiJkgIlKtfn0gWK0iJFZa/+YGgw0oYQPK12C1tmCFcSaUG9FtFqKFpJQicr2OpblPfYLKU77BOCIPgqyiVIzXZnh5nZGXaSBGctRVFWo4kjcbV8SNQEQhBIWREAQYAXkKaVKnamNcF6XoKU1fsWEiUEQY3+O/KCD87hvQdvyfOMIu+xjCWOY25du4HwARc8WmliY5BSYLRmsj1NvdaoFJdKEUU1pBTV87QmbjQ4fuwYrfYEURJRTxqIERlhfTHam3UkCqE0uEpVLI3AmBilI4a9Pu2JNkWRorWp4hWlwJgI6QJaR/gH6upQNUOV0jjnUFrS2dim39lmZXWLfn9IGQLtmb0o00BJQzZcBjHJwcfP8Guf/2X2zE5Rj2K2u336/T5Xrl6nv7GJCx4pFYv377CyskSQjo3NNW7deo+zT36GRBsAvA8ICXsPHccGy/Wblzl16jRFmvGtb/07tnubpOmQqKxz6OxZnnjyKbqdbS586w/o5lvM79oNskbcrNOamGVm3yF2zR6gHtUZZjk3rr9PP9/i7sJtpJEUWYm3JdYl2DKlKAvaE/OcfeJFLl15i/Z0i/17jzI/u499sweIkoj1xQX2HDjKrj0HqSWTtGdn6K7cwRYlh088xubmAvtm9vHEE59g9579aCkpi7KKRxEBVxTcunqefUcep9maxpUZWmviJK4a0kGOJl8tRZFRi2pVPIG35HmOUYoQBN1+n0argZCCLM0QIiBVjAtQekdcS8ALXICoVnv4ORdYGkkNZRIGWZc4TkBo8qxAGoXQiqKoziutzGhAs8SMiICAxOjq75MvC4g0aEWZZQjh0SrBeovPU+I4BqVwoYoh8QgGwyGRAa1j8kGPOIoIpaVMc5wtqDXroCRFkaG1wUR1trs7JPVGtd+8J4proCPyNCc2hjJAEBKtVEVECAmuavSHEZEnhcZiKbMBSa2GD6ClBCGx3uOcpdFsIJRE6mp4wHuPB5Sq3DqUqkh0pMA7R2T+Hr7wjvFjjXE9M65nfpjrmeFwyDBNH8FOqLC9vY1O/Lie+TGpZx4pRsM943pmXM/8x+qZR+k6hmBcz4zrmXE985/AeOhpjJ8oxHH8g76EMX5EcejQIZ5++ukf9GWMMcYYY4wxxhiPAP/uT7/Bl//Fr/LSIHBrcYnpQ2d59snHmYxS/uxPv8ob713hsef3s+fYfn72F/ZxfC7h9XrMdmcAQjM3PcFWb0BUn+cznzzE/fUOjThhbtc8jx+Z4s7qAqVs8tb77/K1b7zGem+IDxYVJ5x96kmeOnmC1959l5WtLfIbnt9busP25goLS6ugBZGMObxvF5trS3T6AxqNBjc/vMjCvXsoY9g/v4dBf4fBoI/t7zA/M8tTTzzGjevXGPQ6XLl8hW+ZGCsdnd42e2bm2T1RR9dmkEVKZ9hnq7NDPWrx1InTfO/C97F9aQAAIABJREFUeZ48e44zx47wN2+eZ2V9lclmk531df7yG/+Bud0TXLp8kS/+3C8xNzXDK++e54Unz3Hv3m0+uPwOu/fO4YqSNMvY3Fqn3p7Ch0DVNnyghq70y0F8pH6ueuJixB+Ih48/GPgJYUQjBPByRA48kEmL6hUFjvcuXuT5584x1Zqi2+uysLjE88+f5ZNPPU+tVmOYDnnvrbd57a03qOs6t+/+n3R7fWyRkVlLUZZIIShsSbG1zlR9EleUeO8REm7dvs3u2Tlu3rrB3uFubFmpwvrp2/R6fVZX7/HTn/08O5s7XL19HlemaB1DPEcSJdy8dQ+hAvtm5zi0f569e+ZoTzSJjUFIUTVBR/cCUTVa/cPIi5E6XIDWkiNHDrG6scTjZ87w5V//FVrNScBw+cOrfPu7L3Pk8AHarTbOWdrtNnfuLSClqha++Hh8RnWfpRA8ceYx/of//l/x9vl3uHbjInmZM8g6DAeKVmuKm7fuAoHpyTlefOFTvPb6K4RgGZZDiryPnpnl7sIKz5x7nvuLf8LqxipnT55m9/xufukXv8TXvv5NnHe063UG2x3ak3WGtsfy+gJxo0luK3v2OK6jtSbPM9743pvYwiFDgFJiIsOzz57j1Tfe5syJ3Tx19lnefe8ir3/vNYq8j9AB5SVOVFFsZZqhBOAERZlzcXGJ6YkG61s5a73ARAMaSUJWglaOrHA0mvPU4zaTcy2cdGx2VtBSkOewsTHg/sIKeV6ysHidfNDj2NOf5EYh6A662FAggkdHEUHEeBdQsUAoD75BCDm94Q5aBGrUMDqhFgecUuR5jhSaMoDNhjTqTaxXOJcjRYEPHikTIqXAV7bhRWorRSAZAQ8iAuEIHiJjyEOBAYSwbO900DoBD8oIXJlXVusiJniNkhLnQekIgUfJGkIFhPdIGQNVoz0QRg1oRVGCkqNQltGgnfcgpED4jxwQpKga4DudHocPTxDHCbbXw7lqsCqSCiVVFYMgq+dLIRBCokTVREQojNFMtRokSYLYNYsrM4qywDpXNdQJeB8oCodWklatUjh7BME7ZJBIJak1IgQQRwk7W32GBNY7PcBTiwxF4Rhahy9LSu+RXuAenDmyUh4XZYESgpm5OXqdHq7cJogqAAItUaNmP1oShEYSkARECKNmoWdze4u5yUm6m4GyLEAEwoN74KtrFQiM0pjEEMURSZwgBRgTkSQ1GvUmhw/vq8gFqYiTOkpqCA6T1IhNTBxppNaUhSWpJ0QmxjtbRXYIyPKMRqONEBJj5EOFrSyqJmtsYoRUeOdB+uq8khGRiSnyAiklIXg8ioDEjuIOfRAV0aNFtaaEIMtzAlUztN8f0Gw0aNZbeK/pDVMy5zj73Kd48fkXyHod6s02IuQ4bwkusLq8yvZWhzzLWFtfpyxKfJ4SSVVF3CnN/v1HuHj5bSan5+l0VpiYmScbDrDOUa+3CXh0pIlMwuTkLp55agKjIrrFNoSC+d372IxbrC2vcPPaBQadNc594qdoNOfY7pckcpq13hraGLa2d4jTjDNnXyQfpEzEdeZmjlBuW4QITE7OMtgZsLm+gpKWVlvRnnqcudm9ICV7Zvex073PtQ9foUiH7JrZjxxITK3Oysp1pqbmCMkEpr6L6RkYyC6Hjh5ja3uZeqyJkwZJ0qhiBoInUrWRetjSHQ6Z6G5RZENq9UlMEhMI5GVZNafxCGsRgEkSgi8pSwvBY7QhzYZIbag1J0FoSrtNs9kGrSpCG4lSEUWZYX1RkVFS4LzHaIlQhuA8pbXU6w280PTSPhPtJsIDziGVJIpi+p0eKoorwpZq/UqTVNEdtiBJangfsGWGiRvVesxySpfRrDcr4kcYhBYo71Gh2t/BWxACaSJskVPanDhpoKMEV1qED5i4VoVS+ZKkNoErMqKoholrEAJZPmCiXse5iiQ0UYyUCmsdkVEgBEVREhmNwJMVRRUdIzW+LDFaIZVhmKW02y1MlEAIaKWrOBAhCEWB1oo4rlHkFhNHSKEoigxQf39ffMf4scS4nhnXMz+09QyhGpB5hDh9+hS/8V//V+N65segnsnzkiIvHun6Gdcz43rm/62eqQY8Hw2kkON6hnE9M65nvj/GQ09j/MRACMFv/uZvPtLf+VGm9xg/6pifn+fUqVM/6MsYY4wxxhhjjDEeAc48+wxmsMhsq8VwpkW73eKp4/tZvnme6V37eXFqjt2HDmESg757mf/jq2+xsrFF6QOFLdi7Zw/90vPEs5/mZ545wfV7K7STBKMilhdu0hQRf/HVb2JzT2eQorSh2WgzVdfoMoco4cu/9l/w3ntvcuv2LW7fX4Ooyez+k7Q6a8yfeIIJ2SVMznDihGRmepLrV64ySD1KSax3nDp+lJXVBS58eImzp85w/cZtinKIF4Kd3javvv0Wv/6rv4brLfPHf/qnTE1Mc/bMM1x49zxHTzzG/t27mH/2HH/yla9gnWdp4RbNyLB3Zje3b17nsRMnWd9cpdPr4XB0ukPmZnexb3Y3T595gpdffZ0iy0nLwKuvfg9pM7Y2Nzlx4hgvPHWOemTwziG0hCBG6kQq+/RRkIN40PMP4iNpNP5jPMAo8EGACuKB2RFCPNRbE3ygu7PN3XuLMB/IsgKnIhpRm9/6nd8jGENRem7euoyJa2xuLoKomm+NmubA/FE2N+8zGHYqhacHR8D5HB+qRkhZOu4t3cUGx05nAyVjdvoDjh09wd27S2xtL7O1vkFv0KdWq3HuyCzC1Li9skwnBEKQFEXB/TvX+OBiQlyvMzXZ4lPPPcuZU2dGmRgf2cbDKKKOj9cagVhrfv1Xf4Vf/uVfpF6rY0yMRGKLnG6/Ayrmg8vXeOL0aZaX7rB3337u3rvB0SP7mJ6ahiDoD/oMekOGaZ9du3bTbNQgSL7zV9/hyo3LBFmytrHFIM2pxzX27JljZ7vDi598njiK2TU3zz/7p/85X/uLr5HaHYbDAUePHOE7r/0187PzbGwt8/Tp00RRmy/9wj9BuMDa+iaNWpsXnn6KPTPT7Dt8kt/6v/41O8M1rBuQlwWxqvP0E+eomSbfev2b3Lu/gEEhgsa5DKsVNxeW6aUDnpg9w7vvvM3lWx/iS0USJcRxYJAXBBUYpA6lBFpJmnGEUGB9xPp2jhKKQhTUJ9pEVjDMB8RRjaQu8MNtVgZDVpYLcpcjAOEsPgjWNrf4t3/8+2gdMextsmdmkvffeZ1BOsT7jEY9RrcTnItwQkFRII1k5MSOVIaWkUilwEItKUlRzE0dob+1RS9dAmrExmC0oygyhAQXMrRKcKVnkGcMdUAqjZYaZx1Sa3CAVBAsWkmc9Ril8cGjVIRwlVLXmMq+XZAgg8CJqmEsg8AHS2RqoKq16D3Yka06ChAeL8B7gQ6KnAdq3gfknni4J6WsFJIPHxcSm+fgAs1Wg8FggBEGJSuHhOADyiiEGjklPIg+kLIi0IRAa0W7WSMIQZwYnPKE4NFS4kIVHwEWo1Q1/BVAeIXWAmUMIkDpS9J+Fy0jjDEMbEmel3jnCd7SYUiQCikFwlcKTSUrJ4MgBVoqpJA025OUeUGsBB1XoOMIQiD4yskI7/DSjaLXBFIpjJI4W9CKIpKJ5v/N3nsFW3beV36/L+1w0s2pcwYakQQjGEXlQEmTpBnb5TCWVfM4Dy4/2Y9+0Ise7JpyjW15ylNl2ZZLo5FEhRFJMQEEiRwaaADdDXSjw+0b+saT9t5f8sN3AHJsaVRlS00OddZTd9ftu/c9Z+99z/qv/1qLbrfLQq9LUZ5FEMiykjzLyfOCmA5ODIFutwMxvT7dTocYI1JluLpCmRyp5QfvgVQ53jukCIDEx0husvS94hhtslRRoQz4gPMeKTVS6vc7dghegFAIociNJkSPkZqmcRAiIaTaj6ZusNaSZ0VKqxCR/uE+eZ5TlgU+OIwp0rDUpdoNKRRFUTIcDZACiryFnBM88bFPs7B0hGJ2jnOnz0HwaJOhpErLen7Ewc4BN6+8nZy3TYMQk/QDCVIqgvcoYKY7xxMf+RynT1/khW/8Ec1wn7fX32N2oUP75MdTwpRU2Kai0+qSZQsIIZmbW+TDj3yGN999k2HVZ2FugQce+Sil1rRaLTq9WRbrwM72Xcbje5xYeIIjx47x3It/xoN7H6MtO2StktneIvNrC1x+8xneufI2uclprKWVRfJYMLewwPXr79Lf2+NgeMBwuMOZc2e49OrzPHRRcObCwxw9fpblo8eZmVtk2D/g9NnHefOVb2HmVxke1BTZHFs7u8xt3mD1yDGstdTOQQY6JKHy8Y//OBs3r3Pzne9y5qHPsra0hspzGDcIY5Ic7SM6L9B5TnCOpqnJJvde1QxpdTpoZahGQwSRLC8JUeBsPRk0R3x0GCXR2hCNpj4coGRORFCNRiitAEFT9YnBYnRGbWucqyhVm6YeM26GtDo9tFQ45xBSIrVGNJEoItpkWNtgMoM0eRqgVxVFp0tSotI5CQmjwWjydQX1OLn1oxDYxiIF5BNBzNZjMmOQUjMcjSi0IYaIDZF2qyQoRT2uyUjPEhk8QXikKtKnlGBplwUOha8HKTHHWepxRa/bAaXAO6RIS6UiCrIsR0g5eVZEhFZU1YhMK7Q2gCTPs0myBGRFRtWv/79/0J3ibwWmfGbKZ35Y+UwIkX/xL//l/bsZgPGomfKZHxE+I2ND09zHjlfxPmeZ8pkpn/l/8xmp7u8S+pTPTPnMlM/8uzFdepribxVardZ9O5a1lt/8zd+8b8ebYooppphiiimmmOKvB7/6+Yf58lf/iNdv7HP+wiM8fvECvhny7W9+i4HtsrW3x+bmDoNTx/nOc8+xvnuIcwFpDEorRPBoodi88jIvKceTj5zmK1//JuPGs769hxvvc3gQuLW1iw+SiKCMDcPDMc2a5JGHHqI+3GBhYYFvPfVtzj/4KJ/85JOcXJrjt/+3/5UZHXjx0hWWVk8wv7jMTMtgjEQ3kigFM90uMkbm55Z44pGL/MnXn6aV59Rjx7ipaZUOFSM5kUu37iJMi49/+vPsbW8REaxvr3M4ukh3d4/rN99B6QyZaQaDEXe27/Hue+9hYuD5Vy7hXGAcPMJkvPLKc1wKiudeep66rihbbXw9Ymdvm06es9Bts7C4hFKaf/5b/4z/7D/+9cmyTZgIAgImsc1MHM/vO6En3kpg4g+O318REbGuoaktjbUYrWnqGh9SdcLdzTuEMOb2zZsMD/fx4z3+7Mt/yHjUsLR6jMoFpC6w1ZimrgBBMGkAbd0eMUS01BADucnROmNMjdQaGQJZ2SKIFqI5JHqLEJG9nR1eONjBCOhlJXv7WxS5oTQ9xo2nzAwz3S4gOByOuX17HYicPX0coyLVYJiioEX8twasKUZ/opJ84CgXqRZAQGYy5mfmuPzWNd67/Q6trMXm7g7d7iwmb/EnX/4DXnj5Gcb9fX717/0Kv/hzv8Di4iIigvOWF156mVdefYlHHnqQ4bjPxQcfJitMinKnomnAuzpFwGvF/HyXxcU1zpx9lLneDCbTfP6zn+XFF17i2o09RCExUvNTn/sJrl29xvkzD7E8v8wLLz7L7/6rf8WZ0yd57OEHeO3t53j3vXd4/OJj/PlXv8nKyhHq233G9SHtooWvJbdurrNxdwOpwOJRMmAt5IUiN4orVy5zdG2Nnd0dTp09z/VbNxA6p7IjlrorPP7Ica5cf4vNnT7O1ywvrDI300YoxVvXr5JJxQPnL7B9b5OjS8us370HSlF25xke7FH7Bk3N8RNHuLl+k1BHjPCcmFskO77IvXu36OYt2lkbnCCEEVo55ueXaemSJkr2Dzdp0NhY4xpNLjUyK7DjEUVm0aKgaiImqwi+i7VjHBBigTJp+FRVadktONBZi0y3sU1FiJFOmRGjxNWpTiF4h/CRGCxaG6SIeDmGaPDWkceCLC+og0f5IT5muChQIk81BD5VMWhVADEN7oWktjVF2QMfMQJiSGk6QSikkWAjQsr39bx0336QcBAnYp6ADyLiA3v9Pr2ZGbZ394jepft/khYVlEwuaaVACnKpiDHiQyDTEiXhsD8EFCZv0a/GeBtICokAGVFRgolIqTFa45xj93CI956ASOlpYkQry1hZW6Uo2xBHqRqNjIhATx5T6b4L4NNgvHGWJiQnqav7uE7JqZNniK5DjJ5MZxR5iTQSoxRZnpNpg9KGLMvJjExuUKkweUauDKOm5lS7DTFisgwpDD44lNZUozF1U1GWBdGl56fOMrwXSSCSDpNlhOBRyuBsgy5USkWaiC7ROYRMYoMQAqMMPnhi8DhbwcTpCR4lFPW4IcaIc57oA9oYiIIwibKXQpAXGU0zxtYNRhdooyYJchKtM8qihfcO3zRErfCTY4cQUFIRosc6T1GUqSZDSHq9Dh964mNYbxHRE4KnaCWXt1KCiE8Xl4CmsdSjMUWrhQ8h1U1EUl2G0mR5xqkTZ9i6/Qai8Nx46y0uPv4p1o6fIUhJXmZEG1DapPdYCJRSqOBYOX6GgW04fuoU7Xx28rsKLr/yIju7Iw73tunODpgrZum0Z2gsrKyeozAFw70thFqkdmM2b17D2hqtwVlHQOCl4KCODN99g4sXnmCwt41sNllbXsaPKkyWM677vPr60ywtnGJ2Zp6y7DA/s4CzDvvgE1x++WW01qweOcmJs2dZXTuOiKluoF12yFttQojYekhvboG9nR1QbfJWgc5y3KgiClBKEyMM6zF5nioYhtUYhURkGifSgDsXimAtg0GfoiwIRJyzjMYjyiKHKHEuYnSBD4JQW1z0aJUTfSDGSFmUeKA/GtLpdtJQP6QCpKgU9aAiMxnaFIgQEFiKooXzDtuMaZUdohC4ENAyQ0ZomhqhAjoriR5CDIiQKpVcrMmzFt5avHWY1qSypRpjdEqs886mhs+swEeB0oK8NYcUkUwJhNFEF7Cupt3qgdA44chMAVJjvSXLNEJl2HGN1inFwDqP0ZCZHG8tSqb6iLppaHXbaJODSMukUghCABkiWhuyvMAHDzEglZiInBlR3r9aqCn+/cSUz0z5zA8zn6mq6r7dC1prfu3X/lNeeO75KZ/5EeAzXv7gkg6nfGbKZ/6ffOZ+IsKUz0z5zJTP/BWYLj1NMcXfEO7du8ft27d/0KcxxV8Tfv3Xf/2+Hm97e/u+Hm+KKaaYYooppvgeXn76y0g1w6kjJY9dvMBs3OHGjcj5T/wk5QB+9dEHONi6wxuX32Bu7Qwb+2/gbCDThmY4Yn0TqrpmfWeXw1df5blvf5XXr91mbANlkVxyRdnj7Iee4GD9FkJK1u9skuWGw9GQt195hm+98CLjsedgNOLy5ddZmmlx523Y2T9E95ZZPXaKL37u0+wf7KN8xbW336J/MGZ2fpbNzTscO34ckRV0y3aKgBYR6yNEjZKRE6dOsbF1DxmhLDO+9a0vsb07QquMRTPPU1/7GtY29Psjeq2Cphowv7jA5evv8I2nvsVXRxXj0DDT6XLyyBlyc5Snnn2GpvIsLCyxtLgCISB3NxgOK7Ks4NzZ8zx4+hzHllfwytA/3KVVlBRFzgdLPBOB4HsVERGiSIs+HwQbpaSjQIpgvn37Dn/85S/T2PQzKimpqoqxtXhb89b1q+wdHqUeXaaqxjS+QakC7wKDUZ92e47jx05y+851GhfREpx3jINlbC1CFkiVoYJD6II8b+Fsg3UW29T42lNks2SmxInkpnJuzKge0221CcKQ5clBubO3TbslmJFtIhPXYvRoo/AOxuOGsoyITCKkQH5fmlP8QDR5f9T6vT+nYHtBJLC/d8A3n/oGm9vrKGl57LEniQhsGCOEZHf3DkuLq9y5c4cHHnwco3PqJjmsPv6xJ8jzyPlzD0BM55wJzY/92GcxpeA7zz7D6toao0HDaDTg2ede4h/+yj/i0qU3WJyfYW1tlbOnz/HhD32Eg8EeP/GFz/KJj30cIQR7u/vcePklnnj8Q1y/tUxZKv78618hywvGI8vps2cxZckrr7/MmVPHOH3yDNffvUrUkUYqBoNdLpw/xVvvXmWuZbA+4HQEL7h47kHu3dvCyIx3b9ykaSw//YWf4c2rV7l28yq7B1s8VD7IhdMPc+YEvHb5FX75i1/k0suv8/a7V/jcxz5JmWXMLaxx9tgR/uj3f5vdwTY2KOKwT24EOtMcP36C8bgizzNqa1Eix8gSjSJEQx0i8wvzlHmLsAOH/X0g497Qgfc45yETlHnB4eEInUG326OpB1gvQHaQquawb+l0hoz72/SHDUJKsrwi+pymCiidYXKJlgXeWbwPSJUx7jdok+NsjcwFeEmMHh8sIkRClCA8gUhRZBjTwuQt/GiAFBLnakTMCdEDcjKUVkQpkAGUhyhFilx3KU1HIIhRIIVAqYB3FiFNumbfv0aFSFUQMYKUE7es/OCWjzEy7PeZn5+j2+4wHg8ggJ64ALXSGK3IsiQIyYkLOXiPMBqQjJqGGAQzRQuTZRAdYfI9pBZEL/Dek2mJkIrKB4QyKCGRMT1RnPOMRhX9vV1aSjCsRjgpMFKQaU2RGZSWFFmOMQatFa1WQUSRGU2nbH0gQHR6XU4fP0aElEpkMoIPKKPxIdBut4k+ItT7dS+Bpq5Rk5Ss0iiMyYjep6XD9/XT4PG2wWg9EUxDSpjwEYUkBDtJU5BJSZqkT3vncNYigMZX5EYjhEox/zLV7oTgkVJMHMIpjj+EiJSRajQiyw2SiJ+8cUrodK0JUCq51W0UKKVROj3DYowEH8iL5Bp1PkCU6JgGuMoogm2QE5esd56sSNUFQijUpFKCmFKbbPDgI1UzJHhH4zxeSGJMVQd5WWDyDKIgNxrvXBJLpMSH5JbPi4zF+Tm81WRFOXGAC6KLSK2w0SOlBCVBpoVQY3IuPPA471y5xPr6FaqhpVX0kBqqUUWZ9zhx8gKivUxOh9m5RS4+9lEymbE9aLh14y1a3R7bV9aReGZ7Jfu7DXXjkUYycg1HuyW5Vuz5IVl3ls3N63ih6bRmaGwFUtBUNcVKm0yrJA4pRVl2aZznyImTjIZDZuZWKIo0DA+T95HocI1NyQk6JzrHzPwythpD9AzGA/K8JCKTaDZJGfExpmVbpVHa4H3A6BwvwdkG70O6jpxnsL9HaIZs71nmF1bxvqHbWSQIST0cIKVCKEVoajJTIKWh8TUgKFs9vA80viEvS2KAxjo6vTZSaFxsUiUKMh2TVOtQ2yY9SyafG4ajIVnRInjwPhCjRyiSkBWBkNLAtJQIoQh1jYgenbdRWtDUAVMWRCR1PSYvCiTp2tJZRgxx8hxRCJNNahskypj0eaW2mMn5SxGTSOct43HNTHcGIZJwo5RAKUMhFbrI0zOUODmGwNc1ZVkitcQoQ4yGEEmLp0rhfaCTt///ftyd4kccUz4z5TM/7HzmfmF2ZoZjR9boTPnMjwSf2d09uK/XT1oemfKZKZ/5i/nM++d2XxDDlM9M+cyUz/wVmC49TTHF3xB+67d+i83NzR/0aUzx14SHHnrovh0rxshv/MZv3LfjTTHFFFNMMcUU/zb++997hv/oV36J5UzxnWef4tqllzBrj/DjH73IL3/+J+i1DG5ljlaZc+LYMrba57CSYBtuvneLvYN9tMmohyOq8Qhva+ZXj7K/c4+WlrgYWVld4e/+/M/y7Ff/mNeu3GV1eZVWr8vt69f5nd0DfvIzT5Lniis373L86BFGzYhWe47l1WUeffQxOmXg5o0rOKt45tmnubszILhAMx4SiHTygmNzHbaqIWsrR1hZaPPGWzV1UyON4cLxo7x1+Vnu3L7LQdXHecfhONLKHG9fuUxdCaQULK3MszhbsLEJGxt3KIXkyNpR3njzLeYX5tjf2yK/qzE0zLZ6bLsDgneorKBlFFtb62RaUrkR0Vv29/Z48/LrPHzqPM8+/wKf+VTOytJSIsakmHLxfds8yQE9iT+PIBAE73HO0diGvb1DXn31Eq+/8Qa9uZWJSK4YDEfUzlFm0OutkeuM3WpIYQRCt2icZbbXo1tkSDFkZ3OT6BrmZzuMhkO0khS5YXcwppWlIaHQgvF4iM10inT3lkAE7xhWh5RakZs2EcfYDpAyIzrFqB7jfI1Co4oWd/cjh9U+RVFilIQQ6XUKfIhorUi56xE5GZ4iQEQxGaa+L5+AmPjF36/UFiIihOT23U02t+9yd+MditY8N967zuBwSF0PaJznH/z9v8PFsxdx1lG7yJWrb2Mbz/kL5yiKjE99/DOTBSpSPLyA8+cfYHvrHpfeeIGHHnyMu7c3uHP3FmNb8dGPPM4f/MGf8taVHYKH/+Af/IecOH6ciw+c48Txc1x5+xrXb97g0usv0j/o8+VvfAWpFb/wc79AYUrWt7c4tjbE1oG3rlxjeXmGg/4uP/75X2L/3oDb67eoRUVnfon5+WWyWzdp3IhmHAg24gJcffsGUkXOnTvPEx/+EBfOXwTnubd7j9evVFC0uXz1KnU9xjrL8uIix1ZPMDw35JU3L3Hm1EUeuXiG/+F/+u+4/PoCV27u4aIEqXjg1El2Nm/hheHWzbcQSOrK0uos0VRjDqoxxjW4EGl3ZsiLNjZmzCyfxsXrVFXN4fiQ3OQ4V1MYhQsH9PKMJjQM+9uoKHFVAFMR7RiTO4ge5x3KpKWi4VhhCGihAIVAISW4UFGHikyWwBgXPWNXI6UmlyUhOoQ0WO8IsUbnaaBsAbzFN+OUO+DSoFRJRaDGuwAyoCfD/SAEQXhcBCVzZEjDvYDAR48XAuEtkYAQKc1AKYlAfZBwwEQskFFMRAIJMgmA1lmIkV63S/AOHSNapLoUpEQpWJ7rMdNr4aPENg7vHS4KfEwLf84LrG1QRlGNIrbxDJ1Dy0hjLS54BA7vfLp/pEAiyJTC5MmpnJuCbrdLWbY4c/IoWatNtDVKZuSZIcrkVtQy/VxFXjIY9MlMqh6pXcA1Nd12hyjANhbWHwiMAAAgAElEQVSV5WitqKsKZTJkdGlF8f2EBymwTVpGkwKkUiihUyy8mpRZhgAxYF3AWkuZJ9e0lKBVjo8QowXx/oA3vbyp4kHincVoleLurUUpDUS8byhbadiohEJIEDGSly0gfpDE5KPDmA7jaoxQJj2D5PuOzyx9XQx475MopBQhJuHB+oay6GFtjXcNxhR477DeoWRBDHEiTqTrPkZPVY0JIaJkEhekeL8WKEDwSJHOM/oAWgERqSHLcow2eO9BSFwI+BiI3mNtpNVdoN2eYWXlDMPhiMUjJxBx4hqPkBlNU9WpQiWkc3I2UrQzlAhkRnHr1tucO/dh7t7awCiIIlBZx3Bccur4Sd576y0Wllf57tN/RFVbVhZXsM2QqgnMtY9ho2c0PsRjcQgGVVJ/B4M9bt16heOnPwwE6nrAvUFN3T9k440XWJlf4cjqKUxukChiiGxub7C5scXS0SNsbazTNGOWj59AaJXuW+cRSmG9o3YNeZZTj0ZIqTl19lFa7Ta+bogTYUgbw3hcYbRGCpVEOm2SmKIUbjwkLzKQ4EeWzCjyVou9nR2uvfUa9zZv4nzFbG+G5WMn6c1+GiklztYU7S5SCiwxuYeFohlUlHkGSLy3+BAxytCMxxAtIImhIUSPzFqpWrOp8RGqpiJ4h9EZPoL3HlNqitZcchfXFb6xqaJkXFOUZfpsVjfoVitdHy7VlmiZ7jdCQKqcEAIipmVPYhIG9CQ9oKkr2q0CqaBuLDKGyeJAjck0CLDekuc5tm7SdZUpyqxNYyuM0an+QSiEiMgsxzUNYqKh+ijIJseTWU6mDIGAzgpasz3OnjnLsdUVborZv/4PwFP8SGHKZ6Z85oeXz9zfe+GXf+mLrCwusbS0POUzPwJ85n6mhAHMr66itJnymSmf+Qv5jA/+vl2LEaZ8Zspnpnzmr8B06WmKKf6GEO/3J/gpfmQQY4oVnWKKKaaYYoopfjB44NQqf/znT7O0sMiHP/ph1g73uHlQ4aPhzTcusTZbMrOwyum1JS4//20WezPMddJnvzgecGdrD2sbhtbw45/9GBt3N1haWeDb3/pzDg8deQGrK8u8/eLTvHfzFlU9TgSygdo6qMZsbu/y4Mk1unnGrLBcvnmdunuPt69c4+jZD/H4uQt8++mnCLJEZQXjeo8y0xwcDsjzFl/64y/x1T8veOyxR/kn//k/5s7GDWZmZ7FA1d/h8lvfYXXhJDuHA0bOgReEJtAfNxSFoiw1o8pSV5bjxx7l0htfwzpPpxR87lNP0m63OXN8jd/70u+zt7uNkg6Tt+n15llcWubJj36SV199lrFLixEFhhdfeIW333iLu/fWWVlcQuQdlpYWGPQPufDAg5NlnpCGZ95zuHvAsK5SjLNvGPQrxvWI0XDI/v6QO5ub3NvfYzCqWFqYpdeJlNJTj0fs1wOii4yrSFfB0kxgqbfGeDzindtbjIcVsa6YbSv6B332D0fIaIkx1SUZmdErWgzHNaVWNLUjCouSmkF/H6kEWkiCUHhniXKEV5rh2JIbTW4knSyipaLbi9zbqzHCIYJB+obx0DEe1iDTopJAIQgMRiOaJpIXGbdvbdBtz7AwO0vZTjXdaVz4Pfd4Gi1FEJGIxEjB8lLOL//y53j6mcDefgsncmLo0+n0OHr0OOdPPUi33cN7x2A05t889yyPPHyBPM+RMo0IYpoAAimNpWkaVpaW+Kf/5L/k2jvv8eILr7J2ZIUzZx7gYOeA9fV1bq5f5ZGLF3nt8mUeeehRfvZnf5Fnn3uep7/zdRaXFjhz9gTzs8t85RtP0WoVfO1r32R1ZY2PfvQj/F+/+3u8fvkyIYxZXVhha2uPZ59/lY989ENs/JvbhKCIUfDwo4/w/GvP4aIjM0lw097j7IBja+dYXDzCSy+8wocefoyREzx4/gFeu/wqPnjubt5CSsWwsuzu9fnyV77Cxz7+UbrtNqPRmJdefZOmhkvvvAlSML+0QLsoKXVDDIHD/h66bGH9PlpH+v395JgLFQdjgaaFs548M7x7/SoH4xotK2aKBfKiS2jGaAkh9ImxwLsGJSVNU6GFQcg0+Ff5LN2eQuttAh1kbRk3Dd4LgpAIIt55pE51BFq3UFjyIgdv0qArWnAQdUBogcAkBx8SPMQgEMEysilqXgtNlKCiBlLkuBSBauyIOicKn1zIExEuhoATkcaO01CZiEHgJpUNWXR4inRti1TrEEOcXLeg1fciy4SUKARaa6rRiNlOF0IgkxLbNCAiUkkkisZCv9/QeI+IERkjgUCMySF8sN8nRsvi/DyD/g4QUBgyLZmZa9FqdSkKTZ5lZLJA6vSzKCPRJkdJjRACJQRSKppmRJQZRs1Q12OkUiCTU3FifUz/V5GctEISQoPSmiigqiq01inCHZlej5ASjHyIIJNY4kOYCBcgs+R6VEpODiERIlJXY7QUBAJKS4wxeNcgdYbSE1cmKXqeMElG0grvGrTJJg07yaUcSVUvwachvdEGax1SaYKPCKknIkKqmGuaIVqlrw/OY/L0kHDOp6PKmJLCfHp/nbeYkKfaB/zECS+IUmIbT4wNeZERgyMGj4+ghMC6BmOSoKKkwto04PUhIpXCO0eMASU13ov0bzGidbq+RBSE4AjRgBT4ENKwVygIHiRkWuGspyhnaOqIaxxCBiTvL155vIs0fozSBikVGIOUEikkK6vHEFJyZ+MVgu/QVBWDA0u3N8vG7XUuPvox8syglOTWzRtUznL71hUefeTTnDt/miOrp7l27RLN2GHUkPm2pI4GbwPjwZi4uArOcuPGFfZrePihj3Hl6iUe+/DjGAszM7OIKJFaY+uGna1NtDFImTO3uAxo2t1FokyCVqaT6x/n0Sq5cHc3NshnZinKDlpnNLVFG41UCqkkjW1ot1qAwMdAmFynwTvquqJTFEhhGPoRWVHgfWD77m3W79wAIrZpiHmP2dXTxCioRvXkzk+iUpAaISXOBWzTkJUZVVPjvCc3OT5A1dRkZZuAQMaA1vqDZbbG1nS6sxhpcFEgpUEKGI6HtNs9YpQEAj7UgEMEjRAerXOstehMk5uMqq6J0aFMjtAK36SahmA948GAsiwgCJyvUxpL8ARrybUikxofRBrsawMR6mjJVJ7EFa0+EFoGg0Nm2jPp+a0keZajlCH4lGqGEHgd0UqgkDjvkK0CVZQUrQ5LK6usHVnl/OljzHRb5CaJdP277q/1s+8UP3qY8pkpn/lh5TPiPksmaZEhTvnMjwqfuc9JYUoIlJzymSmf+Yv5zPfF9/2Nw7spn5nymSmf+aswXXqaYooppvghw+/8zu/w7rvv/qBPY4oppphiiin+1uK//q/+KTv9hqvvvsdjp1d4w1Q84jWlsAz3ttg1K4h8RDv30J5jbcXytaeeot2dRQlPxCMjCFdx98Y1svYsj55eY/vWKV6+dJX9wZjnnv8OrTx1tttmiESzuXGIVAYF9IcDnMyZX1jhve0t1g8qFmSBdZHdjVsQz/PzP/+LZErz+3/4r1nfOiDGQK40Z8+dp9dpcfX6VbYOdjjcvUtpLccXFpmbnefPnvoT7m7uc/3GLgKJsGnwZKTChkiWFwga5ua7HFk9wonjJykKQzUaEmKb7fUNhK3YuPMOUmg6hWbU7NMqOjxw7kFaWUEz6nNweEAIoGSgqodICfv7WxhRMxy3OX/iDN959lme/PQnOX/hIpBc0MFabt66xb/+wz+gXwMyo/EeXMAHhxQCQWCmLVnp5ZyeL5AhDcOq8Si58BizO7ZoregPK0zUrM6WzM6W7B60qGpHEzw3bt/BGAjOIZTGRUerLOgPx+yPRizP9Via67Gz32dpYZnBYcX63i46CAJxMvgMKDTjBmyoiKIgeEE/amTsEwKszs2zO6g5ONzlYLBPmbXIdI4WGUJOhoVKob2kahpsLfn6N77JC6+8wmc+8ySf+cQnUFEQxfvFGd+b9gqRMp+EBGEcP/FTX8TkHX7hi/8J//x//F94+rvfob+3wZGVZX768x9ncSZFUiuZ0yoiT37iSQb9fbzzhMaR50XaroohDXZiYG/nHut3b3Hy1Gmeee4p9gf3WItz9FodPHDqzGlubLzDu+9dp6odD118ADuylJmmGlecP3MOrXJee/U1htWQsiz4xre/xmMPPkaMnjwXKODxRz7CU888jRCSGzdvcOHiWerokVJz/PhRbt28g21qjq4dpZvNcPnKW8gsDZ4Gw33293b4tf/iH3Pq6Am++/xLSGGY6cxzONyl2+0yHDV02hn9/pDnXn2eO9u3aFzNl/7099FasTS7xAMXF7mxeZ12p0VbtpObuokY3UXrWWIEK2uEk0ThKfIc6yNaerzb5vaGRyjN0lKP8ajPaDTGRsiVImiBD5ZWmeGDprY1uVJo08JbMxHEakbDApghCoGN0PhApjrYuk+UOVpLGmeRWpDpFtpAFBkuVNh6SJHlSXQLI0JUaJ1ElhgNQoQ0ALcNUSRn/9iPEQY6eS8NqZxEKI/SWaqXCA2ECmcDJs+JpOQcKUARJoljUGQ9RCxRwiKkJsszBAKt0hA7OWFjcncL0lA+Je6nKPbxGB0jpRJkmUC6CN6jcoEIDaXJKYwgk5KgoJWb5GrFEaNicXERoyRaSTpFD1VoMqNxzrO2tjSZSUeMypIL00eCq9OijdIEIUBKQnAoBUwWvKQxaKMJUUzcojENjZWCKAghJaMFIISAMYYQfaqxkem1Ca4BAs43lFmGDwGpVHIOVzXG6DRoHNXozEBM97hSBu/d5I5Pz4msyNIxgkMIlZyn3mK0oR5XmKxIy0FC4oOnrhsyk6GkSsKaUgihcN7x/hJlSmGQVFV/4qT2RAQxeuq6piw6xBhT1YMx6c+ZoZTpW4SQRAMhBFleYnKDiIEQIlEIgrc45whAlmWTSo+Jg1sAQlDXliIvJoJHJMaQXgYpEELQNMnxH6VChIAWguBAxEk1yOQ5Gr1DyfT1zlkkKrlh1USoERqtJN2ZBZpxH9Nqo6VGIqjrMYqIFJo8yxFKY2NIQkxwbGzdRmuNrwPDZoumqUHNcOL4cXb2DrBNlZa1VMYjj36C119/mr1Dh8oLejPLOHuHnZ1rZHk7Vcg0jhkzS2UaDgaHvHPzXW6v30CrSKs3Sz3Y48c+/XNILxgNa2YWjzPYP0RquLe5TQhw8847rKwcI1hP2W1Rlum8h/UYqTWgCNJhZI4MMO736c7NIZVGSo0NY7IsR5pUs6OETNUiCIJryLUh+kBVjdGAE3qyExvI87Tc2O3NcPbCI9y88RYrq2c5//DH6S2uEZ2jakb0ZmYRQtNUFZkxRKmwfsRMd4YgFIiItUNMWeK9Q6uMLC+IQhJcmKSiCJrGIoTGKE3T1Cid3jfn3KSqBKTw2HqICCBlTl3XSJMhVY4fHSKkoK5HRJeqHLRRCJiIr4KmbvC+BkoCAUKqaUBIfPS08oIo072hJCghaXxDkafXHSHItcJZSxARpUFnGcFHTJ6RmRwvJCbTRKGJ3lFmGdpkSJ2RGc382gpnTp/kxOoi3VYLo+UkTWJS7xIE0k+NllP8uzHlM1M+88PKZ+67zTfGKZ/5EeIz79uA7gdm5ubpzcwghZzymSmf+Qv5zPfPZf6mEWKYVJpN+cyUz0z5zF+G6dLTFFNMMcUPGfb29mia5gd9GlNMMcUUU0zxtxbN4Tbr72wwS8P/8dtfZa+ODGvHqdPH6fdHnD16i/7+Hlne5ez5h7h95VX2Dio2d+/SkpGi3aIZN4xGI8ZRcOml57n2zmVWjhxjfr5Hcy8y3+sy1+2xv7dHVi5j8Gw2BywvrbK0vMrZk8f5yMeeQISGmbLDwWDAm5de4r13r/LMC8/x6puv8Us/87M8dvYI9bDP0dVlut2c0eEhbSPpZYJWVrDc6fHP/ud/QW9GEGzKBuq1AkK28HLIYifg/CwHgyFCamjq1BWvBc5WyOj49tNfRxlHcJLRcMDvfulLdLsKLQb4kFE1AR9hfWudnZ2d1EsfajKZyHCciNdGevZtTa6gxGPrMVnRxdvA25cvszS/AAiG4xHv3Vyn05vl3voOEYsyinYrI5OCVm4opaWQjs3d21Boyiyn3cpYXlimLNrk795D3N5hPO5jBWRGcubUUTbv7dNrd9jaG+Gsp3Y+ub6yHC0VJ5dWqKuaneEIEDTW02plZHqBldlZ7vo99gZ9YhA0HoRswEeET2k3uZREV+MiCO8RKiJNwWxvDi8aqromL1tpoCEd87MzRCQ2JMEhBo8PEecsUUW++HM/zoMXHkTKVGj3/nLJ+70Q4vusriIGvFcM+nvM6Zz5ziwL7YL+zh2yTotbG7fY3tlmaeEYxmhs7ckyw8riItFbjBIcDIdkmUEESeMcQkSMNjjv+cOv/CmDwSHOOcp2F+8j+wcDnn76Ga5ef4fFmXnKXHJn/Tb3trYYDC0f+chHGAwPuXH9Xd6+fo1ud46V+SWOHjlGiJaf+ekv8L//n7/LytoKy0tj7q5vkmU5VeNY37jL8y8+D0KipeC9997j5UuvYQrNaOS5c+MqPkSEk0DkgYvnaHe6bNzZZqG9SH94yAvPfZdPPflJvvvSC6xv3GVka7QCET3tMqfVKrh9uyKQklaVyShbM8x1V7CNZ2O4zf6ohW7N0xYwGByQFRJnQXlPQDEKjugDZdmiXeZEmTN0O7jhPXwFUZS0u7P44T0kDlO06PUyal8zbgKKhkwbGqlw0aNdJNiGKDWRAa32LN55lBB4rQA9GeaNyEVJjA5jNNVoSMRNKg4kEYd1AWOyyXDXpKFwTM5crTXKZHjXEKVEk1yxIVqUNDinUDLDeo8hEmWOR2J9g/c2OYm1/mA4LkS6Bk2WEaNE5x2UMkRvJ8N5gRKgpMAogZSQaYmQgrwoyRSUrQIhBLbJ6LVzwownz3OECOzs95mb6UEUuGaMMDm9Vk5Te4KAECNlu40WKRkoIhFSo41E6wwldIqUFxIJOOdAZkzm+KAE3rpJJYJM6UJag0/DfmeblISmUpqVAJROr5mUEq00jW2oqoqiLJMTV8gkIDSWLMvQQuCin9zLKQWisRalFcboNJgXqWZBCIEUyZHaOJfEFCWIUqCUmnyP9PpJKRGTZgXnLFJnyQUdAi54nAsUeZmEGu/SzyIkIUyEDEBKQQw1zjV0ezPEOHE52/T+KQXeOSBgtMKFtDwX8EhSxaFA8P4FoYTEOkuISTSIUUIQxBiQUlCNRigtJxV2Cud9EjZUErOcTwtPtk4VRlXd4Jwjz3R6DgqBUGDr5JL3IaC1nAgvEaMVMkQ0oKXGNjV5XoKIZEaxu3ebEAJ7u1vMLa4wM3MEpMbZBqUVciKkBO+T653IcHjAq699g/5gnW6Zk2cF1TBjbn6Zne19Yma49PxzRKmYmekx25pjaWaN2XlJu2xTDUcQNKdOPoHzlo2tq3TmumhnOBwPGI37WA+VG9MqDP5why/82N/lyNHz3Ln9HoUsECGQZRlvvvoyJ88/xOzSKmcvXuRga5t+/4D27GwarFuXhBFEei9F+v3f399DZQqpDUIJXPBY7ylEjpSS8WCIFILGeYIQSAFGpr9XTUO306NsdbDBpZoTk9FYx2F/H4h0WrPU9RhCxejgHlvbGyysnULnOePhCFR6bREQvYfMIKPAx4gisL99AyFz6vGY3vIRjMxw1lK0DN7XVOM+7VaHOkacrQnRYpWkHlXkRUFApYWC8RhTtlJVTHQU7S7BgQ+OMi8QQhNCkyqYlMQ3HqkVKjOMBvvMdDqgFbGp0ROHfOMalBHIbFLRUkcEqf7BO0tZthEy3QNaaWSMNNbR686hpKQoCyKeXGtsEBgjiSGg2y3ac3OsHFnj7NFVFuZ6zHbKJAqkX/QfyGmT3/wgwLn7V6cyxb+fmPKZKZ/5oeUzAbiPiwJpf1pM+cyPCJ+5n8iLklbZmfKZKZ/5S/nM/WxrEYhkUJvymSmfmfKZvxTTpacppphiiimmmGKKKaaYYorvw3/z3/4m82tnObdU8szrb2DyGX7s059ntiU5snyEMLzNMy+/wWMPPUK5eZfdUUNmNON6RK1hef4ED59c5bsvvIyxlsJoNndHfO5zDzFrwJQ9lpaXuH71baq6oVO0ObV2DBtv0ytz7ty5xQNnz9DsbPPyK8+yde+AoXV0unN0OzM8+PiTzLcCGzs7ODvm5uY++/uHBG+RQlBFzfXbQxCagGRutoOXig898ihlWdI0OywejLlz6woL86ucOvEg79y4ztbWBvv7ULQyBgd9hIy8eeUKuUreX+cDgoALDudLRo0kmppRYxExkiuwVQ3e44VFl4Fjx88xGIzp97cZDBuUyPDAvb0Rg/FVZnsLXLv+DrO9FVYWlzBaMRyPGU1cyauzbXq5ojQBESx1U2ObQ0L03POe2dkOD546DkIhhUrpIShMfkhWGmzMUd5SFiVbO32+/tKbnD6xytryItdurqc8ERcoIjQicGdzn26noNcqsZVj73DA+kbBUq/N5tYOu/0BRhoGtsb6mIYLpGF6YRR1sCil0SqiVUFtG7Kizb3+IfVYInVBq+iwNL/AuHYobRBCYogYmQYBPkpEDBS54cjaClmWT8xQke8XCNK+U2ASy4SIgugDd67f5tbVa7TKDg89cIHTJ05z/fYNZtpt7u3s8dprL3Dy1AWef+EFfvILn2dhbp7M5IwGY2Z6MyAEWzs7/OGf/AGPPnieRx79KM989xlu37nOaFCRFS0+/qGPsL69RdUM+O7zLzIYH/LAhVOMBiOyvMX27hary6eYm+3x9//OP+SZ7zzD1s4e763fRMsMYuCBBy5w/dptrt++zs2tG/zsF36Kouhx4vYKG7v7PPPsd7l89RpSRTozkuGoQmOYKee4t7dFEAIjDbVNgxJvPS+98F22NjY4dmyNK1ffoeiWfO5Tn+Jgr089HlFvbqYlC2U4cuQEl96+hFI5dmwRuuDm+gaNe48oHFJ4hE1R/aYoENFT2z1iDAwHgSyLuBARIpLnGa2iw+LiSfqDe6jZLv1xiWsc+8NdZs2ITsuRpuRr7B/UVDYgcFivkfUAhMboNlIqnAcvPcFHSiExuqCp+xgpUaaksjWZKbHjGi2T6zmEiqEdkuuCjDT8NaoAD41rEFpAlASRJAQE+CiwIWB0TqYN1ju0ygkhIKVBRA/OQ5YjRI6SDqkCwkaMUpRlB6RCxjQUrkZDgh8w15un3W4hpSTTJVleoqSkleW4GMiMQYlUoRCIZCYnuAapFdXogFhklP83e2/6I1l6Xvn93vXeG1vuWZm1dnf1JnZTYlMkRUsakUMJwlgjyPYYtgcwYBv+4j/Hn/zBgGHDhg1jAMuCBWkkDUWKFkWREkX2zt6qa8+qzMotMra7vJs/vNEtjm2KluBpUZw4aBQS3VkdkRHvvZHnOc85p7DEtsVYS9u1VFVJVRYAzLsapRUxRYQEgyCoPDBPCZx3FFV+fC0lUudhmxS5NiIsh5LICBKCiLneIASUyUs1ITqq/ojQtsTgKaylrTuUNiiT3cpJSAKBst9DI+jcHCUFVudId5b1ayIGkAUJgYwyz9GFgI/EQZWFwc45nOuoyvx6STQpJbxzGKU+Ht7mCpmOGHIlBSI7ecOyKs4Hj0gBIaEse3mZLQZiCgTf4X2HlH1STOily1lIgXceJbPVWUqWFRUJiSYmaJ3DqDI7tYUiOY/SctmwKUkCQgi5tiIFkhR4F+gbQ1sviMEhlu85KZKiYrGoKauSmGJ+bCGzMOlCrsQQeeDatS1KqfxeJjAqv08xgJESowTGFMvqCZUFlAQg83stBEVREbxHasXxwQ84Pn7AYPcFro0uI4QkRJdvrAmkFlnE8d3S1eoRKH7hF/4pb77+NURsODu7oFes88orX2Dy+CFTLKXM5/Di7JS1S3v84xv/McYYPnjnHQ4e3ufa088Q3pkwmZ2xv/cs66N97n34JspNKGxCC5gvEpf3bpDaM4ZrmyitqaqKth5TzxeMT4/Z2NlhfXMbUhajVK+iPny8TP2T1PNZrgGMEe9bREooW3F6dMTWlX2sLlDasqgXGG3BlDiX3e1r62vEJPKZCQEf8+ePkhJdlqAFbtJQlQPapubBrTe5d+stBv0+XRtQyvHtP/mfqQYjbr74awx6Q7rGkZxHlwUxpZxGIhWz2TT/zLMFB3de5/DwDmvrV3jx059HS02SMruatSZ0DoTEln2ats3Xhe0jEmgpUVojEHSuRhqJkoa2ntOrejkpzLXZ1W9sXux1M8rCZMEgdZjC4rsOmTxG9fHRIwRIqyEpvA9UZYkICY/PAm1hcnWFtWijUUbnCtCUKKzJy3fL1LuU8lKeMQVSJNZ2d3jmyi57+7vsb29QSrVcZE7/2kLzD2OZY4BI5MSYFVb4G7DiMys+85PLZz5ZtG3NvK5XfOanhM+k9MmdoapQ7K4VKz6z4jM/ks98ktBar/jMis+s+MyPu07+f/8/rrDCCiussMIKK6ywwgor/APGncNzHk3eYzK9jC2GzOsF3/jzb3Ntf4+2mVFpaOoZ3/rL7zJ4803OpzPapgMSnYN7dz7g5OAOnUu88e4HdJ0jCvjDP/qXKO+48IJPP/8iF/0eDxae5Ka89oNTyl6PO/cfsn/lKn/69X/FX3zr67ikWEynaG1Z27qgXxqGlWFvmLC7e/zMC0/z27/924SQUEphlGBjMMAgcD5y+9ZdXJyhTMH9+7f4witf4NOf/TJvvv0Ws7MjtjYv84Wf/1meu/kUb7z5Or//x99i1jQYoeiVuVdexEDyCSEVLoJALiPmK9quJuiUnU0deeDlW7RV1K3j/Tt3kBKMcAwHI1ofaVyHtX0gcnx8QNUbMSwdk/NT1tYsvl5QxZpNbRAx4OoF00VLz5ZIKXjq6i4D28MpQe0cVdHn5HzCvUcnXNrd4KmrlykKQ2kKUgk+SsY1vHn3FkFq3rlzmN3aMWG1hKSIKSTlsKIAACAASURBVMeyz33Ljet7fOZnnuZr334d5yOnkxpTFDw6PP7r4SB5AGd0/rukRBMiIkmwis41hNghogOXqN2C1gWGvQ2Cc0QUAUHXRrxrUUoj8OzvbCOVIsRIaS1KmmWAf1quPKXl7pMAEREJkohkm1mCKDgbX/Dn3/4TvvylLyNlgVaW4aDi1778FX7/j/6QK3u7bL79A6QInJ2dsrO9R9UrOTo+oT/Mg0PX1hwdH7J3qU9pFc8+e5PN0RCBwvns3OzpiuA8N67vceP6F2maBX958F2stZycnqJ1j6OjPlsbe1zZ20Ul6BV9uhD5R7/0BZ6+/jwP7t1j0O8x7PfZGG7zO7/7e0iTOD07QShBjA4hQUdDf7TOeDZlfHGK9BKjNYWxtBcThv0BX/nyr/LHf/xVLu1v8Opr3+XBvftcvXqZ73znVR4cPMJ3jkobZl3gyt5Vujayu34ZYw13792lES0jbam0Zbbw2MKACEzqC4wf0ysUMM/Vb7pi0UGSkVKDLT0Bwf3HDxDiCYW27F36WcZnj2jDGVonhCoQcsTFbI42A4aDgppTCl3SeihtnyYkggQtFVI21LT4MANZoHSfEGu8ny7bB/OwaTja5smTh3S+xShJaS0+dBSyT3AdQQSUVqjC0kwX6OUZdqEhpEiSgrIo0FISExS9CtqEKiyxc7iuxfmWqhjgmgYjPdYavI958S4JQoJExFpNURRcvrzH+mCA9xGZIlLn8zno95jNFxRW5aEsCQUIET528yIKjDV5WC0lCIGLicpalFZ0bQNKopYDNSXScvqfY+BDyAN/rTXBd0ShUSHSOk/Z65G8JwSf04CkIMo8FnNtAzEsl7sUvsuJV0E6RMp1kHVqcp3ksvpRSAXRZYd09Pk+bAxSaZIKeXAePFJJUkokkRBKI6VAoui8RymZXatLzUJAjqD3kcY1KG2IKYGUpATBOYRSKJldlVKUxBBJIpKCRwiJNRoiOepeG1xyuZ6C7OAECTHi246y38/R8lLh/QKl5HKAL/De5QU4vfRhC0NRmpxIICJdTOiUHbchOFxX03lH2etl13OEdl5jtYHgabsGY6uPxY0oQAqJMpbYNHnJaVlLASFXRiiLlprgoVdVaK3xISC0JIWID5FC50Fvfj8CWgl88ISlEBGCJylNIOVaFAHPfOorbJwfo4TO9QjDERGBtpbQObRQRHKCVDeZUPX6lGWPG8+8RNkbcfeDN3l8+OfE7oy7r32Xjb096Dw3XnqZ177zp8xv3GBrewurS95/6zXqesHWziUePXqHo/MDvG/otZd49wevcn52wNUbNwkXJyzCnEJpnr/5s5wdHVCaknY2JSFwrmVycY42lqpf0tQTit6A0Hl823F8fMSzn3mFFCPNYo4uLIUtaJqG4WiDxw8+pGkntIs1epc2EQLizKFtidCCrvOYosjXXUz5ekyJCHSuxVZ9pFbEGHHBURjJW9//Dj948xusre1xfDwHL+jCHBnnoPpoWyGF4PDgNlIm1rb3MNWQtp6jpWGxWHDrzT9DSsOTx7e4evNl1ravY4ebiOUZr6oKbTSTyZSqP8i/qHmPNBqtLV2brxMpNTElknfookdCEUNEl5IUBdE32LKAEKjbJi9/JmgXNUaBEJrZbI4xmqQ0WmkIPicpIDHGUNoCqRS+jSiTqx9STAz6Q2xR4bxHy/w7ASJRGonUFlX0kL2SS7tb7O3t8tTlbdZ7vSwiwP9NFPib00/EMmmiW+08rfBjsOIzKz7zE81nPsHlJ5/cis/8FPGZH6Gj/xvBsN/L53nFZ1Z85kfwmU/yQAopV3xmxWdWfObHYLX0tMIKK6ywwgorrLDCCius8EOoSkGIDefjYxbzOWXV58r25tIZBUenFxTVOlYYYnIkkShLjU2B+cIRA7Qh4gmkQHbvCcHZ+QVKKqJIfONbf0qpNVVVMlu0+JgoiwGlHXDw8B4hRqqyxKoIJCaLKdPFDO8DBwdnhNBw5cZ1Xn9tC+cjZSkxMtK5xOHxCaPBCCsC48k8D7Riw+LRXbpmwdtv/hm94VVssc6To8e89levcXp6zLRp2Fjrsb65iW9aiBMmiwUkQ5ciezsbHJ/OMNrQuAaZsguusJEUNVEEkpIIJRHS0LpITC1KGkSAi8kEhKA/2GZ/b4vx+ITzbkFpPFc3YaMvaLsJk+acR+M5lY68eO0SVW8bU1hK3eNofE6/P6RpPBfTBm0EyhbcP5nw4cExw41hTpzpPEenhwhp2FxfozCCtnHM6wmb+0P6o5JmXvPOrYc47+iVFcoIetqwPiz5zmvvsb+zxcPDJxitkWm5EGIMLvqcquQTLjqMtiipIMY8kE0gTHY8RwFBBHY3t7l17y4gsCZxMTmnDYqyGKKVoCxLfLfIcdRSILVGaZVdr5DTnz/WBtK/NkMQKdeKxWVk9IODh9w9fABK5DhwU/DlX/l1PvfZzzFbtEynp0wuJrzx9utIKXjlM5/nU5/6NKPhgPH5Gc7D3bu32L+0ywvPf5q2c+zsbPGf/Ef/nCcnY775zT/j0cEx9x/eJyTH5cuX6ZqGo+NjitKwmNW89eb3uLS7y8nJmPHphD/4+h+wubPJvOlybcfmLl/72ld5/rmneeH6De48fMztBx9ydPaIxaLFGiiNyM7jqBj2Nzi/OMG1kSuXr9K2jhATB08eIVUipsjkfM7nfv7foSj6fP1r/4rJfMz791q+8/1XacIcQaBrI0ZHFAuMKtlaX6NrHVYKhHDI1LA+2IQEzjc5DSBJOhcJvqNvJNYqiqLPrAUvEogG3zqmfkzjI5fW+yAKog/IFBiWBpJgMa9wvs6uRT9Dyz6FtSiX3fy9qs9seoLwM4wp0KrDB0fqxni3TkwSQVrWDjiULkgRknPE6FEi0bMFXbdAYDC2xLsc/V9UVa6aE1NS9LgUUSrhQsIqjVWS4DuQHX21Tm+jJJCIlcGaIQePH7G+1mchE4NK4iM8OT+nbSd5/04AQqAFbK9vYK1FCIVIASkTIiZcXBYgSJ3vET4t3acRtTy7LgJRoLUhJg9S44LDuRrT74P3+KYDka+LFBMuBXRSaF0gETjvSQJiCswXc9bX1/GuxXuPSD1SjITQIYRGSQ0yoZWidTXSWEDk65tE0zQQY3Y6xpgrIJaDQaVkrglIiUgkhIBzHf3+IAsCyzQDSU4lIiVCCHRtgzUaKbI7WxuNUrl2IKVEUZQokV2pwWUnsZIKyOJBTBElFFLm78mu8hahBG3X5eck8kKRkpKY8nNTSuFcS9s5ev0Bne+WLmBJ8I4kBc4FzEf3rhjyI0aPMdkNrRTEpZtbKkje0bmA0vnnk1JhDGhjsjM6RrQxiKVbNyZyZL/rPq7PsEUJKeKcQ1udHzvF/DMkMELgvUcriS0KYgKZIsS0fE0TUSpcDCjncCGgiqXQkfLr77puWW0HUkR8F1BFwebuNXzTcn58xNpoPddjAIGEUJIYI8YYYucRQmAKS9fWfPjqtyiGfZJSXL7yFFU1om5rhB7hFnOUlLQXU965cwthKh49vkdvNGAt7XB6/JjWzZg2LeO7b6FlSUOiWt9Gzy5QDWwNd7l67Sa7O1cxRUUznTEeH3Jw8D4vjL6A1llwcm1LMxmjih4Ez87eJaQuaJuWKKDQluSzi/3s6CHf+trvceX6TXq9gs2dPdqmhQjG5LoD384pqgqkwoUWkiDJLAp4Ir2yQGqDbzym12d6MeX4+JC1jWs8PvgAYyyTszMGaxtYFTg7OOaZyRHqseHDH3yPx49v8fTzn+Kp5z7PdDxmenHKwwcfcO/OD9hc3+bmpz7H1esv0rULFDnlgBiQQuFdIEWPNQbnHJ3vqKo+MULrOqqqgKRw7QIhFVqXtG1DaQ0hgHNtTkqgICaP8nOKXoEPkPBgLDEmYvQMNzcxpiQilotzCVc3DMryY9FOqwKrFK3PqQ2yKJBaU6p8bQutEFrRX19nd2+X69f22d8YMaxsTj0Q+YNd/JD0//9ZMhO5Gip8gnUqK/zDxIrPrPjMTyqf+aSznoqiv+IzP0V85kelh/wbQRKIlFZ8hhWf+VF8Rmv1yZ1HIVd8ZsVnVnzmx2C19LTCCiussMIKK6ywwgorrPBDkNLhnOdi4dHAxcWC6eQCpUp2drZouo6ua7FKoxS4OqCtwChBr4SQejRtixQ5Zjs7dhJxOWyqyoK2rWk7x+bmNlobOrdgvpjQ7w1QQpGWQ7NF3aGFRClJ9AklJBfTC4QytHXL62+/jwuwaFsiUCjN/PgcawsKqzGmJfjAvI3EJJjMO+rFlFFT0NeBkydH/MH9A+bzFiEEtrQ8c3mXW3fvcD5rWNQOqySm0JyeTQkuIFRES0kIEakkikATEknIXCkkCvpFwXk3zb3vSmLklJNFQWkFVizYH25T0SOEBRuVYjo5xcSSKztb3Li0w7ffvkM1GDIabRGE4OxizrBq8Clx7+CMV289AlNw8/IaT12/CsIgkkAicSFw9+A+h2fH7G5fZjKvubq7nmOYdcXLz97AmILvvPEG+7vbHJ2NSSKQzXqS9z68y5PxZPmaauZdzeKoxRrDvF5QaoPWFidb2tDlpSMCSkiMVBS2pCgM80VLEzsen4w5v1hA0nQ+MBxssLG2xem0putaXNfRdA2llUgEpOUWybIeIjus8r/+GMvBBXzkuMx+SoHk5Rdf5JmnbqBRHB7eZl4vuHf7fX7xsz/HP/vNf4/b9+5z68MPuP3wHr1Bxd7eJSbjC4bDIXePjnnjrTcZjkr+2W/9+4yGI7xLrA03eOXTX+D2vTt845vfpCgkCzencTUiJY6ePOb5F57n+Wef4pkbT/MX332Nm9ee43vff5UvfemXefr6VbZ2drl397dZtB137t/l2vVrlL0B59MTUAJrDZ968UU++OBDUkxEAi60aOmZzGf0ehIXBI+Ojviv/ov/ku+9+jpHRw/pYqDrHHcePKJ1AaUMH967SznoUS8WmELTLgQygFaCXtUnpkhCoUzJwe23GfT6rA0rhsMRZxcXpOSpekPa2QRZlYTo6do5xhiMrDhftLigsX1J27RoaRgUFVVPY+064/ET2vl9okjUXYUQbb6OFCAjKc7oGrD9DZLqCLOW8XRCqRQhCRIK57P4VNgKJwxhMUErS+sT0TuEFOhUUjcLfGxQyTDorzGpJ7g2IbWnLCFGqNszerJCSxAyQUgEBEZpXPAsmgVaJowxWGvZ3FhjMrlAm5LCGs4ry8Hj+xSmx/72JU7PnjBpp+yGbRSQkkAKcM6jjGU6PieWDUVlkUGgpEQpAyi01tnhK0HESIoRZSSIhEiJFD3js3OqqsLoPKxOCKTS+BhIBFIUFDq7DwtrkEKSlCLGlGsKQktIoJRAikiIAaE0IYW8IOg9wlpSDEgFUSSCdxhj0UrlhAdydQQpoZTGeZ/FjQTRO2IiO0gly5oGj+9aUlniuxbfOWxZEWUCCSkFYvB0bUOvtwYxX99KZdEkeIePgaIwecgfU3ZYI9FaZDemyy5wLZeDSClQRhB9JHrx8esvJcvXWtG2DTFEYgzUi5qYAtYYUvRoo3Fdkx8nCbTOaUkpJULw5OrMXAsXY0dCEFLAaEtMIb9nCIQQxBiXTuwsUhCh6zqU0iTy4yuhMUbTBZ+Fl7bFaJ1f7xiQmCy6xCxqpJgQSLzP1RqNc6ilMz16T8LjQ1xWHgSkLVBEUILgElIIYogEIRkNhjjXoZSidR4lNDJ+ZEX3hORxXYNRaplU8VESVX5dIH+NgN5wwN2Hr3P16mX2t15ASzg5O6FX9Tk6OmAyveDk5AnTkyd89su/ymhnk1vvvUlRFGxvXGFWN6jFDBXg+o2f4f69D7l2/RnGj28z2N7j5U//Cv3+CKNbXIJF1/LGq98iSoE0ng9u/YDJ/Jiv/Pp/ysnZOXG6YDKdMD4/pa1nCCmxViMEzGYT7t5+h3ffeJXJ+RmmMGgb2bn6HHXT5J8zRtxiwaKZ019bIyGJSKwWCCXpzi/QaKzO1UTKKoxegyjZvnSN44P3GK5tIkTJYLRL19ScnU6RxtJ6uHf3Q977wauQPO+/9zZ2uEM7D9x+91WOH99GKgix4+GH73J6csxzL7yca1QAtCEqzWI2x1Y9EIqYPImItoa27vIx1RZlFMKBVhVKSET0GNvLAmRTY4oSQSAszxdKEdoOW2iMNUzOp/R7PYytUNKQnMv1CzFhlMCWJVLq7BLXOXWg7hb0+yWF7aOkxFQlvcGAvet7PL23zebaGqOyYHl0/l+F2r+tdJs964K4qrdb4cdgxWdWfOYnlc980ktPWkq00is+81PCZz7Jnae2qYm4FZ9Z8ZkfzWfiJ3dH+yhlecVnVnxmxWd+NFZLTyussMIKK6ywwgorrLDCCj8ELXogA62P1N6TRI7nFwSCW9DUUzoX6ZTG2IIoJSFGQgBresglmUZkMtos3MdOuRg99SKiFNkNWfaYzab0emu0XUtEsr93hbPJeSapCOp6gZAaYswx8EKihODi/JQQHZJIYYo8pEqCFAKPHj1mY3MjC8ghsV6u8eRswmF9wrN7MDubcL+ORF+gdA+lND565tM5X/3T72KtxKhEihqXImWVSAFc8tQNWKsZVRVKBhbOY40ipARBk4JnOs8R6iwHaosuOyBdUOxsDBHBMb4458beFi/deJaL6YwPD+8xXN8giogU8O69e5ycjDmb1czbwBd/7gX21oeM/RwfEkoEhJBImSisZHujR6/QdMExHPTZ2tyhbRrqpqM0kqZt6JzHdZ6NwRrDQZ+1wTAPSqSmcw3WasaTOSLCwnXgc6T6+qiicx4lcjnDYlajjaKQEqUVbddRWYMPiUk9w7SKftED0aPuWnwMGGlQpqALibPzE1ADCmshJoy1GJNHBUKI5RJTHr6Jj4oglk7LrBjks5qWXwiyQyql7Ojr9Xqcn4157c3XOZ8c4uOI//Ff/E/85//8P6NflpRlj8++9Gl+6Yu/xK07d/n2d/6KX/nFz3Np9wZ7e5tc2t2jmXcM+3l4f3pywvu3b/P1P/0qXb3g3sMHDAeGr3zplzk+Oucr//grPDk8YWNrwGde+RxvvXubP/jqH7Gztcu773/A5z77S2xvDnFd4n/7P/5XUgoYbXj1+6/y85/9Iu+8c4vxkzH/wW/+FkePD/mrN97i+6+9SgoOUynG0zmjQcXu9jbn4zkffHCLd957kygDSYDtabqUWHSRex+8SnAOoyzruyOkHXF29hjXjJlM5gTvmCwaandGrxjQ1C3KDFGyT9M4ZpMxQiua+QXOtZS6T1e3CGVwIWLNACFqXOxwF4EkJFWvYHNtG1EJLk6PePrqTRazOTMSi9qRtEcKRR0EQrT0i5rGQ+cMVdlHF562XeCbhkFVQoAQPb2ewXtFV08IIWClYqNfMpk5SAIpBYvZmH5RUjeO6XyWY+NDh1GBUllCDGgB0ucofB8ToUsEGbBaQBS0rgUtoUm0XcPh6RknZ0dURY/RcIjzHRfTCf0BOAFnTYNNGqMtQQApkVBoLZnMZ9jhiEW7AOFxUtO3BUIkYnIQE5FEjB8l9gSSNSQpiK7FhQ4pLL2qjzaCtqtJCzBqWdGgVPYbK5mH/ELiRa526boOqRR0kdY39AuLSDlSQEmJd1lciSlhlFlePRIRIl0I6BAInSPE7HKuen1CgpAibduwaFqEXFBUJVLIHLUf/Ec6HiCxpuCjhraYAlKJPNBPUHeewlpEEnS+oyxLEqCERCLz/UzkIXuIMZ9trbMwksB5jxEGYwoiEaULXNPgQwABMSWqolo6LRNIhcBTViUhRBYhZNe9VvjOI41FKpVHjiLXW0gpiQRCCLluQ2kg5Jj9pJbOa0Xw3VJ0EktXtCRGsEUWbUKCtu1YWxsgBHSuRklNaD3BhywMLe9nPnS0rkNbQ4xZUDDGZgHGGppmQa8/QKZ8PwZouzaLGTGSQkQrmWszUnZuZ9FCkFJCWwsiEXxHEiC1IqVAShERHFJpXOeQQuA6hy3L/NwSSKlQxhBDIDif0zb2rnDr7je5uv0Sw7V15qePaVtH2x3S1g3D0SbXnn2O9MyzbGxdYjDYoOr1iZ0nOnjhuU9z/OSQ7d3rnBye8NzNT/Pg9ptEkRgO+vSHG7TOoazl8f271PMJMQoW7Zhvf+N3OTx5wu7VawhtQShOT+8jiiFPv/Ay548fs3ezhxaaGCNHjx/z2l99h3o+xZaG4ycPee7Fn+Xhh+9T9PtsXXmKoupzfjamP1rL5yF2GCVAKVKEum0ZjjZRRuO9R+mCxXzK5OyQ7a0d1jc3qLuaduGpx4/44N3vIUhcuXKd9eEWcsNw9vRLNO2U/etXmZ1N2N7axMiE1gKEZHw65qg74he+9BvoYgSpxgebUwNSQkjoDzaRUuPcBf3eAJLAdS1F0cuO7ZAXKfLiRYcxBi0FXdcgVRa8Y4q5rtNovA8EApXO99wYHf21dZDL32e8RxLoUqQscw2EEmq5yJGQxjIcrVGtr7G1v8+NS1vs7W6yNxpilEQlQZQpi//5A5qPPrlzudNHn99/G5lg+d0igXN/i7+3wr+NWPGZFZ/5SeUz6eP74ScDkQTW2hWf+SnhM5/k1lzC0zaLFZ9Z8ZkfyWe6tv3kzmMMKz6z4jMrPvNjsFp6WmGFFVb4MXjhhRfY39//+34aK6ywwgorrLDCJ4QkFFEsCN1H41lPSgZjJcfnZyghKKoBa33D2WSB1ZLGBaKP+JQdX4WypJioFw1dTCgh6Fc9Uoo0riMmSWEUZ+MTprMZm5tbDKuCWVsTtGJ7Y8R4PEMJyfb2PtZImsWE8XiCNYZru5tMF3Pa0IKOuC4gpUEaSaktg17FvJ5mgholZycXJCIpJY4nkcr20TKwcB1tt8iJGAS00QTn6LqAKSTWQEqKehEptEIkRa+wIDxJtHQxEtEgOgQGAXgSRgis9fgIrQ+UVYFtIRGYzFs2+hXTpuGF9W2EDAgZOR97vjc5AGB/b5N2MuXDozNChKZrcb5DqDxAD0sXXxQ5pl0mgSk12igqW3F97wZRFDx8dMjRxZjxvQlymSDy5OyM03qOayVv3PuAed3lyHURmYbIxnpFz1d00TEdz9Fa8fS1fd6/8wC7jGlXRcSHHM2f53MJISUiWYaDHs18kZePbIX3gRQCUSWC99RNQ2+9TxcDQhR43xFDwCrFR11hSxPfstMuLRvtxHKkkB1j6ePBQlr+85GTOiCQVFXJk+MjmrrlU89f5+aNfV5/611eePYpnr5+lY1hn6rsc2V/n9/4J79GaSVbW2t4d5mrV67k4auPCCJr6xtcTMYcHT/mmaevMF90DPs97tw+4N/91V/j+tNPcXh4BN7z3rvv8/DhD3jpxZd59fuvcvj1x1y/+hS/+U9+k0s7l/inv/brfO6zX+R8fMG//MPfY//yLjefvsmf/fmf87VvfIP5ZMx0EQguUNoRX/zcZ/nLV7/PxWSGCgWL+ZyDsxM8jn6/IAlDMwt84+t/hLWK6XhGf3MbWw3Y2NqkKipKHbj7YMr2xg6dO2fuJK5ueXR0hCkVScLR9AxNwgFaKny3QAhF4xZ0sWNv/xr15JTR2oim60D3mE1nlIXF2JJ5t0C6BUImYohZEBofotKC1GlECabo5VoEXRC8J7QzrEr0ipLQLqjKHJ3vUCgzou061tYMTRvpkCTZ0iuHxNBn0dXU7oIuKAbRMhr0mM5qYnRUtodM0PkFXcjD4IhHqkhKmkBLTJFB1adtssMwpIALnkjiYjKm6Vrq1uNDSwgRJDhf88HdWySpKO2AnZ0dNBKWbmVP4vDoPuPxEFtUbIx6TBdTiIr9vSvsl5fQOg/DU3TIFHPFAQEjNDHKZU2DRGtF8IHoAkYKtCoI0qGMJCwXW0CSyEJo7oCIIFKuyQgeawf5mogBLyRWgNA5+l4JSCEAiRQiIgKhw7mI1BqpLVqI3JgQPJ1rKbRGK4USEmUMXdciEIQYiMuRn9CCFLKbWkhJ3keUOb7fdQyGA5LI3xuXZy0P4D+Kds/pbYSINZoUHcrY7CYPDlNUaKtyjYm1WFsiRT7DuksoYyEuXcsi35cQghg8IQUqW4JIRARCyOUSUQICUgqs1fn5CDDaEKIHIZBKEnx+njF4YoikFLGFzctHPuZ7oMg/T3ZWC5QWdK4jhUg5qNDGoozGuQ6pLCEkvPPEFLHW0rUdSuXXQBuTa+ykQiCBiAtZlE4pLR3kEaTEaoP3bR4qx1x/l0QkxUSvqghNk534gJSa5AMpBmKEol8xm07Z2t7GyY4oZK4KSeHjqr0Efy2caMNzL/4ivXKdre1tzg7ughYUuk+9aPAisba+yez8PIv/wbO9scv7b7/BydkT5g8es+imrO9cQibP3uV9Hj9+D9A8ebzg+vMzYkiY0qKMYXJ+TDs5p2mnMBA8/9Lnee65nyN1kVtvfIPzxYzrNz/H+tYm7/zFd7j83E20trRNy2JeUw1GHD95gHQKHwJf+9rvc2l3h9nFGZ/75V/nuc/8I1rXMFjfzfUHIYHWSGlYTCcIQBeKmBxRZJf/7Pych3feozl/zOXnf471y09RFn3eeztS2AGRxOmTh8xmx1y+8SmGe1foHr2f70uu5Rtf/RcQIaQAzmNKS/KCRx++yeODO1zeu44ebPDcSz9L17SUtkIrQ+s6uq5mNBjhfCQQGPX7pJjofIfRBqklse0wtshCQvQIpfDRETuHlgmhDKltGfaHJClJIdAfDDDFUmAJjlaC0hUqOMpqSFkUdG2L6vWoNtbZv7TN1cs7PLO3zcjmmgfgr8V9wV8LBPk/fPQFP/SJ/bf/HXX5p5afdFbKCv/QsOIzKz7zk8pnxCd8+/IhEMOKz/w08Jm6qfHOf2JnR5mKs4vxis+s+MyP5DMh/d1+n/s7IaUVn1nxmRWf+TFYLT2tsMIKK/wYvPLKK9y4cePv+2mssMIKK6ywwgqfEDrfkuihZaCLCaESKio67wgpFa6f0wAAIABJREFU5pSUsMCoAdZqvNPcvHSF+fScR+cndCkShUBGhVIKLRJG5zjxGDwxJqrSoon4tmNrYxvvW45nEwKBRV1jhcTHPPjyPrC3u4sd9XhAx3QWcNGBXtBNQRpFUeb0H+8TbezQRrOx1uP0fIYLEltaQtNQFAVeBmYuEWPCA9Y4jPDUXQkhr9JIKUAnpEx0bcAWChcDSQiKwuJdS/CGmU9EAZVWdK1ExRzBDg6jWjrfX3bMF/StpN/TjKdTTsen+Ajfev1dnrmyw7NXrzJvA6QZo16fi3rB7sY6Hzw4ICTFaDSiKC111xDIAwVtNELmajefAi5EIjIPqlTASMXu1haD4ZB7Bwe4rsWWBTtbm5zPW86mYyZNgxZgixLnWgaDiuOzOfu7W3zhhef45nd/wGzW8cb7dxHJk/xyqCEFMUW88wihsLbP5sYep2dPmM8nSBRN22XnHRJTCGrvGJgeZVmwsbnFolF0bYvWhiAFYSkORBLJR6SxH4sCP+yIFumjP5bNESlLWR8LCCI7FZu2pT/o03YdL730Apc3L9H6wHe++xpX9va4tLvDn/zptymM4PM//wWGgxGHT47RRtPVLYPRkLMnx/R6lraNTMYXaG157qlneer6CwwGFe+98z7TWc3p0QlaSP6X3/kd2tAxmZ7T1I4oHOvra7x/+wP+6//2v+Ezn/oZFospT56cc/3yDV5++WX+z29/g6IYMhnXXEyO+dTLL3MyPUQbwXBoOD47Q0kwuuDkbMza1ojjJ8f44Gm7jqZpSGE5hO0EzgpOTg6Aml/4uReQoiJFuHZFkULHwaEjtA0xLNBlQFqDb+d4nzC9Ei8Uw94AKR0+CNq6Q2vF9OQEYw3BS4KXFKWmWF/Hx4AQicn0CVZ4BmsjZl2LNX3K3pBmcUxlDAsXmbQXWAVNG9HK8NyVK2ysjTg4PIFRiVaCs7NTiv46WhiUUfQKxfYzz3D/yTlPTs6p2pZLmzvcO3rAonWEGFkve1SmYsY8R/yHiCRxbWebDx4fMm0WEBJGgEwaozTGZAdhUgJjNa1r8CFydn6KLUokgqIwOJ+4vL3PZFrTOU+vLNnd2ubitMa5BiEgJEkUCXzKw3VreDJ+jDTb9HTFvK6pm46Ycm1OSh5Byo5HJVGiQEiFJ88nrVZIpYi+yRVnSRGCx/t8LUitl8PoXNcQuoaZ67Bag8pDfh0cEJfCiEBLhdQmO6J1voaTi0iZCMnlewkCqQwxJLTOQq+QCte2pC5iyyLfdwRIZXFdnQsTUiR4t6yLEEgpc9qQ87n+YplelFLEaE3M+zo454g+Pxfv3dKJKxEpJxUhJEIItJBEKf66biGBD5GyMjjvsgAcABLqo+ohYZBCk5KHBMF7jLEoqT8eTnauxooSpQwxxewa7VwWMWJECDC2WAoDkRQF2mpSylWIXddlkSR4EIr+qEfwAblME9G2IEXyzygEujCEFNFaU0+nlEWBcw3eO5S0SJHd1cZ8VE9hcU1LoQyEgJAyrz75nERCgi4ItC1QShGCQwhBFxxKamIKLLqWak3iap8d2j5QVBodofOOorAYa7j/5Da7u5dIZY/kXHZBEwkin4UYBW2Xa5NG61fYvfQ0EslsNiMGh1WC7b19yl6f6fiMajiimddMxhcUVcWgP6BrGwZraxwd3yYKzfHhIwp6lL0exvbZXdskOkE9b2hly6bZxS2mHNx9h0XTYooNRsNdRsN11jd3cKFj79mX4PETZosxt9/+Lo+PbvPMkxeY65I7H35Ab7TBtWvPEELLpevPcP/D93h478PsthaRt9/8NvvPfQZbVIil6JZIKAGEwGwxw5QlKQkW8zrPuU0Wn6596rOc3L7NnTdf48nRPV750q9yaf9p7tjv4lPLYlpzenTA3rUXaCYTRv0hrnMUvTVEFLlSSmvaroU2p0wcnx5TFRf47SuMjGR2OqYYwmgwBCC4DmuzS7mra3r9PgKJX9atYC1d51DSEFH5vdGWRE5Rqes2C2lKI1UgSo0SWUAYDtcRymKEpguBwhiiUAz7fcrhiLX1NTa3Bty8usvucMSgsCiRr9n/J36cAPB3F8hEgiQEKa7q7Vb4m7HiMys+85PMZz5JnBwfs5hfrPjMTwGfmc9rnP/kPv9Oxsfs1YMVn1nxmR/JZ6wxn9h5TLDiMys+s+IzPwarpacVVlhhhZ8gxBg5Ojr6+34aK6ywwgorrPBvNW7ceIbWwdmTA4QXWJkQQtK5lq7JyRFKC84nF2xubLLeLzg6fkRMgn5hmXWR4KAobY4sbx2CRFFY5ovI2sYaxjlkbClUxZrVnCwa2tZBkozWC0LwaCkYTyaMkJRacHJ+igsRAbTRISUMh9A2grIskSIxXXRYbTCyw5oBl7YNRIuPC54c1xgLTZfTe/r9NUKYkagZDR3+whKiRiSBEIkU8+BIa4/rQClNlJHJ4oJCJLwQSKGwqkAKiZEtRIFSis5HYswj715RUGlLIWsGak5jBgiV6BcDFnXD+WxOSAlFSxsTkzoirGcyTVS6AqkRyfHB7Qf0KsXOxt6ylkGwNP0RI9R14Oj0nGFlkUsSXVjLyfkF0Tu21tdwjcNqxbNXdnnw4CE7mxsQE/PaY43l5GKKd5HT0wtee6NhOm3YXhswrxu8lzjvEBKQiegiAoWQoIXg5PQRLnSQoCwLbGFR0jKdnWUnJoJZPcc5x0E8pNdbx4WIdx1ReFoCsMti3uJcdoAmkSAu3Zk/dEY/Tnz6OF36h3KfUv7mteGIL7zyC9RNYHNth3dvvcvp2QWL5oLZfIwQkUdPDjg6fMCLz98kIXnrre+hdMG1/cu89DMv8+D+Adeu7/Pw4CFGBX7r13+DF198joePTvjff/d3uPn0dY7PDtnZWeeb3/wW7956k6LoMeit8eDogM9+5hVcSHzzW9/iYnLG+x++g5CRw7MjDo8fo5RFiZLJZEY13GC9kvzWb/2H/Hf/w3/P5taARTPl9p0Psyu0CwgdOR1PuagvUCYilEIqAUmhEWxsbtNGz0l7yPTigndvP8S7xN2Htxj0+wyrEf1yk3p+DIVAC828niJExGiBwGNEwC1mpBBoOoePgo3RiM1eyeZmRT1d0IYpoTX0+ob5dMGoKvEyoZRhNNqn39vEx5bJ+Jh+2aJ1D58MNuWBMQhGaxsM1kdMpzMuZo/p9wPrwzW02WbatCQXubpziedu3mBxUfP09at88y/eol/2KKoCoxXaGAaqoEugI2htEDLgo2NWL9jeHDJaW2NxPMYaaLtA9C3RJXRhsbpHsoGYPIWx7G7tc3x8Qr/oMywrNtfWOLsYU5YVu9s7zNsZSmqmkymz9oK22clnMSe646Kj6m9wcTHGxTyc39zaYV8oTDVcDqcFMQqUEKA0Pjo61yG6QNPO8JGPHYYxJkKKeWidBKYokTKnEwhAEpBIvA9oo7ClpWsbIjnGXwiJQBB1rjcTMlczuBhIvkEQQGhizJUMShmU1nTzBdZYfPBIrfDRE0TK500qYkzYomAyGWMLTXSB4BNWG6RSONeBkAwGfTrXIZXEN/7jxCJBQgpJQuTH8Y7kI8aWKK0Jnfu4mi1FSFLimxaJWA6s83BQSkEbAloJfNchZSL6pfCgBMsQJFJM+P+LvTf7kSRLr/x+d7PNl/DYI5fKysqs6uqqrt4XElya6iE1Gs0Ao8EAAgjoZSBAfxH/A+lFD9KDNMAMSAzVlEgO2ftWXWsukWtEZCy+u5ndVQ/mVdMk2E2IGhZ7mn4eMiM9w83NLexej/N93znHde5exnQxAZnOuuEgpbvXipCbfK2WThA7bmqMIfhA8L5br0oR1tEI66SNrgCvFISElpLgHc62VNWge294dKbXP/vOhYno0aqk9YkQImVRAbKz3NcZ3odOBRssVVFBiusoJHDeoZTsHkuJMsu6eBQhSHQRFloYFqsFynRNjSgEiu5zQQuNj+3He2kCorM8eOeH3P7sVzBVgW3q7n1aR9bLSRK8t6QIQkoSitVqzofvfAshViTvGW4NKDLNajZhfH7K86fv0dSe/qBP9urrKCnpb1/jC4MtTk9O+cznvsY73/kWrml5+eVXGe0e8NMff5fp1QXXX77DYLjN+Ow5ZTbkzbfu8s5Pv8d4dsbFDx6zmLzg9Te/SjXYZ7AC1y54fvKcpm14eO+7NEvLzrVPMRzskCvN61/6N5yfPeP+T3+E0IZBf0TdzIhRshqP2Tm6hdRmrWgHgcRZD0nQ7w+RmeHi8TE//I9/hMkl/e19vvyNf8lyOOD2579K+l6DKfps7+4xOrzF9P6c1q44PXlMcf9dDq/d5Cff+mOqMvGZr/0zBsNrjMdPCHWLFpIkBUYXDLd2WUzHjGdT7n/4Nm996Su88umvEbWgbWqUEeRFn5QkMXqqcns9iJDWUSeatrWURUlIAW89KNOte9egtCDL8m5tlAVaZUgArdFZDshun1AFZa+HHvZ4485Nbu1tszvoUWqFRHYK+79HYX83yvw3Pd4pqlMCGz85p4sN/svEhs9s+MwvLZ/5hGefTk7OWK2aDZ/5FeAzuflk29lad2t0w2c2fObn8Rml/qZhkb8fCMTH0aEbPrPhMxs+8zdjM/S0wQYbbPBLhPl8zh/8wR/8Q5/GBhtssMEGG/yjxqA3ZHp6SlCyK3gvFwgl8akjod5bYvKgYDKfs5hPWdQ1Jlf0i5K+EKyahhAjznpiSjSNoyh77O+VTFcrbIhUSrI3GhCi4+joFrk54eJqQts69vd2mC3nVHnBsDcgOo8yFc7NkVLg24bWa3JjyIuIswkRIdrEqm0ITnJ4ULLb32HVNlzNZ2S5IMsKlBzQ+obtrR1CTKzqxKQuSDJiMtAuoRWYTOOjpHVTVKEQvrMoR0MTEloGUvQkGWlIZKIA41DKERL08oyV61RzLgayPGMWA6Oe4XzicY2FJLEWoosoEoEuw74oCvrFkLMXY5btEkXGgydPKHolVe+Atm0xIaGFgSTQqiso/oe//AH+q2/QWsHD42PKouLR82cIDVWpuGhW/OTeY0QMnE3GvHnnJe49OiO0jqDAeYsPktZ5rqaW7X6JVhpjMtp2ickkRW4gBmZNRJuEDY7WrogkYnAc7u5j28iwN2Q6m2FU4guffo17T8ecj0/JTIaUkWfP7yGlJlcGoRUJweOTM6qioCpzHj95yHg67uyq17K+j4qsH1cQUmc5LUjr74GP/lMkiClSFRVVWfJbv/51zicX/OTH3+Hrv/E7WAdow2J6h+enE+LpmNdfu8OiCVgCJy9OeHR6zKffvM3tV17manJFDIGHD56ii4yz8+d86a3XOT+74Jun3+TB8X3u3r7Fv/kf/keaJvDv/+gPWS0bnp095Z/+k9/h3//hv+PNz3yGq/NLnp88pR5Ynhw/5M7NOzw/P6fqjVjMrvhf/7f/HWsdVVUwmV8RnMBISUoCKTWx9UQpCAkKnaFliyVgXcvF5AIhJFWZ47zj5MUJtl6xWLxg2WjU3m2C75S0N45e4urqOf3BkOQ90XZRHUpIogxdw0cYUvRM51MGvZIX50uWzYoqzxG5QUmFVA4RBTp01viT2TmHoy2KQnB11mJ6WyjVZ/bC0S/61K6m9Y6r2ZTlBxNUkAyHOyRaLsdwdHDE5OqYSMuqtmg9YNbMwXm2+jsMBwPOL1/gkfRNQZFlzJcNvb0dFIKQ5tTR0rrAg5NTWgu5NFSlwbZzkpRIEzG66BpsyRJsS9Ufsj3a5vzFJdZabr10g+Atw0GP88klbVuDg15VYW1ACE1KiiA6tbJICSEyLs6PCUGiMkNKhjzPKExOmRXEEIjSEFMXL5BCYDoZM9oeEEKnAC6yj2IUPAlFTFAUBUp3EQ4xde5mKaVOHQ3EGMjzHFKAGLpENKlR0oBMtLYlkzkSQfCdO0Xn1a5ISeKc6wpvsSve+xjRMeCDRQdFV84HqfXHTmqCRAoBJTIQsVMwm25Yx1pH1u997HhAjFhryUxGIOGdQ+dZF3eROtV0TBFtNFJIHIk8L0lEICFForU1SnZFdu99F8EQPEQP0uCsA/VRJKUmzwwuWKTQBGc7ByWdkeUFPniU0FRmrf5WqXtPApSSOOcJzuNj17hIKeJ9QOkIdI1qFwI+OAqRA12sRQgBrRTBO0hdUV6ISHSQF0W3R0kIyZHleh2BIXEu0OspEJBlZu30BN657mslwQfEWi0uhUQoDURcit1gEyCVgtTF5UkjaOoVw60tou1immzbkpcVkUSIoWv4S4F3jmt37vLkwX3mizmjwZCQHGiFUYrVarlujkRc25IVJUkkfvSjv+Dhe9+l3zdENaJ1LfVqhdKJ4/vf5ydv/zm3jr6ANor33vkxRhu0VGwf3eLq/AXNYsn2/iHD7VHnBCBgtazp7w2YXpxjlCKrBrzx1d/m5NkDokr0qopoFRcn95ldXdHbv87+1nVefv0t4rtLVvM5p8+fcnZxysFyxRe+MET3uoGy0bWXuXnndXb3r9OulmhzyM61l1Blj3I0JIVIsB6tFUJrFtMZeVaglMZby7P77/D85D5VPqDX38Fog3eOB/e/x6K+ILQNDz98j/PTR+wd3KBp58xmU04evMv0/Bnz2ZLy1dd4+uA96nbRVdmlIblIigEfoVkt2bt2l6sXz0nB8vjDn1LkJdu7R+Qmh9gFyLSrFSYzJCGR6xjDXOvOrWS9TIX7yF1AYZQkuogue+Q6XxfbuyE7FyylqRBSk496HB3t8tLhHjf3d9irSpRIgEKydlf8KMrh51Xy/674meP9vMN+5GoQAbdxetrgb8GGz2z4zC8rn4H/vNvn3wZpIr1+vuEzvwJ8Rhaf3H0jpKA3qjZ8ZsNn/hY+88lNcUopsS5s+MyGz2z4zC/AZuhpg380kLKzUtxggw022GCDDTbYYINfhNn0inq5QkWNloKVBJ8ERZmRXKCserhmRZsSeQUqlfSlxDrHsrbEkEhEbNPiXMTkGm0ESmt6hWG5kEQCs2VLwZTh1gBJQCORQtDWNfPViqPDGzRc0rjA1XTKZDmjrApm8xXDchuWK1KCQVVxdjlhUOXUrYPUKdAWswXNYs6yXRCEI0iB1CXeLpHAxcWYYX8LrXKkkoR2hnU1VQmNlyhTIGIiiYxh2XKx6AoHKUAUEEjorl6G9gqTZdR+hQgG6yJeG4a9nNm8wboaIQySAhtrQvKEmEgxMFt4TscT6mho3AobaqTa48XlhKvZhAbLSGpevfUSNibyLAc8+6Meo0FBTJCRqMqSz376DpKMdz68z7xtGQz6bA2H3HnpCJUajp9eADO8b9kaDIkxobSh7AvmdUtMmiIXxJR4aX+Xy+kCkPTyjKa2ZKZTY/kQCQl8UGgZccESBGgky9WK1jWEscXonIX3fPDoOTFpDnYOIAkux2OETCAlyhiKTJFlBZPpFd6XDPvXOdq7QVM3a0UfxJQ+VkV1RUpBSmI9+7Qutq3VlIhIEhHnXKe+VBllUXDr6CZHO7tkJufZyQmVyjmZ1ZxePWE6nfKN3/p1vvL5X8dHz+nJM373679FlQ9ArHj/ww/Z2hnwnW9/n9c+dZfBVsV3fvwDVssZQuTs7u4xHO5yeT7l3qMnPDk5Zm9nh9/42tfIswGf++znefbklGU9Y2t7m+VyxuHBEW9+/ovsnV3x3jtvM5+dcfH2U7Z611EiERNYuuKRTIKqrECvaGxAO4lrLdYmohYElQjWUvQqlNTYaLm4fER0Ehk9u9vbBO9o2pqiyhhUJfOxwiVQWU4TBUk0ZFWfEBM65Aip2d4b0bSerZ1DTp48pA0tO5VGa8XF5RylVwiG2CDBGQ5HA+6+cki/v4tIGckHxouGk/PH2FiTq4ZhNWLVjEnOUxR7aDOgXtXYxvLuBx9SVgOCa7n35BiXoFca+r2M6CzT2Tnj2RVadPe+C11RPvhEr18wnU/JM8WqcTRNgwvdz1/L7rq0rkVJGA76CBkJC0dUBikMq9WKNi0xSFL0lFnGk7NnTGYzTFLkZUWeV1S5ZLmaI3VCIREJhBCdA4CqONzdZd7MmEyveHHR4+DggEJGUuiG8ZSIKCGZtzVCKqQ0yNQdq7UBKRMudIrpmATa5N2sX+zue4lEEElSIURXSpdaEELo9t8QMUoTQySgSCEhTSB6R5IKYzLkRyrhALV3VCZDKrVuPnTH0oBWmiZEhNYovS6hSYWtW7TR62J4pyKusowUA1oryrIk2LCOi4BgPWWvJIWIlAKtNCJ2sTJdXEQiiUjwFu/sWvkNKjNd5IXvnLOi9yTvyYsC50KnsI6RxrX0TEWWaWJISCmJrUcouuhC76nKkghY21JVGcGFrlnzkV3XGiFYGluTmZwYAt46pOziEEOM3WPBkeUZMSaE7CIyxDpKAAnDwQipJE3jkConyzp1upGa6FuUNuvCe4MQnTtTjBEpJSF0RV/nPWVWQgQpFDH4dRxHwqWI/+ieEF2EhlSdKhYhsM5195peR4mkSKK77l1BOoAApTVGKVRuuPWpNzg/eUqRZ0jdqWlTjBS9kmZRk1rPaj4jhMB4fM7pxSlzH5nOE7deOuTpvfuYMmN8fsLTszFCSrYPjrh2/WXGF2dopdFaE1xD8InLFy946e6rSKnJipzecMTu3hEru+LVW69w+vgRWa9H1dvCR8UXfvOf8/DHf87+0Q2ePX1MkjWv37jLYLjHaP+Iw/pNpBpw/PBtppOakB5w8uwRdz/9FT775W0Ob9/hq7/9L/jm//E/c3HxiP/qn//3HN54E6UzciTWe6QQSKVxq4Z2tWRre4ekFOPTZzx8/7tkWvDV3/sXDLb2cSHQ39ri8KW7LOZzRFkSFjNcU3MyeQEBIHD8/k+6j6fMYExG3t/ii1//b3n28D2efPgDfBIombFsVxQVlGXBsydjTGZ47a2v8fzsnNfqKVlvh5gSKilqu2Iw2EJKRfIRTUIKRetrjJDYtsVIgTIGo7sIlCwvUEkjjMKgQAsoCorK8PLRHtev73F3Z4fCaLRgPWjcqcQ/goDuU/jjmNn/jDXGv1kK/Vcf71LCiJH1nrDBBj8fGz6z4TO/tHwmRT7JpLvPfPrNDZ/5FeEzpE+utyeFoMqzDZ/Z8JlfyGc+Seu6ztFpw2c2fGbDZ34RNkNPG/yjwe///u9z9+7df+jT2GCDDTbYYIMNNtjglxyT8YwYA4PhDqPK8PhkxaJuqBcBQkTqhIiRKCWCjKPdI9r6nPPJBERG3XoG/S3sakkMIFMkpoRIAmMKEFP2e9ss0hhCZNpa2vNzmnrJoFcgVUZjLY8fPaCPZOEcRm0jpSbEFqkUmZTUJLKspLGBMpd4t8QoiSkNN3a3WKxazpY1VaHJspL97ZI8y6ntFVrlTCdTlqsV1jl0FjEqIhHUjUTohNKW0HbFx76GpQ74mCGMxAeBDREHYANbvT5KCgQZMQpyrXFJQSNBKKLyWB9RMqJDQipP7RwpCgySWW053L+OO3lCYy1bvYLJeEbtGpIStK3l/rMztIIyE/zmZ2+zNxqRFzlnZ5ccP33Ozs4u988XfO/deyg0uS5ZLhvatia0jt3dHXrVOfVqQZsSi1XLydmY3Z0t5qtOyR59JGmFVorJYkWRafJSYVeeUVUxbecoLQlRdmpaEUhJ0Bv0WbULMiHwviVGcM7TrwZ86car5Mrw9vETXlzMKbOMvOgDktFoB60luWyJ7pJ+XtIveiShqYqKIi9YV0d/5g6Na3XUevCJrqiZ6LzZRVobnK+dUiIJpbpShwAyU/Hs5JR/98d/yAf3PsQGy97ONjevvYQkkZLDKENC0a8G3H/4mMVywu3bd7l3730myxk/+NEPcXbJLCWKasiwt8tXv/BrfOlLX+Hi4pKfvP0DZvMlRVHy0/fucfvmbX73G/+M/+ub/w8Pjj/kS5/7Mn/57T/nxdU5jx4dQyzJdIExQ3pVTlUMKYqc+WxCMZTUTYsM3fpDKrIcsJ0SXQiNCAKlQBmFFrBYTddW87Ib8BkesLs14PHplPlsxp1XXqMajDCDAaFNDHo7TCYf4qPh4OAWmTG0qznBRw6O9jk/v6CMAXxAS0lTJ+x0RtSRPBe4lNHYBtUvOL0Y870fHzPonyFSYHw5o3UNwyqnN+wxmU2IUfCpW29y/WiP994/ZrFckaSk9WBURq/qY6c1wQuCXbKze4PzyYRlM0eZHCkEMVqUEggRCN4xnV5gSomUijyXkEDpnMYLhIvkuiKmOT5FvE+MpxcM+gN8DGip8THx4uKU3cGILDcYAW3bMp5PeOnoJhfnExrnqeuaXlkyHAzJdYGkUyKn1BXKU5BMJlfs721zMr7g8fkDZs0VX37jy4wnSw4O9olBIGUiuICQsoskULBcrUgpILUkEREpooRAZ5IULTEqkhCwLo5F74jRr2MfJEgNIlD1MsTaaUEbjbWdsl4BkYBSGRK/jnaIZEKjtMKY7t8JECERUwCdsE2DlGulL53qcjafYYxcRzMIhOwawd5bkBpjcuxyQgJC7KIouoiHLlrBOY3RGr9W6Jo8wzuHUACJJLo4ByMVtrUE5zFZhhYQRUIqgXOJLMtwbQMxok1GiLG7P4LrrkuEFAVRdDb4rnXd7rFWY6cEyTpMXgEJ7wPORfI87xSx3tI0Df1h59AQ1pZyeV5RVAXRh04sHruMw5BAKYMQgkjCpkSZZ50ALXXfY1tLSAGpNE1rMUWGlGBtoCi7eIwQuoI1sVvnSUlSCsTYbYcpRCQKklg3WOCjXc7kBYv5lKxXoUyGNIJoG6RWXUMmBSKRsuh1+6gxJCEoez16VZ/5eEJ/2CMpg/eBIs8xxqD6PU6eP6SNLddu3uaf/N6/4i+++W87h5SrEy5bB8oBAVJNkQ8Z7u3irCXPSqbzCbro8fj4mIMbLzG5uGJr95DF+BJTVJjMsLNb8f3vfIvh9giUJMsy2qZmennJ3cM9cjPgg/ffR6hIkBnLpubGy7sk67j7xpcwsuDk+THbo0PjLaxOAAAgAElEQVReuv0KD4+P6W/vUPYrtJTkxiCynE998euU2YjgHZcnD3n03rf41Od/C6kzRPQEKVFZhsozQFJbB2XGa299kVu3P4tPHnygnc8RVydcu3mL4eCQh+9+yHC4RV5mnJ2c4toWoRQhODJl2D045OL0jF///Nc4uHaLy5MnTC5PadsVQinmqwUXl+dondEfjPjR977D0Y2btK1Dl54kBClEqqpEK4VMCRs8ZZ5jU0SILqbJaIXRBpEimda01pLnFQhNtd1nMOpz/four+7vslVkVEajxHqN8otL/+Kv/NF9d+KjiNmfffbHobN/49cfPfOvHjn9zN//6XUSP/u6XSyEChunpw1+MTZ8ZsNnfln5zB/+h2/y9PnzT2wtJMSGz/yK8BlZlMDpJ3LfCCHY7W/xYn614TNs+MzP4zNCfHLxdjFGTJ5v+MyGz2z4zC/AZuhpg380GA6HGGP+oU9jgw022GCDDTbYYINfcmQ6Z3vviCzTNPWUQW+PzLTUqxm17wo6SSuIicVixZW8xNCSoiLLNCkDjaCOgZQiWhdUuWYyH1M3S5xtOHEeFQKZUWwPR5Q7I5rFlPF0QmNd52qRElf1nGG1xWg4IOEJrsG3Y7xbkpmCreGA1fyKIGuE8ChTUmSa8XxGk2BrUGJty6yuubO1j8wyQJOCxGiByTW9Xh/rJ8RoiVGjhEaKxHI+pXYZwQsevjAImejnkSAa2qBIIYIMSHKkFEgJZa6xbQAhu0a1BCk8IUSsdyQp2ZIlbRPoVwV5ZiCCIdK2DYUp2B/18M2CVb2kUIqt4YAYPUbn3Ly2wxfeeIOtfp8i04Qg+PDRfba2RlS9gteyA15/+ZDHzyZ8/933uAxdEf/J5SUPn58wXcyIISKl4mBnj0VdU9sGBAzLkqlf0jqP0IHaRnRVUSrD8cUZykhiFBAcEokxiiLTxBTJjSBXAzJjaKzH1Stqa7HnZxBbBr1q7YaTUAr2dvaYzCb0cgkykqLidBIYDTXOB1b1irwoEAiidwAk+fGIEwJwLuCcpcgMQik+Kix0gi0JJIKLpCRZS6tJQgKeg4Mdfu93vsGnXn+Nd959lxgDo8GAx0+fs739mBtHNwgJPnzwkOdnF4wnV7SN59W7n0IXJd//4bdICW7cuM1sUTMev+BPv/VtsrLHw4fHvLg65fDwEK0UP3r7J0Tgtc98jt/4nd8lSsOPf/gjDg9u4U+OefL4mF61TdOuKMstijyjqAY4t0QpQbAWKSPOJ3AWRySQMCS0gWi7tz4oy65wGhxGCHq54Wg75/7JjEWrGD+d4bwj+sTDR494enqKUoaD3X2OdreYX1ZUvZzV+Io5nqIwXF5OuJpcEILH2hERwWzmOTgckmeBXEbyUjI0PSaLGj+dMsoU7997j5dv3uDOrevc+/CSqCRbwy10TNSLKSFZ2u2C07MIKWDTFW6VcMBWr2A6e44RjqgKyrLk3vFTVGboDwZoXeK9JUSI3lP7lkigtktC0EihWcSGKi+oipL9wQ4PHx1zNb1EyIRB4IMgxEAIEZ8SyXvc7JIy6/HKyzdZ1p6z8ZjZbMYgK1ku5igJEkOv7OHbFoHqnMaSAAJCJnzwkCKNq1k2fbTQGBGpCoN1DWUvB2IXciA6hzKlDQKo67o7ntTYEJFO4GNAKNPFPsSElIK2dSRvKcscay1t65BSI0i0bUsUkUwbkvcIKfko+jEJAapzsBKiyyVI6/UlRaIwGQgIzqGNJvpOnRxTIgZPkZedwjnEddHTUxQFMSZiTGilgITRBmUKtNLEdfyBD57hcEhKnYI7Cdn1/kjI1EVcKKVRSiGUBN/FWRijkErR1p2yuderuvUvVHcsIEWPs233uqqLzxBSd5ERMeKDI7h27cSlsaEGBMvlil5vQBLgg0MqQQqhi6pQirwoSSnhnEXqrpGTYrd/CaW60cuwHsAU3XXVRhJC6N6XFDgfwCdClkB2imSCwzuHynKCS3jfKcZ98F3xPoSuwbBujAYkMQVU6FTc1geMMt2+GCMhQK4NmZJ4b8myLvbDhcCgKlHrGAAjFWl93Uid04Kgi9fIlCaEiFSK/taI08ePKauKTEtC8kQfOgc9pRBKcfr8MUJIdncP+NybX+Tp82PuPz7manKC0onRaIikZPfaa9y8/TrTkzOapqGtW1KCycUFo90ddo6ukRlNu1hRDgedEjtJUIKnD3/K9vAmo/1rLC/PkUIwOz/rPlcA4QKlLLn7xlvgPYtVy+jaTUxWcHD4Ci+/+hmUzvncb/93VL0KIzIkgsuTh3z2C19ma/8lzu6/y/23v4UcDLn1ypsgFNpodF5g64b+YIs8K2nqlu39A37vX/1P7B+9zMXTJ1SjPvPJjLptUYMjiuS49/YP6fd6NMWAR48+wNmIIGIyTfAJLQX33v4heVWho+LtH/8l29sHrBYTfGxRQpLpDKMVAFIarLOQlczqJfnWAUYplvWCoughlCZ6j9QKjMYta3JpSBF0blBColSGygzZdp/D/V3u3tjnaLvPdlViJEgk62X6Mf6/a50TItak5LtyvlAgy/WR1kdOEbqxio8fF6i/0mzoPt0jP9tkSD8z4Pyz5yfoGpkbbPCLsOEzGz7zy8pnFss5/hN0q1ssax6fPNvwmV8BPtPMJp/YfRNTYmXdhs9s+Mwv5DNSqk/snvzIWXnDZzZ8ZsNnfj42Q08bbLDBBhtssMEGG2ywwQY/g6vZmLzqIVIkz3rceGWLq6tTTi4amrZBSIUxhjKrkD5Q25pVbKl6fW4dHDFbLbi4mqKkROsuokdITa4MMQlSBB8DgcSVa0irJddHW1zbGrBcTND9HtFHTNbj+bOWLCuwqyVFvyKkSJQKITXOekLw9HpFF7swXSvwVMloUGKUYNUuaZoJ9SLw9OQ5g62S4AA8xkScqxGiU+h1grxAVoxYtZfM54JMd8pSksD7RCMSRZnQ0hCsRytIKjGrJ/TzPo1vERhyLUhBU2jPKgZMjJiiJESYNysCCecDmdR4H7HWIoTncGTYHlVMZjWrukZLw/7WgNPxFBuh7A042tuFKLsYIy25eeMm0XmilDTTKZdXC6azKb0iI8sq5vMVd65d5/2HH9D6zgLcILh2bQ8tIj958AhrA67timdSCHxU2LYhBEf0DqPB47tCE50jyUdcXiuDd4E8H1DXLS4GlJYQQQnVxYeEBCky7A+pipyyKLAu0fo5pcqwUTOfL9FGUQRLfzSEBH/8Z9/m+t4WeWbI8gKjFIcHh1w7POLR4/sQ5vRH19na2qMwipgkiMR4Ome1aqjbpiuICUF3womEJJOCWzdusbe9zWfufprvv/02Dx4+JBOa733/h/zR+E+5nF3wmTc+Rb+3Q1n2qd0c0+vxxc9/hf6gx+X5GT999yfY4CEmJtML3n3vJ4x29vjtr/8uZy9OeeftH2HbOY+ePuT//vM/Y1BtoUwGEVaLBTvbh9TLKU17ycrOOTp6DbdckCnHZHze2cm3nfpLREAkiiJn2bS4KAhRk+jiSZTMaNsaVWp6WR8ZIyL2MVmNC44mOAphiEYQoqOpu5g3s1fw0t41zp4aXr39Mt/94QeoTNHaiE8WIjjrqW2GKSSFM1yOZ1SZoioMg3xEZhQ2OGRwtMJw9/YdXn31FTIl0TogVEFTN0yWZ7hYE6Pk+eklSl2hVEmeW0ILIipqt2J3u894ckGWQ6+sWDUNJ5dn7I0O6PeG+JCo2wVCGJzv4gWsSxR5QaEzxtOGVni2hooYO+W00AYlFZnK2d/ZRklorUPLTrWIklRlgckKLs+OuZxeUWYZN4+ucXLxvNvDtCEzmqdnj3HR84q4RhCClECgqJsu6qX1nqvpBUWh6OkdbuzfwegSiCTvEDFCUiQfKHs5IYQuslFItre3IcUuqqzphvc+HuYTEh8DpVFdzIJQJNF2TmYpkbxDaw0pfKw4TCmhpCSl2D3fg9S2czWLgqa1pEh3DlLQeocSCpUS0hgEghAiaIXzDpNlNNZ1gzhaoSJYHGXWA9HFUxRlgW0bBBGBRMZIkl1BWnbS585JPkV88PgUkFGRZaZrjEiFkIIoEtE7ateCkiituyuhNE3ToKRCxK6hbIocqRTBWoTSpBDRUuKCJ6WEyXJitKSY0JkhuoCShpA8UnbvMwqJdZ6yLLvipADvfHdNBcQUyWSGcy1KZZ3DF4EU6QaW1t0fIVTXKI7reIEksHVN2zbkmUIpRZnlzBcLUogooVFZgTKpi7tIkRACJs9RZY52HuccJLku9ktqW+MJRLphOyU6lboQChdt53onFTFEbHAo2Y2MxpQI3qFUd58obYg+4LxDOiAGjNHMZzO01qQUab0lz3Js27Jqa148v0+yDYdHN9Ha0LSW69f3aZaXBBLj8YwqH3F07SXml1fozNAbjbh88QLXNlyNx2THT3nrK1/Ftg4b3do1RXLrzhv42TOs7CH1Fn65ZHV+wpd/47d5/6ffwTYvuD4yjCctxuQMtvY4++ADRtdv0jYNKQm0UjR1y+d+4zcZ7u7TNDV+OWMxu+Dhgw8gtJw9ecKPv/unxAi/9o3/hsFgp/v9QahuaMw2bG3vdvdIWFGWBVujXXyIOJFQWUFvaJBEto9u8PD9d3jy9C945e7rPH34Hq3zeO9RKoHzCAHBOhbTCYvFgvv3fsDs6pLVcozODAOV43xLWfVZLMZsb4/Yu3Ebj+cb//RfI3SGTBBcBJmQRqGEIPhAnmfrNZPIjMFkBarM6Y16vHxtj+s7Q45GfQZK85EY/68X3f/u6NwOWH24vu8NKS0QxaskNVgnRgjwU1LzPoiq+xQWFsrPkETxsU5aNCfgL0iiayAkpRH5HZJQ/Gx0SkIQInyi2VAb/BeJDZ/Z8JlfVj7z8PjRJ7oWWrsixLDhM78CfKZ1n2C0a0pcTS+pKr3hMxs+83P5zCf9+9iGz2z4zIbP/GJshp422GCDDTbYYIMNNthggw1+BkobYmjQpqDAcPHiHATkMpAZgesEdojQIkWnq4kJVqslj8/OKQuDDx7nPZnOyDKNDS0kQb/IcQpia2ldQErDznCPQb/PixdPmTcN26MBR9cPePDoXuea4hsqVbBYLpHBEWLL1aQhLwbE2LKyLTujm0h9Su0btoqcvV6Ppy8eoXRBL5PMZcvMTnAzS9M4SAkjJZGIkIKsyFByi+A9i9kMnyRKQK8ItF6hhcT6hLMQRYUSESnBiMTKeYgCWVgylchzQ+treiV464gxIwqLFIHtnYzLqSclhU6QRGJr2Gflam4eHmB0xrOzM3yCGBNV31D0S+R8wcs3jrhz4yWupjX1qubte+/zxp3X0FnO+09PefDoGZPZDKEk3ju8TVwf9LmcTPnh+x/gnMNIRZEZMmPIheLp2Qm2qUlKUKicRESKgECztJ1eqrWBXr9HU6+wNpJkoJdrVqvOkr2qSrzvVJZIQ/Q1RZnTyyua1vHs5BShQAtBrxwQkmexOKVXBIJvUGVFnhQmh9peQBoRgiNEx4OnT2jtlJQEITi8dYy2drhz6yV29QU9mahXl7TzQ2rR5+SixtrIOx98gPU1e8MCBFxNFgQXKTJDTIFFXTO5GnM5WfDu/fvsbg84u1pwdLDH0rb86N0f8trdu7z77j1sG7n92qv0qx6DXg8RJZnu8fDRQ5pm2RXdosCUA37w459y85WX+MLnfg0pe0iZkfCMJ5d877t/zKu3P4+Uius3b3Ly/CG7o+us5pdE6clVxqhf8nzygoePn2CMxsWWqCQqgtECa2HbDCHUeOFQeFatB6loXIuVgWa25NrOPlXZ42y6xMiC1jf0dE6mNKu2ZVBWDEc5JycXPDp5TpmXXCyvGFyWHNzc59XrR9x//JSzqwtevnFA27ZURqGVQUZAlyzmK24e7qPyyJOzS3QOwQnqmLFqEn/yZ9/hxtEhTb2k2spJJqOZJZTMiCQkhnblUKYhLz1CRPZHByxXDa0FyIhIHj5/QetrvHdcjses6gaTFUQcq+WSMs+YrTzbwy2KvGAyvuzUqyh8aDk/nyC0IMsk3ktqt252iUhIDpscUkJfVwTnOTm/QiaJ1hKjNOPZFGEy+kWOXXmenjztzl53VvndBZFEEiFaEAklNXk2oqoUZd7HNg0h63Xq2gTEiMgVSYS1ijeipAIUUkKyIFSCGLpCbQC5diwTKSLXcQMpJKKL5GXZqZBJuJiI1lFkOTFCiB7vHXnWJ6SIJ5EjEEJ35x0TrXNkKUNhyLTpFLuiK7y3jSMi0EIi6RyIlBIIY9BS42JYD9h0jQohFUoqVvM5UitEAk+kYK3MBZCiKxwiiUkQ1oOJSkhCtGiVdRpJ54hEiqLAItFSrZsIguA9Ra+AFEhETNYpQlMSaK3wvvvah0QIkVyL/6RaFgaluyaAsxYpu9KgiImUIlJ1ldQkwPuAzjK89XTRFrGLqTCKFBPOdntVWRbdtZHyY6emFD1KCYzuirlSCqRSSGWIgLUN2mhMnhNjRCuxbiB3imudG5TvhjVjDBiliZ3FBNa6rnGIwMdEliLBR3SmaVtLbrqogEQX06hImLwEIfDe0esPaesVvUFGcL7Tqqru5zPc2eH0+JjecEhmNDIJjDbMZnO0ySAGdvd3mVxcoGIiYijLiv3tiucvpizawKvXt8iamtVkysHNG4zKfZbjCVIbrq4ueONLX8VbS/AOU2TkeU67WiKFoK0jR2++yb0ffJfTi+cUpcHHhuniHJccV7MGG3LeevUtiqpH1u8T25qUEsv5GNfWfO1f/muqckhbL7GrJd/+P/8XnIncuP0W3/+P38QMBowObnLrU2+xe3ALAsgYEFrhokcZQ4oJ6xtS8KiyT5KK5WyOd93wQruckmWGEBzJwFd+67+mnTfMxs/xrkUIjaSLMzJKk5LA2kDZz9nZu8G7P/oed197k8cPj1nMxzjvuP3pN0giJy8H3Hr10xweXkPrLq5DakXT1hRlv4t6EAoZOucvqwSD/RFHBzvcPNrl9v4OO3lGJtfKYtEp4TsnxI/++Oua478LUle/VwaK17vfA5pn3V6FALFucMaAyF8GswdhRWqPETL/uJlJSqQwg+waQvUhJoR7Shdnq/76K+KSwOT//858g199bPjMhs/8svKZR08/2aGnBw+OCZ4Nn/kV4DPGfJKffWLNZ/SGz2z4zM/lM2ntTvtJIKVEinHDZzZ8ZsNnfgE2Q08bbPD3gKZpeO+99/6hT2ODDTbYYIMNNthgg78DdrdGONuwlAofPZPFBB8i0UdcECilCEGyNSgJIVHP5yhlwLfMmzmIktZZhJQgJcumxuiShKd1Lba1ZEpR9nJ6ZY+q0NTLBdYlPnXrNSb1HFTO0bWXiSvP0nrmYYX3NdZ5elUPm1r6ZU4mPChDL6+YG9CpZbq4QvjAZNkidKDMe2xvGaxbIlNCkzor8hgxhSLFhtl0RdVTZDQok+F9YnsbdoqW5+MSIQ1KOIQWa51ip9pzUVOqgBOKxnuUUCyXDUpK6uiIIeGTZ9ArsBams5b9UYVrEilZ3vr06yiZcXJxzsn5Ff1ej5OrCUZltG2iVw443Nrj3vFzBILWRl5cnvOj997h+ekZVmZ88Y03WdWB2bJlMBrw6Zdf5vjZC3plxrPTc6bLFZmC4COZAaN0V1TwltFwh2WTKHsFw6LHs7Nn+CCpa8vNgx0uZzOyTNE6v45ZAhnomLSUeB9YNUtkyiAqrPUYY5ChYTZrCAn6wwFaSprGomUiJMmicWTGs2oF49kJu4MhW1Uf5JKXbtymqPrIBATLfL5ACIFtA4v5Ah81d49O6WfraDG/wk2PQQ4wSXP/vGbiEiFllLXDB8G//ZO/QHiP0QIhYT5vMEXJsMo4fvyQZX2N4c51tvYOMCJy+87rHD+5R2/Q4+DoVRYry4uzE25e2yXPS6qywvlEiN3FkEIiUkRpQbNc8u2/+BMux1fYtkaJHGMqfFuzWK64eXTI3lbBW7f7fHjvHgaJtxIZE6vVkmQSsYWYBLb1yEyglEToAutqxldXHF27wWJZ0y7nSO9IyZFyj2s8KmlmyykiJfJCcbVoCEFyc2+X7a0hj5+eUZR9iI7GekiBH7/3IdZ7GvuE2zdv0M9zcJ5+b8D5eI5d1QwHFdaOyfIhRzvb6J0Ri2VDmSp0LDnc3SZ4i6tbnp8+J5J4+OgxAg+2Zn+426nelCHLHdGtkMphygoRK+rW0ysFIVpCylGyIoTEajkjL0pkMmxVQ84nUzJtQbRILdkZHSDEmDzPWM2XKJXRtIE2etqLBTZaCqnwIWKjJ+BIIhBTxJAoZcHe7g62toTQFYlDEtS2c9aRjUVqhRlmjOsFXjqE0PRNRW7yrjifgJTIspLoBZnuYmhoDaiaML2kVw7pGd1FMSRFEqZzZSgMyUVIEJIipk6hDIrgfKcGTp4UUlfkjx9FDbQE74BEipamaRBConXeKRUFpNS5RwghUJki+NDFOkSPFBJixPtOtdk9jy5CQoh11oLAW0smIQSPyktC141Aa72OF/DYpkVn2VpJm1gsF7TWYpQi+QgxEWNEKUVrLUprQkwopVDC40JESkmIkRASRstOkR0lSmq8s2itEMqQgoeUuuK9ENSNxVtPyCNaRSB0KuUUEEKSUhdLJKRZHztbx+sonFsRgyPGiPh/2XuzXkvT+7rv90zvtKezz1in5uq5m02yW5REOXRkSY6gGEaQxICDIEBu9UHyDfwRcpEbIxBgJUAExKE1WTLZEslmD+yx5qoz73m/0zPl4j3VaopqSrasFkXvdVF1pqr9nH3ed1ettf7rv5ou5WwSc5kiV3hniTGQZTlCSpQUWOc6A0ACdENKOklQ2kAISBEvKzS634UQECF4j9EK7xwIgZIK6zx5XqCFxNKZzZGA953BrlA47xF06f/OoNF46ITjOmKlQKedGK0SgZCS6LokuFQG67o/LyJY2+K9YzmfIWSXehaqq3YieELwxAhZnl/+/COKrp4hxEiMkZdee5PtnX22dna5/+FHjDJBjIZbL/4i508eEfyUxGgeXqzoHZ/y3GiXT9/9DjdefoO8n/P44UMGw21e/eobHN//GCkCiTB4IRFSkQ62SEbXOX/ylOVsQjU9YvvKV6lqR9Eb0zjQyT6jwQBfedazKcG3XDx9Qt7POXn0IelwhyQtIESs7eos0tEeJ/f+hJPzc1Rh2Bpvo6Jib3uX++99nzf/6T+nqUtSW2BtoDfeRSK6hL82SNMlyKv5nKcfvs3WuGB+tmD65GOqakmxu48Oh7zznf+Xtl6SGcP24U3assaXE1wQoKC/PaI/OEQAh1ef4/0ffg+dpGR5xtf+0T/huVfeoNfbRQBKyUvzq6twUlIjlCTNC1JjCFJSjAcc7I25vt/n2qBPkRoSITsPjmdFC8/eemYQ/MX7f3sIhF92rzkxdqJ/jMRQIuSAzzLYydZnBxJ+Dcl2Zx58do7Ligg9ApkQFeCLy88/+y6efW03mKL48ky2Df5hYsNnNnzmZ5XPLJfVl3YfCCkggeHB/obP/BzwGfUlVokBtE3Fusk2fGbDZ76Qzzj/5W0fe1bVt+EzGz6z4TNfjM3Q0wYb/B1gMpnwO7/zO3/fx9hggw022GCDDTbY4D8BRjmEKhj3+1TlnNbWLFbdyvAsLVBKMBoMma8n+CA53D9AIjiZnGC9pGkcJkkIzuGDRZqEXq+PbVoiAqkD/eEW6+WCJgp0ljBflayrNcSWk9mCvd1rCHtKvwCVb9G4gHYKUa2o6obRaMhw0KOuV1RVydHFGWXbsFxDnllab8mKATrL6adDppMHBCcR2pNkUJUWZRKGvT5N42liIFGBthQ0tqtI62cVs0rTOshkgCBQRiC0w/sEo6G1niC7NJyRhhg9IRrwDhsjYEjThEG/4OxihYqCVNfUUbEoGz5+9IQXb1wlTRNOpwG/rhgUQ4TQDAeCVVnxH374HqlOOZutuHMLaguTWYnJcjKdECxY6wkucv3wClVZsVhNGfYOEUKgjejSzgq0UCgj6fUS3r3/MdcOrvL1l17m7qPH3Hv0hOBbhOjEu+fvHCAfeCSRRCn2trc4PVvgo6eua1JjsG0gSI2gwXqILhCJ6CIgVUKucp6/dpUYBfOlpWpXOOfwQZEWN3FxCnFOoKGsa3Z39/EiIVULmvUxy4uWuhxQt54QEoSQ/OLVMVeKTvS6bKRAugh+QW4Fh7ki9GG6tsjgcEEhyJA6I2hJnmUMMlhVFY+O7nF8/oQmSJ5/4SuUlaWNsHYgkxzbWJqqookVx2cn/D/f/n0OrtwCoRjv30ClkpOnTyFCVa/I8gHLxZqt8S5JKhn2r7BeToi2RWmF9xVJKnjh9oB//t/9L3z6/e/zv/2rf4UzQ0aDPZqmpXUrYvS0TURHxbXxiLLxBJUz7u90dVVNjYotUjmeJccO9/eZL0uqssFoyYs3r5MayXfff5coUsqq5WC/YGvUZ29vzOnphDdff557T54yn5eEIHEucP/xI5aLC4ZZQpFrJrOm2woQJIsGtF+SlxJtJW2As/kpo36BcC1Ex2JdMRxEqmoNuodrNKu14uTiQ4xskSJFhRbb1JBCsDVRDFFa42RKYvoU6ZC1X1FITdnOCK4l0wW9NKMuAklqmM/PECpyNjslBEE9bwnBEzxAJFER23oiihWOndQQmiXozmgripTYgko6sbRua7wLFKHHdDnD++7eHvYKGtewWC4JSpBlKdW6pKxbRIzoKAh0yd7MpGipyPMhTrS0TUMIjptXrxFiBKmI3l4K9BahBAqDx+KigwgydNUNxPBZcjb4QIie6BVadmZd2zTEGMiLAqTGEJAmwYXYSWmxE6ed950IHkEikFrgrEQoifW+MxCUREtNJFymj21nMhCwwaKkRimDNgZfN4BAKKjqEtu0WGfpnvVAFCC4NACUIhAwMvnsfvXeI01XEwid8SGVREtJjBBD7Fbne9edRynW65YszbDO4kJACKP+RmEAACAASURBVI9SuhPsfSDS+Sq2tUgp8LarUAmxq3AICLTSICJSamzTkqQJtm3w3uODJ8tSQlDoRHU/BykI1qO1QUoJCGKIeNugVIoIl2ljH1CJIHqHDwGZKERUEEJnROusS7GLLjXubVejUTUVJjEkeY6nM4matkZKQ5pkXfq7600k+NgZ8UIidIoUHqkVnq4mJjUJoW26c15qqUIppE6IbYUSCpTge9/9A3SaUc0XXLl1m5u3XiCEQIgCKSST0yPSok+SKIzszPssSUnSnKpcYVJDluVkWY+0GFAMBqxmRwTRXXP98RXkyX3SKAjBc3p2nyRpuXb9FYbDLU4eP+HBvU8Z7+9jTEK5Ljk+Oe6Gu6yFCCrJkGnG7OyUGy+/xv2mZl0HDouMi5NTtnZu8mu/9T8RnaNdrlicnnH29CHnp494fPSQJw9+wFd+8deISHyMnXHV6/O1X/9nTE4+4fHpMbros7z7I175yrd48ukHPHj4Di9c/DKnD+6zc+06+y+8jtQpAo9btegkATRlNeX+x13Fz7t/8odMJ0uOHr7H+Mo1Xti/yqxcoYucLMtxrcVoTW/ngNo0rNctyJzrt1/gxa/8KlW55ujxPXwI3Hn5a1y/8Tw3n3uJvBh3Znum8S5095JJkKpLao/GOwy2h1w9GHJr3GOnyBgYjRB0Q8DiJ+X/H8s+i7/8uWeIP/nJvylCA2aL+Cx9bQYIP/0xxT1e9lCIGIj+Asxzn3u8rn5WEIkidLbA56oeIpevaZdvxUhnxG0WPW3w12DDZzZ85meVzyzL5su7D7RiPOxt+MzPCZ/JZO9Lu3YQoFJN27QbPrPhM1/IZ1prv7RLMobA997a8JkNn/nLn/vsCvnJT/5N8XPEZzZDTxtssMEGG2ywwQYbbLDBBp9DmvQIradtaga9HrNyibcVPgb2treoqorldEJtW6KUVHXDeDwiNV2dQK4S6hCwPhK9Y3s4YFBoHs4nKGmQCKqqxAVPW62pqgYpBJWVlHXJcrHgO2/9MUZrhoMtnC8RUbEz3uWorhgO+ty5eshkfsa8rOhnisZO6KJqmtZVzBaefn/IIDXgSqrGoXRCFJ5+ZukpOF8HqnVFjAEjJCa0SB1pncA6ycU8JVqFVgovu7ohmXikibjakZqIUJFUSupW0bQBHwJCtAQ8PtIRXm8JNhKDwrmIdTmREksnBL794aes2wbpIDiPx5D2cpTRzFY1g1TjVeCVwxdBKKqqRinNsNiicVDW3ar8JM149OgE6xsO9g6IUVEUBVt2SMQRbGf0nE+XlHVD6wSrRUPdq6hsiVABh2Rr1KNc1rz78SMWy4qvvnSbclnhfEvrWhJjMInsBDSTcLB/wGq5Jkk0y8UcKT3ORfo9xXJZ8tEnH7E12KKOEmJkvLWLtTVnZ48pm4q98S51bdGqRAjF+fkRoh0ynU3JiyFZMaa2FUFKkrxAx5bTCw0IzpYVLkLtAqlWqBSMMtzYypAqIbRrqhDZHhYs1y1bmaJ0ljYIZAyU1YqtnWus1gta78B7tFbsbO0wPX3AdLlAqBOMTrh27SZPH93FaM3X3vwWw36f997zTJIzoo8I72ibkkQXTGdPUBKyvCBN+swWp6SJxDYVhICK8P53vsMf/bv/m9JXLJcehglNs8K7yG988+u8+859Sl3i64jzAhlbRlspq1XgaHJGdAGtBS5GpIjkScrLr9/h4dFjvvbqa7gSjidPKVLDvLRELGfnxwit2N3qMbmYUlaWw61dZvNH5Knk2sGYr7z6At///p9zdj5BJQWKilTDVj9lf2fMg6OnSJkSVMu6rbAIbFvS1hfookBpS9s0GJMj/AqjDVE3CNMNAGlpMDFgZa8TnpOUxGSIJNKUa64fXGV3vMUHH3/QpXETi9aWOgbKdohWkWE/o64yGt8w7I85Oz8my/vIIJnN5wQgRZBlhn6xxXy17EzK0AnIUkmWVU1f52xvD9gebdPWnjo0LBZLogzcuXaH1WzCwc4OrRecnJ9hkk4sVlKT5YZRkXXSVuzE9saVBBGpmxXSRLSI9LOU1eqIF/evIvBU0SNlt62nKPo424AQeARRQCAihCR4izIKZXSn310mbbUEGUGZDBcsWqUgJB6BFhrfliSZJnbdZzgfOpFRSFxwiBCQgFQS3zYI2X0/KEEMghgjTePI8qyrVhASZTTadMlfEUEnsjM6Ls+c94puOOfZkE7wJEmCEoLWWqSUl/nGLimsAOk9Lnhc21xWSEhiCJ8liY3RONsJnDEEgnfY6IkIvHWYRBOeGSBCopXuksh0lQ1KaLxzeOcxSUpWFLRtixIaK+xlXFQQLlPZwXu880BE6/QyVR0xxuBjQEgFPhBCJElVNxQXXDeQJCTWtgQBdRVQAtq2xVuPzruhus7wEWiTIpRChIaiNyBRiuA9XVA9onX3vD5bpy+VwIbujJGI9+1nmz0il+lr+cx8SajLshNrlSYqQaSrgTg5eczZ2RN+9Tf/ByYnZ3z88Q9JE41Wt/FBkWUFCI31nkJpkq0hJ08f0R+N0N7RNpZ8OEBmGT4Eovf0RyMmR5+CEOzuHPBL3/otTh4+Yr6+IO8Jdg+uUeTbbO1eoa5qtvZ26RcDVqsLZrNTsl6PvN8nxu5ajEKCbfF1y2A4RApF/+AqKjV8+/f+NYvFmm986zcYj8YE11LcuMO9997l0ccfsm5X7F+7xvbBc/T3b5EoTV2VXfFMlvLkk/c5W9ekxQ63nn8Ou5wxGA7pD/pce+0NVJpy86tvEhD0+gNk6NLsIkh0luGDpVqtWJVrpk8fc3p2ikkTFqs5V8xzHBzcRJsUP5ly/93vEVHMz48RKkcrQX/3Bu2iIjE9Pnz7LUTsDKjbL36FX/nHvwnOkyY5UiuU6Aw9rRVaJ8jCsL0z5Pp4wNVxn4Nehvlc3YK4TA53Arv8T/hfX/zc7+Kv+PgzfJEqL6E5R7SrTsYPa0h2fuzrPzujWyNERpTZs6z2Z48bg4P2jChTCB78BMGVv+IEghAi8ifOt8EGP44Nn9nwmZ9VPhNk8qXdBzHC6XSBNBs+8/PAZ5p1+6VdO906OIeWYsNnNnzmC/mMMV/e69n5xfGGz2z4zBdgw2eeYTP0tMEGG2ywwQYbbLDBBhts8DlEnbBanHB0XnLz6lUO966zWtcs1g3n0zmZVgQJQQi0Aic0u1vbSNswKR25hPVsRZ4UeBNorWVZO4bDEWVZUTcWnWRIKXBtw/sfvMOta3d49eZtzmenNG1FUfSwjaNcr5ktFkglQanLpJ/lwdMHWBtIC4MUgdAI1q3FRRjkAu0loXWcnT/AuxQtJNJIytKybiO9HFIjqJqWEARp0aOJGdYv8KolWElZJRilUBEIIBMQRoDIiboBIdGqIThNaiJ50rJqMtrWE9EgQif4acHFfEmuBUF6Wu+wPqIjPD0+6YRvIRHB0jQebSI9nRF9QApHZT0JAtd6FrM18/WSLCvQUlCvW45PL8jSHClnoAT/+Be/ia0ci9WS0+kEECRKMV82naCsJAjFdj/D2Zr7J0fY2nHzyhVq2/LS7X0eHZ3z5HSCRHB6OmFdNuS9FCnkpXCoqJylPyoo10uapibEBA8o1UcJR7myWOfQUlN5jzAZW/0+ZbWmdR6jE1TruLiYUrUVUTWIeaRxkbJasTvc4fDKddoW2nzN2iekacGffDAF6+gN+tjoKFH0iyGjPEG1CpEYXOjW5ac+gNA0TuBcYG0DQhm88zgEe1deYTW7oCmXzCdnJGmf/tYQqTLy3oBIwmx+xrC/xY2r13n44CNWixPuffRDzs4umE2OMKnEe3CuWy0vCPT6Q0a9Ef1+jyLr43zFqpywbubce9pnsVrTzx5wdNZw9fBVRiPHR598SlSetMj53sd3mddzQiuRJsUGR9M27OkBi9UcgiNoQYyK6GV3P0aHkS3VekbwgdGgz59+9ylBGJxrMcogheBwf5tr+4e8+9F9Pn74FOFBGkW/n+Ot4MH9I2TIqFuPDJa2bshTxaBIeeHOLcrygqZeMV2sCETaFrZ3d+kXI9bBgs5QOsGoHk09IVpD0c9o2yVRC5p2iVcJHk0mtyAqqgBVeUEhU7QUzBYrag/eRoITZGmKDAkCSb+f8Pj4Pm3diddF3iNPC/COIh+ilGAynSBlpGla1rFEI0DaTvSLkkSneOHZ2Rkio6eqK5z3WF+ipKFIE3pZj8asOT2dcXj9BkpPUR7SJGdnuMvZ6RmVt12mL0qClDjrAQ9CkSiF0jlXx7tsFwl5L2e5XuOtRWe6E5uNIgSBB6xt0IlGINBK4ZxFaU23zkwghCJ6j1QK92zduxAoEZGiqw/xsRPeU1KCs0QfcK0jG2S44Ikh4EPEuhoVNEp09T7C+25jlVaEAFpLkkTT1J2BYXRCFJ0gF5RAxYCSGn8p0iXaELxHaYkQEm8tQims717/s6xLBwfX1Q2Eyy3uMT5LOfpOpA/d8JgPoatXkBIhNTu7e3gXkDJifffvQlFkBOcIMZIkCdpoyrIkMUlXZRAigYDzkX7/WSo+4KMnSZMuTa01Lnh6WQaIyxX6EUTEOYvzniLNCR6MVHgCWutu6Mh7los5Jik64+LSNFAqQRiJkiCSBETAe9+JpDGitL4clBMYYwghEEP8LH0thcBdDjlJIYhRQrQ416JNSowBJRXBB3yURCG750bIy/qDFiG6So9mtUJEj1SaNOvz+hv/iEyn7O7skaffYL14wv/1b36fOy++yVdefZMkT9HasL445ezun5OMbnJxdsb+lQMi3XVAgMQYytUSCV3qO0iUTkgJjMZ7NLYkhpKIYDmdcffDH9Hbu8r+4RVMnrM8fczF6TGjwTautggpKRdzGttikgJVaI4ef8D5wwn9UZ/VyZTJZEIrIp9+8jYvvP5NDq/cQijJeP+A7et3uLW1xaDXY352yo3bLwOglKZpVuRKEbXh4PAW1bJG2sBqXRIffMIHk1NuvvQKt19+k1uvfoMnDx8gokJogS0rqtWMfGtENV1y94M/55U3f4U/vPcuOk9w6zW9QUr0lj/7/d9luHuN93/wpwiTcO3OS0yfPqCya9KtfbJsi4ujJzRNSdrb5uTRh4y2tnn5K28wOz3h7kd/xhvf/A0G2Q2SLCPNFNcOdriyM+D2eMjAKBTPks/ir6h1ED+egP6P/X8fP1m68DdNSsdkF3FZ9/DsOv+sj+Lyb3+WbUZmxPTmpZnxTOTvHlkkh0S/RIQVMUYwuyDUX32eGNGbTU8b/DXY8JkNn/lZ5TO9Xv9Luw+EkAwGOxs+83PCZxrhv7RrBwGJUiRpb8NnNnzmC/mM0l/eiEXR2/CZDZ/5Ymz4TIfN0NMGG2ywwQYbbLDBBhtssMHnoIRge2uf1h8znU6YxBohEgb9jKqpWDQNSgoQkl5/B4XnwcNHOFcRMdTeQnA4oUjSBI2nj8KMRjTDEScnJ4DHWos2moSEeDbh9GJGExqy1lO6BQSJjIEdkxGFpp+mrGPEB8iKEeuLKcYrvE6RStBL12jvqUqHoCWGQGIMKvG01pNEg5aO1htWNYwGCZNZi1SaIoNAQtMkKA1pH6KraX2CSQSuUTgrEEJgTN3R2+CQAnwE4TVrqxAC8kzgXCc0BcA7T5pElOkqKJy3pFmBtwYhDF4KFqsSJTwKgVYpNsjLde+GJM3wocIFsEHS6xXEswmttbTWEoWkrEqkUjx/8wbDrOC8moOUjEcj5uWS+WqJl4LggCCQsdt0Y1tLmtS0TUBnhlEv5eGDUxpvWSxailyyWq/I8x7rck2IHhE1iVY0SUvwkeACPjoK2WPtS6SBGCU7ox3Opsd433Yp54Fj3Mu5euWAxaImtlO8aGkIJFqTpAlESKVlkCv6vW3Opw1BZYhE0RMebzKSpEuCXrlxnWqxYG27lKfFE6VBeIhCo5SCZoGMEe8jOsupUd1zQKBZr8h7OSjBrTuvMihSlvMFPdlHFZrtr/1XrBZTHj34EGNSPvrgPYSAk4tzZvMVVbUk7WnybIvl8gIRJTII8mJELxkzm05ZVyVFPsK6hqa2VG3L8dFTqtWaa/t7OC9oS8fj4wcQLbYKmNyyWtR4H6lci1ssUUqgU83p2YKXnn+e+48eMF+sWS9bYoz4EMkSQ9mW/NZv/FO2t3Z5550PWbcN2zsjrl7ZxltBWdY8PTphp+izXpUc7u/y+NEpkYiUBhtajk4bdsYjhjtjzk8e4fOUYT+jV/S5fvUKqfkGx/MJ3/3BD+iZHmaQ8NJzV3hw9ICdHGYrQRp7zEoPcYDWAS0lOEHaG+CYY5TBW0cQnuADVbUmek0lPJ88fUpbNyipsa3DBUHwCdZ6ECsOBnsYkxEjGJUynZyTJBIhEtZNifCO1ChcCOxsjQholqslwXWr+Vu/pvU12nQr+WWMnE+WBDpDS0tNKhXlakGmDIdXt5kuV8igEcEhYuxEbSw2dBUIOkZEiMQARucE71ms1+yOurdN0l3bwQXaxiFNwLm220aGoHUWbx15MUAICZdJXSlVl5ImIpQG60FJYvAQPAK6YRkRiTEi0EhkZ2pKSetbxOX9FSOd0SokWpnO8AseESNKG0RiuIwio9RlujK6rn6BCAG89ETviDIB1Yn+BAghIJUieoegq5WInfpPBGprSY35LPksZGdyON/ioiMhwRgDDhCKyxIMlJQIKS5T176rDJBdKlsJSQwgIqRG40MA7yEFYpcuR3Qei8kyYgyEy4EhpRTOBkIEKST68mwhRoLzCOGwre1S01qB993POUkQFoQ0xOgIMaBTBXQGVIwRfZlk98FjkpwoJDF210AMnWFgvUepy3Rn7M4RbNsZIwKElFjrAImPAQhIIbphJ0FXqeM9gs448dahkDjX4tqWtOhdCrWRGCI6TbhyeJPWthAcTTujXC35znf/mP7ONRbzCT9878/5+pv/NVpIyskJg94Wo8MbPPj0LqOdHUyWdclzb5nPjjg9OeHq9efpFTmTdYnSmrPjU6SBum74+pu/xnoyY3z1Kj967x3+m69+g7vvv8N08hjvKtbLKfPzY/JiyL333+PWV1/n+p3X2N3f5+TxPVbLOcJ4Ls6eYPGYNME1Nc5rjJIorXA+kBV99g6vkmQFtqp5+OlbVO2Ua69/ixvPv0a1WPHWv/tdfvSjt1nOpwzzHjK9zcGd1xDVmkePPuKdt/+E0c51IjA6OOC9f/+7hChZLdfkWzv0D67wgz/9/7j/o//A7v4Vdg6vEZ48pG5qXFPz4NP32BpluGhp25Kd8T6vfPVXeK9c0Uw9bVmSpy1JlnB0/y690Zwbd16hN9pn79pzfPf3f4/GW5btkjdevMqrV6+wl6XkRl1e658X7+Nn7/y0AofY3QbIz31BIP6ElRDj58sWuu0Fnxf442UtQxRfZEN02w5A/4XRID5nFlwaG/GZISCT7qa9fP8zY0IIYrKNEOPPPt79+uwb/YsUtAAIEaU2U08b/HRs+MyGz/ys8pkvc0ggSVJef/VrPH3y6YbP/BzwmS+1SixGFus1B2lvw2fY8Jkv4jPybzGk8h+LQX/MjZsvbfjMhs9s+MxPwWboaYP/ItDr9fjt3/7tv+9jbLDBBhtssMEGG2zwDwAnk3O2RlsIW3GybMiKglRLFJFRr8dyDY2zaC25c+sGzXJB4yNKDphMzhEyZTDIWVdril6GwVHkOUJKCtNnMZ+yXK2JQmCkZLy9R1PXHC9m+EvxJElT0rSHiJFcaxofu9XfdFVlmRFo49BaokWg2N6mWUnK+Tk+dGuWe3kP61sIFZKWsgykaUZGwIbAurZEFclUTWg10vQpipyqqYkePBqtNUa3RNcJTpn2iOConCLPPM6mhBiRQpBJi/NgvcV7jdKGTEmsbxj3PGeLQFuClC1SgnCKxCQ0dsVo0MeHFhE9yqTsjfeYTeaQCdIkR6ktpsuK1mtmyyXOO6JzUASyJEUnmr3tHVKdUFYV3nui9wTnyU3K2ndJvDTVbA1GiCC5mF7gQiA6y3g8JnrPyXSJJGGQGzIjUUqSZn2k1vTlgMXqnIESbA/GNI1FK0GSZigbaNuGzBii8IToOJ8fk6SOqhVYF8lcy/H5CT52Zzk6OSUzisFwzGxxQar6VG0gCkfrFZO1RecFphihkkNSZRAqxQdLdI7pdMr8+Jhie49IQrmaE5xDSYWXAuEDO6klSkkU0C3Y7lbRr6ZnlNWC1lYQI04keNnj+s1dxjtjfIgsFwuWqyXluqVtp8xXZ4gYsbRIJEWRYnRCiBaEAhUZ93eo6grWAqUk8/k50+kxo60xWWqom5qj03PGo4TrV4fs1hkX0xmn5wmVrpFCY3TKjcM97t4/Zr5aIxNACkRUHJ/P6feX/MovvMmf/NFbrEJDCBGjNd/4+i+zPyzYGu9wMZny52//EKEj29tjXn/xNm+99T36o5QXbt3Ghcgvv/kV1rXn+OkZyMjVvW16+YiT0xOESZjNJgQUJi8QuuCTJ+eo9AHNekVvWJDIHiZLicHz8d371H6NqhwOeOH2bYbzmgePTpCJZr2cs3d4DelrZu0cGyxSe6ybEBUMhn1ikzGdTbHBMyr65EnOk/oCQcD7tvv5ty15ahgWY2KhqOqa88kJz926jZGKs9k5NgaK3oDZbIZPPdLkRCnwl9u/YgwIwMVAXVcUqUaJCA76oz6J6bEo5zR2QaI1VdNS1jV1VWKDJTEpq0VJ5SxSaERUnQ4mBMpoAp421vjgUGiis2jpsNYTnKV1DcZqXGtBdWngpmk4vHKdkBhsXeMcuNCiZYEQAhkjQnbVCwqBtbYTD/Wl6Bc6MS5cGgxKK0IIeNEZAMqY7sU9XNYSCNltGEIilEIZg6AT+0MUSJ0goiAGhYgSFyM6eKwPCKW6qrXIpbDucVF2yWrvSbVBIZEIXHQAGG0wJsPSoC6NAik7EVHErjbIBYu1FpMotDJAJwI657qtR87jvEclukuJh0gIHmsdudSXbq3AeeiGhLoNSFomaNkZIhKBiAEhOvPFKIXVGiklPka0SRBcPtcxoE1CjBEpFSE4pJKE2CXDfXBIcbk1zFuUUp2ILkRXBeE9uTaEGICIlBrrHQLRPc/OI1X3b5W1DVIpTNo9XpTgQ6RIMoRtkFITYmdFSCFwPhDxnckRVGfMhAZb10ghOnMcSQiRQFcrEC9//kppnjz8iHfe/x7luqVqHnN89ITr11/g4OAB+7sH5OM9MAaTFly9dYv5dMHBYb97zBB5dO9j3v/4hwgpGGWGuq6Zzyd88tHbPHxyn4BHuEg5PedMWUY7RbfVisDx6RMkggcf/nui6PHVb/wmq3LFg4c/YmtnF6W6pL0JmovVCVXtGA62iWLN9avP8cvf+meMR9ssTx9D2uP46D7f+aPf4/D6c7i2YtFULO9/xLXXfhmTGBaLcz758B0ODu+A7RL/9z58nyePPmV7NCAdjpH1ihg8dV3SLFa8/70/ZT45J9vaZevKDbLhFnXTUleWf/t//u8oY5B4qnLVXX+9BITj9PGntE3Lar3g7bf+gGq95pd+9b/n43ffpq4WFP0hxmT0Rzu41tOuJ2Q9+B//13/JLzz3IrcOr9BLEqS4vDc+J9b/2FviL3/sJ7HykT9bw7f6oIXgzMHbJfz6sJPzoxDcayN/NAMjIuryz91K4ZuDzicQRO628MFKoCUkElSE1/uRbS0+E/4ftHBVC4yMtBFmVrBnur8jAi7CxELoZidQQjA0kErg0qKwUVC7ztRQCISIKMll+vnH7ZDP1zpusMFPw4bPbPjMzyKfURGOH/+bL+0+CMGzWG/4zM8Ln0Gpv+5H/p8Rsdv6s+EzwIbPfBGfce7LG8Trpu42fGbDZzZ85qdhM/S0wX8R0Fpz69atv+9jbLDBBhtssMEGG2zwDwAXs1m3zYTA4dXr9NOUp+dPaZ1jZzDmapEzX62p24b7Dx/xxsuv4JqaQZHxSbPk/ukM66FXFBxubzGdTbl58w6EhrNFQ5rmRKGp65IQPN470BBFt5FCyEhvMKSf5qzbFqEkQ2OQUnA66eji2XwCaU6vZ1gtJgSpuFiWrBrIs46d7myNeHz2lNJ5hsayNYx40aequ3XrtZ2T545x6pgvI7P5kjRVDIZ9vF0jg6eNkKqUFlAi4oLH+RRzua69LAUqEXgfWdeCzFikgxgDMVjqqFFKUFYwUjlnrUTrFNCkeUKW9CiXNaPhFlU9Q8eGOghElORFn7ZtL9fGd0nG5XqNbTuz2weHTCQ6SRn0h0gpGW0NUCqlbObcf/KYk/Mn1LXHB4GQgswkDHo9FoslRiqMSdkZD9gd73Pv0X1s9Axzw40bt6hCTVUuETIyHo5xrqVYrrCuxYZA1USGWxneO5QI3Wp6ZQjBEaWgqiNJEPSKMUascd4DDVJolE7JeltkJqe1EaUGqGSLg70eB/tX6RcjpEyYNp51E5DobmOTa7s0KNDaliRTED3WWZKsoKlLGu8RPhCbBp929U9BSKyPCDrRMhls0zYN2iTYak1vkLPVLxiOxkwmcz659xHnR/dYV3N88FTLBTY4ru5fu1w/L6nKCVWz5Bdfe5FPHl1wsSjRUiGlpfLn0GpqVzPKM24c7DNfNizWC3Z3B3z9lVdored8MWFne4+decXFYtmt17fw4o0XydSQ7777NjEGWudprSNLNM7WfP/9T1jaFq0F1kFUEYFksaw4mz5kNluyaBsaZ3n7/fe5mE5oqgX/5PVf4vnnXuHx0UN+9PE93v3oLjvjAnTk6ekxhjNuXrvKoydPkCIh0SnjcQ8bLavZjIdPHvLc9UM+vn+XJtaIxoH1eGEIQtF6SIvA8dlTXn3pG0SheProCVE0SCGQaISQKAyttUixIqqEJE958ZWXeffdH9HrJeRpH+sixXKGUoLadhttKmt59PiIiCTP+2gtyHs5s+mUg4NDtvrbHE2eIGRARE1dBzLlMSIhhJq6deAFRnemnwvd2VUmWZ/XSFVy7XBMbQ0PxgAAIABJREFUWUvqtkZJuPvkIeu6IdE9imKEUobVekprA0pEIhFHlzoMPlA2JVJGpFKs7ILcKZ5OZzyZvc+ov4UMDme75G3UHms9Ilr6g4xl2RJDJIYGrEcYAN+J8oRuI0X0hNAlbb13l4K2QCEIMRKjRymFd67b0KBMl3xHIKUk+IBAdJq6FETvEYmmbSqIAm8dJs/4LLsoBMIYdGLAOqTSILvHCj4gpEKprsZCiG64Rsou8xuc/0zeC9HhnCVJC7TShODQUhJaTzTgnCXSpZdjsHSn7MwI7xwxOISUKCkuxfpIFJcDjloQLwXwEBwmMbSN7ZLKSYIyqtuGJHVnOiiBUoK2rVFao6QhdC9hyGcGSgSTGETsNi+F4CF21yExYtsWULjW4oMjNQlSSJztDAIhFcG3+BAx2nyW9BQCFBGpNUjVpb8FJGnWKaRR0FYVJskg+m7IyTlMkuMvn3NNAB+IQeKJKBlxbVffqJQmS1Ls5SaAGLpKDu8D4XILVC8fcPX6i0zPTrl3/yO2d64yPT/jwd2PGA23KNKcrf0rrFc1edHn5JMfsX/9EO887/3wu9z94Ico6Zkcf0qT79AbDjl9eI9sMEKZlLYsefDJB/QLwdGTdzHZFeq6or+1RZJqElET286EvDh9xO7BFVpb8YO3/pDbd15ldn7C0eQeTUhI0x4S6PUG7O1ss3dwjfnkjJMP/5DDV3+V/ngfHyTf+7M/ZtAf0s8Ni2bF+dkZd4De9i6v/8qvc/bgLoOdXYKzPPfiGxw//RQvDVomFLtbPLr3Cc+9MUWhScyA6fI+sm1ZLhbcevUNdg72ef+tiqIo6A+3wbesp2fdxjgbKc8dIQikNjRVTfAnPP/aLxBQXH3uBTKtIJHsHN4mF4Hx9i6zsyP+51/7Fgc7e515JdVfJIX/lql5C/zBQpAQeS6P/OuJoI+AAZ8lladBUKjIb2x1Ieb3GjiuBVFERIQoBI/aSCsiN9OIi4L3asFVC2PdndLHyLeX8C+GMBDwbgXHNfy34+57CETOAvwfJ3Az7R73wsJvbsELRff6IoGPbeTfHgl6qrs/Qox8cyR5bRguzZLLhPal0RBDRFj3t3qONvj5x4bPbPjMzyKfCbZmvVp8afdB2zZ8+OH3iIQNn/k54DOS+ku7dgQCseEzGz7z1/CZzw+1/F0jxojf8JkNn9nwmZ+KzdDTBhv8HeDb3/423n+JHcMbbLDBBhtssMEGG/xnw872LoaWGsF6PadaBaqyJEsy6qbGaIO7HD6xjWO2XBLaho/vP2BVLjvBSiYMBttUdctqteCDT+4htGRnaxslFN7VGCUJ0aOVYW//kBvXbyOl4WJywvZ4l/29PdarFbOyok/LxXRKnuZcu3q7W8McLE2zRoqcJ8fn9HuGXbPNfL2g18+5++SIrX4PHTRSpMzKNcPeDOc0mi36BtqoeHIuIWqIgjRN8X5FDI7aSbLUM8zhYimgBe86sSyEiE4Muzt9qtpThyVCSLxUBBwBgfOSxERCCExr8C6i0kiW5bStxUdP61v62Yh1VeIaR+0dOgmMRiPcbMGqXKGFwWndCXHC0SLIkxwrA2WzwsfAoNfHuZaLiznz1YqybGiaSFN3KfBemgOePMk5PbvAupbESIzRLNdrWvsUZx2jQYGWjk/vfsD5YkH0YJsli3XJ9f19epmhblryTCCiYDqbkiaSot8j6hYhNfW6IlGSfpahjMDakqLo0zpPjJ7js2PyfIyPgqZtCMGzMz5ESMV0OuPKldvYtiVNFCp2CdFUKryzCJMQsMhEk6BYC0XrAkE6emmOMw6TRlzbVVUQLQJJ3XZbeQJdNUGMjt6w4M7zr3D/3se4quL7H75D0RtTr8tu5bzusTsuOJsdIYVnb3uLO89/hQ8/+CEm1Vjh8SHw/t1zemlOKkpW5YK2tQgp0QJkjCiT4kLgza+9RogRkxiy/pDvv/sWtqmZTysePXnCIE8xaUK5qJjM1mR5j0FasCjX5ElCP81Jc0UvMZwt5lTWEnUnkBrTJUlPjyds7Y1ZVCu0kLz8/AvcfXpM3ax44bkXGO5c4fHZGXs7Yx6fndK4mnFvnygq+vkuwTuOzs65srvDN974BqtyxR/+6R9Q+xqTRYSZ8en9hhgtKtQEa0hVD+8kPgo8Gtc6VicVs+q7jBJDqh2VlyyXC5pmybq2DJOAjxqLolAOyRlVeYCnYWf3OhfnC06nExKjsDYwyPtYW9OIBhMSRtmIsqoYDAZY50lNxsnJKUWWkwhJnkpCmrC7O2Iya9ke77Faz5FxTWsr0l6CCIEkSXBWAgEbIoPhAJ0obOMokh5GaZrSYjDsbW8jhKToDyhXc4osQ2vVie9RgBA0rgYhIYLwktV6SVnP2WnGjLcOaSYn7PXHWOcIzuGRtFXLaHC5Sj1G2nJFJOKdRSaWGD1SSXxQ3Xp3H4jRdwMyXiLpBHOZaIIPGCMvxfbOGNCZIYaIF10CUQhBBLRRWGdRSmKyDOEBpWnrORkprqm62gkiqe5EdyllV4EgDEpAK+LlFrVu6CsxyaV4DzZ4nHMoIRFKdtU4oXsNuJhMeHDvE15+6SsEGSmGA5RQEB0+OIxOkUJ3orySeOfRSdZVvQlBmqVAtxEpzVJijNRtS5pkXcVFEERvadqGvJ/i2hrrLGmaoYUGum0W1loSrfHe4b1Fa9Olxl1XBWFt29VthO4cwQfEpRFAlPT6GcRAmiYEH1Ba41zT1UgkGms9SkuQ6v9n781iLMvv+77Pfzvn3LXq1tJV1V299+wz5HAJKVKSJZGKZEhREigREwNGBNuBExh5MJAXv+Y5MJDXJC9JID/EAQzZjmVJpCiRGskSFw3JWXqmZ7qrl6rq6trufrb/lodze2YSWGMoiAc0c79PXV1VZ7l1zrn3+/3+v78vzlsiEAKEKPDOk2S6mQaiVVOnERrzIHhPYgzONYnr6BuxlRibbQpB8IHGdFW4GPABqrImabdxsTHfQwiIxXuHJBAXadXe6ibX2l0SqTk7P6as59R1zp+89g2cj1y5tEur32d8dkJ3dZX9R3cZ7Gyzvr7Ne3fewLRSbP6I4+PI1nbKytolEIrh6QnPPvcib333zyiKAp302bjwEi9+7mfQSnGwd5fRdE4rgVHh0exzePYAI7t0ugN2rr3Id/7s21RuwnBYEoVgbW2FvCxYWd8ClZJ2W3hqHo9ywsF9brzyRb72X/59/vH/9A8ZjQ+xtWR18wIvffbLFNMp77/x51jnubf3DmVhubBxgec+/1Ns7m/x/T//Ns+9+kVe+alfIM26VMMzpkFw/XN/jdH0DKQCkfDD136f8ycPGU3O0dllfJTU0zFSpSAqKuupKkGmFd0spXaRzUsXkc0nAb7wlZ/jxs4u16/s8MLWNg9Ohgx6GZk29FppI4ILydOqh0gE8VctC/m/FUbgouBqFikk/ONz+HQ38rD4aM0C1BG2FKxJCELQdZG5WGSVF4lkH+HFFtzMmjKI5xtPGcHTZLTARTirAxMv+cPzyK+sLSommp4HXIxsZ/Dr603i+ffnUEUIi8mLkUge4EYn8guDZlHzn1eC0zoSokQ+LawQ4oP+iKbGIrLEEh+HJZ9Z8pkfSz5j3aIu55PBYH2DC2s7nIyPlnzmJ4DPOBc5ZfSJXT8iqCWfWfKZj+Uz8RN8nsXY/H2WfGbJZ5Z85i/HctHTEkv8W8Dv/u7v4twydbXEEkssscQSSyzx7yIGbcOjo1NM1qJjUibTc0ChhWRWFMzLOTZGYgx0teH89ITeYIXLuxcJ1nL//h4Fhn53hUhOjJrR2TEbF7apypp5XdButRiP5uAco+ET5HiIEgplgKCYno/J37/DHEiMYRQtM1sTAJNpNja2Odh/wKyeUNscIyWtrM9qN0UIz87GJidnQ+rKUdWCygZavQGzfIZ1mnY3Jfgu0QEqR8iA9pKymhKkwASNdQKt4XzuCWiQjbBW2kWCT0aUDlhbIYj4EMEGrDQoEVhrOSZzkIlCBImIklQp+q0uuYjoJENL2LiwxXw+xc7OqYsxeUywdd1Q8FizsbFBr9ejri2n56cQJEI65vMJRRl5585bTX2Fs9S2SU0b2SQNQ/RoIUlUk86ztsL7JqVqfaB0Jd4FCmmxtcWFGqMjqUnoZS2mswpvPYmOPDl6DAIqF6jqGpNBjDVKCCQeGywi9JGyuTasb0bNSwEIj48SHxytpE0rS8lSmE0neO/JywmDtV22VlbwVlIJKOsS5yPtGAihaBKa0SNjRAaHlw5kY8IYKXGuJJEKqQTSAMog4mQxbt6jNYCk2045OrvPzVvPYosJk+ER+WwOMqMua0yqqKwjLyfITsKg08MXZ3TbguPDPVLp0b4iOk/LJMynZ1SF5MLGFmVwnJ5WtE1Gkhj6oovznoeP9hn0VvG2pJVJ7u29izGaC/1t5rljY9DjmWtXqZ3ljR+9x/e//32cEsyr5pqPhGaUvRJk7Q5rQVCMCwofqUVOHRyv/+htXn3+GW5cu8Lbt9/j1Wdu8PKnn2f+J5a9gwfsHx7ja8HGhVVWuxc5PT5i++KAusqJVc3J5JRAk0Ct5jXB3GY6GROsJ1hHqCMq09Q4TscTUm1Y7Xa5dvk6ew+OGM2nQI2ImqTVRUbFcDKhrRO0ElR2hg+WQdamsBUuWLKOJGl7ej1wfkrbJKgQ2b10idJOyNIOJ6dnpEZzeWuL9/eOIHqytmFWVjjvMUqxNujxMD/BK8G1689QzWeU0ycEqSmrEV3RBa9wwRNCQApNq50wz+cI4bhy8RZl/oDEpHgvkBJG8xmp1tR1zc72Du12l0CgLEtMqtE+RymNExG/qMzDBySS6COmnS3uR8loPqd0j1nvdZkUGR0iWkScdThfYUwKCGpnqau6eb4IgapKgnfEEOmv9NFpi7IommlnMaAkIAJCgKstNnikkIgoQATSVkqr3WkWyQhB8K4xH6AxNV1o6lyExlMDAi1Vsz3bLJxpEu1iIZQrImIxrj5AiGipMLJZqCOlaIR1GlMgBIdKkmaAkW+OLXpLy0ikqhhOT1BBooTCeYeIEglo1Rgi3je1Dk3lTkAqCCGilMIFh/euqcNBYRd6oZISHyJKSPARFaEsqib1nEo8Hu8jQi8mKBmN93ZR6dAYCN43z7AQJVpraleTKIOzHiEXFRXG4HyziFJrTekqjNbI6IlUaKkIIeIDJEriLDSlSqFJuWuFUhLr3CJ5HYhR4KsKpTVSCZ7myGrnkdo3lUjRo2LzenoEaEOWtCmtI2qJSQ3Rh8W+I2mqmxoQAipL8MB0eMzK5haf+9lf4vLNZ/n+v3qNfn+F9/feZnNrix/+8Ls88/yL3H3ne/gYGQ1H+D+3PP/KF3nxpc9ysr/Hvb0hJ5MZJBO2bg0YbG0wPHtCq98j66wymj7BxYL+6gbbl64zOTtm//AeUinSpI2Pc7LEUNeSuvb0gyKRghvPvMDa+oDX/ugPabX6nB4fcOPaLX7tb/43vPW9b/Hu669x/nifu/ffI2YDnjWGYjRe1Jq0mioSaUjSDKlTZqMxh/v3WeldQIsR3sH+g/fIh2dsXb/JL/6nv8no4Ijp2RH3fvQ9fvrXf5P05vNk7RZP9t5g+/qnufvGH+GmljpXEAvmp/epQ1NzIKQiMRLvI2l/jSRts7HW5+d/6T/m7jtv8otf/TK/9LM/x3q72zzDJdzcHqBlI0eLRUpZAD5G5lVNUddc6Hdp5PK/IiIIEQgI1jX8dEfwagskkeOCRmQXTysVGq8RBCI2dQ1KRORTE0AI7Ie/ghARE5uKxac1DlHA3EdemwiMjqwY+Pq54OpOpC2bFDNA7mDiQTUnyoGXvNiJTw8ZR6SMkrMSpIicF7AjPzihD0+uGdcAcTEtbYklPgZLPrPkMz+OfEYI9/F9Pv8fI21pLPWSz/yE8BlbfoJ+m2hqH50vlnxmyWc+ls98kljymSWfWfKZj8eSIS2xxBJLLLHEEkssscQSS3wU2pCYPs6WFKHAmIzKlczLkqAEMThM0kUgSFptzqdTRrMZrVQxmc4QaESqiMKjpaGTGsoYiG7O6dmcsiqQwmB0SmU9zkXKTHP56g1MKpmMx8SiohpPoCrxdoYVASc9tdI8fHCPxCgm40kjPOkut25t0dIJRgfORyOenJ1go2d1ZcBgdYPh8BSkxamyEXnqKUKmbPUMSmXMqlPSVBCcwQWFjRUIhbMQfEKQFhE1rg4kaUBJj0o1ti6QJiF6R6hq2gkkOGLUJBqkCngb8L4hwZlKGE6n1M7Tl5qsu8p4MqcqLc9e7jOdwPHMsP/4AYIEbx3D6TnH41OCsxT5BCl0M9EjkYBkPptiTEJmOqx0JKlJmZUFqsqJg02stYhYkVc1WZrR6XSZzQpc8GysraKF4vDomBADNoC3go3BGqluE+0eSgWcD3hASgNRk1dgbSQxEuuBvEQKQV5NSJKUuna02gkyybh1+TKTfM75gz0QgRY1k+mQfD4lCtjavsLa6jpKJyhlcHVNjBBioLJukR5UCCxRKLRJmmoyEdFBEEKFihXSCqJQRCHRMjY1IxKsgFaq2FhdZbC63oylL2fcfe8uJ0/u4eyEXm+XNJWIGKhsSShzWsJSzyesZj22NzbJnaWdOlxqWF9boXA10+kc7yu8aHF8PsIYxel4zq1L640p4CP9QZu6rhmOJ5TVjHk+Ymt7l3zi6WvN+mqfldU+UiuK0ZhPvfxpHh484nQ4BB9otzR17UlXFUU+54XP3qDdTfj2a9/lfDrD24LaNYLsaHLGvQeKx/uP+NVf+yrvP7zL4ekRVR3YPz5Gac2VqxdIpObq7mUO/uI7NLJs3VQHqgxtEoazmurogFgF1CL9VtWORK+xsTtgXr2DEDVlFZmMK1qpYjipiTKgZcLzN28Ckh+++TqdtkKISHQ5zlqq4EELUiMJtmI2inSlZTrZ4/KlF8hkm52Lu0wnxzx+MkKrhF4n5dL2VfYOJpT1nPPhkKpsBNtWkpIlGTtbuxTVnPfevc3Lzz+PXe9x58EBwXlWyhKhQ2N4IPFVRUVTkZgqw2g4JRApygoXI0IprB1TV4J+u00dLDGfgDAUeUFR5ogYkRKEF00CUjTTdpy1uBqSxJIosF6igmoSuTKlFpHJ8Jhet0fmBQJHFQOVbaohqrpGKUmUkbIMeFuDt1y8uE3lBdY5pFB4PEmaACCVbmoVQkQaTYiOYGtk1m4qI5TCR/FBzQGAiIHganSns0hmNlWR2kiCc8QItqpJWi0CARkjMXgq36SlQ+1wzqNTBeJpvV9ES9nUMsRG+tRSNdpeCCAFQmoE0PGPsVOD7F1pEsO2eaYmuklyRzxRREKokVpCFEghAdukqKWksB4pPWXpqOsaYQztNKOsKqJoTDUpwZgM52xznCEAEmLEGE2aZlRljpKyed1pBjBEIq00xXmPr2uCSUBEYnA4VyNNgkAi5CJrKpvqihAWdRgigpQgm1rO4Jsqjaq0OG9ptVogQCiF0YZAxCjJPC8wSdqIqwLqukTSbNg7h25UZUKAGCRCNfUgVV0ipWzMYOcQSn5o7IRIAKTUTIbHpN01sv6AdrvHxYvXSX++xYP3b1PmM177w3/BbD4laaf0B9u8e+cNdi5e4dHBIza2rzM73efqs69Qh5zs5JzNzR200RhliFXO2ZMxwZeAQHhPcJH5dExR5tTVnFQppExoJZJbz32WJ49O8CHw+b/2Ff7sm/87ozzwhZ/5RSSCIp+yubPLYOMiUghWBzt8/Z//r9Rlza2XP8szL7yKr2s6a+tsbG5zfHpAL+uzsbGLMoa01eYrv/F3ePjOW9z+7p+ytrVDu7vK2dEh5eycn//PfpPVjR2O7u9z53t/jJ3PqEcnJJu7DC5eYfeZFzi7/x7l8JB6LlEqQVNgraB2ERccaWuAcgWdTsav/52/RbeE67cu8ZUv/gz/3T98n+cvX2az3UWIJlkcY0RL3aR6o1gYBIIAHJyeE4loJRYCfvyr10IIiEi8gFRAIqCl4DRAqli4Es12FZH7Ffwob3717QJ2VHNMcaHul8CxhUwIooDvzuBL3chO0qScY4x0peA/WQ+0VWMq/NbpUwNBNGZfgA0d6C/2/8Ve5LdPI37xzk6EKsB7RaT0IAIcesHl3v9zXcCHZoEgNGHyJZb4OCz5zJLP/BjyGeeKT3TSU6qgnp8u+cxPCJ8xqfrErp0YI8FZEr3kM0s+83F85pNbxSmVIi75zJLPLPnMx2K56GmJJZZYYoklllhiiSWWWOIjmM/neDfHxUDlAsF7TNqiDgW4ZqR0J0nZ2twhSTS2nDfCui1peUW0NVmny2wyQhnDjd1d3n20z41rN3lnbw8lNFtbW8zOnnA0z8k6fWSrhUokh3t3yMuAF5Gt3atc29jg9K03iaMRFkUtNRmKsnQYkxJloN3voEQkhIqi9hBrtFYkMuDJUSqyttLh8OgAKRKsLZlVBU4qOiqh3dmiqCVpq4uva9pBMrUlgUAQCoTD6GaCkJGOdqsiRkNe11ivMNojFw61MT2sLXEIZvMAURF8wLtIkkm8dQTZYtBfo99rsT7Y4PT8lOl0ggstRtMJx2e+mewhFALFk5NDYggIKRAxYB100japyeh3M1b7a5hUk6oMtRAf6gBBSqS0eB94cvYYrRUXL2xgvSDPHxN9TbeVYp0gSxVFFZARpEw4Oj2nlRWEGMGDkE2dUllVEKCoJDEIREzZvrDNwZM9WklKojxKarJMNckrX3D//jtM5xWlq0iTlLIc0m4NSLI2Jmmxu3sNjWQ6m3B+uk+n3Wdj4yJRG+pZjo6B6B1lWTMv5mxf2EKphEwKcuuQwiGBGBsDywdPXKRAVVsjlebZ65cBxfHBQx7cv0deTKiKGZIpwpckjDl+MmR7fZ1QVxAsAMFZuv02l3df5FvfeQ16ksOTI8b5mOF0ilosLlCqSYuej6e4OtDp9tncvMCDgwP+4s3b9Potbly5jFQps7Li/b1HVLVFSMWntjZ4/d3XOR+VfP7Tn+Pi5g4H+/tcu3qFN2/fZp5bEqm4deMWp2dHDPor3DvcJ6+ntJIEIzSV89TOIXXKN775h1y5vE2iDCJKnrlyhYODY2IQnJyecfvObVayDu/fOcGIQKLn9Pq7HB6PKSvBoN8lNQGdGo6GZ7Q6raaKhBxXzzk7qZtUrvDMypr3Hx2wvtoi1YYKhdEJPkgeHtzFYcnLkip42p0udT4EJUH0UELi4wyhI16vUs9nCC1IkpTR+JiTsxOKukIISZYaqnJOkc/JehlCZkjjmoUeQjOezjk4OUDLiM4S7tx9gPU13lmMUpRV1XwdIuimKizVCXOX42VgnJ8hTWCajxG5xHlLcACROtZMijHSS9KkS5IkDNJVhueTJukoIp5IEBqTJqSJQQqHkhonJcLWBAs3r9xkOhtzcnbCZDKkv3LG5cE1EgnBB7r9HsPzIbXNUVaAMk1qsS4wWiOEJLiKuswxSYtYOJQ0eOeI0uM91HVNmjQiO1GhlWlS1qjm3nCOGAJaK1z0jQApGvNACNBKI4yBANoYqMAkChECMUaca551SgpQglB7cA6ZZkil0VpjXVPZELxvjl9JQojUdUlEY4Ujafe4dvOnKWqFFYoom9HuQsrGq4BFZeBTX/Dp6HmJUJooaOrhkpQsbepWtAAlVbPYZyE8GpNgkhRX1ygt8b5ukt1SEIJHK0lVVzhbk7V7SK3xLhCaMjmU1FR1gZQG7wJCCJy1IARGa2KMCCGpyhrnQ5PeJiCMbgKdMaJF89xXiUZJjZ17jDIIIYkBtNaN0RAb6dNZT6edEIJHRsirmna7Qwy+meCkZVPLIWxTl0EzccKWVfMcCrJJiUePMc3UJyEF+ICrc86ePKLdH5DPS1ZWPN5bLqxv86Pv/AkSwWR4TkTw+NEj8ipnbbDFzZsv8/jBHqPjJ7zymS/Qzrp0X/0KB3dvc3Y2REiB0ppWv8/Dd96i1e0TjUNUBWdnhzzZf8B7736XsixpJz2SrEWWZRwdnqGMIhYVMjh6K1tMi1PWN7ZRHopqxNaVq2xdvERelLQ6PUzS5+qNK9h5yY/+9A/43Fd/jQuXbpBmPdYvXGR2coKzFqkU3gXcZMzZw3tsbO/yxuvf4sqt57HVmK3dK8xPz5nPppwcvM3p6QNsXvHGn/4ez3/25ymsZXPzUzyaj6mqCWWwCB0QIsNkhn6mkCryM3/9b7D/1h2uXbrI3//a1xjNLV4GYkfzX/29/5pndrbxMaJEJEZJXs5R2jCelyREsnZGHgKDLIMguLv/gBduPsOd41N21wd0tf7AKPiw8IF/7ddPIYhsSsFP9ZpENAj6C3FeEZspAUSeSSDtQB0iDsGNFK6kTVpa0Bh/N1PBvRyelOCjwBJJZPPce7r3nTSSSYEUoKJgNWkS1k2autneEy/5P88jKkbKILBOLBb2RRDgBfzCiuDz/cac+KMSsE8tlA/P+EOboFl0usQSH4cln1nymR9LPmPrT/ZGEHHJZ36C+IyP9pO7dBAN15B6yWeWfOYv5TPiE1yFHmNc8pkln1nymX8DlouellhiiSWWWGKJJZZYYoklPoL7j/ZBSAYrXbA1IQpSERAKer1BIzpJqKoR7daA3qDPaDRGRcHIFRBVQ9KFx7mSe4/nJDrh8GTE5UvXGE/u4G3dpO60otPKKCdn3B4Pm5RM8AgpYXxO9/pN0k9/hvK7f46vS4yATAtsjFRlRUSSGc3JyTnrG2vk8xFGTonBE2Sf4XREmmRkqqDb7zKdTEEm+CixlaUMHWRoqoCCiyQ+R7oKQoILjZ5pSJA0ST1bQ04Hk2YIzkmUw4iM0kuyLCHQRegMLRwqzlk1hkk+ITEJUmiMyBDSUc/HzFzN6fEQ5z3Re65fuchqR3H/+AGJTKh9DcE24pdqEfAEPEkiiCowrUvcpKKsa3rdNdpJZGW13whn1jck3wWss1xe7XE8mbP3+IROJ2Fv6UsWAAAgAElEQVRtbYXpTFIWFU/ORgRR4UXEW0UvUdhoMamirBKUtFS1JYhIK20RLLRbLaoyEqXAR0XwGpGm1HFKKEo2NjaoKsd0OkJJhySSKEXwnhJFt6sJZU7a7mKUoa5qrLMMJ0MOnzykKAuuXntuMYpeo1NFp9uhW/VRStFqZSglcXlO6RRZWyM8xBCxtiZpGWKMSF/gvOON732HyfgMTUXbKC5caNPJtlhff5lZkZNow8P9h+xc2KSwgvPRCf1ul737e1zZ2aIu57x84yZ5XTPoDSiqRuBvtzOy1KBNxvnZCO8sm2s9ep2Me4/uIZWm105op5p8NsVWFUq2mRZTgoDaBUaTMyQCkyhcVfHg0R7TfIZODRu9Fc7zEUmEw8NT1gbrvPPoIfsH+xyfT2irpElcxohzJV//9rfpdNrM6pqjkzNuXb/J5qbn2taI9/ceIozAKHj73bsUVc7G6jpOFHz+U5/nvb0jdBq4cmmHRCb8zje+RbvXQhEo60CqEs6HY5AeJWoUzZh+7yvG0xpURKHRJmV8fp988gjhJZULyCSjCp4kMbSNRLUFoBgOLTiJix2SLGPvYJ9BBttbG1RlQZoZ5vOK9/f2mV+wXL+8w+GTIyofqa3DJIaqznmwP6UKNdtr65yOR0SfL6aIS7J2m8oWOOdBRDwCGxTWeVZ6PSpbM68qPIIYKzKT4K1HKEUrTXDB0pIply5eZDavKMo5WmuMSdGJJoqm6gUa4TnP5/R7vaYar5oiokAYxfnojJVOH7UK3TQja7WQSjaTe6xHCUXpAkEuRO1o0THibKDTNtjgGpG6bFKnRgrKEkJV4+uKTn9AVBJJs+hPGbUQ+5rqtOA8iKbSRisDaHzqUUrhfSBN0uZnnUOIhdAfmnH3IUailCAFRimEEEipQMgPZDuFICxEuxgC3lpiaDTAui6oypxJMWd1dZM0y6CzRWWHSCRVUeJ9TSJahNhsRKJQqilPEDSmg3MOrRXQ1DVoYxBKEZ3DaI3RjcOgZMT6iFaG4DzO1uikTWRx7CJSVRVaG+q6RkqzMDL8IqMakVKhtEbUkiRJQEqsdShjyIxGysYAFkJQuZpWmjU1Gt6idIb3HhAIoWFR52LrihgCyiRopXHWk2UJzjd/m+A9SkrE4t8xBpASiaT2Fh8cQmT4RdI8xLCYSlYTYqDb7iFSTeIkVTlHJWphZCiQgug93dVNonP0Vvp4H5trRCd86tUvorM23jZTEjrrm2xubrOzs4uUmr/+K18jOPDek7a7DA8f0en0OD87IwjRGCVBEK1nNhtRxTnYmtKd8+DObR4/fsjN5z6LrANbu7sknR7f+ebvYYygN9hkdfsSP/VLX+Pumz9gfHyMNtBTPZhPefDOd+hsbHPjmRf5ld/423zzt3+LQM7OlZfo9Ack7Q5XnnuJZ7/4Zf7gf/ufmQ3H/PCb/5SinhGd4f7tN2mvr5JmLY7u7wGOaj7hys1bzM6OOXz/Nv31y8zECXfff4uD+3dZv3wdGzwH+/for12nt93i4Z0f0rtwnVeff4nh42POhnf5jV/4CuILP8elq5fotLpkHcGb+4957eu/x4tXbvCN032+/NynWcmypp5JJQgEf/zHP+D7b/4J/95nXuH65Ut0nnmRfDrhX/3xN/n8c7foJD1aUi4k8kaQF9C4ZuKDMobmO08NNZ7K9gIjwCyqHiCSILigP7QbBIINHRnop0npZg9Pxf9Gnpe8nEZeSps9xSga8wyaHggBRkR+uSdQguaeRPAf9Zufaa69yGUj+S+2IMQmGR4XB6oX6WsRBZ9OQCWxqYtA8HISMfppOpwPzoxFFYUlItRS0l/i47HkM0s+8+PIZ5LENBNpPiFcu7yDkfWSz/yE8Jmq+uQWzQkBiVLkdr7kM0s+w1/GZz7J55kUgujDks8s+QxLPvOXY8mQllhiiSWWWGKJJZZYYoklPgIRBYJImc9pdzKUUOTzAqWb5NtqL8MBw9EQWxT0+ysYoQhS8/yN5/HFnDuHR/TbhiRt8cKlHW6/v0dVFtwbjXCxblKzweNipJrOGPRWOJ6NEVJTu6ZmYDSf887tN/ncl77M4PIWpw/uN6JUCItx4ZHBap9WkqB6XbpJynySUMWMRKaoaFjrr6JkC0yfXjJlPp3TyxTeaqT0eE6xtofAMc9z2gi8BK0lUhgEkhibNKAL4AIED1U5RilDy2TNf+DwEfJqRDtdRUroKHCyjVRTiBoZIkRPXVlKcqScgtMUpUIIyeZmh5MnY3qdNq2ky6wYAwEfTGOGK02iAy4kzKqcoioJVmCdZzwqkMrwcudFymrC2eicEBznozO8czx78TKqu83JaMjOeo9ep0dVzLl3sE8dPO0sI2AZ9DM6aYtWZ0C7bYhbmxw8OcOLWVP1ERqiX9UVcVF7ISSsrqyjpGJWzhBSYL2nLAuUNiAUQmoo5hij8d5TliVCKIpiyjtvv44jsHPhEhc2rnByco8qlqSpwZ+dM6/mTKbnCAH91S0m0xEvPfsiSmsSo7GhpqpKXF1TFTmTyYhuKyXNMrqdHlEFrmx3GDy7jkYgoiOKBGst7U6HdmdAOZ+wu32J2lr2Du5wfDyj1e4gQuCd9+8QhEBgOBme89Izz3Pv4SPkrCZL27z8wi3eu/eI1BjSRNNb6XL3wR7zfE5iMnY3N9AyoJWg1++RZW1eeeE59g+O2T94xOZGj7wIXFi/yJPTQ2IQKBM5Hx0zq4pGjJeKR0cPeXyacj6bolTk8vYVQlExnRUI6Riej5iWjlF5ztl4wpPTIdeuXecLn/kM3cTw8NEBl3Yvk+cj7j7YY7C5yvBsyOc/+xkurF/i8Mk5w9FjzoYpu1sX2dlZpdMZcHR6zHAKz1/d4cHD9/G0CWhqV5IY0CaglUeZHnOr0Inh5OQI1CpGOXxZo5zDS4+QnizpQHTMqxqiQhA4PdonyQw6WeFx+YTKzdkYrPPyC8/w1nsPufvg4eK1gLZKqb2n1e4TXInSAh0kEc14PCYv5ggk/TQhJJKdi9ucnJ0yHU0WCfbG2CjmNbeuX8WkGY8OTxiNp1SVQwrZTBCTAuk822urZK0u1nmKec7h2TGtbgflaoR3SCokAoVARIVQGpVmeB8xIiFGj1aK/SePqNe22Fzdotdew/qaEAK5LWhlTXxQJwaVZiRZG+8sVTlHRgvR4W2gtjW1rVFpSuVAz3NisHhbkWabeAvWW7RIFiJ2U5khZMR5h9GmSW0LQWUt2mREH4iiqfRzzuFDc63WZY1UGqUTJBLhQ5P0lQIVBTY0YrpKNC4GCBEZNRJBjAJvPbau8almNj6hOr9HIVqsra7jnSMQUVpjhMAVE6bjJ/zwR9/j6vXnuHTxBtKED9+TFvFKW1dEDFmWEUKN0c1EAkJEJwlPzQMRItZaWu1uk4CWYiFYNtuKIRJiwJiUui7R2uBcTaYbs0AKiUqbKRNSSbTRWGub5KeUhNgIlR9uz4NcVBuGiJLN24IUzUI4HwJKGKy1jZBrFFGAW0yli0SUUPjgydKE6APVYhKE0hqEQAhBmqTotIVzjhgEMTRmjfcO08rQaQshNTHmKCGbxU6iqS0QQjCZjDnav8f+/Qe88qWvksymrK0OECLS6vT47Oe+iFCGN777bT71+S+RRIWRApmktK7cwlrH4f09/HpEREhUJEkSVLAkWcorX/hZdi7f4Fu//9tMjkY4IomvyFZW+MKVX2Fj6zLf+9bX6a5vs717lbe/9x0OD99nc/c6WdallaR87ks/yx/9s3+ErSZE2aLKT2n1LlDnExyOt7/7B9hQstJvEX3F0aO7XNi5xs71Z3nvje/jROD05AHf+p09dq5eZXVtl6w/4OHee6g0oyoLOj1DXeXc/tbXufnlr2IDaCFY2brK+PEeur3K2WTO8xvbPNP+KkXV5i++/ds4q+lsfJbv/uAB81rRWXmF3723ztrlS7SPPOXbb/H5V65ydeci33htwD/75/8jf/tv/U3uHxyzdvEKWy3Dd+48wsc2fucV3vwn/5K33v0d1rorXLh8CTQobTidFpQKdqRmJRUUUZCJiERQ09QlCLH4rCY++rmtqTpppPfYXJvwQbUEsLh2AdFYAfLDLz6wIxqDlcVWGvNAAlE0RsFTc2Kxo2YbEVjsTy7uNaKAxTF2n5oPT+8Znm6/+f6aYrGnCBG2FET1kWP6SCpaEKljxPy/+oS7xP+fsOQzSz7z48hnnLOLhQSfDA4eH7N9ob/kMz8hfCY/nXxi104EfPRLPrPkMx/LZz7J5xnAdMlnlnxmyWc+FstFT0ssscQSSyyxxBJLLLHEEh9BlppmvLz1hFnFxuomhdKUVcHZbMz5+BylFSv9VUbjCdMSBr0MKRT9lsYLg/c107lnq7fOSrdD2m7x7HPPcfjkMfVDS1mW1CEgtaL2nmFREqIkUQmrrTYhhMZIqAtOHj2kJCB0Q4F9jAshx6CCo5xNcQEeH81wgHcJpfBo6djd2Ma7Cus8Ts7JUjB6kzRVjclhK1JZkSQJqWlGkCvRJsSIVim+khR1QRSAbCZm+JBjVEpdRbppm6qeLFJFDqk8rj7HuppWy3MyCyiVEaOknYCLJT5qtDYE6dFG0FZpU+2QtBFa4ikYlzWZtMwq8CEQg0MGT1V7QjRUPjTj/mWTEJUEogu8c/ddQnD42NRAiBhYX1kjJh1W2ys4B3lRkZdTijJnVpQIDWnWI80kIcwZbKyxsTKg3dKsXrhGXv6AVppRFnOKskIgSbSi22qEAl/PqYsRXii0AqkFs+k5MWhQkpVuD6M0Z3WJlJJIoKosUShaSjOejlFJgg+BED2dTo/11U0kitpXHJ/sA4J+f0BV5kgE5+enVHVNXeUYBYnSrA/6OK1IpeKFF54lTXvce+8RtYCVfp9uNyNWFlfXi5qPAMIgAoCkKh0b66s8o57D6CfcfbBHq53R6Riu7z7HwcFD1vodbOXYWh8QRcVsNuFHb79OiJrtnUucnD1mNJogpMIYT+0rVjfWqfOc8XRCUZUQAtdeeRVbORJlmRUFtavod/tE2yEvc4zx5OWIWVk0C2kiRANVPmruGRsp8grqCiECaSKZz3M2VvtEIu1Wh7Is+cGbb7G9tcFzV66xdWGLoixIs5QnoyGnZ1NaWYtZJfnGa3/K2elDhnnOwemUIq8YDR8znEzQug9R41XGpBCAw7uAUR2EKIlSoILBOcXW6oBWO6Gapaz22pwOT1GdFFvWaBUxKsHSppwPsV5Te4ERCqMd0in6vYzCPuF0VJCS8u69ByihefWF57n3aJ9+f4Xj2TH93iqz2hK1YF4UiNBMtDEtg6k02hgurK9weDzm8eEx03xO7RyJVsgg6bRbeFdy+OQEbTJW+qucno+JQjYpfetZWe3QS1s464iJJ88LirpARLBFSZRNZtci8bER57z3tNMWEkWv12Y6neJVpNfpU9Rz6sWzSCuDjOCcI4m6SQOGhRAH2OARsUndap005mj0BO+xzpN6j/MOoSJVVdLJ0kZ0riuEVERXEoVBUCOlwvqSGAWmt4KQkihkI6ynBmgmC8UYG9E6BKLU2NoihMBXjiBoplVYD0iCq3FVSfQeow1KSqRRTQJbgg+OEJoktjEp/ZV1To7ep5dJMmmJ+Zho2ogqp6jOMdkaprVKfyWwvbOL1k0au6mtjETZCO4CiYgRV1mctbTS7ANVM3pPWXnSRONdI76nWUpVFkht8D6SSInSjVgvpUJIkFIglMC7gJTgfcD5QLfdIkRQxiCkwAePQOFDQEi9EC+bCV+C5vhq7xBInAsgJC6GxoRZKLW1dXS6PdIkofaWVrt5r2NxngLQJgGlsWWOiNDudhpR1XukNsTgEcE3hRUxIoUixKepWYGrKggBoSQhNtOgnK0xxmCU5J3brzMcDdnav0qv26O/toFC019dIwTLdDLm8Mldbo6/gOmuEKRBS02IllaSsrV7lf2HD2hlSTPlTBlOj07Y2tmlaxJ0mrC+usbJ0SOkStm5dA3nAm+/+QNeFJLpZMTk+JCTe++TtTJUIjg/fcT+g9tcffZVWt0eg7UN9mRG2mlTecu1F3+GxLR4vPcuw+N72HqGTrY5Oz1h5fgJ9++8yff/8J+w9+AuSiiyziqpTtlYv8nG5esM/+JP8KLAlRVGGpLOgI3d63z2P/jPqW1gbeMi54eP6HX6DHZu4JXil3/53+erP/cl/vv/4R9RbH6ak8kZNRkP3n6d7stfo9ofUQ9/n3/xjTeYnv8WujiD6V3+w7/xq0zmFe+dlsi1bf6X/+Pr5GXgH/y3f5dv7T3mX/5giN7+KsHC/UNPUt9hkqY8Phuy8+wl/sHf+7sci3XuzSWX1yV3crg9F/zqJuxXkX96D4paoBZXn5KglCDL4BcvCXbSyJ9N4HoCuxm8PousJ4LdBN6cRg7HTT2DBpQUKBHREowR3OxFBhoe15Gugq6KnFjoykhbC84qKOzTqpandQ9NmrploG8ENkTqIOhoms9jIZIqQYhgQ/zAcBDiI0UPYmE0iEhAfGBoxMgHiwKJTythGhMhdwHhPuGKqCX+ncOSzyz5zI8jn2m3e5/ofTAaj1lZ7yz5zE8In3FN//YnAoGg2+tT5PmSzyz5zF/KZ2L811w8/5YQYclnlnxmyWf+DVguelpiiSWWWGKJJZZYYokllvgIrly+wXw6ZjgdIaVmms8xRiG1Zl7WROcxWqNVjklS1gbr9DODVIrHp2dcGKzRTTVVkAwnZ5xOOx+kX+bzCVWZ02736HZ61H5MK8uoXEmWKqo6J9EtOt0+iRH0Ox32Tw4ZrK5RP3zEvMyZJoHEJOSVY1Z4FKB1hrORXqdLqhMwgaoYMS3mJHFMInucTSO1a+Oso60KpPAEoai9xQjBaqvF6XRGu7VGqgLT+ZTaKpKkjTGS2XyCUgpik/w1OsXTTISphce7QCdVSFmQ+8i4TsmyhEiFltmC6IKUEa0Us3lBagSpDqz2E9545x7v75+glcbWgTSVzEPVjGQn4r2lkQagJQXSaNKky8npKUpFUhOp6jk+Sla6fUaTIUmagVScjmeUp6esrV1kOMpZGbQ4PbpHiI5UpwAIZ7Ehcn13k9OznPFkjJMrHD45JE0UaE2wHhUis5mj31dAwXiUo1stqsKTtjusdFaZzMbUtkACl7YvUVtPmZfkVU6r1QOZ0VtZwVYVWxe2cS6Q53OkUqysrJHnJcPhGVWeIxBkWQahJjGe7a11Eum5stknESu0um2mheX47ISttQHXtjbpdfvkpccLvxBCBAiDC64RHmJACoUUgvPROfuP7+F8oNXtc3B8yq3rV3HeUpZzXn3uFYaTAp0kXF4d8Ph4xKOjBygNaZJwPhyRpC3kimRjbYdZMaYo5pQWIp75bMT6yjplbnn+peeorKPba/PsrWf4wQ8r1rdaFPMcW5W89PwLpEnG0eEhP/zRHVwdMYlhMi25emWH/cMjEIJJWXA+GiKCwzlIU4mLiisXL7K5uc5sNmc4nuDjEXf3bnNpc5O1C+u8+ebbnI2OG8ElBvIq53s/+BH5vMLoSAyGle4qUiSIIKmd5/HRPlpF3nprRPQglGJ9bZW8ipRVhQiCSgiUVwzPzjg5dVg7pSyn5HNLr62JUVLNA9u7m1SVwKmEdmqQssLbSKIztGrxqRdfxKib3Lt3zoOHj3njzvtc3Nzm+u6zFHnB0fE5QUUqW1DXDmgWjFjnMFrQb/epK0u/32Y0nWGDZzQdohNIlcBVAaWbhB9SobTBOcdkdk6MgY3BOjEEXKjxtgKp8GnC0egMqTTOVaQtTfQRo3Uz8zyoD+5to8D6QBoC58MhQipapkUxn6KTNt7DdDbC+RbWejqpQakmietjxPlIsAEpnyYQFVHqRuDVCXXUOGlwISKkoKgrXFGx2u0gEDhXIGSyELMdzaR3x2w2ZGf7ClLIJvVIJMQI/v9i772CNEvP+77fG076Un+duyf0hJ3ZBOwudrGLXQSSCAQJBgMMIiXLQQ4sWcULWi6XHEqXtm5crvKFXVb5QhJl06Qtg5YJiwYIUgQTIjeHmdnZyTM9nbu/eNKbfHF6FyCLIKtscwxC3++iZ6bnfOH0Oefr83+e9//8Pd5Z3i134xwo0Uw9IDDXn29iJIAkazG2Y0KAqrY4D2m7g9Ya733TnKhrhJAE6zC2IgiJB4yx3BoZ/MFdVnoJtnsWZxxOKFq9RYbTinZ3novzayilMKbAWU+Wpc17FgFnQzOpSwbqukAJiZSyaUaEQFXXJGncOEFlACVRqvm9o6II61zjsA7gnW/c0MYgpW6azvJ4kZDzCCHRUmJshVTHzY8maQ7nLCqE9xyjIUh01Hg0A831oaMYpTTTYkrwoFREfbxQKdIKJQShtqgoxgbfuEiPR/w3Z7QjSRJMbZBSYo+niCil8d4hJQjvMd4hhcTWhjSOCbJxYiuhkLLZJ1vb5jIRgvvbdzB2zONPPMupjfPEcUJ8PP2ssjVxHBMlGQ8/+kHywZB+r49SGucs1jmkUnTmOtgbBRWOYDzOOebn+9x48xs8+oGP4OocK2rq46lVZTGlLiekkeberXfQ7ZRb1y7hTUl3eY1H3v8hblx6lcP9Lc4//izOOgZ5jlcSrTSTomA6GuJ0jRwJ+t02WXcRD2w89iwKxVd/+/Ns3bmFjGJwltPnHibtzDE+OmJjcZXB0Yiq8ICn00t57KkXWFzaoLu0zuTwiPNPvUCrv8rLX/0irbVH+dRf+zl+4XM/xBs37lP3+tRvfJ7+8gWO8gKqCebogHTyRepyh8NX/2tqU+JtgVKe/WHBzT3N3/l3fobLV+7zG5//EifXHRvLK/w3/+gyIxtwu6/SP9dHtNaAdSqzw7n1Fn/jpz/LoGzzOzcL/oOPdDjIHX+0FfipMxETG/i1G7B9CM41kRAegZIQR4FPLAjWYnh5BMNKsNoLvD4J3JgIHl4JvDGB//VqIJ82TmkRQCLwIhApeHgtcKEH1wr42iF8dlVwpw783h789CpsVoF/dFkwGgekbxoNEkAFOil89iHBQ73Al/cCFzO40IHf2YOzqeBCF357F65vgTr+/NGyiYPQSnBhEV5Yg1uFYD8PPLsA9yvYG8MTi7BVBq7uCpTnOOZC8MobY55tb/+l3gvP+KvPTM/M9Mz3pp4x702feBBkrRa9VjbTM98veiYRlA/o3AkhcHh4RBTHMz3DTM98Nz3zAD/OCISZnpnpmZme+QuYLXqaMWPGjBkzZsyYMWPGjO+gmBYkWZ/Tc4sU+ZBJPibSCkRCHLcYjcYInWHRrM3PsTjXRjjD5t4uo7xgMBxRVJb+4grzC/Osraxw/c493rr0JkfTAp20UUoxqUum0ymT0Zi19ZOcXOlxZ3OTUVWTtR1pFDMcbTEqI+bm5vBBIKUgiiMmxRGShNompFFMXtYILbG+Jo4iWu0Ml3Y4vbzO4WTInc27FLUgSbpM8n1KPEErpDQQNK1OitcthCgpy5yKCONA4HDegbOAbISxbhPHMZWpKcsxSgiEiCAIqiAhCBYXJGVVUtaNAFcKpnlBHGXUfoKva4yrsVahO4KjwSG//5JpHHdeooXAWwFB4ZzDB9A6ITiPwdGJu8i4TRIrTqyfpNVqcXC4R5mPCSKQZS3yqmJtfY1iXOA8lMayc7DLxtlTrMyv0O/1uHfvJnVtSLRmb7DHynKPo+GUdjfBBcuLr72MrUtOrp9Codkqdgg+IIQELzA+QghP5D2J7rCydIJut8twPDqumHlGoyFlNaXV6eGDpJUlVNaRxjGp1EzLnOnoiCSKWVxYxVlPVYy4Ntii1+oy11EU5QFPPfoMW4dHZKnC1RXTqaMk4mhS4HXC2uo6S70eRVkSXBPppAS4pjZECI5RPqSlFEHGBC8YT6YEEThz7iGu377O3tEOl6+/RV3XHA4Pabe75Mbwzs3rbG5v8tHnPsT6+kn6811u3t+l8ke0OnOYyrA3OMCHmrwcoxR0sg6l88zPLXH+5Aa9bI6rt7aYlEf44Dl96gxrq0vk9RQfBJ0sZTKeEPUjFubnOffQOYavHvL4xQtcvXGXk8urtNKUV9+8StTKsCZvYlGEoDKCEAVevnyVc8UGptrHmQDSMaxyajzLSwvs7B4hlSRTEc8//xQ3bt7m1JmzvPLqqxgXsMHz9JPvY21lhfXVE3z5K3+E844sASEdJmiypKIVZ+TFlETVzHVWOBpXeOHpzq+QporR+IjB/i5SaeI4pcotSlvyfB8h2hg3IXhYWAzkk4Rub40qH3P57TfIUphMPK2uRChBFtfsHu7R7/XYPRrSzxYwpiJQgJd0sh4H1QFCxBwMjtCJoipz8rImBE8cawKNU1eLCK01rbSFMTWRjlFKsLTcpzKOXq/Hzs4OkRbEOiGKYoIzOFsxzXMS2cQmDssRIUiCUMcFdwHheDS+krTbXcbDEVmrjSlzep0uMk5x3iGFpiwLvAg4NEGqJm4BeewWhOACPpgmwkEJpM5QcYwvc1QUU7iA9JJpbsmkwrhmPnwIgbqqUCqmKKZEWiC8QStANlE6EPDCN01HKdAChJBNAR0IQjafeUohZRN1IJTC+4DSTQSbiiIqa789il4IfAjvDaP3zmKtJ2ulEBxKaBb6K7x29RW+ceeIlZUWzhhaWZebdzeZ5ts89eTHydIWkVCU3qC0asbYK4m1NQRIoggBGGHRSUxA4l1FkE0khNIaW9Y4F0jijOACSiqklOjQOMA9ntpUxHGEsRZrHVIJIh3jnW9eJ44x1uCBRCdUVXm8nwEZmuK1DyC1pjYGpTRlMcU5R5y2mgoqgTjSWFOjI0VVlsRaNw5rKRGqafh6548jdAyRjkAKfPBNzIWAuqwo8pwoTRpXu4dAE4n07qB8YytaraRxaIfQOMG9AwTWOqIownvPXH+N557/DIuLp4g7PXoLSwRn8LVrGt9BECctHnnseQ7u32Hr7i1WTm2ggiSSEoTE1Ial00wRjIYAACAASURBVBtcf+0V5jsRxWTAwb3r1Kbg7s3rbL7zDW7dvI610JnrILCMBgdI4O7tmyStOWyRU9dTDicT2kmX5fUz9Jc2qI3jrW/+IW9deg1b1QyGEwKeb/3ul0iVYuXswzz1iZ9nurPJzXde5/T5i1jrufrmV1man0PpDGMDt6++SautSOfWyYdjrK0QookCLK0nH4x54SdeYOPEIvMXTqBfeJrO3dv897Jk6dkf5wMnuly5fpt/+Cu/ys//2M/wa+98FTOZcv7COY52N2mpVzlyuxAsdbGPThdxrnmNy1ff4hf+w7/HhY1T/O7VPaLokM78Kf7pV24zDQusfXCd2vaQznP+03+bo2/8Cicf7vELP/sMZ89f5L/65zf4kQ+vMjKW//EPt/n5Z+ZIVY9/fBvuD8D7xi0sFUQEhIIn1+DTq3CzFNzIAz+5HLhbwqsD+Om1wMDCb9yGshbfznkQTaNLSsFKHz63ISg8fOUg8FMrAJ7f2hH8+AqYAL9yI7A7Am+O19AFQRCBOAg+thJ4pBf4wyHoIDnfCXztCEoDG0uBPziEL18T1JVHuiYSQgqBkLA2Bz++ENi3gS9tSX5qTbBXwb+4F/jJdcGOCfzjK4L9vQC++YzzHoavjDnz8P5f7s3wjL/yzPTMTM98L+qZDzzyBC+/9AbWPphIKCECQsczPfP9omce5FgdQKBotTozPTPTM99Vz0ilHtj56O1Mz8z0zEzP/EXMFj3NmDFjxowZM2bMmDFjxnfQ7feJ45g4DhT5IdZ4rCnpdjvUdeDC2Ys4PLauOByMmOvOkSUR7STmaDxhWFbIOCLJOiwtrCIc2Npw5tHHeGZ5gVfevMLjFx/jxW/+Plor2u0OJ9cWGI3HLM/NMbHQThU6OI6GA3ITMRh16ba62HxEbj1JukywE4KrMEaSZAnWepTWKBUzl/VIYonzNaasGE6mdFuSfjuhcqBpozyURtHOUrwviUhZ6i6yPxgSpSlJ0iXPx+T5lDQxRMTUTiEl2Lqm085w5ZTSWJIYpHPYWqCSQFHkOJrceeOhKHNCcIhgUUik1KigyEtDVA3pZm2q0iKUw3rbuE6lwHE8qUjFdLM2tbVEztNuz5NkKVkSoZVC6AwZZ9y6cYWqLOn15kjTFvv7OzhvETJBSc10ssfWbcfNt99i/eRp6qqAIEnihCjJOH/mBMIpgnXM91K886yvnmBt6SSDwytAQMeSdkvR7zjy0iHQzHeWGeSWJE0RQRO8wqNYW13naDKgKidoWbK4tMDhwQgTDGsaglAMByP6nYhup8vhYJuHzp5mGmVsH0yYFPvMZT3m+vMMp6Om2Y8mOEd7vo+pK9ZW5qlqxUK3gwyBygcCjmAMDo9A4Dzs7R4ynAyJFhbQQlK7klv3NtHCcGL9HGXhwY85sbTC7v4ue6MjenXNeLKIUIpep8P24R5rCyeoK4kUgXya48umSNptpyytnOTta5eoqpzcF0iluHrrOkWZkyYdRuMdpsWUe9tdTq5tcHp1hbdvvsNHP/Q8pva8/PrLaAIPbzxEkrbJK8ubV65Q15aXXnsVH0HaBqFinHA4UeBMTF3UrK8uMBgcsr11hySjmQCQzSGM5I03r3B67RTD8ZgsjXl44wwPnbnAYw8/yltvXSNrZ4R8ytLSCsv9RYId0Wul9HpddkeHpO2YWORIJSh9i3v7h+AlWsNRXiGkQciI8fSIwaBAxxEyBuUEOEG/36Hyjknu6XUyRBgQyQgzNWhfEwXL6XOPMZnsc3fzKsFrsnaLJJEMpwcMBkcszLepao/3HbrtHl5rBkcjoihGS800LwlZzFpnGVuPKKoKkERBEGUJxhjK0uA0KBVj6pokjtjcPyA3BVJIDvb3qOoSFUMrjuh3u4wmBUp4ei2IdAtja5JIAqBEEwegaJy1tTUkSYS3TTyBr5s4hqIqSYSn9o5YtQneoCJBrDQheDwGcEihEFI0I9G9REuFkhalII4UXoAPHmygDhYvBFoqgvcILxAihlBjTU1lCoJXYC29dkaQAW9qnA8IG7B1hfQOU9e4EEjaLaI4Q0mJo5l+gfcEEQgCrKnQunktwvEY+GN3pQ0eEQI+OKwDLwJSa5I4QSHQWnPuwuOoTPP6my+yt3uHpcU1Llx8in6vw+OPfYJ2dwVvm+gJYz1RGuODQAn53nS2IKMmpsJbItkmCE/tQKoIZ8um2RJACIWUiso0UQxaSJRqJnJ571BKEWmNAWQA5xxJ0ixgswikauJFpBDHbuqAbEYxgRBYF44L/QKf10gd4V3jZldaA00xVgSBlhFBCLwPTQzIcXSFjhTW1IggsJWhdo64lyCExBuLkoIkSZvpdICSEuEdQUBtapyw1M4TYkEcp0gdN8dGiiY6JDSffVI0jRZjLd1Ol/7CIgJFXhW4qsQYC8ETSQ2heW/Dw11ev/QqeV6ycPMdzl58lE7WZnn9NFVZMzfX5/T5C+zceAuvFNPphKee/wi3rrzGjc1ryDgC4TCVI9ia973/Q7z+6lcwboTIPbY2GC95/MmnufLi16jrEV46psMB62ce4vzdR7j01ouY5lRjYioq5yjvXOOh4XOsX3wfJx99miTtoVstHnv6h7j+x19Cxhnbe/fRKqK9eIKnP/45tt5+h7wo0VKzsHoCnOGnP/Oj/MSHnyBVTSwK1jNZ7EKVc+mLv0zy7HO8dvkqn/3kp/mh953kkb//9/gXX/8Gd69c4q/93N+mnc3xX/7nv0QxKen0+nzi4z/IcDxk7txZPvlDH+PRlR5lXfOffeYZfqtruXb3Ni998ZeJguHvfuiXGLsJv/K//CY7125ycaPFf/Ef/bustWNyL/g7nznD2Y5i4hU///wyF+YiagnPLwUe74lmQkAisAFcaFzCz801Vuc9C59ZgkTBnangJ9cCbS345lHgVFuwknicExgC9rjgHkv4qQ3oR4Ev7MEnFmEugi8cCD42D/MxfH4TdkcSJZtYItFckGgEHzwR+MSJwBtjwdZE8Ln1wOvjwJ2p4GfXBZenni9dl5gy4ILAHUc7aAG9JPCzFwVawec3BZ9cCrRi+PVN+PhyoJfCL1+FnX2BsQF5vMgvOKiMp3IPcrbAjL+KzPTMTM98L+qZ0XRMeIALV/K65ODoYKZnvk/0TLAA1QM6ewJ4P9MzMz3z5+qZEPwDOh/BeTfTMzM9M9MzfwGzRU8zZsyYMWPGjBkzZsyY8R10Owlb9+9ROYepairr6KQJRV4SJRndXsz2zg5x3GFt7SSBgndu3qeo4OGz5ymKMdM8p8yn7O/vkCuPpVlEgHHgPHv7W5RVgVaaLEkoiryJmHCSKt9jv5BkWZdue42W8+zu7HB4NMEFh1eSpRNrTMaGvBoymToWNChiWknCtCiYFC3arXnyfMj23g46SQHDaFKSKYV1NYY2UkIWBaracJAfsb6wjJAjEBUy5IR6itSCWAW0clRW4I0lStpoKbEeRPBoaUFCbR2YQHCCVstTeouxKSBI44jl+TaTiaM0kMSSkysL3Ns+4uSywIeYzaOcfqfN+moPY2BaebK4jY4iMg1ZO+JwUOOFZn5+lV4nI0tTvFL88UvfZH5xkeAcRV3ga09VFYQgkFpQVQNqaxnnI3SA7c07VKaiKEvGkyn9+UXeemeTKEn4gefeh1KCtWWD1pq6rjB1QTtpCoJKN+4oFWs6cUaUtRHjIfkox2rDhfOPEEWCopwgvOXIeMqqYGd7m06a8vDZDR46e4FyPGZxLkERuLuzzXgy4e3rt1notnn68ceovGTz3g7vbN5hqaiZ7y8ig2VhuU+308NVhiztkkQC6xwaj6kNbgp5XhK8xilHaSpG+YRIRRweDKnsLkmaUNQleTFCxjGRcvTnV9g5GlOaI8qiJJMJeVEzzSfsHg0prcXYmtpItnd38UFwam2dwXCP0XTISXmCUwsnyDoZtjLsDg8JwK3N+2ihibRnbXENrcBhub21iwVefesSnVbK0kKfqnbMryzy+qWbtDsdnnr/w7xy+Qr7g0My1RSOpfD052JG0wqiLjY/pCpK5ubanD5xEiipTCBRMZ32HG/fusRoOEEpydrqIk++72HiKCZLMtbWFtkaLlJVE4IPXLn2BlqMOXXqKc6cWmNSTei2U1Jdk9eGybDAGMnq4gl2DrZppRCEI5EJzluStMeoPEALgQ2W2jnmUJw5cw5ra85tnObt6yn7h4fUrqaT9RkMLUEe0c1SVlfPsDM4wvoahMAHh7OBSelot1vM9eYxlUd5QafTYVqMyOKEqqqJVBMdsLayxmh4C0FTzFrsr7C3v4MPNUmcUNcGLSMiFKdW1tk62qEsc7xvinA2KCphGYwHjCcVQguCk5SmJEmaSRBp/G5B3+HwSKGxtmA6zZlMa9pxTFEWLC8tMB4OGJYjVJxgowxTW+ayuaZwHIMT6rjIHEAKFE0UhFOOgCcSCiEipJTESlHjUV7hqBECJBIEWCEwKJwt8c41I/yDQasWCkl9PNbfGYMIgrq2FJMpIVT0+vMEL3DWYoxB6eOoBdkU2GPVRB5YHFILEgFSNoV3KSUQiKKE2lg0ASEaJ3XwTXybVpqL595Pmra4detNRqMRhMDGmUeJdYypKwgCIRzeOQRNBIN1jZnTewjOYaoC5wLSG5SLkVKSRDGmrGhmHwWSLCWKMxACSYR3jfvZOYcAtNbN1KTgCcfRDlIrnG32F2iOgGoK+U1fJDTucKVABAQB4XwTFUEzRUE61zQpFOBd44rWcdPsiWKkhBDAS4ESUNuaRMd470iStOktvTvlKQiU0pi6xjqLV8eNBwGmMngfCBZUKyJN0ubYWIOOdNMIQuCsQ0gFUqNihQygkwSPxw5zbN0mabcgKEJVEISkno7RaZv+whJZqyKKI2xZc+WdSxgCaatHq9VhfnmNa5deZDotePYHf5jFtdNMRkfo6y8RZILUYxaW1jnYusW3vvEVyrrC24SpKYijxqVcTSdorUk6Xe6+c5m53jIHmzdwpqa2oKMYLZupViEIynLK17/8G3zoU/8aT370M5iyQAjB+sXHGe3c5vbta0gpccawff8+N+9cJc7HxHFMbWrK8ZSHH7rAj/7AR0msR2vNeDjk1tXbvPnOFT7+A5/k/u42v/HF/5PBdIryJb/6q/+Ek2dO8uEf+wnOd/p86sMvcHdvn9biCu3+EnU+5MTiAk+eu8iHP/1hsoUVvvX6y/zw0x/izuZN7h/c54c+8AS//YX/g+VeTL8dcfXKTZbXOtx+e4+y6vPK6y/yYx/+MBnwra99hdUf/DDL3R4LUUJlDLEQLMgxT813mkUBoim0N0c5NPGtwAtdUMd184/3mgZeEPCpeUGYD7xbZvcIfDjuedHESwUCP7YEHdX0TT4xDwu6aUR8ehk+sdh8PvkgcEEcB8bARgaxlHQi+Ox6oKUg1fDZdch0oAyCj5wCYwPGN/dM3gdEgMcXAg914BvjwAe6kgudwNcG8L4uXOgJfu8ABlPBYhusaaYv4AUmeAa6gmhW0p/x5zPTMzM9872oZ+Z7Bd4/uEUCVWUwZT3TM98neqac3Htg5867E1RmemamZ/48PePcg5laB6CjiChOZnpmpmdmeubPu07+P3/GGTNmzJgxY8aMGTNmzPgrzHhacjQeUJtApCWn106iY00iLbfv73L37j0Wl08SRYqTy30mR7vHRe+Yw6NdahcQIiIva5ailPWlPnldU1aWxX5MEkd0evPM9xcpix1M8HS7cyTAcDjAGMtRbjgzt0iWKaqpobAj4kTQSiw+dDnYP6RyFcY5ur0ORX7AWq/D/l7B/rjk1tYuP/DsM3gfqJwlk461Ts3EdxkVJUI6xuNArFLyOiKOeiQioaymJEqSpPPEqmIyrTCFYUpGLGp6LRhNNatzOfuTEqRBRWClZmoFSgWclwgpQTqsEKCauAWsZTCsCMLhvKKVdrDWkxxHYrXiPqfiFZaX+qz2M7q9Lq9f2yYERavVZXGhx8bJVSa55c0rNzlx4hRbmze5cvk1Hn/iWZ576hnqqmZz6z6j8ZDxZMB0WpHEMSF4auuJkxjvatqdBcbTQ2RwSKXxzhJrjRBtyjLn9775BquLyxSVoRgMaLVaRHFKG88kr6kKA3iccWgElc9xweJMzqiocVaDKHHes9jrUZcRphzTa8/Rn+szHk65fvM6k9GQSVHy0ENnWOgvMBhPsM7S68+TJl1OrqyhVcJwOuTixjniOGXj9Fm8a8a5j1F4E7hy6xoriwvMdXsk7ZQkiggo/FFOQBJFmvXVFQbDQ+bmWty4d59WJ2F5cYG1lUeQUlJNC+bm+0Qq4+U3S/bDkCqfcjQ6ZGrGVNZgvOFovE8azRG8Z2GhT7/dot9ewnrD/fs3Weivcv7MWe7d2aFroTIVSsFknBMlMd35Pu2sxWtvvEVpcu5v36M2jlNr6zxx/iJ3dveZ1iVJrFlbXef23U2SKGrG1zuHE5KWAkVKMZ5i/RHIpunwyLmHefTio3jrGI4HfP3FP8SriJXFeXbu7xNpxcde+CCxkMRxzO7hAe9ce4OtzT2yNKUuCkaF58mHHqfXm+fhiynTckJd1pw4eZHL167iXYmwYE1Jomi6RWiclug0JQkpT3zgo4RgeO3tl/B1Qm4tN+5cRQnJQneBtYUN5udWube1QwDabdi8v023k0AoKMoBmYY4W0eIBKkDeSFIOxEgqW1Bp92iHo1oZSmmtrRCijGGnd0dYnECYyxBaCQCU9UEGRBRIOmkmGmN1oH94S5nNx6lM5fx1pW3EUJihCVTEmMMk1BjCBgDiZaYCoqyJoljpFRoIRFeEY6dsEFqhAwIWxBEhNARdVUSpGdxfhVJTGma+AIdxwQCRVWSFyVnvME6g3PHpW7vsd7jRFOIt84gEAih0crjBERK4oMn0DiknQ2URUVQEFRCURXMdyKEahoJ1lc4U2OdRwmBcwW2HJElMUIIqirH2RqpYmQIuMqio8YdLKRAeJoibPBNRE2k8U2JHcmxaxvQQgCiKcQLCEETpMAES7e3yOOPf5SjowPiOEUgqeqKzZtfR0fLnDj7OMEHqrwgTTOC9SAVhIA15rgsKomjGN51kluH1KqJtVCicXAHjwhNkykQEHhCaDoO+tgR+27TUUkFQSCDINIaARBAyoiqaqIoTF1jraMz12vKo7JxOydZGxE8NhhUJPEiIFB4Z/BCICLVOMudIVMaT7MvzgaUihBKYZ0jVsf7EnzTWNHNz9Zah5DNe6vrCoLHmhpoGhxKS9CSgAPvkEHjQmiet67QSYJQEdo5aiGQUYLwHlMaEAopE6ypCUIgRKAoCtpzfbJWmyxOOXX2IbZuX2d79x7mUkS3N89jT3wQ4R2rywvsHhwRxS3itMvGw08zGgy5cvmb9OZamHyAxVDkGikF0guCVFgZiAm8/fZlMmVYWlnjuU/9JK/+7j/n9s2rTEcVWaw5vfEQdzdvHzddarRQ9DptLn7gQygEhTW0Ox3Sdp8nPvFTtN58kUsvf53BwSFJFPN3f/5vcDrt89/9k/+BgXXcePtNWmnWNB+S5vq7vb3Ft25f5czaKr0k4annn+err77GrRe/zle/+kdUznDj1g2i3iK/9G//LbrtFq/92ldItGBp+QRZdob+0klcKvnG66/w4Y99ko88+Qyb2/t8+cVX+MzHPsLgKOev//Rf56tf+zK3t3b5yhd/i62du5y8cI6PPPsR9vYOmkVsHo4Oj9g/2CNOEySakQ+sSsn5TvM7R78X5/DuHdtxjAug3zXvE46/3cSSSCG+vfmfeJh4r1EggK5qtldCsKBB0jTo1tOmKSHe2775KmjiiATwSOvduEXJk+13t4SPzgmYaxoT8rgx0TQ3eG8S2Ud7TftCCMHH5kOTpoLg44vwAwtNY8IHcDTXXOkE/+0e9Be6/89vdGf8K8FMz8z0zPeinnloY4MXX7oOPJiFAt65mZ75ftIzPLgpYQJBkCCjmZ6Z6ZnvrmceKKG595zpmZme+fbDZnrmTzNb9DRjxowZM2bMmDFjxowZ38FgeIiXgVarRbCWypQsLK2jzIhgDbWKiHTMYr/F5ctv4oPkwplztJKMosiJWxlVVXPj3g5xGrFxcp2qmjB0MJ6MMc7SyrKmeOc92nnGwxEhVmztH5KXHocgL2pOLa1z/+gWj194H3JcMHTXGOaSorSkUUqZj8mDIUawNRhTupQkiilzw/7hId6UjcM6Lqh9TFkfQYAkWmJ5rkPtQQtPK8nozHWo65Jeb4V7B0ck8/OIqKIlK8qiZHUuEGRBXSts7QmuRZbNMSlH+ErjgyGSgtrXCK/J6wTvPQHHfFxRGEth2+goo6orenSI0hZdd8jBpCZre+Z7bVqdNhsbG5xc7pL01pkWHucDSmfsHFkuv/kq93a20DLijbdeYmlhlUgpEJ48L1hZXWXj1FnGoxG37l5nYWGF6XTE1t4mc3OrjIb7mGAobYWmmf4BMB4csLy6TllMqaY596oblKXHGosUgk47YGpPpDRlJSgHkjSD0XRCcDmdTo/dgy2yFBZ7SxQmsL66yq27tynzwFx3nnNnTpKXFYPhlGJ/h6ouSbIWk/GEh848TKc7R7+d0G11OBwOySYTWnHMQyfWEUqyc7CL0BErnQ5aaapiRJLM05+bZ747B3iMC8hIggclHE4ENJI0SVldXMfZilOnNvjWS68Qx3Dm1Bm01hRFjQiK+9s77B7ssTzfpqwEaysn2R8M0LEEqZmfO0EiNQetAdbk3NrMabUyunHE7uEeh+WYEyfXOHlile23jpjmBZEKFMWQ/SPHaOzod1vcu38LtERrgRURO4MDFvfmWVpe5KVXL3F2/STjyZilfpc4j9kbHFKWjm67g05a3N/bx75b4fGSE8vreCvptdv0e8ts3r/FmdPn2dnfJx/CdDxicXmBTppQVxV4weHePtfu77M/zUkrSy/JAEEn6+Nqz9bWDve37rG4eprt/W2887RRrJ07w729m+jYoGRKsClKKpK4h5tOOHtiAysCN+9ew2CwMmW+3+Zw/x5RKnj7ndvsj/doxSnGW6Rq05rrUBYjzp85w627Y4QM1FVOlvSZVGOcC4yORgwHBUJaTq6fod1p09ISoVLubm5iXEVtA3e37iMTRVsqXLAkWcK8WmI8uIcvHSF40izF1R6hAkVuUGisdAgJQjVxH7VtHLH4QG0dSmqC90gRcDQFNBH8e2U6LSMiESOzDsjm2rdeUeQ5WdbBWUfaSnDBM83H1NMCERyVrXk0n4I/dgGHQAiADzjpjycY1FjbOJsDx/EINK7jIAROKJSSzbkfPF5IpFB4JCZ4goKyrKnqCmtrWlFMXY6pTEWrlTSLaaoS5x3SuybSxTnGwxKdtugvLBOERAuwtUUBCIlzARUJJLwXgeO8J9YKCNSmRumYqpzy+mtfZa63zNraBv25JTrtNtZahBJ04jbT4hBja2zwZCppGmN1TQiNS9lag5Ca4EwTEUFzTCpbEicRwnuE1E1knGtiNJxrYt5qf9wcURqpJe7Y1WytJ0lSgve4EJBCvffzbY5+QGqJdKBE1DiphWxi6FwTPRe8xdqSNOk0jQpxbLB2DnkcBeER1DagFAgp8aaZOuECWOfwwSG8bOIuRONwdbYmWEPaaqO0bp7HWZSUKATGO1KlkDpGeotHIqMEW1WNQxtJCAFnarytkUoBghAsXoIxjtgFXF2C0lTjIbv37/DQ0iof+NBHyPMpW9euMxwOOBqOOJxc5sT6Gd7/xPM4Z0jTjDiKqaspdVmStto8+vQLXHnz6ygdM7+8zmic02onSAzj8QhvA2ma4p0j1IZKOw4OtykmQ+7evcW4KHAm0Mp6PPzks6ycPsfh3n3yac79e3dYOf9+1jfOMdzZJ1hHf3mBc+c3WIkUX3jzZS4Zh45Tzj/8BO32HEsnlvnMj3yGJ59+it//v77INIq59fZ1Hv3A+6hNzeZbV/njb73CW8ry3DPPUK50+OGf+Rkuv/1Wc25XJSqN2b23yXY+4OjWhO39A/rLq2zfucPzzz/LwEz5nS/8Ov/Jf/r3Od9foHSG5fOnGU9HjA52+eiTH8RPJrx1fYOXr97g1PnzPPLc0/zrP/pptveGuHpKQPDK1Xe4cOE0X3zpZT4316Wf9MiOf0FLAUKp73rfJv7En+I7/i3+1BZ/9uO+veV3fm3K+QLx3obiTzxK/InH82c8gzz+X/kdz/GnaWJC3/37tzeKRBN38Z2EILAqsDrfYX7hQcX7zPirykzPzPTM96KeaWKjHhwL3RSdpjM98/2iZ/qL7N4/ekBnTyCImZ6Z6Zk/X8/I77iP+0s/I4+NHTM9M9Mzf9bjZnqmYbboacaMGTNmzJgxY8aMGTO+AyUMIigSHZO0ukipKSYTptMJ7V4PJWMGh7vUeUpRCxCBuAwsisBW8KRSMCpH2HrC1r1N/IWzLM91KYcGpGQ0HFAUOVU9xovGgTqcDLmfT5Ai5sK5s9zf3sL7gJQx/fkFnCnRWlEUmtLkKN0hEQWRFozzgiII+t2YcwvzVE5y9mSXvM4ZTwuW5xeo6wOSqEdsHV53idprtHUXYyrKyT6mttS6pJV2kEmCFkeAJtIxSmmqacXOQIJS+GDYK1KMgTiTKOWoTIVUnkhJ+qllVGmMqFEolI9xxqITTyoEQWR025rKTIhlBxe1WZtfJM4Sup0OqytrjE3EW9ePQCXgJUIkFC5lUAyJu4s8lHVIMolOIoSEl1/6JlmnjVKSxy6+j8PDA+5u3qHfb7O8tIrWCePphBOr69T5EcYYWtkcVVE0xQfhcKFka/MexluSOCFOutRmjLQBKR1VJVBakSYpzjvqylKVoCNBFnusGxLHCaUt2dw7oNPp8s7NuzjjSaKYxblFeu15dg5usTfYZ77T5cKZ89y+f4dut8Pe3g7WQ3t5gSAct+/dxXhDO2tz6uQplEyYm5tna+c+WlScWVoibbXRA36urAAAIABJREFUSnB6fQ0RJKYqEKJEBJoGTWg8m0GAOC42KDRKBGozpt1tQ4DgA8JbxmXJva1tnnnqGQBu3LjO7u4208mEONH0O13q0jCtR0yLMUJI0IrJYc00kdQOitxz6epNnrxwESkcKoANnhqPSDXDfEjAEsUxtc3pZku0O5r9w0O2Bnssr59gca5L0AKQbJzeYGd3m7T1KJfefpuynNCNMy4+dI5Ll64AAqEDw/ERK0vzCN8UqJcWl3ni0Q9y5Td+E+OGLC3PczjY5w+++U2eeuRRdFKydvIUy7duMZpeJUsEkTYEH9g5POTUmbOsri3xSPUIXgru3LqLsQLdUuRmilCKJMtox12WF9a4v3mHg917xHHg2q13WFlZYXl+lb1iFycci4sL2PqAVhYxP9cmTWH3YBMhJe1Wl72jfRQerCBTEWWoECJgvGVpvkNpYOdwQJpKauPZOzxkrp1yf38HFae02ilVlWNqi8gE+EBhC0wIVDtbEARaaIyb0Gm1sa7CBc/ewR5KxGih0DoiVoFgDM57goRWnJFXNVIoamuII0GSKIrCIKXCi2bRk/ASFSDSCVEUk8aKqSmoTUkcRYzHY3SU4aYWHwyDyZhISDqpZGV+gVba5VAOUUKghMZjsDYwmeYoJVjSESJUBCEI3uMdWOsprUEIRdc4XGjKehKJVAKrBFIEcM33DYHBuCCSAm+nmHxKp50Q8Dj5btHcoQhIPPngkLouWe6dQcqAdf64uGxIkgRb1zg8UaSbUe3BNYt1pGJ+cblxONcGEEQ65vkPfYq9zVuMD7foL53GOcvVa5dxBE4tLtLpZuAsIQQiHTWNEBcIUhBH0XH0gmuK9rJxhQsCxlqiJMZ6iw8BHxweD06gVQzH22jVFPBDCDjvEEIQQiBNk+N9r0jTNj40hXwhxHtND2s9Om72UwaP0ArjTOOolhIlNPhmrL4zNcE5pNbN9LDaoKVEaYVSCiHAhYBSmryqUFGEFBIVaUxVoSNNEBLrayyBNNKIELDH8RFSNMc4+ICUCoHD1DVKK7xvOhTGWaRumgJY00RiRJqqLgneE2cpLlh8cKAkQmkm4yNU1iFtddBKkhjLqQsXOBoc0O0u0Vtc5In3P0u722NvsNf4YHXC3atXWTt5jixJOLI1Qsf4oiIvR5zcOMPlS1eJOxmoCOECoJBCIiSgAkd7u/z25/9nhIpoZy1kO4YQ8+iHPkKns8jlF/+Ib/zhb5FkCft3bzEeDVk+scQLa49ycXWRSEqiEEh+5Ee4dOlNbthDVjotksMheSvjB3/0k2y/8iY37t3ns3/r32RjdZnf//Uv8D99+beglfHoB57gnT/+Y/63f/kl/v3zZ4haHX7i3/i3uHHjOq/80VdZPXmWRx55mMdOnOMf/rN/Rvvhczz35Pt5dm6B3/n1/51v7n6NH/nc5+i0Wvzm7/02W0f7/M3P/hynTp+hnTTH9uzpVf7jf+9vsji3QLvTQ0hBohQnul2cd+TW8gdvvcM3v/IveeS5ZznaG/GlV7/BxQvrfPj9H6AVRd+1yP5g+dOO/gf4po6d1QTw3pBlyYN77Rl/JZnpmZme+V7UM85K/ox5FX9pLMyvkKRypme+T/RMXZoHdu4IIellHSpfz/TMTM98Vz0jxIO8QRUgxUzPzPTM/0u+v/XMbNHTjBkzZnwP0el0+MVf/EX+wT/4B/9/v5UZM2bMmDHjX1mcDSx2F5hvtSitoZXE+GBZnl+hKHNCMOwPhkzGR2id0E1j7t++zUjFLF1Ypy5KQpA4IK9rCgf9pWUu3b1EFC1QlFNef/MVfNBkWcapUxvcvnmTqrJksWRn74DJ1DG1YyZCcvGJF9CxZPf+Pd588RqewFKvQ1k4dJIwpwVF4UkSgxEjcpcw2ps2TQYh2dq+RZpY4rRkXAS8TCnHR5xc6pIPRs3EoKomSzPKOkebklYcmE5HSKVJkwTvKspJTll5Ot0UvCQEx3RyANKilCTRNa0owppApAu0cngT4VzgIHfoVAAFvU4f6zIWT51hZe0048EOa50WhalYXz2BVBF16ckLyyDP0RKWT1xgobvE0omTTE9ssH3rMlmUcGrtPNvbt1laWiSNO+hY0soyjoRkaWmBLMtQSmKD5MSJc0QqZm11g8qWHOztEydQ11MIjqp2WFejlcTWEiLL2kKfo9EAY2tiJVmd71D5FgeH48b6J0HJQFV7pE5Z7GUcDismhaXTSxlPR0Qq8L7HHiOLMvJyyoWz/zd7bxprW3rWd/7e913zns883nmoujVXGYNNlRlMaAdMYlADMY0gIkKBdCORVqv5ENGt7qjVatFCrf7QiWjUZDDphKRlEoOBgAsMNi6bmm8Nt+oO557hnnnY85reoT+sY5MgA8aY68Levy9XV+ectdbWXnud83+e5//8Vznq9UAK4iDi8pnLOO0Ymwxl4bB7jHSOmakpWkmDufkFBHDSH7K+sQFYoiA+jXKqhk3c6dp3i0U7gxYac2ozdU5inWN9fYOpdhNnBd3hiDissTp/pio4GIMxDpMXnFlZZK4zw6dffB5PWpwrCfyAQX/Mnj1iqtFAFwVREKKNrWIwrCYtAoapRnmSg8MjDqbnOOgfMhwNMaeOTCUhiQMCPyaME7rH2+SZRcrK4aWtRilFWThu3VmDEjbubXLxwgXqzRa2LLj++g3KvGBxZoa3keTGUm+dOvO9gH46xI8ipJXgSrJsSKvT5rjfozU1RRI3WN/cRe7uYUTA+vZdZpqK0VjQKxze4R6PPPAgSEGRC5bmVkAIOrVZXnn9NXpZRm80xJMxl1ev0u+OODjYRusBSRwgVcFbt17kYH+aqDnNuDSU0vHyGy+jhOCNt94iz7s8cPlJslEfzZDV+VmGgxG6HCJUTqMxg00PiJWgsAOSxMEoxtnKzdmst3FWUBRDtC0pRpqkM08YJqRFD2MszUbIYOCo1yJ63f7pbvPKyVuaAuUMeJJmo009TtjZ3qNRr+OEpSwK6vUGjdgjSwtirRmORmhb4oeQ5ylSRighqkanAyEFURBgbeWGNdZhy5zFmSmcEzgRcdw7IctzCp3iJzF+qAiUpJXUAIexJdpphK32ugskvieJPEnsS4ZK4HngrAAUBg+lDM5poiDAaYPRGuMcYBDGgPHwhCKKIzwpiZLKxS6dpswzpB8hpUJJj1IXOCspCk1uMop0hOepKjpCa4rSoiRYnaOSEGcdyjmM1iglEE7glKiiFyQUaU4xGnLY79JqdphqNanbPkFrhnE+4qXXPktRZDz80OM02/MEvk+Rp0gnEIGgLKrGsrOQZTnOGqyzKCVPmwEWJRR+GFRNAxwSgdEGz6tibmQgKEsNVIOPUnooJShLAwiUUkgpKYoCIStXtLGuarJYXcVfGIO1GqxPqU8Hj3yvGnqz1XqCUmt8AOFQniIrMvwwxgmBNoYwDIBTh3dZIpVCCEGZ5fihVz2/yhKHRfkBFoFConwfJT2sLqo4C+vQWleNHVu9fkqLLUu0AF94+IGPtQacwFI1VvwwrhocUmGwhEmNLE2JkzpK+SAVrZl58GN8P8AYg0MRxnUef8/7Wbl0jcHJMUEYoYucUZqisAghCGsttm7dIPAeYn9zg5nOEluDddqzZ0miBrx5h6XV8xzdu8dMvcV4cMJo0McPfFQQk2cp+/v3UCqk3WkQxzWEijm8t41bCLl3+zr1dpNHH3qYR688xuiFP+QH/sFP0KzXkMJRvQWCS+99F9/78jN84u46C505Vh64RBLGKKVoLy/zwJNP0GnU8YTkOCtIanVubdxm2Ntl5+CID3zPdzGbxDxwZpaLy9N87uwC7//Gd7O7d8TK4jzNKOLH/tYHEVKxpzVX6g2OB2PW/s0/44237/DrH/tNBqMBzUadb//Gp4mSOrtZQS0IKE3JC6/e4MLFszxxtUmgFGlRcDjoszI9Q006fvy7v4PHLp7lmUcfRAEvv7XG2YUVIk/9BWvxX07UyJd6gi+nKfDFrufLOI5wCCcQwmK1I/D8L+NaJnw9MdEzEz3zTtQzhyf9+xpRtrGzy5WLCxM98zWiZ4ry/g09GWPY2txmeq4x0TMTPfOn6xl5/zY9SVnVfSZ6ZqJnvjgTPQOToacJEyZMeEehlGJpaemrfRkTJkyYMGHC1zVZ1kd6ltwWHPVS2g8+TBwrjNFESYRzlqTV5vjoiDIrOVt4uNxjx43Z3dyjsdim3x+zOD1PHEckzRp5WeApzfrGGsZkZHnA3NQUw/Eupc4odeX4G5cFWgi0dbi8JCsMtUaL/f073Nlep9QeXuBTa7RoJh79PlXB1s9BCjJdNSgatVkGo2PqsWQ0NkimyZyjmx1Ri2sENqB7coAtT/C9nELH5CakLDMkYKUkH6YszNQ5HORVjJUQlZNN+RS6IIg8hMgpSw9nJbmu4fkJMhjjinG19jr00CbCSkkYWoQKGeoUScji0gWCsI0WNW7cfI7l+Tkyk1OOhgz7Q+rNFiIIybRgZBXNKCZzGlkM8aTA8zyWl8/Q7R8wP7uARBJGCVk+ZHl1me1dRafZoDSCo51Njrv7zM4v8OCVy2AV42GK50q6Jqcq6wms00ihQDh8Jbl25Qovv/EWJ70+SgoOjsYYkWGNIIgkntTgJFIGmEJz2D0hjGJ8Yen3D/GUI44Cdvf2Ecoj8D0ON24hlKPX7bJzWA2a6CLnwoUrrG9usr17wChNubC8SBQn9LonKL+KFXvgygPUkghXFlVB1RgG2RivrIrspdZgHc45pBPgqiX1veGQta1NNjZLhFSsLJ9hYX6RqcYUWVkwTseUhaHmOy6dPY8zgmsXr5LnXQrrcAfbCGfpp0PGeUqiApRUKC8kzzIEksxq/EjhOY+ZdpOTXo96rUFhHNk4QwqBL33SPCfyDEnoM3fuEtv7B4R+TJw0GI2HXH/5BRq1KZ564lHevnmXOApJhynHR13OnT3HrfV1+qMun/3cCwQRlJnESYm1MBwN6PZ7jLMuU41Fnn/hdWZmmjSbiiiqc3bpDLV6g8FwQO9gwNrOFpk2GBEzyjO0tawEgu2dbV5/+w73dra5eH6RpflVTk4OMc6RjwocoJTg1u0txuMh9bokThKWFpY4v3KW115/g+E4YyqOabY6nIxOMOOSQkvWix0adcHaxjpXLl5DSMdoPMSXllyX3Fm7SRTVyfUY6RuE1IzTgFGh8bwQqQTD0ZA4VGg7Jox9RgPDoD+kO+ijLUhnGWUpypNYa/EjRezXODrqE9gQYxzalZiy+trG1j2kJ3DCYnTJdHuaotBoDf3BmEKnjIqCyA8oco2UiqlmRKAUnBb0nbAkSQSicu5mRY4nfYpM0GolBFGD4XhMWhYY54hFSN2vsVBLCJSPkAKBwVmHMwJnDaYs8J1COFXFD+gSXVYRBNZYjDWgBEpJHA6hRFV4tgarHVZbjJNYp5BeiLaAteRGg3E4ZNUwEB7SCIyhGr7RJSYdUWpDGPrgqsJ7mWdoHKbMsUVBkWfkoxHN6Tm8eg1HFSWpcVjtcBiCKKQ4yPmDTz/Lk099I0E0z8b6m4T1KRqNOg9e/mak9HDKw4tipB+QjccoBHlp8WIPzxm0tlVj0pxuNxLVxiN36o52rnLcOlOArBobVayGQJcWKStHtFISd9qAEVg8L8A6iz4dEjJlCc4hlcJZgXNgtKniOYQkCjwsVfyFPa19WmOQSqFk1bwQUp0+F2UVe8DnV/pLlJSUziGkoDQajK1W5SPIi+qzVWqNFBJjLb4fVlufjK2iKpTDuqohY60FquMYpxFSIX0FzuGUAGOr86oQqTysMSAVg6MdolqLtHtAFAXk4z5RVMOpgCCKsM5idQEYpAxQnmVhaQlfCvZ37lEUGUVZok7d3asXL9Pd3+b5Tz3LG6+/wMr8KtYZ0kGGHZe0m22++W/8bV747Y9z5trjbN18jbffeAUpJEGtjec3GAx6zK+cRY/7pOMerZk6rdUFHrh4joM/qFHOdri0sMqHP/S3+Pl//L9yfHBIq55gjaXf7dEfDLl3+y4v3dtjptPhkWtXCesxyMr9bjS8/+lnwIM8zVi5dIZL+9u8+NKnCdQ0o94eH//1/8DKlce5oDw++v9+BBF45IOUtVtr/OhP/jjPv/ICL774HN/7gQ+hioL/+9c+irGWb/nQ9/Fvf/mXaU3HXHzqm+jd2+V//z//D648+QR/90M/gDaatZ17zHamef7WHd68c5unn/gGNnd3+fSrL/BTH/4w1g+pxyHf9sRDKFHFEn7n0+/GIdg+OGBlfv4v8FfcV8qt/M46jvt8SIWToASePynpT/izmeiZiZ55J+qZsizu66ani2cvcHZ5aqJnvlb0TJAwOMru2/1TGjvRMxM982fqmfs5xHl6BRM9M9Ezf22Pcz/0zEQhTZgwYcKfQzUJbpH3aXLb87wvrOacMGHChAkTJtx/rs3MsLd/xKAIUAIOdzaYXVwCKVHCYbTB932mOh3yccr41j51bQmt4163Bw2PUmtO9nbRpqQ91eLyuUXGgyN2D/ro0oIqOTw+wpMCMx5Ta83QbrVR1fQA2haMRwOOdrfZ3dsjSzNK44h9n+Go4PadmyxOz+DJEKUcid/DtGfYPz5E2oy5SFIWFuWlCE8xzAZYNImvacYheZaTU6I8iSNAKTgZbBMIRxI0kWGIkJapSLG+10P6Dueq/HVnPAQGT0gEKaiYc0stDvsjVhcS9Chl90BzOAoxxpDEA5p+A+k5nnn6Ozg8GnI8yCAfo4KYRhwwnj7PVCdmPBiTlyU7ezssSEFn7ixe0uHkeJck8ImShFFeMBwOGPb7SGHoNKa4u7FROR2tIys07/mGb2aq1SZNB7zwyot0Dw9pt2fY3dkgHZ9gncBD0qgnDEYexhUIZ2nVY1rNNhgotUDJkMcevMqL119n7+CAWhzh+RYlHa26xCJJxwolFbPTMamuHIxxIEnHIwIVgpNYYTG2JFSKIi1AlPhRwmCQs7K4gqcEa+t3uXzxMn/w2T8CNCf9Hif9Ln4Q8sQjj6Izix95+MKv3KNGoKQiimMCP0C4ak19lg0RVlHaEics+3ubHO0eYUrD7uER83OzLFvLVGuKw36fta0tDg7vcW7lDHNmmtnpGaJak8tRRJqP2TncY2pmHuhhnKbfzTCYarm+88lLh8BiNcx02ghh6Q9G7BwdoLWjdAXGGuamZyiKgmykUQryQYkuDGM9IkwiysJSmIJxpnj8sXOsLp/hzTdvcNIVzC+d5da9DWq1mCiISF1OoTXqdM1Q1i2ZOdOk3WxysNWjm44YDt7isHfE0tw0o5MDLj/4BLUwYXZ2ht7JMTc37qAt+NKj1ysxFqbroLM+nqfRRjMuUqSKOLx3h9mlFR689ii/+7u/ydq9XdJsTCoKFuenqMc+7TihHnQwRlKrN5ieXeXoaJfBqEcS+cTBFCfdIaXLGY7A2n0WFxY4PBzRjGt4YY3InJCNStJRSRgK8swQRo4sK4jqc4S5JS1GGK3BOer+FK1kBl8O0Zmh027TH3TxZUAgHVOdWQbjDGfBVxFC9rFYPFUnyzRhFLC+ucnJyYAo8LHG0GzUAUWcKE6Oj+kPx4BGKMi1QQhJ5PsEfogRVaHXnhZLa3GNWtwi9mNGwyFJLYHT6IKZ2Xlurb0F1hLFMVYUWFHDuupZggFBgJJVU1IbgVACLFgkRkgK47CmijswxlUOaFu5n8WpO1QKCdIhlMQo73TTjwUk1hq0tThjqiaD1hhtsCrEAtopLAaNwriqQO5JicThjMGVDutKLI4sTxn2uniuxAskRV6AdeSyKuJTllUshR9w/twFvMAnUpKXXvxDcluw4EW4coAU4ATUoxqeH1CYtCqua4vD4gUBxXj8xw1CIQiDKhpCeR621HjKw1lwwqEdKBx5WQBVE4HT118UGmtywKFLjbWOOFE4a3HW4nlRlZogJb4fUJafj4wAqBqzDoEnFdpajKmK/YUpUEqBOL1KYxBSVMlyuro+ARjhEM5Q5Dme51HaKk5DIPA9H12kiOoXDX4UUZYlfhDgrEVbiycFQpxGbwhb3dcyQJcaEJVLXEjyIkd6AcIZHAbnJEJIpASdjfjsH/wOKEvEgPr2InF9CVFmnLn4cNVMGmcYU6JUjKmyQREIWp0ZHIL1WzdoNVtgBcZopLNcvvYIb7zyEq3OLO/94PejP/YrIBx5obn00OO89MlPMBhlrFy4xFSjwfH+AbXpKa695324ccGNFz5Da2mWN1/8LA899AjH+zvkN17nO7/ngyx/4Hv5n3/x51jb2CZqzfKeD34P03Edm5Vsr6/xr/75R/jUG68ySjMuXzzP1ms3eODqFdxojLUWMR0QRB5+PUJIOHjhFfKdY1567TWs51i7dxdf+sxNLfBfPPEYB+mA0Umfn/j7P8GvfOSXeeaxp/gX/+TnmV28zA/+nQ+zezLg//pnv8DW+l1qzSZTK0v0Dvdprj7CY+96gmHnNv/h1z/O1HSHRAlGw5Qbd/dZbsa47gmfev0NXnxjnc21N7DA89cu8fQ3PIPEkecFSnkIATe2N7m6dIad3pDl2fnqc/3OyIT4qiDgC401Pe6jbfOre0ET3vFM9MxEz7wT9YyrUrLuG6vzi1xcPTfRM18jeka64P7dPIDWBi+IJnpmomf+VD1zP9t3gmrL00TPTPTMX1fuh56ZDD1NmDBhwp/Dxz72MV5++WWefPLJ+3K+H/qhH+Lnfu7nuHXr1n0534QJEyZMmDDhP0dKSKOAyxevcm11iZt379LThjAIybKSIs8hhzgMmJlq0ZvPGO8cUaQWZyW+5zMz3USZgv1+yubGJtOh4O1bG/hxkySZ5tqDD7O3c5Pjoy51W5J0Zpibn0XqE/pjmEki1tdPOMp6HJ8cEQeSx98T8uxHM4ytgtCPBj1MmTMVg9UlAz+nbHqEmWG/f4JyisBbolVzHHa3OexmKOmT+8d0B4ZWc5bQizC2JAg9AlFDqZJA+RjTxzmfm9vHOOMQyse5AmNK8ixnuqPIUkNWSrSFrb0B2pTs7I+5ND9HUQiSps8oNUx5PXJRcFwI0nFG6AW0az5Hh7vMOAdxE9/ziOMGaTpg72CPWpJQ5JrtjTvMLywzPbNAaS1vfe6T3N1aQ0lFzY8Yj0+qSC4MaVYyzofU623efP1lEIIkDGnXYk4OHVk+IAwUC1MdWp0OWVYw6J2QRD6LC5e5t7UDCpz1cE5TryVcv/E6zXrMcNQFp6g3Owin6R5nFFoBAaUe05lp0mlN0bu3Tm4cgS3x/ICsKBCeT+h7nDl3lpoK0OOC7vCQmheyurJMLanRqNeYnltACo8LK2fY2r9Hpkuk8CjTMTs7e9TDBmkhaLcUzlabnISoIqL+eKmTwjpJicUaDU4wGHa5sNohjJrUanWuXX2I8ShjbeMtdg738XyfM8srbO9tMjvdIgwSnKgcokpIVs+c5eUbrxD4itWlC9y+eYtOu8FB74RhWmINFKbEFJK9w0MaDZ9cjlFegFSaEMX03CxKeXT7A+I4wlhBvR7T6x/jiYite3uosBrcWpme5vkXX+Kttdtol7K+t08vPcQ5RToegzSIwmC1RRuFFZZQSUaDgk995kVazQajYkSn45M0wPMEmUk4OO5yu3eXYC2iHoY0G00uX7jA2vpttvcP8IKAJx57L0d7e0hVY9DfptQj+sMuS7OLrK1v4QcJCrhy/gzdow3OXrzCY498E4PjXbZ37nFn4xZv3k1RShAHfTq1DlKfkJoSnRaAI5DgS4UtLb3BmNBPOOmfUKu3aNQ8dvRdPCmwpsQah+fFNFs1RukY30vI8oAokARhjgoMR3tHIAW+pwjDADnykZ6jEcZ0+12K0jAeZozJUJ7AD6qYjHajQbte5+7OHkiJ5weUZcloPECQ4fs+hycnIBz1RkgtbnDSG5IkMVEY0x8PkZgqtsEJpBCMiwKHJS9zgsBHGIMvBLrIefXNlwjikEQlSCno9wcUnuZm/5Bzi8s4DAaHse4LZUAhJMpXKAHCVf+Xng8GLAXCGYTwUKfRLNZYitLiCYfRDmMtQgRIoRAIhARPKYwAi0OcNgCgikvIy5zSFGhzWkCXPs6B5fMxExmmdNVrtCOybEQrCcFQuZmlQwYeQkJmUkypUWGEH0ZcOn8JhGFhYYnO9Dy9wQ4bu/dY23iNLC84e+4h5meXGHSPieMYjEMpgS0NeaEJfB+lJFIprK0c5J4KqtdF1SCwtvoZJQVaW5JajSIfI7CAwuiSMAxwVuD5ijwvEFKQjtKqmOyBcyClQFANCVkcQjgQEidPYzqUwIzzynWtDUWWESU1cKA8RZGmlSPXGLIsJUlqOKrmQ1lqpFL4QUg+GuGHASoKcBLUaaNHCVVtZTptWJg8QwiBttX966g2PFnnsLZEmMptLyMfg8RZCWWBkNXGsSCKQDicgDtvX+fg4G4Vi+EbotTQmfN48smnsUYRxTWcqFz2SlWv1+ic2zev055dxAsCmu1p1m+/jRR9tHUMTvYZdrd56F1PEYYB3f09Ll59mJs336TVmuHyI4/x+x/7/6gvruApyeHuNq25RR5+37cTA8987/fi33uL33nljzDSkaUpVkRQGJCC1fOrqHCaa48+ybmlC5w/u0pYj3EKpFDc2rjHt37Tt7B3b51PXX+FB649hOkOSHtDPvu5F1g6e4bAk1x46lGU5zNz9RKXOh1+Kv5B/tt//D8wKCVhq8Hy/BLDPOczL72E9Gv83q/9Btt7h/SaYw52D3jmmQ9y8+4mv/jJ3+bO9Zf4qX/wU2x+5mV+9fc+wZPf+Tf4ez/8d1nuzPLPb6+zeuEM4cwKd3rHHK3tstiuEXgxb268yYvPfQYLGCeYmp7mlz/667RWLjI47rM63aRdb1Ov1bi6uMJSq8Fyq3G6OeF+U0WdfPX44ud3ONA5cTiJt5vwZzPRMxM9807UM74Iv7zUni8T5+xEz3wN6RnIUEpiTre8mZBRAAAgAElEQVR5/lUz7I/QaYEfxxM9M9EzX1TP3Ne/FE+HyyZ6ZqJnvnS+/vTMZOhpwoQJE/4csiyjKIr7dr56vc7P/MzP8OM//uP37ZwTJkyYMGHChD9m/uJ5riQJSRwhbM7F1Wmef2MdGwZYZ/DDCM/zkaLkzt3bHJ1kZOUI5fkEkU8v1TDuc5yWpFpweHDES4M+WW6QPsjA0t28S3Z8QmoNByOHy45oRyHtMOVwOMapJtNxgh8q1t9+kwaGsyHkpeX8mfM4rQnjGju7dzhKDaMsRI1GECoayqPtlVjVQDkYjnuMco0vFEIFlNonjBOkUhTaUqt1COKQo/09glqd/e4Wg5HBlzGPX5rllbvHDAcjcAaERYjTIp5vUCJGuYCRLnCFQBeWwoAXNVmIfe7tHOCcY6pTR2YlkRiyO8o4HvucO3eVIEzoDft4tsBTDl/5KBUgcaeORDg43GG10SYOEpz0eN973ke/28XmJdotoJzlzvpdNg+2kAKGwzG4yhF48ewKzWaLyxfOs3d0iO97jNKUpfl5PEDRRPkSXyXkaUrSalCLY6wzXDl3jj988XNom9NsNlCiwFeCxx56lI/vf5JGrcXRUZe5mTmmpmrMTM+xvreHtBlJUicOQgQeD157gBdffZXha9dphA0Ou0PqtSars4tcPr9KaeHw8JC5+QX2Dw45s7qI7xu2dve4dvkCtbjJxvY6JjFEcY3+aESZDojiehW5EUeIUxendVVx05gMnQ/J8hFFWdCs1VhZOU+xMAcO7mytURR9rHQkSciV85dYnlmg1mzhqqQphACEpcxKHrh4lTJPyQuFCgJa9QYnwyGaAjxBKBXS90FqCmvwlMIWGicEKId1UAsSCmspsxFSWIZ7A2q1BF8UdBodRllKs1HnZDxg92gPd7RDu9HEaMv+4QEPXXmYubmzPPf8p3BCAQLngzAChyQdZahIYGVJEEJS8+n3S7Z39ml0pjjuH3PUH5Dn+8ReQBSG7OxsMx5lOOcj8EgaHSIvwWQpw/GIpYUFrl26yN21Nbbv3WXnYI3ASZ584JvotiPCwGdrbY2pmSnu7W4wysZom+GHNYzuc29vF+EsxihiL8Qg8IIa9XoNaeHkeAelmszPTnPY7dMd54RxjC8F6BAnHY1WWEXKkSNsSqCaWJ0SNRoEMkInAb4nGI9H7O4cUhhLGCrOLXUY7XdRnocTlrJ0OGHJM01pS+pJyHG/jzaOKAyxuoobieMZRmmfbDgmCj2kcjSaDfI0wxclRVbidIHveafuV4sTDpRjNOqTZX2MEfi+onSOce6QosZ0e5bt/V2kgqLIaDTbKFGS5oYCg5Oy2vJjHcZVQ3tGl6efT5AI5OefP9Krill+gXQOAzhRObCVchhXYgQYDNZqrACwGOswtipOVve3QCq/uuEl1f16GqdhrcMK0BgMkBcF47xEFzlh4FPmBcKY0+aDxZicstR4NsIxxlrD6OiE+dVz7O1tc297i/mZNkIJms0O+/t36Y8LtrfvcOb8QxzsHbA4t8DO/ibK+cwvrCCUwNOmilTwFdaAOo0EsVg8T1KUnH5mJVoX4Cx+HKCcRaCw1uFO4xuqWB8HOIwpv7Chq3JOm+q5LipHc5YXpzE5lqIsUEKgnMDK018F0kPg0GmGLjWe56OdI1Cyio0IQ8qyRCkPeeqsVkJSlqaK4ACcNfhRhO/5FGWJtgYhFb6UlKZaBeGMqRrjOJAKh4ezDnE6mOmHCousXPRegAOMqyIxPM/DjsBvRFXEiNCcvfooo0EPFfu8/eYfMhj2WbpQI6w16R8d0YznkAiM1hzubSCDgHw05OUXfw/nYqZnF3n03e/jYHsLgMhapqfn8EOPMIi5+Pg3sPX2GyipCIRkNOpytLdLFNeQ2uC04eTohHd/89P80A9+H9NS0mg1OVy5yLOvvYhwgs3tLf7LD/1X/MB3fhc6z9nY7fIP//t/xLKvSI9Sss0tPnPrLR75pqf4nY/+GiQ1PvwD30esPP7VL/5LHnnyYf7js7/Fv5OCpNGiaSzToeK5T32ax558kr0bGzRnWkwvLvLeJ9/L77/1Mj/yI3+P5qhEZTlnp+b5wD/8aZ7/9d/gk71D7u5nYOCzzz/H3VtvURYp2hj642Ou76/z5NPvZevOXX7jN3+DZ973LTz85FX2treoN+qsNKbYzm/TSjy8RoPFhUVaczMsnbvEzevXaUxPM7u8xFTSQAwsn3jxbQJZ8G3v/WZWWo3/fNv2V7Jm/ycb7l/Scb9Yl178ia9/JZsKp5Ep7rRLigMhsDi0LqqNZxMm/BlM9MxEz7wT9UykovsaByVhome+1vTMfbt7qii1rZ1dkpqa6JmJnuGL6Rmt9X28H6v3d6JnJnrmC8f6T5noGWAy9DTh64R2u33foskmTPhKsLKy8tW+hAkTJkyYMOHrlt4wpR6F6DJnPOyT5gWuSLlz5y5TM3MsLK1ST2qUaY+XX3mVtDAIP8QKS5aPWYjmT516PrJ7QJHm7OqCwip8UzBdW+DsYckwC+n6I4pS0B0OiJNjanOS/nBEz9RZXrhAnA0YdtcZlwVHzwvKQqBLRz2ugReQxG1806NUNTwvwqRDwqREjx2Zn5HKEdqltGsWqQ2ZsRjnE4QJSinGozHKy/GVIE0zhuMxYZSg7Zh6e5W0sCgV4ymB1mlVCDI587NNDruCcSZpRCGN5gzb+8f00iGj1CfNhhydlBz2HE7FXOnEPHh2lqVmyKWlRa6vp4SBj6/AZiNqnkOPc+7eWaMUhqLMmJ0OaDXb+L7Pyc4W4zhhphYxOtwBXSCMppMEOCM4Ot5HKkWnWcMYU2XFC8fh8SF5XvLA+UucXTlDkY+5dXeDT//Ri7SbdaLAo9VI8KXAr9XJy4K0yFiZnWHv4IDZmQ6D/pCZTpM820frguFojJKCwWCIFILAlxwdHtNKGsxMzVCWllocMRweo01B6AUsTE2zvX9IKjLmZ9rUaxFRvc7GvXtIKdFOsrmxwbkL5wmUh251iIKQmUaHOK6j55fZ3L7HoysLhFGNsSc47B1jNDSbdZz1TosHVVlBSa/a1KQkzhm8wCNQCql8lK+4eukKn/7cp+g02wh8Nre2aNeb7O/tEiwvEydNBGAtSF8h8dg/6pNrjed79NOcOAk4W5/h7s4dSgdJLDFGopRHoR3OlEReiHCOg4ND9t0RaT5CypBOPcJ5lpOTIWdWF1ldWmaUjrl5822GunIQL0zPgojo5Ye0m02iWszi7Czz03OMemPKvAQlCSOFMJIHr17m7vZtGrU6hS5I1DRH4zuE9YCiLBhlBVILbOHInEYKxdb+HlhHu1WjFggohwy6Y/xYcfHCZZI44GB7l1t3bzIsRlD6eCXcXFtntpngBTGrF85z48Z1dg72USrBATOtNsNuj9SMieKAR648SiAS7t69g1+zhF6do8NDoigiiUOEVNXAULqPp0AGEUr5lBJ29wp8YZiakmhTEqiUXPsk0SLWWKIIhISV6WV6wwHSkzjrCKKIS+fO8tqtdaQviAJBnoFygqmZDifdI6yGMAhxRiOUJAgq1/owTdGZQThBHPg4LUniFjrVGBzIgGa7gVSqioixBmEF2XiIVAHNZoMsG1duWCXJygw9HpHnBdYZHI5icMj0VJvLy0s0kibSVYMs0lMII8BZpFBIWU3hWcDYKgqitA5nNNaAUCA8gfQkUgg8ISjw8ISlBNJxShInlXtYg7AWrMEaB85iRInnPIQFJQRWSXA+Uhp8QEofpIdGk5am+oTlhnTUpx5KrKsaIpiy+iwXOdZqynxEPh4SBIpWvckgqdM/OKLWbIITrKxeIwgipqcXqNc7NNpTZHlJ4Mc4kxFFAWk6RviC8aBHf9CnNTVLSEkURAgBztqqcasUTgiMsShVFRaVqoaKnANrDQhZvRbr0GUVCeF5VURGoXW1Ucma07qJYpSOqdcbCCcAiRd4OMBTPtqUIAWYKmIuiuIvrOm3xqJ8HyUVhclRQlY1TsBZh9MaGYTkRmOdw2hNnmUURQ4OwiBASoHWlSPbVnccSnhYIUiHx5S6QAuHdhKrPJwQ+GGMUgrnDDhB5MdoXSKUQPohQgmclohI8Og3fjtrb79K91jjyeq+2Lx9HeElzHEGWxZYU/DaK5/h4HCXmdkl+sMRlpLm1CzHe9uIQFH0cjwZUGu0EZ6HLQ1Z/wgU9IcDWvPLvPnKC1x5z/t44JHHONzb5bufeZof+e7vpNVpE0Y+2fo2t+7e4frRDpcvP8jW5gZBnHBmZgnrC/I0Z/naFabmZ3C9PuWCYzzOePXZ3+If/Y8/iw1rLE81+ci/+1U+8K3fwo/+9N/n3/+TX+DZ63/E0tEeTz3xbrKjA25sbnIwzviOO5t8z4c+SH/3gLDV5KlHnuDMNzxKM6xx9fICC+0O586t4oYpnxwaysIxON7DFJrZVodbWYYzJYGEj/zSv2SYpYQHG/zYf/3f0d/u8Yu/8E/p91JWHnmI7/+O9/Psp/+Qf/2vf4Wnv+09PPXkIsvL8/zND32Ijqfw2x3MuKAs4RPPfpyrV65xdnWZmixoRj5SqtO76rT4/peqv/+nBfUv9Vh/8pv+tB/6yjQH3GnRv4pgcTgczjmssVgH2lp0WdAddNGHN8mGU3/pc0742maiZyZ65p2oZ1678RbW3p8tPRViome+xvTMcACY+3cHSelN9MxEz/wZeub+Pc+ElCgVTPTMRM/8BY719adnJkNPE74u+Omf/mlardZX+zImTJgwYcKECRMm/DWgWW9RFjnd4z7YAifBipCTwYjpuQjhoMhGbKzdZJQafM/D9wOybIy2FmcNKgxpKkXAFDd6myRJVBWQtEVrg5cZulmKwiKkxuicg+MD6irhzm4XIzOmpmeImvP8zb/9Xn7/dz/O7s4mypOkRQmeRzMMKMqsGmjRVWE8CCJ6WtKKO7SaPplxpMMekS/IrSYIYoSIyfIcT3fBeRz3dnBljXqtwThNSccZnSRBRgkb3W20c3jCQzuwwuKkoNCaVujIxgbfMwgDcWQRzpEaSIuSKE4426izdzJgdbZF/2TEptnn6moDVxrqgSDCUYYBuc4YHp6gjYFA0WnPopwgG3TRnoc1JfXEknQiPKkQrsnG9i7TrRZOCFYW5rizcY+l+TlG4yHDcUpeZEhhQDpev/UW3/X+b2N7x3JweEK7GdHtD8nTnOlWg0YzxRmDkx5KwKtv38QJzfL8AkWZ0xt6+EHEOB3xyuuvID1Dng8pjeLe9g6eClljg7woaNQbHKcDOu0OaXbC3XvrHJz0mZvq4EvB3sE+WV7n/NlL9AYnhEFC/+CY2Zk24zQjM4Y0zagHMUoInDBMT00RhYo8yzFWkKUFSVjDxQKrqvekcjdCaQxCK4pSEPgRFy88xlR7CiFO5b+VBH6E1hlCCgbDMXfvrbE8M83jDz5VFSYQSOmRFyPQhkatznDYA+ETehG90ZhAeZTlmNlmjWGWkxU5Eok2BcYJEt+r3KfS4ITACYmQErCMsh61epvFuSX8IKIoMvZ2t7Gmej/UqKSfHmONwJQeq/MXqPstsrKg1Z5iqtWn0AcoD1QgsFoRxwHnz5zlXY89xXG3x0ufe5lL5x9E25TNnS3OLq2QpwVv316j1CBChRWSIADFiFo0w803XiEKW0Q2xPMSrr/6CoNcI0VBIAzOgO8FbOy+TZrPMq/n2H7uOU66ewglEUIDgrzs4QeCqVZII2lyZm6F66/coJ7UGWR7JPV61WgaDeiOTxj0A1SgkIXEUeDciNL6DNIUz1Pkacmg71GUMcJpSuMxHB4QJhFJPM047VEWIc1mgnWOUT9FkjDTmeGBqwk3b97AKY12OXEY4MoSYSSdZhOEIU9zhFQUpSYvepSlI4xD2rUaZamZanUYj1NGZYkf+widk44jhBUIZ08dtBonPILAI81GlNpSq8cEvsfx4ARfVG5cUxTUwgb9PENYRUiMJyRS2Mrp5yxOCIQUSCFxpcYmFlTl4rW2iipx1mJMCb6kKtBJrC0pjcVZV8WjOahcwAUIgackuaqOa6wBJLooiZKq6G5OtwpZp9EWrKjW7VemRIV11ZkKnVMahzmNjbAOyqLECyOybAzOMRqMiJIQ6Xk0GwkXznpoYegen+BsTpmP8IXClrB19zpXHn6K/Z1dimzE1NwyKkpQxRghod5qgRA4UyIC73QNm6QoSgRUz00EpsyIgvpp3KCiP+wR+gFCCfKiIAxj8rLAWovyfCI/rLYYGEsQRDjs6RCbQ8mqaZIVGVhQXoBxBl8F2LxEKUVpNaXVBGFSxUYAWpd4UuFOB5qclGjn8B1kWQqeh+cHDMcj/NOIC9/zKfIc4ckqTkNIJBLPC0AqSkaEUY2i1Gzefg1tApLAVU0SZ3FK4nsBwkmM0SgJOEdRpCjPx2qNM/bUcQ+eH9DuzDDVnqU/2Gft7Zc5ajZptGeZW1oi8mOsEYS1afKtXU5O+iiRID2P23duceutW7Tbba6cW2bUzdDWgtEILLdv3qB97hLD27d58Ml38Y1LSzz/+puk3S4rly5w+cISvu8jRPUsFELxR5/4fV7a3ODBs6vkWcnjDz3C8cZb/My//xV+7Id/lG9997sQwqGm2ox3D/j5/+1/4jO3bxC2phmn29zQJT/4/T/M0tlV8psbPHv9VfqjnJPXXyMrHN3jIZ3FeT747nfT8hS333qbj3/yWdrNGX7owz+IxfKbv/rb3NpZo2wlPGBXqHkBf+e/+VGmLy3ws//Lz1IUBc8/9wmKNCeJAeEYpgNwCpOWvPz8Z6iHK7z+3HNcfeJJHl5a5t/+x9/ixu1Njnbu8W9+6V8QRjG/+dGPUiifrH/CT/7kTxDVZ/ntP/gkR9rjlz7yUabOLaJHQxZWVujEtcrSLk4dwvxlIiH+KmMdxJ/490vHuaoR8PnGgNaaPM85Pj7E2hwR1HFAEidEUcKNtXv83sf+H/rbh3QPL35FX8WErz0memaiZ96JemY0HKP1/ZtYkVKSF3qiZ76G9Iy433sNBAR+ONEzEz3zRfXM/Q0scxirJ3pmomf+Cvja0TOToacJXxdMtjxNmDBhwoQJEyZM+FLRWhPUA3SkGfY143FGd1zSHxVsbm3S6bRRPrx9Z4skjrHWUOY52hgcCs+TdHvH6NwSCEtpHGle4ElBYSx5nuLw0VTFU5zElYbBcMz1wYi0tDg34vbrr3D5kccJygHL84v0DncptOOk18PzfISB2akVpO5S2hztWfK8ZCpoU4sV416GbZ2j9COE7VIqRyeReDKg3VKYAtLemKIoGZgxjXpJ4Ef4wqJdibM577q6ymdv9ckHx1gsoaeo19sEssY4PcC5gKX5aXyRkJcRSntcXZ5ld7/Aj9voMmT6whRv7ZZMKUOZlbRtjVznHB32mGokjNIxpTMYYVmYa+GMoVFLmJ6aQVHiRzFZUdKKEpxwFLZkOEz57PVX+MC3v496VGd+ZpaD4y7C83j82jWuv/U2iAbH3ROKMkMIn7W1DbIioz3dodOImZ1SvHVnnX6W0s1GxHFAI2owSkc04oBrDz6CEAkr8yusb24x36lz8+4G7XaTbn8LP1AECnQpyLOMdKxIiwKHplGv06wljPI+a+sbNJIa0+06zaTJ8aBHp9MBJ8lz8/+z96YxluXned/vv5z1rrVX9b7NdPdMDzmjWbhvJiiZtizRWiIREhzLkiAkVpAVUWTYSmAEQUJ/MALETGRBUawIiaItsaIlQ1KUyCEpcoZDzsJZeqb36lpvLXc/23/Jh1MkEFtJ7IDpaQ3uD+gv3YW659w+59z7vO/7vA+93jbzcw263S6HgwFYQxSHbO3sYLxjTi6QximhjAgTTaASQu/xCrLKI5yk3hgtER7SKEEFmiAK8SYnCiOklEgB3kuMtwRa8dRjT3JsYYUvPv8NXN+xvb9H73CPSZGwdjwmTpukxtBoNdH9AC0V8/MdNne2GVclK91lBnvb5GWO1iG2EjjhCMOAdpSivSerCoTTWFMRBrDQbmFFhTGW8XDM8HCIsSWBDilMwVI7otUKGYzBWXBWkmUlG1vbnD55Au/g+rU3mFYZOrIo4clyiZeGqzduMN/pYgzsbe8RRQFCSYaTEUIq8J7H3vEYB4MhlYfV5TU2t26iTY4rx0yEZ+HkWba3eohhCUoxKYdUlURJi7U57UaDpaVl9vfXmQ57bBrBOJtQFH2MK0hViFWW3u4haRyBl0xGhjffvMnS4hwbez0Gw5LxZJv57iLTQV3EXV09S29vj0YCzUQxHI8wKIwrSbQG5agqqKyjKBSthqbVnDAtBCWWQMdsbm8SJw1GwwGVt1y/eZO7OztUpo6RKSYlzgpGNq+fE3Ndji0tIsOQO7dvUzlf34vWITU04y5V5ZFSMbcwx/7hPjqAVreFKsS3a3c4WxfwhAxodefoj3dxxmFNTixSXJUhRcBcOo8vQsYuw0rB2toarTCuH7quLpBZW1FbjV3tBrQep+q/stYhhERLhRQS40AojfAO6esoiW/HPEghMN7VTl8tkbI+Rutt/esRKClwCJz1eC/reAMlEV6C04DFifpnPQJjTR3L4Gx9ftZjK3vUh5DkTmDGU6S3OFtSVhWddhOlBFleUDrH9vYN9nubRFGT3d11Ll16hEYjJklOU+YZ+AkXLr+DOEjJswlRo4WzHh3VDvOiKNBKHb33qt5e5Es0irLM62KjlkDtPvfOEkYheV5grUFrhalk/a/W46Stm7/eoVR9j3jAWEegQqqyxBmDcebo881RFDlCSJyDqrRIpfHeYU0JSLSSWC/w1A2ERtJE6RDvHVIIpA5A1C54ISUqCMHXDQYtde2klqI+NySOozX4YYhWitFkSlUNOCxGTDNACJSUWOGpipzKW2IdfqeZ3Z7v1rEfWiNNhVQKKRXdpeN85K9+glde/DK9/X2GgzGDyYSlO7c4c/Yiadpgvtuh1+0QBCG7vYqL5y9y4aHH2Xn9RfKqIE5S/H7GRm+P05cucerSgzz2nqd4+Pgab/yvK4THTzJ46WW+NHyF//AXf4Hpa2/S39ln8cQq4CknOV/95gv8j5/7LL3RHnfvrNNoxPRWjvGHL34dgoTnXn2DdDTEt5d49KlH2X7lVV64u44NEs4sn+QHf/hHWMCQbx3y4lf+nJbQbBz0mGYZZWk5f/4B7rhrvP+pJ3jy/Hn+i1/5NFujEVc++BEurSzRbKdIKblycol/+Cv/mNNXHiPykp/40R/lj/6Pp7l55026S4s0Kk026dMNHDKM6e9vgJQ05+dYPfMAj509z27fsfzgO8nzgt/5n36T5ROL/NAP/wS//LWv8vB73sdrb64zzTOihQ62yPniy28wn24y2L1LgOXqzat8/PQyyYnjnGi2kEJ8x9Asvm2vfxthnWN/v8fW5jb9fp/9vV1u377Dbm+PhfmEH/jE93Pi2On6uacUHskkLznY36eqKoaD4Vt9CjPuc2Z6ZqZn7kc9g7+3PRodJ6SNxkzPvI30TJ2Ddg8xdqZnZnrm/1bP3NvLUdSvP9MzMz1zn3A/6pnZ0NOMGTNm/CvwqU99it/7vd97qw9jxowZM2bMmHEP2O7tkw0FxktSpSkrSXvhQU4NX6O/u8Ub1xMeefA8re480/GIsswx1iGAJFWMywonFKUdkeUlSgqM9URRQLfRpCwGFK6L8R4jFcI5KmsQKKQGJakLXuWUW2++yd27tzHOIUTdwIiaTeK0QVZVmHxEVRmiNCXLDlBBg/biIuPdHaZFhm+ULJ97grJ/h+loj0nRY3Whw97eLlk+QbqCTqixDgKfoeMmyibsjEbo6gBfCkIFU1finCcOPWvzARtbByw0FFEsOLG8xFZvyGQyYlqEvHb7LqEb0YznSVstrLOkkSaJG2gVc3t9C+ctzgomuSdSjhNrx5EKlPLk4wlCa5JGgis9gZRUSuFqIxkBIf3RHmEYkYQhoVacPn6M/nTIEw8/xKA/YW1xgUcvPcRzr7xEYQVpFGKdoZmknFhcYKHbZfdgn/m5LvsHB6StCB0p8CVFaXHWcNjf59L5ZZyLyLMOV2/cQgSKMyeOc+vWBkXm69XrzqO0JjcliAJrNZPphJeuvo7wHuMrwkCQm5K2cly5eIlud56d/T2yrGSYDwgyh3OWZrNDGAowhuWlBVQYMhyPieMYp6AOrwPjDfm0wiEhSQAQHpSD3FX10idfX5MIcLYC75EIlPOgJHOtOfKiJElCVpZWKCYZ65ubrCzOsbK8jIjbCBHivSAOItK0Rbe7zPW7d8jzCXsH21iXg5DoSNEWTcqqwJYWF1lEoGhFbUbZlGYa1kVKmaBwWEoqV+LskfNUxfiiIk0XyDPLsdUVrNH0Bxm4CaNsyubWJsPJdbzWjMclobYYp3Da41xdLN+f7PPK66+wfuMuTz71KEJAJQpi1eDihYs0Gi20DDBFzvjggOW5eabjAe3mMnk+ZXXtNEk6x2G/x+7ebYQoicMYECgZEyaLFIVFB4K9foko9imcA6FxOETpiQKJkwFhGOArQT7RpElKmraIojGtZhtvDKPxhDROefTKw1y9cZvRZEijoRlPRiihiFotBiPB7n6BsAlFZRBCIJRCBikHwynGOOKoYJINOZgMmVOCZqNBu5lw5vgiV69tErW6BFFMb3sTKyVaCJJEY9UE6zoc7Iw5e/4SL7z4PN560lQTqIBRNmBhfh4qcEbQH4/rmAECxpMhYRAhkEDdvKqA/uCQwliacQftQgpTgXMMxmOs9+AURdYnkh2a8UK9/aCo0EqSZUVdOD5a1W7xWDzGSVwFk0GfPJtgbIV1dQHcOkNlQTgDrh7QklJghUc6RSAipLAoEYCQRzES9cYfay3elOSlIEaAkLXvUgiklAhJ7fZVddMB4evmBLV7WjiPVgHWOZyQTKoKbyzSGarpmKQRIAVMxmOef/lFiqqiEVYUhUEpx8ryGi7LyIIGAQqbe86UJPMAACAASURBVJaWLxACVTmhyCYcHO5RlBPOnLtCEieYPEcpjfeglMZ5Uw894nHGEERRHbvgPcZURGGMMxZrDELK70RrSFnHwHkvjjZIqG/3ZupGjYQkTqiqCmstzjukqKMebFEigwDvPBw9+6RW4PlOo0EpRVUU9e+lDvMwZYFSAiFV3ZzxDuVrV7txRw1zISgrg7IenMUHMbbIqQqDnE5BCFZPnef29dfZ3N5FhWntvg8bBFFEZscoESJ0gLEGESQgg/o6FQ6HQGldPxS9QMqIweGIwWhEu9lGy5Crr75ENjjkwUee4LVXX2YyHVCVBo8hbTdYO3kSNTpke2cXHWoWLzzAX/+RH+SRUydZbDcJlQTn6Hzse5HtiJ1Y81fLggvnTrM7KTGT/DsDg6PtHq++/DJ4jxMSpKTyjq+++GztiA816xs3+Y3XX6JszfHRrbsUvV0a3XmeuvIwP/cjP07/6i2OvedxeslV/slv/BrvefzdfOxDH+KlX/9nOOv47Gf+CAs8/NBlLvwbP8YPXPsb/O9f/lO+970f4vLFCwgEu3c2UAuLfM8HP8ZXv/YcsXb8J7/477GxvUfQ7tBZbON3J5y7eJH9nV027t7GGkB5yrzg7muv8wd7B6ycP8dP/1s/w5/85m+xdPIsEsFWf8CJ42v84Pf/Tb7y3Av0B1MSv8t73vskH//e7+PTn/5vOXX+DHfv9vibP/KD6KDJRx57hFDX5epvN5KE4LuVunBf4PG8cGufr3zmj6nMFAQsdCIefsfDPBbB8bVV1lbPoYRCKo2Sgso61u+us363x3w7Icuyt/o0ZtznzPTMTM/cj3qmXjdz73BezPTM20zPREmMKSf37Bqy3pJXMz0z0zN/sZ4R4t59OfX4mZ6Z6Zn7hvtVz8yGnmbM+C5TFAXj8fitPowZ32X+7M/+jGeeeYYPfOAD9+T10jQlSWaFrBkzZsyYMeOtoBGFvLlxh+XuHM4bpjsH2P07zI37xAZ2129xpxnjXU5RZjh3tK5YSRbacwRCMzeXsDvu4bQg0J5h7ml4ydLSEqPBPlujKUJorHBUVV1knF/ssrQ4x/Z2j8l4gosiRpNDlIvxXiClIE0UURIxGPbxVYEMAuIgwBhPGC+gEFg8JYK0MUemI7LBLjab4K1CyXly18XKEgLFgysZ+WTMOJfEcUhrfpE7t67jjWc66LF3aBFyGeXBeod3IWU5QcoJKl1CTnKmZUWYKKKoxW7/kKqyLHYXWEqW6U8KxtmAY4srtJttEIIkjul2uqgoAV8x6lviKKiLxQKMKnHeI1F4EYAXuLKg9A4dRmghaSQRT73zEcIwRoiAuZbmXY88Rqg1RcPR6baIwoArD14giDu88K2XmBYF4zwjDBKskGz2ekwnY4SAM8dPkmcjyumEJIjYHWbcuLNNHLcZDHoopZhOx3iV8MrVNxBCEIUhXlR4q6hXjdcxXwrPeJxjnUTiWVqcY25hjnc+/DgCGA/6bGz2KEzFfLfJ8sp87b2UkoODPidWVplkI27fXSdKGhjrmGu3cc5hqpLKOvqDIXe2dlhYWKDdbOPweGux3mCtI9YWKRQgcYKjopwHITFHu1Oq0tIf76JlwJVzF7AloBRpABKJrXKEr8ApyiKn22mzc9AjkJIkFHjlicIl4nJAWWQ04iaL88v0DvYoplN0s0Go60Gr4WCM1p7xuCBOA9rtOcbjCcePr7I43yUroSgrnPPs9tb54JUn6R1kDAdv0AgDnHO88sYbZGaKAkxpEV6idUBVlsx3OoShJy8Kbt28ybGVY7x54xo6Sjh18hS3Bq/hjMHakqeefJz19Tt02x0q77l28012RyMkko3dfU4sLbG9u8+k1KRRF6ECynJKUVWYg0N0EOCUJ1AQRZ6F1hzL86tcu/USJhMcP7PGoD9CSEkoJAtzS5w+fZLrN25RVFPSJKHKPNPxmHZDUmZDzp9a47YomU77GGsIRESsB6yuNBA2ZnfPUvkxigAhA9rNLuOJpsgLotBinGNlYZFIxUShpsxyQhVx/NhxtnsHHD95iv7ePlVW4gJJI4lRqmJvb4jxglvrdzAGGo0UHVjCoI0wOc6UGOu4cfsmWkqc1xjrMLagO9dG6NoNb71D45FAGjdxztJtdRnl+/U9JgOEUBhX0GrMkeiEQEa4KifWGq2i+nch6yE9PFIoKjy5taTeosIQpeohK4HD4shthfYSWVUIHeCcx1hfx0V4T2kKrKnQk4jpNEMikFrijcd5QWkEBk+VF1S2wtj6/sHWBXCvJM4C1M0HJCgkLlA4A0JJlAgBhwIKbxlMByjraRBgnYEgIE5jpr0B/cGYVneJ0bhHqBMacRuXj9ntb7C2cgHvK4rxmCAM6O1uUxrD2olzQH3vqzBAKFFHXeABWzennKRyFXGYfufzqDKGNElxxuGcwVlXO52dxfu6kSAllNOcIIoJowDvHfmkxLm6aeKcozL1zwspwYrajS4UHlMXbEXd1K4DKgAhUQgyY1Ba1VvAjtbdg8Q7ixcK7x0IVTdYsylhHNf/jsMYRxBGCCz4ivlOzHQyYGe3x+Rwl/HoEBVFlKXl2gvPYk7v8cjDDzLfaTDILDmKqqxI4gRHHWth/dFxeIt3DqkE7cVVHn7s/Xzj+S8wHA45tnqc01ceI3QG8Dz+rg/z7DN/RG/vgFarwekLD9NdW2M+1Khrr7Bzd4tHHj7LRx++hASywQiSiDCMqPYPCZIlkrDJ4e4m/f6A5dPHGPR64E6BVMyfOs73f/BDPPvKq5SyorQl3cVlVFGyM+gxGvZ58VvPs7Zygn/4C7/IkoS9/ogbm7cp9gck7SYvb95h588rnv7Sn/L1a9d47pVvIfW3318YjSeIMODO1h1yafmxn/0J3vPkY4Qn19g5GPL1N2/R27rLczvrfPXP/oiFY+c4fuYYX/iD15hbWOCn/p3/gHdeepA/+dVf51f/+W+TiRzh64aT85BPMnSg0UnML/z8v8uxpVWufe15rvcPQCjOry4Rf+QjvLm5xfmHHuSVZ0/QXZ3jA+95H5ePHWOxu0BDO5RwPP7AA7zvnY8TKskoz0hCCKX+/5y24L9z3d1/CARXzixw7Md/iFhJtg736e+t023PY/IRzjoGo0MaaZM0bVCUnt2DfV5/6WuMJyULrSZVZd7q05hxnzPTMzM9cz/qGX8Pu71aKQLFTM+8zfSMlvVGH2vvTUxiURUMJ0OEDGd6ZqZn+Bf1zL38rik8Mz0z0zP3DfernpkNPc2Y8V3m5Zdf5vd///ff6sOY8V3m8PCQjY2Ne/Z6H/jAB/jgBz/I008/fc9ec8aMGTNmzJhRE0SadrODsZ7+ZMzOeIQuCpyAAIgKR7M1x97eLkqHJLEirwQ+ioiihDBQxHFINsoZFJbl1RNcXuzQEhXDsqTRaLEttwikR3hF7D1jPJPhGJNPKcoKGcR0Wy1293YYH2QsLK0SBgH5dIJzBltVhEmXpU5CPuhROUEatamcw9m6cJQVFTaaUpYThHO4PEcdrVbXKiBVBcOjIvnE5VSFI8r3aHdSRkWGEC1u90sq3wdXAp7cVDjdRqmcZrtD0FzkzuYWUic4HyKlIIjnOXX6EouLC6ytSLw3pK02gXPkZYFQIUoFdXCRACVrB6GXDic8QniU0iihsd7hqFePC+dRUmGdo9lICLRCeoX0rl57HoZoJVmZn2el2+VwMOXuzj7nznSY5mNOrB7j1vodVhYW2d4/oN1uAx4zGLC506Mqc5YW52mFEusMToRkRUnabHKwP6DT7dDbH7E9HCOAQFiiMKyPTUJZFjgnGGUWvCROHO004f1PvpPSaUajIbaYcnu7R7vRYXVlkUiBEZrRMCefZuRZztbmLpu7t+lPhhR7Pd775Ls5HAzZ3e3RSkNac/M46bh04RzGGnAW4T3e+br46w1eaIywSMD7uqwq8HUB1guk9/SHAwZZ7Qo8cWwJYT3t7hLj6QHTvGScFUyzjHkxj7WeQCoaQcTptTUOJyOG44JmI6UQUyoHlYFyMKDTXKAq+kyLgv4oq9evRx4dQJF7qgJsZem22rQbCbc2rhHFbS5ffITXX3+DvKh4+dVraJ0ShYJHLl5iY2OX8xcvst/vsXH3DoURrG9uImVJECmkUozGA6yBMIjoLnX45ovrBHFC0mwQhDEvfOslLl26zPrtbUajAVtbPcbFCItDa9AEKBFw/dY6O719nIV0vkleWJK0Sz7dxvgCRQyu5NjKElmRsTzfwdgRyjiQsH7rFq1GwrmzlzG5o3fYY2PzNRqtBe7s3CJOFUXuccLgRY/JaMz80hXG4x263UVGwwqlIqrCcO7UWUI9IQ5Lrm9axqMpC90mUniEtHQ7IVWV0Wl1OXnyONI6JuMJe6MxlYG1lWXWN7bY2drGWxDOooWizCsKU2FdhRUCU2V1bIIOkKEgbaUEU2gkIZN8xO5hjyAIcJVldHhAs9Ogkca1Y5i6OKyEZGX5JKK3TlEU4AWNqEk5yQmto8xHhEHK/PIqrSBBCo+R9QYeL+vNEs5UdfHYOfAG4R2BN2gJoQ4RUqGkQghZOyWDkERLoihGhwprXV0k93XTzuFoRQFaK5rtNoGQWAReHrmfhUNJiRMGGSmEUijnsFicc4ynE0KhaFqLdx5nLP7o+euMpbSC0FZ4BNLXBc1W1GQwGVM5h3AWrEFZsGVOGARIJylKhyNHN+ZIk4g3b74O/jaN5jy7e/ucO30GnODs+QdwxrF+41VWTz5IFMZYY/HWIUKHckfpGVi8E5iqRMsIhDqKz6ijHqwxSBRhGFJVonZ245ECrDE0mgEIMIWpYzk8eFPhfYU1JVGS4p1FyjpuQwiw1hx5jetBJbygtBVCSLyUGOeIggDvPQ6PCgKUChDCU5QGpTRhENZuainqzwShMb7ES4/WIfn4kKWWptWMObQZ37h9i539uxwMRnS7bTpzC4yHOXlumE5KFjopTd/nC194gctPfICODvj24CdCIoQgbCQU4zE6TgmDmGOnzvGN577ItMjY2tvirHyM/Y07XH31BeIwwQBhVB/7u97xDj506SGsKfjlV55nUhakjQicxZUVN5/5GumlSyyvLnAQRUy/8CxyoUWoNc8/9zWWFpbZuL3Byacere8bKRhtb7EzPOSTP/xJyv09HnvvB7n77Ff4p3/2NKWuWF49wUprhb2tHs1uk8/+we/wpWuvszC3wstf/SpLD1ziM5//DM++9CI/87d/jt/4p/+Ym9u7RFIgvECpOiLw9evX+Xv/4Bd5/7s+yI/++I9R2Iokifnsi8/zjZde4PXrb5AXhv7d6/Q3b1EUU5ZapyiLnC8+8yXKOEZLjXD1aBoOgiThHd/zBJvrNzh/6gKxho39LeITx0kHfY6fXqHdaXLn7lW6zQaXz57kc0snuXntZZqdLlEaM8lzXvzc10g7iwRKE6r600oIjTEWFdSxLRrxr13wv18bBFDfl8J7QgFlmdOOEzonzhMohTVd8mzMzvYGZTak2WpQlY7trW2KcZ+kmWLx5GX+Vp/GjPucmZ6Z6Zn7Uc+MhqN7dg/Mz3VZXV2g19+f6Zm3kZ7RAoLg3g09ZRNDmTnCeKZnZnrmX9Yz8h4OcnrBTM/M9Mx9w/2qZ2ZDTzNmfJfx3uP9vV3VOuPthxD/+h+CM2bMmDFjxozvDvOdeWIcW7u7GC9YCiKWpxP2LPQ9NLsNEq1wOMJGg6cuX+Sbr77G2Ahu3b1LnCRcShqMbMDESkRvj4PDPRZbTZz0XDh/lnH/gMJ5fOkRjQBlCvKiIi9BCsBUqKpkVWvenBRMphmd1Q7T6ZjpeEKjvUSru0iiCsqsoCoLkqSBdXWueqhDShyhLclMRWEtuDrmrDHt40VOVhY0kwRb5Rxb6LB9UHA4qQi1Q2iPsAXH5+fZn5YMC0MDhdYpxoW0l85gfYPji4uYMmJjv89DD5xjb3RIo9XgwoVzKKkx+ZSQECUDKiq80tjSMBUTtKoLSKaqMKZEBgrpJV5G5NkUJ0eYfIzSktxY4kjjj4qbwkORV4SBpXQGL8BMpnTmunivEV7QbMUsmjn2DntIoQml58l3PkoahJw7dZZXr7/JtdEE6Rzj6ZhGGqO0ZP9wyLHlRRbmV3jp9auU1ZRJPqEZKUIlKaTAVI7lpUWsFVR2ymg0QUsQQUJZGaQWhBI6jQ6b2zucOHaGvYMJO70d5joRK8sdKmPJckvcUDQbMZWtWF1aZf32dea7c5w7fYat3X3yUYbzhiBUbPd6ZMaytjJPEmg2Bn0GwyGri6s4D2WZ1a5QWTdWEBLpoSgsIz/GVvbIJekZ5znXbtxGRwH7B3ustlYpq4zJKGMwGdNutCiqirKcoqRgMDnkzNkHmAymjLNrnFg6ye7BLvNzC+TFHoXJKIwHGRKqmCCoSLWgyB1CBVS+wnmHl4ZsXKKaniRJ6HZW2Dm8xZ8/tw8yQQeK3cNDAjnA25ybtzfJJznOWs6dvMBhb4TzU7yVqFAQKM+5k2v0diN6vR7Ge55/4WWCIEBLy6S/xzgfk+UlB8MRc4sNDgZ7TM2UzBfEOkC6gGajwZs3rxPIEktOmMDhYJdABuTGIcMIjEIHtcu0P9oG5bm9+TqSmLSxyHha0F3q8sDqGY4fO8vN61cpyxGDseLc6fOcO36aw+EWqhMz2a+YFpqdg4zr688yMROCJEKoiEBIJuMR33rlm0SJZzTSNOI55lrzDEf75FmOc9DsSoQ3DCea/YMdTiydYOKHFKbEkbPT26a7uEB/MMZ5iz5ahT/IMpyoy7vGGNK0SbPZItAaLR1FMUH4AikjkihFiwlFNUGgSeOUKGrhjDra0e7q6BAkVTGlPxySlUOqg4pIKQpjWVpYIptOEVJTjEd0FutoPC8AIXBe4Y0EFM5XtXPXeqSTxCrCI5FInLVHetviAZT6jvuxGI+QApSWdWHaS7RQBN4jvUdKXW9LMxbvXR1PoiQ6CgiiiFgGSO+xUuKVRCpBHEukNMSRJjP15gPja1e1tRZJgAwUaatN6SzeWooyIxSWyXCMN4plqVlYPo5BcNi7wc7eNYRusNgNaDVbtDtzRLrNaFJR2hGnTp4mG04JwpDRwSHb+z0uP3iFqqwoswllFZCEMc45cCCExFqDkqCCepDIIRGioCorTFliK0PcjLGuqh3WWiPEUSSD0khRPzONKbHWEgRh/b4icR7CIEQCznmybEKcpjh/5Mp0Hh2FOFM3Z6RUaCnxrnbhG1d/9kglsb5uypRlThQEBGFIkZf160sNEqTTOFdHiRjr6Pf7NONlVAj94QFF5kh0Cj6l0ZojH9+lKCv2D/pEIbz26lUOpiVh2iCfTGgsLCC8oCoypA7ACYxxJHFYX7+B4sQDl+jMLTAcj5hfO0OzM8/S3gavv/wS73niA7z4+rdYv3Obz//eH/LIT50iaSrubvboD/bJ84zbr77J5/7waV5Zf4OVV08RSc3P/dt/l/HzU1RrjZMnj/Nbn/0T3vXkk6wEIa70mGyI1Jr13V2iZpOnnnqKM0kH3Uk5uzxPXwV89cVv8IM//GN89MMfIG3EfPk3f5unv/Eicdri3/zkT5L1+jz17vfTiUM+8n3fy3yzwf8WJaRaYoTHIrhw5iKBiiixHFqHPnmKm5t3CQJF5iTPvfACr7z+EkoaismQYVY36lpzHcrDPb72mT/ESXBFzrTMEULV3yXQrKyu8ODlB1k4e4FzFy7wyu0d/vy1F+ioBCscphzwyrU7fOPLL7I3+Cz/zX/1j/ipH/0BfvVXt7l97Sr727ssnTzO3rDHX/v4x/mei5fwzuOBw9GUvfEBx9tdRKBYbnfw3pPnOclRpOv9zL+YXOG8pzKmHuLwDkT9DPE2R0kB3pNNhgwnI0w1pT+YMDjcZnlpDm8ESmpWji3zUz/9s/zxHz/NzddeIEybb9XpzfhLwkzPzPTM/ahnpLp3tW7nHdl0MtMzb0M949y97b1llWFpdXWmZ2Z65l/SM/e0f+f9TM/M9Mw94y+rnpkNPc1425OmKSdOnHirD2PGjBkzZsyYMWPGXxI+86dfIZIVo9wQhgEyK9mQityDiyPaSch4NKQqctZOnuf46jy3t+YY7g4ZTXIyp3jt2jYHJsHj6ZclFIa9wR6nT5/kjZt3GU0tWli81CyuLRO3WzSSlP54xHg0ICss+8MMZzylkBwMxzTSCO0FlZAIZcEUGCHoV46dicMEQ8KkSRw3qDKD8Tm+miCkJlQeAoGsHD7bJAg1YyfxwHBimBiH0SkFBpwhSVsUlWf7oGCh3Wbg9ihdxflTD/LolcvESUIxzWg3W1h3nKSxy2BwSLc1z3sffYIkjLBO4KTGK4P3FoknwBMkIUGjiTVgTYUJFUJrnJc4HEprokDTjBNKLdHSI5jgTIVDInWIc5Y4imimKebICZ5bx3SSIaQgDhWD8ZSdzR067QaL3UV2Doesrp7GmoJUB0yGE4bjCV5GXLlwhrm5OaqqItEBr968TXB7s3b7mgLnLLlQdLrzCJ1zeNhnd/eQc6fWuL2xz+LcPK4qCGSFjLv0+3uszS0SpU2yUvHqGzeYX1jgyuULFNMJTkik0qAKlFSoQDHN+0gpOXPuNONBnySOOLV2jDubN9nZ3uLixYcZZkNOnj6JMR4vJWkc0UibRGmCso5cWsqqRHqJcBInPFIKmmlErDQ2cFQ2wznBfLvFY5cfoag8a0tzSCdJ2g1CKRlNc5I4YjQe8srVWzzywGXKcgguRyiPlBGXHjjLynCZg/42xm4iAOUFk8mEiTcszXe4ePEid9Z32NnfZmosUjq0ljTSlMl0zHg0YqG9xO7eDnGqOLZ0no2tTXSgOLa4wMbObZJWyt7BgOde/CrHl1epsCRpQpQokJIsL8EpstEUrITQ4yhZWVnjnY88SjOIeOHVr7N1eMid9TvEgSZQitPHj/Hazetk0xIlwbpDjClII4f2AcXEYAFSizX1uvK6MC1AJxjvsSYjkJAkDY6tXmRrc5NWI6U/GtAYDxkcDtA6IG0sMRlNcXZEqODsmVMopdnd32dUWZD19RwHirW1s8Q6QceCXm+DV9/8FtY3mV+UmHxAq+lRYozSC0xGmsF4BEwxzpF1phjvyMoptze26bbnWFk8xtb6NpWxICAMoDAGGaZU05LVpVUuX77M/v4BXnh2tzdACiKhKQvDzmCfJAoQTpCbEksdD1BVFULUxXgvBB5LaSoclnGZE6oAIRV5VTAaT1nsLjAtxoyyAzpFkzhM6uKxFkhvUUqgpUSpOham9AqpZR384H0dR4PEWndU5LdUhcNHCus8MgjxQgAe70Qd/YBAKolWIcILrBAgBd7WEQXWufpnPHXsTD1tg3cOnAEv8F4gVIgQBVJJAh+A9FgU1nuQEq01Qirwlqw4wFtJM07wDhCKMsuIwpS0tVS7qXVMVQm2D/eI0xbGlAhVoGzOdBgxPsxozHdZTFdZEwu1I9vWsQ4mzynlmHm9ChKcrf8vpFB1I8Q7cJZACKyxtYNZesIowBoL3teRI0GI94IoihDCI442TCitiJMI7yVahChd1vEC1tVxGc6ihMR4Wb8WgFQIYcE7vLeUlUcGAR6QRxuWhA7AuaP31uG8xzlLVZZEaYpQCrynsAatFDKISFtz9HdGLOQFcRDTajQ5OBjVQ3aloTO/xN0b17FFTlWVHOzt8cLVWzz+Vz5OI2lQeIEUEo7iRXQQUNkKEQS1y1sr2kvH+cgnfpLDrdvcfekFPvkDf53jC13YP+Q//6V/wOnj5zkTJvx3WxuM7ZRJYPjiZ77A9rDPwcEeX/ryF7n56g329nbY7m0xeu1VHn7gMutvvME3bn6LE42AU6cvcGVzg7/1Iz/Ec7/9+zhvuPPNl2jMdbl6e5Of/zs/Q7Lbp/3Bi8hA01js8rdP/R2+987HWT59nEYjxTtHHDb44GPfwzdu3uKpJx5lxWv0QpszyUVOBYrXvvkCuS2RoWQ0NiSR5qf+1k9y/uRZ/stf+vvcGu7y0svP8dzXn+XqN56l3WggqgpfTchNxpV3vJft/S2ocrJsyoPv+hCvPPPHPPzYe7lzOCYIFA8+9ij7owmr88dRcszO3i7/2X/894l1QOXhY+/6Hr7+wrf45te+wCOX3se7H32Yu1ev8uqNN3nm2a9z+tx5HnnXu1g9/iCf/fKX+L6PfZQf+4GP885z58mKit/+02d495WLdFsdfvcLL/H973mCE60VhAfjbP0cuI9jHqA2QhpbNwSsB7zDOktZFggclalwzjEcDcmLgkAH9WaValwPeBiLqXKipM32wZQ48iwurhA3OyTpHLK5QJLEtFuzoacZ/8/M9MxMz9xvemZjY4PhaHrP7gElFUmczPQMvO30jJT39ntAXrmZnpnpmb9Qz4h7eS0KiQ7CmZ6Z6Zn/3/nLrGdmQ08z3vacOHGCT3ziE2/1Ycx4G7C3t3dPP5B++qd/mqeffnq2OWzGjBkzZsy4xxwWsNIUDKaGhaTBRFiGcUJRFegoYGVhDrxBC00rDijyQwhinOuTtNrkpWdvsH+0Vvvoe4OMEEqQpE0SkeMJGY8OqYqMm3e3saVhbs4iXU4zTVle7JAVBXc2tlAiBCUxlSXUimbSxBYTBlVBkTTZKySli9g8yJhfDFnREp0oEh1QmBId6nr1uS3oZ4dM1ZhEdmi2VtkZDmg3V4jChK7WSOVoJzEKh0oTrl27jSuhyiUQc6yjKad7LHQv4ooKpEBLzUp3gb29XSSCKNRHsVceozQy0AhrcK4ekLBAKDRK2to15yXKa4SGClEXMqvamaidQguHQuCcxQiJBpQUWAy2MoShxlgosowXr1/jHZcv00oXcX5CmCQsLi5xKkmYliVpM6XIPEGoOHXyJDIQ5JOM/njAcDhie7dHhcM4cFS1e0+GeMA4jzF5vRZdCJRwHPQPWVteREgHwnFs9RiHU8vBoaCSCpfltNoBlx44x/LqMUw1GS1PCwAAIABJREFURXnLwTBDaw++Yq69xOFgSDPu0Ok2cdaTj6a8+NILvPORxzi+eorheAxYrly+wtLiCt4aQBCHKWGY1I19qVBCo3yFF3XhU4l6YbsQGhkEuKoidJpSwPLcAipYRQmNdyWHwz7aC8JWg0arRW//AFta5tvzbG5v4qohC80uGotw6yjlWOp2McWURtpGIDHGY6oJZZkxGpdH7sERQgmaQczQTKgqS1llJInm+q3rLLQnmFKQpin9w0OyaY9Tpx6gP56y0Jmn02yz3z5kNNzhxp2McelZaM6B8NjKEAjJnVt3aDeazC0ssNvbIlQRkVKcXD3OYW+fU6un2NjZo3ewj5CSdtpCBJJISiaFIbMZZRQSRIZpXjDfChiVhmmpyJ0lFo7SOyobEMQhnbSFVIoiO2RufoXRpM/61g1cBYe9EVEqGb42psothfNsbd7lIDyk2Y1wCHq9PYbTPqUZI6VBSYP2nsH+FmY65NixB+k0z1LYbcJmSFk5hoMe0jvSJKTVrONRMjNHP59AaZGyjgBI05RWq13fm2EDawyBhvHEobVGywDnS8pySiNp8s4rj6CkZjg8JIoikjRlOh2RO8ewGFEaQ6fZphgeEALSe0yeo0N9tOjJI50FqUnaTZJBQloGtBvzZNmYRtJASIEONZQCIS2TYkisY6QX9bNCCFDqaLuPraMYpcBTD+55QAfRUQyaxnsB2KOGh0EQ1s5pZ7GVwXqPq+pCnBAh4EHWhWkvJXhBICVOgsQhpcK52tXrfIG0nspLtJAIVf+pqjo+0rt6WxpYvNNYJ+rmhPdIn5FGDYxVuOkhojPH1tZNRqMM6yySFEWLUEuU0ix3OnjvCHWDdneV8fiA0WSKcZ4oCBn2rtNoLFOWJc5WlPmE6WhIs9vF+wpfCYyzOOcJZP3MFEJQViXGVXAUf+GEOIqGsCAFcdxASlHHNHiHUIqqqvAOVKCQSmJMXdQMwwCJpKxKyrJA6bDecHDkqlZhgPDUjlZXD1massKaCqvrkqMxBh1GdYyEceg4RQf1ZicdKLQO8FIihcRXFUmzXcdTlCVha46D/pCV5Q5ps4HQAdJainLK4eE+46ximuc4U3H91jZxd5ljK2ugBF5LrHMEQUAgape3855Wp41MYpaW5zm3tsRSO6UxvMj/sn2A39yisbqATRP+7s//+zQWuvzhL3+aMyfOkoYJn/4n/zV/42Pfj9YKGYZMJ5Yr73+U9125xK//s/+eZ+/c4IEzZ/ja05/hd77+LKvXbvIfffKT3Nm4y/72Llv9Ps9+5at85UvP8J7HniBanOPDH30/2beuI6QEAzLSREGTcw89gMfXERxS8uQn/hqtJOL56zf4+vMv8eGnnqQTasgKDt5c55nPfIG5xWOcePAyr119HV9VfP5zf8JvHezzyF/5KIM/+SOe/t3fpdGY54FHH+fDjz/CvAj4td/5n5lkGZktub1xl2o0IogUoz/9Y0wxZftghyeefB+b164yGU55/L3v4Xhjkc9/8XNUYsCtN9/goYce4s6Nm3zmS5/nzdt3Wb+5zt5DB3z6V36N3Y0N/t4v/af013f455/5POdPHuMrz34BLQV+0OPyhacoy5L/4fd+n2vXX+OBUyscW1ziY+96N3OdBslRw0lJRSNNEfcwRuT/De8d3oM7agIAWGspqwJjcpQMUEozngzZP9glDBRJ0sQ6Aa4iUh5JhdASI5vkFfiozdrZ03SabVSgSJOEOKwbW84JVk9d5PD6i7Q6i2/x2c+435npmZmeud/0zOZ2j5u3r9+ze0ApSVmYmZ55G+qZMAjI8/KeXUtVXs30zEzP/MV65h4Orkgh8ULN9MxMz3xXebvpmdnQ04wZM2b8K/KpT32Kn/3ZnyWKonvyeg8//PA9eZ0ZM2bMmDFjxv+Vi5fOYXavUwJBIJhiMXikjrDWEkUKRcVcq8l0POCbr+0zqGJUlHBscYE3rq9jbIUQIL3ECsBZUhnRUQKdtOhPtgm1QqkQGSaMywlRmoJR7O7uctjPSNKIQEHlDXhJZUu0kkRRg8bcPJmpGI+mTAtHaRxC/p/svWewJfd53vn7h04n3xwmDzCDGWAARoAIJEiZokjRMmRJlGlZlCxZVmlLgbVbXtfulqtctbvlde2Wv+y6vJRX5rpkrUUxiYqmSFGkQDGAQiIHwGByvvnec08+Hf5hP/QBSCqVrZKGNHWe+TJ1z63uvt3/7j7P+77P8wiqcYhWCkKPDhShr1DYjDiuEsgqjcYswqQoBhxcPsrlq7cZDDKOHBUUACLk4PIy4/GQSq1Otprz4tmXsU5SrzWZW1zFuRFeSIQX4CVSQKQkjXoLY9ZxhcM5P2mSWAIVYa1HKoUwBUKXijznBBaH86U7jLYaOxwA4JkU4bzDK4lHYa0h8B6FQCJBSiQCnEJ5R61a4fEH30QlKRWXq3NLJIEgVKCkpFFrYIXHjseMCksSBSzMttgyGe2RJR2MCZMqo0EXJSWBCrA+JyscSRSAKxilBc4LjAGvPMNRymyjzm53j3TUZXN/RBAkHFg9wsrCAjbrcnDlAI16nQBPJWmRDoZ4n9KqzRHFITv7u1y+doXX3nc/7U4fU+RI6ahW60ghCELBww89gs0NuIzLVy5y+OAKSdgoLdmdQ3iAAomfWMGDSgLmkyW6gxznCiwKLzyFdzgEComSCicczgJegPCl3bd3zM022B8MaNRCjBtx+vQbUFGN0dYaQSTZ7wy4sfY8+70hxlhajXm89+x3DSrwxFHI7Y0tQq3wQhIqReAzCqcZDHMCXRbuOuMuRWHZ2mgjBMSxxHnD9u4Wd60uU2/MUKvu0u2BwBMo0Epjxw4deGIhaVYqfNffejsvX3qZIIC5uYXS/SXPiKKAWnWWucY8o8yiA0l7v0thx9RqMc3GPOvbbZwzzM80aFUCRsMOIlC4XJKnAhkJlHJIYSmcIx11UCqkmszgvWQ8TIlrNcIkYdBLqVQVzeYsu+ke9558gPWtyxSmjXMzzC+dYO32dZx1hEGpwhUassJRC+pkmWVj5yJb3YxmLeHwgRNcv3GFKFBEUUKaCqQ6Trs/oj/cpRbWyVzBuJ+xp3fK+7TaQgjH3ccO4USN85fOIaQjDiTGjBChoCoijhxYZG62wV5vgNQKpQKajQTrDKPRCFNYAhTpoEB6QVJrEoUR1UqTdDwGfPnPOwSeQbeP8Ja44rA2JVQx0lvGozG31m4gI0WcVEmSOlJJvGZScPY478gnyl1nbRndYAsSDYFUSCnBeTxlQ05J0EogEGVEhBBIQGuNtA6rPUIJvPA43KSIXeCKsuDunEd5URZhEThZNiMkAUqCVArvCgRMlNYTIYoAJ8roA+VAKAkOfFEQiAB8QDrepBoleA9BVCVMLLduXaQazYB37PV7BNpR35kju73GOBuS2BrDsUPFhsIZVGDRlRa5E9jxCOcd2WhMno/BtTCFIR9nGGuQQYCUCiUlaI8KdHkvS4kpDJ4A5zwmz5FBhNIKawzWerwti6+5y5HqlfMMEonJLVESYYoMN4mbq1VCvCtjfFAB0jvy0RgAHYREYchg0EcoTZJUsNbgBDg8WmrGLifUAVoHZUSJKlXlXkyaHFqhwhCTjjCmIGnNMNozXLm1z9jH1JszpKMhLh2zuX6TXDhubu1w+oHX0L6xwQNveAitNEpqkkoN7zw6jDFe0GjVWZprcHhxltVmjWqgy+trLF/+oy+yeuIoeW9Aur7FR//9L/Pg93wftY1tLty+zb2H7ubn/+H7+F//l3/OfncHJWB56QDv/p4n+NEfegItFf+k1eBf/O//kl5/yNOdHpWkxaOveYin/vgrXNpc5/buLoXJ+U9P/iGmnxN4wZHDB1BaUrnrALY7Qs/W8MB4bx8Vx4TVZLJCQQSag6fv46fe/f1kFp47+xJvnn8Mp+DTH/9Njj34MP/gH/1Dbl46y//1//0SWZ7x+COP8Ksf+zjj8ZghGlN4Zhst/o//6Z/y7Id/na9cu0B9cQa/Znj+y1/CTlxNSHO8LXCF49xzz3L76lW8szz65rchpOHcS1/je9/5PfzG7/wm/+aX/wN3nbqLz/7eH9Dd30EpSZGmPH3uEg898hhvfM3reNcbHuT38y9y+3NPcv3qi7z9Pf+A3/2Vj3L+j7/M5177JX7hJ3+Wr3z5Gfb6u2RpipaSe1YWkKIcLBCAFN/K9kAZ8OB92Sw0piDPU8bjPmEY4z10u3tIaYmjCsZLhqMBwkOlUiUKE5YWj1BYg9AaTRlbo7UkDCJqcRUd6NKlYOLqUL7Yy7/Y+/IIOqnh5pWLhFFEfXY69DTFX4wpn5nymW83PvP6176Op54+f8fEvUIw5TPfoXxGa02vf0eWEQBFlpOO0imfmfKZP8VnhJB3biFqTWNlecpnpnzmL4m/GXxmOvQ0xRRTTPGfiW+F45IQYur0NMUUU0wxxRR3GGrY5WoHgriCLQqUTpAyxwqFcznOOupxTDhT45mXr1KZOUTOmDRN6XuD9wbvBR4xYXYS7y2FdhRegJOEQYzPxwgZIIRDx5Zq4hn1R4SJQ0iDcAphwbmijEooNF4rrBsT6hpRGHPr5iYUBQiBs5ZxXuClItFVhIJQCqBGHMTUkph6EuK9p15LyPf7pN0OQws7fYhqTQ4tHmBzb5tWvUqtUuHIgYO8cO4iwjl0oAgqTWqVZRxQOENkDAYBDhr1KjoIQJVFP4vDWoMyEc7ZUmGIB6ERqlQxSm+Q3iOsxSsHwiBFhDempMaiLA84XDlcIUrHfykl0kHhCpyVBGoSsSVLRZIUnlBohJn8XHisKej3hnzxK8+iAss49yzPL3L11gYLzSZJQ7O530NJiQBGozHzMzVGaY8sFwih8EWOFwFSS6y1IBy3dzbIC4dEkxUF1QCGgz3WizH3nTxGqzFDXhS023voMGScj6nXaigtAUkUJezs9xiOCgbDHrv7WzSCkIXWAnt7++gAWs05rPQEUY3ReA3rPEL4siFEqYYsFZAeLxwSSSNJuLy2yV6nw3LjEFEcIZFoITCUhVOBn1jeO6QAhSQtMm6s3WJudob5mRbj0Yh2p8fJo8fI0oxxNqTRnOHG7dts7O6wNLeKrEnWd3ZIEkUQS2bjRfr9PkuzLTr9EY2kSr1WY9gfIXS5Xq11BCrBOcdss05v2COKG4wGXZbml1EettodNvafp9vtklSrnDx2D6EOsTZgc2OTSDoyIRiZgsvXr9DptZmfnWd+bhmT9hkORxS2AOE4eeIEiweWeOrZZ4iToFTeGs3y6iKbW+tYIbAuRuoGWVEwW61g0i5zC02MGSGFwJgB2o/Ixh6hLdYUFF05UcJ1kXKHUMVs76aMRmWBtlqtMjs7x87OPns729y41WZUjAj0JHIAjRkXBEGVjAaz1QQvhmxvr+PtLONBl2KkCCoJRabQMsQaSRRW2N/fIqMgrrVKJbAHHQRIQjr7bcajnOMnDtCozTEe5kShZ5h5IqVYmpvBmILzly6wsbtDJCOMdmT9IeMsZ5BlJEFMnmYUjIlqIUlUZaY1i8dTFAXKa4wXICXeQp6OUDqgQgtnPXlWFqDDKCSMAnp5G20DqkEF5ynvbWtxThCGMUEQYqwtu1S5QSsJwiGFwrgCYx3eFzgH3pbn3Uswvqyn5Q7spKDvBTghsIXFxxaPQIkAJct4CWcL1MT5x+EAWxbUncM4Wz7zXBkHgfA4SsdfK0Ag8RKIQKGwrqC/8xIiUOjqKpVqzPrmBo5dMjcgGDsqOiS3Bi8k3jv2+gOKKy8TBwGhbuK8p9FoUgxGhBNHro3tLdrtDknUZH52luGwS70SAGCLgnzcxwuBlmBMjjVjjPO0llZwk9iGLM8JwoA8y/HOESqNs+Xz0FqH0JLCFFhXnnetNcaWw2xSC7wHYy1aK5TSaCUxRY4tCipxMlnDZexGGIcT5bgjqsZAqaCWOkbJ0hlMCECWF8waA1KVfNdbclMOKHkPzhhEGCJUSLRwAOcMr58/ggBeeuZJNm5eZW+Y870/9PeoxFWWDq0yd/A4dnIf+CAkadSohCGHVpc5PN9gPomIVHkQ6lVVtscOc55+9muYZoP5o8f42KVLfHVvl9ODLrc6A1575C6e3Nrk6ktnOfnGR/m+9/wg2519zt2+ydLCDEEYkveHbHT2kPU6x+85xfe+7jVsXrvJqUce5NrzL7OTe65fvsrD993L53/vU/zY+36SyvYG+0GIzwy2P0KFMX6QQiNm88YmXglm6jVmjh8CPALP5tWr1BYXmDWGoyeOYnsjtta2kIst7l+cIxCG3/3tj/PypfPML83y0uYOP/nev889rz3D8dUDfPIzn+Wnf+5nmWs2eOPb3s6nv/w58rRPt7NHUK/z2Dv+Dmf/8FMMhzt4Z/BK4AvBcJDz8GNv5fyN88yeuIf9TPDBf/eLvPld38PDJx7g//y//zWjUY/W4iKNhSNsXnuZ9/ydd/DgmTdw6eZ10iLn6qWLYDLW1zY5+9STnHnoDZz9oy+x3RlyY2eN1QOLnF68j9ecOo2UkkBAXhiklyAUQt2pb4Ffh3Wu/E4BGFOUhX8kSgV0u22G4y5CKoIoosgKwjAiUiGVqEpSnSHSGqWCUkn/jU0xwaT14yjf4a98UMYxlu2BVxoE/tXPK5Hk0N3H2B7dotZs3qnTMMV/pZjymSmf+XbjM2FSv6P3wDgd0x10p3zmO5DPZCN3R9eSd44gCommfGbKZ/4En4E717dbnm3wQ488MOUzUz7zX4S/aXxmOvQ0xRR/xbhw4cK3+hCm+A7B8ePHee9738uHPvShb/WhTDHFFFNMMcXfKLx89SZ5OEOtIilMF+9VGRMmBcJKrm3sME5rKGnIrCEWnjzPwXm29zqlmk5olCyjdRQeEZRxBoPC0gxhnPeQwuFdgVV9gtDibY/heIgVBaEEvEFqSyyhMB6JRwlRklaX461AOUvhC7Clzbn3mplqlSKMqCQxcaDQSlCrJoRBhNKC/mBAkTmev3Sdq/tDojDk6KHXMDc3x3A45pnnnyORIa85coDm4buYqdfZ2m2DF1j3StMDrHekeY71DgnY3OCdxRgADS7HWkc/HeKNQeuIwlpiD/k4A2FRqmwgjNMRXunSNlwHSDzGlgM5znmcExQFkBuEsZgsR3hLJEplIzLAC8Ww3yMIAgQQ6ZhRMaYZNfDG8pkvPcXmzg77/X20EsRJlY2tbYIoYre3jxQgpUP6iT28F4zGDi1D5mYaLM3PceHiLYSyhMqTjwuCqIzqEF4hdYgvxmSZZc/3qa7WaXd7VGtzpKOUp196FuFzZhstlpYOMOgOybIMqTQnDh/Epn1azQYCy2jQxUmF1IDP2dvdQ2tP6BNWF2exxjAap2RFQRgqrCibTwJNmvXwfp+1zQ5FljPTqhMohRIOKzwSiXeO4WCICcviaW7H5OOUVtMzTnMG6Zj21X2k1Jw8eozuMGF9Y4dKpYFWkrnZRUaDAfOzy4zHKUpJlLJ0+n2kMgyGbaxVdHs96vUW3f0eczOzWGcJYkVeOLxwGF8QqQAVSLyXpGkfGQjOX7hIXhgCLYnjEHyOsgknjp9iplrja+deRmnILBTGEcYVXrxwjiQRLM7NsjjT5PL1Ds+c/RqBKHBO4rxDakVepDRaIaO+YTTcZ5yNuefECW5vrDEcdBn2RiSVmIoKicMQqSAfpygpObB8lLXbL6K8Jq7PU5ESrxKGgz2yPMMUBa7wRLUKg1EXrKLIDfk4p9eVDNMcJyzVOEHIDCk11obgLUoZpByT5hIEeFI6vQ28zQjjkHQ8IIk1Ug/odLfJTZMwCrFmjPKGqFKh3WkTxRXmmyGtZJnLl64zM38QRNkwtLlDekkt1lSSBKEku/v7JFGAKCBNh/T6u8ggJolilHWEWlGt1qi2EoSP2Ni6Rb3WoFZpgARhS5Www9Id9rEYcBaTW+IwwVnLsUMHqDUa3Ni4Rr22QJ4WiChAWAfaI7UC50qVuJtolZXAGlEqpymwhZk0CyVl8dnjBFg80pWfYMttFK5U/RpjsFKWxXAmKmghCaTGS4sRYHBl00FItBRkCIQvddBCWAIpUULiTBlVUVhbHudk2BBZ9oJJmhgyhPD0x4q97ohKJWBu4SB5qqnnGTfXrpCmKYXNOTB/gDP33kuaep59/iwpOXO1KvuDDtVEsbO3jVOa7ijj1tY1dnsd5lt1aj7EUSozjbUoHVBkBR5Hmo4I4xiFIM/GBDKgKHJiHZQCSxUipMZZOynPO4SXOOfQSmEnxUpnS6W6k2XUhQ40xuQEQYhSIVk6wlGq0MsetUOpsjGe5TlCKipRVF4j58AUpeJTapSQSBmWTVeTElaqFEVGoBLyLCNuVPCmwDhLmFRROiQOIkyeYwJDlFSoVpusLC5idoccO3GKJIzQKsAGdcJahWazwepyi6NzLepRQKQUXy/Pfl1d+0ohVtYifuxH3ovzmr21Db706d/kzINv5MbmBvluh9966ousZRmvOX0v/+i/+ccI4RmOM3AerQWmN2Dn2i3+4Pee5LG3vZPHHn0jy3HCH3z0E1ze3eEH3vJW7j55lI/+yodYeexRfjaIOHXvEX71yd9j7uT97Lx4nsaRA6TZiO61HZbPnOTImRPk+z2MmBSNrcUXjpkDq3zil3+FF9Y2+Zmf/gkW5xeQw4zbVy6wfuY0z33yK3z54hUQmt29IV996gs88MT38+EPfpBL+z3e+YPv4R2PP4ISkpkjS7ztzW/ml37nNzn6ujdyosj457/wM7zwPW/jF//FP+PKziZRGLC4vMTP/fx/z0tffZrr2+uoQZdbF7/K/PIyD568j9/4tf+XfNjD2owsHfLwQ6/ji7bgEx//GI8/8Hpec/QYcRCzfPx+si88zf2PvoV7T5ziyOoC2c4Op+49yS/+u/+HxsIRzr9wlo2Nt7C6cohYB0gpud0dMBeH1CvJqxEi36yQfkVB/I1Npz+pof7G3xF/4mff/Gt+0hAsjOXarSs0qgmVpEmvt4dUimZzDiEUOoyZ9yt4WTbJtJRoNYnf+jOP808fDfxZ7gDfrAD/xm1FwnPo4CHGtxepJo0/Z+tTTFFiymemfObbjc902l3u5IBAHIVcunp1yme+A/mM8HfQXQcoCkur1uDwkQNTPjPlM9/EZ+7gIw0tBImWTPnMlM9M+cyfj+nQ0xRT/BXjAx/4wLf6EKb4a8Lu7i4f/ehHed/73ndH9hdFEbOzs3dkX1NMMcUUU0wxxddhHJhiRFxrIIWiO06JKhHSCWwY4n1KfwzWZsRJQCh7FDKFqCAtLIUpVVcOgZcSBwQKlCjY2d3DGBiZMU0dY6wvhwTwOAky9IhMYL3F5jm5MThrkVLjKDU0eWGphxFZr02eDrEmR3iJEAEuz1mZraKCCI8mS8fkRcE4d+SuIDQaL0KurF/jhesbFNaRuZQ/evYC3/3oG6klMUtSs97pcmnU5/7mLPMLc+x1OmTG4K3AeoUCAh0RV2pYYRG2wJiEQEU4W2BdhveeOEoIwwCJRQUReVqwvd3m2rXrrB5a4cDiHEGgCeMYqSQuDBAixOSlfbgXCuMcQRAQRSFhmABQ6IJ03CUMI4wtVYtaB8Sqhk6q5OMxQpbqJQWMRjlrm5tl0b6qOX33Xdx14G4+++U/otmoggxIs5TFepX1rT1MYajPBKwsrdLe73DX0RUW5ubwVnPu4kWUlKhAcfTgKrvtHqfuO8Llq7cYZwVSaYIgoDCKl6/fJkeSKM38XIvhcMzOXofMCIo0Y2FunrmFJeaqLXa226T7bYwtiMOI5eUWUaVGd38fT6lebIUxtfkIY3OkkqV6Ho90prTM9pJQacK4QhAMqHjwQYQUCo9EyFIxqhDEYYiuKITXhE7RzS3GS2q1Oq16g1Q7ksocKMuR1QNcvHiOMK5wcGGV+sw8w0HK5svPk0QBSwtzHD54kJ32Lmvr1+gXOUrH1GdrjIYDrDdcunoRKUMCEeNkSrXeIs3GdEcjhu2MOAjK9eVKG+3heEilWqOf9lFBlUFWMBh02dnaYq+9TZGXqmItFabIkN4TyTrN5iKbO2u8fOUs1ggW5pdYX7/FOM9I4pBqXCEdWwSSUEMQBjSqdY4fPMbm9gaLy8scXVnhysXrhJFkOGgTao1x0G5vIwnLSJDck0Ua5Q1SFBw5dIi19Q1yYwhVDRNYRuMRKM3BQ8dY39zEioxarYlCYglwvjzuIPAUdkxATs6IarXFiSP3sNfpsL17E6wlDBTzS8fwbkCWbjEYh6gswKmIbq9Ps6GohDHb29tAi6NL83jd5Wtnv8pgsI8TlkHqaNSriDChNxqipCTNRgQ2ZpyNEVpgCkukS1ViZnKkEySVOoNejzASxFGFPM2JghwhwVmH96CEoF6rM0w79Hs9gqiOs5ZaRZEXfaJoiXo8Tz2usr+7Q0hMJCRe6FcjHUqVdBmX563H+wKBxglfRh14QSkpFJQiQ4mzDiM8CFBaIqwsm7SuoBCyfA5PJJXOG6wxCBxYC77AuwA3EeoKJVGT6AIhJViJEBaw5YCXEARSUWBQKAJb2rZLIak0D2CNoygMSSg4snoU7waElSZp3mWcDcmznNE4xQOF7bK/d55OT+NlTnu/Q7e3S5oZMh8T1i0rSwc4rCv0ejt4QmIdIbxASok3toxzwIIr8N6QpUPCOMKaApEWFBRoKcizIZEOsShURWCdLeMxvHzVCSLLMgpjCYI63lusNUgE3jmkDslzQ1xNyPOUorBIHZbXAYH15XtTOYcp3ERhHWBMgbcOIRxBXAHryVWpsvbW44RAaoX0Gh0qfC4JpMSmWak+jRO8sUgB3pbvASkESmrqjRaVTKGDhNbCEovzdQ7ONphvVKkHehId4Mtj9GXsSmkdoPBCfKPTPlhH8/AKMojwqmA0GvIfP/prLC+t8As/8TP8ePPH+Fcf/LecX9vgwhee5qVLl/jqyy8QzcxgkKw//Tz1E3cxT5UQAAAgAElEQVTzc//tzyOsI1ls4j28493v5AuXrxMszhLUYo60Zrm8s0270+bK81/jk888yxNLR/nIxz9BJ/Q88sCDvOnxR9FxiJCCOFTQamAGQxgbVL1CY3WBd7/zHXy3Exw5cYKbz73A57/yBc5du0DvM7/PW970CP/b//wv+fjHP8yRpWWarXm+9Myz/OEzX6S1vMQ99xxDIil29rh94zY9qRgMhoj1G9z7wEPUwoA3n7mXX0sa1Gccx+99LY8cPsw73/VdzNVrDP/9r/CRz3+M5swchxaXufjiC1xcu06WeYQW3P+GN/G7H/koRIJDd92FtY5aKEDBQ6fu5sNFweVnnqbWiFk4usJ9Dz/GufPnedfbv5dDR09waXON//T0C/z4Ewe4sbNFMwhYqNbpZWNUEZBMru03Q5QxMZN34CTvlW9sGvhXf7NsFHgPzpmysYsv1ctKM0jHjPOUuXoLh6deb9Ko1RAiYG5+hUBrlFKvbqeMhf0v/575l421EAginZDUZ4ii6C+5lSn+pmDKZ6Z85tuNzxg/5E83df/68MAD99CohVM+8x3IZ+q1Ko2mpdcd3JG1BDAa9ImiZMpnpnzmm/mMu3OuY955MHbKZ6Z8himf+fMxHXqaYooppvjPRJqmnDt3bmLH961LX51iiimmmGKKKf56EdcCQuFRMkMKzUyrSqA1xhVIJfFWgC//T+DJzYBAOISyZK7MaZcICu9Ls18BhRPEWrA/6EIgSUIQzuBRWCcBg7USLSKiUBPrhF46AATGS3CC2IMCFmdqLLViLmwXFF4ipCztyYUkzXKEs0RKoAJVFrIERJEmyw2dwQAZaNa39sisw3qHcJrbWzt84Znneccjb0AKBdaxN7Zsb7dZPHqQm7dukBpTFpZMjpWytP32hkBFZOMMU0xs3HWEA7x3MDnmUjstcNaxfv062+02QSVmdXF+Eudbhj5Y54m0wAURWoWk+RAAawxKSTwGL8Py3IsAhEQrsM5gbI7SAd6V+9Q6JApDhJJgodGoUm/VqCSKKKoQVUNqlQqFtbzu1Em63S77/RH3nTpOZ2ePQTZma28H7zwvvvwyjz30RgSOvDCEYcDp4weoVBtY6zi6sozwitrmDru9DouzcyAlWjhsmqNnqrTEAt3uBpkJyQvB6vIiaxs3sXZIJZnFS80gzQmUJ9QBJjMoUVCtVMApiiIn1LosnlIgpQJVVje9kOAtjlLVraVESIEMdKmsE6B82bCyUiMCi7MWpWIkEuNASIH1BfudIb1ehyDQrK9f4+Zty7Ejd1ObabK9u0u4uIDvdbhx+2W0NozSjF5fs1Jr0mnvkxaWUCoatRq9fg5KolVIUIlwxlCJY+49eoq1jQ1qcYN+/wazzRlmW02ur93CCI/2kiCOGOZjtNAst1qMxhlffPZLJFFCb7eHEpLcgZaWrd1tdBixvFjn1vomaxuXmJudZTQs2NltE8QhKtF0en1qQRUMOOnwugDp6PZ6zM/NcfzYY9SqCZtra2TOEKuE4ydOgAi4duMlxoNdgjAgiVoUvke3kyFUhBSWG2ubDMaOUHg6Ox0K55BKsdvZ4dTxu0jiOr20yzBts9RaJi8iQl1jONpHqlm8yCmKlCjKyPMNsjQAG+Gp43xBYSAdC5q1VYRNGWUxcU2TpxYhUsbjnEarisUy6KdcHF2nnxXk7T5xFGByjZAFhcnBx3SGfaSU4BxKBaTZmETViMIalVAzGPaQQtKcrTM3v8Dwdg/vPFpV2BtsoIKyYO0m1uVSKpIoZmd3AFIyHnYQUYXMBVTiOVqtedLBiO5giBUOpTTWWExeYCOD8X4y0FI6MHgMznqMN5hCly4MhcEYh/cWby3GWJwqtdLWmFefI0pKvJIoCUKClmXhUCBASaxx2HIkBucsFo9zEyW1c3hr8MbhhcQhsb7ULyoly0gaLXHSUVDARHGtRIATRVm4d5ZaUkHJCs5YusM2w9GQJAwQqsZo1CWWkiCax7oBgQCrNIPhmEa9xbGDC5y/doVRnnN49W5mWxEmT/EmA28RCHJr6A2HKBXgbQ6uQFMO9uR5ijU5XkpMnlLkGQNjCGtNqrUqxhqsA+cA6VGyVE4rIcpzYA2FKQh1BAKMswQ6RHqP9R4pZelgIUUZ7WNN+d5TEmctUbWK0hpnCoQOUHGMVhpjM5RWqCDCFiOCsFIOzOkQiySIklKVHoQTd5EytgUpEHGIkgE6itE6xBFRbQa89aH7uWdlDo1EiLJmK+FP9FMF3jjcqIB6gPQSnxtEZdLoCAN0oLDDlCd/+9MYFZCaAig4fOwoyYFVlj9So9loEgjJ0uI8CEF/nBLGMa3mArvtIccPryCEnIh3PUG1zhtOnSScaSCk4MiZk3zqK89w5fIFTj7weur1KqNRm6u7Wxw6fT+nVg/gRiPEXBO8RDTrOOfotffJM5iLA2SQcN/jDzO8vM6w1+Hjn/oUv/6Fz2B8ypFA4Csx586/xPMvPs+Rg3+bTz/5KZ5+8SW8knijWK7VSLs9Lj71NHsKfv23fodhZrn/njP8j7/w83jv+NIL5+hqjfKeYm+P0eteTy8zPPKWR3jp889QvfAMj7/tUZ57+lme+crnybwECafuv58jZ17H0pETuH6Xz37yN/kPH/6P1CsVfvR9P87Z577KxtZt6gvz3Hf4KG86eRqZFvy9xx/myS99gYNNzUrrBF+7doX1jTWev7pGZ2+Dn3ri7yJVwOfPX+Stp06QhOGrRfbcFqXDCAJjCsJAESfV8sNX10DZkDLGMB4PyEZ9stGAYW8fG0gWl49Sq82glCbQGqkqKCnRCJbnFxB/pnq5XFd/6Wr/XwK+NNVDBxG11jxafwvyMab4rwpTPjPlM99ufGY8Mnf0HjBFjqc+5TPfgXzG2JxqJbqjQ09OqCmfmfKZP8Vn/B10evLGYgf5lM9M+cyUz/wFmA49TfEdj8cee2w6oDLFXxk+8IEP8P73v5/l5eU7sr+HHnqIX/qlXyotpqeYYooppphiijuCONYoSuVzLjzCK4rClAVqFEoGZTyEczjnsc5hKcidIze6LDa5HPDgPMI7wqqmWpGkuSMvNHHgsQ6EtaVbCgFa1lhotggCSxLHXBrfYmt3Hx2GaDWx6faeerWOFwGXbm7hrSURGiElBYIsSxmMC6LEg7OTqASLFJIklJhC0mzVKQrDpEKGlwbhPevbO2ztDxmoGkfvvZu41WBpZRVMFyUUAonxpWpQmbJI5wDrYDgy/MEXn6NwWakXsg5cWYQzE5v2Tr/LaDCku7fNxvoe7d6I1eVFmrUEJz3OK+TE8B0kWZphbdmEMN6ihER7hXBg/WRIx3myNMVkA5wrCOuzGGewtkD5sLSEzx3VOOLMPacobM7Fq1dJFjRaerzSLDRjtjc3OXRghUatQbNS5ZZzHI5XyHJPbzDk/LUrXL+1RaPeRAtFFISkmefm7RtkLudzTz3HXUcOUbiMShyzuryCFhE3jGOr0+fq2hrNao3d/S7L83McO3IYZwpmZg+zP95DqCGvufcMo9Rwc/02zuVoGaCUYNAdUGk08ECeZfT6Q6wzzM3OIIQDRGmHb12pCFNu0ngRpduJB+Md3guEtwjvEZTuKsqribBLIrynPxqQZSNarVm2927jSNnaGXDu2meZrdewNmOr3SQMEzY7W8w2Fqgnmvb+iHb3AstLh2jMzrK1vsZ8vYUZ75HUa3R7fSRQ2DFpKul3+tx79ynWNi6zMN8gTcd0ehmCAdKHaJUQJpIqEc14lu7eNrmzZMMMW/cMxmOQZenGekkkA+qVhOFwSNrt0h9Z3vSGe+j1xly7cYVaXMcYT3tryMLyEkcOHuTK2g02dm9RZOW5SeIYheFrZ5/mxtoOhRTcs3KM193/ABu7bTr9NlprDq8cpChSdvYkWbYP2lIN62TGsVSp0xsPCAtBFIQ4BNk4Q3jFiaOnUbcDMrPDyvw863s9+mkXS4FwI7RQOJWQGYvQFXa7bfI8xtucei3C5EOc2aLRPEw7X2Wc7iBchhUB1VqDTqfDnJ7nyGqLGzdvYKXmgXvv4+yLF+h09xBopAYTGAajPioMqIQRlUadgwfv5tq162ytb9JsVBmNxkgiwiQkt4bcZgRRQjoa0GyGHFhcxboCr8DnpdOT8Z5GrUUS1ujnhmaziXUF9bjGQqVFqALSNAdvGWdDwlgRi4haJSKsxERxFa8CvMwBWTYRlMJLkEIRVytoDUoJrBN4B+CR2hMnmiBKcN5hrMM7XzYYckvuITemLCRKgZACoUBYQeHAGokWZUyCEArpHNZTxiE4izUFzntM4TDG4r3FFAZsGVnjncN7+WqxUEvP3miX/f4WK7MLzKYFWeaJ4hqahKzbZTAuWN/uMh49R3tUQ6oUYxxLC8skUUKiA86cuIeRdbTbm4yHHRq1mIpu4ITGOIEQEuMlWZYyTkdILIv1ehl7Yj3WWay1pOMxRTrGO0vSaDIe9MmLAi8EKgzBK5wsWyZSlmrPKI7I+zlMbO29tSRJhBMSUORpSiWOEUrhc1PuU0rwDmMLakEDIWUZdyIFOgzxk2e7UprcOqTSRGGAcQ4VRDgJlSQiUCHK+/IZLiUyThBhQrVWpdWssjzbgI0rvHzpAjMNzZFGjVBOIhNeLeeW1WE/KdYjQISa/laX2+c3OX7/SSpJUP5tlL1tgQQj+Fs//APsDtvc2rqNJue3PvERzn7lOa529plfu8kntzb4/r/7A/T6HXANlBfUjh+mpspB00lAEThP4+AK/vpW2TTwnsUTd9H+jU9wdu0KD7/lEdLBgCe/+hw/9SM/xuOPPMTnP/lptp5/hh/84R+kPj/LcL/LS8+/QHWmSWOmhYpjhBLsra8xsmNUo0Z73MW60pXl6eeeZnNY8NCJU3zfD/won/nsZxgUhtbiMo9/97u5//hdLCU1zn/m8/zrj/4q1zptdLXOo4+9ne9+17sIQ8WtnX2arRny0ZjhsM/Vm1c4lT7CM9cv88DKYY6evhv5OyGf//1PI3BUQ8HpNzzKsDvg3rsP8iPf/Ta2bq/xuS89xWBsCOozbG61efalF+hFCTNLK+y3t3jm+ac5uDzLgw88xHZnnwu3thimKc2ZKkMT8Ysf+W2sVMzPtjh/9RJnTpzmradOEgca8fVLjLPlQECgFEWWsb59i6PHTiGkYnd3l+HebbJ0THt/h71un0AJomqdRn2GRnOBgwcPUktq5TaFIAm/WW1crijPqwvlm/BnxEn8NcMDSEGt1SwHIKaY4i/AlM9M+cy3G5+5eXsNfwcnBFozswzT3pTPfIfymUgrlCpj3+4ERv0xSqgpn5nymW/iM3/6++FfH0QU0O+PpnxmymemfOYvwHToaYrveLznPe+ZDj1N8VeG8Xh8R20rn3jiCd7//vdPh56mmGKKKaaY4g4ijqso4SmsQ/kCZz3gQIZ4KyisJ7eTCAfPxFpCE0rFykKd0WjAbmeEsA5hAaU5cPAgSmRAHy3Be4MWIIKQ2UYLb2GpnjBTq9BqxAgVUYwHbO72UFJhXIbEILzGFJ60sFgvUSLESYPUAbYwCOcpjCuVX9bhfIG1ZWHLmhxrCgpToKRCOINw7lX1dpYZ0jxjvTekSMY8fN/9KK0YDtp4pfG5oTDlfm2eY6wHrzDOMkyHjHodwlqIM648Z8LjnQAU169e53NP/TFCSJr1Bt3cUezt84VnvsZbHjzDQlLFeU+ejfBZho4qSC9wFrwCZwpkVMN5jZtYlePAW4NwBc5kWCTWFgQypr3Xo9vfJK4nzM020cJz+vhdnLt8iUalTpGltPfbHFlZQkvPfrfLcDDg+NHjdDsD0jTl+MGDiKDG+sYai90GzXqDq7fWcMJNFJSeuZk6d999iEvXbnD15jVWF5a458RJhJLs7W5RiTy9UcbqfIOVhQWkCpiZqbK0MIcwlvnZGbqDBv1uB4SlUUk4ffwudtrbFBi0i3C+LFKESrHV3meY9rh6c4vHX/86hFaAx7uCsn3jymIwqrTUn7ifiMk2cK/YYYvJwJTD4suGjnNcu3GTcT4k0ZJbG2ssLxxkphURJg3MZN30egOqdYEWFQa9lDyIKFzB4ZXDHD96N/1RDxzc3NgoizdSorVlPBqR5g4qI7qDfap7Ca3GEu1eD5Pl9Aej8j4SEePCkwhFbiy9vdtIaRFSowJFu9fHGouUDmfLGAGhYmzh2NjbYG5hmTgKOXv2q+wPR5gio68ixr2c+07fw5lTp7HpkNo99xPpgGa1yaXLF5BRRL+3hVICJxWtSo3F+RnScc5Xn3+Ovf42YSi5cfMyrbk5mtVZZmYWUdrTrC9QWDNRpHqSqMKFi5ewLmfQ69De32G3s4enwOE4d/kyYVxnrjVDu51RmBSpNNYHmKxBLEMG432kyogjw+ryPNgFer02/UEXJ0KWF1YYjXOMyXDOEQchm+tr1I4d5fDyKr1uh+2NfY4eOcq5l7oUtmyGxEqzML+IspBUKxw+dpzRKCcdDGnOVBiNungDlahGJdGMxgWddodKWCdUARaoBBVCD9KL0pWB0gWiP+wyHLXxQFYUzNdnaMQV8rygsDlRJUIZzSgbsd/usjQzj7MeLRTeGSiK0pHHWqwzOOcQUmG9JxAKIVRZfBYeRYAPQpJIkeiAQAeIiasZ0oO1SB1QSwKiKCAMwzIBYtJEwFu0UtSSiEatQhDGIEDqMgZCqjJ+IggjKpUaUneQk2FCIRyZcZhCYQRk6Yhev00xHjAadTF+REhAt5dy5fp5grhJPYzp5RsEwrA4s0CrGlOtSDrDLnFUx8oersgIKzHbu1dJZg4y6nfodAfoIKJanwEcUli0kuA9FosQEzcOL15VdubWMExzrLWYPKfIc5KwVFHm4zF5kaKCEJwtoxxMgY4TojhBiLI54qydmCwJjAMvJN65ydCkQCpVXidjyieKAGs8UaVOoALSPEdrRVypovBlBIMQKB2iggAZhkgp8IUhCkOs1KgwItCKwlriepOkkjC30OLo/Ayz1YiK1kjn2GnMcCWKCZXn6+LQr0c8eMSk8P8NRVwBzZUWcSMh0AqhyoaIeLXI65FKYYcDrve7/PC7f5CzZ7/C0AjO3H2CmYMHYLDPU7c7DD79SXY7bZoqIu0Psd2UcKn+aqwJAEpQn2+SOIEoDD7U1BfnWWw0GBvHv/21D5Fmlne95buoDkZce+YslaSCHAy5feMmp2Zb5FnOC1cus9Pu8Y9/5icQGpwxvLS1z+997GNElZgrWcri6iG81OAsP/0j7+VAq8EHP/BvuLG1wRvf/GY2zp/jZ370R5htNHDGcPJtj3L8Dz+DnZ/nn/6T/44jS0v0TMrnzn6N08sH6bW3CZMY4T1xNaTeanJQeBZrFc61d3jPe57ghbNnOX/1AgvHz3D9xZdwztM7dYpf/dhv8OXP/gGvf/tbef//8M/Y3bpKoxGzUJvj8KEZTh09wdNpl2OnzvDBX/4In17+JLWZFVbvvpvf+uRnqVU1b/ned/LjP/QE129uU2nVWFo8AB6SVxoEvHJZPVGgJ+8zT7VWx/llhFA4D+evXuPck59kfnmW0w+9mSP3LdOoNtBao7Uuh+qEfOXy/xl4Zf38eQroO1tnLO+zsplXr///7L1pjGzpfd73e5ez1b70evd17r0zd2Y4M5wxdw7NRZRkQrJkxpIiS7YVJzBsQPli5FuQBEFiIIqARDFs2EECJZIsUxQY7Yu5iEPOjEjOPpczd+u79u29qqu61nPOu+TDqaHFACKtQLocjur50t1Ad9c5dd7znnqe///5P5U/1689xxxvYc5n5nzm7cZnrly/eV/vgb3dTUbT/pzPvEP5zEJrkc2Ng/vW9LSxtc00ncz5zJzPfBufCcL7FzcsmPOZOZ+Z85nvhnnT0xxzzDHH2xiVSoWf+Zmf4Zd+6Ze+14cyxxxzzDHHHH9tcP7cEyAKZ5y3jtwa3CzawViHEA5jbZGh7n3h5vWFQ64aKPJxn9ev3mG3M8QLR7Ve5eLZ01TikKnJ6fV67Pc6jHpdapUG544v0u0PaVZqhIFA6QipQ5YXFqlVd+nuDzEWQglBRTDs77Nz9w7GZEilKJLNDM7mECisACsc0hfNLJMsx7khwlvG4wlBFCG8xTn7LYnE48md5eCgS5ZmTCdDJsMDhAzI8hTlwDvPwWCA84VrXOJRaTGNwxpHKYrJnOX6rducPX0cpRQISCgxzXOyaUrqFPvjXvF+Cc+NO/dYqJdZXFwFqXEoxuMx2jgQAmdy8jzDG4cMFM4ajMuxvihMGG/AGQzgncI4j0Yx2elyb2ebpF6hnBTuvkBbmvUaO90uCwuHqISSI60FuqMRkzTnYDQkSx3X1u8xznJevX6FVn2Vra1tTJaxvnG7EMS8JwxjhuMpy+0S0k5ZrkaUVpsstFeoJTHGG6JQI5SnUS7x4KnjVJuL9Cc5jUqM9J5Ofw/pLYGuMJikHAyGtBoRQgnq9SrGOHKTEsWau3fXMXmK94ZmewEvtnDSQW6xuSHXuojEMA7vc0pxgvAeZs6/NE1RzpHbFO8FeNDFhUcgcRi6wwEbWzfBZWzaFLzEecO5kycZjHL2ulsstKtcvXGT3d4ecVjEafTHA6bZmFB5stGE8SSl1+tTLikWWitsbNzDOINzOamBST9jZUkznIzZW79FZ7RPEgZ4LwmDKtVSg+FkzGDYQ0qJkgrnQGvF1MymDSiH9woVFk7EPMtZXF1ht7vDyvIROtxis7NBmCzjJo7ewZRKqUQpjhkN9olCTSXUNOMKjVqDKNaEQcJ0MmRx8RDdvuPE4VVqpTKTyYSkXGZBNwmVYjTukwSSUtJmob3IQrNMpzfk3r1tlhYWKcUhxiv26pv0pwOkcKS5LSK5PCw0l6mWAja2d9ne6rLYWmV7x+NDTRKFHBzscjCeFpU7K0AIdjr7lINltD5Ep9MjtTmBTOgNukRhRLPewFpHt9dht9PlxNEjHF5Z4I21u0x2J7RKFXZ6fYT1aFEiTy3W5tRrNRqVBrs7a0yzFKkspbhEEmicCxmORywuLLCyeoStzS1KpQaD4QHD0YDF9mIRKeZmxVIhmEyH5NYglEerCmGgcDYjiOtEYYBWAVooltpLpGmO9DlGeLx3RRGTYtqCF7IYfe4EGkGkZLGW3VtOZD8Tsg3egZCSzBikcAQ6wDmD9x6vp3gMgVDFz9hvFS+L/z1rjFES5xzWmsINbXNwebEfK48KVCHQSYnHoWRIKYqIIk1SihFSE+qEsBphkNR1m1LNc3dvj8GwT+IV0hjGB/uMc0+9vczSQsTO/oQ49rRay+x3JdPUcnCwh3djbm5f4fyps4TLTbyDclTBjPpkCnJRiPTSeoxz4CyKtwrXknGastfv4a1lPB5SjUIqSYQUcnZuthiPbzMwGeNBj9ahY3hrMFkx7UNQFJadUHgk3toiP0KCVJLpdEIUhHggDCKCICTNLK2lFZzN8RTXNQijWe4ECCUIohgRBOTTFKEUgYwQUUgUlQiThFqjykqjxkqzQjMOibRECgGzZ7DFIuwE7x0q0Ej5Z9Rd8W1f+P+KuFJr4rou3ic7c4ILP3sOemw6Imm3eOLi4zz67kdZrNZ478c/TrKxwf/wf/4yT378R/jPLz7AV37/d1FhhMlS3nzlVT745LuJnMdhSCcpgdKoqIgrUs0yrj9GLtTwUlGN6wgkqXFIJfnEB97PQ0sr3NjY4cyJI6wOxmyu3+X4uQn15UV+9u/9JN0bmzTrNYSQWGdYabU4V6rwqs85fe4cqz/4Azy2dIjbr73O4xfPMx0MObO8wN5738OLz3yRR86d4+t/8gzHz57i61/7Ou99//v56N//GZ7SAedPnkALibYRy6tH+MrzX+T5S28yPNjHmAyRZXz9jz6PzcZ8+Wtf497XXuNSb4OJtXz4k5/ikx/5Af7NL/8bDjZ3KEUhX3v+WbZ31nn0yAr1hUU62zcxwz794S5JJSYJJe96+DG+9NufRScNvvLl1/lHP//zfOPLX+Xw0Tal5jJRtcmplRUeOX4c5y1aKKbGkFsoaU2oivvRe1FEw/hizY5HIzqdDeIkIgpKLC0s8NUsZbEa0ag1cSYnCCO0LD43fZvT+W1QBPhuKFa6QAmPCAP83Nw5x3fBnM/M+czbjc/kaX5f74GtvXskiZ7zmXconzGZ5c+p8v+VIM9zrl29xuJie85n5nzmW3xGB/c3bnjOZ+Z8Zs5nvjPmTU9zzDHHHG9jaK05e/bs9/ow5phjjjnmmOOvFarlGPktz8lstLOUaCmLkdfMgsj5D6RNiMKZMx12GApHq15lrzPAC8mh1SXIp4yyAQhFvVyhVa9zZXBAbj3re1O2dvs4mbDcbJChCdFMM8l0Yovx8A6azRaB8uzu9djd3UNIxZFDq0TKcfX6HZIg5OypQyRhgLEWLQXSWuIgJAlDJDDNDFJ40jzFelBS4BAIX4xJt+mUPMuYjoYYk5PbEd7kCGGRzqOVoBxJnKwwHA7pD/ts73S5du0OuweGctly6fJtjh46QqtRIbMG4x0rK8s8fO4B5MJ5dvbHXL/6AvmoS+48tzZ2+ICzSB0ipCQQkigICKOYLJuio4A0VQgR4IXHC4s1AhnExFEJISUCS2YAYcltzv7BPpNhn+XlBtVyhSSpFG6+quDY6iJHV1eL83I5pUjx+IUHsWZEtVLmodMn2R/u8+aNO3gJzYU6Slnubm3TrNWJVYAxObVSmbub62zvbfLkw49gvSa3GeVygvMBWWpJwk2WFpepVyvoIObxhx5mOhzQbNRwPuXV159n9ch59vp7TKcryOIoUUgirQjCECEV8YpgPB3iUFhree/DF0iimOkkR8cBOgxx1hIaTzYZz6bvqGJtIkiSkEAIrATtHKljlqkhULNYEK0d7eUFAqG5s3mbU4ePUy21uXtvne6gx/kzD/DqpVcZpgOszcmnkqEbktsxhw8tc6+zSxTWqFTqHHu/PnQAACAASURBVFlZQaicJKySZwvcXL+FQ6Mjg3Ax3kqWDrWRyrDxxh5p5gi1xKQ5tZoiiDRuAJnLkcIToHBWoASEUUCKL9a4ECAVKtAsttvgDYu1Mp118EZSjits7+0QlTSZzMjyMQc9QbvVxKqcSqVMEEe0223GB3uMRhOkVoQ4zp45Q3d7j3K5zHuefDevvfoCw1Hhmt/YG9Cuag6vHGZ9Y4c7d2/RaK+QOslStUaSlFm/W2P93ganHj1LPspZPbTKiRNHiCKBkDE3bt3h5u0rlMoJSRxRLjU4fvwk/dEed+9dYzrKyF1OGCRMRpakZSiXy+xv7xbRNIlEhwHWWZKohK8L8ixnZ7vDQrtCtdxAec+REye4tZaT7+2TG6hUqjg3xQtDf9TjzStvcPXGGiZPqbdaLNTbODIO+gOU8mQmZXt7nd7ggJXSUUyesdfbo1Gt46XH45Czoen9/gFSRoShIk1TuoMRJgypiKIxyliLdw6QRDogz/LZ9ITi7wOp8crhhEOg8KYQ750XKCmw3haFAgpR0PvZ9DIP1piZ8G0Q1mOdx9vid81swpmUCiU9MpAo4TBOIaRHSFe4i2UxIU2I4v4p9hs1E9ctxhictxjnigKDBCkV4IiiALyjUqqhgUDAseWE5TPHuHb9FoN+DxdHWGuxZkiaGxq1BVRQpt1sISx09/cxYsxCa5XTp1eIkzL9wS5S1zDGIYQiVAHNehMjNELvIg2giigL7zxhGEKYFLGVUiJUgJMC89b7ZizeCUya45wjz8Z4Z4tCTZ6B00ymk6L4NhkjdUC52kSpCINHKEUYCaSQ6CgmchDGISpQGCdQWuAcRXFPBCgp8EGIcB4vFShNoANkrLFxSFyps7LQYLXdYLlRph6q4nnq+faJ3aJo1sQLxt6A1AhVPDO+K96KDvCuKF5YRzaYElZipFZIIRh2D3j+88/w9I99kr/zcz8F3vPAIw+Ch3GeM9zboVWJkVv3eOYbX2c0GeO84qUbazz75a/x4fc/wSsvvMzIeh4+dIzW6eMEjQiCANIMO5xw4+VLHHvP45y5+jphrc43Xn+ZP33hRZ78x/8ZR/H8wZe+QrNW5bnn/oTy8jJPPPUudLnE0sVT32pgDeKIk4cW+UNrcF7xAx96mtVqg1PLbZZ3+zjvONja4I+f+QpbNqWz2+FP9r9BjzKDX/81yu0mNs/4uX/yj0ltse4R4LOMRxeX+PrmiK2dfYzLwVp6vQEyWOflz3+Fp558N+/6xMd449d/hZ/+ib/Fj/7Qj9LZ7fPP/unPc+vSNX7xX/5PPPjkB6hGCaePXWCUjrh++TLXL18lXF7l9CDn2MWH+M1f/VV2du5RaaQ8/OR76Ha7vPzSy3z4h58m3bvH+479MJUoZDAeMcwyXv3mZZR0fOjdT6GF/NZEL2MNL7/6Cm++cZntbhdJztik1MKQVnOJrc0tevt9RDbhm1cuk+sKH2q0iZLy9+c0+KKmhRAeHQTfizSKOb7PMOczcz7zduMzYXh/S5EOz5kTp+d85h3KZ6wZ49z9a3pyzrG7u0ez1ZjzmTmf+RafEfJ+7mt+zmfmfGbOZ74L5k1Pc8wxxxx/AVhrefbZZ/n0pz/9vT6UOeaYY4455pjjrwivv/bKLDKnmCuhROFAEVIQCYGTElXYagpjjRAIJdBCYbMxWW5xuEK48Q7tc/I0IwwFeIu1U6apwThLpAIWFxZYXTqMw7K+18Xv9QilZO3WbXqTFKQu3GdRhHRjnAC85PiRQ1w8d5JsMODW2j3K5RKPnz9JJZIIZ3Hek3uLm7naLALnDUJIapUKSaSxllmRoHB4b2/vYKxlmqZIqZmmU6KZy80CCkEgJGiF0QKp4crlNXb2+kgkEs1wOuFrL3+TJx97GCE8QgnCOOHR9/8ga/cmrMQZR5YP8/kv/jpZOqF/MKY/HNFqhjipsKIQ+rQvHOjSRUgVYMwU5yTeS6yxWFO4hZ0xCDzOOCbZkP39AVRLdNYz0tv3OHT0KElcxosApUJWW0soAcYDSqJVQKUSM544hBSEoaJVq/LouQfJbEai63x9exvnBUGgcdITxSG9UY8oihDO8c3ra1w8c4F0kmNNjg5CkqRCOS7TrNWJomqxPgA7K9LXKw2q9UPs7e3SqrXYPxjSqA2plsvgPVIXa0sKQAconZDEIZmFSAhCIUiFIPQCIXRRqJIZXstZrJNBCA3eE2gN3hI5CVoSeomwKViPEEXcSbvS5OSx00wyx2p7icX2KjudLuhNquWgEJ9GPTyezEim2ZShzlleaFKJ6hxbbDPJM/J8ymjU59DKKlolOCcxTiO0J0SigoitvT3SfMpSc4mkXKFdr9Ht7ROGCcvtZda3boDy4BQmdaAFVloiJUmiEi6XpOMhSIWMJOnE8sJLb4K33FjbptGq0K4tYoZDjh9fxWaGVvsQp46fZDDqMByMUdOMpFzm2ee/wcJCheXmAtNySr3S5MSxI1hr6PT3uXrnBsamDA92WDl0FPY1teYy5bDMnXvrdHo7HDt6nEatwd5eD5NlvHTtVYb5EJTgoH+AlpqzD13ATKfYbEwUWS6cOkmtXOLa2iWWltpo79jcusdwPGYyFmRGY60gDDyRdkzTbQaTHCES0jQlSqqU44jMpAzTAQEBzVad6WTApTdvMjxYIM8crVab6zfWyGaTvzIzxOR9VhePsLXTZWunj/VTkDAdjbk3OUCpEC00mZtQlhWSUplOr4vWASvLh1EqJEsnbyUm4r1FeFhsLhdRDcoikojh/oBKJNBhTDmpzOI7BMJbrLXIwpSMEJ7cWjJnCjHbefAC6w0iKO4X7z1aSrSSWC+KhitVxD+4Ygco4hw9SAHGewoVTaMCCcJhrccah3cWYyzOFYEAOHC++F5KifcaqTT4HOn9rHAgCIQi9yCFBSxCyNn/yZlOR+zvX6dUOoxQEUI6XD5m2OuByYu9VydEoSUMJIoySgYU5mBFmhkqlYTAOAbDETbvsnQ4ZjAckJRipNc47zDOgpTYvHA3IzzC+yLyB/CzvaDYb1zhAnUG7xwKyd5wxCRLUUAcaGw+RhcZReQmx1gLJscYQ57noBWtxWWEFASqiPuRSiOkQghJkMToMEBIQVIpI3WAzDO0CnBCkOcp0kdIodBRjEwqVNpNFhpVDi20WKkkRGoWw8lb8Zt8m/j5lhbqAYtnYMHhEFrDf8RQfOcd0+mUbrfLTqfD3s4m926tU603efSJR1haXubKc8/zx9/4Go0TR3jiqXcVTVZCsH/5Or/2f/3fbIwP+Przz3I1qvKpv/N3+eYv/SKBhL/9qR/jgx99H4Prt/itP/gdPv3T/yn1M4fRlQiPwDmLaFW49sUX+P2XnmeUT0h0xCuXXgPvGI+n5KOU8tISn/6ZTzO8cp0b169z7eVXOHXqCM3FhW8J2kUCggfrqOqEf/YPf5Ll5QU27t3j1u4Gn33+q6xs3eILX/5D3ti+yzSb4CQoL5jsbbI/7HAw7bN//gy7Bz1KYUiKI45ioiQmTw0//MGn+ejf/hS//Au/wOef+wITY+nsbrK3s8GNa5eo11tkU8cDp85TCmLG4QHLzSZ/dPcm4yxlsrvJ7tYu/8sv/nM29zZwWpKUykynGc889yzHjx6murhIf7jHo+99gsMrK6yunOATP/WTfOyJR3n96g1++8vP8bGnP4TJMqpBiC4lOJMVjQ+iSOASQG4dr7/+Jr/7x19kkqd85L3nOXv+EfbubPCFP/w81lu09vzOl1/n7/2D9/Lg2fMY9Pdto1Bx2B4hQKm5nD/Hd8ecz8z5zNuNz9zvAu1Dpx/kwTMPz/nMO5TPZGmfer1Mp3Nw39aUd8z5zJzPfBufaTQb92395blhY2NjzmfmfGbOZ74D5ixpjjnmmOMvAGMMn/vc5+ZNT3PMMcccc8zxDkaWjUn9jI55gCney8Ij7QqxyM+y7oUopCmBRHoQUhQxEQ6iUDMxlsF4wsHggCgKkRK0KBx+gZTgLD4fM7VDDJ5yOUZIickd48xgrUGqwr2c5QYpBNVKmVGvT6fTY5yn1Bs1okijBOQmxREWTkFvMTbHWzCicG8bC8J5ji4tcP3OJhNXxBt4AaHWDDLLymKbfq9LZjJWlw5jDrYQQuOYkuU51hdRE87BrZtbbO/s4SgchOCxOO7c2+ahC6dJkphJmpHnjvpyzLGji+x3dskmB5w8ep5r119mmufsdrvUa41iQpHQWAReBngxKhxQuceYCVFcwc9GvRfHLUnzCdbkGDNltLvP5599oXAsCsVkOuTrL7zGRz7yAZTyYIo4OCJPICB3bzVteBSqKMAg8VKx1ErAab526TWa9TKhSri3vYmlECFPrC5TqtY46PcoR3XW7q5z8YFTpNaiIk8l0pw6foIgShBSF4UjwEmB8w6UoJxUqZSqrCwsISRU4hLKeZQXCEIcDilk4ZgWnlIUEXqPz3OclCA8VjqCWVyJ8x7nPRY/m4oCTggQCuWLaBOvC/FOCAv+rVgAjxfF6P1yFBEtn8ACk/GA6SSjXq0z7O1x/NBJstQwNjnjcQ9nNfVSnXK5RhSH7B9sUKuVKFUabHV2OLx6FOE9WoJ3lmolYTjJaLXarC40KSdlnn7PE5STGnfWN7l07Tp3795jmlm81ygt0IEhnxi01FQrdcpJGawjnRTnmw3zYix4RYKE1nKNE4cOsXpoFUTMm29c4tEHz7CyeogszViql7ly/QadTp/u8C7Ndo24VKKUJNTqFTa3djl+4iJXb64xHE3Y3umgAsmZE2c498Aj5FNHljk64z3KkeLsiWOU4gYLi4vEUcx+b4tStUaaWspJTKVeZbXdplqu0JkOabaX2e9sk7oJl6+9yGg0pWpjTDCiVj/FwtIKN64bDoZj0HDs8BFOnzjKG28+w73OAfUoAqlplyu0FxZBeG7evc3CcptALREqzfrGFnc2OpQjzdbmBtPRCOmZOYoNzdYqg0HKQX9KUpVIn1CrhqTTFHQEBryeAJZIQxyWSOIK1lkiHdJqthE+wwpZiP6IYnpEoCiVEpx0KBFSbkS06pJmuQQUkxi8F8U95h3Owls2RyUFwhcCvvUOax04gVISL1wRF2OL4oIXsmiCcQ7vZSEceocAtFJI7xFYUhmghEALPdvDHczcsc47pHCzQpyeuawd3jmssThjIASBRgo92+NACoGQhcvXieL4EAFhWGF54TTjaY53lkF+QDmp01pY4eqNq0glyEZjTG6ZTj07aUa9qXEqYLe7jTcDFhY16bBEt7vL/sE+U7/D6uoFpCiTZymkgLWFj9wbrPMI5wqXuxR4cpRSeFcUE5x3WF9EbBjvcFLgpSIznjyf0u2ltCsJOpg9H0yG8AKX56TphOFwSK3V4q2HmgpksfkJUGGAdxYhBM5DEsYIHSJV4YSWUhBFMVZqonKFaqPJoeUFjrbrVOOwaHSa7WtvxTH8B/X22y2f4s9+9YLcUEQtyOi7Tnry3nPjxi2++cYbRElIXKlw5NgxqoHipRef57NXXubcxYucPPsoP11rcvfKHcwTDzO8vcHrL73Oi1de5Tef/QJWRigd83d/9id5+ZVXqZbKlMpVjh5qEUchyQOn+KG/8RSf+be/xk/92D/gzMNnsNsbbKz3OHTyCIc/8C7+ZlmxcWeTn/jkD/Ff/Xf/LXcnI44fPYxOInSgMMMJk0HOJz7+Eb74hWd47uXLfOh9j1Etl2efO4q9WkrPhZVlWrUKdztdfuv5b9BeXaFcq/Kr/+4zlBYrTEcZ3ktarSYfff/7mHYP6Gd9rPO89uYr9EZD6uUVOgcDgigjRDCZZBx95Bw+z3jywoO8eO0NxHBAv9+lFJco10s8evEidzb2OOjtMN7t8L/+9/8jd8nIUsmwP+KbV68yGU24uX6TQIEOY4Ts0Pvt/4cLjzzK5Uub/K0f/Wl+5zd+hfc89X6mBx3e+54n+U/qNfYnEx47e55AKvqTjD+8dIlDJXj43KPEYUCkdVEUm62IJNScPnoYk6Xk04wwKvEjH/0B/v2//yKXg+eKNaNCzj/2EE899CiZdzSS6Pu1RjCDmBUBg6JaMscc3wFzPjPnM283PnO/q7QLrUMoHc35zDuUz7QXVhH24P42PXk/5zNzPvNtfKaRRPdt/fUP+lx68405n5nzmTmf+Q6YNz3NMcccc/wF8aUvfYkrV65w7ty57/WhzDHHHHPMMcccfwXQCHJXCLqFSw6k8IVY7T1iJoYXZL2YqiMphCq8xwpPKBTVkmYyBOEFw+GQ0bjIbUc4vDdkzhI4S5anKFmI/N5Myb3DW0cl0ggpEFKB9ThnCWOFkZIwiRmNcybTnMVmk3arwd7+kP7BiDgOCWUKQmCNw1mPlRYpAVeIZ7VGGSMUubCF59lDNQk5fngZrGCv0+G5558nSmLatTIzKb0oOvhieHuWT7m6dgsjPcoxa6AJwIExKZ1uhzMnjlApxWS5w1tJEEuiuEykFWfOnOfO3csYMyVNc9J0ClmGzQxSRBiT44zHWbB5igo1xhiMLSIfinYdgVAB3hZ/l49GGJMzNjlxWEIIy+3Nbe5u3GV5cRUzHqFDhfEFFXYepC8aN5x3KDzeGYQBEUmE8lw8e4at7W0qiUFqePP6DSqlkPNnTxMlTdJ0RDsuM7USiSMJEoQvZpZoNMoXAqnDYv1MzPQe5SRHl5ZRocbljkopweHJjcU6ixAWRSHICVGso8zkBCokcw7pXFFsAGYlrEI4lRLvLXiJ94rishfXXwqNROG8xwhfNE15X4iMzhVaoAArYTgYo1XEcDLi9KkTHFo4zs7eHi+++grZpEetFHPi8BnubnZIR2NcUmJ5+RT1eo1QVXj+ha+y0+2glESKwsk6nY6oJDGlKOHYkXO88PLLtOpl0uwu1oecOX2GWlzi8rU3WapXGKQTtAwpV2t093t09vosnF2lZ7tY59GhxzpBqGO0DsntlN1el+FkwNJSE+ckUkiSOGY8mqKCwl1aKZfoHPQR2mLynGzkWev2cFgGox6dr24yzTIqpToLzSqleo1sYrm1dptapUJ3OGFnv4OppixMPPVKi0BomtUG6WSAViE7ZgvvHMJYlo4cK9abEUivyPKc7c4euRVEoWJx4TA7nU1WV04AmvTQMY4riEoJZpJxsNdHmpx6ElGvVihHZTa29xgMRqysrlKp1Oh2dlleOESz2SIOAqbZhMtX13jj8qscDNIiu8A78CHpOKfb7RCWIM897VaNx971OGEQcff2LXrDDnk+xWOQs0LcxYefolZKCKKIve0dBv19hChEd0cRX7e7v8FweMDJU+c52OsSlyICGTBNc4I0pb3QLt4HZxj0ekxshjUelzvSzBMnVcLIYo1lPB7g82KnlTLAOkeOAKWQ3hXTpQpfMwaHEgJrC2Hce7AzR7MSuhDQvUMKcFohvUD5AOfGSIr7C+8LgV04nLc4AcIKQCGEIs8teWbwAqyxhMKhCFAqQEkKcVw2ENMOSEscJDhjuX79m0V8jZgSyCETH2G8Yzju4qSmuXCI7qBHOh0STCq4aUa52oJpShA18MQ4X7jFnVB4iuKEdQalFFIKMlO4yN0sstL6WWSRL6YcCUfxHEFgbPF7wnumecZ46gmCCg7B/n6fOIoQPmMyHsymThTXSwgNzhOEhStaByFZbojiGBEEBGERreC9JyhXEVFMa2WFY8sLLNWrNEoRelasnpn0Z3hL8v2zguefL34KD9pYLB4ti/P4ThBCcOLEcY4eO0qgZ9F5wPjwEQI9odPdJSo3eOj0SXY3X+L4Dz9dxCSNp+gkYXtjnYnJCaVne+Mqrz7/LP3ekLPHj5MKQRSGxXNVBjz5sY/z1Re+wXZ3kz/911+EyYTHPvAB2tLSqlV49P3v5vzqFvrUKj/+vg/wv33xj9nd6xaNW0Kg4hCyIb/wL/8VolyievoQo8kFkjgm0HrWGlZEevSGfbY273H95nU21i7x+PkTrJ4/zSvXj/Pm1TdJM8P73v8erl65xo31bR558EHGV1+jPzjAS8nNrU2Y5Jw+eQofKKbjMfVGjYPxmEmnwzPPfYkP/o0P8uprL/DN/R7T6ZCq1Tz+4ENcPGP5d7/5G/xa9utcu3yDU489xsaN68RJyHTaJzM5pbiEFGBtjs9hPzV87SvPoLSi1j7MaHjAcG8TIyW1KCLSAVUxKiawKE27kvDhxy+ycfsOS80qgQ64vbHB6tISkS6ioUCSG4PJcrzL0YEg1JKLD13gmd8vkWYZZx84wSc+9GGCQLHbG1FPkqLQ9x1XzdsYwmNnnwfmmOO7Yc5n5nzm7cdn7u/e5QQMR3M+807mM5NsRBAUn9PvB6SScz4z5zPfxmfu57bWbrX5xEc/Nuczcz4z5zPfAfOmpznm+EvEiy++yNra2vf6MOb4K8bW1hb9fv++vd7TTz/N8vIy29vb9+0155hjjjnmmOOvM4pCABSSr0DNCKUHtCrGZnshClcfDgWFqCsLtzTe40QhQJeiEKUFxoHEFiTfO7wQeKHJjaHbG6KlRGCwNicu14niiCgKEF4SqoDUpeTpFBvECB1QqVQZjvfY2+0xGo8JowiXd9i4t4uUhUNba3DWY3JJGE6JQsVokmFzS3c4wswaXXBQKUU89dgj1EuSF167itEB3eEQRiNKcUTkwDmHc2ImGln63QHd/j4Xzh7l5to2mc1xHrRQpMKws9fh6HIbLRVZ5rDTdcJKmzzzWJejlaRUqjE4SBmPR+x1u+TTnNF4TLMpSZ0FayDMmZoUkU9wTAtXo7VoJTDO4dAgEnKfcqc3ZJJ7vFfgLR6JyQzr69sstZewJsXLEDsag9XgMqzLqdgqToLzGo9kOhnihEZKgTAQBwqlBdgaV70iUBEeiRYSqWMm0ylOBgglQKpiDDhFJMd0PMFLRVFoEZgshVoDhCcOIoTU9O0BKg0wzuCsIx2PqEUBkgCExOHJrMOPRphIYKYZE5ORZo4wibFSIp1DeEWejXDG4fIMYlW0Q3nwTiFQxf+zljT1CJeT+xysI8uyIjLKg/RQSiJsrUa9UiHWFfCSdmuBE0ePM0pX2Nm5R7vVplpv8+o3X2ft9jVOHjvJ9ZtrCCWZ5FOkkBw/fIyD/hppDiqCVn2J2+vr7PaG2DwljgRpOma53eDCgw9hJhmYlCvXLpOoEoPxAGP6IAT1Rp3xZEh32INAgJ2Jn8qCNIQqZnWhRa2S8MbVNwlcyLnzFymVEpRSWGsYjqb0egMiHZN7wdrd63gMCEUchyyvLDAaj2g2Fzl79ChSKTburVMut6gvNbl2eYNSUmJ5YZmlxTq1ep3M5EUhBEG7tcRoNGBl8Rh7WwcsL62STaZF85mzeJtBnnHmxHFWVg+zt73OQrXKoeVDbG7vEsZl2rUG5WqZg4MevXGP/f6Q4UCy0Iw4feIk9+6sE8aKSi1mfWOdKC6RlGr0+32EgOHwgGPHD6Ok5urNm0zTDOc8Skv2dzqMo4BypUyjXWWpvczq6ina7TYb9+4yTUfYSY51U0oVyaDXZ3d3n3qtRa28QpJEhGHAcDhAUojxzhfC7+LCEaqNEXEgaB49gh+PaNSr1Jp1aq0FqrVKIeDnOYGxjJVHSU+caIJAcfbMWYTwGGO4c/MaB9KiJYRBSJalnD59FiGK/Xb91k1Gg6L4pFSIc4KjR48XIrk13Lt9m4wJufOY3JFlhmZrEWscWTahs7eDzSXWiqIwl1tK5QrOGdRkgs2meLLCEY0nCDQqCma5FhrpNUJqBBJjHc5aPIZeb4c079Eol4hUjbDWoNffI1BTrAVEzGiaIoSkVG0TRBGjQQ8ZSIKggYo9w/yAQ4eWKEcVhAiKJkZACdBaoZTEWl+4yJ0t4iysxRiPnxWDJRInPUoo8K54pimBkhKtwHhFqBQ+t9+KMBqMxgwmE5Q3ZNOUeinCOzC5IQgKF7gONEqHyCBESE0URgTlMg5JqVan1WywsrzISqtOLQooyqXi2/qY/v8WB7woroXKM5RXaKH+o/5Oa4Xm2383LlU4+9B7ODY6QAQVlFIsPnAOWYr5g1//LWqtBm5nhxvrdxHCMpxOeHntMi9duUo9rtJaWUKUqsSVCmIW+2AReBXxv3/2Vzg46PCRD36Sz7/wEsFXnuEf/vw/odVoEB1ZwPfGfPRTP8xvP/ccwubY3KB0iJee5196kXvTA84cOc6//cxnuLV5jw+8/wM89dBFojBkkqXcvnGN/+NLf8zR7Wton/Hqm1doL7b51Hs/TDCZMk2HRLHm5ddf4d3vf5qHLzzEc1/5At1ulzgpU0lKjG6uU3vvCabDETYMiYKQOFT0bq/xP/83/zVXNm/yz//pf8lSu0WaG+7cu0Eclljf2GR/OODlV16hVmvhJVz60+dQpSKyaTxJEUIQaTmbcADCe8JQM81ztIIX/+SLpNawvr3DT/z4j3Pv7m2GccDzzz7PWmebSpzw+GOPcXR1hafe9RjOWdY37nLv3j2W2y2GeYqSijhKQEoC6XBK4l3R/BsGmgefeJjz589y4dxFas1lpNLUy8nMWQ3fV5kQf2bwWRGDAVJ+Hx3/HN8zzPnMnM+83fhMsUvfHxxeWWah0SCZ85l3NJ+pVCp0g/F9a3ra2d2lVq9RqVTnfGbOZ+47hCiiC9/CnM/M+cz3De4jn5k3Pc3xjsaxY8c4efLkfXu9tbW1eWPKHH/peOihh2g0GvO1Ncccc8wxxxz3Cd4btFJYDwKLNVOkTCgccrJgaUIQal1Mx5m5pv0soKfQIQpHcxJ5Dg76LNTrOGeLAgPFNB6BwBnDaDRCeFm48Zyh5BQVa2dZFJ5KHOJdjpmN9dbek47HeGsxdoIzjkAXpHEwTul0+hT+Z1f4qIQALwjDqGhOkJ6DQfqWcQ7vBdVyhUhLJsMJm50+wssi6kJI2q0GB3sjnHPkJis6Ypxhkk7RgebIYou1tU2YOaadhCgIOXJ4Ca0lcaJBerb3B6TdL5jOMQAAIABJREFUDpXmcZKoxM2t15mOB5SimJV2g1Y5xsYhSQi5z+juD5AIhqnBOUM5TtBRiMLihMA5sBacm02Z2evw+s27ZBa09FhrUVJg8dy4tcFDD5xESEVcLoOQ6CjC5TDJLLnL8C7DeI9UATqOScrFNbdBSjkvkZRCrh5sImQR2xEGAXFJY41CGglCk5mM4hWLdSK1JA4DpNIgwCIZW1cUkgCHI0AQByE6jogIMd4BGQKwTiKcQPhC2IvikDAOsDJGKo03YwIPyhWrz3pDFCmUDFChwsiiECS9xwmHwaK8QCtNJSmhdEBJJmTOkls3O3JbOLeFpBTHvO+JDxfefy0YTx2Hj56ku9/l2NEjaJVwd/02g+E+5XLCG9evInXA6aOnadWq7B+MQAREoWY8MUTVmE6vy4NnTzHOC3frk48+waXXX+P4scPEOiAP4cFzD1CtNNjt3qI/LNMbHvD4u9/N5etr3Li5BkIjhCY3OXluOHv8JCePH8JaiXPQrpcZTOtsrneo1usEYQhesNfvc/PWLdLxCKclnU4HJQXGCuqlMmfPnSObWsiL97y3PyQOFQvtJVoLbQ56HSySI8eOw9Rw5PBhvIdBfx+HQAiHFlCrN7h9+xYIQxwItHRFjIkAkUQ0mwtM8yn7u9tkE8c4NsRJRBhobq+t0Wo3OXriMP3xgLXN2zzxyGOQHWdjc5vNjW1SkbE/7GOc5eyZh1k+fJxrb1xie3eD5ZUlgihhf7vH4aOHuXLzNloX5+g96DDkwQcfJPSeUi3m6ImzKFVme2OTrc0toqhE3AoYpZoo8GiZs1huMBr12NyxZFnON195mVK5jP6W0CaIwoCzZ8/RbjWYDIds3LuF0RIVhmgh0VLghUJKyKydhegIlAyI4hJKy1kR1uEDTRgEREoTh5patUKpVEaoEGctzloWG21KGowZUa1WKJdKVKo1pA6KqIlpyiCAJAmp1xtUKhWazYfxCAb9PbTLySchlVKZcqVErVmhUrsAUtLZuMvdGyN0GKJjTW6nnH7gLM4avHfcvXGN0X4XrYpiZKVU4uyFi9h8Sp4eMJ5EBErS7XZZqtVYaK/QaDbp7u6xs7OLCDx4x+buJlG/g1AWrGPU7zMe7zEe5wwHPZJqG289pUqDRq0BaXENvXNYW8TiOC+LEqJzZK4oPjhrsNbNCpUWJz0Ii5CqKCr4QnWUSMAXsRJeobTCecc0t8W5SYmYiZFBEJIkMUpLVFDCIogqDZrtFouLSyy2Gyw1qkRaz1zPb0mxf3kFTuGLIrXxDo8jFHL2zPZ/4ekRQoDUAWGcEMYlVKBgsca9tTf57G99lr/5Q5/iw48/zHvWn8K/+QaX196kVl7gkUPH2PIZN65fY3FllVoSgIDezTt85ZlnSWtl1p67ihSG3/v9z9BsLJKmGce//BA/8skfIijFZLs9VBhwZmWJ3/2jP6C+0OAHPvEhlLW8uXmLiyfPsNe7Sz7t87Xn/5SoXOLC6dNcXrsOzvL7v/Gb6HKFRlhh4dghBpOU3/vcb3Dp5UvcuXOHU6cfZPf2NQ58zqVXvoESiqmMQcA0nbK5tY2r1VhcXUCrgDu7u1TiGOEjbuz1cbWY3prhlz/7GS6/+Qb5dEggBNtbW3zmc7+JiCTWWiajfWzmsMYz6Y2ZTKcEUpE7OBiNCaIANYvSKseSpFLh6OISDz31XqTSnD/8AP/6X/wLfvpn/wuuXL3N537vD+kOdqlUKrz00iv84Mc+wMkfO0HnYMDmzhY6lHS6e7z8yiucOX2U06cusriyzM/9o79PKU44eeII6XRMuZrw4ac/zmi8T1JtzgpVFM9d55BSfU8KVX8Z8MDEOlryrZ++T09kjvuCOZ+Z85m3E5/p94Z0e/cvhqzZrFErJ0XT3pzPvKP5zPZWjzHpfVlXOzu75GlOWFdzPjPnM99zzPnMnM98P+Kvms/Mm57meEfj3LlzXLhw4Xt9GHPMMcccc8wxxxxzfB9haoaITIBXBFrjnUGLnMzuo2QJRIh1Hic8olBncAJwqhCCbVGArVQiRsMpXkjAUSSRyUJC9gLpPZl3BK5wzdpZJNngYMxklDKeZrNIMkccFHnnznnSbEJ/MgIFcVyiVAqZIHFAGEfE5RKBVNi34s+EJzMWZwzeSbwYo32G8BYvKJx0QnDt9gaTScpwnFMpl1holLm1vYfJs5mVTSBwRVSGgzAIqCUhgVSESpCbWeFZQKWUcKTdwgtJbovCSJZZWguHEEmDQGmG45Q0zzmysky9muCsBS/QwuOVptmoFdOLRMg4HZFlE6YmRwqFzS06kIjJpHCjC8Gdu9tMpxkOg/MSZz1KOIz3jLMpWZ4Ta413HqUEUkIufFEQkbIQ+l0GyuO8KRyQKKQHhMHbEOssWmvCIMQ5jfca4XOsEAghC9Oko5DenER4hcOjBDipER6UkAhfOO6dkLMikyreY68IsMXYew+SHEWMCAOcCVEiwHqJlR4tiilOShQynPXFGHspBEIWkXfKSwxAIJHeFNESM9lOKIlQEqk0yk2RUiIJvuXqtnhQHh1EhSiZW6ajEWluiKIAa2E07jPo7RWNLtMhcRRSrfy/7L1psGTnfd73e5ez9Hr77vtsmAXAACBIgCC4kxJFRWRUomVLKcmKKsknJ66kVJVSlSv5kIodJY6ccpZS4thOVSqObEukbEuRqA2KRBLcCRDrAJh9ufvefXs7y7vkw9szYFSiKVnEYqKfqqnp6ZnpPrfPe97Tz///f55nBuE1kAJdNnbvMChzrHBY40irkuP+Icvzp3BeMuzlrCyeZro1F9aj8iRRxIXz97EymOGr3/oqXkS4ouChCxew1rC/d0R/MCpuO1hZXuTU6TMU3SEyqbB24xqTM1M8t/sazzz7Ld73xGPU0iZFabl66w7WDKjoGCs91mUoGWG8ZWd7i2ajyfbhLrFKOLmyRNY9ZGdnk6Icsr+7wQMXHqFZbbG2f51BPk0liSnKHFMEJbgrQQuJdQ6Uoj4xQRpFOCkRWDqdIy6/9jKb23fIy4JEpRRulXrNM+gNaE422els8eoVifARizNzFMMCZz1pEnHY2+P6xjYrM3OkcY39/R0azQkuPvIu4lhy+/Z14iRBJynd9oDJ1gTZMButFRn2iDhm0GmTVDR7e7tYB9Y6Hn38cdrtNoPDAwabHQ6OD6mlNaSMuXHjVeLKBLe4SaNeYX5+nrslYDGKUmi0KnQHHbLBAF+GLAdnHNZZjCsBjzcWZ0r6wyHlMKdZGyXJuFDAM84ghKDIS2xhQjwDHiEk4VKRKMDYHGM80gUXHw9IpdA6whQZtsyxziG9HKmCI3Sc4KUiLutopXFCoqQjiRN0FGNliI+I44g0rZLGknqlQhzXEUIhcAipaFSqyLIkrUY0q1WarUlqdUs+HLKyfJpee4dXrr5Ekfe4ca1Lq7HIVKPB3vptWq0WacVRlpY4adDLBhTG0mzOonWMEimqIqlOpMxMLzIzM08lrXF0sIfJ+0RxQlkUzC8u05qaxHvJzetX6R0UKBRlNiCpTbC4uoo3hq3N2+AMpgRrLdVaiyjKKPIh2aCPlxKlFUhBlMR4Fxqs+DLsfzrc77qDLtY7WhOTTK+sMD+7wMrSHI1KShKpe2pTEbrFryMsEL4vxUwBHs9QCLwDJb/3f/lusNbibIiIUVLhhUCmis7hgI32EYNsSGV2mrWbN3j8wx+hGBzzIx//UX7mRz/Fr/xvf49L/T7940OuvHSFuY/OMWgf8Kv/z6+zW2QM8yGRtGilOeweYI3lD3/nNzl/aplavU6rGvFb//zXKCYr7L+8zT//tV/l0QdX+faXvkpeFKxt3WLlzAmazGOqLbrrN/n1z/0aL7z4IkkcMdGY4hMf+RjLy8vcON4lVlVMH1595nkWV0/yP/zS3+GPfvO3+Ae/8c/oHXXoHR7yN3/qJ/k7t16kn5fMT08xuzDLta07nJ5fYaqa8MrlZ3nkoSc4f/Y0sxcfY/j1l/i93/8DatpjyxwjHdZpSgoqOgrPYYPrQBmGErSWxFpCbnC2xBfglaZRS3n/Y4+ysHKK9nGXM6dWefSxJ3jmy1/n/U8+wbvO3cczwwJrHfVGg3OnT/NTP/XXufrai+R5RrNRwxnP6uoi3gruv3CBShqzs7fJ0uIsD1w4F/Yaa+j3Oxx22+zt7xFHjqP2LqiIxZllJmvVf/tU0X8aQlBYj4jeuEiIMX5wMOYzYz7zduIzB/tH7O4fvmnrP5xlxnzmHcBn/PeIOn4j4I0Z85kxn3nLMeYzYz7zbyXeYD4zHnoaY4wxxnibQwjB4uIily9ffqsPZYwxxhhjjDHeEciLjKIQWASR9mgUmcmRrkRISaUi8d6Bd6OCtEGIBO39qJilwTuUK2hWY5wAIQx4MF4GRaD3OO/x1mHIQQhcEELjvCBJ6/jS0qjV8N6TRAIlPUJ6ijIU8aWWFHnGkSkphjl4QWlKOt0eWopQ1BLg/MgFyDkinZLoGIQgTVKMNyBhujXBRHOC/c4aTkClWmFQOPCCznGXVIFSgrLIcWUJSjFRTzk9P8lkq8rFC6f4xstXgxLbOyqxRqoQZSCsw1nF3OIJnNaUZkA/81TqTVrNGvNTdZwBqT3GB0tzsCSVOkU+REg7Iq4OqUM8W2fQR4kEZy3DosCWJb1+F28c1kukACNAOodWEQ89cIF62sCUJQ6HwuMF4AVWGCQhost5iStH9upOIIXDefBO47xmOMwQBHWhdw5vPcJalIxwQgRluBd4LN5ZRslyWARqdM4tDo9F+OB644UHqYnuKgm9CJp2J7De4WVOnFSwUhOrENGknEJGodEQmgsOxEil71VQo0mBFALpFMJJhFII7/HOIIXGA2oUYaKcQAkfuhsIpNDgCwSKGEcpXCgCxRHDIgPjsE6gcUxPTbK12UYIxelT55CihhCO7lYH73LyQYkUMZKS4VCSVhSH7QMmm9NIn3B4sMOF++4frVWQqOAg4Ay2LFlenMOjGJicycYK73rwEb797HP0jreC6l860iQN7gLOM1FPQMd85Zvfom97mH1D57iNtYLtnXVMOaQoM6ZaLaqNCba317HOYJzhxOn7GPQOsTZnafUExXDAzsE+UmjW1q6G5pL3aOEoc8tzzz+DJac/OOQ9j7yP5YWTiFiBVuhY0Wq0qFWrlHmBocR7y43r17izdZ1zZy5SrzVwRUa9OcEgM8wvPsjWnRuk1ZijdhutEqYaUwgHnV6HhblZlqMFSjznT5xnc32X9lGbK5df5ez58+RlTqVWYW97g7LWYpCXTE3PsLu3izNhgymKgoPDPaJI0ZqcpFqtsb69y/TsHM456pWEoRRoralXKjQaLY6PexiZUEsjnLF0hm1m3QJehmaWEGGtHh4csL+zTqVSxUmwIuyTjJqiwZ/HI6SkUUvpmSLshzI4UURKIpF474mSBBVFOGGwRQnWgxYkUUxhM5zzWGMQeKQIDQKlFGI0BGicxZiwbhFhMMvaEi08kuA2ZUyJLRXOlQBIIcBb8rKkKDKUCnEtMphLIIXEexjmJcZalE+DyhIB3rN98wW0rCOcYroxQ1lrcNDt0s1Lbt2+zuHxEZPTC/SGB8zPLKKpMzk1w8GR4OLD76e7t8HN4TG+P2CiMctDDz5Ca3IO7xxkQ3plRpJqIimZmGiR5zFKKY736sTlkLSWUq83aU7NUK/XUZFmeHxAMRyQxDH1xgTzK5MUeUmeD/AmR5iCWqXG1PQ8U9MLWOfY21xj/c5NpNYopahW63ilsSioVHnvo48wVa+FCJS7zXJxNzQp7GP3Hn2f65jO+RC/gSOK/nJNLoHHFjlZaYkrFZCCMw89wI9dfA8zswtY5yHW3Hz5GaanW3z56S/S3t/gj194nrIsGAxLbOS5cvlFfv+Ln2fjcIf2MEMoKDxMVRv80Mc+zEQ1JjIZf++X/zZzS3P83E/9OB/51Cd44e//CijL/s4Of/e/+5/45Cf+HU6t5AxlwbmlOU5/6AlOnL3I+vVr/PL/+U84NTPHK5eu4EXCE3/zF/jAR99P4/IVrjzzLLGK+cjHP87P/Ic/x0xa4WvPfp1er8/5Rx9nqlblq99+jjSZxIse3V6bp7/0NHEk+LEf+gSt2PHqN7/ASy88z8btW8wtnyaJoCgchXcUGIQ0FIVHi5ijwzZprCiswY0aopFUKKlItMCX4V4oVLg2qs06T3zww5w5fZ7tvTUef+8Pk5c5vV6XKHUI7zm9OMfiwgwf+/jHee9j7+Xk8jKrs7MhygTJiZVZDvZ3mJ9dAaOxpQkDlnGCItxrQbC7t8Ww38HmPZ579Qb9fMiJEw8CAuEdiL/EpNx34O4QRqTehLL6d1xDHrDGooQEEQYZxhjju2HMZ8Z85u3EZ0r75jjxfCfGfOadwWekevPuhd57et1jZqZaYz4z5jNvC4z5zJjP/JviB5XPjIeexviBxk//9E+/1Ycwxg8oPvvZz/LEE0+8Ke8lhOAXf/EX+cIXvvCmvN8YY4wxxhhjvNMhhGKqUQeRYG2BsQU4g9BNpIoQKiIWDlsOKb3Hlg5HDsJhgSjyCCkQGJwPBeHS2xBb4CIiXQUl0UqhkCA8wgc12cjYG+tyGpWISizodfsUxqJUhJISKRwSi7OObr+Hs4KidDgt6fZ75CZHSoUWEqkEYlScFghqVYeNLVIrTi5Nc3vrkGzo2W/3qKaKwXDA1GSDMysLDIZDhtmQdrvHZD3EW+zut0njlMZEDSEEp04sIaylXk2x3lM4QxQLzp9awtgM4yQKRbvnKdU2KkkpSwBNpZLy5LvOk+gwCmGQQSIpQiEzL0pMYdGRJysKhHVoNCLSlGVGJYmIRkrHQZZhrMX6UVrF3aK/C6rsKFJkDoTUOAdCWITzKCnxQlAWBcYYIuXwFqT1CAdOhuZNiUB5M1KrK5TSeO8oncEUOUmS4lxM6SHGI6zH4/HeIFBownCR94BzuBG3lyg8Eo1FeIcQOhS+CRbazht8kWOVBluGxhUCK32YdRKC0oN0JhQMHDhv8UohkHhnsd7gvUWikCIoGIUThBUhEXgKa0dOUQbhYsAxyj0h6FI9URojihKQdIeHFHmJFxJjDHk5ZHZqnqWFJdY3D2kf75JUEnSucT7EdkzNprSmZjjc3+Tc2YeJdJ3BoEetmeLkXecAEX4u79k7PKLTOWRhZpmJ5gI3bq7x8kuXuHDuPoxxRFpSuqCYXdtaIysGzLVadNqCg4MtpidrzMxPcN+J8zSbNV6+9DJ3NtZZWl6kc7hHkqT0egco6YkTiTGO436fXnuAlJpGpUIrSZg6f4G01uT5Z79Fp59x4+Z1Hjh/ntnZGfxhyTCzNBdXmZyYxhQlUscgFWlaJVIhmsXJkkRXGHRL5iYmmH/8SZr1OfqDjK2jPloNWVg6gZCKZiNmMm5x7uwDDHtdrlx+GRFVGPQHTE3OMjU1g7E5q4tL1OOIGxv7LK2e4OqVqygJQkimJ+cYZgMODveYXlhCS4lXAh2pEH8YgykyDvb3MM1QRM+yDC0lB70+R902WVHS72UMex2aM9Ms1xaYas3w6uVLtBpzGBs6YN6Pim/O05qcZGF+gbzXZWfrDt1hhnUC4cSoAeqRUuFFiMbAGbzTWF8GTa2X+NC9Q6toVPD3OFvgFSitQQi8DE0BgRvtGWH4zxiLlArnLNVqjWH/ODgMuHCtOBfcIcCRxgldD1GShLXuBR6HEAKlNCqpkOdDpNJIKRBKh8YfISZHqvAzeeExNrT+ppfOcrC7x/rWdeqVBhVRIa1P0+n0WV5c4Lif0+4eoaRDEDEzv8jkzAzqtqdSqXBle4PecRsUzM6vMBj0mZiwOO8piwzjDc4rpPAIEZw0PIKyLCmtIXUepTRIkFKipMQ5F/YdBJGO0CrCSINWGiU0XoTHcRwDgtJY0iQJHTsPWmn8qAmilGKiViNRr8dEiGAfd/fuyb/u0ffl/mwdlBbvwP4lrJ4EAqFSlBQc7qxTnZgFPK9cfpF4tsprV55DJwNO3LfMpRef49rGDp3ukGvbN5Fe4JAc7e3xy3/3v+ZTH3qMdveAaurolx5bWvqFY2Nrkxeef57O/iaPP/Ywuzu7dAcDnvrtP+Bjn/gxtjtt6mmNo3Yb4wWnV+Z58dnrrN+6gu3v8a6H3kV3e41LLz7DztYG/aMDsn4PY2Ju377J7uEun//cP+VLT3+RT/7Qp/hbf+sXUMLT3jsgExDHgrXLr7IjLaWDONUszM2yvrnO7/3Wb/ALf+Nv8MJzz/Lkow/zgY98it/+/X9Fbhz/8l98lr4rUBEgPJUoZpg5sILcD1HSMiggjmOa1Spd3x9FjCiqlQqSkuWVFc6dPcfNa3fYO9qlnQ/JSkel1mJ+epI/+IPf49r1y/z8B/59up0OT3/pjzi5usgHHns3aaLZWLvKxtYGe2sDKpWEeqNJq1ans3+LonAk9TqbG2tILTnutalXm1QrdZqTc7Sml4njhMff90miKEZJGVxNvkdT1N9tbY2+Myn5nWv39SaYdY5nLr3K0fEeP/L+D6NkaGyHmxdvQGPs7ot6vPeY0qPk289tYIy3H8Z8Zsxn3jZ8xhleuPQWCHn9mM+8E/jM3MwEh0edN21ZPf2Vr3Hm9OkxnxnzmbccYz4z5jN/GmM+Mx56GuMHGEIInnzyybf6MMb4AcVXvvKVN/X97mYIjzHGGGOMMcYYbzyyvADXpRJl9HoFTkhSrZDSYExBIR1aKYSK8YM+uTVYAyQaFUUMii6RjoESN4p4yPIcKRMiGdRY3o2iGHxQlnkhUB4QMqj2sgznS6xzpGkFnydUUo3zAqk0Oq2GkRUlEUCSQKMeI9F4ebfhEKSmDh8GE6RkmBdkpQlKPxzTNcla/5jDtsN6xyDPOT01TSRzmlXF6twU2/v7eBSgOOzm7F6+RS2NmazVmZ1KmagnaB0GaCKtOXNilYlWk26vixISl6f84dPfpHQ+qLELgwOazRofevgcRZnfi27wxqOkpszaDPoGvKK0mrLIUd7hjA6FLwu9/hAnjynzjIODQ3aP+kFtLiQgsNaTe4Ewlp29NgsLOc46EqPoaU2lElGt1jCDIb1hji8tA3MMTiB8UL97BOAQ3jAclJRlUGGb0lAagzMeZy2FyRBKMBj0wvkVgC0py5xGNHFvvMh5j/GQFTnegvcWK0J8gHMaqTx2ZH/fL3KSOKEsS4zrkg0HxMkkKDDWIZzBOks27COUQnvIB0NkEqG0R7gC6yJKLxgMuvg4wRQlYqRki+MIIR0gQ3HDOophjvMGM2puKe+J0wRnQ5SUwJMVGVt7G8RxlYP9fcqipFat0h9kSGLmZmeRGjrtNoUqaTVabG1v0JyYwBYleWm4fus6iAoPnj2DLT2DXg+lIpxQSOsQqUJrx4mleUCSF33OnTnBiy9f4rUrL9PrDyidD4UZ54m0Zmtvj729TSJSWq0Gq6srJEmFPCvZ2dpma+82SkommlWUnWKQl5QG6pVpklSx1zlgY+MOp1eWaR/XSKtNcq+Zb0wSJRFPPvkRHIK121cZ9IdU0ioP3v8whTF85Wt/wPzkJNOtFURhcbHBO8cgy8nKApxHyIg8H6CFJEqqbG5sgpbUpiYovOfgaA8VSYyQZINj0nqTwlhmF+fYO+hQrVR47tvfZqJRo5cf02q0yPOM3AzAS2ZnZml3DliYWaR70KFejbm5tsnazVtkRWjEVWt1KpGmoht0+3vsHOwyvbRK7D0TrSZZnrO1tcnmxjbVSs7szASTrVVOnb/ItSuvUK81kULT77XppSkCRg5OjiSKmGg28ThKocPcnHPcrdI7fHCJAKQXo6ZQaNhJqUYNUosfjePhHVKFyMU4iZEiRigNCLROCLElAi1D3IPAU9oSUYZoFoEHZ5DEGKEIysjQODRlGRoMNigMldIjviVCrQ+JlhFC23BM1uGFQyKQIkIrQeHdSBXskUKCgObUPPt7uxhnaDXr3Fy7xtKpB/DWMT2/RHP3kPZ6h2oSUZY9bt1Zo7CeYT/j61//ErUooVadQ0YZc1Nz1JrTKCXxxlBt1MK1LmLQKsTLiDyYszmLteE8SOEBiRAyNDGcCJk/QoTGigjNA4Mnz4bEkQ73HSVwDnSkwt42cuoQQiBDLhFScu/5N6YY+r0hbIEyBuMtQv6bDz05Z2nv7HF7fY3F1RWe+/Y3uXL1Mp9/6nfY2tplsjWJMX3++s/+DJHrc2V7jZMry1xfv0mrNkFTa7LhkJ3dQ/7Z7/4x3jsGvSEi8hgHkQBrDINexkMPPkiiEp549GEG/QFXNu8Qff1LLJw8xc/87If5pb/933LcPaYylfLqa89we3uHzEn+6Wd/k7NnTvM7f/g0SlWYmW7w8Iee5IUvP8Ov/ur/xa997tc4Pu4ilKSfbfGbv/M5ysKQ9fusrd/Ae0+eD8kwgMc7xc7WkIcuPkRFR3z+93+HWmMS6UtWZ2Z5+qvf4rDTZW9nEy2reB0xNT0D/ZLu0R5FUYJyWARCBTfBzBm8sEhR4b4TJ9jYuINH8Nj7382HHnmczx3/Lrc3rtHZb2NWDRvrt9ja3uTOrdtcOH8WZYfcuvk8tZpmvpXyyvNf4M76HmXZpTY5x0P33w+qiVMNpErQjQqNtEajMcHKyQfw3hNHUXBFAPAi7DVutH8IGRpc/5q14n2Isrq7nPtZQVEMmJxoca854D02dPkx1tGqVCGrYG0Zmgl3nQHe0LpNcH3wo1ipMcb4XhjzmTGfebvwmThKWNvce1PXf2kNveFgzGfeAXzmTTR6AsIwohdjPjPmM289xnxmzGfuYsxnXsd46GmMMcYYY4wxxhhjjDHGGOM7EElPPy9GluAO7xVDXxDHCi89NVegEEhZxTqPdRDFKdaU5Kagn2coWRBFmmpswdlAXI1liMPZAqSnmVZBco/cmtIQKRUiJYgQXqEQVNMaaVKSxqGBIZRCulB0hsBJIyUQKJwAh0AJsCNb+5suAAAgAElEQVRV8N1/E4oEDu8dNlSP8N7gvQdv6fZyKlFCsxYHG3QsrXpC9zihmmiysmCy1UAIQW+YsXl0yO6xopIoXO4ofYirSCOJtyXCO6zzvHLtBu1Oj2o1YWmmwatXbuOAWk2HOA1s0N86gfAQJRFVU0FKgYw0OE3hHNYFRyNXSKy1JNWEKIkwRcGNW+uUxuCVCspK53BYvBN4L1DCESuLkAKlHYOiz2CYcdRLyIZ9Go06sZdIZ0niKhaColAERTMo4iQOqiQ8URSFIiKEz8oEp6U4jonjCkiP8DECi/ChYFn6oJx3UpAmEa60WO9JhMA5gXEQRwLhQEpFLdZorXFRjBQSZ02Io7MevEFYRaQF1STFqQjpLMJbnARkOPeOYKUtdYRUApkqIhSZteGzFwnCezSCSGsiFZSp0gmcDZJmaQxOKEZhJ2ghiLXmoL3FXrdLRMrM1AK1WgLKs7+7SZ4PQQ6Zmpqn1+ngvWXYH6JUzPT0PLsHt9BKsrG+RmtyhttrN3n4ofeQJineOJRMmW5WcSZHiJhKbEgqKefPX6DZqNNtfxFT9Citx0lBJU45deoUu7vr7G7uc5wN2NjZ5PSpU2gZs7+/TaqrLJ44yfVrVxHCk1artCbniEXKwvIsrf0duv0+l157iVjGPPv8iyzOLpBWE2bjCSppCjpmfvkER3t7xGTETNEedjGmYHf7Nt3egH6/z+rqeayHoeny2qvP0e/3eOCBRyjKDKGhvX6AjKvMzM7x2rUrXL91jdz0cUKjlaYeey56SSoSUpUi7AHHx4e866FHcbbEH2h63Yy1rTWMj9jd3aZWr5IN+gyVwpqSJKpw4dwF9g+73N5YpzAFeTZEC0Wv1yaSEVZYrl15mcnpeb7+jacpyoK56WlOn1xm2DtEYtnbv8PW/m1KA/3eAtZaCpEjIokSftQIJbiKlaHJVZjhqEjvwQYngNJahAMrQwEPL3CjRqn1PigX3Uhp60PRzXqHEowaSB6MASmxtsT7UNxDKIQEqTWR9URRTF5kocHnQoFQQ3BB8B5ji/D+uHv1vNAgCLb0PnRvETik9HgkiOCGIIXCOoMSMlzX3iBHrmti1ERzZY6wlr2jA4oy49LlK5g8wzhPUeRUkxStBM3mPDv7fa5deZHaxAwTzRYm69HpdVhZnefOzVc49/AHkDrGlQV4jRAKLSVa6bAnSIkUCqkEWobGsJcqNFK1QgiPihTWSORdlaeUCKnCa42aLkqHPytJiLWRAiFBaYXUahRfGM5NmqSjz+ve3eWNvSH/KZSmJGfkLiGDUv7PKxC6WwwOjx03L7/CL/+j/wMRabwJDarP/Pgnee3ZZ6m0ZpifavDf/9J/w7U7tyiKko3D3dCXtEOcEzhhsUJQ0yndozZlVrI03eLE6grtvQ6bh8c8/tBpPvNXP82tl1/k//7cb7BzbKg0Guhoi/n5Zd717kd5/OJ5vvDCK/yPf/8fcHvtkMIL6pWUrzzzdfZ7Pays8MF3v4sf/+STXH3pBf6o3aGflaiiYKpVY2VxgVPzCd/+k8+z1i5QLqPf7xNLiXUlzlmsk6GYX02ppym7a+ugS9598X4+96v/mGRqjl7nmMGwixSaIi/wRUHW1Qw6fYwzqEQF5xFhiZXn3Q+dpFGf4BvPXMIDw2GH+ZkpdvaOONi6ye9ub/Pcay9SbzTYWr/J//zFp1k5tUxjoslxv8dRe4ujMwus77X5yjde4OyJOVbOPkh1eZJsOOSvfPrT1Gv1UeSKZ/fgkEG/RywVkY65uXNALYHV+QXulvi98JgyXNtSjL4l/TnWR2FKlJSh+WhLDg83adabYTCkLDBlQWGL0fCAplqL6XTgmW/8MQtzK6ycOkcUJ68fx3este8vBP0yeKeIe9fgGGP82RjzmTGfedvwGaXvOaq8WVBCEMsxn3kn8Jk0Tt7UtYUfxUKN+cyYz7wFGPOZMZ/5bhjzmYDx0NMYY4wxxhhjjDHGGGOMMcZ3QABKOMpcIJFkpghqWxN0e6n2DAqDcSVppChNUMpaGxRRhfMkOiivBICx4BVeOLzIcc4RpzEoiRxZbpcmIyu7FEYSRQ20TlAuFGaH+QApBGVmKI1FaB3UgD6YqYTCdShQBXW1fz16wI8EbCELDSccwoeCDz4o/gSQaEEtsQgsxaCHixLUaOimkmqklAgcCkccKSKhsNUU6T3Wwu5wAHi8NRwdden2B6EgiGNz/xCpJCeX5vBChYgFJzg8znj28h2Wp2pIpammwbY5IUVKBd6OwtfAlyVeRyHuAR+KhGWBt45rt9c47LSZajU46HRHxX0f1IDejyzmPbYw1BsNZCSoVCvgBUqlHEtHHCV0+11cLjD+GGxJrVoSVyrgLaXxVNMYj0AK0HqknPbBPt47j3PFyJbeIkWE8hKDDtbSLriSKO+RSoJUOGmQzmGtxEuPwiBchHRypLYEnENLBepulEVJpHVQWTuwQuIYrQfAyojSl5Q2aLq1TtAuQkdVlPZoZ1FRQpmHwpHHh3UkXFBMqqCA99YhcRQmx0kbnsOjnEBGMfMLZ+jnjmrk6Hd7dI7bTLeWyPOcg6NtqmlCnuVIDrAIBllJmpZUGlUinVCNWySpJitLrt28Thol3Lp+k+XFJWrVKlpKeoMeO7u3mJs7Qad7xHJzlcn6BGmtSjWtkCQaX3jKzCKFptlqceP2a+x2DlFoGs0GL776Gotzi5w5dY75wnD92nW8c0xMNzho98AnvOeRs0xPziCd4ai9R24tvaxDklQY5PtsbKcszi8QaQ1akaqEydYku5vbzK9GtGoNqtVZLm8eUK8IhvkxuRF0BwMOh22+feVlpppTLA165KVBSI2KUlZPnSQvS+amJtjdMiigPlnn8HAbZIM832aitUStMk1ZdsnLAZMTTWpxzH0nTzPoFQx7bQ76JcvLS9y+eRPnHNs7a0RaUp+d5czZ87QOB6xt3QQYxSS0mJmZI+t2UYkgM55bN28SVSpIGYESRDrhsMjI8yOMlxznhumpFsZnzM7O0htsoOICS6jnB7ewoA4W/u4viTWeIh9gygJjQCGCGluHNW+MIfOQ5hllWWL9ACVVuH6FwBQl1uR0a03ibh+pNVIIwOK9wRlDbku6/Yy4P0Qg8EhsaUL8mS2xJRhbkmWDe9ev94bSGqwU5NaEOIdRpINzwe7dI7A+qKkZeST4kUJSILEo8ApkjBcSZyztTptIh+Nb39lGCkc/P0TJKsNsQOfoOAzriJI7m5uUFpKoxsrKCXZ312kfHzA1OUe1Iqk2G1TTFGNL5CjKwlqLHcXaWONGfguvFyKFl1hnEEqFDBYfVNJKEvaj0ozU0Wokbg6v4XE4Z1E6QTgz2jcd1pbhjiglctQ8iLQanYO3pjnQKy2FsHjnUCr6Cx3F3aKtc5aXXniW61t3WF1Z5Nr6Js1mi4urK8QyYrI1ydPPPM+lWkx1YpKludN0iz4bazcZFgXOGyIV4UzIH9o72OP06ik21jd48v2f4AOPPsz//o/+V04tz7I4Wad7sM3Wzi75oGT5xBny3jG2tDz9xad55ZVLbO/sUPqC51+5Rq1W49TyDD//sz/DF5/6E565fJ2HHnyAv/aZzxDZnH/5G08xMI6L505yvLdNlAo2b73M4bTn4x/9GFs7+1y69CI31gU/8vGP8+ql57i1t4/JM1aWTnJw0OXf+4mf4Knf/i12eztceulrbOwckA4sjUqKPeojhSBSCgscd3poGdFsVtlt71FJNREaISOEVczVJxkOLChHaQwX7z9DWWaYLOOl1y6T93MeeM8ZZpt1Lg2POe5NcJTDzOQccVXxxIf+XZ5Asbb1D1k/usOnT53ngysnUF6QxvHIxQWstTz9la+xfPYMKk1AwcnZqe9wUmC0/wiSSAeHgz+net/akizLKV1JrDSVtMbmbpfDo6dZXDqLlBFpkpDGKUKAVhFSKSppg6uvvsC1G9eotCZZmF2+96ZvRIPAE+ZIszInkpU3VoQ9xg8ExnxmzGfeNnzG2zf9W4OUwflmzGd+8PmMEW/+ELAQYsxnxnzmLcGYz4z5zJ+FMZ95HeOhpzHG+D7BWsvnPve5t/owxhhjjDHGGGOMMcb4S6K0oTAbRxLrJMrpoBwbxQMUnlDg95DlJSBH1vRB5SeQOAfSW2wpR2q7UD82xuNkgXGGZqWGKS0dc0iMxVvIbUmEIrIGSVCzCSSGoJq1zqN9UDU7DyCQwo/UOhYnNHhL0OBGeO9wzoDUoX7tFc57hAiKv8Iq0jihXpFkgwHTU00KpznqdhHC4QiDDGo00KBjTSVNQnEMjRdQ5oapScXuUQ+8xkpBrKNwbM4xM9mkfdwnywtSQKFwwlEYwWE3o5rE3Nq5RZrETNZiJpo1mtUqkXSkwiJlBS8FQoRCHc4hcBjjEMJzcmmJahKztb3F4XHnniuzH1kzT01PsLqyEIpjMkJi0SLGC4cTFi2hUo2JojpaJpQOusdthsMc4x1FUVLkOUMrKEoHKKSIcC441gjvw/CHC8UK70DoEP3gRLBhD8ftR+dMIlBIr7DeEMUJ1oTzHWod4XwnjBSXQuLwoNTdjg9CSjyeoj/k8itXkVLzyEMPgBSo0mF8hidETUghiZRGOUfpQVgXCp3eBFt+LMaPioBInHBIKbBOjqLwQKiRBks4pBcooVhdOEUsaxQTGd3jHmtb2zwyvcTp1QdQStBJ2jg/pFKd5fiox9TMPN1Bm6WFOeJIcO3WDco8B19y9r7znF45xe7ODnfWNzhxcpUba1dQytLPHcKV9AfTWOOQ3mJ8gRRBxSmV4PqNK9y8cxVDRrUWMcwsx/0eOlJs7G7QmmrSas4x7A14//ueYHttnahZ5dHHHwdjENIw0ZzgPRffy4l2m2+//C1W5pdpNWo0J5qUZYFWEb4ocNYy2Zqge9zm6GgPlaYIpbh47mEmWxNsb69zdf0G3hTUY0k1neHMiTPsbLY52N3lfR94nNpcihKK9v4Nsu4uS4unyE3JfefOs7H2KsUQpieWSeIK1htalQmyScvexjaHqSJJqsRxRFqN0IVjc22NtBKxtdMmSiOyfpdqWsEjqFYr4AQKyHPDcTfj2rVbCG+YnGgxvbDA+QceIq022Npe5+hwi8IYOv0cRcLi3BSmk3HQ2SHSGbXKFFOTS8SiMiq4A8IjJOhYAcGC3QtBHGt0pNBaUa2meO+JIkVZRAih0VpSTVJqtQaNRh0hIyIdU5qCDpJYSmQUEyUx9VoFRupeZ+WoaG9HzgGSarURjkOAczrsh85R4im9YDjoo7REyQhvQQpFUVrK3FIWnjw3OAweiXOeYT7Em5xBr0uRl5TmbvEPDI7hsEskqmSDDN0fYq0hSiLyPMd6qNUjFmZPMMgFR50ee9u36Q80S8tzDLIOneMBC3PzFEbinWOq3kCaGco8oVltsnFnjf2jDu974hMkKsJkGd6WoXEoBHY0tOjxIVpjVBCNdDTaiwCCE5fzAodDxxHSj+IdPPcaqkoohNChQeNsuBG6sPdIKe5+7AgpEXen2hhFY76J8N5T5iH6wltDPIr5CO4V4edxzlKYkmLYA++o1iaIknTUQPLkWU6eD5iZnecnfvLnmKs/xb/60tN88IMf4pFzZ9jf3OSWvcHk5Czg6fWGfOrTP0nnziv8izuXiYRDyIh6vUm3c0wkHAWOielFyrzHV7/6ZRIZGtCzlZiXX7pC3Khy1Hc8/uQPc/X2Nbr9nD+68lUqSY31vR3m5uapJZpBlpFnmtMnT/HIo49x7Vvf5sRnPkNnb58/eerz3LxylULH/LWf+BGWJ2u8dullXr22xurCMnnSYmtjg1dee5lX17f48Ic/xqnWNH+8vc/xIA/uFIMuaST4ky/8v6wf7XDUPmR3d4esNPR2NtkXCiVinvzgR1EDx/bBDmvbN5AyotVqcNQ/RAgZ7lGF5fraJo3WNFJ6Clty5tQyU5NTZIVnemYBqbYRMmd2cZH69Gmas+tMt5aYVU32Ik/ZKSmMoxJFlEWfH/30X8HHKThHklbuqZr9aHGrSpWZiRZaatZ2dlHknFw8OVqc/P9+/94FdD9aU7C9u0sSe2aml8lLA8JTrzdYmT/BzPQCd4v+oUko7jUCbAUWl5aYnZlkqjVzL1Lm+4e7XY7XX9N7T9brIURy72/HGOO7Ycxnxnzm7cJnwveFN2/HEkLw8ANnx3zmHcJnhHhz8+2klKSVypjPjPnMm44wMOLGfGbMZ75jRYz5zJ/GeOhpjDG+T3DO8c1vfvOtPowxfkAhRrb9dwu6Y4wxxhhjjDHGGwjpiGWMtRKlNVGskcLjHCFeTFqU9Egr6PYVDoHAoWONFA5nwViBEjFyNHiSxBK8wzpLJdYkSYwSAucNveOcRlWjnKU0jqI7wLk+Ulp0HIWEKCyVqTmUihjmXfIyQ3hPFCti4cAHtZyKa+AjnFcjZfRIkativLM479EyuAQJ6WlUYxpVjSkdFd0YxQAYShsKKlrHxFpj8QgUZZGTeYN1oFWIMzDGIjD3iHPnqIucFESRwHtHo5JQTRM6vQHNRp0oVhR5UFkP+n3KySqTjQaFgd3OgPX9PmkiaVZT5lo1ZqYkQinStELuJM46vNehEeAc1TRhaWmePBtyZ2OL0K8RQcvoYWaywfzcLNYE9aPwUFIghML6kqIsSZ3Fu1EcnLVoIZA4mrU6LjLkOESisNagJJTG0BmWWD9EaYESHi2j0DRAjI5xVLxzMkR0KDCAwiJciMDwzmG8xXiBHjVxIENicU4RSwCHdEF9bdFEeBygvSfrdNi+cYsbB0eo2HH/hfMYARFq5LYjRipTD94gR8rQu00iJyw4j8JTAF56hBcoBKU3oAROeCQe6aORBs0hBdSrKdWTpxAC2ocHpLWYpFKhfdxhY3OPYX7MhbMX8VZQq1VpNhvUG1Vu3L5DqhRRHCOlptM+5vrNOygnmF+YZXp6ip3tbXr9DlMTDaYnm2iRsL2ziXVAvMCw3yMrDNYK4kSiYskjFx9iZ3eDhcVVbtzZYGNjDWsNOi65eusK3f1LzM/M8tILVwDL448/hskybq9f5+yp+xBWMjPZYmF2jmpFMDe/zO7WAbv721y7cZOHH36YxdYMSni6/S5pJebF157lqNsHH/Hex97H+toNhC+pRYr5hVUG/T7Vxiy1SpOdO9e4+OAFYi8wRY510GwtECcNzkzPEKcJ3oO0ipdfeR4lU6SLEEoSpXXqacZ+Z59ExmzuHnL+7GnywhLHMUpFWGNZXFhke2eHIpdsbBwwPbOJrjWxzmO8D8piFKsnl6lGmulmgzLWlKbkaP02cVrlcL9HWQ1qeKU0R32DNQMatQmWVs6xNLtKdnSM0HfXVbDWV14irA2GBMLjsSAcQoSis3ceoYJrg3NhDQkk0nukd/csovwonlGIEPWhBSgcSmn8SCHs7zo+SB00ysKjdWioOe/RygOWKFKkWhHHmiSNkUKjIk05tGAFiVJUU021mpJU0pESOFxz3hoiFYrkURwhoyg0bE2J9KAFVKKYSiWiWo3xPgm29WkNIyLOnj6PzUoGnQ4mz0jSCaqNOoP+gNI6mil0uh2q6QR31l8DW5D3+zQbS1RVxP0PPEpzZoF8MCSeiPDAoD8kiRO6/T4iqYYmjwxRb/1siI4iBv0h6D5+9Bm7MuyzHsMgyxCqi/MOU+QYa/BGkOcZeZ5RlgYhGLk+gLOOoizJihKJoFKtvR5P85bYzHjkcIi3ltJainxIaQry3JBlQ3r9LtIakrgCOHSkyfIhDoh0jFSSJElIkphmcxI8fOzTP86HfuxTRNYiI4194EFuP/8yXz58jqmZWU4unuLX/8k/ZqJWUokMk8KTWc9w2MP7EDfkLexsrZH1DZVmkzvX1+llQxqtBTa3jvjN3/sa73n3/TzwwIO89PILXN3axFhDFGvOnFzlA48/zhf+6Cnu7B7gTM6Fi48xNXuaj/3YXwUJ/+V/9V9weXMbIRX/2X/8n6C72ywuLXPx4sP8w1/5X1henubHf+LT3N7c4VsvvsCZM2d46P5TaFFBoYlkyerqSXrHPUDw1Be+gpXDMPDqJEklRUcxU7PzbN1eg6xkZXmJly59g0ra42hQMDgc0EgTHBEAhelzeNjni1/9Jt6XxGmVV1+9xs5ej5X5JTq9jG4vA6+4c/0ORDXe+8T7+Y9+/j+gVW3w9Ne+yTNf/QIvXXmNhy/cD9Jz8cI5pmoTFMaQ5QOmkgoKRkMWgkcuPMBLrz7PJz/yw1y+tcGl21epVCZYmJy+tx7/vKvS3/UUELC+d8xTT32WX/xP/3OSuA54Hjp/Aa1Do/wuBIJ7/wlQStKcaKH1JHGU/gXe/fWjuPvKf/Zz4t5zfjRpIjxknUNMlmKtDS4yY4zx3TDmM2M+8zbhM5H2f+Ed8i+19IXgxNLCmM+8Q/hMPhzy4uUbb+IK8/eGBcd8Zsxn3lSM+oJjPjPmMzDmM98N46GnMcb4PmE8jPLOwtHREevr66ysrLwp7/fRj36UD37wg3z5y19+U95vjDHGGGOMMd7JSHWM9w6pFKXNccqFWCYpkcoFa+JR4VdGmiRSCKWIhMeWQxQROmmghMKZHpkr8BR4FDUdA54oFuAFkY5oNaooWYBzpEL/f+y9abBl133d99vDGe705vd6HoDGPJAgABLgKFqmRVNySZYjmaHlJOW4FDtRpZwqO/6QUpUqlRRLckmWVU4ilRM50VARKcVSREWiSJECQREQQcxoAI1Gz/PrfvMdz7D3/ufDPt0QGcpKWUQDIu5CodCv8d595567z7n3v9Zea4EyKDRQkRhF7S1KpyRG4xwok0BV4pUgvsbjEAyZgHYV2kRXYFEVGKUxJscooaTGGAviUEoRpEKTxiQgG2OGEX/D/SN4fFVDkmBMglaaQX+bgavxUZVAhQBK4byPqUEC2+Mx3hVYGzvglShyHdgelgxHQxJroKyja9sHxqMBpuMhQLuV0Otk1K5ms1+ytjWic3mTmU7K0vwcSdZCB4VznjrVVHWNQpEaQ38wBDFoHR9Xi0Lb6EbWQUUyviyY1BOUjgO3c/F52wCT2uFVdL8PRgPGkxqrE3woKUrHQruNArKkTbeVkWrB1TXDYUnlJrQ6XUBTC2R5jlKBuq6pXE2iLShwShHqitAFFzyBSDwU1YTagzE1+MBkXGG7SeM9jESBD4GyKqlrh/cVCs2kLshNdGefPnuBO265FakD0m4hOrrT4yaTGiEgCkQ8PjjKchRFAK8JVUXhKlohBZWijEY7TekEW3qCrkiz6IQXmoh8pRuiV7GwMB9rMrQGNC5UpK20IVUCmU4wyrK0vEJZOi5fOEN/0AccaZbw/vc+SCdrc+XyGuPRDvPL89w++y5OnjxKXZyjCp61zS0Sk3H8+Cm2t/vYliExmqIOLM4vsrK8B0KgnaYMR9t02x3iGU4Y7FTccng/9955H2cvnaUqJ6gQGBQDNvsDVrdGtHTg1Pnj7F7Zw96lA1iVMD/XY2Guyx889kWeeu5P+d73fgCrNDqxXFu/ysb6KpPaMTOzm1dfe5VTJ4/iXEnWnWFn4KmKmtJtUWxtc/8D7wZJSFoJiUlQKkElLdAGGxRUAVGKYjIBPwJfQJKigcRoWlnOHXfeSW5aqMNCmrbJkw6vnjzF2uZl9uw+QE+6qBXN2QvnWV5a5NLqZcr6YnzNXSDvtLn7riPkWYZUE2pfc/zkSZwvWFjYRV70yKzBWBCt0coyGe4wv7KL++56D8ZYlFbUyQjbrN0m6gnR4EUQF5rZOLqUtUoI+OjqbVyVEhyKACoQlCNEZQAlseYGUbjgI1EtEILEGj0RrvfcSIgig0KaxClpam+k4Qubyj244SZW6kZhBBjB6IDSCqXiNaSa60UQRKvGed1sBkQI0giy1/+10UktXqhchVJQ1TWtdJZxf4QPJYfvuJfRyy+ytb1KWRT0uoaFNGNjMMSpAqXmCcUEmybU3jLbSRhN+px95TSPfPBv8fKzX+OBD3yM0tX4UKEstPIO7VYXaw3eOZSGPMtpZTlZu027M4N3Fa6Ox5QkilaSkdmcJMkwVlNPhqTWkhhDkmZAwCSGJIn3DWsMSulY01EVmDQDpUmSDH0jde5Nfzv+JngfuLR+DecDwQs7wxHj0ZhOu0WvN0evN4duqitoUvKAb47m/6ZjFtq9DoTA5tmLnDt5jt7eJepeh4mrOHXuDGcvnaIYT+iPNTb06Mx0CKMxrvIs793PoZV5nj36PMqkdDszHLn9duayDt945TmeOn4RayzKB5545nmOnz5HKbB/126uXL2CNZpPfvJTpBPH+l13MyieZqtf8fiX/wgZbbGwtIfF+XnW1jbwElien+M3PvurDMd9PvihD/DhOx7kkQ9/mC88/gWu/Z+/zplLV5mf30e9WXDp8jr/8Y/+J5x68WV+86tfZu3aGq2ZOWbzFu2FBSgmHHv9Bbpph/ld+1jadYiWNpw7eYqL20NOn32K7UnFQm+JmVzRLwe0uz1wsDMe4gVyrekmCROBQ/v2cnl1jQO3HuL2pX0kvRbnz15lde0ai4cO85/9/f+cV7/6FGeOnqa7MMMf/8H/A52cxf0HeO3Uabwv2DMzT57l8apuUgpFAqv9AUdPnuB9R+7gyO33kaUZ999+Cwf3rpBaSxBpkgr//y/LN4zUwtzMLKN+yakzxziw7wjWRsEvUa1v/8PNL9GKmF6j9F+omV3nC9X16BZikg7XBdJvEgTi++YN2aO5n0kQJDgmGxcoi5m4CWGKKf49mM4z03nm7TLPmOuJVTcRgkznmXfIPJOmCTYxuNrflLV1+vRZzpw5y749u6bzzHSeualQSqGbxMI3MJ1npvPMdJ75s/grv+kpSRJ+4zd+g6WlpTfl8X/nd36Hxx9//MbXFy9eZH19/U35XVP81cZnPvMZrl69+lYfxhQ3CcePH+eJJ57gk5/85E35fa1Wi3a7fVN+1+AgaVoAACAASURBVBRTTDHFFFO80zEpK0KtQCl0HhAXqJ1CJ5oaieR8UBAEH2oSNEhF7SsMEMQR/ARjc2oCVfC4ICQGRBxeQPuAMzU+CCGUKB1jzVUaU3YsCePK431AK4fVFi+AtmRaQaqQYEBDQOG9pwpQVSNmWjPoEPAhRMJXSiqpCM32mVoqNJEwq0OB0TlWJY2X2BFUgvM1ta9pJy20sQSJj6W1QUzzSCKI8jQ6AYkBo6JLb1wHek1KkRdNb6ZNa6aFCx6a45Lg6XZTZrttUBrnHNVwgjYled5mYaaDILha2BxUrG5dJksNnVZOO7UE06Zd1RgDda1ZLzzaWvA1Nk2REGvczl9cY9fSBfaszJNayDNNmrRwvsYn4Fx0UyoCGiFgaeUWH4Q009QuI8UyKWO8vM1SMEIrgXY7x0mCK0AbzaQSrAXnyhgxXxQYY8kyE930CkJwVMFHDjNojNLkVpMkKUprMIGQJmgdhagQWVOMCeRZhq89iYqOrc7sHKuFou8UReUJUmOtwQJGeUSiU1uFSLrENRErJ5S1DWkWN6xoNCKGoDVGoivLe49ohUFQyhElhFitJyJoFSKhwfVNBobezByHUgMhkFhNVQliFEF5EpNw/933cWjPXv7kqSdwvqQ306YsCpbnd3HolhavnX6V7Z0tgiSUtSatYWdY4GthOBjhK4ejqUVRBicOpYS6KGh3e3RnZ1icnSX4gEk7rF+9yu23H+TwwUMYDXtWFhhuDRmMxrTnZ9m1vJvxcIvO3AztXofLV6/Sbuekto0J0M7bvP/B97G1M0Rbja8CZTEi0Yr77343JtH0B8JgMmR5fhkxlltuuQ2tFBcunOXChcsc2L2MNZpy4kiUResEFcCrgKtqJq5CJRkimpnWDHfccg+JzRuSvCG/RKA21BIw2jCuCyTAzOwiWTul251jbbiGMbBrfobNzQ26c7NMijEIGK0RH7i6vklmLXU1QBnNZtFnJm+zdu0aWbqDDi12Nod40WTzHQ4u7sHkXRSGYjxBgqcsa4JVKDFNAkFkzSMRb2PCWBCCaML1QCglGK1jlYH31K4iiIdgY1JUkkXXNFGgVeJAPOBjNY6AlyiraaUw2kRBwFy/cuM5ChLJfAmCEnBEQTZCgcSKk+BrRAwiuqHsQtwko2J9T3Aeay0EHauAokKGAEHRbADLMUqhrEZ7ReVqxtub1PWEyUSzvLDE3kOHePnoS0zKmtoFtPW4kBJCitKWVHu07dKf9KlDxcbmJlmes7494tr6NXbvO8gLT/8JvbzN1Y3LiHEcvvPdzdOJ9RSmqfsJKsQ/N/dq3dQ3aB2TGYw1DVnepHloE//eJFiToE2CsSkKIbGxgshojbEpSZI19TDxPkhzN1A3WSkoyrq5XwtzczPMzM1FQeP/853fznX6rWhoWK2ZP3wA3W5R1BWzWRulQVmhrGvQljoEvCRMtoaI1AQXWJ5f4Md/8O+yb+kw3/fX/wZf+f3P8ZmvfBGthNoXrG2uU0wmtPMMrxRr65u85+5bef3kNo+891EuXjjL7/zmZ/jZn/vX/PUf/AF+9Rd+nv/1t/4d33juRT76se/jofc+yr/91z9NGSoO7N3Nww8+xJ8++RU6nS5f++rXWF/d4OH7bmN+aZbXzm2ysrKPdz/wIToYtra26Ng29WCITi21K9i5cAF2LbJ7eYaTly+hnGFSjdl/ZJbTx15ke2uH9z36IX7s73yKjdde4Bc+8yt8z0d/gCuvv86fvvwsTkFVjhBXYpWhKiuKTDN2Y46dPMHy/C72LszRnenR7fTozfXYGmzywUceYFcQDn3iY2yeusb2YMjmxg62Z9jTbnPw0BGe7C7THw64unqVxZUlZjo9rhPmHTSTtR2672px38xBQFH5mk6eYo2N6/y6c/hbXuHaOxTx/kfzueeNtRGJ+kN7Fnn/B97LwQO3sXr5Gk99/ct84gd+iCzd980b5r4FWql4bVj7xn3wz66uJqk7iovx3hXd9B7vHXXtcHVJ8EJVV0yKMWUxJm+3sWmbmXabVruDMZqqKNlYX+Pkydfon36B4UN7WXAVaZb+e9b3FO903Ox5xvuS9bVJFLTiuy+gCME3VW0KpRVbm2N8iO9f3rsb12UQT3yP18AQrePmIx88CsVsr0O3k+JEoZVDG9cI2tN55m0/zyiN/HkL9U3A/ffcRqvbuTGjTOeZ7/55ptPJ2Nke35T1Vdc1zrnpPDOdZ94mmM4z03lmOs/8WfyV3/Skteb9738/e/fufVMe/3u+53u+6euvf/3rHDt2jJ/7uZ/jypUrbG5uvim/d4q/PD760Y/etBQegPPnz1OW5U37fVO889Dr9d7qQ5hiiimmmGKKdwR8aRE01iqCc7g6oMRQisdmhqACwXuCUzin8K4gScGqEGsgdE0tFaNqDEpwIRLnLgh4wUlA60A7CTjnKEpPFgADQTy1VygpCSIYGysVaudiVUAQKldiTUYpI0QqvHiCKLzzJDpvKgsSjKoYlyW18mglKK3QWmGTHLRh4kZIEBKlER2wSYILARcmeF/jak+adEiUgeAR75Fg8FKR6JygiGwZQsDQbVkSG4f12ge81yCgE8vs3BJBWcaDHaq6RougtEfjcbWLziLAJvFnnKvwIUazJzZhdraDpkdRVuwMx5RJydWtAcPhmNleF6sT8rkVnFjK/jaz7Ra+rhhNxkyc8MzLp/joo/eRtARRGqVi8lGMo6+jS7kRVkTpuAFIhegYDBVeV4iP86c2BhFD7RRVAHEBsMRer5I0MSQ2g0wotEOsjrUZIVAVFWVd47fHWC1kWpGqgHeRlFMojIqDulLR7SVKExBSk5CbhLF3mKAwNmF7VHF+Z0wtilEJ5djTaimQSKwqIhmoJKC04CWgBbRocmPJrCFoRS1ADQaNloBSoKxBKbAaUmNR2kYDF28QhLpxtPpGzKIpR0nSHBUiwWO0RG42NO41Y1hemOOR9zzIK68/z2y3xeUrqyQkLC8vsbO1g9Gah9/zIPfdeoBJ6VjfHjAcF1zb3ERpYfXqKsGPCaLAwWx3lqA8586fJG/NMB7XbG+ss7w4z4P33c/evQcQNHU1oaVTdG+GztwMPmhWFmY5e+kMne5udu/dz7nz59AmIc3bVJMJWbvFnUfuoqoddTGglopWt8vK0goGYeJr+v1XWFqcp7NvN8WoYrS2TavTwQdBJYZWt82ps6cI4inDfvbtPhjJZaUwSpF1WiRpO0b4t/Lo7Nc+un0RlGi0TcjbLfI8j2u4drQwFF6TtfayvrFGq5OjQhupa1pty4XLl9ECudVgmnUdHL4qcX6CzhMyLezfdyu7FvcwGg7odGfZWltlOBjQaydoH5jpzuNqz9bGBoWrScSzODsPKuCJxH70zAtCoCoLqqJ8Q0xEI6KbTVEQnFBOKlyt8LZxDKIgBNCKEALDUUFZ1mSpQmtwjbholMETmBRjqrKk1YmCGiLN+QKRQFnW8fEa+VMp06xbhQuCqz0BQakaRbgROS/BI9SNQOPixkHRcVOqCMEHgnc4FY8HLYS6xvuaMydfpvY1M72F6NpOWhTjEleXGK0pg2arr+h2Nco45ucXWF5YQWvDjJ/l1JmXubi1xi17bqHT6XDp/CkO33I7c4u7oCzptHLy1hzSnMfo847cZLxXgDY0Tst4D1EotErif80b0fEhqEbg01EIUGCUalyfGm1iSocxttmsxo1khOu4mfLAdee7SZO4RrRlodfB/Hkyhai/4AD/zLoDtIa5lUW899x36CDtLMe0WpSjAQgM+n3yJOX+e9/Nq68+R6k8iSs4vO8g/8P/+AMQhPVLl2k/+RjjYoQLnk6iWektc2jvfp4/ehSnHU+/8goL7WXe/97388VLq1xZXeWLn/8cD7/nAYIWksQyHhf42rF58SyPP/U4Yxf45N/8BMPLl8izlF279/DCsT6vnjjB6yeOc+j2W/ln//y/5+gff5X9u/bzH/2dH6R/YRXrPDs7AyY747iJQYT1zTWubWyRJ20O3fYAV84e59yZE3R6i4T1HQZbWyzuWuSJX38OUfDEk49z5cJFRIThYEBRlrSVQWuP6XTZs7TCiXOnSfKcex98gMnYsd0ZsZgusLm+QV0HnnnyGS4fPc8//Ef/iMMP381n/+X/zI9+6odZ39qil+ekScZdt99Jf7BDls2yPhrSa3VvfGaZnenyQx//a4QgnDp3hkk5pmzel+48cISyHJNYizEGlGoSOiKMju+DRTEBhFarDc11o4gpClmW8cCDH6SVzTK7bLjl/g8y01v5tgKByPWKTkGJ0M7zeE+p6xvE//X7UFXX7Oxssd3fohgP8bVje2eAsYa800EJ5InG18KoHDMzM8f8/DzLS7tJ0xbDwTavH3ueV4++wMnXTvH6iTNc29xi/+5Ftja22F2WdDrd/7ALaop3BN6KeaYsAiEI1z8rfjsUuL/oyL/9zxXbXF174+ssT+LmodkUqxWpmc4zb9d55sz5K/QHN2dDCsB8r0t+PflmOs+8I+YZe5P3AJdlMZ1npvPM2wDTeWY6z0znmW/FX/lNTzcbjz76KI8++iif+tSnuHbtGr/0S7/Es88+y2OPPYZzblpx9jbCnXfeydzc3Ft9GFN8F+P6jvCbhZ/8yZ/kt3/7t6f3mSmmmGKKKaZ4kyGZJ+Aor1MwGoxEkil4YhqTF7wHqzTBC3UhaK3x2uEDeB8rxAKaNInOvxqHRkVCKwg6ENNRUFQeVFBoNM5JdARKQIumFkeionOtrB1FVeFdBdqjEvBl49bzCm2EcVkx20mxJkVCSSUOFQscSGyG1p7gIgEngNMFpYK2tKikZOIcRkFqEpx3BCxKaZxSFN5hlQJjSAlAjgsSiTTjUcbQ62TYJMWomuBrvKu5dvkyQQXyPOfg/t2Mi4rRzhbtzOK8x+g4jAdi/ntiDUmaEoIHqRHnQGfkCbSzLj6UmKpmOBpRTArSLGXWtjALu9gxGeDotRJGVcHy3AxXt3Z45uhZ9q4sYLXGKEWnZVmcnyU3kPsQz32o8AgiJj5PCZF0Kz1egRZQ2pBlBqXj16Wv8WWNTQyhFnzlIXgg4KjIVUqWJGByglWMJ45e21DVQn80wk4c3gfGdSBJUzINk1DT9RaTRL5PN47OGIBvms0jCa+fukxZe5zApY1tXjpxhkfuP4JWmqAMXiQmhAVBVJP6JAqIUfsKixBANEECLnh8EPIkI887jAdjQu0IyqDEE58VNLlQxGz8JiIfhQqCIUT3P6rJzNegLAbTbI6Jzt5di4tcm5tnZXkXu3fvZ2e9z4XzF8lyQwjCYDwhU5DZjOWFlKVlhbHw0isv4l2NhCjihUpx4comoi3rOxPKcxvs2b+X8WDI3ffez0yrR11OcKJQ4ujNzSPbO7TzjPGk4sL5EwyKEV975hn27N5LKy1ot/c1176N15ZEgl1pHYlTH1A64LViONxCGc9tt96BFrBKqIPnxReOsr2xCc6T5RkH9+7n/MVVtrY3CSpwaPdejG6hVBq57Ibt9RII4kiSDKmiwBiUQiuL0hpDvOcoBTqNfxdEEVx1w/CnRDPTmeXQQcWFK+sMtiagIbdCK1FICNSuwo8KgtY4X5FmOdakKOVJtEJLXMFb29us3HInrdYMnW6Lbzz7DIszs1hjkKBjihg0VWINKW0saZZTeYdNskhCG9VEqGuUCrRaOd6NSXQUQGicz7qpdGjlLYrUNKclRFFPBFExtSLNcpIkEtlW64bUDzdc1MYasEl0LyoT79VEl7BWUdAS7wjeEJoNWaE5fnES16+Nz+s6nRxFX0dRllgJjWPaYJMcUTDc2aTf30GLZXP9Aps7l5iIMC5LslaPrJ2wtbVON59jad7S6uyiOzvPxTNPk/d2Y7UlyVMO7F5hfbjBuYuv43zBBz74cU6/8jxlKNgZbjVCiG4qMgLB1Y1opzDaAhpRjhAk1kXgIgt+fXOaimKRXL8+NY26wBux9qJROgqFIvHKNVrFe7W6vqHo5ssE2sfXyhhNq52j9J9zDH/hoX3zN8SWRsXo0jU2aqHd6mC1gVCxtb3N8u59/IO/9aPcc/vt/NS/+O9Y39mmFsWXHn+CT913F9eeeZlXjx8niENrQ2ZSVnavcMf+W3juhWdxUmFJOLj/Tm47cJAkyfiH/8V/yXh7jd/+/P/FZz/zyxy+7V3UvsKHwB/98WN87ct/wEgMczMzfOmP/pCrV6/gxHFpbY2qEjAFrTTl2sWrnH71OJc2rrH1cs2Xv/B5bAqH9h7k9e0t3nXfA7x69BmCVRBq2pnmI+/7MCdOn0KnmocffoiP3vd+/qdf+xUuX7zAP/9v/wnDyVUmrmbjXD9evyT4KqCCwnZmETdm395ljhw8wrge84EPf4Qf+5G/zy/8i5+jP9jmjtvuYmdjnUFRMp6M+L4f+35MlnF+fYvBTI/33noYd86zU1eYsmR2do4TJ05w5vwl7rz/bpa7c3RbeePij/8UZcmvffY3OXzLCp/623+PrdEYF4TL17bQ2rF7ZRfD8YiVuXm0VjFpQUJMjZFAUfTJszzexyXet2JCnXBgeRmFYnl2lqV3vTtuzgwhCoeA857RaEhdjBmPhlzd2KasCnb6Q7Y2N4BAktr42qcpLWvIOj3yToeFhXmWl1eoyoI77plltjd7Q4DQxuAD4D2TyYS1tXWeevIbnDj+Gi++8DRXVteYFBVWgZaABIcWz7C/RTEZA4t/iatpiu92vBXzzJ9NHnizURY1ZVHTHxQYren2HGmimO/NxHnGT+eZt8s8s765RXETjeIheCpXT+eZd9A8493N1Wi+/KXH+PF/8J9O55npPPMWYzrPTOcZpvPMt2C66ek/EHmec/DgQT796U8zGAzY3NzkZ37mZ/jFX/zFt/rQpphiipuEn/7pn+ZHfuRHmp7gNx9pOo0un2KKKaaYYoqbAWdrYnpvJPNRQrjOowhYD+I1KkQ3HgHQCoci0QYCOIlEjBKNVgnelygTnZDiQWMbYjAOoMHFygdRniyD1Cq0MhSVYFyCKEvQnqCFWgUm9YTUaLSSyEcrBQFqBFfVVG6HVFsg4LxHS0Nw6UgCEwIhKLwXal2RKMNEF7jgCCKxVi+ztJMErQyogAXq4HEo8iwBcZAolIAR0CIYEwn4oJrnqC3exi53A2TdLlolpMaSahddS6Ii2aYUVkWztRAAjxKHJmBUilZNUpHWKGXppBpPaJoIHB0zwYdA3eoxLgvyTkayuYkLjv275li7tk2eW5aWlhkVE65uDzhxaYNObjmwp2B5fo7EKpQGRxlLD+qKyrsYY+9rXAhYrsdOR8IxsRYVQBvbpDIpxLuGTPRoAkkAk8ZIaBUEa8Bqgy8V7XaKrx02TXDeM55UDIrAxDlaVY3NINGa4Gp0sJFMDWAVDUkabpDLF9fWedgdxjROc6OiX94rIdGRWI5VDjSk/XXCVFMHjXE1+ECNYEwkboNEJyiSoJRGA155UCqSq0IUDJqKRpqMKWnir4NEEUgpQEWiUYjn67Z9R8h7HaxKmJ2dIUksSR82++tcunSF5Zkuvdk5xmXF2sYGJlU8cP/9vPLKi4wmE7yzgGJ14xJFPWBxfpEH776X7f6YS5evsHptHWYcM70WvbkFlITGwR2D7LPMsLi4wMb5ksF4h/vmZ9m1vI/MWFzQjQu0cdnpgBIVv9LxMZRoOt0Z9q0cIbcZwdfoEGilLY7cdTuTapvTFy7Rylq00hn27TYsL8zjgseQEEQAj8XEcxd0s/YbOUUaUtfEc6+a+g3vPTY1sfLERwp7bmEP5dWL0XmMIzVt7rrrYcS8zsbG8/gQN8y1Oj02t66R2xZ1qGh1FlhZ3k9RTJidnWOwvU2IXSUYlbB/30Fme/OxHrFWPPiuB7l29Up0Buum2kUMKl6pQFyP8et4/KI11mSx9k7rSFhLIIQar9IbYpI1phGXGr+qWNA1QZsoEOhI7V6vOFC6eSkUN+pzJCpWZKlijKDxoENzXpu0KaPQNomPg8RNgkGaulBIk5Q0tTQJ8qBcQ5ZrVLC00oyyiD9rTKzF0cryyAc+zoWzp7i2ep5ey9AfjMmzFsu7dxGGVxkHYScJ7Nq9SMcYjp94hdbsPGUZaPkNBsMRt+6bI9Wwa+kAOjPsrF+g39+m013g8O7DzMwtkVpLwDfpWSaS/TSnlUYY0DTnOMbhB+FG+pHWCucDZVWQ2SSucXXdhQ91VQJRsKl8iGQp0TXtXXhLpIHrpGrLaIy1YAx5+zvnClVKEbzn9Vde5rGjz5JquPvIbXzjmdX4fukq1tfX+JXnn2akNTVw4dpFLk/6jM+t8sUvfYnfe/wLTFxNkigWe0v01/t85fyT9McT8lZOr92hjeEPH/tjnvjTb/BP/5t/yv33PcTfVp7TFy+y3h/RW5hlfHWD555/Dq09H/3QQ3zo7geRmQ7/+6/8b2wM4wbFuo7JEMOiYFI6fuv//j+4dvUSYGllCqsDf/JUTjCwYBxprnHAQ49+gh6OF1/+BiKOhd0r9AvhX/3bf8NwOKb2NRv9a/hEcfutd7Nx9TK1L7nnzvdy7PhLVFXJu+67l/W1q+zsbLG6scGd99zL2TOnOHnqOGjFN55+jtdOn2RjNMIozbPPPcczR5/GB8tLr73MI3/zIxw+fARJc+pJyYtnzvHFL3yey6ePYY1AJnzw3e+Nn8PMG8KVMZpPfOJvcO/td+KVZqbTpmUTbju4l2FVxCtcmxvEfu09x0+cZNC/xq6FLpnNaOVdMCmTSYFJDHnWIohQlgWVq2m1WhilqeuawWhAO29hkgTnPFcuXGBz7Qzrm1c4fOe72XfgFqrKUVUVczOz5FlOlmVYa+P1ooTgBWMMTXgDEmLyy87mJusbG6xeu8YrR1/m9PFTrG1eYzIa0VIVBsXVQUHtHIlWWGMRhLoqcXh2BmMmo/53bP1P8d2Jt2KeeUssmgLeB3a2RygFW1tjOr2UtJNM55m3yTwzLL59etebBR+EUFbTeeYdNM8cPLSPna1T39rM9CausViZOJ1npvPM2wnTeWY6z0znmemmp+8Ier0evV6Pn/3Zn+WHfuiH+Imf+AlOnTr1Vh/WFFNM8SZja2vrrT6EKaaYYoopppjiTYJIQ2oaBWLx4qOzSWuCM02sfYgFYh7QHk/AojGpIk8SJEBVB4LUaKMaQlAhWuGoqUIFEkgyTVkJPgREBUTH+HK0IsnBu0hvKQ8SortTG8Fm0SnjE6EqGzGDihACWgxFpVBBo3WCNoIPUDuhqKvYF39d4/CxkqoUBwSUNugAtasZTgYo2mQmRSuDdwWomnExQIA8SahDJM0zJUBKkEBqBEWC04aEgFWRbg11rMpQIZ6jJns8nhsJGDTWKBBHKD1KostWkkCSpyhl0EY35z8eN8ZGwjoE5pRQu5I006TW0ut2GYwnHNizzObaFmtXN5jrdui2MrqtFpWrGQ7GvHziHMZcYq6Xsbwwz8JcDy0gWBKEQjyuqiDEePi6GFEqR6fTwyiNVwE0+FBTFtuIJAhCKApM1kIjeBEqF5gUNbI9xGIYTwqCF5LU0LI5udW0rCahZuJrqlpRVAXeVVRVoNfzhBBIjaZDQq/TipuWVNzEtrqxxcQXdCVm7kQBSlHXoFygcnVT1wFZmsSaBoklDk5qhAwh4GqhDgW+LpEswQdLQnRWKnyjaimCaq6B5rrxyqOaSgiPIhGa+g2DJxKYuvn/RjSYFPGC8wHxnjTNSLRleXE3SiXMZBkb2zsMRkPyVovVa6sszrbJ0pzN7Zos16QthZeamZkuc+0Z1ja22djYYs+eZZbm5+l2OnTzHKsMXgxB+1gJGTxaGfbtPsLK0iEuXrvKLQcO0jY5ZTlqBJKa2lXYRvTwSEPcG7wWLILWcftYXU1i5YXETYuZzminHYwKtNOcvJVQFZYQAlaZWA8TXHRSqgwV4vkLxLpKI5agHCFEZ7qIRweNCgK+IgRDICFIFGxM4/i1pon9N7FaZKY7S5ok1A5smtDrdEjUCv2dLXYtrqCynEsXznHn7XffEIWuOxETUmbacxiTEkKg1enRQhhvbpIQ49ADDi0ODY3j8HrEvmAkkq8GhTY0MekqOhWbuhAB3rCGR7JaVIg1C8061miCkiiIGIN3DpGYSqZoHL2AUlFsqb0gyhCUj5UHSoOxSPDx8UWjlcYFhbJReWjaIm4Q6iLxfMb1bZvfc/3YGq1JxwoGJQptdBRCE4MOAaUTlpcWWVtf59bDd3DsuYvsTPq0sw7Kay5cW+PWex9gaXaJoDwvv/Qi7TQjDUNGRc3BgwcxieHEsef56pN/xEN3P0KezpJnbaxpRBPv4nm2cdOZaE1QscbCKAsKbJJFR2vj8I6vGYgKWBVrHowmisE6niprE4xNQcf3Oq1NlMtMdH1qdV09ublQSqH9BG0M2hhMkn7njkMg1I6TFy5w7OTrFD6wtLJCkiTkqUUr6C0u8649Szxx7GmUTRDxjN2Erz/5NZ45fwJRQqczy8r8HEcO7eHc2dcZVzv44HCVpe9HjHojZjodVF2xsXaJJ8+fob28zGh1jS88+SQ2ScE7nHjml1tcXT3NuV2H6J86zdpOHyeBhx96kGee/TrDqkZrhUG4tr6JMV2W5rqMt9ZY2HuAyaUNxrVje2uTAwfv4MK5E1w+f5o7brmN+x56lGNHn2f93CqrZ1cZFEM0iqzd433veZTtzStsbW3TyTPGpXD5wmmsbRMCDEZ9jDG0W20+/KEPcPe9D3Ds1Vd46bkXePX1VxkUOwyv7JBo2wiiLZaWD/O7n/tdTh57kbtuP8Jw914yrcgTSz0Zcc/dhxhtXeXBh97L5vo2J1YvcXBpNzPtFkZrBKEKnvfd/yA+eCZ1zfrOFnsXl+PnshBYvbrOuJjQyVNSmzAZF3zu9z7HrsWU5wcbHDh8iIfEU0vCyHk6Mz12L+1FRChdhUKRGktiLJlNaGc5qCjK6hA4ZpyW4wAAIABJREFUcOgABw4fYDDcYWVpF9ZkzbqEEITGXN8IaoIPnrIsGA9HrG+us3rhNJfPnufKxQucOH+JjZ0BUhdoH6t/jAqkwKj2KA3eeSoX33dqHeuxoh4oTMoJ49HNq4qa4q8ubuo8k+tGpHtLtj41zxecC+xsF9hxTbeXUpvpPPNWzzMSbu6mJ5QiTOeZd9Q8UwQ4ymlu3tbLaFCbzjPTeeZthek8M51npvPMdNPTdxLtdpuPf/zjfO5zn+NXf/VX+fmf/3mqqnqrD2uKm4CdnR1+7/d+760+jCneAkyr5qaYYoopppjiuw/BafD2DVJTqUhTKU2sAQPEYrQ0E6EiYGIvesOdaIlkq1dNLD5xY4pSGm3AKoWrKhya4BVGeUxi0MqQWoUEoXABaxVOQWLCDWdpbjWWBGsTxNX44NDGkGSByRiMSlBIQ4IGjNb44KNjV2uCbzYf+IakUwqnAjjQNn62qQP4KlDUY7TV5EkeN1VJxaSumVQexGNMwImgsSRamO/MMRiXZJlmNk8xOiYSKVGRmJKAEYO2IDq54QrXEm70xgeJ5K3WoERHUg5PNekTgsE3ggAIWguRlo6bKIKvsEBXafxAY8UTKsf62hZeAvt3L9Lq5KgQqN0EjWZ2pkO316asKzaGBRc3L9DLUg7uWmA0EWY6CSJCajMEjdEw0+mSKkF8QCtBK0Go0FphbYYC0iShUqCUj856rTAa8nabLE0JtUMnBglCXXtKV5JogycSj+3UkuQZYAiS4CpPp5Wyvd1HvGZnLFH4VxrdxLUPRhWTUqgFhGYxSiCEMWINzlXYxBJqB+gbIoRVHgOYJCMojVdCkJKgHErSSO2LwkhchOr6mm5YEcHHjXpNRL00DkulolszzZP4c0HhRWFFAx6lhaA8oRrj6kAQYaO/zv79+1ma3U1wNQuLK+xs95Gmzur4q68ynkywiUIIaJ1xaO9eDuzazWhnyEynx667b8UYTZb3oHaNLKGJgf+aqvJUkxIxCl8LAWHv8hKttI2r6hghLgpXVIxVQNsK5T3K180a0IjXYECLpiprJpMSFXf2UFYlHkOSpbTTNssL8xidUNee0XCA1glOYgJbVZfIzBwSAkZo1nHJqFJYFYnz2jtcqGPVQWoJlVANR9QC4/E4OqeBUBU4P6GuHJOiYFJWBBUJJ2XiGlQCqTa0kgxfCYnV0Y2ohCuXzjMYbNNr9QgiBKlxdU1ZTKJz1piYYmAkvs7qOlUcV4B3DgmBIB7BxzoZF8AHJMTzrJr5KaDwQRPE45XCO4f3glIxmYHm9UJ0dD1L3AiK0vEaEYMWhQ8Vcp2gQzDa4jAgIE4jWeO8JiDB471v1r3CEHDhegBGlLBQQlCBEKq4NqT7xhoXQatGKCOmAoTQKAzNNRh8QIkmSTN2rezi8PIeVi9fxmmDNgmJzRkVQzb6m+xxh0nThFZ3iU6e0w4zjGvNnixD6cCFc6+wtLLMkdvuJEk0dZKilEWMwVhL8IHgPBIaQcNaEpthTNo4ywVUTCzQJtJ/XqL4qnRT6KI0EC3moTkXEkDreD821qBMU12ookNTqzeEwZsOFZ2vWhtm03bz2v4lj0bie9Pq0RM88cJzbO9s0O30kKpgQlwr25vr/Ktf/nlEKZJUIz6+Tz71/HO89toJ/sl/9V/z0XNnqR187/d9lMXlRT77S7/Av/z1X0PrgrKaMPLC0VPH6aQJ+xfmSBV8/vHfp7u0wrFXXmfkS5IQ0KnBJIpuC4IfcuXScXaKpmLICzvrmygCvqioNJTE9faB9z3I/vlZ6lDSmlvm6hf+kNQJnd4cP/Lj/5g//l9+kafPvc6FM2ewiSI1Gl9XaBPIkpgKOC4GuKLmQ+//CL/1734N0ZZ//OP/jHsW5vk3v/LLvHLlLPMzs5w6fZal5VmKqmKwuc19993L7x5/ne3+Dsp5TJISxDXXszCTGX74R/8uv/9ZyG3C8QsXGV1bozM/z2p/xF/78MeQEu5794N87emn+cqXv8TS0h7ec/cROu0eZy5eZvfuJdqtHjrRbOzssNXvs9DtYY2hk6SUVUERHMdPnWNja5W9i3uQesjORsV2/yof//7vx7ttVvbdTbuzHFdN46JuZ1m8HkSiwE+snpEQP0Ol7Q7xDhOrQrQyzcKJ14xz0SEdvGO7P+DSxYucP3GMF198idXVa/T7m7RMRRoswyqwUzmCBBLi55lEAyL0vaN2MJsZtDicF0IjPMy3NHfds4+dKkcFhSuLv9y6n+K7Hjd9nnHqLYp6+jYQcKWn7wqylidp++k88xbOM61M37SXPs9S7r/nTrRNp/PMO2ieMTa7aWvsDch0npnOM28fTOeZ6TwznWeA6aanNwX33HMPn/70p+l2u/zUT/1U8wF2iu9mTCYTjh49+lYfxhRTTDHFFFNMMcUU3wEoBSrxsQ5ANKJ8dIwBRglK2eiIRKOwkcrymtQo0CWVrwlKCCJoY6PrWYO1hgyJG5u0xnkhsaCsQYlF6wABvBdC3KJEqjRpFqOFBYWIiy4gKyAOVHQYe68Qb1jstknTPBI8PlDUQzwBY1KsTtG6jQ8Oo6PTMqhIcioNnpjIglIxYT5EQqmb50iIBFGvM0fLVaB0dIE2MewohVWBRCnyJLrJXQikVpEY3TyWQgUfK7GMRquABB1d6NoQQg2iUMpEtgLV1D1oVHAoH4AKFyKhEwTAISgqF89Q8BXGJvQLwWhhpz9BfKA/UCzMzdKdmUFcwBqFSQ2iFLXzTCYlqTbsX5zHBaEoS7YGY06ev0y7lTDbadPL04ba1CiTIKEGfNz4oTTeCxIUJsTKCtMISKAQ79E2JUtzXDWglSbUEqidRWtHomNtnQvRheV8QGuLlSgqGclAF6RJAlrRyRKUTTlz8QpV7WMlg4ZWljIsFas7Y5xziNE4EcQkaGOwicEoSBPbOEkVTqITVytNnqY4FasWvQsUupG4jIBy+Bt6ViQQo0srOqaDCm+4ShFQIQptEuleX0eXqhKFqLhpJlGKVt7BqISyrhAC+/bsY6bTa0jI+BqJ0uRZysG9+xkOR6xtr5LaQBUMvlIcXD7EnbfdxqjfZ35hjuA1VV2TZB3G/U1EB2pxkSwVIU80rU4LpSwhc4jo6FJHqEOJBFBGk6SWbivD5h3wgnMT6qqG4DEqOhIrJeSZZaaTx+8jIM4xGBYkxpKmnehUDoEsz5ntZOgkpXQVXjzSj6VwKAiiIQSsSZmZmyFJ2yAeVwvjJAMjaJuQzsxixwNkMibVmtSYWGFoUgRIbcVMq0W72yLZSTEKahQigpPIT+RJxsLCHLsO3Y7J2mhr0CbjyuplWq0Mo4gpYkY16z7WtnjvwTd1DKIRiSSzUjEdTnBNmYWiqEqG4wGtsMhkXIJW2CRWQigtKO+pHUzGI8qiiNe6ihUGWkXxBSuUVUF/Z4skzTHW4VwJIkzKCvGBrDVhPJ5grUFRIt4hoqirgioR6rKiGBfE1Wvw3uElUNY1dTWhrAp0UTXPSTXx/4LzNXVV4+qqERAUIURSvqgEJwrvA3Vd3BDOggQkcupU3rFvcYm1S5cxktNJM/rbQ4rJhF5nDqUsRVFz7epp7rnnQdYvnWFSTSLp2ZujlbT58Pf+MFna5vzpE4h38Z1AabTReBel7OvGci0aJYJSQpJkFBN5Q9hWoHSsJLIKdFRtmyqX+OfgHA4Fcl0QId6Tm/WJErR5a+WBUZOEETcIm+vhGn85XH+CVrjl3ns5s36eJBF+50ufYzQu8a4iBE/pA1YrtEpR1lDXjo2Nq3z4+97HIx98hOQjH6D/2mmOffUZzIce5n0f+V6Wf/M3GGiFk+i47bQyQhiz99BeTr32ImfXzlBcOocERYpCKyHLQZuaalwzCD3+9MpLTFxgEhTew0snXwI0dS3oXBO0ZnlhjrvvuYNnvvIY9z1wF0889Ri33HY377n3Qc6dPMbf+9gnkMee4KmzJ7Aqfp6YDMfYAKppBLE2QSlPkpX84ed/G7TFhISH3vUAt+xe4d6v/BGvXv5/2XvzYMuuq8zzt/be55w7vDFfzqmUUrJSsoQGj2VbAmEXUxRFm6GAqqIcxsXUVeHuoKPoCGiGLqIgopuoqq7oISCiaDqAKEO33RSEAQMe8YAnWTaWNY+Zynl6453OOXuv1X/s81JgwF0MTlnW/TIypHyZ791zz9lnn7u+tb7ve4xnTz5KEuNtP/I/cPHMeR49eYL7f/MTnDp5glZbiipQDkrirCaliNqU//s338HtX/NqLp4/zx9/8I85dOMNfOIjH+We++6hb0qvN+CJp5/iuoNrXDn9FPuO7OGmI1/DhdNP86nP/ClTjOO33MzKvqPce9crWK8TR1f3ds4igRA8t7/sJh579iS//0cf4Gtu2c9liXznP/z7rJ8/wanzi1w5+wwrgwWu8ASD42u5QWY5AlgkPwOta4b5zg0A/7wLQFJlZ7TF9tYllhaXcb7HxYsXeObRR3n00cc4e+oU0/EOF66sU09nrPYDh/b06DUzLo0mTMRYKnK8w9Ar42miLBytJTRBEuh5Y9YqMSkDZ6wOA/v3VGxOlP2LjjtuOcT9j24Bxmw2d3qa40vjWtczeH81vuUrBZqM6ajB+4Ll/tK8nnmB6hm1a7cwiqLg6OEDoDqvZ15C9Ux/9QAiH7124vTOAWVez8zrma8YzOuZeT0zr2eA+dDTlw3OOX78x38cgJ/92Z/NxOAcc8zxVQf5Sqvo55hjjjnmmGOOvzV8CVmKklUxkNVvakpK4CVR06k/ETxZxdu6gNPsjqLikKKzL3ce1awU1Y5UnmlH7KSIWlauicasTOsIeecyKSGaCL7M6kAEdQbqEGJWt2kmaZ0raC2RmgmFGCEYOCWoYUQckdJ7nAtZyGfgJJI0E2chlJnYdgFLxqSZETXSrwbUs4hzMKwqpCxy4yQBzuOBhFEIzJopg7Kk8CXe5/MXNXsOBe8xjFYyyW8KSSNZMeu6hkznpClCNANxOIPgCrwXEi1gpFiQ1JE05EGwAAWgrqKO+djFGWsrFaRIr1fhSk893iE6TxkMNNFbXMY5x6AXsKTEdkYdY86yLwqqqmQ2q7myM+Xyxg5miWDGznhCXxxlqOlVBZhhqljXxAgSSFqgGkmtYRIRX1BUFbhOQdm9v7KqSG2DOEchDm8JE+kIU4cpRFWalChTIpoRU1ZgjcbjTLY7ocU4tHeBI2t9irLkwtSRLCuqNjenjLxASvT6BZoihXi85sEVBAiBVps8cGclRiIgqBil8yAFZjO00xd7ANdFctiuAwCA5DVphkdoiBiJNrVdlEJ3L3RKUmsNX3X2/KIMyxUGxSKNJoTsMpCNiPK9uLQwoAo92mZC0kTbNphlJa15MPVgiUyLtzl+zflOVStYTDifYxwwf9Veu2t1IAhNU+OqkBtgefonx76pZAI6BLz3tNZkctW6c5A7JERzpNSQLBKKgJMSLAcOJrL01IlHLd9G5rIaV5wizvBOKMs+SQQSOfYSywNqpEzehgL1WUmfMDQpJgFIIJAUpFO0Yx4veZCSZCRzHdlJp9YtUITlxRVuOX4b25uXiMloAcR15KF1tudKMsvH9mdqIUEoQ0FSjxePmRBCQdkLVFVJ2eshzgiuJIYKEyE4T8+X9AcD+gvDHOcgkGKNiRGCpz8oGQ4WGC4uEHwfwZimOrssiFL1BiwuLrGwMOzWAXkIFMOVUJSBXr9PfzjEi0ccTEcREaHs9SmrIb3ekMFgmBsAlvWPofAM+xXDhSFFUSLe5cFTEdQi2ja0MWKdQDKR8GRCPmkixsjWeJPHH/gwYbgXnNErFhiVY/qDPseuO8qe/Xu5eO4k9bTGHzlENVhkOp6hltBo3PX6b6E32ENqGzQK09mU0TaMtkcgAecKLCVMlGlbU45HTMYjyn4fEUczm6EpEpua2DS0TYO4QIxKSkZMiaZtaetI28bsZGAeVSXGbEevKZ9TcYL3ed07d+0cG/48hDom4m5MSNC/k5mnXQz3LHPy4YeYzBLHjh3m/JmT9CtPtbyHC+cvE4JDVTBLtDEymyqDhZIrG1vENlKWBUu33sjhdspH3vt7vOv3fotLqWVtdY2drR3e+v0/yP4443c+9l5OPX6CxyYPUaeIOqNwjo2RA1pC4ekF160tI6kxabLDgyaYtYamiA9C4YVGExtbW/z+H76XxYHnyvoOs2ni69/0jRy7vMNjkxnv/D9/jXc/+nnEIiLK2uoBZN9+Lp46k91FHAQPK8tLPPTo5xlNZiyv7qdXLPDu9/8OYbTNez/3JyQtWF/fpijgwQc+xx2338Vvv/NdXLxylkNHjrI228P5SyfQJiLiCQVMJjP+5FMf5WOf+ARLwwUePfUEf/9N9/HIY49w6dI5jhw7yrf9gzezNBzynve/jzvufhVLw4rDBw5zORR805u/lZcdOU4IgbppWR4uYofg5HMnKCvPnsWlTrUvHNy7l+//J/+Ifhm4cuEZLp15gk999lE+9YXPcv2hRb7xFa+h6PVoVNhz4GWEop9jiIryr1jXgmY7HJwTFheWWBgsIOSW48b6Or/2a7/KxcuX2VMV3HX9Igf2C+c3HFe2p5w8PcqOKMGYNTBO+XNei+bPOTExDMKoTcwSDAvHQuFpU3ZUOXBgwG23HsENDtBY5PAdX0t57mN4X5DSPFlgji+Na13PJE18pRg9fTHG22PWL2+wtmdpXs+8APVMnka4VjBabXKc17yeecnUM+KLa7jGyOt8Xs/M65mvQMzrmXk98xfx0qpn5kNPX0YURcFP/MRPAPDzP//z1HX9Ah/RHHPM8XeJpmk4d+4c119//Qt9KHPMMcccc8wxx98hglSoS5n8dNn6PtvWC9iuXjM7majRUXSZwCskdC5J2qnVEuI7vtfyYIqLu2RpQVLwQfGai1MzpW084iIOh5Vk+akZKbUYnpQ6NbIDsUwcWHA4WqJGWkCd0LbaafXAVGnEZUVhitki3AREidEwM4piipOAl4CmFvWAKaKKxaz0blLEE3PeuyrTtiWR6BUV/bKEpHgXKIoATjBTnDg8uZnQBofHso07Cq5ENavBMEFFMXH4XatlsgW2Gag4HAUmhgRwBqIF+UAVsQR4Con0S0dRJHrDQRdJ4BARxAwvCcyICSbjCSH4qw2hUBQMfEEi0bRZsbq8WLG0MmQynrG9volp4vFnzzCsSg7uWWbYK4mZR0ZjZNYoZQg43zIbTykrnwfbdqZ436Oup0QrCGJoEto64SQrqqNTtE00bUOvyISvd53qW/IacSK00bi8M2I03iGI4F0+/tG4QVXy+TMBdTiMYRkovTKrlbaNzJpEGk/YHCXKIhActG2iFyOeIg/X4VDv0WRdoyeT+zkBIsefuKwTz+0yzV4BIooTBctfdwTAszuasNsQc6I4yY0fkxLvHaZCNM2RBRJoUc5fXOfEiZPcfNN1rKxWHD50lOXBY0ymMyrysM3u8I0QumGxbhTCsvjIlBy1IAKmmOX7KDcLBE2dmt0cyYwgHsdufILHqeCSY2adNt6XiBNQ8F1cTFaD54aB00RTz9jc2ARNJItEAqbZQk3I5040Epzh1DBxCELUfD+a83gcJoZqRLLneN47vMcXPSqpcVLn2DgxJDg0GjhDSbmxkTst+C7uQL3DLJFaIWkC57tzJiCG9wFUcjhi0o54z8ek3X+dy6rwHIGQIyvMhazW1ZT3PhKK5XgU57AckJFdFTplZtQIlHld5c4R4gS13V1VCQ68eApf5D1Z8ppzIoSiIvjsVCfSDcKIEFtDNCHJ4dLuOgUJWXmOOkQdwXnEEk5cp5ovOtW+J4SAF58jJENAXI6pcJbbYb1+Qek8la+oqh4p5T01puyUsLzQpyh6FD3hwsXnWNq7l7OnTiDiaRujCJ4LZ57m8qULHL3+OEvDBc6OHmNhoWBpuMDS8iKh6GG4PHyGUpWBslfS6/fo9Qd4H2hnhpD3HPEBs5TXrUBR9HC+xBeKc56iKPA+4JzPDnLOZdLfd4rpUOCL0D3mckNqcXmZwdIKPniq3oCiKPLafyFgEOqYm8zk+/PP/bXZ31iUJEBvaYlbrr+R5UMHeeBTn+DI9cd5yz98M+/5/d/nwvnLxKQU3tMrKsaxwZGjPz7/6MOcfu4sx2+9CZs1FOMpj37sw1wabRIEXvvqe/nCZz/JqaefRRcHvP0H/zve//vvZXX/Ar/xW++gVsfi4jJue4faOqdHJwwXlGk9pqmFyjmmsUU0x+Ama7rhBaEXHHfdeTtb5y5xzyvu5eB1R3nlvW/kkUee4MnT5/nsQw/y2QcfIGrNcFhx+22vYnM8Yro9whdw4IYbOLC8h4cf/xxEwTQPNoy31qnLMb/9W79BcB5DSW1+th8+eIQPvvd3OHvqORZWBog7yLnTpxkuLrBvzyGuXLkMLjGra9QCvTBgOpsymY553b33csPh4yztfYxer+R7vvufEBvlC194mEm9w7FbbiQUi5w49Sxmkdfdfh/9osf2eMRsOuOzTz/J9njM4uICw7LXDWxkDKqCfn+J7e1tGnGsHDjOxs6nObB3mW/5ljdz/OY7WVk5QH+4RFH28c53zw+76g7x/Dqy7u9yE1gQvHN5zyQPgPYWlhHvEM0ueGevjPCSqMqSrWlNdtTJTduZKg4YFPl6Vg5WBvlZPd2MrC0HFgcFtZW87Pj13Hz33bz6tfeyvOcQRdEj4TkzhqUHnmHv/gNU/cHfaK3P8dLBta5nnO9sOr4CYQanz15iMq1Z2bM6r2eucT2TQwGv3bWObaQKvXk98xKqZ3woWFxYYGt7+9qsM0Dn9cy8nvkKw7yemdcz83rmRT705Jzj+77v+1hdXX2hD+WvRAiBn/qpnwLg537u52iauRJnjjm+WnDhwgV+/dd/nZ/+6Z9+oQ9ljjnmmGOOOeb4O4QTw4zM7AuZPc28G2Y5fkBEOucTwztQk+6fJUoxYgxoMjQoJlltqdEgOKzJwwDOEmKGqRGd4ZxhrWIx/zx1YB0Z40Iugh3gA8xSi09ZRasW0Ow2T9IWwdMYeFFMBOfycVeUmLaotXjLhW5KRpuMIIk2Kk1qCT43RtSUpC0LcQntnFtGky2izUiW1UKNNWDCTj2hV0KPQJCSRlrMOYJ05ByWLajN7XZMMm0nWfmayUGwlMA5xCn+aoyE0pqgKSsPvcukenD5pyieJCAqmY4uHVUQxMCHEu9zw0dIOatACkAIASBhUbHOol61oaoGVGVJsCyQN8nnp+dh7HKs0upKjyIUjNuWVhNR8zUOLmVVrBqzpiW2iV7ZIzjPrJ6ysXOOmBJleY49CwP2rCyxttCjPyhBoRmNOPX0M2xPp+y9/hhbO5c5sH+NAys9tG0YjxPTJiIx8vmHnuHGpcT2cMBC2OHydkutQzZ3xsQErdZAhZkwbmaUC46ygl5RMg3xavzCbDJiazZjOpsxmxllr0+vCHhvxDbP3Lk2UfjcrPGWYy/whpoj/8rrPHXkipDPXSbqDVSzqza5AaAa0ZSy84BkW32PYzeRoI0NSMH61ja/+wfvZ3Nnh+lkwn333YMTwfmAE6EoAnV3WVVz7Jp097B0lvYeg6gkalxRYFFwCqYxk+35Bsl6b43PNxbMckPDpFND5vflyUrmRMqMt0HhHM4HFKFJCaEB5/AeDMV8bh6Ypbzeu36j4FFzxO7raoqa0bYNcTqjqAYk1RyVQursy/MhWswKaFMFzUOJtktqJcVUsso1Kg5HRCkwQudOoJKbGpmSzANMAGhu1ImAN+nu3l3yjO78uhx9J9317fTZ+XxoPv/SGYhJkZsTWG4cYphGvGmeywOwhKPIjQ1ybAWalebOZQLfTBEJ7LaZzAkh5OZfjkXoXHidxwQcjqTdPm7dUKkmvAv5msjuQKh1wzOda5Bl1b8YiPPPPwt213LW8+OLMp8jl5tSuZmcGy+ajEIKyqLi2MtfybGXK08/9RTnzpxjoV+yd3mRne3LTMYzbn3Z9dxy1+s4d/oUOzsXObh2mLZps3sCYNqQYuyeTrn5lZ8/rvud41Kcc5ROCN5fvQezGUCiLHIjwHUW9845nPME7wnB4682D0IXc5J/TuE9vV6PsiqxlN0JZvU0N7u+TLEQZoaq4rznL76CYjrJbmMx5egg8vM6n5O/xTGJUC0u8LZ/+S/wseXfPP0Ml8o+b7j36/nkRz6UG71qSFDWN8eYc0Bi1uygacj2lXXQGzERnrtygU+cfIrVfftZKEZsXLjA8RtvoFDlO9/2Q+w89DBv+qZ/wLmnP090PfYsr/Gv/pv/ll/8D/+BkzubeG8EoK+JaAlcYMELzgK9lX3ccexmPvLpT+JLY3HQYzhYhCaRGuV3f+vd/NCP/ijf+63fy7+9/6f5fz/7MVzIu7SYMZ3N2NjcxhcDLl95CpWCjctn2b58ll5ZUE+nNDEyDFW+T9KMFJWJCoUP9KqSlYVl/vf/7Zc5ffIEjzz6CLfeeRfv+rXfZGc65rY7voZDy4fYnEz46If+gJtvuQkdKZN2yriuWTuwnzMnnuEjo22smdLohIE0PPfsU0ynY2qbcfdtL+fvvfIezl+8wqmzT1KGAhXjzPmLnHzuWX73Pe9iafUgBw+scuPRo3nbMaNpIpcvn+PggcOYRR59+HFe86rXUg6XGG8a93ztf8XCcJWre8hu3JLZnxuY+3MKacsuJU1s8F10VVvPqGc7lEWPpcrzTa86yqfu3+Dp81PWxzOSGavVjF7IjYZZa1ReuG6Pxxkc3r/A6t5VTl8eQRvZt7rAoaLHrbcd58h1N7G6/xBHj91Jf3Gta8KDd0IyodnZpl8GyqrKDY455vgSuNb1zKzdHXr+yoQBVza2MQksLAmJel7PXKN65uz59Wt2nZMq5y7uMBjavJ7hpVPPDBcG3HX3XXz0ox+7ZmttXs/M65mvOMzrmXk9M69nXtxDT29961v5pV/6JaqqeqEP5UtCRPjJn/xcG1ChAAAgAElEQVRJAH7mZ37mBT6alw68nxMAc8wxxxxzzDHHHHP89dFEwyy7LXVjRjifh5Oc+E41ltWNZgmLDsSjsSV1isqOywGBmBLBOcS7nKDgPC4ZJlmNiXlIeWgpJkEtsUtIWZbEEQk5lx3BNCHmSdHwoYc6IanhDFKr+CAEZ8RkuKKzMna+i7FTRB1R2u7nBJwzlJx3F3weShC3S0YVqHdoK1cL8cI5BEXFZYLeDC8ws7YjQpUYI+YcnkQBxC4ywyzhQoGzrI4OrqIQh1IQO3KuV1SY5Qg+7zyBImfTmyEuk3WiWQrpC5BkOaZLO7IYCF7AQtfnkVzcezCfiV/fKXUVwZuRULxzJEtobCjEEQUMo1cNKEMJRW5WBIxBf4EidCpgJwy8QyzrmM0UNWHRlCYqdV2j7ZRhr2S4sJe2NTa2dzh7ZYdRHTlz1ljbu8BNhzyhrlkuAwu9PcTJlPULl7iwvs69r7yNIhQMqgE7OzM+/MCjPHX6PK870HDAj2lFuWQFRfAUIRP44gRvSqMQFZKVSEd0W4x4geCU3iAQfcVsEBgsDpjVkZ1RTZuUQEuvVzGZbrCwmkmKZJkZd2Y4EiYpr2vJ6zbT7fkXUmQ6JjOTiEGMDdPRBt4F2tjQS/3cgHMBrEU1cmH9Mp/+zJOMRzssOGVLYX1rKys4zeFCd2t2Gu7JtGZ7ZxuSIN6hyXevZzR1orYpvhrgmhwNmFLnfGCKdUTLrG5ha5O2mRIboaiUGFvEsureSIgLzOqWxiQPB2nKay5bHOShw9Tm+yZGTD1Fr6QeTZlaS5salshW/WKGmCPGyPZ4Cy89BEObmtm0pm7G2c2mqDACsU20bU3SIivKk9LESKtKpbm50ExrmmYGZnjLNHPWSHeRM6JMZy1JjRJFkzw/ZNI1LmLbUNdTWm2JlLnHkyyTzCK0ZjT1lKooUbHsGGfPb3jihKiKaW62JrLy2OGyWt46FT7WkXSGuAJxmdhHckOG3SYNLpOV2l1z6Yh4hGR533LeZ8W4SBcbYiRJ+E59L953jVlDXMD5otukfadqB9ShqcE5n9ew5KaVkz+j6e9eXy2AKxCfCXqDHJFDbozmncPRqwJ1PUOcZ2fzCqEoiLMdlo/eiMXIPd9wD2XRJ4Q+/YV1FleuZ5R2WL/4GO3ji7zqlW9ge3uCtk2Om4k+q7x3nR66c+5x3TMmZOcIkavzaGaGE0cIX0TqO39Vje9Fru6xpto163KjFelcDSxr1fO9Y3y5UM9mPPH0kxy/+Tj9Xv+L/tbQusXaSGwn3bHs9vI7daw878Dw121jSAgMV5YgRb7tO76DZnmJop6xfvEig6pgp5lSx4aYQFtHv/JYUi5vXeE9H3gv+9b2ce7hB/no/fdz9PZX8MCnP0UbR7z6uuv45jd+E088+DlW9qxxqa6pm8imTTn+8ltxsWFlacDqypCz4y3amLAkTAqH0BIkEILi2sTOzgafeuh+br31EKlu6S8sc+bMSU48u8Pa6l5efc/reOev/kf+8LffwZn1sxSlsLgy5JYb7mRr8zynTp3g1LMPg5Q0qcmxuHWiHBTEGJk1LeKUfQevZ3P7EvU0AobrompccIhFXGy55943sbC4yJ59+/mGr38js3aH6w5dx2c/9HEubI0Yj2v61RL1ZIe3/cCP8Cu/+H9gmrjxxqPUozEnnn4aX3je8Y7f5Bu/+Vt4xZ13sTm+yGRzkzY1lJXj6+75ZrzLn39ufdmNnHj6GbY2x9T1WUbr6zTf1kLX/Hj0sQc5dPgQSY2F4RLHj7+c8WSTH/iBf05CGfSXujXiugWS75VdRfTVVbY7ANrdyzG2nD35BLOtK/SqgKny3Mkv4ET48Mc/z5MPPUY7SySN3LTWZ32nYU8/7yyNCQdXC2698SCu6rMRlRtuehm33Pw13LOwQqPK3rVVhgsrVL0Bqh6zSNlfQqN2e4vDiSfGltm0xtHiXSe3nmOOL4FrWc/UM2W0Hf/KY/lKwvr6OjFV7Fmr5vXMNapn4mRyza6vd8LKyoAY07yeeYnVM1/Gj6d/EWZgMq9n5vXMVxzm9cy8noGXdj3zoh16Wltb44d/+Ie/4geeduGc4y1veQu/8iu/wokTJ17ow/mqx8LCAj/2Yz/2Qh/GHHPMMcccc8wxxxwvQogKENHkEGeZCGzpIpk0k6M+dINB2TZZxcA5kIIWRQYONGUlpRjgOuIrE9W7rdpspJJAHRYNS0rwji69DrQzOtbn1TraOlItmEKLkXkyy6R64UkmkCBFJes4M8EmZSaLUqIjfgysJThIrcdCJsGiQTBoROn5kNVgqojl12xQfEegGY7gs+rYq9GQEFFaTWCZwG3M5e/zgiNijXbW6wLtDOc94EmWFdEjzXbrRV0QutcRJKtPQ4/CZYrfu3wN1JQAaHctHIYLAVcIAUE1u9JkZxqPSsJ1xJeogbaIZbV2KQWG0aSU358qUWeURctsFlGLoInYzIhJKJ3DB0dsIikZoZCsvEwp26d7gTJQ9ErEZRWsJ3Jg7wJruoCIcPHCOo+fuMDTz61zfE+Psq45tLaI1i3DNONSE9meTFga9DEvjOuWs5e2KIvAermHR85fZjJLRBFuXgsE7wje5/Nr4LwQfFZ8BglogpRy9EUoKixGLECZHJUXwrDHsO+4cP4SRZkYLvRoZ5p5lU4lhsSOngdnmcSlU7pbAk1ZhekF2q4BgwniHM4FqtLTL0rGLSSL0DSEoqCqFpjWLW7WcObMaUb1jJuvO0Q78Sztywo4NYWkOINGM0E6qDyDQZ/ZpMYsE/cmHhOhrAZI6BGKCh96mCU22hnOumMyj5Go+gW9/pAQQAYlRdlnfeMi6gzvFMHhLFFVgVCVOJ9VtW0ymnF2SUgp4unswgUikYWFRRYWlkgI9aiLMlBPEiVKgwsFw8EC+JAbj42wPfKktkWLlBXBTnChoCpL+sN+55vkmTYNbmtMdmswQvCkVNBQXFVfW0x4EVQML0bo3B5Ec6yEaY5OMOdABTVDU+waP47dZA0sX39N3UBlx5lnEourTRffuSa00RAFa9uuHQeZbIQUW2aTKSln5uSmCbu91dyQrWdjNDU5WsdyuyOI5iaQwWh7k1hPkKKHdupw8Q4zR2wj08kM1a4JZOnq/oUpqommaVBpUNc5Xbm8p5goTT0mxhlWDDu1eY4QceKwFGnaJjd5cN378rnB07njiRhmDTFlx6t6NmNr4zxFKKibyFMnHuPG629jdWUvEGjbSJy19Ho9nINlt8jy0hLnT5/g2Uce4uD1x2jaFrXUzZflY3IhN1415WuJz3ulWTekSsLYjeWpsttE9zzR1O3p0t0rSOdeQG62iGAuR2fuDrU58ah9UbPhr8Qu8doN0l4dQXr+63/hO8yYtTXDUhiNtun1+s83aMgDc5sJUmqZTMZc2thgvL0FztHOZmxcPJ/v5cESC0srLK2sEvzus06+6CX/4ljUrpkDwfOGb39zJo/rlp/9n/4X/t1//3Z++6nHMXMMep56NiPWikqBtQ0PfOFPOfXMMzz+9BfYGc9whWNUT4gJ/vjjH+Vzn/scwRKbyRhfuMjd97yR2+9+E8fvvIcP/fF7efrMee545Ws5tf4etkeJhENLRzKHRkeTFB8CA5c/l+hkStM2TNuIWOJA5al0xublC+w7dh29ACcunkCT5+jB/Rw7XNH093PquZP0Bo7x9hjvSpxrmNaGdyVVMWBSr1OVMJ3s5PiZRG4+xRZXOJomctt9b6Q3XGY6m3Bo/2He8+7foShK3vrP/2v+r1/+RZ65+AzNNIJLnDlzird+zz9mbdhjZdDn/GiLjdGERx97jMPXH2S0scXH7n+Ai+tXuHJ5xCtfczs3334HFy5d5vDBI4QQMNttXMGrXnk3p86/kQ9+8IPsObaIaswtOedZWt7D3rVDeBdo6hllKBiPZ+xsPcerX30P3nUNQctxRWqJ2WxGbKeoRlJMxHqcl0BvQK+/SD2bsHXhNCef/TxnTj+HpG2WV5dZWd3L2v6boHiYS1NjPGnoeyG2icrBnuU+KweWWD18hNvvfg3Hb3sloVqh7A8Y9hdzUzkmVCOIY3tnnapaxPkKRAg+dHuj7xwz8u8UWwqAtoU4TxKY40vjWtUzpjCbvriG8Mbjlv6ipyzCvJ75MtczzbTm2XPnr+n1rbzQq6p5PfMSq2euNvmvEeK8npnXM39ticXfNeb1zLyemdczX4wX5dDT2toav/qrv8o999zzQh/KXwvHjh3jXe96F1/7tV9LXdcv9OF8VcM5x/Ly8gt9GHPMMcccc8wxxxxzvAjhC0fCsppWPOL+zPCQOa66wJtlByQzTAwzR/ItZkLAZXIGkM5K3IWcmW4acME6Ba2iKuAMCVmGZ0ZuTojv/MAdoplUz68brrqSxya7MikgQQh4LGY1tpgnJc0xU06w5Gg15d6vCSklRBzmHLFNiHpCoSiC+qzIaTXRqhE12+3HFIkqtB5Cpk0JCk2baHaPFUOTwwchWn4PZt2wgzh0l5zFyFroTOwn1+JcJgydwcwlEMN1LlSWQBnjfCZJfJdNLzhK7/HiSCninGOhLBlWgToaC0VFVVSk4Ggt4FAkauc+k8nHq7ybGdGgtogjW66bNrSzRGxTttQWY7KzAWpMAed23bfApBtos64B4ZSonqrXY3l1lbIskALqps2W6+a47uA+osHOdAdRoU1j6rrGFNZHM57bMconL/GK2w7Sa+oceeCMW244yOvvvoVx7fnQxz7LxY11XnnHTRQS8ClHAyQMUUGi4YndWg2IZFI0pQYMWoW6jRRNRMKuUixltTJ5EAYj295byiTzbgyEy3SkWV7T0+kYweE79a/rzpETUHueSE8OUhJK74ltQ5sioSjBKUv9Pkf3LPHsutIu7qPRIzy2VXDk1BY3H1ommcMIOR7SO5wrkE4lW9eR4DJtq+aJooTdiJdOXW8uE82ihhWGRQH1BOdJrsCb4JzgCZnwdyVowosDFwjkSAzvC0CJksd6NEW0TlihpNSiSQlWZZIfwAVUcugB3bnxXcSIlwAGUVq8eIqqRDThBVIncy18SfCO1LYkSzmKwDvE5+iH3Pzq1LzeowZNM0FMiQmKwuN9QFPEu93mmcM6dxyR3OUpvWPWNYGQfG8o1sXaQVmWmPdIoiOkd5uged8IIdvGp0lW8eYYl9ApDXPUy2CwQJxNuqZAJrqtu9+9M3pVyTh4Umq73TTvl16FIhQUHlrX7b2A6xTVzjuKUFCVPSbd/mbO4UMBeQkgCFVZMalH+d4Vl/cil5WSu+poJDdorpLmnWV8r3A0owYYdM3HHBLonacsPOPZFiEssK86hJowXFri1jtfxzPP/DYre25kdcnR7xe0TYMROXvqWba2LhNIBOmxsLDI3r0H8/lst7l47jkSBd5Jbk53DwABUoyk2KAas2PELvGtEFPs9nkhJs1rv1OOx6ZBUUQMZ9qZF3hElOlklNWvTrr9LTdSYozdM+W/hODfbfs878SkHTmbld1/ybdYjtdYXNnPYLCQG2SyGyiUGxvTyZS2aWjrhiujCRs7OywvLeGDY7J5mbadIL0r7OysMFxazpb5wl/yen/J0NWfOWrpnBWiJvbsWWNleQ2NipiSxMAcwQvTpkHF8fBjf8pDajifm9uehr1ri5y7tM101uDTCKPm3e/5z0j0/MlDD3HDzUc5dPAwN6wOeO7ph/jkZ76At8SghO1aqaNnpe8YTQHtoSlyy/GbEEucOHmS7cmMhcEC0eDcKFKORrzi5sP8j//63/C//ut/xYMqhJAwS7Szmk89+FnGscVpk5/JhWBSYrHlla9+PeOz57mwsUlEuby+SemNynsWVhe4+WX3cPK5Z2la4WU3HGM4XODxRx9h68I5fv/3foPXveE+/vAD7yIM+pRFRaytc5BIvP+D7yMEz4mLF6jbhvsf+Ay9qkJEec3rX8dn7n+A5bW9PPSnjzFYHfCJj3+K17/21exsbRObGVVvgHOeFCPDfsXXvfa1XH/oAA899DD9Xh9BuHT5EmVRktrE+tZZHnjgM5y9dI6tzQlF4bnt5XfQ7y+QuiiipEpdj6mnY9CW2XhEW8/whaOqlhhvbfDkmWc4e/ZplkIfq4TSBdYvbLN+6TKr+y6zvLyHf/y9381dr7qHS2cfoycRa6fUbeLIjbdxyx2v4cChm6gGS3jx3eaTP1cg4CXQxvzn1aV97E6YJlV2pnmwuaoGOOm6d+bQusFZS1IltS8OV505Xjhci3pGnDG6OCO2L66hpxSVKxdnrBwcUnRulPN65stTz7RRabvYrmsBM2iaSCFhXs+81OqZa7bKMryXeT0zr2deYMzrmXk9M69nvhgvyqGn7/me7+Hbvu3bXujD+Bvhzjvv5Lu/+7t5xzve8UIfyhxzzDHHHHPMMcccc8zxl2BXxSVXx0YAMQKS1dGu42gwfAXalVWZBoxXydJMjDuEzmabzqbcWiy5XCg6wzuPdy4rc5RsY68G4pBo0BpSeKK1GB7v8muZZGcV1CNkoYzP8tU8iGB5UErFCOKIUUkpDxwkNdoEhc+OwgnBq+UcNOeIQTpSNVuFR3wenhK695CJuSyuDFS+JHjFOyMhFPQRl63ZBY+K4jtSJr9Fw7FLWIFYoEazpTkQOgdylOcJQBVa2yVx7KqKEnL8g3NZqWoiNNZF/gnUuExsmeCcouZIFuk5RUTBfDe4kckvcUJQ3xFhmbhEfafKTTkOQcHIaq1mCq229AsPXjDLSibRrOpOlhv1iqMoPE4MMcOHgmRCKKAoCg70ltEEj5w+zcZ4QukCT603TKn4/LPn2Jw2vPGVN1B62L+6wnOn17n75cqepRUWFwZs7mxRVX3UlFbz+wSIqtSqJHVoiuCEqIazSFlUpOgIQdHo2Nze4cqVTRaWh8SYqDKTD5rJMXTXnH9Xfbl7DRUTIYTAYNgnNinHKnaDM9EcPRG2NnaYVjMG3jNUaBulN+zjXMIkElMNSTizMeJS3aA4Tp09Rxoe4coMPvLYWY7uH+YohqsW3oaKogrnL1zmfR/8FC+75Sh33H4LQbp7WXLcn1p2L8IgaZ1JU0ooBJ0lEAi+RJt6l01GUyLKDFGHqiLeI6GHaEIUVCNesk1/jCCW/2w+IE7oDapMwALiEqodSe8Lgi/w0nT3RdeIocAVFUVvAY2J0EVwxN3oiTYRU8Jig/MDvCa8y+5K0sUhZCWs4A1im2M6vMtNDXGeRE0h3R4nllXFLitmRULX2HQ50mO3hdARXGZ5TeWeoGEWMc3K+F3KKpNgOSoBARXJ0QmAuKwwFqcoEXFldqBTzZEFJmj389XyEJYzRVx3T5oRU9fE0y6YQFxei7nTB+ToUGM36sB3UTIgfpf8t6uNwPz+EmZGijE3KiVHRbC753QEnkmOSUht3Q3l5P3YSfccMGFYDumFKsfZFIE4S+zff5DFpVVWltaw2Ra9tT7bOzuURY+Dh4+yZ3UPjz/4GbRpsRgZ9oYQSl7x9d9BMxvz1BOP0MYmDy36QEpG8oIvKkJwpCYPnWVCMZGIBO9w3uf9RsC5/H0ER1EFyhC6wde8/+XhIJebHpZV5iY+r3vAB0e/18sq578oLP6i5+ju/2Rlu2M3SjHhXPGXfnNsawrvac1opzWYMBj2cwOX/MCJ0wkWE5YSx/bv4bpDR/A+P2OvP/5ykrb0l9dweMqw+2yW5w/qSxyzWHfckp8liOH7Fda2LC4MueXoER576iTBOVYGRt021GaoCuqFFCOrRY+3/dPv49Of+GMuj9ZJcUrhhRwn4xCvxJToO+W+r3sNi8Hzgfd9kMvbG9TJcdORwzzx3HM47zBNVAWkqmB5aT8x1fSKPvv3rXJwZZUnnz3N5a0d1BwaHLfceguve8Pf47nTp/iO7/th+oePMbMdTpx4lpuO3Mr9xeMs9xNbkxaqAM4xayPqEpuXz1EMe+CEIAWDfkFT15hB4QuOX3cM7wKj0YgL50/z8COf5eTDD6PS8u3f+60sScWnH9giVIG1lRVUN9BxQ9M29BYrFstASwLx7Fla4cjhIzz40MMs9pepp2OeeuIp1o7uZzSa8Hu/+260mbJnbZlh5Rgu7mH/vgM8deoMy4M+dT0jxZrxeBNTZX39ClvbGzz5xMMcWF2kntV8/MN/zMkLp3jDPa/lluN38vjTD7O2dpDCObZ3NtmabFOVBb1Q0Uwn3P/xj1CP1wke2kmNt4ZDh1Y5ceYio0vbbI0m7IxrtIXrjg44dHg/p048xd333Mw3fuOb2dp4BbRjTITx9mX2H72NheXr8l7XdcSiJdq6piyL3BQ1aNsIKLN63DVHl/JejtG0k9yIFkcRAiLQTndwlh1CNF27IYI5Xpy4FvVMO1Li7MU18LSL2CqzSQuDMK9nvoz1TJDdiPVrBWNze4etzbPzeuYlVs9cy/kTEeb1zLye+dLf/OXCvJ6Z1zPzeuZL4kU19PSd3/mdvOpVr+Ltb3/7C30of2NUVcWP/MiP8Ed/9Edcvnz5hT6cr1qEEP4Lp3XnmGOOOeaYY4455pjjzyNFBclKTuvmisBoZJewdngxlICRdvVpeMl241kAI/irtHj+fgBcQekTjkyEZQUeHdHqCC5b5ucur2BOoTCcT0SNJANzgpSCaCDFTGw7BE0Qu2EkF1yOzjMHSXOElQCW7bzNKR7/fD4VZCJfAWshFVkJSEewScykRZOVckmNpIpHs4LQR6pQ4Al45+mXHk1lV+wqkFA6pawXsKxgdj7QLwvEFTTRqKoSESh8HgYjZcITUZI56iSICd5DGzuHKxJBJCtGLRE1n/lSDGcN5oWUhGiGphlJlaiZOHUmJIzkBE+iEociRBKFKN7n659UyTpW6dy3It4ilzZaTl/eJhrsX+pxeP9CZ6ku3cCIUOCI1jIab1M6T9Ks8OwNFylCwSAEqkLQmLh4/hJNipye1GyNlIk61KbEyYznzgnvV+WWgwOuP7jM6fOXOH9xg7Lsc93hvZw4e4ELl7cYHioouza/IzdKjKyy1nqGSHfdkhJdHkwRSWxsb/KxT36e9dGUXlVxy/HrufXYoW5t7w7BpM4OPtFJ/TviTbJKWVO3ljLZ6JQ8IJciTRMZDIR9e9ew2QgTpdZIvbmNpkRRBgYxRwU88sQTbI0nuaE022Kgxqy/h/WNkvXtCbvOQmnXpj5r63nq5HM8e+4MlzY32b93jX1792QlN0XXADKICZECM09KNcF6BFeBjRBzBB+oadCu4WSdx4FazDGPKtnlSBPm8nVTseyYIIY6j/g+yAbe+y6+wAiUmOUIhGQzeiKEokRlh0TCS8ALRMmvBQYuW5ZbjFgbSWak1FBIifUKomUiPKvWPSq5gaYYadclRxK43fumi7ERI6pkVwA1kksEfFaDe5/3GLom2tVNTLqfTCajAazovr7bGFWcGKqaYz6w7lp1e5EpJpodIgyIDkkeusaNWf63MSnOAh5BXECvjq0ICYhtS479UFDNSnCXmx3S7YHdK3fkt6PbxjuyOv9BcJ1KN5+f/BOyohzLESjeBfJ3eejiFfKRSI6rkXyKnAgaI5jQKwYMipKkEUdBozO2Lm8xmYyZTSYcOrCXldVl9h84CCK0Tct0vMNs1lJ4T9kfID6fl6IsiakmSN77C+dxZmiMqIuoKtEMxCNO8CFk1y3NN6LvlMjms6rfacrnNeX34Lp71Sy7+YnzOfHFeczliBFLuTkWnOdqcMf/D98SmymjnR2GS6sUIVDPJiQ1BoMhKeUmjnOdswhGals+99EP09RjLp0/RSwWOXb7a3nVq27PThMCMTZsbV2hjTOaZsb6pQ3OP3eKlQMHGPQqjECoenhX4Vx3YUzBsmtGMstkK3TPx+e7BoIQU0TbCN6RYqJNieloxPT8WR4//yz7VipOL/YIPuGdYtqSklCVQ9727f+Id7/vD1hd3s/r7r2XD/7hb3Nx8zILpWcybgiVR61ANeK8cO/rXs8PfN+/5MmnHuE1r7uPdjKhTYmPvvM/8+DTZyirhC+g1RJXlfzAv/hnPPTJ+7nljlvZs7TEk194nLvuOM473/mHHD5+B9ftX+bTn3uAj37owxw+cD33ff2b2B5t0zQ1B/Yf4/jyQX7oB97OL//yv2VzvM2gN6QfCjbiDgwKzl84SSkFvWDsO3CYGw6s8fiTT7C9NWJ8bsx//H/+E0uLC6wOB0Rr+IP3vYc7b76dLzx4P2//sZ+A1ujvP045LHj3f3oXa/tqHnn4cV796jv5Z9/+T/l3//5/xjvjrrtvZzRqmU1nXH/4Or7wyINcf8MRTp06xfe/7fvZ2drmmVPPsLmxzfblDQ4dfRl1M6KetdDM+Nyjf0pvsMQzz51iOprwwCc+yIVLl1lb62Ozmg99+P3cdNNtfMMbX8u5izdyy5138LJjdzAcrnRzm8Letf1gRootbTMjTmfMjh8jhMNogs0LF9nauMCRAwdpEzw9qlkKnnKwTMAgtjzxp+cYLFykqpa5+55VllYP0TQNVVmwuHYjZZmbn7v3iYjgnUddjpit25p62jDaOcX+AzfR7y2ysX6W1EwQ1yelCf3hMiKOWVvjfabvUygovMN3Tc055vhS+HLWM+0UYhOpt17EjmMGs+2G4IXgbV7PfJnqmc2d2H1evzao65YPfODjbE3reT3zEqtn9BrG21nXsJ/XM/N65lp+Hksx0cR2Xs/M65l5PfMl8KIaevqu7/ou3vKWt7zQh/G3xn333ccv/MIv8IM/+IMv9KF81eJHf/RHWVlZeaEPY4455phjjjnmmGOOFyF6bpk6xtwAiIqmzha7IA/+GATXuZpYwLtsc28GBZ7UKmo5gmy3iBMUnGLoVRWjYahlNWamIQVzAddFJ0gnyVNxJEmstyPUPMmU5EC84cqOaJFsf28YruM9EnREYUIpMulFVvWZy5F5WRXpcJpjFZTOUtwiJgEV6Sy8M/GWVEgRUsqOUOENWb8AACAASURBVHghNVnJLKbMLJPv200NtNmFygXEhDa1KEbhHZrarPLEUXlPr1fSDxUuDAnBg/WIMauZsc4lRoVCclyDqeINvPMk84D//9h781jLsvO677eHc+785qpXr6q6urp6qu6u7mazOajZ1NCSSEWU3WFrsqEgSgwDcqQoYATEguMYcMLEECLBQAAmgADFgSGJsSXLkig5ZkxSLZHdJJs9zzXP9are/N697957pr33lz/2edUyYNNR0gPYfdc/hXpV795zzzl7n/ut71trgQ5Ykjp+AkoErVMSFMZGsjVGHYDzCoWPFu5E0k3jUGhSHYfINFFxqohk9LjKa3W7RdsGShK2h7sxMjAI64OMhX1TNI3FiMJYF8MqREGI0RNaATpBBSiLEl95XJnDABpJk/HmVXSwZAXkXkdqtFZiFj5ndXvI4mxK8IF2q8nFa+u4EBXKjcRy6tIanXYXawq0slRGcN6zvrPL8tVdrBZmp3s0W4qpVhNrBI9DKTBeeHBpmjeuO7aykt3+gDyfIfhejBxQ1GrJOkBD/E3qVoJEnjcISLSXj60hxWg05tyZi4zGObccOcy+hTkSAkYpGspTFH2sTilHGS7TjJ0w2BkSnI8kvYKkGOJsG6cUN9Z3QBm0tlDmIDYOA+I5PD/F5vWE1XHGv/rKt3j4oXu57ZYDTDVShIRKPKosqMoC8FRVxXhlwOmzF0lSzb13HePg4n4CtV14VgCBNGkQQoAgJNagQyCIR6sGGsM43yUZjwiujG41QfB5AVV0QtIioAJl7mKkoAdnC3TaxFclNnRihFwdN4AYxpmL94kqyYvxTQWdFx8JaxcwxuCBcZFjdYL4mFVTlRVlUTHOxriqXkfouGS1jS4D3lE6R1FkaN/AGcFYRRUKFHXzw0FZOJyvAIURG13oUFhl0OJBFFolaAFfOrwOMWZAgKDqAShwzoF4QtiLxTF4FFWIA52hjj5Ruiaha5WqSGy64hzexPNjTe1ooCQqb/eGMOs4jNisEpwIKgjWaKSO84zEuKr3CY/3VWyrKKnjHmI7MAQheB/jO8JbTYgYM2rBJsTGWa24VlK74QlaBbzEhpFJNA3doHJNlINDR5c4vG8uXp/BLkEbiiKnyivSRpNUawzU6yuJ679udxhrY/NA67qJEFXgSpn62DVJIyUEYsPUx3tGK4vVFkVAlAfi/Rvq86D3nlGqfr8Qnz8GU0fASIx3qWNNvlt7IMY+CMVowGB7hc7UDCEIVZmhdApElwJVDzyNxyOGoxFzc3OceOQTaB3fQdVNNIViY/U6OjG4UnF1ZZ3KFZRVxfPfeZZv/Kt/yd/5u7/K7Udvo9fsohqWS08/T/foLcwuLjC4scHMbUuceuMNVjY2+OQnP3nznhkOd9nY3GAwGIF33Lh0npNnTzM1NUfSbHLx7Cke/fhHOXH3PczOzHH24ptoE1XQWyMw0iC1YJXw5898myMHj3Huwln+m7/3q/QHW8zPzLG5fhWrDM0kpXCBxaVFxlu7/MAnfhCrNbcfu4/Ullw/d5qzZy6hkxRtE4KOES79oaeTal7+znfQVtNBuHryLKujMYsYZhYX+JVf+iWe/L++BKUmG+ZcPH+OO47dxh3HTxC848MPP8LpF1/g/IsvsraZxaHGUFDlghZFK9Gktkm/v0vTNkms5pZ9S2Qbfc4UI4IESgn0+31cmdHPCq5eXib7dOD+ux5k//wtiHPcubTFa6+/xrOvvcq+xUWcdzz/7AucevNlsjLuCWtrK8zMTJENCz784RNk+QbL164hTnPu1PP87M/8Ldb/xTK/+/u/TwiGEBSdtubBE0f4pb/9tzlx/HGqEkL+FyRHDQfn97N/NqWdJqStHlNTLQ4dPECvPcudd9xO6QP9jau8/vI3OLC4yMzcIlpZTNIgBM9wsIWvCmyrxXBcctuxB1i8vRnXls/Zd4/j4U9ZkqSDMQneVbz03Av89j/5bZqS8eq563TbTe7+2E9QVcL6ylmWDt2FVg3KMo9rMkmQenCv0Ujinmk0EhRhO+7jIgaUZZwNKfM15hYO3HS70LzlClHuDsjGQ6qyQpnq/+O33Ak+KHgn65l8t6Iaf286PP1luDIw6ld0ZxuTeuYdqmd2x/m7OhSQGMWDB6c5tbI9qWc+YPWMf5cdEMXLpJ6Z1DPvqvHG8rVrfOMb35jUM5N6ZlLPfBd8Tw09vZ/wxBNP8Kd/+qf88R//8Xt9KO9LTE1NTZyeJnjfodVqsbi4yMrKynt9KBNMMMEEE0zwvsaJez6OlwrnHK6qqKoC7xxVlZG5HFcVUdlFJLeQSE4pBKMEVSui9xx2JGhEfHRDqaeRFIL4QNBAbVWvxCAuMmPGJHgCTlwcjlJCiasLxT0VZCRmtYr25kHqgSaRqFpF0FLrA4NDaY0x0b4+kuqCUgEtoA01+VvLwaPGMFqfK6ES0EqQNB6f9lD7oIMJeCBHCLqKrx1tpRDjEfHxGBOJjhuqIhgflcYSKMRTlp6hG7JZbGJ0SlM3o6eMV4hyWBVIlMWFKpKGGBrKIErjVVQLNhNFXpX4KiBa49EkSpMYTWot1kZLZR/2bOZrdZGpMDUZ74KgtSLRQjCgQq02VIKRPSVhlEtrJQguRlBIrakMHnwkx+vQQAKhVspLPSDiESXoAMpHBybnA1r3KcVSBM84REKeyAvQtIogBVq3KMqCVhpoNjTbgz775joYpZnutMizgvF4jMfTm+og0oqf1yuGRcUoz7myuk1iE44cmOPQ/nna3RbKO/Z1u9Docf/hlBcu3WBjZ8g3njnFiXty7r791hgfoBxKTFSZ1uJLiPf53pCewM34Q4Uw3NhAFyNcWXH58lWy4XEaiUGsRRtN26Q0mz288mg0ensX56qb6lmtFUEcIgEnVVTI4TEqxHUTBLwnhIqFA/tILiwTRjtsDQZ88/nXWL6+zkc+dCdLB1okAoU4tIXe9Azj4Yivf/3rXFldQ2lDUTgW5uZQRPVumljajQa20URrg3ceX8VmV/AKbSPpbojkj2o2GBWKJG2SpJayKkBMJJx1wCQp01M9ijIHHFobXGIAwYgioKikAgWJjTb8og02pFS2iIpWovJcnEMpi1YxpsKFkkCIqnSj48+JKuNINEdyXJBIPonU0RgKo2MTKM5PRkIqOj5otI5EHWi0AZ3W8XT1/iD19Rf2FM0xZgHRVMET8LgqI8v6UcGuNFLFeJHgHcFbXFWRlyXKKbSxOB9J+8qVlE4xLjLSogBlSWwSSXENWeHQxtHIc9pZFpsh2hCq2CQonWewO6A3HKHaQ4xKcJXDB08Igax0NPOCYpQRpE8IAWuie4FzFUVpKUY5RZaD1mg0lXOUwVFWFVnpyMcZOs0I3tXNs0BeVkgItMqKfDREdIISRdLQJImlKkuarQ7aGCDQbDZQzqEQqrIkywuGoxHaOELw+DLua/lwjE1SyqLAeYNPA64sCd6RFwWtylMUZWz6aIX3ntIHqqqk6QJVUcZB16ogBEflPXleUZYVVVXFa54k0Q3CxZ9JCEgSlebx0WKQm+3BvfUPSDz2lauX2N7ZwtjAwSN3kpgEFPSm52+q3pNaeby9s8lgd4ulpaNYm5AYW8duxMylEDyjYR+lS8rSkSYzBFfiK0eociSMuXWxSf/KVZ595QxPf/Pr3POJj/F//s7vkvSmOH7ifhBPYhWm6DOuAg88cJxWox0bLSrQ7TYxOmCwzE3fj4hne2ONU6df4cLF83z0Yw8TRkPanSl0OoVzI8q8QEgI2nFwaZFbl47wxtk3WN3apPIFxlke+6EfIKkMgQ9x8rVX2B6OQWWMt7cIIpw99QpLsy22N65Dw7G9ss6XvvIka9tjShwtm1C6gEGoKs+3XjjJ5z73X2H7A1699AInL10iHxUsHjrM//zrv4Y0LJvDHbbO7/Khj57gz7/8ZeYO7uf4fR9iePEK/+v/9htc2t6AlqKlGoQCPvHYY2jveerpJ1nZ2KQKQqvVxpeO10+f5drqCi5YrA50U8XcwkFcHtja3cEZxfKV6ySmxY2tNRan51m/vMJrp06CTjh79hxeFFWu6Mx0+Pw/+O/59lf+NbfceZTRxjanryzTsJpRkTMscrqNNp3ZGW45cIhyPCQrckSlNFoNcue4cG2T/+N3/hlPfOaHmJ0+wNr6Go899hFubFzl1qMH6U0tMs4Vd504RLPZIrEpy9evMT09TZJ0YHtM2ZijN3crSdKMbgjAzMJRAG650yECxqZAuOmII/KWL4NIdJxYOrRN0JoLm45k4Pjan3+Tux/+EYxq02xPx/3DF6Rp+6bzAghlWeF9SbPZjgMISjM9e6BWbMPU9BzBd+kPNggSI7SCeKyNTTytNGITup027U4XMebt+Mo7wfsY72Q9o+qG8/sBVeEoC0vaZlLPvAP1jAvv7n2iRDGddrn/cHNSz/DBqmfezU5gWZT0t3cm9cyknsG7d2/YriwyvvP0n03qmUk9M6lnvgsmQ0/vEWZnZ/n85z/PV77yFcbj8Xt9OBP8/8TOzs7EWnqCdxy33XYbn/3sZ/nN3/zN9/pQJphgggkmmOB9DW00VrVopBqtFAq5aTFeESLhX0XSv4psCsE5SnFoH6i8Q3uPDxXeOyQECldSuAJDjIvy3jOuCnw9MqCBINSqNU0ZHHsm1YFaHRhU7QBlahUfUT0oQtCRtlH4WG2GEJV1tRBAdLTtj+79b1ncK4nKOqlfU0FtlV/HMIgQJA5EeAFtJZLj6i01eE2do5RAiMNWcYLCRscXoqI0IqrmYmxe/TtKxc9OwIvBe08VBvWnj0Vw/G9FXbhHYnikqloZGFXZqlRUfs/NyiB1nJZWUdVulKWZRGV7wzQxOkZiOxcwSrDakOiagAWM96gQjeCtbsTrZGIzyIcY8zfbbLA9LPEBuklC0uiCSB0hZ1FG4xF0rVgNEiPClFLEIHsQBdYK492SUQFl4RExCJHEXegY5pqGoihJTM5Cc4obWzmjUYHzsUlhGobeTI9iYztGS2DRQUclOoIoodNO6fY6VJXQ7/c5efkGF66ts7hvhgMzLaYx+MrR63ZY2r+fMytbDEYD1p57nXbTcOyOYygJtTo8qv9NMPh400SVl8RLotG1gtdyaP8Mh9VBTi5vcbGfU2Y5uj2FEsEXGUmjVVv1K5wEPI6wtzIkDt95EZQyzHcadJsp20WMAlBaoUVTuRIBVjd2WevnuEhbMhyNOXXhMv3hmCd+YppWo4UEsCYlhHjtB9mYuU4LaxSHF/fFCUBfO9GoOKTjfcCYBGM0riwxyiDKIVoTjAWdooKgLKQ2IdEKSEgaKYpACB5jG6TGYm2KkwotUd1d+gQPEMLNdWAMWCOoJIk/T4XKNCOJjY1Ocd4j2pNYgzIJVVXFew+FJVr5m9TWA0lRRSsqRlOIgtRGtWar0YQkRWuDNhqlYTjOWF/bRivN4sGURqMBqLphE4cdtY7DkYKPg5La0G41UUCfGJygk4Q0bZGmKa5yFEXF1OwcyuQoESzQbLVotht0et1I3CkhH3tQGmtTWq0uvc4UnXYbtCWxKfnQYdA0k4Rer0ev22Fmaq6+Mz3ZMMbtWGtJ04Rmp0O7N43FYIxh1LcoERqJpdObotWdotnuEkThXIlVilRrOt0eaatJp9uu9zQVnQxEaDWatDstmu0W7XYT7z1FMY7RH40mzUZK2mjQbLdQOkWpGCmjtKXZ6pCkKTpJadiENG2wXVTYJCVtGtrNFr1uDyeKECqKUNXnHKxRJNZiGyk2tXhXorWiUf/dGBOvldE4JVglKGuwJg6aaWMxNonPgODQOkFZjdHmphNEkHqgTTuqsiRttGNDjqgF33uCqNpVUNWNp7WVG3z7me+wsd3n4OH9zB28/S0Z9Z7SfW/812hmZueZnl3AmpqGrZtZIJRVztrKBaoyw+3uApq18gaj8ZhKeXxZce7iGS6UOavZH3PfiYd5bf0s3/jdF9gcjJCdVXaKHR6+/wRaEk4cO8ILr50l1Ya00QA0jUaL6TCHiGO4vcPFs28y2lzn2sYKy6tXGJV9fuuf/ha37Jvm1VOnCGmLBp7KOYyKzh7jLKOZJtyybx+vnzmHMpDoDvfcdpy1C28yc8sRVLXL157+FkmqCJIg5HzxD/45jXbgyqk3ubI94BMfup8sr9gZ9CnKinwMrYaisopxKJnvNNnYvMZXf+8POb2xhdXRpWJ5ZZUqz3GhRBloTzd56YVn6HQ73PjqMvcff5hplbK8tYUX4SOPfILlc6dZWd1k89oy62vXMDbQbFnmOvM8cOIBzp85w8bmGqV39KYXMMEzzPu0O228zui1FgnNBrrIOXz4IOO1dbZcxYvf+jqZG8aIhRAHqefn5vnUY9/Pwa5lbW2d7lTF5UvX+c7L51g6NEdq26Qm45FPPsLf/Mn/nNE4Y7ccsf/APJ1Ol3vvOc7m1gY//pnPUuZj2t2DHLnrQ9x1bY27H/h+rE2Y6s0Q/N6+lqCUJojHpD1urNzg2IH9PLpvCfZMF0TwweNdyebGOgqwqaHd7kGRUZUlRZEjrkQpIUkSdB09nLamSRsJvU6D4Ugzlyo2r29x/Y1n2SgbzCzNcmDpjvidqL7XvQ/1Oo3OLFk2Ik0bNJsJhDaD/iqNRovhYIdWq0lqGgwHm3SnFN4XceG0ZxkN+2TbyyhfIT4g8j0cKzbBu4J3sp4Zqw1K3if3oEA+LGnMtN+qTSb1zNtXz7zLmnRrDb7y9KYn9cwHrZ7R+t0bBt7e2ebNk29yxy0HJ/XMB7ye0TEL9F2BIUBZTeqZST0zqWe+CyZDT+8hTpw4wRNPPMEXv/jF9/pQ3jUopWrC9O2H99HO873Ar//6r5Pn+Xvy3hNMMMEEE0wwwQQTvL1I6kIuCPgQaae9HHOjY6a5aqUYZaNiVim8EkKttNFB8LWiRkIkU3wQgnMEXyHi8FXJuMgoqwpCgQTBVxXOF+RVQeHKm4NMLoRoRa/j8EoQQXxsYASR6PBkFKF2cwoEtKo1q1pQogiio425VqAEq2KUXRyBSggSCLUSSGtfK10BFWMSggNlI3HqEII4EIOEWl1ZE0XG1qSPUCvG43lUuo5u8DXxSnSUCrFij80CNGCjW5WKZH90ntFgAmDioIWAsv6mAj3gURKHL1KrY8yWCOBQtUW6R1GJo3QerYTcFXgJiAKjJTo/18rRZE/RrFxNqhla2qBlNlo2I+wWA2wQDi/N0Z1foBJDu9mg0bSMR9soozAkYDVWAoWL51QnLawKWB3N1i3gtabMd+kXJVkRryfBgHhSDZ+6/zY21lZ4/Uof73KK4RTNZsqth/dTlg7xFUWpEFfhi4rhcEhiLGnSJCiprzB4CryrsEEzP9NhfnaaYVFwfWOb81eWmW+2aHvHPIre1Dz51VWCgrIKvPjmRQ4dPRpVYnUTICB4FeqBPQFleIsGjP9HA8o2KSpPmhruPHIL3XZKkIAVjTiPpKomdeJSEx/wPtx0HhMsmJR2dz/33bbEkUNtrl2ITlhGK0oXyFzFbl7x4hvnGRV5rTSL96KEwMraJucv3uD4HUcYjUeMd4dY2yBJU3q9LvvSJCqb85Ld3T7dlgHnUXElQ30vYhRBR4Kp8jkpSU1KKSpRSFmhvOCJylNfM6N7hv5GK5TVUMY4S5RGi46nTcU1IR7wgarMSJtdgvf4UMdKoNEhEumlUVhrkVovLXVzC6XwWhPEYHRUTQuBEBQNNPunFxgPRxgVo1NQqo5J4ObnXL+6jBHHaLCL88JouMvm6iaFD/SmelQuujmJ+Jvk757RskhAE63+dYjRIGffeJPnXjqLMZoHP/wg99xzHE9FUNE5AXT9e3vuZvVAlY6tWWVrdaFSBHzdaAzR3UAZjLF1szE2JEPQ+DiZGdXjQVBeEL03sKnjPaoUqTLEO1fHuBbCzZgFVIWum55KNKIj7bcXhRIdMKQ+96GOZgNXFYREoaxFG4s1ljyeXtKkHU+7tSD1cyL2HyAolCW68ukGPji0inuiFo8xGms1Smu0DlibYI3G6BSjy7iXaYXBYpSJv6sVSXxsYVKDMSmpsYgIRoHVisQYtFGYeuhNK0hsQmJStI6xF0YbtFJURV7v9/HzSIiOCNpoDt5yhJ/8Gz+H1M9FpVRslNc9YucDrqrYySqanTa9TgPFWw3kPRR5waXzL7OxeZ2pbg9VVhTZiPXtnMqXeBUVoz4Imzu7tNZX6Zx7k4ce/DBf+7//NS7L0SblxvIN3khSPvbhh5henMe98ipXLp2hyEr6uyPue+hDTE/PoY3BVznPfecpvvXcc2wMNkE32NjJyasB19c3CF6RZ/14r2ihlVRUlWI0GvDq6RfxTtCJBipESpYvv86Fy69y+dmnaSUp7VRzz4l7Md6zurvJVj9jtLPFp//6E3znuac5dfk884v7uLaxQ2pjbIcoRVAJvXaboiwZ7myzOhqCCInV5CX0+1tUztHptOj0evzyL/4STSW8+vpJhrs5586eoZk2GfsCY1Nee+k5BsMxVhleOv0qPgg2MRy95VYePPExfvG/+EX+4X/3q7y23afVSVGSU1ae1LQYbq8wGg3JckPAcE0FVrc2ufzaK3z80UeYPrrIt7/2OgcPLzF4/TSSaDrdLg8/9H3sugSTNPnSV7/DeJjTne7x2GN/jcuXlnn+pWfZ3cn44j//bT5+78e5fnUd22rwEz/+ODOzUxy95XaKrGT6SI+77ryHV559iUE/Y3drm3a7w9p4TLORYqyhSprYpIEKmsvnL3N98wpLi/OkaQfvHdZqQu0WISJs9ne5tr7BVNvwsQ99FK0taaNFuzuF97ERndgkNsWVwRjF/NJh7n7wXvpPP8+wyDkyP83W1mVOfPLnMK0exsTvVHkxjk1aUZRlTrczBWicG6K1Ic8GoAxFlrNy5QxSbLF49D6UalNWwqi/Rqs7S/CBJGmgjKIKMRa5dOVbm+4EE/x78E7WM+PdZxkPr7+nn+/thC8D5dDR7NkPVD0zyAaYIBzYP01rdv5mPWObhmzUR2vQKgWj0CKUVXSBMbaJQbBaEYgxVkFpimKX7axgnNeVZNjz9Hn3cHhpkeVxwbwxk3rmg1bP6Hdv+ATqoYNJPfOBr2feze9jNjG4kE3qmUk9M6lnvts6edtfcYL/11BK3XyIfFBw6NAhfu/3fo9jx4697a/97LPP8gd/8AcA3HPPPW/76383OPc+UbdMMMEEE0wwwQQTTEDlqshqo/ZSDSKZoyL5rDC1qDWqQ4OK6k1qxauoPQv7SDr5IGijSNMm0IjKMx9oi6rdkqIFU1RQhmjD7QpKl+PKiqLMEV9QVQXjakxWlQQNSsX4uhBqkjaOGqAcoONxKOUhRMt4q0xUE9Y28YU30WZfgTIapYVIfZmatARxUe1qtMJhqcqA95EQVjqgTCT8RIgDVSGgxBMkKlaVjg0ACRovezVtQCsL2tBQ4OvzEE+1i8S5RLt3kUjgI7HQ3lPLaiUE5dBKYfbI0fq4HQ5tBAlgLKAcShReFLb+fa9dJG4VKB2vo5ZY2Mcov4DbI74D5JVnihIwOAu5H7LUSTnc0cz5jKwKkAWK0CPrbzAOJWMRWtbgtWVU5oivNasGWlbTa7Vp2oRmq0ViDPMzM3SnDIrAxZUhRYDpVoOuhrLdZX9vyPpwRDke0J7t4fMMYzTZaEhAs7m5yzjPuL66RbuV0ui2QQXyPGNY7KKqSJCgFb6qqKpAWXhc4Vlf32XYLGk2Ui7vrDEuVwla1XEPwrXVPi+/cpY77j6Kw2PEoFE4HclvRIMKGFG1Mldqh7JA4R3DsnY3K3JOnr3Ew/fdgU4SMBCkQHwTowxOhUiuu1oVXceoLc52ufu2KYwpwbexxpAmCeOqQiWGvAhcubBKUYxppxbnPaWrG3Qq3j8nz17gjlsPke8M2dhYZZgHjt56iE6zyZtXV9BG830fPoBRwo1ry/T7GaIMB289wsxsGt3OXCA4T1l5qqLENAqCbgCeLMtYWVklbSTsX9wHwWG0ApOwsT1A2wINJO0mp0+eQynN7bcfxQcHRHtyrTSV1EpwVCS2g4/NLhECut6HPImJn9N5R5rYSNSqWo0nMWYuVDG+QhGV/Aah3OljROOUp5LYlNJ7rZB6iGn//CxmPKCVpixfusjV5RcYDAcUVYUoy/TcHMmH7+bQ4X1x7e2tLeIwSlxYgSAx9mVtdY2ODdxzxxHuf/B+8qpAaYPSSWykBgjeoW0jDlPV+6ERgyKNg5VEUk8pc9Ne3VPhXEEI0aZdnK8d62LzSupmnbIWk9j6vTzeZWxu7xC8Yz54RMehLy8eVL3/xJ0ebzQEQUxsSsTrpAgEwLMXjqBUVJfH4VGN0Undxox7fJGXuMqxO9rl9KkrNBpdfvyzB5meniJuoIIxgq9cjJ5oWHQFviKq80WhjEWppH4+RQc+JdHVzxBQGIwyBAXaWOJV0XHvVAqlTd2gqZuzWmN0HFwVVNxbMWgdHf2UaIzZ23dj867Iy3i9xFFkI4bDEZ1ej3anG9WjShN8tL7fHQy4vHwtHp/RdDvTuCIHk3B06rb6ibt3XePfiizjhW/9GaPBDZwIJgQ6nS5pd5rWWCMh4AloMTSbXcQvc+7iOUzT8BPHfxRXxvean5tiZX2N5ZXLXF3fR+fAD/Gf/Z1fptPqcfnsSf7ZF3+X/zjLePjhD3P9wiVW11d48Y03OXf1OkFBUfQpnMckCm1TTKqg8mRZRZ4J412hmYBNAts7Jd7F666MYXWjz3defIn5nmO3HDKz7wiUilZrlu9/5CP8xVe/yoG5hNnpHt/+5rfBOz5x/0O88NrrHFzqcmNjE1/U+5/SmFDRaTX55lNPM3YF8wszHJxe4PyVSwxLCC5QVdDfGfDUk0/x/T/wCT7y8KN88uM/yG/82v/Aa/1tbBKfZ1kRye4s1M9Aa2k2EqZacyxfucz1K+fIh5sUIUOCppUkzO/bz0Kvw6Wru68ETQAAIABJREFU58FHtwalKxrtaZbXNjh+rOKhDz/Kq88+y3/5X/8KG1u7/M7v/y7D/i7NTkojmeMrTz7J8sYmW9sZEkqmmOOlbz+Psm3mZheYOnCAC+fOcfbCBeYOLfDYD/8otx2/m/OnzqDtNQ7cegd6eppmq0tzZoHDx45TmpROo0WaGFqtDkZrtDExsgnFsbvv4G5zN9ZakMDpK8vMTqUs7j8cv6tJ4MQ993P3XR5rDNaom/dk7KDqva9C9XeM+D3lwOIBHnzoEzz19efIHfzFG8vYuZS7P7ZNWVY0kwbapngXKKpdkIC1LcajHQRL8GOqqsKVIzpTCzRa0xS+op1a0uY0AcN88xA722tsra+CqmikDazp4JygvaYsMoJ5ZwSlE7x/8E7WM4lN3tPP9k5AQhSA/PvqGd5n9cw4OC5fXaUsK4wxtUvOW8/8EGJViHprbOlmysXez9TeyHxEkDgU1+20me21GfUzxL+7PZONYU4WDJf7k3rmg1bPvHUnvkswZlLPTOqZd/WuW1g6PKlnJvXMpJ75D+B7Zuip2+2yf//+9/ow3nZ8/vOf53Of+9xf6XeyLOOzn/0sm5ub79BRvXO4du0aTz75JI888sjNqI23C48//jiPP/742/qaE0wwwQQTTDDBBBN88BCJURWHkGRP/aZqRaiK/AxCCNHRxOOjElMrglJ4QIuO/xYkqmNrFZ0IBBUJVK1gz2IcE6MREgFJm7TVVCTJazIn1MpI5yryomCUjanKMUWR46qCKpTgXSSjKKmqgBJBh2h/btAkodaq1mrjhhi8GIIPBB9ILXilaiv9eMTa1CLBWpXovSY4CD7KnbURfG37bIxGWcFoEwdrEIzoOBSFRJUxCpQQJJBoQ8tYvATGrozKWAVO4vmiHuRCgdamjoKgJsiiW1WtjwSiYtcFEK1j2hYK73RsnIuiEk8URKk68iG6YIkCLQp0rfIFfHyB+hpFdauIEHxBGXJa+ZjpbMzuzjaZV4wKj0cRdJM2gRCEfkPH4TBxNGxKMBCCRmlFGWBrnKN8xlxZMd/s0DaKbDyi020zNdVluDGgoRVaFH1nUL1FbFgnL0psVVGJxxhDkjTI8opWR9Fud7CJwdgEJQYvgmiFE6EsclSu8MHTSFNWN0asbQ9xztexGJ7CBHaHo9jU0Akt26AoCyo8L7x6kqSVsn9hFqV9pJZF4xUoFQnUqCcVquABYdQveeW1UzAeMS5KBsUu9sYaaWI5fHCOvCyYSZu4UGCUAjRVUeKCI8geRRP4oY8e59jiDNcHFeOiwvk8KuL3BnZcxU5/kxOH5jhzbQOvDarTZKM/iutYKba2d9jY3GSwvc3Lpy5T6DVGecH2+jrOVzRsyrQpWT1/mq3dEf1BRgkMs4IPP/IRCBCCoyxLMJYyVMi4QBFw4hisLnPp/EWuru0wP7efe+49BMFwY3mVp86/BBruvf0Y3fYyr7zyGg6FsoZDB/dRllkklyXgqoxxltO/WjC/b4HZbhtHPB+VrzA6ZTQaMBhlXF7pc211h267zcxcD60DUlUgtVOb7BmSB0Q0lReG4xGlL0itJSghegLU1FC97JrTs4yKMVuDEdf7G3jnEDxeHFmZs3t9RJENmZlq4cWgRHBBYvyLAvGe4AQw5EXF2mCMMyk7/SErN67T7va4eO4S43GGosHCQYt4IRus4UuPTzQ+OLxzqOAQJWibRMe7uNkiIZLaO/0+vbmoRJd653ZBcL4eIlXCG6+fZuv509x7790c3D/Ni8+9zDMvvEJnaoalQ7fEVR+3JkKIjapAwAdHomIjMO40ChEXXfVUdM4IytZ7lSBB4n1rklr5Hv/JeUfwHmNS1lauc/XaMp6ETw7HzMzMomJLAy+RpNMSkOAxOpK4Wd1I1UrFhoaxoATvfTyGsKfUrhsHOj6PfPSeuPmc2YuOQxQSohuBmBghYbSqn3NS56DWsTW1k58ohQ8VmzvrbG1dB1/x6tNP8uaZC3zq8Z/m6J33EEIgrwqsVhiT0Om2OXb0MOIcWhucdzTbS3TaTcxeFETdQI2NlDEvPfM1rl84y9Hb72RmaZHp+UP1Z9KMxyfjEK1z+JAjpoUxhqKq2O1v8s1v/zmNXhc7HDAcDuh1OnS7Lf6jH/wxptMZFpduIwTPmddf4fCxW7h87SxbO6tsr60zqgJXr9+gEM+hgwfYWlknlDmdToc7DxzlyJElXn7xGd4YXKaRQKUVAUXpFA6FhIojS0vcsniIZ15+hZXNbawKuNJw9eoFqrHhE/OH+PIffokrO5sY2+PRH/lRNnZPcXDpLu666zbS3hL/6b1385v/y2/wndPnMVZx7513sbN2g4cfeIjnv/1VUJ5Rf8CHfvjTlLvbrA5WuOv4cVpJwvLKCjvZkN/8p/87Bst/+3f/PncePcbO6ecp6ue0Dz7Gps7OMjO7wImPfIzR1janXnyDPMv5h5//R+xmW7iqpGk7/MSP/TjPPPssb144TzNtIsbT7TZwEphd3MdP/eRP48Xw+iuvsXzjOiffeBU9M0M5HjMe9lndLHnx3MucfPV1Tp9/k8ILibbsDAb81BM/w1e/+mf84A8+wqd++HG+/q1v89ST/4b+aIdPPvIoD9z7UTbv+wgXz1/gvnsfoNlI0Wh6U03uvuv72NjcYTQecezWY39JJFy7WCC00wbDbMT61ja9bofltRvYZIH54LHaUDlPnudorWkmbf7tZqne2xLf+nMv2hNhamqaQ4szHOl5NrYzFhbn2d3dZvnyCxw6eJipxWO0evsZ52BNwJiUyxdeZmF+Hm2bGKtJGlNsrF8hTaYJ4tl364cwaZdQlPS3VqiybbpTC1w4dwa/vcXsgTtZvXSaBVcg3oOUf6XvthN88PBO1TPOOcqieA8/2TuD8XZJ1q9uDiL85WGfCOFmVlvcFFBKM3+4SytNvufqGRuEnoXVTHDewdsYV7izO2Jnd/S2vd5fBVXlKdyknvkg1jNvLa53B64sJ/XMpJ55V++5JEk5MKlnJvXMpJ75rvieGXo6fvw4n/70p9/rw3jbcfToUY4ePfpX+p0sy0iS711FxRe+8AV+4Rd+4X0zxFaWJcPh8L0+jAkmmGCCCSaYYIIJ3iZIbdEdDe9NJNIiLxWjDUK0Eo7aPVBKo+umwV6EgVPh5pC/NQqjNFZF63+Uwth6GKhWxKlaPafqd1Uogo7UkSYOrSjVgIYw3Y1KtSoIOoAJFSUOfCAPHu8czpXs7myzvbbGeJzhglCIAxSpUjHCgkiGBy8xm117kmaCNkJBTcyho7xQNFppjJW3iChrEBzWGXTtaI9o8MSBB6mjGrSq7d09ylqUKDoNzYzqMW0NHkWZaK6PNimDQwFOeXTQNxsAEvaUSVEGrVVUOouK5J5RgohG1Q0ZgyB1kW+VoDEkpklDN6P1uWhUEpVQRhtSZaOiUgtF6XA+KiytSSJZpww7m9sEVzHtc+aTgHeBQSU4UeSlUAFeMkQpNJa79y0wNb8PrxyVl3isTiFB4VyJEBXbWlmyYUZHeaxU5OMhM60eKwY284xvXd3lfKEpsoq00LhshDQtogOCxiK0GhXKBJQ2GDLyPEPCHM4IaZpSjiIx6wW8c5RlxWZ/QJI0MDZBlEK8o8zzWoUqOAm14jNa9edlxcmzF5menqKZmpsqdxW5U1A+WsPXzZ7la2u88MoZijKnXjI4LzD2PP3iKR4c38Kdxw6CBIKv4uAfFu+jm9iemDw1io7RXHzzNDf6GbNHbqMsK4KPg3TKB7IsY19iOH5okeUbWxShYvHAPjLnycYFSmBpaT86SVgdlWxmnkZacu3SZbKsQBOYbaUsmAovwlZVEKREgmZ7Z5MiDyQ9jfJgtaGRJIhrgSiC8mit6aSGFMdwd8x4uMzCfCSdVlbWGJdjksQyNzfF9u6YoAOuhNFwTDYusNqCduCF8bjgxZff5PKNNe4+fg+f+ZFHsRIJPpGEzDteOXmNV05eZKfIcV4wgLEpS4uzHD00G5WsBIIiksN7v28sIx0bcR3Amr2BkwBGI6LxlScERWVSNosRZVVSlmUko0XdvC5bgx2ee+U8J+6966YqW9eXvyorvPMMs4LXzl3i+uomAc3qVp+VsePjDz/EfAK3758lSS2t3gzFcIuNl56nP8zRc/vo7N8fh/aivUEd+RD3RiFQBs/m1pCzl65w53bgwNG7apcCCL6KDdkQyLOMZ169wNYoZ2X5Oncc2c+Na1eQ4JmenmJ2fjY2DOuDV2hciKphJXu0eqiJfPCV4JwmxSAqxom+8eqrXLlwif0HDtBKNY1GGodAUVy9cIHTr5/E+wIUpMZAEBqpYqrVQVQkHquqioOJSYoojQoxTkjpqE4OwYGP59loFfc3pfFeyPKM1GiUiU8MER+fUcHhqookTbHGonVCAIwyFHlWK70TlInnTSkI4skqBypG7Gj11nNIfFyrSsHsviPc87GPMXVoH+1eg9FoBwkeCRVZNiTLhjgJGMBVJWnSoNmdpzm3H63fInJFAnlecOXyZa5euUSSBo7dfw9p2gCjKYtdVIC182d44+U3cErIy4xAiVEFMzNdevTodKfxxrKwb56FA/s4MHuAT33mcfKdAQ9/5CN1sz8OF3/sh36U8utfB204tHgYKTXVxiaffPRRvvGtb2AJMcYih0G+y8nhOZT2JEbTaCTkRUlqFUUVcKLRSrjvzjs5cvAAl86e5q//8I/QTAJf/fpTGBVopQ1aqs0dR49y9eRT7D98GDUOnHnzKj/5Mz/PsVtvoypyjt8HZ156ga2NAcY2KH3JG6fOEFzBlT/5E1rNiqIs0aHiD//kjxiPcjSBpYV9/E//4z/myqUL/PmffYW/8Td/nj/90r/k33z5Kzzz6hsUSjEqKtqtgDFxiGFpYYnZqVlWT1/ib/3Uf8IXc8+brz3H8sYyWgdSaymrgj/58h+R5xnoBnleML+wj8d++DOsbW3wxBM/xZU33+Do8RP82t/7B+xkOzhfYjtNmq2Ehz/6fbz0yhs8+MDDPHz7Q/zaP/r7bGQ53nn279tPPqzY3Nni9/7FH/Lss69y5333I50mP/+zn+P22+7FWsvCzBxbU9usr9yg0Ujp94d86+mnqUzg9ZOn+JVf/qX6m9uefrkexA4Vy9dWWA+ewzNTbA526fSmOXnxBqcv3+DHHv1+EmvR7Rag9vj/7476mSdAo2n56b/2carRGBfG/MBnfpakdZD11VUCjiLfpdXbx8bGKgf2zWJsyvXry4TdC8zf+jBpawrvHN32LKPxGKM1adqg252jH3a4dv0q1eASSwu3MdpaQ9kxOztbFMNtQhqoQkDCu+xoMcH3HN6pema0O2BtdeW9/XDvAMSD+LiP1D/5d/2vf+tvSgVm6TJnk+/JeubQlLA9gvLdnRV5Z6HUpJ75gNYz6t+5Zt855KMRS9ONST3zAa9nbjrgvQvQ2kzqmUk9M6ln/gP4nhl6ajQmtr3vF6ytrfGFL3yBz3/+82+729N7gddff50vfelL7/VhTDDBBBNMMMEEE0zwNsGgCShEaUSZ2ACQOKBiYp5bVNGpqMwzWmFrRW/YszYPMRJCtOBddGkq6yJUaR11cBJu2pDH941kt65Vu3tNh6BUHZEgKB0LYaU0qVG0rCLRSc2dC8Oqikrj/oDl9W0G/SE+SG3nHdlbDyhdM7tCVPB5jzWKkAmNpqGZQBYqKgk4QFSMqUIrVGIwCrwKmJrAEg2NpMX+g8e4cfUCPjhUPSglai/uIQ7lJFpzuNeFArK8oiTQa3c4PHOIG8NNKvFodCTIarP6OEkVP4PSGhtnq+ohjICXeN60j3SnR+GDilbpGrQVUvFUISPU8Q3WWVwQtLJ4o+soh5JBVlKUDtGCwiIhkGqN8YZpC3d2YDiCUTAUEtjMhJzYTEiV0DCKpoVsbZV2xyKNJiKCRkiUpTKxgaHEEpzQSCzjYsxGcDfVnYkt6XVStoaOk2NFo+ijh7uUOLaVINs5wVqmp4Wi7OODRIW+ciRWUJIixDgSJaBE8FKSJh2CtWwPHEXpabdBvMMFoaqqOKCGYJSG4HFKxahED15gY2uXtY1dDh2YiirKWjGJCI7A7jgnLwKucpw5d52sKKNJffStR7QQFPRHBS+8doGpVodkaYGGtXgnGCVUmQcsgQp0HMTZvL7MlGmgvef8qZN479AatFgCjul2ixMLUzRx3H9wjrNrG2TDIfPTU1wdr6EEjiztQyGcu3wdcY7ZKcO4v4lSCmMthxamOXrwIOsr10gCpKLIvWO4OyDPcqanO4jWYBK0MSxfW+H0mQskxnDs9oNMd5vsDDO8BIx17Gxv0WhbnAsgimaSkKHZdDB0GucqnnnxVS5dXeWhh45z25HDoIUzpy5y5cY6LggzzQZBFN5H0jZtNdjeHvLia+fYdRVVqNBBCEqoKs/1G46pdouFbsBqgVBR+SIOWirYHvZJE8tUt1GfPx3Jb5HoDoCgDTQbKZtBk49zKu/iPVDHVAjx8wSvGQzGBB8VwRIN3ggo0oZFjObs1XWKLCdoamWw4sC+Hovz08xstQi+YnNri+ndAa4csb65Hgeu1jSH7r6XnRuXYuSLRLcDvEdsXL/tdodxMaKXamaaTYw1eB8wxpIYy3h3wMZGn16vYn8noRlKrl86ybXzr7FvdprbDu7nzluWSJWN9vH1/ghCq5kyTltoY9HGREI77pQYDc0GSBH3582Vdf74D/+IosiY7U3zwAPHufXY7aS+wIeSl556ClP0ubRdsnDwCN2mYabdZGZ+Ng62qhjtZrTCaItVgjIBjEGr6L7gxdNILC5k9bNHE4Kg8FhrSdMEg8YYjfPRlUBrTZIYkiTer0lq0aaO11EOrWIDWytB6T0LfY0xQqpjjJxSoPVbERiJtZTjAePBiLl5w/y+I6AU+XjA+WuXGe3u0uwlNBKLtgqCpsoLtleX6bQ7zC/djtIJSWIpyhylFGXm+Se/9dt8+Wtfo3COTz32GD/3+KP0dzZYXb2KIKT/D3vvHW3ZWZ55/r6ww4k31r11K1dJKqlQRAmQQAQLbIzBg92AU49DN7jbHVZPs9xjhrbbXstt97THDEY2bRvGbhhyNA22QQYECIFCKZRSqUqVw833nnx2+sL8sY/k7nEbYyOQhM6zVq1bVadu3W/vffZ39vO+7/M8YcSgn5UOgqag090Aa+i11giCiFoQsLy8iW2kHLj8Gp538WVs37aLbGWFj33sYwzzIbv2XcDR+z/H9osvYdfCVvZdeiUP3nMv73/fn3B66TQLO/bxsz/788xPL3Dn7bdxtlgsFeda0U96HDl9gmYlYqoW0/WOIodISJw3TDQmeMPrXseD997JxZdexbbpOo8++hhbt82wutkityEVXaFvEm5+1Y/zlTu+zgNLp0n0Uf7p7DyN5jTGGjbPn+fPP/0p1vLynrWFICUtm9xC4QgJK1VcmpAai4g0W2cm6Q3bfOSD7+fRo4fJBjmdYogVgvvuvRMbSbbO7uHc+ZOEFUGzMUGWGk6cPMLkzG4ak7Mcfvwk/+tr3sRvLZ9Bhy3a65sYJzBYhv0hiILAW5wPCYKQH/+RH2F61wXU4pDu0gbvec/76GZ9fKjZt307W6MZDvcWOXr0JJV6g9jV+KM/+l1Or20wvWWOiy7dz4X7DvDJ//YZgmqVG17+AywdP8qW2Vn27HspL7/xFdSqdU6dPMXXbv8St/7VHWxuLpE7w3CQYIuCsKL5R298E/PTW/He/fU9Icpm17AwFFqyo1Lj+PnzLJ1c5MOf/iCves0P8+LrX0Sa59QqFbTST/S1v02U98gll1xGeyYk7a2jhEFXtzDodNBYoigk1GWEjQS8y/HOMBkH1OsxzeY0UleQJAS1BoWDmS27ydIMpVaZbM5x2fNv4vyxBtIMqNRgbm4Hjcm9NI4NEMkyAo919h/4lDvGcwXfLT6TZMXTfWjPGAigokKS1D8r+UxvALvrise73x/7iVQK4xx25As05jPPLT7zPZw9AaAiPTtrYz7zXOczSfq9M8PotFp8/H1/OuYzYz4z5jPfAs+aoadf/dVffbqXMMZTiHe/+9380i/9EgsLC0/3Ur5jeF82pMYY43uB7+X0+BhjjDHGGGM8VyHUqGDkJXhXuuAw+ivnUAiELGMhnohML919JEKVhVDlykg66cEJgRsppb31I0I7suY2ZfHJC4FTgsKVbkxlMJRAKlEOP8lSledHqmDlYSbWzLqMSAdkqaUXxIhqzKC/wbHHHmFzszOqeZVDT0KUTQzwpQO8KNeILNV/xgmkV6gcGlGdQHsKZwhUSEEGzhIpjfEGIQOktyjpS52QFzRqFfbt28/SmeOlqk7w10Na3lFGOHiqgWK+WqFjMhIvyApAGKZmmlRtTj/NUB6MNGihCIXCC09elJbq0pUxfNKVkRAjt/LSHt2XCsdSOV3aT/nSZ7/UU1qBw5fHLkE6hQfSwpTfIxQijKmEpf7Sji689BItA6YDQa4lLRkQVAQ4SxAEiOokuIIo6aNK7SHWW1qtgpZKsViiIKAZ10ZFA0FeGApjmHClY5MVAc4LTA4TzYjdsxVyn+GTNjbPkEGIRJXKRB1R5I5kMMQ7S4FHy3L4zHuHkAUWC85jvGWQ98itIYg03lj6/QHWO9IsLQv81uG8xxvQonxv+PKUItUTalMLxmJMgvMNBKpUTeORo0i/I0fPcebcBoQRXSLCyQUkDusc3hRgc6yzOJOT5Y4Hji2x2imY29JgfqJBrap44NQy3cyC1HjvCIKAe4+e5/rd2+l2+6x2hkQ1VSplZWn/H8QhTilW1zZJs4LWMEeLHs2pedTISr/TG3LRzh3EKmDDWmrVkKxvGeYpIgiIK1WMsczNzDG/0WM2inl8vU3iHGEYlkNBrnRm67c73Hvvg6y2uwgEWafD/gP76PYznHdkRjBIMpyyGJPjvKcyNcXJHbtoHfkaNrd4L0iLglOL59nodtm3d4luu8/S6jrZqHh/bn2TPE/AFXgHhfE8/OhxhibDO496orA9GqrLjGV1s89krYbx5QASQuE8OCR5Aec3ezRqEdaXEQHGFQQqRgqwTuDTAtvrsdI2DHODc7a0hUCMnOlkGU2AI4wCvLJ44ZBCwEj1i4XlcxsceN5+Zudm+cpXbmdxdY2aEtikz+nDh5n3BdZacmOxBoJKncJJvC1oJy3OnTs1Ur8zimIo92LpIU0z7rv/Uc4ut9k/1+SCC3bjnS+V0d5TDDboLz1OhYK4cFw63yCfbXJbe52oqrlsxyw0t7DRG9DrdpmY2zLa/cu9Ay/BOby3qFFD+Am9lvV+1DQoB1aT4YA0HWJsuc4L9uxAuoLp7TvJux32TDYh9wzyNmkxZK2fcXxjyEI0QeHKwIay/fCEC2CIViEAkgDhXOnG4T1KaNTog8C7ch9xvowLFf4JhbzAe4WUHlc4BB6hFFoFKKlHbcDyY6A8pvI3XpY/33kH/q/jXkql9Ug1LhzCO3obK5jtu/EOFh9/iAcfeYwPfPw2tI644YbLuWjPVrQokIEibjRpVBvoqEphB2yunUB4R24KgjDi0L2HuO3LtyJcQZqkfOOuu3nNzdewsHWe+tzu0kXQGGqNOe7nm8SHjtBsztJdXWSQpkzH03R6AwaDIbu2L/Dq172RWu44+M0HOPTAN6hN1rjjjm9wzVXXc7rIcf0eW7dcxa69+7j2ymt58Qtv5Ff+j39Ff5ByxeXXcuUlV9Jb2eChk8epVgOsswwt9IcJ3e4Q6R0ajwsVoa4wHVaoeMMXP/1hWmbAMIk4E1VoDzqIwGILwSCxdF2fmfkdvOKml7OZelZbCZfsP8Dc3FbWH3qMz335y/zkv3gLb/qZn+frb38IXIrGY71AhyEvfuHLeM0NLyVvVPjwH7+D3VffiGivcPzMGSandvOxT36CXjZgy+QsGYZTp06R5gO2TM/w+tf9BN+4/S85v7JIVJ2mtXwcQcTaygrL66ucO36Y6blpNnotts7spEhz2p0OQglmGxNs9lo4W75TG9t28PFPf4abXn4jL3/JzWyfnmPnjq2snQlZbbdIkoIjK+ewdc/cvm2cPXGS2//805xfPkglzlheOcNks8lNV91AJQz5F//mX7Nw4Bqm8oSaV/z+e3+X/MYVvvDVW3nv+z/AykaXLC0IQ4fQhnRg8dKhTchtf/EXnD16nF/4hX/KpZddMXrGcWTGcnpxjYrw9Ioudx06zKmTJ3jRS2/gDa/8YZT868iqJ2p5nrIh9nejHBhv1hvE0RWcPXoPwncRXhBUqqS5ZWNxlUqjy6DTI1s9jZy4gvWzRxm0FomoUmmcpDl/OVnSw5qcZqOBb0zS66yytngSN5uhZI3NlWV8f5laI6DIBBuL5+lvLKN0zqA/QKj421jvGM9lfLf4zONHHn1aj+uZhlBKEuOelXymLQO2zwhOD9rk9vugt+HBeTfmM89RPuO+x05PJi/wxZjPPNf5jC3S79l7rtFsEo35zJjPjPnMt8SzZuip0Wg83UsY4ylEq9XiHe94B7/zO7/zdC9ljDG+p7DW8q53vYsPfOAD/6DvP3PmzFO8ojHGGGOMMcYY4/8PH4hSMWjL4r4UGkRYRqJ7WUa+SY+SZYHOW09hC6wFqUr7/LK6WhZenSulOsJDKWuTlLNGo/gCKcuirLGlEntkee6ExJTTSmUDQvhyMMU5ttRidkUG0hwrJK/4yTcys3svhfD84W/9Nu12D6EYFZA8SqmyUOs9Tzj2e0bFLucJRgMzDktegHOSvdv3UmtOMmxv4FwLJyVVFZFZg3WOzBmkcAip8Q6CoAlOEVUnRuq7kXX7E1kOTo5UeKArDWIXUlMWVRhQkmGWYgtPoCICqYhUOTClhMRZi1aAd6PClgCpsNYShXEZyZclCGOw1mJ9Wc9VShEqVaqsvccpT2ZLxa98siAuUUIjcGgdY11ZJHPOo7RCKUXgBdIbCKAjagwQ9BQJAAAgAElEQVSVQQlHISxBvQ61abCWVMZIkxIGgrywDB3IIAIpSbzAGYVCEscVVEUh0wHWS3wzJpISHWiCqFo2LLodJqdi0rxAyDqlyLsctHLKE0bgvSUfBZMEtRrZYInMWYKgVGQZ77G+tM43QpGaFJPCMM2xDoKRmt/5shgrhcRikb68dobyq1Iaby1CeIadPmZuGrRGyHIID6HAWPbsnOH4iZO0NodlQVcIHBqkQgiFVCFSK4xMMNmAYZKw1m6zvLFJHEVMNausdIZIKdi1MMfq6gbVAGa37aRlFcNMoMMKQayIK2F5b6kUFWiWkozjZ1dZ6SdsZp5JUSAnDGEgSYuCIk9x2PJ9LiSRDFGVAjsIMQbOrQ7wF5S2/1ONSUxuqLQTwjTj+PHjhJdegqSg123T7XbIhglaQmYdmYGNdp+eEaDKwqIOJXEUYxzoUJe2/P0OvtdDSTDOYF1ZyO/1+xx6+EjpruDtE+YLLK93eOjwcfbt2gpI0iRndb1VNnRGxWr35D1hcVj6wx7WVsuispJIL0cqdgHeUlhPYT2j2wupAhBl5IK1Bd0s48xGh5XNDSIcxoGgdB8A/6QIQwBhfwM3HJaFfGtLV7FRs64+Nc3V110JMmbP6UWWV9cprGdts8uxU0s8f+cMIQ5XnYLIE01MYMKYE6dXWBlCOzjB3vkKUjgQpVIX60jzjK999escO7vIxNxWmju3UJmsAg4hFHhHsnqGeuBJU8/u6Sa9XkKSCypxzHV7Z5lthnRCxW0HH6bd7XJTpc6eC/aUM6LO4bzB4QlGERTel9FAZRFxdPzC4oEwCrh4+1Y0OfVKjYZ3nF4+j6/WqYcBE40aw41W6djgHKawOCFYXFrlPe/5r/zAy27ihTe8cNSoKwv21guEVDhrca4o932pRpdJoIMA6UqnPe8KVtbbnF/eYHa6zXUTc2xb2IqQEusNXpSxNwJP4RxhEJZNPW9Hw2uidOz77wZkHbKMWsEjlcQDhbNY78nTIScevp1Bb4O1k2dZWj3Dp7/wDdY3ewgcn/ncKi958U38k59/PRONKk6NHEWkIoom6LeXOHPsEawxqCBk7/4LeP7FOzhy7gxeR1QrgsSF3HnXIzx+6ja27djGK1/9Q0xXmvhCIrXG+4BKbY5/89a3MpVLznTW+OD7/wtC1lk5epyd8wucXjnFoZOHuf7aa3n02MP81Z9/hqmJKQ4/dpgH7rmXn/5nv0hvfYV3/p+/TjtLKLJFPvqJD1Pzkn4+5JKLLuHwkQcpDDz/6us4dfwI65vrGGGJREB9skkjarK4dJ4hhtrkNq644kbCSoOV4+dpncnwwrNn324mqhPs37ube758O5fsvoh/9pZ/Sa2Ts/Paa4mBz33owwxmpgiU5LIXvJCfe8WreefnP0VORhgoLtq3nyYxN73iVYT1mPP33sdVr/kR+g8dQ/mv8vk7byfLE7bt2MdP/cQ/4e67vsn5lQ32Pe8y5nYu8MU//yQnz50kL3IuW9jDtgOXsu+aGzhz372c2VzHCShsgjCeeq3BNXsPcMfh+2htrjExs5XOIMO6lCissLG4xP1Dy+HjjzI3t53dBy7gX+77RT5YeD57x+fZtfMivvyVv2KLnmZux3Yef+ghvnH4dqJKSs1lZFmVc+dO8O73/h43vOSlXLJtB2vddb752GF+6nU/xmt+5Kf4vXe8g8eOPMZmt8O2qVnODzOcEUgj0bpU9WcmYzjocfjQw/zRu2/h9T/5E7zg2hew2W5Ra86wPhiwurrIi6+8nB+9+SaMuZHNtTWqUUAcV4Dyfju1tEKepVTiiF0LW0dxSN8Ko4F1IQiCgNxpmpU6UTxFXFXEtSmG7ZOocIa4Kag25zh34hDGWHbt2cNGq8PJM49y8cQChfUsnjvIwrY9BOEWinRIr9+mUouxRY+qEthaBechBYzNsB6UVAgslXrlO3nUHeM5gO8WnzHGPN2H9oxCXKshnXrW8hkpHHOThnMb3af3RD5FGPOZ5y6fKb2x/36ohBEXz02x59IDrHZS9lx0gNmJGl4Y1paWWd/ocfHzLsKhuf++B3jg0P0ESjJTjzm5tMpsyJjPPMf5zKDT/s43rm8TnXYH4tqYz4z5zJjPfAs8K4aebrjhBi655JKnexljPIXw3vORj3yEN7/5zezfv//pXs4YY3xPYIzhlltu4Vd+5VfI8/zpXs4YY4wxxhhjjPG3QIcx6ADQBHHMxPwuKrU6lXodZw2B0lg8gZQUWUo67DFcOkFnkBNoRZYbhHdo4Ul6fay1IwtvoNST4i04pajWq9QmZ8iyPr2NFnEYUI80hfP0XYALIpw1ZaEci/KOmhLsDvroQRdjLabwnLj3fh7/xiFELeDgXQdB+jJabmTpLYQf2Z2PCosCvC/VftKDdX6k/istldM0JxmkbJmpMLNjDxPVCugIWakhpaDvBcMsIwoEtShGuHLoYffCHsxFfQbJAKRCeoeXZXRWmmfkeY7Nc5aGgonaJLtnq7Q7fYywrHXbVMMKWkniKCKIQlRQJU0SCpORZ7ZU1QpLo1qnXmsy6HWYn9tKvVHj/OIpsqwgzwrW+0NMltGoVJipxqy2higsWioGaYHxFikUglLpaBQIqQmCCknWB2MJAk2z0iDWQJEjA0GCozE1QeBT0mEfgpjmlgWGaMwwQ1QDlMxpSEOSJghlCSuKga/ghKYWRQgvmJvfRhjF9BaPEYURvayM/puamiSuT3Di5ElanS7OCYR1FNbiLSDBeoXXklhLDA7jS4V3XQQ4nrjMpcOTcRZQZJmjPxxiA0Onk5PmGdY7ys5LOUwlZDkAJazH4iDQNOqT5JnDFCkqisHmbLS7bOlnBIFF4lFS4kYDdY044NI9Wzh07BzeG/CCTpJQllhBhFWsM+RZglKCaiVg1/Y5Wr0hrXafzsomhXPEsaYSahqxIMsMq+stgm0LuMkGk6HEmQKbW4wxVOMGvb5hc5jQC6uktUlcsUnuDCYZMjPZYKMzYM+ueawvnlSGdtMhSgboUOIwDHPL6eVNtk5W6Kcp/WFBFCiqkWLp2KPEWtHqJhw9doxpa9hiHdpJ2r4c8jlw5dXMX/Q87rv7IKGyzE80yDyoMMIPMnRheF53mbtDQX9oGQn2qWiJ0prc2CcLtUIohID+oMfXvnEf7c6FHNi9ncZ0kyt3b2VpcZGBLx3ClIBIloNrzoGzBcY5CgfGWJQqYwvwDilDrHcI4Ud27650f8BQGMGd37iLQw8/QmEs1bjCTBSynOdYwDIauqTcO7TwNG0PlyXlOdUaaz1eCqoTk1x1/QKhkKRZQmtjHe891lrOtwdkueGe823mGxF5ex1x4gzPv26OcOs2zh8+TuEEJ86dJQx3MTeVYUxOXuQ4D4uL5zlx6gxSaYQTLGzbRpFlDDo9Ko0GtkjorJ5HizLWsSphIBWpd1xz9RW4jbO02x3OZClJlvLI8VOsbrT48de/hh27d2Kdw7nynsuMJzO+jPSgjE3w1pWRPx5UEDIxM8/LX/Gy0uFNSFqdVYZpRnH2DBdfeCFFY4qD9xzEVhp4J+nmZcSK8LC8ts6ffe7zzO/YwVRocaYgS8s4lSwvcCansMWoySlwRU5RZKTpEKVjhHWsrW/w4OETpEXB2ZUNWpnhZ376jSjr8E5QFAW5hDQvyIcDfGiRZS+F3Dgyk2MKS1HklJGYDu8cxhiMMRQmR0ldqs4RiKhKXN3Nyvo6JlJc+qKXcOtXD4IzCCGoaMXS0hJxYws6cHTabTprm+ROMDW3jWRjjeF6wrDXJ96yna0XXVw6ZBhDJAXT1TpaV/jcZz/P0uYmURzzyh9+LZUwpDAFUisQEKiA5sQU9SDm0b/8JHv3H+D5z7+ByV07mNm7jxcOBlxz44u5YO9uDh89TGgcZxeXSdG8+PU/Rr3e5MSDj3B2Yx2BZ8vUJHd87Ytsmd3OXGOGPQs7OHP8FJdcsI83v+Fn+e3f/U+YakEn7+KtIhl6suEqkpzEedTkdvZefB17t1/I8OJlru5vcuShR/h3//uv0l1b5/zKWf70Pe/hgx/4EP/hN/4Db3rTmxgax+LZFdL5Ba6cnKB1foW5+RlqrqARWryR7N62h//4r95Gr9Pl4QcPsvfyK4hrkrUzp1k7fYTTZ48ifEagFOkw5UMf+K8sLy5z4w++ip//yX/MnV/7PI9kCTe/6vXc+vmP8cjDd4P1nF5a4oqLL+eFF+7na9+4jXavS6QDFk8fpbW6wWXXXU9japqv//nnmJuepdVZI1CS1uoy7Y1lQl3jnbe8i1/79d8g8CFrgx42s7Q7GzQbNeYXprn5eZdz/5f+ikatylIXEAHTzQAnM6DPY4/fzd0PX8FPvP4fc/HWbdQqVUKX8ugjj9JPDI2wykZ7AD4HBLEy7JyfgsRxrN8lSwfoqODEsUd55y2/w3/8rf/Mjp0X0Ahjrjuwj+WFKeamp9FK47xnUQcj17qyQfDg0XP89u//F1ob68zM1nnnr76VrXPb+dbhEP/da14glESrkKIo97nzJx6m2YjQOiYKY6hoNhYfJ4hC+q0O01OT6PpOijyhWtnC2uomyg+ZmNyLEDGVuIokJsn7UI+JmWJyahYjYpwtUJVjaD1Eao3W4VPxyDvG9zG+G3ym3dpg0Os93Yf2zIEQqMYku5uTz2o+MzU5xXovJX2W16rLeC055jPPWT7z93Mr00FALQ5YiB3T9QqJD5jbvpO5eoSXlnqtwcWXV4ilJM0NWTpESIUQgl7uyXI/5jNjPsOgmzzVW9nfit7mJoOCMZ8Z8xlgzGf+Njzjh56UUrzlLW9henr66V7KMwZFUXxfRFydO3eO97///fzmb/7m072UMcb4rsM5xy233MIv//Ivl43PMcYYY4wxxhjjGYs8KQiqGhTgBRWp0M5CkSGShFwoJIYiCLCZxSYZoRZIl+FNAFi0FAiXY/NkNFg0smUXYExp/q3kyErfGbCgtaQaKOJAIYoCaTzOS+xoeEnLcknb64Jqqw3KM+h0aM7MsnTmYV7wmpv5wB/+KeudDQQCWZpKIVQ50MLI1rysJJamxnpkc17SC4mU5R/SPKfX69Ib9pGyQqQEhZYIVdqD4w1xGKCVJAhCcI44DGjWq0jh0UohRakil7p0HQqUhqhSDn9JhdYKV+QkeYJzBpsblFIoPM4URNVKqSY0hiQzGFeWMoVTJGlBJcjQEqRwaCEI8Bgh8F4gtaIqIvZNTzDXqNAb5OTGYZ2nqgKG9omACI/H4p1ACUmSp3hrkVKxc9de7LCHSXpIQGqJdJ5ABiiVIoVHKYHSmsAIJIJK6ImCmKqWmAI6ScHABshmnYYsi3xOSMpkAYN3AiylHbsHhCJNUwadHt46lCoVismwQHpJXJE4pUiFwoxiDvEWiyc3OYWxSMAKMF4jhSS3prR39xZjHdYIQKGetLUXo0A+gfelutYLQSQUtTjCY5DeMF8J6GaK3iCj1xsQ4nHW4LwlLwqwnmXv2L9geeVVHls4rF3gnmNtCu8xFpzS9Po5wj9R9CwQJMxOVpmZbNIbZGysLDNMMzqba5Ak9ApLZ5iipGDrwhxJu4dJU9J0UMZ16Iz+sMdUc5KLr70RObGHQ/ccpHPqIN4VLMxtJzfLTDSagOSifdvpD4d0h5ZAK6zJcMBKf8CdZ1a4nhmOn1/BSQHOECuBwbBy5jT1HfsJHFw7O80UkjyznLGGttLEYcwl27dz8sEH6LZanO13iOoTzG2ZA9aZ2bkP3xkQR7psriBBCvbMNmmnFqdLBWlhDKGSVGoVeoOUfi/l1LlFdi/MMJknTImCi5qKYwNPL3fgLMaXDkzKKxQCCkOSZuRZOrpGHoFEC0UcBeU+ZyxZkVNkOdJaFpfXePDhR8nyAusdg0GPTMRIIShweDeKnhhBKwEqQtcm8b1NikHCqZOP0DeGfXv3obxjmGWcO7fI4tIKUkqE0hSFxQtPP8lJc4uxFnlsifOLf8ljR4+SjdS6Ns85t7jBRTtmmSkMZvR9S+fO0+sPkEox6LV48OGjMOhx3fUvYn5PQHdjidXlFmkyQOiQc8MOS5uGXjzLwtQUp9dX2FxdYSWPKYdAHevtFl/84lf56Z9+EzoKcU6BV+SmKKMfnS09Alyphta1BlFtB6rexHiHbkwRSIfUisrsHDN7DOQZcaXOxvnzbNmylVwITnUzNnOHUgHOls3kJOlz/PHjXHnJThCgpEAKT54mRHFMVKmQdcuoUqkDhC/3RKVd6ZznDK5ISJIcLWHXwlZCFaC1Kpuq1uK9Gg3fKnQQAq503JOaQAcI6RECgiDAFjnFEw6DUiIpv4oyW4fZrTt40YtuwBQFvd6A1bMnWV0fEEmBDDWTWuKylMMP38PkRIUjh07w0U98jsQY5ue28LM//0ae/6IbUFGMimr0ukPWuh36WUEzrDPMLZ+/7S6SwZBYCgpTsLqxzr49u0iMLaNevSSMYrbObWH7zCz/+u2/TlyJSJKMxWMneOye+zBWcuCKyxh0O1yybz+f/oPf4/YjD3HTy17H7uYUt73vY1z7o6/mDTf/MB//0idIh4aXvvRmjtxzJy+8+bVcs/9CXrDvKnaEMc3pbfzbf/6/8cVP/b989pEHSEWOEgO8zBEVhe07IqG5/85vclt6G84OWVk8x96LL+Pj7/8ohx68gwMveD5XX/UCbrr55Xzu/34vuw7s4ysH7+BVP/RaNpZOs5pt4QIpMMOc3Vdex+QdX6TrhkxMbKObFGRFwRdu/QI/gKYRNEg2l/nEV/6CdrLOICvQOiYd9um12yAtRx75Bv/+1+6hWmuyd9surti7l9MXXsqRc4+Sp4a11gq33bOEEwJrBHFthn/7736Nx+64g+r2bQw31/i5H3sjtZUWn/7K54kqMVJEJEWPSGkoCkyR0YhC9NIGP/tTbyLt97n9gTvxwpGmKScfOEyv08WIDXq9IbYI0dIT1Jo4mzDo5Hz4Qx/glTe9kp3b9lHkGRsrS6RZGYtSq4boLMd6S5Kn9EzO3EzBuY0OA+eQQpI6Tz10pEuW/+dP3su//5XfQMV1YiHYM72lfOYBpBTs3Do/cjoon3NWltdZWzxHr9fF5QPa3Rbzs9vK56X/cbv7n0IIRtGgGQJFu9vl9Pmj3PzK1zAxsY1Oa4lsMKQxOc3E7AVk2RBsl0pQIw6aDNob1MIALGSdHkoVVIKIop9Rj+vsfuFr6XZ7dNaPEyuFFQGZdagQFCP7lzHG+BZ4qvkMeJbOHKMont2DMU8lpJSE1QbO+2c1n6lFAdsX5jl++uzTfEa/UwgY85nnLJ/Bffv9liAICKNozGfGfOY75jMf/eo9cN+hp3gv+59js7vJZz71gTGfGfOZMZ/5FnhWDD29/OUvf7qX8YzC7//+77O2tvZ0L+MpwYc//GF+4Rd+gX379j3dS/kbePjhh7n77rv/zn936tSp7/5ixnjG4tChQyRJQqXyra343vnOd/K2t71tPPA0xhhjjDHGGM8CCOExWYJQKdLltM4/jpeasFLFFznOglAWKUQZtWMtVe2QUiG1pDoyV8+SUoGJszgBwtvSSFhItNJoAZEXBGEV5yHrdUr3HS9G1uAG7y1Yh3cGhKCqYadOsTYnLSw6Cml32thalbPHHuX00gpeOBTlEI4SAilFme8uJI7SblzgUX7k/iSeiKwSpQ+VKAemTGbo9fqlrbyXoEHmObnQGOEQzlJYxdCmhKFCRgGmyBECwjBAeAMCtFKUWRoGrxQ60CipcUjWez2M9yTDlDQv0AJkJFFKYKyn3W2T5DlCKGqhwguPs4LCGja6HSbiAGMtwywlc57COLKiQNiCWhhT5JbVzoAQSWYlDkGsJSqApDAYQKDxpsALi7PlMFoYVajHEaur55GiPH9KeQKt8EKg8MRhgPES6QqEjNBSEEoIpaSqwVZCIiEwccRAgNABWX+I0Bqb52jK4xjmBotGeMfi4jkQgqJIKcWsZTyB1gprQQiFChTC+DKGAcrYBSVQUYzolE2P3JbX1LtRnKGzKOfwLkVIiVYKgx85fo2iMrzF4XBC4KVESkUcBngCEg9aGoIwQkpBnqbkPkdLjRcSqUK88jgpODmIEf2AnTWYrNS5encFmye0MsdaZkgHg1HMRPkzfWERNsF6qEiHTvsk/YxCuLJY7EV5f6QpPumBHaClLwuYSpIWGZKIXq9DurbG7NQeLr70ch5eO4b3Q2yWUa9XUBKkl1xywW7W11qcW1zBi5yiKABJvRmzd9csR84u08ks3g6ZqgfM12IGuSG1Q3xng5dceRmvWzqDa3VY77fZZzXJljlsmnL84F1knXXWe0NqjQo2GTBRqbLvgr2srrdYHw5obJmh2e1TFAYpSzVzo6KRUtPuDZHWYLynkILtW+fpNFI2N9uEQUjaT7GDLhfWA+JqyOrA0MksuXXkxhLogG3TDULhiZQmiqt4EYC34EFrz1WXzTNoFUSqVLFGlQpKB6ytPkphinKPAKaqFUQclYWoNB3pyctBOSEE1ahCY89FEIR4PE5YMEOCbEjR3ySoVcnznLgS8aKX3MDK8hob6ytsbmySpRk6CMtYC6UYWEt7o0Nhy2ZTmVMh6PXbtFLD/jikUqnh8aRZijUFYtQYWe0NuebAfrZdsAsdxnQ3NhDVBkG9yeRElWg6oqKHbG5avAzYvv8y1jspWxd2ELY3OH/6NMZZllbWyVJLtVEB4VASAh1QCUPiKMLiscbiPFSqUwjpaW22CAJJFCjiSCFMQRwqrAMRxKQyJK5WyVeWWUkMWWHJ+j2UCrBFVqqrheD4seNcefEuhAzQOkQHklBrtNaEOkZKXca1BJIgCAiCsgmgtaZeq7J7fpaji+tMVjS75mcItEZrhZKSQCu0DlCBRgcBWmu8NwgJgXQoOXpdKZSSeKuQAtRoWFZqjQwivC0jcgQSby1KSpr1Ko8uL7E+TKkGmi21CFNY8iyhEteY3LKV1cXbWWu10ErR29hgs6cJJ+Zx1lAYGCQZzUadeLNPHkzSzTXrD52iObULt3IcHUbMb9mCEqL8nBUKISX1xhTNWpUoCoiiCYYbPb74sY/ywc98kF7qmJ2a4//67XewvTmF0QWm02ZxfZlbv/pZjhx5lPOLZ1g1OVG1Tt+HvPGHf4zXX309737oXq698XoaQcz+q67CDzPE1lmGB+/mtsOPYJVFpAbrPVYp0tySZnDHPXcQRiFREBBQoAtIvcVEksVhh8177uOFl76Aq6+/nnri+NhH/oTbTh3jnkcfwkvFW3/x1Sw9fIR2dYb5S6+gZ2MyN+SRxx/gk7d/Ad1J2Ll7H7rT4c++9Bes9lboDS3WSCINmSvoDltUdMz8bA2b9EmF5Lrrb+TYXd/kq/d9EysVlWACX6wTNiYhG5AlOQjB9j17eemNN7LbKFaVZdfNr+azX7+bHdvmaUw2KZxnmGZMN6eQcYX++gZLZ85y6OD9XLdwIfuvuZqLdn+ROx64G+Ms7W7OZw/eRXu4jo8MgYooMkkYabbM7eTcufMUw4xhb4Pf+8M/5LrLrkAXho994sMMizbeCbpdi5IKFWjmZmZZW1/hxFKHQZKC1AjhSbOCPDZUQs3G4gbZoM9DKy1uvf02tk1M8OJrr2PH7l2oJ2K6KB+xHOX187klwrK1HqJ0ZdQY8E9Yc35LeA/9QRfTX6W5cDE7dl7Atl0XEtcmqM7uRTVmS1e8MEZYRffMY5w5+ija3cfUzAzICkWvjVBT1BYiCmPJ0hZBVCNzAsFFJMOUYW+I1jmNmV3lZ7NQOCcoxhFjY/wdeKr5jLOGjfXVp/uwnlG48KKLqDaarG9uPOv5zPb5WRZX10mS751rybeLarXG1Owsw16LPEvK6CwHzgqsL9+z+NLl2Lkxn3mu8pntO3ag773/74zgDMOAMAwRAqpRPOYzYz7zHfEZ5/5+DmPfCawXYz4z5jPAmM98Kzzjh56+HxyNnmoMh8Pv6Wb63cSJEyf40Ic+xNvf/vYnJxafKbj11lt561vf+nQvY4xnOD75yU9Sq9W45ZZbaDQaf+N15xzvfOc7efvb3z6OtBtjjDHGGGOMZwnSYa/MGFcKIzOSYR+lNHFao9qcRGmFMRabpchcYE1BtRGhhEPJUn0rlaZWq5JnGXluwHmE9Cg8WkoqcQhag1LI5hxbY0t3fRElArx3ZY2MMqIMZ7HeETrF9oqgaRPaYUgxTNFxxMrZZdZbbe5dOk2/SIkCgbQS6z0CgRPlyJGSpQW4FIyK4xIlPc6J8mdS8mKBoBZGCBy+yEiLiCxLqQWa3GQ4ObJFRyKkRHpJSFkYywuDUhLwOCvLYpMAj8NJj3cSLSVSSHrtLv1BgjOO3AukVyBKC3NvHY16nYmJWRyOQHhcMWCYWbqppdUbYiwkOUwLRZYXJHmBNYZAC4oiwLuyMDSlY7ra0E7yshAmJEEUgszIrcU5h1MaIUoVoJWSehzRXl4cqRRl+VWWasI0LzBIpAqoKEWSGXLnaWhXniMRYLIh03GMi0OGukqa5+hand7GOuQFM7mlVg3wKiAtMoZJnzxNwTlq1ZCq1mRSUTjz5LCJ0PJJpaKgVGoiysZJqSAvyLEIKxBOPqnsUlrjfYCXMfgUgUEIjRQgkVhnyus1GnxTQiKEJIpCsiRFhDVUbYK17ibNmUm2TDeQWZ90MMTFEVJKcALvwBuFGW6yrya5aHYKS4B3KciCWEmGNiEKQ5IsxXnIDaS5RUkHQpAPemR5gncFXmly57HOoxVMT8b4NKGiBVZ4cmHwLsBlBZVGTF7kZEkHkW+gVZPprTtQ3XMkeUGaWg4dPsncZJN6NaJWDTAOsHYkLvPUG1Uue96l2L27ufPue+mu95mZaJQuZUZQeE/SXWUwcQFnm1tY2GxTFQEJjlx71s4dY9hdxrocLSVZZnFa0mq1EN4ThxHn1xPmd1/DBTKn2FwnM4K4UWe6Waff3SBAoVWAF4p2b8iw2+GCfbNTJxMAACAASURBVHvo9xMy78hW13C9HnMTM9QrFXaokCQraA8KNjZbeK2YmpnE+RwvwSPxyCf3tsIYisIQRQ4KgSBACIUHWq0O3oPGs7URc2C+yUAEdIYJUaQxXmCtR3qPltAMJNXGxEjlDQEKk2co75FRhTRNMHlBFARsnZmiqgJmJ5qsTbXoJkOSYYJNC3JjEEpSqU/SXlvFUQ5LCgdWedY22ngd4oXDOkcvGeKlJDMWM+gTxzGLi6v49H6ed8UBdly4n8uvuoJBkvDI/fdy7PgSKgpYmG/irWXr9gUW917I2kaXvRddxuKZcxhv6Rcp9993Hy99xU0ILMKXZ04KQHiEK+sVQiuGWTk8mKcJrdaQRqNCHIbUqhW8zTEOCjOgiibavo/7v3o3U1M1BFAUKToOyvvNl3vp4vkl1jc2cc6jlERJXW7GowEzvC8HYI0dufiJMuJDSIa9hPPrbdI0ZTUXLHU6XOIdGgWjuA8hPYFSZaNMSmxh0SpAqDIqrjT4cwg8UpbnXsjR8SIQQuBGO1F/2KXV3iwbiybn0H13UQBnW0MK44k1RL7Llz753/hffu6fs2fvAXbV76RajbAyYHZ2G1u2bAchyYcJX/rgRzGtAfValeVMkwug1yOvRjRrU2hpCUcxnAtRWDYyhGB6YoZ6pQoChp0Bn/+LL3HbfXex84JLsMOMay6/ls3jx/mzv/o8emqOr548RuI8115xNa+96WbueuQxbnrtqzn6Z5+iGtR59at/iG07d7DwuQk++pEPcurxE5xePkmjMsVat0McakQ1ougNSXIIpSijVrxgx/a9dDeXCeOInXNb6bfPkcmM3vnzLMZ1pPds3bGbq6+6DhFqLnn5Dbxl6wzivbdw64MH2bawl7lts3zlQx9k+8tuRqeWlPJzOTfwxS98ClE4fqj2Oi65cD+9fgtJRCC7WGEItCYvPLVKjR2zkyyvdUhNgtSaL3zu40hh2FaXLJ0+C3he+/o3cP2Bl/CeP/5tFosBMpBsnZrla7d9lUe+fAfsXuDhk6d43mVX8JlDdxKGMS7JiQNNrzekJnOqsaHXPst//k+/yT96w8+w8NAEsh4xs2WG1dUVqlKwf/s2zp5tIIWlMRHQbFSoxXDzD/0gf/jH78fmCdY77nvoEIk1HD/4TTa6bax1RGGA8uWzQyAkyaBPYXOGaYp3ZfNLaYFSIYEWTNYlQT7kg+99D/cv9Tj12EPEUcjDhx7kpquv4wd/9LUIWTpb4hzr6y3u/vpXqCjL9ESNndtm2D6/lSdcQr4dCAGT07OEIsRZSxhqLj9wBYWJuffeR0j661z/ohdQqUzgrGdh7wHq09O0zj3MRHOStY0NVtdWyJIOuTE4C6srS0gl6fe67DlzgsNHDnPt1ZeRVWbJlx6DIsEF5d6RF8U/4Al3jOcSnmo+k6ajz54xnkQYhAw7ve8LPuN0xOTkDEly7uk+rX8DU9PTXHbV8zl78jHSYQt8ynDoSVKNtZYgiLDW4L3DeceYzzw3+cz+Sy7mokce4/Bjh//W91K1WiEMIxjzmTGfeYr4TK0x+dRven8LvGDMZ8Z8Zsxn/g4844eexvj+xx/8wR/w5je/mfn5+ad7KWOM8feG9573ve99CCG45ZZbqNfrT75mjOFd73oXb3vb28YDT2M8a3HFFVdw7bXXcvDgwad7KWOMMcYY3zP0kw7Sjgo0snTXkUoxCEOiOGayXqeXFOTG4qTEOo8QshRsOIs3IwMlrZmcnmVtfR1hDFIKIqkIA0UQKFQY4MKYidk59s9HnHjoYFn8Gf2SiCdVglp65ivwvAmBSjXJsE8YVmi3O6RZzvqwTcemZdxcHGCHBu9Gymzncd5gfVnIFcL/tdWxEEjp8aJUDbvR0IPWCmxBlud4Z8ido+7BWIF1Dq0VQiiQigyPdpa6EzhXlP8nAiFVOeilApyzKOGQCvAe6wq6nTYgkDJAaYu0numGohoqcgfD4YBdu2cIpEAjsK6G9ZAYy+J6Qp7naC2ZnJqm3e0j0AgJxhlUoPFS0skMyqcUtijPhXcYAYET1GoxOjNkeQZaIz1YZ5FSo0VpEx8EAUpKpBAoaVDeo4RAa41UEgX0C0vmPcoZKmEVLSVWVDDC0eqn5KEiChSBkFgkxjpOLC1RCfXo/Au89xjrwVqwENarVAqHNBlpnhMEmsJLvJQI4csoOlfGDcZaoTUEoaLZ3IIQEMuwdNNypXp0y8wcPSUYJBsEYUaS2NKByz9R+uPJRpbDo4VjamaKtdVVKlEV6yy9pE9vccBwM2RuMqBwKf8fe28ebetZ13l+nuEd9t5nHu65c26Sm4GEBBKCMYDBZhQVCtEuynLsprtVVrX2sqvo5aqyrKYs2wIBq8ESrKVF2agVp0YECRgg4QbIPJPcJPfmjmce9tnjOzxT//HsJFKllN0NSUzt71p3Jeeu5Ox3eN7n3d/f7/f9fu2wJE9y0qSBlhpbDJluJbz86BEmEsXKThcFZM0mvfaQTAsmJiZoD0skcU30uz1qB1ILVFlRmhhH4YLH+ug7NDfVZLGVMOwOSNOUoQEpNbU1KBUwdUVtHEUxoL+5jmgE0qyJVZr27gCSlJX1bdbWtmhkCUJIPOC8IAgJ3rGZtThuM3onn2Blt8/h2UnyLAOvGNYFrvY4DGsbKzxw9KWs7azT3B2wZSqSYclwY5U6DUgFk03FoAIIWOPo9vvsP7jA5uYmqR3gUkXRmgIZ6Faeqw/uoeVyTp1aJkiFV9HRpnAVuQhcfeVLqGtLvzNgbvEgl7zmBvLZRbIsQwTL+c0uy2u7bG9v0utts7O1hlQ63tMgQCR4PM56Tp/d5ciRuahuTQWIQFXVrG9sELwn1ZLD0xkKC14z0WgxsTCH9zA0DmMNOE8RHDuDkj0TDUIIDMqKs8vr5Kli/pBBJxbvbXSZw5MqyHyNMhUia7FvehpbO1pTk9RW0O5sIYQcHW8s1EkhGQ6KKPoKnhA8k80midaUocbYmk63w1Qz46qrrmJidpIcz2Sria0d83v20C4rvPcc2DNFv2co+gNsbXHGkLeaKK2ojSR4WFldwziLRBGDHzw2MGq0BEQAW9X0e32azQblsKTX7TK7MI9OJCAYFJbBYMDK5jZT07scveplLB46gB20cXUgODEqQ4pRLVLQL4ecX12niUGIibgmhRhFCgaCcNHVIECQgiAE3nvOnzrN5265lfagBCnxQXL7bV/B14FrX3kN3o2aCgiUVKNYh2cjLYUQBBlGl1xDiO8xKSRaQSIlSoIIPr43CDTynMnpGfKsQXdrk68cuzPugdZydrvHdENx8UST9bUVbr/lc7z+u7+bi/ctsDsoKRrzXPuKl6KUimE8qeaqq67mtr+4hR0p6Rsb4yeUYjDoY4XG9zv86r/+CP/k53+GQR1ioRdJM0nRQuJry91/8Xk+9Zd/xuraGY7Mt5iamuOtb/t+Nh95iC+fuJOstYdznV2sVszN7efXP/ghFq65lh+fmcFd+0p+VGbIYcVnbvpTHtrY4PidxyiMpy6HmJiNwYWHL6AaVjQE+ARMFWM2ppqT/Mv//Vf5w9/8MJdd9wre/PrX8Uvv+Wna1nHRwQu47uKj3H/8fq654mpeuX8fsnK0T55j9sIj/Pc/+i42/+2Q42fO8rs3/T7psM8lk02q9VVsXY32KIOzASECt971VfZefAmiMUlSFrRkSQ0Mao1UgjzTzEwqVjcsaaPBZCthY71Npg311mOkgNINts6u8DvHPshuaXj3z/w89951L5P5BP3+kIdWTnI48fy9d7yD1uws195wI5unTjKwJUVnSKIEoh6iEkUdDJudbT72Hz5KCIFLL9+Ps9sEH1hb3WRl9RakTrjkJdfxP/3E/8DDDzzIV772ObbXttAiYFyg2Uy4+pLD/Kt/8X/we7/163ztri/z0INP4qnJpcL6hKIsCUQnAYck0RpvHbUNZJnkisuPcvHhQ9z8+a+xsttnd1gw0WjiJbQmFNff+GqeSfYNlnPnV/m9P/oUt956K8NqQJJq3nDpUdIkH30L/E+zIJ7+OcRYmNHfhRBIlCBXDUIAZyyDSvHhj3ycO+++Hx887/7J7+ft7/wRkiSj1+0ghYN0GmMDk1N7cC5QO8+ZUyeYmpwinZxi/wWXUpU1px67D19v0t5epm9WSLSl7vWodY4Qisq+OMSwY3z78K3mM+sbG38r14D/mmCtfVHxmcU9S2xtrWHMC8tJznsIdsxnxnzmm/OZurL0B0OyrEFV/eeOZXv372fP4hKFHfOZMZ/51vEZ+Ry+F4thSb80Yz4z5jNjPvNN8IIfenqhuf883wghvOiGJ9bW1vjIRz7Ce9/73vH9HuPvLD7+8Y/jvedjH/sYeZ7jnOPDH/4w73nPe8aRdmP8ncbCwgL79u17vg9jjDHGGOM5xcL8Abxz+OBAxHQnRVSmtbfWqQaDqNwTAh2gpRQS0EjEyAnFeYswAp0lZLnGlYFEClKtaaQpSgmC0gQpULZmOm2MCiYhFm1FIOCRo9gxLTyLrYQJWdOrC1SesNvpsNnepfKBpYOXkm0sUxuHMRWVcBAcfvQ7a2cRHkKIRVEF8RwI+OCjVXIYqZIFIBRISQgufkeXCpTCe48IAeE8PtEEGxDBgxZYZ0ffewIhxEIbUqNULGxpElywBO9wPlBWFUmridASFRIyArnyNFJF2TMMfUWvO6TVyBhYH+2bPVjryZMUJRWJUrSaTWrvmXOLOC8oi4KqqvDO4qqKblnTq9wzjRrvwXmQwaOUHHEQgdKKYEeuWASkYFRek/E6ITA+UDtQCLI0wdhAf2iwSuATia8CqSjJhKQKNbu1pV92WNqzyNbWNj7E32uM4fTZ80zlmmjiO1IWC8mwsiAKpBQ0sqg5Tbymch4pBRKFlgGPRwqNFA6lJLlOySenKIoutRsC0SHMWsPOzjad3W2cqwkiFjZciGuDp5sEIZ4lIao/Dy9OsLa8QqgNrnZYawgC2t4zNZ2SZxNUZZeQQmlKmlkLmWmcNayubnNwYYrBYID3gk4Z2B4ULLeHbNWg8ya+7tNqgJCeVCdIJMOqgw2CiWaTXrf3jEX9gYUZTF1j6iEz0ylVLUmVJNUp4LHOE7zHVhXDfpsMCVKzUyt2BgWXHF0k14pee4ty0CdNFHtmGgyNwztP4SxeSO7bHTKcOcwll2XMbJ8gkYqgFboEhUV5jykFfetYfck1bOzuctFQMNfUnDWG7bJGSslUrnDe0qtqgrDkuUYn0bq/u3wKLS0hVZTDGlMG5pOU2YlJyrlJ2sOK3W6fXJnoihYKrrj0Cu5+8BG6/SH9IFn+3FfQOmVuZppmK8U6SdKaZnJ+DyHJaO9sElxcI9HJKypdm42U2dYEph9IlaT2npWVDR75+lPsDgM+naLGcXLXMj2RYnxNMjmJbkwQjKOpHNanFMOKbjHk3seeZH55ksX5OYK3mKIPhWXzzJMcueY7GNQmOoppiVQK42BQlBRCIOuKXmG5/hU3cvl3vIKHvvDnJKai3d2lV1SEEGM6kTHa0broenfo0H7MsTvi8KVSvOb6a3n5lZcyPb9E8BYlBN5ZkkSTJCkXXXiQ5dNPEeoe/X7N2ZUNnjy9TN5oIQkkaUpVl0gZuPiKS9FJQlHVWOfwwY4s5GPjwvvA1s4um5urrK6sYKqSLM1Z2LufpQsvpLOxhhMBUk1ZFaw82cY4mJ2cYL2/jZcphIC1BvSzTRxnazZ3uuyfieuGEJBS4Z3HOkNdG4ZFQTPLRnuY5c7bv8ItXzhGYevoahDiQGun2+azn/ssd9x5J6++/uXoUYNAiKcV8p4QBMOqJkiBCJDoGPERRMBbS2VrkiTHSw0qPmNi9DJsNiZp5jlKCsrtLdZ3dnGmRsrYHO8WHodkszPk1OlTfPCjX2dzt4cOgld993eytDDzzJ4j+0Pmp/dTTqeUOwNkAOsFqXIEHyhcRbCez936JTrdDtcdPIgLHu9DHKwVgVDUlN6y09uhDDXLPYtqTPHIfffQ7HWpjefM6VPoXJCGnE/ddgtpM+XS+Xmq9W32zB/kTVc43vvLv8jJ/i7dQRfnaoqhoShqkkQggTPnT+FNiRTRGUDkOUVRURnD8Uce4jWv+m9YMRW//L4Psdb3FMMh506d4A9OHGd5e4tWq8Xd993Lm667ArU4TfvkMsakvO9D/yd3/P4f8Mt/+Ht4oXnb5CTL992JsRVlZUmEYKqVo1TgwgsupLu9w/LqDnuaPWTusHVCmkiCDHT6Pe473kPKhAmV0OkO0Tojb00wpR1p1gMlOXd2g+XtDbIs5cDeA9zw09fz0Q99kHJ3l8XFRQ4tLfLqG17FmYce5fWXX8nhN7ydT9z/ZY7fdz950yKTmu4gRqpOTLRY39gmb+acP3ucOlic8+TNJlVlCS7wipdezatf9d20dgNWSMpKsGdmno2qx4RKueDwIRoq4S3f8w6OfeFLhERSe0EjTzBlTVVXaJmSpgmzMxMMiz5l5XB1oDU5yY//xE9x8uunMe7LLC8vI/MEHyxTE5Msb6yRNhKKquL2u+9nd/UsDz38MMdPnmJ3d5NmpqhKy0OPPUVhKyZ1Kz4m4ennPjbV4ltaxBia0Z6wvt3ha1/8FN/9uteT5S2QNY2pQzx1do2i7GO84OETT/IPGzPsrJ9iZnYWLwR79lxPWVoeuuMWWpMZWdZkZ6tN3lDc8IZ/iJDTrJ64l8mJJguzR0kak+TKIMgwZQ/Qo2H2cf10jG+ObwefeXr/HiNC4F90fGZhaYnV88vP63X9T+FFGPOZMZ+J9/dvwWdUc55MD6kGO8+sofk9ezh04cUxhlCP+cyYz3zr+Mxz+V50zqG9GvOZMZ8Z85lvghf80NMY34jl5WV+67d+6/k+jG85fuM3foN3v/vd48b6GH+n8YlPfAKAj370o/zmb/4mv/ALvzAeeBrj24Jx9OsYY4wxxrcZwiNVAkEhBFEjFzwSFS3AnSFJYsyOQOLx0YFHaQSgg8HhMU4gbKChNbIhSVQs/GgpESHgvcRZS9He4DG3i3cOVEoIAQ/gPbWokSNL8PlcgjW4qqY2ht1ej15VYvN5WiRMZFP0RI2uPGmSUlYGLwKeAD7gnMMjR0NNsfAdQhi9V3y0HJcCG8B6R5apkZG8JtGeRAZMbdFJih/5pIsgEDKQSoX3lsqN3KCsR2lFGgLeRTWxlwLhVbyWUuCFpK4MaaNBczKlGg7Z6PZJ+iVponEE1jZ3WFqYQ6AJwgJ6pFL2WBeVzh5w1iKCRAdI05Q8yTHeMfA9dnrbuBCb5FIqVJqOov80WnqUSgiADSGet1LI0ZkrKUb/JvAu4KxHJyC8BafpWUlZW9CCYQVd4ZjIMxpYUg3bwxKlNENjaQ/7WBePU0iB9XGgzDlPCBIvAgRP5QL1oIdUKlo+20CqQUsIUuKDI0tSjA9IKXCAMTXd0tEvNhDBIQN4F+Mr0izFJZ6Q1mBjcUM3A27IyAnq6e8WAaklwQWMdXz1nkeRQqO1QFsFTxdIQmBQlrgAtXFUVQ+hBTpJGAyGbNY1vd2SNzQ0lfV0BjWndwrO7PZpWwgoZJojc4fXnsobsBU6BAZFhfcwPdHAB8dUImllGYvTOe3NDqiURKWIMMTbGp0mKBUHwoQA5yzWOkK/S9Ub0O31SSemoewxlUuUdGy6kjzJyFs5+6ZneOKpZWoPanYPQ+upez2aviBrNDBlRZ5pJjJNWVmc8ZiqZGdzhaPf8zZMKDhzz510i4qVsqIroluXcxXCCaraIaSiKGpqW9NsTdDd3SWEgLMOHzyJFBjjSVoJjQTqRFI3WwTjqIPADIY8dfpJVtZWKauKrd0+zo9iTLyP0ZEuEIJCIRBKoCXsTDRx2RS1sfGZ91Fp3PRgyhrZTDm7vMtDT5ygNJ4gYmwYwFbp2KxqpqYazDdywmgwDyEw1uM9ZI0JjIe13YI0q7CuojGyxzdFQXtlA9fMR+tYMnSencqzbhJEpnFVoKhKzp46y/zRS+lUEpIMo3N8qtFaMTUzS2Nxka8++ATBPsbefXvpD3os7D8Q4zzqEmkqvPHxmtga8jQW0Lxj2O2StzIuv/gydHcLlRoGSfzdxlboIGmkOSatEUqysb2NdQ6VpCiVIFFxQBQBwWOsw5qS0GtT9Xs4KSm7Xe658yss7d2PU2Ari7CBZp5z6swGJ586Q3t7Gy2iS5vH4Ywh0SnOWg5deAErp87gjCXXjficCUWS6BiNGgRCymcFYkLS3+1w67HbGZTD0WCrH9XbY4RACIGtnS1On1vjskPzICRSj3YyIdFK0dCaUgqUTJA6j3uj0lgp0SruUUmSxr3WeKSSpFlOkmqs8zjnWT93hu1BiSC6BzrnyScmGXjN9OIck4sL+E6Xdn/I9PQEO50dCuOZTAKhclRrO2z7mp5KKYc9DHUcBg5x6FcoRVXX1NZw7O672Fg/z1WXH4pq+zS6PsnJJq974+tYOXmKJ9rrLJ9Z5R/9xM/yyT/5j0wsHuCaS6/DnjnDd153NTfe+HpymXD0wF4e/NJ93Pann+LgDa/k0HSD9bpLe9jG+5q6qgneERRoIcgSFc9TxkHhlmoQJEitKb3l45/4t6QywTlFCBZnCoLIObe2Ri0sXmT83396Ez/2Qz8cj13An33yJu44/gT/5Cf/R2TImc4TemXNv3nf+9nePo81juACQUukhDe86ft459v/Pr/97z5AZRxrPY1uSkTi0Loi+AbFMO4LmYLBoKA2FbMz07z3F36Zz378l3hibYs8neCNP/A9fPmBx3nkntv493/wO7zuHT/GU1tbuEcf4Wf+2x/l/uOP8uATT3LJhYdIk4Rbfv8plp88SZ5BZUt0kMjEUpuSja1lnJWUQ0EjkSgBjYkQ3Qy8J2jJmbWzbA2GzF54iPZ9X+HPPvdJMDVOSJxyDNttzp46w8c+8G944swpjAtIrekZx6AweO8QokbLBOEdqZI4WZOkgjSHM2dWuPXYrZTeE9RoT6xr/LBmKm+AUNx82z3c9YU/x9shGzttqkGHpVbKXJ4wEJq3vv67aKUNCDHqNfYIRsN1oy0g3v3RDz5w5uRxzHCTouzRMhXnn3iU9dOPg6liEI+QTDZbVEWBskOqniXJm4SkhVIN9h25nInWS3jwK39Bd/UsSZjjrs//8WiPGLD3wCFM7Snrkv2HLqfTKTDmLlzl6fQrPnnLbfzoz/zP39Kvv2O8yPBt4DNjsfKzaDQaXHLpUc6c33hR8ZmkOY1U63j3wnF7koz5zJjP/L/jMzprQnBUww6TU7PsPXRozGfGfObbwmd4jofQf+7n/heuueLqMZ8Z85kxn/kb8IIfeho3dr8RH/jAB+h2u8/3YXzLsbu7ywc+8AF+7dd+7fk+lDHG+P8M7z033XQTe/fu5cMf/vCLzpVtjBcOPvShD/HOd76TbKSOGGOMMcYY41uNBATPFIefdj0Sf6WgEfBRLxtiMUoFj7P1yE77aTVNoK4rVBBoLUi0IgSBsRbrBKIRcMHT7+6ws7aDG5FTESRKaLJWE2stpiyYTFMWkhrTLxmaiu1en86wplvUaNFHdT3ZxCSdToesmdMQFltC3zIqJIJH4gOxiCQCUoR4nCEgR/9FCIKAoCqHTGQZisDiXI5WGUpqNnuxAB5CIHiJTBsklGgZEFbgyopUaGol0cqRpmBdQMp4TsXA4D0oGYevrDFkeU5zepJWI6ftLLYqUIlmUBt6Ox0mWzkTjSZi5EwlpCBDYawfqQwtwXmU0NTBoVAICVoqtNIIqZHBopAkWQJK4G1UWTebLXSWoxCUVYURmlSJaHmNQCNBBNxIlV0bR94MpAIqNJWp0QSsDQgnCMLikoR8cS+22KH2PZSCbmViXn0IiBCQ3se1gqSyjqTZIg/RIj1JU9JEodOM5sQkoNFphkwytFKceOQ+KlOP1qFDSknwcW1p4THBIYXEEj9DCSh9TS0sMpE4HE5IrKux/mm1+GgAzsRin5JQB4nWgTRRlMYjnCfIeC+dKxmWsbjtfWBCtxgMSirrsN7z1O6Au06tkUhY7llWujX1qEiN0IQAqjVPFfoIaxAoTFVincB4x9B6KmPZrgXN1gTeGBQQVIJUgtobbIgRInmSU5gKJQXWgrKG2jjW2zsM+l327l3iOy+fw7c77OgETY5XKZUx7J+bRqsmD291aVxwEZONBJElTG21CbWkW5Y4p9FJSjPTuGAorWN7a5Wd1VXmjhxl5eRjDNfbLO6Zomh36FSOojI4qaidBeeoSk01HGKco9sto6tCIpFC4UaRk8ILdjs9toYlhUjp1ppOJai6XaozbYwdKZy9JBCvjw/RFU4E8MFRB0+oAyIIOv0hq5ttdKLImjkIR7+0PLSyy/69syz6wOrmLqUxMCryQojPmYyNz5nZaaam52LBUjqkCSRJjtQ5wXlSKXETExQIVrY7FKJJIgKZlZw4vcrSkX3QzBgUlu6gYnV3gMobKAVCCVInWT1/AnFHk/bGKsOiwlgQUuHRDMuK8vwyIVhCbXhydQepBNMze1g6fJBJ5Zltpjy13eOgSnF2wIYTtGanKYcD2rXn6IEl8kSycuYUQ9nkzPJJrDVorSnr6IiG0ugkp7fbi3uwlM/GNQiFwOOCo6qGZAJednCOna11KhfoOsOwGLK9vcFsKyMIiUwEBw4d5OSp8zz6+ON4U3Fo/wymdkCUEHtA6YzvetUN/Pny8sjyfiYWomWMlhAh7t/SC8TI3UgKWF9bo7M7wODiAKsIEMRoiDXuz0pCt9fBhflRkyH+zhBiM43gRi73MjoQCI0aNboBhPCxwSMTfChQUhOC56F77+Ljv/0JAhI12GFgasJIPRq8pS77dIsprlyYoxgMcV4wNzfPRHOCnc1VPvf5W3n7978RWVRsbfQ5dudt7A6GBKXBwyinguAhSzN6zsQBUWtwwSFCiM++ktHsQkKyMMeP/fzPYk3F+bse4fBLL8Pe/Z29EwAAIABJREFUZEmnZ/mpt7+DGx54hOk9+xicXebav/99JFnCa/fu4/wddzOxbz/bvXV6RcFwUNDKUvI0o1/2UFKC8tQuEIQleImWCucFe5YOcfGe/Tx+8lHOb26hdUKapggVyBWkUlG5EicCnpoz557kUzd/mrvvvJ8zpx/n5Np5HJJf/Mj7+OG3vZ2fete76Z94nF/5kz/GjgZglRRoFRCyoruzzu/+1q9z+/1344MkpArnHYkuqZ1AihrnK0DhhGR+ep5XvPIVnDl1hrIy7LnoKjY2K3RWcNexP2R9rUmqm7zxDW/moa98mbXNNQ4c2Mdme5M3/cDbSfOc97/3F7GJ4NCRSzBlH60rsrxi0E+pRRoV+S5BCoEzFXNzFzMcrDAcVtSmRqWauYV5vvfNb2djeZN//zu/zW3HPkNZdhEKRMjp9Eo++dnPc89DX2f59DLtfolINJqA9AqJIMkEUghqW2C7gVjKlljnMP2Kkw9/mckZiQ0muik6T6ZbJLLBNVddQadb8Sd/eBOzuaWoC5x15EmOzTz9ukYliscef5Q3vu7NJCrh9Lk1PvO5m2lOpNz4mldx9NARGDmkiJF75nZ3wMaphzl85Aq2tvuEfJmv3nMvq2ceR6rA0vQUCLjxhhvYOX+KxYNL9Pttyt1lWpP7abVaHDxyKQ/e9Zc8deJRgqhRScLu9jIL8zMMbU2aZmitmUqnECSY4SbeBxKd8JV7HuGr947j58f4L+Fby2dk+MaglP/acfHRixFSvej4jPKS2dl5trfWn+9L/CxCNLga85kxn/nb8hkpIE0zpJzhwJGLmJ6ZH/OZMZ/5tvCZH/6u7+emm26iNs9NH3Dj0ZNc+5M/OeYzYz4z5jN/A17wQ09jBcE3YnV19UU1CHbZZZfx/ve/H4ADBw48z0czxhj//1FVFe973/ue78MY40WOtbW1OG3+HOFd73oXn/nMZ57TzxxjjDHGeD4RvB2pyzxCSISMRU0hiA5NLqp9PCCx+BAjCozzIAUyCLSOSraY2a5ARSthJcFKi9cpQiiCDwRb4W1UFLrgsR6sUFz7Xd8L9PniZz/NfK5IbUlRFvQGBZ3ugP6wjwseYWoKqcEUIBWtNGdpUmN7HXq1JfjYR4bocOwFCA/IkZouhFik5OmE9xAj8kxBI7Ro9zqUVWBuZgYlo618FElatPakQmPqAufjwE2aK7RNmJ1MCMGx3bUY66IadORqJPAIHzC2pt/tkihoNBvkjZzKG4RMMVWFC552e5dGlsZ6VnCoEAsEOolOSKYqo5pdQiIhCIUWEhcCodGk1egzKBx5I8MR71UIAessQUpajZy5yWl2+328CzSURNoKgUVLiXOO0jqKsiRraBKd4quaYV0TnEMIkCGQyljsNeWAjfXz4GwccnMe3x9gjUPgkSqgUbHppFvs2T9PPjlHqtN4TijyRBGkoNHIsR6E0BgX6Hd2kVkOdUXA4xwkIjZcgpdUI9WqUuCCR+Gfuady5BIVgicgiUcTcPav8MvROvABggwkIrCQOqpBjRupL70AK+OacXiEAh9qhtZgbVRROgn3Le/QSDNEYxZDjFsIowJpXIuKgV9AqQ4NZUlMxivf+oPstNsMBn3yzS1c1WPPfMLOzhZaKFq5IhEC4cWoKKqxroJgsSbGsOANMyKQKUWaZhzdk3F0/xTDVKBW2ygp6Fpg4HFlyZUvfQlPPb6O15JSKhqNBr6q6Xc7DKsKERwtKZEioEaq0VQpVs+c5KU3vJqk2YCpmkxI9k/l7G5UCKXiYKOUSCST01MURUVnt8+wLNECnBNkSU4Iim5R0XIVWbNFOTCc60O38hhj8L7Gu+jqhQDvYrEyxIlFvBME4ZEhFoGfvo9SSLzwFLVjaCxZnpNpQbeSzFsXm171SDUdYqym9KASzfT0FHNLS+QTOcEHnK8hxEgAKTwmBITwaCGQUmKc4/TyKiqZJ/HgQkrRGeA3u1x80T7a3TaVs1Q4ZNBI7/EBpFQEU3Lu+AMIAlVZEKyJRW3vCLXDBIFKNV4qfLAoleOlQnjBRKNBlml6vZKAZ1BZHj21BVMDTCrxoUXHNHDdLnJyP72qRjZbNJVCC41zsUmZVhX79u1nYWl/vBbBEYQYOePJZ2Ibup0eFAWzieKy2UmUEtx+YoBTjrqqcJkizTQeTyNNuejCwzx68jQSgVIaHypECOg0Q6cNlFRMTEwyOz1FvyixPjoHhNGzGaQDYnEeiM1qITj+xOOU3iKEfKaZ/bRrXwiM3k3Q3u1grBs1k6LTR+wLSHwIsaEaQAiHCxbp4ntN/RUlthxtCGI0Gru2sswTj97PXCsnDSW4UQRqiK6CoS7pDXs8dXo5NuHyBmVZ0WxM0Zqa5i8/+2le/9rvpCkkJrMcPXIJlttBOBCeLEnxrsZaj2okTEhLLyiUiIVihwDnojo7BDSxqaRbDehYzj9+hvUgeNkNr0MMa5YuP8KbLjvMxkOPc+z4LkpKqvUtfv+3f5cHTj7IjTe+ibNPnWarUzI7M893Xn4Zp8+fo6gN1hsWZqdob/dJhcIFwAWc1rz1h36EH33Zy3jPe3+R1fYO1tXI2pI3G9Qm4EJNzei5kgLjKu5+9B6OXFRybvnJ6ORYCc6EwKmdHX7qnf+AzoVHuPz2Yzy4uhYHEVRASE1ZOr561+1kuSUITaYTEh8AF9X6HvYv7cUWW9ExxDmkELzljd/HF/7yZoJOeO33/nc89fDjbFdDfLtkfXuA855P/cn/xfm1s9RlyoMP3c/i3kMsXHgp+xLJ7sqTDPCcXd3Eh4JBNURoyDJHt1uhVUKa5bSa0xSDHmdPnSDImmBilK5OmuzZv8CVV7+cB7/2CA/e9UWc6SOERUpJXQ0JSLY6Q3a6OyQi4+ill7A4Pcc9jzyMNQ68p6wCSlmm8oRM1VRGYL1CUuOLmkRNkLeauPphlIzvgkJY5mZaXPfK13Ls7kcZ9rbQFpwpMcZQ1aCAdlHSkpKNze3oqKAEd91xL+sP300pYGP5Kf7Rz/wsE63pOIw32mWdD1itueTaV7PbHXDzX3yRO796O/1Om8lckSWzSBx42Fg5zgUvvZqTp1ZZf/wOqo6NQ+tbbR64+xa06tHKE2ZnF0mn9rFy7gz0Ojyycwe73SEXHV7i4MVXotKMVGvq2nP3Q1+PkWVjjPFN8C3nMzKHZ6KFxkjTHO/Di4bP1KZibWOdEMBY8zxf3W9ECIz5zJjPjPnMmM+8IPnM3IG5WB97jvCXdx/jnwox5jNjPjPmM38DXvBDTy+mAZ8x/nPMzs7y1re+9fk+jL8WN954I/Pz82xvbz/fhzLGGGOM8bziyiuvfL4PYYwxxhjjOYWQUWkIKtoxew8iKtlCCGhvUFksdDvnEELiPKMYgIAPEikTFCADoAQISU1ABoHXmiBFjDIIIQ4+BQcS5KjIbfFUQmIHQ5IkYd+EIlQlZV2yszugrAwORZblqEYLMTWD1pJU1tRloDk1xXRzA9XtYqK8bzT+wqgoFM8rFncEzsVBGeHds0XD4CBzdMstlMlJ9Ty1MVhr8ELSSGqyRKMyRW1qUiGZzFKkytjeKVjeGgKSEBTI6HBkvUQKifMe56ON/aCusX6XWe9ItCLJc/pFERszUtLvFhQzBXmW4UduWFImSG8gCIypCEHgncP7WByxIjYC8lSxsLhA2NjEebDORGt0GS3Rg/WQxkJ68MTPVwqpAniFCxbrn20oRGcRiXWSui5xXozcucKzjaAAtqxBeJIsxQTwxpHpFOMMMkAQAesDHk2STZAnaTwnpZHOo7QmuID3AWsCJpT0i5pWo8HefYd4qtPGC0FQisXFeYIQbO+2sSbgAwgnMEag0qh4DSFgXCz4+RDXnkwTfAVIR/ABKQRCPmN+H6+/C9jCEOoCObpG1gW89mgd0Em8JpWP6kiRCIR0qEpS1oLgBaEwmBCLjyKEqMj0ELzD+ZS+nIDBOtOTS1z32jejk0m8s/QHHU7c9yV2j3+VndKiGvHY6rJGKuIaMgbjLEhJkii8rTDGk2eSpUwxaOa88rIlppUkNCDVggmtCVWM9rBVn7npKfYuGk73e3if0yiHmO4uZVlT1xZrK/K8gUKgFSDi8OKw0ydptlBCUGQ5y70hVx3ZQ4XifLuLriEJkubENBdedClnz52jNh6ERCeCNEnQSUptAk+ubUOzYn23w7meYLeKStxn3dc8xsS4wqfdGGKtRMRGZohuDQAyiY5hwXlsbbHBIWSCrSxaN9GZHu1TLu4MwROEJ1WS+fl55vYskTYaKG8xtqSuLa52CBzBebw10RRdiFiMHjlGhOCxAYyQDAYOENh2j4mdFu2dHoXQKFLKekiWKrx3GGdJlIKyQmiJVhqrPRmgUQQJlY+pATIIgtbkSmFrixyV0vGBYExsnjhD1e9SdHrYVJMfPERbJLikSXNqgeGgj9EptRMYFCfPniOZnefQ4h4aSrLb3eWeex4guDqqJ52j9oF6tLeUZQ22JpWel16wh8eXt2hmmlorUi3RWoH3pM0cW9XsXdqLVjo233wgoJFZg6k9B+OQYtHl2BdvI281mZqawDPaF0OMWwhWEGRsTMskYXpukRMnTnL3fQ8/67YRAn+1auaFIHiP84F+b0in12V2aoLaGqq6xrq47wfvqeuCulRUlSFoE5Wm1lCbGh8Cactgqvj/Sa0RwbM4N8GbX3UpGs8DDzyJ8SGuS2/BO5yA3u4OT1Qlw/YsSzOTuDwhSzKm1AyDosu9997DzqOP8tUHH2Lv0UsYFjVCKLTWsZlpLc5UGNsieJiemMQ7h5bRmt9bx/r2Fk/c8zhXfMdLQKroAiE1i5ddQm9mhje9+jqyVKGShBA8ZmeXN/7I38OsbXPrp2/m+OYmGzub/KuPfYDSWLxz/PA7fprXXv0ydto7fPGWT/Hl+2/n1a95LdVmmy997WsUxqEIJM2cJp7FKy7je97yA9z/8XOYusCbClsNICSUxiCVQOcaoTTDytFsppx+4hGaaYKXAYHgNTfcyDve9jYmJxtMvfIV/K8/+S7e/f5fYaAFWcNjTIWzgspbsIGmdEidkMoh6URFSDXNqX3UpaJ0cS/Is4xhUfDBD/4q2nkOLM3wH+96gK3S0+4FhsGyf/EAq8tnObV8DikVaZrz2te9kRsvu5prvuPlbK8sc/Wr30yzGPDHd3+Vicl5Ov2STs/EWNY6ILOMN37v2/ixt/8wUgr+xf/2Uzx87hS4gBAK5z1PnTzJr/7qe3nT69/MQrPBynYFOr4Tn3H00hkuOLLJSZK0yRNPPAFBE5yJ31VqMfKirKm9Iks0U9rgakdRVnz+5mNsDC2N+UXKYZvaWjbafZw/w59++vPc9uU7mW9IzLBLWVTYEL1tXAAbPN5bGllUeIcQaG9tUPfaFM6wIWp6vV1ajUlQ6plAiMXZSd7+gz9OUVScOP5lHr7/fna31pmanmRaTyB0hg+CP7/5GK9/1WHq4S7l7gauqllZeQwlG5hhF9/v40KBnwlcdOU1qKlLOHNmDd9u44oKVxac6a0wtzDP1MWvIklzHn1qhfXtqJIeY4xvhm8Lnxnjr0DgPC8aPmOdpd/vPd8X9a9Fv9vB1mbMZ8Z8ZsxnxnzmBcdnPv3FL2HtcxcHutneoVrZ4thnPz/mM2M+M+Yzfw1e8ENPY4zxfOHaa6/lLW95C5/4xCee70MZY4wxxvgGDIdD7r33Xl7zmtc834cyxhhjjPGixNOKQhFiFEA0QwooJH5k0V2XBWmeIoREIfDO4i0Ea/ACpNSQptHhyfpYTB25KkkEMkgs4F1NWZZYYwguKiEDQNLgoiOH2T97gEeevI120iHdGWCHJYMiqiuts6isSTIzS95skuDZGhosCZXxYD25khjrI7EdKeeiii4OQskQh6EAcFHFpaTASQhCYLXHK4vyCmdKqrqkZywWQTNJIUkIpcebktQ5ut1duv0uw0G0dE6EJziHs2FUkIwFP+cFDgijOILaWHrdAbOTUxgjGAxLfBAoqTCmpt3usW9fVBJ6YtUwuOg6JYVkYqJBMSiQQkDw8Z/E4qqWxAgBE889kTKqfAV4AoNBgVYJ/W6fViuj1WyglUaisWToVKJ0SeYd3luE8BhvowNiECghsT4QiIVbQWzcA0xNTmPTnKroo6WksDXCefDxuFSSYqxFeI/HIZzEeYvzguAdqYeiP6Bfe/JmhrcVrZlZkjTDGBcVjtbQmpqkZ5uEjgDjaeY53iWUtUUEmGjMUw0KvBK4uh/jBWXARoNrhI+q/qigjMbX+EAlAo+317FFVMA6HxDGYo1GaIeUcTBLyICWMq4fIXFCIhV4UqyJCrzo8DVSaXugKsmbGXsX5kg7huvf8P10+p7ZKUNpAoO18/TPHaccDrDBI7WitA4tPc6OYlhG91/Y6IrVHRS0Bx2azQUWDywwe3A/Fy1OwmAHW3qETsg8oAWlqhGhxpVdXnrxBZx84jRZq4Goh1hb4oKlV1mcscxOuqiMFgIlBWVR0lO7DAcDZJohJjWd9oC9+w+wd3GWtZ0tOv2S7aEl33uEdh3Y7fVhpFA31qJkikNR1YaTyztkkwNWuhW7Yipe02c07U//CXj3tC7vaQS8j3EagXgvvLVR2etDdHWTKhb1nKEYDlCt2MCxJiHPFRJLs9Fg78H9zM8v4n2MC3DWYGqDrWuC90gxaux5T6JjKcmPjoEQlbMi+Pizi4Oe3UHBE2fWoTbUUuDqqJ7XWo5UvB68wiNIhMIpTSIkyruozk0VzoJOM4wrR450HucNIoiR+0S8LsZ6gtejPdaT1J6G9bhiAPrZdUmisYOCyjsaMqPZmGD/3gU2V84z7PZYsZYslQRj2GgXnN6omDuzRWtqmnpQUBkFyQR1LdhtHOby617OxOIC+w4sMGivxaGcoQEZIzqUZBSxIgiuQqjYRPY4ZIDVc8sszTW45qrrGWyv4oPAjZox1tYEKSmGfc48/hjHH3mUJ89vUhgbYycYbarPrAmJJOCEQAgwrmJYGhKdoqWIMaVKIXAoIUkTTZImgEcpTTNr0DcVzTxDJxmNLIHgePz4cSrrueGG68lSjcodw04R4zSCx5u47qIbEwTv6Q8HnPeWRAoWpw+CkhRlAd7zL3/ln2HKAV4ExIl7UEKh5QyOFGsMxhmcD+g0ZccGdLeNCxLJEoP+NsOyTSaXWDyyhBBx30GCt5bpPfNMDw2JApnp6EpoPUsXXki6MIsvDN/1D36Qy1ZW+ee/+I/Z7QwJzrH/0CGue+UNOB+45/77WOuWNBtznDx+hro2eBkdEZqNJj5p8dSpJ7npz/6cP/riX2CtYWnpArY3zmJCSVmWBAs6k+Dj5wcRG6yTzWmuvOAwrh5wYmONhckZLrz0YupT2yR7p1Bek6qU0kuM1QRvCEHhjMUHQTbdJG8Yyrqk7CV4ZbGDLkEI5idgUAsuPHyUn/vH/4x5CR/81/+Uz956jLWVDUo7ZO/iApcefgmNEAjW0K9KZudmqHqGRx//Oq+/5ga+fuo0R/ft542vfh3//Jfew2ZnnSAbKJdSGVCZiHuHavKqG67npZdfQtUpWJpf4sTGSWobqIcWKxIqV3PLLV9AS8Xp9iYWgTXRVUFIifEB5TxaKl57/Q18/cRTDOthdE1QHiETQlWSpuBEoKVT9oqULAQKqdjWjp6paOY5KmmRKUOzUWINOFvyR7//cfJGQmt+Hl8XFGUFMsZCCaUQIeCMZWlhavTeDtRSs7HVARUYCtjcWmdpz8G4C4enH7nYCFk9d5J7vnobZdnDA82sgXWeVAlKD71hxSdvvp+ZVhOVaHb7XYb1gMXF/dQBZheWaCZDTC4xFXTPL5P4gqFzFFWHNE3o7lruvu0YS1t9KAvuePAxrPNjkfAY/0V8q/lMqC3jVfcsPAL7YuIz3/D98oWF/qDHysoKE60xnxnzmTGfGfOZFxafMc6SN1MGveI52A0j0sWZMZ8Z85kxn/kbMB56GmOMvwFSSn7oh35oPPQ0xhhjvODQ7Xa5+eabn7Ohp2azyeHDhzl9+vRz8nljjDHGGM83JAIRYkMAGYjzK1EPI10gSEEIYIMgUQpnayoDxhmsD7FIY/skJiNNNVqOlIj+adtssN4yrCp63R5BAjjyVCO1Jg0BoRSpkhycSVjdeJTjxjJT1xzsS2x3yKCsqfIpRGOW/jCwoMAAhRdIBcPagFLs+X/Ye9Ogy67zOu/Z0znnTt/YcwPoxkhiIAmCoyhT1gSpLFoqKi4mlkOWo6jsilyhWHKVSsqPuPQnSTmJGNLlpMwyk1JYsZmEiiRSokRxEE0CBAdMxECgATS6Gz1/3d94hzPsMT/27aasUpwfEtkgeBcK1dVA93f3PWeffe+73nettVIQJzVdKxFCAtk++FpxGcS1IlMQrw1CkRBConsSqoSWmlJk5yGVEgOtmFmfYxJsi21rRGhpp7uoXklbt9jZFF2q3MxWGqkNUmQ7cZJHRPLwT8rko/eBtk1MxIy6ruckKdejVffGM/bt9xgt8CmihM/uHhKEyupko2VuDkg197ZShBigE/leivyzIokkMhEnnaNxgeADw+EQ19bEShGFQiqBStnq3mhDIQwhRWLXUruI9ZGAJMSAJ1EqqApNFArrAgfWSupoiV6ijcnkamEQMSJ8guihWMK5gHcNoBF4UggkLehsh62n7O3NiP0Rwgp0NaAqllha2k+3dREfHIEhvarPindcFQJKSDpyYfccRlQMygFLwxHl6lE2ZzvUdoZQmbRP84ZAnFuyC+bEb4ooDeVQgpnHIDYKUm54OZdABZSW8/s6t6OPAjkntBGG1tXIGHOWytxrLCEhRJTouPvoOvfedzvbF5bYf9PtxBTYurJBcGNe/vYXGG+fo27bvG9TxAhDCDETwUIBCZkSmohMDpFgMmvZqlqOLGled2QZmXbzUKFzDAvB7tSiRMKoSEyO6eZFbrvvNqrtLeTSkP1XzhBsS9NmRXlRVXQuMKwMKZL/bnT4bsrOpUsgJdPdK3R1y+nTG7z77a/jyMF1tsctF3dn7BWrXDyzgZACozTIhGsFKEXjLNE7pq3ihbajRpGMJ82bXXHuCpZSbhjkZ3eumk1pfk0jIsW81+fXPkF2zpFz+7j5+RWDh9mMsW2xjcR6xWCpz7FbjlH0h1ndHBzBW4J3RO8gBYJ3SK2JMRBjRM93ipLZtQ3yIB8hIVKOjIgCYoi4OoE2TGcdXexIyaFFvpZaCHz0BKUI83MnSYH1AR9DJu16A9S+FcLZi4QQCSmidYHQ5CZuyIreGAPOdUTvkFKTSPjoiE2N6VWE3F4kigqYoUXCAPuXRoiY1fpKK9q2xTooTUEdBAGJn8yoPJASpr9Os28/1oNpW7RSoEsu71iaacA7i8JTVQqkZt+Bw/hmijQVQlhKJfBdQ0ySohwgtOH4HcdZWhrR7F2m1ImqLKl6A5wqMEazu7PNZG8HGzU+CQQCkbukgIQ0D4D4C7FFWa4MWhsKJSmqiqIy+SmPiZACElA6NwsKLfPzLEEbjVE5PuLpp57kU7//h4Bk0F/iTbevIl1BdD6r173L+zGm3MwTOb4UqWi9xxrNtJ4ya2t81+KCpYsN0TsCoPCUpiCkNjdRcFgv0arCtTVBaFJyHD18mPWVVZSRSAGXzr7Cs88+x4+svpNSa5AStTzk6JsG+J0aKcXc4SSRlMIcO0iMibruqJb6XD7xHc5vb9MvS6SK3H38GF/77B+wduQWvvjnn+PSziaroyEvbG1guwAy0Nd9qn6P2azhoX/3eT77p5/GpQ7tAyN7Hl92bLeSGD1KSVC5iWddwJg+x4/exm//1m9z+523svfSSZ546inuuucBUoLeHQeJ3nPm5VO4AqIT+CY38ZT2WGcQsUISUL0ZWgR29zTD/ohCKbyfcdPKiLEt+ZG3vQtjKrrBiJ/+hb/PvmO38S//u3/Glcazuv8I/dU1nn3sC/SL/awsr3LzwaM8vvEU68dv4aptWXv5FJ/63GcpdcXP/N1f4NHTp/nW1/4d3oEUBRKBJeJdy+9/5o/5229+F3/6iU/y/KULEAXBgwsRGTp8CvQH67z5zT/K9pmLfP3pbyJUom0shRbEGNCqx7FbbuPZJ75J3Xh8SNRugiCihIEikqSgUopR0ljnGCjBMAlqHXERvClx9Sz/POGQ2tHYQJAObZbYnUwweJzz9CtNSILkI0pA3bZsXNnihTNniEJz9fJ5zKhi/dBBZNnjoYcf5uLmHnceuxmZIoWRCG04ePA45y5c4MKlK4jgcD7ReYu3FlUoRMp79cqu508+/zUeuG8/KXYUxTH+6Esv88yJE6wu9bj/2BIvn7tM33+WQ0du5dnHnie2W9x22z7K0YjzL15msrHJ2rFdLl/dY3NvN8e7yEX0/AL/YfxN1zPzcKQF5ojRkYJ9zdQz1r+6IzMvnT/Hvfe/cVHPLOqZRT3Dop55tdUzyyuD79vQU13XvHz6DHe8/q5FPbOoZxb1zF+BV/3Q07XczQUWuBF45zvfyU/91E/xpS996UYvZYEFFljghuHIkSO8973v5SMf+ciNXsoCCyywwPcFmfTKNutJZaVXjNk6HSEycZci3lqEVkTvKIusBksIfBKoELHNjOAkVW+Ajy6TfEIilUSEyGy2h3cWx5wEDPk1jKiQXculq+d45dtf4/zmLk4m9mJgy8EBJVlaOYRfP4q0luQ7+pViPLE0XbZX3xOCw8ePcKDZptrS2ItTJtdIxwTMSV1gHgt07VeBUBJdFIi+wUroD3qURS+TRySKoqCLHqEEIgqcd6gEvnVEF6hnE2b1GNmCStnCXxqDMVltNzIF3gVKI2m6QCRhU6TrIi5M0CLbZBPjPIIDgvXUdcfSSGdnJR8QOttCKyRNY7lGhV4TCiopEEJjhcV6j5ICopgTaWIuJkyAZGd3jPMRI0ErTXb9l9kdK3qiEGgpMVLiTEUdJdMuIMQ1FaJkeXXN7IlJAAAgAElEQVTAvrVlplNHs7lNOVxC0cPOFdwxRqQSWV3adgihSbIg+pq9ekqKitIVpBBpmpqumyCQUA4RKVFPG6TUHF5dYXXfGjs75zHK4JzjypUtdEFWSiKpQ0tqOkQQ7E0V1XYmYW2IaCkJIRBDQiWZ3VYEKJWbXzJl9XpRqkz4+/z+ikpjO0HwHjdLyCQRRQIlCNe0/xIKITBaMygFs8bToLKjWIpzrW8muGNIuBAYb2+SRIseLDObdkx2N9k58wS7G2fp6pbOOaRW1J1lEAXC5NeyLuWhQu1R5EaRNJIUPdvbuwyGPdSBgOw6cB3edtRNSz2b0SSP6wROSHYuXWD/sW0G3jHcvszSeBMvFYKIJNE5y+W9yPFiGZ8EhUxYJQhCcun8BWob6BqL6Y3Y9AXbvUN0UXLF19Q6E7nLhw1Ls5q2mSJjoOrpfBZES79SrA5KmnGfLnYoAgI5V6nn6MREyo4Nmf5HymvK4hxPGZkroBE584O8x6+1fhI55hASKVicMDSThDY9jtxyiKLqIYLPRG/XECNEHxExE8oxiay0TjlmIBIxUpJEyq2flOMnSHPXAiDOXQ9iiBQ9RZx0OcqFxMHlPl3bEoPmyqxDIHAJFFAUEkeRoyJiQpmCGAJSCYTUCCFQuT+IUJqAI4ncPPAxEILPr2M0kWz1bm3Ae4tPILSm6g0wMmFnDUMjmO7uEoVAaU1oG7x1xAgzl0hVBVLS7UwphxX71/ajiwFRRVTS2NDROUsPTU2PiU10O1sICYXWjNYPUJhDSBFZKUasYUgCCl2gpEZKw5t/9N2kyRbOk6Nt5s9TSjCe1Jw4v8VmGmGiJyRPSBYPFFxrCIj5WZbjcrKKPsBczZsV5UASOUJ1fk5GkZ0dlNTI+Xkn0tztwORHuussxMjq0oCqZ1i96W7uevO7efrLf8Izzz2PlAofEkLkSJmqKEHJ6/Ez471dJuNdBv0evV6Pfn/IerXMj779x/jOC0/x8sWTzKYS4a4SnEWKRKVG2CgwZoQyhpXldf7TD/znvPStr5LHeyNXtrf45x/9KO9+/Bn+3t/5ee68+2YubtTcdLhPjIGz3zzB8R+9F2V0fk8JvvZnX+bJF18h1VOefOxh/rN//GsMC8XzLz7Ps489zFNnz/IzP/8P+Cf/xa/zyENf4pY77+EbX/kcz51+MTfEkmV7e5uq7PG2H/1JXnz0K5zcrqm0ocWRcKikqQqTHSY0CCJ2fl3vvf1u3nD3XdR7UyiHSDXk0vY2K8+fY1hFxHDIPe98C8PP/x80MjfKfCsYDiKV9EDEtQJTQYiBYDRjOjZnglEx5O33v4e/9a6foFcN2H7pNAfvvYc73/xW3vrG+5mce4UTr7zAn33hD9m4cIqQEjZ5Rj3NpQuvsLy2xIvPP8O/OHWSf/B338uT3/4iZ85tABWiqujaGV3IDUiVFDJ6FJbTz3+bb3zzK3z10Ye5eOUStouUPY2QOY7w5uPH+cB/+U/5kWN38+TDX6MsKwwemSIpRvTcc2Y62WFfv2BnWuODx/v8fasoI8bI/D0gJRrX4rtIlDAwmpGQtERC6kiywHpLJOCSz61MFxlVJaWW2JlDxNxcVQJaG/E+UneOL33hGzz06Eu85YE3IaZ79PatEaXAIDnz8mm+/cRzvPG+O/iP3/dLDAYDTNlDCsmBI7cy7fLZKgg45xlPZxADshpgOwdINvcsWhWYXsGkK7hw6iy7m9ucPluT6oO41vLSyVNsbm5w5uIVLu/ViEKwvL9ldaSJ3rG36zh57hIuzD9xF05PC/z/4G+6ninKHv9+ANEPN6QP+KZ9zdQzbXh139vx3g4nTzyF7utFPbOoZxb1zKKeeVXVMw/tPvy9PQD/Ai5evMhv//P/iR+5975FPbOoZxb1zF+BV/3Qk/eeT3/603zwgx+80Uu54Thz5gyPP/74jV7GDxUOHjzIhz/8Yd72trdhrb3Ry1lggQUWuI6u63KEzvdpOPjnfu7n+MQnPsH29vb35fUWWGCBBW4kpJCkOSEniaQQM3kqrilJM4kaQ8AHl4lncvSAQtLvG+KcFNVSEqKjmdbECEIppNKklLC2IyJQeRaK0hT0qgqlNN57vv7Y73Fh7wQhOlLKq5kogRtofDVkpT9AxYSRiRhyvIFWksKY7PokCoay4M5DJd56nrvSEKWck33zZZOQMmWCOAqkSpjCUB4YEEtNUIKkI8urfdQ0OzVpKRkOeuzNWqZtjYqJUim8AOssrXWEkC2TPYEUIcZEYy1STDDFYH49M0nsEtiYrd11zHb7IYVMIoSQIziEpJ41lGV2jHIhooREG7De4oKn8x4hwUiVhYIqK0Vt16GlJMZMuqSUsiW6zA2DQhtmMbI9HlMZxda2ZG1piBEFSgmUEoQokErmhryuKMo+qW7zdUwCFMymDcZ3WB8xpWHXSpACISJLRUnR69MrC6RUxOhpg2Jv6kgx0LQO6QJaDdkbz0jRUw0rpOxju440mZGSoN+rsMGz/+ARNi+ewvQrBqMhhekjdeD0mYIY20wGKkFIiYRjEmxW+QuJNJJCaJyEZi/Nifu8D8M1BwAp0KaHSgkhczyiKU3ewzERXSRikDqTFCJCCpmYtEpyYGmJn/zxBzh/6gWefOYym/U1XW9+rgSJmDw+OK5uTdjZ2ubOesZ4d0ZqdxhfOUfb1FjnifOBvLptKZSmFAYhIpHEuHOsjkpUDIik8CHSeY+Xgd29mioNqXcn7E4mbFzd4crEMguBWdfikkRJTfCRfRsXWFpfYXVykdZ2pOCJSlB3CS8EQiXqtkZJQ0qKlCIxOrY3NhiZPmsHbuGO+97G/uPH2BGarq6Z6T7oSFkUHK32MTp0K2dPPMfZl54i4SkwVLZFNp5xM0OPSlTQmaiPDq0UMc7vjxDZVv76dGImhIXITS55recF3yWP5v/hu/blkRgBGYkiYZRBkeM2U/I5ssN7CGF+TwOJkH9AyuRz9JGUIiKl6y46UkREzL/Pz2uOFhBx3lgQAq1LpMihFR64sDOek9H5GVUyn6pKSKTQRANRSIiRdm+XpbREKEZEIbNVfKkhgExxvp8kMilCkjgfiMnTW91PHI0IbU0IHpMCxEQlJdMQsE3LvtESMjmaribE/Az0l0dgOxACtTQgSMPq6jq2s+xbX2Nl0MPHuRI8JbzL0TBCGYQoiWnKzDr6/T5tjLQ25veCoDBDirJEEBAxq861kXznqWcZ9Ar2nMTNLO32BHHpIs45Hn3sGc5tjgnFEtPxNkiJlAoVs/pc/nufXrkxlLdLQAqFMWa+h7PjoETjo81NKARJzh34hAQh82fX/LbbpuXrj3wDIxV9DX1TcPSWY9x795088dn/h6Ujd8Nzl0lCoZSC4HHOIoLOERi9ivW1FSbTPZaWlxmNhgz6fe55/b386q/9GpONDf6X3/3fef6bj+C6wMu7Yxo8UuY96FyLKkqc7bj1lv2cfVxSzz8TyuEa+1fWeeeb3sDxOw4htcD0Fb5znPrqk3z9xec4uXmVn/nFnwQB3XjCn3/p82wIz7ve9dPoE09w7533cnNq+JNP/GtOnDnFO9/xY7z93nt509vfyn/yvvcyOX+Rq08+Sf++VY7dfRdf+rPfYzqbUdsZqih5y1t+jMlX/gilYLuBrhMoGekZzTSIuUI8oaRCScmzz32b3/6nv0lv/RCPfONzrK3v413v/jucPvsizzz6DfbddTf7ix57zuFCzI0eIEqTny9vqa0hzBK2U3Qekk9ILTh8882A56Mf/e/Zd+gg77j/Hk5sPEOhHd/8+pfZPneKr33rYQ7tP8TW5Aoroz7bO5u89Q0/wY/ddDv/zZ98BnvxCr5t+fKff4GN7ZexKESw+NkuXfD5KBAQvUUKQWk00l/lv/0ffpOrO47GeYyUaBQro4CUguVC8MYjt+BPvMQDD7yRLz78RaL3lIXOEbo1oCLbk03GjSF6R2M9vVITdUSi6BUC6yyzvUTRk8RS0kmL7RKlVkx0JCrFoL+EjAWzuiGl7KbhFGxNZxwYJbSWtNYTQyClSNM5mqbFh8B0OqUyBRfOX+bgSGG0oW4tTe2RhWI0HHL64gaq7FMN1xEkQgxc3NyhntXIkKiMIdmA94lxPWW97NE1Na3tWF1Z4XX33M/e7lVeONVR4Ll5ZQB4vIusLvW57Q1HabqCqrzC7QdX2NztKNOM/uoSndS8cGqbc5c3ssND9FS93l/z2+4Cr3X8TdczMXn2HzzE2VMv3+i3dsNRFIZCCmw9fQ3VMzf6qv6HEULk6uYuy0cHi3pmUc8s6plFPfOqqmd+65/915w++cm/8XPv/wvfevQhHnzPz6FP9Bf1zKKeWdQzfwmv+qGnGCO/+7u/y/ve9z4OHTp0o5dzQ3Hp0iVOnjx5o5fxQ4d7772X3/md3+HXf/3X8d7f6OUssMACCwDwsY99jA996EPcdNNN35fXe/DBB/nkJz/JL/3SLy0GnxZYYIHXPMI8giARiCJHCWRXpDlhl9Kc/FJEBFoItJD0B320glJJtNJomVWBrfM4mWicJ3hLSpn0zlbv32XyYkzIzPlRrinqlTHNzKKXNWHs8CkTP5ZEiDt0M8UwVvRiwLQO5wOSSNO1RFmyJXskMeCmAdx10zK1jbyy09GKTC5qBEIqtNZE35FktkPv7V9C7y8RuiQVBanSpKWKFMDFgAmOpdEyIhkiYApNKQW9aomEQWgNTuF9QMqs0ExCokxB21nO7u7SE5rGORofQWSVZyTRCo2I4FMm8+fG50gFk9mM3rCHEnrerEn4FJBREcO165fjIhKJGD0iRWZtl1VVISux5hc86whTIoRMmMUUaW3g8tYOTT3l0KH9rJSjTJ7mXYCS2b5emdwwgjhnTQSNBYIjCMVweYAWmpA8MiVk8IyMREhQSmKFIWIIvsWFQCkTRrSU0rC6ZGg7TZR9ZKkwEerOIiJYnxXNvaUVlg4eo55t4XykGhjW1w/wlje8k9Y2NG2NcxbvPd621E2D9x1t54gp0EkPSoECGebW/oVEtOCEoFCKntJ4H4gefPCE6JAk9KDPbDrFziJGC6SOWa1qFGhDaHoU1ZTxyWfplQepwxWicJCyw0ASAuaq3RMvnQUU60tL1NMxmxuXsVsnGY8nOG+xviNpQ3SJqjDEGJjNPCEFhAgIofC2g5AI0WJdIhYFKXqmszFdu8ql3V1euXyFPRu5ulvTRoHzmbjVCqKWjKdT+uUIcWEP7zPRZV2k6mvKQjIsezQh0MPjYsA7iKmmKjSve+BH6C/vgyBR2iBEYNw5ktBU/QrrO3b3Jly4dJnt3T0shkpKxGSG8B0xgYsJXUiSSngfiTEgZSIEkEoh5mR43nTXlLDZwQHmv2X+v/juHwPBNdF6SnN1dIRgLf3lAc7L7BhAJASPa2ukEEghSCleV95pkc+oaw2IRMoEtZSImDBzdbybd81SDEQfSAJEygrqoioJbUu6praOETf/WQgwghz1EiNSapSSxJQbEJHsQCdj7skaJeaDoDHHHyhJmse9jFZXsNEThz3Gkyk4S6JhGAPaJ3rSMPUBU1YMhyV72zvMpjOkNHgCMhkGVYkgUfb6eGEY9fpYKVnq94k+4iN0tsW6TIpHgLZGykQzneQGVGHoGjuP00gE8r2UxBxhIgRtZ5HBszmZUPT2QX/A2HVsnr3I5c09GtuxsbmLUFAODFVvH7rsEYLFtzZ/vtRTullNCB0p5LNThISbNzKkErmpg8jOEQqiDXRdk+97TAitc9NUZoeBQGRa1zz91POcu3gFLxRVqlhe30/bJs5f2qX1hnf9+M/yp1/+KnLeSNJSYEPMKnshiMEjTIUxnsFgSFFUGFMgdYFQksH6GhdPXWJzZw8bHV5rfKcJriQogWgDrvVIBXE6YV+/4HzTIVSft7z9nfzm+/8RazetY+ZK5AMrFaHz3PHTb+WFF5/h/MaF3CETgnJthX/yG7/B1778MI9+5SHOb1ymPf0KT2+c57nLr9C4wPaVDY7edSt6aIDEuae+wzdeeJJ/+I9/jYe++Pu4dpfgEi4lXnjqa7ztgXfTN5qxjMzqFhckhYRCJBQJXEKZkl6pWN+3zubuRf748jkGVY+R2GK6s8OnP3UeGwKz5BEnn0KJgu3tjs4HBAqt4zziz8+jqApUF3G2RVAghWK5GvGGO+/j7fe/mbB5js8/9hhnz36TYzcf5LbDR/n282eZNZaE5DunX2HfWj87KvjAk089w0Nf/BInNi+R0BxY28/Js2fwUSJVJDIDJG2UeUAiBDoX6WmDTxY37hBoBrpEqYRtLZ3zGBNIUTLZ2eOVZ57haLXMZ/70M1S9kp3tGT2Tvz/F5BFREnGkUKOEoCxkHsaWChcVoYF2kqiMpBORRjm8j/kjzCh2Wodsp4RkgR4hgk+gdCKhaWoLSyVVoelSxdh6fIz4qJFVRZUEq2urvP4db4doiKHFCUM10gwGFUXVo9AGXZWc3LqKGc9wMeA6y9NnLlDLinZvh84mxnZKTOC9YmN3hg0BrSVHjxzEFEO69iL4LarC4BqoTMnYJQQ9Wq+55c5jrO4bsLx8nE9/5k+56651zMpBdvZ2+eznXsbaloicn3uvekp/gRuM70U9c/OxY1w+fx5ruxv75m40pOJK29Dr3Gunnrn2hfFVjGAjs42W0doykbioZxb1zKKeWdQzvBrqGRFKjClx7vvz2fjKyy/xmx/8R7zx/jcu6plFPbOoZ/4SfiAqpCeeeILPfvaz/Mqv/MqNXsoNxfPPP3+jl/BDCaUUH/jAB/j4xz/OU089daOXs8ACCywAZKeneJ3o+P7gwQcf5PDhw4uhpwUWWOA1j5QSSWTFXorMlXeAAOtaqrJP0deURiIzU4wyEh0CSiQanxDRQ4p4F2isxTmf1SwIPIJSCObmTEiRh518cvgU6ZUKeXNib7LD3tYsxxoQcS6QgsiEaCmx2jGbgUiRQgrcvCHRuYQsEo0ooVrn+MCyL3bcc9BSasGprZY2SCKC3mAIUtJMcySAKBUMDUEEOjcl+IJ+GtHRUpY98IEgHKmu6UlNiB4hBP1eD3PgIPsPHaU/7jOb5qEbESUx2kzIGsOIGeemLbPQUZQVMViiyCQWZEVeJxLhGh9KBDQqCsaNZeQjlc628RARMSsoQ0zZiV4Kgp83CWS+l03bomSim8cQaKXmqvdMigVn5+pmiUQghSL4SF9rlBBoo/HJYrREpvwaw37BlpT4EOftBoGNghAVSMlASJQukDGRksdaz9WtHXxKVGWfcmWZGCXBegqZqLRBmSUmbSR5S0TTHxYkqQgBfEx00yn9wSrWOZaWhhy77Vauns/tjpgiuEB/MGI4WCLN4wyuOUIqkQgh0nqH7TpaW9PUNadOnmPX7uYmV9Vn0jU5PCAlnLO01gKKFD2OgE4SUxSZoA2KFCWJREHBWtWnUIpLjWPaBc5snGZndh5ri+trlEJcJ69TStjOZnUcSzStIwrY2JkwnkwoY8RGEMEjo0JImW3tTUHbTIlJo5TCBU8k0flI5xL9UtB2DucCe+MJfnvK6e2OzVZRd4aZj6Q5FSKkZDsG+rsNyk/Z3dhAYVkfGZaGfbZnjrIweO/ZmVqKlR7eWzrZYxx63H3XvawdPkp0gS56ms6jC/AWIo6zZy9w8sR3uHrlKvVkFxc9JMFUSfqyoBQekQIIRRRZKex8QApJCNkhTYgc+5BSQkoxd/qc69nTPOqBv6CMTul60yBdi4DgGuGfuwcpgnWOfm+FqjR0TU2wDme7TOIqiZISJQQdAh8CSsmslJ6rsJWU11XSaU5Ax5Sur8MHi1KK6D3JWo4c3s/pMxeQ0pCkJLrc7EEIdEwwb6pWlaHs9UgxYlRiNm0Y9ntz1XNktFyyvLSCkBIpBTHO1cAkmqbBu0hvdYWdSxdZHq3jvaPzbdbjS8PYeoqqpD/IDkJdawk+gnYYVTIoC4zK+81eI9aJrIxG9Ho9nLWEkAi+wXUe23UEH6m9JQmPbWtEitRtoK5nxOAwyoBQqCQRKSJTRMocdZqkpgshk+tIlKlQKiK0ZHenYXc8xjuPDwGjS4ara3RXLkIU6H6PXqnpLQ2QUlMtrzJaXmF85TK+axn2Ksr+EBvBk/Ah5IaAUmitwJcgBVoXaKVQQiJSQorEY0+f4MSZS4QkSSlw5eom//fv/xHv+PGf5MBA8Qt///1cOPkCpVR0sZsPt16LnhDElHDWsbm9xfpoSGmK7GrhI5euXmZvZ5fvPPYtnn7lJS5MGgolsUkhlcI6icTT2B2id0SlmU5qGhcRUtDrj7j50EHWj62jlJk3xbLjwuUzGzz+zAk++e1HSabALa/xpvvu4pYDawxXVnnwF9/D/W99C+Un/g3PNhPOvfwSNib2LZUs7T/K733+y6wfOkyzt8cz33oEW/X56L/6H0lxSq/qoZOjaVvOXnyFU2deJgXQhSR4j/eCsm9ovMMoxWo/ELF0rqTd27ge9xGaMabyEAMieVRUSALJV8yaGm9zFK2S+Sxom45oI1FHBkYTrUD6gpWhpm49jZ3w7ce+ydbpU9z3lrs5euZlWuFpmxnj7V1c3CWminHTUhYBvGUybVnddxsvnHyBJCM9JWk6x97eFhrBO37iQZ598lH6xnD20nlCDBQ6n1NCKtoAWmiUEpRGYciukUZJ2jrgugQpcHVvi2deOcF9P/9+7r7zdmQdeXo6QQmN6zqETFQ9DyLH44ZoIHlAoqLBhRZlFIMlIEpaFylkQRQtIUGZAkaBdZGu9SjVIFKBSRoRFYPlApJjagPKSHAzgs3OE0L2qLuOuq5pZ7vsbG3whtffxdq+ZVSCmfNsnLVMxnssD/sMV1d5z4PvZmVljZgSIQReVE8z3dqgVyi01OxM9ui63HQdDeZxOT7xzcdP853nz9F2DTpBKysmlHgp2b6yxfbujE/8wZh/+PdK7r3vdchijfWj+7lc77FSGk6dm3Lp6jaj1f3sjaeQPOr7Y/i8wA8wvhf1jOkPWDtwkMvnz97It3bDMeoN6Vx6TdUzPwhDTwDBwT33PEC/11/UM4t6ZlHPLOqZV0U9851zp67v4e8XdnZ3OHbkjkU9s6hnFvXMX8IPxNATwEc+8hHe9773sbS0dKOXcsPwsY997EYv4YcWy8vLfPCDH+RXf/VXcc7d6OUssMACCyywwAILLPC9hEjZwhmNlNluuCo1w0GPK1uB0aCHVNl1x3tBiJ7gBXXjiOKaxbZAikzGhes55em6ljGKSMKTkvruywaPdY5uVNL67VxkLvfYONuB0Mjo6BqPkhojC+zEkepAaQwugLeBa/OwM+uwLqJLhSsMo17FwfVlhisDYtzg3K6lSYnZdIIkwZwU1IUkyEDwIIoCkqKdwaTnMUsFspdIswYvEmowwoeshkvX7OClwFQjiiCoen1klBgZCUqDkDQ+MSoqqpUlTFFy7sJFUoxZLZsgp8jPNehzJywJxJTwMbscJZWVkjJlglDN/04WXM4HfRKImAfBgs8EZAo56kBca0rMY/dCzLy10RqtJJFAQhGkwCeHRKEQpBgJc/v9XmHoFQWTNjcJlBJZ6YnAkEjRIwlzu36BT4noLUIoxtMJfjyhv3KYNniOrvToFZpJnSMQh4MBy2vLNNHQdgHRWZJrEViCa2jbGVKssrayRupm+JQIwVPbjhAjHhAxW+snkeatDxBIKlNSFj2WWIV9gs0rM8Z7uxRVye133M0Tjz2eIzJMgbumJJcCaTQDVaBUgbcWEQVRJlwXKY0h+iGdFxSDgihgc6zZmQzwIWLnERxIMb+v8wwNKecK57y6um7Y3dnj8pVtgrU4F9Da4EKi0AXJDPC+wXtPjBqhofMCISXeRZpufq1toO4iEcnLG2P8NHGp67FjJT5FnIiIeYQLIdHOPC+dusxdR9bYDAbbzVgdlFktj8SFQPIJXZS0LjCzcLEN2OToJjNs0xJch7MtPsDG5SnPPfsMm5fOsbWzSeM6RExIKec6+qx4ngpPKEpkN0PLlOM0EgQfkUbiXUKquSNDyirk+UPy3T2cqe95G/Par3MVNCKfZfPzJzsBBAQSIQTtdMz6+n4E0LUtXdfkppio8vNFTgiA3DANIeQYTa4Fe4g89CcFAoUPbn5vI8RA8BYlCyIB184oi/2ZWEs+k8hKIHxWyxMCQkikkJRlQa/fp68NK6OK8+evUA56gGbWOQ7vX6I3GDEd7yDINvlK5DiJ4AOzWUsQAq0MBokxBSJ5iHkf3Xv3WxgUgRefeZzptM2NDuExqqIsNIVR+exB0nYtuuwhERhdQMpq5rZrmU5ntM7SufyeU3Q0XUNnWyTguhmunhJjbjOrnLaARFIUJQmPCAIlA8p7ou2QUqKlwilNkionTkgJUuaojZhPRx8Drq0RroEYyD4RAbO2xOD2N7J1ZYcgAmVvxMZuzazztPIi2xNHfzCg1JKOgiDARElnLarso2UipEjbOK5sTSiLgrqz+YwDts6fwdY1ojrCgeM9EII7b72Dx088TYwxK12v7VEgJM/uzi77V1bzc5tAiMSFcy/x0BPP8Mf/5yeJcQejBK2PaFMxqEpccmitabsakue2199HtbaPlzYuMbZ7ONmjHCwhhMrPQJq3iVJisDTgypVtrk520cC//df/gs/fdIS3vPnH6TrHbbfezpkTj/HI179K/dCfcXB1yG2H9pO6DV567hGeeO55ApJR36O1o/VQlj2cDSSRiHgkic47pMqfQ7WNIPM+7KVEEAIpI73CMfMekRw+GBKantLc1C9ZKg1T0eJUQ709dwIg4FwgpoCIMZ/fUhKjx3qPFBCEQyiFoKSdCRAKoTsm48vslH0unD9NJwW2hQ3raNszzOopxmgkMOgZCm2IylHvjLn5yM1c3nqZg7e+HhkMKUYunTvDvkMH+emffQ9Pf+OrDHqKuvZ5QDskksjuDZbAgYOHoZ3gWkthNMN1xS4tk12wIVxJK/gAACAASURBVIJxTHZ3+Z//1Uf58sN/TkhZlRzm54tR88/6qAlCEBB00WOSQCtPRQmhI4hIFB5TVLgUKFSJih7rE4YCVG78h1AQhEAxVw5Lx0o5YDydsYNnterjQ46EUL0SSSKFgE0BKS1FoSkEuNgRfUB4x7DQ9I2gkuDqPdZvOp6bYjGyVhoGpWBp0CNGRz0DJxw2thipEapHJyK7refi+QuUGg7ddIy9xtFG8CJRjEZoI9luI//X507whlNXKbTk/MXLHFk1dN02YQYP3H2cJy51MGlJwbEznv71vusu8NrH96ieOXr8Vq5evkj4IU5DuOnozTTev6bqmevuw69yeOc49/IpHnjHu1gaLeqZRT2zqGcW9cyNr2dC3JnzPt9fPPP807x07sVFPbOoZxb1zF/AD8zQ07PPPstnPvMZ3v/+99/opSzwQ4pf/uVfpigKPvzhD/Pcc89hrb3RS1pggQV+iOG95w/+4A/40Ic+dKOXssACCyzwmsPaSolCYbQipEBwntZb6m3HrO6YWYnWGiHnpFzKhW5IMXNyIs1Tz7LS9xoZDQmZsiaXmEm4JDJDrYxBxIBTkbA/MK5tHnQqckE/qx2oAiUCrrYkG2Gm0EiCkNQepJY0nSD2JYN9JaNlhR7Ac6mh3y8plir6nWN50jJ1u5g2MkmZlMjEZSSNAylB7/CAan1Eb3kIUSJ8YjauUftGeNew2ykGy1CEREyCECIygUgaYRS9IuRCXCW8LkEqvHUwWmK/LkgyUs+a62kK36U4BVJkK+ccGZD/gURRlFTaIEUmOYPMMRJaRBQCPx8qk3M1qAC8tSAyb+m8RxtJvKYQlCBCIqWs8CykoFcabONQukAZg5YSoQxKiKzQknlfTJSgXxnqpsUTUSh0oXJ8XIDpeMrKcIA2mpjI9ylm/Z8SWSU83t2klLBULTEYVXgfcDKy/8AKIgZQGqLEiYZSJaqlNXx0tD6CEqiiAK2RzuV9YjSTbpIbIinb7Yu5rX+YN69EgigjUsjr1x0h8T5mJbpQxBTYt38fx47egi402mhKU6KMxkaop1O+/tWHaLuG5A12VtE6y0xJLk8aEHnIqgkQwpzIFnMV77VIAinmpHVEJoUQULcNk3rKeFpjpy0Ey7AyNDZw8PAqYmUFP77CbLyL0BVBlcTo2ZpuUQpJSIkgEsFHXIooXfDi1YizJW2ncKEjJolUiiTn0vuUKfDLV7c5vO8At9//Th5/7JuMu5a+TsjgmDaJSki0kmgBShe4pPCu48L5s1TDPttXrnLxwll2tjfZ2Z3QdA0xRTzZzq1QBshW/VkEGvExUsdAKVS+EfPmYZoT8kJISHIeh8l1RbKYNw3yDxKk68/P/CkSfFcxfX3eMjcL0rX4BUBK6PcNwUe86+jqlqpfElNuiiRlcG1HDA4hNNbHubpdIaXKRF/KESyIlBtKMcB8CC9Yhyx7OcrCW5rZFCWzI5oU6rr7xDVds5hbnDvvqYKAQuFSQBmBUgqtS2LM+2ZrPGWoJZUpcNKjlSNFidAKUWqaqqIa9UhRUaRICIbl1QPs23eQ47ccZ3VQsd6vePLbj7K1dRXjiqzQ1jkmLaVETB4foRBVjooMlqaTNPWM3emYnfEeSkhikoQoUEbStfWc3IUYxFyNLRDREZJEqZBjRCuDQNKlDpUUIXi2trY5eMsRogv4FDARYspuG14BDlyw1NMx/V5J5ztcjLQxXn+Wm9kuO1cuMZ3WjCqNIeVBWq3ZnkwIWqGmU3pFSbFygPHuLjs28uRTz7G8skxRlgRbM42GW19/N5O9XbqQ6FqL8Z6+0nzrK08QNlp2JzNs9Nx92x2cfuUVGu/ookN6RYh5L4cYsdbPzRAEUgm8t+xsX+ILn/9DTl44Rd3U6KSYekFRKnzMQ6RK5nOh6knqrZP8b7/7vxK6TUyvhwgVlennZ0Iwfwbyfq8GFXcdP0wpFHW3xb79h3jdzbfzH73nb/PlP/oc77h9H2cf3WS6cxYvEuX6iNfdcz/nzjzEVtMSbJeJ6gaCBE2ONhG6INFxYN9Rrm5dpnMtQigqHUidp3GJXpEb0z0VGdvI6UuCXt8gRaLQYL2kKgXLQ0DVaCdQ00hbe0xVMSgFSUdSisQ4j0MROXKlqAwiRiJQSE0bA10nUCafDZPkaC+dxfc8P/uTD/LFz32ZC5MZpmxBa0QqWRpWiLRLiNl9sOxHjh27jbUDq2zubfOuv/Ug7/2pH+e/+q3f4Ik//yIHbz7KxSvn0FqwPtLUnSJ4h1aCKKDqeZrJRWIHfZUjEPx2xLcJU2pIAucin/3cH9JZ0CrRpQgOcBIlwSgFHhKe4bCHdSUh7CFVICFy0yyC9R6NISQQsoftGmIUICJFX2AUCAUuaFJq5pEMgDf0hxVT2dJ2AdmXCKmY1R19nYghuzNEIrazTHe2WRpoUgpoCcNBhS6G4DuEhM2rlxB3vSE3ZwSsDiUH10fM6o4Q8/enuukgBibjCVIHopTYqKh9xIbI9gun2dfrc/PqAZ7aepmmmaJ1Pv9OTiaQLIcODjCDJa62kjOXp4SYcNUSdX2VsoQuQhTfHZpfYIG/Ct+reqY/GrK2/wBXL1280W/xhkEsLbO/6r+m6pmUvr9O8n8dnH75JDEm7rr7XpaWVxb1zKKeWdQzi3rmhtYzTdswHA7Z2d75Xh17fyVmuxeQjBb1zKKeWdQzfwE/MENPCyxwoyGl5AMf+AC/+Iu/yKc+9Sk+/vGP88gjj9zoZS2wwAI/pIgx8sgjjyyGnhZYYIEFvgdQMdH6wPasI3iPcw6XoCwULkZUCNk9R4Mg23qLNHc6IhFiJqKlhBQjMYRMJCeRFaVC4GOYv1pASJX/FaAPG65ON7LluPOEmcM5Rzur8VYibWT58BpFKolJI4xGFpDWDGLYx2iFSy17O1Pacw2znRrdg4P3H0AoMCsl4oGjmANDyuc3mG1M5uRwjttL/y97bx5sW3qW9/3e7/vWtPfZZ7rnjn1b3epJakmNFAECJFkB5ARMYlVSEARF4hhMTJWrYgdKVQQKk0ql+CtUwAEiypWQKhsnLhNkx8Y2xAYhoYhBQ2tALanVt/veHu58z7SHNXzDmz++da4aOwVOLOlq2E9Vd5++95yz117rW9/a7/O+z/ME4LhjsRzwt1rarZrjeUuKsPvgQ8xOb8P5GrMaaOqIrpTkwCuIWFwxIaon9CtStJkgMxU+JqxVkhPKWYVvD1m2KxJZeZzjGHKhLpisnMRgJLtIWWNomoooWQOIkhkAk5sxkrLa1UhWikJ+TyGmHA+YBDGZbBQRNARAUBGsEYwGrKkoyxrBcOrcHjEoHkWSx4ngbAlEWu+zUrIoMQJWwQlMNxqGfkAU+qGn7zuqYpoPBYM1WTWYEKK10PdU0wJXF2iKrJYLTm3N2Nuacnh4TGkVyoJV9FRFTTQVq76jXHX0XUtTl1RFSdAc+YRqPl+jEjY3U7JifBQmZ5J4jOSLakAcQUFCpLt5A6uRJOB7T1VWzDamqM1EhA8eZyy7W1ucP7XLS9dfzPbuPoFkt5WoCUFJaSDEiApjZIpBx6GvPO2XyS+MRcWAK0k+UDqIKrSDIakQVplgvNMZunlCDz3RbmO8R5xh0Q9EZXxdCMlgipqtrRlJYDGARoNak1W0KSuDVYSszRsbe5p4+plL3Pe2N2PKhn0KTDjEGks/JLQxbNU5IuDOyuBjwseBTz/1cT791MfxMULK1t9RlUAeJHQmq30ViCliNcfLpLsDZ8pAIkbFjhEBeRexed3bk0gIudvsGnsBnCiUTyIM7/77xFlu3I9yN4a7Dc2T/xjrKIsKZyUTkS4f69D3WZGeeoZ+RVFYrClIfoCUMEWBmEwAZ01uPqAQfD6/ApGEM4I7cTobPIvVEmtLRCJJExaICkiOG0AEJxYUhr5nY1rmpaIJUQMChSsYQh7aK4sKU1QYoChLyqqk2d7Flg0rDz55yoNDNpqGSbPLq1/zjThnCEmJ0XP//Y/gSsf7f+e30QR1U2VnBM3Xy1Y1xQCuLOn7nrKuWC1XHC2OWS6XqPeYoiaOQzrL42N8AGcYIzJAncOmQBKTGyNxIBlD16+obUFhwFhDHxPDYsnm8RxXlnk4UbP6WclchDH5HvKrY8QUqDiEiJF00msFY+nblnrS8KqHLjA/uI36SIweYsyROTEwDAIxMAweEJbLYxCl7z3GCeXmFpVp0Okpzm9vYzc36W5cYzYrecUTD/LN3/r6u2vs27/9DfylT/3nXL/6ElevXef6jVtcv3admzevc/P2TRb9it1qysSVYA0hDWxMK57+xO/QdoIJBTYlKlU0BIrCksRhNeWBW5dQ9UhccrRYIn3PdKNho2yyqlUBr2iR9/hqUjKfH5C0Z9V1PHHfRVyC9/6Tf8oP/JUfpLDwujd8M//ne/8JQRKHqw67dYqyeYxFuDw21KDtFIfHlBWHB8fs7ZacP3eBstzg6HiJtRPa9pgHH349L1x5hpnfp6w7bu1XdGLwUTFW8NHhU2LDVFgz0EVLV2yzOGxpnLJcKZU1+ODpBYpiYGI8MShddKQUKAuDswVdF/ND2nqiD7iNguQhxgkqkWXoeWRzB00DtVUaU3LnTsvuZsSUc6pywu3DgeAtKSXa4QZPv/RRvvc//GF++/feyxtf9RiPf93X8Us/+z/yIz/ygzx76Sm8JIYuUBtH8MP4bIGNaWR7q0SHRKsBcYnOezRYbFnkZ6REgq+Y1rskcwChxagQRdCQwIG1gkkWipJXPPxq3vKmb+dv/fz/QAxC2ycqetQoRgr6LqK0WJeHvMUrhQpVUuqJEoBusaD1PSSDM8qqc9yZQ+wC0XdcP4zZmVFLSs3xwpXLjT4D9H2HjxGD4EZXkBDGz3Ep0bYLVBWL4KMya5TXPHaBP/zos1hMbuDdzM+W5bJjeyaYusSZArGOtluyWdS84vwFVBq8H7BiaPueUixilO1aeOvrz7KzWdOlgstPXeEzT9/hmVst2xPHIhqaaoYxXxmuLGvcO3wx65mvdRhbUs62vrrqmXt2Nv//4cpzl3jxhStcuPgAXR/X9cy6nlnXM+t65p7WM3XVAF/ioafQU6bJup5Z1zPreuZlWA89rbHG/0dsbGzwgz/4g3zXd30Xb3zjG7l69WtX2bLGGmvcW1y9epXDw0O2t7fv9aGsscYaa3xV4WiI+CzaQwpHYQQZhpcRVhFVAzFHPYiDMA6UxJTykAlCSpGUZdGIZlIt6MlkUbaEFwCnaAwUexNWzSHtYgka0JSVlGKVopliy3wc0QyUF5TZI5ssbyTmbaAwW+iBZXEUaDtL1E2m9YytCno55Ohzc4Iu2NgJUCe6vmWZEl2Q/B5OYhTITv2SoD/sIDo2ZjsMcZvUnufwhUTUhPGB2XSBtQVQkMgW6h6DMY5Bc7SahoCxQllX+D6QRHNhWzb0gx/7JglVGceBRsUsktW0AkjCGstsuoEKxKSjhbMhilBWJX3oiTrmOtxVfwZiCIgYkkk458AWRB9GFWlWnlpjMdZSNhX1pGFzNmF7a4cQegbfUrqspLXOAYYUE2ICZVXCGB+XVJkUZVaMxazxDiEwcrtYSXnwCKGPEWOLPBwWoG877HTCbHNG4YSbN26yt7eNp2Q+wJm9CbfnBUeLiMZIHFbMF0fUVcnRcsn84BYArrDUphzPz0n0Ql7TqpnABsGOw1CaImVhEBIhBl546Sph/N7CZbVuFNAQ0BRJCGWRLeo3S+XIKt0Y3pEwiCaievAJqwlrxutIJrpVE2LMXYI7q+BLIkoSy7JbMfhEYbMqTYGIYMsp5fQUG7OGwiRWXUeIPb7cQqjxtztSHEAF5xyz7V1I0EefVbkpZnJbswo+KSROiOmsIhZVVv2SF154np2dLe4cHFKrxclAWYCoJcXI/ipw0NekEFDNqlORPMymKY3LTzGM8Q1iUOVuBIKSXb4QwYgQxiZFRClVxkZjPjtIbrggkhuOY/zDyWvA5/uO8rLrrKp37+X84yeK9Py7VPPqnzQNVVWhmihsbkqQIoPvcU4IPhBjoqwcSEJjyPeK5HdiyTEtAuPParaxH7sQprAkAWvIDZ/Bk0LKSkYEf7ImVbG2JJlR2ijZ0dRZQ20dtiwR50ghMCQI85bdrR3KMZIzCLnJIQbrHGZjA+kHYnLonTlh0VLtbVI6JaVIn6BNhs3Ccfb+B7n/wUf49FMfBwzDkC341Vh26hlFYwjJ0y6XuKpkmK9o25akii0qEkpVWhDBO8FYSwy5+WFUMNaQjMO6gtIJ24XDa1Y0DoGxgZSvu/eBO/tHPHDxPB3K7Vv7HK9yRIS1DikgesHEhEhCy7z/2A7wAWcKnHEsrt3gwYsX2Jpt0B8d0kGOq4gx73qS11Y/dBwu56SozCZTxBaQOkiGOATmyxU3D45pjldMziYWV65x4eIZfvs3P4CEGf/+v/d6piU0G1M2z+2yc98eX7/xFprpBHGCBs/Qd3TtwGrRsVosuX3tOs+99AI6LFnefolPXbrJweoW+wdHHLXCqQcf5sUXLjGrBvwQwCghWU6ffpCZrbh2/SVQT5lWFEZQDPFoRbIO8Qa8JxzMac6eZ75YMfSeT37so9SuxlbCZ28fcWb3NJ/79MfpUsCWJTfuvMTlF17glQ+9iY89ewUfEzm0Q3FFoPMt7dDhk7Az2yNEpbQbHB7foO0S124taVc9jbMMS2hKw6DKzkQRJ5hiE4sn+EhIjrMXHudd7/pvePd/91/y6Rs3icGyNXEcB2VpWjQOELJzQekcQ58b3xPr6IZExNKWJUGU0AWcGCq1bG3OWPo5Bzdf5EO3r3Fn/4AhwUFnsVJz/4U9msZyff+QhNB1iaIqWCyP6UzL973zB3j2mc/w0d+d8I/+0f/BLe3wcY7VwE6lDINgJdE0EFRojBIXLUSoHagYTFLEReoysViV9D00tcvrNAUooU4GV+cYJh8ttrDE3rKzucuyHTDbu2zubbNczAldIpEoCosn0vdKXTqsSfgIU+uYFAmvhq3TD3Lnzh3a9pA4CGIF3wvGJvYPDxBsdjFAEQaEiGhisyzoVDjsejrvOVr1nA+KcTLuRfmzQ0gOQQhx/HBI3lvn8yMKl4hEfDfkIfEQCXHg4HDBsu3Y3dliulmiRqid4+KZi3RB6YZjJHpSSpBgIFKJ8OyLd7h5vcJximeevw2h5/xFC7sNH/vcIYdHxwwh5n13jTX+FHwx6xn9Gl9+mrOovqrqmdwq/cpCDIEXLl8CBDvZIKS0rmfW9cy6nlnXM/eknrnmrrN/6w596L/IO9/nYcoCtW5dz6zrmXU98zJ8xQw9ve1tb+Ptb3/7vT6MNda4i93dXYqiuNeHscYaa3wN4wMf+ABPPfUUb37zm+/1oayxxhprfFXBkEk+sQY0E6DOWSQJxVgcxjhg1IyDLApaEFMYyVBBTUI15iZCyv9YkZGcBpCs9lEojMFVDns2cewH1FRotGCVFDpiyI0GYwvEWRZ3WkpzRGchHp3C2bMQGwiR0pwlsmQZO4gG4xx+VbM6guhq2jsroEdWgeGgB2cwMRO9JME4GS36M8E7zFe4Xqm3trCaG9DBO0yYcXsiNFuJZmqpvEM7RyHK0bKlaztSAicCPtIPq9wsMUJhKtowZNLZOvoQOdFYGkZVoQgkcKWjqEqasqEsS3IaYCIkxUSDFUNZVuiyR40df1ZJms+tTymTtmJwZUXSnFtfOIeKydc4JaxxaBCauqYpHUGVqOCjQSQi4ihSoiorRBTjlLKKuKJAvSICVVXSuIJF7FGVTAaTsNZmQjUJSZVV21HPGgwFKSZ0JLCTH1ghNGqoJw21WvywIlU1Zahw/hh/3NG2nuV8ytZ0RlkUrNolCmxoDbUdLepzo0TT51ecpqzateRzkFCcG4ejEI4Gj4rLTYKywFhD23aIGJzLykzvPXHwDMs5EYPRhMHlNa8R1YgRJd1V7+ZrgRrEjGtrVAqPd1Im44zFpEDVWJpJlYfjgMqVbJ59JdY4pqfOobtnKQ5u01QOtRPcckUbwN96HiUyqeqszE0h32/WkjJjCyJYAybFrFtWSwKSNdnCX5Wr129y3/mzPPfCgu29Laphn81JiUaLOjjuBB+UmCJoIr5MqZzGNyWAEzM6bJ3EDI5f690WAIKO91km21MCNXndizXEkawUwJr8/ydNgM/roE+G217WGPgTGNcB6U80DgAmsymmMKQhYazBidB2LQYhpkAMPrdyjCP6HE8hxuZXHiMIzEnzgZh7bik3XJImUjhpcuSmnm9bXNlAsHhGBzIjudMhIKL5fjGCc8KkrCgLS2kc3gfqwlEVwrL1MA5ZAiQ1wNh0SYkkDqzFOkvYntBfv83GxiQPHiZP6S02Qj9k59TgPV2IY8clkTSfiz1bYVNi2R0xdC1u6Vj1Ha6qqAtL38c8wKmRdggYLJWFIIbeBwJAzI3P5AcqV9GUNTZEVqHHSpkbmAJVU9F1HQdHCzY2FyznCxaLFXVdYtQRNRGrksEaog/0YcCVE9BI1cwY0jGiWRXax8DzmtiZNeDMeN1zC9Zai7MW4xzBOtQnfEjI7hQxDjEWUzhi27E8usPi8Jh5uo1cfx4jwm7Y5mZ7zPs/9xmO79/hwb0pzZ1DfvUX380fP/U5nC05u7PLxfvOcv/Z05zdO8vZ+y6we/40e+fP8dATj/MtpcUaIES6VUe3XDI/mtO1+fn5f7//A9zev8SwSFy9vmKxann4gQf57NMf4hVnLnLsFxjraCYWQUkh4ffv8Psf+DB1Sjz+59/KpacvUU8q0BmLtmOoIrIc+KPf/YdIuUHbHVFPNtncPIuLSw4Ob/PIwxvE5KnqCaemGxwdHBFSTTvviDGRUn5+xKCILSjrmlXXcefgKmXRQxGxnZBioqwbirJj6BNCIFlPVUJtZnznX/xeXv2aV/HgK17Fp48HfDfntk9okR0TigImTWDR54a0KYSmgiIKrnBoiogOGMnNPWMcb3372/n2b/kW/sVv/UOO50dcevYyk50Z84MlD+xOePXrXst9Zy7ykU9+jBgsXT/QVBaSMiwDl1+4Bjrht97/Xv7Xf/CrHLcLLBGxidqWSPKogjWWiEWxDGGgdrAzqzhcrVj2Q77/k+N4SW4IUuBcwao9wBQeKRJhKDBGMdawWoEzBdYk7rt4Pz/81/4rfvOf/SbJLygEBrVgwDkLmmBqiTZhU37OqRNWJJrJFlev3aFdBjRaytJkNwXrSLEjYbBqUPGkECmxkByalIO2RTW/hlpDM6lRSUQMzggbTYP3Sh9AQ8K5ctx/E9Ya6u37aCafoTCO2+2CO0dzfPR5rxdD10fmxwuKoqTQyKm909xZLejnB3jvkTDkBrowRuxYVm1EKXj+xRtsWIumGnxLFXskBhImD6Gsh57W+DPwxapn5gf7HO3fubdv7h7jq7GeMb2/16f13wL5s+66nlnXM+t6Zl3P3Mt65p1/6ft58hMf+wLsaf9m2Jjucmr3/nU9s65n1vXMy/AVM/T0Mz/zM5w/f/5eH8Yaa6yxxhprfE2jaZp7fQhrrLHGGl90xKiEEAELI/mmIhgBiSkPI8WYiWhjIGbCMGhAVGAklRFwyCj2ywWjM5pJNMClhE2KWKF6cMIwO8b6AglCt1rhY2R17Il9IqSAw7K5e4pZv8AfGA5uO7ZPb2HFQcjNidB7VBQbPNotSXWFCT0FUKSC0DdZCboqkTAauSsYo6gBNDsBqWQla8KgocMfvZgVdc02hS1pu4Fw7Gh7Q7XZ4e6raJKhRxFjsEVFmQI2DBhpGBDEKb7vERMJPlJXE1a+x6BZQQ5ZuSlkSa4odVmwtbnBctWPimeyEtkmVDIZK2pIYklGc4GrgiWfZ1cWhNHeO2jIA0bWgkaQyKRqWLUrMJaQPM2kICXD4EMmDW2FTx4J4JwjJgi4PJhmB8qqovdLQsoF/nQ6Ydn3mcwNmQDPWm+DWEtVlFTBYo2hLC0J5Xi+IMVICIG6rLNitci297tbDfNVYpoiIQaO9yti8GgKmBTYmm4Sz9+XmyuAaAIdCQQ4YaBzs0vI6l3N5GgMgelkglUhyokLFATytW+7FitZ3dsNeV107THHLz3P/qplpY4YFKRHbEEk5SaOgmpWX+YoCEFtVn8a5O49JZLvHXGGpIHVfE5dl+zu7PLiFbDWcPbR19HGhmKjofUFzeaM+a1j6qpha3YGN4PVomP/+IjYHzHZnKEp4owhxUiMASUryFRDbhgQ8ikZVblG8jCaJuVoMWen38L7iHcbqD+m85HGKYs2sOzr3AyU7HRgxKAxUhiHkbx+TxojaVQyQ1bzQ1YwG3MSWJIjZDLdlL/HpnTXpQvJkTJiDIykkI6/X08iIu6S9J9XS//Jr/Vus+akPZE0ISZ/plOf0BDxIaIKfT9QFAWDD6SUrdqtMQzJ59gbkx0LFHBG8loi709CzO4EKCn5cd0ZDJaoiiaPK7aw0iOqucGUImodmNzEkxBwCHu7m2zUBUKiakpKMZzeneKHwOX9AEYIJw4IKtjxPSv5GFPMyvxYFQwxsOx67uwf4NPA6apEioo+zhkQbt/Zx6tFu4GislhXg62Ydz2lASOOerqBiGF3c4orKrrBM2hAxWBtjYSWSI8xjhhD7kmlQIgB8ngjgjK4gr4PDEEI9ESfCKq4qgExpNSyf/sOKSk7e7u4wmGw475oOF4cce3Fq2hQAiusCBtnL3KwmjPEgG8XNBsznAm03SqT/rZEbB64VSU7O0jCGIvVlJW4Q4+3+b63xhF9oNJIkQJDzHEcTVlDUlzjaOeHvPfXfp0bLzxD2TTYo1tcunOTPgTs9RfZfl6Yutw8KSippeL0+Yf5T3/8p7iwt0lRlxx85mmOXrjCubPnOXvhLK984hGqquTRNzyGeZkbgPZKDJHlwTF//ORH+IVf//t0PlBVOabGJlhESBsTzj32IJefe5H3ve+fM2uERjxXD47pLbByQQAAIABJREFUWoOzBqsW+mPC0LJRbHJu7z7+4ju+m89+7PcwLmJYMj/sOD485KH77+POMnDz2k1iGl32gsenxJByPIhIdslI1hLVMKkSrXfEIdLqjCL17NmOIxLzXtneKXnijf8O01O7/MBf/uvc/rW/w/s/+JuEvqUyIDbRt0K/cIhRmnpg0Re0K2EeBxonNHagZyAwRVLClYYnXvtaXv/138gjjzzAz/7M32Tz9A7g2Q4wMZajmy/x1KeeZdG3RJujTV1R4EOAQfn93/0dim9rePTR13Hj6guoRHqfcD3ItMBHj47PZsFSWUOIQrCGRd+ziB3OGsQUtMmy6iKlE6qJxSeP0UjoS6wO+BBJxlAYS1VDVE9ZCA89dh+ve+xx/qe/9Ut0naWpGuoy0PcdSsBJScRjUUIKJLH4QTDW8V/80A9TVad49y/8LYZhAOsI/cBq1bO7vUXUHrERopA0kjwYEskY4tiynW5OeOubv5HXPPIYTz75JE3tcEVJSsoQAsshYApPWdhxX89P3bPn70f863j2unD7Dz7Mqusw42NXRIgpcdQG0sGcaeW4vj9nNT9kpxTC/JjNMdIhCdzx2WUjhERhC5rGsDkYLl/b5+kXF8wlf54pXEEKudm9xhp/Gr5Y9cyVS8/ghy+dk8WXI6KP+PTVVc/ofHHvTugXAnF0YFrXM+t6Zl3PrOuZe1TPGPulNchwKut6Zl3PrOuZf/W++IL/xi8Schbs1y4++9nPcv369Xt9GF9wXLt2jZ//+Z//M7/vzW9+M29605u+BEe0xhprrPGVhfe9731fMqcnEeGnf/qnecc73vEleb011lhjjXuFbtUSTbZHNxqJMRJjorYOHyLGjdb2MRNw4kalp7ps+66eFD1WBCSrLxHFqMkkmoBzBU4KRAJ2q8adU1IwmNXA7ZduMt9f0A+R0CsaEpoCZx6+QLUI3H6+p3lwl/amxzgI0WfSW2HZHSKarb97JWe7+4CSmBQ1KyFXryNZrjGAyOfVcymrfXRUaook1Bg0DbRH1yhSpNjYo5MIXpBiSntjwZXjG7zmtQ9SOyW4bINO8Nik2DQQxAEOEaFftRzOj+gTxGSxokTSSIgKKWVLdiThLEyamqZuUDnhQxWJUJaGxmY1dIox28WrYq3BOIuIxbgC+kBICZJircUYw9ANOFdQ1CU7VUXpHNNpDQptu8AVNWVVZaIZQ+c9XhPOOqTIpBsIRVkCq3zuYmJjNmV+nNWJqhZVC+LAWHxUjucrbFGABlwhaBBC37LSTCJuTHcYvNIue8qmAQm4oqCphRBrNmY18+Mep0IInmY6YdpMSfEk8uCENrCoalZnnpCpYx8GhRQjWhbs7OxSuorWJ1zh8jVXmM02mUymmeRU0JTtrcU4ZGOXIgh7KSHGMakbEomj4zm379zJMQtjJEAScvwHmaQUyU4C8URCrEphK9QaogR2ZjuI38MKbJ86iy928z0ljqlT7rz0HNG3vOL+hynrGc89f4s+OaanLtLe7ijKktQP9P2oZhQZ3a4SiEGNouoQkxX4UVO2MB9Jde89B4cHiA4cHuxz/7ktdipDuzhgGQytz/bkJ9EKomDEjqLaTMTHlL/n5HcKgqhkFa2c/FlGGq/WSWRD0jRyH3mfSCeua2JHrl9HBe/4+nBXLW3MXTn6XdWwiMmOY3pySUZfLzFUZUnwPTFENPjs/pWUrusQaylNMcYzCkkFWxQkza5wWf0c0ZjAGCQJxlhizMR0CHp34C9rckESmNBi/IAUlqj5PBkjmKqi3jqFPzokpERd1gxDT0oQfaCeVESfODg8JvqBEAdIDjM2YU/eGaJYyetVxeLIDZEUFIxQYFhGz1a0VGVJt+g46laEFAghYZsZZT2FCPNuoDA5AuXU9haTqoIwcLxqGUJuOMYhv39nS6xZ4fs5Q+fRmHBiKDSSjDKZTtg8tUsfIsw20ONjUudzFKYmhvkcjMVYhwCTzU3qqrl7rRCbL3nIe7cQIGRXwGFxDKOlvPrE7tZ9zGZTep8wpqLYLMEovRhuHS2ojFAUNjecXImJgcVqQdIGHxO9HegUqtk2Z11D8ANictNcfUvqO0K7YHn7BofPX6EqHU1dENTnOFajqEAfAkMyRBvoYiSGJfsucuUPP8q3fNeb+cgzl/jf//7fobAVW2fv55d+7m9ybm+Tv/u3/zGLG9c5vbvNxXOnOHtujzNnzrJzYY/tB1/J7gOPMDt1jgcefhxEMLsTphsV3/aKb0UErj57lce+4S10qxvcfOYPqatzNLZmWM5Jmrh9dAepGzRFblx9hnP3neOVF9/JL//cj3PcdYQoiIfJhpCC5crYiEINfT+QxJBSIkVlc7OkbyFZix8SZuIwMjCdTvApsbeRYBWxNuIqg3Yd/+B/+dt84xO/yLmvfwL/KwdENSSb6NVCVKz1HHYlSQ0bJpGy0SM+eKauYGNDOJ4XhHH4tbQ1YgrOnb9Au9Hwnd/xF/i77/l73Dg64MIscXgAc7/gcG4oG5sjA43QRYhYDI7V4pDf/b/ew2ufeD0iicLk9zT4SNcGqonLz1iruBAom0SfLH2EaDxexv0+CbGLoIbYe6JYvBEkQJ8ClRiQROcVKSf52ZmUo2PL6tjwiz/3s9y49BQXdnaoN/a4dfsqmIEYstK6mkBIgehzrI8UltQFfuMf/3N+9Mfexbf+u9/JP/2NX6cbOqJGQkwsVz1FCdNKEGPREKGMmGixRmg7pawtP/LXf4R3/kffx8c/9QyffeZzGCcslx29JqwpWS57YtvmHT2/XXwYuH3zMtubDT/0V/8a7//oT3Jw+Mdsb09BwMgYqaTCxBWUzlCfusBifsy0qUh+np/F6hhESCE7M/oQuXNwyCtf+Rqef+4pLt3uuL4KUGYKvw8hO4V+BUZRrfGlxRejnlE5iVz72kW9MaOqmq+6esY6x2Rzi43JBGcti8USVajriqapQPKec3R4wNHh4b28BP+vsDiSsK5nWNcz63pmXc/cq3rmgde+no88+aEv0i73r+Py5Svs7pxa1zPremZdz7wMX/ZDTyLCj/3Yj/HGN77xXh/KPcVHPvIRnn/++Xt9GF9wXLlyhR/90R/9M7/v4sWLPPnkk+zt7X0JjmqNNdZY4ysH73nPe/iJn/iJL9nr1XX9JXutNdZYY417hbYPqPYEYjZuT9mOPajQa6JKcVQejoNBQZCUQFIeciFCygrgk3AxMZJVlAJWDRIjGnukMjSvgMXqNofzI/ZfOuRwv8WHRPQB6SM2OR544+M8+Ph93H76OVZtxdknztDfOqZfdrjCEcgKo361oGxq1BpSZCT/eqQo8Noh2iE6gLFYk+PVjCQScTy+dNeKP2h2BYpjfELUgdgeoeUEyHEJVQoYK+i85+aNA+7fuw/bQmEsdrKF1YgpCypjIQacs7Rdj3WGipLYGWwsIAVCinl4K9PJCBZNghnVjiFFNGU3I9VEQZHJ6xAJQEJw1mYSN0awWX0ro6rd2DzcFTWTocZYCgvOFiQmDH1Lt8yRSZISyQ8Y67JzUrSsfMSmSGESIUZiylbvqtm2P6TcSHJFNZIvgHGoGjQm+n4gAqVxmcqNPWHo8MYhMdK3Hdeu3WR7a5PFasVj52YECpY3PRtNjSbl/JkzWEnElPC+p6YGY0neU1ihMDYrX8eIOxvJUQgw+u/nhlVIBklweneH7Z1thpsdKWYHss2NGRfuu8ikmQAJohJiIpDXw9buLhdCJGmmuK0xWGN5/oXrHM+XhNDdjX2ImeYcr+loPCUAmpsJxhJtjpuwFrZ2tygnDZNmxt6DryE1W/jbt+janq5x1KWhT1OevXSZ+y+cY3enoZ3vwHSG9PvEwdMvVog1VGWR13CKCIakEWMSmkblsCr2rno5EVWJSTmez9na2uT06XOcf8UFyqMXOD6esx+UIf8wKWVVsxowNjcJGVXDMqqbjcmrOElW7sqoCo8pgclq7HF3uKukSwHUASoIee2exGiczCvmIx4J+PH/T4YWT6IiTs61SHZzQ/Lf6YlCG0DyYJw/sTiXHpJh6HuaKkJlSGrH62uyQpas9BuCIhpzvIAzqI+I5IZTt+rxccCWBaoBUQtiCCliYqCsGgbJ5LeGFqNCbR3RexQorVAVQjKWkAKHh4dsiWUIgf39Q0JSBu/RMl/TOMY2pqQE39PHiEkKJkAMxKAsDq5z5ZO3SH7g7O4p7nv0UVbJ89yzl/DDiqouUOMwtiQmRWKiKaEpHdO6xFkhxJ7ghxxLYx1zU2IjxJAYhhXz4/3xfomkGPEmK7sNQqUFdn6EHRW2MoxxGiSCRlofKIxjb2eLZjqhbKak8ZrlJk2+blVTYkb3AlJWXy8O7qAqxBiwrmEyqXHW5PUsZmz0wBAifVpgAWMcqJCMwxcVIeZGSsDQD4rd2GGj3qQJHpWEc/l5URYVu9tbzE7tsLXZsLe3iYTEpc9+nBO9f4yRVZewogxJKRI4KSiLEkH4c9/1FjZEefTRi5kwNoHTe1vMZg2lMRwcXedffuwDLOcHVM4x29zmdd/05zj78OM8/f738sLlT/G6t27jNjd58mOX8UZhBdOtkuQqPvzRZ7n4qjdSpwUfaBN//h3fwve89RuQMBB9pDta8t7feS/Xr9/k/r3TPLAz5cFHH+Cj9z/E5166wnJIWAvXrt7AxjLH/xgoigJVZYg9JE9pB2Sq9N1AFRJNo9RlyRATYRlJtuegUzbNimqAKJaqXPDGN7yBqrR8+MlP8tmrtzh9+iztouXouEDVUBQnzUY4PhLqBiondKvIYRRCMgxe88CCNQx9IsSeP/jA77F/+zKXn/0stw/vUE92uH20IOiCxWH+3bGPaK0Yo/ghsrm5jZfIEDv6bsGnPvPHDL7HB8/GbIeFX9L7hA4BY4RSE72HxcpSuYCaRBQwmlj1JSkZ2taDy3vhkAaIeVBCRJA4RjQ5Rwg9hVOiS7hQcOPWZaqNC2xXhm/73u/m+7/nL/Pf/uR/zQc/9kGGIZC6SB8SdWMZNBL6gVpqwgCfePIp3v2Lv8jj3/y23ID0AVtEdreErh/o2shmM8GkQG0LwqCItSQVvEBR1TzxmtfS1BNu7x9jxHD5+avUZWJjY4uDwyOOjufs3n+W1z7+jQi5aReGwP6VZzDbyvmHCh58+CE++SELWEIf6AcPYjBOSJIoioqDa9ezO0joUWuw1hGCkkL+TGVixKtw6dIxn3jqwxytBuYhR1ptUGSVvub7zKn9t/24u8ZXOb4Y9cy15y+zOPryG3j5UmJ37wzbe2e+6uoZYy2bu2c5f/YUG5MJ16/dpveB7Y2GM+dOj0NPyuHxnCf/6PeJIdzjK/EnMZ1tsFot1/XMup5Z1zPreuae1TPf/91v5z2/+j9/sba5fw33nb7AX/kPvm9dz6zrmXU98zJ82Q89nT9/nne9613rJuvXOK5evcov//Iv81M/9VP3+lDWWGONNdZYY4011vgqR0q5PaCMQ0oCKkIYB31EzCg9zCS0khU3oilHRmBQawghohpJRiiwd8kaVOn6Ae87mt2aF24+TR+z/bpGxRXCEBRblky3NnjNG17NdG8KNmBmBfd/0/3snprhX9/z4scP6RcWXCbMfd9RViWFWpIkhqiEpLggkDyiWbWkklV4JkaMhOxApSbrGJMi1mQLcpXx7xKlGNCE9AuM5p/3XSZ7h66nOF7QcYwsF9Sas+21quiCJ4YBI46UEn27IPQtVgWDEnTIUQIAdxswAmIYen/XfcqSYzlUFTEQEjRVgdg8ZCV2tIJXBQ2Eoc+GzS7Hehi1GHHE0BOVHHc0Uq5lUbJVlzRNTRJBEvRJs/oKoSgdhjJb4IsQw0AMgcIaKmNJIoQQMdaxuTVjOp0QYiSlhEgmpCdlCWUFahFnqV1BrEsmdUOzMUFjxDlLUzhCFI6PO27eusWL1xds7p1hsrnFqVOnmG1vsTg4JMTEEAMhBGKKuLz48ns6abaYTDKjkEwmF0QtpRGSKKvVCokDRgLG1pQkmspRVy6fHzFgcxSjata4qirJKckwRheMgl1VxBa46EnGIJnHzH8uY6zK+H1K7p04WyK2YDaZUddTzp07Tx+Ehx7/OszmNtevXcclw0Ovup+9cIfFzWvUe69ivgyE4Dm6dQurkaWHZvs0w/6LdMMKZzNBG2Mc1adZgRr1hEhnHFgbnbFGdbQAG03F9uaMWizHnWcahMOuYNn35Kkx7jabrDEYYwkx5H2BE9c08rl7mYouD8flJokZFf4qMn6dlcUhhGzxLicvlZsNMUTyT5xA7n41XtS7aui798/JuT+hbzUfQ240WJKCtZakPT5Eoub4ghizPD7GiKS8fqwFO1LexISPUBUF1uX3mFKEGLCVQb0QB7AqqOYoiyzzThhbUJQT+r7NLVjjsBqZ1A1xWFHXBdtbO4gpMCgqhqhujA8BP15DYyxVXTGdTomjurKpHHKkDDHmwc0U0a5nZhxNv6JfeqY4docjrF6mrxw3b7w4NgstMRmc1NhkwCRmk5JZYQmS4y1EE8MwMJmUxJjjK9OQUOuYzmbMb2clu0MIYkgpEDRhonC0bHFGiCngYyAmMGKyMj4q0SeMi6QwsLfzCuqtU1y/+SIpKkED5ENCsVlJHkxeDBZEwyiWV6yFEBNVGuNyRgcCa/PzB2PGBixEFUpniG0gRQHjcnwRliQ5MqewjijZbaK0lsKaTGauliyHnrAa8MMKPwyo5iudkrDsBTH5HohR2JxNiH7J0x/4l9S3H6Z2Fcd39rFJafslVz79cf77d/9vPHbxDPtdj4+RJLBMgYuPPszf+Kvfz0c/+BTv+fQniOGI1f4+eM8f/OHv8aFPfYJXP/H1fPLDn+D0hfP8x3/hO/j9D3yYjz73FMOw5Nb1G9y5ecT2RklVVmw+sM1/8kP/Wd7TrcEaAWN454/9JJsf/A7utAN+PucTH3ofZblJ2/8BgZamdgyx5/DwOmFYYJsAsWNa5QiTrnNcupMobIlgqIoaZyesekFiy2BrRIVPfOLDfPKj38SvvPsXOPfQ4/QHB1x59lpuxpiSeXuyR43xJiKcnTXM50sUxRrB9wkphWIKtoQrzz3FY6+8j8985LfoiTS18Ja3vZUbl67wRx/7GAlHPfGIRBonqPXsL0CToyqFuBA2N7f4nh/5cf7gX/wGH/yj9zGpZrgdw9H+AV0LplKcGDCCT4aLDzzG/PYN+tRhzQxlQYyKYAhRsaVgNBFFcaagkgl7Z3dJKXDzxkuE5Gn92GS2iT/+1Cf4jDzNww9d5Hu++3v41ItXkNkW07LBGc+xb0lR8UFAItblJqEYoSzg8pVP8w1vfgulETZqR4ge3+VomJSAIGg0FNYw+Ejh8ucdjOPMmT0ee+gxBOHSc89w+/CIvl9x4ex5jleRlQ/UG1Pe8c53sLd3Jn88EaEfPM9evgRnHK/Wjte95hH+mbO5gayCNTnGRcUQMFSTLRY3XmRaCpGEE4EUEesYQiCpUhWOiHDpast92w2DQjFG70TjmDY1ddmxCkN2vVhjjT8FX+h6pvM9L11+jpS+tteeqnxN1zPbGxs88NAjPPv0Z+7pdfhXYVNY1zPremZdz6zrmXtaz/zK35t/YTa0f0Pc98pX8M6/8cPremZdz6zrmZfhy3roaXNzk1/7tV/j3Llz9/pQ7jmWy+W9PoR7ipQSzzzzzL0+jDXWWGONLzuEEOj7nqqq7vWhrLHGGmt81SBbcOv4dbaxNzaraxnJUhnjItLIvlljsj14zI2ClAQfI2hCI0hM2KoYicTstpMqOOQazlbMdjfxPuBF8POO4ThQVsKjb3qYU+cmpOAZ2i5bOYdASJ7zj21Rb7dc+9SK4+stMRYIkWFocUWRi8phdCMiD8akFIlj48OWFTb2aJQTih4zEpyZCFUgW1/3IbJRGmJKhGGZoy+cgyJiKmGyW7D7qhmxHGjbJV6VuiixkoesrCq2MKgVQhxwkohR6EJAo8caS2GFbvCZPNOEkrKlc8oEaX4f2SbfFg5pGiKBqq4o5gFbJcTkaL7BZ1LYOoMNCQmKM9m9SlQxCmJMJrULR1MUbDZVvo4jGc7g6fswDhONZOtoqc9I3hRlSbUxoVt1efgoes6fP01ZFly/fnt8vUyela7i9N4um5szXFnhB89ycUzvEwHoB8/B8y9weOsm3veEEDk4OsrRIsYxnW3x6OOv4dS5sww+spp7SD1pVMXGkPAxjQRFXmOZaE5wlyg2wICqEmLkxReezyq4jRmbmzsc7d+iNIY4tISUCKOqG8mkssmzcQiayVRNiDV4lBRijnowdmwQZMWxCJ9vEKBjJIJgJNv5N1WFsYayELa3Ntk/nFPM9uiGAfXCdGeLIgaqYUmHIc5XzHbPMYSBU2fOcevOTXxoST0MfZ/JbTEMg5I0E/GQj8Gaca2PhLmm0U7bgJDVqm3Xc3Q8Z29voAem/YqbvSFg8z2OZvU9ihW5q5KW8fRGxuaJnNCxn2+MQH77URRRycpsyfddUlCBmLKzAiI4Y7HGomYgJDDGkOJ4t540Zl72/k4UtHel0Se72Ily+uRPkjIMgaZMaOzpuzY3MsY1HWMipsjG7gzVhDP5tUIix10quWGAEGLEh4EQPChUdZGJ5BDR0ZEgBsWWBWKyYjki2fXAlFROoGywIVCUW1A0FFWN0UToO1L0SFkRhn6M9oCmcBQioAnfdbnZYC1BFRMHjAoalaJPnNOKsGo5U05p1FDOlaqCsoHTcUJXDcyHIa+PwuKHgaYQamcoqgKNiW7VcXS4//+w96Yxt51pmd71vMNae/rmM9nHPraryna5XFVAFa7qotOgSmiGAGkShOBPlD+JFCl/KhJSpESCREiIP1EnUpQoAUIIUzcdCASKNN1AhY4LajZ2uWyXZx8fn+k737THtdY7PPnxru/YpAlJE8Oxq/ZtyTr6hv2tvda73rWf+3nu+wYxpAAJpW0CXVSqgZBiJGVBs0GlPA/K15QswqxrybOMw7JoW6zz1LVDVQgxoTlRuRpnLMvlAlcNMOJAAiLmtrNDbTw729ssl8V9IHQdISghB7JmQtcQFlOy2cA5j+aA9o4QzpZ9OEvf/BSQvpFjTB+jo1IM4XLCGMFagxOKyl8MkpWua+liwKqQnGBDpgmRdCrT74lLyYC3OOuoh0OMgc//8af50h8lBhs7dBnm7ZIkSmWWPP4nn+HPNzcxucN4x8bkLIvjY268doN/8YWneOPF51lM9zGVZW97xK03rvD4Fz/H4fE+Nw4PODle8tRTf4ZsOJ75wz/k4oe/neG5PbJx/Nof/BH7zzxDrfChxx5j7D26atg7u8fe+bPs7u4xHNXc//CjbHmLN47db3mU8WSTx57+TpqD67y+aHn6T/93EM+ZTUNsMiHUZFPU0F0oDnrjcU1Mke/97h+ivXqThz7yCb74ud/lKy8/SxuU/ZuX+cVf/DmeeO4r/Gf/xT/kd3/pfyZEJUSl9pEuFMWzt+UzRmwhNJnzk4rWRIYmMdiZsL9aIpLZGCoHty7zlSe+wJXr13j+xlVUDJtYDrqK0fAMY9MxXxziPCzmFiExrhMxnqAMsDKCbs7/+dv/I4dzxZoBo0HN4uQQ0zcljLEkcmlYOcMHH/kQX/qjfZY54CuLE4PznsF4wmJ1i9orOTsqB5PhGOfG7J45w82rU1LnMb58xvCmPENiBrWB4WSbi+fv4eKZS/zqf/XfIJqprWOy6RE1rFbgyQwm5fOIG1pihvmy49d++X9iMetoYyoNDckMxoZmIXiTqYznJMTSCEMgl1ib97//vWxt7hDVcO/993H33T/KZ37/nzJfzEgK5++5h/ve+z4+/OG/gzG2bK+qdMs59144R113hNUxW2OPWId1UpxypI8KM5baGTY2tmm7lxha4fBkhckZD1gTiEkZV567tzeZpUwTAvM2U1GeEd6DqYSdwZjkx7z8/POlObjGGn8F3s56JsWOl55+itB1d/ItvSNgbDmP37T1TFVz7tzZd9zQE9as65l1PbOuZ9b1zB2tZ174+jMYa8kpvb372/8Dbrx+jT/+zX++rmfW9cy6nnkL3tFDT9/3fd/HY489dqcP446jbVt+5md+5k4fxh2Fc47v/M7vvNOHscYaa6zxjsNTTz3Fb//2b/NjP/Zj/9L3VJU33niD3/iN33jb/t7Xv/71t+211lhjjTXeqUg5FQJOCrmSUTwViqJG/qKtukgZFOoVu6oQVctwkWZQwYqAKc0GATBFDekmgj03QgUW0yViLJUfsn3+DMO649ylc9x1cZsUA5BRq1gnhKajaSPewORMxb0fTRwfxmK5fjJiOQukroy6JCI2C1oZjIGsFjWK7YbkWSK9CroskXs5Fgtv7aWuQgYxhYzKiS4bXNVgx45qVzCbMNzKuIFnMJywvT0gtCu62AKOTgKVMUTt1ZQxYwzMFwuWsTgNeefJObExGlEPam7c2r9NBBbXqYimjIq9TaYCDEzF3ffex/TWDWpvSRqICUQSWYtrlrWGEDpyKqRdzImYe0t9Uyy+K1Ns940IzrmioJaiAg1G6ByklHu1IHgpzQoxFnGeCzs7TDY2eO21K8XSORcC/ObNWywXMwaMwRicCCZlcoqk2KI50jYdYTmnTbB/dMTB5csc7N9k1bb92rGUkItMh7I4PODoc49z4dwFHv3QozhRquBofF30jGJwtpy53OcGqIBQyFPJiiGTtRwHCvdduout7R3a2EGG9u7zxJRZrQI6KKo1tFiTJy3qYSiEEb16EikKaGMzOZvemj/3ZKEWZbCCyWVNZinqudPvT2oLJze4Nt/n5EMf5PBgindK0xrGe2e5cOlexpMJh0dD4uh+fDcC29HFlumqYTlfsjzcx8U5IXXEnDGqeGfL2tFMJveEqJKgb/aVc2Uo93ju+xdGhK3JFmNfcbJs8OfvJa4uw2rVD46VqTK93RwoRDBS7m/bk/W5J+dig7qoAAAgAElEQVRPYyBEy+CZMUVVfVuxXLaJcq5McV1QwFnBOCnnG8WoKWv3LyigT/9NL4a+Lan+C80D1RJTWXoFmbpybEwGdG3EuhrnA11KGO+IbcNyteLM7h6j4YDlakFOERGLFYNxhpiV2AUqU5NiIsZMzEWqK0YYTDyr2QxNgRT6vS+XN2udx9uOmBR1lmAqWs1gS9No0QaWyxZnlDZGYmzLFdJMSqHEk8SOxSKyT2C2bEvjKra9QjdiEmxmx4Nhky2nrJJhHCucZqqU6NolG3aTbxueZba8xjwnyEIMDTl1ZF/fPvaYEkeHB8ymMxDh5PCQsFyx6jJuMKB25ZygiZQD4gqJmER7or6QfF1WOo2sQqQWQyWKFSAllMiwqtEEy+kxg/EYzRHRsp4g9805OHPhQuHiY+Tyy6/ShOIeoQIpKav5jK3JuLyuK25GkIl9w7t/cvX3ZVnDUBpHES0Ngt4NRFQAQ4iKs+VvSFYShiQBRLC+Li6FQO7XGqR+GFNIKWD6/0Yb22hoWJwccngyJ2qmqofcffFu9s6ewylcv3kdOxihmqnqAdou+MVf/EVmRzdRlxlUnqeffIKj41v4SY1fWGYnBxzu75Nj5DO/9auoCg/vjJjfvMEzV17jkW/7KGmz5ignrkkgzo54+cXnOfjnl3n4Ix9ndXDEydWrhMrjtveoljOGkxHjwYBHHn6IsAh4J0x2LrC5ucHQrnCx4do0skyGGDJyEvDjhslISMny4teeZXv3HP/ef/jv89hHPso/+p1f4oWvfZmcVxxNL6N5wUtffYKuOcYbSALjgQU1tCHjaosTuLS9ybhSTswKI5GByQRxTFzGVY6UA0987WlcPeLcfQ/zzBtXufvu97C8NceI8uj77uX5V14khRq0A4m4SshJ2KoMTWjAWMbDM1y/8jqLVLG3uc13f/L7+I3f+EdYmxiPM7mLqKkxTqgcfPaz/xsNBmMcohnJFRfuvpfpfEpWizEW7SxVpQxHnv1b1zj+6kFxkHGJwWBISk3Z9zSzMfLU3rJYrHjhpee5Z3Ke+eEVQlixvbfDmE2ODvaJocFVlhS1H+iI5DyEYOi6QM6J0GaSdQyrSKaiqpTaeWLvipKBnIoS2Sr83U98DCsGaw0/8r3/Bsum4+mvPMsrz36RweaI//Qn/mMunL9I5fztffXo8Iif++/+S7bkDe5/4AKvPvM5rjz1tX7P7d0gTodMULwo4fgGZ0aGw0VLMaAwOBJilJANUSLdwQk7WxOqQY1IaTgHTexZoTOGyitnd7Z56dTuYo01/gq8nfXM0cEh8+n0Dr+jOw9jDPc9+AE0dd+09YyEyM3r1+7odfi/Q0T40Ac/iK/9up5Z1zPremZdz9y5eubMOdLJdV75+tf+0r3KVRVbe2fw3uGMYTQes7l7hpODWywWc1ZNi2pxQkJh7+57yKk4B+6cPUN7MgNrGW9sQuzompb/+td+bl3PrOuZdT3z1vvsbX/FtxE/+IM/iPf+Th/GOwLdN7mSoqoqfuAHfuBOH8Yaa6yxxjsOOWeefPJJfvRHfxRjzO2vP/fcc/z6r/86v/ALv8Abb7xxB49wjTXWWOPdB+nVoKfNAFUluUI+CIUoTT25iCpZI8uuI1DIHDCF1MMW8lHAQlFVGoNoBjLOW+xkyGIZ2Dyzy2A4LETtakk8H6lGA3KOrFJDahPOAyosFws2N8dkJ4QQ6WYzrGaCrJCRUrkMWYqltxQ7/CxgskVjcZ8KuSO6CMMMnZAjxRmoV0+W8lZ64tGgOZGSoZaMswFnQXxdCLkcGdZDDB1JTU9GZiQJMUIyntyr8E5OjukCBDU4o1grmEHN1vYmRiy19zRd1/9thawldqHy0BP0KNTjEaqwMdnAVq6oNfOb1yvERO09qCVrUSiqGpwUAruTYscugEOxOSFQVE/923ZeqTCIVbK11GKwkmhiV9SPItTDiq3tDTa3Nrly7SpB4XA6ZT6dI9YSc8ThwBbF4/Xrka7bpaprQtNAblnMGq6//Aqzo1s0bdu7bmm/lgqNnbOiRkkJbty8wd6VHS5ePEenhdwTKYrHmN/kioWeIAYcBrHl1RyOpA7N0MXIcGQwcQAo21ubhJRJSQkR7ECwpv99U9SsohBTUWJ6bwsBLIb7Lp7lyiuXOeoiqkXZK6pFTS1FbW4oxKMYwZgaxVCbFcOu5bhr+dWf/2/Z2D7L9sV7mR0eQTVidvMN5rcczWqBE89idh2tFA0tdW0wy2MGJhDCkqypJ8S1/1xkyKHrGx359vq2vapYTWkQWC1EqgjsbO/yoUceYeAtN0+W5MEG1y9f7gnV/CYjr+V9ifZNAFMIVz29baAn5U93ljcJ2dtxEOjtHzq958Q41Mjt/QYsaizGlvuacltw2n3RU+Xz6d8xcrsBA6YnbQspbETIInjvcVVFzoHQKb626LwjNStUlcF4xNb2Zq80j1hjMWIxp83TbGhTogsdXbssMQjVGCNlPSzbRUmpEAsYrPOIcbRNQ1VvMa43WemMNiSyUXIX0C7S0aJtw6ISxpXFiLK9u0tCmUwmbC2XzE7mJCmqX0HI2jeABHIXkfmMS2bCPYeRTQwprJikxMA3+KSMLIyMMDCKT8IH3DZdStySAG0LAs1yyS3NbI6HhBRZrhpyKi552nWEUJTqaECjUGVLzKk4Y1jTXyODIWNEsf09PLCOJpe4De0J7KwZMZ5BPaDy5XenB4fY0bh/DpWbWnqVv5HiOnAyndLFQIoByYLJJZqoaRMZgzUG5y3GGARDEgEVDKXxqVn72JFIBtrYYQBjLTELRrTEWWDB2NIAlUxoG5aLE3KM2NSRQkdsO6wp9GJpRxiyUBou1jHwhpwaZtMV7fyYtmnICrlVrKuLmj11hJgQMqvFnJRgOBhw/vwee3vnuPoaTG0kpMTJ9JitxTkeeOgRdjd2+NKXPosl42xxtmjahuuvvszW3i7vu3gv3gq19+ydvwdjLdbZEu1TG+qNMcZ5VhaOrl4mr47gaB+/cDjn2T865ODgOuOBRXIZAD44btEIg8ku5/YusLlzhqOrb3CynDOsHGfPnyd2DV1M/Nan/xhpVrz+6g2822bnwgO89txnObt9lsvPPQd4Lp2/i/liATKj7ZSmE7o2Ib6cz+ki4aqKe2vDcW45DCtStsRWaNqWamD5+nMv8pIe4EzilRdf4mTcMKhGvOfhc9y1PMfx7GVSclRVJmtk2giaAsOhZeAye7tn2X/5iCY2aIZf+ZX/gaTwwKMf5ds3NvnNx/8EWwmVNwyHO2QWxLhgqw50yZKysnfv/Rx99QlQS+rAi7DpBvh6E9FZ2WM1UFkhhWVpMEsiZ8Vnpa7HSAwsljOe+vLT7M9vELNyfHSM8UOiZkajhHOCN4agymJue+cACBZWoazDQS1Y53jfBz7E/msvkuKyOCH292KmrHE3tDzy4EOoCkKJ+Om6QIwN3jvGmwO2tyZUzvHWbXa+WlB5x+vPXcOxZD5d8ezTL5BiLs45YsB4rCpGhDYruppx7/YG8yTMFktyhhWGrOXzpKqAVbZEUM0cJ6hFGBnHrM1onZhIxZndLcQ6NLX/qh9v1/gmw9tZz0wPD96cUvgmhgKYiqOT2TdtPTNfzHn9tct39Dr8ZRgOR/jBkHU9s65n1vXMup65Y/VM7hhNJv/S/rS5u8fDH/ooG1tbNMsjQkpUznPpPQ/xwEOPsDjY50tf+ixHh8dlSMxbmrblWx77O2zt7bK3e47RxgY3XniByfnzbGxuk5o5rzz/HNevv76uZ9b1zLqeeQvesUNPDz30EN/zPd9zpw9jjb8BXLp0iR//8R/n+7//+/8//44xht3d3b/Bo1pjjTXWePfi53/+5/nhH/5h6rrmwQcf5MUXX+RHfuRH1rGga6yxxhp/TRSRo0FUbxeFrnLYDNk4RCyOniw0gC0RcKVFUArW1KskxRgE7VUwiSgZ0zs9VQPPeMMy3KjI0eBrx+JoxsnNE/bu3sLZREgByZnVcoavHM2sobI1TdMw3Kyx3iDeYVIgt4nQBFIsylCykFQIbaRo2QwhZaz2EXkpEWuD2IjG/BZree0py1P1Zfl6zIoNGdu1yDJAHcgyRL3FSsVyPuWMGdBKsTlXMpoSTnJ5RetIIWIMuBjJbSDHyM7GBFd5JAuT8Zi268jSK/ekRDhoFrIUE34rhqrytIsZdW/HrzmhGbIKQlFRx1wUqilGsAYrhhgCsVxlStKgkDUiavsmAZRsAKG2FtFIIheVn/YcrSmq3hwjl6/dwFtXiNgESSOh6zDW4qu6kBfGMh6PmU3nzBcLsirnL5wjpA5JEWsdXdcQU3wLYSy3uWjBYEzuo0fK12eLGfX4AaIINisqSlIwZNSY2+cuxYSVQuIjlHiE/gp3IRFCRMXgnMHK6ZU32D4jL4QSvWFdqckKAa0YV91WAvdCYcajAfffdy+z558vJzILWVOJPejJeaP0KmIDtsLUnlmM7AwszFqmqxOysQzOXOT83jYqlo1xRQiBelyXuIUQMd6Dq5geHrJsWlIKdCGUiILeXlyR4nIAIAYx/THkcl8j/YCfliFyUIy1bEwG7GxPOHv2HO+tKp752guE1bIQ8qcMUd+M4pScpihYU84lKqEnhk73k1OcNhDe2jcUMhl7+hPcbjGcRmGiRWVoKWudfFud96bKtai+jZHi0tBLqEVO10zvNmAsqDIcDvDOozaxf3xE0yxpuw61FpuU8XhMCh2aI3VVY2yFEVv2gZggFYVzCAFxI5yYcl+gSEhITEXJrFBbj7cVTbdCFbwBazyxcyxCB1mJqxVZI8aU/bOy5R4XI5zdOwtiGdUOPbvHctUhtl+pRsixw/qqvPd2xd5Jx3u8RZoF6jyaOqxGJAtiDYkygNqlDudqLmD56PAsX9AVt7oZQsYgLJsVbSyq+mXIqLqi+scS1ZAohL2znmwsOUdSDmjUXkXuSqNHSkxK1vL3jbXl+WJAY2lMDaQ0FLwbYrynGjpWsemvcT6df0SkxI2kGDk5Pi7NIGOp6xoXI23bcdIsWTQrNkdDNCimV5zr6b1H73KA0Fpux7A6WyJfUrJgTqMhEmhEje3XnFBbj1k2eCP4ypNjx2y5JMaAIuQcS0PJGFTL/oZzhDBnMT8mpUQKgaqumQwz460Ry8WUTpQYAqlNmBBYdZGB2cSJQzUjKTKqPItGqesB7XJB17WYyt2+Xbz1qGa881x58Rna+UU2BkOmhzdZNQ17owk5JY4PD3n9lRfwwxF1NaTyA5rVgv3Q4WRC8p5z5y+QYgZriUY4mR3jbXmGruYtG3sX2N49QzWaYELHanqApkyQIQfXb9DFgBtt8vuffZyT668znmzhxhNuzVqq3Q/wr33Pd3P+zB67e2exOfP05z7Platv8Pjjf4raBTFmjFX2V8rF4Yj37tR0cUWjiR1vSclx/XiFZMc/+NH/iAff+yC/9yv/OYdHV1kGy9//5Cf5+uNf4ItfeYGTxTGaI5otMQiZgIohxAGjlDh7dotqOKaqaqReYowhxEjbwSe+7VGe+2f/B0kzJhtCzOTcEeZz0BaHIeUyOPHUU19msZhS+UiOAl44CR2cXGNrw7JYdmS17J65m/c//AGeefrPaFQ5PFoQukTXOb7tWz/IfNnyD//JL3G0aogoOSU8gboud2duy5pYrQxdq1ReiRpJUpfICs0sO2XoBlw4c4bp5edJqbhVqEKImco4VIR77znPA5fuAyN9UpGWfzsHRphNG+aLBRvj3d7potyVd124wL/5D/5t/unqBV4/OOJ//bMDnnz+JpoUIw5J/aAJYKxjZIWLE8PW1oDhwPDkVeFgvuw/s8jt6GNnXbmPFHISkhRnEjHCQMF5z9mtbep6QLds/vIPsWus0ePtqmfa5ZLZ0eEdfjfvDAjgrLJafWPUM81ywRuvvMSTX7qFdw5EisuEKpozmjPWWuidwESElFKJAHunwRicc+t6Zl3PrOuZdT1zR+uZwe4Oo81Nckq0qxXjySZ/9+//W1y49xLXX3kBs65n1vXMup75G61n3rFDT3fddRfnz5+/04fxjsCnP/1pjo+P7/Rh/LXgnGNnZ4dPfvKTfO/3fi8A3/Vd38V73/veO3xka6yxxhrfONjf3+fjH/84AD/0Qz/E1772NV5++eU7fFRrrLHGGu9edF2L9VUpCHNfMPYF5OkgU6+dLiydKp5T1SFkTYBgbRk+kVzUhKf0n1HF1Z7JfWNiWqIaGA2HaA7ceOU1xpMdvBO6dkVygmrCIKxWAeO1WH43Db6uMBZM5Rj5UtAaY0g5QijMpWRBnCnkpDW4FLHiaNuAuJaEwHJRyFsMhD4KAyX3A0+lKi7vOIQEncFrTe238DsjxtubNM2Krmk4Dkty1F6NZ8lGMEZx3mGM4EWQGPA5ETQz8IbNyQgrluyUycaE4+kUzRnJkCWjIcGI2/ypN7YobFMiGwrxobYQ9FKYfDG2KAONJ/Wca+JNyapRZWA91pqiZhTBul5FqKA96VEUpxZSLoS3KJKUlLVQiTnTkRAB7x0mCdlR4iicKVbuAjElfF0VJaD3SB+nkHJphogpRMupQhYpa0574axie4cwqOuKu+69B+uH5fik/E7OSswRsba3cy+vpr16NufTuJJeNStljdqcb1vBnypobW9pryrlGLMgOJwtJLUxfVRKLmtdjWJxvP/99zGdz3lj/5CQO1RLlIFQGiwIb7l3EsbWLJctN+0MO4S4EsZn7mKmQybSsWxaDo8X1IOauq5Zti2zWUNqDogirJYN1lUYJxhzDIX+QkJLEHqiugyE5VzM8E9pnti7GxjKucqqeAFnHEYslYWh82juqGvLsi2ErZ52RXqK/pSoRyGRsad/oe8E3I5veMueIb2qWbQo9HrrACBDzogajDlVYCvWWnLK5Ny3uOQvRk6cfk36ZgynzgL991X74TmFjfGEBx95FIMjW4N1FqxHBgZZNfjakGLLYhmonMeJAYmIE1LKdG1TSGTA+D4WJEVyaMhZSaqoLeewWS6oncU5Q4yBLJbYtGyMK4yvaAaxDGhKURQnTRjj8M4W9SRK7S1BLGJgPBmyu7fHUC1ZQ1ENa1GAS07EqJiYMd2ckFqsZCRHcoqYeoACHoOEgFaOCMSYSNbQxQAxkjSTBGoHqh1IRUjlfdneWaHJ5WoRQUwq94epwdt+dQne2eKQ4TyCYHPEAZW1OGPwzrDsMuINkgSRTBsafO0Z1r7sb7k0HbP0Svms5fiajth1KFCJYXt7F7GGG9feoImBxWLJsB4jongNgCVLLntbymXNGUGyJccMOZEIoIVANt6jzhBj6t0myvpy3oPzVN6wPRnSzGYc39pnFUOJ7jGm34tiiQ7JqQzmkqn8iDjomM8OQYWui3gHJnUsmgaaFdkavDGkEHDGMBkPSaEjdQ0xNCyXU2IHuRpy5sJFlodH3Lj6CsvVnJwzg/GAtl1RiaVtl6wWC1Dljedf4J4Pfkt5zuXIaDBkMtlmOB4zPbiJdZbcLjh/6RKtCtP5FBXomgWz+QmEJUZa2jZjbMVoc5sHHno/k8GA2XTK9PiYrImui2QSs1iO2c2OsIe3ODm8hRdhb2NchgqS8NITX2V14R6WF2b42uG3trm4vcnW5RvUoSMbxdoK3wb2qkwYeJow4/6NHW689hLLCg7noOLJUXGDMR/59h/h83/883SjOY8//vvkpXLt8IDQNYwHFucSw8Eu01mgtopHQSPXjhZcn73KZLJBFxuMS7SdYg38iz/8x7x2fUkIQlJld1twA+XkqGVoHSeNUA0zJidW81sELCEYKgfJJFpNjMRjKkc3L/uNmsBguIG1Ne+/9GH+/KtfZhVn+M7wwouvcnD4y+zfuIxIRE2iy0oKgjMekRrxnrYFcst4EokpMqwcx00mpYiIMvQ1YdHw+T/+Z+yNPTklYlZaFRIWK+V+3t3cYjzeLM+7fr9eLZZMb11nvmyY3jrg8uuvcPf5S7zF8wKhNNsWneWPvjLl1WtTYhcRo2QS6fQnxbJRGWLMvHSijJo5FaWpKn0zeeBLBIgAlfdkMeU5KxSfAc1MhNIUtJbJqGY03qBdraPG1vir8XbVMzl2xPDNnUBxijN3XWQ4rGkWq3ddPaNJaJsVt25c5ca1K6gqBzdvslzM79TpfFthpTgYreuZdT2zrmfW9cydrmce+ui3k5rA9OSIe+57kKoerOuZdT2zrmf+luqZd+zQ00/+5E/e6UN4x+DJJ59kuVze6cP4V4aI8KlPfYqf+qmfoq7rdVThGmusscbfAn73d3/3Th/CGmussca7HkfHhwzqAcPBEGMc1jg0RJIIaiBTLOedFLWK6b8uAs4ISU1RgxrImsEYVIotu0Uwkqk3HAxaQtMx2doCE2ibQDtrOX9xjPWePJ+xXCxwvlCZGjqMcTTLFQK0VctwVOEE2q4jrJpiBZ4CpKIS1pxLOesNGkFSIcPCckmKHZIy2IRFoRJyyhgtxWvSVCySjUGkEEWdJmxnkZCxSRn5ihwDMQc2tneprzlylYm5FNzegfOG1C0JMZDaGWk5xRpLzgkzHha1oiasQuUcG+MRJ9N5oZZz5mh6QjWsqeq6DI1ZS1UVa+YudEgDqSdoRZWUEylnhpMRsemKelXBpEzoukIWi8FXDrEGL7aomHucKqSDGjBFRalS/oZVIaaeeIbSlFAgFQIl92ui6pXYhYuT20ra0caYvTPn8NYRTEdS7d/PAGsNtXfkXGILc86ngkhUY3HPErh011nOn90p4mIxtxWw1pqixqK4QmUVjClKypgS6JvKME0R09u3D70leehUkVyGpHJKJE2UOAWISUBCvxYEZwRnTVGjQq/cFEQssVNMFiQnjCZEXPleodjhdnMtoiFgTKJNHV4qQo40swPy4DzTHBBrGWxNODleMTaZo9nq9j3VhlWJMVBDTBHRokA9JTnEWNBCVIoIScqgl6hiFDxvKtdKrIuSU2Q6O2a+mqJpA8mOobec3dnEOM/+rVtE7Qfg+igJ0zefMvQka2lE9OEXt69hGTWT/v+F/Ff65oUpBO7AWayRvglj+kaK75Mfcq+Wfot6mr5hIYL0WRNF3SdoPlVVl+Mr68XxLR/9GLu7exwd7NO2S7yzSE5o20LoUD9CqjG+qvDO4FxRU4cusphPCbHr17VDjClRAQlUiyOBJTGsPLFyZE1khJzKtRQ7AmtpUqCTsn6clOFQiyA54ysDrqjw7ek5O33LKgxQdmrDqlVIYJLFakaTIiljcqbJHU4TMXfYlPFqMSGjBkLKhK4tTncoqaroXCa2x6TYkYxHnKFLpri4UWJmQohYB13KRKCiOPipGKyT4vZgTE8fZmLuMDljcThjiSlRVQ5XOcSW66taFJCSc1EMi8GLEmKk6wIpFRW8Sm8VX1qXLJtVUfZrphoOmUwmQGQyrOmWHfXmJlEjGgS1DktXFkDvJGE0o0mACDHeHrBULTGZOQZcNn2zi9tRIpqL+6AjFwc/jRBDaczk3EebSr8sFauUxlWMZFv2UqA8W2IkJoPOj9gY7+AqzzJ1hJBRFYaDAaoNq8ZQTQMGZVRXtBIwCoPRBuPRkFVYcbZt2X/jKl2zghSxziEYprMjrr5+mcH2LhubW8RuSU6RarLN+x/7BPOTI1559lke+djHmGQYO8v1K69icom8uXV4jaZdYLLBG8ewqmm7lmwammWDNTWD8YTprZvELjHe2KCuEkdHS6JGjLN4a9GUcZMx9aBiMZ2yCsKzz36VF77+PHc/8CB15Xj9ymVyjDSrji5FpHJ4n6kHY6besnCGbIcMts9xchIZb2+xN5qSxfD5r3yBp574Epcu3s1DH/sxTo6uEdXyykvPY03F3u4OoTkksWQ5vwlaI8lixwFXRWw94PBoSeMiE1+jcU6KcGZksf6E0cjR4LEpk7QlzPcxIoSQMU5IRjAmcn7PcDSPzJfFgdL7ESk2xFViuko0beIj3/oJLIkbh1dw4yHnz55nZ3OP5mTGfHmLr37tBKMrNvbuIjcGmZ/0zxmDNUJIkd2tc2zv3MeLLzxL255gqsSl99xP++Kt3umid9AgMRmMiipcFHEVTgYIMBoPqbzDSSLEhpRHt59Tl19/g9nRPk0TWM1bvvyVz/Oxj3wnIum2I2bXtbz6+nX+yWde5ebNKSknKpf51nu3OOgsJ1bRfvDdIHQ5c6tTbBCQRBMiCFTO4J2jCR1ioPKnz0vTfx4pET6NZmym7MmVxwglimiNNf4KvF31zBuXX7nTb+Udg62NDXIzf9fVM2rghWe+yrNPfpncOzh9I0Eon6GHA7euZ9b1zLqeWdcz74x6BuHMhYu4SmiaGfW6nlnXM+t65m+lnnlHDj3dfffd3HXXXXf6MNb4/wER4Sd+4if46Z/+aeq6vtOH8zeCF1544V05jLbGGmusscYaa6yxxv8LYmaVl7RtgyAM6iHBO9SUTPWcEkaEJmeMK+raKlfk0IFYjJjC1GkZSskUBaSKYMggFjswhcyoKlQDmg2hWdLMW6odi9FAPRlxcOOIna0hhqJSalctmhVx0C4a6spjpLgEueGIgevIuUZzJqSI1QxqyqDOckXoICP4wQDa4qhB1aLDjGSD6QySSlF7Sj4aU4Z2MoVAtjFRZaizYHG0MbKxscPAjUipgawlYs8YnA5JywUhdKScqZxDcyalwMBX1EaonMOaolDOquzt7NLMV7QxkkVpYsfJ8Qnnz569PVQkAAasr1AMlQitCKKlYeONZ3djyGvzJYgQY+xJ4IQV8JVjPBriK4/GXAhvDN4UhXUZGsr0etJ+WCihUlRPmhVjgVTy68WWYt71URR9ad+rsYuFeBciUTPNaoUbjTEK5IRxwtm9TfY2PMZasgqhi5xMTzg6mdF2XRlsMoDAxnCAcQOMOY2w6LXHksn9oJWqoimRM5zmEYj2bmMqSG85fWpvLaq4noO2xqLegHgECLE4W3UAPHUAACAASURBVCmKwZIUtGSm9GQ2PcFYrOBVE0gi94pcQxnEQgt5qhTC0ZDRHHj00YfY3hgRYuCJo6c4OTzivntash8R24CXBmOW2E6YuHIO794bcTStmbeB+fSQykDIFsVgcsZZR2UrkiaS9HEPSmkgncY6vCmUL+dLIWeh6VquXbvKpQvn2J4Iw8qxMR5Tb19g68Ilrr3+CsvFjNR1JSKDElcpWUH7ZoQqRt6ME6T/Wi9bxuqbTQPRoqzdGlc8cM8Zrlw9okulQSN9VGFvGM7tF+BU5V3aDqcNAugV0qr9+dfbMRFZLcZZRlvFEv9kekwIgRg7YmoRUTLgyFQOcu6YL7oy1JiElCKquSi0NWGkxGYiFmMEaxxiK5y3pFRc53IIkAMxpv7e6KiGDlJpdpQGXRkINQI5p7IG1WDFIiYTQsRoIdvbpqNZnNCOB3gxVDc6tjuPzRZ/I7CVHJPN89QhYHKAHHFaMTCZgTWoswzV4p0naiH/1RiMJM5Q0RkQX/dxIYbBZETTRcRZbArkVKIwUFBn8YOKjckY5w1mtUJXLaE/T5qVnBM2RKqqwlqLDGoqsbiBR0QYDgWpa5YnM2aLFaONono0pgwsZk1oKlc7qyJGiKpU3rO7tc1svijryCth2WIrz5ZxdLMZ1WiIii2DkJKLY6Arjnt6qswXwJT967R5Z07XVRLUlv0250wKGeMsxIDNgbgCzQlMeeblvmGl3kPMxZWAXM6ZFTQF2qY8U41IUY6qkLqO1jVgLQZD1EBKiTZFqrbDaiZWiq0cKfSxKMYyOzmm8pbN7fPEpmN5eIwCd933AMc3rzGfHbFcLbhx9XU+8vf+dSR0NN2KdrFgvNGAOmpTYUS5eeVVxpu75K6hbQLLtqG7fo2UE7Uf4MRioaj1xRCypxqOmGxtsTy4wWo5J6WEtjPaNrFYLFEjuLbl5GjFaDhivLGDjEa085ZOlwwRNvb2OH/ffeRmRXj1RdrlnFXbsmrLZ4xOINU1G5OaTjJJlCuzI1JUlifC7u4eVgyrdk4WWLkxO3vnOL97F7duHfLBv/cws5NDvvWDD/H4H/wB+7f26WJgtVqiGWJomWePdI7JZIvp4oDOCsZkDJFOa/IUBmpY5YBUlqwO1cjEKVILbZfJy4yzgh0IdYDQgaREapeoZqYpUjtPPRqztT3i3/0P/hNuXL1BPRrzhc/8PvVmYiN0mDSkqjY5mQonB0cMrKViQMwBX1tqL+R5YGNzi2/9+CfYv3aFG80hMVncxkU+/O0PMr1+haPjY6aLBZuT89hQojCMrfn4Y49RDzdADF0XSTEz2hjxv/zmbzEcThDjMGReeuE1ts+cY7h9hrti5MrrJ/zOp3+vfCTSTF1V7B8e8bnPfZFHP/BhHn5vQ5ciFzYNk9rzyvVjxjtnuX7jiLZr2R5ZnCaWIdGlTM4J5xyZ0iS2zgOhuC6sWqpNh5HiPkG/L/c7KKqJawczjqcn5Lfs+2us8Zfibahn2nZFaNdRiqdIKRLb7t1Vz+TE159+imee+FLvaPSNh43NTZwvA2TremZdz6zrmXU9s65n1vXMup755q1n3pFDT9/xHd/BI488cqcPY42/JpxzfOpTn/qGHngC+J3f+R329/fv9GGsscYaa6yxxhprrPF2Q4o7Us4ltizmgEQFUVIKLGZHqBQVqJESOTCoLMvFnBgTWIc1grWe3Kt9jRGMWBBFJEFVFHdGMmEZqEZDYggsmxWLoznbZ7eoJTMcOA5uzdjcGhUVpYCra/yoqLW7EKm8x/mK3DUQMiKQcia3kZgjGpXYGUzv/IQFW1lyHFDVlly3hezJhrRsKEEItifKynFnCdje7UlNIXh97cmxZTAaU1c1aRGJ84YuKNiiJEth2bs+FTWotQZvDTmkQuCJYlE2BjXzVUcTA955huMxzfSk/FaGxXJF07UY6wgxElJiaGqSaImGM+X9WSlkrdCT1LHDWiFZj1OQNpBcwFUe8AzqAfVGVazWMSU2oPeEzijLmG9bwGsfL2fFUXtocywErHKacdCrAguJmE1RNmWKhbvxFm9rlk3DarlEU8LElrpbwXJKs2zKOrEl/m5na4N6MODq1etYMiqJsfOcraEyQsKU6BERTC9hNNYAxZlLnCtOXSKF3EUxuYxxlfjC1BOPBo/gnJaBKDGF/KX8njql6tfuqfrZmtOBKQXJaC6/l7IpKnMt9vZAuUZFftyrXEvDQVUZ1Z4HLl1iWFWklHll5wo3b93k5Pp13M495JzQ2tGKodFiR9/OAq8etBgM9XiMnOxTVUOqvQvE64EYZ6gRIgnjLJIVDUrKvY5ZenK0bxEUxXYqKl8MMSQObx1ya/8WuxsbjIY11lcMRiM2N89yz/33c3x8xHNf+lO63i7/tNugctqAKK5cVkqMTBYhc9pQ6VXYCIhSVY7tzQkPXdwlxoi1DpMyxvRNBHnz9U6Ve6dNAvNmm4A3Gwin84pyez8rTQIldh2H165z9sIFEMt0dkzbLKkrTxuUkCJNl6gXC6wxGFvW48C72/d0TJGciqtZzImcBauJlBNd1xBjcTSwKlTWl33OVoXsSh1pOccOd0ADVsBZyCkhaiAncsi0Wdk1gjWWpJmgwsB55mlBGzqWXceWc9imxCHYJlMHyz2ygaYyJEhlyNHgheK6Z0/n/5S5BjJCa+E1CzdSZGUspqpAigLTSlH/a85YjYhkUla6nMg5Y7AMa0/tbU+6G1IKxC6WCBpVnJTGVNsWNXkTOsiZUR6hKRFDcdSLRhjsbFLVnqgZkzKSi1tE6u9TMMUxLmeEzHg0YFBVRIGt7U0aXyJwyn5QVM2GDBrKMuidD0QcKeV+v6AfaAXnQJwl50A+jT2Jpw200vSozQBPQnImxkCzamnaFmv7tShgYiZRGoHWWFLTMZ3OGQ88g8GQtsmIZAa+ZjGdEkMkhAaXqtI4cIaRtViBnCKaLMv5gm65KM4D2WIMWEl0iwXD0YTzFy5wfGufC5fupxrWzA5vEnOm9gMmW9uYVPay0LZcvfwqmiJn7rnEzu5Zzl28m8VsytbOWY72r7NcnGCtRSXiEQbOIRT3jdky0gYFB95bfG2xThBJZDKhi7SpJaiinXLvffdhQiTEREqZxfSErZ096tWEbjVjOl3yxiuvEmKHEomagIT35Y7uOsVlxcQV3iQqZ0ktpJBJOTCsx0znx2AETYnt+9/HrdeuMNzZY7JzBpMyN0+WvPDsy5x94ANUZ6bMlidMp3OqukISTI+O2NzZ4f73vI+nPv8nKB1tB3XV4WvDsskM6wExdfgqEUi0bcaZ0lQebwhiPQOXCKuEsaBOSCqMhpbReIODGycIlsob/vyJLzL85f+e7//Bf4et7Q0e/sCHeOrPH2c42qJdKsnMSRIxdsi0KS6UxtRglK1Nhx8acl7wZ5/5PZruJlu7NaGr+dAHPsxwssdq+lBRn89OWIaON579AovpgkWjXH79CnefPwtYFk2gDREO4fIrr+Cce3PvVnongbLPHtza55mvPltU/mj/DC2D3acNZmOEg7nhYLYCq2xtjtjcmBBjZOANQ+dpYybFyKJpOJ6tcDf36ZoV49EAVct0MWPVdYzSAO/K/u3KA6AMLBvBuoqvPv8qXbtk4t90dFljjb8Ub0M9c3JwUKJ11ijQd1c9k1PiuWee5Olv4IEngPvuu8RoY1wEKOt6hnU9s65n1vXMup5Z1zPreuabtZ55Rw49rfHuxenA08/+7M/+BUvVNdZYY4011lhjjTXWeLfAmKJ+Oo16O7VTByFrvu2QAz15QgbN5BzpQkdsO6AIQXPOOGOwxlBXNc57rLeYnKiyI7VtUXGKxVgheOHa60eMt4cYTZjKYCqYzWaMBqMyuERAO4WU+b/Ye7dlWbLrPO8b85CZVbVO+9iN7gZABCkStCXrYOpg6VIOhy4YiiAvHH4L3vANeEE9hW71AJYuHVaEwyEFBQiUGgQpEI0m+oDd3Xvvda6qzJxzjuGLkbU2TJuSbIECyK5xs7rXrlWVNU+Z4x/j//+xbpHNiggQjNRnB5RqpUlEcsQ6yCcRE6PNhRATQY26H0EntKorGNnszU+oJ8k4qCbiSXGMgSDBXztXqhaS9fSbE8Y6wa4hrRJVUQJhYXJBXCwz3PItSWASaGrUuWLmzOkkRjIoqpydnnC73dNqQaxRtHBzf8/jR49otbEffdwQMHUAtC0AsKKsc3JmpSRCNEQVU2jmczXktHxmIIXoDWWmzqxewN0UhCyGLQpJ6QEYV5eN17YABoZYILJYKbBY2i1ArZrRDM7WK549esRUG7c3t4Tcsw4jlx9/QhknsAZk2jwyC6SaOT054a3Hj5jvrnmyGfildy54djpw3xqlzQ4KWnNwThIp2mIj4EC4WqPpgT3rKlRuYQIxBAdmOTCbHYJuWgmSFuZwIossYMgBZD2ELRL1YWmEEyRFct8v4xUxM6rpGzh+eQNDidb4yrPHrLqBJAFC4/lbb/HpixfsLl/za3/3H/Dxhy9Yn/Wcnmy4ubxmfdpjuzu+8vZTpE58crlH+8yuKBcX55w8fpvpxS2b1cD65JQyzZQyowYpLqpc5hYNIj6vTW1hentzmklgP818+PGnPH3ylOHkhBScCRtjolHZ72ZaVcQCKst+WZrinAStEBZBbxHvVjyMsw+Fr7MQ+Zt//5uc9xv6m2u+uJy8aGFKAIIYUdJDY1sQ9Ya1xS6R5SwyXYoCi0WALUeWHGjrQCDQgvH5559z/vjCGdlBCLnHTKm7EY2Rk9NTchZvpkw9oKhVVB2qsqVIgBiBtjCYF/WwEGnNGX4pRbTgNg3ilmVmULY7wnDuinUibn9hgkShVKO2wrzfkc9XqMA8b2kSIPRsxz1qgSKKBCXkBM2o0hgShGmilFtiSiTtaBKY60jOUCwRUW5qg9Cj3YoPtPCyzWhIGB3B3DZBmxJDI5rS5j3WZt/nYs4cloBPsRdxUpfpWqOrA4S6gIlKCo6JFNWlKFBotZJjou8HSpiZZ6PrBobNCUmM3TgxdBnw5tW6NFEiDTFZGmgTISdSVrLC4/NTuueP+fiDj9mOk/PorZEsUJdrFXGmvS8bL6SKKUojkB3srAU1t7SQKIToNhTaGqqNPgbioohgZuynkaLVLy8eTFDcHtWWPa/auLm8ZFwlhi6RYqK1maePn6BzYS4TVWBfRjBjWJ/Qdz1a9ui85eb2itVmwMQoc8EkMd+O/IfvfodEoOt6LAa2d/fc3d+SI+zniZAywzAw7+/57u//n6Aw7rbsxhHDeHn5mpOzjX/HuXJ19QXTNFHVyKknpci8a2wnX2sEoQoQI2hDykS5vvSzrluj3BFChOrWoiKR2PW897VvgCm73S0vX3xO7Aa+/svf5PqzF2zOz/jhH/0Rc5n9/FnkGjabNaEp12Wk26w5f3zB/uaK3bRz1QJRkhZevXrB83ffBZRXP/4xVnZcvXrBN//6f8f91Q0twueffMTm9Fd5ujkjlJmXn35EVSWQoDW6PKDN+JMPfkB3+oiAEttjgsC2VsKTACFz8UTpkrK/e43e7IkZVl0myB7JDbRgrZGqEqQx10qQFfubLc2ULgasNu7GHf/7//a/8v0//HecXjznxUcfME8j61WHhJFmgRQT54++wtXL1/Rdw1rlrbfepU0zud/y4x//mNAyw6bnydO3WA0X1JtLqkHUmc0QGOIp6eaST8re13aEvk8MnWBEisL9fo8QUVOm2hD1pu4Y/d4Vl/1rtgeMpm47GywsagX+vNSqoqZEwYuoihdLdLnbqdvPEoVV7un6NV95+xnvfe1tmvmzZCvG3f2Wu92OZA200UrhnInaKnsSMXR03Qmff/EndKmjyl9ekukxfjrx08hnpmn6GX+Ln78If0HyGTXlD//gfX7/W7+3PDP+5Y0YI13ujvnMMZ855jPHfOaYzxzzmWM+8yXPZ45NT8f4qYWIHBuejnGMYxzjGMc4xjGO8Rc+Ts8vHNDShjVDg7oNgbnq0aFoIEGIEsgpIyEQc09ngYwDgObkM8yas7LajNYZmQL1MnH6dIVIJfaZqo0ud1w823C3H9nfT6zWmZQSMXWo7ZnKTAxQipKyA7PzXGC/Z+g7Uk5uwzbNWGkO+AhYCFiCSEKqocUo40SrFd1OMCpNwGaQ5qCvHCz6xHBOp6JEsoGooGrUuz35rXPnaYZAqA1t1QHOFrDoDEkJkUCk4gxSiRGrnmDXMiMiVA30fSLGwDhXcoDzzcDr2+rNOhjjOOEYTXAZ5QUIVTOGfqBqQKSSLHF60jkAGRM5uGrVeLdlmraYBB7hDMC5FmeIId5AtLyfYNTmQN8DS1BAm1KrHsScMPUEXzBUHIBGoNkBIjvwgY0cEgEHRbsucBZnrj76BNGZaJMXObSgWpeGqUi0xjvPzgjDzFefXnA2DOSYkZBJIRLFbQfm1qjWUIneRNdlZ+xaoWllmiZanThdrTFVck446isPhZAQFiZWiED04tdi4/AGlPZ1ryzqUhIWq4U37OCzzQkBcPjEB0ENoizWEAt7OIjw9fe+QooR8MbAd997l/ff//fc3F7y6Y8+QiyzvdzTryKUiVc/vqYPQpxugUYUJYXE+WbNtL2m7q6WtQV1dkAW9ebDtgCXzlTm4RpEgrMwzQH43W7P6eoR+2ni8xcv+No3vkbqBuayp9DY3ux5/eJTmrF8Q7dBdL6yK3vJ0vT25hXOqFv45j52ZkQTYjCev/OYF599xjoLz5884cNPX6BiRJEHi0wObyk/yYL2ooAgD+PvQ35Q+HpzLSbOYi+tUVujzDvWQ0+dlXl2W4gQIl0A0YY2Y9ay2HzoG4asHWwmvNjj59sCoC2vEROaKbM0UKHXbmHON9p4R6yPaCRUYFj31P3M2eMLPvvsC1qt7O63THrGKnfEaIylghpdDHTBVRY0QjtV9Gqidpm62xJsZkiRsc104izNJsHZ2jGhRIpNNBH+pE68oro0+3JO19ZIETDFJLHf3qOtLiC90OWOQRWKYiFiKS6KalDKTK2VUmei+Ty3oBCDs4RzpsWIqnoxbeigyyAjUTJWCiFnApEkiXkpYh2MQESEiLPVZVESFHWrB0JktVqx3qyppVLVbVTbYg2CeLHbYRqB5gxpp9tPEHx1GoLpweYjo2oQhMTCdk9CTkJOkd1+z1QmUs48Ojkl5Q5TZ8j7HkiIJFIwYhRq3VJKYTYjSOT15UuURswZzNAKKUfOnzzFTNjfTMzjnqYF3Tdy7rCmwEzOiVpHZjN2bY9ZoI6FWQsi5iB4DFRt7Pd31FqgOru5BYEGu/mOcbon5oiZkk3cHjR1xNTRWoOUFisTtws96BE04ONPf8S43bKdRtICLqcEWRNiEYnCyxc/5P7VJ8ytsO4yu/3ItJ345MMPSCkjye95FrzgGk1cRaEW5qKYNqTM2DyzK5Ovq86tSU76yNYCVkZCEiTCH37n39CtB779r/8lc6nsxonadlxefswnH/whbSrMNPo+Mu1GajUYK7q9JCRXuAhdR2lCWz4rSSKGjCZhNEPWX+FiUOKQWW9WhFrYjzvu7q5InTFsIv1p4e56yzhOmGVWw4rcN6wYnSVCK7x+9UOm/Y5pf8/N7R33V4G8MWKfOd2cE2vjb/yNv8397iWff/JDVpun3O73pPwEa9/n9NGapsY03/H2s68zT1vsevZnNvN79O3rl9zu9xRpyMa4vvmC1SoxdAO3d1vMhBR7f1gTvGAUhC7lh/1+sLlVVd9XVhETcoyuqGlGKRXVQkyR/faWrl8hEpdi48Hy1u8BtSi73Z7dbktrlWiRJhURIaXEo9OOLmdWqxVdHkghonXGYqKMM9KfcHG2pulb7O/u/z8/3x7jyxU/jXxmWorWx/AI4rnCz3s+Y2Z89/33+fbv/eu/9A1PHvJA2DnmM8d85pjPHPOZYz5zzGeO+cyXN585Nj0d46cSIsJv//Zv8zu/8zvHhqdjHOMYxzjGMY5xjGP8hY5SywImeoOKEdCF4eKcSs/5HGBcWNJySAEdkBOM6P1DmAV/D0clEYH2sjEOhfSWsdoE9nf3aIDzx6e8vtozV+UkJqoVQhTqJJg0bFZCiJiaW9e1Qt0Zcwj0KaNW2Y4TtSqSA64oHAgp0qoDf2rFrS5qhalCDlAVm42IA6jNqXQLcKwLq9lB3pCgCrSdklNPmYo3Ql3DOBUwiFFJlhygMjBRogRXe0oBGRfLDRTVgtEzzZUuBQLCbLA5OeFqu6epw6y1VLQ2QoJpv6fvMzFmlzSX5Ak+EMPCaFJjvV7TLFIEckhcX12CGdVc1n0qMytd+cQvOLeZoqKMzWjN5drNhFLqIs8OQSJDHtjWew7MpwcW6oMMvwN8+LQ7UGaFYJBa5faLj9EyU+vk1y3OEg8LK5a2x6ZAXmXefesxoRbGcaSsL2g5IBpQhNqMmAbykAmpB4V5npjHHeM0Mc0zVQ0thf12z2qVuXh0gUtaL5xlWWTfcVUvDuv8gU3pa4BlHTt30uf2UFwQvMjS9b2v/wMo7xiLv6MZMQTUlM16zZOnTxYA2sdus95wcfGY2+vXnLYbbuY1GoS5Juo8Elpj12b+5MUVrc3MUyO3GRnh1EZut3dI8Ca8/TS7nSMO9khIXjBY4HoHul1eHxMHtjGmWgm549H5Y6pBa43NMFB3E227x0JknncPYybLGJo4H/bQSHYA9PUwDgTkoVwgBBGaGffX93Tf7Hl9N3OelfvrG5rqwjFlYTsvRZr/t7qVHH4pf+qnuaI5h4KIX+/d3T273ZZ+taFuR1RnkMZFWPO1uqGbIp+sJpeYV7wo8LBOvOCmqos6hK8HVXU1NzMa3uSJVWLswUC1ut2GCZW4OItUgkCXOkxmui7BUqirZcJUqbWyWg3sy44Y4K1nT7HrW3oLaBBKVpSRusqUu5m+TmSBsRbUQOoCvIZAtkSWQJHEDwVeznskJy9ctAnvebRlnTaayputHATTSMqJwWCa7/3snUbmzr/Pfr930G/ZWdhiM6pGDM5aVwxpPpetKWJefEl9BKtUFdarnmANU18rIYRFYY6lGVVI4rYriqLNaGWm6ZphGNjKDqUsKnsHlrIXCnwaq7NwdTG6NIUmWBSsvVkrXj0MBDVUG10XySmxXp1wcn7O5uIRj995l5vbG+a5EPd7SivLdb85O+ZxR9W6FNUFaUrMgWjKsBpQInfjhEpjiJmbl58trHmo8+zXw2LNKpGwLHltbWGo22LPqq6kgZK7DoBWJlQyWSItNZL69zIRLEckOtsdW1jP3ufr6hALw18DhG5DHXe0Cs0qXZfZ3W4Z1qds7/a0KNTSmFrz54IAhEhRhTK5CkgzTI2hz+ybUZvSpUpIibIraGvU2vy+WJVpngHhbuts2WaKLEoe533kpihNZm5uXxOTN8i2uqfNM5//6JqpwXZXkAgvP/oRwQqNTLdeUfYzSY0+r9jpxDiPEIwuRVIEG/3zQ45Y6qgEt1DKAdTtRnQWJkZy7lhvzjFZITGw6TP7uRI3E3UemeZGjtFVCK2xXg3YNLEv92yGc04v3iV+9mPOTwLz/h4JHU8v3mLa7XnvyRPmi8eEAh2J+5uP2c4zLc0YhUeP3+K9936ZRxdP+OZ/89d48fHHvH71BVIL1ZSzx4/45l/975nnkd20pc57fvjRRxASrVTOz84Jq4TgFkYqyxoNkGP0ZxYA1BtBgGAdKkZI0Qtbi6pibbDb7vC7I7y6/IKUMs+evEXKmUYgmGEdWKi+/5biYwi2qA9Uam1Mc/Gi4/zSbWmJ5BCJXWSeR37xq8/4lV/4ynKvPsYx/uz46eQz8h/5hC9jeAPHz3c+Y3zv/X/Pd/7tt74kDU+HkGM+c8xnjvnMMZ855jPHfOaYz3zJ85lj09Mx/ovjYGn3O7/zO/T9l0Ne+f333+ef/tN/+rO+jGMc4xjHOMYxjnGMY/w5RFgYaYiDY3FJxewAuqkDgjFEVzEKAQmJSKSGSlB5YEOy0CV1YacJDrBZgf1HI/2Y2OmWuU30pyuGrmNYK6FPtNa4v7oj9j39ekBNUWb6vmOuFfDmmNaE/f1I2niy2a87OgmAA5Si3qw0KWitlP0emxXduxJUQ7Hmkv0qsgCoi/97CKgaWSACsQ90756h+4lwlkmnAyqJ8eM9eldo6iBLDLIoCTVvGgptgc6MFNyqIcbA2ek5MWa0Vaa5sJ/MpdPNJdY364F5LpyfnXJxcc7zp0/p+p4okfVqoBt6B3d7WwBMI0djiMG7k/qVMztNqHXk4nxN1MZms2JYrckpOUPNWNScFkDNAnGAqkrTSm0GTUlS2e5HWqcOXAWjVcXUFa4EIeFgnC1yUBqEFCI5+2cFDAvK3bxj2u+oy9jLwiqNAawu1nRlxFJjyBdoCOwKyOY50Pl7pQTRFaS0Veo40Zo3mUnOrLoOud8xjjtqEKwppbaluMUDGGfwYPlwACVZigVezHF2NMs4yQFJfCDkOsImYqxOBkIQipoXFMSLAhqWPSQCIrz79lfou+HhWsBIIfD02VNub19xsvsRwhk/vrx3Jm8tzmCzStCCaKGXRo+QTbibGruqiyy9N3IpDvCGkFGgWQNrqLXF/sMBQhEHhUKDUitzKWw2p2zOzhnHymaz5vJ2y7R7zWQr5v2Is8oXQPBQVDqA+bIUI+QwMraMz5uXCs4ev7nccn97x6v7iWsd2Y4zIs1f+/B6eRjjP12/kj/938LDNSwnGQvcCxLYbrfc39xgZkzzjESht8zfz4/4mmb+oNwQNtEl0aXRFFQDghcD9FAYOTC07c3ViQhi0YFVS0hIhOBgeTBzi8iYl4JNoYvCyapHd6OzoM0VE+yBqX4YBwdVaY25VTrz86R1ge0gxATtyUB9OVHmmUutPKpCL9GBeaC1GRXjUzFeFoGcmMbRrSwoQOcArxlNAjl1SDA6VWyema0QY6YfevJ+6/usyaKYcWCrL/sKWZjoh32NA4si2m9ZjgAAIABJREFUNLGHvcQCKAZRIsHPaoXQhcWyUpzVvGzSKAkDUteRIhRTrBj348QFyvnFiutXkbk1xCpmbiERYyCEQ6HIv+PBXsSZ+v7vihGaF7pEAiEGUor0fc/ZyYbNZs3F2Rn77R1ffPGKy6tLXl9fMtdGSH6mtyBonZ2NjFLauKjONSwEMEVbgwDRAq2pnxetMO2h7zqI5lYRU2PoerrUu2VLCCTaYucaIGZCTOzut6gZkUDqAiaLBoEpwcBChywNvFGNgtHlSDOlVtBaCDEiav62GCqBuXrVZLvd+j0yBMwq06wUbVib2ayFuQIhES06m7n3HZdSIgQhqdEatJCosZGyUYvRqrtL5OT2BCIBVbeiZVEg0OBz1fWJlCJ0mT2NWRs5Jao2rPo9Xs2Yp5EQIlEhWEVnZS5G7v0ZJEoBaaxCoC2WtqZG30X6LnoxJkLoMyGAWSMl6LMBytwqc21ICUxbt9lZrTt294WhT9zeJUyiM73DwLAyCEYIiT5nvv6LX+fqekfab/n6O++QNhvyp+/w/HSgTROxSzx/9jbrYWCd13zxxSvy56/IqfKVd99jPzXu72+WJuzI3dUV837k+vIVl3dXbi1kbvtamyEpEjTBPnB7e8fdbsuMscodZxwsaxeFR2tuL5MSUSCFg5Vv8/tYM5RGzvnhXA9ilDK5Xcqmx0rCQqDrIuu+I0W3t/BbgGBW6WJPodJ3/XJWNGi+pEurhBD9uaaN/nxBYBon2lzZb29QBKwcSprHOMafGT+NfEa+VE0z/+lQU5qWn9t8xpry7779e3zn299Ctf2sh+u/Sjx+/Jhf+ZVfOeYzx3zmmM8c85ljPnPMZ475zDGfOTY9/bzH1dUV/+Jf/Iuf9WX8mXFoePrd3/1dUvpyLKf333+f3/iN3+CDDz74WV/KMY5xjGMc4xjHOMYx/hzCTAhii7S5gz7exnQoFTjzWQ1ElSbOcGk0ijYHCsylo50/aguw6jZyDphXQoH60cz9y8DqqwMmM3038PRpT47KPO4JKWDayF2i1YgNCVIgGv5vKYLCOE6Mc6HvO3JOzKVi1cGhaZ7Z7SZCa8y72Vk2XY91AzZXxnGG+0rbjTQzVzIKgRiFFEFiJEujD5HNN54R3wnQBvqLR4SU2H04Um9t8Xt3GfgUvLmriGLJWeYLb5yzi1POLs44WZ/Q9ye0/R2DKrk74V4rl2XEYmDVZ548fcq671mfbAghLuPvwGywQLSAxECIjRgjWWCVXfq81kZXehCIIdCnjnbmVgUxx8WkfikKLRTegINjZonUDBUloN6/ZQCVLmwhJ2qp5C4QTai4JYI3LwUHdgwkJHIX6Yc1pydrkgg673j94x8y3V+x3c3kIdNqozT/+y4Y++rKUNYKrcG+KVvW9L/wq3SPn5FTQktDa6PpiOWe0PWsug4D7u8uaUXJpKWwZdDaA2PXVJ1RvkDMYQGUvRGqPRTJ3FLg8BoHQy04ACQcGMDNWWXmTMWz0xNiiA6QB3GWr0BSoYkQiYSc+frX3mGB898UKsx4dPGIasJnl1uer+55NG0ZS2Pf6lJgaKAuq08U9tW4rsLrva/dPma6rkeLS/2biLPvl6YyFoC0D5n1qufp86c8f/aUk9NTPvjwI97/7veYxkLsM+v1QGuVPmdaHSnTntkKrRa8lOTApK9LLwrogtofAHsxbxhsBzTf3pRVMOPuZksOhb6LfP7K2ZjONrcF7FoKEQcoXvSh0iALdffwk5/4KU4/fmBUqygiPga7cabLgaYVgNyM06psyy33uRJTYrUaGDZnpGEFFgmmXN9esb27Zb1ak1cnNKvMY6HNk4OHpSDTRGoLUG7GfrendcJmtcIC0EZsGoFIDMnZs3Xm+voatYqZ0XcdfUrLOWL0OS8WI4aGQKEhZBpwG4xzE+bNwEdXt7y+35Mts4k9obn9SFRBCUzNeCWFWqsz9s3tQkJIPjY4gz2auQ6aKCkYkxkNYZyVoY9IcEBfVWlqSGhLYyt+nxCDZguI6Gzyw/5xUHJRHKheqKqlolqJMVJaRWaIuDS92lItWgp1MUVCjAQxYkykbAQCEoX16YZ+lZjbwqwWCHbYXw3Vg7mEOnsbXychuux/oSABYu7I3UAQmMrI/d2e7e01sSmnZxtSjOymkd10y+32kmpKlIy2RrOyMN95WHvB61PUVhGDJAHRxrZ4kcIWfxYzaAGsGFamRU5/aZaNGYLRakUkEFPH177+DV6+vHQAXraknIlUdFETCNExqqITgUiMLvmfU6BVpbVKU2/+VBpdAhFFzZtIEaGWgumyx1slYqDKkCvaZoxMConVkGgKrSRmq5hCW870IMFtNHxFANBFW2xyEmSjthlCRQioFSQmL89GIWUhdYFIpKHslsJKWAq4ongRTY25FlLygRRrCErXGXU2UlbmXVmsWN3KJYphAYbOEJmYWyOTyV1PqRUidOueECNVjWn0e5tWo0kjho5SJqDS6oy2gFn256jO135rDQsQ5syH7/8RI4GhS2z7K85CIpGRMPDkva9x8viU1Srz9OIxRZXnz59z8tV3ud9uGWvhtO/Z3d9z9/qacfuak+SWDTdXV9TdxP04st3fU8vIrtwjllmlnv08M5eCEglqrIeOoRuIsfO5Vbd5aAJ5eXYTCYSUkdmw2vzpT9wapC0L+/LmjqvLzxj6yPnmgmG1JnYdw2pFFyISEkYgaPX3DAETo8/JFQhCQA0s+rNNl1w5v6kraQYaDWFYHZQN1Bvn1bB2bEY5xn88fhr5jB6b6x4ipcTjp8+WZomfv3wGM37/O7/Ht/71v/Ln3S9BPH78mH/0j/4nzk7PgWM+c8xnjvnMMZ855jPHfOaYz3zZ85kvR5fKX+DYbrd897vf/Vlfxp8Zv/Vbv8U/+Sf/5Etjafe9732P3/zN3zw2PB3jGMc4xjGOcYxj/CUOA0/aHiTYHTBa6DNgzRPFRZ5aQyCG6Mm2QtHmyZ/gLDCcoemq+QamWHMVoRANvYf2/R2r55n8XqA/FUJ1UCn3HeNupIsRwQEpnQsxZUKMaIuUuZByZqoVLTN9TMQoDljUStsVpEKZvNARUgJchlwHcXZqKswpwNVImBuRiCQjxkDs3f5u8+gJ6asdMJNO1oTzgbo12q0i5slvRYni31FioDWDBXRxaMyIFjgZBr729DmbtEJjItMY+oGp7/lcK3tY/OhtYQX+xFwsg9tEmYqDP1RzYCoEyC4dbqroAs5FcEZ2AkxI4oAjOBNx6ddy4Nt15JcmpoVbqhVViOaWgkQHWMOyHgLOlk8x02UHl7vckbqeEBIxwHlR7Ecv+Ljd8Md//AP2d1vy0DPPE5gwzZBDpASh1EbMDijOtfHdjy/56HLiG7vMX/lrG+aYDuUSJERqKYRaoE2IBEqdafuJFirz7NLYiDD0PRJwKXpJD2Nqi6S1M7fegHrOETxYP5jbHh6WMSxWB4sSgDhUvlplUpcI88E2wJveDuOrIjw6u+D88QUH6ezWFASaCY8fnZNC4o8+u+dHSclaaU2ZtYK5NUVxP0EqoE1o5ixjVzUwklXefvc5c2m0Vhd2X+T84oyhG3j0+DGbkxMeP3vKkDL9asO4H+lXp/yH730fozH0Ha1UYhQ4sK3niVYKwRYryGXe38QBgl1Yc8vCqg/MacePD6CxmDHtC/fXd0yloQRCcCsIIXrhIbx5fzsMPG8KAD9ZKPCijh3KCcvf+O+igeFNlPM80uWVA92lslPlk3bLozZjMXN+8Rabkw0SMlVncgoMJ2dYjPTdwObsjGFYc/X6JcEMTYFsQqeVVhp1LktDnqEq1PmemmYSYDHTUsImoSBc320Z50K7uUeIhCBs1gNdTkv5RVl1gZgTEpcilfq+rIuVyKyFrMIO5VaVd4YN6zC4dYBEkggEqCKMZUStOCu3zs6cl4g2H3el0mqhtokUzC1CtDDWRrNIioEYV5hURkkMzSgGaVjThUSMiT5m9tstzSrDZkOMCdOZeb9nqpV+3XH+5BH7uz37ceJ+t6XVPX3OnJxdEDcblnLFMrc8MLyJRlNnFuvhDMPl6Fd9xqKXU2Q5J4NECM5slxSRIGRLroCAK8oFcSB9LMV3ZCvcX1/TWkFiJEVBy56u6xgKzHNjN+65uX7JPE00gf6kRwi0FtDS/BoPNz5z24qAgMhin5owdcVC1NnDMSiUmT5E5jJjFWJIIA7qp+TneEMJdeajD/4YjZl59v0Nhi77wBe/LWOk3tBbfV+kKITs9qBIRaL/vuu8dFJrobXZz9hgBJQY3VqjzoolP3tKU2JoDDkxV6XNfs8MkiAIEp0ZbdrcUnaZSyRgARKNlIUyCRIDKXcLOz3Q9RHVRl454/xQGOy6QG0Vq4bEwBACpRgq0Rn9eQAzSlVyFFIXsVLQpmiutOZ2u2gjAfNcfQFJY5oMw79T0EaTADlTRBHxa4uLrYsbBwVUImrGehCCGqMGSAnvgnZr2BBApFFqZV93qAllH7i9fcnq40xR4W7ziPXjSy4255xtEtuzc/r1GZvNBVThdlfJq4EqmdXzdzh7+6usOuNs6Giqbs8yz0zbPa9eXRJV2Y0jX//FX+Xv/urfZHt5zWc//oIvPv2cl5cvEWu0eWRulev7V9ztb2lLUSUuRetxnrxIpY3dfodSOVmfgPi3z5K4OD8nBHjx8Q+Y9hPvvPMesUWCBAh+htc2QTs0muiyB3go/soylhWlAdEUWkUR5lIJ0dUilYYRyMmtjSz/5L3nGMf4f8ZPI5/Ro9LTQ4QYGYY1tdrPZT7z+9/+N/yr/+Nf8mWxtDs7O+Mf/sP/kdPTC1+nx3zmmM8c85ljPnPMZ475zDGf+dLnM8emp2P8F8Wv//qvf6kann7jN36DH/zgBz/rSznGMY5xjGMc4xjHOMafY4QH0C/8hLT7wjS0A/znjTwBwayhVjz3W5R0XFqYBbRbfuqSfIrg0IUDaCZKq8L02cx8VVk9F3ZnRuoDRGNWpZTJgVcJiLoIsLiyPZGIiYPi+20hrlfEGFErTPs9ADFDyB2tVsq+0klw+wRcwj9uOoZ1Il4YoQnJPOFvZs5mtUR8b0PRvbN1ckcMPWwTHOzc1FnlFlzkPCzgnWnHJnWc5o4uRDpJrGPkMYHTIZE2zxGcxbcJiaTGp7t7Zi2IeXJccVlvFVfKQmWBlw0LRh8SszZieGMF0ASSo4w0/P/D0nzlTUA8sCHNlteZuhR3c1s/ZxYuZNQDuhvdBqSLmbQKpBzp+p6uG0gpEiUhwb9PlIBYYk3j79y+Rm6uOfnsC15sAx/OkRIKXQ6MxVmwRuNuKljoWCeFYIwFPr0t3I0jf/CH7xNXK37xV/8qKWZqU9QqZdpSS6VPHRId8Ay5I8ZIL0JOkblMmEGtlf04s1qHNzYnD4zaZa3iDFprzUGrBWqThemLBMQCHObAFqUAjLowQhUfLzFnpx6YvWLG+dkpXcpLwU0emMBBhPOzM85OTnl9fc3lgiGaCcEiuoDOZjj4GANBFAdUeWD+fvOX/wr/8//yj9ntC9vtjlLcSuLi0WOur2/p+96/c+y4fvUaiZGY4NmzC1arnhgSObhcvDUH1OLStOiwz6FAAqLqSl8I/CRAv1zjA5Bv/v1UFgY1BgGm0vju+x+zHysQ6HJyuwDwQiRuH7AcPSxk059grdubz5DDa+zBokDVll+Lg3wCyZy5q61g2rgfC9+h8iga/fkjTjYnrE9OKaUwbSda2Tqwq0qORqRwf/kSKyNDjGgKtGp09ExdQFKhTjOmFbtTFGE/7kkx0qWBatHPUK1MO5iWTWji1h1Dv8JUqQJmSooH0DfQDQPNAuqEfGddLnu8WEWbcSoJqQ1C9HKL+Mx1ZqxVGW05R8KiTIciIaFmtLnRtNACtOLM+jIXtEDpmrOkcyDqQNdHTAutGUlArBLV6PoM64xaRGhQGiFAPwyE3Y5oRhlH+q4j5oyOO6ZS6WImGMy1UmYHqV19zhmwBkgzEoGUAuiinxeFqsq03VOLIgumHGNw5n5Ki+qB0eaZ/bintrbs4YZECDF70QhDrTKWLftpj5UZMei7jGpl7KJbJKlbJahW1ptz3n77LVa5YxxnpnnPPE5Mc6HOhWoVUS83xihe5DPBZgUqLq7gzG+dvZixKxWRDhEhBj8jXNgwgRm1Lo2p2rDmbGkOxcrl7A3LzUBV0eWea2aU6od6jAnEaK0RxJjHGQmR3Pv+0uZnmxeolezHESlniEZsQlNvMB7nCVGj1Ui/SkjsIGQvIInb4zgdP6D6xopj3BcgIimREFAjdyskCTELuRNUXSFAxCAogwy0qWCmBAm0tID3QSjzDpsmWlOGIWHauJwFkUhQVxAc57ZYwRghRaQJ19cVJdAFsFDpVomQOqQaCehWoBH6k47ttqCtEQgMQyInf14IYpTYnB19sPnVQopum6IIMQdy6Eha2I4zU4QyV0LsYD6lSeO69nx4eU1uRu7W7PaV+e4ltJmUMqen56yHgWHT8fjROev1mqHvSScrajMunj/l4vkzdtPI3/sf/gF/5+vfIIkz0VtTWvUzsBVXSfjs5ZbPPrtkurnjwx9/wv31NVZnPn/9BbXsuL/d8dHdn3B5e0MdK6thTbEtJycbtBmlzLQQudtvvUwsS8HqJ/oOJER0KRrLcv7U6gWqcGhA9q2MLLe3w42k1oIihBB9n1pYLEO+HEoux/j/Hz+NfObL0kDznxt97Djv+5/LfObDD37wpZmvk5NTfu3v/D1yNziJiGM+c8xnjvnMMZ855jPHfOaYzxzzmWPT0zGO8Z8d//yf/3O+//3v/6wv4xjHOMYxjnGMYxzjGH/OIUtyZ0snjJgsUt8upy4sTT0hQkrk3AGBtoCXQQ5YxQLqwMIcVU8aPeN3kMqWhFEbkzWGNvDo/pz93YSegj2qdCcOTfTDQArBmZkxL0BsQ6uiVYkSUDN2uz2r9QoJ0KVEiYI0JTYciDjtUNzTvWNwZaNaadNIoiNpxqxStUJK7seeA1PZk1IirQaG1Rkxrrj7/ArTTJBAXLzeA+rAToqcrs44PX3EV84vWIfOAUqBFAK9CCk46izGAwN6nQJDjBQqdpBPtwUEZhnXw8ACQX0McszEBygNB7i1OdtSXDL94Dsg4vD48pHOYkIXmWwHJq06S0nDMlfKIpWeWW9WdDEjMTg4G4QozjhzufcDQKlEE/7K5Q3Pr1/BRc/fsgvei7/An9xv+YPbG17st1y2LSVUbiZl1MrFJhIiiEWqNkwhxURpjff/7be5vb7im3/91xxQbso0GTH3hN4l3Ls+OBOuudx/A/ZjQWslxEDXlLXIm/FcYGRdkGgfbZe1Dw/jtSDQHBrc2tLQF3xfiANcX3z+iv3Om+0OY63mFgyOjiuPTjfkHBGc6XywLsAcRHzr7ee8vroiidDEi3W6MITNdfh9T5nDqOGgyhUEE6GWxnp9CrKn6wb22wnVwnq9Ztw3alPW64H9bktO0Zn0Zrz8/DNfEOo2Bjpk+pxRNaZW0MCDxHxYigQHkN7l/pfvKAeA35XDZAF73fTyTcEkmNGAFy9vEYmsV4m3Hq148erGgf8gSzFiKRSYn1AHS8bD+n1DzraHgpf/ve8rDc5Qj0BaJQjLHLbGNE1Ug9fzBGfn/MKjc0IMNHVLAcHY70danemHnrnM3N1X+pDpuoyqOHuwFVJK1OLAZUgOOg+rNeunX+Xmkw+8rgN0EtgzIyq06uesqheYDoWeMjeIvj5qU6SAqfDo0ROubm+WYouDvwcellajKeRWUY2IKoGKRQfJs8DX6Jho3NSJqurnrxREAyFkJPd0YSCniOqOaZwQIhIjXdczDBviXJlb5XTVs1l1oEpMCbcb8TGLIaGtoARKaXRdR4zCvutcqU8CIQZiiqSY2Jz0bIY1KWVaaagthaQF3FeEECE28/OZsKgYBH8/g+v7HVUNkwS1sp/2tNbQZrTaMBoS/L8Rt8lRhCCNVhu1ermrzjOlFi+HqZFiYBUzOUeSOJu6qVCKUauRu44+ZHJMxLVwerJebE1gu9ux6nq2u73bWQRIKfLq1SWvtjvfCdEbZ8dSwYRd9XvlpgvknLyZNPg6iQTfU4uMvmojJiHEg+3FcgewBhaQZb+4mEJYxmApthVvFjaUEMPDngsivj9qJacI0QvUgpBSdOZyEkrw8TGtrjgwNQINi4C4/UJrDROj6lLlxogx0kwwIrW5BUwiuhrLYk0RVAgktPlDRVrOemvOvrYYKNX3ewqRedpzf3/LNO2R2VivOgKV27lSxVyVUIW5TGgzUv/GtqppQ5sQkysYGoFQKuscWSfckgRlbkZtFTU9lGVpzYtbcyu0ootCoVLUGejk6ConKqCBWpVm1Z+DCExzw6rfO6Ah6YS0XpOIxAYhRVq9YxqvGW+uKKp8LAJNySnQxUCKmRgSJ5sTmsHp5oSnz58Ru4G3w4ZnJfPWsws2mxVdCkheGjyWgtPpkzN+6ZtfwQy2TZnmRi/C9XZiUMWmwtX1Ha9e3/H6ixu2V9dcXV1yffWa11eXbKdbHq/e4ur6FZvhMSn3tDZhAlUrAW9Cx7xYgOBqCU2x0mjBiDmRQ0JMKa35zdMCIoEUoz8DhQzRzxkxfVBGOMYx/qz4aeQz8p/4jC9T5JT45je+xmkafi7zmS/TZD19/jbd6oRyzGeO+cwxnznmM8d85pjPcMxnjvnMmzg2Pf2cxz/7Z//Mu7iPcYxjHOMYxzjGMY5xjGP8V4m2gHvO9DxgyOqMF2NhWTnoGRs0GsgZsjCdDmmbiMvnB3GgQg9gRRCqzZgVomQEiCKYRGKMxJA5oadMwL2goZAvFGqlaIPgktUuXWyECKnvoFRPwKfG3XjP+nRF7BJiUEmEZtTtHuYC0TAiTQ2ritWCthlQxtpIMRG7gdgniJEyTm6v0EFcDaxOV3AN25s9xMIqDXSrgdNnz1l1PevVwGroSLFjHTKdBPJSDFi08FGgmS1WAbIUCoxoxlnfMe4rFQdNFi4oC0a6kE7972yZi36IC1BnrobVqs8ji+LSMo8msjCRlIgsDCNAAoazJUUcYE0hOJMrRpeVD4mhFvp+ACBIdOUukeWTZGErBVBn4qU28fblF8x3d6R1Tw6NR+uBde54nhL7ds7L3R1/vL3ke/OeH1djWCuMzto0GqVFZFFsKrXxwR//B25vrvhv/9bf5uLZV7hYr515izdstTazv98zTTMxQM6B1XrtVnqqaGtgii5Fk2XBuvpXcLBe5E1RQDgUzQ4rXAkx/UTZAAKGhsC4n5aGvjd76g3Jy0CMJ0/PSTGgGpxVrYqE4HMZE4/OHyFqWAxEiUhQ35fycLE4bmWHus/SsBZQEV68/JwPf/ghq9VACIHbuztMIaZA6nrKfoIQ2e129MPA/fUN3/rWt/jWt7/Dfp5AlMurVzx9+oQQA/M8e8NYiJRa/2/FJePAFj/ot8mbAsFDyWrhlpuXGN2ywZYCmFHnhkTh5GLD159d8Op6iwQlSMYMSimLrYX9xJg7sE5Y1Nxx9vRhhg4c7RCWzw0OxA1dx8XjZ5RxDxIIoePx4w0XZ+esTMltOUeaM/dMG01nyt4LDbVOWBUunp0xjxPbcefdgBKptRK0EGk0hNVwyrtf/yUajfjyY867wNnphvnJGR+8GNGQaBKQ0CAltDVUvCiwnZ2lahhTmVgt7gK7cURrA23IwlpVVUzcQiMQCQG61h6AXcwbTxPwdujoDT4joEmZJXAljRFDpGKtAYnTzQbdzxAqO5yBXWtjFTMWKkXFGyBXg4PH0cc7x0CtlVKccdxawYishsELNSo0xEmyUZAgSMqcrk+JAWISd0gg+tpfimEiEVfadyuHEMSbXfsOaNxdv+TzT7/g/m5Gm0vxN3MJftWKWvNGSDO0tqXxVRg2Z0ibGOc9tfpnBXFw0g9laObWG602prm6RaYqleaWCsuZW6qrU6hCFztMGuvhjPPTgf+LvXfptSXLrvO+OddaEXvv87jveyuzmFlFlkRSIixKBiwbMmWryx+gDsEf4H/gFvvuiewYbrnphg24ZYCAaRiGYMuAGyWApslisaqYle+8j3PPaz8iYq053ZjrnEyZpi3AZWaCuSeQiaq85+4TO2LFiphjzDHGMI7klBlLZr0e2V5vA3wWI5lHvIIHnUZXActQMBVarWgWltbIWvp9FKTcZC3iXFtDNfZd6dc9nPtCKS79mQlgNeBVb0scuxN3jWqPyYh9XIti3vozOmIPUham/UzSgZQTkhyRIKE0VbSEA19bKkttfYMQWl0oqaA9tkJTVzx7isEDEZJ010aX+ySNpcazyDWGmxFoOfbApJlclLosXL1+w9SCcJ0XR7Kxr05zZVBjXxtzTdAq42pEh0xtDZox10rSQqJRxkTJBarxwIzzQdkhLA67pbFUJ6eMqVKKkNSY5iVcBHDmg3B6ohgBZLt7EB0COSuimXlaEGC1LhFV0vpwxn4L44jXkWEYGIYBT4m8PcT+4sR6caVqY7aF2j/b3Xm7fxvy7VfOX/z8x5Sc+bP/41/z3/23/zXvPvkuv/Ld7/Pi2Xd4+vwZ77//Hg+fPmJ9FsB7BU7WA6skrFeZJMJmlcnx8OPFLz0K20eP55R47PPzDId9ZXe94+b6lt3hlu31wps317x584bPPvuYNxdf8PbyDUubgizIQQB6arH2hLifvTtZiKA54x77Q6ih71xh5vvHYIo8iWMd66+tX0Q/cxyt+7J+41f/HifDmqJ8I/sZ+RZdLFENV+NjP3PsZ479zLGfOfYzx37m2M8c+5mv1Ddy6OlP//RP+eijj3jvvfe+7kP52uuHP/whZkfL4mMd61jHOtaxjnWsYx3rb6xE4Y4gELm3I/c7gLvbWrs7tIaZBMDpgtwBcneKReRettihABKNrMJStSsd7/5OQyQa8IYF4Hct6G1mvt0jZ8b4sJDWayjgrGjWqPsJm2amacammXk/s0zrgqJvAAAgAElEQVSNw83E6eM1q9UKMWfaLywXE6aOinVFZdjsJw0lbGuQy4DmAKOGITMtRhkLOSvDShlTIrtit4nnz7/L6emG9WrDahhIKrg1igobFZREDmEXtSs2tVuY57sGV8BUSHSCxpRNGnhnEK7rzFWbwZ0mXwLWSChOwztZuopTUFeMRnMJZWQHcrVbjYNjYeWEaxyTA26BtKomkiZSCbekAKK8X8OE0mimqCa8H7/gIJFZ74S6WCz+U3XjfK6sKrhm9peXLK5My8x2XmjsyMw8LQuMK0618NomPl/2bJeZmlIQKibU1kipoGI0E774/HPWP/pT/t2nz0l5oO4P7A4z07THMEpZcfrgPMbtqmE+Y2bU/QFtmdbWlFIirtylA8t38POX/1a9A709QLiAzPpP9EE2AhQynHle7pXG958i/fMFSk6s1xtaDdA/pYST42MtSJw8ln7OvwSAOp6IeofBRe5/B9LvSQxx5eNPv+Bf/Iv/glUpAbThrIpysj7l3/lH/4Af/Oqv0+qOjz74gI8+/Ji/+MlPeHV5Re3faZ4PvHz5CethoLXG24uLwEsVqs336xYniJa729iDtFAEs9Y/zSPu8v4442cjSqavIAuCbD0kzjaFIQ9Myx6rlWUJVexQFM2hRARhqe0rbuCCSkW7qjOlhKjf//9sTnVBknJ2esYP3n+f1e0rPraJl7bw8MkTnn7/76DLDV988QZ1Y5nDKn2aZ6bDgaU6tUaEw2qzYXtzzWF/4Pb2llQGxvWKZamxb6WMeAU3xs0Z0/aStVfeXa04X2VusvARShpOSFmou4roQJIt6pmsQXKIx/2kXV0vwGG/D5UpHvekgJqEglYjeqSerZCrLYOlICMlFMFusT4eq/BACxnYufDDZccsAeqbC2VQHgyJklacCdj+wKE2igBSaW0hm5O94c1AhKlVxJVhswYUtwXVjDdhGAolDyBQxhVeG3WZQx0qCfM4b2UYKGVEWxyv4V2hHCpda5WD74C4j1SVx+crTteF7e2BeVqwNjEfdky10Wrl4AsgJPoArmq4x4kh5Nh3JUgUt74DuCPakE4YaExT0sxoHgD4NM3MS+x5FxdvSAJPnjzh/OyU+TBjKVOrIyn3OBMLUgRYppntYUuTRtYA+k3iuL6M9Ems1itSTrg1at8bYj+o4TRgzh39exfjpJLCtUE66NoJIroDoajGY7xV6l1ERCNA3yxkid0sbtcA5V2ChEDAm8W1sZk2Q84lngXer8lQEEnMMnV1e7iBDDmRxDEJwsksgQVhg4BmwRsMudDcWA2FUWCxhhnMdcHcSCXhs6FNMAVvzsXlFbMbbV4wiWNampFVWY8nTPst7g3JcbaShkK5zjN1brTqrEZnUOVEhFOcUZViSnJnNOd2WULZLkLRguR41tfFoBk0xwssizFNFcnQamz65kZKytLJLnwiDZ237K8BZpVld8O2Vk6WBdZnjA8f4ebovMfNYribgbk2MoJZjfUpAhiaFZqwVMPdmL1yvbtmXnZ89uoTfvjj/43UIElhVUY2mwc83jxmNZ4gY+L9977Ps2fPePDoES9ePGNz/oB3v/uE07OBlBTp8UN9x0eTstrAaj3w8NGI84C7eCXvJEIzZ5kb+z3sthO7mx2317dcXV3x9vKK67fXXF1dcrO94vrmit3+hsPhhmZTvAd6DDKrJlpzzGIduB99no71b1G/gH5mXK/Jw0Cd56/723zt9eLpU5L2SDm+mf3Mt6XcjfnYzxz7mWM/c+xnjv3MsZ859jPHfub/Ut/Yoaef//znx6GnYx3rWMc61rGOdaxjHetYf+MVFugSQ0pyJ4CUeyDSRLnzkza5U5oarSuA7oaJAjAMVZ7hhB6qhb27B7jhHTQUd6SFdfSyTLRWqRUkZ1ozdJ8oN4V8GLiQlwwPBjaPHqB4KMWKIyfOUgQZFD1U5puZq1e38EQZSmKZJmQlFFFaNaQF0KbajzMNoOEWJFZxz8yHAKhkCEWTpIEsibdfXPI4vcOLF08QgSyhJJMmZBEeSGboEQIuhnlDIcB5hOYB3LqAusUQFURjLZARhpQZVWmLs60LDQ8lc1c6Ws+AT91Jy9tCGgtCV7fpEmpYFdalkLMQurg+xOROEkCVlIYgG1AUJ/VhNLuz1Pd+zekuToC21pVaoR615jRvmAdZ4QjVnGe3N6xwWhmpt7fsDxNX2y2HNlPrxG53zY6B9eaM7y0TujNuDhM7b6zPRiY3NmNi2jWWeYoYQc0YcPX2LfvrG+b9HrXGMA6UYU0jkRBMnGVamA4H9rs9dVnISZCUcHOGIZzG/J4kiH+11r4E+e2OLNDuFhA/GyquhoiQtIPeIrx9e4m49Z/rSl63bsXeQUhJmHf782413n81ZpX1an0PDnq/5okuiHTvYGGfLIwVyl2shTo0nJtl5naa7p28BMPlkr/8/FPO/6d/iYqyvd2z9/iuX1Uua074uOaDl69wS6TkaB5wHVmmG6DF5xHK+tZXxR1oo/dHRVdp/tUyiT0gu9wPSGbNDKNTErx+u2cY16RhzTgUHpyuaW4c9nt2u/09V2P2JRCaCbv69Wok5wQE0H9YGmYBAqZUeDwU/u6TM4aXn/D8NNFkRsR59PwhN7vGfprZH3bUWjsQrIg602FmXhYOc6M8iTW4PjkhD2um/R5rUMY11Y3aGkMHlDFhrsbL6z1n6xWHzz9EfGDIBVQYNFNKwmZlKMLZqsS5FUElnNaaGebC7f7AuB56JCUd0AYi7JNups/OEqXVDuAalRRgG4q0AMRFMgvOQSQIx5yQtjAkR6Y9zRaWtnQLfEFyXNTWGqs8MJSCWyXlQm0BIO+nQx9SNKzNNHGmupBaQZDu9mDUZQnLf6tg0OaFIcHDzcCb7Z6L6y2m8ayQFJbw2odot/s9OSVWubDb3pA3xqeffsjnX7zupFKNuIFOdicRqjhZQ8EcLgNg2vo953hT8BrKT+lxJ240DULWWxy3Nae2xm7a01q4BFQzvnj9mu1+x9PHDyllREpiPQ5c3d7y+pM3TIeJlBJTXXBbuNrtcTUWC/avxmaKSjjsaUqUFHsL3geEJWg3a7EHiAtDTri0UHC3hkuK505/rmkHWb2zlI2G+l08RH+e5DhXSUoQOxrK8GQJw6l0e34TkgjjmMDArXGWnMkOzC2e7TkpjUrReJa5J8qQcAulq7pDUpIL1ZZ4f7CIU62toeZIVmpr7E2QHsvTJI53HEdKqdhkTEvl4vKS7X4LEuryjHS3vxokhBlLbWRRiiZqCuIhhhwcrc5mKIySOBtGTrPwZCVs90tE3ADFJk6SIqs1kytl1K6oNrImXGFxqBbRFLXRHS3uYl6ClBHxIEM0dkrDqbWSPNTw5uFmsLs08nYf+2xZM087WmskLaDOgAKJ5gFpm0PpOVyeBdW43qmTsVgQCsmUpRmzVPZt4vJwySdvPrxXov+vf/IvKUnRNFDKiqyZZ+fPePHoHR49fsLTJy/4pe9+hxfvPOXRk3POzs45OTtl2GRyCUJdJBGEVEx7D0kpQ+bkFHg64H4e39wdA6wJrRlLq0yHxmHXuL3acXN1w+XlLa/fvOL68pK3lxd8+vnHfPLZn1NSEGERG3GsY/319YvoZ8ZxRSnlOPRE7MHf5H5G5P/ubfNvZ1kfFDv2M8d+5tjPHPuZYz9z7GeO/cyxn/lqfSOHngA++OADfuu3fuvrPoyvtW5vb3nz5s3XfRjHOtaxjnWsYx3rWMc61reqRKQDn6H2xAOmTJJoMdGEdJWZi4WFc7v7Oe/AwN1nhWLLPZR+d4bx1hVXeheJJh4230JXwhloYnN2jpFQSWxWmdWofPj6p1x/vOXFD56xeXSCkqi10ZpTm+FNUZSyEpa58fbtW9apMN/OVKsBxt9b60dkmkoAIGKKq4SNOQuSU1heq5AHYShDxKv97Oe095Sz/ABtQwBsDiZG0cyUhSTKYOAex1PNcYIsUBOqCtZlolka6trFsA3vKtQ18MALu7p8qa7tUKx4gF+pA8O1A9vSox/GnKnmJHUk02Mg4tq6JpJ09y29A5zpgKMHKAVEDEiKa+cVrIEtLIvTWqM17WBTAJhOANK1LSy1cjbteefVJ8zi3F5fUaeJl1fXVDcO046r3S0MG9bDirY0Rl3xd89PeOf0GRdy4LUI//PrN2ytoZJJpZ+jOzB8ObDbXvP4xbvklFEJ5awtE8vSWKZw9ho0kU5P2B/2YXfvzjQtDGOs27DTj7UfFtMdnCSUooHHe3zHrsgS6aAIej/Y5xirVb5f03fMQ/OI7BAEbY7XSh7KvQ279+vZWnzKerPhZHPGxc0lX0LvUd7XQagc5cu4kHuyJ65z866CD4gbI5R8kzmvrm/inuu28sYdqO+oQ0ojq9MzttuFy13j9OE5ZTWCZVp7yd0XE0J9CXF++sTjfeRhRzW5iy3pHAdOgLD9J+4B0JSVMSlnpys+e61QBiTnULAPGW3GkjKSRtRCfa3qWDWaKFkSabWiDBEZ4NZBK1FyEf6jf/g+U37GeWpcfP6Sq+2WUgaW/S2lTbiPpJRimLIMkDLNnWWp4AtlXGGaqPPEMG44PRnYHW4xE8bV5n6NiIVLhIiyWWUu9s5qXFNOCqLKbTWadDU8fR+QABg3eWAYR6Z5xl1BA5g1hKkay25hPY7359w6gGzu4VSH8minjF6w/t1FKioRX6IYmoCUGHRgFtB66CpPxaks88SSDHVYTDg7O8FGp6Ugdc5LpqwGxrHcM0Gr1SoICJybmy2iiiUlJSFp30MQSi6owUTERoBTEDbirKVRli0Pi/FJm6nzwlLnAJ81HOY0Z6Z5pjanJOHBO6dglZvbLdO8YH53xzhyrxsO5a8a3dL+jsJSmoObsLjH/+5RLg3IorFONaIU6rKwlEo1UB1otsfFyAgNZ7fb8dFhT9LE6ZtXDCWzvd3R5kYeQl18OMyknKjiLObY0sipu+qliPLIyUnZadOCaSHnTDPF3Gg4uWSW2WjNkVWA6M5XImU6qK4ieGs9ekEQ0XBWcCOlxFwdaw3R7qKhGsFPqqSsTPva7/E7K34gwfpEqa5oFWgR77Iqhd1SOcwLzYxcMqoCotSl9esBS60M44CqknIm9/iJOi8RPYphc8W0hMNE38/MGoMqViuHWsGMaX+LtS0p9Q354EBCxEiArHLE17owpCDSxeNLKLEehmFg0MS6KKsMiYU5GAncJpYqJE+c5kI6GRkVpChFle2uUq3G+482ikN17mNzkrZOVPVBb3esTncGMzEM0M9MTQqq1AbVDrTpgDCRTx8yTwekL2yzcA2IdR3rhbt1LoBkkkNKiaIJr3PEoZhTLVwYXSSU3T2ax/XuWWccLAD+3f6ANOP1zUv+7OM/i98mQX6MecXZsOZ0fcb5+WMePnzK82fPefr0OU+ePefhsyc8enzKw4cbTjdrhtVALglNjmpE1aoGAYMKXpQVifPTO2eCM5zvdALPaE2Y5sof/+Vb/qv/8j/nV957AZZ5/ebyr7y/HutYX61fVD9ThoH9dvt1f52vtYZSOFtvyORvbD9zPzzxLShVRVM+9jPHfubYzxz7GY79zLGfOfYzx37mq/WNHXr6/d//fX73d3/36z6Mr7X+5E/+hD/6oz/6ug/jWMc61rGOdaxjHetYx/p2lUejVptFAyqComhWfGkdWI5hGekAYbpr+jQj0iPOXO9t4a0rRXHHrQZw4ULKiuRCSsKQM0kTOSXMQFNmHEamVpm2l+RW8JPEbpmwkqitYYtjErbfFrhBgEQS4AQpoa2x20/hzWwN7YCaE65OVgMilaR4SpBzKLdyhqzhRmXgTVAt3GxnlmnP3veYNpI47vFzJRfKZk2rlctp4mnKjClUZDkJc+tgHmDeuqrZaU1Q6r2P0kodzUpyGDXUctrds+5C5XqqA+bhaDSkAATjTzPrkrAUwHTSUGmJ5g4MhFLXJOIMpIO4HpNb/TNAVKE1mluoAqszN0dqo3XYrzWjWWMJ+RfTsnCYDrRl4aRO2OUrXu4nDvMBU2Wqlf205/PbS9YnZ2QHmxpPz84YtHDlM5/t9vxkt+OhCP/e5px/dXPDJQtgAXaGPzvTXLl8+ZLvvPM+ixnTYWKZDggLKY+sTjah9G8VN2PB2e73tBS28K7bUEniZFGsA/mB7DiIkTx1VXQM6LmD6FfuAQnCpVkFF05OTiJmw9s9cN/n6zACRPrwo08Z1hsgQJC4ag536mmH8/NT3l6/xb4KsHckKAFKKM9qV9vfw/2SyJqgA1Ru3u2zO5AvXVlN6Jvl7ncDQqzjJ8+f8u4v/QpffPoFX1x/xgNNSBVMFyTf2cyHytG/QhjcqexFArYSD+Xl3T5Bn6/Tu2iSrihXhSFnViWRcma9yhjCPIWF+zCMpLJm2ChoorHDd4k6H4i7aYl70EFEKWVAVbCmmHeL+pL4yc8v+OW//0tsZ3iYBiYrvL6eqIPyzBY++ugzDi2xSDjCqdXuQBe7RTVoFhezSSGvRlbeuL29xVzRpHgz6jKH6jspD85X1GnFzePHvP9szZAT8yujUMgpYgoWb4TLgeBWOWz3aOmRI9WoPWKyWWWuE7SBxBjnOza8fnqNAeFxX7vZCYeEfo6TeagwU0IdsjobEZ5J4lMcS441mNqMS+Hk4SmlOYdXb1CbySSsLoxZKSXWqnSnjETEPhxaxTRs7tUcaQ0Gp7SMqYay2Kwr5iOKBYU679ktE9OVU8bMzfUlS/9eqoKlRCnSQV5htc689713OD9bkTWI1zug847oduweGA+o1kIpLgkhztvdnyTpBDf9lBosArmDmVNdEBOePDtFcuH29oZ0fU2tXXXcydf4ywuHg7HfQVvo+2dEdNYQwZJEQsUroSJHhEED7HdLzFNlPcTPtlZp9D0LsNZinxBBUxyrO129HdFBprHxqAteHU2hsK9mpK4OzkkxjXNsHmtGsL4dRLyNukAVNBfQimG8PVTGUkLxT8PVKGng4VBo7tweDPoeq5JwGra0UJKr0FrEZYgIqzFjNfayYRh6TIwFMZAFUsKqId6orZIMmjWmw56rtxecnDq+xLNxXCneghTHhbY0qDCmTB4ETc5A/Oy8GAXYFEHNyBnqPGE0Mk5OA82VVgUdMqMuiDRqUzbrge3UyGMmWaJODZNKcaFKqI/HYpj3c5Diue1e75/hJStLbQHkawoi0B2vDV+MRRVtoNWo80JtjawRzVWboSn21pwUa3e5ONqHDIxkxJrWIB+bCNYWSPEukzVTMZoYKhFF5X3YWTqBqyWcQ5ZlQdRwhe00cVi2XO4dbhReRVSNkrpSf+R0PGE9rHlwds756TnnJ0948vApL955zjvvfpdHz57w8MlDTs7WnJwECVyKBuneFf3Sn3maoCQYS+bZ985Z/fL7/P1//JsMJw/54ovr//f32WN9u+sX1M88fvGc67dvv9av8nXX8ydP+bXvff8b3c+4/HVH/7evxI352M8c+5ljP3PsZ479zLGf4djPHPuZf7O+sUNPxzrWsY51rGMd61jHOtaxjvV1VF3C4ropDB7uOZE1b1QL4JG84td/4zf4yz/7YyQr63HFg/NzsIiLax6x8FcXr5mXA80a6pkkYXksXR6puXBydobNE2NJXY0aoHldZi5efoq1AGDH8w3rkwdsHp7z9sOXvEgrDoeFYRwwg7o02mGmmodqUpSkGvb/xUHCXh9rpKaYLwHKesUklN/uii1OnSuaKzpkVpKwIqSTTHWYF4dSMKscxplhXoMLOeAdNBesNVIpuASgKyqIOVJgMqe2Ds5aC02TwtzB4jGlyLV3wRXU7obHwh2rdRRLne7SlHAg54JIQpIiUpBkJA/Q292wr4BlPezjHpAOa/gAB5BQX+GGLY1ajTo3DIGsWBPwGHSiNao1docd+9uZw2FPdcFsIWvidUn8/HrmvB4oybi63bGdZ764umF1smJthRcPznm4WnN7qPzw8iU/Plmx+c3f5M1HH9FOT/ne1SX/uE3897dzkB7eQlmcE0kTF29ecnn1BqcwlMRwdkLp4KlZRAvOy8R+t2OeZ1SVMgyklFiPI6nkDuZLByc6nHinjG73IRrc6dFCDCr3oKKKkLyE+l0CFG+tRaSDSAfM49e4Kp9dXPLL5pScKbncE3N3ykYR4d333uPnH310n/pg/VqlfgVNnBIzaXyp5JaIJ9RYc7UZdq/qjnsu1POEili7OrR/3wAvle+++z4uwuvLK5ImSN35y5Wcho5IRhzMXRBFI9Zk9267V0Obe1ed3/+1u7m6vgbhkSigpBxk4+OzNavTc5ZpimG7lMmrFSUpZQFJM+QGLWGtod6oONU7eWaNXAY8Kc0qkhtu8LMvrlk/vcIfP0RXD3j3O9/hzz99w08v97z58w957we/HE4CNc5FKQMqwmLO4tBqY97uOey27G6uGIvQRHDNeAsgWIaRoorVFmRSNV48e8yGH7D2tzx8/h1enMJjCwWqWmN/ooybNbWFUrUlCQUhAr5Qm5OHzH67Y14WmgQ5JNZ6fKZhpLgGqpQ+0Nm8og4iQT9maoCwrYaiWpzR4ddkxWW74dW8pbpTRJnPThnWmbqvLIvRRBhPzhhON2xWhWEoXF7eYBbEcRkLi1W288xhu0O6Tb7VhXxQttxgEk5+Qx6C+HBntrCFv9hPTDLz7HTF293CVMPtTzoZl3JhKKvwuG+EMnsVoKhSGMsQymZVxCMyQZV7F7ocrAQi3S3C4n5TTV+qfnFQvecI1cPO32onNU6G2APd0BQDunO1IKrMIHEfW9Ga0aaGicS45uQRLyAJd2FqlUGVPBbcnKlVzAJUDkcLDUJOtZvxeYSPSsOakVWpzQPA9SANM0JLQkrKYZmZayVJ7G+CI9LjQhq0FuShoh0YzwipPw/AW5Az6o1SnFpjKDglpeSEqDLXxr42hiFTvGKz4C54bWApYmGLk0RAM1jCJIagvU00lO1uwquQSUiO3U2bghopKTpkykpZagGrpCLoIly8eY0MymFWdnNjSN2xUQzRHPE2rYXKXY1qQk6JokJuhYHK+kTJ1agSe1utE+OoVHVMZ6ZJGNKAWAxVz/stPm6Q7njYqtM8BnCTFkxgLMqDMXN7vcckY9w5EzjNCladok5JfexaBcpA0ozMFWszwoJpJq/PqOOK5WaLWcNTd81soYIX1SBfaGjK/bnd99VaqU1oZqQU99odWSviQA1yLyZBQDKShOxBFLl5ELIOLjH4vMyGmNAkqFmVFG4hFnsw0ofaDwcuryufvg3Hlog0TgwpMZaBoZywWZ1ytnkYqurHz3n67Ds8e/aEF08f8/DZYx4/esT5gw2rTSGN4bBwdbtwe/GaepgYNgab8Rf45nusv431i+pnrvMNH3zdX+YbUN/0fubbVOZ+7GeO/cyxnzn2M8d+5tjPHPuZYz/zV+o49HSsYx3rWMc61rGOdaxjHetYXylb5g7KZCQ5KkoaMof9DrMAsTfjwLKbyWVDKQFO1WnPPE8khZIKQ16BNVpdwnIYwTWUS9gd6BkW2Vl6/IQHFOvSM+olh5oIYWrGZnDOnz/k4vUNl6+uefbLT9he3LLaxMCL24DNU2TeL8LSgAbWNBSiBq066g0zjUiLFJbmLoWsUJJgmsgJJIcifBhGVAuJTJsuyWWgYtzqDWfpAbmBaGKzXrO73aJJ2aw21GXGDLIIRcOqvUhjLrA0i6EcgYKSc2JMyjrlUJQ6LHjY+rt38NNxCUtllbBWX40jZXVCWY+ol64G7GgsobYS0Q62deVYB52hQXWaLxEtIIqZBFBpofgzM9RgtoYuFVKiLXv2ux272xsuL992xbeCguSRnEIN1yTx7Hvf4+anP+biesvNdMsyN1LJfOfklO89fsrpuMZU+F/efMh/s90yHWb+wW7Hv/9P/2MuPvmY5cGK7158wsNb4a01XAJcseY4lTevXvHnf/yvWa3XrMeRcbPm6Yt3SCmzHPYsh0oumZQLq5Sx2qA2qszkpAy5BLiBdkcyMAslYXLFtcQ5v7s/AJyuNu6qY4u/hzsXF2+pVpEUikqXsJY3HDUQr+z2W5o1NmWNdqTcvqIqFoPHT58yloG51lC1hXgwCAUJV3vulc0R6YAIjx8/4smDMz7+8CPuFM8RaSH3luQ5ab9G/QA9iBFwxrLiyfMnFClY2bBiIK/OsWacnGzYvX2NkjAJ5WQXawd4JdynYCTV+zgKwfEu3pP+fXuQBuDUnPDcNdoVzjcjp+cPOVXj44sdu2li3O1pmtjPUwBPAlkLao3Z7Z5Iq8vCXv3eqcG9IVpoc+Pp4zMePjxjff6AL8w4e6T8mk88OCn86OItb16d8eDRE6SrCYeygtFJ45r9bs/l9WW3uS/knBhWK7bXW1anZ+QchEJdZqa9UtvMsjRury54/OQpY1ZyFvLQeHB6Hrbr5mAFF3hweoJIOFJIu7s7vRN6Aikc6DxJyAVFOrcVik8AcaGQUFNOCjRRDA/Fv9QAmWlhgmehPRSJSJjFWuwJAhXDc6JZw8RpWXFLLPNEXjKzSqiKc2Y5LOyXhTJPDOPAqzcX7KeJMRfSEJb0NgyICHVZOBwOnJ0o43rDXCvmleYwt8TDkxVLbXxwdU1r4VaQNIXqUpVcFERI2lgPCVtmFjGqTDSWWHfugCLqXeWs92v7bmDzyyFPw+VuYfZ7xRpC7JcpdTZLY3h1PY7UEP2imhnHFftlin1ZI0rGltYdC1rck2G3QOPLmyOlTJEEXpms4fUubtUQy0EyancjoeGqYLG+x01iSaFwHwelLsZsjZx7WKxECml2RbT0XSsIyYiCcJbamGu430Elq9CkokDKpTshGqmruJWCamXeV5rCOGayKLM0TAumStOIxDjMQbg4DTkYZcpIjyWVFGstaQkTDw2CqFrtz31jmWZaM7JksoXku6ZEa5WkSpLEwsy8wGadmKZKUShDYt5XRJVmsc+JxXtHKvG9h+CvJ9QAACAASURBVBRE+bZVdBO7eTbIZrR9uCqoJna14jUIW6xyOBgnDl4ULLE0pzZlnhrVFoaimMy4Z7TduQUE+WReUUnoKgPhWBEGJsLZBg44ab0GEkuu1HZzf29pXuEI2QzNGvG9bkjfs22pEetrjVyMlDLucY61E95uLZ4/dhfZFaR2q7C0hTwESeDSXSws7gWRzjYAuRSsRcyvDs6hNlS6CQCOYDSPIQczY3LDaov3m2Z9TS0s3mi1sV0OvNldIG9/jn6qiGYgUzR2qLGsWA8bHpye8/j8OU8ef4eHDx/x8c2OH//v/4r/8eotj5+/w5RG+A9/4//pdfZY3/L6RfUz5ds1T/PXlqHf7H7mW3SdUi6UMhz7mWM/c+xnjv3MsZ859jPHfubYz/wb9Y0devrRj37EH/7hH/Lbv/3bX/ehHOtYAPzO7/wOf/AHf8Cnn376dR/KsY51rGMd61jHOtax/v8scbSUiHYASso8f/qCDz/4GSqZPJ6wvb7lg92P2Zye8uD0FDCsLviyUEXRQcm5DzCZRNN8r5JUmlsoeBHqNFNKomRhWiyAMQcwxB1NiYSQ8oAn5/RkzfmzM7avt6EUPR3Y3yzkLthUdwpOBSIjfgnw0mA2IevQNYRhiW4SLkYiFsCnSABN3hXFnplrAFZk4e0XV+jpSLOZi8uXPDt7Rm5rciqshpHawL1ydXvDmSqblCiiFAQhY3e235oRdWq3vo7IAKEZXeloLO7szUAUUcipUMaBIa9JRRhyqHAXd5Ik7nMHiJgCQxCLaEHDwGKYrJmFisos7NVVaUsYgAd0GxGDtba+JkI/W/d7bq8v2V1esjvsOdSZeWmQR1pOJElkF5bFw5K6ZZ4+GHn8K+/zwU8/5mZ/YDVk3jk55/uPH3Cy2VDSmpc3b7k43fAPf+3vUc5OuXjzhk8//kt+9uOfMLrxW4+f8+TylqsmNKer753WKp6cTz/8ACPOY04DDx+c8o9+/e9wMm7Cdjwp+1TY7w8stWKtUsaBw2EfFu5dOUoHTEHBoEmAtW4ekQB+F58hiAQYlCTWdxOYDgfevHpD0RyW7B34DwRdQZzmxnw4sNvecnJy2oH6O7AlfhdAzpkyDDSrYSWPB0nQEfkmHnb/fDWiAk7XI6sx9Xuuxed3tbYTMY4p5Xty4S7O4U7R/Pz5M1brFburt0yXr/C0JhnkMjLdXjPtDx2gVrzVUJN3POlOXZ1FYojOrP+WYAY6x0EEcNzjskx5YF0GNkMmaeV0Jbz/6JRnjzZ8/PInTFNlezuxE8XbHKSMG2iAWypGdsEpHOaZakZtzjhkWgXPEU/w/Xff4dGzZ9RlwR3epA1n4wPOykvOmNm+vWLYnGC1sTodQIzWjGWZ2e1uaDWGA1NyXn7+MSenp6xPTqkOvlRUoeTEnAMUTcDNxSWrYSCbkdMGb43NAMtBA6CWUKC2vkeJxzCoYbj289z35daWOOfWQgXqQSEkSShBIqlmYvE6qkazWFO2GHU6gDmSM4iF8hdl9katC0udWepCVhhT5bDdcahwe33NzXRgGE+YXTmMxnpdyWokFWQoYHGeVEOl26wizdFxJHXFf0Sdxp4ueESOVmeQxDuPRnLb8xcXt2xrAJmiGTShKSNdZaoopYycn59xulrTHMow8vjJC/a7cDwARTVUzaqKdrWzNcPrgf20RHxLUrIGmL7I0lXCcc93DJuGoRoOIauTEwZVGkYZR85Pz9nttkzeSDjiEYGKWt9FoZoBFvuKe0QA9Qgac6O1hpBQFMzIyVh61Eom4lGHdaJVY55CeU11XAI4N3dKyrGWEmSkr6nM3AmBLBmVRG0L7u3LaFh3VLqjADWOvbs4cLevGGiO+2vurwi3twurLNhS0ZRj/2oFT86wzrQGpSSwIFBba7h1ckY7iK2xdq0mxjKSS6JapRlIjo2hNqO2CgJDVrwp+3nGpDKOY6jR4+uyHJaIlehEm4pj9uVzteTECPgwsjobmJaJtiT27FBrbJJyrgPFHUkbdku4QjaJd5KbqTJzwGZh8cx0UKY+HNxMkZRIYkwGyxz7xl0shXllOlTElTErqyFzmA0hkXBQhbxinY1Wjf32hpwyWhQz684GQs45nkG1ggcRGs/17oqh3t9lAuwW6RRtj39qHs+fFg81BMW9x/aIkxOgipEwb0GqiXcDlrhu5q2D/kZ2I4uTdMQQrBlCw9qCabxDjGMBVcQU6+vVv6SXw22nGS4z1R3zmet9vL/lN4oYJB0QCSfQ6jP/w6sPyXmkaOI/+0//k3/bN9tjfRvrF9TPrDcrHj1+xNuLb2/EnRHPw29yP3P3zvltqE8/+jnvvvsepeRjP0N81rGfOfYzx37m2M8c+5ljP3PsZ77BQ0/b7ZbXr19/3YdxrGPd1zvvvMPz58+PQ0/HOtaxjnWsYx3rWH/Ly4hGyT0a9qKFV598iOrAgwdnPHp4TlseM88Ln7/8hNu3X/De975PrU6zhqhRW6ZIV97hqHf1DaHYFQ1np5ziz80Mt0YyQr2nyiqvKesN47jiZHPG+mzF4eyGbT2webBmezNx9fEVz7//iAOJ6TBhrXYQUlnaAVsSLkYScM/kRFgj91ZQEFQEvIEohkQOvCRQRzyA9mFMNGbevrph2k+sz1dcXmyRhyfwUNEmJHW221vGcYWmxD4w2i9VzSGdDYUsoWRtNcDZ2Y1m3q37o2E3CSvwNgycrTdoGtBUQO/y4UPd19rUowscpPXzXO6Jh7Dqr3gLa2Z368CFB2jTASn6765tCVDcG7Ys2HJg2h+Yt1umac80z8yHCW/dKt0Ba8jkLHbAUiGPhTRuGEri+uqGx0PhV3/lfb774hHrVeZkNZB0DUlZbg58tr3lT7dXLC8/57Q95oMPPkI//IB/9s/+KVYh3bzh5IOfYe1LtZbwJTCNOIkAQWqdePv2wPbVwDvf+SXqImi7ZdZTJBeyKDYrSzVudzOrkw7wdHWYWXyetxaW+0mhWXceCwvsuwPwu/gHHGvGzfUNc11wjbWucckxnCzelWRgS+Pt9TWPnj5FkfsYhdRVw3eREppipZSkIWLvPwehwkQIsgINtTTC2ckpjx6dk/LHeA1FsnpEtAhwenaGAvM094Pz+/Oporx48ZjrTz7gzV/+hPzmgvL8fXZf/JQpn1JbZWkVJKG0rkZuAdR7nL+7zIckQnPrJIT09dXPIdJd3ZRcMmUcWa8ypycJrDGI8v3vnPLq5oCnUKxPteJuuC1xjRxcw94ej/Ng7kxLC7v76h2IE9IorFZrpmnPUAZ22y2tGvUw8+GbmXkrrJ6+y4iyv72FlFi1FU0izqDOM4vB3Drg7sbh0NgvC0u7RUiQBqpHPketM+5OUqFZ4/WrN7xzJsjmDLPGSpzX89JBWoFaacsSilJvWCcKkXRPxFgTpunAvBxYpgO1FpxQYte64GZM2wPb2wOfrQoP6oGzFnvrsoCVjE0TrTrI1BmFUORfYGwP12xtQYBcMqebhE+tkyQHpnnBNNTcaZlZtNJSDqU+nYhsxmbIHA5xi7gZXhfQcNWrFmtVBNTCGaK2hdIaSyu8mQxdbzgfVwyqpHFDGgZUQhldciZ3i4InD59wthk4zDOumaEcKDnd35MY5K5CTiWUyEMZEW8sHspnT0KbD6QHyjwHcVBroy4L0zxhdcJq7QStghuHJQZBc2rkMRwGaqtBRhC0nPb9UzsYG2itkUW+JCyISBZaqEpRpTWFrKjEOV1aZZNWofJPhUZl2lXGpFT3UNFrj1tIQV6YOQNQJchpNAaOG13l7JmkjmklebhlRIxIxL6ohgLWakTLuDjTvDCOA+KGNaEMBbEYPBV3rDYcvx9mHvJI0kZSWBpoGbpzYKO1mVpnBKNpQdMQSuHm2LKQRRiz0BDMM7SG+wImuM9cXVyQSkOpHKYAm61WlgYiAaQnOhmFEmkNzsotVMvnAzUX1mXF/nbPlFq4hojzZMiMIog3SlIsJeZ5pjlYylR3lmnPzW3r+6lH9EQdyFlJqzVqif28kLKQ7nJvnK5YFlIJEmVMA4cey6IIKZWI4l07slTyANgS+7dmZDWEE4fF4Lim2AOzNnKJ9awaavtQRqcYBFYNksslomqtQX8zawaqQV65xzVIqfWXlYiSQD3cOSXU/u7QQudPIn6nljHIs1qDfBOwWhnKQMmEO2MLksE91NOxbwu44iyId/+CeHyQHIyI2W39GZMkorJmn1nmxs7r/4c33WN9G+oX1s+sYmjjW13+ze9n3L/WM/Q3WtN0oLqxzsOxnzn2M8d+5tjPHPuZYz9z7GeO/cx9fWOHngCWZfm6D+FYx7qvlBK/93u/xz//5/88rOSOdaxjHetYxzrWsY71t7Ms7MhzUYac2N7eYh5qo5d1xxeffRwqFcCpjMOAZ0eSI4sAeq+8lQSI4NK6UjP+PBlsxjUPTk5wN1QTm/VIeXjC+fkj0rhiKCvGMtBSIOxVjFq36NJYDwOnJwOXr6/JFwPr00QaM7UaNs8kyQzrNVUX5lmwpVHtECriPi5jrXGH4agRNs2Dhj3yEIrwOzvs7dWOPK7Zvr6FVWF/O6GinD55TMpCbonNesPtbs902NOwsDFPialWpFWyKu4NVye3sM42ASzhApYC0LCktJQgJ1oHlYoKmIR9uUucUw8gcWlEV00NRZ8kRGsk1zWn1Tki6iA+c67c7PZM80Jyj0z6oZBKoTWj1pl5e4tNtwEKWQUUWw7oHagZjAduFhF+S6OUMWzLh0wqSpLGdlf5+esLLlk4WY2cn61JWvA0IKq4G29uX/Pnb17zs9sDcmi8K8I/+Sf/AZdvL0la+PyLj/npT39MzgmflgDyBUQaqgn3AD2MOLa7KMXDfqbVHQIMLjxcF3blhLlWbqc9aXdgGCsHE1IHkgLWF4Yx90E8pxRwCaXxkBLNFryDc60FOIo4dVn4/NVLIIbpxIVqlaSJJF3BLHdRHMbVxVvyDwJAz3e5ERKOY25BHGVNNAKMwe+E70ZJmbEMLK0h1FjD4bfO3oyTkwc8OH3I/vASpHUr8ADxT05OaNPEMk+xbPo/AdkbV3/5I24ON5hlHj15wIYLdq93yMNfws+ekfWMk/NTijpXr9/w9vJNEAES91GTu6iRToWJI/fto9xHRChhAz6uRtbjQBkyyVMnGis/eGfDpx9/huKItVBIOlj1OP+AqwfYK9DQrgMPMEssfjapopapy0Q9VJbtBUMuXG5vmPZ78riiuXMwI6dQ0dalsj9MAfqaMS0Va05bGlilLRVvB2o18jAw24LjLFODpdG8Ul1JKZFXI/NuT10PuBf+T/bepdmS5LrO/PZ294g459xHPqqyHgAIghBAQU9205rWgx5oLA0454gzcsqhfoAGmuoHcEajyax/QqvZPWgaB3wBlKAWaSKAKrIqqyqf997ziHD3vTXYcZMyGZs9aJBZrTobgyxLZN6Mc8LDPfZae62VVsBZWFWj6y0QW4cIrb8ZJDQCtM45I0Scghv0XmMgkcZcT/Q24urMNvPKTvzpCHU5YfsbLkRJ3cET87JwqrG3b1Ph1Ix9N3waWbSTLEDXi/WenOwQKC+N7p0ihlijNZgdUikBMkrEKBRgyNB7QyQhkund6eYMqkgzLndbUko065gbYxl5+O4Ft7d7xqtH9GXB6oxbC6KkdhYMEaG3SsqJkjK11iBDUZp1+hyDj9U7eI/9FacvhrZGE+WwNHKSUG9LInler33d73NmzCCjoCUHaNstwHCreBI0hZucmZHLxGa7wWqn9s5xHfLN6xDm7CspAhGrIUpJA+adpVZUlbRGFIgIFQvy1gOUdQ1XDHehz7YOfIbrQDJHUlpjLzQcNQQw0KLQnZIVtU5KiVMzlt5pkgJQTrI6GdgaF6Tr3nnvtOi0RoDhSVaFsqIe+6lZAOQeGRJxr1yx1ln8gM2dKQ202pFhWCMtDGkB5osmchKMhfm0RLxEb1gLpbfJSpQtDTFnSZ3ejpxOM+pBspsH4QrCkFOYT2g4DYhBlzgLxgyTQPfCfKhI6ljOdIzLq2u8GXaaOdHZlIHrLMjidEu0pGynwlGc5xhWhd7jPm3GzLx+SaJQDxVryrF3pk2mJ8FITENGdGTcTLgmZBwppdBPp/WZdrwtUDak3YYNQk6dNk4w9zfvW6JKVqgOeNzXhIAW3OOczmkgidDMcFEkrAriPFOnrM+rAN6cYY08MVsdN1Y1fF/f30QVTRFt4S3WS0SmCIbjpvRlpunqulGEpYUzSyxHpzXDPYhCwcilBNmwxs2IaQyeA+qKq6ErqewE+YsnImDFVkLccf2KD6Gc6/+9fpr9jLztD/N2yyHOtC9xP9PbV2cQ0t350//7P/Ltf/gL537m3M+c+5lzP3PuZ879zLmf4dzP3NeXeujpX//rf82v/MqvME3T276Ut1K///u//7Yv4Vz/Tf2Lf/Ev+KVf+iV+7/d+721fyrnOda5znetc5zrXuf6WSiTiwwZVrnYbTsl4dVdpGBlBcijqsLDQ16Rk0Td288kN7hU8q+rWV3WoaiiXxjzw/rvv840PP2QzTmwvrkKB1UJJ2dYIg5wKiQBpzDsmPeIQWicVRbPz6tlrklyFAngJEM3aQjMPUB5gBd0TiUzDJePS7z8sIquarRvWG/XUcAKg756QMrEcD7x8fUQ3G1JWHr53zeOHW9IcwMlxPrGdRjRl7u5usaWySKWosgh0DzWrOnSNgL0uGSuCJcHTgK1KRayDrBb9nVDmCqvylDc59Y5h9IiCQEPR1jvL0jBbbeQNrEGtp7DSbgGwpqTkXECc5bTHbmasHvHeIrc+KZoTvQnmAcRIMrx2qlWWeQlbcTMaTtIpSItlJulIa87eGz0Xhs2O7nC7ryyzM94uBFLR+Pjzp3hKfPvv/SwPnnyNw3FP60f+8pO/4Pvf/0N+/ns/z3s//z3+8j8KdveTVTluqK6DV6vyHOkr4BXfxclmbm9v2OaBozp3NnJIE4vBmDN5mkiaWFqs95QSQxlwhVNrhF224E0gx6DXUpew5u6hGtMUCuh+OtDNeP3yJaJGb3Et5kZaVZiwKhjdwY3XL1/hCFkTECpD3GJAb/0cH3zwAbe3r8ONawVlQPjZn/kaosIXz1/y/OYOEyerkBEeXV7SvTGMAwTkh4usAk1hd7Hj0HpYgHsoJu/jIjZToQxOm4XdtjD5wvF1WI+XZz+h335B1sJ7P/+P2V5c8frRNS9/7ym9hfozFNoOGr/6OiTn6pivJBcG3XjywbucvDAKFBW2Y2E7FPrSSVnYbTOkjHjHKzQamkJJygqIqiSce3UdqBiqJVwFEHKwB/TWGAUevPM+7zx6yCef7xGcOs8gwnFpjFNmmCZ6zhxe7dFxQBBq7/TW3wzTuTjVOu1U2d+8Rh4W3EORuBwWrFfQvBIWTjIYS2KxmVZnTDtzbQyamGsPJXTvb2I/ujVav7dScE7zHACnCPP+SBJIomR1eg9V/RtQ0JSiGVNh++iKthv4/OVrjscTQ1JaESqOSGc37ri42LLTRKsLy02jrg4AlxcbaJWMRNQAGmswhf384imiAHqnjOMawQC3+z2nZQ4iE2cohWnaME0Tmga2ZkxTgJiVcPsrCkttDONILhPtcKLXivhfubeJOIjSRJHqzMuRL55WbL8jacbKhIwbps0GWRb6vZNB7BARu2Dx85oJksCkk3oLF8D7fQRZCVVFrZGHvA5+CuMwstlNXF1ckscJdaH2hSGNvCgvOC1HjvMJcehe0TX2BSBJCjIRoYxjKIQx1OJZ6R4kXxJIqqTcaNXpS0T3UO+jaoTeWkQE4aS0RtcQ5HHJBbdK74YqeLc1DkKht1WdHIpec1ldGAgiUxObPLLCxwCYGPOxkbNAdlJWrAtOwml4s4h98Xg+RDT2AG+xbtLKX3sPIJ6GS0ctFOz3wLUk5bTMEefQnIUahxZBmOaSmJLx8nhABKzF525LWw84EBK1GSUbUsF6x1qHJPR5YNwM2G5L08w0brg93YI3Wk3M84xYpQ8DOcFUBjYF9vsFm5Q8CbfHRl8Ms8KykpSnarTeGYZEbQ620M2RDu24kEY4nSoVQXJh2V2yubhmNw4Rc6IJZ2Y+LogpoyQ0j0zX12tkVOGUTtT9K7z1NyJ7fbPXxruWd19jY+49UyIuxLzj5hEZkxKuxlLDEUVjJ8Y11pU6aBJqc7q3eNY1nFQMXVXnCczZ2D3BJPGsqOBi4QRgsR9JDp+ANVAJXQkK8XiHbOZILyGB7oroShKQud4K7z8svDpUPn2+ZzEH06AILNTScZ7+f3zZPdd/9/XT7GeuHz/i86ef/1dny1er3n3yLub2Je9n3uIX9Bbq5bOn1P0du8fvnvuZcz9z7mfO/cy5nzn3M+d+5tzPAF/yoaebm5uv7Ms0wG/91m+97Us4139T4zjyL//lv+SXf/mX3/alnOtc5zrXuc51rnOd62+rzGmtsjjc3p1IGkrbUOA40aNZ2L33UGsVFZIISRMgaxPrlDxxsctoypRp5OHlI64ePWIaR663O6YyYL3H33PHxGnmBOTkmDVUE1mhu9JTRyWUpFcPd9Qm3Hz2ki8+vmH3eCSjSFotuT3RLSHdaPMJ78JCp6tFo52jsV7qDHNHO3hS8lgoU2YomYzT6Jz2C6++OLAkZxqVq3eveefdR2zHDXJ0xmFgWRZmmxFtmEMRYVgVzIs5OQldFckJT4muiqmCplCMkd6o0kRLuBl5j5bfHcgIFtESHmDxG4U0EcVhi8cgUu/M1WiL0/uCW0NFKKXABGCwLHA6hDV364g4SQMIlRSAlnWn9SXs6L1zqjOtG65CW0FTVBAzrFccqL2F2kuMUjIf3d3SD8puHHl4sSOngVMPcPTm9iV3p0qucHr2gqfd+PiTT/n0s8/42gdfZ7ed+O53vsXx7sTLDqkMLLWSJVTmoh4cx2pn3dYoByQxbz/k6eYx6fknvHuReZEHbBDGcUC7omm93ykxlowhqAUIKinAChXFCaBE3DEVtCeSKqIN70tY/ntHUNppofewRjdbgXNdla+symYHd+Nuv+fVy1dsd5drLEeQCCahYjsdDjx//pxhTNQlBvS6h1obD+DaelxXkgBrkiivX73mg6+9z2a3W8FPwGOwz3Faa6G+ZFUw3yvQHIbNht31wLCdkF7JOXH55AkX2y1pCPDpaHAsyulUQRLDsKG1O8w9rMAdcs7kQXj4+BGfPv2MSg9FeDfcGwnl3YePePrqCB7eaymvKsulA8aYB8btNaKvqC5o83geRPBErE8HXNYhSaURwKYgdBFI8b1bVS6ud1xePeS9Jw94dVCePn3K17/+IfOyUGtlv9/TlsZhWTgeTkyPrmEF7G0FVlHoValLpZoz98Ywn/AeYGY3qD6EdT2QUqE6JDd6g6XOyKSc5iAlnh8thgxbx5cgonptVIt7ZB0Ot7egyt3SeH57S06ZpMpQ4NQcd1kJA0PEGErBEGYfsazM7XWotE2CVNGV8Bgmmm5o3qgVli6YK0NWHl5vWZaKpBIE2hqBGUkMgrutUZIJ6HjqaM48fPAe9fSMT57fhJrSYr3VWpHWOR4PlCSkYWCYBroYpXcudhF3MwwDzRaWRSgkuiSqg3ooyNe7gJCwrtQK48WApcykzq3I+mdCiq8pog1UFSGh698PUizU7Lb+bqxNVgBfSK7sLrbcvHwZqvDxYahKEay2eM57ZxompmlES+L68btMZUBx9nd37OuJNi8sreN9xs3ZbDZ0rxznI80iUiWLoiK0FDEmZQB0jQyy2OMUo3dfFdVQW/yZccxB0qiEyl4zQ1a611Dqa6K7sx0KosJtNUQyAgGyu5JFGJJQtGFSwoFAnIaiJZHV6DXs+V0K3S1IBk0gFt9fyPmDNCBI6ywJyeCU9dUinss38TGsg6qdNbpFSRrEqhm4NaZiqGRqb+E0UKAhLKcekRREfEryBqbrmwOIa7DpogzmqBqvTntmz8zzQvPGdrOJ+9gcmlH7zPEkbHNEf8y9MS+d+bQwlwKaEAzW8285zYg4uTlZMykpQmXII9U6qk7OQsqFnAWpB5ZXldJmljzQ3JmPe9BCts6pV4bhir5xrIxBILWOLQutLpEqIkpvimtd9+0U8cESJKxoxK4khZwTfY3ubRZ+FJIjikVkjTkioVmRbPTqmDQkr+T3OriuiZXoDtcBWUnlIYeyH2UlagVrQVxEPI9gJiiQPK/3t4BInJuykjwaa/LJrvBPvnXJ7jKjnMjjJf/uD5RPn++RnCgC3hNqHbNwqzjXuf7G+in2M+Oweduf5q3WP/ju3//S9zPevzpOTxBr9y8/+s88+eDreD73M+d+5tzPnPuZcz9z7mfO/cy5n/mSDz2d61xfxvrGN77xti/hXOc617nOda5znetcf4vl7hyXxkmMsa3KxhS26yqZrksAYu6rvW8i5cJmd8nF5UAeR/K4YRjC+jiVUH+KRBa74AwiASJJxB9U62+U1aqJ0IFKWMvL2uuLkUalHhq1VZIoDx/uGErm9vPXHJ8dKJdjNK4l090ZPIFkfDuGO5AJYg7Jw51IhOIgq6rLVl1RWL6fqA0OS+V4C3OHcXfBoyePePxgw+XFLhSYI1g1hmnAgeP+AA4pZdJKCKCKlRJW0IQtuOExfLWq08xtBSJlBavubbkhfJnDgJl75ZO1aOJNmLsx10pfapAF7tQWRE5WJ+eEWKMvt9Ab6oaa0T1iIjRL5NwTLkqYM/eZ02nGjLB8t457KKwGNWZVvFfohplx3N/QDSQntptLxt0Vw3bi5as9+bDnSXd8qZSkdO9467w8vOJUZwY3vjknXj5zvjkMvPOz3+B7/+if8MN//+/5P/7P/4uLiwsePnkCU+LPf/Tn9N5Webiu2l/FJWMSTmKkxL45Dy4eYF74YjvRh22EPXhCBhiTkkpCRUPBDDRlta5PAaj0UChXBQMmTQidpR3BewyFLRG1EOrNWEFmo5N2tQAAIABJREFUviqrlQ8/+JD93Z5XtzckwFb1Za2VF8+eMZRhtbvmjaL386ef8tGPf8zSZszi90xCxeYOr17fsd3tmJcgeGRVMzrQgPm0ME5j/L6A0APskbBrN7tX+vpKWsRaLGWDl2s2jwqSwu1ryIlGDnDPjbtq3N7d0tOMYORxRE8HQoGaEA8V65Qz3/zwXT76+Ceh9F7/F8SJs59naq8MYdOFozRTXAWziqlzdzqSshKmbB5EieobUkXdV4DXkWRAwrqtamzBe6g+swqXjx5weziR+in+bBZePH/GO+88AAmSbZkbS63cHfY8mCtJoPdQ1Yoq6k4pGRFCMe1CaxXIVCL2Q9VjMBBlniu+G7HWaCZ0F5SMLcbmaiTZiVOPCEmpEQvTe6e1ihjUHuB4WwHsMg5ID8e8lAtGB5X4jlrcx1Pv1FYZisazjZEkrl/E0R5rO5dhBf8yki+Ye6W2hWmc2G22zHWm6EBvjZyUSWNPxp3q8RwVhW4NU2WniXfee8KnP3mF5ow4VGtIrQzDSLdKb43WO74sqDnz4YjXxvGwZ7Mxrh7sePbZzDYrU0osZCoKkigSysiOIW5MObHd7ki5cJhbrIch048HWg3lpPS+Ri4ktlc76uEY6z4JKQWYOo4j45C4u90H4WoryKyKidCsYn3hePeKi1KoqaHeaNZwcyRnbu5e0JZGPhSO48R22pK08OThNZqU6s4ozu3NDd2duu6ZsW8orRtpBWKbNaixx1sPA3x3C+W8CnlQvBv0TltjaUYNwsx6nNebLKhnWoMpJXQFdE2cponaQSSRdKC3vgLfcLK+RqKA+sAwNCxnMgZFsd4YZHXcwCk54VrWQyxINM1KMgsl9npeaBGq2Rp7MZByCcLJGq5GnVsotj3U3pJAXBiTMGIcaw8nijW6ojt079ReaWaUFFEBkon/vwm9BziubmzHkZ4zJRUwuH19RxNwE4oKJRVsiEiPu7ZgN50sztISzcMZw70iWhjWOJH9Aowjap2lNsqobMYDrQvdleIJr/E5UopntrshNnP7coGScU34YpAX8AZ9Qr3QtXHqJ2iZ4+0tp9OJ3mq4aEgQjkbEcxjgreKiJDdSzuGomRS1RBOw9V0tSIU4JxSQdS2YOCknTr2Cajw7FNLqbuHiq8qa2FHcg3i7j/YxwVQQ64iGc4N7KLAHDcdO1YHNZsN22jJMF5Q80n39DD2Grj/YKt/79gU//52J//Xf/Zjvf/8pN6eOal5/XrwOKQI6hDL8XOf6G+qn2c9cvzvzw+9/P/aWr2Bpyvg4fqn7mXtXj69SzacjwziQz/3MuZ859zPnfubcz5z7mXM/c+5n+JIPPd3e3vI7v/M7/PN//s/f9qX8ndcPfvADPvroo7d9Gef6a+rDDz/kF3/xF/mDP/iDt30p5zrXuc51rnOd61zn+lspC8WlgKW2qph0HVoqbMZQsJVxw3bc8uDBFZdXl0wX71DGKRSk5rjcg5cxnBISzPilJ9CcVit8YZX7kvgrS2MhgFaXUHAeWmV/d8dy3NOXRrdQ6ux2I8PXHnN7u+fu5ogOQpoi0e5eRyeyIvEKmCAiFDdarSythp19F9wTrgnNAkzg0G3EtVHGhYfvP+Dhg4ntZkJLokwTWUfmzxtFM5tpRC4uQYWiKVTQougKPLkIaXXzjc/n69COI+q4Kx6S6DeEQFg2h4LSTai90XsLVWSvLEsoD5M7mlKox5IyKVhv5N6o8wnzTvFwwcJWl6ZVVe3eg1yoFmrFMkCDh9fXK+FQ6cuCLJXaOm4V886yzCxzowOShGGayMMGSRkw5tp5sZmYXj+neKeOhbQonYY0525ZmGtlKJnvqtHagU8N/vBPfshHH/8FSsKb8T/8039CGTb8zv/+vwGrMtzDUtoRRO8VkIJIDJy9fP6Ch49fc/nwSbhSuSOaSEMhJ2XQUHWZrfECK2lTROkWoI5pKC0HUdQ6LHuECrWiWuK7DByeUga2V1fYsy9CGUbYdv/Mz3yT5bTwx9//ozd0TLhTwRfPXvDOkyfggruzeFzLxW7D1z54Fxfnk0+f8eL1TcQxEkN7F9cPubq65unnz0FkfboCWEx54LPPn/P6xWsEQVelZwA/kEsGPACWVVEshJvBw+uH5N0jjhKApZoy1/huXZycMmzgagrVXO+V3W7D3c2rIKyEVRnpaBIudrtQwPXYCe4JqZQSl9uJz1/PCB3FcFHQISIlq3GzX/js6WdYXV0BkkAPsoEsqP3VXuUeKkpJBXHBRREdGIdNPBcYnz97wfzqC179g5/Fe6Lkwv71S4xOGQt3hyPbzcTjx4949eIV83ykDFuSJLrVlRSAPMRQpoqynCpcbUhuVINlrpifEHMkD8w1k9jx4OISrzdskyGp0fevYDvwaGOcFuHYJzSHW1x3R++H+byHg5pDOx5QM7IIijNlZe+CijJkOBlAImFoB02NMQmHuaIaYGkhBhg7AcAOmkBC8TxcXdA3Aw8fXAV5yYCve0ss8kRJEd8grWEojlJdKRZKyXE74Z7BoBJEZFmV+607mjPzUtleDKSVSMglg0c0xPMvPqfXA7txw/Fwx3ExTDRiW1SQNJBzIuVQLe920/qsBtC+mbbMxwW3E7bGn4iCaKYMhXo8YmaIC70HcJpXi/q+qizdichTTSSUcdzhtXA6HHkuL3mnTGh3usAwjTAf6X2heWV5fUt15dWQuNxdx/6QEgnhMN9ye3vL5YNHtG5kTTTrOImch7gPHlEOrTlKijiDbvQk5JQYcI7V6M1JQ8FsAYy+LOvzo2gGa0FsxWPvlEGpBuOmsMzGYo4KkDoqMRjcegfNQaqIkd0xVyStcaLmJBIqGWsNwznNC2UcYD3z1Q3VhHki5/ENcZGkcqqGeqKo0TzILQGGUijbxC5lWuvrWVlJJTENQlsyabyk2wz2isVWN5BuQa7imHVyypQUStzqtrotGtspMUydvQEq7KYp2GAZOS2V43JCB1njMpRZOu4Do47Y+uzDTDXoEvtQrTO4MJVMTiOtF5o1jnPBxREVWsjaI9KkxX/XXsN5pgvFBkSC1FBP0DKpZIZScIG6NNrpxLK/gT6jLlhzzBtmof536bgrrXYMpeHI0ihFQ/FcMn1paE7rns+b97D7aKHuxHpbIyVEBJPYU7HQ5ONtjXxYDzu1N3ESZp37uBiPlz40aUTkqpEErFVcOnf9xOHwgs10SUqZaRq5vn6XBWFeTnz0uvHFnyz87p9PaHnCz343nCvu9nfsb19zc3tHnW/pVLoEGXGuc/3N9dPrZ4Zp4P2vfZ2//Ognb/tD/Z3Xu0/e4+qDD+Di4kvdz3wVaz4dOd7e8PjJe+d+5tzPnPsZzv3MuZ859zPnfubcz3yph572+z2/+7u/+5UcevrhD3/IJ5988rYv41x/Tb333nv86q/+Kn/8x3/8lVW4nOtc5zrXuc51rnP991yqmZxC1bvZXjJtNkzbC3aXl1xeXjMOIyWXAGBEyKqoNerSEEIJJChqKxAp9xbNqyePQBZhTJA1bPTNDXfHRN5EHYQSO3rSgBEXDodblqVymmfMBe8NzQXNmcvrC8Zp5HQ4cNgvlGyMm4mSdFUSC21esGaoKJhQ5wZDYdxMpCEjEoqqUhLGgKZQWNaDIXSuHm642AwMpZA0LKhzUa62u1A9J2VcFYmOYBLArOv9GJfT0RW8kVWxGiCd8VeKpbBbBzNfbY9tBWWd2hq1rpb+q6J2O46oxICZtIrPJ8waScAtvj0hFF2tdaz1EEARIIiEbJbNZgoL9aTUHPEe3h0kwKTmSwDsxwWrlZwyNhAKYiXs+i2GoNoC1it30vBSOBnYYcHdwHvc1e6x3lTZlRFNQj8eebw/IN/4kP/pf/5f+NGPP+LPf/Qj5uNMKiPjuOU4H8KZSwOsFYlrjugMVhv6zo//7E/5e/9wZNxek5KS84goZAlV2Fw71WFEAjSxjkjGxamrwpdlofUTxQ33iplRhlAzizu5JDaXW06HI188fYrXinmssbEUHlxf4w+VBz95wKtXL7E3Q4DO69ehlMyEIriQ4ntMwuMPPsRb57PPXq7PFSQLUGk7TIzDGCCUw30sSE7K4+sHTLstiPL0k7+gWrga2AryXF5ccby5WxXREuSDC0MpvPfeu1xeXq/Eh4AK6vH02goKDeaIOc2MZpnt5gp4igihBl/XnNC4vtyxHSfq8RBDh+JvFNrXFw8Qe0ltHVyRlPE80pswlQ3KhquLiec3L5F0ia+fUTXs67t3Wo/omvVHUxA8F0xHxlIomwTNaBV8aTx6713cZlQTmmPA8dmzV+gwxg8QmA8HVDPHw4lUNuQhk0m4dZAAbhVjTDAf9mjeotLg9SvojunqYmAJWypXx8qDceDkBzJX4CNTclI78OR6y2iJV/NAlZGXt69prTPMjfHyghfLkdych9NAve1cTCNZUzjUacc1wLuSUgz7eaesuN5UBi6GmSSKqjCoouIkDFqQviYRQrOdJh6/twXvjNM1t8+fM2wSvVaGQcg5xa8aEFqR2Jew2OvzuIVUuBwz01hCvS2hTDdJsZf1zjSNuEWESbdOd2M7bejdcBGWbiRRDnOjaiENTuox+NqsQzswz07WxIU4c1IOrbPUjudETomry2umElb7cE/+KWMu2Dgwz8v9SG3EO6x7vKwA6r2zQVKw1piGEcbEuMkkMq1XRJRhM8UZWAqbfIH7gVlmemt4FUQLpELKheVwy7Nnz8iacDrLcab1hlnY5qsbOaUgib2TZVjPg471BiSaKWQlDkXDaiUlpaiGa6Ib3jsuzqlXNjn2uZTCen9/yhznOJdiOFQQT3haI2XKSErxpGfRcFgEvHXICTFnlIjPqQ4mocxWQsHv7khRausRsTAMEUHjQutKTnHm9tZCTb+SGI6hKYafEwlNgkhi2BTUZ5CKzU5fZmiNvjg9CUULEQsCLvEe4d1ofcFEMW0sCGVxTDZoHtAh8fLuhtQ71xcjW4STnXBTRk1ka/SmzKmBZDQluoSTYAdmi3gGvDOkgTofkbGQhoFUMladbBVv671A3pCbzRzUSBprzP3eqdCotZO7M+QpSLkygho+L0ibUe/hjGEdPOJRXBrmBiaoOL44JikcHDSGhY2Om9NrexOnkpKuA8I5OFuVcHPMKaJ2rMWwsQY55KQ1ZsODLMpxjjj+5uzRpGtMka/nRfxccUXoiMqbM8pMOOxvEXHubuDF8y8Q9XCGMcJtQBLTZkfWTHOQnNhtLynjlufPGvN+ibX3xjrmXOf66+un2c9oyjx5//2v5NDT43efsLu6/tL3M/hXb0+YT0d+8qM/ZffgHRpy7mfO/cy5nzn3M5z7mXM/c+5nvtr9zJd66Ang448/Zp5nxnF825dyrnO9qV//9V/nz/7sz/g3/+bfvO1LOde5znWuc53rXOc610+5vvGtf8DuYsN2u2UoY0QJpFDQpYArV1AuXJlWGV04OLmHFTCsf05XIydfyQNfxZGhxFRx3CIz3cQjw10U91AUvZHuKqQRtuMWXwStQwDmS4V1mAmUlJWhFFQTp/2Jw7M9UjJ5yFhv9B5gSCmJpLDZbjAAN7AZUSUpOAqyIBo/a9oWJCemZBSHbB2WDsNMyx0Zc9g/R0j9G+Bd7tFLAvi3dQBMPFTPiIKFyq6bvwHPqjXMoNUeMQ89YgYC2gpr9xIMAKk3pC24LevQTwPrMXTmTqeH0t1DZd1apbVKyZmcM1PeoBoKS80JJ6yfBQmAyqG2yv544Dg3LA2UTYC6nBYaAWDgYEvlVEOJe9RQUqbkfLGEUvEijyhOzhntytXllkEFkc7SnWPfoziP+8JffvoZf/T93+f58xu++OJzfukXf4G/993vctif+PTpp1QJm+hMgHwAOaVQgCZDdWGeG5/8+M/5zj/6H9FUUIl7u3SjWkVIZAVUyCIszbHe8JzRVjkdb+jzTAHSkEnp3o67BxCumWm84HA384d/+AP2tzfrvY8Bv93VFZISSZVv/dy3+f4f/RFdggzq7hyOB6x20mYkua/xHKCScUkYfY2KiLURa5X4GQoNW9Vu9kZlur28IOdCGUdMM50WCk1COb/Z7EIB5xprc/03Syp4KSy9h8ISQ/pqJY7Q3YPQ0BjqIyfUhHG3DXWf9RV4XJ9vLUzjlquLa26Oy/pIOGCoJB5dXzGQONrMsli4ovnCcjoy7iaYFFVjTE5NjpYRTYUsxnI6sbQAlq21AMhVVwt/pQiUMZOyYpLIyTHtzK3iCna64ebmjrkaaZq4/fwFOQltrpz6AU+hTEwlYy5ABumILKubQWPIBe+d1o/hBKEjXYVmAjTcKtoN3xS6H9jkiM1RhUcPd6DG9ZUyoNy9LJjBdT1RamX79a+TrrZcLHtuX93y8PFjJqC9+x6SMioRSbAZnMtdR3wkD0FeSTvRl4VyMbDNBwRjyBMiTtZOm1uAcsuMaqaKk4rx3nUhuXLXGn2TKWPibnFSyjy8uoBU6ZpYlgYpUxXGlBHvqDUGKTy+HHn38SUfffIpIhnu42/cscVAjeqdYRxRM7wbdV5w4LQ/4G7UFgpO1YiqPLU5/rsMiIO2zmbIpBL3W7zSe8Wtxhm0zOxv7gKUzaGq3l1estttgiTJRxyoLfa4nDI5BUAq63ObkzCNAxcPrpBmzKcDc0147/R5ZnP1AJEBl84wTFw9eofD048gJXqbGfPAtBm5ur5CSbxuRy4uLphrpS6V03Gm9QBZRdZYCBeUEnEhK4G3PxzZThu2u12AzS4MqVC9YKmxHA/QE3mzRrsgeFeqR3TCsRvToHAyFqsBTosinlbL/tX8EMEwXB01Z/EFt4hHaD1YJwXM49wXt1D+ir6JSYm4AFtNG51aTwD0LmjK6Er0jKqQAhwXgbaE8rhbQiwicco04B0OzemLsL+75XQ4kEQRdbIaOhU4SuxtmnEiNqV1W8nIeC8xcV7NnY0mxrJBZUFTpi9Hmp24TBltGQQsgxbBeijJfVno3ahiHHOi0TDv7EZF1JirsCwN7cYmTTRP9B6xJ/FelHGrJIVhLFhVtKz/UBM0pxXoj/jY5XCLk3C9YhgGEhIgfzMkxemPhtrcPaJYlHCuyKPQzEgI4j1U0s2QexcUwrWiuYEbVRdUCq11JCU8sitQBZEU8RyieOur44WD2LpOFUToBM0RqTRKJ97jIuZEUHWwlR9WDRJZYw2pCNwr9ImoHOtBaok4bdmzmLF0p3Xn1YtnmFlER+AUjXfKc53rb6qfdj+zvbgKUvYrKAD+/0M/I19R97f//J/+A2V7zXe+94/P/Qznfubcz5z7mXM/c+5nzv3MV7uf+dIPPf32b/82v/Ebv8Ev/MIvvO1LOddfU7/5m7/JP/tn/+xtX8bfeeWc+bVf+zV++7d/my+++OJtX865znWuc53rXOc617l+ivUzP/dzq5J2HVDyAP2lx3CJm0PyFSxbFZQhogzrX7dQ2LgHYCgBCCjR2AoB5C2eqOZh6y6hjHEMXMGd5vJGEVp7g11i2m45tUoqTspOHgqQsLniawO5DwSWDRnLlVOtHA9HEh2S0M3wpTBkYe1vQYP4UA/LcgdKisGoIkZO0czqCgLkIeN05rawsYZ5KKfulUHmhLLJdVUHgYtHQ42tWfSN7vF3mgWwsiyV2iq1GrUvqIWqzVVJK3CLd8QbcmpgDZFo1e+/K/G0/isLrQXIG05XHUVIOVPKwFAySaA3xwjwQH1VZbfGPPcIpLCwBd9dXLHZNI6nE6dZoIdSyj2U2/cxFYZDyoxlQChUySwkFu8cfOF62DLlTBlhqQeOh2NYWvdGKZmC8l6BF8+f8ak43/2nv8CHH7zPg0cPefbFZ2ymia9//Rt8/OlfrEBEWnkqJwmhNBSH3kg68PLFc+5eP+edD75JWzodI+XEoErOypiU2ip3+wXJQrKG3d2y1Iq3E5tSAANd6F2py4K5sL24ZJh2HOaZ7//Jn/D85fOICAwpPCLCg0cP0aQoyjtPnrDdXnB3+wrDMBFaXbjd3zJuN6gIWTIgJHHcnJYCbLn3SfMV7E8ibDabcOJqDVuJh4urCy4udqgkTqcFXWMLViiNaRq5fHBJHkrAoQ7mQUZITqiOAQytYKk5qz04JBeKxu9BqCZTUjbjgEoAje62qv7g6uqKVDIXlxvk2aqKXhep4wxjJo0ZKmgWlnnmtIfT3S1uR672C9th4tHFyHwyJBeGnFCEWgbUBbGGaaiQx5LI48C+OVpS3GOUnoUmsN3sMAZ8MZZjYzmdMIx2Wui6qh+tBVAmwlQSWQO46kSEgmoMNIrA5UXicFrwVpm7YnhEX7TGYT4hJTHkws18yzsTfOPJJeOuUbKiw8QwDEgRjqdEHUZu95WLYURah42QpsJUhbIbyMAHlzvkckcuCTve0j59wbd+5uu8Op2Ybvc8+ea3kTTyo09erCpI5b3riasJunS8OykbS2vgjWXeU00whQdbxXwiSeFyO3AxGN4aWzGaC4kJHQc+f12pFs86oiiZkgbMofVKEuNyV0hJ1pPB1/3HaFbJLqQho6IBkLOGn6rSzVjqQpcAqiUppRTmlURIGqpcFWW3m9htRkrJjC40D4DUFaTHWjfr2FxpZowpczocON3esL/b4zmTciZPG8Y8sNttadVoveIWqvuSBzQXShHG7cjrly+p88LV43fY7HYkLShB3i2PHvLpZz+mVSNJjtiL08KnH39Mq5VTPeB1YW6NLIneO4PmUF+vlHoe4jlKvWLWkRZOCHf7PWksTGmKswOFFPEzSSqn/YF5r6vlv9C7kVSpOKUIJYOYkmpnORlZEmYLORcqhrkCSs+KakbVqb3S20yrjXkxZktM0xSDAkkxsbjWNbIopxSqXHesd1QdlTXOSJy2Enkiwqk1NMc5r/fkSM4BfluLVWMLh7tjqLyPJw6nA3g4VuQCklfQeXHEld4bzY3mFq4BKUN3yqSUKdNM2Z9mDvOMAReXVyzHPcmdMS3EiZlYZCW0iJ+1zD1InKKYNXo1JBmiQgKGIdO9IdmgL7S5Yy1A7o7hS2NIBcmyqpQVWwIs11WRjK36aO94h8YrUmrIdInNR/p8otUF6eC+uqqgQUwaNLGI61INgNvCUUWwuHbVGNDwOLOTJjRBdwsFe3Osz5BC4dwbIJ2UlNZ9fZeL62f9fmPdJkwzsjpKQJy9YivZLbxR/oeLTgxASGd1cckkTeTVGTPJOgihMDfjVONdQtTJOEYnSZx9hoLpejae61z/z/XT7me+/Z2/zw+//0e8fP7sLX+yv/ty+NL3Mz//7W/z9PPP3uK39HbK3fn4P/+Q733veyTN537m3M+c+5lzP3PuZ879zLmf+Qr3M1/6oadaK//qX/0r/u2//beofjUn1r/M9YMf/OBtX8Jbq+985ztcX1+fh57Oda5znetc5zrXuf47q7QqVWSlAFib+/sMdEmhsLnPQFdZB2DQUCMhuIV7zz1IFJRDqKhFIauGnb4F7BHxdjEQ5W+kNCsaac6pNm5PL9nnO5a6QHMaFqobD7ViRCZAGRPFBR8H5qUip8bxzqm3B/q8IENDp4WeS9gYe0Rg6JAgjzRdgXRVFEctQAGVFJfkFg5TkuhLg61h0lEvq8mTINqi4ZX7wSqjd8MMxHpE7bnRzbDamXul9RoKZoOcMps04KmjAr0vaDXwGqpnVfAQX5k75pWUEmYrnGwLrXZ6ryAZzYVc7qM7Aqw1WRVOGs27W2dZGksLRyx0YBwSqazKXBF6V5p1aosGfmkRA1JXNVrKCasLdWkYoYjrSTlmYTFn8oFTq9AX9q2SrJNF2U1bdpsNY84oFXt9Qz7uuTjO+OGO17dHfvCDP+bnvv1dvvaND3n2+ef83De/xUd/8TGsazDhiDfMOkmUIRcW6yCZWhuH1ikpk4GhCOMQv397OgIZSqIvB3qdoVUSxna7JY+Z0/6W5VTpvSO5cHn1KEC21vj3f/If+eKLp3SrGHAv1lJV3nnwMABLD9B92m24vXu5Pl8xYPbyxQvef+9D3iAtK4EgGsr3UgoQzmi+Ooi1VkMJ/F/ZtosIF5dXnGpFvbPMp1CirUC/A5fXVwGO5hyxDffEgwulDGgKu/nsiiTeOIDdY1OhqI5r6KvebhynsNJXcIt16RgPH1yTIxuC+6iFAIs0SDJaEFUpUUq4ut2cFD8mhgw/+A9/ylKNkqFgmEAeFG8hwnE36txi/0lCyZnuIJqQnBlFwlp+VXZvtju6df7Tj54i40OGFM+r5JHNZkurC26VnDPXSyMPG1JSjq2B2xrxETGKWQuPLzP9VKnHO/LmYewT7mgpSCp4HpG+8GiX+IffzDhCFadJDlW1QCojNEP6Qrl+h9Ny5FKd1ivDfICb16TeSe7Uly8osrDYkRfPvsBuDnzt/St49ZKXz58zvf+QDwfhbkjMeaSdFvJ4yYONIJuBw+3Ch+9uOR4W5pbIoiy94R3Ule6JnLbkUlBvHDsMOTOKs7kqCJUvbhTXaVXUV+x+X0MZFuO039NaR3NaIx4Ut4gMyDlhtSFLg9FjHWoKwsEU6QEmN3cGDejcJBShSJADELb1u+0m4my8A45pAIaK0FalqKQgjyQl0pSZhoFWMr0ttPmEi9BOM+OYWU7OYf+K3jriQh4nNlcjV1PECAiONeeY9+g4cLq7wwjCqLbK8+efM58iZkJc6LVxd/sqFK+907WTSkGbcdgfqL0zDqEsdY9nuxP7evJwvrAc52NbKq9f3sBDZTMM67MjmCl52jHoSD3OuDXAoFfmJcD8JANtgZQ7OQtDCh10c6j0cOHwiMtILWOa6MnJtu41AjkJJMN9JpmyGLTeUMnhhKISDgTdwKHkHEppi2jbJB2aB8CfhF6BrvQutB5na9GIC3EXimoQF8qqel9IOa3Xs9KkDqkb4yhQ4HDM/Bf23u3Xsuw67/uNMedca+99LnXq0l3dbIoidaFkSrKk0JKQ+CLAQRAIiASpj6+tAAAgAElEQVRJgBg5ECAZCWDrJf4H/Gj4D9BTnBcnyEMcCSASEDAMEbFDsaVQtmmLksybxKYokt1dfas6dc6+rDXnHCMPY52iEzgKYokstWsPoNGN7uq9115rrrnW+L7xfR+9BwmvwlwbWWGUWGMXpxuExOVuh/fO1dVD1Bp3k9H6DrFC0YFBEl2UZtCa0d3IRWCo9H2KYVqDw86oGIkYhk4DzIdKm+PZnXOC3rEEqcTmqQhzb2AwjAK5Me1uFMuJJIluHeY90+NO3R0QN2w+AE4Wpdry0L/ZiyWiH0QT4kENujruNZwbRYip8mWow8GlUXusMe8zSRPdO95DHV+GAg6td6bDTE6CaI5nnzjdl3e+1Egaro5xQCwxI0FMR4ytL4Sd0X3RZ6vjKM1jTfTm9N4g6GVyUlLSiNO1tqjxFwIisdA5MTjxLEZZHev/X/1Z9zMiyg98+Ef4jY//k2du/b0b+pm7d+487dP01Gr7+BEPHz/i9PzesZ859jPHfubYzxz7mWM/c+xnnuF+5s/90BPAxz72MT796U/zIz/yI0/7UI71/6h33nmHL37xi3zwgx982ofyLa9SCn/37/5dfumXfulpH8qxjnWsYx3rWMc61rH+DEsXBaMujkvRlIY6UxfFZHLFvIMkzD0UhB7NqLjji8V1NPTxGTdqSyUFuNmXWLvAAyJhbvkeIZpN9OY7O5fTQ2wdyhtroZZrbVH/eKIZyGKfr4Rtf1kUknmVaZtTpt2eaT/ReijyUoe0GpF1IeWBkjOCo9JJbbsMZWmAYUkwFfKwYehGGld0AR8UWsL7YpNPNMHdDLeKmWMuqIXaqvZGrUarHcTw3hGi4S8q5BQnw62iFsClWJxreRIt4cu5Dwtuw+iHTq0V805yGMYN42q92JwHyEm3UDEurk7mcKiVwzyDOaWMaB7I42Ld7EsUHeFw5ep4F/aHA/N0wLyjOcgHM4s1QQ6AO2U6zuGwZ95P7Oik3mimaB44XZ2w0UzGOTlZkVXJycEzp6vM+8Y1X97u+dy/+h1uvfRt3L//POcnhe31I+7duc3hMNPt23j77XdobYdL2EOXksliTHWmuXBytuL07j1GiWGnXAp1PrDbzgHod6dPj7F5R06hMBtO1uSkeG+4GXWeaK3z6usPQAq3bu1wTTx44y3efv0Bbm3RLLOsf2EYV9y6fRu3UKGZGLfOL3jzwav/1j0hvP7Gm7z4vmuGPJBY1MM43UNpnPMYYKgZHScRqsDWiSHCBSfRpJydX1AbiCwxIt7je1wI6/sCouSyWgYRl4gJYFyN5BTkhoqQVOEJKeA3KRcLlLPYkRNxI8iior7ZREQYxjXdOodpjthH6XHfc6MINJKFEvH85ITT1Qllc8r9W+/HD4/57Bf+mNv37vK+F9/Hoz+4ZErKoEJLiWISUZitUUVwjH2tkAtJcxAoOZGyIr1j5iRXequ8/tpDfuQvfzeb9QpS7EgawkzScq7efvSYt672dJPFuSD2pJQHMo2cEvfOB+reuJpnTm8P9PUZbQ6CRmtDbGI1JN73/MiqOFc7p2cN8jWHVj1J5+LknJ/+rvfwv37qq+zuPs/2ta8wmDG9/Sb98pK0HpBHB6o6HCaaGH5yBusT3ni8C4XixW3eeustZDex2Ywkzegm3OxOTjLP3T3nNXub737vLb762iWIcv+FC1ovdBfu3b1FkoTmTLYWLnsOU++UBMNonG46or6sCyOlgaQxNDok5YWLwvnaeeVqj6aE93CAa6q4aERr1I4uSnvJCS2Z3oPoqdYj4tQcmxs2b2mHiNHU7AvZE6RYliWOUzJO/P++EG9PGCsiOkBUaN2Z3cjDGLEn2hBJaBLMjEOr9GnisD+Ag+4eQz8gvZNSppmx214x14nH1++gLuS8wiWFWh5lNY4cbBkQ9UXl687cjPHknDxkejUcZ8gDora4iISrSJsbm5MNmoBuJA31sXVnnnZcXyvD+R0kxRpyN3oNkF5P1litMZCriT4fSGoMQyfJjEwwNSLis2SSKc0Fejgcemuodbx1UoKyPOtNIZdENwML4qbXAy4W0Q/m9JZQhQFHc4loVFG6EkBvC7LHveGmyPKUVIE05ogmaY3WO0YCFVrrnAyZwzTFPdrjOVOGTEqdpkBXzGbcMqQewHFPiMczddhsWK838fnLUPV6s0YT1N0j8mxwEIaywRCmbrh0ai3UlsA7OYW6/GoSenc2J0J36C0h6jTv5A77K429E0U1HBBXxTHPpLiI0BflsTqzQ5sklMkCzA084nokZbzPtD5Dl0VZDG3J7jALlxUs7iXVGCSnCypB2KEZMQOLoXOAhocSfSEsPDic2Ne0xDuGgU2xXzY3hBZvbLpEpXg8m8xaqKWthwvCEgWheOw9CJ6gOWiKexVbCJ4Gphbvme6IGkgcjONUj/c6RBjLQPNGJFjEUIXYQk+rkfKfvTL6WP9h1Tejn/m2b/8O7t57nrfffHYchXwhxP+89zN1Ge7Z7XZP94Q9hXJ3vvh7/5q/+MM/duxnjv3MsZ859jPHfubYzxz7mWe4n3lXDD1N00St9WkfxrH+HfXVr36Vl19++ZkcegL46Z/+aX7oh36I3/md33nah3KsYx3rWMc61rGOdaw/owo7Zg9bexXEovkLFVeoUjoeDb0Z6UadKYpIAsKemCVUAglYsS8gYkJImgJYXL4LEVw6IIt6R0mSyQqkjk+N7X5HGozdfqLXSptrgOuZJyBtdNyLlGaBQEUKpUA+Hxg3hcPcqS0UVCKQS6ZkJZmjPVSx1o0uDeuOSPz37g5Dpqw2jOsN43DKUPKiELewLDbDWoA/3Rru0Koxz43aKq02zJ0koQgNECshRDSbWke909scAFHrsCjmFsoF87BZtl7D5hmnG+SkAYIscW9ZwqLeLOInYsisU8041Bmbw/I8lcRmc7qc+xh0Sir0vrhwEQq1aT4wHyb2046xJHy1YqoT8xzDa713usV1btYoVUjrFWLOoVcOhI10csGArgaZOA/uuMxgSm0HRu+8uC68fXnNwwqjdnQY+cxnfpfv+/4P8QM/8D188hP/nL/wXd/JH69XvPr1V2jTRHXDujCbIapoGrn/3g9wcXrOaljR5sruaot5C6V/3WPTPqIyFFbrU043K+rc8V7ZTlfUaQZdM5ytWW2d1/74j3j91dfpZjRr9H4zqrfcP8s/3Lt3F0kDh9ZwUdShtRbq6QXSdHeut3v2+z35NLGIC5+A8bgwbFYgPAFQ3QUdRlyFoolKRDSuysBqvVpAusRcF1v8J/dDqCyt36iZgwBIyzW2blg3kgsNmGmICtblicotEeBxtU73+N11Pz9Rd4YKPL7zervlsN+zP8wAsS4R8DjX6s7cZ1xjrQ5D4erxY+6+eMbF2YvYFx/w9bd2XPsJqgNZYm8asuDNEBd8GPBhRd0fFi8HBzHkJnoiKdobgzht2nP18BF37q+5WAt+lgPMXUBnd4vjwmmnJ1w2pe12ce/5jIpRSuawnUAMpXG2hjceXcN9JyNIGZjqRPfYM2+vEy9clDh/akH+LRdZHNQ7osL3/Uc/ikyJj37uVfqLL/E9tyt31mu6XVCrk1WZrdHMmWujV6FVY98b3WDIiak58+lI6UZrQnUHn1F37t7KXF4m7t5akemcbk45P11jXnCEISXMFRWPyBnCTj4tZ1UkUZth7UDRNebQm6FFKWVkzFCnx7z62gNO1oWbzJAwzTfmWlFgtkaSxEoEFidzMwtwdIk9waF6x90oMoa6HcFu6KnlszWlZUg2iD1fVJhpUUkLLNcOvMXeFJ8Tv2wJ11nW1MA4rvB2A0BCyQOSlNqX6BBrQcrOvqhAJzQPQCGnAdVCLsbcJzQpZbXCrUBqlKEgCCebs9iv2wwqHA6Pww1DjVwKm/UJ87znsN+BNdYrZapgXZh2Ox41J48r3I25TYzDms1mhaC4JNyFnAQdAO00MwYRxKdYR9aYJiXnFV0Vs3BdvHW+ZpqgsjyLtDFSmbeOS0II9e4wDPRUMUnYFPRiah33xiROzhE51Ak1e0fo5kHWWUS5uOYn92gSjQipBO5pUd4avTsHpgXQNgyhFI1h5+TUWbFm1OoR1KKOAuaNsWSGk1NunZ9COzCuN1hPHGqQPtYb2me856ArbIjncAYXo7cgMVPuEU2inZyEnJVVcfaz0VUpmpgxem9x3C0iEkpRkE7OCbFEc0e00MwgBYmR4mhJWSMSaoiXq1jH8ZkYaIkYmiw3SuB43+oOKYfrgPe4VxKKa8ItSKphEKap01oMBrgGydaWZ4ggpKS4LHdRkoXAiXe2IuC1BBnkHqSsWTh0wvKOE69coc4WsNhHG443p5tDz+FwsMTsKBrvl7oopW8iJ2gLkRDPZkX/by4jpkLqodKOV72FsDzWsf6E+mb0MynJM5fE0c2otf6572dOT0558YUX+NIrrzzlM/Z06sHX/phHL73ErYvzYz9z7GeO/cyxnzn2M8d+5tjPPKP9zLti6Angrbeevbzod0v9w3/4D/mJn/gJXnzxxad9KN/yunXrFn/n7/wd/ubf/JtP+1COdaxjHetYxzrWsY71Z1Tq3wA8Q90shAeTBsgiRloUl4gtILcE+L1knj+BTZc4hBtFL+6L8jKaS1nswrsQIBWQ0LD3Vg01rwVAcXrvjKYHSg+QPA9CSonaKza3J8SGkphbBVrgUNawymKxr4zAkMFSAJvWJ5g60nsoUF3woqRhRRkGFIUFqMolkcXJ3jE7YJyEoqt1WgXMqD2UdjY1pmnCaqMjyOI6NRDfm8RJhPotnI0bSDT8WEVzxsVRUbp1el+slTu0PiOSGIaRoZTFLntR44U+N0AzM1qtdK/M00SbI85gNW4oJ0PESbQWf34BA92cZqFU2x8O7K47Y85Ijri/cShMsyOpo5IWYDgAgdYtACInAGagtVA8DpJIkhEpdHdqd2bpJG8cpDL2hPlMn+N67a8rL5QN7xz2vPYHX+GlD36AD7zvvbz11pt84pOf4KWX3sP+sOVw/ZgPfs8P8Jl//c+ZaqOocnuVOR8L+eSckyGRk7I9HGg9zolZhekA8wHFWZ+cslqN5KxkVQ7zY7bXl1QDLyega1zg/ovv4fatuzx++BZvvPl1to+v2fkcZBmOLcrmkpSL27fpreMSTmWPHj7iweuvx1CfL4CnCLTO9eMrNqs1kbug3Oi9VGGzOSFpZu4BYIpIgPyaUE03mA7r1QrJGevxmdZt0YcuSjicOk/UNmM9QNuOLEAwEV/YDDDMBc+KdMNMuImVMPcFEKv05XNbC1Vf3PELOO/CXGeaGa03/u24ShE42WxYbVbklMFgss52t+X64SW7q7e52Jyyr063Pc+NxpvWEB1CBapC1SAqIcDVdnjyK5Z13wMONl8UgIn1esO0vWQzKBf6kJwfk0TJeQjVp1c0Kc2UfR4QEu4ZkRb25gLSG2nZHS+vA8Tb73Z4AxkzvcX9mpIi5nzniytevFixvTqQh45aKCvFJBSTHRqVr//h7/NjP/1TvPbW/8An365szlb89b+iMB/YXTnDKrHb7Zn2wnY7s99Vds2YpszchfUqMU3GVOEwN6aDc5iMcRwYVufMc6N14Wp3oLpz77xwkmecGbMEpgzDLVQ66m25loYnSGnA1dhOA+M6IzX2Ok+x/lycQ6384dff5nxzxu27p3SzJ2SyesdqgOf7w54yDHSLtR/XyjFdrOMX9z93p9aGuZJTorRQ/suy17hL7PsIs4Fb+AiGTX1imZaNIU4C0BQLQqATqmhRJeXyxL5eNOGpRORRfFqQDKpYy9RWwSwikDTF+jdbTEME1UJKTkqOlhW5rOl1xvqEtLKQwkFmaBkjXmQhBWuvrM9OEDqljExz43rfmKwxCjRP9FqZpgO+LagkyjgyrjLWHfqEqFIXEp/lWY0qOcfvzlZJ3ukC3WZqd8wTY8rstk4jgNgxp3Bd7GA20QGjkM1QLRiQNZFXI7UGEWG94kmozRa1vIA1PCWShrNjzoJ7Iw+hfq61BbtphpkzpBh47mYkTXhrGErvmawz0hu4Ug8zc5vpkunmjKokt4i0YOBkdcpqnWlTZZVH+mQY4ViAC14bA4k1UAqLo4vglpjmBG6sNwmzjih0n2EonKjw0u3Mo23l649axFos8QTqEnu3Ki5ByDcTus0BaotTcvy31n1RS3u8x9ycr6wRx9NjSEPG+GyrjckSucRwd4D5Aayz/NWtIykjKe66JEY3BU0kiQgoEFIRdIm6cDesO64NTTkU1O64xxUPFjPidNwMQZi8g0d0h2nEQqgH2dx7R5fd0SWeByUJLGu89057Qo6zOApASrLEB0sYgCDhGuOdrIvbZ0pBES7RPiyK7m9CGsSx/gOrb1Y/M65XT+9HPYVqtfHw7ct3RT/zwe/6bl597TX2+/3TPm3f8mqt8rWvfoUPvP+vHfuZYz9z7GeO/cyxnzn2M8d+5hntZ941Q09//+//fX7qp37qaR/Gsf4d9fLLL/OzP/uzfPSjH30mB59+4id+gg9/+MN8+tOfftqHcqxjHetYxzrWsY51rD+DMhYRnywgZrSdAWKzkAZy06hqDDR5NIwiEvn1C5AmSwNudqNUS2jWJxb1hMhswQ9D0WYaAzPR/yZEMpiQ1wXcGExJOYCGlJSpdnzTaFMll1Bltm3YGEcEQqVmodUWgEQziiRaDQVOTo7kjA4DaIdFWTzkUOsFGAuF5UB7g9YgReTbPO3Z7q7QbdhYH3qD2fEsSE4MmxWDKOIN8Y46qBtJApBVNEBcCYWqStg5hwJJsF6pc6N1I+VEKQOnpxfkMtAswGDz+F14DxUSSm2Veqgc5hb/33DKyVleVFkBxIUaK2Me5ELr8PjxJVOdSSmzHkdun21AYK4zh9ZJXQMkIqISWI5T0hIf0gxxox4m8lBCwWoeVtbSwwnKldY6Ww+wYc2AVGegMHfjeurcOb/HKTN7jB87HXjltdd4dbPh2gRvjT5P3L13n3v3LhjVuLi4w6sPXmeTjTubzHRofOB04Pf+ze8ydbjznvfCPONtQtoMNjEOhdPTW6SSwIVpv+Vqd0WtjaprLOUAllrFVFBJ6KjcfuEet567YJpmpt2WNs28/dYbPHz4Ns2ck82Ks82ax4/eYbd9TOuNN15/wDxtA3AXuFG6u3em3S6GzhRE4/oICaOzPjtlGMNVy2BR0wdY9t7bG/LtNa89vOT07BzVEpGMAqlkAkoJBaNCDJu1zjRPAbYu/00Ix7MYQFyswpsh6mQUX2zIu3fcArTJEmRHSjkc+BcA6IZW3O+nAMw1gfg3AB3N3Lq4zXpYxb1vDWrl1mrg4vl73L2z4pZ3pt3E5eXrjO2aLM6hVUpThpRRbxQJu/0+FG6iNRbIDkQCuGsdd6ekxO2Lc4YCq5PM9SR89dVLzk5PuXP3VqxNBcFwg50B6k/U37J8XimxP86TcXkwbq2VMhbGW2d0E9Q6vYV6PGkMWZ6dZK6vhJyGUMiLo2KoFPCGCHz233yWe3cv+M//xs/y+n/3P/JvHpzy7V+c+fAPjgxjJ48DZYB5MIYxk4cJ24b7XBJnPQjdYAayKTYE/XPv/ousT97ky6+9w3Z2PvvlR5glLs43FAURQ8aIBigCK4n4mkyiSY/1JBnvB/a7TtFEkxbqcXN82U1WqzX5uft4XjEWZVDYmyELinoTH2Ct0/MCKlun94a74T1iGZr1UHr2Sm9G7RMCrEoJUNGhdWOaJ4Yc31+704Unqv18o7JelNAuQQT2NuM20+dLPGVEb8FCSnRfrrUuJFf8a9xhmg/spy1TD+e+GwW3meO5RCRFclTyk+tp1ql14nB4hLjRbaSUEuCoCHPd0b2Tyoo+7WIP9XBG0KSkMnDWDfUK0iNOyJ2cBob1mmG1Juch7tfe4vlrBq6YLpR+j8fVowYnZeTitLCi8+Y2iBJv8efqPFHVaD2RhxPSaoM3ozbFyMEW9JkGHHpF0oAWZ7bYCyKGVsmxCcTvbXHMWIek2BJbMCRlHGF/MNQTTXuQmprDdUWcdRG6hFPf9uoh9IYmY6oHmiUmd4zKsJzzUgSpDhROT07iGvSKehCIh2nCpi1kYdp1sjdWgzOo0ucS8T9ZmV0YRnCD1huqidZnJuvUlLHU+OqlMnph0IkmSu+hFDYcMWMoEY+LJxoJyaH8l4X8CBJfaV6DuMoZdwkVfk70VmkLIQYx3J20RMSDG8MSTaKiizMAYHVZk+Gkon7joGLkoovbhpNywnS5R1RBPJTfUigl4rx8Aei9h8ejuVNQ5m7klMiSaG7x7nXj8eGC91j3SQXvYfsQe1M4I4gmSvoGqG83RIM71kOPrRLvCS6OSQ43F+9kS1jteLrZ3mMf8N7p/U/xonusZ6K+Wf3M9//wX+Jrf/Tlp/fDvsVl5nSVd0U/c/+55/jrP/7X+N//j09wOBye8pn71tebbzzg8tFDTk9Wx37m2M8c+5ljP3PsZ479zLGfeQb7mXfN0FM/dnN/rutTn/oUH/nIR/jVX/3VZ27w6f79+/zSL/0Sn/nMZ2Iq/ljHOtaxjnWsYx3rWO/qGvIQ7kVmT8TNogpewhaYG2DAMV/seVujpMh/7wv4sOgUAfBFm6m6uCXlxXrYBFvizmQBHRdNF65OkoIk6IdGawEohS13o1ejTQsQZIu7uKYQ9AyR/a6mAWSJkxhCdZw6tTW0Od4FV4HkdG0kTRiGmtO7k1XAPYD9MlBSIeUcoGR32rRlq4LXNToXsitJEsPZjd1+DaWhT0SevCAS9sx4WEN7iIfifJvTzehu1Gmi9xgAG1ZrTsoQkWyEmnCeJkQjFqKboG7UVpnmFoSBCKvNmrsXt6Eb3voSzyFhI30TEWCV3fU1h/1ENaMMhfOzMzabFVjY1SPE1RShWmd/qGwPByQrwzAyzTOpK7MHcAABFB22+4UoAjRIp+7G3I1REkMZGYbCyTBSUPbTFXtTTk9uczIUHl43fuj5e9i8Y9pPvKidcr7m8aHy229f8vo7O773u95PHgrNE5pX7HrlK48b5zlxmGce7ffMr3yO2xcrBs0c6sSYldPz8wA2UsLM2F89Zr/b0Uh0XQdwKYbi4Ib1Hr+v9ViD1mndaK0j0rm4uMVmvcFFGFYDu92O7eMtl5dvL2r3zlhynE9nWQuAZmrvTLsDSTWAWVVMAuVLZM5Pb3F9dRlEAspYMpvNyIc+9H6sHpj8PTxoK7SMCB0TWK/XJNFYdQ5uxlgKCaXVii8kRY9gF1ar8QnR11NA7jeKte5CyrG2RcMjoQhUM6pbRL20JxA9iLPbH7BcGMZv2HeDkKTzwr3b7PZbXjxz1gbppNCac319xWuvfZXnn7vHnQ98B/2rmcN6xenwFtt9WPq35GjKaAqXsFkTkgq+RKNk4oY61JlVKogKYyncf+4WV2NitR75/a+8w5deecTFrcZfGJ8jDQNhtS4MZcCZ4p5dbAtysDeoKGU1cPvuKSUbt88G0usTNCMCIEIErqKoJN657ozDmmRbrKQIWJAA6DQHGDgkp1H59Mf/MT/+C+/hZ3/yx/kH//Ov8/HfPefiTPnQh05J4ylluKSezZxsjfUaTteFy6sDSmJYCWM5sJ5XXF8bVzIzW+NkvOKl1SUP35kZyxAgvWTy+oKe1wtw79w62zCqUzSUxoiTJePJQAxrQm2OJgnlvsQ67GYUYkh0HODV199kO29iUJRQ0ZMSyI1teygtzTrXu2u222tq76SUURXmVpFu1HlPMzDNiBm1zni3UKp259GQuX1SmL3SOkhJmAQYigglJ+Z9PIXmNuPSwxVu/5i5GUVTqLDF6GY3DFiwawKo4Bi9zxwO1xGlYxHdY9bxFuSYd8Nyx9tEnQ/UacuwxDXUw2MwjXtSM4Jwsk5MtVFNmKcZ6UEYdoPDvKf2Rh5GUs6YgndhXU65s1kzLa4JETcQ5J8lhbSoiM0CrEWDOEBoHk/hxwbdEntRtnPHLcd93XfxOV1QcUxq/D5zminNM+KK5oZKAu+4TfTagjtwJ6VC0kTKcf6LZvqgTC0cEOc+UbKikpn2CZt7qM9zOP+xxMGMCbIaoyiX28rDq0usNVbJ8Rb3pnsnoQwykCONCmGma2IsI3gj5SAZ3I13rh5CC5Ip9T0X2ckOY8qcrTpzUmzKQd4D5glVY24N6QUl06syN6Gq4XWiJaWMcJgMzUpuLO9JQu891OEpFNZZFS8CZpQhU8bCNPdQ/ZsEKdUavTeSl/g9KchbJUhEANEe72BqqMf7giRliK+hdmPuMwtXG1EMCHlZx8KiyDdhbsRaTuHQIMnx2uP4rZIAyRFfEs4WHcNYjQNtrqRlcEQkYmlF4n3EzWne414PZpVucUDibSEMwsVAVEnqWPOFDBBIgHeah3LcF2J5to6Y4F1iDSz3pxAkyrGO9SfVN6uf0WU9PyuVUuKklHdHP7O9Rlz4wR/4i3zm9373mRt8OhwOfP7zn+WD3/H+cBA59jPHfubYzxz7mWM/c+xnjv3MM9XPvGuGnq6urnjw4AH3799/2odyrP+Xevnll/n5n/95/tE/+kfP3ODT3/7bf5s/+IM/4Fd+5Vee9qEc61jHOtaxjnWsYx3rT1n37pzSe2M6NKZuobJcrL/FwxY95UKrB+o8MSShdglbbReKdsxCc7mYOS0DTZA0kfMYDaILJqEq0puwcxFUNICSUjBVep155+qSy8Njzp5b4a3T5krrNXpRl1DzSaK70a3TmqOL1TgWVsWt2QKCaqjUsmG107uRJBpmVydpfKZKWC6LhFrOXKIR9wBMPMHm9BbD6pTcMqt5WOyRHbM9YmEdr740+YullUg4Irk1unmAO264d2rveIeclFwGhtVAWI0LZh1bmm73sD+nd3rrTIfGPFcQWK1OSIMwDGMAWUukoJRQsDtBRBwOe66u97Q+Mw4Dm7MzRDWiKoAsgqdE6x03Y7vdcr3d0zqUccVpUmR3zddx8sEAACAASURBVFxbXODFfr+7YRZ/qTV0LEyL6nu5yrgkJpyhNXKCXYV+mBY118BqUNwPXGwEscrOM99+ZwMmjJbZb27xz2vCysArl7CeYP2eD/Lc3R37tx4w7R9xoPGVh485tIY9vuTq4Rvcf+5F7p6fMpSMSyg1d9tL9vstTsLLBtVMMoUUYFZM4DneM8kbaVjh3v8tO3ueDHbZAlJ6N1zh5OSUey88HxbpSxSALXb3uqj/RBLr1YqhDGgKENmJAUAjgKbbL9zjwRtfJ7UAszTHWv8n/+JzXG8fU3LhuRffy7d98CLUZy6MQyFlXXAmx1XYnJ8xrgIGEW5M4xVR4ezWLVabVcTBLESG2aIsRiApRZTmi0pOE4MIpQxs1qfM8/SEEnRfnNocSh6fXHfFKZr4sR/7QS5G5V/89sTUDoyHh2wlImVqm8jjyDsP3uD01jm1T1w+vqSnDb1migTBkiSHStedNKyph+2izXakQzVQbwwlMQyZcSwcsnL16BFTvUK10+oOlQllhXWj9pnTcViiNUP32wnwS9QpJSG9ce98zXkWvu87b/Ovv/hH9GmPD6c48efi+jWudokvfm3PoHHuuoZK1HCSwKhGSRmRhJ9mfucf/y/8yH/5t/gv/ur382u/+QX+8b/MrNZ7vuv7X6ScJeTwiJwqmleMZSbnTLfMyYmi2ljtjJNcWO0769zYv/0VUt3xbRcjsyVKEf74TWFTlDunK5qDiLMZR4rOFAFLhnMzMBqk0Tw15nqgrDMOSxRHRz2cMKyDT5XtbsfVfkZKQbXjKmQiYqV6nJduhiF4Naap0lul+kTHqT3U7rVOoAlNguJ4cw5MJIVeG2+/U7F6xuoEIKGmmAdZkFJGgDbPocolVJRtOtBaZXvY4/uJcT1zurm1XKsgabsb4gGGN9tBvsPm9IJ5d43OMRQ6pBzgpCZEM94rrU20fqB6Q5lREmJC1oxZxhMYxpgK02Sxj3fHTVAZSIOTsuO9Qs+c5JF2AlNt5FJChd1nXKCb0siAoimec2LfcCdJOObEgDBKl05Bua43j1hhNkfEWKmT6AzJMRKmjgJtcQhQAUmQFMYE1mfUBmavgCAGLh33TPUcA8o91nYWwYZEQTFpZA0Hj5MxcZg6c89BFoguERKdrANDUqwe8NZo84yMA2ii105S4bwEsJ2YmclUc3QYcesMQ2GuM1aNnJyVNgwhTZ1bKbFJmYNX3ArzLJgVNiWUy+oB8j9uEY2RUqcT0btoIsVKo0kof8ei1Juha8CzYKJgKZ5j6RvREN2M0hNm4a6RVXDN4OEsaUBrjeXOQJLE8HUKl4yISmgR8XDzPjBH1JC6UZIhkulLioMXllgup5tQUGrt1FZj0FcEbCF+U5C3c+vfiE/pLdw2UZIYpZQnJCoSES3moWxG4sl+QwP6QmXHy5+TlneobhV3jSiMRb095HiGykIsmAcRoBrvTbW3iDsWj/c88eW9QuPPHfPtjvX/Ud+sfiYPhfVmw363e9o/8VtS4pXUtu+qfub9t25xdnbGb/7Wb7J/xgafXnnly5Rhzfu/64PHfubYzxz7mWM/c+xnjv3MsZ95xvqZd83Q0xe+8AU+/vGP8wu/8AtP+1CO9SfUb/zGb/CRj3yEX/u1X+OFF1542ofzLaucM7/8y7/Mr//6r/P5z3/+aR/OsY51rGMd61jHOtax/jTlBHA1KNY61RoiAcppzqShkIDLaQ8egFdOmakKqaQnyksQqjlOD7BJE5ozpELHUCFADtNQ6IkBCg6th11y7xMPLx/yxtdf5fFwxeaisL++fqLcViXsiw2KK00aKRUkZ5BQD3VC1ZYS4E6rc6joRJAMmNBbI4viKYUNuPpitW3gQhbFkpPLQD4p6DAwlJGSQL2y0s7gB9TDJj31TvhXaXzP0jQnFWrvtDZj3anW6c0QFVbjilUZKcMKwWi1PYl66B3M+5Pm2rxTa6XONeycx5GLs7OIK5CbxpslrsMCoO4RA3B59YjpcCBr4uTkjGE8W1S6QUQsYRG0HpbmV9fXiAUYfOfOHdyd3XaPWQ27/0X52G2me1uEhWnBCJwkSs0D3Zzu0CX+XmnsrZLbKiIDPWyjU3K29ZrcG7VV1ptzVsOGPCgKlAS/P028Q8G6cr1rbKcdQxlJaeD8xW9HeB99bjx++ADJr9KsMk87bl+c0TrgRpsrvr/kjuwZT0cmEa7bnv0kHOZOycbJOEb0QjOqOSSn5BGXAHumFuRMloznhCRlrpU6Q0qZVAoqYdvvy/BYHsZA3Tx0xNI7m/WKnAtIwqXTamWeG6UkkgqnZ2fc3my43G1DpazKSpRuArpiVycmCyXiZn1K94bPkMuAHHaLS4EwDEOomLkZQAul/TgMnJ6f0yQiKDOxFlptkJV1GfCkAUi2ALZTzrA4JZzeOufR5cNFGxweADkJI51b6yGUtB6K6lunp9y/s+a508KLFyc8eGfLJnWmvg/QtXUOh8p+e8VqvMOrX3+Nh493pJOBmjqDBwiHxNGrdXLJtJowd7p3chKS+aJsLwzDgCB062yv3sREKMnJVrFpi+RTXECSMJmznxtznQP0X2JbhABUz2+fY1fvMOYJ7zWIg7zGzQOko6DS6d64nhpfenPP9z4XKvPwiAhSKSUnD86QnIxxfrHmzVff4pXf+N/4of/sv+LB117lE681/qeP7/kFe43v+eHn0VRwqZSi9EHYlMxsUIpyskrU3UzPxpBgnY0//NI7XB4at25d8PbVxOnZiKYdrc6UXBlUyWnFQGdUW4ZRlWoN1VCiuwtTnzCbcSPs393p5osa1KhqDBKUiuQB8x7Dom6YN1xGREKl6Rbr6BsGckKzSnOYew+ppxuJvBB0ywAmndocW2JuHouTyxq0I5ao1mGCdRlIQG0zvTmHGnvdbVHMOphxqBPdKquyRlUiJqVHXKfhTO0h5+UONldyKTSN+MsxJXoXNCfIKZJHCCX2uFqxq5Xt7sAgoahPGlb2tmCmbz2ckKGQVyO2v6abc3ay4fz8NsMqRbxAMwYRppoYRuN0ldhvZzKZlIXVWphnpfZwN7T4KpQgazQZY1Iwp5mgmheiOsDbkgUdFJk7p8Oav/rd7+Vw/TaHw463LfOgKzsL4lA04eZkGXl+kzhfZcRnHl1Xrg7KlTvNEyYVkb5EA2iAvSWTciJnpbvQ504qQsNodNpkqCYcqEVp7nhv7ER5PE0cagUTau0UDSW+ilFrJ/dOLoXNes3BlO4sanKPyBVNjGrc0lDcyuICsm2dnJSE0wyKdkrvTNY5dEVzRhTm2mNvIQB5d+jWORikIaJ5sxqbdWE6OLV5xPQMAb5LCyKj3zzfUwEp8czUBB57Zyyr2Kvie3wZJhCMHoSaLz4zDkoClOTEO03RJYYklP3x5xwtGmQvIVS2FvvysNIl6sGXYYH2xE0g4qgsHAhcEYfmMXigJkxtRkwXIjiiiAXDXBENR4yb4zRdvruHq0jvtnyHhQp6iSFy8SeD4rF3EnsI8cyU7rjG+10XyDeRyAqmPXIljnWsP6m+Sf3MxZ27vOfb3s+XvvDZp/0LvzW1uPu82/qZF55/jr/yl/8TXv7N33qmBp/cna999Su89/5tShmO/cyxnzn2M8d+5tjPHPuZYz/zDPUz75qhJ4CPfexj/PzP/zw5v6sO+5mrl19+mZ/5mZ/hox/96DPl+PS93/u9/L2/9/f4xV/8Rbbb7dM+nGMd61jHOtaxjnWsY/171jTPOEJtRuv2BOypVvFekTaHfXfKYSvfPVRAzJAEE6FXAxNUI17OXdBSWJ+csF6v6b3hPeIOuj/RM8bfw7ueaZp5+OBVfFjz/he/E+9fxmqDJNAc+gKe1w6mVI1BqdYc5hmRsLIPG2un14rXaNxxp84NoYeiW4VOInmCTNg8ZyUPiZQFKWtSWZOKMo6FkgspKfRG9x3WBpKMeIfkAhoKo249ZOESYMhcK4dpovVK0oFhWDOejuRhsV9e3Ktqiwg/X1rybh3oHHYT01RJJTOuNty6c4ehDCRx5jY/kaKHunZp0NvM5aMrrrfXILBZrzi5uAvAWErYNnvH3BaQ1aiHPdbj2DfrE06GAZew/28tbNkdCXv+2vHeUBVSHkjmNJvpbgGM104bV+y2O0RCTanSkKbM6ux9oomyGUYkCfM8ob3R3RiGNUkSuShZhZwaXzoc+MQuMeWKesc1hstsFlwSWTOaE8N6zdmLH0A2p1y++nnqNCMC6p35+hHfvjnw439JOdHMV97a86XXL/naVaUdnPffWXG6KmzbzNWuUk2QnMkpoenArgrbA3RXViWTszHVzm7XcW+kXMJprFVscRqTpAEWeSjavUWcRBlHmveI/rDKNE2YdYZxBIfpcGBU4Rd+/EM8eO1NvvD2lvvna370B76dH/3B9/LmW1t+45/9Fu9cP+bRO29S7oVN9zCsKKs1fnUZim1glQeGnHAPYEg8wO/1esMwjGjoUGMdtM6QCxQNl3wH6xHFYO74Arj23jg/P1lswVkiR6B154X7t7l7Z41+OcgIEwfvfOrjn+S7P3CP++97H+X2Beqdr7/2RrgFeOetd97g7Xce8fhqy+PLR5yMxq7tmXtBa1qGDXuo6Yi1mDQHqbGUL0q6VBLr9QpX+NrXX+PBV/+Y55+/w8k6sxInZaG2vgDgznR9zTR3vFUgoluyCurKMA7cWglldYFdPkDrnk3JIEaf4ryVRU0qNci/525vcPaoCEUDLa4SbgnJMuPodBWwzEvvWfOVVz7H85/7FP/pz/0NXv8H/z2/P6342D99jRdfGrh1e6DnA2KQx0QdGitPaHaGImxWK2x/4NY6Y61wdvseL7TM7J17wxrqzDoZD966ZLMpZFXu31tU0SlcGRK6iB2VJEHwtmlGcMasFO2oLOr5BUBtHZQlFmAcmGv7hlJSCLc9j73ew8OfiuHEP7flGobhX1jNs6jz0XAcEI/ITOvxDGi9M7W+AOT2ZB+7toabs6sTdZoQ6ZTVho7QTSPaVCUAfI3YE7MAZGcL5aiSKLngfgAT3BVNBZOGuwSJ0YwxO/PiUpgEbJ7okji4M+ROO1wHiE4mmzOsRk5WJ0huHC4NZMXp+owxrQJk1ZmJxm6O35OSMlfDuiPu5LxE+XhY5XsP0iknBbNlfwtmxekRzyqdJJ1cUkSvJkN6p2zgh1+6zX/7t36RzXs/yNUbb/BHf/hZfv2ffoLf/MM32A4Neqfkzoe/80X+m1/8rzk5u+CLn/4/+dy/+me8fXnJW7vKg2t4u3UO3em+3Oet0VshpYR0DRdF75yNAyIZzwXo9EDfoVdMb9S9DfMZB4ZkqDeaxz3WvNF6Zn16hssYimM1Wu1MPjOgS3xVANWyuDnM+1gn4eooZHXMG606c8kcMGaPuAczI4vS3Wgee6XnWC/JFcXw2disEq07dYlWUgSaIZoZhxSxTwShNJQM1mkzT9wTYpsMsN3kJuhHFyINkExySBJuBObLHiWGWUfoWFMmwplRPIGGcw3NUFmcDSxiZ3DHzOOaZMF6XwgG4IYwcCGJEixEOGe4O9YbzRx6e0Iy+xK5oeKgshA+EdOAheuHpoXUWAbaHYHFBdKWGAnzcNExd1Q74mlR+oc03zwU8WoSMVdJcGvhSPIkZuZYx/p31zezn/nuD30/r/zB5+OZ9gyU8+7sZ85ONvzoh3+Y3/6X/4rDND218/etruvra77w2d/jJ//j7+Tu6erYzxz7mWM/c+xnjv3MsZ859jPPSD/zrpoe+uQnP0lr7Tj09C6oT33qU3zkIx/hV3/1V5+pwaef/Mmf5Ld+67f4uZ/7Ob74xS8+7cM51rGOdaxjHetYxzrWv0eJ6KJYC3tecY9Ycw23JF/UudKNgchZV7UAQSVR3DDNAQhhAaqI4r1hZtR5pvcWKkrniS2+eg57X1WMzu7yMad3nmNcb2h24KXVlnfaW5ycnjKtK9Ij1s5aKE6bt5DWmDBv9wF0muGq9NrxLk/s+kVgWG8CpCIh6mSFpBlC8MZQUjTXGpofbzOI0qXFEJV3cs6hfKszwqL+c2c2YLH9t3leFIaOSGY1rjld3SaXFOrA5TjrPEfzrymAtKU53+72TNOMd2e1OeHOc3cYhrwohBar5b4ACNaRJRLwartjv9uCwzhuuHPnLjkt1tUByWFOAGYo2+01834i58R6NTAOoeo1jEyimS1qqCCStrs9tTbKmDEGnPp/sfduMZulV33nbz2Hvd/Dd6ivqqu6qrvcbrvdNjY+tCfGYw6JJSDJoCGJicPg0USKiC9iEcQt4mrMHZdcwA2xxAgRxheTCWgkMA4OktMx2DFggw/tc7vPXV3VX32H97D38zxrzcXa1R6NhgxoaHq6/P6llvqr7/Dud797P/tZ/7X+/z+K0qy9FEkAitZKQRhE6EzdHn6KQ2gEmgQSQmkDsUGfMjFnkkRCFwghoBQqyu0y8rvnlePUE3REgxN2coegsUghgAXG7Yoh9uwd7LOd7bE6O2dz8gKXw8gPv6Pjjdd7XnzhlKee3fLYswPPHo9cOVrwjtdkgiVOSmEzwtEiQAwEOqrByWqkjZVl7tnvM6awGgvbbfPrP3njRa2ixcm8kBIxZQgJIVDKQETIfefXAUKphTL4tbVcLkBgtV5Th4F+vuDq5TlL3fLVF0548fEv8oVbX2LbAldf/1p+4n0/yCf+4+d44eYLLPsF+xeOcLI1TLSNk1KxywC0OvmGCyiB2WwOhl9HwHbckgjE1BGQKbLE7cK72LuurVbMlM3mnMV8TkqZoRQfYjQnd47Ptmw2W9zxzAnZ1pRvPXUD1cD8NQ8jC2G9XtHMCEFpVnnu+RdQAz0+5upRZjNW1ueFNhRGcTmo4GST2HfIJrlDeDUlZGERJ9IM5cVbL/L1r3+TUga6eMzBay7R98al/cSzZ1DNfGiyKKU2mnxHBSxmBNzmftsGwnjM6x68zuFe4OKlF11FPh2TE2YAiUVKfO9De9x6vDjhJgETJUgkGuQsRJcDEgUu3dMz1C1f/swneNf1N/Dj/+QfcOO3fpdnwwV+7/ef4Z/+xP2kfkYthZQCeRZpJZIy1A765chYA1aN/VnH/VePuLDf8eLtE1rYp662vPF+4bj1nJwZy3mi64VOPVY0BBiDECZ1ZiMhZu6Q4EsnKdikdIcorkRttWATWR8wkghNxBss4tdPLZU79LVfhIq1ESQhElwBOq2fiCtSRYToDyIUYbRGFnXNqim1FXJMqFYn0icFczMlhkDFwIyhjAybgVoV59+NUipiQh0LEhqlbFitzkgSWcw6upgIeqeB0KYYpIREj8WsVTlfV2I/J/ULlvM5eymwqUAQokFpfj0PrXJ4MOPNDz/IvMu0dgzjkmXa59Lhkm/d2lIGhampHMSVrXVbUZlU9MlozSilgUZCcEl0jkZrdVKlulo0RSA0grijYg6NWjeuMidxtAf3HsD9Ryu+8kf/huvX7uHia7+Xd37/f8OF8Xm++K2nyGw5XDTuO4w8cqWSzj7O0eVH+Ls/9vd49z/+H7n5zS/ypT/6Q77+pc/x4mbNzTJyY7Xhxu3GEKfPoSp1UAiZ/T6y6CurwfcDEqeogBTJIdB1Sik+yByjsMhGqOZK9CkWobWePFsy6zIvnhW0GX28o+KPDNUJ+7Jp5BixDvZ0ZJFnpGAsu25S88J2WxFp3Cre9KoopTlVr7iCt5hhXSZEgYYPS6ydv96YUupIkEwTISWIZrSqaJxUvgIpJ3dl8FwJUnRyHVFvPjOdB6ZoHkl+L5gRg6vMudMsCL6+6eQw4PFC6s2WqfkWo/i+TSMNo4uBHFzn7d8zV1HLd56dEoReEsWUoFMzFyZ1faNO15eEaT/ItDYqtKBIA1GPcUDEY2KaYtEbxiLfaSIo/jeCBapvRl5yWRCL/rJNCaKk4K9ZzNfeIEokEAhUFVS/0xTeYYf/J7yc9czV6w8QQqB9Fww92XSfvlrrmdc/+AAHe3v8wSf/07Qn/e7A0zdP+ff/6TE+8N6HiKnnaBF39cyuntnVM7t6ZlfP7OqZXT1zl9czr6rpoRdeeIGPfOQj/OzP/uwrfSg7/BXw6KOP8oEPfICPfvSj3zWDT13X8fa3v51PfOIT/NIv/RK/+qu/+kof0g477LDDDjvssMMOf030KUFIECoxVLfJZiKzJhVYmBRr5iz3RKJBMCUGVwAKQlUnsjUIXeqQplQZXyIuDXAayLA7BNEU5L5/dAAhERC63HNt7yq3T26iqtAU1akQFXV3JotIyETUSUNVtFVXj0WFHIkymwZ3nIBqaoATsyG49XkiYDS06cSjNiQ2QgyEMCOGhJlRhi3DVujyApOAoJi5+nkzDu6UZEbuZswW+5MV/5TvLt4IUPXIiKpK0+LxD6UyDBtW6zXDaMwXCw6OLtGlTEzxpWGqlwi1iQA2Vc5X56xW55RSmc2WHB5eoO86mipxIhjA0DYRonVkuxkYx0rfJQ4PlqQYSMEttZt6UV5ao7Tq7227pbZGP8tEEdbDwHYaeFIz5ypCpO8ySECbMmpjEztmdeMqRr1DFCgrrWgQhEzunUgYVZEsRLLHjVC4ud3weyvl6dCj6g0oFCcbxYlBQ11dZmBNKLmhJTObH3Jy+xnedfGYf/CuK7TVOd/86pq/eOqcLz67Yt4n3nT/gguzyO1t4Wwz+KhXDDSMsRhDWTFUYSgdMc2QIKzXjaFUts3QkMnJ2SEnMSpNIeWekKOTT606IRKjNwhCQPGojnEYCCkxny0waWxXG8bNQJz3dIsF//unH+PZpx7n2bMty1tz1vfuwXDKjZs3uHblIj/07rfw9M3G8bkh0W27QxRM7ig3hRQC7c49o65kDsB8sUQiTua2gtVKzHlqVDWSQBsHcteDVlcjN2Wshc1mJPc988WC4eQ2IkYUH2g8Xg/cOB48zhInwvdmHa2NzBaBEBo0aGPBbMQsoAqtNm8qdDMuvfZ7WK023P7WkwxjZWyGdq44jBOJBA2LAWpFrBHESEFd/Wr+2pv1BmNSSOKKvj4mLl084HhINLlDDBawhjbDmq81MXgDIIhLsY9PT3nnWx9mvughvojqhqaBlNzhIE3K4XmXuOdix+nTwccrQ6S5dhxCcBWrRoIEcoz0OXDlYMaLWvj2J/8dD//Yv+ID/90Zv/UfPsWfPLfP6z97i+/7oXtJS6OtzumWUE4a3Tz7AGjLzBeGtQG1yN5ijqpwQIdKIuwveffFi5xXwSwyny9ZdMawiqhFmimIR2AExBsnqpyuBkJyRWmfI2Fs1EkFeycO01ojJ6b4k8lOX3zwUURRLb7+mDectDXWqnQytS3NnKDEHTXuPCOqqS9b2kBxhaZLRWnjmiwLTMSbBKWiPr1KiolzrW6vX9WVn7X4IWBYCKScUAF0ZLM5pbSBlObEmABlGLcwjNTqDUBioFWjNEXUUIw4bgkSpmejK1BrbVSMasFfV4R12fLE419hKIUYjNVWkXkkh0Kx5E0RhJgD2hrWPBogp8Ssd7cMqpBTRhUqlRASXTSPs6iTG8CkKO1SQKTRaoMY6Doh4wrUm2fGyUq5+eJtnjkeuHbhBvd96ZscHDzKZ75eGASGatwqFTWhtWNunBzzhnu/wQMPfIz7HnwtV6++k/v+p3/BD6x+mpuPf5kvf+oP+MbTj/Hc0W1eXFde3IwMLbMeYDUUQiokUZL2GJFE8Ge4CDFBkIpKIqZKCoWK+Ps0oBSaJIg9rcELtzaMakjwONboNzUIjKVSmz+HrEIJDQ0jixBoyQeedWreuHJXPYjWIil4s9CApsGbqNKguNq6Re/DSAwMxcnvlBQ00cUAwdCtK9n9Fs+oeQxKFCEl8YGLKCiRZIC1qVE4qYbNm3BqQtVJ+R4SIhFrRpNGsIBGV15ni6h345AIXQ4oxmY1omqUEIiaaDREQaJhmlA1UoruhTG95xQDMQWPnpIAzQhVaMGfqToNNGvw2BJBaSqIKNX8uCICUQj4zwtMDaMRm/JLbDonKQSQSJqaFapKs+Lny3CXnTo1LcQbC82mJsm0h9thh/8aXs56JqWO733k7/Dnn/30K/kW/1ZQa2W9On9V1zNXLt/Dj/zQD/KJR//zd83gk6rx7ItrPvKxx/hv33KNRx6+uqtndvXMrp7Z1TO7emZXz+zqmbu8nnlVDT3VWvnKV76yc3t6FeGTn/zkd6Xj0/Xr1/mZn/kZPvrRj3Lr1q1X+nB22GGHHXbYYYcddvhrwGKkaqXWRiltIhUFixBTxiQTu55QIkNzS/YIL9n8ogGTSOwjXUykEGnBVZrBXFk9aTWBO5a+bksvAv7dONkOR28+JPHc+tLcEri55bSaTuRKnAZpXBkVYyRIRIloNFo1qF60OqHjyiKblGNOsrsCiWAEmVLiY3SSV/x1h82WMo5IzCiJ/YMjui5TzgrDRhi3A82E3M/ol3Ny5xbp/h59UEfvEAFMOfCmtFbYbgfOT88p2kh5xnxxyN5hIkUnECW6JbVNZwhwMqpuOT05Ybsd6PsZe3sHzPpJiWtOSIbo59FUGXVkHAvr1ZqUA12KzPeXk/rMP5+mHgNYmw8SjbUCQkiZfiaYJIZhSx0VbUKtRlVIIZIXGSSi5urSYEJDOd1skQoLrRRxAmY0YyZCUWFUaFZIMXlMhTUYN6jAC6Xwh0PjydiD3Ak3EKQ5wVGbIqao6GQlfScSI7AtldD3tGNFtzf49rcaf/H0mq88uUYl8OCVpdvnN+HGsXJeGhYzQxNqUaq4JXtRQUNEstBa5PZW2VaPTpGUiDETxC3vt7WiCF3Xk7sO8HgFU/NYiS67VTugtbLebsgp0Xc9po3tesOw3bBc7pHnC8waL5yf8uxqpBquFO4vceHoOm17m1snt7n1qU9x9b77uGd5iWfWjdTvTfeQgShRAhJcLSfiRJJHSQrdvEcUrDXG1YZ513kjayKJS61EEapO516NVkbKMBIQZvM97rnnbzqWxAAAIABJREFUMqcnJ36tT9bjEiKlVfooMDW2uhQJIXLjtHC0t8W0OSll4opBqygNLNLnyOHhBa5cvsp603jiqecxDZTiKlzpAilELGdabZSJbIsBUvT736rS5TQ1OQ3Vilkk4Y4Ct882EPw+a8UYzK+fZMJoiqLE5FbtITkxuB2Mx77xHO942xtI40DUgRCW1Frp+wwasajMezjcTyznidPBqa0QAonJlC4ITSB1RsrKjSfOuXz/DGLg+MXneP7PfofXvfsf88/OV/zWpx/j438qXLt2xv2v66DLyNaIMwER8izQitDXSG0dzSpKYjbr2IxKJaO6JXfCUoTSAvuLRCcjmmAoTnqHiaRkiscY68B6XZnvX2TWZV+fNhVVJ1zdmUGp4oOrTAr6gPo9aGDNsFpB20TAC8mE+RRbEyYldG0e/ZBimAZTXTGtijcwzPBgHW90xZzd7a02gggq0MqA1ECXMyqJZM2VmWJUrZMyFGazGYJHlGrb+oBs9fWRQ0Gi/9ygjbE1uiDEagzD6JEBMUEIiLjThySwGF56LpndCW01ln3AyoabxwNqjU31iJmT1cD+dsFy74IT5dFt+s2EhiApIBHGCiKRmJVt8b+LCDm5q8bQ7qyBPkSsJpTW/LndhNyEPgdfH0UJEdTgeB259fia+VzYn6/o+5FbZY9ti4h54+N0FVmdG994fsWXnm5c+9oNHrznOR66+kXuf+D3uXj9tbzm2iM88C9/jpPbJzz7zS/w5T/7JN96/ttsVgPjOPLM6cjtrcAmkaVSbYOPJ0e2NVNN6ZZCEuF8MxLJnJeNP1NoHlkriZR9jd2U5oMKCOqPc3IygkAXI7e3FUxRiwwhc6Ku9o/VG4hmMg0xN1JyBft2qx4xIYYK2DSM6y6PSp4rWWCMhmr2+0N6WvXB3kGmRqW2KUbBIzCYmiApeRyCuyYIViHm6fNqzZtgE/EtU6xFsyluggYtkmPnamXM9xXqXpUWQFujF288C0qJidynyQFDoCnVRqTccbowWgskmfYVEZJGdwFAfQgcP253uvB9gRA8YiQlj3yxgmqkNp32cZAVd9QkIjGgwUN7AjLtfXx4JBEIOSMpeMRQq+jQCER/fU+R8LyYYMQAFjNVq++f7mwid9jhL8HLXc9cvHgJCeGuj7jrup5Ll6++6uuZCxePeM/3vYs//i+f/a4ZfAI42xT+9Ks3uP/yPQRJu3pmV8/s6pldPbOrZ3b1zK6euYvrmVfd5NBHPvIRfv7nf57r16+/0ofysqHWyu/8zu+80ofxN4ZHH32U973vfbznPe/hQx/6EG9+85tf6UP6W8Eb3vAGjo6OdkNPO+ywww477LDDDq8ynJ+fT1n2Mom9AjYRNVYbMbsd9lg3aFNX0qDE1BFzRwgQYwQJngtvzZsIEwkokz2wkyh3hqAmwlLujD+5UiZMhCa4nXgbR2pxpRr6HSvkKBUvaZ3Y9EmmgARXI+a4pMwasVV042QQUyEqk8LPmXel1Um5KHh03lC8oRESaTGHPCf1Pb0EYoiMZ2eUsofFfQ7uOfL3jmJtagtoRYKTsuKS0inPXthszjk9PadUI/cz5ntHHPQdptWt0EN0dWFwIs3jNZRhLJyenrPZrN2+fG/BhXvucQvp6fy6AtqVvmrKUAvb8xUG9Dlxz6UDTAI0P9cmdqeMB1W2pWJAlxN7/RyzRmuu4q7NWG8Kq83AUAopZw66BQRXSgUUleSW7WVgLBVLHavc0erAqIFBjSTKXAI9jcGULYlZK+RaPSbDGicmfEkyz8cMQdyG3pyk9NgMJVqgWvPYDQnEkAgxYsG4vNdx+twNztT4Xz55k3e+VkkBHrp3j3uOAptBeOF8YBwjSTo0ZrZbZdsigwpjMXJ21atK4myorIeBSiR1HSZTHqIZpQlVGyF2zPueWZexpmzHRhMhz3tSjKQQwZRtGdlutnTzObO+Q0tlu9lQtTFf7pMXc6L4NXBxf5/j2TECHF7Ypwwj+69/mHF1yHNffBazynMvfp1Ll25gF19Pix05uNW6THb/Jm4d38aBYEZTiEHous6JrvWGiN+/GsRJKPP7Pc56j3UxtwjHeWT29hd0ecbFSxd5/FvhJet8CYEQEvffe5lQ1xzNoaUF19/0CIvZ3B0TmpJlJI1zMCGiLOaZg8OLvPDihmuveYDlfI+ijVaLD9FhSPN1hewq2j5nxu3WySeJrpYOrgaPZnQpsNxf8voHH+Tk+DZHRz1YZazG2Xlz5bMEJAq5g3kuTvABMWREKst5z6yLSE2ICM898yzvfMsD/MC73sDnnx5Zj3M2mzXaqtvAp0CMHRKNi0cdt59Zk3NEYiRiJCo5BFIXmOXALCf2X3cvZ08+wdFrLhAEnvjynzHfv4c3/uj7+JFbH+H3v/Yiv/OJE/75TxxxcBTQsSLRXA1uRswRkUbuEsNQKJvRIzIEkEoDNqMizSit0cYZXQ+aBNQogIqvNS00tts163FkbMqy9wHOHBqzGKlV3d3BxeKItGlw1QgRIpGqHj8jGMsucD7emTCF3GWu33eFGzduYdWFxVUgS+Di4QHr843b3PtEKr46Qx88RgcgSiDnDNPxEKALCVMlm9KnDKp00Z81rQlWfCh21s+Idxq31sidUBR/JgRjtR4IEgkh00mkNW+Yq+pL124wd0AIJvR7PSFn6mZALYAInmwhNBP6foaFxHa9ptIIQSjWaM2mxq/QakMVVH3tTylQm3jkQ2kYgXCH9CWxLcqwVXKKpOBOGWr+95qJR9joiBUFhKKBkPxcBDP65E/a88GV0Ntz0JiJVhg0QWvs5wxaGEfhyeMtj7+g/JcnRq7tbXjdxZtcv/Q1vufBP+H6tcsc3v8wb3zwHbzxXf8z22HDU1/7At/8sz/k29/8MjfXI+vRuLktnA6J063S5YptKq0FtLjyd7MaX9qLiBuv0EfDgpPurvx29lhipLZCl4Q+ekRVjR5BgkRvNGmghsbz48hhhP0YSUGdWFcBKdQG1cI0OGsUnVwCUkBFyPOEiNF3ELOwXU/Xq7oLIqqUUZjFCGJYTGgzUnTVsEe0QqMQiJhAM49QSElc6Wxg6r9P8IZRSOKq4SYMDbQWwvQ51zb9XGhAJMdMa1AGfw8x+2BBEDBzR4wk2RXGEbBAM6UqUBs0YwgNMW9ktOZ7QL3jZoA7pkSE0nzEQdUw9fiwnPzers0oiv9mKx4PEQNRjBYaSToI3gDRFKYYsTtOmUKy7PvBqSGdJ8X5FFLmd6wxxQ79f9/v7nB34+WuZ976yN/hs3/0KOdnp6/wO335ICI89PqHvBF/F9Qzr3vwdewtlzx/4wUe++rXOD07e2VP8N8Sbp8P3DopHB3mXT2zq2d29cyuntnVM7t6ZlfP3MX1zKtu6MntPu9utNZ49NFHX+nD+BvFZz7zGT7zmc/w8Y9/nN/+7d/mjW98I3Bn8353ous6fuEXfoEPfvCDr/Sh7LDDDjvssMMOO+zw14Ab5QRXz0wUj3sYCzJJqhqVEHv6RU+OoC2SzRW4QqOp2wA3XDmHuAJY/H/c6n0iss38+0G8oE3G5BQkIA0TpaTCqZ6xWTe240jRirSANHPCBWhtKsZbQSZHqaqBlCNtisyLOtExCkaZou+cQBXxIRoFUsDtlXNCY0eKkRjdqj9GIUQhp8gwrhlPVzxw8CDLtvSCXHVSxjkxg7mKNAShqbJer1mdnjOURu5n7B1cIkgkpjBlxRuqCUwmws3VUrVVVucr1us1qoHlcs7elSuu+ErRLfgDQPT3j1JaY7NaMQwjKWUO9pfknCfV1Z1GUANrtFappaC1EnJi1i9IOXpjQpU6Gmfrkdun56w3A7U2UtcT+wVibl+tInQykQvT9RN0zwfZWiWF+/BEC6GVkVYK2yCsqhMKftqnYTgRxhCw2YLlrOeNKdDFyo3nn+bk9gnrAmNTgrk1dDGw0JO6jhAzEqDrMrU0Bm00U556UXnfuxc8fN+MsgrcPBt4+tgH5vZm3owZi9AsogalBfIsAYEmwmpUVlUgJlJyMnrSKbp1uTZy6unnPVGE7WZkLE6UdPMZnbjV+1gb2gqlVJbzBbnvqa0yDFvGWkizDpJQyoiZcu0w84F//l6++ewpt09PODk95rnbysnJi6hBd+UhtutTqhVu6pzD1mObkde94Q2864F9nvzaX7AKHYfzxLDaENtIDkLDYFLej+sVoTXybEaY3htqtFoJXXbLdQExIUlgaCMhBW8WaGWxmNN3HZvtFjOh1kK1xtPP3+LGycB2I9x/9ZD9g31i7Chj8ciZGJnPZqgUVAvzKDz4+uu89o0XmM96d1FoDSS7JTquijZVtAbo/XqWEEiT+lskeHMlGCaJUgtBlUfe9mYkwPOPP86wfh4JMFQY2RJbdKvzWimFKW4TQggEiVy8MGPWGZvzDUErq9q4ffOMw/0lZ6sV3SygXUctAxbFB+UCbE6Vg4uJ8GSDaMQUJ3tzb3gsQqbPkS5F7n3TOxhOTtieDBwezRk2xre/+EneeHSNH/xn/wPH/+bX+NStyv/xH27xk//0XnLu3dksF2iF3AkpC2NTulmgH6O73IkSpCOghMnxYC6RgwV0ISAtgFRsUIZiZPH794UXzjg3pRGJuUNEiVnIKZBKY8Rd9CQIMQhpIrZ9IRTWg0dsqCpaR9QMD0YR5n1C2hqlYhIRk5fWS6uuIjfgpUcQHjVx4XCODutpzQ5TJEgiBmOslVorEiB3kUvzTCmFjY5IcDI95uTW/F1HTMkHaE1opVJLJXWZSCaERG2Nsl2TUyLGSEVABWqlhejXZm1UM85OwNskztklEZoomYwAsVsiodHnBTksveFgxuULh4wmDGODILRmpBCYZV9ZqioSIl3XMRa34wd/ngWCR7RMERDBKnszYSwwTlELpM6VpA1iaNTRVcadND/WYERpqN9YNJw4riaYZbaaSdooptAaXSf0UXhhs+X5bwXCtzdc++rIw9du84ZrT/PQ6z7PlcsXWRxe58Erb+V17//X6OKQZ7/yWb7+hT/im4//BV967GlOxpFNURKBmDJDmbEtWxSjGagGYjTKWOhcTkyXodXAtgk1BFItFIzWhDmBxWxgGBKo7zWESBU/5toC6xhAlD0ZQYyhJITAiFAj/qw2YdCCSSLnNHUqJkVv6AnNyLmBRHoS6+2GwYxk7izQqhDVyFmwoIScXopvmuWMAabGrAuY2ktD2jngxD/uzGAGcVLED76RokuGxUBQd3XwbZlQVBmLESVQqiLR92wWBdVAK+qfr5m7pJgQQyAGo073qmmlqaKlEILSRInSEUUwz3bwvUY0QshU1ek6vHN+/I5NCb/HQ6Q0dzSwZpQpSsyCTdG/7uM5MpAlEELAmvqeR0BI3sjU5k6b09pOM1IQAvll2wPvcPfg5a5n7l5G/zsQEa5euzI519wd9czR0UVSv4DU8/nPfY5h2LzSp/llh5rx2BPP8f2PvHFXz+zqmV09s6tndvXMrp7Z1TN3cT3zqht62uHVjccee4wf/uEf5uDggHe+85383M/9HO95z3te6cN62fDQQw9xeHjIycnJK30oO+ywww477LDDDjv8FRFCdqIHqM0V0SJCTE6KxJCdQFMF6kSJyGQzD2jwIu//2g2wadhocnryfxKiuG16uKOfU8UEghiBCCYoykZWvNiOObi0R19nbNaDq4saJFOiugLZRBmHAlVptdCFiFZ3J0pMSh4xogoSE5ITMfqgU0wBCYIFIeHEfI5GC0YMQgyK6gAEVCvBZpzfOCbGQJJIDNEre7Op6HZ1UG2V9XrDZr1mPVZm8wV7B0fsxzhFRbhjlaAIESw47RyMWke228L5+YaxVObzOQeHF5j1vTtgyaQaFCcTmJTYm82GzWZDrZXlYsZyfkBKHTEmTDyWwO2yG7UOlFJptdF1C2Z7PSGl6TODWpVbJyvWm4FhGBlLJcbMsp+54tsmkjYG3DQfXHoliBkyDZLl7Go1K8XJQrmTYa8EcytwnQbi/BqAkDtSTiCFMq5Ra6zO5mjZMGzPKduCBZCQkNgjeUYKE7GcApIitzcrzs7PgcDQlCeeu8ml+T5tGxiIbAbIfWCoiZwCgcC2eDMgdx2pC5SWGSoUjK4XV7xKoJrQtPn7idHvERFqU48GNB+8kpiQGGlmDJstm+1A1/fk2QxiYrNZsd1uoBkxd0RxpbJoZWyVVVzzx5++yfPHG0KE25uB402kSmLWz+n3Dgj9jNaUnJzYSinw+vvuYe/55zi8useTY09tjXnKvP9d9/HUE8/ytZPG+fwKaZYxNdJ8DiG5WrMVWqmIQe6moUADUfNmkg7MutkUOQEhJLquZ7X1yJBxu2WzXnE471lcu5fzzYZuuQSc4Kq1Mhb/XFOMqHZO6CWQtCRKwJox2EBtlfmsJ8Y0GY63KdLCm48mkS53SK1ITuSJtBYJLOaZstky9IkQjZwihebEqRkRGNcbJGdi8FgCtUptI1YMFaUEI+XMvFdC7bGL93J0MOfKfVc4X22p2jM2Q2ImoxiVLkVigLpVDvYSl5aZVa0E1K99cKIsKimLR7h0l3jg7/0YT3z83yNSuXCUODkZ+NIf/m+89cf/Jf/w/T/Frd/4X/nzpysXPvYcf/9HL5JnEelm1HZKG0e6mbHZNqJAlyMbKSz6nmJOm27HQBWjoeQQ2MuBNQXdZsYyEiwQKGw3G26criktcuHoiD5CqY2oRgrQRaFMg6YhRrCIEoghkJJhJM43g6umVSlNicGXBhMYxi31/GSKeICGkSayEHFnDVdET25/5uctmVKmc2cIrVZ3dhOhz5kQhHEYaK2w2W4521Y0BhbrDa1t3P0vZb++zKhloJYNZWzE6fibumrVYwN8TdVWkJT9dUOamr9lans70ZuyR530Iuz3gSiJWRYWy32OW0doW4IEFn1iNgv0ecbRfse3b5xzjqDVCAZVKyPKLHUsYqBqYztWmroqNGQQAnUasBWJrmAlcj64ejQEJUQhaaJYBIxSi7uZRNCQWGsjaCCbE9ZkYAYpJJBE08Z6XGNaoDmx3GiMtUOBg1mgE3jmfOCZb4z86TNnvO7JEx66/Cz3X/gG9176HHuHF+iXl7l479v4/h/9Kd6T/gWb4ZTPf+r3+eSjn+YvvvlNzkuj2Tl1VIyINfF1qFbEEqNlrFSPM4kzZjlRxRCNdKg3adbVYxwa7HUZbULfCzF1tNQxmwFFWY2GRSf0NSsxGioegxCAUI3ZPKPie4Jqo0fnxuifv0JjIOBOE3k+I1mjFbAmxEmFX9QwbWTxZ1tI4nEKOWLNG0oB9T2JmSvi8c9fJlcHU9BpHUSU0SCqPy+7GIk5UEZ3Muk7m6Jkp+ZDaOiglBamhgAg2QeYzWha3b3BPB5DBDIB6zoI5nsg36lRp32NqVBbw0JzUj+6XjmgLzUGWzXatC/JIRLNHTerNXdRUH2pCTKWSqiBjdk0JD41HCUi4o0wER8eV1OsNdQSkUAK3nzcYYf/Gl72eoa7X5gOfr+id189Q5zxtke+D0E5Pz/j6aef4vT23ZtWcT6MjBpRSbt6ZlfP7OqZXT2zq2d29cyunrlL65lX3dCTqnLjxo27Ot7ubsczzzzDM888w2OPPcbv/u7v8mu/9mv85E/+5F3p+vTe976XX/7lX+anf/qnX+lD2WGHHXbYYYcddtjhrwgTm1TMiRQTFgWCD7MYiraGApgitKlYbyABT4HIL9k42x3lDG0KGnB1ZTQgJCfIBUzbxKp7ZERrMpHYrgxbUyhhpJlSxpFhtSF1kZCSq+KiEMQtm0N2ZZTpzOnE0kitecFpk+uTue0xWtCqPlw1Vi+Lg1ImXZWKEy5NvCBXnDzIXWavv8BlvZej2QHz2tG00lpD1RV2m805Z+drxgZ97thb7rF/aU6WhDtc3Tk3Rpz0gqaKamMYt5yfnTOOA7P5nP2DQ3LObgV+xyJdAHyIzAxKLYzDhs12TZ969vf2yCli089KiJMqC1otlOL/IZGUZiyWCcGt1qs1tkPlfD1yvlmzWW2QlOj7Gf3M7awlZZJEVCY14KhgEfHsDzBDYiB1iWyg49abDGZ0MRFTIufOFcaq1DowNIjRLc9jElJyUn6zrQiNnAKH+/u0cUTiFkL1a1MCxB4LiRagm+zA4/S64zgQRVATvn1sXLsSWeY5z72ohCTsLTu0CucNzsbAlp7cZSpQBmE0t8dOKWPRSXGmKA0IpBj92qIiuPU2CPP5jBwjDaMYjGXLdtwyWyyYzRce7bE+YxxGTIxuvqBPHQGoZhRtmCknNTNuF4zdHtqU2iuLpKS+J6WOsRS0VUx9iKzvI4sIN555iidvnKNtyePHlSsHhTfcc8j+OnLPhX3i0YyzC29guxlI80gIyZsArdK0QDMWi73vkOeqVBrb7WYi4RMhTI0qM44OD8ltRZTAbJYo23Nec5jZ62Ysrz3Ajedvcn77Nt18n83Wyf82VuIiIyFSx8K8d+v9TTmnhESMgTI2uh5SDAwIGgLBL2SGYaDvO+49WmL7hhB48N4LbMbC7W3j8qWLtFIZxpGuy95AiJFhrLSkrNbHiFxAS6EaqETW663b/wNMn8FmY1w6mBMVXv+Ot3HxwozlInC+Hqn2neMgRLqUCaLMu0RKSh2VN739Emen56zPK6vzyqYppTYn03KAVKirp+mvXeXoTdd44rPf4v43XWQ5dpyvV3zp9/4tb/tH/5of/yf/kJv/9t/xh49F5v0t3vOuQ5aznhADMtn+5xCorRGT0c2MXAyrRsqBulB0rZRBKNuR2PXMEmxDY2yNZo2xDZwXuHrvZYgZ1eaODabQICR3z+i6SK3TMKMJ2nxANM861us2RRO4unxvf5/NZu1fmzFWyLNDFrpiu63Mc2QM6q56wdcQnRw2/POOLFIgB2Nofj2KuCV8GYs/Y1L29aCf0TaFvb0Zs/mcPicsCG0w+mjk6GpciYE+wHrQlxTYMbnrQQge4xmCEXLEqrsCTKwoTYRo7hSiWpAm7M32SIeBrCsuLhPbGogmWAj0IdDCnFoLZ9vG2aDAOTduJ5oEf2CiKL7OxOBRE1ob2+rrFNEfmK1NTYAQSLlDDFqtHsUSXJ0aJGFqhBCQ5o2UmANVGtqU0gwjEiRNzTYjWUeyRG3FHVKCUGpDzRsnvYC0QAveCFWrHHRGNAUSmwG++uSap2+tubzXcdDf5mD/KS5f6Li8/1mGkvn2C4HXvv7tvOPv/hg/8CM/xXNPf4M//dTv86lP/ymPPXGDZ1TQkCC4e2CURG2QxKhtBJlRTUlJ6HJknhPn68q6GquN0OdI3wndLNB1sBmhEzBLDNZIvSGdPxtm2a/n0gJ9L6ANerAYaTata2r08x4tjSaBJgqSIYoT1U1pGqcmkX8NQkhOqqt6xEpTdyMRBWseyxMwYvRryulud50QQBQUbxA0bahEwrQn8vU4UKt/LwX1/U9yVbYIHvOAkOO0pxNBW/HmlioyxQSlyfECIiaCqOKdCr+mzBopJDT5PRnUrxWrldKMO3EPVHfBCQhhej1BPerBhIxMKvDJdce8eSHC1OCC1vweqFaJ5uuEH4u7dEzWHO7WApMTzA47/OV42esZhcVyeVfH2wGcnh5z+/btu7qeuXjlOldf+zBf/NynufHMk6/k6X7Z8NzNEz7951/j7d/7ll09s6tndvXMrp7Z1TO7emZXz9yl9Uz88Ic//Df6B3/xF3/xb/YP/t+gqpydnfH+97//5XyZVxQf+9jH+M3f/E3fsN7lGIaBj33sYzz77LO89a1vZW9v76XJ8rsF165d44//+I954oknXulD2WGHHXbYYYcdgA9/+MO/+Eofww7//8YffPI/f9jVaU7+cIcExPPQJTAVgjKpJadselyN6WnpYbLz9nLOhTXTkL82VJ3sVm0MpTBstrTqSuxSCuuxshkam3FkKI2WRzbxlLP1Gm0j27MN280ANFIwt4tXjzSwqpgatTR0rNioWG20oaJjwcYRqwUbK1YbWgpWKrYpaPXv1VK9yi5G3YxICOQUCSlipTFPMy6OF7h/eZ1l2EOtUlrh7PSUF268wPHpiqbCYv+QowuXmC9m5K4nx0gM3hgQCYTwHc6/1ZGTkxOOT0/QpiwWPYdHhyzmC3Jy1aZNWfTTiQQ1tsPA7ZNTxmHLosscHhwwWyxIEZCASCRMv6u1sFlvGMaBEHsWi6VbnXfJySJTNkPh1smGm8enrDYDSmI222OWl1jKpBjdfSkGmoY77IZbmWNIiKSYCDm59XRVhvU5WgYiEEIk9ol+NidFYawjY2sQMiEnojTmnTFfGIGRsRZyDOwt9hBgGCvrzZaTs3O2zRstEjMS54TkhKRIJEigS4H1yS3GcUsKHu9wvoF5PuT2mFCJxC6yGo3jMbJpGWVOlg4LgWqBbTOIyZW3IaAmNEuMzfxKD5EYJ5UuQlM/hvls5k02/HW32w2lFOazOfP53If7xsGds0JksbdP3/d0XaapUlsDNdJsRg6ZEBMq/pmaQtfN6foenSy+Y8qAMcuRC8uOt1zrkHFgaMaTx4Wb5wMH+0seuJg4PrnN8VYhdqxZEDtvEJgqrTZvOFQlJrfMR4RmRmvKODiBnrsZQVzZP2wLrSpHex3fc3FGsJEqRloc8NRzz/Lci8+zOTvl+n2H1BG2GijjSBkHJ6hEqKWwXW8IJgwtcHp2TquFcdx6E0UbJyfn1KqIKUkgJFflzrMrj3V7wl4q/OAjh/zQmy+y2QYG7RmGFcO2MJaB9XrN+WZL2Y7MZx0x7pHyEouulDWDzVBYrQtqQp0GJHMMXL/vHrRUEkoKEGk88/wtvvC8q7NzjmgbwIzLh3N+4C0XuH6k6KaSZsKFgwWXriy55/KCw2WgbRt9iFy51rO3DPSXrhL2H2R+4TInz3yD0+dXHF7qweD542PajWd44Pv/Pldz5fOPPcGXXxDWz53xPW8+IMYOayNlMExhrEprhqqMFFSoAAAgAElEQVSw2RQaE6HdFK2N1ozlUrlyEeY9nK8bL7y44ulnn+f525WtdOQYSSmBVhqGFmUYCl3fg0SaGq35o6LWRi/K/nJGP59zcrZmOzTMhITRZ+f0DheRvp+hzeiSYE25uh945KE91usVOqnGS1GaOSGJBQyjj9DGETXo+x7DyWoTvHk2jE6Mi7E+O2PRBw6WkXG9ZiyV2Sxy/WjG3mxOzD0WnDitw0gf4XCWWCyWEDof2AxTQ3fiTSMC0aNUqeZEdXLHj7FWmikJowuNlBIhZ45XTozuzSOE6C3hkCEmFG/iKt4EAUEkkmMiijfIUpcozSNXDFe8h5j9c9SGqXqLOUYIkHIgdsmdMszPjZPJOildZXqce5yGhAAEQsxY54Oj0iqt+DXSDD82USQmmkWqRteDi3mcikbGZuzPZ9x/T899l2fce/ECRxc67r2wx9H+kr3FkuVeZjOc8dkvfp4/+oOP88QXPs/+cs673/uP+NH//id5+8PX2J49xpO3tozb+lKsi1YhxkqKFSXRdZFeAq0Jq1Hc8TEJMcJsBlkyuYPYg9ITyR77QcNPkzBfCClXggRKCwRVZjOQLmHRI011chdIOVAH8SgNxaX9MDmRCGaBkKawK4OYI4QwnWt3aABv/NaijHX0rxEIEIIr6z2SwxsDIURf2+9sxSy4cyK+3reGP4NkUipPSn+ZCP4wPYNFIJg3HnK8sxcAMW9UmBpqzQcI8L1TDPg915QQAxrMj8nM924iaJh8HUV8H0OjNqM0d/MoraJmaHXld4Bp76PeeJM4nSJvBEgwgmS/3wkYgWLqe0kzVALKFC2jhqhh1viZf/Vzu5pmh78UL3c9Iyg593z9K19+Zd/oy4h7r97H1avXWR5cuOvrmUDg0pVr9LMZq7MTaquv3Il/mbAZRq5cvoflcrmrZ3b1zK6e2dUzu3qGXT2zq2fuvnrmVef0BNMieRfjT/7kT1itVq/0Yfyt4fz8nF/5lV/hN37jN/jQhz7EBz/4QR5++OG7xvnp3nvv5dd//dd561vfyjAMr/Th7LDDDjvssMMOO+zw/4Ip7hwvR13d5uoWc2LAbFLSMKnJAiZCVSVbIGHT8EtCpU159DapchVr+pKNuDVDUSeydESaF+Ga3EIYM4q5WimFSKjGdlvQrTs0bYqi80atjSjBC3OBNuW137Gvx8zdn5qiTTEVmhUiXvTKFEcXQyQYhOj2zyFFaAkxQVZG0sBe3eOwXKLvZrRF5fT8mLPzFaVAt1hwcOle+i5j1uhidldzS0hw+VO1ihrkECl15PTkjGEcgcDe3oLDCwfklCaLaJ8oMnMlkZnr08dhw2YzEBBiDtxztEdKmSCubjLzItyCk0Ob7cCwHRGM2XzGIu+DuMOWSaAUZTOuOV0NDP8ne+8Wa9uWneV9rfXexxhzrrnW2nufe52yKbtsqmIwNtjCjrExtsEGQmJSKKVIzgO8kETJU8RDHiPxkDd4cx4sEUXkYkSoRKIAC1zEAqNgmwJs4ktdXD51Tp37Pvuy9lpzzjF6763loY29bUWiiExR23U8f+lIR3ufs9aYc1z6aP/f//8/znQTUt4wThmX+E5VhGE1KPVgwskl4X11eWs4JbUUinXacaH3SrceYlLKpDKShwnJyrI0kngQ0frYNz+z24TTuNYjOU8MecBsQboFEdH20A7UOq95XHHeVTWIB9HVodWwniLqn4ibx4VDcx4se557cYe4Mh8aoh4u3zziSbHmHLtQLVK9kiRaD2eco9RWEc3hJBaJ+O11E5+5MeQJw6n1yGFZ6K2jmpimDeMw4GYRWV8bkjLDZiKlTBal1UgMExWGcROfUR4LQ3GfaR6QHHWKWRTHWGonIbg4j/ZHrm/gmz5Q+M6P/h5+9fVn+LlffYs8Zl57r/LW28a7Vwvb84HbdxaGvI3awd7ChGadbkZK8fvEjL7eQ4fDHAStCHOrNJO1tmRPn6/55Vfe4MHhiChsX4LNnRd5/fMPOe6vaN34+g++QPKJWYgIdg834e3nXuD81i3q8cCxNtQ7pUx0wCXEi6Ut9GaoKG1InJctU0pcnE+UsXDtA1965z3+5k99hj/3/V/Pd3/zC/zUL8/cVGPMAiqUceL58x3nv+dlsCDmhs02CN5JSOJsNoWHh3e5NkXmSmudB1c3VDeGknjr7jXWncMsXO8XzqeJhzO0VikuJBqJxp0z47hPjCXx3pt70guFbVa2lwMXz2159uXGcm9mukhsn/8g+syHkXQJ24kP/5Hv4V/+rb/L9VXmbDty5yLzG6/8Guc//0m+8Xv+LP/Ba6/zf/7il/hHn9vzoX96nz/8xz5AdmNs1/R2ZHdRKIdCbzPbzUKuBVo83GdpiDTeesfCQTwpb717n1/55Td57d6R3Z07bCTTupBy1MfY+k9RJWVnc6tw89YR74Amqitpu2N7tqGjzHOnu4dzXgw3ePl24huen/jCXVh8plfnhYvMR14s/Morb3P3CsazMxLE+UKZVWitY62zoAzjwFQKw2aHiHJoFe19dXg683IkV+PWVqn1wJtvH3Af0Gnk5uqG5QDn5xMiRq9QxoGebtjfNDQpZ1tB6PRDZxoKKSUEYVkWji2MeUmi06LXBc1Kc5AUYsqxdeYGN61xNinP3N7woQ9sqYvx+bcWukUNaIrM/6gDAPCI2BcNgb25UZsBCZKS0rSuJbFZt/VIvitDikQEt6iTyAnWdIaojOhIitSN7hr1TgT5/JikFYSU82rAi0S8Zoa7UNKAu1NQyLGGdYvq0qh7tTjfy8J7+5nX7hdevA0funPFcxeZ/bFzOS88tzWeeWbkD37Ti3zX73uZQ++89taBf/YvPslP/YP/jZJuk8aBw70bijeaW1RyPNkgLbQGw+BsJJIRepJwbYtxVpTNFIKmdeHYnbEObFKQ7SCYFBChZGcYGvMSgrb1TkoJhkRrjteGiGC1UQ0shdASjD5oirW5LuDqqxDvWJMQ0DGMHqKQOa7x9zkrNOM4Gy4a99T6fT+ug8A83pE83pc240gq8pspARKbw0FIGZCEdaE5dIv6HkXJGpsQUtY1vSb4eHEhS8ZoUXFBOJrpRvO+rp95dW4Lsv6cajWScURxJzYwlxDpguePxAnXEJaW1mgNEkY3o5oh6iGeCeGeZjU99/XNU4ysSrX187rgKJIyCnRviMq6RtnqpD7hhH89vhrzTI8L+H2LF158kWeff+53zTxTVPj6D38LX/eNH+VLr/46r33h17i5evhUz8FXEvOy8Av/4pf4Y9//fYjm0zxzmmdO88xpnjnNM6d55jTPvM/mma+5pCeAL37xi/zpP/2nefHFF/9d/6qvOt555x3+4l/8izx69OhpH8pXHfM880/+yT/hE5/4BK+//jovvfQSL7zwwtM+rK8ILi4uePfdd/n5n//5p30oJ5xwwgknnPC7HqekpxP+Tfipn/7H/100tMcAK5JAEknkidsnvGvhcnEI55wp5bEjC8fNwFs4cj1cVm4WJLMZvcNcLcgICCLUnb5WTvRWEZcgi9LMg36P47IniVLnhXY08nZgOhuQktf6Mqh1ph9mpFrUzS1OnSPRydo6eLrhNERhSIVEoiQle0JMGWpGH3Xyw0S6SmyuC9u641IuudzeYcgTm+0Zd+/ep6LsLi45v33BdjNRcsTBl5TRHKQ+Ho7E1htzXThc73lw9YDD4cA0bbl16za78zM20xh1b8Q+rd5Wl/HqnF7mIzfXN7gZZ7sdm82WaRooaSCn9CTSXFTovXI4HNjvD5gLm82GYZpQVbrHkD1X49HNkbv3HnJzc2QxQ8rEMJ6RS4mNRKmQsoYpw0IQElWSRp2giDIOhTxO5KR47bR5BlsHek1IyozDhpwHTBORCq3klJGs7AZhWzrTFMKFqrK7vCANaa0h7CzzDVf33+O917/ESOOt+wfcU5DpqZBzIqWMpHBqFU205cjx+gGSwhUoqrg4ReD5Zy6pRyFpouQRVGgGfXZuFmffHJMQa2qL72peKodDRUTIKa1O6EatlVYrbWn4enfUZeb65obWO8O4YRinIEgQ6nyk1YYOhTKGgzolBQsBzRymzWZ1ZoITsffHpeJr3QCEeGQYtTV6W8L1RrhK37h35FdeecBnPv8mr71zzcNDRXNhM2aSJDbbkZdffI5v/KYPcpzD2ayqKEI3x9fELMdQDyKt1YqmxDiOUYdBGAXFIPcDl5vC9SEcx7d2Z5yfnXFcGg+vrlh65+bYmA3G3R2MRFsW8jBQhkIpY5BpJaMSaWHb3QU5F0rJiCj7fQhYuQyUsbAdMnfOJ7ZTYTku8cxJBTfn7r0jm3Hguo40lJQz57sdZ+e3uNydc747I2uQgowTpkJKIciMOXN1cK7mitUlCFhRXnjmjGfOz7j/3g3nu0JS4+Jsy6M2ceNDCCNFeOE8czYJw5B4/mJguy2IO16UaRpJuaBDYhgSecrMD47kTSafXUK+ANmRpltshru88WtvcPH8iJBYWufem6/yzOUlH/qeP8XyhV/ic/cXPv/qka+/6Dzz4q2VRHbSmNbKDnBLIVKNhOiSHMg0lAfXnXcfCo+Wxna34+xyxzCMQEIkYufnZRWPIERhMnO32GyqSkdJZeD2duDW7R33Hzzi4aMjzYykyphgyvDSZeWt9w5c+xndDRV4/sJ45fW7fP7tjqQNuUyx6VTAJcjtRqRwXGx3cV/kEc2ZNGhsVDXHJdykYb7sXD+64v7DG+ZqbC9vkwSu99ccW3z2XDaQC+OYWeY9fbYQR8cR1YGUFfeoYzCgu63tPavgvTKlJSnNnDIkMkHeL83CsW2gqXF9c+Ct+41qGiQwQTI/ThdZt26uVUxRXzBoCiIZWTd0hgCoOapBWV3jtj7LjXimNuuxBtaKGSSXqIlwsFVkNLeodjGn27odYL3GNQ8oTve+VhsAa52B9xCKvMdnQKKSoajE40CgmXEzC49q4ticeWm0rjyaZ+5dHXj33UfsjxVV54VnBv7Ah+/wTS+f86U33+Gn/tlr/KvXjIcHoUs4mMdV+AxR23n5mUYenaujcmwSIjYNxRDtDGPCWqU1BVd2ORziU0lkMUyjFiVnJemAWqI3yMNaAdEsnsVuKALq1OrxDpTiYSeeQrDXEORlrXmAcKYLcW5zLjhR34BmJMEw5qjb0jUlRT3WVg/xhlWMq9WDN1eNaprWeeyLTElX8l7R9bnltibWrK5if7yTw+JdTtY/kdBK42eLxM9irWZ4XBXr8V1rylg3lmXh8YvIY7laNWE9yH5xBY/fnXIcX0k50jET5JLIEpuSBVB7nJhj8dnXA/MewvEqH8Rny2mtiJE4tvXd0wySKv/Vf/5fn2aaE/61+GrMM9vdOa9+4dc57N9/5u1p2vCDP/hDbKft77p5ZiiZy4tnee7Zl9hMG+blyDIfn+LZ+MqhtZhVhrI5zTOneeY0z5zmmdM8c5pnTvPM+2ye+ZpMenr06BGHw+FpH8a/E7z++uvcvXv3aR/GU8Ubb7zBX/2rf5Wf/Mmf5Fu/9VufJCWllJ72of22kXPmzp07T/swTjjhhBNOOOGEE074/wERRaQEIcHjadLAdR1kg4sONjrcYB58AW49yMSVhIjNReFq6iZUc/CGenilK+ANrB9JEbZNGjObEoPhoE4W6J5JS+P+MrG/epf+Rod9h8VoNzOuq4NMIInSe0JyYRDoEqlPWcaIDVcQbRQvWIVycOymkynklkkUch5IssaBZxglHGJFC0WVs83IMAy8+NKLMXr76v7rPYhVWUf0NWSqtcbhMHN9fU134/z8gtt37jCUxFhGRGQloT0ivB8TQAa1zRxublB1pmnH7du3SLmsVRwWpJXImm7lWG1cH44sy0wZB862l2gKl3s3qN05HBf2+5lD7SxLQ5JSpg1ZlOQrGZISSESd9+ZYGphKbFhzCZKglLgG1DrzvNAt3FSlFJpHhUUuI4MIizndGzkJSRTD2BRnO4BKZz40Comzyw3TuIlY6Tnizuvhigd338L3D/nPfvAbOZ86/+1fe8SCIJo5P5+YLdFYHfeioM68fxhONllpEjOExNv3F15/95pvfPl5SlbwgXnu7JtzrEGmZ00kcXr3iLluUXkyTCWq7kg4TmuNZemIEmTGMESdQ214ymzOzijDGCIbUfPQzMnTSBmGtRZEYiPgsmDAuN0isn7Xa4x77YakRMk5CJbVjd17py4LKWeaeTg5syAM+HQG4x1GSTxrRmbhfEp8+IUzvvTWPabcuH7vHfZXB7rniCMXMBdSySSB7tC9062zLAvTtEHXDYaiQm0NawdSXTifRn7kj347d1/5IuLG6/OR/c2Bs4s7iEApBTk7o1q4yGsXtsNEySOlDLR4PCDiDGNUDNrq0EwqfPT3XJKTsNnsmA974JoXzoTX7h+4uzTQxO1nnmUzDJyfjdzzHWeXhVkPzLWjJb5z1TXu3R9HrQuqBQWyRvz4sSXwRM4TZRrZJMXbQhrOuLwcWVy5NWwpozKUA7tcoxpzuaENmfPnbnP3qvHuHs7PnLFkHrx7YBgSachkK8iUUDuSt4nD3fvkzSukZy6RsoX8HHe+5U9x/fYj7r76FpcvnnP7YmBZGp/9ub/Nt77wEj/88T/Ha//DX+MXHwp//ZPv8F/sNrz0wYnhzGnHI1KUs/NM7Uqajd6FnQyYORlH0wI9caxCTlvQyrPTGd2F4+IcmpNUuZLMflkQ70zThGthvtmz2xT6owPZBC8h7NiyUOsxrh9i02MuikrnS/ecucN4lhlR3CpvXFUO/YKL8xYVFssMKWoWzidnfxAWL4gLwzSsDuR4pnYKQ074lOO7b30VVDuPFqeR1vvCSFb5wJ3bQf6WIRLoXKmLMSbl/JkzhjIwOxxbxymkVOLaXxpdOlkLMqQQDlo4q7GoRBIqZ5NyvrlgXg70bgwpcfdR5XrxqENSJwlPSGF6iOa+CrugZBHUjZwknNGr8BcLiqxrNOQhXM7WQ2gwayBCKoVsCdcQcWz9n82dbpGeECbnhGSNFIQeClAuOZ5p3unS6W7xPOiRniir2KAa1U85ZZDYuEwqlOTYvADCzdH4jcV4U41tdi7OhPNN5kyFy/dmbm+dW5dHnrnsbKcR7UYzZTaP69WDYE6q1F5D0FiMm/1Al8TRIz1QRUOWVWFeDO/OZlDcw0mczahEal/OGVqkPDRTvAmtCcOY0SGHS1w7nR7XmEUK4JAyvp47d6HWILnt8clA1vYsWRNkdE2CcXLS9Zw5stZrCOmJI92dSBBAaC6kVYSnxzWyv2ngnUEVHzTeqQTwjrfHiZhRj9MlYdZD5EDW9JUaghRgKDkFkU+X9TM4WQV98mLnOFFJIiq05qSesLXgK26xWA8akMSe1Dh0d9oSqR5JJJ6r4rjEBpLH1Vf0vlaLCb016uPKl2ZAVOtEosL6OXss6amAN6U3Q4hUgRNO+HL4qswzUtD8NSkv/Rux250xTWOkJ/wunWcuzi/Y/t4/wNd9w0c47Pe0ww0/93P/8Gu6hcXdWWqjTPk0z5zmmdM8c5pnTvPMaZ45zTPvs3nma/atdL/fP+1D+HeCv/JX/spv2XX3uxtvvvkmb775Jrvdjh/90R/lYx/72Pum8u6EE0444YQTTjjhhN+5UPHHfmdi+F2HcJFgvAlSIxw84bLiSe0XiHe6OXNzlhb//eOYesepbng12lIB4WzaMmx3QSRhjFnD6dOdrIqoMHphk7+OlzYv8179LOdbmNWYDzPL0WntN51fXSKeWz1829061mOTla/EZklT1NhJQk1IKZNyYdgUJPKyUZxWj+CZPE5oAsFwr3jveKvkYbu6kHp8KaVEXV5MwhwPRx48vGKpjWEY2J2fR5z5NCDY6jpfv1Zx3IJYWJaZm/01dWkMw4bLW5cMJdyoEaMchDMSYoy1cMPN+wVyZhoK03aznqhwvy2LcX08sj8cuV5dpDltKMMGGTRcTaKUdWNY9yBPpWRSVgoZxyglMwzD6sJbWA6VusxoTqRUEIOuyri6fXsz6upiymSSGlmNzdQZitCWSje4dec222nALCK4W63YcmB/9R715gHf/lzhh7/v3+P3ffiCv/43fpHttmBHQ7MyJJhbxJ+TjO5Gq0KfD6tYszr5XVBz5t555Y33+IYP3gFG9q3yYN+ZUSQPpJLBndYbS/cgJTSzHSdyTrgLZsayzFQ3csmkPFBywXtlvyxoyux2W4ZcEISGw9I51iXcvsNASUqSxGI9yHbvnG/PEU1077hE9HydjziODkPEpK+3ZxLluBzJQ9RDiERceXKn1gOlFLQMYE4Cmgy8NxtvfOEKk4HJJ3bjjrPLiaXGddStIyncl6JC9jXR4BiOwSEnSko4YNbo1qm1o+M511o4vHXNvk9Bgo0D55cj4ybc38MwMgyFpMpxWUh5ZLe7QFMiJ6V7ZzaH+UhfE7lcEloSLjCoMtAYxVjo7DYTF2dbznrGpxA4b9++RS6F86ms16izsQH2M9O0YSgZTSVIqpQhdzrOIBHDjzqPbhr7akjZMm0yQ4Zbww3Wr3n4QLi8veX+gxkpmSEnvu525e6Da+699ybL8ZrNnJnHR3zoIx8CMZajQQ5X5OFQGaYFVFDdhVvyfMvx3sz83jtMZ2+i6Rx0B+MtXvqO7+D6H/x96r5yeZ7ZN+Heg0f8xk//z3zzn/lv+E8+9qO8/T/+Dd7Ot/jJv3OPv/DxZ7m8HFFv9JsFMSjJME2IQRoWbl1MPLra0yzTNvE8ST2RSeHoLYKvzmRUuH0u+LUzV8VxxrHzTC68++49lpsblrkxnt3CNsL9ezfQK0Mp9DTSliDlszSQkbMUDtQylLiPvHAxnUW6X3eWWlnqzEDnmR1cqUBKtJa4WTpIQlMIdLUeEYvn8zhtIoFjqShwO4+0uoRgZy1EbgE1YZomjj3uYfVEa1Clk4shonit9AZScnw3mjGLDZBZoiZFNI7fDaxXqhs3+0Trew7zEbXOUDJJRtCQ282jzhVzhlSC+TTDrdO9RyUrgielLi3WM19IOSEmqETValJfU0pCuC9FsZ7W6hZfK0WdXAQ3JbmCNUoK8rW2Fit8i8RF1RAXuzpqsYbj4Cr03oFwzZacsB4u29ZCGBVPSEpEL0gllQFJgnnHTLnuwqND451rJ6fG2WB88LZzPS+8fS1cvAf74w2/8Gs3vH0Dc+tBdEvGSOytI5qoS6W7cPcRlKGjOVzJYSbOlOQoyjQWtpOzzEfcjcWVQzeyx/F26/iiKCVS/jY53OeSGZLStKO2xPZZEzqdnkDNEBU0dQSlmNDWdyQdAM+0bpFQYuEQFw1XurJWaokgOFlzOJXXd6puLSoS0HXDQELUoHdSioqJpEK3WJO7O7U2lCDvSw4JIDYKCEkV641DrbCmG7gkemurGz+ete7xO5t3koKJk9a6B9OO19hEnEVxTXTW7319n0ruTwQqa0S9hCixP2KtzOggyfEUPwc3JGXEw7FdNKN4uKI10nhcHPN4pzJW5dgE7ZDXSg8VDRHrhBO+DL5a84zo165J+cvh2779D5Jz4TTPZLZnW852l/Raeenlb+CNL33h6Z6cf0sMuTAN02meOc0zp3nmNM+c5pnTPMNpnnl/zTNfs5ue/vJf/sv84A/+4NM+jK8o3n77bX71V3/1aR/G7zhcX1/z5//8n0dE+NjHPva0D+eEE0444YQTTjjhhPc5XAUlYpafDHseg7EBvVXM/YlDuuHhsjGnzTUq5TBUZSVzhGVe8F7DcZmUkgubaWDIijoUaxSEzTThSUOPyOGMEYKAcASxxpTPuH37eY77A9eHA6V3vEDECRsmUWZhBmBYB7fGYzbe3BAXmlcwpy8z3RvkThs9HKwSxIkkxbpR20xzBSvR0V4WhmmH5nCIuiXcDPfO8bBwvd8zzzNDKVxc3go+h4grz5pQEiIFJJKMHKd34+b6huPxADi73Y7hMlzTIhFFLiK4xWeAEBOO+wO1dtI4sD3bUvIQ5IkIvTuHpbLfL1zt98y9MyAM4zm5rGdQMpoiqtl6Z3ELYixlsmRcOiJKzkLJE7J22s+HmWWpiHg4XleXadpMJAf6wtJhzEGQ0Ttj6Yy5MwyZWit1dnbn50zbbbgEDWrvHPd7bq7u0q4f8vKF8x/+yNfz+z96C59n6gwPristsqjJSejy2KkWrlaAfnyI+BJkF/pEiOkSrrV3rw589tUHPHP7WY4Nugo5FXJKtNapLZyFXRKbacs4DkHot0ZfhZnu62aunFGNeoO5HtFS2O525JRRiQjtXhu11SB8hhKOQwSzHoRb7+zOLlCVJ/eWuXOYZ8whb0YUJQPmIeMdDgdSSrjIE1e9dpiXCiZszzYIUflnAkurtLaQt2dsNmdozuHu04xqw8UYtxuSBgn7OAHBa2O2zu58y1RGVDPmhmrCS6bXxPbsLJz0pbAbdlSraGtsurHZTJQyMAzTE4LnUCubzRDfkSZKgqbKokrOifFsyzSMUUeYM9Yr3o3DYU+eNuzOhZKV++Kc3xHS8cBSK+NmRCWRcok6Ae+UovgY4kR8otgEl9PIkJ3aO5qGeJ65c7U/YgLZwa1ylhtnozEfO3pr4mwceZQaVwcjaeLFZ86wX/p1ntk0Xnr+jFuDc64LZ23PVi8xF2y9Vq8fzCTJ5GGgtUaZJsSdvHOO1zeUB6+jwx0oAmlDeeajfPAPvcov/B//Nx/+g8+zScquFB48fJe3f+5v8tL3/Rgf/+Fv4a/9/c/yBb3N3/p77/FjP/oC0/k5SQ8cr6+ZLETAJuDXmbkmdluh+Z7WMiDs544ZaFKqG6VElU0S5YiyOxuw65mUE2eTc//uXZarB7x4XniUhMVuSDoyHyvuRiE2EWrOuETcfusdiBpKF6OkcHoLvrrjjVwGhlZovfOoZ7x0wPFkDIOhpZBTQUWobaD3BnWJipaSGXOh18o8N3QIMtZ73M9VW7h/88iYjW5QhoHeJ4FlE9IAACAASURBVFDFykBWKLbAbHhraCpIViYdgjDv4Y7dbguthwe2qWPrmpHzyKhDPNPdI45fJGpTNAh7F6jWUBSSrskij69KoZmDRI2ArM8DrMc9J4JnpZRC1VhTW4+kASEI4pwKvXW61UhK0ESREsqvxVrResNW8VAskh9E4nwJiVRXIlkyYQnuUcWSEyoCDaw71Z3N4IyjclxGjtVwaySBs00mq9FFONbO0oWbG+fuzRVnSbmYEi/fGbh6eOSNa0fI8TzTHmkfRCVGxsFquMdTpEQMa3WLGfE8ag1zZ7tNTG2PRmMOs3d6C4K8Wjjnq1VanUmqTNstZRgR6etGCEEYEW+UEhtqXVK8K/gctTlJ6daZSjwnNUdChmSNTRIiyLoHQjWTNMh7w2ndYtmVeL4qUf0RQkWkoXRTkoKWqBvSHAKmEPUotfUQihW8K60aqK/u93Cxd3q4tJPi7qgpKWm8OzSi1knC1e/NadWxCIygW0W7xzonQiLFJvES74SS8lo1Eu8uogLS1noShw5m4cZ3ETBntkZPQhGBtiYyYlEloYJqh1zAwgmdHtdbAS5rVbHAQiVphuQnU+gJ/0Z8teaZ7/ieP8rf+9//l6f8ab+y2Gw2bDZb7r537zTP/JZ5puSR7/qu7+fTarz66itP8Qz920FTelI3f5pnTvPMaZ45zTOneeY0z5zmmffPPPM1u+npeHx/9Aj/Vrz66qt8+tOfftqH8TsS19fX/PiP/zg/9EM/xOXl5dM+nBNOOOGEE0444YQT3s+QFJHDHgRm/HvHXand6C0qCJobtVeWpZNQNGXGElViiNCWhkoM5SUredyQUsL6QvJOcSEDaVQGnVBV8jBGFYJ1TH6TpExpCBNZBZdwNk7nI7rZcjgeWJbKOI2oCXNrLHXB+uo0Tkb3BGbrpqcgjQSldWcYJqzVcBYvM7lkiio9h2sV5Mkw/7iioZtj3uK7QFmWmetHN1wfDuScOL845/LyHFEla5DvEN3w0R0fW3SsVZbaOOxnelvYTAO3bl1GN31Oq/MrMpTdwDFab9R5YZ5nmnXKOLDZbMkpkVUhRWTy9b7y6DBzPC4s8ww5s91uyDmFw7qDJ0c1SDzzcCCmHFUWySIVS/NAWslu605dFualI+qkHNHrVTLTMJBEWHojIeRhZFRBXRAWhtwZhkarlXk/s7vYsdudQQrC2Q3acuDhe2+zv7rPi5fKH/veZ/jD337OVmG+t+dwPfPe/Rt+6bVHdE+4ORoZ3bgo1gx1kKTUOcSWx3+HhKuyi5NcaCZ85pW3+Oa8ZXd2zpAzOaf4frthJmgaGYfCMIaLbpkXam/UpYM7eRjQnFBxaluodKbdOdOwISUli2LWIrq+G2Uc0ZRxUToWLr1gdTjfXcS14f7EJV97xyDui2506U+IvblVmhklJYoo3WPDnnXDurHZ7EBTVAmuzkvrHTNj2mxwCRJHzTAXwrPnUduwus6aGb115uMRRKPuIq0/0wnS151cBso4IC5xLhVK2lDrzSoQjAzTwGaYWGoNMtRsdUk7KYcsUoqylYGkwvluh2p8twCmQqVFfaTGtR73CLgbSSNFzM1wdboJIhlwhlzw0tHVTWrijENm0ERKxsPrPVoiOv3XP/MKr7/1NsPuDtWdSudghTYXPvLh53j2coM059Zu4tg6yoZpAx/+4Bl6vees7snLwoeef57buyDVjkscN8VIo3PYz1wcJtpmdaCLk4ZE3SvXb77JxTCRbmdEJ1wv2X3wW7h4+Zf4V7/wBn/gO19msxtw63zp1/8F22df5lt+4E/yI196h7/z2T2/eHfk7O++w8f+7IsMUyYdHVWnFMgIuh0Q6/QClzLgfQ7nJkEYtiVciqoe5xsBV0qG3VnmOFfEhEsSH/rwji++ccVUErYZ2V4MtIvC629cUWunr7UJm+mCsQwkTXQzlnZgO06MQ0IFamvUHq5NNyVp1N303kHCoT9lYWkWgrUTjtHtFGtRayy1IS1cpzlHTcBc5yDWh8w4ZHo7YgTBmzRFdUIujMOWeVmYj52UoAwTko1WO/RY/9QTQ86IgGojeUURlh51nojRvAUBaiBJ4v5f4/5tTTooktCkSA4Rt5uRJFzbIb5LrH/e1hj9ggBaCt47zaDVuG91rYdxC9E4EcscGudLHEghZKgLOiTKMOJiHOYjfoxUPFsJZuuRWyipkHIn9dgk4OYI4Yyde5DVQ0oMQ7hqD9XQRFQHSMJcWHpFF2eQRlFhmhL72VHJtO5cmXCcM1dvzeR6wEypc7ipNRdcDMFQgdYXVJw8CCkJSootrgMk6/Q50j+GEf7M93wbf/yH/jCfffX/4V/90q/y2tt3efv+zIN9ofZOVlbncKSKLMeZuhwQVSQVso70BqoFybFhlg55yJRseMuoFWqruDZqM5ZjQ0TQMLqjsq5LprHZYj2/iOOuT+p8DDCLayOJYKogiayOalTTNM3gUc2Kg6DreQ2SPAmYhaAnKYermA5rmk2dGyWVeN8IazVgJA1jvoug4xBJKRoVDkIkdbDWBlvyeMZ2x9Z7VEyiVic5juGake4kTWSNeqqlN4S47sU9qk1kvUgdkNik7GaoRLVRfyyYGSSJ684j7iOu0WaxYX197p9wwpfFV2meOUvvvw14wzhRxonN2eY0z/x/5pnznfJtv/8jvPXm6yy1Pt0T9dtE77Fx6TTPnOaZ0zxzmmdO88xpnjnNM++veeZrdtPTCb/78KlPfYq/9Jf+Ej/xEz/xtA/lhBNOOOGEE0444YT3MXqv9B7RwlgMh+Yx3M6101oDW4c5hSllTGJgOx4q3ZxxGDg7P2NQ4Xg8IDhJK24Lkyi5RKR3Eg2SjAS5sIYzxbCLP3ECN+/0Y+Xm0X1q7wyb7RMnmG8SWZZwcUU6dsQkr1H11sOpZe5rF7wDjgpkFbIkTAE1ZAlCqNZKM6VoIqURaxHhrSXSptSN3hpL3/PevYdIEnbnF7x065KkAmZBOgDgSInh2z1cR8fjkcP+QK2NaTuxO5/IaRdR5O5PxAEhXEFmznKszMsN89JWMWJk0hREvgYJsbTOYd+4PswcDzPeG54S43aLliDxHSWJk3KQPt4dKRktGe0WhJQmhlLwFBHybVk4LjWIDjVK8iBSUmKYJtCEd2ORzjAM4ZQ2o/hCkoXkRzBnOTS2Z1t2uy2pDChKt4i9Pj56wP76Pml+yA/8/jP+5A+8wDM7pR4WDo/21JvO8Xjg4dXCm/drEGw4RTUcYOJBvgG2VHrbs25VAxMMRRQSSkcQh+vDzP27D3j+2WfoCHWpHGtFSEybkXEcUS1r5cESxHxdSKmQ80BKBXdjXhbMnWl7RhkHhpzBjGU50uqCdSNvNqQcztwkkF0x7+E4PtthmmOTnwBu9Frx2qPSQaNSxQiSprnhQhxfEkpKJHcU4dgXxnEg56joMyyc082px4VhLAwpPxEJAHQVn3IquAlHb/HNrellijNOAzmXcMGtAqG5UVvlfHdJ0hAqpPt67TutV4ZcokIkFXrvqArdDDcnp0xWGIZMqxbHrEHKlRzWQtWEiLOYrISao5JABHMJEVNW1/ocnymRcCL6HhNchVrrE6FjKAPqirXGPC/UutB743A88srrb1Lrwrg5shkmXAaWBrsNnE81qjetcLbp7O/fUL1DdX7vhz/I5z/9VoggYjy4d8XlB5+h1iA+Hec8C6MWzDvHZWE4JlQdxkRJE5s7ys1b73F8+3U24xalQ3kW3XyAj3zPt/GFz/00r3zuPh/9judIZaG68bmf/ym+ZZf5gY9/nLd+/H/in97r/OwXO9tPvs6P/IlL8jSSDo3enbLVILPNublych64OBc6R7pFul6tje5Kqx1JiiSj5E5fYJCEFKdg3DqHw8Mjx33DsXArY5QspCLUQ0UskRWuHj3g8vJ5shbmWnFxjjeP2G1vkTUF0V/buqYISoipAnHeSPRU0CQkV6p1rBrZnVwKpYxrZYOtCQ1CKgVRWGql9YWShTJtcIReG613UipBzIuQS8JaozVHLVI90jAg3bHeKeJMg61pIWG7XWpDvdNakOQhIAhJO9YVE4k0umBj6dbpbkjzVQBTNEWlweOKF5GoJugr8T+IxxqAY7qKx80w6xhKEsO8hfiIINZXolfIOpAHRbVjLWoijnUmk9CWETWEztJiEwApVkerjeaODOFA9+5466ivG4lxaou0joZjHZplNBlzc1qzqB+ocNCJI5WkgCojwiaDqGMO1/tOnxvNoEMk+HkiSSI/rkuyEB5TFjQ5yY1nzwYOVK4P8Y6iSSkjfOHVL3L99kf4/j/yY/zxHxk51mtef/2X+aef+hS/8C9f5fX7e47LTLNMHhXNIWx4N2rfY7LHWsIYyCWT80hKQXwLGu86SRHPdO+UYUKl0ebK6n8HOlmgGyRNiJZ1s7WRiBof0ycvK6gnEFuFVyf/FhI/r5uuMcGU9TcUOhafG4nUFI+1myQY8ewXa5F+2B23Co+LvkQoObFJmc5KzndjSCnqdwSGYjRJcR03w8Wo1kPEE4nvOxVwpyNkgYo/SWVRjU3j6kRlksi6DodrG/eokEDQBN07WF4d2yAWrmpN69Z3T/GdpsdCRQgSJ5zw5fDVmmfK+P6Tl4ah8OILz5/mmX/NPPPcnVt83x/5bj71M//4aZ6m3zZabyzLfJpnTvPMaZ45zTOneeY0z5zmmffZPPP+eys94X2NT37yk/zsz/4s3/u93/u0D+WEE0444YQTTjjhhPcpjsdldas4bakstTJbDPRJgkhQDQHBerh7VYVhGMhnOyTBgJNo2LJAPbCZtkhOmChFCrlIDJoIpBzOIR47baC3Bcc5Ho48uPsOy2FGVpfYNCSSC94EkuENDvMSjkx3ap2ptWJtrU2wVeRgJWBUQVvEINfGYks4ti2cwlkinrgbLNYp2skSkfrIOma7M8+VcVt4/oXnKCWD5ohbXuZIqZJwNOOO1YhN3u/37Pc3JE3szi/YbEdyjuhu6x3DV3dVOGqtN5Z54eZ6jyuM48D5xfmT7CknjNPH2dgfK4cW7j6zhhZlHM8isp+V338SAQ3VO5oyqSgNR2ojp0wZFFGFBvW40NoSzrikKCEOeEowKYkgWj11xnFLzpmEIH6k+J4iLUj0eWYzbbj93O2IE0cwEzpGnffc3HuHvlzxDXcyf+I7b/NNH9gx33/A2280jjdHrh/NHI7G1Xzg7budpQVZnETogDegGpISrhn3JZzEBJmABoGOKioZt45bJRXl/PKC7sb+EJHTkgplnBg3I1mUWiPCe14qvXVySYgqWjLWjdYXDGPa7RjTgDssdaYvldoqKsK42aI5hcsZ1ph4p/XG2WaDqjC3ijRDczhF27KQxxLHrGuKFYKvrrVcCkmiCrKvotJhnklJGYcx3HcEYWMWxJ2oMI6bqGnxx5sKDbOGC6QSpMvj+4X17xGnpMyYM92d1iptOYSjOhdyKXGFWUcTqCjNKu6gqVDKgBsYtlZNdFLKpJyiRqP2iDhX8O7kksglx32ximWaEilnUop7MQQ1njyr3P1JFL6oguQ4Pllj4yXjJLqHkCCaWKpRPYFkmjk5Z569tePevXscru6hKSFlJJfMEefNz91j901byrhFk6MS1RG3ZWBQ5cHe2QmUUlhM6ccj6cwQNWo3aiuUMUjbw6NjPMuGTB5KOFg9Md7a0qvh13chj6BbyLe4+Prv4nt/+C3+9v/6ab7+G29z6/ktbTnw3nzDL3/q7/GH/tzz/Mf/6X/E3Z/4BL/eJv7+Z44M+S4/8AOX5DHTe3gMZXCaZdoZ+FyZJHPbC9kj8WIRwW46dTasLqgnpqGzNKA505A4K8a5GF96OFMRei5MF5e4Ne6/c0Wfo+bG3OnzgmSox5lcRlSEvtxQuzAfjVzWaoPuzEuNY5RwtUtOgGIWBLeKgmamBHNvHFpjI0pKHvVDGpsom3XS6jgexglqoteKaEZyVJZ4r1hvaAmRQjwSBVOCZalUM9KaCiGa6XSW1kg4zWemIYSEUQv7ubKYR22PxX2Tc6LjQf57JA5ojmvSejzbkfgZEaev5FhgcOshlogiKdNbpXlHDHpijc8vUTPTY1NnrwuqsSZoivSA7kZfjKmktVJIUHWOxxlb+M11t4T7Vl0i2SQptKiGVUA0YyoIGaWHkNDhsLSoj3LncGhoTkiCRKJVo4tTsoAWWnd6q1Scos6UMtMgXF/PXC0Svu4EQ0o0Yg2b6SRXuoCakLSQ00DvM9/wfGF/qPzKAUoRUnZSgV9+9Td455X/C3n0s+z3A7r5AC9/87/PX/gv/3t+7HiPz/3Kp/nn/+in+ee/8jnePC4crKzO4iCssyTybktrIdRqXeJLlwFKIsIgot6hrM7eUhJJ4rzLmgjoVkGMbo0xK60u4EpSwayRVRlyogO1g5AxT6RuJA3xs7Wo/sFtre0BiGd3EglxA3B1RArJO4tZJJ8Q1bs5ZzCh0ddaC0MJt/Zi4ZJuvaMiNCfOrzesx3qRJN4HmnWqhUgkEoIN1jDrqAw4kcCh2uiWo+LEO80FN8EfiyLy+DpTPEXyB+KIRapmwkPwUOVxXgeiJMkokLLTm+EpJJkTTvhy+GrNMyWXp/1Rv+IIWdRP88yXmWd2ty747Oe/wGtfev2pnqvfHuQ0z5zmmdM8c5pnTvPMaZ45zTPvw3nma3bT0xtvvMFnPvMZPvKRjzztQ/mK4Wd+5mee9iH8jsdbb73Fxz/+cT7xiU/w3d/93U/7cE444YQTTjjhhBNOeB/iwT42DdEbACUVhpwx75Gus1Q6ERU+bSZKUbIbrVZsvoqgZk3ksw3D5oyUM2UlLLIk0pjJpWC9r8OuInmNCe8Lh0ePuH70kMPNAXdjnAYu7tyKSGN3xI/YPAfrzROrEPMSTjI0UQalacPb49jgcE/h0AWKK5qFkjL764WbmxnDMARyDO8pFdyg5BwOyzUau5kz15mSFJWzqHhA6SsJ6h5EAcSgf9wfub6+BnfGzcRzzz3PUAZEWDUEA2x1SEkcY1+4urrPMndSHji/dSsIHY96DTOltc7NUjk2o82NQ61kd9I0kUtBJSGSgvhIETNtBDmqomQU641WW7hFx4mcE+6duTbssOAapAaqtG6gSp7yGtHdWawzjCOblBE3Sj+Qfabkhms4TUsZeOGFZ8hZQigyp1mntU493FAPDzlL1/zQd1/wnR89ox9nHr79gP2jmf1xZr+v1MXYzzMP9jP3H8589JmBq2PnvWOc19oEGnSviP6/7L1rzHXbWZ53Pc8YY8611nv43u/bR29v29jBYKCJQ3BCQMIQQoFIpMEGU6eHoESoB1Xtr1ZRpf7pv/ZXU1WVkkqlatUKQkRpmuIYaJKmJbZT2xiMjY3BwPb2PngfvtP7vmvNOccYz9Mfz/w+Uqk5kCBv9u66t7a0td/TWmvOOeZ87nvc921QF1bT70qgeJASQGclxFOmlIHL/YH+5ZcpY+Hk9EY4zjfbIMHaQjWn9SCxU1JEwxVtrbPME67C7vQczYmiEf8996i7SJopmxFSCAS1NSQVrFdqXdjtTnGUWluczznO1b5UyrCBFHUGbo6sFQ3LvDCUENiieiV+Zlkqbp3xZEsXo1v8GxvMnLrM5HF1NsuDq90xhT43SBGyjjxw8YdbdV4WSinkknE0CBwR0BGrlaGkSG5TRapERYQqrVU2m5HNdkspUdtAN1ShTZ3tdkvS2GzYrK7nd7imc0q4RV1GNwunpzpmHq5ZZHWQxuuEqDVRNTRnsoCmcGw6SsSf53BWo3QXDq0xL525OtezMbVrksA73vwYX/e2xzk/KfTmvPrSbe7tr3jrm0b+1B9+ktuHhZevnbEUNsm5f++Ki+GM/XLg2VcPfNNTG9Qnem1saCyHK2R3SnNjXpwsiUEzOQURv2kLXsHyQMrKcHLCfPc+1y9+hdOkSD5B0hnkJ3jyG9/Du//Ei3z07/8W3/eBb+T85sAydV565ZLPf/hn+Mb3/wd88Ae+k7/213+Br5Rz/uYnbrNx+JPvPWMYHKei3dhtMmqKuDLVznY7oDiLRY1GK5VlJpyRDroYRS1clK2zzJek3JkWoznMFG5IZ5udp54u/NZzM/OhcrrdcPrIOfMC9/YLKRtjKTz62E3u3D1wf79fr8MMKZMHpS2V7i3Ic1FyLpgZ9IbZKl4lKCnBWsNiXUmqETUvStJE7RbXvTtDzkEqtrhHaEpIiqSIXAq1N/A1Ul9gGAeWpdGWyrArkGP9TBSKVPpiHKZGb7KKcgW1TutrzL85aXSyCH0J5747KEJKCUkSNQY94u01Ka6GiqBZSVbodLo1pnmO/x9nfVRZrMIJazLGMIz0RTAzGgZqUZficS0koC0hQhtOShkvjvc1/aSHsBf3MUfW1AIA6bEJGXeUBFlovcVrDhmStDp/e++oR5reMBaESPXoS5DQ45BpZrQOi8M8GV0Lpp3aKrjiKYcjvi+UlMgpnkHSSWeTohoiSaN6pcoe8wEX2Iwj6oJ5ZZmENz9+gxuPjDTucvfOz/K5//VnkPwUp0+9hx/+i/8x/+ajFzz76x/hl/7hR/nsZz/Hr/7WV7gzObIZWeoEFrUdh2Umy8JWJ7IIhzkhMrLZJM53hf0kTM1p7kFw4ww54R7rtSbn5GSk33GWZYrzICtYQyyjnsgPHMVdyClSZ3B4WPCrirqGQzz0JLo3HAnnNYJ4xwzS+mzTeggLkmIzeVprKJJEEqUpmLc1HcNXAdpCkPF1szCKpagoSRouddUStbIS93HI6Crk5KTUHtXC9nBrQrjccSNnXdd7ogYlK1mdRIh3ENUY3aC7gdU1JSYhKKwttaohVSV5eCM74oj/T3y15pmTiwtuPfIot1995TV+x79/ePPTTx/nmX/KPJPSlj/3Z7+Xn/6ZD/HCi195jY/Y7w0iiuh4nGeO88xxnjnOM8d55jjPHOeZN9g887rd9PSlL32JT33qU2+YTU/PP/88P/7jP/5av4zXBV544QXe//7381M/9VPHxKcjjjjiiCOOOOKII37fsRwOpJyQnGit0aYZy8pmu2F7skWShqvssKct11gDUiKLICU62LNmxmFHGUYOvTPXOdyKeaSUzUouKC6daX/J/nBgOkwcrq4hJ7a7LTcuztGcYwBeHaCqSl+E3ht1ruz31+z3e66vDix1YamN1hpJlSFpOChVyCRaWx2gzemq5CZssjKOA/v9xH5p5FyoVtkvxpAqOSldCmaNRCLrQHKhLo2UF9q0R/KAPnBEt4aqUuvC5eUly1IZx4FbjzzCMBRUIm1KHFY9YK2OEKTDNB243l8z18ZQRk5vlHDHaRAOIom5Ni6nhXboTG2hWqWglGFE04BqEMpBsgmqIK6YCjmNYWvqHe8R+T9sQxzAJWKyW4047lwQh2YeRNQ4IknBnNo7iUQZIs6/pMpgM0Pu9OVAO4S48cSjjzOMGZBIV+rCslT6dEWre7ZS+ZavMb79Gx/lLAnXL99jf33NYd/pzWitosDSFl68fcWvPHPg3Y+d8efeOfCOs8IvvTzzhUvhzlJBSkSx946J4SuRXLSQxFDpkQzliqTOUApD7szXt2EZOJEzUrlFyoXaepAsvXNYFsyFUjKpFLJmem8sda1W2J7E39AQfHrvePMgFTcS5yAeDkZ3emtYrWy2W1yCmEyqJMIFNy8TkjOmEbstayy8IMzTAqL4GjHvCsmFZh1vjXG3BQhRwQliBWjLHNH+JdOBBzvCWjfaNJFyoqS01kLaWvkQ4sOmFDbbDUnjtfqazjZKorfKuB3XDYWJIee4ZtxptbIZR0QMk0Jar/nejdoWTs5C+Ko1iCBJgpgzTwu6HaitxR7GNe7czFnW2o0HwkDvcZxBHrrAVTMiTmu+ijpBzJYhruMHLupWK8s8Mc8TVhtuhg6Flrc0M/plY1Rnd7qlZGfMA8+/GmsHSegeaRCeFqo7r9y9z3aT2SajV+eyVq4ur+l6hWx3jFoi3U5iTYIU7lgKdQ6HrpYSiQYXJ8x3L6nX9xhP7iH5Lq5b0sU7eff3/Amef/bDfPL/+hJ/9D1PcrLLnJ9uee7ll7n18b/Nm7/1/bz/pWf5b3/uc+zPLvjZT73Kk28tfO07z0lZabPRezjw0Ui3mPcNyYWbZwnhim6KeuJyaZgr09wYiiCjc3l/4sYWvvjcXQ4Wwpk9qEMggQkXu4H5Qqgk5mjLiCqcttC7cbrZRvoDQl86dWnksaC5kHLCqrMeToKrVLKEWNBao/W4J6gILkFat7WeRlWCJJc4PxrOtmQ0Z7pGYkXr4dpG4zjGdWirez9SILbbgdo7vVXSWk9AEroMpAKaMksPB2ki0guGNODaMTWa/e4GWBFbiVNbzz9bKwaI9QJDbE2t8wfnbcTpSwdvYVHWpGjKdGshnHjE8zdfa1NUkTXaX9c1r2wHmjWaOLUBFvdSl9V9KiE8KCE6JgkRzZpF0odm8AHrlY6hQggdrMkoHgH/4aDN0DvW+prh8OA1OyU5Kcc9wCXWgqkuHBbDidfu672ebpSU2RZhs1GW6lhvVHdGVVyEF+/2cGq7Y4nwa7fGjTHxuWdeYUwLb3nqjBsXZ5yc7bj5tRvE7nG4/jBf+Yd/k+vDGWdPvZv3fteP8P3vf5T7d77MJ//+h/nUZz/D5770Aq/edZaU2CTl7KQxjIp7YjRjqY2r/Z7DQVEvuBREBMPQJkhK4bSPpwLmpaNJ2W43IZp0p/cWtQhUNCV6SyQWcnYySu1EPcrDf4K0b+6Y9LUKIsh3N0A80ist1kqPB6a17sTDRbymQuQUdQ6tEefnegzBUFeaWYjPhAMej0QL8hZE6P2A96goSgDawTUERRJt/TnvHdVIwRABkUjStPV3JwfrSpNwQyf9R9z6mig5no+aGa3FBgl1QsxwJ6Vjvd0R/2R8teaZ8xuP8cSbnn7DbHo6OTnh67/+XYjKcZ75p8wz2Trf/13v4cN/5yO8f8DxpgAAIABJREFU8PKd1/bA/R4gOZPLcJxnjvPMcZ45zjPHeeY4zxznGXhDzTOv201PbzT84i/+Ip///Odf65fxusELL7zAj/zIj/CTP/mTvPe9732tX84RRxxxxBFHHHHEEW8gVDNs6ZQ8UMYt42lBcyJ5o0/X4RLzjreJpIISLlxdY/JBGcYtkhKX925TpysWM8Y8Iig9ZWqbmQ4T1/fuYfNE2e0YxoGbjz8apITEAOoa8dhhNBZa60FKmYWDbVB6y9TNSBozQzPmZWaaJq4OE90aQqQ1bTYbNkOB3liWhWqdOleuDhOv3L2i5IHToVByvCfH6eYMIpASmjMpCa0fKGlEZMO9y/vcOrmJA71X5nlmnmZqq5yfn/LYo4+Sczi9zHqwXgTliwRh7N3Y7/dcXoVLcNhs2W7DQWQSgce9d6Zq7OfKYVmYphm6kUpht9mRkkIqYELOrI5aoRMR6ZIyyVlJ5w50pGSSZFBjmSbq3PCUSZro7sytsR0KwziuDtaoL9hoIg9jDPzeGHViQ8NkZn9YEIeLm+ecnZ5gyBoLLXR3Dtd3uL7/CqcDfN0t59vfOfLkTWG5vuTudWVeKofDzGEJEq/1ymHvvHzvis8+c40z8/zt+3zy7pYbpyd8062Rtz224bOvLPz2nc61Zy5GZ7q6ZErKUBInGUpOiHQKSusgg1CGcLLlVDE6ebjBOGyw1Z1r1mi1klMm5YLmHOdEDwdgSom03aKayCqYdVpvLEtsfMvjQH4Q6Q6QnCTQ6hJkfsp0I0ivlaCs84xoIpVwMPt6nqvD0itIuOREgxw1M6wbyzSTSybnHG5pd1p8+lEz0jvjdkPWeA/uBOE6z3RzSkoPhaigouThJsPt6phnfR9JobnSbWa7GRhyjsh6BFlrJHpv9NaRzRheQXOaW1wHRKy7aKL3Dqzx4hJuOXcYNwMimd4N8YjZD0UtCK+U0u9ugrQO66bDklNUTFqICDmlh27SEMI0CLNe1zpMC2frJj633XYgywBAFoOSyOLUeY8MW25TyEgQwCiShWEzcL10yvYGX3OzsOzvIgkOs/HCqyNPXmzYX3XGi4iSr7Mgg6PJuPPygeE8c7J1+gJCowwDmhPDrlCvD5TpNlJGJD8CMrK9eDPf8p3fwM/8j5/k5s1znnp6x25XuF6ML/zSxzh57E38kT/zfv70M/81H/7cXfanj/ATH77NvyEjf+gbNqS8QOtIMXbbRG8Fa4YtlbwVsC2wB2/UDtUblIJL5+YusdGR/Z27PHd7ZjHBu3FyfhrOeVdu93OWbWOnlVqNgcKmEZtO3UkqnJ5kjIF5ecBERt2DtzX5L8Ua7+5xT9GIkBfNqCaWVVhCIKuikmIjbO9kJNyhSfEUgmzzymYYWQ6GeiRFLK1jKOpG66HaqoaYab1ja3pEJ673ZpUh5/gsyIgUtqOztKhWjVpUBw/xIgF16Qybglvn4C3IfzP6mnYnGiJiXp3PbT3/TXrUQqBBjBZZUwJW5jhJrEfmQZj2uAZ8FaFVE90ckjHVA0hcv7kkZL02eg3Jz1xJpZDoEcsv4fZOLao1gjwGyQldq2GwqG4pScOmu64pzQ1N8feFqDTCYRyULMbSEqKGidLWdI8kHUsSTmwLR20eV0d+UpwQU6bFgpDXznYs3L1upMEZBmHRAbXEPB1YkvKrz93mepp42+3Oo+cLm7xwcaY8cnPLrcfPePot59S5cX31Ma5+7ZO8uuxIZ2/nO77nh/nuP/ujXB7u8cxnP84nPvZRnn3+y9yerzn0xGISgolksg4szTCL6gczQ8wRzYy7TWwGQOM8ndvqa8/EaeKkIdbi1jrWWF3PjdaiakJ8TbEkyPekCVnJdFBEMr6mWKh6pAKoU6sjXeJ71/PHPMSpblHpZbJW6JCgrwswimrC3KJ+aE12EaL/Ya4zWlsICgY9OS0J25yIzAQnZcVqbGkXFWwN4YizVFeh/IGjW9akg7jGFeIalMSgcacIB3ZGCuQcKRi9GVBRS6tAfMQR/3h8NeeZ+bB/rd/u7xueeOJJttstd27fOc4z/wzzzDe/2flX/8M/yX/6P/zffPSzr75Wh+33BEGO88xxnjnOM8d55jjPHOeZ4zzzBpxnjpuejnjd4oUXXuCDH/zgMfHpiCOOOOKII4444ojfV1ycn6MZiii1ztj+LlOtaAp37HZ7A5tn+naDulDdMDpmGbGOt4WWEq0tTNMeJTHmxDQfuHf3Nn1piGbKbsPJ+RmbchPPCZqtjkcJYkgiBt7p9A7ivrrBWCsRGq0FweOEs9GtI6psNydQFqw15nnGrLO/vs9QBk5OT7k4Gemtcz3tmS4PXB1mTnfK0haG8YxNLtjqEss5RVRyb/TeGMtASon9NDPPwnlduLx3n9oWtruRi5s32YwbRIK4kZVEkTCj4nTcOvNSuX/3LtWMMmw4v7ixkrcRhxxuWuF6alwvC9PSqIuDdNJQGE42qCpeK26C5gfaQHTDD0kpkkETrVfMO9YlXLgp4QqLd9pcEVfSuKEb1LYgAiebDWWIuP65N7Iq2802CHCb2chC8gNC47A/0M25uHWL05NNuOwo4eDrnbpUri/vUadL3nrR+e5vGnn6ZkP7QlsI0kydLgZZ2JSMNePO/YkX7k/85svKc9PA02Pl9n7HZd7yOy/seesjwh99y+O87Rb8yvPX/IMvHdjv72MqnJ/u2BVnxx4zpaOIOyWH09ib03DQwunFE5ydP8n1YaIHqxLkhQhZc7iCHehG60YuJYQSzZSkdO/htK0LrsJm3KCaQON39AdO5NrZ7E7Imlncg1QkXPLzdAAIsuyhyy0i3Fs3rHZSDhKFleTvrVGXGdwZxh0qgMffLKJUM6ZlYdyMlJTR9X24B6lkGJthCLLd4xqTlXgxC8e25nB9OrIS646a0KuRNiO9rU57GljE6S+1ksdxTWgLdz6mkOI6MIz99YFxCFFKRXHr9B4OxKCMguCNNxViy2bMLNVw76imNSoc3Dqtd8zaGl0fP9N7RdbKCLdGSkrJid6ifiOvGxnFIuI8l0IpZXUhBqFdRMALrsLcYekheLTlgJDJeeDu9YFRHcsjSxsZS+LW+Zbto0+wrwt0WJbOZthCEkyhmTIDV7cPbJ86wa3RO2hr5DSQz86BS8hbZO0TEHHYPs3T7/4T/MnnrvjoR5/nzzz6NOPo3BgKd5bKZ/6Pn+OPv/9r+L4//8M8+1/8OL9yufCc3uCvf+g5/r2n3s6tR3dImemHCTbCicdaKntoc2d3MkRSmi04xtI6MggLM+3QGKTziim6UfrBqVIoaeDevYWU1xQEV4RNpKu5Qw4CEo/agZIK4+gPBasHtQiC494fkowiQZ4qgkuKoyJCzolaK7U2TDXO7ZxRN7qF29ysx7EXIQ/jmtwWBKvmlaT0hlnCV3HMAdG4wbRuFFFyCsK6mTPNC9IaQ45rSSXW09Ye/F1ZI/dhLCWELOksvYdLmnj/pLgn2CqMVA9JN+cBkuLesF4RTbgmXJSsGUziHK+dTl8FFMBaiLutr6kJcQwGTRhGWzeRihiqIaRlB18rNnrrSIZECGeigqb1b3ejUTFCFEgajnDvjSYd6UFq5yEEOXNnWRolCzmVOL6109yp5qRU1hh/J+mA5wn3hd4KSRNZlXGE2jpmjrjTGtATOReGzY7WJqbqFPd4L5bBOzfPThhS4+UZ6isLl9NtHj27ZLt1TrJz43TLjd95ldNN4ub5lrMbJ5ycjpzuJvb7j/Plj3wMlTPS+dt565N/mG/+j96HLZd84bMf5lc//n/y7PMv8/kvV17tjaU7YopYrFGDCtacRqfOe2o1coI0DKhkXBQxD6f/g/PMnawpNneXhnuI8UKkYjxIgIiFsKOiDBrCg7nTPFHdyRr3/eSQ1B8+b/gawSKEKKAGkiyeLyw29+qaOoFIHO91nXGPay9reiju0RvmkVYg3VCUeb3fqDaSKEkUN2jW1rqieB4RDTHBmseGdmtoCie10dd7pCIW4ndSQQW6VXpfxTJVcsmk1T3d/PfnmfeINy6+mvPMG2kPXm2V1pfjPPN7mmeEv/Jvv5t/5698kk/91r3X7Nj9s8J7p7d2nGeO88xxnjnOM8d55jjPHOeZN9g887re9PT3/t7f4wMf+MAx0vf/x3iQ+PTTP/3TfOu3fms89B1xxBFHHHHEEUccccS/AGy+gqlTNZHUKbuRkRFNiWEoJAwrAzTDWkyMLs5iE711aBVXZ9zswDtXl1dM+wMmidOzG5zdOmMYBhIOCbxDdsESa4JTEAi997WHfSUxzKjLzOXlJbsxEqC8d9wMPDrlw7ID1hrmHU2Z7Uki57QSUJXWJuaeEE2cbHY88ZgyXS9Ub8zTBAZzHiilMJQSLnCvbPKADiM6JKZ54f60cHHrEabpwNnNc3bbk0iocsJhRjhJo/Yh4pVrrVxdXXG9vwaU7cmObS5YD3IMD1FhaQuXh4VDjeQq70GajbsT0hgkptdK68YwFIquEcwImhNbHXEqZp1a5yAbUiHnFGSSTfQWrrOime6w9E5KymZ3QlHFeqd1ZygD2zKAONpmSjvg9Yo8ZKbDgdoWTs/PuHHjjCIFxegqLBh9ObDf32XZT9woM9/8js47HwEu9zz78sQ8G3MLQm7pjaUah965nBrLvtIFfv0l48u3Jx47M1Lv7GtH001mW5CTzN/+9PPcOn2Ee7MyinLj5jn71ri8O9NToedEKoKkDB7kewOQRC4Dm5MbDCdnNI+4aulBopSSGYdIeOoWceRunXEzkodCSgNjzrh19kuPmgJNlE0BBbeVUNGIsvba2Ww35JJwC5f1dq1Y6NMStYw5xaYqFXDDWqMtCzi/e+weEuPhrMeM7XbHIOGWK1kwlNYa3Ts5ldVVt5Ll63Uu5uScyMNA0EhGUl2bIiJiPw8ZlaBNwhUd/929kXK4VGV1+6umfyQuPpMSJI2KyYgmjyoEW5ZwX6dELvkhoR/kJNCCSFORcNqZAyk2P7a+ukAjMj++bljr1Nbo3eg9COAQ3DyuCgE3xXC0BBmWc8bcqNVpbYkKnJRIOcc65BHf3wVMBOs9Ur9EESyIWIkEsYyzLcrbv+6d7MbG2VDYDIUyJNycO/cuuZ6EzQibMaPJyblwNij7q4Xryw3nN9JKXEcigqSMjlvanZcojyWQAZEB8k3yycA3vOdL/PKn7/CJX77Ht777nDI6J5J46aVLPvcLf4M/8sN/iR/589/Di//N/8aX+ylfnDN/62+9xA//0JPsdhnNBesLOSVKLrQSLkt6Z7sp8d+6sNTE9VRxy9gIMglPPvYUF7ce43JxDlOnVpiaMPdGSoXuvtYfQEVwkzUOPhzLJkarFq5aB1WhDCPLsoQAJBrx86txutVIlZCkq4AAY0moKq3H+ZI13KM9Ka1VrIOmEve01ilDQqTReqNIiEO4UHLBaqP2BSzWiZIgsgWMQRPeHC0liFR3Wu8kN7oIjlByQnOiVgt3r1oItUOhrtcRrbO0DqIMJDqOZnBNWDe8xXodpQLhsBUJN6lJpC0ULUgayNpRLJylvYcjFludsmGEXpaJtidSClGwIOpTMigFRKN+Q1eXrMS6Ye54q/TeqR7rYJJw/bY1fe9BUIFKotNWt6qQSqQg5Byi2lI7mIfj22Izs3cQNVQF1QHhgqQNl4k8htDtrQOJcQR6RpLh0Y3AstjD9aK3FLUBKZHFGJJwqGAoh2pcLR0mR6tSklH299iNiXEjlK/cZ+fKoxenPHLjlFyM1J2T0dmOn+f6Nz7LV375f+JqvoGdnPAt7/kBfvibv5f9vRf4jU9/gl/9zMf5lc98gd+5M7MwhmO4OAeL9SxrfBbLXDFf0LXeQxV4IJSoro7htY6VqK6RNe0S4h5gPWpeo0QjvtfEUTGKhCjU4tQjaxDtkEA8kg0kkUuIceLr/l0P8bYkqM1CJO4thG2PWhRNSjPHOpFWII7gSJZw7Ss0g26NcRNPPIfaEPeo57BIdhGNWqOU0lolEtWz5r+7lqsI3ZxKC5HcBFFHPNbFlOOZz8zoGukBKkcu/Ih/Mr6a88w7vvZr+e0v/sYq7r2+sd3ueOSxJ47zzD/HPPPvf/db+c+uv8hvvrR/KAr/wYQxbspxnjnOM8d55jjPHOeZ4zxznGfeYPPM63rT04c+9KF4kHgDbHp6+umnuXXrFrdv336tX8rrDi+88AI/8AM/wPd93/fxV//qX+X8/Py1fklHHHHEEUccccQRR7yOMaixOTldI7iVrNB6RzQGcjdnODmjsONwfYnWiq9kz9V8n2W6ZH99jZljoty4uOCJx95EziXcZBqx12YVlbSmSRvuEsSS1RgYo8ydw37P1f17XF9d0jucXdzAUw4XKvGzPEiAMmKIFqOkhJPWXnVhSBnJG3qzSIXycP2ZJ3anO27fu8coQ7jRcFpfMGt4y+y2I3nImFcurxpLzdx8/FHe/o6vYRjH1W0aBgQRw1efXfdwQ02Hmbv37lCXhe3uhPOLGzEoe0TwQ0Q1T/PCfnVC1zpj3Ul5YDzZUFZix7yj7si4QR2yhFtwSJFApe50N1pvYIqkQk6CEySu0BDJZBImFlVuwG5bVidSpxkMY2EYBxRDrFH6ROaaViuXh4np4Ny8OOOJs1skSbh4xEyr0mtjur7LfH3J+Tjxp96V+WNfe4tiM9N0xXzYUHaJeenMUwsiRTPT5BxuH3jxziX3r4Vn71QmVyQ573rLTb7p0Zt87MsTr95zHn9ix5tuLVzpllefn6j5hIsbxvjECfbiJdsnbnB+fsFy91X8ZMvZbqRVZ+oGquGA1XByouHewjwqObYDm2Fgtx1xExZrQWomICljKpSU6b3ReoVVYCmbAUkS7q4U0e6tG3Rj2IwMOZyCSDjNHKMeZqbpQBkKqkJO4YSsdeZwuEYcUi5rDYRGHHh3equ4GcM4MmwKOeeodUgJbx3rRjss5DHRdSUP17h4ISpGhlzwbhHHnVLw9QS5Hm43DRMnQXyZN6wZrRmaw70Xglhch0POcc2IrwlZQeR6EpIQwlNrlFzIKYVz0sKFp5pDxFAHUVycJAmReH2WBeZEq+FwDe1ijVsXD8do76iEwODi69oSEsi4KSzzguGUnElrPYSZYXl14q7OzpLj2Iaz2xk2mem6kVJGxREpdOsUSYyDcFK2dDPKkCglkceElIzmTkLYjjAdjGWndBOSj2tqXaK2yisvHshFOJFCHgzrM2lxdBjovWJzJeWO+4xYxdOWsye/gW/7ttv8z3/r8zxyvuHtbxtIQ2GZO7/95S9y8Ysf4q3vfT/v+9PP8Nd+9lPU3S0+8uzEIz//Ct/3Z99MzooiqDc2uwQiTOqwCLjSq7EtQcCiwtXUSAwsGPt5YldOKKNzGJxpgbH76pjtuCT2s9JrZ5QE63pkRFXpkBJDjioJl0hfqNZJWektnMkPnJCuSpGE1bomsAlIVKIUifVsWWbMwtWuIlEl4g2zSikDmpS6GJpKJFN0R1UZh8JQEq0lshfqutE2FcUotKVz1Q6oFkrOaEorRetrNQMkSdhKCLfecJTchaVW0hC1DLbG+pecCEc0UZMjCU3hGCflcLL2lfzUqEPQxMNEgmoLSTM6ZgYRmnXaBBBCZOvx2dYFXJQuIIvTtSLu6/3D8drWOoc1xS45mhONRNEIMZg91jzpjbSeB9Ud8SB3zdcEDh1xDWGjm+FNVgEgU3KcA57W96PCOMSm5mXu63OAY5IYT8/JYtTWqB48p3uIZTlnTGbwILQFZdwkkihlyNQOh6mz1I7RONsK45C5XRsv3nfUheLGjZ1wftrZ9CD1C5VXJji57Yxl5pFN4WK3cFoPnG5GTjeZcXOXr9x7ht/55Gd49hM/z+6Rr+GJd34LP/hD/y5//sdu8eKXPsNnPvUP+PSv/iq//cKrvHBvYSLjCcyEpJlBZU07qbg5ZhOumZR3eDdU+ur6j0yRIM/D6SyeKHnABMwUaz3qccQpuSMutOY0ixqPSAMIwTceSKJeBZTZ++qEtodVQyagOYV44L7WUjzMCQDA1RESKYXCIElCrPO1GseVNjtVY+NIkjh3jVAuanUUj3qLVb/IoiH8icNaQYEao2ic73Ga4N6oBnURBg2HeW3x9fIgbuaII/4x+GrOM1/zzq9Hf+HnHtZcvZ5xdXVFnRbKdjzOM7/HeWazgf/8L3wdH/m1e/xXP/87TPUP5jpVxg1lOx7nmeM8c5xnjvPMcZ7hOM8c55k31jzzut709EbCt3/7t/Oud72Lj3zkI6/1S3ld4vbt2/zET/wEX/jCF/jLf/kv84EPfOC1fklHHHHEEUccccQRR7xOcfPiJqSIuA5Xr6KS0JLRVChJMBe223Omq0taa1xeXTFdH6i1stltOL24yXCyZdyeUCKvGlvdU4hQUkZywnoLosMb3Y20Dqn7eWZ//z73795lwdluNtx87DGG7Q41I4mzTJWpTdRuMfQSZDnwML5eNGESBHw4TQ0zUHW2w4bTnWIs3H7lVZJmxk1hk1O4claXsWEc5pnajerOZrPj1q0z3vaWNzGMA+KxQUseODsRvENrlevrK66v9qCw2Wy4cXED0UxrQbYaMDeYp87lNHOYZ6w3DCeXLeNuIEvERXd3soTrLBGkQ9YgkJNAg/i9EvHcQx7XqPDVvdYbWYycS4gIrSFZGYZNELIQBGnJjGVAFNSM4hPFJ5RGazP76z03Ls65eXHOIA+c36wpSo1lv1Cnu2ib+ba3Z/7Y20ZuDEa9vOb+tOdwmJkOjf1c2S+d3pxWjct95eowca8Zz92Bl+85lgYEh2b8w1+7y6/pKwzbgWG44Nam8NJzFR83lIvE+dnA4eU9r37lKyyHmTMbEBq+Fc4vlIuNcu+6YXUMQjondCWGO0EkDePAMAyMQyR9LWa0ZaG5MY6bEGFU1s+/083o3ciro1ZU6TgdwIPkcfeoYyglIrybISmRJTFPVyyHKdztJa6J7uGgP+z30B0dxyBxNOLwsyqtN1oPt2jejAxliL/vhDhgxmGZkCE/fI9ouDrVw8lmKnhaqxiI81aR1ZXWGcuIqNBd1no/BzTIr97j9UqQo93D/ZYkHG+JcLGKCDlnSELvhnlsThyHgaEUsoYY0M1j06CsceQQ1RI5GKUwg2s4UrOQS0JTXisDhN6VnJW2hENbVYNgFCXlRMmZ2ibmOchLTfLwWEpOlDZS6wwapK1mpduDzyXWG3dnqY2xCEUV3cTr1FRIrkGmalnlQQ0hYyV5T04LL708cXnd2O4S49AZcjjFcy4sU+VwZWxGQxJIKoglxIW0KdjhmrTrkbTgNVytp3+Id3zjc7zj0y/z0c/e5vEnnuDWrcLZ4lwdGh//6D/g7PHH+aPf/6/wvc+8wM9+7h5+4ya/8Omv8LZ3nPNNf/yC3BVkjr+JxfuRjnlnGDcMTclEPU0bEwczpEBpmetlIQ0DQ840q2xUKTrQxUEqZf0sq4G4ktVoNVzPrLWh3aPG42FtSMroeg6AU0o4702droWlNcSJOgdRzHR14Wdaq/ReUc3h9lbova1VJXGehLNa6K0CDbWEaaIMISTk3qm10xqIKrmEMLe0hrWFoinOpyHEsL70SDkQW9fcDbVX3FnPU6VPPfZKpowkpVnHmsXmW3fohkhCtGAS1UrrbSzEOwkx2SEEPQnHqXhE78tYUIfUOkrD3TBXUsnkHgLZYg2XHteEr+7WrlRbaOKgSiaTUsJ6OKDdIEmOvcQtkhLI4SQvOaG10lrU1QAo4Wa3zFqzYSQFHaJawmqwvpbie0Uhl4R4w1qPqgtRcsoojcSD+hnAe5i5Jc4Z74Kr46mztHDdD1sQi7oKoXJVO0amWmeuzqDK1bxwmEZ2w8QwCucnBdEFm5T7+8b9/cSNfeHskLnYDJyNhe0u8cjZFj1PbMfE3H6LVz/3Bb70CTB7jMfe+i6+7Tvex3d9/19gmfd86Yu/zC9//Bf5td/8Ms+8co/7c2Xqq8grIXCpKXihLYZbjfoF0vo962qssVamJJFA4SF6ag5yPUkIIfs20RZDPaHdaBgKpKzhODbBeqSzbMr6ubXwWeNOsxSiqi2r4BvPFnRA11QJgaijEMoYzyNtabhAUiFLBgdTZxygeWwYwDUSNwA3w7zjHmtzcyOncFd7qOmkHDqCrhGg/YFW4YQwJ30V2ePeaqvz+ogj/nH4as4z0/7wWr/d3zc8/9yXuXPnFXa7p4/zzD/nPPP0GfzF73yKD/3ybZ555Q/euZFzZjdsjvPMcZ45zjPHeeY4zxznmeM88wabZ46bno54Q+GTn/wkP/ZjP0ZKife9730PozmPOOKII4444ogjjjjinxVpKDRTJEcVgKxuM9UEOdMP13hdePbXP8vt27cxh83uhLPH38TJ6RmbMkYucXJQgda5fvVlhvNzxs0J3ju9V6b9PcTAJNFFafM1V/fucv/2Pcyd7dkJt970Jja7LeD0ZQHWaHkXsMZ0fRWEYU706pgJ7hLuHpzuE4kEqaCaSO5YhqKZkhOb7UCtyo2zU7p3SkoRk5wi6r1bDO+kcImebkeGpOy2A+O4RVxWUjOGbutOXRbu3bvDNC0M2w0Xj9yMMHszzDr02Hh1NTcOi3O9dPr+wFLnqNHYnpDKABhGiANCEEZORGWbZqQMZI0NXe4dQ5GcY/DuRnXDq5MkHJ5DVhqNuQZ5uT0Z1oQjx7uRU0FLJrkg2hl8ZqAi0qh15t7lFSe7DW9525vYlpHoto+h3c2p80w9XJH6nn/pSeGPf93AU+dKmxamw8yydJZWaQ2aRVx0d+dymrh7b2Fy56V7yq+/3FgYGU5zROOb0rLRrDMPA1qgZOXr3jKy2TzBlw/nXPtIBU7Pb7G/PpAF6HB5ODCtrvNX7lRMNqSxoJqDOAe6ezg1x5FxGBlS1D3U3piWeU1/CnenaH4oEMy9Y2tiQNaI9n5QpaChhdGXyjgMaE5AxF2DopqY28z+8opdYpNFAAAgAElEQVScQzxwiZ+v08R0ONDbwrDdkVIhJ41qBQlCpbvRrbPb7Ui6Wsgsfke3xrTfr07lEj9DxMYniSj+6pFote7S+11CTsIp7BrnmyRdPdHycFNh7R3JmSQroUtfXY9BCLW+BNlLuK1Vw23sHulqOSklKSUrkQnAw7m1Ly1+7mFte5CVcT136lJRCbEgl4iMx8FNgHDLiq5R5prQFIlepSR6z6Q8UIZCUllT5oQhQ0odaxXxjpLDGU4QdMmVLLDZ5IfHzwlibCjxN9UhJ43jnqKWRUoifLLCsHFOzzLNnFqVZkJeP9k8FtAQypYalSKSQHqFRcmbEGPscIXmG0RNZ0P1hPO3vofv/pfv8ZM/9Sl+7QvXvPc7bnLjRuEwj1zN13zy7/w83/Hk2/kzH/ghnvkv/zt+fZ6YLh7jf/nfn+PNb91x68kteVzj38tCcad20BQ1ozmNmM7sxhAaW/WowNg5nkq4/gtsPDPXcN6qwGJCSsaZZuYu1NrDBSxKd8gpM6S2XguxhkhfhSQJQr33tp4vAzkJlkMQrbVGJUrO5Ay9GQnDJVOXhd4WUi6re7rgbszTPtZGhjiuqoBgtbMsh1hTidqEotDcsN6jkkIT20GjWqcZrQLuqELKQY7WWmnVSA+qTwRKURLhMleVEHRTXCeLaJC+Fus5qSMlIyZkCqiFg7b1lQiNDbiIkBIM7kH6r85i0UIuGRWhdaf3CnMHFTqQU6QAdO9U62CdkjKaNO4vPcQONh3REopzh9priCXiWO+oOX11Iw8lroveBTA0RS2HqAfJSzioRYVdGTFt1B6kc11qVL6ooGkAaXHf8o65ITnTWicNGa/GPM0IxmYb5Hh3Y8gD3SL9AyEE9ZTIauzSxN3LytI97jXNWXJhXhK3ryq7TeJkFHbXB06HzvkOpIEycX+3Y7zX2I4LZ1vhfMicngyMWrjYJsZt5mxUbp4qzV/l9st/l4//jQ9zVXeMt97KO772j/HBv/SfoGPiled+g89/+iN86hOf4nPPvMTLk3GwjLlGxQlRw9GtI1qhPyDWFe0aTufoj4j7TyzM6FoX1M3ZpZFxS9wT6DB3NAk5C7W2h0KTAp7W6hGBvBrydc1xkZyjAsf6KhYToq10FMANNJzQSXO8FgTSAwG5ro97a6WNG72HKB3Pbbo+a3SSZlrv1LXKhBTCsnVAQnjqxGYHelSEqCZco0qpiCBZQwQ84oh/Ar6a88zh8oo3QLPdQ5g582E+zjP/AvPMs3eVP/SWR5ntNi/evn6Nj+j/GypynGeO88xxnjnOM8d55jjPHOeZN+A887re9HT//n0+9rGP8Z3f+Z2v9Us54g8Q7t+/z4/+6I/i7vzgD/7gG6L+8IgjjjjiiCOOOOKIrx5aM/LJGWl1XboZ3jvX+yvuvPIS9198idaN4WTDzaee5nS3IZdNDIs9XIHdDuF+6k6bD5gK4s6yTCzTRL26w+H6gAyF6/vX3L+8B8C43XHz8cfZbDcoQioZ6RZR9nnAVcMpZM7ZzQtOTkfaMnN1fWCaFkoxWo8NT+4ddyE/iOCuDZfMWApFhW7Gshhl3HFyesqLL73EXMNZpzmzGUY2QwF3UoaiiYwg5oivseQr3J2ry3tc3r8CFzZnJzxycROxsPWYBaG5tM5+alwdFva1UmvHq5GTszs/R0oQAh6mJYoqLnl1uxmqwiZvkJRofUabQEqUVEha6O601ujeyO6gq9sKqL2Ts1J2WyRBwgiOz0nbbRBQZgxSGWVBtTLPC/v7V4wl8banHmcYfrcOrnuH7tRW2e/vY/Oeb3wEvutbTnj60USbFryCp1XgcBA3tBhFEos0dDLuXXdebc5vvuRcT4my2zFKECXXXahVGbOz2wgnRTlJA4d24ONfPHBvus/9CSSPpHGH5LJGantEZLsgaYMOA/lEwwW8fp2VfN6Ugc12w2YYg/QDWm0syxRVDJuBkjNZEw+pa/NwvrpQSiYlpXWjszraDHrrlM1I0UQ3o3nUCQiJtizsry7RlKN2owyoJpZ5xlsDM7bbE3IZ0BTu0HAhd4wQH0424+oADbedSRBH1TrTtLDbbUhpdQirgmoY5c0oOYdrGFm/Fud1UsFqZRgKoitPJHH+OOGdTi4MYyFLXuPEE9BBjN467k7KiayJovHaewt3qtkDx2kB1TVaX0i6RpS7UIaEiq/CQogTSMfMQZztdkPJBZUQWxClW8TZ6zDgaMTcS7gDS1EER1entqoiGrWaInFtttbAO96cXixqKFZ3tSYlJ2WUHfv9ElUWKpSkJA33tptgzJhnCkoTI5uTUrg91RObzcD1vtJ6Y5k16gWyIJLIGeZD5fpy4iwN8ftqQljotZPyhnb/RfKwRUdAz3GZYPMUb/4j38GfO0z8nZ/9HF/87Zmvf+eWG2ed+VB58dVrPv93P8S73/dv8a9/8Hv4a//9L/BSH3hBb/I3fvoZ/rUPvoWTs4LkQhqN5P8Pe+8Wa9t2lel9rfXexxhzrrVv5+pjc3zFxhduNhgwEORUJYG6UJUUFOCgVHioSInygBBSHiLe8xpFSnhJUECyQFGEUpUiFaCgTBWUsbGPweVbADv2sX1sn8u+rLXmZYzee2t5aGNvIwURRdg+PtZsL+do77XnGnPO3vsY7f/b//+NYVC8p9XBroGMK4B7pPaEzT2uXYVlceba8GIIGWlOxSkkKkLOhiRHNJHahA1O70bJCR8HcoelOXOdmZLgZGozegfRjPdOW5ZwBkgBmqoOtKUz10YqGir3VQ2dNcBls7ZGCZR1zxvmTu/LqpxfzzFArFPrgmgmq5KGWOPz3Ond1kgUxRIg8oC0auYkjV2RNeGyKt1rAKy2pq7e30sYdOLekVWoIogGyHo/yoTmKxkcitHkBLjqKxngzqYMFIHZOrM5LlDbEuSHhMq1seK2ZsHXr/EZSmbQgmlH3NYoGKGkIKwwQUTjsywJc1h6p0ujpIKoYK1xaDNp/VzQ+/dYY557xKeMcTYMEoRbXWZcw/rfRHHiOnurmEkQh4NizRlyoQu0WuPcsUYaSpyhPZwf4r4eLgfeQ0tbj50DlaTGrleAiDzRhJJo1um9oSUzoxyPnbtHZUyd88OB6zlza3TmueET9DrQgdacpXemyTk2YXMobCZhM2ZygZvbiZvbkd6NXXuaT/7xv+VD//JXkO0tHn/d23jdG3+AH/o7/xnWD3zuIx/kTz7wAZ566kP8X889zwUDXQpL7w/OxnieaHgXWq24JnIa4l4uoJLWyKBgot07KcV3754hB/G2LB1NTu+NpXZySgjrfQsPoF0i0qNiqMegtyAxnpAiasfM41kuGdNUqEunHVaFMo7TVoI5CGBdSQPrjqpDC5LZJMgLzTlcE3qc+SZBwHXAm2OqkII+dgks00Xw7pjFejVfyTU5YZ2n+qvra9nPVJzrN29y9/YLL/bb/orU888+i7qe+pm/Zj9zS5TvefM57//EM3zp+Xt8vczFSTy+nPqZUz9z6mdO/cypnzn1M6d+5husn3nJDz393u/93mno6VT/r7q6uuJnfuZneMc73sGv/Mqv8LKXvezFvqRTnepUpzrVqU51qlO9RGpz7RbkgtC5unObi9svcPu5L9FN2Fw75+bLnmDanrPZbNCSoIO1CgKSQiWVcsHcaPWImTNuz6nW6cuBw70r7r3wRS7uXqDDxPmjj/HaJ7+NIWsouowYKrJQVgth95xZm2KgWUW1UO3InduXceEPVKmh0HQp5DTiXmnLEQiVG6p4CqDQPX7+7Pwc1URDyHmgZKWoRJRZSkhOZFUwowwjSYgogHnh3t27HI6V7XbLQ48+hqJhRGWdsNaHYzWulsbl7sjheKQtRwxlGkfydkOWTJJClU5vM+KZ+w78CogmhjytEQ0SkQKaKWPI7bw7tS0steG9I6o0EVI2xAzNI9c2Z6hC78bcZ5JkSiqQnKxGlsZWO0mdZZ65uLwklcQTTzzEZhzDotxWu2g6yzIz767o8xWvutF5x7cOfMsrB8Qq++d27Pcz82Fmt1s4zsZ8dBbrVDHuXRy5PBi1Fz5zkfncbcHTyNl5xtRpDfY9YkfOt8K1IbOdMgnYVWenZxzYcsyO3sxhAZ/X2IzqNAPPUFJiKAOkFMoqX6+/NkxgnEZyGRiHEV2t4pceoKF3Q3OiSH6gSjYzbI01GFQDmBal2WrBLULvhKo5D/G7PZTBSQ2VULHP+x05KZtpogwBZO6PR5Y605fK9vyclO//Xl1JI4v1v6xA9TDE+skZS0EAeDOWeWE6G0mrGjsAUZA1DsLMI6JBE5pkBeJ8/XsCjM15teWOMl+d0yyuwdxX3X6goSIBRoZtd6iiUw6CwN1BgiTs1tfPYN3fRAQJIjGk1hujJMwM1biGbj1AJ+uUXNYYh4gTcPcHKuiSB1aZNGYLiOJdkBrv2VdF8XI4rMB/gMRu/kB5fZiPdDxAcIGkmU5nX2fMlLocmIvQxbEc0R86y2qJnjge9+SziZLTfQ915uPCvhuH+YBmyCW+W3PHNSPJyJoQT+zvXpFkg7oxTomURqiG9Rqf/51nkMfPEGbER+g70uZxXvfWt7G7s+OD73+aJ14+cOPWwHLo3Dnu+cQnP8Gt9/0fvPL7/yN+4pkX+KXf+AAX21s89ULi5m98nr/3Y69imgpJncFBWSjqqPiXrdsVeoFrwFAyh8VoPZPywigFbxVrMzk71oPoFIOOQe9ob+Gg54664q3h3sEgSQ9SyJwu64Crx1nf1yiAZa5kLUgKEBsxioaLgOQS361IxNpkhZ5hjbzRnMhpfLAurHc8raRlykzTSHLn2CxU/w6JVfVLrNlVnLyC4uGQUFv9sh29KkkyuCMpok57D/W0uWBLuCXkNZJi2R/wDkjCgLRGvXhZ92hryHofCXeC2IliIBglJY4W/9Ytrrn1TldQUXIqsXlVyG54awFCS6hZkyQk5bhHOfQWm1dCpB+K2ZQoQ4LaEY+Qm94lnBPzgOMclhYOiiqYa5xFXmm1Mw0Ro1FyojWYikZkxzEU55oiusEsPuNlbmRNWNw8USeUsiZkzaiGoldFyAJlyHgSqh9ppmR1aoNmsfcUIfc4F0sSSnJaStT1/UpKuCSOnqiHxAXKM5eNs9y5tq2clUpJQvZCGpSxwFQq18fM+TBwtklsB2UYE9eGGIpNKrzioS2vfCSz7zPPP/O7/O6H/wX75ZyHbj3O69/2dn7oR3+KH/2Z/5LL25/n4x/8V7z/Ax/kQ3/6f/PMVafahImhrAytDiBOt4r1JeJ2tCDkdUA3QH4RwbqsPgxO7ytYn4IoEEkR9mJOt4Z4EFqOkzUxJn2g0FZVmqc1hsPIKa/kaqj+3fX+QR/PfZFOgVskSLDe5x4IpkclAkAePKTFPgNYCVgzxZYYVJf1PvIgPkjjOUBXxxZU6atyO8n9O9SpTvWX19e6n3no0ce/YYaebj70CI889vipn/kK9DPVhTd/82t4zTft+OOPfZrDUl/srxcjhspO/cypnzn1M6d+5tTPnPqZUz/zjdXPvKSHnk51qr+qrq6u+O3f/m3e9a538Wu/9ms8/vjjL/YlnepUpzrVqU51qlOd6iVQy+6Czz39GQ7zkWE45/zmdR59+SuQNJDzQJ6mUEJJqChbbyt4EXJeN2htoVunzQdaWzjuj9y7d8H+8gK6MZ1teOSbXsHDDz3GMG0wC2t99+g2VYSU05ctgS0si9063Tq73QW7yyuUTkcYSsaWBVu1lqxW9N0WWqsPFJRhfqxhWy2CpABSN9sz8jiSgSmnsA4vAUjeBwCLJNCw+daSuHPnDu6Zs+vXufnIRFrVO46wWKM7LLNzsd+xXxqHWlkOR0RgOr+O5nCcQnPEKfQWgI+kwBdXFXTKhU5ESXhfs+5XdadhLMeFdqyYOiXlsHwmGvckiTIU0ESzijcQOtsSdv4iThbjPHeSNFprXF5c4dZ5+NGHuL49AwL08jXXvtXKcb9jd3Wbxzcz3/et57z1DRuKVY6XB46HI4dDp86dY1uoC8zWMIx9dY5L5aoq9/rAnz3fmWvh7HzCybQOrcPszjQEGDNkQbKBwH4RFoFDg6pOmkIVyWrB3rvTPNRVQyqrglMxlxWUDrBZFIZxBdlTRlL8TK0zyzwHqD3kUCmmwGu8G82MWusDVaAi9N6pvT1QTHtrpJLIJVNbA+L77BIDU8f9EVfYlJEhZ9xgvxxYlpm+LGG1rhEd0N1WsDYA9FYr1hsljyhKbZXaGipKXYe11I1cRmIAMIDqUIVW5mUhp4S6oq4PBgxDddg5zkeuTRvaXEP9LmC90nqQAF4bOQvWE13yGvsX13aoM9aMmzdukHJYkJsZfbUfZ1Ulqzh4EF3AGv1glCQcvHNxuWOaRsZxg/c4S1qbgySxTkpBEOSScBNaqyxtprX18yk1IgRyAGWaUlj5zwt9OTKLMTLgKwBXa6VZx0XZHWZKSniCNGwZcyZlpzdlOcwP4k/SOIAorTayeii7KSx2oPVQS0tOeHLq4hxnY6nGVhLDUNhsB8oQCtSwOndUjF4b8+wMraFN0GWJQc1qaIK2v006v0CubfDQ4QNCvvZq3vwDMxd3d3ziYxd899tvsL1euLUvPFcbf/z+P+Chl7+at/wHP87feeY5/tcPPcN8fp1/+We3eey9L/AD73yMkkdkK3HtGKVB2hskIYvCeYFDZcvIdu6M2dnXzNwc7Y1RF/bLAZUF08LSE4KiZGqvQRoR8TNFg2wkQ+2hel6qo1bRAVwGmgk9d1o7clzCgSFZQjSGYRMCmuitY9ZJOcd3t9ooWDdULCIXFHJOJNli1qit0ZtTEMY8QIHWj9TWcLOIEfD7bgSxrxHBc8QRGL5GLBjGfYXnCopKQvOAW4deWWxeI1dhlAEN3oTeDPcW91FCPYrGWaFumEWkj7SIx8glYQJXs7GbF7oFsYIKropIQiCAeLNV5RxnwH0stfca6xfFVVe7gyD8cCG541bxpeNWwz1ABTUwj6HfZgsJ0FzCaaEbc68ghuaBnDPdGodlVV5LAMqqSlalq9GaY9oifkAcsjAkxSxcFADMwoGjEGRgp7P0JVS944BuM/NhXl9X2EzKcuEYMewqFqlU1ZyjecS+UEhiQZ4rDEVxOq0PCJnD3Fgc9lcjQzJG6WzGmW1TVI0hObvRyENlvFI2OTNtEzdzIg+FTTa2Q2ZT4GwYecXDhVc9qhwPlduXT/PxP/okT73/f6GUh3nVq97MN3/n2/nH/87fpx4u+LOn/oA/fN/7+cjTn+WLVzO7BguKruRTQoOcbRXzTuoLspItzYJMNu/g4QCRV0Kli1J8JYiKMjLSl0brC73Fc4e4oCSGkFgzrMS2lgHzHgSE6+pUEfclIVT7SSIiVlLCLYYSmsfZLiIgjhARsSprRIVIxAMhDwgq7kf0SBDISRRKOHe43Sehnd7aOggvdP168Uw51ddrfa37mavdjk+92G/6K1RB5qZTP/MV6mceOR8Y8g1uXdvwu+/7OMcXefCpmzGf+plTP3PqZ079zKmfOfUzp37mG66feckPPV1dXa1TwyeFy6n+8nrPe97Dj//4j/PLv/zL3Lp1i1u3br3Yl3SqU53qVKc61alOdaqv4/rc577A9tYj3DzbUkrh7mefRjbXODvbMo1ntAS0hd4bJoL1UFf5EmBNbRWscbW75OreHS5u36W7cH7tnEcef4wyDCjK9uyMVAacAE9j2EkfuDk5jgqw2jjvjkfu3bnLfDgwbjfcuvkQOcHu8pLjvGNpYQHeV7RG3em9r2qwAHTRsDjuRgD0EOqcMjGkTO2N5ka+fwUOoDHQJIYmWQ3sMzdvPUIZhlVRGiCQuVFbZVc7d/dH9scjh90OX4w0FrZn55R8H8h3ugfA5h6W34HmJKYpk3PBDGpvrLo5TJTqRnKQZlQaVg3NAVp3IFlnHEe0jCTxAA6IoaEyZEYNsE5pjFopyVBJ7PYHbFm4df06166fAWHTrITd/dwry+GKZX+P6+x45xs3vO1NN5lKpV4duDx0jocj89w41CAvKqGE7E24s+u8cFnpmvjz54U//8IeTUIZlMUG1JSOUkU5m5TNoBRNHCocFqN2aObs54Wk+iDSoFtodIEAaHFKCvWWSAzAtd6x3kgaUQYlD0iKQTZD6LVH5IYZ4xAkmP5FZa9ZEDnHmaU1UsmUkkEUA3CYa8eWOVTHK3ngEJbsYtTlSDseGcYtEIDKYZ6Z55nlOIN1VAUbCvtlwQk1pXmnHWe6NRxhM23IQ0ZLoePQOt0bdakc9lcM00gaYCglLL3N0NZpLazrx2EipbjGlOSBzXzvAdqJCloyOJg1rHVq62EjbkbSQkrCOI7koVBbZzkYx9rYlgFdhwVRZVnjIbImnB7EVS7IOnio6x6M78lXxT+r7bnSJWzrRWLf9e4stZOSc1+U2jss88K8HKm1sT3bhHDv/pDjqlCWdfCxmZI9IeZhX14KuQcYtZm2DOPIOBZKWRWBKyCVi+NErId4IQmIOt2UZIJr53y7CXB3FqQ7nglVooOnwmHufOmFK0jXOXNhU2J9ooaok8aBi+d3tGZcu+60qTABOYNV0OQsz3+aaXMOOoFcAybIN5ke2/D2f/+KP/ynf8DTn9rxim8648Z54bAYF4eZP/mdf8L3/cev4wd/8qf5/HP/Pb//pT11e51/8m/u8tDDE29+03VUMilDzxXNDdEAJp1wBcCNVmdKHtgAJp3WHcyxnMm2wdqB2iyiGSzO8qEIS5tRLwG050KdD7FxWM8j7WgqKPHduhuuQhk25EGptbEc54hQgPU8K6gZrUJrjSSgUshJsJiDpPdOq5WlCiUP5JLJ6rg0xDv7w4FaG3nI5CIclxog9prJkzWDEEB4M8gJSUIO6BPtQcBVnKKJlNaYBwRSYSKA0ePRmJfO2aYwlZFFG721FdD3iB4xC1JICOt8UtxfezjTmcU9IOXMNCTUnf1SIw4lJVSFkjJLq/RWg2Qk45KCJPFwtWjLjK7RMnqfTEwpgNqSsV6RGgRcq+H64OHREWB06zQqvTpIjB47gvcDqcG0GXFKjCRrQr1x2M2QdKW2IooIcZp3imQ6EkS4rWcuxKInBpNBGNIY6uAUMRGyDiWUIggRP9CaM1uQQ7LKc12VLpneG26OaiZ5oy3h5pc80yWRUiGpUR3288ou7Z1NcaZkbEvjWhVygYFGSgvTVeZ2UaaxMA6JTe7cmISNNnKJmJpNFqbtwJNbpaTC3O7x2T//HZ566p+T8yO84fXfxrd/1/fzX/zwT7HceZZPf+pjPPWvf5P3fvSTfPbezK52Go75sALk4ebQe0VMwo1AHPGyRmUMWA4SSAy0xHdsHgC+FmHMI2RoHqp5PJwjhjKGOroZmmHQTK8ehK04nmII3CTRFyOpBdmDR+SQxjNTv/8dohgROxzxQynU96Yr0RVnfk66ulTE86QRv5MepADBGT0gn93XZ89TneqvqK91P5OG/OXnxpd4uRtLXU79zFe4n9me3eCt3/Ym/vijf0ptMZz1YlSrlWVeTv3MqZ859TOc+plTP3PqZ079zDdWP/OSH3r6xV/8RX7u536OJ5544sW+lFN9Hdfv//7v85a3vIXXve51/Pqv/zpveMMbXuxLOtWpTnWqU53qVKc61ddpverNb6TuZ+b5wHz3Du1wRdqek/MYoF4PMNM90ZYa7kbWqfXI7uIuzz/7JQ5XB9yN7facJ77pSbQISTJn0zZsjJOsKmCjNUJ5m5Tkoba5b/++1MrFC89zeXVFziMPPXSLl7/ySYZSUE3U44Gryyusraqy7mA8cIWKWZgANmJYSfBVh9bESKJhb50S27Mz7t27EwqwVS2KdkbJq8InjO6FUB4lBfBQX7XOPC/s5sZhbuyrcdjdph4redyyvTGG25QmwOltiZj3pJHpXhumymbcUDQHGNkazVaFsybSCuaIOEsPxytXJ+WMmNHNSDmx2WxXq3yhVoOU2ZRMTk5yyHQG7STt4MZht8d65+at69x62cMB4Bo063QPB6667Lh793muc+RvfsuG73r9dSYqy/GSy7vQ5s5hqcz7ytIDGCpDgAj3Lo984dk9Vw6zbPnI0wtzTdy6eQstgqRM64nuifNNYiojg3ZyVg7H8O4yCrNBE2M6n9iOmVJGzJy5ekRctMpQlDJEtEYeB0SUZV4Qc0oemcYBSUrWRMkJJ6IHDA/F+jAwlACIXRTrjWoBgCyt4ymxKQVXGMqApzBqT+6k2inDQBoGSi5hkS0JNeN43LMc90gquDtDyagIx+VIrzWss0XJ44SmgiGkpKRu7A9HzB3RzDRODMNALgMArXayrA5oy8K0PaOMA+MwhTDKPICY1um1sdluGIYSIJBZKIK706zRWmVYHc6yZgyju+ApYJO5G2WcyCVRSkZzpncLMqQb2mFzfROW9wTIK0qse0D6CoivxIp77J2kQjfWyAZhyEOodAUkpdUOH8SEnBNjGckriXHfvStiKAvmEp+9StjfE9hn2NRDKZlqhhmYQdcgIGQdhhzHgePcQRIiPeIHArYOgLYFXN6KkUvGa6I1w6yF/bwIGWfunZTCQj1rYhxDiT77kedeOJCmkaQDvS9MLZPVKDlIIR2Vi8uODhFFoSUhm4gRQA2b98zPfo7x8QHJhiVDXHE9Z/vyt/L2v1156n9/L8uiXDsfWDpYn/nindt85l//Bq/99/4R/+Bd/5Av/Hf/I584NO6WM/63332B8/PEky/fBrmSRlQraTQ8OF+yFsakq8L+gGghiQRIaBnzBU2ZnDfUfkStMaoyI0Fe5hQxB1bi3EqJxZb1PGZ1ZEuYCE4j0Vbb9wJATgkvmdr6g++sm4cbRQnFprUWkUSa4s9zKFqlNZZWqcsRbCDlxJALLop3o7eFTiKnHBEuNOrc1/iURpLMmAutG/SIFjFRNAkdoZQBifwLFAfp4WYR/viUVEhTgJuKY95CVTqMqAWqLM8AACAASURBVFkoP1cw1HqPGAhJa8xJpvUFb0HSeQnrfVMhqzKWzFw7rTd6h5QUycJQJvBOn1vsU+sISi7KOG2pveN9WWNJnEElyOdVkexaKJJwKrVW3FvEYUjCe6Lb/aFSqO5BzJizVMd8DveInCNa1J1uEVPr3Uklk1bSQfsaKaApBog1hlCtN1wi9sBtIQTxOZTM7pwRsQCLgJtBU8owxXdSK5XY5Dmt902AVOLve0coQaL0jCZhyAa5oCnRvOOzYL3Rgf2S2FnnMiduH4VBO0NyHtsq6p3WGrtjg6ScpQ2X054xd6YijMPI+ZDZbI0pKVkHhqnwra+4QXqysIhw9/IpfvfX38udRXnZ46/jW77jB/iH//i/5qevb/nshz/Ihz/0h7zvqT/go595gedqoXZ98Dzhpg/Ux70vIEEqzTsQlGEopBx7qK0RC+KgmulupJzJq5ul+Xqe0hmLM9dG66CeySlDcoai4TqQMnWEusxI7RhKo0cMjnjMO1jQS8lj7SNrxJD4SiDFmYdInAkidFNEPYYmXNfnxCAJ3G09kyViZttp6OlUf3V9rfuZN3/rd/AnH/wj9rvdi/3W/9p1e3eg3tmd+pmvQj9z4+EN7/j+R6j1wIee+jBXL8J60ZzZbDanfubUz5z6mVM/c+pnTv3MqZ/5ButnXvJDT7FZX/oKglN99et4PPLRj36UH/uxH+MXfuEXUFV+5Ed+hGvXrr3Yl3aqU53qVKc61alOdaqvo9p98bMcj43hxg16b5w/8hgpF1JSzBuYUZeFeb5iv9+xHI9c3H2Byzv36O6cXzvnm17zWh5+/GXsXvgSZRrpvTNutqsixunLEhbxDvetfWW1v+/LwuXlJXfv3AMxrt+4wZOveiWbzRmlxHWELbGFClUUzQG2mIFLDxBnVRp3Gr6Ch9YbaChEo7lOdIdBQ7l95+5dEmGFLBZ24WmN1yOt14mhueACx6VyqJ3DYWG3OPNSqYcrllYZh0y5dn3NsQ9QBzOSGAXwlHANsCUNBVWne0N7KLM6kDWRNYa2lm7RMFsMiN23uTdv5KGwzUMokMxoc2fQxLQpaCpkF7LPFOlsspEUrvYHDocDt25c46GbN9CUgbAYbxaKvbosHC6+SJ4v+N4nMt/3LRM3NsZysfDC7sjheGA/O8vSWBahWaVWZ6Gzb8b+4HhVernGp28bn3qhkvPEjfPCmDMRNSiUMVFKoQwwFue4wOUMB8vM0gOgzsp2mBjHzJSEy0OnmtHNaWYMZUCSMJaBlGPN7Y9HrAf4PY0DLmtEwKpWrT2s011g0AAJU1l9vnrDPVTBy1LJmtmO94FojYgNws699UZKxjRuSCkjGmsFg0M7cjweyHmEVCImwAP8X1oDDFTYbs4xCcv0+5bz1Rt40CTT9pxpnMiloOsaHXJGrHE4zpAT4zAwDROSE701zDq9d5Z5JpcSNukalvne7YG9drxXY9hMYeutoYYn5RWgt3jtszNUhHF1MzCPAcOeEmMZKGW4L2tG1r2tQBKlWqOooi4075g5RRW/r3CuHV9V2ubgLogHOO9rPOFSjxyOiTRci1gKAJSkBZF2H3ZcVdGsZGb8e1ul1GIB/ELBPX5uyIXeOyTorZNSAJaI0j1U2jlnliXiCERDqa2pkKSDJcjCKsKmVeOgTldlSoqp0Xtj8U51Y38w9huYPOIlhqQBoA3KcH7G5f4e+11FEFKuSBnIpHBNL85851ny+QadtpCvI/kmkh7B0yNce8W38cZ3XvCJ93ycJ19/zo1rTnZ4Lh34xMc+wI1XfBOPfPs7+cmf/Jv8t//zb/GsZz63jPzT33mOd/3dl/PQQ3G26FiQqwUtEoBwSqQCpRu1NfbHBUljqJ5LZ5lD9ao5UXykLYdw3yMT0HkCCSIo3NlASLg0VDO1BvjuLrjk2MsJ5hpklUiA8Zo6dalY76vjecQNjMPAvFRaq6GmL0EwJYn1oClR60xrNazuNaM5MU0DrS0sS6OpMyRlOw0cbWae60p4tVAkl0RRoS4zi3U0J8yFVIQxJxSnehAJ4lBbDEwmhZKEoRQcYzFnaZWSM5sxk4bE8Vix5mgP0kASkBTrQi553UkS5F2rVBpHBzzW/5ByKNfbQrcW4HwS8lgigqKGErz10CbnlBFNdG+YtyChWO/PLeIqRJWpTIhkau9Ya4CjooiHcFhxsvsa3xCfT1INVwWrzMcOPaKJ7pOE3eNeCPGfMpQ4R93i3BLCldE6nU4ZNtS60L0HOVQ7V0tfQW1ZweSIrajWMY17urqGwlYItwYzREMh724Rr+CK41RzEkG8JDNGzUiOodjalNrABObuXC2G9MTF0bk2Nbajk6WjZM6GI8PiZIVcHc1XnJ0lNmPhmhY2m8YmJ65tEmdbON8OPPmy6zz5eGe379y9+jx/8ge/wnt/61e58dATvOYtb+W7/92/z99613/OxfOf44O/95u876mn+OjTn+VLV7DoGJ9riNRDoe4Qu7FT57qqiBPuKVwvTGi9BwFrQk4CyaAGyZRVycUYpsThUFkOjdkCtM+joTleQ4iBkVSU2sFJiHfEV/dLD/LCPQiC1g2VGF6W9dzXFK6eNGgIJrF+smgMk3go8cV4QOYGyZGQcko8ONVfXV/rfia92G/4K1j3rma63zn1M1+tfmY7MY43eeT6OX/0xx/DzPnSs8/S+9fG+amkRM7DqZ859TOnfubUz5z6mVM/c+pnvsH6mZf80NOpTvX/tz7ykY/wUz/1UwD89E//ND/7sz/Lq1/9ah599NEX+cpOdapTnepUpzrVqU719VB3n3uW8cajZEl0URbviDj7ey/gIhyOl1zdu8vl3Xvs7t3DUDbbDTcffohSCptrN3j00ccpSci3HmKeZ1LJa949oYhJETdnFsFkS61c3L3LxcVdMOP8+nUefdlj3Lh+jWEYMe9oSmRR1mCEUD2uIM9ut2dZlnDtMQuVEGF1LQ55Utoy495JjOEr7ErvAcDiytnZObDaLJuQ1NcoBKOrUsRAwchYSty9jBi7ea4c5j3zoSKSmKaJ7Y3rgaAIAXB5C7CRULyJajTDKZNWvMTdV5BRGVTpa7PsZvRmlN6xkldFYAA9KRWGkhE1xPoDVd2NaYvkHO/BK9kXptRIWfHeuXexY7OdeOzJlzOtKltfv4/eGvPxSJ3vkY53+O4nnLd/y3UemYR2nDnuZpZjY+6V2Zy+SIBK3lBR3Bv7Y+f5y0pl5M5x4FMvGPsO59uJm1NGpLBriopw42yMeANJmBiXs7BbjGN15uaIKGXMnE8Dmymz1M7lYeG4NJZmqISaN5VCSQVUqb2yLB3B2W7GFRATHCVLWiMO7cH6m8oYqtthRMRDdWUr+dEqmjMlh5pZNSFAt06dnfl4BXSmaYNoCjJtBWp6PbK/2iOSSFoC7BNnv9vTWkNVUSmMmw1jKbgIqspSG3VZ6MuCOUxn54zjyFAGNK2KZw93qnlZcGDaTKRSkLI6nq0xka11usNUhlAfIrjEv3WHZo1lnpmmiaEMpJTXqD+nzjNtlREP04Sb4ZoQlCQJ91CtzbVSpiASVRVZgeDQq8aAYuudVEoAgKbgLcAsDQKgm1FKIQ8lLOclLP01l1DeaqX0gVQKIFQzPIzdICeKbjCpLN0Y1ZCkDxTQ5o1aG13Cyr8hUDtq69XZuiY6VHPmpVF7qAaDDgBbwepuQt9XygKsTgWaHCwhOAvOoTekCePcGbIgpjQXWp9I6sxz4/adI6kEQFdWEDknp6RCb5k7V8LiRm3CPDemwZAslAQpLbRnPstmM5DGgbQ5Q4YbSDkDW7j16Bnbhye+8IUjr3jFSHd4WOAFX/jg7/0zvnfbefX3/RA/8fQz/E+/81GO6SafeF759d/6Aj/8Qze5ORjHq4XLC6d7Z56NYzXm3jguC/XoHPaNucOBxrIQKspWaFbpJlhTao+hwe6NJgnvobh36bTaqd3pXYCGmQZI7A1zQdxJEkB77WEREcZ9giG07ngLBwUXVoWvgocqfmkd66GcxgXRTCqCS1vXBAx47M1coEM3oYpgS0eGTJFEa/0BkeVmQaDkgnZW4skRk1BYe7yGeYDnESdimAvVYy2qZnIBTWF7X3vHF1BJgfWmjjWh5IhucHNE4hy0FRxNSei90VsoiCkpiKykDKXQTePv1jOCNULC4kZDmxdEMzkF+YXmVWmrpCS4KLM53istraCtFjwl9ut9VgGShvocYalxD1IXvLOer6DWyWlgaRUhhxvIau3fe5DS9Xgk5UxKER3TxbHua6xLOEEWybGOTFBPmDqtxxmDhZNjysqkwqGudo9IuIrkFHFJEnEQ5vEEoSoMqkiO2JDuwn6JsygjDC5kFUw7MgpQEAlCQQehpcRFLVzMEdmyKY3FnKk7JRmlC1TYL41xcO4UY6qVrSrbvbO9O3JtU5hG4cZ2ZCyFR29MPPLQhLXGc/e+wNMf/gIfe/8/Q+UGr33DW/n2H/xb/ODf/U84zld85iPv44/+zR/ywU98ms/duWTPQtOCWw4lvCbcnLY4hmFWyT0hKaMkeo/YnMSACJQc6nVQ5qODOkkzecMaVwLWS+zHvrC0BVndQXJSiuoaLSHISgQ6Rlszk7ImmoPaen9yD9BfBFmV9eoxsJ5Uub/xUk6oARokGX3165Sv+OPvqb7B6mvdz/j9m8U3QLV5odx6+NTPfJX7mTps+M7v/A6W1nnkC8/ymac/zWG/Z1nmr+r3q6rksZz6mVM/c+pnTv3MqZ859TOnfuYbrJ95yQ891Vr51V/9VX7+53/+xb6UU70E693vfjfvfve7eec738kv/dIvMY7jV+13XV5eftVe+1SnOtWpTnWqU53qVF+5Gs7OmM6vYb0xXL/B7vOf4ZgOLLsrLu9dsru6h7mwvX6T13zb2xCb6XVhe34OppRxoNcDfY4BIhcQCzCBVSXjJtTeuLq65O4Lz7PsD4zbDY8++hg3bj5EHkKRqaqroikUTmaGi0BnNQt3xnEMm/c6cHV1GaABYTeuktFhoC4HvHU0DQ8AHHNfbbgNx5m2W1LSFVyICscoUA1ll4viktnVxH53yW6/CxegaWBzbbta6Y+IKL3WAHk8nKbUwsI5lyHAeoPWK61XHGVMiZwnEI3Bm2WhzTVAYYmG3VrDzMmJ+POUMLdQ1Imw2WwYNMC0bAvZKlk7JYFZ4+rezGYceeLxRxmniYAOolpv9LZwvLrLsrvLE2dHfvgHRp68BctxYX+vs98fWGpj7o15dhZrtGr0Dhf7xq46V1cV15GlXOdPn+l8cdc52xSefHig5M7+oOyXiJ+7tsmcDYKnxHGBi8XYVaMuTu2OqFNy4XxT2AyJi0NlP1fmY0XESUlIJZPTQC6Z1o16OIY6EmEYBlyVhoSduAot6BBcHM2ZMZUgKVIollvrYOHiNZsxlQmyoKJAQtFQjjdobSFnQdIUYKQkZgv9Yl8WjvsdMoykogy5kEWptYIk8hBgex5HSInujkpiaZ15aWEln0amITGOYwDWKeGyKodxWg/V+Hh2jqZEygPdFPOIeTASuDIMY9i4S6GaAh2zFLb0mpFhgw4TFaH1ijnQhUpa80gSngaW3kkIXkGpNAt1IWmAJOznRs4hmexmVOsgjjq05lA7Jh3vnSShfM5JUCUUpZrZVfA2M6RGVl0tzMFN6WnLrgqLNVQjgsFXJ7alddyUO1cLQ+okWQJo0iBsam0BKnmsenEhpXAdSCvYD6G+28+VoRSoC70b4o53C27DHREjpcqYE621AKCF9fUcXEgYSw6AN0sixM9hdb6fndoqqpmxOIMCCkMWhuQxgCdOrc5OGnM3jkNiLJlpUxiL4rOTUwu0NR1WBbDhaSJvHub1b3st7//NT7C/2bl2oyAGzeCTn7/kvf/8t3jnT5zzvX/vP+Szn3uB3/jkXermnA999oqzD9zhb3zPdVChJ2U5wmyd2mE+OFdL4nBwlpqoZuznzmFpLA2sG7UbracYGuzG0uXBgGGn4SizhQK9d8PbOmBoEveGVRkfwHii/gWQPnZWrH2VcAc41IqvkQAZZYkfCwcJM7rXUOpLAKChug+gUrqxX5zD0pktVJnWHWnxHXZzmseux8HEqHNf7w3xOgDL3GKOdv1zfFWqSjgMmLCqpWvcS3JCyagGMbx0Xc/hGOI0jbWmkoI4WYdv3R3tGhGwPchWSZ0Vg6U7IIqnFMQxxPo1x0VwSaSUsBSf6eJO7qCkcLhLCSmZbXGaO/NypDpkAdRxEjqMq3q6o+I4sXdl3WtGfMDdlbzGwpY8gLfYy7VDtVCmq8YAAZ1eKzmHG4HYqnhOOdaUdaxHJEkWMBfolUyiWY/ol6QPQO8xZ3w9X9wc+qrEXyM8QrErWK9B5C8gLoxDOF4wd1ptLJ3154OoVgG8Mw3QepAcSFrPr87xoOyKMjQjdxgTZHWGBGMVhtEprZNTY0jGlDqbK+VsVDajUdKOm5MwpUwphWtT4pGbhW1K3D3MfP7p3+GffPw3wa7z+CvfxFu+8x38o//qv+E/Pdzj85/6Uz7y/n/BH/7JR/j4s5fcXSomI5SAvc3uDy0A1unEswSiHL0xuDBt4/mjVmOuq9OECigomWlKIEabDckZTUZd5thUkuM5B3kA+ncx3CPOx/AHMT29r3PnvpJjOG6Oplg/AtCMvq4vDHJOK7kArgJu6Gnq6VT/H/W17mfuPP8cN6/f+IaItxuvbRjPrp36ma9hP/PK17yK137z67l75zbvf997w7EH1uil9b74l5Xc/0/8j+Nf7mXlL/zAX3iNYZhQ0qmfOfUzp37m1M+c+plTP3PqZ77B+pmX/NCTmfHBD37wxb6MU73E6z3veQ9vetObvqq/o7WvjUXrqU51qlOd6lSnOtWp/nolKC8882l6c2pduHf7Nlf7HYoybCcee8WTbDcTaXPO+TSwLM5442HEKrbM9FYRicaweeSaN/ewBvfO1eUlFy/c4ereBeOQuHHrYc5e/nK205Y8FoZcqBjSQzUtUihJqLVSe0cIqOiw33P79h2uLncM00TSwvVrN+nWyJpwnKXOHK8uVwA1rzpNAw/NppnTrdP7wmY6Y7s94+pwIDmk1Up+8cZEwimIZzQPXNy7YledYRw4e+gamgKYUGDpywPFnLoGGFQSLompJLrHe1m6h5IMYZwmSsk4oTL1ueLqq5I2RTRAB83KVBIqjjUJ9aY601gihsAdtcaYnEEWVDqGs98fGVLm0cceZhgHFHDv4J3uTjdhOew4Xj3HdQ78jTdPvOUVW4oY+4vK8VA57g9c7fbs987cG7073ZRqcJg7n31hR8kbzq7f4pnLiY9/8cA8Vx6+nnn8WsQ+3N4NtK5MI+Rc8e7sjsJhWdi5srSwSrcW0YRZlWG16P/i7khtoYZzF3IuuAt4ohvYsTG3iKtTzQEwmwcgJQSoKBUnk9Yhtq5Ct463HkoyF3AJQkYCyDuYI7PjBi5hYh/IRcelgAw0t/h+etheB+A30KeCumEI+xrgCFpgo6sSMoBWXZWT4gSoUjakJFRrzJroVaCBsLDUGfJAdsFah7Rl9syxGfSKuGAWsSImobxWYJk7fdkhPSESlumqCj0BicvF8LqAhaIyk+kYXpWUYd/miCzwjqSOYqHOJjAibU6ShvaOM2DW6ES8Q1kBTHejmSNqzM3JKiyeEYHeHFcotNib2ckimCldLD4bEkmE3gP0FFsBVBz3++rPiDLxVXEthDucuT9AdbMEueAr+JpLuHj5ShmpQG8gyRHiLNEhkVYiwT3WJtLDtl4IpwNiOC7rCoutmTcmcR3jSiK0Dt2doTSSCSqZUZwIx9HVYc5pLYgwxBnuA2RmuCUkQZtrDHdmw3QBjaE88sj1Rx/jjd91j3/7vj/jjd/6CNduDPRuXJsGnr13wYd+8//ke/7BDf72T/4oT/8P7+bDdw/07TX+1Uee5eEz4a1vPGeTnbx15Ag59VD7qlMUdgdHlwWGgSSJowpmldoSx9bpPSNkks8sJvSsyLpeBoGuTgMqQq/xPuOzjvO594hSGIeEdaGvBALrHgkwMj4yccdFaQTYez9OJE5hVnVxbN2ICvFYCpYQGnpf4W5EBIOvxBARfYCHm4D1APVzCWCTDikrVuXLhNk6JGtYgOBZEBVUEvVYcQKUN+90N3JKBOZtlCGBO6rhqFFS3EfDtQ6QFXjtFp+VC5E+YWhaVc33SQU0olQkEZGuQa50EVpX0gr6Nwd1J2Hgmdah5IQloa6QabV1k1vEuMQZGcRm677ek2OdAqBQkq7pD0JzDSV2dlpr9K6YRCyNeuCa3UAs07w/IPbonW5BFKpD740hrZEDPWJ0kiSmMQNGJz4HeqI3R1xJEsQeKEutQfgkQTTcIH2J3yck6qHiPhN8h2Pqoe5OEfnjviqxsVh4JphauFxg5BSfw/EAi8U5MKbEkIyh6P/D3pv92rJe132/Oef3VdVae+/T3paNSIpUY3U0rUgUaFmW1TiNlUiRIihwnAgwEgQI8mTkKcj/IAQIkCAwAiSBwQR+iCFZDkRJUcyYomTSbMQOasiQEkXe7rR777Wq6mtmHmadQz3YyQMl3NyLNYDLey/vOWevqlX1Vc0xvjEGMq9MGfaDIVJQP5J1YJcyuz1MCe5lZbernI2NvcFFduYdXEwj3/0tF0gyDOPVx7/Px3/9E/zTf+Q89+J7eM9f/hH+5i/+PX76xm1e/cNP87lP/jaf+NjH+MyX/pSXF+FKFNUQoSDebZAaolxfKSvMVEoNZ7xZQiWFoNJB6VGPIcAa1SiDxK/pvVF7jZW4AXS6b+9q6qiBECJCdqdvQk3Z1K3QKnS7rok1fksDEPypA7oD3vyplv9n9qefcMK/FK/HPPOe7/gOvvb1r73eh/5NI4lSTvPM6zLPXFzc4a/+9Z+g9bbNM092NQmius0zgNtmylGayrZxJpKbpG8vPRrvAWEk2uaMrogJjw/raZ45zTOneeY0z5zmmdM8c5pn3mTzzBt+09MJJ/x5YVn+YqNTTzjhhBNOOOGEE054Y+Dho4c8ePUlHl8fUEZu3jrnLc+8i5u3b3J4+JDzW7cZciJNO5ILNk2UdYagBOmt0tToZXPeKKzryqN7r3L58DGIcuvOHe6+5y7TNASJnjJjsiAHBDKKG3iHUhbW5RCJTC5cPr7i6uFDSu+c3zzn2RdfRFW5fPiQ+XjEO1wtV6zzjFMZhhGzHFVmAuD0BqqdpkJvnVqds13imede4OrLX0JTRNoH6dNoVWjaEHdIRm8T+9HQlFAdsLSRegTTK6L06nQVhmzklHGcufZwa7kziTCMOzwpqplSZ9ayYGJoDnKqS7gK1YSUR1Q7XivdwdSYBkNNaQhJ4GzojFKCZKudw/WBNGSeefYOQ0pR19Bj61fZrH3LfM1yvMTnK979zMJPvvcGN88Ly+WRB9eNw/Ua0e+lsKzOujhzc4pDXRqP18rD687iI4c58aU/ecC8JFw6t3bCLTNk6bgWBsmIFliFw1GZy0zrjS6J8LlC8adb01gWuD4ovhFKvQfZI6bb5jIQCZKvuaDScYLMX7wispGu2hHpaBqAtjncOm4SRO5GxhlBJpsLrpsjt8bmONdwCUsPclJUMA1CUlyD2CYSpUSg9kZda9QdmNJd0Y2M8m5hnqzh8utC0KMdwobmdBqoIaJBnD0h1BySO60/qRpxvDpiuhFYW42IKMLm5iMSCrKG4ITFtZAI8tN7HKv0OMc5B9kt3SA98Y7LRj36RspHclaQrop4Q9VRy7hriDHeEFWSR+0C4uSuiGRqcrIYSZW5NrBIZxsExAxLghKEbXUH79R1iXh3UbJlLCvujdJWpEf0/n43haPPbCP7NsGylYiP9844DBHVb0prFTwi+/vm2E45k1J6+pe4h4t8E1DWZWGYRpJkOjBmo9NIlsgYyQvqKyuZbjmIwiwMGpHsy/GISONsGrh5MXE+GPv9kzoQQWqhL4UpNW7eOePsbGQ3DagJmo3pLGMilOUaXEg3n0PTGWL7uGZ0hOEZ3vpdxhf++ef5/Gfu8X3f9xxDNm5dBGn7xS//KXc/8k/49h/9ef79n/1xXv4ff42vLUfY3eK3Pv2I73j3Gc+/cAPXSlkrh6uC90bpwvHolMVpXljWxrp0ro9H5jlx2ZS1CopBj02gh2Phei00D6f+NHSWFboNLE05rlFvU2tjyk6pzlo1YueJFAn3Tm0rvUdxqYqhlhHt4WItjVpbPCd0s5qLgUfqQ+nhpDS1p8KgSXx3zQ1pGXcQ71RRfK146TiQUg7HsYaY2Fsh24BOiiahZ8dKj5qeziY6BNmKyFMSvomjpog2pHmIdKH9MKVY40wheSIobKjeQyxQDTepEA7j5ohtiw2xyVOJVLve21NBBeL3CAryhIQN4jVCDzQ2+KJxb3c4HAtr7YjaN6zkIrh0TCSajvomOHjcd0akJyoCKdHcSRYrR9tI/kh0CAe/KFjfhAwSlj1SGtYQ1VRChKw1fr6i1FpZ6Iy6raWmmMNSG2t1hmz0Fi7qWh1vjigMTypuQjHa1mu+kY6hQq0Vb43WGmqbOLStd4LjPdb+SKQA1YZZHFstDZOOmDFIxyahr05vjcdLh66owpQ6yRJjVsSM5JVJO0OuDEdlPyQ0reScGNPCaI0708R+b1yMjRs758ZZ5ub5GW9/7hbvfP4ma6tcz/d5+ff+Vz714f+J/cULvPO7PsB7P/Bv89d//j/j+OhVvvS7H+ajH/son/rCZ/jK40dcN0VsAMJNDkLtznGJxIgunVpmcMOTYzKGGHDlNIeUhb4WOoLYJuh7QujIaFtlg+ClU3vDFcwdSYb0SDVwdzSUX5q3cGQTlSltS0eIDxcJFk82JYvz9Lpup11PJ/x/4PWYZ+4/evh6H/afC1rvp3nm/xfzDJTatnlGUHVE2jbPxFxQ3WNmdrZ5JjbUdAdDYoOJQ21P5hmgR4LMaZ45zTOneeY0/zs7uAAAIABJREFUz5zmmdM8c5pn3lzzzJti09O9e/e4urri/Pz89f4oJ5xwwgknnHDCCSeccMIbHC997SUubt7g7S++lRtnF5hquGlMyM88z7QbUTrdO63HQG8I3TVo0t5prbHMM5dX1zy+/4BaCxfn57zw1rey20+Mw4huRKaphKu3BxnbpWOmeIu00LUsXD16yMOHjznOlYvbFzz34gvokGm9R+GYCHW/5/6rrzIvc7jrxDEdwt1DRBG7h9tOgScssHsFTyBwdn6O2YhK9LKrhLsKh1YLoIz7M7TkOC8aZHjvivZOFOUFcTpOOVx54jEodyEDZgMMRlKopVMOC6ILXSNqPxy3Rt1i53NOW6x4p7ZKEgkXddiNEG+cZ9gPnWydWuF4uEaac/fOLYbdHrpvAgbIRnSVdWWZH9GPl7ztvPP+7xl463mjXT3mtXuV+XDk+rpzXRvrWlhq57A25tpZi/BoXXj5UaP6xPnZGa9cwoPrytqBLDx3tufOuZDFqAilG9adUmD2ztw7pYOLbjHmQVB19y3uWYKE0HBUemdL6OqbQ1G3X1NpHuSfiG6x7wJiiCZEI8rfsfhu3OMkqKHyJCY8GCxLKbypEpKXb4SEqdBVoXWUcLPHJjpl1HDUFhxakCKDKqMplgzJoUR0AW8d3EkWLl5RNmou4vJ72DWptZFsI8JUIvbdwRF2nmi14tqRrJvze0uyAlqtiHd6hzxlTDb6T4QEdIUq0LrjdcVyIudEdUc3YlG2bPvi4Ro2CwIymdCIPG91nlZOao5zrSpEA4SjEnH1qsJ8fYV63FPTNAZJJJByppVKPxw52++YdvsgVVMQ4tI8alV659HhMVkKY4rawrOzPaqZ2grzLCyy4L1zcTYyDmMQoDk2vfW2shyF47JSSycnI6XY8DbmMYQcF/BCbyFsWFKGbIw50z3cyK1XWq30ophqrFPuuHQGSwxmDCaoxz3alkRyY8wwJhgGwztor5EuVivuK5b25CyIZaQ1SnfEQEyg9qiLwEk5xELRhGRlyEp5cEkvoMMI6QboWVzfkrAbO973Y3+FD/3P/4zLd1+wGxI3zwa6L2hL/N4nvsStZ3+Tt77v3+E/eOlV/odf+xQPXLkvN/jl37rP3/639jz73E1qOSAIrRRGlJRhPoJ2o46FdWzsJzgcF+R64bAopSuejImMqSDmzOuCysTZfnzqWJ2Sks0o1SlqKM7F3plLYS1Gbdu12ARNY6zDHkSjGqgmcsqkVKh1pbcgtM2EjrKu8d3U1iilkkQZxoQkpbfOoM7cO2MyUho3obLhZlz1A+JOSoINI+KVthSWsiJS8CZImthNCR9ik+wTotkJklgJgh8EHTLQoVd6dWzI4aaVIK1r76gKSYJULrWTVcgiIXxIKAoqwuptW9ecQRMmUctjKceaWuvTe1lVI6pfFENpHkJH6x0bM70LlgZENRzNrvEs8sq6rogJZhYuVXVaC3EUYFRFJGEe4unSGtobaka2eK6ikZAg3sFjLWrN6VIRFO0hWPRawIRdDtG3zOFQT6pbfUs8IdmEdiGhCbQKQwoBvPVOF0EMkhqNqCGRDkmDyNakNO9RiUNDvMf14oZIrP+1lk0Y2STSpngTnBbvBhrPIpAQJC2c6qVBFmcwAVXGrNQmrA1Kn6gOl3NHJOpATJ3ROmdDY1dhyJW8dEyMIa08njvny8RkKzvp3LoYudgdubPbcX6emcbEMGXe+Y6Jd7yj03rh/p/8Bp/4ww/R9TbPf+tf5vnv+gH+ow/8JH+nrnz9i7/HJz/ym/yLL/whf/jSPV65LlEbpAMukboiCJ0g+704RQ4AlJaBTF81RJQnCRBbogSq1B7nJud4xg4kaq/U5tSy4M2jpscSZhBSdpzjLEZtUWVUpdNEkB7vK5hsYi3b8114ehGecMK/Aq/HPHPj4oKcc1R/vYERNVyneeY0z5zmmdM8c5pnTvPMaZ45zTOneeaNNM+8KTY9fehDH+Lzn/88P/iDP/h6f5QTTjjhhBNOOOGEE0444Q2O9/21H8ZKo7Zw+9QuJFVcnPYkNccVrR6biLxtkdROLSuPH9zjwb17lLmwP99z65k7nN+4YMpjRAMj5DTAkxnPw+2L6EbWBa9wff2I1169x2uv3UcF7j73PM+//Q4pJUwEcBKO9o6LcHax4+x8T+0V1SCL3fsWCb9FhzvxP5szB3yLV2/M88y61nA51oLQSRIEfRKluTAMe8ac2HXD1ej+hFwU1uaopa3CQVEPr6y7YzaSB0MUwGg4h2WhlJUsTucJARGbsxJCznkTB0B7R0wY0ohtMfhKYT8Iu6yYRAD48WrGW+fGjXOm3Y6EBCHkwcKU2qBX1uM15XjJ+Vj59hcrH/h2IfuR5dAoS2UuhWODIh2k0QXWzaFae+PxnPjD1wSXM8azC774oHKYC+JgMrCzTLbEPDtHokYON3qKWHSrAI21NnoLIhw1xJRsQfK3Hk7hFqzA5pZNmABiJLP4dQR3Nk0TLoJZuAOzGI0gBmutnI0TaRxRM6SF6661BW+NeV1RUc6GEbGEJgl3VnOkddQbc6t0b9iYyRquWzHDNNx9tVaOx5ldNnb7kXEYKKWyrDO9xbGqO+PZnovzG0gyyhZP3omI994bZT3iECKChYNOTLf4eqculet1JScl54zlcHt775RaqFppa2MaBvZTpKdlS5sI0WkO2Z3jcQZr7PNASkbxjvQnjmel14p7YbSNsBcn50TvEcstGsIVXZAkjCmztkZpJcLSk5KShZszVg6yKcMYP0/N8NY41kISNpI90cUZUghtQVJBkw61YZbD5unh/hQJMlMg3Ite6T2SvNQSQwqScmkaxK07h+OBnBOWJlLa4s7F49yXSm+NlOL8Nw9hziXEq9Z7uKeT4K0gaSRL1MDUFklhDae7cJYz5p3SV9QNNNG7b0KgULtS14YajNpJ2qPWARjywDQaRqMsnXVtDCJ0G+i64nOl1cQwhRBQXv0aaXeG94KqgY4gZ0ieeObd38e7v/eP+KMv3Of7vv85hqTc2E/UWnntwTUf/61P8defexvv/Td+ip966R4f/NiXqbtzPndv5Nf+6cv8/M9NTOPI7gyWA6ylkURQL6zrRmpnYfKEbQLaA2k8muFqafS2YoSgIj1cl6aCiXAsBcuN8zyyYBwIh+s8N6aUNsdkJErEKq6YZVpdqK0irT4lt1OKTahxLzZqLaSUmQZoLX6vd6GUFfdOniaSKWMOMaq0JUSLYccuJaoI+z6xzjO0FWqnE8LfoBO1zdTaaGXGp4ymATNHBkWK0/tA1k6rcQxqhGjoid4NfA3Xf3GSbfUmAr05K5ATdJScE2stcR0+eY4JmCVcQ5h0d0oNkr7jiBk5JXrzp7H8ZiEqZ5SqHe8S90TrUbdAisoTc4zMkELoSAwsbaXXNb5DC1kzamei+EbFON+NDMDD48LqDVPDvaH+Dfd3SrHa4Z0unVLin3Pa/MdZQkiVRNYOg0Yty3acJpHMmFTQZPTt33UTl1SgeTyXm4K5kbdz5ltyg/eog3CMujZSToAh3tHUomLDPWo8RPBmtKUATh5SvKfAVhJjuHaSKsmUvq0/a5VNGGq01hEU0XjfEZ7U9AjuSm9waM6xGWNV0pwZdeZm6vRz5fqqcH1wslXSqHztUBmaMQ2PmcbMLgtnO7g17Tk/y9zan3NxYdx9JlPrJa995Tf4ymf/CUuZuHH3O/m29/4gf+s/+a/4GXFe++qX+MLH/k9+93c+yqe+8hqvLQeq5EgiMUXq9nANuR7tjrNELbAD2/tRrDkGRPqANNmEPLZrJN4hTY2etmSS2ojSlHieS1KySzyfZUuZIeqhaJHYIWGnj80XPVzcJ5zw/4bXY555x9u/hbt3n+Gll77+eh/+NwUXi00Jp3nmNM+c5pnTPHOaZ07zzGmeOc0zp3nmDTPPvCk2PZ1wwgknnHDCCSeccMIJJ/x5IfWIod+NI+v1dRA6alRvmIKRQRqeIkq4zIXHD+5z/9V7XF9ds5sm7jz/DLcubgYpohYEBUJOT2KZHW8V3KNrXQ2XTlkX7j24z2svv8xhKdy4eZu3v+sdZDWGaQrirjmkcMt5d4o3WumkIXPzzm0eX15Rm5OSkXN+Go0dZCDfoBSDd6D1iCC+vDowLyUG4A5r7VgSBlUqUB2evdiHO1eM1jt1i7IW7aRpIKF0nNILGWe08SkZpS4s68JxPUSkv1o4Q0NhobtvLmhF1Kl0rBEOoJSQFPHq5p3z0dmPxpCEUiuHwzWtFC5uXHBxfhGOLd/q+USQpLRSmI9XtMM1ua9894uZ973duDMU1ssD69o5zpW5FeoKc2kca4PqlCZYN0Sdr98r/MklNBmZm/Hqa5dMeWLMieYRob248MrBw7VlAxdZEU1c1XBDH7qzLB5uXE24CoMNDGNCcda1xsWoGpH8liJqe8hkVVpvtCZUb4zZGIdh2zQXMfGjCtTGXBr0wq39nrPzc5oQ0eYGay0sS6XXRkqJcTehIiSTLXI9rk/HWVtlPhzCJdwVySncdx6pYbV3DvNCUmMcd+SUY2Nd7/TulFqhdtKY2Y9j1C6sDZNwZWt3eq+UdWU+zNvxRLmDO+iWey04pa0MOTHtRnIecJyyFmpZWUtFaDRvXEwDqtAknJ5s5JdYONStd6ZxwnPQXRmhqaMeFQy9xXejCup9qziplNaIsH2jtQYi7FIOl3SpQWCKRl2GCbUULA+YJJKB2uaqaz2i+1tEr4slIByXpVeyDVEBYoJUozbH24JOI2mrNgkHe7jNRSLBodVKqYVBn7iiw4UqaghbXYAH6WWb+xyIzYvUjczr4bBnE7Dcn7q+HUfE4h6Tvh1rwnqnIZtABUtzTI3msFSw/MQNHoILonQa18fKZS6krOwlznnrTq8G3qB3rh5X9mcDTid7AVOSRsqdjYmlPGB9eI/h7oT7hHQHjqA3sf1b+d4ffR9//Pc/xCtfu+aFF88pj52LCa73I6/cW/jEr3+YH/6Fd/Fj/94v8Kdf/+/48NcPtHHg//qjhzz7W3/Mj/2Nt2LJsCGhrZOsY9kpx05ZNndiVUqL87nLjWWurKpcl6gNyZbIw8BaG6bKOCbW1mitouqkYSJvYkzpxtyd/c6Yl07tRum+CXKAjltCX6GUlZQHzBIpjRspWUCcslamcSTvlbrGei7zSukNn2dkHFEbsZQ4HmdqOeKtk8Ydw1OBoT51xKsZDJlRR6xkkq6sZWU+XpOGxmADlhXNI6pAr4hl3ButrNCjYiFnI9mO2hpLmTmUTrbEkA3LiV4JkV4NHeL526vipUT6RovrJymMW6rBXCqthTNbzTfhJEU1Ck5tBVGlmvOkUscknoOdRu2d3Bu1a5wDBc8J0YR3oyybMOMd04RafKcVx9fC4VjxnElZKEUjPSE/SbVwyibyBGE8MCYnp8qy1HCsT/lpTUMnxHHvDhoCn+C4RFLjsRTUjaQJxLfUCA/3eCOe+R0aIRb2zbWdxwEcllpppcS1IgkVgRbpLt23e1pSvGZkx1OiRe8uvUMtFZMnNRMeooMahtB6JGV4d8QzECKNShyLiG7JFZ2UcvxZFmT6Ya0MNlK7sErjpjdSqriEwKrFSalzPmVcoDVjZmWtyloW5gLXV1fsz4x9Fvb7kVsXmbc8d4OcM/ce/9987qOf5nd/7b/n/Obbect3fIAf+Ilf4Ef/w7/H4y99hs9+4iN84mO/yyd//4t85bJQdMA10V1D5SEEWpFYR3tf6d1RidQRS0qyjBPnovSC93gnUlFSzrFud9+uqwoeFTu1VGqrTxMNqkNWYciJweLPiLoWpXikALj9Bb4In/CmwOs1z7wZMFi8z5/mmdM8c5pnTvPMaZ45zTOneeY0z5zmmTfOPHPa9HTCCSeccMIJJ5xwwgknnPBnoF3RlABnPlyT9xfhZiPipBHheD1z/8E9Hty/x+N79zE1bty5zXMvPM/+/OIpKSSbi8j1SXd5RzaCTtIAGmlMjx7d59VXXuby8YG8m7j73Is8v59QUQZNG4mUaa1TysKylIjyzkMQTxTWqwOHeWXa7bm+vmJZZmpJjONASop7e+rkionXwynahOOyMC+VW7cuePSqcawr7kLzQvFMq87Z+Z5xt2OpzlIrHcPSwGCKSrgheysgicmMYRpQy3SH47yyrgtGuAolByHaugPh8koW1qm8uakrjpmRLWr+pBUudsbtXWKXB9ydq8srDocrzi4uOLt7m0EFBGpzxDdHZ4fl+pr5+hEqnRd3wge+beQ7301EPR8MPDPXiu6EXI1GIW8OvJZgaM6jy8r9+wukgf008PWH0Wl/Yz9Se6b2DngQsAJjHhmHIMSKwzJ3Wm8sHQ5LAdJGKoTDdxp2NK/M80pr0JqTR2XcjaQ0Mmwu2+6ONIDOlCdsSOCgllE1ujitVlor1FKYhpE05I3U7xEZXyrXxyOlNnbDGcNuQi0orLhgHROjeaGuK3NZ0RTX8qAJQWi1kyWclvO6hJt12pFzDlKjNbIITRVEKQrT+flTx1z3bxDyra7U1pivr9GcwBKitkWOK947ahI79HCGaSSlDMR9lS0jAyRTlnVFpoGU8hYz32mtbglqgjl4reScUDN6gyZOEsHCuh9x7X1lmKK2RS02GfYaOwXVFDwcga4Km2vYN4EgWVyH2gVaY8jpaU1KIFLWxD3WBI3KDedJbLzhDtXDzV16RXqHHjUAOScsp7hncHIeUE3UUlDLICFMmtnT6xFCbzMzhmEIh7ZupGBSkBwiTFlY1yU+pUNrHdMgL1UUcQ2HvCkiRkrbd0XDNpJz9Y7UcHBasqfu1XD8OXnIeIfalXktXM4VN6M15XwnoJ3r1bgxJCqFR5fXaBI0D6greZ+jZqYWRASbBuZXXyHfuA0kPMVngwPkt3H+lh/iA//mI37tH36Em3f3THuhrsbZlOi3O1//+j2+9Nu/zrt//O/y03/7Z3jl73+QL1ytzLbjVz5+5PziPu//1+6QhyHWLC9MY6fs4rpoXWDopKawwpgzu2lloVGbsNSIxx9yohE1LkmV/ZB5fNVo5hiNnRo5K0dX5lJZEcwaQ5enRKWlhFqPe6dCbQu9LdvaEPemaYiNbuE+Vk/spgEzJQ8D81qYD8etYiCxHwdE4DCv1FJpfqQPI2e7CbXEvCx0r7ReaGWmsZDTHsn5G9VIy8KslZEhqhHyEAkiKdYsulHKino4eUUFkpKJOtXWCrV1cixnTDlqdFrt4DBkg6z0pbL0Gvf9k6JWFdIQrvBWCqqRShCO4E5S29LzPQTpp/eg4iqkKepeIpGioL6Jl0OiLRVQbBwxz7GupdgE7CIkSfioaG9EgEGQxjkbw5RYl0LtlXUuiCjJCIe/hFO6dcfVQ8hjc9qrgCe6VmwTAMfRKK1h1mPNcqd6jaobj9/XpWODwuJP0yVMCULbPe5l2dIsksY9WBqusYZqmKajgsALoZCG4CA9zp0RRD8e1T9N2CqwFqaUMXIkVDxJknSP70OUnIRaYqd1TptwQHxWts/VeqUzUjvMl4VsC9OgjDg5dcapMztMqzKwIoNwz48MVyvnqTFOzq1Hid2UuXFeuDmNnM0wjSu70fj2t53TurCWB9z/w/+NX/3df8B09i18y196P9/2fT/GD/3UL7KuR7766Y/wiY9+hI9/9jP8wcsPeK2B64hi4IZvb1HgcX6lU5YOfYn10KLmRSTW9SdCVDj6Na5JTSCZ2uK90C2E7NpChFg7qNQQc01jw/pWazXYQG1v7PqwE/7i8XrNM6Wsr/ORf/NotUHjNM+c5pnTPHOaZ07zzGmeOc0zp3nmNM+8geaZN82mp1/6pV/igx/84Ov9MU444YQTTjjhhBNOOOGENzhKLeAVSme6cYcxJ7o7h+Ml1w8f8/DVezy8/yq1dnZT5vkXnuX27ecYdhOSEpYyXhuiBCHaQTcHqeJINrx1ro9XPLj/gEf3HrDi3L59m7e/50XGPERusgbhqDmhquGgqTNew5lplmi1cfX4PkttnO13PPPsM5zvd3zlKzM41LpS20JOtgkcEcOswuZ47JQGZa1c3Ji4OJ84P99zXI6ICd6VtTdEM8/cfQbTgdY7agmTFCRu76y1kPLAME1kGxkMVqDUSlki7l5SCCzdhdpAtCFi22fRIKe7sPRKzsKAUGtUbNzYG3dvDOzGhFiINFePrsi7xIsvPEsaM70HmdxaC1EBKMuBw9UlvR25Mxnv+5bM974D9l65euXI8XLh+rBwPVfWtVJqZWlCK86xrVyXxrrC5fGIt5FFdvzpg8ZlgWk/IZpoPVG8IYRT1ZIyDolJFcuJY3FqEZbtXK+1hTsqC2Y5Ki7MqV6Y53A6OsowTIzDwGAJoSOSaD1IL3cnjwNDHqLK0MJZKx7f6dEra29M52ckFBehtELenF3Vg5gZc2baj4CSIJy8PQglCOJ7LYVhGOk4u3EkjyHQoEJdI6Z9HAb201k4RzUheDBNKaHbz7x5a88wZKR2JCWyOt5gOR6ptbAsC5q2RDMxTNNGpQel11tjmWeS5acVFKbhvI7gbA8SHWXa7yPA28FEMLGn7rTeGnVdw225ke5NiWPayPReO977ViPZI7bcI8rcNMja7vF7NSeciIYP43lHJAg313AcKxak45YQ4NEDA9t9qFuEu/eIE6c7a1t5UgIAxH2SM63CssxYMtbWaa2wzAeWtYA7+/MzhiFt56g9UQYwzaQEyTI5D4Djm9uv1haO200IDXGgkS2RNpFHeweNGotaG7SG1U5TR7zBJmjkMZNdEFeydeYSotfQoTYJ56o4u31mGBrzsXF9mFGFszyhG6l7qM7qxjgkRDrH40IeBFzRxSIaXxpNIn2i9Suuv/bHnL31HUFippsgGlH0+Q5vfe/7+bbPf5lPfuwlPvAjb2M6U6a1UbPjVD7/6c/zzDs/wp33/Dg//6//Nf7rf/ibHNyYpwv+0W9fcnEr8Z3feoNxVNQzrVb2udFHmFehrIKIMaSwLE5ZOOuN1o11i4+fsrFuBO+UlY4wjYm5FEzaFgMgIQJstQ5qnXEIsWf1Tm+K0xAM1QytUXuhlSND3sc6pEonkQcoa6OvC542QlmNYRdiDrVGJYFa3JODxppdC5aNpRRUE+M00rtynBtlXiKBQGNdSCkxTcIyL7hXWnFwyBapAnWrPMCdYRzwGm7w3uPKVlNMhdJCICtroXanb8fXe1yn3h2Lr588ZnqJXpYiTtdNKBAlSdSbjNva0MQpfWUYwpVa1856XHBRLAlqCcEQ4n6ehgEvR9arBaGTh0w5tkinABg8amJ6PLfW0rdnK8ytU0sJ165mxNNTwdhr1BGV0lAKXZXalI5FJUP1WDeJtAQRQSWHeDs4ugkIi0PvCttGYyTSK3RzedfWwGRbdx33qGZQom6n907zRrL4/6s7jU73hrZIE1F1hhSbrUPoj0qO1jzWORGQEKRVYp1de2etjaSRCiHNQZyLYQCFUju9bpU7XRiygFfyoFF94E4tUQdlqriG87m3ietHjSEvjKOQm2PMZHGm7JiBURiTcJ1nphmuxoWLOnJVCo+HhXFIXAwjZ7vEfqfshsyQlReen7jzTOL68Br3v/LLfOUzv0rr57zlHd/N2//KX+Wn/9P/kp8x5+UvfY5Pf/g3+NinP80fvPoqDw5wVKV2QU1psiVNeEJ0q8TpjaWVcLtvNU221Q6LC2ohND0RSWIpNlycUQ23Dl5oDmuLWhklqkXMQhzb7uITTvhX4vWaZ779O7+bj37kw6/34X9TGKaRs/3ZaZ45zTOneeY0z5zmmdM8c5pnTvPMaZ55A80zb5pNT1/+8pdf749wwgknnHDCCSeccMIJJ7wJYCkijIcbt0hnOy5ffYmX/vRPeO3rL7PMK/uzPbefe46bZ+ckU1IauP38Wyi1MM8L3hqo465PnZxBBjqlVB49vOLeSy9xmAvnF+c899a3cXZ+DvhTopEtalqjj47WG2YZ7zNqwrquzJcz3YWLiwtu7s+wpHhryPk5d27f4tGDx+BOaQstDJh0b+Btc45lANwb0zRy++IMEeXs4oLX7t1DHEptNFdeeP4GgzptuUbSnkHDvdN6bL6adjvSmFEJwnRpDaeTDfJ+AO9BOHeoaw1Hmdk3iI3e8NKCz8SoTRATbp4Zt/bGlJVxiOjoRw8ekixz9/m7WLZw6fZwf2nv1FZY5mva8Yp1WZhM+I7nMz/wTuPFOwulOofDwvGwMh8L1/NMWT1IjtI5rp1DX5ln5/H1yvHoMEwsbeT+bOjunLtnmdad40aqDCrQG2NOWDKmcSCbcD13WneW3rgqFVxQHUg5MeTMkIVSKodjRHO3LqQ0kNOIqjEME5aCROt0SmsIwjjtglw226oRnVYqrVXq2jjMB6bdRJYUziwJEvy4rpR1ZS2FPAxMwxh/jkZkfQgETwibwvHqGkuJnIw8jAzDQMPxUpDaaK2RJDFOEymliKS3IKdLiZ+3Hg+c7S/YDRH/XpoHIYoiveH4JszB7vwMLGMbeV9wegdvnbnMm5Ch9NaxrFHtoE5vQVKX3tCUnrqM1dJWPQBSO6VUel3prQZhrxIknENvQcg4cFwWhpT+TKLBU/0AgYg0h404VEqr9B4k3tMqCDVqC9FKVbAU5JelRKdDb+HNVMF9ExG2H9C8B8HtQSjLFiWeDATDNK773qM+ovZwf7MRg0E2g9OiDlMUMUEbIUCsJTY9/pmjMovP6xLEaS2Nbg1PFmLD9lltMAZJrOsS1Qab+5LgK+m1glcajtHR1plrpxWndqMT93lOzjIvlKXQGptbf2U3wXkGE+NqiXj0YUiUw8pyaNiZ0lpHmrB2x0UZhoG837E+uGS6O5PMoLKRbx3XAd09z/f/xPfzB//NP+aLX3zMu995i+mQWFaYxFjWwu/95q/z/rsv8K4f+Ul+7qtf5R989IscXXjgO/6X//0l/uOfFd723IQmIQ07ar0IVi5kAAAgAElEQVRkcqE24dhDEJosMQyNC0bUwJswr871WpHNzb42J6mQLTOOUXFS1jnOIzt2YnRprNpYS6WpM5hR1grkjZT2qMfRrTakF2qdSTaGixpQNVIW1nWht0qyhNoAzcmaaLpQe6G0TttIb7UErbMcVkru5DSQU2xwHYcxhLPDkWUuFA8BySwzjGxigJAsQffNHQuuaasjAafSWqPXFe1CtxA5hzGEyLaU2EhbGkk7ngxVxQS6hys3KlVCbFdv9O7QKyrKmHRLGwgSfF1mWq8svZFIiA1oHiI9Yql0qZBy3Jfu1LXgHXBlvi4ssuJETU7OmTRsruXWWNcVrzUSGHSrbvEMNeozluVI96iFQWEYB3otNCrDJkz0tkm0BuZCUmOpBRREQxwqJcRCUQEJIa/1rWbBDCRcuK12eq0huksIqbhgmhHtRC1G2wSBsKAnSyTxuAYcxOM9pHhjsEztTnpCcOO0bb3wTdBQBMtbkkOptC3tAaD3qOm4OQ2YGcdlxVWpXrk8CurOtAP1rSpDIimm975VXwjuCU2Gq3EoKxQnabirVTq7DFkHJqvsBmXOcGjKdelMtjJOC4MmznLhfFTORmU/GudjYtplzCAbXNya+Ja3TJTVuffon/OJX/5t1rLn5nPv4Tu+/4f5m3/3v+BveeO1P/kSf/TJ3+YjH/kIn/zyV3mtNuat5re1qB8yJ6pdiONaW6G3ins4v9MwRpVSylFhsnH9T8T5uN6i6sPc0bqdixbOaa+OS8W9/fm89J7wpsXrNc+8/NLXXu9D/6ZhlnA7zTOneeY0z5zmmdM8c5pnTvPMaZ45zTNvpHnmTbPp6atf/Sqf/exn+Z7v+Z7X+6OccMIJJ5xwwgknnHDCCW9gmDrHeeWVl7/I/Zdf5eryITZN3H72Wfa7PdMQY1TOI+M0YilRJRw9ySwI79ZR8W3Id47Ha157+RUePXiEDAPP3X2Wt7zjRrioWwNaxMdvrksIp2fb3Eq1Fo7lisvHjzgunbNpx61bt8lTpEK5V7wGGaiq3Lhzi8P1geYd2UhVJ2K4vUfEdvdCToYpaJ25vHeP3cVNdvszHAunmiR2u8RgjXW+pnanKSxnO9ZSySnhWunVKbWzGxuohTtYE8UlIqNr47gURJVhFzH95tHrXtaC46SUsY1AnLLzwq2JO+dGKZV5Lrz22iVJlTu3bjMOA41K70FuKNC8MS8r8/Uj6vKYJJW33jB+6D3GX3pnbNg6HDrrsXCYC2U5snQPUpQWQ7dA6YXDsfDK/c7Dg3Pz9g3mxahi3Lo5sDalrM6xOa17EKUSrlsXQ5PgIjw6eLiiu7O0jmlCVEnZ2E0DWYzjMjMvERMtKNO4w5JhlhiHEBzC8NufOpbHIUOPqgyHcLsRlRnrvLCsC8M0MQwDSjgGg5SrrOvCsazsxonduAuyWRNCo9UQb/BwIR+ursKpvBvY7/Z4svjvJcSKWgumxni+Z7BEtiC6eutBbNaV1ip5HEm7kdIK3jophShR64q3Tm+VWiq7aUcEXofTUNTjVuiN3iq9dGzKKB7VFiIboeXQN1cphMuwd9Q2Es473p3WGt4bdS3YMKAph4O0O9o7T8zKrTWond35HlWhlLIlolW89ajlQIOcU6P1HqS1bKT79ve4jVsIiaY4sYFREtCE5k+iv/s30gEknI3uQfCrKUaKdUCEcRzi3kkR+69JsJa5cXGTZTxwdXmg9Yr3TCtruBe39UEENGXIieqNaatdUY3IctxJonhK5L65V9lc8IR64lucvohiotRecc/0rSIia9qELCOZU7wypM6xCofFORs7BnQv9FVYStxDrTvHtWG28vAxZIW0VS3UKgyDgSrzsTGdDSBGq4LmUCZEFBt3jLcK8yt/yvnb34nnFfoB71eIRJXG2d1b/OAPv4sP/erv89zze27cNMQ6Dx46LRkvPbrkC7/+j3nvv/ssH/iZn+OrX/tv+T++es2SJr523PHBX3mZX/zpF7l7ZyCPjc6EagdpiHQOi+KbKGNZ2QFlXFgbQLiiswqWQhgd1aImIhnHpVOq4xxxTyQR3BT3xFIbos5uyKxVaB7XNRLikmkCb/TWaCzRYbN1gJgZlhO1FZp3eq+g4QXuTfHWozJBoJmGUCuJtVXqWpAGrRWSpXASqzIOI6jSu+DBcjOkHCKANGqplHWmPyFEc6RIrMsSCSEWiQldWpDKpdFLj42zKWHS6E1ovdHXRsoSQqlvyQHulK2qVYn7Rt3Jm3jXXTf3qTCMI1RhPZZI5Mgea+yYkZYotcS9gtOHHGJJb4gZKkavPUj/NlNVSF0xtfiuXLGk9NJo1SMZJRsuSmsL61yp2/WeLWNha6WjLK1irSAtapE0RU1AJ8SIRkcc6lpoPXJVkks8wy0EIFoNwWdKeA2BRiyqL2iNpJDGBB1qB+/haE5qQNsM643IDwDESQqmxuKVta2opiC33ckmqCseZSM4Qqvx52RJWFZareQ8MOBcLzO1O3MJsbPFKsiQBkR8SxIQ1lrCuS0JU9uSKAqtBDluKZIpuicMoXhcG9CYq+JUpjRz00fO3Fi6Mi+QdCVdt3Dqa2Jnwm6E3QQ3pqhrGpKyHzP7nDmbFnZjZhyct72YUa0c1s/wmd/6F/zOryTOb30rb/uu9/O+n/hZPvB3/nMuv/QZPvc7/4yPf/yjfOqPvsxXrxbmZCF6um3rZtveswTv4Y5fjlcUjQRP04xmAwzR7TG2rbUiCRXHzFHvdHWkEyKzK609qRc64YR/OV6veeb84ow7d+9y/9691/cEfDPoDW/lNM+c5pnTPAOc5pnTPHOaZ07zzGmeOc0zb5R55k216elzn/vcadPTCSeccMIJJ5xwwgknnPBN4XOf+jSPHj3CUuKZ557nuRefJ48D1lvEZKuhKZNsc5GlxHx1GQN6D8dbQ6jryqNHj7n32isspXFx8yYvvuOd7HcjSRMdxzeHpolsaUyNlAdab9RSSMm4urrk6uqS1uD85k3uPLMnW8K9BSG1kcQgrK1yLI3jAjKdkQAvleJBqHsnBvNxwJKQ1DdnkKEWJE4eRqb9nvl4xHRllzL0yjDe5HC1sBTn7JaRxoFJjUI40HI2dmPCxcJh1hrzPDOXINCQcGyu80LzcKPmzd06asLcGQzuXiT2I4ypM8+Fx4+v8A537txkSAPePYhIl4hdbj3cfZeXrMslJo1bQ+O978j84LtGplxZHx05XheWdeH6cqW0iGuea6es/w977xYrW3ad531jzDnXWlW19z7n9JWXJkXSJEVbjiWZulCOFEuJJEiBbAO62wHixAESPwQQ/BQE0GMe8xjAechDEAFKIiNO4tiSFUY3m5SaEm+iKIk02bqRlFrs2zln71211ppzjpGHsc6RA8QBIitpNFE/0ezG2XVqV63LrBr/P///d1QF64m1dVoXPvMHM/fXid00IkcnZ8VS4sHRWXuiGkH8ebhhcxoYijJlWF15eGMsZizd6C6PnYUpJXbjwNoq1y1Iq+aGSGKaDhwOO1SDHJWUcOv0ZtTWH6d/xXOF8y0IA1h7Y15mrHUuLy5IOWL8RSQc6ZuDr3VjN07s95Hq9SiG2jzIG/eN5D8tjNNEKoVpvyfnQmsN651aK2sLl/fF4bC9lqi70Lo9D45JXM+7iztbRYJuRLiAWcTCt87t7S3jOCIp0R2SOa6b290aXo3aGtM0MJSEd0dVN1EmvHrrutC7kVJUA2jWxxHtiagJQWRzHBOO+o14cvONCJdw8LcWP5P480duxEyQYArkkujdqN42I7IFKZnDIiyidMA2IrN5OAhdCtYc+ZfEkbouXFxeggZZ6ICkSG3zbnQqSaH3hdNxoQwTIkLKHZVIF1h72+ocNifqFtfuIX8BSkpCVtgNQ7ju0O19B3p/5HkUNGfadszMLCLPe0dEse2aEU3QKnVtQWJJwnPFnIia3yLSh5IYVqjN6dWRDOYFV2ecEsLIQTv1uCKSmefGzVG4SEreronWwwF6ezOzWyfGcRPdPNLqajWGlMmjs17fsrz2EuVORfIJdMR9AV8RTbzn/e/lNz7xBT78kRf5jm99C1eHAmSWVypahM//zpd44iP/hLd/64/y/X/7b7H7B/8z/9tnXkKmkc9dGx//+DXf/T338GbhfDYjJ+cwDbh0bk+dbkZSKENhf0j0dkNtQifc+UNKuAvHtpJVKWnAx3AwdxHMiCqB7uDx+bD0EHZ2gzDXRtuEGaHhm0seZKuLaVvVTogARQtKVD0I/fG9oUloJFqvgKLiuBQkdfZTZpkXeu1kjYQFIepWS2qkmllrY1kqZo0+dHJO4UrvRlandsfriqSMW6ck3VIMQuh7JPZ5bVSgzVFNMSa2FpOEmFHbQkOYDjtclb6E6z7qUkJ4FeKx7oJ5D7JdBbXNGRzqFMmFMUHrxtpBysiUYfG+rYMh8NVeMU+RvlAS4xCC1FobKh1NKdzaTdHieKv02vAWNT95GOnWN/LecDFMjDxkcKH3gonhanTr9FrprpRhDCewQziPleqGe4/rxH1rDREkJ0BoS0es0z3EFM0K5dGS1rHm+EYom9tjMlpTQiUEVN3WR9s2N2RP5FKiasdCuC3FqUS1A0DS2CBR3UliqELKgljHJJI7ROLzsy6Vvh3/nGIdTQOk5CGKNI/P4gSybQKP+hdBxOktamraJsSKZqxXTJyUCs0nXjnBbRUOUyFrZT8KWhPSIEnlmCGvMBwTLw0nBoX9kBhLYjcql+PIfpe42CuHaeByLFyMifGZif60sbbf4/d/6wU+8/x/z+HiOd72Nd/M+775u/imH/w7LNev8gcf+zAf+9UP8/FP/yaf+fIr3JCxHKKRuuOa0KHgnvFN4G5txesjR7ST80DKYwgx7nGPO0BGvCN4CGbmSHqUbHHGGf/3eL3mmYuLK+7de+INvelpnArTfjrPM+d55jzPcJ5nzvPMeZ45zzPneeY8z7xx5pmvmE1PZ5xxxhlnnHHGGWecccYZfxbIpfDOd/859pcX5DLA2ujeWdeZZZ057IAUNW4u4GuNCGaCkJ2vb3nllVd4eP8h0zRx56lnuLy4QLNi7iS2qO6tO14Quit5SLSlU4bMfHvidHPLslQ0KXeffJr9GOSgm2PeNrenYRhz7dysjdqCNF+WmfV4hFox60EcmWPWgoBojVr7Fk9f0P1E3l2SciJn5e7FgZdP1/TaOC0DHWFer9FhxzNvfpqaR1RGDNiPhTwO0fXuC605S11ZjifEJNyyRriXN9Ikl8w4DagmFOdiFK6mRFYB71zfnHh1rqgkpssDl4cJ1UTtG+ES1lG6G6eb+7TTLVkbd8bMO+4ZX/vcwFOHhXZ94qXbyrxWlqXSqrE2WLvRmjN3Y+3hbF1b4/Y0c7M4V3evGNdCGQudzNyVZdXNDR1x1mgIQinlzRkckfKn1pm7M29JWdOYUYVpiMecamOtttUDOtM4MU1B2quG81A1CIK5Oa0Z07SL3ntJuAYxYA7gNDfWVvFeOewPlHFzLbpAb6zz/DjifJwmdvspiC9R+lanqEHLbBHmCyklhincw6mUqDnsjbauQYSZc7i4DJLe4j7AOyaPSHKhLpXdtEM2KUI0EQ+M5+pL5bScIoI+5/DZiSCuUY2BxONaQwVKiXtOEqScwstnHveQxT/jNJI0XkOXOD7qYKpx/ddKKTnIxxR/37pvKWuJvtVJlmkMIsqFnFO48JJsTraEqnBqDek8dpJbUjAlq9B6VKEoQlWF4NsRN6yFy7pbiBt1rSGstKj6kFBt6DVI+ZQihl2QjTgM97iZ4zXIOjws1ykNDMNIykPE4QMJcM8IQS6WQcEabilEE5ykCdzDVe1xXfYesexdFN8IWZWouXAzkiZyivfRCYfl0hxNupG6TpGEbi715kpTZdiO4y7DMAjWKmvtlENiUEFLoZNoVfHa0WTsSkZTJhWYH8wRzT80ht5IwxDrsCmaCmlXePmz/4LWhf2dHfvLTJkGcs5QBuTmAe945z1+6p+8wHNvueSr33mXyz306vzx/c7NKnz0l3+dy6ef4d77/jr/1nd+Ox/7/P/A77ZMGic++cWFd//mq7z5mdicSjO8V0qeOEh4++e1IxhejTFD2xWurDE2eIhztROsCbeLcKoWiQoJhlHBG+bOaTuWrglqkLxzM7IbmIVgtznyhbi+lIS5UdRiI6wKvXuQwUkZdWStK22N6hDVcO2LO6dljutAEyJK2ypADKhrZdwJ5iUcsppIY9wbZSic5hO9RqWNaYjBLgppE8PXGRVBS1RXPBJCVeO+9xJrVe0dWmPVzdGdU/xcwg1+PC0kVdSFoolm2zEK1QpUN6Fgc5lLiIqtWSRAFOeJi4m7dwrzYrx4/4hm4XIYeDCvZAnyurUGHmKkW0c0M+wLbV1ZTo203ViCkpVwiOeBlAprWx6LkqKJUgTrIfpab3jrDEOIhaC4GCINCB3dasV6J6FoVjqJlEKsc6B1j+sdB9k2MuOYKq05dENyJG2IZEyUTgcV1rrQraMpUzbnfO8Gj76TEOJ9r1Gt4dliQ0PyLeGlU7cGgpSE0ApCcRAB3danZp35UV2FCKdWMSCnsiVGCEtfGaWwOPG9RmMh79YxJdYN06jJ0XDTCxLrUu9k0W3dU0Lu3oF31p5oJ0HIXJ86hZUxC6pGMqU0Q7UzrEbOyrgkxizsCjwYF6bbwpgTU5kZx8bFOLIvI6UkVGA/OuNToPJ7fOkzv89nf/V/ZBie5e3vfT9v+bpv5Yf/ynfz/a3xpd94nl/7xQ/y/G99lt956T7XrbNIRzQSORSlCYjGOWxmuC2s6w2pLfjmV885o0kRaZsAHyKfqofT/Ywz/h/wes4zqm/s69PMzvPMeZ45zzPneeY8z5znmfM8c55nzvPMG2ye+Yra9PQTP/ET/MAP/EAs/mecccYZZ5xxxhlnnHHGGX8KvPntz0UsfUrQjI7Ttxjqcdgz7C6CSAG6taiK6437r7zKSy+9hJlycecub33HOxmGHBuLNOKT1aMywreu93CpgUkCN+bTzCsvvUytxuHyiieevcdUCmaGPN64FLHYa23cLsZxrRxbhe6s84l1nlHf3J/DyHL/Vdq8kobMNI30ttBbDJqWFemd0zwzjDsuSkY1M+732EYYoULKBWgkWWkIXRNjzuSxkLIGyb421lpZaw0iQtjcsY61RncnD4VhP1JS0NKDGFejcLlPeJ85nVYePrjBcO7evcthPwV9beEwdjPwiPVflyPL8QYRZzcpzwzKB94jvOMZJTmspwFyR0eQlrYagU61leaw0lkrLKtzWxfuX69IHmlSQDJ3riZOZixVqGQ6kKWHyxIli1JyZshKN3jtVLd6ispsSsoDU8kMRfGUcIzb00zvTu8Nl8LusGMsI1mjXiDliGN/VKnQamXa7RmGDARpBX9yXJtFLQPWQyAoQ1xrAr2FeNV6p7ZGHkfKWMJV+2jznAWZ+eh3zscTYelU8jAgecBrxXqj17YJBDBdXJIezd3iiG9kRTDcWG8MOUeEvIQAEe6uvjn1OrhhrVN2Q5BMmqKewaOaoZvTXVh6ZSol3OIaFZCPXN3utpmBI/ZdUvx5d8MrkYgWLDmtt3A4lxLv37fXpOHe0xTy3bzODCmRzIOMZXNUb7Ucva7b4zMiCXMhj+H4TqIMJW8OyxCy1MN53gXqGpUjfav2iPcZrvGs4aZWIgo857Q5u4VujZwSwzQhKUgjI5x18kiGcWM/DZsYURFK1NGY4UKcQws377pEvL+obKKKIWpkLbgnxDrzaaWbkVOIFVvQPkiQyyXs2pxOnVxKkFbbSUopI1vVSsVCoOidpkJzIbtg4pg7JMVtQOrMuFMO+4EhC9MQLtuUEmUQEsbUB9R9i72POpC+doZ9pMullEgyMj2550ufe4mKkYY9eTfA1RWaRobs/Lk//yb+4gu3/NKv/RF3rwrPPXPBxV5YaqbVlQe3lV/72Q/xHW/9Op563zfwQ9/xWf7+z36Ca534vePAP/zwLf/BXy88cbegJsxH4XRaGfOE7BTNwjo7UhqizkEnNEd6X8nCxX5CMQ5r4+ECpxm6BSHsLVGr0Xtl8YyKMuQQs1aM49rJAkNO4ewnZKOSdfMJOyKNokE8imbw8LOrBum4rut22wiaIA+J1EJwyCmSP7p0BGUYeqQi1EazSkqZloKQLykxJgUb6dtaE2JhiAA5j+GAtooksHWN19wzLk5KGUiYtCD4VWlb1YwRSQE5J1Iqm9tf6LUi5oyT4w3AEXPY1saOIykjNGprj8n4rKDqRGuNQq8kgbFEckJ5VDGz1Yu4d0ScaciszTjeVhJCKUNU8PR4jZiQpJAEOlCGidZDMJG2pTjkEVJCc8JaZakLsRzFXZVUUC0hfiSh02hrw3sCNbInGo9c7xZ1ILHgot43kUTImlAxUgFfLe6V5Nt1IWSNJAEsrqWsIQSKpK2HINz7j0SZdVkYS4/joinqjDZHvm4ibHjQI1UCic8e9xCxfUuE6AJZE0MOh37rHZch6nJbiF5iEq5qCbe3bddj9xD0i26iVajj9BZimqiyVN/WJyUnIedYf82dxZWjhXM70xmKkBOMBqXDklaGKhxXpcyVoo1hEKahsJ8GXksr+9wpkill+1keGKQwJrh6JtPTS7z8xZ/h9z/9M7g8wVvf85d57wf+Kj/0n/2X/ODxPl/47U/x6V/+OX7lE5/gt16+z3UL8XUoGXehtngfbgWI66vXSDHoJvQEECIUInjfPrO35I0zzvhX4fWcZ97xznfy+c997v+SwPJGwnHp5Jvb8zxznmfO88x5njnPM+d55jzPnOeZ8zzzBppnvqJ2B33qU586D31nnHHGGWecccYZZ5xxxr8WcsrhNENxdVwcJSP7O5SSgyjs4e68ffWaV157jdPplt2w58ln3sT+6pIxJ6x2DCeJbtH+FsRWDkfmUCY6nfk0s5wecHt7iwF37tzl8uISF4+NTt6jAsGM7sbaOvNiPJwrtXf6unA63WLzGoTStCOXAlmQtpJLQVTZjSPreoqY7N0hnIaaInZbHW8n+uokNUop1NrRrBHr3o9YTazrkds08PQ7vxobB3rvLEvneDqxLI0MZI0IarbjtDZjKiPTbkTEKSqMybiYlH0R8MZ8vOHhw9dYW+fJJ59lvx+CiBVBdIyaPndabSz1xPLgNbDGuMtcjPDN71D+0lcNZOvUpXFcwsXbrLPORjOnpnAgacpkOt07Ks48Vx4snV4OnE5GKglNiVNr1FY4Nlib41ZxUzwVDmVgyNDpLNXoLciLh2tFSOx2A1kzYwkH7rwarW4ighnmicuLPSUP5KQM44imFORA6/RuzPNMynlL7jrhKCk1urE5wBoiujmrd0F8oxvRHi7jZV1Z5nA6l6T0teLWcYsY+765zAWnrhVUSShDHvFutHbCzahbYlhrLdzHAn2rkEgbYU/vLPPCaTky5sI4TbhICBoSBN4jAklQGs509wqVcGm7hBtcxEhuoMpaG+LbPSmCsjmTU9ruwc5ye0JypoxTPH+3IL5VQQV6p6+N9XhkLIWUc5CR1imSyCmi8QF6rQxlYEwp6g2GeE0laUR31xV/5HzOKVzVeLiJuzFME+7x+8UdK4pKCfe2B5FVe0NSCtewO8u8hDOQODghksT50+3Yrmu4F0suSEpozuGaBlpdQZyUEwmjt46lTEoQOsUj52zaKjGhpMI4jfF7PQQSlxJijziFznKqdDMiVz4Btgk1QtYBvKOaESpDSeHmlqgYGHLBm2Ee8fxDDmK7mrP2cF+uq9A7jKMyFKFZZl2cw56N7oOiW4KEgXvDTJECy2ll3E24Ql87PjY8Saw7ZeBw7w73nj5y/+UjpyEzTZl8cw0HRYcDTz7zFP/mt8z8zhcf8gsf+SO+79ueY3+ZOYyJ5aAcZ+EPXn3I73z4p3nPd/57/MXv/QH+xpf+kJ/65B9R9wdeOA789M8/4Ie+9x77nTLsM+7E/ZUU64rlIP4FZcDwMXHjjTwIw6C0GoR6xsiacKCQ6JsTvjbw3klFOFZCMFKATG0OzdgXZe6GWdqE6HD2qydEOiU1TBtmQUaKRKUMxVjXHrZnD/J4mpR5iTqPQVO4UIEkhMjpFekLfa0MFyPuipgg6uz3+3DGzzOtG20TpCCqRXLOlAxLM9ziZ6JQkoRQ5Fs1wSOXrECtjY7zKCxEclRouCgN4/YUiQJ5DHFBbEtpcMW1h8O+dbo0ZCPsuyo3S8dsJSlMOdOXxnXvdFfGNEQ9UyqkLBjG0oLoztv9CZGO6FVY1xM0ZxoF1xC1HEd1DNK3h9DrHgkNKRVIEs7r7KiHKOwaCQgpKwlhKAPr0lnnldZsq3/QEGQ1kVPc10GkO2ZGKTnuYyC5g0TSgnfBe8dQRGMNdXeSCNbbllZhdGuYhWikW82AdZhptN4Q4viEqOzbGuWktLmVzenO9lzhFkcUc8U6IWr2ypBzXBeSEd8qZ2jgieaOPvregyNJGVMGbyQRanfojm3XMuIohienGzTrOIr3WDdKDnHEumNppIuzLDNFjZqEKSVEhRvvTNlIopQ8k+aBpE5Ojd2gTIMzlcSQMoei7EtnN63c3Y0ITnKYxsKTz42s5YbrV3+BX/jvPojqXZ59x9fy7m/4q3zf3/sv+D6rvPipj/LJX/k5PvKrH+E3//gVXurbOSGEAnC6bZtUPCpTvEHvM4lTVEqkgkehxp/5998zvrLwes4zkiJhhjfopqe+VrL18zxznmfO88x5njnPM+d55jzPnOeZ8zzzBppnvqI2PZ1xxhlnnHHGGWecccYZZ/zrQh4R9OKggnTZ0pKd1ivz6cjLX36Fh/cfIClz9+mneOvb3s6YCq5KqwtiHoP2Rvb11iPqH0U0Yd45zkcevvYqp6UyTSNPPP00uSRwaN7CveXyeMPTUp3ruXOqJ1pz6mnhdLzGWiXnwu5wIJUBlSCA3YSUJ3a7C+blSDNDdQKxRvYAACAASURBVItF9xiiI5bbyVi4vSjkNGykTmKaShBYJnieKEMBgbas9NSYH212Emen8Xob4bay3pEk7PcXaFIQY0jCE3vlap/obaG2zvWDa+Z5ZX+55/LuxG4YUAmGM6WCuNPMaG1mvv8a3k6QjEMpvO/pzPvf1XnqaqEfGw/XhTp3agtn8FoN786pNeYapFgSYXVnbsKr15X7rdDTyO3cGXLiMCbmqqw9YaqsvXJajSlnyjCQS0YUTtY5VaAJ1jsLcJgm9uNEGYKsMVfWFmT+MI3U6qxrY9rtGMaRpIVSCpKg94p15TRXbm6uMYNSiFoHMawaTpCuZkGg3bm6G8SCh4iCGL2GE/o4n6jzirlTNBK8tCQkCdaNugSBFU5mI5dCzpndtCNlpbVO62C1YW60tVJyYhwGyliCRH/kvG0La6vUZWVMhWG3o+SMeJCEIIgZdSPUl3VmGEbGYXhcFeDewubpimdHupHcubpzB1ElPMrhQMY2kksUUmK62KPoRlInsmrweW50lSAbVRnGARdBkD+JJnfHzWjdWOeFPMZ9LJvTUjbHdO8Na1EVqZI26t0fE2Y5byScKipB4LW1h2NYFBPHgZxSrDHecRGGIRzhjtPDW4wgIUpIxz3RulOSkFPGUzjO2UhL1xASotbCMavgI4+VD48yh977JsIEOZg0gSi993i98YtjXZBMLkqtlV4GSonHusVxFBXouqVGtHhfEhsohUQiIUMIOeqGKmSprOY0cyhBdpacmIYgBnvOvPbafW6+tLIfB66uOhf7zH4SsoGY0Bq4LUypc7w1Dhd7dEzUeSVpODC1C5omnnzuSeaHC3mIyP1mFfEgO/PFBc+97S7f/i3v4Kf+6b/glz/9x3zb1z/NOBbGRbncJZbe+NCHP87uYs/bvu1H+Ld/9Ef4gy//13z4xRM67fnYi86bPzHz73zLFXl0ROH2ekbnTs4Do4WACOHwH0Q55ImVE0NJuEd6gJqjtrC6sqxCN0HNSNrw1hATpjIw5kztjZujozhLW6AK+1FZG1SRuCctxBkl0jZ6rdv1H0KBipCSMozQm8daK52clHEsrOvKssK0G/AudI+KEhniOuh1pc4zKWUWlJLyllSQKMMEa1QOJFWaVbQDOrCuQIIkCWnQWg0Cfshx/RFCq7mTJDFmpXsPN3Tv6JYkICnSB5VMouPNcY37EsI9HcSwoa4MuUQSRW14b2TN5BSVQPG/EDrNos7JWiQpJomaA7NOc6MulawJVNkTKYhlmGistB7JBUYnIY/Xjq6JXEKQNOtUN1ISpt0A1RCH6kHQJ8203slZUY+ECEoK1/fmiu7b+4sDsTmhVaLeY22s272oqmTx+Ky3yE5I6kHw6ybauuJbmkPvHddNjNvWEkUYNGEW107zztJW3OIcKoJmQTOMw0AahPlUsRr1FGKyrWa+JXEIS+tIUqTHNaUKgyhSJrqEOOok1uUY65Q5qShFt0ocLSiZ2jpICKfu4TAHi2vLoCM0nNaFLJk8CLtdQtR5+KCxNmMW51YbQ4bkyroYKRs5OSU3UorXeH1KTENnKiO7CWpO1AkMBamMLepqhgJrbmg3LobM5VsyQ1k43n6E5/+XD5H+pyve8tXfyFu+9lv53v/kP+e7/67wym9/gk986IN87OMf59N/8Ie8uK4sZIokGh1JhawOkjAvmPf47O8V7/5G3Utyxv+PeD3nmf3VYfuW9MZE3lJ9zvPMeZ45zzPneeY8z5znmfM8c55nzvPMG2ee+Yra9LQsC1/84hd517ve9Xq/lDPOOOOMM84444wzzjjjDYpwNEUXe/yBUGvl4cOHvPrKK9S1sr+64tm3v5Vxt+cwHTBb6a2GY7M20hBOQXEhDYkkQltXlrpyPHZurm9Yu3Hn6opn705o3lww3cJRKYALFVjmznXt3NYgKdfjLcvxBrdOKhO7w0RJkeZkFk6nNAxoLqgIvo5om2nrGs+9dkoJIt5aQ8QjaroZk1XMyhbJDPNSWTXIDEnGZHvuPXnAvfHg4QN45OySIFi6GdUM3INQf+z4a9zbKRdjIiejrpXT7ZHr4y273SVPXV0xpISJYb1GLLQmDGc+3lLnh9Sba3SMrvo331H+ynsTb7tr+Lxw/crMfNs4LQvLqTOvncVruBU71O6s7uSNDK3defHVlSoTjYyI88ydCy4PhYe1MbbM6WS8/KCy9IFpSJQSruq1C21pNAvSxQHPmScPB+7tC1kSiziGcqqOpETrndvTipM5XO7Y7/aUpJvjF9a60JoxLydubm4RUco0Rg1EZH0jWZiXRu+NnDKX+4tNRAEsHPyYsbbKzXGmrpVUMrtpIueCbA5gaxaOS0ByZl0XShkYhiGufRFaM9K2+a7RWepC1qhSEDQclQnEOnVZqG1lWVZyUsoU7kLVze0suhGXIUq0tUKSuOYFxMNB6HTMDYm3Q6uVcShBNFkQ2UmFlBIiQl0Wbm5vyLtIEzAPWjxtz20t6lfojlgnDZmwC8smbvTNhRmWU3XHNUh89dgQGO40aLWFi9A6bg0dM31zMD9yH+vmJnX3zc284giuijqwORN9q0lwD3I/57xVw2xij3nUNqiGNqnOQn+U1h5euI0IjmqGDNKwtsax2+pGkkUtA+KbYzZeW+/2Jy48gbLdo2ZxfEWDkByGwrIssYnSDRUNt3YKF7eI4NtjrRk2xJohhLM1bW5yB1qvqDZ6G/AmLEMii9LMuD05KTnizrC/YH544jg3VDsDmVGVtAvH4Gk9cX27crXLgDEedlFHoNBaC9LTE+KNlAaunr3k5S88ZJ533Hkq1tZ8eYUOO6bLHe995wXve+dTfOjX/4hnnyy89+33GLIwZmVU50bhn//C8/y7zz7Lvfd8Nz/8N7+fP/5v/gEv3C6wO/DB37jmycsjX/eXBhIw5JElnUh9YcgZ61tqgDSaOp76dvwgaSEnIZUZcUdah01YM8nsJSPqnJZGbdA6NHOGnFBNmDhrNWypHCbHV2N1C5ew5HDBu6JpoK8LHhIjXROKoip0aUSJh26ksyKjUteV+TRTxhGVRN3YyJKUkgreV5Z5DrIyGbVDLuH0l5zJHmtM3F9pqxwIcltTQrIDA9Y7rYeA7uJbcUiIbykpWRK+EfW9OxZKwpZ84I9rYZp1mtlWzaBRIcH2ucRWz6qZ5B3BuTnOpJIYNMdnjgm5hMiEOrq5oZ2EZt3qjYRS9PGa0JuRUHTcMZWMu1OtUXtn2O4rdWhAFqVbiHbe4pjnqUBzZO2bB90RiyqQdW0YjqaCFY86iK0eyDcnvUrCxelbPYJrJAPUZqglUs6oFkw6ORWUjtU4wmbx96KGSOgo1M2xzCZGm1O74Srk7VyIgiUlbW7qUBWMLJEmox6iQjjdbTuXsolAjSEXxGLDgDlIFzzKgjYB01GNtUkloRLHrFVj2gnzMYjxnIWUM47TWqf2vq1x6XHChtn2PWo7X9e3kWbhHu5utLMarGsjeZxtrUJSGAZj1BCP0E7rTluNdV1YxsJNc26qsJtXdjlz91A47IxmyjTAWCbGMTFOA+OFszvAvB45PvgQv/7TH4Z/fMVbvurreebrv5Xv+vf/Ht/1d4RXv/gCn//lX+Sff+R5fv13f58XbxaOPT4nVKDkhEjBPEfVhtmWzHHGGf9qvJ7zjLhwcXHBw4cPX9+D8KfEao2l1vM8c55nzvPMeZ45zzPneeY8z3CeZ87zzBtnnvmK2vT05S9/mZ/8yZ/kx3/8x1/vl3LGGWecccYZZ5xxxhlnvEHRWwzJvXVO84n7r73C9f1rNA1c3rvLnSfuMg1DkHlu9L5i64rkjLpTykZseAgOMgzQOtf3rzmdjuRx5Iknn8RVSFtzOxZUTe8NUaG6cFo2srtV6tqYbx+ynE4InWEo5HwgpRHfovkVJ08jKQ24hEvMOnSJ9CYXo3ujlIGUSxCRDogCgriyrgtzyRwuL5imHTe3t6gCIgypcO/OJbsykkshdagO6lDNqK2hWdFcSFsS/5CFq0nZD8ouRwz28XbheHtLGQbu3rsbbiY8nFJxMBBR6lpZ5ltuXv0yY1buXO25N3be/+7Ee59ycluYH8ycjo21N5alxjFrnaUZzTpL79QKc3VOzWknWHullIGuE7drI+XCxVQYBuV6MW6r8urtwssPgVS4s48KgsXhuDqtG27haMNhnAbuXe7ZlYGSoPXotG+t0QVqN27mzjQe2O92pJJRJLgLa6xr47RUjscTdV0pw8BumjDi+lEPV25tDeudcZyYdntKyeFQhSB1uuO9cVzCcX5xeYnmTHDBQbr02uitUtc1ItmTMAwjZRi2uPVwtQuw1M5cZ+bWSC7s9hPjNDGMkfiloqy1kktiWT1qE4YJlYg0dzPQRLdOawveGmuttNaY9rtw+KGYdwQLQkhS3Hu14eaIOq031DdxILhiMHvs6B20oISohMe1w1Z7bzjdVsiJYRxx0438DyJSCVHEgeptE29SkOCqqGasNfAeKQcqm2tfwxm9paqVFHH8moKkbK0xLytlGGPjIUHoi2wkPAYCvRtpi/beqD76JlCah1Aw5BRuxLHE+XHf3JIWNTUiaB4QBKVS+yZ0bvzRFua21VhmUlbq4o9dsrIlvnWL2pQEJBVKGVE5IhIu8fSIJPQQDUQESGgeOc4Ld8cJUSUT4kw3i4oIwkmeNZFTCAsq0GhIF5I6KWcSQmorVZ39IXPYZTRvZLBF3LumwlCc3uO497XSi6KDgGe2lSzObJm4+7Y3Md9fON6uXNydaLWT1g6lUA53efrNM9/4bzzN5750zc/+8ss8dXXgzmFAtJNF2GXlplY+/I8+yHf9h2/i3te8nx/9a1/i7//UL/Jqy8z5wD/62A137hTe867CdHDK5KwnY1k0rjMxllVJHYrDkIxRMlYaA4lTyrgI2VaahgBYiUqGnISSQY4LVQVjpBpRueNQdKBaYmmVsTjegiR2CfFRUrjUFWVZVrpUNINrZrt8o6ZoE7Y0xedAmibWdaEuC6WMJM2svUf9jCqVTJ4GZG202kgCddWonFAl5QEphi8r3Y0ikXxgWxqgqJAGaDUSD7pFLoBorGkJjY23IqhbEL2tIRKVNN0jrbAT96RJQt3o3Vi9Ui0I4ZLi/jaMUjYXcGtR6bKurB1KHsKi604phf2o1OQstysdo0gm5YGc4mUcTw0Xp7mSXUM4GQvWGs0KXk8YTpVw1qYsjIR7vXk4v92FXre6o61+IjY9d6pFZYZIIpWoiMiqkBO5C+JG7T1qZTYaHhGGnEIkLRlvTsrC0k4gGutTKhiKdYNuqBCJF92p1ik5b459o7lhNWpvukXSSNTZKGVQjIYkx91wlGVd8cdrCmgRRArNIu1C0O19d7ZiClQ3UVGUta14j3QBkUbeWg6GknBzzDLLYrFWiyHmLHNHRcklhXDlIUye5kb1vq3x4fpPqqy1sx5jy4JTKThJHJWMq1J7wbuRbaGZ05JQUidncIuajyaw+sptU27mlTEbQ2m8NFf2IuxHYSqFXTnGNVNgp8KQFcmJRGG8hCLXXD/8Z7z8M79Ebxfce+Yv8I5v+Ha+8Uf+Lh/4m/8xr/7e53jh4x/iIx/+EB994ff449OJIw2zBKSo9hFBi/1Zf/094ysMr+c8MwwD73r3e/nkxz/6eh+GPxUcOc8z53nmPM+c55nzPHOeZ87zzHmeOc8zb7B55itq0xPAz//8z/NjP/ZjXF5evt4v5YwzzjjjjDPOOOOMM854A+I43/Lw/kMevvoKzTr7i0vuvekZpmnHWAamcaSkTK11I1U7036PScS/9xoDai6F02nm5ZdfwXpjOux58k3PhlfIOkKJqOuNbG7dmGvjthprAwSWeWa+fkhdTqgmpmFES7hO1RShB5mwG0iaMYRmjvdw8yiK5BF0qzLQEcypVvHWY1gnItzD5QitGSLr9u+CeWI/Fa72hSQeBIE3BinMrYfTVRNlHCEnkjkDnScuJ672iUSn1yDzX3v4kCFPXFzepWi4mbKwOf0It6orp5sbbm9eQ8Q4XO25m+Hr3qF84Gsm7uw78/WJ04MWZEQR6EGZmluQh3SqCa0Jp9o5rZ37D2ayjgyHC65Xx3pimkaudhOOcLs494/OFx92lprZlcw0CjkJS0ss1TEPgtcERAuHw4G7U2EqiebCTTV6M+om+ixr57gawzixn/ZRkSAg4synhXmZOZ0WlrVGZH5JlJJRFax7OPTdOC0zvXX2FxeM046kKcijFO6x1htrX+i9Yw55zFTrDB2SjnSM1ld6bdR1pVlHVBiHid1uh6jSCDbZeqPWFa/G0isZ4XDYs9vtmMrIMI4gGqLF5kDDnWkcw7m8McmugvcO3hELssnd2O93pJzD9bi5dTVt1IS3OH7LStZEEmJTngaZhipOxLX3bmgpm5CSEDo5F0wT3ltUklhjnldEo4JBFLJmel9xB0+KC9TaqbVRdiMiTklR0WC9RwWCCGgCMzSVEAQhnIESsedJoy6hi9F6uP1E5DEBKxtp6B6CinfbHMhTiA2bsEiKxLacwgHbN3JNiFS1YPydpJmcM3VdOM4rrVZ2g4KEMCMGtPi97o5vSQ+Pqiccx1y3n1sIBT2cjADW16jJMCPh8ZwpyNRmnSIJkUwZCjfXN9S2MuaCA8tGQGOAC54TOSdyW2gi9O6PSc1WQ+RKGJqVchh47eGR01G4mBSYyJcTJBhyRiZhOd3y8HohqzKWWAtVBB/00csPB3tSnnrPM3zhE1/g5tWZYV/odUb7gu7uMt2dedfbT/zl972Zn/2V3+VDn3yV7/mWZ8ItrzCVuD6+8No1H/3H/5AP/OhTvPfbvocf/MMX+W9/8beZhx2vrCM/8/w19y6vePrpRNYSopdXcgsiOUmmtqgIqmtjmCIRgGzkXphxkjnaOlaEqspCovdC95VRwVojDYVeofZGloQWo7hyWgqntnIohmLMzXHLmCuNRpJMGpw+z9smWTCRIIDXFjUIyGP3vUiIcmtdOc3HECVFaQbVnS6Kq4aT24Q6r2hRSg5iuPdE1hClhBAvchbW1lmWJQjpsYRz14hkEcvUNdztlBI1MxLXmrkz5ozmRPeVbi1c0CTcBZc4/5q2ZACzx4JoSgU0SGpLkDSxHwbqsrL6inmndzASBYWkJDJlBFtmaqsondbiGiZl6O3xvdEc6rEzJGFIiTwO1FaZ68xuGqMKqYeYURBMldoMqy2ET6J2oXcnaVSoiCdaCyFoHDOrNVQHNCfqukRNQHJsXYFIWrCcGYjEAC2O4DRPrEujd4cU60dKhZyF2iou4R7P2/ny3uhEnYIkj+qaiJ3E1woJuhqyCUZoCKrdOkp8h/Gu5AwpO1ke1epIbND2vrnbQ/jOOUSWSTO3tdJM6N0QjzWr9cqQt2qctommJXO7GiaKmOMVXDpDFva7kWYdbSmEV4fWO7Zs67FG8gSeaU3oGutzyvE9KmdBrFC70byj3fElxIScGimHS7yIUiQSXIYEgypDUsaxM5WByyFzmJxcGiUJJcXn+iHVWK/STEbZ7wYuL4/U+lE+/X98FP3fL7l69s/z1r/wAd7/A/8R3/S3/lPmL36eFz75PJ98/p/xa5/6NJ959citx7HvLv+ffQ8+4ysDr/c8M917mpQzvbXX+1D8v0eOpKPzPHOeZ87zzHmeOc8z53nmPM+c55nzPPPGmWe+4jY9Pf/889ze3p43PZ1xxhlnnHHGGWecccYZfyr8/udfYJgO3H36WaapkFIhlUTKieRh2anLQjcji0COsUqksD/seDi/xIOH19SloUPh4s5dpqGQJdyCiiO54BourVo7N7VzqkavsNrKfDrSTzPWGzkXxt0FOSsqOci7LqQxhyNSYxNUdac3Q6rhKRxHuiU+9Y1spHekNswb6XGcdLxv9RTVdEvETp/mGXPQ5IgkpOyonrk9rqBHduOBWQS52KNbLHdK8MQh88TFRBajeeV0Wrh+cJ9cJu5d3Y08e2uYB2EjSem907tR28J6e4taY7ffM2Z495Pwdc8tPPeE014+8uK8sNaVdTWub+Ygk5JxPDm3c6e1yu3aqdU4rp1aHTrcPdyjIrgU7l0MJI1obxNhaYWbufHyw5VDSVyMiU4iZ1CcqRgpC8fFadXQoXD3MHE5FjJKN6c2Z+2dZmFDXZvTdeRwWZhKJmui90ZbG7135mXhdDrRWiMlDdJXw3F/Wo5kKZgL87og6ty5d5dp3KFZMYKsSKrUZWFdK613Wl3Jksi5RDR+jvPee6e1mWWuiAhDyqShMA0TiGKA9Yr3jnfDWpyPO1f3KGVgLEoumaQlrrXeWOvKvJw4HW8Zy0BOmaSRChDuX4IU8qgfMIuKkCS6xWwLmGxx5i0ECogai6QMpfxLBHw4a32ramlrpZsxlng9npSUlC45nLce7krv4TQummOTX9bNzechZHjD3FhOMzmHAz7njKY4p2bxWN/+W8TxlBGJiHg32xx9UeWgm1O69yCo81ZdIUiICL65CTehIGLdifrI7TmzCFLKJth0VFO43glnZU5xXkvOmDV8c4uaVcwyknVzvIIkj99NuMTdo3pyWWaW5URKIUjl7d+SNJz04gzjQCkl1hSPv5/dN9GCcChKmEpr77TeyFIgCXF4NYyJLpiCM5KkBbHliq2dnkBJZDO0QMLJuVDHAeg0E2pLiGaGAqt1xCGNE7fXMyU39kejXOVwWnr87vi/iIEfD5c88ZYLvvyFBwz7qHXxdkTGK/LFJU++6Yavf9+JF750j4989ss8+2Tmq57aMwxENP4A3Tu//bk/5Olf+l9573f+bb7pr/0wX3zxv+KnP/saNuz57H3j556/5W981wWHvaIF5JDpt5XiiYNkjnO8d02g6iTPUcGQclQH/Z/sve2vbVlW3vcbY8651t77nHvuvVW3uooGQ/NisBsMcpPEBHewZQlbCViOsEBRpMSS/4f8IfmWEPlD8iVSJAIxJE5AQcE27piXxsQJDpgXqaHp1+q6955z9l5rvoyRD2Od01a+RA1ERRVrlO49VffW2Wetueaaa43nmc/zqCKsnFfDFRRlEZhTzPHSziy1gRSmqdAc6hhc1k5C6V5Y2krJiWMurA0MAQv3gayJdJxZ14ZIkLFZS5ABfUXTDNu8HCNiG+ZpYgynrhdKnphSkFDJgxg0HyBGnhKt1nAscEXVcRJTyZRJWZaVVgdJYM5C7TWiSEoip5mRJrxXSgkAvY+BexA1AhxSIkuobsmFdcR6oSqUpLHmEkpw1cwYQUgGyWAUl02PaxHg40pOhek000elCyzNcAmlsDQQU6Z8pFql1gVzxa0wzRM+F9gcMlQ81MrN8NoQlJQLRSJiwFql9fBSCEF6wktEzgRZKPTa6UaQZNMBH0AaOJ1L62hKuA86wrAgrmMo8iMh6bXGvS8bCUEcn3gQXb45H0BHc6aPRp4ixuE4RZxF7Uatg5S3aAx5iNwIIneIb9YIyhhx7z8A78MFRanW8RbvFUlijiNjI0g14mfEMBmAAro5MQzayhbVwyOx2fp21Vy5nmQj2RUVxzSuFwpLd8arS6zTum3mThG7Mqwz3DETfFiQzS6ohY9Cq9s7HDBtRKeMWDuh0dUwQD02pItErEYWD6I0NwqDrEqeBlmNKRXmBJM4JSnTLFzPiZvjzPUx8/xwQPMgJ4JEyE6eXtLrL/Fbn/rf8V94yvO3v4Pn3/59/MUf+CG+84f+Hn/31ef54qd/kU//8j/lV3/91/nNz33u/5d34L0+PPV+9zOHJ2+Q0gdz09MhwdtP9n5m72f2fmbvZ/Z+Zu9n9n5m72f2fuaD1M986DY9jTH47d/+bd555533+1D22muvvfbaa6+99tprrw9gfct3/AVE5FHF+qD8dHci8EBCTdnD3vrmyRXWG69evsft7atQWB5OPHnxjFMpIIp42NcPD8Vo7402nMtaudTBOpzROnW90JYzLsKUC4fpRE6FoQFUDpxUJkiK5wSa6Q59reBOygktKZSjvtl9u3I8XHFe77lczrg7c5lJU9joP+TM44IPJ6VQrz65PvHuy1eoDW5vG60bL956m6dPlEkGZivzfEV1Ianw5KA8vxYmUSCiNF7d3uImPH32nJwExsBT+GqLR+yAtcGy3rOuF0ZfORxnjtPEs3Lhez5ifPybhMk796+Velnoo9HNuCyd6oPenMt5ZVk6dYSFeB3O/aXxalmYy5HT9Q3nHoDjnGZchOrKWpX7VfjSq5X7FmpNFcE90Vy4XQYyDDMYEhblp+srTrMyl4S60whApA4PxaHBuQ/y4cTVNAWYMYy+KVrdjHVZWdb7LQ4gk5KiKW9ABAwLIGJtK6KJm5tnAV5vSq6yKYlri4iFtVbq2khAOYS9PxrKUwXMA5DPSZEUCkPNGS1TWHaPEdemN8ycVivzfAgFswqyAUAiQu0R6WB15fz6ljJPlHmKjW8PcQyaMQ+grplDC+vulDOqSko5FJrD6CGfJWnEhSBKTrGRL29kmgJZleHO2iqXdYlIiqmABoHnbqELtLAzx43eKinlzXI9bN2xHqC3jxDRDsd643C6oZRCkkS3gY9NzYw9AmbuQp5PyAhLeSPIiZRSwF0acQe2XkilxH3qkFMK4AnfFNICWejeQcMdQR+Uz0iAZMRaITgYqCTSpgBNKohsn+gSc2wjVMJSnZjH5sBgjJiDwywIjwG9NnTyuO9tELkDCSGhGrE4Ma5BULgRCnuzsK7fziWXI2VaacM4TZCSkEXprkCAqOqh3pyLBGhqivpGSNAZ3cO2foo5rpq5v6+UU2Ydlde3zvXVRE6J45w4HROHOeOjsa4L1TJaAxRWSZhKbOr0UGXefP1bvPu517x8b2E6AA5Tb+jxisObT/jmj1345He9xd06+Nlf+Tzf/11v8Rf/3A0GTBKK9+rKL//iv+T5O/8rL7773+eH/qMf5Yv/xX/DP//CGckHPvV7Cy9++TV//d99wlwEz60eawAAIABJREFUEaOUQW2DVAoTEhECOVNyKHrNFRmD45wJ3aySy8qlwlKN6oa6I+IklOyN2lckHTnkGXdoaliGhNDHxFKNqTTmpAwTmgpuCTQiYYokam0xR5JSitKbMlqHnHCL9a6bRRQHQfrVGgSEaAIh7ueUUCPIralETEGvqJYg0YhIlbw9S7E470mVulbqIuTSQXNEiaQgGFofdB94BSkRtSKbcltUUA/S4OZYUAZL6xjCcKWUxNqE1gbDx0ZodcQTKSnicFmDsAj1cEHVYp4CSUIx291QzczHI3meqcuZlGLeJ0nkohsIP8L9oEIfQcSJC6UkpkNh1MplWUiSKBpRJaIp1nriNxdBmlFrOEKIBPkxbHMp2NZFtwfAHDDHBDRnfMSzlKTUHvE6Ih7EqW9uGSkjW4xIbRVjkEnkLZ5FSgY8SFsJgqy3ur3zBKEu21ozNEgI84F0aK0F2aeFeZoRhT56uL4AWHxf2uKLAsKPdar1xurxDI0EGUfFtmiSWNeHGSj0Gs8KuuMSmzS8xHrzoFR326JNBJLF9ZSUyJsyvsYDESdh5qgoooZv60V34yGe6oHcVR2Iejw3rBGrczwXRJxmQvawg5A6cGDWyikLqnBMMK9KnZzLGV6ejPdK5/RaOB4WnswHDpNyaLFeqSeOh1fU86f5g1/5NL//z048ffM7ePO7/ypf9z2f5O/8tb/ND92/5uVnf+NP4I13rw9zvd/9TD3fMR+O1HV5v4fia66vu0m8eZ3Y+5m9n9n7mb2fgb2f2fuZvZ/Z+5m9n/mg9DMfuk1PtVZ+/Md/nE9+8pPv96Hstddee+2111577bXXXh/AOh5PdOv4gGHRMGreFD0W1sophbrHcb74uT/kfL9AVqbTFU/mAw9tsG+W9E6ApwPj9X3j9rLSu2MIa19pd+dQbiY4TBOSQoUqLkRoQiJPiuQSQCQW1tyXCg45SYDM4+HnQUbjmOZCIlMvJ05tUDeQdAxI+cFO2HE2QIWweX/zI+9waU5rnSTQ++D+7jVvPb9muCFmzNm5moTnV4W5CDCw3nn16hV9OKfTNSWnjWQJ5VpKCRsBNA7r1LvXLHevSKcjT59ec63Ot90sfMeLM1faePVZY2krl7Wxrp1LD0erS2+0pqy9MzrUBqsZDtgCSZU3nr2gU7jUjGS4PhVUMuuAdSjv3g/euw8VWJpDVbqaUpvTHLr5Zoct5JJ5dnPgNE3MGkCSd6jduQzDPJSrd80o04EpZdQNs7DzdxdqrdTWqLUx+mBzygZJqIRy2gRchaUuiMDxMONmtDE223Ml+aD3NT6rd+plQVJhKpmcE7KRHaMba11CPWcDnSdKLuSUmFJmWMPWhhECIjenjo4Rai4dHUkSALtOOIa503vnsinx5mlGPCzDDQIQdBAPwMl6R9w5HA8IAXLbA/CtTjZAg3BZew/VtMcmv14rKWc8J2pvrMvC+XxP0vL4c5JqKGJlU+n5QNH4qsp0mEKlvBEU4kIH0LypvCuHqTBNQVx0D3W7uJPgMbJCENJ8JOUpohE2AElSKJENR1La7qdEKiUs6kU2tV6g9yoBeKLO6HE9jQBlA3/37TOURIDdZj3u0S0WAmSz0Q+QX7a4yzEGDPAUdutx1MLwTTBMjDUEcJtS3u79sNCHuG7mwmgNFaENY107gjMiA4OA9oNcKDlxPJ043565nmPMEJiSMjZ1YR9GUoLksAXkRJNEEeOQCyKDnOL8kipPniTOZ+Xu0hEZ9DWIhGfPJ3rttKXh3mjdkTGYSiE/+yqIPEnBNLSw6gGk3rxx4PO/f+HlnFEqqomSMvnqLV58k/D9GiTPT/7jlV/6v1/xzvMT7zwvCKEEVoQ64FP/6Of5m299lCdf/1f4sR/5QT7/X/8MnzlXLqL8L782eOeNM3/pu67IZQIV3Afnr5zJ08x8UI41Mx+htlg/AvBVUh6oO8mVZBe0QtIWsQ6a8AzZM0Wd21rRpDzJwjwV1mFcVsVQ3Bt9wCF3chpYS+EIgaCSmDbl/OWyIiUjKXE4nFjXlaWFc4K54wjWHU3bMaaI1lHpqAg5pVDOErEBwx3VRKJTuwUJYk4dhrhhbo9z1z3W080/AUtBeCVNFDJIQ20waLg1hsEgIh1kcyDIKYBml4jRWWsniWDWQwErQZKmFDEAYoYOoyShiuGim7JbcbaIFDdUEt0NM4MkiBtOohyOJIHLpXJZG8e5kLKSyoSNjlcY3kDAUqxn1o1RhZwmHGgjVNRawC02G6QkqGSyGn31IAy94y6IZpSEUQOUHsQ4bvEL/kDYEILlbvLovABOG5GTKwq+xSWZB7mnkjEzao+znzb1dZkUhtDdMUJNnB3wTsppGy/AIRHRP5PqFkUUxLBQYvVSxZwgKfFQ/EsQxoijmsOZYxiOoWoRk2Nxkd1C/Q4gFs4jmMeY9IEl0BRRUka4NqBBlsZ4xHomeLgRJGXOMQ7dBB3bMwrChYIEKkFb2zbWbiDGXISSBWFCpT+uk+aQBUwcNQ3iAUNFuDchJzDC9WaYRizMqNyXwWktXNXBbe5c5cLNdainn15fczoKU3ZyNup8z/3ya9x+6tMwTpxuvpWPfvz7eP5t3/tHfs/d689Gvd/9zPFw4KPf+C385r/81fd7KL7mUgGzvZ/Z+5m9n9n7mb2f2fuZvZ/Z+5m9n/kg9TMfuk1Pe+2111577bXXXnvttddef7yyUHv5YC4znoSxXliXlTYGp6srluXC65e31NaYDwduXrwZWfeAumBj4DgNGO70PqjDWdrgfql0M0ZdsPM9zTplmplPBzw8kxlbox/2whMp6WYRnumthXJsRERBLpuV8xj4iIY/TWUDRTNTFsQH85MbXt29RjTAmR7ey5TNCh4Ja+beB7VeeHrzlNGcL3/p8wEGqSB0zre3TG++Sc7C82cH5imDd0Y3Xr++Y6mNp8+ecJgmem8h8/UAItFE7xVBWC/3LLfvIVm5ev4M+plvfWp84usbb58ay9lY7lbul8FaB/fLyv06ODdYemVZO72mcLqyzmiJS+uYKG89u+F4PFIHlKnw4vqAyeB2hftu3C7Gl17DeQgpTcyzIJJo7rTh9E21iwkuytVx4nQ8cJyErErzLe6hhzpWRbhrC6sJOc9MWUhiOJuyzWBZF86XhdbWsGHPYcUtkgCn9ZWcCi5Q1zPqwny6Ik0zaQN0RcLSvNeV2iu9D9bLmZQyJSmlZJLOIDD6YKkLvXbwwelwRA9Hck5M5RDK2hEqLukDt84yBubC8XgklYyKk3NCpxLW6n3QzKitY2NwPJ5CwZwCrEqqbAEKKBLqyNbIx2MohHOAcTbGYySCD6OkzNJWsugj6OU2NvVgxsYIkMgCwD9czaGkzGWbz6FiHBbxDkjcg6aJkgPoZWxqz82dIKUc0RuXM1dXVwGMjhEAGhIq25ToYwQYDyBKr+sm4bNQmIsGwJQ0QMphYe+dMmwOCqN3jvMR3xTgCKzLEmDepjIeFqSipCAl1EEkrO7HaLgF4F6mTMoJGx4xAWVimiaW5YL1Mw+gvxCAlTiIKikrMiKCxSUU22mLslGPuWpu2HDEA2wMFWasRQHWPYwDj1/NOikrtbewXTehJCFPkEzpLYB8s45KDmv77Z/uztoGUwl7dt+A5lNWnj7rvHqv0qox5W0uDYektAGXRTEzWu+UfI+qM88JbwO5nshUPCXEJ0QHb37so/T+Wc6vK7cJ0hHSrOi8kG7e4o2v7/xbnzBuz42f/qe/w6/+znv8je95g9N0YFUgGbk5L5eFT//M/8hf+U9e8PZf/gF+7A//gP/yH/4LXg7hXUn8xC9eeP504mPffGBOgkhHRFjuK8kM9YF4IXlErgiDOjrrahiD1QzxjEgjoUFgquB5xpJzbIJr52654Dojmsk6OKQAx6srbSSWYczZmLIyhuFmkBRNyqQTZhGNoFrQAkbGcM6XutntB580lCABTSgiDG84I9wbNOIHJAWhNWyQZCIn5zIGbTg0f5wsG7yMJkVQWm9kFbCINEBgbIrXnAtDM2aN2gdug5xzbAI2aG7cbZEU5mDDUIt/72yEtOYgHSXWhKVXhBxRFmKUIqHKd4IM8NgIgHXUwFtniAdJtz0jc8rkPOh1offMPG0kG2wRLYO2XmhuLKtuc7pwmBOig94C6E6kcHEA2NS7pUhsLBgezg4jyIJwk5iouZNGBzbSxcK1QjR+jVrjXFF8CO4d3Ug9ZyM8t5gKRWgtNkALnfqqMc+FSQVNhbUriYnBwCycM8yF5E5GcA2S1jQ2ACRN4Nv/aw0lI1lIbDEeD04U7rQeynwfRtKMIqSUNgV1qJwVMN2IU1NcPWJTNrKULb7G8G1dD4L6YW2yzYlmbNElakJtRiQRKSULqThYAQTxjnWjDzZHAIC0ZV44tRMuBxqk1JSCLEgYboPac0RciZPV6bq9Q7jG88eNOlaaKbMXeld6b6xVmLNzORrrSFwOxm295XCXOKWJMoUbgdnAOlAWxu1rfvNT/4LDpw5873/2j/4E3nn3+vDW+9/PRJjKB69uX92S87T3M3s/s/czez+z9zN7P7P3M3s/s/czH6B+Zt/0tNdee+2111577bXXXnvt9f8qTdHAm3V679zd3aOi1POFL3zhc6gkrp484eaNZyTJCD1AGFcGY7O+hvu1cl46a4MmndEG7f6WVlfIEuRAuqI8qGPNMVGmkkh5DmAuJbqBrcZo51D6KBQVDKE236ysHS2JkgOIQ3M0prURXlEB5vbWkKybYjnAu62V3xRG0GrleJo5HTIiFjECBJByd7nncD4yzYWygdGv726pS+Pm6VOevzEjDPpoJBxLEZtnHuQLbeX86j3MnZunTykqvDhWPvnxK771bUOaUO+hl8zh+gRSEXFMFc+N3KBUJWvlopCHchmJZo2kB9564wYVWMw4Hq64mhN9GK8W5bYaX7mvXNYYoyezBmAKtG4MhN7D9t5xdMrcHAtznpgmZXiiNcEIAKK2UKre3Tf6prQ8TMo0pQA33DFzlrVyPp+ptTJNM6oprpkmNnErYkq3Rh+DXCYOhyM5F6ZS4nqK4KPTamWtjdY6qsrV9Q1TSpg4JZdQw5rRemOYo0lRLZAK5cGa3aEPC6WtO8MGbXRsdObDgeN8JE2ZOW9khobluLUgKC6XM1MJC3dLARI6ofTLhOpvjIGtA8kZNlv2MQx5UDR6RDcgBOFhg6Sb4g1AhWmacYkxdABzDtOMqISyV3OAXhqqdNnUwOqN1hpoCrBIILPFMGD4GBFDUlsQECnReo+YBc2hitbE6J3RV2y0UD1nDbyRDSBFGKMDPI6jj4HmUEiPEQCWlryRiAbmEeGxLBupEuOgKJsPQyjQFRIwzDdHAQ+yaIv5ABAJMsNxequhUDQh4PwH1XR6tDZHwu0hJaWPDh5qYN1iJoYHmCgq+GBzNAhCpI/t6FJCc0SjqCQ02AxwZ1lXVEPh2ruRYvmiDTATkgk5FS7LHWk6MlwY6nR1xmqIGtU6B1WmlFAxlj6YbFMsGkxzQq8P5LTgMgW4K8b59Yo9mXFXUnL6MMoMZpdwC0B48U0v+OK//iL1snB5qRwOMzrOMN9Qnn+Ut7Xw/Wvn9v7CP/u1z/G7L1a+82OFKQlFlFUNU+W3/uCzvPGzP8V3/NDf4y/9jR/mb//+F/hvf+UPcRKfPRd+8h+/5u8/n3j6BqE0JeEj4edBdkOlc5gzqDJqUGrDYbhsTn7CfFBIHWoHaSAFR+lkxBtZO0sdkOdQ2SKk1CkyoRJ0jo0gJbIIzYXRKu6KSAlnwG7UvoA7IplpCnLuUhs5TYgoJcWHmVg4LDi4ByEAg7S5DggS9oEbsTQVwXq4AiQJdbqZx3MpZaw3JES4aFJ8dNZlwVQoeUJFKHMQYnq/MlpnWWOdyGkibWSaSBxf8hxzra2oOX04KEhWUk4bCVc411DwKoPWwD1hqogreS5kFZo7Tqe3lW6bfYVAFyiqJHGaO9YrfSyIJlSnIErcEXW8O6O3WNfTSpN45voW1VBrg5G28wBLBLkJaJ7jGidYl4pbovUasRPEvSwam53dBlo24mNTtKvHZ2H6CJr7A9FJgPoPqmdRIUk4QYzmkB3PQQy6RuSHjCBvHo08NkIR8VCY905JBfe0OTkYEBEV7hLRDhJrovWBuoJDH4Pe+6NDyDCJDdbbOp1UMA3F8diITE1xL2MjVNRpOxaLOA9RjeiJrGQk1uB/k+g1x9RZqzE9xAgppEkZCu4aJLhv+8ABJY4XUQyjDqdbIkmotCMuqZPEGZ7AUsRqEDFQWo1SPK5nGpRmFBE0wQSUrEheeTJFZMnVVJhyoeRQY+eUKZNzShF7/FozBeHm6vJHf8nd689Mvd/9TNYPJvV0un7C173z9t7P7P3M3s+w9zN7P7P3M3s/s/czez/zwelnPphvnv8f9dM//dP8xm/8Bh//+Mff70PZa6+99tprr7322muvvT5gpaK01jmcjuSSePXul7jc3VLXTpkmnj5/wXw8boKZsB4e3VBVYIQidWmce2dtoSZda6Ve7hm9MZfC8XjcgFXFxBmacQ+1zpRTqIxUMQtQuHdHRRB1kMRgU6sNj6z3nDhkxVXi723grVNI6JSQpFQfSMmkEYBfVhDd7Os39RCbFlV8MM/QW8G64RqfoSmjmmi1Yq1zudxxXipXT57wxhtvoiqIDWxE9vwIbAVzoA+W+y/T6wU9HHhyuuaNA3zimxrf/Y0TR1aWl521rSznzmW957IO+uKcl0EdoQZrw2MT2Db2gpMt8fzmilQOmMHpVJik0IdwXp1XvfPyDC/PRh+Jec7MJdFNuWxe+d2hjw2QVuFwnLiaSth1p0wdQt+AkTEEiCiKVhupTFxNE0mF46mQtYT6fTit1cchfiAIQqkWSjvxUHz13jAzDoeZ+XgETRtInwI0GU4boaJsveFmHI7zBkAnihbYxqOPmC9zSvQ+Yl4nIUmA3K0uodi3hrnTWmPpjSfHI6fT1ePGuZQzKglrg9EGfXTqeqFMGU2ZLKFo7WYgW/SiWyjVRwN18jShLiTZrMpHgDWhyAvngMuycJymAL1VAnhMOUCzwPpY1pWxVqbDgay6ER0BwnkKRbKYYcPobaEPQTHMKyWXLZLRg8Bzp4tzqWeuTieSCsN8A+CFvhEJWABpw8G7kWtDnM02XrG6kRsp4Sp04n7UMgdGh5FyAGcPc2BYAGNjGKXEOU+loBp2/owBm4K8ueNrIwmgSi4byIgEgGZBTNS6cr5c0KsDkgpODnLBQTWHKhIPwFUHz55dYaPTR4NBOMo9SGEJUCwILEdCSkjSEmBv0pgfqpv6Oqzcnzw50XrD/ICZ09eIEjEfJPOwQhcnSeb+7iVPnx/Doj8F6aFzjugGdZo5DOHqKrOukFWoFe7PnSeSN1DRuVwWltq5v8+881yYRdAsDElIaBZJrjgZ0USZhJu3n/Dlz7zLeh5cXl1iHusRPzwnP3mTr/vzC3/t0lgX51/9zpd563niG1+cgriqieEr45D457/8r3j+DT/LRz7xH/LXf+RH+eyX/gG/8Hv3NEn8+heUn/n5r/B3/tZTTkcnKcxXB0xWTnVwKAFsaiqsKOZxXS9LRQTGLKRmzFOn1wo9kYCmQSwc85FyPfHEBy8vEfmQFGYB8VD3i0S8iXnYzx+S0AYBBEsoiN2c0Xoo6MOOAC0TRxVGGxErsxHWKUFKoWoNKXFEno4+oLdtTqSYne6IOVMO0Hb0iP/RNG1zSciHGWxQHRDDWkOAy7qyjJWUOxMz4hqxKyVxUKW2cCN8ID9Fw5FBRRBxJGdsdOixDjHApYQ7wBZRkhNbVFOA2W5ErIskSlHMEq/uK2YRb5KLRESCxX204gwSSse2SAGkhcpXM0ki+qANw7dIBrdYW7LGmMrBsSYgRmudXkc8PwkHibjXndHLI9DtTrg+eiiB0xavpFk4Lys2IItgGyl4KFvkbSwfQQ5sz1EnAHzfiNokQRgsdWBjpZvTu3PIQQaj5asEgYRaefQG3oPQywHyP4jcxzB6E6CHa2Uqj5E4SYNEVwUhyCcnTFRgm4sJsqZ4PgokCxeK0SJyw90igiF4KdyJ6BGVjUQJMTsabgAPfjNuglg8cxsdNpcIEVBN8X0p04c9Ru4Me1BKO0go0p1BD7oC8RmRQspOUkM0xdhoRwTSdo46jEUFbdsz2YVJBaSS1PhS7mTNXOVG0lDan2ZDp5k5GaesXJfCPGeuSsaY/3gvu3t96OtPQz/zzjd8jM/87m9xf/vq/R6Or6mmKZOVvZ/Z+5m9n9n7mb2f2fuZvZ/Z+5m9n/kA9TMfyk1PL1++5HLZFS977bXXXnvttddee+2119deSTOjDJbLPV/5zLsstTIdTrzx7EQpE2mzoHaXAAxtMByW+5WlDdY2qL0zLOz4690FaKRpZro6kSWUih4aUoTIktc8ockBpRp4rdjouIS9ujuwWaYPV1QtVFo5FDZG2AV7q1hOlGmGnML2H0FSQaUwWDCxAEXREE9JbHSK4PcUWfDDOcwTCafXlTzNeOJRLmQWzfCLtz5CKQrmuAWYEc10AOl9XTnfvYctC2kK8Pn5KfPnP2L8O99sfORZh3bh/jxo62BtjfPaqHXQu3PXOs0D2LDNEv58iXF+dV64mZ/y7M2n1JY4D+c4B3jdBtyt8F5zvnKnnNcBqaBzQjRTzVm701wCLOuDSw9V/NPTkZIC2FYKfUTkhGygtQPL0rivndPpSNZCyZmpZJLCcKP3Tl07y3rmcrmgmw21uWMSdv1igluntRVDOF1dczoeN8CYAMkt1G82Or0NbBjDDU2ZMQYa6AZjhDq/90ZbV1qvoRxMmePxCALmg94insAsxnS4sa4rT66uOB2PlHlC3CkpgOtuzros1LbQzhc0FXIOpXY3Bxpu4NYCnHFj9AoizFdXQUyIbPPDwkLcI+5EVFnu7oBQzk8kSgmrejdnWGUMo/ZQgp/mmVIyEMRE0phqdMOH0W0EiORQAqEkRG2OoqQUoCkSm/4mVfI8AxHToKIB+ssG0G3QUq8VTVOohVUwyQwbmw172q6j4BIEwKwFc6EkRUW3KA9h9AdwLn47HidyDpWqlrwp8JxhRm8rqQ9khuVeHgGzjVPaVMtBuLQtxsLcOU6Fkic6g6KZw+HIwOmtbfe3MFFYzhXcgpgJmD4iPNjiPJIyTTO9j7DVz3lbSzaw0Z3wEAgw7jgfePVqeSRCHIOudLeN6NrWOhUOZcK7wxRzobswEcSfmZCBLp2UM/Xuwt1lUzy6c5oL0yGTp0Hugg7nvA6+/NqZryYOTwolbWrxniIGwwTBIGWubq65v7plPk7kqxnPio87tBdchPnZc77lOxt/04X7y5n/83de85GnB57dZDBhkIMsM+Of/E+/yN9662Nc/7nv4+/+2A/z+f/qJ/i/3q2MJPzC7zlv/9IdP/BXryMGxS0SBSSs9Nf7hVRC4T+5Yi5UK9Rlix5ICn3ieBTu+gXxsJonZxyFoYxmTCpUa6Gqd0A81igfqATDlnJCpW37WjPdPRTk6swZltpxz0CQDcpEkkZdL3g5bmRPwKQlZdqI5x9JA6C1mLPEkwaVhGRQHwHsGoxRUR2xViUlpyPTPJFMwTsNZRnGZE5tlVZD+Wp5imtPYpojzrWtjVobzYxUykYQpIheSCGzTdKgRyxM72uQXNtm4pKV8W/ErIw+SCmjYkxTpvVEzhnr4RbhXZEU4Hb1IDwExyQhWaEZ3SuWjIxuxxLX1iTW5maDPJRUwqkDyaQsdIcpT6S0uVS0huJkTXSXUHUzyBuZNtzpa0M1VNWgWDMOOjGyY94D9MbxCJpBUmaMjmocl5MQ2yJeZNtALcJ5GObOlArqBt6pvcHmVIBIrP0KbTguThJCoTz8McTKHghwgaQlVNge97UgDA+FveLMc8ZJnJeOaxCgbhHjIFjMJQRPxHNTc+zNHqFuf3gg+/ZcFifWqW50AVFDNk236GZroY5vzy8RD6eTsT2TNQiFB1cHDVYZe/xRsjlrxhhHEsUAy4wW2xZKGiQXMoUhxib4ZpjTBrHKesRkrCmU8iqKDCNJ5z4JiUSWHpvT0x1zhkNKHPId01R4Oheu5w8lpL/Xn2D9aehnPKWvCiw+ULX3M3s/s/czez+z9zN7P7P3M3s/s/czH7R+5kPbIf3kT/4k3/u93/t+H8Zee+2111577bXXXnvt9QGrL3zhD1lqqCkPN894mjOiAcCN8Pjf+kyhW+d+rVzWQVsGzYzeKstypi5nUJiPJ5LOIBqga2uIZFIa5DSjRRCdQp1rzugOo6NiyGY1PHo0/i6hwJ5TIU8FUjTjvXZaq6RcOMwTUqZQMA1jaZ0+OlY7rdcA8ZNsYFJENNimFsUkrMOHUXvleHzC8frE3WWN81Yh7L4HwxcgNl4xwgLcFVKSTR2+UO+/Ql3ukHLk+PQJXi+8/caRT3y08u3vXPCl86XPdC61Us8LtcJildpgdKMjXLoB0cgnV1Yn/rspH/vI25CPvHvf6KYcpompJAbG3XC+cIHPv7dyWQe5FI7qWK0MGZsSWhgozcJ2vkwzV1czOYeaERGaW6icLUCRMaA2o40ArMwNlxGKZxm0Fkrf+/uFutYAB3UD8m1syrCMmVHHBe8B8F5f3VDmEkpUlyAGLEDcy7o+XmMRIeVCTkLJhTJPoUQdDbfBcr4wbHCcJ4ZE5IikUH+1dUWSgAqlTHSM+ur1FjlRQBJjGPPhiJaCmNPHhdYWzq/vKFPh+tnTgJ8GSE44YN2wvsZ9gjCqUE4zDMc01Mqba3sQJYTaudUKOIdpIpfCPB9BFbdBrzVIjDHwPshJySVUvlhELvoGCPmm/e0j5vrpdAw1sgSwOfwBvhJyUkDptZLzFNbp6KM62oZhEspD38iKPjpzOZDUA0j3wcAitsUHIwV4F1EPnVx6qLdDwvcIKDV3xAZKgH8g2OiUlEg4kgjFIILU2j4FAAAgAElEQVRK/DKDnAoppa+CYWahZmWzTre4/0broeCTgPzned7Uh0F4jNEYo5E0oaqPYH8SeyQuPETJMc9SYrRGH/2rNuwb9Jg9sLqgGIQpZ3pt9FZJOkfUhWz3qhmqQRINd6ZjYl3vuTpek1Kge6PzqAZ1MpLAR2eaJ85rDTDzUHge7BmHw4yIkopynypfebVwmO8o80x+DlqCxGiLIKf42YmM5syTt2/43L9+l8vtws1bJ27eiusth2dovmZ6Q/nYX2j8tXff4b//ud/m13/3Ff/e97zJ1SnDJQfh5cqru4Vf+h9+ih/4T1/w/Nv/bf7jH/59/vP/7p/w2QUuqvzD/2Pw5hsXvvPjx7DdL0LKQinOmITaGpoEzRpK6AxVBtaDLBYKIjDPC7eXEZEhPoCCk3A1Dqljk2NLozOFsrakbewTo4Y602UCXxE11INQ8GFMGiRsuD4EtJyVTdmbWOuFaS6b80feANtCd8BaxL3Y2JS9jpYSkQA+8CEbkTXCjaDXiBPRzKWtdEtMGtckJdBUmOZEShO9r3Qb9FZDsZwLEUcCqSizJNbaWZZBT0ouEzmFildzYRrKcMHoDO8ooQoWDUJGRTEtsXbYCALWHOud7KH0HgM6Rt829KbMdh6bE8qmQNds5GFYr6jMeOrgCbeE5omcErVVznWQ1lDEk+OZoZuKV0w3pXaiNqf1Hs9o0YjZSUG0qYNbAQu3iLyRxCoRJVByeVwLz93IKiQ8HCyGkSRRVPEURDYGokL3EaSvwagDd481R4johVrpElELeCIRLhaSNnK1V3obAbKLkDTUy+4Pq99D7E0Q7cjArXNZBqjgutGUkkAMjx0YEW0ioSBXIGtGktBTXEfcI4LHFdGINUEdGw8uGEFgOB5f3YJIkvh7N3skW2UjHQzDHxXmsSaKb2s828LnaSMY4hiDcBF6c6oLirIOKBlyErIGARMuBLqRpg9q+43EsBjrS4rnfpZBUUXEmAtMCeYCx25c1pXrefzxX3j3+lDXn5Z+5s2PfJS7V195v4fjayu3vZ/Z+5m9n9n7mb2f2fuZvZ/Z+5m9n/mA9TMf2k1Pv/ALv/B+H8Jee+2111577bXXXnvt9QEsLQdePHsTUdtAzURyp671MQN+7Z2lVu6rc2mGjk5dz5zPF0Zd0JKZr65QSWGRL4QSySDniVxmROTRAn4Mx2uj+UAllEduzpABwzAZTHqgzBNaNEgFG7TeuNRG0czxeCKVmVyEYUa9VNZa8R7gTSCMgohim/1yZNg76ObN7Bqgt/UAl66c66tr7i8Nk9golem4VXxM0WATAOUm22JdFu5ff4X1/jXlkLm5eRNS4uSdb3thfNvT95j8ni99ZrA0p3a4WIC7tTujOUsdtB4A7zI87LK7oZZodN64ueajH73h1cW5vzNKPlBKZMn3Dq8vypdvK5973eg419NEPjyo/hIpO1SlmWN9pdbBNE8cZki9wkZG1LGBphaggyfl7tLQNIVFuRttNEZTeruEnTSJpV64O9+RdUIkhc2/hbW+iDBaxczo3cilcP30DQ7zISIbUhBSaaRQJPYeAIeAi6MpU+bCYSpM0wEAG2GR3Vtcj6vrEy7KXOYgHhy8j3AF21TNZsbtq1cMd47TgWmamKeJPBVSLhFjuF5Y7y/c393i7pyubzAbCAFcufmmYu7bnQF9icgTV8GAIulRGWqEEla0MDCWS6UcCnmeEUlUG2QbQQyY0Xqj94YLlGkCHpSXgkmokt3H459lAxNBt2NRZAM+JVT1yqMv+lob0zxv1vnxa7iHKnUDjWwDEJPkTZEdGwVFwhXBRt9OO5TVvRmSclzn+GOQUGaPPnBzVBJTSbh1rA90So+KPkIwiBuh4kzgYwWgdUM1wE5EAzA2Y10X3KDkCUmJELAaAqG4t6+OPwRBlbMG1jUsCB+VQIXNNgAPSk5gIwhRCdIsQLWwW0cEa20DL0FzZp4KfVmZS2KQHpXX5gN0iw+xQS4Hlssdw2UD9xLmihugsd4loIsyHSa+8t4l7j8TjneNG3GeXM2UYtQeg2Yp8e6rzvF4YT5lxEPN2mpczjIpYhUmYT6cOD0788Uv3KJFmU+ZOQkpbfMhzczP3+S7PtF59frM//ZLf8Dvf92Rb/+G6xgvS3Q3+sn4vc+/yxv/80/wPT/y9/nmT/4H/OhnP88/+Pnf5CLKyyb81Kcq16fMx74pQOyUjWmeYprdNta6YjIhGAmjFKH2gY+43yUnipyYbWFd1lCpa8y/hYTYhOpKQllbIxcnqTJcGUR0RxsScQjTwFtE2ogJkjJrG4h2kiccwX0E7SMwl4SKsywLZSpokm1mxbVVtwCQPaIE3ANk1+0ecg9gOO65scUAGPWykFPHcmHNAzEPtwcR+gCRzDQlUh+0vjAsSMhkkHImpYJI5qSJ4UEUrGvFJkeShqq0ZOZ8ZLRK60oftsUXCL1DLhHbk8qDH4Ah3RjLyrKutJbQlJiYQJ0+LOJnCJeFh/WOzVFBKRgRUUM3TJQkmeQOSeK4PUX8xrbZeLghm+OA2MO+Y4FNHYwEqLzxESixVmguMPzxsyO2Jpw7pmlGc8IugzCkcLBQB8f2htgoPcwYLqG2F0fcKBLrYyKinLJGLI1Iip9pPQjzWoPYSHHeopAPBROl1ogLySlRVGjVGR7qfPeBiFISuDq1KqODMmLNSxuJrBujLEFmDh/hpiFBnkcMhpB8ClV3NvpwnA5sIHza1haJGTtGuIo8kgIp5uvGM0R0xDb2WTPGiDVE4pmsONmDTHUXVMNxMx4qUUkLebZNCQ4YrKbUbuRtDVXdrqu0TdEf3yvu+EYUtQZJOpahaxDOPpyaB2sVLsk5JOVS29f+grvXn6n609LPPH324n0eiT9Cmcf7797P7P3M3s/s/czez+z9zN7P7P3M3s98YPqZD+2mp09/+tP83M/9HD/4gz/4fh/KXnvttddee+2111577fUBqifPn2Kj0dtmWVzypmgxLn1wv1bOrWHN6X1Qlwvt/p7hjTRnDtfXoZgkQEoTR03QtCmXRHFVzENhO/p46E3JpM0ePZrdLEo+FKQcKZJQhYHT6hLgcUqcjqcAg1OmA5dWWc8LNCMRQBN4gD/bJiexUP64b0rvEcpMp2OaMBv0uuKtcn19xRfffTdAcRxcERdkJMIOOWLxlmWlrRcur76EJuXJ8+dMU2HOxrc+N/7yNy48TUZflLv7UPalNliXC68vlUvtDBOGQe/Gamy25QR50oQywTsvnmHMfOZlI+cDbz5JtBGB9204X77tfO5l5+UyOE0JUyNl2UCSEDUtXVhGYrWwgV5dcFfkMqhqaEmoBBBkFgrq2jttWdBUSBq22O4wAkcOooeG9RXzzvH4lHk+PKr1ArwKsK71zvm80Efn6sk1pRxJKpSsuIc6yzcVvY0RIEZS5vmaosqUMznPQTSsK601ujutXjgeD1SEYzlwmEqAYr4p+VKAQ5hzuZxp3TgejszzxGHKEVnhMHpjaRfasrAuF1ptvPHWi4hCcN8IEqf19ji/RIUxwspc5oy4BxCKY4+KWw9luDi3r285TIWccxAXKGIbuCKynf9GpEwbwJrCfj3Go6A4wwB3RussdeV4fUXawDDf3MmyZpoDGwFjrTPM0LRFrmxiNyOOr0iix0Wlj06ep9gk+KCg21TLjqMatufindYa8/EUymfRUHnHxwcKZUF4tbqgKps6WQNUQtiExwEiqqI4NsYGIAVAFQClkrJiPciUYYNhnRzMTaikh2PdKMVxy4iFEi+lAIKDAoW0of9OkD+b3Dy+pMR8SNTaGH0D4ACXBP5wbqE47KpMxwPnuzOTGVMqQQqIMDxUyTlH3EOvcR6vl8qzw0ROoVZMJVHyRB01gN7c+X/Ye/te25bsrO83RlXNudba+7zcl3a33W137BiTFgQ5DjYkvAQSESICAQNJREQURULiI/Ad+AYoCCmJIkVCCWlBQCgOIZFpwEGyY+yAwNjgd/v27XvPOXuvteasGmPkj1H7tP8IiZ0gdd/2GtLVfTn77jVXzaqaczxPPc8jERxPje1iNB189OYRrSuHtWHDknwx0sZ/gzdvOnevr6zvHMmgncHlDK6aKvNQSim8/JYXfPTBAx9/lPbqtTVK24h2QKShh3d49pnOb/ttg/ObM3//H7zi0y9PPL8vHMzoDl4Vexb88N//R3zT5/4q3/Jv/Ef8tj/wR/iZX/gL/LUf/5BeKz//qPylH7zwJ5bg/fcLYjkHpSjLSelmeN8hWj5vXKhSuPrAiFT4R+GgC13gvA8cI6j5/9AoFerqNDf23ZClQzTKJBVVa8bZaMNiQ1IWTahQ2sq4GMTOkIpM9bPEV9Wxa1Mul05pG6UuOd9nvIdIPstUM9pgjEFRpdZGXcj9ZuSckqksNRfMbD4jHXHL9TjjWocNoFBqBTmgY2frGQ2j5qxrupVQGo2Gt842cl2VtsyDu5GK4XXlbl3Z984+NrwP+hgJKrfGshRaTZVtacLpAOOasTlRVkTzOaCqmBXMO24jowW0TmWsEKJQF8QNH53YB0M9YyGi5IGBUtDlac8xehhbd2p5Wm+aqnL3+ayariAeiBfGMNDIqKhwalmggvcOnntR7ztjn3Efks8oH9OJEUl3jzA0ZkiC5DOnyIzJDYjIsCrlKVY3L7kWxU2opdGjY7tBUyiBRhIzRRTrBsUZzozd2Alp83saooVWCrEoUUlSqw/GyHskKvmcTT7j7bvH2A08v0NuU5qcB0opGQkybKS7jBhgb0H+UsuMq4i8X5MMLQJjPsOY91okY6GYSnH3QMSpNRXNvB03GCOS3JQkWNOpQ5LIK6nmDilEd3ZzYgSqSdxqybgLxPDpTqGRqnI3w/YAHSzVcyACtvnnD2qU6//399xb/fqor5d+Zn1+z4v3PsWrDz/42g7Ir6Ee37zio/Hm1s/c+plbP3PrZ279zK2fufUzt37m1s98gvqZb9hDT+fzmZ/4iZ+4HXq61a1udatb3epWt7rVrW71ayrrV/Z9oJGI3TbOWChnM1693ugx8O3Cdj6zX1O1WNbGWg/ZaAOIpmU7jkihtoV0pxc8hN5Hqj+nclolQY0IxTWoUtF1obWawidJUNYMtr5xKJVyd4RSEshB6T7Y9o2xewIvChpOj7TW731kg+2WltIYQgIHZjbth4WM1HN8dPp24e7ZgaqKik7r6QQbRSsiMPYrl8dHrg9vKDE4HE+UdeF0XPnUYnzPt135/MuNfr1yfQgu5yuvz1eumzPcCDEOTXBvbO7s+4a0SnNn7AMVxc7Ge+++5PT8yEdvoCOs6x21wF6UgXLuyi+/6Xz8Bs6xcHzZOKyNQy3U4tgInmCp0YMRhjlYVe5PhbU2WklbbSmKEezDsDD2bpgq6/FuWukXBMUiKCWlVeIwzCi18Pz0jNLWtNAvGQNCPOnShD4Mt8HLd15Q1xVFWbQhGgyHMTp93xDgfL3Styt1XVk1Ac5aF9yNy3ZlbBv7tiEI63HBpbC2hcNhpUhGIxYilWmqDHe2feO67SzrynpYqGubpEhGVow+uO5X9r1z3a48e+dd6nKAAJMcm5gRC+KOSMWj41vncDwAcy5NEGcARLoDGBnx4MNgWd4qKvNHNLF0M7Z9Y9+vqBaOh5WlFLRVRgTUtCHHfK4LY993egRHVczJA3rypHL2VPqSKvLteqG2hEOkFkRSiSihb4kN8YyxGN1ox0pIAjhalLI0YhhhjuFTZRx065Rw2oTPzTL+QyQpqnCnu+FhtLKiWliWA1plSvN4C8gFjpmz7TtN5UmHyeRQEvxjKilDMHOipJK5qEx1bCD6FJfxhDN5qtuDJCKkIiKAT0BNc++Y6vMIp5sRkxwT0rZcVEDKV0mQCKQubPYGN4gqoCQgRio0+9N3K8J6OvDmMujLSjFNtWYIgROibCMoBXDl/nRkuz4yIpWzNmDvRtHG8VCpzbEJQhcZvP7oyuF05LQYRtq424OyLsK6GL4UtFQ+9a3v8uHPfMSIzr5d0YtQpKDHArqip/d5/tnB9/32z/Plj36CH/vHr/je3/yc41LxngTVQcBOhR/8G3+XP/jZb+fu87+DP/DH/zA/+8v/DT/85Y6Vwj/8EP7KD174D373kQWmRb7RWuV4goePrrk+KNNxwBhhXHejSCBREDGkVQqNfWR0yfC0+XdptMUZdGSDbdh05pMcUxFk2vKXxWEY3TpKWuuXurLtVxTHw/DS3l4PKmgNWrUE6run24KWVKiKYi65/k1QBR9BNwNGAscldd9mlops/ao6d986pRaKFPoIStEkl2Cqjue8q4WxXScpNzDPuRskAb/MaIY+9xZXY9fUK4tWVIRWKhZp4e/m9H4lbFDKQqmFqgurKlXTzXAfOyJQaqO0BSmp4DbvRIx8jkZgmiR0bZXQJJyHS671/UrUQtWKuSC1opQE3EPZrdO7U6ZENuKrTg1BTNY2P8etEy64PCmM8z2jlEJoxjA9EQxL03x3QPPPNMm6jBwY6ciSuwJFylzzSjHHhk8wPA9HA7QqjBA8nCKK5KpOdfEwegxa1fwzmVEwASEGWjAj34nmvPRIBXskNUnXAmVen0JRz1iSOcataM4tz33VI/cmEUVVMgoiksxBheHOMCO65XdTTcKnzCeNx1tSuKgm8eAZrxOa72qimvswgQ8Ynk4SpWg6Rcw9MwqYC2FTL6+R63buSaqWrhVaGAMi0tFhuFC0TEJdEM33xSeuNsSRqHRzfL53VX0iOQSLX9Or7a1+HdbXTT9zPHH34t1P1KEnO7/h8O433/qZWz9z62du/cytn7n1M7d+5tbP3PqZT1A/8w176Angz/7ZP8uf+lN/itba1/pSbnWrW93qVre61a1udatbfUIqRgJo+z44j0E3xapwvl7YL2fG4wPjekWrshwXRBtKqtCeVEyqQdGWFtwqb+2NbQTXkWq/VPukc5N5Zttrg8N6T10SpElAL4ie4KJW4f7+RJG0nN8s7bivfTCG4QxUJOW6EVz3jW3bKbVyON3hY2Mbj2ljH6naEQUPIyJ/p5vRIxvkre8cD3csS0l1ENlIG4b4Tgzn9eOX2R4fWJ+dWJY71ii8vF/5/LPXfPv6Acurzs99ufN4HXgEuxvXIezdGG6YCcNyXIZVdlfEYeuD/TI43N3zrd/2Pn1v/NJXgrYu3B1qgiZe+Ogh+Mq587Mf7fgQ7p8deXY6cloLraXlvfKkgi087M752ul9UFvhdCwsWqkqrKUgpYIoWx9IhT4GocFpXdOqOiW0UEBDJ7mT931pjePdKYmEUhN80FRaPTX0bx4e2LcrL188p9Ul7d1LyRvR+68AIirX8wOX8zmJBk+V5NJORBj7deN8fmTfdxB48ewZ6/GeUpVSFxYtjL4n4EJa/e+js183Hh4eaIeVQ1tZ20pCxIFE2sQPN2wMHs8P3D97TlvXaRNPWo/PaAeJtNcWNXzbaEsqBUuk+l9LoYjQzTAbk1BIouzu2QuQad1tgEDEYLtcUuF33enDefHihMwYh2E+1cRgfUOeQJJI4uPZs2epitapmoMcf51KaUsQfdjgeDihRSfgEtNuPW25LaYiMXLOSgiFJAhqq4Rk1EVMVd6E7nFzbN8wgaGF0iqlVsKDse9Y78QYqUwOS3UlBvGkQ2QSi2DmjGEocHd3x7IuU2UcFCTV+CHUJedlqYokHUNGkAg5QJOEUQhPIsZ9ICpv75+LgnxVMSgTqIxhjNGTAMg8kiRnJEmCopP8mKOwtCUN6z1BuiKSxIqm8nQ4iBa0gMgCj2eGnEADBcYwrhOgCwncQUYqtJc14asQ5XEzjptzPDZqhSoD6YPztuO7sdbgzeuN9s6RKgky7o8xCZRUstel8PxT9zx++MAv/+wD2+Pg3fed+3cN2JHTe6AL9e7Ipz//nH/n93yOv/LXf5J/+s8a3/UdzzmdlP40Byx4MONLf+mL/Fv/2UtefPtv4j/+I7+Ln/+vf4BfvKbl/4/8QnD6oTO/4wuV+5c11ec9iG64g+0brR5ZQzFTOkIflbEpdTVQpbJwLAO5dnoPvDRGpNODsXIowr4MIjpXHzNmo4MXLIQx1cLLUtkdPBSistSMl9j6jkogklb3guSzRp31UKh24PGys1832nqg1lSkBhnV0QRCFVmF3o3RA5HBcqhUCmEJeheS3IjMK8C2ASWVxhFCkJE1tSgsFWJFY9B0wcbGdrkyPGMR2iQAKLkmK8o+BttUaKs52hzVhkph0FEtCVb3jIh1C0xX8s4roZW2RO5B+6B3o9qgakWlTgWx457P0Ix1Ats72io00hlhD4Y7131QJCNjNJxDXZP4cadJwcXmoYKpaC65boh0ilDRVIU/PUt8uh84iCpaa8ZJSCTADRyWPDC99WD4JNBqJUb6G0j4lEE7gRKmUNIVwglEyRgGD1SSXE5iJokJI11jqkB3p6Jgk5CzgUZJALwq4+mz3DAX1Hw6bKSrpIqyFGGnUEpFa5K017HPdypjlwCbJEBJovIpXnd4UEKRUniyl2hSCAVrSlg6KIgOpOhbprXUmrtX5Hc0t7zMcOhJ/qrkvk+N3E893VKSfvEk0iTdN5CYrhMwjLcuEwwoaqjUGc0zyRt3ugl4eUsm1DojoVQQC0KU7nnoXcagoFgNWrEZzXKrW/3z6+upn/nOL3w3v/BT//jtAZOv92r3R47Leutnbv3MrZ+59TO3fubWz9z6mVs/c+tnPkH9zDf0oafXr1/zIz/yI3zv937v1/pSbnWrW93qVre61a1udatbfULq4TJ47APrxhaKj0eu5zP74wNjdOqyspyOlPIE7KWde4iiko38k3rWReiWSrFwm0pFoaJIKIanwkYbbSkclgVKxk/EcMa20x0Oy0JZCiZgpgwmSLDv4CNt/El1luBs25XtckWqcrw7EKUwRsf7lZh21aKeIJIHPFkRk2ojE0NkQcjmez0euZwvBGnxX0i163Xs4M6zd9+nKtwtwm/6JuE3f+ZjnumV60W4XgrbdsF8cNk7w4XLLvR9sE3b+r4Lb4axD2e3jb6lCumzn37J/f0LPnylhBbuXxwSkCcYXnjs8PEb+KVXG22t3D2/z/ujSi0DH5ZNOAsXd3YbnC8dceP5qaJlQRGaNrQk2LkNYx+dbd/YugPCcT0AT7bUiscEVyaYbMNpy8LheKRomdEFqdAKZKq4Oh9//ArcuH/xnLqsFEnLf6ZCfLfO2He2faNfN87XM7VUDoeFVhfWZSHm/X14fGDsG1oKz+7uKMuRerjjoEJo4DCt4FPp5e5w7VwfHzmsK8fjKeMqalqrl5og3ug743plv1w4rgcOpyOVQLSmmt8GQRIGEoAqe9+ptU0781QqpmKtYD7QmOujwDacdmiICappiy8TLMSDuiyE5HUfJNJGnVQGizAlwXkPBE91ch8gQmtLAv5zLQeByPz9CP4EepcCqhNse3Iu06lch/B0Lti2HZVU1CWUBpEpMakInCpBM08L+8hxNkv5rszIBxA8YOsds0ErOmF1cBupVHafe0qqtN2CYUbfd+K0EpFXZxaYD5YiaIyp8NwhnDat/5m/p0oKK4kkIt+CVvN6fDi1BKWmWvGJpBiWcRe11gTOvNPHzuF0SOJrjnGQJI+Sn1GqUOvCvm+cDgpaUYRaKtrye5kFRCEkaK1yPW/c1ztMR4LlNmMwxgASLA1XTseVV68f2FVoVXg4b9QCXvLz954RDW8ug2aDtV05HSqH+4KEIkv+HvOKxkAtyeB3P/+Ch7//AR+/uVCXwnJXWM8X6nJB2oHQxvL8Bd/87cZv/Vcf+KEf/grvvDzw3nuV05pRCDESAPy5j17z43/9L/Pdf/Q9vu37fh9/8hd/mb/wv/xjXvVg98GXftrwfuH7v+XI8U4pDWRZkVZ4fOxcH3fWqtASnK+hXKtgPpLEaRBXoym4dzz2qZA94KGYLDQdWFWWPbDR06XDHDfB0IwTkYyeGZbxpgForZQIrG8kz9YSPA6mQnklZHB3gMt5Z7teKceVHk7RkiSfpuLVwgkFrYU+BtIN1VS39lBiLtCMJ2mgYN5RGwlAa6BVCU/AWqVSy0q5r2zXgknFro/sfUcaVE1XB0UwVVpd6KOz7QNT5RC5JGotLMsyXQ8NK2BCklHhRAEpSl3SgaKUmoeOA8ZuRIGlLrS14Z4RUaPvxCDXkAf9eoVaEAralGKGlvmcMEetMAgoTqk51w+HxrZ7KsWHY7vjWpBSKJoOEOGecQVCrlLPvU9cEYsZm5AOjAD7SIV4RD4HYlgSkJFOHRZJ2I4wunuuU1LBXmq6KoREXoMo7sYqqSDe44loyL1w0QX3PAAA5HqzAZFruIhSm+BWsB5oGDGCawyqFszyOYtMBw93nILImrpkjbnfBmM4KkrTSi2TAPSRave9pwvFJN5lEvlSFImKkSSAmSMk8Va0TMJTEZe83yTpEyNJYkZGGmkRYhLV/hQhNV01Ivzt+0ErglfDTKcbSGEYFE2CXRRqiYxXMqYDhTBkYds7TUuuDW1APm/dBKKyhbMNYa0VQv/FvPTe6hu2vp76GTy4e/6Sh1df+VoPy6+qni+Nf/3b6q2fufUzt37m1s/c+plbP3PrZ279zK2f+QT1M9/Qh56+8pWv8AM/8AO3Q0+3utWtbnWrW93qVre61a1+1fXBw0aI431wPV/oj28IoJbGcndIxbMELoJFobgj6pnBrocESyTVSLbtCWZqyWxzkWxUEYoEtVXaWllaJURTLTOMbXTojpbg7ngiNBU/4YaNHR8OWhKILhlHFwR937lezhDC8Z13KK2gFtgYYIPr+TXjck6VFBWXed2T6lCyibUhmHoqhGJwOiycz5e3QKUqVHGWKpR24tkqfOZ04fu+Q/ns853r6ze8ebiwXQZb3yGUoOKj4+FUCq4FbFAXZV0KcYZX44KGcndceP/952yb8+WPd148e8ZhKfToDK90K7y6Gn7uCJcAACAASURBVB88DPooHO/vKesBrY1V82DW4xaEwB7Oddt43AZmQVWlHZYEsVHul0YpyrkPzntac1+3TndnXZRaS9oyU3GfKsCJjril9fbp7pS2/qWwtDrVl5LtvTs2jA8//ApVhGcvn1FqQ0KICbi6GUOCMTr7vrNdrlz3nWVZWdpCWxeOywEheHM9cz2fGT4oa+VwuGM53VGWA4dlJaLjvQNBOKm4nlbcb14/MlRoEyR3j1S7oux7Z982rpcL121DRXjn2XM86lTVCo6DChINzHGBGJ1wpy5LRpsUfRst4REJqkSApMrchlP3kmhEaWlJH0GPPpWATreO9Y2l6FuVuOiU9gpEGBLB6IMw43q90E4HbP53C1LJXCtV0tJ+2zuEs++ddVkn8SBv1d6BMNMr5jU4+26cTitMkiJjKyLnsWeECxjuhpulcrLUtI5XJSR/v/WOhU2F8bzfdPowIkWyGc0Quc4tpXe4gLnRe0frQtGci4iQZv4lx1uTPCitUpeM9lCRTJjwBLhgKo6nopOpGNYyFeThIAWdNvGT/0FLxi3swyYJkipyeSIV5neKqZZfjiv9coW4J1xxCbrzVhH/tD8KQquNx3NnM6FOUiUV7UJIybsTghYoIhRNemr04CLGsXWOxyNeoFSlDVhb42EfvDlvPN8W2uGIqiXYGo6F0VzxoRCDdVn5zHe8w0//ow+5HgbbedBOENsF6omo90Dh8GLnN3zhM/zML1/4hz/1Ib9lfZe7pXEsEK2garx40fixf/hPef/v/FU+97v+BN/97/1hfv/P/3n+u7/3s/Sy8mjB3/w/X/Ppl8q//XtfpHNGUZaDgEOMYOuDoguLBrakRfy2wxieIPBakJLPoYfzG8AQGXhrQEZDLBiKY9247J2YCmJxyedMAJQZX5RKZJ3AZYSA7YgGLgvDp3sBhSKOlMLdcUl3wb6jtTLCiMh4BldQVyQMSkO0wbC3jiGtKjV0CmUHYj6JPJ1AsCEM9t1wX9DSkObpUFEqZSkseqAUuFwu9NEZCEutuU9EHvxdak0h6xhcto1qTrPGsjRaXRDrUxUs6e7gTrjRfWGPFXBqUfrQJDqB8KCPJC1Shauotrm37ekIIRA9cj3PeNrcjYLwnQijb2eiLagX1iUJO0FoTWitcN1gXJM41JJrorSa69mSlBEyniHCIYzwjK1orVIw1IPQdCDxMTBP4kFJ1TEUpAjNle4+n/sBalRN1XpBKTrJRS0zPkbQUFoI2+hJkkUSKZBE+mmtaDhb75NIN8KfvkehaCXolBC2fYAkQdsWRWpgI3J/jvwsId+btKVbQwynx86zw4G6FnxPBXmJ3I/GMMwdramaz7UvqfAOIJKMGk/feRKqrWR0ic14BjRJAfOMUMFjzlPePjvkKcbDnT4yD0Ic1qY0DSjQUMJhjKC7p7raYG69lCq4Wb6H1Zb7lJHEbdS5D4N77s5q06FF7V/EK++tvoHr66mfqWvlU9/82U/Moaff+107v/s7X9/6mVs/w62fufUzt37m1s/c+pkc61s/c+tnPgn9zDf0oSeADz74ADNLe82v8/rTf/pP86UvfelrfRm3utWtbnWrW93qVre61a/rGtsZOz+w91T1tMMh1TZSv2r9HIaEUkWotUBZSLVhYJEKzz4PGunMQnfR6cikCfy2Si01QYUQbDjX/UJYUJuyHo7Ulurq8GCE52EnhLK0VM64YDHY907fNkyUw8sXEwRN0EUxxC6IX9D9kceHB9a1QhzmdYFOQE7CsXCUgvFkIw6H9YjyOmHVJxCPBJ4+cx/81s+d+Zff39G+8eoX9wSbh3G+7DxsnevVeDyPBB8lG/lLH5z7oEfQN9jPg0sP3v3U+9Sl8vEb0OXE4QRVG2bBtQ9ed+FhCz56HIwQ2rpSl4VDLeA75s6VwK2yh/BmN667gTvHJVVttShHLWgVBOfV1diuPRXxI+2cD8eFpdUEVEOnSjAV7jkHQFS4v3tGbTWjD0pBVDEHIhg2GD74+CsfUUrhcHdC65pgKKnG8khAw9y4Xq9s1yt932mlsK4rh+OBta24Q+9XxBLCXWpB1iU/Vwtra6iPBM7dE1QRxbZOWRqvPn7FvndkTRIDD0pLkGnfdvbtyr7vXK8bFs7z99+fQC04BceJkFT8YdOu34neOZ0OCbCrzgSCaXntlkTBjB04P14orWIRLDIjMJ7AlqlQEy88vPqYfd+pxyM67fsREiSPmKC80/cNzBhjcCot1YMTwEEFLTXvUzd82zPGkQSyYAI8kvdRNIHyADSEsfcEwEsqLqtokiJMG/NJfJgZOgkLbTWvF52RDYZJxlAkEQFSSqqdQ9mvO3I4UGpJ0ogEmyDmHEkreC2pPPVJJojqJAICHzvhQqBctp3lMBJ0RRLI1LQ0d8CHYZb3sbXK6AnMJ9hVJgkiU4CZDg9Lk1Tj79dJZiS2EpM4yRFhkkewrgvb+Zpj4+kU4SMoNFxgshMo0OoCfmG3Tikl7e41f2uVtM6XKpQCvgvrumIG5tBj8PEG9dhYS+OgB0Q6Lsb5Krx63Hj3YWVZFo4nxS1wCfwibxXkWkEKPP/US17+0pXrdeN67hzHoA0j+hVZ7qDeU54XXn6z8T3f82n+57/xz/gnP/2G7/q2ZxQtnFZBB6movCv83b/5I7z83Ldy/x2/n3/3j/1RfvEr/yV/4yffoKVyYeWv/ujO++8+8Ft+y3OKCLUCa3B0hwdHwrC6ImbILhjBtud60pqAeDc4HlYulwvCzgHQpSCj4HJEYzCkM8hoBNV0IkjCqGQkwzzoGiK4CFIai1b2a6rtqxq1rLmfaSpBLRKNrdLYe+d63VlaozZFJGgUtAZD8/ciKyGdvu3YcI7HgohgLrgUvCg2HA0wBPEZfSCKTyDfTNHa6MMSNI9AtXA6Hdj2wdg7e99ZJ6Ekc622mvd8jIGNMR0MjKXlvtmWA+pOFGME00mjs0eALpSlsohCTxeBmGs+nwGp+JUlQV21yjY6ajHdFDLORCXntfmgLQtYkpDDByWcURrMZ8taphK9wLUJw0aOPUZrS6rYRZh8YzpQUMAHHoJ1J+ggTiklDzfUlkrsGEns4oQoIo54gueVSkxqsGiksYJl5IMUgZ6q5GsXmiZZVcJYCnk9KbAng4cEpjq+1AoW7GPHJ9RPRDrBtJYAPiWjoMKICNpwngwwzNLxokh+TyeV2j5JHbeOd/DuhOS+Hma537kztg1BcYWYh8RVFJriUSAgLCN7hznu+4y7kUmIKFFSba9aUokuv4J05Ylcne9Fk3QC2HseVpA0SEFCKTWdKtJVJHINRFBy5NPJQmPu9UnOuQfDyiRlPQ+6k1Ed05PiVrf659bXWz+znu7zVMQTq/h1XP/9//TjfM/7X7j1M7d+5tbP3PqZWz9z62du/cytn7n1M5+gfuYb/tDTn/tzf44/82f+DJ/+9Ke/1pfy/1pf+MIXvtaXcKtb3epWt7rVrW51q1v9uq/zRx/SSmU5LBANKdkwRqQyKgi01AksPjkwpeqz+wDSwrmoYJI59yFQa6UtldpaqtAANC2598tgt85SCu0+QWyPQh/TWn5aM6sWVMoEQ53r2LieL6DC6dkzynrIFjWguFGiUzkTcuEqO6gx+pVaTlRNsDCcBGsAC8dTVoq5YAZuwbo2imT7K56NrtJ5p+183/0HnB4f+Gcfb1x2Z3ghZrTDZQweLld8V/YwugU2lM3zn68jCAuuPTgsJ17e33HZghhwOFSkwG6Bx8alO5et8vF10ElL8HpoLMtCq7CUVKtvIxghnIfzcB300amaMX+lKksRmjIBeuHRgvN1Y98723BqFe4OK6216Z6fikOYXxyhWzbr96d7amlo1VTliSSRgCTov288vH5Na416OFDbSqs6VXAr4YNwQ2oq+vx8pu87pRZKTUvrohUisN7pe+dy3SCC9dCQ2ljXI60WKoH7VOAqKIVhjgKPH7/ium2sa2M9rKzLQlsWpFbCItXYe+e67QxzXrz/KdblmLbtkqBx2LTJdpsKZOjbxvF4mLETintaZRM+bdSnhbk7j9cLQzQVixrpDhCCSNpzuySMNEYqyde6JtitmsCLpCrdPcEknwrovu+sp1OqqqfKsqrSaoLZgrD1VOSPPqhLI54AafJ+uST5IxOEA8H28ZaAqTXly0UzJsHD366zp7Xp7rS2sMxYjPy5SNVlERTlcDjmenZPkKyVCaSWSS56/n0SUBqpmB3hLESCUJ73I13iYwr2UqVtGO4D1YqNYGDTHj1VwTluvFX2+RMhMdV9brz93TJ/LgJabTiXt4BWEZ33ItWjMVXWRRRdjoS8ZuudtVVGaBIvnp9TquJWsbEDsDTlfNlo9ytqqcquayEEbChVnDkRORwXzo8bZkKYYsPoe+fQaoKepPK9W2f3wkdvLrRDZWkHRIxSGg6MPdCSRC8oRQef+vbn/OSP/BKvPtq5e7HRjgvFdiSeEfWIiLG+fJ9v+ezGd33na/72D/0Cn3r3yDe9U6fjhWIe3B2Uj/vO3/sff5Df+Z//Kxy/5bv4Y3/89/Fzf/5/4P/4oGPaeMXKF//2xvvvdj73uRURp1RhXQt4w95cEakcREGC8AU/Ctdt5N4rQSxCp3EM4/G6Ie6sRZFyZGdBVkV3R2MlbDA8QWCbjg3ugQS0mmvcLIFLj6AsK2jg+zkBdxyl5iFaFTLgNBWd6ju9JyHZmmQ0UiR1lPtFBzekJPj/+NhpLddna4XhuUbCUv2u64qZYWMQ5kRYRkK45FwjSU4XSycKrRQt7NcL29iouiRFF5ETmUpTpY+O9Z3tsrP3S7pO1IUiCmWC0qOzX4PLZcetEAitNFQr0Qy3JP99DHzOX537P2Vh0YJtg2Ag4oRpjmNqzzN6glTsejhjdMY1wfSqApvTpCThKpM4lSA8DxG4DQynJmM6QXZHtNK7EWHYHiDCkCdHCcgrEIiSQQdhCBnt4DFJTVVOp4xpGZHjTzijC+JMFTaoC0QKSxXo4VAELCiRBEm3jHMqkqrvUhYkQMUZI6aKOAkq1cq6LCxkpAVh9DBwcJV5eDvJ2Mn9ThV/Q1W4WqdjlEh3iEBS8Y0SUzgckW6XbkyFNpQlnQGGBFECKRkFoZ7uHK5CramQrgBFsZJ6aJlxPem4OVXUkiR5/uiM9PGM4clQqHSUKBKZRlSFSu7f3VOtvsvceHGa5vMuiQJ965Yhnp8nRLpk3OpW/w/19dbPfOZbv5N/8uM/TN+uX9uB+VXUj/3Ma37yF1/d+plbP3PrZ279zK2fufUzt37m1s/c+plPUD/zDX/oqffOl770Jb7/+7//a30pt7rVrW51q1vd6la3utWtPgG1np6n85EGiGJUOkYl0KpTISlYpALIx84YnbTXrhRNx6SnJrm2I+3QWNcVnypECIY7djG2MWi1cHc4pPpmqj/7MGL0KYFKACUm6DhscN2uRMD9i3coy8JTRryYcSzGQXcqgx47XoNrBPu1s+8btbYkPkSpLXVRwVcBxCRE8i8M6lJmY5oKOpOCSOH9k/OZ94LLpuxDkijZB28uO/sILtvO49W5bHDtxmV0goJZYBL4KJS68v67z6lLZR+S9uhLA6lobRRgs8BV2CIbeqOyLEcOi9IKVBW6dc670w26Oa+vg2HOcSncrSulKWtrNE1N5wjhOpzz1nk47wwfnA4r69JAGr0HIgm016ok7CWYOcuysq5rzodaqKWRrX3aqffeuV4fef3qFae7e9bjkdoW0IqWhVYSnOyWYMm2Xblezly3naqVw7JQW2VdDwjCvl857x3rHXejtgZlpbapshYwH/TrlukPAgR4N67XjUvvrMcDx3VhbStrXdBWMMCiJ4jixnXvPH/xnOPaJko8lbg8qYYTYEob751SCkudgLtIzl9JoD+m0i3cZ7winE4naiu00qZkDIYPhu/YGCjC61cPEE49ZUxH0fwynlJ0EtMTMKeqcPVI1aCkfXjqdWcMg/WMQ/B5cNCdqkq4pdKdBGElZKqCSTKiFEYEy7Ik8UOOb6Zh6FvCIgF2JezKwCnEW3Wv+a9QYIfMv6clfK2VdT0msCQlyZAZfSGWMsO+7/SxYTEmwEaq9MxQS8tymxEMra6YD8Ywhhk2YlqNawJnMYFbmSppUTIGJMe06JTseQLtiiI1gXqm2ryQhGYRRzTeqqi7JREhQZJTRTksC9uls7aWFvAFwCiS6kILB1G0COtx5dVjx7nD5viPLqyrZixPJNElRZEB69KwkaRsacrlbBwWRxallkqtyqEtDBfOV2fbOsMWFkmQUlqh74ZqIAdFQ9GoHO4W3vv0HX3vOTesgBlhjxkHoyt6XDi+98hv/K5P8VM/9RV++B98md/+3e/z/LCyFGHU5I3u7yo/8+UP+NEv/rf8a3/sP+W9L/yb/Ml//+f48C/+EB/sR8rS+PmufPF/e+RP/AHhnRcFKUE7LKgmYfTqwwu6HlhF8AU8Evje945LhjisrTJk5YBwvmzEAJFOFVLNWQ+EX1nXILacG0ggUhkRFArDR6o0LYkwUWFFsNboHBlmOfcildFJnAoqker1JkQR9j4IkgRK8i1JdXma/1KRdeBDUgXrxqJCLQKtTeLNUAdtC6IV74PwkcrRMIiMbggqtRZcck1p0ST/9oEPgyI5Z1TRKhPsz+u2bTC60WOH4UhttCqTiCpsW2d73OmmaGugmvNWlCgZ+eAkIZrjtoMXpCWpy6HifUunBMk90z2jf0QLZWkwPH9ngzEy7iU0kvhqMt0L8oCzSLoz7GNHfEYRqVIR1ioMzz3EIgn33cdcp7kPqieZ0FrGzFRRihbA2UfuX25B8mWBKmBBq2XuGUK3gVDfukcQsI+BS74TzW0EH+lGGTLVu9MNgrkjqza0pktGt0FVBQau+R6yoIyp+nYRpCcIbhGYOVJSbd60cH84wHwOVRVKDFrTJJgCrMsktSbRYpaE7Dy0Ed1T1R0zA0hSUY+A4IiQxFo4helE8StV0Op4mf8jCe4LGcEzU5be/rvOd7cxnB2oDs2ZrjnQpjOHi9BHxvWEKuGRyvqSj2PxjFjy6eARffn//8J7q2/o+nrrZySCd977Jn7553/6azswv4oKh/263fqZWz9z62du/cytn7n1M7d+5tbP5N5362c+Ef3Mr4tDT1/84hdvh55udatb3epWt7rVrW51q1v9qqqWBiUtuN1BCaoUSkn7bCPdj7bueGwUnY0ognlg1imqtFrRpdGWRi0N0YyPGBFslw5m1CLc3R1odX0LPJoZuw3UHWpNhyfStt99sJ03oHA4PqcuhaZpjxw2ODZ4eVco4tiWRAQG5/PGw+OZ1iqtFcwSwBVPBY9UQYkJ1Ai44S50N8wHSzlQVd82tRFCiLCPzpc/eJOq2n1w3gcPV9j2ne7ONoI+wCMVXREJgFiAoLz7/MRyOrF3OG/Guiw8XxZaWzgjPPbBZReuVximuK6MKmgpVIUm4DbYvXE14eIJElyuAzx457Ryf3hSGAdayMNZkYouM6dbNuT3xyOlNtCSwMGEN1pNUNhd6b2zHlaWtqZyecZAiEC3PC0WZjw+PvLm9ccc7+84HI60tiDaEk8ggd3Lw2v6tnO5XpJQ0srxcKQWodRKaw1RwcdgH5YEweiprC+F4+GY8RMlLaP3/ZpgTZDW1iNJhb076+nAYVkotWZEQp3yV3fcDQGGGXf3d9zdn9CaCuhWS6r3x5jqW6NE0Psg9s7h+WkSATl3UE1ya45eguLGfj1zPJ6+qiBnxjREqswEUmXXB713nr+4p9WMS9HS5vpKdVzg+LR337aN9ZiK9xQOJ6ikZYIpaV82rbfTJjwElFQd51zm7b0uWjAbbNcruLEsd6mcdJ9EilOXjIeAVGaLZNRCEUUnUOfqeYzQU0lNCpBT7elOqXlvVXSKfoMiSW+4PMVnGDZ8gqJBhE7QSQhNkkC0UFCCgYVQtTK6EccgpBAeaZEuuV4FR8tURGtBtFJrxUPQKEgBfEzwzChFUsVpngB7TEhMpopQnyIsIoE4lHCnrQuPH70mnp2IGHhk7EchiQ2C+fMl41HiQveg1QTjJCTV5QreK+YJ8ENQauFyfmCI0GrjwmC5dko5UFQ43R0obWH0jljnfN1YHxZevlOJoogJrsFmQZ3qcM+B5/1/6SUf/sSHPH7ljPXB8dmR9WVHlx0O7xLi1Lt7PvW5d/i+3/qt/MW//OP8o3/6mu/+znc4HBvHGW+ymLPebfzQj/4kLz/91/iO3/uH+c7f+Yf4T37+y/xX/+tP8qYXXAs/+pHw3t8684d+zx3Hk4JnZIE4lBaMbaMcDhwPOl0ZFJPCvgVFU/2pAnjG02w9Lf4TlBesKGWpHHQear3mPixhaPhbm3ofwYid0JYkWAnE8t5gCU6j/kSL8QSMasl566WiVTlvV3oPDusyQ2MMkdxDSuQ/+6KYVfa+ET5Y17Tpr00ZDsMC9akALxULcO/z2ZjrXnVQPPdenQriKAtlLfQ+2LcrIUGtDafSakVKoR0aSxlY+HxG7VQPhhe0NFqrrKeKXo39mtE7Ugq1LvOZs9AweoBJxviEGyMGsTlap6oZoGTcwOgjCbW2vCV0yyRePYS21CR/xpV9Hyyk6haEuhQEZYz8/k8uE90GNYS9lIzSqLlWekRGBEgC6SKp9pZSMIm3+998xOf1xwBgOLy5dI7LmoD2NkmWEizLgX1MYrAE3ZxhTlsaGRajc18AxxjhlLfxOZJrPZTh851Kgyb17XMHS/B8N2dpyro0tr2nA0PkjDPkrdL5aRYOcg4fS6OUQmekU4QDmvt+spdkXAkFG2OqxS3dOwhmTg2Q+3G6ewSZhyEYTg/L96y55xeV3Muc6RYwryyYQH5eY53fwUiCJ0Lejp9GSTJXjNaSeAoHDYXIMX06hV4kFd/EyOt2QeTtgNzqVv+39fXWz2grfNNnP/+JOPTk7nz0MG79zK2fufUzt37m1s/c+plbP3PrZ279zCeon/mGP/R0q1vd6la3utWtbnWrW93qVr+W8kjAt2ihqKLqUzmpDHf63uGrDuXY08EhcaQUlnZiPR6QCkKddkmSwK0l4LeujaWemJ7PE2xw+uhpnyyKTEVXRCra9q2jLrR1SUVsSXUTPrivwotnK8ejIuHsl04P53q5cD5fkdJ48eIOjz2Bl+54GH1AKysigZLRFh4xW34S3AunRKWUyh6DJk+KnmlnHME1BlczugkjnB2he6Vb/verpeLJSeDzcLjj5cvnbB48nAuxFJaqQGP3yuVqvHZl64XLOcGYvShShLVVFglaGZgUtl3yszG27ozhHBo8Ww8s68paoGB4NB734NyDfRhjpHpbQrk7LtRWCGkJ0slXwRz3BDIiUtlbSqXUhtYJbk2QXnDGGJwfHnjz5g13z19wOB5o64LEVy35laBfd4YN9tFxM5Yllb21KGVpFC0J3tmg26DvOz5SoailcDydKDWBEdxyLk7p6xgJZvS9Y0GC/uvCMomHUkoqgkOwMTAPtr5TVLm7v08ywyUt1UvLCBQHQhKQ9sE+dtbTIRW9pMp7in/T0l1g6hy5XDpoBSk5turASDGZgahQpKAo27hyPB1YSkW1UFpLQE0Vs4GQIA2SYLn1wXp3mrbxuZxQ3rqePVlxmzu991Q6pwQuP18lAaWEshKcHwkQamuUWhIYlQSGqiQZKCkRTLc0G1g3VJMAiZJgfzxhT+5MRBDzkXENXrCxo3WhikwVY34v9OkzesJvopS6EJrjutTGiCRD8nsa+36l7x3BWU8nBE2VrAralPGkjk5m5m2chYrMMRJCx1ShS/48mlGWJAlSa8PNYc34iVLKNKGTr9rXE6jm/uaeKv7QOR4ueBWKVmrkgUxHqRrcrQv9ciHuj4gqRQLfv6oyd6tT5S5oUdq6MHZjmCLVeXN+YFVhPWR0S8XZ9sHYnX0LxM6sh2foadria0UswWrBKaGURSiycv/pzs/9k6/QTlfefd94rwrtRYH+gNQ70GB98YLPfv7Cb/wNn+Fv/+gHvPfywG/43MJpKQiDYcGpKtf7zt/6m/87Lz79Du//5j/I9/2R/5Cf++X/gi/+2P/F3rv+2rZlV32/3vsYc6619j7nnvvk1gO7QM6jsFPXhS2iBBJICIREilTElhOUb/nA3wD/CChGkZx8SCQkEoIdAkRAzMOALcuWTJnCCjbYLrt8XXUf55y915pzjNF7PvSx9yUJOFGCdG9xVy+VSnUe+8w15px9rN7aaK29/xiT8bf/sfLGz575fd9/ZF2E5VCSnFmV+5epsLV1TTWrZ08WCcbe8vkSRQ2qLRA7vQ2ITtGFZoXAEHFWD+zgnPdgQzFzigbGDmoUIGQ6BkTyWqIrhyOMfmH0RoTRRJOAigeqrAIDi8HBoIWw741SMyJGE0UlkCSjTKiWe+t+2bjEoJaHZznjXHofSOSeKCKUkmvVW0dQ/NHmX1ErhAzUYoLahhZl2y700SCStDSdcT3F5n5e6G1jjFR0qwaTJcvopjUJNx8wtKVCWZLEMsv4nqAjkdE/HgPpJFFQ0hkRnLY7ow3onSIKpjhGNaP7wAPQoHoC7n3v9DFYJxEYKog8kCFJ/o359y5bz2vqkxwl9y0RxUOJMdJpYKrKeYj1cUERihqDmM9V7h3nsVHM/k/qZlNDNfDodJ8OCiJYjPxXI9XLQap7kwUkyaVsr7hEfpdQRcIexMSYKi2CsQ8Up8sAD7Y970u6OShaaj4Ts9E3oKyVVaD3nRbgYg8tNO/L6I+EZpI3TplETnjSGxHZ3/DpWhMJ5ufHyL6spukiwJjPFPM65ufyJHWc/HvJSyQDnf9+8ju2FGJAuDJ8TPJX8p1u+S7HeNgv5OEhz/glDdyne8Yk3jyuh56u9VvXJ3GeeWgLn/TygB5xnWeu88x1nrnOM9d55jrPXOeZ6zxznWe+jeaZT8Whp23bGCMzGj/JVUphWRb2ff+4L+VaRCPRigAAIABJREFU17rWta51rWtd61rX+tRWUckh80Fm6rC1nd52PITQtNEmdEpwgloKdTlQjgWxBbGpIorIobA3xCrH4wmraf+uLnmY6XKfw2UoqhNMfgAswxnnxmg7y3HB1iOCIdKB4GTKq08Wnp4K4j1BBx9czi+4f3GmrpXXX124XM5sZ6UoLCa00ESByrTWd08wmAQAVXUqHp0RCfIttbCdO4JQRADjg/sLv/jyQ8buDIHztnG+DLahqagdg0sL9t5RjKLGG7/tKctyw4dnZ4sjsgpLNWwCNx9szt0G530HD5rDbidEC2sExTud4LxDiNO60AdsrTN88OR04HRYE3C3BN73cM6bc9kSPBwCl4uzrMqypMrJR9DD8wDYFEYHkQQBwrIuOVNOEMQiyaPzeeN8uTDazv3dPSOc119/DVvWqXqbijFPVey5bemMtZ0Z3nPgjwTXSymUksC8e2f0xtZbAoWWStalLgmeL4WYVu172xnhxIh8BsYAMW5ubqiLUVSRUlKJO3yCxKmEFc+IgZub27Tcl1RF21IZIYyxz9jDBJcv+yWTHDTXxyUokirnaX6epIKmu0C4sN48QZUJeCcRk2h/Z7Qk0YanEnRda7qbiaCRWswxGsMTPAqC0Rrb5UJZFqrmnC9T0aaW/x2toxNgiZERBzYBeEVTFU3adMv08O6j073RW+N4c5ORkhMKFRQzRcQIhRQUJrDU+0j7+niwv4+87yGMGGgIvje6j1SuRwJoa5EJWuW/EfGg0f7IWrzWSlFL8gXFwzMSQpSqyohOSgY7ziDkQbEdmNhUV0fee62pisYJ77TWKbUjJdWZaWGvE5TMtRkTDKtL4e7SOMpxkqdJbn6klU0QUqRQFlgPleEdi5ouD5IxMKXkezY8128Mwary4vmZJzdHWg90Ubqk5X0xQ6URns+rBxxOK802TreFqjpJW0sAzeXxOesUShEoznvfOqPylJsbnWpEZW+KlnRqUAwhOL66cHNbuN/uuf9w5/R0xw47RXbQmgTOeuTJm89453s/z8//4nP+3s+/x+vPFt56dmKpsO7BpQi3B+UD3/mJv/w3+SOf/QLL69/Hf/wDX+HXvvXf83d+9R5q4ezOX/6q88azM+98zy22BFYC1QXBefnBhdEctSOnxdjd6XSa59qhYAvoKJQBsQz6BlNcm+p5U45Uei2wBL7BMoR1qSyrcL6/UMtC0HEpjK7UgyQpNIy9KGCMvVNCaSMILXn/JiCqOKpCXWA0p+8tnSYs8OGIpZK0jvS2L6ZwqFz2Tr80lpLAdfigaP7EjAGIGTOSBNHoHZ09c4w9e44ERZNoDJyqBURpvXE5X2BsSA3UEpz2EJZSMAn2lu9CeEZSJPMVWK2IVXpr4B0pUGzJd2W+coJN4h80hOiDMUhleV1YTCmLco6Be2ffN0wle4VXQidBKMoQJWIg2HRQGSyTXAlxVAz3Ri2G+ow6eHAqGNmbtSi1FlpL8jAVwIqpZlxMGwyB1dJlIX0dJUFxPnIKaJG/6x7T+cPxqaAWgSFCONztzlLSDeEj3fyM4oh8x0LAR7qQFFGQSdQNoZQkvfs+kjwUIBp3lwvDkyC0ed91gvdEHrR+edmwtmfMwyQcg4e4hnRPSceOoC5G70m+qE7lsQSLlQTgrWQkRsQjWRXOdIUg+5YFdaloJ/vn/I+F45OgV53fJcLTyGAeABnhWBjxGMEjM5JDYAxkkgXZ823uTR/tBRH5C6IynQ9IVfY/pci+1rX+WfVJnGeiJXk5bWk+sbUP5xvvvWTEdZ65zjPXeeY6z1znmes8c51nrvPMdZ75dplnPhWHnv7cn/tz/Ik/8Sd45513Pu5L+S3rnXfe4Stf+Qp/9s/+2Y/7Uq51rWtd61rXuta1rnWtT22pKhLKINhao+8dvKXSSQRCCO85bNYD67pwOKQKTKziPpU4ewK2Wo2b2wOlKHtA68EYd0SDEQlkq8oc19MOe3gCgdEbxQp2XKcdtRGjsVrwxpMjr5wWPBrRdwI4391zvjujdeHZGyfafo/vF9YK3tIufqkL63Fhu5wTlBwdygIRj3bHBNNyONVpWCr2yjlSBFQKKsLzuzP95T1j7ITA/VC8weie9uSj4R4w4I2nBz779qs4C7/83s6FI6pKkYzT2Lty6c7dRfhwG4zYKZL25m0E4YXQgozKQGhDaJ5q8xFpyXyshkawb50uyqY77zfn3J0+Bn1Aa84gqLXQu+JuFBUwo0xyqO+NbW+01ogISinslw0mEJ2HwwIfHQHaGKxlpawrT25OqJW0SQfUYcSgtQ5j0H2w7zveBlAoRanFKMtCqak+jZExDd2d7oFWBVEOh5VSKkutyEjw2yUVh7UsDBlEC4Y3DqdTarVGglCa2FcqUt0Z48K2D1rbONycqOuSyD+kItjBe8PpqUh10mI/YF0PmBohktc4HFUDEqxyD8xhu7vj5vYJdVlwEUzKBMS3ScqQqufeOd9vVCss9qDgrh8pvj0oMwahe8ZBnM9nnr36aq4xTGnuhKjin4JxgoyxWOsErQQ04xFAUKtIdHxCZmgSdGqWABepJhRLFaaSgR4u007d852okjEeJjqBt4xH8UiiiQh6T/VfLYFOAmU4mKWF/4OgLpX59khImHqCS9NWHE1leAqqEw2OCMwqbR+s1SmmjEmqpLJ9EFNSuiwVUKLv6ehA9jUfAydjIAC8T0JJJeNJzh0fSQYlaTRBv8jPl4kFBmEcDitt76x1eQReY6rwY66RaoLAoivHZbD3zmFa3JsFUhbE5l83xQQUZR/Bdoa9B7oYpSq7O6UbxQrLUrEFbiWo5iAXthcX2vnAWBOcRDpjd7oKYR2pRrWKUXjtO17h7ufTleDy8sLplQO+NHRsYLfgjeXpM77jCxv/5juf53/8a7/AT3/tBb/3uws3x5r93GBdhGcUfvPDF/zsj/1Fvv8/e4snX/hefvArX+fX/5u/zC/d7agZH2zKX/jJ4NnTnS98xwoKZRWqO6cnwcsPLoTs2FK4CWFMgmBzPiIZ1wAU74PjYbD1dPioCB6FocHo6dAhdNplo0hJMq9lr1vqAS2D3Z3RlFIKMQLzAyI7Q4UYOyKDjDjNtyFCaK4UzSgL1ST92r5TD8uMZ0kvQYJUv4rmuVtL15HW+9wHNcnAAFBUM2okX/FU1iNO7xuBoqOjpQKG62RGNChLRvZ4BPtlI+JCXTJiJvuAoiwsGrS+E5HkWfavBGutGAWjj4197wyDOjfIooqaUA7QmjBmDoHHIFqneWfYkg4ak6BljHQwGC3f60gFsrjm51IBxoxvsRmd1JGilEjAfki+YxoJnrsMdDRWUoHbewLIVrNH+IA2MoJlNi/6yDMO4hlBpaqEOuKW5K8nAQywj8FgoPPPFRWklHSiiOyVTPCeCIIkPtQUH4LxuK3MPgUx1efHZUE194Hdx1QJl0d3hIiO+0hSiAT4IzIWIoaz9/GoYo4Z5ctDRE2Jx14KgpaKR7o15M+EFky1O5OsgcAIjN6TvMYg26Hk35v7PwQaQX84BTAZ3uGTdJZ0uOmehK67w5guEXMtEWFEEkHIJFtlugTw0TMvpPsKNkkhBYMkTa51rd+iPonzzGf/lS/yq//ka7z44L2Pe3l+y/r193d+8hfP/M431+s8c51nrvPMdZ65zjPXeeY6z1znmVnXeeaTPs98Kg49tdYY45Nv+6uq1Fo/7su41rWuda1rXeta17rWtT7V1Rm03ui9MRxcBsVyCJTItPdlXVkOC2VZ5nCvU+QS9K3RxqCKUA4ry3oAgz2c5oPeBtI7oYZaDpLhgQt477T9TBuwlMJyPKBSmDJLFhm89sqRJ7eV1ZzwkRbOd3e0y049nnjjzTfZt5e08xklKLUwRqA6CEaCfeuBdrmAp6osGPSpRPIIHEMiaGPg8RBhUVhJhdcI0LVwd7fz7m/cTSA0wZXmCR7tPthbcLMWfufnX+fpk8J7LwfPz85YDtjI6wqDu73TWLjfgvc2CCkUO8A0pFqAQ1F6wLlDG50+YxpKKRzXSqkKTKt+VZqDDEFKpSh432A4y1pTUVsr1YRiK8u6pDLXB6M3et9orU0b6SQjFlHMKqM3xtSBMQ+GmQh1qRxvb6jLAasL7h1DGNForRM+EjzoTlWlno6pti2aqmcRttbQCZA1d3ofEwww6rJQykqpC6Jp9S3lIb4irfmHd9p2wWqSFMUsyaupcu1kLELrjcv9PXeXnVeePeWwnEgEaWCmWDHa3vG+gwbiTrTB1nZOp1Pas0vaX+uktx6iFwDElPP9hY7Se0+lcCm4JlERngA6fTBGZ2s7PjrlcHiMXgghLdZDJmieysHedi7bRl1XZAItj/bbKpilIt8J/EFNLVCXmo4GNq+9ZyTCg5oXK7h12sVBa4JByVIkKE8q8QfCmEA5U9FcSkFrSZWzCFPrloCOp6pthGOaZIsqIFNJJzpt3Ge05KL0yyDyD83fM9QqPSBhLKbdfCoftVRoDR9Q64KV8ghGhadNvmB0dyBdFkZPYiTBr45o2u4ndjLX7uFzzPsVo7HvO7LUbHmSSsBwmT+JR1Xi8XDLe+99kzgdGTj6oO7DHlYm/78VxLNPnc87p3WFkb0nAJ0K1TYaMYJFA+2wqPIb3/iQ0/HAYpaA/NMTrzxZ0dG53O+8fHlPGzs43B6C9/UF5aTYAlWhmhHd8CJ4g1AhdGFd4JU3Vj745h3rYeP44p6TGuEbdsher6Vy88Yzvud73uIf//oLfvarv8Zrz1a++PlTgscKoUopwunU+blf+CXe+om/xBf+wB/jc9/3H/Cff/0b/Ff/88/y/kjC6pfv4H/4Gxf+i/9IeOuNgoizLEJ043BcuHt+QY43LFW5CQMXJJzWIajcrPk5LnfCvt/nTrY3IgplqaCFosqiHVHnsApLgVU7sQrnvRO+5zMkxsAgBLF0AHEXwkoCwX1HteNeJogpj84HoR1EMyogBm27x8oBtYLMPS/CZkpSwcwSCCfofadYeQRQjVRny4NThXe6d0w1CYAeBI54nyCqTjVwkm4yhKMt2AKtb7S2J5hvSSYlmC1UPTBIoHl0T5Wsg2igpix2wOahYPfB8EBLxYrOWAFFpGOSkU5jJBHrY8ejUNJqhXBFbYHwJJjDEQpCKvotFzFdVQiGC94bY2+MCEqxj75vqGYPE3A1tBSiBdE6JqlQllBmqBSQcTbFJrHb9+wuImgY9vA9gyQePMYE2J0R6Xhh7khkj3tQ5Yr7I//Qpktk94FRcJRFk8R6SE0IyUiHMTrNU/FsFixmGbs7QX3xXC8P0ukjxlSjP+xnGfExeFAmzzgRn0R+HxkpZMlQiCqi+dz14ZOEIIlKH0ieE0BQYiqnwyb5kR0xXTRm35XI3mw6P3zmCjHG+GhvkUAtHUL4iEeYB8zH7J/2EZkRHxEEScBIkjkIKtmtkSS+yiQMrnWt36o+ifNMzGidT3oF8BvPd9Yq13nmOs9c5xmu88x1nrnOM9d55jrPXOeZb4955lNx6AngT//pP82f+TN/5uO+jGtd61rXuta1rnWta13rWp/wurvb54D3MAymRkW1sJaF9biy1FRtCvm/EdDbSCVgMU6HJYc/FZxBbwkmjzFwJO38Ydqtj1T3dqftDTPjcDRKLegc8heDJ8eFZ7eVgynpRx1cLhsffPicdVl59uabCQDs98jolKKIL0TbGTEyoiGgFuFUnbrC821HRp0DfA7NCYcC4UQo7uTgjaV6dKS60yQ4b2d6K3QGLjVt2C3oMQDljWdH3nj1CTuVf/TNjkZlWY1jLYgZjaCHcL8Jzy/B3RCKKkctWBEIxSW4OSoxlPMl1VBtDESVm9sjqxWKSQLnkoBNhE87+7Sp3vadbR8c1pVlObAsBbOKWdreO4HHoLXG5Xxmv1wIlFINF0l1mxW8jxz4YzpgRQJ8djgSawL2ZQycRsIKqXI2hFDj7v6eCOfmdIMtdeLPqWCLMdjHzmiDbd/Y2kYtlbKeOJxOLKqYCGbgrSeJ1fpU7g7cnfv9wlIXDuvhcT1EjTYGRjD6YPhg2y7c391zvL2lHo6pOJeHKBJj23a8OWbKkMB7Z9sv1Lpk5IJMAFs+Aqvp0yVMEtRp28bh6RO0GEx7diSfdR+ppgxPR7DhCbQn6J8gE5GKNxP7p2y6ITxorfH0lVenVXnC4SKa0RCS12VTBigClIUiaxIKoozR8YCi+feVPPjnvdPu7inrQkz1scNUc/MIgIU4RirqLlMVHj5t71VAIabazkcCmUoSBd2D1YxiqU5OIuwjFVy0hyiJvF9WF2pdEUvVv0quGzzgV2mFX8TovrFvZ45r/vkENcFUcZm27yOYruk8qMiDQWtpuZ8/dGT0yYT+E/xNe/nRGl4sYyNUEZ2uEJ7q7RBwCbTm+9D3jVJmb5AAndSEWkaR4JgWpFZevHzOpSXob6q0PagGZmNa/RvuHVXlcFpZzxuXfaCLo7tx2Rq3J6NUoy4GZWHfQXzQBmx3O+fzznE1aknleMM5dKNLYN4pVomy8Oxzr/PyWxsvPmxI3BPDOL2yoPYSsRVXoZjw9meO/J4vv80v/fL7/NQ/eI9nt4XPvbZyqsLZjaGRTnsH4W/+9Z/i2ee/g2f/6n/Il/7Qf8p/8vV3+e9++uvskfFC//B94Ud//I4/+vtveHJMIkdR6lopa2e737DjgVWNvUAfQvfgbusUh1UKdgBiYTCgTBJkCGqBFKdEPhemAylGrcqItKzvLQF+mcRgd2GQquYII8QRq1SUvTVcWhKUYqhOeDEU045oULSyt8G+7dQlkBoMz/uIFkwMSeQ41d3V6J4OAmuVj4go0+ytWlCdsLcaxZTwxuiNmQlCqKJLTVIqqT1OKuwKd9uFPhqmA1+SoCpWMkjAAx+D3oMxdqAkOacVj5H/7thpe2e0gXSnVsPUqKUmwB8jCda2s7VBeGBkb9YH5fPcNzRKXvLoiJWE8SXjeDI0wBFN1wxpSdd577g61eojoEwRVFNZPXTgMljV6KMxmMTjJF11OmQMceQRvA9CRvZtmGB3OkO4BomTp3tCH4MRSZzggZKfwTWVvVUVj4yjCQ9KOM0DF0kiUCVJgEjycW+dMQ9MW1GY6m+X2RMzcyifyZE9eoyefVIFQ6mS7zGatGwC6fOZIvufik9yIUH7Mp+NCM+DCiTZ2QFTZpROkhoSSUoM74ST+/8jOR7YdKgYM7ojY60C0cC7Z/bPjDfBcm+UuZ8hisqgzfU1VUIBzWia6PH4vSz3n0naOPgIVP3/35fda/1LX5/UeeZ7/o13+Im/8Vc/xpX5f1eqDxFw13nmOs9c55nrPHOdZ67zzHWeuc4z13nm22Ge+dQcevqxH/sxfuZnfoYvf/nLH/elXOta17rWta51rWtd61rX+gRXmECMRxW0S1r1H9cDh8PyOMh7AB4JGoxU9j27PSE2laLkQaKxD1rfE+Sbg61CqmN6o7UNekYiHI4rUoy0/x0UGq+dKs+eHlmqTkA24wSev/8SrQuf+W1vYwVipPwoxCi10pqjOD2c3jtt3zHf+ezTyiuvvc7zJyv3/+jrCBPUCwdPgMgiWNQSoJBH9CAVa2MgDKwe0fIEF8MUFn3UYnJbKsvhhmqF+70gemApii7Oog/21ELTyocX4VvnjrtzqEadYPjeO4sZixp35855BL1FgqxL4ZXjKa2cjbS0FxhTDTbiQbEVvLzf2B1unzzhuCyYpbpMNAHjzJV3FGU7n7lsG2VZWcwSOCIBidF7gstjMGbGfQDr8chyOKSSvdSUK6VXdtrxi6AS3L28Y7jz5OaWdakJpKCpbAtP8HliG6JwOlT2MUGl3pDjaZIJGYcgItMGHRzhfHlJiGakhKcyS0UZ6gkSt7z21nbu7+5ZDwdubp9iywGrFY1AZGHvnYlfMKbNd/fBEFiKEZKkWar4UtVooZl7MTV4dx+8ZD2uWDjRIQog08p8DEYfRDhtJDCpBMuyTiVb+v8HgWl+vkd77Ai8D2pdqCXBaY+gWpnq3wTFhk9lrwSjNexwQjTSQ9tzPUySxnn4+e6dfd/Y9jNPXn314S2dyvJJuEwtmkqC4g8OZ0sxRDWBLQlkqpGZiudSCqGpquuxEaGPCnARTeJFCz0CPMFFn6RirTXJkKmiFgGJJH4YCYLlcxoZsdH2VFFqKksFEJMELNUA8jl2h0mOqa5oSfALAjNFJKV3NvtgqHFcD+xdE6ySjCXAfR6UVNw7EEhkPxMpbD0BQLUkbVQeiERDJJAhuDjKkgcpL41yYxktgdD2hldhuCExiGIsVZHReeXJkW9+cD8dBCQB6b1TtLIshbdeL7TXjugANSfamRfPN57cHLCi1AqLGb0ZaGCdeX1KLYXXPveUb/7qB7gr/TxoukN8iB4OaF2QUjm+8Rq/4wvOl7/nc/ylv/0L/MwvPueV0+vcHI1qcPGM1ziuhQ975yd+9H/lD/6Xv53Dq+/wB3/oh/jl3/xh/vovPSd0pY/gZ3+t8vpP3fP7vrdyXIVqSXgcbp0+Nvy8YevKumjG28SgjCXjSHVgGHU50gaclqCV4H5kbIlq/jzTXKuHveKkCRafYzBahzIBywj6EEShaMF8ICXjCwTnftvyGVebwKhgVlCp+bxbR8uO9aA1x/sAzbgZH0k6mRpDZjyLlIwi6Y0xOsGMPVHNaFfI3h4xnUUM90LfNON6XJAwfO9JXpWKWWF0KLpylGC/7PnOjCTDRBQp85kmGL0R3ugRlPlcW7EZLzNdDnyg4bQYeKlJ5mqqz8foiAU28oCA+yQkJUkJmzEYAkjM95eGmeBuH30PmXtakiQylb+arhm9oxrpfOFBkek4EcKihWURfOtsvZMUeLoV5L+ZQHAAfYLVfXRKtHSIkBlpY0YNZ4ROt44AHUQM2uioWEZf5MWiRKrZJYFu94x6ydicVPL2mLEGka4Sl55sZfauRoRTWWYszfw2kSexEcvvRQ9AeYSz1MqyCvu5s/VUMms8BgQl8N9SVR6SSuTw6aYhAaSjCDPSp4jMPSHV2WqSRhJk7xw+5sGA7PPuMZ/FqWr29HxQeyA8NMme4XlgYPaWlHjb3LuTCPDIqB9Vm4Rr3iwhSYiYxEqgue4enx5A/1r/n+uTOs+8/eS7+Ef/8Of4jd949+NdoP+HqgrPTtd55jrPXOeZ6zxznWeu88x1nrnOM9d55ttlnvnUzEjf+MY3+JEf+RG+9KUvzRO+17rWta51rWtd61rXuta1rvV/r+pTVKOVuqyUQ6GUwxxOgXiw6ofRO2s11uOKhxCmDGCMzGMfIy2EzQpiaR/sHgx32r4z9pY27MfDVIYCLtRwbo+VN55WjmvKLEWC1jZevP+SFvDqG29ye1zQ6DQfgMOIVDEyUAmGN4bvnF98SLz4kDduj7z21lucXv0Mb718l2/+6q/xMhwdHUqlKqwFFg1ONjCcRW8ZvjMChqWS7XJ3TnDUwJegKxlt151DPbCuN+w9uIQh9Ui1gopjauyutCFsQ3h+2bnfYS0Fq4JpAjcDWIshIVxasA3YPQDl9mAcDgesZJxDAsglLfZDU7nlSpPgw+cXQo3b08rpcMjrUMNKkjwRad+8bTv7tnN/vkfMGL1zv20JlJlBT9A5ItDICI+Bsq4Hai0JOoQwQqb9tEwlZ7DvF168fMFSKk9vbilLJaayjJjPyOgokqpMVaQIl/OGmGLVUEtQrvVBtE6PgXsCCkSkRb8I67pQHlTLpNJZkKmk7uz7zvl8j4ry9NVXKWVJVa0qrTX23uZbkIC3xowo2XYOxwNl2qgn2BSMMSaAkWBJ98627Sy1UmqCPWr5vOMC0ScpEpOwaPTWub055mecoLkICbxYpfeGyVTshnO+v+dwczMBn6mImwptUUVan85lGf/oEazTYl40f86Y0mVVkOjpWDAG3lqqDCVVb6I6RXapDmakgk0mINZ7T4KBBD5FEgQTQCOvB1XUfdrYQ5hRLZX5qCQQP1V1GklKMUG5EOj7hb5fWA5r2o9bRTSt9V16WtzHQPBHa/4iTI2gpyKZBAQ9IoWP8eAkoDhGLQulTDDKxyQBIgG1SGW3h1NrpftAxBLUmgpSlcBsxjzIBPEQjje39DGwapjltatVzCptpCpe6GmtrnBzc+K891TMAlqdlBNGCuu1zpiQjGQpS6FYAmdhwt4H91tnOXVKFNQH58vOdn8mRhDaqSpcLrcc12TjrDgWynZWSglUs/9ZXbh9/YYX37wj6qBr59IgLrDWjkeSMFZWXnv7Cd/3pVf5+rfe4qv/4F2+8MaR3/WFI1rgRGHzQjPnyUH5+gfv83P/y4/yfT/0Nse3v4sf+Mof5hs/8hf46nsdWQp3vfM3fyk41I1/63tP1EWJ1gCjqPH++Y7SG+Vw5HQo+DB8CfYxSSGTBKlVuLx8ScROaWcgnSBGOdD8gKlTilBMGVKpS09im87oO0lhZh/2+V5WoPfAVVkPCmLcnTdK6RlzQL6mjqTrhNljfKqI0luqS0UUMUWYqlYxkHSbENHsHV3YW6OqYBYJ1Adk9Cq4d9p2Rib3Z6q01lHtKDbV3T2jWkoqrg/rEcW4bHu6Bjy+44KqsaxGBfy84e506elegWOlYlpZSlJirfc8LCzpeIAqKrm3oErRTuuNtm/EcCQaKiPVsGZIFMbuIAn64mNGsdjsg+QahaISSbpgSOQ69t5z31DBlwLYIxhfiiBd8cF0aQxkeJKmkUpqZr/wSSgGDzEUnYEhk7QuWqbqOFgUIpTilj19kkOajeNREZ3XL3ljxpiA+khngxmjIJMoqJqA/nDYRoD3JB6IeX2pYnZJlbEoFFNWW4AkiL0422jze9LcfVUZPqY7SN6zPrKvKhn3oYUZ+5FuGhH6GAMikntWCFikqhrR2WezzcUE73P1yL1XgblfjMm7huTn9TGStk2mN78PhmQUxiQq0loz45XC4/FnTYk4Gb0S6bgT/0K+8l7rX+LpWu+VAAAgAElEQVT6pM4zh+WGL37xX+Pdd39z9p1PZpWysq7PrvPMdZ65zjPXeeY6z1znmes8c51nrvPMt8k886k59ATwp/7Un+K7v/u7+eN//I9/3JdyrWtd61rXuta1rnWta13rk1pmLHWhrgtLWXH1VMuEsQ3HvYFDWRfKulKk4goxMqYgwmm9oZEgSdpEJyLdvDP2LS2K1TjcTCX1tGYuDJ6cCq/fnDisQpVUB/XReP7+C3oET5+9wvF4QHhQfwrqUzmjqbaKGLS20fd7zs8/IPYPePrkwGuvfYbPvf0mX3q78/kbJf6J8vfeGxyPC6fFEAEbO1LS6rnKIe2Ww0FgKZUWg+7B/fMPeF03Dq9U2t55se3cHF8lrNBQbp4m8eEYbURG740EdXsYH9wH3Z2bdaGYYFoRn/CiwhjK7p6W7RFUNZ7cHKlFUauoZP58iCZIGDncV5SX540Pn18odeV0OqK1YLagpglmygCH1jqXbed8ubCdz6mG9QRYRRXM0oI7UomFMIf0wul0ZFmOqBnFpqK7LNgEWMdIYHjfd9aycPP0CaapOCOmgNozLiKQqfxNW/bL5YJaTYBrrWgpxMi4EJkRF4Hg4WnL7sF6PFJM0WmTrjOO5EFl6+7seyMCnr76GlIWtBSqQG+Ny3ZJsENq2n9L0L1xOd9TlwUTnVbsqdYaE8yI4YypQo8I9q3x5PYEngRCoimplEsmJwGurXVa65xqodRCSHkE2pMrS0DfJrEW7mz35yROij3GcljYVCt6Ei9T3SuqRNvRUpBwLEqSdzEtw2FanechQQi2vbEs6wR2eLRSl6mk8wfVr0/V3uj00RLrV1JhLpoEjaXSMiKV7Pu+YxqUUqcidAKpYgyZSmEkI0ciUtlphb7vjNEYvYDpAwZFKeChSUCK4r1NtWlGYowpsX9Q/1e1tCwvqZ72EagUvO/EsgAZ2aH6ELGR4FrEjIRwGCq45zMkZhQpU8XYGR6McFYxllpgPpMvv/UtVJ4A9uD6n8pjUfbWkxRzBzHWw5GXlw/pBAczrAZERrZYLSCORifCYFTcd07HhRd3O4sY3Qd358bpVFlPK1bBWmGose3Odh8cD/DNdy8cbwo3AbCAKcsBxCW5O1mS+CgHXv3sU/7xz73L+092Xn164LW3D5SlU58cwCr0QT0tfOd3vsIf/L7v4Ju/+Zyf/gff5K3XPstbz45U9XyvgVWEp6L83Nd+kTf+7v/EF37vH+Otd34/P/iHf4V3//zP8I1tEKZ8sDv/2/8OrzzZ+NIXT9SlcFRHdMHNuXt+wfczZTlwc6jIEEoX9s2JkTElVgfL4US/65RSubSeFv7aU7Ep+f6UAr0ZoRUrzoImCSkPoO6O6oIHtJhq9uxW1KVyI8b5sjH6Rqkyo2XKo5sAGLm9daoY3oW785m6LhyrkZpEh5KgtkeqsrU6iNP7wLdOHQNTQ+k4Nvm1GXGiSl0WQgSfYHh4EgpbyzgfsQRabTFWE6J39r4zhlMtSQLRiomwLB1ap49OSJJG4fluLIcD0kF7koR938CMMTJKRIshxUCUikyXxEYfnSqBakbyDB9I5MGD8NmTAoY3HqIBRAQfY+7rD+sJtSjLstD3RovOtu9EzedXq7K3wQib6vkxIzfywIJL7mOKgBkq8aiqdvL7Sx8DIQkAohGAWcFQXAUTEO154CF3MvoANEknmaSD9AE2Y3OjJPCNExoJvDtYSfU9oixlRgS5Iw6BJwkSMdXafETIRvao7ZIRJjqfSQ2hFMuoByF/TzJWq2iuQYwE5EcfSXBM1X2SJEJ0xxXwganSH5TKZJxEiGSSj5OqanSur+f3B51krwCmSd6NkaSrx4waynVRzXvhMxRII2Ykh8yVTcIb0Yw40UAl43j66P/ivvde61/O+gTPM9/5nV/gd333e3z173/1416lf25lbN11nrnOM9d55jrPXOeZ6zxznWeu88x1nvl2mWc+VYeeeu987Wtfo/c8HXmta13rWte61rWuda1rXeta/9d6+uwGtfrR0OiCS6paQDguB8wKqNF85GjXyd/3BCiKlFQX6oOFr7PvO97SGnw9HpBph46k5fptFV59unI8LBiOSrC1necvXjJ2ePX1VzndHPHeJpjLHPCVhqNFGZ5gb7+7w8cFO5/R/cLNsvKZN97k937v23z5dwlPlsblReHffect7r76nM0nIKIrmxZUp6LSUunT28a+Nbb9kjbQZrRtYxsv2O8v1HridLjl7EpoYT2c0KqsCznVl0LrzgXlblNenB0XkowxSxtmVaQMDlHYenAZwe5pz3xzLNzUA2VJBXQ6WRXMFJNUvXVJlfHLu43zPlgPB07HFS0lwfBSEHHcd/bhtObcX87s2463Ga8wFUsPKiQiAQsk1dAAWgvr8ZZ1KamWqyvVFJME1om05d+2jbvzXRIKrxynms+JkCQSIsmnET7t+ROwON/f46KUmlbtS13AnT7ve6qBU+22X3a20Tiux4QUXBMAEn1UDodPG2zy3z89fcqy1qngHngovTe8D4plvEPiI522bRRRSk2AOqMOEyyPmNcyVfoiwt2HL1PlNWduKyXVlj3w6MiICV5X1lWgdZZS8t5P1XKquRXTvPchSUAM8n7d3N5mrEF4KtommNZHqi+JtN0uIZwHHE8HUMUR3FNZNjFwIjoSqX7e98bYO8uzUz4L0x7eSUAHTyW4R1AmidDanvcknNEaamWSA/lZ+hiM1hh7I8ZguKOlpEKZSTrwcFAxl3KEEyo0d7bWKTJt1d3RUnGdz90YiHWWw8J2uWCm6LqQORdTiT7Vz6lY9PloZyRDKJRaaHtLsmUCZTKJJbME2iIigeGp4h7RHh0CRCEQenNUfMZhpm17qFOWSr/stD6oZgmGRnD2BlaSDHmIAvAJhAF35516s6DNCAsawhIJIAfGIo6ZsgUcT0e8K8elIlHx3nj+csOscluNWpWIqZKkEC6Idl483zABPKiL467sCkU17fdLWugfn5148+0Tv/Gte/bD4HLeWdZCPQRUg8MJ6fec3njK7/wdg3/v93wnf/6v/EN+9mvv8wd+98LpIKxL0DwPj9bFqDh/66/+JM/eeJtn//of4Yv//lf4gV99l//27/wyz8MZCN+8wF/5+84rrzS+67cfqDUJK52A7/2Le2QXqhYOJvQALcG+gXujisEK1W8YqqzauDRn+KBoo2jGmcSM4fE4AhWRTinOEMX3ltEMrWN6SOcOMdxJwJOBGiyHA5fzhd46LiDqeAi1VEIqEoZZIdQxc44q3J/PxOjUQ8UkiU2XjGXtPkHpSYSN8UBwBH1GIaRKNdW8Hg8OJEkopWNBn04D8UhgyoyNKbokKbHPPrdfAMMwsIGWSsXYyc+0+WDxSILSKiYFLYrZgLjQ9j3dCixwt8QbJeNyylIRE4YXTJw+Gq1NRwlJF4alVkCJ6lgTxgiGz35JgsMx95/jurAUzbVZKlvbubvfaK0RHrRBEhVqWBFKKB6ekR0eRIzcdzxjaVV17kvTWUEKqkG4pFo7PIn44KM9QCIJ9dmbLSTdJkVoY2AjiVtVQaxis7mJxiMxnmxnouTCYLSR+9aMzApJ0kLRJCJHcDotEMGIoMU8dACoBlYK5klhDx8ZMZP5C/lvRfaWEIECsWVMRLqa+IyFGEmCRyqiBYHuk5CPjNWJVF575nhMwj9mHNBUn09S4cEpI1QoVtA16M0naZ/vs49UWptASGAoQ5K0TtpjEgXeQUv2XQlUlXXGJV3rWv+8+qTPM7/yK7/Mz8uDK8Mnr8IKdry5zjPXeeY6z1znmes8c51nrvPMdZ65zjPfJvPMp+7kzw//8A/zJ//kn+TNN9/8uC/lWte61rWuda1rXeta17rWJ7DWZWUQtJ5gWxsdE2VdUvWEWqoEH5SYPmi9gwhWLNUwmuCGBPT9wWY+qOuK1IoJjAD14Lgab9yu3B5S6asMundevNy4v7tw88ozXv/Ms8x2F2eoUMuM7A7B3bFSaK2x3b3H5YPfhHah0jnff8DTZeHL3/UZvv+LR16/+Rb9G41fO1+4v+yECFU63ZVqK02c1gKhsKyWyqmqlAhkBNEaL9sdEcFxrdy+emLjKedR2LoideXmuGBVOC0LfTg9YNuNiy883xr3W6cW41AqKlBFOdYECvdR2Uew9aBFAhBPb1fWmlbmpUylOTn7l2JTZb7g+z0fvH9PV+Nwc2QpM/rBNIH2CEZP9frlcmG7bOx7f7xfgmCWSs+IkcAU4DhCISKotbIc82eXUimlUkvFLPA+6L1nlMT5wvnujsPpxO3pJtWxEdNG2mZUwYxJIG3Xw4P7yz0DWIphKsiMExytTXAl6K1BNWI4PQan4ymVhAK1kurvWnFgtJ2IoI/O+bKx3J5YjzdIrQSSYLsZMYGtByvvgeNtwBCWdU0AWSZgEZHRAj7QMaMPSmHbdnx0pJYERhB6OH2kKtem/limj/YYwrq0qVhMoAUtYLnWgYP7IwC4bxsqmpEURaeqbAJyM0ahIPPXlfCWYJkoaCDq6MhrUIeYCkH3xvA+3cympT6JXzX3jCHwjC4YEohHxih4qjZlWnWL1UlAJBFBJHHoEUixfEZa5JrDBGgDcEKEiPyz5jOiMjrtcmE52UfuCUxgdD47EY5JzPAOMDUcaB7UCTD1sRPFMDE0IlXiqphWPDpt8yQ0epsEnJHS8M78JLm+D+SUaH6mqew0M8oBfAS1KDxEU5BW+T2CFy/vuD0esfxVusd8vwzVqawfjoZyPJy4P5/hdmGMweiBFijmqKYifveRPSmU0QevvbqCHVlL3nfTXK+OsazC688K+02+A4FjS+HysjEOhVgS0LPi9K60lmrbk0A1w2Th2edf4cMXZ7bWePlcMO3ocmZdM9pClieIVp59tvOl81v82q9/yE/+3K/zHZ+74YufvaEiHKtwRlk7RFWeN+dv/ehf4w+9+XkOr3+Zf+eP/iC/8u5/zV/8hffpZaEDX78L/spPd06njc++WdFqLEflxDHfiRcbopXVapJxDm0E0QtOsJSKnpyiK10LahvbpvQBzbOXDlLprEWQOGKWMQNjPNzvy7Ty35I8RNMtwAwNQzQdFcpp5eVdzwgY0STORp/K/EKGdqSO9qCOKdzf3XPpnePxiJgj7gjGmNYFVQtUpc2IkcuWKnPVfSr4dSpWM4Znbx2BJDvHIEYqWfE2gfY8KCyRJMi6LEgvbG3gkq4chAKWZEI5IDR6b+z7QKxQilPKMkllY61Hqq3s3tnbjoyN8AV0SQKzVEyN6s7obZK2+f5LBEMSwC9WiNISoA6dBG8qqXMNjQHso1EPR9Zaeb69xN0ppdBGT/B8BBrBao6jRAhFCyHOiJFOLjHy/uLTOSMJjZhK6eKpjMeMGNnHh/ckHsm+my4j2asZg7JkdEUfzj4GGkGt9rhXO/G4ZqKFgRMK961jmbmTEUSzh4YEVQs+r7OUjGQwydiPvXeYcUg8EDhI2kYwcp0jCQ0fSf5FSecTDbDF0BBG70lgIIhlNIfKJBM8iY4Rue9Fz30gyfU8SJDbV5LK+TmTo81DHHmwpMUALVgRajUyVMhSoT3yWfcZD+UyMspiZE+XScJrkBEdkuuEeB5Wuda1fov6pM8z3/+7v5e/+3d/kvv788e9VP/MWtaFdb3OM9d55jrPXOeZ6zxznWeu88x1nrnOM98u88ynbkJqrfHjP/7j/OAP/uDHfSnXuta1rnWta13rWte61rU+gTVIYD9aKqIPh4qUZQISqVBsDr077p2YakeTtGEXUjGz90ZvHUVYlyVVimRMgMXg9lh56+mJm1URpoor4MXLO+5e3HM43fDbPvs266ESY6N7gDt1TWv+7hNoHhvbduHy4bvI9oKni+Glsr93z3e9dcO//T1P+O2vG/5/sPd2z9ZlV3nfb4w551p77/PxfnRLrdYnkjAKFUMRExtsYydl7FSoAHZhx2VXqqjiniv+BW4p/gGoXPvCUKm4LFDFcYoktinFyMRYNkbgIBG1Wo26349zzt57rTnnGLkY85x2EsFtd5fWUKm6+/04Z5+115prz+dZv+fRO25vVtaTsaxnzktlOZ94vFP2c0Fz4Y0bYSExpxQkcCrD/Diwe5Qxa+hy5sXbz3j+/DlvX11hdaKTmfc75kkHneasfWFdC80TLxfh+bmTc+JilxF3clZmFUqBXju3Z6U6NHNWM3LKPDpk5pJQlSAWcwgM5o2kOQR3OnfHM2+/PCKpcJgnpjKTc0FVySmkzmaNpTXuzpXT3R1JhHmO96VjeAsaydwGtQ5gJNERRZ3Z7XYhjiVlKjMyzWQcH1T8uq6sy8L57o7D5SUXFxdRQUgQvDoiyRkCQMp5CNDO3XLGRvXArhTyPAOwrmuQ0b1jbYRv10ZtjXm3Y0oZHa9JVchlIqdMrSvqsKyVlzc37PYzl5dXpLyL16JBlPXags4iNCDzjtdKX89M+z25JIyI70aCFtV1DZJXgv5q1nn58iUXl4eHOPcuQNcQsVPQZN6NtTW6ddrxxH7KcTwlocQxRmQQdPfEddQFnO5OXB4OaMqD/hbSMIKqGVMOwbARovdpWcm7OUQ0DVpbJcQ3C7YN90bvRq2Veloo04SmhKtE3QQRE++Bw4XAKEEZgwd5l+7j5u9FSxlGiA/6PNHd8drDwBANspgwJJJoRMELZFGqK1bXqHYwJ6WZnPKIwjcyhhrUHtUgeNB4QiS9uej9GxN1FhqGiokNotkfKiVEomqjm0FvZE+IerR24NTaH0h784o3J4+I+lLKg0DrHqLw6bTGdTOHAC2aOFwduLm94+krT5lSJqkyadRV1BZkog5zQ9wpc4HTiWV1pkmDMBWobrEu+Yz3hqOkMsRG4PbuSJ0KcxLSrLg1fFZEEtNklN3MNDkv707cHiv7yVltzx4wWynTjGsI6H2FroRAC0y7idc//YRv/ofntKVze3NimpUyhzGk84zkC8qjzodeb/zIn/8Eb37rBb/95W/x6qPMq/uZnGBHxoGZxuEA33zxgn/zhc/zg3/ndebXvpu/+Xd+jD/6pV/lt/54QeaZpa78/rPM//R/HPnJv7Lj6dWE6kQpjf00wS4SE3LJXEiI90kSy2Ks1YBYR3eTcPLGXh36ApbIOFNqTOLgCfPEVBrdIYmTWCnWWbThWTFrrOYgHWMH5Ii97wlJkNTYX+w5nVfMKuKOe0FID9erRM9PVLwolFJYlsb5eCZPYQSnQfCaO+ZxfJP0MBZVsCZxyos/pBDkpJSSyVPjdDxBl7g3WMPbQpln9N5IEQETZBCmnpyCxa/LMPVEEYkkAtVYn9Z2prYwQs06OUftheaMWyX3SKZYq+O1oWpImVCJY40qpBzHNoWhXJvhZsMEdopG1YGhQYTXhrVK0gYJkid6SdzdVfpknBshMosGza1GNqd7jxqj7oiWMFk0jinSo9YnC713auu4C7ucacNwSKMSxruhqkyEcewWqR/ukTKRc6xzIhkZNQxCizXCbZgh9lBj4Wakh/SRMMZj3SJo61HVk8ZnJWuRHyFJ6G6sFeas1N7jz7kFNjzSNEzj4Y2ArhPdbZiqRusNTVFxk5KgVqjdyJIBH1U1jhIGk6gPM7uDjqQOj4QRj9CMuBd7f6iREBxGVYP5uKeak0j0FlR4yiA5DFtT4r4RfhzWJcwBZ1Dq8dnF+qiAEonPfbFa3oeSbLPNnzjv9/3MPM98+lOf4sv/7nff60P1bUc19kLbfmbbz2z7mW0/s+1ntv3Mtp/Z9jOw7Wc+CPuZ77iHntZ15fOf//z20NM222yzzTbbbLPNNtts823ndFqY0sT+Yg5SJgWBV1uneyc5rK0N8k+QPA9AJ+J7e12oLTbi85ThngdzA+9cZuFD1xMXFzNzEsxDALk7Hbm5vWW/u+D1T3+KWYOslB40pamFmJoUkxAEa6vUm2fU27dQX5n2O+idV/zID/zAgU++Xkhu3L24YVnPHI9nzmfh1BomnWNvpASvzEIqndaUZonaOzplWkqYOefTiTwVSJmpzKTdjmcv7nh8tecyHZiKknNiykJWqC6cWmb1xPOTc1wa+1KY8tj8Z2WfhZSMm8VpFU49YsBx4fpiYj9nSklIysySSCkMAgHQgqBUg3duTrw8rpT9JXNW5jJRSialwtizY+607iynhdPxyFo7u6Ks1hEcbw1JIcp06yG6SlCcjlPyhM5T1ErME7t5T84TilCtIr3TW8OscTrdsd/vmaYpKGbVYWgoPs6D2PyHudB74+72SHcoZWK3myilBLXVg7QWN2ptyBBsl9ZD0BYNo0EVF0i5kDWDxfkpAmtdmeeJw+V1kHoEkSce4uDaF5o7WUZqdnPWZWU3z6QSx1tUUdEHgvaeIpYhZtzd3jEf9qQ8RbR1SpBK0Nz3xoMZy1JZm1GXhX2JmomkQbS5SND/QyDsPYhN96hqyClR5jJaDoJc1JQhK9IT4h0fAksbRsRu1G6YRYy5EZqzWY/r0aLqADN6N+b9DsfJEsaAEBUFMOLmybj08T46qAfplxMpD4NDQkHyIeqIKNIbOiLOfVR1JIlakJwSJtAZP7OH0NVbw2jjXA5jRHQ87Oh9VFYk6mpD5I01SJMESZ0UHb9WeyN50PYuaZwHEeyQUtRT0FuIc1Zxh6RzJD0MkS2lNESuWB8ms2FEhPmRk9AIQto6CIaIcnlxyYt3XrCeF2QKA0KIn9uJpDqVEAbjhEqUSTmdz+x2l0MkFqwZXTq56MgSyKPiItGrob1zPHaYMq1XZE6oFvK+MOcww1oNWrLVxirO82dH9lczyYXcICWlDerbPWOmQ7iGq1eF9eXCy5dnrGdOp5V5OaPThOsNMj9CtHB4es3HP7PyN37ke/iVf/xlvvKHt1z9JzN7ifXOPOopdu6ka+d3fvf3+dAXP88nf+Tv8/Rzf5m//19/nbd/5Z/z1buVPCVO1fjX35x58i8r/9VfzOznzLRPiO4gKceXC17PlLInlhcnWRhF525hvomTS2LtiTIleqtk6RzKzCyN5o0dmSaFirAmJY8sA5OMtoivl2ZUX3AXmlXSMIRrj3Ugi3GxmzidG+vSySnE6MHTAiEcK1HnMU1hANe1sZwXSpkehH83aKlGLUQqQWuPtchGKgT3a5OGWJtEuDjsOZ1WMJAucY88n0nFw5DUEg/zjvoZwSBV6KCSA0HN8f3AQY2iCU2wnM/01lk9zP5cgoYVUciKoiQ3rBm1OWonJCmeClNJ5DlSVbxH5H9y8D7oXeucT7F2qgpFElUjecIJcT6pIT2MyfPS6QAph8hshiSo3lFXnPH5wXsYFui9MzgqGO7TJOIe3+hRfdWI90wJ6teDFhYPg7t7p9eGS8MtxXEcVLBjpCR4EsQi8SITtTIhqL8rtKtASP1xTQb77mRNJBGKKCuM6hxB3EmSyZq5mGBZW6RLjPXBzejumLXxeUvRIaRrCgrZ+yCbbTD+iai4MAExevNYg8r9GhYVNBoewDA34nyL+0f8TGjUjtAd0U7UGUUVBIO4lxzm1D1dbeJhuBMGmjmggwbnvo4jHkq5ryeyHuS+StgEDxEC22zzJ8z7fz+T+DOf+zPv24eeynhYZNvPbPuZbT+z7We2/cy2n9n2M9t+ZtvPfDD2M99xDz0B/Nqv/Rp/8Ad/wGc/+9n3+qVss80222yzzTbbbLPNNu+zOewuKKUM+sXx6nRig+l9ZfUQ/lRSELSE6NisBbnaepAvKcXm3p2EcTknri8uuNol5gwQwsu6VF68vCPNO157/aMcdvOgcEK8TBrqrXgmi7C2Rq0n+umO891blPOJOXdy2fN0cj7zaOXTr4UBUY8LN8eVpVbuauW8dE5r5XQO7nNpym5KXO4LZsKTA5xW46ZCzspJCqdjo1ZnL856OuJ54tHjV3h0/ZjdxRWHvTH3FxTREKW7ctuVuxVu1iAprw+ZrHE8WtdBpim1grvR3GkWgtaji5kyZzQJSkalkFNCNTbGrkpzY22db71z5G5tXFzsKNPElJWcpqiNSIob1B4x3cfTwt3dEbfOvhRyDrGi1jXEymUdYhYhyHr8y7Tbk6cdc8mknJjmHZoTOUFvHdwxifd5XRulTHgOEjelEsQ8EpUQbRgDZkEIirK0laYhRpYpU8ouhG0c6x16p1rEayNCrZVpmigpU0oOtUWEkhVNIeCaVTDn7njGzLm8vIhIcHOcjitYc5q1oNTdcYhahHUZgvwUIswwJt4VhEO8F4J+Oy0VlcT+cEkSxeWeMiMoNHHo0LrTB4VbklDKRC45RHUhaDVNcd0NetK94xjLcmJ/sSelHFSf3FNhTrcwXKz3oNjMWJeFMpUQ8pFBIkMf2j5EdL55VG10H3HiOcyc7g5uuGjUFowY8j6CvEXCwKnuFKLSJElQd91DuElIUNAJ3IY55jKOXwh/Q/5DJIRPs6DnQkQaJyJRxSDuIVbZu0ZExL/3QecZ3TriE+5Ct/gayqj9kFF0IYyo8z5MErBu4ILnEPudIOATSvdY35ImuofhdHxxouZCGjS6meNa0JFUYA5qYcpM0wQOra7s5kKtlZ1kQlKFpRlZCdOVqBuYd4XbmxP4FaJhgrQOOQ1Dz4PGVwnyudGZdwk/Mcwrp5nTrOPWqBL1EKkkcjeWGpWe59PC3fMT5emBkgk6PCW6KWszJA2TLCXEEo8+/oSbf/sG63klZWe9S5T9jO72YKdYP3Z7Ll95xOf+U+Ovvf0p/tkXv8obr1zw3R+/IGtiJ4JbQkyQDPMF/OZvfJEnH/s415/+Ub77r/4Ef/vrb/Df/8YfcNM6pMztufObX1WeXB35oe8/sN8VdI4oenE4vjjhtpC1cJgigr+JYEumW4jYiqOl4N3YlYToHc7MPDX8tIzo+0whYRhdCoJTREg5jllOjnXBekO7YgaSSpxTSAj2BvOcQBrreorv60G4J9FICFFFmNCkZDGQhK8rrTcyCilEasUQDzOwm+U3ozMAACAASURBVJGz0Fpc09ZhXRtTyfRxvhqdLErZJVg6eCLnIPnXZRmm8+gDkDRWMUBT1LtYZ5Igbk1HGYpp1GJMO4ok7HymrUFI9+6kPIzOHHH/IokmlVob1gxxMDqUSNtIAj1BKXlUwtjDvd48jLuSQ+TXrKhEkkirld6jUiKpjkqGIO0ZZqSPddQl1uk+Ho7GnMlLmAOSicQHufcLwIXao8rDzPEa14tLkNEuGv1VROVMrIPGanEtFo+1/j45ApykPNQidEaMBhbGtgpGUNJKwiRMF0UoGqJ/7VF3o8PccAwDll4f7tGIUESYp8RSG9ZDcO/NYRDVDwa6CgwjpDdwb5QUnycYqTZ5yvE9XegSxoyYPtQ2xSeGMEVR0FxwG4kq3YIYb4YSdP094ayjwsoYlLiFWdatxeeUce2keDcpOdOsxU20xTrdHgx3j59lGA3bbPOnzQdhP/PJj3+Ux48f8fz5i/f2YH2bqabc1LztZ7b9zLaf2fYz235m289s+5ltP7PtZ/hg7Ge+Ix96evPNN/nGN76xPfS0zTbbbLPNNttss8022/z/JpXM2lsQKUO89sBb0BGB3YWHzb11o64r4oZmJacS8cXEPvbRJDx9dODqIlKX7jeVy7py++wONPORT3yC/X7C6opbx4k45pzTiIt3Wu8cW6Mtd9TTC/z4nCwr05y5njOffdL5ntc7h53QOrQ1dMDOylob69qogz5eVqe541m4W2E3G7s5c75dqM145eKad5bO6Xzk5WmlupH0mpKUc1u4vnxEmTK5JLKf2RWlNeVcnWNTXpzh2Jwpw5Q0qFgz8NgQaxaeLw3zRO9Q3TnMhcuLibkk8ASiYda40jxE49UatTkvjwunk5GnmUcXO+ZUEM2kFERSShoiRou462U5czodMbMHkrgBfV1CBOlD7Cdo924d1cJ+t2Pa7ZhyIeWJlEPkyknorbEuC0tdqcuR0+nMtNsHKUkI3gh0j/h+3PHx/nvvlJTpOFpmJg2tP5UEGrqAWuNcV2oLMyGphimR4w9rTiPq3ylZmaZpUKlBrK6t0s6V3dWeXAqeBW/g4nRrqIbQahaGBOLYulJ7ZX9x8VBZIAQZ1rxjvdNajzqJYVqcTicurq9C9BZCCMTpEiR/KDQhDs2SQY7sdE/K6UHkfVf0SoO6BmRQ0bVS3TjoIHg9BK6cw3iqw8jAQDxIMndD0oQZpCzDR5E49hJCEhIUL4PUTjkN8T0Enah6ULp3kBDKVDxE/hQx4UlSRPD7iO4WJQn/UTx4mBEu9/Sj0XvHxzXhD+dE1F+oQHNDxULYJwRet06iRDOCAuZBzXtEpluLc8o9/l7QvErWEHJVBRskaNCgMhS8OFbNOlPahXGiIT5DfyC4JQ96z5RSFGsvgy63iOLPOQelTrz/wojVJ96ny6s9x/PC5eVFmDAWRmqWRO4d8SB6Gx4w6jQDZ87VOMyjToA4Rj31MFXGsUkZ6Ip5Q+nUVri8LGgS2rqyijDtwsCYppne4CSN47khu86LF0d21xNTm9EchttUhHURUnYkRTKF+Ewuwqsff8rx2ZGL3UxOe8SneP19gTSDdMqu8OS1S374L3+Kd95+ye/9/pu8+vRjfPjJBfMg9BHFauZyJ7w8nvjiP/p1/ouf+ST5+nv5oZ/4Kb72jV/i87/3nPOwLp+d4X/+Mlwfznz/92amkkFhqkbrmfVoSI5aFBcbQryyVMcMimZ2HRacel6ZklLmHPUtqQaV31dSEnaaOZvRNaFCpDkAp6WTU6wDaKGP2Hs3J6cCEiYlwG43kTLc3S1kombEtKGSqZ5I/5FAnZOgu0KtYfCpJTQHAe/eaS3SEDJKL6CthaFojdob9Htj0pAU50saFRbiQaBmifOBaaxrvSOa40WI4l7BQgu33pG0Q5D4upoQhZzyQ0pEqzWqIdyCpHaQJKhm8hRrYe+xhtVaUYFiOa47dUrKWBbW1mmthplKpE/cG4eMFISQqAmR32xUDHWMlSQlziVRRAUfpLa4MqnTLYzOPtbFNGqtQs0fpqXE38lFx9cO0rw5iNlYh2ItTQi1E+SujqoFi/tz7xbrYRpGZmIYm7GeY0qtjTRHKkTtgsv9mh4kcx8K/P0/nSDCe2cQ2mAWhqx0i9eAsFbovaFZSTnqKnwct8jeCNNXVMjFoY+HOGxURihAe3g4IOWMJqO3TvI0/pyP+3iYtm5tUOGRROCxKMXnwiH4i3dwjZSWkZzhzv3v4jb+fKto3EBRT2TN8TkkJ3DIPU7OlBzE8DY+l26zzZ8yH4T9TG43HObM8/f4WH27OVXh+e22n9n2M9t+ZtvPbPuZbT+z7We2/QzbfuYDsp/5jnzoCeDnf/7n+cIXvvBev4xtttlmm2222WabbbbZ5n02ta5Bwkhs+vqI9FURnNggOgSteq6ICAVHpjLImei1P5TM00d7Hl/tKRjidQgGjXeePcddeOXVD3H96ALxTjvehpgrMr5XiItdiIeWTjfY6QV2egEEpfY4JT79RPjcJzp7X6kn5/nLyrGeOJ0653XFLXHqC+czLNVx6Sw9BADcUWZ+7xt3fPxDmZuzsvqEryvPj8ZJnJILV/uJi/3E0jJiIFMmlWnQjEbriWMXjmvm2Rqb18OcyIPeNI/kKJHE0jq1xsa+9k7HuDwUDtOelIWsQU2nolQLcbWZ09bG0p2708JajcvLq6gsyIJKGYKhAkJrFTPjvKycTivH4x0i/hC13b3jrtFzzxClATwinLMkrq+v2e0PpJTIpQRJhkZ8vq3U1kLgdTidK9O8Dwpao5JCCcERTWEMudF7w3pDdFQI5kRJhbkEfScKUo0EWMpM84E8RS71+e6IpsR+3iEpUUohj6rDXHKQUr2jQ4Bu1Sj7wjTNQKKvPQQIxsNwtRL6TxBfZo1lWTlcXASNNkSvIKaNtbURuR61AF3geHs3aikEISjA5h7CiaSIAlfDetQbrOtCESGX8iBSiQyMmhCcrDe6N9w61hrL3Yl5mkKkSYpkRQYV2O5JPsC8YdZZ24qP9ymN90AkTLtQ2EO+90FTG2DNmA6HEMrC48AIqlskRbw4QfGLBcW7LpWgxYNo1PBZxs/idB8mgDnWG/SgCN2CEK+9k80ixl01KD6E5Am3TPOookgp4T7WIRvn6z1FjeHjGLTWQQzzRu2VlPaYCEZEued7xa5ZVNDcmxo505YQyswMMxl0YUNLGiaB4D0qUsxDoOzWEUJo8/Fz5BT0uHNPSYZZ8ujRE25evhi/Ez9Ha5UpQ0lK71Gf0x/izmd2047z+cxuf0GSMKaW2pi1kO8rA1zpEu+ntETJzlrjmO93E32cE8pEdyOlEDrnnGhL5+WNoFbZP1u5mA+IOSoGZEqG3owp54jCTx2RwuXTK6RX8pWQLjI+Zay1OLWyRbR8zuSLxzx+feYHf/B13vjmC377d/6YH/nhiYu5sJdAmps42ozHh8ybt8/5vX/yP/C9P/4h5g99lh//qZ/gq7/0D/itP654Tqy18c4y8YUvNa52Jz7zmRk6CAnNE+SGLRXdK0UyuyT4FDTluiRMQpidksAsKCulCGk3B+mcFpqdsVZxmUk6IZZHuICRc2Fnibt6JmVDWhspAsK9FOsoSAEcd6HkPYe9sK4LbkEj9z7qcFJCNUTzlJxaw6Cdpsx5WVHXUf9jSCqITFRvcf1qvP+aJvBMPa+cjitTVlaNdcLdUVV6t2GMhVlg3cEqWSa8V1zDhMctqnC8cV4IoyHlIH4LZNEwfFNiuryi9oXldKZWC6PEwesQyXMiTTus17juq7MsC621QVArOUtUYswJKRltkRrhFmkN4JEskSdyKlERY43ERPKoeGm947RRlRSGJO7xgIITdRMiiBbwHskWvYUhOYzZqJGRh1ugahriuuCtoePeIHp/t5dxb4skgyCLwYbZuDpodYpqmBUp/skwcyUpa29BmTuxzmgZhnF8ne5G1kQGLPm4F3TSPAy2JA/GcOtO84p5rBFxTxtGogk6ah/cwCTW2DzMFBeDrrGe9nisI41zCzecTkqjdWGYACHyW5gkhMHSWhhPYdqHSZckEiXEI6nBPcxaxx7MfcZnsEjICJNUG6zm5JzIOYzibjaI6Pg50BSJIMOQ22abP2k+KPuZv/QDn+EffuHt9/ZgfZu5bfB4289s+5ltP7PtZ7b9zLaf2fYz235m2898YPYz37EPPX3961/njTfe4KMf/eh7/VK22WabbbbZZpttttlmm/fR9J7oZqjc033Bh/ogNltr9NoxgVIKpBTxvxZxxftJ+fDja55ezQSK2hE1lqVy8/yGpXYev/Iq1xcH8qTo4J5yziHcDYIGnNoadV3odzdwvkNlQRLMdD556XzfdxVeexQRxOe7znJcuD2tnNrKcTWWc6e1lWM3jssSlBQStLeFIPDxD2d2Cjcn5+vvdPJkrINWmzQoI3BclVwgrZ2SlVwm1BeyCHXNPD/BXW3klJk06NXqjvWEu1FcWNyoJJxO685uTlzudyMCXENg0QyidHFEjG7OsnbW1rg9V1oTLvZ7cooNdNKCA7mEAdBa43xeOa+Vu/OJulZUhSR51EoMItidZkEfhTEzBCURdocD07yjTIVSJpLmELXEWdeV1uI9a62xnM7MZcZL1D4UjYoQUgmyvreoFGiNti7kHDSidSfC5g0pcZZ57ThCbxUzZ7EWWnp3VDP73Q4tOQj8nFASU9kHKdVrCA3rwu3dLVomDhfXlDzhvTNlJU2FXo3ajgPZJZDs3mjnhd08M6USr1+HMSawrjWE4FE9gUOrnVobV7s9mD2Q2gxhKkjaPkhwY1lW1tPC7tHlA5EWgokjksMoa2vQ3XTcjHVdsd6ZU5DUoUZBFkIcd0L8GlUQZp3zeWHa78iDVjPzEJ7iByINkcesoyJoLixJmXIOs8jumTboQzwz9xC9CZG81RrGT84hqLsh1oYQGgaEDEIOAcEwqyHoaqwnYawAgyhk/LcPwarWRkkhFCWC9ow/E2kNrTcEhnmV0RSimPXGlBJJoYWNQHJG3Yo9CFYyPIepFGxdGPgiuNBqiJUiLYwBG3R4qGTkqeAuZEmIC+bQWpDZovpAD0aMupLnmV4X2rqSp0JXRbtjErSiy73oG+RholGmzPPnt1xf7PE5D4I+hDwH0pTwanE+5DKi8BNuC3drJWcllxRGQV9RCfnLRSLMXmGtxrIat8/OLK80RBLmjeSQpoJLovWOdCPnYQKlRLnY8fb/9YIX+8rh4o7D44n9xUy+NsgzJIV0IB06n/rsq/zQf/YJ/rcvfZV//5XnfP/3PmXKCijqwslBxbk+dP7P3/kKTz76BV7/C3+Lx5/7C/y9H/sPfOMf/jO+dteRpNwuJ77qhX/8L078t3v46Mf2zAkkF3JJLEenLiuSGoUpzoesNANrEZ0vBh2l7GY0JUpO6OEKzglbjpzXTvdKF0KI9ARScGukBKUr3jopGWLLuL+l4XAWdMpYG+awGbt5RkW4O51pdY1UAoB5YipTmGjEWqMp7hs7mai1hqAtCfVOp+IpzgO3EP5dw5jIpdBbZWmdrFE/ISOhQSSukW5hErkF5VrXZZyriZQzHcXcsbVFXL+O5AQD0YxpXKfmjkiNqgfTMMK701tUUyDKWp2UjClNOInuSm1RV+CEqWeNII8lDOhcQM3pvdPXRjNHzejtREqVpImcC0kT7kHrW10QN/CG2T1hnCLbQcc6FJ0wqGmsER5CvI01znn388b9RH2BYinWYUYSAT3MFB31CV1A3UcNiDAN4zZKhzrisfYIUY0Q1qsjnrCuaBoJHn0ZZDQkwgSq3tnlxJSUxQ3NhMGUwppcq5Pch0lJVDSNNc0ekiksLlqXqGrwIM6bB90ehkEYXHH/j6QQXIJoFhnks5Ak0Wof51NU4GDQ1/sHDRKIIeLjHI97dhhm9m5d0P25OwxlH86ypLFutg7dqeMBiyxh2ChgaaS+eENyipqObbb5U+aDsp/5s68V/tdHM2+9WN7jI/b/nqLCRdZtP7PtZ7b9zLafYdvPbPuZbT+z7We2/cwHYz/zHfvQ05e//GV+9Vd/lZ/92Z99r1/KNttss80222yzzTbbbPM+mtaWEOt00JAYbhXrHnH8LWoIpOgDJSMCu0l59dEFT652ZGm4RQR0bZUXN7fc3Z25fvyYD79+Tc6KDto6a2xg78VXlyA2T+uJ8/EGzi/ZFSUfOn4+8UQ73/PhlY9dKVJPvPX1xt1poTXjvDZu1sq6dEwUa521GtWgoZjEBjgnOK1G65X86iV/7rPXfO3Zmd/+w5c8OSSKCm2QkI5iHhRVzoUzZ5xM2V+QVuHm5ZG3z43WnaJBIjlC6xJJ2xKiQ8NpFiRUBy72ytPDREpByTZP7EsJEkvimIgEPX1cOy9uzqCJaZIR+ZzJOSog3INCOq+d9bxwPp04LQu1dXRQlCShibNLialkusfPV9eg0Mw6OSXybsfucBjCSYiKrolUFGqlriutG+v5xHk5cXlxFXQYkCJHH0fiKFjFaqO1Rj0v5Kw0CwmFlIK6yzJMKJBB6dXWqeuJbsY0z8wXV5RpImscU5WoThBRXIW21hGb3jjdHUESh4srUpmBoIktBY24LuuD4eWAeKPXhomQp8xQxRARNCm1VhDIGuRaN6O5cXN75PrqmpQzpCAHJX54kkaFQbOODKq91ZWShnHgcR6aDyLYiaqE1oK6I8Sy8/nMtN+HGadhqWTRqNEY8ea91hDWzKKSRUI0jq8/YuI1xHPpClkHsRZGz+m8oiUPas4xEpgHYe4hit1LaPcyWl3PD6/BNMSpiI6PgO54RwmB7f51dkdLJpeoThBJIVyJvGsojHMAzXRbQ1TqFReneIqIdDPaembtlSRBbkaFzBAOW6W3GlS4KmoOYqj5PYweceaEgRGie0P1/r+d3g1HSYFajjQIu/dQwJ11bRz2cU4AVDNqDxEuqZLTvRER62PKE2tzyqRRn2Fg/Z5aHMHmPcTR7g3zxmk9c3taeZwL4hH1LuM9UU34BGphwggh8M+TcHd7xptxdTWjGEUqaRJoUfORJLHLkSxQ1DFdefubd7z+iUfQOuItlowps7a4UMSFkhU3pex27C5ONBfmXWHaHdD9DvyA5Cs8haGluwOHj2T+3F9MFIff/Fd/xLdenXn9I9eUlPEMrUcdy1yE5QJ+85/+7/z11z7M1af/Sz79V36Sv/tHb/LLv/EVnnlCcua4LPx7m/n8P7/jb/9o4fGTTC4TThiM3hdq7ag0Ss64G6tAQxDJlMmQKkypc1ngkJWWDLeJtVfUlNo63RbwMFEh0y0SIZAcyG2DjNF9RZhwa9gQlyUpaVScYJ2SYJ6U03Ed7xRYDSHUXJBB1foQT3tr4ASxLQ1Xhx7XlOaMpAJmmLUQrBNomWitUpczVk/kpOAaBKuEmCwMkRannXvQyXka1KwPWjbWHuzMNO0GnU2oz8PIE5cgpHeCd2VZVuraONc4byLZRMLgSAlJcd1bN9q64tmAggzfM4sOUjgEZcsJ7UCP+1K3Ja6rXpnSFIYdIconqagoSzWqGSZO1hIVAw5Rb+N4ibUimaE95PrWYn2SFPU+hmJmKIrrsBHCRXioDVIUp6MuKAlSpCOoKm6QJNba5gbmmLf4+gKth9mYJJIjEgkNS3hUjOhIp4izZO0+vnZCUpgxYmEuMtYb17j/JzpVE7g/1P2MLJtxvwF8XCOucY2acO+PRHVNoncB9zCMuiNtGL3iaBbuvYMko3pDFRu/FtS/RVXFWGvjfIg6oXvT2CzodXUG6hz3ChVBco7vTxhPlsLs1kGCqzhKQrNg6d7q2Wabbz8fnP3Mjt/9yiv8g3/xxnt7wP4/I+Ozz7af2fYz235m289s+5ltP7PtZ7b9zLaf+WDsZ75jH3oC+IVf+AV++qd/muvr6/f6pWyzzTbbbLPNNttss80275ORIfAaDe1QWyNK351cBKY0Itpj1zYnePV6z6PLmSwGbaXRqW3lfD5zc3Pm+voRr71+TSmJAHpDTMtpxMO7gyu9V9q6sJxvWe+eM2W4fvSUxMLh9Caf+2jlI9cdtUo9O6d1YVk7S6uclzN3585xafSmrHR6g+XcqJZoNMx1bN6hewj5z15WPvNh5WnLXGbDqqIzqDeKV5qMAGiDeXfBK804TInl+Jzndwun40pSYz8lMkqXMDwuSjxcdTwnlt7oLiwtYsWf7mcOuxATDUEkhaBFRDabhxC+dOP2tPD89ozmiaLKPGVynmITrh6x+A5LrRxPJ9bzyrIsmPeI82YINmaQlHM9B+nZLQTPIZannJnnPfPhwMXhwJQntMwhrIgi1lhrQwWsrty8fEGZdiy1QtIhjkDKCSPo5taMtlZ6XZlKQiVhBjlnpnlGUxDOvXWcoO4jWrzRh/Cw2++ZdhPejOqGeEYxZlGkJPpyotWFuq4sxxOOcvX4KUXfpaZUQ5ir5wU3I92LZd7pvdF6Y3c4jPoRJ6uQVGndaBY1DyG2hCJ8vjtz2M/M8xTHV8FEURRVA4KGxgbFG+8sZbcLI8xDcNNB77UR923mJBKdTqsNUDTdV0eE5uK9gwurWVB4D5ULEZcuZSKlCckZ8SCB7w2AeyEHdJhARquV+TAF9aqhGDU6GRALaTFMkzCVxJ2ltkGChqDEqAq5NxIEf6hvWNaFsDUi4js9GD3xJZA4rtWCIgzRSML46I21rkw57AurldY6y91dGFE5SE0sqkZSUUqZySmHuDZSFkzGOZAGVUkI8yopTCnrSI0EgaYhFCKJWm1oWP4gFPr4d/eI14fx9brhLvGe5KBJk0BWwQwuLg/c3twgdJIrkoWkhVRCKLRx8LLH+VB7CGAvbm/Zl8SUBHGhJZhzRlCUhHvHVMKYdUOTUBJIKSCK5kQnYdWYS2ZKkAuIF6b5Ptq+8uKPb7l6NLHbZdxXtDVUd/H3a6TGawJaiO2HD19wfnZi93hHeXRA94+Q8gTJ1+NEFdCJPL/O48vX+KGPvErZJb70r7/B4TDx6GrPPAnWRx0BmX2Bm2XlX/36P+Ev/Xcfplx/Hz/8kz/F1775S/zKv30H14J34bYe+dKbmcdfvOHH//rTWEtLIufMnJXjTWU5N1yNIsJOo6bFTOLcT5HW4aJBfHdnNyutF3aq3LnQ1omld7qDuZDMqTUEc0lBzfbayB4pF5aMJA3zqMRRzUEUj8SAw5woqix1eaitSeKUnGL995nmThKh1UprYbS33qg16ghKipoOkcTZErRx/cWFRMklgh7OjnuLa1dlVA0ImjPZnN4bnaCDvVXQTi57kigmHdEwM9e6kFMQ3mjU0EjKSMqk3rFWEenMqSBpobce4rfGWiga/0+54DgnW/D0rlGcJD/Q4EHRQupx/accIn9qFnUI42bV8VjXRJnnGXHlVGukDbiEmeEdSfGz3xO4ImGQ9VG7EISyh3Bv8fXUg8pFDE9REaMS65riwydpI70lYa1BidqdWGMSCQMpJDO6t6jFWStJRxJEGuSyBx2ecqGMe3TzKJPpvdO9Axq0e9JIJknDyLU6ai5GtogOE+De+PSoqEhJMaKWRxTSkMBlrJmMOhMJHT4mRwqAGKg6Xh3v4Noi/SNJGE9pfC5KBjljLT7XMaxmH+YsIviDkSskTYgG1c04Ji5hsmASBpj3eHh8/Bnv/lA50ZKQclQVPaQMbLPNnzAfpP3M3/rzr/I//tabHNf3z8N8msL03vYz235m289s+5ltP7PtZ7b9zLaf2fYzH4z9zHf0Q09f+9rX+OVf/mV+7ud+7r1+Kdtss80222yzzTbbbLPN+2ScQTKujdZDKNQcJEpKCXGle6eI8/jqwOPrmZ0YfTnSBl14d3Pixc0NV9dP+MSnP0lGWE63SAc0ISXEBhfFaXh31nbmfPuSmxdvUWzh+voxh+snXMkdr8vX+a5PVYpW2qlzPq8cW6OunVo7d0vl2Ix17SzNqGvDXegGa7+PSNYQmSVEu2ZKM+OtF3dIfoV9ho88Vr5625nnoHazRcy0aLzGV157zIc+9pj0+DW+9odv8Na33mFfoEyDKJISUerJmSfjtMT3dBdOFXZz4cmjmZIykyRWI2ifoiE+agqNQ5Rjazy/uePutDJPc1CMZUeZMiCDpI3N/bmunI5H1rpyPFcSIRCkrNQeori3HlTaqILQlBFNqAhFlHm/Z9rtmfc7pnlHyhMpz5TkIcIvQQgandMpyNheF6oZ81woU4j+gqBuQT9ZR6wzlYyMigtKIpc5iL4RD31P0TpQa8OqRfyzJHoz6jkoaVElJWGeR0VJDQrWu7GcV2rvPHryiJKDviWFmJtSCTG4L3ivw4joeOv080o57IPKckLEGFHZQlC7IZ0PgXxZ6bVzsTtg1kP0Jj3QaMnlgTTsOM2c5Xxizvkh8ttF4+/JqMHA6QYmPJDT1it5LqBxPfog2fuQh7v5g3AWtCLUtbI7XITY1YyOgIcYat6wFiRbHjQ9OsSjVIK2Jb1LFCOQ9aHuIGnUEGBOq5Uy7UaywWAFewvhyuzhveReiBtR7YIG1S5p1CV4iHKEqOrW8WHIKODNWFejtxUZNR3WOpJymFw9zJfeVzDhdGq4TOQ83QON3IuniTCA6JHEVh0UJUvGu7CcV3LOiPQQDFWpDcRDoDQLMrHMU9CTg7DOOepeyIqh9DpqMYb5JwmSwLw/cHc8YQQNn1JmKplpLg/GLJJJGFNvaF1YzTjeLDRrTGWmzCWMKAGRTBKjU0hCCHtJ8T4xTRXzHiRwSki+F5N71HU6FMkk76g6STPzXnjrjee89vo1KSVUG4YwHcKQSHXE1WfAM/PuAt8b9W6hXGZYEz5MlyApE/gwKqbHzI+V7/9rR77xxjP+zb/7Jv/5932c/cXEfhI8OSzQVLncO//3t97iK//01/ncj3+E6dXP8t/8zR/ja2//Cv/yzYX5sOd4e8utCf/L7ztPL9/mr/7wE3b7RBahpURWnKb/NwAAIABJREFU4a4IywqizkGiGuS8OLWNepSWqG6sphSckoyLfeJ8Ng4mnKzhUmjieHM6YbK2Dk6BFGuDLYZa5dw6biuiByDqIVSDIO7NEC3RkpGUu+OZupxJUwKZ8DQPcTeumpQEccVV6ZaBlfXc4h7BnpTfrXzo3pCh8Lo4JSXSvGdpRzS0/Yd7oViIsSmVSEtww/qI9pe4D2Ut42eUIPSX86CxMzlL4KzmJClIFpo1xIx5ryzLQl+WoLu9knVCNehgTYndnPFewwDrsf56zrQk6BwmeVDAUVkh3bBiuCn0DkRtlI3agmVtTHMhT4m+nOO6c6cTIjc6hPSRumLeo3pjELqqmWlK9DbWUjFIFv7WvbEi+m5KhDlua7w2wqCX5nSNShdJCVdBe5j/mgT1Hp9xxvf2Fp+zwrSwqH1KeVQIZayHsWAea6emSISQPqoYxv9MQ4wXEbIrpj4SFmSQyWGo2EMNRPxaGOQdrGHCg+klozLCxeLcizswKYfhIPQ4hljcU+w+zcJJGsL9g6nssSZGHUWcm5rDyEI8TJY+rOMuuDoqkIqiEuuzu0S6B6ApfgbMkB4mrg0qe5tt/rT5IO1ndtn40T/7iH/0pWfv9WF7GBVlSrrtZ7b9zLaf2fYz235m289s+5ltP7PtZz4g+5nv6Iee3J1f/MVf5Gd+5md48uTJe/1yttlmm2222WabbbbZZpv3wYQwd0ZdmHZTkDCScDreodB4cjXx6OqCSTv0he4dFzjdnbm5OTLtDnzsE59injLJHVXj4vLyQWh0gvBsvVNrY11PHF++w/nF22jJPH31NR4dCh/fv8l37Z4xaaMtKy+XxnlpnJeV47pSe2JdK0t11m4sS+fYVgaaiHenm7B2C3rNhE4f/4xNeCmZTmaeCp94dc/XbwVI8Xvi5Az7y5lXX/sQr71yyfrybbw3nrz2CtdvvUWlAROaY4O+y4p75+YIazVWE7rDo6sdTy93HKZEE+dcjZQmyCEomhnH3qjdWZtxezyjaeLyYo6NeJ5IpbxbMSGxiV5bYz2dOZ0W1mUh50zOCVAwyEKQcH0Fj2j7lKeI/7ZO3u2jcmHeM807pt0eLTMpJcBY1ko9Hcdr7Ny8fMapLqRUKDmRpokpp/E9Q5SmewjltZIEujvWG/NuZre7GEKx021Qb72H6N8a1kLEN4V5DnNEISjvnMn3tLdVlrXR2xpU9PnE9ZOnlN0BLdOD8CoeUdvntuCtoR6iGRa1BpJzyCGtk5Ii0unWg6Qc56lZkF7djJubF1xeX6IlBQGYMqIhKpkILtDFUJvIGGYr6/mE7CZ6t4hHJ7DgKo6K0t2oLehhLKjonDL7i3kQb1ESkQZpiKag1katRLNGq2fOp7ug9HIQh2hEa4s5vUVthCSlayLlzPEYhLFIJgfGCwzRacS/OwkRj5oW66gYcyrMFxeIRE2GO7gIWVPUP+iorXAj7fa02hBrzNMcx1jDgLFhkuAepKH3ca5ENPjF1QW7wyVtWejNuLy6DLrZOnVdw/ywSlsyjnBaVkwioj0EK4/KEAdLGRtZ5iYeAi4dcxsi6BQEogo5l6jgkKj1wDvWQ0jUnAC4u31BXY+UdBnartw/KJnH9wX+H/be7VmbJDvr+62VmVX1vnvv79CH6TmhGZAYIaQZEyCJg0yAAYsAbBN2hLFD/hu454/gmjuHDRE+hB0OBbJljwkrOIOMRSAp0ARCCCGNBHPq7u/79uGtqsxcyxcr9x5dGPuGcE+jWn3RM7v3oSqrMvNdz5PP89ARAjgs0wkBWm2kqSCPRJVlSklUC2JMRIfS1Zk1s/rOtjeeXZ2H6wJYD6W/SEI1rO1TCgCx7hUVYbts9NPMo2Y94MFQemcBlaGM7QGYPnu28LV/+YqHSwkwVxO9rcDCPE9UDEnhSpCnDD0zvzTW9+8obx6QZwQgOq1B0EkCKXg+g5wgLZw/8d38yJ+653/8y3+Xf/Jr7/MD3/MOqSQmFXqDngRMOC/Kz//sL/HOZ/8P3v29f5YXv+v38+f+1K/xjf/hp/kXF+Pq+Q37/ca2TPzVn3vgPL/ih3/fDUWCoHM1clH2PYgfB86E8rK5Iz3mnVhCUdCOesyvZZ54uFSKOt0avRnWNdYMbbHG9ZiHqk72hdU3klfMBOcBF2hDrBrvO9BD/ZuScz4vXC7C3iqJRu6hxM9pCnW7JrQkWoecY8fcvLNtF3qrTFMh5QUj8RTb0zsodAHJiSmd6ftOr1v8dxTrAZZrUpQM0mPO9yCOhSAmJAXhQvcntX/AsaFwzRKkqwx7g2YBHJecEYFt3YgvxbxBnSQjGiVFVEpG8W5Yq9Bg7xbzdhB0PvYqbw3rLeatd3rtY+4KvRnrIOqW6Rzr4L6HUwJG70Yyp+QSyt+kJAboPN77TqxpSQUXpT6Ki80omkJZbIZ6OJk0izGP1SXmMN1AE7sbWTRcMrKSGHEcSemtx5h4kOdGp0usFb3vSBKyZooKZkG+xh5tePcA0j2cG0SClDaNqCm1IEtRBmEURJhqGmtYECPuQVzjw+bAIgrKhwuDDwIz9pwgck0cFBJCImO1xn4AoSDvgziQmBrhtBCHzM2CFDHvaH8kTuMDjCqx7quMjw2xv3jwCMSwKSl4CHJ5jDcJsqY3w/7NC6OP+resPm79zI98zzN+6h+//o5xe1omZcpy9DNHP3P0M0c/c/QzRz9z9DNHP3P0Mx+Tfua39KEngNevX0e+5VFHHXXUUUcdddRRRx11FLCuFyQLOWc0h0sSvTFL59l54q1nzyjZIpe+C4axbhv3txc0z3zi05/h+jzT942sME3TUPKFAktwejesN8wa6+WW9c37sO88v77m+vqK73t353vffc01d/RL5/Z+Y72v7LWy7sZendo79/vOuhu1w2Wt7FXoJoiETX7r0DBak4izM8e60Hvjal54+e4Nrs7XX1/49NJ466bzueeOpMTVeeLTbz/n+voF6/IW7fwJ5LTQLnfYvvHy+Quur8+8frjQ3cniTGK0tXJfI+KiOjRJvP38HARBEdbaWJtTTWi+kSTRUVprVDMuW6e2zjRNLNMSwL50SkpM01BVSgBfvQdIsdfKum3kXNAcg62Sw0rZGr1XhogpbLfdSQjLcqacrpimmeW0MJ9P5FQQV0SMtq3s2wZDYfXBhx/S9oqmEsrrAfbWHhbVDFDIHaq1uD4RSplYToVUMnmo3hBBumMDuPDeqa0GgWSQp0JJCTenmoGGHbS3zm5O641eG9U6da+cr69ZTmcyQUy5KslDsbVtG9oM0US3FmCEdrbaKFNm7wEIicaYSk601sFDfdvd6B1q7yzLFVOaEAnwTjSiNLKmcS+gBmKdao3WKqVM5DRRpok0lXh+ZjRreOsoQk5Cq53LttH2xtXzU8Q4aMYQsjhCAHy9h/JYRTB3shjVKvO8kOdCmSZyCgV9c4vnbZleG7iHFX2Z6HcPnK7mQQTGeLkPm3A66iniPxzcBCFh24qpDvVs2HtjhiUl6VBWEw8xuWLueOswz+TTaSg1HesRfREK+VDiiSa0t1CMpwA1zYNYuawr82kmJ0HEIkZBhNYSpilAO++0fVjHO8OanqH66/TWRuJFRHyIpiCk3MgiQfgIQ/U8slIkIh8YluuhUA9AtbaI+0iqpCH8IxndR+QFOtTgjqfOaclc9gtzGcrzR9VtDnXhSAnBrCEoU1m4ujEuDxf6i2ukt/HuQOsdy6He3PeIPcgSSkJzhb5ze4kYlkVjLdi74yoseZA5HpEliJKzcHMz8/r9FX3nipyAItR9p5SEqA5bfgmbfzG0TuTzwv0HK/nkkP3bJBwx30SWeB9EkfKCd7/wA/zRf+8DfvJ//ce89eKKz757DmWlCClD9sziRpsbP/1Tf5c//t4nOf+2P8zv+EN/iv/0136d//Jv/yof7EI5zWzbxv105q/+w1uubzLf/73XpBSHVnPpTDNs246qMpcgTZs4l00Qcc5TIqmjmsgKIk6TypQ1FPu5ISSaCFs3khkmStJOBzAoKcGcWGkwIhjM91gzLWPmlBIuEOYCyVFxltPMuirWG6I+yPMeinJkOPoX1CpZJqCTmlLbzmUzZgfNBSFjnvAB3KrLE/GXUpCw+74iKD0JtXVSV1LOTFowc5pEDIFbwy2cASTpeJbGoPWDJHNwrQHa9zEXCZLQGGrj4qzbSt07TOGqYOaYKNN8IkkA1tYalTXigHr6trofRWUoclMOQrkHkdPd6GYkSUTsbA9lc0qklPFiWGskH8C4ObXtKA45kyUNgieenyFoibWbDiWF8rab0Vob622LMfFM+EDEuKRU6GN97a2iCJYyTsMUkgehkFLGPcjJZEZK4UApNshEC5CcEuC4SqytMZ+d6i3IL8B7RbSTNMhtGRYQyfRprQePOImxoDzqhxPpKT6KNAgFIRTfPKrrI4ZILLgEcyFE0R5kgGa8G6kQUS7m9DbeGQ2HCETIKKQ4ECEW74lZH+9XEBAqIMl/kxI6rsXcIiIsBfnuwzFAUxDWNuaeiv8b+cx71L+99XHrZzr90UzgO6K2tfLmrh79zNHPHP3M0c8c/czRzxz9zNHPHP3Mx6Sf+S1/6MndefPmDe+8885HfSlHHXXUUUcdddRRRx111HdATVMACKEeNVI3bk6Fd148Y5kE6xu1hYV/a5VXb24xS7z73nvcXJ+iabXOtExM0zLs9Ic9vBvNjF536nrP5fYVl7sPUYe33nrJ59+a+V1v3fLOcsf++p73V6P2Tu2N2o2tG1vvXGpn25y1V7Zd2dbKQ3XMNDLkXanW8C5UCwDCABeF3nj75XNubhYum/PqtvODX2h87nMf8PLtjd/56Xeo8gnO54U0P+f1ZeJr98peNzwp15/4NHcffgORxtWza948XMgqqDi1wv1mrA7rOIj17FrpW+V12/mgG2uHaoKJYeSh+ILenG2vQ6FcQmWmkLSgaaLkaF+zKq0ZrTl73bi7v+fu/sJUZvKUKHkizRNZM6pQt509F+q+0dpQwJlzc/Oc65szOqIfTssJy8OWund838GCnHjYLty9eUBz5ipPaFY8xe9XUZLmUMoBNsCfxY3L7R3mTimFXGYkP4KYjtWGEhEMbkZvPay3c2K6Wcg5kUsJ4La1IBKegCqnutCHuurZ9RWnm5sAUAUMRUXwHoRCtUEk9YaZhUqvw/WzZ6RpIZNRHQC597Do1gQmpOzgGYqSakXUQlkoYccOESHhHgSYt0FetMa+bdTLyrzMQZbNhWkQLFYrrbYArnOorKsEGF9KZkqhwM0I4hbkioKgmFeETrVQztEbrXXKNAcAbo7nAAuzZIRQkbkrvQcgiHVUoeSCeliIAyCZ3QUdYLkqTJ7CQlyEy7ZS5gkZyjUFJIflehpKZ5Gwn8cDQGz7BpbYH0mVlElaSJH9gEscSswS0RFmhljFWkOBvMzk+UTdK21bOV1djWcdCkLPAQQaQts29nph0inEehaqv94a3huuEVmgMqzTUcpUiNsLcN8GeP6ogo4Kss4drAfJYK0GLzBIllB064gbMFJSujvqER8xn2Zef/MV/XQKsFYTlo3WhSmlAN4TaAnnAhUDX/hwu+Nhb9ykEtclAdQhCsVBM61WyCXAO1PS2bi7XSlZYMlMuSBJaVWo7mSBIJE63oWSheXFiVevXvH6VnlxfcanUHu33dAstObolIJsnCbEnDTP7A8rD68vXKUUyloESSWUl76DK6ILrlfoaeYL/+4P8hu/+k1+/itf58UPfRfPn89Mk2PoQEKFZXHuHh74R1/+a/z+//w9ys338cN/9s/x69/8r/nyLz+wpRTxG9vKq/Pb/OQ/uOfZTeNznymkEs8tnmOC2iO6wJWzpwChszBNQY4EUD8xFQtHAcCp9HVjLvH/msf6oxbEp5CoLk9q+5Qm+m4DkA1QOt68hA1VtMbLhaiTckbOSq8Js0a1SqajaRquFKGS1zIFiZU8VO8ae1HdN4pLgKwaymrcR9TNUJWmHAYZDq3uiLdwLOgG1vAMmgqkEhE+3WKeeERZpKQRb2BBinVvoaaW+BuiZcxfImZmjJwWwVIol70G8Supx/eLoAlymmmquBpajb5/e96rZSxn0ERKid6DEA2Xgohm2XvFSaSkEROA0XqQgDkXuhnQcbGIVzCw2gLI1vyk3CUNoXAHSTF3RRUk48Qcrb0jraPJSWka8TqEw0VA5+AjZqZWGPuHDPcR14iUmAjiw1Uo7riMtalHTId5qLCFcJkQDYIyPV6XD6LJg7AOp5lHEiCUx4YhgxyQEUUVXx/KdIKIFBSTzCMBhIX7BR2QjhFqcHd5cpPoraIyopYwUol3o1d7cg8JpwWPvWqsp6rhzeAE0xGqdEE0SEV5dMsIlp5ksa+YG613xqZO8oZq7FV5CoL3qKP+3+rj1s/sFUr6zjn1tDbjofvRzxz9zNHPHP3M0c8c/czRz3D0M0c/8/HoZ37LH3q6v7/nL/7Fv8hf+kt/6aO+lKOOOuqoo4466qijjjrqO6B0yogpBWMp8PLlmdMyoXR6ixx6a4271/dsXXj2zts8Oy2kJIg/KmTk2yCqM1RXndY6dV+5f/Mt6t2rsBuvxnd94povfeqOz5y/htfGm4fGZdup1blsjcteWWvjft15sAYu7Hun743mDAUltAEiN+s0ByzUW90M650Xz254/vwFnczre6F75ou//W2+55OGyZnz1acQfZdqCmQul8q+Jywploy9VQpCysqbb32AiJE1cbvvmEPSzI6zj177U+8uXC8FTYI6YDDVHsrjPFMNeicAGzqnNFOmTM6ZlBKlBGA0z2ET/mjNfVkD8L+/v2PddqapUKaZ0zwznc7kKcAbqztdKgylqAskUc7XN1zdvKCUjE4FkVBAem1DYRdN/FQKfavcvb6FrBSBISlFXVi0kE8LTlhcixvdOk7i7vY+1FmhmwtgqKRQHJqTSqiPa2vs+6PSzri6ugIN9do0TVggRPFzDvT4W72FqnjKmfnqCpUSqsKSETxsrU3pdQ/wvzf2XlFzaq+AotOEIzQaxQt7rWQV6KF2jVcoCIdeO2WeSVlQFzQlkBQgVA87bBuRCx2neqe1BllJpSCaQqmdNFTgew3Qim8rnAOb7pznM0pYa4fCVpCUSMpTfIb3UL5Z66Gu1oIMpWPddwqQpilA66GqMzOsNiwpXhtJAsBBOiC4ZFQTxZ2sGoCc+3BO62QR9n1nWU6Ih1I9DUV4qInj3Yi4jrh/Qdi3nVknrIX6VHpHJw1g1EFxkgxgdEQCmEGvFat7zIO5kMsZdcdSkB0Z6AqphPJ32htrv4T1ejb0SbEscQhyAG36aDluPdYqzThpKH5DbRfkZgBkAaMFCId5zM2lsK4r3QaolQAE1YiiAMUQ3IyUBTyzLM8Qf0U3KCVDKkgqAfKJYQjiiTQJUxZsC8DxvGfqWrHTjHdBSwslpQvJE6dJWZsOuDAhOVFkptzfc7m0mIGnmK9mcShUk7LfbyCGFqUlpWjm+dsnvvX+yvX1HPfWoPpO2gvpNNO2TsuCZEg50Vsin0/cfuOWlGFuDeaGnE6I3ID3IAhkJuIGZsqzd/mhP/H9/PI/+zv8wi99kx/64ieZpoS4gcm4j4wvja/+y6/xyb/zZb77R9+hvP15fvQ/+pP88//mf+cX3694nri7PEDv/Cu/4Sf+1hv+iz/9kk+8K/Fee4ZlkDotYlo8QetQ1EhqTDmxmYJHbEYRg6TolLCurLWSJeGiCIlEDzBUElkT1ZSsCbeK54V9a4g0ylCfR2qPjTcoI5pwA1ILlS5ObRKuBftOKQ1KxzUTER7j/fMg9dIgxmrv7PuFXKZQ3qohFsSCPzoSjPiSaVpImml1jSgFSZh1zBSRRtIyVM3BClrt4RCR8vjd8R6rCSbQzRBRsluoXIMxjK1hWPqnlDlPyr4q9/saqUcqpAJIiftJEzOJqjtCHB4wjxiO1IAseNKw/R+gufdYU5IH8N17GyREGi4NQ82rCSkxvmodkzYiL4Q2PiOU4eogg6h8ikuA2CyJcUySxmHqzt73p7UKCVW9eI/PIDbUw2ZocqwMpwPviFnEgYz18jQl9t5o1ke0U7icyFindyf2IYn4ipICsBeR4fwQxHmomjuCkiQHAa8xhyTo8iC4LN7bUBfHvTqOSlAdkoUmj84P8ZnEzEZcT1xDV3CCDBAhCArNpOmRnJLYj2IAn0iJWDmVJBqxwhoRUXTHO6gZkgUPKT6h7A+F+KM7iXtEQLjEGMRnzO+cwyFHfWfWx7Gf+eHPL/y1r9x/1EMHQBdl93T0M0c/c/QzRz9z9DNHP3P0M0c/c/QzH5N+5rf8oScgTu4dddRRRx111FFHHXXUUUcByZyryXlxmjif81D3tKFKdW5v79ircfP8Be/dXIWSzI2cFdWESmTci2Y0BdDXe2fbNx7efIv1zQfQNiaB73o58f3vGd/zmUq2ynYZdvgtQNC9Gvfrxt1aua+XcG7aOpfu7N2o1Wg97JsbkY+udBpxCMosQKdTmXn+9gumMnG5KJtPnK4mPvvWwh//fW/zzrVzWd+ieoIMqSt1BZce97VW1ssb7pqgvfKw3fErv/TrTFfPuN2dvUcj7XT27pRceOdq5moRFh1AgRnNFHJmSUsIkLyzeWfbGuKQJyVPiWmamMpC1sQyJ3JJdHP22tjXymXbuL27IzlMpZBLZjpNTPOZnAtFhcvDhdv7N+zrTmsBXOeUuHn+guurZ5RpQkohaQF3WluR3kKRqZmpTHRrfPPDD9CcaASYvSxXuDoihZQDiDALpa27Iwb3r99Q646IMM+FeZlRTdR1J4ng5qy1Unuj7y0stQ3OV1ckIj7ifH3C9zpAnKEAdqP1yjZUxepwPp9JKYddvULqHUmCuPOwPoTNtzV6b/G7eoCreTk9va9mAYQvJdRW8hi3Qeje3EKxOpeMa0QZhIQ1xzURwJ2ok7tRe0OqQ+ssz69ZTkso5YZDt9tQeXvMKbyytcq+N5IoOi2hMJUB0GhYqjOsyYeTeYy3DrtzyUMRF8o7EQ3FuYQrQW2Vfd+x2kg6U7fK+bxE5IYM220cxJgIEMeeAKEB9bjRegCEKgE2oQOwc3/6eQupZCgM8QDqvUOaMIdJC6o6ANMBcpX0BILpo3W+aFiXD0vzrAnJmeyGDWDNugwQSsgSzxMShgTRIwH055wGSRFqRmcAXfEHBtET96NjPB7HMAD5UMAjjypXeHh4/aTOE3/8XVEuPpIWdAByPQiYkqm1klRDJS5O1gIeYxrfGwrb1hvruiM427Zhfh1K6z7uDcMskZMy5UwRx7riUyF34cUL51uvNpYps9dGSRHvUXvEOaRToV3iUOjeDE+Z65szr99/4P337/nke0IWQ0yoOPOkWFN2IeiIKe5BEeZnM2++9sDzzwhTUlItPAovXa8ROYE3hAb5JS9++w/wo//Ja/77v/wP+BfvTPzOz78kZWVG8d1wScwGdoaf/Ydf4eWnf4q3vvQf8OJ3/C7+6Pf+DX7lb7zP+3cNUuL2/pbWJ/5pyvyt//MNf/qPvcX5KlFO4FLDAfChUTQAeQXUO4pRckJIbLViLqRcuFJjF40ImHqPSWXJhc0Lg9WKd9UNNOHkbxN6CR5WR/rOJJ3uE+aF1iqdRi4FUNwflZ1OyYLOpyCdesV9Q6WRyoSPeaYjbyQjhDg2XBX6vuPJSUUH4eixPjN41TbI4ZwRWeh9BzopP6pVY39/nAsqBJH5GBWAhfOFh7W/itH6AICTk0fsSa8eczIJoonZlJIEm4WrnNlrjb/Ft9eKZD3I4DzTMVoCa50GeO+hupUgBSwx7i8DCWkNa+O6xz/NDFchYbHcIKH2HZRrkkcSsiM9onrQcPbAH68u3tkEdI31VzxieHyQhq33eCYCuWSQjKXEvjcYpEU4UFis55rD/cQiLugRiH8iMS3msXnE9cgg1iMKSugtSCk8VNKqSh4uF+5GcwtXhXEH4rE/mRBkroZzgz7FjsTeA47ZcJcQJ0nsOZ1OShlrgxx1x/ceJNKIHbGnuBx7Ikg9MkygxeHzx/F0U7w3NHh1NGm4d5iOawFtQUA8nWZ4vBcVNMdnBrdw3HAslOyPbh5HHfWvqY9jP7M1//++sf+fam2OaD76maOfOfqZo585+pmjnzn6maOfOfqZj0k/cxx6An7iJ36Cv/AX/gLf/d3f/VFfylFHHXXUUUcdddRRRx31EddnXp5YJqWk0UQOpdJ6v7FV4/r6hnfeOZOKkNMAMgEd1s1TKYDRh0Kz7juX29dc7l5h2wW1nRenmS+8J/zg543nJ6j7zro3Wm0Dvgtb+OY7litLUdwmmgk99QAnvFKlsHdoLZpGH/bItbVhB515eX3i+fNrqiXuquBp5jwVPvVi4Ud+93Nupg7MJHXEG0kSmgv5BqTB7auVfTU+/PCOr/6r17z+4IGHbjSZuZJOt45KokkotZ6fr7g5z8xJKMlQadRq7AYmiZwLSCI7PDzsXPZ9gPKZeVnIpZDTRMmJeUqUlDAXLtuFddu5vbvncn+HijBNE6nMTMvCskzkXHBrXB5Wbu/uWS8rvTc6wtXpitP1FdNUwI26rSRryOQkTSgBbIYttHH7+hWvbm8DPEDIokhK0aDrRC5T2Eb3sLoXSVhv3L5+Q+0t3oOcKMtMSoXWK+I2lH7xbmUbCi2H5XyilEIphdOU0dbGmwBbrdQWVuCtVmrd8da5fvkCcsJGDAEIe2somb6uYQHuQQyEzXYA32mZGEK9AfQo3UKlLBpqrN76U7TJvm/knGl9o++GD9VrzgFiJBFoHestgPkeNuTlNDMT5IAKIE5vnd4btdawwPYgvLZu7LVyc3VGcqi+0iNgPWIF6J21bqHWVUKBK7DuFRWnrSs5Z+ZlYp4WkigB5Rh0w3vHQ4ZLa5WcryMaAR0W4R6KSY1DgwF8jygXM5rt5GlGsuIp1KfuThs28qKhZBQJi3bWhFy/AAAgAElEQVS3uNduRqbEeHqo1oNACNLEzKB1RIfal4R1pywTpYSK0sm4d5LkYEiGmlx5JEZCjRhqORnrVgBNYUmekDKuqw8Ft8a7F9e7I+5Yc8iE0lxCcYkYaZChMr7fTcmiWA/jAWhjPEITrVrCLUIEhmOE07m6vub+7p55KjDGrQ3CZFKnScNtPNukTKlAhrquPDxs3JyniNqQNAiUR7BOWfcdaCTVWGtKIeeVbe/kNNHNh4pc6RinklhSiliSXmHvTJJ4+5M3/MavvuHVvPL28zPlKjMvilkFMtvFyYUnJXkqE/mstMvKfruRVRAFSQuiC2IrpBMuJQBQKcj8Fp/7Pb+bP/CVb/L3/tFXefflDe+8taAI3gWjkyeYTOnW+ekv/23+6E3h9Jnv4/t/76f4Y1/7gP/l5x941YxUJta14svMX//lztsvb/lDP3wd4HvK5CzkyWjbzjJnDLjKyvWcWJJQNYDtbWtBgiWjFGFZMlc+c3e/ggueG2vtsYZJiygc74RHQEbFSCRkFh72RrUWILo7mmf6eDfQRxVtgN4lOxVH0hnZd2rdITsecHkQgBoEZU/hwuBjfpp3Wtsw75Qy4ZbxBCUnPJbMeL8FUpqRnkKBbL9JZYohugAe890cUR0Eq5NmRbIyNXDv4NCt03rDTUg5/oa5Ix7RMJSEJOWcoFUoElEytu80DdIuTYXT1Q2tVlxqzF1pZHckh8q6u9FlxAYwXnVJeBGyCl4DkMcjdMq709VJAj5UxEJ8LWsCcSSn+Nke63wba3GXUPAGWfLoSuFDSZzobngPtW8o7z1U9wSJU6YJbUrXsd94LA6t7xF5kBzzIHk6gZirJ0Qtoh1MI15EPVTG9EH8KlineY/4HZX4ORGat9gPzDH60//WQRQ4PpwX4hmJjP3Xw/nBW0RlBDoe+y0I4uH28PgOCBJ7YnoE72NvaENZPrbfuLYUpIybxwEAPNYkj7U3pyC9fRAO/KYoHZceRIQJ3SF1H6R3ArWxYXgQZb+JlD3qqP+n+jj2M194T/jZr668vnz08Y035zPvvbg5+pmjnzn6maOfOfqZo585+pmjnzn6mY9JP3McegK+8Y1vcH//nWGdetRRRx111FFHHXXUUUd9tHW95ACeBHoz7u4f2LbO6XTNp997i2mCtq2YOWk6D0WVkERJWTBv9B7N4OXuFZfbV9i+g3eul8J3XStf/PTOu8uG3ze+9bpz2Tdqc7o3+uaQEuveWSu0plQ6PQl7dZr4AOISJYeyJmtiawGCVhUWUcwy77x1g6SJ+w22qpRl4uaUefdq4oe+5wa5vOFBMrZktm6YCS6F+VpZLzsPDzuvblf+8S9+k6/82vu8WTPTs7c53bxEBTbriAvVoUzKW1cnTllJ2kia6Nap5mwGFQ0FkgtmnTd3F1o35nlhmk8s00zO0VxPU+Y0F0TjQNfdw8rDuvL61YesWwDWZZqYpoVpWUjTHICyNe7u77i7e2DbQ5EOQsmFeZpQd1rdIUFOGTfD6kbJhf5kTa1cbu94fXeLqFByGs+2kFOmlEKaSzT15sNG2/BaefPmNb11cpmYUiaVOECmDlOZkDKUZtZIGTa7UNf+RBCoBjDuHsBFM6PXAE3dDdsb+74j3bh+dkOeJgRFXIIMGIrjbd/xVkO13Tv0x9gFSMtCz4VEjoNuBDj+CDKZ9VDDDrWvmYeCrSSsG5iHIBrDbMctDrtpa6Huq/WJbFhOSyhYnQDpzdjr/kRykIStVvbm9LaTk5KXmZQIS3EtAbxrUCDWO9gjjBMgY9s2zAXzHtdOKGUl67Cwd1oPFEcRNGe6ObmEOtm6DfVggFGPvz2NsQw781BMXi4rYXsQCsG4LQvMPiUcGYBekHUBmusgO0KBjgApoSmF3beAmdOsM3mQFZYCwCrjGhkHCrtHlATdnxS5nhNJHLqiGuRDLpmcwnY9SIxG1lC7u0rI83zooz2U3q1V9tbIKSz4cSNpCnBfU8QoNHAgqZJSuBhYa8gyP6lX3UGl0HuAckMczmAyOC0nPvzgDc0cGcSKmpC9YyiZFN+bhewGcxBpqziXy8rV1Ryg7lhjvUQ0SckTlLCBL8mGrD9zdVp481BZTiFO9xwRLVkzDIDXPUA5b52qsCwnbq433ryp3Fw5ZXVUQ4VaZsWTcbkLB4icMmk2vCeuXjzj/v035NJZcsfLPVILrvGcVd8aMKSAzpSrT/LD//738c9++ev8zM99nT/yI58JJwh35m2QUFMM35u7e/7uj/91fs8f+zrSCn/kD77Dun6D/+0r99ybkKeJfdu5P8385M/tPH92zxe/cEY1kydn8QJdWNdOSU7WTslOKUayIP3MlHWF3SNCwDGKJq7OZ24vG6U7mpWLQ7VYKwJsTUScSCGnnWbCnBKbCbY3ZDJ6rwgzvSua5nBK0IS60GrHvaFieEmYJbxFhEBKBmmQXEQ0gmaheELE6S1UytYbDSFlw0nsHvCwI9BB8nBZSAoys60b1oxSRrRBEqZ5oq6OW38CfQH2dRvK6viiZqAnZMQTdWlkyfTuqHYkFdJSBvGlzCniFFISHi4rZp1UCr0abz74MIhaSWSBllLc9yP518LVIYDuIIQZThGqGURIPchqx+m9c9Ic5LxprDsyVOzmmEDO4Q5JSogTzhL+6KQQByOCYAAXJYlTI8gAkg+cuiEkugUwLt1Ag5wpCt2g1R33xmMkhNp4jq50NRKMQxUaERuaaR0gnoESjijWHXo49DcNhbKIhOuDlgFsG/03Rd7El4LgNQaoLowoiyD2Y0glfn91TIfLA1Bdxt+JtS7sOIZSu7YRPRIxT47Qe3wWEovoIlFFU6zLTh/EljwRB4aFm4jok1LczWK/k+EO4fGsHceaABaklgSBwEd/JuSo7/D6OPYzL69nSn70v/lo6zQJUzr6maOfOfqZo585+pmjnzn6maOfOfqZj0s/cxx6GvXlL3+ZL33pSx/1ZRx11FFHHXXUUUcdddRRH3kZZsbD/YX1sjNf3fDp3/aMLBIgRjOyJlLJpPLY4BWGzpF9q2zbyuX2A+rlDeJOQbg5db70iZ0vfNLJfafuja1VWg3wf90a1WtYrTfjzVrZ946ZU93YV9iaUZuxNqO74w22XukW1sh7D7/9t18+57TMbNVZ147IwmlRXpyFT9w4n/9k4fl55cOvrVzPN7hfuH3/Qro6sVwZ7dK4fbXy6996xU/9/V/j539jZZVEPt+Qy4nLHs1sGhbd11czz5ZMTkZJAXiYG9WE3TLVfKhGM605t3cXHGGaFk6nE/NyopQcyvKc0CTUutO2zrY37raN29e3tNqZp5lSZvKUKfNMThmxTmuN1/cPXLaVttdwunLI88w0z6SSwxI6ZbRMpDJREqEG7XUo3oy721vWy0pZ5gCHXUhZmaZCmRdSmfHe6K2jIxqh1p3Xt6/p3ZjmiTnPpFLC8l5GJ2+d7kMJbcZl29gvDyP6YoJhr51UI/4Boe6Vuu3gTm2Vda/YvnPz/Bnz6YQP639C44VJgBW9RWQC3oMYsSC9VDIpZXKew+6fR0P0UHfVXoMEkBS4rld63SnzFLfgjuQMksii4IomxfaN5kZteyifW4eUmTyiHB7VtN17gDYDvNn3SmstyIdWOT97zpRCuZlSAOZZ81PUgAWCNOJFnIRze/8Qqk0BTYksCcklKAGVwPosQHfVIG3WhwdKzhEtgITqd1xXzOIYURnEgrsPFbBxujoziYYtvYdqsOjjz3tY0LvHNSOhTtYUzgkSSlrxQc48qvRExvcPiiIl0pSYTjNLmUPFLEFCoKG4VDrWADO22tHxt5o1zCImQFVIkkPtLhJkU+8gDWuVPJTnJeehdnYkAY8AGY8AcDxHV6c/2pxrQlXZ9gtnrhFVkhbMAwzr0ulErISSEem0ZqSilDlIrW5QWyOlDS9LqBDVECmIdxKCiLOrhzJ/3+m1IppIJcY+VInxfUWF6qG6zRrPIWVFreEehE69eCjPk7G2giMkBTGNqBOMtndevrPwa7/6iod1p8xCf4BpyuRi5JSBzL4azIZqI6cJOwnp+sT+4MxvRVSK+QW1K8QrbnfxZokiFDyduf7UZ/mTf/b38N/+V/+AX/gn3+Lf+eLb5JwDoHWYULw718vM197c85Wf/XW+8D3v8N4Xf5D/+OUtr+7+Fn/zVy90C+Jpv+x8KAv/808/8OJa+fx3nZiWTErxnoGzP+wUF7Q3UppAjHMXJAtWnNpjLCCAY6FyWjJ2v0bMkUZch3soZo0AWN0BnZiyI14RCpsLbhWhY95oJJJXSMLQ3T663wfILYaWiW6V3ne8G6k4lmPMAZIIkhOqBGkuhlXHeqNaR3MKgFZTKEplgOIuqEbsyVQy1Su9bnjKlLhCSBktxrauzNMEmuje2fedlMbc84gB8jGHe+s0drA4gNzcoApiGVKmpEJSYZozKS+4de4fHtj2BxKClkQXIaXYA10Uen+ad8kdq9D8Mb7B6SJP7gxJFU1BCKsIS0kUc1aH1XqQuA7dO6WE44EyCBbr5JTo7lTrCEbOOZ6LBwHQ4sEOJ42IrlCP/bW1FmPvhmYhayKnHEppLdgeET5iHQwsG0hHTWkoJcf742Yw9mdxxx7Xyh7P2FoLJbdXRArd6nCXSBFxobH+04NQDteEWGtjJdYgRq0FmTmIWAD3GgR7jzVDcUwigiINgg/X2CfM0ClhLdZC6SMySXyQtwn3hjeJvy+P8SUjcmg4YQihYocgbiSFUwUE+asJTGxEhzDIBMUsSBIVweTfvDL6qH/b6uPZz3z2ReFbt+0jHjvIKkzp6GeOfuboZ45+5uhnjn7m6GeOfuboZz4u/cxx6GnUX/krf4Uf+7Ef47Of/exHfSlHHXXUUUcdddRRRx111EdYd3f33N9fyNPEJz71HvOUw8JaFElKkozj6FAVuUej3axT9wvrw4X94RW2r2SE6wl+x9udz12/5mQb7381yIGtG5fdqa3RzNmb0R5Vmh0uewsBozpTEZoYVmBSx7UwJcNd2TblvhvWnNIz1zcLzTOvHnwoEWeKCM9vMm8tjlvlNDn72nnvk29xdZ25vXugnDM9wbpeuLtf+ef/4gP+6t//Kr/yWuhpQsqMpcK2r+Q0kdKEm/HiZuGUhF6NOQndjM0iwqF5RECkHGDyulYuWwPJLPMUgPo0MU8DuBAP++jW2Wpl2ysPa+X27g3eO/PpxJwzJRdIiSkVShZqq9zdPXB/eaAP9a41Yz4tzOczJSkuwrTM5FSYSgmgyTut1bAmd+f+4Y513ZiWhT6s7zUrOWfyNJGnBTcJRaUq3iveO/e3t3hzpqk8geFFCuBBWPROFqULoaTbK5d9Yy4T5+urUEASKmzRUES33tj2DQjbbmsda515WZiXJayuZbT0Hmo8x+mtgj0qlxveO+ZOLjM5TwFAAElTgKMSwHK3ijQLEkPiva7bTpoKkjNu31YOywBghUbfDWstfketuMPl4YHldKbXRskzU46xcDMsGQll94q7090xM6Z54XR1DsUwQhkgN49xK0MR9mhDDs62XtjNoBTK+Po0F+aUA4T3iMMAyHMhT+VJRZnPp0EKCL2H4k8GMGbmhI884AE0GUZ3Y05DKS9CI0idx3sbuOqTELhbKBWTKiUraaiVVQK0IzS+2FBhmg+524gJUVFEdYBMoZZ3YhysB+jrAq1b2KX3ju0BeCmQciaViUewVw16T/ge65Uh4VZgFqpyjygP1SCbHCcneQK2HhV85kZOSimFhzeXiLjsTvNQq8eQy7eViY9gvoO48Gw58bB1plMGM6xVvM9xn9WR1IjbCxW3akY1YWxcLhtXp4XuTk4Tjz75vRspgdXE3p1OJakhSbm+mWi1YtOEDALTekInoUqo+CVbEAUCLh0tyouXC5e7xtsvz0xzAeu4yZhBTtsTOcdz8gR44frFNXdff8X9119zfrFQegUp8azKjOg1yDSUtxN6Mj77xY0/8Se+xf/0k1/h5YuJz33mBSVF/EFWx7LT6ZxN+Ke/9Bu8eCZ8IhnPv/cP8uf+wze8/9/9DD/3jZ1UEl1g23a+Kgs//jfv+LEfTbz7bsaIly4VJauh1kmTkSwIPcmJ8ghornCpEgTnBFOLCJ/TuXBZd+bk4BExoAjWWiwKhPqeNANBUKoLtSXEOjn5AEvBPdT6IoqlhHdBXccYd6Qo0oVt2yh9pxRCkayKM9TMeKiQXRAq9I5Zi3miGvMfRyQjpCciSxP01FDNtJbY9oqIkLXANO6tO5d1ZZ5KEKE4jDgQ1RSEwqPdRGfsO7HmKBG9IRO4yXh/ywCtLeJhSmZ3o+07UjsiidSdXCTm7Tzhfae2SqKTxBFzag1i1VMC0+Gm4WhSUsp47ZgLG0J1DyWu9SBMRgxHb33MUUaaipAGWdO9Y62RNGOPrhYkkE5iEG+E44GZk0umG0Gc91CzmzUkKSWFo0bKieZ1KMczprHPZwXrjW6QssSeC0hy1GTsvxIpCAla6/QepIPh0HdEEmbx2ewx8kbd6M1GRMTj/Y29QFOQqIOgEpERzxNpC9bjs0AsXx0xpw8lNiKE14pGZFG3IPQf1wUBkzZiJ4Zw2QbhPLYyH+R1kJbf3md6C7JGQwA91nyNaWUGGDKu2R7HaeyNRx31r6uPaz/zpd+28EvfWLnfPtqDfa137itHP3P0M0c/c/QzRz9z9DNHP3P0M0c/8zHpZ45DT6N+4Rd+gR//8R/nz//5P/9RX8pRRx111FFHHXXUUUcd9RHWtjvvvvdJlkUjR77vNBdySSRJEVngoUyuvWEWKqpWV/xyz7ZtqHSup8Snbzo/8ImVd8+NtjvrFs2ueka9MWVjR5DuiAmpw2WFh1rpHXavtC60VmkNekuQnFY3VuvgSq/CMiXee/eEe+Z+g9qdacosU+bq7DzLhWXumMDn373halKmkjk/X6hbo1yd2e8vfPDmgQ/e3PF//aOv8dO/9IYtzdw8O9M8U1OBYTfvDqrOaQ6Q7+FScZTmAYakojQP9U7JCfcArlo3zqfTsG+fmZcyYiweVY5G9QBrzeH+fuXu/h5RYVlO5HkmT4V5WkLt2Xe2feP17UMAVUPd7MDpfGY6LfG3UkJLCTDPOt6EhuHese5srbKuG22v5DKFqitPJAk1bVlmNIUvu/sAU73h+87d5YJOEzfXS6jNzMhZySlAa5NEzoKZ0VoQBlttTPPM6XwmTxPYUEUnhhLK8QEa7PvOVhu17sylcP3shpRLAAgIj7b93Zx9vbD7SvYAQvGO9wDwStJvg1re8QamQs4CPdwAROL96tape0XmmTxiNCQ9KpplCCydbhXvAfJ7NwRh29YAbFIASSoJTRms0nuNeAt3xEN1DKHPPp+vyCNSQXMBHcreHP/21gN9T8Nr3ALEyymjQ+koLpRpQnMipXAtCEWfYHS6GWut+BNoPey93ZD+COQ8qpUf9eaP91eBUK2bdRr+7f/uobBHIuokjzkigPURq6AJzRnpRkplIEadlCKaoTMs24G6bezbxs31GVSfrNwRRywUqJ4V7T2syfEYK3hSbwZopkxJUXT8noaLURP0JOARFWFjLsRj9RGjYvTuUBzVaSh1xx2b4+LkpFir1LqCT6Gw1jwU6RJuA4B5BQ81IMD1+cTD5TUqGsCxhZW7DgmhDHW1eKw3EUeiSDXuHnZO5xPeA5gXi+doGiRWyhOugnpH/YT7xjTB+uqe/SoxDQW4dSNbRAc0S0GGYDxJkjs8f37iX371NQ+XE6frHBEAyZ9IklaFZgzHO31SK07PFu6+fks5ZfL5CusbYjvaHiB1XK9Bww2B/JLyrPH9f/gVv/iL/4q//zNf53zKvPvWFdMUa6c1pSRnmTI3N/BPv/ItPvPdv8zbP/A7+dQf+DP8Zx888OFP/Dy/8mpHTzPWKuu684ut8Nf+3i1/5o8859mzREqOZaVMC7k8MM1xDdIqkjr/N3vv9mvblp13/VrrvY8x11r7dq5VLldil3FspyiBg+2UgYhcCU5EIGDBYx7yJ/jRyr/gPFiWZQk5DyCQESAQKCECJTaJ7cRxCiiHOLaTwlV2jE+d+zl7rTXnGL231nhofe0yVhwegDo6xWglVdXZZ6815xyX3mf7vvH7WhFhAXxVeoAPoRZwFI/OKMq61JzIErmeW2xpKo00skLTEGyy4MVYYqRQLTop3LyUeTA4UTxSQRVytIlUQUoaRyKK7RvDHI1O1Dl2qeSoklp0mlolx/OY023Qe6eUHNkRarlmaV5XLorWhotz0pLrADnOQEKQdaGKICpc7u+Sul+Sok9jMa/JJgUZlmZOOIbjCfen2dsNqtCHsu/9xbqCKhqFU2vcWR4fzOaaMdKILY1ydY32M7pFJhmIE1FzDEreJIilTxbk2m4qXMKZ4HJSt+TDyBp5LiXyTsz7uCTBT/69Ig+k8iBIU4VpUGSCQ36GEV/bTlRzPNUA+qSgq0EvuakpmchRFCyccKNbivjUYFjedrXmdwyf3wdyr1EQz7WiCqI5htcjx+JEOOLTYA2hVCFUKOuCRKaEmGfSiMTDbsNMeMiDlEkFKeyXUrBI44c5estGCvkyrwmUPBYiaOSICbMp/FuS5EWhlDnaIdJ80OkAaFWIkltA5GfIdI75GZpi6czmAwTTyEGYo5/mXsXx0NNR//z6uPYzn3rthj/4KePv//qHH+3xG0KPo585+pmjnzn6maOfOfqZo585+pmjn/m49DPHQ0+/o/7yX/7L/IW/8Bd4+vTpR/L6X/rSl/jZn/3Zj+S1jzrqqKOOOuqoo4466qisb/70J5Ax2McOWhO8KylWlloZvuM9hWizQd/v2e5vsf0O72cWLXzyyvnWJ53Xrz+kboOvfmjsm3Hfd3Y3+kgqZpizm7OHY92xoXjkjPSB0Cc9WWWFKtAGPmmoNlKMuHly4ma9wty52wSXxtVSaeo8vRIeXxdsdD64HXz+X/n9fPvrjXd++0I3uJixx+D8XPjtt57zT37zff7uF/8pv/pGcHr6iMfPnmIsSGRyk07K9dSU02llbZVTEXYUd2F4ijLOFHhLRtTvfdDaytX1kiaLaIo3kSMBRHJUnhBsI4/L7fPn3N/ds16tLHWh1oquC+t6Srougn0MPvjwOZfzlqJ1pJiwLgttWTLKWRVtjVIqTNq09x3Ivnu73HN7d8Y9WGpLQTxmJLMW1uVEqSlWEY7bhvVBHzu3H36IEVwtK2Y947DbQimCW4raSR9XLnZB3BELailcradJuBqiSZmaG2aG9zFpVedy2dlHR4Crx4/QMulDUlwggm1sjEnMiaYAohKIp1DVHp2mIZBjDESV0EJYZzt3Lr3jDwLZJNsIY1lOSSRPwhUtSaWH433DzacQ7ymQasEclnVlXRaqlmR/3Rh9ZHT4NEH6MLYwzAenVlnWNq+DAuVBcCygSTeOcMakgzHDLX/Xw6iD7bJRamWFPNdMMtqMvl2w3unuXPrOzXqi1PKCLhNVPNIAUSZVLFP0jYK4s/dOrY066fDwYAKySce9gLjz89kkiYmg1DKJ6ciYfZk/W0qeQ89RDUlxB/ve6Wb5fhJNxHFUC4PIePkYRAwEzfEE4aCKzdfHAfMcW1KFOkm9IaClUYrTe5L3iGKW9+lpjkHxkaLxkMGy1ElCkqkDnuSoAOHGGEbVPBdtaZQ5TuSy7zmWZFLYojXP2bKgmkQhWhFtGIp63p8eYJnvThFH9p2qjaWsnLee56pUQoyilcBRKt0ElULBQSpOoLLkMWpnbAt2MUCJEQSD0xqEN/Kjzfj1ANGgBKw3jQ/eP/PkScvkg5iDAEJYTo6E4jZNGwSRhfVa2Z909ltYn3bKNkDrlCeveSHvxQZ0AK5ffpk/+Wc+y2/8lb/H3/3i2/ypzzeurlZag2oD74KJcLNU7obxhZ/5Ff7oJz7N1Sf/VT77J/8d/sO33+c/+unf4L3utGVh2wZbgV98o/HKF5/zR7/vmtNJiHBah7YG60lpEuyXgDCqFFChFufRElyoeV6k4yhLGETFpSDn4KZeuLgTQwkJxtjzfkIxGlVBimPV8hghuHdknnuLBZVM0TCXNAklrcMmEOIzDaHi+wXzQQmf9qiClCneppBcIAl4z7vA+o6oU2pN8rVmMoGYo6VSa0EbtJhjXNyneFtY15J0Ncr5fMG6IyXpYcEpWqHl/rCY00eOYRkWWB/Y2NHScC1sfc81WZWiJRMPSlLjVy3XzL4PPNJIrpIPKCs5tqdIAX0w79KUCM99ylXymBmo5WuAoLUSSo6tsRw9YGH4XFcyAWOK8VEpkZSvR45DQHLU0bAt15c58ka0EESS1NMUkbnYNi0omiaNOTJylEfUgKioFGp+FFzTtDaB3gfFM3WhSgVSQB9hSESmT0QK9FUEL3NMzXDCk8ieX8gwDC0g2nJsh1YWnTS1pmlp4Q+Y8jQjM3lAJR0PRdGW12VS/3Ndn2ZDxDRsVYhSCIwqCyOCKgOdRHZY5IPiVVB7ME7TMIhphCiaqQUShJNJIT0taFXwkXt8jpVw5iozHwL4f/x196hv8Po49zOf/dRTfuk3b9mHfyTH7ubmmldff/3oZ45+5uhnjn7m6GeOfuboZ45+5uhnPkb9zPHQ0++oL3/5y/zkT/4kP/RDP/SRvP67777LV77ylY/ktY866qijjjrqqKOOOuqorLCOEyzLaXKboDMSvfedsM4+Bn3b8p+3W6zfUzBeXpXveGXw2U/ttH3n+f1gN2P4zu7g1rLxHsZlH1z2Qe/CeXSGD4aDdcGGYmTM+85ALGmljuEOKoOn64lXXl1wUZ5fNqpUdGmsVamqvPS48rgJ+2bcnjuX80Yfd1w9e51XCJ5vg9v7M2+9c+ar793zy7/6Jn/nl9/h7V149vrL3Dx5mc1heCHKQpVCq8r1WmlFaRWqGkaKX07OrXfKC4LofNnZu9OWr6VEIYp7xkCLkESiw7b3eUw6+/nM3jfWdWburxQAACAASURBVKXVRmmNtp6oy8KiwrZv3N2fOZ/PjGE4SXWWtlBbRaVmpHYpaS5okmBFU/hFCmPfuYzO3e0dLnPkQ1W0pRlUtLCcTinquBNFsegpePadu9sP6e4pxkASWuSokL5PItmdti5s+4Z4nvfdg6vra2ASmuKsWtMgcKdvO+6WJPXeGTZQh6dPn1KWldCF8I5Gxp7nyIF9KrgZ0d1UCA/2faO0HH+hdaWIE/JgsFwydt1GvvdI4VuAfrmkyWIOsgMKWjOumsKwPg0XMo47gALnuzOlLbTWKKWwLAttqYwx6PuesesWjDFS1J6E8/Xj6xTwpupRJaWQQr4nnbSyqEIfKCkOLbUlBVsUF2FdFpa1oaUikiae7x2zwd53hih92yiPn6TAIpIuDmkKhJYkxCPDtz2CIqCqnPczV6fHL8SyIGlGyJ+hzOjukBTQp9EUZkSbv9cs4+/9AXTzKdLlHeQxScOinOrCUnIMR8Z+pwvR2kJpDd+MMfJnYhL/tbQ0J3pH6ylFuDCKKzuwu+exd2cAw4NKEns6x0II+d6BF/QfL6hBIyLJwIAU6t3YLzvrcoVKkpXppwkiJY0MKQkT4qnNubCuC5sNpBfWkxBaceDsilJY6iRoEdraWOZ9OPpg34y11UkzCiENDyNMQI3ddmrhBXlIwOMnV5xvO92UWhxDib5TSj7E6WJ45MiMMS6oplFxfXPivTc/5IPbK15+uVKCNL3Gxqk2tFbMHO17jjBQIVx59Mpjnv/m++x3Z9a1IP4e5WqH5THQidjTKvBbInaQwmufeZUf+NOf4T/9L36Vf/CPr/hD3/USrTbWJc3jYrBQiBvh7Q9u+Yd/8xf47n/7GfXJH+L7/9y/x1tv/yf8l7/0Ls9H0JaFvm9s5cTf/DV41O74vn/5hrYW2qKspbHoQm0DJbhceo7DUKFFnm8rTgwBqawKVMs1ywPWhR47yyRlH4hTj577QDAFa6goJoFawU1x6wiZCDLEMClEVIalOfNg3uUtGpSqiJ5gu7BvF8KgLIpKA4R4cR8n7e9hKbh7x/Yds0FrjkjkOAAr0DL/P0rN/cotTU93hihFlKqNq1OmVlwu92z7RlsawpJksjsjnEoS2qEVFSNKw0YaEdjAzekeUISqhdbqNDZmHIakcbxtG4YxvOJ0QkkStyilLMiwOarG8non5kiBpJNHOIWa6w5TjJZIs3y+X7QQY8x0izzOkxFGZwqDoJg5UlKI7jEolpRyGieZCoEU5q6TCRgqFJvjhAS8GzGcEYbhlJr78dKm0R1M01AwG6jMMTTqmUKjFes9DTxivudcPBXBqyKTQjfPNBV3QwGNTDkoOulqzaQFAExyvJKn0M/DeJESL8ZfBJ4kc83fK3M8xYsUjLkW+pgmruTYH2ohw0Zy7AcW06zMdd7nWh7hlLnHUCXJc3ID8PR704h2T7MinKZpxsXck/T/fTD6qG+w+jj3M0+fnPjctzzlf/7Sex/JsWtt4XR1k0k6Rz9z9DNHP3P0M0c/c/QzRz9z9DNHP/Ox6GeOh55+V/3Ij/wIf/Ev/kWePXv2Ub+Vo4466qijjjrqqKOOOuojKDOjLQu1zLheT2EeGZh1xjawfuby/B3G2GjqPGuF73it8F2f3Hi2Gr4Ptt4nQZgjB4YHuw3OY9CHs08KkBKoV1SURRzXYCyFcBguNKtYh7PvlAiWIrz20hNulhPnrTNi4eUnJ1QcohHFeHQaFCp35+DuvPP8fOGD2w/4+b99z2PZuaqFt9/f+K137/kn/8dz/rf//ZavvDV4zgm9umYrN9AFe4hXp0zBPSnKmEhTylwpkDrZjEtJwfv+bsN7R7VgqsTSGCOIEFpTigQ2BmPAvo8ce7DtXLYLpSiPbh5T15oPc60ry7KADZ7fn9m2jcv5wr7tM3I+qKdHrFdXXC0pwCy1YpG0o0RSd1qgDyOGsfeetOu6EghFJMXtZaHUBa0VTeU8tScfxN7ZLxfO5/OMbW6c1oV1WVKAEJ3CzZgChSatHDlyoodzdTqRTG5Qa51jCfK6s94JS4Og72lGWd958ugJbW0pCniaCJe9M6bIUpi0YKQYYSMJOCuN0801RSuF5DHdne4DtwGRBk2Rgs9xADbFk9JaElsK9YHmEyViwDQ0iEwNMHfE44VQXYtwfX1iOa35qiM/UxJxSei6gLmx1EapSUWLKE2SgnMRSuTvdGSOCJijAyI4b30KZIFO4n1ZFpbSknSLYLtcuNzf5zUiSUnXkmKWPhDiCaUlaxmAJGUcPgiFCEUliBGTQGaOsfApoIPNmHSd5+OBpBNAVFmWNd9XzbOAJmH5YADk+0thT0VZSqNXZVhHvKCT4i4OagNpDUuFLwW+CFQroj1puhC6dQqOmBK1EOXhoOc4iyS3c0yGUjitSTOL6gtCXUvJ81Najv4IRYqgM05eMGqrbH3nel637sbSkoAumvHoonO0jgdaCm5GW1buP7zjMt+Px6CdbqiqmZIw790QKDXPge6Sr3d/5uq0JHHogDhelBDLES+iXC47a0uR2dxRCuiFvjtL1ZQBRRgdTHpGsA8nNNCSoqOooOpcP2m8/+6Zm+uKNiiRRKN1kCkWbiPXF51GiC6V08vC+7/xnKefesx6GiCXvO58QBOiPkH0BuEEUamnjW//3Lfxvb/2Pn/nf32TV15a+ZZP3FBboXZotUxTUeBG+Ee/9tu89Pd+js/8609YXv0O/q0f/DO88cF/w9/48h0WQV0q58uO6cp//8s7Tx5f+M5/YUEURA1ZUkSNKtQm7Jc96VUWQpyqgWlheAV1Wl0pOhAxZBuMsrBtnRrGkDxuQgF3qoxMLdDKWhQRxzBchO5LjjcoxtmdwkpMtTdc0JL0rZCR+u6WdGirDF/YrNP2jdYCLRWfFhQCdSmUepUjUBwsBj0MbGBBpmRIYD0IFcJylE0I09jNc28oXvIB4rpUruQKtsK23eOlp2gvSogk5av585kYMB8q2Dvm+4txIUImMDjxNYJZNDXqlmbEbs4YxhgdJP+eqFJLoahyWpcpQHfCnd6NPnb2wUyiSNMkQmbKgOFjT/NkEuN5/39tlEORFP59jlISEVr5WlpERP47M6OUSi2ZRiARVPRhpUvjUIOGMnBoub8NTzI8xsP3qYZoAErRyvxagZeGe6YymBo1ApvH8mFclEOakehM2cj1XCTYzSiRa1x4rqlmaQ75i5EPSilBKUofkTR7eJqC0wzgYU3WNKYViCL5zwA+BXwBJmGO5xgIAVyTrlcVkGnBWJovaRaQ18LDPuFJRUfoHIE0r8lIIwZ4Qa3nsUjzSI6Hno76v6mPez/zxz73Gr/8mx9w2b/+aU/Zz7Sjnzn6maOfOfqZo585+pmjnzn6maOf+Rj1M8dDT7+r3njjDX7sx36Mv/SX/tJH/VaOOuqoo4466qijjjrqqI+gBAeJ2UzHJMEM954iWL/Hbt+njI2qxh94vfJHvmPltRuIMbicBzlsoFDUqNowDVqBqElfuQRVFQ+hmKPFaN5wHLeMGMcE9z2j7wEseOnxiU8+O7HvyvPN6LZw1VbGLugiPLmuXK+V3ju3Z+Nydp7fw90euDbevQ/++s/+BtePKr/11Y2vvLPx1oeVW1bi5hlLbYg2LlYpUdDaCKAWqBPDGZ401q7QIuOtY0bqt1IZY+N8vqQoXBpaFpa28CAiFFWWpTD6SLH3srFvg8vlQu89I7PritZCrY213aBNCOucL/dsl56GQt8IHyAFXa+prVFLYbk60UTxkc15lUKtKUxets5uA9s7Zsa6tHnOhbautNbQZU3KzS1F6AehxTpjv3B3f4uIUpdGEUlRU3QSYgJmRCRt+hCrb6Oz7xvttE6y1qklqT5RwXzGdAeMOTqhWxon19fXLFcnVEvGegd0Ny77lgLSA2EniuAzbtoJlJubK9ZWKaJYJJUnEoRtKaRMcTmYFFkp3F7uWE8LOa8gxQxIkULNsOhJxknStHvfGWNwf7+xLJV1bVzf3LCeriZhN4gxGJZR3DEF/D0c7ztXT5+l8Dxp+iDfl8gUUeb4CDMDS1Fz7yMJtghaTRq9toYuC3s4i3tSbwGqgpkw3LlcLjy6un5Abl/QZyI6SbPEad0NcYAK7pj1NIEmYe+eQnCpFRCK+AuBjakdGaAeUArr6QqtOSYkIMeCQIpYAKJoKC459sKKPGC9xBTx81c7ghGj5wvVmtS+O6Pv9JGGZO87a6u4ZAS59wvqbY69CMwcwimS51cIVAr7CEY3Sp3jH8IY/nBeBGQhZACBRGTke8mUAVUY4+H+1WmQehpNboimWC/haCm09YTI/bzMAu+GVWNtee8zSUGRQKQgDdqiLFa4XAbWpwkhgcSAaCD1BaHopTImCVkmqVjawnY+EzxKUlJyhIxFgrI5h8SRsqCMNCp2aK3y/jt3vPeuUl99hNaKiMOksUOTntx2Ya2CFqDD+vJLPP/qG3zw5i0vfeKaMjrVBnqdse6EQjsBDWlPEHEevXrh89//+/nHX3nO//T33+AH/sg38YmnV9SqLC5AZRcnatCugl/8O1/i5qWf4/V/6YZH3/Y9/OC/+xbv/mc/zd9/Y4dacYX9svPmuvJXv3CmrsanXq+4VTBJml8kCdICch5oVUopFKC4MVzxdJkoWljXFFSXKDgV2y7U6DCCMbF6peM4ogtlhtgbna3vmTqgio2Ra6f3nG3E4EGmTEMyhfQ0gkGlsLQTWxfG2HHfWJsjtaFUHuw7IzhdXSEi7NuO9x0bHSoUT5NaxBgeRKTInYBxRu6L5/IXAlpmUkZVpFaKCtt2JuP6H0bGBOIyjboZ4a8pTue6bdNsrknee0dKRWullIUmgothpSIRLGbEGPgwBgYlzeeiimihiIIELh0NaCgynLBBjzTixIV4UHxf0MzxYp8xz5ET5cG4k0x78JhUseYYChXJ8QYzxYMIfGR6TNGCzJEd6EPCw0xAsVzjQqC0QgnNsTcRDCPHI4insSmFWhaYpm0Heu+kPfy16zPI9VycOcpCpyGbBsvVw146xfTwB1E9cHpeHWpULSAFqYENofsg7MH0NUTSyMFyjxHJ1w2R/DNRwpnUc6ZJ6BwHAxDuadR4jkmqpU1TPPdZEV7sFyqRD6EEgGfYBopIIc/IfP0yNxciTQrj4egcddTvWR/3fublZ4V/4w++yv/wxTe//sdO4uhnjn7m6Gc4+pmjnzn6maOfOfqZo5/5ePUzx0NPv6vcnV/5lV+h905r7aN+O0cdddRRRx111FFHHXXU17lqqZNe8SR3zbKR2zf65ZZxeU7rO6+swuc+3fiWZxtX25m3PzS6WUbfk03c2AVq5epm5dWbOglLuL+/sHfnfOm8e3vP83PhcoH7sWNRkq4swVIWTJ0lgk+9esVyVbk9D/ZdCF1YThVBoAmPrlJgePducL4E92fj7mIMA9dKK0/pNfjqrmxvCvfjhngMT28KV1bZvDIIRgRaT5RSWFulNcU8UphgzmuftFZoSeqxJEm8bzu353uKKKU06mmh1kYtjVJznEBbCmbONgbPn9+x7zv7luMBSim008q6nFhPK8u6Umohwui9c3fZ2M8XbIyM2QeqVhYtlJI0l205Px4FqRV3Z++d3je6OX0Yfd85rSsWwdIatTaWdaXViosS4UlxqiaVZ4PL+cz5fCGUpEZVKTV/VktGQPeeEdIamkIyKR5vo9NOV0nbk+TfA/0XTFHfg26DMfL9bnvntK48evQoxV1LqnyQMdOttkmEKRKTJvSB9RxBcv3oCUudseNIkqVFGSGIDBB7IR65Oy7K/fN7alk5XT9GSs1ofwnC8pg6lnSspjmS1L+z7ztU5frmOkcytDXvGzxHMkSACrVWovcUScaglkpd1ik2zQfomHRu5KiLqoI9mBKSMeUxzaQQQVujack0A02zxsOnyTMopdL7wDwYvdNeWiepqxnfLUyjRAg35h8xkCkQBTaMsi4gKY7ndIz8GeJr8fUPolgIKQoS1JbXimApAEXeS0VSmEvDpaTmr/ketu2C+cDM0DKF60lSWsAihZAcT+LTJBJNsdMmTZ5jEOxrJhL+gtqWoqj5NLKmFKXKGHue7zBsOGKB1EgzrDbGGNjYk7j0PMa1Ne5ub1FJqi8hVaVKEMXZR44beYh7zxERjmrl+tToY+BmDJQRzirTFCkKHqikSCZCmiLVKGLcbxeW5Qp3yb9qeU2YVgpCXQr+QKpGTBE6qe/eR4570TzubiBRaAtECGIp9KkmyS9RacvCO+/c8fTZNadTyt7qju09yVgWTIQRsEgSomLC008/5c0vfcD99c71k4psGywV0UbwHsINaIPoYGekCq9+4jGf/55P8VN/9Vf4uS++xZ/43k/weL1iEUFLivBeYV2CD7vz9376H/HHnj3j8Wf+OJ/8Q3+K/+Ctt3jnv/0iv/7caFrYxkD6xld05a/9wpkf+D6jjzS9k8ZUvAitFkx32C9EzVE4VQUXZxNhjIozUCkvqPOcCVOwyx01OsOcEvOeNUPoCJkyUmsKrbI7KIwZ/y9qaKTIn1ERaXKqVCKS0g8CxygEqy70HfrYqK5IesVEFGLeJ2nOZeqFEFzIEUQjYhpVk94vynAlRPHuc9yCQDiO0sPRWigIpSjr1TUewmW70KZAHu7zGqtIKTmiBjJFwQWnsJuD9VzLSSOy4ERtFKlphAkUUqCPtjB8sPUd2VLEtlZy3RdQTRG5NcXVKSXoYzB6p5tRRFBaivxTxG9aqGSCY4QQc03wMWZaQ5qKiDDmuCZlGtBzcZvbCYQweBh7E7lWTDIbDZo23B1zSwqYST97moUxlXHXPOc1nFrm9xkeDMz8LiQC3QZ1pmeIlCmXTxNxktN5rbQc7eGAJvlMpJAf83cNixT8JZBSaFrxYblOPSj2JZMybCS4HppmYBrJuaaHJfEc/kDae44Ok4Ao4Hklh3vumTlbKEdbeK7VEjL32Gk2kXtCyLy/Hg53wIs5PRrT6Pn6p98c9fGqj3s/8/79YF0XVF482/F1qzGMD2+PfuboZ45+5uhnjn7m6GeOfuboZ45+5uPUzxwPPf0z6qd+6qf44R/+YT772c9+1G/lqKOOOuqoo4466qijjvo6l2iKxNYHMYxaA9vuGM8/ZNg9p3A+87Lw3b8vePXRxm6D51vHdqP7YO87O+AuRE8tdljh/Q+eJ9Fjwf3uPL9sDBfurGM2SUIhHzyiA5mc9GStvPr0igvBe3eD+96QuvDopsLI2PybpTLM+XALnt875824vWQscS2FJoFVxTQHB9Aqy6IUFy4m+J6iYERBS2MtjdaUU60viKCY4oG7IkVBKlUzpt0I7m5v6XsnVNFaaG1lbQvLaUFDJtVWGGPnfNl5fpcGge2dANrSWNqCLI12daK0FEO8X7i7yxEQfdvo+5Z0OZEi/dJYThVKeRG3X2plqYqNjFA+72f2YfRtx81py4KRpsKyrLRlodSSYkP4lCkkqWbb2c8bt/f3lFpQKUhExmIvlVIqRI62sEhVwWySsh7sWxKK1DKpthQ6wp0g2Ht/QWX5/I+ZU0vh0aObFGhCkqwSJ8ySdJZIMneK3WOOHtn6zrIstFqoUggeRhQ6fXRCyHEVM6LcfBLLZlgEZREoOT4j5ogLVWFEkneCohpgxth3cMOH8eTZE67WFPwJz5kPpKg/bIo2qXQgKMXh+uYGLfpC8M+/4qgNhgdFwOuMw0ZSdIvALdKoESil0UqOX3yICneCYca2TyHU8/e2kmJvUZ1jB+oLUvsh9vxh7EQRIRKDo/cLtS2IBy4D1RzP4DGTE6Yh8EDKe3gKp76x98H9/d3kj51SG0upaEuB/kFk9HlsEGe/XNi3M35zjUQQUiilUmqZtCIQhhIUFUxISnPGxq/X19R1nX8vI/lFkiyEyHXI0xxKVUqprSHSKXVBJIX3B+rRPRgjr+eiFYhpphYeP4YP3/uQYZ3TqU1aH5BgXeoLc2SMFIaLJEHYw1nWxtYHTQullq+R4tMc8tC8I3zQJolZSj5web6cub5euZK8Nswcoc2Y9IqWoLpBDdSCpjLHARTu73ckGtKSoh51YTenllxPRZRaKv3Sp+kC9arywVt3vP/OzuMnJ0zTIAqb6QQBfeuE5PpYAcKpp4Wnr9/wwVdvEeDqMXB3m4RkbTDOyPoU/JwicjjraeEPfPtrfO/n7vnbX/gyj68X/rXPVdZaKZOTry6spXJz6rxz95wv/o0v8of//VdYXv1+vuOP/3l+8O13+Cs/809552yspbL3DSX4sq38j1+45duudj75mZHJCSqgC9IMboLL3aCKJ81aHHelR2RiiOU6BCkotgJeA1sXzg6rDrbdcvQIAp7ia5CGYykFqSmEZhpACtJK7gP+QEOToxwezLEU/3NkTfEct2Hm2AhUBxUHaSBLeg2A1sZ60lzqSqGPgfXOGIZ4UssWRqKmgpUH4VVRCvVhHANlQrKCiNHWlYjgcjlTiqIKBOy+I5FjG4oUAmGIJR1cCmMElz6opYAo1gdujtaR93XkWBmb605TRUrh3DvWDY2GhNBqpZSWRkoEwqCo51pKGttbH8S+g0iONiLvHYtcBYoWzOIBtIUxR9KUvH+NoKBJ7wIqSujDmZlGi0ruk5ZJIBGWvy+Yo1SUOo3UB45XVSnqmAc+PM0I0lk1Hy9MzSrKIHAbmSJgjhGYC7U4WhNSVcljAMLQMvfSSilzhIjkdeIegMHQNFAbMAI0QBVthXDJ+zLSPPPwabLn+Q3zF8aCiIIWfB6/CMMt13QtSqTNPI+voDbvCc3jqFIeHhFI46OkUcD8s/Rm0ijNPYIXJkeQoyDSUDnqqN+7vhH6mdcfXfP4auGD+/3reuwyS+LoZ45+5uhnjn7m6GeOfuboZ45+5uhnPk79zPHQ0z+jcm7rQcwcddRRRx111FFHHXXU/x9ruMPIKOeQzvn5e/hlZ8X5lsfBv/jNhU9eD8LOfPBe524fbFtn73DZL1wG3I0duxjhhWFBD8j56YG5sYew9ww7DlPchC4dsZRBwqGY89KrlU+8esP9JXjrPeN+X2lLAQo2hMenwpUqZw+e3wkfnAfvnKHvSmuNVhWpyhCoUnEEKYJEigVbKOcH2KZWVm20WmilZjMsKbiLkCQRlRGa4q0qiNKHcXs+J/XYUmxf14W1NZa2QvgUL1NUub9cOF92LvtO7ztVUqhPOnlhWU9oLagPeh88v7vnfH8mPAUVyBjo2ipLa6zLQtFKqZV1iqGttXwYK3a2fWPYYOwZr72sJ+qyUGqltUZpjbI0UMHHjLCOFFD30bncn7lctoyAV51CZZmR+QXvHfdBHz2JLTf2nsKY94HO45BCdlJxEUlLmSX9GrP/DHfG3hnhPHv2DK2NVpdJ2mpScyUJVSdjpEuROa5isN9fCBXWZaGVFN5La0hpjH3LeGz3HG0QSW7bMKTAvl2myK+wb1AM0ZqjAEKQyFEMwwfDSOK5D86XjbYu1FKx8BSlpvmg4Um99s7Yt6SHJSO/UWFZ1yR/J72nIiA1zQAGoUo80P0J97HbwOfYhqYFLUpdlimCT9HEHQXW1nARbHHu3++crh/odCYhmZSek2NKSqkZ7x157ZslBd374Ob0iFoK7mNS2jJFMgeXpP2mQfHwlrc9r1nrhk0ieZGCiDA8hcAk5AceSfmHwXbZpwifH1x0Utfuee6nCCeAmFGZIwkyxDypOUvTEQlKQKUgRdO8pM8Ye0hRSvI8WcqTTfOz5YgRmZ8oBTUfI8eIIEhR1rUhRbm/bKynFZFBaApgGjpJRs1I9Bj0MSgimAfSFigXRn7KvD7coYCUQi2CjUjyW4QShaU15Ar22+d8cHtmeXyFe44n0AjUe9LcCiMcD2HVAuKIK1orbD1TDAKWltfy+bJzaktG6ctMC1BhbIpZpzR49uwRb371A155/cT1owcCMo9FbUl+2m7sGLouKRY6XL9yxeVu4/75oC1CGBA7ZTFYAinXUK6hnJGA9njjtW9yPv8938xvfPWOX/iH7/LK0yu+89NPWBallYIZrAWsFvq18Y9/6x2e/u2f57P/5hPKo+/mD//ZH+SNN/9j/qt/8B73ZpSq7Jcd1uBX31n5tfff5uXXdj73BytXi9JaUEpQtIHCfmf4osQgxc1wojq7Be6FKgYaKSrO/3IvXC5nrppxwem/w3DNi7YgIZSSYrFUoezOZpVuTnha5DEMkTbN1KSGi7SZLtjJVP3C6QrO50HsA3On1kvuE1FAyxzbkSZpQ+falCMPTrWx2054petMXRj7C+HWSXKbMGSmGzh5c621UNYVVeF8PhMjR2iEKD4GBtRa0ZJrmfuYSRuChXDpnVpr7rPz/ciDBqkCDyNaSEPA13UarUHfdiKcGmk6o5Mgt5FAeKvICFap7HvHAhiOmzBUQQXVhmJASSF8fj8JwIYRmudq2idU8RcGrEY+RKHTQCjkOtMtv7+UUnARSqK9ea8nhJz3fN4yiBS0aaLHDwkUYWCWCRk694WSJpGUlteFkeS35zgeY65j7jNBg7kLzPVLoYjAYK4TydjryHUvZppNlYKmd0PYfM3IRJEgcr313GtjJqA8jKPQKjgVsRxzFD0p7ip5vHP0TMFDXqwXUiri0yDRaQ30PE6C/w7jOA3uvCZy/IiFpzHysNEcddTvUd8o/YzH1/8BPxGhruvRzxz9zNHPcPQzRz9z9DNHP3P0M0c/8/HpZ46Hno466qijjjrqqKOOOuqoo35HraeVfvch2+1zot9TY/DkZHzna8a3v2oscsu4wGU3Lt252JgpSdDqwpBBEyVcGINJzhpg2FBiOD6b9t0cG2lMGM4YQg14dFX51t/3lLZWvvrh4L07YY/G9c1CEVhEuHm0oBp8cD945y54/964O0NIpV4FbZJDrhUtBfNsdq/awrBguwSbpWDtdWGtlavamOPrGZGx1DAbf0+xp9SMVGcE932j957kVKmEfFkBNwAAIABJREFUCEspc8TCQhDUUigl2LaN2/sLl/POPjbGJCKlloxkXk+06ytqWRAy1vr+7o7z+czoKbKEBBLKup6IJaOx67qyljUju1s+kCUx6CNfc++DvSdp/ujpU0QLtRaWZUFntHaYgWUbnjSW4aOzXy5sly3Fa1JIrqJJ970YWWCMPpJ7dcP6oO87Pox6vbJeraxapyA7o5+BYUa4IcMYnvKujQHmvPLSy1zd3KCl4ZZSTYQhwaRZJxVNilhjGGPvKMLjq5ukeEujtRWtldG3jB6fBO/DeIWIjBXftw1tDZnnsLak7lyEMjoWjo8c6+CaP7efL0lTAzfLiaKaxJ7WBCLHoJulaOaWNKAqbVnY3bm+uqa2Ri31QdUhPDUVEzAVqjBj+SfNNmXw9eYxIiloSBHKw7+PwOd1HgLSKjEGDvRt5/Hjl5PLnhBymhrM0R32gnCF/LMg1WchTSkA8fJ/EaJK0TxH5hP8nryaCJd9Z6mNF3BdZCS5mVFIIVwn1SyasPq2DfbRqe2UIlzRFMpUcE9xaERQtaBmRCkMG2CBG7gFow8Ke8bo6xSyS+DScE9anEhRTVPLSxE0PCPbIxg2rxHN8ROIE/YwwCT/d5jPlAA439/x+OaKIsqwgTvoJGEplaiGWMdtY3ieEw1yrEgfRM3XNwMtjnmabqqRtOc0dDJXPh/ivLu9cN8qV1cn2pJUY4QjCO6p+I0BUm2OllBGFKQ522UQa8bfi3qSzWKsnoSsIKgWagnMofekq/ex8/YbZ77pWyraCjrJ6cCoKlwuTt+VWo2l5ToJhWefesKbv/oW+03h+nHBfUe4Rs2JfoeIQ1mggcojbsz4ts8Ef+z7Ps1P/fXn/PQXvsrjq8anX7uiVOWq5DW/uHAaBbty/pdf+m2evPzz/P7PP2F99dv5gT//Z/nqh/81f+vLt2xRcXUu5w0/NT7c4K994UOePGt8x7eslFWp1vA60BKIO5d9S3OnBIsHUXPkyPOLsRnUmgR4bXnsrQZyumFc7lnLToxg2CXPoyge88FbybV0iaAXYTiYCIYjMhAazsA9RdEcRpPEcbDM+7vPfcPp0nAfjN3InTTNARkDqZValFpzXFKUTD8UcwqDzUkavRXEk54Od0IcbOTIlj6J/WlUmieF3GSBgPP5PvcAtRzTIDB6R80RrahWRnTCncxadEbvlHhIt8gxOy6goVSdaRCRCQbyMF7CnDGC2DNhRWugrVCkQpU5+mTPlINhsPzOsVae5kwUQgwUVCsSgyBwn+NX5oggbI7GUWF68wxRJCxFbmSaC0ziXTH3NL01kztC0uQNTQOlSOQeNNdJNM9ppmv0PL7TRLduRNH58DUkLexgaQaPPjAbmWhSKnP5f7A8gTR+VCAUHr7YyBj592S+D3NqaK6HEZSqFM11zyyJbfxra194LphmAElth2ZSCiqo1zQkwxgRFPKNjQiYIzzC0wvPPYFppAqlKW7+YrzFg7kW7rm/CXTPT5j5Igese9Q/v75R+hnRr/9DT8DRzxz9zNHPwNHPHP3M0c8c/czRzxz9zMeqnzkeevpnVETw4z/+4/zIj/wIV1dXH/XbOeqoo4466qijjjrqqKO+jnX/7puM7Y7iO4+a812vCd/5qeAxg37Z2c/B1geXy87YgxE7fTijQx/K/ejcn3f2fbDjFE64GDHVOJegnIRHUYkQhld2HVyVwRtvX3h8/ZTXXj5x68G7b+1stnJqhbUqVQprSyJ6BHz1ufP+nfLBvbENWNdG1QfhtGSTqUrVSmkQIZz3wh6DEdABRLheGtetwsNs+XCaVEyyPxrOi5hjAsYI7i9n+hiIFrQU6hRjlnWlaCXCKSUjvM/nzu3zM9u+0/uGh6FSUBVaKVydciTDUhoRzr5t3D5/P8dFmOFhJNNWOZ1O1NrQVmi1UpcTWiqtFnBLQtWNsfUpxDsRws3jxynyL0uSzQ8N+/ApQuQoDpAXBOpl25GacemlKEVrkpWiaJmUUymUaRZM5QAzYz0tLKeVpg1KyxEKY4BH0lVmhKWo7e7YNBgePXrMclpBwaInHTUMM6ObpfAqOcohRHDL99q78ejRFW1dJ7Wdow7GfsYtkjqMwPEULsiH2EzI8RNro7VCWSpVCxaB2EhidvQULyQj932MjBzfOutpTTWLKeJixMgEgOE2BegUdkSEu8uFy/09z548ZamNWmvyvJLEuRTF9n0KgimMPAC8NgxEaTOyvKhOyjhFlHyd/P/DBjY6fe+c+yDcaMuSQtR8mE8E/Gs8NRaekd8RkwgPxn6hlPrCKNKiiAR935FS5++alPL8fxGehtbeKW3J4xB5HIYPCkllt4e470hxzPvO2C9pBmjJ+zHBYB70INEkkmM+hKgiaW5Zil5J3He8VapUzA2JHMUgFlQRvBbcoJBCvqC0utIvFy6396zrCZckCEWUqkItC+ZJ4AsyR14o4Uaphfu7O/zll/Ig6KT/JMPjRecDk6pIW1J0tI56Yakr9+NCKSWJ7Cmihg+YPx/u7G5sl8HoO26WIwnU2My5lgdhrYJWouQxKZrnwxy2CFZN3rSUyuY7WEWL46MjaBLxLXI8RYmkKQUslO1+0BucrhfefvuWZ69fU1UJcTQU2wOVvGa2C1xdB6VKpgMgaGtcv9LYzs71Kw8GZZujQo2wjmoj9AZZryntVZ5dvcP3hPPrv/U2/93f+nV+9h++zZ/+3td4+UmuPy0EM6FV44bg1o1f/Lkv8ejlX+SVz77Mo2//PD/4597k3f/8Z/jiGzveKsODy3mjD+e3zspf+/n3efnZy3zTJ07UAlFLvi/Aw7m73Sk0WHJcQfQcd3rZlGFBKwrqLKRzpkXYdcU3Y4mM39+m6DnBXNzSLC0qdPUUwS3NFPeH8z/FYmGudc4gI/gVASkosNSGEoyhWA/ML6gGQs30/ymnZkrEkkaUw9IKa4H90ikO1JpjWnoK+Hl/ZZpGmSJwxv5PQ40U1JdlIVS5nO/wfiFImrdoyfU2Ru47tWAjkjSXTLXYRqdFUHLVSBO45NpTtVIkjQtFwNLCVjX6MMzJtQrHSj6MXKpQNPA+iBIsAsMCap2mbUdsp5RGoSK5AiA4RSpRAnyO3NAc02Fmc23VaSaQx3IumkIS0+H5T1GAkSMwXBQXRTzRaNEcC+UySXuzBJglDf4xDPfc4zw892YVRNMsipqpGg/jI4h8b2Ep/MvcD8pMyYgQhmQCQpC/h6KowwAQp2qusW6eD3bP8yPkuhc+neu5rgtBhKAlP/PDPpGpLZlAgfLi+vX8QkWEJEXujolMIwM0HG1MDj4QTXNWUHxYbnyS9HR+7tyf0rf5/wCNPuobqr5R+pnv+tZP8oV/9BvzO+bXp0pRTqfT0c8c/czRzxz9zNHPHP3M0c8c/czRz3yM+pnjoaffo37iJ36CiOBHf/RHaa191G/nqKOOOuqoo4466qijjvo61bh9k1WVb34K3/2pwSeuBz52zvvG5RJsvWMDvMBYgsIVy6NCm+KShOK+Yxfl/nLmw/uddy+D2/POZQue750RgfuOBlwGeA+ePFp59soj1tJ48wPjbAvaFq6uF/5P9t7117Ytq+779T7GmHOttfc+59y6t55UpcrF2xHGqYQoRBaIxAgnjg2YON/yH4EEn6hUBTkfrEQWMjiKEikOjxBIeJgivIJtYR4xClVU1a17z9mPteaco/eeD33sfYkUsE2qjKoyu3R0ztl7r7XnY8wxVm9ttNYE41CUq0NDJFg25/O3zucfjLcugmjlcJiYBFwFogyLdWgIz64qW4eXD85izkN3LJRaCs9OSiuVWgpaGj0UMce2nsrfcMwC1bTR39bOeVnxcObaKDXB5dYqdZqYpxk3o2gqRs/ryvly5nxZMMujmuqBUgZJME9M05xKINtYLwu3t69Y1xV3IwAPRbVwbI1SBK3K1BrTcLOaWwMcBpCfCkujX1aW88rhdMB7h1Ip7kRRzIy0XR5N+VBVddvYts7l4QGtJa2cIYmBWiit5mtC6Vun+/YEZroZl/OZ6TBzdTiltXzN80xlt+Q5WcYkrD3Vt+aGdWNqjePVMQGRngCIkKTDZb2AJIieX3dskBnbsjIfD0y1PSlplVSSRyIgWLdUAitDpZaA7Mu3Xw31fmDhtAg8JI+xd/qy0m1LdKwo+MrW09a/FWUq5cn2Pjxw8vzMjehpte0j+sA9ePVwx2E+UFsDTcVrIk1DITyU5+7GEHIDjoRzuVxSoYgQAoeppSU6Cfbnuaay3brh3QjPr51OpwSpUVyHqm8g8EUU0ZLg/vhygj7CeVk5TIe0BlfQqjCU5WhakYdAmdpQPqeiTYgnxXFBMfJYyiAgRDNm4VHJqwzCyHrCdyUPxKzT1zUJqqJoGUDrUAH7UFtnkEzP58BjRFo4TZ5OKN3YFCqCRRJBhD2Bux7wcD4TeMZj1ASuwnuqBMmHJAH/tJJ3EgBe1y1dBTxS8T8AXxiAXxg21OcewaMN+vEwY+Ec5iOltlRVMrR/ksB9eL6viKaC1I0QpYrRPaM9oge12lB0F6ipxq013SeEHN+DruJ4EvraidJAwAA1cA2iJpWGBm1uNA8urbP2zqFW7u/vefPzrzjNz9PSPlKp2DcoZWI+5LXsWzDPE21OYu363c95+w/eZHlrYfrQAWl1AJ2pzI9yQOr7gA3igarCGx/Z+Csf+zy/+U8/w6//7pu85/nMv/eNjevjRNUck62mNf9RhIeHlU/9z7/Jt73+BscPfBvv/9h38bc/+1ne+u9/nX/2tjNNE+f7hb526umK33rzlp/+pVu+9zuPTM+UMuI8mjpHmXGDddkQN0RnpioZQxPC0uHSA1lTaarArI4Vo7VCeAExbFPCEtR2EUIK3STHKJ7jeYytpPk8VbUGFoZoECqoK4KlQ4NnLEpEDPBX8GhEH3b/5JwiT9EmQtOKC7gL5h0XQVtB1hXRluC+dFAlerCtgeFoGO6kk4HmXJnPf0ZMHKqg5Yrzg+DbApGuEqIDaB4gOyVBc9sCVQcKbgGxpYqXjN3pIhmVUcf6MYBnUSVsBQmsO9sW9G7U6qi3JKxFMyKCisWWxxhOLQWTeFJ+E51SIaNWCgRJw6vQx/zRasv1v/f8vshwxogB9AcSQrjl8Y/5XEZEkQyQPKO1eCJ4pAy5shuP0z8xoousYN6fXDwiBNss14aSBGkhoxo8GYZxPkH4lmuBlpwrJMH9/hinIGPjtqYrQx7DcMDIL4/fWQZBkcetWnAPiIJIOmCYjaiTx/E31iVsvB+KaowIEQgJuvdxrrlWlmRPiR5Qc87T8XlDRZmmgkSwrYbZIxFOqrGHEnyvvf60+krpZz76oQ8SFD71W7/7FJPypS4V5XQ87v3M3s/s/czez+z9zN7P7P3M3s/s/cyXUT+zb3r6Eyoi+OQnPwnAD/3QDzFN05/zEe2111577bXXXnvttdde/zrqI9eFr3lf54NXF6baWS6GLZ3z2nm4OLfrhW5B92y4l7OxOaybgSoihS1WsIZGsETaJK+hdHWCAfJqggs3B6VOadt/vwq3SyNkpswJCLsEz4+NZ4cEO28vwqdv4dOvYOkTrRTmatQhVVKplNq4mPPiIMxauJw7iwmLCeduGMrNceI0T0yNVBaXBgEtCnMJbp1hPz8QXISHZaEv2bCXMlFqobWJNlVaa0ytJeAuMUDMgHDW5Yz1jATQqTLVmXk+0GpFaknwZO2c7+65u7vFLJXAj8ARpaSiuU3U2jgejxyPhwRDCyiWgLwW3DvrZeXu7mEodydqmyh1otaS8QORgPUjiB7uqDsGrOvK/cMDx/lEZktAkVRmlZqRCSLG1tds2gdBYO6sW6fOE/PhgLRCiDKVCbcNwjP2wzwBbEvg26wneClwur5OxNkSWH1UhHt4WncrCaypJsi8JfB5ujoxzxPaGloaSIJPeW7QPa+laBljNHVYb7/9ihj6OImgQCIPkWp0JOjRB0CbQKhZT2LCfKiiQRJJISQB3HVb8a1jnuchkVbaq3eiG8cXxwR8HgE0yQ14lCRRvI/rCxQpdIzYOstloUyFdU1FeleltgTjBpUzAOlET0oroIX19p4Xr732pKQmHlW7ludVKhH6pLRDISzRq3XrXJ0q8jgWJZ8H1dS29d6HOhkgEpCSoG9Lqss1zy0sIxyktSflnrkngFnkSQD3GLdQtaSKkBHf4XlcWAJPUiph21AEFkIl/5YcL26GmY73LMOSHwSli+d94VHTnQporXWAWuNcXRBN1Z+PWIlSGuNCJGhoTqsVs41+2fCpE5bkTdIKeS/cEjx8JFIQTaX1sJLXaaZLoYQQ5LknOSe4FrQIlbx3XpXJlfPm9GUl/JAkkYHgrGuwWcYzFNURoaL0nsTYumxMpdH7PboVYgNvwFwyxue8MM2NuTaIYFLhODW2SJX36dkVb3/2Fa89O3C6OtB0pWsSeiIbpSnLQ0VQShFEez4nbsxXlfsv3HN8/UC7UiQcOVyDzqTP/33+W45EGOX0Lr7mL3+I7/nswo/8+G/wC7/1Ju99ceAbPgSHemCuj/d3AK5H4dNvveQ3f/oX+djffAN99jG+/tu/l+/7/Nv8l//LP+fzl460VMyf7+64vn7Gz/3OHR947Qt8x7e9xumQI1kZzg83jXtx7u4u9DUJm9icvgTbZvSLJ5DsjkWOh9XS0cJWJaQw12DxTvdINW+ZiKhsDt3yWZvVqS3YPJ0Fg+ByuXDpjmo+DyENHU8aKnRL4vURMbXIcWbWierUKogY1kFLYY0YEQhJBmYsSgLcRTSV9D7iD3C0QO/Gw2VJUlFG9Iyk6rbUivUxT+cSCSi9rxRxQguu6WKRLgSClALRoKf6mqEC9p4Ad5iiZqBCtIWMXYnBZ2bkg1lPVwLrmAW+OZSV0gq1pSsGpdHKRMUzLmbrrL6BlIwYAMJzHohx/ijDuWM8t4PMEy35b4vhsvDHrrn5E9lZyHkw5+0xjoZzhduGh7IBWpJofJzSxPP8QocNhihSBmE0wHEPy+dUNTdjlPJECkd/JFvzZ1fxXBNKoBTCwMVThawChZzvLSNxJIYquQaYJHGtOdYfHVCSGMp1sCQFP9aZMe8IQG5qSBIkldYEOS7J+aFIkmNhzkisyWvtnhslYijkg4xwaorOBXWw7vn5YJxnyRV7r73+xPpK6me++Ws/xPXc+Jlf/adJ2n2JS1T2fmbvZ/Z+Zu9n9n5m72f2fmbvZ/Z+5susn9k3Pf0pZWZ84hOfAOAHfuAHOJ1Of85HtNdee+2111577bXXXnt9qevbv2HjKCvWNy6XheUM69pZvHPuG+saLJtxts65r/TN6ZuwbUFUSbDMBPcVomPWsEi74s07EcK6dopWnr92xTw1lh4sq9LjiLaa6tAQDqq8dsqk85dnuN+Uz7wSXj5AF2GeGgdNhWYIiFSaCnUKjkWYRHm5GH11zt25Mzi0xrtOB05zRUqC7rUEE4Vu+XM9s+yemlUz57Ks2bjWRqtlOENV6jzRpjkVywTbtuGA20rf1gR61g0taX2uqpRaU3nZKqJKXzfu7u/oy4XuNhSq2YTXOtGmicM8M02NqaWSOiIIDdR8qJac1c5Yd5ZlYds683xgPsxIyc1ZU6tPqluPjvEIFjsh0JeV+4dzAsvRaa5p+V8LU62pIiNBFBVJq/ihIL6/PNBK5XTIe6ilogLmG5CkifeOead76nu7p1o2Ijg9v0llGJoK2XC6OVUGOCsBnlbjEaRquW9cHw7M84HaKtImtEyE+eBWCuftAUMopQyYQojYuCwry9ppLckoUUFqKsryF6QtunkksFFSyasB3Zy51QRMWk2Xr1IICbw7tm2D6IlhzZ9g0uWycLq6YprnQdYAKk8RG+HypHpMZS9EGAqc15UoigukDFvpZkirqVomCZshKwNpeb9Kgv3z6YADVQIlwf2EeBzEn4CwEEa0gGLewTxt/yMo8ngNE6txT6UtHk//d3e0KLZ2VIVaa9q7h1BrGersTHd4jA+IntEH69a5rJ3NbCjYE8ivoamCdk1VfiGVxxKEgqghdaI0QQewHULeuzoAe5Ek0ihpcU9eRyEt2o2g1JqXTwuJESeB5l1xGbb9WkgdcckIFAnmw4nDobJ5x0OS9BrkQjJbCRhWTQhqVRv26wl2bQPkK5JjyNzTBr8ojhAlFaOUYGqOW6pg17bSlzO398JcG+sAy22AeiWCVlKBbaG4gUZn6yv33rFt41mZuTlWIoxlXbjfnKpwMmebnEMtyBRsDxsP60othbkISzf+4Pc+z/vec8NhrtSmlFaQYkxRKMWxe+hbJaYlI0UaXL3rOfNz4/KFFVFHPahtQuuUalB/IPSAkBtIKZXTe76Kf/ff3/jDz97zYz/12/zCb36W97/2IdprnbnWfNZNkAahndMR/sk/+wzv+vmf4yPf/hp683V8y1//Pj795n/FP/i1N3mrF25ee4O1B5d143B8xv/wq7e85/XGN33zNXPTjJ3RjMIRCbQpmyvdhcOD8bA4hzXop6B36J6K5rXD2qeM/LHKZVk4bytKxxdnI7BtoUrQpFKr4sXZOogl+J7AMtwcJ8rFKQ20FkQajqZCWEi1vqRKNoHTjAPyXjg/rNiyUNuG6kREo9YkAkU1Y4I0Hh/EEeuSTgM6HA9kkAJG0HsfUSwtXQooqCo6K5iwWkcDtDbMB+kXPogAB69YOForpVUogvYEvx/Xk97TXbGVyjzlvOHhrNuZgFz75ol1ETYzSpGh7DW6DYLUg1qCWhtWUm3dtEAT6EENYes23Ake+cDAolMk17iMvGk5P4ZT3HgMvend0vXCPefix4oYRPSIqnm8fpJrj8QgAkh1sJIki4oiHpiPW/E450A6NgwHhrAkGyUy6qfkRUuSU0quayQ4r5GK8ZLTVBJDooPoycn3UdmuosNNI+MndHyWisjblnEkDkbGVJB/qwpehLCMPJIR3aP6SISO4xWogzwiHl0iFCeJXEIQdQq5BrvKWG+cLo5YvlRE0qklxvED/GuM+trry7O+0vqZD37wffxbi/Gr//h3vuRRd+5B3/uZvZ/Z+5m9n9n7mb2f2fuZvZ/Z+5kvq35m3/T0Lyh35+Mf/zgiwg/8wA9wPB7/vA9pr7322muvvfbaa6+99voSVr97m5cbbGZcts79stLN6IChaSOsQZXKsQpeglWdWpW1G0HHNmczxc0xW1hNWG1l7VCb8N4XR26uDqy98NaDMR9PPLs6EgrLkurVm0Njrqkce/PBefNeeHl2NgMpheuSDa5kZ4oXYWpCk6BWoffCWwssrtyuG+bKs9OB157NNJ2hDBVz6upwnM2Ni3U2B3MIKZg558tGALVW2pSOTnOrlDYRUhIo3ZwljG1dWdaMddi2hQinlorWRiuFNk1MrVFa2lT3zVj6Qh1Nt7pgksDMNE20NjPPM/M0MU8TZW6IVsR7qovJxntbNpa+sW3GcrkwzwcOhwOlNWpriCpFM8ceGaCTB7Z1whNwPy9nytxodUIiqCSAUlIflgroPqyZJQGe3jeWy4WqyuFwgJqqrakmcOExlNC949YxM3Rcb4/AJLh5dsNhOjxZjXs4thlCwrE9HA3G8Qdu4L5xmmdOpyMqSiCoNkSGzb93VlsIS9W1eWqzlFRF39+eqVMCZ6VWWm1psW0+7suGbSOaoOk4l+C8LhQplFIS5CmpxhMUt54gea0D4MxnynoqoiG4ubmhaB5HaAJ+VVK96ir4moCUlfGshRBhdOvMh5lWGiapNFMtlGAo1hJgMk9Cpnsqss/rmXmeKcOK3D2vp1sC3IImkeGeABkkQO7Ben4YsQ2wWU+gCYYiT0bMheMSI09AhqV8WpTXaaaNTYI+7ODLUBU6weaeMSQRCWCq0KYDpS6JUqVEE5N0XWg6VNyaqmpEUNFUHnaj24bbxtZXTnJ6pITAjRTprUngbSsqQcSw1g9Y3el941DLsHVPlbiTDgLypLzOKA1zG3EPIKocW+N8f08rykWVosq2rYCkWt+DMlDJzdcnBbyHgcPxdECap3p8WLl3MtqhaGJjU1FwxaPSe6e1yuVh4/Of+SPeeO97mRtUlGlKwquUCfqKFKeZpgoxhFPKETk/rLy6WznNjUkKboaTMQd+G8zHTszOIQqtTCwPKxfZWFsqbW8X431TZb4+MLWMz6hNaLNS6oizUEGqI1KRIpQxf656y/rynvnZhC130GYgoBzHUy/AlITBNPH8wx/lu77TeOvtC//TP/oDfvm3v8B/+O+8h9YK86zIGgSaQQgNOMCnful3ef7e/5XX/80T87s/yn/8vX+dL7z8+/zD3+7I9TUhyvZwS6mFt8o1f+9nXvL8WeOjf+GI1kBrXs8DE6JwvnQmZpoUKp2HAKsrq4J12BBqBIWKmbyjJFWllbS6X7aC9dSQxlDYWyiuE8niSM5fyWJxOimXZcM3T1Beg4iOlgpS6GappFeoRdNkQBuC8HB/YetGKRtNFIuVUguG4iGp5K2FcCO8E0qSbpFuD4Wcj6kNFckIAE9LfiQt/3M+Ug6qWM1YAvOKmWUMT6TrAKpUyWcJNEmjku4Aq3XoQq2pEo++0tWZ5pmpZgTUtq1J6klhPswUc3pfkWJgEGNdgg5mmHVaaXgbOl7NCBctPZ0VLAkGRjSQE3QbMRpkzEhRyTla8nR7pLtB1TqU1X38tCRROlTjWhvaO09+EeFDWSyIVBTHchLJZ/JRCR3jd4+5X4mcx2sC7KmgTmLReh9kkQJlRCCRQLs7BU9uxgORjtY59ekehNkA9DXJTPWMw7GSLikl54k8x1yHQwSTdFYIcp1RVbQKEkmMgGS8wyAI8uRTNp3OFDL490iFv4ANlXSIpdI5eNpEICFEdKQlUaKDoJZIx4rHKKS99vqT6iuvnym8+33v5Wu34Ld/53fHnPclqsgNR3s/s/czez+z9zN7P7P3M3s/s/czez/z5dPP7Jue/iXr4x9ChACdAAAgAElEQVT/OBGxR93ttddee+2111577bXXV3i99daZde089IVtVe59xVawcC6bs/ZU7WQOPKQwshCRdscqjXLo4ErVGZeObxUzUBOuXhxBK7cXuFuU4IRboz80pik4zoWpKCbCy024Owt/dCvcXgKVwmmulHBE034bFZpmw3pVhQ5sXVm70M0490DKxIur/HNqE2vkRiXrGyLOFpVuwsU7qwvWjc2F89JZ1k4thVoLhxFlV1tF0QGcrFy2LRv8INXk64LZhqgytTmB5Doxt0abGvOUKrHLcuF8yU1SYoZFgsyrOcf5QKuN0vJ10zwjLdW0SoKjqoH1tH7f1gsP60rRwtXVidYylkHLTEn0JcGSR9WSpFLdBTZzzpeFOo5VB5Cbwl3Fem76gnfiBsKD7sa6bpRSORwSEB7++6m4jlSK995Z+4b3Tq0VEPrSwYPr5884TIcni+1HRVm3LZ21St4rkQIDfO7uqCjHeX4iL2pNJRvuSBjdN9w7QSJfHoF5Z1Lh4XyHNGWeWva3mgRA9I6QyrSIyN8tQmuNHgmuJIBXKKK0OsaCJrhifcV6RiyEKDLeJyJjKw5XV2jNseORCuWC4BZpD46TENawo5cEqdb7B4jg0CbqPCcwqAny1QFwAUnm9Z7KOncCp19Wbl57N7SCdRsKY0M8gW/DEe+YKmqPtuJABMtl4fp4SoAqoSLC41H2N+6zjugMJyzHi0squUub6d4Ji/F8OGffEkiM4YVfChHOtiURVbVwPBxQKYSTRExt1Hlimhql5kZD645iLLZglgSBeL7n/e0tQsZQqAp1mjhMM8Ur3QLbzoQHrdURoWLYlirwrgnIqSaopVpBKyJJlUU8PgOP0S/5LM7HI5SJVkva65dKbW0QGekUUEZcyyE2IEmJy/0D1o272zturk4ZadIa5p2KI8URbYMsUrRNaAiqQSsV1cbW7yiqXF3NaAhtqky14grbKmzrwjQnkCymJN1rHG6c5f7CsnaOVw31YGqwbk53KN4xU9wKh0PlPa8fub1bgaDVwuoLb729cJgU9Xw+a2upXPRUhIKhHgQdUGLphBjT8wO3r15RloUaTm0vYX5G+IrYLeiB0Ak4odGR08z7vuGev/FdD/z+H97x87/1Wf7C+6/4ix8utNagJVEYA21VcV7Fyi/91G/wbS/exdVH3uDqI9/K9/2Nz/H5/+Yn+Ef/14WYGhLXrOcL89UNn7Zn/OhPvMl//p+8wQc+mMA4RYgaFK9UC7ZtobUJPQlNO5dNaaWzdWCFomm9L6L4FrThVBClQitMYiwl+YBOsFExz3kAJAF7MWSkDjQPmAvnpRPbRmv5XIRLkhgCW+90F0yglprxBlW5uSo8nO+wLTfy1toSsO5J4GrLMb7RETdS6O+oFiQEo1NqJRhkGY/cXRKGIzeBUipSGjqouBo5p2UEkHFZL7BdsMzzGVCv4iNSVobS1UMGkeVczhfcYJ4npBS05LHH1vP8iiKt4g7ulgrzbqy94yLUSJA83GitoVWh1oxV2TZcesajBJjlGu8yiADf0DCg5lqoJUlYs+FgYahWQiTXGM/1VIbq2MVSUc8g2QWi1Jx7CWys37lm9ORXa30iFdDHa6JMrWSMUng6RXQZ80+udaGOyIhk0CTJYsyjgef8zpijH6MXFDAb5LsgjKicwQllGkiMqIYyJNIZrWT5lOEKeMY16RgXKpAMc4L4SXqNz4rRx6qWBOqjqjngnWiLsVbmZnRGPAT42kEfSY3H4KEY8ui99vqT6yu1n/mmr/8aXn924ud/5Te+ZFF37sHlvPczez+z9zN7P7P3M3s/s/czez+z9zNfTv3MvunpX7Iigk9+8pOICD/4gz+4b3zaa6+99tprr7322muvr9B6db6w9ATXe18IE+6WC6sFRMVN09o+st31HqwGy5axcG5l2Jw73ZWuwWuz8e53XXE4TKxb4WGBzoF2nEEKWmGujdeuUk13drh9EN66wMuHzrKttDZzEAhxwLHsGplUOB3gOAnbBS4rdHcWM+670+aZ997MNFWmmkCGm2WzK0KJyrJ2zsPq2yPy/BfHLZhKoRShtso0zyCpzDU6ab/dkXC27vR15bJuhAin6xsOhyOiQlFobc7NU2UAQZZZ8HMr1IAl8lq6C/PhmHEKLVWE0zw95cqXUtARsdCt03vHurH2jWk+IKW+QxCgCVb1DS2CQXbzEcOK2TF37u7uaTUJCN86UQT3oJSKiyVA/ASgByHC5sZ6WSginE5X1Ks5iQuHMuycN9tGPMhQkRalaKEvK3hwdf2MeZoRHd2+VLSmlXU3TyV5S9BLtCRgsK1EbFxdnZAyrPZrquQtwGIDNiQcF0XCEEq+3la2ZaWvG1rymooWLFKl2nvn6VAiUnVfShIdwOV8QYbST4eFuiJY3zBLS28zo8dQ2Ukq0SVRd67mQ5IIw9W6RoAGm/UE1XgkSfIap6jXOD88UEvhfHdPXRaiFNrUkFLZ3BNIj3wfhipNCLQIy2Xl1Dt211PRHkkEoJoAt9YE1+mAPEU69G3j/HDh+sXzYZ0uCbppAjlJJOV5hEH0RPrij6nXr58f8x6RABaPyj8tqXKcMw7FLe3VlaDNBYmWimUswXkVqoJvWyrd2wGdJmxNYF/DqQEuMn5FodXKPOfYmqaJ4/GGWhtrX+gLrOuF4+lAnU4IQreV5dK5v79PQLQH2iqlNnhURJP3sWiOO4+ci2jCdDyCK8fDcSj35B3gcChBkRwzNlSZUyvIYWbbDB/kSZDEiwx1umsqB3McM2SrjtZ0UZgOM1Lg7bsHXtyc0qa9B16cvpHxNA7b1ilVKeJI33BT0MLVdeXlXefqUJiKJLFZHx0UlIiCA0WCqxczVzfKcrYkwE6V21cXnj1vxNY5RqUgTDrhCqqOSBJ6iZim4tG3jWLOfN04f+Geq3dXnIrqcUQbAKI57+gxgUo9UG5mPvxN8D1/9Zb/4u/9Kj/5y5/lfa/PvO/1mscsQSwZS0Qo10fnzftb/o+f/RT/9rv+Derzv8wbH/tr/Gef/yxv/7e/wu/dOtIaZsbl4YHj9YnfeHngp37xlu9712tcX8+E2yBoBMEBw/oKGsgMLSCYEJwCLOK4p5JUMegVNcV8xYYKdZKgF02rew8QZZUY9vyDnA1HKJgYqj3jRpbA3TLaRgJsQyi0InQPQhK4Vq2DOg1OV1fc3t8TthFjHtJCAt+kvb+oZlSDCEUUG9b8hcAi1wERHRE3OZcnoK8JRA/S7FFhrALaCkRLN4M6sTzc4dZJXn9IjT1dMlpJ1wQTI2z4/6uy9Y6FpRp5gOxBKmeVMVanVGZvfWOqhWLO6qk69uiI51guUVAtVCm0pnQthBjajaIZHeOkCwienzAyeqZSxnOR0Qa5ziQdEmgpoEksy5g/McdV0SJDYRz/D8W5jjiORNeTDCB8vAcjHqPQCTSGMpt0jpAqiCfJnGOTJLUZYUeqSQZK5M8+EvZS8N4Ri3cImUiCRTXy/yXvoaC4esZ56JjEBMzSdcNgRFgERKc8KpQ1P79pS/LU/HEdfXx+8rOH4nSCKkpae4wIKImncVZ4jDeKXHPJzz9PymuRQVvttdefXF/J/cz7Xnwdh1L46X/0a08uLV/McnfOy8Pez+z9zN7P7P3M3s/s/czez+z9zN7PfBn1M/ump3+FMjM+8YlPAPD93//9nE6nP+cj2muvvfbaa6+99tprr72+2LV257wZq6UFc+/C0oPeE9C06BhGN8ECwnKjUCkNEceHYMoCqhmnw8y7XtygWnl5Jyw0rm4OiBXcJ6Ym3ByVUwGXwstF+cIafOFsnB82NOA4VYrGsDvOZrlKggsvTkFV5XIJtgjMnfsenFGeX828+2YGrdSRF28mWDhOoUnQw1kiIwTMnbvLxmXtqVpVpVahlIYOG/4IKNFRFbatY270rXNZ18yRD6FMCWz3zSitJEAIBM66dpalZ5NPGaqv/F53ZZpmynCTatNEHdbwilARoqd9drcNXFi2DSdo05HapjzXlkpMlVS6SdEndWv3BHq23jlfLty9fEkrjQ0GopkxHiqSEQBAGXELCLgE7rAsK6KF6TijbaJJTXKgCuqBbwmu6bCzLy2NpC/rSlhPNZTA0jtlAEdCqna3daGUQp2nocZzbN3om2HrxtXNkVqnJzvocDj3c0q70NyMFgmGaBRcPF293HnrrZeUWimxwUPgJTephXtaXgcDDBzlQXRnjY53Z2qN1pTaUukqEWxu9LWPa10ppGV7SLCuBr5xmKcE46XjpPrQo+Q40AG4maGRQIkTT1EJbhmHEDIwRcAHGVBKAu4Zu7GlLbcqhLAuG/N8oLVUvtU2ro+ADJBQ0Sewikhyz7aNCEPqI2CbY8Pi0WI8gcEE/jWB71ISqFIdSsHcZFjSWzyB7zJApJJgskQC3kkIeFrQaxJDligctnWWWFCSICs6lImeSnbvKwjUImwOodBqo7aJUhQtZajrHcIy5qS24SxQ0ABRQUWok+J3lmQYnsfQBZUNkzYUmQn2976m5T2gmqDYuqypYpa0oJdCThgCWiRjSSxJgB5CFaVNjdYay6KsfUNrpXhgnirM4jlz1EHqxDg2XNCSc8RxOvLw6o7l9Rccp4ab0WveM62VLsJmK7IZokGRgpSgiHBzfeTV/R3n7tTaqDiHmuMnFYrD4cBS0XhoM7UkgFol6OvGq5cbpzcOnB96ErdHhmIfSqTiVCWBVBdFbMPcaKcjy6ue86CUQSIEEWWQBRvid4RMQIHyGtO7v5pv+Y4Lf/iZO/7u//iP+blf+xzf9S2V59cHpqrpQrA6rSg9Gtenzu/8n5/hxc/+NF/3nS+Q+aN89Nu/l//0zZf8nZ/+HT577hyORx7OD5zPD0ynK3729y+8+xdf8R3f+hrzsVCnVHRawCSF1deMitGJcnBkddauY/1zog9lcQQ9KnIIDpsg2wWRCtuWY0wLxdPNo9RUNkvPSAcfCmEPKNJy7pgl58BI5XfyOD7U+QUNyzXQlAqINooUrq/g8nChbwtiHUqllAmNIGpG0eh4BgklSv4t4/kIDdQMs1S4+wClEUeiDpB6EHQ6lLtkHA2W6uM6z6znAM9IFrSivo1InJLPaauYgpsPYpKMHHrobLUiJSMvUMl5LoxahDZPFJUkpDXS4cHHGiCM+TMB+l40AfThbhFSIDpKUAYI/jS/RuDec+7wVEdHTp5oBBXNx1sCKYq7EZIEEUAfc3XGRQxHCh2AeAQikQTU43pAZFRCSI6jocIWZcQnaIL2GkjfkJZkgYzN2uaB+JqqcRHclVIbPo4iGcgRt5BvM76TY8n7eP86iO1SxoKT5IyKIJ3c5BAZJTTeGZfHqAofMTA5z48bRfRHIXM6gGgBj46WJEzKWNsikhzIuJxUZ8sjYa6PPihjfO6bnvb6F9RXdj+jfOPXfpQl4Oc/9etPn0e+eJVuCHs/s/czez+z9zN7P7P3M3s/s/czez/z5dPP7Jue/hXLzPjhH/5h4Iu/8elzn/vcF+299tprr7322muvvfbaa68/W8nWUau0CLquIPIEfG5bxzdYPFg2WLdUU0Yo5s722HyKcnNoPH/thjYL5w7LvbLKgekws1lFSnB9EK7nCircLcoXVuetxXl5e8G3lWMttJoxciU6WnlSpNYGp3mDkNyodAkuW/CyK1IPvP9Z5XpqTLVyqAVDWDzSUr2mhbEjbB16dHp3Xt098PL+gojSSsFUMFOEC6VMoAnqVklQNlyHPbaxrgttmtD0l8bXFT02Wp2oJdWdl2Xhcv/AZV3ovdMtraQlwMyp8wFUqS6UEGLteC30vlFEuagim4EEURTc2NZOOxzSMr9VtM1MQ81FeALNDCWXBxawdePycOG8nDlenWh1YutOqSVj+1RTLdYzoiKtnpWkNQDJ+I3T8UBrE1NRaplADO+dFN4qaiMWQYPoabl/Pp85HY6cnj9DRBOYLJoqLHPcg+ubZ7QyESWgdy7LwrpcMq5hKszzYZBFBaQhRVDrWAQRlkBXPBIxnnEE7tzf3tIeHbtKSTv9Wp/ADLEE5LtnbIKWtLh3McSCcjggwDxN1NYoIhmLcVkx609gmbsTCn3tLJczVWC6eYZoGTbdJJA/YBbVtMM2EdBhCh5CSAL2lIoLlAHWT2WQQKoUTRX72nu+x1AFhgQPD2eun98QRYe6NYFlBumUwPkAeUilH+7DwWyjlvqOulv1iUzpkWhTQSiqpOg9ATYCundarYQmuaThaQ9O2s+HMuzkB9ApDIIigfu+dUIKWvP3uXU8lELJ+15SZlhrYSsV71vGS0SOn1DBvBOhTy4N23ZJ5e2Y52qtCdr7hqKEd6oIYUPFF4p4pOX5UHenCpFxv5Z3QCrPc79cHuiRREKIoCWoGlj3oUB8BBULpbYECbWCB21qPNw/0JonWVDyOXQXKkGEYBp56qpE31APCsHhNLFcbrlbF47HAi746tR5YhPJ3yMKYXgItQj0IMSoBZ6fGnf3navWhto1o0LQvPfmQlXBrbKJJ+FRgqnAa69f8bk/vOXy2oyshj44y5Xlz2B5c3tBiuCDBCtV8ZS4cnrjyHrfsZtOKQ8pwpQ5iSw5pjLyCYoEqddcv/+r+I7vfJPf/v23+MV/8mne8/rMt37je6mzMLeM2gHhyDiHA/zGr/827/rAz/Duv3RDPb2Xj/21v81nP/8j/P1f+xz3HU7HE7d39/jDwuV05L/71Qde3NzxsW++pk0FaVA9iVfViXUp+Ob4JDQKorBKBwoW+TxEpmFkRI32dBbEaaUOF4bIaSBS4Vo0Yw4sFBWjiyDjeeuUHIBTwzfoNr4ShrhSJIBKc4MB8ofGUzTJQY5czpKRNZ7EqJijUnOzruRY10hgWIuCJ+kCCbarphrfB+ETY35HehJumvf1kXpPfDhS3RxBa8KyCoz5OGR833OdElVqrZh2xBwzH/yls24bxYBaMtpBJ8ZMmuYYU0OtIn0jZANTsIydcc91xKtTaxIyPLpqKBAVsbwfojrIGstzi1RwW8qO82ck5wD1BM89Ui3+GA+TQ1VyHo5AiuQapBkD4ZFAO+iTqjk3YudLgyRiFc/n0AWqJmlJkntS9Z3IIYUaqVxOgjYdVnLtG64EEpThZuGihA3gfzg4qArOeE13NOXV407mfBt4Xmt0qKLzWJMMCwYFTZAumaXG09qm8k4kULpMRBIqPkhPybkxoyXy//mZxXKtID9nFYZCfTwOe+31p9VXej8jUfiLX/81BMIvfOrXvqgbn1qbEPG9n9n7mb2f2fuZvZ/Z+5m9n9n7mb2f+TLqZ/ZNT3/G+uEf/mE+85nP8OEPf/iL9p4/+qM/+kV7r7322muvvfbaa6+99trrz1aH6xtUO2zGMa7oFpy74yvYBuctmLaNc3WWKRV0bo6bsnblbutcn048f+0INO4ejEUa0/HE86lSa+XYKq1u4LBtyhe68XARXl2Ml/d3TH3hVGCWRpWCiHKaKlOrCTiT1u+X88SyGWfrnC/OxYUXNwde3FxxmlJdiiSpcXYjrBCeEQmrdc62Yj3ovXO5LKwmPH/2jKpKQBIUWhBNFVCqg8qTUrR7woR3t69Qb4gkgNFKYT4cafOUqlTg4eHM+eGBZVlHTIKh0bEQWp2Z58rhdGSeZ+Y6p9pThNISSKhaWd2warRS8/jPF8o8MR1namnUeUJECa1p/+2Wfb6nFb/bxratXM4PrOvK1emKOk1IVWZPFWSCCSWBSlXEUwUmJcFvs8CWlavrG+Za0WliOswJyG7riBYgFXpDsSsRXLaN9XIhutPmCdxptVAExA0QtJQEFxVU00baSGBFNFWhV1dXlKnREhnCXfC+4TI0Xt5ToWUJZBlpa71eHujrSjsccIRJa6pjI8ExCx8AjScJEmA9gX+AQ5tStVoUbQmeS0C3DbeOWcfcUZROqtX62gkzDjfXA3BJdXHVjBKQkiCViGQcRDCA4YxgbEV4uV6GFbkkqBIJ4NRSScHdiOhw3rEed8fJcT1NM3VovSXSHUBUMmJggFqpwDTcHHqqXr13rk4nNFLNXJ5AowT6FUkCMRwdakAfyl33jtahXBvHUkleRAfZkMpDewLtdajpRD3BoFYQrUT0VMehiNZU0CLY1hHSHWEZKRhmeQ7hwZBfEg59M+oh4zOwFfcEr6eWYK33EX8wgCtEEE17eB3XTCmk1HmAWIw4EBV676lmD2NZL1wPEgMP+uNxRKoeY6j/ZIC+j4rOUgpmxvl85kAwSUvFqOScYwHRU6z4qH5f1xX3wCwo1TnfPWDXJ0olFZ8a1AFkSmsk+rmlSHJs6ATndFV59bmFLYLJIWra3geRxKEEVSUvsipd8pnaHKa5cXxe+cLnzrz+euN8XihvgbyYaEVpUyVaAsKlNAIjI4AaGhtMM7Vv2Nkos+J2RqkEJ6gVOJAT7gB1OaHTa7zvqz/Id/9Hb/F7f+dVxkK868TXftULiirHCdThQudoArNwR+dTP/m/81devOD6I3+V9sZH+A/+1t/ic2//XX7q9+/ZNuF4dc16d4suysPhih/73265uWl83dceUW3Uw4ZvMgDxwllXZBO0pUI3tBICLYytOMmRpGNAMCM6gGgWDq3Su2Peaaps26NutCZSGUErkvesG4mjCm6gsyBbqmKrynj+DWkJprpkNEvCzDl+pAknOXJ/Ftg6sW0Zg+O5eRdNNWqPjUqDmNDyGP2iqcZWodQyxr/j3XAxQpPIQyuqg0iRfM/HOTHCKVI4tJlFVqKnK6KO+I/eDREb8QojfmGQrhRFLbBBIqtDm3MuEnM8VgKhaE1yUvIaBJ2+2VDyCgsdl2CSecT+pItjhCWw3WOsV0lYmD9Sp8HWO6KSnwkoqYIec0AJns4RVUwHIO4+yM9Es0PLAOJH1AFKSM4x4QNgD0sQXSTntEjiQiyvadHcNGFSc82NPM/AU1nek/DMzygFKZUgnU4IHevWAPKH+tvcc/zg+TnHM/JLCk8qZxEh6gD1AzBHzIdrShJGIoKHPSmuwxx/jLMYCmiRVMoHJBHuj0EWGRvzRLwGQ92vT9ci3Ino+dkLkKfVY6+9/t/r/y/9zNd9zVcTVbm7O+PmLOuGapL+CtlPDGcahiPDOyTgmG8QzIPzwz0R8P73fwCtbe9n2PuZvZ/Z+5m9n9n7mb2f2fuZvZ/58uln9k1P/x/qx3/8x/+8D2Gvvfbaa6+99tprr732+iLXP//sSy69EyasOOqKSGNxI6yzhA1gttO7EDWbyVaEHjM31xOvPZvoPTg/gLcr5lPlWAvHQ+XYGnMJHtbGq025X51XF+VuTQv9D744cmgH2gCMDy3BrjYpkxxIQ2rh7uJcLsYWhe6F+RreNU8c51RDlyJgxrp2usyE1gTuBCyMtRtmwtaN82IEE6djG+dSqUUo4hBCDxuNfUM1TfQRoYTz8tUr+rox1YbWVKHNx5nj8YTWAu6cl4W7+3uWy4IPcIUwNoNymChzo9WZWhtTm/DemaZU3haE0MLmCX5O00zfVpbLhel4xfFwZJpKKiwZEQIEZmn9/uhBb73zsJy5XBaWLQmCUmqCuFsqJ+tQsq5bAu3uBuaghW6pdrpcFtrcQBMsr1NNQD5WwjcUoXdj8QGwB3g3lnVhXVeeP3/2jjW21LTS14IEGRFQU/EstVFEKVuOy1d3t1wdT0zzRGqHlb4tT9EESCW6DZWaDJA2wSwEbm/vkZqW/o8At4umSrcIxTSBflKJaQMwlqJczgtaGxMgpUCAeYIr67qxubN5DGXgUHHheBHUK/N8GiQTQ7kmtDJUviJDIZ6vjfBBTATb2nEHGXbhiFKGdXoC8wk8e7ehhh7gjASX85I26Qg6gD6BVA/3GP8W0ARf8MB6aholvbqZjodUaqumWthTFVg040V8qBtVhM0jbcYJ1rXTpinHniewLORrunVUKmE+DjZJjQTmlYFMMR2OucFwPlBrQWvFJdW1lIaieCQ7kKBZkgcSglvP57XoIEMSrC2l4roRfyxGJHkMz3vf8znp3Sia8RROWuyXRwW/CEiqnEWSENm2FUIy8vLyCp8yDmDwQjAU3R4+AK90ShCS6FDJ6AAtyrYtlAKCoQKFkjb9mspJw1PhrkARYsRCTIcjd/cXFnNOpQ7yKKNcpAaooWoJXKdIHe+BuVILHA+Ny+JcTYqHgCqlpIJRSzA1zTnASft5hM0AFa5vrnjzM7dIOSFz57J19FI4HSv6eJutECrUlP0jJaCeEAnas8L65ivseqZMM/iKGCAzGZkzgbQcIxSivKA++wDf8LGXfPfvv8WP/IPf5Cd/+Y944/nMGy+OVBHkEPhaCJwWcD0ptw9nfvUf/iLf8j2vM733W7n60F/ib373d/CZ//on+JVPP+BSmK9PLA9npFb+qF3zYz/z9v/N3rv92rZlZ32/1lrvY8y5Lnufc6rKZShsbIRCIiDcEnLhEkO4CRyHGKLkJf9VXiIlEg8JeSEPCRKQSAGLi4kwIRhxSTDYDmDssuvUOWevy5xj9N5by0Prc52jKPg9qtFUpXNbe605x+i9j9m+b/3ax39xrvzADwhFC1GFIY5Kmh1XOt4CM3LKQSiGU6ywFbhcG5jSek/x3CcFqkJVnVEoQTGlOTTPNUGkGGuioEEUZ/SM1XCcUoTW8h5ayfil0UcSszGl1khxOCSNPalw9hMXrhmdMDIGYUSlSsl1MRp9DLQIFnP6xHCIwEpBPAVb6BBp6IkL3R01x4vnGSXytqctYJBTGyKCUhfE0sTMaQq5zm7D/gXD1LCq+Qz3Tr+ZuBH0zZHYkbrQzbGYEwcmCV604JW389Xdab3n8ywsp1gQec6pZuqBLRgNmWavjwGkKTFwbhEvfUzTUwOTgo88f0S+ND81ALlFUeTZNua/94g0KGTy/qrIjL5AIPgyLkIljaFIBxQx6ICSE0xuZRScaUZYmicwUCLjcgjcDNL2nPclo6Llhc4AACAASURBVHcMGN3f7oVImuQjwAa5/+mg4PMXCUSCojYPkTFl/XwPLRwbeXbEpLNNvyShtVju7WmYg0/TaZqnmudoeNLdb/izShLhLsz5I0Qcv/R01K9e3zv9jPOtX/MDGfO2NSKUWn61fkaQ/1c/4yP7mbbv1KOfOfqZo5/h6GeOfuboZ45+5uhnjn7m/4/9zPFLT0cdddRRRx111FFHHXXUUV8pM6Gi7AIxwDHaaOx7Y/hkcIaAC6M7l21waQVbjfeP7/n43YqK47Jzd3dGloX7U+V+NWoFIngdyocefLHDZ88pMN4VeH8ylmKsi6ElG9FzJZtNEUyM572xdefDJbi68bo1SjU+uT+lWI6m4NKdrRk+BbpbnMHGYB9BTogeXC8NtRS7TZRaK3WKEyNyVLNMOhtScBkO+7bz/PTEwKm1UJaaEQG1YqWiVvB9Z9suXK4X9pYmSwAiQh/BendmvTtjpXAqC0utCEJZFrTYJKWyTS6iyFLYW+P19YKeVtZlYT2tKcLGpId0wAisLHjfaN6J4fTeuL4mEX2+f2QpZY6fnnzRJDbdndEb0dMoUCsMT4Lu5Xql1oy3KIthdUXE6GNDJ/HbA3rMmAFRRu9crhttb7x/98hSa0KrAq0lUapWMlZAQcJhb3i70kiR+eX5BSMF+hGB+CDE8YA2fEpLjeEjYw7CcQGRFIi/+PxzSrEUzdUQ+5L2EgS70aqppeISTEmdbW/0KXAkmZzXyEl6eO8ZO2GTqO/hhAr7tdHbxsePj0lA2xTqpimCyBy5DT6SYE+qONd9qPL58/ObSDREWESppUwiN4k0xOmTjJv/Q6zQ+wsfffzRJKLByEgBpgGhNke9e5AyT1CqESPwyHWqRafX4qjy9r08POm2CEJvo8FjEm9pzlitMKk3iTTnJiCI9/wlwhl8kePjA8SD8I5hLMspzZqYI9fHSFFeFCWwKtCMkALRpiGV5tDeGq3l9IGIQZF10vKOaMEWA9/mSPYpwr0JlJ4HXwgeKRaKQ/hCmBFkREXMmIgxgn3f84wphf16xR88zT2bF42OSHkT2ERSzCRStmsx8DEoi3B9GrR9GgQu2Lpga8aVMGbch0BVmXTlHM8uRpWd66VzLpYGp1RC8xwRbwl2R06zMAm05rVTUT7+eOGzT6/s5xNrnWsjSBOJPCutKG0mPBDCJkFswrJU7t+deH5qfN/XV9qlsb1cWKvhYoSmsC1qU6SE2Ht+H5WMITgX9u9+YHlfsXoPNFSMEE+RWxdC70CWuVc6d9984ff/yBM///Of8hf/zi/yN//Bp/yhf+sb3N+fUsBlxsG4gcHpBP/slz/j4Sf+Gr/1T3wDe/g3+MZv/cP8Z3/4Uz78+b/Fz3w2kiQ9LWyXK6ue+bntnr/w1z/wp//YI9/4WsUWw0zoNt+7W05mCEM1KEuAJD0cSzAw+jaIIbgqLMLo0L1RinFvQntt7K6MEExSJI68xIBQrKI6kGlO7CONA1tg35y2D4oWFCO6z+cVb3EL+feGilGXHZUT2wZd2owjCpZlwdsgojPGYPhGoKiXnFCATJEdasnB/3m+tyS0izCGE/tOqEApqNY0/UiBX5Ek8mMapbVy3bcUmucEArsR+MzYhaLUYkTPCQA6qeHeHI+WUR038y7V95x4IYKaIqXQh6Ot4yOfEW040RpWjGIFKQaWFDHzORDiacBp7rA0o2MK6zEp35Gi/jT9PDLOYMSY7yFjdEBRzecpkddhzPiDEJ2CdxLZaE4iYBrsMKdeCLg31Iwu421izC2SSFEGcxKKZaQNEdPAvwnxgsZIw1kh2kAsp1OKpPEgYxABVW7TIma8UicNXxGsyHwezPM9WXFwYdGaz8YBTZyCZaxOPhnA5zPw9tnDcs2P4XO6x/z3MqMqQtNYn58Z8gES+O1Dy1FH/Sp19DNHP3P0M0c/c/QzRz9z9DNHP3P0M7nDjn6G74l+5vilp6OOOuqoo4466qijjjrqqK/U69UZvrP3ztYVYiQZ5NAd9pHC2IhgNOGDG9jC/XIHY+PpuVLOK+flgaLCw6lysiBEaEO4bMKn2+B5GzxtgrfGR6fg3f3CqRqnZeG8FPbZiCuFoQOhMCQQLWCdJkF356PHlfOqVFtSkIjg5brTvYCkuSCRTffeg0sLfAxet0ZrjtaVaopZUEpm3I/eiEhCLYVNBSxJ1BE8Xy5cLq9UhFoyhmFdVkoplJK0Vds2rtcrbUsieB9JKilJyZ3v7lnPZ7QW1lJYSqWUkiL2JFyJKaWqIQiXy4WXbUdLxUIZAXvvmChFsrkOCdSEsd/EnkFrjevLC/vWuXt8pC5rkleWYkpEClg+RVrxkUKwFgQy/u9yZV1XltNCsTJjCzpFJ/k4BYOIm4AitG3ncr2yb1fu7+8pteY472IogqlipeR4dVI8cR8ZZxDB3jtta1yuG/d35xxjPQCDMUf6K8lk5T9PbUVSyC44bUvS7f58TvNGSRFejLLUpE5HzGs9BVD/Mirhsl25v7tjqRllcotPEGC0Th9jahU5zrqY0IYz+mDRSq0nRDWNFU061CaZ65N+dAILAU+dK0dsD/bW0Vpy3LikuWC1JmkmSZ69gWOmlAgkjNYH67JyPp0Rm4JMyKRzY5JxluI/YCh9knUhA/cOlhRygs1Jk6dYn+O4b0EODvl6QrCp78U0iOSNfA76GNOY0TehzyNQ96+sn9zfpRTyJ+T7ixG4CKZJWEqAm+LbJL7NkFEI6UixXPP7Tmttru8gJNeTSoDM19Q7qoaZpSguQo+YFOMcez5FujFSVGS+P49JpN/2qECplb4n3Qcp3snt3UVOAoAUk3OtBq03ojlt29NMCmb8RYqpLoq5oxJfjon3YJgxRn6dLQV143yuXF6feX93QkvMSJFK96Bq0pPdOzDSgBAIn3vRAlXni+fO1z9ac9z6XNqiSotc3xiMkWP8JdIsax2WdyeefumZ8Y3C+bHQ9k6/7HRbkT7XiDgdo6CEJrWOLoh3tAT9ubONzulrFZNBxBPYArET7BAZkxNyQuwTWDe+9hs3/qM//szP/tIzP/F3vs33f3zH7/jXV5Y1WFBipEGQ0SDO6WHwj//pP+fjn/qr/ODv+xpSv48f/v0/xp/67nf4M//rP+WXr7CsKz6c9npBHx74e98JPvqbz/zoj3zE+/eKFKWI4y6UME5+Yrt2KDKB4TRUCkEtwXkYowZ7CH10TC2J2xD6cKwUaAMVpVowEDqW5GhYbnELyhRJR8SbEaul4JHTKEoJzCpDMnpheEzx1QkNwpTAkAIlTvie5L8487l1YsNx32fcQe4JR1GzGT9RcB+YGaopxM9dgo6B93zmjNaRmoLy2xmiK4Sjo5Mry1lPC32bsQ2SQrNOk6CWhSDPjVpq0rm9o5pkfu+BauSZbkqEphE1jUyJaa4bBMrQgjSh7Rt97mm3QuuG2ZLvR5QQz+kTKhklMaM4egQSI39hYD5/nYySkBmTkyS7vp3tETmKoIh+GZdDEGNGNBDzAZoMssSkx0tG2cyvfjM0PQ9Eht6mXdxievL5Sci0ZEiTf9LWMddNIIze535U+pgkvioZr7Pk2RYQo89TP5Ap8kcI3gKXOeUBQY2k/W+EeO+E5tm/92CRvE9CMDpfvl4xRGbkTFF66/PZL28/U+dnuPiqISBy+xZHHfWr1tHPHP3M0c8c/czRzxz9zNHPHP3M0c8c/cz3Uj9z/NLTUUcdddRRRx111FFHHXXUV+ukLKxYP1HcwYSC4V1pntEJr9eN73wRRD3zcC6cl4VwI/QRO1eWRVET7ldlKYPL1RgKlyY89+DT18HYhfvaON8NylJZq3BejbUYxYLVlIhKD7hu8DKclz3YhvF6DQLl44fKaSlAQSXF963D8BT0yf9CG/DaOr2D4zy9PjFYWOuMfVAoZRJKnuOQTSvBpJQixdDeBs+vz3jr1GoULSzrSqmGzHH07sHoO23v7PvO6I3mA53iYyjcPTyynBasVqoV1lq/FE8z/SJHUvckq0otXC8vPF8vWFlYy0JZShJNPhAZ3HpvQejdk9odnf165fryyhid9eGRUlYghRM1nRRY0nFjNNp+TbK1ZLscETy9Xrg7n7m7v6MsK2o5UjtFiqDPpdN7vmcRpe8br3vjer3ycFpZqiE3Ws2MWivLskyxKcXRm6kRY9Bap43B6+uF890dy7KkSF6WKRSPSZo5vXsKOjehP2dXE8BnHz7jdH9HaN4jicEYARb01pGSzJ6LY6oMzzHnIsrl9UKphfV0oi51EmCCmbK1fY7sToJWRfBE2+htBzrn8/0k3r6MTxC5UadJU49wiugcFZ6z88WEl6dLmk5qaQIVw2pJollmTEgIYoViBR+e9N3oeGvc3Z+TGMy7iKjO6AZNEftNCL/hypHiH0msF1sBAQUTwZmvDyhTOMzrHQx4228Jz+U1CgTmn0kiW5CSwlKSyD5HeychaDb30OhslytmyvApmqtR9ERFMi6gRUKXYhSrtCUNo/P5TH99SvpObtEtiolNsyNF8t07CJilOWaq1JJTFXpzyloQ8dwrchP8yWuCojrHykckXSmgWhj9+vZVfQwknGIyY0DShGHSwa01fIyMovBBEcVqkrdIGkodKNOZCEmxT8PpI74U8+b6sWI8f/icl/fvuNcV0wAGYQXE8D0Qs4zziYGV/DmigAbnh8qnn154fFdIJDTQ4Tl8frWMaXFjxMAjqCI4jg6hmlLujE+/c+XX/JoHljpF3XBGSJKVUlIIlYDmEIoVIawS15368Yn9swujDfT0AFKRkHwPsSO+AwX0ROgZ7GP0YfBDv/OJH/+Fz/gv/+zf4y/9rV/ik3eF3/DrHtC6UNc0lvruGMGdChvOP/g7/5Cvfev7uf+NfwA9f8zv+CP/Cb/87f+GP/fTn/LFnuvo8vTE9fJMuX/H3/inr3zj4ZXf83uNhzWjWbRUbIBXRQaMfaPUBZhRMjMaRtwJjD5guyrP26DN69gG+BBEjG3v2FzrMm6mb2dE7oOCsVTDZOfShd1BQ6kLNBf2trOqTONg5Gs0oXua7DH8zXgrYui6ctk3pCfpaiLourJNk5vwFMBl7mnJaAXIf4Z8ZqExhei8T4Z8GbUyHLWapuDcS1oKEkEbDQVWKsKV1vzNYMTnz9I871SVWg0XAW/4SLK+9SSG3TpWDNeM2lC5nTNpFGitDDWKdkSD2HfGyHgaAyQ2Qm0K3Sm4J2EuuOR+K9O87TFQT/M+gPQOfU6YyIij3O4ZhSEwqe00hHHHLN7ikphTW/LcENSSrPdpPKvOve75HYS8Nu75+UDn2IpggJV5T/I64AMLoQcojkbG0owBaN7bNEgDFIbMZ2g+LPDe59n2pemrkZEjGQcUmBiiGdEAI89QD5ZQXOPtOZGgv3xptM5smjEyMkJFQTwNsDyS0iCZyRcyTVeZn0tyWs1RR/0qdfQzRz9z9DNHP3P0M0c/c/QzRz9z9DNHP/M91M8cv/R01FFHHXXUUUcdddRRRx31lfrlX3klPMW+EZ3hipMUkMZguyj1vPDJ11e0rMhIiqve3bPUO6Q6d7VwV6FWeLk6F++8duPpxXndk4j6+mOODpZy4lQK6yKIwgjDB1grvIydaxe6B3sLXrvz2pXH9czj2Siqc3wyPL92rj0FBrUU2U2V3Z1La7QRtAHbaJidKaacq1JVCeONMBWRHNc8gNmADx+8Xq68vF6yaV8qVgyzQqlJM+skPS97o+8NPGjbK62nmNk8sLrweD6xrktSvZZCebGMmlBNWnF44G2AKrasPF83XrcrVlfKsiYJakq1QkRGF3jkuGmPFLr3faddrry8POMRnM/3cwT9SDFILenMiCTw9s52vbL3PYWuCArOdt1ZzmdO7x6opVDLidDAdI73nmpQDPA2EA9a37i2TrteOJWSAv80QUoxEGOpSVi7O200Ygz2tuMeeOs07+x7Zz2dUFMcWGtliMAIBJuRHp0k12WOvc7x10WDD9/9AhVldGfIpMEmyScSmASjpxBGOCOSyE7DItjH4HR3hxbDMLRUiCS3hSSYhzqL1flzoU8xvJhhS51RHaRIrIFJCvfjJs5HTPF9Um8OasHrdUNqoS4naimYJV1dJ1XdgTbX3E18SUYPYgyW82maEkKZdHBSzHNNjwHz60VkCkqAKW1r2HpOI4PclzL/vEoKRBPmy2tJCnLTs0HVqGIp8ATEpPDUbJKt87DxwY2QtLn+haB1h5H2gb2R1PmVwx0Lw6nUVdgvl4zviCD6wD2o68r57oHT6TwFxkn+iVGK4j4oNcl89xS3RJzT6Y67uzta75zW5Y2+m9pY7ssp3IkkSXi7j2P4vP+d3hu2LEgw4z9KGhLFcqT9JKfXZcEbbBG4DVBhXQpST2kcquYZh+Ixchx9MYgxrw9puIXCqXGjSC+vG0upeU/3xlKhk0JriteewwC0YMY0soJTrSBXXl6D5VFyIkYIu0INiD6wCswz2T2pVJli8vuHO37xFz7Dlp3Hu4VqQg9HdgEPRAf39yvvPja6N2ooPvYUkW0hmmPrwnjZsfvI/YPlegsHrgTLpDQDsQeIxvL+W/yuf+87/Ni/eOLP/i8/w1/+33+Zdw+F7/uGYgVWT1q2AqMq5xJcLlf+7l/+Sf7td4+s3//vUz/5Yf7gn/yT/NKH/5a/8k92Xl0439/z9PzM5XqlnM/8xZ9+5f6d8rt+yz3rKSMArKRYuyzCdSQZb7WAd2Rxogmpcg7irBQKIcK1gYdyb50tgr3lOn/dklQtJmgozQeikRMgIvd+scKDDC4xuJCxOFLhMpSXS+O8ghZSZYU5EWGk8R0jxW8NighrzTM0ADXJaRiq4EHfN8DxsX0p8AKJGk/TTwWmIJ+TLla6NAAyuCWfTRqaZhSWhLSB9poRE3QWThCNPlpOmxgjBfxa3s4RmSZqzHNseMxnnnNpnTKMxTTPeJmUNI5L7iMRRUqlTKp8qNN6x3snNF+fahqFaJqgEiAFarlNSCCjPcTTqFChu1DUUBd6jDR6bs90bE7TiLeJGqglAW2aYn+MeV3TLHDyDJV0APNZo4WIcbvseU0cNDrD888WuVHlTIP29j3J+JeQ+Z7msxIh5jlyO5PCYgr5isY0FYczWn69qsyIlnw/+VlpUt6iKDk9oZowRkeG0yXv1SBNdSUnJXi0pM4lp+34PKvNCh7+5i8LkR9IYRrx+cwbHHXUr15HP3P0M0c/c/QzRz9z9DNHP3P0M0c/c/Qz30v9zPFLT0cdddRRRx111FFHHXXUUV+pd+8EH0p3R+KOkMbr6+CzLzq6nPna952wWulutFGQZeV0WinFqKos1TkVWEz5sDkfrpUvNufpkg35R0vw7gzrUjmfFuoSEAUjyawhOQK9C1RbKdV52nZeL8rmwkf3Kw9LjhMfJsiAL64724Ai5Y36LFa49GBrjdE72x70EGxZqSKclsx5FzX2yLH4IcJwwecIaUHpvfPy8sp120lg0SjryrlWajGkWAruY7DvjbbvjNHp20ZvDVTpe7CeTqzne9a1oiZfChZWp4CTAvLoTu8DtSRhL8/PvHpPUV0KWmtSomYoSUwNksCMcProtG3nennl8nIBDU5392gt1GIZv2AVkXiLNqA7l8srbW+Y5X0UD67bjtbK3f09VSumBauFdr3cJG0Svhpz5D70cLo71+srirCsS5JbgJYUX9alTrMgRSbfPSny1pKmc6d153R3Ry1LCiaW90k8CWpTY+/9S+Fq5Gh+IRAJLi+v7HtDFwMJiqaoF6ooliIcktERPnLo9iRNTZXrtlGWhXVdqMtKSJLVwzsqt/HmhdV0EuZCd2fsHUI5r0uaMngOC5ccWS7wFsXh856luJzX0AguF6fF4GQrdVmpy4Jovq4E9R3vI8Utcuy/99xfYwxkJEVrMAnBFABTX0mBJceeKxYBPsMdJCM+etspp3MK45OcyyiT9BHcg7nNcqS3AgShGZFgpkzkfhoCN+ErxaggX0e+nDS5VFNMGz0FRtOb4adp4PRApeVoeyJJ1J605xgd9ZwGMDyJ+X3f8bszJiXNAFKcGq2BBrUq4SlKDQ9UKqXC+e6Bp+fnFO6mXqY3wTE0BbEpsMa8FimWZqwCOPvWOJ/u8lwg91n+v2AlCXDvDSfQUlhudGIkYToG6PmOpaQI30cQam/TA5w86+paUB2oD8Z+x9PLM8tqXJ6f+Oj9HUUMcZ3GRhLte1dEKyWCMgIzYeQNoZTKJ+/O/PJnL9yt96w1qVdx2FoS/EtRTiW4TLESEbrA7oVqwsMnd3z67Qv1WyeiOlUMHbl26mJomZEuQLtsWCws5zwLou3YUtk/XNHnz9F3KdmJChJz3Ly/EqEpVNs92ECWb/LuB36QP/xHX/jnv/iBv/rT3+Zbnyz8wd/9/ZzvT5RVuROjF6ePGSlyCj5/+YL/8yf+Gr/5R79OefjN3P3g7+JP/tiv8Nl//5f42/9ycKVyvr/n8vLKRQQ/3/Pn/+YHHk/Cb/pNpzSalnl/55SIy6XTe59xEI73t7AAFtkZVfjkQdgGjFYZPVhHYxTYG9wX4cPVk2TVeX0Hc7ONjGbAUIy1bMBga84w4XQuXK8bW9s4AVoKoTmtIycfNEQUn/sQCdSMUuIrJLFQxFnXmiZY3xgxGP2aJKoIYus809PAyVXrScuGo2rTvE1jFE8DU0nDI0JgpDGlcXt2KFqMatDajg8nXHJCSAyK2lusRIiBKxFjGqyRP3PM6Q6ezwctzMiFJJtFk1C3uiK6IH0DyxiCNgZGJ8QYfYApVQ21FOfT7fSc5CHKiEFvA3dB3OnFQWyK36CDyQmn+ZPGIoiPt3Mv4WMhsPwZpIEqEvM6fumoRgSmuR+STp+GydtDeE6oCM9oDI+3XwLQ+YxUs4y3QJDIuJDcmdPEjjQeQuc9lTx7ZYr3EcEYPY1lNTySqNfpGL+Z9Mj8l5Munwepz2e7iuAjCL1J8nkP3Z2Y63v6G9xcZZ/ZNLd4HdE8J4866lero585+pmjnzn6maOfOfqZo585+pmjnzn6me+lfub4paejjjrqqKOOOuqoo4466qivlG9zqK9L0nwIRQu/7psP2PpAC+e6GSPOLCdDrFLMOFV4WHJ8enPh0035sCufvTqfv+w8FvjmR7AsyrmuaRAUncRhio1BEqlXFzyEFs5LH7w8p/Dw/n5lsSkQabDtjWtPYX8tSQKFCBHwujVeW2eMxrYN0Eqpxt2irCYspTC8J8ka0GcDKnKjopzX65X9srHvG1KUaivLumJFWZaSZLLe8uVTgPR9Z3ijj54Ub3dO5xPr6ZSxEaaYGlIqVQVioJI/28dgb33GJhjPLy+oGPfnc5JdHjRPwQRvkxQdcyx2Zwxn9MH1cuH15QU143S+Y61rxnqUgpUUTccYhAd9DFrb05goxrKuiMC27bgKp9OZpdQUwgna63PSaB74yJ/pgJoyeue672zXjRhOOa1JtqlgdcFKYVlP1FpSsNYUaIaPt3unAqM5aoXldKJqUo2YYaUyeiNIQTwpP50EKm+CR9s2LpcL9ZxEtqnmeG+S/nVLtqprEv9mgtIRT9G2t0aYcj7dUWuhmKZA40nstZEUtS0GWNLN8160keKYVWO4o2bU2xh/S7NDU79h720KIzBaxhOc1oWXpyeWeqJqTXEJwQhMZNJxGZnBNBYi9XhchW1rLGuZAi75OnWOYZdJQQeTNhZG74yIFONGJ8YV1ZJmzZQkRW6xKCk2OZnR8Pb9IMV7EdoYaaoE03RJg6ZYmcJSimk34SiFxdxAEQMfjcEkABmMGKkHl/pG+Q13ul+oUScNOMeshyMDmEZHeCCaP0ckqWAfgTHwgNZS6e59IJLXUW/X+Ub9R+ACHiPtnkkviqbwCwtddnxAaFCssl83/F2KbGlbGaIFtZLTH3ond3wKnmrC6Zzr3EfnermADHrAir0ZGTKpRndJEVo8afBpooCxns58+OyJ69Y4VUOswzBQnWtNQCzNn9EpYkmlW5KVd3cV++4zT9dX1E4sogySVu/WKV2wYtSSZ7RIis1Brq/HxzOX553PP1z4+B6KVJalouaclqAuc/rAEPo2KP0K0SlLTWGxD+rjwvVffkEpip7uIQZhO9QHRBxXQVghpqSnK3b6Ot/84W/xJ/7AB372F574yz/9S/zar5/5N39TYb0D1oINxXZoDIYI9w7/4l/8Ah/91F/nB3/vN5DlW3ztt/yH/Kk/9G0+/R9/ip/5YoAt+MnZXl8Qcb6zPvI//eQL//ld8Ot//T1WQGtGJimACttL7m1F0TIwdywCk8JZBtWF0pyG0ERRMXoPpN7MscGH11vMSsnBD0MyGkUCIg0+KU7FIYzrEIp1zqfC9dLoe8YySC25T1WRlPIZnnSpFp0mq+IuFEsANdQwESqTRG0tBX3NKSm54SHEMS245OcF0fkMRVBLOnyMMcnZjBOxUql6s+zmXyX3vuCIwrIstNZy2sA8A4hAxnxeagE1StU0SG+48CSG+8g1ZnOyQsYIQcxnJSGUKqidsJ57oIxOG53ROm4p7HcGJV1CxGPCuXmeRii1pjjfp3Ed4qjlueDu89yZ5nMmwGBFc7ABTIo5v0bKzSiEmKYaOo0ENKMjIK+D5OclJ1Lcn9EbEIw+ZqQV2LyPoTOmZ66nkDFNwzzLb5FAHsEYgXjy2UMkp4loQaeZ7SJET9MlZJLOIoT7W6zTBNhzyotAQRiZd4SZTOJ7vt/5TI75LJHIKROikabg/FyqWgiPuRVyMoLp7b8eddT/dx39zNHPHP3M0c8c/czRzxz9zNHPHP3M0c98L/Uzxy89HXXUUUcdddRRRx111FFHfaVaBB7C1jruwWk58fD+kUB5bXBtBV9XzBbQHIP8/qzc1eDShUsXnjs8b8LTq3MdnW8+GJ/cwVILaEmRWJPqMYWlKObGjrCPwdY7n18a1xaMUB5PJxaTjDGQFANer4PmKTYugh1T3AAAIABJREFUNjPkpwCw+eDaOpfXje6BWmGthftT4W6SrD2CPoKBoFIn6Zlj5x14vWw8P7/gY2Cq1LKynk4gwrJUzOoUq4J23Xh5eaHtO90dbyPH9Ktx//6eUteMBzDDtFJqIbnreKNskwZuhOU45Kfn54x8OC9USZE7NOmlEh2msBvEHM3utNbYrhuXlxeKFtb7u2zcLYlu0CSY3OcYaqf3jdYaasppXQkRLpcNAk7395Q1xX1VoXvHPUc8jzFwH3MkN9CCrWUEhY/B+fGetSyYKLVUrBRqrdgU/VWF1hq97W+EcFFjjMbrfuXh8RFG0MUpMsWesmZ8QyTtrpJj6U0LRZiiufP8/IytK6ZClaTIS1mglhQz3fHeyAWjOVZaA0yIHuytc7o7U+qSa6UPdCn4SOrxRiC7p0EStz2zNbw37s8rS10Is7lmNan0SfchkoLtFElidCAFrpA0yk53d6yne6wkepaRBUl2M8ZXxP7bSPEUZ0brLHd36CT4btRmkD83AJ+0m9zeQzj0gfdG3ztYnaZCSnlFFZXcL3i87cEUwSY0KEKMwIdjpaS4HmlSVElRDwSzBRdj9JbfIm6aY9y2L8NTRLPpSxRJqj/ICAJu13B0XJNHRpROgKYJU0pJCtQdd9De6ZKiXsSNKtekl+O2Fwa9J5XJ7XXFFDDbnhTpvDYR0FrGrvS+TTDfGe68vl543xvFbBpXketTg9GZZ5VS1IihEH2eXfMqjE4bjUUKrQ9CZNKIKQ6rkHsa8J6RFgOnaMFEuDsZ7bIzzit2E9VFGSKIpJEo6oxJ2psK4QrVKVZ4/3ji5UPj8axQNOMIRBgxiEjTqlRhDGF0kiRdhFEK1YKPvn7i5/7J5yy/9p4YgT3Aemds24aVM3aCiM7oHW+BM1jdM2oiQNfKENhedk51RUqKgho5hl4YuW8iZhSFEXqiPLznX/tt3+RH/+UP8V/9uX/E//xTv8gn31j4DetHlBJIMRAn1FgYRBG4V/6v/+Mf8vD1r/O13/xHkfIJP/R7fpwf/5Vf4c/8xM/x7Ytjy4q1zuvLFazys5czf+EnX/lP71e+8fWMV5EZOVKrE+fAX+C67UiAmlMHhDqqg94aRhCW509GZUAbgz4G5sGdDi7DQVNYVoQ9cprCCMgJEIpoYal5PfchoIX1JFyvnbZfsV4Rq/m1IrjmWZqmWsynUB6FY8QUtZNGFXL6g5ikeeeehqWl8C2keXabCuDzNaVpDMiUXGUKwhp4dEYnjUJNsjbIWCeMNyI4j0bHveXXzOiBHFjgZFSTYaq0kZ9V0BTNPSC6M7yzlDwPmkCdLkiMHSE/i9iSkzdsGNbTtM5pKs4oChZYzLN2RvHk+5Q0byQnPMjQeXjlLc2Ipim2T3NPJOZnAM3pK+4MH/n95zmWky7moTrNHJQ5wSAQ5jkbAytzT88YnjQvcy3dzj4RgdA5kUIRCQo6zc80HmRGLajLvH7+RlMPz7WmQk6BCc3PIb0TIYyRZ08OP5lGgQdf8W3e1orN50n66hldIZKmp8h8vkWuyHwd+XwRYk7V0PnMzDP19hqPOupfVUc/c/QzRz9z9DNHP3P0M0c/c/QzRz9z9DPfS/3M8UtPRx111FFHHXXUUUcdddRRX6nHu0o0ePGgvnuk2sJrK7w2oVulnFPoraKcz8JdKawWfNidba9cR/DU4Ol1Z/SdH/p44f406VUpKepFjnmOYhQVPIxXD162xqevna0pW3Pe3VVOxahlwQmKKR7Ky94ZI+k8kTk2miSY9r3xum28bp0RUK2yrJX7Vbk7LRjC3jvdB8N9IrWD0BT124CXl2eu1wsqMgVyw2plcIsVqJnT7o3r5crTywujtxSP51j6ejpxur+n1oW1FEQVtRwHX6dom9O+hT5SLFArqBlPry/IFFfbvk8SXCmqFCHp2EgxJ0dAB31vbNvG5fUFNWW9v6OUQrGC1Zrk0SSHxxyhnSR3QyOo6wrAft0YPni4f+C0VIoVakmhnBHESFp0RJoEMcW67oPLdSdG593jI3VZOJ9OGcEwCaebIcKN6IokTTVixlwoX3z6TK0LRZRBx6JCXQk1+ssLToq5EpqEpU7idYoOz09PDA/WUigzhgIzXIGIJHzJUeRj5P2KMeaoccG9Z9QDIOGMDlqUfb8SrbO3jT4NtDGpZlXlunV869TVqMuSdNdwRjHEIMiR97jjTKp83keJNAdOtfL09EzEoO9z/bGCCqFCj+RsYzijdfqWwrUTbPvO1p2idY79DtwyYgSm+MOXJHleB97oOp9E3b43lvuV25QAl1wvPjJi4RYJcjMbCJu0YU5RUFWsZrSDRho8EZHRBxQCQyKw8LkGUluL2wLpKVAJQY/OQoqUoqBMGvCmnc37NBgkiJhngDdNUbwPQgulZsSLToOAkaPrzZI0RwRTy7Hwe2O0hnIHkueDSI6ZDx9Iqdhcz6lRJQ3d2pbj9hWu25brLgYiAygwOkFBJONcwgpmSsSFMToxeo7AlyTB294oYklG6qQGRfL1mBAWjDGg5Aj6VU9EDXzs3H/0yPPnr2wfP3LyMQltTfFSoNMBo1hGFuS7SINDEd49nvjwcuXaOmstZLAIjBBaBBVHpRKiuHVUKkLg3dkkOJ8XHh4q3/nulfdn4/rhhceP7lnP4ENYrw1TeH2+0q9OeOfho5W7uwUzYdmD5Vy4fOeV5f4ePU0J2h3UkBjAhujjJEINjYYvF+6/+cK/8ztf+Jmf+5y/8JP/N3/tb3/Gx7/nxNe+ccZKjuQPcYanoJ97fuPv/cT/xu9+fM/9r/8R5O4jftsf+9P86K/81/wPf/e7fLcL9e5Ef+lsr6/I/QN//7srX/vJJ/74H/yEx0dAQG3gIxAqWkFahxGUk1ELLF3ZRz5LWh+0DteW4rY1zWeEOnsJShXKHnyxN4KMX5ARSFiayjF/liguKYYLwjYcinBaKs/7jjooPs+/FNcHX07/8GmC5VkMY8ZXpPyqlJJRJ60J0RuO4z7yDFVFLc2GjCjIsyZPeJnPekM8zy0iBWx85DlrhVAoNk1zVcbo4MFSKsUG1zaQXTAyWiYjCRwJhym6FzNcOplAMQMD5pSG8KBaYKG3t5+Gl6fRZKKYQlhFLCcEiCqtD/oI9hiICkWmUXszMOZZLJCfYQTwNF/cp9kCKZgDobl/LRwXJrGtbwaK3P4PiE3jb0698DGmyZ8xDQmTa0ZXOfnn5hmcOznm5638nEXkP2e6QszICkGlgDox8nuMgJjmY4y8X+knSJL4JJkvRhoPk9iO8PxcwDTzTPEhuI8p8OuX5/wU+XW+YJ80/M30Gz6SeBa4RVHIzRDUuYTn2vT5d0cd9a+qo585+pmjnzn6maOfOfqZo585+pmjnzn6me+lfub4paejjjrqqKOOOuqoo4466qiv1PMLnNfC6f0jmwvPm9CioqcTJzNUhLXCXRXuFqV78OEiPG3GZTgvu/KyddYSfPN94f4kmCnCipgjIwWrVSsRzmUvbK3zsnc+7M7eFdz56N3C47nShuEkeXbpg+7BCJvfc9B6vJFUzy9Xnq8bl8sOUqhL4f5cOddCVcPd6e4Mh5ixD6aGYHRvXNvg9fXCvl1QU8xKjsMvCy5wKoVSasYp+OD55ZXr5Yr3pN1aBNEHy2nl7v4RKwtWU+Q01RT9+iCqJu0okgKxZ9xFmHB5ekFMqOsJLYZ5jp6f+meSp1PI6OGoQ498X9v1iqhitaaAqoqWimMpqkTQ8TQZhtO2HXen1qRD9z7Y2s757j5HuKtRlor4uMmzqKSQM7/dbP6F69bpfef9wz3LurCWhVpzvnkKzhmF4eFJm9/o4El3C8LT0zOKcD6vaE0aW0sFd1rfUoi8Bd9rKss6qV2PTms7z5dXbKlIjEmjTZpqCt1mlsKHC+5BS6R1mgJB64PTeaVYSTJYFZkiWG87vfUUXcWxYpjkiHPiSsc536+5dtSwNQV7Je+/c4sIyNHaGhlDAkJVpRTj5eUVsSTXTCeZ6jnWPXm7HJMdkuQdEcQ0QMZ25e7+PkXsSUBKRNJ7cSOKb+YAKWzexCxNErr3wSo64yIgX33e41JyZL9Ms0Nv3y4G4v4WmXCjAgXJmJdUukDLG3UnkTELSEwiLkfDuychP19sikKiKWgFmEaOrldFS5pmQsW9ca5LrivI+A5T1JIMt6VgYkSPNBJGT1EQxVuS5lYM6OytEYwZCxGYVcJzGkHSy4FpirU38nxZjNZyCsO2v9B7x9aS0xYgCUYkr1Xk2eUjr5WIYva2w6h3Zy6XzliYUR7zHt5IRzXGiPyzlsKshM/IjsJCYfgL2+ZYEWoZiHYsIUlMcy2ogLshU/jt3TEJRJWP3q08P3XuF2PRoAPuYMOxXlFrwLy3ZBxODwdXcOWb33rPz//jT3ldoZ4rHaFGoV+dpaTRdP5IMMD3wemhstxn7IwVodRC9A9cPv3A/emcIvH4LvgOdgd6JuSM6BnRFcoJcPR85Zu/8cof+f0v/PwvfJe/8Q++zfd/svD7zt/H44OAZTyMJRKOKNx75fPLM3//r/wNfvuPfZ3la7+d5aMf5kf+4x/nO1/8d/zFn73wPJTz3QOX5w+8vr6g7x74yX/mfPxTX/Af/LsPnM9KFKU4xJi0dpy4vL4yeswoGGH1gZhQ9krZHdFGUNk9KBKcpSJtThiQTpXO1q+onjFNsTfJ3GCo4T7PKASzRmmCDIPi3LFw3Qb0jmquFQO65fnBvHcJ+U7jiynkCiCa5qlBjaAFSO8wY1FUIg23Sa86888h3P42JCd9jNHzW8YtJgE8dkbP9XIjy41CqCctHsFaF/C8HkyBXIXcjwoxBqpKKQWVQdOOe+4ZizRL2+j0UGoYqmBiqHXC4+05jCpVDSk5gaWWNH77fG50mZNZEMQKfQxKHrv5fPMZ3RCRUxvyL0l/w1vsT0gSyaGa5/SkeyUEj5zsITcHUhTtOUFDfE7DAELsbbpGkZgmZhozSsnzZr4ACXAfeCjoJLQjz5kbja2TKFcNptuaUwN6njnp7+R5rAqoIiWfAfNIJBD2PjCdRvyc4PBmUovP9aVzOgjTYslnVYw828ptyk2kAZLrM76yVoXbWJ3b2XPUUf+qOvqZo585+pmjnzn6maOfOfqZo585+pmjn/le6meOX3o66qijjjrqqKOOOuqoo476Sj28e6SjPG+F617xpVIWowLVjPcn427JZncfwdMmfL4b331pXLugsfO1k/D+bNSqnIq9NeLNhaUYp0XZ22Afg4Fz2eDDBs8tOFnw7uEEVbk2QTSwErQdumdDnUKd010ILYwYPF12ni87+zawYizVuFsXalFqKUgEfTjNk4AVEUpJwWBvg8vWeX55JXqn1ApmmBWWUtFak8AqhaVkLMDzywuX65Xedlrfkz4aQq2V0/mO07pgpWakgKaIYlPgA1L0m2JqKcbuzsuHV0yT9NKS7arDpLIkieZJFwU5PlwC9q3x/MUHzARdFnRSVEKBsBRMJTkkiYH0oPUdx6m1EJGj7a/7jp0W1vMJK4VSKx7Bvu1J1wGtpxjvkj8BCZ4vO21v3N+dOZ1OrKdzXnOZo8bdsVLZfMAYjN7o82f21kAzguHaGo/391PwSQFh7BtqCg7NA3BSZ7J5LTwFapwPH55nNETBSDHESoq5iGDCWwyDj6QBK4rLQCK47o16OidNbpYCPdPM6IMx/M1cUk0BJg2SjdfrlVPJ6z7GIAi8QY0k3fYIzKHMew6kQRWeYrUGr6+XNA88UtyWpI+LGagkMRYQUZAKZdQUjTwFedFgWUqKQ2knpIg1hW3Rqf2JIJFUsBCTSEtSWaykaKOCapobNxMnLEk0v/286TvEFJHCU5z3iFzX8wfehLDb69EqxBAYyRaaGkQaXxGSJLlParEIPgLXpJR9wCBQbzAG9nBOUp4UpIZ3hqcBUNRSqDKlaklTqVhGidik37W8Ec5ITl/obc+vKTqvZV6/233N+JZ4W1eqGffhnrR20SvbvnNaS1KX/hWBLcCjAzWNBEmqMSD3bShagNcropaEd6RoyhTa6CnsiTDNpzGtnPw+YJxOlcvzMw+fvEcLSZyiiGkalQm3EggtOlUdb46UFAvv7itfPL1y3VdKgSIBkePnKTFdJse7g1ZERsYUNGcLY10Kj+8XPnvaWUpQro11MVj/H/be9tm2bTvr+rXWeh9zzrXW3vucfe4NN++8GlOhAkJUwGApGg1CgBjjF6v8kyw/avlBP1AUWGKVUkVZgJDwEiJEE9BUJUDCJSi5ufe87rXWnHOM3ntrfmh9rnOs0oh+PaOd2udln7XnHC99tDHa84zneRTEQYVjXXINLjLJEEdCoTseG/V14fmbF+yTTzm954Q6MlYoF6hvkBE4b1B5DSyovSUOjeWrC9//Q4P/4ONn/tM//Qv8j7/wG3ztg8r3//b3WI6HGTlgyKLEcHwE90fl43ff5Ff+5l/l+/7t99D738Hdd/8Qf+zHvsFv/Nm/wt/99ZXQAvevOT8/cnm+IPd3/KX/7cKbV4/8vh984HAELU4JMkIDR1i4PrfsW+QaN8v1rJI/WwUmN46WQonOIcBFeaBwwLn2DVFjmDAG2UNkEKIMCmiHMXuiBK4KMqiL0q+Be6NoEm03sX6CzpLrYopRiykmZUYZ5H1LyO2KUEYIfawIDj4J/Ln2dF7rmYogqJPKbVLB7GPQR58q3pvSPxjeMEoCy6okjUq6F4hyqEabauW5aCcwnr3LLQlXF533Ps//N2MOkHTBYDhiUNWh5zmymgQ2AVGSQBI7YA5aOuu2sm4NHzFVyYJGTyAdELPsBZIOEjbJcIKpbM74EjOZiukkZ2I4HfLelnw3YgKehL1IPpuECWoy9yWvO5E82DZ7k09CQEUmGSwvbgojSOJuJNkh2TSy59x62O3+IBkBAnnsbipwR/DhuG/TJWYSjJJK8hBh9EnizOgMj5GuGgT5sHAjpvp0S8n7KEwSXyfhGIOISR7IVNxPEpnwJB2ESWLvTk97/ea1zzP7PLPPM/s8s88z+zyzzzP7PLPPM/s882WaZ/aXnvbaa6+99tprr7322muvvb5Qz8143oTOwt3DiUNNdU9V41gFI3hsg+dmnHvhsSmPq9Bb52FpvH+C+4OxaKFYJUraiA+H+3pAbfC0dbwrLsJna2NE5fEaHA8LdwdhG4KE8frO6AMu19wGJBV4MdWPqkZrG4/rladzRxyWQ+XhVClFMUkw1yPoLqga7g2PjKEQgbVvnC8b58sZD6EuNQdQq5RlYamVUipapk10azxdLmxro7WN1lpqwjocjgvLsnA83rHUA2oTuJNUyuI9Qdcx5iCd4MnaOo+XSyr2aklVtAqj9wQXSOUuDn0MrqMhDs2dvm48n58TWD8cUBGqJFDsfAHQJm2bUYODoerYuTHG4LI22nWlHhZMdIIOSvNBrCuMHOxba2x9JBaQSA3rutK3BMhPS6UeDiz3d2nRPRFk6YMeY1ri38BQ0BCKwOVy5XrdeP36FUstU3UHW89oBocXJSdC0hWen+NjMBCeH8+MqfIuVVHRjPKwBI5eFLcRtN4TvBFlaCqofXRchGpJmkTiVwkKqbL6xghPFeJUlIUHrTcez89Ea5TjmwTfBWIEopHnWhUdQYQzpqJdJpxLBCOcpVY+/OwRU6HWheV4zNiFCYakstzwrZERBrwoqHVu5/3hiFiScuGRUSECNrf7pnjUmxItEozz6bG9rY3lcMjYDhF0Anw+leOJ8E/iJyaoNY+TTDLBSk1Vtue5kglCqulU1FXoI0mBhJDmdiWgNfymqJZUPiKM4aj2PI+RRI+aMQKu2yRvIhjeMUtoNvcBillCmD4QNTwEUcMwxmi5Pm/KbDFKOaAqNHcKRoTTR37OGI5Hx3RJZaEXllqAIMIQGS9k4uV55dX96WW/4WaZL6jVBBF9EJLg2sRNX4A6FaO3htQy1ZzTcn4SGu6pnA9PhfTtmkywfeFwOPLhx4+8fv06f86MoQX1juhC4LgaQqomQ2Q6JLS5to1q8HQenA65fV2D7gYyuDsoogY21evTfSEkEsR2+Lav3fPZZ1ceL43ontBvHHCXjPfQJX/+6nRxllHQsmK1zLUT1FfC9RvvqIsh1bFyIKKD5bYS13k9nEAKYm8hOsdv+w5+3x/8lB//3z/hT/+lr/M//NyHvPdm4Xu+Y0kb+7nPRZRhAwu4Pyn/+Fd+ldfv/VW+4197gPrtvP3BH+EnPvx1Pv0Lf49feQeHWpG7E5fnM5sKj/f3/IW/+8jdSfn+33GiLIoaeChWlAMZ4XC99ARuI4nNIsGQQMwo4VQcD011eikUEU46MOKmdaVvDbFDkgWe17NHZ0RjREFdXtTvAMlQDXQxeksVa+8DN0c7eS1Ol4buLUlIQBio5H2zmtF7ukGYAVScYIyVMTqm8zMEZIK7SRjOdalCIe9bU/I7FbU+ScG8tycYbOmAIAYzuiYmAG4l13/v6Q6iM0oBnZE2YyA2YwZUXwg9RDCUxMIjY40Mai2pjg/oBGVuy43oyAiIA2CorLRto48xoygCSkkSTw3RmFEdc99fXCg0XUgQZMR0hOBFSS7cHCRSOa8hdCGdE8LRgCGaUQwC3nqKgkniVzSvPVG7CYfnOYpJpGev90kuhkeqzAlERpKucYtNmlEOeiNuYcSY7hoz0id8XsdM1xJDVKmS/Skk4yFACM+oEYnAZKrm/XbXi6kk95fe5fOeE8zMB/K+qPOliBH520L2GJXst3vt9ZvVPs/s88w+z+zzzD7P7PPMPs/s88w+z+zzzJdpntlfetprr7322muvvfbaa6+99vpCfXpekMVYjpX7EzwcoEjBUZ7b4PkqXIdxdeGpBc+XTsH5jtfBoRpVU21bJC3A+xCqKLUK1YTmlVqDVQfPz/DNzxyk8/p04FCUZQ76y6HQQ7l4oOIQqaa+Dk9AS4Lr9crTJYf3Ygt398bhUDmUaduMsE4FkkQOr6mINiKErQ2enjfOlyvLtPZXQJcFqYVqmgplS8XZdV25np9Zt42tNVpr0xZfWE4HSj1yur/jdHeXgAep1gx1ZNrJ98RhUjmqStsan52vlGWhLgUrJZW+A6omAhtMwLan6pNIYHfbVtr1ynJYUs19IyNUUS2oCYYzen9ReyKABzE6KtDa4Hy9JoDRO1yCqAu+dFg9gczeadyiE3L7RZIYateVIrAcDlhZMjKg9QR6VPHRgaC3niBxCsNmLIXgA67nM69eP3BcKi4TvB+Bacmoh4QGEDKGQ0IQkxeL7d6uXC5PaMkICdxT1SypyErl2vziCUh5+ARNEmBu3TmeTqnMM5sxDvESwTF6S7WaaYYyeNAIrm2jbSsPp88V3SI6IyHynzHGBOdvCu2Mxdg8FXBFhKfnSwLTS0WLsdwU3VpS8TcJlwRYPEGWkQC3SyoDrS6JQEWkak1STa3kr5C0XZcboqSGjFRlqw7W68rD6zdo3MDmCcTh0958gojyeb8QUgFIQLtuHO7uEJ8/FBASCTRJkhcJEw5Cp8IdpqpXKCJcwrF6xKZCu1qh+2C44BqMqeAb7gyC2JgEBqyTkMlvcZABkjELPhomwPB0CohGXllJ3gCoGPWwUA8lAaoZtXBb79kGBLAEvG/XQd8Q8nzXYixLAvyRqD8iSWoRCaYShaBRSkmCsSWAKjfgf0tAufcrVk8pBp3XdpDxOi9grGSPEUugsEhG29SlING4Xq8cyz1aSBt6Eqi0ZWEyldhUmw6BCKEGFJQ395VvfvLI+ua9tLp3IRSe26AIWOm4BNc1Qe9qg8WUKLmuazHe/+DARx9dOJbB01mpJhRd2K6pPD0sqf4UFdrm6AhG75Q6lfaHBVlWzt984vRBRY4l3R3aOSXFXkAuhBqCEBKgR/TwVd773t/Oj/57nX/6G0/81b//Lf7WLxx5OBbevv+AGFOhCcULgqMaPNwPfvnnf5FXX/0qr7//3wF7xW/9Qz/Bj3/zU/6rn/o6H65KqQv1FKzrQHTjw8M9f+Fnz7y5N77zu1JJbiHQNUm/RRgetC2QotjsQ8Va9iEMD2UsQQ9FhiPFQDZUhE3G3K/gaVsJFkyTMCse9KSsCIMIo9KxGIl41zLjB4zr1rKPdENKx0ee71tEwBgNVUtCbfY5H1M9C+k0YIqZsjWhtZX8dpsxBH4Lj8E1Zg/QScgaxW6RMz17QEwiwdP1gBi4CuLTUUE174VaCO+ICHWSg0l467yeZmSKB6JGnTE63pOUHiTYnERmRifRHWqlyK07AvM7JvIOIpRFKXpgKZV1W/PFgOGpNEZQ8RcXD5O8nvNFhNtHyBeOMyj+8uICs8dEZA8TmcdDJMn86abh81zWagz3JDZv5KnNPn3rLzhyy+mZfV4EpCThEiOvq1xPEJ6EuU7y19MuIrd3xjEQIO5oJIHQA2I45p7Pa6bzdi/EmErxIkxpNGMS4bc4jRdimEC03CjSfD5Dkwyd5AmkQ8cyKWURwDPaZFlO/x+ebPf6MtY+z+zzzD7P7PPMPs/s88w+z+zzzD7P7PPMl2me2V962muvvfbaa6+99tprr732+mKdjgnmhrK2YBGjS+d5LTx5KreeV3janDaC10fh/VfB6yoEhpkQVmhuuMB7SwEJrh0+vgTPzTlvnectOK8J3L13f8epauoktbAcYO3BNhLz7JF2ztsYqCgRnU8fz5zXBlI4Hg7cHxfuljlQFuPaB30ELlAlXvLuVSs+nLUNnp4vbK1P8C8B7OV4QM0wW6hlodS0lF+vV85Pz6zbmgCgB+qBFON4uEOKcry7YzkcweoLOG9SEmiOzJNPZZHgKrTrxmXbsJL26UtZGGS0gU2wnOmePnykUonUUV63xlg3ai3osuDAYiWBX1WspqrbY9CvG6OtbK3nz2laTA8fbK1zf/+K4+ku7aUtKLUkqN+nuixuttYJzooKPgaX8wVicKgHlrJwOBxmfACM3rjlD2jhR7pUAAAgAElEQVSkHX1vzugbDGfrIxXHl5WHVw8cD0dEC0UjFep3d2mDvW3gwaoJtAqGFMDT8luB8+MzZjYBGaeWmlELE5THU90raqmY8zw3HpGAGIIuB0pdsJoRHqaCTqCiD6eWhdCMcIhIa+1oI1WDISxLTVWYKeFJCiQoXm44cwLfETRPC/pwJ9wpp4VP3n0Clgr2MkE5IlDJbTBJm21TwxmEj1TdTTWix2CpSyrJCFSUYoW4ycmJVDCLElORfIvGePl8EghMpXBGrmgksOdTWSh8rm6zqfJzd3rvrNvG6fXrFyJqGuCn5s4T5Lwp6EQU0TFVslM/PYkRK4UQQ0zSDl0TuglPsgzyelA1BCVGm6rlPC8ewRhOWs5PlbzWqfRONZ1HRlO4+4xKmOSROyqFGONFEX4jRTI+I1XUHp7G6ZHklUcec3fPeJd1fTk3Gj7hrvzOMVoCa1owNUZP8jJmNIRLUGuhXa5wOOSXq0w7d5I4FGN0oGYMSNq656EvWnAWTg8nzpczD/cnFk/SRkpNRfjIiAcnSIF7qkeRgo8NU+dwf0DfXXl6bry9XxJsJInC1gUzT3hYEnNVMUY0VAujG6B88MED7z5KGNslWHuqHLs3Wj+wVMGWBS3pVMHwqcodmDq0YHmorO8GfRPEenI//unsNQL2mrSxd4RC6BsEwe6Er/0Lg5/8U2d+7Rt/l7/xix/ylTfGH/59R+7vv0BaVaVJIN2hGn2s/P2/+bf4V95+wPK1P4DefYUf/NGf5I9//F/w53/+Uz5qwXE54OPCdrmieuLXOPLf/+0zP/lHCr/l2xZUAyyjP9TAllSP9+6wGCYZl+ImSBeQgXQoAltztu5YFEI6pTjDjSWCQ3RiSzC9YESBxZmRIeki4SLgSlVBXBhKEsYWrGenlARuZfZQZLo9DCZpKhNoJqNkIqOAYjocBIH5grswxjUB/FtUjAQiJaN3ggl2D1SMcMXMETV6b4QPJt2V5C/Zm1QTcBYtNJskIAmiizLXh6fDRZo6JNF062k4RYVYLPvOmM4g5HXlLnjvtACTBa3KwCdRMhAR1MqM5EnCQUzAFtRA2sC708JR9/lygXyhb5JAuztI3s9vJGvJ1pnk4CQBAmgMTLMXJqGbREKC+YaGg9wiG3L/s7t8MZYnPr8feL4Q4D3B+BBJtxIJxggkPCORRHCZam6mI0XkM8qNS06uJ/tcRKqa81w72wjEfPZzXiIpLCTJTdOM3Yhbf731ccDBPZXjyFS4e3xOVEiZjjCTRSGf/Y53d7z31e9kuXv/n+uRdq8vce3zzD7P7PPMPs/s88w+z+zzzD7P7PPMPs98ieaZ/aWnvfbaa6+99tprr7322muvL5SEcFeV+0UTtArnvAWfrcHzgPMGl9Y4CHz3e8arkxLiFCvUaqyeqlY1eHtnyIBLG6zdeLw6H18G7y4dd+f1qfJwd2ApRpEE1wjhcYUeBiqsm+MxJ0rS5vnd0zOXrbEsJ+6OhdeHBdVUXosIa+tsnioqIhgeacVN2kFft8Hz+czoDVMQMUSFZTlyqAfMNJXRtWb8w/lCW6+MrdGvK909owcOR453J8wqZalJMKglgAsJ8MtUHQapQpQEHK7rxmXdkOXAUhMsjBFTyTpjByQVWz5BFPckS9Zro60tj5clMGm1pppXC1oqtS7E2Ohtw0eqn5gKo2rKAK6XK2GV43HucwzMSgLfibF+wepfGC3VpL11LuuKROfu/o5aDhwPB5ZlyW1ZDthUr7oHHklsCBAerK2hBNvaKEuh1MrwSKAslHUMFl3BLW2lfQAJ9AeCBfgYKMLT0yPrtlEPaZp+s+P3mzJ3pB01wOidEZFRCJ7/rUUJlPv7I0oqW1Um6DpBX2rBLMEYD8f7oI/Buq6MdeVQ7QXoDkhVsUrGewgMJBXvAq07fXTGGAzvLFrw3th8JBg+gZmbMsymGkxF6BFsPl7AqB6pLh69Z9SIpHosrbK/QAyQ8QGSnui4+wvYP0ZLAmebqkgVfIKnHp7r1ZkW4kzgP90LEjhMEkknoK5lkgzeE8TS3I6QSKDOtyQ3xkiF9yTQbp83fKQjgRhFwVBCk40ImepyT6Vn2sj3BLF8sExVukfg3adC3VhOd9SpNPQ+ECt5ndIg+ouFe+t9EjP5HQk6jqmKTsVfa1esKBEFUSY5ldcOk4CwUvDxTGsrxWo2AhX6yD4UZBxGm2r7/8u5iiQHrVbifP5c/Xg7/lOVqCZ5PokE4yLV01OGSXhwXE68e/dID8fC0JKkmZSapIwqtE7oJGhjADfyQ1ENvvL2jg8/uvLmvlBUkkgUw9URF4oOohrmBtGBwgjlMoI7UQ7LgbdfueNbn5y5Pwa9DEaD0YV2HvQq1Kqpgi6p6tQiSTAqxOqoFw6vYf0sCVU9KNI7MdYkB+wd6BE4zT5TQF9DOVDeFH7n7934j/7kM//Jf/lz/PTf+5SvvX/iB77vK9TFMgLBnAj9/DwcnXfP7/iln/pr/MAfe0t59f3Ut7+VH/4Tf4pvffZf85f/4YVzBPV0YDtf2K5X1E78g08W/trPPvJH//X3eP2+wUHQCcBWLYyaBOgYglalTOqoS6rSj0zl7A3+lUBGxm8s5RYJAxbB82iI5p+fF2YSsggeNkFdIP0D6EOJqGgdXNvGoRg2QfreA4YieKpORbL5Q0YoRVIw4XkblhDMBKIgsTB6w0dHVNHINanwQvZk3IulWjrIXqEHXPLPKeC95/OHGqHy4uzhns4RUQz1wMdIZ4DIKI/eBsQtegAQQSMJKQNCFSN7vjOvL6DWfE65rFesN2op3GJhECF6x4QkC3SS71YpJUmALrnNoztBp1qdZB2IlYy1cV7IAVPQyL46PGbfhBuFm/dJz7wLs5eIh9zmed3DyzbeomPG8M+v5bl+0+hBXyIhUpU9ScRwill+64zRkflskk4ivBDNYZKkQzi6VMZwbMx4CxEGAjFSbc3nkTaqQoi9KOp7ZI+WqWS3MEScUJIoZ94D5j7Odk/R7OXMe1HMozXWxqcffcyDL//8D7Z7fSlrn2f2eWafZ/Z5Zp9n9nlmn2f2eWafZ/Z55ss0z+wvPe2111577bXXXnvttddee32h3r9XDkUYIxjSeAK2ceBpwKcXiDF4e6e8fVBeLQlauBgqxhoZFXGqcKqD1oPW4LIGFxfOrfN06RRx7u4X7g5HTDQVsChrl3RpllQqrdug+5wYY7C1jcu1EQh3D694WBbuqvDiPE3Qe9BuwPa0/LeUWiUocG08P19wEhAXAtXC4XDESqHUglgCYqOtXK4rW2v0tqUdtOc2HQ8HTg+vqFYohwO2VFQNFUVlQB8JbhDTLj+Bf1XlfDmzhqOHI3UpVCmIBjEGVaadvSQgEiTI5L0T7lx7p/Ux/f8NwVisILWmhbdYgivjSm+d6B0fCWrf1MNBcD2vYIWHuyOmQowGgPhNmRv4kJch/Tboj+Fs1xXvnQ/efy8jLGrFTGnbmqpWdxpB94F4Ehxj5Ha01nBP1S0R3N0dE+ea8HMbg6LGGM7Y+kQdmGhLoh6jp6K4b43L8xmzQlGjaiqUrdRUACdinyq9MdhGo2894x1GJ+234XB3Ty0ZpxE3EqEUmIC0SjpbB+AjGMAWTu8NjeDu7o5qhZjrTmtFNQFSVDPCYypbxwRxvWVMxnIqfPzJp1CM1LBJ/v8JlEUoRStaDZvxFalum8psd67byqkWtq0hN9Ba5gX9om4TVHXaiTMpgnj563I9Y6Wk2tnyDwu3D0mgCj5XvqF5rMaMZ6FUdMnfVycjWERQEnwVzX/eFMQizphrMSZapuHIAPeMQ4iYwCIJgglBNaXdPlsqLlsuj3qzUs/TJirzWE4SRbMPaFGKBn1MHFoqpXQEo9QF1cLxsvH4fIbplpCkBxBC77mGSxXAklghSQ6VqTBOoTVr21iqEsoET+dRneSTmqUTPopHJya4iiZgdlgKYzSWcpznMdXD+oW1IZqKT9WCMJDueA9aDKLCEOf5eaW8TlBYTChaYAw80gEDHwn6E5QI1BK1jhDuTlD0zPM1WB7SCl7HwBEaYAjFHC3GCJtW9w4DNgH14P2vHPjmR0+sTTktwbp2rCYQvT4P5E7RmrEpqjPeQj1dJe6AEbmf4Tx/cubuzYIeF6JdETGivQO9Q+xIotgKUkGSmDt88Dv4l3/4HT/2j77Jn/kr/4S/9gvf4v33Kt/znYrpAqUw1LEW854h3J+Eb3zjn/H6Z/4Kv/XfeIMcvpuH7/ohfuyPf8iHf+4v8rP/h2MhLKcj2/OZ7XJlub/jZ/9p4/2f/4w/9EOveLi36SpgqTqPwIunQ8TIqCElJsEHowwMwUIp0YlwRhWCGTNAUAm4C7QFz2vDY0kyUcCjJRlN3oeGZu8yhcLIGKUwFGPrHSnK2AApbK0TOtABLoqMwVINt1sv0bwnkWB29jooy/JCNvIC5KaliUS8kA2QUSUeUz2tjoTNuJ2BSoLn7oNwYahTb9/rjpkS856egl6hSCBWaCOPlXu+SIDGVChnHE4txpj3GPdbHEJeoxHOtl1pLUHtUhST3NeOoKNhOMpCiOFIRi7VvN63tbP5wKOlI0kxihhmiuOoZ++KGeMAioQjIzdga7f4Bhjk/U5wCM/nEFF8xuuYlOy1Hmg4IzyJpJjPCuGT0J8EjaT7SYrW4+VeLhHZQ2q6fMTIFynyFusvpyzJZiMkiSqzdDqZLASE4FiSKiOjN9IpIsn9kNnXNckeiaBoklpOkrYxPy8jNZLwiAhwIXRGL00XgTHJ7TEafnnHO7/lVey11/997fPMPs/s88w+z8A+z+zzzD7P7PPMPs/s88yXZ57ZX3raa6+99tprr7322muvvfb6QlVz1k24NmGVSsc4n4XHdXAozgfvFV6dKscyrbRVUVfagM07pmkR3rpgwDpSOff8OHg6D97eV6opiHGogZQcCi8Dru4sVlnH4NIaPpzuaZsvIrQeWFl4fX/ktCS4leqlmd+OQFHonuCkOgXoAW1zzs8rz8/PqAnFKmWChrUuWElw2ZYD1ZSIwdPzxrputLayrdtN5sTd6ZjxCUtlqRWpOm2LndY3qmWUAMgEhXMwRpXLZWXtgdZKnSB/9CBkUJa0TM5BWhNsi9x/HyMjCLaR6rBqoEapR6RUrBQQTyVmH4wx8O1Cd6cPp0wwk4DL1sEKd3enVEuiqHeKlQQPTAGne4IObSSwPXyqet15/70308a9oPNnRAqmJYGKGd2xbdeMYJBUmfaRetptbbx9/z0ExSSVYAMoJbEUnWpyQZDhRNxs/D2tws14fvz4BZgRArUy9yEB98SXBiNSjd3bxoigtY3wwelwwJaFWksqhQU6Qp1AfUzl2PVyhZHHos8IhXbNNVGXQl0ONwkaN8TH1HCdMjMpxHB6a/TW8NbZeqOaZazG84YeKxDUatNafeojRRBLlbyJMxRixIwTsFTFIYSnYt1EUB9E2LTzTtBUJQFmH2Mq2BKUCXJZXC4b929evyjTZBIFN1BfmZbzkqCXy1RexoxVCH+JcwjlhhPiBItqRkCoIFKQqXRPoH9aqPvn5+rggcuAkUppNFXSItBuxFUIUhVG2pmbFXCoIsiyUJcDQUZPRO/YqaLFoM1jSkv1swlWjKWeuOn7VFN9qDbZIUA1XtaV3H5J/pswgATufV4zWgqtA1qmsllwz/gLNRIom1b8KoKPBPvGjDi5wa3b5UI9HF9U9ir1c0X2tO0PxowpIcF0BaSxmHBYlPPTO+7uK5Wb+jEQk1TDV8Ug161DsCEo6GBCebx6WPj4szNv7l8n6TJx4K5wEqVKR4vPfi0UU5Rb3Aks1fgt33bHu886pShqJGlZja0JOhwbji1BCUNLCrzRQdWF8IyWufvKPZ9+/bMkdpaCMvc5BNpn4I2w16BvQBdECug9evgeHr7rmX/3Rz/ml3/1I37h6+/4ys8f+aOnI2/fKrVUlgiGBXhhWMYUnR6cf/iL/4CHr/51vvJ7/yhiH/De7/4RfvzDX+ej/+7n+JV3joeixwOXtaXK9nTgp/7BypuHZ37PDzxwPBRK8QmodiQKNpy2NYIZlQBIzFyAERAx4wUKIn1GIwTVk7wd3ijuHHB6e06iSupUzgudTo/UJxeURT1Vu5IxEGYLakpbN2qRSXpXxrbSIzCp4IMxCrdInwhHYiq9BbrHBOVJ8Bijj46MATIyzkWSSJPZa1Rv/w4xBPWSSllkupfc4lhkRrr0SXgqIcIIMC34jFqYnwSi9JH9O6N/svmMCYzLrS1H9mjTjDoQmcShFNqW91dxxTVjL9TylIQ7SXsm4ZKsSTpxLKKw9emqMJJAsUHVitiMiYjATemexLCG0kcSOMgkpubzgswXHaSCjXzeMCupUJ4/IUXxUCxi3qdu8T6T+A2m04jO+JxUjxOayQrC5wSDJKFqJsSAPvL8mjDdLG4RFMYUXPNyYHySdw5aCjHy+yHyaDnYVFtbZLzHTRFuKpPISoV1eLwQxNy+KzIO6cZVm6ZDxRgZDTWu5//nB9m99mKfZ/Z5Zp9n9nlmn2f2eWafZ/Z5Zp9n9nnmyzXP7C897bXXXnvttddee+211157faHWVnnucB2F1Y3nbTBa481BeP9N5f5gOfSKUFVwT7WQiHA0pZhyKMrmg7UPnjfj46szmvL+6zuqkQC+KWHKdTg+YHiCZa0nUODh9KkiRYytO9WMNw8HFpMEoSzB4eGOa5lAXAJoOcOmmmbtztPjmW1bX9TLAiyHhWJlKqgsM+J743wZbOuVy3pl3RrrekUI6vHEe8cjh+Nxqm+NUE0XeHWKCCKeCjAMT5FW2hpL8Pj8zDYCXQrFjKXUzH0vcLCagNFUoo2ZM9/cWfuGrxtjW2ljYHbAxDAzrKRtumiqT0cf+Oi0ttH7wHsqmiTF4VzOV1wLx4djxlhomXEJhZj24N76jGAQRnwexdBGZ2yN+7sTpeY4nWrpgahSlgW1Qo/U8XkfU4nreO9srU0ipXF3f0+IYpZkR6ggHpgk2DN62vSLJDCTGJpMK3zl3WefsfVOrZUYA8qSID4gPlINHwJ90HvP2ACA+R1SK1sfLGXJWIPhLLYkgTWcbXS8Dbw1tnVNW3B3GIOt9zyOvXF8eJPAOAnkFUsFsFabYJbkurzhJyRAU8w4HA6cny7IkoCvaUZJ1MOBZblDVVhKAmSt97QyD02grAZLQLQVI4F2D6cw4yMi1bpjOGHOCEnQKfxFoSweRHe23nGCclODT/VaapHTav1FGo0wIig3+Vx+GTJAi6RC0/O7RTUJI5U8fmYQSeiF5KfHVHujQgx5AUt9JHEW7liN7DPhiLYEt3RJ9S6p8pMx15xKglOWkQfuztDCcKFMlSrihCcJ+dJrxsjrIDqX8wWcCb7qCxGSazGPoU2r81TNKx5bqub7wCOwUhIIDiGjLPIDbmrB/EAYvaWjAWn93reRXzk6PYLrtnHnDpJxFGaBj6DTKaXk8YtJppAEY6lw9Er3wcOrN3z60RNjgFedcRODaBOS9Mjv6zBC0speHAkwGTQP7h8OfPb4yLbBfWUCi2ASuGcsgcbAIqN4vAinQ0El8B4MnPfeHPnoW5/w9KxINOqm4IocBzw59w8H1EpGtAyItRPrjCEI8ObUo3D64I52SRDatSJtzebgF4IN1QWJw8REK0LGKJTDb+E7v+97+Q9//B2/9p//LD/7yx/xtbd3/IEfLLx+o4TltUUZ1ADphhcYd84v/u2/ww+994b73/ZvIvaa7/lDf5Kf+OhT/pv/5Vt82A4MHzw9nXl8+pQthPXufX76l1fu76/8ru8pLEejLJqgsYLMqIuxBSFKXRzTytY7pob1gW2CYYQXrjIwdVoZKMGCJbmqAdZ53gY+gySSjw5coY2guaT7iATKYEyHgsUqxYznNWNgahWKLvR1w71TNOMR8AS+VUoqZJNGY+L+SSCQADDD2fqgqCI65vXjSTrJJN5UGT1V+ElIpiuKlYUYHWNMcikIDSI6IYLO6ItAKZr33T4AC6obsLH1/MyMq7iRpOnMYWQEQkZdePYc4qWt1cXo3Wljrj83DlInYZiK7Vski6hhqoQeab0nnavQ1pXWIVSIkq4AqXOeUQ+zQsCqzvgKzcgXyU3ymPEzw3ONSxIot+8kEsifTC9COgkMnWC+Q9CyZ9/Ond6iTia/Ian+TwV5nkufZIvc3EEi5u/1SQLpjDZhukSQUUWW97aR8m2CVK4j+V8ySYuM09AX0kVuDRVSjQ8IltEX888Rk+SZURcv91GRSW7vTk97/ea1zzP7PLPPM/s8s88z+zyzzzP7PLPPM/s882WaZ/aXnvbaa6+99tprr7322muvvb5Q71bjHMLzmpbldxVev1Fe1YoZmE61Dzot2g2V4FgFE2OL4HkLPr10njfnug7qUrl7MJDCiIGVwhAl9TyGaSr8+gg8EoEyKVCE9drpw7k7VV4dC4qwTsXqTbla65Ep37ppG4kI1jZYW+d63giCuqT9etGCLZZqSk3LbjWhqHA+P/P4fAFgW6+s64YQWF04nu64O51SiSVGkQmOzSE2RbBGn6pQUwMPtrbyfF3pIUhdMEuDafdIaKdagvgkWD6xF4Z3em+0dWN9PufgXQpShGI2z0WkataU0bYJyDdayzgImaCKmLGeL4xQTscjy4uNfareRu8o0IkE/SVoHjR3xIO1bbTLmfvTiePdMUkBy/0LyFgM1VR7BfTeaWtLsB+ntZZqbQ+W5chyOEzQQFIV7UlmJGYc9JYW4WITahCZFvrCtm5czhdEhVISWFisoKKY6rS9TtWqmhECdQh9DGQkiIWkkreoIU6qZqfKMiIYbWNdV7yNqcwK3AMnbf7H6Cx1oUhh9AHy+TkpxVIpJor3BPaG9/x+kgiICKwoj09n6t0BhwTutCDuSKQteneZ8QYTvOmdMRXOvXd6GwlciaTycIL/KdWf5SCaALZGJKgUGU3hMdi2jbrUPJammN4Uv/l3l0jwaUZRgE5ldaqICWXbOsuypHtAG6luhyR6LGNjgiQEEvhL3iH5iDxvZrkPqHIoCdf03uc+Ox5QtCa4FmTciAgWydP58Ik7+Qu4GO6M3mimqC0MDwqD1kfuv8+1HhtDIpX/fdC3LZV5UyUtE2C8xWrkkog8juNmRS/00TOCxpTz8zOtv8KkopaAod7IEVJhTuTv11JomiRY2u0LS1lQf6Z3x9QRKUSk5b2PyJgJs1TDxsC4kR3kGnQwOXKuz2zXjaUYMQbp7p4uE6MHtgRbOEb2dosEOpGKRcamvPf6yOPjmdN7RxazJCVjIsXhqabH8dHoYgxXiiYYOVqwmHD/UPnWx2eKVQKlb41RC2MbbGtGgMy/oaeCX4PRg+W0MLQTMTi+rqmYbw0djRgbgadDQy9QnKABhZSI53oVPXB4+zv5l34Y/uNvfMZ/9ud+kb/x93+Dr75d+IGTcVgOuJJq0wKGUjegKs/9wi/91M/we16/pXzl9yOnr/C7f+QneFz/HH/+577FJ5eB9A1z5/L4hPTBNw5H/tLfeeSuHvju77pjOQny0udTZdwD1qvgCFqEg8x7bIVqwtqDpRqPm3HpSl8H29joKTllSKdq4eidSxuoDKrYdJLIHtfFGRSKKWWStxGKRzou1GWhXeSlDx9Od2zn9YU0C4JBuhqEBHiS6gDc+oTcolgE650+OowE+K3cwPq8MYyRTw+pss7P1EignBkTI2pzXaX6OiSQcIqVF/W3R97niSTAa01isg2ntT57XrpH2CQLbtfvjTwI9+k/4QQjt9VntEE4W2tJnE5S5EW9rI5aQSyoRVEyzsk017S3Qe8b5oMuSjXjFnlz6w3iSRbH7GUvbg+ihKdA3iP33ebLEGGGlnTDSLcYezkPBUtnAnVMC+bQemf+yclJzn3XmD3NQGY8BhDR02kkkni87e+YzylpqiDzcwIX8JTgp/qcfH6LmD1MpmsFMiMn8r5RJqlyi4RCZi+RvFdo+ItaXGezd8/nHPHxBY5V/v884u71Jap9ntnnmX2e2eeZfZ7Z55l9nmGfZ/Z5hn2e+fLMM/tLT3vttddee+2111577bXXXl+oTy7CpQ+KNF4/FN6cKtUWrAYqniDdBMxONe3smzvrBh9fN949w+rwdHXQ4P4hbZEd5VQUj8IWwdYS4NLp1TxGZxsBDEwFD+f5nMP6w2nh4VjSNnoqZVIpVXAcscxcz5kxweTeOk/PF7aWEQSqMgF1QSxJjsyzV9SMUpTz+R2PjxfaaIzRcU9Vo9aClJIW/m3JIbsIwzuH4yHz2yPowxNIjQTpCoVtDM7PV1wN00KVgljCcaapkL2pVF2EaAkcjLbRWmfbVtq2TpJjoZZUmC7lQEx1eVkWog/Eg21daX2FnsN0qYYVWM9X+ghODw9YyXiC0EHzBMFNUo2KgFmhh+O+ISQYe71cWNSoSxIyVmqqlAjqUkAy+iI8oyjatjJaw4OMQRgtVetqSbTkH00AWQydgMEYztg6BGkL7uAy1a8T5Hn32aeEQJmq8EM5UOsCKi822B4xbbxBraJqDL8mqFwSiLHjKcGWMjXAoyVhMnoqikeuKRGbwEhGawjK6XCgLhVEJ+SbyQGDoGqqq9GEMcbo+FR69zGwAFXh+fyM1AMqhaoJkHecpRRi4mRIoGZJsrSVvvVUPW6d4cHoHSuFWlL5ZxNkD5W5rQnC3OI1XIQWCY6FCANn2xqHwxGbcSBfhF8kkkjqPY9JKTWVcsHLfuMZsXE4HQm/AZFJ4qGpzpaR1xISqKQNviMTAMvz1MdIkwEzzGRGAigy8lwHqfCTqVgO0ewd4jMqIYmWc8DWGouPFxt4740t0l3BJddprrdOrYVwp8dgNAfJ+JCtXTkdT8QE7zJKASLkhRS4rbMxrdBVlBaDUirEmW1dORZ9+Qz3G3+TFuvFSva8UpLpKErbxlT/OaUIvTWWpc7eEtMFAVpfqVIm6C7oBCl0KdkAACAASURBVOvHaAQZKyFkL3p6eqTWtLk3rWBGKHgLxpZRKiGR/TWCIp5qeVNGGKf7hU/ePXN14ZCd9IXMaEMwDaxArUl8jD5wwItkj3bl2z448tm7lXo48PZtpdaFpVREneYKQ7k/FcIkgdTDyCwfhHI8EutKNKG8qjx/8x0PMuZazJ8JE2Q8gR4RKSCFoKZqVypS3nL62oF/6092vv6rH/Lf/sw/42/8/IG3bxa+89uVUgo6cjWqBqVogpcn4ePHj/iHf/2n+Rd/9C16/7uo738vv/8P/zD/+B/9GX7q3eDSoJSF1q48Pj3i0fn6OPIX/86ZP3GofNe3H7Ale4eIU01RSRB4u9wAYseKENMlJKwxTLlTgbWgKIspbXO8w9WV1gZyUHxcWIen/b+lnX4ZionQhiXUb8oiMHpGevSQ2Q+DmPBoj0AOR/x8ZlwHaJ5HKQ3TJZ080oqDUgu957Xkno4WqgUDet8S7G4d1GfvLgkEI7Mf52epZBwBCuKa1ybpuMEE1yUmSTmJRA3Fe0Y/+C0aQgLTQEo6SYwRiJQZQ5E9NxlXQ9UonhEQhEyyMBXKUUoC7pMsiChQygSyFXXBvWNuiBVqrVhdqMMZpbO1jdbX6QqSx1lnxFOSqoFoQT2jM6RY9hQa4gJ2U0nfYhMS6Hem04mWF3eXeCE9ZgzNfP4Rg6r15X4MvBASePYxJwnj0CRvE+xPNbJOFTYRRB+43Jwg5j5onse8wWU/y2gPGHxOSPVbpEVAiDNPREZHzLXAy6/ZQ03y2a6PvB+/bFOC+LcXQXafp73+32qfZ/Z5Zp9n9nlmn2f2eWafZ/Z5Zp9n9nnmyzTP7C897bXXXnvttddee+211157faGet8HJGvdHo5bAPRWwi0KMBtKwUhNUjo4WQYeytuDSgosrW++IwqtD4WAL1RbuTgtEcO7C1kciZRI4CS73ARKDHp2n62B9bhyWwpuHE4dqCQyqo54KLI9I1ZAuFL0pNWHzztYGj+eVy7oSIwEwILdbNS2Np74rgeHO09M1ge0B13XLuAlRyvGAFeWwHFmOB0QrKpoWzykBpssEVV1SQeWOu7BtF56ez4xJRtSatuAm+YsJGmZUQw7Kg864brS20bbG5XrBIyhLqnBFDNNKKITWjFMYnfBOayvb9ZpKKB8gael9vQy2odw93LFMEK+cDvgYRB9TsZUezxHCpa0JEAY076xPz1gEh9MRyFF+eCrViukEFORFKbq2xth6KpxnDEQIjCE8vLpLxZqkMrS1xqKp1LWe0SBBgh8ewtR+JRytyqeffkrvA6sFK8bxcKQuB4ol6CROAqyTIEhF8QR1R4Lj3YP7+1csNUEvSgJrMjyPm/tUrCaJAVPFBrRtY1w37GBIsSQwJmkWU213A2PEPZVckbEEhCfho7ndn3164e71mwTcPRXkpqlwG1vHrGCWlv/bunG9nonuoJoEQaRttxRDpGSsQLEE20QQIj9vbl/iQJGxCFMtV6zivVMeHuZBTvIgyJiVIGZUhaXK/Ka0m4r4mOq+GCBlwX1GJZiAGOVwAEvg/0YuEoNoGTchKtOZPbhezwxPUKi7Y2IJUk9gSSY4eTvWJobXCmPNY0EqKX14nqe24nrA1Khf+H6zBZZU66vn+h0jCYNtu6Q414PR/YaTIZr9xd0ZCGqpUE7ScQKIMSbYngCbCDw+PlKLsiwLtdrsXYpooYVSZMYqhDP6IEanmtN7gn53dyeez89wd0piRRWNMZWBSm+ORJtxGmP2whv5Ct5B68J4fkzb+WVBrU5XgoEabC2JrUn50HsgizLGhjOgJ+H76iR8+nzldHpAIxihmDgainlQCxzuCu2SBEV3kOGpePdATfnqByd+/RtnlFe8fuWMZeN4KlNdPddpV0ZAORrjKYmxGooeTvjYkDFAnOePnnj44C6BzLEi44LdOSJ1on2v53kroA8ZNWJf5eHbfxt/4id/L//r1z/jF371Y77j7YnXhwOvX6dDhkiqTs1S9Vm7cXeEX/v6P+HN//zTfPsffIOU7+Due/9Vfuzf/4jP/uxf5md+faN1YTm94np+5PlyRfSeX/r0yKv/6TN+9A+/x1ffHtBp3Y8KwaAo+CK0a0swfgimJe9nsiB0DghSQch1VpZgSIORPboS2EPh6dLZHKBjkyLqLmi0BPZ9Kmglla5FlW1kJILhGQtCkjr1dGCsHR8bhEEPmjREPMk6MwhDLdfzLVfBuTl1VFpbETyVwxiWy58k01LZLyLIyD6NC1jMSJKOaKf1dCgYDCJyHbnEC2GnEci8flLJy/x+GH1j9C1dKJSX6CG0phuKChbKFj2jici4hyBYSmEb6VTQo+U6KHUqqZPc6KNTIqAeIJxiM65iQtn0jd4GHc+XAlB8uqjEjJewYlOtLbTxf7L3br+2bVl536+11vsYc6619j77XKAgprAxOGXAVhKILRN4sGMnMYZgIjkPSPmf8piXJA95iS1HieQHR5aIXI4iY8zFAXEHE1KAC6rqXPbZe605x+i9t5aH1uc6J5IhynONVjqlqrP3mnOsMcfofbbvG7/2RZ7fEEaAFcEjP+e8NuZ3hltEgwhaCqKWsTA3Z1eTRJb5H7NKDGcw5vWdND5zbVNNV8LF8Rjkt7JcH3IHnlM5SJo5Jplumt93MCU0DTXpTrE0b2JG8NzWFQmf5mIazyCMMdI0fp7kIZ+5GbcRGCFA0vwdnxblM59/1FF/Yh39zNHPHP3M0c8c/czRzxz9zNHPHP3M0c98M/Uzx0NPRx111FFHHXXUUUcdddRRn6t375RzOZHwnLKIYzqISPJyuNF2aESiOwKXXXjswTc+HejorKuyrJYkb11ZF2MM2Ac89YaJkfCo454RARLQRufN2yS8XpwWXtwtLKpomYTpFJHaSPFOZpSERxKpvTe23Xn7eGW7bozwFCctIxFULYk7Kyy1stYch/z600/Zt522b+xtJ1Iy4Xx3R11PLEullIWiSZyJRrbOtlDNaGMQEYxISszEGMO5XC+EFWpZWLRg1ShFUMsR0r33pLJNGGOKAaMzeqO3xvV6BRFqTWMiJEXVgBQmiyDRab2zbRfadUOQFAxcsUXYW0fMuL8/U2vBY6Cq9Naem+zwFPVGeIoLPWMXhjvb2wt9dB4e7lmWJYlPkSlBJVmVufQkIdcHvbf8XGNwG3c/+uDlw4sZTaE8w1jh7PuWFHSkwIQlXyUjxR8hxZyny4XHp0dqKZRaWWullkpRI9AclW+kMOE6x5WT4lGA1UrfBrVUpBS6CCZJntHTJBEmhReR48dNCdK86FPo1EU5LSsTuwWS+BaZdGVmHCAk3T0iTYfWWo7NLsK2p3AnJScNFE4p/pBk/RiOVcEnbQ8QGKg8k2tt3zmtK/V8yrgG1aRKNY/bQmb0gzIE1tUhMq5g3ET++U8tdQr4KQRJkLT9zdAxgwh65LGM8Gl+DCBFZCsL0q+oVUqtKfypTHEvyUeN+ZlGRiPALf4kYxtkiqe9Wwrx4UmaaxoUMgE6FZlGZRCtZwxG5PU0PA2OMcfii+Q9vy4VIse2j5HTGOpSJp03hatIMq+PQZ8CKjHH0jNJvmfngPk55yh6tOIoogPvjVor3jpjDIZ31DWvEwQ8EPacsiA6if40HIpWPLY0X0LZ9z3Ps9mzMJcingEZP5NxEeAxkHDEU7DtPSNiiODt05Xz3YpGJ0aZlKIQdNwbYsaYBqp5vkfbG8LAHB5eFL729QuXduJkuR+kcQT7GGgLbFWsTrMzwXhMhWFgIrz/wZkPP974+sc74o6fk96tZ2XfG2UT6qKMFlgV9K7QLg0IajkTHrRrp6zG0yeNUpzlLs9dIc1OGW8IHGxAdPDt2TAVNcRWvuNL38lP/cSX+K//+1/gf/+Nb/Di3YUf/O53efniNIXUPD2uKdZaNNY7+PVf+DXu3/+Ad773byPykne//0f5u//J1/joH/0iv/5xxmrU8x3t8YntulHvT/zS11bufv4t//FfE169nPuZCNKXFL+9EUuhXZPE9dFBjDBBI6+3MpzzXMs2ESIWCoFHQwlUCueT4tfG1lPsVNU0pCwNQe9zPH8VxIVwAZxSoFreSx4Zd6KqVBEul53qnoB6pI6PzCgmHLRknE44g3g28G4TGXp3DJ973oypQPAxUC3TuJwC8xToEacslYgyzeWWBpoPOgOtBVXFxJBSGKMjUigijEkzo7CYMQja6Hn/hqPT+BGFiEItaarRbxr7jeI2qiidgY/O3h0fO2YZVaXqiCgdZ7Q9NW4hY6WWjHyiKcTG8MFoPcX4yHcRzfVvblEIQrUlzeIgjdRwTHLah7vnnivJSLsrlAIueX/NvVSnXxNznQyVXMNM0GHPRspc6HNah8cknm2umcHwgYogGkjMPT4CIqdAqGY0V+7PM1ZKIMoks0URjfwZD57jMGJk5BfzH4GQaYJMI8Ijv4/kgxOKxPyOlSfu2ZjWZ2PhqKP+7XX0M0c/c/QzRz9z9DNHP3P0M0c/c/QzRz/zzdTPHA89HXXUUUcdddRRRx111FFHfa7eu8/xwCrKUgqL6bMW6hHs7hkP0GBrOVb6zTV42pOIOZ0XTkthXQq1GipwfXpid6EsJ051ClGeolYxobnz6WXj6XJFCN6/P3F3WnMUsiUR42MQCD1AS4rMoKjEFPScy2Xn9adv6X0gms1znXEDxSyFhZLxD3VRfDTePD5yve601lLEJUctr3dn6ulEPa+cbSHI91RRtM7jv41a9hxJ/Sy2e+OxNWxZWMtCWQpKHoORPxt0TCRFwuFE9xyH33f23rluO5iyLBXJfIk0OESTbCw16cPW2K4b1+tlxlLkZ5Uif4AW7s53WE3h01xBM+ZAZ4Mekyb13mlTGHYPnh4f8d54+fCCh5cP2LJMQsszUiK7dkSEPjqjd/q+0/eGSNDGwAfsvXE6nymLoTWFEo/AfaA6adN57DavtZiCREYDFNwbbz75BJMcFV9Kfp4imiKHaop7MZJmG3Pu/qSHIRgE+75z92JNIitAiiUxLUIpBZ8iuHbHSpJ0HiNHcQO1FkxBStLgqkYtlucD5mjwAqQI1NqeIokHbbQ0BKTw8SevKfcvCAZLWZFIMk9LJSKoU2SLIAVQVe7WE200IqC1TozB8uJFnn/GFGRrTgKYqo3LPM+lgpPUKAPGTgBtz0kHeX9MU0VyPHqQtKoDfXR89BlzkOR9EtEdwSm1TsPFsDmqnHC4jbbP8AduERLPItb8fIK8h1Q1z1dkVEmQWpjOcee9z78j4B7PMSgeA5FcL/aWNKXIpBAjiUczm8J7zzHw5MSCG4knqnMEexoHMY8vqXJP6ruUpIXzTsZKTeJ4Ghrhjeh5L6kKvach4z1ovuHWMbMc566WkRfoNFaMIaAyEDeiMU2IQeuDu7qkyaBJK3qMOYLfcmqCDmJMQTiEHkbIQqnCehq8fv2Gh4cTqidMQSVH4Y+RwKiZZXSDgLeW0QQxTcSSlOV5UZ7eNO7ez/v4RspvATYEbRml0IZDGMOF5opaEOEUlC/8O/f88R9dsTvDzgse+RmNHlzf7tT3KnYS+g7LWhiMjD3QhtWcSDD2gZ2Ntx9eebmesCIQCte3n9vNlKCDPuSfUQnpCFDXB37gh/4CP/rbH/IPv/z7/PNf+YRX68r3/tnK3b0hlmt5IRgilCic3Xlcrvz2z/wi//63fy/13e+DuvDF/+jv8pMffcSn//T3+MrbwEMpd2eulyeeLo1X77zgX/7eJ9ytb/nhH7zj4WEapZKGlBWl9MFWK9tlw4dMwTcp3kWdHagCZ0nxdGdGMFiZ62kjDF7UQvQNV6XRMQwbKcamIVRySoMHRaGozGn+gonNe29an6Wwns5s1x0LRyJoMVIQjwAZyGAaY2QUyZxyAJJRJw69dRYt+AhE8zoI5rQIyiR1mSKyTAMRINd1d0ONdJUBPE15LblZpIGpKWxrBRmZeTGFbZGMmokg9wXfc7qEOB6FiIxRSK9wRv84M45H5iQKx8NRB9NBsYIZWGS0jaTrkD+nOaFijQU9ZTQNY+BtMDTXBZOM7ZG5xodEGqgoqjl1wX2k2e2DMiOObiZm5InNiRA6CLmZroDknuYzbiFkGpwKEmkUyCThPWRG+KShr2ooOtcymREON4E+P5PwYIxJqguERq5Dc60MsWki5RqcrH06F2myCn0aASbybOy6T7OVmxGan4kqFNH5nVGIUHwaxEcd9afV0c8c/czRzxz9zNHPHP3M0c8c/czRzxz9zDdTP3M89HTUUUcdddRRRx111FFHHfW5sqooQa1KVSW5JgjvuHgONfYUY0uRNAv2naLGaTFKVdbTylqd0YPdB204pa6cFmOEMFpP2lOMHvB223l6fKKshRd3Cy/WleeR07MhbSNFQTVLeswFZdA85ce3b594+/hIH1NELIaZUesCaFLeS8WWFVOnb1fevLnQ+k7vO705qoVSFup6QkqhLisnq4RmI29WstkdbYrY+U8S3oGo0Pvg2hq1LmiZ5K6kgI2kqCYRz/pD+GD0NF5639n3jbbt2LJQSwEf5Mx4RaVMUlWJPmje6duVNg2CICZNlWSba+V0v6JiuA9OteJ9kCP1k2wWcvR+b41t37EpXGzXnd4bL18+8HD/QC1L0rTzPKSAlYLO6B2G064brbVJLg26O+5Q68L96TzpWwOz/Px9pIAt8jnK2KeeVQjLP4twPvnk9TQRCipGEWOpC6qV7qnoqBYikjIXk4z36IPhg+gdD+fu/p5l0shabnELg9swfBFFNaagnGL48KAPp/WGX3fqMseCT+q5YHgES11SIJ/CUhuD3ju9NWJ0CkGY0XpjazuVjvaGlEqEI2Yslkei0+BCbcaLpHhuonQftDGez30KbjFp9X0yZ2laTJxuCvYdMU3BmyTa2rZzPq2pj7k/vxaRn8OY13gMz+tXYHhMkw6GZHxELUtSdCI5IWAE1Qo338rmcXhMMSyCPhoZiZIREr0Nlrv6TFz7LdKDQKqiaApUk14cMahrJcV+SSNOFTOjlIXTcqLMcelLqXm1R5LmOSHASDY0RU2ZpsFSK2ZK730SeHMcejzrn/ThlJqmgndnjJ5Avw+iN1rfk4gcudaN0fAeDDNOS81rTytjZByGKYin8Dtc8JEkoZbC+bQQPVCrCRPO+6WIQigeTnfFFFyckEK4o1axSJPmdC88Pl24PF05rxVhPAvVQeCjUQrPxpQPwWLk/Rojf0cVHl6c+fDDjf6yspgRIXSC3cnzH0m5hxtFBG4TNUYKnaHBi7uFD/XCH339wgcvB/drBQrr4rgZ/dooS52UrVBPpxmX0kGWacIlBcq+ER6U+wVKhbqAFpBK0BBfENkJWXNtiYWwF7A88M63fQs//p//e/z+77/l57/yll/4rZVXdwtfrJV1vSMQjCQ8o8AewUmEN9cP+crP/jR/7ocDe/E9yOkDvv9v/j1+7Gv/LX//Fz/mG1dAjHJa2S4bb0y4v3/Bl3/jI+7PwX/wl15wt06DjNw3VI2q0BdnbG2acxnX4RFoz2uvWq65iOAU4jKSVLaK0MAHcqc8bh1GJSzoQe6XGgzJdQOd0Sg3MlcMk45psPcgIwAUyspyEtr1SlHJtUFSKM6JAg2h5pAUKaj4cxxJ0s75+4V7RsRMF/smqgtjEsm57klkTINI7gQuitYFGZ3wQdt2vN/E5GnoWZ0U74KPNCMhbWETR+be7D6F9xgZZyMze4g8zrxWk+SdL/AcESGWx+sj6N7nzwcdZ6FgZf5YgMZIC7EoqitFC6M1dhreG95zv4pwYNLSKjNiJ6YpDWCIBMXSWrWQ+edpmELGSszTl5NF5oHLNO/yVYwOyIx70Jv5PK8jxOeakma5+5wBoUFOX8i9In3rRK+DwLtn3EoIMa8NlZxa4UWn2TIQywkdRE63iXDsZhYHjNs+M8+5RNqwIZKkt6ahlQ8v3P5ufPYzRx31J9TRzxz9zNHPHP3M0c8c/czRzxz9zNHPHP3MN1M/czz0dNRRRx111FFHHXXUUUcd9bkyoCw5dnwQFBmoK1FKRi644Kps7nz9TYr3p7Ww1sJSjfO5cKo5qtzN0AoPy8oA9jbHtAdzZPvOm6edvjVe3Z9Y7xaqZnNZLHBxOsHwKQgUxSSbVSfYR+ABb98+8XR5mmPybVKyRl0rtZRMcrea1KoMLpdHPv30gg+ntY1wGAGLFkpdQCtmOd5/uKMuWCGb6ZFCaEK3zhgDCVBTtm2njWBZVrQsVFNKtYykmODVGPlmLkkjRuQIbu+D1jrbdUeXJNI0goiKy8AwsAUtKbwNOozOtjc8AkMmOeWIKQ3j7u5EFUsC2AyXFIJrLZMoh31r9NHZ945owUqOgG/bxmldOS1nxAq7OxqkKDsBtdv4fXBaa+yjM3FX9q3TJahmPLxIqrpYIVAGwXJa6D2JK7mRuJPQFndCOjojC948XdiuGzbHlKNGqDEiGH0HSYFpjJYCUDj0JFmbd8b1Svjg9PIV9y9eYJrCdEzRO6ZIF1OcHr3TWktzLBzvzt4H18uFKkE5nxAtVFN6+GdU2oyByFH/kcbEcFwkKXERaim8/vhT1vWUVFnvMBqoYWpJwkZSuzH/e0SaULjPY9tpW89YgzYjRVTTfHJHYxBjakAoA6MQ2DPxHM/i97ZdeXj3FUDSbCrznfNnJ8iWY/T1sziSidUhFvQ+8t4CuqbIExFpbGiOlw9NAlI9oyRGIoTP0TBICnA38ZCYwpgWRPJeRBUxn7QwUyTPOAojSVAVnYbTTYRL0UqA0dsUxYRSVogNCIot7HtOZVhqoS/LJN9v3K9OIlEzIkR4PkbvfQqhTFFOYJoZMU2icEciTQ4VwcxYSpniaeA4SE/aU2GQMQsC+O5IqWzXjRfcrluIGKgYatM4Rdh2puEGEYo4GZOhlfOp8vLlA5enC9tp4bRkLIabYCWIDkU6Y0DrkWbS6NQKrjmCfYSzqLGWztNjp7ysKShOIrOHsnVnEWWZUzFS/1Tcha4paJoI3/btZ373X7/mUxnISMNweU8JSsZnbMpyWkAUWw2oBB1vPSn35YTQkXcH+1PDVmN5MNCVW/wFUUA1IV6ZCi4B+g66gMjCd3zJ+an/8vv5xn/38/zqH7zm/VfG/d17fMu3ZPRNsqrCgqJFEXdYOr/1a79Cvz7yPX/rx9AX30t597v4oR//Cb768f/IP/mdK2+GUmSBJdifrrz78o67D76Nn/6lP+LFeeNL331mXSGi4SMYIxiSZlkp0Pae15EEVoTiho+BIVCcCngpjJJmmUlG+DjKaeQe+MlTp3jhJLARaVyGsEVSrXWaZN3TXBZNAbmq0z2J6QhBpKI1r+dVne5pPMhtuWOkMXVz0G4mAKBaqTUYc38zU0TTnELks3tJOjCnXczXINL48+ggBch7kJEG4r7vmHbK4qjWXGdEUKlgQsRGxmoozQc6Poteae451mVOCenuiOYed3v/20ooolh4xnOo5QSQ3kmjShkGhFBMUc2f7MOZdzy2KMM0hfSiMDreHZdc121GHuTbJvkLudaC42owIsXzgBBFnx3LXAtwI1eSgakQogQ5VSYgrxvJ6ymfz0jz7vlhBzx/5hbrMU1wIohIUlzmd6+ISVmbEgLuHRk6PYfIWCJVJOY6fDM2Y+Q0GPTZcE0zABadptk0R5N61s9u2aGI+HxvySk1//++2h71TVhHP3P0M0c/c/QzcPQzRz9z9DNHP3P0M0c/883TzxwPPR111FFHHXXUUUcdddRRR32uTmudJE1LYVoEn2PNX1/gces8duEyBqrCu+eKLcZaCvd1SSGiQ58ETpEUX3vrdIc+OcTWBp++vSISvHxYqc+j2gUpShC0kfEPt1HTiCQZTI4a3vvgk9efJh06KR9VY1mSnlOEwKilUJeK+ODp8Q1vHi/s3Ykx8HAGSqkry/mM1oIVo9aVqmUSZCkU+OiTIE06KbvtJMy2baN5YKcFs8pSDDFLwi8yK96noJljuSXNAXfCB73tbE9POEGthe6dQjb7aEFv4/olGCPp5+264b0nnTnpXlGhh7KelySUkmFCPFAXSjGIpKEvlwvXbU9x0gpVlX3f2bYrpsJpORERtN6ppWC1UOuS4uWkViOC3jv79YrM363v+SmLw8PLB9Z1fY5WGHuKVT5yhHaE0PdB70n15VjwFMoFYeuN6+MjVlKcLbU+ixHuaYhwo/0iP9Okrh0ZTuw73Tu1rNzf3aUIpRlbML0OqlWIQds3YjjDczR2eP7uHsFoHe8768uX1FpRLRkD4SkyiebQaw8nwvDW6a2n6eCDFk6SdnDdLrzz7rtYpIg72s6yntAIxugpag+n9Q4iDHf2yxWA1gdbT/LcrKYgNAV3T1WdMYU3S7UYjRSgUwRK0baqMWb0R1FLkVuSDhYRYvizCNgDpGiKymOSjNNgMTEGA7WC+xSp0RwDHwOZwuGQhVpr3gcj8jbwFKfy3yWZv/YTPZLcV1HUdF77Ou9vnQRgnm9GkovDmfRtntPWdrZ9S2OxlBRBUfbtmsTp1J88nDJFp4ERz4QgtN7Ze6eW/L1sku9jpNngDsE+TQTo3elto7eecSNqmKVBVMo0uCKND2bkSmr6hsiKmFN8INJoMeij4TGwutC2C9e9sZikmDkFvd7TQEU0TR1V8J6j2acQF57C4cPDPW278njdqKViAkWNBWg1uFycddFcF8uMAUKQYikShhADXr488fHrC6e70zSQSAqeYOsDVaVo0pUxp0ZonSZcD8Tgbi28/96J0QLRGRtzbVhRIhba1rBSUoQdTllyosTwBqXmOXxRqbvSr488fv1TYhus7wosHYmBVgeCMIdQ0DtET4AS+oBIpbxofOkHn/h7X/2I/+bv/xY//ztveHl/5q+cK+++m7EN4o7PU3sjfusS/NZvfoXTyy/zxR9akbu/wPmLP8iP/vhX+fo/+N/42X/TubpQlhURx/rODodGmAAAIABJREFUi3fuePvqC/zjn/tjbBn8+e9YKTVnFAzPCJsxUpT1CPbtSjHF9IyZUIIZs5ExDl0EqQKjIhEUAlmMve0Enbs1ePPUUCkUlXxdwCSp55j3X1GjaCBTvK06yeIx4xgA6hnXAdsVk8aY+7DK/PMb5csNLE4z/bZWqKUAO3oi3u59GrOCoDlpQzzl6dt0iUnA5p6b8RiuSUEr8Uzwjt4RE0QKiDLyyEAtDVeXjDjQlNEVZRGleaeNNK5UpulPxhncjD9cZkyDEENABzJNgTGFfiL3WY2ai4rKjNZxJHV8woyyrrAlC968MQdQ4NHR3p+F+e6kOeV5DDcjwWe0Qp7uabBMYzIfQOi5F6ikoK75sMYgjcP0sA0tOqdDOMiM1XB/3vMictoGkUbxLWbi5gHJjNCRuQcw1xgnvyuKJ60vkkS1PNsu+Y1sXhTpDc0XvkX2iOUnXiPXtfxJyfcgz7tJRjI9P61w1FF/Qh39zNHPHP3M0c8c/czRzxz9zNHPHP3M0c98M/Uzx0NPRx111FFHHXXUUUcdddRRnyvVlN9wy9Hk++B1Dx634M3FuXQ4L5WX55VTMWo1tBgmCwOhj6CFUCQFokvb8QjaSPLRgcvlyrY3TuvCqWZsAwhVNMf496A7OUbYjNE9x6VLtsjdg8fHC68/fXwWq1WEUgulrojNHHtJeudcK3vrXLcLo48UWG6UUShlOXFeT6x35ySiq6FYChXumE5adepxCEiPSc7C4+UJirKeUjy2WhAT6nJKsmu0jCQQn/BTjrMOH+Cdvm1cnx4JgtPdGUWwSAEPyZHYphXC6W0gkWTs6J2iGQ+QTXYKI3enFZv09vPxxm3EttNbkr/7dWd4x1SoxWjbznbdUFGW05oi37NJIhSdOfQ2j6vl2Pt+TcIUT0qrRxpBL995yXI6Eab0EdO0aOBwHSn+9D0FbOQmGgSqgg9nhPD45i3IlJ8mmVstDSAzS1otIEiB/TaTOyK49kbvA8FY33lFXVdu3N3AMa0zpgD2a2cM/8z8kBxFbaYpFu8bdV05nU7Pn11rPunWFN7KTWCPJLzHcDwC74NFDBTefPppCm9jMMKptqaJJHNaugdOkvMyZpTFJBcjZ22nIaFJ4uUY7luEhqQoNfL395LimMzrLQ2tFH1EYN93Sin5Z5OUVpkGnSedPSWaSR2mQDTm+93AteaDpdzGuScfrEwjSQUfnWBjZ0AfKcj7JOBj3AC/FJPLMs+PwzwegZwkMP+i5BtNcyujObxveby15PXjQWsbrRfq6HR3zJRSKmP0OTYeTA0RwyelaVZADEXYR2d4UCIYgPcGliPlmWfG3VOQI+htz8/dW16DoizrgmnBbEH1M+JQS8FdUvTC5nnN8ywSxL7TroO3bx+hb4gMrpdH6sN9ko56mxgx0UG5/e+kqs0dlUjRcxLXaGG9P9Oug6EpOrpDUaimPLWgt5xcoBTMKliul9FnTIUPTkvhXHaue6euhuSHk4akQx9BN6FYptlsMli6YBUgcBeqCR98cMcf/t+f0k6F811J80fBWxAm9G1DpRNSU3RVJaLkObQ0kGJZWO4bH3/lSsgFqVAfPOcv9A0spxiE3SH6MRF9romG909h/xDzK9/7PR/wQ3/xq3z51y/87K9/nVd3xl8qhfNDRU2RKRZXFZqBFUfXwa/+4m/z8P4r3vv+d6B8G+99/3/GT/6Nr/H6H/8yv/ZRsIVwOt0jMnh6ekSi8sd+zz/88of89X/X+K4vVJaS/H3fR057iEHvsO1OLYXzO421LEgtmHSkC6JgJVhcCYPNlxS5Zcy/J6xAZ6e/3QmXvO5D0LCMHLA0ryEnlSBprgZzAko3ug/GSFNZPegeEJ0ilq5JpGAvEmnbiRI+1xrShBPAPmf0jdG5XhvQiBkhYGrENAtEkp5uw4noyFzbb5EsBFjhmb7OJS9gdFRyCkmfhC6TsK1zGoaQe9kYA9HcZ1XlWQgfw+ne5p6T60B4TFE80MgJD6X6PC5nTLrdfVBKzd+n6BTxZ/yCFMShmGFznxhj0BmMkQa3xwApc1KEPMdQoRBlRmxMm2AgaPgtROPZdJe4xTLk5ykCSMlHBea5Q53QQEOe996Mu3AikqLO2A993jf02bSZt08p834faLE0g/0zIT/Xxdtn5JOwn45izBiUaULndBjPn5e59wbPkxXk+eGQW2hTrpFJyx911J9cRz9z9DNHP3P0M0c/c/QzRz9z9DNHP3P0M99M/czRIR111FFHHXXUUUcdddRRR32uVjFGCCaw4Vy68HYbfLoF1+a8c3fixYuFxSwJFUuKqzt0Hym+TWJmeCTh544PaKPzdN0hgof7lVosG78pvneCsedYa9E54r85QVI+7s7eO2/evOHp0rI9tiS+Sq0sy4KoZXNrQrGC1UofnevlLde9I54CeR8dsxPreUGsUM9nrNYpBAiFFPNvgr48S59JZCWtE1wvV6iFUgqmFSmVUjTz6kewsyPREZL0FbFsoKMx9kZrjce3j0gEd+c7bhSQTiFYphiO+xwt39nahu8jxYMptlKMCOXufM6x/aIEgk0RSJiibetsW547j2zirRT63ti2jQCWu5VSF9YyCXNJ4TEmBT76wEfD26CP/kyqqgn71pAQ7u/OrHXJczbP13ZtKYTnzG2ij2cBIHzQvWE6R+kDT4+P7HtLkmuaJqVYUpiqSeMSGZExImMxJMXmNjp40vteCstSpmCVJJ7ETYjQJHhFkkjfG47cULmk+FrHe+N0f2bcTAT3FNw9r7OQPB5IA8FHw8fIa9uUooKY8faPvs6rdx4y6oMUzKyksKVT7BXVaYAMtDf2tlOWOonvFFUWy+scgOFIiSmkpGGiknkQcROQJVUX9TQZJJRt29CaY9Z9dOw2Un0S/0yyVj8nxiXhPw0fz/MNgobg3sAdnePIk9YVRDOuILoTozG8Z2zFFPoBFKOUSU97T6EsfAryTnSopdJaz/H3z2J7jqP3GPgkdJdTCsM+KcmEJI0hgpliVHzsWBFqUVQrUgZ4CofzxsDboBR7Pq/uI0ffxxSumHEwkiKmTKOlWKH5AAbFKj4GiE/S12acQ2Ca4p6VgjCmiSNzygNzHTRCKgi0y5W4v0/C2GN6Aym86RTRhLzmxYzwjpJRHD7y2lnrwv72NaM5Y0nK1M1RcYoJ3YMhRpegTAq9CoQFRWALZ2vB+X7l08uGlDw272ly+SDPYYezKqM7FGgjBd5QME2TpSgsL4yP3gwWcx7eVUQNt1wnezhsYOZ4KOtJ816ZVO4NsqznM/cfbFw+3Gl1R0bkWm4FKY8ZrWEn3DfESq5JtiAahNxT7pwvfHflp/6rO975X3+H/+XLv8uX/5Xw6kXhi3rP3V3N89lBESpCRVnr4Cku/MrP/DJ/9f0POP+ZHybKO/zZH/lJfuKjj3n9z77CHz6SsTtuPH7yxOM2WO/u+HB/xS/+4SN/7rvueec9Qxdj7IN92zOeYQitO2NPOhkLFoJRjO7BHoOl5L0uBGLC1ozohYiRJoIF5wJ+AraNUYzalR7BwAkzWnOqwlKgTFOcHgyCMKVqwWgUaZgNhsHepgicYyy4xQRkvpFRtBI3Rz1v5Fw/gryfRGj7SDFbed6r1SqqaUQWM/oYDLdn8jrGpHYjxfnee173DiED0TpNznxNwgBl9CR1bd5f6rkPBHmvjfAkxk2pIlhITsTwMe+vpOGHO+H9eUqHzAcTfOR3nCEOI003+vzeIMKIQOkEt70uKGb5YEMYDWf4huo0akiy2mesjPMZBR3knq0RaCLaBIGVApomnXrP9d7zOkB8TobIfQa/XTXTXCbmd7CS5LenIZKMsszIl0m6T9M2h3FITigIB1Es5nej4RSxOSVkrmvPT1jcvAb5fx2DRMGZcQ8jbmlD+T3Bg1Lmnkw+nCEjcp866qg/pY5+5uhnjn7m6GeOfuboZ45+5uhnjn7m6Ge+mfqZ46Gno4466qijjjrqqKOOOuqoz5clpbNtysfXzqdvG6+3JBC/9d17Xp6XzD9Hk3oMo0Vmq1eBsiap233mm7ugoVz2jW3bOa0Ld0tSQ90jydQQBjHz2gNxRfFsmmej2LpzvW58+uYto48U0EjBrRRjqUs2zSKopVCHCb5vM+Jgo7fBGJ3eGloqdV0oYilOWI5EHp659lbmiGczUufNJtdHEGPQe+fxcsWWlWIVITAxTPSzhrjvhE26h4JJErl9pJjaWuP6+EQI1NOJAdQ8uTkeG0VtScJxdGR09n5ltJEihzu9j6RlHdbTSqhSVCdxNFIriEnbjs4+kgwcbaTQoYWIYNsyzuHlywesLhQtSUVDipuiKJMuk0ku+5iNfJJ6wwdMgft0dw86R8pH0k7LUrBIobWNFBZShGHSm5OeI2j7zuXymEIfgEbGUVhFbPJgk6Cip9hsCMMHfeTrKxBaefnqFee6zNHlKUSoByEjR6SPAQIjMrbhNrbfPdhbS1p8WRARTI1iRmNMATemYWFJ0Jnl7yODuizcKG0Bni7XJDzNoBiLpdhU1xWTJG6LVcIH+57xD33S0RZJ6MUY0AbltKR4djNaZIr/3CjHlMFUDRNHp6klKsQYGZew7SmoM+lCd0yDPiMfzKZhMwWxKVHl3w8nen8WEoUc8Z7XJSn0TqNrRCDhmBkeASMY07yKGCiW0/onPalSwTzNqEkhqxp4YKqMkf9eIxhW8nrwQG7GEGR8iUyWLvLYbDnl+ZqEuc0YDCtCkZTxZgJCnqfm+ZnOaAOdhODwQeC0nveCaqW1PQVy6YwxKftwTMs0RQLRjIiJeU3kKPhAGfQRiNVnQW2pC711ltNKubujGnzy8Ruenp5Y14I/G0JJHoopKnn+hgcxdhg9fxmCvu+MMdjazlNrLL1Tlkr1QjSBKqyLYg1iQB/CEKVJxgyoTFpfle5BXQvXj17z9uqsxbCqVDJeZzOjLZWtQCkD32HFKNYoi6LuWCjK4MXJ6E+Dp23w5gmkXHl4eWZ0o+jKGDFNT0elEGIEA3UlQdKCeHD3zgtMNpYPHiinBSsnZLkHXUELUt5PY4FAOKUJxnWKxY3zy4/4My//gP90GL//tSd+7jc/4l/97hPntfKtoiwnmWtpCtBqYG6cV+f12zf8+j/7ef7y33lBefWD6N238Jf/1n/B3/7G/8D//Euv+WiDN1sQnrFBjnK6f+D/ej34l7+88Tf/2j2vTkpZFRFDewdXShmMOhgt6DCnQUBYrvdEYNJRDYpBi5hRRS3jIbRAhTsCdNAGNDMsghGGI5QCFrCUwmqKE7QmrD6obowASmHvEHQWgqXm9JKnS59THHwaDACKyWDcSFi1NAJvBK6AKdzfnbhcN3oPRNJEVJWMbzHLiQ3DcM97I2IwGAiFcJ8TDTSnYRA3TXwq9HOiw9yTQiTN/mhzzUnvwkIJT8N39BTH0+xPg72Nwc1OQIOCzsiOnvuh5DGnwQG9N0ZvuVfZAqY50WPkuUsoWBED9byXRsAiwk5ljDwWVPA+f9e59orLfCAiIzPUIwnnuXY/r1n5p3jvKf7HQNwzykXSDJGbDwoQSns2am+vldEZhM81//Y9LEV9Yn7DyTQJMMPnd0KRjFKS+bADLhnVNPf4iFyxMtZnPjpxe381wp2QkTFZIkzvlN4HRk5McAT1/E5w1FF/ah39zNHPHP3M0c9w9DNHP3P0M0c/w9HPHP3MN00/czz0dNRRRx111FFHHXXUUUcd9bnae+dth69/0vno0mg+eLFW3ntx5u50QiXow3FyZPWY5E41pVjyLj2geY4WRpTL5ZEYg5cPlVNdp9IChUTlOjkiXIhnChOY4gKMcK7Xzps3b1PEn/ERajk+2pYlIyAE0EJdKwznetlo+5UxBm3fnoVQpFBqRRCkLNhSqFMAxJYU/VUoemuQ53h9T3Ogtc7T9UJZTyx1IVBMJgQmNzFEZtOflLOI0r0zxgAPRus8Pr6F5tjphEfqGyEp7sQciU2kuB+j0dtOnwSmx0izgXQhzucVMaWIYmqoaR7raHkO3ZN4QpJWnK89PAV5H856f6Ysaxouaow56jl/scllRYrIN8pLgShKuFLCuLYLr+5fJGGbGR5pFFVFppijoRllIA4lzQ4ZymInRjRaG7x5/WkSwiSZe17P1FKxYnMkuDCGIzEgksqfftI0ewbiyvmde959970UX3pDXVJEVcAsBec+GGOw71temqpEBK03tqcr4oP17kStdVKKilVL4Vpu0PE8R+4pJPmYwlkQw9l98MnHn/DO+684r6eMHUncDdP8DH0MejS2fcNHQ0UZvc/x3w3IEeLDO2ssqcFEcKopLpt+ZuKoKiMywiMZNPJaCqddr+y9EZ5UZMas5Lj74U6fY9OHJ3V3uyNvZlnzYPS8V92dUENGpKBL0q86BhFGVRhjhxiInFCczoDRcbnRcrlWCJN2C8/x7nnR4U7+O+9pTs7jyrHhQWttClN5Ppa7M7ZUaq2Y5mc8eqcsk3ieyS4St9iRnFygAq467z3j2h65XJ8YJcVbQlANIgQVUFNMlH2/su97UvyW1COS5qiPjjfwuwd665Q5ytw9plgo9LYDRkSKpK2NSVgrp/UuI1zC2fqVN//mkVfvvaROCr97ktWllnluButyovcdH306lEHbG71tPG073/joDWZn7u/ukposClbBnVoGLpLxF55j57s4S5GMzyENousWdJQ3b3f0vrJUQ6dQ6Q626DTDTogPQgdlOXF3ks9oRwnuq3J31/nGV9/wuBnLFtTrgBVQqKsi4rgr26VRT4rEvOZIShR1KIX6KhivL1gtuDSsN6QYIQV8Q+wdiLcEGxIF9CU5/H7AsmKnt3zhi6/56z/yHXzlj97yf/7mN/j2V5V1Ud4hTUpC0Un4QlCHYnfBH/zhV3nxz/8Ff/5vvMLu/iLlve/hR378x/jGp/8T/+R3Ni5DUFnQ4lwvjdArp/t3+D9+70Mezp/wIz/wkvv7Si1G4IxJYQclqdbuxBAoA7GgtMDVUYxacl2PcK6W912u1iNJ7jAeWLlMQpgOiCNRWExoLSehIB0TJWqgzZ7N5V2hVmWMkqahBYxGrcZ1dyI030klyd6R4nlwi1JI+Vkk90JQQoR1XYlo9NaIaZ5VSl6zt/glyVie4Uotmmu+5f1fJ4Hfth0PMJTBTljF0iVPWhvHu+cEiyFUSxPDIo2vxRaG+Vxbc7IDkhEpqY8bY9zWKJm0cs9IHtIgHULGN3gaoKO3GQFkc18Kqi4Uze8SQ1JoLxpsQzATIkq+rjsayoj+bEJ7yAynIM0S0WdxPV8912KfmQ8uaUikoXLbm3Kayvyi9Lyo21zHeZ6iIvkdxnLCSw8nRkYc5TMdQpRp/kiuzTKjHETJ+6/H3N/ydW8THyIGTq578/mAaUykCScq+Mhj00iDeuD5WSF4y6kdHf18OsVRR/1b6+hnjn7m6GeOfuboZ45+5uhnjn7m6GeOfuabqZ85Hno66qijjjrqqKOOOuqoo476XP3x68aHb53H3SlV+cKrB+5WY7Uc095D6O4kz5fEkXiSVvsUMVvPhnq0ztvLRi3Ci5cPmDju4DEz58XpzUGNxUA9ksSSJKUjUqi8bjtv3lwm0ZSNt6LUWlDTFAVUKCXFUe+Nx6cLfdsYng17Ch6GilLuKmtZ0aVyPp/SLFBQq3OU9UBy1jXKTbz1JEp7Z2uD5e5+CgAp5hVVVIWhCrOxhpxgbCI5Sn7ksYy2sz9doDu2FDQGqpUQYUjSmgkI92kGDHzf6PvGIIXOPvoczSxz/L3N8dPQvaNiOSKfjEbQSDkspjCCkKPg94wtqGtBtVCszrH1SpGClYxRcA9cMvJBW9DVkhaftGDfLlwfnzifTul2TBFDRMBIOgumgaKUgGEpBHQJzMBJAeDx8U1KGJP2tFpSlLcyRZs5AntqFB2fv48S3RmtI+TxmlX2/Yo4+Oj0cFSTSo4Axkhhpw/63ikl4xGGD/a2s2/XvM6KYaXQwpGt45LxFKmcF2pVpBoxMvIgWmMPaHvDffB43Rl9Q9opX2OtmBWsLKAZiWIY4o6JEKG45OhrPGie9Kt7oHWZdG6ezxvBDknpPUsvHmjkKHBUGRF4z8kA23ahj4xGGX3M30fRaZgEpOqDI2a4alLG81yNGXVhHtj5nOShTkHfk5YUgdHTnLJa8b6nETCSLBaE6Dl23iOF7MfHp/y5GZegkkQ0e0dM57kYScKLwt5h9FwbJNJU2Xe8NbxWHKH3YLs2pDSKGSI2jRHw7rgk4pcj0IWlLKzryn65cj6t8yOuU/QKrpcLPmBRJRiYTVE0BiI2I1kmuenOJx+/pvXGqYD3hmjN6BJy7Ln4jGoZDepKrUsKa6cHbEAfDfeN8/0d+/aG+xcv04ASwWNgZWFdljlYHdZ1zXH47pPQHox9J/rG49Z504QPP3nD+x+8w1Jq0os+yUSgKjCEYkL0lpEaI68vUcE8//9pXfnk8YItKxGddU3iuCUcmUMCJFiqYYwUKwNqyXNvEhlRYYX7lwvXi+ND2Ht+1qKOVsFwHMnPeFFqyXtXItdVYSARqCmunfHYsXfOeIyEJyMIfwJdCe/Ahsia4vuMMpAwdH2fuxef8H3f86381S/9Ef/oZ/6Qn/utT/jg1UI15V6FsAFurDM64KqDxeH+JPzGr/4eLz74F3zhBx6gfid33/lX+NG/88d8+A/+KT/71cYFxU5Lxho9XTGF5eV7/PRvfI3781v+w++7ZzkVTEGs04fcuFSMNHrVDZGGzrXTZmSRGLgbUfMaiJ4mpZLTKaQqJ+0gHQXa3KMUp5jOKQJpKFUVsMh4JnKNbx4ITo+ea5TZ8/p+vQYuHQlLQxpwcg/IO2qKz1O3nzA/pRbOKlwvzuhOmZ/rmHQ3yM1fmGuaIKXki0TG8RQMQ9n2jTFafr595Ho1xXERsKJpVoQR0VE8DbKRLuTNtG2t4SPmAwiaMSqkORrBjD6acSweeT7mRJeMVJCMQQC8z6giBNdgjEbSw4bpZw9YmAojLP9uh4h+S6RBJKc+MNcqEUVsnsi5BgBE5JooEs9mxm1PiMh99Ra1AIrehPs8q2kwk2K/M/ft+YCGkOZOmt+RU2k8DXCf++ktqoEZ44WkiTzI9e12uExh30la+zkOKmZczPxuGMKcYzD/29NkCuI5Luqoo/6/6uhnjn7m6GeOfuboZ45+5uhnjn7m6GeOfuabqZ85Hno66qijjjrqqKOOOuqoo476XH3148FlBC/PhRfnhVLKFIgDJFJsDyNkUkO3+cIR9N3po+MRU4jcOZ8X7k5LNpQoYkYpQuuDPmBgVM2x7Q1AgpiZ9D4Gj08bl+s1acZJcYoIVi2bS6YQb0ZRoffG5brTt43WcwR60kSCWEnRr6yclpqjxNW4EbviTpA0ks/muJMjpXcf7FtDgfP5jKdanbqDOlIXQKbgN7DZN7sIw8F7x0dntJ3L27e4B7ZUbo6AiOQIbCvEjEXw3ui+064Nb41sm4UxGu5CXVbW84qKIqJYyddxH0lBTXSoaNLS/w977/pr25ZV9/1672PMudZ+nHPuubcehAJTgIkQIhYhMRgkLDnY2CFygv9CJ18iJbGUKMaybCmKAGPiYFJA2S5siJXcMvW4r/PYj7XmGKP3fOhj7XO/lC3l651dKtU95+y19pxjjjHm7K3N1lrvY1rQD0yUc2vE6JilhXwJp21n3J3DYaWsB0IFdWOwzQiLTt9aggWa1+J8OrO1E7osHNcjZpVBTLt9mQBB6vyGe46dp61162n7fAGSHh4f2c5bKvRCUVOOdUkFZMQEfqZyK9EaGHksPkYqQD3BDClKb53t8ZQgQ+TfmaTqWyJV0Y6noljTDj16KuC38wkVWNYVkSQAiDz+8MDLnI+acxYMD89jUmW0joezufP48MhaF7Y2sOFED6w4tQZjKmEdkKle9p7W+sM955mkki/CsboCORZF9Yl4Mc31FXEx8Q7CBxKOR87L4ZGRJK1hAaMHXTuXiA9FkhSYKkYNxeUCIsKQnnM+hNE7tSiHmkTSRHkIU2KuqXBP5Xs4Y6q9fQSB4yLECLQop8czwwRZKotUuoCUwrosqcrznvEb0+bc57pWEcKMNgJ8UNZCf/MGEFRLqs49f9590CPBTiQJTR+DgYOks0J4IJIEZLGMmREEm9ike4J2rZ0wi1SYy0WZmJb0vXWOx9yfeh+czmeWc6cqHFZFPGh9JBkkExTLK0oMpSxJmohXlI54J6gcr6558+ld7n+mlKm8RNIRAVXQVG0vVnAZiBbojc0aMYxjCd67PfDh//uG07lxXIxSMgqlikFRNAQbfQKKuce3qRaV3MUJEQ6lonHi1NL9AOlcrQfKAn04awgagpZA3Ii57hiOkOt7FUFs8Px2pT0+sI3GgcNUrDdaI10V1JME6IMhhi0CoUTbQDKGRrpSr49srx+QtWBVoW9IScKGNQkFYiPsiNAgegKodotwRK8/4OUPveHnf+4r/MG//D5/9uGn/Msvrzy/qdQKVQpact6GzPie7tgy8N74o9/9Jr/48pbbrxekfo33fvbX+NsffY/Xf/8P+eanAWKU45HHuwce78+YFvzqA/7RNz7i+vjIT//4kWXNyBld0n1EJdW6w4TeHTOBJfe/rfsk5SA0cINBku3SFdHAS8BwQAlSWV4ctiE84BQENSfpRaFPQLeq5LwIfdpPrBhjJPHbLaClU8DjCSgg0VGtCIMRnusTfQdSz8gmyGcGU+XqcOB0SmeBRZg/J4AmGG1JYLhMyuTyeTJawWxBTNhm5Ek+P/ikITPayUzRcsBNiKjzwWXMDIlJOqhQSn2KOkIFK5NQ9OmOEiAoow/iQnWKQfgTkYAGPnze22wSKsoY6cqhOGjG7RCTaLWF7h1fDI067zUx43CCMeZ1jo5gWEmiMe8NuU6Ts78QCFNZn+zRE7khCIwk2RPQnyE/convAAvJ7/YE6/OhAVShWKasAAAgAElEQVRLRkp4IJFxUiok2Tb0ibSIi2RZ5vdegiYCVOb9yQMnYz3yZ+XpuwjBI2MiYkZPBOm2o5P4GkISPHvt9e+pvZ/Z+5m9n9n7mb2f2fuZvZ/Z+5m9n9n7mS9SP7O/9LTXXnvttddee+2111577fW5ehyD924PfHBbU2UpNhsz2EYwvKC2gkRmwSdyRB99xiEkaOzhPHt2QLTgMxYBTaXNcKa6eiq7HLbIFjYkaMPprfPw+MB2ziZZNOMfRI1qlaKayi4pFBHcG4/bxvm8MUZP++Yn4FdZrFKXI+thpaoitYIaLoGFEt6ySR7ORXEKqRJSU7b7B3oEh8PKSPN8RFK5mfbRCVIzwXMmOdDHBl3w3ti2M+fzCR8DW5ap/E0b7VRm6VRUBj7OeG+0lspPyIbZRydNupWyLIzINl8u9ttjoBKIp/2yRMYbtNbp7klW+ARHW0s1bC1YqSxLmWrLJAM8TkRVLFLy2npad/fWMhJiqngfTmc8gpvnR5oPxsWyOVJB5u4spaSyvqfltoniAj2cgkIMRgQPDw+pKJ3QQi0FNUNLgYvy3Ekl1+iTPGGqmzP+IsLpW8OicLp/SzsVVA21VIA1PaVqLLEUQiTJhXFRpCXZNPrAloqJph21d8QTnHeVVKMDopJK3q2lamsC5n20VHurcf38lvdePANLMqlandELHSsZb2LzmKoJ4oM+gjYmYeJBteD+7g4VSVWwpRpf1Z4iCPydpC4Jr5Fgl2iCK61tOb89uH52gy2HHIMZWWKQymsEs4yy0Am0B070ztZbgrUotV6QIgBJ1R45hqnuF5BCG+OCXU3gKMG3sCSz2raholRbUa0sl3wVTaBQZSr6Strjm6eKUyRS/SlCHwGRZFyOC6CpwFNNcGz4hkiDmOQVc70iGZkyh2+t5SkaY7GSYKcIgbMudX6uEJakwgg4HA+p/p1K76MZsgrHw4HWO5QVUcAH4YL7JBfInzdLsqq7so3ASCXmmHxfsYV1XXi8e6DcXkMVrC6pfhZYzQgVttYpJSNdGBnP4yNjLqwsPL+95UP5mNevXnFz9WVqeunTIyiSimWpgZ97Wu8HjCBJJZdJbjioc3NlvHpz4sWLhWiOsWXkxdZpCOX6gJ8cWVaGX+ZJp0jBxXDLPdQsuLmpnB+DfgXFYGuByMaiC14E8Y57oW0ZUhLqaAihiiyKlAQv67MD4/U9+nyqn20FMRhnqM9JRN2J2JAZw6HeE/AtRw63N/zET32Zv/5XvsY/+Kff4ff/5GO+9sEVNz/+jNIFXTyJhyagTiQOy7UZb893/NH//gf8/PU1x69eg77kL/zS3+HXP/qET3/r2/z5o9BQlusDp8dHHh4fOFxf83p5wW/+/qc8u6p8/UcWyhLoUtAenE4dvKXC15J4s1KQKJPc3mjk/hDRCXJc20ggPJW0ikTHxCgmaIBYOieoGgedLwH4BVwGbFA7c24pLjX3a7NUpI8kuorlujg1p0pS8hGBTCeSmOQwkpFPIE+qXCTvXetaoQnb1llqOnLI/HdGEo+XT6vMbYV0kJAIKJVVjPN2preMQQnSFSLaVI1zTgL7EjllQpHKUCX6NmN9AkzoLrSRqnOzSyAO7/TGJS+6TAIynRoqKk5gqAZeNAkXny4PljEdIzyJxtHzvhTBJXlKmeM/nSxy2xokD5DAPSHzJYB5LHohCiLXpubeQmSUxNDcdy85OJdrEMOZ/Eb+OVH8JIoFVJNs8gnTZ/xERlf4yBc5kLy2ZTo8ECMBf5One6lqJOj/NIZTWc47FbnMfxAu95OMvpAx5p4R8/4GQ3K8Lsr3vfb6QbX3M3s/s/czez+z9zN7P7P3M3s/s/czez/zRepn9pee9tprr7322muvvfbaa6+9Plc/+qUDN4cFtcLwIGQQKI/DOTVBDBhnHs+NkKCEMKYdvUdwOp1Rg+O6gBi9+1RZ6syYnxgNCWAHwYhgRDaVHoO3bx54eHiY6hkmwAnqhmlmsW8qqGVTfn58pJKq2HPrCRKPgSDYUtGyUOvCcV3RaqjOGAne5bRL0VQp+rSpn+oeU+Hu/pHT4xkpxsP9I9M4G2yqfiJVcoWpYkUIjBGpIlac1jfcnVoqtSwTtEnLaTNLhZBlFET4oLWGDkemSjemGtRJhZao0s6PBBltsFlnlImeRCrYVSZRQII/0ftTcz56HtfFyllrAjrDPY+pWH6Hk0rd0ei90XtPUmB0hLTT3nrDrPD49p6TvAOZRAyphgkZyUH+nUrhvD0Sk4gZ5HX/9LNXrOtKWRaqlgSt64IuFSuGYkmK6JgAUAJbQoLj5wmAmxrPv3RLqWuCN9Py3nvDLBgS4Dl3n7RVhan667TuqChWKmaTJNNUi+kEe0Tz72qtFEslV3efxBmM0RJYD4jWefbyBcvVc0wKWJJjYwQl1gmOJPGBGAKMMajhSKsZteCNGOcJtryz6xZJBEhUGQQSgkngPUG6tMuf9tkReOtESyW0lJrkAoFoYYSDpZpY5jzTSMIiPAhPEFsj4xpyriZ4zwSELv9zT+WaSILoMYJA6DKYPgUJypHnMYbneUUQOsGu6MQWTxiRSn6mjGBYRgzg/qTei9EROggZWdF6uimEUKqCD8Q7MDifG3WprIeVMZw+/MkG3UxY1oIVpY2eanU3Ss1x0VLQ3hmj5z6jjoSmFb1WBDht2xNxIxJspzPKc2ot+bsu4JiQwJozM2BgnFuuVYM2OsN7AmJSOB4rdw93HG8OWNRcyyGYVNws3RVG0LYkSgJn64MxegKsKqzryu17N3z88Wvef+8Zh2JUKwl6XqzqzaC2JwBx+KCYomaEK8KgFnj54sjrh9e0s1LWyqkPjgXMhIEkWSuG9p5qZTV6G4gpprm3mRrhwnJtnM6N+/sTypLOC65UyZgN0UB1QBHGBaAXR/M/0VrJS6AM64yTI0fP473EdQCUFzDeEH5G7AVJwD4ishB2QI/PefHlB37lV36KsS78vX/8b/ndP/qED95b+NpXrqd9fYLsFiR5W5SyBNcY3/3oM/7173yDn/nVW+y9n0euP+Bn/8Zv8F9+8nf5n/74js82o2thuTqyPTyw3d9zuLnh++db/sE/u+c3FuWHv1Ioq1E1YC1sQNt6nnMseHfKkidexPAtQJwiSm3gxfBQvPFEsommc0O1tOmHgVVh6ZngYwa9O1tkzEmeZEFkPJFk3tPxwMwIBJtrj9UgBq05poFihPqM/cj7QarnL04ZPBGLQaA1IzZ065zPjYVUKQszBmc+M9gEud1z05ycZO4xEjMOB2KMGT01oxDcMyrGA7Uy902Z0VRJoo7+TmlbRRmRThK9Z9RNMXl6NohxmXtCn8fQewPLeAcmMF/ICJ4hgY4t56ra03nHCHrk/Wj+DeQtfLp9JIk2NPfv3Asd74AKRY0x98CMuEmCWlVmzA5JpAjoJDbcR+7LNsF/Je/lcy+OeYFEoIgmCamTpBnznjsjKZJ3SGI8BCSS8EwnGwcDv9yjJ7gf87mEyCinNN1JZxQVS6Jgno+lDQeIM+Znfd5X07dmr71+cO39zN7P7P3M3s/s/czez+z9zN7P7P3M3s98kfqZ/aWnvfbaa6+99tprr7322muvz9Wr1ydevTlxdqe7YSFA59ydMaCuCxFO2wYoVDVKCborVlZurpYE5BBO5wTsEGVEx50EpGfmOQnpwUUl44PXb+95/dnrBLFNUzVXCrZURDQb3ZAEJ3XQt55ANU7vExhA2LbBelxZ6oJZpZQVKamMtZLgsIlgavgAkbTOHyQYiiaA//hwIsR49vIFJkrHKRj4YGhQUKI3UMU9rZLb1hLgEePsg9PpzPm8sa5rqmCnorOYUCxt49UMRRLcHB2GM9rAe0/lZd+AADMO6xWiJRVbFzWRJADnkpbRVQzTkuRMGwSDkOUJwN0e3zK2jpRKrZVqF3VmodTK8AA1RnfEB6NtbH3j9Hhm2854dDSM7oPj1RUihWWpRDiKoUWoVhCzdzbVpRACY0sV/ZBUWyrw2WefUuuBw+EaqzlH6lIpdU2wkFTzBdB6kiW+dUSC4SOVWiOBzCgLV7fPEF1SRWjK2PokdQYGNDpjRggMT4A6r3thxEatC2M753ipUERSwa0KopSS419rmqhrCBqdMUGM3pztvOECoBzXA+GdwUhMWCSvO4mxhQdShLBpMa4ZW6FaOG9nHOfxYUtA62L/7gObqmxm5EdEJDgbgZUCYzwRBGMM2vAkWFICS5DKP1PFUMwqVkqCuzjuLcflAmEJE8ABLJVtlII4xASockmnUi+hpXfKt5iAmE5gLcG/oPtAS0ViQHe6pGsA02VAkQS4cvgnAZbzwSdJB5HqUbVJ1MnTsWcKQc957hOYNMVMc856rouyLEQRjtFZivL45h65PtAxzufU6y9rkiutbXjzVBybJxFw1JT1hrB1z3lSlP5wSgJq6Iy3yPgbVQOrOe9IZaYQlDLwkXEt3hu9OWpQSxD3ngLEFUpJUF91TJJVZ0xLWu9HXEgtfbKUt1L44OV7/Ml3P+bu8cT11UKhYuIkrKnT9aCyeUMYKAElFfk5LwQxpWrw5fePfPTJiUO1JBcc1OaFwibY2zB8WuDnPhUSSHO0kEChGuXYOD12DFivC7YF2yRblkWIHrnGyTkvokR0Rh8T0K5EO1GuCtvrhh2PGQ/QHlDfQAzWr4AUiLT0FyzJObkl6orIwgHnSwG/0ODb337gd77xXX7/W9e8vDlw+yxJ4lDSpcGUKkErgzFgXTv/+k+/zc2L3+fHfvkFev0zlPd/il/69b/FR2//Z/7xnw7uBqgZY71ie3jAH+54dnXN//2m8b/9/lv+5i8948tfSjeHRQxTpRbl8XymeyDDGCMJq4WMH2qjU9tCKQNrCdJGKPQkEB3BpgtF3n8LgX9unSlrSXX81ieRYLmKe++EJDk6hj05MARg1ik6uAnhPozWPVX+okik24mhhIJPV49AprPIJWpCMAVZ0iGktZbEu2Q8iQJq8UQsiCbwLZFq3xDHLBApuSdqHrNqxr6MmDEG6hTP+CaVikjmTEVUpAxkZDRVxDvHhNY6baqKi2ruwaK59wFFchZ5OB6TjOpgZYLwNqN4uuOhWIkciwh8EuUSubeogk6GQSUjQDwSFFcTxiRvIpwxXwaISXTkywE6F1NwYWNMmNEKkUSgyrt7juRzlKjmHj6HOMJxsbw520XVfFFHzysmiprQ23wBQGfUzryemdmQe3LGkMx7R2Q0xUXdrszFJAEX8j/SlcYQRJl744zbEOYY/P94wN3rC1V7P7P3M3s/s/czez+z9zN7P7P3M3s/s/czX6R+Zn/paa+99tprr7322muvvfba63P13VcPBIrHQK2gEZSiFCsshWk9Hiw17dOxBKZEjWUtHGpNxYt7glNAH6kwWpYlm1oCE6V55tWHJ/D79u6ePjrX19eoKaVUbFlQVZZan9rPtmVEQsdhdGJ4giA6jY4Dnt1eUZYDxZYJNs9YAU3A0GM8ER6zA36nRJq+/KfTmVEK63pMy+sRGIGJ4eKsMpVxhzWB561x3jbqzTVWCvdv7zidHmnbmcNhpS7Lk8V9HktatBephCi9NYZ3hjt+3hL4IhijEYBa5WpdkjDBCBEkEgTO70olWJEyFa+pd2rhk4goCRY+3BGtU6xgy0KRJCeKFbQapRZGT5By9J5KrDHo50b0ATMWocXgeHXN4eoKIgFLcIouUzmc6jOb5zwiiD5QVbaqLJ7W+af7O/pwXnzwklqWBBK1oAJVhCGeqr7uEI4heOv00QkVdATbNmYsg3N1fYVEAqVqCxIDU0ALDGgtrb+Fqcr28QRed5ylGjGcdV0omkRAUQNRtOQ5qQhmBULSLjsmyeDB1jbO5zOjN87uvHz5AVNGzPA2VXmGe36nR6rDfGScR3hHrHCepJP3U0YDtI7WVLJDAjnDR47NdAJQ0QmeOOLtSWV3AehNYHPHrCaANwGxKYFN8J/L4KRSuJjiZFQI3ukjbdABQjQJtgkcReRnUv3n03lAIBxhPJ074gmGRYJCMhxblEZGPagELiNdDDAuKsL0Lw/QBDdTUZ3HrGq5vKxSasVFiCjUmgB88+kEgLGsV6hW+lCGCx6D3j2BwRAO6zV1WWmtYXpNbwlwl1qxUvFIVXdVRTEO11dYWSjFKKaUYmwzqmQpFZEzp3NHBRZTpChb66gM6mFBqgElvzc6Ih1TZRGl9cHp/EhRQaIjMVWMMtXeiZYiKOGCWl4rEYM+MBOoBXRQAmypvLi5oiwLr97e8f6LW6IPvCRobFzUh0Lzgiy5z/SARadN+1R4eu+8fLby2Sd3tDFYFs29QpSqNi3hBzGMx1NP4LcqkmwuobCdGsfDQoRxLBWKU+vCodokwfK+g0zniIi03Y8KNecZMu3tF0OkAIodndGDcntD+AYS6X4RG6FXEBWRG5ADoleELigOthHLe6zPTnz1qyd+5S9/jf/nu6/459/6iB/58oGf/fozDitIBVDUkiAzKagGSwX3jT/+gz/l9kvP+eBnrtDlx7n6sV/m137t+3x899v83p8HHTjUhThs+NZg2Xj+4gX//DsfcfvNe371FxdePF9zP2wDwfGoxLYlmbiBDkfrZCvcaDrQCGrJZdLd0tVAEnwPBqhPxWxMokNRT4eHEUEtPQm2MYnZSCW0R2CqSFTadE0RSZKsIsgSXMvg7SNEjKdog8nTIZf4gskY5rOA8KSExZh8EGrC6dRwBmsBUc0ohKmYTbBaCUlFdr54IBAdMSZRJrS25X3I83z7aEQMSgRSZyyR571qQvqMMYC8bwmCrkIZQfOBuyLkPlGmwhky7qBHxpGMkQ4p3hN8RzLqx8mfGW1DdN6/p2rYVBDNNRfCJCjSMCHmPpOkkDL6JW5DnyJsck+dCmhRJNKRJqOEPH8XTBeJYEyAXnwwRc5P++i8XFkeT24XKYlPgpJIckfE01VhutFg764vAe7zHhDz/2eCw4V2SKU789qlY8S7NX75micq4YlwDvVJGO211w+uvZ/Z+5m9n9n7mb2f2fuZvZ/Z+5m9n9n7mS9SP7O/9LTXXnvttddee+2111577fW5qut1qp0mBlUkOB6NagruPJyD0wg2n+qh4dwcjhwOK1oKPgHGRSsInPtGD0HKQp+qJgLaxRLdB6dz5/X9mWrKsq6YpJqulvz/MRtMjaC1nrEIo6V6M9KivvVpDexQzLBlZbk6sJY6wdxLI5o4fRFNMEwgoxbSnn2EM8agbw2pB5aloJKZ8oJwteoEdtNaPNVFCTwPH9hSCYS3d3c8vL1jbBuHwxGrdTa9qYa2UsAKogU3QUane6f3QW9bgvFMC34c0UI9HClLYbIYWaGp+ibt0i31u0hAj6kWH45ZSTLm9EBsD6m8XStF4dxaKuzMsKUyIlJRvW2M3lN57M42Bt37VC1BKZXj1WEC5ppW15akTugEKZ9UTpqA9pTWFlkIcVprvPrkE463t5jnBQwX1JMA8FoothABzTuiMzZkOB6R1vo9FeRFQZeKWqrUZQRqgfeG0hOE7+NJmXv5OVVDPBgF6A3VwtZ6Ei3FECu5GOAJmMjYDKeJkvbknd4bPgbbdiJ8pKJswOG4gndG9CQnPC2yB51SViCBrxgnIjIKQr2loq8HEY0yAdcyFXARjqnS3amlkBzHRVWWkIpPm3ATnYBNR03w80BKfQfcxbuoCwjcx7xGwSDXjeBpaz76jBVJNTlWCPeMDSGeQCiZVukJJKWdeoTOAfRphuD5WVHCJxCYh5/DnLJnRAN3xUnVZojkcblnVIboPH7DLGM61uOBOlX1Lu/Ud+4kQSJ5zn0bM6piqrkj13RdFq6ubnj76jNEhXoolFJZagXgfH58NxkkgfXjYWVrG707KIwRuAdWFyAJrNEbLZJYeCJgfMN8KkPjAqgVnKkunaSiEIgumA0Yua4HY0a3gOnnFYepssSCcIW6oDbnB8HhUHn5wXu8efUp5x+CowsqSawIk1QUSyJKHIkTMgZDHRGfkQie6lRX3n/vyPdenTkuJQHpeW8IDXoLajU8Cuctw0AKUM0SAHdlRK4BWxeOcs64iGVBJOitoVZxF2ooxLz+3RENSq3AwKUhPQkYHxv1euX08VtEwRYnxkCWE9R75PgBYu9B+QChJnh+oaHlCPYcPT5w/f4DP/mTG3/tr/wo//1v/gm/9Qff5f1nC1//YUUiSecEWA0tg9KdUQYHUe4fB3/02/+CX3x+w/VfuIXyVV7+pV/nb3/6MZ/95r/iW6+SJDmsV3R/YLQzDw9BvX2f3/7WJ3xwfOAX/jPl5llFS5JfXEhA76CD82kgkcSUaY63D6F7rpW1QFuALQnjQOiqSUKNjmngBayMjMRxYTQmyWB4H4xIVapN4HZoI9QYQxmUXFfSUduoAs9MOJ+E0xaojFTARxAz/siZIPeMDrhE2/A5grIUoy6Dbdt4dFjLJLlF5t5ixCQnkxiNhLen0pipJK5UxhjEGLTRkwju/WmDyWgoIzTV8UMy/iU8XyRIAmo6KGBs20b4oBZDNZXHydIHGukII0AbY34/YE+nhUpGBkU4RS3XqhnufYLhuc67C2XuhzIJ3lKUEZrEWDi9tRwyiYyiEUu3Cxds7m8IU9ksk1hIIkidGceVkS02+de8kTAJjCRfmHsKFyX0Jb7mEp0lua+bFRSfivEkjy7RWRkBkS+E5LWb22ekWl4k13WEMDwmeaBP+1VGVOi8HwiBPsVJ7bXXD6q9n9n7mb2f2fuZvZ/Z+5m9n9n7mb2f2fsZ+OL0M/tLT3vttddee+2111577bXXXp+rYnBVhVVBFsUklV+9w6kr22ict467cKzK8bCwLGkT7d4Rq6ylEGNw2jqOUGrJBpEEkr0PIPvXt6eN129PiCiHOhWnJZXMYgmc+cjPtOEJxo5GSrumf7FPwD7S2l5LgmqHulBKqiKLlMx6lwQ8nlRAvePhaATDA4/Bw+OZw/U1pVZUKyppEV2XwlIrj6dHTNJufnjGN3hvCfh7cHf3hseHe3rrlHXBaskseQlKKVO5aFTRJClGx1tLZfRIAJAYdALxQaixHA8s65LA7gQTkzzRjA/AMSwBXhXAad7xHhQlv793oj0mWG8VIdWZJsqyLCzLCihiwjhv9LbRzg1RaOcN743wNsF/uH12w1IKou8iH8zqkworweygE4zeCRKELSI4zuadT77/vQSzR2d7PFPdCRNChLIsqCRoEuE55p6qtFgKZTi+daIPShF8OFfXN1MNNm3je0PxBNbmfCmW6uLRGoyR368CHpSysLWeoNME18fI6BPcGRdgU6ADJgme9z4JAFFUC+VQOHvnUEhQIwKmAi9IG24Jo/dUPKKBAgPHpjIswfuNUoQ2HKvpNDCm2kylUMWoZgQ2QR8HtVRLe5u26QI+8O4UTSXgshRSXStPOJeHpKIupiU5gYmwuSPhGQkQkUq8Ce6kCi9/b+J8+qRig4uCMf9FuKjZEjBKdWTak3cfrJNAfLoeTLIHEHoCViOvpTuMnnEgIVO9R6AiVDMEp4hDWIKSU4GeAKHO7844gHdYWgLroUn8HNbCJ23DvVPrAZ0xE0QC9L13ekulMuE4yvl8RiM4+JpA//wdvWcMiBwKWjSdGiKXqoomuNZPqd6XArIgcgZaqqY32KbKWQS2trHEgUQgL3PMieiYWirAhVyrKgnWQqqHcZbF+KGvfonPPvqUh4dHro4rSkdZcJGMkgGuinHqg0GCstozxiZplVTGMpz3nh35/qcnzt25WRXVyPigJcc33AlVGoF4oagQnmvPtDB6UEskMb0U7j57QBZJUqh38CQVsIykMMs9pDWd61GI5iAPKJWIYGwNu1Zef/h9ji8MRqcer1jfE+j3iD4jxmueNlVWQizBzfISOFOeNV5+rfOf/9wP8+3vvOIf/s53+T+/9SkvXxQ++GCZ6nxYBNSVKM7oGa3i6+DV/T3f/Cff5OdunrN88JeR8iV+9Jf+Dv/NJ3+X//a3PuQ7j4AI9bDSzyde35+oV4pcPed//canHI/Of/Iz11wf875Ri0DNvUQi8HDaqeMh6QpQA/UkaJygarCUoLeM0DGBVYRBZYRifs79VASjk+Bu3tfWOm+zPZW/ooLMSCciwVqiMLrPITRUehJHV52Qwek8MmliJGHZRhLeQhL8hM4/k3tsyATTlaVUEKGdG1vvVHI+myqhSY7k1hIT2zaCgYmBKYwOmrEoQyKfAdAkDSLoY1AIkEClclEXaylE73kbjiSAL3C0FcG70Pqg1IzmURUYGTVUBMIymukSqYPL3FOgask1iefzhifhrUUwB8EZYZgG3ScJh4Dk8IgoXSKJgAI+eirfw8E7MfQpQocJzMskYkJ1Oi+k0nkGDyUJzlSEXziWENxTl61i+d+T9EUk1edmDJ8REZMcDpIMzmv4jkSJywsi87lLiXRNSBZ5xvkkUVgkn188et4r0CRPREEdmfeEnIx77fWDa+9n9n5m72f2fmbvZ/Z+Zu9n9n5m72f2fuaL1M/sLz3ttddee+2111577bXXXnt9rkopLKvwfE2Vyl0L7s/BaM6pDc7nRiDUolwdV9aSIO5FYVpEGN7YRqrnaqlT1ZLWxzFSMTlCePPwwKvXD4gotWakhGqhqFIsVYNIwAj66NnEpgQ0AV8UH52enuMoQtFCKQl4p01+KqejGkYCwSHZjI7RGWND0bRp9uC8dQ43z1iWgkg2+0hQJzj3+PiYgCqJVEZrqYLVBB/uHx55fHvP1s4cDjUBB4+06S6GFGOooqK0SBJg9Abn/hQFETHegbFaKeuRZVmJCbALxpggawIOqXiLqUBVEbaAEMMsQAb9dGKcN8boaDGqFdrWMQmurg+UdZ1AqdBbp22N4UFVZWvnHCtvqFY8hKvbK6zWqX6KVDZqAneZXJ+kQSpQE2wJj3ntk9R5uL/jfDpzfXVMVRTKmMdgtVKnotzAQBkAACAASURBVHTrqQy2UhgXVbOkMnFwh6wVcUevb6nLCqKUqSIkEpQKH3g01BKoH73TW8YlJLycijmthdga61LS5tpkqrAT4iiSkQtSkvAygS6CmoFWVILrkmrhh1efcXN9PdXgGdfQ3adWLIF8vKMxUolnRkQCMcNHAroB1Qr3jw/oxUpbJmhkU3kWPP3bmEQNogmYS6p3fRIC7qlqK6IJ58u0Y4dpAz5BnYTWgSlg83hSoyeBkuRJeCqLE3RK5V1GQrxTGl/UilOfl98rOSdUFZ/ZHKp5XgNQ9wnepXqSy6orBXpa3id7kMRGKkZzT4hw2tbQALF0RhDRdD+IHP9SE7iHYNsapaQyD8noidYaW9sYA/oA1UatltdSMqpm9LQuV0nSQbWwLAnYrTPewIox3BPUDmddV2rJmIMUQfskKYXLTEzCdWCRJK2RgHr4SGC3KOfTPbfPbkHz2ifIFhN8VXp0jDJVlZ7jHD2vlYJ78OzmyPHqhlefvuL58xtqN8QuJEpnjKAUYzHAjegj4xQkGJGkn835GOJc3RinNhWakpESY2vYAiMEj9zPL1czj1hRCboPWvMZIyPoOvje995ye7twVQvn1tGHM46xHhdCg1IdH8omsNR0VOg+sDgnCRqOVSG88cm/O3F9XZHYKNedUk9gj4hUgo5M+WpImfNghfIV5KgsKF/9kc5/8cs/zve+fce/+Dcf87X3F37x5kvcXKcjgbpSV+gRLGF4OF4DP8KHH37C89/7Q/7iX72hPPtPkesv89O/+l/zX3323/E//F9veHU20EJfDmzbG8b9I9dXV9zV5/wv/8drjsfCT/+EcLhKkkSrURwGwZI7P+2cbgYSkvujJqhswFUpsAaPRAL6SAK/omjpKIVDEdRyXTcPvAMR1CX3he5QQhiS+2/03K1NjLB0vnACM6NIIJIxIoTzuAUmuaPY3IMSHM49KryB2CQf5WlfUjMWSfLutD3SWsdmVFOg6PwOgSQOPCNDnCTC1MrTLEvAvM8XD2S6qsRT9AORg6VquCuYYZLkf7p15Kw1UawqWxuMnus6wigl9y73+eJCCDb/PDwyrkcAKZRaiWi5p7aRBNoQ3GTuoJcFIhRkksWXc5u0oChNBma5Xw2fkTzhRAdXQYvlPjlLJ2E8ek/SZpKh+SwV89xHPqfNqC4PJWTurz7VyUwS+7JfhVDKglowRtB6y+eBiLk3yzyhdNdxcd5FTFxuMLkviMp0dcm5kJcuCPUZTRK8+837S097/ftr72f2fmbvZ/Z+Zu9n9n5m72f2fmbvZ/Z+5ovUz+h/+Ef22muvvfbaa6+99tprr72+OHWzKO/fLqgOXj02Xj9s3D2cuTttPJw2AjgshdubhWUpXELrawrwOJ07jy1V0Ey1nkcw3BndGeE8ns98/MlnvP7sDhXlsC4cl0JdKnVJpfUyVaA+nNFT1Rlj0FvDyT68D6dNlUwRYVkW6uFAvTpSqtFHx1Uoa02Qro8JqSRw5mNApNK0987DuaHrQqllKs8claBUwUdnbC0t9wlGH2znM30MXITRBw+PD5zu79i2U36HGSpp67zUlVIOFClUNapk8+uj07dG6z0tpGOQOmwQM2xdWJdU4KFCSKFLglHexhyLd0BvKrsqppVqBVNN++nWITpSCmVZMVGKkPEbtWKqaZ0fl2iNBIO6d84t1eg6LZtrXajrkgDI6Gw9IzokEgwxpop2RkLoBAFg4N7wsdHOj7z++DPWqytKqanmTAws59M6SZ4pmXIXQgthSgOaCKixXF1Tl5WhyvHqSLGFYmuq1CNVqR7TNhyZ0QN5jolDCG0Mtt5RFdr5lD+b8uQERicwnrb8GaNhVqm2cMGExAxZCras2HKgReBbm5ETA2+peBdPtVyPMVXLqerUCfZMCVmC7FN5nCq1JI3GyHO6AD5qGWni4XTvCSKZUgyKwgUAu0R6jC1JouAyJgm5+VS2EYKIEmMkMBWBEUQMeowE7DV/9nQ6E5oK/SBlbjnmwBOGfwG/LxRBguAylXueJ4r7SIXmPJaJyb0Dk4MEr50J8JGxKCI5jiS47O6M6LTRU7V3IR7Cn0gFJOZ457ikkjtt0sdIQLC3bboMQF0rxCUiJ3+fFsvIAqsshyuunj3n9tktL1++4NnzZ6zHY6qTSeJ1vTrQzw21hbqsCchFMJzc0yZYKQQWGcMDI78j0kKdCWpWK9AabSTA+MRkjDOMNkHHnEsimmvwchV0riWHUuD5y1s+/eyO1pzRM75C3GfURLC5U3SwLoKihAnjAuqNYPigkyTA89uFh4fGeUz3CYlUY5IkkoknGRhKn3MmIueA1ASt3RVvwrIeiHbm7d3G1nKcTufO+RR4E2Ioo42MWelJaJBcHKMlGU04DOH6/QXfRhJlBuPxkdHu8fY9YtwDhdDnhBwgyiQMBNEDIkdYbjm+fMnXf+Ilv/7Xf5KXV4V/8s1P+bMP7+ibpztECKDUWjkUTXG7GcsiLEfnW//qQ777x99gPP4biI3l/f+YX/hbf5O/+vXKVfW8T1VjPVwx2pnHh0ekVL4fV/z9f/qaD797ZttIlXtRrBrFBC1lOnYYoyUhrp7xPyYFQzCc1YRSEsp3CYKBWWAKqGNmLLpS1ThacCxJTlWDw5LqatUE0SVvM5OQ9uk2okgEwwsDyzlXjfWwUmuhReSjAkG1jPG4UJNBEoru6RJxiU26gMCqwmFdUwnf82WBMeOTxnRKGaM/zbmn/QLBSkmnlVKxWtAl4x+WpaaLytxHY+5xMvdWKwtYReZn1TTdBxRCglJnNII7W2+cWmcbnvfjeT5J+MckMYAQxsg9SmbExLqsSXCE5/28ZdRV98Fwp839SCLjKWKScxEDk4ubg1KmQwlzzw1PN5LRGxEjn19GRmapTZKb6Zqh89mBuVdLPgsQio8klryPjKyIeT/0JDjzXYVBH52t+byGuf5jxju4x/zZz7laeDrehMu7e6AIl4QNm/vshWAm8uWJwJ9iQC4zaK+9flDt/czez+z9zN7P7P3M3s/s/czez+z9zN7PfJH6md3paa+99tprr7322muvvfba63P1/Lpw2s7cPTr3Z2cbTuuD1gfVsuk/roXjUvARiAlVDULY+gCZ0QARaWscSQy4Q3jGD3z26g1bc5ZaqWthqQu1FNZ1YT2sCU73Tuud89bSMjkGaT8OeCTIG9nwLrYmYLcs1FpQ1YwRsGyCq9UEGxdFrSQw3zba2PCRgNLD+QTrFYuVBLwtVY21JBCAThh+pPIxRtpel1pwdx574/T4yGiNdV2g1gQgrCClpDpTUwmWqLLCGEQfaEAvQgmjaKX3CWlLoSyHBDTFKRPslmGYGrYWQhWLBC09ffmTbJDUWDmDdjoho2NaOV4dENUkBWSZAIpNpRMJ8kuCgTSnbwnAEIHZgpTC8foKE6GNPqMtZmyI5HGJ2IR+IuMjIsFocaf7wPvgo+9/n1qUtSSRYprRHyqSquZQtjHofaNoJWSjjT7FUj5Jo54K5Ls7br/0Pmup+Lz2IcCMTTBSjXcBwtOmGzAj5vmO1qFWeh8UqwwmcI0gltet1MqyLHlNJSNQRtvYWkvQ4uGETGDr4e6eZakZX6BJlJVaEriNtNs3JI8hIiMyIhiaajLxVPsVU85tS2JqBD2cRQyZ5EYR0NCMRAhhsQUhz2u0jPKYCwgVOI+GLWuSYJZH6+4sU68t7rgl4BctwUu5kBciFBVG62kBHjwp8yCVcBeFvpO24xcF9AXsSexOpqqRaXzgE5hS8NxTID/nPmbcBbjAeXQiHEOxqep2JvYvmkCSBxoXFXQk6aYJRluki0Nv5xlHIJgl3BQehMQ7O3WC4Y27t28Qz+tS1mOu5QgYne3hkZjxBt3S5r7UirfO6fQABFrWJNJagn99gPcJ2kUqjVsX1rUQoQw1rC5oP9HbABHWZcloidZpEWgpGaszj/lCpqil60QwAbpI8DRGkmQiRo8NicAi+ODlNd/5MHg8nziuK4UE9ofkGBNJ2KiAm0/VpFPMpkHFnBvurNUofubuvnB1vKKoZfRFmQrxuDg7OCGFoNHdsbjs1Qk8ep4I77088unHZx60cn0AqtCbppJ90RmLYvg40zalLkZMmfhoICbIACsrV+898vB6sN4Ydj7jb6eiXT4GK0mySipWkSQJoIO9yLl05dx+pfMzf6nzK3/+Kf/jP/q3/O4frnzwvPIj/9FzllXYuqAdogqLKNJgC+dQ4L6f+cbv/RlX793w4i/ewPJjXP3IL/I3fu27fPT3fod/9h3nHMZxOeCHje3xRDwGh6tr/vSu8w9/947f+GuFH/qhA7WseGmYV4pDD8cWow5ooyNVsDGIkmC1TKeCqoVRGuZzjvSYsS8l9xw1hErRJNQcUO9cVUMi6B6EZLSKKFhARMekMlxSuesZ9WSiiAUawvGQs7OdA1vSZaKYEmMShXFxK4EiFwJCkjDSObcdDsvK+XSmN8eKoWOk88gExcVzrRD5eYEZ6ROYGm6pCh+S5JaoTjZBJrLvRDREa84tArWCTCeP4bnvZfALWFEsCtvW2VrDPPdrs7w32AS+QRjeUxUeEN7onidcTFgPC8MbbeuMyOeREjPixgCdymRmvAM5hs6YymEjXPJePJdjzCgH9zHFzJKxU5dnCJSwVCtLcsNzE00nioyPYDoyzDmk78hckDl0qdi+fInHJSZkfh2XvfxzgH4wxyUvrGBPLyjMWwbzyJ724Zj3AxWd5H5Qdh3zXv+B2vuZvZ/Z+5m9n9n7mb2f2fuZvZ/Z+5m9n/ki9TP7S0977bXXXnvttddee+21116fq9O2cf8YPHQ4t8Fpa6gax3XlsBTKUqgzS92KUi2z3s8j1VWp3jFCUlncPAGH4c7j44lXr+8Z4SzrkkrmomgtaK0sy0pR4Xze2Nqg9Zbgrse0Y05b9NEHzYOqlg15ran2LUaZSiexjJVYNNVYfVpPe2uMfp6K66D3RhvOcjyy1CQ4isQEIAc+mCDpVGT6BB8lFY99OHcPD7x5+wbfGkupiGXzqpYAmVSdqi1SfTXtnS/W0VZS/VqsAIFGQ4Zg65JxFKQ9skRaJcNUVq0L3UdKYE3TutqnhT5BjEF7eEgyQoXjMQkHiATlq7GUiomkOtwd9wT8oqeSvc8/W6lsIdxeXVEmCHIwS2BXptqcC0aTZECxkor4qQRzT2Xem4d7zuczt8+fUc0SvH1SnxlqJUF3d1QXVC92+c52PtE9Ugm8DcZ2ohyuWOsKoQlcpRaTUmqCUL0zGAl0ekzwP4GQTgIbpVTO50axmqrDma9gVii1TBvwkgBM7wmeEHjrqSIeg+10ImRgWthOZ569eI5JXj8kVf5qloDPVP5JDAhnhDCYylEPxgRbxIzHN+dUDc955+GYB1omuBWeNvCacujRGx7QfFBJ9XVoWpefW+fqcPWkCmaO1dAkBmo4MpLouER4QLxTh3uqsz0SkHuCeibKFwSFCbgDoorPKIw5Esk3oIhkNEyPVME9Ad0XQEkuImzJ7/eYhMFFyzxjMDyvKxFPCvGLrfogKAyIJGO23sGYiu1LKVaM7huQ54gL4UkenR/PGMG5FEKN3jtCgm+huS+M3pAQxmgcjwd8OBLO8EGpC4daeXN6pLdGI/9efI6zCPTBKIHoQDxVx0UsCRETynFla1uOawzWVYmxESw5x92xmCCiwPCgS2OMjaVkrIoAiKMW+Jxnz48rL54959Unn/H85hYhFeIyiaiERB28Uwh6n8pKCcyUkCXJOM21+94Hz/jk4xPvP1PiwP/H3tv+2rJlZ32/McacVWvvfV7uW9/GbXBjG6I0ATdSTKBBMjFgjCBG4h/MtyghkcKX8CISkQQRm5hOwC/I7YS4Gxwbt7v7nHvuOXvvtarmGCMfxlz7XCSDlM9dQ/d233v3PmtVzZpzVo3nqed5WEW4WQxZFN2DPYMUxUPZtRT8A1AfhIKnsq7COA/60rhZL2h3MKOpQQb7Ntj3XvEwHmhOEBtHmz45TsRm6GqIKM8/fsb+7oF9S0x28hF0fQcKoh16R+zjQqivQKcsJCvoisiCPU8+/JGd/+zPfpX/5zuv+D/+1Wv+8Jdu+eDFiRcvbjAPwkapgmcUTaYhluSSfP74jn/xj3+TP3N7w92PdmT5I3z0p/46v/D97/H673+Lb30GIcqzuxfcpzDOj1xUWe9e8CvffcWzf/oZf/0vvuSTT2rv7jQyBpkGLck1iV0rpkAFrkp2AiNYEJQV25NLFoFbUSGBiWHiqDhDKbIua+35VspqIrnPIKScCFIUjQmsSpJaAHR4TsJRWBWsN0yDt+Ls26BZ58lgIUo17OmY9iIvUpBJ8Ork1LUVkRNLcLlsxL6XQ8C8t6nqpDmZKvUiqiVrp6iomGn3b9MPIh1Tm8lS+rTHZQygnAgqYGZGImiDKAeQTKfokMS64ruUijjLUaJpn84I9b0216BGEiEEgs/7ermB1B7EiCe3DcdJFxJDtUicJ6UwWVEcc6dLLVW49HJx8CgCXeeGqxOwD4/5hbX3pkKOGmQPrzU/eRN9iqco4uDq9EDW3hvEnCMzIoSsvYycpK2UEj+lxjx5Il9y7tXXIRItMt816/6QMvef9/cMpfaYivCIuiZHHfUfqKOfOfqZo585+hk4+pmjnzn6maOfOfqZo5/54elnjpeejjrqqKOOOuqoo4466qijvlBvHpzzNnjcB2MPWrMZ19BppmUFLoKaoprsMfBUVDsoaFSzHT6oSIhgbML9w5l37x5IFda+cFoWWu/ostBaw1SI3Ll/2PEdNi8g1mfHHFGZ88MDl8RmY2zW6H1h6UaKPQHWRNBaqX6GBzBjKXwnRtkW7/vGnslyc0NTLRBKDGkylcNSylZKTVmKo1IaWuuMCN483PP5528Y2+C0LFhrpQQ1RaWXTbYoLoZoAScmTGvlYPIP9d0RBcBGsNyepkoJYKBT6VgsQSmrQ/IJXI1pzRx1kCSwnx/QHFgT2lLxHc0aYu2p+RbKrnn4HJ+x476znfcCkaXIhfM+6L0AuEKApqhsjlNEwQapkNYwlNh3yIKHx9ghHE/nzes33NzdYRPEb91AywLammHl+k9E0lerax3OuGyMbRTwte2M84XNg4+/9LIUaxpkChkXJBUv/3EydnSSAVcEJpngbpblvZgi2ri5aYQKXUtBfxXNMVW4GdPGPrJiNmYciWep5y0VrNEnCWamlM59kleiONCs1GCMwVXdS4BqEkwyKAKXUuWZTRCLAlNEhCkTr6soBZTldCdACmQrtWMydi/19xVen+fhV4A+Ssq2E0+KZqxsyt2Da1jBiEEkeCbWlgKHv6Csk6lMTPJJ8R4xLeQn5FQgdH2fJGjWPIY6B6FIEqWiJlwKNGoygcDrWETFF3hMy3QKgHpSESJEwB47rV2VlzJdAJSIvVTp1lGjzjWKGBvD8Rw0U56/fIkkrOvCze0tmcoYFxJYI4vsUaV1hTRElW4nnr+wUlojeCRv39yzXTbWdio3gqhoErVW40FQFux7EatQRJcV8HY6nfDuxBicTo39cSM9CU3aJMVEFNNgDNg3p81rqyaTuMgiTKSicUyVTz79iH/97e/w5a9cWGfUSWTFgNSFM9DEJIhzzmMLugBWQKNKKaW/9PEdP3h14fW7jU+XTmjt7YUGC7rXGtxDkWagWrE7AWJBqJEuqCZjD/rSOD86a2+E1dzJy0AlWG87rWXFdJgVWB6gNkhtuDvqpbpuy4kXX4HP/+0j8lGnx468UbqtNF6BnkBvQe5ICiSWNERazVz7ENZBe7nxoz/xwF/+mZ/kt3//1/mlX/19vvJJ46e+9glLt5pXQwhRaMx1FXSEuxR+//UrfuMXf4Of+svPWL50QtunfPUv/E1+4fUrPv/H3+N3H4t5urm95d6Ty+OO2E579pJf+q1XvLx7x1/8sysfflDuFr2vSA62Cbz2FNKlyGMqwuDqQqDk05ahUUC/zHWyixfpLhU/kjkmoFsk1mUfWFMWIPedAtEV0YRwuhRY3DTZCMKliDaClHkfWeoet41B0xkvQu0lMlX4CZOk0enwUXtIUhE9Sy8Ph8vlwjYcjVLsNi3itfZBq31ZpEj5uR8UyF3PBy2L2BzuM4bAcUoZjJRbgcf87gShoVlq41qpiWYWmSLlVLCPwT6yxrsNLOUp+kYzn+6XIkpDplNI4hMUV1VkUcao6CqBituZzgcmpRzOzCJGAZnK8WR+L0JoAfqxJ4QSHvQueHg9wySI6VSN130ppEghVXBPQmwq6g3RQCWe4h/yupfr5Kiz4mUK/J/kgMS0U5jETcmki6qM2pcrtqKI3OkFU38EZgzSfNaZ2xBMlxqKOBm5//9/wD3qh6qOfuboZ45+5uhnjn7m6GeOfuboZ45+5uhnfpj6meOlp6OOOuqoo4466qijjjrqqC/U/XmwDycClt55dnNiWWw2zgVwqwEp7F4WxKJaIPFsoj2lwHaS+4eNz98+cpmEw9obvTVaa3RrNCsVqkoyto19DMJ1KgALFN3HmPbp08Zfhd4a1haWtpYl/QSuWzM0y0o/ZmNegHh1x0rZ1Q93QoTWF5RkUaX3jraGtl4NbXk3QwY2QSsQ1Dojk4eHR+7fvEUiubu9K1XeBDG196mu1mlRHkQ2lMSnemjCzWUl70lEZdbb6YaQssYuVZMRU6VFKsVlZEVSaKGfY99xL4vrSGdsF9QHTl1H7Uu14VrAnFEK220UED7GTriznzfcB2M4I3aktQITbeH2dKoYCrUnBVk4pFYER9OGoxBKegH2Ne4OPkCSNz94XYr6dQEr9VpByAUMiWnFX4SzNJvghDO2ne18KeVVBL7XfLh7+RJ6gbBNjcDJcJQoBTOBxgTHEjIqniQz2X2we8U0bI9nFuu01mDpnPrCOF9KXaeCqpQKN0t17jN+QSZQtuW0XD+duD9vnG6XAoRUS6keWRbe7qUsjTE1c1HW6RFTbT3BES8yaj+XKtq0MaRiIxRB8wq5V1yFTKIg3EHr2uoExMOdCGfsA7POnNyYFlArWdbbTpZa16zUwTIJpKng9Szlm7WF3BOaze8tECcmGRIyVWxWIKCoTJJmwkFXbiMLmLdMbAJBBaTJE5EzVxQJjEzWSUaUwhGGJ+4zAkIC1WnzTxYJ516kAsmSWUr4qH0hJmI2fMdGRXVkwOVynuC41BGI0Vth9U2VQBl7XZNmgedg27cnpeZ+ubD0IkFFhO2ykzHwsXE5n3lxd0tvra53ahGLHpi8v6ZGQgjSVgwlY3A63ZA+cN9RTS4ZbGMroNBqv2lWICQCKokpCKNA2wkkM+dqZqkfP3p5y7dT+PzdO06900h6X8ryX4oANq24n2xFSDZpQM3RAjqD1g1T4UsfP+PVZ+/46OULYjiPm9AbRVhl2fyn72CGj5oMPZNVhbQgQlETxGufeHi4cH8/iD1Z16SLslsjH4TbuyJi0iEVJKZyuzGJ1URaQ6xz+9GJ/d3g/HliHwljG+j9Q7lrjAfCPi+VNH0i6TKBVEAaYh+Q6yM3H9/zta9f+PnvvuO//nu/yf/yf36PTz684Y/+2Mtysmg1xqbCEpDDWFpF0iynwW99+3s8/+av8ZPf6Cwf/DRy+xX+k5/9m/y1H/w3/Pe/cs9nmyFmLM9u2T6/5/JwQe5W8u5D/qdf/4wXd2/56a8/49ndipkQDXo0snvtvZFwXhjqvJfvFyEaOSOVyi+AwDHpROpUJQeqSo8i667XNkl8ZCnySXQvgHvLnEph6FKA96IND3ArgjFCS8EOnJZe7gUjWC0mGWV1bFH3ZKVhUAp33gPKQrmRqFZ0zPlyZnhgFCli9j4eoBwCipQVue5RRSOqzGgYsQmaR92Lo3wAxIyUXvN1RlPsO8h03nBxrCnqQU6SRDSRbhNkL1eRVLBUzOqeQSR7OClCmyC8Zo1BHXS5BqhZ3Tt9LzcRLQLsuiM+KZcnyepEvYwQiYsXgSA6HSDqOm57PN0DBSE9EJNJ4DDjropAqWiG2usj67rJJDxqbGt+5ySHJSfxfo1imfeeIqkp7jNjksiAFfniUe4w173oSoBcnV3InE4wPBHZhpBCvawyqYOjjvr31dHPHP3M0c8c/czRz3D0M0c/c/QzRz9z9DP88PQzx0tPRx111FFHHXXUUUcdddRRX6h9u4Aqd+vKzWmh9VZqOhWaXa2bq8lurZdKKCDSCS81pKgS7rx9eOTztw+EQ1+M07IUCG+GLQvaF5pSqiRPhidom6rQLFXj2IkxSvlLgQXNrCyml46Y0Xubx7ewLL1y36dyKYCRUarAeY4eyT6c5bQiwNIKHF76gi4FppOOiZNdEId9OCOSZo0xnHePjzzcvwWBmxcvECmwyrTUhqatmt8ZY7EpyMyTJ4LhDl76zbE7sQehYKcTJjXmpQCPIhoyGEyllkBkgYBjXOq7mMrYqIgE8UFEYr0IGRPlqk/1iGqyp/IoPcBjxiYEahUpoAJdjC2D0+0N1gwRIyb4LgAJI5zVOvucCyaOxyj1VNbnisD9wwPn85kXz56XWs0HqVMd2jqo0swY4bg7XUs5NUapxZsZrvB4LlVqW9epWpUiM7RBRqm5BAifSugZA+GBj8E1asK9rKoHcD6fkZOQlzNrwuMYqEcRKtqQCfSjUnbjWUoxH6NAnuFFeLWOjgvtbilQJZKQmn8T2SERXGRej7IP9/BSumXi+46PnXVduDxcWNaFJhB2/W5IKeICJo+V18iGArMtpu13BBoF2pwvF/rpFmJMJXKRJlDKODKJnFbuCO7OPsZUyAlNDU9hdEFjx8SeFGvXkoQQKZt9mTbsOZXfc94mBf5E5lTCJWkFQgWl8uVp7KhxmqD9yKmci6x4iZArUlXkxESbfAzSDJVl2sRrWb7PsYhw3Ctq4Uoj1nQuciGzCD7Rxj5mbIuW8jWvwNY8J0HfR9MsyvCkNehqU209cE+wYNu8iCfhIAz+egAAIABJREFUCRyUua/FJDQ1A5PGCGfbnGbz91RAGjbPw+yCXy5TxbjjwwqwbPOYTOuCMOeBVjRA8T+JtgSC09r44OMPeP39tzw/3XCrcOodtNdaMsHFeBwLgXCyYI+NFClFLDIVlEqT5NOPT3z25h2f3V9oUnNVaDRzMgVPnwr6oNuOZKlTk1IyB7VWSfChnO6Mt282VBoRyrBkj+C0Dpqd6HcGWs4V21DQivQRbYg2MkB7gZjPv/ox4/96hY9E246fE7/p0N8iYwVZEHsOLFNV20B0ulIsiN4it5/y8isPfOMbG7/3+5/zP/7y7/PPvvUDXn6w8uHz25qDoqRAX67qfqcHrC5EH/zqr/0Oty9O/OhP3WEvfor1k6/x537+Z/m9N3+Xf/Svgoco8uj07I7Lmzds98HN8+ecT8/5H/7Z59w9E/7kH1NONzM+Z4HOgtQiICLZd+idIk0XhS0Im2uUDXWIUHov4oUosjU10FYEUUiigyJmou4Vz1bjISsOwK62/eqTTCnXD1WhFPidoPZGUjCttfsgwb4P1tYhymUls9TIotcoiiiiZ36wTIWwiNB6Y9UTTFJ7cscVTwQTXNd5HBQVLQA+SUufSu4Cwn0MREY5Ruy1d6YUwVFg+dxvqHWUIWifiu00IgJ3QQ3Cg22LUhgzYyfMnshNj2AQtNbrnjbdUNxrDRQpnSTX/cPrJQExlqb10gBZUUIq2Nz/Urz+earMoQNFnniOimXILLeGlCJQM4tIsHLRuO6BTNIkM6crBvN3r59RYwyBSkX01P0WUpVBYsF0fMh5L5gThES0XthAJkkTEFMrr+JFluT15+8Jv6LR511H3pNCRx31B9XRzxz9zNHPHP3M0c8c/czRzxz9zNHPHP3MD1M/c7z0dNRRRx111FFHHXXUUUcd9cVqxmldue29Igoyaa2Uy6iwR4E+aGMEpdSLYAxnH45qQ0S4fzzz9t2ZFFhvVno3VBvaGuuysLRGb0r4wEt4iZmwe+KRBM6Iwe6OZ9mYm2rFPywLdlrpvbO2xtoXBqWo0RmJUFb30yrenTHB4W27sIWyrAtmRusda43WO/10U4B8jAIWIvEx2PYL53OpjFV2xrbx+HgmIzidTkV85CQ4KBVPqYgE1WCkIyGMEbBtqBRAnVN1HVEqpNN6W8CrVuxCZBSgHFH4coKIk1ExGJkgEaU4neNOlipYRHBTWq8xFwAVho8J6ukE4woYQSjb9Gw8Xh7IcKQbWzrreuLUDG29QKTMAj1SQQwTQbVBDFAhxo4QBVxklrJsOJ+9es1yc8N7u/7SgV4tsoEp2k2W3kvVG066k+kA7Jed3OscPvz4wwJutZSEjFHK3iwVckY+KXw9nPCKFxERBglSBNHjuwcWLYDCEHISONnbjH8oYEdFCyyWginGPnD3qcozlnXlfNnpS0Moa3qf0RwFjOhUkAMMMqxiJCLIEU9z5jofIimLcrMnIDYySw2phrVOhmMTXA53bFlK4SZJEyWlyCYfe6mHtc5ppLNYRW3ExJXMJzzkwUaNfR35vDBXtbI7ezi6dKJwKqQVAHZ1M0iRJ+twglKvznV8pRR0gk4RUfNgui9kZimfea8Uzum6MBmfGqNJ9lzRSU0lcchgG0HvQcv6BCOfyKdSHpbwWVXqekoBjBFFHAFTDa9FWIk+qcoLoDfIKMKTznrq9OVEa8rlsqM23QwysNYAxcx4fHxg2/aKPIkCKq8A5Lz8ZM4oHUoV6UGt96mlL3UhtKVzebywnIJOKa09o+IXMFLKfYLhhMqVo5rjNq/NKKD3y5++4Fv/8rd4OD/jdFomAVTjkaJ4KEnDIxlaRO3uWXE5USSTpkODGzO+9MHKq/vk+SlYLs5qxsWj4k7CsF73FoMJcAb3F+emgVgiDs2S/dEJNcgzI3S6GwibB6oLfXN691KBarAPxcTKJUGE8IEOJ6LVdcjk7tPO2+9d0NtAxLF392i/QfUdYrekrggr4AV80hCtyBHsQyR37PYjvvTjZ37uL/1H/Ovfveeb//IVX/3kA77+JxbWtdU0TUEWwSJpe8Obc4rao99cHvkX3/wOdy9OfPjHb9Hbr/Hsq3+en//Lv8vrd/+cX/5ugCu9deT2hseHB7b7B5a7W17tt/z9X3rDs5vOH/3KynLTSuWrRfy0hFgrtmVssFjH08kFxA23oEUjxbldhdPSuFuLyH+8bDB0qmUTs4olkRF0Ddwrqql3YdAm4XyNcwisUHxCQCRYRDEPhteeEOGYwZ0Yj+Fsu9OUIuWkCGazuv/r3AEir3EIBY5fHQtMGqdVuWxnLttlrqmYzxL2XhE9rRtEKoIiAkTr5QGySHh9cldJRIKIvQiCuVtpXt0Gah9Ojbk31ULSZlNFn5gmqs426mUAdyfmfqtae5xnRVOZCE0EmjEIPN6D6SrlZOLuRZpEsu8DmySja5QjABUnJdfNdiqmcz4H1V5n5YYiWftIeu2sanV9M/FwbLoqpFDODJlY1r0oJueY11FJiljIrDXsSUoRmHEd+3lvqnGu/bSerereotJIKbKhXqDIipchyNS549XxSbNSf09nB/I9OX3UUX9gHf3M0c8c/czRzxz9zNHPHP3M0c8c/czcq45+5oehnzleejrqqKOOOuqoo4466qijjvpC3awrN60XCBpesQpRjfrIAi8RwXKQwNh3cKYFMGzbhYfzxvlS0QS3p14RDW2C8q2x9MZiWvEH+wSCNUpYk0lEMPbBvo0CWb3UjNYay+mG1jupVuCelkpbIwFnj0FGMjJm7nzZ4Y+xs++lDro9NXpfaK0A+d4M7R3HkDFKNTX/zP39I9vlwmCqOiXx84WMHbMFtBExwc6RJUaVAAoMLgVTgjsydpJSTGXs1Sh74qr003NMF0yvqsl4uiY5iQuVJKMUd4wCGFKFZEZf+IB9wzJJneBDlOo5taz5zey9GjmKkClg2PExOF82xn5h7b2U6muRKNp6kQgkYsuM2ij4WFVL6S1WIL17gdYUEBKZvPrB91FrrMtaCm5RrnrU63VsrRUwaUW05D4qymAe28hk9x0yWW5O6NphKvTDdyK2GR9wBdmnIoupGo6ao2QpBzMSxIl9w5qhvbH0ji0dbR1VK/KnCabG2Pb5eeA+iCy1dmYp4hHh8f7Ciw9uaKoIUcLdSSwUCqaEKBrBHpepni301tTmWqvPLTC51fVRwaSXKlcrkgErUMqz5ou290pYES0VdpbaOEYdu03UL2Uqkuf4ZwSuFeOQmVzOF/AiP0pFHaQIw3eIQexBW3WCZtMinqsycaq+J0IUMhWOeZ3P9b9XBwTJOnebV0/m76jwpAKsOTNVkln7jU0w7Cr+zeJ9EIKmgqoh095e5oc2nSrA6bBwBRAjS+mv2ui9M8Y2f5aMbSetTfVlWZgjINowg24NM6v5okqbNvfhO0xgzJqytM7D+cI2dpbpwp55vTZlW6+9FJwxvCgrsdoTMlFdiizxOad6Y7x9y+6OaiJ7KYxdEhFHrdFU8TYphxiQiYbDjO0YCV2ED29uWVrn/HhGPqg4jforilAUWFYjL06ITiW0ELlNpWjinuwqnBQ++uCO777+DM8V6cY+FbR1ZZ2cRMFIqRgBdyxg2wtobiUx5XRrPD4G661yuQS3d0VONxrnC5wWeHzcCXbW04mMZNsG1nuBouF4JLptcHJCHBVoFoxNEQm2hw2xz5AP6vqLvUTYCAzYp6K2PQHNYh8R64X+YuOPfi35mz/3jv/yv/tV/td/8Tt86aPGV//Ic6B+11Toi3FV3IcpzYTbxbl/uOdXf/E7/Ke3z3n+1WfI+pN88vW/wV//7BWf/YPv8K3X4CKcbm6LiD9vpD6ynp7xbx6dv/+Lr/hbP/MhP/qVmxkRNIHiLKJAT8lFvFSqqsRee9KFgahwymRR6Jqs1mldMensl4qAkVBCnYaQDnuWi4JnIsNZZxSFqOBec0kmGSco7lbKWC3yvqImslwYKFIiCB62wU0r5fA1PodM2hMQLyAVqyDJ0/OIWUPEWZcFAbZtR02fXCKY66tE+DEV+nVvIcGKySiyT+WJtA3f6R32fVzFw2RSUStYAddahEPK/HvGRiBJjAE4po5GMC47OQYjnNYbqVrPBAkySWRTo1nDtLwLPEG8NjRVQwh2j+mKciUC534aRQozidjJ8NQ1d+bPSsneuuAueA1O0bDz/MTK0eb6wkAloVQMgyBoVGyGXL/Ban8NSsWcM2rEM+t5TOu6BTLvM0WA19qouLCrA0XTio7YxjWuCZiuME9qbK84IU3qHsfh9HTUf7iOfuboZ45+5uhnjn7m6GeOfuboZ45+5uhnfpj6meOlp6OOOuqoo4466qijjjrqqC/UTflHTzVhWVlLCD4KbOjWqon1wIERgyYGAo+Xwdt3lUu/9IW1d5ZmpWhpFUuwmNGkyIXhZQOMlIVyzAZxGwXQ+xca1tZX2tJBS4HUtOyymzWq2wYmoZAJRk417GDbnG3siHXWuxMNoYtNZVDDUGLfGfsoq3VJxtjYznuBCb0z9kHsg/P+iCbze8G3rZrr1lBRcqpWG9UQ+wSoY+bExwhi7KV6zmqk+3pb5zZBW89AFBSrz4wks4DYROitM3YHKbWZCIgH4/JA7BtpldvRxaqNjqmWEsWWPq2nIcZg3y4F8AMeju87Sy8FqGCs2llau0oqJ6hSyrKUAhLQiu0w66VOnsrkoP7/7bt7Hh8vPH/xAhPFPRBTTBQ1pbeGTYBVRDCxAuEjiOGcL5cCCTJhRjQ8f/ECoVSQpkrlW7wHFCIciQQR9n3OpZzxAxHI7rRl4f7hHSOLWGpZKj/zinAgSg1maciU75eL9mDfR6nPo5S4osZl35CmLG2l94bvA4h/B7AKD3QqbFVzAvc1iDmvlanSl87DeUPN6FIRIDkqxsF6o6vimQymNTdBekI42lZM7IrzlqPBviNrB0m0Xa3RebLWZiqUgyJ4RG0Sc9MEfVrB446nMzxZKVVcEGjMY5SpkJ4EgQhPlu4yZxXX9aD1M/dtyoJzqqtrzU9d3xMpkKpYBjGXO5QityzC8/3vqxY42xpmSxF4ORXYAhJRSnopNadfIzGirM3X9QQImTUG7jtjKJd9Q1tjH2MSg0VQ6GKYdTKD7bKxjwLjTZiOAY4JrOvCu/utIkSiiAXJmERXmySDzOMNEGNE0OY1IEt5iAgjdsZl4Ptg3521TcBfa1+LFNyDYRX/EJOMwVYi91Klu6NS86hJ8tFHz3n35gH/dDB80K0VQJiDpg0iOK0wdse3Qe81hipRwGskvgWjJ30xbtbG27Pz8kVWPIzKdHeoeVpkbl1vEyNbFjDqWW4SpizdUJLd4PH/fUtGLxowkpGDh7NwR8ea0DXoa5+W/EVwyyREHUcGFSGkzt0nJ86vB3aj5MXxy45tZyTfQHsNrYNYrV82hAWRea9pHyCyoGksHwVf/3M/zt/47mf8t//gO/zTX/seL152Pnh+QkOhKa2XInh4xTOECImRt8nvvHrNs29+iz9194LTlz9Al0/4iT//t/hrr/4rPvsn3+Xf3hukcXt7y7scbOcLYobdPefXv/+a2//9M37hP1f+0EcL1msvHKbsOqAJXRwbyUbQgD0GlkZ62eorgbYBmghrEQ1W95/co64LYC3BjS3LPSISNJxVK6ooRWhNKzKJUtJf41e+GAXjTJcTaRhw2wqw332wWHsCrmOqlnMCzLUOK6roSgB6XCMFGqsI2ozz4wWeHATqnjdGuXQUKScFbktDNGcky6AyQ6IA6FB8eO2h6sSIOd+KjFOtmJiYUTcpQYzaD5o2sHJCYAioYzeNy2Vj9wu+j4p0eHIyGWRmXRetOaVmaETxUlEOHIFhrWIoIhy8nstEr0THdb+dbhKTuENqzy1hdzkdqJXTwtgnWzzV3YwxydZyTVGp8RWVJ8X508W8jiflOhFCxQ8l7x0ygooWmUrwayCXCfWsc43dkbozpEBvVmYEMwqoXvYoIhvq2Uznn48n3fRRR/3BdfQzRz9z9DNHP3P0M0c/c/QzRz9z9DNHP/PD1M8cLz0dddRRRx111FFHHXXUUUd9oaxENROcLiVtyeoEQ3GhrKW9lC4NZXfnsjlvHy54JDenlT7z3a0vqIJpKcKEYOzVlEYGgRBelsVjxjZsPqYamlLLWud0uoE2s9ZbxULYBDt3H9gEDiOuPufJPpxt33k8byzrys3dTakpMWiGtbLUj6hIim5K7Bvug/O249uOqvI4vMD0+bPWFlRLyRUkZkVaiCoprRracEaWkiiHM3YnxyB8lBJcBMxofUWtTaBZr3g+lg20TTXXAKnIhRQhxehLxQ1kOuIDf3wgx5nMxFXoGCKKUopytJSbYwzGNgo42/eK0LBSjF7Og7YYvTUezzun24XTuk4lWaF5JSYrBStaarzMAmWJAemAoGI4Ow/bxttXb7i9vaWpfoFsCNQaN+s650mbCtuaI+HO2DfOjw+TPBqQSqbw7O451qyiPrRAe/cvqKnSK2JBlJFe5xplfx1RqmgXQTTYtm2CSRVrsftgzP/WtI5L1wVXm+reUnFm8mTVraqodB4e33F7ewMkY4ypzNYpECuVskkBc0nQSno2Fbg6Ae5kXToZMEZw2yp2wM+DAtEbSie8wCWi1LCghAfSCvgOEqNAw0wlQ1lPK9amxXYyr9mE70XL3WACVDe9TyBfJiBe+jZThRTc4CosFKnIj+C9CrrWIFO9FqUiZExSgRnjUMBQTOeDAvFmHMNUH0+P88Kysv7zxNWZtBAuUxlIAU7DvVT5Ue4IU5w5gWNhRB3z2McTWTIvAaqguiBi9OYsNyf23Rnu7NvOslT8RGYp9jMqGsWa4WOwb4/ElUwzxUzYdiciaG0q2T0qwkQKsERrjVYMTK3TyARxcsQkFGsuI5PciALWltvOcCetFPJtqhGv8RojJzloOUHuUpun70XcqOPDSRM++ug53/3uK96dH1lvbhCZ6vCh9AYpDZVBEyet9g2iLOVNnBwKAcMDy+SjFyd+9wf3vL01nt/YVFNX7M+IABNaBtINw/ABvRXZpVlW8ZHBsjYk4OXLE/fvnHbbMKtzGsMZoTRX9nTwUtaGw1CtMbet1kcEGo62IihvXhThIjeGriAhpDaIraDpFJIo5aiOCXHOWad30D9F8x13n575xl/8Y3z7O2/55m++4ke+fMuf+ZMfc9NBJgjaurJ40cApgiesJOMm+Ve/9QNevvwNfvwbz1g++DPI3Y/xp3/2F/js1d/m7/zKPZ9dkibGcvecMT5nf7zHRLDnL/jlf/P7fPDLb/krf/Y5H318Q18N8XIRiIuRbRTJ4UHmztIbW3odk/O07kymOjUUWsLoiJaTyMxlKLcFSmleGH7FaXSFjCKyzKwIBECo+9yWMFIIbRO4rriA+iXlRsF24eJBNyvScI5/rbWri4MBOWM9Ap3KXUXx6XDADWyXjUzYx8Bj7lkTLEfqHms2HTMky33BS0VfayJRiqhWEbolewYZiucgshwzdL6wUH4SFRPjfqk5lYniT2SHqpMB7sHj5nRLzMp9Q6ReIPCxl/o6FMWeYhGuHIClVnSDgMdUeYdTHHmB/Sp1Lxau0Q9Fzlx/pmYkde+wZrUXebG5ySQSJYsMkCJ76xhzqsy/uArqb786HmQSqqjLdOV4735hUzVO1maedQNFi1KYjxd179AZfePhJDLvVzFvBxVV1NX+HXX4UUf9QXX0M0c/c/QzRz9z9DNHP3P0M0c/c/QzRz/zw9TPHC89HXXUUUcdddRRRx111FFHfaHKRn5aHltZmSeBtYb7VBJNxWOks3nyeBmcHzcQuL1ZWZcFFUO0oc1oqpzWBgSX81S8JtOSeKouMwgvy+MraGhq6LKyrmspB83QLNLi1BqZyfBR0EFWfEVkTvUdkMH54UxfTtze3tC1rKXVFFkNUvExyCgL5jFgDC9L5al83feN/XwhhiMZnPqCtWWqmgr80TZV1mKoCRE7+wgWKXvjEUGOgUdFCJSJsaB9oZ06ghVAA6UsFUFVJiFzjTQAzAoSiQk2IXWOUxEtgEjH0jC1UpTrVKVbHeM2FU7uo2ypAfGyvCfhtHTO542b0y29r0/2/pJZqtypxEpPWm+IGrnvlIotcU2QIiNi7Lz9wSvMZEZK2NPnqQjrsrAsC721wjyzwNEMJ8aObxv7Vpb6ZDAyaLawnBYgKypBkhw7THpBotTYkmVh76PAUJ2gqYiw7RfUlMv94xxrpc15uu8DiXwioFKVUC01oJRNP3N+Fkhf0Rt7QIxgsVLTjitZNYHgjKSbVhwE09J6AinXqI4C2ZOG8PbdO8QoRd4+ZtxG0lUhRv3unBsx7bNL9VmIkk3gRjJg3zGkHAxGuQ0kBbABpRbMUstJQpuEhchUE6dMIoEnNbC1XuSEZn0nBTgyybqMmNd6RnEo83Pm/nFVgiOMkUSzqSCvMYmIiqnQSf5Ird2yD8+yjL/ak0/VvEqdj8eMDxn7jGKQWhe9FUm57QhTafkEgNWxRYwifazO5/Z04tXlDSOXOveiOOq8IqY6MPAYAGzuKNBaR5jEl1DAviimsO9Bs1akqciMuTBUW42ZlCRStdMpgHHbLmhCZKk4Y2wQwd3pxOO5CMZyhK+1JdZKqT7t4QOjq0D43Nttjn/NbUby8u6Ode18/vpzPn72kuwgNs8wQU0gO7YYzZTGhQyB2ArsM0Wkoi0QePZMkNfO2wfn5W2fZFzFRogkvoG0jgygX5WTDdNELahFUs4PhGDrSrx9y35RVhXaKhVF5DA20JaQOxpKOymRiqfS7AbRUesmHI0iTtqLW87ff4csUir/3pHlQ8TuatwMJA2yxjoBpAMbmQMhELnB2sInf+g5f+ln/wjf/r03/OKvfI8vf3jDT/zYC5oNoKKL+qrFoRqEAS1Jcd5G8Ou//ts8++SGH/mTHyK3/zHLl/4E3/irP8cP3vxd/tFvbbx15SSGvLjl8fN3XB4fON3ekM8/5n/+zdc8fwF//k8LH7RejhoKaK2hEbU/7Vs5j0izUta2RDXoIgWMawBKmhGe0MqyX8SQEEICkYqCCBGGlCOFyqAZ5KjIl6ZF5oLjAq2sDnAa6IKPrdaYNjRAJNBVYINt2+p+kEVqIEqTRuRO4kQYbFQM0hWon88kzdokxLQU0jM2IqP24IquqdUbsRX5aeU8cn2oUaxIBE2glXsLjjXBR4HZZMzPrbgCxDBbCqhXKfeNuTdLOBmOksTcAyMmiRxBv76sIMyomVHAuGjt10BqQ7L2LPVSZofEJGrqRYHaY+c1ilKvX8/3GldVZEOSOaMYrsSPXcH7+RCY81+ySH33IlPr2aYGMCiyfd5ukOtukjL5nStBMfXQKZhTsSUoHvN7ZBJOUvc/JZ+eeXS+UFCvDhSh7vO+tUVUnMdRR/0H6uhnjn7m6GeOfuboZ45+5uhnjn7m6GeOfuaHqZ85Xno66qijjjrqqKOOOuqoo476QrnP5q/1cvfNmGBTNXJTj4OHs+3O4+NgRNCXTlvK4lzFaK1XY96MpRkRzuVyZoz6oGQqJLOslj2ylExTabr2jvYFOy2INsS0AF0RTktHBS7uNLQUQHlt8gu49AjeXTY4rfRlnU2yYPOzMspOuI7EEXd8gg0J6NLY953zdmaMHUmh9RWpLrcATDPMCmgfIiCOTZvzlLIylghkDCJGATOUdba1Xp+HPanTqv+WstEmIR1y9vACkgkZBfQXdse+n4nzeaosO63VMbXeSFW0d2zGLVy2C77vU9E5gQ6CcdnwfactxrYF/XRiOa2oGFBqXqSAAbIU8dlKxRle1t0qVwIpyRhs48K7t2/YL2eeP3tW46+l5jYV1t7pS0V8iAiWMCY4HGNn3zceL+cCNCf54wkffvycdV2eLLcHpdSPCDTlKYJCcbbzINPxcJo2Ehg+ijRQZbvsEwQFQxnDn2zklQIS1RSZsR6eQYQTHpiVol+01J73D+9Yll5rKIKMKKJm4hgx0SnLLAKDisWAwKQA91JvF8DycH6grWsB0J6M8JoHbcYyaM1hoaISVNuTok1F0JhxKPuFh8d7LjlomcgEjJigT+a074YnwKYUzxUHk/P4ZariAbbLji4n1IqY0azfM64flFMtPtVxMm3hr4ARV0Bogk0ZU3Fd61bkCnDVxpMwv6OIKr1Gq0RBRglP9ufJFcgrAudKWMS0RlcxBC+yoYZhHvT8rkhCnOEB4aAV4aIwictp9f5URZKoVBRJE3siVesLizAwc6wZrSsPD/dEfnkq/hKlk20FMya6W4pKFLXG0oNVkvO2c6kcFy7nhwIfE9IH4aVmv9rDJ2CmBRCq4dLoCmM/lxMFTswxaGakO33pfPLpB3z3u6/40R91ugQmrcYwB6Bl2S9ae8BUQodrkbNahI2VrJneFz56+YzXnw22D4R1revuMehmBMl5xCQclJTghJHN8ZCKrFGQ2JGm6IDnLzuvXm3k7Q3uwXoy8MQDfAuaWql5EUwCci+I0QTRE2M/4yOxBrnttGed199+ze3HKzfS6foZmo7YIxJvSLtD9GXN1Exgn5c9SBrSPkJOZ5YXGz/5tQs//zOf87f/3rf5J//8+3zwrPOlj1fEBEERS9oCsUE0JQg8GzeL8+5+51d+6TvcPf+IFz/5Aax/mGc//hf4K3/1u3z/7/wS3/w9uIRy007kLTy8+4zz4yPr3TMupxf8w3/+hg9uO1//WuP2ttbiasJZB6qTghTFd6eZl6uJlJtHs0ZryqIG5uxagG8OJbMhFMkoaUViihRpLkF6AcddlbRyTCFhaJFfmqAOjUCYDIn1ijWQQLTUyJbCbTdMYYwrcVZUoqQXSE3tEZE7ZDkElPK49qsrUSjaWRfhfH4sslGVEK/4oiwyJOfvpxfRQE6SGSbxECA1N0eWE4WZT5A/pgGIghThNXnMWntaLxDg87MAzaBL0ihl/Ii6Z+173YMelZaWAAAgAElEQVRVy83Ac95HY9T+bYaY0dLK1WO+/FD2NUAETsVqSbHMtGb1zDYJbLk+5fiMbcl6zlOVUpdnqdmZx4SCXRXS85kohHI1kZxEcp1n7beBU+4wV3V0PdDUtQukPkBzEjJRBMQkAGW6XzSpfVxn9FIRHfUyRMIMKqpnoC+6bxx11L+vjn7m6GeOfuboZ45+5uhnjn7m6GeOfuboZ36Y+pnjpaejjjrqqKOOOuqoo4466qgvlmSBLMOxXvELKXJ1H6+m1OGyBeeL4ymcTjcsvVStzZRl6Sy2ECTL2gh3LpcdH1Ndlvmk5vQMPMpiPyLpvdFa4+Z0wqyRoljr0xU+uTk1hGQfQSvD5VKrTiFPuhPhPG5BsxUV6CoF/E5QRHunAVdr/5hAZAGZBQ5vY+fx8ZFtq9Z0Pa2YdGJaXNNbCfcK9qfptfEXbJ5TZFYkRDjupfBVUdJW7Hp+ylR0xgQMC+hEO4wdySDVpjN2sQWRSYiQfiHPjzRT+rLWOGlBAkKBhKl1npd9Y2zbk+o0M9l8oF7jpyYMr4iGdVkxK6UwUqpojyJhSJ6UaO4DeA/+hgdEMnznsm28ff2G081NETwkjAGqiDVk7Sy9WvJBzjiPgOHEvjHGKLWvCCMd9+D2xUtON88QWxAtkLFlgU2ZOYGQvZTVHuRwXMr6HAqALvVy4/78iGoB4YiQ4YwrcGKGWqmlZRI4kOSYBMMkaDyKZBKHfdu4ffG8wBb3L8QbTCCcmn8mNWdLH6aYlGpardacZHIZe1n7TxQkYkZHCBUfkIXf6FTitdRyMPB8Ui8jgkSw71uRXNrwCDxzKo6LUMtCxYoQySy7c5ImBfw+KdU9iDGmstVBiiTRK3hUMruC2WQq8VSLeBMjx6X2kieioAAoUZnEkV7xKESLmHpS/4tMgipKcRml/FaZPwsvIqKEfNj8fVVjGqqXfftU/IkIZq2Iu0liVFTIvK5jZ99qH8FjEh1McB1UFR91ba7EY2s1l9fTiX3fSkmfE/xqjXVdOZ/PIMnD/QPnfeMka82RZmhbwEqlHTmeyB7BuQQsOokYSa4Ta9v3ArUkiX0QzdAsu35xQ+lFzFGESUrFwqTvRcxmAXaq035e4OMPX/A7v/1dHh4fub1bIXwCjZCxlZuClD58RDLFtEjMfUet9oN5/B8+73z/1SOv7y982pZy3UhlbMlyEnw4YZ0MxVqQMiZpXGvArLE3ZYlkMaM/Wzg/7Dw+jlLBes2n7VwKXluMRbVA6KHYMtX9rpiV0ns81h5hqujSaCfls+9f8P0N/c0Dy93C8vwO6Sfs9hPoDu3Lc6e/UHEbHWggJ6QHerPx/NPBT3/jJ/jXv/05v/hr3+eXv7XwM1//lBcvlMQxGvRBQ/C94pV6FFl+e6P84O0Dv/q//QY//eyOm6+s0H+Ej//U3+C/+P73+ewf/t/85uvERTktt+RpcH58ZD9fWG9ueO07f/ebb3j2zPjjP3bDunbUEmtCi+QUhqZgmmw+iRlNmgRrb9y2ihhyh8RrPYeyCaQaHnuRwTOiQUQLHG8BYuwRLJPIfxiBhkzS0EgLZJLkSuDacN6rbIvgq8eP1ou8vDyMIkgFjITsTwQq896dGTOWqXDzUimXWrn3epHg8Xx5Ou4Mr9iaGdFRbgjO0PdrCtF6cWHuQwS0ZjhChtI0cGAfTl7BeclJxgmSCqlzfKReJKDIswokUlITmxEMdU8a9Faq7lrzRQaMSARHrySC1H4vUXthnUfD1OtelALuTy4GIRXvIfPeWEx/7bttAv5RF6CIYjXUmcRsTneZYlLrT894B2Hev6hnIY354seVR6jnlHJ0URqlaI7gvdvBhP7zykJPYso9iqzRScLP8cgvfO98hLz+41FH/fvr6GeOfuboZ45+5uhnjn7m6GeOfuboZ45+5oeonzleejrqqKOOOuqoo4466qijjvpCmVkpbCgAP0WmqErwgN3h4Xxh34LeO3frUsq6DDKN9WZlXa2sjCc4m+5PXZ0gRANGAcruwTYKnWtdaa3RbCG1sbsjBmMPTIK7tRdYOQHrPZ197GVdnaUElSgQZH12x83SC7hUK+tmKetlnYrLiKhYhAAfUaCnCdvYuH84sz2eSUmWZSVVGeGAYO1q06w0E7Ys233JUq16BjljLUYMwgv4MlNojXZanmIRSphbwN41vz6hiJNIlrYUuDub8oHjuSN7IJcLag1rjd4bewR9Wo+LWRESw9nS8VGKvuHO2HfcC9wfmwNRFt5irDd3SOs0a9OO+T0wik6QI4Kx7wVsUpbj4QNIhgee8Pb1Z4g1rE/ls9oEkWG1Rk+dxEwpm3Mea8ROZqnkWy9FWiZoW3j+4UdTAQylgjf2GAU0iOBjL2A3k/CpavWsmIfwCZI7Ko2xbahMokGNlKsqrq6B6LS3n8ROKXZ5shiPbWMfjkoRVuvpxNLakxK6QHJ5Ut3V5yrSGhaB6FTzU4Owj4GPjdOivPn8ATF9+qwrxNPU6vtlBjnI/8feuz1bdl3nfb8x5pxr7X0ufQO6cWs0CYJ3EgJx4R0hAUgkLYAiJVkVR45VUuIkllMupcplPbiSf8F+SOXFVU5VLKkSxU9SibSoyFIkUhCIiwiQAEkAJEAADaDR6Nvp7nPZe60558jDmHs35LKcpCp5cGEN4ADd5+yz91pzzTnXHt+3v+9z23GCEsLKFt2VgqUBw4iSSyV0oamvK1Ub+ZILtOiD5ivOSm5WVsdWXc1mtTalndv5z0JEaYC8OCBojSBoTCCr6AczI0h0Bbtdw3YcM2oeCaEBYD7Z1i4FLWmi0SorEiJQcXcAF+8J5nkToKERZQ7UBQ1rAAvcip2gbf2pqymDtn3B1x1qhArWyDO17NdRZU041bafeZSItlgJKEGR7ASHNOXh6sihEZDDgjGP9J1DUrVm8sGeSwOD69RFBCuVkDpyKQxvIx7FVspzn7fKQB6X5FkilEInnascxR0uars2JddG/JS2pkFsZYdfqbUyn/Vsbc+5cG6HY0cOo0lpMC2YMVaXzvdamqpSKcUI5pErohGp2UkZYN4phw4FLlweOTwLbG4oRdzdQbISWqzPSCY0pb6V6pb6FSATSmI0IQRDLLF93Sbnz+yTZ3OGPcNmRsSF7HkolE4bqApS/brUCqLuumHBo0SISh0LG9fP2f/RJfYjpLGQlyPkTJjvuTuERNBNROYOAkuPNPJVMEwPQXcjYWvJ9TcPPPjA+3j9zT2e/N5b3HA4cucHT5ASHtWhQkx+P/JFLViNWKiU+cjLr7/F4ce+ywcfmNMf24B0lFP3/QIPXfxXXP7Lc5zZhyCVbmOToVbKsCCL0M83eP1q4Q8evcAvdddx643GbB6ciK0GloGyJvp9/wYrAVEHoQMe26LmBKaIodIYSdQJxNoUyLjbg62AdCJjzaRo9FbJ1jfFbMHaXqdtMUutVAlExFW0Zk7gSEFNkBQZU2J3ORAjHjlCA7TbSvbV57EWK2LUo3GkEX9CSImZKIvFklIyMThJCep7glV/X5Nzi9EB0+bM4Ow6RnXAv90TasloMCIe8+TLwtXdVkBrm3uqTr7iC02trveoiqAp+n6aXaU8jJnQ9pIKaFBqKdTsj6/Bv5eC+j6Ar9li1uZVdJLeZE0YqEJKHkFighMk7ZiR5nQiq/MCkYpGf3yuZTXUTriL72LuYCHXojC00d1t3FekDbiThdu9GCrSHFRcLe/mBT4vnIhuNwUauUT7neaU4c+hWHOLMantrjjVVH9zTf3M1M9M/czUz0z9zNTPTP3M1M9M/czUz7yT+hn9v3/IVFNNNdVUU0011VRTTTXVO6haY1vEFavWwK1SKsshc2VvYH80uo05/bxHQ0SCA/shRlKMdCkhIXrEw1gYc2EoI2MprbkVEGUomTEXhEpUodNIlAgYJTtwPORKHQdmMTQlc8WkAdzjiJWC5cw4LBmHgTEbs+1DbG5t0s826GZzQkp0fU83iwQFq9UB5TJ6RENtAKkYi7xkf2+P5f4+uRZijIiBFFdiSReRlCAk0IQQHGjDAURtXWbFIwSsZGiNroVAnM0JMbpNtK6IigriTXU2VyzmYWighTaLdxxwKQ7AleUSpBKSEpKQLbvaLYQWUbA+EAfdwFWOVsnVFbjkptmNyliF1PcOKJqDwqW4ItkQaCp1UW3AtFuDm7o1eG1RCtWMq7u7LBYL5vM5QQIiHhGiq3iFoFgQxjwy1gEZPY5DsBZBocSQfN7lSjXYPLzl6lkMC67srdJs7cvYyJ7qAEQ1RjOG7KTOmAslF3IupBRZHCwIoqg0UiBFB4PVAZraFGgNCcQwqvr3a63UUhjHjBWPQlnmzGw+I64iS1Tb9ZU1wRLULfSxpqYGV7LHhGpEzH8nhEgeja7viRodxJHgoE8MDnI2sK2KP38MwYV91Um9sR1jLtn/n42YEn4Zo5Nc7fxMlFKcFChW1qAR+NxEaIpuf21EXXGnwa+HrODvVkJT918jHVZ237LiRMyurTm4FvOwcjBgxQPJ6ilRc3BRjHV0hNWmOhdX3oEQNRA14eiVNDJphVu1McTXaYyxEVj+2hICIQRCi7MJIdHFhAYH3krOrvoVB/tDiMTQ6BHx8yo5U2oll0JtwL7ha9R5tohZ5WDvKntXL7F/9TLLvR2W+5fIwwHYKo7E40Kq+DnlXMCyK/clkGJi3ndoi3rJyyXkQsm+31QqHllQMRtRBhgXTgh4DsV6HlrNvpdEIcXIieuv4/z5SywWC0oxkAAETBUsIw1oFaSRPj4PSvVYGBEQNXA9Kce2ZxwcLNkbMsUczBcNlFqhVEJbE/6vUKxFF5i7AtSlu3HUYqDKTAPbG8KwdFXrciwMZgxLJ2T395YsF5lhqAyLynLwfawWJybDbIMqCVEgCjEmtm6Yc7AztPkp5CFTzcmbmheQd/BZVppS0xCJTiDIzGMhuhOk7S3edfsJ7v/sbZSy4JvfOcdr5642V5AKBEKAGJWoQgpKp5EuKH0QtM/84Idv8vpT36fs/QhhgW7ezB0PfpkvfmjO4dTs+kXYmG+jceaOF6WSNg/x/EXhDx+7xBvnliyWrsbVqO3eIKQk9BH6FJ2Eie4WQZu/6xIHjX1tK0EhavQYCQvX4FlzEtXXrlBHIYkQpRCloFqJtDUrlSqFKhm1QlAjIC0OJ3j0SewIQZj1wkaKDHlFkZqD2KwI+QyWsZrXx70CjUXafmiurO/7Hk2RXB3wX5GYqzXbeD9/++Poua+O5pLi5xeaWDxQRNEY0bCKNJC/RrJKi1GQlVobRcSJ99U+pwhRlS7FtStEzoVhmSnZ3xO06Uls71msAfwxhRa95c9BdUJY1GNP/Bw8xmYcR3dzsRXZ4m8KqvmHGKz6/TKoeLRVu8eHNZFq7R6AE8YFv4ep+LYAPqfbea3IWGvON6ubg8rK/aKprhufvSJ3xHwuBYS3zUKcyPU/ZXPXHhN3FQjX7jpTTfXvr6mfmfqZqZ+Z+pmpn5n6mamfmfoZpn5m6mfeOf3M9KGnqaaaaqqppppqqqmmmmqqt1UtRoYGrrkF8VgqewcDly/vsVwOzFJHFxNBEykmoka070gzB16Wi8ze3gH7u/v+/8WSsamZS6mUMbM/DCyXowO7QYldQmOHBCVoQqMSopJEmaembjNXBFmFnEeKuUo6l0Kp2UFtcYDUxuLxA8WBhRBcXVOLYdmPYVgODMNIzq4UHGtlsb9k/+CAbJV56gghNRDBiDF6M926VsWVwCuA1tXZDvKXUsh5pJbsTXBIaLfhoBKtd65GbbEHOKZGLZWxVkQqFh0wy5jbm1eDUiiLfYKAdJ2rhYpHEgRRV2avxqK4EnKl+BxKJS9H6pAZlktydnVcRZBZj4qfm5RCqcWBiRUAY4ai1GqEmBwINydYDPPIEDOWZcnVnR22Nuau5G2AsivLhNR1SAzEGNtzOAEylsyYM8MwsBxHVxwPC3IeCLGj6zebctqVmeAxALEWpI5gmVUMQSkVaWreaq5gq4ZbYBcHeyUlNCQ0OnCzArui6BoUX6+JFhNgtbbX93HJxcHLFANBHcxV1facDjDVlbW4Q9MI4sB8A0AxV51VCmhlWGZA6VTXkQw0IGsN7ptfj9AU/64ua9ehVLSRerkUloPb10f18ZboJA1NtatN7esjKkQRV75ZU87BX1PTGbRoFdp5OblWcBVkNZ8LJoppxMTjAa6BRe31tEVYYJQGEFl7rfq2OeexMQ0EExDLSM2s6EaP1OAa4N1+dxwGSi1NjV2gqfJopJvbya++qismG+YkIlg1H4/QETQwDgOyAt4b+KgNb/Qom6bd1uAKUDFK8XVotVCKH3+MPhDjYmxgvSuUQ1CwQi6jr9kYCSm2586NHAkEcTA0hEBMqSnDlVKX5DqSqWQrjG3cSh4Ry+SaycVh6mxO6lnOlDK6urIRXClGDh2Zo1q5cvWAsUW+CO76HvG5Us3QEKgWqeZAKDjRaSKU4tfVDDb7xEYfubw7rI9dVBvxmYGRQIXSgN4YqKptS6yMDFQxavVoGqmBje2exeKAsRjDCGKu7hxd1MxikVkcDAzLwrjM5KVH8tRiFDIaA1YDohGrhdmhRDdThmVpZLTB0qh5H9s7Sx3fwvJ50BkmyecCTkI6WTCHdANhdoLZ0W3u+NgpPnHHjbx+9iqPf3eHy/tOYoo5naXBAd0QjBArIRkpVja7gOnIU0+/ws6Pvksd3gAbSMc/zKd/5kE+d2rGZpIWuyTMtzaQoAzLBWaZ+dZRvvda5pvf2eHchQXLwS33NQRCioQuEFJHSh0p9CSDvgvufhL9nua7VSU1NW6IlZQCXa/0vfjzaGzErweuqBiiEXdigJCMoIVAcx5o5LViBPFYkyBOuHiuQMBwx4NqBQG6JGzGwFjNo5bMSQZkFZNQMCnXCEnze+Aq9iOqoGLEIPQpETQy5EJuDhnVPNYCVtErzdFAQKiE4Hs44vtkEF0TwW23JIS43jNW8PYqLslWX4Smio6o+peE6O4XKnR9pEsdKSYASiP7VsptbeNFqdQyUqkEFfqu89gLdH1/WrmE+IcOWL8H8B06O92yimBA3GlmzL6vAtZmwOoe4OfpxImv+9L26EpevQ9qpLVTwxVR1rFU/oEDW48R0oh4POKhtjc/QWS9f680zys1/eoepau92YxqUGyC9Kf6D9fUz0z9zNTPTP3M1M9M/czUz0z9zNTPTP3MO6mfmTqkqaaaaqqppppqqqmmmmqqt1XG1gpYUWHMmb39fS5f3WPMmVkX6VL76hy816B0MdCp2wQPw5JxHCglk/OSkgfy6MrUmiuLYaAM2YHVLpFS10C34OBYF5jPevq+82iJFDDcHtgwrBYHcw3KODCOA7kYXT9jo0/MopIacKhiRJGmrPRmOZeRkpuWsoHXCIxjZjxYohU2+hmh6xqIoGtVakDWja1ZbU3zSklcsWxQHewstUAISIjofOZAIE5s1JqbihL/e4u5qGJorUhUjymoFamFXCqWK+NygZVCDIFO3Dbfits/5+LgYG0gsjVVUzEHCsacycPY1NEOvJkBIa7Bj6iuDl2BDE4AOEBQcvZJEsLKIdz/2kDXoRauXtohaCCmDhCCCF0KhC7Sd50D6SF6zEgDSUp1QmPMmaGMDkbUpkQXZfvwNilqU6sptTi5QiMN/NqCGOScHZSt2ZVvpTaBcyV0iYPFADH6ucZAl5LbbKfooJI6WYA0dZc4HFhzoQyjq06rudV1Usax0KVG1uDRCCtAXHDwKagiEsgiFAKVgGrnz18KZRywcSRW2Ns/cIV2ccjFal3bdit6LW2Ba2o8bSr4BrMgDRIqtZDHQpjNXdW6AoBwwNeMtW0++PM6QNTQ6wZ2CfhcECGXStTUxqg9vni0SzA/BgeBHFCSmllBSIgrD51gaICcVdQa8GYrZaKTAtoOdsyZXN2lYWUr7uNQ/TqoOFFWV3vE25SEcm2N1trIIxFyWxO5VEojWpL6+izmlEe1QhFravUMLfYm57JWwAvytvVbqRXG0aNlcm5q6pKp1UixkapRnbxpZEuXEjF4jItVc+B+XCA2IjVjdfA53MaomhMzq3ldqu9hYzHUEqVANP/ZmiyrlTwuyMMBZYWpFsjFj7lC28uNjfmM48cPs3PlCrWaK5gFqolb2YfQwD5FomCqGAE0MbY9ttRKrlAaoXL99TPOXx7YXRZSUlIDP30bMJ81tSk1zRXXsQuIrIDMEVMoo5AVTJRD25HlwQAYVQphruRcyW0vwaCMxdW3wdWYpVTK0iglkC1iVTEUSuDwzXPG/dooEX8eCFhewnAFGd6CfBFsbORSxlqUjUhCdBvpbiTOD3HsxDaf/9z7uf3WQzzz43P8+MWrLAZ38pDqcQoxuTo6hEoQiCEyi4HDcyEvd/nuo89x8MZjkM8hUtm6/bM8+NN3ceeJwEwhSKCLidnGFlacGENAto/w+Isjjz97md3LC1eiB3eliDHSRSVG6BsR33XQz5wUDRE6rfTJmHXG1ryyuRHY6oV5jMyDMkuKRiEG/wpBIRhRm2o3JUop7sIQmmoaJUp0siC0CBoxNFQneFZxCRZJ6vejoEKfhHlY7TEVKdaU+as4GIMyUsuCWobm5NH8XFZ7sKqP7WxG6jrf3qrPK2tOByuS1a1B/PulEYKre5F/UsGdIoRGcqvfRwCkEculNOK2XCPafc0ENPaoOrAv7QYaJPg9Moo7h4jv/3l0B45i1vZfJx4tj/7eApAoxC62D1eE9fuV1ZfHtfh7k/I2dbXRwHf1BJqas78nsuquESGiwZ9v5VBRm9oaszV5bRX/QIH5+hLzG7Fqi1fCF/nKF0BoiuvVPcf8TrCWP9N+ZO0CNurBqI0kgKjqxOq/++Z1qqn+nZr6mamfmfqZqZ/xb0z9zNTPTP3M1M9M/czUz7wz+pn4/8NzTjXVVFNNNdVUU0011VRT/Udb0hRPlcKwLCwWA/v7SxTo55G+75hvbNDPIuNyQBBScmvicRgZh0rO2dWIrROsxRtIRMjmgLCoRxdoTMSkBFOIga7vCTFSBKQWwrrZxBtY3Dq+ZH+d5XIEEWb9jPmsd/C877zzbUrVKA3krZmaWzTCqrFHKbUyDpnFwQHZCv18jnZdA2YNkcQKdaii14DUFWArbmuuTRmdy0DNozfYQQnzeWu4Hcx01VHFGmCp1sB4QLJQxJXOWCFXV1ZWM2zIkAdCCNRSWBZXTGqXqAphpWLCNbi1Ne55HMnjSFm4HXythYCiIWAmpOAW+THGNQAIbmet0YHQkjO5FpIKkgtEB6wlOHlQMHZ3d8nLJZtbW67iJTSbfbcTd5WTkztWPJJipWQN4oJnbaqu8WDEqjHb2mR7a4vSZkEMSg2C5YzWwYmnurJnd0V6QBjcUZ5cCoFAEGnAaCX0XVMHq6tL14q2a9ENMTmRUCWQ8+DRClZRUYqNqAbEjCwjMblCTlRdCYgrRP1U/DuIIOIEl6FIhytBa3V//GpoCiwWAxYFNXEAs5qDVuqkQLXqSjh1giem6D+vTopZiwKouWBlhFxJW+laJII1QB0cjGoW9VFWxJLPIGRlze0gfK3V58FYmqrUr5c01iI0wqhWv1JRo9uHm1uNV2eufAzMQVKPBCgem9LUekWuqd9EHJCjNjJgRUqsAaU2x3F1sZ+UEaMwlrZvNFB9RYCUWhhrJrZzslqcAcEfUAuUFrswWkVaXIpkEIIDz3WkVCElBXGLcgSPQBAnL0pxonAYbA2yyQqk7RPjMIIJGhzMx9oYi0E2TAtFIin6eKx+XsdMqb42RF0dWPNInyCPA103a2DcaoSAXAlBKSKQa1NBK2bZCTbUMVjJRKv0XeDE8WO88MJrLIYlfUzU4DFBoRoSKj4LHawzcQV6wJAqrpAN1sbdieSjG4mXqZw/P3Do1o5ZJxQr5FKwKoi2NVyMUoAQGBnoJGJWnAyrgAYkVKREDh/aZH/3ClaFECOxS9iQsSIUnFyKIozDkn7D93NpxKMmV26WvCQIaBL6kNg8NLB/eUm8vicWw8aCdRtYHqh6BTjdwGAFChIO+zxfKTt1A52foD+84F2njvHgZ0/yv/3BczzyzBtcdyJy63ElaUCiEIpgUahZKVqw4ArREgJI5c1LO3z/W9/jzi9t0l//SSRcx/V3/S0evniBy3/yI17Y8WiWmDo2Njc52N1jyZJ+NmcvbvIHj55m5/IO7z21RT9TFN/7a4FcjP3lyJkzu+zsjWzOnRzOZXQwuThRU2nuBAWGIowZv1820Lnm5shgrlzPGGNxdW8134PHYhQLWLFGYLtyPjdnCOj9fthIzACMdYlZoVbfwxdDZciQYlMyq2C2aG4pvk9V8+ghjzUIThia70nWbtkVYxxHd8doe43HOPn60rVrQlt3CIKunRP8PN0q4+2uIWZOxFkj6GnguBDahxCaQ0hbkyvizvfcRmwY16JkSvH3F00dHRpJztv2si7EdazP6phKdtJvdVzgH0jwe7qTrF3fMZ/PwSpDHVkMgxMmDD4W4kR5lZV7hzWyw/nbPIJobYRsi4Fo5y1rYN9J+9rOAZqhiUlTQV8jGpyAtPauxdp7Kj8vsRXp0859nSn013iFqab699bUz0z9zNTPTP3M1M9M/czUz0z9zNTPTP3MO6mfmT70NNVUU0011VRTTTXVVFNN9fbSyFhGxrGwfzCwWCwBoesSXdeR0ow+RqiueJOGDuYxs1wM5OzNr6isFbaikVwLYx4ppTRFkaugNQZUItqFFgmRHJwtmVQcZXDr4Ba7YGC1MCyW7C8XFIyN2ZzZrCelRAy6bipFQM3IOZNLRk2REMm4YjEPBbPCsFyyd3WXMo508xkhRagFQ7DgcJuam6JXasteXzWrHp+QS0ZspVzKDWBWQtcTJKLmZECt10BLEUWseByDBtcyRX89o1BywUwcR8kjdXngpIk0dbaxVheHGAi4gtzUVc1+PG4tnbOrl22tWjgAACAASURBVMbqERluNW90sxmgdCERY2yqp+q22jE4CFpXkQbe8Fdp14FVsw+LxZL9nSvM5jOPGkC9yW+gCxLWAHRtQJ2oYisiqPrzjQh5WCJixK7n8JFjhNRTx0LsOoK2KIVGKpiI28Rj5JIBB59SDA76xIBUIXWB3f19NAVidBVZ13Wu6hNBNbiST6PD5ivVuDmALRYaoGuE0FFr4WB/j35rwwmFtg5WESr+q05ooQEVh8Dc1r4wLguhjWcu2ZWt40iuI7G6XXhuAA24Uq3U0oB9J4QqhmqgNpW/rcEW10AbQIAuNPClAe9+MZv6u6yUqQ3otEZcYRT1nzuY7jRWHgfm3QYmlZWyT2hRJLAGrx2MjVhTE6u0VblS1Ik/tpbi61VWekbWx1lWky667fyKzCnVYTWail2Bqtf2hxA7VxNS19blfQNxiwpSPe5B5doeZdUoUnD+xfcnYSDn0efUkBnHzNtjJHJtCsCG2sUQicFjU3IDIVeK7IaFUdvc3N1bUqyiEjEzhlKIAYIFaqmohPU6Dyt3Bg1UGXw/EAcuC4URiCEg40ixTAydI3QqPnelKRyDz+letY3/ytpeqZYboSVAYXPegwhXr15ha94hVZ3UsUYUiDkxE5Jfw5zJUgkYwa6RlcUq0YQ+RW6+bosz53e58ViiP5RI6q+9HDPzrsMomMX1dc5FoI2nqivuncMUug1/3OEjPXt7GdGEFEVTIA+QEIZlJUQnqcdFdV5Ym5uHVUSKx/dUQ3uhjrBxpOfgtQUH+yNJO6oVNLtK3upI6MHkNaS/Ceo+SMSkQ4gNlFWIh9HN65kfW/CB99/EXR+6yF8+fZFvP3WZw/dtcIiRqAbqIK8GI2RDo5KtICZYSmzMKy+8eJ5DTzzFe+87TDh0J5oO8+77HuZnL/6vXP72W7y+ryQRtJ+Ra2Xc32OQBRLgrd3MHz95gXOXd7n9XTdhjAwHu2xsX8fulR329/c4d+6AjYOBWRdInYPMLpA1X5+yAqZjI8ALSM/moSOcO/8GpamG3cYfignUyvah69gfluzvXeH4DTdy5eJlDhYLKD6nfV06+bV5aE5IHTsXL2IIxQSrA+AOCMWKkxTZ2N+vvjZlRaz78x09ej2L5cDe3q6TQOLROWtw+W2EtOFOBjlnDh06REqRSzsXGxnQ9k3Did418X4NBDeuEQV9P+PokWMcHBwQY+TcuXMefwO87eMNnDhxgr39PfYPDvwnjQi1au3xrlq21T+1RVetyIgRbrrpJg729rmyexVEGQe/b7hDg+/xpfqcZkXKtvM9ceJ6di5f5mCx5KYbb+YrX36YjfkG33v2GR5/4glO3nIzP3zuOU7eeivDcsnrZ970+7dc27cw0BC5+cYbefW109xyy81cuHiRG04c5/Rrr1FLQUPg1pMnee2N1yml0ZXtvYoJbc/yPVNV+NjH7mRra4tXT5/mJz952Qe+jQ1ve5+lq++tbTymTz1N9f+gpn5m6memfmbqZ6Z+Zupnpn5m6memfmbqZ3jn9DP6//kzTjXVVFNNNdVUU0011VRT/UdcOY/sL5ZcvrpguRwICn2X6LpICIkQI4bbJa+a71oKpbjKrVqmVv/zkDMFbzAPFgcMLqkhhUiXEiF2xBiRLmHRowKiOAmQsHWDCg4MjtUYxsxysWSxXFAFtjc32dqYOUEQI2igaiCoQqkMg1tE1wpDzhwcLNjbP2C5HCi5cLB/wO7uLmUc6Hs/nmoOfKsEek0kwQE3bYpOVtqkilghj0tqKc1S2UHFKkrse2LoG7HhtupVjCLWAG48KqKBuC7sdOjVVsrr0lRX4xIVmvW2N94aArHviDGtLZZVXHlEAyVLrZRiWGnqQmgRDJVZP6dLiY0+sTF3VXnQpigL4mpcvDkPqnR9jzYgWWpr4ouxGEeuXLxECtGvp+vJHQhR8WiRpng2c/xyVTFEQpeQGPx8xK3tLUTSfGMdjYCGpoBTHxdWNtKlKVLFrcIr1NKsu4uD9qYwmFGyIeYq3aiRruvo+xn9xibdxhZpYxPteoidv1YDcSREJCWqBEwCowaGmilUZrNZGxMamObgrMSAaSDEFp1gRq5ut53HA0rxWA4agNz1HQfLAjEiSCNO2pxQbWo1H1MxsBaDQQPn2h99bCpNeZdBgusNq8cfUJvisZFBTfzXIk4aBtNAP8yVxLVFJ9S21kNI4LPcz1fAgeZ2XUwwEcpKKdyUraxAtgYO+j5iRFV/zaa+1vbfFSCk4mtCzMmkulLNybWViHhUQTUhqJNb1ggsVz77egmqdDE1EN5BQT/H8tfGQ9o8dPVyoNbiMQ3VYwbMqqsQy0ol6QRVCIIGB9pDaPNdnLAMwRX6UYQyjK4qNbePF67ZrktT0a8WSjGfU5WAxhkSUztuMOeHUFPACUDflxVt2nahuPpXFAk0ULKRYL7bgAUfX/PHdSlx5MgWF89e9Nc3Wx+Tg6WVIE3JHWO7/kYuxjKPmClUXc9HVbjuyIyxCud2luztDQy5kjTRq0cEGE1trw40Y4rzX23OaGAF82pQJAYOXTcnaGHvoLI3DuTqxIBEaa4BiiYl58I4NHXrynFAIXTRp0dpLhBVOXSiY7hSXY27O7K8dIXxyh7lyi5ldwdbnIXhPOgmZkuE1XgWPC8gommbbusw1504zKfvvY3bbtrgmZ+c46kfXWJvGCjLguUC4tE/KUKnQq+BEJWUlHmEOBv53nfPcvaZ71IPfkLlAN26lY8+8EV+5gMbHEuVoIEkic3ZJtr3lCFTh0xIicuj8sOfDNzx6V/g/R+5jxB7Pv3g32F7+7C7QIgQgji5JUqMwcmqIEgIbe92Is7NRoTtI9t85oGHWnROm1caUJSIECXw8U9/nq/8wi9z/fHj/Np/80943+3vIYkhoTlkiKBiiAp33XUP933ugTXhJyttf9tHPHpGierOFWXlFLK6Iwjce8+9/NQdH/H53uIcVkC5rfe2tr4ADYpG5fMP3M8nPvnJ9h6h7WdroN7Xue+wbRsRJ/e1kfW3nryVX/7lX+b48eMcP3E9qs3NYfUZgrZH3nzLLWxvbTeFcW3xF+IkkQ+iR1NJA/xF19EQtDF++Gcf4s6f+ik/j6aqrtU/8FDy2NwrQJorh7++ExVf/epXueWWmxExvvzQQ9xyy0lue89tHL/uen7lP/97PPzww7z39tv5jX/0j3j3u9/t4+QbOrU2xbPAyZM38/f/q/+SzY05/+2v/zrHjh3l9ttvX+/FW9vb/Be/9mtsbW2vifIV3L8mLdr3ur7j1//BP+Azn/40/91v/AanTp1aDdvqEwnrP67uHWLmRLP43Jhqqv9QTf3M1M9M/czUz0z9zNTPTP3M1M9M/czUz7yT+pnJ6WmqqaaaaqqppppqqqmmmuptdfXggMVioORKDJGUhBg6QoyklOhSQqSubZppAKKVQq3FVaZRsVqdOMgjw+D25TFFj38IkRATEhISDdFAn5RZCOu8eVk1wWbk4nbwtVTKOLIcB0yFbj5ntrlBUlc3rkCqkJRcskcOALka43KgjoVslWKFccjkccky++P6vkNj9NevhRAiMYbWiLpNd13hoXgD7dbauQESkMuI4M1r6OZoSBSB2MBI2vlIQxsalu8NsGrztDeoTY1EU4WNC1L0eIIQO0wMEyM2YqRTpeCEQGgEglVrMuxKUHHAugEswziSNjaYz+cey9FFiplHZwRlrE5qQG3KzgKqqPMWlAbmkjPLMXN1Z4c6DmxsbqzB1xADVaSZxst63AoQVNGYvOEXIQhIigQNLBw1peZMStFfS4zQpfX1qbh6t1h1JStCzq7Gr2MhhkCx2tThldh37F3dR2qhiBGrg7AlZx+jUtxiPjc1vZjPPxzkwdz2X0OgmFGWA8NioO9nxBAdtBcaseRnWs0VfK5MdWBEzK3JVyqzYkB15asC+3v7pN6JGsOVz0FAmnq3WFPbrUBsEaw0e3vPS6GaOKkiSimCJlezur8ATbEuPrerA2rVfH4GaLETrhb1uVkbYOuAmTSAVlVdAa2KNDt8w0E8tL3aGnxv1vDikHVtk0FEKObr3xo6bysVvrpyvkpdk2fOSZk/RpUoHlFQrLY51lSaZETaHDUn9UzcCt5Bf6UWB9bGcSDUwGgC4m4BAiBOXqgENChmfn3HXAjqJIwJrjqmNFIvOOAaO4bmYlBrpVZXDK7OSRoBerBcMJtFZhqJKbjThFhbH8GBe43rfdBQRCOiGWRwUDZ2lFKoFgli1LEgCarURlhWYkgO/gNIpJbR1fDq5JDSwFRcoSkmJI2cOH6IHz33KnuLka6fU80V8MUgWsGq0sWAiZJTxIalP0+BGsxV/FbJZmg1Zr1y/EjPxb3C4UMV0YIgdDE2Yq+p6xsguYqSqEKLJDAqK3IMQhIgcfjYjPPnDoiyiValnzmZGJNHILgLg49N7VYkqUAJaDJCCtSxoF1AO6HvIv32Aft7mRSdtKIq1ik1L5ESsfEcEjdB51BH0IDv2gFIoHN0fozNY3u8+z2F+z614K1vPMej3z3Lke2OD59KdLVgyV0ONAlZKlrM3T3ECMGY98ru3pKnH3uRTx3e5Oj759C/m+7GO/jMA29w4fI3+T9fruzXQNTA1nyb3XyZ4WDXY3/mc+rGBkdveD/h+Al+8NSfM5tvEfsZd3/2IQ4dPsXLzz/B8Rtv4eKF09x06/t56QeP86G7fwaNiZefe5rbPngv4/KAJ//yj7j1PR/mpne9D6vKHfd8hg/d8Qlef+UllsOC2993B88//zSPP/LHdLOOuz7+OU7ccAu33fZBjh49zi/98t8ndjP+9Btf42P3fpYTN97E955+gg/fcSe33fY+zp55neMnbuKWW2/jz//s3/L+972fp55+gnvu+STPPvM0n3/gC7z11nmef+GHpDRDVDj/1lmee/4HTvh2PSrwxS/+Le79+CeJMfHqq6/wh3/4h3zlK18hhMjXv/41PvvZ+7jp5pt44oknuOtjd3Ps6FHOnj3Le29/LydPnuRP/uRP+ehHP8Kjjz7Kpz71KZ78qyf56le+yiunT3Pl8hX29/c5dGibl156iZIzm5ubHDp0iFOnTnHXx+7i0Ue/zb333suFCxf4+Cc+wQ9/8By7e7tYLTz00EMcOXqUP/o//og77/wY33rkL7j/c58jxsTJk7fwrW99izs++lHm8zl/9ud/Rt/P+PSnPkWtlcViSUwvY6Vy6tZT/N2/+/d49bVXeP6553jooYd57ofPceHCeR746Z+m7zpOn36N3/pXv8POlUtszDdJqUckcPLkSX77d36bkydP8tMPPMhtt93Gj1/8MV/64pe44YYb2dzc5Bd//uf56Ic/wl/85SPc9u7bOHXqFC/95CdcuHCee++5h1/71V/l6NGj9Knj5M238PF77uGBBx7g9dff4N3vehe/+Y//MY9++zHOnDnDz335Yc68cYbnX3ieL37hi/z4xRf5rd/6LVSEt86d41/8y3/Jr/7Kr/Ce97yHX/qlv831x67j8See4PDhQ/z5t77F/Z/7HPPZjHe/+92IKo899hi/9/u/T1nlXkw11d9QUz8z9TNTPzP1M1M/M/UzUz8z9TNTPzP1M++kfmb60NNUU0011VRTTTXVVFNNNdXbav/qASLQJ1e5alRC7Ehdou87uhQoRbBaGn7oZEBtNsRN78gwZkqzXA7qiqsu9WhIpOQq2KKCEOikshFiIxpcObSyNC6lUlZKouLRDagyn83ZmG/Qheh28GYUmvopZ6pAiqEpUTOLMoJVSnFb9zJmxnFEqKTOiQsTB1lDiK6YCw4MImGt7FQagF5d2aZ4TMQ4jk1yBdLPCBpdeRcEreagNQ6yi7j9vIOu1TW+YoRrgjBsMEwKjEu6FJAQCOJETakjYjjp0hRCYk0M3BSzAowlOwgYIwGHr4K54qqbbxCi+rlVf2zXJ0pTugYJgKu5RR0UDqoOeqtSqkdsXLl6hd1LO2xsb6LB7c1D8ngPMQdpNURCiH5yqkjsUHU7+1wqIQRSl6C4pX0uwnzzEKnrXS2mioaEKySdiKoltxnrc5FSGUtBgpJxkJymvEOFPI7EoK44VqVYgWWmSItxiJGQEl3XN9VbcDvwalgZUXxsbRyJGAe10M8PIwhVm/5spQAHxJQYexd41ZWa1O3UtRFJ1kDtlDpKMWrFrd3Rpng2kvha0dhUodaAeHMCh7Vi2q+5hJX6z8c3pM6Bflmp0x2EhpWCd6W+07VS2VkIa8ftOkEaEbiOjKiN/KpOarlKsZEXtWkLtSnzTNbKOhrx4VM9IKa+RvSamnBltS7SANr2XCKNAGuiaSXSZOJOxBTfL1yJG1vsjDSAvynpq7sW0BTaJdc2F/06lZxJKa0jS0IMHn+Dg+55zISuESzNiv0adZgJQQiirg7HyaGSCzHE5tJQGlkgLIYluc6pRI8j0bRWUq6ugQ9KQKWAOBnhNIOriUUNqxFTV0KXkj3aoer6HExqU+3Szlew7NwXVCcI13MyYloJHRw5tMHmZs+Vizsc2d5upKZgok7S1YqU7OPU9ZQ6YmPGxMnaGJttvhi5+jy96fo5z718hSv7c9QKy+XI1tbcSSsrfr4WG0lWiSFQqZgEd94IAtmV2WKK1cDGxow+HFBq8Q24QujE7yNiaJE14VsHCF2LERhAxO83JuYxObNA2S9sn5ix8+qC5UElHIpudW+KpITQCIHlOWR2A+D3QnQGzBECFgLSKWl7j0NHFnzoAzdw18uX+NO/+gnf/KvXODx7D6dunKEZJ2CjEC2QrZAEaoakkXksyDxzae8qT/3Fc3xmu2d2skPjLWy//34e/PwZzu2/wFNnK0MNxBjY3NxksTigZCOo8FN33sWPX3yFo4d7Dh87iZmxdegoH/zIZ3n5Ry/wobs+x5unf8iDX/6veeVH3+V9H/kMVy69yZFjN/O+Oz7BYm+PCxfe4BOf/zk2t47w6J/+Hh+48zPc+8kHuHL1Mnd/8vNcuXKRZ59+kqs7l1xRjPL0k9/iAx+5mxee+y7veu+H2NjY5NLOBe574AvcedcneO6Hz7Kzc5HXXn2ZxcE+Fy9e4Ge+9HM8+sif8+DPfIFhGPnCiS9z5Mhh5v2c0y+/xEfvvJvlYp/3vv+D9P2c3/3d32a1ZdGIwltPnWJ3b5fj1x/n1lOn+MVf/NuoekTLfff9J9x///1873vf4+KFC7x2+lV+8tKLLA4W3HnnnTzyyCM8/PBDmMHx48dJKXHs2HW8/vpr3HPXXbz66mluvvlmtre3+ef//J8xm/WIeFTDLbec5IYbbuS2227n9OlX+cIXvsDFizt86Utf5Mknn+SWm2/myJHD7O3t8uWHv8x8Y84zzz7L3XffQ1Dh97/2NVLfs7m5xaPf/jZf+uKXOHToEN/4xjf4+Z//eV5++eW1Uvnj936cM2+8zh994xv8w1//h7zw3PPcc/fdnHnzDD956SU+/alPYWZ84EPv4/EnHvf3FU2ZvBYUm/Hm2bPElPja17+23sWef/4FfvM3/wmnXz3Nwz/7EP1sxte+/jW++pWv8rv/++/y8isv8/Vv/Bs+/JEPs7G5wR0/9VN89KN38M1vfZMf/OD73P2xj/HHf/xv+c/+zn/K7u4ey+WSz372Mxw/fj07OzucP3+eECOIcvt73sN//0//KfN+zsuvvMqRI0d48aWX+PCHPsTx49fz7LPPcu899zIsl1y6dIlhGHng/vt55JFHePPsW/9v3tpO9Q6sqZ+Z+pmpn5n6mamfmfqZqZ+Z+pmpn5n6mXdSPzPF20011VRTTTXVVFNNNdVUU72t3Aq8I6VIioEUerq+p+t6UuhcedksiFeRD7lkt2guhVIyw+Bq6DFnJCgxdXT9jJh6uhjRlFCN9BJJGF1MDDmzyJk8jpBtDWqBKxvrmBmXA6rKbD5ntrFBasBzbmRCQ+XcttmxIvKYGRZLZMzeIAM5F1dTqpG6roHRbmYdRNEYXZVprrZ2+2JrIJmDjVYr1Qq5FvLoVvBoQMIGIcwgRlQCVFeTWjEsO9haSmZldezO+O3INFBVyKWSa2FcHBCa3bpqoO8CYpWkSozpWrffLO3NHCitZn5dDAeXm220iVFiYOPoMfrZjNj1rnRXoQsBNUgh0GtERIgxkbpECv4Y0xUSDYgw5JGrO5cInRNKADEosxQd3AZScMtxP1cHKSKuPMZcZSoC42LB8mDBYrkkxsTG4cOENEO6GSH2gFLb+NVxgJyR4pbfVoorlksBbWrYWrAx0/UdechsbW+yeWiL+cYGsUsoMIwjQylkM0KIzGIiBqUiZKDmAjlj1ed1HZZYyVgZSSGRuujq7ApUt1MPGoiihJhc0YlRrFBocQwK2iVSjC16Q0ldYndvH5KuFcjFiismY6DvIiEEorhSNKgTCdWskUrminETSptTrv6EoLFxV4YgiAaquVuAigPcsmIfGgC1ioawFhsQxEmiRSlNvc8Kum8sWvt9rAHytTkAODGlLc5CrHFtKyYMafyF+jGsECwVaGQEtoqI8GgKQYhOo4DWZtQeAKWYMbbrJRpQTagGNHRuvV5AzPeS0JTlokIIft3MPA4HPFLErDabdh/DcRzWKu9iK+eG4oQK144/pkhI0ZXyquQxU3Ihj8Ufp0LXBfJy9GEvTWlNaTEfsmInm20+zfHA17qI+b4anHidzzcQArntLVKdWnFgPvj5tP2hGmsiRaqs7ek1+LCj4nPGYN713HDjMS5f2CGX3FTbhojHe2SMRV5gdaBWQ2OHhASx9wgVFURd+QtOwsySsrkpXN1dUqpRMhzsjViprvKvGaOgoSn/TSiiFGeFoCojMI6VPBqFihVh+1jPsLdEgo8ZUgjSIiwUrAjVfIzMfM0UoBZfc4pg2fcT6SoJYet6Je9Xarsf2ZB9v6mj72I2YsN5IIPtNzKuNNIqIGELnV/H7Ohhrrt+k3s+dpJTJ7Z55cwuf/HUW1y44jFCUgpSjZAqGowQICpEVVJQ+hg43MMbZy/xwmMvkHeexepFJM644e6H+MLdx3nX9ohaQSXQdR3dRg9WCcDdd93J5pHDhG6LIyc+RKlKrYp2PaKBV370Ha7svEXqZ+xevURMHbs757GaUQ0M44Ir599kvrEBYly5cr6Rz4kYO5757mMsFwveOvsqzzz9OONoUIxnnn6C//Gf/Q9cvHieGCJXr+5y+cIFxsU+v/ev/xduvOFm3v+BDzMsFxzs71NHjzQ4e+5NYow8/dTj3Hff/Xz/e09jVM6cOc3B/h6vv/oTbr7pFg4dOsQrr77a7oMrlaxvMgf7++ztXWWxOGBra4vLly9z5coVFosDfud3fodbbrmF9773vSwWC3Z3d0GExWLJa6+9Dijf+c53ePDBB3n88ceJMfL662+wXA68+uor3HDDCTY2Nrl8+Uq7jTsBe3Cwz4sv/ohPfOKTPPnkk8xmM/q+55FH/oJaCzEGdnZ2OHPmTd+1QiCo76TV4Kmnvsuzz36fYRh47bXTHo8UI2+9dY5q7oTiBKO7LLx59iwXL14ihsjp06+yHJaIKpcvX2G5XHL1yhVmfd/uv6t92jeqGCMhRpaLBcMwcOniJfb399m9epXd3V1iI+X/8tFHWSwXnD17luVySSmFxXLBxYsX1u9hRCClyMWLF7h8+TJjzrz++msI4u8fusRjjz3GG2fOcOHiBb72b77OMA6ICC+//DLPPPMMO5d3uHLlMnu7u+zuXm0fgFCPGsEJ+r39Pc68eYZaK12X1q8/1VR/U039zNTPTP3M1M/4tJr6mamfmfqZqZ+Z+pmpn3ln9DOT09NUU0011VRTTTXVVFNNNdXbKqVECEqKyYHJrmPedYTgGuCSM+MwsFx6Q1+sglWstrgGM3IuiEHXfj92vduhJ7esJiqxAVErxWXJTcXbFJQqrh40KsMyM4wjMQRmWxuk1BGjA9m5ZAjNJt2MKEBQSqkMeWCxv8swZjAHj5a5NAWd0XUzQuxcFVoLptIIjICYW89XEcSEWA0V1vEIuWQHjnJ2W+IQvHkPHRUlCK7YFRibxb2Kg3IiroT2c42omasNTbDiYGbJA2IVDckV1KoM40hQjwtYqSuDqANsODgrGLlWcimYBMqYoQxINUYLdPNNpLoatVqlloqUQlX1rPuCH4dCERycqw420a6xkxiVnYs71FyYH950wDVEJCbGWhtoLiQNDhCrIsFt5s0qNTtwHhDKeEAeR4pVlsuBzaPXUcuAmgONOVRkHBFp8SDjgJXRMdNaWI5LaqmuQB+zg73VFa8FV4NubM5IKTZSoVJLJqSEIfRdIja1fjWjSkSrE1+5OrBbc6aW7ArXZWFzvoHiALPSlMkiTT0OlOqANOJKVVbkla7VtJZHB1Ix9g4O6GZzQlN+qylhNiMFJ63AGEtpKmOlaHH1rSk1V2p1hXkIrlqtViEIoq6Kriug1qypw31tBQ3+WANWESywFvsG8WiHakYdR6KGpnL2mIyVErwtZVejC21MFFN3J6BWx3hF/ppCz3B1d7VVfIO1qIuVWtvW+F/sOhTHiktpP6OgWLsWgoZIJlHMqQQRIbSwiKAtjqJFhSBOUPh1CZTiYHfOtgbPy5ixWknRVdTWInCCXju2EAOqgRiCK9DVQbiVK8RiOZBrcceCNl4hBvJy4cejhpXcnCLaufM2EtEc4FeNPpTiJAjWjkEhJEVyouYluY7EkDA1ipR2cYKTNVEhV48aUUEl4ip7J5ZabofvXcD11x3i9dM77O7u03UBtQh1JA+DR1WEgJUlEiImgdDNsTxg6jEfUVkTpRWhBjh2dIOXX73KeDQQI4wZ9haVeVol4hhWnSQYizs9xOBkh7zNmcFM0ApVlL7vqbJg/2AgHVLyIISZEMTn67IaDJmUG2EWKiKJEXXCLhjVRmqB0PdYLvTbc+rCwczYuWq9jCOEBHsX2+N2/ZrHI5jtA5tAxuroREE8TNw8wsaRHFkKGQAAEPZJREFUq9x662E++bFbOf9nP+b7L53l8Hbg/o+fYLvvWjQOxE6oYyPKYqGOUKISu8wm8NyPznHkuu9z66euQzcSOj/OB+7/Wb5w+V+z/509Xj9wMnCeemI3Qxp5+j/9i/+ZjY2eL33u0/z4pdPMN/6v9u7ux5KjvOP4t6q6T59z5mV39oW1jZ01CXZkkSgWMjERkRHESpRAIgGJRPAFRCFwE/6icEeEFEUJQfIGJUFCgigvlgnY8a4Xe9fgnfXO7OzMznk/3V1dVbmoniU3IEUiSkb8PtJe7p6zZ7r7TNVTv+c5z+23f8DOxUt4P+HiQ4/x8re/xsOP/jI3Xv933vfM8wxHY0LXcfedt/Ch4eDOLUab2/zuJ7/A/p0f8qM3XuE9TzxNfaZmNjmmaz3WgHWW5XJGUy+pZxPmx4fs393j197/Gzz08Lv51j98nWeefQ7nDG29ol7OmRUFx5Mjjo/u8alPfobvfOeb3HjjOt/7/ku8+ur3ufTwI3zsD/6I1WLJjbfe5M03r1GvaurVjBQTy8WC5XKJNYbZ9JgQgRTxXcfNmzd4/vnfxhjH17/+dzz33HNYa1kulwC0bcvu7tt0neeFF17gypUrXL16lZdeepnr13+AMYaPf/zjHB3d59q1azzzzK+zWMz51Kf+kJs3b2CMYTgccv/+fa5evcrly+/h5s23ePnl/+Dpp5/mkUce4ejoiN3dXZ599oM8+eST/O3X/oaPfOSj/MlnP8fxZMJqvcb3BcrD+/ep65ajwyNu797mc5/9LMNBxcbGmF/51fextbXJwcEBn/jEJ7n8+OO8dvUan/70H3Nr9xa7u7eYzxfcfucd7h8esVwuAJhMjmnbGozh+6+8whe/+EVSSnz1q1+lGg6p65oEHE8mLJdLrl+/zuPveZz7x0fcu3eXuq7Z27vDfD5nf28f33quXb/OMx/4AAf37rF76xYvfOYzvPzd73Lv3kH+TG/f5o033+DDH/4wj7z73Vy7do3VatV39MgdMO7s7XHlG9/g4sWLtG3LQ5ce5on3Psl6tWQ2n/H5P/s89w4OmEyn7O3vs1wu2dvfp239jxtSiPwEWs9oPaP1jNYzWs9oPQNaz2g9o/WM1jM/P+sZk37GJ6mMMYqaiIiIiMj/WykllQnkp/roR38nFaWjqkY51VJYrHUkEjEE6rrNSb8Ycrt4ur4Ne8LHQBfzdmRhc0KrGA4xRdEncUqcMSSbGJgSQoclt8SPKeVtJJtTjpbcKryuV3jvKaohw/GYalBgTfFgk853HaScMrIxEU0kGpvHPbQtbVP3ScCET3mzN6VAVVWUZQUGur61PYXrRx/kYkCiT0+mRK4aBOgCMXXEGHPaMHhwA5Jx2HKAMUUuiNh0smuaU94xkbPCufBAnxZNMeESUBhCghghtGuSX1OVI2xZ5Lb9fYq16FOc1tqTXda+hX8kxIDvcroyhdgnZiPOQNs0VONNisEwJ4BLm1OkIWL7eLJ1jsLlDG2KCVMW/XiO1DdAN9S+hZiYzucc3d1nYzyiLAd5g9c5rCsoLCRjqQZ9oalwuT2/szhjabuchIydJ8VElyKhbWm8xw4rtrfPk8cW5PRwMaj6EFRu1981S3zXYpwlNG0eBeE9OAshEZ0h+chwVLFcNVgL49EQWxZ5U7WLfTI+b0qPhyOKsswp1gQJBzEnoX0IpL4w4WzesF+sGrbPbuNckTcvY/9vYSnKId7kVLDpU5ixqylNn1ruN+ljyqMlTGHpQuDw3oTh5jhvePeJaVdVlNZhTB5jErq8W57TsjZvtJwUyjAU1mJNIsWArxsaHxmNhrndfZ/+ts7hCpcT1Slv5OZkObh00r4/j6oIKUDIRbwuRebHU8ZnthmO8vssbJHHOvTbICebIcZZSutyArocQNdB53Oqvf9sSHkzejWfEwcDCpcT5ZGU7x/y2IEY873rDLiyT5MTCanIo0tSwKWY76UUKQqLXy9oPWxsbuTCS/+sKAeDnOgNERMjMXZ0ncc6k8cOBE/bNJTViBQ7Ygis1rmANZtNaLzh4sVzDKucEI0x9iNuLGVp2RiPwBrqdYtva+q6xtqC1WrNaDTAYliuV6zXa9q2YTFvuPyLl9ncGDEoSmwx6MdC5ESxwWH7rgRES1m43I0hNBACMUVCzGMqTOoIXQveU4w2GI1GeTO8/7yctXkHvnB0HYDrE7gWZyIpRrB5BIhNJ6MzOkKKXP/BbYrRJo//0qNU5ZAUPKFdUQ1KrCuJxuZRMKYEPNGvsMlTpEDpyM/NPCOEFCOewBs/mjEeFjx2seofrYnSJqqhoyorjHMYHNFYYuqonKUqIoXrCzsxj00oXMLaSEgdzWrFYhrYubTN0FmG4xJXnIzsgOQSBse4Aps63MCCHeEKgyvAFoHUNNjS5XFAPnfQYA3DS2Mw+bo0g1HfIKLLBQM7xI5+gWQHYM9iTU7Zp1RjU0P0+3TTXaZ7B7x944i//+br/Ntr+4yrkt//zcs8/dQ5BoUjkYs4oQPvA11I1D7RdeQUeUjM1obSVHzo+ac499SzmOpxjN1mfeslvvW1F3nx9YaJd6yWC+688zaNbxlVA1b1OnfCKBylX/HUY0PObkaqYouNTUPhEiE0lOWQ9WrGaHwWgM4HmqbGe98XXxPjzS0WixnrZcNo+xxtl2iWS9qmpe7WkAxVNcL7gG9rhuMNVnVDORiBKZgeH7K5uUlRDphNZ9iiJJmC9WrNYFCxsbXJ4eEhMSQ2trc4nk4xCbbPnqWta3Z2zvGnX/hz/vqv/pJXX/kPQjS4ckSKkbZds7l1Bh8CVVnRdR2resV4vIkxBfP5nI2NTarRiOnkmLIYAInVasVoNGI0GrF/cJcUYGfnLNPpFEhcunSJ5XLF+fPn+dKXvsRXvvIVFssle3v7DAYlrfekFGnqlvFoxHw+oywHnDt/jife+wQf+9jv8eUv/wW3b99mUA24f/+I0XiDczvnWa3XgGE6X2CNZbwxYjFfcubMFsvFgvPnz9N1nta3pL77wWK24OzOOUIITI7vc/HCBWbzGcbm74WyKIkx4tv8986cOctqtab1Hussly6+C+89h4eHbG9vM5/PMcYwGAxYLpeMRiMuXLhAXa/pOs96XTMej5kvlg+S5ptbW/n73TmOj4+59K53sVrXQGI2nbK5scliueDCxYsYY5jOZsQY+/9vHjm1vb3JdDZnPB7TtA0bozEbG2PapqFuGnbOnmU2n4MxNHWNtZZqUDGZTYkxcrh/V2sa+Ym0ntF6RusZrWe0ntF6RusZrWe0ntF65udpPaNOTyIiIiIiIv9NMRxQlgOq4ZCqyMnCRMJ7z3rdEnwg9am6LgVCyCnCtm/Jf5IWLQcDimqIKQcUZUHlckvvNtJv5vuccrS2T+UlHAVd3lqkaVpm0zk+dgyGI0bDYd7oioZkIsHkpLPB9G3ic7vxNnV0PicxTUpAogsdMfbjAlJiWFUU5bBPHUaSycnj1CcpY5/WtOSNR2KiMIkuhpzI60df5MRyQUiWoqzAWIq+NXWKOQlrY95OivRpRGNym3/IG43GEMnvI/b/l9h5RsMxzpXYwpJSyp+VMbmY0adpzUlo1CTo29eHkN8bMfRFikSIkYTJm/Q5n4jvYg5BWte3bc8b+DH16UPnSLHfSDa5bX8XcmGoC5HJ0X3KsqAoB0BOPRuT05UBqArHwDpwJ+WFHGQKKWBipOt8TqP3idwYAiEmNre2sP1sgJOkuXUFKcT8c+x8blNuDLZP8bZEGBSUxhIL+iRuonSWtm0pSsfat7jY5c8uJJzNScuc/M1pW3MyssBALuZYjEvE1pOMwThLE7o8oqK0uNSnoG3fSr8oSNWAIkLqrxMTfE6FGkcKOb2cr9VIwDB0BfPpDDMoqAYDbMoFKmMT9mSEBOZBK/98aSaCSxQuj0UoTZE3/UMkdBFroOtT3CHG3GnAOqyzuXN6v6FOMtgEgfz+87iKfN3H/gUT0KWTay1hyyL/nLF0mDzO4yQZnvhxwtkYUgg47wmpAyDSvyZ9EDulB2MjiAlc6q8U+vsi5YRjF6Gw2AjJRgJ9cYI8KgEcyUA05Hut87QBRrnUkItp1kLK3Q1sPzLEGoe1kZPyhrM52R5il5PwMRL68SquKHJCt8zXI8QH4zJSCAQCbWPBOLou0HWRLiRszF0ZfBuwhcU6R+kcqSyIxtN1+YKLmAdJbvpkeCKPQyiLitZHUlGSosWmfK8YE4k+0LR1nz4GQiA1NeNhBTi6vquBTblLQ5mK3C0gBqzNoyFwqf8cDa60xDbkazblsRHndra49c59mkceonQd+AYbE8a4vqCUR5XgDN7nn0ck0mEoCPn+eBC3Twxs4tKFEfcOWkIasFEF6sbTRcBDMoFh/3NyLvX3WaBLebSEMeBcX8CkI4SEMQWDYYmZtEynK9ge4Zr8+aWYOwRYVzCoDCkV5KqAAdfRBZOLFORW+7FOGDz9kIj8XO4Kio3BSW0rX7fBY5PBDBKpm2PKMxCWUF7CuDEmzklhBm4DN95h80LNw+uOZ99/md07U94+WvGv39vn4YsjHr2UOy3ka9RRuny/lKkvDHYGYyKbw8hkVvO9f7nJB7eGbD5qSMMnGT72AT70W3e5O/s2/3wrsba5sOzKguVyBQG8aeligV80/OeNNe99rGDLznFuK48acommnpOA1eKY0Pn8/e5zp4ncJaNj0izo+tEqi8ndPGajyyMNnHXEGGnqOndcMLBaLQkx0XlPihZjLcvFksKt8/dz2xGTB5No25r14ZrUp2fn0ykW6IDj4wkpJXbOW/7pH6/w1o3XcSY/D32zpO0Cxjhm0yk4S7Nek1IufM2ms9zxxFhWqzXrugESTVP3XQcs63qdiymFI5A4Pj7un5dw9+5dMPDQQ5d48cUXee21Vwn9w39dG2IM/fgSmC1mGHLiem9/j52ds1y5coUf/uiHeN+yWOVE9mq1ZLVaYnAP7vuIYT5rScB0MiGRXzsR+6/z3JkF4PDoqO/gkNg/OHjQaeLkfVhj8peZgcl01v+Gl38femfvzoNpCsezSe5IkQxdriCyXq/Z3X2771KR/0xmLca6B5v2i8UCl08EgDXsHxzkZ3rMpx2msykxJe70r2X6p7s1Jj+vY+R4OsNgWCyX+R73nsl00j8pyK/Vy48ow3q97n+nUeZYfjqtZ7Se0XoGtJ7RekbrGa1ntJ7RekbrmZ+f9czPvNOTiIiIiIiIiIiIiIiIiIiIiIjI/yb7f/0GRERERERERERERERERERERERE/id06ElERERERERERERERERERERERE4VHXoSEREREREREREREREREREREZFTRYeeRERERERERERERERERERERETkVNGhJxEREREREREREREREREREREROVV06ElERERERERERERERERERERERE4VHXoSEREREREREREREREREREREZFTRYeeRERERERERERERERERERERETkVNGhJxEREREREREREREREREREREROVV06ElERERERERERERERERERERERE4VHXoSEREREREREREREREREREREZFTRYeeRERERERERERERERERERERETkVNGhJxEREREREREREREREREREREROVV06ElERERERERERERERERERERERE4VHXoSEREREREREREREREREREREZFTRYeeRERERERERERERERERERERETkVNGhJxEREREREREREREREREREREROVV06ElERERERERERERERERERERERE4VHXoSEREREREREREREREREREREZFT5b8A/1LdfbJRvLsAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ },
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Run inpainting\n",
+ "100% 1/1 [00:01<00:00, 1.73s/it]\n"
+ ]
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAANFCAYAAAAtb6ZBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAewgAAHsIBbtB1PgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9e7htS1bQ9xtVc6219z6ve/tN03Q3+E4wYhDECNigGPmiKEpEAipiUFQ0xkd8YALy+QBfia98PgMhCuEVv7RGCSK2RptIaxABRZGmeTTQj9v33Hv2a605q0b+qBpVtdY559597j33ntMyfv2dvmuvVbNmzapRo0aNGlVTVBXHcRzHcRzHcRzHcRzHuSrhURfAcRzHcRzHcRzHcRzH+eDCHUqO4ziO4ziO4ziO4zjOA+EOJcdxHMdxHMdxHMdxHOeBcIeS4ziO4ziO4ziO4ziO80C4Q8lxHMdxHMdxHMdxHMd5INyh5DiO4ziO4ziO4ziO4zwQ7lByHMdxHMdxHMdxHMdxHgh3KDmO4ziO4ziO4ziO4zgPhDuUHMdxHMdxHMdxHMdxnAfCHUqO4ziO4ziO4ziO4zjOA+EOJcdxHMdxHMdxHMdxHOeBcIeS4ziO4ziO4ziO4ziO80C4Q8lxHMdxHMdxHMdxHMd5INyh5DiO4ziO4ziO4ziO4zwQ7lByHMdxHMdxHMdxHMdxHgh3KDmO4ziO4ziO4ziO4zgPhDuUHMdxHMdxHMdxHMdxnAfCHUqO4ziO4ziO4ziO4zjOA+EOJcdxHMdxHMdxHMdxHOeBcIeS4ziO41RE5F0iovXfmx91eR43PpjqR0S+ZCjrlzzq8jiPByLylkEu3vaoy+M4juM4H8y4Q8lxHMdxHMdxHMdxHMd5INyh5DiO4zjOY41HGzkvN4O86aMui+M4juM8rrhDyXEcx3Ecx3Ecx3Ecx3kgpkddAMdxHMd5XFDVNz/qMjzOfDDVj6p+CfAlj7gYjuM4juM4/8HiEUqO4ziO4ziO4ziO4zjOA+EOJcdxHMdxHMdxHMdxHOeBcIeS4ziO41RE5F3DYbxvvk+atw1p3lK/e4WI/D4ReYeIvF9ELkTknSLy10XkI69w368c8vzc+t0ra57fLiLvq3l+v4j8FRH52Vd8niAinyAiXyoi3ywiPyQi5yKyFZEfE5FvFZEvEpFXPY71Y3kBXzx8/cXjgcnDv688uPZ5D/IWkc+91/Ui8uki8rdrfW1F5L21/j5HROQqdVXzeVJE/pCI/HMReVpETkXk34rIXxORjxnSPbQDoO/1TCISReTXiMj/Wev9ov7+K+6Tx8eIyP8oIv+yyt5ORH5cRP5Rbccnr1iWV4nI7xGRbxGRHxWRSxGZReS2iHyPiHyDiPwuEfnw+1x/V7940Gd/EETkLfdqh/vI2337gOM4juP8RMHPUHIcx3GcF4GI/Hzga4EPPfjpw+u/Xy8iv0VV/+oD5PnzgG8AXn/w00fUf58nIn+knhN0vzxWwA/co1zG6+q/TwL+gIh8gar+jauW8aq8FPXzUiEit4CvAj7t4KdXA59S/322iPxKVb14nrw+Cfga4LUHP/3U+u83iMiXquoffiiFv385Xk+p/4+/Qtongb8K/Kp7/Pza+u8Tgd8vIp+vqt/wHHn9cuArgHs5n27Vf/9RvdfvAt7wfOVzHMdxHOfxwh1KjuM4jvPC+UjgjwPXgfcC/w/wFMV58snAMRCBvyQi36Wq/+8V8nwT8GcoE/FT4FuB91CcS58EnNQ8v1hEgqr+D/fJJ9KdOKfA9wDvBJ4FVpQJ/McBN4FrwP8mIrOqfu2Vn/75ebH187eA7wY+FrCInncA336Pe12lbp+LCfhG4BcCO+DtwPcDR8AnAG+s6X4JpX1+y/0yEpGPA/4Opa0AtJb7e4A15Xl+CvAlIvL+F1nu52IDvBX4aGChP9MG+E8Pyvw6iqz9jOHr7wG+kyI/r6HUwyuBJ4CvE5Ffq6p/8/CmIvJzKA5RszMvKO3zLmBLkbmfBPxMeh09Drwb+Iv1828bvv+L90gLpS85juM4zk9Y3KHkOI7jOC+cP0UZS3838OdUdbEfROTDgL9LcaoE4I9RnCjPxx+kOB3+JvBbVbVNWmsEyV8DfmX96otE5JtU9e33yCdTIkS+CvinqjofJhCRDfA7atkmimPn/1LV0yuU8yq8qPpR1T9b034J3aH0d58rMutF8BkUR8vfAz5fVd89lHWiOMZ+T/3qN4vIl6vquw4zEZEjSp2bo+QHgM9U1XccpPvVlPb50w/5OUY+g1L//wj43MPy1vZHRALw1XRn0rcDX6Cq33GQ/gj4fZQtiAL8ZRF5u6r+wMF9v4huY34jpT6fPixcze+TuTsi7JGgqt8HfCGAiPy24fsvfGSFchzHcZzHGD9DyXEcx3FeOBuK0+fPjM4SAFX9YeCzKNEpAG8RkQ+5Qp5riqPl143OpJrn08BnAm+rXwXgy+6ViaruVPXzVPVt93Im1TRbVf2TwB+qXz0B/NorlPGqvBT181KxoURQfdroTAKoZf/vKFFGUJwpn3mffD6XEn0EcA58yqEzqeb5dcDn1Pu+VEzAdwGfei/nl6pu68fPpkS/QYkkesuhM6mmv6xb9L60fnWNUi+HfEL975biyLrLmTTk93dV9Quu+DyO4ziO4zxGuEPJcRzHcV4436Wqf+V+P6rqd7PvhPg5V8hTgd+hqvk+eS6UqCLjE0Tkp12xvPfjK4bPv+hF5jXyUtTPS8nvPHR8Gaqq7NfTx94nj984fP6fVPX773czVf1bwD984FI+GL/v+c57opxhZHzBFdJ/GXC7fv6sGuE0crP+9/whRrs5juM4jvOY4VveHMdxHOeF8/VXSPMddOfDm6+Q/u3P5YQAUNXvEpHvAOxtb58E/Nv7pa8T/o8GPopydtJNyjlK9+KjrlDGq/JS1M9LxTtV9f97njRj1M6bD38UkRvsn010lUPO/wY9Ouhh8zTwzc+VoEaFWZv/a1X9zufLVFUvReTbgE+lHK79kcC/GpL8MOXw+CdF5DMf8rlcjuM4juM8JrhDyXEcx3FeON91hTRPDZ9v3jdV59uueO9vozuUfva9EtSzf34H8N9y9bdoveqK6a7CS1E/LxUPo6z/CT36+1nge6+Q5z+7QpoXyr9U1fQ8aX7e8PlYRP7CFfP+ScPnD2PfofR1wO+vn79GRD6T8qa5f6iq771i/o7jOI7jPOa4Q8lxHMdxXjjPXCHNeH7R/aKCRn7oivce07368Md64PJbgV98xfyMGw+Y/rl4KernpeJhlHVshx+p2+Sejx+5QpoXyvuukOb1w+cPZ//tZlflyYO//wjwFspbBAX49PoPEfk+yllV/wD426p65wXcz3Ecx3GcxwA/Q8lxHMdxXjhXcRg8KOdXTHc2fL6XE+iL6c4kpUSI/GrKm7xuAWtVFfs3XCc8PF6K+nmpeBhlvT58vmo7vpRnDD3fWUhQZOHFsrdAqapnwC8Afi/wroO0PwX4PMpbDH9cRP6EiBw/hDI4juM4jvMy4xFKjuM4jvN4cfL8SYDyhi1jL8qjRif99uGrz1XVr7pfRvXsH+fFMzqHXkg7PgpGx+RbVfWXP4xMVXUH/CkR+dOUrYCfCPxnlDfAfWhNdkJxOn2iiHzSFQ4Dfz58odRxHMdxXkZ84HUcx3Gcx4s3XjHdhw2f33/w28fSo2W+57mcSZU3XfGeznMztsOH3jfVPlc92+ql4j3D59c97My18J2q+udV9bNU9Q2Ug8vHN+b9XO691W7cYniVRdCHEW3lOI7jOM4VcYeS4ziO4zxefNwV042HKR++nWw8F+cqh01/4hXv+aj4YNk696+AXD/fEpGffoVrPvb5k7ykjIeCf5SIvOQRU6r6Har6ecBfG77+tHskfXb4/MorZP0zX1TBHMdxHMd5INyh5DiO4ziPFz9fRD78uRKIyH/M/uvp33aQJA+fn3PrlYgE4Dc9SAEfAZfD50d5cPdzoqrPAt8xfPXZV7jsc16i4lwJVX0n8G/qn2vgN76Mt3/r8Pm19/j9XcPnj3qujETkCPhlD6FMRpM5EXlsZc5xHMdxHiXuUHIcx3GcxwsB/qyI3PNwbBGJwJ8bvvonqnr4evp3Dp9/gYg811ag3wv8rBdU0pePp4bPV91K9qj4X4bPv/O5nIMi8mnAL3zpi/S8fPnw+Y+IyJUjfUTkdQd/b0Tk+v3SHzBu23zvPX4fo6d+qYi86jny+lLguX5/UD6YZM5xHMdxHgnuUHIcx3Gcx4sdJdLiKw8PyxaRJ4GvAT65fqXAH7hHHt8BvLt+vgV8vYiM2+Bs4v+lwJexfzDz48h3D59/8fM4yB41XwH8+/r5OvAtIvLRh4lE5DOArwa2L2PZ7sffAL61fr4B/BMR+c0isr5XYhG5KSKfLSJvA/78wc8fAvywiPwpEfk597uhiHwK8IeHr/7ePZK9A/j++vk68DW1D4z5nIjIn6Q4Rh9mXY4y918+xHwdx3Ec5z8Y/C1vjuM4jvN48ceB/wb4dcCni8i3UqI3XkdxJI1n3PxxVf0nhxmoahaR/54eLfMpwL8TkbcDP0g5j+YtgE3OfxPlNe6PK98O/DAlouVDgO8VkW+mHIJt5yu9Q1W/9hGVr6GqFyLyucDfB46BjwDeISL/DPjXlG1lHwv81HrJFwJ/wS5/eUtbb6qaRORXU8r8s4GbwF8C/oSIfBvFOZko8vLTgJ9BtyG/8R5ZPgH8buB3i8gH6A7OS+A1lLe+fcSQ/t8Bf/Ye5VIR+QPA19WvfhHwAyLyDyht/zrK+V9PAD8K/EXgj76AKrgX3wj85/Xzl4vIpwLfw77T6o+q6tMP6X6O4ziO80GHO5Qcx3Ec5/HiXcB/AXwDxXlyr9e4J+DLVPUP3S8TVf0KEfnJwB+sX12jOJZGLoHfqapfLSKPrUOpOsh+K2WSv6Y4En7dQbL/FXjkDiUAVf2ndTvbVwOvpmxj/Dj2D1zPlG1af4XuUBoPoX5ZUdWnROTnA38G+K8pNuJNulPlXlwA/+Lgu5nidNnUv1/Bc2/rexvwWap6zyg5Vf16EfliejTTLeBXHiT7t8CvAj7mOe7zoHwl5XyrT6S03yfVfyN/AXCHkuM4jvMTFncoOY7jOM5jhqq+XUR+FiVy6NOBN1O2/PwoZWvS/6yqh292u1c+XyQif48SBfPxFOfGHeBHgG8C/rqqft9L8hAPGVX9O3UL1W+jPMsbKXVyz7OmHjWq+i31LW9fCPwKSkTOihKp84+Bv6yq7xCR8TDq2y9/STuqegH8FhH5cooz5ZMpkVSvpByT8AzlfK7vBP4B8E31IPIxj3eLyCvrtZ8AfDTwkymyt6bI3w9StrN9rap+yxXK9aUi8veB317zfA3F+fbvgf+dIsenIvLQHEqqOovIL6IcUv6rgI+kOMfuuQ3QcRzHcX4iIqofLG/idRzHcZz/MBGRrwR+ff3zN6jqVz660jgvJ/UsoW+uf36Tqn7qoyyP4ziO4zjOVfFDuR3HcRzHcR4dnzl8fscjK4XjOI7jOM4D4g4lx3Ecx3GcR4CI/Fz2z4L66kdVFsdxHMdxnAfFHUqO4ziO4zgPERF5o4h8vYh8vIjcdcaTiEQR+Rzg/6acqwTwVlX93pe1oI7jOI7jOC8CP5TbcRzHcRzn4RKAz6j/3isi/wL4Mcrb+V4L/DzKIdXGjwFf8HIX0nEcx3Ec58XgDiXHcRzHcZyXjtcAz3XQ9j8HPkNVf+xlKo/jOI7jOM5DwR1KjuM4juM4DxFVfVc9H+mXAR8HvAF4FfAEcAq8B/g24P9Q1b/9yArqOI7jOI7zIhBVfdRlcBzHcRzHcRzHcRzHcT6I8EO5HcdxHMdxHMdxHMdxnAfCHUqO4ziO4ziO4ziO4zjOA+EOJcdxHMdxHMdxHMdxHOeBcIeS4ziO4ziO4ziO4ziO80C4Q8lxHMdxHMdxHMdxHMd5INyh5DiO4ziO4ziO4ziO4zwQ7lByHMdxHMdxHMdxHMdxHgh3KDmO4ziO4ziO4ziO4zgPxPSwM/yqt/4jVVWiRDLavldVQgiQlSBCFsg5lx9FWrogJW39C1QQiWRVMrm4wFRAIUhGUCYJaA6oCEoGMhABARFEAmhGNSECWZUgASUTEBBQFAioylhqkABEBAXNIEpACVrupJSyhxBQUim7CDCRVVCBQC7Frs9TLlkod63lVEFEEdXyeKpMIaK1ZDr6/jQhQciAZBCRkk4oz5MVCYKqlU4QSrqkudVvjBHVjKKkmioiCIGcFZFS1qyJYG1klSO0nEXL9TlAyFLKUMuDlaneAy3pER3yyYhKkZlc6qzcKpeq1FpF7VkziJDQUloVBGGpVS+klj1dtEoLSwRVVErdqJb6Fal1hLCQy3MNl0t9fku/h2pvd5GSVvdT5Sq2UxV5E4MideW+1tbj/eye4zMYgUjWXMsPgrbrcr3G2i3ljNS/syq5tktCiSIs2q8VYFLrv0oQav9RUq2UKQQ0ZUSky7nW5ygViwgE1dKNCKj0ctkzqioSQ6nXoS3aw2p/Hgm0dgtIvUaG/KqMUXt/kCpzRU4QCKm0Uw6BrEosnZ8pBJIupY/k+lzWNiLknIv+UusrEAgECeRaazkvJQ25yISVC+snNJlSAQ0mASWVQksTEHLt8lkV0VK/GorWCCjoREZA7KlLR1FVgkxkcmlnNR0Cscq5IgRKnkiVT0obFPnNhKpXspb0JtfB9GrTo1VniZK11J3UG4oJe+1zCmQJqCgTEKqS6HIfq4zk1htCy6/o3Knef2miJMyUcSU2jaxdj4x9VssDh1bzSrJ2aTqtsNTxaYqRTAIVVCGGiGZLmOlZa+urgaoHQ8lt0Vz6vNY+qQLkUre14YPdver/0jcDgpBzqvJX+5LdJwTIS2m/UNsLCCgxC1nKs+b6rKKQkVZXi0Bq7R7LuFrlEBsra9vnnJEY2KWFVZDaLjK0ldZxORI1kEXImmq7Wj/JkHrdmxJUcv1yUNhUXVDHxfKT1BbufdqeS4f6K59KfTTpUtAqw9Lu02WjlUnpv/eMy7VNvurXVc9Z6+mgg208SPUescqd6DCelCzIZOIkpEUJYSp2gLVaex6rL6njXtcX5T4Jtfak6ujcOgECRXdJZFIrbbUVcmr3KikjUx37zXYoMlCyy7WtREzPlzrLsleTe/pcpPQJzeXXVMfZqdZoBkRyu58qJK0yfoDW0gcJ7fkAJAaWZUGI9bpSj6XP9XGeaoOM5VMEMf2d1cwOVGu7SWnbVOWtXVf1ZLGdMhqEkK0+pLbxIBeVgFadKWgo9RsTLCGjZkvV50u6EEOsY0PJO4WA5DIa5aIyi40bE0ixZTchkiXCAuli5vbFbc5uf4D3vP8DPHN6G5YLJKwJokyh1GGat6TdlvUkTGEhZyUvM3lRcrrgB596L6fbyGtfcRPCMScnr0BX15klcnp2wXpzkyduvoK4mggxkhNIjJgtEZIwi5JzQsmsUBa0PLMKIQXmeUsIiZUoSRMxB2BHDMI6wuX5zHZ3hqwnLpcVxzevlbZKKwjKHDKSEyEJzzx9mxQmbhxdI6KkEJk1s07KYnWpC2gi5YWz+YxwdMTxdI2QIRLL3EOVRQIiC8dxxZwyF2enzHNiy8JmdZ31dAwEtvmSoIkpCCfHkeP1MSFMpb1zIDFBmEEDQbTY5Sg5ZHQp86dJhZQWYu1Xc9ohu8TlvGU6WXMUj9mGwEaKbO5SZj1NiGZYRSCT5h3p8ozTZ24zn9/m1a95NacXSkiJzfoI0sL1GycwrXjm2VN0yjz55E2CQk7KvJvJqkxxIc2JuDqGKMRpxa2Tk9IWuwtuPfkqApkP+5API8ZIypEprpAIKZQxX1RQzVzmhShl/FhrkeglKGsJ5BTRVSKlSAhz1TORQAKhjPO52HUBiBmihmYqKoIGEE3FVsy52BRZoM4Xbd6WBaKA5jIPVBQNwjSXeZKIFNtYYFKYxXQ91RYo8iymfnLRiWUoKONG1mI3NvuRA3s+1zKL9esyFudqA7RhSBS1KShCIFSdn9t1pkOhR4pY+qJUq32StaVRtOmopiPb3FZBpY4ZxeYUGy81tLFnUUVUCNU+hzLfQCHEgKRyTRKQnAkaCCIsokQ1e6WOc1r0/yLlqXLKxFjmbFmVlRRbKqswEeq4NhddHSLowqJaayVUDZ5r/ZQ8im5MdS5UZLPUYEJUiVUabK5StFQdFVWsKksbSSlDlFDnYmUuq7VPJi1/B+p8qtqyxX/QZ3xZFElVLmIZ+yTXfFOqdkYdb0IfU0Ito1abZpxDSJWhHKTY5WaHlwuqLQ6f/1/9kv2B6UUgo3A/DL7qrf9YzcDZy/tgkn048TXnhxkuaoZzE2KlTSUl1PSK1JlLn/7XiaZZqmLGyZ4ZWK5TE7ZqRFQDWpqAFcMKFZSlOCNINKNS6j2tMauRhpU/RHRs3ObsKs8mzdjokxlraCmeLwjVkJdYhJWetpnF1fLR0CdeVsdiT2xpKOZ/3DeLm5kctEyUiy6pAh9kr1xanQQq1EkntcOVPCIBzdY2QHVuLdU4NwNynBRpnTSbEq1CVJW1TXKreqgdRWu+E6FOTKvSV2XaK1d7fMo0KrWyKkNd1eImysQ4SECyOcZ6n7PBK9a5RpDewe+F1CcZy4Jdl7vcq/ZJsJVnnOQ0pYwNGKOhXQweBgPcHJNjqewpzCFj/c0GUOuPRa5C7T9N7bUMtIpFypkg0+C83J8s2bOPkwzGNh2fffheWzlqHxNp8mgy3q6rn6PV8eD8Mz0U6sSU1k97OUpb9P5lDiMdazh0+Wi6qvaTnl4JZkxQ+1S9rTkLWh5S0nex2h8MrK/2WU1vO3P0oVK0V6iypNXMGnTt6JyTel8ZJMH6F9KNERnu0pzV1pLWpWvb7LVB6P3J7if0cgNkkTqg69739uxlmlXu32WtOjWGvJLV8uBQDM37rMP/d5lruqT1/q4Pra1NL6ZBL5Syld6bB7kTYne2jkom79d9c9YN7Tg++1iH7bpxUNDez8d6y9WZ0ebU9T65GjgmS7l6cIRqdOWe96GT15RvSUtZcNA6sRVbjAg0B9ieyiumodVz+0mkOUOLmtrXvVZKk9luGtHGWKl9s7kLBzmWu9pZbFhu1+7/Pjwr2sZtbb91zWW1auW6Zy5D23ftKUgsE6hU+3+oDpU+Jmt1UlUlYXnUOhYxvd+0ZpXHbtRaG4g5lOrtgwiSqbVWCID5l4JKW/ArctoduLkZ4lqdzrkYtrnYGInBkdPqqztETc6Lo1SqqPU+V2RRyFIXbkw3kWpZrBWk6aBDTNbDkH5si6rVCdLHh3s5dcqfZtuMzikd0gzjCTTHsGALiTUdtDGkOI4jSysJUBckGHJv5SoeqzK5DaE624qtpMTyt5aJR0aICmgiVqdZsRdCcU7OibTbcnmx5Zk7d7h49llu33k/T50+ze5sy+VywfFGuC4RjTCpsOSFs/M7XF6es15NrNZrsqzJeSLHwFYicbXiSJ4kHE2sT26ykZNqM2Qu5hmN5XOIa6ZQ2j2ESFpK3QrKNEUkm/2sbFMmEsgsRIWcEykt5JTJS2a3nHH72achZZ56348zbdbcuP5Kbj/1g9y4+QqOT57g+NoJ0+YGmS2ahDlmVCdiFtYaSTqzCEgUogRCOkZCRpYAMZLyFg0BkV1ti6IxVMtCstQFzDApZAhzZreduTMvrNdHHB2tidNJ7cIrRHNppzyzWy5Ylh2RHet4zNH6mLAKhLAiTcKKiFYHS5ZMJrCS0o5Jeh/MklBN5O1MUmW1WpN2O1AhrdasV1XzqsKyZV5mLuYtsizkJTOnBQnKar0mLRtWFAM2qnLjxnUu05ZpzsQbK5btDmJkE1ZoLvmdXZxysbvk1hO3WK/XZIrT82gJECDESMiJ3e6M68c3ucwZTTNvesObWK82HG/WyHpitVqVhXIRkkSQiRwW0IjmHSudMNtjQYixzN0EiKHYblmpk+pMyLksqiukEJvuySSiZgIRZMWiiSiZhUwOlAVsrU7dXB0QQh1nAlFpfbfYOdXhPXR20+FYD692aZ3IlESBNo8bacEUlLYeHUrUeUAedI4tCrV5UL2tjWyW/Z4NZ2Ub7fhagaONPto/aF9kLPMHaQseNirYdbaYlJtuL7K6AJpzmfflTAyrskCm2vKQahMkXZpjR6TUeaaMT5N2x6E5Y0JWFl1AJ1YxspCZmREVJnKdk3XLM421klORGwll3tJX2hAbK3JzpZUnGpotoXXhxGq4Nlwd80qgipa2rYt7ZQGvOD3bAnWuDqRQ56dDkAFmS5usqZghVu5aPIR1pLf6lOo41L32F4qzr8hPaLZEe7ZQ0n/+r/nFdw+wL5CXxqFUB74uZsPAaTeuxoIOK4DQI2vMMpJq4peVb7AJk6oN9AokQlubVlQzSHXYtKXk0RjETBWaq5FxQmQGhNSB0JJWT7h5PKshVsoZWpm1GqnFQLF6yM3asfoowjZMrLWUXSRaEBaHLS1D2ZvZU4tin6sdd3dUEb2DlEl2EVQFpDqNLK3d+14T/zGfshJfaiGZYWNlGgq9b6IdtEhT0tV5qFRDmxIBogem/CBL1vHMP7hUg1ywqY0lqvVdI3qiGY9DeotOKc6LMrks12gdbHoU0RiFdOgc3WuvuhJjk0xTPFbuLLSyBkxRyJ64mgPQHE6m/POQ5jAPbd8eRP3UNu0y2Mu8l64OiCXiqHvoA4PTqQT+7bfpINcMctMM6QPjXg/qUO+VpuZuKZoe2ZskmNOhOsfqqlCTx4O8+wP3su+1nslMvjtqLLdor1gNv+LUFHJzFFnEXxiy6//t7bI3G6n1y0HxBvVY/rZ6tV+rTORcVuJLdJU2+S+DP90o2itPTVP7gTmjet5mqejgWLRBu7e3VueG1gHP9POo24QyGS3RmHfftw2O2p8J2JORqMWZtNdFqhGkQz0q+4Nn6W9lXGgM+jcP9zD91VYX1ZzjZeDugWWhynYqUQrWlwRCjcLQIMXA0tqHhw5resvqYZTTfYdSb8dyV4rsl4ap960ta+NeLk8f62qZkqo8BEKuq1Zj+466S0rkUY86qlG+UsfWuoJ3XyukOgDzIGgKzXiz0WvvlnDQWj3l3tPL+Pvdqcjs5rkAACAASURBVDn4WcYf7lVgHWX6HkkOVbrs/2glbH216ROpMr3vyFDtjri9hYpkjgRtCzD7jk9tY7ZNmsIgc0EHm6D1KdPg0ozV9hijvkWxlWGkRmZKjbHT7iDpjlEZmsGiwPpzl5Lk7tCrTiVz3JkTKFeBsAjj5iof+ujdzqQqk20cDAeSWPpBREi1D4l0O0GH/Lq+6LbEiOmFHnFWo3o19+jD3MciSyNabIeltmXQWvcWaaVFL5hjRXvh6kJVqCvcguRSj0vIRKgRqkBWQlJ0NzOnme3FzJ2Lc07Pn+Xi9Dbv/9H38tQHniKuZoIk1lKiyWKMnG9nbl47YTvPxa4msJMVCxObeB2NkbA54uT4Sab1NfJmzSZGRI6IeSHvtrz79ru5vn4SlRJRN01VF4rJU6xtX2Wk7hDI8wJL4vziWdKSCcfHxCWTWJjTQq6LJKLKFAO6zCwXOy7zGetr17l18gq2GgjpkovdlpXOpByJmlkfrZjWJ+h6wuIMSLmOwVOZV2eQuCIzl/EoT7Xtl+LgjJElpeJE1QASEU1c7i5Il5dsl5nVdMxqc8TqaCKHTVO9k8KsJWpgViWGyEQiKuxQdnlHTjMsSoywiolpfcJ6mgjrdZmgh4AsoThEpmGcV0hSpv7L5QIC6xhIaUFziU5admek3cz5+SmboxUylSi9Ka6RuEakOF9UI9MUCas1UxR2l1syyjomzrfnBImsIhwfXeNyp6RlYb3ZsOwugQVCZJkXNqs1F6d3ELng5OgmgZldWMNu4c7lM9x84iYnxzdhmYmiHAUh7Wbm3TmrkzUf+to3cHR8kzApcXXEyXqCHIirFSEIOU6gaxaZi3ao43eqi03CVMYmikfJtNukEzudWceJlEpkk4oiWveKaBo6e9HHkwpLqH1TLa0yIXv29P4OmlHnlHql2tTa9HPC5hNFBXc7uOif0BeV0a4npTv8W7RRK/JgNJjCORyolLHUZZeJLdzbuKFthO86j72qqVNCIdcIJZvHUEtWY5uqw0n3xp8FZaWRlDOrOo9L0p1fZrMVJxp9ftMeSYYnKIvpoTqmYEI1EWKJWEJhapFIocyjqQuY1VrJpVGKHVhbLee6iCgW6FEdQrW9bIfDpFX31nVOW5jpNnl5PqpTCWr0mE3MtUa1UhxLOZQxxOYSxTauYQfV6WfjZGo1XSLurKH6QjmDbSU1qlzr1zVoocpUj4gq8pk08/mf9fAcSg99y5vIYIhKjwbYL3GonUabNMvwsLb6a4JQGtsih6BthWriH7sRhYLkwQlCXRGtU7xqjHU3iFTJtiiYHrreypXND7y0hymNNtUeobVMoRlmtjUrSDHAcxWQ+oT1Dj0Cx+5qgzLD32pCO5pOYp2dZlwJlIgm+hpvqL9LawcZDM1aQQyT9PqdVsdLsN6v/Z5SDanmRYfugGFwrAxlb601GNZ7EwDpUwcxr779TWd0JqnVXTXEUuyrnWHQuWV7F1aJTda6s6KUNefeOu152S+/GZh7SrepvbvnH0BTwuZoMUefMISdVkPdjO72/NKdDBZuX+qP2sqmYIqzM431SjXwxZ5Ja7RZVdq1zi0CJO2Z5iYf+/nZxN9sZKn9LoZQw1wPB7Z7TBPvMbGpFVX6pfSoor51r7ZF3c5pV+XaFmXrQNUG1Sg0R5Y0Qx5yoG11a7IautzUZKWtzCE1OqVqucyJpZRNq0rCQopFQl1ZHqphv1L6fQ5U+RjpN14n1om1Gxi5rloHLVsIQnVeqnaZt+0ZYSiP9b1gxn4f1vf0i9WnqhJCXQUJQ3ozjtDqkAaLpCxG1F7PrUZVoPrZ0fY/9p7YxuB25ZBPGhupXtd0mxzWc08DPfpv/GGIhRkcn11HNkdTHibSNjhrjTCxzlDryiauZUXTokG7vOVhXDQDdbxXEIEwRnHVhZY8jnu614+C9G2jxSFY3HO2wmdbCUukRGxbSMeIxOoS7e1glSrQImur3MtBRZs+tbqzccHaSnXfgbSvo8wIHX4U++3A6K36sY3v7dpBy+jhtVUzN6u+/w6maoffDxg12GHPHEfytjqo9+7bh/QFJSXEYiPEEEiDl96qYk9PDpXXVp1r/Vn/MKfy1J6z9EfbtpCllFqrd8oWlGxMslHJ8qWp0Go5VOND2l4Fiq6XVuKDRQzo6+dUfSsHlRRQGdLsXT+OGbDfFr1ZpfbfJP16qdt32yTA7AoZM9Rmq+yN49LTW5+zxag9ZxPVHab2mbY4qtWxuNRILwlhT+/ZoqcgaFJSVHJaUIF1Lqviqx3MKXG6bFkuLtlenLK7OCv/lkuWNEOe2Z5fcHkx884feTdrhDgpF/MZR9dvMcnEFAMyPclpPibcvE5YX+Pm+gRZHaPTRJyOWbanhJxZr49ZJJI0ofPCxe4OaV7QkLm2ucZqvUKILAmW+RIBLi4uWDQTYixBhwKaYU5zrZ+EqLDd7ZhCZL3bsdOyrXgKAqFEO+e0ZbvdQg6cXLvJzaPXcXQUiJuZzaJ8+EdcR1Lix37kmKduZ5aLHU89c5v1+pzN0XWmeIRMgRgDUVYEViyqhBhLO7AiaNntUKLJAoskQo5EiaAzu/mSOS1oSqQsxLDi+o1jwmrDcTwhibIjwzoQkyKaCAmmqcqhZiTXxbhQI35ihAgpb5nnzOXuApHEtF6z2mSuTbeQsEFi6acWbS4UB+KSlSCJi/Nzbp+fsuwuOT65CZqYRdkcrbg5PcE8b9ltLzg6vo6gSN6VaMOgzLqwm4U4X3CZdhDW5CmgOhHkhLTM5CQkduQcCHlhuZgJU0DiijhNJIqTQaaJZ26fslmd8PSi3Lq+YY5CmDboErlz55ycE6sp8kwCXTLohOwSt++8m1l/iO3FM1w72XD7mad48+vfhK4CtzbHbFZH7LY7dA2vfe3rWa2PmcKaECckRkQSKiWSM5ljV4U57BDN7JZU7Y06JwqK5FRtXgGpES0SiuMgFRe3Sqh913SbxXla/67RHqb/GOalyrD/QWyA31tg21u409znWFVTm21fZxx7Og7TTVpTj/Z5Wwy09PvGkjk82iLWoOf2wi6GoVTqc5XcIsoyzOFsalPHCSkRiqmODTEUZ1lYTexSKuWtwTZTM7OK49/mZLnWTVloL6NNqHoELQu1C1o2oYaE6Kqq6NQjgGq75VCOycl1YcRcLKgtSoYa0NIND2unsihcQkeklmeMFpNctnIGsXrPPVpWS7uUIIDBPgVKNHso8+dm62u15cu4YIsV2gak4hTKmtpcZaL/nkfRHJyL5vsbfQqx7niKtQFD7vL1MHjoDqUyWalPV5fiiodUsXidfYPIjJNutZStZTboW9SOGa017+7G7EYuDEZQ/S1UxS5mG0vrkAwB6EoJ7d8zGKuwifTVX/N+hiCIlr3qWbV+tz8paUoImjNsmL5QvNl9wtO3/vRVYCuLOYDUJsCYc+wg4oLu2DHFZQZpN80PVM04YaZM6NoExVKHVmWt3WyLSWsSq/P9Eg/zgyHiwzrKcE27vwoicXwk2q33JlHS8xAzJms+g7UZDxRkEGHJuZ8nIzJEs0irjzY5bPW3HzFlq58jY73376SvqtiIEQOac52kSiubRUGVCaXVSMZWTVbBJo6pnlMmNYKp0yRozxiuZalaZjUouzImlAlm2wkqZbTsE9RCHlayEcqAUeuvtdfQp7sU0H6XoX5p6RPjJHGMimv9gz4BOXSm2ndIdRjVejL5MKVqjp4yoS7nb7ULrf2G+zcPdC1BT2k/l9+DUFfFTQeWckcpbW/1Ym0q2GoXvYwHshOG760fYXqwDnSiioaytzub/SHKJLUf6aDlTB+0LaxdHzRJqf0RHdafpOeDjk482aurbiwdSN1goVjklFaLTCW3c36gRzsIMl7W6xvaassYglzykyG9Hl46FGeIgBtqQKoz0PRekx9LVMvTt66arirlDtrrxFam7FiFoufLCpr1CXuWsR5t/NDcF0WKEWiOzd4+1HoaZVYwJ5HVx7hFpkTTldVGaX151G8W0VKco72PHkaKjP1gjASzshVjt9SBDo76Md7Q8ugiP2qKu+9zOHbxnNceOMLvldugpu++85D8LjnshicHz9R/NydT7w9WT0U3l9STlK1qZSJTztwRHXNqzdjy7/Je9FmWct6XRCHlxCQl6qJaK5izq/Ude3hrZ3QIuy/fR7PJJBRjmjJYlK0i0hyGUr3ObUy/Rz0fVvAoDYOY1u4bWtr7yV53qfebtscy3Vnza4spNWWJdB/2iJq87o3XY+77W4hL1dVy2cKGdmkzu8kc7GHIrUU8qdatF/15rKcSBEkzst3xzJ0LdLlgvniaeTszX5xz5/IOkjISIJG5c+eCMK0I05pnz7fcOU+sV0/y2p/8RpJmEokj1bLFI5WzRm5cf6I0fTxCtzvmJSNBiWlmt90yX56ic+Lp9D7mlEgIR6sTVtMKFWGbtoQ5cHl2mzktJMoZc0EDeUnFaTYJMk3lvDkyUz1DSco+F1ar6ySZyXkpsUQSSfPC5cUd5u0p02bNenODo9URt47XvPFVyi/9+FexHC8sF2e86cM+mstn/h3/8G0/xvfGwDNnx1y/eZN5WUiLMi8zu+0ly3JZtqWtT4irDTFsmGo8MTWqIsvMnEtU6ZzOmOdLclrYpS2ro2OON9eIMRYHfCxnk5G3rOuZVqKZ9SqzywsSI8cxcqmZZcklqmZ02iclSyLGSJiOitNPlW2+YHuZ2c3vL5EeMnM0rXjlyTE5JM4uF+ZZ2S4LOWmJIpuEaTpmCTPHYeJk2qAaIc6s4hErXQOZdSx2CVKjv7K2kfaZi3NuHCXQyEIkrlfEWCLj2AkxJhZJnF+es1oiJ8fX0Bli2jKnzGa9Zt7uypiVFrbbczarI+AY1UDKie32grg5JobAHGFZit6QVdFSxzdezayRcO0Wz6Y173rXO3nVkyeswpMkLoHA+2/PoAsiiRsnx6w3R6w3R4Rp4jismVZryIm4mlivN+S042K7ZbPZsLl+E2SqHbtuFsplq16S0h8zikQIqWy1s4X8RQCNJY0oEa0OYJBADxLQYQxVW9DPwzi9v6CC9oXJvYgnEVRySxsPFVK7T9exNq6083SG5GYPhxDQnAgSa+Rmtx3aeK19Z4E55pstrkrWhRD7+Y1l7O77xso5x7V8dWAPUdAl1TllqZeELWaYbVuic7Rui402FtR/udpPdShlFSKaQ7VHU4n50b4QqWg5f7SaSVEEJRDEzsXUvSotO2NqPTYHnYCEMtblXCIxJZDKlhWEOq+s40au9S8S+rOZvWY2nQiEwJRBmVh0KT4Di8oUaMcBSJcnyEgQooa2C6gs7tYdU5pb1LxSxiUofazLViaE2P62he+7x9YXx0N3KJmglo99olE6WbAEzZHAkKZPIKoxQyDnNORdIhj6pF8ZPbTVROu2imozZsEG/Tqok5AaW9A8gXXSD+boKSYZzTQsU/XQHGU2EajnHex189KAUg83bk6poTTQDaA9Duyxu40S6fVsxmZNkpogt1uUctncZPx+uMe9Jt+t/Q4UYXGw1pD1UIzMsi2iT0K1/df+vwena9h3KAwOVMw8Fz2IbBHpK3nVYyvSVwnb4bFQV19rWapnum9hVmyfloWaUjtvN9dpk1bQvjVFhjlGHRCGL3ojcNDS0pX1FEopl1SMCguP7du7qlxpz6NtMAnSnFkhxDZJiGIGKZiT8m6Tu/42fGvRUYKgsZTBwnvFwj5F9q5rCkpH+e+r0Wk4aN/GBHOi0JyQpvjH9i2HSNpErPXD1gxVjszBI+1KuhPC6qv22D2HldVvue943k75FFoZUW1OBcMih0YHeC9nEYI0XGCRJ5kuFubsrmvRtS771sv9CSNlkrdXdu1n+NTy2JZJkXqmlwlr7mGtCrZOU16G0O9qWmhQDAcKxb4NQkq1/w3V3+ujPl+t+3038n60WdOEUp7FVpWGu3e5aDkMlaulj1te1kf3hOAuTB77Yf62Xa9MlMulbXtr7vKNlnq0laDRxWkh7TI8V++LXVe0UjTnWa+nvSLXuhy3fEKPlmsP2HSmUs45MNm1AlQHcU3Too9CdUI2p1I3Qi3ysNVWE8TDmqy07elStInWBR8oY0Jrn5r8rhaxOqHmoeODYe0+SlLr9mN7q5W91033Ava8rKu2b5vjdu/PphEsq7sibartYc7B/Xqvv9vNRt08FHy0SiDWG3WtaGNac00fPk7NrfXnUCKcVhbuX/Vb6ftmrdAnI1Wwg0p5OcCQf5NlKcZq284vpVqTLeRVHWlOUat2a3tzrAxDaS977Xv2xHaYq5p+bOO9lahfZxdpGH4Zvc+hRyPZ9gatsm/PPYqQYvYPVbfsO+BbM+15IKVFaZutYNUoMtg22mUmKNU5t992URVJSlpmLi7POHvmAzz1vvfwb37gB3nljSOOVonV+hohK+fbLRrXxDgxE9mtN8CG3TKR1mtObhyxXq3Lrp5YbI1Q9+nmNCP1HLRFFMnl/JHdLrOcXbJcnvPM+Qc4v3OKLAspZq6dPElcXYMbsJvXEKhbkZQYNgSZWJkTnQibauVVu6G0yELOS40/jlW/lsly1mIzXOwuSMuOHJRr12+xOdoQZc1GIkdx4SREfuh7n+ZNP/315Bj59n/8z3nvM2f8yx9WznNm3pUdAzFMTGtlYmK9TCy7enj25Zawm5nDKTCR88Lx5rg4xJYtkcC8JCRAXE+sN9c5lluEIGWiyFLG9wQ5zaRdceBGhHnO6CqWF9NkOJ0E0aVGbi1st5dICOX8qHJwCplcZV6LIy6U6MHds6dst6fsdqdcXpzxipPrzJSoVlltYLPh5vUnCCGwYsOiCdLCbrcgq8hOl3LsQ1q4uDhnvQrkaydkDYhWN1pKdTu38IqTJ9kul9w+fYZXnNwihImkC3PKTAF22ws0Z+bdTGIBDWxTcfxdXJxyLJHz7SkfeOp9XCxnzNeusQorjo+OkXCC5sw6lDOXAFbTGpHinAtT2UYXVTg+2kCa0bTwiiffwNnZj/D6V7+GRSJHmyNyXnE+n5FSYpsvkbMdyHnp12lhA1zkhc1qA7pjmXfM8yVPPvkEr3/V64ibE8J6TRRhkokwTQRRQogQp7LFLq2QkAk5QSo6tZ39V/twqv2+DT11xUiRMva1l+QMI6mZzMO4ZjrFUjUHhJaX5MDgcFHTi7TrrG+NtkWL0JF9e6m9eKVm1iLcq/62BUOVEu1u80CbU5k9Mjq/2jEBYlZV15+2WGXjXHmBjLbDyVUo8m4GczU+hkDXPXtMENr0OSsaIQezOWsEqJbNZLnOj+1gbNO3oer3uquxNZ7NFaTakBaLZeWAOs9EqG+Fqos+2mtS7TxdbYt0zUZvdnFf7Mv041Sao8y24yLNtrXqlZq3UJzeIpRt1xZ0UMdfGwPV7Nn+oHXY0zon0TqXhHCXVfbiePgOpSb25pEtD7q/rkg9r6ikG7en9W9LeFYyf5IwCHezmeutuilvRlAx0syMq93fDKY22bV7N9Mctf38ZjRh3t9Qog/23p6mUN9KsndWkxntmrrVY5ZwO2DVtvFV54FUQzD0cvbJpu6VPZgTwszEwdgZlU4LdWuV1T3ve81haYHqMm2GpJ0DZe2j2idO9hgiNMOqK5leqyI1cgPQMHpNi5NJVZrTZdw20TtIn0iY3WeiUvzjPeKgG9AW/qhtv5sOh9HtO2G6QrcJXSv9aGsf1JtanR44H4xWX/Z7CGgqkwRbyWwCbYZnVew6yKYd+oxqb2qlGetWTtPpQxfsVWllap/LfW0rpq2at2bdk8PxefvXNniNv/dtnU2N1TLYIFkEpuyUCC1NG5bM4FYZzH7THzbBovUJ66ulPoLtji1KWfpVTWAONJFIqPuy6wAgFl1S379YB+/udO76o2iQ1CdW1ugmoW3Zf6yDu/9rMhvb9aUMYRjgcm1Y0T5YHTojWsRRH9tLXkP/LgPnEI1S81Vb4WmTuMGxaY5Me35rFesUau7jkVEI+1c9T7DtNuMbovajRAf1NZSq+C6GCB4Tchmv60ZVy7HqzPFA4bYi1eqUpmSsTYszpj+PjUOt79o9W+cbdJz0ODBt1xbTL0g1emrkUslS2vPaW/b6Y2q/r0obK8Ztkqbyka6ni+1VJjDRZFUEsgxjYRsu9yfEQ73tTa5heMa9BkLR4YyBLjRqcqjDNXv/HfT+mOfYxoMBPV6rY16Hv9dEam3U0owK3RRonwDsCaJ9tVcFXeis+HuOrHpGoTmEtMq5WN01o7yMYkEtgqa+aTLU8asu1hyWtslWPdFUJBJqBLCNIYptge+RSmXyI22iMTwQEOrEJjUdrNodqq1K6hhZ+tkQ6abQe5IOR26UOujnuh065OsYLrS9tjLcTAblsyci48oLXYT6WCi93yHNlrDRRcQOYB4d9aPo5D1dUpo3k5ZEnhObo6O9Kuw1Xu9tEzSsDk0/l0XGZZ7ZbXecn57x7O07PH36DLu0Yx02vP5NP7WMMMsW1TWJhXwjcJkUvVwIcULDCpE1q/VUX0Qi5FS2+qSsBJlZNLFJlLdjaSbXt5mlvCCpRPOcn11wubtgpxMnt17DhJatRbJCRNld7sgyE6Ky2dxgFdYoub4pS5ibAykTmcqiXtX3ouUcn9RCaDNZt8zbC3bbU2RaEacjjq/dQiabbAkxKBoyZ3Pme39ceed7Mj83vZ9wdId/+t0lsun2RS5vhMqKaDm4uhyEn8riViiOLmVhuz3j9HLH7vKS07OneeWtV3L74pw1iWvXbiJx4sb1W6Q5sZ3P+sQPyLmOTxJht2PenrM+WjW7TacNmVzShxKZsuTMkhbmZVe29KWp2Bu5vLgmEMgxFV2ZErpAyiWabMkKqxPO4prNasPJ6pjVasUctdxFA3O1pWJcl+eTgMaSf5oim5NIlBXnS/GlThrJUrdkSWDShYsZZp2Q9U12uuJiW+z+LLACkq6AhKwnclYuZtjNC5eLsMiGO9szjo9v8N7zcy7Pzjm+VK6t1yw5sz4KrMMRsppYJKMJYq59MClZMucXO4IkbsRA1oXL7ZYbq2u8d3fJcTjlLCnn55es4zGaFiYyOU2QpDjopsDldsdM5uTmTVSFJa/Q9THr4yc43c18/7vfQwgQw4RmYbUKTJNALlsSj0+OuH7tOmG1YbUqbxbTBPHaEevVhiCxnk8ZibGcq0WIzfFcbKrcggPaYoAqUephzm3gqNpF9/U5SHfwUMfxQ93WhkXtY+mQR9Nb4xhZFE/Rb2bjDmcp2Zyi9FNsrRREij5Jua24tHmvDMeDSLf9RNv70KuTueh/23680z5ZtAULe4Jif1QNWstlZSrjVl0QDVXH1vl2koyQ6hveaiS2UMek0Me4oL3+bP5BKg4VKXanhY80u5kauTY8d9vh3c7gkLL4qBZxajfcG21bbtZQWbRMD9pxKKE6knrbiTV6M3J6s0q0l0FoN0NDH7/2BCCYvd6uuI/N/uJ5CRxK1mh9wq7DqqslaDZbHXSboUkeDFrtZ3OwPzGA+lrr6ogZuhN9z2s1hNU6Or3yqxPDOmgzEZt32MqqNW0ZDJtHcVQQdfJaDum1BMP9EbpjSdu8YHSgFaMpULb+1FUe1b3nzuZJgCJoNeStPEP9fzGDrXbYFsGlxTiqb+QqhpX21bNBFIuZWPcFa+6e0mo0mCHYFJkZ7QImpjbpsteK7/lBhSGsv/x3Uev3cth3uqzQ612C/VJqILenLB3YDsCVYIezK+bmbiGUtY6KxJjfyZSsTaiHSAUpyjEyKGIxdby/Gm9NVNqkXqx0J5BNAlpbySgUYwZNbm2iYGkVyiuK62DUV1DHSYz2NjNJt/ZXbeGR5n03edg39ntdFWo8gNUrB4MYXSbNW94sL2iDhOWRbaChTJza2T3VW2nRRFoN8UPJaI6Z3OKMSvvVAw/HWaR0td4mTCXE2VaDbGLRJ9o63mPPYWo9pp86Yu1W9uCXQUbyoC9aW9uAXK5s4twVV8vPXutKddjZSkpPW8rUVZG0LWq2bdMUn6idHtejb6R64UrTh70nshUdG1Atogf6NEuGMu89Yx1ILfIMQtPnLQJseOPYfiayVxdtsmkpuoqlR6kOho/0tmsVa+WvQ4K02x8MwVaP1vOl38/64Hj/PYkcFxvq/1skYK+bot/tTR1tcm11aXmPS1T2eOY5MUfFqEfr700vWz3paKRhx0I0J7KqORzAXoFuZek+I+lFaOUoiZQx3L73ye7ItbF0bLj+XC2020TGbiz9vkPllf+G/qfWvMZbabsHd9OKM4yV7QezC57b3JLDfO1+oT57UbSD87Hrrv1obHqbSW+7aGeV2crbIArNYrB2batzRe+kmrm9o2pPjUt/8r6Kvt9/2t/dk9m2QrS+JYG2xbyNc/uVYm/2ak+vtpgiTY50tGmgrap2B7fWvENzyHUnUtfOrU0HobVx0vqfRU+ZzJT/7l/fdMiQl7Q2K2e15DxzfnrGnWdu86FveBMhxj2576OXlNeSj+VVYM5sd5d84PQDzHNid7nlcl5YdEJOXsFRCDAHwu6CZ8+e5WhzE/KahR3zsmO3S8wXcHR8xHp9RI7FtgxaJ7Z5IaOk7cz5fMYqrMvK/VyibHIsK/MpLczLwi6DhhXr42OOphUrUdhdINMGYYWGBZ1nlt2W7eWWZZvKW70ENCibac20Pi7n6wRhCrncX4WyKbNsG8l5y5wuWZaZkGcmgaNrR0yrIwiRoOV8Kq2TcdVASpm0FD13zsLb//X7ICfed7kgwDOX57AIYZpQUZKm4hAgFd2uYG+jOrs4Y55TmSSvbnChK4gn5LSwzcIkgbPdUnYWxAgSWKTYBiGsEJQZZTo6Yb3awFSO/kYDMxORpRyFkcvbxKacmVaJjWzKIkabTwY2TCiJbdqS05b58pLLZSEtC8jM5uSIJ65NnJ0lRJTrm8BmPXGeFy52FyiRy3nLZr3m2nSdvDoirCaECdHydqe4Lg7tlcRmQSniMwAAIABJREFU1yQSIcNUv8uSOVZYSbEIgiYi0l5rvoprlmXHMl+SdUFEWUdhc+06IrDMt1h251xfCZv1MVkhR+VyK2zzJcdrYQoTqyhsVscQVmjIaIaUIa6PEMlsFdYxksKaVQy88dWv56e86jo/fnbGe88Tulyic+Zid8m02iAysaSFtC02XpTA6fkWSUvdlhhZtgvL2RkpKkkXrp3cQFhzeXoOOrPsMsv2ks1KmKbAeopsVdA0s9bI5sYJN06OCBLYLZkpBo43G65fv8Fx3UYnIqziis1qBdOqzsnKdjrJfQeFWuQopsul23jVLunLklWvmYPAzhCyi6s8t4Wkqr7aizRsvm1jSNPPXQfZ/BIbq8zKFesv5VyfdixD02F1KbM6hsqP9qb0ep+mzcv7G1OtC7PBWhBBjZIptVOdNc2+kWaL5JDLGVliuzVyyVBtW3c9RKEdzqnd8lQLCtHiQAxCSgGJtDlibu1Qn92KYHWCBUVot3fa2GMNGnpwQ609zPaWVmu0eViVC5uPBLWIRWkm0jC6FZvfotQPnYEi9Y2ufRzdi7it8xBzQpZIWT1oq4fDwz+U2yqq25vdMBkE0r7oW4uk2ZFqoV/mvbPMle4FZhDmYUYjZoRhjRK651DGDlamC7luiZLBcNdxcm2tIn2lzvpsIVZBGLbmNYMsNBEqJRH6C6lpHbnYlLUzM75ZROrv3eC2FeumSGq5zDlkRljfL2kdJNVJbnk2qQWwUjGUtE9StD5LKUsewjttz6ZNHOxsq27QZeygaFNmWmNHxR6mbZloFvdgfJdnGVdFhVhfR9lN4HGS3CZ6tV7bdsLBmC7RTFNvI1Maodb34I1uctY+00PckR6mP3RkS78/NFRvu6VRyjaDoXBti0v9nMc6qbI0/mnNaoNSj5IZlJJIM9rFbswQ+Q9YiJm9ccG6Y9+CVJ+gytyh4wgsf3vSgyo3Zy5afKraB1KTQXM6lnLUrZRtrwDD+eQy3rTUqchw+FzbzV31g7WjOU67PtFeU22CbJMfzRaVQo2G0S4Dre9QoltM5pvc94iScRvQXiis9nJIK0dzCdd6S+1sIR1kw7BziPYCIizHNpbUa9oBk9Yow3S5VVOf8MkwQe0vOAit5rQO5CW6x9b/zcmorZ9ltL7Bqevt5i2suRFClwM1Pad9YG93HRgGdpML0T6u7K/c7fdRcxKZGNtT5fqvOQEavRw65NV6b5WxdtZYFY6+/90cNP2aLP0sqaYLCd2PYg67oGgetjUOfU8ISO4rUkouod5DjTWnuOigq8r/WRRn6wNmjB5U8/4XtW3KI5e3WGnrNW0cb20wytxYo6afrXqbsTro1l7796X/NrbxXS6ovfK34oyKtDfw3g3386m9dE9p9ITdKLevTPrGRR67T/9uf2uarWVaVv0eXZ5Gx5npvuJIkrrN1QxVc2x1JwdtfOtLVQcPTW46zVbCxyrodlev9f5Wul5Ttkho+r84vNNQL+3rPqju5bG/Cj/q1T4km4zvi5k5VntbDOpsCD8zuWtiam//sYOaqVv7tbz5Jy87VCKaE7vtJdvdGWenp9x84gmaX8zsoGEF25w3u3nmbNkxn265OD/jvbefYrM5YZGJzIacYdnNpDSXtswZZMXl+ZaAcpFTOWQ6BjY3rzHFqdxPFiKJlGaW3cy87FDN5HnHvLskHJ2Qw8RKlDidsEtb0rKwTQtLVkSOiVN5WYKIEEVJ5dV0aCgHwYb1hpPpGM3KnLdkEttlZpkvmXcXrOdzVrJhWk3oFOr5SUfsdqek3QVzWphZCCETw5q4EmIu2/bn7UxkIZE5z4nLecc8Z9ZTjZDKxSZImnhfyGjKLCmxk8C8XCKJ9maw0skVicokkRAo976Y0SWw2myIqyP+f9re7Vf2JMvv+qyI+F0yc+99zqmq7qrunnvbHhtjS7bQABpheAAkHvxkhOQnxDP/DhJPvJm/AF6wZAkZW4axZLBHgG1mmO7prq7uqnPZt8z85e8XEYuHuOau036YaXLUU2dn/i5xWRFrre/6rhXDdEAVXmEwGlnVc/Ery3JCEEZnmcc9wzhh3AAxsVSdKk4M6gzBpnXkQtEhaU0FlcSYMAbLQKVNi6RUkxhZ14V1feDp6RFVj1pBSDWn9ruRv/EXPuH7Xxz4R//8p7y5mfHLhYenE2cPl5Ce5cOG0Y2n5UIcZ3bTPtVmkgHrBlTLWbMhgeQmscmKTCamhsMiWGOREIkSkLjmGlIB9RthOxH9lvNtQDGYsBGiZ/OSdLpqKqqea/RIjPjlzLocGTFYO3CYdwxuxE0Dzs0M1jDbEbVJx80xsIrDysDt8ClPF2Xxe5yNqFgmFzDDgKqAmhwUi5icO+m9h5jSES9qOF8WLudHEGH1F15tAWtmzsuCkbRzjHbHGpTjujAOliWCU8MFOMaFh+eFKELwMKKMk2PaP7GbPyCqGIkMMnO42THOO2RwDG5ADMzGYKY9VhzGuEY9qhtY8Z6Kr6KATaAwse4fiQGV762bWfLlevuvBq6K/x01nwqZ/TxNZVuIbX83HSUnVm9LKzu+bveiNbDbHK3S/oDEkH0aybrMtHSvDA4lK9Gg4rOdTwbBUhECzXafZp1C7rdqRHNplYAh1TZKJ+vGrJCbn9iC9JBqXpFamGsOpVzb5O9k7VFs89L7qpPTN8U/6bWkomg+zKsYbpXhJLT5KkZHzlYoPCVJM12Z3NWs6P7q7dlyEmqxJEuGSojlMLAGLhWdfHXIVLEDq+8h3fW/us//bylv1QGloKidwU+1TSvIkUAdc/WUZvxJM1CrhH/E5NQkDNXY0PZDMyi6yGNR+NlCjpraUAqBG2OJURDjKbTumCnQzc8obSmuSfepBn5mAKjtbW6K06vS1XSRhn7GvPE0BFWQkkaTh+FlfY6aslLACdKCrIJGfxQ2NEc29aU8oxWWlJRfXIy7EgUDREpRsG+b8en3xnyAMi/FFm/CXZhiIHmRSjO6s0Nex7iL4lLGpVuO5mpsC/OlXJ6X8wuARTKS3LOUCoLcgy8igs35076w0nL7JC/yFDW+3ktS33M7uhPfShRd81iYArBlObheBNn4fcl26domGq8VTzGsK8LQm93tvrIuyvyjOd+6yEgd4vSc3iEvTe38jHzNtZHfQ04FLTddOmW7LtQxT3tH3lwzpaRET1SlHoMK15u4KnksczvqmL1oldSKbE0W+rGp/WvqpC5fgZIeK3U+OxC6TmFqmKnRo/buBAQm0M92LzS113kcpABirfmVgSRFjugAB2nPl7IWpf2W39/2rrKCWl2tRt+lu66NXeG0CMW+kLy3dukvecWlDc7WOgoNeLke78ZKyG8o60O7/buOahqTsi/2gF76rs5sHptcS6VPG8vPaiy+PC6dTJcps1IiPW3PaiMkta0FDEpAqdT9sQdNCzUcyp5NXTNNuPqRpmtz+m/dQzvgStqv6b68Zgpft8JNJZAH9cTDura7xhTNoKUT5U3SZqEOkyilHkFK62nF118aY11D66ZRWT1S+txf1G7Tq8npP/qRf/GRp1x/IfVZ/Xva3/WdL2/UIirSi17XrAbMtjakce6LkeZA6xVwXdO+aoNaavBLdlxJMUjOqlIKwkIuOJv1UmPSSuuFlHX8sVHLMnG9XVLSMFqNuQbsp2sau6g8qQCi1Hfn62M/XC1NsuACve5++SlBtLLGrmS/TJG+7FmDdk2ewGqct+ahMQGwISohgxdRYzr9KwYkKlYco0snU929et30vZZmG2yM+Bj48U9+ChpxdmQJgfMaCWvAy4FtTUduq/ra5RQNT+yhy3nBCAyjMJiRSeASVp6OD8yDZRDDwSlvDpH7sPEcI04kHfphDuzmQwLtzci2Lly2hfcfvmEYHMN4w5gLZxs0lXMgHfCgMqQqo0bARNKR6A5DZDQWNTCMBuKEqBKiZ/We0/LM6o+oJuBoPZ8Z3MQSInaa0nH2mYUv24KqwRMZjEMxrAS2kMbYa0RMOqfSqiLWpRMQTcQyYlCmyVVWe7Ib8gmuBsK68bwuRNIBJvN8w7CfAUuUVJ9VBbAOKw6xA35b8H7leHrkcjqzG2em/Z5h2qcUQAyGzPgx+QSqxMcCCYi6XKw9p8iRmE8QCTGwLmfOy5HL8RFnNlBYfcD4gHMWZ5VXk+UVnnc//YANyhsnPEnkq+XM0xqIWKxJp9H5ZWUJJ5w/Y+MFEUNA2O9uMHZisAPGOBove8wsmuQTuJwPoxrY9MS2nDktDxyGQ2KwBY+EdCJfRNl8SLaqT6f2iUmlRaSst00xg7CFjRAjYdvACnYUwvEZK4IdDG4YCcBu2jFNexgsa4RghGfxWBF+/BRZdYCYSAFBfaphlPWJxIhTn9bK6gkxsqwnfARnHJ6AmwdEB4bxBiNjKjA/j6k+krWJERc9ohPTMDKrkmPWjOPIJW4QPNYCMRDFsm7CermQNrCA8SfunxzOJDB1GCyXdWFvLfv9HW6YGQaTwD6TTkS8u7thmA8YN+CMA3GpHIhoF9hyEA2RjXT6pQXN9XoVRE0FPwrUUPfX4kdhEDzVF9Vi20ei95zP9xhrMO6AOJcxT0UjqJhUj0uz5xRjYrao5PIhEULgePyAbEf2+zdEN2EGhxHqwQjl9OjawuIgZcUQs++Dln1ZK9ummnbV/081x6oGlRJMzO/J723M+qa9W+3MfHdM9YqMdH4FzW7XsqHn+bDZVst4Zs2yKbo/6VRTdZ7GWO0p0VbHV6To+itzIc2VNMJHT96PQmas5cuLnqVjCl/putSRMm4lW6HGwTT1+2VWzZ/38ysHlPrjWYvwFIOyFGYtDk6PERVc8yWlqxkVeWKEapT3wlIQ1zyKNOO+LLzOYEwSWpV3hKv6OgUcqtFiSQuoQDTaC4LE6nS3uL907wrNQcp0+Ooc1OcoYBJqWwGxFl3UTtDJxlhvtEEznhoDojiTMR1JrN3i6K1p7Zx2oKUcNhZEmddytzGl8n2s49i6XWfkyiSvBrrSmEn52xqBfzGfQYpxny3PUmOqGPBdtLHlueahrVHvdk2dl6IA83vL0FR57D95wyr39ql7lVHUdiGKsqsGef53KabdamSV+TIduyIZHqXXdb7qpi759IKESlfAJLOMpG98bpjVkjKVGmmK0HUFT7WcfKNgDFVe01ClnbIFmovMAFcyqC03+2r4urnODnmJmCRlkua9OKkhz012/2ly1G3CZa6qM9opAKhU4fLOKgd1N20y2zN1+nVblEkDopohU8WoG+yXcnPt5GQgorK1pDpVmh36mvpXtjCTCv2VI1ir9HWDK11DNFNmSysLU+sFspl69kJOi5NeZPl6l7iCZbKyK4wXk9dd4vckmSyKLmLE5BST5BykJxT5ftmuLFsZ0H4xE3U0O3149U3SKWRnsIBD+YfuNDPgShdcgc55PlKkKY+hZP5VRlUbs6e1vYf/6l5Po7s3hDTVHEnPTOutrUJqVLAUa23LPyNAlaUoqIaqX6+muJOPQrosxRcrI0PTnlvf1+/NGYDWLvUkrc0CGrR11YMxZX95qZfqMHdtrJqhArAf+XQT1q77+MWS21P/ePFjk8myYb6UGb7V5va35HZnHdbpOjFCPcTpatMrnX7ZlJ7hRN13q17NO0Op+5BAmz7g0DEH87N63mrMtkwqzi+1EynbPkd7y/M+MorXY1DmqPs317r+W2nO3QOKbPSnqpmuplQ7Va49v6TClWdVq+HFeJaTGEW+PdQ9GNg/p7xXRavNZzT97/HpgfPlzP5wYJrmpksiBL9hRBiMI0gpKivc3twxOsuHh/csy4lxnjPAYNjWjdNy4rgsHJ+PfPmLn3Ez3SBmZsnHRmspKmkDRgyDsUQf2daVbbs0XZCQbC7nU3Lwo7ByYd0u7MwOM1jEwhYdTibGQQkx6dFgBVWb2DynI8vyhLHCYXfAmQHnBrC2C2Sl+jpRHeocpfoWKvmEJo+agFFyalYC3TSshBBY1oX1vHI8P6b0Emu4XBam4QYZDtxMQyp8TCTEVBxZBcQagg4IDkvEWq2R/rRTupz5AFFiZT4Y2SCS1oUo1iSmdQie8/OJy7Kg08w83+LsBDKm2iUKUX3e7w1r0HTKnRUwO8Sm/hOV1a9sj/fE4YlhcMzjjtvpLh0ZHgdQYXMGwoaYBLiZmIPLYoi64bcjp+N7nk+nZOvFpBNVDOJgNCPqL2DT6cOnRfmn//o9i494azie7nEYHp6fEbGM444QQcUTwsYxKq+HBBju5hlnHevyyGqE2e7YjTucdRhxiIkEMVixqK5Ef2H1Hu9XQlgxePYGjD/iggCBza9EK2whpVl5POvpxORmpknSEe55b/QmAx5isFaw1qWDaGxirHgCmw/gL4TouSwL1j3jBsPoZubdHjUORdgyII4KXrdUZ0pBfSCsZy6Xx1Tn0oyoFvbeyBoDa7gQt8iwGxGJGDPgQy6TYhJ5wESfDF48VkxK19sS3SxKAiqNjvgQGYYBrHD2K26THMxLNvhyfORmc1iZidZih8CHxwfcOPDZYrjEe0abawLHyLacuTvMuN0O62CyI4MIxijTPHFzOODGPcbOXEJgmC3GzIgoMSrRKRoKqFZsIYMhEk32QjX9m8p0SqeYewIaIyFE1uOFDx/e8uruwLifMdGhErACEpVQ3JEYMVgq402yTRIjl3XldDxjw5np8BmiKZNFYpprI0o0gs0AVT6vPgWgJNedqgBRzFhT3sOjZiMmF0cXzc9JaWpGiw5JfXadDVRMPDVp/0yB18TSMlmvimRdmSnBjfFdgt6NGWbE1HQ2Udgk6+n8HJV2aq7EppdbXb5yup1mP79YiZr31/I+yfZXY7CrUNdXp22zF5UtOGOyzdrYVpp9wmKvSsfgtCadMl4KgP+qPr96hpKRqyOPe9pWiphfc1kaEERV+h+1SKvxoJ2h1X6rdZQq2JK9MpKBXB3bDtAqgA1k46SUkq9l/fP/YiLONYOu5StKbknyGfoErWysYuoCKbagZiGt6WYZkQgUWlxyJG1GL4rzWVJPtFpZsRr2PciUTpdTatqQpDkxmd9YnYTOQaifbIzWrJdq8DUjvCDfacGUDpWp6IDCMjnNNKRnepRBKsZuD2DVqGF5u1Y/IDdJmxMu6TkfrVVSLU3tkNw8UzFPEv0pcG0xktuV5iSh5jEv0nL8vBSPhJJjaxpXrbRZSNcYQwNy0ptqjnXMKUJdVLtnbFQ2gBb5Lw66XK+h7KAkoymn7+QCr2Wn0ZxDVgqu16OOy5qo67C1oc5pSVnK4HB/alsFw65ApNxeKafgZHmoEfNukvOcZbGglEJuDoE2L7BKUlpfMRYQQqmXdXJX+tPelf4up1FYbYos9A0iswejEk1xK4tcCKWYPhS2UweAZZkpOd7VwdM0LukUtixbmvYXDdSZLYCG1PEogEaZm9ylbsG1dfJtRXFVwLZb+gVzSw7Xy7tMbfPVq1SvHlCLEubvrXG5/ykPZxwMPuRELyly/XL/kSr76V1tT6vRIrH1t6uGUeajO7mzflsso+49eX7KyyqAmOepg7Zz6l469aSsZ+naXgGlXvd8q21pfkNhNrUtNRdgL8+LWX5zXa1yWIN0snUlxy36J3l91XilFv2UXUMjSNAGQMk1QF5krgU9unHu9oL++gp25DEr1HbJfaiMy7K+9CM6spOt9t8CfLY+N2ixrewqK6bsa+33pt+0ym3TO30v2j+ke8/VBVVUGqPnlwUhXvan3vsS3BVFTYm4ljku22vrYynUXQIPkuWvX8pCieqWTR4KK6lxiSosltt3raVr+7/1j/Lnx4CoF0OV10CSldLxgh5ds7jrWOd5Lv0OL9ZNW4n5b411bPv+5B+rbXMFeEmzoaqRranmzhY33n7zFV+YHzC5zOCoUSaDWGELyem0IgzWsq0nTg/vOL3/OevtgdF9l4enE/ePzyzrxmmNmaURmMYblAmvBkc6ZMNkRymKsG1nno/3bMuGkBjhIQTWGNB8AOBeLMMwYI1lYsDsb3E26W+vgferoNEQC1AlhvPlxPn0ARGDM8LoBtxgs582IAhe094wGIsTxyUoQRTjQD2cTs8YCxJX0MAaYnLMUdCAsQlsUnWoD2xB2U9vMG5gszDcgA2BdVs5H58Jw55hNAzTiESb2E95DRjVWmsomiQ3RmwCvo3U/S3VXjA4cQQbcKTafGELnC4nFu+x1jHdvoJhYjBjYvPEiEQYJDlTNuuKBHak2kExBkZjELtLTrsbUCJBAufjkYcP37DOt4yHA/P+M5xJKUpWikdgscbg/cJpPbJcnricj8R1S/uiS8V3nQzEGLDiQCLWpbkIorxf8qlVYtGoLCsMKJrLWAQfWeLGYJW7ece6+HSkezQ8Pj2ybRdEA/u7O8wcOT09sa4bfluZ54n94RXHpyOX7RkwGCcMw4iPgjNK2ALBbzi3S8XNjeLsiARF1wvDIOzuXuPU4nUhxIixDqdgZ4cdLOsqsG3E4BEDgxVitFg7pO00aGLGGSVi2C4bx9NC+PCe/e6AI+IGmKY9wW9cljOjG/FZvK0Y3DwBEVHLYEacS0XHXYDIxBAULxYryZmPIWJd0pgxbsRoOC8bz+dHbvcHRrPPvhN42dg04gAV5bytDEHZ2ZGgFjtADAkYjWbk/f07bm5eIdwyDgOHwycswXMO6RRC5yWt12BQnXhcQJYNwRP1iePpiIbA6XRiP1k++eJTxA9s23t+7btfsN+9Zt7PuGnCDg5jp1SM3boEDmRbNMlwKjcigHpP0BT8N96ymYjRyHZZuKwXztuF1/YW51wK5mqFB6stl1ySQKSkUbVg8HlLKaXGCepGwOY4Zqz2gKJ48oEAPttZErILoBgCJgbEONQNaN4LQk6/Vil2TFICtgQlhCubU4qvW2zzrHmKjlaSb6wBRBM7sZY6QcB0QLbmgF6r9ACSGYkZaHKYDHonu03ymJXboNncJejfacPOnmnvTKmYnbYreAVSU5JjTGNb0slNmRdJNft6EgqSfy+2KymwE/Jpe7/qz68cUCqGXM+YASg1I0p9gOLExDzTxjRadzHWyqcYD6Uo1ZWjUa3N4jAWx02hBzs6oy79moVPqlmMUOoOlYoagkiKQkihpGvpZY64SchtA6QY3KkvkUC1CKoHIZm+2MYnCVThPxVjuNxj2r+vLNViOF07ZlJOJIBqpKb0NVujXibTV9vQNKehlLMuC1gpUcb8XV2weR4phm12pOo4xLawKz7XR9OzAan11dmhy05+lgfT8fIqE0jzAsVWRytWNDt/atStOY8iZBxfK8Ot5uxKSzVq81zESmq7SnFbi6uIczXgtc0n5Rl5Q2lzmJl6MRnFqShubMU7SfOcIsxlnJtJ3acWVIClimRxOrWOb7It27hojPX+JLggxuQ5JiPkxQUtstbNUVlfv8SZapPUfdU/Q5t7Q45A1W+yLFflUfqcnys0FlasbcgKCq13ld6XrUHqnMbqWFwX8i+buRDV1Ovann7tSJVxEVWMxryWpHa/Koh8ddRUh6KkVookxqDpxlBRrOZjafNzyumFRf7KmJTdSTM7klhkro2xJO2T29/Ng9D6pkUkJSvi2MasIUfXPa806rQGVQyooCYSMxtSY3G2DRseiCzHE/vdoe05RWGXfaON7BVoUfevNpqdZBcJaamPvyy1sVBkSrcK2NonXbY7ijHR9rpSIc+UJSr93vcyuJH3SWlgZP3EAuBSJ1RyDmhx9yXPkeTfQv67TEc1OKSMSFvjffp45VMVhZLTddPf+RSUstK7QdfrHnWf1uhAY8L0lPamDdpBDPVJPciXFUEBZYQ2Hm0om5zWRdXtDS+loICv9V7SPa0vL/eyNld9O1804+qZdQT6Pa2YG9Kp+f4pOa1fOh3fF/iUrHtiNfIkO9cvAMp+XxRF1FQmYsOKEyCAagadchpBNwovE42vWLcf6ffL71u35FtjVxh+kQSE9mnJVHukH5P2lpLq0X8+ZvT2YFL7ru3j/X9fdkRLtDqmPSX6jcEYNHjishCmdCqVMw4xJGbGumC8ct5OPL3/wP27n/Pu3decHh9Y48qXX32DmT/lGCN2HJnGie0SmKYJFYdI4LKs3IwzIZ9yu60Xlm1hOR95fHzAYJl3N9webvGaWBQ7OzJYi7UWJ0kfBNUEjqBcIhgVQo7wK2DUsW5njssz23rBWWHnRoJ4rCagQq1lMAODFf7Crw18/X4lrLCtFx5OFxZ/YYsL2xo4PT0zziN2TFCYEcNgHYpjNBaxwmU78/z4BDIw7V9jS90jSQWlBydMO0/wyrIu3L99z24/cTu/ZhhnnMx4hIWIUYM1pQREDriaVAslSMSqJYpFJDBgCOJwbIg/87AcMWZiP98yGIuRQKBWbmGyEdQxYBGTnWwxOe0lBWEHa1PB6JAdYuuyXWSYDgPjuGMNnueHR4aHJ+Z5YDrsGccdKiN+W7k/vcevJ47rEVVh73awH9lC2t/3+5nROM7bMdUvAtbzijfCYZgZRsd5XZCoOBEu64aXyG6+xfuNp6dnpnnksLsFicxDxFmBLfD0fMQ5eHV7wyygy4mn52dOx2eW05ElBObDa5bjmdlZxsMeN00cbgckKA/GYkXx6phDJIhFBU5e2bxnWRamzbLfK0HAh5EYA5MavHj86jHBY3xSe0/nB3bjiGMGddhQykpAjBs2miQn6iEK22Xlmchlu6DnC1E3tvXIfveK16/fYN3MMI8gDo0O731mFGduRhDG6IkOwrLxdHngbjdxN98QnJJO3ha8JJvXGGGcb7BYwmVJgMZo0AhxDeiQACtRwxY31vOJ3TghbkbEYRzc3t7xdjtxiSemYLAbGDegOuE1Mk0j2+nCFj2jmdhC5OxX1tVjUcZpIpgJMxisPWDGked1QL3j4eGGh/U94j9w2Duss2zrys4Jr1+/Zpx3KMrNfgcIEgO3hwMXDaznE0Lg1Xd+HdRizITxgSA21ThzF+ZBmceUEMEfAAAgAElEQVQZoxFrHCBEEj0+1du1RN2SXZHohIgakJjYeETCeuTm5g6rK+L2iBhC9KgaNAjeRFKZq0S8MFKAEwcSWC4bzw9vmUbHzc0bzOBQGejZu0pxLaQLxgrqA9YYAmmvVi3ZNM0jaKfxmex32aSjTKj4Q7XZi49Gtu+SWZGeC/hskpismHz2tiq2UWS72NdZX1U2Vf7/xacpuEWpcYbUaqT5pVKzeiClHV4HSzvdK+V92QbOnYt0YFL2pY3YVKD/2+r1z/X51TOUimGf/yz+SzWFslFoKWkZyaGF4jx0Dm8FptKg9o5xYqd0xlaJelMkoDXgY4ZipZiJEGNSOcXIBluNuWqKKbTUq+KjhMz+MPmB2bwrbCDpnNpsxCBVTaJo3kyzU5GnN/UrRU/AZKHb8lgKEBO4oYUlBCVdqkTvere8yJ/tjDurGTzJBmxxw9JGH+q4CVKFuTiAKokCmZ7dM77SEi41qQSlB3Vq33MbilF9DUCm/6fSG8/F4crDryFF9SUDedoDkmmBtor3iRjYcmQzMNE7Jpqc/Zp4m/uThlprhFiN4PJdMVvlBmEj4nIhz8bggSu2VF3gpZOpbaFD2/v+Nvc5A1DFGb5yMNrQNp+wbKWFiZCdtiqEyXA3QKplYHPRa8l1IvJY5/lvKS/tPb33rEXATAM1VEPrY/lPpDrNQj5KVaGdNJfWjs0kzlKP5aqjSitWXvMVXzqA0hzR0t48n41f1BzoHojy39r0pSqyohDLkaMlEh7I8kNbjy+nBpGa4iFZtotRhZIJkXmtVpakVBksTlCtl9Iem8VdSjC988da2lj9b3G6YlPIpaB9YidlxtrLFxRZogPjNCmlFLUKfLj/muPxiXk+8ObTTxiM4uzMH/4ff4j3z/zNv/E32fwFN0zV+ZWr1jWRiXUSykzk67Jm7/PAy4z17MY6zt3v7e/Un5peU+Sn22PS3JTTP0qqTmtroxVf96JQoovDXlKYSqHkApir5Hz+avwofR25/PoqrWn7LXHDTLfPa45cH6yRTRooLpTCj4XtBl4itrIgtdsR+7Ho5KYHw+onscyK/ra5xk8C++LVWLUNQ67699JOIAOFFfx8edSx5v00T1D9vvS13xOvPlcbVmtDUxV0Eka1AusN/R+dLrvqU3d5tTe6vSIPrL58SqcHurgXZd+P3amVQks7ryMqsQVB6OZO29/Fdmk7b7m49UtzW16CMdfs076PBeTO15e10+vOSFun3TPzE/J17RS42P1Uln5bXa0Rv3Sav/UO6lork1J+j+rRIISY0j/mYWI/zTydnrl79YrZOha/cTo+sd6/5/HD1zw8feD48J5lWzhfIqfN83w68u7de+5erXzvh3fMN58gCueLYqJj8yYVtQY2LhwvkdN6ZjstvHv7c9xgcOPMunicE07LGYDDNOPGicFanHNoUBZRTPR4kp6ORNS4XIcwAUp+WzHhAVnPOITdYU9hP48MBLFsGomXhXfPX/PZYc/6sOfHP70nxIGLKmuMELfEhLKW8fVdMmmcTUrcCkYNg91zWY+cPtxzUWWa7xjsgY2I+myYGYMYixfSvaNnGkbG8bts28rD0zvEOIbphnk/sRtnnBh8tVUkpe3EiDOCxVXrbZYBjRsPj9/w4d03fPbpd7nZv0EkccfFKBjLkE+Kc3ZAJIG6qlteK5EEQpvK4FdNjKWUEjag4hEigcjoQmKFhJFpHFmWZz48vMe8/VkqeH7Yc3o+Eo0h4rGM7Pe3GCcEE0E9OwM2rkBMoJdGlsvC4/09w84Rd6/wwWJjQLbIxcP5dGSaLDKk+kgX2dLpcgQGER5Wz7YJzlqe1wtuEx4ff86r2z13N7eICBsWDp9wt7/DjTPj3YLb0kE94zQxyQ5zGPOpdYq3ipVc1Ngm3TvMynTYQxgQmwrs79jhg0fDBbUbhnT6H3bFbZHXn/4Ag00gd/AYERxpDowYRCx2mDFBCXElhHRynpsmDp98ys+//JrX+x13n3xOADa/sTwfudnfYKcDMkS2bUNxPC0eq5HZjKxnZUO4rCsPRrmEjSi5BpZGtrCm+oFisBK5+I2n08psB/avR6KPTBi2JbCJErYNF1KKp9kWNCyco3K5LPjtzBpXHpaF731HebocmW5uc1qosF3g6bRyM++JThArDGbPNNoU+DPCIA7RwKtJckF5xzJ4vjN/QjARE1xiM3rPFp95en7gw/Er5mHAjBPWDIiHU0jpsZMV3j5+zQ++8xmf/vwtr97csbu5YT8duNnd8exX1udnTIAQDX7zDGlmCDlAZwAbY0oRFJdz5AUj2QIygliDMQNqD6ybweJrrSFjITrLnG2U1QpDUI4oTj1Ej/oFf7pgvGKHyCU0385Yi4rB5ZS3QLOzXNrwUVNsVsFklk5N48/prcZAVKl1K1VztkGxKUzHqCZlK1RXMOuNCsgo6WRtNagGBqW2ISvDooyqzVXsRMEQJWJDBNMO1GiBJcnlCVI/Q7FXTcmQ6XRnb3mI5LS94gvEBHhp083J38vekaTUS/NvUqZ/xo+8VMJ/3s/f+x//UTYntXWotwa0B1QAaU6ik0SLK9HdRCpItQNedr0Hk0pNpOYs8i1HszgKVywUAcTmhsRqkWnOy45FKQo4AR/DleNRDZUu/aswsCA5hyoFu/SprTrUSU+KjyZYmoVKSNFkUWJh4UgqVlyktNHPW5Sw9jVH31Vi962lpad1IBDUKHEC2bJAdsZkNYTzdaX+Rol9VkeugiNt4SZnrksh1JxGixCqWKSj4UMtnNuZ65KeYwsDxECIIac4FGevRD3ThpDTUCmGeh0dAdQ0Qzs777Voc35vQamLga7kejamOW7aee+W5A4lmch9LnOa/qLMWhmfiGbsqcgwOZ2NRrmnFer+do2s0qf0BKuF3iltM8tyUgrkRWjIvmoWPJPzlptTpdr2xZb+1jsN0tolzaF72bZaBA/p0jXKbKT1Za0lqKcery2Sjtwt0pedZc3MKc1rpLQ17/hZ3iTX2NJ2xGYdJunosWm/KM5ecb4aDwa65J/MamtrKc9wMk7pog/S+lDdvPJAcw0UUMZCM7hGpqYWBVQYDHncjLT+FwaKlD2k1oTRqlj6T03b7GSjjUfn6ZZ0LEmRhpzYkNua+5jlYds23n94y+3NK1SVP/3x/8O//L//kN/6jd/md//aX2ccdszjzJc/+TH/8l/9c+4fPvB7/+7f4vs/+M2UYy/SgRXt+c2hLINKbdP1+JUfCxgi1dsseqUBDfmQAe2eD0hh7BQAVwq4llL1onZcTe0ZTbEaC9DWaro/59abLFmxjaNkwDZk+Wm6MKcr1c51DDsKq7OtsahKZXd8RH3X++rO15KhYp+bTzcWGEJp6b/BJBBpgYS6QaLZOC/sy26GXqT4Xv2zl7sOIE7bTVtLDVDKYyNtTgrgWvbU9hZpr/tlNk4H8tWLy9LrvrqSx7rrNNkp28rVdLTH1ZTiX/Yp+qqyuWu9sSbPPfO+bimUoAx1n0zYdJbX+rzcuCyrJdXxKojTt6eToDZUXXBPWkCmn91rQEnSKYVXe3WJUpucItuCNbVHAsUR+BhQqN2zyrvK86tIle9yAKDs+xoVjYEYNzRaMELQgDGObXni3U9/wn438f791xwf37Msz5yXI9u2sa4baGS//w7vTife//RPwVq++xs/ZN5/hrn5DDu/ZjAJRjYmpWasXNi2BXzA+wvffPgaXYV5vsHtdqmQrw8EjXjvCWElBA+a0oatGGYG7O2OnR3wJukjlVTMmgghKOtyYrArn+0CWzQ8XWBdPZsGAopfDReNiKwQJpY18Ho+IM4QrDCoRYkE3ZLuzWkzW/DphCVRnBuz3oG3X3/Nw/M9bz79LrN7jUeT41tLT9ic3pfS7QubXzdPtMooAyFuhBA4np9x68rkYH79GutuERzRRtQYrE+Of0RxZiDqxnJ8z/l0QaxlN+9xg8usANNKO6BMBqx1xKxAYgTFEXJQxRpFYgJWjJLTg3I6zqac/cLJb2z+QtwuOLFYgW2NLJcjkxt4fHxH8Bem3S3rtvDmdo+bZy6XFTdO7G/usESOxyOjc9we7lARHk4fmJjxohwfPmDjyPzJjtnteff0CCEyWUOMsOmKsbnWVoyE1WOnEaNwWRfstCecVwLKsJ9Ylwu7YWAQg4+Kublht3tVGamD2BQIXwNP24ZEzxaeuL3ZMw+v06lkClEDEU8wYMUSQyyikWzAaBLtIaRaSj5ERixeAjI4fPRY45CY/I/ABvGS5MQm8Cj4jefTgiVyc/Oai26Y7cJgDM+njfNx4Ts/+B7nZcEZg3EpeG7FphpgbmQ33KDiUL/ia0B0w4ZkMwUNiCaiQADI8+xNYiw5H4BUYNwDDsWpZgZKzPUsV6IoI8JglKM3PJ1W/Pqc90zLutxzcziwm/ZIjNy+fs28O2DGmbie0ol3zhGMJYFb2dKVyIBHBQYzsPqNv/pXbvnZe+Xt4wmzzgkZIUJYePf2T9iCYd7fMQ17nFjEpJMNJzuwSEBVCEvg/v7n3N6NDDIzHkZuhz1uTDbe8fkbfvDFF7x58x3MPDPakdUk28dGRfyFTSQxtMKGSMTGkMY4RJ5PD/j1wq/92l8kmhE1lk0N6k2q+YaBuKUyKlESkw6DI+BFCBK4nE88fPMVr+4+Zby5Qy21ZrGIMGAZst0RqmINCUCi14styBWr70ElOjhxxBiI5QTLEjgxJtWmgmojVrs/+qzjpe4pUcAGkxg+adqzLZe3zayTo5b7ko6LxhA1HThQLIjE0zJshKrLDAaJycpUKfq0+FrZz+nsCUWRqBiXayUX3yxvxbFYsT6NSRBw+VACMcJ/+V/8Jy8sgD/751fPUKqOR28xdj99xAYuDm7IRr9ku6JYaZXJRANSWg2gZI6bztKw2up3lK9La0qV+gzEY0qaB6Y2LDmKmj3FhIv6bNwW9lFqXz6GsxjjkiaxnCYmFLNeyec3Ql6sBXgorInESEhK04hJhTQFiL465bF5Mek6Y6ozmXrQRRklnY6RWhBR3Uj1S2ym9dDmJ6fgFKcnzVEaubQ2pNn7CmNMlOs0xZkJYSQdt0txIjJxT5rZqVqcc1q/TaZyU6elzld/2ldNkYwxKcliIwPk9LpSALgV0ZbcBovqloyNTiyjpmJr5iqdMTt5nTNRfRs6xzb/VsAAQXMELF0QtABpL52vZrAnNo7WsVHaIKd+ZIdHFSEZfGl+KyGz+LGZxp9StbQ+Q+oGVNLzSguMmFynQNIcaj7tAJMdXqr3olJandhESgJ9pMptqVvDlZNhaRHoyoOIJMCMNLAJKU91CJJTmFhgPXBQGBSa2YB9BP0qHS07VpojTw00bg7G1fM6NmSbo8IOTDChKjl7vH2qo1WEMgtI2VpSwdByOmN5f0lh6RRgnjdyND+xnZqESO1jmafyuswSkiTjsRwVdaUW0r5jyXOfZbjfS40qKiE5KCQHr0x71DJHGXTNjMYA3L99z/H5HrHwxeef473n13/713n/9if803/6D/jNH/5FdIDt8cQf/LM/4PufvuHTz3+b3/ydH3J+PuOcBZVuLQlKOgZWNEVeJct5rOBcTOs3kazT3+LyeKWC5Jr30MKSSdH5UJUyL4DiAiRpdbhz/awyOWQwAKqpEiUr9LKv0+Sv7PdIca6b9Je9qo2/5uuu0wwrW4y0t6D9uspgVXm2lgLO18y1ple62jxlq6fC2p3MpztsltW6f1wLVBWwon+rtGiW06Kr5bo1rXF5QykTcLWosnEoeR+kta2MlXTPkqJ/yk3SRRXLhf39tQUv7BJppl27of83XZqutL71663TFe2xkk7bogA6rUlFvGIMuZBwkaeaaJ+7lfey/H2degoLuGcRNfCl7I8pPUoyw7X1p5RAlRdTUMEhJRdh7k5m7MDOcm1veaT2Rkpku6yn7pGtT2hm+RUWptSrqh5+iXJ1Qy1dn7WbkigQo0d0ILKlk7uiR0nOUPTgBlCxBITBwM7uOT6+53Q+8e7xLV/++GfoFjhvF1Q9z08nnHMYM7My8+XDkW2559X3f52bTz5n2n3B5XiPWxd2B0MwFo2euG5s65l1PRGnDROE83Fldq8wuwkBXEw7bzQGi2V0EypTtp2FEFaW05FfPD/BYwIUZjfg3JhOqJomwnLm/cM7BIOzA+9ng9eBSArWWO9YnWVQmMwdZvC44LjZDylwaHMahPgkVwwJRLBAAGfTQQt2GHEop8dH3j2/xdiB73/x24wMLH7DDMpgDOUUqqiRVQFbKwgm294ZBqfIZhjySXnm1hDWjXBZefv+gd1wZre7wewnbJxQC4OBp+3C5fHM8fKBYZy4ubtDRkMIAUQTezwbkLej5Ytby3o68fVxYwnpOvUbyxa4kIPEfuOiC6IpLdvagbtpT0gVXNL+71IdJzONDAwMMjAdYDwPPLy7Zz7ccvf6ryAOns4L5/WZablAUGIIPPlnnE32+8O6cTzfM9okg89hgbCwG3eE1fJ8f+HRHDFDmuNL2AghYgdH2JRzuGCw6LayM4azjzifUgDtINxOr9jdTDzxwNNlwRxe8/rmEzA27RGqECOeVDPK2JH9ZNjCgGPmdHrk+fErhmnkMM9Mwy4BdN5nHWUYbbIZoyqRVLsp6Y0RazwaBly28WazAzEEuyGsDGIQN4FfuSzPHP2ZyY7cHu7YTZaA5XL0PD4+sxsHxmnHcjxyOT/z/Hzi9WHHfn6Fj54YkvWtlzNnHghuZppf0ULGhmgDIVgcA5jERnPqCLIRBfZmQmPEuwQ+x3jGuQkbLJtd0zpTsCFiuWGLC9GfWLxisLy+e4UbP2PIvtv/+8dHvvOd7zGNcyo+HuDp+Z6Ds/zswyP7yTJMB9QYZjtiGLGSDhv6sJ4Y/Mab1wd2Av/5X3/D3/uffsrjcuDkT4zWcgnHlA1xufDJqy+whzuMGfHZwPMaWbfA8+mJeZ4Ra7j99HtMNyO31mAVLudnvnn/Dl0XTjj+2f/1D9mzcthNqBXEWrZTxLjIsq6MZuR8OWHdyHk5spsmlnPAWcN+b/nhX/gd/tn//s+5Gy2vP3nN609f8+rmE25ubpjtHuYDUV1KkfSOgKA+chHQEDk9nRmNYdrvycn0OWsiKcookVPcmBRGYwliWJPyg+iwBEr4WvMhRw1STvrLiEkpCEMJwCurgFWbg/Gl4HiSHqM5sCMpyFuSijXkMizJymdCOGsiizgENVrB6+KPV4Z49AxIPiSp6TKvMflKmvCJkH1w0wemhVTEPIDPOt2QYrJqSoA/2b26QWGfqGpOczNIDgwIGQcRIcSP69k/6+dXzlD67/+H/0VrVKqLGBemhJSssWzwR6lmJqAMFAcqmXmNNnZtwymJzp+iySVa2AoSAzmFI2YrzFZDsxSyjtkZqSkNkiK/OcxXDborpkP+b2LXmcpOKKlJBQ1N+ZCRGL9tlkMPWnQFzDtnMv3c3i95cXW4B9X8zE5nLRquClJr0ifKX3/6UTYYoYF1kGsfdPJQlkWpcF+YMkYqeTC3ooBL1U+jb2X3ikQlrq2PdUCbHPYFsuWFcZnmUmtrG6dE83yU9gikKGkFFsrCzLKpnTwVhyFb2IUhUuah+UBS5yedHJgjrjSnp8xJcmwKoNRSJdNjsiGtfQHSNhM16poBixLwL8BXuSVf1eQr5U5mBkh3hXbJLXVuBBKhmVIMrjI4tEuLo/rWV0AOSopAA6ipspuuzw5MdcbiFSuCfn7LR4urV1xhSUZKCsO34es2gOKzFOc2aHOwaupN79dU4ZQMxDYSaewvqylOWvv07U9yoJt7RXXuDYrPDAGVqxnKzMMGpkDHmkSbL15ouB+L0ss1DamC11cOpdQxLRGLCu9VJyxmUkACv8QKGmLiKieEEkdKCS5FUjV6vv7657y/v2e/P/D9L34diHz5kz/hH/+v/zO//x/8Pl/+yR/zD/7+3+ff/nd+j7/zt/8u//gP/oCdm/nhX/pd3rx5lVO7U35+yo3JQCgGUQdaCi2UbTnWEzViWcdAiod4SvH9kuZVtUlZKH3/f4m+e7nWr2sy5XRiOuZQ9/svfeZHlNbHZKmxTUuaXHp/jR8UuS7rMF6DWKXW1vU7Cv8udvNd1nKS/5f1eSi6tEbKrvtWgU1Jilwq6Eh3fbjqcmXbXG9avByJ66+/PUptn5b2e216WT1c/da6VvaCNkblmt5eqHZG34F8fXl2CS68vOhjKXclVbhIrO0A8AqEyLUuKtf2T6v83rw3CyYzdOO33td/NANKNXxU0mg7iwtp8tZLsclRip6Z+bH+vfyUdxYwU7tr+4hwrTN2tc6u193H9r6P3VOvJaX1rz5S9uQQAiEku2VMhYgICsNo2U4nfvKjf8Uvvvpj3r17S1Th9uaG5fTEcn5GZMbcvOJyuvDkA3Z+w5ubOz579TkXMxGiJ/qNy+kbxnlif/s53gfCeeMSVoYJJjEczyeOJ080I8MwEc3GKMKoAxjDGreshy1qIjYmO6cywUXQwWEvG4/PD1y2la++/NeJSeMth9s7Dp98zjDtGNxIjCmYZYxN6X0CTsd0ipVz2BhyfaGBVH/PYsyWAyABchRfhOSIM3I+vuP+8WuihbubWwY7s6zpABJjDZMYBmsSTCiKj4ZV044y2FxTNMZUQJuYWAIx6VkfVkYEa2ALgWU9cQonJAT248zd7g3b8Ymvj++YhgP72z3eOKaoqbiyCN7HbBsJQR3DoMwO3j2+Z/MuFUaXiFOI4lHrcGZCgS2nX83OpROMFWIomRIpbc9kR2+0Fh9WPnz4QFyVTz75ATpECBEjI1494+RY1wvr+YR/ekDjigiYEdwwMtqBNawQUu2jcTpA8Gw+Jpa9MfhlS3uphMQ0MJb1vDFOczoxVVoKvJMJ8Mw3N0zG8O7dL7CDSelmbo9qxGUQFREIW/LHrGWQkagbwRie8cwSkS2wbBvL8sRlfeLVzWfcza8Yhjn7OYoVRzApZB80nbAVo00pjESMGVHxrOIRa5FcpmI7P/P89I7NB0Y7IFPk1fwpp+XC48MDu9lys7vh/fMRG+H16x0/+tmXfPHdzzk+PeOGCXEDy/mR3Tjy5u4zjpcTT6cTkzXsphusU6bpBnEj1u4SgBE3bEwsESOJAR9U2DRl9AVNtXg0RKKk9CixgiMVx78sFy7P93g9Mc0T03jLOM5YN3JcLiyXM4dh5P7pPc6euLn7PuvRMA4WuyMFtUlh4d3oCArBB/y6pWC3UYgDBGWTlU0vHLYNu3uDGaYE1iGscePWXvjy7Z/yZvcZUSPj7oC4MRMVDOO0wxmQacDEDXM683D8Bl2e+Pn7d6ynM371/Nr3v8uK5edffZ22y3DBazrVcgue2Q1clo1hGjhfAtNgWfzGIMK2RsRG9vuBeXfD6uH2za8TorItTzizsXdwd3Pg9jDwyes7Dnc3vHn1CYf9He7mNdHNqHE8PJxYLk8Mu8+wxjIOmmulCcRIpJzy5gGDySwgMzjUWJK/FZvu0aJ5lHzEaSIr5IhtELBqEgRVfBmEQCiw1DWpoNgummxRFTBR8MZgYq7paZOOSXuo1vSyoJ2eIjGJkEJESGxBawyEdOJaDIrY3l+gGgrJ17SZUUlm0qWLSjYIZH8vpgYXH6m519r4JJJsyf/q7/6nH3dx/gyfXzlDyUguInrlDHUpE3nCe6pys/WSg22QugBLdLrWcbky3pMrVWoV9L+kOGxJTUj/SvGg5HRjklCkK4t3KohJTJCXdWqS/9UsT5Opv6bUksjMpGKwFcCsPwVNcnpWeStKRVSLGVnnWpuj0JzP5pGIZLZPvVezUZWjhTljVImtMr+2SGLqTkrJq4AI1yBacc5Sel4Drq6YHdL89Maeac56typppmw3U1eORjPA0yaRr80MgnTyRTfRWZbQQgOX6vQlGYN01GVx2nMvJcGQ1PYUJ0Vpg908klb4uUVmy3cJ/MoF/kjGGV0fJbdTxCZHOU+jdvMmRfaKwxG709O0sFUkFxJNchQz5FMduFLoN4OlvWui2WPpgcvekSz1SspU1bSYNklX7UxOZKzzoC895Sw/pZxUbYm8cAi66xMomU+7kgxsqkLIfUczKt/lSOe+aQbaXFYs/UehK1hMXR8xy2NyfmLtX6z7FlkppDa/TKGjIP3EZHwouXiy4rUAAJKf09aCMe39mr3Jq/Ug/ah/26FKP3T8gLqv5rmkZ24257SmEFUGgKGZpHmfieCwEIVVYgb3E6hnMhPxcon8+I9+xNv7r/jhX/q3uGwr4gM//dlP+P1/7z8iXjz/2z/+J1i38fVXX4KzjJPh3fEX/N53/n3WywVnXWZDhbwfpig4KmB9cpS7oumZY5mBz/Rdcpp8k9IKJvVD2c+X1DXQgyS9M3o9DT1YkEdRC7REZXw11l/ZV64d82KXXH33sp01uz81ooAwffSgpC1dpXvmmxoPsDaTIgvkvbB7PBVcJxko5H6UE9o0r70eXCospxQFLIBvBnpzoOFq5ZX7jOTagdJ/TQKHij7SFwNUpPbFV3Q6KXe0aeS2X1UdAG1kRD46B9d7XLumQVftje1Nvc3SZKjXI/2+0V9zPUSWktJa32C6+cp9TuzdFnWlA8uL5ARtFP4+/biBSb1wdyLRNoiruUzspm/nz/4y4Ky8Q/K+V5l3H3n/9frLDcqfWmrgRT/695RaUp3WLt3iRz/5Kft5Yp4G7ODwahGboscSAgwj5nTmqx/9MV/+7F8SwoYJDr+tSNh4vpwxw8Cw/4xt2/jTn33J59/5HX7rN/8y1llWH3lYjhA+MM536ehlYDmf8OE9xgjOOfbjzPH8zP3jGdwOMzvGfDasi+kUo1U8qMGTg6NZ71prCSguGFQC27ZwPr7ldN4I54XjxePmO+4+e4PGjbhGLstCFMFZx2E3sxN4CgHVETJj34pH2XJkakzjZyKqK8YM7MfIZAwaLTtrEYl8OB756fsvOS8rb4QReuUAACAASURBVA63DJPjeFkx4cJkDMMwoGJwYnAupZstq4IYJLNf2SLWkIBwF1ENrNuGxTGacow3nLeAxkCIHrywLp63v/gjbFRCUF6//j6Pq+fp8og9zIwpOYQQPGZIIJq1E4MZMCIcY2D36jc4qMl2hUFlIaZcN0RTTZrZOTQqm1oGApqLNWMcajLbSxJn+f2Ht3C5cHd4w+47N1zWDfWl2PwprastMhvDfHfLabSc799zOT1xMANOI6NTbqcBmYXzZeOyPHA7H1jPnpWIaGRdPbv9nm21XEJABmE87PE+sXMNBjUGsanOjVjLejlzDpHXn33OPE6sCJHE0POaj06QlGYkCltUxDkCDo2RvQh2S3Wnbvczl92B0/aK87Lx/v494yDcHe6w803Ot7WICTgEYy3YgEEZ3JgzNoQ7OyNGeXx84P3DPZfzA/M4872719yvG+tx5cN6z353g3WOzZOKK6OsurFtO/bOEjaf9GSEyTrisCeGwHK5cD4Goje8ef0pu92Oh6d77h++Zr/f4xWcm5mnPW7cE2OyaS4xA6ZW64lXiuIMYAPBW/xy4mm5J/gVRovsRw7xU6YxAcFPz89YUaZhRxSLP5+5u/mUn3z1nsPhgveRNTo+me9Y48qyeu7GmRANp8sJQsh6K3PErcW5Eb/NxO0e794wzBNBBX++MA8CVtniAmJ58Bfm+TVRRowOWMAZhdMjv3j/Cy7LPU9PT2CE4/OF21lYfGAeLMfzE//iD79iWTbcOPN02QjGYtyewYwEZkaJ2LhwPgbYyqlsFpyvxf33XhmWwKev9+zcmXG3Rz/9nGnc8eWHZ37+zQfsLxaG8ci2rRgDN86znwxvbg7c3t7y/e9/l89/+3eRYcPIzBZhi4l17nKpFi+RIaYaRGoFEw1L9AkozL6BFQtis78j1SbWCGgkOosNqVREIDEygypGXGbMRgYVYq4lJar5xPqi22y2WQJe0sm/ajSVYNFUolwTfFnr3maXDJfrIYrARqQezCMQQ8hsZkmZPppT1LKGK67iIKkQhYqwScBEQ6xpp8336eswmeIjZbAr+ZnJbxTRxET9FX5+5YBSH5+02Qku9VaKv54ToGqkqjnPhW+kED1qTPe0Yl+lXOdvGfbZmK/XKa2YMuVYZqEeLh+bw1KdyRhTVCco1jk0+mTwJOrDtxzK4uSkvrj8LJ8bbBpTpDemswObfM/kHBejr7p42eArTJ2ankBxDLUW6pX84HJPeU8ZjeaCdwZ1TOMl0gAajSY5CCYJXEY9mnSWGjYFPCh90g46ymygVmshTYSURSGtRlbpF0JbeNk5TxZvIf83QE26uUrgQOqTNYZQTpbqilglJ0yxNgF5Zb5sBqZEIHRI7rXNLVlGmjOU5iiNQdRCfWz/6w3b5r9rPk2CCtJV8Oalh6MJ2S7roqQgSf2/Mp7ZYan1ClofrnqQN5J2xHknA5pYSbF40pLeE1Uz86+Abs2JJ6+hWJ/V2lc6LtloQVOqhkFy0V6qo5re356VgNZ04oCRnPolrceiLSkllufQnBEtxWtfRLfTvWWoc5s7IK/SYIrIyLX8KC3dSEr+5fUQZ1OA7Nzlp5Y9Tcmr7+O7trwYx14m6omWH72vtK59UZ1fbbJXgLgrmLY4v2VvzITMSoElQaI2RjSnWUKO1GpknB1/8a/+Ltu/eOYP/8k/5PTX7nl3/8xyfuL08MDj/dd88oMf8Lf/s/+a//a/+284no58evuK//Bv/cecHp/T8cQhHTethRaWhDm3W/Oxyz7XcTB1r7VOUrpuMAR/YZ4nQqSbU+re0I9UAZfrtx8D6T42znWstI5xnaYyNy+c3V/ypKuc92twoa3N9LhrUKB80n5gunti1acfeRtFOfRtzne9wJeSLkoG0FXnr4AC1U6ONAMuUiGrLDvtXeRT5jS3o+jktvZa47Toipe/d9JfjMMi9C+gmZZWxlXnmp6CthY+uqhe7pFXPJ7asbrjdSB1bZa0C8t+Jy/GMW9ZWQ+UtPSs0+oDuy50wHdiB6TvW+Dp2/L3MWDpOq2s61DZM3Jvtbsv9/Qjg/Wx4WsyXey0l30pYHqV/cIIJ9kpZX/+WF8g7YmF9dmsA6k1EC/bxvPTBx4fPX/5t/4SJijDkE4pMhjWqLz/0f/Jz3/yRxyPR8Q5jqcL5+cPOHeDHibW9czju7f/H23v/mxbktz1fbKq1mvv87jv7p7p6RkJBAqNkI1QgIOwDcZhGdvYQdgQ/Ob/0P7NvziCsMEIBktiRjKCeWi6NT3TfW/3fZ1z9ms9qir9Q1Wttfa53SJshh3Rfe45ez2qsqqyMr+V+U2iHOkuH/HRr/xVrh58wDB6pnCgdhvc1RYZXDrMjILUHcamMui165Bo+eTzn+KJPLp8P5W5jg6kQiUSxKf1oalCWzl4qKwQQuDoe3yc6Ic9NoyYKNRdR+2Ug6vZXLZs228Qx0glYC88nRkY+yOn2x37Q4XZPsDaDSIVffCIUUIE65RRRq5MzZUzSAXguKxhUyuNsRx6YehHPn3zko8/e8n2wSOePn7G6EdO00TjNkTjqcVhNR38qsn8QzESVBDjeSgGG4WxEaaQxtp7xfsR1cgwnThKIIwjJDoffJggQPSecThSX3xA03VMu7fs/YmLB4+42l5jjEv6xjhMtCnMJI5prxDHFBSRGo05EsEkQCVKhThhjImTVKyFmIvwZA7O6DzlwMWSfIfjzWtu9q/pqg1Xj56CbbjbHWiaDjWJgyoBdp5RRsDSBMdlc832/S39eGA6HhhCj/cHDqcJUzechojtDKf9CT9NdFVDMBXSVBz7EZxgq8TxMvqJ2lUEETrX8PjymuE0crO/RaPQPrzCuRqNgZNXaudAU+JqygzwKY0OGDWlD1mjOE0gi8FibUycYnkfbusNtgqpCuLg2e32yOGGqtvS1Q213dLWMFpPxLCJFc45fJwYRmU8vuUwvGGMkcurKy42W46nPYfhlAEAiBY6V/EWQ0Nk64Sdc/ShT1xMVnDhRHQNPvrEHWaEaUp7ok0YB6fpxL4/8vLwlguxXD96io3Q72/p+zvEVdS2pq5anEuppX4KGJOeUann1O/p+wFnDIMqddOBq6ido663nE4Dp6HH1qnE/TRNWI1ENZziyAOpqZsNh91rNpsPuDudOA0npGrBByYZEWM4HXusgbqqOY4nnDNsNh3GVmwbpdP3EAEbk160bYNKz8Yp026iay5ptw/w0wEd9/SnntNhx+FuRyWe3TTyYHNJCIr4E0wn3uxPvN73DL5H1HDx8BntN75B3W55+ugDumZLY5WHnaPaOJ5//pJx6DFdjYQW7AgR+mlPhWEYBqrYU9eOIQTuYsXWXLJptjhrePxsw8Prp2gYkDCxabf8/PWXuM7x+jCwP0bMfmDUPZ989gcMhzv+wl/4Jo/f/5DN1TOCdEQxGA9BItEa0IqgKfKtEkNUwxhGdm9f0dhAVXWEMFJvH4E3dBV4UyWqmeARsp9eqpCrS/OfQCiRQTFx2CEplSxl0hg0CphAooBPu2eKeLRMRpEMPkk8P+AzK0tCScDQFMPsIxROYZUV323h6BVFYvFUAp6IjQYrJtkgOYx1PkjXtBeWKsYplkRy4bPFX9NAzhv55X5+6YBScSgTbpLBJFgMpnxVAnWSwIqhN0ewZINGZkeppDEtJ1PFsdfsAMccBloAo5R/mOKSksGXhZfRS8kb+fpc1do0bMbkiITSWvsVpJrZaTRSop5i4kRgKeW7PjVdPJoCpzEjhwlFXIemKyUXfS0xkcQ5Q5Gn6lwhr1wDOfrCwFzKnAwWZaCnEGDLIo50kjwbhcUVTeHMMfc1qJ6XoM8vXU7IC4i0RHwsYe6ARKwmeYVyR3YiSt6zZMCwzAjNLylpbCHGFCJIOflOwN08DnofcCBHaGXgQtI7S6riPFezIy7zvCwG8NpQXjkcUhyUOOfMvvvRBCRh7tvW7y7k2flZnTTPgIDO4zGDI/nUvzjhi2OwAHlrw72sp4UIPANDyooQXeaxTGvMUKLZlAUUSvhSSSddKSUtUlrmfplzGY9MJxukKMYizQWNJwMdhjmihuVEeil/mZyV0p6v+sxOSfGBFUroaAF2JSvcWTb3HHvJG0pJMVpXRSi+ryy/geRKedbmCKSc+qbr9shZ+9arTXVJbynj/+d9zuW++sz++gJ6iCxrKG2UpHme15ywpDB5oMbl3O+ch20ENYb+NPLxTz7mX/xf/5jbu5dMJvA3/vrf5o/+6PepL7Zsrh/y3/3uf4P0yt//7/8Rj548YYzCD//0R3znmx9mkk6TKs0FwfuJymXHV9Jpc+UqfvCDf8WTZ8/4zrd/De89la0JYULEplO6QQn9iaZtgZSiN2uhM1Bp/fu5TvoqAHJ9z/+Xz7kzvR6jNZz3Vc8tbVnDObLoblm1Ma+rdQzU/d+LHku6sOiH5d1yr+9zGlUBO1atui8TlQJ8ZL2Rr5sPRGQVoTXvx7q6n7J0uS+GuZ3r78/evwZmFhGf9c0ohbtxjipj9aOAbLqo23QIUfRuXi9zO1f3y/LO9XhCVoV63iLN7Z0jG4ueyfpxedJq3Ff7VgG+CmddIMx8iZqN0EI4/efN1BmgWY3vTElQTuNyU0Rk4WsqtsXX6Neves/9d35dStz6s1wj50K9933SQUuqnNXSlwxUTJ6+H3jv6RN++vEPOQ4nMELXNPgBbr74M158+mNev/kF05g0XIgCtePq2Ufc7u94/eXn4Hs2l0+5fvodLi4/SFHgznLdddhwiZ88x2HCj4KXSG0M22qLtwJacXvY8fr2lrrectV2uEnwFiwRw0hlaqboUoSMKDYq0UemOHA4DoQwMYYe6xIBc7XZ4j283d0RvfDgakvlat57L6WUPOxqfuVhx+cvDZ883/DSeF6dTrz68ksa62jqDc32glYsnXO0DnwwPNkYgvc4U2FE2bjIVeto1PDl6xu+//lrhuh58PQxnXGEqcf4SG0NXicqb4gViFGqDNYQYYiR6ANCYBc9/dBz2x+Yxomu3RIUXCaWjiRCdGMt0SSeoI3U+HFiGG0is242GOuorx8ynkZuD7c8P37GprviYnuNs4AEfM42kMxVaoxL6eU229ZJoQGG6COuqtKaNIEKi4kx+xAONRDVQ446ud29YYo91xeP6LYXiSs0erbbNlNaBDQajK2pEYKxVJL4/rxOxBjp6itcfcEYRvxhxyAHwnAihgnpO9oKtpsGHwR8SnncdBs0jgTxmLahbTcQlLYCay2fv3pBHyLfevQEqSp8zKXARVJ6p+b0nSqlyFq1WDEEk9KGXEwpVJWxRLGM0VNJorRIae8BZ0y22SvowHct4zRwmDxvT2+4tgceb2pqa6k3G6wdicOO/eHA/nTENo6quqBScK7Cq2dSpVJH62pOTDgfsM6zaSfMqLhoMc5hegs+RePcHXdcPb5gOiZSayXix4EQT0gFw3CiGiLb7ZZuX+H1hAsDt7cn+uHERdfgrHC4u2U3vUBF2Gwf0jQdh37HNBypEKRybLcPcDgq56nUcRhgOKaKZJWBUxhxKjgMJx/ABWrXME0NYZh47/EHPP/Fj9huArUT4niiMZaogWFI5MvGVkyxp60cW/eIYeoJU0Rr0CFZ/aPxXNVdAtI10AfFqiGGSOUMb774GYebW7zvIUZcVeOniRHPcb/n7ZfPiZMyhglVh24v2D58wtPNYy4urvjo/Svc5XcwrmMSj/oAITKFwHDoudxsMJdbtm2TbG+/ZbKAv2JST1TP4XbP9aZGmoZKUoRURJiM4VogtjUTBiMbJMD7Dx/RMPHw8gIxDhM8t8PI0Hve3Ak/+79/wjeffclHHzzjydNHNF1KXRTXMIZE9O/KDmwN02QIQ48MI2FzyS+e3/LkwlNfXBGsYzAOLdQNKFMIKf0zGxmqgSF61CpxitRqUyBINu6jBDRzF4lYJCZ9HsaRNy/v2E4/4/Kj36DfjWzaDpUKzZhDyvQoniyIiTndTHHG4DXxMYeY+ZsoOEbx27MtYcrBg+JCwNiIaCKQj5L8VYtDNRGIhwxEFZ8rJcbIfFierkuWWymy8sv6/PJT3liM0bnKSDZAS9i8kcV4KOdTpSKZ0ZWRqoshbTJwUcijZwe1OMGxGJP59FCT0BOIl0Erye7rPYPVmBzNAWjKsWGJCZGZTb5wceSm5Z+L026sokHRmDkOKEw0+o4ROv9b7p0MA6WUZAq7SwZjyAahWQFIs4PPYsxDLn9KAepMkkUxirOdXeQ59yNz6OhqDOdqYMDMpSBJtpl8BeLKuF8Zh1LKimUwJRmGC5hWkm3SOJR2GIhLWtm6QmBqa5xBNSuOIEtFQGJxDOM9B25JKyhV8kr0z5lTUIbRgBS6rRjy880CgBUFYcq7ZAbl5nEp82puf7n33MBOEWLpOZp/v29UF8AtpZeUsV8AohmUKU5zcYbiamDWxv1ZtlRSYCn5pEA76Z0xz5nFJ1BmTqj5yjQHCnhSoKUk5phLlufX5QeX7s1l3kWImslpSci85rU7g1d54pbIizm0c47iSXJez9dlLGYRUFJ95lauQkS1HAgUkeVxRXXFLbVKAVqNdQkAK6mFUSOiMkcbriekFuVzL7Jg5f7m9fzvPj1Y7tWze8/1jK7Gueg1MudE0lGayztLriwpksoMG+OhRP5pco77wxv+9Q/+KS+/+DMqifzwj7/H688/56/99b/JhCeOkc/+9Kfc9ANP3n/GP/4//im/+RvfZbfb07iW/WnAuohRg9i0ke7e3vD65QumGHn24Te5unrI5dUFV5cXoBErmvkmDD4oMY6IesZ+RMRQV13u66JjFhDp3NEv8rkffbPc865Xm8iwF6CVGRjIM0WWNb9+m6x+PxuvdbTSvfbM41aA2LL+Wa9FVgDhOr0rjfccrRMXx/5cCvcceZM4Q+wK7Pw6oHbuozDrxHWbZ5HLcq2u7zv7/9kX85hJ0XR5mcxy15Kqev6E+R26GILr75bnrpTB2Xidv2hlGtx7C2eyFllx4BWbgkUnz/vewjCaU9cy8FZSD/UcAE3m0rwjUrpUIlbnvV6UdVGOr0vnLGDSIscSiZT6s9yiGfQnEYf+u8D6r/n7fX6k9Xdn984K17CeSl+XVleAbSmEwJoizdWnKAMxwma7pbGOcei5vNxy8/Mf8bNPP+bV2+fE4YjGxDXSXmypqkvudne8/NnHhHHHxfYRlx/+Ft2jD2iNyzw3Fg2R3dgjwQNKMAaphQYHakEEHY/sDm85+YHrdgOmSu2uoQJidBirqVqWWsI00Ps7jvsdwzDRdi3Ogq0rrrptSmGMhuPNkZ0fuagvebBtaNzEf/Zdy9/7b/8q3/9n/5rTccvDrubWaYp8qmquqgdsNwNh6jmdjrx+8QsaJ3z08ClcOfoo7AeHNZKrGwkyCkN/5Oev3vCLuxNiah5WG4iRPo5YqYji8RrZmoqAstvfYW2KiIkqTD4wIRgPSACJaHaW6u0l4io2UqV5ZiDGVCokkLhInBdOpwPRROruAbVp8fnAbpoirup49LDj1N/S7/fc7u5om4b24hptG6xYpPBCxhL7LxQ+RiRpgM7WxDDlynGOyR9x1iLREk2gNQ7EcXv3lv3hlrqpueqeAgaJAWcT76pLIV/0hag3cwtFHFFDApM0YE2FkwoR6EyDPrhmmA70pwP7u1sqGYle2E2eTVNR1Y7KWYxMGCe09QXbbottGvwYeXt3y/40cnn5gIebBg05pU0CNuv6RGWhYBIxuERhLPYdmf9TBBcFQ43kNDoUQvTYmCpBiZUEllowQXFB6SpLcI4+WE67O35+eMV495Ynzx4xeM/+7ki9eQg60vYbpBPuTjtsY2mqGucjfRiwVpDok3947Dm+3BEctG2LjdCoMo0j1jhCcIRxxAcY+wTE9ccd07Cnaa9w1hEmYTxOpLLyFS9u3jIMHqKh3w/4ac/pdKTrGgTP7uZTrHGMYaJ2lnrbQe85hRucdEzhRFc5nGkZxoFIoDaCDxHpJ4y1hOnAbthxsb3AqufQe66sJgL13StMc8W+HzEWnK05nHoqPHXTod4w9RPWAsGjGjBaM6ol+BPGRCZrmcKRWi1VgNruOPgbtnbLs6uGff2Ym13P61dfcvPqc/xwTPancXT1Je6i4mrbQVtxcfU+7ablavsejUKIt4ieGI8HbHuJrRxiU5pqDBacoHiGkAjQjTOMfsRGxcSRTd3QPX4IRhjHibf7E9YK27ZDnHAUk6JrXKquJuI4TZbD2HN1VRFCKgJQNzV1K1TtFucMlXN8fqt89vYlMn1CZQPGWpqmY9NuOB5TxNvDq0uePH4C0nE87tjYgNMBDQ6GgbpKQJAxEZ0Mag2VWoIJaU+NKWVNbLLVvVhGoxgL5MCHHL+NOEsMYKLiphNVd8kPf/JjfvujgUkdGi2qqa5lSj9PXKoxA7wBw+STnrQKQi4tUw7sJWlCwaAxkOocLXaLqhKGwOHmFZ15y8WTX2XsJ4yrMbYmMiUMw6RSSCWIIrlt2VdVBUnvNS7xNpmv3uL/f39++RFKZhXBUQxa1s6yLtcpcwhzsS2sQOHtWMoPy2wUGZJzXyoiKZpZ04vDfd81K85hJGfSU5jBUzvXRr7MxuZspguE+VR2MeiKfypoOimMhbuonAgKIpmw68/xDNdOh87tWECU5DSbdKp/1isWwt+V0VhAFZ07mHJDheV+shM8aUIoZxN55sRYl6SW2VAu7yn9zPlSzETxGhIYltNjZl4UsmMrK2BqNs3XzlWOIqIY1LIY3SwGsMnAZDGGS5TXOoonpbSZeQ6GOQIgjW3Isp5drdUYr3Cs3O1kQOicYqbz3CyyWQhsF+f0vit7nn4keVqXcpH5fsn8JGk2pHEskQFrMjXVJQ1Lzfy7ZMSae+O9GO8zFJR/ytmSmcnoJIENFKdolt0MO2VZLc6NFidWTQbiUgtiXic2r/857SZ7bmXllFODNCcX8LgIcV0WvIBxSwro/MUyn+6dzC+j8dXO0hxJQNYZ5Q5599qz++ax1FmvqSltziOR52yexEtTcrMLQd8crZmnwJ/n3J8Dl+80anEccxtNni/BT/THIy9ff0EgcHF5zeOHz6jEYk0qJ1rGBAVrLMFEiIqrOt7/5nf4N3/8L7nbv6UeTvR3d+x2Lzkcdzx9/AHHw46//bt/jz/4l9/j0ZOnNEBT1UyTR0xATJXmQBRuXr/hT/7oD/nn//x/5/MvP+Vv/+7/wH/1X/6PPH3yHl23paRMeU1VaYah52d/9mO+9y/+T37rP/odvvvd356jmu7zthQHOTnVifS1yO3roijWaULld7Mah3wWvzj585xd3VM0kRa9t7xj/e7VFFjm8Up/wBItufRI7/1cf11g4bwYzKKTCqcX9+dSWTusDja+Dki4913Z5+e235/aq/U7q9Tz7iRprefpPbxhfu/sCjGP6XqPNmvZnclF55QoXX9X5IuuOM5WbSfvR6vWlnWkshpHXd3wFfJKhw8sxS7WqYhyr59FX4nMUcHllrPGSbY9ip5WznTdOmp57s9qvt2PJopZFrboxvz39byV1c+zwh153q+B9qTPSpzyV3+WyKl7+pqzRGSgVEwtQLhP+zHJvvQ+OaTOGbqmJgb44Bvf5sWnP+b5eOTFFz+nD2Mqne62tO0VlTXcHvfcPv9RqpbVPsA++RWunn5E3T4gEjgNA7e3N2ybC2haxDi0AjSRopbKpNPUc3c84GPAucRfZGJKcccoLkyoOKIO9F6J4cQw9Gi2y+q6zg6YJYikCPcAp8OB3X5P1W25bB9hrVCJ4duPhUc85H/7X37EP/tpzyFMia+nBh8EawwmTgQnWNNxVbW0F1dM4cTnd3fUu4ipa9yF4Cqhqhx+Gnh++5rbw4A3jqqu0h6hiW9J1TDEY4oCEsdRJobhxMlPtLXBdVUCeq3FWotrKkQiUULi4crR1FFTNBkml3GXlE7m/cTxeMJFQ9W0tE1LVMekZJBDGEVwcUBN5LLr2LoW70/c3b6mfztQX15zdXlB7QSrFV6gsi7pIJNstyGktD9nPTF4HBXBKNG6ZGNbZRh77k49/dgTotBdXlNXDmImbialkWErgngqESpbEauUalfbhsZADOVQzqIxYiIoHq8poqmqLLV7xPWDx9wdd+jxDjMOhDgQYpobzx5UXGxafKzAVLy53bE/Hajclu3FBiMp+lldhXihTosiVViTVG0qaMwH+JES62hJFd9izDosjoxxIviJ6XSi6lLa2hgl285T4jCSgHMk7llV9v2OYVS077nb3RBsjRHwIRJPB6yxSVf6iW13TbTKJIrrKoxCCErXXhNtZB8m6sfPaGyF2pqt8diHDWhKpauur4nGctklcvcoNZumI3Hl5JQ+YzGqXDszU1nYbYWK5CirDZfhir7vGQ7HFFG9vUK9crN7CxNs6w4xjkigch2DKqMqWjd4FB/B1BeorXMabI01yugtXmEUx10fuHjyLU5RsYPFU3Fz8DhnGEblzf6Oy3akcg0+gLjAMUQqlDHccRySX9B1wu0wcHP7ki1gXU033eDHN3SPHrO9uObysuXxowuuH255efeU0+GIjBMV0HRXNO0lbnuN227YbLfUzkCw9LtXIMLUD9TNBRbw4wkRg/cTIhFrLGKUqI66MkyTxZoEmFjbchwDohGvgcYZHj24Iho7Jy9ElVTKnpEYEn9btzXE7SXTZCB4xHkiDYrFVKmCbzJHLJM43hwn3Nij4jmevsD6nru7V7QPrmmbDRfNl2y6hqpxyHNH0zRYv+F4OKToQ1vhgcvtJdY5BqvUzWXaNI1JBxLOEq0jaib4RlApBYsSPUPxn/b9ROUjnpHT7hdcPPl1YoC2SyC7U5P35rwX6+qgXszspyYbP9mIiXA87Z46t2uxt6JCjBNaVfzwk1f85jcHxhC4G2CrERMj1qaIJ4jpED9HIMVYdlQz2xwRso0f0Vyh7pf1+Q/DapFeoAAAIABJREFUoVSMF1McNJkjLQr5GTADIkaTqVhcvxT5YRYjUNNgFMYBsrOaUpeKgZad6XySHACbT/C0vEsSy0MxJZeomWIG5Qtntz8rYpWZvODcWE3PiaqIuGwQL7mMJqe/zUbYyoqc31gc2GyYaSmLLumE09l3Q9Li2hk6c/jTJz1L5n8bWVKulOT0Ri2OckQxaZOQ9De7Nr5no3dJl1kiR8ozFy4fJaO/OW1prjC3jO6KVHPtcCwxYUuqViFEy4LK7S/pLZUYxrxhLmOawRNNY1c887S44yz4NX0LyqpPsgBNM1CZ22vOT5LTo5bUxBlcWX80j1Oer1mEs8yWk9sC0pReFpmu2jGDFJINvdzXFJ6V5v48TuuXrRKpyniW8c3yLjJkHqd78ypHpQmZCHZu5zkAV8a1zKH52elIMoOPJfavcJ+YTIadxrx8X4jtChfaHAFV+EtgJu82VjJP+DJei69XHJI8S+a2r1pSAML7/S7zQ86d3SLb9Z/EmJRKakjRPsZgs7Nscr9L5GWRb54a94CBLCM5d/6KnpuBy68Cku63L+tWiOk9Gnn79jU//eG/4fbt53z6+c959uFH/K3//O9ydfEoOZgmX5/J/gJhTlVsu45Hj9/jyQff4tOf3jKNA8GMvHrxKY8ev8/zX/yEFy8+5bNffMyXz1/wd//B/8yPf/InPP7GB4gE3t7c8OzhUzSv7Zs3X/Diy08wLqDTnj/78ff5wfU1T97/Fo+ffIvqySZFa0nSIy++fMH3/+h7bK821E3DOI642uKqJJP7UYAr0S0jfgY6LkDHPNxZ5u+ATrMuWjnYXzEGac/KVlVRMGd36fm9Z4Bv/n7eLspcXoPfCzC9jmqUeX9N7y6PLHopxjgDuUZMjmLM89/kCFAW1bFuedHf6XQ7RRWaorHzPLWYTPx4Lre1TkynbSuZlTTUezKMev77suKZ9/Oz7+S+dFffyvJPXclrWfH533Lv3ncX5Rxtnew+YX3El7HFWR+WSmkCKRokg1DFuNQYZ26DdyJ3KJpYmdHyVUWKOX0uv34dBz1HTa67sgZI1+/KgcazfaB5FUkR3Wp+qa6ikPUr534RW9mHzsDU9X4/z48SIbgAU8sop3uj9/T9AWdrxOaKszHpMytC5RxRk8N/fPMl/d2eLz7/M079HjUVwbdEVepqw+72NVN/QCXSbTa4zbdot0+oqpaA5Xg6JNtLHO3lM6rKoDSIH/A5IdCJJUbPcTyyu92lZ3WbTKwaCToxDJmkQYUh7tFYoapUdYN1ba7451PEVT4qsWrwfmB/Sjwu7faCprpC1LNxFds68OpO+F9fvqSRmt53RJRTsJz6dFhX0lKtpmNEayca06SUpKaF08huf+CT/WdYCVzUFS/f3BAj1E2L2sgQZI5wiSoIFmMdOHDWIWqo60u2REQSKJMC0hPRbeHDSpVd01yMWR1a64godXSMOnI6HdkddnTNFfWmIYhhitnZkkJe6zECrmqIUenNhCXi6o6rJx8wjAOD7znc9lTtFqoucfSpyxWJk41eGUF8JIwFFB0pB3YxjEzTyO3uNcc48uD6Mdu6AxRLyJWXcgl5Y8BUGGOTrBGaGjYu8TOJWiSmI6KgE2FUeo0QhVTtjAQkmAkXLG1TQ/cY249MuyNhuKHfv+VtrAn+ksMY2PUTUrVsmg1iDJMfqMUlf0MSj4/6ZH9gDIOOHI8HosJFe5Gj0XxKyVfLfujxIVA3Fa2p8DFwPO0RtWyaS3QaOI0xR5EF+sOQlcSQQNDNQ7b2Gi9HRht5/OGvcXH5FBtHTuNEP440VYU1lq6qEhBl0sG4dTYBhQJGLSqBCuWxpLRBKylaytkUraGiVAZEK0KcEugQE3m/VzBGiTEQiPioTCHN/TpnJwRRfIwcjz39GLGu48GTB2CrlKIoI5ePnhBiZCCCj7Qq9Hgum27WOdHViEBta4IR6qqhqSuijlhTpwOrmAC3CsEzUWHpxKHiMVh0E2mYsDlNSTSlKbZ1sg6DCG1rZx+FoFy07xH9wBh6vnw1UYeBo79jc3fi4nLD1faCjx5f8O33H+Cj4a6fsMHRiyFMyqa6YGAk7N8yVBUaDbt+jxHh4qJCCJyGW5wYNEg+9IOhf0tjK2y1ZRp2OLnAWKHOKYfRVmiEcZyYvEd1xItS24baWcTGlOXhA62pmPBIBma9UYahJ4QILhCCIUiq4ttPShw9RixVa3HdNbWpaR5AGCLm8UjXpLUXomEn4NTjDPhJ2L0ZiAxI9DgHgYbanXAx0DVKDBadBqJLPvpF59hcdjR1R910iG0wzkIm57ZVWu8ijnZjcKHj337yho8ewubBE97ujnSuA+dYDvXywV62OaLKzGU7+7qaIvXTJkfuT5gDBTQD8OPoqZjoVZBhT3f1HlMUrh82xKnKnLfZxkByUE7iQC1ZIYlgPPlaxSKLkioN/jI/v3RAKZmzZjEdiiNVjAVJkQoimXU8h8UVI7kYHeUEzmTjRvLmVlKalpSGdAJpyykxuWSgpLAvI4vjfG4hZotpdR5WypuT3+s1sfAXouDzbqYnzkEjEkFlPu0zUtKhMvBVnNzcmOJQlwFXzVV1krU5R+CghRNpiW1Z0tveNcSTk5424tlx0LB0l0SemJS5LM+QBWIpXCtx9Yaz8HlJU7IYzItVukiyOL0ZL5hPlGewIFvf4czdmIVJyu9cDRVrxyTNkqglok3z9SVEMEtbirOTmhk1x7DluWbnZ5q5T0kCpXre2iBO15U5UsRZTqoXuo2Vg7FqvuZB1zyu63iqOYpgZkjPDocWR24B4xY55/BIoMzhGUyZnTrmlIjCFbR4mYsTYWb293tzetWROdJOFc3hoMU3S9w7YbmjeChS5JedsHzDMopxvmaOsMpzJsGcec5LuTbPRRJ4ln5VFnJXWQFZReYLmBk1AVszwe+s3EsqzeqZ65V15uutHLp1BEY+gS1uHbJca3La59yZebSW96z/v/7XDDTPclquWMbk/FrJg7h+mpqsi0Tp2hrRgZ9/8kNcU+PHA4Mfs3Fq8zQw89xPtSWSfnWu4jd+/Td48/JTXnz2MdEPOEkcIbubtwzjQFXBv/7jP+D9D77NdNwzeuW99z/idnfHzz79KZfbDW27RTXy5INv8nf+67/PD77/e9zdvOLTn/yY/uYtv/rd3+F3fvvv8PjhA3A1xlhO/Z4nDx9yten49l/8LhqFL178gvc/+BDaigU8KGO0rLW4itKcdZlAzu9k2Qv0bJzPPrqK6Ls3Puf/zvOgPF8XWSbgomzqS/XMBIzmRqOLztQ8G8TMX5e5J1ocPmZupFlX6iKHotORRZ8XoHeuElqek0HOeK//ZWZnrX6Wtm5JQMN6LZzdWfRRbt+6kFnRjUVvFVB/5g/U+89Zr5SVhs36Q1fPPG9/AeFWXGJrHXL2LuapVN4znyuulOLS9jJ0S9sKJ2J5m5y1OEszp8WXamrpZDbLUZe+JbWdDFKZp3jh02LWX4a1bivPkLM5uureWXtKlGyJBNKyd8sCVmlGy85jvc7HW3MfIqwqaObvROY2p+Yl/TznFK/uVw2gyWkc+xOvXr/g29/4VYYYCMFjESpXI6JoiPT9iRcv/oxffPwn9EePMRZfP8IZx+H2Jf10S71/S9O2bB69h+uuifUW61rA4WNExOGaCkSwRiDWpISsE2ITEesUIsN45HC6IxDoujrxQasn+FSd6HRKJ8hN184OWWXqZMtJwMdceVYyITcO9SPHYc9xOADCZnuJkxornsalRK4vhxKRXTFIlQ9nEtiybROQcZwiXhX1Ic2LMNGHiUkVicrxdEqpHlG5Ox7onWPygabdIPWGqmpwNnOmmJjIYU0G74zF4LJ1taaaTXa9is34qqKYfAiRTs2VXAjFGmSc6KeeMExMI2wvntA0GyKptLspJ/kGRBSjBmMirQmMIRKDgHUgBvFK27bUVMS+5/XdLTF+SdPUXG4f07VbNq6ic8IpRm5DAEnOpwahH5Vx6hn7A70fqLuWx90jKmcRTZWcnEmZDSFrBMWiMlFZQ2cSO9YUIz74FJ0GxDASdUJlgqBoyBxgIdLHNFcEZSLpABMChJEJTzAQQ+DuMLHvbxi9p95skKFnfzpRNy2uqTjJQBgGLLBpt1hT0/vIEE9McWIYe/DCpBZtHNM4EbxHRRjGkSkKPipUI5NP4xjUc3u3QyroTyMqacRVDZV1+GgI3uBH5aQjpr3kyfX7xEoYo6elpms7ukaZdEJD4HA8YYzHEdjUDaZrEdtkt8FTaT48VEOtU5K0iVhbga1QoCISowc8ktPgNesOLyniwgp4I5hYgUl6YRxG9qcDoxgmapruEZWrU3XE4AkqBAuqDrEJhHKVQj8i3rM/9cSpp960OVI5JlvapspgCIlwX1MUlBNB8IgTXKxSZWoVJjF4iThNHFVO8p4ugonl0FkwUmHUEnRI0ZhBkawLu4tHOFtjpy3RNtz1N/R3E8fDLW1zpOsqNtsN122DM0rwyqmOaDzw+vYt1gvV5cOUTeNaIspxHDEaGcYeCQPWQFO3eJ2S/OTElUTevvk5G/uQuq3AdintF4uxQttoKtgb0uH+5Hv640CMA9Y4/Dhw0SaC7YDA0GO7DV3lmEJa06dxwBhHVTXUdYW0TfLpLYhxEAMtClvLtXSzvQJKNJagAQ2JszRtppGgPVYtpmrxokhluPOe4ykisaYyNf3geXMKyJs9TvZsW4OxhqZ2iZubwMXW0XaXVHVDFMumafn8s5/z3Q86bm52YBxQo1FQE2HeQ8FoSb21GewRDGkOGZOjp1UwknXmbEyQgHoMtamJanj92Z7HW0998ZCjh+intIa0JgYFmw7rbPafVMzKl8v+Wg5sKIcY+hUBK/8+n/8gHEpCSncyxZgGShU2swJwkiGU/5VDAEokhmbnq5j5s5MKYJJhkohlWfiGisOcwatk2BQrdeUssDJfiuGoxW3P6B2pNpMsSEFuwuy9MT86P6qE/Kf78xulmI/LdcB5SPv8/MUbUE2IYyDm/ia7K6yM97VRuDbhZ0AqK9r71X+LI7E2A9cRRKtmrh86O7AyyyifRJdoqPK09VjlbxIIJmfvJPepnErOaYfAUiUoO34rozx7PqkNufILxcydZbqUwJa8kGeZ5NcsPr7mQ+AVUMTSLlNSJDWDSeUdGUwiO3ka44xPrtPC5imucJ9ofb63jEe+eCaXRVl5WrPsziITVpOwOGRlVEFXQ7GAQIuDsawBzv4uZ5N7OfHOxuMcFVVczbyG5+esBJlHL4s4rRVd4Mp0al7m4MpdmWVbJnCcZbTAccxrkfmqBVBdz8PSnXm2FlkV5zsD3sXZLJ8F0zf58rLCy1yQfJ1kfXfuoC4pc8VRlqwfYQEW3/3M4stC09WaXaJb7t2znic5VTMSIOu3GCOH3S3/9t/8gNu7t3z4nb/EX/y13+Lq8jFo4TIROJunsjiVakANx+PA46cfcNzfcLx7CwrH04EYA8PoUVNx9/aGH/z+7/Hixef8rdORL15/yXvf/AZfvnycqopst2Atp4Png2/+KtcP3uP27obnr57znXHg5s1z+sOHdBcGVzs++fhPqcVi3YZf+bW/zOsXL3j+/DMeP3220ml6T57na+VcTllprzTpfYBorWPnJ6q+W7Fq/dF747B6QgJTyo6wnhfr6zOh1wx4nD8nHZQswMP8JJPnZlGZpe+Qxnbue7ougYQsOm8VGbPWcbmF9ySx3kWXa95t79mlvPu1LDpupXrmzbREdipLdMx6D4avXkHvbopLG3T5Ne2Rf969urzyXurrov+X/W+tW/X+o+b5pOfPeEciZe9Z7paZ/60cAC3VJSU3cCZtX+2py6u/QvL3wKt3U9x0/Uu6bL1vfN1zc1/vvWy1X51tDfna1RokncoSIjFzGkZVbvY32KrFmsSz4f3I4e6ON69f8PL1c+5uXuGjIdqWMEb2p1v86UBXWR4+eUrdPMC6K5rtAyaxBGNzlLtBnMv0C3HhrWTMRW4jISrTNHIcTgzTAWLEYRKJtua0BDFEcUh3QVcl59RiMTHMtA4Yk0vQCyrgg2fsj0z9iSEEXNVibEo9dkYwxhJIJe29CsYm3SCVUMWYHFajXNaKVc8wek5jJIwjYxgJTIk3UjLxcvAIqdT5k6cPaGvDOPT0w8AUJ6Yp6xdbJYAIki1iFJUKi8scLemZZS8WUVxeI2Uk5wSPHP0uJnI63BEGzxQCTb3h6mJDLKW3rcEah5UEtnmNOUpqwEVLZZVohTEIzgieFOGXuDUtlWtx25rJnxh94NXdjq6feHy5ZXPZYoDaKbUTnCq7fuDmrgcZMTZydXGFs5IimXJEb9oTBU9KH4s+YCKIE4YpJroNSYcZJwJG02FkmDzTdEBMxIglqEGNIeQx82ogDCkGwjgkRrwB7/cpKqe+wLZXGGOpxgOCT4CJesbhlJxRA9OgeDwajnS1MvgJHwaC91Q4ghEOwwDjKYF9mjkvZdkHbm5uCDFyeXnJOA5EU0E0+CgJOLHCZltjreV4gjgpR400myts0xCCJ0wAkSkYDHmOWYc6h1aW3p84HHtOU6ALE001UDuHcTWjMRhjMFEZo2I0oJZU4dDUGDV4lKCBKQrgIKbggqDg8xwH8Gow6tmNR8IUGbxyGiKXV9dsqw5HxRQS8YaKErIiEolIyLrVgLGWqso8atJw8hHx+0RqXk3UrsG4xOCLmAQuxQwRakSoqawlBI83MekBMfg4pXEQlkJHM5hk0BA4+Z7j8Q6NE213TddssBcVpnL4/o5JhYv2gqZpEzjse27HkdvxRLU70VRCUznqqmbbOlQN37yqEFPh8Yyj4sRw8tmyyzpQbY0aGKYRIUWwjGPEuJFhnHBbg3jow0gUoTIGGxNI6vM9dVXjFXanAT8c6cRx9J6bmwPNpsWrZdwf6TZHqmaDrYSu23DRbLGSdHBlMj2DGELOXNKYQJgpHHESMKYiReAAMaSURzGkA2TJe23LJGDChBjh5APGQNMa0IrgA63x2GZDjInWYR9BfST0EDUQveLeHmiaMUdnCa2xiAx8cWN5O/6cx5eXnKqbBPY5gzF29o9sia6zNWIqDJp0OAbvI8bUoBaRAGIyZmDygZ9mPEWIpubt6yPfebbFSw2qTAHEJQDb2LRPFExB1CEoMe9nM2YQFTWCUyHg30kv//f9/NIBJWdMPjUN+acWX+3MyCmOvhSHdgZJZHZ+ZocTZmCokFRqSY2R8n3OWYZMtsfsFyXbVOd3lpSdAvYUv7I4l1aAqPmUMYWmJUPt3LFXmTMTi7uZn7cqY74yNsunGFyzAUoxslbyQck16mYDZz5ZZTG+F+NzMZRnl7YYoSpL6lppQwHfZmeA2XGdIyFW8ik0E4VoemUS3+vckhp3/2R0JeIZdBKg8HcvlN3M70+3nMuwpE+miLe1A30+PvGenEoaIWQZFaciaiKD5vzkfe773NMUwZGc+6Xvs/xlfXX6XrPXUkb2vqNWGpTCw1NLIyX8P8vrXntKf7QAJ/Pf7rVdFumVaIcy65aooOX6GYgF3uG2KHNi9a6za2evb2ld4S5JY1HeUZ5ZLsuOkNz7bm7pan7mSgdzjlhxknN0Qnp9sRCU4mwvz8mrdNWPwtE1R0eVBpx7Y8wLLHciVaJkrgC3HpclzXHtXJb4jnRlSYH7KoeyyHyJgJK5GbJ+2b/jk+ZGAuuiRk6nnrf712yalqvrR0QDH/2l7/KND7/Ny9df8uzxU2qpE6E+SqmepqQwesnrq+s2/Mqv/mUurrb88fe/h3M1u5tbvO5S+zKpWt22/PjHf4K1ju//4T/l+ec/49e/+x9zurvlvW/9On/lN3+Tw37PMPY8efYB/8l/+ncwvwc/++xH/OBf/ROG3Z5Pnr/gH/5P/4i3b17y+9/7Jzx89owP3v+QSmqePHqGHwPWunkfmbVfHqsSqXbfwV6NFvcd/CL/+ecKIFh/vooA+d10yUUPquZU0Axclvmr956XEw7vtXS1sPPPsgZnfcqiI86xl7yzyqIHlscLZKNj2b1W712Byme6tOxEWmCMd+V3rvvv6731ulzvweVLWf6wFsX8SDn/0xocMXKmv4pKKLKY50I5YRDOxnjd53fmzCzg9VCsgXrmyrZL4+Zd9yw6q8ilRC1DPpBb68w8bwq4uZ6xBUCF8702pQpzNheX/WS1R9zTPYtoddZtqZ8yD8nZ+phFV/RFigAteuss0nW9nwBrXbhuY6nY5v2YSiMjhAAPtg/Y3b3m/fc+ZOwnnj//OS+/fM7t7Su8V4Iqk7ccjyeGYc8YBrbdlodP3sduLvHGcXPoqTH4KaY5j2JtM9MZhBhTZNTcxsRHczi8ZX+3Y5gCapTK1SAu8+EIYizOODAWtXlWaySVqDaoSdKojYWohByhOPYn7u7eIAi1bWlalwAnk7iIEsFyck494GyKgHAWQugZxp6hH9Dg2d2BaqRXmGICrTARMZYL2+LHwJtxoHYVja1o6jbxcxpD0zps09IPR4ah5zQcIBiq9pJt16XoVjFU4vCkozqXcntSxSXvE+dpjtKvcoryvIcbmE53HE93TF5p6gua+oLKZkdck0MkGKxJDqUKWE1zMKWFpiiyKa+1GBMPZuL8UxCLZM6kylW4GPHjxNEP9K9PvL2dqKuWbvOAcXdif9oxekPEsNnUNLUyxgnxKQY9xioDzRMRIUpk8j4RGIuhqusEQkiDMuHE4WUgE54QNBX5ti6Bg6I2RzCkuVVFizM11gmYCh9G/GmiNi2mcVjpkKbGoHRtSwgjIYxYOaHjxLDbEwWsqZAo9HFI60YTMbhEg5pUFEVVsZr8mBgS+Ba8z/aBYYwGZyxTHzG2ATVIFKyVxAvWNogVTsNI8NC2HU23xTiXomjyGBYaYnCoBIIGnLSoczgjiHFIDIwxMpw8yICzI85VuLpKka42Jj53LxiJWJvAo5jpSpRUvj2xkFhiiER1iCbi6GO/Q3RiiOl9oanZtNc0pqJo1cRpaZJsstdlcgGetCOH+TvjDMZVuJjS3vDKME2M4x6nirWWtu2wdYOxEEIiVLYxEEWTjC2ZLiPb0CFkPQlOhCkGxqEnxpAzeSxN29JVD9i2G0QstZ3oZeRiI9yNHiqHkQRGmHhBE0ZUB8apZxhH4n5C4p7aRRpgs2nYbjqarmPbtYxYJm/RqPQ+0CN4UxN8IEafD+AVDRbRFM3lwwlrWuIY0KYmaiRMAQ0pugyUOHi8n1A/IaYj1FWqEieGutlQE3EXET+cUqSYKJMXTIwE8QgwSs44whFNWqMmpnl86j1OPG0VEGtRXOLXLDpHytxI+5UPSvADdWOI1GimxYg5Va+SADalUYqGFIFpDJXJHGTOYOWS6D0epfdwCJFmU3MXA3JS9ne3GBNztFAgpNAmXIwEAtbAg4sONS3OCqoTUYWmFrbbC0JwIBN1VaEqSAi4pmZSwUmgtha7eYIZXnN1ZQin12zbmjG2SBwhpuiuVPDDksgIDJaYUpcl7WWZSAgt1D9ivpp/9d/j80sHlOLsRGbjYrZCiwV57qhKMXTIZ/6zYirRTmtHFQoHk5l/T3xAMweMFPDJzAaTEZnDUgTm093FySzGbsyVokj3k05eZP73YkoX/3KxPXXu3txVZtszR/Mk+EmykzOnPBUOnuwOF2Ah2fq5pSI5Ra2AL0vI+xplnJsjUKrefV0EhK5uWEAbWRn7c9dKo0hTc/2uBUBaIwJrDoW1U5226zmMZ8YhkMUAXkdizKLQlLo3j7Musj1zgOY2FpkuoMM89coDkHncpDhVxemYuayWa9NXyUgrb51THoozqesolGWOJ6evjHhupWaurxkMWTokM3pQ/p3aWhyerxvTIhg5f9jsgJbUMpQ5vXJ2smZPU+bTq7mPy/DPa1hzFMX63TP2YtKpQnqFWdbHfCKzGsQz50LnZ5+7UIusyU6YzI5g4iMxklMV18A12WgQKKXR567I4gzO187XnCvaGdy7P9tKlQZkkdGqn2v+nVVr5jmwtGU1pqsfxfHNo3Lm1JX73v3o7FenNFphv9/x9tXnHOJEc/WU9771bT5s/zIffecvcbW95vPPf4QovP/0AypjzxRYkkuY9eju5oauaWnaCx49/YDf/mt/ky9ePOcHf/T7vHnxHKvK0/ee8fjJU+7efElskyxO/kR/6vn9P/5D/uFf+WsEhaquuK4vefjwKb/zN/4LPvnpT3h7+4qbNy/4t//P97m+O3Cc/gE3t695/PQp3/6VX+W9x+8TR09dN1xfXOFsVTTnWUTNEsiS0oBN3hPWY/T1Mlwc7nICXqoIflUK0TyGX/H3s3ee3QConM2VNE3O5+n9dyxflHavIlPmv9532O/9nvUcWWfNalhkwWtX8jlbN9yXg5zN43fbXF6pyzYhy3flHEDv/z2/LbVltd+UfSKrkSU9OV1XIoO/7vNVuvOrAMF1iu56GZ/Pm6zv5z2MbFiyAmVk3vfmg4UsQ5P79lWfr54Duvr/vX16LYT7z8oncWWvVn332UXXlM68k8rGMr7pZ66oOqcnrnTafLjzLpC77AGLzleNEGM6iSbS1hXjyfPZi495/5vfYXtxST8cmPqRjz/+U372yZ+wu9shtsbVHeM0EMcJH3qatuHyyQc01QWvj3sab1HrEOmIxjCMBySMxGiRqkXFIHFiigPW1IBFfGDs79AQeXXzOZv6GpqaTXuBM022UVOFt3lzyGCaZNtXc+oOTFRqEaYE9sXI/nDDOJ6wmJxmZhFnMnhiM+l32kdj9Ak0mYZEMK6R4Hs09Iwx4qJl1JraGqpKaI3LVe8sosJudwdjpLEtdbtFSACcR/FBM/2AwVUNxjhMZRlOR/y4Y9SRtm3Z1i2YkX0ETCqNU6tBo88Aj8kn75CIZNLcn7yn39+wP+7pmi1us8G6TY4QCYgolTiCGDrrsC4BqD6maNiqNqhOmCiEmKJUbLSM2SbAKAWwAAAgAElEQVQGwRiHNRaMEoInkgjTnSTaCj8O3OwHhvEFTdMR+gNqHNXVY2IU5DRhYsMUDaPEfFgUkWiBKhWk0IBHMW2HkKrAiSUBbFIRSABMCB5ioBJHbVzSBfOenQtDlGJFzqAqTKeJfjqhGJpuS13ViCbOWEQwVjBVg6MFv2Ecj4ThyHja4acR62oMFUiFU48EIapn8FN6eTQYZ/EhAX7iNEdzCHhls3lADBNk59M6R+2qtK5NZBonoliM67i8sLhc7EGDnyEkLUTCpTqtSaTGIUf3GzEpQkMd0aZy5yFMDN4zTD1ytyNYpb3Y0riOigofU6qYaqESNxjVZX/K/03BczrccjycsF1LXV1QNTmd25gVZ6ughMTtC9gM8FgRxKQIIaeF3sSgQVMkhyo1EKyFSnG4HLHoOY0jPu5pphMXTcW2alALJqY92ZuYI4MUZyO1kErAI6h6hn5kf7xhCifatqNtH2Bdja0X/q+6irx/Ab/5F7dMQXj9had+dE21veB7f/Sa21uDE0eUjqrKoGiteH/DMJ4Y+5G340izH+jsLd2moekats3/y9y79dqyXPd9v1FVfZtzrrX27VzJQ4q0LFIkQ+t+MyVZDmzAAfIQBM5LAH+KfIIgD/kQecpbkCBOjMSyA8iybFmKRIsSKepCUbwc8px99tlnr71u89bdVTXyUFXdPdc+8oNBA5nA3mutOXt213XUGP/xH2N0tM2aVV3Rt5YhGvohMriG3kc0CF0TiLGnV4MJipFAbTpiNIwcqTBogD4MxKAEn86EtqmpmjNoOzpToSYiWhElUouimw5iKgCDesYwoj5kh0JPU1nqugOxxOgozjOp1gQ8IzEX4rCEkCN3mB39hdE7DoEYR1qVCXARmxzxiaFmYAwEEsNqjJ5x6EH7vCagdcr29ppV1+LtCls1hOGIIOy9gFQgEI0yFse9gvYDOME2K457m9abaMpbpIKrPattJAyGIIGmSp/pMNK2wuAtNZEHG8vOXjHePeO99wwar3jwqIN4xn57xcV5jTZnHI8jrTW4roFgMDpiuxavDkvEVBUiDeiAWouYCsv/z0PeJsZEpp8V72XSZ7KROGmVc9hI0MicwlqyQpZUkUgBTkqq4pQIOSkzifpY1M3CZCrKGhOYNINOhTlkICP4qX0lvw46h3ggswI0Gdg6G4DTZ0VoafEQnqh5uW1xMiWnSmpMDrJZaS7Kq+Zkhso87cJkBJRhnJS97P4sxuf958YYcdbO4W4LJVqm28/9Wkzq9KtK9ijNzZy6ORnA5a1JqZzfd8xKugpzSGAx7kv3yneyhp6U+plKyDytlHwgM5pxCkPAVPcIldSGgM5BkLIc+9LSWB4zgQtTmAlxaeEwAZNa1v8SRJjHVbTkyVgo5ipTJbrEoNLF905VccnKKJAqD8S8jsrnizCcNKdJgJW1tjSYFBbheSyMEM25OorhModamQzeprV/au6chAqhs0EFede+auIuXydtK553OQVpjMz7sdywHCATAJT7Hack4lP68xPFrvw+Az4y5aFRZerzPJXLsMh5pad+FzA7778CIhYAcMl+mtZ/qW63MN6nB+piLOdrpl1xAir8B17GQPAElG9980/42ld/m7/1xS9z/oULPv+ln8Eay6pb473nwfkD2rrF2pziLxb7MD1TJHnwj7sdX/+Tr3F99ZSHb73J229/hqo74x/9o1+h6zr+9W/+UwB2h1uG97aM/R2r1RN++MG7SOXYDUd+4Rd/jfP1WapuJIJIwFpDvT7n7/zMLxL6HX94+QFBBuLdS/7f3/8d/t6v/QMePHrCWbshGhhDYPRj8mTXLg1L+m/a06XtRY7ff/1NABBwT/6dvn8SGiQz++gEQFzcYwIuKcykea/NeZKmG86y4X47PnaOFwfAUoZlYbdY3lMb0qUCGuf7l4IDaTG+2hfmjG3/oRYtx8eaBCTfZ6menBFxDh8005wtL5rH8JUpnGT9gp20GIfpWfcaPAFYsEyCeNLC8r1XnitZZi9lHwXgPj07ZVp35dTQaWqAGfRaImn3upeaNs9FLGzO8r7OjrPlWftKzqQiSKfHCNy7piRln79TGJRaejPLuUX7Jpgso2NFL7v3wOmeU9/zDWKMiS2Tx6auGw53Wyo1HLYv2b5co17QCF/72h/y7rMfEMeeQ3+kbR2uajg7f0xtK9QJbb2mPwYuX15i6nOa7gJvDF1jeG0z4AK83LcMKORKsN46qqjEIXDcX3F7c4lXxVWW0UeOZsSMHh0Dthup6zWNdVhxBAWVgDMhhW5rqq7jgEqEMaQcGgG43d5y3N+BE0xVU9kU5mGNRSQZ/cd+z/54oHJVYioZyWy1ODEnamuxrmUtyZjEpYTGhpT/ySFc3txw2+9RHF29oTMtUYXImJlSjhgixkRs3uHOGcRCXVWJ+TWObG+vGcXSdI56taFXwWhFH/sEBgUFm8AINYq1CVS43W057HcYq6zOLnBug2iV9pXxWKmSTmMC1ihtbanrVMXZj8mf3taOQwAblH0fMLEU8lBMSPlAVSJKJKgn+pD0Qg0QAhoDTWW52R3wXnFdR3CRwxg588pmvaFrOyIWqwlocyJgTWYoWax4otYYk0CiFBqVZLm1ik5pPSrUDYjGbNqUHFl5XMRgcQQbMRrZ719y2B5o7QrTtWzajsbBqjWoerxLPze1Qb1l30cOYlGzpqpbXFUz+iNhBB9G+tFTCbRiGEIPMY2ltVlvMyl8yEfAugRURcOokcpWKBFXV5yfnWFD5PbuBk+gbtc0rgVjs51kcrh0xNjMcMoaTl0lI9wZR1XBqNAHRbBZ78kgoqtw1nGMEROGFJLpI/tDT0BpmxZjHZVLiZpLgaUiJAzC6A/s91v68YA1hq5bYbo11ghqDEaUiiQj45ScJuX6TM72mNtaMQZwEhMQi0NDIJrEtoqa2iBGsQgxpPYHYwhOQQP96Bn7nsodWTWKNQ3GOVQ6XLAMwwgmVcmLcWR/PHAcjyA1Td3QujqFulrBGQNjxNYpZNGZSAieen/g/WcfoYPn3Fzx2U75cN3wnh/YHiN9TCGpVgSpLX2oqauB0AyMfstoPH4Y2N154u0NK3vHpmtp2pa2renqiofrCrEdt6Ow7wE13L7Ys1m9jus21JLDe33kOB45+Ejwim0q6q6jrjqsVCnc16RwwKAhhXSKpMTfGnOxmpxvSGqsqQhmIHjPEAM6eMa4xVY1tWnyvEDrUh43Xxy5qnlubbbDmc41jR5bgdGWIIJg8BHERCSm/RhIKRyCzmfsaJJuKaPSHwPhsOXm7o6m3rE+C1hu8eqpG8fm/DGJNedTGHTWn0VBu4bKGcTm5OvDDusEYyrEGKJajmNkjIA4Dtsjx+MRa4UWhxg4YNjeRa4P14QxEG4SELoftihHvI4cQ2TUke1dz8XaYCrLcR/orNI2jv0h0DWG1bpjNwr4AxcXLUFq9rs98F/xo3r96BlKOTCrKFe2aA6Z5jslEcVMCq7kxGVBNNPVZk9t8b7OuWdmD2oURbISZEQyS0HwMaY4Rs3s92xYlHC5eGLeJdRbzZKindubLMvESImpZ0mgzh7vbHKndhmZqkVNldgo4VDlyqLt5ip2CvcVu8JgCAWOKxuk/FM98baLzjk1ImAz5lLCeSgGch5Xu7jXiUf5YwysoszGpZI8jWh6r4Rr3fcKL9Vkgam/Cz/WBG4tGRvlOxPgUyydjOxPpKOFUb8YvOlZcTG0ko0bmzLK5PxKk901AYr3GS6ITGDeDDSka5ZFyie6rMYJXMwic7q3pMihvAZnJR00eyLLGOs0nvOqT79PFMWYIInEoCtGbVrBs9FSZrlsv3SXGOfEccsxX4aCLDkJ98O3CmNmuVTur5tTQFXmvSLzdC4NI1VdrIXymMIOZP584fFLj0xKxvQeBarJebu01I/UCQya9uDUZJMBlMIyM4u26cImFCZaxFJ+FBFHMqRSlbc0u7EsHFPWx2mwxykQtwT9FrMzjVWGRXNbXgHFplf6LGjKM7e9umZ/uOEzf/uL/OW3/oIQDV/64pd48OARViwHP/DGkzeomhrjksIw2Z95TRiTGIJihdv9LR+8eMrzlx9yOOwIGnj08AH77R5jUqUiPQ7EyvDa26/xD//Lf8K7736bP/mjP+BLX/o5fvZnf5knZw9BSZVyMGl9xMiPffIn+OCt71HVX0Wj8tO/+vf50k9+EVc5zjYPU6JfSedK3+/Z32558OgRy0qTwhLgMVMlwOUaNXk6432E495rBsV1ciQs521agjIDr9MtJ4C7wJ0F3FrIDQMSF4y6BQjPIqR1YnkuQCpDCV8ri7U0Jq+bxUor/5e9NOUKm567XD7pkyJr7hcomM4NmUOukNLehdDKG/0Ufjhd+/H0o4VcWp4Hmh9xuifK+M7yYnGbcg2zjJ8/m0fjdHRYaAbzo8qHshjfJTC07NPye6fyqciOslLn55isayiwTG4OmSGtU49OvmkmwTCvyam/i7+XfZ7lx6LtpsiRRV/iYvBY6GTLYTnR09K7ipyEoS+dBFOf0GTQqaZ8MRonlgAo/fFI1zTsd0eGXc+ffOdf0/cDd/s9H11d8sYnPkO7fsTZw4qLR+/gmotJoQ9WiceR3vd0Fw8xsqZd9XS18NZZzVtNxTc/GNGqxmoAlCgewkgMcBhHtrs9Ko6LzTnBCqvNQ0JUxHv2fU9/+wJnbuikpmk3tF3NWw8c57Wy6wNXgzAaEBVCqLFU3PZ3bHc3oAHXtslDjCHElPcm+pjyqSioBowRauuobEdlwbowFTIRo7Q5XNYbJRFKBdUaMSkR97Ob59zd7qnPHlJJi5oqB2+loB8xEZUxz4fFGiXicx4OhxiHsZHoGqJrOfR3XF0/Z73fs+rOkbXBmJQ7yNl0ZoQxYCtDDAM3uxv8EGnqBkRRl1MFGM05kizO1kQNVBW0DqoqJkAuKIYBQekPwnHY433gEAbG3QEJhmbVUjmH05RPyZkITnBS41C8VFix9MeRF3fXmLMznjSfxtUdiufge/TQsz9s8RpZNxvEWhpjU/lwEYxNGpzSZGA5OVOjGow4jHpsNATjscYyqMfgsCSHX8x735kig1IBIhtGtrs7dvtb2mZNs74gOgUdWVeWH3+j4b/45c+w2+0YjvDk9RX/9ms/5Pe/fcj5qFI+LK031O0aHwLueGR33GK9MpgRr4bK1jTGIZVhDIEQI1Ysde3wPoeW2ci67hiCYKvIg65jf9xzu7ulcSlE0FqHSK5op9nWEhKbTyyOAfVKZQWPz8m1K4xGOlMT1BPUJ/FnU1UqCIxiqERS4uactys5Ngy7ocf4nuow0nZVcqBamyrkDUcOxyOD78HYlGNIHEhmjE3JQXJVuRIDlfVQyQ7hkPUCox6MJ5CKAFhJ+6M1MGqEkG2xnAstJAUeQXECUQQxFRorRlXujiPxeMfW3/Ha+esMrUWx7AZlv7/Fh56mW1F3a2pXJ3AhxpzbyhMlraEKwVjH/jiwPwq3e89Hlz0ae84+qvn333/BYFZEVyFWcAI+pry5SERsTeVqKq8YNsCINCMmDvTDjiEMfHQM2OMNjUScsTQELtYrzi42nDnD1VATQ8+nHp9z6QO9t+yORyQoYluaVUNVt7RVSrIeJAE0VpUYPE4g5PPLqU8V1nIKBlWX9BijgEEkgZzV2qEaUSOp8t4QcDKmnD9GUD9S14qpL1CxWFw64USxOUFV9IkxqeIJZPATh1pBtCIQsnMcxDlsAE8g+B7vA0Fr6rrmrKvwZ49xjwJ1bbCQwtiiJeXLgmMU/KjULuWAC2qJocdYwfuK2Cve9+wPIxetUteKrRyjN+ykp7IGBhhHDxVULunDo4f+eMSZEXEdbrMBB4N33N15Np0QqTm83NLUjmAqbgeLDEIMpAINhyMiwhrHXei5GwKtiezDjhB2jMPAj/L1o2cokYz1kI1BJGntJXdASTJVQkWMMSlDOZKvV1RDMgSVnFG/FCINCHYy0h2GkFHmSEhCR1PJ1IXNR/G4Fo3IoniKfpcS6xFzxbDIFNpQehRLBpii1CqTgcyCV5VKtSbDYrLfi7Gp5DjarBQoifpqTP483T+BCOlzCylHi8lhffl2JR9N+j15liQmgK1YNIUVAgsQggUIo6m/yaDSBbKbldKMCJdxsOXjiUnBpDgWlsh8n49ZFwtjJEhyrBMlPUdmtkaqViOTEVCqEBWwIAGQpU1zjHj5npH7xlkG3pRcpaG0WZInSeaxLGO1ZDQUVlGxk05jThfWxklfZ0Nf0bnC2iIHj1BsgQze3ANkTA6F0axkL6suTUAkBVhJuVmK0TznVdLFz7JywNq5it0pgPHqxL0a1pKrCJqy0KbFUDqekvEjqe2qlLCeQg0QWd53MVfTUGZ66/08TpSQuvzsLCtMAZ3y4E+mT94zWrbqwhhf9k2KIaTp3gUgMuhkpMYsm6Y9UlgKOW/E1BVTrs8FCLI3tYBF6XlmAnfjNP5JFobwN5fxLN8rczGtoY+dObAaiBjWZw/45V//B4zHgU9++rP80R//Hr/97F3+1mc/x+PHb9Ntznj84AF9r4R9ZL15QAl9MaIYzQmvjaPpWn72l36JN95/kx9+79s8/f532F1f8nu/81t876++hRpHXRn2xz2OSNO+xnr9BhXvo33gD373t3n0xpvsX3ub1XrF5vwRddMRfWA49ry8/oi//s6fo/1A/eAxX/o7P4NXQ20MIY5o9tirScrl1f6a18M7RI1UlZlDlqfJ+LiRmaC5PH4FIJcTgGIaR1hI0/JK8zoxjzT9LDuvyOYZVMrvTtsgVyE1ZpIX9++/DKeFsl5DOjMWoLBSQCKQZZ8lg06xmPHzsBhhynVV7n3qUCiyhHl/nMIS0+8TaHp/4GZM5+Q8nmD0BVAiU0fyZbkbcnKv+QIF5sp285lw0gRZ3G/ZkJOQ5Pxh/Jj2l0No0V995YLT8+P0ynm0VHOekY+RfZL7UOYx/TnfJy2h0tdXW7Bs1/RE+XhGkcb5/jPgNINJy3vMfbs/MOUinab9VH3QbDTOa3MGu3TSfUJI1Wdt1jViSEyTtu548cFTfuf3fwsXDwyD8MH77xMk8hOf/1nc6pyz80fJ8DJtSoDs0z7abW/pfcCampVrqboj/91/+zn+79/8S657y2UMeGsxTtEghH7kMB4RCYzjkePuQNOssKaisg1OBqJpEOmp3RmNSxyHyMDoR7b9DVc3W/yt43NvP8KowcUWEUdAUB/44YffxzSJ/Yk4+iESY5/yxJgKdQ6xFZWtqJ2hMlAbS01iwIgIVeIeISJ447FRCcwOi5TRIXJ7d+Ty7ppgoTp7jDFJXyYG0IBzhlVVgVg6EghixYCPiNRUtcWP0I8BkUBjU0Lw1jrGZo33A8Ou5+b2jvrsgs26wxiDE2XwI3dXO3wYqeqarmsT2xlFJ2Z8kiujesawJ0TP9uWRtop0jaMx0FWOz7+1QYLy9DrQWEErIZoV5qLDAs7V2c7wE+AayQ5dFXr13O7u2G5HqmbDw02Xchblc2xTb+ibgUM4ctjdMmxfYLqG9eocUyXmTsrRYpNRIOCkRkoxW5EEtBgFWkSU1kKdK9QZItaQk6untTn0gZdX1+wOt+AqztcPEedQE7Ax4lzNyipvdDUfvnvDN957QfCGTz1Y0W8NF12dIjkCeAxq2hQ2XgW8adh055gcqlkNe8SPyXk6WIyz2NoiUfHjgLMpB9Tq7IJ2taK2K263L7i+eYnUKy7On2ClJpiU2Lc22bktgpd0HowRhJEQItZCpEqVEI0wGkFile0YwWAwdeKLh5By5RiNOU9WSNXRrMUbAdNgx4i1yvFwy+XtDY21bM4uYAwcDzu8EWxV0ziXHP4GfEhyMjEex3QWmhQqGTOYb60gpKpgqTJcwEdDP4yE8YgzjqatGa2hjRVHPPiUlD/icUbxMbFQLAqSQCaiSYUE+h2sOoQGkZrr7S3H58+oqjW+P1K5ltXZGQr0hx3HcEPTVjTVCkPK+aPiMa6jH29pakfvLSEeORC5vbzlaI700tKEFZ4BZITos0O0xpCKBcQQOR4HxBnO6o5BFCMVQRRbrYi2wmmA0DP4kZshcri6Iezfw4pnfdbwuc9/Cb99Rvdaw2v1Gt9UHGqlbR/gbUPEEqIgOc+V5GiIGAKYQCCieDQanJgUYiWCocpVui0xjkmvoTguIyF70x2Ca1JOtB7hOEC/3+OGyLq9pbYOsTWmcohUCIL32XmYEsmlPV9oAVFQ47B1i8ZD2i9Dz9APqHps5ajbNU7ACQgVKnDexpS4POsPBseoCkR0jPgqsZR0GBiOI2igXrU0dSqsUBtD1VqcaxkHGLXHG4vVBwx+hxrF47B94BgDw6gcYqQfhZWt6JylF9gdRjoXUVex62F/GHGxZqWCM8r2eGS7H2HsqZ3SdRbjhG1sCHEkbZXI4QjD4ZAKTv0IXz9yQClZ3ZlBE4tCkzd0Vn1KIj5b8hxlD15kJCUyTCq8mKKkF6U8qeuSFWdPUkCc5DCNYriWhN2meJBNiukuAEIK9k3UTWUCIoriNhuHmcpeQA4D4SQUJClIxYgIMU7xa6qCzfcH5jxJkzKZGVoLpTgPHUV9LMDZZNTm94uyFiileefQuKyCUvyYBvCaStJHFhESkplFk0lUnlF0wnIXJm9lAVYKUFJCCgtHqzDTToygaaRSP6IYyOhz6pvmWcxg0QSMzPdbrq2FPZCmaGrXnLAdWfRjskoyd05MBpaUmDGQkhR8ZtSW56f+xew5RJI3YurQhGKk9W4k2WhJjBVQde77NIaZyVYMxqSjFIU79SNkcFDKe9lgnCM0JK+V2agMgJik0KQ1J3Pfcl/QBROoMASmcZo9zqWCH8pUlUJJe9Xm+Z3YFqpYsakiYWYZQjZe5kU9GY1lbIvXfg57KfTxZI5LnrdpLdybU50OCs3vama6wNKEnkINP+ZV2pDW7MJ0KgDvtLbTGkitk2yLz5Mr2ficknSbkuR9hnbL+lYtwKnBmoXBq5pFXCRJj+zdkTntcaoqotO4IEx7ZjLt8q9BUjUbtQahot40/O3Pfh6/3fLP/+U/4+m7P+Ctdz7LV37jH6ZD1NW8+973OT9/iI8R58hghMWUfRojq27NO298iu988+vs717S9z3f+otvcnP3knA4sj7rePTkNa6uXnIcBs7POr7/7AcYZ7jbXfI7/+Kf8sl3PsWv/9o/4tntDY8ePma9OuevvvVn9MMddVVxdnZOJcrN1TVPHq/xaFrPAv2hx1UV7XrF60/e5HjYsV6tMabJc1d2UZYCEUQclGSELHIpLUHLU1t9Wh+Z9zetsyTCMo90MqwX+XEmoDKH6mZ5EjODx5a1arOBXYDHeUUBgk0qKyolPLq0Oa3uFHYwM13Sns5hbJlJpwKT72O6v2QDdCnIZDobinOhsCjnb3HCbIoFiCgVG7O8SGaDzPL0npyS5VMnmXuPG1QuLIfVyZv5hMyfn7KA5/EjvzefAfM4zHnJFpfrDNycsrHyBTo/Y/7edEpOfZwAYgp3eTn4mal9eqwRc9izsVm2amKnnTZfmMdRT9paVjuUqS+hZ+Sz3Jz0twxtWQZFrpyAl6W1WWeaNZ4cniZ2OldSVawk3MuZF1Cq7HCz5JLOCj6Xrbe5JPToU9iVM3B9s+ebX/tXfPjsXc5f/wTr88/wx//+9zGN8tqbn+Xs0dsc+yPRNiCG/rBLCZjHkevDFle1VKbDqlK5wFc+84S/+sYdf35VE4NH1OKDMgwHjv4AMdBWFdvdge1+R2VbMAZnHGrAUKcwDVMRIgTrMEYR02KbjvVqzRgfMhwO/Ml718RxTB5iO9B251zeXDFKxUYqjkGp6obKWhrnsI3F2YbKpJLl1trE2EBwolgJDFaxMSLRYDPbQ4Olp2fIFcVEklF3fXfF9thTuZpGGgqrX/L+1NrS1h1Wj2ArRu9pSZW1AspZ27JqamIVOY4j4xAZIkg1YDQl07Yx4NaGuL/luLvmePMhq7MLrHVcX15ibE3brghDz3HoEefwRMy+Ipg0504M3kQqa3HG8uh8w3nlWDloKmHdNGisiDLwcGMZNUURBCDqQIxJfvVGiYOk6IJAdlhb9v3AR7c3RKlozx7ixBGoCNHTOotiiOppjEFZUZ0LQz9ye33D/vaKzcOHPNhcULsajANT4WzaQbvBwyiEHO4FykqSfh3E0lSpZLuRkJhJRrG2Yr8/8tHVC4bB060v0KgEBWstDUplDa1ThmD5g+/d8offC/Qh2SU/fNkzhJFelBGItkqsPg9GUsl6YyOIQZynqx/ihxXDcUscBoQ0OHEAW9W0bU2MStW2nF2cMRwOfPDsQ4II5+ePUhiQV7yMKXTNOFwSbPioBE0hmsYaGENisxmoDWiuftgzUltLZQxGA8KIxkhVQXSwPcJ49GhM1QUrHJEBYwy932PsEe0D+92W6Bq2hx03uy11VWEIiKswJLaLHRPDCGpiBTKMIBYbDAfRiXlkjEJhqpgEMGiMiIZUHS8KtQhhsPQEDhxAPSIBYtLJhnFAbIWKS0ylAoTQUFWGwWxo247KwP7uhtvrO6hbjDtj9BUxHpHdS87sOU2zJjhL8D2X2yvGMdJUDU27RlrodwObleLajkErdts77rA0TYfYirvjnu3uSOUq2rYlhgEjA65Kif33+x03t3eYBuLDx9QxsXm8iymJc4C7YaSuGqr1GfZwQN0et4bzTcfdy5f8u9/9Q0x15OJsjWmPdN0Zj7sGNbeAZdSKYzAcomGMgo3J5g2a9rcaktEcA0NUsIEaharC2hqJHiuByLiITkoVLBHJLDJHrIQqKHVnoHqDXg+owBA9qkfEJ8akNTYVL3COKKRKnqR8S51xDDrQ+wPDnbIbdzTG4VxFVTusqdLJqpoAMqNYehrjiGozOB/xGhEZqaUiquIai8SOECIhBuoWjFUwMVclBA0REwIStrhmhQ/g9A7K8kUAACAASURBVJjC78yKPvS4RjiOnuN+R1s5mqZJYdUK3ifbZrQ1ffaERWs4a1usiQSj7K1k8s2O4dgyDgNXlz1dC3aV5OfYHzH9iCg4Ezm/2PCjfP0nyaHkUHwMk7EXZQqvB5OZB5pYQkVxUcBqSr5VDOAS0S+SFpfGkpVcs3GQVB6dgCFICpdLeWmsSbRjDamkaX6S5MYkarGd2C9TUslsSCbPcz6ojMGPHmvtpMotw0LKz8krnbRTlpW4CkGlxLlnp2XW8nLYT3m2yn19f1JbC2gxsVLys4TCnEqHbGGFGEkgVPlODDF11cAJG0eYwILJw5k9TJNmSwZYJgVd7xkr85iUkBArxQjXqU0FUHjFhlt4UEuVtinsLqYD+uRL5fP747QY00WjmECVoo4vbY1s1JfrJI/Fx71iTEaeMTPQoSfXZ4OqqP/3PfhSuAQLE2gCfJZ27hLuW5p3i+8w2Y/TmJRBKvmD0n6b2V8FfCvtM3kAiqO+3G/u1/z8wkxb2FmpPOX87rKFs9WSOaZycsk8LsXwLOzFKRwmr59XwjExLKesjL9oWX8zwDuJDdVFWEk2wyTBmSfsLpFT4Lg0WkvLyj5ffMYsR9LY3ftuAa/KnwgahUCghHGVAgDlfol9OQ928fKa0l/KPs+zJeU5mquOgEiNM4YQe0zjePyJt/nEpz7J+z/8Lu/82Du8+dqbOFcTNNBUVQphKLFgWSGI1hB9wAfP17/xDR49eMTN9Zabqxvq1YZf+Mqv8PQH7/GJ15/w/ffe5R//N/+E/+F//O/5yS//FO+/9z4f/NW3iW1kHD3f/+G38Drw/v/yP/HaW5/mp37+K5yvtjx555M8evyQy6fv8Y1v/DsebF7j3e98i8+88xPEfgRjiTFydXnD2598kxhGOltxd33Lxfn5JAtFLMWkVlWMLUDfQl7eX6s6h47ef6X1VfKQMVW8XEzL5OSQiaKZwiWkoMx5vmeYYvF3LgZxcs9pBeR1mvd0AsPmqwoIeipH8hmQDf94r79p/ycjcnGnxVUyre0E6i/CqzNMMjNm0pouSpiQDRtm1tArI7oAnuYxLuF7UwsmQT5BTZN8eFUOLlp+0pvpeFqeUcKCbLg8H5jkTMZhFns1na0lXI28lkQWTz1hM0kevflVRkO0sCCLjF6Ereb1MwOIJuk/izuUe84nzyTlP3ZUpjFddOjU8TO3NbK8//zYkqC8jFFy8sWpr4Uhp5PsTT+9CtYoISiqyagUHFQmebaDp7M1u7s7vv6XX+P73/0mm4sLfvILv8j7ly/4xp//EY9ef523Xv8l3PoN6toRueZ4fY2rOqy19MHz/OYlVbMCqVPbneHhpuWPvrfj6EYk1vio9Ps7wtATGeiaFeJarm4uOQ49bXWGSJWrM0FJz+tD3lO2ws7qAYqmMCLT0J6vEXnMcdixu7ni5QfXmHpkt7+kah7w4OGbdE0D1mE10lpDLZagQmWFJrMGIyaHu494lBjA64BIzWHYkcqEGUZNjte26djf7fjw5jliSblnYpUMaJv6YbBIY7lYdYTeg3FoSM7MvQ80xlLbluCFq3EAlLZymDrghkDEEiUlz17h2B8OdCaiTcfdMPD0B39BbZWq2lCtH3Po76ibhvPNBU27wjihFoe1BqtQ2RqrHrWRyli8hTYkZ1RyokR2vUeMI0ZSmffg6LNS0o8GlWEyNo8hIuLwfuTy5kP8ENicP6ZuNijgNXmBjTiOKc8CtRXGMKRy47ZitbJUDvy44jgEXlx+xOOLDQ8fnGMlotagDh43Dj9Y4hC5C0dUldq2oJEYlJFUgcvm+An6wEcvf8DVdoc0G+rNWapopT4lZM/7WwV6G+mqBhWL90lD7aPBx0BVOTSmUuNeDZWkek6DejS4LMcMIhajlpWrqNeOoRsYxh47DNgYGPoDJloeP0jMpA+ff0DvA936AeIqRgasS9X2rFQ4sUnLUqUPCTyxxuD7A8N4xBjF2JrYwwEwOEIIBFEONpBy7SvD7pa6bajbFomRIUaGHIlSUaFWMBoRPVDVFYaKdrWhXXU8/+iKaNZcPHmLSOR42CJ+oLYVVeWo64baVexGpbWB0bVI8NBW+OgRdTSS5J+XYpcFRA2uqpGoVE1ixoCkPak9lQYijhA9zuXwXLciWpciZEQTi0sjUQNqajbW8sgKT59/yOV2z8WDT1JvWlogrB9y9Hv8YQ/BclYLah3Xd5HObThvKrbHA50J6LhjP9wSbcvGCfvtlsOwp2paKitsD7ccPdTNCmcsx6NnDANt02Kj43p3R78/YrqO81VHCJ6X1zvWq4bzdkU/RC7vbjAWqnpFGGMCtM4eEMeR7XFPbzas33jMYfeC97c99sZz0d2xPj/nbH2WqlvayIUYNk4Y1NJrzc5biC1D9Ck5dKzRMBAxKaeWV8xxj5odJiRHv7MBgzIEz2HYMgwDq6ajXbUIXWJV5QPKmnQGa0zJrCupiaMy+j0hs9wqVaq6o+pqRgJ6GPjhB9+mWbVIu8ZUHQ/PnyQwK46Z3QjJiyoQMzNRB6IfiNah3iVZSmGH91hjCDGFCyYdW1IhcJvOByMWVSG6gI4whoHrlzvCcc+js4qqE4jKpnEcgqGSM2Jc44ctdRyhMRhrwdQcgwdS4YVRhcr4lN/GAqPFjQP7qzukMayaNbJuMPYcK6lac7SKrs8TWBaTS3L4G+zb/9jXjxxQcjJmo9GhahFVbE4maEzqRFGgGlLZx1TNIP8ns6IGJZQn/a7TZ5kXVARA4XgUJVglGQCakjg7Uwy5lNRYYQpNmfXJpBrlVF/AHI4nkgAEa+2kWJcEwel5i0nJbCDNh18x4CEra9lGI5YKL5kNo5rDiMgJ7maAYc5tk8dBCyvqlBFUFH9BIc65iiQqMbO9AlpsgFkxXrwK8HHikZzs4VMwYgK2KGyqNFeJEp7KcEoGKUw21J0m7/UEYOQxKUBiUViX+YmSd8HM3vh7xlfBmAIzq2oiICw8rvPMvmrkSGmHySDFhBZS8I0cgqkTwJW8QyHjJTrN0eSzXhhNJe781e2bmXFawjKLITE3VJnXQFmLkj2ZhVlVbP9ipJY7TGwlJCWbXPS/sLEiixCgDJBNleOXLV2Av+jMUCvzMTEcYAKHSh4vQeY8Qid9W4TBoqkqyP2JyQrNEohKJMMlqzCFWcw2UzzN6aXzSp8N14URDrm85vyFMu73mvzKHE55b8r3S5sWwMHHvYIGTJEQwlQVL41bNvezca5R0oGad4ZOY2tOb7qwntVLZsN54hgRiUQVzs5f5+e+/EuM+z2vv/42bdthAOMsdZ1KVNsMukeY8rXd7Xa8//67tI2gwzWH8ZYXdzeso/KdP/0zdv2Rm+uXbOqW3/vdf8uv/srf5cOnz2C0PHrnk3zhC1/gN/+v/40v/2c/xQ/f+wHvfOoxv/Eb/zmdW3MYRz7xxtt879s/4KPLW7745V/k8tkzatcw7AZ23cBmdZb60zi8eEIUsA125SEn5i7hh8Jiz2vMYWKnAPZ92VB+/7i8VGXvoWSG0uKz4oVC87mji3DgrAXJYk/kOSt7M4VNzrL4ft6Zef1MKzh/Xvbk6YqU6cOyv+aQ0FJSviRgXiZ0Lpkn/qYVX8JrCiOmhAgCU9LMBNTk/k7ArS5Ykxm+mOTk6b7OjZrBGZnfZnG/8uYk7T5mP0+3S4P9ymf3fy/fluVenq7KbZ0Aqvm8Pr1Xavt0fmf5mmZX5jkvZ/40luXfci7NJCPTUM+A5PzkGWyS/H2z+LTMuWiSh5oHP7VndnZN90j6bZKFBeSbep+vXeg25RUmfUhnEFNziGYgG3aCcS1GAsEHnLPEUfn6X3yV7/3ZHzNY+LGf+BJ3Y81X//ovaZqKL3z+5xH7ANu0aAxst1u87xn7G1zbcdsf2R0OdOcPkmtRU3n4ViwvjlBRcbza8uzmJZs2YqSlaytsdcaxH7h6+QJMQ9c9QdQgGlMejhizVmlTslwsxiaQftAAUtFEi1gYwsC2vwM/4L2nV+HsnU9R24bV8QFy13P5/nus1ytee/I6bdcgMeCzF99gEljiR4wGKgxjhN4KXkCkSxXOsNSmAlFqcQQfeO8H3+X2cMODx68lwyFEwGNtAtSrquGirlHA+zHt8egJw8hd6LHi8DaAOIhJX66MoqPHqKczcBj23G49SsCrJ2pPJxXDcGC7u+Ph65/DGeFw9SEx9Lzx5ifYrFPYYB0tmArrDBKU2kV89MSSsDeCjUqvqb0+JikUiEhIjr+DQggjQZRBPZUagkClkRAio1kzHLbsrt5jMIEnj3+M2nUprD+nlTDGTYm+03M80YAVj8mr29Y1btXRKBy3PZc3O+7ubnl0seL8/AJHQwiARGxnMEeD84a7GLCSwihrjQy7A01dsz/uef7yGdt+5MHmCaaqUroAsaCamBR1rrbkErA3FBZrk/KejMZg1UL01AoBw3EImeGUdUAzpjNEAlYlhc4rgKO2FV21Zqz3HHY36OEGV2243e/44MUljesQYLe7ZdXWRCOEYUyMjKiI8YhU+AiqITOVInHwaHTYtkFxRGLOv2WR2iAa8KSk2mqgWV2A+gyOGqwztKSqdylNSMRUARvW1DhsJWxvrrjaHuguHnFx9igxfI3l4uycOI70hx3Dfo/f94TOYrtNGo+Y0p94Eoss2UM6V3GTxPgXY3CkvGMDA6kGmEIYk7xNBgFWGnzoUevS6onp2lGFaEwmHLTge7Yvr/ioD7TNBZ94+x2OMbH7hgheR1zT4dqGfow8vY4E6QHPg5XjzLVsNufsxyNDv8O4Fa0NSBgY/YGu3bBqLR88f8FwuOXBw4eYKOwPI3XdsO46xhB5uX2Jc5aHjy4YjiN311eYqubRxYbBR773wQucWDbtOZHI7W6HixDVsx+HVHX3jbdw3Yrti6c0Vjk/e4D2PUdnuL7e0V7tE5h0tqbpVqh1VKbiTHo2rWO0DftQE8aaQMUoPS4YWhX6AGhI4Y51wEZPVJ/OPvVUTYNt4VELly8/wlUpcb9KxWgE513i8AvEWKUQsb6nUmg7gaqjJ3B59QG3331JY9eEEDl/uMauayoL0HP57Dm1M6y6FcFYjHOYMabUNXrEELLNViHR0jpLj0eCUqkyxmxki0XUpwglW89pU2ImU1gB45DGMAblfFXh/YoogV0ISFTqw4AVRUflYi2YixW77ZH97oaqbXC24jxXGu2HPRC4eblnGPbU647KdRhnqF5/DaOCkRErMVeWSzmpCB6xFtTToAxOsKbjR/n6T5CUu56UYyFMWlkBELyAisGWspjW5LCnmIQVTNp7ZA7PSZSbbPDOdCcmJdwIUUNSUkv+EopXMbMQFETmMpKTF7OUjC+vnDAohCHTZZP3zTIbHCd5Ae4ZJCc/jeTSwUx/p6FIY1QUT5UUAlio6mUYCluqMGaKppuYRUmh11iMZ51LwgPJtyQT8FNAkigz8DCzoHRS8kVKlazFK4NbhVkTF+1E5lC98jf5PnNRwgz2TAZC6U0xpHR6hMp0E5a/pcTVc9LrorwmY1EnL/+SXYO5b3AvGQrMgBxpnGMxsLKxhqYE78TU32U+lah+Yn4tww5mMGcxX0pmzsxNKSGNJZ9RAc7muc7jo3P7yvyU0Z6MuDKm5VqZRzZSkoPPDIwpTxWzt1xSp7IBtmDInSA5M/D1qnG+aLcUI4RsXJf1vjAJZ9tqHjW9N0gs5n+ap9lYK3b4HGYi823MglkxsU9yONRkgE5W1nzPk57NY4ws086ctrGMyzwzizC7wnhYMJmKwVoSqaOCStotUz0ATlkFUcqMlacXtgqYj5mPWiKjAR8ijTP84de+ygfPn3K8vuLrX/8jNhfnvP/0h6zPnvCJt96mtlWutukTk8A1CJ4oI04tz569z93tJR99+B5/+id/zDge2Zw94Bd//pd5/uH76JVnPx749Od+Es7W/OQnP8u/+jf/D4/f+gTNxYavfOXv81u/+c/4yS/8NLvdkU++/WM8fe8pP/6Zv00cB97/6+/x1d/95wSuuHzxnOfPn2EtjC7nJ1hF/Bjxxx2iD0g2SaBWRzz04BzWuZTcXmQaW5FMec/zXmzoeEoFfBVIygsuzWthGaY1l0r6lqmbGXWqmWGWAR3RU35QkeXTI5TpfEkgbQkhlnnBA/fBr+mnhun8QEmJe9MFlBNyBgWYwU+SbPaL1hW2TWG/iZbzp8jCvDt0XoMTe07mdbxodjmiJsD6FDTJ4Z+LdTvFiBeHz9TueRDTe7Osm/fi6b6FzEZUJgDwPng1g2J674ITqYQs52R6Z25XCg1LQiJVwywBzbmtWUhPYey52s2SDVxyckGaJ5ND9g3FQJwk/qIfr8qqIsuyGpXHXxeX5zDLCWWbZ6CAaeVucq+/89FcHHzpnrb8KkLE5ByJig+BMUaCtbjKEqJPiYkxvP/ue3zjT7/Kze0HvPPOj9Os3uDd5++BdHzyx75A49a5GpDluL3j2fMfcPHgnE23gXjOyxcf4ZoHdO05keTBtk1KzDxE8Icjt4ct290V551l3V2ksAhbc313zQcvnrFZndHULd4HogZsRTL6rVAZh9VUW1hVUpJXJ6ypGQbP7njD0R8xGDZ1y+Bg8ELVtBiniIdH528QN56z6Lm6uuLdZ9/GauTJm59gszrHA72PFK5XZYSDeAaUqmpxzuFiYoa20nA9jDSuZb99ybPLjzCV4fHjN9L6DJ5Ykg4Daitq69gNI03WAUYRohdGLzjTIj4xsPrxmsgINskg7z0pN2UySKSytM05Z3WSaTc3V4wY3vj055ITIno2mzP8Ycvz5x9yXK95/Og16maN18A4ejpxXPee4CzqE0gSNCJWaSLsfcQbkx0Ykpk7BrB47Rn9kXWzQcOQyAN1Q2Rgf/mUo+9ZXbzORbNKMiqMOedJAtOjRKQm78vIse8RVRrRxOQCjFRpbCy4TUe1bjluX/KDZ8+4uN3z1mtvsVl1XA8DJgYqSdXDRu+JcYTRIY0gJvLh1XOO+y1n6w1n6xVDSKwGpyAEKlGcS3l8althgiOoErXH2BoNyWHpbCojY0zaWxdVxbqKXN4dCTIk5m3QSf8IOhJU8THlKsIrfjgw+CNdvQbpuLre4qWniQ7beWgcbtUgWqFqMVWNsUJdshabmkpcTnwfiHiazmERxiwAjEZszn+DUVy01FQERhoMXsnOFoN3gFGqoKnisg2s6gYrykUl2Bj51vef4t2az376x3l0YXj3cuAwVtQKzuxpKmjNir6tGMaevr9jvH1OZR0XF28yUFPZlqAp6XAtMGY7UxCcVFhpUCP04ZAknBEiITHYqlQNL2jKVGZtCkBPvDGDE4uKJWgERnbXH9EPR5r2jNfefJOjGrbR06hDAFdZHJEwpvxA0RiqdUNtzhjGkcvdLVf+JTHsWLXnNF3H6w/X7Icj17uRdfeAKgz4QXmyfoi5uMCayN57Xr/YQFRu+it8VB53D4jDwNXlC3y/58GTx0hw3Nxc4ZzjtbMNo4/0wxG1HlHP3d0BsQ1PHr9Nu26JQ0C0Yoxw9uAxWr+OmC0melaNwcRI7z1PX9wB17R1y6ZraTtDXVVUbsVF1aL1loEN+2BQ4yCkXHESDowxoloRjGBzyhClptHAMB6QcURsizQtVgJGG5wqmICxDqNC5VoIhuYs2fgW5XjY8/L5Jb4fePDkUzTNGqMDwzDy/Pk143jHa6+9RWw2aFszmIQj5DRzIBB0SE5qMRCOjNJzwCC2wqvndoxUVhh3IzH27G4P1HVNs66opEq5R43DoqiJiGkSuYYEpPkYCRYwjkDkSEwVKkfl5rZnuPsI4oHzTYtF8OLp/YbxxmIqyxgNrbWsH57R1Cm0MErExjRv0dZgwMWIWkWdS8nZw8hoLEFNCgGNnh/lS/6mkJ7/2Nf/+i9/VxM7iaTwFUXYFKUqKTMhK6UGQUSxZAp+BjMEm727hVae84kYTTlw8mERcgxr0guLMhappJpYTiEu22EmRTtdm2IL7UIRjCT0ulD2o0n6cmEUveK9VkVzwm3R7BGUSRWenl0M9fylU09ifvYEwGRlXqSEmMnMgrkHSsFsYE/tybcpgELKZVCQB5lDaYrWyay8TzyJCahI9/eqqaRliqPJzUyKZTG6p1xEwpR7qDCuApnZpcWAWnI3dBqHScFfGl6xeGBTe6cQr6y429zhWPCB0xk6+XUZaldsoVicrx/DWiiMsDJKoYAPypTAefmUORfTwiDTMlrZaFPwklg1XmNORnfPaCwGXH6vMMNO1+CyJ692d7KXprGbv6+lb7Ko4jcBM0yhY6FQPsotdTZSSruWa2VqjhYjozxdJmCmsA2X95wMXoCcg6gwj8q4Lrum2Zotuf8lLsKW8jNOQhAzy6nkTSqjUnzvKSyT01fp+sQ0WYCi+bPynYktck+kzltTKDlUClpXMu8UsNsKWUlZDGKWFDKNY+EhyKRIlufHPIYp744lhEBrG7797T/n6dPv8mff/2t+/e/+KmfrDXfXLzEiXDx6k0ePH9G4lhcvr3h4doGzFUECYg0ExVjL0/fe4+xsw7/8F/8nZxcNf/aNb2B84PmHH3DY7vE+8trbn+S73/0LfvUrf4/tcaBuLDeXt/z8z/00N1db/vf/43/mtUdv4TZr/ut//E/40hd+it1xzzf/9A/5N7/9Wzx990/5xKc/x9PnPwQd+Pxnv8zP/MJv8Ppbn+JzX/4S4QBXd1c8fPAQjZHd9TXf/t5f4Jzhx3/8i6w2F5TFYozNq1TzPGZGZJFd8+LMf+vEeJuhiuyBzH/HkkMoLgFIpnCf5boqzoOYc4BIVkgLLlFA+DAdYGlWSzhu4fNplgPz3podGvP1Oq1VYQ4RlXzvks5sCmVecEDTmsnvm+V97u25vIZPVYZ5LWeodlrqJan+DCKXULYsBIRcmTUBfcV5dE98gWbWjHn1g1P237z3lidg1GWH8rsCEzNw8R73WlAAJ1VOZe7J3yeNmlCX6ZEFiJzeSespSjnXs37D3P/Tk3EhJ5ef3D8vmAH7mU1qFmOlrzCyT8bunuDSjCym80tysYVFqzSDSuXM0NyzbNDiQ0rEasEbGEMqoPDy+Uf82df/gMuPfkjVrHjjUz/B88s7Lm8ueeezX+Ssvkhgp3qOx4Hj7pb9cMnN1QsePXhIt3qL59cv6M4uaGyFoQUxuDoFcu53O3bjERMDjTGsGkNlDUqFcw0fXV5xt9tTtw2aWR4YUEnJpavKEsglpjHJo62OoCNjfyQeDozq0dpg64paWob9kf04Ym2XUgxUMSWP1sjOB4xN4EyMB/rbG4bDiHUVZ+fnnK0v8EZoaqGrqpTnyRis5OIxsSJGT9U1VMfId99/j914xbpaYZ0jaDKkFGEQMFLjBGpXobl6W+1HPMLuqNhYpaTYcZ/YSj4Qo1K3NW3XJYevOKwoxjYYacAEPJbD4YrdzTVN07Lq3kCdQX2kylV0cYIf9+xvLxn6PZtuw3qzRkxLJZbB1kRjiD2YRjDBY0xMTmBTocZiY6QSi5j/j7k3+ZUlydL7fsfM3D08Iu7whnwvKzNrrqyuoYvNbjapbkoCRHChlSBAfxP3WhCSVhIErQhIABcCBAgtDuLYZFez2NXdWaysqqzK+Y13jggfzOxoYWbuHjeruRBKgALIfHEjwt1ttnM++853Aj4GggrOOtrGMQ4D4zDiJbK/u+XlxSs2dcv27A1UkxizMTODXMSCsRhT4WNAK5AYuLvbs7ap/8WCMZE6p5t31qExEKInSCT6SH/oGfsdm9Wa85MzxBoO6lmZiqCWQXusF3aHA5e3z3Gu5uz0DEvEx2IrJlsmqDJ6j7iU1awCatfgbMBHpWksdU5oIhroNbP7fGAYB17c3NLvR05OHhKElOEsRjAGUwWijlg1mdFT5TUscHd1zTAGzh4+pHI1d3dXhN6zqhrqdkXdrlKYYTCJQWZcYuflU94+Z89GR6IfQMDkUB+vIyl1e0z+QTCEWqg8WFF6kki5RsWa5OPFhJJRIdSiBN9x+foZEnvq7Zu8+fApX30onLYWbSteX0V+8K0H/OD7D/iH//zn/OT9G8Y+0qkSvMePI30/4LTHVGvqZs2mrgkqjDkUG5Kjr1oTjCWEAUz2IX1EYkSNovlQzeqsFVhBYiSRDrYFGLuO2+sbhIrzB48xtRArUF+n8RcD69pxFwdsTOndVcHYpPcTcoRDYysISVdKOGCspzHKdrshGsftvkcU6nrNMFyjHsRm4CILjK8bC2LY7QdG9VRV0tq6ub2icg3NuqXvOvygKUNfCIw+gLW0Z+e0m03alzyEKNRVw91nH3D+yCH1UzwwiseMARt3aBwIY0+IY8oiOPgEONWw2TQ8OH/AerUFGxLzTVYETrgOljGmCKYYHSYOiT0ZPGoCcQy0rmUVnrEPB4J7xDBEKiOMxibiiVdsYxMoYA1oYNgf2N/uUePYnp5Tr9bJZHcwxhGDo4s1Yg8pY9/okWGPqxzONpjaYesm718phL8cxjupkGFAbcoeF4NHqBiyPplRjw/Zpo+ZIRqTxpeYERVL9EzAayK5DOBBTZUINhoxCIfBM0RPHD03L57R3bxgDB3rkzXt2UNa02CsYbV1nFYbtF0RR4Mx4PJhgrMpkcLKeX7wluM6Cj/9aEff7VHboLZllBGJwv/49//eFzzm/7ev37woNw4iRAmoKC6HZUTJG7dACkMrmaYiRE/MJ1uJgWHTAmyyAZQnncmTOb1MPh2dY/8hnWrEfCqsGdUqmhLAEU6hWfjLToZTyCE/guQFQ03SPChHfdMJXgYN0lo7O3R2YWQeObBMdl1+FbO/0MM1hwylAiaDMMdqLsEJBVNYJJOhuAAJspFZmEkOSafQ2WEVyRo995zeqWgFKJksb9LGlitcTv0jC0d/YlvJ5CwJIBMzI93K6uw0zK0wu27J3V4YxYt7L0Mbirs1gyCp9FETi6M4Velk8TisIA+ZSHnTgQAAIABJREFUVO7chzO6mB0uOW4fufdBOR03uV2jzGE2pR0LiDCBQotbmHxPQwIjSjhgeVYJW0xMmnvjiZmhtGzEybjXBHJNjmD23fIN0h8FUMtgUvlaFu8n2OLeOBEWbVbaMYtqT5mm8ucz0DLXXY/KMt+z+OKztHF59n9krSsIG7NrOY1hZiB3DmNaOIGTiMrM7knp5csYkEXb5TDSyQ0v85177/Pfec6UNag4zBOrQn5NrSSmka8JSE9gRJzGz9Rn5XnFAZzqA9MqaMovPJWzDKHjy9/4Kodxx3/65tu8+ehLDONIW488e/YZm9MnGHUIFmcrRg04k4Q7nRG6rmeljv/u7/896kb57d/+m3z567/HL37xSy5ffs6DN59w+6uf49qa7//O92jXwl/8xY948uRtBmP5ytvv8KMf/Vt++pOfYFvD9c1LagZuwx6zXiHdgd/9vT/g0dMn/IP/5TW1c8RBiE75+JMPWZ/8OQ9OH3H9+WvaesUv3/8x/+blS979re/yzpN3cNHSH0b2Xcfm5HzqbyUwaUshCWSbht8MOExjw8wtPM3nOcaJRIkvAME0a/JYy0Oy9L0ws2KIi9GZBsBiyZlChMp6N+sp6dEedzRc8m9CHh9l3Up1S6uHTADAIvhyATLNdZPFsF0+6x54JKA5w6MW2isLQJN5SJZZubx2Wi+mspV9bm6/xSTOdcl7uMl1ugeu/JrbLz6595kef69Hn8nUb0fhdottsLCUChBF+Vvul0anch6vQfP3ceornZ5h76/r98o6BbVNQ68ceslU/gVpiGljW9RhLoss2FKlLMvflRqXei4aL9sSWuaLMu0TIXq8prAqV1UYI4xjwJPCOj/46Xu892f/GtdUvPm173Nxc8fPfvYzmgfnfPPbvwOmIfqOLgz4fkziyWtL9eAtYrRcvb5EGdhszjFVRVAIjKCRcDfShRGxwrayKa28yWFcrqIbRn7x8S/wwKrZol6RSsFYRFwCgqzFB4M3grNCGDpud3sGHRh9YCspC1TjVjhbsx88l7sdqoKr1iCJJahR6OPIWNooH8St7Jb24QkxBPa7Wy5vLnh1+YzT7RmPHj9BVi1GFWdSUKpEi7WOXj2H61vef/YJopbzkxN0JDFcnMHnOd+YFBnQ7XfcDiOrumbMe52OESOWaCOxEmq7TY6Sc1inqISUIj1KOrgVmzIwmxHplauLz/HAycM3MGYLClVIh5NGIgNJeF1szfbhE7rDLbcXL9nf7Dl99Ji4PiOIofIgFfhwICI0pmZbW5pVCi9UTUwWwTFEMDZldCP0SKUcdre8fP6CaAwPHjyirdeM/ZhO5MUkMXVjsdQ4ZxFjGENinjlv0BBpqjWawR4DrLdbTleW/W7goGCcS5qu6gkSkqZUbNnfDVx//gnr2rI+2bJvHK3Z4AK8eP2MIR44PT3DWEf0HUhKrmDifAigwROJ1F4Z+p7DvmN9umFtLIN1hD7QmUBtV2g0HELPGD2a3bW2PWO1tTSuIkSX2RDKGH3SW4kVgsHZtOYcDik00bZrHp+dIDmL1nZ7jt0K3Rg4DCP+cIetKqrtCusaCJ4xxKR9JUIlkYgnRI+xESNJYVu9x7gqhSnGHJViDc6DiiYtHat4JYlCx7w+Zr8uxnRIdLG7AGl56+m3sdTsxo73nivffLLiD56e8fMPPuOXP1e+5A5896Tm41XFyz7itSNYg3Frtus1GhXfHbjZ33F7EDbVmrp2qMv2dIxEGYgh7csSFMmyLOmsUTHBgli8BCSzkSMGxSdJjxA53N4QQ+Tk4SOqqk42nLhMx41YAkEM++ATQcEYjCSWphqTMvWJUEtihokV6m2P0zXRDFz7HXdXe4ySsnU1Dmc81fqMfdczDoEgCcx1Bm4OCgRaMZmZOFA3DV978hbjcMBHw2bTQjtweXNHp46TB1/CtE0iGKgDMRiJBJf6Lbie60PEyZ6mqolU2LrGxhWjCtYdMMOexnh8NXKIA7txpHvd8+rmc063NacnLevVGbY2tO6SthJ8qDjIml5r+lhjnSWgxC4QzUBTVYQeRGoqsyJKDw7W0hJCT2gExCSG4sUVl7dXmGbFg0dPWK82SCSRVqylEkNla4RISySyIsqIbVtG0yBAHzvi7U0CCv3IqrXY9QZLQ20cXgJ9bVhREYJP7HY7IGpJW5tFKk1jypi0djuDsyZl8xVH3RTbz+QkHHUC4EXRwWNdhRVYuxG927EbdmwebmnPzxFRtic1trboCKbOhyTiiCNgIrWxgMkJogJd7DkM8Ce/UlojVLbBn2wZx8CgisTVUfbw38TrNw4oqYxpIRabwYd8MjepZiezLObTHxUlmoqcoHMBOBQjalJ3IWWAU5L5PebT2UKPhZLNwpoqhWyInWj7JotUa74eJH2GEqNijUVzWJ2FKYSgiJCaiRa+yBDE0igun8ynpiIJzLHcN29l+m3MzkksRnMGBFKsO5Njakq7FBYEc7Y3KKfMM8hT2AtTJp7pxHLh0OoMEMwARIYSCtujXJPrWk5qTfG4NBnCyr1wNs10wVzHcpqez9zTpaLTyXi5V9IHynXKmjKmAAL3oteYwKNls+Y+WQAKpQ0XQYPl46kbS66wJeuL/HcCWubPSh3Ky5JYS0vQ6rincztPrKDcnmaBtJTvNW1yJQPi0lWS7KxOoqfMjLDkmGbQY4kxFGdt0eflrLyM1IVcFPeF1DkqAVNfierkAKlZtlee4XmQieb7H82R+V5mcXeFI4ZQYeiVfig/mrRLlm23QPT0uFlnpsbRZ3FiJaWuuMdOKo7g8ppy39wHie1CZkym30z3kDLWl5n0SllT5ZOWGiTc0OTyxSScT9KhiZqdbyFrRCWrJ0osE3YCI2yeX3Hq7zSerE1acO+881U+/PhjqqZmvV2DNWy7Az56gij74UBVO3w/EOo6tf0IiuXTjz7k619+hx/96F/wwWpNZWs++/RDfvv73+fp03do6ppPP/mQ1xfX/PLDD/n+97/HV7/6bX74z/8xl23Dz376F/TjgNoACk8fPuHx2ROsWmKAbhhpbUpXfPniGV/7xjcQPM8/+5w/+Nv/CX/2p3/OO1/7CjFUfOWdr/Mf/vJP+aNf/Dm/9Z3f5/z0AU+ePuX8/CESc0bLMm7QaV6l9ese7GCKcctRSGru/TxfmLTnCvhfxmUsIESZSyRDR4gpU+N0tzx4psUtfRSW3x+tMulVxtBUbpm5RROjSud16tjvnwEYa+Y5oRyD9imDpFlcN69byyU3HjcdpdbCHLabbjsD1sDUPnO73l+XOar3cRvM87oAYH8l7rIsn871+8Jzkbm9yicy/z4xbsvON22MsGjP8lWW2ZgaZ2Jj5n2yrPnLNaCs40XPqqzNywOhUu1k/9gJ7J9ApTIwF/Ut2WunkEl0OoxattkE0mFyG8w6THC8L6QaC2piTtiQD+jKIY2mfTbEODOSRbDNiuBHxgEchotXr3nvvT/l+YtPePqlL+NWD3j27HMOfccbX36XzfaUMI7gRwatGaxS12vECmotAU+1OWddbanrFSrpmeoDGhRjI5WFqq5wCpWRPOhTHe9ur/nli+e0q21iAxhwNoenZr0662pCNMQIfXfHIex4ffGc7arlwelDYttSmwqfR8rNbs9uP+CcxdSWqEOyUNUQgyNIw+BHHBHxULsE0puQWBwn2xOqdkXf37HvOobnF+x3PY/OHmAqRxCDU4/v9zy/eE1/GFnXLRghHjo8SWNpt4tpGzFMgPHYC7gVxtXUYog2YlcWJw1R2iTmygDYNP6CENQhJoX2JX0/wUjH3cUNQ9fTbtbY9SlDTE6UZUSkJhrwJPamM3l/i7CpN5y/dULYjVweLrm623F29pDKNWgjVCr0wbLzmrRFEGwdaW065PWq1M5hVBnjQNSBz14/51effM752UOenj9h9J4hjFiXnThrqKqKytops1dUTyRpCxkRmnaF85H90NGuG4zC+baiVg8bh/EBHQPRB1y+p0EZrCWcCr4+4frqmqsPf8mqtTTbB3Q3N3i1bM8ec3e1wxnBrUp6+ZD29KybihGMqYgiGFvRntWsnCW4xFx3piUlb3NUzmCo05yzgIbEFAxgrMNGZZDAGDyNtTijSIwYcYxh5PL6mts4Um82rOwm+TpSscJy8B3iLLZ2NHVNiCPDoWN/tceKsqpXVOtTPDZlONRAwCehYcnCFzKmEEWTtIucSGKZidBWYBhZOaE2BhGTEvNEx80B9oOn6z0X+wtM9Dx64xs01ZqQlOgZNHLaWlxU/rc//ZjLzvKq3/Px9R2nrWFtHa0dibFlNAFRi/jEUqvqDVVtiHEgjB033R1iLStTUzc1KxFUDJEExposZmEdDLGsbbCqkkizF0PUQBw8+7vXBB+pmxOaVQs27cnWOFBD1IiV5PAHP5MUVEhsOZIWU9JoqiEz6cR7cJZRB1Bla7bI2uI10g8jdxc3OHvNo/NTnDS0m3S//ejpBsFYwUblNirORFZVA8ZytdtjreGkEsbR8/pmpF6d8+DBY3qtQJK+aorESPeJPrAbO/a959Ebb7GKZzin1AI+Ct5m/9M5THMOwaNhTzvuETdiNwcYeu72I5c3l6yrC9arhtOzc043G5yNbK3n1DqirRlszV2oGTc1fqyojeEiptihMPa0bYviEjhrPHS33O47DmM6LHjnza/S1i2jRPyYvG5rbdaSSwcdKElvuUgdCFTWQhipmoZoK/ohMNBDjLjdQGND0m2qVlRIChEUx6pqiAoDI+IMNpIIKlYmAooiWBSRKmEV2fAPKfUdYwC1MYV164i/3fPq+jplfrMNq1XSDFVTgTF43zGMgW3tsDSoHwlCkr+Llpuhw0okRIP1I6t1halqRkCtSRtEVFxVZ59FMb9hCOg3DihV2JSSUcupbCbCG0EkoBpxJIcplItECQswJH+IqKBqJmMvaSSl2H8xKRZaIqRcu+QT5mz4SQZmtJwMlLCRzFYq+hoI1qbMZ7OBmWSKEzUyZ0jL90KKcbZwZsudZOGAFudBYWKdTw7poo75kbYYrpMBmJ0ivRcGMAEc918Lk1nJg5cjJklhfEziq1Kci+X9c7lMCU84BhQKMGCOP50cCCWHteX461iaQJfO3XzfJeNjIhOUZ4oUlGMOFUQX16WyJkN61p8qjrrJlvocRjUXefpdLvzceotTXk31LUDLETMoI45maShMxV06V+RxkfqygG6RrOECR2yYIoC8BMOWbXzs9t1/N/fVNAxzJ5qyoYkkRlEpb8ygSK5b+d0Cn1m8OfYoEwBMBoLSBUdJ+PTYOS1tUZhWpXyFXbXo/rkeC8bEBHwdjaU5kKRAz7PTmZ+hy5YroabmqJxHmmD3XsJxWNv0b/Lkc4HlqK4LvPXoPip6NB4SprgIQJrWluTwFQB32fpLUGTJ7JjAeFlCE0KISm0sYb3me9/7bSpX4fuO7aplOD3Dugab0kLS+XxierJlHBVcYhv803/2j/mzH/07nj7+Ep/86pf86pe/wLqKyjR8593fpjEVzlrOHj7k7/zd/5LLFy948clnfPzsU168+CldLxBMjpU3GGe4fPWa12cv+Mv3/oy73SV/83f/Ft/8+vf4i9s7wm6gbUdO33jAw4dv8br7l5w9esqLly/xceRsfca33v0O+37g9GzL0ydPaZual89fcnJ+jquq48E0DbbUklMIKSX0d9GQizY+nvN5sszcDhJ7aFLYyevEwqUXmKWYF0FJk5efry/lvD9o8vdRNQOpOu0BZaEyeVNKl5dnL1e0fBlJR6oAaMkAMhn01UlrrwD4X9AfKwCJFtZvnks6Z4+cwKMptnW5jpVJNM/X45qWuT0V+AiDK2HDpaEKMFOemQ5B7t1zuZgcLUR/xfv8bP117/PNpjWnzPkpdnxZ/sWtC5iemyWXfjqYmeCcfP8jFlYWVCthvGUc6eJhZUfOJZh29LRGmmlfnnfQPC7zfZchv9PaX9p0ptkxmSiaZQdQ1IesS5PHh7NIVMI4IhF2+2s+ev8/8P6H77Natbz9zm9xeXXHs4/e42RzxptvfQuMsLu9o64arKsR66itSwK6KnS7gc7vQBMY4AMMnedud8GqXnGyPqVxgiNijEesYDVlvro59Lx8/Yrr8Yb19imN+oT9xZT63U59AWF3oBtHhthjJGnbfOntr+C0xllLIBBtJPjI9e2BflRWVYsTJWpIxrSAmMRUD6GjtiAmZfNC0j4XiFRVw+gDRhrWmw3tCYzjnsvdFZcXz1m1LaePHtN3B5598il1s8Up7Ps9UgtRHKIOUzmqyoJ1YC3WGKxUbDaGYCIh9jgP0SgqDs2apWneOKw4lJiY3SZp2qgKoobYDdzevCQMkQePvpQYaR5WImASmytRJC1GPVYMVhMYJNmG9GpwJyu2ZxsOhxt2N5fcjTuakzXr7UOMafAq+BC4vgNrlYNT2qbGVZZIB+q52++4urhiCJGvPv0GzapmCB2VVYgOEGzlOFu3rGoDYvBe2R1GgheMSmYvRUzoaVBCZfHdgZOTU8R7AgFrHK2zeFUOPtL1AxI8qgOIsr/Z040dbbPGNxtud1eM4RoNgaqyeL+jbh2VbajqNodIB8RAjcMEEBtR9Tgcul5hZKCWmsoJMfrUvlaoJM1iZy0iafwpNmejEsTAGDpqtahrGINgiIhGbm53vN7dofWKk5PznEEthRenY/kBcQYx4ILiUKKBZr2i1hQOdzfsqVWp6oY6Z79yRnI22mRv+BwGN4yRuhJaUxOxrEzgpFJa19BYxbm0llkx9IPH70de3V1x3Q+smi2bky0B6H2PVYNxDnGO1jb85HVPoCHakV7hdWe5HRRxEddUWBkJagk+6ZJUpkmhkobkPFcrJAaG7pbr/RXtWHOybqnciqhu2iOsOFQDVqCpKmoHlVEGr+x9h+9uubi6wVDx8PwJtmqIpEMBaywp8yBYsVQh4kNmNwUlZH/eCgTJkQHi0pwxNvEtpmR9DSFGQoGuxbFqV9hVi3UN++GOcRgwfce6MTRVQ+2EYZ8yH1YYwhjpCDhxbKs1e3/g0/2eptly9vQxxib/ozE+VT5axCRNqMPYYcVz2jZoLax05MFJz0o8Vd1wNTagwsFHTF3hY4N0I5UIrtqSbJY90R3YtgeIPcEP7Iaey2evOKlu2KwNm3ZDtVpTNTVba1g3DV2suI4GJy1BPNuztxh0hUrA9z3jcMfFxQWHcc+D00c8erBCKgsBeh0RTMrcTppLQsSS1iVIyso+H//HGHFRiNagwWOMZb2usayIYeQweg6jYmTE93eMVnDOoOOANDW4Gmvr+cAakxhL6rM/Y9KBsCnaXRYDjESMiTQSCH5kf7dnfzggorjtKbVLwviifQ5ZdcQYqJomZR70kf3djlVlMFUkdMo4prqPVcqkZ7HQKTIMdBqpLbjGJdsbg8HinZ01N39Dr/8PGEoG1ZTnC5gBhvQlkqXNMCQnRgrNPLGZJDOAxGT3cMFsSBFgYWG+FwsrTGyPpdsYF45ncW6TgRRn1okyZXJLNlRhMRXB22xEJkt7Mr6yGUIS+y6G2+wRpKuSwVKYV6lghQuT7n2fCl/CeO738/2QtvK+hOvM0QsRY7JroanNAtkhFqZQviAplK4kgZYcllNM09kdnQ19m9tHZNbAKqEIqYzpgkjM7TmXNeZ7BJ31iITCDJqt8KX+UckaN7fOfL9jvkvJYiQLsGFxnZEJ6Fi2YRGqng/2FyDa5PAV32hpji+4O5OlPhe0ZCbUo5ulBwqKFoOLHFMfAlJA0cXdlyyCyc8UYRa+LSFmx0yt+WpZOKv5mhjz6Ui6QzRze8yO4nyPUv8jnys1zjSmy2lO6nudnmVyGywVgczUz/MTQmaVTE5NcYBk9q5LRruYneUjdkH+/zGBrdSrcCjmSkw6Nrq4waJ7l8+dHMj8ZwHc0jiT7Kzp5IxNv1s4ZnN/FId07uPCUCjhjzPIkBz9FG9dOCUzUCHFQ6X8PnXExAbUud1TYgJlVdXJ+YseY1MC1Mpa+vGQjKLasTYbXr+64PbyCqkrqmrDtm7pfM/Xvvstvvr2V/mX//T/ZrOpOexu+flP3+Ob3/oebrXmt77z1wi24dHDR6y+C//T//DfUtWGfW8xTYUGZdVWdH1MhsnLT3j94CEm7vnw/R/z5PEDbq8u6fa3+NATdc2jp++yHzq+993f5fXnn1MZx8cffQbO8s7X3+XtL32Njz78FYjl9vKajz98n2+sfsDGptTkRwBnWRfKdqQ644ElTrS0mZkzeqb+cbn/NR1gwMRyO1qkJK93eQyX/8k0HtNvwzTGFmNNdRJen26X19mJzVJ6PRUaYQbEpFQhz/fC7i2gz/JZ98M6tcwPzfda1CXkp87rZCnHAmyRmSVrUOwi3jWvLrk0hfNydEYwtcTUPQXA0HnNlmntuxf4VuaZMAFd07elblMvHO8xy32iPHcJYpV6Hy3xuSGOykWxMRZMVS1hr+maVL4Z3IkxhbRasRRh95lllOuSdRXKen1fH1AWFRJjUwg1jhSgkde6zBqZ1sxiQ0z3EySH0Rc7h5xWeNqCy1qayxY0JKaN5nBnk85jvQLBE7qOX334Ab/4xY8ZAzx58mWGaPjgg58z+JE33/4WZ2dv4VXY7a8xrsLUa8Q6JDv/ISoXF58x9iPbzQk+Kn7wqE9j9dH5E9rK4SwYUtrppJtj6EPPvhv48NNPqEzN5vQx1sdkCxhPjJEYK0YFPwyg4EyFcY5NncIjDI4oBgwp+6g69vuO3d0OKzUra8COKBYjDqMeDRGVlCmurSw+KtbBuVEqK1wNDm8sqE2pyjFJpFcjzlSs23P6eMHl5UteXVzQDbec1qdUxhHxtNtzmtoS1KVsVXmfCGKIxiZxdAUfFacG1ZrKOaIJec1JTpWKxTrBxazpk0elMQajgZvdFeNuj2nWtA/PicFAHGlMRRBScp0Y0cogMQGJa+uoXVpvkg5IYj6OClaF7foE3zZ0l5H+7oAfr2mbE2y9QiubRJBDCo06+IG1g8qNvL58ze1+T7vZcrZuGceRGCWFkscABowzbJqakzYpdo4+2fj1yqKHnt4HVC1rgf1hhw8BouFufwvxwHCwjCEwqsGHERMVCoM+4e5EI9jtORuFw80Vg8LTd75HtVrhux3d7hJCoK7XKWROhNoJIoZKBEvEubS3Y9M61pgKawzOpvlpTMvK5CQqMe0Hick/EJHEFMoZCK060BqPIt6iAkPvubh6yW03sNk8xKwapk0uJot7ICnDGI0oNTYZ9lRSpQQepqE5axlRDv2OvtsxqFJZi7gKreqkjZaZSV5jYo54YW+UTQ0Yy61XujDm5wsbJ2ybwPOLCz548ZroNjw8fQzW5dA9ks6UMdS1oTINrw8jvdq8X7jsS1gOgPcRFzxOLEGU6ATrwRMJ1lBlke0QEtOs2pyxaU/xvue275D9FdbV1PUaFSEahzGCxQGGEEf6YWB36DkcdjhreXz+BGOaVHfAmpwUA8WJw1qDIdLUBu+FISZbV6ISsSTN8mQHJBMlpXT3+GQbC0RGlJRkQPPaIzFQiUUZcHXNerUm+DXd0HHX3WGNx2lOPOIqmnqLHK453O15HkfakzXr7QMao8CYwmVtwKhJ+4WxSWMMqOsVaCR6T2Vh64QHteOTlx1ffbriXCK9Ct//Ws3Tr234tPoa/+aP/oRGIiFCFENlTohujYsWCTe0ccew6mnDyNgPXO9HLm5vaOs9GEXHkUcna9abFbW0BFqa2LO2l1TxhNt+z+5uxBnh8RtvYpxD40A0iTEnxkJMfV0OyI1JNpP3fY6ikLTPRoeYgFNHlJDlYRIRJlpBoqBUNNakjO22QjTZkt0Y6O5GDocd55uBaCuoV8lmsg4xNdYmLCCoZM3msueHZCOFka47sLt8gTVCvT6hPV3jbIW1Bh8iwyGiMa1pYlJiMBd8Eu7H0NbCoJ6hG9EAUUdqK+hYpcONyjJiCWNAomcQxfkkq1GZKmUw1ZG4+v85Q0klMqEbxTArmkakxRE0ZWBASdm5oPCTlHISy2SMF2vOmJz2U6GEfqRrk1ZGVmBKHSnFeF96isnYXfiWFJFWEZ1c1vSdYUr4K5bitB27rfmTTPeYkrlNJ7qzozm7lWFhBC4BokVdF8ZqeRWNmskRYDYQi2Gf7NzkzJhi/GUWRHE0kWTUm4wCZNf/yFFI+kilP6FofhTjOE3YBVAwGajpR7MGSPpgAsNkhkomp2dRx9lRPnZcli9Z/HvEKdGZNTWVSyQJHBeDWxOTJhnaRT8inWyXtj8SoUU5BikK6MJUl18XBjJ7EUzOmsCkbQOFLCVTpsNym0lDpYA8y6lAIX6l9ovFGWAeXZDZLjrrYxSHYBlyN/1a5n+XHbzswRn0POY+LHzz/F4mAKncczH7kk1Trlw8x5qZwcHifkeoqty73wJYjXmDNgtwNlE6ZXEzjsZFKtORIlJ+CPfmJFM/LDMZxkVZ58BemZCkyTm7N59LO6VpNTMNJjf53rM1/zGDqQuHe3JwF80k091xKox5LLlpvgohKBoiw9izbTfcXb8i6IiqsG4buv7AZ5/ecLO75W/94R8yjJH/6r/+bxiGgReffcKTN7/Ki88/4v/43/9XPv70A3747/8lxtX8te//Dc7O38Q1jqdnD/md3/tD/vjf/CNUHETl5OQRJ6dbXr76nA9+9h4fffhz3vvJX1K7Clc7Hr/9NqtffsC3v//XefDgMauq4qNPPuaNswf8+8/+mH+/27M5e8zg9zx8+23eeuvr3N3esru7YXjwkKuLC9anZwQ/JCAm6BRmbcvYXDA9NK+Rc3p0PWKEzSG/aZ+a1uj74+iL6D9FLDt379SZUq7LA2/e4nIfL9fDaZ5qplHP4yG9iZSRU8bIzOKbA97KM8NibKmWcTI9LbVIHi/TnpVvILkMZa5MdZvqXH66XIkWXwJm5hAerbFzmVgM/LmfZtTOgWRAAAAgAElEQVTvuLTLTWLZBUe9sfxD5jfT2pWfKYtvJgaXMr9f3qYsln8l/en48bLc2JjbaNZz+/VXFvAplFVXjg9GlnZMVtwhkenzgZnOpNxle4ku+irv5xMCvhiX8zlIct5FlRhSNrRIAgvSQYAhhoCnp9sfeP3pZ/zsFz9h3+04P3tCdDXPPn/F3f4Vpw/OefPRt2nrRwSfyrDdniftF4EiKTB0PVf7CwxK2645+B4TDFhDs6pwLoXVOPFYq5ioDDGCT2EdF3c33O5uON0mPZvRe5wVxqCMmYVpq5a6aanqLc7U+dTeoyStIURydivo4sB4e8euO1A3Fc6mDcGIJGAl27iNtaxrpV0lx3rQmm98uWI1WF7deFZ3husu4qywGyL7YcRHhThw2N8SfGD0St0+otpu2Qx39LdXxNjRnjxgXa2obDqUDerwPqW2tqZOgFHOZowFqykMJ2TA0xlDKwJi8TGNFEFIVLAkPh1Dx76/JWig3ZymrEb0OFMjpma0HtRg1IGtAaWqHJs6wZjGCljLqra4MdB3cZovGi1Ga6rzt5BTw/X+itv9NXZ/SbU6wdQtrlqhQL+/Y/B7xvFANMLZ9hRjEpMp2VGelNwHVAPbqka85+ZqYOgP9KHHmBovgveK94oaOOwVH0aIIzEIgwZ2fqSPac1zBmq3xmhiAKVlNyCqeCJxP3III+32hIerL+GlQiWybVdsN+/Q7XfsDwe077G1pVk5VnVyFGtjqcqegyEYg5hIgwXClBgokEAjIhmwCYltoUnfahADOEKIiCghGm4Pe/r+QD90VK7l4cPHRDFpLSD7BcU+1gRqGVISkIgh5ixbTR0hKKpJ76ddnaA6EsaO0B+I/Q5jLaZdI85RuzVBEkksjmn+jkEwYnEuWXyq4P3IZXfg+cUtr3Yddv2YtmnBkIS6JWXmNsYgVnAGRq8MMdvskoEeaxk0rTdCwBvBx6yTJgaqfGAdRlQDSsTZlBRDs/ZJ1TSYaInjyDh0hPE6HbIaw3bVYmxDUE+3u+Zm2CNSs1qf4KoUW0McgCR4TbbXg0l9eFqndPYiyhgDGmDnFVtXSBxySvq0d7gYER2THiFJkH0MAxIVZ2qCszg1SIj0pENX6xWNyihJN662lhhW3NxcoOMtrYOmabi7NuzvLjk9PaNyLYf9jtWhQ9sNnhE3je+UlV2NSaBKDCksFEvX3RAxvL66QMdIj+X56zv6CMYod896fu9bX+bTj/4ct7+iU2E49MQ4UK+3iG1TlkiNONMwioPYUTkHDAxhZES5u+24vLjgV+FTKqs8fnzO6ckZ/WFPbEba6hZnDI/eWGOrDd4LUUeGaAjRITlbKhIxVfLnggaGkAAmEwaMtUTrMAomeDRKBqMcSo+k4FZUQ462EIwp0jgmgfdRaI2wbh6gfiSihOAJ+4EoISUXMG7yQ+t6nTxIjdD3jHT4ITIMSWLCbU9ZVXXSjSMmTaSgOKl5cF5jbWKPaTCMGjDiksj/OGKNpTUrwujpwx1dp9gGagcuKthIIOI1JhFzLN2Y9vW6ztk71bD+zSZ5+80DSiEmhDmdeJbQmskS5sggL9+R4kkFCxqyJVcMjDCZf7OfPXEZ8h1TpymCGIshC3MbQHO82XTqqgunsYScGI7joRQ0IpJOkI5FZshlKXBGuS7OaevzIEyi2rOZrQUMQAEzGYWaTwIXrZLuvMj8lZpqNnyPDfIlY2MylWdTd3KWFk7AxObSyajU4n8t+mlyO/L/pJR38Z2gk6NmSpgOX3xNjKW/8vtljaaCzh9Ozt89p7vY9zLfv7wcC4RY5rNtyfWJBWaQRZ11fv7SVThiiS3AgOT4FON8edEMIBSQYfp7UeeiATZXWadvp57MQFZxIdPYNSwz0M3tnjM/5TH8BVFxWTCXNJ2EiM7ADNmwmYCn6dLsuGqcwMniERdm07LB0ihPfxZ2EcxA58S+yM8oGbR+vWuWHWuZ63nMVGByoo/adi7iXK57AIAu++v4q6m9Enskjy2dAdWZbZZfcW7DMn5Kaeb5shzfi6adhuJ8oTCDIDMAu5z9XwQOpmx3xCkFPAghBvr9nosXz1httxhJFPbu7o7DYc9JW3F59ZKfv/dnfP7sGU1r+MM/+NuMGnnj6ZsQDG+/9WW6w4E/+j//ISePHnN7dcVnH3/If/6f/V2cOlarmtdXr3h6/hBX1Zxt11ij7Hc9dZP0MNSP+AB+N/Lzn/2Yr37jt/j9H/xttPecnj7ge3/993ny5Akf/fKX/Kt/8Y/4B//zf8/z16948vhNVucP2bQtj996E4KmWP+7O0YfODk55f2f/4R9CHx3e8rKtsnZEyVoUsMTSW0UYixk0MV6JNPeUE4di04WxKOx9etey+UKWOwHRUcu/eqLDr6klMVlnS6f5d7N0y6DBYsVXvPdZOZJFfB6KtNiLi7n5a8r+1G4lt77bvHh/eung4t7N5xAiaML5rVt+cm89uv0bmL9HV1d1oB5jyPPy7hYEYR7Fy4Kcf9I6N4iP73NUw79QoMt9pB8+j7PMv7Kf4/Wprx+yMQQlWlslvVyApeVJBnAcT8eVS+PkXmfm4GxX3dAYCBrKJSWLmzJDFoZA5psrzJPQggUFqs1cWJJxhB59vlzuu6ODz/+gNvXz8BtePjwbS5eX3Bx/Yy63fLky++y3T4EqpRG3NVYY5O0gyRQJowdd/2B8dAlG4wUvmJsxWqV2EhJJFiz9mPEe08MCSzq9gPXuytCHKhWNSZaur5HxbAfPFV0RNPSbE5YrdrMEEj1iiHkNM+FqSMEH+mGgZvuBgmRVdsgNmWuKiNJTcQZS41lZQznbeSbj9a8+yXBm0jXV/zJR5eIbWnsSPCB/eHAwQdCVIJJWY7rpmZ0AYmGarXGOcG0jrfeeMCajhev7zjc3XB+/gArkWt1BCskbVGfk9E4ajHUdWJ0RJPs0so5GrE01uEVeq8QK4YQGLrAcLhl1x1QBVdXVFWLkyoBU1SUQCk1JrGxfDq4jVERl8auD5FxTHpWYiEEIarNYywQjCCaADonhu3pY/x6R7y7o99f0t2+wq02OHEMtxdEI9TtBjHC6NPpvIjFhJBDMxNjZRRLN+5xETSk9lURXJUyKRrrsJVDKoMEodKAqkdMxVqEaEHxk6aIFE1WI4hEYlD84cA49Kg4VpsTamcz32CgUsOgKd39ulnT1A390OH7PdfXN3S1st1sMNUak7NPBypCACSyy6yJSpSmIqVXN0pTCZvGcRhHOu8YozACAZPCk2KP9YGrmxuuDwN13dBsHmDUECUzW5A8vmWa98kWVaJYrLjkrAI1CawoGTUrEQKCRotrGqKzjH3PGEYO3mNVcbHDmZjE3auGPgr7EPHq2WLARPq+53Z3Sz90oBXN9gnOmDTfNV2LaRCbwBOcso8hAWiS1nxrkq0SJIeY5cyGMQoYj1GDlTAB6UjWloygISZOls02ox+TXYBijGUcevAdYRwId1CvTuiHA/v9js3ZQ8RYhm5ANKQseCiqfXItQ9Ydk5TF7hA6EEvwQj907A4HqFY4bSEolSbtNyQyjokQISEmORdRdoc9qkKzOYXR0JoVgzEpS6TPIbr51NuaDF4RsdUKr8rdcEdnK4zbsDpv6f2eYb/DIJi2YutqLq4PGJJgv0ZhOOypKoupKsaxI6hh3dTcdSPWKzFG7pqBF7eenXqkskQMVy8u+fzqwPuvDlSmxtQVlzc9oe95FAN93DH6HiFwutlydTeC96zriK0r+rsRa5WgFavNAxhbYui4uNrz4sUVdeWIVKyrkXazYhtHnIxUGVg0EbzCGJVhGPE+IFLhqRjGHjTgx8DY92xqQ9VYgmkJQwAJmKYmdJ7K7lG3ZmKEiGEcAioB12wwOFRHVAzOOHzfpZ/ZiqAeYsQLRPXcHm4xIVDJyIPtiiCO/ah0N9fYyib9v5DWxHbrEGcYVRj8SAiJsWaMIYSkm5VYiwY/9hy6O+q6ZtNu8hiLiI+sV2uaxhJCzzh6amdo6sSuDYdIGD1NY5KekodhDIlhZ4V9PwkP/UZev3FAycjsNi1stIVgc3atir2ngkrAqMWQGRtS7pWE0KAYrdmsXbCPiiIKUjQsAiWEawpVWjjzM2d8du/LPZSwMJxnQ17nOIJcFhYOuWR7PmZH2xaMZr5HeaJo/r4ASDMQtEzxDPIFp/f+a6mpkFojsmRPaW748n3RxTDZ6pw5MbOXsWwZMvhSAKbCuMoJQFL/lIfljWrZtMW5KX03/XRZrXvspOnZ9z5I7Z1ORCcAg4VjDtnZn5CG3LzHRv7y+UZzLHMem5r7tLCt0piRSRj62HiXua5HpWB2SPL9yKcRx05TuVLm30/ATBkPTODFMkxiEsLO/81SJUvdj+UYXYCNkzeix47Jsn/y747vdvwqjnIpSdGNSVtbpnRz3LcT9FNOwWGREWtuz9khKj8/Dm8j32sCcfTYgV6+CtusAI1H7JP8/7J2TM/X4/EyhQOWX8uiBbPxUsbikj5U2CKqTIzL6Xel3Zjbe14z0gcT0yOD2yzGSjqBiTg7L9/TKMzGYhrXJsOpQt91vH79khfPP+H9D97n6998l03d8sYbb7BarRj7A69u7njvL37MD3/0LyAa3nzrLT78+CO+8s473N3d0tYniEkx+3/4h3+H9ckJ/+6H/4rgI1YrxnHg5LTlVx9d8enHH3B9+Yz9/honlso6xm7PzfVLKmcxJmlB1E0LUfjkw1/x4uNf8fnzT3n46AHvPf+cEAO31zf8h/0F3aj84Ae/x2eff8Ll656zLz2malv05hpVz+7umsdP3uRb3/luOiUyad7EGPEjVLVlUu3TxIc9ZkPOYLHk+bTMxGVmZO54jB01/vw6+mgaF3PPH7OPIMbc12VMlXVHj8dKyYJYWIpp3Y4TKFpCoMtYWK4rpqwH88TPS+S8Ms3zYl47l+DMlE1ybrgv7FXL6fof28f0eNCXC+YGnH63fFcgs7z/Z3ZfCR0tv51CuY7W6WNQ8HhXpywQi4W1FOdoZZ32yiUQfVToewt9AnbSIVRZg8q1y0Oeueq5r5iZSeV+SXNJyPlDpj24sNSW6+ERu1Xmos6agpK3J532OatlL0wheQZJhw2laiU0WRMf/NAdePnsE/7k3/4rggbOH76FcSt2uz1Xl39JFGV79ojtwy/TtCdEHJVdJcEQDFEyy8J7rl6/5NAfoGpZTaFAFZVL+iZORioDmBSykxgmgtfk6O4Pt/R3O4IkgGccRvqYDzOMpapXNK6hcjURk7JBxZHC3ahKm0o6YOz9wG6/ZwxJV2XdrtKcNAlMgcSqaGyFMwYngojhoofDZztq09CNd/yTn1zStKcEejzCMHpUEqPC1BaHpoxNEdarDW1t+do3TtlUe9as+c4bNc+ed/wxjovbjk9fP2PoD8T2IavVmrZaY2rBxIgzgZOVo2ksMabwiNpZMBYbEoNIQgq/q2pB9gde3zxj13XYumW13qRxYKAWWLWJzS4Ij89XfPaiw4tj0JAypKlhGCP9mDV6mIFRzWMVC6IRH8ek26JwpwPVYPHDFcRIU1u6qyv6u2usUSRE6tPHCUgXxYpNTG41WFPjjcVGxTlDyqOWM3GZQCMVGnNGY/p0UCqrpK9gQOJIiBacxUQ72d3WGIxW+TzbgB/oDzf03R4rjrreJPFeSZpMZV6F4LMcBvgU04Rb1djK4McaHzx3Hey7nsp4aucI1hFyOPuoPoUJG8NKoakdK+vAGOra4VXoYhL1jWjKljweuHn1nL6PBGfZrk+xrmZUj2qAPD9NXuHCYq0T0sE7mBSimg8mQ8pclJLsqCbBHzGIBCwOMY7arRLLLwaiH+iHA147zFBhK4dWKexHA+wGRfyOu6HHa6RpTmiqlmg1Sy+kfjO2QanSwY9NzGKNkTh6CDHrvghRPCFq1vBIWjRpLVZUA30cCGNgtVoTQgCT5vgw+hTy5IvfmRgtUZUQkm1lXU0YB+6GnsrWaARbrYh+ABNxdoWtNggVSCTGxH7SaNGQ7tmL4G0DYsBHAjVVW2FtlcgJjhQ+mRScCSiISRH0Goh4NtvzBMLaOh2AmbS+pDmUcswlDoyhlhTa7Lu7pG21OmHz4E1oGiyG0UcYO1bRp98ajxGlrWoq27BuWqJxXAZNIVPOEKUl9B4FHp495ubmmjF6elXadsPN7Q1GI+v1istDy3ANwZwRY89GLM26xdsKj6GqG7pxyId6EbeqOdylsVOZFaGpsCbQrgyrCPvbW/Ad1jpCP2LNgb2vGYLnLtxx6Fuaw0BVO1xT09Ytxhm8GLrKcRgsEYtEoRsTi61pVlC37LoDrVfqRugx+HFgzcgwKrvbntWJ4GPSuqubCtTTDQMthkBN7z1iYFU1DGNk8B5bpTV8GEfQQGUthgoxhiHA81cdpmrxtkGaB2hIWR1FHQZoFCR4yNp2US0jhhQ3CEIKZw0+0vWGECoqaRhChQ8eEbCuInplNMIgK6TJEV6qeB8Zo0MC9ENARVP5JCEeIUDvf7MUpd88oDQ5PksjtSxtmU2h2SXMwEqchLKVYjInECpfu6BvFI2BcqYmWk58TaZPFlQeCpvCmqwooDAH5JSwlIVjWvQXstEXY+kcsrG29DpLmSbXnklLASaGwAQaCBlZltlim9po+W9e8k25ThbC4jMjo/xbDOmlzVv+zHtFus9xLBepsbIDw72vmCHBI1M6W7BLoGQqS+m+e+Z/Mb6nz4R7jtzx+9nAnktl8k00zo7/kjRWrp+o1Yvrk9BsKlwycEjSaDIb67IAORA5usPyGUvNDF38vWzzowotKj4b+TK1wa8Vgl6wk8pNlWNQZXpmKbcs+mAqe2H0zYyupUlxPGbTcwvYyP2hclzAyeEtZSlMutkhjgvHbFFeWfAASzgoqczLlliOkfuC1Gks50+WfrrMmk4i5BClMrdlrnZpgem3qa3SHOO4TZjrWepd2G7FA0wgZFmrmB9CqoToXJcJPJtuPEPZqZgytVcqY+7Pe4CmHwMhBlzrjso6hZpODmuO2o6BTz/5kF99+DO6wx1f+9a7vHH+mM8++5izB2esm4b3/+JH3N3e8PHHH/O97/wWo1eeP3/BZ88/5sGm4Y//9T/hb/z+f8HDR0/BWh6cPeC73/4+Vy9e8OMf/5Af/vCf8e3f/pv8TvW7/PQv/5J/8tH7PP/kF9wd9mzqFatVy747JBHQZsubD5/y7NnnBBG22xMO+xuevXrO68uX/Nt//n8xiOXdd9/FB0+sAsYaPvjF+3zlm9/k7a98jS+9/W1ur2+omlUy6vD0Y0dTtazrFicujQeTacwhYCrILHUK/2ceHvNcnvzt3OoJXJrB9S++5nWHMna/SM2Zf320VpcL5nVkGnHTPjoDlELR8ZoXwDlGv3xQ1uUydo4zDU5r0TTHdF52yndztebxmMt7FEb1hdf8za8Hk2Ri3KR6zcGjEwg+PxrheN87fk75hc7t/mt/Vebi0ipZ7jNTjVn2w1STBQh9tB/KF1vgqF2O1tFEMwfmfsyNPKWrXrTXkSj80fpe1rQyzvJvJmYkmCxYGGSK+EzlWmwtKMeh8eWZ8v/Q9iZPtmXXed9v7eacc7vMfF01DwVUASgCRInoTAZJIEhRtARZlhyhsGQPbIXt8MwDzf1H2FMPHeHwwFbYpmyaIg2TlEkzKEoQCILomwJQ/Wuzv91pduPB3qe5+R6ksETeiKp8efM0u99rfftb3xKCc9SuwypNzMxVU9jMCkmMl+A8T54+4Z133uTi4gnlfMbp6SnFbsfm7BSRSFWuWNx+kXJ+G12sMMaglUmAeB/C41rqbs/F9RW762tMUTIvb6GUorQKZQ2KQCHZgSNpXvoQ8UFonGezuWS7vWTf7ih0mZKpqJJCK8QUKVOYGKIWgoIQAxLSjFCS0pyr5LFhdWJmrXdbrnZ7jFJUVjIonsdTcCiVNHKQiJEI0ROCsHMtta95Gmuuf2xo25odJpVXSKnDrcFqAEXXebrGEaLBFpaZLXjjJeE/+rVXeP/RAy4fw6vLim//4IIGCLYgLI/AlMkh2FxD0bAIC6wtWBQKrVvaVtF1YLRhFx0Ejw4KiQ11SPtCdFu26yu60FIuVthiRlRgicy1ptSBv/2FlyjtnhAjH17M+R/+4IJNV7IBKpLwtZFIGzy4Dhc9UafMy0lLNeI6D8ETfTrsVSJ00iLRILElBkPXOWxRsTpeohTsmxonipkpWM0XoGf47CZIVDQxZGYnFKJymnBGoF2leRWkRPW2DTKIk4vOmjzkaE+pQAI2plTxbbuj2awJ7SZlQZsdUeoq65FlUD1C8C75DaF/Tt7jIwRt8zhRSUOn69i1Ndu2w4UaXS4whU0JM2LKahZdGl/k8e2jx3lF7SLoQCWe7W7Hen3NxX6PLRbMq1lmOiatHSTg6dMvOARBKz3sScNxXIQYPUprxGSfbJAfsIl9HR1RFCFGtE4sLEWaJ16VhJgOyJt6T7PbowiUR0t8MFxd7VDRQbVEdHLwG1rEQ+YJIMqjQiDEDi2JE+xdCivb1FtKFGVZ4aLBh6Q9RVRITGBYymzo805i8SYnAsomn9ER0YqoVG6DxHZKJzhkhk5N09RIMWNxcodqNie04No9EZ+YU1k4uzSRQhsCVWJOkkIDiYFOZU0kIkiLCYqgAKVQykDMERwhIKEj5n7piEkmOnaUInRBiEpRJjQVL5oya275mNLDW/Fs6z3bXUsU4Wh1wmpZEUKktRa1dxwfLQjdHLyjazS7sGUfOrSKRHwCJSJYA65LGlLazojdmrppmJcttizpttDUHYuZZWctvu2IwVMsljTtjqIo2NcK5wIzU7Bvha5tWZWRqijYN8Juu2d2fExTJ0aO8y13bh8TOs92dw0BzPyYorzHrJizu3xMpVaEagm+RqRjG2G9a1FNR7XeM6tqCmOZzSwrY1kuE9jbelgWhn0rBA8zO+NSDJ2rKfAslxXXu0jjPfO5pYsndO2GsprhHUTfAAFRhjY4SltipMA7h/eB+awktprOOawV5osZ1qSxpXY19b5DjKaYn1DMboFJWTO7usVHj1UWozwdLVYMRhTolKNZdAK4tYvZv0hJzMpiDhxl806wxiLRo02J70JKYqFUtuUChEihI6ZIbSD4xFaNikgCDG0+cP6L/PwlAEqjczj66H3wQNauGSyzTLiO+ZxtcBCzMxxiRqfzQp0daGG012PvjiqhZ/5ExoxxMYunKUI2XfszvZhFQUddpx5k6E/t+hCpnEyRwZKL2UyVMZyqt/hUpnLmWjA1hUVU1uuZOJGZijI6L5PGnBh6U6ZGf+AdmfrKE4+57wuV1IKEUStq8vCh3NOQqPFUXPLmHXurmj67y8C+GK6PB1pCMi3XBBiYsmhuDuObxvkhsyaXZeJ+SN92uUEOwhgiB7hd0vQf65Qemcrd9+7UwZyCWT19ljy8cuGGemdcgQQOTAMGx7L1Y+SQxXXQ0ZM+ueGq3XA0hltzto04nNIcOi8HJ/GT/u2f6SOTGjP08fSa54Z/5bbjxr2De9e/6wAYk2HmjZhrBmwn5e5XjUH76Jl3Z0NoYA9Mx0g8cPymNIl+2g7dP22LONHc+ikucv/UkWU5jpDDoo6G5lASiQfv6538g/cdjP2xM2NeF/o1oD9J7XyH846ZzIbRMixNjF+I9G0Zubo65Qfv/ojPfurneOHefQqxfOjDH6Warej2W77x1a9g5pau9czMi2x3p3ziZz7Jow/e41Ovv87Dxw9YrFY0rkuGeFGyXK44OTlmuVrShpbHDz/Atx0f/vCH+ed//DsURtE0jnkB231DAHzjKebC6z/zKfad48OvvsqdW7f5wTe/zvnFU0Lo6FzDX/l3fpmqLFke3eLhxXucHJ3Qdjsi8OCt91hfdTw8PeP46BjX7NEIp48e8Ob3vsVqecwnPvVZXn71NQJgbWS72yL7lvVmzyuvfISuc0lwMbf6AEbSj6nDtbKnlNzUthum82SOZXk/BoZg7r9hvezB1jxrEtYvyHOG3/CmHgzJTn1im+bQ8gEtSH09riYyTosp+NAvTXkOP59ENGE63airRBnW12E3fWaNet6d/a9jG6aT/vjMJfQr8gF1kREkvrlfTN4Ub3w7WiNxaKFn5vpkzg7rEM9ccnh93yGT5fVgfen3UpmWI98u/Tr6vFo/+844LfVzlo1+bKXzo0mn5wcM+m/910qGcTccLOWF8OGTh9y+dTsDYCqF/mQNMSFydXHOT37yQ06fPgBtUcUR7dWGdrfjKrxLxBCKGSdH9ymXL6TsVKHF1Y7gA75rKKylqWvONxcYUxB8oKhWqOhpdxdctxtuL+8QVQIs1vsdelGgxBKjwodAcJHr6wvq/RofA3Y2oyiWFLpAFQU6KqJJ4vq6D7/ybjzsk5iyM2V7LmWr6tjt1uy7BqsViyKL7KJxBKIkQWodOkJsaV3MTrWAKDqJIB1eFBdeI3pBYQxaaxSOSKTQBcFHNvuG0Hm0GEQnh+SkCKy05etfe8z3H13x4MLxtapgszcpBbmxKD1jYRXBO7quoal37M4epsyWt17AVBVNcJiQgIjgIxJSPysfaLqObb0GAmKEcjbPoYcps3GhFZU2vHIEL2uhKiqOZg7femZhjzYz1tsGPNSuw0RH7TzeNdSuwZSJBdZrQfYZg5VOQI4FSj3LIIoiBoOd32VmC7zWiI7c0iGl7N7V7LdXzCrHCydHSUS9gaAiLlqUSsl3vEppwVOcg0ZJABUQbBZ7TmFwVU5+ktLbqgRIBAhR6AiEJtDuzmmbOglPL4/QpkRUkYAjlfRFuxhQUadnSBLDDzExefKJRTrIDr2+i0KZgkKnrKu77Ya422I6S1tYCjMDsUTReBfZ0aGDou00WgJVYWm7PU+vzlOYiijKxTJpZEWHCgHBYBWJAWJT5r1IEv0XpYkxSZJ4LRCS3INI0hcsMlgXlMIScziRo3WJJZSycnfomJJCxfoAACAASURBVLSeYnoYMQTqtklZurWlW1+yd3u0VDTbBlMULGISifdZ6Dxzb5KYiaSMXIkTmMI/jbUQNQtjEDxGa6xYMAVYmxg62a6J/cFwEKIEQlSouCeEpFVbisLj6CRilMmZvwSrNHXbsN3V+CCYakFpC2xhKJTGiULNZvjgaEMK4fMtrJsmhbfZNKdFF6BKiA4ktQf4LO5ts52d92x08md1b0sqRBRKks6Niknryau8fsdkG2jxRK8xBgqE0G653JzSRkNR3WFWVdw/thzNWz7zs7c5XQvt9Y7P/fIr/JP/9wGnT6BrGwqBaEu8aFzo2Dc1dXuJREdZlFS2wJYlrm5o2z1X7TWL+TFur6gbjy0ci7Lk0jt2zrGcFewahQ57ojLUzrOwKbmLd0kraD5fUHc7vI+EtuXW8ZIY5ijx1NtrrtZrtC6YL44xtiLoNJ90DJjqGFcsMSxQdITowDmCd7Te0W0c3tcoFSk0LBcFVVViioJbpeWksnROgUrlWm9SuTTCclay3TmCa5ivDLttCc2WIIomWKxWWGvoWmhdw7wsaKOldS1aeZa2ZCsp69usEJqm4cnZOUZrZtUR1XyBsRVKJ0Ft7QQ7q3A5vFRjcBhEWXzn8aHDe4d2LSYGxKdxbUubMr0plekpOmugdSgUWlsIATEm+ZkxEpUmSkwaeghRp+yPPib2YchoiBKNhF4t+S/m85cgyt2bPsmwGaW2e02EbOT2zpfk5UQgRpeNzWz2SdqkY84AR16Ye6AlMR56wnKK9485DjKdZkXIiWGh97Oy0Z+NrUFQdzD+1HhaKJLS/uUFtHfqDnlCecXIhnqvmyTSZ4lLqhch7V8TL10yINUzpsYSktvuwNmesGOgF5YeXYcbF2cGxjQv0PicnhnzvPTQ/WNSBogeBpl8Qm47ldsrt5Pq27F3vAarl6E+4yDJzkSvETUAd4yMlJtMnfHmod9Gun9yCGPvrPWvzdf1t4fsAIX8h0PB60OjPznmh0De6NGNdTgMh4uDDd/7bTedst4x6u17pXpmTS63qIP+6G8YHVk5eM94Z/p4+vCWflhOnZDxSiXTgkzbQIavlcikLOM7AgOMmk5/+gsOyp37pe9Xekc0x+gjuQ/H7G6B/sQ8l2nScH1/CqMjNvGN03g+aJCbLcMYzjj5PM+Xvhlmd3hNdrRlLA8y1ofYz5p0fwgBLToL/R2+WCCFrvR/OvRK0/2HLTD8y2h9+JdhQE1fIvgIRhlWRyd86df/FvfuvgSiqJs9JqTTkbp2aGN59MEHzOyM7n7H+cWaB2//hNfe+AwPHjzhs7/0q1RHxzRth/OB4DrK+TH3P/I6Z+fn3Lv7Ij/5yY+5vLrijU9/hr99+Xf52p99hfPLCy43G5aLW9iywLmGrtnyoze/x62TO5Rlybe/+RUuT5/S+o6yqMBWrDdrjo9u8Zkv/AqvXTxlsTzire9/h+99+8/ZrTcsjo75+V//95OWS6G53tacHN/m4eMP+PGbP+Bqt+PvvPwyUTSlsRwtLV/+rd/gjZ/7DL7LTuWUeTI44XLY4QM7Rw765ZmPMOwTg3ZN/4jJ2jzuSnLj3sNxMd4yWRv6KZvfJUNmAQaAI+bnhTwU1KQcod+FVZqLwxqYB/EARuRn9OyWAUfP/4sT8Co12+H+clCx8fEHbZquHedt4jLc5Av1YV+pzD0A3bfJlJE43S3HPWXytL5hZNyCx6aZtHR/6BGn5R6f/SzHiXxINJZrrP0zxwOTO2XEAIe268sqB/vgACpP9quxOnndmZx39QuozmvpeNgzWbRuFEoEdvWO+bzCecfl9QUvvfAy+7rBGAsi+GbPO2+/yVtvvUkUmFdHXG/XnJ09RLzj7mrJjx+8g1R3+OgrPweRlDmrvcZWx1gtaJ0c3P1+x9Pzp5TFnMXsNkYljSbvGpQoqrJEaZtCgoKjMxobCiREXLPjbP2Y/XpLU7fMZktWJ3eZLZZYW6W1UTx46OhwWUcz4hMzKQqi+mQwAih88Ox2azbNFhGhVJplCVZ5vGg6F9m5SNfVbDcXVMagi4Kg5hhjc6Y7weRdzYogfVIEEmNHYwhWs21q6l1DkKQFEiRiVcfKGDoX+PbDmviooW4dVyFwsfdYCkJOh20pkcxSEAq0KmgKja/3nJ2dURZzquWSzhhijFgviBS0zY7r9RlRWZTV6EJTqJSxqxQFUeGJtL4lxo4Hl57f/7M9brch6kAbFW+f1XT6jK3LWWljCsNBBFuVmDhLB5k6DFagVgpRiiBCqZMaU73fs3Ytcz1jcTynnC25fTvw4osat4u8crukvmr58YOK9y62bNuGdx++Te09t1cv44sSiDifADmlNUJkpgJGPNpojILgEzNlZgxBAjMpBuZvKzmdd4wED08vNlyvL3ExUNgKZXXSahGVgCoJRHzerxPjTbRQiqIL6WgyRDBK4WLPfJ/YapKcOA2slvfwIYF9bbcj1C3aFki1AFviEHAeJzFpELaXnG23tN4kUEWB8SGzbtJct0ooSsEFg1Iao9PapKKi8zlznILQhgR0hSSwH5Wn2bY0rkEXJYWuSHLeMftTad3QIjgVIQYMCpRCtGVZzPAxcHV1hleacnnCTM8orGPfbnAhYMuSopxjtUVLxMeU2txok6RrVCCoFmsqVCzSOicu2YQ+Jm0ZEVA6hZ8PWTE1Wim8b7LeU7Yzo+A8WJVFmyULaKMRH7jcrNl0LdrOmc8WqExfTlnmSiKezke0GLQJmFhgNElE33fs9jvadsesmrNY3qEwKoEE0SEhZZuMCX9MYFlMGZWN5OzjKuYWhoijDw/1MRAkoMXgYhJpltAg1tJ4y/ryMb5rEFMxXxyjTQVRs953vHKrZNl53nyypdk3HJ+d8bnbnj88deykQYsC7zAqjeluphOL06cMkLumw3aXRF9TaIsAxUyhjiriOrDd1yxnBaWZ4fyerqux1tB2DUUBbRNpvcdUC9yuY9c5VlWkqApiK7ggrOYVu+tLtpcb1GzO7Og21toUZhgTUBhDRCtofIfyDlVUxDDHSCToGsRjdEMXHEo3eO/Y+sjuqkYu9lglLOaa1XxOMauwYqlK4dgaOm/wATpRRNHs94rYBspixvVlzapsmc+T2LXRASlmdLWjk46qsLioqQPMCsWLRzMuLi45e7ql05ZyfptlWaDtDG3KbEClEFWUypI3FgkeGZJcJNs7olHRo4LDBcfaOegcVehQKmCNR6zBSAJDnWhUSAafMoYokjLWhQTWKpXZcDEBxzqL7vsoSJAk1K1Axxv+/b/l5y8eUIrppCWffY6Gz7AwZSNRekcqWXhJJqTPptZfk1zSMLkeRt91OG+UJKAYBmdeGEj6cVjN8+snjITeWcjlGsEWmTxjNB31oDucTcWYM7b1xDEJQ31Hc1PTwx89cykpxU0Ft/N7Qg7nUxkYy6akSC9onK6N+SVjCaE/QU8VCvm63qnNGiACKfivf9Y01DDVLOAR0UnEDpgkjaYPCUyGd39Hfrf0J9qZK9V/Nz3N7wGS57CRejv4ZpsM10jfZwzjY/rpRXSTkZMuTL2qBmHikXET6UXVnwHNDpzJ3qjvGTYjy2rELnIYp4y6GL0T1oMEPTOpD72AHJ4kZLS5f3XMcdV9PXPLT9plNIIz80p6sCkMY1/FsWbSNxqjo5yuU5O3Zlcjn9SS9cf6KMmbDlGOohz+EGPKDJEWsBtuWrzhHMfeUY0D9tHPsqEdBqZHz6KbhoZNALweZGV8zmS0/dTxdAjYTT8xi9EOwVAHDLsDZzc/o3fc+3KNQOfYz9NI2Z6llU4ShCnONM7lSf0YmW1JayeJ7ClrDtxcpSSnIY+DnkOMPlGmI3z0Y58gik7iz96htWJ9fc2T80uOi4r791/h0YP3mR8t2Nctm9On3H/1QxRauHPvRWazkma34/T8kpfvv8Surbk8fcK3v/4VHj18nzc+9Wm+882v8Z3v/ymf/fQXefMnH3BydJd28w3e+LnPcbl5yvpqjQ8d++vIg/AetjpnvTnl4dMPcF3HcnnEcnbEB++8xcc/+hr377/G7OQedxYLztdXhKbhG3/2VYJv+ewv/A3e+NlP89K9l3j4/ltcnJ/z5tOHvPqRjyHW8von3kCs4vzJKd/51jeoCPzZn/xT3nv0E/6rf/hf0+0c2ppEW5+CBxH6oKuY+6CfC2k8jHPrcOQwLL/9Gt2z9SQ/p79SATkjfBo3PaI4jGVhHOf9SIx0+RE9DzLkvWxYf/LV02yC4+CaZEGMQAwHkaAhpBN8lQ90JMQR8JBhCx3WQSZtMnykF5Me58PQPjGvVbHPWpYuTuFe0xWwv3MMfesLoGRs02SjjeFz8SZFdmg7ufHd2BcHAPPh4jGyuoZFbgTmB2YSYwOqfjfuDzYmLKFU5MO1ZqoyN9W1ema9Hcbk5JUyFnfURexXnTE8s+//Mcx4uj8zhOqihHq/J/hA1zhuHZ/w4OkDqtmSxWxGqTTvffA2b33/G5xfXXJ0dJeuC7zz/jv40DCfr9h3kUvXMr/7Icr5LY6O7+GbGlVYdHkbrUsUiuA6HEIUx9HxC1hTYpQQ8fnEf57AkqAISqPwFCpiw5zOd+x2F7iuxdg5q9sLjryn8x1Nc4GrtxS24N6tGXWwtFojIRvuMTnnRhLA4MlAm0DTNmx3G1zoKIxQac1MAgTHrvXsWgg+MypUgZnfQVUWI1ViJ0gkSTQHogooP4KZRUzZwayyRAyXF5e40FFpi+R7jFJoLWw7R+MV1mi0gNKWhUrp0WscliKvPwErBo9O6ee1whYKXa0InWO337M9e4qLgZOT26hywW7zmM3j9yhOXkJZhYsd4lNIXheFfUygkI+9QyJsY8Hp2uO9RZVJ0yeUFU4ksUhwaK+TjIBE0BBCYk4rnQ5KBZ1SqWeNqdjtudpt6KJhPrtLqRRFaXj1hZJ/8LdepQuOD374mA/dW/H1zVNqp1DFDKUrPAaaSx5dnjObL7h7vECrGV3oQGkKq1KmtNCl7IM6cQFESOCAijQqZIYR7FthZQ2hveStD97FSUVhC4xWiFZJU0mrnDHWp2xmMc0xq8DHpK0V8SgVQemUPUpHlEsp1CMJVVBZFyWQGVtBo61CWyiiTdmi6i3761NarZnPl5iqYr255PH2CmVnmKLEiqDxRJ+SSvjc3k4c2juua8e23VKVJQU2zTWyKDeamPtXtCRbXwESiKVCdMXcVvlQUlMoMwmtlhSuikc5l8TZjUVipN5t6ZrAbH4LbpXMi4q5tuzLhgUrfOdofUfT7AhKMSsM86Kg0CWgid4RjGCLJTpAJxErmhgNPqbM3FpC0ihTySNsYwtECjGEkNh/Oihc0PhMQjAScDrgo0WHdJi531xzdv4UjGW2eikJ0BsLUeF8RxuFSApTNDnMrMqJE6Lz6EJhpKSoVrS+RTnHfndNLQ6jLYVdoPJ89jkMuc9Qp1RB8F0C8WhBFFFStjoJghKLiwojyUdr8z5upMDt1lxsNogxVPPb6LJK0TdKaCUiRvH0quP3Lh1P9pG28ez/2SN0UMwxLIym9clbCShCDvktdUVUgaA1iCY4hzJJ4Dm0De3lmqqcIcsZbSgItqBUmvqqxruOwhZ4N8PEQNSKtm0orUWXGrqUlfGFW8fQNpxdn/L0/WvQltmde1RFRc8IdyGxRo2KKGkwBqI2+JjaUcVIKwk8Ud7iVYnyLSHMKa3HB4fv9oToaIJjf1VzedVRlRvKQnE0V1SzGaqYUSlDdAoqj7eG1gu1V6BexK3PKLyjU5bghNVM442hDgpjFB86qhAfuTg/4+nZNjHwbt0j2iqtdXl3jyr5ownETYcLEYVET9AKQtpPTI5gsGSNOK3QUlCWkkNeHYSO2jvEdzSxTSG+OmCsIUjSagtB05Nn+mO4IdRf0uGbhBRi6UxMDMUAyty0ZP/tPn8Jotx9GFgYDJrBMKdnH/RU+96dT3TjFHOt8r2GGHN8suRTpV6n5KbtGBPLSegzrWWra7DpEoAQh8xxOdZ4sM5iFniXxMyRHiaY1mviZGTTfQQxsiB2//twTV9CGQz+/LTsDIfBUIzZMCa3S7IYEyU1hDBqOY21HpyDHtQa36sZ+Os9iBBzO6jeZB376eB5qOFRyfDUDGEVuYw3+2C4ORv8/anG4MtMT7AnTk585jETF3nqZEwM+5vgw6QAkyYf/z24JfFGxsGEqjw/vEpGhl0PTBBvAhEZMGAELsYeH52evszqYOyMNenf1/9p0Cfqn9lnVMtexTiXYEgN/oy21Jgq9pmG6l8Vp2UZ65ayEzK56NnyCtCHe/aeZg/CkhlvMaaFdGiveLOnp6wrnmEFhed0S6p/qnOI4wnoUNxxMjAIzd4o+1Cen/KROAbnqmEcPFuOvo8PuhFGRy6XaHBe839DKG2ez0OKb5Kx1L+rX21UBiYGwCJnIPLEpD2X+7Gvb678wGDsww6izid73tHs92z2W+7cu8vJasGff/Vf8pMf/ZAPfehlPvHGZ/jt3/nH1NsLnpy9xd/7T/9LTp88Yn15SrE64vtv/pC/8Vf/Jg/e/gm/9Vv/iLOLB7jo2P7vZ1yeP+bhez/iD37/n3J+ec7tVUU1r4gRCr1iPosUs9vsdjVRW45OTliuVvgPEri4LGa8/urr/Pjtt/nxj37MZh/5mVdf56xec3J8D9fA44unnKyWdJ0nBBI7Ybbi7Uff5r0nH/CLv/zrvPDyfearE0SEF158iYvH79I0W+r9DmUjSjSOOhl5MVHlx5ESh/6KTMdlHBz/m4B2zG0u/JRxNZlrYxfFcRxN1r1xkudDmX6xzV8P4ys+B3xgnFcyGbhxKHv/XZ45k3WsH4P0+8TBOJy+QAbWzLDkxh6czyHs/aXTKskIsg8aaeMGwZih8XCdichk/vV9NG0jkHAYrCzjzbkOk71o2iUH68C0P+LBPkVf5httNr11YKH1a0a/z0zL3PdlPNwvxsqOzx5v7dnYfckO3x3zmtjv5jK0QQSVAe+YxLaBrC/SM57yuzpHYW3SCREo5zPuro5w25pYFfzxH/0RHzz6McHB8vbLPDo/R6Ln1kuvsZid8OTynFC0vHz0It5G3vnht+iajsLO0EoRTGKARN+CCPsu6bIURiNacIDSBYhGYkgpxDXoCE4pxHUE1yDB4XyLk5QYwEXBa3jxCO4vFR+ctVzt9rz7aEvTOVoTmMWKuydHxLKkiIooKctZjPn5bcPl/ooYWipAdx7nI9fO0BqhlBIpLTYa5lrwaEoliAaDxcd8+BYTPCTR41REx3QKXBnFsqo4317z+OKKqBJg5FxykEuT1vDQReaF5WRRUGiNROG6DXRtB6IogsJri3NJfjoGn9tKiJKEqrVEpDDMjMHtFFfbpzx85xE6glVCuVjReoe/aqmWMwpliUojEjMTR2PEIGhUDIlBoxJI08SA0imsX0dBE0BMstSVRnB4cRgVkKgh6sxGSw6sdy2Xpw/Y7vcc332Z2eIY1aVjopnVfHRl+cE3HvCdx1e88zTy0qLGRFBSJg0a3zGrVpTFjK5q2O73nD5cM69K5qsSbRdYU6FDOkRRNmuSoIe9MRpNIzoxtnTHfrvn6nLN+uIJYgrmR0sIBq0jMdc1olFaJzFzBNf2to/DaIXzbdKhUSXe54NbAo4WlMKSNHZVBmcETxM8hR43e6sAp4kYlER2my3d9RnbUuHqDj1fEaKjvlyjC4sqCxCLCQVaKxocGmEvGu9A2xVKabyyibWj+1VBYUhhVUqlIDanCmLoMDFiCoUN0Oevs0XKHEZIwr0qH7Kb3La7bEcURUW1XGJ1QasVpVKgDdYmoASBJTaDeDXNdstiu2E+0ywWK0JRYSkovBB1xABCh/Meq03abRV0gKIFnzTYglL46BJYHNO+HnyX21Vj7JLO1aAUrm25Xl/Qdh3F6i6mmKOkyna5TTpRVhN9SwNIUBQ5dMjnED2TdY08Di1QmDmqMjSuoW02NK5l3z5GG2EhJfPZjGAq8Kk9VAh0RELwoDQhDFYaEehixCpDC/i2RSlgu+X9qzNMZVmt7lKWC/AOJBEcSjqMtmy6xGRUCNGnOfijM08lCrEthRhKY9kFofGOgORQ20AUjcphhNGUFEVB4yO7esfDq0uWVc2yMNyeV+hFhQ8zmn1N8FtCgGJeEuodykDXRrq6Ybk4YXlUoQTq/QXvvPc+mIoX777AcnGbLjok+vQzpEzTVidNtrbzmNAxKwJBWwImh7JCFxVeAjY6lLJEDY4Mk+kZ4lrEtfiiQBNwEa5rx8W+pQo7CjOjWhqsAVsVaAylDbx8vGTrDBflCo3DOU/roPSB2ycr5rM5LsDZkwe8/d4ppio4vnsn9YeqEJLiejqMyzu+AMoMGUwlCIJNVpIKKK0SAOUiNjNEO9LaooR0WBAMREUpKWOxRKF1DuUdp5triIHVSlFWRxixeGOzLaEgpHBtn3o7R4fUQEpaE2i4Pj/nL/LzFw4o9Z+kizQx1KeOfPpmMLDSupqZMCqgggIcRJN/6pRWUU8c7/4Z+WecGHP9NdA7BBMzLSPeYeL6pVConvycvnOT0stoCk9ryEH69LFWw+vTpO01NHoVuiEg8NCg/ak+bh8S9+wFopLhKAMzJLkcMbr8SIGoJg60EEM2mId4iZulluGdyXHyicIcDk+MD9kf/VP6vk7PGk7p+6c/hxnyrwIVDh5/g+n0jICp9MtyhJDBx4lncfMUfPByOHzuzbLefGfv3KuhHxOnrc+xl36LQ6yJTMb8EAqT2+5Z9lY/3sZ2jH1d+zYdvJdUxylTSN1ol0npU52G6ZPAVDUJr5uORcm/T9k/z/0M9eoZGdO6pAxbU/bfeFMuz+A19d/182Is8/C8yXxOfp08M148ccDoxyH/7Hgaw0k4GMcyqbP0Ti+D2zphqqRiDjMopmsG4OxG+cc6jI3Ug5VK1HDpxP8c65XLo0POOpZPvEPoIeHeqezD7BIg1o9HFTQxdATteedHb9P5lsfvvMP7T97li1/8EuenF/zJn/wRt1+6y259yT/6n/5H1utzTo7mEBUXjy/4l//Pf8/H33iDvRPuvnCLV175ENE5/uP/5L9gs7/md3/nH3Nx9pg6RPYXZzj/FF1ozNFHODpZolG8+rHXePGl+/zpN7/BvcpzcfmY9ZMHbC4LSluyrx3ruqYoFgiaN9/5Lu+8+0O+9/UjREXuvPBRXrz/IrdWRxzNKr7+1X/GK6++xs998g3Qig998pN87q/+Gndvv0TddMQY0FJQ1zWf+fwX+e/+2/+GOrT49Zbf/fL/yb/7pf+ArmnTKU9I6+Q4eydsuX7oJb7wgISoKANrdDpnx/7ux8S4rj1/bh7cNe4yz5l4ergq/efpteMmYFW/toRn53U/rgSG0PDpm/Pwmn45zEwlCcQdXtcDGQf1SotdGpO9CzOpWXbkIwyC0VOoZ5w2Mr7mRqFk8rPfoZ5trnG9ePZv0/t/ymdEooe7ZViXxrr2oPBzzyRuvmRK9+rBqzj+OdCvOTLYKwOElIsjMTlWKiQfZWpOpbbqGc0yNLRksB81YYZDYkk4RxdTdqngHNYUnJ9fMF/Nuf/iK3zve9+impW8+/AtYlS4zvH06fu89MrPcO+Fj+Aax/X6ivnqiGNlCVGoVMGHX/oE50/e5qOvfxbftgSXMoB5POvNnuhBaYXonC1Lj2xqpQyi0oHfLuxxTUep0ji72u+JYpgbg9E1J7eE1+4uef14xvfe2RCsxVRzTpaR6DVNu2G3vuB0fYU/T9mb7GyOKQvKcsbl9Zrr9Zq23qN1wCyPiXaGMXO6Qih0SYSkLwSQ9WOUUniVlgMVyMzyiFGC0ck5MlpT2YoC4fTpKWe7NXMzo4kpM1AsBZPDEYwWbi8q7iyLpKHSabYdeFFo7ahDAhskGqIOSd9GaSoMXUzMlKZLgq/Ndo1rGmZa4ZtAOVtSlTO260tc3XLnhRmz+RFaFF4iohSND9hYoknlCZIPhiVp6igpWeHpSHali/0eGzFooniCDxhlQDxRxZR1TRTBBPabM/x2i7IVd04+nHRSvCKoSFkUFAq+/uMrajR7H9g6x3mTGEU6CkYrZsZSh4jvOqJSrJbHuKpmV+84e/8cXWpe/dCrUBSgFCYKGoVWkjMiptqJRKwIT05POb24wJea1VEWgVeaoEBI2aVDTOt9YTSl1VzVOXV49PgY6JymUyrHUHjK0qKCIDEdgIcQcgYvoXU1wbsENIVI40FJBhMUdJs9XjxGKXzsaKOlUke0ak3c7ZmvCo7vvIzYtHaEqIjKoKOml84Qr6gKSWFX0aONBQJeEsuqD1LwwUEUtFhAk2IDEzve6azPFxLbbHg2EQlgrKVr9mzXFwiG2eIW2s4xCDUOHSB4jxGNj4KRYrBlCmMpbUnnOurNmvX5lvnOMVukVOjBHBE6RfABtBC1IXYBrSu8OAJZAFsnwMiqBMI4pYlB0XQeQdNFUmY0AWULdpfnnF1eMSvnzI5voUQTJdVflMmeZ5t02JTCRUeIKXuYVmm+RYl48flAPu09BYlFWbBAqRIiNP4atV9zcXZBXVyhjyrU/BbHOoWCGg8tCWhURuiiovMBiyRWEwHloVSGq8vH7NYbVsfHVEerDDh0KCvoGOh8S2ULBINzScfN+aR4rkQjuqSOHa5zzMSiVMTYpMXTISiJxKiJKAgJyBcBFyNRRRarI6rlDNXVuBh4snGUu0vmxZpKO6r5ClMoQiy43guViZRFygZ4e1Wx2Wx5cvqIqAteeO2jFBiIli4mRpRRmsIVROUJvsY1WwpjiFVB0xVsghDaHZ1vOV4coaXEFgV1DASfsitKSBZvQwp9Lco50S7AtygaCA0LY3BtAmuuux32fEZodyitKExgubLo3Zrbt4954aWCzR4urh23jpZEbTheFDx9fM67jx6hZite+fgbBNUQXU+xdgndi4lJJSrbSiIQ22wg9IQZPfhHaVwp4JHtCwAAIABJREFUtIDH50PybNeIRsXs0yrBSwRJQL/WEMVQFLcgCvuwo941CG3S7lIqhwFLYhIqRQwdMWqsgeguWW+2XFzXzMvqp1lB/0afvzxAqT/9IiSWUYyDbZvMwHxKTxiMX1FZiyR2iJSAI0ZDlCRCF2EIEelttdi/K29yvUF96HAOqX2yTZgonclMdIM114cK+fwXlRf7VJUbRvv4MCCDNjHRSPtaqqkxL5AinXvDcgy5Sm2VXYOpRT/4oLnuMjkb75GKCODpw56Imc0UDl994CeIpNCpHo2YGs8S6enzA4x2Q4pJJs+56Yzf/HffByO4MH5u1vUQbEh/U0oN9/4rHbI49k8aV9lBjI6e9jy8YXjWTwepnnm29ILro5ZWen5PL+zFTHqXXsYWvMHqGnwMOazrzXaZ6oKMruPoKEr+CT3XLOaUx70TND6vfyJA6IXuYzKzPGO/DfdMvjss3OAyTt5wWO6+1H1Y3U3gp3cFJ7U5/Hsc143kSDGO+8nnZtlsfl+YssPyu5NDnPoxkqdHHxpy4zlaqYM+Gdxb6deu9KW+0Z+HZYqHd8c4Mp6eU9+bn36dAghZQFcjKT7fp/h7RQLRRldVIKS5HaSHhT0Wod21fP973+Lp6fs8fPdtutChF0te+8hH+MKvfoHvfe8HnJ9f89nPfZrjOy/y5S//JqtywR/+wW/zoQ+/jtLC+2/9kA9/+K/x51//Gq9+9GPYyrD50Yaf/dRnuXPrhN/9vX+CFsWnP/l5mui42OzQmwt+8Qtf5LWPf4zNumFWzdFO+PKX/xea2OFjS9M2fOyjn0BLyZ9+46vU2yuqSlHXey73Wz7xuc9z9uQhyiju373PwyfvUh1bHj14n6995U+42l9zfHzCwiy53OxYLZdsrq44OTG4VpJobHfKx17/JN4H/vQbf8QvfvHXWNoZEkIGhvJclQkLSab9cAiKDjP0OeD2FAyMk++f94k9u5VxNvXM1yFkLj8vDOtCPBhDPX4wPEMkjfMQBgzz5hgfIl55dvwObLd+vZfp38bfDx94k5Eqk1aKGXgZ95ocWHPQNtLvq3lEx9yGfSGnQJ8Ms3IChMnNOTv5TJar5/ZE/5rn1W1SR/oyycicSr9mflB8zvNvgEoT2HAI2RvrRb/UHByIQBxYm1GNmfYGLbex8fMrE+LUZ+4MMaWhCsTEGnEeHxOHQ3kwtqB1jnsnJ0Qj/Mb/9Zt0Vxec/v7vMF8dEVygnFe8+onPY6vbbLdbmnqDz1puXqWUyjHCnRfvc37xlPX1BWWlqcqS9XrP9a7FaI3u06Upk5kbSdC4z0sVO5fE/5XnaFaxv97wZHONEUOFcGsZ+Lt//T53FxVf/eolj88MLTNK3dIU2dnWwmx+n+X8ZRwNyjvc/oKzq6fsH2xoJeC8YnXrLrdeuE+hKyoBr5KQt0GxiykUIUhIGk9BYxB8CKgIXXAYHFoJM6tQIlg7xwoUuuD6/Iw/e+8tlse3sbM5tFBoPUgORA3GFKysZWYUF2tP6zVdABcchRFmdoWNhib4xK7Q4J0nhIardgcScSGAFWbWcOv2Cdt9y+nZOYtbL7Gcn+BtYHnnRepdy9XFBeu65f7xXWxR0gWPSJFSxiMZ4Ehz18ZAVIlZ4YAcJJVCwnJmNaMEFzqM1QQx+GhxPmK0olAtm6tzuqbB2CUUc5wLaCdgPZXRtKHm/EqjjKWODVFF0JZWOgSNNQXWO3AdhD6jrEaQpI9zdIypCuqm4d1HD1mVBbdP7qJWFq99YkmRdGsqDKe7LT9+9IDWtRSrFQUKLx1LI8QWxKRdU5uI0hVQUFhNYQPLELm+3uC9oosBr1zK8B2EzrfUuw58JDrHZrvFWMtsWYEy6YBdJZaCtYay1CnEUwkqOtTyiHpT82T7FL044qWTOxS6wnW3aLo9rWto2j0VOoXhGZvGuUREeSQqtC0IMVDEFLIXiOiQMvwJ6ZAhxDgImWsxoMB5T6VSJjohOcJBRbzOkSEEtDIQhfOLM9aXF6xWJ5TzJcouiGVKD08bCSqykYht01z3aKIkAY0YQmaPzVmeHGGPA7tmw+V+w/X2muWiY1bO01oUPHvfUIrGeo2oJIwtJLAw7XkKoxPDrhVF5z0qJIZH5xxht+HJ6WNEC9WdFyhVScCnTI6i836TsuJpTQod9FCoiqK0eNcyswpRkdp1NG2K/JDos7Ov0cEnO0G3tEowrkSL4eX5Mc7BpVsTr88x1lHMDYWdg1gCns4l4NYqCBJYmYqua1lvL7m6PKdaVdx76T4dPktkGCTreVnJDH8f2YcOR8D5gFKSNMrCnpUp2AcNKDw2hTKGkBmSHT54fFRo3YdPRkIMKFGUqkhsG7FIEbEeMMlKutjtwAe8u2YWhPligbY1LgTu3rpHvd3y7tvv46Ph5N7LyGwGroYoKfRXpfkVvEaUT6GPwdIqg/cdvmvwCkpSfZfzBVFUOkhtNxTW4pRCYbBGUva/2EtVpBBTo0sKNSeKoo0tWrZoOpxvMaHDLm4TlWe37zh/umd9+gEr61jNDcd37uL1jKa+5ngxp4sNjez52M+8ggO6LtCwIGqPAIVSxKDQyhGsEPxotyV/LEBsUVrjY5PAWtFITIxgo3OClRggapxEiC0alzKSB4AkFB8koEwKTayMoJ0nWMGHEk1LiBHnGpzbIATapqbUHYvFMUrPOH10RvP0CcW9e7zw0ouY5xpz/+Yf+defmv7/+/zG7/2LqFR2u2IPz4zOZW+xScxGL30WhJwRMvR6Qyn+OuQFLlla+Qw+9mwm0jt6y2rqtU+MVZUzAfiYVfVJC2sgMU0iedNh4kgjB8665HC83hIf6jXAW9kJSapwTPK2ZdM6vQU8g7Uu4wlrHJ4zdbOf49D3m+r0fDxGBo2o/BmN9F7faer9qhvAVK5npurFrIE16vaoyUl06pcDJ+AZTz9fNwFMEkoahz4cytlbz/14ORAk9VlParzjp4EwyeHLjmHM75CYQYQMBGQkYBBXz2Nq6rSN5YIBlRMOygCMJxWxdyQmYUkH7T1xfYSh74fST94db9Qr9m2bwYRnGEPZ4ZiGLqpnnLSbQNnoKMsEUJpe0WsCje0wKbFA6JvlOYvR6FDLwXfp+htFn9534/eQyyBMwm9u9NPNZwQZxcj7NWXqaPexxGFys2IckYcC7BNG2qTd4+T3EV6Y1Gu47zBkdnAge3ArpJPg53rn2UHs2ZJJ2FulcJUY2Tc1PgYWi+VQCsl1GUImSVTgKFAirK/XvPfgXb79ra+wa6/p9i3WVsznx2w3NZ//+V/grR/9gC984Vd5cnrFV/74/+C7P/w+rr7gH/zn/5Dv/vBHfPYzv8D7D37Cr/zqv8c777/HX/nYJ/Gd57vf+zr/92//rzx9/AEf/fjr7Bq4dfsOj69Pefrue/jQcjy/yy998Ys0uy1/9Ie/z353SesDUcOdu3f5+//hf8Z8seRP/8Wf8PjhB7z74Ed86df/Jr/3u7/P53/5F/nmN7/D7mrNcqEpTImsltw+fon7L77M/Y98BIxmv9nw8dc/yfe/8V3my2N+8Vd/hR9+95v84Ftf47133+Xv/L2/z5PzK770179EWZ2knhc/ihb3fRcTTOHz/Fd5UveHGf14Dv8a5tFP+34AbSZg58G18eaYYnwfI8TwvBF4M/R2gDAkgVf9+w9A/wGWOSx3zPcdrtf5E8Ytd4Q8JsN5SKyR6wv4GIdrJI670DBHhxcdrvFjfadlme4JI6A0NmPfVuO6PLzjoH3jwe/PrC8TEOmnhcpOsKrJvTJZfw7X3/5wi6F/0iUpG9aNfSjGZHbEsd1yL6aU1HF8t84JHkQEN5wCpV1B91URoW27tF5ESGmuoPYt86Jic3nF//yb/xub86dcPv2Aey+/zOd+6a+xvmr40MsfoekUbbfBt47aJYvJlCWIQQsIlt3+is36nHp9wWuf+DQfPD3HRIs2uTTRYLTCGoOI4HXKatM2Na1rkwZJIShlOD19wn7fYnSFomVVBX7+tRM+eXfF19675s2nDi2aVixBSQoBi8mo15mL3vnA9fqM3fYpygqhaSlswb5raVqYlyuOFsfIzGKUzYlHBKMN+xjQkbS/BsGKsI8pq5XVipWxaY9SmuB9AtBEeHB6xpPLM44XC5wGiQGJhl6lN7HXFYUumJmSiKC0QWlDcB4VfLrWR56uH3N+uWa+rKisTeCIsdhCMxONaIWyQtd0PL24pOkMy+VtKptO8jsitqjookKouT57SrvfsTArqlvHSXuJ3glSOYw/HaganbStZqZIA81C7R0nWjB5P92HQNM5XFB4HwjRU19fU9d7dFkk8MNLzjaWgENtEzNCKcmMLoMyQlkWNLXHxxZyWmxCZNPscD4xYFAaS4VRIaWhF8E7RQwt++0lneu4M19x5/YJL91Z4oPjel9z+v4jzmqPms+pqjkh1hTiAEuhIHpFGxJjz6pI2zmaNmU729VrdFTYoiKBEZJAmwzEWZVkLEwATEgsKVWAKHwMqJCANx8dWlt0TLpTVgTfbVlvrxBlWK5eYTFfsN/tQQLBB5QOFFZDCKw3F+zrlqP5AjuboaTMoZaKTml8SMLzwYOXfDivJPstuY8JKVV59IhXBJv3gugHnVgiOEl2bWVL6v01V9eXgGFWLbFFCuMKqkSZiNvtQQkmGgIGpQOKAtGa1m8xBApVkChbCoKm9S4dwIsntC1NfY0La6zvUKbi+OQ2Rs9QakYkIFYjOumZRa+R4AmqS6xGNNE4ur2nbfbUl0+52u6ZreasVi8kcfwoaJ8EnxPOkuafVYrWO5x0FGaGokK8gOrQOtJ5j9YlbevREhOhK3MUFCn8rKMlSGaO+5RxsCEd+IWoifWept1hQqTQlmoxJ9oKgqbzLYoOmobTyycUtmR+cgvjPCIGyhJ0QSmaEFuCRMpinvbcEBHv8CrQBUVoPUYccz2n1gEtlhB8Zhx6CgUuQBsUAYfgmWGIUWgyIIUGq2zeW4S2vabzHaIrClXSZbHsfbtlvzmnrTeUhUnJEGJgvXPcuXePan5MHVsq1xHsjMpWiOlQDhBFUCUiOpU/JM0xEUezX7O9uiRKTTGbY3SFmVUoMyMGRYgtXZvsNKNrCqloupCzfXrKcoZI0pfTMa3LIlBKys4YpUuHAgS8g+vLS+rN/0fbm/1almTnfb8VEXs4w51yqiGzxu7quWk2u2mxOZik0CZh0rAEyzYsywLhBz/4f/Cr4XcD8oMNG/BA07ZEmJRACaDIJsXm0BTVA3us7q6qrq6qrBzvfMa9I2L5IWIP52Y2BYnkAfLem+fss3fMsdYX3/rWCaKeQoX9iWKcYqXg4Po16nnNpJqndaIuobJc+JpVI2zWUKjBh+R/JVmeSBuVENN+vro4Q9uWvf0JrnaoGFo1uCiIVUIEj8HFiIZEDgmqbFYNcbuhnjukqiltmfZ9L3gTMZLCVpNe2JYGKDaw3EY2TcTZQGmTHt52cUpoYNEabtzcp5g6TOvYNkt++9f/p6cbNv8Wr79yhpLNgwrIm9JIO0YZTNdstIskSmokGbzjEJlOILtn0uyYlcrIZhoBI91rOJ1NJ2DSO3mRbKTle6c4dBlukwoPMTvqIvQBByoZE+sAslweGZHvOwe0c6wlPTVdP7Bldp2DH87WyIeM/eln5zR0p7kdk2Ns2kpnffbG61CtnYYbCVoM+kpd2WzPXklZGczOfTow6Kqd3evE5BIZUlt2oUs9p0IzWNdZ1HTOR9w5VRfZ7fcOSETHrCild41G4QUisS9gCruQLGHV6YoM4Yxjn86M9Gz6RzNqzkGNua+XMAoNyWN2SCPfAXiy418kIvYI0JErIz23jcrgTO60dd9fQ98kMKUDsBj1kfbtlupo+gxzHXCRnM3u/fFzdHB8RoDRjgPXj8PBYc1+02gOXy0/O/XqbtcPxVExOkd4p2NGzAiTC6QDWtg7xIPDm13MHYc6Pt2RGz+3b4PBye21ja601VXH0yDEfg7rTtsaduujMjwP6LMXepvCKwpjUwYZknMT4xVQQ6TvYiFpp0SjHBwdMK0/BL7l69/7Ki+++Azf+NKf0q6WRFcijaekYNuueP+d7/DdN9+hLid86rM/zac+84vceeEjbGJk/+CIP/r87/D9+9+naoWTx8fsX58x35tx992GVz74SU7XG24dHvJTt/8m/+B/+O/woeHh5n2+8C9+h4PDWzTbFY0PmCIJvU7n+3znu9/j5rPPc+fZFyms4fpzz/LGuz9gfzblq1/8Y1rvcdbRNJFqOiP6Da4U3njn+zx/5w7bs0u+8sU/4st//HlOz044uvUMzz1/g8uzh3znW1/j1Y9+mHfv/YBPfuqzLJvAdJpAvQ742IlyGo1EY0zGx/Wp46L7PZ4H3Xum64sReJTA/wGcSD8jYzZfmozdQ4Y50jFes44y4SnjrgNN+/fyDTowfcBHtH/IwKga7tON6y4USfJ4ildAKa7Wu2+qYd/p1+j823Zhnk8Bmnfqw2hXzB2kT1ygaR/orhnbCFfm52ibGdYb3WWDXS1BX7SdvZydgoyOB/q+0vE1fTsMbUlft9FBhKaT6u4rXTj9WB2xO9cwmrSRhvIN2nV9ffLiK/l9FNq27deL1kEVA8EHDmZTvvXt7/Cb/+y3KAg8//zzrBZLDg6fZ+oDn/vpT/KFb7/HMmtc+CbgnMMUJdY4oiTx/9XFfRq/4fbt23zrG/f4869/hRvPv4whMTSds0lbxho0Rloil4+PadoVk709irKgrqYsL5a8+/At6sJRuZJWAqUruTV1vH/c8Pq9Y6KpaY1DjaEkOfiiwkZTzsBtWLP2F5ho2C8ELWq2Ypkd3gQxTG3Svbi8POXk4h6cNkwme5Tz6xT1lM22xVlPIYYLEebGsQ3pkKu2lkpS5qlON8eUwnKz4vvHDxCU2UFJ4zdJgBmbQ8ksXhVnLfNqgrWWqJEQPdps0dAS8CmcYgtiI0Y8z908op7VWNI6UIpBNaAuZc07Ob3g8ckF1WzO4fwAVdiYFNJWSwmxoRJDQ8nh/Drr2rBcnnH+7j0Oj+4wPTrClRXzylAXFg0xEdWdY+YKVF1it4hQagvWsVHFGYNDKOuSdRs4X5yzOD9OIa/TGZrdAWsNIm0/lVFPiCXWlsxnU4zAtm1oNy0h5MzIxiX5HjUYpkzFIyaJ2oagrE1mMYcaS4PEmmJ+mzYuOLm8z73vvc/J45uUZcGjs4e0rcG5Ce3pKXG2oTQFa7NFQsuSlLwlknSXrBWcE2wBhoKqejadPeLAGpwmDSnNWbkMNtWrDahJ4rcOSxsUVU+QZNM6U1KZAleCthsuzh6y3SjXrl1jvn/IUaVQnPPSx/e4f3fJS8/WGIXvvdPyeAnz2U2MXXO2ecj6wTvU5T6Tm8/hXKKPhNCApsyyhRGss3ivWTctR00ERWOLGIPaCApODErKFhVCoDIZIDaR7eUpq8WSaVFhqgkYobYVrZSJZbFdUrmCNtvuzhbJc1CwTiiqKSEETHAQU3t58VjrcNHRti1lJbhiQow1i9Uav7pEjo+p5jP2JgYpysTyCoZtDARtKRCMOFofKMVAaFmfHLNYPiZM5jx75xXEWFotKFA0tFBGkieTDug2YcvGe6wpKTFUwYNZs42ZgBCSlmbrE2CWGCopI6Wqx7kUhidSYNXjZIu1AjGFtYkaVnaLPagpwx7GR5r1mocPH2DxzPcOsa7k8vQu67Zh/+g6ZV1DDCljXlGxkRYXPGuBWgqsJBDKYvDbgDGwXV3Q+k2au2pYtg2YisYsiRooo6M2EPAsFVpKbNuwOn/MuQmU0yOsOiIetUqQlsKnTIbrtsUaR20b1iKoVxanZ4iD6d4+VX3I4uE7nDVbqnqPsq5ZLi9Sxkws3s4po3C8WVIYmwB6qyibxL7PTNnkbyutL2D2LJPSgvoszj1h03jqAN7NCKxTuqs4YxWh1ZJQlKgopjIEVYIkUNUWglfFi8WGgEQllAFbTHAauFVfx7d3iHFJsz7n4cP7tFvLpJ6wjhvKixV1veTatRmRObQwLVomhSNUBU0LW1XWoST6CRoT65aQsveV12dprbaKN50dlDLIE7NemxECDheSJpgzwrwy+NxnKRgugf3GQEEkaoN3FrxBTE1NIEwNk6qgkkBpAtoGHj98iLU1+7evsyc1eGG92OB9w7X9A/4qX3/lgJJo6P3Wzg3rhLI1a7ZIapve0B7CDAaneGwsDw5aT42gAyR2Px/ZhJqav3OEBUti9WSDTZNjmUJDNMU97xj57DgZY2ZM0lLJwEV2oo12YTQCWSx3MBhHhdqBkAZwqHdalQQxqILJIXI6OCedDT/YqoP2h/SeSC4DKSPCTj+oZJAsV7B35ztFihwvLcnRHpKTk30EGfXByJDODW8k0fw6/pQZ11+VpJVl+nt0Dg89rBL7S0WkB/hSzQTNGRH6nuo7KLWKaM/r6EGMYXgojLWjlNR/ua5jb2HHt9Du/l21B/UOzVlXEMmOUhJS1uxk9mm7JbHXOuZechg6kGlowx0tJZWeoXTV5+rHTH+DURt31/dtd9XxTL/jQDXaYTSFGEfXyhN/D9jF+HtmVIokTtc7wF1bXSnEE/pNOxcou52Q6/kU1kc3j+TK/L3yzf667gKT+6q7YgAud+d7V8bOwe2c6/G1T2pusQOoma7OXZlVewZSBwLshhymn1Fyivk8ZTebNdvY0DZbqspSFBUDwyR1fOeSqgRQQ4iC+sBiccbDu29z++ZzPHvzDouXj7n/4EFaeSthuV3yD/+fX+U73/sWn/zkJ9isWu49POErX/o9nrv5DLN6yq/96v/O8uKYYjrjf/mf/3t+9Mc/y4f2fozNastnf+bn+MxnP0vTwje+8mWm0yliK7RZU01Ljh++w1tvfgfjCmrnqJ1jOp0Rt2tuPnvIax/4IL/72/+E+8fv84P37vIrv/Ir/Prb/yduv2R9ESgroZYJh7Nb7D93ix/91Gf4jd/4v/jBm28ync249swNHt+7y+0XP8gHX/kAv/6P/g9CgF/6z/4LPvjyqzxanvKpT3yGxWqdQZ0UwpGc7mE0df1rGObv7sp9Zaj2/T2MtGHJyevgKIxyzEjcudd4z+vYt+OHj186uk9Mb4x5hrG7Bt2Zw+Nyd6pzaYyOgBvSeNW8X/TMLNG+HglcGgXlasbXNR29dG2hsvtUJYfuPYXxMxw47Ja2+9mV9Sr427HKnwx50/F/xjO2v2e/jV2dv/0zx6F8Ovru7v36/aFrkdxG/famu5ZA//3ue6N6Xx0fPSre17/7kQ7V0lDpyhnpsm2Otz1VpY0hST5oCnuTEPEi2LLid37/X/C1r3yVV194gUcP7/L2d7/DnVfv8POf/Qkuzi/52je/yfmmguDwmrIdGQFrBU8gtA1qIocHcyb1LY5PFkz37nBrdkCrgjGeoihS+mJj8a3S+A2hXVO4yHx2SLAVlorH9x9yfHbCfDrFmIgxSRNlryo5a5UmOPaLpBlSOoP3iZ1RxMiyWbNu1th2gzjD3mwKAR6enlC6I6a1walDgRCTJtJ8dkhRTtguT9msLtls1pST6+zN5syqgtZvqbzDk5xgm5Mi+JhCcCpJWeNOTk+5XJxSlzmMzysVZQpONhFcWlOmxuCCsjg/BkmyCkjSSCqspS4nmEowe6BGuWYtNm4Rp9ggKVudCtbOWWxb7j16wNYL+9duE60jxIglUsSKQpSgARMLos22alVwvXqGvb2bhBuBi/NzTh7dZW9+wPzGIYTEdDFRaKLjctFQGsFWEyoT8VFpVy0uKufeY02BaRvOL09YbxfYukZdgUZPQUpRnsxRS/ApTb2RImXbc4pnjYQM5ojF5YylGrrD3ojUJgESlNQUtEVg1bSItqx1jQ0etGBzdsKqOWdSV8xqw7sP3yPESGUL5vMDKCzFfJ9JPSEEhy0OEBw2r0khxpR91XW6RImhn9a1gMfRagCxCfiyad65rJkUrFBKgcHSqieaZPMl0NFRY4lty+N7D9g2DbPZIdee26cyhhiUg6nh7//sK2CEf3qy5iMHE547Mpyfn/B4FfChBatMJ9fZK/bZAuenj6hMCqeq96Y4MUmjzoy1edJ6YlSQzBLyAoJHJOWn8kYQ68BENHpOTx6xWF8w37tOdXBEmfW+QuFoxSKqBBpqo0yKMmfVU5xYNhqYlRU+Jn7kRkICnb0n+pbED0ngUlm6tHo5B0Gp5jX7k0PauOGyXbJa3adwM8rZlEk5o7IuJzNpiSGJgK9Xxzw6foiRiv1rL1AUEwyBZQhUtgsXTqGqpXO04sAqBYK0OTzYtkRtMGIxtqCyJcQ2h0EmLbXoBS0CRGHrY5IOEYi+QaLSqgcreB8RIjbrWa3bmDKQLRuiFJTTCWG55vy9t2lpwBTs7x+hwXD8+JxohL29Q2CD+oAvs/h/DKgzJKS2SiC1V1pvMTohqqMoU7CUJeBsQRtKVIRl2Ca9KZK4eKwKqmu3EovN1lhTYQWiNlQ27c+NbziYz4mqOHFJbkE9R3u3qYwjXF7y8O67mOmUlz7wIxgsl4tTLlbnHKihmh+gk4p5MWEmFY0GDIGoaVwa8pzTEqslhVF8zjhpY0MksiKJunupKWzJWjeU0VHh2GoSmJ8goAGn4NfbxMorCnwkiXjbLU5NShggBRIakBZjU8bGYlpzctqw2Bj2j24z3b9GMS2gWbHdrjn3nsXDBaU9ZX9/zrVZApyLoqa2NsVS1dBqYO1r1qEmxIoQIIqiWiHRAwGxUGkClKzJpAciQSPWFMToUni6QInQakFLosUJEXEJII5aEGObQgZVseJREyiMEkNkcXFGu/Jcv3GDejrBGsFEYWMM88M5KPh2zMr5y7/+6rO85Sxp0nOTBkhCyABDd9rb0xBiNgg76slggPegQHZJtb/T2NmV4TNJ2hFGOogqCQ2SNUfA7Bi5VpIAnyDspBHWgWGTzMqO0pYYRlEzAyrpFmt5AAAgAElEQVQDQrEvy+AIiw7Mp6HUluH4eeT896+OWSWdpzD8P5e/u65XUhiFVXX3TyyfLoYTYsyQSaZtDQDKyNUXyUegaZVMcFyi73bAX6rbSPMjW+RjIG+sddFjVr21rN1F7NY8a79oTI5L9yUxWduqM5zH57XdV+PonmNQoAOOQk9g61wCjUN4wViX6KkvAd0JIchtEOMoq6FCNyauVHn4Xn5m1u4ZQqpGZchNJNI5Y11/xG7UD+2W6zRofMnQBDshV7v93NUyhXzmu+aTAsgsQ0aAE5DCUEf171htY6+lL/ygjzJ8MgAy9HUnEzY65/JJV223/a62KP290u+RaDD0INDOPbr5prEfD2kZ0iHEMI+ldMo/yiY3Ar6uBB9ecY6HGXBVU+fq9arpFDkxq4awpq6fXR4DCbdUrDNoqwQCTUxwiPrEnBKbaO0G7XU6BJImRgy88+4P+N0/+UMKK3zkwx/jtdc+zJrIyy+9xP7hET/2I5/i9W/+GT/56Z/g8OYzrNdrXn31Zb7xzT+n+chHeeWFF6lmJYul5bXXPsZi23DvwX2ODn6AWMfPfu6XeOvth7zwzC3a5RpXV+xXcx4sH7A8X2ImNXeu3eD88SmtVyIeauE/+k/+Hq++9EneffP7xHXL4nzBp3/8J/nun7+BmAhNgNJQ2SmGyOPzh9x69SX+6A9+l/PjY74Tv8kv/OJ/yGsf/jAXy2Ou37xNoekk86d++udYryKvfOxTvLgNrNabZETiSemBIwFD7D36DtQYz8gBeMi7FR04OOwZ0oPNo4VmAGwyRWQHqFTdmYMDyJHnTxp+HXbQh2p24wSEPvf56GECvaG7ywLKIdm7UEi/ZvUXjvZcHVVE88c7GnQ7LKVhPUjjuAM8klPYaYiN6zwuRz8/Rm2XW2RohPFPHX1XRn//Ra9xcUfP+ote3SX92vDUh43W2PwrjmyBJwo6vnn3S1K7DIy3q+vdk+ujNWmsxFF7JHaq9mNDdVjLhcQWiT4JAPvFin/8hd/j3sOHfPS1D/P6d7/LYnnJsx94lf/qb/0iD+6/w+uPGhyKsSmzVeUc6gocDvWKxi2FNdjJFB8sb917BOtINamRuKUqHGKSlpnGgtVmjQ8NVqAqaoKdEEWwEd679xZBPYezmkDA2qRhY5yj1cieE26VCsawjpbgU1jPtl1xuVkhGEwZqPb2mJiKB2ePWC2E/ckRwdqUflwlG++SbL8YqJylPnwGPUri44vVGfcfPKRwnqP9G1STa0QjYAK1KWhDcuyMWJqm4dHlY5ZtSzWZplkTlUJgG1qcGBofMY0So9IYoIlo4djbO0wZxoqCwqT5Y10ECUCg0DLNHdKa4VWZILQq3L37iPuPHrF3/Rqza9cIweFUsZI1qqzB53jeFrAoGi2FqViJp6GhMBP2j2raZsNqueTNt9/kcD7h+rXr+Czya21JA7htQ0TwEokeGiJeHSeXpzQXJ5ROsNMyH4LQqQnktdVjRNhqSxUtVtLBYilZp0otpSR2dJvFa/Gejb9ATBIKjkpOo+0RrwSTDr+iS46XdRF7WDHVWymV/WbDjWdepJrss7q4YLtdMRWLLYoUNl0I26BZbrMBKoJN902HuGXyHjqbVGwOP7fJ4XUGT5KA8Bl8T3PPstWISki6sFFSaJIIl4sLNpdneFFmh3coqylrv4ZCeaasOHDw23/6Pu+crnjvDL5195hb04LoDHsT2KghNpbQRFxlKVD2yxl+s0paS8cXFKVQuQpX1mjpiGKxajAUybm1yVYtBYypiaI0IWXHswp+ueJyeUrrNxxef4ZpOceSsvwlcX+HGIO0galCXVX9OPMx0hgQqVhGsF5RiQQ8ZK2egqTX5PMBa0Sz/enT+A8+7T7VnFk5Q+OWsI4szk5ZyAm2tMxnM2pXENvIuw/fJcaWw6M7uHKCaMtG1yBQIBRkJ12SZlVqj4hpI9E3xLhFRGhXga0N7LkJPmxYmwu8QiGKjckGqKwQvef8csmqWVNMKpwrsj/h8CbgJNCKUESHNeDFp7BUM6HWitqVtB5OwgXsH3Cwf5NmG9i2Syam5NmjfVxdY4uapvWYSUWgATxGKlpxWBFKKQf5E91LLDMTaQnYxmOwuMpBLDCxwWhNiOkwQUUI0lKpEkPAmET4EBWMztG4Ra1BKDFGc2iVUNoCr4KJLSePHrJeLbl2+w57B9cgpn1ouned2d41DMKmWaOLLae6wjrLrJxBYalE2HhLUE2ZByVDjFEhNHhNkSgqSq2WYCISlXVOOOVMAs6DthSBvIaDisfMKkKb9kNnLU7KbLsYjIYULuZqnC+IcUOzXXP8+DFSOJ5/5TX8ZpspwBWYSF1YqiogccrWN5wu4ezslEoCk2lkMp1QVROMcRRlxZ6smRWOIAXrWLKlIkQLQYh+yKKtRmglMUzx4DUhFeqSx6GS9NlUhVICuOQDJuzBUFAxcwXbkATJYzTUBrabM85PjjFFyfXbN6lcRYykbJwxUgloTM8q3A5l5C/9+ivXUPonv/MnqqJESai/kFKqZvmcZOxmhyyIRyiAtIAkdklnxCZjKIXCZUBBdtzuLLjbaaIMp3KD9sJYSyeZsk/oIOykbroKA+z+fwB2xtckxktK0Nf9vwu/MSCR0OkCPQ1lSHd+4oMnhIx7VtZQsp7hwsBkSXfrwCYZ3tOdlutv8kN1PpDsaMesQ5QnQkx6AWjsmT19GTC9gHJfj64KvdMSMyhkcsul/jZZKEKf0kD9CXluB9XUDlG7rAtpcHWOf+8GZeOcqH03aw+oyQAaqAJJzLx/v+8RGbXzKLxIB3bJADYlyKtLx5x7LIdVdP0zhI51oEzUgIjNPqfkdg2j/ldQO3Rw30c5vGsENmUOFLtwUqRPjZ5FFtnlnmXgczwXnnyNnc6unQeHSfrP6Fl32S3VDmIZzuh3wxi76+IIqOk6QUY481UGT/67R7pSWs3UZ3m0ZVDamHFY6C4zLP3ZtccQ1tbfny40s9MhGMJwd6eoENWTdMtM3wedUsoAM6UeiKIp/bKabIx6IOmK9Dy6LuGAJMBVFLbec3LymOl0yvzgkOV6TWELaldmgKSbU9KvjaaNHD++xx9+5Y+5fec5ju/e46UXX+Fieck7b73JtKq5f+99vv/26/gI1288w7XDGV/4/Of5pf/4P+U/+Nv/JW9993tYbfj13/iH/MLnfpHlYsXnP/9PKUrLZ3/mc3z8458m+kAMW774h1/gxz7zN/jV/+0f8O69NwmrSKyFw9mc88fntMFjCkt9eMAv/63/nI+8/DH+/Ktf5PzBQ+ys5uDoGR7fv8v333md8/sPkcKxWa2ZTSzV7Bp//7/+b/j6177JwXzG5ckJk+keH/13Ps21Wzc4fXzMN77+r/iZn/4crtzn+vUDRNwOMN/rFkm3QafVo9Ps68N2o/bMFJSerqwjsCjpcmlep2RnlKaw4NE8yafd/UjUmCNnzYiNOFzQz5KnsOC6e8joEd15QNr3ugQRneAuaD5d7wCLMbAT+31zaKe01uXnmFEY6zDqRxBLbyqlOTAqb3fNOBxZGebuOORsp5ZX3pPRz36FNqN98anLV7eaD4dE41dUHX1P+vvsPuvqvYbidd/t1sRdGFuf+F7fyh2S1y2WkAz7OHqGgJUuLLpjPSVPPSoZcM5geP+1jrKVgSTfPT6ixkIMaIi89+ARn//TL1DEyHw+441vf5sCx8sf+QSvfuBVFosFx2eP2T+4QbMJKA7rkiiwxJwlLGfrcdawXm84Oz0DDMYZTBEpATElIRhC8EkvpEjhOIU6orG0RmiWK05O7xMl3csiFK5CjMOYQCTwTD3hqLJsIyy9smgCzbZhG9aEwjApp5SmwFrLcrHl4fljTF1S2Rk2Z9kRDFZTYisfA4GYQlTUEoKmFOuiBBziV1xePmS53FJay3S2nzL/iCHiMAjLxTmPTx6xNz/AimHtl8kmUYcXKCzgHM7NqFxBRU10BWVRUBqPk5SO3FgoJDGLjEQI6ZReg+Al7RWyTaKrp6sN98+PCVGZ13uYaoJXg8WlMIcM9IgUGIl4tahGapuyqNWuQDObxsWImCSYHLXlYnPJarOk0Mj+ZE5RzZiXNZSWiVQpHEah9Z7F8pLLk8dEEcqyJhoh9qFdBmNSiJ9mkXSJim+blN2pUqIXaucS4ykURA0ZR2oIIbJeLAh4yklNZaaYUlEXmBjBaIl1RUpWoVknVQsWywVnizPqcspsMidgEHE4cXhj8OsF2/WSqEpdWaqqQmyVwLa0yOFJulgxywx0MQBprUoHykkHMTGPIiFpaqlLGdUMWTNLsc5SOGW9POfs/ASCUE/2cKXDuAKJChbmpbCnsFEILoVbxZCAgwSoJWBLNIH0GgJbTWVMMg8WomLayPnyPtv1ksP9I/ZmR1A6rK0S8yam9SVITICzjSmjWQw0vmFxdkIkUJcF5XRGYQyl5OgOAz4KIYJzBU4Momn+hAjGGmazGf2hvfeIGpqcFc9qSGF4FKxb5bLZEENK+Y5GWjQJlNuU4SqYCG2EGClFaENguV6yXJ5iTaSuKtaLFdFY9mZ7bILF+w31pKQo6sQg06T1JJKAVpHE1nGiEAOL9ZIQPZOyxLg0t62JiX3owKrFRiXYgkI16SRJm1knBpfXk+iSB9KaFpeF/G1MIbUVjjXrFBq38SxXS1bblnJ6xHR6gLMVxllC09Bs1myaJWikcsK0muLqCU1oQRNzqigsqEE0jX8x2tsORpNIiVHAmkSjUMV7j1GP1xaHoKIUJtIoKbRPU0RHpEVVcRTJvzYQC4NEwQfFGKW5OGN1+ZhoHYc3XqCUiiCgYpGYjjdCJiIYkfRshFWzAoloaClRJoVQlvvgkni2ovigiLSYXCHnKjQKUVKoq0TT+wQGxeIIUXC2xemKELesvUWkQm3S6VKBwiYWnMSQshdGRcKC85P3WVxsmd+8kbUABbYrXFVCNScGQ6mBEFoKv0FlnZhbbQCNrNsNReNBtkxrYW86pZpUWLE4V+KKgmhLghZsxdL6gnWskOiIIRBMipKIJvkuKWFo9guF1FfZz2i0wRKQkBKVmejxJIA7BjAxcnp6wuXFJdeODti7dkBMuS7TAbMYNPokW2ArhIBB+bX/8b/94U7fv+HrryHLm8t6LyEFTHVoAGB04PoAdGnwotq0iUrHMOigmc646xyyBAp1Bn/nNHUU/F7fJAMGY8NxMGTzI3Rw0IbzfPprBs2LBJpcfQ2ATxdatvtKp7DpflYGpZ7OjuwM3ARGdPfq/gF9trjugV09OuN5rMXSGctdSKEZ7qO9+9wbur3dufv1nRYQSKKfPQuq+7DTnOje6phofdBN7yj0Ze2rJqOG6rhGidbcF6dzqnrgZgd7GfqpY8GNwJvBBh/VPTMBxmLLSJ60o7c6MGXsTMmo8AnsGI+S7BzsOHm5HbQLn+o0WtK4HYNR6fL0/uD4Dy6P6dodQTWDHTLcL42lzEwZzYexO7vbo4YBZpLsCHX10wySDNpRPRg0ruNAKWKHspEaIrVPdmgSk0FTpinye6ZjZnXzM7MxdChjYj8NDuN4vF+tUe8Aj53tkS82dsaH/3ee4tgpVFJ0vH3Sf+zvMYRJ6pV5N351jLUMLdKHoPTMvKH/Ovg8GaAJKA0kB9J04DhJONqI9CGQrnBURYXftDTVBjRSFg6i0hqTxApJaYATvyqiVpkfHfLv/siPc/LoAYvTCx6V99mfzXn8/vu8f+9d9q8f8tyNZ3l0dsK7b36Le5oM53/+z/8Zx48XvPrqB7AIr7z4Ki9/4COgirHC/Ufv8/FPfJrtYs21o33u3j9lOt9jWpasvefg8DprLln6BdvVBeKgcCV7Bwf85M/9+/x7n/15YhA+/skf50/Ofodbt27x8P5D/uAPv8BkEtlsl9ysb9JIiw+CXy35V3/8pzx68B6PipIH771JMZnxwqsfwK/X/PnXvsQbP3iDev86B4fP8Nnrn6USMLagCS1lPgW3pEQBRk0GiGIy4Mfj3nSHFHm8jgiSYw6P6cdVNz4G9qHkta8Lc9zh2coV+FJjf59hKHf74NNBJTowIY+s8VqAdqzI3bVqPJWvzoXuWeP7d5+NgR+BPix8DDR1c2UnJDb/1A71uFKe8fVXoZen1LgvVwLTOh7VU9qp3zxGden/O653t0WNbISh6qPXDylNPnSRnWvGbTjaQ0dXdc/sDqr69sqns6o51FtHZcvXpJPm2K8ZycjI944JMAHFGofEgIoheM/52Slf++a3ePPdt5nN99DQ8vrr3+RwNuPVD/4o1249x+lyQ+FKZrPrrFYNtnDYzBxOgrWGoizS+PWey+WCy8UFZVmhQOnStSYIq2aLtwYrhrqa0bHlvIFI4OzkjOX6gsK6FN5rLGVRokEQDbQhMC1KFMPjVaDxgXUMtBowhaWa7mFMgY1JgPXx+SmbZcP+/AZeY5rfmpgkzqTMZU0MqFiMlB1yT20giiXSoEYpzR6yXzE7XNCu1yzPz7i8OGFvcogra5brBY3fMpnvEcWw3lymjFLVIWVV48oSZ8BISSVFFqBuqcQltoY4SpEUqiA5c6cmp7olsg1KbE0KVWw3+BA4u1yx3K4x0wmToiKGSPQtxpY4k5g9xhbJqVMQKXAKAcMmi+5qzCH6MR1IGRzWpr+vlbc42rc06xXri0esFsf4Wc1kMqesBGILIXC+WLBaXCClw2TdVOPzXmYgaMxsiCxUrIk1dXGxghjYP5insI3oMKbAGYNYC1mY20Z4Zm8fNUk6WNRhXMDQYCQ590STZCFC4Gyz4GRxTINhb+8mZVGTd0+iKAGPBENZVdR1xba5pN2uOXl0ihXL/sEhrq4xOIxkRpJJqqGanVJrYnJNxKWDB81Z//JBWLCKWDDqUB9wRMQ3LM8vuFxdImVBvTfD4tAYMJrEto0x+EZYFko5rZKWjQpePOlgUamkgOjwMbKNDYhSO4eqybpElsY0+CJydPQ8cT+wbTYcLy6hiOyVB9TVJFsjghGbNIF8cvCb9SPONmdMy0OKyYw6u7I220oBCD7ZJ5hksaY8Rem3E6FwhnazIEalMBYibIhIiMSY6qIKTVQWjaeJSm0cIQaQkm2bNMtCNBTqacQjCgUFi80S1ZbC1czqfc4Xj9kGsK5GY8tis2A232c6OWBSJTF0TIWzFZE2MZ+oaEWyllmKJrg2P0y2WUzsrSkl27jJIXUJdCuMsCLg1VOYAqcJcPQh5j0xpXRSCRShQKxDczisUSH4llosm82Gi8UCyhnXbjybQJQIqpHoU8hkPbFUk30wEy4Xp5xuFtj1gmlhccUUdRB9QEwBkpK1dHt4jInho0ZwGGKIqE2WrRFFQ0gArxFEAk7XCAUNLoXdRovRnLDKCNZajIL1kUZb/HrF44fvU6lh79nnKCaHKJGISSGj0SPGJuDSuESkUKiLEjRSWEdLRH3DcrXgYrli4rbM92ZIOQVbEI3BpICidIYeEruriRFp0vqIJvDbujmthag+MWjFEKNQlXN8TH3kXAkYtjSJERdhQmS1vOTx47uY2nLtudspghAlbjZoaCgnUwSHGotXS2UrKOYY8YTQIGyxpmVeOGylbOKGFZ7lmUeOl0wLZVJaiklFVU+YlDWGgqkVZs4Rqdh4hzcTfJtYc9pFRWnMrFSbfNesLV3iiMYQnEeiw2cfLvqGuF7x6HJBVc+58+qLiKQEZA6HhwTcioLaVK/QYgyEv4BA8G/z+msAlCJWcw40ib0RZUIOwzJFColTsDEbloTsNCvImEWUT++B3uGXzniVHeMeGYzC8Xu9ooh0NHLoDTrtnvIUIxqyA5Cvv9LuTzCdnmJoBu1Ot4dndqF7vepRhzIh7KZZz2DcCPXpw4h6mz4ZoWOR5CdDb0iLvzK6/1Ck3av7ymWdi2Ski6YnB7pY5LHRD+PwpsxTSvcYlSE9t1MsyU/rsIyxo9MXZjDAB/BqXMpB6+SprKb+Nrlv8+36e+0MlKFNpP/OMNbo4A99ss2Gh6UbK10fp/dSFTNVMWbwsO9vhgxTuSQqWbeqK2TnEJLTrpJi4PsnaERlAEIGEfwr4V9X2m7HWermiXZhO6lBdtv8SQdzp6aSQZFRew7OUm5B7ZhiMbel5jbLzlQ/R0Yl7h3c3Xn0NMdXkjuyW9ShQsMHvThaF4vcQcpDCvfhWblHdbffnnjtzIuR0y1mx9nvbildsyLZqE8wlJN0ymasozvpSxtlOl3HpNOlejLh4uyUzXrJbO+AXotOc6CqWBSfgcmAKQyF1NT1lLffeZuggZVveOG5O/z8L/wyv/Wbv8Z2u+Th5Yo37r7DbDalRHCzCXfuvILRyBf+8A94/s5tfubnP8f1689w7727XF6uKeyEN7/zbX7w5nf5xKc+Tds2nDx6yMn5BZ/+sZ/g1//f/5Ubt45Qb/BBwMPsaJ9bzz7Pqy+/xmyyx/H5KUVV84u//Hd46603WJwuOdirWW8X1FXFNgaeee453n73LWZ7e3zzW1/m5sEBr7/xdepJTYg1l4sF63jJtaND4usbfv+3/hEvf+gT/OxP/hTqY4ovz+2UBFgzrTpTjYUETnTHC132w8HxH8YxSkcUGfq0By61BwA6AyGNnPHYomdIjd7Jo+QKaMOT1+z+vx+AO2OzP2KRJKbdA1xjkKdbZ2QA3YdRvwtiDHN9mMu54nltzWDWCMC/qrv2xFIy+k6vMzUCrUY1Gxbx8UoxPlAYFv2d38NRUxeaPbAFd5/ypMbR7pqku+XXKyvWDmhEv5bq6KvjV79t5PW2f6Nby+NoqTIj2ycfzGk+2bci/YWiSoiasj2RQx9piWLw3nPv3l2+9OUvc3pxwcHenLPTC45PH3P9xi1effHD7F+/RRs9GiMX2wCqFHVNaD1NCNSTGnElxjpEIs2q4f6jx9jSMqlqCgk0bcM2OJwpkp1X1xQ2pZkPMdkQIrBpG84uTmg3W0pXYrGUJrFsxQdakzRPnBUKEzlfrZMCo3PYaorNJ4JCAoUvF+c8evyQanbAwf4+ofXZsUlAhyMSrMGKYKOl1cQ4MPlwqs32pzWWEkHZJKdfZ5R1SV1O2WzWXJ6esTm9hzUFs8PrlNWMqq45uH6ElQKLxZhAgcmi28LEJjFVxFGoxUvH+Gi77TazPwxRheDB+0CjnnazYblecbFeURcFs719GjoNjgJHQSEWtQZjC5w4nBHWbcDYpMNpQsRIyZYEKqU1Li1gQSNRUhs6ipR6vi4oiltsl2uW6wuOL37AUT3Huch6cUErNWKFsGgpqgltKaiFkpRxC5MyuBWuwJgacemQbD65mTSSsgNXS4G14EwKE0x6UgGioqGlEIuIyeUTMHUKNfSg6mgWF5yen3IZI0U9Y1pOMVIg+RBHg0/MGAcqSoMhBnBFiRNDbUu2zYblagnNitJNKcsaVxZYJJVVDI0mJo81ZXL0jKSQbUmhZI6IGId1graRVbthuTrBby8x5YTJ3iHiElPGaGL2WWuJCG2AiTVIZfHaUBhHgQUNGHFABwokoWe1jnWIqLgkTxATM2UiJW3ilrCNGybVBDctaX3LcrNgtbzAEJnVEyazPbzC4uSMi9U51/ZqZvUR87JGTNKVUZLQfhtSZuqoSXNQTSBG8NsNhJayqtJB5KpjpHkQi2BpQ8z7TSTEiIjSNp42BqqqImhiZYpE6solAKNyCI7aKErAimVvb0oILavlgkXbcnD9DvPZIQKslguC35BkxQ0FSrCJlWFFSVEwliAeMjs/MdLTGmokCR+XamnEY41BpQBtCLqlDeDE4wQ0Zms+JhZQlJSN0agganuWqFMDxtD6htg0rC8u8SYw3b+OncwIITGvnCmTlieKGkNESJZfQ1UWGFNBjPh2y3q9QNcthTFU5QRXz1O0iC2S7Z733aRhm1jUxgplTIxHtRYjjmgiagyhTf5H1AargpUZwRRgA6jHxZZoAqbdcn5+gd9s2du/wcHBNbxL/o7RlPEwkHX5NDG+Q0ghd6oBrE2C2JJYNMY5Dvevs94/oAjCNmwJmxWIYk1B7SrEpjA1ayyIwboSmzdRsRYbAyoJtCokAc3Q4IPHxwZbGrBFPlzzlKLEJrL1S9599ACHZf/WDWxRQgCva0ITkMZDJQncJofsW6EhJP9CDeImODuF2GLMFpEGGyqciWAa1ssLHpycYrTFOuHWzessJgqywSJUzlCVlqkYEIcvSrxO8FLQmsQ2TUBx2tOjpMyNEHExI/akrJHrzQXbkzNiKcxvPUtdTDAxzRlVweuWIYIqgX9GOukh84RN8pd9/ZUDSmokpcakzEZsNnLCJZvNhnJ6hCsKehNNFJuZGtqzR9K9BkMwG3cjQ9R0DqEmuueToEKniz6YiZJv0gEL6Q5jRscICMjGW3IxewvyX9MBVz8duE2d8b7DFuoN5+RuDE7y8KyngT9PPUV+alnGBm/nGtE/KwFaoxs/xaAe3u9YFWOwRHavVTIOtOtQ/NCwyh10tDMOu3swtEUcGFGDXlAnRUrn0/Sd+sNCQ9LGMQYWMouge6837sfjY2hDQdMKPGLQMBqjg9vxpEM0Ojwe1b1zIjp55h33dQSQ5jBKY1MI1w4frgMZpW8b6dugD5zqgabORTZmYLR1E6Jnau2UY2d49MBOcpr7idq3n/RjvKtDHOZc11ZjoLVzhujuPbh50n92BQBjcNY75sdVILUr2O7MHV2T9Q4SCc9AHDMCxy51dsoUuox9XbHp2rlzxrXrETPMc5OdwG7m6LhtM0isSuO3eO+pyhnff+MNXvzgyygFlSkhaNJZymuaxVBVBdtmRT2fYKzNIrttzv4lBA1gTDaCUj8nmn46eXv0+AGTvX0m0xkH8z1+9DM/ze//8/+P9WqJFaEwjjZE/sZP/ASlOeDe8V1+6W//HV64/QKnywX1vMJUwisf/ACPHjzgN//x/83q/JTXv/t1XrzzMg8evc+1m9dZnF1iguHZ5x4r+E4AACAASURBVF8gvP8elSmpDmteePk19g+v8S+/9GX2rz/PfDbn5o0bXJ6f49cbFudnTG1BGyBYpbAWowGH48bRDSKRu/feoShmbFul3bacnD7iEx/5BM0Ptty8cZM3v3dMWQiXqzP2p4es12skKvWkxmZjOSiI2mToSzdDUvagnjlIWveijEaW5DnwxMjMQHcf8pUcqZ258pR1e5hCebwLdIGPu4Gew/N058BicBCvzpPdVd3QL6bjzZVhHg2gxbDHdH+P1wKgDyUW6LNEPv01bicZ/TV6xpV5PK5Jt+z3pemB4r4C/Zrbf298r/Gy/ZRdrjvYuYJljZ4/2pSutPETr1Gbjdt1pzJ9l0rf9/0mr6N9BEb4d+q0KOPdt6t70vPz3iOd2Gf+SozKanXB3Qf3eP0732XTbJnvzXl4/Ih2s+X2ndu89OIH2ZtfZ9FsICrbrcO6dNQWYspsVE/mlPUk1S8Gmu2G08szXBGpCoOopwmRxxcXHO0/gy1qClPSSnIqhYBYiw8t69WK08tzYgyULoURpdCeFErQRkNUKIzBikPclNJK1nDZtWt8CJxenrBYLtjbO0DKGRvfUJgSUaG0INZQWMGRMrN5Ak4UaxNDOqoQgtJEj2rEtND4BtEtSoUnsQiQksMbz1EVJaHdsNysCNs12+gxdU1ZFpQOSpsACTGCqMnCDgFVw4aAb9N+F1BSFrPE6e9CUAyKD56Ts8dsludU1QHz2SHWpYaqEUKZ7l0ZR11aClcQxeSU5gYfk08yt4I4yzYI4lOWpTapTScWg3ok+swYiggBE1q268uUXtsazKph0ZywITFaptMZ1jiK/ZrZ7BBnShLOErNLL1ijOJHEIsqMNatJp0ckiT87BWMVKylszJNZtUbAuawnqUlrRbLIbgisV57F8oyHp4/Ynx5yOL+G2JKgiY3iSaEdNoc6heAxOcRcs/SGGtCqoJokbRnfNIR2zWazpmgtha2ReprCjCQ5ckaKbPsErDE5HXtKDY9EdLtlu1qwXF8gGqj3D7BFSvHere9GuiiCzm4lhS1tJbnFtkU1Ze+yJoVnJsspYgtLIZatlojooEUUE6tBYugPSkIMSFAKTWX2bFmvFmzOHmLqPbx62tWWev86m2hoNpfQtLhpyQab9khsSmuuCibpa4oOYyyKQ6VCu4wMIihFYmtpgRaWIODUU2KwAtNZskVCZnWiCSzzIeSwtICaAidKS8oCt2mWtE1DWU147vqzSacrQiFwMD/AxwN8s2W12rDYNtA2OFtQuIAxLoeCp73Zdo6EJrsqHcIllqAPQk3EmpZEH4q02lCLMjMNK6mAIu2FmsTMNaZ2ynQuxMB221K0LZvLE07Xl8yrOYfXbqOmIAZF1OaQyoATSSBCBg5KVxM0UBiHqk+goZvhtKRtt2wXa5rtBZOwTaBtOcW6KYLN7Sn46LECG69UEjM3w+JjS4yeqnJZ8N6h7ZaYfXLVmG0jT2xbpnbLvZNjsBU3b7+CRkuwMa3J2MR+7bpRYkoA4JUi67gZU6A2ZYKMGjDWYYi0mhIL4KB2FYYKHwKb0LDaLBFZYrwniKGeTbDFXgpHFAtBiWJA017XxhTGb0WQqsa6WXe0TCQSQmS1OKG9fMzF1jPfu8VkXhMbj/qWTYzENmCMEqwkjU1jc5RRCi0XTfZhzAGwJbAVQ2mnqJ3gYkNoVjTLFZeXa+azGc/cOuLk7BxXzyjmN9h6iGFNbFtWAVQ31BaMMThzQWkNuAlqJjRa0UhBo7lPKTDaJv8vRJrtkuXFGZv1gupozrWjQ0RniaUmg9yGJa1LnUsaNeRDlpzs51+DaPybvv4aGEpgJcdD9+Fgge1myYO77+Lqx9y4eYvJZA9xRULOxFyBXjr3s2NMDE4sdNmjcvYyoWcS7Zj20jmi+Tv57Y41A4MBa/rruzCaAdhJ61DqDRV2AJKxIdwBLTuhb5Kf3PfbYIgqkvVeBudzuOcgoNn/7p3uoay7lKzh1YmxXnUshr+HDa0rf19eEZImT5ZV7+3o1C6WLhhvxypOdRgDLYOVPCqH7NQqOSmj7Ec7p+DDVdrFCI/uM3AHxhDd08ErERldzSCk27OPQLswwR2HaOT4jJyu8Us1MhbA7rLxDWN2VPVRvYfvjlopC+YK9LpVY89P+4sHwKZ/Qv8g3XVQRg/f7YdxvzIARXFc/67uHbuvEx0f3feKk5keG5/ilGlfd3miXrk+O+tb8lR19H0dbjOeUk+pVbd+DOUf+4NXddBMX6aBxTgW/NccXz4GuHfbefz81E6Do0f2CLOEvoycW8kjOaaT/vfvv0eILV/7xleQynDzxnPUrsztmsPmsrNvnGF2sI8rCoymjEkCVDluPUiXbasLK0xl3z844OWXXuP733+T47NTWu+5+cwtXvvwx/nyn32By9UFdeGYTie4yQGH127yxX/5Jf7u3/17SHnIXr3H8fEZoQkczPaIm4b1dMFHP/YJ2vWar3z1izy69wPKWcnv/f5jwmbFZH/Gqy/9CHt7z+DblsP5Hq989GOcnRzz/LWX+MiHPsQ3v/Vtvv/GN3n7e9/m+P59vvWtr9LEQGxa6tkMEwMPH92lKErKasZzz99ms11x/+7bnJ6fQtjy6P57vF1W1PWUF158mXfvvsOzt19MaatN5Gtf+jOuPfcsH/rAa7QhplN9EmvQkBg3UUB1GEnddBuHk6oIGodVZ2Cvjfaw0UlAx3js9qSrByX5qn5gd1+NozE8ni99mO8OcAHD4UQ3hvPKrNqvs1dWjZ1CjCPDujvFK3vd+N5pyR/YSU/c8ImXJkdx/M5VEGnMbup+7FaLfq0f7ae5YxgWod2SjGSWdt7vnjEAScPhxROPHa1XPduwGxPDx7uvfk8dVaXbwzsQX6/aLlmjBegYOOO26YF/ZZCA1JQBqBtDnYZGs11xenrG9956i3ffv0vwKQvvgwf3qMuCOx/4MM899yJFNeXs4ozWByozpTQplMfYAmMt09lBCksCovdcrhcs10uMiVnsExpVxJTcuvkSpatQDVlLQ1BN4S7bZsNycU6z2eJEMU7okmaEoDgjCI7Cgbg5VTVh6hKbKLENclYqEXyIrJZrzhaXNBqZTPYJWRvF2pRdzJoizXGXHAEriZFgTZLl16j4tqVRTwwB0UgUj0SLsqYsqqS3oo4NEVvOmJgKYzyTyjKpK9bbDcvtmtWypV1fMq8nmHoPXIlRl0SPNWJipNWQx5fkkAaHAIWTLDDukwO0WrBaXbJqLqhnc6Z1yTbrV1oniU1kC6ZFQV1m0XOTtDvWTcO6TemxSzEULrIJW9brgI9J3+j/Z+7Nfm1JrjO/X0yZuYcz3KFujeStKs5FFmVRotjsbo3sloxuCTDcaLQf/OI3/zl+s/ViwPCLAcMtWIIESWhJFClLFMVJxaFYZM3DrTuecQ+ZGZMfVmTu3KdKahhiA06Ct845O3cOkZERa33xfd+KFK+mJMqBnAPkKOytMb4MqBjwXWC2vM7y8Dp9jnTbC0iWGi0SMRKVA2UUZnD9UAqnDVYpWQwpDDsNmCyr5UYbdBBZZiqSb1lsGt4/kcaTRKrTh8h6s+FyvabtPFYbDh97ilrNCggnfT/mQFJxXHL0CYzWYBQ6pWKfIH5HxhhJrnTAVDW5rokh0rZrtttTar/FVQvxQ7EVxol0NGWFMg5KAaDYtbTthnV7gQ4ti9pRzw5I2onRcHnPNYiPmZakr7YGHQX4SjlhBjmZ2jHwY4LoJXmOCIgpzAlHp6woPUjE3AnIQ5BYWgVy1ETviX2P0QpnHL0WZhDO0cwN0fdgG6rmEFvPsLXBo0uxEIVVYqKsBvuSrPAxYWYNlbJjFe+kBDRNMWGUR2pficQGpCqj9LdABrSyBKTPSRhtQEOlLMYpku/wmw39doN1hscPjrhxuOD6dSs+U95gcuDZ567z/t0z3r3Tk6jo05w2bPChpV9tR6bGYrGgsg1JSbU+M0wK2VFRPF1zJqlAGzsWZoapFig9w+UeYifjrNLCQjQlXtACVButSdmz2q5Yr84xfUc0FbduPY81BqOMjJFpxyQyRpecKo3jfxdDkRUadBm3UDKWNLXFVUtyDMTQ04VAFzrxEDKVgLyuErBOa1zWZNWAc5A9SvWYoAh9j8qRoMQTzeoKssKkSAwtFxcP0aHjYTQsDm5ysDhEbCvEl01n0aIMJBBZuACUGcu8aitgnUZLhUQlfSDqjNWQQi4CTJnnhFTU4HMi+ETbr+lSR2hbTBL2m7EVxjgBcAF0ojYGnXWxGhF/KU8kq4Dqt5yePMRvznFVxc3HnxT2U4xgIrVSaG3pU0CljspmrDPo3KPxRKWFtJIjSmmcyuSccDjEm9lLGawcCP6SmHueeOwmRwuHM4GZk/ZqVI8yGvHzt3Qh4WPEZwixo7LigVZVLXW1JieN9xFlFxh7k6hqYsp06wva7ZbOr2jqGU9cfwbdOIjCuQtQVBclMlGFcJMlsJD5NY9+wrmYnP+stp85oKRK5CQvRzEWzApTHxK7jp/+5D0WR3dZLo94/tMvcLiYSenNlCcgixxpF2DtkvRd4DVMPmXqyeZKujdczSC5+WB4uMsZ91dMpzvI5LMDHqZLnR8wHS2MiiHgGwGSSaC5V9FnSFT+ofh7sv/Aps+TleMhmB+u/KrHxf/nbcQmilfCOA+qURZYiB1MW0pWb0sSPybrE7hCfQD+mHy6a9u9J1QADJgE4Hn30ZDYMQHgrlYwku/uH3nn+JSHBf19sG38Zwpi7QMkO5+qq4nU0OvGCyTv/U0N9mCUbIzhfznvqomprIoB/ZDMDd8okzqDdGUqy7uaYKrhLmE88sAgUHsGvP/YtmcMPl7FtEUn2dCYCO7eEXklhracyDOH5G/6giS1f0FDknjFA2Uwgv+wt3a/++/aam88GfqdvFC7a2J3zXv77bXDlfZhksfvqEwjm2PXJ6c9fziPIicxLHzrjZ9y9/47bLuOx2/d4Mcv/4D55xtMhmvXrpcqKkOwKc+zcrWwP0NLyhnnGgZh7MBnkrsSbw2lFLaqeOojz/JL/+xfMjs8YNE0WOWwUXN+/hDnFOTEv/gXv8LpyrPZ9nz8U5/kc5/9Ai+/9iYXFyeYnFltNqSkaL3H1jN+/df+a376yg+4f+993nrrVW4sjzk9P2dmE8oqHp2e8PjNW2y3W04uTrl54yYPHjzg4PAGOhsuHj7i//nqf+Ls7AHd5YXQzlOkJ9PEVAJby+3nP8Zjt5/j0594gXfffYfKQPvjc6wx3HnrDe6+8xZf+a3f5uHD+2idOD+95G//9hu8+OkXuH//PW5/+uMEhfgXqKEfDpPv0G/3gePhHRtxABSDKfcoib6yjWPUfoeSsXUCMEAhPU767s5LaDK/FMnaByTNeTjqPmOUMqbs2C0Jrc3u5VClp+zowOP1XbnxyemmrKVhXt3fPjCWTo/1IfuO1eI+ZNwe2ZPjp2q/XYfvDP9Rk1+GSWeHEO8tWExuand09UHm0fTN3b+v/WueSnuvjph7v5Um1R/4fDjc7hkrdm2dUxoXvtI4jhaXtii825SkZPcQI0TvuXf/Hi//+BXuPXqEspau91yuTjk+us7tj36c4+uPQ1a0XU+3aUnaUtdaVvRdReUaAQJ0lvex71mvN2z6FlUABTHONjTWom0tq+Epkwtgm5JITTbbDevNBalv0doIeJPk+WttsbrGVZbKNVht0boCDEonrAo4JUCQColVu+Z0taZte5FJVA0oi8WQtcj9YmkjraRkt8x7ihx7MaXOQA6k7Eu5ZU2tK7SbY40lhDm9T2x9ABzaJDHnriJzm0kRtsmiZodUswXBe9r2gvPNJZuux1iDcQuUM1jtOG40ldX0KdJY8W+rsqWNwuQPwbO5XNG2a3xqqZzl+Pga4MSg1SoqpUmVZqYr5nWNM5IgdCGzDT0pQdt19N6TM/TR47tASC2ry55kxUNI2DqarMMI/hgtIFxOmdiXUuJWcX1ZoaoZOStmOlPVS0xWdNsVod0SVmf0naGxM5azBcZZtDUSQ+oJly5LpJZUkmVUpQk6EZMSE2o0fQ5YawvrVmKcGLZ07QVnqxWbdUfSYJsFtWvwGEJKOK3J2aN1otLi4YKRZ5yTADcqK7wvi0NZkUqV6Rrp70nLOGqsxi7n5NiRQ0ff9/RdhzGGuqqpZw3NYknMIkU6OblHCiI1rR242VKkakqjsjBQYnmvdWH3xBiI3tMnkaNbVxFih9OWpEVCpFWmTVmkmFHknykl2m6LVQZTa+wgB8QXv67iYZsQQChBtJpoLX0UxsdifoSdzdDKokIUE/SckSIOGTpPXTmsbshGyswLYN0LIFTmqBJJQhafqkQScCxmlE7o1DIz4LMt4a6MkT77YsatsaZU2tbCiFKASZHu9JL15pKMtHlVOazVHDSaX3xmSU/Pg4uMb+Hzt+YcdRdszxwXHSQv4CrGoOpE224Ky9ITQ5nrTYWqRGabTUJlQ6MNppYF85ASWldY7ahUQoUMylDZGTZVGLRUHtSALnLy2HF58oBHmwvmbkEzv45aHBBTxgNJO0wMoIUU4YxGa1P8lqTal7LSF7NSKE2Zow1iz5wAKxXqjIVqRpWlYmcfWrpuS+ovaJoKWzUkU2OtlTwBTdJWjNSNJkZPij0ZizUKpStIsOk2bDeP6PtEszzkaH6EVVakZ1oYkDYLqCpHjWOcWVFkvQWczwVMNsqSY8CpPBCoZGywmRhbFKWYUAarEy5FsJp4WEDH3mP0mu5yTW9gNp8hcHYimUTogoxbzpLtgsgGEy6xpmezuqAJl9y8saSuavp0iTGWbdtjjKcyRmScJuOUpu9ajAmywKiEPdQJtQhrxWRdaahVxbr3pNjhnMTW83mkOpgRQiaFlqgUR0czrFL07Yrt2rOYiy9bow11Y1FJ0217TFWRgIii7UQ23nYtVD3YhDMNlz1cnD1CGcvy6BrzqiHliPE9oNEmo5K4pMVc4v6sShH0XPrPoBpLomiI/moU8k/afuaAkpR+3wVdIh8w1E3N9VtP8ahbouqGB+uea51hPpcBZJx21CTBHj1/ZBWZIZgHKMm1SDn0GFKP216SnQT/HRLLAhgMQ+IYgqrCIhiBmcJsUWXfSRIugfWYSTMckeHaStAXd/GsBOSTwXjnITNcshxZ7nvf5nuXa+8CScbfYTB8HRP0/xxSMNn2JAcMkp0diDSuzDOYi38wZFal5GRpmFHumMv95CS0VnkWjM9yAAX30pCBOTQkVsVHawD3lJokyxl2ZtNp0kbTqys0aiUpyWDkviMq7dprBD6GO7+SU+0DLMMBhp40HqB8Okki5PIm97lDx6RaXVmNK11KTMOLV8YIssby+FUZzPcTpB3RbGBSwNTHbHdVAxsrTwCboS8XAGSSbE/ve2irXWo3PfyQwE7YYmq/LYaeNHxnrM03JEoMQNrYEJPG37XZeD2pPK/yAHZsuzx0o0kinsf/wfRZ7H7bMQQ/mOR+oK3LOymlW2UTmr3ZI4sMfUNNDJdzlqSLmPGh5Uc/+g6JlsefuI0zM2Y284d/8B/5V7/5W1JRxTnqSmj3CY0l0zjLtmvJJOazBVaXaiwM/MISvJf3J+ZM9B7fbvjUJz7DtRs3OD09pw+ed997kwen91k2DfPZgoPZMW274p27r0OGt95+nSdv3eL89ISmqtlcXlDXDQfXDnHWMasa5vNjnv3Ix3jq6We4d/8u/+xXfpM//b3/i3mlefO1l3nv3Tk3rl/j1tNPC6PhYsO9t9/lzpPv0m8v+OTHPs53XjrjtN1S1wueuXXMe3feIUaFczXb7YbP/9wXOW3XnD864a1Xf4L35yJVIOH9GcfXj3j9tZ/y6hs/5vziIT/63jd55Yff5HvfeYZPPfcJ6DpO793n+o1bnJw+Ynl0IEn4+FB3z3nAJ4Yxb8+cXu3Gn2Gcu4rjD+CLDP2TcSEPALUElnpgB45MTXl2OYlflrweVwf0YX4zEzB6N+sOd6B2g0IJKoallQJYlblw6n2k1K4/75tzTxd5KPLbsaV2QMh0SBk2PRk/xnbIJQCd7Kd2I8vUk2p3x9Nx5D+zXbl3yn1/4AgTH6aJAHrcf/ciT+b5yZh6JfLYu529axjOOtk5jUDlLo4gT0TNGZk3xrhovDDx5EtlLCFj9K6P9n3Pu+++y/d+/EPa9QZrZ5yePwKVeP75T/P4Y08zmx8QYqD3PX0bmNcHRK1Q1uDcTIooaGmfFGGzXrPermWB0FQYXYlnkBJ5V1Yy+ghYABmRr8W+Y7O+oO0DofgoxhTRWlOZGc5ZtKuwxmK1LW2uMQacDihTmBtJ7uvR/bvi72RqrFugtCTRQzM7Kx4UGYNKgZQDPnYQE9l7+tgzb2ZSrc6CMZXcs3FUVHQhsF6L+XdGoXSDNbIUZVRmZjULp2h1ovWgkxEpXVVRVwtiCsTgCX3HxeUjUug4WByxtDeY1zOUDgLxa8VFH9FK0283PDo7pe22GAP13KKUEWCFkvSk0jdzJoeOh5dnoC2Vm+FLeelhrIkqEwsbKypDto7FoUPbBqcVyihsMkCShFpZCJl1t8b7Ho1UpqsqK1XgSv9yGBKWbDLVfEkzn9P1G9rthk17xrrfsGiWzJoFdV1Jj1caYzVDZCByQ0PWGm0Nfd8TkyLEiMeQs6HOFUpntpfnPHr4Lh0BbIOu5zirAUtSDnLCGGGggsJqMRjXQNRGxtYkUi2DBcFY6LfbEo8Or7bFkQWQQeJttCNXc5k3+y2+W9FdXqIu4fD4GjEFVutT+tDh3IIcISpL1glFQGUr83DKxTdSQDyy1MGKnVSErZuaDkT2ViJUbaRokLMZlwFX2F0pczifYVQmKqi0LsbzoDRSKQ2RyYcY2PqWro2gHa5ZMjO2SF4k8dS1o2nmUrVKe/re46PHbC7IphX2TbPEqBpdzM9yeceVUqTkJe7XiUorGKR/ACrh6OmTIWUxXk9kMWvGMPg7yvwlTO1135H6DTkosm2Y10uUNSiT0EYRU+TV9y45XXvOttDFxKPLd+hDZNNrZsqJl41StNmgsTRzS20U5EgMHgKk0Mn/jUY5R1XNQRmSFsbUoj5ARahUghTJNgkLxM7ok4wFOgsZxwfP+eVD+m5F9orm4BpH8+uEHCQaM0pymKyxpmFcVBoIAUqkk5ID6JLfiN8UWWM05CSVoCOGClH9oBIma7AGlzVkSww1KktltRjOIShms2totqAtDRFjoc1SHU0bqFSPTpG2bek3j5jZyPHykNo4tO3w7Yq6ApMcPYEKMe3u+4S1Y7SP08KGU1ny+aQkDnXWsdqsqGqHMpJ/WTF4YtOtqKtKJrpSIbFtO6w2aKtQKqKdxbjEidrKAqhuUXQ4ldjGSNiuScaS00zG6LiiTmsaBaiO6niJdRpHpFJQmUjnNyxqi9Ylbx5sCTQ4o8jZE4PHmYq+D1J5NAurMucAKdBenGONQqsKpTU6Q79tabseY8QwPydFSyalTOwzm5yJKWCsBRIpaLyH9WUvElUNOUe6zrParLA5Y+1dtLFc9pZqcYhbzoUV5VsuNwmdeua1g9oVk+2ykDPGk2CTKsyljqg0XZfJfkPl9nGGf+r2s5e85WkwpicleQ2Ht57kKZbM5jOWTYXSjsYEQjIFnDFF6rMLrobbnYrApsGbKpS0IcD9sMB7WK0vWMf42wgoKTUG1HLMEjhOY2muBIqyIxMsYjxfzgPowR7odJXtkaHQSqdB59AJJCqfprfDarPIV6Ysjasr17LynBMj6LZjj5Qr+JC2El2w/HdITMvFMABwOQ+srQF22Zcd7HKuAlrsKDll8FQjsLa71+HCdhn4uKo1LoNnGaB0aVim0ojhxHp3nOH4athjqLA0OW+5Lin5Xdp7AloM96hKu+c0gJH7cN+uts8k2i9ShQEMUuyziSaXwdg/hh8zI5WUMWGVD6fVlIa0QxUzvN0hd0nRDtjIwwMYE5hcjjEwzsZ9p4njlW3qySJC1SEJGu9SVqrUpHdkCY5KSYvhduWSch77tSaLX5ZWpc9Pn9MQ/OWxn8opd317j+ox9s68b9UlNzEyI8YkfAJ+TZ4Gu7vaySan/SozEa2OPug7BtswNg3Sqp2MLyO22ZGXf/RD3nj1ByyPjnj62edZzBbEEHn3ndfwQbyBjo6v0XZiDDg/OCCjsK5mc3rG0fGxSA9yMSIdnMLUDthOOXD24ISv/sWfUNcVL/7ci5ycP4SsWK9Puf/wXV743Is8d/tT/NVX/5K7d+7yyRde5K+++Wf83Od/nu98/3vcfuJpDpfHrM4vSLnn4PiY4xs3+NYPfsSdt98gkWnbFb/xW7/DH/3x7/PRp57j0cUZT956jNX5I5qDxE9fe8jzzz3PN77+57zxxmuopiZmz0eefpZmPuPVt14l5cDFgwuuHx1y927Et4FN34KCb33nGxjj4LmPcXR0wBMf+TivL2bcfedtbN2gTMN7b7zO2clDbF1zcf4I8Dx4eJcXX/gswQfayxPe+PFPeP/0Hr/2lX/N4eyApBM6CUVbqWJSqzSr7RZ8ZBs9t64f0/so1OUcx4FrmBsG76xc3jdVeu1ONgaqeN0ktQMCZFwoY0bevdf7Oq2hT+exq8u7MJEvDwCPGnoh4yQm39uZg6fpfnvz3nTcnYwj5dyqMGDU+K6ovflFjrd/xaPkdDpUDC13BUxi8paNRtPD3J137MhxYPzHtj0wLO+fa/jlylg3be4dE3cKMe1PVR9yxA+5jg9+YWyDYa5Tu340ThHThY4yx2kZTvG+ZzRZR8t4mxRt7NmerXn13Tf58Ss/IqHZrjp8XDNfznnu+ec4PryFsQ7ve7ZtRx8VWmuUMzjt0JUDUikBDcF73nv3Dm234eDggHq2QOt6b/5NZHLqIQljwuSEIXO53XB6cUIKPYGE1pra1tSuwTqHM5WAVlqLpC6DMQpHxhmZmzGanA0X6xXnpyesug7MHGNnIh5PdAAAIABJREFUIjHXSqriqCzV7GIiRknK+hhwToxbjTNga2o9w5la5AfFKNsaS9v3nLYrgs/oXJG0mATr8hwMCp0VXa+pMLQpieePKlFmYRZTWaxzWFuj6pqu79Bk7j16xHbjMNYxX9Y09Ywzv+Xi5D7bticph3XiIZO8J5dKyTlHKWiGLrIRW0y5G3S2kBup3IQq5bTBFDmbsmIZEKnRKIxR2CTePEmJQWtMkdXFJdvtGuVm2PoIYyu0shgFOfdjme6YyjyYE1YpjLakZoGp5kQfSV1b5HorDpYLjo8OMfUMpcxQvJpKl+pXJHLKGAepmBRrhI23bs9Zrx9xuVoRc6SZL7C6IVoxhrK2QsXCgMrSRyqtC9ui9EoNWSsqZai1AW0J0ZOSYmlg6z0xZtqUMFkhBU6EWRFShDh4sATazYqYeiqr2Vxe0K0uwDli7tCmImtPNjXaaJxxoCusqjDI3Ku1yIqU0qQYUET0QgsbSymM1jgrwINWsYy1jGNwVlkYJUmRpSwsKUoJeKe0SH4U2AzeR7rNhvO+pQdstaSpFlRaAMSIMCRAEbIMM85ZUOKJo1PDdpPY9ht812K7DfX8kMrUKCVG4iYHco6FM62Kh2MQQ29ryWmOJlLFluTm9NlijbDWKmWISmGzJscebTLr81NW2zVeG2ZuRl03GKvRqiKYSFaR1sOds557F5GYFB5FTIozH4ofjCJjiblHKYuxoJMiRY9Dk42jMjN0ZQkp4mNP261I2w1+lskzmM0qaleLX6nOVFaRsiYHQ0qKXFhNMYp0rd2uOD19SMqB5ewG7qgi1BaSRmlwJQqwSTxQtY7S51WWYixZobNIn5RKRaKm8LETYIOMSVKR1qdATBEjQUWRnmVCkv5itCaZhLOWy4sNtZHqhrPUEVNkbhZcnp9Bbcn6kNi3aN1h0yWVFSnzY3PNfObQymNLPnQaNxy5OTl55jpjdSKEzLlvOaibUtRA5v1Nvy2m4RZfckzfRmK3wZiaFCUGShG66Nm2Hl05AgFyIsfMtvUM1XXRoGLGx8Bm27NtKvpSYMVExcZ7uuA5qGsWyxnRNHRdRKssDMakMNaVPFgWZLOxbDZrNq0pZAYxq04o8DJvtV1PiB21s1DYbqAEpM+B3ge2rbAWZ64GJQzF4AUYcs6UKmqleltO2GxIKhFzxhhNzF6IFjEXRq8syOskbXm5WZFjxs2OMc5hZguUm+O7QNqeczTXGHeE0hZVWZSRxZiELUoviWNjlqChQNVEwFkDucKYny0E9LMHlNQYkkKeeMoAtW14/Dhz+eB17j9w3H5C8d2XLrj9hS+xyAFn9ehmPqyS7kKWCXyyyybHPa56KA0Wu+PZCxtjZAgNCe2YaH/YJoO5LsH1vsRsd107cGYnX5NJ90NAm8m/DPtcOR+Tex1dObRmVACMAfwk+B5aSE2/NwAOhf0yHrsEsmNiffX6BGCRkqtMvjfI+PQHvjFcvdJTRs0gxBiS6uHad4nICMWMviW7IHpMhZTcizwrwz/4wEbEf9e2ME1EhtbdXxYfAYpc2Csjo0Wud5cI5REg2L/CVFpnv8dOGoZ/KAEazH53PUtPm3Sv/0zhFaBQndXus738bNcvym3sX9Owjxr+s0sbFUO/3O+nO/ZAAVhKwKM+kDDtnsMuacy7TyblsYY2VajC4Br2Gy5syEQnME8BjpRk8ZPTaqbV4KZy0l0iOnkHJ+/qQMhSSFI/HnZI3AeQdrISPiR/gd17rkfB2e6EOVPeizwyDbpuy/277+I0/Ojvv03XeT7x0ef4yQ9+xCc/83kOjg/58le+QlYG71uuHR2y2W7pfeLy/IJmVrOoa/G80CWRUZQS4gYxLLSgDSl6vO/5kz/6j7z88ne48cST1DPDanWBVYaTh3e4uDjl2ec/we2nnuWl2bd57dUf8OjkPhcPH/LlL/0ym9bz11//c7JvuX37eSLPM5vPqU3Fen3B333r64QU+KV/9i+5fu2Y7dmKP/6D/5PGwfnlGUornNask+fb3/obVpenbPotVVVx9+47fPIzL3J89Az//e3/kYv1Gf/b7/7PLOYzvvKbv8k3/upvIQaMddy/f4+qWfDU7UB9eMAvfulXuf/eA1J+h1W7wdVLtps1124ec/LoEfP5MZvLLfWs4c/+4g957+47qN5wdO2Ixz/6HIv5YgglChgn7CGjNPfv3uPtO6/zrb/5Br/8W/+GG9cOpS9kWR2ULizjssqirWd4FyYdZACSh6E2jb5r0oF3sq8r+NH+D/Jb2UGXfwc2n8qlfPDY/yeozjAXj5/kSf/fzaF7bMy86+dTIGvga6U0sJmG2SZPjjWZicfLn0LwA3i+G5XVKPEd2MDDBL2bMceR4UPAnOGOd8fdb7ndeDQZ+/OkCUZ8acL7VJN9Jtf+oZsa7+rKOXd//fBZa7coNZ27lEIWMJA5IEQx6fUxcrZaU9WOmAKailljSmLoOXv4iG+/9H3uPrrHtYNjTk4vOLs84dnnnucjtz/FYjbHKsN6e0nbdmTjMLXDUAngksDHDqMsYdvTh55777+DVpqjxYLGzcQrI3uMFZFKKp4vg1eSBgKKs7t3Od+eonRFXc2pZzW1dVhjpdKYNgxgmPi7ACScETtgKXUskoAHZw9ZbbbiFTQ7AMR7RGdNyJF+u8HHjqaq0EaSd2cNVd0Ic0LlAqAIG0fGcwVaQPiLi1NOT89pmiVVNRMpMQFjxOdTGFgKHwNbND2ZiCS08tiKEbpSkHoBfI3B2oa6mVNrSx9b2vWK9vQB7z/0HDRztust29CStUNlR2Nm2KoGpYpsyqK1IxiBgytl0VqMjJUTn5s0GrAXyVIucYEukhxlqLNDKTFuTloYOFpbNt2a1cUpIWRMdUg1W4r0DbBGPDODknLfKpVqQcWQOmsBXgy1VFGzYNyMlDy+27C+WHN28oCja8fcuv44ppkTlJZy8wpUFr+dYXwy2tH5LafnD4ibLUprXD1jVrkyZioUrsglAZVQWTFraqwRkGqo5iZyO2F4gcLESEiBFHsuz4ucqq7KWG8AJ8swHrIV4FNbhcrCkGtMQ+cNm8sN86rmYHFEcorOR1arNTEpmqpmMZszq2Yo61BJQQooYzHW4nBlEWlLTJFKC/tM54iyAlxaFwihheRx1YIcC5uJQJc9KYHBQfHfIZTCK9mU92DLo4cPWQXP8uAms9kcZxsBI6PE0LJOYQhKYs+kMhYBeKK2KA2mWeCSxTYHkBXBR+LqjOzKO2UsESWMDiXsL60TrmnE6yyIIbsiM28aGiWl4+UairwtZS7XZ1xuzkgomqrCqgbjHFFljM7E3KOVJoZEm6Avnm4i+xc2VF8AYW0gRY2r5nQhFU/tQKUtymosFSmJekKTaGiY1420bfBsNpekPmHmM+aLI2oyGgsuklWm85loIjoEdNrQdWv86iEHVrGYz7GqQ9uI77cCGHixbjM6kzHE1lNXmZQE2M0Z2hCoVWZuLSlFauPofEJ3HYtFU8DRjDEVp6tzDquK2tkhcsB3AZ8jde3EJ0zLPbd5xaKakbLGqg7oies1frMm9TW6CtgEbXcmkuLZjHa9hn5FbxM5iw+PDx1tlzh7ICyilPsiHc346LFa4WMk5SSG0LHEwSqVsTHQR4g+jpLaQCDHohXIO6eIqCQXGCONnGS8TxqMJqhMkwxRJ5HuAdpoep9Yn0fmG0WczYmqRvkVOl2icsJYyBoMFdkkGfP7xJahiEAWaaeyZJ+K3UiJaWIkhxUJS0TOmwogqLNF5UzXd0SdUdpirRYvvGHulsYgJYWPWSSORgA1ZVyR/0KoRLLucsLNDNtti62WLG/cwh1ex9ULtHJENClk1smzVVuMCpic8L2nqmfUlUVGbYu44yWpGlisN3TWzJSRwj1oVJomUP/07b+IKfe4qUlSryApRT0z3Ll4yJ13Xufvv3aX9jP/nk9rTUboq0rlPW/NVJJKkwdgoYBL5WfJc6fVZeR8etxXjjLxk0PvdpsEyh8MFPdC4wK+DACZGhPiD/1quefhg0ng/I801+B9ABT6+t6nCBRiBo9fRrPXSfC+A4im+qqrAFAamVrTe1dj4j84sTBO3MMn+7hBOf/wwBBH/BINl2B4cvzJ16fm6NNtB0Beba3y3CeNsldSXg1g1HA95ce9c+gJiDZJUUoiNlzlLpUqzy0XEOTKwzOT3yWQvHo/H0x+rsoLyfug6/S7ZcfxeyMboNybmramKveWUsGk8tjn08RkWP6bGbMYBiCFXY45XOeVi8pX/pA/0CGkLVVhVuydtSTNuQQSI6tij0Uw/DPWRCPn0lcG2enQpurqFSVQRsaLcu4P+lvlEVibppzjPQ959odkflkxgqt77TBczJXEc2DgqRLAiQXSTkrkrGM2m/F7v/d/8NZPf4iaOZ564hkO53PW6xUvfOEX+MynPsvp2SmmclxeXrBetzgnJWJXp6fY5ZJKG3zb0lS1BP0YSAGMJacsWmmjMSHz2c99hvsP3qSpHD/8++/y1rtvknNHjh0qJY5vPMYrq1d4+iO3+fpf/ymzk7t88Re/zI3rN+nvvMezt5/lcnXCX/zlH/Pi574g+7/yMt/93re4/bGPc//BHd5+8zVWl+cslnNe+v4PhbGQerou8+RTh3TtGqUy1lV86uMfx2THpz/xGW4//TSLazelChCRmzee5ImnnuV3fvvf8cr3X6X3G/ptR8Dym//mt/niF77Maz99mT/9/d8nKfjIc5/kwcOH+K6ji55bzU3iDcMLH/8M3/7bb9BYx/b8hG9+46s8e/uz3P7YcxwfHFA7R+oCWmspfZtlBSfHzJ333uBrf/b7vPbyD3jy6ad48dOfIYYOnbV4YhRlsh776Dj0sANE2QMsRhBoBElHCGXcf7/y4m5ekz5lyonKwsv4TRnvB8n2bt4ajrvro3k83pXBqaxiDW/q8IXhEJRjC+OtHCvvlbmQYww+gkpNPhtPMhm38uT6hh/zMNKz/zLujrW76nI3HzaFlybesWmnH5T2GI42zAfTGx1/3P2+42ZePdlwvqvit/1tGqHsgXfDuFTGdKWy+KykiLYOH6TyWAqZTbvl4uScg+MDFnPxuAmdpw+R+/ce8s1v/y1d6Hn8sSe48/brrFcdL7zweR5/6qPYeg4Z3nnvbVbrlps3b0oAGBI5t6wut8TYMWtmPLy45MHd97j2+NNSerqakSJcXJ4Rc1skbw1ttxFZjK6I3QZrIiFY7p8+4KBxHC6PqedHWDeTRFJJED8s0FmtxLBWZwSaD8SQiFETc+B8vebkcoXRmqZuSGiy8iLnCb2kpgogsjg4oLFLjFOoLHIG8RELpCyOT0Zl0KYwWwzbtmO9OSOEnuV8KSyC7Iupdwn4c8YqCFnjbI1Xmk2QRMQYzaI2ZAx98ZdxqXhQpYTJGa8CZ9sL/NkFzgW2/YZVSLR9JK3OMUZzcPM688U1jKnElURDzFYYLgaR1Gk7MoNyVGQzuKoMS1oys2nETyOVLq5VJiaRyxsUVjs633Ny+R46Jlwzo7I1KItWAadLyl+kjlGLzHppEpdxkN1pap1obMXGQ45RmFXaAlbYY3NH9o7NOvH26j3sgeXw6CbWOAzyfAc5sVOa87MT7p8/RDvLbL4svi3C7LBZgUoENFpUSDgtdsYxdOSoIXiRxmmZd2NhYiY0+HL/CTbdFozDVgusMTilSNlJzKF6YXIphVglZ3m/uhawHF67SaU1zgiwpmrNbHZMTmKOvN14cp9ZzC2zqhKQVYsIxaiA1QqTnCSgZIwSRh7lvVAZaizruEXFhA9S/U6sDxwxRYJO5JRQQRPINCi6sOZsdc5q7bHVnMPDBm2qMrz0JGWIWmGyQaVMrzVBDVVgIxSjcMjEGKjdDEdNxKKIqNSLVMb3bFfnbFNgZh16vkRVBo9CJYvqA9aJMXNGo23FUePokqGNDquzSKX7nkdnD1itHmHdktniWEzdc4KByaUiZLHfqKsZKYu9gDZynUPhAYumMoaEJ+eAVopaR+YmEn0rVd2iVLfVWRjcIXsUCBOHTNYKb3p0ypjtBSE9wjrHxWnAKY+ZHRFjQLUbdNjg0jn0PU2TqaqaymaMSkRaLrZnLGeHZAXWGGyEVbuhJ7GsmsIy0nSdx4cWazVVikQiObRsLjeQNatwibaa2PfklDm7XHFRpLcqZtroaXuPl0r3pBSksmMKdEG8OWMKxGwgenJOhGRwJnM4m+OVZd0H6uUS7Rxn5+eEboOLUapAK1OUBSIdzVrmfaPFXDvnjDKDlDWjtBh8awwWkcUZ44hOg8kYKqJRWIrhO5qYulFOrJQiaQ1RPPuC0SgqkQtqQ8yZxipUikQFrqrx6zVx65kd3mS2OEAfXCMFimxSgP2u9+jck1PPbKYwbgE9BFeTUsDmRLZG2Ncxo0kimyxS6oBC0aB1os+BCnlnm+CoSfREgknYrHFa4Uvum1KQtFEbQlYQMpVyeC19rkeAu4Wq6FUUv7jYs71cYZfH3Lh2g6pe4IyWxZ6gaLModY6OFxhqkZD2GR8C/brDbjYiz6tqKqWwVhG1IeXBokAKExhldkHrz3D7LwsolW1Q76icMc5Rmcz3v/82J9XT3Hr3XVabT3CtURS79JK8ibxjCLAkOByS++HIu9VfOc801JwCMiW8L2jgEEiOhpfFo2mg8++uW5zTgf2/M8SaecwX9tZfJ+wWkeHtDJevtAx7AWuJMo3W4+86FwFESTIycQcucBVd3B1vYFUNJuFXhGdXSjznyb/lZtTALrr6zeFaPwwOGna8qsscwKYCyGU5ydB2k+baSbfyABBNn+sO8RiOIc8vTy6qyNcoCcWElj9tpr1uNFzisG/OxcNo+FsxoLuSBOylKaU9pyDg1b70oU11NYnZS2g+pMcURsA0uRnAi+khhh4yJGAD9lPUgmg9ycJGNoLay6EGQGrIduQ4CfWBfrfru9MuvYc3jbK34Ry7d3f6hIZKG7KL2m+CLH5QZU2OtNemkxbZf60me+wDfPvJqfyux34xuUc1SSTVMLYMz7+wlgaW1ZCoKilPKysvEU21S1C1+AFcu/4YN6/f5KfJc/PgBid9z5d/+Su8+tM3eOza4/jNmluPP875asPLr/yIs5M7vPjiz2PqA3RVcbI+AwzBaw4plH0jfTcQMWNSBdlVNPObvPDCL3BxfsYb93/EjYMD3rt/St+veeGzv8jJ3Xucn1/y3CdeoE+ZX/jUz3Pt2mP8+EcvsZwf8dj1x3nrjZ9ijOb6409gG5G9/Ot/+ztcv36Dy/UFf/fV/8Sf/NEf8Mabr3C52bCY14Q2U89mnD+4T1Uv+JVf+S3un5zwz3/113nlxz/kwckpDx6ecnTtBvWs5u4799luWjCWr/3VX3J68pBnP/Ycl2dn3Ll/l5P7d/nf/9f/hZwCN289jjaR9bnHqop61tCHNXce3OWpW8/yd3/916TaE3rF9Vs3WVTHnJ28x09efYlf+41/SxcizlIq04h0hgzZap756DOcnD4ik/jqX/wh1289yec/9wWOFyLNjllhdZa66gOwuHv8DIy+LFndBKAYZoMdS3PPo2zskAWAHdmvhbWbKWONgFPF5mY0Cp+8yXs9fDpiTQGN4d3dzQZ5chP7L5TBjKuK494TJq5c6nCmYny+dx0fBGJUWYAYBoyxzSZ775jEeWzBf3AGmrzYO7Lslf3zP/Bd+EcP+49u5RlcnVf2xsErpx+ety7jCjkTYioBfVlNN0Kbj7Fns16x7beoC6HG21nF3bv3OD274Lvf/S6PHR9wMH+MH/zgJaq64otf+BLLG49jnSH0njvvv83J6pRry1us15ckIovZAkyFtY7Desbb997l4eVDbn/kk+i64mh+bSe1y56sBNRUKbNcSvnxSM/mYsXpySk61xwtlvSh5fT0AdfbnvW8QtmahZ2xmC3QtsKYhCGgUyTHiM89fY7oZAghc+/snMveM3MWnRWtD+QUSDZTaceicaiccMZim0PIhqCaIsXWaAM5iImzGSK/AixFn1hfPKTvNzinsRYUCWUNWou0waLpEY+lpDQ6WbzWuJzQTqr8zBrDvLIkIjYY+m3E9xta3xFyJOSOmck4PMpFur4n+MTTTzwFKuMPl3StZ71ek0PH8vgmBwdHWA0xVbJApGqCL9WzrKWPCawlx4RJ8kZolUfi71jQIwtg4bQhpIwyNd12xWr1CO97jhc1ua7EY0lJzCjVqEqCl8QnqrGKG41ikTMnXjGvG7oER8Zw3ie2ZHIUNpRCqvlZZ8lo5rUYq2/ihnV/xsM3X8dUFR+9foCbHVKZGX675c13fkLSNYcHRygNISdS8uSQiz+K+A/FUs0UbekIaBLe65HJYY0AJkarcUzUSqGsVJzDVRwvjpAWUuhsSCZRITLJiAEMTkHoA2ebC2II1PWCWV3TBanSF3KUdsoaawzZaslfnKNPHd1mw3q7pakcB80SjEi0+pgwsUcp8ERCSiQl8tKExhiLy4kuwrrtJe7UVoCx7MiqJuZMyBUKj8ktDy4fcn65pbEN7nCB0walNVYbYkIq9+qEU5X43Ggp765SljjQGlTO+CSV2VQEZYunZS4m0lpjmhm6qsXove+48BvsakVTR5qZpSn3aYzCa3A5g69p1RyvdobNq/UJp2f3sVpx48Y1bFVJPpIyCo/TnlyAj9BHbO7lOWYDMdH5SFUWTo2KmErTngWsjRhtRVIZe1w1Y3W5YtmIJNQU4GLbBiyZWW2F4W0tl5uOZCJHi1qYLHisVVx0azCZyApjFSqd0HcdmsRmtcH3KyonAEvoA5vQ4vuA5g66sHZihrbdEor0KcaAj4GctPhzpViUBhnK55qaTQrC2swGazSdcEpEOmp2aoEBqHcASozO+6RFsuZmmKxRzYLKaC4vt3idYPk0OlcsDzVpe0G76pmZOdVhQ60V2jSghbnWxoSeLUkhCrhma1KyAtg4YXMbJV5RKYqXU7IiLzNGo7NhowSatMYRktyPTpakhUSic5GIKXkva+PwpOIZVRVYMxMN4u2nAqfvv0+uK5544nEwGt+uxcO0amjqGqfAp8wBFpUiberwKmB8ZDFrULXCaINKhqBlElZJiTeh1mSVsCmgc020RqopkzFZwDmXNVoZUJ5aCQjto8eEiM5SwdSkHmUsEYfKQrjISea9mXWorLA6UWfF+vSM89U5hzee4GB+QNaGqB0KK1UVgRqRSkalUMFhbSTWUdiWSVhhfU6kNnCxuoS4Yb6Y0cznaCNeTyipxhk0pP7/7x5KV7YpaKGUhtSR6pv84r//H9B2QV0txHRNFznVUF60BGKJLHpROVhJSvcTcaWK1/w0OVWMn42QT55+ZwjqBlgjl/OBGrwsshjZ6ilt/UNAgiEpuBpwDolCSR3G7+yOkcfPy4H2gId9Odr+6mcaWTZXzjf+vIMTZNWqAElXrv3qAcZgPYOUipjsvwfcTRk9A/g0CtOupA9D0LwDDYa/7pKcQVYxuYsp2kShA4wJjObqWWACSI1/n4A+w/OfBP1Xn+H0+oZN590+47Emx9jzqFK7vym1n7jt/j6kTGr/OeSrz6/0SqX2krZp28kF6jGJ2hnZFtipJHeDNE4Km1xBVXIJSsdeIww1NdllNA4ermk8+xCo7z6HyRP5QA638326CudEdrLS8Q0ZE3R5MtP729/KtZcEdfocphcyMqOunJ2hWfIEaGZ8SgwsvaGthm3w5TKo0aYllbEpaTm/QY8yp1woEzlDUy148b/6Mh/5xMe4cf0GbRc5Pr7JC88viTmCtiyc4/76lPlswddefpmnn3qWT37moygMbTfjwft3SGy4dniMk3rY+JxoVEXrAnWWwNspzfWDJcvP/jx/991v8Ikv/hLd5YrupZ7moCHGzE9+/BJf+uVf5VOf+Rx/9bWv8eQTT3Pv/ff51ve+xsc/+iKvvvMT1udnPHbrCQ5nxyxNQ9KG+vFnQGk+/9HbvPXDl/nzP/2/ufQrFo3j+rUb3L//Pk9ev8bnv/DPeerpp/nmN76Jm1lO37/DPBneuvMuXXeBM8ISOl+d8/O/9EW+/vW/4NpBQ4g9b7z2Osv5EhUCP/z239D5wPnFOR+5/AiumfHw4T3m8wUHs+tYW1FXhptH13h0dMD56V1a3WFPFYdPHnGx2jKfL6Tkd+jQOHnKOYMSk9c+RM7Xnv/2v/kP/O7v/k/8u//w3/HSS3/Nb/zyr7NZt9hGKpeQDUkN4c7Qp4qMY0Q1ZOxLO7O4EenY+fftRp39OaKA5sOYXLgIukhjRXqaxz5Z6gB+SO+WP43HzfugsBwh7QLb3Qfj78NizA6slnvcLyKRySWxVWM7lE8yYj6aB4nwMINAztNjfMi7OV7AMKDm3WVeGRcnocHkyx8CB6n9H9QwNu5PIvu7T8HlD2tjpoAX0/Bib5/xnJPPUpFMDnIIZTTaGEIQpoRPiYvVhhgzISnWXUc8O+ft197kh6+/wmee+zh3HzzgzZf/hmeeeZZPfO5LHBlH5zveu/uQk805N5eP8cxTNzDWYSuDzo5slFSdyoHTixXV7IjbNx6HIBOYNImWQFjXpFQ8l3TC91tSjviupwtwfPMpmrrGRMg5iueND+iu5/LyEec+sXANSosZ9Xw2Z9Y0OFvLnKotj+7d5e2798iVYz5fot0BisxiXpFVg7Yig4gp4mNHyi3RJ2x2aCtBftZ6Ny8nJf5MKZG15tH5I9ZtR6UcjVugVURbW8yeMxK6Z3JS1LoiKyWl3kvSZJKR6li+pe09vU547wmpl3eorAw31YzaHBH7jvNVIAWo5jXL5REpVQJ02Tm3bjXUrmN1dsL29C71+oLq+BapaohJsek7FErGpSSsHh2KXEwphKNRZBaDkk8pwKKtAkRq8s47r7A0PVV9SLO8QTQBg6XRClmw1ihlUBhyYWrWtQBKjTI8aju22ZE78XyBSDSGg4XBeyEBpZQIeCBjlYOk8WRLzPBuAAAgAElEQVQOqkOW9ZJcd5yf3eH1n7zC9dmcxfyQ91fn6HqG0poHD97hcH7AbD4j4kBrac9KYW2NyY6gFCmIRLI4+JAJqBzEc0cZyEnARpWJShgsOSu81zgLTml8SmiTyBGUsmS/xmpHTFvO1g/Zbte4esnB/BitHSSFUgIQSKn1mowXs1ulsaYiZs1BdYDC4EPL5faM1Xo7Vt7SWlNVRvytfKT1iU4pcq7RjcOEwKGRBKhu5qQiJSNGfO/pYiZng9OeRw/vcLk5Y1HNuTE/JltLVAafQwEzAimDNa54j3ZEGlCOxsocknTG2YrsI3Vl8CGRa4f2kUYZqRalLVkVb6foqbMm1xA1+NjSb8+5e/mA+abh5uGStLgOdPQ5SuwWE9pvwN9H9S12veaJSkADtEdpw+XFmqYSaVqVNLZu8L7lovcsDuegxUzZ+x6zDTTVDFe5cUro4pq6nmGMAZ1YakPbbum2ayojC0aKTN9v2Wx7Yb7nQPKB1ge874TBkcUeIMRE17dAhVGK60fXUMay7iPeZ3TlWK3P6bcrdFYkI6w+DNisJX5Wid5o5tkQSCRjMFqjdYW2tXheEnAF/ANT/OIyVdQcWMQXRxmSDZAUJiqy08JU1IqcDRGo1FC1UaGsI3qY64pLE1iYBp/WrC/Omd98hsWt56jQZdyr0VHAvE0qbL/1GmygmVfUdk5dz0iqoSouaCklrLb46NHWECmLHiljy2gU0GQtldNSNhxqTaZFZS1m+mSpkJYrkcfp7bgwm5IwsKzSVMYRkozIPnlsrfFnl9y/9yaHBze4dnyTy+RRfYctPkwpdyTt6CPFtyuVan2aNnZEC6e+w24UOkW0ycxmS5yqBVQqEumcE9pUJMr8YWrmMRDMnJg8gzBuhiViCKkt80iDlWULTBAQyRuNB1TKLFyNxpOVgHHb1HP3zbv0PvLEk09jZksiTkTdMRHxxAxOV0X8mjAojHP02aOywehEV2wYnHLESpMPb+DDklXc0K9atOrAKnStmWlHMDXKDpSZn832MweU9lcr1R4TRmkN2w39+pybN27yzFPXWRr+X+reLNaS7DrT+9beO4Yz3SFv3qwcqrLmkWSRxalkUurBpEhJZAtSqyW34X4w3LINw096tdEwDPjBMAyjDTQEtR/slrvVDVlDtyiJkijJoloSVeLMKrJY85yVeTNv3umMEbH3Xn7YEeeceytpww092AfIqsxz4sSJ2LGHtf79//+i0ZjKudLGX2s6SsPpJFA7YKhL7KQDbUzLIFlLSo0k2cc6bNGZeLeBsrSRapIZLCGs1a5tiwoIdwaT1sGSzti7C2SWYNL/7W7oCjA49fban/bCfyDLZXlNCl0om/T0tImwPQUwdUDWktl16k5I+uQ1ROD0765fa2KPLR2adAU2rY4+DdqE9ffX/t7e4hpg0UE7Z0AmuoRr5Q+V7l2Xz2n5WutHa2+uAXer61qBWrK85rPgiMJqx5uOY6UYscR1GErj6vx6+iyn2l2691sG2ynjWG1390+DSdJeRFLMdODP2gW2LWhEWqnbCv5J5UM5lYutgJZVctfx0jrMUqQFCtvrWIK6tONx7fkkVpOCtMy6pWFwC8zJ8iEnad46oCdrfVw7v6I0xk2LAnYAWdpdPMNS0rM9pX27TbwTe23Vo+KZA9PPtfOAsW17rPrzqr/KqUcb23OmdlnnVqzuN4GIYZk8i1hCVO65ejePlg+hXjhp5oQAo1GfGBuMscwVLl26TC83XL50GXWW3PaoQ01R9ukNtzjYv8bLrzzL/Q8+TOlH+AgH1YzBqAeSQIJGhctX72MyOebv/ew/YFbP+bM/+ROefOpHePSB+/nlX/kl7nvkMV787gu89N2XuevcOb78p1/i8uVL3Lh5k1s3/xibl2xtbfHpz3yOSxeucnB4xGhzi96oZGtjk+9/93ucv+sCT//7f5uHrj7CL/7Tf8zf/dzP8o//yf/I9mMX+Nuf+gzX3rlBEyaMsk1ee/0V3njrFW7t73H3Kw9x9z0PUzegITIabeCrCSc6YbIYc240oopzvBXEROp6zsOPPcZPfP6nefG73yPGwO7uBZ795tfJ8j5PPPAo796+ST2fQ2YwPuB9pNzcZmse+PiP/GiSYEuGV8C0RqgqqUSzKBfOb/P69w8gwM2bN/jP/+EvUM0rnBUIrfdGG3ikFSgxSk71qXVQRTuBRzcHnJYcn/reGcZSJ9PtpoyVn5smfxfWwcyVU5C2/VrP/MwKmI1rM8RqXjDLz9fn8nXgJkDH312iPWs9X2w7R8Tl5lCq6NN5eKxwnpUc/azMew3bkfWR+AObbXUPsjp/e8O85+TLo2UJ+ujad7r5ef1a1z8/+/vvOf3awnH2M7OcqFKMoq4NBZI3MS7LUIFF7WliICYtOXffd4Xx0ZSDgwNeevlN3n3jbbRe8NijD/Hay69y43CPq1ce5JFHn2JxNOZ4OOTNd98AEe65+ihGMsQEtksLUZiFwNx7xNcs5g02ZNgiR5uGonCtx0qG1zp595Cqrfl6zvHRLQqXWBXqYTTcxkprbm8tQkEQxWVgS+ifc5hgqJuGqp7SVHPGsxmHk0Nm0ym5ZGjdcFhN2b1wkRAiO9u7STYhLeBmDV0VG3GGPCg6neLIIS+xklZiI9Im+kmO50yBX0x4/fobGAlsn99JY8qEVILbKl49Lhqy2MaczpFlPYL6JLmtPfMwRxqPX0ypqikbWwMGvR6myOmbPkYjqoZB1mdW1dw4SiW4+xsDBqOC0ipDmXLusmLnOfdf7dF3kedfsrwbzyN2yI2DfeY3XyQbDNndvhvbH4EEFE3SL0gMNpMMkpFURcjg0t/V48RgpSBGZXJyg6OTt7in36Po71BLj0nw5C1rJ4HQqV2FrE3KQWOSmB3XQoXBZg4iaZdeHE0rw8gV1ChdsZgYI3VoIEyJ3uPUMqnnHM8nbGYFkilRMvYXEw59oK5qRs6yMRxxZffBdiwJzpQgSXgWjAVxEGqyqIRMMFbQWBM0tGbVBUikbA2jgyRpjbNCtfAk64tAbIS5QG4sIaa+W4vHOWUyO2B8cpvgGwbDS2TlYIm9NwhRMqpYYWxJrTUlOaKe6ANRbIrlo0OtwWYDepnDNwumsyl+doRxhmFvQL+09MqMBnCSZD7eB2rvOdSaYWmxMYIRfEhgaOlyrDXsj084uH0TVU9/636GWWLqeevx0SDGtdUZLYW1ZMaiRlM8KDl5VpBbizFJUlcLGCtUvsHkDkfyevF1QF0qQCHqQXU5B1gFDZ5e5rDuHKUIYea5sX/IxuyQQQlEYWA88+DJUHrG4yWwMXBkeYYleZnNG48JsTUtb/CxIUwWHE3mxKbmYDGmqmZUvqGpPcEr/TwSQsNkoTRNQ7WIyXw+pHW8aSLRBGgaVNNcGpxSxBSrx3b71KUqAGntAXIr5FmOYNkYllRRqWYzjmIP8h5u5zx2ekI9vkGvLBkOBvTzvGWrKd4VmBBw1tBEi6IUzjEXTSw7TUB8YsA4Ov8rFUd0MTFJsZSxaBeKSEmGzxLYV7qMECPRCpmQzKKlLRmPIUSDOEsec8TCVg8Ob+wxPaoYXX2CYe8cwRTo+IR+P8PaPtrKaUfaEGLNeHOLRV1RL+Ys5g0jYxn0C8gcIUBmDNFHyizHiycagwlJ2umjB2OwNq0ZqpagTZIca8PAFMz9Ai9KpsJQZqiMOamTbDJ6RUNI5vqSMWs81iiFOmL0vPz69yAKO5fvp+wNmDWeAkdjmwSziGDEpAqk1rZLcKQJoOrJXWL7GZdhglLNF2hUqqMx1k3JnKHsmdbHLx1LaPChJiOAOKRO/l5N9FgRfIgQa6BKjD8J1FHIrRI7OalaChcRlxE1gDoysRzeusH1o9vsnL+Lnc1z0CiNQuE0geTWYmyZNqV9YrM5k/zerBjyYPAEjNj2eYQEwEeDc5ZMLeKztNmMIj7iFzVTPDHW9N3/DzyU7mj0rIlVUzdTXnx7j82ww8Df4q06556H34eVQNYagdGZDYsQ6EzUpI0JZeVnCnRSA2kX1i6G6yp3nQI03gMvnE7WVRNtuOuGSPr7WVbP2WC/Y5wA7YR7Bgq5AxDUMZ+QdVHZeiC/fosrsOpMS7efrwv52rPFTi6kRA1pRxtSaVJN4X/rjdiyT0wHRdCZU3c+VOle2w4pp5+vaufHBLSpTaLqrxKUZUDetcepNkkCprAOsrRfWCYGZ277rMSik6d1KZqseYsswRfSczqdoLXXsXzcywNb1/2VVDLJTLprOn03YSmZPN3fuiSlu6V45vl1LCbWwaQ27+kYQrr8uU6umfpM98RSJcW1RLD9lmgruVq2y/qTOCOJ6ZqKFdNh1fBr75xhc60DJ+stksZV26+0A8ZYPoelObCms69xCBPw1J4j0EFHp5qTdcld2tRoj1lnN630PHTMpY5NlM7TtafpsK3Vc0FRDa3f2mrsnkoql/faVfJo+7qhfSodkCbd7NSCjq3evDUDHPVKYjSQCaOsh9MIrXdAFEseAK3YOXeBn/6pf4B1ebtDlDwGLu7s8Myf/j5/9md/wA//0Cd4/MkfYX8+5mNPfoj9W/vsjAa4Xo/cKJWvKTeG+MZjxPKJH/okX//an/PFL/wbPvaRp7lw7gq/9uv/iot3X2Z6cAtrYOvcZeL8W5h+n2oyxw+3ePa5Z8k+vMnVhx5kfPsW83rAld27OJ5VfPgjT3Phngd4+mMf5/f+8Pf59X/9mwx7Qy7e/yjn+lv89jd/k/e9/4PEWjk4OmRvf48sc7zwwvN85MP/HmoM715/nSc/8Bi/93slu9sDTiYTjpsTzHiGmozKK9n2Lk987G+wt3fIV//iz3j0ySeYjGcohulsyvMvPUc+7BP8hM3NDY4PDzFZzle//hWe/tgnuHrxfpq6xjmT0tMA4FATcKbg5NYtbh+MuX37kL/5+Z/i5t41/ud/8j/xX/+j/4bDgxMy51IFKXWYzgyXOwuxun6ynNu1m4uWXfTOWAfdmFttlnS9dwlbKi0TjqX0DVby+O7fsj4kWPE91y9yNc5Or2/dK5xeldZYgPEMs1BaoEhb1rC2njDdlcnqmK59lnOrtmTA0+NubVk406p3arT1z9OA7Xz21rcY9A5fOfXV9XMsP187wxmWcLd2dfex9qVT97m62fZjy3JTQzUlOk0d8RqZNhXWCXlumB7PePPdd2jmC9558y3eeuedRPPPcv783/4hWWHZvetu7n3oMWzfsdHb4sbNPbbOX2J78zy195wr4P33pEoxL+41RB+R6FlMA6jgRXA2YLNeazMQUfVk1mFUmS9m1HFG4Qzb2yPGM48PgikFEwGbI7nDWoeJkQxo1CBkoA01NZJbhuUW6Cbz+YLJ5IigyWMEE8g0MK8WDPrDZH4q0lbssvjG43wFpgBXohG8JNmSc7EVhRjEe4IJqfx0jOzt7THzMzbPj8gchKbBGkdpDc4mw+4kRAgESUayxntm8zHeB1CLGM/ACW4wxI42yFwyiDWAREMTIeYZBuHarVvM5xNG/RHFwCEScaHhnnPCf/kzH6QcDPirL3+fcxvbbA8t19+5wbVxQLI+O5fvJzQVk5NDru+/hJUBVy6cYzgc0WCpQmsfYDJEDNpK1FCIQZfvnczGnEyukeO5/9xlKiLzqNhMGZjkvyOkqnxZltM3eVrbrcVjWoP2QG4FiZ48ZMzinH6eMRlP2Du5zXZvE+s8ldc2noxE8URJIsPMGNR5NrdytquLjKdT9g4OKTY3uHL+CqGJNNUx0/mM4/Gc2hvKYZ8sz5MpewhYpzhSoYkqpvnOmYBiEVsQg4e2pDwhUocJMSi23Ej+K03yaFKtaAQyl3yYAkqINUNxjMOYW7cP8Y2n19tisFXgxZHq6YGqxWHxIqjrJ3BFUxl3jQEnOSoGZ4QgEKIHDcRYY9UwGGzj1TOpj9m7/S6hWbB17jy9chdjHZpbrBQ4A2IjJh5gsz7iciKKCbCYjXln/10mTcVga4uiSDShKirGWbCBnggmpup7/d4Q64TGe6ZVAk7FCFVYoJIlIZEVBiYZQvckEiQZ5hMjFBl1EzBB8ao0eEQDto2NyyJDiK1EL9IrSwqTMTl8l3om7GxusZhOaOrb3K4bPJbZ5JBb+9ewUUEDtQcNFUEdAaXWORkOEwWVMsVJJrFxjI3keUbpci5t9ZjXkaqpCdFQDhwiGYUDHzNya5BMCN6TuYxoBafg2n5vSIb/QZLjTwyKWDAmAAXeKZP9Y4JscO7KJYYbF5ku9hlu3cN8MSE291DXkWo2Yd6c0Csdg94Og6xHjaSqgeIpTYEBBi5ZlBgcIDTWJFirXRgsJTZGrImpj6knWsHEjNyU1HHMpgo+NtROsAEgkEnLfiYVDhBJRuDbgwGmPuavvv8drMm4fOURRoMSS+RwNkddxVEV6ZkFJs/YKvqYEFmoUuLQPBKznEWoGc8XHN56mxhnbF7YQU2fXrGBVSUapfENVszSKDsaQwwpC6slgV+glBRUUVsT94boZ/SGwkkTyNyQTCySC1ECSc4PTj2CYTI54cbe22xsnGdrOEBdjmjA5Bb1gm9ILC/nUASvidXrxKV5A8GSEWODRZEYEnvPtdJyVxBbFuBi3oBGrFP6/RFlkaqJEpVGa6wzhCj0cpvkpOJw4iErCCqYkKS4GuaoUWzPJGDJZvimBhMIi5pX3r2GwXLl7nvIyoLYKEHAEAlNwJgkf+05pRGhxoA2yehfJDFB27gh+hpUcKRxpFbIRdAoBCy1BqwowRgo+kiMBB84qWY/OI76d3j9tQNKS5ZBl+W2gZMxFomBrNjmkz/0CW4vDM9/7V8T7/oR7n5gATZnnWGSGBK6AiaWkXraBVmxO9YS2tbotBMJdNeTTtCCDynSTcmsJKnQ0sfAtElnt5N8hoW0Hl/fCSRK+NDK7HRZelnTtSXsS0/d56mLg4RednIG6a5Hl8kIrAX6y13bFcOm62DaVoUTaP2kVwBP16CpJGw4leAsE3g5a0Ha7XprC+it2p4z37VdcqG6rASmsPQg6hL+DsLqKnPJspG7ZHxlxHy6ndf+vRaYn0p/tDN3PS0VXD6TM82PmOW+BbA0CVm1R/t2966yBAr8e1LI1TWsEqdVu3bfh9YvqNNXdhcjS2EYsObXI6nvryCXrm/HJajYMaVM28/Tgcn3f51eFdcabgXQrafDK4nXerIlkhaKzn98/RuiLJ+XENsxtsyw6CaEpaCu6w8tsJYSXVmeN5kdd/e1Yo+ldpPVj66Bg0vBybKPdG3VnWl13bE9s7TzwHrimf5hVj/RfW81nSyB3nZPfPmMXft7sX0eHWDQ+c+oJMAKSYbpyfhPyVCS2SFkpMpJ0mroU/hscKqIpPLBFstsfsTe4bt88KkP86tf+A0+b3Meuuc+/vm/+Gd85jOf5hgP0xlbmxvkZYZGkCJHqwVvv/sO1998jSrMePY7z3Lx0glXHnyUz/zop/kf/rt/xH/09/8TvvS7X2R7c4Oj2RzrhMO9fZ5ffJ3NQY/HH30YNjaZNZ6D6RQj8JVn/hyD5e677kKjZzo7YOprXn/xBX6390W+9+1n8O/7KI89+hg/+fd+lhdfeom9vRt842t/xe998Tf54JMf4rsvPM+P/c1PcfXCPXz4Ix/m+OC3mO57op/hm5rD+ohLd5/j1t41nvv21ylHBTbvczK/QRUn+CqQ55vEaoHmAzY2rhAryLOSfm/M9s4m3/jGV3j66R/h4GDC7vnzKII1MSU4fs7vfPHXubK7y2/81q/w5Ec+yfsf+xCPP/oAzSLJKoihBRLTfB2TwLQFalJPkA6AiCl49WcACNP2127NjPFOevaOkhzafrs2H7YyzKUyeW0wGlZ/73ps12c7Jp60B3bz8fK8euary76/WtdijO14icvxIiT2b5pK4nIYrV4p6O3YttpKy6Vdc9eB/zsBRquiEd3/1wHiO7+Ws/jaBsfaB6sjdH1dWVtrz5zt1FR25oj02RoLVKEzS+9YjbK6yeS7Z1o5hrWAaStYKePFAqfCRlmysdnj+s3rPP/8d1hMxmgdODq4hcSa+eyERVPTHw65+sgHePDxp+lby+HNmxyPx2xu72LLPr0i8OknN2nmFa/fmDOuPLMYmFQ1i4VLsk3rsMZgXfJ1MdEimpiUi2pG9DXWRUb9DZppw2w2T4xvl/pknjtMW/1JJHm/1FHAKJk0eImUYvHVgmldUfuG2fSYxeSErcGI7fM7+GAhc7CYcnJywo0bb6BhxpWL95Lnm5R5SePAh0i9mCZfTGdwKsyrCVEaRtmIXumAyI2DY47GR4zKDc4PNlnEgFUY9hJ7QENgUXnqRlh4n+IAYylchrEFvXzQSjdSbKaEVOpZIxrT80qTvqMvjsnxmNfeeo3+9haDwU5iJQRPhnD1Qp+P3rPDt/5ij+duzvjGnmPQu815B+AoXUEgMvOeYCz9zcsMNs5zPDngtbdeInOWrZ0rbG9cRLMMbyJowMQMaecvl5HAnr19qjhnZzTC5hknxtAzFuvWKvuIwxlDv8wIPlDXE3Jnk/l77akaj/ceaWpELHNtqMKEk8wwqzy5lNTUFLYgLxIzIG3QGUoFpCZkjiYo06NjxuMxrp9z/90PMiwGVHUCgtxwh3O7FwjVhOODCeObRxRZzmDQw/VKxPTxoQIr9LKCKighunZMhXbtjvjGk2cGNKeuxrhmgrEWQ4E1QoNSmF6qVGWScbAl8u7RLSazE4qiYGNzB2tSFa1cLDGmNTz57wgSAzk5qk3rORWTh54R0IAnS/mDARGLif001xmw9Njojyg2LpOpMp8cMJkestUbMMy3CVoRszEh9hCExSJgXGIH3Tq8wfHkCFeM2Do3QoloSD5fNovJC0ZKgjH0Bhk9Y7B5YvaZzFDaiDZt7iFCDFA3c/q5AU0+ZkVUpr6i0UBdzbEKwSpNkxLoGCJePbmmKDRopBYhx9DTA+o446RKLNRzgx5vvf0W33/lBTLXpywKnBUKoJASyRVnDBvWYLMsyaWcSWCf7YFpMCYH9WQ2b8dZqvolEdRBLzf0hgZrMuqgyezdkK7RFSAZtfdplRaDsRm5zWjU4IlJFkjauHPt/Gd84HA+4eDogI1L93HX9lWMBKrpMQOX0VdFsxLNewyGCjvnWFQN89mCmZ9RSCQr+/SKDCuGWV2jziXgh1RQpSFiDZQYvEacWLyvEjPLK7VNFiXiDY0NxLDAqlBpoCEQvSCa4k0vKY9zJhk8WwtOG9587TVu39ijOLfLlYv3YXPHuZ7gouXjD/V54p5dvvrcMee2CraGOa8eBZ579QDUgMtwXpL8C0vR36QuN6ibKb6K+DAn+Ip+McCajFJyAtCoJxptja4TAIsNRFWiDzQI1lqm3iO6oMwzqrjg+MjTMMVmyfsLo8tNaxuV/b0bqEQuXLgHsS4Z0YeMxiuNAYMnk0CgIQvJJD20LJ5khWPJSGPJeEeQhjxLXmSqStWu3mWMSJZYnVFBmobJeMLJ0U0KC73RkKy/gyg4UuXJnCwx44zBasDEiHpl7puUB6hAbWjUInUkELn+9tvMbu+z+9CD9Ho7hBBZVAFDwEmZ1kCJxBgQZ7HiiBppNGLaxCtaS6YGcUk2KaaXJNCtdUBXDD0zBc4lkCsQKGyqBqkasFmOlv8fl7w5HF4rjLg2wDJ4AaseK5FqdotXXr3J4x9+iv2NXV6I20wbYcu5tBvWgT4EwJGZzqMlnII3lmBKB9501WY6jIO0zkTt/JcAIl3Zl5UPRJIMrNgNK3AnvXQJIiQGiiNqaE3DU6YoXWTOadCpk0J08qR1eGrlQxRbhDlNCEYsS9ld2xIdU2Z1+13qveKdrD6SZaK7/qUu8Dbt+ZalVcWtALU2Eu7AgvXzalcmewkadNwOoXP8t+ZOTKrOLDItQnbN+HxdyrgqgN0+p1OvH2wc1kFRBlmZObPysVmP/ju5xVmfHiPmVKLWsbC0BU7C8lfi8lhprzieqeyzfMbdPXadcXkOXXv+60+665odbNKCXprAWNWYjl0HpHQFLHWsslXX7fqIcsokXdszL0sNr3Pp1l6Svp2SOEMqQZlouytZ46rVljDUUu6nyz4vAi31sO0u7bc03XRKLKVtYdbaa23MdOOcNmFfYY7L0byUzqy1cWeyLKuf6576aZ/krr1XPLAlKJlOmszIO7ZYd/0JZLVLcGzZs7omwOC1ZZN11Y10rQ+2wKVVQDqItZv9VgmslWT6l8aRacHrQDnc4Of/4S/wK//sf+G+e69y9a6L/PL/+ovce/9VnvvOLp/97E9weDLn6PiExc2K3mDEzvY2aGKAve+pH2Lv1m2ee/k5Pv9zn+DJR56kv3WO//A//i/w0xmRhs99/me4dXzA7//2b3Fhd5cn3vcIw9EmN4/2ObdzAVNFJocHvPPmizz71Wf43E/9FL/0T3+R+WTG+ctXmF9/m5P9Pf7gt36Vc/fez4/9xE/y6qtvcP3GbZzbJFQ3GbiMl174Nu9/8kOMhhu8dus2Dz74KC++/RoXLl7k7Rvv4GvBW0OvcHzgox/j73z+p7mwscUf/dHv0Ct7fPbTf4evfXWXk5Mx+zdeZ96a3L70yvNs9oZU1QEbmwO+9hdf4Rn9M/7ky1/iqSc/xud+7O9irOKKEpcbrl9/FWLkjTfe5OrVe/nud57BSeD8pYucVBXOJv+JUyN6bYybtm217VdiQEPAIsmWxghWFYjtce24AjBnGTCB1Whr58mEfrR9vIXMdTXvGV2x8Zbo0Dqaamxb/CKNjbTinKY+W9ZZtt0cxnLNS/9IHg4qLUOzBWc7n7hl0YgWsLUdeEQLEJt21GkCo6ye8Vxaux5ZojRrc2zb+sJqTjkLLiUW8PraclbKvHKDWnvzFMFoOVfBckOCte+eapu185za9NKuvXS5DmNSGxgxhK66oCTpS5E5+rkyr6Z8+1vP861vfRNfz9gcbuAXTar2djLGZv4rgc8AACAASURBVI77rt7P3fc9yM7uA4SovPLKs5hBwc6lB1CgKODezT7NNPLqzQU3TjyTesZsERBynLOoJDPqzESMsYSQgK3oF/h6Ru6U/qhH45WD22Pq4BO7T8C0Hi3RdIU3cnxM5RsihsREqPHVhEWYU9qMIsuwxmFlyO72OazrM13UlEap44Sn7+tzbb/gxmwTH445ms5YnExR48ilpOwVFFlG5gqiKHU1Z3tng+0yUlWe2XTM8eGEOpbsbm8TQkR1nhKPxnA8T34jgYCVHJsNGA36WKmJxmJI3j2JldGOQ02sG28U5zKkrf/jxTBfLNg72MfEwMV7LhKkoGmUvBA2s5KtEg4rwxe+fYDJkql3ngm1N9wIqfpWjDXBKIUtcLYk+FRifGfzEndt3cdxfcjs8CbV5HXK4Ra753epENR4CgFfLbh+8zazekp/MGSzt4ExlgxLadKYq7wnU2EeFvimQp1w49YJ44Njhr0Bea9M7CTnsHlGmRXgcrAGMUqhAyJwYdTDSYbEZJQb29mii7sqo4jPOT46pprN6NkhO3dtUFqlZ4XRxgH9csD4cM6lSyVx7plOSox3ZOWA4+NbHFy/RX+wweb2BYreAKOGSfCpyqYNUNc0MVkOGBGspM8wisssZV4Cgu3YITpIsW9QjDfcPrzGdHpAMdxhc+MyJkvzkTMdO79GjMGYHqKWRhy9LFUZq7xBnSLR4oqijWNSDpMUDinfidqgMZJTg9bEENh1jlBNcX1BaaiqI0p/m7ryzJsFJtullkgTKy4WJQU1VR6R3SvUCJlGLEUat6FCSayiHKDMiQSaGurFnOnigLqpMGqp1LQrjiRzbuBWUKwqEpWFCUQCpo4sZguyvEfZK7CuQMXhbEEuOVYCTsBYxyDWVNURJ5MJpYvcvbnF9Ru3eOalZ5ktGi7fcy9Xrn6M6WLC5PZbWO/JjGfUy+j1CrKsB6SE2bpUgTAzBcaC2OTlJUZbD6ckg3Likkm+pGfjCWyZSKRJki/VtOHoPK4WoqZrNq0cltbbCXEIaaOPEJlND7h1+wBVuHjxYcgLZvUhwdfYusaYOU0MBN9gjFLFkOhyOIpBn5yCxXzKYnrMbCK4DMqyxGmS9tVx0W40CGqFRoSotvVWtBhrUxVKGqJARjIN9yQQWKjpJWgElwlOkt9QpCFog5AxPj5hf/8aNs/Yuv8JYhT254f0ZwWTecamrflU7xL/xx98h5MwoP9O5On7zrHb75E5x/FkQRTBqqNyPm0K4AAlywpsz2BUaaqKo6NjQmjIe5ZePqAschBLg0VMKlzvvWBEcepwElk0NaAUJsM3c2xhKUZ9SjMixlShMfiQfJAmY27s75Nv7LC5tU0hrdxPodKAWMVpineaCFmWkWUWUTDatBJ614LOSZqbNsAsYi0WqFXJMWiTJLFRFJW09kmZk3OOqu4zqz3NIuIWY7YLSzbIKbIhUUpQSdUSNWCNEjOLxEhsZqhGZhTJC6qasHd9D++G3PuRB9LcGdN8oiSQCjHkThBNEZhHmSwa1OSUYjBFlvxVETK1RJG2gqlFTMRrQ9LNp7zEmkAgxc1WY9rIxqRcIzYUpuCv8/XXDihF9ckRvaU0GsCJJFMygUE/5+LlbWI9ZuP+p/n8ww9yTmu6Cm7asVXUgUAImkzp6ILRs54+bRDaZa7thH6a1dMGlSqsszSWu5btW8ugsw0Eux1RWf5XUMJatKlrp1uTWdGxfzqIagVWtHHlWg7fypd0dUw4E9yvB7FLLtLSI2ndkydZw5o2+e3QhVNlpNtflI4qt3Z9ZnkHdwAYuutoX2eVl+vmsiJJ4x8T/YRT/k962r/p9LlPpRB3PO4919T++cHHrYNKKxvYdaZSBwKsmG3SlliEzp8rXZ6ckq2s3/fp31pvq+7ZrKSUupQjrj/PFkhaPy+6fFad/DC0CYmYtWOXTK7lI2+vP6z1vK7BVkBVd3An1VNYqw7YDidZl2RKW0EmrrGaWpprap6WdbHmQ9a1wpmMrZPPaIxJJippHlxeP2f7B8uk2aCtfKZLsle/0yW/Rt/7jJZpYPuX5O9mltVglmyN1VNhLS1e9hWlA6qFKCuwav1iFRJoK6TKEQJBWDJElr09rsbuupTTmMRUirQy2hiXXmzSPpMAhPYZN9pwbneX3/2df8Ng0OeFV17l5HjK3s3r/Kf/2S/gK8+smnD75Jid7RGZszz68KPs7d3k6U9+gk//5Oe4eOV+hr1tTKM8/vAH+Pa3/5LRsMcjjz7Bi3/wR0S1YIV8c4tHnvwgN994jeuvvkSwPa5cvYd7L93Ni8M+r7/0KrdvXWe4tcEnP/YJ/vf/7ZeoZcxP/9zPcRAcITYA7N+6gTOOrz/zZd7//icIxvDu669xdHiLa6+/yMsvP8f3vvdNPvuZH+d71lGcL1AiJ8c1w9zy3/+3/xWvvf0aZZHxpT/8fUa9PqKBPHNEHwnWcXyyR7+XsbW1xWMPPc4Xv/xb5KbAZo4mvsp3fMXR3i1+/Kd+hosXLnF8dMhv/vqv8srL32VjY8Sot0EIyu3jE374E5+kqgPWJNbGaqNCU5lpbXuOdOzI1B9jC7CIpPLfsesj2rofdQi+6Wantn8KmHh6bHcAanfujgnVMY5M++fU7NPOXd05Wn0fHRx6dqx101DHAlyXoi6vQbpfJ4HB7Xe0vRcrLQNkfa1uB15ElqzUJRM2xtVkvmwFXQ2sO8zv3bzdgVwdYCRrIE9agrtEdzW/LBtnCfqsN9iZhlg/RNf+sdaubaaw/GwFYHW/m9ra2I4VHTEqeJ+qlC004LIc1JCLQbxydLzPtetv8+abb3LX+V02RkP2Dw55451XuPbWWxTlgIcefIKLV65Sboy4cfMmi+mMrZ1LFBsjNAgmy7DS8Mq127xsBZuVzCrP4eGMMh+CzVAMmWja/ScDL8R6BjpHTGS0kSNkHB3NGE+n2MxhnMOLaQ1lTdsTLNEklkTmKzQGqmaCVjWqFa4UzvWG1D4ynsxBDEWWIWo4P5ryuU8UfO/5mk995H5effUm34+gtsDJZYbnYYShrmbMjvc5uvk2W6MSm9sEAHmQytD4GtvUjOcNtTiCzpidVCAZjc3J8xJjs2To6xIjS9qKbsYfUavBxF6SwIWIyVIpcxMdkEyOxUCMAYOjjg0nJwcsqillWVDaUQI5tGaUCb0sI8bAramlsp7M5Eg0aJVMfIdFTtGDMgOvBfO5Y1oFQki7/dY6JHgWuqCfbVDuDlnUU2azfV5+eY/ClVy+cBczX3Fj720QS6/Xx9aBpvX0qDAcoGQxwxmY4lFjl9YR+WCDixsXsLZYMs2NSbLFzgNNYiQYIDbkKjTasi5tgxGLJUvJlBVMgOnJPifjQ6zLGIx2KG1Gpkle9b4rjp//Dz7Bs9/4Nm/vDfgbT93LV57/Hl/4VqASRbKc7Z27GZ27i3k14+joEDk+pD/cZNDfpAmK4MHUlE6YVjPAUtoszbOhwWqqLiXW4ENNExrybIBIxsFsn/nRhOAjF3bvR7M+aqAkSR8xBrERFwURi49pmJdGKUwkhDlGPCGckJPhQsRageBZ+AU9DVhpWdokPx/rDLl12LZa9+FsTL6xgTOGPCspscwXM6KP9MxJAkt7hkFeQIg8dGmDYAtujefcngQOphMkpgSujpG8tbKIJ+0MFCMheupqgbOOoiyT/MY5Mikw4kANtiDlKjFSSsRLes7btkB8in0DcbkpLG3JcRM8i8U+i/FNhnmGGYzQ8YRnXvsGtw6PGW3v8P5Hn6DXM/T6PbJyi+3Ny1QaqOZT6uoAsYodbLDd70NmyULOvKkZZpYmL8k1sRzVz2hEEhsyRKJGfAskika8ClXTAizBgwohAFHwwaJSYXygIkIUmjagdS7N376ZcnR4k9uHB5y/6yJbWxep23M7yXEWKq1wpkSyJCsCcCYDY8kkJ0XbniIvU25Ve2bTY04ODiiKKTYvyIo+zuREXLuxHZOHmTFEp0SNhKg446g03UejKQfwcYESCBiMMTSNglhijBiJ1KHm9v5b+GbO5sYOg8EmdQxAxGqOtuPg4nbJbz97jevzDJv3mdcL/vKtGbtDz4jAfgzJIwwHkqHGpOpxoaFBWnmbw7oedqPENzU+eI5Pxhw2C8pewWA4QPIBgT7WKiEIagJ1SItmQaSua/pFRgieqvKozMFAQaBZTDnev06Mkc0Ll7DFBj4oJkseQkjKHzJSf1ATcVkf5zJUDMEKVnIKa1GE2ETUeUxmUugjKdkwklg+qkJja5zNEWk3xJuQQBcRirJHNCk/W9SBSR3xB3NUjsgyoe9sGk9FYts1DVRRsEExTcBIzcHxTcYnY8rdEcPhNos60heQqNTWUhiHBEM0sfVHsvgo7QYdyfvN+OT7pKmq50yS359pKx4qBisZuRpEfCKpYFMBDYWgprW3ieCEIlok/GCyxr/L66/flFvAeVLVCN+CHMG3CfCC1579Y/7tn3+fj37m57n/6nmsn6YAy7mWKp8MpLtKMOIUCa0HyTJIXPfQ6QK4li1xymCJJdYU1wI/bRPws7K1FCueDuqXgarASs62OtdKVtX++z3ACGvZI8sgvI1zW/+XtehXOr+VLtxfXcN6rL3isZwGBCCuGCCsYvT1O03V9tLANG1y2u3h6pIicjaS7lrorFzvzK2uEI0EdLTXEvW0P897JYNnQ/AueeqeS8TQ+gWtPf+zr/eeJb0rgDUtHVBbo3JJMr5OVtm1WCfb6Bhs0lZ9OX2jbZvp6jdSwtXJ/9Kvrkvk1r/cqTqUtKB397uS6GnarTiT8Kz8h9buVODs87pDL1yNGVjKa87KwJaAHyxBtdVZdcmWWwFpse2z5gyoJ+1YWZ+wEhy0Ak/Wz9wlq20vVk1aftX3/LaqLEHjtYs7fZ+6Ps7a59tdXjuwOl20GLMCspecsVX7rUSGesexp10/aTXkXRvKsq+2198l4msA8emxu/6cVtfcGc6v32pXMD4x8xou717g+PiA7fO7fOTpj/PSq+/wzusvYHOYVBNKWzAcbaGScXh4xPbGBovZnP29dzk8uE2eWZpzNboh5CbjZLrABOhtj7j+7tv0y5xy4GjqBbev3+KLv/6bvO+Jx5kuZtheyTvPvM7uznnObZxnPJsRmwXPff8V9t5+m+FwRG9nm8989qf5zsuvcM+Dj3B0PGNn+xwHN28z2BjwF197hrywlH3HdDrhm9/5S1544wWKjW3O330P48WccztXODw+ZOPcDlL0+PBTT/Hya99jeG6Tuy7cxXAwIs8K3nnzNcRmzCZHzCtPbzRA1HLvQ48x+NPfI1rL/HhBqAx75h2y3HHr9rsYX/ONb3yVx9/3OAcH13jkAx/lg098gJdee5nxfE5VNSTujmANxKjLjYuVBdpKKtyODpzpZHAtRKmkOVoT04l257Sb7zqcIrFbW5hbVyMIs8IupO0j2nVPgdiCzevTQgK013CZU+tnquC15EuuLTSn1p21saTaMVxlJW+X1RhYsagSAL1cg6STsi5/YinZU6GVHZvlh2cLFbDWTmuL9Fq7dw11CgE6NRd0rGGlW4/fu5bo2n/fM8Hc6ej1a2xvppvfYlu5pitmYI0uZeHWJGNeVZN2TMOcejajni249sYr7B/dpu9yiMrrr7zG29fe4eDohJ3dqzz82PvY2TmPKUtmdYP0Buzu7GIlQwnkLke0YjyZoqGmn40YHx9Th8BwOEreO8ZgnMMh+EXFLMyBQJ5BXoywEmnmNYdHh1QxYvKsffYGa9I8nGS7ghVLiAtsHVn4GfNmTmGFrJdR5psYlPHJnLmPZCbHGME6y9VNx9//7ANMq5pvhFf5g69MyPKcoU1+RHP1oA2umVH4MZv9BlNY6uYEXYDLe0wXnnhSM3fKYFBwZSMQfWQRDTM5xyJkKQGzYHAEaVGCaPDBozTgBVuPsb2CShe4Ik9BuUQ8grUOYvKYCnVgPD5hsTiinxcUwxEBqGPyvnCS44xhFiTF77ZNBDUlC3luGLgMi8WKpVcIRiMlytZAuHUcmFaBSJKJZBqpvMf5mjpUqGT0en2Obr/FyeFbePH0ewNGGxdQybH5iH6vAGMIGunnBVkUgnpEShJ3LOLFEDUQQmiB78TCskhb1c/RSbiUVHpeJFKQNtdsa1wr1qBqWUznTA9u0PgZveEWruwjKoSgDArH+dJjG8u//Fff5Ls3Z5zMhWfffIkyd2wVNQcYfG2XTLd+vwdlZNbMOTw54ujWTfq9jNHGNi7PaOYV1jiKbEClEa8ktoCrIUuV4/KsTw/HfHrC/u13Ceq5dO4i1vXBLDBmgYuewgp1XeOsgeBx7Yb4IlSYds4XhTxz3BrvM+qXuNwlo3Q1VHWNqyPlIMO3LIHFPLCompbROmVRNdSLObPZglrfItaGxeKQRWgAR1PVbG5sUvb7FHnJ3ZcvMxoVnM8dpllwsVCujkbcnHmOa8u4EhqvWGewUkLQxFqIFRjBUOBi2qj32mA1sTbUpKpcNgvEaMhMC07YNOf64HEoah2ihqgeoUEk4ucHMD8gAkVe4uOCl77/CkfHh5TDTe5/+Cm2ti+nqon+hFzAUINGnESK0lHbbbxfsHdwxPHBIc4pG70NsrLPsS+RekqVucTAaWZEyZLPkgZSBb82RjVpQ8ThsLFJIAwBMY64SKBAMOn5JBNsXQa9HmU+GTM5OUD6jnvufRwvSrOoacSQi4PYoCRGVF176tkcHxNzp9MqqGmw1mCNhZC8vKJERoMN4rDHYjFjVi2Q+RwjQq/IycqcIBbFokGS34pYcgpCDGTawkcmMa4cQh0NVgJWMpykMSsKBye3ODncY9gbMdy5BFnOVD02CupT3jOvKnY3cl69MWYcIKijMEodLHXluFVD3xkGuSPUkQbBERB1KUfNHFYt/awELCEKXiPWOUQEX4yo5hOaUDMZezI3RrOKsugnv2AEtRmQ/DvFpSpxhcnTvGocdfQczitm0wXZxmU2RqPE0hdN/kTi0SwnBsHFZEptCotRjzUC0vrCiaXMTFJJqaFSj/eREIWgASsOlZza122OZXDWJR2GRGIdMOpwuUEJEBwaU35TWIMpA8Vwk9DArFnQzGZQzwCPzQN5v48xPfA148kRB4dHZOWIC3ffT3RK0AbnChZRMJngWtsZ2wJgvlVSWZP8eRtJzyJVKkzzMCGRd9RaqugTW0kbJE5JULYQjUlVBbUjd0AMASehjdksja//H2Kb/3evv34PJVoDzvkxjQfqCQvN2dzaopneYna8x8tvvs78j/45bzzwMf7Wpz+FdS4tXNFjCcQgdKWIU/LfWQ3fGUhYBoiakvoUyxqSYcjSTYku8DzFWl87i5UunYRTybqunRNo+WRtBrzaqV1/nWYntadaAj3Kuu8N2iWbLCGMLn3s2A9LdkIbvEZW3InTYFGHToSU5LMKpF1XSncZkbMmJWo9LUTX7seswQFK51cja6DAKXPr7grbbKcLqGXZTm3b/YDXaeArZUudRGApsxNpqYwr4MF2SToJKOkS/bPnPgXC6Nn6ZKucoAPyuhbudtPXwYk7wVbrgMjyrLLyGzLvOU6WANQSdCBNGCug58x9yMprJbaA2B2ZXEvwRU+dZZ2p032X9eNkPXlt+8YqRzp1Lln7DZFVKXBZ++5ZaEsgmbe2Y9ZIMqhvEbzluDJiVyw8zoA4Z653ef3SJupRz/zqqk1WPIb2DlsDSrMmJZYz/08gWCczXLVMByDcAW5MtNs1ZlSC3GjnkrgEx8yy/Tomy+rXRdIu8AoDkCUDUNs5xCB85S++wpf/5Ev86Oc/x7R2fPSpT/LIAzNGw5/h//yTL/Hyc8/xvg9+CG0CEha89dJLHGyNOL59i29/5+s8/oEPcv/9jxLFEmtPzJWrD1zld37jl8mt8q2vP8PbN/fpFz0mkwnvvvMWH336aT708R/imb/6K156/jn2rr3Ngw89yvHJhKqeQYiMRgPG9RidB7xVfu1f/gs+8akf5/j2mDoIZX/IrH4HWziQmr/1wz/BW6+/yWJ8wi3vMb5hUU34wm/8S/LccTI+ZLGYM5s3fP0rX2HYL8ispej1cfkIpWD30n1YKXnx+W+h2pAbwS+mvD2Z8IXf/jXUGUITyIoilS5HGZ/c5lvffIbFyREvvvgdtrcu8eGP/TA799zNox/8OA9/4ClcYdGFEtNaTqRjwJ7paWsASLdqhbUjlkb6cflU0+5XBxx2QJG2MkjTOtfpCiRagSLt2tYycKzeYWFbUorOAi2rURrjyvC/k6zo+qHdba31T9utyGvzXcdUWs7da+NnxYOVZaXPJblY2kxtOWso6yN4/b/L21iDupaf6/o1Lw9s5+3ut5ZD+M6v9Q2h5f2sf746+/Ja10jSrD2CGFfzUldkwQAaIliDtZYYFWstucJ0MWPv3XfIrOfo9j5GlJ2dC4zHJ1y7/i7X3n2HalFzz9WHuO+hx+n3h6mk/NyjLqdf9hFpk0KTE6sZxhr6/SFNaLh5cIiV1shYTCqpLIamntN4DxiKXjK9DRhCjByPp0zHC4yxuMxiCFjT+eW0cQCGEDx1Nce33jKljWSbedq9V8NiUTGbzgmqOFckX0dn2SoyNkrH7/zxK8x8zs1xD0MgLED8ITbMKPwMEyoWizHWgC17RGuZzRyTyYx5fcLJbII0Ndub29x792UwPknCjm/z8Lkt9mcTottkWhtmGJxagtilibeXiM16+OqYOi7oFSMiGSIVEYdkIJlFamEyPuRg7yZFb8CgP0QQ6hgxRnBZkrdYhejS7rGKS15PRjBekCDMmojGhtIkMGaygFwV9QG1HisVoamZ1QugwVNT+ByvFqkn5FoxmVZsn78PGfRoFicsZmMaLKPNLbK8D5oiQCMlUYUgimqZxmCEYFvxvlhMZlYbYaKErqCNrqSpede/AQjt2mlRAvV8ymR8QhMWDPoDNt25lBhFQz8TcpNkIe/OlDfHc0on1DEjuII3Jh4fFaGXfI1MTKBIOxw1KmVeUO7cRVXNiLMZR4fHRAvbo3MUrpeYBC5HncUEsLVSmIDImLCoCI3HT/e5VJYMezmL6haVb+g5i9aGMld87dHFgsz0U1luC/PKU9ee0maYzOJDw2QWmI9nxLYCI1Gom5rpbM5iNsb72OYjgaoJ+JBkOpYUS2Y2TRaSFZTW0hsO6YulxhA9bF18mCiwqCu+/8Z1+rbm7ksX2BiO2NzaoFdG8jjhid1tJsGwf+SpTcG00lSxDYO1g+TZJ9LKeBRR14L5KVYzkiR7qJBU+1ky8jWeqDZthKjBSI1qQ1OPCYsxVT3BaY0Brl+7ybWD65hsyOWrj7C1c/X/Yu69mm5JrjO9Z2Vmme0+d8x3Tp92aIOGaYAEBHEIkhpHzDAIhhgiNRGj0I1+hP6DQhf6J7pQSKMRYyRihiApmgFJEB7daH+6+7jPbVsujS4yq3Z95zQVIQUupiKO2bt2VWVmpVnrzXe9CzOZ46wH12CDo9lVUdNVG2KGRocWyIopk3zCtl6ybbasLlfM8o7SbMhmc/B9mGnU4ep9s0x0ZMUpwamoJdVaUOSIbwlayPICbIeojImGzjqc92lRDVRdzdXVEnGW2dEJqsgIXsiDRlQMz1IEvNKEIAQskmWUpsB7jXMeFwJaqQQ4K5SPIID3Ua7ABRv/P5mTTRTWe2xt2dY7TNOSFTllUYLWMUNg8BDqaAtaizIZLniM1zQqSpwghkI5CsnZNVuulo/xtubmzbvk+RRvMoJEcATd0WagRHNIgQ0d9WSOcZ6cedSGKyZRj1NBm/roPHe0gPeKkPqAaIOJswk2sYlzrdGUEAJ1bqMwfGjBKVrX4buKrlmSZxmSxQyNE1VgZRvZsxNFF3Z0XnDOUa1XWNdxcLigzMukMShEHKBFo8DFEGMxHVhPsB6vevDbodHJX/Mo7SlUsrtjxggyMdg2ENqGIJYgGmc9onvApicUBNouboZpAZEMF0Al9qFr4zMmRkEoabTnal3h1y3l1ZYsc2DXrDY1+dEdFofHWFeB02BicrI8ZRj2KHAdmaoJovAorE+REN5FwE7FTb/gLUqghhj6mzYzO4niCDZYDAq8IOJiOF2I4JNGI0GoxRLVnDQm/HIhoF8+Q6m1ZNOOd37wXbKTz7N+8BafLg2/9q3fxT1+jz/78+/xZCdc/uSnvL+ZcfrCKXdPX+be7SOc14j0VLOoAqHQBB3RxaePvR5K2LN54LrF2Bt0vSUZ0v/3XvGeadE7fVy3y8e7n9E+T08LIE8BJGNGQrz2uu16ndXBYAGHPhSJQE8gD+m8GpztMBjGfRY8RkyPwSRPDmcIHiTt9w7AWqQL9sb9PlwgpHvEsKa+eVRvHD/T+s+CNs9+3zv7Q+1HbcDA1nia2fKsFR/27ZoAh/H1MlyXyv0ZYNIeRVTP1Cc68/swkH1LjEowBmKSYz8u52cy00gsn94RG8raw0Z+9PkpGKN3XHoA46k69aEkcZoct9T1f4fMc+zbvWelMfqOa59lKNJAApL+r717Ny5RfEY/RtQoVTjD+9gL4+7/HddaA06Ny5Sel8bunpXxrKMXf9K3XT82ZRjfA4DU10ul86lL9Oyha2Dr+P7XminxGkI6If0j91LqcRyrwaAjsBelV71zGReuMfAaYNBKGtc/glFjrZfIqlLO8/nPv8bJ6S12O8vzLz7P8cktJmXDrlpz6+Q2P37rR/z6N3+T87Mr1mfn/PEf/xsuzj/FFBnf+I1/ggR47+23+cKXf4Xd6ory9ikHOuMrX/oKV1ef8PjTJ+xWZ1jvyHMBsYgodFbwxS9+mbfe/gHTm3N+57/6A0SVfPf/+iO+9rWv8Pff/z5///Pv41c76vWGxjZ857v/J//8t77F5195Cdc5nju9y0fHt7h96wZt63j//gecnt7l+edfpF6e8/j8E4wOTGdTbt48pdxccXZxySSLu/3B56zOLlk9OefwxilfePNNYUKDIAAAIABJREFUrp4EZosZ22qJNTGzhg4ZbbXBWsGUOWk44lzHS6+8yq3jE3743lsUueHm7RPOL8756jd+g7ptyFG0rk07WynNdsp0M8B9aWyMe+7Qi8bAhA+Q9Ogis+kzxlPfr/o7jhhq/S0G9p4kYDaNPnka9R1PCP06SNR+02lzoQ9zjeM2PVf2l6qhUqO5VtKcKDHsW3rAK4xbgUGnrF9rvO8ZkGEYA+MmjI/v55lnmbnjJhrWWNnXeT/XMdRDnrp2NDs+3bTXxv9nNSN9/UYFk2cQ5QA+YHQEZRCJoSKo4b2TjHOtoXOW5XrLoycfs1tdcu/0hNIU1M2GTx8+4tMHj3j0+CGZyXnplde4ceseSmlWu5o8N4jJmMynWBsoRON8zLxELqigqHYbVlWH5DMQcOKR4Ok6G8PjjWa2WBAzfjmctzT1lvWyoXMtuREUPq0lCYQgxLCaECIbIjhKI5i8pFMpfD4I27qhWl/hURidYbI4z2U6o8wyGhd451F0ApWrUW4JbYd2FW1zhS5LRAnBZHR6ys6D3QbW9Y71akm73QKB6Y1TnPdsA/zdT99hcXDA+fmWm8eHfHJ+Tl54CtcyLydUMmFnMyqraZN9pUyGCVCHlmlmsN4RVOyrynsypWg3W85X51S7FZPDBUU5o3UWBWQqZtBSxPCnLNPkJqNro8PgvEcFhVfQ2Y5gwXlFFTraNqDXFmvbyG7wnjpEdpAuPDkl6DnKxlBvZRxtl3F85wSdT7DApJhweHiHpt6yXV4g6oKinJNnEzItKF3EtVWIc3dazyXZlL32YUj2p1F9wL1Hp02NzChUUBjRUb8ntFSVZXN1ydbuKExBWUwjQEeD0hojHueEKihqBz4zGKPZWIfD4G1A64CIQdBU3iMSRWlViJomkunoMHqYTY8J5THONbT1jqtthdrtmEwzytyA06jgcfUaZ5fkqqaqduRac2MiOFdjraXarZGQYYuov9JWgabrWG0rMr3BO0ttLdvdBts6PFEk17WOznd4Zwkm6oChEytCouREYfIILCYwQ5Qmy7IUGgqTosR1gihNZ5soB2KOmB7fowyB6fyQ3foJp4sjfPcC1dV9LlfnbLdXrNdTLmYLTFFwuJjj24ZF1nJ0NOVs27FqNdYG6sYS0lZXQCWfISTJAoX4mInWi0cHj/dpfg4a5RUSXAIE17h2SWh37JolpRa09zx+8pCz80ucTDi99RoHx8+jJjlmvqDwEIwiuEC3i2FbwdkICKRJPstSbtygKIsZZVlivWDrml1boVqHKTOU0RQqi4wLSenk0VFrDnDOYa2nc5rM5NjtJyiVk+tp1Olzlp1LfpqzBNdRVUtWbUteLJgvjiLw5jy50liJUs74gM4ybN0M/hKqiIlRRNMAXXCId5iUsU1UZC/n2qCUxgYVBQm84LHozFDoAsoJ1nU0tqPdbVFYlJ5QZDlKGURnhKyIulFGERwR+HQWcTaCmptHrLYbTGlYnNxFRKdI9hjd43yLCGQChYIQLA2QoXHao3yM9iDEDVHv46aUC5FYISHO161Er1hJ1FHtcATlEe+xvo3ae0FQKkZaaB/7nJgCihLfWbzrcNUG52p21lKWOcXsgOACm90Vq63FNoGyXHB0cDv6v97ikhaFCgqlW2JymkSKEIs4g5eIEfikMatDDcrSOAUmaZ91UfA9BIf1Ft9ZWudAWTovBG9pqh0KKIsSkZiNzksUljAieDKQEMXQQyDoJFXjk55m0MyKAxrZ0WzXLJdrvK8o5ydAyWq3Zl4uUEoRLCgygtIoFUOKndJYUYPMgFKJ3W4yggiZj1ILljyBXlHHz3uPVgEjKmbkVHm6h8YHlzyVkDZHon6cSIaoJHBj/xMPeWu7LbJZ8sOffMTBGzdQF+e89zDni02HanasnMZKYJJPUK7i3bffIlQ1zdmEG5/7EotsMuzsJ0JhRPD6rDHp6A3jQSR4ZAfGhdHvwYqnvV9g/OV1AORZUCBuoMro/Ge9hP11YawZhNpnpwlhz0ih1xJ66ll9mYei9Ob4yNYd1WevwZNOJEN/z3DZf9ezhJSMNDhC1GgZzPfeEb/WzqMwhZF1PgYjPlvvaN9OCV9nFMjH9bbu2/d6e/bNuGfNjCGUEfiRbqHU0+pO4+NphkovW5IAvIT2Dk5Ej2WMwKS9mxOZUX20R++cXKuN+FGoZbxh4On+Jvt3OpSwd3RkqD/j96z2/WF4Xg8wjZ7xTJcflePpc9cANhLYMWy9h4R7hmcd1uGW43aN7bOvZfo29Ts/fM8AoPRv/7pbzmiM7AXGx5nu4n0GT3aYMwYWj1f7niVJQ5F9Txj6Q1CDMzskfRux0eLClaTjh8G4N8gDpN2Up65LDnvMHhfr0gOMMqrnXoPt+jiK1XJDiFTqqNFYAkRrJvMjvv1f/mvW2x2vvvIGgYDOFQ8/fAjlhH/22/+CuumYzEqMus23f+8P+JM/+besNhd8+t47/OTir5kdHCLFhK5t+frikJ+99zYSLI8+fYjSmtdef52L8yfYIHzhS29STmb4qmZ9dUnwjuPDEyamJJ8esZgf85//2m/xuRe+xJe+8jX+/f/xv/LuW+/w4otv8MavvNmjeeyqinq745P7H3Hz5g0effSI5+7c4eVXX+ev/+r/ZtdsYkYTo7l9+4jp5BC8Z1e1nD7/Ob7w5a+wWm/oqhVlXrK4dUpRlNw9fZ6zhw+QPOf28RG79ZbDG3fp2orGOnQG9557keVyResajo5PMUpTNw2nd1/mldff5N4Lr3B6927Ui1CAU3GR95GRotU+vHEMb/RgZ888C+yTHCjVnxCkF/mSMLRHGPXqQKTzj/t4P8KU7OeMPpnBeA4cuqcazTdjhhN7Fmo8H5l6cS3d1yaCmD2EdH0+CX3Z+7KIDKFvfQa3NMD21/VOLOMjDBUP/W+GuZ7RGHl63hktDGEPHPVj8drx1Fgbz1TXcfpn15Px0565bxid8IzCZkladz3jt9/59AQUXhmMzrHWsq62XKwu2W22dM2O05u3WF0uubrc8PY7v+Dx+RlN15IVc27fusPRyR2sU0iWtHKyCBDgHdo7tMnRxpOLcLWsqNvYIFqVBNvinY06TiIYU1CUWXRiRGNdQ1N37DYVTbMmk4xSG5RYQqgJLjZ08B6nDKKKmNq40IiKIQhOSWJmeJpdzc7GMI88y2MKZxUwBrJgCU2N9RWKmm65Res2ZtDRmq0LtDLB+im2qakrR9vuaJodLR6vMnR5yOHsBkUxJ2Qlbb1lcXwLf7Om2l3wZHnO+eqM3Fju3jxBdM3pCQS35vbBnA0Bq3NaCkLIUXpCqwuCs/jgUUVBW3fgLFVTsdkt0XnB8dENggpAi1FgUpsIgjEZpTFMMoNzgbWNeiSt8wQf6LqKuqopJ/OYzS7NAwpBaR1389HMREMAJwHlA9uuxu4qnFfkRU45PxiY2kY0gkKCUJaKspjTtFuqestmeUmeZ8ymNzH5lEzneJMYsfi4iZOAYVEhshxF0CbqbSgURmkynaF15Kx769hVW5abK6q6BmOYzGaxn7sYoqe1RnB4DxqFqAy0ItOKzvsY3hESqK50kjIglcsRQmRNqhAd30wUKI+Ix3kwpqRcTLGupd4+pFk+RGWGvJxT1TvaekltDHlWsF4uaZqG4OuYbSp42s5h2xaD0IQQZTmIyQqi2LMgmSDKoJVGKUOeZ2QzjckyvHKIisLYojPQASMTOu/JjY65P8WgsugQilZoVcRwuiB0XUvbxtTlB4tjjic3kUJRFg03b2WcfRRQBczKE45fXbC6WvPpo0suLy95fPEItGKzrPHGcPv4iCxYVPOIlxeHWCl4vOyo3YS1C7TEbI0iPoInIYZfBol6bVYsSjIC3SADYFSHdxWuuqDZLCmNwjjH+dklTy7O6ILi6MYLlCd3mBcHmGKK0EXgNCtxwWJdIKBjqnLvMQLOd0iQqFUlMczaaIN1jkwMkk+QfIJGaJoK325pfWRVmbKEcookIWEfwKPJsgLBorViWV1xNL1JGzwZGQ0JMO062mZNvVsiBA4ObmEmsxjREGzUNVMxHFVEUWhB6whKOAK4Ms452iBeR42tEIOLjJASAktMiKE1gidIZIogcY5oQtwEFCNkWUZOibMTmram7WroalymIhNIl2TFASHpixoXqNua7eaCpq0w2nB4fAMxGU5SBjACJsQ+JS4mjjKiKcVQ+4Z//Jtv8ON3zshqzabusJ1QeZd05MCgaBNQVxCZMoSoYWxdG5c633M6BYLHSQxoD6JiaLeLYFOQLm7aqQgmKu+RTtE4x6aqI6hjW7bLT2nUhOnhTaZFjt1tsG0TpW5MRkhsWKWialJvTxgUbbBpjbYE72maGm93ZIXGGMNWeUQiwOLxESx0kR0XEjDlXdwe8apAdAwFRTRI1OgyUpArjZcsoSVRKiZIwKgM5RyZFhrnqKqa3bah9R1Ht++SG0UockI2wVuDc3GOK0N8RNAeowStMiyCEUPwyWYcuYg+6S0qScL7QCZZnDMNWAEjBUFVQIgMJcB6jQ82bgYlEowx0XZzyQ7TxT/oJf7/On7pgJLTnvN6ygtvfo33l55Z9jzlzYzdtsK4Cag5ZVaRZyYulE7xw7/5U+qDN/nWzS8yO9DgXETQfJwM1NiU6w24MAYZwrWTMaxtDxaN066PmSfX9z/HgNHeQe+zk0XL0+/PBRLaz3XPvj8SeBNdcn/tKf1j+kxiTz+PvhZPvev9b/xwk2FzVhITZmQTDwLSKQRoAGeGpyYnd3Cq+/t9BiiTdidje4R9a4URcPc0ytDrWSUHut/93rN5wui6pzt2D6CEgU0QCIPwc/qUHO5nQ/8+8xAYXIsRa6V/f+Nwir69Iunxet182IekDTUJgzt5jU3VpwZHer2VpzS+kjcoo2Z42nm73lZ9n+4dPa59P2zz96wo+n52vY+pp/rb9af17AtGzLl9ffvrRKnhOX0GvWvNPXzet8340CJY7xMjJ7VDoqj2GixCBGoGphS9vlMcA5I8axk9Yej7fu/o92WPsfcpYDS1tw9JmLJvq/5Z+8oSRj0hLmoyvCs/nkmu9XGG8gX246vnQQ5ixz2ALnGR7sdNBBQHFa5BiD1iA3tGymwx5xu/9pv84Ic/4OjomCdPHjNbzDhcHHJ4dMLz915gfblmMV9gpoec3n2exfwGjx5+yuOPf0RV7dA64/2P3ufzX/oqTbtlt17z9js/IzMZXWj5nW//t1xeXXD/4UNuLA65uFjx/odvM53NeeONN+m6FqULBM+9l+7RBc90MeNX3vw6P/zef+RnP/4ZIXR8/tXXeevnb3O5W7Hb7JgWJWVZ8vO3fsLR8TGff/lLvPTyq6yunvCjv39IIFLIr84ecxmWVK7h4OCEu8/d49XXv8hvf+t3sa7j1ZdeoXIdNw6OeFA+5sP33uf12ZyXX3mZd996iy999RsEH/jJz/6excGcb/yj3+KjX7zNhw8+YpIVfPc7f8TjJ495+XNv8O7bv+Dg6BbOBUwWCC62swseiTlhktD6CFEYQMJ9h4vda6/PRcr6GXe6+pExBjtCmrvD0Pn6uWC8ZkUsJ4HfEgZh+B7x3xdrdG+BPbKV7hs70H7+GvX3Zw65fqqHThRD5Np+k0f242G8ZvkeoZcR6ykkICZdq8KevQSjZ8WJ7vo62n8Shjrvcdfrd+jv0V+Xqr6vlIx/8OzsO6x3+xcx3GNgc8lek09riTokKgJJcb41MYREGS7XGy4uL6jbim21oqtabiwKzh4/4sP33+eTjx+wXK0IpiQvDzi5eZfbp3cpygKlM7QpUFmGsy0mj/pLKovaPJ2PotfnyzVFOceIwlpL02zRxjCdLtBFnkS4AW+pmi3VrqKrI/uiEAhiUV7obMWuXpGXBdpMyPKSzBSIzlOkYtooE01jW9qmZrerojZQVqZ5zaGlwvgGqSpCV5OpAGJx3lNXHShFlxWoRrGtalzX0tolmg6cx3ctThmKxW3M7BidzyAoJOl/Ne2SthG0mnFwPEcfvcC229Gtn/DB4yUiLVeXK6bTkqZpyXJDmRsWWYENmloOcUaYSEsnJevVirpuEJ8ExCfTGO7gPeIiiuisBR1DcBQK5wKbnaXetTQh0HlBDCA5ZWbQWUaxOCZTBYhDxI3WjD4tiEDQNLsNXVMTM+xqsuKYTGdkEsOGPFE7JBAF9OM4yggEytkR06nCOUdtK6q6graOaaQngqgCraOwesKQojMs0TbIdQTQDSm7ltG07Ya23rFZb9jUkYE0KSeI6CgeLKCMSg5qHCCiY2ikJwoia/FRN0rFZ9kQgewo/Ry1Q1QgaahKSr4RsL5DCGgfBY2xO5xvaKslzm7I6ejqikePPmW1XqOICUyKrKBttuBalFJoHbMq6QSmZqYkzzVG6Zi5Lyi0iSCr0gZvDIigUSiTx3AyZbCqRUlJCB1GZwRjUJIzIbICbGIoijZ4JWivIFh8U7PerHHeM5kcMpufYLSmzB33juAf/+oht+7O+f5f3mdpc164c8hxYfnLnwurdoIzNzD1muXynI+eLLGhY3V1ydnFJaICs3xCkSvmasULJwVXVWDVQO01jTMxIUzkckS7J8igLRTJsxWh29A1l3TtmlIbpOt4fHnF2fKKpgtMD065cfQc0/kxujAUOmqBeXQES7RhEhxdyOimU/R0ksYpuLbGuZCyugWcRP0jpRQKgxeH1irpN2V4X9PVDbbd4psa7xXOeExmyE2BEwEUmc5w2pFlCpWXGDMjuBrlG6rtjrqp0OKZH9xMKeM9zjaJ7atSlkBBaZglFp0FyOJOh3iT6LYO18XoD5f6qRVFqQ19gqNAzNCniOyVaJcrMlEDkyYAOoVPlUVBlhuc7WLo5GZJJ1dM5jUTk5NlJVXbcLW9ZNfumC1uMp0doL3Cty1CBDUsntbZuOnrhUzpGHddCK8fW/7V736Fv/uf/g3zVlhuV1hv8EonRimRbRcgeE8dGiSYaFtkYNsaXKCuajKjKcoJLii8qLjxHMB5GwXck62hiWO5a3bYrmORFeSzY3a2prq6wjc1VYDZdIrratbLh4jKCSYnNxNMVhKUwmMxMonAjxAZfz5KuLjgUWgsAVWWKDlASLlxBXLJos6fRP2uzjpKpfEIDhvnE0DNYv2jVtjeviaRDLKUfZ0UJhxlNTxkHuUDdrdme3lJZgxH914mNwa6HabIoJigyGhsiDpgTYtzFcFFT9voFjGGkBXRfkl+nARJfQhQgkv2lgkxG2IdYlZGHQQrbQpBVsk/d8lvUoSUWb33XxTpneHiO/8lHr90QKnID5gfZtTrK8rPv8oLuWVnW3Ltae0Jtw4XPD7bYndX1Cff5Fe/+U/53h873vgnv8fztwMSfAQegh8ABEkG9t4I743u69/HczIImvZG6N44738z+k4g+D1AEb/bAwjXNGV6Rw+uE22eMkD3YEsYwlz2P0mgQ6pF7wLH36jBufS9xZrKc83Elz1w8fTjn2WmjIzzZDjvz/fBfCPHY2xpJ1ZWSCEafUjO3iiP7Th22K8fcq2NrmnAhGev2u/BR0e6B6uG8+l9RirfGPbqlXv2oMDYmRm3RYIbBgem70uqn6xSu/u+DyXK5d7RY/BaQirUGNQggRxDOu/+mT16MISyxF+r5KX0TudYpyRce1NDkZMH1zuwMoiK9y06gEXPvI/rLdG30UCUSDomQ9uMPvZvZg+2CaGXEkv12vfzHtAdhQX2Hl3viMmeuREYPeMaMNePzz6Usf9rDF7tPdPo2CV9qRBGDbZvxV6Cfv+9oIQ9SDoeS/2dR1UYDzlJ4E/aj6J/Wp8vcSxMPBjYqX8MrKbeAU7A0SAo3rOdJAziz01TMZ/No+Enqc9LiMwB5ynFsNttefToAV89/SruUBAjLJcrMkVcYGxgs93y4PEDPvr4fbT3tG2HMppmdUWmc378/b/lv/jmb6FMxt27z9FUNZPygNtvvkwx/4Af/d1fUa3WfPLxL/jCG1/mxuEt3r//IdY5pkXOdL7g/gcf8vzdlzC6ZH54RNu2tLbl3bfeosxzPvrognq7Rd88ZnE44zTc48tf/CrPP/cCWmX8+jf/KZsnH/DlL9ziBz/9KaumJs9jj3r5c6/x2//8X3K53fLyy69STma8/MLnuLo859MP3yG4hs1mzezogPsffMr79z/iznMvs7xY8q1/+Xusri559513mOQF/9nXfoP33vp52sDwvP3TH6Mmc359cQgp3MMHF+nsYZ9pD+KY8Z/RX/a9MjlZ/dyUgMk4d8nA+uunhf0QkeHafQbHp+aHEAZURkHEIcdPlp5tGXWRolEyAkvDML0PLLqh7AMIRMI2R7xOGT0zjTnl0+bJ0DRh+O0wow87H/vG6hmy/QbNWKg7jOa0Z9eVp54Trn9DKltvGI5Pjpfsfqn7h9evfk7azwEwart+jKdf9gxGSXXTaQ3TSuGdYEPAhYCrax6cneN9jbUN1m6wrefs0Yr3PniX7XbL+cUFOjdkWc7p6fPcuHWX+eIAbYSiKFEmo+sseZajVRQx9t5TbSrWXUdoYTJd4ILFiUMXhvnkBFMUaJVSKwNtU1Ht1mzbGmzMEBuaijZUmOyQLgg2CMX0hHI6i1oaEp16HwSlo7O97Wq6tmXXVBCiqHfpWrQNWLsjl5guXImlsZbGKqwu6Jym6VrWqy27ukaVmqxzECyBDD3JEV8QckWY3KSc3WRSLBCJAK8XjRcLYnCi8K7BhQzRMWRkOjmCySH+xLGrV+xWD9lcbTi7vGRalhzOJxwezpgUOdAxyQ3HRUfRWcRXtCHgVZyfW9dSSB4tCFG0IYLdOr0PCSnLrhKCnpCZnIloHDlKRYPeBAi4yAxitBWWmCMIWGdp2ppmvQKE6WJBpuZ0ygAdNggmiWeLV4ntERBl4oaVOESBdlEHKJ8sCBPHrt1gm4ZqucJ6z+HsCFPOyLIS0VEVzaiYLStTyX8WaNqWzWrDbrehdi250ZTTaUw3LzFLkk6bXFrpNOel8CpxuOCwLgIxzitihjaNUx3BKVrboAHr/GDvG8LApPchRPCM2Md919C2a/LQUmaK1XbNk6srNtUaryfMD+6Q5SaGqFVbiiwnM4FJMScrJhS5QbKC4DQiM2zuEwMqhoUolROCiUxlFVAYgrioWeni+p2JS9pzbeJOR4F60Tmta3HBoVzKquQD22qD7SpcF+icZ3FwQqknSHBo2zCbZpxMZlQXjr/56BE/fcfSqhXbleH0xGDMhIPS4LyJwsRmjgmOTbWh3l5w//EF2lm26y2L6YzFwYLDeUvpayaFQeewrDx1yNh1GXUnkZkTor3ifIfvlux2jyjFItbhdi1n9SWPz59QtZZidsRzp88xObyFKWZokwMBbQTphOBbpnlGIQbtHFk+JRQl3uSEoJOgfYZ1NiYp0J7WuQjS4dHJ+XUSmZyaDBM0mZ4j82OstbjO0XUtnW2xqkJneczepzO0gdxEjT5pNtT1JU1X450ny0vKckrQGW3SoYmswJjYRCsh0/1GcAoHQ1CuX4c7+nXMqbiq6LSxbILHu5osMzgf9X4Iltp5TEgsHxOzDobQEQK4lLSoCxB8h2stPjTopAOmrafaLtnUGzJVYG2DQ3F4fIoyBU1V01lH11YorcnKAq8SABti3WJIu6ZpPdt2wv/+v/0tV2cbrCjWVUswkJssClrbuGJ6Fdn0joAPlgwhdA4jHpSiLEpMFjNAKkwKi4x+iKg4f6AVWIt4RyEGyQVEkQfFZnVFvVujs5zJ4U0yu6aY3qBuLF1omeg8aipnGZlWKQTQJFBIUGJwQciTZqsEjU0uHXGkRgZc8u2MxPcblML7NoaJ4SlURhvSXKezyGILDk/AqAQgiabDY61DiUOJT/aYJ9eaTAda2/Lo0RnbznKymPPC3ZvMD6eosmR5foYPgpUS6Tq2EqhcAxOFsxkhKKqmo2tbjO0ITRvn7SxHtIpzJCkbY5oPffA4FYgi95KWDhsZkUGjJOwzgQfQ6BhdJC7ZKzHbtFZqbwD+Eo9fOqCklEZ3junhDW4dQOE8izKn62rOupq6tYTJKe36MXc+93m+cO8ut37v97lx1zChRSQpwkuIQE+v15kq7kPPQIrf7Q3xwf1L/1x3snvfMtriyfXvvbngB4GT3sYfo1SS7hcGu37v9A9/9+eHI4zs7+svLaTv9qEHkoz4vTO9Z0Ds60LPZGDPaBh2rGUcZgd7uKXHzZPTK6N6jn7ZM0RiG8eYWEHwPlYilkkj2CgUHHq3vG/L5BjJyMjuEQlIrKoEtDyDdOydDQmf1cGTsHUPoiTPXkaX7iGlEe4wchVSS+0dvZHr0bdj/JT6X+ivSy8xgTcusQx6/SPpDZ+B3dWHNTGARPtiyoCSSLrtHkCSa4BF337XQIf9CfZqXwz9Ys+SCMkQ2/eLp1s1jETheyDFyf6Njtv2mqvaO7Psn7Nv/x7k6H+jGF0YHTzpWzneVY3K1gtTR2ZFfw+/Z3mNxsY4YK0XKk/kh1j3VFR1rSuE4Tf9expYFaMyPJNFMOyN277cfchq77qOrwtJjHfQ8B/6U3JyR+/4Wt29j1k9rpcIpYVHnz5gV29YvPYFgvMxCw/RWI1x3UI+Kdlst9y7e4cin+DdmtLkbJuag6MjAp7GNTx+8pjVcknTttC5KKBpo1N2dvaQGzdu89N3fsaNoxPmB4eIzrm8WvJwueTxpx+zvDqn29Y8fPQJZ08e8blXP8+tW3fBdtz/6AM+ePvntM/f47nTF8kXE27cuIXtLMe3bvLH3/l3/KNf+3U+fPdtDg4XKHUCLvDCi6/w+htfYVbkfPjBe/zkk/dxPuNXf/WbvHv/EZfnK4pyyo3Fc9y4fQdjcgrTUmYZn370EdJ68kJzsVoj3nJ19Rhrd7x//wM6V/P3f/PnOGW49fNbfPGN1/ijf/s/c+PGc3zlK9/gb77317R2Q6EU682G3/iNf8btG7d4VuK1AAAgAElEQVTIdMxwFBSoEBAfQaC9vlDfB3RCl559sU/PAP13khwnP/Tq65cO/axfosL1cLgerFH9F+O+PDCg9hk8h9HTh2UJ19YOP8wdo9LKeFkN1+fUIKP1cHQ6jQM1DP0wnO9rNszx47kuDYxhTPZLQtif7v/aj49nJsbPbMvr66+M6jFaY+nrOprrhiPNSf081NsSqRxxA6HXKVHpvQiiFN47QhC8GOrOkuWGuq6ZL6aslhvuf/Q+4jskQLVe8fDxY3bVDqsyFvNjbt99gRs37zCdL4asaJJYFrnKMBp224pdVeFDzPjUBTBBISaKGWNyjDJoHTVCbHAY59jtNmyqNbaNosiKQOc7JnnJtrpimmlcPmGS5YDG2ZSOXcVdd20Eax1VtaVq1mBb5nR412B0TemjMOq63RHyOdZrap+zbQ1N4/Dtmq6p8LamczW5ytDklIsFMjsgy46omi277Y75fIGUC5QqI3vFezrfxTAPJWBMZF2FhqI4wJicXIOzHYhClRPyoqRcHNO2a9r6it16xeZsxaPzS+6d3saHLZP5Ad46bs2nTMVzW+Usa2hcQYVGMCg0ymSUSoaQLVGa4FzMDNasybSmxmN0nsK+Ag0BIxJF2VWIcwpxXvEB2q6la7uU3UkznR+h8iIKEAdF8A7RQuejE47SoKJeoUJFoXeJOi4uxLC9IIK4uGNflguCyWiMxGxg1rPZbNC6piwjs0WhEYmaJJvdhqZr2NqYWKAgY1oUMXQpWGySNPfYGE1A1IVsmgbbtlETRgQRgwWCsigROhffGyZm0grO4tNmqqRwIYWgJaC0QEoW4eotdbVkVhi0slxdrniwveLqaoWIUMyOuPHcF5gtDunaLUpnOBczaDrbxDIqTcgLTF6S6xxtJtg+pD9Exo4XwYUYummSTTMwpaIaGEab/RzqI+MnJLaVoDGiCD6w21a0tsP6Dq1zzHSGSSF/KIcBitCxqhw//MTx4/tRl+zxeUdROs7ainfX0amMoAMYZcgzh1AwM1Pc9Cat29Csn3DRWS4ePWHy5IwnT844mE+4c3obLZCHmqP5IdvGU7UtldVsdw7XrGjbFd5vca4hKM3F5QUPz87obIsqF5zcvsv84BbzyZwsKwii8WlOVBrEBYzSBG9pxWCCQRtFUHE90CpmgQxKaJXQWheBnxRapBJ6qX2SOEmhTt46go6gZW6inm6bRLGtb7D1jnq9xGQZh7dusZgv2HWBiyfvUNuWg8Up03lBMAaPxXpLIGAACQHto66fV4HaWgyatW/RztLamkLniCkQDVrF7HKVF5ou4L1FCHQSUOLQ2lDXDa7ZUkxntN6QEzcVouh5hJFdiJayD4EOAEtoOzwdJssosoKsFDbrLV5ypFiQlVNyH2ibGuNqdGZQWU6WzTCmIDMGiMCJhJ6DRgyHVcInTcbDv31MVhzTeMfkYE7QMXmAEGKWxiR2LqHDOUtQhizE5D/QgleoqcIpDdYhCLlA8CGOoZChJGr3eJEUKkoSwm65uLyALjCZn1DM5kjwlC6gZydkkziOJASCd/jg6ZoOwjaGiZoclWmMUSCG4KMkQGRVKrLB0ohkBIMkgMiBROaVEb33V0MM0TYKAh7rXNKDDNjQ+7Me77rEwIoaeCIQXE2e52wuLnh8eUGjJsxv3ODe4ZSv3zF8/UslK1/w5FM4uTHjXM35yx9WbM8bxLUMXLbMkEvA+RKCUNkuRmfZBoVDKVBZQZ5PYoiwKGLWvZgLF+Km1dAOyuBDIFMJP8ETE0SoxHqKSWW01okdpXDyn3iWN62F4AIHZUG3uaQ2JeCiEekCi6M7/NavfJ2Ld35MNZ9jfeDenWNy1cXsLz666tL7pdHthOAH8c+94ZcQInrwZuzkwch+3rNWkgUZGUB7UKI3hntz8rojEEa/ScZzGLpvuiI9S/X4Q7puZJl69mDYnvXEsJMskBbmBC8Mu7p74EzGF/ef++OaP+PHH1P5JVVl7wn0u+bj+0VdmKRZo8OQoSKwDw0aoKRUz+j87AGkzywUxAa6ptgzAn1SiMY+7Ci2wUARHYvv9MZ9z2Lqd/IHNOS6txLYh4z1567hb1x/X/0O/J4JoNL3MuxeyFhw6Rrc0L+XVC659oShREi815j3pYaO34ONT7WfEA2XHixiX2WfyuGH+vV7Z9fbOZU+XdH3MzXstIVr72fvku1D50BwSahv3yYS1H6MjO4QhGtsunGZnznCEMw16l/7Ju6d6etHD+7tQ1KHMfTUiB4HEO2H17jA+xDO67pg/fsZOaD9ZDDCzQLE3ejR+O6BhzD8aOy8x74VAbF4vz1TEpyzrFYrfvSTH/HqG6+z3m5QHjabNfPFgoP5IRaHtR2TsmC7XXJy7wUaaylLQ7drKSdlFDYNcTEpywLrO/CKtutiNirvKXLNneee57/+V/8N/+HP/ozQbXnw6ac8eviAF176HN/98z9FieXxkwc0TY1tGuzqknw65c7pc2gVeOetn3H37h2uzq4oZ4YgcHB4TJErtpsNJ8cnfHj/A1arC+7ff5em9VycX/DGl98kF+H8wQO+91d/ykcfv0VXByaH/5H7730AeLrO8cJLL3H24DE/+dH3eeHeSxR5TtPuePDpfT736mvcPLlDtb2isy3r3RXTmcG1JbtmQz6Z8OmHP2dRxIxYr77yOpPSsDicsl3XtE3Nm59/ncV8RlvX7FY7CJ6Dk0NC54bMVkN/Cv3ofAZ+uNZnXEQYE+DQq4Ht+4iX/drUAzMxS2kY3YX9+tSDNj0ImYyoEcqxn2skzVPjPgtDZrJ+PKpRvdToWdfG7Wjp8YHBeBRhH+YWAr3QdkhiZDEUZxgdyVgLhJ5mOGYl7is7qsh4Hb22yA2NI6O//8FDxv+V/bPSNDGAvqP5oJ8jwtAWvS0QiPNOSIX2qT/EP0qZ+G5E2FaO2sZkI2ICq80VH7//AY8/fR9jFKc3jvnk/sd88MEv2NQdk/kBx7fucPv2KeVsjmQaZQx5blLoWo1JAPrqak1rHd7FzFxKDFmeRS0eUclBlxgS5SwoR2grtldLmnqHcw4njjI7QJHhSsu8PKG2FSoz6HKCEoXzAW00mTIgHgktrt7QrJeotmIWWkwGdA2t9cyzkp1VVBZW7RRpwLuKrmmwbYV1DZpAnudkB4eY6cuofEoxm5PLgotmQ111BCmZHR5gjMabXkw4ag8VRsUd3QBBhDyBZgZQWMosx+ss7tw7iAzwDCkWFDrHhIJt17Ban1Hf/ySGfYji6GDOiy/exQbH7aM54fGSm3cPudg6LDPWnaILUWMkzuuCkDRhlMarFnFLlJ7jXSDDx937NOi0TnYsGq0CXdew3K7pvCczJVlWYrTE/pKcoIBFiGxJoyBTmsJkaB3QCryKToN4jzhPZX3cuU8ASKcsykcWXZnPYzaqEDDe0zUty+VjunbFolwwmR5QbZesNyvUZIL3Qm5yOhO1moITOvGIcoBDfBzzWseWB41RBbmeDCFvxlu876LejDEYZWhDFJqd5iZqFqGj/axiyKjyFtc1rK7OyHzLRMWNvMuLcx49ecKmqpBMMzu6xXx2g+niJrOD22Q4OjZkZkJR5LgQ6HwNtsW2Lbvthm55zqScM5stMPkUpRVdL4gpOjHH+8QaAUShQ9TNDAlY1AQIOU4coGNKciUo56m2G7a7HWI0WVFQlgeoLI9ZHcURaHFe4YKhAYxTKPFkHqz1ZIUhK3JUnuHI8SHQBosLJN2XAqM1utA0LmBsRpHP8cFimzW71UN26x2PHj3h/oOHnBwfcXr7hNl0QlddcXM6J0wm/OLyId16haJmXhZ8/GjFB5cPqduOcjrn5PYLzA5uUUwPyHRGrqJUgReFeIfoqDuldQSMnHcgARsCNnjERdvGAZlyEGLOU60i88MAyjtQMTxwogVtLc7FkBzv2sGw8kDnLZ23+C46+z400HUYV6FWDm0rzi/PqKqaYnJEW+3Ybq/QWY6ZzTCe2IaExDRN4V4amgCtAuM9212NszVMYjipsoo2BKyAT+LbWhk8HicepTSBqDcmJsNkefxMaicT2SMhxMxdEJlYRkWGJ0XMaJYpja1a1s0alRecHt+jmJVAjWs8q+2WptnQ1TsmkxnFNGOSFyhthuyhSbIqsRU9ksLfgskRG4Ei8TZazSnMFp1FHS0ffSqlfJyDyAGPDw4LZEqRBU/tHYWKvlynQpyD8TEcOMQkBUaibX15dUldb1H5hNnhIbooIuO72SWbJ/aLrA+NNYKhBKVpLTRNS1VvKSWw9ueYvGReTiHLB//TO2JdRfBhb/+H4GlDi1YGIW6ai/f4tN6HIDg6Iieu90GhczGMmnSPEDzWhThPWMuTx+dsrGU6O+JkdsSiKCg1tNbz4OMdH2/WnJ9XvLYJ3D6u+eKNCdvGYFeervUpyMSBeLTOCUFQ2mD6UEofcMHRWkfXbcmDIy8KdGHQugCETPqMuYos7ZwLGlEk7V4XJfpSuJwEAaPQXhAV6+sl+3+3mf4/Hr90QKnzgakO+HrFpoKsFMrplEJDU11xdXHJcvc3PPfK13n5a1+I8ariCUFSjG2LTCZ4b9EYVHCDYQo85cD33yUjOQzQAYOVKCE54GPWgVy7fv/9047q6OiNyGRs7lMkQ8/guW6wpnlQyUBtvgY5CIPhLWNgJE0C0Th4GvTY1/fpr3sHo2cvJcxj5BD3nxmhD3uneQxMjbVcIjU+EMREqCEBTtfbLDkI9Db+/l7Ptuhnt3EfDhd6nZGhFdk7GtcxoqGu8WP6t7fvrz2rB4Tc6FlPA07JSRvBGX1I397xj2DgoAXVe2NcBx+GthmBSf9gzcftnq71IQEkIwcu3q6/v05lGvEbpNeo2kOJA3Bz7T6Syjv+3N8L0t76ZxQzQTEjwKMPHuv/7dlJYciY1/elkPpenwXt6R4SS7oPc/Fxp79nK/bAWo+q9siM7JGcKMaeQiqHWvXzwgiguvbMvl3HjbSPZX1aX2rolSPn86lGuv7f5ISrp9p+AGGl/8bvQfKeLZnKZQxsqhWvvv46z919ESOwPDvnu3/6HV5+7TUO5jc5vXubSZ4zyTI+OnvMiy+9xm5XMZ3O+Pf/7n/h23/4hzgXxS/RhudfeIkvf/FrPPrkE6wNBOuZlQYngSIrOTm5y7/+g/+O//F/+O/JBLwVQttw7+4d3vr5DynygsPZEZvNBdvdluXFOd/7q+/w5JMHvP6VNzm6eYtd0+K6DuVzjg8PKKcF3/vrP+d3vvVtPnnwkKaumRQl7737NlW1ZXd1xV+9/x/46MN3QQWq7YbdtubB2WM27YabixmXV4+4e3qLD975kL/727+MmXPykldfeY0bxyfUVcvlkwf8xV/8Cc63rC+3zKcLGrF4LJvVhupwyZ//xZ8h4jm5dZcvfekNVqtL/uJPv8O8nPP8cy/y9g++x4+//3f8/u//Ie9/8BHf+u1vE7BRL0SBdw5JmY+uzZ29Jk3S/9jraCUdBva0430/GWS19/0j/W/PGoodrt946EffNZZi36/6zj8Myh6o3GexHERTerbpqK8PgvEhPN27rx1KRfCp123bC0+nxw7jdMy4Hc3HMho/A2jTZ3Bh0AmTHmEb/bQfvYP+3nh++4cwpeuNfu1nIZ2/BvrCAAaHVKGBfUlcpxQ+0UDT2qsLOhuNOufjrOW8ovWBsiwxufDOR+9ydfmA7eYx8yKjnM54662f8en9D8mM4uaNU+Yntzg4eo5JWVJMC4w25FlOZjIypai7lu1mS1XviGGZMaNUmRfkWY41MSRNFCl7E4AluIb15SUXTx5D8MzmB+jpgkJliIvskEkxZdvs0KbANpbFwQwbmjgPeIvfnRPaNd6tka6BZkdR5ojStF6oGk3VKZ40jrproGvpmhpnK7SAyTTFZM58eko5PSAvZihToHUOTNi1Gy7W57Q4JrrE6SRyqzIMydEXSQBS1AgJriZ4i1GGaTbDKI+3TWwLNMFasBW7uo5iukaRZYa6LFCTQwo9Y7q4iTKA85yffcjZT3/BfDKjqxzzeYm4BqorTm9mlLsWKU94UkHTRTFajaBUhgsCZNTtljA7QitPcALaMSc6OzYYdMiomi2Pzx9inaWYzimLGZk2iDL7ISoB8Q6f1nwtUeBc65i9t9AZmQGvfGTGpveulKJWgnUOvCcPDteH+isfw8u8i5sCtqHIFF3lOT9/glpe4rqaopwxzSbYYGO4y2SBTaFnGo+WjODjQ42AVjlgKMwEsTaKaGtBfIcqCnzIQTRBOzKEMoXKWRWBOIUn1xEk39UbdttLuq7F2RaF5/JizYPHn1A1NWW24ODwDuXJKbPpMZOiQBcFHmiaDc5aXOYIJo7PTHIypWkRJCux4vGdY7fdEjY7ijxHlVG/RYngvIshfUGDjkF4QzZdceDiOq1RKKVjCJdEIelqs6SqdmSTkmK2QFQPtIGomBUMUSgXxYN1qZjqMmmadbgQMDJFS4FTcf7PFOR6QhcCzoPtHNbFJBHKR1FeUTkiHU5lTPMS5Sz16oJtvWT54BEfP3jIjeNjbp4cMzU5Xmqq+pzZfMbZoyXvvPsLql1HOZ9zevoSxckJs+kBhcmjOLkkBUFlEAQdAO9xztLaBlyLZIbGbzDaEFqHDoo2RHuu9g7nO5zYFPLloe2odjXZrCTPpmjKmJYeh3UtQRIbWyIz0oUI5ykdNyy0nuJNw+X5Qy5WZ6i6olWKoA10NbNJyWKyQJsFmAKDRwWX2EGRyWES23ahc0LoCC6Qm5gcqlMBJTkKF9k8wSMqhjJ2eFzk9JH9P8y9Waxtx3nn96tpDXs64z333EtekpekKFGiTJESacuaY1uOu9OGu5EBCJCHOHEQIE9JHvolaDhIEAR5aATJQzeCRsdtpxMJPTjtjjqttjVYAylqoChxnu88nHHPew015KHW2nufS/VLoADZgqRzz9mrVq1a9VV937/+3/8jxkqJFPjMIXQs966EQft46GK9Q4RAquKxUiVDfIYgQccUxNnkhKKsUUnOIO+SGslmGgDNXIIl0MkybF2iPNiyYlafoowmSTJS1Y2ABBIb4tpohAKvofU/hGs0hTQ+RHAskiAiwGVDPKBqSkg0645CaXB1ASGQ6iwytATIlm4g4rvBRvJHMZ9zdHwDlaR0enukvU2cc40WqMM5hycCeN57LLGITVAKowRKZRgFaAOujsylEhbFAl85VKIwaUIwSdwfhEaEqKukZJMAJ2Ns3boAirhAChHZw4gIBAsZWf4yBBBR4NyFRv04SKz1SAnT4Zij02M6gwE7G3sYo2Pat/dM5oE3g+DaqGS6sEwKz/WJpX/Lg67JZcYij3LnpXfUECu9Nb5hCBIlwQiBFRIVFAkS5y2FdUyqGmYTumKISg1JmiJNB6VTQqBVoSNFNb6MXqYtpzJBi8hcjUytELXufrlF3v4/SHkzKeXwfd49dFy+tMt4OMGLGUJ5nOzwwEcf58qbr3DtaMhnkxHFdEa6uYWvHJ0849bRVdJwkazTgBleEEKDXHIPKMPSv2tuzjLYlA07w7UOrWjTUoib9Hqg/gtc5/aaGGOu6fksg8/VtetgUgvktOlly5S8wPL69e+fYa+secWKcPa0VrSB7NJTXxuFFYgRWsZEOPv7tnOy8cjPwCn3oFYtk8nLBggLcbOPp+pn4YD2p3VH/Exz6/1i7Utn7hcI3q6CobYPtO860vGDkk2+Lk2AEFYn86zG/oOfNrBbzhpWwuD3fO3e7jUva5Wy55p7tp1tGVcCIdqgrWUftM/eirKLM/27l4F0L/ARlgFM/JdkFUzeM/Jnnk/eMwjhnoEJog1LVzBnCC16ud72OuiyBurc8/4FRN0I7yG0ldCaO6wBfkvzOTPI60ExLNPeaHSEwhqQtHZf6xxaNTa6BhyKpZ3wwc8yiP2g/bS/DT5qnkCIlVDuBQlp5x0x3Uyo5dgt9dKWi0GTVnhPh84woyJFbQkchCDBE0uRA8JLLuztA/GE5c7dWwyPDvFlyWsv/YTLj3yI/fvOcfXaVfa2t7lx94hntGB8+5SRLfjQEx9GS/BNeTslBLlO2exu8tHHfwWtDa+++nOyxHI6GeOqkq//3/+ETz37OfbPX+Tqey+zObjAT378PL3+FqbRYHno8uP86MXvI7yjms/QecJgd4tHHvkQqUl5+423eemlF3ny8acZHh1iOgmnw0P6W1tszmum4ymdbheUI0k03gWuXX+H6zfe5b6Ll/jQR5/i5R89h5ZwbmuTYjYjhJrheMxweMLh8BZ5lnP5kQ+zf9/9+FrQ6fV59tO/ysLNmZenvP3Om1gZ54oravKsS9Awng7ZGmzxwvPPIY3kpy+9GKsVAd9//jvMixkX7nuIyaIg0Zqfv/EyF/b22L9wAS0EKBkdn7DSK4sfv5ymovk3xJSU0Mx1EVp7W02Ee+31zDxZgqyACCvbXe5zNHvLWkJvaJmwYs3mRHPfsARq2so06xa0mvMtUL3qzxmANUT7jKWHG9sOfgl2B/xyPY1trux+ZX3rm19zmirOWuh6BvTqAGbZwHJNbOUAxKpx2pv96/eFtbZVTFWNGioC5/xqqWv+27oZAZoKWIJW/BICRemQJqGuI+joQyDRikE34e7xKe/fvMLNa69zfjMnV4GT8SG3b13n4PZNvIfBxja9zR3SfAuEQpmMfm+A0RJjDM57hsMRw+GQorJIrTFaxXQLCT7I6FzbkqqaI00CTuJsQTGfMB4dUVcVeWdAv7+N6XSx3mOIbCrvA95JtFHknT2mR9dQboao5pTD27h6gq8L8twAihLFNCSczqAuA85XhLKiLKco6WKAmSSk6SZm5xxZ9xydpINK8lj5KThEk8Y+nRSMZgcgBJnWaC+xwSFVZNh5F5DOg5axYpaQkS2VCKTMMCqwZXeYF1MQltQHxsMjFh46WkEi6XVzcq0p6inTyYTSQmfjvlgZzyegBF4aRpMx/XwXX8947b33MVKzsz3g0oUHWMzHGCzGevZRJINNDmYwcwbvJZmGID1BJeg0Q8o6MgUc4MGTENyC8fSIWbFAEhh0N5EmI6go0r0KnAM0hWniOUMUV/VNGpc2GidU3AcbZo+3IgZIKuDqmrp0OGxcA53FKAHeUvkyCi6LpkrRfAFesn3+PpTWFJNj6qLC+5osy0jTTtwXhaH2AoJFEtOkpdMELITIPHEhatMopZCUSOOxriY1GVJDN83BOlwNSEFmRCP+XTEvJkxGQ6bzKUpYMm24cTrk4O5t6ioekuyeu0x3cD+6NyDtJkgvcCJqlJlgMVLhdYatLVpUEegXOmqLmC5BCLQMhMTFEtt1jbUl1XhMXRcknQ263a3owwgfQSXpcTTAofNYCcIpgkjQUrGYnXI6OSEoT2Y0g2yAMMlqfQ11TFmJUAzCOaTRGC3RMqbHQawMJqSIDkBzsBuzKVTj2wu0EnSUpnKC0ntqHEIovK/BZwjhSE0PqQJqq0O33qGej5iM7nDj4JBrt27y6CNz9rZ26SWa0WLC29eug1GkaUqns03W2UDKhKKuCTb6NwKJ95KAwBBTqgo7JyCYzcZI4cizDkrFtaGtHua8xIvQlJWPfq0SCi1qnFGkWz0CBi8VQmlS4RFeIUUSq1Qp1bzD9lCTqAfoHLP5jEll0YMt+v0ucniHrHeJhTTMq0XcM0NACk+uo78GMvpZxD1JE4XXIyfFARKpFEprQqvXGgwIj/FRIF83WmEt0ySmhjm0tPHQXSbIEO+tZLRJqRTeN7ugsDEFMIAIgaqYM5mOUFlONthESElTP43aCRyaMlgwBqk8WslGI8lRO8+iKiiLOTM5opPFtceLBCkii0q4EiFlZBBJiRTNvGsjAW8RPs5Ro6Lb4UMEVZ0r2coUw3KKMRvIOj6jTwQ4HWE1FUEKvEcoz3A45ODokLzXId/cwchelGoIgbIsyYRE4qP7a22THt7urREF8SruR14GhEhwwUbgGIX3CutLZkWNL2YoFUi1wegUqTVBSqwPOBt98Na/rludtkb/ygUfWatttfgGdENE/194hxMB5x3H125ipWL3wj5p1iERBikllV1QaYFTGuehqANz56lEQuEyTgsHXmODR6sKIyP4U4YI0ColED4hEQErIuM8aSpfRqW8BJ0FUiGw9SZFOSVUC8KiQjPHpIF+J0Vm/QgSIrAu+mUagZBRKyvTGh80rScTwbxfFCj9v//80gGlH3z/2zz7qU9y6QFBx9TM8j7bPcXo6AraTjCzY3xRMb7xJi+9tM/2Q4/z8YFClTd5+73rbF54FBWOmdw4IGw8xnY/OlJLt3jdm2wMdt3D9PgoDOhczDEPFpZOLmtATsOIEGIdf4m/9yvYLsZ8bRpMRNohLHMSlwF4WAuTm3bj4rcSEI5dbZ38JrBorl3dsDkJDU2qQhM4hNaZXgOz4MyPq38vaUirQAI4i0ZKgbjnWpoxifovClyFFRKBg6DiQrQOOKylALRMkn/dZ5Xmse7xt6HUKpBYPd+a1pJgOSbLwJ8VFCGa47wP3r9lX609ePBrV66HNmFtrEKDvLfvaZWo0s47ln/za0FYCzS1bayBRaxhQ9AKHJ353QdFxNtxaloQ0JapP/vyzkZRZ9/sL46kQmhAoCVQJu+5Qqxs5EyI1wheN2PWClq3onktn2gdfhHtT62pLrskl8ycsyK8zUi3bKiwPq9jI1rJRscqaj64ZoNYga5roNcZ8LCNEM8CPD6s5mYrUnwvQ6nVyVqyUsRa4Lz21FJGmnc70GE5z8OZcV6x61af1ZjHDdCLgBQpSgSK2YxXX3mJH//keep5we7Fi5zf3+fO1eu8+uar7OxtMxsOsdWCP/n7f4//5D/7fTpip5lnkQUafEx7mS+G3Dy4yu/93r/H57/wBe4c3eZHz30PnRtOhye88Nw3SZIOvoQHHniAOwen3Lj1c7r9Hp949lkeu/wxisWYfjdBhMDuzgXGU0e3u8HPfiM/lroAACAASURBVPATXnnxu7zw/ZrH/tbHeeLpZ+h+dcDxyQHvvfk2Tz/9LFeuvMnVq+/z9LOf4o1XX+b6rVsondLf2KAMgf3NLbyzfPxXPs7lRz/KV//4j9je6fLaKz9lMa+oXE3/4C5WajbP77MoZpzbHGA6KU888RSLyYjRcAo6rhu3Tm6gVMLbb7xPCJLRcIxOb3F0epPFdE45m7Gx2WVvf5dF2aNYTOh1Mvb2HuXGe9c4Ai5fvkxZxWpBhCb9cU1MnzPTrp07fskjXK4vobVRsfrmB5bOhrUm1tLgWssQTZKnWE69M/OorYrYpg+3q6ZoTqZa81hqvxFTfRA0e+16O+EDdiClJDi/3D8je0q20z1Sw2VcL1stJSmjVsU6fHzGCsVKWymWIV7V1mwLBviw2jHulWG659zkDPC0TD9uxt6vDbiQ9zQUwLXPBivtNB9TExFEx7xp37uAr6PPoZOE2gXmdcl2p4sMnm43YTSfcjq6wc3rL5OqCiMUd46PuH14yPB0RK+3RWYMJu2QZznJxoDBxg6Z7mIyjfCOonK4umQ2m2HriqJesN3dJhUJtRMIqWIlrNmY+WJMmqZoK5hPT7l18yrdbk7lLFoI6mLOnUWBC5KdwS7WGJTO0NqAFqhFgfKWXHu20ylBFtx0YxyB4cwxspK5t7ja44oSV87B1oRgMVqTZwNkb8Cgfx7V7YLu0iXFUcf9JkRwSKqE4OHwzg2G9YztwSZSRSddugDGNMKiApEkCBVQyjSyBxHId3WBrxaMiiGj0SGL6Yj773uQkCXkeQ/lQCuBMRmh9hycTqgXC/Jsg+4gw3mFl5Fd56yFzFNhqfSAQf8y+e6M8fENbp7c4u7BCdsbm1y4f59uOiNLDXYx41yas6c6zG1GhaGSm8xP79JVFVW9QJgOMsRqSqPhAePZEVnDIiGNfpWQZUMaj/6nEBIpNFYG8iTBh7rRXIyAkPQGW9bUck5ZBEIomc2GjCYjVJrSTbLovwiHFCmp9pAJhFPIRNKVOxTFDFsV+KDIu102tvYIWuFCRW9nHxVqqnLOohhSLMYkOiPv9NEmpsEpkggSmHiSL4NHekeqdQSWBcigoJqSp320kRiVUJYTyrIgyTLSrAPCMFvMOD2+w3h2SG4MudbcOT7m2t271IsFvbzD+b1HyPpbdDd3QGWRhCkCVliMzglB4NyCmkDpbAQAZKxGqKQmkR1ssA1zwyM0SKei9pbKEDoDMcbXgen4BKUFnaxPmvYxOqa7uADOSrKkAZKmMw5vH1BVU5J+nyRLSJr10REiQNH47c43DHmtyHRGmmoIDmcFC1+SapCYWF1OhqhRFQLBeSpfUgcLXiJcYFpXOBlTOCtXUgpNXS5wXgElFS3j3+G8wzlBnW7SHezhZke88+77XElusZjOsEKTi8Dm+V02di8jRA+ZaJQ3eC2j7lfDygxOoJVGehfZQ0FT1568M0A3hxReeLxXEewMAqEiIw4BipjeFGOxvNmXLCaYZrSa4jgK8AGtu+BFU1E7MmKEhMV8yGIxRamUC3t7GJXjcST1lLC5Q6Y77ALORRucFQtOxkNyE5l2RicoBHWINhcT1gLepjgsQcfeJA2DxUtQImrUyEa40AiFDI1+kLANg9IQAavIkonpbQLQ8RBHR+BECI0SEmsXjIdj6sqSdPtkWUZQCo9EeY+Qirr0OC0RToJz+EY0OzTtJgq0bmLc+YK7d69hhKe7s0ue9qIfR6xyFlMTJTJIJI4gHUE1QGkjc6JEBAALGwEJbTI6nYKyNni3QJsUZaCuJcKYyJzzUVOtKuYcHR2wqAu298+jpUanWUxvLyqCkmQ6QfkIegQhqEO0EYVBCREFwrXFO4HUGqVTnHMkATQKHRyVCCTBoLTGA0VdMC0qEjcHLDqV6DzHJAOkiym1DkGiNIgqamcRlgfYihgDRd8gpjFGBpZgPhtz59pVuv0u2xd2yU1KRaOB5SqUBOElznmKEFMAC1fjUSATXACJgyBxaDwaZEFPa4LTVFrgQzxgUaHNXFBIqZDR6UEBXhLT/Do5wVUUlcDXCxZlRT0ao0+OSEVFdzNDZFsElSBD2vh6MQrRUkZNLCGonI8pq7/Ezy8dUHru+Z9xcOUtnnhwi4P8AoPLn8T6MdOjd3nuG/+KmxND0smZHR5yY1Hx4Z0Om2bOmy/8U/7FK0Oy4v8g3/8oJr2Pj33mfrZ7m1GlfB31aT5nWDnt71oQQaqI7C9L5t17mtx+HxoLXwEqTdtLh7Z1/6VaBYqE6Ejf258QmnLqMdgMrUPagCIt02oZcDf4SRTZbcAJu4wg1vCJX4AiiVU7ZzGFmFzR5oELiGKBzcbQgjNnGjzj3ceSmtpIitExncEFCA6Lj6dmbYTfxhMNOLJsre1rix6sOeviDOsjjmGLtqyfvMcNZwWQBGJOqWq1fpqgLIi2It49QsrLy9s2lq2yHvyvT6nINVoLEJt7RzHw9j00YeEa6yQE1oCZ1f3OBHofiHjW+/SLQZ/Vp2XnraKk1etaf4Jwz7/bb55919GU3PJ54osJTVAXQbEVCOM/0FqrtxKjrNBWuadRDzn7vK09NeMY/ySggSZ9iBv5sqcN02KdvRP7s/52YiAog2iCXo+grQi4DCM/MC5nwab2GePzSaL9e5r0uQ+ASa59nOb/f0GaKC1ItzLGaPONsspyTBtQefmM7TWrVEcCWG+RIsHo2E/T7/DFL/wW57Z3ePX1l/jkU88gXeBHP32eG++9zeu24sadW3QzhTMVDz76GG+89i5SbjYVmeLr9gQeePhDvH/zPa7fvMYXv/CbHJweI3PF6eSQJKQc37pNMZ+QpprJZBQ1WpzFisBDlx7h8sMf4dEPP874dMSdm7eRwvIX3/pz/vQffYUr77/D4fAORmhefvVnfPbXPouzjm5i8Eog84TB9jkuBtjauMCl+2f85V/8c5T2ZN1tOpmlKkt2di+xf/EBKBMkBUF08b5mvqgZj4cY+T43rl3jynvvcvmRD/Nv/bW/zn43p98ZMD0esZgM+fizz/DME7/G//i3/zYOx+bmBgd3j3FC4b1kcjphMZnhlKMnDInusrN5PzozdJI+7775Jp986hkOj46iiG6I88MGh5SxCkycYQ3AGFbM0iUosSwC0fytAc2jbGILpMR1eX3NatdCESI1fv2jIAafje2KJl1MtgykdoUQ7arX2mwLlDT6Z+18bvaKVlI6QNRkECuQM65pDUtUtNAxzbPEeS5FwNmCgMIk6XIfXD5/u961Y9I+5vKpW+hNEZZ241f2E1jqHCxXzuZ/mm2EtZ6t9tn2X2KZfHLvltnsZ6HZV87uGDGtLQqUOg/OR+lgJSVpopkuyiiiiSI3YKQFW/HGq6/zg5d+xN07V9EysLM94N1bV5jNKpTO2No5RyBhY+sczpUsKslWbxslNcHPObw5obI1SbfD6OSIJM3Z3b/EntE4q0glqETjXdTR0Qg2tvY4PT3mys23cR72L32ILI8iqNZXeF+xmI/xFoKoWSwK/OImSszJQsC5CtnNqaXn5pUjbp7MmAVNOZ1FhpIxhLrEEVM5dJ6Tb1+AjR162QZKb8W0DiepZYUPimmoUSJWPTImvoHRZMRkeorOM85vbEQ/rHmreZ7ifACRkggdy23bOa4scQ4cklpE4MsET5JrzucXKSc5ppcynQ6ZTMfsXXyAgObWrUPmrqLb2WVjexOvmkOIhj3kRaCoS4Sr6Sc5rppRyRloycbux+juPoydHTE7vM1Pf/gSna0+F89f4PzeFlIWVMWYnf4GVhgOvWCMxUlDkhqkSDg6ucvt0SFS5mTZJqkSaBW1LqTQjUlI2kqrMkA1n+NCidKGygeccDjnUSJppqtDKYFRGV5UqESxvbuNFAlaaJyoozaN91iitooyYBee8WKKrWuyrB+1vb1qNGECoEFIlNDknQ5Z5rD1gqqYMTk5wCaaQb5FnkV9leAqtBaIINFCLrWsUBIhJbWYkac5Ve1Z1BUmyegnfXwCw+kp4+NDJrMhG1mHTZ1x5+SIq3duUCwKNrsbbJ9/gP7WDibt0+02e1nSoaqqWO5dSSrvKRYLEmHJ8g7Sx/TITtqj8p7KeVw1j6CmjOtVDxMPwZQhUYqkDtRmG6kElXNU5ZzRdMR4NqXb6ZFkHVKtkMJCUXP74AbeS2SW0t3YR0eEKtoFguBWPkIM6KMIsg6BRTVnNC5JsmZd9Ip58Aiho/4aEudsDGqbNdSKyOiw1mLrmk7WpZdvYoPBoJBZlzIsMHQwy4Nvi5SShFgSfTgZs5gv6F+6QDfpMpoN2cwGTKqShfPMCk8/F3SVQSUpdfDgPE41a7YPBFcBLmroIdFaRWCmYbwaobEioLWKa78XGBMracngCNjlvhj57IaaANJgREAjMaYTfXsfK8AZ6TFa4uuKW8enWOvp9XbpdjO2s5zN3YDKFbff9dgMfJiypTrMK0eZ9EnTLlU9Y1bOGI2HZEGQGI1Mc6SKFdJ0kHgRSQO1r7EejIi2EfWEbFPNMPpQ1hVQlbjg6GQaIwOF141NSwiKuq7izi5BmqSpGC2QAeaTUxazISLp0N3cbirKeoLTeA+19PjKR6AWhbMSG6KQuNQaF9NHYkpbUBGQyHvsmQ4uWGbljHp2TJmM6PY79LIUVE6qFaWtIktrSZSIxdmctQTnCCh62lCFAiMVOtQ4GdjKBsxKS11ZlNIkKrKcpJLMT084unuAyBO6OzsIqdFOgwvUxYygFKmTzKsZUlgyY3EqxSsTmWMugoYhbrQsSQwh6kvhBFY6aldGdrDwBJFQB0eW5yRJF2stk8WI8WhKOqvI8wqVpRjTJUhDwOKtbeaeilVNZRTUr0NFBAobMYHgOLp9xGIx5fz9l8m6eQTYZIpHUEFkKQVNLTRCShQOrxQmBFxQuKBAuOgrNHCLFwJPl9pDN5HkSlPUcT0XqolzBJG8ogLCE5mQShKFtD1B58hsgRCavpXM/YDptGJ6WnB694hUHZF2BGm3j8k3sD6l8D7G3EoghUMrheD/54DSXnad7/3FT/mzRcr9n/0D/qONG3QHgro+4XDmKOQ+N4o+n/jM46jyhINr7yAO7vA//+9fp07vY3p8FbOz4G/8B59BKs8sCHIRHV0XPfblyWoL/LQfIVrwYRUnN39ZZve0NHbfXCCIlTrc2jMsYYc2+GzAC0dkJsml/hDRENaBrdbpJTQgTgywfQv+LMEEwfJ0twUJQixDGyRN+swqAG/Yr8tPFEK+Fzxg6WW3QWmARgdpDZwRUajx3tLMIXiU1kgXnZPnv/EV/vEPr/A3/4v/ko7KSIXE2kinbsd7NfisQJp7+xVWsElYpog1p+cBWv2n1v1fOf8t4yeeaqrG4V8yRZo2GvRp9XLbRtbYa6EVcxdtMBNn1HrEsYI1Vu8dKZZ9XsNI2hssmWvrnzYUWfF0xPK9r1d1u/elreZ0q2P0QUBn/Yq27VXp8kbc9wNjEts8o21EnFCtDktoA9vGefkFM2v1DKJJ4Wte5Sp1RdCyiGIXmtBtGXzGv8cxWGOgrd9iidhw5lW0VauWr8v5ZQAb549czot7Abp2KJa21xjikgm09nUlgOAbFsdaUPoL2WMf7HfLVGvfscc1mp5xAWpneAuItoC3WFsfhBA458g7OTeu3CDtanRQFFVFplNs5fjCl36LJOmAFzz88GPIYLGLGdPJmK/92f/Jx558gjffeJd+kjKbLciTDt5XECSJyWIQUzme/+53sLXl5Z+9yMHJNbppQmYyNvo73D65yU53wPvvXaOiwCQ9yqLm3M5FJqMJL/78Rfb2z/HP/uwr1JNTvA+EixfxrubXP/N5yFKefPpJvvbP/gndfJOj0V0euP9B8J5iOMLNZjz11FO88dbLZP0+vqrY2dri85/9LZ7/wQu4pMM3/9U3ePmln7F7cZ/HPvwpfvev/C7/7f/w3/HY44/w6s9+xkd/5RM8+/SneO3NV/j289/m87/6BbaynFkx5vx959FO8NwPv08tK7KgGZeWSw9c4sp716hDYDqqAUmaKJSDd6+8TX9zk63egHfeeZVPPPUJup0B5z9+gbquY/Ue62PqW6Cp8BL3hNXcFaybRDz5cmeZhc3Llu3X1wD+uHbH9cA3kkeyTUn1LTx7DyMzrPiRIoTVmtAuNb5te2XxhNUqFXwUDg7N/F/N4dYEm3WzWa+98A3wGvsV8Ni65s03X+N73/kmmZH8+me+xEMPP0aaZqwA32gF6/uzCKvUOZoVya+l44kzBrwG2LaHNcv1uB281Viu/s5yz2gHRjTvyofGaQthWahPrL2/9jGdj8wrozUERbBg6wIrPGma4aQABxv9lPl0zMsv/ohXXvsJ08mYwUYfJTQnBycoAt3uJpNgCELxwKXLzMuKjWSPVCcUk7vcGg3pZF3yPEMlCcPhMZubu+R5H2fBOcGlHY3wgmEdKFFRL8cWTKZjjk9OOLe9j0n61HjK4OPBXDAEZcg3NkiFxBdjnDtAihEqqxlPSnR/GysS3n//daYnQ8i2MCoFN4kaJEmHbPccae8caXcXoXqQpAjnMaHGe0/la4LwZORNuefoCAstmE2mjE6PcdrRyXtLtpHWCo3EyVhC3teWIix4++77bCVdtja2kEmPrJNFFpPIGjw+xMqGBEy3T1Ca/f4FhqMTbl+/xcnBERsPPsy5jftxHioX4sGUaOwkxOAk6/aQDmadQHl0g85WTqWyZvvOyDcu0tu4QD49YH58jdffeJNrVzMuXDzPpYsXGE2mOF8wSDY48CUXupajozk/e+11/NZ5djcukErD3M5xwUEtCMpTuHlk0/vIaBBSor2gKOYIAVnSJUkyvHJ0kARrcaHCa93Yh8QJE1MefUB4Qy1CrOrnIBE5mQpUteBofErtKnqdPhtZH+vLeJKexKBKhXi4WTtJkB5HiUSR6pRkkCFqx6KcMDy+zkxLOp0+WxvnSVMDIbJyygDBldTWIbzDljVzW9Ht7iAzTeVnVOWUo5s3WJRzEgkdKRmPhrx17SrzYspGPuDc/n10Nnfp9raiOLhQeExj3wqpNLa2OCq8iyXrpTLUlWdeFhijyHxN4gMES5CxMqJVBhk8TsQ0pRASlFIkMosVlFxJIiVZtgteYucTju/cQEnF7mZOsAVHJzNKJeme26OYLZgv5uhOhgoRjHY+YBrHJaY9KZRQlL7GIZEWZq6IWlJJhnMOo3sgYqlvpQ1agw5RVD9Ig5cOJSKLVCCjPpUMCGuRIseJBbkX6KDx0oEHKVKC8EwXM8bTU4TRXHjgI+gQUzT76Q5CJPQGJduiR1XNKOclk+kB/W6KyjokKgOiLpkUCoVGoIhV8BKCAJMafF3GKpQuYDRUzpE0DFDnC5QS1MEjgsRgCK7ChhJkq22kcSFW2yKAq2q8lBBKnJ1yPDyiKGt0f5vd7U36meKRc10+9ZDj6d/5Elfe+hGXvvAJvv7DU373dz/Ni998ka+/Erg9HFGXkiiFnSGMZD4fMp7WpEkada6MoVAKE8CJGhUShNI4rwgNmBT3Jo3QsRodMsFLEat0yoAPc6TcQIUIgBNi+q5HgM7RImoNWVdxcHKHwi7Y7WySJhmF8HincEFjRYkhnv5ZFUiJrMUgQ6zOJSXBghYBJ8CqqDqaCIUSlhKLEYY0GeDTCOK60wXzMGWjA2WvT5oZgs8QvolWRKxgjZRRL0sKhBdokYL2+KBQLuHueIpMNH2V40JgUZe4quD2wW1mZclgcxuTZngRq8ZZ4bGuQmhQUuPqilQLjBkwLw9RXhK8RQgLQeIavbaOyaIenXAkKiEQcApsAC1TjPBRY1UKEplRO4vDopVkI93AD/oEJ3AuMJvPUQwxWqNSgUi6eK9BGIKvECJqTAh0dBYkVOWUu7dvYJIu5y9fQskcNGQiQNAoSZz/UuIU4OOYBxHT7QIK73VkXxHTzIKK2kZCgaxjwQUvaqrgMFqBUNgI7TXp9DH9VaGxwRIApwXCGwQeI3NsUGgTSMjZyBThHJR2n+l8znwyZzKckU8O6HZB5RnB5ASRY0OCWoA0Bb/Mj/rDP/zDX2qD/9vf+2/+8NX3TtA7z/Clv/pluvN3ePOn/5Lnv/k8k+xhfvW3/ipfeOYxnvjoZbj6NZ5/6RaPfvRJwsVPsi1vc+X6DY4PSsr7nuHf/jefIcznkdbWCPjdG4xLKRscoXGnRYQKzuBuomEniQiaNOgJEWduq8qtO/RrgetaKZi2elsMEppgU4AIMWh0IUTnRLYOTpts4GPOL6E5jYq4/JKxIIiGLVqllJUOTbwzZ8Gz9rImAAhy9ctl35rMLtVc4kSTPyxiGBOnazN2shWGDdx44wVef+0Frr72fX5yveQ//oO/iZaO3DR0TyWXEXo8lW7Hq3XVxSqIaZz25Qm3lGtPs/zKMgiI3W7+FhpwYpmiJpd6ISvMSIAQMbC5B0hoq6UJEQGX9t2F5qX9QkyHeKv1stVxE4nvrpXCXo7/2n/O3L19poY5EJsPawBWw6z5AEbRLCItsrDevSW4yHI8zsJKq4DyDGh5dliWz9ocbrQR6No1LdCx+nJoxwuWC24QYikSfPY2cq2dVbrNctgEzcRdA2ra9xJEU/mpncuisZXV75Y/tnNhmR7Wthfb9o0Ne/wSYPsgg0mcnTZrFSSXZKJmsNrUu5Xg+lpHVNPW8plW/IhY/nhtbWE1b6OdNpWiWnaUaOaVkrz37jv8w6/8CZcfuJ9iNOPPv/MXFMWMWzevYOuaoii5df0aP3j+m/TzAd/93l+C9izKKQ8+/BhPfvjjvH/tfTqdLt1uhhWRRfLzF1/kT//0q7x75XW8L7lz6wbF7BiJROsuFoUPFddu3+Zv/Vf/PQ7F3vY2jz78EeZ1yaKccv3mFRaLEV/87OfZ29plVhRMx6dcvfkWJuty7twFjm7e5fToLge33uPmzeugNI9+7Aku7l3grddf5eGPf5ROPuAbX/8ao+ERUnl2d87x53/xDQa9hNH0kHfeeQ0nLU7AbDilmBS8/cZLDKfjeLKuDXXteOJXnuSlF77HN7755xTVgvmsQErJU7/2LDdu3+LuwU1mwzEPP/YIz37qc1y99hZFGSnfWnq29vb46JNP8uFHP8zD9z/EW6+/iun0+dSnfpXO5ibWN2f3TdDVzmqJX1Y3FCIQpGoOD8RSC4DgVmDP2lqxXI+I69V60mlcr9q0sYZ9hGjSfVacvla4nmZOIUSD+7Q8pUaTa2WGBBEFGfGh2SaiY7acvxCp1zQB95n1MDbW4GkopXF1AGH5zve/ww+e/wYv/+xb3L51nSvvv8v+3nn29vZBKhwa0aQ7tHuBlxLrXXOg0K5xDZBEPAiRsHZWsHrOdZtqf7VkE4u1bsdl5IzVn7latPeMe4lart1ijZ0lGgdQUNawmFukjA5ihcA6RTfPMNry9ntXee573+TFH/8QfGQuGQnWukhPdwFvOniZ0B9ss3vuIv3ugP72DvP5gjTJ2Tx3nu6gF0/8pGSwtYMxKR0Dly8mfOS84VMPbnN0MmVcOBaLOaEeMZvNKepAp7dNSE0MQIxCilhSXkuJcguY3saevsP89DqZ8iTdHNfd4c7QMR4VHN6+w/b5+2Fjm8uPPUU32yTrb2N650g2LtEZXKLTPYc2nfgebc2yYqxISEyCRhKEQwWBSgzVouT49C6LYkavt0kn32oOthyEGluW1HWNrQKIQKUq+iZhY/Mcu/v3YXp9OtkgpgI0b1FJjWqeT2hQpoMImruHR0yGQ4QynHvgEbTqYq2PgV8DpiJiOXIlVdRlkoIQHEprRqc3yDd2MdKAaYNogcOT5jtkG3v0ts5Th8DdOze5ee0W03nB7s45prMFiRJQntDLax57ZI+NXp+716/z3sENklQhlUHogJQZ2nQwaU5ickyaRwH3vEvS7bOVGZAlynTImrTROiwoPSiRNqL1K2aL0gnapGgtSUyKUR2oHHeObjGbjRh0enSzLgpFXRW4UMa+ErCNc6Xa40cpEBgQTclqJCiNzFIGvT5CaCblgtnsFLeYg1AopahsiMABKSHNcBZUp0/tBOPpCadH1zg8uolfDDk36DAdz3jrnbe5cvM6/Szl3N4+m/uX6O2dp7+xh04SHA7vY6n64MHZ5uCKEFMAtcIoEzVTqOllOb18QCfL6fVzOnkOQiKlWVZaUyECs8JWUA0pqwWhrCiqKVVdMBsdMTq9hfUF/SRjMj3iYDRhPK8QAfKNPkqmeDRJZkiSPGqrZB3StENqUrTRZFmfTtqPdqgzZJZhugO2O/sYlZOlm2iTkyYpmeyQJilamciSlAohm4I43hJkiPo5IlZbjEtYZJp4EfWAos6eIRUG50qGw6MoZN7boZNvErM4oMIhcVShQHsd9zLp0HmPTtpnWJywmAyZz0+x9YxELWdGs/fICIyKgPK+EZwPTYWqKKxNiBW1tLYkzKirgJcpCEFtI/vU4bAypl0pFGgRWV4Salsyn404OjlECsX5vQvsbW2xnRl2OoKeAVUZdhdDvvODNzm9XvHSTUt+VHD3eIFTMatEE+0+oGL1SpOTdHo4KViUU8piDj5WKUdEEfUolhyaFNTIeKt8SVEvcHWBciUEiw/QURoZauZeIvAIFXVyWjaLBZSvmQwPOTq6TZb36PXPRYF4wIe1kvZCEkSzL4aoSa0a1rC3ETyyIsTqcqpl7wMhUMsA0sTy8SqgdEqSZEiVU+uEcVFyPBlzfHSA8lUEQISm9oLKBSoPziuq0lNYmC8WGOHAl0xshulsolSgcBIfLKNiyjs33mPhLf2984ikgwom6g7ZkqAiQ04R08m0NAhvcW7BoNcH3SWoyI40yqCVxhiD1HG9yXRCHSCR4EWNUQaDJygZ9YIa2ZlUCBIVmZkyRP/BSEE30eRpB6UTaidZVI7FZIKtFihfoKVF6BiTCw/Ol4yHhwzv3GJjc5fB7haZ6sUiCFLivMAoEYrC7AAAIABJREFUSSUkyiR4IVEhkk0wOQ4VwTTfxMYykidSJdBNdUBDAgJq4UiUxBDwUkfmpBRIvcI6Iuu58V+UAQFGxTRuIcWy4qeXGi0Vmoo0S8m6HdJBl3ywhVUd5gvNYlQyGY0xxQytPYkJ2KD561/+9H/NL+nzS2co7W+eZ3/7mOPNh3ik8xY//eY3sN7xxklGf3Cbt77+d3hdDPjE0x/ixz9+mxdPNsn+ZcUnP3yJ14v30btP8sV//2+wv/0w9bRES4UUNa1XKHzjEDQsjiWrY+Vis86HaePddhFtja+tbhNJFeEXPssKwFlLIYAl/X/F8ojetWlESkMLcLW6EELFrtwTtLduc2Qyxd/5JkhvK8ysf391viqW6IFs70dzzyZ4btP72sBCNe21rrQPPm5AUsVF30EaSr79ra/y3M/e4/hoyu/8u/85O7mFoCFYdFA02c/LFMQWZFkXcl2dCDdMDBED5Gj6DVuqRTOa4Kc9Gm57vYwEgmhApUBYAkfxJqsYZxXgtJcv08NCQx0Uq/YDjR4GtJlejSbWWgPtl30gNJU2XIOItPhdPNFuNLKWaMn6XIpssOUnqOgEiFg/YQVKtOO1jpS0jxnW/rYOKonV2K59r73vOmwSh3otRatlJjSlgNp0q3Z+tXNv2caSyRMBH7E+9qvuL9/dkql2Lyi2tMWwmsmhOXFZe+crhgbxxBCI8Ofq6e4ZuuVYtEhrk7TTpPSs3m1rq81Vzfcb8EkAwTcYgMOoNKaohrA2z9v7NqmkiLNCwGtBuWjE2CMjI96nxagEbZAslnieBEJTnruoCi4/fJn9Xo//5e/+TwitSJXm3dd+jPM1++cv0O0PODk9Yv/BS/zKx57m8qMP8id//HeZzwoee/wj7F7cp7u1wWtvvYkj0E17XL12FRdqvvClz/GVr75HmqdomaKCoJKBS5ceIu9sMhne4fNP7/Pd577PK6+9yW9+6YuoLEX3Ul5/+ec8/pGPUVvLH/3RP2A4POb9q28QRM1Gf4PR8RE/ee77zNyMH/78u3zuqc9gKSmLAlvO+drX/ilvvfkyV2+8y4+T7/D0M5+krJ7g+3/5De4eHiK05XQ2xBUT8n7O8fGYvU6P/fsu8tu/81f4wSvPMz45pNvb4Pf/w/+UX//cb/LWW2/x0ssvcfX1nyFCxeHhHba3Nzn5vw74/Od+m+9/61v8G1/+PF/+nX+Hr/zxPyDJU3rWoTOB0h2++Btf5su//deQXvIP/9e/w/FoyqSYIVTCX37723z61z+NChKnVrpicY2V+CiFEbEW76JYMOComxfdMAcapfUQ2tCtBY7W5kyzrrSALbBcGwNhmeLZpmSJsFrj2xm9BMxbJm0zt5CR0h/THn0TMMY9qt0LV2v42dTv2GzT2Wa2xls4pAgMT4dcu/IG77z2Irvb51gsPBfu3+fBRx5C6rQpnx7wSq3ZXZv4uux504e1Sp9n0kdbI1u/YmV4a7Dy2nVLc13bTdeuX/MfQqBJL2yfWzRlkMUyPTcIgVGGrGuwOLyFTBvOn9/i5sEpP/npTxke3mA6HTHoDwiuJMjAdFFTFgVlZVFpD2sD57e3ufShD5PkA4IPWOfYv3A/UkpKV1LOCxxddJojAvQyzW88vUPma154e8KL79+gth7jA97OmC0klQKVdmI1M1JEEpnS1DNkMaSY3kUyJ9USn6UknftwSZ/xbMzodIotHcoo8osPkmzchx7fxM4s/Z37CHgWdRkrEc2HlIsJlbMoGeh1NkiSDjJRCF9iKwfaoGVKSAR3b7zHZHzM1vn7CKHLqCjRiwIhbdQkCZI07aFzTUf28ZqY2hUMITjKUKMDWBENTSqztCXnAkZlWFtxfHqH0XhEN+mQDzZwSjGvaowBJQ3SBwwxcCmDRSqJbioY1cHjpKScTGPxArNBELHOkZc1RsRTbV+DlCmmc56dZJvtjR2mJ9cYj0956813mc5m7F28gNwasHNui5s3b7K7M+CzT20xmt/P3GUMSwUigWAQAlywzSFTw2p1jk6wJMIhQgkk6FCzMIokGcSUitoiREpkwcSiJrEysEchGY4mDGcjhC1J0i47mz1KQUwt9BKtFIEcUAQhUEEt/et4UCibvd5GbRjhsBZwllpqZGeTre4G1luK2ZRyeBIZA/kmJh9QCxA24KXATU6YzofMTm6QdTbZyjc5mc147qcvMRkO2e52eOj+B0i29un0NkmzLlKaKLjtoLQBsIhG70WomE6lZFu9ylPbGi01tU9Y1I6yHjFZVMwncxCCrGtQMqUqwQaLCAEVakSQBGkRUtHJuiRK4Z2jl/ZRcoNiMuPo+C5Jt8e57QepvWA6usF4dMrGZkKvd47UGLwUSG8hKJySeBxZUFHvSQiCc8jgyG1KEIJCLEiTFBcCPlh8rTAqEIJuhM1TwNEWO0hFDgJcqOOcgSZjQqEA4zUBgZKeqpwxOrnNfDGjs7HD9sYOSsXiF8J7XIhi7UoprLdk0uBDTe1Lgq/QwdPPOjijWcxHjEcjivmYjf4OJtmI4x8EQiqEsCgRhfJdk5ERQqMfJAxGQmYCSe1YBI8026ANSlRIr6iFQxOQQbEIgbxlexcVh6c3MdJy7tw2W50NFIbgJUVV4mrLvJCczhNmBKwYsEg8vY7i6+8cczCxOGtwzmOkiWOkA7WNFQ5d8OgkQWkTtYlqOJ0cob2k1+8w6PSoaKo4ComznlwZEhHZgrphRaZSokSNF4ZUdUFkEEoINd5X6FDiy4rbJ0e4oDi3dwGjEtrD1ipI6rjbRMIvHtdIPGijCQ6qSC/FiYCWUUtJEm3ZyzYNzyOliPYgPaBRQREk1MqjVYLWO9TOsphOuDMrUNNjsiQn7W0gjSHEugd4KQnO4XVCISATFpUCXlH5qI92MDrm8OiAzY1zpN0+HtBC4EVFsBalVfQ56oqgdDwEsBXOQ3/Qx/p46KZV9Dfq4KIthoDxkakanCchYL1tQJYKiNXYouJWTDOLa6BDSY0UGToYFBYvHQmeTpKym2UEYyi8ZTydcDQ8xd0d0t/o0x8MsB4Oj0+oRyPOXbpIf2OLVCXNAaGK/UsFBZKMDBcsMpUo60ClSG8wQi4P52wrI4Ii4CJTtyGdSAkdBFIoKhHnl5Ueg0R6kFLjhMTRaJ9KFddiFQkOVghU8AgMTmq8LFBINAaNRIuaVBukVHRTTbW5wcw67GLB8WSIPpjg6hskvZxf5ueXDij92YtvU9tzPPt44Htf/fv8/LZnZ/sCj3zkIuO7V3nu5SM2t0veev8GIc35tU9+nKuvvcC771zB1zO6nTGXepLf+43H0OUMoSTex51yJZQp18Lu5nW1vq6IxuVoXel7AvbGgfTRe1xlRTVAU1gLlmNaWeN4hyaNR8QAOAI5jeBue/wbIiPBLyOBCC/GeH3FSGr7HkI8MYuXt4hT62w36UhrQXMbJt8bqq8H9+uJVjTNnmW3NEyrKKPcAFiBzEjefePHvHf9Dh995jdQ1nPfgw+gpKGqFygdRdSkZ1V9qxmTqOe6xvZYgj6NQDGrNLX1E44V4CMiOiviZkdz/rjO0ooAylnNKpbA4fpYrFLKVnomy5BhLdhvwZam52JtTINgqfuxLIvX5tWuui8bAMmvN3qmb01gEoA2qTKswSItVtZOiOb9n3milsnCKkUsjoNb/rzep8YEGsBr+evVOLaRY2jbC6v3ttbUWXAkhqThzB/hbDre6tn9mRuvAjoRWrDKr3UupnnGH8Pac7aAU5vl2zDVWoDoHrAK0Y5LtBkRIojzi4XO2/bD6kfatLnGymSbitaOfVjOk7ZEMIgGww0NLrUaxPXbhnYNaJkOrMLj5olX81KCD44sy/j2t77Jn/6Lf8wf/P7v88JLr5Jpzfs379Df7NLp99Aq5VO/+gVuHZ7y3eeeg4UF1eH3fu/LPPnEk7z16qu8fe0qN957h+TTn2HRG/DExz7EtVspJ4e3GeQdzl94ACU0k/Epd4/u8sDFh/AeLuzuI7zjtbdeQYaCN994lSTpMNjoMjw9wYUarQ1vvf0TDu/eQpjAZm+byWjKhx7+MNfv3CKTCUVRc/H+R3nhJz+gn/X52j//M4aTu3ziY0+QZ5v8/JWf8+DjH+H/Ye3NniU77ju/Ty5nqVPLXbv79oLuxkKCJAQCJMFtKEoUN22WPKvkYYzDilB4Ihx+97P/AL/4wXaElweNHeNlPLZnNPJIlEYUJXEVQRDEDjSARu/LXWs5ay5+yDxVdZvy07AQ0Re3btU5medk5snf9/f9fn9/57O/xN6ZC/zP//x/oDM112/eJNUCHGwPN3FC8pnPfYb/6X//Z7SHJ4w3tnns4mUEKffvHfDw+vs8uHkdJQUP7t2myCUP9m8zyRL+4A/+O5588ipf+dVvcHh4yLys+MIv/hLf/KN/i7AJSsPs5JhEp2wON/knv/dPKbb+OW+++Tav/+SHFMow3d9ncu4csl+viEs2EkyQwwqVBJCl64KZugqJhKV/nfP01WqkXwGJ6/PuFC7cr18irq8RNRdxfOPD2OqTJTyClcrlyAp0dhFp88vnAEtnpX6RWDbAS/HI/I3PLdH3O4AvWE+qBFsbG/z6r/8GqfZ4K3jjzVcpihEnJwuSwZw0ySO+JUPUu/ac6nGq3ilu2YHTy8hyrqy/26/sYYl+ZE1YfWDtuOLU39Zw+tV54k0Jkuy450BEIA462wWLBwcbw4TOOq5fv86//sNvUZ98wPZmQXX4EC0TrBDMypLadHg0xWiHrb09Lj72NBuTXQyOpmpIpKIoBpTlAuttZNPkyEShBEwyzdZA8crrB9w/mbPoIEkz6vKQ/bKGJARGhSiQKIzvEF2JrY+gPkE1M6BBqZxsdBbjE1znqaZTThb7qGxMsbGH3h6gkHTeYVyDRLOYT0kGo1hFK2EyOU+SapxpWVRzqm7GbHFMO31AqjMkGZtnzyE8TI8eMD16QJIP2d19kqqpmc7vMcgzJpNzJIlCaoF2eTRet6HUs5J0rg3MAu9Adhghkc6ggc61CCFIZNjQHx3c4mD6kCTJGQ6HZCpDJINQCU+I6Gu53OxhvCPXKd55dKJQcV0XDCg2z7JRDBmklgcnh+yMtmks2LbBovCiwziD84ZBmuIH27hBSaYn1CIYtL/x7lt4C/cuX+X8uV3SrODunVvsnpFMRMPZbEBpBQ/mlrIT6HQQ/DcI1Z+c8KRJMG1NbcWhOAHhSUijj6VGygQlCHuVWCHLe6jqBdPpMU4YJuMJhZIY39G1HWmeIVC0ogUfGBmdtHgnSASAocWixQClBR0K7Qs0BoNGpRIYIYWLZesbsiQj3RziOseinDKbLfDzKZvjCSINsrPu5D6tLRkPJhyWM65de4vjk0NGwwFPXn2abLxBsX02sHWEp8XRuWBKbXyQ41rrwFqMFXhfxvXV4kwXTImlpBNdkKJ4jZUe62CQj2LZ+xSlJHkR9hhap1g3R8XqVypN4gowwFtDXVYc1SdYNJMLTzPJxsEXxXac3blCdw7qasHR7CaJcST5NuPRGCUSpDFYwEhQIsgYlRdoLfHO4UTCMMlDdUVv0DJFJBKpBKZr2FCekzZ6XwiP7drgqahCST8nFBZBLoNHCzZcI0NLeXLEbDpFCcnG1hlkXlA5g/KCRKVY34J3JCLFe0UuAn9HiQQpNFY5Mh9ANZmP0DpjPNyhaVumiwq1aBhkCfkgJ5Up3ikckCiJoEMnsGhbvEnR2pBoUNLRdC2NsQxo8U2DNzWNd1ifoLSgdg1aKar5jOl0ipOerfEW4zxBKknbAtKipEeLBK80wlq88RzNHFujEReGKfOmpW5rJllOrWBhJa2RGAzOB9BlkAbmkhASZwVeC0ziSF1C3cw5Ojzk4MFdzkwmDEYbqGSEUQJjHR6DsS0OTyKTAP5pS2osmVYY0eBw+K5GGcnB/Ij68Ag5GrOzc5EkymgtFmstrTd42wWZmQ7tSWQwZu+6IBXXTtAJiZc+7i2C8kKqNCxrLtjCCAKTRqgg2RNeYFFYbUhFADaU6RhvZMFQWmjqpmZ6dITWisEgY5DkGB+qh3orGWwKtHeYaYNKG1zbcef2TVo/59zuHgiFNQ1KKryLwJAOHpWudegkW1qbqCQlzzSLxtAKgteeINwLJEKq6D/lg+JHhnhCEMAVJX3I/Kq4/6DFuZDuVR6sMBhvwEPmBTgXQBs/D+tkbZhXFe1syijNYGMHU59w7+F9lMjx3jEZF8i6pWwfcq9uwMJomCAHQzwCoxyIJB6/I5MJBkVLSyISBBoTY/EET1s2CFejMwXDAuXDvTNOk0sJdKACw0j44D0XKsuFfaaOvgjOdDjf4bMhWg8ROLxTkENCqE7tfWCCCQkyeN2QiYRcKwrlMHmGGG7QtinWbLC/mP/snunf4/VzB5Ryhpx/4iqzt99kpj5Opl9lerJPXZU0FtRowHDvEoktuX/nLgub8/nPXOJPvvkDWplS7d/kL777fb7y+S8wyTx5pA4G3BZWAfAKuTBAQg/SsKyqttwce7f0M0KEwG9VgcsFozTvoiniKvD2EE3BYkUpETevRE8kH6sPeBFLulqWkIAXIILuVsQAtZcAuSUKEz8X5Uset2JOETO5a6wSfDBjtf1GX/SiunBt1gPx8J0eLOk7FHfXMkxG4XwocRuPkiTnePxTf5dnPvRRbL1g9NhZOhqUDNkWRVjQQgWDaFAuVhDRsiJQvMYhPnHxeq9EcUsgBlZt6/soBKH0/PpNYJlxX0oQInKyBgssRWDLSnVCBCAvyvTWuWt9O3wP5PXn6YEnsYJS1oO05e/9538mhlkPf9Zf6hTIEP4eQtNHA8u+jb0kbsVC6O87yxLXp84Vf6yblEdYZhkYrTdTLM/klpvtdWnMWjcfaXf4eboKHKc+ubx6YtWm4AUjVkBV/KcX3qxHdn1z+4C3Z1n1YN/Kr7sHcSIQJRwsQbrQod4QH8RyiK3LAT2hH4pAXRUuBNTLO+SXZlFLRlhPifNLQ/+fhblE/LwlAFCnhvra3F4dk+XvVVmys7XNR579BFc/9CyWAdJbvvTlL/PySz/k9Zd/ysb2OSZbu9x95y0+9uyHqCtLsft5fu3X/j7f/s53eO6Z5yjnx3z5S7/MtXfehCTh6oc+THVSUQyH/O43fo93r11jUZV85JmPMJs17G7vYpzDYFBlQ1t15FnCg3s32Zyc5ZVXXqTzNR7PV778VerplJeOj0B5NkYjPv/VX+P//r/+T6S2zKctepTzb/70f0NlWfCF8DOeevIpyrbDuob9/SP+/E/+mJd/+COSLEXIlHN7u5y/sMeNt99mdvyQlooxKccHM/LOMt7c4OPPvcBituDNV17i1o1r3Ll9k7NndjDeMDu+R1e3SC+Z1xYjBDfv3eF//O//W86dOYPTmt/+D36Xv/6Lb6OEIB+O0FpjTNjcyXzEx59+gcXhjNY7yk4wnZdY94Dx1gZZknB0NGV7YxtkBBedx9LR+TA2bd2SZ2mUJsQ1RYUs4hKwiGOoryoIIWPn+8EtVgC8W863+BSMYKnojxVH62qOrjFvZMzoR8bccj0J6GWcBuGEPRDL2vHE2qgWBDmpxIHUWNfRyeCXUBSbjCcX+Ktv/wldOeX1n76MVgl7Zy/z/Kc/z+bG1lLSGYb/imXpXFyH11cbsZz4y2f72uKymnA9yPXokrvaIqzj12u/L1fauGldndu5kBlUIlRvcXiQEqUVWgpU4oO/imn54cs/5Tvf/jPSfMCHrp7n5rV30dkQoTWm63AWilHGZLzFuQtX2N7eQ+sEK8PeY5AlJCrlzr27dNawu3EmjBkl0VKQCkvXtlyfd1jvyFJBoiUnixNmJ3OK4RZOxXLjtqVtT6B5SDk/JpeeLM8gG2DTbZrOUM8q6sU+VbPAiRGD3cfJ8nEove7CPke5UBxkkBSU9TEy0TErrMA46nqBEIKimDCWEwQe0zXM5icsZnNuvHUzsH2M5+K5S6SDEUpoNodjzu9s42SGiWb0DjBCBEYKwXvJW9AeHA34UOLa+RBMdNEQGODB/l0e3LtDNhyyvXU5BDK2wesEJRMSH4qzCEA6AVLHiaUwODLlSH1Lax1tW6GERhrwSOaLKUk75/jEo5IcqQQJoAcpUhQ4oCpPmJ0cYMSQrb0nGKQhMz7YusD+/Wvc3j/m3Zt32HvvLOfO77BpBSdHD9nd3UHUD3AnJ4zzLaQ6TyMKhAUvOhItqLA40ZALy2g0whpHiqC2oRy2l6EohvaBPV3Xc8pyijEtk+EQrVOMqTAuePD4QmKtx3iD0gK8wklBLkO1pvAoteRS4ZXCO0EWc5qqk0gSam8JiUiDFKBUinDQ+RYvDKNJytYkp54f08xu0QrDaHML4xvOjoa8/t7bXL91j61ixM7uJTY3J+TjIJ1s247WHofA0nd4q5BSoHSCQIbKrt7jRGAiCBUq4aksR2kV/ubdUtqphQqsHNczmMI+x4kWLQXOWrxMMbG4h3GeFEnb1MwWxzivGA3OorIM62SoHEeLElB7EEaTF2MGucK2nrZcsH9wwiAdkWcFKh3gvSKYrHicl7SEsSxxWNsSOJoWLRKEtdT1DKUX6ESj1BaoUDE2STO0KHAEnxktBZkU2K5DqARnDWU1ZVoekQjF1uZ5bKwQLqVGO4dyHmGaYL6sckCjhacxFdZaVCLpvEFZQYkLJtESvM+Q0pMWBclgCK2lrU5o633yJCEdFKTFECcViVbkeYExNZ1UeOewDhwGb4N0K4XAPklynDEo74Kk3DTs33vAfDbn3N4eGxu7CG/CdbcSrSXS9cQCiTMWo6HzAQRtrcKYjodlx3zRsegynBUo6fHShMqkLvjkOXpPXgKjJFZs80qSj8aMBgWlh5Oy5vioIksNw+EIrTTeS5QahWeScCilSOgQuUalmqZ1JELSdiV3Du9jhGD70hNkaYoWCc5bOjzOORpv8HgSqcOzXUikjpXNBXillmsyUiCswCsV9tHOB8ag6FPwOoCPUpKglsxjsMF8OsrqAsQUzKi1VAyGG9ikoO4qqqphVi7ItSJLNU5ohMk4qRsOywpx/ID9w2M2h1vsjvZocMhoam06E+drYMoJ7xgMUpwXWDqG+QDlJK01OByF6xDeYrzA2T5mlNHPMTCVauNppMU7x4CEyne0xjOf7iOVIh9tBFBTEivVCToV9jfSgEwCkOuUBhTCCRa6oNjYoCoPqY8eAoaNvSdQyZjWOcrpEfOjIyaDhNH2GWSxSa5FYKrpnNY4dOKRTuJ9MKA3mIgFJCgHKT7I3rzFDAXWduRJgo6FbawX0IJRklqBNwJtPV60kashUFJg6MJmxXrKEjQGNfAIXaK9QciExkgSgiywoyWJez8tQpEWi6eToZJv27TUR0f45phB6kjzET/P188dUHr+c5+laTvai7/Fb3y44Ec/fZa7H7zD+aee4/wW/PTFl3DFLht2Trp5lfLm9/mzFz+gFZq68gwGBSfvvciffuuP+Ltf+02sCpttE6PuVaUXv6SnK8DFgNT1QMIyQgsbZ6lWu80e5Aj0kHWYysUgNGwspQiBuPN26YNiWe1q14NCSwCJPCJmkGPsKCw+bpz8cucbzrgegkbSSASuxKkYfT1QXf8Zqvr0TfCngJB11MOvnQPAu8Cs6k8qhMQ4uPj4k/xKArPDGWeuPs72zhbSAD6YWPbXv2+flLEqQY98xGx5z1BZ+Vb151+BCaF5ftm/cIXi/61riPrqXn4l41vDElev5fUOH1j35PDWrgCi/kILvwzDYN0nYwllxbESrqETQV6IWF3aFVBxOuB6JFZhBR49ck96xpVf4hPhd9nDMT4+AP2KKbX2+VMn5XTQ1Es7T5lc932KJ41CryXO2AMbcfTj1/7r58mp3p6K8NZOsBy+0Ucs9lP6HkgJjRAET5/wckDIOIZDiNV1wq+YQDHolGvn8/D/w0QKYO96mLoKGt2qC0LghcL6kB0OfooC6U14iKAiYLsa16cMveOQ6uffutk9oVf0Ifqj8fJqTsUVyAevMaU1zz73HP/F5f+Soki58vgTvPbGa9x8723efe99Ktvx4IM3GO1ucvdonzMH2xwdnPDCpz/H4f4Rly9e4off+x7H5TGvvvYyL7/8fXZ2L3Dn45/ENAvKWcXHn/8UX/jCr/DyT15je3eTza1zLOpj7t3f58a7b/KpX/4l3nrvOrdvvkHZNjz7/Oc5d/USne84c+4Cf/gv/w/u3buOGmpKU5NMhiTFBClhPNqgcwu8cGyNd1BywMO7d7lw9SmaxZyyLmnre1jXcfv9d7l84SLbO2e4dfcGX/vab3Lvxm3eLF/BItFZwnBrwv6Dh4xGG2iZ8+KLP8bbkpt33ubq00+jSXn/+geU1QKFIC1yZAdWSo6OjxmPt9jfv8OXv/plvvGxZ3j33WuhSlCaMFIC4yyvvf4GT1x9gsVixr0H+3g5AA9//G/+BRujM/zD3/nH/OSVH/Gp557n+u17mL2aixcvhEIFQuKMw7UN3/yjf01WjPnc3/ki40mBJNC9rXNB+rsO9srwvPHWr42rONbkGsThOcVGlBFM8n75ZKE3gGU5H9ZGfkRklsKxfuAu/7x65vRMQrGcIKeRmqVLmjUkQuNN8Pf4/ne/y5/+8b8iSWKZZSW5ef1dHty7y5Mf+QgbGxssnZ3kGiO4Zz/BKcbQ6lnnl6BtP4n6nkUYbLl+ri1Oaz9W3/Xrf49ztgfFfVzUnQ+S5ERprLHLL1rnorzZ4TpLVRneePU17t25weXzWzS14r23XmdxcsLZixcprcCg2Dl3hTNn9tjYPoNOB0jvaOoSJyRJmuKso2lO0FpTDDcDa0YJjHRYY1mYLjBXUkkuFW1j6RYN3ktGk3N4V5KYivnsIblboF1Dmg4gHdBJxd1pSTc7ZlAkVPOSeTvHphO29j5MMd4FH+Q4yuc4CV1Tkg5ypB6gRcGinLGYHiCFIhsU6LTAkAcQtasgfPrSAAAgAElEQVRouxYlJJ0QiHzASOVMJpvkgwRjOg7uH9E0hmIyRIic1muMbCEGNAqJUx7ru1DVTGgEoWS2wuOkp7EW7YIHpfeWcnbEyewIj+PchYuIJA9AhAvJriApl1gfsvlYiycUphDOgfW0XY1xlhbLtJmxqBtGRYHKxqESTprj2orRcIjWA6Tqq2x1lOURZR18g4bjMyRpjsNRtk0ApxmQFmd54kMf5ej4DicHd3n1zWu8f+09dvd2QBV0TcnmRspw4CiKGXcOHvBgbkgnezg9xIoc4Tq00NRNhSOL1sCOhJB5V0oyrypm0ylWtBSjARvpODBaPEg5wHlHIjM6wAiHSjQDpVBJKCGtPRClRzKa09q41nhjybXCSlA4BjgaG4JzpxzCWBrXIrwnoQXTMqumuHrBMFMUUnP39g3u3P2AlIxF2fD4pcdJJzvk2YDRaAsrJNJZBqpAaI13FlxwvDHOxurKBM8ypRHSkyQ5znpCxfF+3+sQNsiwnFIYBMYTfOecD6bIwuHVgBYTy9s7hukE4YIP2bQ6osVTpNuM0gyhNZ33OExgScXV3NsWpcKar0WOynJGyYiB8wHYmR6RJHP0YAIJCCdBOrTSYZziwdsg4XQe4ypyEmSmGWdbSHeCFBVa5mglQScByIhrp7Wh7ciWRXnCyfExTjmGxS6JKgILyoUi5aIL8igpPEpJOh8Se1K4EGjqAUZYUqHpBMHXUQuwwUvPSIvwCuU1HZ4kS8gyjTUl1XzG4f4+qTpiZ2OEL4rgUyWTwJiyFlqB0IGNU3ce3bUAWBOS1F3bUDXH1PWctNjksTOXUFIHY34lEQSws3EOLRXGe5wIYL9EgnMYa6k6z8MmMP5an2OFItUBwEFHAM5ZjAtgjvKAl0s/U6WGCNeEZGICQwtpOkQbw7Sp2T+uyLQgzzMSKbEiAJGFSLCipnMVvhKYznM8O2Q+3Wdr+yzFYIxUwXOoNjY+sy14gfbBzMF7AuNQJiA6OmfxQiEcSBQdHu0JRVZ9ANxRBLCMIBe0zqB8SARYJXBegQrJGuk1nuAZGR2GQkVWOpy3COUY6ozMKZq2ZFoeM5uW4DOe3rrArFmwf+uIrrOcu3ABIRMqY3BCgmuJKRecBWklmDBH63mJcaESY1kvsNZjnaGsKjAVSZGQJQWQhj2DDIWhEArlBCJxNNKSKg1OItQOqTfsjLdJ0pRUSIRIWSpMhMIIH9iW3oZWJbGCn7X4psLPFpS1hbxga+MseTFCJSmpSrFCMDmzx8liTrdYIKoFhTsgnUzIxmOQOUKkGC3QSiKsBaVRPniXOamRwoILvsoohxcJwkmsAOEsXgEueilFRq4ljA8hHMKFuEd5EVh1yzhTIqXDW0HjDIVXkeZRY2gRVoHqMMaB63Bdh287umpO2y0wXYftHNYbpm3NvG3Jyoqf5+vnDijtNO/wgMt8bnefg5Nn+P3f/Sov/c1VsjM7NLOHXP6N30YNt/DtDJznpW8bvnN4iJQFk7FE6h3SySZv36y5dtLx7DmFt2HhEN7GvWEMymUvr4lyKr/m3tLjNstQTiw3lCtwIUrnooSlr/DiesBJBGGRFqHELN6jhMD6MHhVz1IQAnyoFhSAA0twjQ+X2BMCjgCsS3qd0wrzigK9PshYj437vbTvwRlWO+cesIlfkUJGjGgF1ISr5SKQ08u+fECsRdh4iRjkWy+ZbJ2nmR3y3hsv8nY64tMvfA4l02AmLu2yzT0gIoVcA9nCqy+7/rdVe4PT/kV9H/2akfF633tmSLyrYfFcAw9EHyStAwqCFWhID5SETYWIzfAieuZE/OqUrEwsD3MKFFi9twak9Kddi2Z63thyHIoVIBPeFo+wleK3lrK7PnA8zVxZe4ceBFu+L8Tq3vv1Np4eTium2FpQFt9b+WA9AhCtGh6PEY+6wndYl92IR67S6ttrMFNs65qfIHF3uHauGGz33xSr/i/BMx69Yf6R/p5ufu/rFYLX06wEJSRNW5P4ULmx6Uo8kkFaPHoJwveWwEC843GcnRr3YvX5n70i8RUZKb0a0jqH1hrnHJvjDZRWdLLlYx/9BW7evMHmmW3KWzOEEuzubDFMR3z/h38DyvHlr/8Wd+7eRiQDVOL46te+yvmLV3nqI8+wMdqgtYbtrR0cYG3HdFrTVDWpTEm0okgGTNIRG5vbdAtLZRpQsHf+Im1nePaZT3D99nX+9I/+FcbWPPXUU2xsn+HWvTs0Vc33vvuXiCTnS1//bcpZyb/75h/xpS99ldfeeI+D+7e5du1NvvKVr/LC57/Ij3/8Y1783l+xf3ifG7c/oO4qnn3mF7h9/Rb/7s//XxLZ4DUsZsc8/dQvYJyhWswYjSf4xQFdJzieH/CD732fyXDMaDSkairqOmTideJwXrI9HlOMxjzxsY/y9V/9DcrDircO30ZIjbeeh/v3+f63v8VL3/8Ru+cusJgd8nD/LtZL7t95H1OXNOkxx8e3+Jf/y3/DretfxxvFM//J7+GMQwpBWZX85OUf89bbr/L6Ky+ikwFlU/IrX/46G+MxXsgIGEVQopfBeXDWRhaoX8qJA1OI5bIhiV57a2P99Hz72QG/DrpAYEIqwYrNGkFdH9sTPrUmhfNuBWL1tF8fAVVEeB4rgiEznrffeY3OztBZTmcMQmguXXmce3du8fYrP+bC2fMcLWo2JxvBqDP6KXkfA51TBS1FP2FjGwW9NvZR8GgdOls+UtZwMBGzO8vqoLEPfeIjJoYjizl6DkloWrs6ZjCsYD47wXYNwyzl/v073LjzJvt3jtk7u0NWaI5vzBgMRpSNIRttcv7MBbZ3zwYfJDzedtRdy2J2yNbGWdqqpW4rhE7ROsW5DqsU2A7TWfpqTpnQ2M4yXRxju0hndzVuPod2inEdtBa1VWBMzrTz2K6jmh8gXIuShqpuMFnBcHyebLyHHgyxxiCEROkMIUEZg8kkMhHQhtA3QaKVJi22UL6jaU9wxuI7x6yeM5xskpLw4P4DxufOkhUFIZz3FNIzeGxC7VtMVXE8v4/rOrJhQVZMENkYKRVYhxSxIqYTIC3SQestzpiQ61OOsjxgOj/E28AsTNNQ6S0k/cBqiUChjKGqZ3jpybUM0g/nQkAsJFKnQeomNVLAznjEOZEENrzUZEhwhmx3CC4kFduuxdQNs2qOVJJivEuigmzJhnJz6DTF2eA51FlB4wsGw8cYbV+lqo8pH9zg3v273LvzgO2tCXtnd1BCY+0x0ix4crdApjOcUpx0CXKwSWPvk2UZXmahSpmxoBuquuLgaI51JdkwYZANwAps22KwqL7ym1AYb8HLsMarlESHfZ+TBJ8VEZI0FhBIsIa6rbC2wydZKETgoKXGGI/0gsa2OGsRvg1MxXZGJh2ZUlghmB+d8MH9B5RtRao1w41tBmNPnu+wOdkhzSUGTyY9So9wXmGcJ9Eag8eaNtx3BzpJA4PDhepl1rdYG2Xq0SsupJTDBJeSYF5tHJ03oMJaq5SitTFB7BVJmtM2NfXsgIOjQ0bjCePxNp6UBon0CrxBCo3wEifC/lXpPIJLCQ6L0RLfKrySFMMJNskxtqatpnT1gizPyTJNLnN0kgESYwWLukEBUnl0ItAqpZAG6RImgwFKhz5bKegZ15KQMD06OuLu3ffRSc5gtIPKB7TBdCP46WCRSmK9iKwohbMerUDoUFUr9RLjYShBScMQRSsCYCOURrkgJQp+q5CIQeivE/hkxHBrwsCDMQ1H5RzKBcOhROgUoQqECJLoRGVhnZECleZ0xmIIEsmqKkm1YrS5h5AJRrY4NNoJkAItoBMOoQSoUEjI2OAr5T3MrcE2Epxk0UHVelorMEKhhIzWpi5KJ2WUt9ogcRWBARa8oMCQhFJiSQq+QYgGp2AynOAGksZUzOoZwhyD8BT5EOMHSE7wtuXg+Ih5UzEYjLh4/iJCKYQS1JFKZLxdJdwJ63gARIOhfbDvtnjXBsN4meKdRUmDt2EdNi4yjDwI4xA23C8rLMZ6vGmxQiFkDqoDERhAzodnm+7jMxyeFo/GO0HjO+q6xLQNaaaRg03sfMZbb73P7cO7iGzC1uZ5TGvprMXSomVClhconYMzYb+hEmSa4hOBljqY/HtIhCCVAYQbb4GXHiVBoxEiwQTPalQEkwyhAMgQj1KBcYTQwZLYi3ABjcUpkEIHMNyDIahovBckGJq6ZFEumM+Dz5AYJuzuXCLJdGCmqSA1dUi09wyEYLxRYK2kqxqq6ZS7x4fo8iGbuWJUbJMMRngpSZIskA0gyNVkiFelzIP3ojSBbeUU2sfEY6KRmJDkUBowCB8rxzqLFLHSoJAon+J9h6PDW3C2Q3UtmZFY0+C6lpPpA2w7R4mwApZNhzMteIs1Lb5tMdYjXPBLM1Iw8h5kHtRZP8fXzx1QeuNGyd37L3LjgeUb/9lXqW6/RicKPvHYNm+/+DccVCOeOr9DYR2LquP55x/j/fcuYD/yD/ho+jo31TNcPb/DCy98ir2sozfcE8jljUP08re4XY7ylCU7aRXOL0GK9YBvGfD3gaX0BI+YHpiKnYkBs8VCRMQD9rKWUV2ew+Fti4iUaoUOLjcehFABvBIrregS3Vo/EWLpqXOKmu9Cv/v9du/hQQ9A+ZVb1Mrgtw/qg7ZWRv1sb6PtBHhihSnvAmXSOrYHGS+/91Neer/kK7/x95i3nt2RwlobwLC45ehZJ54e0GF5R7wLjV5SGB8BllZgX/xdEMqt0vsRrR873r8lm+pnkJg1tsgKyFhnioT7vW5WtDYmTqM1P/NaZvR9rPYWcbyelHW6ZzEyWR47AntC9NW1w0lk7FkPpPVt9eEGrkCTHsBZAynEMjyMKjH/aCOW5+8DzvDAWgc1VtdlBYqsX8v+NP24Whe9RDQOv0apjRflbwNMeubXo3BKH+CtyWrWiXk9YBUOfbp9PzsG/M/8WAbZy7HmWX1tNQb6X2UELhdlSTubM96a8P77b7O1vcv5C5fAqaBRZiWnXFa/W967cDApewlrP8JCH6MUejkKl1dErNYjEZmA3scHf3Td10mKairG+RBhBUmacnnnKs8++2mc9czncza2N+i6jh+8+D1++Utf5/yFi+xdeJKHd25hrOf8Y1dYLOa8+P3v8HD/HlmSs332LJvjTYT2LBYzbn9wh7t3r7O/f5v7d+6TiZCl+/Snf5FyUfPFL/4KL/7X/xVn9y6we/YMj19+klu3b+O84Mrjl/nVr/2H/MU3/xRrBTubu+w9dpWzu5d53byNExbtWoy1nN3aYyMfIaNPhm1bPvXJT3P79n32jx/yzMc/zvvXX8N3Haghr73xKpfOP8mdu9f53Kf+Dm++vY9SGRrQhcBLwcl8hhIOITytcZRdx0YxIMlG/L1v/Md89lOfZz6tuHH7Bjt7Z/jQE0/yyhuvkgxSGtsxyoKhaVMuME1LnmVMTw4w3mOt56+/802sn1EtpkiRcjSbMx5MaEzDjQ/e5c6Ntzm7M+Hu1hZ3b90B32EJ0jYnArW+R3NErPS5WJRMDw/ZPbdLkuVrz4S4kV+OpHX/ueUgj1PRR3BofeXxK0ao6D0DV+t1bxD5KIy/nM/rwKmMY3StbdKHynDGO1DQGYNKJPPZSZAa6ZTj42P27x9w5sx5Ll5+nMOjE/JiQNu2zGZTzp8/H9e9WNwgzgW8X62Va0v0qap4fXv/lrXgZ97qf+/lfUJEoVV/3DCn15dS722knoMXhqZp48awo2sXvPbOm/zoBz9AOMvm2cvcf3jCrZu3GBQp2Xib3d09Lly6TDHcoDGWuq6wzQIhOnQ+YbK5TV3WlF2DzvMomxRRYhLMOZNEo/DU9ZyDowNsNcU2NXma0bgKQQNKgxPIZExnYX9a01XHCFPhY4ChkxynxyTZBqNihyQdRNm8R+gEFUsdawSkafRWCUxJaxZIJanqafiMAJ1IkiJDyZyB2aAxHWVnOXPpfKhe5oLpvPRgdHj2aTLyYUY2Kujajs5B3TaYusEag5KCfDRGqQQlBdIKOuliRa+Wsi4pFyc435ClBVk+wEiH6Wq8VOAExrV0vadYB01bkg8zdJKDF+RJgdGagUjx6DBLfBM9N4IkQoou7FmQOC2joXnD9PiA+aJktDFhsnEJkaYB4HQ2FN7wgc3urWBRztgYTjh8+AG2LalMyzDZQOU77FzdYevc07TTu5wc3uCdax8wLDK2dzbZ2phQLzoK5mxNBInvGAx2uTP1DAaWhbO0teV4ekxbHWFMSzbI2MgK8BZjugAgeYEkgDoeE9i31mJsw8CnOCytFQglaW0c9HGN8y4kPKumpKpLdJaQpymJHIALZr1KeZRTKG8xtsK7Ek9g21hjWdQ1s+kseG/lIz72+DN0zjHefgyEwtfH1FVN1TRIJZkUGySyxQlFmgwwzgZD4AjsCi8i8CmW/irShfEpBDjrkdL1m/m49nmEcsE7zvrl1sxKwHp82+LajrpsMF2L1ord8xcgVr2yvgtLhjF470lUhkeHtcVakEEuVssysH2MxQgXkwaCJE3QQiNSQ9cuqKpjTAltmpANxugkQSjBKMnorEDahqmdMcpznHJoDbkObCaLpbMdbVchnKOpO6bllLJrSSa7bBVjrNRY4Ulc8BgSUmDReCFJvCIRoSIl0qF1YLYZ7ykbh5QGrRRJIlHORRBD4E3wgHVxWUbIAPoJg9OKxGdYb3HOkGpNNtmmtS6atB+jzBF5llCmCbpIwh6wc1TzGWU9Z1EtkCplPNwIniUyMEk6IUI7vAQbQE+dapQLYLFxJiSHrcNnKvi8erAeZCeYGYeyGkMbPYckxjVxDGicA2NDdTYR91wOhxct1tsQZLctWniUDT5YztQ4L9DKkyc5dd2wKE8op4eUWUJBzeFiQUPBaGuXoiioSkPnSpJUY5zCR/AiVPYNiRzjgkev9yC7EuEdbV3RNEGCqJMcqSQdFuUdthN0wpPaYEovIsMNoeiLMjnTUllJXgSAItVB6qaVDqbOUtL4YB6fCk0ig9ejc5phlgTGbGs5LkvarkYXBRu7l0iG56jmJyjTMiw2GOWbyKRA6lXSxyFAhHsS8ECJkorOO3Tgk8XiRgEskkIEv1IpUbECu/QCKT3KB3aWk0HKJlMZgCIRYlovFCpJcJI43kO8q6yja1vmJ0dU82O8TCmGYzbPnWFQjBGJI5cpBhUrzFk8FuU1yovoYRT2X2meMZgM2ezOcTxdcDw/4nhxyCQ/Ji8yRD5ApgOkzoP3n5BLYgew9HsmCeNM4PDShiSiAutqJC6uoxbflNSLCuPawBJsW0zXYNoK03V0bQldR9c5jOnAOsqmRUavZ611YC0JHfAKlVGMJlgZzOxVqlF6gNKQaU2n/5ag99/j9XMHlD71i7/GG2+8w1HteOvb/wLz+GXGu7vMDu7yzuuv80G5RTZU1Lde436zRdccsHHp4/zSr79A/b2XaLfP8Ttffo7aNBQiJiVjdlD6tWC63/zFTfMqhGMJHoQgNVSqCIh9NLnzfVgdto+qr861fm1FyHr1QKjH47yIxxPLc8UnGl1bcXQyZWsyxsmUIksIEp7e7DeCC/ErvVwv7Lyittv3sq6VFEvEjMQaJYM+RO2ZNv178YIswaTTQXwfba8FBbEPVXlM3ZRooTDW8+CoYfPMBX7hyScxtkV6iyUG3T7IlOTa0df9kfAsfaCWQFcPAMYduxCreyXW7uVSErj0q1k/Sw8higgc9p4762yfVX8DWLEejcTb0V+KNSbLUobVB/t+DXoSrHxKZH9c1sCa2Iclw2oF2KxhDIheTtmfZNnadXCjB19OQzM9ILQas3J1fLEGXnmx9p3Ypr77y46vt6wPMt3qWj1y8r/N53b9M6fYEesd9mvXnZ5jtAJwoAfKYh/WUEa/dg36dokeyVsGl/1xVo3p5+Pqusa/rQXwYbz042zFIJPeIZRmNp3y8O5t2ps13/v2n/PZL36RwSBnMNiIJU3DkunihrZvVmi4j143S8h3taxExuOyrREA8GK9qatrFjzZXHgAeQnWMZ/NOb+3xz/9/f+cN6+9xe17N/EIPv7x57hx7X0+/MyHeeeNa5w7c47333mDDz54j3nTcvfG+/zjf/L7qCRBJzkHR0c8eHiHD3/4WR577Aqm6Xjw4IC2rvi3f/j/cOXxK7z44x/y2ONPkecZg7Tg8OE+V556gpv3bvPCC5+iMb/AY5ev8O5bb1FOTzg8POIzX/gCo8kGzz77PH/+l9/i/f19fufv/yN+8vIrPLx/G2MtUhtuvf8eP/7hX/PyT77Hg4M7DIcbfP3Xf5tLV57iJy+9zP70PlcuPMb5ncsMRzmv/uQlEus5engfKRQPj/bR+ZCPP/dJTNtx7d03uXfnFk3TkqWKjc0NFosZvvXoRKOLEc89/2nqynN2d5u7d27zB//sf2WzSBEClJQMhwOeeOJJ7ty+z3x2AjjOnb+IsYLjO7c5v7fJrQ+uI3TOw+Mj/tF/9A2mh/sc6AykY7o44MHBXR6ffBjvLWcv7OGc4tbtG4yGHyXVSRyH8WY7Rzmf84PvfJeDh3f5rX/wD0mSOF+Xw3O1fvbjwkcj0X6FWQGRfjm+xCNotwe8DBs1tyJ8Ltcr38+n1bRYTrJTy0H8XXjw0mG9DPi5l2Qq4+knn+LOjQ8xLMaMiwk3P7jJe2+/ySde+Cx16zg4eMhZdRbTtrz66k+4cvkyZVXiETgTsulLqatn1a7VbFr1Z7m0+CiVXnZo9d3lh0SUgAS/BylFlH3H5WH1AAqb+5iVUQrarqVpKrSW4Cw3bnzA9evvMj04QKsBV65c4faDfe49uI/OJ1y5+gST7V3OnzmLSnKqugn7BhtAE9saajvHigQpE7JBjnM2MG2lQiWD6LfmsaamnB+xf/d9fL1gPEgZFAqpKrq2paqhaXyoYuROqLoSnGGQp+hihBpM8GqI9SleJCidIYUI5aZFYOcIKaIfUZCvu66l7UokMlQP6iqyTNJUh+TjglQleJnRNI7WVYFNqRR5NsB7g7Rd8F2P8n+kQskw7gJoqBjkQwqdYK3BVAsaOw1ymHKBUgnSe7QeYkWHLU+4e3Af5RQiTRjmeZC9uBLrQas8FElJE5RU5EojSVCREQEWg0fZAAZIPE6oEIR5GwIAqeMzSNBnicHQtR11XSGNoZaSzTMXyPJQGrozwcdGShn8pnwQfXiZUAw3475PUdVzis2zSDTCWYTQJIMMnQ/JNnY5ufsO5eKA9v4BBw+PKbKMM2d3mM5LNgYpnU8Q3rNJg7BzDuYNtq4plGNQDDBC0Joa50QEkxz4wLbwzmBMkAzKpmJWVjAcYtIUSWCcIxVCBGNnKZMYDDlGySYbk22QCmeDya11lkSDa0ucmeLaBb6r6UxDqjPqRcNiekJrK5Is58LFC5y/dIlMJ8yPK3SRkVGjBzl+e8T9WcVxOeP45JBCAsmAJDc4KZEyCSxdH5gd3vogeYvrovMeazr6hK6xAXCXMjzPhRdgw55RJRKpg4yys5a2LmmaEqwjyVLywRgvgqRViFiZCoPDhyBYhsp7YS2RARSIS0sSwUyJwwofJC0eOsGyCEOaF6g0w9QdZVPTdscoqRkUOTKJZeaRKJFjWk/lKmSmaHysshcyAtR1xaKcs6ha8nxMPhqB0lgHHaBEAsJghcC5wARRQpGqUAXO+WDNYazB+ljWpbfz8B5NgqEjFx6fCFCCtgOndACRYkLEOxVjJhnYVcIjZYgQUjVARwZgMz1iMZthfMdgJ0OZBc2iZTafU1pLNtokTbJQYS1s+OmURRmBoUFZGaREeDAEqaUDb01gXjiH6QLryUqJbsLzo7QGax1aOISo8UoivQUr8b6jsR1dU4N3pGkWJXoyyMOsj2MqEBgsFmeDBw7eIY2krTs6aymKMXUzY//oIb6ZkxVb6LygbRdMjQGZxOqISZCG63BPhEzQ0UPXEqJV5x3CdoGtkyfkeWCJSiGQUtHZaLosQtIhEyFJLpREyQSBQPoAhITJr1fxLwYngkOojJXkEm/RCFJhQLhgPeoSnG1YVBVV15BJzfb5q0yGCtOVoDdphwVtXeKtpW4qpA2V2JMkw2kFOvgBaiGwQqBlBLNkkOL5yATzvZpIqCjpCkogL4LCRRASTFqIAAo6H2TIsW9eWZTTCBRaBLa9aRvKeoFpKmzbYb1gvHOe4WiDJM1C0RSVIUSL6isbx+pMiuARJ73HB0drpFCByawdpJJ0OMR0OyyaBW5acrKYcXhwl5yO0fYENZigdQFKI0USn+EdieiiL5bBuwAm0XW0rYGuoTVz6qal6xqa+YJqsUAqgUwCwCUiAzbsC2S4Zokm0QNIFZubGUJohNZk8R5opUiUCj5zSIQMrMVUCnACKxXeetJ1zOPn8Pq5A0rHpeTsuT30wzvcOpgxN0e8sH2Z47JlfPYSi5++zV/91UMOb9/i7Bf+U7781AHvfusDipN3udacJ7NTjmcVm4ULumnb4VQWsv7LDOWK4SNi0BwLx7D0fInBpkcsSyz3IJPrN+Jy5UOx2lCvMrvh1ed0V4HqivFBzLAa2sZRVQvu3b3Jlac/Q4aJutWIRvuQa+613ojACgoexWFxFiJUj8MSMpVA7/XTgwbrHhh9r1bgTQSjvIileCNwFRdH7+UqcBWB8qg83P7gTX7y8o/ZmIzZO7vHJBPMju9w6/o7XLpwGVQAxRwhAyPiw8q7VRCzDGrofXHEKqO8/Ees2D2+/xSsZ57DccIDVIq+1loP+MRFFLXsw/LIPdCzXinP9+CVWx3D9Wh6j1SuCbR8D0j1flG+v4hLyMJFAIS1cdKzedb9t3q47NS5vV8+2PtPxEbF+x/ZZ8so8dQdXjLclmy25Yg+DaisI0LL4HEZXAVie9/kFR4kV+/1QdbyeOsBqugvyfLAp4LQNYCpZ0At4711RtPy9H4pZeklOMsrKB5pR4ww+4qLq3EVztGPo1UL/PqlWH26K54AACAASURBVF3XRz4jvAtm99axs7HFaJDwZ9/6E+48uMMPfvAdnnzqaZKk4Wh6hKkX4AXZoGBn9yyJ0ksgqM86+djXQCvsL5aM/VtrU/TIEb1xuA9l3fs5EtYtDaajrGq00nzkmWcp8iGTyQ7zaobUikznPPfJF8iGCdK/xe2bd3jzrZcZbYxQWjLZ2Wa8uUE5q2irBRuTCVpdYWN7i+OjQ3703e9wUpf86td/lQ999CM8/4lP8s771/nwUx/ijbffYTwa86Mf/RXFeMCbb7zJxfMXkYmm7Vp2tnf4zGe/wN6tmzS1Yzadc/6JK8i/8FS+Ym/vEuP3rqOTJN6mhFGRcXT8gAcPbqF0yKzWXcdiXvLCpz7DS6//gHevXePC3kWef/YzvPXqm2iV4FxLKuH555/jaF7xyU98mpd/8mOuXL0K3vLB9RtUjaF1C4ajEWnn0aRsbG7x7htv8rWv/iaHhw/Z2dpmfrTP9H6NVgpjDOPhBs9+7BMk/hX2711HCUk+GHByckTrWmbzE7w0WJfzmRc+y0c+/EluvPcuf/O9v+TM3h62czzz7CcwxvLkhz/KtWvvcu2dN7hz7wbDwYAnH/9QHMaCqqw5PnjAq6+8xGK+4NKVc0jpVj5pbiVOjvvsVR5gDUzq1xRxepqtrSvx+cRqk9x/R55i+q2Qp8CiE5E5yXKurzCm1fMHLyJII5Ai5dOf+kUuX36cRVVx9PA++w/32TkzYXt3h3PnzjObz6mrCiUFH3v6SY6PThACkiQLDNkIBvf+TqdWi7VESMSI+q7QPwj7fvcswH7jio8y7H6ZcaeP5X1f4UtG/7SwzjoTfD+0gq6refvaNW7d+ABrLUU+Zmdri9sP7nPjxk2GGxs89fQnGY1zhuMxKsmwiFApzWtwjs54OusRpkWlkpN5xSjTSJ2RFkUI7jtLaxa09RyaGd3igKFo6NKEjiBj6LxlUVVMpzOSNAlqRK2YTLYYpJsYCbUV6GwHZ4NBsdMyBq0BUVRCIX0SKso5i/c1OIP3ls6UjPMJcjBAM0D4De7fr5hOF0iRovM0lAdPFP8fa28SZNl1n/n9znCHN+VUWVVZc2EkRmLgABAgIEpNURS7aSkU3bbsdsjqTUcoeuWNV170zgt743C3w+FQd7jbtuwOS62R1kiRIiGMxEAQBYCoOVFDzvnmd4czeHHOfS8Lai8c5osoJPLle/eee++Z/t//+75/onUs+OBQKrCzhQj+IqlUQTrjBDpWDQxVbeMaIlOSdkK3vYzFYqoJo/4+/cEeoVSyp+rvk/TatJePUyPI0pQ0a+NUYOHoNA9G3ELPE3+4UGChNkEm42nsDBxeCJQ3i0ElwnMXwmFtkBAU5RRvq+C1kmQkvWVWVYp3wb/CS4MSfs5kF1KB1EGGgsfXCic9VkicCuNH6iBpDUVMBMgEn/ZIl88juydppTDZ22T7cI+dw3063TYPXbyP8vA2XmuqzhRRDnnw1Ao7A4nwiuGsYlInWKcIDIUwhoQI4JoRnjQm0dIsJ+0tB+aAC8mThhUnlMRTg1DBgyXuVcOuRCOlCyCEm1HOptjpAGUmtLIWg3LGeDijLA+oTEWe5Rw7dpbja6s8fKrNiy89wO3Na+ze7lC1c750IecH7++zMw5l27N2F5+WlIXBGoecjgNwFBk8QgqkUigdmFNCKITUgWkiq7C0OhekdxCq+QmPdzVCarRO8B6cqTg43MLWnlpK8iSn2wpyFefdHKgPRTw8iQjgmox7Th+lg9KHynjWGcCjEdE/VSBdTPQJh5ch8SydjwCYDJX8khbGTKiMxY3GkJRorUhlCkohsgyXJEghmFUWRU05GzCeFkytR4iUrNdCiyz4WnmFURblBcpB7QjMZmHJlEYKj5ahUMk83e4M2oU5wPrAoLXOUvkiAKPGYZ3FOZhNi+ABkyUkXmOdw1obExM24LJCIKRFOYPxBcoHCXjtPFmnh64KDvYOmI63GEwKZNYh755AWg8YjFDziqi1t2gbKpUF4DsQwhqvVunC+ugJMs3ShqcgvabyilRJhGxY4hrna4LULglAoQedOVRuUT5U35MKhEhAqlCyHYcTMXITIRhzPrAuFYK6Y6htD1cWFHVB2l4lW1qjt7zOeFphXYUUKa2shco7qFySkiwKLnkZjKwJBacsgXEnCcwrS6heGYR/YT5NfGAbKqHxqFjTKbgnCpEE9h4OiaPGBHkVmpCLDPqWRTLLz02ccwGpBu9r9odTxpMppZUcX1llpdcOiSgzxnVy6lqy1M0RtkVdT5lWUJSGynpm5QxBTavbRuYJVgfwxwkdLGXi3sUCWsXElggMOBVjKi8ETRVczSJib4ImIR2SBFT0fzIOU5aYckxZTKlrR41Et7osrbTIWi2UDlJVKRReKpQQCBIEKngY4nBSI7wNSiUf2ORIFX3GiMfwpEJgE0VLJ1Q6pb+nOJxZJuMp0+mYNNslS3NcEqv7ljXFZIzyBUorjA2VMa2zSOuoiAA0IGVgE2qZ0+omSK1BKXSSkkbvuCSRJCSIJMUKyCPY6LXFujhP+qjUIqzJIVYKC1XtBdbJwMKLDLfkSCT0s3j9zAGl3WGXL3/+FH92fZ+vPP8027sz1lZyzN4W+eppehuCtY3jTArBmWMpqdasnb5INdwnaS/xhSdOY8e36A8dxXifTz75mPu//KtcPN7FuCO7R7g3eJ7/rwiAQ8NImPv1LILNhhEhGqaSYM5kasABTyPrChvnhdH30ejZxyBS0eqtssGU19/7kAuPh4emlUNawAd/AIfGi0ZmFqix83ZHgEg2RBYaqCNukmJgIXwMPGM7FrrxRUDrGgPzCGiEvX+sKNYEC4SMlhOWvLWCc4pLP36DN0f7lEXFsEwZjCd88+vf4PSFh1lZWYmLEjQytvkCTAAGGpbJZz165tBJxE7CvCYXWIAQ8/veXNciRI9f8g31NoJhDcOoARgaRDE+G9m0KyLO4b41IM9R2MHP7/28P8wDGb+4Z1H/IJpnFcFICAFJY0DeXNdCcnbPHZi3Hy+OyBjlPAJyMb0evtq0I97L2OxwrEgJDnmm+PkFACVjv51fYzz/nBFEzMQ3L9/chyYgC/fJxxPPMdYYwc1NezlyKxctuff2zj93L8AzH07NJ/xnPiOaa/YLMMgt/rwQ7DTHmMOtR57hvcefE4Wab8Tn1phuL68sM556nn36OV5/43WuXrvMBx/+mC8+9Rw/fvt1rl79ACFSnvnil1haWQ5mgTAPUJrjzYNjKeftEVEG6r1nPApZ+e5SD3Qy9wVT8zZHGY7wbN25Q5ZnKKW5c/cO589dgETRa62SJylSSY5vnARXU81K2r02hpANnVUVv/zCz/PTy1d58Px5Rs7y8CNPIBXc2tzklVf+mo8+fA/RaXPr7l0uXLyfq1evMxsfUE0KPvn4PVa7XQ7HB3zwwXucPXOeyazPeHdKp9vi/vMPsn94wDNPf5GD0Yj9QZ+Ly+d58pmnKd6p+OEPv8fzL77Amz96JTCkshbf/PavMRiN6Y9HbG9vcen99/nz7/wR3/rWr/D4Y0+Sdtv83vX/jV/+9q/ynd//fZIkZTqd8MgTj3NwOOL0+fsQd3cZH/TJW5pHH3+R2aRisDdiMDnAmApvWnzuoae4/MlH/Kf/+Dc4c+IMiVT86NU3mdqCM6fPc+PGx6HyjFJ0eyskOmE6maCUIk8VW1ubOF+RtyS91TaHB5bnnnuJ5557iY8/uMRsckjWShiN+jil+MLzP8fh3h7tzk0+/fQOJzY26B/u8dH77/LIQ49Q1TWplNTTCe+++RqXLv2YJ599Fkgx1jMbDui2W7GSDCAkEj8fQ0cwFRYz64KhuRjOIWh3DULEguUqCGxRKRcsoPkBjoyWo8UdjgzHI+M2HieuJx7L0so63eVVirLgUmVY6vU4f/E+7n/oMdIkQ8ohKytdRv0hQga/sjxthwovSs7b16x1RCbw/MLjz6Y63mLtPNrCI+ibbAzajt63I0UOmoIHBMYh3mOEJUvUnFErnGc4HHLtxlVu396kneak3R6TyYzxbMLtu7dZPX6Khz73OCdPn2cwG4SgN8kQrgYUB/0DRJKC0CEgjea43bxNq5WHgLgcYcoZrjjAmhkH+0PyVOG9x6qMWW1wpUVO+zhTgIdep0fWXaLVWUW3lkFlmMoyHo+ovSOVCVomCCxNLjz4aFjwCkcdvSENQjpSLVEyI2vlJCJBZxnOeaqyBNXDWIfKWqg0Cb5HBM8MpdKwpsggSZFe4V2N1wQZnVSh3wnijiRU7bG2jPccrDUU00Mm40PyrA1ZEuwm8xSDC8bSWYbIM9AtlNJoqRFKBU8b9Hz9huCbIyKIJT1BjuAhjAo37/eB/O6YDgeU9YzQLSxZmpHpFKfTkEBzJvhOSoXwwUtzwQ6P40uoGJwGyVR3ZYVOq42tChIpgzTEgbMVQtgQWLR7pL6DNSUmXSLtCoQr6E/6XN28HYAtKRj3hxxbW6fX82ArTqyvofojVlSXSZ0wrQWFDTOC1MFA2ds6lNeOVcXSpmiMjYEGDiETpFBzCahwduEpJiTYAlePqcsJxfSAdp4jpGFS1gz7Q3YHA6yBpU6PtWOn6HZ7LHeXOLHcYn0JGFt2d2t2JgJvRki/TqY8lTMYYwKYmnQhyzAusK1MVVBXM7Am3GuVknbaJEmOVAmmMoEtn0Sw2IUA21YFxliSJCFNUqQSTMYjBoMhs9mYshizurbBUmcFqRQWAwSGmnfBcD1RKYgEgQtFZ8I0jLMAGm9NU6IjyMmkQEsLIsEJE/eJocS5dXU0xl7s5EGikzYqC/OPqQpmsxmlPUDLHLW6TJpqnDX0+yV1MaY0JVL30J0VEgTOzTBVCVpjvSNJBcpU1AisAxljD+VcWFeqGlPXqEQjpcY1I1eAMYEd5YWlqoJpfe0NEoEtCgpTo9MWqWhhfBhrTngC28UHZoRUCFwIxFVgk3XynNIJbB2kk+OiZFYYnMrRrVW8TEAo8rxD1m4jkhizORuS1jLAI4kMgIBvKkUgo+dtGMsIF6r0ISPQaEnn8VFkIkbzbhmPkcZCP3gTGX2hurYTAezw1uCwKKFDQRZtEaTBI8hbEhkYYJNiik469FZPY4pDstYSopXgkGAcdT3DFAWyrHE6yDl12opLlJ8zc4I1VPCDEtKFim8irNTOC5IozQpG3qFAUmBPiQiEOlSMHzzh+Utc8DYLA5kUi/HxO96AsxghqbyhHI2ZFmOGtSPRPXq9NmdWWjx6WnDmsfv55IN3eOSpr/H2++/xxSc/z80rt/n0bsp2v0Sngsp66rqmrkoKk1AVJcgpba1QaRaN6BVW6VAgQRL6jAyADV4iGqaSdIQyDTHOEzpcn1Zo6YIcr55RjCdMy1lAG4WANKHVbbGUthGpJBGhr4d9eTie9eBk6F/KC7x0SB8q00kfoD3X4AB1iTEW52sUBmcMoq6o6gJfzNjr7zEeDEGV4CSzwjAbBPKIkALrBbX1KO/RWuETg5bB+DuJ/lJdrUhUipCSJElRSkZjdhFYkUrEtoVYTot6vi+C0AfDMha8wSx1qMpH8LjzcVw3iiIZE/YSQeD9RdXWz/D1MweUvvzC46y7bX7527/EdOcm9z38POx+wnvv/pQzjzzJ115+iPXVnJNpxZ3bl9hJP8fzzx5jafoGb7/yfezoGqq3weMXLtAfjflwkHNWt4NZ4rz0erPZjbvKJticv8Rn/v8et8//4KeCWaq459NSSAKzwB9h0TTck2jsCUDQk9u0y9OPPklRFqykobpGyIw2Uhjmk2KQ4R1tS9gIOyGiaXXTOjcP8BsGB0R2Uxx0MgaeTR56wfJYtDHsp5qg4ojcTAhanRxjJswmU7Z2Dqisp71yH63U850//7/51d+4n9XGTNZLhAjlWZtApLk3TasboMQvLo6GuhHHRpD8NKCPaOJxP2/vwtn+yLP6TGAwjyhEk3tp3o3yQZibTYZ3Y2mE5imLBhRqJJKLoy5CrCNAZINwRPCleS4NwNN8awF0uCNHa95ZIMaLvivm5tTzt+45a4PKHLkj3tP0vvnN8XNcY96GOXgWAbeFVDBCkSKy5+YLUhO8LeLMObBEZBEcvfUsPtM0Zv73hp3XXMUcyDk68uJ7/shRmtt8zwNfPOPm7nDkeA0TYxGNck8Xmd+nIw+38UwLJokaQdDhJ2mbixce4AtffIGPP34bD3znD3+PSx++zWQ6oNVeQihJr7vMo597giQNMhXn5jTJebtE1KY2tPXZdMaVyz/lzTdeobvU4eWXf4HltQ3yPEV4SRI3CojIZLMmLMDas7l5k4PDHc5sbDAaT+ksLeM0QZPvPMV0xokz5/Cp4OzGGUoLL738NU6vn2F3MuTGlcu89earPPzI48yKgss//YjLlz+gxtLVCW/96HVOrR3nnXdf59TxFd5++1WK4QFbxYRW1qW/v823//6vUTnHlcs/ZevGTe4/fR/OeDZOnaLfH1EMh/z1976PK8Z8evU6/YNtzt13H/3+Pk44lBDc3t7j7MnTnN64yLg/IktSJpMR1hqm0ymtpMUDDzxA3m7z3gev8+QTz3D5ysf80rf+Pv/uf/9dvvPHv0+3u0x98UE2Tp1nubtOIjR1XWCqGoRmNBqQpwlZnnLx7AX+5nuvcObMaQ4P9/nw2k+YFGMKa0jTFKU1J0+eRumE4WRCe/kY4+mIshzRznKyVpvja+tcuXKN5aUVNk6fYTCccnJjjd29XZIk58TJk2Qq5VhvlS1xG60Ff+9rv0hZlmHD7hrZJbS7bZ59/kuQCpzx7O/u4rzno598QLfd4rEnn0Sr5F4ASSx+NHPmQiLcgOr3zBhHyIULJi6CwC4lzMMhg84iOD46Xo6ctzlO1GXHjGH0YfKEyjjSMx6NuX7lYz78yXucPnOWBx54mKVeD2srTpw4wfLace5s75CrlI3lZbxXYU+oQhWWeWVV/D0A2ZFpiTlY3zQsXtvcSy+yA7xrwKIQeCA8FosM1hwh4y0ELkpjvAhJnjRLqKuKspqyu3WHW9cv0x8OWF9appW32dk/ZDqZ0R+OOXv+Ac4/8CitpR6zuqalUzKdoIVlNBpQWY/MU1SaBeDFSKimJEkLfE012aGc9KEaoxBMZiMcmtIpnBFYU1ObKVVdAYJeu8vS0inSzhq6vYLIc7zVzGYlpiiofE2St0iVwNsKay1VXVLMBvS6y6RpG60TlJQgdcjeCwHSzftO4oMn1mw0ZGJCBa886wUzVB2AngBSBU8bofQ8KSQJtzqRgfnnfPQqcS74UriaUKREoZRHWJgUBVVVob2gu7aB0ik6zQKgZOogrygKyrpk0j/AuQM6vXW63bWgS7yH4erncmEpwEmHtWEdUoL5eu8jc6ooRlTVmOlsikxz8laHrGFMIAJzVZjQzZzDWYMWCUrrwL4ScYs+Z/VJkBZXW3S2EgzDywEzM4a0hXYeYT1eB8eP4N1nUYmi3VmjVh1MPaPdWkPnHSQl48mIW3e32Tvoc2unxYm1Yyx3OwhfstqxJNOa5VbKqFL0Zx7jwj/vXWBRSUddVsgkC8/BW6QLZu9eugCm4oHATJFe4OsaU02o6z5ZzGSXtmTaH7MzOsAVoWpekndYbvVodbt02ktkSYbVkmFR8/Ftz6d72xyMPPtFicgH/N7bNXUZ9mFLrS5VnHhqZ0PwrDWpamOtoi6D6XeQHh4gdRoq1GXdIOfwgAjV17w1pJmKc5jBVIbJZMxwOAKRkuctessr5K0lhFRY53BCIZWOaJFHyuCTpKRGCYeSIFRgfhkRKqWJRv4mQZjgC6O0ItES64KsyBhPVUMtQnU8b8OzCDLbkAC0dWDYKJkilMH4Gd5YBnvbuIOCqi7Zmyp01kO32kihqIsJRTHF1SVSKHSaBJDS5FjlKL1FioTKeLyxlN7gkIEN5SFzPjq76uCv5S1O+lg9UeK8ABRahHGdtBLSRhIbDbURoTIgso4EvyQGtDYEuEqjrWM6nmKqCu89S8sbsLxCcgi6fZLuyllq57DWUNU1xaiPThI67S7dvIcRwZBZuZDsCXFBGLsOhVfENSJI+XQEZ5wITHNEnPM9aCGD6FWA9KFIB17NvQedrRHWYqQMnmJIpKvDGFChcFFg4wYvX29raucY9PcRTrC8so5QCbYc4IRGK4VHoRMFqcaamqoeUxQzqskMpTU6lWidI/IcIROwAuOrMF6RaCfxSuGDCzMVMgDZEvAuuAr7RmsQ4h+Pw/gAHklqamEQ3uF9ghQa50qk1Mi5OsFSlxV3hn0m0ylp3qazvEYv77CSK86uZDx9JuHC2R7DTyqeOiO58ZMpT68J6Hj08R5SJQxmgnFpqF1O7ZewPqFyNXU1ZljMsMMDEjzd5VWSvIfOW4jIslJehueqVNy2q0XuKLJvlNTgC8pZyWTWZzgZYZxF+wQyTd5dIklaiCwllVHhoQhAoAt9p7k/wlcoL3HG42xJbSuq4hBTzzCjKYkWOK2DN5GpqKoSYypEXVMYh7IurFNCMDEViMAiQqWkaUbSSkmS8GylzFBKoDOQKgUlYoJHAglegxIujrnGiSfY6kjRuC3Ze6xA8IFhJ2MxbCFMYCb5EOc3jFlHiLykiLqT6MMq4j4xme+xwh7oZ/n6mQNKD5zWXH1jm6VjXTZnCS9tKA4uV1RmwNt/+5c8+eyLdJL7ePKRx9HZARv3fY725DX++I/+EpPkfP+vvsfShYsclsf5pa+/yMlHa84sJ3hv5gyMQMlt4sajQfcRudDcWSGAQg07oOmxCwceoKnARgj4wxFjrstHul4Muhu5GzQASESLZyVCCs6dPsZMBPd65xReeJxU8+A+ZIodPvomiVAINKIhYaNDlGM1PklxCz1n8RB/3CsKiECFaIqShjOGrVRksngfqbgNBuFCJruacLC7yeFggiPBOzh37iw7+33y5VOspDm1lyTe42QDvhzpiPMAGhpIa862ie/7Oegh5udvWgYgfMNC8vcAGfPcjmjaLCIAFSMfHwGBo9QTorwj/gxI7PwuhTM3gJX3kQUgaMwH5/e0Gcw+itLiNTQV+yKHp2nhHDhZtH0RxIVfQhYMIRcAZfz7AhCBBrgRR0C45pgNMysEpwFIwAf68qInNH3mCLgVx4ZonoiwsXERYDsaRMJ8g/zZ95u/NWiS+8wHmj6weNcv2IELNOwz3zjyzjwwjsyy5m+Rmr14HWUnLUDe2EkWd7Jhl83P7+cRuV98IfZDi3CaRCis1vzS17/FM888Q57m3Lp2g2Onz2DuOAajPpc+eIet7Tv8wtd/ma9++WtonaKVnvPFGsac84srrK3j+pVrvPHK99jv73Lz1oRHn3iM/rjg8YcfxksR6b3hO8oLQlnqFu+//2Pe/dFbTIoJvW6Ps2fOk0lBWVTs7N7ljR/8gNXjy/hK8Nbrr/ALv/gN/vQv/5rTZ8+ztnaMrNdj99anHBzu8emt66RJztlz57ly5TiDu5u0sxQzGfHalY8QrmB3v2TQLxEyxdhY/aUo2dnZ5eyZC6wf2+BgdxvvHZtXP+H9d9+krEu+/ou/zLt/8sf4esTB4TZOrfM7/+u/YjTYQ6CoZlPeeu2HfKBztnZvoYSg026DlGx+uskDDz3Khz9+h7u3bvKvf/tfkKaa/mDAxsZpNm/c5M6tm8gDh1IJB3u36XaWWVs/x87ONr3VHlZMmI1qhNBc/ulPEGnCD777XX7n//q3PPnFx9ndv8u1qx9jq4qXXvwa1y5fwTlY7i5x9coVOr0uw2JMXZRUpuLCxUeoxjO+8OUXSbMuL7/8VZz1PPDgg4Cj1W5TGc/q2nFsUSKzjFarzUsv/QLH106SpAleKLzzJF4GqYROOXH6Ai92l6hMzadXr5HlOfddvIgzwag2jIGwDszXtKa/en/PxqsZ3413iIj93s3XxPhTHBkz8+B6sdb5WP1lzryM3z8qJRUN40nGjLQLfjzWh8D9ow8/4I//8HewdcGzn/8ia6urYROmc7xNcB7eeectfunnv0FVF+Ay0ixdlHe/Fzk6OqHNwdnPrN4cxZK99wiv4tojFnOUs0AdGDoiZPe0TKmrwJZJ0iBBEM5zcLDDpfd/gnc101GfRHgunN6gNp5Pb22yvXdAb3mFE2dP8tCDjyNVTo2jlWRkKsV7y2w2wtmaRAQZhvIVmALnKspyRI1mNryNsCV3t++St3tYIxkPS1pdSV1MmNmSLM1IWzm9tRNkvXWydIk0yZE6obKG8bTAFKP55tPhEMZgjUdIRaoSpG6RtVJarWB6rZt1UfgoQQteKChBaQx2PGVSzCLL14BWaJ2GACwQLpFSoHww//RC4VwoP22cwRcluwdD8qWcbpJCEkA+rR2pVCiVYg2U0yGmNHiZkLc66MieUE6QyhQnPFZqhAYhE5TJwfeYzQYU5ZByNiJJc/KsRZLkCJXG/VYw2A7rY1NFiFAtSadYU1DPZhTFlNoXSKVo9ZYRWgcJM0GS0sjqVeMjFMvOB/NtQ5M2s97hXI13IYiTPlSj9MIg1RpZLvFeo3Rgh4kkjFctBMgEW5eUZUWFR+YtsrxNO81QTqKw9NIpVjqk7DGbHXDl2k227m5xfH0VpTJA0M4dwhmWV7pMKziYzBhXNkBBTod76UqEreL8kAcJn6kQhOw9ziIwSFfgqynWlMH7K9HsDYbs7W9hSoNIFe28Td47js7adNIWIs+QKsMISeENlZWkVjIwjlktKFFkTrN1WJIlGagUpEJbi/ElKgY7QkikytEiD0bdLvjlzMoxs2LGdFKTHFMkLsdUFWCRGrI0DTI/7xgN+lSzgtpYWp0OSdYFKZFKYxEBuFZhThBOhwpuuCA5umcHR2SUOWTs383E65zB14ZKhoSuqwxWQJpJamNxPrILbY21NhgG22BF4VwJViB1itApUqborEMtLMVkwMxX2LJEqBWoqyCFU9HrK9WQpEiVkSuFVRIpUoRwZN5GYDf5TgAAIABJREFU5k6QiCVS46UijetBnOGCBEoKNBYjHcqF4N15H0FXj8UdYfgF/z8nDDJ68ZlojBwg1yCnTZViVkw5HA6wLqfV6pJlbYTKseUBOgnebknWIYvttMZS1QVVOaE/2GMyHtFtL5O08tAvTSwCFPf8IsoTvXDRE4qYiAhmz011VOktXkis8HgXokErPMZanEjCvOcMztTNlhHjRJBBeR9KsDsHSWCpKi+oTY0pC/b6QZLb6xxD4KnqIXiDLStQBgsBALJ1BG0VIm2D9ZR1Sb8/JHOO7lIP3Y6eO15GMEFSS4+0OlyDr2KFP4kwi7jFEeRyMsrZvAj/cAohFcGj2WE9rOSh8l3w6jOkAgbTEQejIWjNytpxllo9kiylrTwtCeOy5p0bjmv9K/hqlb3N6xTVKn/x2k3u9isqm1DaFKE8SRqkoZkPFQWNV5hWijElvjRMy4JB7VHVgPZsTLvTJm11kGmOJ1ZPlCHu9UiECJI2Zz3jwTbjwS6mBpkqkiSnk6fkSRedBV896UOcLbxDmBo7HFKaKiAvVmPcDNwUXxf4CsbVDF07htMJ1WyAUGBKQxrHi4/G5VJqpE7IdEK7nYDM6CpJpgXHdQJSg5ShSqdywatMhv1QGDMugJIIQo1FGdYIGWr5heqJNlaqDB5HWkiMl/OiKcEaZpGW93FsSx38jlMduILIOA6cQSOxzmLieu3xCCfxKiS1nErwOkWlEpUcqWD9M3j9zAGlT7ducfXqJY67xzDDQ/bujugeX2Vt85AffP9dtnanfOWF52glKRcf+wLnTmR8/Ndv8crlhK+8/EXe3foLPr68y8bLD3HmeJe6NLSkDQteM8mLRYweXgvgYh5QNtKcZqcpFgyUORgTD6CQkQjdZLriokH0wInHlMw5IfNlp/F2zNo51z96A2sSbPc4a51zAYFEhsWyaX0TKHioqpraGbI8C9S2IN6coxCCkNG3UfIj/dyhvNkrx0+FjY8UAZtsNt2OUBI3aApEyCT4KL0joqLWcOX6TS5vHjAeTChKQ5ZkvPeT9/mN3/qvEcUO1679lBe+/BWqakLq0jDhRXaPbzbsDdsnZgs+gyDQRMmN11EAzBo2FjFbHHgijiNGq0cecRNGhP+4eQb+KPA2z9w3z9yHJ+wiw23RX8T8PnpPAE8aEEeEQC0Au+HE0oXsh3NBSdEwsOT8OkPgNhfNiSN98kgf/bvnXwBSDfDWyOv8glN/L2gnACxy3gujSWTUsAgWUpTFaSMjzMVzxj5y1PA3pm3m/5q3xP8HFNvjw1beN5uA+cNZnOfos/VHLoymDUeacuTa5/LO/xDKxZHg+jOnETJK+Y5Myv7IeRfMMxt91SQIw/Fj66weWwbr+LV/9J+zuXmdP/qD/4PBYIgpSna27vLX3/tzHrz4IGc2zjGtqlDdRav5E14AZYElMZoOuLN7h4PDQ46tr3H16g3StEvqYWl9neWVJSTBM2Jurm8lly5dYnfnNhbH//I7/4qvvPA1fuVb3+btN3/ED//mu9y6dZ0vvPgc9TCU3r7v3EUG+7ssdTsIDPV0yp/+yXfY7W+zvNxDCcWsqMjzHLxhNpuys78PvqasTKhQUlUkeY/lYz3stMZR8v2/+TO++ff+AQ899DB3eh22dndxombz7nUeefIZJuMx1WzIhfPn+PDjS/zmP/mv+O//2/+OPFGUlYckp9Pt8dprf0MqHUom5GmHJ596kvvue5B2nnF4sMdkPOBwNASVcTDos378OJcufcT6meNUrmT79ia4AusV6eYN8kRxauMUp04cZzKrGfUHHO4fYr3hT//sd/HO8Cd/+AfcvXMjsKB0yp3N2yyvrNM5tsra+jHefP1Vtg+2Gewd4q3FS82V65usr3Q5sXGef/riz9PKe0HG6AV4Rae1hBuOcKbG2YqyqDi5cYpOr02ahepdxi2kXFokpFphrKGYGV79wQ95+JH7sFXJiZMbERdXERiKfknzDMCRvt2shx6QjeF8mMeaanABMF98Sxz5dX44Of9kYB35BkzmHjCb+fGbgCVWPCQExj5+L88yHn7oc4Chu9Tj8HDAtes3OHbyBKdOniLNNM996atMZxWdZUmaNsE+0XBzIePz+OjRFPzlrHN4H5I1Pp4zFslZsGTjnO3xmBigomQY2t4jhKWsgr+EyjKyJEUrj7WWsi749M5tdrY30dKztNQjFRZrSg4GBxzsHzCbTLlw5iSnzp6GvINjjCsm+OmUoRBkHqp6QlnVeOfCmuxDVtj74J9gas+43GFr51OES5jWFSfz49hyjBZTKAq67R66e5L2sRNkuoWQKUqnKN2iLKfM+ruUxTSuEQEkE0qjE0lLd0HlOC3IREZNBI5iWWURmZQO0DJQ440p+PTqTYxK6LYyVAPuKB0rwgWJdTJPQIS1xTlLVYxwtkJJT5aClzPWllKypS4tHUzANRqRZVR1RX8woi5DcJpkLXKdB18Mb8N6mqjIwQatJSUOdEqm0/Be2sLaClcbytmY/cMthILe8gny3hpR4IJ1FuFFMCjVmoqKybBPUQ7xQpAkOS2dBjN0meAUeCcR1mNrQ21rpHH0B/s4Yei2V4JhtFekUiJEPWdqS6lIVdxhyIROuoz3YTeDDoFTIgS1r9EovIaqnDEbDSlMSSpSMpnhCP4pIEJFQcBXlkSn+KV1cCu0Z/vMijFXb97h9p0t1o+fYGPjBGmqaKc1zs2471iHSakZThy3dm9jhUfLBGVrKhxpmmOrAu0sy+0lagSzckppC6Qt6bVyLIKt/T1Gk1FkWFYs9Y4hWh06Sz2SpIVK0pgZT6icDObZQmCVZOJKvLVB2iaDtEpKjdVtLBZv6mDWDiQehJAhGJYaL4M8UHuJ1pqslbMsHFVRBvmaKRBYVtaWg0SpqhkWY/rDEdYZ8rwVAtesjdca68JcaX1grzsvSZzDVCVCwGRygKsNaTv0/TBdBxDIxc2yjXs1KSyJ99SBcof3FjtzyCwBnYZgUAgEikwrKlfjvUApiVCgXIJW7cAe0Smj2YzBwQ5lbTi2chzhFZkHWktMp3uMRn1KapaTNTrdNaxSJIQqTrUIckYpE4w1KOlCHWcr8LopGqIC2NIk4aI6QEZwQSDwLjD4fPSikjLshZwLHj9CBvZmsLgHTUqQkgU2YDUZsD88YFobWt1VWvkyuUoQEipfY8wU4xy5E7i6xuORrsZ7h5YSm6YktkNtLXsHu2Q42nlCkrRRaY4TCQY/lycFG3JBjcN6QerAyiABayyWJQYj61BlUiSUwiKcD35IkiCrE8F7KkSAButBiQwEWF8hTE2Q8Qaw73B/C5m0aPeWUSr4emENQV4XZIAIiSEwWaRU6DQkGRQS6TMS0yEpS6rKMKoGpImk1VkmT9ooAjurtBVYi8aTpWHeK43H+uC7U/nALNReIQXBQl4EJpdzgspblPLkQnGmAx+OC7TMqMuCu8MBhfWsLq3R6fRIk8DoUQDeUjhQVrEzham0vHSySwfLiV6Xu9OKocnwTlMAlQSnJTKmKbT0aAnWK7y1qK4g8wZrFL6sKMohtw9HqP0DNI6V1R5p6wQii0UUnKWcjhj196nLGUoJUq1o9dqQpnSlotIO4cZUE4efGHxZBJNrM2M2mTAajhCuCu0wAmPqwEj0DiVSjFBkqSZROWn3BO1MY5WgleboRCOVRgsVWIgqCZWDVZgHdJStay+pZI2QEmUDqQQBSrroLRxM6oUIznpy7jkmovQgeARb7+PeJ+qOhCARch6Peq9CwaAYs3nrESZUr6wAJ1QYS6RYnSFbGUp3kWmLLMuReUqaKrIsRactdJKhpKTSgkyKaMnxs3v9zAGlK+98n08PKp7/+XXefeN1vvwf/Tqj91/n7Z9sM1WrzEjZ3d9iZ2efu+OaE994mRvVY/zqb/5Dzpxc4itffYnNWxNOPnSODBu8Hmi2P4tAsvEcWbwWTARoNpj3ZhsWLz8HmACMt/d8LyD1ItDjvIsGaME3KIAXi6NpHFW1z6g/5JPL17l2YPjyS7+IlxLjK5RIcbZCKoXH4H0oK6jwpKLGG4ewCiF0bJmdgwIibuTgqH10zCfHDHSjjmtC5UYeFQjpNob3IdPlAISiuTMuanQf+fzzfH005buvvsXFtRNM9zbZvHWHajrkuYfP8G9+7w/4uRe+RlkcQNoGW+PVgs0lGwCkGQQcZSFFhBSiBGGRYXZiAcqJxtPDhffncjLR6EFdNMSWC5lFcygiYOBdBAAjo8s3QNKCobSIscL5ZHzmMUo6gkQErXhTitPLkMULpo/ELImc34P5Q2vgrKMgyBHMppl4xBHQc46lHOlbnrg5bQKl+Ek//63B7BZ3uXlfzquMucXlzIG/8L6K5Gcf+/4c8mwCSRZx7FE8aV7l7v8F1JmDYkffaySJiybeCzYevQGLOzH/zD3eMPE97/3igYrFFdzTljljkTlw17T7XjlNQL5kZAo6TKS3exIfvBhUW7LU6XLh4sPs7e1Smwmnz16g01nho48+5MfvvI1SCb/yq79GUdZkOgvziAoZBSEUri65c3uTJNG89NLL3NnZZXiwz9Ubb3NqY5VltUpdVwjn8bWi121z/ZOrrJ88zldf+CrFs08zOjjEZwmnzpxHCslybxkpBb3VJaajKRsnz/HUU5/n/XcvoZXh3/z2b/PlF77K2ZPncdLw6afX6K30ePbJLzAdT+kf7NFLO3zl+a/y4ccf8fFP3sWZGtluYwrHr//jX+fK5et8+NrfQqI43OmzvrHBiWMbVFXFp7ducPr8fXiRcP7sBbZ2tvmPf+M3+O5ffQ8lUp56+lkeevgJLr33Q6TQFJMxb772Cq6usUqRppJEK770hS/yyCPP8sarr7KzvY0pCgQiaMyVQrcyequr3Lh9E8wULTOKokaImmJWMdUpWuVUsxIpJa08Y3V1mdWTJ6nKMVvbW5i65uTKCpuf3qSsS65vXuf06bOcefAB3n7nXa5fu0ZRTqnq4O/S7rQZDAf809/6L6nrgl77WGAmeBFMHL3AKoHSodKU0yoYngqJdTKa36bBz0DAZDKhv7/H3/7ghywv9xiNBuzubHH+/nNkWY5KktBDvY+b+djHZQMO/V1gVkYUpWHrBq+46HkmjiRUjjCP5vOUJ0jVmnHgFkPxKI50lJV7bwNEqJzpfJRFOD7/xFM8+uDncN6yvbfDX/3Fn3DtymWe/8pLYGtu393kcxcfZH9/G5FIzm6cwxiLUMm8Tc2hvfVzUCzEdGIxfcxXkka2G2XYCKSSGBvkO425s3SO2hqEcHTbLazxTIYDcqGocFzdvMne4ADpHCfXVznc2eLGJx9TlAWz6ZiyKmlnOedOHmd1fYWWMjhm2KJmeFhRlCM8YJSa30/vBaUPQJirHbO6RHvJwe4+WzvblHXN6uoxMik43N7EO8Ox9Q2OnbqIly2czIIpqMpIVIqpLVt3rnF35xbWO44dP02v1SFNA0PH6yQYVHsQsdyydwFIkNjI2vIgw31NpQwysvGE2WSMThLyvIWXwW8p+ARJpPHUMShugE6pJUoGL6hOplGxqo2WAvIemZcopUhUQpImGFOxtX2Hne09VlbW6XRXQ+UhGf0ycCil5sF7kHOGAEPLBOcb+2OLFG2EzvC6Jk8yljrLTMyY2XjIbNJH6xzVapN3V9GkKAx7u7fYPdxhdWk9mHpH5l9dOZyvMa7EI9HWQLQ/kEpTSmh1eqRpQifvBrYhGlyNsRMSrfCxNLZycdPv3dwDRKkEowyJFaAEyreg8uxu3aYsCzpLS2TJMlom+NogfahcZi04JxmbMUu5pjCKNEuRvodMu+ilGb4zwkwOuXV3i83bWxw7vsb5Uxt085yWEoyKXS6ur9GRitppSt8i0wlGC9qqjcfiXKjMNhwe4p2hl+fYmWNv54CdvX1mpqTdbpN0u3S7S2TtJVAt2irBK0fjEOQEJMKhtaax1K11hregtSZXipkN0kFpZqHSkVQoqUIJeKFQSQZa4b3E2wqPDckZD856ymlBqsMepZWkjGYH3L15QFVOKQpLZSFtr3L85AlWV1copxOKqgbjwxqikvisksjoEIG14D2kCS6RyEQhXYZOEnSighk0AiEzwCKEQEqLcp6y9jhR44Uh6bXBWZy3JE11KG/DfkkHNqRUodKfEh7tNLV1DIcDqnJEp3ucldYKWSJRtsDZgqS9RtZq01k6TVmXTKcDpsUOre4SorOMSEIRn45IKK1A6zQoIwg+ZQ6H8i5KUZsZM4DyuPA56R1ohRIqyAtdjbCGRIZ9eI0Fb9FEG4oIzKM9UqS4akL/8A6jvV1Uu0NvdR2pBYkvcWZG6WRA/euSBPCmxBRjvLCBkSocWE+GQqUdpLekSuFmE/r9XYq6IOv0WFo5QZq2ABXkPoAXNqxLLqwB0gkUCaa5dqGQaFBuPh8rnYRUtmr8KsP+tzYg6iCTLX1Nkoiwhpg6fL4s2d66jlSSXrqKtTUCFwsuWJTSQbZmBOgk7kbDftK4OpgfqzCv+DSDtEXLClTDzjrcJ1cDOu1lZKtFSRUBBIGe1dhEBF9eDxCelxee2oXiAF5IrHR4H/yUVEyoTEzBYJyQ2pqd3T2GRUV3ZZWTK2torVHCg1DY5oYIaKkA7DoHxloG4wqbrVEIhfMpJFBLqMtQHEBFA/Po+BiAV6lRZLHyZkw4tWo6rLBUV5jJkMO9Lba3DtByTJ4mOBk8z1xdkWUZeSIYjEdIN2O53aMWiqKuKewMYyzWVDjr8LWNZAyNSRROaRK9hEgyWj2NTjWJzMnzNKyDaUKGR4s87P21w0XwVMc9lZeRAeZVrFoa90tKYo3E4smlYmY9KSKMIy+oCT7IIYSJ0aEOz6dhe+NtqIyHAhHM/aWNQFOsRmtxOK8wInov6gyRpsisjWrlLKUdknaCa3dppxrXSsiVJksUSIVTgXUshECLWODKg0CibeiH1hQYW352Y/f/6/UzB5Q+eftv2Zn2+M7vX+PT2wk/ff0vefSxp3n6JcXOX72CaLW5s7vPyQe/iJkM+fjGLl//xreZjQZUuseJpVM8daEmkQFZ9EqCizqQ+BJ/d3c7B1Ka3ejctPmeDy3kAIvAmIi0E37zoUKA8S6YZ8rIPPFh0moyphCC2tlsyF/+4BUO3QrPPfEc0zf/FKoBqdig9hlgghYUh/HhdgtvmPS3+e7f/ClLxx/jueefj5i6i5rmxu/HR5lSNHp24IWbg2VeSLxwYVPdyOWa/HQEPBomj5AJyllsFCnZsC1CJYK1bpcXn/8aX3z+G3gzo799h//pX/8LhLV88Naf8aMfvcbHn7zPA+cv4P0MRdgESA9OhvKQjXztqFmzcBYvGhVP2MyqiCyE63IxmxM+H5L+4ZeorIgBE3FRbDgbJvpkqHk2WkRfax8DoEBP9ws0xEWZxhyUcYTuL8LCFJ+/i6ygps2N30Noy2cBSzfvi/cGYqHRgoV3iRDNZ0PEJP28/tv8v+G4kUV1NHg8AimFPwWgjXiWBihqvEUaz6jGUHIO5swnfQ/UQQzoG0logyI17IRF8IY70s7m+c6bsxC4CU8cG27OahL4CIyFMeTmrQvjZ+4PFl+KSL+fD87mNHGiF/Oz0YB383t0pE3QgHN+fs8WBztyvxERtAvi0OCPIGmM72X8XeuUC+cuMv1SwZVrH/Ps0z/H+bOP8u/+z3/Lxvo61y9f5vb2Fuvrqzz80JPI1XUSJTHeRMNYgbCWM2fPcu7+c/R6K0zfeh1Kw6efblKbipXlZZCaTprzw1dfY9zf54ff+3POP3COonDoRJNIyfLqGp9/8hkmwyl5p4PzhoPtHTqdJXpJmx9v73Jl82P+2W/9M/6H//G3ub17m//k1/8JxjlavTWmRcmlyx/R0prNm9fIWzmbN27wX/xnv8nv/vsW7/3kddJ2By803/r6P+DdtR9z6c03yPOEX/zmN9na3mYynqCVYvOTywgp+MrPvcz99z+M0JLtzTtsb97miSee5PbNHZ587Aneev1Vur02ZjRE9TIq6zHGMREVLzz/FV544Re48cl1BvuHnL94lt3tTXSe4GzNbDrkmY1n6LSXONzdRWYaqUKJcCUcaydPI5Tk7p3baNXCuJoTp59gfbnL9u4Wk9mYf/7P/xv+5f/8L8lcxsrKKqLVYzVN6e8foirLU48+ytpKm8PhkB+/8y4ITaubM64ndJc6dNIVBoMDsnZOJttII+feI3u7d7l2+SD4IH3wPvc/cB9Ly8d58OGHQVqUkBhvKeqCvJfxzW9/nTdee5VzF85x+txZZqMxed6mqmqkboLpOG+KBeF5MRcsXg2e7JsBKDzeLT7fGOw2y6M/8u/IIOAoOLSQREcgRx6VjTbzQwP+KAJbMoA5SiYknYTpbMj2nVus9FZYXlulLEs+/OgSj33+CS7efz/FJyWtvE2eaTyaaVWHrL6S2Dp4figpwYlgHB3P7SLDEnysmhMTCc6hdLjCopoihSBNJLXzmDqURu7kOV56ppMZw/4hayurTIcj+oM9rCk4d/YUpTX89NL7TA4PwFiKsgDv0VKztn6C7vIy03JMUc8oxgUWyZVrN/HOsLp2kloKEpdSOEtVFSG09g6DoNVpoaXBYzhz7hzrFx6kv7dFr7uC7J5AxYy/9TArRywthcqvBwfb7G7tYGpHbUpObGzQWlqj1V5D6eApQh2k88JFY1CvwBus1oAlWAY0z1Vg6prJeERVz8iVoN3JqJxCOINH4p2g9I6qnDDuD+itHKPXXUNpSSaD4amXkfnkLEqEQDAkaGpaOkMnKdWsYvvuLabTCU4ojp06T67y2Fd0rFrkED4JjDIs3kcmFQLrDaK2CC0CywwJmNAfpERlKfgMoXK6vXWK8SH1pM/hnVuAprt0kmo8ovRThJYc7N1EyhbdlQ2SNJRtT2TwikmURlmBV7pZzPAItBUYFQxikyhDqIUm00sQ9wjWGWoHHocWkCgV1zGDNJJEKuqqpj8ZUgz2Mc6xtLQey767IO2RJgTpzoXr1imdtIvwoCTUkwGGFon2KKXQ7WWSbIVs5STleJe9vW0Otrc4trLEmbPnaLUz0jRHYNhYX6abrjCYFcxERl1K+qNDRv0dnLNIH7w+D3d22dk5pLIVaZ6z0uuQr5yg016hlUmE7wQgSoAWHRwWmzi0F2hkMJP1MhjNOo/TZTCVrQXSa4Qo8VXYXVlT45MEbyw1YFwFRYWoLViPMR5EkHKmeahclyiNyls4YTm5cZYbN69ihSTNcmxR8f+w9qZBlp3nfd/v3c45d7+9zvTsgxnMDEDsAAmCBECBokhK0WLZsharVHbZ5cQl20qUlOyS40pJKSepiipOFCelkhQpkrVFjEiLFCmJpECCIgkSAoiN2AbAbJitp/e733POu+TDe+6dAUufUryF6cZMd9++5553e/7Pf5n2e1wZ7WEPHWZxcYnFZhsbAkVeYCmRwaCMwgeFTAwhTZE+0BCtah0L0cxXKoSUc7mUlDMfvMjWcbYkTQTWJwQCWhtcafFFjhQ+nkNVGgs6LEIpgtCooPFuSq/fZzidUK+ldNpLkDQQZAjhQJYoF9PCSkDrOmnSpJE2GI17jAY75L1dWs02ZBlOJygiU2wmwcuLAoWjlFFmGhd9RxCxsiiquiLRAaYeFQQ2SEo8SQgxMUs6UKBnDHgkIkTg1xWW3nCH6XiINAmN1cMIE9nZSkTzcpxHSYGSgTIorIh7dpA2mv07UMGD9FjpCIVDBotwDpUk1PUiKp9grae3uY7OEtJ6lPxWiBLSC4yIflBSQImPAB+CwoOSOgL7IjJnEB6jSgSGCkvB2RKNoLCglMRLT0DHk7IMqGnB5o3L1Fsdalm38sSRGBUwGPI8SptkUkMKg0RQOov1EudsBClMBLIqAR8Q0/m0TJBGYHxGyHP6u1uMtyYkWqMaTaSpM9Ee6QyyagSEEHA+VM8VjeVnYUCeaASN9+AEWmneubrLm9evkXabHDl0Ct3QeCErqUUlrNeqKhYCTmsmBHwoaPmMS6XCDBTbuWLPmxiSoCTGBPAKq+PGEn24QPt4jrAi1j0KD6HA+wnj3g6DwYiaDKSmImiUQ6aDMcFZgrfgPYNxznYZTeNTFRj2xxgFIiTIWoJOmqRZhknqpEmK1hqjIyimFJjK/1gKV0ngI7nCBIeVIvqnBYEVOVKCxkQWYojt9gqeqqqbyILDRWYzocSK2KwxGHwlrUTEM4vW8cAlPRUg7XE+x1lfNRoVTgT2hEbLemyqZA3StI1vZNSabRrNjFqjQZLVSFNDLUmQWpEYSVBRsWWIFayr8AghQpW+WBnNu5wwHcK0jx3uoSa7CLtNGObs9XrsTXts74zg47/Ld+vxXQeUlF5he9RDXhozFRnfeOpPOPvsInfecQ8Pfs9PcuyOM4TeFUyScP9+xW/88Re4/cx/SVZPqJs4+bWJ3S48KF8V/+JmIXoroeE7yQ0h3DS7VrcATxHIvlmMytkEFGHO/rEiIJ1CUIIUWHSk6wEoibQCL2KcMAik9KRpk4987w+RiD6jrUv86YUrPD94jgfuvp+yGNJIqsQYH5FjW0mZxmjEwglcrc5wsEO70UEqg/LRPyOSKKN8TQJF8ASjEG7G9phBIxIrRHWwq8AnERfKgAcHQgZ86apDjozcFCGw+ZS33nwWIQ2HVtbQypJLzaEDB7jjtiNcfevzvPn885iQ8WdfeYp//U//OYPxNnWlsdXhyfnIIIqU+riRzqyYg/SAQYRYmDui+73CVZptHyl9AlyoTEGrdD7vY6E/Iw3JikVS8azitVVTf04w4iazKXbfono1+kXcHKMizMCpWWJF1SOdodAwUx0CVBDMzMeq4gjdAvjMUvPmr5ObOBZz4CceooSIIFmUKVZsKi+rcW2JPkkR0BIVQheEmNNB5+7dIS7+gXgtEaCKlODZpjOrNGfXNwNMhSRycG6pKkN1GBRhNnuqCOQKQRLcY1JHAAAgAElEQVRxx4jF2wy7uQU9nMkXZ1Ba/A1q/h5Hxb2fPWP1tjhmPhVR7BgI4lbj9Nl7KCIISbVRCllJg8R8EQgBlBS3MMZunfm3VNOzT/PqejZu4xOFCmymml8z03LvJMIkHDl4nA+8/wluO36Yl154kfd/4HEuvP0m6+tXOH7kOH/wiT/ge574CD/6gz+KIwNiN0MIjw2BNK1Rb9XY2tql0+6yb3EVUavzpa99lcXlRU6dvIuisBTFAEfOD/69v0tva4ckzfjD//d3ePC++3j9jRe58s6bPP6hj3H08HGajSbf++HvZWnfYf7qC5/lwUc+QLreYjSB/rDHfXed4hN/+NvcdvIMq/vW+NAj7+f/+u3/E49jeXkNLTJEInn7nUtcPHeRNGvQH/ZJkwYEwdEjx2ksLXFkbY2gDH/0+7/J4cOr/L0f+xkWF5bZ3t2k2V5C1lIuv/E2nUaD5YNrrC0v8dbZ13nn2nXSTOKsR6UCoQKnTpxhd2ePG1vXeevcm/z6r/8a/e0t2suL7G3vIhDk/TH3vvd9nHvlda5dvEhv61Va9RRdzygnI4xOOHjsCI89/lHefPMtvKqxcWOdwbjH6uo+ytEUJQKLSy0Wlg/y3//b/4Gf/dl/wU//zE8xKAUP3nE7F965SGbqTPKcU3c9wAvP/w0mVbSyDCkka50D2FFJb9Tn3gfv4dKlq6yZhCBjpGuZF3QaCVm2zLfffJXuWpdDRw9z4ODxGN9SzSXvPIcOH+KvPvtnvPT8s2xfvcaD730vj/3ID3Hl3Lm49lRzd7YGxUKm6lzNBq74jvH7LiQ7jtU4ZSrAVc6XoDmLaZ5eOsNYKyaUr5R8USYdv6ziy8dVTNCb9OwIJCGIaSTeIZCVD5Kn1Vzg+PFTfONrX2G506G/tw224NiBw9zY3uCtt9+k8c4VxN0PcuDAGr7MSWoZk0mJVDL6kVUSt5mMrdqomUHQs3jcGavJztklkiAs1lWgtoiF4mQyZjyZkhlBM0ugyLl48W2ur1/hxo0t6u02pfMEO6WVJrGzqDT1ViNKQ6XmyvYuAagnTdZ3B7jBDgRHvbXEaDolVYZCODIDaSoZT6eIJGVp4RD7Dp9EGgllwXjQR6g6h+68A6kiQJP3N/Eu0Fqq0y0XuHb1KnvbO6RZxtqRE9F7weZMx2MG/R57O7sgBIvNVdJGF5kEMBphHVpM4z0sSmw1DpUUuMIzGo8Y58NYLAnJwJaEchwbX5W/iMSQJNBsdljZfwQdMqT00YclxMJLiCICZMKjQjx3ZDpFo+lPLBevXaYcjbGpIGt1kV7jpcSpiskkXOUpqJFSYghoo2O0svMU3sY0HuIcEEkFXvrIlJo1m6ahZNrv0dveIoQJiYqyGCkShsMNRr0NZFpnbeU0tfoCiUorY+GY4iSCwFZnIi8DuNj8EcEQcBHNUbHzXFLMdssKfKsO7yGy6bWWqBAbfTE1LyEfj9nd3mU4nqAST6ddw8k6BIV0LrI1pAYSfGWam6iUoHRsoCuBCzXStIU2KYSAsxIoKEWO1F1UK6FbbyHtkP7WBlsvvEJ7cYHx8UCqNToxrO9eINENlhptvvXWJXr5iFR7OtkiF69fY2N7k6IoqJmM1sIK9YVlOs0mJmmipMHZAmWiiT4yxUiB0TFSXbgIqlkXm2VOxAJKEuaSt0mR40kY52MmwxEmFXSbC4RgwKhYsElBahQilSCjn6EgKgbqaUpiDFtbm1x8+20a7Sat9jLLy2vgUpTyuMKx29+ht7tFb2+LtNZkYWWVZr2Fso7SVUWs9CAMAY8XGk+BDPG86W2JUFFG5udrp2fWBBMSqHzxfFAIEXAehFCkSQ3vSxAGIVTlpahJjGYyHtHr7WKLMSpJaXYaaGkohUI5idLx7k9tgcmnGAaUIWClxvuA8yX1JEWaDmXRZzy8Tv9qn0ZjmdbqCqlOEaXHBYlwjqD9XD2gpMJ5jQyeRGpSURJkZNEaYbAyFsAaopeZ8ggURkhkZSYeBEilmY6n7A16oCDtdIHIgijKAh8yynwaZcpKI72d2ywk9QVIW/GcF/IINpHGJqTw0avMW0QoiTZPEpMqZCaw3lPmE8Zb62gtqTVbNGsdlDDvkgGYAJaUAkdSFfhFBTohQgR3pK4CQKN3hVKCwk9BxfasETIGExCQ1rF+/W3S1iK1xmLc94JF+ZLSBlQiSFLQSTyTKhXBRiVjyldpwVZ7cUlA4RAYAhItK1ttGc+/waSoWpPaZMh4sIsY9HDJlGboILIk/pwUKK1oColUkqktcSUx3U8KVHAECdpLyvGA6zeuk+o6h848SLddR0mBRZLI2OxkJu/UAYRA6GihYoRCpXXG0uFChh4YekFQaI0xBhc8qQPrJhTTvKqdo3S8zKdQjPHOUpZjinKKKxz5ZECvtxd9n6RCKJhOpkRVuiJJakhjIG1Q6+xnJa2RGINKDdqk1LwkUQErZCR9UEbSRClRogQfpZ2IWBd6IjAohERWrDEXovddDLLyqCrVLfgSzyyJNHbQlRAQJEFqhA4kpgbeYrTBioAKEUj31iO8x1tLHqAvABReZEiVkTYbiPoiaqHFYrZAs9YkWzDU6g3qNYOqKVKdUtMerUCFyC5zVQVGkKigQHmE82RKokKOzS12tEe/v0uxt8t4sEeYDsgHQ65f2+L1V19j1LtBPpkyno5IvKUhPYsJtNstDq6kLDRTvpuP7zqg9OAHP073/Bd5+hvvkHYanL/wNq/7DpcmXX76Zz7C7QsJ3bbkU3/4u1xtLJBvbnP2W1/hyNoRVo/WKScjmhlcubLD2tHbcLb4jp7szcetheOthI7vVAXOAIA4VVTFUol0SREUtlpEdIwPwAWFDoEgSlyInirBQ5AlNaGQKuBcwWDqETpDTq/wH3/tl3j6rRE/8RP/BHXoToTI0Soaw8VYAlEV8xHcqSnFR+86we7uFq+//Desnbyf2/avRqohkIQQ+3CiSp5SmuB8VUNIgoxpRoR4E33Q8cAYYAbA4SxCxK6hzAx5OSVROhrTofBKsdEb8qW//CTedPn7P/VfcMfhQ2xtnufggaN8/Rtf5sKOpFEvOPvtZxmUORJDrkq8t/jRCBcsaXspmuFVzBnto0SsFLGjMQMmpDCVVERDkHHT8JG5oqkiSavOpKgoiFG64XFzhGfWPo8gy9yweqaBE3OleDwUEiC4CkupwKdQdbsJc+NwhfhbxtktrBgR39cgPcLHERa9O0yU1VWFnKuqm3mhw2yvq2JCw82CMBCQQSJEhA8jZ+xm2k4g4kYRPqs8qIi+IKHyxQrVV4WIeu4ZoDO7zhBm+urq/ajM65j/llldOvNVmhWzFbVpTk+qwDY/SxiMvWJfgUozIGeWqjCXCgbmYBwhxPdZ+NgRReAqMEiG+Bp95JfeBHXUjFEV/0QC2U2/rvncrwpt73wVX31z7sc1YXaV3Pzm6jtmbEUfqXzIKh0qmoxVn6oxkGUpH3rsCXyAU7ffw2c/91nuuf8urAsEbzm1/zD/zyd+lxNHjvHQ/R+kqAoEX1guXTjHC898HSsEt504QbfV5d777mZUjOnvbfPVrz7NPXc+RG845vt/4Id5+q+/ylef/AuW1/Zz4eIFRpMJ65cvs7G9xfHHv4d8VPLKyy9y/PBxTt59kslA0lpY5ad+4h/x+b/8GX7vP/4O+w+uUjrJaFSgXGC8s8dv/fZvYvMpy2trdLuLbG/sYJTmT/7gd/iej32cy1eusbl9jc3tLRYW61zf3gHvmBY5470ddMMwKKe88NJL9Lb2aLUyLr59llqWYuop+9f2M+wP+OzzX2OxucJP//hP8sw3niKEknIsue89D/DY93yUfJrzmc98ks1rVwhlzonbT/POxYuUkyFCe3xDs7W5SR7G7G5ukChJqQK7/R6dZpdue5n7732YclJw9Z2L2HEfIx3d5gKnT5ziytV30Drw4ktf52tf+QKnTt7BfXec4b0PPsQ0BC5evMSRg8d47lt/g6kZPvnHn8WWE7RWTPMJU5uzr72P//B//Af+8T//OfYGQ2QQbA97NOpNLr/xOrffcZrzV9Z5+eVnaS0scvr4cdJaM8Y5CxOLL6PxZU4oS7755S/w/NNf4T//b36Be97/OMXOiP37DyMR2DAb0pG7KIScs/Vm/n1qPp6jAGg2nGeDPTYU4lyZyRxm3n1zX7oKS1KVJM5LMWeciqrJwnx1qLDrmXy0wqGDKBAhsktCcMigY8MmeLTSlM7SXupyzwPvZePGBqiA7+3w5JOfJ61lNOttHnnoYfatrWB9ZVxbWJRWKKWioWR1wBU+4Gw8TM0udNYIUELEQtZalBboRFOU8bClKu+UfDpBGE27Wcfbgp2dTUb9IRfOXUClNa5ducxtt99DEXKuXrzA8uICqU5BQt3U2Ov3GU5zpnZAQNBuNZG6yfHTS6gsRfkMZ0uuXXiVQyffQ5FbivEu169ep7G6xuLaMZK0g5cq+l6YOvXVDr2tGzTTDO8Co8Euw909VlZWme5NGA1GuMKyvG+NrN0lCI0vLamsUU/b+BBw3lHi8V6ws3OF0pXkxYj2wgK1tEGt1iUkkTk8LQsuXLzIaDDBqJR6oxZTsQikWZ1gMuqhhjYxqQoNJgic0ZhgQUZqfipUdYIqq9TXyMSpJzUCgnFvj+sbV9kZBBrdRZoLq5QhekliRDQoF7FY81JG4EpGBo9SAWE8IY9QphTR69GJCVIKXDHFFQWlLxDeUrgCa0uUgUxltLsNJoOS3iBndfkwiyv7KF3BdHyA3k6PwU6P6STQ7C5RyxoIAkXIK+ZMZHEoSZRdiYAoJlVQgkHa+PtirLjHyYCSnkTI6LEhYgpT9KWKRuBuWnCjf43tXo92fZHFzhKWCc7b2BcJcZ9UsgrUiOY+CAEmMVUUoaTs75GqEuWn+FKSuxKVJAjrMCYDo0h8HSXqCKDRPkCY9Ll+/RLffO5rtLMWJ46fpt3O0C3B5t42wZesNDpcuPIOZ7cvU3hPK81YXFnFtFrUGgsIU0MIyMuSYPOYOihzrC9QOmW3v8NwNKbVaWKMQvkEr0KUQ2qNRpIaHaWPRtFu1bFOUvo6anmBoCvAXEikMpWhucbMzgVzfxCBC4G9vT6b69fwrmTt8G00Wi2ytMFoMqUoJxTB0ajVWa3vZzWs0hv2GI5G7N1Yp6wPaS0s0m12mVrLeDqKEdvKxJNLEPH8JSTaiKrZKeLJIczqB4HScc1zvmr2KgPBxTODr4IFvJ6btpvEEFxga/0q21vXqDfqtFsL1LI21josDiMChRsirEALT+JzMq1wWpLOFmAVAUfrAk4YVCJpZ21Ma5lQFgy2rjFUKfV6F5PWUCY2GRFEP5gg8SLOXHxMPfM2BxQOyF0JIUEr8NZRhgKkJngfGR0hIGzBqL/DuCxImwuoNI3sSCFwDpTMCM6R1SJryyvAKhICykvwSfS18aCUQXqB9TGuXUqNxaOFxsp4/nLegogeaIlOMWkT57uMpkMG/RGTwZRGvUGt3owmyvE2ErDgBVZKrC0pg8dojfHgvMA5F8+I87O1IC89NigUDusmCJ8xHPTY2jhHd/EgaatNUAppJYpKKmYEMktJTA0ZIBUZgSlepdE02TvyIgLDDoW3Pv7uqgMuBEihkSGJYAclKEfIUtrNJlMryft7bPW20aM9urUFmo02RsVxKyV4aSiCRfqYZme9h7JgY2edSV6yb/8BllYOIFEoVXkeiQiGxysxaC3RRiNkZGXNvJTyssAjGBcO68Y4C0VhmZQlg/GU3b1N+oNd6olGasW0zJGFjfuvczgnCZQIlWFFwKR16t1VsqyBSQ2trE6QmnqSEJEUgxazk36UrKdeUYa4BljlmYYCjab0vjrDQEiiHYqqqntXNSFUECgfsL6EEOu9qMwxUamjFd5JTBKZvYmORuwyBKSXhFDifI53YEvB2BYEFIVUoA1W1ZBpk1a3Ba1FGp0G+xeadBcWaDVTOs2MRt3QqXsSFQen8AHlLc7NpCPEAAgR47lyWfkaWoufjsh7PSa9bYa9DWxvB1eMeerZb3Pt0jm2B3usWk/nQJ23buSU01jvt5uG3jTwzuVt0sSjlcRjGKPZzD1XSwETz1pI2L0g+GW+e4/vPqD04D6e/ty3GYrjfOADj3L2+TpF9z6O3nk/9aWDLKxkvPPM53mtPMBBm/P8qy/yxjDln/38f83k0hWWF1eZbl7k8l6LA7cJvHUYqXAuypX+Nrkb3FI4/q1yOKIcrIq8j4liujqoW5CCEovyHu01Xkc2hXIupoxIV7F/YNDb5KUXnmHXJdx974Psa1veeuULPH9uk6Pv/bt8/Zm/5kNpE1EeYebHFMSMbl5JnZSmLHOefPLTfPVrz6D23c0/uf19BBknkqwKeGUDIVFgozu/lDoyNHTABwPW4ooJUyEjtTk670UmlAuYICilZ9K/wbNPPcmxk6fIlo+ytLwPIaIZ3r133MONG7vUmgtcO/ccdvcKX37yL1hcO84Tj30/A/clVppLZCvLXL96jtWlNVKrkNbxmb/8DJujgu/7yMc5cfhIZHJ4UXXCXVywXSzlvZQoHx2NpACHRRDNF2WYoclhfv9CJT0MIbJywhzwiMwkUaW4RJCo+jMHCqrJO9PNVf45c2lV9ekm7DDHom6OHxE140FE/40KcoGQzsHICEbYGFM858XN3JrEnM00A0Zw3HT0ViC8rkzKI8Ap0Xgkfta5DbfI6vzcBjw+p5xBYKH6z81lmfF1VX4iEKmQs++u3k9dvVe3khxCdRU3k9FihTsvLMNMAxzN4yIA6BAzlL9aISvlzXfMQTG/jxGImhmXV0VthbTN0kYiA6nyoZFy/iJVZdA0k/nFMRLmV6BUdVcrAHd+M2fI2a2LAjPp5XwUVNcREErO2VpORFAMD8YY0iyjtFGCdvb1b1Pvau688yQLC2u88OJz3HvmHv7m+a/z8PsewU09iTaxiAiekCi0UJw6eTuLS6tkjRYnjt3OIw9/kLNvvR6HhoPJaMpz33yGOx64kwfue5yrl85T/0LKyy99k7K0bN/Y4urlJ7nw1puA4seX/gEPPvA+Gov/gAP7Vnn04Q/w1FN/TmNhjYcf/iCvvPoau5s32NheZ5yPaDQaPP7YR+m2l/nUp3+fp558kjsefIj9a0d4+/w7LDZbnH/zLZ597hmwKUcPHuLy9WucOXMHxw+foNfb5VvPf4N9Kwe4cu0SZRCcPnWaU6fv5OxrrzDe2+XYwcO8/MKLXFq/TKuesdcfo02NgwePcur0PdzYuMbJO06z88wN+v1dnv76V1hodJlMommuKGF98zJIQ+5LJjYuwolRjCYD8jznuRdepFOvc+3KJRrNJrffdpJh7lk7dpy9Xo/ecMCP/+N/wef/7Is8/pGP8t/+u1/hs5/8FF/86l+QJZpBf8DBA4fJGhk6CyAcuSuQpUJ7Q1JPSVSBmg7JVJ1XLnyL82+8yQefeILDRw+ws7vNYHeL7/+BH+T8pXOMxyOSWp3UZHEPUQG8RQVFCIKi3+eRhx/i5HvuxhWglaIoHc6VaBkp43GeyWp/evccmrUU/C0Tdz7Kb8HbRbXuzFbMm2P+5tTwsyniq2evpslMRueZAcS37KnzaaWZyWylULEINtGwsqw8kdpmgbXl/Vx86yyPPvohXnn1ZbrLi7RaNba3hqysreGLnOEoR9eaOCLDsiirzmO1NkgRz5sRY44yhJnNfl6WpKlGKUNhp0zGOdNxjpLxtbnS0kxS8nzC8y++yRsvvUimFY12k8l0jNuZsLS0n0vnzlG4CQfWDnH6xAka7Q6T0nL56gYNWaO5uIRM0hhnXwoCljxESZQPHp8WSKcZbV5lrzcgqy1y4vQjKNOgxFXXYJBS48OU0WgbPy3Jt7aYFCOyTpN9+9ew1lOUgrS2RH1xBRDVz0sSnSEdsRNMTPasaYWVgnarjbB5JZdS7E4GDHdfZ3N9yOLCAr3BNvVWgwOrS3gE9Swl1Q2ESmPqmJfRFwVHgohnFgTKOwwBEeJrUKKyemAmS9QYUm5s7/L2q6/hk4TuvoN0D2QRSA/Rb6nKrCU4KEMApdCV50OiPTp4bGkprMNZx97WFoPJhGa7zsQWZN6ilEYrgVYpQmvqaYLWCaWzDAY9ptOcWqtDd1+XmlSUBQhlqDcXqDW6uBJ6/W12N8/RFym15hKNdrsCJy06eNzU44QjYOP7oDXeT0lCQBGjzBMVWSlBxn1dYHDWYUuP9Y71vR7be3sYFahldVZW90NuyG1kgWlMbIzIeB4leMoQQzaMjJ5TWkl04gBDI1uizCVWaowwCBJwCpE4gvNQSIRWuIqJopIMlXQ43l5BlyM2rr/Jy688T1Kr830f/l5297YwdcHb589z/toVurUataRGktRIatEjaZiPEa6kLhTBCYQ2aB0wSYLzGhEUteVVFvfHlCVENI6VUpGqBKVlxSD0kfksBN5P0KIkcYbSK9IkiRIhJcE6HAU2QBGiB0sqNd4WbO3ssL2zTT6dYHPLysEDNOurDCY98lyT1A3NrIYt+riyRARLliUcWltlMpmws7FHf28rdunNBu3FVdrNGtPCYW0MX/BBoEwW76OTMQWuOku6mVxUqGheraNcRqgIxgQfz2hKSYKLzdbIhBGM+3v0BnskSnD0wDGkSSubh4TgS4zWeFfgnMOoGGkihWKUW6yfUBBItSEREitlNd+izcSIgMlSGrUFhlmHohwzGPcI/V0a9YwsNZg0RajYfDYhAHoOKCSFxstoyJwYHeVZMhD9XGsAeOnxPmdvZ51ef4duZ5nO8n6sVPiZQbdQgMWKgA8JUtVxNidYi/IgtCDLUnCeiZ+gpUZYKMoSlKBR76K1ZDR1CJ+gzYTSTTEmNqAdUAgfjeWVoNFcIK21GI97DEZ79Aab1JI6zWYbm0jqokmQCqciQGSEItUChaZ0M2/UyJl3Vd2RSUmBI7iAkSnDwYDLl15i9cBxap0FnJDIIDAi2pJbAVpIjICkSvq2MkcKgSF62BIMaRa9mHQIuMQwmbpohVCBG1IITIiJklLICER6S6kUhJLaQovUNyjHjr3BLjujXZqNlAML+2jWG2QoekEwLKLx9LS/yaC/S7ezzPGT+9FJh6AcWtdASTKqZGirKEVMUiuKgulgi/FgC+0t0nmGLqaqi3LK1JeUpUNai889ufdYW0Jluj50ZZRCJ3VUp0UzbWJMNNIXWpPKuE4rHZsiQgSU8BTuXacTgo/uV0KouRdUKeOaYiqiqAk1CgI6OGRIKH3ABVvtwxZBlaAtBEgV0zGruSuEIHEBJwQZDlfkOAHTkcejcJUPk5OSkNVQ9Q5Zs0N9oU2n3aSx0GGxtUCtY1isGZp1TbcBTSVIqlpPOYdwN7OvA3GPlFoglMMKifIJtoAynzLciUzKYX+LaQlb1zZ4+5WX2bh6kWG/z854iJuOyZSkkSk67Q5Pv7FOcAXohOWDi6wuZ7QbHQYTx84gZ3s4ZjAuCbLEWYcrRQy5JaClpMxLamnGzl6P2w7v57v5+K4DSncs7bG5I+l0C9584zK3Pfx3uPuRR/ngmRbKQoqnue8+zrzvNPsHz/JMPcVi6Db20XVTakuLPP2JT1Cc/gl0yHEhgWAjxVjcLHZvjQOH6t+Jw3N+oK4et/opuSCQlR1bqAzrQlmilULYPlcvvE37yAPUjSAoNad4ex1whcfaKavH72I1bZKalL2dy/zBZ57mnRtj7lrax0/+8CP8L7/xe4TQ595T99NZWUWp6GPgQyWZ8yB1jYPHH+Dx1u20D51iZblbScMCHh0ZKdrgXSCVklxMCc4jbM6N9S2axuDthI3egG53gc3JkKWVI9QaKTYIghZMS0er3ublLz3N5555nsm3zvELP/+LjMdD8BZbFly9fpXDRw5y8fVn+PMvf4Mf/+mf5b1P/AgvPfcMB1eP8g9/6h/R0o5XXnuVxBgyHL507PQHPPTo99NdXcOV44iVhOiBYYOrfJaoPJ4qSZuo+uo+RiiKIEDauWdP9GFyc12vCAKvqu8jEIJDiRjwGv9FEk3GqQCZm4vTrGrykeJUMWjCu0CkyMOJkqQZAuKqsSPDDHCKrQQ/A7Cq75jxoKLsq+rWzrD16rodIjKQ0EhfsZd8xVqbReEJkEFWJurxOkSIQFDc6ojMHhFZW7jIJHCi8huqXpWuunnuluqywqQq1EhUgJkEG24ylm6+YczN0kMAUUln5t8RwS1EFC9G4+/oNXQzVjwykBCRTxFCxcoidmPnbDLiGzwLxBQigkiSCHhVfLb4WyVzcOzdpuQzdlKYs9NmtW8QYi4TmvtWvavqhhmS9LfB01pEZsOtkKOoZHYhxChqE2KR+9Ef/D4WFxb40pNf5vjty6zfuMThY8dIkpS01mA43QMJyhjuOPMeOp0u1uVkrQ6lt3hvOXrkNkIQPPTgB7Blgcni3f9nP/cvMUrR39vh8KFjCFNj+dBBuour3HbmLnY3t7h86TybuxuomkElNRazJX713/9vZKnm4z/8Y3zqk7/PYLLHhz/8Ea5evcrhI8c5efIYiwtLDIcTnn/2GXo7O2gjGfW2+YPf/S3yYpfxdMq+5Rr//lf+HcuLR7ixd4N9iwug4NXXX+HMqTuwNnD9+nWcy/nWc1/nvnse5tjJ0zz3zW9y6j2naNY7vPDcC/zVF/8cNxwAUFpPWm/we7/zm7z67WfxMgfpGBaWfWuHCNNAv1fisSy2F6nV67xz5TKykeFcjklTXF5GI8aGZGPnKhcuDqJkKtQ5d/k8t504xWi4x4XzF+gP+ggvWDuwzMULl1ldPoD3Uz76xIf54uc+zTCfMiqn9Ne36Q9GSBkLRaMVgoTNG1ucPHOaty5d4v2jXb7xlS/yr/71v+HVs+eROkHmJe977DFGgyH5sM/R247T6rbxpcWrgPLR0wIjmE6n/Mtf+h9pt5uR+Yrg4htvsHbsKEE4vPUgNUJSSVlOlwEAACAASURBVFjlu8dutd6IW/7/OyWet87p8C5Q9ZahfwvYLSoZsZyD8TdXAyAyNG75OzMPJSJLUlRzzVvPcNijv7vH0WPHKa3DBsGpu+/l5dde4TN/8Wd02inLSyssdFZp1Fex0xHeKRrNBl5qJqMJJpUYExPGHOB9BJ5tWVbru8Q5R5IYnI0v2BYliGhm6YOg223ig+Xs22/jypxD+w+ws9PnypWLHD1xG8GWnD37FoUdoWTGoYWDLN62xKGDR3HScO7yVdZfjuDg7affw6kzp/FCkHtHaQN5PsbZEh8szkpqjQbFzgaNTsKoTFi5/b0kOqXwFi88icniumZ9JVXPmI5HOFHgyh4rBw8xHJUMJx4rPEmtQShVNCXXnlRohFQxHQyBUxFUk1VghfZx77U6pdfvR88EN6LIJ6wd3Yf0jglpPB95QZo1yJK0KohLhA/URYrwoFQEB4L3VbpbiEwRqZAoysoHIlSSn8Fwj53tDSahpHvsCErXKmacirKXIOZ7o/fRjDSewSJgXEzHjMoJpS3Aewo7JYSc8WjKQnsBKQ21Rh2kIBEK4X2U6gGTYshmlQZUT2q0Gm0QCaKAQhSRKeA0obSxoSME9c4y9azG3s4mOzcuUI4XqLcXUUmK87Eo04lAC/DCI31MZ8OHmNqEjOzpqsHnXcC7Eu8F+XTC5u4Wg0GPVrNJt7PKJEyZjB1SlSgZzZpRJpr3Og9KVr4XlfGCil1sMdv9lSdIicpapDIWWolXlJL5/uqDw1ZMb19OKCsj+mIyYG93C5O0OHhmhf7VGzz5xSeZTgcMxjlTHziy7zAr+48i602kykhEgguV7DxJ0PMwC4kSJrIRpY0NzmAIWJQ2CGJjKVOaRMRGpg+WRET5all6pk4gpEHrhEwEnPKxqeYlpQRvDQRBpiS+LNnb2aQ3HDCdjijzgm6nS3fpECEECuNRSTueP2oZtjfFCY0xkugE5BmNc4zWHD16hNF0hc2tDYaDPuvjPgtLy9TbSyipKIocoQTTyQClUoKzVdx8ZJCJeHDC+xKpNKW10bRdBKwrUUEgtYpnHa1QaKbjIXvjG/gQaNRbVbJniS8LhE7BCHTNUEynOAfGKHwezbSVmCJNQmJSdNBoiKBb1cSLMs0U4QSpbDD0U4ISJKKOTFLKcsRkMGR7d0yWJRzct4oxjZuNOSFxEnIfo+qdnVA6hRKSwgcIOQiDDSX5uM94NEbKhH37TpAkKSIEMgRe1yi9i0bdMiMohzKCNBXgEmxp8KHApIZESShKQuExRN8dYWJ6WfCWQELDRMnbtLQIYiJmbEp7ssokOqgqHElJOs1FXKPJcDJgb3uHyXRAvdHBtDRp0qD0BV4amlpG5pOwVZhOtJWYJTFbVwUWiIBSKb3RLts7lzh4/B5qRqKUBwsCAzKgwowJJSidR6oo2fJBoIOKnrLC4ILDWR8l4xU7TOg0ylgJ0QNWCoIKSK8RwsVrVgleahLv457nSur1OlnoUIz7DPd2OLf1BvWGYN++NYRuUQ5G3Fg/jxeB20/cR625gHcF2F2ElYwGm7E5WxT4yQhvCybFFF+UFN5R5GPCdBKj7LXEaUkSFOgI3sssoW7aqG6KTuukaYJMBVqkGJUhFQhZWXY4WUnl/bweL22J80UEn/ERyFRyXgsiKssOIaNnYgjzdSiU0fcouOj8KoXBivieIy2pSCtMoArXCg7pPNjA1Alyr7AEvFZIZbBpHZW1MK0utc4CSwsNuu02S4tNuq0a3WZCqwatTNCRkBCBEuk90lsQgWCjhYWWEQCzslI6aEBJJpOcnb0+k94uu1tX2F6/wTsXrpGPr7O1N2FjY5dz336D3O9gXcbpkx3uuvd9TNUab1wfkImUQtVAloiaxgrBwAu2N8YEG+spjef6zhbZW44kFRhjWK4pGkbjisBmgFRpCAoh7M3gK5kwDpYwlezt9v+WCuj//+O7Dij9/q/+FtO0iR9OEEf288EnPsSZ9jrDc+dZWD2Ba7RZPniMH1raZuPcSVb3H+Hy9Vd45eXn+Nj77yIpxpx59MdorCwyLcbxBrkw75pCmB+Mb2UrzQrvqH0P7/r6TTZJ9KYJVUyArApEKXP2djZw/ev8r//3J/i5X3yAlvYUwpM4gfUCaT35dJenn/o0G3mLxx//CLYMtDoHeeJjP4E88g6JLvmjP/8SH/n4j/GfPv9prrDMjy6tUNe2YnpE9pAseiQyZ2WxwcbGdfabCdl0hGw3iGZxJVH7GYGZojKGVhqEC7QNvPbGyzz30vPccef7cUXO5Rtb3J4ucCBLUUohbQzPHN84x1+88ir/6pd/nenoOodWuoR8Qu5zRjsThEzZ2LjGKDnCoz90J0sry5w6fJjVZsYLzz1Ja+1xXn/jZV44+ybdxa9SyzLe99Cj2GLMSncZIwpkPYsMGhllP7K6WaK6Mz7Ebiohgj9OEF3nCUgvorG3rJxzvCSIGGHqmLGDZAU83MR9K+gjJvmI2dcioiBmLCUhUJUDUgQbbh0vcfFxzFLO4kc5/wgEjxMxvFtQABofoitOhF9U7OQGwQzKnAv8xMxBqBqLFb8AEQ/bfu4dFJl3M7twKarvDdHAXMyAnOBwFqQ0lYzMz0E4dQu4qsTN652b50KUHob4fFLOWDfcNODlJqTkiVI2ccscmv2sIKCFqZLLQvRV8jamTlR6GBdcJc2Ziw/jx4p5F2R8bl0ZXxMgQcYubWWQ7308oDJ//24xOZ+tA9wsmGfsipkDcRyC74bLZh/ndfMMbPqOr3pmPl1VlC5Uh8uqAA8BrSWT8Zj3P/QY//uv/s+oWsGf/vHvcuncG3zgsQ/w2Ac/znjYQwWBd7bS+gtqaQOtWywsLeOcmxcoUgisLRBSoJVhOhwjUsknP/3nXLxylscefJxjx4/y8KPv5/aTt3Pj2jpfu3CBI4eOUWs0+dSnPsHayhFW2wtcvn6Z/+6Xf5k//eNP4azi/vc/ymQw5I1XX+OHPvaDnL90ga98+YscPXaQ64lABXAu4AvH8duP8dor27QXU3JfkBjDte1zYA2b69s89YUvkGnDW2dfx/qCw0cPk5hFrq9fpxATiiLnttN38NabL/HlL36WDz7+Abau32B9rx/pxAQ+++lPkRcTpLBk9RqZrrHS7TAal/T7e7gyBhLsTfoMxgOarYTJZMJya4mxK0gU+GDwHnZ3t8BHZppSiswssH59g8/8pz8BG9MyVBDceecJfvu3foW6+QU+9/nPcPvJM6xvbmKaDc6++TbNeg0tFcFFA8xSeHRN4EYTFtodtq9d4o/+6I/4+X/7S4wnnuWVVTauXkUow9JyjcSkPPKh70W5gLREIJyAChILaBE1++1WOzIZpMCOJqxv7vDlr/01Dz70Xu6550E8vqLuRzBTem6O2QpbCjOcO0TGXpgHR/hbxvVs0t4KGs/mcTUDRKg8w2Y/JiqG3s1ZMZ8Zs3nmK685YavXJEEJrLNMi4Jv/s03uLGzzr13348RCTt7YzY31jn/5nM8/qGPMi1LvvSFL/DY409Qz+o4L9nc2sHUm3SaTXSi2djuxZRUYcFDq15HaBnZA3YajXKNZDwtyFJTHSYDk/EoAiJZxptvvEY+GHP6zBkm0xHvXHyDFE+qDWffeoPrVy9x5PghDuw/zOrCEtq0cVZwbWePnfEUWetw73seQEjBtc1t8jKndCVKSFRiqKmEWlqnWUvpb/UY9XJqB++kmyxiQ2QEtJWhsDH8YDydUkzGpMaQpQkJms6+A7x19mUGziDTFllSI1XVGpkIkCkKXzVlJEF6ggqIUCXQYin9FFeU4CJ4NRn3UCH6mSzuP4kxCVKUNBZXCNYyHg4Z9jbZ3RizVF+is7SErNUqRlKC85O5X5UMMeY9eEFRlOQ+jsuAZdjvsdvfwRNodbp0dEoZPAhPouoEJD44XJkzzkeMJkMaSqFclNEJKSKbRhq81qh6Ay0TUu+Q2rK0FM8KXkik1wQcXjoKJZn0egwHe6gQqKUZ9U4bVxUlZeFBpTHpxsc9xWAQSuBcji1zQvAsLu6HZcVg3GN39wqpUGS1GrVmilIZrtRMyUkE2CDRujKdVrPghkDwkZE9nozpD3YoSkstSeiuHaSQgpEvwCsSFQiksZOuoseVJBBUbGxqLXBBVqxBSZAiSg+FIJFxvym9JNiAL0smYkxRllgfsBaEs0ABEjKp4pyWCpXWWD54CsuE9cvXCXKZ9olFGuNtusOc0qQURfRIyUQtpqyJEBPppIlm/FLF6w7xrJSouO9qXUOXPibwhgIhqzZQ8AQnUMEjKUHA1EPpXBxTSlTAncOX0fg9plJKRLBY69jeG9LrbZOPRtjS0mp2WF5dRWZ1hA5Mg0QqQCps6QmTAlT0vHJSIaVCCEdwJaWF3UkfpQQH9+1n1G6yvddje+sGWzsbLC4doLW0P0quvIigbyLxZRFlj9X9CES/sSpVhuAdpStITI0sjeDBsNdjNBwQ7AQE1JsdsqRDCAXW5wiRYlT0wXG2IC9HCCFIlYGiJPc5tTRDhTpF3gPjcWEKSEJe+Y0qTS5LasJQWMmUACqgQ8CGEikUWdogpIZa3iQfWW5s9GnXSzrNDipLsD5QOrC+SkLTdRIpSBNNfzoAbyjzCb3BFsJBq9VGGROlnr6MTBM8VLI+r3RMYxUe7y2hCLjSR2auCngHuQ8IYailmry0qFBGRlvQ1KTElVOMNjgpkBiC9pRlZXshTdxrRMXcDdFTiaqxkdWatA828dYyGk7Y2lzHZE3apkHWFjgvsGGK1LoKXLnpTyODj0Ww0lhf0utvsLN9ndWFo2RpQk5O6RxBOgwOF0zVjA1oETBCoePJPnroCIdQtcqqxaFkgpeRdYZ3UWAoImNGqahkFF7jnIOg0UZhhCcRFtCEUOJDh7KckKFRaQ3RquOEYzK1XH7nBkpvkOcFC6lB1xL21t/g8miIoCTVkXUXgos+X7464QsBqSHRCampkTU7ZElCmjWQaYpRilRmaFUiVVo1AuKZ3IUoC7PVYURQEGxkXUWnDIdDo6Ss7legJSCgGYtpTLrzHmttfL6qTpABbAV4ekAoHesEPXe8jXu9r0A9X1LmMFaSUhmEThFpiqq1kc0m9Xab1YU27W6L5U6LbidjoSbpNhTNBJpAiiC2rwqCBe8CiAnCC0IhQUU3JuXjmPEBcu8ZTEum/ev0d3YYDTfY216nv3mVjY0NXvr2O5w7f568yJnmgXJSYG1OomuoVLGw0MTUFui5QLe5D4HGhg6D3i7dg0usNBTNkHKlLFBlSsjH2DKyGEsnImAmQQTJwGe807NRsqcmpJkkkDDNpyTBERmJERw3geit7E2lLBH0Jrd0Eb8Lj+86oPTl9Ee46+4XeO7Fc4jlMyxNX+Gpz/0eb14dsXriI3zsR36Eo8ue1//q9zk/OcwP/2ffx6/9xh/y3KWSv//RJpPhhP2rdXI3QAgTKe5E8zxxKwOletzKUoJKIiBuJrNVf71F2jLz5YlymkQFXnjhadY3hjRbS/zA3/mH+O2LvHCx4MEH7qKwI8j7WFUjjPps9yaoheNceeMZWksHkYstVGeZ/+qffhgtFIP1y4ySJv/Tv/lFZK2NsRMIVAAJjHt7fOlLn+b5185y/wOP0KjVGZYFV/a26Licdr1DLUtjARsCHosUEusE1pf/H2tvFmTJdd75/c6S293q1tZdvW9odANgg9gJgSBFUpRFSqLFkWhJI8uyYsLyox8c4ddx+MXhiXCE13CMww+eGHsUMZYocUYaaUiNKJEEsQPdABp7oxf0Vl3rvXW3XM7ih5N5q8Hxk4MXgUaj6tatzJMnT57v//0XPnnnJT6+O+LYcoaSKXuTXbY2PqSgx5NJRiR16ERUFSpKefeTGxTRSVZagsomUEzBODSSxfYCRa/k0aeeYzlL6HZa3Ll1LUQ+336fi5c/YvX813j+F77Ev/o33+fK8dOM797k1r2bLPSPce7cQxw9eiREyHpVd1ckwoERAQSShC6axEFteh3VaQACH0ww8SjX+BXVMqNa9hG0sfU1rK9ggAzqjt59IFP4TwOLCOqVH7DBgBAftO41MNBclwDQhH8sDYAU5osi+Bw5ZJ2YFrhEjWVTkH7cZ5bd/GQdI+kJ9MsGtnI4Ql8vSC+DJ5IKzB4fCigvQ0HtGsAFgqyE2udECGQDcMDcm6mRWDYSP0Ut4asBKFEnHzhfESSD98MpDb+P+87Df+bvtcAj/N03EsNgtO5kzfiTAciklsw1Y7VvKBVAJy/2Aa8wqkG+FhhjNjyM6h9xIoy59BIa3yzfmAs33KhwnPtG2vseVsj9onn/9JpxEfMx2j/XegaJ/fGRItCjhVdoT0g20prh3ojnf+Er/PGf/C+U45xsucvNm7cp8pzZrEDHWQAHpcA66HTbpO0ssJyUDrKJAA+ihMYJA97inePG1ev89b/7HkvtlNejlD/4w/+MvPJ0OhmbG5ucOfsgH3/guXX7DseOH+e1117mwRNnWTuyDCjOnDrLP/yHv8erL7zAow9fwAjB7a0N/u5vf8D6+qccOnSQ3e1dhJBUueFXf+PbbN/b5fX3XyWzEaVxFNUMLVIOrh3hkyufYK1FtzIKVxDFKRs7u6RRSVVZrl+5zntv/I888czT/OjvfsTCgUVu3vmU8eYOnd4C4709cIFGb6xDeZjulaRtye/+zreZlZbvfvdfMBrskSYJOolp93r4SYEAZoXlzIMP8tbF11F1waOVwgtLFEcsHehz69oGv//7f8AXv/A8/8f/+k959eILnDp1iv/9f/ufOXzkIH/8z/8p4/E9Pn5/xtqxwzzzxS+xvrXNvY1tNj6tcC7HWIdE0c1abI5HHD/9IOt3bnP5g9fpxxk3d9c5uLrCyz99haeeeYqqMmStlCRKIa5BWx+6SE6EiALTgN1SITPNaGOLyWAXZMVCu80H772DcYannn42dDVlkEeHuygwK70MAJIlbKrmnviO/e6T32fu/fvy8H3g1LvAIRfuZ1ibYv8/+0DT/e2BsPJiBULW1tyV496dW/zJd/85470thJxy4shJVg8c5N0P32Br51PSLOPu3U0eOP05PihK3rr8BocOHaDd7SOTiG7aRscRt+5uksQRWZLgiAKQUZZEcfA3lD5IFra3tonSBCEinHOMR0OyWHN7/Q43r83I8xkHVpfZuHeHV197ifF4zJFDa1z98B2m+ZBHPneeY0cO0+2tIYVknDtu3LzGztSQtnp0ep2QOmYFXkbEqaSlW1RViCpeWViisjnb2ztMRoa1k5/HEpi47TjBGBd8grwhqUoiV6DbEXGSBgNuK9jY2qG1fIKs30USIa0EdBhv6XCiCs8cFUAFJcAbS1lWeGORwiA1qCihRFCVe3S7XaRs0Y998Ez3IEkwvkQIRavbJel28NZji5K7g3uIHY0SljRr0++2QyCJ0zhX1exdRSTDJnQ03GU2mYCAbm8RqUMqmTEG7z3GGoTdxXhL4UqoPLPZGN3KiHo9Ep8ioiBF0FIjfARCYZxDuEY+HdhUXgagMHQVIZ+O2Nm6x95wk+X+AXr9ZdAxlbM0vjZRFuGshhqQCWspzMqCBEEUJQjZqiVYnoXuGp1skclkwL2de4ihZXlhFZ30kVFGFaowtJdYX+JNkN3hBEU5ZZqPmM6CPKfXauO9oHIO7yWJrkNQpAy+TxK8NUGmXT//vRAUtgoJdg4MY3JfMUaBEyRaUrqK0itiJ5HK4KnwMkajSeLAVJZCzf2AnFAomVCYgtloF7zl0MFDtJJFcm0QrUV83+ClxruK8WzI1t49WnGLbnuBLM4Cg9iHY8UZEhVT2SKEoHiBrSZg61htbzGuNrJGoFUH54M/jifMCYsLYJoPCZ1ex/PCHmOwzjCdjplOp8RS0FlcZWH5IEkUo4UMDhVWMPU5TsbkUc1UlBoVaXQlAgvEBEYC0qNUHPZ7kcN6yyA3xGmX1bUFovEeg+0tPr12hWxzg1a3T6uzSKvdQetghm4rh/MVWIGzoc2kRYSUDpSnlbYpipLd3QGj4S5VkaOkpp21SZIWoDBVUbNBI7QOLEBTTgPwqkUwgPcOJzUdHeNdziwfoaKIRCnaWRvlPNPKYZGBESSD/6nXEKsYZzVejoP1gopR3iO8RmSSVktgjSGfTZgOd4mnkizLEEKjhcbVTVMlwOQTbJkzHA6wpSXttImyDEtIHQxWLyEZGRlqKFX7v8SxwjuFKcMzSkgonEF7hTEWpQJL3wuDluBdaPUKLzDWEkUWrTTauDqNT+GVxNTMN9N0U2jqgLAfUwISL3HWoVVMuizJ3ALVtGJ3tIcvRvQ6KZ12C+mi2kRdBmBPuLpID0/ZyXDIYLjN6toR4qQNzpHKNlOT01K6lnaHvXyjHjDeh72gDOCDRFN5V/sRRaExJGRgqSOxwqB8kA5H3iGNx1KG+9bOkNYwsxZ8gS1KjC2RzmNsgbUVs8mU0WQPrTTdOIx9WQZPUlMabL6H1xGtOCaOOqA0Io6IozSAn2mKk9BN2mGfLgVC1vOdsM4FqXyIP9I+sMxyEzYbHpC+9hpTgLcYL4MPEBUQGJeybvTbOsVj5gAsQoXrbpUiRuxLSan38r6u/RyYSlHFCqE0VncRiUa1U5KsR9bt0l/osbDQptdrs9xLWWzF9NvQVdASEIngS6SExZkKZS2VM8GPd6rqUk1grUE4i7WG0jpya9mb5ezu3GN3a5PN7W1urt+F0TY7Y8Xg7scUMuHKtZsciyrOrkpEpBFKMTGeG7eG7E0NrWyBxXaKUgmj2ZiqHKOcYDAqsYO7eOsYT0u0ThhNFDduQ6u/i+z2aImIX3rwEBevDbh74xaumoG3jKuKwle0g5yDclJwc+RpJx4dx+gZGGbMqpJAS/EksaaoAuMvlqBFAPJwil4n5uf5+rkDSifWUiaXBth0la99IeHyn/x3/PFPByT9DmviAz536xHKDy7xl//2Fa5WV/n2P/gtvv0H/zlrDx6nmE5QCqzTQYOMAFfVoEPgPOxvkj9bJP6sd9I+s2L/TY2xXjAp9UjpqcqK7vIRBsWAsWrxzPkHmEwrWnbAlStXWe15fvTjv+fw6SfJik954cXLPPTwlBc+vEzv8CP8yje/xbHTZ2g5D25CV1iqyQ7bg6tU7YOcPHIEX3sxKTxZu8PTT3wJna2wt3uP1y6/w4Unn2Kpt8znLzyFU2NIkwCASYf3GhUoEpT3rnHl0xscXFrj//wX/4yFlTOYPGdrZ5v+ifO8e+MTnsjO0slaIB2VtZx7/Dn+68e/jKkmJFmKLy2zYpfNjevgYpI4w092eOWlNxkMBny6vsEXv/4dbg0mHHv0q5w4vMR7l37C2We+ytpCRi6P8f7Ht/iP/tPfQAmHa9K5cNiy5KMrH9DpL3Hw0HHiOq1L+RBbjAzASSVsAA1QIRGFmoYqfW3u3Rg/u7Ch8cF0yHtf0+ehKbWkqG1nmwKqxkH8feBIAMlDSWTx6PvrpwZoFGKe6LFv7hd+R4WopU4ygJw1qBTmWA35+EB9bEAuUTOQJDV1nqDC0si5RM0RHP2pZW4gkfKzxtqq9umYCzqFw/h95kwDKjXzWwpZMxV8AI3mUjNZy8qC/xT3MZM++6pdWhpj6wYYEvUvq3+pEI080Na2UH4O+jVsCVUDd5590+5wvBKHxdfSh/l5+H1G175MtZbR1cCcb97RIHo/w8C4n1UxP+bmQvv7B4v7/tL4P+3Phf23NM41tgbRggTH1RMnloLFxQWKmSVKU37zl7/FwsIq25sbXL9yk5nZ4+knnydrpZiyYjYZ0+pkcykRLjCyAh7pwDh8FPPdP/uX/OSlvyefDPGtVWhFzIoZWdoikTHFpGBlcZUr+iq//q1vsTMao7zge3/1Xb7+9a9y7cOPOPvoAxw6uso//m/+MdV0yt3NDRbTlHffvchwtMO9rXXG0wl5lbOw3OLP//T/IVIJRxYPsbu9iXCaqix55rkvMMtL0ts3OffIw1y7dRM3dpR5gTeeim36ix1++Ld/xTe+8eu8+NrLrK0e4Pmv/iLvv/cOL+3+hMlsEkBk5dDYUAjJiEle0Wt1ECJhud9FRylRkiGkIELze9/+Q/7qe3/KZDzDiBmnT57l7bcukrZTkjgljVN2d7YRDoZbQw6urvDg6XPcuX6Dra0NVg6s8d//D/8tw+EOi70eW9sbiKTF5556igMHVhkMhuTDMdPBFnGWECddClNx9NBJfvc7v8Vf/uWf443gsYcf54FTD6KFIpIpeDh6eBUlLdbMaC0u4E0w/w/svVrWI2xI3amnlXEOZSVvv/JTfviDv+bpZ5/j3INn2RpukcYSa+rklQZIZj9dsvGJm8tH5wmS+40TIeR8Hdj/TrMJb5DnGnoVoSv4WW+5OT9zH62CIJ+jacyIOsHTY0WFU5JDx0/wa9/+NndvXKPXX2U0HrC0ssIjD10AM+anL/w9ZZ5z88Z1kkQz3B1x984mp8/0SKKYylTko5LxZEQrWcLYACJKb7E2UMxTrRiMJqhYEmmJcJbRcBtnDfl0wshWJFrSX1lER0u8+85lPv74Pawp6S8s40xFWRUsLPTwOMrSMcunbG1NuLM7ZjIbc/j4w7S7C7R6wSzbOxH8VAgb7naSkUjFYK8gL0uiZIEDhzpYb1A+zOmiKlGExJ92OyX2irjdDab205xJsUfc6qFUQiRVkDsoj9CBeeGdxykPwlEVBaUxRCqqGZwhuUilGik002JKPh3jjEdFKUpHSKGCWbUSCCcxSiBdAlLOJQciEqSZJrUFvpyyMxjg8zHDWU6SpWQymLWKOAYMm3fW2d7cQMUZWbtNEscU+RgnPdprIq9whDh7E0mkTOnrBbSM8Sp4ijihkMaDtEShIsU6gxUlQoaUUSVF3SUOhqqlrbCzHYazMdaUJFnEsYXTKBWFQtO5OjBFICKNV7oeAw9ECBvi6EUcBRaQqJteUgXA1hiEh07WPLtoegAAIABJREFUo9VpU1Uls+mYaX6PKOoQpzEB/W9TWoEwhmE+ZlZMQnNMBwDBeoGpPzuSEaUTAZBwJZPKIi2UwhNJTYnF2cAYDr4wwVdPEBLilIzDWMYhdCWKNN42co6IRMdhr+LCHsS7AFhLF1LFrCmDP5irSNIeWZQG/zY83gq01PgmalrF9DvLmGhKnk/Y3bzFyFo63S5Jr0tpQrJSaYOE0Nf7ciVTqrKEKEPKAG5GvsQWU6ZmTEVIRXU+Ap0ihSLSMUIHSDqWCisqVOnYzWdsj/aI4oR+by0weqo8SNtMSYnAVbVkP4nCM9/5Oka8xNnAgvK2Zo3Xvl1EAq9CE8h7S4AnLA5Bb2mFpaXwnJ5OxuyNtxnPxugtRZokdHtdIqUQIgrph5GqQdMAAHnj2NrdoiorZrMpKopot9ukrS6xiii9qntlNoCaeGamAhM8dKwLUqZIRTTpxM5XVM4TtxZI04REJ2ilkVKQRiH5UBuoahuHWER4KqwHK6LamFqHz/MlzlbEIjCgs3YP5yxVWbK7N8YWI6SEVucAOkoZlznT4U1296YsLq7QXV7FyQjnK7QQtU0D4B0qDp51iQoR6Q14MrUFKgIXYmDq9LZgGyK8DQxGT71nlzgngrQQgXAaV9ap0QQpXlUFE/xEB0sE58HasO9EqBrUMUGaq4MPqfJhPxW1W7TSjHE1YTrKmU3HtNopWauLVhneBw9X4x1GFQx31xmNBqwdOkIWR5TOIJWioiRJowB+o6isqVsqtSlFnWyNU6AFpSlR3mLrMKZaYINyjtIV2EnJYDrEK0tbxbWUK8eZEEyhjGHmCqRVOGdxwhKThAAj5ZEiYWFhGa01kVT4SJNpRRa3SHWKkII4joNZvNQkUuFkVbNURK0I8eDqlHDv8bYMKo/ac1aKEBCiUQjhiESC81VtSh4sAayXVMbP967Om1oV4dAixutQ68jGx9aHlrQQQZPhhMbKCC1jbJygk4g4TYnaXVoLXdoLXdqdNotLGQe6Ge1WwlLqSYRnQSjCXSMJtZPHVwZDjnciNEtomJ0WVxZURUnlPXlZMDOW4XDE7u42m5vr3Luzzr2NW2ysr7N+bxPvSsqZZf32OtLOaLU7JL1F+u0uS6tHuHNrk+eeeYiDvae4cfsWqjVlVBjKaclk5phNKmxVUAiBMxWRKsPYWE3pCpT3xDqmcDkqSiEK92ieGzZv3WFxEe7eXed8BL907jjvdY6zszXirfffY3swoqpseN5JiLsJadamnI6ZTCdkQmEjRVFWRDXJQWPwOgCO/VaK8ZrKVCz2uxgf8fN8/dwBpTffvso3nv8tdl/4N3z47/6Ui68NUN2MoijYun2N7//5n3DoyBl6T/8uF6oJH7z/EV95/lne/fG/5sy3/xMWkgIlElpxFGxmZIQQjia6nYZN4ms/mDn7wO+DCfd1Z+eeEp5giFzH09MktyHYunMX0z7Gs2ePMRsOOLi6ys7mTRZOXSDf+4jpdMLW+i3i/C4HTpxhYhXdxaMsHT5Db/kgrXKbwfYuy8uLXHr/dSZlhwLL4ZNdMn2DTu8g3TTGYpjNJtz49BPG967w4Sd36KydZVIo7tzZod39gO2tbb75q7+Nd7OA2COoqgItKv7vf/Y/cXlDcPKBz/HlX/8j7t29ii0t/cWjfO0rX2NtdSmkg/iApCsvwVWUrggb0mrGbDzi737wL/jbl17l2JEHWF7ocfvT9/nw6i0qE7F85hHOj3c5urBMNjPcfvc1Xr++yR/99h/yT/7Jf8XS0hquGFPs3uGRC48jZDCb3Rtu8unNT9jZLSFb5ADgKJFCoXww1Au+GKEjHhLfoOZ/zBPJ/LxwCnyeAI64GpzZBxOb8r8BT6QQdSIfCLEfTx/eWzOAaNgszfxoFL7N9KmTk2pGjazBFFX7jTSgVMOEQYReRcPUaWRqTZkX5ty+sa5qjsD7sLGtj8m7+yR79Z+NKW0oRGt6rgjlpW6O3e8f0/1AyBx09TV3x7vQvWqYO403S/NnfZyNAa+sr1SoPWUjxgvHQDASDaoIMQeIvLehk0jwfPCu8ZmqpWlzNkXQrovGR6OR7gnmflDeu7lscv+m3mcfBU+s8K3Psg9rPtGcpfGz3/+Z17yOrnlO+2hU/Qpj7GR4j0TWnxX8Q4SSvPLaC7x16RWGky2effI5WjIjcZ476/e4ffNTHnroHK1WSj7L2bq3zrsfvsfzz3+Zhd5iTaar53BN5RYITGV45gvPcu3a+1x67y4XnniMk6cvUBnHYpQipOOhRx7GI5jMCg4fPYz0iu3dO5w7/whXPv6Y3e1NDh0/xN72CG8KonbC5xYv8OMf/ZDFlSUG410OHznKwkKfG1c/4fr6Nbb31nnskac4c+w0t+5u8s7lV1k7cIDf/Ae/x5//6Z+xtLzE5x57kmPHTvL6G29w+/YN0kiwvLLGyRPHuXVjnVdefo2nn/4inSTmgw+usb0zoqzKEI0eSbCGhc4ijgohY9z2iNHOgH/9vT8l0pp8NCDWCiElX/7yV/nx3/xbrn/6KU6WqDjlL//iL2hnWb1GSA4ePMwDZ84hJWyu32V3uMvbb11kOh6xdKDPsYVjIOG113/M+tZNIKHXzhgMdjCzKe+9f5nW4hJJpnni6edY7C2xfuc2Fy48xfHTD/GPfn+N29ubHD9xin6vz+7ehDiNsc6ysLjI3nDImXNnsVXj71b7nc3vryBVwtWeOFLihWTt6BEOra2QT8b0FjocPXOWty9dZDQe0u0vBv85wCtReyWBcMFjo7mfAlgs5kDpvlhtfz2rV5gaJK5vCgLbaX67UAP587VpjsrP15TmfpmvgK5e2Lyq10fLA6ce4eyR8+zu7ZK0WkzKGR7Hk49/kRufrvPhe2/T6Xd49vlfZDqZ4BEM9iYcObbIdGqwtmJlaREvPbu7O3RbbRYWu+wMh8wGBYsLXQpbIEqJsyG+VyvY2t0mjVK6rTbj2Yj1zXt8/P7bFLMJnXabvNKgBTfX19mb5CxziCeffJpTp0/w05++ydbOLlHW48IDD5EsLpHPLNY37YcQCe4JEqfKCqZVQaRikjTFCcirHLwMjC1vyOKEWDaNDkPuDKNpzniWAwoVt4lrxmwiZCiwQrxeABosuKLCkzMZ7BB1MuJEB38XFMPpiHw2QQkV1iUdEcWh0ytl+JqSKVIGrwohAwvWhUgmNBqPAVOFNT5psbrWwytDUZZMJ2N2N28yHuyysLDIbr6HLHPa7R5GKiIlQjdUd4hljJZRncgkcVLghUJ6iwSqmlEXuKfBg0QISQjs87VnWdO3EPjS4bCUZkoxmTLLRwhhiVotMnoh0pzAGLYIUBKtwj2FEiiliIlQwjMqKwQeFcU4WbN4ggvH/JkVxi/G40A6tIwDg2O6Rz6dsLdxl9JZxMoa1kBlZgyHm6RJizjpYJWnNAbngleUE47KVlgZGg8Cgi+R9MRRYLc6ZEg4I8ZKgcLW0tVa5udCkaQ8eO9CMI0Ixqoq0lgMVgV5u/PhOaR8aOjNqhnGGjppn3bSozEuDBIlh1cOU1OavbVEOqTWoTStVkYZSYrpjN1pToYiSVPQkCQppQksZ2MqEumpqhCdrSJFL9EsZYIRBYvtHjuFZmKiEFUvdS3jS0CVaClw1Yyt9W3y0lBJyVL3ID6SOFfhnUSquJYFCvAaJ0ARmmmYsIfRKIwJTTZhVJjndW0QxjH8K6QHL1EqwVqL92EVLYqSrN2tmTqCyWyKsQW5KXFljlICrSPSdgsZ6zA/rSAvivDcxpAXU6RSJEkbrRXWQiFcWLdRQSFnPcbZWmkksTbI55RKQ4PVVRjvQeqQlKpkSLuyLiRg0nBULVJaMpXivcQ5ifQuJIo6gxEh99M7g5cmrF8+AGyFC/e7tBZVr2XlJMeMrxK1uwxnI/CWfn+FWGUU01GYOlGQ/CmCsqB53kQysEjKUhDHYdyVL0N8urO1JNOghULrAN7KWlzknUD4MOeFEJTeBXDUOiocWhiUSNHC1Q3mpqkIyGBcHe4tgRCBIYk3GN8AFoFJH2lFqjrIuEVlZkzHY4Y7Q6Ioor+wRCvrEeHYXL/BaDzk0JHTgcEoFFHt4aN1MKW3zmKpMFUFzmOtxVQ5whuiWNf1jMf7Au9sMHgWEleZOtXRIm0ZZKsuAFETJXAiqn3FNInqICNPksTEUYwWESSSVCUoNCKCWGqcUAhVKwFETbXwhH1G5WorDomXYFyFo0ShaHyIHR6hFLgQgtGYiuDDmmXrZG6LpfKgvQUd461FymD+LwREMmJeXAsZ6ut6/Xda4XWCiBQySpGtjCjp0mtlpJ2MtNej38tYbGf0WwndlqAbeTIJKSG9tVnpvfWBLWvAeomlYGYclSuxRU5RFJR5ialKcmcYFyWT0S57O1tsbGzw0bXr3Lxzl2qac/v2HYrhmPG0oChnVN4TUYc9RApJxIGlFmmnS6vdJxILeAf5cMa9yYzZaETSSbn42jv0FroY47meTxhVJXc3Z1RlSV4Etp0SCqUEzpZIZ4gTSVmEoAFXhgawMRWR0piyZOrgk5vbtHdyJqXkL99VnNy6S6wyUiqET1CZwOcOY2dI6ZmOcsbbAyIhObC2CKLD7vY2s0lOK1IIJamsJ2tHyHaLWDu6qWSpvcSptZiJ/PlCQD93QOn8yRU6ow8od2+ybo7T7bfYmVgiFVPlY27cvIHsn+Y3fv0brIk7/F8/Wufko89ikj5Rr080ucnGYMrRgwuUVpG2E6x1dYHd9FtDie6bYhlV+57UZs1+32dpDkDdt8mfd14lQMzpC19CJxF+vMmtW9cZ5J4T5x5lQXvGbokbN+/yzt2KBQYUVcFSN+LdzU3OPLPG0X6bmx99wMW33+GxL3wV017l2JFDDHZucP7kCd567W+QBw3PP3Q+GMKZgnasuHbzFt2D5zn/8EM8ePoEt65fJvMV7924xxeLkq4SIBTCGVCKrdvXEYvn+NJDpzhycIVjx47DudNYleCLMcPtG8RLGamI8LVHjnQWKRKUMCgpmcxmWCTbRcS5Z34DMbrDa5cuMprlrJ76PFnW51e+/nV27nzIG1evsFkovvONb3E+O8GFc6f4tV/9HfYMfPLuK3ywvs3j5wvG4xHtLOPypde5Ny1YO3ictZU+WtiaYUbwN0AivZ3LlaART9zHJBLsXyP2u+7UhTyEB4yYM1UatkrY6DRyx/0rHcAmX6cAeES9EWje4ecbriCFVIENVgNNQTpVM358Y2jo6p+T+z/XFGnN+dSF2mcm4fyYRE15B48LcrXGIHf+zsaIvPmKnx+vr5H58L79Yq8+KqTfB11CteDqB0VgBIUC0tbgRX0v+XAsDYAz9yCbj7Gor1bzN8KD3dVjKMJmwdfH3BiW15SJfVCJmuJODfxJX1/+ML5zuFCofbirni/NcAYobZ8eSwNKiv3PnYNXzUeI/dEVdZHcfKUB0+bpgvd/9rzYZn88m0adBFzF6uoKRnmeePLLZL1FfvDD77O6uswzTzzH8soB2p0u1hguv/MOn3z8Dhs7Gzz6+GP0+ks4b+cMkeBx5dEqYjYrOXHyNFm3z0p/mdWDRzl2YA1fFkjpcV6QtjuYsuLJp54MBU1ecfToE3zy8RV63YRDR46iheL2nducefgs1698wpG1Y6SthFMnT7F2cI040jx8/lHGexPubq2TSs1TTz1DJ17g/EOf55WXfsh3fvt3uXv3Do889AjvvP0KZ06fxhw5yTgvuLt+h5NnzvLw+Ye4ffMmm1sDzj50ljt319nauMFkWnL99ie0koiqcuhI4SoRAgt1MF+OY4V1mhMnTlAVObu766RJTG4mvPHKy2xtboVgyyRGa0AGD4dW0iGNIh4+fw7vEw4dPsKrL/+U3kKfZ558kldfe4lPrl6hKEbMZnvELUWcZJw7/3k2rt3i2KGjeAnHTpygLCwPX7jA448+zfqddR7+ygVklCClZu3wCT5d3+Diqy/x/Jd+iagV1SkeClMZFpf7WBtk1K4BHkTDXqxNJV2IFq9MRVWFlLr+gUP8o//iv+T9t97n6AMPsHFnk0ceeYQkzlA1GGu9uO8eC8Cm9PuMPllLehvzbVGDTCEIQMwnuPBy7hfYMAZD4qLA+ip0tUW9dtR3+D4XMADbc3JffRsE5Wq4S6UQNMl0QmtUlPHe2+8QpzE7g20Wux2OHztKmY+DBCBJWeq1uXXzDnY4Ym3NY4zFOVtH2cNgZ0iRz1hc6tKKU4rRhLyYUc0mpFmHvdGAzHbQ3iC8BFtx9cZtrl/9kOHOgLWVRVbXDrCxs0U+mTAejylLWDt0mqee/RKWmDffv8qogKPHH2Tl0FGklgzGBZWvUD4KYyXDJlxLD2ic88RCY6uKwdYmWWuBdCFBSElLaRCCSHhsVTItc5wXTGcVBonW3eAlSGAtIMI5Cxe62Nb4ECMtBZEW6Cij1zuGExJrPGVVMZ2NGY1GRColyjTQXFuP0k27IyA0zgVpsjXBrNxTJ/zgsL6qWaS6JkYWCGepygI/mlJVFa1+j0IJEh1RWpBRxmJnkaTdwqvAwFDNM7CuJwRRPfdCF1sowjO1LvogACNChIh1ITR4DbbEuimz8ZS8mGK8RauIzkIfLSUGF66zrItwEXxAlI8ABUoG5pZ2OFtQVR7tRSicZEiisjZILaQTOBvO34tQiDlrEHXhUs1m+Ok0FK1xghxP2NvZYjaboJQmyzpEOkXiiaVARhohYoQIwdXeC2xtfiZs8HbyqMBG8QblbSgq62eqrPclSFE3WnxIekXUfpJhDkqhkMLhhEcTz/cGpqwYjYc4U5J22ix0VpEqQXmDF2G9td5hvCXWEaUpkEQoIowxgW3rwBOjo4R4cQlnLZNiymw6w3lDKzLISKNlSCosVYZOAxillEZqG7yTpKIVJYxNxLh0WGuC3xAWWwwohECUM/b2NpiNS1ZX1sh0jPAVtrComrlr68LVESRDnhD2ImxoPqpKIaxD+SagpWFSBm8368O6h/c4UwPmNrxTKo2pKryKiIQg6iaoOKZbVkzGA4p8SlXleKfwWNykIDUpURSHuUbFdDSjqkq81HS7fYTSAZhzoSbRtjYH8DY0Jm0Ab30drWlVA/xrgh+PDjJk7+q1UIIoQhqYq7dy3iFsFSRaOiLWGZXNMQTwMVzLOhAF8BRYEQAlg8SWOaacYasCaS06FnipMbYkFiBEwmS6h2zVXjJKkYkE5324FrWNQ2UcrjB1Y08g1BTtBAaJEAEQHs1GSBvSPqO0hRbBXBxvqernRtywjqSnIDT6rajASSpyZkWOddDK+iSRRgowPgBwom6Wmua54x2WCrwmQJEFuYNpkRPZiigOSXY4yyyf4sucKhtgjMGO9uh3lqDMsfmEQV7gXEWSpAhMvYUO6GSRT+rjFDgTWPg21gihazZOYCcpEaEUSBURRRloSaZSRKyIo5RIaYTWgTQggmTMS4icoJKh0drsT5Vvsl3D3s9KGQy/vUV5H/xQhUDZ0AKx9V4hDkKEAJjOawmJcjXDnnq6sl9/CASuYaR5gdTh90kVhYaxEqg4JlIpsY5RWUSURKgsI85atDttOp0O3U5Kr92i045pRYJeJIgUtBAkQhCLupnsPNY5nPNUBox37FWGqioxZY61hqqosCYnt55xUZCPJ2xt7fLJjY/Z3dpkY2vA3vYW5XSCN2O08NiaDXx3Y4/xLGeht4ippauJUERJSpJklMIT24Yw4PDWsb07RY2mlMYSRykCSaShnbYRacxwUuGqGU5rnDNUkSR2Ao/CiyjwVnzwEysKy7gIAHyLhEhKRpXF25I0Cqw34QRSKlZ7GYMSSlNxcKWPjloMfcJ4d0KeF6TtDseWNLvjAumCHN4Yj5WQOIuvSrYn95hMZuiabOB9SKZux8EjblKEJEfZmiAryb2dIT/P188dULrz5vf5eG/CsHT4nasIFYwXo3aPVhox2M65J1aQcUqrc4I//M6DLKqKAxfOACWlkkyspij2WB9EnO21sMbVtDqJlL5WrzS3WP2Q8DXCSjBonceeN53bGsQI/1+/REg1We5IhLeU3QUOLq8xidusZJq8KEg1fO0rX2YwMwwnkoOTHd67coUzT3ydU6dO0e12OXb6HB/cHSO0RO99yu29AZfefotuZ5Vu/yAHj5/FO0NZTnn/w7d599IbvPfhFc6cbSOna8i9iHcuvozSXXorZ7AuPLwFYKwjjiTvf/Qxz331G+ze+ZSr166SdXus9tos9jL2BmM+uX0b2VrkwtkOuvaiCabSJbI+4VbWQSrFL3zlP+TI2lF212+QLR1iJy946PRZlrRg49ZH+HSJX/3W7/J3b77NF599hhdfe4PB3pCDh4/yy+cf5vrD5+gvH+CVn/yAzcEOjz36Ba7cXOfYg4/w8PmHaSVJAEVqDySoC/PPmCw3mwA//z5zRsk+w8zPpWS1ceM+ijAHoBrmmth3bK4p7w2Dqclra363uE8KWRdRc6S9/uBmi3L/sVAvgvcdAzBPMptPKtGc3/579k+6loDVm9mmGNgHh/z+R88Rj2aue6i9j2RzzL5OSxMyMPaah0/NahK+Fs3cJ10L7KF9sCqcc93xQeyDt3XlKmt2WcOZasQ0bj42oUhBCLxrOiQNu6zpGIr6GJu5UJ+TgOD95OanLBouV0Nbm/+O5n4XNUvK3Tdu++yx/bH2+79/Dir9+6/7QegGqPtZtkf4nPvBx3A+Z86c4bcX/2OEELzy2st881d/g+9+71/yyCNTZpMJD59/hCIPReP2YMATTz7DgbUjCKHYGwypqhm9di+YaabB8FEqwUK3j6gcJ86cIZYZL778As9+4TmMs0wmE7TW9Fpd4qhDKj0797bY3Nzk0sVXubl+jUOHjiOU4POPfY6//vFfsHPrJndv3eL02dM89PDD3FvfZnOwwXsff4DCcfjAYbwTXLz0FpFURGlKFEneefsSWr3PN/+Db+OcZHf9Hm+/8zadhS5SVIyGu1x+6yJlXvLM009x4+5N7o7ucPfOLTwh4aecVngZ/MMQis8/9SQbW1t8ePkySbvFSneJdy9fxhlDp9vn0OFDXH7nEkZZklbGdG8a5p32iNJSGUG8kLC40GVt7RC3b68Hk95I8svf/E36Kys8+fTT/OjHP8SZil1XsLh0nLhy/Nqv/RYv/vUP+Oa3fpvJeMCLP/0Jb77xCoPBHndu3+XVF1/i3N6QU+ceZLy9w5U77zEaDHjz4ss8+fhT6DgKiaCVYZKPkcMQOJBkKbs7Q6wzKKVot9p02u3AWpFh5u4N99jZXCdN21x+902+/NVfYXt7kw8/+Jg3XnyZC49dYHElZ3F5lVaWoGSQwYh6zjWgjfXzFWC+ZggaubCs7xe3Dw2JfQFw8LGo70eoPR5qz6f6vp67wYkG+G7YoeF+FM3C1dyNvmYLe09lKra3N5iOB1y/tsHucIcvPPM0D5w4jbRw+94mo9EeUrTIixynBDuDAUmaEcehuIl0zMpqn5deeYmqnHLyxGmkFty4fp12O2M6GbG7u8Viv0OVGybDIffyEZcuXqS/1GGp3yXJFDt7u+xN9tCRYjQYsbRyjOee/xrjSrC1NcQLzQMPPESnnTKtPJNZkDOkSTAhNcaFQtEH1kiAsiusqVBCsHxghThuobWojXElxhjKsmRrc4e9oqC90A9FlQBjSoqqIork/BnQFCJKR8RJ8E+SSs2fCYUpKauCKg8yIPD0Op35dfPC1XNEhvXJS6h9Aitng0kyoRAFh/M2VBFC4qXFhRoLaQ1VMaOoKpzzLC4dJe30MBiEFRgzZjIdMMm3GU22iKI4JColHZQMhYbzMpiZ1hJ1aj9AQWAhiTqtU+ow+5QgFGnljHy8RT4bM5lM6S706fVXiKSicp7KmdD8RmGED+AUCoQC0aT/hs93ZWC6BQ2RwlQznIRIpwgbEqlyUyKpsC5ImLw3OOsIsFWQHYMgLw35NGd58SBxEtMuJkzHI6rK0MpSWq0gSXJEOKEwvuYry3r/af2cyUotUxXWk2oPPserhMI4GpZz8Mp0OAyI8IzBBS8TBYSYc49Co5HMqhlFVWI96KxLomN0FB5ilSvrvZfFGhNkW0jyMgdr0VIG7xYf5pD0IeY+ZOVGSJXQ6XZwQlAWM8bTPZjskOiYTmcBLzQ+isLxCE9ZeD4tIROS4Z6ldMFXE2mpTEFVTXHlHrmVSGnotPp0O2G+GlfW+4zQOPRSY4XD+drKwHmkcPW+ZZ9NEdDAgLZ4FwDU+RNduMAydGEPtO984SlKE0B+FQIGtBAIoeh0MoSETqfDZG+byd4AF0fEnTatJKUqC3Z3N6jKgqTVpp0m6LgbgCRfBaDIW6wJZgDSRyAcwVg5SMds6ZiZkjiSpHGMUzaEfEgTmBC5QMlmXxMYaI7aO5N6XnkCK0dUiEQRO4sWUQDjRUgSdM7jfAB3K+cRBohBa0VZxQjh6actSGIi7ylsSTktGOczVBzTjjKQkiSKg/+ob4yTa6aLdCGRSwTWkfa1+kCE2Zy1FoKHoAepowC2+uBZFOFrQCiAqgoTgBsrQMQ4H9jwLd1CeBd+vmbvCWeRIuz/lFdoF5on1gdQwtsCT4T3htIbXDFiNBsjjUXEKXGUkADe5AxHs9DU0+DyIbNyhPOG3BbEQmBdhEXt+9IqQbvXJZYaGWkiFRGpCLRCqphIBamX1AolNAkKKTRW1XK8WgZvfS3bo071btboekSEB+uCfNjVLVhVe/5a2fgy1uzUJlijbk57Ua/n9foTAP/AqHe1BCoY/4d6wYsIrzVSS5SOiKIEHcfIJEGnCa0sQqcJSZrQSjLSdka7ndLOUnppQpYqurEkVZACsRBEUtZgkavvyQpvFTmOsrJMK0NezJhOJsHbazrFGENuLFvbA27fW2c42Kacjuh32ty4douOMhBlTGcV+XDIzXu7fPzJx2TSg4hptVIOrCySRhGJgpH1DIYF+IzFfptJaXHlcZlgAAAgAElEQVR1eqZ1DlUQ7i9JkGLWTXqHCw0P59EShAwJjP1ukIwv9/tsjEu6KiNu9ZiOR0RRgnIzHjqRMSkdN+8MGc9mc/JCHGu8qajKkILnKg9e4yJFZAVR5IiVoCUq+ispV9ZzBlsbIDOEUjhr6bYzskQxK3NiytDAkBIlffCP8xXbOwOE0PQzjXNizoTTSlCZwBr0zjKaeiw523tT9nL1/1kT/f99/fwBpe09hFc4lYKrkCIOKJmOaWUt1IOP8LVffJZTSwkt5ejUK304eVBpj+NrIOyMqBvX9LoaNKo3zeHlP2OJMq+958VnAzqEbbe8D0hq3hH2x0Fu4jzEaYoVFf1Ol8oatLD88Id/xgtvXWXh2GN85elnWcwMn3v0cZL2MssLPdppQnLgML/z7SNc/Mmf8Od//Tc88/Xf47lnv8qrr/wEtXKGP3q6RTndQ6qEhYNnOXlmSvHjn/DxtauMRnu82W+THTjBvZ0BX/naE/Rbui6qXWCCAA987nGyWDHavM7DFz6PVoJef5UkEkSrh/nyL66EzoGqU9IIyWnS73+G1AqP4uzx41hvOHz0GN85dJi8KCh2bnL5zZeZFo5TJw+wnMAKMyZ7uxSjLba3dzl5/ATWlRw7fgyKkomxvPnOWxw9eZ5feP6rxFmLbitDy/vBikby5Bt6Cc3TvYFpPPd59HAfW8Tvv6eZAw38dP/rsy46+x47jecI3tc+SvdPgH2PngbG2P9WwwQSc4BJIGpgzgWc477Z5OfF3T7bqjmuBpgQdRef+vMbT6F5Z+2+8Qjz9rNnKva/EwrHxgSbQL+Norg2+dwf0/2frBf4hj21j3iFP6QnSEFVvTGvZaT1gyqASPWiO5fDNKBQPbC1mbqQ9SbuvvG8/+rMgb0aSJt/vZbjSaHmElb/mXmyDzrOx0Xcd83m43M/OHcfxDQHmGvwsYGO5jLB/Ws2f/nPHvt8zWiuVq2RO7h0gPF4yqEDhzh8+BCd7/e59N4lFClXrl1hMhhy5dr7PHjuPI8++hSxisF73r50ke2tWzz66BOsrR0lSZP5RDDO8vknnuH4yUNs3tvh6JHDOOeZjaa88PJLrCwv8MxTXwA02xubjIa7/P3f/5DL777Oxu4tkkTz9V/8NTbW73Hq8BmOHjjIxTcvsbu7w+V3L5NXFcdOnuSdN9/gmed+gXv3drj46ut89NFHZJ2YcjJBx5qtzQ1u3Vzn4OphjPP8q+/9GQvLCzhpSWLFdLIb6LdO8PiTnyN6N+ZvfvgDDhxc5fbtdYQMAIWxDikN+IhOd4ntnSnrG5ssHlxCJ5Jef4FWnNFa6PPY44/x3uXLwR/Fe4LkWdDKUsqixBBkFnHawjnB7mDAK6/9lE63w9ZgwHCaE6U9kihlZCt0kuAN9LorvPrCS7T6KywsLtNb6OGMZXu4jb/6ETeuX2c0GmHe94zzGbc+uoLXirMPnuOxzz9JXuT0GlNUAVpptrc2sUVFZSveuvQWW5vr5HnOwQOHeeoLzxCnGadPn2Jne5vRcMRosMu2WefTTz7hR/77vPnTF7m7cZPZbMLFN15FKs2p0+c4d+48y2trKOlq1pGqNyj3rRXC1SDC/m1d35Gfvd/q9c81DEIfPC0cQc7gvA+sRNGA4fetPfXXfS0VD8thzWf0BJmJ83VKUsVoNOTSpTc4ffworXbKgckSR46cQKsEJT8F4L13LrHQ7bCydIAXX/wJ3V/ucOrMacbjPfIyZ7w3oSxz7t2+TTWbkEQRWiuqIqe3tsT6+j2wFbub2wx2trh+/SaDwRZpkrDQ6WHLgq3BNsOdAQ7oLx1ktbXCeOq5dnOd9sIavYVVWlkEROS2xAlPFCJ3whjZ2kTV1rUrCikkkdIkLY8SIelTCYWUkFdF2OxWBlNZKh3TzXr1cuPwLkgkjLWkWRcZxYFBocKa62v2oxBg8hLvQ+FbVmFuSSGQKiRugcILX3fEmRfS0oWoduMNZVUyHY/DBjuOQ26EAKFrA1EZg6uoqhll7hB1SmvSapP1s1qCZYiASDt6/RbSpczKnI3tEdPJmJkpKfSYWCWIVgulWyA8FoNyCVJ5It0wkuoC0ofxsFXBrMgpipyyzMFMiNOMztIBIhVjjaFwBSEXyc+JwcEtyCJkgrdgXEiaCuyN2s/QVcHFxcN0NMQqRdrukTnA2yBHC6GzQXokYxSqTt6aYaMgb9ZScGhhkSzJKMqctNsibnWCcX9RMJoE6WMWt0K3XikqH8A6gcbrUECL2kvRmynSOSJvcH4P49p44vBE9B5vAyihlcDLCH/f00fKkCUVwJsZs8qBV2iliKOsPm+Ltybcu17MvR89nkQLIhFANusJLAQn5tsxKcMeWNaJow27XEqPylJUpHFFSlnkDCYjhMyJ05Qk7VCpCGSC9zNKU+JFjIpicDn5bIItpuQmJ5aKVhwjZRzKZOdCkS3DxA+kTh+8Y6hBk5oVY1zY+zvLfN/uvcDaAIC6+nrXngeBzSUFvpYP4mTtU+Rx3pLE7Zr54zECIq0o7AQlBO1Oh3aiGGrBeLjDZDdnuL2BdZY0zWi12yysrCCIqQpHaSxCB8b2nG0sVGimo4KHEzGRkNhEkWpFGq46RjfceR2MqEUNAtSJWvjgNxksHWwIPRHBI8x7aoahQatgrmutxZgirEPWAhbn/1/W3uxJ0us88/ud5dtyqaylq7p634BGg2gABEBwAwiQFDfRHo6l8VjjTfLc2FY4Yi4nwhH2X2D7asI3vvCER2GFNJYmrHUkcQFJiAQIECCxNdZG70ttWbnnt51zfHHOl1Wg5s7MQFREobIzv/287/M+i0KhiUSMSiOSdtszIQGhvMm2pGapB+0lgTElpjSUNqcsK1SckERRAIYSD0JKh5ChLiakTpo6SG5BRr7ulkYiVRLWixoltR8+WO++6pl8td8H6S0TpFQYa6hjQWRtkMwCtqSsphR5ThxJnxBpfC1amxpTVUhXMaPGOrsAwWLhqIVB2Mq/X/rt00qjVIrQCoEm1j6BU0lBLGOIFVbGaK1RwvtyaSG95UTTEwhBzQFL1woX5HL+XnKVr/S9bN0u1u+mJSLgok2dvlCSS3God/J/boY2Ukg/jHB+YOSZfAIhBVWo26XSGKUhiomUQqcRBH/KKElI05g0jUmymCRLaScJ7SSllaVk7ZR2okkSRTuyJEKQ4MMFEiFDwpjxzywLNZbaeYZcvyyZzqZMhyP2Rn3moxGzyZyEkv4858bOmGI2YX+8z6Q/YjIZMR8N0BjiKGbQn7G9u4MzNcvdNo898ggvvf4eT1w4wsbmSTIi3vz4Lq6a0Y1baO2Pb5JKepkgi2K29kdcv7fFvIJUR8zKyid1huMphZds1s55U3knEab2bDnw/mY0gY4haEBrSutIFRw7eoTElCwd2eD6zXtsrrRR1T7r7TGDmWBrxyLmvmNSQqJ0jDGW0tQ+/U4pIq2oncNogZCO46sxe2PDdz7VZhItcfv6LlmUUxf+9O8Vc4SQzApD7DzHz9YCoRU9JEK0kNJSB0Z7Ga4DIXz8khLCJ2wCpZWUkxpcGF78Gl+/dkDJCk0dn+Tipy8xufo6Y6NI0i6JklSizRPP/gaPnVohczasZMIvLChqZ5BSk7UEzmiOC0ld+YPhJzxy0eAKJw/wIwAOvHF+1UOpYeg0raAzgR0iJQeCHB/tmLXbpKmkFo5ICPLuKU4//TAXj69y//3v8ca+5djFJ3js6EmyKDQ7SqKNYe3kZR7+1BbXP3yLjS/8Bo88/nl2XQYhLUNHMRdPn8YN7rK+fpKst85GN2WniHj6qS+z1FJ86sEzgF1EKyqpAcPxjXXy0R67w4KHzq5iCx85KoVEa0273fINvpUHyV4CaAyYm17a+smXDn5SqVCIPOfFl17gzfc/ppzXFGi2UsEv3nyVTDvGc8OxUw9x4czGQj42M1M6y0c4dvIBbm7v8PRTz3iPjsNeQM4uvlc0bBHRyLXCGTmEDTXnrmEZNT+tO3SeD3f4/pSykLg1CFTzoa75pgZIgca0tvlTw4g6DFvIQx+xwCcPXSmNP9MC4MGbw33yHx1m+TTvg0ZOIsXhHQ9N34Iic7A9h5lLC8BpcTz9e01dkego9H7NveIW13vjVsTCNyLQFBAQUjSc9bK4RrPuAuNocdzCVx8cfxsKZzwrogGsEL4pC2DLYfbVAlzjMLtJ0KSdI6SfIoT/v/iq5uEYTpi/lNyhI/NJYGrBbKKRLTYNOItzcPiMLA7rJ77wEHK1AJsOfrjFO72fR9rJePTRT5NPpwgpsEXOZDbknbd+iasLzpw7TVE4OlkLUxVs3b/P1v1b7O3e5fbaGsdPnaaxuNdKUJmCZ5//CkkcURXvEKeSWKcgJQrH9vYWg2GfYlbx3e/9BcurPbZ3b1PZGUtZxK1rV/jBvGBvOOJzX/5NHjz/DK+//gZxlHDv7l3Onj3HaHuX5U6bztIySrTYPbPNY08/xpW3r3BzfBUjJYO9CbV1fO+7fw3GMRrP2Dx9mqKoaC2tIF2NlIL+cJ833nqTE8fPI0VEEkWAwdZhguYjEhHC8drrrzAdzVFaMRoN6S33OHH8NKmOGZcl/f1BSOBUrCytcmN/SJLAbDwHpxHSS4Q2j56i2+kxm0+Yz8Z0Ox1+/ML3GezucnTtCHkxx6kI4Qz7+0NMIXnx4+9x6fKn+eH3fsDJsycoijmtVsr9e3cp85I4zShry9adG6RxxLFzD/Otb32D+WTC6tFN+v0h0hlOnD3N8uoqy2srKBxXP/qIN9/6ObPZlCRtkbUy3n33DWxt6WQpL3z3+5x74AJCS5SSvPP6K+RlgUzg0sOXGOyOPA3dGbJWQpR4M2AnhGf8ubDmuQpFhBAlWoBUBiU9Lb42lrI01JUjryvKylDX/rkklEYIv8bJSCGVn0gq7aVCMkhfDYdA+/DwXoD9i3vOr6lKerNU72fh2S+j6ZB3r/yS9V6Lhx/5dKiTFePxiKTVYqmTcef+LbbvFBz54vNYU9JJY5R0VGVOVcwZDfYYTYZo5ZhNRty7e5OV5R5rK8uU+Zy6mrOxusJwNOPdD99DS00rUZw+d5F8PubG9j0Ggz7zeUm316N2EStHTrC62WP1yAZJ2sMS0coi8tJQ1iWR1l66KCOffmcseZ6DkMRJ7Js5DJEIUdPS80Xq+ZRRWTHLc08/x3v6+GjtBrBQaBUTZRkyNFTWWry7kAEVoSRYUzPaHzIcDmh3O94fBr/GK9EEUnhA0BmLMb6GMtZLI7Xw9Yi1pWehCG81oLSAKPKSHSEoi5JiNqaqax/UoCLSJEVLQEd0E8MXn1inPxxgipS6nPLQ0Yy3b0y4ZxOyTkzSWqWoSib5mHy2TzHaQidtWu0VojhGSoi0IFLeqxJhkdL6yfRswjxMpXUkyNoRsezghE+WK3NHbZX3rBJzhDHMizkV0NYxAoURBTTsMULRL0QYaIT6yTnSrIVQmiSKgnTMEgmBUF4GJ1GUVU4598mATvh0sChWLC91wRriyG97KiNWlySzqQMSdkc58zxnOhwjdETaWkbFrQXr1jNojDfHlt6YXMUSg4/dzudjVLqMFd4YVQbgVyhfaRgrETJCKE0+HTObjWnFKbV0OB2T6laA28A5g2c1EY6JDwCIZfCVCs8dVXm5jgNKZxd+UggVmtlQTUlfSwrnqGuLkoq4vYJKS0xVYfKcsigp8x1crtjotmhrg1Almin7g10m85wyNLpp7Btxh296IiEQUnufI8IDHa/9NFgPpBZzHM4DB6EuCKu6l5IRosyl99xbrN7Wp7pZiWeHKolUvvLSSpKkHerKpxJq4U3uYyXRcYp0jjKfeGmTg5WVVaz1701aGVHaZjidcP/+fQ9Kd3re60p470MlVcDABEiBdl56SbAqkCpGqBgXJIhSOiJb45nnGkTtazDrIxp9vdxwRENNFybpQoggYVXkpaGuZsymY4q69DIzlRBFKan2qX3OenDTs8p06B+8jFcJhxHSe7vphDqqcHWKLQuKvKQqKiKdEGfSM1hE8Okxvj/zcn0V1ivfrGNDpdRI+UwRajuFdCXzPPd+VRoyrSiMfwYqB1VdUNoKhaGoDMrWGFMwLucYY0mUT8GDwAAUGukkWgsipZHKy7SU0sSrGqW9LC1S2sfQ6wgpI2QIQqitQEeaJKxwCoGTwqdPChXAKecZU4ATHh6ywbfVty3+TNWwAC+9RYJYqClESGtWYV2V4b73aoggd7XBcNq40PtIKrwMVGiF0xFWRUQ6RqcRUZoQxTFZkqEijdKC5W6LLItJ4phOpEmziCTKSNKUNFakkSDRmkT5Z0QkBIkIsmEhAmBkqRDePN3CtCy5PxszGg3p7w+YTCZURUFd10xGQ3bu3WIwGjIvKvb7I+7evUkxGVGVjshV1LVlXCicyX1qqfFp1caWtFsRrU4XZzUKidOJvx9VxNnTp2kvp9ThPhzlJbo2mLoCAe1WQjdVzIuc8WTO3f6EnBipoTLe2087F54/BM9HDdS004R5VXlpLsGbTSt/XqRb9K5VZVBKsr23x8lTLea1IDIFRzc3vNSuBJf4Z9hiIG5h9egRpqrLbLDHejfC6S6urOjvDTGzPYRzbC6l/LNvnOKmepiT7j7/5JkN/vS7Wwxu3cbNZ3QzRRT5Z9VoYtjv+z7OChGe7xZHjFWSOPOhHKaoqadjpIOysiD9vS9kAHpVijWGo0uHx4///1+/dkBJr5zm0hd+l299Gn5R32dgW9TZGpcfeZgPrrzLxc01zixnPjkl7Jx/TFpP6/NjT0+LriuUKBjv3KNwFivbrK4fW0xN/U3a+E2EJrFp+IJfRFMEhx7U18XWeuZT1DSp3vRNWGhlTWqFRsiU5774DWpbc/317/HDd2+Qbj7Mg+0UZQ2RjBFhymKk5MJDl6nyGT+6couTZy/QkyVPr5/A1CVSyxD1LDly7Dxf//p3uHHrfd7/4H0+/cxvcenkcY4e6RArD8otsBFhUU2CStrh8ceeZuP4Bs38qihLBN6R3wVkdcHGcF5SJPFTkyZTy9QFxkIcRwgpKStLunKOz3/lMm+9/QZ1knHqgYe4PJ/xwsuv8KXnv00cJ1CNuXP/Fr2lI8yrmoceeJClNMHFbZTwFP4QFeBf4gC3cLYBCdyi6PHT7gVMsujjD3CZw8BS868PATGLvx1y/liwWhpWTgAhBBzS3wXJUnO4mjKl+Wk/8bvlYBvcwv+peTmUsMHrpNmXAwRiAcS4T7KwGg34YbDsk9K3Bvw4hOE0HxYOlveaFDhjAojaeIsdbL0LVteExD1vou7CxzTUahdYYU1CnFwAMc1J+eSxdwswqTmW7mADFxN3z+Rq7PQP/q2DQ5/PYrsXYBkNw+oQcLfA5tzBcT18LRy+LA6BYIdBIBE27vDWHt6zxYTTHTrfB3t1CFgSi5PWnC8tFaYyZGnCM194lhtXr7C6rnn9tZc5ceoEmyfPcfL4MfK8oC5nmLLkkcuXMfVDtNtdL1MNB9QPbBXGlNSzOWdOnyHrZGzdusf9u3cY7+9gnOHvf/gCSmkSrWl3l+h1l9nvJxR2zmw+4e13fs7lx55muD9gZalLr7dMXubs7m4RaUlZlFy+/BhHjx7HrjqWuj32p3127u1x7er7OAWT8QQphE+YSzKkkty/fxekZjotkKZAK4urDa/+7BXsUzGxjtjf2+fSI5+inFVc/eh91o6sMdwfcOToKoIa53LPYHUR0/GUa9euE0ea/mCfOzevUVYlcZmyP+wT6YiqKBG1BO1boPXVVbpLPXa2tohQdNtd2u0OOPjZT35ImqZMpiNa3S6792cIm3Nivc10PORzn32CH3/37/ic+QJHjh7Fvg6uqHG1I5/NsWVFrn21t3HiNO9deZ8qL3nr9dd46aWXefjSQ6yuryKEII1jup02H9gPWFtf54jaZDQYk7Uzbl6/yhc+/yxFPuf02eOcPneGe3fuIHWb0WjIhQvncUJw/tzDzI/NWF5b841x2iKNIi/hQXo2YpjEYh2uGBO5CVVZYM2YophTzudMpnMGk4LJrGRa1szzkrws0FqTl0GS5PD+VSpDxSlpltFpt1hZ7rKytsrKSo80bvxZwuTVP6mC7AhMVaOjmDu3bnLk2PGDJBegrkrKuuC1X7zK7Tu3ieOE8XRMFEm+9Nw3eeutt7h78xYbR9cpqhmT8ZjJdMqt69cZjHfpZF2oCzA51kw5sn6CpXaKMyXGSOzc0E7aTCdTtrbvYuqCIxtHSaNVtu7dZmv3PtPxlNWVJY5udIjbXWobM5vNidstylpiyhpnHWU+RcYxQkBR5MRRRJwlvinLa5J2CxmnWOEQtUPU3suBuuLO3g7TsgQjiNIuSoOOW0TKS06k9owBFUzYhYRF8EIY6qjAdCuKkjIvKMuCYj5FKYm1hkiwCIaoypmfegvtwX80aO2Nt4WXyUoRpuIyRlvotrpABJGXTuazCcNRH1vVxEkKcYtEp0jlTXOVtpxczbi0JvnMqR6vzSZ8vA95pbgzlMxd4uO7Ywc2ItI13TjBtmqi+YiyLpkOdhDCEccxotfBmpRYpZi6pj8YMhwNSBOFFpY0U0ilMFYwLS21y6EWvoG3ktqTcFDWYkrjZRpxglIJsfYAiHPSDwal8vsPwdA6rCEhNc4JwjnwAJ1wjmI2pyxyTF3inEVqSRK30EKilAKb8+yneix1DddvxrgSvvn0Ki+8eoPrI4tUEXESUYiSoq6oJkO0mJJmHlCWwlKKCucMSkUooYki5ZlplSOJFCqLqK0M/poWhMY4n3YXSck8r8jrCeVshBYaVIbSkkQLnKkIq7YHdmmcVzxAkCUx0mkiLVCxX6ciKbyXlBMYa3HWAws21Mw13pRXYhGBESmdt5SQpkY4R5KkKOXVA8V8yHS8y73BFmkiEbaisCmzGoyMCY5G6MTLFa2LQUsqJ9DCe9FZ4dA2MDhCva6d9dIcPINJSi/h8NKnpjEXKOG9zqQOzBgVgkuUN8T1ycGh3glsnyhRBwwfHLGKibTEuor5fMp8PqEqZkRRTJJlaBWuU2dB+gG56Y8Z7vcZTyYoFdPtrXkJWChqIgfSygWzXgRQwadB+s+q8Z5QXqZscdJvp3VmURMa58VRnk/qTQeM9Wlnhcm96bOx1CIkREaSLO2SJC1inS7CTww1NgzXtYiQMsFDHX7YWkmIdYS0ikp425BUOJSOyaucoiyZzEaY4TZZlpK0loizlg9nQFKWJRgP+qooQZg83IMBHLEGY0ucNVhncFXBZDZlXuXEQjOPBHXtFqAoSJRTqMjLgtExcdLiaJAQxzomkRolhU9D1BEIn2pGkAKB9PJh0VwvEhUYzx7AUcGuwvpUTgITUklMXQQfPe/xI/ESPy+MDf5cAp+W2EhlhMdhEdY7nPmJggefbPDXssaDj85Lz4z0sl2rPFAURzE6jVFxSpylxElEmmQkmWdPdVoxWaJJVEQaR6SRIoljokj5obIUaOnoaE2kQWKInQ9SiIREabzKx1kP5jpJAcyMYT8fM52OGQ0HDAf7zAZDBv0+e/1ttvr7DKYziuBHlugYZy2pkKSRZr+/x51b18iyFt3uCh9/9CGT/g4ujElLK0ijxAvLhAexhQQtKtJUstJNsVLTn86oqwKkRpgSVxWcW19GJ96vSAjH45cvMB0XvPfO2yy3Y3rdlEgr+uMZ23sTeqtHMNIymYwWPYsWAZIN973DkeqIVhxhkEzzGos3e5eAFgfgngzspExB7Ry729scPXaM+/sjNjePcGdosDXMqwRE4b0vcSQRnD6+jGttMBp1EfWUcl5SYfHpvzXSRczmhmww49zqHi+/eZ0vpzP++TM9RvJJklIyvHmdq7f3uD0YsV/VXg4pPObhnATdgSih08lY7rRQQnN3d0w+nWAFWOlHV426K44Vx86e4fatMZvtAb/O168dULrw8Df4r3/rKfZ+9L9x58YdsnOPo92cRx55jLNH13GxpKgrUu3TDpoLq2lqpbVYqSj2blHne7z37i/58NoutTF0TjzKf/Qfn0a50oMkARxagEsLikGQOzVU/cBKaUCEhuEgReMZ47t6K5T3g6gFIlEYDO0kYTbY49rWlAtPfYuN1YSrH73HyvI6nV6XhjkhEMRa0ep0+Opzz3Fhc5m93R3aEeQ1KCV9TK2TdJaWeeLJJzl59jh65Rhnzp5ipZsSBUNCGRa+A48dg1UCHSf0ljI6Sex120BRerTXBt8beagVP/DC8Kbmzjrqcs7+pE8nbaNUFyklS70Vnn3mebSWPP7IZaa7dynyKZeO93jhxTnnHzjHe2/8hBf6t7m2tcPv/JPf5eTqEq+98lPee/8Dzl58nOKhi2jlLydvgO6PsXAcWlTloil3CzBlgTixSCA7wFT89nMAMhEAwMMv5xrgqNlf/w8OPG8OfaRr4jIPMIjD100DdjSzsIOfhyGk5gPDxIjA6afhMHEIRDn02QuApgElWByfhfwrICgLPlRA3pz/0Rw5ZND8NslvZZGTZm1v8ioCRBKmpH5TzcExWmy7ZEEPcv4+kA34FlhHByCb12sLmmnKIRAItzC7xjXnNjCNFqhYs2PiYCcXJ+cQg4wDz6uDcycW39Owtw7L3/7BOT782+HjutjeA87UYUBycYgPb97hZ0bzQQvQK5w7YzDW8cd/8oekytBdPcaZM+cQacrLL/2Y0syYzgu+9pXf5J0rA7bv3UUIy2NPPEWns0RvuedjXvH+G9Nxwf5giyvvvs1yO+LhRz+DrQxpGnP75g4379xkOh5w5sw5isJw88bH2HdeZT4dUhvL6lIX61a4vX+VvcE+k/k7vNZtsbrSYWt3i6yT0eutgLFsrB9jqbdMPq9Zk5o//bM/ZHf3PsbNEIUgSjLKwpJXOToyFPmUpErY2ruPMSVZGpFbPykaz4Zc+fBNZFyzvz3hUm+VWhdsJymXHrzAK6/8nDiNGfaHTKdD0iQBIV3hk6kAACAASURBVJmNR0xGE6RSCGOYDvfRkY85raoKpTyt3zmHqwpUprl59yo79++SqZi8KCix0O8znUyYTsaMpxMeefTTLPda3Lx7j/WN0zz59BfZ39vm0oOPcP29D3nmua9y/dpVytx49kCkcNbghKU0Eitqbm9d4ycv/ojlXofXXvs5X3juGa7fvcGNm7eJkghXCyKtWF9b5emnP8dkNqXX6jKfjzn65BOce+gycZyyeeIESio6K8sUwxFHNje58suf0e6t8vlnn+fk6fMoKRf3psOG52hgFUqoa8Pe1jV6wpElM65/eI1ZMaM/nDCd5IwmM8Z5wawy1MbLJuu6QuuIWe4oakdZ5dTGIYymwN/+kVKkWUK73WZ9Y52LFy9y+eGHWVtbPlhNwjPVOIeONJUpMM4zF5wwSOnvoaKu6Pf3mI36bO1sM5tM6R1Z4vnnvkyvt8zmyRO8+cardJd6CKEZ7A+4d2eLrKWwFJSzMdIJlpdSNtY7lLMhO7t3OXbsOPPZiLquETLh+p3bXHnrLVaXl2ilMcPhDv39Paqi4MzxE6StiGlhwEmSNGOWW/b2+9zb+yUrKxv0ui2MKTh7+gxZK8JUEotlNh0ym88QUoG0jGdDiqrwMefFlHK0Tz4cUDqH1RGt7hqt7rKvJaRACO1rGhUGBM5LgwUieP94oMNaw3xekucFxpT+/xtLEnvJhcVf73VtKEsfZZ9mbbKsRZQokAojFZEznnHiHLHSWFd7sCpSJDrBVJbRfMR8PF0AG2ncCsln2jdtDpJEkWUaVxtu7sD2S9tsTQS7E4EjYXtiESQYaxGiBmoEjkhojJZE7SOkwmBNQTHaZ55P6O/fopP2SFsdZpMxReUwxjKfCTqdlFTHOKuppUaoyB9DJYiV8xIl6VmO2jlcrRGq41ktOjBnrPV+ZogwiAwNoQmefzqsud7EDKUE0gmqfMZkuEsxn3kmRxTjpB+uOSMx0qBiwcPrGQ9vtPlwa8D2oKQ2ljevTrFkKFWCwjcPWUbsLKIqsWXBeLxLnQvQmrjdQUf+WrK2QNoSa0oiJcikhDgOrCFD5QwOQaQi8jxnPh3iQkx71l1FKY0WXtoubR3WWFiEWgjl23chyCLvYVlVAmRj6i3QQpJjqUqACKm0t6OyDmm80a8RAmElwtWUpkRbQBgk2jfHlWMwGVNXc7K0i44yJvNd9gdTsAVGpKj2Eu2ljo82x5IkMUJEOKU9gwXQUiIqARiUUJ7QhR+MSQDhAls6AGah1nfCp6SZkDoVrLuBRnUQglIUB9eE8NUxSFzt0EiElkQ6oi5K9vtDBsMdtFZEcUycLtFut/E+oF7CVFaVZ71EMZunzjGdzphN54wnUyoDSZqQpr6OFzIKYFxTr3qWC8JhTeW3FfuJZ721hd+fxfBXBuDL11eVqamqmsqW3lZEOFLpPXrSSHljb+1rCCkdwvi4eF/F2VATKnwsQIWPUvGslMhYdJDc4QSuNj4hzFmqYkpVzj3QJxz1ZAx1iShTHILSlIz6u34AorwfnLGGGOt93Cw+AVX68yOVQklNK0todTN0nBFJgdZBXiY1IooQQqK19B5GQnrWkfSiVyG8l1OEB5Er4TzTs7JeRuxqn+xo8D5wAkQA8kN2mAdKgzmo7z0dOEllvazQSQVCEIW6T0qBDD1r491FYPAZ4eVmUniwNFcKQwxRgogFIklIo4i41UK3UtqtFp0sJW0ldLOEViLJIkVba1paE0tvIq60QmmFUIIkDHS09PwaIaRP+gxUJy2gwqEdKOuohaByggmCwaxgPBuyvb9Pf3+f3a0txvu7DPb32d/foxgN6SqLmY8ZjGYMxwXj8YRZXiGl5MTRY+hWm067S5bEpMoF1luFKyqW0pTW2QfI0haTvKAu57RTTYVklJvAtJNUzjPwtLVY4eG5pUjyhfNHqGWb16/vcme3QGDJ85K7W/eIk4xub4lWkqEkrC31cOWIdrvNak9hEAzGOXe3BwgUs/GEeVn7tZDgDykERnjGcGkrluIEpSVRkkA9Q2cZRT7DOYPhABgRQqK0Io4TTGmIUsVwltMaDnBJxmhScPHCeeZ5xfD+B6Su8mQVLJGESX+L6daA4bwiz2eIyuCkpa5DIriz7BUlf/nLHbbnu+z0p3z00Q6bPc3aaoe9GewOc/Zyy9QJRnODNRKUN4SvhfOMaukoipKBs2g0ZTkPsk/Pbvc4nkTbmgfPnWFlfZOpWeL+bsWv8/VrB5Q2Nk/w8Lrk/7iVYC99m4sPH+Ojn/0t773/Ed/84iNkWYpkxnDiiFXqtZ0ClPPSJoTG1Zb93ev8wf/5r5jqs6yv97hz6xZ6T/PYk5/j/PHVBesDgnb5QK+yYD94xoEMtPzQNLpmQggQqJpIjLQoam9oh/VpGkqBq5HJEp//0jdpZwnzYkKWtmlnqV9sms+1jth5I77l5S6xcF6EKSxCSXTYXt+4Gnq9HseObXL+zIPMSh89acNC6ZxPZaudny0gxSIpRQuJCB4KwlmUawAPb8DlSTgKERZp42qM8IVfaedYKv7+7/5v5vR47rlvc/r4CRCaTuaL0TMb63zvlb/kz//995lWhs1zj6PNjDevvMmXvvZtzp8v2Oi02Lpzk93+hNzGyNrw81de5JHLT9JbXqMhejTASoMjWBe00IfkSA1IIg5Qmv/Ayzf+fq07AKD+4St8YzgmjUd3YwbugQF36J3N9RLWB1gg2AeeR/57ZAAS3CFMpCGCEab4zfYvzMYPGcF/cjNluPbs4hgcmFsf3heCdA3fWIbPEg6EktRFRRLHvPLaKzx6+XGSNKVJa/ODEhGYR+E6XAAjXqLnKdPNLngqfnMbCdGATc1+SWRIjPOqggaoOdjucEsdAgoPgWqNjLEB3lzwehHheC02TgYZrJ/sHJa2HRzb/xB0FLbnAPkJ4NA/OPiH3t2AS7+CTB3+dcGgPARshV1qZEIIx3Qy4+7dazz22CM8/qlP8a/+9/+FpW4XZw2D3T5atBiNh5w8dpJ8PmRleYmN9aOYsiaSGislTkFlK6bzGX/3g7/lo2tv8MWnvsjq1l2OHztJu9fh7MULxK2EF77/N0RRxK0bd7h1+yo6AacMSZTw7e/8Hi/+6FXetR9w4849oqhPVVbc3rqBkYL11XWmkyEPPnCJ2zdvErdadNs96qqiLnL2x3u4CPLcT1m67ZSVXovpaEwcJ3z26S/wF3/914jaBs8MiZYQJ5Z8soep/OT8ww/exxQ5n/3C54njjFQ7lMlJ0iXiVAERG+tHubdz1wPjdUmsNfPJlOee/Soby8f46d//kMFgnyiKvQY9pGcMBwNqPWKuBCLKKHPBbOpBjrooSbViPp0yHe2itGZ1dZ2X//4nrBxd57t/85ccP3YMW9Yc2zjGt771bd58+w3efe9dpFLUhQ9FkDpir7/PvaUbfPjxNt/5zn/F2QsXGQz2ePHH32c2nfKf/s4/Q8qEE2fOs7q2wd7eLq2sw5H1VZIsQeoEgfK+NULSUhGyazl3+iz7d2+AMbQ6sW+mxMFzsHnO+dtGIlEUxQQnavrDAR/cv86rr7/PaDZmOJpQVRW1MT7i3noJiMVQ1RXOeg8Si7+ljZQIpzDC4IxvKNI8Yzgacf/efT547yP2dvb41je/Srvd9s8356jqmm6nw89+9jOe/sJnaLczojiiqoyXUkvF2uoRLlx4kA+v/AJnx1RlxaNPfpoHHniU0f6ARhqnEmh1U6I04s//6v/hv/v9/5b5bMz23bucu3iBu/duM52MeeiBBxFRi/3hnN3hHrN8zvbWDrdv3OT8mQd46onHuPLuO9y+c4tud4m03WFa1kzLGhkliNwgTElhBPt7Q0o0UaRpZQ5HyVtvvualQInG5kCacOTIBsvLGfuDLSbTAoegUBFVMaWYDqjKilZrhU7WwjpBmU9otZa9Gav29YsVDoHxTVYwBdZSUFU182LOPM89jd55r8TG88OZmlrJII0T6FgQJUtkvXW0ToL80WIpvS+HlI24mgqHimNaUUxRFmwPdigmEwyORLeIdMvXRdI/07SQJMpLopSFfObI8ewNMTbMKo2Rnv1qbLRYixoLUylc8Cry8eblZEZ/MqQTCR/t5qCc5xSzITv9PqvrZ1k7egKlExIVoyVYYanCNS5EkO5JgTDe4H1W58RxTCQqZCuhMp5hZI3x6UfWU/898wjPYBEWayzGCC8H1Rpja6rZiOl0DlWFEpB1ugipcUKipE9CclhaseZoJ2Gel3zvlwP2y5L9aUUqM165OgEEuYqQ0rPTbWA8qVhhpEboiMrMmU1nyMLQ7bRRaYdODEiH1i0oHa40SBuDcERRilQpw8mY2WiMdAqlEtAWKWMi5RDEXvqIB4yF8sx1Zz3wICREWpNKnxxWGV9rFpW/NytbM64N1njqV14UFGVOWcxJopgsS8JyLrBOYaUhwqJUhJSCSjgSpTxbaWkJJZfAwP2tLbCOpc3TUI2pa8XMGmZlwXLvCK1OC60EtpYY4dn0HqCx6ET4SHV8DW8a4AMZCglfSymJlzg2lZYUXlba+GaF9dkrq0M8urP+uYQITgzeb0UqQEjysmKwv0dZFNRF4aWRaUYSZ+goorYcsK+FRCqNUzrIRBOydkyrvcp4NmE82qMcTplPJSudDrq1jFLJgvHtN7C5czzgJaXCYDHSs2Okk2EAGGwUJNRlQV6WPiAAQEp0uGc9IOwNsaX21gG1cNS2Jg7grlQanDcolw6f7ohAG0nloPZmI1TOIqwkr3Kwhrqq0HWBc4Z6PqGqZh5QCeBelbvgvqLQqcZSkooIEUXIWKN0G50kxJEm0YpIJSgV4yLPKFRKo6UKETM+idF3Md53yimBFKWXlAkZ+hzvARMJG/yE8MN2QsXr6lC3eimxsw4rlZdROuelVEgPVApwUhKF0aAWMiQuGw8OW4UxZuHtW1qBlYpKghMeKNJJQpymyCxBdRKW2y067SXarYReO6adpnQTSVtDqjSplN7PSEsiJResdCHw10Oog6PAJIill+4dlLAukJQdOTAPa7K2FWVVcGenz3u3brHb32HW7zMaT7j68TVGkyGzwYTZdEI+L5DWEDkQpvbXtCnIsGRaM53OmBQFRmikTpAqptvNkDJirdWmlcVIrT3TSfj70dU+nU9Fnp1upnPqWmCMIWt1OX7mFB9cvebXKeeflSaQJ7J2FyLFnaGhLfq0RIGWAmskzgoGownOTtkdjFjOUqIsY6XbpZjusd5LEM6wN5xxd2tIpCUowbjIF95wTYtpG4aSE/5+CetOFEecWznFsICrH71PJBufP7FgvDpTkCUp48oia0sUReyN5lw402F9cwOT5zCfMJnOacU1Qvg1yQImnzOYzsgrMGWNcAakQxiDT9rVVLXg3e2CXdPCTBw7oxlX7hmWl2agFXWlsNKLm11pAzgawBvn7wlqb29QlCUKmOdlYDc3va3A2JqzF06zfvQEOop54Lhki1V+na9fO6C0mtzl3//VlH/6L/4lZpiTiRF/8NHrXNva4+UXf0K3FXH03Kc4fuY0yaGY2wM5jUWWQ+bjO8yjTd65scexSclkb0acxOzMJeetL0SQIE3TAQcT6yYeN7R/RvjFRwbfJIQMS5YIQI1fbLwtmwebKkDjH7jSQZS0WY9ThBK0Ew2mZj68T56AaXVI4sS3zhZqDF3lfU78fxJpS1BeWy2do6hKdGuJWGtWOi3scIQW/qHmkXCJM8EUrCF5OG8m6CeE3qzwAO7AAwY03lIGJ5SnWSqBNN6gWzhHPZvyw7evcvbhL3Hz7i1GwxGXP/UIQnhTsvGoz8e397i1N+Sf//7/yHjrDq005Y13r3Dp0kNcefttSvtVTh3dJItTlBnzyqs/YPXYBZaPn2Opt0YzhRUNaAQgG4aWPwc0CWDhChDhQd8kngABFDxIeVt4FwUkp3nfAUhx+DsdyAOwwP0qYCUOsAbngndBQIk8KyBsTthWJ+oAfjRb3GwDEICbBnrw7zjMtHKHvvvgOj98nA6/DgNtzZ9sYBg1dwxB2y0cZDriyofv8/UvHWM6n6OUpqwLTFWTpKnXuwNNAlx4XPqDIuVimxsjTn99mQVCtIDJGrmfO2BSLOCkMElbADROcoB+uQWw6BB+Yi8WJ9gfb2EXWybcYXlds8di8Z2Hz+HBuQ04lPuV9yzeJxrsB2922PyhATcPv78BJZvtb45C8/6GbWYwITGn0834vd/7fTrdmJ+/8gvu79zl1v0SnSbEaY92r8Obb7zOqy+/xP2dLdrdDv9YxEQy5tKnPoUSglhH5K5mY22Zs6dO8fRTj3Hr9j1arTZ5VdBudRBOcfzEaR585HHeevMX7A93SZKUeT7kzLmTfOsf/edceOhxjmxe4qtf+zq7+3v82z/8N9y4cYPLTzyKIuKdd99AK8Xp8w/Sard48Yc/oN1pceX9D9jeuUlR5JjCkGYJ3U6Lxx9/gnfefNt7n5QFt2/dYHNjnY+vXSVLIoSEynjNuRRemy9WJEpLvvLl3+SBMxf54z/6Y9IoY7DX5+Ijp9nd3+XIsU1++7f/M1596SV++vKLFFVOpBXtbptnP/scP3npJ0wmhT/ySiCtQEVBoigkIvLpNHZeU1cROMGDlx6iv92H2jDYuYkKLKitrVvk85K96T22d5d4/su/SWe1x/172zz7/Fe4cP4821t3GI1GRFGMU4BURAL629dYX7/AM8/8BiqLcO9XPPrIo/SnY3Z29jh29KSXD7dbLC9dQChFEiVYKUKB29z/hkQriBP+6X/53/D6qy+TdlKW2iuUlTfFBwLbQgWfe4mw3jyxlUT81Q9e5hc/f5nxZEgSKYpQ9ApHEDR7zwPPODTUxlJVvvQ3tgrpMQlFbtFaUClHLCLm0yFWK9KoTeYspSsRwWPQWEscKX724ktUxvDTn/wQKwxLrS4rR46Hgs3fiFkUs3lkk/Lcg2gk0/GURx56jCRr86d/9AcM97dYX19FSvjDP/g3PPnkU3z3b3/Albff4eTpVVbW13j//Q+5dv1jTmws8eBDF3j1jY/4+NY2Okm5e+smtZU88fjnWF3boKhK+vv7LC8vI7Muw90dHIa11VU6vTWSdpe020OKmKMnSmqnUTriyOoRxpNdhv0hcavL+pGjJLHi/vY+N6+9x1aSMsvHRFGbI0dPsLy6jMkz3NIKCO39jVzNdNwnr4JvSmUYzaYsdTu0sg5Cx8QRYEuMgZ2dbe7vblNYRzv1JvRaeUNdG8co0cZp4cEDFyOkz/QSCIwIvngOqDRSeTmDCKxnL8tJGY32GeU3KSaWOErJopaPelYRWIGW+MQv6WVOtYDCVMHsO8JhSTCgY7QG4WJQNbaqvNm1qbDWUNVj6nJKbYxPOJIaqR2tGKrKINKElY2zJCrB2Yqou0ZVGCaTMb2lGBJN1YAFCHxL7ddsKROUkNQxLFuBsDOsuY8rC5xTPpVIeDaAlSL4tvgGxNnSmzoL/D47wWw0ZDzsY6hoRS1k4v+/FAfSbmNqlJJ04pgkUtwflCidUFVTzx6qNTmVb0Cll4b5ybdGhbWxdiCiGK1AuYS01WNelczzgslkh7Vel+V2m1ppNCV5VfqUKmuYDD1zQOiEKE1oZS1q56goiKQjktKfb2ExxsuirfXeOtbWlHVJXuZoDWms/XZaR45fFKtK4kxj2uqZIpFyqBRaUQcdaXTkJWqR8D5+AZVBKkXkPBBthSSWgtgYRv0dxvMxS91l2u1VpJTUc9Bxl2WZMZpPmc52cUVMq90laXfpqARbeeYL2tewUtTY2oV6uxnb2GBsTBjYsfDhtICtQv3kHEJ6Nrp0IVVMyFDrKx+gEJ6PSmmyNGU6nTLc7zMrcx8qICBpt2m3OkgVrgchfUS7CdckjZ2AZ5s5ofwAqK5ptdu0Oimz0QBjDLPKMOvvEiVdslaLGIUQhtJZDIJU+F7EGN/kSuOwIqJWNc5VFPMaihplSi+Di2IvIVV+2CasxSmFEB4kjGuHKSuctlRVgXKS0ihiCa4qFhWmNA7pakrrNXPW1BhryU2OrGFmc4ytPIM1MOMVAi0VSZwQRRE68gwupVN0HBOLGN1JiJQmFQlOKZxW+LG3r9mqMCiRToaexR9TLRrgz2CFRSEXkl6MRSrt/YiARi7sWwTnGVbCMw4lIbnMeRaiXzVjnHREQuFE7X0XvS2Vfz7UBiskUyeokdRaYZUE3UbGCa1Oi6gd0+p26LS6tDsZ7XZCr5WylMZ0U0lbKTIpSKX3ntLK925KCJQzocdRIB2RsR78l5pIqYUqZ/HTeUPoCpjj6M8LxpM+e8Mh88mMvdGQYjbhxrUb5OM+yhVM8hmnemucWElZSWEydfxff/I3jAYjlJScOv0gP3/9F1jtawDlAOcHw504QqJQkaaoCobFHBnunUhLWp0UpVp+KFDn3L+/w/39XY4t9VhZW6PbaaEjhdDaEyaUN56u6ppISR68eJFIOI6srbI/cdT2I9oqwgjwvoECV1tGwwmray3qbJmruyPu7Q+pau8lCoJ5YbxPF5BXFWo8ZX9vD0mJBrb6U7aGY7pry4ymUy85tOCkPQAihe/DrfHPjEjHFLYmImOwv482FqdTst4K1aiPwB60a1ZgaklRlKRJRDmb+w7HOW7f2eLOXX/P4yyJNEylCbJSD650Eoma18ymM5yBWEmmOHpxi3w6xTo/BChll9Obx/ho9gFZkjEc5chZhY49uC+kwMQd5nVBzZAYSW0cWtcg4tBH+eGVtQ5R+2GH76slBsf6kTXWlpYoplN28j6myondnF/n69cOKP0Xv/Nt/vUf/pSvZj2iuiaKVvnGP/pPGNoYNd3j5lDxwPoZugoUNdu3P0Rmm3SWuz520Rn6wwFvvLfH8aV1qrPr/MZv/S6T6T5LR0/x2Lk1BDXaCVzQxjvlpzY29N9OugDeSJStvCdRmFIICMCGB5PALyh1oANb5/zDwFgf8ykkOvjOCAk6bdFVlpde/T6qu8kzX/oqrSzx+l9tKfOcRGfUovQXdwBS6oCQCudjA9tRirK+GHLShqmjQFKRz2dkURcpJIULDx/pPQScAhq0PTQecoG+WhBVWJD9hMM5FcAOg9QxSXedf/Hf/08c6WRIW9EfDrl/5xrXrr5Ba+UkFx96jC99+Wv83U9/zPbNj/jaZz/Dv/3LP+Vf/s//K3//1/+aSbbCV774PB998C6F07xx9RpSRTz6hYs8ePa8X4SkDAkdLKSG3gi7aawOgBIIk6UGQ+HQWwLABs2k6BCIQyPNOgB3Dv5xAzIE8OcTwM4B5OO/o3l/ADcaMOqQXO7gA8Unfj8AJZr9PAQdLWR5h8ENccBwWgAUDbx58NkN404EALR5gDUJbv4lqUVBUdbc3trioU8/5g0ElaauHVt3thmPBzz0yGWaIHAnvI5bSB0MGsXBdgY5m5ACZw78x/zfDuRti3MofuV4LPb8k0K/T5wWEfb30HHnV97n+1L7yY/m4Mw1gNUnIKNGYinkQqMuP3mq/O+icVz7B1/IryBK4Vd3ACw219gChfRFucV6HwcJWZwQ25R3XnsNp0piV/Ps89/iRy98l5u3ck4eP4OOWjx46RInT59lZXWFfJZTU6Okp4nrKKKqa778ta9z7epHLHXGrK+vMy8qyqqkthWbm5s8/6Xnqeucnw7vIeaCybxifeMcly48RiJizp8/gj1+nO1793nv8c9Q5TlZa4nR3pAzZ86hlORHP/wh//g7v82zzz7PD1/4Hne3buBsTTVzaK1BQF7lvPqzn+BMQZqmJEmbRx+7zNGtXcq6YHvvDqrGmwTrmJGd+0hqUfLEQ0/y6OUn+X//7E/YG9zBYqid4r3336Eocy48eJGjm+scObLO6TMX2Lp7B0fJdDLl/fev8MvXf46pK0wt0LFGZ0DlqCrH0lJKlsVEScS4PyB3NRa4deMqaauHqQ1VXjKZ52AV4919XGzpyIiq2OcnP32RTz/xee68+yHLaytc//gmRVFTVjVlOeVzn3+Gzzz9GH/2F3/OylIHKVLi1Gv1z5y/QLvV4b2PP2Rvb88X2VaCiklaGc5ZZIgVrZ1BOxmiff3vaZqyefwUX/vmBldvXUUnKcbkKCkxljB9tTgRjHaDXHqws8uPf/xdTp08xnC0j6n9tE8gF14bUgqQJpiI+jjlKE48DdtKZG0o6zlW1FibgXVYYagsuMIydjMm0xGTySAwUixaSWbTOatHN/nJj/6GVibBlhzd3KAopmQ6xjjBtCh598pbrPQSvv3t/4Hd3T7vf/AeFsf1G1d56olP86OXf0o+GrKxeYx33niXzePHeeKzT3Hh4QvMhnvs9bfoD6Y897Wv8MabL/FH/+4v+Pxz32AwL7h38x4KhVYR5y6coioc9/o3OXH8DIPxDqPxiGylR7fT5cTxE2RJm263R29pBaljRtMZVekojKHV0cRimY3LqxzbOMq8Ntzeuo2Z9jnWyxBYNnvLpK0l0qWMzlLKDoZZIRHO0mlFpDql182Y54JaGGyd8/8x9+ZBklz3fefnHXnV2Xf33AfmwDEAcRAgeIAXJFKURFG3tNThtSxpw1p7Q471htcbDq33cMhhOyStV3Y4HOG11lLsWjItHhIpixRJkCB4E+cMBjPADKZ7eqZn+q67MvMd+8fL6h6A0oZjg39sRQDRU5WVlfkq6+X7fX/fA+WIdcxg0MUWY25vrJEmKaN8jE4i6q0mDR/RiJvoJEXFGuXAR5Lchvt5SJ7RoEpkxdQM9iqhx44ObG4rJLHKwHuGwy6rKy9jBgUzx5aYaiXgbQD/CVKmkOQVXAELH2KjFaCVCsbBwmG8YWTG9HpbFNuGKDWM3JBIaJx3JHGEFjFeWlQaU48zBDAajhj3+1ivaU/PI+MIby1ShGOYmTmA947BYMDO1k3wmrRZp9ZsEOksGEALRaYlg2KIcjEoGPqcRDusCaVlpHW4n6ngv+N9kHZRsVykG0knAgAAIABJREFUUIhIYsYj8l6Xbr8XJD1akaXtKtnMBJZKdb+aJOhJpcjxDIclUkYU45JEJQhXUCpNrCIsnsKXaBsYMKKSGwjr0F7jrSdHYqRHOkXanEUpje1tsd7ZYmV1hcUDSxxoxHifo3zJ9tYG3X6HLKtTy5oUtqTMhyHIxRd4HIUAJilnwodUJS+QKvgvOWMwpgwsEGKs1KA0mQTvDdJLjBIkVfEeCYVQGicDcO1kiRXB70shUUKCdThdggsG3sYa6lFGb7DDaGeLWrPNdHMRrCRLa+SmQEQafEESxRxKIozJ6I/GdDdXqHUjZDZL2mpReIkoCqy0wUvIR0ingzxp0hj2AusD3IicrBPDuiuKFdYYhApsNVH1I6WQExQqgOveIbxCRxrrHOsbm3R2t8JcqYKnVS1tIL3DS41HI5QKzUMPQlf7craS2AmUiAPw5DxxGgeAVgSpnlKSoshhVFLkI7qdDmmUkCQpRki8VRgtETIkRnrhUCphVAwZj3Jc5e+mRWC6qZiQxOkstgyFtcRSjgbkxTgwHWppMKQfG7QvKL1FFA7jbLjnugJjLNYY5F6jEJAaFQX/HVGLaOkZ4ighTuo4rcPfOsxHauIrVlWMQWQYfLAsLiQlWnAqGFmjZAXaiondONI7pJd7El0nPLjAkcKpaklpKWTlS+rVHtPEETyiwgpOBWYgHuU8kSD4W7ng74cLjKSxCkC8kpoy0ogsQ2VN0lqNRqNJo9Wk0aoz1UhpNlKmk5hmXTAtJbEISWBKQCQEUlY1QaAI4X2QLGlZqUVUMDifNJYFmv2KDgrv6VvP1nDAVr9Dv99jPBjR3e2y29nhxq0brNy4QW/tFp3dLbZur+OdIPFw74mj6Cg0iUb9kvGoz4N3zXGwkbD2+g7R8DBFu02/O2LcG2FyS+7HDLdWqSvJRn8QiAgAhjD3OUc9SlBaB7BUxBgZZMSxExTdPs3UECUZmjD3+0KwemudGxs7TDVqTE01mJuZIatn6CiwqaxxZFnEocV58I5Go8n5y6+QyahK5AyXkLE2JKvFMVljju3dPjpSNJpNdnYMpbMonzNfSzgwPU137NgaGbwt8NZjfEGvMKxudWnU07CqtwTTaREIIcEKRuwFNEgZggoSQBAhpacoLOvbO0xN1Tk222JlPMKOe5X1hwAtcd6QDz06MoyNxZcFWjo2XQ1V9oNfl/CMvEOUgREuvEK40GBZbHnmF86xfPsWsZScOTDL7q6m++qzRLUaWMvcdJMbaxvEoqBRbxHXmxS5wYw64AtSDQ+fO8jFzSa9F55GyrySwkbgC6SPET7CCotCUrqQ4oZzeGeIVIwpLVeurQWGsY9YmMnoD8Z8Lx/fc0Dp6mu3+Vu/8AN4O0TWM5yznDl5inyUs70dsXCowUJbYo3Fln2e/+Y3aR65l/vuf4AkkhgDC0fPcPbMTdbzy+xe/xZusMyptKBRmyFVU5UBMpXcDLwPSFxYdAUDwQmqLUTwCLACbHVRWS3weylxVeyj87hKq+qR+EBEChK4yjDPFGNWr77I1avXGKk58jzi689d4J2PPUotrSGsZ+RCdKEd9VBC4bBYJYmQOG8xosBFnjiSYILJWOQVeI/0mtGgy43ukKMLdRI8Wiqct+GcrERXCyAnK6NJb6vOdiWzqnTiAFRIuYeQ/qYkTjhqvss//ie/wVSrRbM1x8zUNF965mvc88BbUb5kanaRH/i+j1DWmugk4dJry/zKkcNcP/4QR9ozvHrpJUaDMbVM8is/98sMx5Zjp8+g1OT7qEr2PZAoTMZ7iVsTxoifJNdUr1NtE0h81SlMwKg3SdzeABj4vW0nhf8+UDQBe+7gvIg7PIuqjxd7759sU20v2GMM7ZOrwwt77Jw7PnuyB3+nNu7NjJm9PVQAyd44ib1/h0dgN+ydnydMcsLjsCQ6wpqSj3z4J9npdYKxp/coBYtLi8wdmA9YkLfVbyR8hK805WHc/5KxFPtAIJVXUxgN9yacZ8+cIABfkz+FYB8TEntjtT/cd5xTRV3eG82Jmfcb8cHqjRMATu4BQXsvT8Zfijd8l/7Obapz+64UuT2gruI1VvveBwcnL4v9dwmPtZY4jsEKlFZMN1r80Sf+kPnDBzi8cxeHDh/mh973g6xeXuG+Bx/g/vsfZvn1a7ztscdwFq6tLHP82HHKcUmWNrDWEiHD/uKI1Ws3eNvbH0HriKaOGQ4GwTNESmqtJu9995Pce/fdfOJTf8zI5nzgBz9MUVqyxHFgep6P/8dP8NrVl7j/vge48Px5/NjwEz/1UyyvXOflly9w7sHHOHL8Li6+dJ7RaEDiPYNS4EWBimo0GnU2treYnp6hJqfpdHocOX6A977/Azz1xadR7ivEkcAaUYX8WWSmSZIaUTRNWUb8q9/9XQq66EgwHHjiLMZagxQRO7u7/P6/+7fcWl3h5OlTjIZ1dnZLjp44iZJ1Go0WI9lj2B+CNOwOdsFDXdVQPuOBc2/DlZav33qKLKrRGQ6ZnZ9jnI/pmQFCSRJVo3QWm5dIrzHe0h+UFKM1/tXv/DNmp+d46C3386nPfBxT5rz3yQ9w/OQpThw7wSsXL3Du7ge594F7ub68gpMOKROarRY4x8HZeeppDWMdUkrK0RCtJVmaUrpKXgGV0eO+pNQagYoTxv0hxoYC31mHrYqlYLDrmZjVB85tMAcVRtCotxgXOVEWOElB9uGRUUQsNdYaSmOrO0KQTofOr0JHMDZBemGdB29wUmJMiHxO4oT5+Vm6W1tsbm7QPHIimKdrOHniBDMzH0U7y+vXb1KvN/j4H/0x7//g95M1Mz79yT/g4oXn+LVf+7s0pw9yY22Hrc0dBoNdThw5g67P8NjjT3Dz2qtMN2c4sHCAv/hPT2FNzlcNPPTQvSzMzbG5tcufffJPmVqcYlh6PvOJP0GgOXvXSTpxh5s311m7eZvFA3NMt9roRoyKNWu3zhOZkiNLR1mYm2dhfoE0SvBOUvjQSJquJUhgnHvaszW0SRj0dvjiU89QS3Le8fBjnDw6i/USy4gsaTKzuEApYl5+7Sa313c4ebBJ0S9Z61jyQqBUDLrAiDo1oVm/sY4jxwwHwShegc9zytyRpS2azRa1tAU+eFwYDFhFUq1XXCVJtrbq7AuLEYEt7aqkJi1AOU1/Z52N3TWEE7Rm6qjDi6g8eL4IPEo5IEKo/ak0cDxKsAVFEZgu1gyRosAag3WWftGjmdRJ4zZZPIMSClSwA1BeIFRE6Qr6/W3GoyFaSGqtedKkReEsQkREUqIUlD6nNOFqrNc0caQZ9Lbp3L7CcLdOa3qROGvhhEC5KDBNdIiDj63B2JJYRAhRomSEkBbjPMaGFDtvgz1VKQTKFWxtrrF7e5201aQ2PUtdplgcY0zoHssoeAUpjRSKyHu8s+TGI5UO8tKiACHIrSOKI1J8VaATwGPrA/vFTyTe4V7qpUB7WaWLpRTW4Md9CnKmm1OYVo1mpMAM6Pd22dp9idxq4qyOF46d/gZ2mKO0ol1vI+MA7gti8BKfBhZRKqumiSV4JBEkS75iJlrhUEQkQgfZq/BIb/FSEesYMCBsOHhFYJ1UaU7YwDRVkUQQY0RJHNeRznBzZZnCjTm2cAhZazKd5NR0wfaoS30mwo8Exw41sdZwe72kMxT4UhLVawzLktfXrhBt10mas9RThbUCvMaKEilsKF5F8K4JxscCX6X2OeNAhiLdlkUFOrmQdCZDI85MfEOErDzNQCtNvz9ie+s2xWjA1PQcaa2G0h4nQKPDb00onA/rESWDjND5yZoqpDTLiZqiim3HCbwLYJwWEa40ZC5CZBG1rM5wNKa7uUanXGF6dg6VtpE+oRyP6Zsg4jKjYWDbloZGVieKEry3Ye1qHcpWfkg+R3mLNWOKUY7Lc7SUjEdQFCWRhMJZpIrIvKJMI9ACVWvQimtESUymU2RUI9IKlcTBm08IpBbENgE8SlhMZSUinayYkq5iSYqw1nOh5lCVAbbwHqnDCjiJFGYSIuFDupZyYAnG7HLClK8sFbxQoYaRDqEg9galIpwD7RyI4LdrbfidFl5gUXgpEFpjsowyq9FKGiTtJo1mylyrTdys0W7WaNcz6qlkNoaGFKRIEgiG3qJq5ltXrS9DCrIWOvhx6TtUFpO6qvrZDb1nxznyoiDvjdgZDegPBox2u7yyfourr72CGHYYDbokec7qeocLly5T04rji4ucOHoCY8N8ESnBAjAT11jJu+zsDEPDQSvKzhatpTrzUzPog3Vu7JZsDrr8zEMnuOgV33r+GmpVsrndpdfrhSMV0IojmrWErdEQp0BbhYzAWBOCChIQSJwxaGk5ddcpbnYL+lvrRBKGuaWuDVrHjIoRsZbEUUohBNuDLrv9HmsbWyzMTDM3PUOr1URFGhFJhsMcTwlDxc2tdSJRhTYhyUVIPuzkIw5P11mYnmZ3lJPnY0xhgkzVB4csJ+tYl3N8tk5+a4AVHmNKyuGY5swCCyPJZqcLhUEJWTEcPd6JyjkjrKViBCHhWjL2hpZMsFWKnnWe2xsdlBogsVgpiSb1A45+YegNLQrLVLOGkoJOrwBhMWVgiFtvSGKNzWMKE9iIUkoSHPcebvLSZp+mFMT1hCOHjvH85a8RZxpjCprNhNwLrq1c5eTRJZywHDm4yPqO4drWDtqN6AzHzK9cYP7gA1yRKdIOUVHGqD+k3pohH+0QpxECQT62OJMjlUAoh041UapxeJwJnkkz7QivSkbj/Vr7e/H4ngNK//Tv/9e86yf+Lr/4sx8gcpYoiNhRdceol3Pp5W8Rm7dy4MBRVGuW6eaQj338j7DDDqfP3sf0gcOY4Ygzjz3B0uFFrIv49oUbPPTIg8QbOYeOKEI4ryT2HuMC+m2FQ6kAVAkVuhpeCCwa5XMiFFYR6KKmDEkKSQI+JII44VBOY7xHCYV2klKGG5kEjHV4J7nZ89weeg4vHeTk8WOs3rqOLYfIekruJRExUpWUGJBQV5KRC4W/l4LRqERGKc55nPNIZQFTJVh47HCL+w4eYawUMhhihJuq1FifYytwqzAG5aqOto8CUknF6QwIUqj1XSjgdXVzFEnEwtIJfvjDH+Vf/pt/zZnjCcNSc+Lhd3Pt6mV+v/dlfvxDH+KBs2e579yDbG3dxDrYXl/j8becZbtv6fS32dxYYXun4IWXzjNz6AQPP/Y2Il9FnN4BAuxNxm8ieOyDCPv1+kTK9ual73d53MAeYSgACHuIzB4TagJa7bOBqJgtExDnDvBoXyv1xofYB6vuBJ3eyLgKL/6VrBshwO9Hvu59NxVwISaGadwJO1VsJ+H/0uMSQgRaI1V3VliweQAlK5C1rJI5siTIMYWUlanl/ujuA2vyDZ8bxmdC8Z5AXZWnlJwc/wSHeaNcLGAx7o5vttpL5Udw5+ffeT6T8asEm3vXRlhz7O9nYrA/SdXbY225yZGGbVyVePhd38neEE8Aw/1rR4jv+iImH7s3Bne8PXTDq7dHOiKeUvzUT/40tzd2ecfbn2Bhbp7f+Re/xbDX4erF87zr8Sd4/LF30mi3GIzHnL33HPUsY3dnF1cURFFYpAkpcL7gQx/6PgbDIVJJjLPoWDMajsFBGmmimXkWFpbo9Qq2Oh1atTa3l1cp56Z55umv8cKLL+JEwerWLu96+EFevHCREyfvYmtrm8cefxTjYNDpIiWs3LzJ8eOnWL21jHclH/6Jn+JPPvUx2nHCYGeXXKZEUmLGJYOtAYNel+1xHxkptFQY6UlqMUeWjnP46HE+9+k/452PzvP8s9+gXksoXYl1lsUDB+mNO5hijC8L+rvbZFmNC6+8wtkzZ3n74+/k9D33cmttndGoj3MhrvkHf/hH2O5ucfnSRfrdLrvdLp/9i8+SRRFp6omVo5HWOHX8NM+9+Dz5qAgJWG4Uqk0dc3DhCNe3Xkd5zdvf/W6+8IU/x2k4f/ECUaSotw+Ql0Gusji/wNe+8hQf+ZlfYG5qloce7DPojWgtTIWkLy8RXpIPBmgpyL0LDQI3if0NvyFb/YaUdxWLFIT0lM6TZClSCIyRaJ0gqjlaYZAI7F6iZJg9lFQI7bl+Y5lYRxjnKQ14LIKQsGZFCYRUD49DOEtejvf8QMQIrLVYARGO0ofFs0KCg9JYbm6so1t1yjIsmpSKkd7TrtV56eWXODI/x2//0/+Jv/P3/j7nL36bH//oT9Lp7nL82F2URcnTX3qKne4Aa0p2N9e4595zzM7Nkw9zajqmMTPPy5cvsXBgkd5uh6XjJ2lOtxh2+1y7tUazPUO7KMhHJZfOX+a+tzzAOx99jFu3byPGCR/84A8xMEM6uxZnFaIeQ1Rj4dAJbq4uI6OMOG6j4wa5LcAYnLU0JChhEFoxlWWcPH6Irz7zLXZ2N/jw972TpYUWkQQph0y3p1Fyilq9Tb3dJo4LNtZKtlTEbleSlyLEvWvIxz2kA+8Vu51tLAOGeZ+pqWniegPvBY3WItLBaDRka3OT64Nlmq2M2ZkDxLU2SihyM8RaA06gcFhhEdV8iJ/Iuxw+z+l1Nujt9JBJRr0xTRJLjPP4okBFWTXXa6wtyPtdnBmhtWdydSlfRQ7HwRBbxxqtNAqBEppploL0WFqsDb12RUQcS7wp2N5ep9vvoOKUdvsIUdLAeBuac14jcShfMYukRTmFlBrvx0iZ0po5RmP2OMP+NsPuDoNBh6mZg5AkiNKRFyNK46nZMUmswuJfGbK0hlCm8qkKsfNCCcbjIcNej9KO8bFm7tQp0ihlbEqGvkBZS2QDgFAIcNaT+jFK6GAP4BWI4O/lEVV0tgvR4R6EDOwUGVKoA7gjPcI5tBUULqwpvbUYHJFwbO+sUoyGLE7PkyQRxgwxZcGN/jbD7gaDQReVztCYP05Wr1OvZUgVk5HghWSsFKZKchM2yN4Ka/bXV9aAm3Cc/V6DEumJoxhvDIU3gKN0gR0iIw22xHiHiKskNCS2sGHt60IDcuAKolxW6wnL6vIlRnmXQ/NLNJp34XRJLEfUVMpsM+ZXfvoMN6+vsPK6YGlpmlMHEz77rVW+eWWMiZqgBG0XU28dZjwc0u1t0u8Z4lqLRm0qAOGVbNB6jxUujK3USCEx1oQbrQvhIOFGHZKNQyMNnHFoFRHpFFRgJEnpGPS7dHe2SNKU2bkFpPQ4S0i58wTppQ8spJD37nDWgPQVsCTwJg/AvRDgDKhgNK21wtkAyjlrA5sLhXGWlGD83ZiZxuWKQadPPC7JhaDf2SVLM0zkaMqU8WBMjEUwwgw81o4CCFsahLOMZYlAooUK0rc4pjk9QxLFJFkMOkZmGW2dEOuIVNUCqy0K4xcahRLlDd5YnNCVDUZIJLPOUEqL9sFORKOwSuCUCOscr/ZWiYLgn2a9xTqNs4ZUCsqKnSODw0cl3Q7SWqeCJDHI3DyeMvSgvED6Kj0Thc0VRkm0kJSRpqzFRLUGUdYmbdSot9s02g2ajSatZp1mPWI6FWSRp6klkYdUgvY+sPFM9bsVlWFGRSoQqmL+Vw1To8M1NcbTBwbjku1+l+5ul/Xdbba3t7i1scb27Q1Wblyns75GJuAth4+RNWoURUGEJ0aGUCXjuH3xIt1BF4knUxHjUU6jFNSijDSuE8Up0gusLRmVBdaFwAu0YzQco60lVTGracLK7TWOTG/y/nsO87d/+G18/to2V3d3+K/+2gf4kcevUxRtli+t8Q//5Qq7nQLvFc8vXyfNmjQbdbrdbpjPbFhbl9ZRlCGww3mLcyWb2+vcdegU53sdMCU60qg04f5TJ+iWmhsba+x0OsF/Lo5ROqYoHMs3b3Pz9jZTrSZLCzNMz85Rr9UpihFXVm5gi5xYeJyUiIqBbYsc5x3D7oBuf4fZ2SUGo4RefxTWRM5Ta6acuuseNjY7nL9+lSTyFNJya6NHPx9yut6mNxoHnykvsELgCOQLPVEjeB9k3tW8pgXhWvYh7ZAaIRBGKExZ4G0wvC+8BS2ItIAyXLOmtBxuxFjviOM6xgWj/tmpJp0ChqWgPxrjbD/w06QgSxRu3GfYLyFJue/0fTz/4gVqkaAYCHQmEDLi1YtXmG23UTImjSJs6dne2WKIIDIhuW9ldciSXca7sO4e5CMeeeRutos2l154jqmsRm/Qh3EXpUVgDXrw1jAeSEZ2yNg5FqZTalmNjZ0Ro9H/zyVviDHndxRxM0Ls9hG6hS1yuttX2bh+kYsXvsWzr97iBz/84xxtlTzzlSvc/ZFf5+t/8j/yJ889zm/+d3+HvOiSUNCePcJ/8fPHqSvB5q0Vlo6fRZkhAoWdWFMogZOWxIcua6ojSjdhXniUMyCCPt87CyKqImEDA0N6B1LiLPgEDJI0CtGZMYISwBu0Dq7/b33oIXq3X+YTn/44P/YTv8jObp/i6haPnpsl1QWRAtu9ycbyKq41xbXlHkncpNVqBd+CsqBWnwLhQFWIvwuTWyYdH/vUf2BHH+ZXf+FnKQXVDT8U6d6XRDJCO43UApxFKQ+i6jbdAVR4QjJSVAEg1ofugXcSFTW47+zD/Opf/1t8+nOf4uyZB/nQ+97L66srLC0ssnVzhc88/RQvr97m137uo9xz1xL/5rf+e8oo4zd+43fZfv4pPvGZT/Pg/Y/yCz//N2i02qRpHExBuQPTesN1MfH4mNTsVfnvJ85I+7jBBARwlXm6UKHYuZNVtE+wmfjd7L/3u0EE/wZgaF/atr8zLyeMlv19TY53/wPZO+Y7j/PO5yYb72Xsec8dTlcEP6hwIKLiHuy/ZzIO1Qg5d8fz4bkJZ0HKCkzyiiRT9Nb6LPgFvBP0ezs8/aU/Y2Fpidm59+C9xmKDnNsJBDpcM/AG5hJMzOz30wLvPG858Vvax9He9HABdMLf4Sk1Oe/J2P7lAM/kdYv/q0Eg7hz7N+9g8py84ymxb9c1AfOEmDxBhRjuX3eT61OEDseENRUAR/YuDjcZABlAYYRnXA7J0BxYnCVRCcs3cpySPPn+D/HS89/mhRe+yfPPfZsTJ05zJD5OPapR5Dku8tSzBuPhmKTdwFhPlmW8ePEl7GjMfffci5ZU9FtNq9WkMAUqDrHU3sJbHniAQdnhD/7g93novvtZWprn1F0n+dPPfIrr1y7yN/+bv82J02f4whe+zAvfeZal2UV2Bz2a9Yw0rXH00EGW5uY4/8oLHDlyhC99+Uvce/xu/nRUUJ9t8Mj97+Hue87xqY99gn63x253m3vO3s3zF+6i29tkdmaBm6urKB9MiH/5l/4GG5vbvHblEk7m9K0gERFow2uvXybSCls6as0GmXc4X3Dw8GFuXl+llSW8ejHmxee+zdbmNg8/+jg7Oz1+9Id/nKe+9jWe+sJTTE01uefUGe6+5x7+7D/9GV4mFNYh8bz0/AuUZR4kEDrMRcXY8uT3PYnUiltPr1JaWL16laX5Q7gip9nMmJqew0lJPY1ZWJrlua9/g8tXn2Xtn1/nne//IA+euw+dpAhM6HxJgldEFPxYrHeYSEKsQQS2LN7veW/s/WAqBFJWKHJv0OPKxYvcurHGO554G4KoApMDIOBd+M1bASqp4ZxgPBqhhWOqXqc1pciSFCE948LSHVg8EqkitNIYa0LR42AwLOgOCsrSkI9Hwe+gDDR1KxTGGqQt0SLGVTIXLyQ3V27irec/PvNHlLZHeu4xxq7D//47/4ixGbG9s067vchd99zPcy+d5+Rdh3n8xFGGw5w//dQnWVl+nfe8+0le27zMy+e/TppN8/orl3nve96Ny8fs3F7nPe98F5u7t1l/YZ3u1i63tzYpnOXkmbs4duQ4l69epZnWOLJwlPmDB9l46QKDgeWDP/Q+Vm+vs/rVb1EYaE3NM714iLERbO+OqCcRGsh0jMs0o6JAScdrl67wzW9+hZ2dXX7o+5/kwMIi+biDKz2DogOFJanX2O4Nkdu7dHqeF5cLOmNY6fTwfkiERasMESlsXjIc9kFEtKeXmNJQ2pDmhleh0NeKWmuaZmuG4biLGeWsr9/AuzVKaVhaOkgsEqwK7DGPCY0v54lRuGJMt9uhNxhBpJmanUdHisJ5huMchEOWQaKmncaaHOdyBnmfJE5Is1kSnaClRkQKL0RopsngzSNsMPiUwiO1R3hBJFKSJMVGjrzIWb1+nRtrK7TazQCGJVN4CaYcEynNuCxIIh18v6xExpJIxYxHAVoVOkYgcNYhjKXVnMZkDfr9bW7ceIVRv8vxI/eRtKeJooyoYnDFUuAcGCcorad0UQgwyTts7m6QG0uaNUhqUwTOuWVc5EgdYcoca0qSKML7sK4TkQqggvAIGZp5Ch1uE1bivQuJgsKh8iFFv4tzCtuIK/N8EZZwVbGqVWCPGe8RkUBEKQcPHcFLQb65zvW1NWZn55ibO4RYPILLt+l3NnDZNLe3tunurJPFR4jjDCcEY2dw1iAdOF/inMH7OFxTEFhLOkGowCx01oAI7DEnfGhgekPhgzuVQjDGkppgPa6FZ5znOK0pjUO6EETjhQyJWQQW2mjcoXvrBqOxYebAAUrRYjPvIgvLOHcILA8cnedrn7/EV17dZmMwZjrd5uR0DR1HNHVCf1QyMJ6BM3hnKZOIdrTEuMgZ9zvsbi+TS0VzpoVIEiKRkLo4MDWNDaCDjoM0bm+dEjRuzoXrQsmIJJUwMfzORwwGXcpiAMJSn8qIohjIKY3BlCE6Pqrm72DVFKSUoREbgLjggiPQwiOUp5al2AK8s2gVWExGGExpsS7ITUblCDfI2e11UalExhHOltRjgrm1K6iLAjse44aGXW/xKgqNwmJIltRI45haKyOp1ciSJjrOSGJNFoc0RBtLEhsYU04ZIhfR9Yak6lsWzuN0iFqPhMWLCGtDsyrI+Fy43plUDTGxkGigJIQNWWvQBLNqL4IixFfSKSUgIqHKFKDwPvwWvMNFlUTKG5zX4C3KAEJRSI9XEqUblFGETJr4WkraCHLPWrPGdX9EAAAgAElEQVRFltYwrYz5Zo0sVTQTTSOBSEHqPZG3aIKxND6EgiQEia3SGgh1VS40LtZ08HgjGJWOYdFne9Cj1+3R2d1huNvllUsXuXD1NXq7HUy3iytypHMhEdeENL62ivZ850b5GOE90fQM46RFi4h6GuRjpTd4YtAljzz8Vp56+qtsbN4kizNGwxGDfg/hwY5yfFkiECjnwICqEskTHxFHGq0ipqabvPPtj/G5LzzDdy6vcXF5h8+ff4UkSTBW8vzXz/P4fUdptFN+7/MXWNvqUpMZXsOj97+NuflZvn35ErsvvRyO34SGq3AOjMeWVSqZl2xvdTk43eHkkcNcuvwKjSyjs5Nza2uNM2fvY+HAAfI8Z331Jtdu3SIfdaglMUmsMQLWO7tsdDdorl5jYXoWryKu37yBVo7S+MAoEyCtw3pHJmK80AFAMSW93U209sFfyVpacYqxA3Z3r1FTmrI0XL2xy3Yv5/jBeV6+voaovPcmMkPhQv3rqjpCI9CVHNp5ApsOiZEO4S2+8Cidkhf9IGVPExCKcWHRzofEUO8ZGkMiMl683sOXBTLSzLcVUkv0YJez7QaFjtjoxqxsVFWakBTO0IgVM1mOi9pcvvQynVEPXRhK4bDOsN0dUbiSU4sHGI8cC805NrdHzKQJM6fPcunSZYq8Sw/HeOU2uszxQlKPE2ra8fqNVU6dnqfROMA3v/FVGolFiJDu5rzGFB4nxyAFdR1xZG6aXum4fnMbKYq/stb6//L4ngNK/dGYuajgxtMf53z3LD/2A7Ps3r7FxWc+x3eef4XlrQHi4AFeW+tTj2d5x0//OkeOLpKc+J/5x7/1D/n6N77BOx68H6wkqmnqRc5wa5nXVrc4ePI+vK+0vBUQVAx7lP1tlm9epzY1TVZfYq45S64dzpsQpTkpAoXCmRHdzRuUxiMXJGmagXSBT+4tPs+hEW7CxgfDLKylGJcoUZKPhrSmT3Ls3jrp1BLf/+hjSOGQwjMuBwzyPldeWOaf/N7/zc/80q9zUPUZNY7yjqWDlOMBprC0W4HO6UVIPCiFI1VwZflVGodOc+DgiT3pUgBOgo9FQYiCHAy2uPzqBQCyRpulw8fDIkPoqsPmUCJ02qryYg+1Nc4jYs/cwjxvqz/C3MIcEgVlwcN3n8MVI2bvPkuaxHzuhcukUYooSl5e2aZfa/DZz32SA1N1tBNcuHieq5ef5+SZ+/jwj/wsBxcOVLfg7wZbvPf7YIGfAEp30JXuAE0m/kd7sfN3sHTe4HnEBEAKu7gT1HkjwLP/mLz/zbK3fSbV/nOuihn9z3m8cbu/CjR54/n9Ze+7U9oXWEJy75i8D/IEpWQ1Wg68pywNRb8Ik6u3bO2s88VnPs/MwgFml45y6sSZKr6WPZnkBCySsupe7eFtPoBVfvKvN40bE1DIV3jM5LubfO/Bz2vyeAPMVmnZ/Hedt99/veoq7H9Pd2y153km9rZ749i9ecDZY7LtHfwbrrv9T98jJvnJmVTHgqiAxUr054JMM9Kq0mVXg4qn2+3z/IUX2Ly1zvFDx5Cl4e6772a6VSPWjiPHjjM/fwBBhNQaVxYgPFEi6eeV94GSdDodLly4wPFjh3nltUucOX03INBSkkRhPpIEjbcQmo3b6xydP8p7/9v3c+GVFzl61zGEULz3fU/y9OdzVleXeeTBJ2hNtxkVJS+8/BL3nLsXldTwaUqB4+bNdVaX13j4rQ/zwR9ssHT0GB/58V+kO9hmevYA95w8y87j7+Hjn/4Yf/jH/55URQy6XYSK2NncJR8bBt0urbkDDMYFp0/fw+f+/JO0223Wux1UkiGdJY0VubPISJLVErTQnHvwYd7+9nfzxS98lrnFJYrumKzd5ud/5Zf5kz/8GEUJHTPm/rvP8eQTH2B94wYbG2t86YtfAFsyM7dEfzgK/lnOYi3kJiRi5KWhFPDlLz/F3WfPEamEUX/AxsYmI2c4efwUSkZs3V6nvXSAtNHAjEYMhpscPXiGx972Lp54z5O8dvEyU7NpkEQIjfehS20q2v64KBFOEOsEi0WL4PGAN9VPRQfJkrch+ty5MCd7zVNf+HOOnjxAHNcoipA25LyoIudDklMgURpmZ9ucO3uUVFnwJTrNMLlhNB6xMxgxGPWreOUQiZv4lGajQWE9OjGIeIwxhqIcUxiDtzAoRiHNJjcUJscYgzOWyGuK/pCnv/w5vvilz/P62qv8r//on/HFz32GIwdarN8qaLVm2L29zVR9AVcWvHz+Ocg7zLQWefbFb3Pt6kXuPXOOzrjH9MIsx08/TBYbit4DnH/hWRpTbcbWcuGVZ5ldnOLM8aM8/cwz3HX6FM1Wi7vP3Y+TMVdevcLC0jEGec7yyk0WDh5mVBq+9vyL3L55g9evX2XxwGHmFg8xGuYkaRMZx9TbLcy4ZH1nk+Gww9qtdepZTK2uWZiaZXppitdvLaMzgSenntTAxKzcuEUyPY0tY252VukMHYWPGHlIopg4aeELybDfZTwaYERELcrwzuKVrIxEqxu4jKo+jwgsau/IGnNQL2lZT3/YZ6ezxu3bNxFeM1WfIo0jdC0UhOPhmJs31uh3d2k0Gog0QxtLb7gTkoxUTCIilDQkUpNphYpjpKxhvWW6bOORRFETlKySgxzSCVIlgu+TioK/kLLgCjw6dHd1zGDQYXe9S7ffofCGQ0ePUMvaIJIqbSsUw8b6sB8rEMLilMSaEkxgd0vp9hpLSmtknOBtiRCKRvsgWWsWlxd0tjeIR32iWp2sPoOQEaUDjcMbh7ASVwzZ2F1jlI9o1GdpNlIkjrws0cIhYk1RWmxpwRmSNGFcWGIHeTnCyuAdBSC9qiLFCf5IUiKcr5LVPGNXYHSBiuo00gytFVIJSjtCSUkiU5wrMdYQ6ToqqWGspd/fYjTO8TLl6Mn7SZKEwpRI0w9JmFLRSFLiY4cphiUbmzeI9AaN+hRp0g73G+vxIieKJKUpkFIDOhQLzhJMlWzVmHOYCavRFUycbjzgpCSuGi62Ah20CsB3pGKEDiCJs4YEjaFga+s2Rd4nbc0wdaCF9walcoyIkL4kQ5GZkk99Z5koifAqxXvD5ljS3YnQOkH5GJWMSLSBwlEQob1FCEk9q+FjMOOCwU6XnZ0urWaLJE0Qkag8RgOrzlVSRGdL8sKgoxjnKwaViPDAeFwiKBnlQ6SEqXYNHddxzlDmI5w1GGNBK3SsAwBQlhVjqTLu9hEqUgEwURECR5nnuNLgTclg1Mf7MvgpOUM+MuRmjE6SIGo2Bl8OGZdBmqdGnrxn8B7ySBDplDTJyKbmiGsZupaRxHUaKkbr8J+PQqiP9jI0AoUOsk4KhA1MD1kYjPAoYXBGMBQmyOXxlAqkDrJZBYFNh0HrymfIA14jCYCGl5LSOyLpyL1DOhW8ZLUO0rtqvSSFQEgdJIbe4nyQTlkbPMe8jRgpTR3NKBUo0URHQBqj601kWkenNaJaRpLFJHGMqsckkSaJJCKJkDgiqYhwxCKAEAbLqPQYAyMR4t+dlZjSMyo9vVGPXnebfDhga2uLW9vb9Ldu4YdddjtbzOmUuSQjwVDYnFG3TzEuUF6glebipYusrdxAxxH1rE4S1zhx6i6iY6fY6vXo9IZ0u1vYKgHPySDp65clN9c36Ax6RFFCnEbU04x2s4nSGmNzHr7nDH/xzDq2LHAS4ihGSo2tmsGxFnTHA771wkvsbm7x4N2nGYgY40tCZGuNleXXeeXK68xkMSQDZmbv5tL1DdqNjA07xe9/bYtIOn70ve9no/Mler0RwllGow69rufwzBzLOsaUphL0hSbVwDhsURAjMMbhteTV1Ws8fP8DrMwsUvZ2iOKY1dVNZmZuMj97nFpNsnjuBMdOHGft1i1urW8wGO2QCkumY5CS8dDzWv8m1gnG/TywpoUEG9LUhbOU1uCcxXvL8vUVptpNsnqbJMvodDs4b+iPR1y9fImalBQ+5/LyDrl0vOvRR3juwgWkiMAFwC8QrD1OBiZcqGMmDXQRkmV1incGj0U5iYwTpJSkNQUuQtoC4S1DIxjhyYULjDPhUIBRRUhVTFPmDhxma32AH26xqyIudwvquo9OUgwW7QXWytCEKA2x8ly4toYtwSqNdWVV3ySUZcHxg4uYwjLTTsmyOrvLqxxeaDEyPUQcMTaS2EtGxpAoRelLIqV59doG0knqqs6z3/gaNQHexChd1SzCoaIMhKdwBYdnawyd4MbaJs4FafX38vG9B5Rci9rGV/mDLxziw3/zFyFfQ2YNbuYxL66PKVzE/ceOcfzEIaZnGxxemmP5tQuMTYe3nWrwW//bb1H/B3+Pg60a7aVjKKlI0wzJkOHuOokOSLEQDmc8cRzx0rOf4dlXrrK2I3n3E08wO3eUBx58CGM8RvoqLYcAGHnY3d7g2ede4Nyj7+Oes6dJiMldTqyg7Czja022t3vU549QjrogI0ab11jZ7rMwt8js7BzvPSfQvcv01sZMzx9CJwnCa4bbr3Lh8jWOHDvN6ZmE3/29f83/8Ju/T3/7Jnk+Ih+HibqsYgPxoXvkrePA7BKfW/kYX/7qlzh+4B9wZHYKdKCnexukFHEUUwxvcX35Gjtdw7kHHgoRs0IEY1YlkC6gtpMCvjp5rBAYCigFUgpqtQb3nb6Hje4uMklwlKgkxpeG06fvZ3pukUvXXiVJHPece4B3nbuXf/5v/wU/+mMfRUYJ80tLbHTH6PmTlJNkJPvGIv7NbJ47FEZMnhD+zQBBxcwR+4c/AYDeDChNpE4e9oxw/98ed5qE7z9JxQZ6M9DxV7//L39MQLHJflx1/KEj5CYePpNNvwvcCD4TzlWgjgjMtElXzlVymkmSBSJIPRMVsTg/z25/h1ZrmtbsEu/5vo/Q6w9oNKarSVdgjcPLcCyeKiXH2TtYU6Eb5/2bj2sySPtpbd8tl9sfAue/+3uvBu8N4xhenwzG5LWKEu33vw9fyT4nH+CqY9nnEN3x8XsdTH/HK+KO/4dz2f97cqFWf04S4Pz+dkKEhe2kIMRX34OUgeqsY2xpeO7Z73Dh8it855mnkbHg8Xe8k15nh1hFbGxu8vrV/4t3PfE+3vr4E3R7lm53h+kZaNQaZETkgxFJs0kSJfzIhz7MaDSgXa/jHQyLPEQZe4+3drLEY3tng9sbNxjnORdeeZ5WfYqb124gophjBxeJ3/8hLr76HUSkSZM6B48dYnZmhm8+81XOPXg/b33kMYphyeUrF6nXI7751a8grOTQ3HG0rnFr9RWe+86zXLt0iUuvvIyWlouXz3Ps8FGOHz1ObzDgyuuvYimIGymHDxzlxvINGBk6Wz3q7QxtJeO8CABY5UehhGCuPcNgMGRsSlZXrvOOR9/FX3zhz/npn/sofC3lg09+mP/wf/w7au0av/m//CZTjRqPPfIQn/3iJ5lu1zFF8GxaWV1FqYjC5CgsUZwwNoYkVhArEicozJDvvPhl4jghbdTY6m/Qrs1w7MgxFmenWDq4xImzJ5mZbrN4+Ajvfs/7+OxffIZme5Y8LxgM+wjp8OTBfNMGr75iXLKzu02332OqPRXAf4JJqJThWrGAqiZGJUKEubOW5771LV69com3vPUh3vGO9zCq6Ns4VxUHITU0yE4kOo745V/6a9y8coH+oMe4P8aMg4eIdBHSjdHY4IFCRQN3IjRPZLQPQLsC4y2TCOskSkKEeyIo8ZRlSZzV2d1Z5+Pf+jIvv/YKD77rER6L38duXvBf/vVf5bd/e5PN7mUaMzO89PLzLBxY4sLLFxBa8tq1a9z69/8nDz78IE+86/1srN3gwgvf5vr129x99iQSzQMPPMDlq1eQ3TG1Zo3hMKfRG/Psi88yNTeNMSVLB5e4tb7O9ZUbzE8tMcyHTNWmKZ3E2TwwBG1Jq93gxImTqKSJMY656YOkWcTm+i7XX19l0O9z5eprjPIu8/Mz1Bt1rl0+T6uhOXP2NHfd9yC+HGGlY3triytXVtja2mHxyCla00s41cZFFoGgqWK2tjbobW2T1KZJ4wyZZSTeUpjKjFYoRCzRPgIfWJuB/WDxvsCVBc6Yio0maWR1suYppBD0+h2KboeN5esYJLVmnWG/i5KKWjulNIZEK7KsTpJqnNRIkWCKnDSJGG+8RjZ7FBc1UMbhym3SrI6IkmCuK8N9SeCIpUI5QYnG+BBpbE24v0VaMB4abt94nZ3BEF1vkU4vkrpghp0LQaI0QkQhsrhKkhE+pDsKr7HSUOQOrTQ6iQMAL0zw08BTEICFSCmsKohsSpnENA5Lik4vJJ9t3KaetZmea6FcQb+zxc3ryxg7pjU3T6M9ixKassixVaFfCAulxzqLJHhojvMSEQl2+12ktWSNFnEUARFKSaQOvlRCBIaWchIRKYw3TMmU3BVVaEtYZzihSEUNbw2m6kJoGTPOS8a9DUpTkkQxU41pclsS0rtKXGTR3iGVQovQmXcuIdaaqdlpyiJnt3cL3VsnSZtESQuhCXOdFwFAEnkwPgb8HqgS7l2+kuNJpcPd0YVmqRCK2GsKb4MXnNZIFyMJzKbSeoTJEcIzGHboDnZRUUSzNYf1Lsi6ZIJ1mlQ66nGEKf8f1t48xrLrvu/8nOUub6tXa1d1d/XCZrO72VybFLWREiVZimzL8tiOPbADTJztHwMDZGJkMgj83wwwgCcBBhNg/hmMnVkSIcGM43gLrM2SLIkUF5Fsrt3svatrX996t7PMH+e+6iaT+St6AJtVr9677757zz33d76/7wJ3+w6hEoociqqiLA2RiiiMBuuwpo80ICNFpJuk2iJ8Cb5FjqUZdyibns58hB0X5P1dege7yCSl1eoGSU5pESJYSOikLgq9wVuL1yGExFuHtwUqcrRij/eW0d42xmREOgIpUTJCahUASSkpRkOE0MS6Jh/7wP4sBhnWlJRZjqsKIh0yoIt8VAOBobklMSS6iUoTOo0m3hlEAiqdDT6CjYQ4kkjdQMWBGaiI0V5ifKjJhDSU0gVpigfhbJ14F2o1Kzz4qma0Coh0LacJ5unBuNwQi+iwOoqB6gF2eyiv69QxHxER5J3BizIcT41CVIS1hgwercI6PLr2ovIoIUBIvNJUSuG1QOlWUD2kCbbVIFYJ4zQhlS2iGISKUJHAK1C1r5VXQc49rgwclAyxYdvOk7kS6UpcZRhnI9x4hKnG5MM98t6Avd09dna3KIY9ttfvcbCzyWg8oCoKzi2eoN/rYYuSOE157NELPP/sJRpJTCEExms6UYzVbUZ5QV6WSCBptfFJjDWecW7pVUN6H7zLY+fOcGRuhoXpGUbZHEWWsd/vU2ysgymIhCCKVLAq8CWjQc5omDE6OEAkMVpqmkmTJx9/htdefxVviiA7w5BEDikqKgNrW5vsb+2w18vYOthlqj2PtYIkkQzGB6yuaJam2lhXkZWCH16+TVka1mWPVmOX2bkZutNTvPrmFcb9ksoEIHxta4O1rW2m2l2iKLBzg1wXnJDgPKXxyDrR0RvDMIObd2/w+OmLvHp5wLQwVE5w5doNptsLKN3A2Jxmqnn45CInjy+wszfg3tYWg4NdlCmRkaQpI3b2Rnhr8BKEDUxQ5z2tSKFas6xur9N0hlHm6XTbnD15jNG4ZHV1ExEbKjOEWJGJhPdv7xKnMZ9+7Ayvvfk2QsRYW4LUMGn61g1eLUOggPKeSCuqmrnmbKjElK9AhOZ7N44YjwtGriKKGjQ7syxOTaN7++xsr4JzoWnoAyBmhEMawaXlJnePLPPW5beZUiEcQKjgfxbFFl+YEHghAoS30FSkTU9ZRETWM3ATZpBhqpnSarfZOxgzPTXD6sYGM9NNRNJhtLHDw4vz3NlrY3qraGeovCWRCikUw8LSUoL337uJ0i4wlosKJTRCeCIpaLYajEvoSIkxltV7O+zs9jHOBvXFz/DxMweUnv78V7h5+WWOf/JJzugNxpWn05ji+Rd/AZHOcn19yJnzT7LQbpJgKSvLwtHj/Ns//D/47k/Wefhzv8Er3/kWx578FF+dPwW2osgH7KyvcO3oBc4vLxLVHAKLQ5Zb/PCVy7z8wTaf+OxX+Df/9x/yhd/8PS5d8sSups8hEN6S50N8fsDqtVf43ve/w1vvvcfXf/23+fSzzyB9zHhvg2/80Z/wS792glu33+GzXzxBN9/mg3d+xBvv3ubkQ48x3rxNZhVvvvU69zZ2mJvp8synX+SFT7+I6a/wrb/4E3bKFlv7+/xoeZHm1Ek6VU5hSkoUshEhhSTG1HeQkIaA1PRGA5ZOPMK3b4zYrCyn65SCohoTJS1MUeI1vPTya6zuDBn29pnfXOTUmdMkIhhyhXC1AEwcqrx8SCQQtkR6i7AemaRhYpFwZGYmJAx5EbxnVHBumO9MMRofsNEfsbmyxjeuvMbszBGOzc1QPHyah558nguPPsbDR5cwVQEu2In6eiHlH7ihiZql9BEZFBwyZQ5/EKGzMlnhHwJI+ENw4VBxNGHX8CCT5eNgSM2pOYy1n7ys3h73twWBySbFRPpU/+Pu86mEuA9i3Ae3Pg5s+EMQREkOCZmTzzx8/wN7PNlTxH2Ppo9+h9pQvp4UQxdSoAndmqysaETB4LedNnn6wpPs7G+FxC1vQUnysiQiSGEC+as2sfYTiGmyZ/Wxn4B6UMfI/sesrv8UEczXzIr72wrdLVmnWN0H2h5M/uMjr///A+0mZsUfTfarz2d9rCYywtqr8yNj7v52aqZVLV843MbkOz0AiIZY0Fr65gFfe1J5RxxpKmPIq4JTZx7hrbfeolCOyFj+8j/8MZEUHDtxGhk3mFmY5s76Csvra9xZWcW6jM9++kXurtxlfnqWbDwmmWohFWxubLGwtIh3oKKYRAjGoxGmCouw0I/25HnOT994g9u3btBoSKZmjrC5vc6wN+Rv/4PfZnmjx6c/90m6U22anRabm5s0dEqcRAwOerz52mtc/eAD9vY2OXVymXsb9zjY2+R/+Rev8tQzT3F3c5tIGnZ3t1CJpyHaFHmGlJ61rXW8KfAUnFo+yXhQcrC3z/e++00+9cLnaX+rwde+9sv86Z/+BeNxDyw4rTm2uMT+zjbrm2tY43n9lVfYX9un2YjZ2t7m23/xLaqq5Pf/h/+eVqfJaFzxUDthf3eVb/zbH9GeSuhlBVJ6lJGksWZYjEK6JAbhJJEVmCJQq1WsEdpwZO4ItrCceORR7t25QbPZwVhLI57i0jOf4Klnnw1yZAnZeESRGdZXNrClYH9ni2efuhTkFUxYFkGy9oO//j4rN27ypS9/hej0KRpJiqznPKF0KCLrCcU7j5Sam3c+5I//+N/wwude4LlnPkP/YFib4Hq8iDEEP7FDGaaD7tQMWaeNMWEMWDxaSUzl8N6CN2HYKvBK153pkBRnXRVSvUSExmKErRcptQebkHgUEQIVxZx66GG8EFy/8gF37t7gxNIy8zMtPv/kcxgj+LX/8u/zxmvfJc8NRxYW2Tvo88ZPX+HE4lGclCwtLfD+1XcZ9npIn5O0FT/3pa+zfHKZP/p//4jTZ09z7uIF1u+sc/fuCjdu3uHrv/pLzC4e59jxJWzhyXNLlKRcfOISW1sHfPjhXY4uVyyfOEX/YMBwNMIjGGcFODB5RtpsU1QFr37vVZJYMujtkI9GzC0d49KzT+Nj6B1s88Szn0W6HOljVq6vMXd8jqaMcdOznP/EMYyNuLG6xY21ASWStNEJEdujA/rDMensAo24GSRYtdTERyE5JpExVgRJQcUkgt2F9E4f0p0QOniMWI9xhnJUsrN+ExVpsBJaCQ2hyYd97HhMa3aW5swcaWMGJ6I6tTKACVp4mrqFEzC1cIR8bwXfWsITZKCRDnM+ApTzgVGtwn3ZCBsa4UCkBFSeg9GQ/f0dxrmj2eoyN9fB1qCYiGOcrH+uGbRe6hr+DOIqlKeTWIaFQ8UxzlmqaoCSEWmSkGrN2FgiH7wr0Q7lJF4JRCRIbQvZSmm1Z9kfbLO7skK+N8b7CpPOErcbTEXTZKMhNitotJuoSKGVQkYxXikSKYNU2IHyMVJpnLAsdOfxXuJFYHkK7nu9KBHAYFxY9OIsQsaULkd7h5KgRASI0P32Bi8M4/6Ysgj+FEhNkraYajdJdcJo3CfC1zLCBlVVBM8yWRGlEqsVXqpgx2BAqZh2uwaW+nuM81UW5udpt7oImeDRKBX8Qg0hJlrWXXSsrGsDh63rr5Lgi6OtoxAmAH5S4XKL0YGRhLeh5eVKhsMDbGWZandJ4ga5MwiCZF55AqguLcNcYUXwkTNVgfdJAC5kREmK9wrpI1ScEEcal2iEDNwn4RylcESEe22KAG8RrZRu+xjjIqd3cMD27g5aBd+gWIdENpU4IinxSNIooT/uIaQiTjRaSqpijDU5Ak+zocC3SKIIJTVCKKwzeCnIi4qyHKKUYjQuqYqCssiDkW0d/Z5qRZxOobVGRxGxmiVOO6iGot3oILwhTVs4BGVpcbai2WwhRRRCFLCBYRW0/EgrML4KhuF4nFMgLZGRoUZWHiVDoyIkU9dVmQuMQg9hEUjwb7R4ShxaKoSzKCGDM5EPax6PC2wUF46hRGFFaFJgFV46Jg5c2ktKBFbGdapkCHmQQlEJjVEaoTRIjZARTsr65yD1JG2Cg4yCZGwYiyHVOIw7a0tsZajyjCobUOQ9qqLAFhXVuIc0I2w2ZH8wZmd/hyrr0esfUJaWY50ppiIVwgAUFFlFXrpgDp2NkFVG10PS6GCqCh0ltBstrJQsH18kqzLGFMgqmIPvj/oY5/A6ZjwOSdzlaIyoKoTUSAVNLSitZX19l1ZzGilLuk2NS9q0mgmD3i57+RDjLHmRHTZ4y8KQaEOv9Ay21pGoEHSRJrSTmO3xiFhrhANTGZyHqnSUg5JESNqJpt8rqfJdYgUGjRICX1qEdFhb4DKBE5KlxQUKA3mesbbVI8tK7kjFOM+QKsiMl6bajLng4e8AACAASURBVIuK4ahH3EqQVRVY8c4FaZgUga0sgr8dtiIC1jZ6LM3tcWpxka31m7Q7DcYjy43bN3n0/DmESg7rEqUFS4uzzM/PsD8csrG5y/7uNr3RGGPrOrwOl9CANRbVjmrmpcJ7mJ5q462kyAb0hwXSV3QbilhCUTneX1tjutnhxMmjvPTqe8g0wdcVkuK+aYiUmkQKNJ5RUdJoJWgZriVHuOc5J7BOE6HBaQyO9sIRTs5OM91ug5JYa+mPe0ERoQXCSGQUtDfBn1Xw1rU7PPf0LHdOPMxo7SZTOqQUjsuyDjhxCO2xAsYIEgnTScReDpX3WKHBV2Fd4Q17u9t0Om3yImM4HHB8aYHcVHgqTp1YJvf7rPQjvK/ASRwKa8ZceOQsb7xxHe8KnDeUJGFNI1RttyAps4yZZhMlUgajnLXNPqUtiSOJtR8jBPxnPn7mgNLv/9N/yP/6P1esn76ElYassKQNSawE58+cY/6hac49cpJuIg9N94x3XHz8C1zJdvmd3/oVPnjzZXIBG/euMd1tsL25Bt3jzHSmmI4VuQ1RoJEQ7I00X/7132H9//pDusef4vNHu6xkOVESU+YFsZTkVUXev8cP//pbtNpHuPz2DXrDmNXdmxy/docnH3+SqVSR+RwpNN/93p/yha/9Gs18nX/2L/4nVvuK9Xt3UT98h6jV5KlPfYFnP/kCXH6L3mDES2++zanjJym3rqDmHufJhx7m5p0V1sYl/bzgzTdeYXGmSafVot1eAG/CvZ/gRK+kBUqckHzy+S9x/lN/g2MLs5TWEMucm3evoBpHmEo1WljOnFjGmxu8fGePN95/n/ljyzz56IWgYXY1eCKoY6hdjYl4xsMNvvfXf05eNfnVX/2v8FRkw33GwyFTM0tEUYyUIUpY1EVWZ3qBv/lLv8Y//2e/z4kLz9Hfusq/+sY3OH7xKX7+whOcnp+lKjOUDEPJh6i92hsqUNyDDj0M70ny5sQ8+n5ymmcS7yUmMq9a8uY+AmJMnr4Pbhz+1R86Fz2IMH0EhJqAAofgkJ/AbxOw4vBN9WZE3fWrf6/fex90Cv5UUHN1xAPgjKjpxffhKIS7D2T5B/YFguoS7ut/Q7FbGx3WGvUSF3aCkJiAU3jlmOlOUVahWBmOerzz7k8pTEEUJ3Snu4cHyXkT9LUimHQHn+37MrvJ3niCVt478eDTNZDyoG+Vq0GYCRDmahnifZjM+1BUOTc5LhMW1/3z82AC4IPna3IOJkdRhp164BxNQK96cfzA6Rd+8t56Ye7v/+3wK/n6wB8im/XY9/UYE/WYeIDBNGFrIQTWmfAZwnPkyAJ/5+/8Pc6//DB/9qd/xHA8ppSC5dMPU1aOuyvXaTe7jMYZ6/fu0O60WLt7m0baorQF436f6dlpvIo4sbzM5r01svGYh84/Qj7IuHr1fVbv3uX5Fz+PMQaF4KUf/ZjXX/8R2XifX/jFr+PKlKeeeIo3Lr9NI+myfGIKrSXD/pinLj7Ov/v3/45Oq4lwhvfefpPu7Ayfff4LPPHM0xxsbvL6T16lFBVRovjd/+afsLJ5wO//j/+UnXyNf/y7v8cf/Mt/za3b73Nv9Q7W5Mg4AWEZjscUmeGRc2f4pf/i15mfOcK/nvtX/OIv/jJvvnGFd975KVI4FrozfPrSZ/jWt7/JYP+AI4tHSeIGg+yAE6cusre3R1kNaM8s8NTSAteuX6bV7HDr5k3mjnZI8wRrBLH2VEaAd2RFBtJjrEEph0gEMpYopWlGktJY4gSqcsioEly//h7COdbzjM7Nmxzs9fjFX/4Vji0sUlkTtqcU/f1ttncP+PHltznainjmuU/QaXXotDsYEXxgNjfvcuvDq8zOzvDyT17i6fGYp565hETgvA/sIBE8J/AeoSRlWXH81Emefe4S8/MLbG5uMD01zfb6FnMLC8QNjfSqHoMKKRxWerQ3RDJFugjhSqwzRC5GKhcYUwRjZgAtPJGSOGNxzqJVjKQgigTea5yIyU1WNyGCxEMoV1/vGi1iTh0/xcLiEW5v3uTCo+d58tGnGQ4y0jhmOBjxyee+yLuX3+L73/s2v/DVFn/rt/42eTbim3/1bU6deIi1lXvs7a5z8sRJ5mfOkCZttI64cPECd2/dYtA7YHd3g2baYHp+gctvvcmwX3Lv9gonlk9SlY6jx9t0Gh0GDct6vseNazeZ7s7QaTUxVcXtm9fYvLfO0pElRoUhT1p443n4oWUW5mbJxgO8daSdBgf9HuOiYHa6w1Q6y7h/wHjoaHZnWThyAmMMm/s9ru7e4+7KDoNhSZw0aTSbDAuLUMFzZXb2SAB0nUB6Q6QVSEksLMoFKZKQwb8trhkAzgdfH4HDeosxQUIjhUd5cGZM2o4p+yOcUswtLBIpjfHzVNmI8ajP/u4uaVLR7s6iGw1UHRkvvEUIgaojxyLlGfQ2GRYVp5/8FC7LcMIfenRULjSOvA/AA86TlRXbG/cY7/VozR9BdGaYnZ3CSuq5RiNUXLMZwAsJMhihSqfwzmAFVN7RkJJRUSFqVq53nihqoHSIph55RxLDjHLsDirGVS1VNYbMWIa7mxiT04haDIsBnfkuskwY723gjGE66dKeWWTuiAjGqnIig7EgAispNNE8EaEJI3WoQYStEMqAV2gBUgRrBKkUum48ipou4qNQoSjAeGozbItwUBWGosjY7+0zGA1ptjq0Gi0QEVVV4gRkpsB7E2LovaCqxnjnwrUpoBIK6TyRB1+nSrmaiRI3ExrNJtYZxtmAwcEmDd1ENqYDYOAFUmk8tR9Kzeq1ztT1h0d6SeJB6CBLNDWYgnchKc+CEA6sYe9gh2w8YLo7T3tmLgDMwhMJRSSCJ04sFU4onJMYSZCcIBE08XgiIVFpjJcRDoFUCoPAWInyksqVVNRsGBGhpMVUJcgoNKwIsrNUx0Rzc5TtBrYosVWBHQ+IhaLRiFGxYDzIGeNpNVpUNqfX62OyYZBMaaiqKlxjPoDx2BCwM2m0xq0WaZIQCUHaahNPT9NIU4QUxElKnMQoIcFLhJIoFc6NdSEeHATOaUalqa0xEpRKyC1oZYI3aw36ekTNIpNo57HKIr0M+e0+MDgcIJzA1M3CAAnVDTFhcT4AuJJgQh7q5OBZ6moWpPc2uEN4UeOKoXlsRRU82XyQaFsXjoOpTc2NclhitPc4EWGlQIkgA1QiwosCIXS9L/X14Eqs9RR5hsKA8ZQ2Z5D1OegNiFwJVUmZldxbv0MxznH5OKTz2ZJ2IyFNm6Rxk3YrxpqcSCXILGPUDyEHJ+dnmG21wqzpPcI7dFSgvQGlqKqKsjB4B0U5wPZ6pK0ppE4QUnPt6jXuNgWdtEPpHDhHXlZorYmiiDzPGQyH7O7uUVlLLBVSQlGUaB2xu7NDrCTzR+ZI4hjhoCgKnLVoFFpGoZZ2lsFgQJZlRFJhjMWJkAKZxCmjQUaz1aJTlIyLAucMe7sHKH+b7d09Dg56WOfQQmJKQykDAz7VEmMcZeSxXlFVnkRLimzMwf4ej104R3d2jtXtPTbXN5BFiKxHhETZzV5GGikaacyS9OTDnIEJ9wonAuMWX8+PMsw7VVXR0jE3r9/hIBszzka0mkGKubG5y8zMBktLJ9CRRtRqB3xIkJxrpyx0TtBbXuLD2yv0btxCAhoVQHsf1rtZXlGZnGYUfNKW25KhLXnjyk00mkRLIgXjynF3a59ms8nRIwu888ENVLMR2L0iSNusBOo1byOOiaVk2B+gdGBfqygm8rUvJZbSgLMVThgaSYPlhS4bvQxfZBRCEMVRCAYwAWTHh4al1E0iJRHSobyidILRsMeLF5d5KwYx2EYrzaAosMMhUgqEc1RWQ1USCUk71RxkzZDmPK4opAMRU1VghiVZccDmdp9Oq8lwPKQ/yFiY7bK1dYDL9ml2psgOKrQM114St7n54RWKbBBk2ATPRi01KtK1vM8H1rstcTh6ByMEnpmpafZHI6KfreLtZw8oJXHC13/9t9Bzp3D3XuPDfpdzZ09T5h6s4+xikw4mxFEKiRAGayyNbpvnzsaM9g/44gsvUuzc5i+/81eksWF9a5Onn/86UdEjqxrhAAmPMwWNVDJnrjMzM8fzLz7D2eZFdk2KKbLgmG/DwDvoD9geSm7eepMbWyO6Rx9iKYUb77zJzudepLu8gDEpZ89f4o2NfW5tDXjq5MN84df+W04stfkP/8//yZ5fIFIls90Fysoye/QMyydge2+PV1/7ASu3bnHsoUt85sIZHn/kHJeeeIwfvvZT2mnMj1/9CSdOneOJp4/U2IkIQIsUdZqXYzTOWDx2nBlRa55jzc7KNS5/cJeHz0fcu7nL2Uce5c0P3uONG6s8+vTnmE0FjSgOgE0NwASmRSgUlZKYyhJp+MkrP2ZYdtk52KXyIMqMN994mRt3VvnUM5/l2PJJOtPToRh2AlebEc+2G+h2l7/xC1/lx98aI6Y1v/tf/2OOdlrhoq3BJA69eAJTxtfre1UzhKwCXU94ztl6sS5rwOgBZooIrJ/J4yOMHl8jBUy8k/zhR/+n0uAOtzHRz012Ucp6V+tob8I/H5fmuRrskPUT93PiwuM+SEI4j5PvUe+rO/xeHH724b4AaiKJmYAm4vDdAeCagCCEgkQRTHS1ro95HQccaUVWjtAI4jil1Z4hH+zRmZ5BSoFCUFSG3JRE3ThUWYcFlj88yIcSMzkBYCbUeg4ZFhOw6xAkE7KWqH2UVTRhH4W/12BQDdpNCueP+iWJGjC8zzz76OPBI3//t7Brsh76DwCBE+Cn3tXAOJsczUkPj8NjfLjVB0HAB/ePjwKYE4qtkhHGO8qyoj03zVtvvU2z2yFfX8MJw8bWGmVR0YxTGq02P/3pa9y+cZUnLl3i9r27VFnO0tFlRsMD5hcXidoN8jyndJbu0hy7Wzu89vrL3Fq5yXPPfpKV23fZ3NqlM9Vmb38LqQqituD67bs8fvYpPrzyARceeZgf/vD7fO5zXwQjuXnrNkp6ejvb7O87oijmwtlznD1/gWazjVYJG5u7WJ9j8URpRFVU4ATPffaLZOMhaWuKU8vHuX39MtIlCJ0iBJRWsHuwT0MlGBsS74RSxEnClfevMCr2kUpgS8fe3h7vvf8+/cGIRrtN0mjSPzhgv7fL+toKo2yI0+dZspInnngKrz0+9hTVkN4YKhvkOZIY6QLQYoVHComOPHFAw9GRprCWbtpGlllgLSQK63OQniIvidMmZVVw7uJFkiSmqArm52a5fPkO9+7c4elLTzMe5nxw9zZHpmZpNpoonbA/yEgigbGW7e0tnLc8+9yn2draIU6iwPizYUGRZwMQklazGeLFnSWONSY3/Obf+nv89Xe+z8L8PMY6sqqiNxhwrNUM76/nAFnPW2EKkhgpsM4GaYJwSBUjVLhmRb04sc4Hg2BZJyf6kABnQw4KplJIoXEigMpCBgq8q2l9Dkucxpw9e45rtz9kce4o43HGlasfcvXKu5w89xAzU4+wtrbGhcfO8drrL/GbZ/8uw96Ai2cvcOzYUY4uHWd3exvrWmSlZ3VtlVt3ryNEiTeG/t4+Wml293aYPbJAs9khy/aRheD48WPMH1lg/uhR9nsZ771/mThpcfL0MQ52t9lzOXGsmW3HLJ5/hNmZLkUkOXbsNF4oeoMh99ZukShJo5GiVIOHzp5FKMn+wS6u9MjGFAmC/YFh/8N7jAYjDvKSKqsQJMwtziBkhPeOSAdvFe8Do0jLAEjgBc4GyYmpwj3TYTFVgSnD64R3WFMEOdVkvPogOKxKQz8fY11Fqls0F6fwWqOkDjOQhaiRMNPoYoqc8XDE5uYNkjhmunOEJE1wUVjYKDxeNlFJQhp1GOxdw2cF+4MBaE2kI6y3IQ7dBpZEYQzjYZ9+NsBKycKZR1Fpk6BfDwtaHSfgw31a40FYnPR4V4+ZSRKtdWgJZVmCcHhTMhxlJCpCa08xGh2C8EpV7HtHUXdrYxmB8DSShGj+CMJU9Ad9FhYWaUzNQFUhIx0YaHnBcGeD5tQ0MgnUfpRDWIO2JjQ9gFSGFM5YqXBvcQ4VibCOtwZNaB7YGkjChxSvwAxxNYNJUNoaGBOWqvJkhQnyNQQ6nWa2sxAABO+xXhBrHdZZBE8pIURtCAvWK6wKLBthA1BnfVhweaXrJk5IidQiQijoRE28LRlnY0R/n0h6iGJ8FBGpCC90uM15BUKiJk0eFeF8YCZa5xFO4VRgBgjvES74DZV5HyUMcwtLJOlUfQyqIJ2RYcwmIqQDQgA+pBCgUoQM0h5HAFGdUEgfmpJWBpDLyQnIF5iUBZbYWayrsM4RyYzKjPHek5eG8XiMLyqSOGxHWYuixGWGUQlpK6bMclCCUZFRFoGRFMmQ8qaVII3TsJiMUhpJi0Yck6YNklihdYTSAqkiXBmkjNZ6fBQjhMe5mgkuQljPJNAGBFYKhA21q8cE4FLJuo4l+G/VMmUnRTAUx9cyuWB6jhN46TGuIJUyqAqkf6CJF+YHJvWKC1wj5z3CWXAOR/AwstZS2uAlXllL5YJnmfMW40tkJaiEp8QjvAIhcCi8l2HOF+CVo/SeyILF4qzFYzDGoyZsJWGIIouoKvJxRj4aUJQllXHYyoS6zlms9+wPBojS0kxjhBNk29t1HVbLSqUi0glpFIzShRM4Ixm7imYcMVYROolo6oiiyA7303mBtb5WDJj6OAkMNfuT4AkmVJAD9fsjEqMY9Isa0AiSc6lkzTx3FEWFMcFTdMImK8ucrMqJ0Ny4dZN7q3fpTE0R6xTrS4o8RwhPkefs722Tpw2cdVhbsb/fpyodQgb5UVOnWCnodjqkiSIvAnNwe7fH7bVNTGXBeSpTITwU+z3anRSpFGVhOXnqFFNpzLU7d1FCURpJ5Sw7vRHXb9zkmU6bU8ePk+Ul2+sbobHrBTqOWTp6lMEwo8hCMnCzGTEoCgJwG6SN0oXEQyPrgAEcWjuyYsxwXIUQkKJiqqMoneT6nRW6nQ6d9hzosD5x3h02mivjmEo1yltUODOHRAcHKGORQhJJh7WW6WbCsLR84sw0Vw4sd1YHxAoGWcn6bh+hYxKpuHLnLiJKKI0NjQAkjnDsQupcRKeZUDlH2u3QSjWNVBNpgXMSUXspbQ9yxnmBB6qq4NrKDgYYDEuSNKHZiEiTCFfmof6SkCSKZhqSU50KgFTqJXc3Nrm00OXi6eNcvVHiygERYY2rESEtXkRI7ylMwZGmoT07R79q8O6NTdhbxUhBhCKKNDiJ9YbBYERvOKSRagYDyEvoJI7Z2XneP9hHKo+wHm8qeqMMLWTwVVURQnqSOKqJEqJuwluU9owyyyjLme4m5GVBQ4mPL9n+sx8/ew+l/QHzM12kG/DuNiQnHmKqk6CZYliO2Vi/xmi0wMnlZVqJor+zA27EvZ2cU6dn2Vm7yWIbBqvvoBWIuM3VD7/F3ljy7JOPYapLLJ9cRktJb+cWr7/9Fh+89Tar9jzn5zqIAo5PxZTGBvMqUxFpiVQpDx/v8pO9Ps9+4WtUNiKt7vHtN66xkVlOGsf88ikuPnyMC5/5EueOLiGE5bMXT7F69a/Y2bzJoy+8wBOnZxmWgtPHFukPDtjY3eehh0a89J1/z6BQnGzEvPLmazS1YjaGT1w8TyOOuHn3Fkm7y3SnEyZ9IYMUwoWo2WzUp9NsEtUSPQV4aTF6ihe/9FWuvPVDPlw94MTJk1y4+Ck++XOniKqcze0NrFChK6oUXoSLWxDMvlWwNCQbDKgaxzg/q3jvrVdYuXuXsyeOMrv0MCu7Q1559x0+056h050Jk4wgGItGku31OzQbXUR5wMz0AnRgJpF4U6F0iHn1IuixRQ3sBCJt3Q2rwRhVk2u8Dzdc73zQ9z84qieA2MdHek1PmUivDhlDh/9wSGEPQNDHmCUExhYP/H0CZgS2UnCWOPTeqZ8UUGunaqbLoczNH6ae1Xf9+yDIfeTikAl1uBsPyOy8D5RIV3/fBwGysF8hsWXyrSafWVWhy2K9QykVDH7jmPzA4YUibTb55HOfwVhHq9MJDCFCN2n3YJfmTDdMsEKAdZh6uxMhlRTBr+njsrNDsGaCtbgJAHVfjjjZ94+euPCoFahAbTJcv9Y5dyhf/Agg9LHfJ7LEyVYnnyIOn3twTHz05E+gIOHFIcMNcT9t68HH/d0PwKw/HFWT/9X7BiihkELQiCKKyuBKQ9xKaduUOFIgBau3byGSJuceOc/zz3+Bt9+8TJIqTi+f4v0PPsCUY0ZZH+crxtmTxGkaDLjjGFMV3Lx+k5t3rvPiiz/HvZV7rK3eoTt3hMXFY/SG+0RJxNL8cfJRyfe+/10uPnqexaUlCmPp9Q+IdcrsTJeV/g5RnNJqJ8wtLFA5w+b6Bqsrm5w8fZLNrXXSpIG0JcdOL3NvbZsLFx9lnH+JH3z3T3n33ffY292iO91BSMlwNERqH+j3tsILxfe/+5d89tOfZLozwwufeYFrV67yu//ov+Of/KN/SIlBa83q6l0EnmbSYPnYca6Ph2xuboOQJFHMe1fepdnq8M1v/gmx0tiqQODp9XZpqRZlZQ4NfrEgZeg+URdTeIeUnkhE5NmQ0hounHmUvYM9dg/GtNLgYaKEpsgLnAnxvHGaMD0zC8bw1ps/4Stf/SpTMmVvbZXZtMn65gZPP/4koyxnMBgwHI85eeIMj/381zm6dJyLFwlyBS/Z2t1DK7hx/Sp5ZXnuU59i/d4aJ04cw0iBKQ2bBz1G+YitvU3m547QiCJsWdTjrx53wmPExIXNE9WmqE5MFp33wWcPQc5DSJ4S3oSFifPoKEZ6j/B1QYlBoWqGog0BBF4cNiU8niRp0W5O02nPIOOYhcUlrn14lZ+8+l0ePv873Lhxnb29LT75mefYXtvnzdde5qFz5xiNx9y7e4s4VjhRgbDcu3uLa1ffYW5uhumpFmVZIhGkjZRmmXL9ww85evwYjXYbawzvvfM+x06dYutgxNrqBlVRcfKhY1x55zJPPnqBqhqyeWuT8WCfJ849weLRLnc2NllZeZftzQOOLp9gei4lUhHdzjSViNkdDikLhzXQSVr093cZjzy2NAzKfYqyotnpIkVMEiuUiqh8nYxEuB8671FyIkVx4dbgPabMgpzXlBhfkY2GeJfTmuqidIKOIwRgcGBK8jxnlBckMkIkEalu1bedkLwmfaCrKyGoOUHoNEFFbVSrhc2HDAfbVCZFSoWJw0Jey4RiOCadnWe3GNOvHEYqhIpC9DoCTEWRFxR5Tl5VqCSlO3eEWHZAQOEtqXBID8Z7yipI5Zx0uJoJZa0IrCRjsYRmofQOLyzWG8bW4rIho/GQTqdLM2niY4WSIEUCoonSmhYBvHTGkxUVtgYH0maH2elZNBpXGryvUErRilukWlDmQ7L+OkO7RiNJabWbREmMlgonfS2+C3OCF6r2g3FUwiNNAH/MRNvsbb1u97iaZuycR3lPWWRkzoOB3JQUXhInLURDh7PiPN6GCHQvaumSuH8PMs6DqwM+lA3mxShK6ykqh9Ie6w1CS1xYN4dYc0KSmRThP4ei2W0iCofJDyiyPsN+Rac9Qxq3kSr44ggv6uQvha+5x94FOYaWofbCVVhbMcr7eFPSaXeJtA5whjfheAlJpH1Nuw5eU8EnSuClQeoEVCP4oyAQXtfSfx+uC1NhTVi4CSWwlcVgKMwIMRyRS4UVBusdwpcIVwaGjbGYKg+G3FWEjlLiKEZFCXlhMGVOJXK6rTYi1nihgyxNJoBAotFKksRJYKqIBCkU3prQrfMWa8NJKsvAFPLIkIxXgfGBWSVVXLecQlVkxYRlHcB3ISwCFSSAPjB38IElq5Ug2BSZwHIigE3Ch0arwSIdUFlKKTDe1mmeHutKhHN468BZrA0M07KqMK7AVRXWeKwNn1X6wIay3mO9x9Tpg7qux7wNc3kpgq5VOIetfWGE8ygCiLqxu02VZ9gqpzLgTIEQkulWQruZsHx2jvOXLpI6x4evrrLSH2Kq4AdLFSSYFoFSgrlOi/GgRCpFIGKpIHuzrraCkKQ2zJ3eeYajjMpZesOMZiNmttNExmlYIwgOVQX+8C4n6mYkGOfxISQNQbDcEN4ghcQ4R2TDuZo0j6232Pp4T8DATqdDNs5h4knlBKU3OFuBlAz3Rmz3xyjliQXoKCLSOoClNWvJGkeeFxRlgbM+zGd5xYHPaTYikoZmXIyhBixHeckwD6BF8NOr63FvKK0jFRqFZ39vh31b0mg3KUY5pRd4r/DO0xsX7PcHLEQJS7MzDHo9RlVRs0IrWo2IhfkFxsWY/l6PwuxyMCgorT8cM34ShOM8TkgiqbHWopWmGcWMETx89hGu37zNkW7MQVZyd3WFR840wEcUWQZC0Gy0QlNXeQb9AdsbGzjvcH7SqQbrKxpaYx1Y64mk5QtPzGLjGX747lWOL8yihWM4zlnfH5GmDbSUQQYnI4yrQr3jwVKhRKivG3HE3OwMUdqi0WoyPT1NLCXrq7dwRR5MuiUYG0yqJ7ukgUYSM7KOynlsnjEqMrRQlOMC5SzKB+aqo0Ai0C7CCoUVnsHYsb6+wYlTU5Qnlrlx8xbWFDBpVONIpEeiscYgowrNmLnWPEZItBYIZxFaoxpNTO275H2o9fLSUez28UJQSXA7PVqJoijCnAoW6QQVFbEWxJFCSXm4phIiFI5aQGU8+/0RSgvGWQVe1qy0ny0E9DMHlOIU9u5tc+TUBZ7+9KdIpQZTEAtDw+5wa/Uad27doLezwEIr5Y3Ll2kd/xQPn3+K7Rtv4dpHuXHnNts3N/jeq2/zi1/8DP2DPqqxzQ9+/CPs9MMsnw5Ub+MjZPMEn/vlZzi5ssb+5h1m54/UiDp1N05SuTGDrQ/44ff/HJGeQQx2eOTis+zf22RmepE0jhBaYKsKLTW33/8JxxvP053u0t+6xQ9eeoUtucTnpyU3332JRvcY276gOzPDKX4lpAAAIABJREFUXEuxe2+D6/e2yWSHc49dwu1E/G//+7/k9vaIr331K8y2E84sdVnpHZBGmiwLqR3OekaDPe5cvUx/VHLioYukkSZpdxBS443n6NJxinzEuQtPMhi+xPf+6pvMnXmS556cYmV1j6OLixxZWApeoHUHW/mw4FVa0d/4kI2dPc6cvcQnzp/hg7dfZfnhxzEqRkdNzpw8TW9vldEwox3DuL9LUZXMzh5BOoEvevzg5e+Qjfq8/vKPuXp7lU987st8eON9Hj/7KHlWIHRElDQCDVvUiPWEvUKIHQ30QVH/HEAhp8LN+j5DxNcUnTrG1dfQlHjACecQQQrAT2C0iLq3w305lqjhhBrzCRNmDUSJsJ/3HUrqbU5YLBM4S4jaUyns2wOkKeRH5FUBSAmQzOSb+MkmwfMR9lh4T70x4Q8T2Cb+TfVbDo+g83Vh5z0y0riqCjcCP3lF0M/bIsPZEilEAJpq2rVzHhVpdvf3kAK0VzxodG2tRalAf/44L2iyP3BfejgxqD78cofH4fAEfYwpVL9uAiJxn4E0SZU7fK3/j4GsBx8fB+3E5Fjz4PP1j9z3ozqE9w4ZcPdH0cdgs4993v2xdjgu6o8RtWywchVKBkmncILtjU1W7r2PjiTeCeYWFonjJpUTvP/uZTbXVlg6dpRXX32FbqfDW++9x0PnljnY3OZLX/5lDvZ3ObV8ivXVe8SNmP29Pb7y5Z9nf6/Pm2+8wvPPv8DC0RNoqTj3yGMcWZzl1Imz/MEf/AFFdsCrr+zz7ntv0W1NURQlL7zweaqs4k/+7M9Y215jWR9l1O8zzsZ0OzNY47h18xrXb17Be0eVOZ58/Bl02uDty+/w0us/ZdDb5eqVd7h5/UPSJIY4YqkzRW80oD8c0YhSEKFz++d/8RdMT8+TDft8eP0qpx86g5KORhJR2ZKirJDek8ZNTi6fot/vsbG5EeZsa5hqNljfuE2/N8A6jy1s8H2INZUI/mrOGjCCOGnSbiRU1Qjrw3WhkUSRxBeW7vwiOMcXPvdzvPyTV1i9t07UDgWZcJZYSjburWCfeprFuXlcZdjd26U9PcvM9DwHe/v8ym/8BtlgzLHjx6msIVKS6e4UW9sbHD9+nJPLJ9jbPaDdalPgUdayu73JrZXb2CInTlJ+/IPvsbO9z8kTf5NxnvPeu++wu7fJe+++wd5gg9/6zd9m4dhRtJQh2rcGk2wNgkoEE/mEEwIlBUqHhQtWBMal0AgZ/CYsYb6TiGAqO5l+BFhfIup5dXI5hTlb1oB3+CxrDXNHjvDE409xd+UuM1MznD33CGfPXMR7S6+/y+7eFm++dZkvffWrbK9uYL2nOzNDu9kgK4pQIBcladuzfbCGNRn7e4q52WmOHj/CvdV1Tpw6yq1ba7SaDVbXtui0u/QGY+Rmn/XdDCEks3OL4ERIwcPjypxWs8XSbBMdee7cuk4hJEePH6HRbGBxoD1GlCSthE48TVZK9quMrZ0NruyuMOz1abZnEF6ikybNbpe01UITmLPGliElCY/Nx3gJSmg8NjDujEPqFOtBy9ARlJFEkTCbNFBRgO6sBVtWjIZDqiqYcUodkTbbxFJhvUN7jVPR/bl1Mv8IUS+EXfCMVJ52M8Y3ZzDFiDIfsL+7RRI3iJIWzc4MaWOKSFV478jzPqXzeFNSmSKYSJfBO0frmE6nEyRHVmCqYZDhAAaJ8B7jDVmZU45GqFgRpw20VXgZUiZdoLAQKYH0Ipjw1uyqRrtDV0Is4wCKyHo56MFUDlsarMkoy1FYBMmEKA4eRZES5MWAwnp0LYeKpcaWOb5mMKhIUmRDirKHGOTEZYtEp0itsCok/ljnUUqFQt3awLoWHqyow1ombnShTrEmgD/GFhRlxmgwpFKKqTgAYI14Cik01hXBO4bacF3cv99Q3xuEEEGdrQRKOhDBL8l6sNZRekUsIqSKoAZiQoJGqFFCuWIREyasC8zLJJ6mMdUmyQp8YbDFEKM1WiVo3UTUTQ6PQXqJ8wF1N85RmjG2HEAliWJNo9kMCzTn6oZkkDIKoDY/wHiF9BZnckrnkFFE5DVVOaqBCVdLoAzKW2RVUYz6FFnwKNKxxAhTA9qeajRCNVuI2pMq0hFRDErHJDpBRxFaxST1AimOGoAOc2/k8TYLi1WlqVxIfJMiDfLHuvCTQoGI8T6awAxI/QCTWsoQ7uMEUoexoUWdbisn8vvA4vHChXtb7bnvjEN4V7PTa5DOO5x3AcjwHiqDdrY2NBc4E6Su1pQ4V+GtpSwrjDPgKqrS4LChMWMtpjRAqM2sC++FAAIFxVtgveWuIlGC4KZpGY1ynDFYVwbgyDqssVS2wjkTQDEbkg/TJKWZJCgZs7O5Hpg33gIhATDSEaQR8wtN/sHf/Q2+9uW/z/5wjX++93usb3yAtxO305CiFRqUHu3B1ovx0Cy0eBeuL5BIpRBKIaTHuop+nlMUhrIKvjNHG41wLVoTmF82gHXe++D/U88h+LoenNTNPjSVpVBh3UHtKetBOB9YYD54kcJ9r01dp6I662vGIpS2tsKwFiOCL5X04ISq748hwdMZhwWysmQwzgN7zDuMMVgvSJpN2q0OZWkxVfD9cS6wc1xla3BDHN6bJ754nhBzPxqP6TYj5rsdel7QG2cBKMSTJBF5PuLOSo/u7DztZsy4H+S/RWVYX1vn+ImIRhRTpAlHZmcYOsn+zkaQmhp3uGabMCqdDwm5InKkkSTLDDOdmLnFEwz27jCVdtja3qfZWCFpdNjc2KTbaTDTnUZpRaszzUF/SJbn/x9zbxYcWXbe+f3Ocu/NDYnEUgAKtXd1Va/V1dVkr+ymSDalEcVFomhJIWk0Ho8VDnnCS/jNEV4mHPbLPClsh0OeGFn2hMTZFNQyEkWaa3Prblbv1dXVVY3aq4ACCkgggVzvvWfxwzkJVDdtP/FhkhHsQgKZefMu537f//svcUgV7mHeWbRziAwqWZXewCFsyc072zg5YrtIGa0N6A1y2ttDECoAO3lJIhW5M3FwOC7AA/iXKcXi7DQPPHgSKTMqlZSsktHeaOMdlIjgixYZ32OLExlrey2Dh5uR4YRyXuGto4jXrvLRAdep3SG1cBKkw6FYXu0wM7HKwtQivYU5Lve6wT9TCKQI0SqJhJGQWAuy2MYlQxJvCTlvkn0zFeYOHuNOp4/rD9jpD5EuDwMa5yhLR7vMmUhVqNucQCRhQG+kQHuPSoJXoZSKiPLHC8RRGEdvZBhZH+7NQsdhuo299c/v8XMHlNpLP+an7/X43JFH0DYPpn1myOr1N/nJj39CRy0y3VJ8+xv/FpPMMr1wP7N6gkNTnvV0gocfvB8/3GKiOsEviITX33wVpya4cfsmrflj9DbX6W6sohixfPsSvbUNJjLNbL7C1761we//3u/gyxyRyl1U29mC8x9c5ep6SlEu8/7VVZ6pL/DA0Uc4JTfIEo+MqQaTExNceeVVtl2D3/78Z7jwwUUGcpZHj6TcvfAq3/r+96lOHeKJT/w9fuHJJu+9+RKXrq1w4uGn6eQjkDmZ6zGyDqMTbt+6wm2Ts7q6TLL4aJiQxRoRCdubq/zo5e+ztplz3/U1Hnzofk48+DBzU/tQQtHrrbK1tU0mS3qdNbKJOVoVyRsvf5e7nR3mDxxn/775XcmPJCS4Faak6h1f/dt/TfPYszx4AlZvfsD3X3+TRz72IscPHsA4Q5oIyn6bH7/0fZbeP8/RQ0fIjePEQ49y/7EHKQdrrK13KYqCNy9eYf7ICb7yy5/nO9/5G+ygy1anw/T8Ic6cPhMQ+91iOFAdBzs9jBkx2NnEK8n0zEEqlUrwCWJsiBwmER6xa2ezt3DEi/gezZgYg0FjoIfdX30IHNjDFkSkHEemkfexxPB7GNYYYWAMg42fEnvNGLs2ifd8xh5QJMa/EYGeu2sGLXb5Brv/3tuy8Y0kGpjjw0pB8E/aA0HCqwI+FtlQ4+LVe9rrd3jr9e8xPfMVJhqt0GOK8B0FDimg09tmONzmvvtO4B33LND3gDH3gEKwByKJOC0aPwK4t2f8PgbgPgqYfQgEDKO80CTtgkf8/z7uBZc+ZAj+M9DXR84T7jmeu8+N3ye8/p5Dvvv6+Jvd4/7hw30P/Lj7HcK56OO+9taR6JRKtUHFCUrrqE9Nc/rhU6ystXn/0vv40lLvNlhvr5KXPSZbTa7euMTRxWNU04ydXp9hXnDt2lW2d7a47/6THDt+gmr1DgcOH6E1O8vRI0fQMmFubj9SWN547c0IMiQcOX4EZyz9UcHRI0dIlWKr0yataOrVCs6WNJoTHDp6nAOLB7l9/RpXLr0PBMqyF5AlGZONOudef4v3z7/O6sotjh4+SGt2lu5Oh5P3n+DZjz/D91/6AecuvIUQoRirViq8+fbLSAwX37/IYFTw4x9WaDTqjIod8CGKOHUJs/vmaDZbHDp4mPcvngfpEBak1/S2e5iyjOayEplI8mGBrjqs8SgD6JCwIoTCQmgYhGdYCqSVCBwPP3iK1nSLM48/yY+++xKpkiiC2ei+1iyPPHqaFz75SU4+cBLhJf1en/ZWm5vXb3BneY2HH3yEffvneO3sWVQ8+gKCEafzdHf6XFm6TJakTNTrpCIArg+cPM7y3dv8i6/+S77yG7/Nmz8+yy9+5nOklZSdzoD19ioLC/s4+3KXAwcO0+v1adQnPny+C4/yEUi6p3CWYzDW+eCjIgITQ0mFUkFmMW6GQvXkITK6fGRM7E5sXWCYlc4GHyWiH5oPINPC4kHefedtvvXNv0FJzX1Hj/D4qaewec61a5c5cHg/q+urbLY3aG+1qbVaKJ2wdHmJW9euUK/NUKs0eejh01hhWLt2ndmZCaaaNYb5kK32FomeIUkS5ubnWb27zc5OF5018CTUqpPMzy+wsLhAr7vJmdOnmZ2a5Ob2BrpSQyWetFpjem6S0icsr17D+RSrJanz1GsNNjc6VDJHp1Nwc2WTO2t3sVIyPbOParWFdYasUg8sBAG5NZFJG1LDTD7E9HfIKhkqnQhFmxLBt0AnOAFKSZLob+6kw1vPqBxRFGbXb6fIh2RphbQ6EePfXfA2imWYiKmvEhWKcGGR8V5gHCAVUskAvOIR1YQsbbKvPkeRjyjKLp2tdVp6hyR1zDXq9NdvY3Sd/rBPaU0wOU4q0The4PIhQgxxvoLFBImfBCEU4zuSxJNkGTqrkCVVRKKRKjBGfZyICh8I9j7eq6SQaAsIF5N44lDIGQbdDp3OFsJ7kkwilUfrBHxBYQzaBfaOc0OQitLGCHY0zkVPIueCgfXEPgIzZESRjxj2++QmZ2Jigmq9hvSK3IXQDekFtjQ4knC9BLEbjiRIhGyBMQ5XWkpRULiCpDZBJamiRWSLOQcUSGyQ2okgH/roYzzYCreiOLgSoZlURlBajw3vEsDPKFAQsSCRKjCGMqVwLsh6EgRShBh3JVOa1SomM9giJ7c5pelTFGGarysZWgWZiZCCPO8y2BkgNOgUavUUoQLLwrogFfMQWS0meDFFcx9jPV5Z+tubFMMhMlNkOsG6wFLDu2CujidTkkRIKtrTaKXoJA1+JokkSRLqsoJJFAkapRPQKVprZBIGTRqJlGENwhm8D7JAPCSmDACbluSmRDAGCxOESIK8TIRaT8hwDWkEUki89KhEYWIKcW7LCBKIkEZHSCN0+MhEtAhDBPEtMtLrw/S/xBsTkuU8FKYEbzGmxJQGU/YDG7CM8ejG4W2JdQbjg6TMYcAGcIjI0Av/s+ChLMoAbBqLdcEbSekkeM6OBvQHPXJfYkvDRL1BojIsjrsbGzgTotHDuR2KPBFBCLHLqvdUdAjyUUKgUZRKI5zG+REeibEWJT2HFqZ56vQzWCv4YOl1lm/fZjQymNJjhcWUgfkxZtgba/EuAF7WhVAT7/eOq4jbhAtrZVkaytKQVjJmWs0ga0rC8YuoEfeOOn2899kICXkZrCMcYTvCYuqCfNHa3dLOR3nubuomez2Cdy7WEQYrwnE1CBQhnUzKAE5ZEfzAHBLnJaUxDHNDf5RTFo7AgCspraNWrzFdryKkw1iJFAFgC/bOgR0kXGC5j9cMMQ6J8YGlokXYX4nwTE3W8VLQ7Q7wOJoTE1STjI3OANHZBmfCPT4C2ptbOyTpKklSYX1rk5lmk4XFKaBge2MzsOF82LPWBS/VwnmENThj8d5hSsvb71zgxAMP8doKKNXDILl87TqNSp3uTpf+VsINd5NKTXP44AHu3OljTGAEegIQOx7OD4YDZlJJoyLBaHxa5/bGgERKNnsDOt0RAo1WikGeo4WkcDawLr2LNqlB8KaFIJGCJJGkiUIqqFQU1lk62z1wwYh+nNwsVBxojwE86ahONKH0yHwYAdfoRyejSsc70iz4ZRlnAXtPyiOMjOT67Q1OVmvsn26x3JwOUn7hccJTeEumBVI7nFHIYoSu7pD6wFb23lOvKuamGmS1Gq4wdPoFvf4OO1tthv0eAJkOrKiBKfHSYR0IpXAeUplQFB4to0+giN5WsY8ZGU/pBbpSIUVHAoQMLPZ/31Pe/uj//BpT9z3F8p1VTh5eiCOfgjsrK3xwe4vG/AFOTE5wfpBzo7vJ33tohmPVLmvX+9QnWnSXL5CPQut+YnGa114vOXD8aaz0HDh4hNU7Nzj7Ro+K7XG93WFrfZ0LSzc5/MBjzB8/FmJxJREScFgBSlY59thn+MqBZ9npbrO92UFPznLy0Sc4dnSHrFIJJ7GWlCLhuV/4PAMkeWk4fPw0Ny9f4OxrF1FZlVpzEVefZebocep1xe3lFV4/d5Hnn9/Pkckq27evc+G991GVSWozBzCm4Ic/eon7jj7Ko/c/AMaCDGwQVxZcu/YBt1fustUruLt9Fj3RQDcmKH3CbLPKu++c5aU3zvPIkYNcubnOIyenWbrwBtudHkZVeCibZrHfY9/kZEhSI3gU6KzCude/TTdb5DMPP0p79QqXblznC7/2D6gkmkF3i4lGnXzYp725wfrmFheWljl6YptqvUo6e4SDizk6a/LYI89xd3iOL//O77K8usHc9BRLS5fpFoBOyPbFxZmxjEnibIjtfvvNl3ntnbPsn1/k8soqv/8f/QFppUpcagKSew9bJDzGbKQxwLEHXOzKycQeFDL+21D8CnYtpsXe+41NvMM9z+/dScZNVESVx5jTvZK63c/we/I4P34fwuuBeKMY/52IVPV70+XEPdsUHgqCrC3eQDwfBlHGW+BsmFIKBIkKFMokzQgQnqDdaXP91lVWVm/z0IlpnA0MBFMWAZ2XitnZedbXg29BDNokGE3aCHSJn9k/4+0Z83N2PaHuPRyeD+3P3ReO/3GvH5b4MKtIxueMG5t575mt/39J7uBD+N9H9tW9R+3ec0r87KYRv/NHQKN7waXxIfP3/noMIjHG0EJjrpXgztod2pttHn7kSW5ev8qjpx7joccep+wPmJ9eYLvbQQrBzVu3WL2zQmmmOHH8FGn9QaZbU1y8eI6HH/0Yly5dZGZ2ksLlPPjww3hrqVXrPPTgKWZn5qlkVZwJKXO3bi9z9qevMDc3w6Onf4mnnnyKb//tNxn4kscePsWbb71Ne3udjz/xMSqZoj4xzZnHHmen2+ON186ysX6H/qDD7NwBXHuToiiYXzxAszbBlWtLzE23cLZgdmYf3YGh3d7A5ZbNzS1G/S6VLKGkQFjI+128cJx942WyrMLOVpeVtRtIbyMAZ0lrKVpmHDt+jOl9s9TqVX569hU63TYCKEuDGTq8Cr4IaZpSlH2UdFgLlAKhNNJDOcrx1qGyhGqlQm8wQqkEU5ZUaxXuLN9kVBomJ1us3b1LllQoSsNEdZI0yXj2hU9x+rEz8dx2VCsV5ufmOXHyfrx3XLt6mfpkk0a1RllatFKUpcVLyWA4YG7fNEWeMz01RSVLozF2oIy3726QJAnz+/bx7AsvMHIOlSik95w4dhysYWHuAIcPHOVHL/2Ajz/5BPP7D4ZJN6EBHoPMNq5tXhBMPYxH+ZDMFvw1IrvBW3AgVGiuXCz0rY2pok5EH00ZwLqoHJRIQqUUzmlFaJ59lHy1mhMsfXAeb4Ycvv8ovc4mWiuGox63lle4duUDBiPD1MwCt1eWOffOq1SSlNbUIpNTkxTG4PKQelerVTGu4Nw7F5htzVCv1xF3OwghmWxNMhiMqDcmSVLN7GyLuYVZmvUqytc5eugo/Z0thrmlcEO2bU5hUzZ6fYSUXFy6xERtgseeform9D6qusLm+jY3126wsdEFUWX/3DRDZzC2hzUpSicIEfaPjSwRKUIjnkiNkhVqWYVEhyZcKwlqbIQriYtY8KuyHlMYRt1t+uUo3hEEKlHUsxYq+vpoou+QkKA0wf/D43RojJVQEbwwIXVJB+kTcbqoCKahXnmUCya0UoOVA8rC02+vYfMeW5tbjHyFbHKStNJESkWiU5TS6Dhl1yrBoXFSopVG6iCrFEohHFSFDGy2OAnzblxjuRj37UAnoamMkpsQXitjkpfAmoJhv0NhBpSDHtKXJGmFVCcIGRgykmCijfDBCsB7tEwDyOEdXmlGdhSPiURIFUIpPChdRcoMa4b0uyO6+YiRKalV66i0QmkM0gW2rotreu5tiLV2NhhW+8DI1UqhRQWd1sI+QiKFDmuEd0gZvZZ2h2HxzunDthNlah4Z8yMEqJC8g3WgJVplYbtlYAUJksDUjSEQQurAzIoBFUKyy54RIjQDGkGiEoROyKhR2CGjQY9+bwvZ1zTqdWyaUo6GjIZdpE/RKsUUJaUxJFkN8FhjKEYDcCXOOApX4p1BOhtqIevRafAyqmUamUqqqUZpRSqrSJ2gUo3UCYlOSWWCVBqhAwAqlIoUdYdG42OT501IMVbCBfaKFbFeijd4L8Hr4G8UzwchQ9KYVClCEEztdQo+2DxIBc6Ga8ZTRt+h8NnehqhwZyNbqDSRqeoocSRJANWsDY2lsD6AiN7gXIGxJd4GXxiTF5giMJNyU+CtC8+ZglE+DEliLgBVQQ0XmFw6SymHBYUpKJxBolEYiqIIy7N3OOfo9XoYYyhLG2ojqUiyGllSQdmc7cFWGE5bT6aT2MkpXDEK8i8vgscbftfwXEblQqh1JMHjM8AyIawlrEnCKXAemQi0lhw8uEizdRxLztnXXub8e9fpbIbhk4syMaLEWghB6aBZbQTwN95dfOSJBdZsVCk4gRCKsgiJi81qFvZnCcYGtz8hAhN0PMh1JgQLOHax2gBMxVCYmEuwG/qza00RJBK7YTrhecW4yvU+rN84ScRGw4BchPd2zqFEdBSN16W1jpEx5JFp5pynNEUwRq5UaNYnwsfakLTqfGCvBUxEBla7d1FU6e9hF5vgn+bDGutFAJ8SrZmcqOKFIC9LWq0JEIK8MHj6uNJFM3gZ6xlYW1vDWYlMIK9mpLUqE/Ua25ubSB281Yg1sLcWIz3GOXJjYyWsuHG3Q3d0jsLAnbxPllUY5SWbvkNFpwyGI7Z7QyqZorM9YGQ0LvpbhVZC4IxllA+AElOkFNZSr2SsbQ2xRrDTG9DuDhAqIdUJgfvpMZGkEO7HQRGgE0WqFEUehmFaKdJK8EvTiaYcFuRlGcHDyOrD471ijDdags/WdKtB6avk5YjucIAZDbGlCcbXQiCEJ000JFVcv08iwv3PS4e34T640R3SXFtnfqHKTGuSValxvgzHVAVAksSDk1CUyKIb1FMEHysVAbKagmqrwkyryuaW4OZgB18otM7Ic0NvtLMbxhP88oJ3KyVYnyNShXEFWgamsxKhrhMeGpnGi+ClKxB4pcDbcE/6OT5+7oDStbs7LPfPMXviKY7NtyiLEmsdlUYLqSXbG9e5prbpuxqYAa/+8LuIFz7LG5ub/OIvfYpv/dXXmD96gvffeYtqXTEoLGceewJtezQWjjE3WWV9bZlL17c4cvLj1GtLrKxvMzl/mM888xjalggdCx8hUcKCrnDqwdN4HMWgy1p7C12fYn6ygZ+ooRCM+lsM+iFi/fCx+5lIFApBw2+RZk3WuwMG622mZuY5dd8Jpm2XnXaJSieoKMXZsz+mPncfv3v6eR44pahPP8zp5z/DyYkB3//ed7i1vsmnpAMTqHtKOPCGUX9Iv58zyh1KJ1y+epOZxeMcOZrQqNdoNqc5cPAIulIhHwx59Z1zVKYWeOCRp5idmuLooYPUKhUkQd8+GBUoLalpRc9W+ZXP/jq3z3+bt8+/xtmLa/xPn/0NWhlsdzYoBz0EJSurm2xsD5m//zHOfOJTPHz0ALdvXKbb65PqnH3z+zm4uMWXXvwcK8s38QI+/enPUZ+b58B0i2qlSmDojA2uo6eOc0xNTfP2hQt89rNfoja9yeRkKyw2sTiNRA/GnfqYvSOjXMP5gOg7KcK0ftz5+z0cw4/1ooxZKvcADn68LaCVCokGIqTfSRWLX8LnjwsZz14jN2aljLduF2v6EJoRwYtdfV2EJSKr4EPAyL2vjViLZI/5Ij17HkUC8IE2WlobDAUFpEozKEckaQY4hNDsP3CYT3/616gmFbyzlKagLEuuLF1le2uDufmDzMzu453rH/DwiQeoVCchSlzi1w/b4vY2UbCXZjd+yJ8BlfwYVdkFnj60e/ZwmV0waQzH7B37n901u95W7AF6PyOJ8/du2Ucf4v/9pzFA5PeO6b1A1N6hEbvn2O6xGm/XGGCLz4XiCITWDAYDnnzmKT71qV9i+c4tjh46jEDyN3/9NRYXF9AqRSeaazev4mxBWTiazQlqE026W9us3jnHsUMPcP3aZZ5+7hkWDhwlSTOWb95ie6vN0QNHyE2Js47RoMedtTX+8i+/xrDYQUjNwcVFnjj1OD/41g+pNyT/2z/7IyyWZ554EuEFn//Cr3Lx0lU21tdZW13hg6XzHDx8iCeeeoI3XzuHlIpGo879x4+DEHzxN77Cd775dX79y7/Bq2ff4NpXpw4cAAAgAElEQVRrPyHLFMu3bzE9OxOmutYxMgWZ1mgFTmnyIkcMPfVaM5p2ClwBPvV4I6k0ahw9dIhyFLTps9NzdLa3mJ6Zol5vcvXK1SDdFY5Ma6xxkCi8hSSR0UAyxHE7Z9E2oVWbRZOzf/8B3rtwkVp1kqWrS8x0tvm//uT/YL29TlavUNUpM/umefCBR3j89Gmc88G7znuSNGGy0WRh/gBCat584xWm51qkWcooz4lmGCy9f4kf/+RlXvzsZ5mYbKHTlLI0JEkailopmGxO8ptf+U3mZuZ44vEnWVvfwjtDrVLl8IkTXD1/nu3NNoNeh/W7txkMTiCFxrhit7EM/mp+z7RfgcFjjAAbr00hkWiEC4CdcAqhHEpEV7Ro7FI6gxMuFq1B5rO7fka5brjmHcu3rvLyT37EsSNH6A9zrJU0WhMs7j/IzP79DBqTnDyxzssv/5BaIlm6+B61qX0sr6yQZlWq1SYzszNsrm9QObCfYelYWb5DnufsDAzHmlPBs2p6koNHD3Dr9t0gbZCQVlKcL6nWNN6N2O6uIbSh29mm3b6NKQ1321sMRhalHatrHbrdDo+eeYJ9i8eoVGssXbsF11ZoVmtgEzY2e/QGIyZaUzhjSCsVJusTJDoYyVuKOLlU8d4UJ8YIsqxGpjNwYIXFixAR7rxCOYfWEl8YuqMdpHEMc4PyHhJFojRKhvhoZGADCCdRQuGkwkmJ8AIlZTR+vsc3x4PTCXiHkh68xbgiNMZYsDnWlGgl6e20GQ628UUXkw+o2j6rGxuh/qrOMpHuZ37uICpNA9cnmtdbLxEyRRAbMRWbERd8J4KZaTifFcGLxysfV87gAylkaHi8d6GZJyGxgpHpYwd9RkXwvpHSgPQkaZB6BRaUjQyfcF8OLCeHNwKUCud0ZBN4qXFGIoRGyjTK1qNwJdYGKqnSmsrChNyVDIYDXL+P9VCtVlE6w/scO8rpd7eDjK1eRenAdEETDauJ8j8f2ElKg7OhWY++OILAvgiDJBWuUe/D1RWbzlBXhGYSU+DQeMpYIwjyYZ/SGNK0gkyyADJKCS4PKUY2gMtCeQygXUhyExF0LoZ9hv0+layOzDTeOrJEwbDEDLaxI8AaEg+JKhnubDPMByAlAylJZGhqUIJUKnSSUNcJSVIj0RV0poKBeKKoaI1XOprGZ2gRPNy8DPHdIgKk0gX0ywsbayoZGKTCY0LnGiosCUJ6hA/JSTGWNbII9m7xNtCAcV6i4zFJkxAYXjqHMT6AQ7hokO1QSqCURMpgYo0tAqPKh4GF88HAOk3SwCoWQWoYGEYGY3KK0YhylFMM+5RmRFlEOZk1lMMcYwP4U5oCLSXeBgGYAYyTGA/OlJSlwboSZ0sOHz5Mu91mq9fBmJJ6pUHmLd3RKFwPUgZ2xrCHNTaADF6QFyE1TSHJVJBMChnlU8IGxmPcZ2HfBcDTxejgsGsd0uswaNhb7XEurPnCB4YvQiJEAFxAYwaSi2e/h9E9Xn3lbVZXh5QleBdSHgVEnzmD0AIhUry3KBGYf2P7h1Bej7UJIGTw8TGERnTU69HtD8JxEy6EH6CwXoQprxQkWlLPKru1Pc7vqQkiy1+Mazsf6ztvd88jKffqfGejET9hrfcWlFaxEgypa6WPAxnvYoFsg6VKlK6ZssRERmtpC4yzJFlGqzkBIpidSx8GAdaWiCA0Ag/SibgGh2FyRcTExghk6ViPOh/gOOktiVJMNioURjMqCqy1NBoT1GtV2psdvAjsTSs9RVmihKU3KKnXEnZ2urTSlIoMxuQ1rxnYMKyOer5w7GUY8HoB2nmM86xu7SClINOS4SgPgysUuh7WHIFnMDKUfkiaVsN5K2AsxXTOMRiWpEqw1S9p1DOU1gxKS6c7ZLtXokUWQixCuY0VYS3WUmII6ZCp0szOTNHt9SnzAT7CMUlcf6UA41w8tjGAItxdQhCW95GB5sBLettdpvdVqVVr1Bo1jHEMhzm9wgazfw+ZgkpDI21KMRrhMHjvUHHY4ZxleX0bzyqYMDAK55nDGolxIMrAvrTKkSpDteKwO4FhlClNpkFKTSIFOzsDuu27SJ/TqKUgE7rDnGFhSV0gBwipwj0nsWAceizzNB6jgiR/zApWIqiWoig/kgAi645/zwGlAVMce+E/YLpV5856h+kKlINV8uGIVk1x8fIHFOX9HDp0kLK4wHqnj5k6zsceOsX0wiKdnU2W7qQ8cPRBvvfSNyhLuHH9XZ44cZjFmRr75xY4urjIiRMPkRUrvH5ryCMHJ3n5O3/NqeOHOTTbQiqNxAStoQwFUC2mr5BKqllGq1EjkxLrIdWSla02Ip2ms7HMci54/sEH0Qz44z/+Q9KHv8w/+L3f44//7E/Jkzpz+w8zzAcsdyytmWkQJc3WIfbtX2SunlHP68yfPsijR2ahe5Nnz5zh/Ts93jt3lmNHjjJZU2xvrvLTH32Tl159A1FtMd1IefjRM5Q64bGHTzJbT7jx/ll+cvZVyCZZ3brF0sY2f/8f/adUh1scPf4IQngOzs8Dgeo4TqdIlaYYFTx08hT1RoOXrl7hfFvz6JMvstHdZrG1QLvjOH/hXc6c+RiPPPEJtpMZznzsOU4f2c9kqnnznde4c/cy+xqTTM8foFK9iPCG/TNN+t0t9jWrtBoZr37v72jsW+BTL7wYtNGEKYFWitWbV9lYvYooCr793b/jH/3D/5wEiY9U7HAjCOTcAASFO0EcJuDiYhC6Hgsk0Qg6ovzjoaCQcQoTXuPHv4s3GeJnOed2AQUp4yRC7DGExO57jmGGeyAHsQc2uPGSN95WsQeywPgzxa5cDIiSqPhd3NgrKZSiu+DVHpqyC8z5XXQpmECCR2mJGYXiRTqBUIp6bYJjh45x/sLb3Li2RFbNmJ87xLm3z3L56kVa0/s5eeJhzr93jsnJFp/+zJeCJ4HUvPnaT3nu2efwOkHIEGV8bxLdR0EdFW/OYnzDixKHIMUQu5K98b7YTVxj7z13D6snHnuxe9x2WWv3AG8ffYz35R5T6cPbeu9/P/SITwYW2r2A5i4Uuvf+H/nwXTYWe95S96bVeQf79y/w+c99kclmi9nJSaxz/Kt/+1XqExlHjt7PS9/9LleuX+T6ynWmmi2ef/4F5mYPMNmY4m9f/0tOf/xxfvCDl/iFX3iejbtbHLvvEFeXLvPOO+d48cVP0el02NnpMj01hU4zVtfuMCz6vPDJT7C6vM7lq0s4C88+9wzvnX+bD25/wDDv8sufepH1rQ6u8NxdXuadC+8wHHTo97vMzj/BU09/kjJXvPSdb/DUM0/yjb/9NrP7JvnFz/06yzducHtlnW6/x3avTaNeYXt7g0uXzlORKUf2H+TO1jrGFuAdw5HBlRZFTpE7Th84RZ4b3jl3lplWBeMNlUaFuYV51u6ss3ZnmVazSaoSHnzgQbo9g+BqmB4rQaOeMihByIxiWJBVVKA8pwrjPPWJKvcdPIL3CYfvm8fljmpjkgMHD7O8fJ2trQ2++a2v45LQpE5NznJw8TC/9bv/YWDiSBG8QKQgtwW5MXzve/83i4dPsLq6TKs5RafTDalQSnB3bZNXXn6FK0uXGA67JCrh6ec+wZNPPhmacC9w1vP8Cy9QTRO2t/qkKuXgwTls4UmUJksq3Lx5k/Xlq3zj3/0Z1cYUjYka1ltE9EoK4A5j6Ac8pCI2DkpgvCERQfMf3ZUCpC89UsW0qXh9SamxlLvn/phaX4rx6it3DaaFMAwGbW7cvEw+6nP9xhLN1iSffP5FtIHECYTK2Oz0caUh04oyL9FCcevObbK0QpEXKF2hNTdPmk2RVOucefZFbt24gh3tkBeambkZrl6/wcL+BTzQbm+gZPDW6w17LNYPc+jYIa7fvEVhPB979BTn3jvHG2+8wdz+BY4c2c/WZpvuVpczz7zAoPTcvHYBnaXkxpBkVSZrDaYaU3iv2De/n0Zrgq2tNirVZElCb9jFW8iqDVQSmhfhDd7HFLS8xBQlIilICPIkKyFRCQpFUfTYXrnDVqdLZXKKiXoLnVWD/FT6wEgKZVyYVPoIjEiFlYrgFRHAGOliFLLt0zcGFZtr7wRCWLwvcMKgnA4sFeXIKgLhHIlWmFoTkwgmpuYRnass1O6j29lm7uQzDLeH9Dod0sk6jeYMQiR4Y0BGgEaMjYYlJsolhTegQq8RmjeDB0pvAROllwFAEVYFCZxQ2NGI4WiH3mAL5Sw6qZLowK6TMkiiVLxOvAhggxAS5xRIHVLKKioYWFuC0bYp8dggz5EpuMAawJu4WOtIughJqIlMsd6FZMNhn8HOFq63jaxUAyitJIkIDX9ve4SuBAYaJgAXiRCUHrRQoUAvh2gLuQxBGMFZ1tEvBlhjqFbrJEmKlIIUR7AFT0CrEF9vxnWBwRPADyx4WyJF8DkLzazEBg1PAMy1j1PlYHYepFKGwpbYckS/3abMC0yjj85llGJZyjJ45ngVotB1kpAmDeREjanZFplSJNWMis6QiUbpwPqSSiNlmN5LqWPYisMLh/YCJ8dDFL078PJxoBJKGI+TkV8QSwEdawbGLCshg9xQBIN348OdNEjGwQkZQDQRvOJ2aZTeIXy4JnVicQKSVKFlBS8dWikQlrwYMOx1GA77FHmBzQtSDVIritJR5gXdYkBe5gHsKS1ZVeMdFKM8eA6VA/JhTjHK8T7EqpsiDBSct5iixDqPs2EwmaggtSmtxcsEldSwIsTAl6YIa4orwR/G2JxiMKJwBY2sSmEMpbGkmcaLmCKpEpROSFVCvyiDn5ANPkolIoCekQHivUQpGJYGhwprBQEYkiKGz4zZdAGKxhCj7Z3A63B8TZQXqkjBF0KSJFV6o4Q/+bO/4M76Hc5duEZZhtM/mL4HGVIiRAARIkCIUOAD8C0iC8YRpLHjk8WjQmMbphoMC0IQkSlCYqXzWGmwPonncIiqdz68myOCIBK8jFJjISKkpxgOe2H7Ym0W6gkd9o21u8Cb1Arn4qBKSZSARHgSEQDjwJYi1O3eheRZHwYxYwmbMY7CCqpZhenJyZAuFifPLhTJMQlNxto6yJ38uIYkyjCdJ/EB5HPKBgam9YEViQMX/OUqWYV6GrySEpWGStUT/NJwSBt8rZQGoQIA5qWGIqdRqZCpwJ7MUk1/lOMRSBlF/Rq8TyAO3bUKflTKBxlXJdEB3FNB7m1dkDiGfiumk8bvZr0jBQZ5TkEA9CZrVbI0obCObndEb2TIKpXIyI1SMGCsbNi1AUk9lSwLiXGekHCLYpCPWF9fo1LJaDSa2NyEQQVEFqkLA18RQH4tJFJYLI7b7Ta1RkZWmyIRwVdOokCljOGRarVKo9rAl5J2UYaURy+xwkbLO8VwVHLrzjojL/FhsWdQOLZ7eWTOaRLtSLRjInV408cD2nu6o5K765tBImosvW6P4WhAogRZmrDRHdIr+hhsSL0UgLBoUpqpovSSRCu8C7K4NMlimm9kHMp4j40DIRf7SieS3X3+83r83AGlT/7yb/DlX/80dbtDvXuOl15aQlSarKx12Gzv0N7M8dUew8E6mx048OQvcfJgk4eOH2Eqg8/8+h9Qzhzhieo2P/rB3+FnH+LyuZe5fvFd7n9gmS99/gs8cN8RMtfhJ6+/zdn3lnjg0CFu37jMv/zWy/yTf/hlBqYkESASgTIBsRwONrl69SLN1gITtQlwOd6EgsKJKosHDlOrNFi9leDTFgjJYDCinHuaX/nFF1nsvc+bxw9w4U6PfNBh8fhJynybq1Yxc/gkw06HXnuVdy+9T7M1y6ToY7prbG9sIRsNHjlRY4uM0pkgi7CC967doZNLFvdNcfHyFSozs8j+Fq4saNaa/JuXvs7dTsrphxb5wY9f49Nf+h0mRuu8de0WCwcOM9Wsk6lgDhZM+mxMDEkZbq/gypK8O+LJp3+Rj794gMX5SWppikAxP3MA+Vg9NLVPfZIzTzxL3l/l3Kt/h68s8Jtf+gr/+k/+O0qf8sXP/X10uUN7dYUbS29w4P4z3NnYoN3r0tp/CKUkg0GXWmUCVFhIdZpy6dIF/vyv/4LW9BzvX77IxnabWlZBVxTeuOC/QJhafPghdpv0sVeNBKQd4wEi4jJuz39oTFr5CGgxfvg9tCj8vR/rR328CRGmBhE18LuLGbsJZCpOVsbUXTUuqCMDQIiwbXEoFDyQxO434t4UOh8+bPdn4CPSuPA9AtYRTfpiEyiVChGwNrAQHODKgrW1Nc6+9gMOHzyCk5ITR0/S3mozMIYXP/4UrjTs9Prc7XQC3dd52hsbvP3eBZ5//pOx8GC3meVeCdp42+I2KfYAtl2sKBY64aUf/m57ssBdhUj42UUzp7iP9vCbscxxjyF2z0eFxmy8Tbv7WOw20IG+vOdWJSJQRaR978n79n7Pvd9pDHKOn5Pinmc//I/gzRXev1apYHwaGx9FaQyt5iTPvfAMmCqt1hSHDhxiZn4etKRabTDdnGTp8iWcLzBesLm9yb65WXpXl8n7A3Y6bQ4f3c9ks0W322OiXqderQUD6qTK9MQM+2YWeOKxZxm5MCVcuX6b13/6Gr4qubNyHScMOMef/qt/Qbe/wzjiOEs1+WDIO6+/wYXzbyCkZ6vdYeXmGmeeOIUtLQ+ceJCv/vmfcuGd17DeMxzk1GoVRsMOhYeJxgyTzRa9fodhb4QrShrVBhVdoVNuI4RgcX6RixWFNZahhbRfstre4N3z79HvbXPt2jVm5ubodDqMeiOq1ZS8MIBlbaNDpVal6OY8++STvH/xXfrFEGFSJhtNKrrC3XaXwTBnbX2Dna0dmlMNLi2dp1Grk/sRqEB7HvT7lC3LVHOSZn0CU1q0TnEyGH1roVlf3+TqrSVubyyztrZGd5QzHPQoJLS3Grz8wx/yre/8O2amp7izco2TDzzC17/+dTbbbZ5+6inm5+bBe5oTEwgFDQ+DUZ/J6UnKwpCkCT/5wQ/58Q9/hJWCrc1VHj39ONNTC4GKH4HjXZ85IUJajwCkj34lwUtGiECpHtmCXHhKH69NQTBBliC1Bh/Ox3E0shTBcyk3YwPHvZXJGcPOzoitrW3aa3e5vXKFx848g7dw89YKw2LIqChQaY35/YdY31pFqpS11RWSNCOv1Jg5eIjpQ8d4/52zDAZLHD56nJnpFu27EywcOsDUzCTnznWp11JkBeb2z6MSFbx9DHQ6O/R7HaRwHDt6hHxkGRYFBw8fo9maY+naRW7dXiHRCZvtLabnFphAMrtvjivXrlDxliRVNBstlMwoXU5/lLN6+S4ey6SQ1Cdq7JubpbvTCw2QczHd0odmwdpIG3d4LC7VpKqCE4rBTp/+9ibWDlGyRmuxhVYVtA5MC4kPscGxsbaRdi9FSPVy1uCL0IjnZoiRJdoJisGIQb9DWp+gVquTKIlIdLgHCoFQKUpkIKDIg4mpMIIkqaNqCi0aJLrK9vZdpmbn6e9cYaE1jZwpKE3Jxkab9aU7TE/PMbdvDi8FuTUUhCyv3IziGgnGCYQI0iehQiS8IJoZI8FFw1MR0nz63R027tyizPtMTrXQWlLRGWUg6ZMBWrjw98gY4BG+V5B/hZSoMP23WC+wkQHiSoPWEimS3UGLwIAYAxEWYyObwFiK7R5eSXQlxdqSVFeCCW6Rk4+6uLRGszWDFwpvLSpLQQU5qoXQXIgErwyegKIoJBk+AFwEI9/E1ULDp7IAgmAQGDwCJSqBsaMTwOCkJonyK6KBs6u6yMARmLxLkRdUsypKBr8pYxxFGQCk1JQMXYGWITFJeotKDGklIckkqVIBINIpKq2j04ykkpGmmixNwCsKIUgJa4H1FiXHzk2hllJeInwApYngj4s3Si+CObfw4ZqwIpYqiHDOi2A6YNnzYBPCh1StELMUiyeDkGqXEagTHcGiAByNk94GoyFFWVIMDcPBMDCaVGAEW+8RwjIY5ZjC0OsNGQ672HKEKQcUxZAiz3fBXKWDXCYf5eChOxqEGjMCFzIhsvF8lFgZEqVJkjSsia5ESTCloYygnYvSOE9CKcM1XnpPmimUJrCZygJhDQKHEYJatUKq1S5DyDtHbh2VSp1aNQ0sGg8+E4xGOaa0Qb5GDIiRRCmdDwboQoYhrSsiQ8zifQBJpNSkSoD1eGnR2qGphMGksiQqeLYpJTGlDwEBpcPJIMFRQjE5OUmrNcGlK2ss3dpmu1vixkmi4zpPEA2MwZuQPueqodZyLqSeMvYUDQV1MOn2gBO7aV3GS5Q3VKsKZyy2lHHwET1fiD8T2UIxCj6cZxLlIInAmZSSfGAZFH0SHbzAhBcIVQRIzQqsDaBbliiUTrAkjMV0hvCdynEaXLxGgmI81IQWx6i0Ib3OOmrVlJmpBqnS8brY83FyPofo0wRBXudiq+Jjze0IeZ7SBZaQJ3jlFAS5roqDa+klWiRkWqKiR88w7zMa9HAmWAu4yLbzTiCsoihKaj6cs3mehwFT4sgSjRB61y9IE2RewQB9PGJVkUVlSXQwshZSk6QZgnC9ep3gnCNNAhBqvENYh0JR+hJrSjKdsDg7QTVVWOdC0t2wpN6YYFjkWDmu7gO7Z9wz4WF6aoaT9x1hqzdkOBqSd3t4oQJ7yxtGRc4gL+gOhowKE9hFxJF99PcMViQOYS1KZBjv6A89m+0OhyqT2F3vIRtrocCknJpsMjU7R3NKYJJ1Nu5cQxPez3nwMqT9jcqSUWHDIAZFaRU7Q0+jGjzqhLbUhMSYkkFuMAKElOSlJS2HdJ1lMDBYGxisUgpGRUFRhuFSIqNkF0+KRwpLWXis08ynQLVONzdUE0lv5HBOgAihH9KHaz30dHJ3HSnvGf7/PB4/d0Cp1tA06GMu/Cn//K++y1J/keeeWKDX6dOcnqLZ8whZUBaWyfljnL7/EJkpcCikF5w5dQpnNYkR/N7v/7ccPnKYf/PP/huubWpG/TX+2R//L3zl136Tk4tNjh4+zubmNt997W1MMsGhfQ3efP8KHzv1IKPVt3n/To9Dc/PUJ6ZBpKwu3+Grf/FNPvbUczzzxOPU5YjVu+shCrXS4tD+KgcWD1GbncFjEJUq/8lXfhW//Rr/8x/9c652NPOHH2IkK+isRlGMOPP4k5w4vMBLr55nSErrwP08/dAR3n35O/wP/+R/5ZFTH2dnZ4cLt9v8/n/8j9HCgdBMTu3jsy9+nt43v861G7exM4d45tkX2PrgVZYuXyAbNOnaBqvXz3P72gXWc/itg1PMN5ucOPUMO3dXuHt3ne32KomTzC4cRFU1k/U6S299i7966SWuX1vi2c/8Hr/9pS+yvrpMS5VkSTXQB7WmUQ/GnEmakSjP98+e50dvvMf9JwQ3Pvgpa2sbrK522dn639nY9nzv23/OxTtt/uvnPscDZZ/t3pD33niFS7dWuP/4fUw1GmGxdWHyltWb6OkD3H/oGH/9V1/j9bde5cSXfhtnx3H3NlzEIpojxmlC1GFEIMfd08GHG4cAcD9r6BzAkI9cIPHvxswTZKDzB1DCR9JMvGGIMXwRPs7FQndcW0UCe6CCcg96zhgs8rtTj11YRohghEsENXapSmEb7Bhhgd2kilC/+bg9AcxyNhi9IoNmXSUJRVGSZhlaQe4s05MNtC+p6IzK5CxXrnyAlJqHH3qCicYUH1x8j+c/8SlOP/4xRNRwT7VafOlXvhBkF1ruSgDHS3swF/V728fe/nJxX4xJkx52DefFPYfho0uWi0+OteS7x0+IKL8Z76ywl3a9ryCaSu69q/jwxkbQCO55C3aP6t7/7X3mz7zJ3ut3gap7JDCeD38/EX8mnntCiDDJdQ6vJNVajS9+7gtIpemNchYOLrL/4BwPPfQwr7z8ClcvL/HMx5+j3e7wj/+L/4pKtc73vvNdOt0datUa3/jGt/jSl78IWlLaEq0l9UYzbKkXPHjyJI1GhQPzs7SaLYZFibHQ7u0wc2g/b73+MqefeoL+sKDSqPPc089z7fY13jn3DrOz8wyGmywtvcOld99mOx9STypcv3mDz/3yF3jy6af46U9+wFNPP4sqFYPeAK1SCu9otiqUfoC0gvtO3IdM6vzklR9S2gJkSHja2dzCWstGe539s/NkwuGKlNyU9MUO3/vuN3DGkcmUSjVldX2NMh/iTE5zqkpvZ8jWVo/j9x3gg0vX+dXf+lWeOfN8AACqhqnmAqOdHVbX7iLdAFPmrLS74Cw2LekNBySupNmawA4FolbluSefYuXmCh9cvcJo2KdRmwhSBevRKuHCu+/y1luvQGI4/eCj8Mgp3nvnHN/9xtf5p3/4h7z1xrtMNGtMNBoMRwP2Ty/w/sX3mWxN0x32yLJKlLoG+VDQ/Gu21ttMz85Q+BIrPPv27+MP/sv/jH/6P/73yHSCpaVbbHz1j/mVz/8aM/sOxhMqNHsyRrx6aZAkZDrFFJphsU3et+QWVrbWGZUlxgq8ykhUIMwLKchUinWh3U2lIpehGK9XBYUXlOVYaivCMM9ZFuZnybTkg+tXyIucc++8TbfdJlF1Tn3saaYXF5mcmefqpXM4M2Dl7m2SShPSjNPHTjI9fwShqkxNzlH0u7z39mvopMpme5PttQRRHKNaqXFt6SoTV24zt/8gjck6P/3p22y3O8ztm6e32ea9184yMTlNkjQYbne5u7FCc2aB5as3WF+5w+NPPcvkxBSajIvvX+LEI4/QmjxAYQbMz+9jamqKfm/AxuYWy8u3WLl5HWtzZntdRnnBkaMnmGnNUBSGra0+1hoGw5DMV6mkYR8qia5kOGPotXfo9TpY78mqDbJqC6VDeopFkRGaObynGPUZmCFCeoyTlMZGf48ApKS6SiIUaaJIo69iNlllcrqFSFKkDQ2JlwKpKohEUJaG/nDIaDRCOk0lbZJUQtNslSfxVWYmDY+/0ESn0+TH1zjz6AQ3ru5wdd1RNmcQckSn36V7dYdao0VWb4CS5MoG8IhgZupUaNqCYWIAACAASURBVOB0KtFaYWy4D8XLBSEgH5YUoz7D/oDC/D/MvWeYZNlZ5/k75pqw6TMrs7ztrvbeV7fU3VIjBAh2BhBmGMxKg50FRmMYhkW7A/vMDsvsM+wssGgHxIAkhEbIjrxQt9qrbbWp7i7vszKr0oS99pyzH86NrGo9+2kffdioD5mVkXEzbsSNc973//5Nn6iuqU/MUVd+hyhNTqgqn5CRZMz5REzrLMZ5yZREoauvFuONoCmxpcAUOVGsqwQbi3MphS3Q1qebWgFah96kVQc+Sa8Vcam7hu3AxOQkcWPCR4g7S1LrkA375MMeQaNJ2Brz/lTW12ZKSS8rMJJAOjJjCKRvjIIqDUprL08TSuAUjMyPNRGGEO8DJTEYhMgoS4MwPvlJuhLl4+QoKmleL+0yGAyoS3+tFcLhpEKLiEhBramIZY25YBIbB4Q6RGhNqJVnFWkvO/NQgPdDE85UMovRhiar9tDvdRrPPqIC9Ua1x8jE1o7kQeCluDgCFFZYymr/NqbECYFwgrLa3W0FNyilPdtZCVBVAq4x2MJRlH1ya8kGQ9J0SJL2GQyGDId9ymxImuWeGVJCkRakWUpucowDV2bex86UlCOmSdUMWleALUA4lJQEKiRQATpQDAcJWTr0qYy1iDiOSYZJxWxydLvDihHqy5JMaEJdEGiFb6c9OyqOQ6RU9LOcrHRIkSN0SGFHyZlVgrFzlTTRUDjHls0LzE1P0oxCeklKkuXUajXCCCSKAkOtHvlUPyHoD7qkeUkURmityItig2kEHpBUzgMXzngQ1BhHGEomWm1qtdBLWxFYMSCKM4RtYk2AQJEkQ5z1gJoCD/7gvZAcftAwPT2NEoaVtS7dtSFZajwDSjms9ElcqoqYlsLLQ/364QfctvJ/MqXxKVSislGQDlRlT229dFHakompiOltGRfPOHodQbMVkCSGopTkJkfZyF/HVViFvUKq4IACi/azxA2PQFsaRrJLrNsAO1113eelpaa9dAoHhSm9jFL54k46D3Ib8JLyCnTBWMqixBjvn1kLNGWeU9iMzJQorX0d6PxaIKwlCPywU0nl/cxMCZQ+mc5ZzzDaAD/8OiSd8OmizoPP4gowbaZdR5T4hHIlCaLQg1OVDYh1jiCOEdLR6Q9J8wLhvKwSLM46gsrDDucZTkJ6QCvD+7SFThIHmsIV1fkIYh3ihCQKAsJGQFyrkec5xvg1NNSKPM0xpiDPc5SCLVNjBFphypKkNNSCiEFgSbOsGhKwkbyJEFUyHygVsG2mRaseMt5uogh4PCnIV4aUWGzpGKY5QRjgCkOa5lWSXgmi6p2sD4nya1kEpUGLkBLHpU5CLV5mamYWUzV6yuI9oPCsNR2GNAPYtjDP2toalJ1KjqxxWHCeaZkUuR8wBALjBOtJySanQBQ4o8mEwZUSY/x1KpxnfK8OUvpFTiAdRV7QT70cszQG5QQNHdA3YKTAFgbhtP9cS029VqfnSnZFQ1rtNv3EQloinAFbeL/RqjeRI0m18zYw3mj8e3f7ngNKvZe/wDN6jec++xmeXm8zHhzlk58+xMTMJlpz25mbaVIMulzMNdNtRSswTCxspaG99ClWmnywyOrZw1w100Z2XqIxuY9mscbTL7xG3Gjy6U9/grp2OKdJCsvd972Dp598jDNvHOThu+6lRp9//e/+Ew/+1G/wwl//70zc8Y95753XUpvbxf0/fD169RB//Wf/llatgdRTBLO7uOWeB9gmBGEQo0oQNUFdxxx562v8p7/+O3be+oPoV58l0oq7r7mGrbOTrDLgsW9/g9cv5txz4F10Vy+xa2qMlYtLTG/ZQ3PbPr7y6mne9cgP8LPv2sLypXNcc/VujLAopdm1aw8/+Mj7OHL6FLPTc0yka5jWFC88/xKzjVtoj00RTy9w7uhbbN+8h7/72J9z66238s4DDyLyHutnz5CVkOka++JxtgYx33n8G/zZJ/6Gn/mpDxBM7OOed7ybE2++wMqFs3z+yGs8+MiPsWvr1SglqOsAW1p0LUTqGjdccxNHDp/i+NFXeeKxz9HpDXHSMZY6Lq0Oef7Vw4zN7UGm67zw9BPcduD7sPUZRNThox/7c3Zv28OW+e1cc+31tMda3HrrbTRnFiiSPocXL7B+aZEnnvwq97/jPRRJjpByQ7o74ozYkSabUYFzOWL+shH3ZXM9LeSGYfXGtAyqSf8GdWYj5U1UbKKNm7MVYFSBS+KyEM0bPV7pC+SqD81Ihw0bbpmCCrzyYwdbHc8DDn6q6ewGWnS5gKvApdFNSA9AiSv+lcaAqMx+tQYcsVZkWYqKAoo042tf/Asunn0LkQ3Q0S1oDM+//CS79+1nfHwzTz37FEeOvYUKNFdfdT0nTp9g68IWlJZMTE9RYAmFvgKEuXz77qS10bMdGSMqx9sS4L6b53Pl8SwVKFSNZpQQfkKL52TIkXyMEXvIbSDr/r+VZr46unOj97iaJG1o2N5+FuKKb0beR1X17Iuqt5332x87agIvY42XmVujH+vKr8ZUz2HEQHPWIXSAc5Z+Z53zp8+xeP4U+TCh3WzyA+99H0EYsX33LuqtcWoiojMYMjM1xcsnD/GNp77JOx++D6nqKJeSJyUTE1OeFmws7WaDJx57nPXhOr/xq/+UdrONEpaHHnyQP/2TV1jYspPDB1/ik/2EbJgTRnWmp2ao1xtcXL3E5GSL1dVV9u25lvjSMt3OEncdeDfHTx5jfmELCzu30B5vcP1NN/HNJ7/GWBQitWLHjm2cPnuC/mAd4ST5sMDrYzT50LC6ukqe5MhQcOLsGZwtKIoQiaMWKFLjSJOcdlxjmA2IayETzTGSNKffXafZbDLsJvzLf/7bnFta5sjJ/8z6pWU+8qd/xOTMLGPtWfprPRbPnmTz1u10ugkXV1ZJhj10LSAoBlVzoJBG0EsGvPc9jxDLJi+df5HCpXzqb/6WG265jZ07tjPebnPyxAk++elPcPTkm2zfvI3Pf+5L/Jvf+h1vGiwtSM31N17HpeVZTp05zfPPv0AQNNi1dQqpFc0w8vKoSiZiyhKEYqI9yYWzi5iiIBCC0MGe7bu4tL7G1fuv484Dd3HxwiJnTx8j7ffRcxJzhdeEo8Ra4WnoEpKsxEjDmXMXOH36BI3GBM3xFspVEm9TIm3NS0ekQGgNhUVLjS0d0oBwBcZIJhsBixf7CO0n8UhHKWJq7QW0yhEW4jBAYji7dJ7tu65hbvtuls+e5Av/9c9J8i4L8wtQSJY7l4j0OIunT7KweTdOS8Yn5lhcX+fmm++g2ayxvrbO8WNHWR30GZuZQ5+5wPLqOnNb99LvZ0zPzNBdW0OKglpUY9hdY2lxEWTkwWstOXvmNO3WGOHWLUyM19m+5S4mp6fZt7+SLRFi8pwzJy7Q6+VEccTC/GZaYxOAIkkTwPHmyy/z1ksHadXbNKdnuHr/TbQmx5lSirX1LslgiFCCQIf019cZDAcQaOqtNmHln4CAAAfWQFlSWEhMgrMZg/UOgarRGJ9CBZowDpA6hED45CqrKqZtCkbiZOmL+YpZ6QIIVYwoDWu9NZYvXEDLgLhVJ4oayCAAC0WpCJRkXOXctw/eefd2lldC0h6cOzXGjJW83utzsScwNGm0Jqm1DMlghbXuGmbtAlEtYnJyGhWGOOG9kIyxREGEM5ZhXvkvKE2oNVme011fpcgSSuEItaJVa3hPCAriimYfKI2QllD5+Pa0NGCdp+S7ygTdOS+jNiXWpQhyz5xKhmSdPrU4QtSaWCRRLUDKGOUUUloPiqAwVmLTIf0spTSOmqozO90iVJrSFljhG0QpAuJwmrg1SZ4O6A372DSnXm8T11toFQGuAr28J1ldB5S2oK7rlKZAx6GXgwgonfZNYJFRmoLEFFhTMux1cElG2Aipa7BFgRWKEEmpDCUGoXxKYL3dZGp6AWEFWgfIOCSQESKMPRNLS7DeZFXjmRwIH2ceOt8Y2moP9D5YvvmUcmTs6z01HILA4tcJ4SgQOBGgqcxrq9pHWIcQPoVQWkOJI5cgSs9eKfHsuwKHDmt+/zeVEYAzZGVGnqfkSUoxSBkMBvSSLmm/T5qkrJU5Kk0YlgXCWKR1FJXfFNJ5BpsQlFmOzQts6SiKkrzMsdIzYqRQEIAKAwLAFpY0zTzsY0u/cgYByhnKUpCmKUmWUOaFP8dQEU00/HBQBySDrveerGqH0gnCQNBotAiDgLRIKLKcMFTUavXK6FlDP/HNuw4ICHBSEkaRl8YZ768jJcT1Grdeu5fNcxOI+QXKvOSZl1/zXmUOuoMOpTBMtrdSlKlPO1QhhSuItaSpY4YWcAaDl2IGgaYsPIBnhNsAEbCKQT8ljKEWCpzVSGlRQmOF8vLWSr7qqscZA2Xlq2IMiECighrzC1tY6yVkSUG9JhGyhaxMkQOlkEAQBL6u84sZAljv9kFUUmxr/WdJyo2KUFrv14lz5K5kcrZJ0k2pxZLOygAra7RmA2ZmYk4eGRAEvhbWlReOt7nwgxBTTTItFue8Gb4RJaXNvVE2EukUpXCUzoM3WkpEleZnnPZS82otyZ3AGjCSiivsbR0AhFAUlIROV6wdsK4kN4619QKpYZiX6CCo/FqVH2A7yXgzJggUzkpK63Aj4Bqq8wlRwhDEAUoGRFVsqHOS3OUoqcD49SAtCy6uW1a6OViLMQbjJEqF3ndRlARRRF5Yn3hufYDEMLfUY+XTIosq4bXMKaxfQwLlQViUo+GEB9GM3fCHwjpKCVqWBFKSZynSersAAlnBydaHP9QD7NDhlGCh2fJBCkJwfm2Aco5mQ1FYi1ASTGVj4vwARQBOeZlqMw5ZXVllarJNUTqiuge8qFjWYa1JFLUZDAdIqqTOan22FaFAqgpGV16q5mSwUd8nuWVxtUPcbNBstggqTykjBYEQBCjvbSUs7XrA5oV5jp3ooaVEWYNw0rPBq+gUiyR3Xq7bGUKSVIN3A2AodUaEpBAWKaGXJIiaRmBJC0hMEx05kkGn6gWl986qS9KsxBUJQnrgb3amzXhtkhPLfU6tZsxNW3+NOIN1AoMgIPT1qJSA9oMc4xOEa+r/5x5KQsd8+bFn2HvD/SwcPMRw0KfebhLFEVvn2/SXVnjj7CVmphucPXuax772JXZt38WuqZ2+ybYlJ86c5C8/+XWuuffHESsdrnv4Z/jhccGbp47x2vOP8sbBQwglGSYpUSG4cP4UD77n5/jOy9/k2TdOsmVsM+//pV/hzW/8n3ztlSU+8APzjLdCHr79WvpLR/jkU0/x7PNvkkTz3PXQbdx27R3s3ToPxlCXlhPHXmP3/qs5e/Dv+C+f+xZLeZstwC/94q/xxuGjDMsuaS/l6KHvsJ4U/KMf/odsn23zwsEOcaAJGxPUJjv80j/+Rc4sr7J90wyTjRpnTyV89etf4Sd/6EdITUI9brBzfpwjb77Eq88fR91xN3fccifdlVO89MJXmZq/mnv3zfJ/PP0YIojITcGRtZRXXj9E0bnE6eVLbNt7Hf/9z3+QhakJPvbJv8A0tvDOd97Hn3/8T/nf/uATSDPgTG75gz/+I3RtkrOrln/+y7+OCgKscxTpKmdPnGZibhtBWOfOex/gqe8EHD9zEWP8Ipv1UqZ3X8s/fN8jrOeSL37hi3zmW49z88M/yPe96yEWl2/k9dMnmWtG9C4tk6ZdWs0AVMTcWJtwcpo/+p3f43/4nd8maS5wQIVYlxJIVZm/jdIWKoswd5l9NGra4QriiPDTjxF4cxnvcBsA0OX7LoNKbgO8uWzc5x88cuaWjLx+JBtiJ0Yyr2qA7zcAWYEWVzClrgReLn/vNhKTLnN/RvcYuNJl313+W6Oi1qc/4KF7W5HTrSMOQ4b9PtbA6vIqf//Y18nKIWNByKXh1zHhFPXmGNs276bebHPv3QfoJj1cVnLk2GtMTy2wdcsWSgc6kGBKnA4rYOVKAGkkRxSXz6tiT8nRhlq9jCNTRDbkhJWkrbrfYz/V/RvjUP9Fju7n7SbmDi85HD3mSvLQiFg0+unl9+HtX99++y4mGm4DRLt87BFcVXljVcynKxPo3KgA5rL70uh78JMxVU161vo9nnjsm7z62ktcuHSJskw5s3yKn/jRn2Z9tUu7NUk66NOu1TGF5f0/8g+wQrHv6r3MTszy6U9/iuWLa2zduoUH73+YIvWNvrWGQ6+9Tl6UbFuYZZDlfPZznyAk5ZVXX+fnf/7n+chf/CWnzww4ffY4eZLRHp/kxptu4LprruJr3/w6WjpuuP4mjh8/jQ7BqZB2PM7Wq7dz8OWDzE7PkQ5y7rrrTvZ+aQ/nz50hT3K+/ezz1CJJTUoee/JRn7AkDWWR04hrmKzwjJhaCGXGWqdPhkBKhzWQm4STZ48RxRpTVJMYobnlllsZ9lOOvnkYFbb4kR9+P7/7O7/NRL3NSy+9SFHC1JYFJsfmeO6F59iyeZ4iNURCEamAVIWENkAZ5+NalQRnUHXJa2++ypkT57BJDoHgS1/6FI8/+U3e8cCD3H33AcYnpmiPtTDO0Esy2tMtji4e4Sff99P8X3/yR6xcuECt3mDfvj2UX4RzF8+zvLrMNXt3c989B7jjrgPEYQ2qz2igFeePn+I/f+HzbNu+k61bt2CrKTdKs3Jhmbvvf4AdW7dz620HKIrcF+fWVozNUcCArNY8iw5ChC4wqeHsmSNMzM3ScDXOLi4hBIRhk0Br4nqTEIVTXgJX4qUnRjhcKElW1lhfW2N8ahoVjyNNQVYugZxAUSNJu7RnJhmbbHNx5TxxEJAnA6anphisrdFojHPjbQ/z4rNf5brr7+X04hJTsuDMqeOcPnOYwjjmt+9lZnKcKFKcOnMKWxZEYUBRFhQ9y6bd80zML4CzLK5eYqIW0uuseePPYYf+2iXGxqYZH59ChSGbNm2i17nIueVLhHEONmR9aYnZma2cOXacWnueYXfIloUFkJa0KD1zwuT0+gM662toqZicmGJyahMTN9+NdoJekvH6odd45tnHiaKY2bkFao0maW/AMB1Smpw4jGm3JlEyIu/1vYmxjkEqSicwGrQSGAWNaBxUyMTUXh/tK7ycZ2SLaYQDO5J8eRDJKc0GY1b5hq3IUwZra6z3O+RZl6gZUq+N+cQxe9l8uBY5ZhqSvdMtwnLIc0+vsL58lDfWJzl2fJW916wigxnq4xKbWrIs9+mfQZ2pqTr97jLra4skSZfG1CZqUZMwCBDCUuINbZXWhDIgTRMudZYYDHtobamHMYIALz1L0WGAQhDKnNJKbzpuBYuLF0iLkloYI8IAVxmLKqnRFSvIOYvUoKxCBzUacRMxOUdpSwpXVFJOhZIhUkjKsqSXZOT5EOk0OlAEkU//ciogKi1JWRAoD8QqoQGJFQaQRPUxGvVJOsN11lcvUZw7w+zMJsYn53DCkcsS4RTDpMcg7RAISU1pBi7HlBkqN5TWR9kHwlEKg9KSmg5ptjVyvAlhTBRIojBEyQAZxGgdQKCoqRCEInceQNHVrlPYKjiEwoMlRhAq7/dpACn9sCLA+/ZoJEKoihk02vuqAUe1EdqqNpJVIp2wfl8trAehfH00shf3VAEpJFY7IumPbbXA5SXaWDpJB9IB3f6QYW/AYNBnOOgyTBOSJMfkqW9Uy9KzVSgJFDgrKHRA7GTlAVx4UGTUWFfME2ML8jwhGSRoHZGmg6p2kEglycvSpzcVJVkV7SWlTzYzYsQi9swEK6x/nfzFRem8Af5wvY/U3qBYRxENoRhWZtvOOowRZIUhzws//JSe9VlaS55m3gDXeBCnVmuQmwKpI2QUUzpQRERBgHQlrXaL6Xab2eYEudEYa0nzDNWKMWmBNTk4wUrnInlnnVZUIwo0sXJAiVIRQJX45oesrihRKsASUgJOFIQSakHNKwDKlCQZYAmwtiCO6kjpfXo8W+OKgalWiLKSMyqNE4p2u8ncVJ23ji5htKPVqtOoR6AEcqSKFHjGXlXXaa0pTInDM8QsI+uKihXhfO3koGp4HTrQREB9rECFkrSIcbJgbKyFlnUWFsZ8JVY6hlnmJWZOVCwjhzB+GGmd9T5gtiAUDbJSYFAIZ6rf8b5sFi8LFDoAJfAhyAqlBI7CJ5OXruJpSuyGTYLzRtGwIQnOjAfEpQOUN38Oaw2Mc4RBXKVGes+xelRDa3+AZqNGbH2anRQFsdLooE6SpQhZ9QzSS9XK3BJrS1p6I2hTGlSgiMOAeq1JEAUM+31KOwQNRVkQRTFRoLFGMCgsKEE9ismyrFJoKJwrvSLAOh/2E2h0oHFoMB6cK2yJsYYQD6YJhR9qC+mldxUTTwlBKGQFOI/cXi1hI0TpBs4ZSiznlrtkeUYtiOkkKVTG8hLh/W+FH4pJB8I6ogqs75eKxaVlFjbvwOQJpTV+GCEsc1Mtdu/ZwVqnz2q3R2dtHZdmGDvyYhr1Ap49Vwh/LRhrqIWS3BqGQ8f66hq1MKQsNK603iNQOJBlRTJwYAzz0zUWl8fJBx0K67z8TXhgXFrvnqckxKFAiDqDLKMeSS+fLiVDazzQ5/y6LcOQUHlG2rbt2xDxBEffOsagX9UDLkcKRxgGFKmmRFUiHoEWjoKEqbmAIBkjKy39fkJZFBBo//oKi8J/Zoyo/K6ApEhoNib/35qk/8+37zmgtG+uztMvP0dcTCFEm+lN45w+8Sbd9YwLKwWtqEA7x5GTl3jfT/4i68uLnLQxN0tHbhySkrqU3PHQj/G+d9/G0UNNUiRb52aZqxtWXsl5dTDA2ZDuICGIa6yvd7iwusgP3XcPRdlnbHKWM3/26/zHTxxDzLR57NMf5/SjA9ZWlljtlhy/0GVYKrbvnObAVTNM1xIiUZA6EGHIS0dOMbPrOv7+pUvMf9+vcvPKS9Rnd5D1ujxw7QLnzr3BM2cUhw+d5NDZJWzzSd574HbeOnOe/bccYDKUlHmbo4efoD23my9/9iNcWDV88IO/xkQqONfrMl2rU+Q9zpw5xNTCTmqTcPjoCW7ct5dTi+sc7mo4/SzHDz3LRH2WtdWLFBIeuO4GyizjQmfAILMUhePVF5+nv2mau267n727r+Ls+WNM7zjAVCNCqzrJzDI/+iv/luTCCQ6dOMdzR47ywE3X4/I+X/5vH+Px147yUz/xAbZMt9k2vYlbfvafcueNN/D7f/gfuP+uA3zuc5/iZ9/909x+/fUIoXi9FvI/vuMHWJieoixy9u3ezXW7d/Plr36WT3z+b0lKw23X3sS23bsYDHuEExNk5ZDf/de/RRhH5MO+33isd6eX1i/UMNInj9p7DyGMPIyEqwCjqsG/nPg1opy4ash1BSQgLjOchB2ZP1/BCBrJuEb/p1rMAEZaYv+tp0JXu4lzbDxnKgmYhxUquqaomkBrNjCr0TkBFRVeVCa4fmNVQvipxuh8pQeTROmq51SBXVJWcjNLkizy+U/9MY14nHKlS64lsYx58L6HWO+u8/H/+jF+8JH3Mj01xT/5Rx/g1NnzfOUbn+FXfuFdGOOnc9rmOGsQNTxyLUa9jbviKV9+hTbYY9XE1FYUeXHFGV72g7oCTOLt1tcb4N8I5BtpxKv3ZYOpVFFKhfJTKa449uj4/m0Qo7cDeWVMzIgRxRWgonv7m+7BrivOsWI6yQo885ryy9fPxjROiI2/K2Rlolsx0KSDoih4441DvHDwee6++z6eePzbLC/2WF9d46nnvs077nuYQb/DoTcPsXXrZpSMaI+Ps7R4gYsrSwQIJmemePXYEQ7suIdv/P1XaDQa9PtD+v118jwhrrX4+Ke/wN6rr2Xfzi38xr/8EL/xoV/hK1/8Mj/z/p/gf/53R9mxaYHzq5dwpeXVl17koYfezY4t23nx5aco3SSpSSkuJWyanmNufpp9V9+MrLX40D/7LX7rt3+T6264HlWGCCuJA8nY1CRaQq+zAqbEqBJRKlwG4WTMIE+RgaYsM2pEZP0hQaQYmMRLVwqLiCR5VqLRbGpPcsP1N/ILH/xlDr95hN///d+j3Qrpddd57fVXIQyICfjgB36Boih5/eVDaCHJOn1Sk9Bo1UE62qEkCqF0AiszGs1xVjtdlLSsnj6MJiYLLVoLwiikPT3BVdfvR2jFM49/m8PHDtNqjnP6/EnqjRppP2dp6QIPv/s9TMxNI43giW8/hSv61AMNznB28RxZCfMLC6RJirWWKIx58u+/wRc+8yn2XXs1QVvz5BNP8s5H3oUZDrDAxPQUZ186xeYHdjHoJ0RRAyVGmY/Os6uwoHzRroKAc+fP8jef/Cbbdo6z96qraNZDzh5f5JZrd7LeG3D2Yg8Z10FarCiRTmJt6c1G8c1iLBU2rqFlissMIYZhPgQXIExJo+Uos4Tl5WWkHKcZJigbUwQF/X5COujz1vFjXDj6BtaWNCcmyY+f5OLpo0gM7XYIdogsS5bOLVFrjUEpWRmusri4yKZN0zTHpjj+5nHOnzpHfbxN0j/Gwr230K436Zw/jymlr04CS9RSnDlzmnzYZWJmjM3btvHi888xPjXLzPQc2io6pqQZGiKlGKYDkrRPs9FGBzG1VoNkOGByKiSMGmR5jisMp06eweUWJwqU0nTOLxE3x3DW+qTXiRb1ssag38FZkJGg3qyj1VgV+SwQUlNq5ZlhhSVw2qfIKIWoYtD9Yqc848zhTbhVtaaUksJalDEQKlzhMGmfzqDHMOkTakUYRzSbczg0zikQEAXaAxPK+zKtDgzPdASBsuiGoHvRMFi/wEq/RJzpkBYXqLXGkSoEKQmVJtSO0mS0p6Zpjo3T63dI11cY2osEtRaT7SauEFil6PTWWTl9BhUqmmMtGlEIQlKWGUqkvrmQElJHKaAnFVJrihKkCojqUzR15KfPShLooJJl+qbTUlIUOUJYhK5hDUhKL+2wmjiIMAhyM2Tl4nlkkkE9QgR1alGLQAfkQuLQaGehLCmxBFp6NotQQAAm9RISpSlFybDMwzDbAQAAIABJREFUicKYaGaaotvDpF3WV3O6w4wwsERlSV70yAYJJo7RrQZRoAjCGOoBkWpQD+uoMEbEgTcc1wEoiVWegR1KRS4cYSkp8Ixs7QylM14SVU3kR3J4qTw7StkINdJfGAehQFnvZeVc4f1WVFBJcXzDI5z/HYHAicoEfiSVGdUuUqKV94D0qWjex8YZS1lmFEXGIEvo9xKSfp9hv89qd41iMKCX9CmKgmGWoguLdY7ceVBFSoES3nTd4+GGQPoaShsv8zCixJUFfVcirSMvh56VJbSP/w7rSKkpCi+nTJOUMPSm9V6eJTAFoPw6KYT38ZJ+EllJW7xXnKvAH1HRyYNAEyjpEy6VpDQGLSUDm4AUGLxJUxBGGGvRSnuvJ8RGDD0IitJhrCOuxaR55uu5CgTUQUAkNaXzkfK2LMmKgsys8pXHn6QWxCS5pcxyZieaPnhGCXLnBYPDosAqQYZFO0mkAkrjyMvcS+Hk5frVOShNjnY5ykRIERKqBkIIcpNQC0tKl5OnAUI10UYTCvyQVWhwBcIplAywla+Vxvu0lBZ2bNtKrCXdbg/nHEVZIpQXVVJWNXtVfAlXve7O+3oKazZqa+NAK0kkgsrg2mIlSGWxxl+rvV5Juxl6g+3cUiDRgfcLiiJFkftzD4TCCln5z+Blf0pS4I2QrXMoEWKtY258HCd9YIwSqmJgAVQG7lJ6L1TpSPtDnCsoiVBCkskCZR1GCYwShFYRhJoolERBiJCaWiQI9DjG2o3h4Ygxr6l8WpXCUHrwTDg/DBDe60oJg1dbKoTSCCnQcYTTCrIM8EwSW2ZkJkAoQWYNARatNTmCUFhCCUEUoDONzQ3KKYbDFNWWjLdb5GsJwyyjm2UU1tKuN1BOkoscJywiFNRk4NlNVjCswhoCJ5Ba46wgFNrLFKs62FhDWRYEugLwK3P1EAmlRYUCIQJfu9QaDPsp3fV18jQjimrI0K+FV9bvVcFeNRGeUbnW8TLUphZcChxRIJiZ30pcFpRCEqIRKkApR3s8ZmysyUkHvX7XA9ZO+PW/2oYlEmMMTkkmG5Kbtozz6JELSBewstajVasj4xYGz1CSSmKcYtDrMUhy+t0BRVEQuoJcuoqdBHJk0SI8gC1LLz0trWF5aGg3S6QIESJC5wYpva9RWZbUpPUsytJQnr1Ar3ucfpqjKhV2PW7QmJilXxjK3jKpLAlchMPSW1mjbJQgFU4aOnnOerdHLQ6RVqI2+ktdfT58Ol82HHD1/h00xjfxvbypD3/4w9/TA549/8aHz2RtnNGk9RZ3X3s1aa9PURvjwEMPsWVccalosW/3bk4vrvBD730vO8KM8ckWK0eeQ+oQIYasn32VM2e6XHPVNvrDjK2bp0iLhPPrA452oFuWZNkAU5Ts2L6b7zz9NDc+9P0svvgVaoHk4199hXt+4V9x855t7LnrQTaN1Xll0bL5+gPcf+NWXn31Vc6dWWXqqjtQGFpTk4yFIVGjycTkLLdsn2L3Vdfx0J5x/vwjf8Shtw7T0n2+8qXP8oVvv8b2bTtY2L6Tuatu46Zbb2b/QoOTR95g3/wCLz/3BFsXpnn0uYPcfuedtGZ2c2S9x9bt+7jn6l1EKkAjydMB33j6eVR7ju9/xwFazRorScKDDz3Eg7fcRi8bUmvO8OrSGj/xTz6EWV3ijbPLDNYWKXSTnbv2ImxGs6Y5cfIELzz7bRKhueO2u9m9ZdNGh2/DFjfv2YlKVyiSLvffcR+HDx/k0cceQ8/sYWZuM0JrFi8tYXVEI4Q3jh9j/9XXszA1w+Ztm1nYsZebrrqK5c4aO7ZsYaymUU4SVsZozgkatQZHjx5lz85dnD97mL379rN8aYWJ6c3UwoBQamKl0MInLSjl2QpK6g0zPC08zFAxGqtTqIol4XXdAoERtooqHYFCGzwVRhwbn6xTGT5fyR4CP1WQEueML7LwUz3/u7AhsfIzFqTWKLw8SwpvkK2q48rRXNBVQMSIYzQCo7jMbtFKYZ3ZiG6V1d+s7MmRlbmzrCZ21hoPaFjrdbc6RErfHA6HCb/74V9mMDjPemeVsKHIckUvtfT6ayyeP09uLIM0oV5vMj8/z+rFZW689lbmFzb7pkh4hD4pM2pxzW+C4rLJubzyddv4eYUmvY3lVb2ylU73ysdsUJG4fMwNwKhiNr0NIvLjq433cWS8Prrr8ut95RvKxrUwArDEFY/bYFhd+UfEFdfFiMm2AWhefrwcwWUbcrrqmb3tvK94Dlz+sRMleZ6zaXaOm2+4mcmxKYbDjKzMWVtbpz8Y8MUvf5ZjR9/k+KlTzM0vMD87x+rKKucXT9GeaHPLXbd7H4n+AB0INm3ZyolTJzh85CDHTx9m19VXMd4e46WDz7Bj61Zuvukm3vOu7+fxp5+hNTvBtx97lH7vEq3WJI889DCB1CwvLrF88QITEzMoIVm6eBYRRkyPzTDWbLF//352bt/GS68dZNO2ecabbT7/9c8TSIOOYrZt2c62LTtZW1vHWkNhHfUoJi0KkuGQOAgwRY6SgjAISZIMqcEKRTnMcaVBKc3uXbsYa08xOb/ArbfdwXhrnNdee42XXnyOhYWt/PTP/TTT45s4/uZrdPsJnU6fpQtLdJMeDz74IAeff4nMFvR66xhrmR1PaAcDFvuW9uQ0NWLypCSUDUwhUTqkLHKioI5Gs7B5KyDZNL+Jp595knd933vBOa7dv58P/dq/4PrrbuTNQ0fYunMbu3bs5a8++lHOnj3B2nqPNOmxffcObrruZtJBysTEBO1GEykVeZ4xt3me8XaboB7zlS98kUfe814e+9rXuHjmLHuvuYbhYIjTkrmFzVAYwioiHj+I91HOjJpNb9L4ysGXSNIlduxcQEgIVQ1bWEyZEbfa5LkjzbxcrBbX0EAoBYWBwnoAIUn7FKZEqACpJLv2XE2apcShZnZ2ijiMcbljvNkiTXp0kwFzCzu57s53s2f/jZw8+gbrnWWUTOh2BtiyYGxynmHR450Pfz+XllZwLqLR3oTQMSIIWV05x8W1FWQc0m60GJ8ap95q0u90ufraq+hcXOGqXbuwZUE2WKfIUmr1mGYz5tzZRW69bj/tVoNOr0uRFTgEM5t2YFzBeLNFLW6AcoRhzNhkg9XViyyeO01ZlsRxjCkNae5TCEMVEAYhzXrE1Nw8Ak17ss3Upnm2bd1D3GpWYLeg2WwzM7OFydl56vUxtI5QQQ0jQpQKkUKTkRKgAYWVvrC0QnpDZiTSWMhLTGlRGJwrMSbD5t6wN5IOW6YM11dZXbvIxe4SCojjyDdYDspq6GKlT3kRlGTpkGFnjWGSs9JZwtghmYUkG7DeyegP+8ztvonM+eSderOJUDUPsCvp91AnETmgQAcCXYvBFKwsnaK72kcEmt7yIr3uOjL0QMFgOEBqL42QSiMCjdMxJghwShHEdXStTqjqiLhOWG9Qa7RQUYiSGhXEWBkiRODNb6Xf46X0w5KAEKG8VFMIgVYeoB4M10l6a5RZTnNsmkajRT2uo0SAQxBbiZN+wIHyzYQVVajGyCeGAuEyRN5hsH6B7vIZXNJFlAnInFgalEsZi2B2qs34xDhTc5uY37mHLdt2M7tpjonpzYxNztOemqbVniVujhPXQnSgvCm7qlLNKhCntAZtvTeUT6gVnmEkvAG2sJ6p5dPVvHRHGkWkFI7Sd87K+8aMGn4rReUTU7E1jJ+oS2GrQZRECInU0hvvlhYVaEyekw6HdNfWWF1dZfHMGU4ee4M3Dx3k4Ksv8PrLL3Lwxed5+eVXOPrm65w89hbnzp9ibXWF9c4lsjz13iG2qscwSAzWlVhbkpuEQdGhyFLydEhZJtgspeh2KYqcgUvITYK0BussVloK5zxDRARIESGso8xyBv0+xlTG4SNvxRE+W/ndjBIIPfPFjSZGVW0gwEJZlr6JrOSVnq4mPaCAxRQlYVzDFB7AVCokEN43ZlQnikpq5w1tFUp7WaG1liiuIaSkyHOMtWRlgXKSwXCAoyRQwvuv9TxI1x10adbqxEoRSOHXkOyyvNhWNgxKS2xpUChKKTGm9KCEgkCAwRFIQb1eq6Q8in5/DScshcxRwoOGDqAyGA9khBIaoSx5VpmjY1nr9LxszjhCHaIlPHDvvYRCcPjEOfKipMgTtBSVP5JnfyghCZT2nzEcmTM4KUmSFK00ubF0B33/ujuJUj7NMA4DakGNMDBYDbEqyZ1hkKcM04KGhHY9xmTaA0eBN+gvi3KjRiuyHFX9XSv9Z6MWaoSSKK1pt+rU44g4Cgm0pN6IkFIQaYlWmkgpQumFboUROCKE0CihqcURjSgkjAJqShGHIbUwoF6LCaIY8OAp1lZDUkta5lX6MXjdIOTWYqq+IdAhKgyQMgCpcSIAGXo/Mu0Zms16k3bcwFqDUgGmtJTW+J7BlkilsCiCIKARhkhbgMk9ecZarCv9S42lWY8Za8YIB8NBjnPO7x+BwtmSPPODZCskIgzRYQ1bgS9SOlTgh7GjYAnrfKKd8MUITlZm9xKQourPPIgrlSBUQcVSg8IJpNRYKVHae67ZUd1sL/cTsireI6m8dK0yZE+so92MWe9ltIIanc6AZJBQq0dsmhtjenIajMDagtX1Dv1h3zPTq8G+qz73gywnyYfUwpDppmDXzBivnF5BOEGeQ5oOKIuUXr+PzTMEil7aZ72X0BsMcbbEOmjECkeIydLKQ05SYCgLS1l4CWxhLWv9hLKEmVpATQTkrqAILKcvesWFlo56vUatJgmjOmvdhCIvqjrBgpCMjTWZmWxRixqsrK2ByQicRAgorCDLCtoNh7Oa5Us9hPSehyDRKvA+e9L/vcJBPxkyOznG1oWtFEXJj/6D/+5/4nt0+54zlD7+pTf48R/7SeJAc/z0YQbLxwhVTjuMyVaXGGvMc8ft1xHYLmtrPQaLZ1jdcQOXDn6G//VPPkNrpoESdcp+QjF2AgFs2bWP0liicIw773ov9z7w46xcPMmXv/k1nnzzErdet4VuZ5HDT32J+vbb+PZzz1Hfsodff+hGli/NsXj6IEsrXT7w4z/EM1/5S7723HeIxud49yMP8o7b97J78zxhEHtS8OAMj3/m3/NXF5vs2Xc92zeN88D7fp7XDx/lY998AlHAvr17eObZx9i0/QZ+7qfejyxSvvX5z/JfPvck2/bdzkf/5iO8cX6ZwSDj0FvHuf36a7hm5/sxOqAoPX3N4aedd9x0K43xGYTL2T3b5MK5N/j7Lz7NTbe+g++76y5emWzxnvf+ABPiPBP338fWuc388Uf+mE0zbWbqhmHq+MKXv8j1193KYiq4f/NeSlsQqhomy3GRZCzSrHe7TE3PUUSL5LrOxOxmJoeOm/bvZ3HxFNY66sEUk9OTDPKSW264naR7kadffpne6jrtZg0tLKunXidpTrFp8w5kNWVVAoQwSAnb99/Mnn038Orrz7G0eIbXX3uRrfObSGzEWK3FIM9JBpdYW75AY3yCyZk5bFkglQeRRv5BVNPcy2wiT9+WV/7EXW7g3XddhxtElBHtEa5gNPm6wzhbgU4VaFAVoLZCyUcTMPDSLeHw9Eaq6MbqwG9LQhNi4zEj4GoDOFGS0hbVfaIys76iGPJLrI9Gtd43yQmFFD7RJ9AKY3yD9PJLz2NtyTXXPcTRE6+wsMVw6dIxZNjAlBkXL15gZmqaqLTYPGfXlu0Mun3yoqDRrCEqU8eiyAmlpLAC5fzmZ/GGnhvncMXrN5rAVOv/xi84N6L8eCWxcKPXpbpPjNJ83AbzyDvwVX5UIyaZGPGWRnDSFaCVqApIHJfNzUfktO++Aq4Ala64Rr77t+wV79vootmQPbrLD347JHZl8lz1fTVV8e/nKEnL+3tNjE9Qr7eI4iZ33nMP/SLnyIUj9LorPPXMt6iFEf00o7nc5p/9m1/mbz/6t3z1619l6855Hv3Wo1x91dU8dN+7ePLJR3nokUd49FuPcfb0ES4uXQAEzz75BI1azLDX4ZWDr2JdwLcff5pjx4/TXz+HVIYslawurbJpdhNpamjU67xy8AVWOkuUpSWsRZBkHD1+mEiVHDhwH2ObtvKrH/xFnjv4En/4H/6Af/GbH+IP/+O/B1viVM56b4UsyXBOEjmLLQsCCWUJAkWkIoI6FAhykWMTQPtUlWuuvpmpqTmktrzwwgucOHqMpVOnKH/kx8kST2vfvHkTY/UxHnv8MQY2I3U5F5dPc2lpjXvuvYt9O/YThHWGZohGY4qSflKncHXa9Rr91T4du0o9bPrUlyJjmCTEOqC73mFy+3YOH36L+dlZxuIGv/mbHyIdJtSCiFtuux2TliihefqJJ/hXH/4d/uB/+T3+21c+Q1Rro7VAhorx9jRPP/U4d995L3EUMoIfozBkvTNky6693LJtCzfdfid/9X9/lHc8/ACbtmwmNQXGGrDeB6bEgSsr3xZ/LYkrmiMhJJmz3PPAAS4uHUNJy5G3TtGqS5aXOmyaHcOWjk63i3GK7qBLY6yNRXsWhIpJ0g5nL56iP+gy2ZpC2JjCrrJ26SzjrSamCBkmGevra9TrNUJT57pb7maQJMxv3szJo2+xdvo1FhZ2sLSScf0d9xI23+D+e9/BU08+xURtjGcff5LVzgW2bLuGuF2jN+gRhQ0yDIUpCVSdtW6Hnfv30B0MaY2PMeh2CFC89eob7Nm9h7eylMZYzHp3jaVLy9z70LuY23ENj33jUVpz0yyePM/YxDhKwbU33MzF06sQF1w8tcapk0fJ84T5+a1smt/CWmeZc4sn2bR5M7VaA2RAGMSVNlWTlglRuwZSETdbCAdFvyTLUoaDlM7KOkEQ0pyaYrI9RSAiHIJAWi87FSWRDH0hrgSi9OmZVYQsaZlgi2KDJVFS4JxG6xpWOAZZj5Wzp0EqGq0Wdd0gqtV9Oo9ShNob3zrlryxX7RfGWaSKqLXrqACabhyhIpS1SB1QFh0a9WmCeJxQ5+DqJGmCsd4s1vtuFLiypHSWztIqSdoljiMCFVCfXECUGalJCcOYmpLkyZA4jGhNzWCVl60pFWIkCKEIVIBUAa4ocMaQ46MJi6RP6QxGQCwjcNZP5qmm9VTxxs6hnKRwJS7NEC6nNxxgKVBaogmotafQWld1gsYYCdLvWoUUSJuR9bsMOusIJZibmSDNh0hjyI3FSIPDm9OPNTRzE1sIg4ggCnChJoqaqEASxzUINHZosBIyY6oBTyWZFuCM9O+r8hHUgipFES/jH+0lSniplBXOs3esl/+UwnisCLCuYGTsrRAgc/JyBNqUHhirmpaRtEtpz1SW1ksp87JkkGYUSU4+GFIMB3SSSoq23qEz7JMNE9IiJf9/WHvvIMuu+87vc8INL3fu6ckBM8DMAAMCEEASzKQYLJFi0IqkZK3iSpa1XsveLbtU5XWV7HJtSbtreXdtWZa8q1VcilQkaYqkmEmAJDIwGMxgcuyZDtPxpRtO8B/nvjcDUX/ZvKhC9XT3e/3uveee8zvf3zcUwRTcYivQJEJKGZi1ErQM0e9OBWlI5CwyUZWUxVLYnFatjXOevPJRiaMa1kcUJqT8Si8wNg+MrDQBD604QktJYSxOqeChpCVKCZwVGG/wOIwISQFS3KkDpJRV83IEKAWG1KjB5Krmn5IV48oHL0ulVJCGWRskcFXqUVkalBU4KSgGObawgaFdAZsjCb5zwbg8+FeGxV6I6vVREtjizqKiiDhJSOIYYUG3GkgVmojWCqx3OGcZ5kMyG6R6qdKoWFFL6/QH2+TOIly4LiiHkUEapqrml0ITqyBfjmQE3gZzZBXRL0viWpPC5CiRUIsVUaQwA4tyFm8tXgUvI+clQhRj8raKZGCJ6QiHY6ozwcL8NNcWr1A4T5llJFohtUSiwxxjgw+T9Q5bhkRMBZgygBdW2FBD++AJiApegBER1ngcBSryxMqQDfNQSZWellC43NFdGxLXJZ1aAxXVyJTFWUl/GO5JgafwFuE9kdKkOpivC60QQlPmFhF5vA3zC2XwNLQ+PG854JFoERhFKINV4COLKjxeepyTaK+xItTFhohIRCSNCGPKcP2dQyJp6BQhJVFUCxt4IfBS4LFoB84Eby/vXQVEVWAOEmM9iRD0ul227CZxkhBFChKFMlWamLf4sgQhKYxgo2tIYkUca5zJMc4FCW4lRxNISiGCVDbPieopCIOpkjyND8Cz8mrsSxVFIREvmGSHOS/WisIZFBXzkNA0oQIWI3vH8yiAjIHZ4wQ4ayjKkEhbr9dwWpJnwwCCVWyhkJpJNXiCRYbFM9Wps75tGOQlqZfkQ4eUhtWtmxig1OFZNgS2lHUSQRQYX5UM1t2lcggAjEH7MDds9jWnLq3TiFIGWQaiYLMfc3tQUtiSVCiUF7hCEqXh2jhfYq1nkIG3DpskSFMEn1wbh5rOC4T01Js15mc7bPYyeuWARmqIRCWhVCakoesaxilk1GA47FNkgzvUCCVJ4oQstywurlBYQWlyhLEEqmHEoLTMtjV4ye3tDUxRkNZjLGGPaoRBOomWGmMKTA6pkhzavw9jIFLfu2/6/3N83wGlw488wuf+9lv883/2s9SyV/nOxXW23BRSay6cv8yhg/uYSZsc+4F3cPPcc1wsp/nlAy1++/eHHH3HT/LUFz5BfXae3vpNvJ1nMXNMDrdRzKN1ys7ZFIY3sfklPvquN/Ced8/SzM7z/LdaLK6t06lf47/6+Fv5hX/23/HTv/Q8v/rPf4NzFy7wxPkBH5yc5fraFudWLUnSZ+vSd/nDV57gbT/0D3jXWx+nXq9z/dIG58v7OfqDb+WhBc2//91/xwc/8lP82I/8EB/74Af4m7/5JC+/eo1YGJ498zJvXHoXDx3cQ2PXMd75oV3sEAM2XZv5HXtRusGug0eII0HuSjAClKqkMo6iP2Bra4tGZ45YeL781T/n9z7xF9TaC5y9eAs/XOXs1RX6vTVu3B7ywP2PsdA+Q6PdYG39BpeubNAQ4f1W1m5y7ND9lLevIe0+vCjAlvQ2urRabRK6/MFf/R6PPv4R9sx22NKG2n5Bd/kSUZmxsrLIigvpdfv27kYiuLZ1i0O795NtLBMVOcPBNv/P17/N697wJmzS4MCePRhjQ21uNXOzC/zDH/0Qm8trvPPxd/Inf/oHzO67h688/RwfeNe76A17COVxWZ/f/+Qf8qEPf5xWcwKpNQIV5BncYSSBGAUeAK9NE9MiJCiM/AG8GCWsjUCEEQpgq0m86jCNACFG4IIcb+BGsaYjRsodyVqV6iBGm707QIWk8iAgTAB3PJ/8+D/EiGUQCpHw3RFE4e8ivtz9OI4kfgHFNjYwsqQzODugMzHB5MwsE7MLiOzd/NEn/2+mJvez0TP08y2KjXV6210sihs3b+JcyYc/+FHqccILLzzFwf0fp9vPibTnq1/8LOuDHh/70E/g0ahIcucsxF1Yzd3+RmFhHLG6ZMUEcx68ECCpNsfhbo4M90bgUChkR55Do/tSXZcK3HG2Spzwo2tXKQf/znE34MRrxsBdP2cEVP59tCZ4rfn6GCULPx6zrO6AmyMgTIg75zQGrXx4jxG7rNVsobIhEokpCppxRI2I29uDoMF3imbSYHHxOod37mFlaZl7ju7l7JlLqNhy9sxZ7j/+IFEtYs+O3dx/9DhYy+nJOXAFl25cpjMzw6/+D7/GZG2GL3zx8+zbN8dHPvBBfvPf/Tr7Dh5gx+wCL77yClev36I92UI6QZRqGmWTfpZhRZCYRLHmyuJV/s1v/2t+7Ed+jqefeYqi6LG6ssz/+i9/g7hWY3Zuht1zO7h2/TIf+9hHGfYKnnnuKVbXbtGZmMFtraM0yAjStEFNNoitZGBLRGYovePylYvcvHmTow+8jvbMPL1Bj9urK/zHP/xdJjttEOGzDAcZly5d4rE3vIUXn3mKta1V/sk//RX++s/+mt/7D7/FdraFisKzG0eSwikymWKLHkJLbO4pIkGn1caUliNHDrF49RLtuMl2d4s3vPnt/NTP/jy2sJUvjabVnmBzZY3JmWk+/7nP8aa3v5ntjU0+8vF/wDe+8yX2L+zhytIt8m6Xv/3833DixAluLq1wc3GR2Zm54IvgoF5vMjE5RbffZcfCHlQSJKVPfv07HDiwxPTkNEkaj8HjAKoGkFX4YAgcdq4Sr8EPM0w5ZPN2j4vnXqG3tcXEkQUylzO5YzdXrl9HEvx4tvs9poucWquOw7Kxuszy8mW2tjaYaDWZak2zsrHMdrFBtlJSj1q0W1PEUcTMVAurPPceP8aO+XtYW1tGRwmri5dZv73EO9/7ETozO5HCoouUl06f4dLZ0+zaO0drdoYD9z+KsZaiv0WxfpvrVzeZ23eIvYfuY6o1SV4MWVne4NbiVXCOW5dukA0GnLjvXvqDAUrXWOv2IaqxsHsfN1YHLG2dojm/wI0r14iTOvvue4CpmSmmZybJSs368g0mZqZoTDxIo1ZnujVBKTx6Yx21qdjcXGd1dQWcCmOy1kTFglq9EYr5pE6ahMKy3mzQaHcCgGAN2WCD9eXz3F6+zPzcflrNaRCWyIPBgZJoK8htCcKC0GBNMIN2wZNE6KqjLRKcM/T7m3S729h8QK3eJJmYQRLMaq2zqFgQyQipFHiNHiX9CYezFlSQ2WkP6AbSF1AW5GXG4PY6RZ5h8oK2C8mJVgnKbADeE+saqp4QRzEqTijzjDRJyIxgq9dn5+7DdJptIhnjGYbGjC8QLkNYcEVIKjTW4Ms+pfFokbK6cQslS9pTk2gZAylemLDYKkkiJMEKOlwf64ZY73EqQimJLTI2VleICZ5U9ThGRxqnBAlxSI0yBdhhmGtF8KoLfnIFSIvyUIugNdsArYgSR7vRQWuNSFOUivE6qbq2brzWh7lfoirPQGsswkEpPcpIYglGyCr0waOEA1dJDXy1MlShabEIG1AhBNYHRoUVZZX65kKggg/gjReZS2FaAAAgAElEQVQhGny8+sggAvSIIKVwnsJafFFSlENMbhh0B/SyLv1Bl3zQZdjPGAyGDIsewyzDVnH10lWxJCM5mgorrPUKr1SQ2csYCThnyPIBzlgiqcOmUAfJdlYYIh3Tjhq02g36/QGpioi1pChqKOGwZBTWVEuqxNsAIBtbomSMV4FZNcxzlI5xxiGrzSNeU+QFSseAwBhHUZSMvXcklReaGS/Y3t9JJ3LeVR2dwBjyQWMVzKeFwFqHUL5KZRJY5xG6ak4Jjy8tXgWGnJZgTRb8dUSQIXkRZIgIxs0wKSCKg+zTVclfspJ9ScIUEFcVayhTJbHWKKmoJSlSBrN4haddb6JkQpJEwVzaubCpl5BYO25eWmPIS4N1ATBzlTTJOYcVFnB02jHOJ2xvbZLnAXT1RmAFZPmQIoZWs0GkowD6uMDSj5SmxOFcBt6xb/cx6olgZW0L7wXWWdIoGjPrbRUwE7yRfCUNCvXhsNtDCl8F7kh0pFCqFnw6Q6eWSEmkiMEYIqXxiUYaGRL6sJQCShkT+RZrXYMUGViPNQTZmIKpdpsK0cIKsGWOrsz/dSPFGU8kQMaG4J0m0EoQdFhuXKuBpHSglCKOEoQV2Mjigdg5vHRI58J64kN6mMntOMFN+6A6UMqRpglxEtQFlpDUKKxCWkdRpbYGjNhW8CcIrQNTjnAdldbkzhK7kCFmlQ48QKsIluMBzAjgtcLaMLZDPR3OM/c2jNXCY6zFUKLLID0sbNgPxTrGSUlpQsCLKA2JjhFShPS0ytbBV6ELxphg5zAyxkdWjQ3QVZFfVhOy957CFZg8rFVKgBOWVqJJZEo2EDhXjCWcwoPJQxhEGikSqahFMgQ2ElHi6GU5Whq6m9AvVMUCtigvsc6SZX02NzfY2FjFlH2MdeDDNfPCBVanzdFKBVmjcdzczokjzyCvGJ3VnlGKsN+wMig8jCtotBp0Wm0mOm3SZsTC1ATXVwecOXcRjaEUJU55nLBIr+j3BiTa0p6aprttmHRDpBAYIjCglMWajAMLu8jiSS5eXyPVAmwIbEhUTBKn431KqgReSJwLrF48dOoJaazoDh3b2wUi0hgHSbW2KVKE0AxNSW4czlhOHN5LFCfgdRWG8P07vu+A0j/64Hv45uf/gjMXzyE3rrCYNfiRD7yfRmeajbVbfPeJbxDvPMLePTt43YF3k5NgXck//m/+Cb2zn+H013pcW+1x//F38PLJl9nRTHnxuRfYuWc/nSjHDrb5xmf/E3/0F1+kR5uf+flfZspeZ6JZY/rwwyw04b/91V/FqhluLGVc2vZMzR3how8/zO1L30EmcxzYtc7S5janzl/FiBqTl6+x0PIIFXHkxOP82i/u5ktf+ktqnQVuXjrPJ//8j3n/29/LwQM7aTUmOX58ktOnX+bwwRmmdUEzckynnl3NiKUy4hf/i1/h+otPM3HkAe6ZSOmXliSKKzaErRZ5ydb2bVQkaKWKCy98jTMvn2aQp2QbW7z43DPcWttkev+9vP2jP8t8VHDxwmm21m6zVUDdKxSazCqsdVy7fI39ew6T9busrt5Cy4LWxCzdrS1SmfHMM8/RmD3ON5/5Do+cOMZwY5Gnn32BZ069SpwkbG6tcv/Db+GIkAy6Pdxgk89/+g8R0QRXLl1m18ETLK9v8V/+0n+NxKJ0SH8R3lcLiScvM7RX3Lq9xJ69ezn+wMM8/NDrqacJRb/L9WtnwGk+/9nfxdmE5c1N3PPfoBCSh3/gzZUeV489acbO2XdFpYKoDJwD9XIkwbrDZXktUOO9vOvrCvkdFXtubCk9/h0YMZkYe+FUdBuoklDuyKMqZRZuzFIaASyj9wnQwgi1COfjx0bed4MUd143/rwVS8HjaSQJ/WEXaxSxkizsmCPPS4Q3zM3tIorb9CPPVu8SwgUztl17djE9Ocf5Cxe4dmORT/7ZJzi4dz/3P/gg/awgSSL+7b/57/EF9EzCxmCTRm0yJOe50XW685n8Xawj8GMQ6e4jFMl3/I+EEMGwkbuYQIBC3UHi7wJ/AkupApGkHF+dCpGrIl/vgD7jK1jhSa6ivUv5WjaUHAGGoxf9Pcfove423x6BYeOf3fW77u5/jyWAFXApPc7KsJB6Rz1t4KwnjSN27tpFrBOEF8xMdsiLsPH0zrO5ucqffuqPmJnawzPPfYe5mQ6WgiSRxFKzdGuJvNdnbm6eHTtniKOIr3zlK3zowx/liW88zYn7jvDSSye5cOk8G7dX+aH3vIeFvYc4e/pVpic6nDpzmhMnTrB0/Tq94ZCsyPFAM21ihkNKY4jjlLOnLvM/vvxPiYRCx206jQ6vf8PDNFozfP6Ln6XIerzlLW+j1ZwB32VicoqtrU2yPMMLTy2JyPIBxfYmaVMECryAqKEZOMv0jine+uZ3gNcsL98iSZt0t7fxtmDQ3ybLC2QU85Uvf4Eyz/nID3+IqVqLv/nSl/nuE9/m+q0r1NKQ6qVqCbYY4ktPYQxT83X2zB9kazjk1uoStijwRcHkZJ298wvcPH8KmUK9UefyxVf5nf/ztzhx4iHe8dZ3hmfTO5597llSHbN0c5HH3/Y43hZYA72soF9mLMzN88qZZVqTE1y+cZ3+8FW2e1vU6i3mF3YRK0EUx/SGffJhj0995q/47leeJEay79799AcbxJEkradoLyi5w/5DUEUsj4SwIRrXOfjqV7/Fd574Kg+97nUMp2qcP3MNlcQs3V4iiTVzO/dQmBKX92mqlMhLpHacv/EKRWmRMjAONrbXqaWSen0WYxXT7TlkUmPfPQ9w4+oFsmJA5iS5Mxy+736uXTnH+uYyeFi+dSv4DcztYHLPQVJtWdh/BGUHdLc2MTMlve4mG6tX2FhapNFssHr7BuXNG6A0h44cYpgNKX1B1h2yc/dOisyy1N3EOs/+w0e5tHidrf42fZUwMTvL8pWrCAv97jbveu/7SNoas2W4cOMGU405Br0hu/fuohQFqzdX8NaTFUOuX7nM1tomOkmZW9hDZ3qWzuQESVqnLLMwj2UhvWbQ64fiV2uEr2TZWtCamKHVmmY46DPc3qa3fptau0W9XkfoGOVBKz1OMotUTG4E2OChI3xYr0yekQ26DIbbKKlJkxTVrONUjLLBSUiqFLRAS4/3wfBZOEfhAasQ2ND9Nj6YA3tw2YCiKCl9webKLdxwi+bUFBaLi8LGIY7ruFozRFarCOMceZ4xtAUlmnRqlt3Ts/g0QlsoC4Mpc2ItsSikrKGjBi5WxA1ZNX1KpDN4L3G2pNFOcEWO1AneGaTPyYzCmpB8llmHL4c460iTCJ1GIV2wLCl7Bb3uOr4YIA3kGKLZSfLbAxoTTbwYkGgZjLxV8GFSSpFGMUJrpIqCjEUq0Dr4Z1RAnjAVkFKtGtYFM1rvoBCh8y5Hz533SC1Cc8tLtHdhk4An8j5s53xohvgqUMP5ytvRhahySUhdQgR1oXElSkQoG8xxhQPhDJkpg4QiLyjyjEHRJx9kDPsD+v0+vUGffLhNnuUUeU5RZjjrcNZhvQl+k9JVqVVqDHaJCsBwUoArMcZU4RgibIYrSybnPco7tFREOmyKrTF4GT57TcZEcTAyL4qSYT9ne7PH/I45Nje2GA4MCIvzRQAuRGCKhYh2jzFhw1iYgloU4yswoOoDYqytWNcWqTV4yLM+ZRmYQkJIlA5Mi5DcJinLMphjq7uXcV8txhX7o6ojRmWj0gHkMXiUVuCoQDSHVjJIqlzl3ijAmBInApCAUKEelWHV94JxWpV3Fo8PZt/eV8w7Na4vR4CDlOEcPeGcw9gxRFFENhyw3d/G+xSlqpRdHYffwSKSqGpAS+r1JsZYHBZry3FNpmQwq9fCMtlsEyWaepKy3d+mP3BEKkJIibE5oizIhxpRC0CUlmCEquoPixAKqSQHDh5gmOVsdocgLKUZQlqn+viVmWi4BggR/ImAYZYzKApiHWFFhJaOei1Fyjg8E9ISK0ekNVJplI6p6xR8jPO90P61gqI01Gqa3qCHU+FBEggilVZBG4aiLDClQ6vAGvVxgkhT6nGMKS1JPQ1mxlEcwg8I0klX2lGxGQAeIdBaIUQ1bp2lKEIKtWDEFA5sxLIwEAUgaCRNREuEDSmVg14foQQ6CnLoYDYdPPXKokSpIGsVKsgZw3xSmX8LGyTqSpN7T24dsY6IGzFOClTVvDTGolQAP1Tlh+ZVRDbMw9zkFArJdr+HkIqtXh9ckMR5BzKKKa1DVPK2oMiQWGNwEnSkQmgpHj3upVYASwX+CEbhNhrhg2+Q8g4NFIR0P+sEpRQkcuR3BkZ4dBITS8Ww55CuxANlWeBzixQaG4FXgqWNLXJfYpwilhZXglGGrWFBXvrKIkDS6/a5cvE8K+u36Q/ywAAVdwDDQFYyOKkpXJCBBlahYzDsVhJyHVLytEIai7AeqSMiGfHQPZPsnp+BOMKIiMJFYEpM1qcWWdq1BsPBZjDjdg6ExiMprWfQH3JoTrDYrVEwQNuIwmdQQYMKxTDLuHbrPImyWC9QOqLVajAxMUNZOPqDAaXJsSIkxVkB0oVrlCgwxrGxuYlTgbkKHutHjXBHWQZWVekcO2fbdDqTlK5AW0v597bo/78f33dA6cmTz/DKiy+zIFNufvfb6B1vgcEqZdzgxL0HuL34Kjcuv8zW4iFuLZ2ms/N+YmXZpQqe+uarNB76JX7xXY+zP97mxaPHWV69Rmdqgabrc/3iSYxL6dUOMXnwQdYv3ODlF5+h5odM7rmXY3tnmUg9+Q/9HJfOnaU9eZhdOzrMzD3MxI6dlHvew9zcLKs3L5BsgUhjGjM7iPJVvvTV0whVY5s69+7azdlr6/zupz7Hrtl9rK1s8+kv/A0//N634YdrRL7GR9//Xr7+ra/zG//qX/CjH/pxTtyzjyiBxx97A1/70p9ws9djVkguXLzEwv49lEYEz5rKFMEUfZYWL3PtyhKyv8mn//pTvHz2BgMT6IK1qM1jb3wXszsn2aHWWJjczWqcsKw0v/CPfoZP/8nvMig6FHkBIkfXaiyvrTJ84RkmJ6e4fOks7333ezh3+TTPnRzSnt/Lf/7Gd/DsU9/ik//p/+LWrSXue+w9/PhP/BxXrlzkdjbk4YcepS6h3+/ywrPf4uvPXiGNYXU758MLB2k12ygJ68u3mJxewKhAd+5udml1JkmSlLwYcmDvgZBAkCQ0E8Ww7HPz2mV+/bd+m9/8X36Ta+uK+Qce5KGjR/lXv/4/s+e+B7jvoTfRiQKNGe5krY3+H8rBOyBEwGdGoIIHZGVCOQI+JKOmX3jF91L75N/x7rnbSBpGIEH1PV9VQSNYYfS3xUiGUP2Vu1g74YGWd/CoMSRxN6LxvaDMGK6oCglnQWjFs88/wfzcLOUw4+jxR3j++efYu28vTz39Eu3ZSd727vfzuS98mnNnT1OPU7yQ3F5dIi9yDh4+wv7d+3Gm5MWTL3H02P3cunGTtLGL9s4OhxozbG12uXjhIo++/q24Mg9JIc6NQbtwfuHzhXO8K6r27mtWyRe4+7qPQCA/ui1+XHTdAePChCTGI4CxTO577qO4AymNf388id65iqOvvvfu/x1AqvqXrJhOd8uNRgDa+NZ5xkw0X50TVVCgEBIlgmnhHYAxAK5pGiEEtNodFnbvYXljicn2JNdu3cDJgn53SNc6tk6+zFTnGm94/VvYOTfJpauLNJKTZPmQ/nCLC1fP8/kvfI5de/eyY36eY8ePo7Ds3TXNRnebyxdfZseePZw7f4rH3/qPWV5cZNeenbz/wx/hq1/+El/43Kd53/veyz3ZUV584XlwJf1uL+wyhCM3eQCF4lrYNpYZWz3D6TNn2blrwNTkLHM7drK1MeT0qe9y9dpF1rdXqcURuS3xwpEXOV7XcCanLIYhFUZGICXlsGCru8XJl15ke6vHlWtXgrmpVjTrKaYwCKm5fvkS//HsVT74oR/mC1/4AmfOnGV1ZZFby1eJYo1xls70JPVag9WlPj6S9DYy3nr0GKlu8IMPHufzf/UZZhfmqdUi1taX6W9vYl2Ctp44rnN18QqXr11mo9/l4KEjLOzYgXeWmR1T5MOMtF2n3Z5ASc3y0k1+7Ec+xvWV66Rpk5OvnCTLhhg8UxN17jm8j1a7zp9/6k+Jkohjx46TpjX27NuDFTmNluOpb3+Jr32t5H/7t/+Bbl4SKYetgOrwmIU5J89ypI5IEo2zgbHwO//7/8HN5fO85/3vZrDV5/rly7QbLQbKMN1OyYeOrWyAyw1Tk7OknRqR1txeXacsHdY4arrOYHtAZyGqmFQCrZoYISn726xfv8J0Z5JGex+pECgKLl9+lVPPfJs4rVP4ksvL11hfXWfKlkymMVdefYW99xzl7KkXGGTbmHzA/v2HacQ1VhdvYYloN6eJ6gmbGxucfekk8/Pz1KMa28Umi6srLMzv5t77H+TS1StsFEPiqI432wzXNnnp8jeh9LzuxAnu2b+X088+yeTcDLrRIkpqXL2+zoMPPohKYr79nadwWU6z2WTXwgL5YEAjaYKKSdIU70qG/WEwgxXBk06rwBxzzoekHxNi1J0PoQgSjZeSeqdGZypiONjg9vJ1uhuG1vQ8tc5UAA88ICSZKchtiTMWawrssB+AViRxVKfZ3o2IgtZptKFJRFTJcSwxA4abW2R5Qb1RC0baVuAJCVdSKaTUSFUPlHxtSJph07h7fi85BusFZtCl3dmBLYc4E4xZ11dWKb2nMzVDPe0QRQlehkK4LAtUKfAyIU1k2DhX7CuvPM6bEHjhHSUWb0N3PrTGI6SYIFISoYIXoHMlKQJvhuTlgN7WbZwdUFMxrjQIOwARGL6J1tQmE2SUIorA/ojTBCaniGoJUioSqfFaVuamQUZmcZXxLkgbJmvng2zLWj8O/CgxKCED+CdVNcd7FLoK2iBUF9V9LBzBWFgKoACvCVt5h0DivEO4Mmys8LhK/uNwOGPGm9KizHGZwQwG9IoCOxzSH/ToZgOGwz7ZcEBZlpRlgTVl1eQKDAIpPJLAIhKhxMH6gFA64cPvlg5vcoqKgW2MxRgLUmOdJQR/u8qrMRjDj8ARRQiOcNZSVN5tSgVgxzvLIB8CgjK3JElKlCg8JZub65QGlAwm2F44jM3RMkJJ8K4Mn7M6VJVgKCqZjK+S5YRUGOdxrsSWOc6F8AFjPNbaAO7JAPZ5NwLbw/hzpQvvy2gtDhtE5xxSBc+suxt/1gUQwY2aWj4kHwnrq6sSZGS+AnZjJSogJki6nLFIIqRUY+uEwIC6w3AX8rUR3HcaUyFGnSpe3XuPMyWl9xVTwOG9QQiPMRYvbNgniJD26d2osWmx1iBGqZEVkCTQGGNQWgUwqZ5QS+q0mw02t7oARFoSxXWiNDSunPMI7Sl9AP0azTplWQCOuFln754Fbq6tYI0mHw6Ch6evmHMuMAOlkJVRemgqW+8xpaOeBlaFlSEVrJbGQDDGjutlsBdyCSoSlD4Al60U+uI2bujxUUwUKUoEqBStItI0Rlf1oXNgnKJLhpcCicLoCmBRIeHVe48pwnZZieDJFsbHqIr0Yd2VKgDIRlbgQzBsD5pcEZhAo6bkqPyTAqVDlLyxJgC5MgDKprQM+hlpXaKlQ1QySY+vfIaq9nKV2EyVVIcLCX5Ij0+CvHJgCmoqIZGeUoyYQQH88j6MAe8tzkmsCbIvOWJMOku/n6N0jdJ6vBSUBBmUBFKdUI6eEVvdS+uwpgzzjiL4wI0K4MrbVbmqkT5SIAiJUmHPZawbb2ckgkjrwNIKsBmjWl14SHSEbDYZDrrYLA/+ZQR/2khWiaJeo7xByDAPClyYG2Sos0U1GFbWu2z2uuR5RiTEeF9nEVWKaCUWlxZpq8RGAaW1bBUhOCBglpKyCGNcAV5YtLDE1lLPc7Qq8brGlu2DrDHIPXmW0eoo+plAuAjrhiFV0AVweKNbsrayinExvYGgleZYE1WbDocViqs3t/BKBSmpFDSbdfbs20stTRFesLzew5Q52TBjJcqQZWCWReFCs9rNKK1HRqoCq8FLhRQhUKDwAaiKhaKeRGxsbIZ10ogAkH4fj++7KffNV7/9axvJboY3vs1nvnGV5vwEa5dPM7XrGHt2zmJ6a7x87jprKxd56oXTbPQzrlw4R9en7L7vUd79jsd43UzEVLNOp93m0O4d9IY5Ltvk1EsvsHy7z4nj95KILZZX1kiAK7fWaLY6vPj8UzxzZYuf/8l/SHt6B7/y0z9JrdymHkU06jG1WNKKNTduLLK4WdKZXuDA7t34rRXOvHqBcxcvU4iY1917hGOHdnHm5NOsbvTZsXM3vfVFTp16hZdPn+bchcusLt1AaoXWMdeuX6EeRxhV48F772FxbY0D9z1CKj3tmSlSBHbYIzclCEEx3OLcy0/wxa98ja3tPk8+8Q0uLm4wMAGM0EqzsbXBgUN7EXmPpdvbbKws0tteYnF5BTFY5/zl89TSTtCjO8/8waM8ePwE9bldPPrIozz26BtZX73NzkNHOLT/HppxTKOm2Nja4KmXnuXMxevs33eAnVPTTE9PcGT/QfYtLLB49WWefOKLtKf2c/j4MdZWVtkY9HjTYw/TTBKmOnX+5FN/yK49B1m+fpkbize4ubrKPYcOIxTkeYZSkmG3R7/MmZudJBtkRFqzcGA/x+85TJl0+MC73ovp9eg5xY/88IeYaDReAwCMDK5HcZ1CKIKcwIMMRVJoKo4KBx+gp/HXVOyeESAyfufxMYY8RswAXmuqfTd7aAwSjf/jzmtew1UJr7ub7QSB5hrqGIeUdxVC4g4w9dpDjA26AfIs55kXX+DGlbN89euf4eiRY/zlX/wx6+srJBTs3XsvB/fuYd/CLi5fOsuO+R3snN/NZq9PqzNBrBXNdou1jQ0efegxrC2JlGbH3j1YKXnr69/EU089ya6FHUzNzI1NgMcpenCXNO9uAOnuc5Cjk77r2vGa360IRONzvvv8w6b6LoYXAeAYfT2+RELCXfdg5CvCXayo0cd4TSrb+Gd/55qPa1V5575QGbrfBTqOgbXxQnsXqFV9diHD2LVVR3iUmIcQJEnMyMhza2MDheANr38jyITORAvpJYNBn8OHj3Hs6P2cP/Mqj7/xcS5evMaVq5d43wc+wK3FVf74E39Ar9hma2uLpZVbnDz5PBcuXEDphKw34NzFVzl49F4G/S5ZP+NjP/EzTM3sYn5mmlajwczsHG956zspuhlLi9fRSgStuzFEWhHFirK0GA+1OMVqT5HnbHY36A+6KKk5d+4Mt1dvEsWw0d3Ee0ckFWVRkKQh9jzrF+SZoVlv4bxAR4paGkyWrMtYvHmd7qAX9PW1BkkcgxNI5xn2Sw7s38/Hf+qnOX78frrbGzzy2EM8+d1vEjdS8iyjlmrwVUrc3BzeC/K8INscsrS0zCMPP8ZnPvs5PvzxH2d+ap4r569x+J57eebZp0nbNbJhH+c99UYLpTWtZpsD+/Zze22DEw88SE0nnL50gUN7D5Emms5UhyP3HaO/PWBheoaXnn+a++45GIBfm7O2vEKz1SYvc5544ls8//wzzM/t4Oj9D3LyqSd5zwfeTxRL1m4tsffQUXCeWrPORHtqDEobY8iLgpXVFUyZk9RqaB2xtrpMrRbz4R/9UW5cX8SbgnYtwlpoNxOK/pBWe4Isy8mKIXFcQ8oaxgVDUGck671tJI7ZyRDFPuwPqDU6JFGMlhIVxeTZAKU1tUabRnOSjdvrXD5/hka7zv4DxxFFn057ljMnv02jVqfemUYJzVBJrp5/lUgInM+5du0cUS0lGwzQUYJSkrzfJ0k11y+cZ2KiTWeiQy1tIuME4jqT07sovGeQ5dSbNdZuXSff3qChYGF6iu3tLdJaTK3dZn19gyRu02m12HPgCLHSXF+8QZFlPPi617G0vMba+jpSCDrtCSamZ0jrdQrjqNcaxGktpIoRzIBREUlaQ0cxAhVMgivz3ShKkDoNE0Dl+dDqTJLEdYpiwEb3NllvmzIrSNA4rymHfbZuL7O1cgvnLDptkDQmUXGtmr8kxnuwHmcsGIfxBJ8DW2AGOVFcp9mcIU4bJEmTtNGk1miT1lvEjSZRnJLESTAFjhJ0rCi9wBUlWiickuSDHlm3T7/fpSiHxM02E7MLJLUWSmm8N0FK5m3YkEVpSP4aN0hU+NqXuNJi86wygS1R3uJdjrMF3hm8HUK2icu2KYt1inwLmfWg3MSUQ7R0TDYbNFtN6q06zXaTRqtNZ3qK9vQUrYlJ2u0pWhOz1DqTpGmDtD2BjhMiqQk6WgVSVJvbwAYKgElYXxyhc+sFKB/YJ05ULA4gkuEb0od121Xzd+hyCITzeGsCyGILbOkojaHIDSbPGQwGDLa7dNc3WN+4zdryTVYWr3Pj2hUuXjzHufNnOHvmZS6+eopzZ05y/sxJzp87zdUr57l49SK3Fq+xsnqTjY3b9HpdimyIKUM0t6vk4cIHWWNpSqwpyfKcQZbRH2Zkg2F4TZ5RZkNsUWAKE4ynnamMc30FRlXnNF7bZJCjjywFRusYIanUjZduUW2uR+u+I1KaSEfoSFeuDSUChXEGY21Y131gCDnrxhtlKQMI6qwLciQXgG1rPUI6uoMheWkrQ2tRxYEHpkzwPlJEOqIsQ+0cDLJDPSakHJ9DWP7DmFA6PL+IMBbEiIWkBFJXaYQi1I9jhpKEqIpNj+IAPkutqr8VwCKtA6A0aqQpOapDAkg1CpKRUiJluM5iNLSqGnLEnIbAXBrZKngffJgcFcuJIIF2PoAgdzPDR7WWd6GxJ4SrkukUzUZIKRM+AG5xpAMjD4cSCiEdaRShBRiyYDBOzESrRavRpNVqsW/Pfh48coBz5y+TGUvW76JkADmEiO5ItcJFDYxOKSmsDcxBNEhNohXGlQyyAQKBFI5auwAtkTLCUlBrdNBxDYwlNxmRbKIakwgZ46xAiij4G3nGxt/gUcsezVEAACAASURBVN4zzIchxU9V98mBjiWxklgpsCbUNImOSbTCG1M1p0dlZADnhZCYsgLMhMSUdsw6HIET40apICTEKYmqkOgAQobDVTW9cVWAzkgmSyWjrVj3dgQkQfWsgJOy8uIKzCakwjtLHKvxTBWA1QpckuGZM6UlG+ZY50MCpBAYW2CdJ0lqmNJiK1N7IRRRGszJrbPY0XjCV/ulqs5XoaGgqnlgBIR6EYgRqhqfUnii0XisxrV3HmcdKlJVDT1+SsYJ3JKQzKikCsBWafBVUlocaZIkpSgt3pZhbZIKpMN5QRpH4XmQAZAtCkeWFzgHhRXkBjLryY0jN46iNBjjGJah0aIEJDrBes+wqNK2xZ3n0hOkmlIKYqXZGghWegXGOhoadjQSFqZimkkgQCil6OXgvKSflwhj0ErjPRTWkOeWRCtcaWimgl4es9o3aOGJ4ggdV/tBASqN2LtrnkYSY0qDKUqGwy18meNKwzDLsWVBpCqVjYFeZlCRQmoV5hQZ5k09BpWC314SSUxR0hv06G0N6PaHbA8LfvmXfuF/4vt0fN8ZSqvlAu98U8of/Mt/T7T7IR556CG++fllXr2+wtH7jrD/3kf58R2HOfX8N5m99010GjlnFofUl5fZt/ceUpexvr3N1Ow8k60hWWk5cvggynaJ6zWeeOkUK4MMkTlqzSZZc5J2Y56H/rMP8pEGnLq1wczkFCmWJN8kbtRZ2Vij41tBctKc4M3vfj8HHtpECFg8/V2+8cI5NrqWLHd898knYdDnsft3snhjkVLMkcaK7a0eJYqiEDiT8cq5C8zP7SaSnrzW4ZsnX2XP0SbODOhnlvc+cpwbq9dptSYpt5f4iz/7IybmjnDPwd2s3rzMl7/8t5y+skJcq5HnQwrnsQ4a9XroluDZ3u6yNtikzApezQtur67ikgY7d+wiKwVb3VUSHdFpT/DwAw9w7/7dzEzN0NaKmpIcvOcQmJLV1VsoIVldu83+XQd46+PvxuvvcOnqFWr1SQ7u28nq9iILCzu4fO0sT585x+viOR49sp8X2ylT7RrPPvccD9z/IP2sZO7wceqtNleuXqAsLZl1FLZEeyojYkeeF0xMTpP1cwaDIa12k0ePPUivu8Ub7j3M2tI1du/axwfe8z6mOx0KU1YLlKsKGndH+gYwBo5GIE1YGu6QR0Z8kQoFH9G/vb8DFlSgw523vBv0+DsgxGsYNiO/nDH2MGafeB9QeTF+/WuBlJHGfHTISvMeCiL/mo/wvaBSBZcIqNVSDu0/yM2rjkG/y+/8zm9SGMfLL77AlekGHznwAJ/45O/TSZpob7n/2HFur20wMTHFvj17iYTn4Ydez7efepILZ1/lxrUUpeHIvUc5uu9erDX0h306zTZUvlEj+vj3HqOiZsQsEncxdu4AR3euVgUYETwjBKJKb7j7vEdU9cqMfNTZuAvQGfU5RvTb0XcFoSCsmqyMxsWIbTQCfEZvNMalRn/7ez6/GANUYgQy+uq+Vx2bEVA1eu/xuKj+iNaaoixJk5iiNySKo2r4eRr1Bgs7Fpibn+Le+44zNT3H5MwEL7/4MmfOvcRPfOwn+Re//q/J8y0+8Zd/xj0HDmFcjkbzpS9/kcIO0V6QpkF7733wZFldXyHf7KJTw3B7A6ElKknobW8hpKBWq5PELR44foJvfPnrnHr5RcpyGNKdKiNQLyOcEyipsM7jNZS9qhMtJYPBgDw36Dii2x/Q61+jnw1DslAcIXSINC+GFudL0DA5PUmxtBqMsbMh3kIcp6hGDakU3c0BswvzlIVhY3U1LHymYGphhkFvQLPT4eWXzvD2d74ZW3hUZJBK0C8sqjQoUfDIkeNcOneevJch64p2e4rl1VWiFM6dPsXW+jpH77+P5ZUlknaNtBbRanTwQnLg4BE21jY4eeokDzzwIDjHxbMX+MxnPwuR54lvfZMf+7EPsbHc5er1G5x68UUGmxvsXphi38EjDIanUKpFlGhWVlY4f+k6690N5udnee6lp/mBRx/lB9/3fqxQNBvTzC0coNVp8/S3vs3r3/Ymev0eaa3OoN+jKHKiKCFNUtbX12i2WhALJudmeGzqTdgiI5WaUkc0pzu41Q0manUG+Ta6rinXPMOspO5AlyXKQa1ep92aorO1gZaSje4aO3fuYphnSBmTFznNziTZMGM46AOa0kqMsdy8dolGq8m+g/dx6+ZNllZvsLy2wcRkmzLrcu7ks8zNzyMLha7FlMNtLl+4SVqr4/ICawp63Q3WVq9Qq7epNdvEWrB+e5m5hTmuXrlBe3qeOK6zubVGpzPB+VPPs7F8A/IeC3PTHDt8mCSuc+P2BpurazSmFYlMmJyaJI5TlpaWyXt9kILpySluLi5jjaXWaJEmUfDHGnUrtadfZJQIEh2Rxil5WWKMDT4UgkrqHOIXnPG4oiSO4sC6CQIBbOmAiEZ7gmZZsL52jeWlW2RTMwhjyfIe3SynUUspbY4yBUmZoyJPpJKKracopA9msi5ITYQrKbxDNXfghEASOp0h1EGAl3hjQ8x3Nfd5V5kNW8F2b43t9S6dRg20QMYRMtVoXyfxTaK0jvUWW+RhIyvtqAeDEh6GBc4LHDnSWzwK6TzeFgyHfYbDLrW6pp6G9CCUDUwXIVEK4iRI6kRUq2QZEUkUzGGJdCUuCwbjlopNNF7nfJXa5e5Il62j9CGUS1TMV4dDqqoTP+r4i1EwqBxN+TgRWABVKRCkh85gvcQbsK7E2hJrApBrTBaK+Cwny0oGWY8sK8iznDIfYPIB/TwPSWdFQVEWYY7zFus81odtk8QThcQSvPR4Jyh88FFytko4cibUN86F++cDY8L5sGm0+CDBwAWplhSExpYjEhUm6UD40ERzvgqWkmFj6GzF/CV4AzlrAxhD5fnoLaO0LokK8vWK3W2qmsPjEM4jkZTOkuU5cRI2KkmcBuWf13hnMd4FxqMardIVu9qDlsG3SEea0pTkRYmSEaUYpcMFGaBCBMN4EdKZtNIVWBNkax5AiuCvhB/fZ0ZMclExdmQAhkZ+PaFeGzUDfWA8+PBiqaqHC4dSEm8FcRwhtcLawAgbN7OER8rKpLti+Uilx40xARWjzWMrxtoIyGMkmxI+mPvaKmZe+BBrHobCmC3nq7oVISt2b6hanAueUEpViYhRVN3rEKRijMU7iKIaxpZYD3EcI71nmGcYZxnkBdb2KKVB+BYx0C9KlK9ResfszBxlkbG+PQix995Tq9eIIirz9lqohxQESSAUeUEc13DOYktLWZYoJSGpoZRHYLAmx1uwoiA3BaKMkQwxqiBNUurRDuI4phQCYYaYyuzeC4H1Fpc7kkgHA3fC2A+130gFEBh3VggiGdKntZL0swGIEE4hPONxoZQGIbEmKBvC+1Vjyd0BB8cV5WiMyQASaar7EoWaPnMWrTWRiiidZ5BltNKQCKej6A64KILJtrPuzvuLwIz0QiFkOL8YjXEF1geWrHNm3G4Nj394rgpjMD6MRy3C3Bi8Rz3GB1+jwISVFVCksM4RR4phno8QzzBMERTWEkuJ1hIrAzg5ruFt+Pw+uMQjpcRWSdlQ1eBCYhEY54mUqhJKTfBjciHRETzSBXCuXk/peyiGOdI7IilAEhJA8Qit8E6AilAYfGVEr9FILxgUOaULXr5SCKy4w6CDkABYyLB2YmFsKu59JaUVFK5AaY0RgkiA8g7pFaUQ5F4ylAnXtmG936cZD9gzUUMnCuFKajailgiKDLQQGB0MyYUXJKOxUBSUQtLINAZC0p2KiVSMtyLIa8NdZu32GivLq4AIjd2yDD5XzqO9pd5OcXlgUnoBU+16uCeAFArrHaraOwkqrz4ceIsxClFJLaUKzZbv5/F9B5SOHt/PyqlvsOPgg8xen+Dtb3w7++dmyEWTyA+otyZp65LBrp1s0CDWLd64sIObl25ybWmFY/vmePGVVwiE3CEmL4lSQRol7DxwH4+097NvbgfDrdsk7Rn23XeC/totHr1vHztTzYP3RQjTo1ehjjevn+bGWhdV9Mgyz/T8PFOtNjtm5gLaPLhJbWqOvR3P2fMXUN6wdOM63xquUv6/zL3nk17Xnef3OeHe+8TOQKMbuQECYACTKFEMoihK1EgrT1hr1qnsXY+95apdu2xX+S/ZKq/Lrlnvjr21OzOeVDPSzChrRhTFDIIgQBAZaACd4xNvOuf4xTn36aZGfrXzwg9FiOh+nvvceM7vfH/f4Gp0+13urG0zMX+EwWCA3dykl5dInbC8vo6JW/ynv/Ff89SRcdbTkqWle0zPnqBMd8idYqxRZ3ElZTUzXHzzb7j66UH0eItd1eLAyUlq9RrD7ibWWnrr6+Rl6k21tEaWJTubm6xsDGg2Y6+fdgPWNjep11sMh7tkxqBlxMKx45S9Df7248ucO/sEX37hJa7fvcSRQ8e4cvkizzz3CnfuPaBVn+Kpx5+mNT7Bw80tDs0dY25ujtJabD4kKxTPPvsKZ0+e4Odv/ICJsTFWuEtfxExMjpENevzWa1+jyCzPPfMci/cfoJImCkVRphRZidaaja0NDh09RneQMTMzTZ4VDPs7vPnWm4y3p9m2OadOnSFWfjAOjz7CBmpqmJDTLKPRaMKogAj0X8TIDLtaxo+gh31gQ7XM30dD2QN9qiKgeseoKxtQ+up77B7DpUKyRSgO/AfEHsCwn9HDnpTLf53AWRGM3/b2fD8LaN/Oh5+40cLh6NxhzLALpmRze4csF0Ta0ZyeoN8fcvfeHQrn/KBmvDFns15ja3OdrY0V1lfXuL90n/WNNSYPzHNkfp7z558hThKUiJiZHOeTTy9zaP4kxpk9xlG1V3uVWTieClSr9t2OPJ9GgE8AZVx1jYQYdXH2s51GbC0xsjLfdwV9VWiD9G3v8lbAzi+/9l3zz8QIf+Y/RkXm6O2fvYv29snt+6TbB1nJPXaUQFA6g5Y+LrhWj6nXEx8HLHzhIYWn3kexpF5rsrndRzqNlhFH54/RUDW+9vpXGW+O8fpXv8Jbb/2Ufr/Phx+8S1yrceH999ntbDE1Nc6g0+X8E09QlobLn1zEYXiwuMRLzz/DyXPHmBw/xPGFExyeOw3S8dTjT9Lv9RifbLOztY7UloWzC4y3Nffu34Rajbz0nd3SpAhRgNQM8wJblsRaI5AUecmwTNFCYkq/SjMueFFoB8IS6Yio1SYvN0kSxdrWOv1hyli7ibECHdV47NHHuHH7Jr3eAGcsKw8e+FWS8N06pSXLq6u8+/67fPzhRa5cv8ITT52l2+1ysD1JLyuJQqxzv9vl8qWPGXa7zM/N056YoNfP+P4Pv8PU1DiffPo+sUx4/MlnOD01xvU7t3niidPMHTzCxcsfESnFw4f3sFJx9+4dTJpx6fJl7q7c5H/4Z/+c7m6PXmeAzTL+3f/1u+zsbtPvbyJlwd/+5G84fHgWpOLEiUe4e+82i3c/xZiMyelH+NKLL5AN+whTYIm4eeseSWOKDz+4yGDYYXpyihvXPmViaopWq0lSS7DGYK2hVkvY3FxnbnaOMgNjLGVmGAwzBlnO1u4uwyLn2ORhJutH2e0O6aRDuv1t7Jrm+NGEqObodPxYemhmns5gg8gphFBMjU2QZxlYw/j0LFM6Znd3g0QmxHGdLM9Z31hma1eRW99IEUpjTcEXXv5Ndte3WVm5z80rH5DbnDztU683wDrSQYd8OCSuNYiSCFUYkkjS39kEV1CanPfeegsVNZgoCk6cPsKgu8vyvVuMj9WJhk2a9TqzszOsba7xYHmDOGlQ4mhOzjJ7ZJ5Pr17h7ONPsrW2jbU5loTZA4fopylJYwwV+9hq5yQaH82e1GPSLCPPcyKp0XHNJ+1khY84lhZrHN7rUASGBQhhwuI/p19kmCxl2ElRuqAZ12g2p4iaITU0z3FCo7Si0WqjdIyMNFqCFuCspbQpOmmgomgUMCGFr3eljnxsuAgMB7cnq7auxFFiCoMzmZ9PnO/kpkVBf9hHNSKSZtMzB4TD2JIy9wVl1t2kyAbe50MrrC0Q1gYfDINwAiMFQpRoabFCEkmJloKWdtjJNlESEWmFUj7tSaK9N4iE4KCMCwsRYb3Zb+S8WMziF07G+ZFWOetjp9kLRWC08HJIYdF4U2EZwJOAdiADEiadl4h5KUwJDmyZYQpD6XzKUJmnXlqWZqR5QZEOydKcYdony1LyzDP7yjzH5IbSlBQ2x5b+vElhQ9HumafW+K69CZJtGwyhsf765gG+MNaQl55fUDqDdj6qXgs3SipVENgGfqZ3oqofqkCLAE5RMQkc4aR5UG3U7ZCVmg1cVZ/4laI3sXbBayjAXs4npIkAHrlqXgvzsApghnEW4wzDNEWpBj5v13utaK0ojcCW1pteO4FWjOZ/ay156c2YB8OhN8gWUBQZ1ngQTOLZu416A4DdXg8hBEqG82EtWmtkMC8uytInd1VgIWGR67wwRjrpk56CgZlwLhxrOB+hgSUDq8ifVw8mOGtHTBIZmpCeTWKxJSF4xTPepCAkNvtaSAYwwlj/fVprhNTBD8qNGFQePAoyuOr8u5AGV/lwBVmPrQCmUbvKeRAMSRRpavU6aVoGRpehLAxoqNUjhnkKCKI4QbgMk2cUJvdm80Xpmf6uS6kTjEyoxePESnPi6CHWt3Y9UwcXPIoy0rxLkowjZYL0lDScdWR5QWk8MFmWNoBq3ptH64hmo44te/SGlmJYYGxOZiyJnvYsPFtQa9dIVEwtSahZTaRjBv2UvEgxAWiTolIe+P/X0oOMyru64vBgkhSCOPx3bnIslqyw1LQONX9gtwV4RlJJJMXoeRAqZAkEppvxBmm+HpT++jvnUMqzyJI4xjlBURoPkoc6t5+nJHHk1zVhVRtWD34d4/bWHiJIKKULQCOWWGjSvKSV1Px4YCsPLjybufDMGROOZsRMFDLMFf46ed8mFQyypcdWXCUPLcN3e1DfOUlpgk9T2JZxXuqrpN9PKTROVOnYQdgmwmqlLNE68YISIFaKvi28bE3iU2eFpAgNARVpmq0mUsfYPIXgBRRp4Q3JXYkgsLRKEJHFoUmC7Flrtdc0Co1pKb0znsPRaNaQkQYLg/4QQREYrqB0FEZVByJCCX9fKRn8lJTGYsBYSiHoIVnfTbm11kNHDi0UhXMYKbCloJFoXDyGNQbjDNLDjpjge7KZ++GnXU/QkQx+en7sF86R9nMGgyI0Tvy85p0TjW8m4XCl9y0zWKSKEM6DdD4nVCCk3hc65RtpSO9l6x3pJDpRni35SzLd/9DX3zugtH3/Jp/e2mTywDHE4hbpYMh0o46xlpXVTSYmx+htrHDn5qfsRnO89soXuf/J29TGj7GyeJPbkxkfXvwQ+fEtpg4f5fDRY8w2IDOKhYVHmZ3eojCS1pEnefyJ8/Q2H7BqxsmW7vKg0aLRHqdZA2XB2JzO7ia/+Nsf8S4xvUzw3PMv0h6bYrLVJKlHnD55koXD03xy5RZxlFCr1bi/ucXcoy8jb9wjmjvMr33j62yv3MeWOe/+4g1E0uTs089hsg4kbc6fPMKU6NDv9Ll5a8j8kaN89PGHPPbUF+hub9CaOszv/Bf/hH/zr/9Xbiyv8vmjx5k+OGR8+hCT7Qb9jSVu3L5LEcd0O11UrQ5ScO/eXW+QbR2dTk6j1WSYFohkjGc+d5ILly+R9VNmJ2dIN1e4efUjuiUeGW8l7PQGnDxxjgdrGzyrEu5fv8TM0fMgYXLyINOHjnJgYoIkisiHOXluePqZF7h2+x6nD8/xv1/8gPn5BbY6Kf/9N77BYGuLvMwZ4h/Eosw4fGieOIrxGnBI6gnDfoe1nU0On1hgbKyJjnzx8u77l7m7tsXxOOHcY+cR1vd706xPnqVIFRFHMcI5VpaXSOoJD1eWWTh5mnZ7jMqDp3p9BpipPI5GgIPvPIlRGTYqVz/DBKogp6oTth8Aqn7pv8eFVIXww6qBJPZDUr/E6PEtNapu2h6bZ/TLvW1/5oPVEewVL0urdwHL4fmjaBVhLGRZiZBQ5AVXPrnEkWOnOHHiJO9deJel5Ydsrq0xN3+YRMd0e12WllfpDXaJI0VjrE77wDS1ehutNDu9Dg+WVhgba5KVaaA3+/0f7VHVravO5giXq/hZhIJ/35HsA5aq4nYExFVFUrWK+Mz5rLbri0I/VXlA0HsIfOYkUxGehNj7WVWC7e3P/v3ctwe/zHgSeyDXyHo7FP9idPS+iHTh2IR0lHmOEIpBv0e9MYmW0M9T752m8MV3ESFQtFpj3Lp1k3Q4JIp95H0tbnJgeo4rl64gjCWSMZHW1KbGMLnk+vVrHJmf596DDNG0HJie4fiR42xtbLK5tUFZFiw8co7jRxcYDAe8NPEKExOHuHHjCnGcMFQZJ06cgOPHOXrsGDdv3OLD7Q1ipXj6mS9w4dJltnc2KIvcyxryAkRCs15HC8nBQ9N0djPW1leI6gqLQQhoJAk69hLNyCZkhaDIhyilMKXxnhqlAQRlIRibaHmGQl5Q0wojDaWxTM2Mk9uMrDckqcd8ev0TttbXuXvrLqfOPcJf/eB7nFg4xmDQw0tgXaDfC7a21sE6+mmP9bsb1JI6veGOf15VhIzH+c5f/D5PPvEUc3PzbK53yYZL1OM6N29e80VjnvLO2z8n0RFTB6d48eiLNJIJDp05xg9++GOmD8xw5/51rNLIMsO4HOU0xxdOsrGxyeraChsbK5xYWKA3TJmbmURYy8zMJINeD61rfP9732Vrc4nZuSOcPPEIn1y9yofv/4LDR4/z/AsvcWjuCFmWkdS8nGltfYX+oE+90eDSBx+ys7PJrbv32NheR2qYOHCI6WNnyUXMzvAmhRkwMR6RZl26/XWMi+h0HUkySbM9Tnu8zvr2JsLB/JGjrK5uo7Xksc+/hrVw99pFNpfvoHTC7voaVjqG/R696xeItabVnmCiOc2wN2BzfRUhBGtrd1BaUm9McfDIAubhQ5xL6Xd20aYA56g3Jmi2arTbcPvmTTJjKIqS1phgONjmygfvcOrEKdLdbfLOLmMTbcbbiqTe5O79DaIootEeIxlrYZB0BhmN9gQfXfyIznYP5QRxfYLOTs65x58hMwVCOOLIm7+WeUG32yFuNBmbbFMUGbtbm3Q6Qxr1OpHSCO0Xkz49zBdpEoVyElyBsYbSWhQSLSOiyQQhLYmMcUrS0AIpNdZB25QIJ3EYjIPSZjhTUpQ5trAMi5RGcxJZ1knxz0BURihP6UA43wW30stHBJbCFKT9HtnAA0IKCVIjnQHpu9NTzZZftKQdclOAy30aHHgz37Tv2VKNmEgkEPmCM1ESpWOEjBCRRjmHjJWXv0ntjZ/xQISXTrnRIkIEl2VhQ8fTeUmadiIYNUvPwrDeoJYAiihXdeoDkwd80SzCwkuEGdWviXxaUVlirKXM/QK5zHPyLGeYZ+RpyjDPsFlOlvUZ5CllkZFnJXmZYvPSJ5GVBUW4L50TWOGQrsSEecg5uUd6cZ7BZZz3+zO28I0sA855Zo6tQB3rUPjtGeeTrIwJQNo+Jq8VwasJ3yRxI9DAM7Z8MmqQpwUQQgjnfVcEfrXrGIEU++elqhmG8ClQlVm4FMov/Fwly6neJ0ZNoAqgCZN96HBXUJ9nZjgHWVF4CVvpZWAqkt743ASvkrAPzkcckueFlx46fFy8K3EIbOkQOqJZb9JqaLTU9Po+VVBI6aVMLiRYAXFgHRU6J7eGUUgKLrCtRuiQ30bwoxOjf4M0z3q5UFWuVKx2F4AWY+xoAV7J9/YaZ9L/L7BUfGqvCMAeI0ACEeQmsmpAqsD4dlg/Ffp7P9zgovLRkwIdgCw38uIMXqLSecZiYLV4c3CotZoIITCFJql5uZ5QgnoAIYT0aX2lKEiLjEQmRLKOYUisgXiIKSWFsEy2x5kba/HenXtIJenv7JCmA2RZksQ+TCVWmlocI4UjzXOyPMdaR2EzrLPUoiRccwEU5GaXvOhSGocp/DMXiziAMhbQ2LygUa+jZYQTjqauEamILNcMU+/tJOzogiGlIIkTlC09I8dpz0gS/pyUWKIoIjc5wlpcLr33UeRZSR6wDnWecCOGh3WlB3m1QoU63wTgbGRwEJg5WDNKNRZC0qzHdAep9w9z/roVpsRmDqN95ayE9+epfIosYtQw8Ifmr72urr0UCCu8EXesguQN8tID5caE+54g6VReSiYKv7aItSNT0gN+0t8zMtKIPAe8zNOFZEQvs2QELJWlQUVe3idMBcaGdY+sGqtmdC7942ZxtgSnUUr6lEehSaT3vKxA1UpibQUoNFpboibkEaPnOpaSTAqEVR5ckhq0Z5ZJ5RsavjES+eeBkNkpXUDo/Tlo1Wu+eWIc0hoQEcYI4kgw1mp7mT7epFwIDyIqgfdEkxJcySBN/bFL3+QQTtHLjAeShcRK8KEaHrBBSZzQAdDW4Cylc4S8QRItQcY4l3vPwZEPiAd6/Fyyz6vKKawURCjCg4BTAkUM0lEXESby6edChZAJh5f46tinTzqHDmExkfRgdaT/fw4oXXnvPdLmApNylVdeeYVIZAxFzPR4nSLtY/Iu9bpmeWsD16jz0TtvkFs4+rnjHGKV//sP/4ADMwf59Mr7HMkKNtaXOHnqWR4/f4a8u8ZwmNMcm2Ky3fSJDfkWwxwuf/wRY8ef5IlmHZtCva7ZfXCbtbUlPr50kW7ZwtRaNOdP8eTpGht5j91Bn2F3nc2NdVbXtyiF4sDCozx6/jG+9Ng5VH+Lnh5j++4l7jxY4bEz55hq1yiGmjNHZki3cu5u7rJ29xrvXXufeyu71MenOHf8EBc++piXlrZoTE7wjVdeof/gIhP1Sc6cnCGJI84/80UOz0zT31jkwr0BJ46foiEdG1u7HD11jnR3ifX1HTKbY2UEheULX36d21c+pN5o8vpr3+SpJ5/m0oV3ePhgmZ/87Q9ZW91AJTWeeOJJbi4t8c2vrutXtQAAIABJREFU/BpJHLNw9gkaseBHP/85X/vNRzCrqyycPkcSKd811ZqMjCiKODY3j1YR9+/fIjNgpaJZb9MUkjRNcUrjyowb168wN3uYeDKh192lKDPaY+PUkoTFuxtMz8wyNT4WugkOK2D80Dy//fhzrK8scnBmBpMV9Pu7rKyvcOvuXR5ZWGDQ2aG0lgsXP6R96ABPnH7cewL4aLeRDK5it7hRBbX/5TtQgdPkuzqigm18t0+MJhAzmrCrd1fgUoWa7AFQoWoQMnQRfUE8+nWoQkfyugoQYa8DsY8ctQ+YECEJKHxL2J4MC2aAoixJ85SV5fs0Gw3KbopSlomJA8Q65s0Pfs4zn/siY3GdtNNhW0qUsKyvr+GEJG7Vcf0+SZxQlDlHDs7yH339m4zVx5BSstvdZWtriyefOk+eFSRx4inYo0k/HD9iNKnsl+tVbC9cRa/87Hnbf732vKNCoSoYFduVKbGopAsjcGiPBSb2fecIigs75PZO7ghH2n95+Du3yme359dD+wrzUHxXxSKC0aRurW8vSKnxanTvR9Jo1YnjmK3tTSYnxul1e+zupmysrjMzfZDhMMWWJQ+Xl7lx6xonTy6ws9Ol0WigEPzl9/+K7c0H3Lh/j9e/8hrPfu55vveXP2TxwT3aEy2yQQZWMTl+gKmZOXTc4sUvPsrOTpf337/Agcl5Zg4ewhkfZeysYjhM2dre5eiRw2ysb7G2sk6k4NwzTzNz4ihSNLD2MlmZIpxBCcXB6Qk2tneRShEpSyQkw0GfibEGhSto1OpIAQenZul1u55Zg6PMQTpDs9Vg6uABlm4/HBmYIksKm7K2tsLj559g8dZdGrWCflEQaYmSCWaYUuSGQafDThQRNRVJU3Lv7gOmJsYpbImKfeFI6ZcDReGTjJrjbQaDHbqdAY4SEUckcROwpINNuoM+9+4vsrG9xelTp/hHv/kPWd/e5N7iIg8f3OPjy+9TjxrMbMwiEHQ3M77+ta9x4cN3uL/0ECUFw3zAs0+e5+bNqzhjebi8SjroM+jvUGu2ePKJZ1BSc/z4CS+rs4osdzxcvMNYS1NrTNEfDvn48gW2t5Z55dUvsbm5w7XrV5icPEBRlpQ46kmNqekDbK5vcXAu4sHSQ5rNmNXdbbZ2tzk2f4QTp5+kMXmSpetXKI3gxNln6a4vkW1sst0bst3v4izMTM+j6m0ccPjMs2ytrVNv1piZfwwDNOozLC3eZenuHfLeOu3jU8weOkKeDlju3GSYdmgfmmd6ZpZyaPjo3Z/R722TG0djfIw4amJKSWPsIGP9Aqksg94AAmCQDjMEhlpI4Il1QVIXpP0OebPG5tIiM2NjTE+OE9khOhas727RGRZeApHEDHLL7kaPWr1GlneYmTvCzvYuE1PzFMM+jfoEpYHUCJJ627PorJd9oCQqaiB1jSz393cJ5P0eAokeq6FqGoqC3BaUxmAzL4WLdEQtaeCERkYREQ5i6xelxqKFxlgRfC18DLsMjpkKL2WPhAFKv2otLXWTBXm4N9qVrsSUPUpnKXoFaS9lbGwcldQQpaNIh6RZhyLr0uv1ETKi2R7zstfQgXaiQCO9MbZ0xHWNVIIk8gWlkhIt20RSIiLftXRShZQoiIUK8LnG4oKc1iKk9MwJfKNuJJsKc1fl02ADq8VhsU7hXIFnjIRx2fpFMTJ05wFhHZQGU1qcMWSlIc8zsjwjTwvSNKPIUvJ06KUNaUaRp2SZB4vSIsfkPp7elZk3tnUOZ4uQYBNWLbIy6Ba+xeP8at6zpvwRG2u9Ka/1NUFZ+kaBK62ve5wNi0iLDP8IWcnz9+T1/gz4uUwJ7wmXO0GsFNZ45lskvLeZwLO19rNhnfMMggq+Kyvmr/OSJ0Z+Jh7ksBaUqton/txWflJCOA/shFlOehTLz93VolCGOTrUOzYAhdKJYK4dagApSLMM8BK60hji2OKkZ1Rq7U1ghdwrn8pwvMI4nCixTnhpoPAL4FazRbvRQAovOc3yfDSXW2v9YjfM+Sp4OsZaUubOn2VX4V8hkSvUcs47J4zY7AIPADkZpCFKgFIBtPPSP0/+8N4wxvlnu/JTlMozDRweJBLB/6hCBpWU2MBE00G3JoSX/HifpAB6eTTKL0RVZaLriEU5kvc7KyiNJdKxv2ChbpQyABGVt6N1pEVBM/ZR8c4qhA4eR0F6JKwHYa2znnGmQGqBNg5yR6vmKKRAxhM445g/OIN0sLKxwTDtk+Y9v0B3lUTM0K5HTI9PUNqS3jDDCUXZ7VNklmYtQWhB0bPURYRzhqwsGRYWUwriqEZRZN4MXQqcLSgLSz6wFAJkElhG0pvS1+IYgCLPgyTQGygbHCgPIuhII6wf81RYbxhjaMQJ9aRGr9cFLTFO0YjrAcyz2AAaO2HD+sJX/7pKzXNQOOMZUMID+N4g2t9zSiuM8c+SMRYVS1rNBGMkvbwIFaPCWkduvBxOyuC5KkfubQjnx0jhHDow4wQEtrghiiMGeU4iYwSePVSU1t9LgRmn4wrgdB5QMIpaHDPWiCnynG5uPPjgnE/JC3RYJRVae58tKfaB+NZRuhKUN9eWQviUvlGpbQKY6kbrHCkkSEeplQfmVOTBI1MS6xihFWmaYoVnP4nwj5IiSKEViY4oyxxjDJGWtBoNHI4ISSkEsuH90v0haB+wAMRxQiSUX5eJAMZW42vpxyrhvGeaC4mYWiuSuAwgjfdNqhQjwoW9E4zGAD8nCoSLKBVIF/nUVOcHVhXmRRnGUg/0BS83gicu/qZTwcfNaO0DNnAIFfl5SmmU0mjlGaAqeCNZDJGMvM9jWaAbdYRTOOlIkEgtKbMcJzwY5d1DJFEt8vNBaYi1JkoS0mEaPJb2L+L+w19/74DS9978lG//j79B7cEOU8cO0zA7bBUF/d0+D258zK2VTaJI0B2W1Ow6V7c3mJw/wqHODscfnaPf3WHpwV3W+hGHI8WlSx+T6UNMjQnyLKM+Nc/4RNtr6q1jrD5OTw84OneQnZ1P+dEffw+h6tRjxVauSZKSrqmz0+ly/Pgj1MsOF957m7mDsxxfOEOkYas7YJi0Of/0F3jly6+SdG5w+8IvEE7y6PwMP/r+n9JPDjDXK5DjhzmxMMulD99lq1+gJya48/AeD5ZXuHFnhZMLksW1BgfOPEV7Zord5Qe88cM/5Tt/+adsDiRxFDMzNsHh+UPYzYfcuX0TKxRRmbGxuUFrfJzjBw+y6Xo4Y1ldz5g/9TiPLCzw+quvcW2qDuMHINthKhHMzR/B6pj7Dx8iM8Pq2gonckNiBvzoB/8Pv/7Nb3P2xAKxECw8+RKPPPIIg/UlOpvbTB2YwLoYJcHaEmt8ROrBqWnS/i5PP/kcC4+c5Y3dH7Oz2+X0kUcwomBlcZkf/Pg7HDv5OK+/+mvcufEJK1sbfOmlL5NEdYrCMjt7EOsMSsbB1M1x/sxZMI6aPEJNGD764E0+unqdY6fPIJIan1z7lLfe/gWnz5zj4LGTNKYmOX7iFLUo8gXrZ0AK9gEdIpghQ4XMVAZr+42X9yCj6lNV9y0AJWEA2vvILz1sjj32iqhMK0OHT3iwq2JRfVZMR0DM9+37vn1zlZBV7Pn1+D/8oJ2mQxr1BrWozk+v/Dl5DkILokSAKdjd3uKp88+ycPQ4P/rJXzPobJL1t2i1xslKTXOsTVxLMGXpJ6xGky88+zxrD1fo1HY5efIUM5MzPPXkeeYPHQ2dyVCgVtRmqq5mNVD7osZWAFz1EnzmOH/55RnDVc/zV2GBoRj7//p8+NPbHti9DVSglN0Dg6ousxN7YNBe63l0Sf05r/4+6i7tTSKhTPffawOlNkwSQgSqdWloNhtIKSnLHsNhSq+zy+TEON1Ol0tXrnDlk4scPXaMetLGFo5ed5eV1RU+99zn2N7YYXNrk6X7iwyHHXKb8vLLL/LR5ct8/nPPs7r8kN3uOp1ejWE+oFlvMT93mDiqcerUCU4cWaD56Djf+/F3uPjJBVZ/vM4//Z1/SqezS6teZ31lmX5/l+52m4sX3ufCxXc4c/YkL778Kr3eEIlgcfEu3Q/WyG1OrZYwMzHL9nYPAZw+fY7795aZnBijMF1UCe2xWYaDITub2zSbDVoT42zvbmHLHv1Bn6eeOs/5p5/jX374L2hPtkFYT7818KVXvsaBmVlqybtkeUqaZqysLdEfbIfJXuKEoru7yz/+r/5LThw9we17i/zirZ+Ru5Jao4XJcj9fhwVxrZEwyDIcDuNKClPSbDToD3voPGNyYoKd7TW2t5dxIuLcubOcPH6ak8fPsLK4xuLifXa6Wyi7yVpniVrU5P7SfTY37mKKgvsP7tBqxbz20gv85//Zf8t3v//ntOpNdnf7fPjeB3zh+ZeZOTBHJCKyQcoHb33I+PQUVy7f4Oxj5zh64ji/9o1fZ/LQDO++9XM++eBdVlduMD75HzM9fYztrS3iOME6iKIYpST1iTaDXpc/+Ld/yMrGfRpJnfZYm+WVO+SF5erVT+HaNYaDXY4/8iitpIYqSnY6fQZ5n7hWZ9AZMihKTpx5BNWcYHXxFot3r3D69BO0Z8axusGw16PX26Kzs8z01ASzh48x7A/p9ztkWcrk9GHi5iQTU3Ms3bvLyvIiRpScf/5Vlm/eZ+7YYTbWV1m8dpk4SYjHJ5mZnSeOawz7Bd2dDZQw9Ha2GatHRDXNTr9Psz6OMwXzc3P0ejv0N1Lm5mdJTcb9h2uARcUNpK4zPt7g8OHjnDxxhrsPHqAUHDt+mCKNyNI6UTzOoSMLtKem6Q1SjHWA72Za4XzCkYwY9DrU69obUGsonSXPM6zz8fZOWrSOcEiU8JH0TiVhbgkMS+9WCiL2sqRQICoV+cVmKC6dKzzIIBMkYRvSgknAFEg7BF2Qdnt0tjdQiTclNVmP/nYXJUHZnKwIyYu1hOZMhFYxtYYmTiJi7T1flBRIpahJ7WOqwzMUC4ik8l/tvLeECdOMDYawFYMEfDce6ZkXPjrbF/C+eeNCYe3/bsMiQ4VFkAiegjGA0JTBt8LYDJOX5HlBng5J+0O6/R79fo/BcECWpWR5Tpb5VEhbFN6gvDDkJuSrWS89UDgPHIUZ2hfxgDN+MSS8hD4M1R4osJ4FUmXa+EaQN+IFSSwqgRk+OEOBNaVnBxgf5+09mjzoVJniWmNGXySkCjIWhxKVzAqkdOiweh01aCpaEmGO2mt7hOnTb9MKn20bvnzEhBlJ5IQLHu/BdDdIsZAi+EZ502eLxCK8WatwPr4eFcol6xsrgT1dQVOltSPvHsDLMJwB53PRSiEoC4MMMhglBHHwismy4MVlvVSmut8IzZp6Q1OkBY2ohkNg0WRlRmFCwpkFUxY4a1HSgzhlkXuPnrzwiWkisKaMCT5UXqJH8KCRomJc+NrLAsb45D7rBArtgaPKC1MJdOKZRIVxaK2I4njEhvCLOn/BoijyNVIAUKVUoN0ee6UqLqSi3vQyZpP7/bci7B8CHaQwe85ijsL6wBStIs+SqppYwu2xoqvUOySDdODT0qJkBGya4CljnCU3ffK8i7PesNyJHOcitGqwO9iEZIwkEhgURw5OsdHfYX1rlX6+hi0lisTHgw08g/Pg5EHAYQzkBeAUtaSFkyn1SJAXpZeoWQ/iCNcKwQc2PHgWXRdIVSCV83KiIqfbz9jdzWlPzpDosQCSCupxhHOQW++fYwNo5JO6vMG7f69vI0tT+tpcQSwjdBZhnBvJgGLtQXg/djiKYAJfgbqRUCCVZ4uG56lUPuRdYr3JdgDYtJTYLPOgoYEoiYkRyCQhTUsMEhEM3OPA9ndSglQI50EqjcAoMQI8Kh8tgb+XCmsRWpGXJXFINvTeXaClJI48qyXPfTiCNQ4tNUooPMc2JMMJP04nUUxZBmYXeFNx5fxcwJ4RuQyJMtYGo3hReZ/66yKlQDoVmFV+PJZC4aT2zKzSorTCFgXOeiuUKJIUhQUXDNGdB9C03Bt3pBSURYG0pQ+7sl4ipwBnSyLp0CoOIKs32ZZCopEYYQLADN7kC6qAAM+U9ew0pRRiBM6HMViGGcXiWbLB0iPEsXrWsr9rEFJjA6lgtMYMZuU2yJn9nOw954gkUsX+uZYSa0p0olCRZ0fH4J+1BGqNFkJoNG7kHWhsiSlLIgWFE6i8oD4xTl6WCGeQ+ECcIkibvW+eB6e0DkECwhHHsbfh8EPTaI78+3r9vQNKs8+9zitPHObybpvZqRq795bolDNIbTFxQhIVLC4+pNfZZqm/hh1f4Dde+ioXP3yP5WPf5CvPP8O//L3fp3XyRc4cmuDhlT5TU20uvP8OR46fRfCQzXyVNac5ePQsY1pw5/pHvHP1Js2kxYW3f8xOJ6ckYeFL3+IfffkF/mEc86dvvAcu5+1LV6i3xri3usKVW3f5zX/wOk889SJPvXaIhcMn+NzRSf63/+Pf8WBzwM5Q8PlXXkW1p3n5qecp8pRvfPO3mJmd5NMrF+nqCU6NO773p39OXjicKXm4ss4LX/0WJ5qaR04e5F/8xe/xkRznk7UBLzx2nvcufcjP37/AW++9g9Mx7SQhloYrDx6y3R1Qb9S5ceMqOzsbWGMprELlJY/MTPD+z75LEU/yzEKbC+/+lIFVPPfsKxydPczjjzxGfazJ6sYKSw8ecv/OVT66/glHZ4/z/Itfocj7fPtb30IJOHj8BJ98cpW8HLBw8hRSCuq1mDwr0LGiLAqOHprl+JGjPHv2MS6++SZpWtBq1ens5Aw7W0gzIC0yyjLlnfd+gWy2GQxSEt2n0+ty+OQxiqxAN7yPQ2wN967fZGJ2lmatxr/5t/+KSzev89znXmRqZoYD05Msr67yTJzw5COPMnfwIFGkSeLIm4L+CohhBMiEPyqw4Zff+tm/7rFjRmle1VZ+BVr7q4yyvf5ehomt+n65fyfCZ33RV2EYf/clRuCLL3Lc6Me+C+DN27a21rl56xp5t8f1Tz/yRnFljgRy6xdCv/Xrv8XO8hadQRcdKaCkP+hgaPD4sSfZ3Nyg1RpHyZJma4wsz9nd2CCOY86cOYeQknPnniLLCuLpiCqKt0oq8VI1CSO1dnW2fVcEKjAmIDmjg9g3YlWHJ0Kh+SvO7Z4cLlzxEXMJgvPiCBCqgKC9U+tGX7u36Wo7n33PHtgXivJ9l0Ts32Yl4XN23yQvRtJHH6FrUVKQD3OyvKRWSximKaB4cH+Jj69e4o033mB1+T4bq0u0xiZotcbZ3t6kyOb8IisvGA66/ODH30fHjv/5f/pf+ODdy1y+eIkPL37Ays4asZa06g0Ozc0wMTVDYUrmDs3yra//OivL6yw9vMULn3+ObrfP08+e56PL15hst2nUa/zkRz/m+Ze+wHe/+x2uXH2Xzd0NemmXYSmoxw2KLKPfSb3UBYEzcPvePU+7LSw3bi4y7PdpjiVkhU+HWV9bR5QCZEq9EbOzu4FJCxSOLM2p18ZZvruMjiRKOIwtKHKHIeedd99irD3F1IEDOKcZDDImx8YZdLcwVjLWhhxNUcacOn6aL730MnMzt/nrP/oukxOTnH/icSbbE3S6Q/qDPvfvLiKso7O9Bc4yGAzJS4lUGQNnaOuErZUVarX14M0hSQcZd+884MHyA3JXeHq8ACO90WVhetTKlEufDlClpJHUODRzhN/5x/+ca5dvce2ja2ghqTeb1GJJmhZceO8im2srmHyHRr0OOiFpTzA+0Wa83cYYjUkVX/nyN7l75Rpf/OKLPHiwycmFBXYHQ3rdDrVagyTySSYPFpd4+623eP/Cm3zl61/nhz/4IbOzMyw88gwHxqeJ6w3GpqdIs4Kl2/eZPTjJRLtFlGjayTTGSc4+cZ7Obp/mxCTCJWyu3+WlV77GG3/7M9qTUzhVYmsRu9v32O2uMTc3jygFW5sbpGmHSGsefeIFev0dFm9dI441vSKl3WozObPAnY9usXr/AUrDoLsFosVU8wgT0wdYXXpIr7eGoPTpfnnKWCOm08tIVMSphSOsr23R73YpixRVb7K4/JCtnR2GpZetJc5yeHaWg3PHGZuYYXJyHKcsu7tbmMLSbmsmJw+QZdAfdJBJggtSY2cdRZaT56Xv3DqJiiKE8MBEs1nDlQIRFqqRVhgM0ikaSQJ4mYEVZaDEV2zLCJTyLAphEdZLIPJh30eMh06ztUOsKbBB+onJsc7gbI50OcqWWCXRZc5kvURHETq2TNWbxCrGCUlUj9GRT0bSOsZJhxKamkgwFXiAB7WE9YwiXyt7Kr0c8XAC4FFB+sJLy6rRrgyeRRYvC7DB74YgwxIuSEMCw0gJ4RPJcBTGYgvDsO/l671un17WZbfTY9AbMBj2KHopZT4ky/oUZRlYLjllkAIZb6yEHLGg9phCYTWBCDOQcw5jQzoSXibkbLUdL7+3zkvIbFgw4DxjxUo/emtJ8NeBkuBxFzrLCkfhHNIKwEsfpLOYYITtkGQmSGECA0iMOvz+y1yglTjjZQ6FsehIgwnAzT72T5Um5vc5SNVCElmsAvvFr2+DXEuEBZVERH5GVtW8FhZ9ynnGjFBypB30HjBipM63ThBF3kPGWC+dHAEWMtRdocEklWdkSIK0UVTXQiKdCR4eXs/lpThBNif89VQ6obQFQhmyIkPJCKUVWVEiI0VW5uHZ8exBFcynlZQBXHKYokQria7VUHGMkJqyzLCF8ewt4ReqTuDleOFeFdL7quAcKvLfq+MoNKAceZ5jnT+HzroAzIW0tlDPRFFCHEcj4KFih1UBI1VaVPV+FxLaysKnrDkpUDIKC97wbEpfC1khiYSXyColfby9C3JRJ7AiYDFShusYpFFaB2acIysKhPB2Gcr458dRkps+WTYEJLUoIo6biEJT5Bn9/hCVDpHxLhP1CQ4dGOf6rRt0Bus4OSBWNbRokhtLuzXDkSNHmGiNYzEM85w0K8jTjNJ4ZowVZu9hc14D61xMJBWxBlOWSB1hKXClI4r9/TfoDujlJVYIWtKQpsvU6gewpkRKQS1JUAjKogxjUmDyiKq+9h50WIMz+IQxa3HS0mwk9IY5xlkGWY7WVcqy344pixFA55/2YEsRDNul9FJW/7tKK+mfo1jHFM54FowDaQX1KCFOYmKVBymUbzqX2dAzyYTAS5s8mOSlrDI0Qv39Y4XDCM8gcsY3ggtnMM57c1V5d1r6scUZ752K0uS2GN0Xw0GGlAn1JLDcgH6vT4kNzc8SJb0ZfmZKL8kLTQQnZWBselaYlf6+FpXEDkZzIhWTLyTDmXC+hJDoKMFYS4QjivQocMED6w7KkoJ9KhT8mC5CUpkQHjT0Y6ofq6tEZRvG+SjU8SoAg074xkC1jrHgxzPngTPrPKDirMMJ64MBnNm3cPBjp7V+zkOCimOQdRoKiDQuqpEISVxXHgBSkQeQGjW0ipDOUVpDXUUIBVooVKzQTpJnQ+JmgkWQD1KksQzSnPHJNknSxJQgXImz3nSpLAxaaaJY0+t0mBob88mXYTYvioKyLADv6wUV2ObPlTEFURxjQ5iA1sqP99X9/Pf0+nsHlFq2w3tv/Jx2f5ULP/oT7i8+5NnXf5ta5Ch37/DRhx+z2U1Z202JkyZm2OPB8gavfPk1xhJBc2YcPX2cl1/9Mn/zxh+wuKtpj0WIXcXW9jqr9x7w7oVrnPr8V/lPDi3Quf0u1z65yRPPfJFjesDf/PUfMzAt4qNH+Sff/DLOWF5++Wuc+dyrdLYWuXt/nQll2N3e4M233+ff//4f8uprX0H077N8vce79/rkcoJvf+trfOenP+fodIujY3WajTa1Y0c5NNPmwPgYB156hWZjkrKzytUzV7l19z71RpOejPnkvR/x53fv8cqXvszi2ga56fEbr73O22/+kLNPfp4njs7y0f0V/sGrr/KT7/8Jl6/eZqebe6+bzCCNYKfT8TGlznH77lX+eGeJKEl4+pnP87Mf/AUDk5ALgahfZaZdY2N9kyfPP81rTz3DH1y/yJXbdzjQnuG73/sLFs48Sk1LbD4kjieII8WBgzMsL69w8MABxsZaRLGiPxzQ3+yzvbbC5U8vs7nR4ac//QmdrW0W79zgo7ZhZbPDVFPR2VgiiRpcv3QA1Rhj/vAJ7t25zWBynAJLq970BopFjjQ5v//vf5cPL1/mq1/5Fs88dp5zC49y+vxznD/7GO12nURrDk3P8Ni5R4kj7aniQlA58o/MIn/F61f/9O++XMUoCh8Q+5CGXwX6/DLg8dnoeU/vr7olrpIdUAEaYVL9DDjBqBDxhYTvEhKiRH0z0BfJ1UFJfGfu9u1rXL9+ma18wIHmFMN+j5e/9DqbWxt8dOUDGkmNy/du02y26fctZ049xidXPgGZc/3TTzDFEFxOLgaMNZr81Q/+iC9+/jWKXJJ2O2xtbjDsbTF/5CRaJf4YQvHi8ZuKYbXHRxKj3fSspf3nr0p6E/tPbDgm9yvO7d55rYrzPbbQ/s9W7wvrnP0X109U1e8qlLH6NXsQEqOj2EPuXLgXxP7tiYrpFpqNIzDSd3pKY5HaGzxmRR4opIZ2q81ud4f1zW2mxhsMs5S19TV2dnc5c+YU09Oz3Lv/gIdrKzxankUA/bTD7MEDSK359m//FsuLW/zs5z9hbGKKi1cv06w3GQw6FE7w3DNfJImb3Ll9j87OkAcP7nF/8TYnFo7xrW99mxs3PmVm8gh/9kd/yJlHT/P8519hZek+P/nJgIuX3qY/2Caut9jaWmZ1aYIsl9xdvMXKyj1qQqAkGFOSpwZEydkz51he2yS3BSo1pJlBaYilw5YFUwdnkELS7Wx7YKYo0PWYt99+j7FWg/nDh9jcWMcpQdLSFKkljiMerCxyZ/EmtbhGa6wBZe6jVLX3LZiZmcXkmiPzc3z4/g3+6q/+HJVojhw/zgvPvcSgm3Lp0hVqqkZvd5eZAwcp+kPS0vvdNGoJeVqgEs1WZ4cvvfISS0tLbK0vIVTEO++9y5U/eDaJAAAgAElEQVRLl0jzjCwbkg17n+kOBpcaNrY3OXnyNO0yYXltjf/zX/0uly69j3MZWkacPPsYu50dPvjFL3jk3DmOH58jHTS5fesaA2Ow64v8s//uvyE1fVYf3mJze5NTCyc489hjvPD81/nOn/wZZxaOMjk5Ti2JaTVb9NOSu7fvsfjwDqvrq7z09a9x7MxTvK4aHDxynD/7vX+NEppWZjn+yKMYpXjzp3/JwyXLk8+8yNyxR7l+9WNOnzvPk8+9xsryOmMTcwhnefzRzxM3W8zMzlAOh8zMTGOGGaKA6YMnKcqYGzeuEjdiWuNjlFmfmbl5Ni9vkQ6Wqel5DkwfY6u7xu0bHzNz5BCdzgadjTWkhPGxaeYPHiVuT5ENSsrBAOdyXLaLjTVOSBrNmMmJSSSKRqOJFN6Lo5kkLN1bZrfbIWooau0GR+aOcfrEaQ7MHmaY5uys+dj1ybk5rn96j1j3kERMHJgFXTLob6F1jK5p0mGOK6RnxglvXh05fHR2LcEVJVIrSpPRatap1WKkSMiDFM3gsAo0Pl3NGB/xLpwHlmyZ4WyBy0siVdLrbCGlpd5u4+IaShpqUqLqGhVJtFIoFaNEC6U8E08JjQ4LeaHqwc/B+7bkhcVpLwlQ4b40YUDy4eJeTi6QiJD2ZAKi7jPVqkWK78i6AMw7LKXdx8ENYE4JaKl99PBowSYwJsdmhv4wo9fvM+j36O126O/u0Bn06PT7pIMBWTrEFnlgfOU4CIa9Lsi1vGzMVX4dwQPIVvNHAG0cjgJQFbPA+E65DYuJKhGuCON+1Vk3FkrriJWkdAbrQqoRviHghDdL1UGyBowWJc4SAEIwQULlpxGLLS053ttKOBfkUBUu42O+C+sCA8x7G1XzYyn9wlACpfF1Q4lFC+//JtSezMU5759ihCES3jNICpCRj4n3YIbnt3iJih19LsBTIRXKv6SUFMabtVpnkM7LF4XwJrfV4lGI4BUTjMH9Nl2Y98I8ab2HjqNKcgtAU/AucviobusqK4GwIMchlI+XL7PgIlJaGq2GB2+l81ImLO1WLazVPaCjowiBJB2mKAWtVhstNKUNokwhiKIxQJBnhW9UhQRApXVIx/PXUEjfqRfCa2akEujYP0VxXPPbMwaCf5pzDlNajCkpbelZo1L7pF7n3ysqcG5fbSMDS8kzH0qKIsPgfLBFkDdV26/S3EZpjtYCCmN8xhVWeflOdU6Qe4AWzptGm8CaMSU4RyQEhStx1gNZsa6j6450uOu9kqxDE5FlJc4VGAxFnjMzP8lEPeHhw/tolaGSFq1ag3p8kGYUEUeaWiwxNmWQFvR6fdJ+TlaUpIVFxREoDcJ6I2F/+VFOADFW+NQ1If31iyJLrBXW5WRlHyMltfoE/UEX6CBdkyJPiZIaSkY0GzFZainyAlONg0qFGtxiwvNX4tAhnVArhdAJ1ungOWQY5iW1JAoAhiBOYrJsiHPGx9gLPHMMiaHE7bNfsAGUHtl1SUUcxaQmRaHJhhkKSSQEka7Mv/24q2TDS5pNuZfO5yCSgghCml1gwBPAbm/Q5lmTUpLlGSifQOqc90kzuD3gw4GU3ifKOktpgkw0yM9c6Q3xjQRh9rx2qLx/CIBzYM05C0IJcmeInEbjx9IqJQ1XhNHCNxZKY6jSNq2xmMJLyi2OQWpoxXUoc0wh/l/m3jvYsuO+7/x09wk3vxzmhUmYgMEEzAAzyCAIQBKjSIoUaXotaWWVdyWrrJVrtSu55N0taa2lbKlkS6ZL0ZKDJHIZIJAgCTGDAAgCBDAABpNzejnefM8953T3/tHnvnkA6X9c/GNP1bx58+a+c+9J3f37/r6BxCaZbYRwAG9mHk1WVykh0cYZhwvInm0nM+tlM5gsGCZW2vlnZWmKtnfuZE8Gi6uzsmfMEwG+5yxdhASrQkJf4ksPEXgIL4fnB+TzRTwvIO8LfN+Z7Le7HbZUSnSETyAUQqSAT7fVwJOQKxRItcXEXazVTpKJA56DwEcnmkDk8FVAN04QKJpJFy+Q5PMFFwKFYx71GGKu/NV0E0GgcOEoaYSUmjS12Axwkxlb3xjX1kBKjEkcOC4UcerSF10durki+tFsP3JAaeroI2zpX+WpJxcI+wqcu3iJ1sA5Hthuee3CAqXpA6Sry4weO8SO4SLL1XUaqc/WnTupXvgu33zuefonbucf/eS7+fzMs5y+Pscrz3wZL03Jl8q028ukOcn63GlOvZQjac/wjRe+z+ily/hxRMuUiNOYcrXK5//6v3LXgw+zfXILu0tF9HAO2Wrw8vFXqXUt5bzgwuUzXL52AWNgeHAMKS0NFKWTr7A8e45PfvIPubm4wr5jj3PnWJnV9XUmBkbZPTWBsQmqNM59B/bSjVJGxrbz6GOPcObUcc41LI+86+PcvmuS3/u3f8CVc+e4NrvIevsEsxcV/ug2olaLqaFBzvsBj9x3F6urdQ7ccw/7du/i/JnX+fSnP+WiOLsdmrUWkaix9t1nKBVKPP7u9zM0MEChVEHWFjg5c5WTJ7/Prsky56/epNowXF9YJUXzyb/6Cw7sP8xPPPIo+ZxgaX4WXwrq62usrjbZMuYm1EC1uLFwnU9/9jOkxVEevPMOnnv+RQgVr7/2MpN7JghMnStvniRfGGK9usKLZ1/nnsMP0Ww1eeLLT9BfCNmxay/1vbvp6xtCpwlpHPPC6yeo1et86vNP8NXBb7Jjz+386i/+c2wa4fkexliUJwl6AzWuC2hw0cUOqXUUxg2/nWzb/P3b/++tBstvZa68/TWbN2tvdR3fvs/e/oToORzdoj32Jp6N9+hhKRvv4R580zPYRGf78jIURGc0czcZtVpt0lSzsDjLsbseYnenxdzcVZqRYd/23ZxNDMVCwKf++o+5en2GNpZiWCJuJ+y9bQ+nL51nvbaKxNJNWgwPDpPGTVYWZ/n6Spvx6TEmJyb43N99mve95334ykcITS8O1jF85AYwluU6vHUcstk5gFvGfNZmi6qejFBsLFA3p+xt3hxzKVucZvvMePsOULRyY+G6+Wz3gDuRLXzdwsz+wDnvfcrNMFOPEOWwKLvxPb1ltegBhGxMsBv3RzYeS6XotDuMDg9jtKa6tkJfIc/lWpWdRw5w9fpVbGoYGBig1miwtLJI4OfIF3OsrK24Y9aK+uo6P/3BjzI1PIZM5vgXv/4v+Ve/+9v4vsfCzQWSVDMzO8fXv/ENtoyPU2t30GlMJ24yOTbNe9/9AWauz3P03nv5+le+Q6tbo9vp8Jd/9cf0l8ucOvcGq5FLeJMypd5JeO3M6xTyA6yuLTPU30+rsU7cMfiBWzDoFNZWq1RXaoT5ECMSlO+Rakc/DwJBO21hYoGWhiRO0dInkD5+rsBadZ2+vhypFhTzPt2ki5/vJ0pjFlZnUR4MqGHaSw1aUY1AeTSTLnumd3Plxg3uO/Ygc3Or/Jv/+xPsPryTVrtObbXKF598mvn1Oarr6wQZG2Rmfp6hkX5yfkBsXPR0ErWhJekf6MeKPH2FIea610k9aLS7RDlnFjw5PQ1ymGvXr5HqBBBYqQkqfRzZcxv/w4f/Mb/3rz5BUJacvnCKdz7+IF988gkGSv0s3rxBkrawNuDwkbu58+4jHP/+K1y5dg1Jh0ZtnTdfP83cwhIf/eiH+eaXv8ldR45y6vQp+kfGOHTsbparTSQB1+aWKRS6LC2vsLS6TIrg7nf8BPlCmZWVKuWxccZGRnjvh34SK3xiqcgPjdOoNTn26Pt586UvsrA0T7E4gtUxC/M38F56kdlrl1i4OkS7kTI07lLwFmeu0q1VabYStmy7nXxpmPHJkNW5GXRcxWuHVBfnKZf7sAQEuTxDwzuprtUoFyqMjW3B6+8jSASN6gpDw0MI6RKDhJdH44wkRRBCnFBvtvCEZmWlhhA+d995kCuzawxUilxvtrLhPWZqyxDtqOmKwTjBMzGB7eLFMbQbrpjodOi0Irbv2o3yioRSUugbyOAGSbXewIqY/pLnGEgC2lELYaGQyyGFpkObKO7i5/N04yZrKytILL6vXCEiFNq6RbeTLkHRc+kzvqfAEwhPovyQQJWQKsH3xrB42Ewi41ucdEI45huQxVM702WDK4Is2pm7Zl4sPRakh5OQiazQxwp86/yKTJbo4zxIhSs8pURm3i8YMMK8xUPHzSwSKRVhkLEfcAvSbtwlabSodROarTqNep319Rr1VpNWo0bUqNONIrpp28nRTIoxzly15w1xC8yQWTqWyArmxNUfadbpVy4VzHVMDSZjHEkgEY5BaLNjC6SLYxbGpZWlwsl5yKKxsRaTJV9JIZBeZqSMm197EgYvszbM6EHoNAXpfIIMoLJrjYA0NVmnN/PvQSGz4+ntWXkOHNCZjk64dyO1DmIKPPf7gQBQpNaBFT3PIqQD73v+P6lJ3ecUznxVCpenJqzJPHEyOYp1848QmTmtMCSZt5MnpGNlASKTaBirnWQrdWwgLzsuEKAsBu38tXxBukEoVoB2jK6MTayFdamAmXGs2DCXTt1nIwtmkKBUgJcBMALXLff9HGkxzO4Oge/72CzYwcRdfKXQwslF87kchXwOm/mMkTU6/CB0bCwr6MZRBhIKpO87eY91Mo+sdZh5hLjmnSvqevO+xWjrQLTs3pUqm+9VT44jwKaZPLC3suvJ/pwPSk/WR6+pqJwZt80KZSeFBWwPqNQurKIn2bMQ9M6tFSA8DAka8IUHVmcyPpeG7NKg3D3s/LsyLog1+J7zOCQNnHeVNdk9k8+K6w7adLJ1jIfEkMs5c27fU4yOjtGKOrQ6CZ7ooxB6zg6j26WVJHSFM1wWUtHuxHSihE63SxxDYgQFLDYfZudcoZVLekwy4ETirpVAkPcV0ncelCZ1ZtmxSRCeIdIWzy+iReRkhNZH4hK0TCzoZs88GTtMWuHoJphMCruZ7adIeyBjmqJ1SjvqgHBpXlI6ZqMf+O4apu7+QSqkgLwMs3HuFvOjp5FKk5QodfeC1K7gt0rQ7HYIM+BYW4GV1oH9mfTaWovS7h7WWCKrN6SdNgsqImMsygw8NNb5qHmeR5KBLT1bCmPBCJUx8EzWHHX3tSaThSpn1yAsDhKyKcIqekwpIXveYRY/A14To0EKPOPA5jjpuvFAOEDd+XZpJ4cGJx8jAyqsC10ROqaY84m9kG6jS95LCKSiS0KSpqAgJ50sywixwbzbaAAL0MaQaJ0lLDo2UiqcabcWKZ7n43u+Y3lKByQaQCpJkqT4fg7phy7kwmoKhRKRlYwWC/j5AiKXI01jBksFVFjAC3LkcsWMQWoy5rLFUz7VahWruxTzJQLrxjujfbRJaXdblAYqWDQSS5R2yYU+oa+wicmOT5CkCXnPd41skyKlReuE8aExx361GmM1RieuEZB5++WUz2qtyeBgiTROkfbWvdh7JKS8VSODxfMCB3zj2H1aO/Z0z2vu//eA0qM7A+au1fnYz36UZ//m96hVI7aiaee3cu8Hf4FcVOf509d452Pv5vD0ENXlOZomR9GXFEdzPPudN5kf6vAf/8Ofsuvuj/Hzgy/wd098ga4q4+f7GBwfxUsk129c48TrJzm0axqB5tTVefbs2U6ntcJdH/w48y9/hTfOXKApCxw4cIR+1WJl/ixLi6vs3HcPZV/z9JeuExvLwOAYVnl4xT4KgWYkhIvnztJpp9zs1NDa8v/+57/i6xND7Nk6wVNPfJpd+w5z54E9vHn2FJXR7dz/0EO8euokt01t5cD27bz/xzv0DRbZ0hhF+ZLilim2r60xPHEbhfEhDh48xJaRAVZmyyjf443Tb7J/736aSzcYPrCLaKjI3n27uHj+Kvl8SEcn7DlwhNW5eXbs2s/B23awdXiEleWb/OVXnmC5VscPJOcvLzK70mHqzgd4970PcWNxgQ//xPsYLgcMyC5PPfm39I3cTrl/ABXkUb6iE0eUvDy+p2jHKXvue4zHHnqEr37mz/B8yVyjykhhnH/wyI/xq//Lz7LaXGNo/A72ToxAmGet2WF8dJzJrTs4d/IEM7U2dx19kMAPSdodVlaX2L3/EOPj03z6058iqRrGk5hyIaTW7GSIs0HiZdiE3ug6SOFlHaDND8omgGIDKPpBUGjzz36YQfTm7e2AEYgNQOSHg0m3Psfb99V7n94Du/m1WrsFhenR5DP5nDtuN6Bq40wFw1zA1atneOG7X+fUhbPsO3IX9x84RKH4OH/yJ/+eJ7/xFO951wd59fXvcfPmDUZGR5lbvEEhHCJOu2wZGUMKQTtO6BvoI1RFUgT1yJKmAXPLF/ipD/8ErU6T6cmtaE9glcV6mdeGlBuTg6HXcc0IpNnC4FYSGiCclEJkXQHnn/C262HtRkpJj7m0mULeM0vfPNjdel9xC4SyG19uvXoDPHz7lXire9YPu1qbd7th9d27zj3K2MagLTMZgUFKQ2pSPBkQxynKV5w5d4nH3/kwX/jSFzl78RJaGB546EFWVhcxaYxOmvzYo+/g5dcvEyUdfAXNZptLF1/hIx/9GV56+XWefe4b7N19O4szs/zu732CP/3j/8jc4g28IOTuw4eJOxHzM5dRXsrKSodiWOSzn/usk1/l8rz00vPUquusbVnn/gce5MTxV+grlwiLW6nVG6yvrrFtaop/+ou/ws2ZZb7y9Be4OXeddrvrOuiRQClBHGtmF1acka9r2mF0FzzJUP8YW7duY2B4mHMnT6KjLvmpMldnLyOkROU8Brx+du7czsLqc6S+h7QCX6Rsn57iIx/6Kb745S8xOjzC4tIS567U6eguvu9x7coCu+/YzyuvH+fkyZPkRxUnz7yJCgosLy0xNTmFkjA9PUrcTFhdr1Ioh/hBSKe+SqWYw6QpGIU0FkWXs2++xJadd7Blxz6u3TjvmFAocoU8aduyvLJIN43Jhz6tdsTeXftZWljhZ37qn7C+VmV6+zbaSYvBwSG2TBxg923nGBwsE8WWrmnTrK/x6svPM3NjgerKMtZotFb0V3J85ot/Rqea8pGPfwy/4vMHv/+7DPaVCL2AvXvu5ObcEovLyyyurTGxbQe5fInJbSVkEOCpMr5nmCzmCJSg200Y27afl77zInc8fAybSAqlApVKA2FDrl58DT8sc8f+Qwz0DXHx3DnqzVlWT5xlfHwXMzerXLt2jW3Tk6iwj/LwMCtL87z+8jdZWp9HKcHt+w5RzBXR8TSNdpt2tEazvsjwyBSlcpmZm9e5fuEmo/tuJ15bo9tZRSvQiUS16rST/Xgqh9U++VyR9cYKcSeiETWRCCYnRmh1Ys6eOc9Afz8Ww/jUOLV6HXzB4PggUdyEbkK3XmVt7ga+gSDIoUWBvsF+lpZWmV+5ikkAnTA0PEy70wLtvFzibhffC6iUBwlzJSAlCHOkSpEYQymfw/cEIm0yXKmgpKZULLjXeSGe5wpjpWzmAqoyxkMv9cmBGM5TJkUqZ+zrDGJvjUPSE1i0+13bkzu5QUdZgRT6lhkqktDzcMHzltS45BYrHGvJdayzbrLOACMrIHWohkxSjOcAVuUJx6DEsVS6SUoSR3SaLZr1Bq1andr6Oqvr67SaVRrNGlEropN00UnkDKmtMyJVPU8ecEyOjNXZk3OAwfOd/5PVllarCQgXC6885+mS+VUoJUhxBY5JIXZlujNNxs09CSA0GGlJrdkwxgVneuypTIqIzfwu/Ixd5Hw8jHUy5J7swBcKJa3zLtEu2l1KhdcrtIyTjgjP4kmXliSkdQWTdcdsE+dx4itngO4XfJLYOCmcFaRZ8yRUHiJLP5JCZqChwbM9tpLIZCRio0OPFG6/PQm8TbOkP8fJ0pCZm9sNQMcY4xLyjMl8vJTzNLSZp5WXSbyUS0GyQm9YOarMe0hrBxDkCgFJmiBSQ5wmWKQ7DwL8XOiYMNnsmcuFCKVIU5xxrBJoY915EoB0Epw07T0zWYmnTQYEOuDKs4Y46QJOeidkzwtMIrwAI33XnMIgVAZA2SzCXThZmLEWJT3SJHXPhfSR0tuYx3vscYdqOtmi6B2LcYCmMw42+NJDkhn79nqBoverWYGvBFYbtNEEXugYeZm/kRQCnTqQRCnlPlMmkfWkK2bJjH+VUiSxM0LWQri5KpPZbTQwM38ska2RrLXZ9RMbxSjaOHNvrUmsJkksrShGZiCq73lIaTKgoeCEPEbieQVErk0uqCBtDisMk5NDrNdbtGKJ5w2hO7Hzw5GK1MZ4KiFqaIRxEpt2NyZKDWnswLjA+Pi+x/j4IMtrVXLCgahC+QisM7k2KUYmxCai24w2gPt8rkLR12gtXKMkbpFoRYqmQwff+nSjClHiBE8O4td4yvmCWTewoFOT3Y+GRrdLoJ2sSloQWXqftpqo03HyqEwP2wNh3FrQQcNCeNg0dU0DaRGZjFBYgTYaDfQM7EXvHkdhjHYAb7YOtgiXTobz7nL+aw4ElNagMuN6x4q/BXr7Qm6w8B22mTqQxGg3PmX35+aAhJ4EzQKJTVAy2LSDTGJpLYEMcJZ0DtgXGbCvJcTaQKrdvSKgaywpFt+4edUoizDOI8hkXnsWm3lCZSttKRBKONDKCiqFIu0oolXv0NdXJp/3ibSBNCXyDDl6clE3L/rKR+MMxD0hyWXeUZ4VKOEhgszbT0h0Nq/4nk8QBvi5AtL3sUIhPQ+/4NIDVWooV8pUSn0kxhB4hlBBlEjqq0sMDoyQIsgXCwjrYdOENOm64dkKkiilUa8zNtSPFhJPeVibIj1BrdoiDHz8MIfWlrjVJsBDWEWq3WDi+T46NS7xLgPKtLXUWw38IMDzfOI0xaLRJsVikZ7aaFhE2hDmfKQMQCSugWEVRiekOnb+eJ4iTRO6SezmR+P8+mSWfiiEwlMexiYIIYi7+odUQ//9248cULp0bZm9uw+x8vKTvPDmEtX8GHEaUQkMe8e2UCjfxt79R+jPFQlEghoeZBSLlIbVSGJGhxjJl1hqGx7oL5KsFElLU7zzsXdRUl3qi5cRusj6SpdGDZ49cZHJAw9yaGyEmTefQ03czif/j1/nd37lGVojR9k20Ed1YZ6+3ZPMdwNEuZ/V5RsMTm/lziNHqUvJ4s15hvqnuGf/dj7/lScp+wG1Wg3hFenEdQQKVcjRaXd57oVXKQ1NMRpW6Ioij77zA0idIE2dk8qn1ljl+twMsbXsn67yh3/+pwSmSLq6xHqzwTvvOsz7Hn6QgSDmpee/yhvHX0brkIfuf5Czp97g3MUa1y+dZa7W4K7b97G80GJtfY2hsS2MFyRznTaqW+XP/vwPqJRGGRkeIcyVoVqjWu/Q8BWq3M97fvxDfOQd95NYC2kHlM/fP/0E3zhxhpK6xs//3D9lXKbMzFxlYnIMY308z2dkbILdtx8gsC0uXL5OZcsO2tfOcfP6Jf7DX/9XHn/fz9CyMFgs8tlP/SWFgQH+13/2AdJ2hwHfZ8fWbRy9+25GBgaora7z7Lef554HH+Tn/sHP01cMefZbT+OVBti//wCNqO6SNkwW04szcHSoOY6GT5aIYLNqNts2A0k9dBwAcwuc2Az8bLz2bQDRW4Ght+53898/9H1tj/myeX9q43Wb2U1v9w3qARVuPenoiVK5iSAIfLpxzMryIr7MsVhd5e7Dx9g1dRv1ao2JLdu5+677yBUlszdnacYJ/cNbuG3bfq7PLbLSalApFjl98RRBEBIGigO79pKalJmFm3Tq69x3933MLszRVx7nj/74DxHAwUN3srK8xMTkVqJuh27UpL9/JDO4zJZoFndNkG9lGFkyKn5vBtxkM/p2sO8HwLtb57anib91XjfziXpmppvf8wcBog288BaGuPE/PwxMgh++j41FhiDz2nDFSrfrUiiCwCcRUKuvUS5U0NZQqzd55qtfY/HmIq8fP8nCzBIHDx/kyJ2HmVteYH5mnsXFFaJYUsgVmJ2bZ2Z+gb/74ud59J1HKVaGaXaqPPDAA9ycucpjjz9Gvdnlx37sxzl08HZefOkFvvGVL9LtrkCQR/h5hvvzTI5tQcsYVIF/+Zu/QWUwZK3eZHi8RLsVMb+6xn333cvhI4f55jNPo9sRu/fsYWx8GwvzTT760Y/z53/253QbMalxshAlFCrnEQiIo5jEE0ht0AJ836fRanD90g1OvXaGuFvnPR/4AFu3b+Mzn/0btu3ewfkTF0iiiKRTJV/w6LYNgSeJ4zavn3qDWiOmWBzg/MWrtFpVAivotDVBeQAbQlptk5g2Om2juzFBqYBOJd1uBykDQhEQiJB6u440gkDkaFVXqQwMkMY1onabiaER5hfmmNq2h4XZC3STJiYI6BpBOVT0F4sMDU2zY/cOZq4VWZibpdmq4YmA6xeuo6XkX//hH/Brv/wr5HM+py4tsL7c4fQbf8XUzilGt95J3ofRwVGu3zjL+csnyeVzzMzPUiyVELUav/mv/h1/+Vd/gjeUUG/UuHlllvNXjjM+Msm3n3uGka37OX/lKstzswxOjlJttamUhihXSuSCkE7UwUqf+dlZCv39RE0IcgFeKSRtt/D8Inlfsn3rduS7Ps4L33qKcrnAvt2Hef3468RGEsUtpEjpdOrsu/O9XLl6iX377yWKNPM3LzEyPMbk1AjdZJWh4S0MDG1F+AWm+6a5dOpFXn3ma5i4zfUrF5nauQ/dabP19u2szs1i/YB6dYVCPqRQ6EPblJMvf4/p2w7RqC0S1ZcgTrPnVRIElsCXnDt/nsD36SsXaXc7rC4vkhrIlUP6+3OE0sdGEbodU19ZZm2xRmIFMihTa7ZppQmQMDExgZUBY31DxOUCA4UyU1NThL5H6PvkwwKxdqyDIFA0Oh2kl8PYrvMr0RaB7+KDrQGR4vsh1jgT58x22rFeLEjhAzpLAxNYUox0QiChnKeczFgpBmf8LISXTWE9iVdmwirA2MDJLawDN7RNnH+FMYg0JcpcI0RWtEoUnrJ4viQVgTPZthbTjYnSLlGzzbowomwAACAASURBVHqjTrTeZK22xsrqCo3qOtV6lajdoBu3IU02UsaUlCTS4BlXlAlA5SRJHDtZkJVI6WKgQ9/DC5yXQxgESCSdTkK+UCBfKhEGHlG7xflLF4i6ToIjjMUagU5TAj9ASGcKCxLraXJSoWOTJT0bdx60JRUevkwIZCa9sKljDgA6dV3bJDu3SapdHLdyA7fyfbppF4NE+ArpZ9OOSZHCzcM94MjLurlKSMikcZAlqwnnU6NTTagEKnDm60IqrLb4SuDnFd2uRTicA6kcs6eXzCaQGJuiRGYLbDXS6yW+iux9nU+LIQvi9rJUMi1Rnue8qgzY9NZ8KAXobF5W2VrE9P7WOkv5FMjQd91sL5PGSCeByedDpFAEviIXhiRpipIeyvMzBrWbi7VJsNa6a2YM+TBkYGCQhcVVom6XrnDFqtfrfPdYBWninvcwj5XO9NpXHhhBPpfHmBgfiOPYgQ7CAyEwwoFzKquUte7JwDLvj9Q4o2ApXXS4lCirMl8Yb2Oed6CDwZg0k11m2F3mkbSpdeSM+w0b/lso5SSpwnPHnbEJMbeY181WfaMxqFTGqNvM7hCQGV452ZdxPkruHLii20jhPNSkOx8O8JAuFUsIEC6JznnRuGPTOht3jGPm2J4Br9YIL0Rn4FLo5bFSYRRIAnwTIP0cnhCM9w+xVluirbsIGZLL9bOlr8TxU2ec1CfIUautEwQe1mpk5vvWanVIu4LUaGeYn4HbSniknS6pSZmdnyVUHspotHRmyo78ZfDx0Wh06pF0LVZacoUQJSGOodGpEsgCrfYaVd+jEg6ifEiEpdtZzoD5MibxHKNRSrA6A+QkXiY1lEJCaknRvSWcSwU3xhnmawf4WEsG5mTWGlmKnNRgSQnzBZIsIUtYk4FQZgMYdJfIzRs6cXdc6PkYCZXhARqrDSfrxaI9BalxhvNWZ4x4kTGJ7MYitMei11h6aZiOfZRJZ6VCW0PgO2ZMzxT/llecwJgUiSJJEvccSMcm6s0rsXbzsbSWVAgHqGIp5ELaWhJZja8z1hwQZLLhCE0ofEdghI24+54HnLQu2THRKTZNiZOYMOhDypTB/jxJXMQLQ4Tn0Z93KaKhUuTDvANEfM/JJS3IfIANPDwvhyd9QinptiK8fAGb8wlVSFdYhoYGyYUhOeXjS5+c55OYOGMPBwipSLTGN3ZD6ZJGHVJrCJTH4vISfYUSFksQ+Cjlk6Ypmtg1iqTzzmq1moS5AJUroU02NlpnjdBpthgbrZCkCTYxTtIcuPFMG41UEutJklaXwHPX0qSaNI7RccLU6ASxdh5I1mhINJ50Xn7aGnzPY2VtjTCQ1NbXEIHEE4qoE6M8Vzt5KnAsJOMk2oV80QGMABLSNHGNGIvzwpOCZrv936iI/vs29Vu/9Vs/0h1W8rXfWrhwlsA3nFwwPHzvJIs3l6hUAl569QS79x6hvxjg+5CkMJQ3vPi9Fxgc381gJaAo20Sjhzm2TXPy5BUCmxL2jbFteACvMcPnnnqWU9dXmG37DA6OsH3HVn75F/4JP/34Ea7P3uDI3ffRXrjOxdklrl2d4crl85y4cpP7jz3Go/ccoeQnnD/9GjdX6tx59FF++l2PcfzM6wxOTHHm9GnuOPgOtk1PoGzC8noVpQKMthQHt9Co12hry44dt/HhRx6gsTJDPe0SWMvNy2d47dQpTLPJjaUmW3bu4vj3v87ZqzdZnltgpZawc3qKq3NzjPb18ffPfI0vvXoWrzKKTmLa1XmE0bSbdar1FkmUsLReJx94bN2+A5VaTp05gydDFpZmQUoqfYPoNGJ28SatWBPFlsMH7ufIXcd46Og9lIpFUqtdp9gKdu/Zzd7pYb77nS+xZcd+xgdHSKMWl974PrGGcv8A7VaHNJGEQQ6R8/mln/nHfOPpv2Ni51H2H9yF7XY4dnA/lVKOq/M3ee3UaV5++UXePH2CZqfFkTsOUQhD6p023XaD05cv8NDD97F08wYvvvgChbEt/O+//M/pK1Xor/SjDM4sTZiNARYhM0f9jLgpM937xlrqbawk8VYA6BZskLFcxC0o4S2v+yFgUu/nm4EgIFs4uNdudETY2H22QOl9treDTj8IUNXrdfzAI8kG3ZmZ61QqZTCWCxcv8F/+9j/TajedubOQfOg9P0WtVicQDmdTHtjU46XvfJ2B4QEkPi+/edypwowmarYxKEbHpkm0Zm5+hsWlBVZXFynkQsYnd3Lnwfv58teeYtu2MYwss2PbFK1mmy0jWzhz5jTGRvT3DWULKOM6oyJjJ20Cfd56LjefA7vp3+56CNQm0Mhtve7fD4JIm4EntwB8C0CYfbGb74nsq938GvtW7GvzxL3x3a1bic2kM7ExqQtElvJiLFQqLoI9TiOGB0YxwrK6toaUcPv+fVy4ct5FnxZCGs11ZhbmOH/6AjPXrrC4vEi9uc673/0ulmbmee3McdrNGkNDQzz5hSe5ePoNSpUS99z3ECa2nDrzJnv2HmLPrn1gPF478SKdpEukPZT0iJKYKI7IhWW+/fffwM9JWqZLs9Hg7kNHufvoPTz11S9Sr69QXa5x7epNRoa3cOze+2k1I0y37caVxQXm5+YQPpjI4BUkA5UK1fUGfuCRywWu4DGuI6qTlGajifQtQnqsVddJOoaJ0XEmRrdz8dJJcrmARqtJasINdlvgK5I0YXZ2gWatRqSbGAxSKyweWhqibkSrUSNOLB2bksvlUFYTtTpIo6g1VqkUSiwsLoJviLsJCEuxWKIdd4naMbv2H+GP/vDPOfXGJYyVzC7Ns7Y2T7O+Tjk/yHBxEGUNyICd2/dw9do15pcXAU2+WKJYKRPHdXbs2E3aiTh81zFePf4qVqWsrq/Saaxz7eplPOFx7OgxqitrCJsyMDjGw488SqebEHc17bYkDCXdFFaWluhGDaprC3S6Db7/4qvMXrvJ/I3L7NpzO8dfepHzZ46zPHuNobFxFpbXeP21N1haWOC73/kyKtV84yt/TU76nP7uFzh47zH6BkYJg4A4ttTX6yzOXKZUDKi3NH5hgGKliB+EjE3toH/LHjCaoFhiaHya1fkFJrdMYMMKlQB8Jdh94B6iWh3dXCdfKaO1ZWnpCrFpkhjN0GA/lYERCv0DtNeW8XKKNIrJF4oEpX5qrTqBJ9h12+14QY7VxRskSYJOY3zPafkJHQgipMIoy8pKlUKlQCGfJ047tJpNOp0OhWIAiaHTsaQ6oNVJ6HQSaq0m+TDHbbv3cHDPQQ4ePMqOXbvZs3sfO27bTS5fJMwX8FTgJBmJIbWCFImRHn4gXVKOVPh+Dt9XBLmQMJfDC1xX1SWBeQijNo15OhtQXFyvkYAK6fltSXvLs8FABihkY5vR9IzCtbFIY7Cp3Sh4s4wxNz5K1wG2wpLz8yjP+fSksaXearO4vMTNazc4f/YiJ46/xisvfo/nnn+Gl57/Dt/73jO89sr3OHPyONcun2Zp/gr12jxpVMeYLhZX7Epl8JUl9OWGX1KaujSeYi7PQF8fw0PDDA8OMzg4wtDIKANDI1T6hylXBiiGRaT06HS6pFYS5gqQCtbX1oi6CUmSYBEkJsGTklS4+RzjDHT9QDHUXyEX+kRJnDG3MmejjKokrCH0AkzqWGHKIwMtXAqPDOTGvCM9i+8LUpvgS0GSsYE9lQEHqcZXAuUJfJy8zaBRviIIAyfnsJksWwCeRGTpRjqbxw0aK5xExUluBLF2ZtYyYx+JzODaBXJk3kUKx/CSOIm/NShPZpK1zDg6m4CEkgjfgVgaSLrOuNz0PLKszWSGID1FGPrkAp9CLqRULFIs5OgvFqmUSvT19VGqFOmvVOjLF8kXC46pGgb4fmYsL5ykxBjnodSJUqJY0+4mRLEmcfUNFoGUHn6YRyqf/v5h/FwerSEMQqTnOeBAOM8yq42LvVYKKXykCNw8mvkq2TR2xupCInppiq6NDsIxr7R2bHWdpdLZrIPkSEeOweGp0MncsphsrJNMCumKuUQnrkjbvEbpLd8y0EpmCwUnw7y1PpRSECcxnu8jAU95xHHsvGwy8M4aZ16/wbDOGoQuM0tk0eaOVZLqTGZpDEJl4Jd144qwbg2shHUAh/IRnvcWq4A08+7aWH8qB5x4AoxxwQNaCsLApT/6SpPPR0gsSaowNkAjiVNNFKf4QQWBx5bJafZuH+XEiTMQVqjXaiRZPLtCOK8aq9FGMzA0iq+gEyUOoEUCPkHOQ3uCNM68aqRESN8FBVjQmY+LwMeKAKM75HLOqLyYt3RNnSBXIukkGKWwErpJQiCc75KLiQ+xWiGti1aXZP5j0sskTxKVy2egqecYXlK4Z1neSnIkG0NQ0kmXlczyZBww43sKPwt3kNKlpRnp5gST3TNKKedrZ10KpFCO6WYy6W4UO9aIUgpfuWREpRRSWXwlN557g+yRFDMmSSbdBeeNY012jwmSbuQYSNaxW+hJN417bzfpuONzh+d82BzY6u5XX/l4QmV+fg7QllJhhcGTgmKQd88BDrg0UriGqpIbfj4qCNy6PZB4gY8XBPi5HPgKlQvpGxxgYGgL/WNjDI+NUS4P45f6GJ+apm90isEt2xkeHWV66zZGJreyZdtOhia3MrlzNyNbdzI6tZWJbTvZun034xPb2TK5jcHRcaZv28WO/QeYntpF//AwUxMTjPcNEvg+MmOSITRR18lh0zRBWgfCah2jlEcSayQpOSlJ0oRmc53+vn53fYIAISVpEiMSjU0NQgoSo1mqLjEyNICTu4akJOTDIitLywRBQiEsY1LnmWaRhEHgmJ0Z+BelCUHWmElSTdKOHANKWrwgQMcJWgsazSZx0sUPckjhAN04idFpStSNCHJ5gsAB4Fg3pwaem6d65txB4NhaIDYCRT3lgzBOpi4lUTchiiI+9rGf/m1+RNuPnKH0x7/zO9z3oV/i0vEXuO+DH2X1C5/g6s1J7nmgj6X16yy2Ukb6c8RRh3Kuy3Pf+jrdvsN40QzfefU8E/sf438aHeL5v/k9rp5c40VyvPs972VwqMDxc1fJb7udj3/4I9yz7zbOvvB5/vYzX+FP/n2Tn/9H/5BG7HP39AgJMXu3lKAwzv1HD+BJxXde+Bqjox+mv1hCJhHfeu77jI1uZUIMs6vUh0aT9g0wPWg4efx1lpZahELR6ESoMEch79EfVrhwZYHzp07wG2feYGxsnIfvupPZfIGgUKZRa/DChRl+9qP/kIcOTfOtJ36fpbUWLW0JZUzLpNx/3+OsrK3xjkfexQc/1M+FU9/nL//Lp1lJJaEvaXdiUpOAX0LrBN3xSZeWWF9dJReEaFsjNYrUSLo6ZXVtlW7sdKO+bdBX9JgaGsAaQ+Ab0hR8AZ00ZXH2Ar/7r/8vVL7I6TOvsH38g7z60gtEwjK5/y4qlQqtVotWlJCYlG9/5UvUlubxZMihg/t57wOP8YlP/j+stRPuvH0n7/uJn2Tr9tup12pYE3H8pRf49nPf5Zd/6Z/x+EMP8+xzz3LPocP8n//i17hRW2Hr4DS/8Zu/Tej5bB+fdH400rnzO1lbRp3EbsTVOr242gTuCLB6wzAacF1Qi6OLy7eDOG8HJXosIbnxvc06CD0jxd7Wo+iDyD6P+2OMdotf0ZM22A3mjBBm4/9cVoFjVlkESiiipENf3yDffPppDh7eS6E8zKWLV1laX2BsbIRGvUmqYw4ePsSdBw7zxSe/wPzyDa7evIoxlq1T27l44TzveORRnnrqsyytXef+O9/Pt779DMZ3VNVODHXTYbBcplQoMjw4zNVrF6n05Rmq3EGr2+bm/Ay5Qh/vfc8H0FqTKw6wbXIL1ZU6l6+dY2BwAM8z1GpVhoaH6Uk1sD1w6RaA1vNJ6hn89bp+t6JYYQMoEpvNu7N0C9Nr5IlN++69KIv05dbPNwOJtxo7vYWme5+NBfoPuQMy2HLja/arbO5Y9v7Vi1W22vkxZC4brK6tY0yK70ukZ6mt1AkCSRJH9JfKVAZKROt5xqcnmVtc4LVXXqdWXWdsbJBtO7cyNDjKG6+eZmFumR17ttNYq/HSK6+xMH+Nu+89Qm21wfnz5+kr9/HoOx7m8pUb/MUrzzM7O0u9mdCMPKwSRK2IJI3Yv+0wzUab2/ZOMD87y2Cxj758P3ccvJ2tE9OM5AeZm5/l+sw8D95zDw8+fJRPfeozBCpkenKS77/yAtXaOhZLORey3kkQUjE0OsbsygrKl/QP9TE/u4iWAul7mam8JYpirLTMzs2yZ+cO5ldqPPvyMwSFspOu+D62ozECcgVFp5u62HbpIpd9G4DRdHSTtBvjdUPAECmLVik53yM1Cd1EYo2Hlpb7jx2lutZiYXmJ8aFx7KDCpm7SjzoJaWy4evYm/+YT/5aF+jo3zl1EhzF+USJtStpYoxwa9u3bx67dh4g7LXZuG2V1bY5qo8NwpQ9JQMsuMDt/lWZ1nee++zz33v8QyzNXmN4+zdlTJxks9NFsVyn293Hk3vsoeDmGxiYIS2WS1NCs1Tj16nNM3TaNnxNcvXSOWr1NThYo9fXTNyawSZUHHn0PK0sNxkeG2Hv0GKnw6aYRUvqcePmbtDt1RidG+dzn/xP3HTvE+ZPfpDJcpt1cpzSyjebqKi98+xtcOv8Ktx99gJ27jmAQXLvwOrMXz1Bt1Hjo0Ed56dvf4vEPfJDGWgPRSTC+z3oUMdhXQlQmOLTrMGvLa8igQd/EBPVajZXZGwz2D1BtWBQJc5cvcs/DH2R+5iq5viHW5i8itSGv+hjs20Kx3M/87EVmZy6xsl5jvbWG6FqidpNiIaSQz7Oy1KA4mKOTCpJGhDGCSrGfvoEhzp87RZxEhHmfRhA7ZofywQYUSgX8XIFDW7eyd89hysWAibFxrJJY4dGKOqwsRURJhCcMofAJvBx+0Uf5HkYIEgwIi7AJiXWdYCUkaeqefylkFtfrZZKY1CV5SeFMPK1F2BSDj9WJk/hgEKlBZ3wmKRzbRlgJeCCd7MUVnK7Q0kY7Kr0xyMQSx22ibkqnnZAmLTqNJiura6zWGyyvrtCu1Wk3anS6DZJuG3SKlU5Wo6SHEC4VxxMSL3D+HQaFNYKUFG0N5VBRKpUplMt40iP0c2itqdWqrFZr4PkM9g1SzhdRuQBPCOJuhyRpI7WPVIErMpVAeSFShQ6gsqBIWVxdY2FuFmM7SAKUJ8iXyiRJgml28FTgYBwtCJVPt6tpNpsu6SibHxCQ9wO0cdHzQUkRVZON+k8Kx/pSGVtF29QlO+E5qbYVpFrjea4YirShGCpnCGyd3MpKJ38RxsV9J1ZD6phFiTWQJatJBYl1xDIjLL7yEBhEoFwKb2xQmaRHCifR0DpFWYnwpAMMkRtx6cb3UTYFYUjSzAA682sRUiF9HykhHwbYvI/AI++7rrkQcpP0zM1LLs3JFa++sJQrFbqpoVqtolNNt+sSl1Ax1hhCK9HExNYSbIA3Lg0oUCEgUb4l2TAud35cgfQx0jGqkxiMLyCAIPQ3Yu0dy0KijHsGrFQkNpPfCbc2cusDRdpjZxvH+sXb5I+ZAUax0RkoYzeOV8gAbIIRljRNsNZDmy6+n3OgL86fSCkHJhntZKIWnEQMsFZl83xv7QdGOhaHye5BbVOEAazAV4pAKUQG2ihls/WjdUpTmUHBWpMa7QIAPJsBBm7BYW3mwyYEOjEZI8oxxnzPMQCli+lzIJrIPMW0zcJtbXadZAZwOmmXL0B7kBiJ8nLopEspXyG2iQM4hSbtNkiSPIgAZUBYhc7APokglpKt4yNErTbz9YTRgYCZbkwuVA7o1ilWW7QNHDsyrODlB1irX0EYiVKQC0N8P0/SdQCgNBohPeK061IKTeKAXakwVhIYS3F0CA9NnHqkIqavL6TTBJ3PEcoi7eY60vfwc33ojkYFIUIGGZPPycRE5hmjpEWTgAgRxhJKZ+js7ivnIySsJfADlyrXamdgojPQ1hkLDVJ8QozK7gsckCbIwB7lGqAOyHL+YcZmXldKOtarUXgZLSTVFogdk9IKMBphIRWAMSTW0km7DgxMBRjnQyeERXoeRjrgysNihEYZTSAk5XyFdtTFYDMQRTqgSRustFibgVLGse884557hE8GiztPHyvxFfhZI18qiV/IUw58PE/RAUI/IPR8pCcw+YBQFinkC3heiBKWnJSIXB4RhOREiJEJuUIJDIi0TS4s0ZJQUIpiWELmQ2KdAT1pTD4XYKyH1wNkjSZJYjw/wEhJGscIX7C6WmV8cpK43SQ2Pt1ui2IY0okdW5WseaONxg/ySE+AcXOu5ym3lk8Mvo1BSroWmmtrlELfmZQLx9xEOyC714gWQtJqNcjlcvhBkVR3ETbGE4Ko0yTq1BgeqWz8nk5TdGpoZ3JXEWuiZtMltRZKpBYSnaJ8Sa0eky+EpGmCksoldWpLGCgCX2Tjg0+z1ULTBSy5wK2PU+MYxCaVSD+HSVIXGJBYPM/HaI2UvkstVa5WTRM3nisl6HYcoPWj3H7kgNJfPPFNFjsJUVrm1z8+wrP3fIT/8f17GQ4SRj6wg8kBHx13UF7Kc1/9DC/MB9y/a4lnT/vs27MbZQ2XT59gTvdzM23y0DseJZ67wvkZzXo1YvvQJHeUQ9pXT3PmzBxSVTh/+RL/6VOf4icfuZcL33+ab774LIt1xfjgAHNXL/Orv/brTIxPUpCCuZsXmJ+bpVGv8eVvfY0Tb/SxMLuCsfPMzMxz6cpVGu0uu/fupn7hIqPjfTQbLWqLc9Q6kevSpykon6Vag69//zVMrsxPPv4g1s/zc7/wP3PX9ChvvvQVXjs7z7Y77iaUiqXVJqVGk4Nbp6gtXuBP/t3vc/udd7O2cJl6o05sLDqJ8VQAtsi9DzzEjz1wN3//7ed57IHD/NEnP0lpoEx9PXbaaF+wdXyKViHk8vVLdLsp5XIJIS2f+9KXuffBdxFHFj/06RoXv3xldo5EFui2UxZvXKVaW0OGZQ7vuZMd0zudD0mxxHp1lpGhcUamtvOtl4/TV66QtKtImbB/+w76hgrYVDA/e51j++/A8wNu3LzB3I0ZWFkh6jY5f/EslWLIU3/3OfYfO0L06mnOzs9SLGV6fCEhA3IEDpW3m9guPyAPA8gKgd5k7nwsdBb/eIsd0wN/NnyKRI96zsZCwsU/y/9GfH2PJbOZESM3SdxuMXSMyRgsG3H3vUSIrDOd0dwFAm1jioWQ4yeOc3nuIlfmr/DRD/w0gyP9TE6PsLyySKpjjt55lB21db7znW9z4+ZVSqUcc7MLLMzN8fTTX2J4dJD773+QU6+/ysHDh2k0q4R5S4qHJxQ2NRRyOSqVQSa3buX6jeuMbxmjUMox1r+F7z77LZarDYT1uXL5MvML53nnA+9jfWGJxdV53v/+DxCEeQr5EGvdpCiFG5C1dH4Tb99sBiS9/VS+laG0+dy6M9TzBXD72CxRvEUT+uHXR2zezaa/biXtuZf29rGZUXYLTrKbdndr1z3KvPuhFAKUyLwSnNzL8xWddptKX5k0tnSiFocO7iONE/pHh5hbXeX6tZucO3+esekptu3cRtwdp5TPU2ussbS0xIlTbxK1alyaPUu5VMAPitx111FOvPoyv/jL/xuzN+d58eXnOHb4Xq5cvsb0VB8TE1u5sXgdHWtsYikUS6RGc+rkG/zcx36WBx5+J0998ctMTY/yxBNfYGZ2jc9+5vfpehGBEkwMTXHgwJ186clnOHnuTVKZsrS2lVa3wfL6Crtu242JodW8TKA8qqvrTA4Ns2fvfl743rMI3yefyyGlpWMTB5cKt/AcqJRpJymXrlxmqH+Atfo65Hwkmnx/kbSd0okMNvQpFvvxvDzzi7NUCnnqK3V+7md+lrMXLvPyG6+5jm+a4HuS4v/H2nsFW3bd552/FXY48ebU4XZENxrdAJFEMFMSTeVA01LJGtszdrlm/KIH+8E1VX6Zl6myPDX22OMw8oyGLnssW1S2NCIkiiYlAiRiAw000Ogcb3ffHE7aaYV5WPvcbtJ+muKpQqPuifvss/dea33/7//7IknuFFNNRc94dCNmd6dgZe0Bz338aQ4dOM2FC+8hUoHY2SWSnqMnFrm3co/X3/5jJucXkbEFNKY0RJHmwHyDZizp7w146qmzHD16lq9/7Wu8+85lYhWzub1GZkomW5O0kw69fJPPf/6LXDz/Lk4r1m8/4PiBRZbmphiOMl77xrc4++wLNCeXSBtNTJ7zyc9/gaXDpyiKgldf/RbX3vljRoMhkzOHGWaGH/qxn+fOrbvcvfpdvvXy7zDKDaPhgPc/fI+JyS4/+rO/BKLFsZPH+O7r30auWhrS4ArBYLDBT/z1v0cyfZz7N9a5v3KLe+s3aS4tIBodqgpufXiBotii1Zpmcuow7cYUkzPzbFy/QprGNJKU5aWD7O32aCQaIdvkmwOGDx/S216hKEbsbK4yGG3QdDFL03PsbN2j0ZjkvW//v7z46U9y5/Y2h5eOMTnd5MHqHvPTXYpcM3X8SZqpYLYzhzx1iItvn+fO9jpxkjA7PU1RefZ2ctJmi2MnTodW3uWjHDu6zOziIpcufkhR9NFas7m+g3UljQZMT81ibcFOtkHcsXS6CWU2ZFSa0MKAYmKySaMIvKNEBfBoZUNFV6hatCbENzcTRWEMsdKUZYWQNWTY126VylHZMlS57dgaoTDCo7AoFQQOaT0uVkQ2xrqK0lVUxlOWGVVRMBqVVKMRo9GI3UGfUT5i0BtQ9PuM8h5ZllFkGUVpyasKicGMtweLlDoIUrJ2DaQK7zW+TjdyNUfHmpL9BBcRKvIChxKSVqfN8eVjdLodvJDBfVIaenub7PRH2MrRnZogiUJSkzcVhQ1OI+ssESBRKB0FKDmBCSOCbYiqLDFlTrud4o0mjhtUpqLV7bK6thqSrVwNcJaSbNTDe1c7ZSSVMTgRYMfGVYBDKElRjFAanBN4r6l8gOab+/UBagAAIABJREFU0uIdREJBRFh04dGR3ufMBFhxYJOUhcV6UaerObxQWOcRyoWYZhHSyZQIQocj8F2qygTgs/KouuBhTGi108LgXQUypMrV+l5IyfMelXg6QBS3QCs8gTsURWng2yiBUhEqkJcDJNoFZ5bHYJ1nlJVYF1wJo6wiz8tgePMmCJ8E4SuKE3TURGlNqzXBcDAk8i4IRwpkHVlvXBjZtFII6+rvrKj9c3gXwLdWeEwwQeC8RXuBVpqiqkidwYz6lNkotNMJGdqBcITevCCwjf3i3odI77KGcAtjqawjEuM0X/C1g8Q5h6jZVxBaMvE+tOnIkigaQ9tlnbLmKbMhugbhCxlYN+FY84FZVbs5ggskLLypwdsej6ssY7qwq88XLQMTzNUiYRxFeGcCCHo8B1Qhel3IkBrnvQ+O+5qPAvUileAkUToiryyRlCE2ft9t5PA2iL6VtYGX5QnnvQgsNGMDrN8jkFrjnQmtOU6EKbECIRN85ANbKSrBWwbbAqENOrIgNHi33wLovCNOI+ZnWmxsB1FjZEOKq9CgnUNIh1AWLROsiVhffUDc6hKnbVqdIFhIIqTS9fMVXho8unbieGw5ok4fQAmFETbwX0pHFKVY7xhlDYRuEtmK1YcbpKmg25lHiQgTjef1KmyL0rVg7sNc3kEkYpwMnDOsDzHp1EB/AqRZeE8+HAU4vhDESuC9IVG1+1qEa5RWEZ7QYhYcR7VgSuCeCu/wNfjcW4sXHlOE9ckoG6GlII1SjBNU0gRuGYLIe5QMIpcVhFbg0tWBBDXYXksiQEUxxhYkUqK9QihwoqrZZyWR1pRVFcIYfBC/pNR1QiI1XF5jlCLVCi8USIVG0O02wzVSJUgdowS0O23arXZwfsWaWGp0EkEZWhPjZhctU4gjogh8aRkVBYnWqCSikWjyYY5zOY1ml+Fen2Y0wa51TCmFtwVxGiOAyoH3FmcKtItCW78OwnZZGoyzwfnkPVZrzKggbnfQuoWzlsLktJotlJNUogohMXWIgClDS7EmRUZBkjbWBHeZyVAOvBWURc5gMGR+YQ5TlkRJhLUFrnI4V+G9RcsIZwqywR6T3TaD7U1QAuUdkUrp7ewwmUZEQmFciTOG0lriVoM0bWHyPJxywqPTNCSrOo/yPvCSlCNtBKC81glZVgCWJG3j62CLqjKBZVh5JrrdIBq52kGGRuqaKiYlZZYTRdH+etq6MEZaWxJFIdFOeo2pHHkxotlM+UHefuCC0uziBF//1qscfvoz/LN/9mu8+PwnWXB7zMweY6ob2h6qfMRuv8/E8if53IIjnpznLz11lG/+p68wsfxpnn3xMxw99ix/+ZclN94/T944QtOOWLn9Ebc/Os+/Xr3D0dPnePG5Z9ncWGN1N+fmzdv8o/fOE0UdXDyBlrA6GNE0m/zub/wrWskMX/pv/ltW1re5/WADrGSy0SDVETMTEQ/3HAdOP4PKC+S84q/97V9B7d3iX/7av+Oln/l5WqNNTp55lpU7H/Gn3/wGyweOk7YatCcneOlTn+XZowfY2l3jmRPLqOFD/uBPvsXcgdMsdCbYluFgfnjvDv/oX/1Tzh1Z4trqDmLqISmKVqNF0zn6XlCUFUkj4dVv/iknF6bYuXONX795FesUVgYrvi8Ne9sDLl66QDM2uGpI2p7jJ774JTqJ4Prth1x4/21+6gs/hjUj4ihhVOb8yKc+x7/5t/+KuYUlHq73ub6yyk/+9E/y+hvf5dadWQ4eWGB7b49ECT669AEvfuwZvvC5L/Kd7/xn3vzOK0x1Yt58/bvMLB7g+XNn+OYr3+TZJ5/izDMvcujQQQ4dOMQHly7xyhtvMN3s8Adf+0MuXL7Ezx44xJd/6mco45SFuWl2t3eJkyamcggF3ptwKPqxMFO3nflafniMVeQdgazvA4MhtMI9LlKE5z9qowq3cZUr2NrDfc67OpmAGiwKjxwwtQi1L4g8EiZ8rULIuro35goFLlLtnKqdTePtUsrjbOgT336wQhQn3F25yx++/DLnzpzkyImTDHp79Ha2+Pr9NXYHO2zu7dKvdlhf2eWJEye4+NG79LIBM3PT3L79gLzcZbgB7QloJw2GWYV3jjRJmJ2Z5eDSAlmR8fEXXuDc6TP87u//B95661UmF2bZNX0uXP6A//kf/E+cv3CBty+/w9//lb/Pa9/d49Kli7z4/GeoKlA6AA2dDxVWaevvJ75P6BHsA+D2vfvfd9tPfNvXgx4JdABSPu5eqt9W/JcJe/uPyUcupDFcczyBHacOfc9x8Vjy2/ds3b42NRadxsefr48Tj7AWXFiECq3rBYVga3Ob0WDEW+ffZG52JiQqCMnywYMo65icmmV6ssvcc+eI4phLH15hOBJ88lMv8cqrr9KLJVVW0B9s89d+8UvcvvSQjjZ8/lMvcfmjuxw5cIjrly+ycGCemQOH+fpv/DZFXiFMSA+ZmugQa8nOzjbvfHiJkpQbd27yYOMmcbPNV77yfzK/OEvuDApPRMKrf/EWG1v3kMrisz3u3v4AU0UIDxffu8jJoycYGUsnjun3tmjGTT786BJ4RaQViZZk+ShUT+sWRi9hWOZcvX6ZpCXpZ31UFJONKlIdYbwjisKvIxwMhkOKag8lBYM8J5nsoFsTbO4MiISkspa88LRjR0NPkCjLv/jff51/8o//Ob1ejw8+eJfp6Wmaepoqr7h59zqtuMFUp8mLz306tBr2HyIjRdYfErfa2Kqg0WxQVRmzs7MM97YZjfZ46/V3+OM/+DO+8c0/BW0gqq3rwGiUkQ8rdGz48298jb/1N/8HfuO3fovpySZf/oW/xsT0NL/7//w7+sU6/d27PHXuDAjFRxdv8O7FWxBrzp09x8knTrO+cZONe3foDXp4I/nzb/wp+d5DTj31FC/8yM9y6fy7XH3vPDKStJIUjSDWKWt3V0i1IY476OYut+6fpxNPsDuUYHpEwK3Lb7O+8gFT3S56/iDJ/FEmJ5uUVZeP3rvMwSOnUFXJXKvN3uYGiweOsbd+Dx1rsp11dlyf/qhPt53Sbnm0aHDl6kXiRLF8aJGirNjd2cahGJmMhSPLrG/ssDvo0T58jJnF46ysvMbs3By7exlznUao4DrBzTu3yEvL5OQko2HGvftbIBXtZpfKOFZu3yGJYxoqZePhFmVpmOzMs12Fal+cRHgvqOyQjdWME6eOc+zEEksHJ3i4skq1O2S6PU08OUNVebIsw5QFozzDFiVKBkdv0mzRaLWwPozHQnpiKYitR7gKbEh/0loQeRXs8bLCDEtMERZ61hjyUU5e5uRlQa83wJYFg16fflEy7A8o8yGjwZC8KMhNhq1yfFnV7Tshycv5xxbTUtSLjDAexVG47uk4wlmD8DoENRAW/75yteNFsp+ASX09lfViV4ZxcVww0XHEwtw8cRqBd+SFwVkY9nr0h0NsbpiYnqIZR+hYURUjPFBWBmNytArx7d4NESJF+BSpAnPGOijKjO2tB+R5TpK0kcpTCkNejMjuj4JbSAceThifA/R/bA81JghNSoZ2d6UUxnmsDYtF52rQsTUBXk3NEPIWLUPrYlgg25oDFVrPgjjk8EXgC4nxuFUnximCS0lKWQsYAq8lURSRDzIobYhkx6BEFMIykuCu1FoSNVNUFBElMUJJYqmCi0RK4lhhjEE5iJsxjUaTtY09qjLs03HKXV72cc4G0UgEDom3Bqnrlq86vU74MN8JbdcuMItqfg5CUnpHaQoaWqN0ilcV+CIMay6ERwgfWncEgZtiBUgf0v6EC+LKuEVCOYJroeY9jWczSmtGVcl00qDd7bA9yLBSURkb2puERAiHsp7KB4C7lIFxpIXE1qKi92BwpCoJm0hwGvhaSELUc7Sxy8hDWQWhVklFVAtxrjJYY0h0jLBlcF4gUPWcRDhbVxzDPM+aIHiNQ7uEF3ViWi1q4lGRJFYhNU5JEbg3tgyi1GNQZaXC/ld1Mq/zAULvvcOZCuMsUvjanRM8X4mWGBuEtcIYlFQhDc1bIqnQXmB9gO6qOuVWSokez1pqEUvVorhUDiFDu1GEw9kSRYYxe9jS11HpzQBpRyBcCMBRwqNQtFttpptNLty9SpxqSluivEA5R15uooVB+IhIeqwTVOUuUmu0iomjJgiQLlyThIoobEXDlkhfYFUD50EnLbTOKKuMqgyib5gHJlgRgPCVzWkn4bgUkSF3jqLYo9VeAFthhSbSYycmYGoXmaidHcLjZRAARaRqAVHW11dZp8w5YhKqsgzdgtUolIBrB4vwHocjz0JrPb4Mbc2mFpHqeSf1/FKOXaeE65n0hP0iPO1mg8w4ZCVqEH49p6yLlkqAty6Ii2PXXNB+cZGoXWuOOG6ADKm1SjdQQJykqLiBqQxxmpI0YqIkCaKxVhS5YXp+mkg3SJtttBTEUTuMD0Izykc0GyEdDR3RbDYDstYLrKvAWaQzpDphdXOPAwvTmBp6n1uLFpZ+MSLFEUlApVSVZzDYpTvRoawMQjsyEVqOjbXEOkZrKEpLM4oYZBmtRpvKieAwlrJ2L5boOLRHmiqkzvWynLnZOXI7hKoWyNFYW4ErwZVIGcYXLRRxHNXhAKEFDUcQYW0AigshyXo94lQFN5dziEpQlnkQhmvWUmlKyjwjiSSNqMFIZIHTJhyZLciFo93uBBdwFUwMkda0kwbWgRdBFELpIAQriSsLvIdhltFuNBFeIaTCWMuoyGk049D+60MS4agYhuMkioijwHeq8z9DYSCK8c7XYQqBA+XHi1fvKMsKrWuTBQ4VpfS3Bwjhabeb/9W11f/f2w9cUBpWBaWOOXD0BJ94+gDffec1XvjEF1nSgv7uLs5anM3JdrfJM8uxU0/TbQjMcIebg5ifO3MG0VtnaXEa7IAN3aNhQI56SG8Y5CXxKCdbu8cf3b7KoWNnGKwN+Tu/+PN8+89+n++8cYmf+8kvsXXtO3z74lUaKuX8hXeZXTjG87eu0FRlbUVV3L55j52JDoOiz6knzvATn/0c1o04f/UBu+vrfPGl5/mxLw34hS//EnurV9nc6vGp534OU2zx9gd3+PhnP8PR2Q7Xbl7luRNLdBsRZa8H+S7PPP85Dm7e5Kt/8HWkiBBK0mxPcej4cY4cPcKtjW3Ofuxp2L7HnZtXGIwKSuvxKqbZ6uCN4Td/+zcpSPjEx85y3QzZXd/B+ZCc4RHkoxETcTiAtvcGrNy/x3NnnwRTcenqbb74+QrlFV4YpPJs72zTGwzANyjLEVevXGQyMdy6cQlTet5xObozw7mTJ1hbW+Xyldv8jV9+jlde3iTqdnnp+Y9z8eJFzpw7wwf3bvPicy/y1ttv8OSzP0TWHzDc3SVqppw7d47NvV3+xi//dcqv/BqvvPYKSafBX/nyL9Lf2yVN07rfu/YLiTrDS1ALNI8BnQFqG7Kv3Ufem1pIGrdfyX1nU4Bu11Uuwf7k1RlCpUXIOj4yiEwhptHXvczfz/x53LpSR7TWcYvheYErtD+d94+nidUJDyKo08Z5jK1oxII8H/HGO6/RabWYnO6wvtvnSGm5feMq5997nc985ic5e+5ZlhaXOL58gN/7/a+ytbXNmSfPMjczS5o2SOKK4WjAwtJRnI9Zmp2ltDHbvR67ezsoU/DMk2e5u7rO+x9cZKo9RT70DAZ7LB87SV5aMldwaOkIeeboTk7x4cX3mei06XQm2etv02k2yXoV1nm6UxO1s+wx8PZjt8c5So/23WN/+cckm//y5ftVOsE4g/R7JJ7vcy+FS+m+MPX9P9e44lk70fBBTGJ/HuD3Dy4/fh/q14nHf8tHTI0x16QyFdgKBwwGfQ4cWmLQbnLuY+eIk5jNjQ1eee0mWT7i6PGDLC8uM7IjVh4+YLC1hVIwv7jI0eWjLP/SEa5cvcpHl9/F2YN86oXP046vQblGZeHEyZPcf7BKe3KeN95+i7945bs4lyMjaCQtPJ6Haw+YaHcQSvPmG2/w5muvszA/z9/9B/8jv/tvf5uDy0sMshGiEhTliBt3rjIzu0DaSJiamWDt3ojIF+wWFdJqpqem8MLSTBLKylE6z/zEJL1sL1j2paKoClwFwip0VPPOrCVGhcE3TZBJg6L0uKKiUgoKG3gkSYKxJVVW1W0Jjso4KgX/+t/8GsIZEnRdxQ897k8cPcr6dp9f/Yf/Ei0MVy5/GOz6keLWg5tM7LTBe/qjIUp7zn/wId1mG+lKoMXeaID0ik4zxToDWrHdE7SjNlHcZVBkCF0xOddlUIyIdOBLeCuxHhqTLYa9df7Gf/ff8x9+83co8j5PPPkx/uiPv8YvfvmXOHbqKWbnZzBZxdvvfMD00kFEu8Wpo8dQaUI+KJieP8yxJ57l5ofvMntwmfX1NbADlo+dYmbhMGnnMEdOCcreiIOHl4nbbfZ2B7z31svoqGRmcobRaIsITStKca6DyXdpCEnZ30b6HZqpYKKTkIoCt3eHYwtdLn50jdKOuHrhTc4dP8TRY3NMtk5wd22VJ04fZ2dvi+7EMtevXOaJJ09z8cNLDEYjpFBMzM5w9PAhpEzY2NqiPTVDWQ7ptGa4c/s2u5s3SBsx733wOndufkij2WZvmLGxvY7bdMzPz9Nupox6a0zOtjhy8CQPH2yQ5SXraxvMTk7RGw6Z6HZQSnPzzk2arS5pI2Vp+SDNiYTNjRUQhlGWM5G2KMqc+/fvsL2zydnnnmHmwBTx/Bw7Oz1ssYOQTTY2h3S7HY6eOkRve5esP0THEXgY9ns04oS4oYm0oL/XoyqzMO4YG1w7xYCdnW36vT22tnbZ2uqT5UOqIifPM4wtqKoyAHxdaM1BeZSrHRp164qQkkjUrpYEIiEwLiw2PTosvgGLw/gSvMIZiRc1zFoIjA+LX1FHyzvvQmCFCM6lce3CizGbRoNzWAJ3QylNFCkOHzzI1NQUrbRJXoT458Gwx+7eNtmwT2eiQzOOiKKwSO/nBVVZECVxiKquqsDj8CAqcM5SVhVbu3uULsO5EqwDqShMhpSBr+IECC3qmHbHGFzu8SFOnJByJ5TAuTolSIaWAD++lHuJdwInQpuaVAIRSbxxSB0Req48XgkwYUEq0Ug3drmo8N6RJFIeJwJ3RQuPDpAVKiypjkhUVDu0IJqaQoiIOGkg67YXJ8PcMdh1DdY68spijcNUFZkr8GUQTEpZYYwhEpqF+Tnwmv5oyKA3QBC+c3CRERanqhaLLEQ6wboSqWNwVXBUeI+1Jsx5dGgn986DEpTGoZ3EJAHYW5kB1objiNoppLQO7CfCsRgWGCCEI5hcPNSuDynE/gLXA15LVD1OWuFxZUVWRuhGQpxGFDak2zkDzleAxCjAyXrOFrZBahmEI2NAWKTQ7DOqPHhX84e8xznLPgSh/q5lWeC9JY1T4rjm00iJV0GQzcsiCDrj1rnQtISvv4jbn7vVlIXHJxmidpYBRVlhbWi31rWzLPwj63a1ceKif0y41Y8SbBGhvVOEc7Qsg4AURRKlFVUV/C6x0rWTSaKpW2w9wasiJT6o8vX8JzxmTbUvyCEUsU7x0uGkRAtNaQdU5VrdUh6EU1uBiALnStdzYIkKPC4qekXF/Y1trBsx3N5AxTEVFU4UlCYUE4WUVKJEpy2E0Mgooqgy0maKCCF7xDK4g5JyBKIiiTRDIYjqVjdTZQxHAxppm1hIpJ4IDj01icskwjeIkoROKyPLezTbE3iviZM4LPYjgfQKrEdpVTuF6rZK+ch9KIQnqud9hQlwcGdtSNZyhqLMEb4IrUEiYWSHAWcwjkF0oa0VIdHCQeB5I2q3mRyvLfx4NhqODytD+x+1uzNqNDDW7hcNpFSgQuqWEhqEpGFMaGQIeUR0W53Az9ENVCyIhcJ5S7vRROkGcaKJGilpq40iQMArY9HNNolKqeyAONIk7QlMBUmrAcYEELOOKIdD1I6h05nAodBpTBIpyqLAGgs2OCKV0BQmp9NK6+NQgrAkWlKVoesFJRCxJpWC4WgEwoJOMEVJIjWZNQgRIfwISUplQviQc8FFF0UxgzxDRwolI0xlkdKjpcKKIAJXRYaWjkgFAX5gKlpRgi8znDNYVwRXII6qqCAPlXuhwjV5b7jL5PQ0JpPEQiGUJBsNGVUjFmbnw/o8UbjShB/RWBDheHUupz/o0223yI2tf7PgshrsrtNKwvkU3HKGonZWOT8ubYfxO02T/VZVL2E0Cvs40grvFbGKGNRzi0h36nUs+4ltzlRMTU5grURKGGUDms124BS60D1hTHDfy3qCYK0N1ylvsU4yGmUopcirIaPRiHa79Vg/zQ/m9gMXlBKjiKOIS6/9BUe7P8Wplz7DsSMHQrKG9GgKLr3zLS7c7jE1d5gobtM5dRKjND//Yz9Nt1hjffsOW4WnO5Hw0Ttv8taNhwz6FZV3pJFkb2+bi3vbyM4cJ45XFNv3GG3e43MvnGP+4Gnc1mVev/A+aTxFf3cb1YgQG+v8xn/89zif82C9j+5McebcOU4eXqQbGX7vD/+Qr9y4TBo3+cxnf5iW22N9s89TBzqs3blKsXmLQSl4/+5VJpI2nU6b+akZ3Ggd4SyyGrFx9w5vvvoyb77yDRqzx3j3wjvMHn+KyA7p9TO6E5OMdnd4cN8x1WkxeHCdazev49MWkQt2NR1Fwe5rKqJ2k3biWNt6wGwrZbiXh4mUk6hIUaoGzJ7ks889hzQZt25expQ5P/ZjXyRutLh+/SYnnziAdCnSCSam5njiidNcvbUCznHv7i3K0tDpzHHo+AnuP1xheuEgeVVxYPk4Tkasba3z0Z2HzCwe5x//81/lxOkXmW43WX7x48xNLzAxs0izPQG25MHmKktLB2jqmAMHDnH/4QMWDx9jc6/P737tT0gnZ/mrP/slyrJEj3vm65Ha1ewJXL3qZ7y4D48H636d9iLHXJ3HXTJ1fDLUJxT1yVQLCOM+d28J5Pu6vQ5RJxm4+j945EaqP72ubI7fV8qA8wwtd+GzQxUpFML2t9k7nPA1lNCzsb5OWWQ8+9wn2ShzvvDSJ/jw8hV62+v852/9CVpHTE8vsHz4ENOdKe7duAmlYG56ibXNDTZWH9CJE7Ii53/7F/+YtDnJ1bv3sKVjcW6eJJFYa/HSs7m3x4WLF8nyispU7O5tUpiCRmeCbnea+VHJmWee5NLlD5mdn+NkeoIHKzfQSYPJiS5vvv7nHFg8xMUPP+Bjzz7P09MfY8wUEeNS5WPXorEIOL47THYeiUrBvVVX0et2hP+yle17b77ui/bf97QweI9LprUjqZ6YP8522q9Gs/+R+4+N3+nRa319nIXtlI995vgtpRBEUahCJpHG+zYSwYOV+5R5TpmPuH/7JvdX1nBRxSeef57p6Ule/e5fcP711+jvbfOpz32KhYXj7G7v8vyLn+Da5RvMtKbZ2N7hgw8vUBVw6KlPcH9li7mpWbQXfOPPXiYzI0aVoZm2UU6yMD0HzrHBJlt7e8RaodoxWzt91od7/C//8H+l20nJs4xnz57l0vtXaUxOsbSwSFUVZMM+rSim0Zhkc2ub6blpTh47xd07D2hPdhkNR1hboYjY2O5RmRKdSrwzSBUx0WqR5SO0grIKFnREaM0pc09rpslwsEPcCO0xNjOUpcO5HJFETE1PkKqY9a0NhAjW8ShWSA+NVJNXmjQKNdlGa5aVD2+S3b5FGiWkzQaDwZDc5PTXt7ln7H4UdmUKsmyPwWCXMjdMJRFN6TDSB1dst8PBxQPcvnmLREdEOufa9RWarSZFWeKMpcKha2t96UqK4RC85qMrt9javkeaSl5741sszB7j9vWrbGxscevmHfr9bdrtaT724ks0O9Ncu3KNuYV5th9u8Od/9jKbO5dJO10OLB1h/cFt8nyb1dWCZqvBaHOFSGjmDx3BScf6w1UunP8uTz9zim77OJWvWLl3h+tXP6Ddmmd6YoG4GjA10yH34E2JosHxJ57nzJPP02lPhUrvR++RxgmNyYjCSnTUYuHISe6ubtMb5aysrBMnKcfOnOXiB5e4v7FClQ9wpeXEyae4c2eVhQOH6DYmWV5+gqsfXeD61aukyrN4eJEHG7eZbnUYVjnVUHDh/dfAaSItefjwDoPhNt7kxGmHj67skSYJ3kGz26CX7bG+vs3M3ARrqw8Z9Ic8+fRZWu0Wed7HO8v29jZClDQ7KdNTHXZ3IGmmjMqcf/5P/iknT53ghadfpNXoMjs1zfbOgGFvg3t3b/DuhRGpdmgka2tb7Gz1KXNPHCcMhgNa7YTJqQlKYdlc22B9fZWyyAkcTYuzJlwjlNwvREjha7dM7YD1KrRNOHDG4ZyqXRoWU1ZhVKvbhKUQNcg5xMwrERbJXj0CeSMM3lcI9L6T1grCgq6+5I2TvIQI6UDCyzoRNfwdWnJC60e72eDwwYM0W10ipRkOc0AxyjJ2d/r0BxnNRps0aRJFYdJrrCeK0gB59Q5TQZGXVKbEIaj2bF39F4yKITKyOBs21FlIW5pq5BAxddKX2h8ZfC2M+LArkDXfZrzdkY7DVdgJvHSkjZgiq0iiANGVIvCbPA6lwr7wPrhowu6VJEqiZBREIdVCxWlwnWlBolOMd+jIk0YR0xNdHDE7vWEALdcL+sLkOBuSrIq8FxxhrqAiiEdl5RFe4bBYYUiiIPiVNiQCKQk68sRKYY0lH2QoqWnHMarbYTjshQTHogy/lxDh8+rFamktCI+rHHI8VroxGyNso8OFNh7BvmPH2MCu6XSaOD9kMBrV7V+ullZACLUPGVd1Ste+OAV122coxBkfWEDBKSVAeBQB/JxXhlYjJY1SvC0RWkOkEIlF4mmZlLyq0HEaHHgiFGg6ArIipy0SnCNEbdcMTedD8lMQlsau4zB22xqsLbwL7X1CEOkYjaOqYDQYkjYbSBVSnbwMjgFTmXpeVjtkBTWg+ZFoth/MMnZySVAqxsvglBNS1vMbgfHBCaFqF7wSMa52WOTQAAAgAElEQVS+T1C7YYTCOrtfsHQWQtNUTiQjoljvT2GE8xgVGDjCg0SGFDDvQ+ubeIRscG7MdgjuJCXHE6KoBit7lNIkyQQWh5YNMAOqckBVgiIiitrByeIdWkmMK3j/nfOsrW/Qnkwx2w/xehJrKsrCILRGaeiPMpRMSbUOzjcXhFlrXYBvxwpbVkRxTGaSkKrnA6+nKjao8nCOlaVByggjBA3dRdjQ4tmIOuHgk47Z7jwDKYlFMyTFjd171gUhH1VPu8OxYgHvJcLbcD0QFX6cfmbAqzEooxYHhUR6aKUpRsSUzqBkcGFaU6Fd7VpTUJQDhHDE0QSIcBzIWgyWBK6VVhFEKiAnVIDOa2dJ2138ggqhCp4ggEuI4og4ClHxURyhVVSLq46JqRnyYU7U6eJqB5CQIaY+iZsMRn0arTZpElK9TJFROkezMQFCEGUFutlGeEEUh/0UIPChGtAfbJE00yD2SxHi6isT+Gi+wnqLRGCRDEZDZiYWMJ79cB4lPDuDXmihUlFwQ3rPKC9J0jY4gakMkRZEOqFXjGhoTZKkVDZchco8RytJWZkQ0OBC0aGyAaatpMZYhxKa3d4e7W6TvcFOAP1HMXt1YFYSB3eOQAbh1VZIZSGK0XFMVTk67Uk8CukdThiEgd6oR6vRRPmQVGoqi8HgTEGkovDbm5JsmCOFQqkU521dyBCMRjtoDK20jZMSb8P1SQhJq9FCCoUzFlcZVBShI401gDMU3lMUBa1Y44FIB+NBXgSelNQRrnblDkcjnK1I0wALVypiOOgDnqrKgxgmgqvMmJJWq8HjSeZSyNCqC3hCKma/3yeKBJHWeD8WwH8wtx+4oPT0x18ijRtcu3qJ7b1djtqK2SSjv36bu7fucP/hGhcuXmS3iFjYdeyJFkePH0cLRyO2bNy9yFd+/d+zE09zenmJh9s7bG3t4XWHZnOCA+1J9nY26feHjHqb/Kc/+RaTE9N85f/6NTqtFqdPn6bXv8/QKCYbniiNQUlE3ODQE8/wzKlFvva7v8nawJHt3ufrH75FrCT9UtBNLVVR8PDBDb79yp/y/HMvcPPmdQ4vP4ECnjz3NN996y1Ue4Zuoli7e5MXnzvL+Ysv83/831d5/72PeOP199nJK/7u3/sS23nGL/+tX6FlNtgYeiZS+M63v8Hqxh4nlo9x7foVTjz1PMuDHS6+exETC5566dM8d2qZr3/ja+xs7SCdYFCOyKyj2W5inac00GhN8IWf/hI/8ukfYnlhkbK/ytvnY75z/n0+++m/xMH5ebyt2NvpMTWdgJZEQvKFH/0pzm6uc+XCeY498UN87MxZekWfU0+c5vmnn0ZGMZvr91Fac+Gdt/mZn/p5nn/6NA/KhBNLRzl06Ci93U3+/JWXOfPEszz//CdZWFjk+o2PWD51mt7OkG9+57v8zV86xvKRUzz/sef51X/xT2hlI5YW5sFrpLT7zpAxFFuIeupQqxLf70gZV2OEsEFYqh8f/98FX+/+cx8liTmC9B/eZ5+fM3YzEappYZAZCwxBKBoDwsfumUc3t++EYuzMETWzybv9TwkxmqHiurW6ye//8R/wMz/+kzTSiJ/6zBd4uLbC8UOH+Ge//xt85jOf4tqN68xNdcn7Pa5srPPeRxdQukk/y7i7co8qz9je2+HjL77EwaWDTDRb7GUfMjM3y+zMIsLD/fv3SLRmefEw3c4EG1s30VJx+eoVbt6+xsc//kPcvHMbYQsuX7zEX/3lZ7l+7RYvPv8CRw4d5cr1jxjs7PHqK9/gxZc+R6PTYm5xAaWTmknwaB8ydv3waN8+9ot9n2wT7nvkHhoLT+NJbrCcjx1M3/Ne+2XE8Kr9j/WPqo2Pw7QfKzjWzqSxSOkfbc/4OHusRDlulhtXSMd/h4MhMCXGHX0BzCjY2dlhotNgaXGO4e6Auyv3aHQ6/NzP/BX2ehusb6wSNxIOLS0y9dQJzp5+mhMnnsFYw4MHa+zubLG+vcvERJcb168xGo1YOnISb0quXr/Bpz77SR6s3eP1t17DD/Y4fvQIt27cYHNznampaSbb0wjjcUrQ2xui6p7+7b01BgNPkjYYDSxHlo/hZcXpkyd4/Y1XmZ+f58lTZ8mrkt29Xbzz/KUv/jjZXg8fRVw4f5433z2PcwWFKTFlhdaShdk5VNyk1WqRRJq7d++R9XZq8U6TD0uWlxfpZSN8BWm3iSsypBZkVYWu21qmp+bY2doOTkXrUFFwbigFRWHoDXPaEw20T/n2d1+jP+ojPDz7/ItcfOdtlBSM+j1aaYKXIONwrllXsbc3DNyASOPIMNZjjeX4seNMTc4wHBbBFu4V1lUoKdjc2UBJRTNOUHHM0sI8eT7k/uYaw36PKIl59dU/Ax3RL4ckaZOyGPKdt97k4f0H6MgRxZKN3Yf0hmucOPUcDx6s8IWf+QXW1u9z6PgcOxcuk49KXnvrWxxcXMLmfQ4fO8ITT3+ClRvXaWrPiWNH2dreZv3BHVrtCClTVh+u8vRLL3Dg0BE2N9boTs4x2V3g8LEjbG5vgvf09nb3Fxxxo4lDUFYVBw8codfbZOnAQVZX13jm2Wd59+032Rvucuv2h9jS0Z6YZungPAcPL9Hr36cSTeaPLCOBG/evkNkRx448yTDPKKohUUNjqorFiRlcmZHnBRGSvKxYe3iXWKfYIBGE9BxryHtbNNOUIs/IhgVKRxTGML84TXeixYOV++hYsLb6kNWHD7HOEicKJQxCWKQxbD1cJ2m2WDywwPbeDqu9DV7/5uvc+vA6SSvBZZ7hqCQrDaPRMEQnC0MzjcEKFIqq8FgLxjqE9kRxAGYnSQPpPe1WArICK0jTBrGOUFKQ5zm+gjwvGBUFkGKMRcaGiVhTlDk7WYmQmkiFa4oUAeQcqp4hDl0I6lSkUH31WtRMhGBht9bsu2U9wYkbIccDYHD6eAI3w4QxzNYXTV+L/QFWKxAq4vSJExgT4pGHwxHeh7jxnZ0d9vp7KKnQUai6V1VZQ4cVSnqKqqAc5mExb01ItSMsTrzzaClRWoITAWAtJFIEsQU03ngiobHWoyKFcYElYl0QQGKl8N4CEi3D9seRDi0SXhEAM464lQQAcRTTbIVqPU7jvULW0fFSa7SMAJAqcN1w1GBgg3NVaPEKHVSUZUklFY2motFqIKRjMNyjGA0pqxInfUhB8sGVqaXCyggtBLF26BicF/VwHzDBzgtiIbHG1u3YgsI6tEgY5SNandb+QlRLHaLevdyfO3gfEugQLlTxa1eKqBexvuZ/Iep2e6kec/IEh4qxJVleEOmERqLJchFa10NOVe3Oqo8bghPAOxd4KjIILOM4do8P/BkXKixShd9QxxHCBzaQ9SFNK9IGVEgwwlYIb8MC3nkSHSPjKDDMCEW9hKh2owlUnNYDcRiUAz/IBiGmFpXGA701BmMscRoWgniJqcJiKi9zdBKTxnE49xBESqOUwtog8I7nd/v1yvqcFKK+JgiP0vX5qCRShwWbdw5XO02s83iCm0z4AD0fdzIF19KjEBElVfgOQgaB2jtsWZKkirJyeBkCX4T3GO+Rrm7bV0EwcvWpr3wtrsk6lr0KiVVWSqR0QQS0ddFeaBQz6CgIWcYWpGmXOO1gvcPZCitztEzQOuLc6SdZufk+w3yXjpkO7aplj1E2Cq50K6l8EJ5aKaRRE+cqKpcTRxOY0tFoSeIkJjeW0lqyCqan5xgOh1SyYDjs4aoC74OLyuYDVKMJMjhiqsqhVURBhrTht5toLVAUGejAYitNBm5Qc9wSBBoIsGF8aAlVdVeAVDUHzod0PVmLhiF9zhN7ibehdbXZajOwBu2D8D0YDlCRQqjgBBwVI7qdSWanDhElCYnSwSUqZXAdCUnSaBElKXEUUxRZ4DdJaKYNJAoZS0aDPt3JaVrNZpjvIAnc8AhTVXgkUSRJdMIDv8bc3AKjfp+0nWDyDJQKEGUJaaRDPL3xVM4RR3Fgz5kSFQf2aeUdSTPG5gXhCgBlZvCVJ04jhNTEaQNPaDn2ptpn8ElCumEcBYHDuBLnSqIopb+zjXMlQjaJdYzynryosBhS1cJXDiUERhKEJTxR0gxjgijwaLLRHt12zGhUoLRkZHOsqQIfMEnDb+hCirLUYJwB62gnTXCK0g1ptdMgSNUV58qEwqSMQwBHWXjKMidtptjK0hAK7zymsGAdrXan7pQJ464QYUwbLyWNtRRFRquZgHBBYBZQFX1MlaOSCBknGANVnuOtpxUlyPpcL43BAY04xgMVDmEM2TBDCEekg4gYac2gKELYkxNkWYbwCmMspixRQpIkSXAImpLSVDQbCXEcIWUDj2NUZMRxjJSK8ZLH12NDXWlHKU2elThraTVT4jihKEp+kLcfuKD045//EbAZZucaN29fZ362xfW3fp+N3ZLG5EEmO22izixFvoloRCy2NXevXWJmaZbRvfd45+I1enqCJ0+d5A9/77fIc0Pc7NKUjny4i8dTFgVOCJaffIZOrMgHm6yv9HG6yZ+/+QYHlk8xM9mhqByLR06x29vm9MdeoNuUrNy4TJ5lZP2Kh2uWUVYwEgqtJQ/XN2jolL94dR1jHLdXXqbZbHDx0nWS7gRSQRKnTHdTyh3Ly9/8OhPdNlEsODh7hNXVO9y9v0Oz1aUjK7qTczy9NM/DlS3OHZxgd3eT+akJGnGbrNdjamKGuW6XfjGgqiwTCwf4q1/6Ms+dOIQdbHH+6gqUfUo3ZPX+Gs1GI1DaXcVEM+HIXJsWBuUqHq6uM3IRnc4Ud+/cZmF2mumJBqvrG2itmJqY4s7dKyzPLbJ19x5Ot4jSlG475fa96+x0J3nqzFmiJAKTYZwlTmIqUyIwPPHEc3z5C5/itQ8+4IVnPse3XnsDIzU37twIcfcoPvfSp9ja3kUnKROdJpNTk6w9fMjf+Zt/m69+9T+yvr6NINiwpRc4W1EWBVVlSBtNZBTgnr62Fj9SWYOl1deZH/hxpWnM1/GIfVJ0rRTUZS0pazcMQYn141IPBMum4LH3gDFAIDwltM0pJYM6zaOElfD6mnsBwR3lPMhHWG4hwgmtpCIrMjozU0gr2N7Z5NVXv83U/DTF9ja7/R5nTz3D+ffe58HKNa5e+5DlIydpNrvcuHOL3JQ0mm1GoxHZKOe9Dy+hleDQgQOcOfkk9++v0NvaYntnm4WFJe4/vEfpDN2JSc4+eZZbN25w89Y1dKS4cvkKp8+eZXd3wOHDy6ytbnP/zjWW5ieZmDpEmjZQsWLu4BGePHOGA4tHQySw92ztbtFodkjj9HvS9Pb36/h7j/fPvmD46Hnf42waa0TjRL/vdyz5/8prYB/iObYcef/4kx4TIn1diazdUo/dvb+B4y3e3+b6H+/Gj4tH2/fYd7XOEqcJyimkFsxOT1F0Uj7/w19gfXON1QcroWWr8Ex2Z5ianuGpJ5/k8KFTFIVBR4q5uRlOPXmaWyu3mVmaZ3dnky/95Z8mihdweUG706DVbPHDP/yjdCcnOP/WW/z8T/8cH12+jLEVN67f5cPLF5mZm+TQwWXeePsNWmlCr9dn6eAczVaTY4vHeO38m3z2pU/Q6k5y8onjrG+sY6rQvvfSSy+RiAa/9Ttf5eaNmywvH8dUlso5vINsmFHZqm6xECwfPsKD1XXmpufotNrcvn07nClWkRtD3ExY31qnrILINxqOArNBCqSCNI7pdrr86Oc+z3/87a/iHFgr0UmorloEVWnCYGsci0tL2FwwvD9gujvJcKdHVXdySAT9sgiTkDjCSbBO4WSM9gJvDK4yVMZy6sQppqbmeP5jz/JHf/x7tBuarAgL4NzkpHHC/MwCzjo+8+nPMhwNKYqc6zfuoonRGNKWZnvXQKRwlSWOcor+OrplwJaMcouWMBiuc+PyGxSV5+sv/yYLi0dopC1mpua429ulFTeQMkEkgmOHzzARx5SxotGMGQxz3n3rdawZsbx8CIvn7u1LqNjwQy/9CF/8iZ8m0k2217YY9HN2dnocO3aCp59+gcuX32OyPUMkYqQLTpyTZ55mZfUG584+ywcXryAlrNy5zpVbl1icX8Jawf37N1lcWiTLLe3GDNMHpkk7XT66dIGiGJH199jaesCgP2B3Z5XRsM/0wgGOHDuDc5rbt67QaU8TZSWZK4EKZy1axyHmOYJWs0WkHJWtQptQaRBS0J3skOUFUgnSRkJZjVB1NHc2yJHaBfeVFFRlWHTs7e0glESrlDhStJoa5WF9bxdTgZARURwmwsJlKAmNNKERRfR6OcO8DAtf5UlSzcLCHJMTM1S2oiwzCjvEZCWtRkqShIXrrinIigxTlUFUoUJID96TlwYjHGmqHpvAhaLEvqOTusJe570LVzO+haeyptaXHP7/Y+3NgiTLzvu+31nukktlLV1LV+/TyyyYnhlgZkAMhoBAQABEiqJoSbS10NRmKvyiCIfkB7/Z4QiH/aQHhyMcIdshO6wgKVGkKEIgDVgEAXCwzopZuqe36b2ruvbKyu0uZ/HDd7O6h6LCD0JGAFNdlZWVee6553zn//2XaRJPQExYxRpa5BhBZG1KKSpBlQRgeJzdoSIxNNI3ZyjKWpJifI1rvF72D3Y5GOwSo3R7NZ66DoyqkklV0MrFpNX7iqqsJD+jAUxCEKDDaLAWvJvKsBrAw8nhVhuR7FirhPEZI12bExtZSXJo7C2yNWOE1ZFlKd12wtyRZQZjx8Fgnywx0vIJwjzxU68+wDsvkffeo4KkUbkGuAjBycgZYdjQGH5Lp11R+chwVJF3ElaOn6bWsPPwPrltQj+iZirFV01KV0Dj/dRfcUplVaiYYJTUIToxwkILCqsEnAvRMxqNWTjSI6aWunQQHNpKqpFqAJDmdNzMH2F8mmndo8R/Lvp4+JlC0/QwRpgXPjRAoCslKSjPKF0FmENfLa0sSgdcIy+bNtKCEqKbMsK28lEkHhqFiTLNEmNJtKGVtkitFSDMgEkME1eTm4yP9byVsM9VEANsT8AEmQ9yI5hDMCnGeMg4ccE/SmWDw1RfHQImBKKL2CwReaMxlEH8xcq6xCYGGolT42qPUQaVyFjTpB6BIgR32Bw0RsaRxk8rxshkXIj82trmflPyXvT0PcaGUWEO+5a6oUNHRMon/pMiuZRUOzlwJtZQVmUjFbOo2LxfrYleUsGil8XCR98kR0Lwjsl4LIzCxqDXGNtI5CIWQ6IhiQ2oggFtiYhXVfQVzle0co8m8HDzAbfu38RFWHuwTac9w6SuiFZix8fFBKwiMVKDh6AwuovCo3ykm1lcMWFSVlRlQSxLXHSMRgmjUUFMJPZcRWkyaGPwDsq6RlUjUgIhZIRYEXzN1MtgXAnLpdWCSVHiqj4BhTVtjEowyhFJRGpohZWo5bCAURalNLUbY4zC6gyjFJOyTzUZCShrPTNHZpntLTCvDIlJqcsh126tEXRNjIZYRjKjee7ip1ldfYpogMpRFGNsljE/tyBJiyYRcFBp/GhMTBOyVguLogqBcjKknXXozM7SbuV47ygmhazX8ZHlBlFxcDAgnxHGtDUKgkJp2c+Go11a7Y4weFwtXmvEBlwUcFOke4E0sSgvDM5EBaxO2B/tkWYZPnrSRKOMxpU1IThCdJJ4GhBPn2JArzdDWY1BaYIPuOKAyaSg1clJkhRlDS7ApCpQoSKErEmVhOAjvizJ8hRj0sY8PqUuJiTNGptYTWIzxuWI4IV5KM/V6Bgpq4o0zUmAoBRaG0aTEe2sK0QCpv5lImW0SmOV2Js7V5BmqTBAo7gOBWspijFZkggLS9f4qKh9TWITrEmlFRY8VeVAg01TUGCMlaZIVBR1YKHbEYC78vgoSX7tLGkSLAPBVSTaQtDUoakagmYyHDA72xWD9MTiI9RlRWLEfy+1KUoZKjeRuijLSNMMH4Koe5o9TJEQm8ZhWZfMdbsNGSMcrula26bZLkSHsiwFtMxT6rpsGlk/vcdPHVBqdWZx+w8pi5LST7jx4VvcvnGVYZzl6PGM5RXF0vwMg/4e169epRhPuDPb5blPXuTtb/wW33p7j+5sj0olPP/yz7K59pAkT/jo6rsMq5TMKmyS0koTPv3ss5xbbPHNb/0B1wrH+SdX2B9u88Tx0zws97h0b59XPvdFEsY89dRTJNWA77z2GqY9Awe7oCwKhatq6aYFRV07kjTBGE9VB04cP871a9cY7+3wO7//b2nNdMlbCZnNqWPkW699l1aq8LducLC7y7AoeOVzr/C9H77G8nN/jrtX3+KH777DpKzRJmFYOnQ95oN332G7PyEox/7mGlVdsdjJiaMDRnvbHJtfIHupx/69NTYHW9y5sYbVYHRKXQ8ZDfq8/r3vsH73FqdPHKfT6vDMuSdptWa4ce0aaw8fkhpFYg3Xr13nxWee4Q+/8Vvs7FbcXC/4+Z//Mvs7G2xvbbB2/y5KGU6cPMVCskgIgbIssTFSTQo2d/d46cUFinLI/OwseZbwuc99iQunT3Nv7R6D4QHReR7cvk13Zo6Ty0vMz82yubXB/MIC0VUsrp6gNzvL2v27LK2sALC3t8cff+ubFOWEk6fOceaJc6weOy6yPxWZcv4P2SJqevAPDVOGw2JdNcySRyBB09k67HzJAjb1XIrRc1j5TM145B9T2wGm3k5Nb/iRbOoQIHlkhzr12JFiUIoMwUoEGDt6bJW/8Qt/hT/85r/l5U/9DH/wR7/JSy9+mv7GHktLR7h9+xauLBi7Gk0Lnc9w5tSTXL7xEU8/dZ5L71xhaFNSrVlaXuHGzSu0bEbRHbO3v0/IPfiSPJ+HCPc3N4iX3mOuO8tuf4ft3Q16s7Ps7O+TWs3nX/ksMTg+uHSJZy48xbWr73J0tWJt8z5f+NyXeOG5l2m1e4AmtTl17VlfX+P06bOEJJUOcDNeh2AcDbPsELH7OHPo8Ol/esh5DOh7nHmGOhx7GeX/v8dhGHDz/49MvqeQUDxMe4uHv6Gm/2zelDDXOHyNRx5Lj/6SpCdI8ZslKZOyYDQes7S8xMrKUcpqggoR7y2b1/pcunKTdmeOU2efJjihVxtr+Mwrn+WDS+/z+c99jtvX73Jq9Rn29g+4dv8uZ8+f5juvfZdPPvccT154hhvXPmJcjHnh+U/x+utvsrWzIZ1T58isZmVxnrosGBcVX/r8n6M7c4REKW4+uI+2cGxlhU88c5HJuOLtt9/m1MlTFCPHzmidr/z8X6AYjRmOC37rX/xzhoM9DvqDw7hobQxpnvLh1WuMigGtdsZo0MNVpXSxM0tRO44tr9DqtLh18z5pK2e3v4/NE6LyRB2a2N2EXmeO0ydP896lPVQinXZrIjZPCNGTRMvc7AJ/+2/9bf7H/+Gf8MzZJzhz9inef+cSxqRMypH4w8UonfngMEbjtdz3vbke5UGfhdlj1OGAsxee5o0f/AmDnVsMB3fIkxaOjHanBYMxvU7CE2fOMNft8YlnnuY7f/Ia7VYu3fbUYExgVAiYkCKJW7V31FVJbwZyqymGFrxHe89ouEvhIuN7B/TX77Mwu8xzL7zI3u5DXDWg00moh55Ou0u3O8ee3iUqxZUrl7l96zLeHeDUWb7683+DC0+cYHN7i/nFZWoPb//4DZ574XmqcsLszCwqKJ586iLdmRnm5o7I3NQWo6Gqap55+lM4Ehbmj7B+b4Nnn3+Bzb1tFpeP89GHVzB5wq1b1+nNLdLqisfO9s4t9vpbBDyTyQE3rr5L5UopmF1gb2eXy5feY3d7k3E9IYwD0WmUSpoDciQ0BrghBHZ39gi1JKkU40rWeGvZ3NwhtX0GgwmdXkY5KVAxCmPIGJLEYFJDdB4VauqqYH9rD5vnKF0SY2BrY4+ZdpdUp5T1BKcsylqCq/ClpK6ojrAMJmXBpCiJRHQiHemtnV0ORhOKYkxdVpTVRAxUiY0UzTQpMR7np1JpL958PjBp4sWJXjxJmsNvVPGwY37ImG3WlsfXJR2axdAobBBfDW00nnDYfSVMdzkBlSwBH5HGTJOWGjUN/V+69aCZVDVaK8pa0tp2hwf0+/u42jUR9yWTwuFrT1FXuFDhnUintZLcNMU0VVVhjTBcEmvIs1QO2QhbRithL9k0PUxa1VpjbYbysbGWkkOB7JcybBrxJPJ+ysppsbx4lGwS8Vj29zbxk5IQI7WTKHmjTOOFOJW+60Z2GxsGg8E5ea/WGKA+7DWFoKkbJslwXJANB8RJISw0ZdHWYEzDzAn+0d/wIrmKSthnaI0yRoxep1n3zbVVSiReOgqIZaJiUle4KtLO2ozzimpcN0wji0JAsoAwyIzWTdrd1NRaHza/VHNggoDRwsbQSuR3IZaUlWc8tmTJDO0sZzQeE0MzD9F02h1hhE8m4qkkfTCpp5oGTAwip9NTBrZAgWRJSpLK4XlSVRirMd6TJIY6+MPDTEARtcbFgGm2VqWjsGm9F7BVgUU3Cb1yPWJoJG8N2DQFvKY14NTMXRthp/gYMCahDhpsQtSGoq5Rxhzu38TG9+qxegDTGI03c1EYLA0zScmhPAQITqSAIT4qAkKD4T6yZ4CgplHDNH5mj5pTILijatg0ChlfYwWsK6qKJG1AtQZsDlGkVFNmYmhY/No06XBW6ocYA6kVT1VtHq01KC1p0DahlffwsSZrdairkok7IMaS2qcQInv7+5SqRdCO2fYKVT3C40mTHIuhrgbCfDIRH0uG433wjQQHSG3GpHRs7g5ZmIuE0lHZhNJZqnJMUCOwHhXAOWnG+drQ1RrlKrTOGtmn+KI5VRJNTe1gqTuHsSOc2yGGGpPmhFBQuRLTSpmfP0ea9Gh1cvK0RZ7nRKPFIDzC1s49+v37KOUgagajDSoXmWl1UFFCErb7G3Q6PerJhM2tDYiBwWAbnbQJDhYXT/DcxZdBZcQQGB4MQRta87PknRmpU4PCJoZyNMDkCTHNiEo8IFEwGA7pZC0xp/dB0vmck3s7sXIPR5G0bkJc33kAACAASURBVJd7rC6eYDwc0+m0CbUnb3coigqjha3iY5BxjMJYUo2kVP5niEq872IpHD+tDWVZN0BiW0IAfMSPJ5RlgdKirrDCG2wkvo6qrNA2oG2GDzXj/i4myUjTHGMzquCIXjXgV4Y2qdzzOgNfk2YpNhMwJERZt8pJQSe1wvBNLDF4Yi3JbNomKB6B4yE4Ei1M0CTNqV1FjGCzhMK55r6NeOdQeEyiJTHUe7yrSJMEH5z4iUVhElV+RHumh4/iC+a8JGoqjEgIQyVhCZMRrTzBGovSCYFArEsB1rMMQqSoJ4B42GWp+BdFL6mRRmlMYkEbUqTRtb63TZYmGJtgk4zEGiaTCpxDZwaTpJgm4MD5GqMUeZIe4hQEYVDGpjYJBAajMe08a84zzXkpNrJcY5oaRlMWpTB+sxSFoapHGPVxksR/7OOnDii9+uJT/Jvf/j4hW2G53cNnlpXzn6RXwJkLFzhzfIHN+7c5cvppTiaR3swcqyurjDbvMUh6lGGLotJMbq/xn/z1X+NnP/ERX/vWa6BTFo+uEEc7DIclSQpv/+A7rC90uffgISoErl6+jI+BN17/HsdXj3H8qOba+2/z53/mWX70za/RXjnJydNPkWY5dbhE8I5h9DgvHgAaMGlKkiWUoxFGG/I0Zf7ILPv7Q5KsxeKJ02TBsXT0ODqMef/Sh+R5m9F4gK8URIOaTJg/9zR/+StfQG3dxpuc7tIqcy25CdRgg3+3ucG4Mvzknfela6IMcTzka1/7HY60c/YGO2zt7lAOSzYPRjif0JpbYrXT4if9HeoIW5u7gObO/Tvs7O6SZBm//Et/nc8+d54//PYPeObXfo2D3T1icHz9G39A1LOs9x/wD37912knJbuzshFkMz2cTQlKU5YTBoN9isKxv7cHKqGoSnozM9x9sMbSyhlanZxXX/oZHty7Q6gDWxtbDPv77OztiilYqNlaf8DNu3f4/Bf+PN5V/N2//jfZ393jN/7Vv+A//9W/TawK7ty+xWvf/xZl7Thy6w7PbG/yS7/wl+gl9hC1l4dokh8nrHD4EzFejpFHANHjoMb0eQ1IYYx0kaeWFfL0pkBswCd1CDxM5W6PFVWPagh5H4eyqymo0oAfuvk6yqFic/+AD97/Cbfu3sImGReefJLrH77LaBw5cfw03/3+dxgPxzx57llOnznP7OwC125dZzzZ5/ZH1+gf7JPkKV/+uS/R6c5x8/plNJHheB9fF+xUjm63zfPPvcCNmx9hgmew32fUH1A1VOPRuKR2jq2dPsePDWlnbfI059xTF0nbHd5+83X2+mukWnH61FlUEOQ+EBgPhqwur9LKW2htBVw79FyQTrlgQjLycYr4NSP1GAbXFFqP5IpTSubH09xU04RWcmgJU5Tv0QSYShunlZv86FEK3/RqPPqKR6woHn970xdUh7NMq+mT1aPC8HA+PnqfxmistZR1SWITofgmmqKsSbShO9MjTTv0Zo5Q156D/kiSjpp7/tqt29y9e4/f//0/5Jknn8YmCUuLR3jvvUt8dP0Kv/Fb/4zWf/kP+cnbl1hfv8effGfI6VOn+f73v8WkGjLTSlhdWmF+bp4Xnn+eu7duE0NkZnaRi09dJMstN2/do/JDtnd22Hi4Q6fd4+WXXuIHP/gxdfD4GDh94hT9vQE7gz32DjYJrpJC3CgSEjywsniErNXi1t0D7t65TQzC3CsKh7ZRDGutJdEtTq0u85WvfJVv/+CHXLn6IdFJFDPO44qSD69cZ6G3QG4MQUPtSqxJmYzGPH3+adbXHrJ6dIUXPvkZjh9d4vzZC+ztj1lZWWZ+ocOb776LzqSI8jGIAW/tMLmVYltZEpMwt7TKE08+z2t/8h267ZSi3CTPMmyisWmXdmsGqgMWF2bZ39uh253jg8vXuHP3Hlvbm6gElAkUJdQe0jTFWo3CoXWOMiM5gKgWeZ6xunoUHTx72xsMdzZhonBhzEzeot2bY2V5md3dCSdXT7N2b5NLl6+y35+Qt3K2t/o4V5K1c5yrGfT3Mcpy6omLLB8dkyc5+EBvpkPpChYWjvPmW6/TfbGHTjKOrp5hNByxtyeeV0U5oaodw70d+oMPcIXjoD9gYXERXyu2Ht6nqiYoV/KwKNne2CZS4Z3EEpfFhBgDw+FAQHgVCLWj8AHnIx/1P8CkKcpYisqRIEEJtpExEyNpKglj45GjCI5y7LBYjBLeRV1WmAhZnkinXWs0EVfVOCexvSZNUIklMSlp6sFk1FEO4K08x1eeYlwSA6RpRgy6MZEWGa3zQjN3ZYXzDpto6fCqSO0cu3t7WHsgRqlGk6SZxIX7KXshkplUvEwOmxeNEa+WJK/EiOxLFgXhqAbEr08jBz1JRJN10k8bFI3ZbQwKrUKThqXwTa95qpgTvPvRwjVteMhaJWugjTQpYeIzk6UZEdnv9vp9+gcHjIZDvPcCDMVIjA7nNCEoWmlKq919TGal8UGYhWmWMj87gw+a0WQEiJzHKosLkaBEllN6R/AKg6QkhggEc5jCCQEVBGScknqJNVNmssTAFxwcjMm6C5x84iLD4m3K8ZZIElJhukzXei2pF4D4MBEAE6FJzHLKN30pCVowSgxhrVIEBa6uKcuSmV5CZjWlSQVMi4qomveFHNBDUKjHgjhijE0yoHxfzKx18ztTgAZADsshwKQsWWjldLsd9svikIWD1lgENAzaSMITCqUEpFQNiBeClxQrpUQepSKaR3HyIIy3ybig3crIkhYtmzIcFJBqgtJikh60jI8PH2uUHDbn9Me9CUGRaE07zYS5U4yJQdEyuVy3ALkxVN4TjRWvLGSuuyjjzVS2RWyag021EKem1vFQ+qmMfQzcEj8hYxo5oU1AWWon7BulGwbOFNxUBu+ECSPMPzEkx2i8ko4+XuS4ukF4ZArpxltJJJ1aiYk4sfGUag7sU8YaWvNITq9oHJrlomua2g+5WQMNeCd1jHgPCct5XJWUvpa0wdRgVWwAvqYBigBU2oAxCalR+KCxh3WnsFMkRQwiAa0CMRjqSmSzKnhCXaNDpHYTal/hXM1yYtjv7zEuR8zMdjn/5LM8uPITbFJSR0uWz2CUp6iHUgsYgwqgrLBDrAHnSjqdHt3JhNmeZbcc0u5kFJMRxpRYa0iSBcrSEajRytBJ2ywuLOPqGm2gO7/EXG+e/e111rduUSeOcjxCpz2MTYhYstSjdM2kCjgNuYp0u5az5z5Bb26O1KRkrTYhesbDPbyLxLDHjevXILSoKjGlnp8/xrnzz1BOBhwMDrh1/xatlkVVA+YXj3OkPcvBh3eJnZRed5GTTzxJfzSW1NTRiOgrsjSj1emiE0nUUkERo8XHQNZqC6DnvSQCj8eYqEjzvGESakJUTdS9sOIEbIGiqEgSS8CQphaMIdQVZTlhOB7STlKs1tSVgxDxtawfVRxK0qU2jOqKVtfgSfBBWNMRzWDYJ2930CrFx5LaeXxd411BkthGMi3y4/F4xDQUom0kbKKuSiKKvN3GJLk0i2KkLAsInrzdbkp5hcJIUmGSCMe2AQwn5RithP0YtaRWVrXDqUiWJOJ914DXZVWSKtljjcmwNuNgtEeWJFTRNSCkgM9lUZMYhdIGryyuLgjeEbSMt3OSQjjs72GtJL75uhYQyVUNWUCJ31wUUDm3hjxN0NGiTIqvxgRXkWpD0umg8BACmdZUKLIsOzQbV8FjrW6ut9iu1N5TFUOO9HpEY0iSlBg9ztUoq8gSK98LgUlZ4n1NlkqKaD31gRMTYZHf4alqhasc8zM9qkrka0qBqwNBwuUa6ZvI9XXDwnRBFDfT1f2n9fipA0plOeSlz32Z9fu/yXa+ype+/EVmlWJt4yEOxZG5DgtpSp7lXL38LjfubvH5L3yFd7/9LlEtM5ffQJ17nr/3F16iHDxk5+Edrt24i+0codPK2dgaMywcbQ8Py5L76w9wyjI/32N/d5tsZo6l5SUGBwckVvHu229wsHmXje0DPvuFRVZbLcb9A44fO8XgYJP9gwOMgyxJKCYFnU6XThK5PzjAWMW9tTWs1vTm5jl67CQvvPg8D25eZ3ZxgSPtRdZ2hpxeXuDyR9eJtacoN7ly/z7/3a//A07M5mTzF1HdHidPnGZ/Z521u3f4ne98DZX3ML5gMnFCa4yO9fv3eHD3Lh4wqSX4wJEjyywtzdI7Mku3pbl/e5NnXniJ5W7O2vo6e/0DVk+cZDKpuHbzBjeuXyIZr/Pjt97iK1/9CmsPtzl3ZpU/fuMt/pt/9I+Ze/1HrM51uXVvg/m5I/ioOLK0wqR0tLOcqixJkpyHd64zqGpmWuL+f+Xye/zMyy9ydH6WWAX62xs4J2kxu/0+e1ubDAYjdjbusLt2gzsPt0jmFvi5L34Zk+RAZGFhgdNPnGNvOMRWE+Znurz83HO8cekyJ0+d5tlnL5I0RryPgID42Nd/+hEenfGbQoh42NT5mIQqxqZwQ338Z4+DD80fEvQ3MjXjnrJY5HUe926amo3GKbpx+PdUw3iR7oBmb3+X2tVsbT7ER89f+urf4H/9Z/8EpRW7WzsUxZj2zCItqzi+fIThuKac9MnTlI31dXrdWfZHFefOPsXXv/kHzPcW2O7vMX9kjuPHj5N35lhaWub86XN08xnGkyEER5omTMYTTKKpq5Lu3AIPNzYozxVsbezR39/lSO8IP7r/Y97/4E2UFVPA1eOnYDyi0+2y399lZ2uTM2fOYJQ5ZGlNvRhoJAaPe08dHrw+ThH62IU8NMKcAksKQeJifPTzpkBqMl15xEQ77D8+9oKPvf4UZ4p/auZMX3t6wf8sAtUhE06+c4h5SbPzsMg2RhgyXvJBscaKkWldi+dG8IQQ6c3O8tKLLzMa7vHuu2+z3x/xxBMnIRh+9OPv8nDnIQ921jh1bJlxOSHUAuzeunWThbkOMzMdNjbXGE/6LNlF9vb26Q92SBLpyh47dpJy4tne36IO4vPw9W98E6MUv/AXfpGzp88zqQ+AhPW1Nc6dP8P2lqWsxzx4uEa/3+f69Q85trLC/YdrjZ+DQyVWwB4PViuKckiepcy0OuzsDcSbovY4FzBEbKbZ3N6kr/v8F3//7/DpFz/Ly69+nn/8X/0jdve2sG3xHCirgte+90ckRowxQ9MNd1ERfSTVGaH0XHzmGV7/8VssLC7y/vuX+eVf/kUmhefrf/j79GZyaq/RiaEuS4KXzrdyFqMtRxfmuTuaMByXDMsH7I12carHbHee+cThYs3G/pCiKMlbHcaTSLG3xiQEyqpma29L5pfSuNgcHvGkJsFomPiaWFVolZKmbeZnl7FJm9Xjp9lfv0eabNLONSoqWt1Fnrhwjv3+gPGgonQp/Z0h7U6X9fVbDPY3SPKMwcDRm20TgDooWjpjNBqizQDnAjtbdyjKgvGk4OaN62xub3P/7i3G4zH9/iZKBVwZiTGhqgtqPyJqTStR7O9tU1UW7z23b3+E0oHxKFA7uafq8QilJTJZTGUVoPFKgJFEGXQ0VARc1I0HjHiCjAcF0Xs6ed6AbZLYYoyhlaWgPVYJ20YpOWvVZQVGk9mU1Iony2g8IEsTQKRxxIivIDSSU6MldQ+vKAtPlmk5yRKYFGNqF9BoTNoVs9oYsMaQJS1iFIAjbecYmwBSVBmtD2PXrTEkqSVv5SKRUXIIjI1cqskIODxEaiJRK+q6QuPl0KyMeF14Jwe8abJPDAQXqJynKCvGZSFCphiIJgqDJwImorxqpGsiAxVTBI2Nwk4KiKzMNKwFaYCoxi7QYg0oDDPtDKsl6Sb4ik63RbuVCRDUeMtoLUBLCAZjNFF5SbGqg9xTURGio9NqcWL1JEFn3H6wxmjcx1U1ZQjS6W7O03V0Mkg+Nv4vAYU53C8SrZt0M92ss7FZS8WYXCtN5WBzb5dFo9nf3sGVtUTOo7GNzNw3rKwGB5DdRk1NY0XaJAcDQ1CPQCCPP9zoVdPFLSYlvblZOjM9RsNJA/o1h3Y0Wke8UgTjGwYej/al6CRwRlk5QE63GBUf7U4RHAL8lWWJ9zDT7jAcDKgnAZSkmRkMqjHC9o23lGmS0qSZpZq0Kak9rGnSbAEay+3GFhoXHUU5Jk0srXbKYDAiFDXRGob9/qHJbogeo8QnSjVMpemgKqQB513AJpa81QKt0U3UuTIGE3UDDhqMthADWTtHBc9kNMAoI0CZAhUNkaZz60HrKNBp8I0sjEOmmaS2CYg6bRbG5lMmNm+uUWwYaJY0SZgo8X6xJpH5YhKRmGmRICqtxDi8loM8ITZ+O7o5TKsG2JLX0c297pp1LhqJ+jLWHj4XpQ5lrY83PBvnhGbNk/tZadWY6Mq10sqSJinddluudxApo1Ea3SDJWiFSnagOg8JdHQ5Z04fMNN/IeoKkQFahJEER0FgdiA7GtSNqYSISPTp4hpMJkGMBPymYyQ3zrZSF1LJe1GgbmJufI/oZghaw3qoMZVOUEs8faxR5q0PtK8b9HXwsSVzCkaVl5hYWWZibZ3d7i5t3r5G1MpE2mZSgPcposiTHuQMWV55iNNlAbZcE53BuwmZ/nTRYrDJ02hmVqzHGUlclrowo7VhaWSJNRBakkhQ3qUhtSmwn9I6scGTxHEpl5HmP4d4uxEBZVei0DXqCDpaD/T5ZYpibXaU/6oOxaGCu2yVWBSqRtMVQVygTSTsZaZbT6IExScJ4MBSvoCY5cmoKfjA4QFmDTsXjLYZAXVbEqEQupxFmszaMJwOyVDMZ9aXZNvaMBvuUtUPnGTbLiUoTNVS+pK4KWmkOXrzviEhKZJZQl8JwUVoxmRSEuqbbm2dYlA3vNOB8idUKi5JAAE2TGFZjEkuaZgQtn7GuS2wrx2YtAbZjs4ZWJYnVWCN+Tkpp2ddQGJs2XmMBowPVeEK3lYqcK7HSdPCRLM3JklTW3SihD76uRQZmRe5X16XIq/O8AYMU0QeqqsD5iizrSfPAy+qljQUjzW/qGh9Eejm7sEhwDq0N3jlMDCQmQxuLosaYlKpyIpvXlmhkX/FeQil0Awi7WmRqRVnRyZMmBTXiGvWLsCgFFI4aJnVBq90iTSQFTqtIXTlhUBlLlrYgaiauoqwrLIq0Me72XmSvSotfFmi0Nhz0d8gzQ1VVIuuOEoRhjMFaw9SjWHy9LEmqSbNcZMUmFUn6T/HxUweU1q5eYlKNGYyG9AcbuDrh2eee4MzJo7gA5XhItb/Dbqn41Od+gfP9A2Zn5/jcq5/lj9/9bZ58/tOs2w5H/Cb/82/8K5KshVUZCZpeuwUnz3JcRwbbO+z3h8QQmV9c4OziDO/s7WJ0zpde/Sxf/91/yU5sQYzcXNvAErn87ptsXE84cIqf+/IvogYPqUvP+vqmJPwAdagYjirZuIxhPOrjnGV5aQ4/GTKbJIy7loODXY53lzk616WTKJ44egxvDNt7+7zwwidZX7vPc6dPMi4KTh8/TmJhfLDBhx+8wX5o8cqnX+LdN9/iYBLQBIrJgCpAYi1WKZyT7tekGFGFSGEVuztDDoYVT8/1mMkTTn3mc6g0Z2Ghw6V3Jty6mfDd177HqZUlXvnZV3nj8jW+/MUvs9SxvPrZV8ms4Yuf+QxbO3ucOPEE3XYbQ+TBvY8Y7OxRFeeZ6bSpyw531+8wt7DCYOMOa1vbtNa2+JXVJR7cusyHH93kzvo6586d5+yJJ7h0+QM++OAnbO33aeUZH1y5yvrBgE9/5s+xub3NytKyFAMx8PILLzA/v8Br3/oGH1x/j2o0YreYML+4xMULz2DNI+rQ4+hpnNLuH5tr8U+DBdPfexzY+TNYJUo/DhfAYcIONKhB/Dg+NJVj/Qdef5o49/HvSVtZKYVzjmNHFrl9/Qbnn3ySmaVZXvnkKzz8y7/G+z/5Ce9degciHGm3WD1+hixp883Xfpvdg20OikBRSwxw1p7hxvWrfHj1fV59+VXev3SZTz73InVZs7K6yhOnz/Dg/n1mZrts7m/gtWZSaHxdY03GhSfPo9McExzvXvqAC2fP0Zrp8MPXf8TVa1foH4yIiUGbFt/+7nf51AsvMDs/S2JSjh87ToiB4XhIp9OTLpjWDe2bKXpzCCIpVAM4TUc//nvgzePG61M5iDQsHwPwmAJJj12wKdTYgEpMu59T7OoQnOLwv4fF/eG/eTyE7t+7tlMwk/gYnPjYa8l8boAlrTEqwbuA0r7p+iryJGNYTui026wePcb163s4P2Fz6wGXr7zP8ZWjXLhwnvWNDYblLp1ul1ae82B7g2OrR5mUB2xszXLi2ClOnTxFtBVrG+tYAiEGzl24QJ7MsLb+kJu3bpJmNU8+dR4VEz64eo0/+cF32e2PeGL1OPev3GZ+aYk8T5mbXUJFy5lTZ9ne2cTHiugDZVmR2YSxmzT3W0AbRWpSFBX90ZB2d5YkzTHJQDqpQVE1MbAxSJTvzsYey0tLXPvwFp1Oho2GxGrytsHXDqM0RTVm6Lz4Axga+n4kTdoMRn0qV7C2vskf/sEfg3IcjCcsnzzL1//177Bz8BCViFQmePGYiSoQGplKNzX8pZ//RX7vX/8eNoMbt2/Q681QOcgWTtCzhnu3b5AmKYODIUp3GFYT0izjqU+8wN2b11k9usTW2g7jeiBRrdHRSix5p0V0FVXQGCWeKq10lrNnn2Fnb5vxaJeyGDAcj8nSHBciM3PL9GaX+Ojah+zs7FEGz507dzl67CTzs0uoVLO7eY9iXODqNjE4EhMhjHj9B/+O0UQzmUiErIk1tanEnFkp6tKxuX2fOo7FT8Gl+CCGoiFUaGtwrYzxpMDVhjSx6MRhojjzWB3wqCbqtsLXXg4bOiUhJfgKYkCnEv9tVaRtDGBxBHwITKqS6ByaQLuVY9KGbaMUIWp8GZo44ibqGS0yzSQhb7cJzmNtIoVWCDhXNZKQpLn3hN0h3H6RnCwszKI0DAcDAYuiPzSstSZgtcjtVCP9MGkm9HgjAI/SCrFFFd2VtZYkSYg+YpWhqlwDfgmIM2UneS8HQ2NMk8YqPj0hqqbjKmuiVhaUwZoMCCjTsFtcSZ5Z0qx1mBIVGop9cJ7S16QmitRJBUpXkyUZ7W4boxPSxErKWfR02xloYSG46cFZgVVIsyPIAVZrg0lyotYNY6i570Ci2L3D+RLtjDRetBicEgxRGSFilI694YSl5SMsHz/DvXsfMZzsNAflJp5cgVJW1sypcXT0RN+kIkUaY/LGmwjZe5UWXxqtIDoxHh4cDFlYWKCdFBhTS4pZAwz4GMR4OwqDy39s31ANCKEOD/Ax+sMIeR9o7JRlrfdRMSpKJuOSzkyXPG/hXcA7R0SYV1Ebom8M1hvfqkP2dCMnCEoTMUTvIHoavOLQT5GGPVJVNZOiZHY2Jet0qIqSqeAsNPNNIBjXAAUapyK2YWBqIwy+hvQiY96YOhumfoGyd5VVSfCOrJXSbmeMRiNs0NTlmBqFso09fFQkFpGPNYdhrQRQUTFiraY905L54gU8k/QoT1RRJC7BYBNJQfVVhZ6OkVLC3mjgoBA95tCGQOGdbz6HyNK0tqBlDtGwA7U2ci2agBNBdoM0tyQOSTzblEGjCM6T2FQkVI3PVTkpCEHWGWMsNrHUZSlx6CpIY4O6kaY1puW+MVfXsvbq0ADEDVPaTFN+YzMNlHjoHNaTupnjUbzQUPqwfxkQsGlSjMUY3QVq5xopYBB2xWOy/xjlPJJoRaxLYfo2THGlZGwPyWY6QqwwqaIsSnwIpHYeawzjcoD3Fd7B8uKCJCvmHepY0M0q1h9cp9uzmIGlmuxAZVg6soSdz+nMz7A0v4D2PYLKSNMWxmo55OqU1763zf7BgLzXZnHxGDPzS/S6swRfcvT4Mep6zNb2OqN6yLDYo3QZ5888z87eiMneDm9/8DoXn3qa29c+oDuTURrPuHBMqoqFmQ44jasDpRNfoBPHz7I0fwxfFE1qXSS4GqMCRVWztLJC0uoyv7jK+toDbl7+gEkxxoeKfn+LM2eepNueYWnxGHUxxuaG4yfPcePKJQaLJ4Caja17GGN4ePsqnfPPIL1Dg0kyomvSqYPHU+HcmHa7K+BD0wSt65JyPKK3MCcpY5WkOgZfooFEGwE9p6zNWGN0Lmm6OsO7knFVYzWkaUKaGVyQRtCkLhvmoiUgCWDDoiDPc1kHfUAnQr+bHPTJOzml87hYYZWFukLFGmNyXJOUp5V4DCklgEXU0vCrSwFB2522+DX5moA0Wbxz5J0MF4TxaknwoSBPErTW1EGkz3VRYlRzbkBjVSIeROUErRV1jEQtf7eqaxTT9ySSwtF4SG5TAZNUFDDbOcrRiO5sByUrjOxXVmG1sKdxAa0to8mA1kzOVA0RVST6mtQmwlhqbmQVxcjeWtmltFZUTnyKTNQonRKDE0ZymlG4Md2ZnjD2m7RyYwxBT5McRcZbFyXtLG8aJ8J6LMYTFJ487cj+XHsmZYGva7JcJOd1VVNMCoylCcwwoDST0uHrkqzVA8DatPEkrkkSK9K4SJOsCq08FZavUfgpWPUxw7v/+MdPHVB69yfvcmW9TzKzzN7Nu3x0+zavXjhCalLyXBIYLr7wEoVDDL/6uyLROPYkf/Nv/ioXTizzx99/g1sPb7GbLLI622LSrwhR0a80Lzz/ST669Ca3d/t42yJrGwY7O1zu74IyTA52+aM/+jZFgBBKKVIaHfzDjTXW0SytniG2K/b37lIVA7yXyMTYFAVFsLQ6PZSBwf4eiU4ZDQcc9Pv8zu/9Lnne4ty5J3mwvUf/YIerVx+ycPoi//Xf+TWGW/89GTVxeMB4VLHQtUzGQ3YO9li/dZP/59tv8PIrP8v2gyuMJmNOnXiC8XCP9WpEq5Uy7I9YWl2hODjApTkuzfjUc5/i6NIcYbzGB29/gNu/w306rB47zcWnLlBWY14fjmjNH+cXvvolXn/zh/y9v/arzOQ5x1cWcGj+4lf/PPdvXOXO7VucXlc/6AAAIABJREFUOf+s0LvHIzY3bvGN//cb9BZO8alPfoYQHStLS7Q6GU8fW+X//Of/O/tDR27gzbe+x/d/+Cc8/9RFth7c4cTJM6hQ8/Z7b7Ez3Gdzc4sXX/4MKMWTy8t8/rM/y7de+zZ/8ee+QKItk3FJnqXcvXGN3/367zF7ZIVyMuJXfuVX+eyLr5BlqRQsTSHXaALQjQmle5y58mc8Hgco/kOG0YIYy1dTH5+mX3n486mEbepXoPU0iU6eHBqgQTUv8AgU+VOMGwRES7Rlb3DAsRNH+cyrrxKVI293yE0boy3WWs6fPceTZz7BqKi4dOUS99fv4ZVHJVlzMIvUTZTxE2fO8upnv8A7b7/F5SsfMH9kmRMnTrPYO8J3bnybmXab809c4Oad2zilKcuK8+dPceH8U0wmFft7Dzh28gxbOzuMRiPefPNHtFs9ojKkJuedn7xHFTzLR4+ysnySuw/u0m3nZK2UTrfH8tJRlpeWG8PxpNkIG7ZY01mTIZy6bzSAnHo09sRH4yYbTNP25XGiV8PwajrKH2c7qY/5MKnGfP3Rzzn8+k/Plmn3sHkVpp5Xj/3Kx8lOj7304W9FGuNueXaMkmRU1o4QHPhIe6aHqSzdmRnyVgsfSh48uM1geMB+f5v5XkKSX2A0HJJ0I08//TQffvA+Z88/zc3rV7hz+zbb6xt857Xv8IUvfonf/M0H6LDJC5/6FMdPnuHic89STEreeec9jh5f4fqlK3zil17kzq3vsrI0T4xw8/YlTPAU1Yjnn/0ivW6X0XDI1vYO6+sPKCYjbGJRWKJyVCGgdcqgPyLVirzdQ3nHZOyYb3UphjXLR5YZHOxINypRtJOEqoLZzgyrywtcPHsBUHzt61/jb/3ar1BUJZ1Wm8FwgEk1BCfGow0W6B2cP3NGGDyjCf3+PllL88br3+PJTzzH5fevo5Tn//7f/ikb/TWwRkwmlacqFDEavNIkWrpoL3zqFS48dYFf+av/Ge9fvc6D+w+o6xEmrVjfWuP481/gCdvltR/8gBAUdRzLodgpioOSUyfOc+LkWeLTY/7lv9lndvYIG2vXZc66gtlZ8PuKNM2pS8dse566DIyGIzrLy8ytnGF/OAY8E+fp74+4fWed+w/XITcwKml3W2w+vEmwLSYuEEOBjY5JcEQTaFtFCAX7/XX2B7A3qFBoUl+zenqF7Z0drG2Dlph3FTQ6GLTNydKEshyQaoW2CpuIdNEEj0kUNomYyjGqEFmUq3E1wvBJFElmqAsnbB+0gFJB5FvGSJpWfzzAKPFDUs06mbe7VL6SZDYMMSiqykm6llconTRdO6GzmCSlKGui9yRZRpLl1FUFykuKmRZPlDoIwyXJ22TKkLfazPZaHEyGOF/ias9oKB1VpeQze+fxQdZpm1hs1uaQHtWA/UZFEsQ8GqWoi4KyKhvTZtBoYevEiG/8XYKPoLVEmDuHj+IJkmUZRutmXxFWT2wKYTHyFnZGDJ5er0en3SbRliQxeHIBRJzGNw0NMUAWH5g00aAMWtmGpSVpPJ1eh9WjJ+n3D1hbX5fDu5OFynnXcFYcIehGHmAJCNsmKo9tDvbaJCLLiwF0JmuubpJXtZJroCL7gxFpp8944oiucQ1v2BaHPoexadAo1wy1Rk9tGrT4PIm/VhCwrgFBYpRiWYLaRMoxHhQsHOnSm62pJ7UsuI0Xk2oWDx9jMzenY4QYoDaAmTEiiRU2yRR80Q07pfHOiYGqGDI302FmpsuoGBMa4LB2gamALcUIIy3IZ4+xiY5v3r9SGmVTYc/oBkwLAd14a02la+OipNtt0+10GB70wT1qkIQgJrNWCXgmZC+h6FjBDVDKCKuzYdFNg0FMnMrEAxGNrx1VWdJtZczMtDgYHQjQ1tQ4ytdNQ0ZYSHV0RG1R0UjsvRapSqc7I/MjNEw9oyCGJk1INaBoFKNsA1UpPmghNEa4cumZBrJMN9NAxDdAqEHWFrT4gjxW/qHUoZ2mMFl9jdJW6sQoDABXl1RVKelZzgl7pFlnJOlLajHX+MDF2gsI3UgmtZ7OXak36lCLPFZbAQO1jJkxcmgWM/BErrkSU27vhZkQfZMI19Qtrp6aiwec8yQNeyUqS6Ci153Fpi2K/TEqCLssNnIi8XKSQ3JQksYV8GBkLKxK5F61ibCEuylWWWKs2d65j8nb+KIgyxIWj56m9GMePLwHXtPrtNg9OMCHAhcK8szixjt0e7NsjRzjyjHTrjl1vMVf/Ft/jbMnLtLKc/749bfZ3460sja+qsjzlNd/+BrZzAxJbwFUxf7eNovHTuJ9oL+zxdzyAk9/4nnSGxnr67coosOm8wz6I2Z6OXvrFZ988lnme4v8zMtf4PK110mSLlVdMdM29GYzYlWjfE5wIt1Ze7jO1sYec4snaXVm5J6Pnjfe+T4zM7Oc/cQnaGc1V97+Ibv9beaPrvBg7TaeyObGQ9rtHmmec+roEyyvrlL7iizNuZc/4JUv/RIfffguw4+uMAmK9958jWPHTkCw+LqiGg/RyL5A8FRFQd6ekTuxSaxMVEL/YJtuJ6eV5SiEeeibYAFjDDq14sEWAgfjMVneatYtsCYKYz0GkqQl8idZEIi1GDR3MksVIiZN8EpRR2i3cnnNhp3jJjXBebIkY1BWwqTUCZVzUvcoxANKSxakzPsEqw02SILwpCqw2qCVwrma0MzPYjLBJIbEJvi6kV+HSFmWwsTznqphzhaDPvMzMzjnMDanipG6mlCWY/J2C5XqxjxeE6pKjLu1pJPVpSPGIEzEqiTJDa6I1FVNmliSLKf0AlYZZfBONR57si7VrqIsByzPr1KVNdZmFHVBZi06msN9xJKIRQjCojMqIQaRzmsyoqrRStLWrNEcjAtmOh2UyYhRkkRRDfDcrHJaafbHBbGqMdZS+UCSWZH61TVZx5Lnufg+eY/zjnaeYVODNpaqkM+u0RibSaiCtezu7jPTa0tAibWS6OiEJTutRWIQdlOWJI1C16BQeC+Mzaqs+Wk+fuqA0vq9D9k//Vf5h199jjfeeoMb19/kn95+i5e++J/ymefPYGKg15mhGyLWKlQWOZgMMd0WZ4+usDDb4bMXn+bO1V3+/t/9VS6udvng+m3eef3fMXGKc8eXGT2c52Znh7NnzrK3fpO1saC+Cg0xsLN7QCtrsbd/QJponBdDuDoErAmk8xkvvvIqF5de5r+99z+x1x+hlBz6v/DqX2F87z3c7CpffOlFXvvRt7n07jXGlaOqCwbFBFTCaFTx7LPPcHz1JBw5yS///C9w48pr9HcPWP/xD7h09SNeeOFn2Lj+E65sVRxNx/wv/8f/xeZezRs/+j6j4YDhuOCjj66K0aBSuKD4/5h7zyjJzvvM7/eGm6qqqzpN9/T05BmEATCDTASCJChmkaIoSqSCaXG98sre3WN5dVY+Pl77HB9L611Ju2tLWlvJklYrWaJEikuKUQRBgACInAYY5Mm5p6djxRve4A/v7Z4BxeMv5gf3OcD0TFdXV9+qeu97n//z/J5b7r2XQ/Nb+NJ3HuTWGw+gG03+6c9+in//u/8Ty6s9ilGf3mqTVTvi0e8+yHce+Bq33HYPd95+Lwdlwo+973727JpjYrxFO4lBhEl6e6xNZZb43jNf5bbb7sFaT3t8gvMXz7Bt+35W1gYsLa8w2RlH6Yjx5gRPv/gS19xxPzev9njphaf46Y9/mGe+910eeuwhqkpwyDgeePRRjp85w45tO7j+/beRRRHNTocPvf9DUBXEZh+/9fv/G3u37+beuz8Aa+v8+m//OulYm/ktcxx56zUO7t1PO9a1hTBic4xD/acIKjnwNnXgauHm+/9twyX0/S4mIQJI0PurLOlcuf3VH6HO+YqItclT2nx0fvOz7//+jc/D+mqZm5tnbtt2kjio8oUbMj25hTdPHGX3zv3cc+fdvP7a61gML7/6EtZ5qsqxZWyMndfs5+zZs+zevZvW+CS//F//t1xeXOXue+7krTeP8wuf/SznTl/m0acfYXV9gYVLC2gdI+v4ShLFrK+u8uDDD7Jt6y5mZtpMj0/y15//Mnv3b0FIw4WF00xNT7N7516eP/wkhw7dykp3lTeOv06kY3TSYs+uPUihaDQbmwKbq63n1JOytyf/Nlpk2NxEbnwtxAU2nxU24oveX3UsPQjkVcdSXPXSqNWkTauR2LyvtxnKNkRDf/WztfH1jRteucHG6yJM0cWmmiQ23VZXmuE27sWaIEYrofAYYp3QHEsoRgVpmoaceZ4j0Vw4f5nV1ctkqWLLzAxHjrxId7hGVAnKwuK9YPHCMn/79S+yf/9uTl88z/lzZ1i+1OW1145w4PpruP32u5FErPXW8LbHtm3z3Lf3Po7v2ctbx06xa36GH/2xf8Dp46doTE7wn/768/xnn/lJmnGbRrOBjiKeeuYJFi6ew/oS6z2+dJSFY2p6isuLy9x6034GfcPl9XUQUdhgiJj5rXNcf8N1LK1conA5a/0BcZzifEUWWw5ecx333vtu9l9/gMvr/4Hf/+M/osz7qFhjqxDtGVYjhIqCUColpa248453cHlxiYcefgxEhVeCRtbi4C23cOrEOfr5kMu9RcrckjQ0pS2RIrBgrAvTGIRlotPhHXe9i0HX8OhTz/LGsVdq5suQ9lhEI43JopSFYR4qxasKartwOhkxyruMdXYRRTGtTpvUZRy88RAf+uB7+d4jT2DMKayLSFSXypbhvXPhOJcvncF5w+Xzp1A6xQkYrq9R2JyhFVy4fAEpHbGSmCjEuKyvYESYsAuJlSmmsmgcWRKcG2UlGOQlkfBEqWLPlibDUqMJ39+Ixxj0LqGlJNUNZByhM0NednFxg8p4yl6fOIJR5SgrR1nBmIJYxuT5gCjOMFVOWRpirxHRRuTCgAoXSa4yIDTIBFE5yrxgvBlum+sEay0VNghQNqZyAuMF0oQNWFByJGUVXAJZswlKY4oRAkFR5WywC+I0xZjgfJFS10049du1tvX3hgNGgyHhCttiayeGl4LQ+GlREryVeAO22GD2WExZ4K1DCh+YLPW6sOE8QHrKokKJCKRARnUkxtauCa0wpaUqKpz0pI0ETYzzOY24QeVgbGwcUwRbvow6yBqOKZUkS2LiKMZUJkTK8FRlGS5WrceYAoeiKlzg/SQRWlFf9IZmHyUVRQGlEbSn53GtaZbOnIbIIiqLizyqvuBWhKfROR9ic1iE1LWz1hMrFYQADN55tJAQCby0ddl0HeFwkrLM0d4RC5BpQuUtDrlZVSycRSOpohCHMjYwooRz+Jp3IWrXWRgShIjPRgsrIhwPqyS93jpTk23GG2N0G11G3QFxHbXC12ICjlhHQWgTItyPkzhZi0fCE2mNdxtuoeCqQ8rayRFg7b3BiE57QJKlSJ0gK4vFIpUObW242o0hMCZEgEGDDw1t9csmiD9SXxmoiBDnFSLEy3BBUMqLkihrkjRa9NfXqLuZABv2Ol5AHWfSSKwDKz2qzlZV3hGhgkvSixC3qJtXJZ7KlwgrGI5yklaLtNUkzVJGhUHYELOMvMUKhdqI5/nQ5CS8C5xJpZBaUpQ50mgiKVCxDDGVzdbUIOp5t/Fa0gglccZuRl+sD8UR2hvqYkQ2+Eqo4EiIVRQEwvoMvSFQCrHBHgtRbik0xlnSJMPZMgg90mFsGWq3PXjv0Dq4gYz1YC1JoomTKIBpCW7BONahqpxwDJwPcN+kkYb3h4CqqsLvJoMLTUlJZQKvTVQVxgR2ltJRvWYKhAuNSqoWhNnYIxFYUkoHkc2aEiEdUliarTajoocpDFmaBlZSpIijJDhQbIlQmlhqVKRJmmPEcQLWs7q6yNTULGmjQ+lCDOfoW88wKnvMdmaYmt2Pd5L919/ExNQUxbBPGsc889RDLPcGIdwoSgoRERV9zp/tsdDPkarB7Mwc77/vR3j/u3+eeNjn+OEHset90mgyxNYIDc15r2B6aiu33HI7Tz/xEOvLJ9kxN8PstusY9tdBO8Zb44w1WgzWlpka30q7M4GOFSdOHeGjH/pxMjroZoaxijhtkRY5CCiKnDwXuKLA2gTlJXlR0OsNaHUikmYDU69jw+4ajz/0bT7woY9w4dRJ1teXeey7X2N66zymKFDK0og1nfY45069xi133sfa2jKdzhhZZxwlUnZvm2fLznmkSJie3M6egwdZOnWCNB1j1BvUQ06J8hJvbPi7ilBpiKvjCMKtF5SjEdPtsTAgcT6IJc5SlIZmKwUVBFCcw1Q5adoKDuWoRVENGOZDEiVQWqFjFdZaaxiU/RA51BloTRKnDIYDkjglVjHG+7pYQrLeX0YmCb40YGyIq7uS0hU0ZBziVDYMTEajPpUpiNMmEFx4VJZy1KPValKORmjlcUJjKssoHzE1ORnez8rVpVEVSZaFVjQ8AoerhmEdlrLe+/kg1DiJTlKiJEFFoSHOFGU4N0iJjiKUV+TliCSOyauSWGt8BdIZKlMyNtnCeAE+MBw3jAdKaDAGjyMfDmmOtTEOUBrnXUDNiMBYwhmEDY6zqirRUqBEhJAReId1xeY1OvVakSjFaNhlsjVJMRribYVxIYIfaYWQ4Xd0HvLhiImxJlIqpJTISGJzg5SCNMnCtYnzlHXjZwB3K6SIqMwo8NO0DqK7kIxGIwSOJGrivUermEE+oKry4EKXsnY2hgbUsD+WKB2Ftj1EzRjjh/rxQxeUpm/+OB//wEeYlAPe98530j37Ao8cWWD/bV1cYUA4nFBoGexhKtaIkSNLE6SKSISle+IZ/uqB53nne2d46twpbrv1Vp797ld5+eR5Bt4yNznBzPxOts3PsbJ4HucL+kVF5i0oQXe4zqDQOASN8WmmM83R0+dJ4igAOpcus3r0KXbtvZ09k03OjHdY73XJWtu5af8+Xjj7LP2VN1i5vJ0P3nmAV148wvz8Ds6cPYMhsDpwlouLl7nnzjvZ1WhycLrJ3zx8nH179vLo84dpT89w+vWnWDp7mqldN/DaM4+Rq0luu30rL7/yGlU5xFQFOLV58oKIwcoSD59+kzhSXLxwml7e5Yt/12a9cCwXnqw5zfGlLtu27yXLJG++dAqbvsqhW29n547tRKnknttuIxIgjENaT+UM3hYcfvoJTlxY4c/+6v9i59Q2PvCjn2DL5DSDnUPW+m+xtHKRquxz6MZDzM7Oc5NucdehAzz30JcpXMWjzz9LKdrsu2YHJy+cY2bbVm7Yfw0vvfwczWbGR+//ER793neYmZ7AVRXX7tzNk488yPJql5PnnuKWO+5jJm3i0g733nMfDz/8CKWU/Pnnv8DP/9SnmZudwScZOk7DBssBeIywV8WTrog/bxeT3i4G/aA4nKjVcynDm3zDSvwDLCh/7z7+/pf9VY/hBz2e8OE2Ns2xqu3QCiksSqUsnjtHJBRGWh5+7BF277oOUw7YMjXNhcULbN26lbKwLC1cwgzWyRLN3NQsy6vr7N+7l9Lez7A74LWXX+Pk6VO86/77Q0xz+AxnFs4QZ01aScag32M46DM5O8WP3H8PR4+f4PDLz/DTn/oYh24+xK//xr8O/A/jWTh/kfe8835+4qOfRArNqTMniXTEnr3X0sgaRHGCVxvchrB5Cw7vDbfWVQesvlh6OyD9qmN2xSb0tufoihOpjptwRYjavPu3PxVX/uUqR9LbbltfNQrefluuvq242pn0fZalq5xVQXmiZoTXUxAEpQk5dkmAvXpvkCLUSWexoiyDbfXnP/NZtm6dY329y5f+9is4U9EtHP/+934f7wxaeiwVbx59lZmtU3T7y3R2bGF1bY1Li+tcutzl+muvp9cbkPf73HT9Nbx14hSf/pmf56FvP8z66iU641O86927+c3f+E1aUxGm0kSxYHVlhZ3b93D77XcxHPV46KEHcCaAMaXzaC/pd/vceMPtfOPr36LSJWYUyBzdtRFmK8zO7uKavQe5cOkky2tdrHI4HDqapj0+x/7rbkD4ID69+OZzkIASJVEN9XTGEskAj60qaDabaJXxox/6GMIbzp05ya49e3n+5Vd49smnGW83KctVhsbiZcp4s83S6kWUboS8ehIib9fu3c+HPvJTHDt6jv6gZDBar1kq0BpLUU5yz50f4PDTz3Bh9RRZQ1P4EiEi0rjB9p3XopOUx5/6Hru27WR9aZH1vMtbr7/F64f7dIcDGh3F2tIIUzmsqyiLChuDQjLemaCyFcKXRFELpQVpJKlGBqsFsRvSTDvYyjOWaLprCZFSaNvHIcjiCTyW0na5vB7cfxPTE1R2iVRF7J3bxkya8PLZ8+RVERgY1RqRNLgqbMb6aytElUWIklEJ3mQk0pE0I3zcZH1ljXZzDC8VZa+Hc5ZKG6z2+JEniQPQUqsYKwUahbGewnqaTU0sNN2qIGumaKmJsozIDKlsANJLqUKkwoLWEd7DcBTa2LQKEcX+YMj45AR5PiKONLZu2xERtQgT2FgBPO3q5rKNjWlOKQzVYBguMnGBJeQMWllAEYlQT21NgTUObyUmL4Pr1Yf7CpGWqv57EAqcK/EEh5P3Ahk5oiim2UzqqFxMEkXoJIBYtdRYL1FJggKwFfM75knTDhcuLrK+uhLiAsZQFqE9pnS2hjgLpA8toFZY0ijGugC0FpFDo6lsiDXmlSPFo219bLwKnCcZYYuKZnuMTjLBWnQRZ4dEMq0vxEvshgvHuhDLE47Yhyii8oTqeCmIhSBxmijSWFsgVFQfk3ptdA6hFBEQNZuUlSEf9Inq36eC+nkKQoHaPGHaUKetVRBhfHB3bggHwZIfoNIb7XgA2mkK61npjxhrt0iazXDRYx0eh0KivSeqf4pjQ+AIFxUCi9AhThLacDyyrsNOiILII69McpXUCO9JtWBiImPVBbZGAJhDM20wngWH3dnzl4J3tnYLhfNT/ft6g7oC2wOhQ8zPe1A6xBW8pTKOVEiazTHy/mATPO3qrYgSAZ0k6+a3SGlCKWEttEi9GZEL7tLAJHLWYfHoGvQ+KnLaRXBPNNtjjC6toADrBE5IpJdhRCLqVjHhsJXFI1CE2FWVOxAppZbEWIT2deTE41RdlyI8hXMoF1rIghPDhPVXBR6KksFB5fDBsSRDm12IMvr69/cbBsLgLqoh9qJ2GxgqrDOYMieKFF6Gi/FUawa2wlZBoPamqBvTgug4GhYgJNa6IJhqQVkMapaKwGjJsKwo85x+T4MgRHhMGHwZeyUmGUWKsqw2R0pJWsdXpdwctKmoZpQJhY5iVByidnGkEUiSmo3SbDZIs4RG0mHbth0MRwVT09OMRiO0ljRbrQAGBqSOGI0GeBytia2ktYNs+fICU9NbGQyGqFhSecsbR7o0I0eqGxhj6HVX8OUA8iblqCBrJiycP0vCCFxMLD35sA+qzVp/jXWvmGq0GbeedKVNI24z8D3+7shhllYSts1P4U2JjjUrK5eYmZvh0qVLzG3bzr5rbmIpVYxPbCXNMpQ3DLoLXB72Ofz80yytLCKlZmHhPJ4CIzyPPvooUmo+9NGPc8e972Lbmd187ZtfpKwGSFOxdKlH5SqSpEGzM8GN192FqErGx8dpNztooVAKVteXKazjyace48UjL9JbOIvxFYsL50kSjfIFxicUdkRV9Dj+xkvcfvcHSNpt0riF9Y717irjZo5dO/ex55priJ1nbNc+KlPWQrUO7WQ4hK8Cs6bZqmH39XlFRXTXVxGyZgkR1gosmNKGd62K8MbjnWVYFaDDADvENROKaogzdcOuCq+fsjRUVY6xBVmSEekErzTWhKa0ZiIp8x54T4XHlJZi2GVyyzQrwy4CiZIpRTGkHIwQypBkaYiLCsWorGhEMWBRURiMrff7qEjRaLWorCONErzXXFrv0kgbKBS5s1Az8HAWoURI/BhLLAXd4ZDJzjjWS5yrsLZCRTHWeaI4IorT0CpqQyGIUqLmAWY44ynyIUkjxlpQKiZ3BTiPEw6pI0x5FfC/qlDaI0SENZbKFlgEzWaHqiqIVWAOKRxEgUlo63bH0uTkxYBMK0qhKOwAUxYoqYl0FMQsAtx9OBrSaqRh0EZwsioBRKHgStrAphsMh2Q6rHPWO9IopjCWQb9HK41BxlTe4wjx80acoKOISMfkeYF3lijSRFEa4n9SsN7rMdluUVWGLAspkVGRI6QkioM476wPsX8FSofrlkhp8rwMlzTOEUUbZ9AfzscPXVDaPruFy8eeZ2L7Xhqp5tCt93H42Bd4/rmnuOOGnUy0w+JrrQ1tH6MhvdU+p3snGK32efDBJ/mtz/0d193xPjqZYnrbXpQp+KV/+o9wjQE3HHgvx194lqdfvcCumYz85At0q0k+/bH38vnP/xllEeF0hEcyM92hzPucXBuEqUAVVMbu4ir/+7/+I77++W9y8813cvuhFd44dZqDB+7kxv3b2R+9hz/+wuf43Be/yHiiMDri0sWLZFEDFcXEsWJlrUtjZo7mxDjnzhzn8RfgcmU5t3SBsWyM7uJFfvU3/i1JkuHU18icRGQtzpw9SWN8gt5qSeRgY/TqnUeUI04cP0XWTDHFEKc9SST4+nf/jmbaoco101vG6PW7HDx4E0vn3mR++zw3XbOHqt+FMufi2Qu0Oh0m2x0ef+LbPPXcU1x77c1I0+XNCz0++KGfwQyHlHHEM8+/SHtmnD37rkVYRRZlvPTKESyCc8feZOATJpstGtkEt9wwzfV7dvOeO27n2Buvs7S0RDNJcVXOZFNhh2s8/NhDLJw7TllZbrrmWv78L/+Up994k5PHLnHgpr386V/+BT/94x/nX/3Kf893nnyMf/4rv0w7S1lcWuGFV45w8ptn+MxP/Qxbt0zjgO7aGmVZMTM/dyVy9v/ysTExu/L5FcfL1bfZiGddcZpcfR8b6kEQM0S9Aao9MlfF2+QV1xT84Me2wSHAEYlwEYKzOAHHjr7BY09/gQ9++H0k0SR/9Kd/wLlzF5hpLub8AAAgAElEQVSZnSYf9JmZnmVqYo5Tp09yZu0sWsALLz3HG28dJ5VNbr3jEK8fP8OZk29x+vwZ4kgy/lyHrDPBTQcOsb7eJR8WDHojKmOJYkU+Knjuxedpj7W5vLTE/ff9CHdcdxutuEFnvMlb5xd47713Mz7e5otf+RzXXXuIbm+dYb9H1sy49vobCBXPkgA5929ry6uPeC221NPSeiO4kTa5un737cdsI/a24VTaEOzU21hMG0+ZqH8UUDfy1d4x72sA6Ns8bpuuJX+VW+pqgclf/dy+XXba/LvY+FkeRIAugAjimo41wkq0ljUTbUQzS6l8AHSLLGbr3CRCHmTnzl1MT83w1PnnOHXqBFWZE6cpSysX+NTP/ATPfvdJ8sEaXjbYs/sG/sk/+WV+8zd+m+uv30c+yvny1/+GHy0+RhJF7Ny5l/GJDhcvLWFdRXtiksULpxisDXjwgYe4tHqWgR2QNAxJqlleKxiM+owG63zogx8FAQ899hCj0ZCiWmN4uY/0gr/96peJtUDbUE/upERknonZJsdOH+fS8mVWuitYV+EKhclLzpw7ysjcy5e+8g3m5+b59Kc+xdnfOcmqXcRWhlanxdrqCOFjklRD7pARzG2boygKjh89ycK5FZYWV2m21/De89M/+zP8j7/yP/PZX/gpLlxa4Vvf+AZrcYhfVc7hUmimTVIds+e6WxmWirVRwS07d7Jn4TquP3AjL7/wGNXwLKsDyeHnXyMvK6RPGZoukQpullhZzhx/nZMnX8cLx8rCKXxpkRGcOPkKsY5RSUw8UCid0VtZR7UyqnKI0JICj11zlKYgij2dVkXhHWkkmRoXjIzH5p6yWKUxtoVeNyevHFkrwtiIRFcIXWJ8RTGy2EowrEbMXzeDP3851AmvXeCue/Zz+BS0GimjYkiiod83jHdmkEjGGhk6jrh8eYDUgRFgrWTYr/CRJZaK3qBLuxEj44hiUJL4Aq0kPpOUpgKviZRGOo/zlixJKIsKiUIrgS8MWZJhq5JgYNEkSpEKAtNKhsm8qnl4lasCQ4kYIQRJnJCkCRCA9tYEm7f04cITQb3Rkfi6/UZFEmtKBnmBKiRKQukqsjTCFNAYy8IGqighAluVDPMB3gJeIXyE2Jh4ahU+92GTKIQPAE48zUZGkkUkjYwkismtxxlHYUJrinCOsqpwBvKqwnio7AApHKV1EDW57rpZSCN6piQf9QOzSQgQwZoehHLQUiJcmC56U+KJIQotWa5ySCKsNSgToNRWCZQIDAUvQIsAKr208CYXFi8zlrZwKJwMAq8XMojEWoGWdU12wD8LGy76NxwvAEmi0CpCpQlKWnID3imsM1gZ1r28LEnTjEaWUuZ5GMyIDZizxxuoaieGwwc+hQhClhaixjf5wI2BzaY8WcOyHZ6IGCMcFQWDfo92q0Ena1IO+kin8D64ZGQdX7Q+/K5BPDZoESKeEo0QFi8EY82YWAbeSDj+jkYWGnWGo4ruIGe9VyKThCxtsuLXyWsnG1JSlQN6XbEJkJY4JDVw9erZgxIYZ5E+OI6MDwMshEBGoVUt1oHJ1UgzUJpRv0cxzPE28LiMtxiCuG982D/o+vRYyeD8kV4RCfAbMUtsDQv3aKEpXXAaCTyD4Yg4btEaa7O2PsBWRTjjurBv0TKwhxDBSRN4QEFotRhMFSJ7zjq0kSQ6QyQabTw+MiRKBXdAsE4RxTGVCLwkvMQbE96vtXglXeAlKYLAaIwNFecQaqzlxmAqOCeMCU19OlYBPyACi7Ux0Wa13wtMEOsxRUlJcNEJb7D4+oIMyqpERVEtIMlQVjIYBheHqPcFwoOQpMmV83+SpSRxilSKoihoZk2iOLwHm60GWaOJUrVDD89Ye5xIaZIo3nRdKKXBeXQUkcQRSdYg1hodR8QqoihyvJAsLi8wu2Ur1jmK0YiLF84yt3Urnc443oGpcvCOM2dOgvKMNdPgKJuZZTTMcVoyljWpcNx523s4fvJJFpfWGKoVpqc6xGnMqbNHuXTuHHnp0XHEai8nTRSJVPQGFSrx9IUn1QlZLOlM7OKD/+CT5Gcf4cmTJ8nNODNzsygFtixRcUq7McHuGxscf+0w051JUp2xe/chWq0O5868zsvPP8TKwltUOmZQenCSyBRB+IwlQ1tSdpdopW0y3ebEsTd57cizZFnCDTe9gyPPPs4oD41+pfGI3joNIZiY2cG2XbsZDnqcePN5Dhy8i5Vej1bU4Nbb7qU37HNRSE4de4W4kTJaHVIZyw23XM+Ba2/kxSe/i/QwOTlF2mjhrCVptXAqIlYxSimSNKXoDwJrRjgKV5GqhEio4P5wQS5KdBocSDacs7RSDNbWA4RcqFBEoCJsMcI7QxxrokiGiLd3lHlOFkV1m1+MdRXFsIuzOUZliDiiqizFqE+Z58gS0iwL60msQllHUVCWQ6JaIKqMwQgRBh8ugNuzLMM5T1kGKLhIUlSSEamIvBhhhCeWEl1X2xdFQb/I6Yw3wQbOkJWSfDCiMkM6UzOUNjSGaR0i68ZWZHEW1hMM3khSkRDrjF6Z46RAiZQQsBNheEHgF7rSIJ0ijWKElmjp6RdDZBxTVoKs2cBUOUpHrK8t0xkfw5vAoFIe+oNVdBwTyQxrKqzNwVgKk+NsjCg0JgvRXlyFclA6h/X1edBahLPEaQupkuDylZI4kjhfBq5VZZFa0R0MmZ2ZwasYnAnGByVRWmBd4JwmXoaIXRSKOqQKQ45BPyeJJGmaBeaUMBirkMYQZymSwI8sqhFKSeIoDvw8KRiUBaoe7ngpSOKIbr/AOUtrrBVa9Or9ivWOSElwECeKylaMRv3AKvYVP2wJ6IcuKN1wYD+nLl7iudeOkOTLjLVgqlFx5vQRnn9xH9dva7O4uMy+G29nYssETllOnHkNFo7yb/7jV2mPtVHbbubmu9/J17/0u4w1Z4j9EOdStm+RXLr1CN/+5mO8vh4xGg3p+5Rctzn8xkmkSHHKYkuLUo611S74Aq91sLdJDUgMkHvFkaOXWRo8y2Cwiqs0z699h6NvPc/CmeOcXqxIspiFMrA5ciHIkow4DkJC2mqyY8dObrn+Gu47uJ8nX3mL//JTn+Kf/dqvYSQU+RDrIpyXpDJibdhD6ghpPDu3TOBHKWUiwVT0+v06JC4QsaMclJRU2IFmbHKWT/7UTzIq15C6wclXn2dlbci3vvlFpI7wJTz11HOcv3COPcf3cNO1+7n14DsYFgVjk22+8O2H+bFoihMvPsCP/dwv8Yn3vJ9vPfYQe3bt5vEXD3Pf+99Hf+UyhTO4fp8Pf+BHGR/vMJ5q/sMXvsCrN+ynHFV0prawsLzMcGWVv33w6/zsJz/LqZNn2D8/y8mLq9x0yz4O3HiIpdVlvvXE9xgMS7bs2M6/+19/g9/+3d9j685tjC6d59lnn2FlNuPmQ/dxy74DXFpY5MTrT3H7vXdz1z33UA0HPPbYYbZvm+e1t45x/Y03MllNEcUJG/n7qyNQm4KQv+J5CRPDEJXSoq6CrF+f4vvEiU0RwW+IULWQUdtSQuGjACk2xZCNYeTVPz84dWTgiYSvYvGb9bLWBhhaPsqZm5vhD/7w97j2ukO0G9uwruTgTYd4/c1XUTWTY211jTPnzlMYwvQlLM2M8mVsvspLZ18j0RHNJGa9u0wjynj6pSdoNCbQSjM7tY3jvaNUrgIEsVJIDN1hl0uLizhj+asv/kdefuVV1ns9PvD+H2HH/gHvvPd2Ll9Y5ND113DdNXdy7PhbnD53mk6nw7A/JE1dWOi1AuuuCG2+hrIGiECY4NbHUwpg47gLuclD+H4JLoBkLQ6xySbYjC3Wx95fsUBtfp+8+p42xKYruuDb/9y4jb/y8/3feyRX390Vt9Tm3W7G8TY24DK0hmjNKC9wriLaZD2EE4szgtkts4yNjbOyusZrrz/OV/72S3T7ywGqV/WRqeLIc0dYXltlz9werjkwy+VBRG+tz7vfeRcnTh3jpSMvQTXkoYceZjjs8+777uE97/ogp46d5fLSF3jHrXeyuHWC9nibr33jr2k2Y4yzLK73OXhgnOe//i2ef/4pbr/zTmamp/nMT3+GSMd87cGv4SpJFGluvGaOheVVZFQy7BWUvkdEA2s0Fy/0eP3oGRYXL7Bv9zy7tu9i5/YddDrjfO/xZ/jLz/8FSRKxe/s+xlop1+7dzQMPnKUzkVAWoHyoky2LUPecNAIXZteuebZMb2H4zS7Ts1O0m23ufcfd/Pa/+T/Yv2eOz/zn/wWf/bl/RHs6ZTTISZsp3lW0m2PMzO1gdX2dk6fPcPSVN7GVY/HAtdx66x1cXl/CPNQjVylaCo4dfbGua85Io/AatWKANAWliEMbixM4Z0kmAhhz0AWtMqQr2XVgL8dfvYSKM5IkwcSKVMngmlAlsTYIYYjciHbUIE4dsTAgCoYuIxJw7bU3sL4wYn5PypuvvcCWyRlWu2uUZkDlS3wUGAwN6Tj1yndpj0X0e4a9M3vp2Aw5FpGJiCJ3lPkIVIPG2BS99TVSIVldWWPUF5SmQMkiOAOkYmxMo1REhSJKFINBQWUt2qlwkS2ht1YRx2H1iyMFwpAPKqIoorIVrlKkUQQYjHAh6qgCr8SVoeHJiYjIVaRJxHBQIHwQipFQVgYpBIPRiKoqiaMErRRCS6zLg0jgQsOVdSGapbQmzZJwYS4dtnLkVU5/MMS7Jr7emJrCMOjnTHQ0UsXMTDeZGp9ifGyCLEnxQlG5sL7KSNYNZxKpAjDXWYOxlqocUVWWlfV18jJA5KVSwWlSu0WcFvjYI70kqtd6VVX0K8PIVey77hCTW3bxwnNP4vEhslKvXxuhL1MFgGfkBSA3K5CV96BFHdmK8TZAt60DVIg9eSC3BjsaMr1lgrmt8/SX1/CidhVtDEaEqunQQfhWbIgUwVXig6oDGJyIKUyFLerYOApjRoDE1JEji6PRLImzGNGT9WZeoSVYEaDRkVSBL4KvrfeBbQIGtED5CO9luCAToc4ZH6bbUmgiJVF4YhX2XqWztFstymE3QJx9+F1Go4qqshhvMM6EAYZ3WCS2jgdaYZEeiiK4PELddBAglJRggyDlhCDWikZW0uyMk8QJVV5iRHDyeFfg6mPpvQ9tccBG86jbGEJZUfsRwrlO4MC64PZzwRHlLUxs2YpMU6SxpGNj5MbhKhkuNmtujvHhosAIgbOOWFHD9BVCGKwAawWRCu4YJQXShR2LcmF4o7yinxeMVUMa6QRxu8NwZQWxMdT1Fi1FzbYK5zglCK5BPMrFoC3OWaQILK5BsUqUJwwlqJFgRIC3O2FppBFbOh3iRLHWWyOWDeIkotvrk+gklGKp4L7SqgbpSk/pqnAhXlmMLbDOYp2p4bWCwSDAlL23eB+EosVLUBUWCXXDlcUWOUU+YsVaoii4OpQOjavCixCvSyK0lkxvmSJOY1rtMaI4Cs2OKjRbVUWJVoo4TdAqotVs02w22Tq7lWLUrwHfkihNKfKSJEvxHuIkRceKTGW1C8yhVAx4fGURaUwzS8F6iGMYjCAS5NWAyakZGnHGqCqxvmAsawRHlxLYKscaR9ZoUo0c40ZghcdVLvBThqvErQ5p2sAVBXN7ruP8wjnmthRce8NBLi2cpdHqsHd8C1um5rh08SRpc45HHvgenfG9NETBgR37OPy9b6H0GJ20hXMDbrpugm9963d46vmXmNxxP2k8RaLjIJjGmtIahJCMel067WmGwwG+rGjNjmN8hStz0iijNTFPt7vMVKKJM8dar89oOKI7bJJ2WlSlp1etomTOK68+w+njL3HXXR/h8toikJFmgsGo2oxJXTx9jLXFC7xx5Ajv/MBH6PUdX/3K32B0TGtihv7aGs5Y9uzez8Uz5ymGOf2qoD3RZNv8LvbsuZFYtzh1/jjGCgQRQhqkM4gyB+VwscIKQWEKlNIUZYGwkDRaARxd9nHGQpTgaw6lkg4lNGV/hGFAQ00h00bd/FliqHCRopGmlHmFLcqwpjmDlAEW7yX4sqA0Ek0a6KJe4IYGUXksgiiKwnksjlEqoix6CCDNGrSSLMTljaU/zGk0UvK8JIoSlFcYG7iFOglxcgN4ZxgNBqQqApVghCaWim5hSJIGSZQxKgqSZlo3Y/ZoNjLiuMGoKolcYJUVpghORw/ChPdvPhyRNsYY1DFY6w2REvT6XaRyNHQQZDZSIyryyMghnKAsRhSjHnEW4ayueYcKW1QMixHtMmUwHBHJiLIqqawhbmSh0MCUaCFZGKzSiGK0USSTLQyeqgRvLFZUCFM7a4VnUJp6T6Ip7QhbFaF0x1O3lQNK010fkjVT4ig4uIWowAcHfr0bQWhNPy+x0tHQEdZ6olSSO0NVjsiSEF81vsI7S7/oEisZmIZRMAC4ShAnunbUBp/2sNul2cworAmvAysZ9gc00wzhHYUxYa024TwphQptmyqhO+pRmhItM5TMqH5AMuf/y8cPXVAa9Hrsnkx46oXHePT1i5xazNmzNWP5/Bt88T/9Ne+7+xAnT5/n9MV1brx+L1tnZ1g6eYRvP3GUu9/7MV5/5Wni/ioHJ1NOj4/xjaeOkDUzvJM8+Ybn8w8fQYiEsYkJdNLg9msO8ROf/CR75yd46tHv8Ft/+EdM755nbWEZKSNKIor+GlGcoZKUm9/xLnZsHePwc8+xuHiZxeVVpM/pdkcUfpozl88TiZSt8y2S5gzeFghjOX3+LLPbtrNnbobL3T7bt0whhsv86q/+C/Zffxu7Jjv82299ic984uf40hf+lMvrHtXI2Lt3Hy8dfo6k2WG2M053bZmjJ07ia3CiVgotEpwssYhwovFV+Dcj6VnJzoMH2NPKeOWZB3j6/AI7t81y4sQ601nJQm/AgC3gBd97+BFefOYwT+5/lp/8sY8T5ZZ/+S/+HfvmY/6XI3/H+dNv0h3dzfa5WcanJvjUx3+CGEEyOcmN11/DN779LdqdJqPRDNunZjmwaydi1OfsmZMc2r6HW/ft5Y0TLzM1PcvC0iXaWYM33nqLnbv3Mb9rnp27dvDze/8hO594nPWlBZyosIMRv/QLv8iR117mDx74JqV1vHS4z6/d9VGOHXuVM2fP4bVnstlEOcuzx97gsSce4fLSGvtvvI3rbjgU6mhdLV78ADFn80OEGIGHTVCmF3XE6vssLsEif0UkuNosE6CsGy6WIFLViLP6/7WdvRahNh6LqBlLG4+xJimEFpT6+1QccfzYCZ54/jt84sMfZnZ2lvOnjnHm+DG2zGzhrTPH0cRoKVE6I1WWcpjjpEQaTRw12LVvltMXL5FGmosrS2yfnUHphN7qOv3eEs1WzOLSRUobgGtaK6yOMcazc3oXj771CGkimN+xjf6wRKsGL77yKqbyLO/fw7Fj50mTlDOnH+DCxTNs3bqVE6dOsW93RKxjUq03L1rCYbgi0gm3sbW+ouGE5GKoDd8Q+zbcXYrQbhN4TCaARuHvRQjFBh9i47nZ+CH84AXxatJVEJk2HuvmDX5Q8u377qO+p/q2m6+/jQgDIbKCF6RRcGWIJK7bkQRVVTAxPkG/GARuBaGOVWtJZzxjekuHg7d8nEcffRhpY7Zu38XRN1/i5tsOgUt41/2f4LFHn2Z19TK7d+1nZb2Pla/SbE/w+iuvMywL1oYD/uTP/px33n2IV56+wDvuvItUj/EXf/U5ZJwx8jm6dOyZm+OlF17i8HNPEaeO2dkpds7vYnZ2hrvfcS9PP/M9FpYXSSLLpZVlVnt9JtoJwllSmTLWaiGk4PzlI1SVoKkTDt5wK7fdejNZlmK94rEnn2N8apy8yrnx4D7+q1/8xzzx4At8+SvfYcI2qPoVKMgaTaJIsXPbdirvmJ3bRpJkvPnKMZJGxG/99u/wJ3/yp1Q5rCwu8Jl//o85f/I0d7/rJj735aO0xzIGozWytEF/2GVw/HUQEZcuXOJjH/4oSbNDWZZkk1Ocevxxtt1wE08+9hQylTgEOtZo6RhvjDBGUjpB1IgonKQ7LAOINaloTkYMlw3NVgc3LOn7Pq+++CqxzFCxwxYu8FKUxdkBUkRokaKEridJfazyWFlgyojYaqJ0nMtLS4gq5r3v+nG2TM+SD0b033iB4XAhxG5EglEgtQ3/CcfYWIfDb53k0pJjot1kWPbxylFUFYKIi2ePkzVa9AaePAelMqTLccKghCaKLBPtNnkuyLslZlhhiwrrBIXxjNYHyCgmiiVCyVAPLhUVllIJImHI85JOJnC6gXOWsrSkqQdb4U2KkIELJISsGUGhZS2OI3zlidMoOB2MY9gfhGiPVMGObYNLUKkYi6EcVcGJEYF1kPuCKNJIBwbPcBSmvMlYgrIB0JuNJyQ7EtrtyeCScp5G1kDLhMLY4L4SodbXFgGQLQTBfRXr0GwlFUXpSOKY6UYL61W4uLaGkbGUVWjYscbW7SmGSoAtwSuH7ffoLndZWuyx2u3jTBncQvW6GElVl4QAShIhsSKI4s5aoigBggujsm6zDcr5IIBoH+JptqzolyV2AHGa0Ol0WF62jNYHVDiE8TgcqgZ2CiExlakfc4ArB7B1YC0ooDKmduRK8BJsgBErFRxWVWmQaMpRQaudBNZVZZHCY2wQ3nAuiEeJR1i1uc77OloYVnyPVhtteSlRFAWxEF9H7GrotA/xrcF6l+mJSRqNNvlggPMlw9GAYVGBZbN0ZaNJzCu5WelOFdp8clsEYe+KHQW8C89HPbwonWNt2Kc53mJ8YoLVXjc0xRmD9BqzIbIESedtmwZF7b71PpznVD1Q2mgaE9RcofB7Hj9+nCxrMDczQ5pl0O0hXeBshbiIQzlPhMc5C64CLGIDnu5BisD9kt6H84+AwdBC7ea21qOjML0f5DlJljM/OcHJtW6Axuu6GU74ekgWNjRO1AFTF87byuvA2bECpEXIFCkksZCgI4RWm0DfSIVzeaQitoxP450ityU6inEEd5/NbWgpM8tY47GuFgq8w3mDcwH4622IAWqlQyxSS8DghWIwGNHpdGg2YgBarXCR38oysixDxwlSa3Qco2RElKS0JydotmLKvGKs0USnMbYqydIErMbHmkaWkkYJ1M103lnKYUEUJ7Q7HYbFiCptoLOYjSZbfDiGZWWJ4ggRcjlI7YlkCgQ2WlU3ZHoH1lliBHlVkNsKLTTNVoOyLIkiTakVY1u2gtWUgzqKG0U4rYibDSozIJFb6bFIY2yCC+cuMtvOKJXDCShGfXbtvpats/P0RxXTUxFUEhFntNqep594jev378MMh1xz4x3cefMtPP3YV+l1l9k6P8+oPyAdE/zxV/6GWMHOGw5gsovs2DaBForzp17llTdfZue115PFMb5KkKnkLz/3hyxeOMvc/DytToeqVzA3N8eWLbOcOHWMtbXLLC93AzfQCe5+97u57sDNLJ1fpD01xdGjbzE5Ps5RY3nx1eeCgCodRW5RSiMiQdYcp5/nDErDPXd/hDNvHeXALbey8O0Fzr3xOlvm5nn5rVcZDfuY3JAlkihyjDczrtl7MwevuZU4idm2YzcHbroN4x1CaqoK8tGAOGthjCORClMYEp8w9DY0MkpJnGicMwjnURuNnpXB+hJjBFpKVlcuk+iYWEMsytC8agRYi6wKSlPitUDWEbssa4RIrI6QImFU9TDWI2NBp9kKMHpvQEW4QUGaZCgVxFHjSryzpEqQJDFWeEpbIQFLiYuaSA9ISaKD+CCsJ00iVByFwqOywjqI4zisPVpSlRaqIgzOrENFgshDWYxY7ffYMjMTBimA9GG4qrwLAq6SyIrQdOgrGmnEoCpBOBKhQxumrUiTuB6+hgbVYb8P5BRREtARxpKkKcKBiAWYApyl21tnujVGJGOqSCOTBgz6ZFEa4vquCqBtY4jwZHGIdpW2xJrQvO2cIZKAcigvqUqDLS1xu4nwGmHD8Et5AUqi45hqVAaRrBixc3wL1oFUHmMIwG6pgRA5Fl6RlwMiJbHGBHcsEWVvgBKOZtYOOJrK450J8fXOOFJpjLUURR6EMaHDMKyyjEYjvK8bjr0jjlK6/T4AaSNhNBqSRFlYY1QFeKSEKA4RelN4kihBxzq4v83/z6HcIhqjNzjL//3N7zJ+86f58UMD/uVv/RXNVsLFy6/wypHXiJstrj29wAo/zkcnZhG6wdiOA9x63TxHXljjwsIS//Cf/Q/87Kc/wY5ti1xcLnF2iIo1zfYY+ahicfESabPN4SMvs76+zKGdY5w4e4axdod+d5W8yHHj0/x3/80v8tjX/5xnDx8lVinNGPaONSiuvZ53v+/DHH3jBY4fPUq/lMxMTbMuF+l2u4x6Ge96x61cunSC08ePIZXn3OlTrC5cYP81+xgO1zl/8QKjQvLasaNM3XkHCz3P8fMLyDhDNiPe9a73Up15g6MTM9x/y01887uPML99G+PjE5SlY3JijPXlBZbWepRlUEi10lRlRdqexJZr9EYjxoVjz0TG7z3+Hc5dPk+8FpNljkpA1zomWzEXLy2yPCy56b47mZlI+T//6Hf+H+beK0iz8z7v/L3hpC91mumenAMCARAgAgGQBEXLoi1KFiXRllY2ZVuWyutd2Xth11Z5tSVvWauyS1uWy7v0WrYkJ1klCaJMUgxgEANIAgSIOAiDybEn9PR0+uI550178Z6eGXD3bnXh72qm+0v9hXPe9/k/z+/h+o1r/JP/9df5X/7n/4G5hQX+9Jk/5YknP8ahvfs5ff4Cj753gYk14CTtIqfur/P9F77HT/+Vn+R3/uhTvPjiy7z86kskLc333niN3YcO8uaJS3SmtzA31eHazZvk7YKP/PBH6bXa7Ngyz2htjY996EdY7d+kCo6VjVWm56bYsWsXTzz6FP/q336K/TsW+Po3v8ji4g2sj3Dzz335C8x3u1y8dpWL15fodrfw6MMPs3371riQ2JyqNpc7+Ua32tdCLDvf3PlvRuDC5nXYbKONbJwAACAASURBVEyJDph4P3GhL0VcHHgfF6ah4eKIaLtpYJfNY4tbugIQF3SBuNwTMuaoNxdocaEb65xFAOUhzwp2b9vNan+D4XjI7zz9X9g61ebJRz7IF770WZABYxypErgQVfkkkzg8tatYvnGdYPt4n7J9dpbBygZDU6ETSZHpCPyUikTFuJhQEmsMpZ3wnRefZeAMRw/ewyd/7pN8/nNfZWbrDOfPnycIx7eehW57lj98+vfpTc+QZS3uufcuRuMJS8tXmZudvlWZvOk02oy2uRAbDW734tyxyL5DvIvNBzSizGYsLoIs/R3v6633dvMtvVMYvKXyNIv6qEI176245Qbg1q3vaJh7l9vo1pNqfnab+PSuZ7K56L7lYou1yEIKjKmbz2fjiktSbG0osoJRVWNMiCdNHycHg7V1Lp5b5My5S7z86osQakSQqJsZSTbL9m2H+YW//Yt86l/+G4Qq8bWgmEp558xxzl04TV0Z5rfMkuRdrly+xHvu28cnP/l3+Gf/7F/zO7/9W+zavo83T75IlghwCX/vl3+J7Qv7ScIySbvDpJ6wY9ce9uzbS3+jT6/b48jeu8izhMnGOivjDYQUlOPorNI6JVEJOglM6hprA2VtOfb260xNT7N48SrPvfQdNuoVuq0OzgQWr6zxxU9/A5lbMpUgsy6JWccYT11VdGe28rGf+FHqkeFLX/oyN64t8dqrL/LwAw9z7eo65bDmD55+ml/9lX/IvsP3sLze59KFVbKgmest0O+vMK4mzMzNs3PbXq5evETKhE53GlNavvKFL/Dss99i9doVbgxukMuE2jo6OtBKDZnyaKByjrqeYjgKIKN7YWgnzPTy2BbiA5O1PsbW0MtJrad2G8zNL7B4fRWVJFhnwKWMKkeeVmgZUDLHmDpufpVDjMDaCZWXeHIeuGsfJ069w7BUbKz1SYoWsixQspnCewEenM1j9bm1JJmmyFKuLF+irQuCryLPBE+S5zgZcPWE2ekeEytQNiHUFcEZinZOf7yKFAWEQN5psbJhwEuKtiC4BFsapNC08hStA0hD6gXWeYyQJFrR6rVYXV0lkRl5KzC2ll5ewMiQJFkTAxCMx5PIQSDGmoILcSJobGyxUgJjHdWkJEk1zkYYbbuTIYNnXFZMyhIlBanWZJnGWE9Z1RStjETJKNqODDLTZKliUhqqypCmBb3OFGVtWF5eIU1zdJphnbvFckq0xrlApjVpkoGUTCpDVVtUGtkOa4MxVR0ZhARP1cQ/RXOM0dxm8QllECoKIePRiO1bZ1haXscJjzfmlmPWuKZWWCiE95Qhws4VnkLFGIUUmtra6IERCoibm1RKkiTC552zUfiB2JQ0NUWrFaOYrom2CaJIX7sI5pRSIoOIjjUivwYRtSMPpFJHkQ1BFTwoEYWEEDlkUoA1ltFoRLvTpsgyBut9Slc3i3+B1JpEBISLQrsiMvYEGm8tNlRYPKgUEaLIVRmLMx5vImDdBI8RgsQ6aiXppi163SmSNGU0GFBXNc5EqLrBxYpu4sI/uok2RSzbiEwRTrsJjvaEhvXhMT42A3kR/87haMJoNKbb6lLkCaaKbtsSH2vbiZvCzfPanc2udw4rXJOx3nQ+Cw8i+FuteUorfHCUpiZPc1p5wdgM4nUQt5hSkbsYELpxuYSAdTUNYBLro0hvXRQEA7E+PISAUmA9KBQbk5pux9DO2nR6XdaWryOlpAoOLwOp1nHDIyVJHgVILRRJplEk8TPn43bBhsgjE05Q1zW+9oxNifOO4AKtPGO6V+Cc48rVJUpT4huxUCJwwYJKaRDDcY2lY5xDak2mU5IkI0GQKkGe5RR5C5kInLO0ux1mp+fYMjdLq9XCVWVEUSSasrRoJcmLgjTLUM1mTKUJTjYbNyvI8oxUJxhbUqQtbAiUNjoFjKnJ04xEJjirSFsJXsY4r5AJvelujDI5h7FRwEPGVi4vIUkdzsSI2rBaxluDUC063Q6DwQrt3hxCSJSzDIdDkjSlDJYcSXCeWgVKN6I3NUchBOsrN8lbBRNrqMYTpue3YIYjpIasM8filfN4WbJ46Q26s3uZbvXIihnmeltYWV2j1Wqz7pepygnd7gxrw5IPf+DHWFtbApHQ66Zo5zj+5su0p2eZmCEORbWesW3HEZypOH78Kll6iP0HU6wSLK5e4+r1E5xZPMkD9z9OS23BhhRvKvYd3s36ygZLqze49657EMLy5tuvsjrcQHqHUgLVytChwJWOXHXZNp9RFBm7t+/j5ef/jFbRxQmHMQN63R4TZ5jqtem05iirMaONEq0E58+f4sqZc5w/fZp+OYQ0cPH8GbJCo2QgTzscufs+zp85SbdbMN3LcSo2umZ5To2PLksMMjhsZWh12sjgSSR4bxnZMb72GOdot9qxRdQ0HZreEqoSZ0qUhETllK5mfX2J3dv34lRBjUZKhVUixoHTBJXm6CTFjMaxwS3vopKEICQ21AxHY6QMZGlBK5vCB4NxHislzjdtaCoewyejMVU5plNkIAW1FwSvqa2LDlypECJDa8FwtMHYGJQWCC0RMiF4KKsaLxxSS2SakeiCcbWOkB6dSXzlUFkEOpejCZ1M02u1sDaA9TgfqF2JD4ZUtRAuoJRguL6BEDUb/Zt4kYGMjYy+NORN7N6LFBMm1KbGhejCy/NWNNY6sGGC8QYls7gO8yEWEeiE0nuKNKUqq1jq1G01HMd4XK/qikynKKWROgKtTYjf2SxRTdmIJwTJuBqjtUNpwcRNCK5GBIHToNKicTMrNoZjinYKqUSS4KsxwjqyJI1piXg6ojIG6Rw6quwkTdlIVU3QrQ6VNVhvSGXBsIoN6EiB9ZaqjuykVpGTFgVKxbjuaDSiyDJCCBRF0RRHebq9yDXMizZ4SWUrrHORM0eMWFdlBSGQpDGpFV2W/41H3qY7BbMLe/nJR+/jyxcvcermNZI8gAwUMzu5/+4jDPpLnLt2k6P9AZ25ef7Ckw9ydvnbXDj7Cjv2HMXJM6wsB06eOM102mYtCbhU44Snrm1s6UAyOzXDfDvl7dde4/vfDwThaXc6JFJx16NPcHBa42+cplUO8QJ0knL65AnK5Uugch573yOMrqS8YyWp1iwuXsSUFa2pHr0tW3n/Ew9w+YTl5ddfQhI/kNbB2++c4dCRw8zMzVOFNfCBlfURB/fuZSovUEKwc89RWhtX+f3nj7F1fhtfe+57zE1tpdfuMrUwx/xUm2OvvsJ4bFFOkcoY6VJBY3C8755DfPfYiyxowa/86j/kwK5dDFdHpHmLg/fcw2D5Gssry8zv2MPCwi7ec+QuLi+e46HDe/jIIw9jblwlbbf41V//FURrnqtrsG/7Pvrry0zffxglPIvXrjDd7jCpDInQTHdbfPqrz3Du8nnGG2tcvjrm6N27uL54hR/+xM/yyZ/6WS4+8ijzMzP8q3/xL1jYtxOvNe+/7yjf/tYzfHu4xtXLi9x//708/tSH+PTv/x7fXjrPz3z8k2S6x/seeYhf5pf45ne+wbMvvBCjiVnCxEu6rYyTZ0/w0Hvex949hzh8z1EO7dtDK28jfYR43ulcEZsmobA5/WyiAM1C7lafjCDyqW6xj97tbBKN28SHwG1tId65ajYOm4weXCSURkEp3v/mY7oQRangGohswzZAgg4aQYQ/DkzN9FQP5+Hu99zP/pkddDsFD9zzXo6//TrbduxksL5OOlfwoQ8+xZkzF7h+bZHJeMRwNMGYgE0VNmj6ZYUaGwKBmalOFCKzFsPBOE4daZgP3iGJYkbIEqrxhJ2795PKDsPJBO8MlanZs3s7q/0J+AGzM1vYs/8gly9fIGm1UXZEp90hlWkzwWyazxphSPg4QfdBxPYYGcUkLWMjT2hEv4ggasS+5g18t86zuUB3BOQPONI2L/FvuwOFdMsx9K7LHVe4LQA2zrLN95nmOYnQONXip+AHdCY2n3yM4EXQnWuiPDLRm8+CRCkEEtv8fXVVx4rOADeu3+TTn/40x08dYzjYQChP3spZ2yjRUjDTm+fv//InWLs55o1jb/Lamy/wl3/0x/j05/+Iv/sLf49WmnHX0UPcf/goe3bvZ2Jqlm/cpNNuo3WLVhsefeQhrlwzOFcwMqskScHi0gb33l3wlS9/jZWbl+gbyxe/+iVaWYv33PcA1gU+9JGP4MVH+M3f+OdYKZjpaeoqTo1UEBw5cpjFq1ew3sRNoPSs9Df49vPPsbR0kayjmXFTMYLlYPH6Ik+f+j3+xt/8JCKXZEmNyOFG5clVwo7ZefIk4Y+f+TT9YZ9nn3uWxcsXufe+ewg4Tr5zhk9+8icZ1JKn/+hPuHFzjeNvfZ+P/pWPcurtU2yZ3k4poK4NixcuUrsSnSm+/pXPUg4mcaAQPGkq2dLSlEEiq0AiAlLUeJHRH4GQKS4oBA6lUoSosE7QH0xw3jIqCyofheHCWmSeILIWY2OpzRhXeTozBfu27aXXaeO8Y2PjOtXEUCiBcwKle8gkkLc7eGUZDC5y+XrG1ILnwolzLMxvQVSBIrSxvoP1k7jA1UnzsdOQCuYyyXBYIkOCEintVpuybCGgiQYZpPRRlPCennboNKW0iqJQSDWm3emBrxmPa5JU0G4ntGWLUd1HNzwhrTNSJSH1uLqKLiEhKCvBRn9AK+lilEP6gCwDw7rPTN4hTQJladCqQKtWrGz3LgpSNsbKtmyZYjKpqGpD0cqpjSXLcipKAoK81cYaSxpkjHmZODk1NpCmGZOyJghF0W5TmwpjIdUBbwWT8Zi6rCkrQ7s9oNXq0CnatNpdysowHI8jaDqIeHz2jpv1kNA4YRBxkepGFkSINbwBrADhA3hxi4fjCdSNIC5CFE+sBx0Ua6t9dm9fYH52C2XlKe0oxusawnW4dTrxSBWhoAhBHWL1uwkG09RKEyxKStImZuy9jZK3oIlyB8rxGGygU7Tot1sMqnGs2BYS4SFsgohDwxbaHK7429Xt8T4tMkSHA40AI7VGIKK7KU4BGFdlbB8q2qRZRhjbWwMY7ywuCGxoWvWaSXEUpkIcNghBqCsSGdAyBsakEuisWehaQSYkQQWmigJjLKYaEbIUK2FcV9TGUFUViAh/3eTsba4RfHyJcBJ041ZWjfsmaRrXVMMAj3BrCFpQGUs5rJiZ7tLqtdlYHaMCpNZvjiWggS+HEKfziAhKbUA6TUy+GabI5nlJgfDxOgKPLy0+TSnLCZ12i3arRTmZEAN78fxjceiGCaiJsXIpBFo3spiXJCLFBxPZMvGMD8E28QuNB7Te3Ewp0lRzYNcO1vIscnm8xyOQITqhItQbbFVT2iGjcWwAHE6G1DVYZ2Kbnfd4HMFLhHTNQkyhlCCEgpnpDjt3bMN4w2g4RihFlicoBGlaEFJBLmOUpt1OUakmTdJYQS4VWmra3R6tVptWEcX9sq4BC1LQyVu08xbWWVxwaDSIgPEOKRXtVoGWCc7FNYoNm85pDypGQKRUdPUs3jtS7yk0KNW0tBlPluTRj6YVOk1wAdR4jKlrnJUQAlpJbO0jv0oIgnMgJVW1zsnjr1BVG0yqIfe/9wOcP30GIyR3dXskqo11jrSI7oupdgvjDFIqJuNJdJjqlImt8BpurNzgxtIS++++v3m8wKQcUU9KPv+Z32Jm+wKDyQ0eOvoRZu+6H1/3qZmj1SpwwZG3C7JOQdrNaNXT+PI6w9UVWt02u2d3cWPlBloq8jylqvtopdH5NA8//mFe/s5XObj/ILv27gMBxtYcuesRbt44xeWrVzn3ztscOvwQOw7u5NyZl1kthwwrR+Uc5y6cIVQldT26BeXXMkOJlJIKLQ3jjSW+841n2LBr1JVmYWYn73/io7x97AUmGnxImJvdyt33PgQ+xYYJ3c4MK9evcuL4MUxtWL8+YOInqJCwbUvBoD/BOMPP/LW/y/e/+ywffuovsmP3YVZu3kQLgcORCIVyFoMgKIWtDJWIou/6jWWS1hRmMsK4irIsyYWiyDsRZG+jg1SlKXmrGz9ZNjaYLl5fpjPVAxXQeYoJglxplBmTBEeiM6RMkCjG1uHTKKxInSKUpByXWFujtKRbdAGNEBrn+jhTkSc6IiyyjMrBoKyRSkGWIINAWINKMkaDEapIsEKRydiCPqotqVSoVCN1ikLiQsCYkkTLeLxSYKsx46pGiAxlJSHUSNViUk9YHfRpZ5qVtdU4CA4hMqVEQGmFkhpnHBZP7Su67Wmk1Ig0wzpJsOuENBZeSN2icg4nBMZ5dAOfdkLigokMP+tQWRulwJgQ+aSpwilBksTSA5wnSzLypMCHhlxrPcE58qJFkIqgJRKNd0MSraKzEAjN+dsZx3SnTSYTSmcxAVIl8UqiITomhaY/GbJ96zROpJhqhC9jLNyUFUZrtNQIpRlOJiRSopSkled4IZiUJb3ZLl5nhLqmyFICCtP3zE61CSLy5bwbo4RAJ4rNoqLxeBwHYokm0fF4OuiPkECaFFhrkEiMi812UgmkBK0U1lqsq0lSSaYzjA+oJDrT/jwvf+6CkmkvcPob/5zfftHzj//xL3Lha7+FCAHjBK00Zfn6JXSrx09++EG+/cLXeeqhe7j44le5cHGAD+tUrs301Hb6w2XeOXOCbjdj6+49TDZusLZeEYRCq0CeGK4tXuaKdwQJC/c+zCc+/B7+r0/9LlZKDlUl7xw/zme//HUSocmShJZWzLUzELC2sczxE2fx6TYefGya0699l6tLNe1exrgcs6Ua8LXP/xeuXhtx4MBhjp84Rael46ZcSAbjEYf2HuHooXsRCrbu2MkDe7fzT/6P36C/NiQfXeBzr19jy8I88zt3Mt3rcvnCedYHAz7w5JOE/g2multo5TWXL12J0FIF3blp1Hidc+fP8eDRB1ivByQBzl65TK4Stszt5Eee+EucO/4S3xi8zCPvfQ8zU1v5kaee4A+efod/8x8/xRe+soeZ7gxXry/R2n2URx96Py0duHT5Cju2zWOrCbPtlC989o9538OPM9PJOHbsFa4t3+T9T3yEvQcO8tyzX6c3nfDcd7+OCQptPMIbplodPvOnf8jLZ97gqW2z1LXntVfe5itf/z4PPFSRZJrjly7w3vHjrI7HCNnm+dff4KkP/BD7Z/bSX7rGiemteBlYHVXs3DLP6tpNlq4OeO9734cwjrmpFmmAVpaCaOqSnSAoh/B3uF984xJpuBS3OTsN8b9plNlk7GxG1wK3E1NRYxC3fu6J4oQSkhCikCUbVWNTQNm8MyFvSw76TpeLVnewfyIzRm7ayY3hlVef5+jBu3jtteO8NHwL70Zs37mdw3ffTTtr8c1vP8v+/XsYrY1ZvH6dBx94GOqS7zz/AvcdOcK26S1s2IrV1WU2NoYsXr+KVDm9VoeP/8RP8O3vPs/i1UXWhhu0Ck23mKKqLMPRKnt27aaddvj+917iue+8yGQ8ItOQkvLow09wafE61nkm5ZgtszOU4zFJSBgPJxRJwuKNK+zYtQvvPEmW4htbeqwIJsY7ZNyMCBlV8Nsi3uYrf8elEZg2L5E92sDON8e7PjRsKrGpB8Xp8Lvu6I7WuFuMo/jeindf8Y5bcEvYepfAdOtfm0/q3cJX/FA2AGIhQQSs9+gkoaprlNIYU+NMIOvm2HLCiXdO88UvfpGXX3sB5+Nkc/v2BYytGZc1U8UUb75+jMknPkFZGd558y3mt8ywtrzMz/7Vn+b69Rvce+RuLl44y5G77mX7tv20cs1bb5zgv37uabbt2M2TH/ggdVnx1FNH+eIXP8NDj9zL6soKf/zZP+G733qBtO34m3/rb/PVLz/DoZ072L5jnu88+x1effUlZJJy/txpOr0p9mzdzztvnyB4QyJjg8Rjj3+QA9fX+NaznwPhqN2Q4foqo8EqBw7u4N67HuP5l59naTgk0wlXr1zjoQfvYmFhO9r2aRU7GA1iXbF1nsHEcOLMVXwi2Riv4mXNxE+wyvOf/uMfsG2mxSd++r/j0tU+y+trvPDK98i7bd549U3md+7kxLG3aM/NMtzoI4LDOgclBBnoJBrloMgyhArI3JHVliAzulNtMFPUoqKqK2RQ0WHoQ2wDkQ5TeZSA4UjHib8MeBfbVoytKbIO3lk6iWfbrl3s2buHnfN7uXjxLKdPv8FUL0FKT2UCwcFo1EdnU6RZRhom9NqBtWtncWbEYLCKs+s4U1FZS1YU5CrDGh/ZKSaArEhx+DCN9UNSlaKTlOGwRiJjO5icAEMS4fG1wViFzD1ZS+HGGuc0hgxt2gzH6+SZppskWJEwNrF2fDQZkeQp41BS2oCrAkWWoJJAKlK0h0wXSCfIyJmb38q1mxcoTUWe9kgSjbUKQYoQrvlueaRU5HneuAyjdTtuchW+siRZSlUbamsZjSfgIsi43W6hFOAiRFSqOBRKspys1+L64o0oYkvNcFzhPdE5QGBYjqmtp6pM5LsgGI1LBCqyaWLai4AH1VTsOg++xvsQxWPrEV7ePvbHPSQ+xMiakpvnlejqSQC0Y2yGDCYl3W6bbC3FmkkUOTajuiHg8Eil0A2XZhMsTdOEmBBjQ3jZOD9V/Fsa1s1mu6TWCuMd64M+c7PT5EXBeFIhRIxneRFdVK5h/BGatrNNkZ/NIc2ms3RTmCACRJujoVKKzbps6QWmshSFIityqsmE4F1kcwhP7SFFgYjCuya6yZQgRqO0JNECJVVkQwgIYVMQcvjRGC0FTqYRLOoVN1fWWdi5jSIvWFlbpbax1p4QmtPEbRHJE/82f+scERrXEFEMCdEl50N0rUofRRvlY2PZYDJipuyybXYbw41zVDZGYvCuGS7FNYcPHktAhTj4uBXTDuH2sMSHd51PIlRaQPN62qqG2tIuWvTTAb25Lv21daqqIjiLkwKHxXtNImO0M8ZiIi5BCh3j4KqJhDdObo/H+uierqzFWke/XyFEnyJLGQ7HXLl2nSBsFEo2hzTe31pXSSlQKiNNiAzSTNBJOxRJ5LZInZDlEWyf6ZQ0TUjSyCDKsoIiy5mZ2Rojlj5ubtKs2DydkhcttE5IVIT/a6lRSYrSmw1onbgiaDBbhc4oilg5niaSUMcq7V7eIygZ68obyLYgcqe0ThFpjq0rpAK8x3liFCaVUWhVAudqvCOyv6y95SrUaYfBqCJ3zevjAnmWMikndPOc0tRopRFa4p2gtgFcSfAe6x0XLp9GaMlzL3yDVt7m8Q//OC4oilSztrqGqQ3SWUQqGFUlqcwZbfTJE83JV57l2o2LTGqDKaHd6XH2wim0Srjr8N1Mb5lhaeUSSarYuLlB0ctZWj3P+MVrJJxneusjdGcO0OnM4b0Ar9BCszG4wXQOq6MRRaZ47eVnmJQVk3pAmqRokeKsZ+u2OUpT052dZ3ZhK3m7TX+wQbvVo56MmQwdzhp0XrF49RhvHF9BJWPW1wGfQXCsLA1jw7G10a1IYOJGeANaS06eeokrS9fobpvF3bTUSfxuHTx8Fy+/+DW2LCwwGq6T5inj4Rq7dh3l2tmrXDx3irIyaOEZ1RUIja88Ux2LnZQMrWf7zq1YM2F+9z7mFnbR6XUoul2C9dRVSZpkWBc/K8GCMVVkWOkWLg2kSYGoKiofsCGQFO0InLd1hNULH6PdbDoUA9bUVFXFfG8GtEYJIsDfxkZYLQtkkqIbx4mf1BRpGo/LQSJdoCxr0AmtPEVJhcFg6sgdGpuaTqsLiSIEj6lKpKkoEkWmcpxXeBFV8jpYujrDexsj1KMKYSqscGRpF5lkcQBQO7yJrLYQJK5yOBypSontZYKgNEEkVJMRSgqKbo+gYtwvNK5dYyq0LjBIEi2pRiNauiBJUwKghMc6gzEGoSRJ0onHKCw0MnqiEnTznccLnLDEFt4MZyJg3wlJmgukyFBSUtfRMV/0isiGM9FpWNclaRrF9CTN0KnC1x6FRgaDMR4fJCIIympAoixp0muivhLnA6WJjuWKgA6CUTWmyDTdrMPEOGpToZWiqmrSRJElKUiJDRKlYrNpWmRIIalrC6FGpV187eOQQGoGQ0M3T6NrVgiqqsJaSyvPUVIjhcLUlvF4TCvPY3OkTnE2MBqN6PWmcCEOoKy1BBFwzpKnKVJFN2w1noCIbW/xXOFIdIJrHNN/Xpc/d0GpXrvMjc7D/Nr//lMcShZ56co5UAkz8/v5wFMfQS+f4fk3zvDN1VXqesz/+e/+Ax968n46U29i+l0uDw0f+uBTPF6v8PXnvke/ErQSzeqopNPukSnHcFQRnERqgQgKqRLKm9cQaztQQdAqOpw4f4Z79x2gfeMUlbUYa1lfXWd9bZ3uTJe5bsGknvDxj32MIg/86+tvsbZRsmMLnLrQ5/KS5OylJXbvP4DoL5FkGUmWMxgN6XanUFLSH08YlYYdu/dw8sQJ6v4G//3P/w3+t3/+m0xMgtBtyrJiNs8YrCyyd8cOri0t8vQfP83c1h30OhkbK8vRsq0keZGTSpie38EDDz3Ox//iX6Ks1/nMlz7HybMnuHzxMt3OAmfOvMlbp95ifXXCN775PEUr58bKEsMy0G1v4ZEPf4z37NvJO2dO8fj7P8ChrVNUFsz6DX73936PD37oQ3z/2Iu88vY5kt5Wdmyd4a3zl7l5c52nPvQQLanZNdvj4mmHylqUwz5SaRCapEjZv/cg/+B/+kdcOX0OlbfYs3MH9z/2fh59+GF2zs2wMhkj0Hz8x/8aWSL5xnf+jMUTb3Ps9DtIr6k9/NJf/wUG4wEnT51gsdAsyO0c3H+A1ZvLOJnQ6hWkWsaFPNF+H0JTy9hEi1SzIG7KXoBm4b+5OIq3vPWzzd9vTjE3/w/cEgw2F4SbfiW5Ga269UCN4CBlzCUTo1XONe1kBLwzjXspQjZNbbCmouh0+ZPP/zHWDllbm9DuJEwtzDJ8FT7zzJfptno8fN8DvPfe+zm/eJ58qs3/+It/i/0L+/n3v/f7PPjAQxx78xivTl7m53/ucyyZDwAAIABJREFU5zkwP8dzr70C1Zix8LSm5xkMhmyZmWF9/QbDEpRIsXUEs2VpxrDfZ1yVdPM2ZtAnSVL2H9zHxnDAm2+/yYee/CAfePQJTp+/SG0dhw8e5cihI+zauQfVtBLYSUWSplhrkS7ECIV3iAYE6okOLeUBIWMVMnHTsOkk2owGwh0Rs8bxE9/iTfdQc30ayWgzb8gPiD531LrdcjxtupjEbTnr1tVvXfP2bzY/ObevdIeD6QduK4j1yMG7OOlwAZEKRBL5UmmWIoKgqitOnj7DF7/wGU6eOk67M8WN5ZtA4Nr1GyAkicrZuWMreaL5l7/xm/z4j32U7z53jErc5MbLy8zO7yBTKYKYez554gyXL94gOMPS9euorOY//OffZn5uG6+/9ga/+Mm/zkc+/EOs9K/xwSfez+e/+hV+5mf/Ms98/Xm+9o1n6c3MsT4wfPe5lxHeMTunWVrpc2XxJFvnd7N46RJCQJKmMT8eLL/927/L7NQUWue0M8mgPyTNE1QGV69f5frVz8dplUooWgUHDuxn7/btHHvpbZzIWVvbwAeJCZYgDItL5+l/awlTD9g63cI5w465Oc6eOMPSxct86nf+b956Y5HWTJfZqSnuvesQrxx/lbWBof9OH2E945VlvIuwetVqNgcuEGQgJAl5oilDzfrAs2N+gV6rjXQjlodjRJJT2hFaB7SQSKmpxg60o8gFNYEgBUUIuDQjqWpy4amBXCfYEPBesXvXbs6ePsXZE2+RqISZXpvp6TbXyjVQCdYJDJ4UD94i0oIi13S276DXnmdl9U1C3Y/TfiqcLSMvLiQkIo+bcm1JgiVMBgQ5hVYC7xOQbZwdoNO4qc51IEk0Y+PxXqJVSpbFYvHl1YogM6rxKlpBPXGQ5hRZQmUMrU6H7txUVFmEw9UlKlPkWUpta1pZh7EfR6incGRpxnp/CWEcHTJGwz46b2FdTbDmVu08jaPHNTEk7+OETYg4iRXAZBJh3MFLrHWxBVYETF2RJpK6qplMSjKbkeUF3V4XpwTtbkk5nuAqi3eO2pjYPColxhq88wTrSHRKmhfRCu9jyxgyxtMcYOu6OUA1jksZ/y1CI6c0fB8hNocSm9aWeJwLOJAJEIVHj2N5fZV9e3bR6RRMxgO8dVGUcZ6gIrtGKtXcTXQCBR9IhCBvWqO8cxH2r1QjmgiE2mxHi6JbrIFWDPtD5qenyLoFot8HJ/DGRfdRE81FhtsDFBHB0VJEZmAEgEtCUM3mJr4GUka2jZAepROEEEghscYjnaeVpJRpiitrZMotYUDIQJa0kNKCj84vpUTcfDfu1rquKcua2jpqH0UPEFTW4fyEVEqMdygrkXnG1LiiaHUoWm3qykReXzNlvuVClVGA06FpjBMKG9ytUUEQoISGpumVcHvt4F0ACWU5ZjScMLdlil6vy9LaGtILMBY2tSIiz09E7RFCw9MjOpW9iM6geDwSCBtuLVSEByV1bEIVilZvBq0VtXfMzs6wsGMbVy5doq4NjkAqE3CgRMCFGGOJDBqDNWVsM/IW62u8MZHnYi1GiLhhEAFFQMmM6dY+5ncsoJRiY7RCmnZjm1USm8myNCdNU5SWSJmRpZpMa5JUE3TAOU2rlYBTcWMsIdVx06PTBI9FC4UQGqGTGNlQCaPRmHY3J8vb6ETgjKHd7hA5RZLRaIj3NjJcgMmkBidIkig6Kq2btjdHUeRkWcrITUh0SpIkkY9GrF3v9rqUZQUiILTGWkOiE0xwkQkmBVXtIz8kzxHWoxKFEgFvLWU5IUtTjPfYeoKQCq0TRqN+3IRWNZKADUkUngk4Y6MAISTra6tcu3KJ1cGQtcEApRJSITlw6CiZjccTVwYQ8XHztiKRGpW3CA6UkBhTcenSG9ShYmpmFzP79pNmHUaDPq0sws3fPPYyW7btpsi3sza8TscWnL94gyLN2bvvXlYvLrHPxzr4shyjsoR3Tr7EyeOvksuapesjyqrm1LHXKHo97rrrLs5cOINMFHmYYsv0DPVonS1zHc6+8zLXLp2lLkv27N7H9La9uABFbxpjKzbWlkEogozDjJmZgrr0DIcDiryLL0umez2sGTOsSopeh3LQ58HHPsrWhb0oqzh//iSnTrzOT/7cz/GNZz6L1p7+xlWE6NEuesxtnSJrFawsL1IPr+PUFCFo9u45wNUrl9k2m2LqMXpmO62wymS0wuKV8+zd915mZrZQtLuYqsILj2+4YEIonJaY/hqmmtBudRm7mtm8i/eG2tcEFzfrRd6OrDThmyGCRInoNHIhYOyE0lRkRUamC3zSjq5E56i8o/YVQiTIECBYqnKIdzU6yUmTApXmjEcDUgWuduR5hiEOt1QiKCeGVKR4l+CDx9iSyXCArUeQ9UDE81uWFAw3+mjvcKVFZlD7DFX0qMcVqZbkKm3W3zCuY1y705kiy1s4FzB+gvMGERSjYMh0BrZmMh5QtHKQaYOtiPFq4xxCJwSVEls4A7Wt6PRm8QS0juuMuh6jZEC3sggqtyXSO6yJwpJUCmRsFkUInI0FGt458AFbW7QEKTUKjRIB60pUJpGZpgoWnMXVFXVdkqVJHNwkCQHPpJxQVyO8aoYEIbb0jUYj5rpdAlD7OvKqpKQo2rR7PWofHa5LS3229qYJaKiHJKQYO0EKSNNsc15EZW2MC6YJCoUPgbIy0W0pFWgPPkatq2pIt92KQyYZz/1ZljUO5TjoqqvY9pakCiklKtEMhkPSNCVJdHSMWosQURBXzd8sRGRDee9JdIISEmsrsixnPK5/YFf0///y5y4onbm8zP33HmHl1Lf43d/9z3zujWvIosPc3Cy785JXr18ln9nK/JYpytXLDIs5tuSCwY3rDNVWfvXX/ilv/+E/5XvHl+m0CnY/+CTbww1OnjjBTOpZWx+Q5DlSgag9zmt6c7NYM+LfffozyFyRFwVlNWHx+g3KusInOZ1OgQgV2dw0Dz55gANqhZuriyxeuchj99/LdCsj76RMMWSqyFmZ1BR5h3L9JpWv6c1McWTPAZyHufkFslbG1p27ePx972OmSEiE5zNf/K988+uvxBysr8AHiqzDyQsX6bRbXL52Mtbo+sCObVt57/3v4a23jvHy66/hxzXeWK5fX+Kxx57AjzeoJxt89c++wMFdh7ly4SqZKjh39hyLly9RGUNaFMxs2cLclhkeePhJZgvBG2cu8Fd/5C8wWVtiqriPtdNv8KVXaqQd8vVvfYnLi1d56cTb7NuzmwfufYiDu3exsrxINVnlzMUzrD4zQRNYWr7EzNwsG2VJZlKuryxjbEXwgUOH76GsJ1w7f4k8S2lnmsMH9rB1eopWljO/sAMVAqa/gREG7RS/80f/iY2NcQTNJSmvvXGMo/v38Pbp4ywsbOPAvv0o79k2t4XDe/cyqsZcW15i7+423kuUCHdKD8BtMehdX4lwW6K4k29w+/eb4kHkJSE3F4i3+tzuiFc1ThexOfeMPxPI2xGrZp0olcQaR1VV8cubaHSWcv3mMq8dO05/OOC+A0c4e+4i9913hLNXz7KtM8/KWp/3P/Ik1jnqYc1bZ07x+HQH7wMHtu3jrj138/qxNxl7z3A8pKqjA+TUiROcPXeBjdEqKhOEYBFK8OIrr9DOM9b76/RaBcGn1LUjTTVaJEx1p+jMbOXqlUtsW9jO7OxWvJI88sAhOq0ORdGjCoKjd93DcGOD6V6PLIuTxOFoyPdffIVOpyDLM3bv3cvKjZsc2r+f0aRkPK5YWVsnzxO63Q7tLEdp2UwcN51koQHQ+uZ1lcjGkeR8wKvm3dkUjTaP0HEnRLPX+38bnTavcgevKd6C/89/3/64vFsqijf9AaFp0wHXbEh8UxUdn0tkXcQ2pTjZtc4QakdapEyGIy5fvMigP2FSjWkVgoX5LrU17N+3n42NCePRkHbeYeJKVGb40p99lQcfeg9Xr9Z8/Kd+gv277+XCxct84QufZ1xO+Oa3v8NgMGZ2dprpqR6oNo89ei/9tTH3vecw+47swakOb375Nd6XPs72+f185vPPUI89/dEaG5MxwkkOHzrCvp0HESguL94A3WJ1Y52N/gqPP/YEV6/e4PzFi7SzjGAMBw7u5+y589xcuUbebqNUgCQyc5SQ2DJ+L0ZjmJuZ4eM/+jF+7df/LZ1ul345RiaCRHiEV7SLjO07tjEad/HecfPmCp0k48TJk/yjf/D38T6hPxpgtODy6UWWV1boqhSlMmwNIpHoJJ4sp2amkcIxGKxRmZqimGE8svydTz7Gv3/6G5QqcHNjhXK8wZaZCDmsxlE5iHMxASpBpgGVgRVjEgRKpBSyG5tQpKQyE6Y6U5STEeNyiMo0L7zyAloGdszP8oHHHufoPY9w7swF1jeeJ8kq+qM+eRiyc34fVxbPkeexpndlaY11VWKJk7BEBlI8wQsq38ShQg0yoB3IVAEJpiyBnF6eYKoS1zgDBS3GVYUroaolOlFUdSCIrZCUaD1AqwwpMrLOVtI0oSrHJElC4WFcGlrdaSajtXgskVGEGI3GmMrgi0BZVXRaPRKVMOyvkrYlImnj64BMopPLeof38VVVUuO9w7kIwE6S9Fb7SF7E6ViSaLyz5HlOWZWxkjcVt9q0jDFRsAkRUtnpddBKYqwlSxOcN2AD1plo4fYxHB18hCJbHKPhiIDGI6idiUMGFSLbqXEoBjYfszku+OisEjI27m0y8DaPGVLeFqtjp7SPDW4BJJrRcIT3nulWh420T2VHt04WAhkXx9Y2N/c4Z1FCUdcGTYrxhiAlQjccHRnHI95H0LlSsnGRyNi6Mx4zKEs6RU7eyhnVBqFEbNATAVS8TaJkw+ZRJEqiN4cySmB9wNhAXVUE2XB8VBRJVONuijXzUVCrXU3eKsgmE2o8GbHCSwqB0AItNEkGbZ2Q6IS0FQH44zLgrEcHzVSesN4fsLo2xHhAaqR1BBkZW14IvAJlataH62xvb6PdbjEZjgjG4APYTZ4R3HJz0Qg9XgQQ+tYQadPZrBoBTcR0xB2nmIBznsFwxPS0Ycv0HGtrG2z60OSmOKrE7eGSAN84j7SILicliO+TjmKdFBF2n8kYDXFNRE9rycb6TVKlSKzl3IkTjKuKYCzGGpwzWMAZiwgW3zTzyQBaCrJERhCtTsiLAt1ro1Vsc0zyFK10dPSo2Him0Vgv2TK/jff3uuRZi0TrGDXTCXmSo5ME6yw6SRvBMTJSvAePY2FhgbqMzsI0TWIkpXHMGVtHdpqQpHmbNMmoxkOElPSmp5BSU5thFEMl1GOLUAFn62aDJwlBoJQmT1OEjCUd3sGmW0nrAlNH73iRtalMzWRSo5KUIi8INjDsx3WSLhKctTjhUKlGy5S6mpAnOp63nYlQeRNdT+OqatZ88TPufWSPOe8YjsdkaYaSCUWWYn2NlDq6lvLYfiVUYH1jhW89+wxroz5COTpFQlFM0x9NuHjxJHuPPoC1IzItcTK6OY1zCJVQT0qE0kzPTnPf+36YjY01jr3+IkVrjoOH7qHd6rCyvMRr3/8uZxdfp9fexnAywFcTlkZj8mKW7bsPcM9dD7NlbpZRf40LZ45z/vTLOCGYmDW0gnRuHq0kRaeLTg292Q5btx7g6s1llJrhnqMfIIwGbN9zhOtXroA4yY2bZ/AisH7yOurEG0zqCTMLC6xtbOCsIZEBY9oU3ehwmtQG6y399XW2b9/L+x56P2dOHmO4dIai2yVPJGmSU8g2up3wwD0Pcc/dDxC85L2P/hCT/iouMew9+AjejtB0UKpgenaOZXctftbSlOEwcqJ2HzjCqZMvgLfs2nGYbTvmOHz3gxTFVGz5NHHwYL2PjZUytk8K4Nxbr9LZMkXRaRHGI9L5Wawx4GyMjaaKvJXGoadoPqNSN0NrG934eOrJhF4xRZp3sVrjqMHHKC3WI7N4DLXWMqnKuI7RqjmOO4x3DId9iiJFqhznLHUQZFnGZP0GRVbgpcH5CHrWWpHIAqUzbAiY4El1xsSMKLptUqlIihZeaFwVwAlUOyU0PD3nPFVdR4FFR0HK+BpjHKoRzxMURVpQjodYb0nbPaw3JCTx+Ezcf6RJDrgoEDmLSCLgW4oIoveuwtsJqUpJZRZbY/Ex5m0mpElKkmY4QRThg4sOc5VR1RbvA4PJGjMzM7GVM88x5YDalGRZji/r6GCqDeNhHwhIlaBSTZAC78D42Drbak3jQhSch8M+WivyIif2VUQXb4TAywgkB/p1jfOGPJ1lXFV4IZAinhulVkgUiBjrdsb+P6y9WYxl133u91vT3vuMNVd1dfU8sdkUJ3GSZcvSlTxosB3Dw8W1jWvEF0iQhyRAHvIY5D0JkIcAQYaLmyCGL3yTi1i2LMuyTMoUKYoUyWaTzSbZ89xd83SGPa0hD2tXsWn5KVf10I3uOlWnu87Za6/1/b/v92FkRKIoGQVH30w+ROMHlcaxOxiSCQ9aYaTBuioK69rgfUA1QO+yYSwJqVAmRpmLqqLf6cQYvIycJikVvijROvKjkiRFa03wJg7ARYhMTh8gOJI0+SdORf//P37ugtLLf/0d2l97nr/9f7/LNXGCrLWF1R221lf4wY93qUn55V/+IsX6dS6seZ44OMm9B7eYmzA8HMGTRxZZn5nl0p2PeOKFX+G5sydo7xR0uhmWmiAgSzN6nQ5bwTKykscfO00rDPnwWhudKXa2t+hNTdJtp2SjNgunnuG5k3N88vFbLD35Of7zf/Un2Pe+w1++8gFitM07r36Pq3fWOT4/yXBjmyMHUlavjenNpmxvVzzx+BPcvX+Hj65e48ihg9TDHaYmD3H20BLTYcTdqzcQsseTS/P82z/9K4xMqeuCbn+CdrfLH/3xnxDWr/HKj89z//Yd8tJy+949nv38Mzxz9gi3rn/CammpvWX+0BG6bcn3Xn+d3/vnf8DhpSNcubfCH/+n/wnf/Xf/BxeuLtNvZSyvrNJKE04sLXDg0BKHZic5ODfNRKfN+bf+gYn+JBvLq2zWnhPHjvOv/81/z8b6QyohGeUFH1+5yngEZ0+e5P7KBllnnv7MBq1WytG5A/HNlnU5eWaBN1/7EVurD7hy+QpHjx1CSUWwMDcxyaDKqYuSI0uH2d5c4+IHdzh5/DSdTo8r1y+z8vA2Fy/d4Ojx04wGOW9feJd21uYnb/+EqZkWR4+d5PrNm9x5cI+lA4c4MDfHhYvvcnPlIX/4u3/AoaUTJFo0RYxun5UgxaeI7j0odGh2hnvxtb1fPey7mfZI0kLsG1Aa7lKsa9776ka/+KwYtWdnx0NQjzxLwPvAcDTkyvWbbG1vcvTwEiePHqPIS1ZWV7l04wZvvXOB4WiV51uf57/9r/5r/ud//b/zja//GpMT09TBcuXiFS589D5KaFZWNpjs3ePe4QfsDMf0O30Gwx1M1qYcjXnzpz/FS8i0wIo4CV3bXCPLDHkrxZgUIRKStENdD3HNNPfY4RNoEzeOi7OLTM/0mJ6dY3t7k42tASsrW9gq5/nPf4HBeIzWmiuXr5K1MtZ2Nsg6insrDwjBs7a1yScfX2b8i1/i/v0HrGwO2R7ltDtdet0WczPTzE9PMDvVp99uYxKNUXHR3RN99jxBPjzS4MbetPdT1tJnRcGfXXf2J9CP+JP2H/yIyLjXuPMZVSo0j98Xkz79Dp/9U/x1rz7ZO0fAI0RsuQlCkCiFShSFy/EIlpdXuHv3FuNim5mZGZYWFxFOMsoHHDlyhAsXLrK9s8mxY4f54MInHJiaZmV5DVB4l1AVniRr8fi5xyirgr/4q29z/dZ1bCh5uHyflYd3mZiZ4ua1u9x/8ID/4j/7Y37hC19jY/Vv+Re/+wdcvHAF4QNVGcjaLYbFLkYr+r0eS3PTHF6a4Z3z73Ll5sdR6nOSxQOLOC/JBznOWUaVIDWwurzKaDxkcWmRoigZDWN9cu0CSaLxzpMZzcbODlmmUdkcN29foTfVx41KlFKMCk+ComNahHFNNS5Y2dmKbrKq5re+9etYYTh//iJXrl7lk08ucendnyJmJKnQMTpqa6SWMQIrAvUoJ9EB42OFaz4Y0M4EL795mbyUtDPFqPJsNHbvRAbG48gXQpp4wBeAilBelCRLEiYnFzg4v8TB+WneeusdnICttW26/X48vEZwGqX1GDnFs8/8CkdPnWZiYoHBMAIi33ztZeyg5sD8QUJwPLx9i2NHn+H62iUqOcY3Gw4tRYSFClA6Q4sO3uaEMMLohDoEWrqDwlHUNffWH5Iq8MFSWU+atAm6RVV5ZBqvg9LXDIa7JKrCCIHz4IBydwcpFVJ4nKtQJmM8HDHKK4wOeCJgtJVkBJ9w7tQ00o+5fHsVoTzOxQO10TPYekSEWsZINKFGygRBFSdlRsUJmrMgGnBw8DjvydIUk2hs7cmLEqkUHqhrG2MyeGyIj0cqhFLkRYXJbOTq1NGuXZZlZAuovUhy87uIE8A6BHzjlqqdQ+qEQCwRIIjIxGGPoRbXeCGjYBO/nfyUo8ej9w0ITf181JTC/nMXeclwWNBqtWglKbYomra32IgWGqE8zskVSkqEiGDiGo9QGqRAeNk4iGK0Kmrw0XWmkLFlRyu0lozHOXPzs3TabZQDFWpQCt9EuoQQaCEiO4hH75N7TZwx3h2nuqBFQEiF93HNRtDUD8fpp9aaxGjanTZaOLA1QoCW0EoUSZqgM01HJ7R1ijSwtjumLKooUDiHLSzDvCTKcJH3F0LAu4gc9x6Cj8yr4WBMPWXpdjoMW0N8YnDO4xqnm5fEqXuIzrNY1iGboo6mOELGKHy8TzT3ISGJyMMYyxIhMM5LXFXRa7eZ6k8wGAwwTSSBxqkmmri9Eg0XSjQ/0+bfH8Urh7eOuqpxIjB2ruGK1TGDJzzbWcahxYOxqUyUqFCglIjQ2BCn0S2TkRhNmqax9U0o0iSh1+uQZV0SEyfxiMbhiyJN2ghinFLLhCAcmZKgNO1em8H2Np3eBFmrTZIlgCA1KUaZyEORKoqLwlPUNcW4Ymqqi0CQmoAQCpSiKAaYNKUYjz892CiFFPGQnBdVPAipBiNgo5OyrqOQ70O136IrlEJ6H/eYe2McpanrMh6WiAdUS1y/yzryolwQjTNKkY/HRC4XECwiOIxSkXdUV9RV5E6mJiEEsC7G8rXWFFXdxDvj/8HagEaQ5zlaG5JWSpGPCSIyyKSmWf8CzkdhuNOZ4MSpM9y7f5vN3TU8lrsPbrK9u8yRo2c5ee4p6nyAkhlpasAJSiwGSVmP6bQzWmmPpUOnGO2+R7fb4/Cho2RJgiJQ5GPG5S7tTg8nC4p6gJAttPbMTC1wcHGR6Yl+jOdKzfziUa598jYbuyt0JtosHThKrz/Hzs4KQVha3R5zcyf5+NKHvPCL36Aajzl25Bxr926STszQGuR0sjnyYpfCDiidoZ0o2r0247wAr2NLlhPY2uND5O+gYi19p9Vm6dBxkqxNkvQ4duwc3X4H6R1T3QlkXdLt9bClR/kqCom+YjSqefyFzxGE57EnfoHthw9ppW2m5pdYGdxGlJH5Nhjs8tyLv4KUAq0lwdf80pd/ianJRQpf0+92kVJgnW0YZiC1RhLngCDJ+pNc+uBHtKdm4zBYKkJRRKeM87TTdownCxAuNniFENs7RbAxmlw7gqvRWmNFgAZGX1tPWY5paYMiivlFZcnzGt02BK1inNpX2LomeE+3NxljZi4ynUpnESKl3ZnEE2HS1ltqJzAmRZoUS6CVppRFgdeiaaA12BAFn8F4C50GMpUiRWSClbbG2pputx9bXetxbId2xEixJ4pYPkShq50262TcV4fG7ZkmLbTUkRkpBHlRoTJDUAIhIgKiqmukUvtnk8pXEYdTlcjg0UkHhCH4ukl9gJQmpgAkjHcGQIxQS5MhLFRlICWhlbSpQo0Qfr/1MzEaZUyMVUtBNSzx1pJqDVpD5UAYtrZ3mOp2CcoQXN2sr5JEJ2iTxRZQovA/0+2CiE7MoBXYePYzqaGxWWOdB+9IjN4/x5RlRdY0riIk1o0xIiZGFvvtGEH3nrq0JEo3xRkKlGzWHk2n04vRyuZgMtHrRzGLCPIWSlFVJUbHEgWjNUliYjur0mgV3buJaTEajWi3sj24yM/t4+cuKF159w3+ZmKeZ/6j/5Jvtbf47/7HByQzB9HViIVTz3Ls8BIH5maZOnuMbrvNR5/c5PyDK2xsDZk5c4D7t+5y6tRpTj2d8y9//5tkdoebm4HJXpfhcARCULnARC+jyBJCFbh19RK9qRm+9rVf5c61t/hwVPLcs09z7/ZdTh87ydGTJ/j6l56mK3fZGOxy7dolqg3Lu1d3eLj+Qy5du87qbkWi1sgri0xCVO6U4JkXX+BrLz7L1RvX+On772N94NLNW9zdGbK58oAPZ6dR5Fz8+Br5YJu0nZKXBcE7tG7TShU9Sr7zDy9z5e4AXxdkrS5aBB7cuMLqg5usb26DNGilOXfyOGv3bjM7M829u/c5tTjDhQ8/Zry6xtzMHM9mU9TFiCLfZTQecvvefTZ3dnGl4+Thg9xZucv1ew/ptA2qrPnyr/0OTxxaYHZimqr0rG2WZCYj1YHVwQbr25sszszTMi36T2X86MdvsLp8F6MTfvtXf5MvPH2WqxfO88mV9zl//QpHDi9ibU1VV2yurfLG+XeYnphkcqbHcHeTDz/+hFNnbvHPf/8POXH4KN/+m++wvL7C5196lpmjGW++/QYkhuXl21y+fpVTJ86xvrbGrXt3+NxjU+TjERvbO0zPHMCkKcFbEAYXKmI5b3QL7R3392p494WEZrMvQgPFjLpxtLjLuHDD3oZQPsI92PvbT78eiJXOkmh5b6zte4DpR/8NAkGaKMq8YHllhcOHDmCMQYkIJu2lLbaGQ2obm7I6aYdffPFFPnfmCQaDIc5VSG8Z7m7x2p0b4BX376/wF9/5DitrW9i6Iog6cjtkoA4KcNgQgZpWCKqUGlOKAAAgAElEQVS6xhJt+anpUBYFhRsBNQSNFI73L13ESMNjZ06ws7PJO+ff4Ju//g221zepXEldOXqdz3Hhw0tYGzi/+QEff/IBLz73PEcOH8NWNXVec+XGFebmFtjaWuP/+Ys/Z6Y/y1i0aLcnKccFdVGxub7NJzgm+h0OzswyNzPNzFSfbrdNmhl0Y8GMk+94GBN7kKpm+h9fluZzfPpj3/v7T7lKe5/fa/Xj0+/TfM1+3BE+8/rx6UN+5mPvYeLRbxr2YiSyib3QTMSj3bQoSpBRBH3qiSc4d/Yxrl/7mJW1dbY2t3j1H17FpIKiqKldQZLBrVu3aAmJCIbZhQWuXbnFvZU7vPmTPnfvrfKb3/wmR5YOcejgEa5dvxI5X0aQmIx8PGJquoXQh7h+d5nB377CL3/li7x34SIvfL7N//p/vkW31yUfjXji9GOsbm9z7uxpvvFrXyczfS59cpU0zahrSztJme5M8+H773Ho8CHWBgaZCMphxcP1WwSpKSoY5uNoC7YCvKTb7rKdbyGkJ0sNb79znqNHXmVisktRFmhlCLVAOoFKFP2pLk899QSfXL7Jw9VVnjh3iueeep6DB4+ytb3L3/3d91lbX2M02GTyQJ9KVAgPOgRqYhWqDzbyqvICH1viI8Sx9lRGcPHeHYKRHJ/vcfveiDoIdtdAGYk2nplei9pJEJLaepTwSCUp64L+9EHanXkyk7Cxtstzz7/IzdvXuPLgY5zMaXU1eekJdQRFbmzs8P7598i6PXZ2BoxG23x04XXGw112VtY5+RunWVw6xN/cXqEqK4ZFTquXIqoyWuqNwAuNFCkhGFwoIz9IthAKhE0IzoCy2KrEeYGtPEYJsjRFBEeiU1INSkHpHT7IyO9xHplME4JgezggUy2EMg2EW+FlBgxI0njBiGaRFCFBK4EtBXVZoVSMeFRVARhM2ma4u4tWEiE8DkUg23f/uBAr1COLRcXDm7UoraitRSaSNM1QylHWNc5a0m6LYD3W10gZp3/OB5SWjQgkeHh/Be8cOtFkmSHpKsoyAiul1lRVnAYapRFSxc2USQkyQZSW2juStIXfq8z1j1hN9teFR1pDia6QPTQOIrYx7Q01fAPbViJOrIOIgsbO9oADB2dptRLGY02oKlwdW8mCEPFuJgRKycb1Kj6N18nGFbmnYTRxqhgXUygZK+Y1Eq0kE/02nSxBI2J1utLo4ClsEd1QzuOCi/EJ2WhfIQr11nqs9SRakyR7zycQwhHQsQmtAYDvjVHSVkbajnyOzBicMuRlia2q2DxUSYqtYYzzCU83S5FCUOSW7bLE+4Cva6zzeOEjuqCJqQXR+FabIY9rgMohOEbjIf1+j4mpCXwQjHYGlOM8rvpiT3DbEyJUXDNk/H8KreJeoGERSULDwJMoEZ1OgsaJIwOb2ztMElicnsYXY8qqBhd/DpF7Fd8UFS6+BxqbkwwB50GL6PCSKpBksRI8zSJPQ2uJaEQhow29Xp80aTE5PckehNUgcURHbK87SWPBoq4LknaGFJp+r4+zjixLEEqgtMbb0LSh9UiTLP7fQ6B2FqEkSspGwBT0un2kMtEZYGu0jq2CAkFVV/H/2TCFEi1RMqEqC6RWKKUJwaNCaPYlxEm9VJHFoxS2ttR1TbvT3m/Zqx0k7XidIwN1UUe+FY3g5D1C07gk42uqtdrfoimtUEFR1XWMAXpH1s5ITBLXIVsjRCCEKNxppdCpwQtHPh7FuGjTgOt9I1gj4/6pspi2iQ5IpRv3ehwcJYmkqgqUjmUDIS4FCCGpXAUhAnQ73R6Li0e4d/82QhqmJucpxlsI1eX4medQJmVc7zB2FZPtVnQzKIUnsgB7nTSuI07Q7k5w5vSTTHRnkEIjjWFja4Wy3CZJEmZnFimHBXMnTnH50kUe3L+NECWDrRWyNOPo6SfpTc6RZX3ylVXm5g6TiD737twlrwJaeza31mh1Z9lcfcCDm9eZWThOu99DmAxb5rSyjIWFI5RuF5+D8RKta9J2i4OLn+PO9csMt8bktYJQ08kMVtVMzh6C0EEhObi4RF1VHFg6yNbmKqOtXZQa8tHFdcDw0ku/SZmP0UIgNDy4c4fFY8e5fu0SRiVM9SeYnD5EXZYgDP3Jw4x3BtS2oD3dZnFpkVs3b8USAaEw0jHKR3R7M3Htb7LMQbrocotKICDwZcnYBooiZ3f9AWlrnp3NFaTOmjibxyQxZlZ5j62reCYQ0ZUknIpOXFvTbnWQRkfsgy+QIjpvtYxitdESayuG+RCpNRP9KZJWGyUMVT7CupJOp9OcfaBWik6rw9r6Mu1WJ7KwRKCuS6qqBCw6acdYZoiO3+2dHTpZggwOYbqxdAhPUVT0uu3mTRvFsaIqAEuWRGC+9QLVPEcQsQ1RycBoWFNVjt7sJM4GVJLGJtrmtql1GmHQweNcwAZHqloIL/Ea6ionOEuStgmY6GBGURU5Rb5LtzeBVjoyWYWMbKYIoEJL8GUU6ya6E01UPOBcibU1WaeFE/HsYGtHZUuEUhidYZKUICS+dtiqRAlJlrbxHkyasjsakClBJ2tDUIQQwdY6bcVmuGbsMixGKGo6aR8rXGQJCqhdRWo0WiWN2CMJwWKMoplS4KzDO0uaaJTSeFfuI3PwDqFiZNh5i0SiVLz/Sq2xPg7rJno9TJo08P+4ZxGmGX75eB/zIpYsJCrepZMkRYjYHKu1RioZB5cu8h+l1nj785WUfu6C0vURPL14hm+9dIJLr3+PX/31b7G59gk/vXCfZw8f5dd/+Xm6qYT8IR++tkF7cpbHez3eunCBxYPHWV++xfqq5U/+4PfY+Oh1hq7NaH2T9bU1rFcIpfGuoqyjhZ5ixKhMEGaSp59/gemex/RXSUXGV7/0ZTY21lFac//BGpmZ4tShRW6ff5+tlbtMTE5w+8EDNscOL8GRgbKEoMhaiqWFRR4/fIDNtYdMTU7zz778VXYHuyStFFfl3Lh2jRu3bzEeDRnlFaPBiMc/9xTLtz7hYVFx5OQZliYcy8v3GIc2J4/PsLLykENHD7O1usK7753HOosNiiRt0e0YNjc36S8eoli+x+Xb15ErN/jo8ke0exNMTU6xc+sDHq5tEUJF1hJUdcmDlZyN9W1u313kmWef4Xd+65cI5Rr/y//2P9F5a5477zlMMsWBAzOcPdvjJ2+8SkimeP6Z50hNvHC9FmgULdNiu7BQVty/dY0bPU05HvP481/ixIEZ7t27y/TEFILAcLTDyupDPvzwEtPzfbyLroXljTWsrbAh8OS5J0hvtvjhj16lEyCVgXE5xtaed965iPMKaWvK8ZDxYJfSVZw9+zhHjx1naXERpRSimSQLEV02++BLwj5QdG/Hvw/N5hFxAbEvQX3mI+wBM8P+J0WIXvm9zYts1Is9gKkQ8tPHNr8GEW2bwgc21la5evMGjz12Kh6GnGOUF2zsDHBBM7VwnN//ld/g3fMX8ZXlBy+/itKacT7mr77316xvraCTFO0Vq6vLeBFod6ax1Qhnh7S6E2TJAutbG0hhqKoREO30UkSprbA1iQEpAlWdR8VcSpROGOc5wQ14/8MRpa3BO779nW+TGYUNcOrkOV5+7TXm5heQJNy7f4e7D+9jPkgo8orBcMS169cpqjGbm1vM9xwHZyZZ2d1iVG6R724BkKQZiTRU3rK+arl78zbtrE1/osv01CQTE11mpyeZ6HaYmZ6i3ek8mjvgMzakfSGncR40r1sQj76iYd+hts8+2v9a8ZkX/1E3076AtedOCuJnXt9//CEeOQx6GXkWgr3DL7H2OEmoypI0a+HHBanqINwWuztjinJIb2KatdV18qLA1p6Hmw/IspQkUfQ6M9y4epkDS7PMTbdopSmb62ssLCzyxNnHuHHjIzY216idBSOpxmN2hxt8/tkv8v77F/nuvVeo65yVtQ2uX/kYrWry4S79+UWypM/v/uZXeeLcObzzfHjpCleuX6Pf6dLvdHji7Fle//4PefH5p5ieP8CZx8/w8quvINKa2ldoEdgZrFO7GiUkqTR0+l2++pWv8s7b57l57wYuOEbVkL//wfcoyhGyuc0URbSPq0Rx7uw5jh0/xw9eeYt+t8evfPnrjEcVf/Zv/5RBXjIe7VK76GJxoSJpso6+jqBhFyyu8nhJhBkHMCq+BiaRWCERXpCYhNHQ413k1hS1p6RipqfpZwm1l5TWU9QVSSKRiSSpFF2jGG2tc2PjId5VHBWnsK6K15V0uLKZSiqNE7A9HHHp8kfINGN5ZZnz77/NaLzN5OQkkxNdPrx0id3dAUI67t+5gafEyAxtNKiAkGm0bZPiCo8QFcZIhNZULsfIJL7vjEZbQ6YlXnl0CBAMdWkhcaQqTsimppcQLiEfbFK5LaCgriMPJ7gaKVoNxLHCjmK0TgpLWY8RAUzSIfjYKnbrwQpCVHiTkJkUJyzWK0bb23HimBhcHVvavIggUoRFN06a0Fwfe+JFXBctwUSotHMuCnlFjbe+YUQJvLXQtKOJECOxhAi39Ht1vN6RJJErIZSmrGPjUtgTiUKE/FdFjA4JoaKQFB6hpe05kSTx57O/TojPriX7S81e0+geUDq6KyHuIb3XSDzj0ZAQZml32+zsDqiqCgBFnJgqEaOiYn/KEfYP0F5ELlb8viKaWZo1RkuFkgbLp47aiX6HLDUQLJ12RiE8iRSEXGNdhEnriAFtfjYxrBEadV1L0Yj6cQgTQuPTFQElogtLC4VoNvnYgnroUCq28kgUg+GYcV0TnMWLBo4qAioEVsUw3kulJCiBEY2kI0QDRo0bYyFiJMAJj0IRQnRVBaA/M4VOE4QX9FpdltfWqKuKrNOK67hQURAicou0ivXROoDFRpaHj7G4iPTyBGpCiFET75r7RRB44dglMNlLmJmYYVk6gqtQMkSmjzIorUh0Enl5UjRRs+gWA0krzZBKk6aagMMkEVRthMQFiw1gtGn4IA4hE9rdFj7Ea8QoHWHEecnU5AwIyXA4iE4VLbBO0GpljEcjOu12jFBKSVVU5GWBSdP4tvLNvcpD8B6VGfK8aPZS8b0EUbzZc/AKJMFFMLuzNUpqjNEQGlcuCikFZWkj/4t4zUkhY1RE7AnINVJIEh15Ht47dDzPUlSRC1LbOh7EhMC52GJomohenBZFJ4hv3MYAdR2/r2yEMeujO841MOzIYQmEYElbhtq5GBskxg8Tk0Sem9AR3i6bfV5oovjeg3Px+mzci57oZjJZsv84Z+PO0pg0DqOVR3jHcHfAuCg4deZpDswtceXCTxitL4Mr2Fpe5sGdy4yLFc51v4ERGq0VxXCMljo6xHxc4xYOHMKYo+Bj/butHcdPnGH99lXmDh1hmFeYrMP29iZBOLrdHibNWN9cp9VKma9KJmdmmZg5wNTuLq1WH1fBaLDDsCw4fOQcw/VtTp55nDvXznP+/Gv80lemKWyNSTpUo5Jeu0271SExfaZTTVFusDMcUG5Z6tGHuKaARIYYiTRBkKWSpYUFppae5JPz51lbeQgu4IVnZXWVvNghuHVEq42rHDdufIQQgsOHjrK1ucH8oaOgJTKzKJmQFwVh/SF5nlPUgePHn+futQ9YHT6gP3EASJiZOYQtNDpT/OjHf8f84gm++IvfRDSxIec8la0jV04mBFGjlaYuSg4eOUZZvcDu5g6zB+d45/Xv8NQXvokyXRKVotKMoA24msbAgtRib7lEeI8Nnn5/GpVlaBHj2F5oyjpn0mT7LlRrawpb0mm3MUmK8AKPoyoLvPW0piYIPrpOdNNG6oqcJGvFoYmI67IQnkRpjNYxOmZMFFlDQGIQOo2PR5CPitjcZxKkMHgRsL5iVAz24c/WNe7QEIfS7TSLzDbr2BlskLQNBIXUYr+oyNU2DkSUiHc2IRkOdkmMQQuNkAZniyiopArV6oF3KKnBOYZlhTIpKml9us+XKrr9gov3AA/jwaBxxsbXISCwRYFWkc/nm/uYq2oERDdc1m4KkiRVmQOe1CRRSPEebxSjwQ79dlyTK+fjoEsodJIgtG5i0pLdwQ69VsNIchYZXLz2hcUkJjIZ6xg9C7YgS+MwC6XJx1GAFFrhUThfIzEMBhv0O21MqwVBxxIQGe+7ewOjsozOfmX21uj4M3JExInwzf1baUajIUZG95iUBqVjAY42OkaMRcBow6guSVsJIHGV/ZnzzX/Ix89dUPqP/9UfMtfN+fjCm7zz/gfsiBmSoJhfOoEtRtF+ZQQ7W+uE1gynZ6exRc7k9ATd2QVm+j3CdJ/1e5e5ffM6r71/g7ooqFyESCpi7nP6wBJhbCjqku7sAb7whS/y4qlFkvIUzz73Rd5+90OeOneatdUFpicncMUWt24K1ChnsLvMrZt3GZYpeZUjvaOTGYrCcez4IuvLWxw92KXtci5fuca5p57mxImjLM4tsL58l9fefJXt7QFGabrdFqY/w2MzM2xsDXjm8VO8cutj5o+f449/7zd48wf/juV7dzly5DChLkHBmZMnuDTaZXc7HpqMScA7dgcjZhaPcXxpESVhpgU/un2HTq/LnVt3OPHSU1y+eY+52TnscBsH5HVOkqQQLJu7W6AVT54+xSvfewujDe+/9xrTLY3oH+Xs2XO43S3GecnS4VkWJyeYm5jg8MnjuLrglR++TJoqRptDDs5N88Gl85w5dZKithyeP8Dff/e7fP23f5cFo7n50TXWNjZYXDxMrzPJ7Nw09+7fZTDIefpzzzI/MYNtTzDR7vKLzzzH//V//zkHpucAiasDCMXW1i6XP/oYmw8o84JLlz/m0OFD7Ay26HfO0U4MNHlclWbEqFmseIxRI7GnKz0iBPzT0YQIaH40KxU31SLEA8G+hb35+j2doUkHNM1jMeq0LzLtuZNCpAAFQBuN8oE7d+4y2+0zGucYqffzuhLJRx9f5t/82Z+T6EDS7WGyCYrxiOXVVaanZwgo8uE2pS0RSlIWA4KzdFoddIDJuSNoacjHO4xDjH8IIaiDR3kZuRdCUHuL9xYlo0of1f6UOoyp6pK8LmiZFkHZ2B7kDXfv32NxYZaymmA03GZ7ZxuB4Nbtm2ytr+CcY1wULC4ssLUz5NiZJc4dPcbrV+7CboWnjjeDumLkQrSXB0clNeVIMxgYHj7UKK3ptFMme11+61u/AQ2o1IZ6f0K793vzasbX8x/zsD7jRPLNI9nXhvZPlY9qVXvfMTzybtkzuO1rWY8+z6dP9RmRqvm3hGZDuhd1UDLCd5M0ZTAcsbayzsWLl/jJWz9iMBoxKoaEDc/mxg6Wmtp5XICJyQms8Dx76gj5cEy/C1/60lcZjyVV5dnZyXn8zFlC+E3efuddrt78iCBrUtFh+cE60/9smpMnTrNTbPPO+TdZWDjIvZUHLC7O8fiJJ2m1e2xsDklbHdqtPrtbW2RpQmISVja2mZuZR5sOz7/wNL/xu7/PMLcEp/j+375Ct9fBKouSmjIfxny3jDbrgwcPsjAxz+L0AdY2V6hcQVF6Nra38EKigsIHQcCiVKCi5q2LF7h4+RqjasjSwjxXr91ktDNAiJpBvo7wChEM7fYEw/EWs1M9dnZzxnmFMAKhAnkRCLLGKBlP8kJidIKS0VFSVIKsk3F3ZSNO89stPCMKF+hMTdGfXOTO7ds44XDekoh44KvTMcVwAxHa0TkiHFcvf4jDgVMEpwm2RiMIIk6fChf4+MpHbGyuRK6GtUy2UiYzTWdmlnu3PsI6T5Ae6wZoKgwV0niESrF1XN+EVCSZYHdco7SODjB6EDylKxv7NaRGYFJNWcXmHu8qOm3wMqWsBUJ0aKVt6lFNXu3iGSJEm26njfYB/Jg06WFdjbOugeznCBm5FniNtRXB1ygVCCJC+L0ySJGCjAecypYkRKE9WtRV43CJrgUlm9hZ7dizHQoZ41reO4bDAaAwyuC0p6ptjDg1B78QHK5p2BNCUZY2OlGkoyxzXO2xSUa302Jyao6791biBFNFV4YKAWzcZHvvkSEeel1dN+7Rxgq5v7Z82gr5KIvvM2uREPvtonuf31t4hFBIEWL7nq0pRjm9dofNLCMvCoRXzbRaNHDW0FQvRxdGbJ2CIGIrXGgWMy1Uw2qLrBoZPFoI6uBIs4wkMTEiFuIho2qiR6phMRgVD/y+GY6I0AxjQpxWxo1s47oIIXIviLykIKPLRwRJ6SqcDVTOkXqHt4HehMFkKSrVCO9iRC6EGFEKsVI+NKNV39yH7SPivSA62KQySNmI9DI2/hACRmmsDygSiqJCVrElSOHwvqK2McoSCLGJjSgMxBYbT6UEUkYHFiHG26SWaKVJlIEAVVmilaTTbqFMikkSslaLnslAwqnTp2OzqZIgBVnaRklNonXDtGhckz4QnKe2jsmJbiOiBAgWqQ1ZltLKMqytm8ZiTV3W8f2YJKStNLZPColRBh8smVMoncTGVBn5aHVZIE0S4fMhcp+AJu7hUDoe7mjmK1IphPQQYn2484E0bQ6oTRRCqU+jf85FsTIuq7GAxJgkCj5i7z0fG4kSYyjyIsbAQ2SoVWWML3rv0drEtjWimy9JDOVoxM72DlPTU2RJ1sBoA9a6+D7QUVBy1sZDuLMIGQ/PtrbYuqbd7gBEscBaSKGsyn2EAULG2I6UjzgfFK7ZO+7hE0Tj2PI+Ni9CXMekjE5KY3QEu0tQKorAka0kwEcWpxNRdCqritRkHDt2hrTb5dDhEyRJC4qKu9d+SrCW5ZU7jAZbpK1mPZIRyO+CxaSGqqqafWkU0mWIznxJFEN7nT4nTzzJzNIh/vKv/xwbSqq8YHH+EB2Z8Pkvfo1qd5tUpyzMLoCzQCDRGb6uWd1YJrhdgqsZbm9w8uSTHJhdxFUDQuK5c/t9zj39IlpLhjvrtNuL6FQzMznP5MIkD5cvs7tzmcHOkG2/Q7fbo6g8Tla0dIxEK2HYXruL7CyytrmCxTHRalO7Gusco3HBgYXDnH78ST587x3eu/AGp48/STlrOXTiFDeuXufg4ZNUN0qefunLFPmYne11sk6P+QOHGWytUuUDUmNYPHyMO5evMLl4iFS1WTx6kpXVuxR5gTFxKOJthUdQu4BJUjAGSYgRpBAIVnLuqZdYW17jwa1PGI+3GWytYXrQnz+CaffiGmM9FQGpY+mEJgKii7LCJAlaJ/usvuACZT3a31eGJiVhXYEW0MpajSNFUhUF4/GQNNEkWRpFbR/odWKrZZaleB8iqlOA8w6PI1MZUkY+oNCa0fYuUkkCikRqqkYkGo2GpK2kaRr1UdQa7SKcpduehiCadrTogNZJigySus5x3jMuRixOzlN7yIyJ7XDEkgBjEpAK5cE5T/AW3e5GLIFU+CquzWnaicNtEYW1shjhXU2710EoHd03UgORibjHcnQWBuMB01N9tEkQQmNtSV3XZGkS1x0JdemwdY0goHWCVCa6s7zH1tEVZHSCCzHauzUYIoPDmA42EMUzIdGpQWrN3o6lyAsSPGlTuCOQSOWpyzqWF6iU2saW57yoUSoK1kIaSh/vlT0To36xdESwOxyhgqPXmwIZ45IuxGGFFDEeHDFHjnarHUHej+w5CHG9FE1LZe0tpa3pJmncL5iGjRQ8RseSDILCu8gDM1qTj8pGkPr5ffzcBaWvv/AU5XCZV19/lQcbu3x85yHPPPkURw4aTh5ZIvgKXxRcff9ddndKTna6fPfNn/DEqZO89/oP6VZjkJYbd69x6dp1hlUd7YrEm7UCgpRkWpK7GiEN2oMZr/Hdv/i3dI9/gV996nF2Hl5n68EttrZGpIx44623mZ5fYHPtNvdXh1R1h3vL6xS1i7WpVjAqK+bbMPAlqs5Y3V6mvTjDzNwBjh89gihHCOWYOXCIBw/OMxgLzpw+imh3eOnZ5xBSc3wi5Xvf/jNOHj2DHj7g42t32HKahdlFisEaujvDeHdAu5UyGkaLYaIltYeJiXkWZ6cZbm6ytDBPVdb89u/8C159+a955SfvE3zO4oFFRjsb2BLyugRhyVo1WaLpii5H5md5cOcG71+9wemzz/D6q6/w0rd+m8fOPs1oZ5O/fP0f6Pdnca7k9Xff4qu//DWOS8Pqyi3u3LnBTj7EWUjaHUJtuX71BhNT01z+5CKjYsBXipJuq8PVTy7zyfU7TExMYp1jXFYIJem2O2hXcenS+6Qy4cq1q7FqUkBRjul1p9Aujw0mvmZtbQXdQCpnZmaYmphCpRG++/Lf/y3dXo+XXvglZmYz9rNFj0ak4JGDPY8qAnz6x/CP3CyfvYr2g1B7GsIjgkLcnPimGSbWhwohQPrIYvCxxSZIAT5Q1TVbW2vsbCzz/kVLrz9FWZbI4OJhYbTOn//Fv2dj4wGJyZhLEpSyDAeDhvhfE1xBXYzxrkYGzagekGhFXjhaacZosIG3FUpojEpipIGAFgEtBFmSNTZscF6gtYiQORNdSkm7Rz7eIm1s7QiPSlJEiNOTjY111rc2SUx04vUTRVHXjEYDnK1otTt02l1Go5Jh4Sk9BAyddkrAIYWi8p7RuGB5eTU6DIRgZnqK/kQLpRK8A1/X5KMR7U4bF1xU9P+JFssoLu2/WPti3qOvYJNJe+RBfFZwevTvH/2y/SfZe7P8zJM3zI39B8VNnoiHM9VMVvfeU0bHiUoQAaU0VTmm006ZOzCHVimeTZJUMRyNyfMhJlPRwSMtWbtDVZR85csvcvP+NgcXuxw+8jgP7y+TpPFn2++3efKJJ7h/b5nbd65TVCU4SVVVrK2tIjx8/cu/Cg5++tOfUowsX/7SF1mYPc5Pfvwata/4wcsvE2yMYk70e7z0wnP81ff/kq3xNm/99Cf8/je+Ds7w41d/QqefcfDgEllLc3/5Kl47hHdolVIXAZVE8/Jff/f77I62sK5CIbFBsFvndLQg3y2amJncF3E31lZ5UN2n2+2gjGZtbZkXnn8RK2rWt7cYDUu0zrCuYlzkHD38HBcuvAAySOMAACAASURBVM/TT53l3spddsa7kb/jqnhTdYpaCNLUcOTQEuvb2xTbO4xtHoGSecH8zAyf3N6m3WrTTnqcOvs0Fy99RNo2dPszGJNQjYcMC0BCO4HBzg4zc9McWzrKhQ8/wNYBI6LdPZWBbqKZavcZFRbnC3YGD+lmPXppSqfVJVgbD1RygFCesvJkaYvJbspUd5qyHEOrz2gwZDwe4nQbi8dTk9eeJGmhQqB0FpOmlHWBpURpTS+L8T4hNN7npFnAiQRjE2xdIZIuVYAQElyIcZvKVZFBYiuKUmBrG6fhzQYlydokuoO3DmcrnI8tUVknpWU0torRIV+D9Q6VSGpbIn10FxAcQuv9SI0QTbOXqPDeoXQU5UUzGNra2o3sGJXEiJKMjgSlFSqNhwGERJsUm1us9dGXoyUCj/eBuq5I0z4ET6LjNawankGWJBAU3bYhL2tqK3AIvHMReNm4pz6NPX+65rB/cOazw4jmc5/qS3F9UDI6e6SMUaXSW7YHAw725mm1W+wMB9EuEr8oHhAa67z3HrTEyTg0080G0oUI5jRCoYSi9g7XwJkTpQjYGEusahwe7xVCxaaf8WhIWUWGTxyr77GS9layRoCPp9amij6yRbTSjPKcUR2ZPxCwHmxzkIgtpiBc5N60+xOYdhsxKhuniEVqifIyNuyIWHOvZXTTxkNFnAZFR4iI9vsAha2oSkvhC4Sz8QDkA1sbK0gJ0xNdlg4uMdVrUea7KBkwTROXFBKjDaFpHwsh0MqiAJolSRTXTIrUijTJyFKFq21kNgnoZG28FnRaXbSUjHdH1BrmOx20aqKOSjVxghiJ8k2kACTWWop8jPWWXr9HVVZ4D6lMqa2Lzhgh8MTXEx8Bvx7QzSBon+koDcV4RJa2YjGAq9AqRhi8D6Qm8jGUkiA8UsZrynlHkqRxQGPtPvAX4bFVhVGC4BxSy+bw6ZAQDy2hAeH7gAuCuqoQCMrK0u11GY/LGFWXGlvX2LomS1Osd6RJgpBQ1zl1VUeRVCXx561EI4ipKGhVOVonpEkreoW9jU1Fomn0VaJ538Vro65rer0WIQSqutxvgwsNx9D5KPhYW6N0FIXi/TmKMdbFNcUR4ntcyvia7znfm7u7lCpycpprz4XI37TBx8auEKOtLsToVCDCe62tYwRVJ4Smie7Q0jFSbRhsreCVRXUyHt65i1AtzjzxC7QygzQ9PBaHj+602iK8iM11ooouMSmjQ1HGCKh1gblDRzDtLpMT01ROcujEOQ7NH+e9H7/ORJJhZ+cZbW9z79Y1auvIy4CvBZtrt2hlQ5J2oC3auPGIVrfPjZtXULoHiaOsSlpJxk49YGP9NlPzC1hn2di8Q6m2GRU5UoI2AlwS3bpGIHzjpEwEzrdY2drk/vYbzB1c4tjBY5TjAXduX6atHb3FeWZnD1APcoR3WO+YnJ3nxvX3CC3F5uYarX4PRWyHxAemZhbomAzrPfloh2OnPsftK9cpRgO219c58/mXQBpOn36cI8ceY2HxIIlu4a2jGQOT6oRWt4fSyf6+1NcFSZagjGb2cJc7Vy7SmTpGUY6ZOzqL6WZxyFE76ryAJlq6ty+VwLgROL2QKCEY1yV1VeLqml7So6KinbTwSOq6piUUCYpgHT5APh5jnWVqYqaJh0tCHV1yW7s7zM9MUtWWlszi3jnq9ARhqBvHVFXUVLbCKIOQ0TUofSAvcpJEkyYJUsYYlQueYR45OmmSYpv9b3AO56GbZpQhemCLcUGaJgiVoJVhLxQbXI1pWHnxWvXU5Tiyi6QmiFiSUfvQFPNkCF8jjMR7QT0eY1KNNhmS6OJENLcq52P7boC8HJO0DabVipgJPFVRxv1Fc60H53F1jXU1Rkf+ofUWjcBVJTKE2HqmTbzPSEWRD5iemyf46LDSe6aVNCVISbBRhB4XIybbXRCx7MDZEKOTAbIkRviCsLFd1o/ppgkoDUJhixxCjVJZjHH7Eq0Uu4MtJrs9TJJEFqu3EAJaqijgS0VZFGijSFvRQYaIqQrnI/NNNkMhqSTlMCfTpnFsqrhfcnHtj05kj24E+iwxBAfW5iDrnz3z/Ad8/NwFpV5bcaA3x2h3yPzBE4SO58UvfpG8LDl7/CgtA/lwjdfev8xbVzZ5ePoJzOJJHlaSqYWDfP+Nd/iXf/Tb/N3ffJv13RLrQQWispe2SFopWkhu3brBwvQU1NsoV/LxB2/ww62Cr3ypy9utitGDu/zp3/wDlZcYo7i/usGxw4ewox3WdkqMlIyrQGUDmdFYaZjo97hyfZ3BuKa4N6BQnj/61vM8c/YxpkzNq2+8xupuzYGpSX68tcbDAXzuc2d59umn+eVnn2Ht4W3G22t46+m3Ja+88kN2S4uamOYLX3iBteVlThw/xu72BmnqWV5dQ0gTq14FCALL92/xMG3z4vQEr7z5Lv/Df/NbvP3qd5BKcvXOXdpJhrdjvJc4pxHB41VNXtdUxQoPHqywMDVDkna4ce8+qjVNuzNJJkdcvPohWcvQ6miC8Jw998T/x9qbBdt13Wd+vzXs6Ux3wh0AXAwECYIACXAWaYmUZImybNlWLHnocrnb5a6Uq12pzktX3lKVVCWpykM6rmonndidVNvVtmR5aCmy1B4kihIlcSZBggQJggQBYrwXdz7jntaQh7VxSTru6kqi84Q7X9xz9tprff/v+31MZRmTrS3eO/82N1fX6HW6OKfRwrKTb7Nv7wGS1iv0hxMOHz7IKy+9xGDlGqfPvMj1tR1ubm+AFby/toHxEzzw7aefIk1+ROwk11Y2QIdNoyPC2aqx9FuckDid0G51gsU2i+lNd1jef5DF+T18+2/e49L193n44U9gTEWkE6w1u1O0hryKaKpbgxHzA2HoA45qEAXC7/D3JNlGoLgVm7vljBEiRAM8nnF/RFXX3FhZo6prlvcuMR5NqKqS4XgUfi8J5aTg7Xff5sbNK3R6LUYTQ/neRXb6E/obVxEavKnDBNJn1MJSVIYoMhSmYu/SISSeyXiHSR5iH7auydodrDOM8wlKaqr+FqNijDU+5HG1INYxo6qg027TavfI8wlKSaanF6jKiqqYII3BuoooWSCOOkRpRl6NsUVJUZZo4UmTLjuDbYyvSXUSKkbb03TbHUbFiHanRbvVwZQVRb7BuEzY7E9C+5BsULFCEQHCh0mtisLUzdowTVVN641WwR4vRWOg3XUI/H03WfMsej44xX3ofUJ84CYI7wufs+sg+LCQ9GEn0q4fjb/ndLrlWvjg64QPhyjROAZ8IyaFrLy/9VLEYZvvEaI1WRyBq1FSkaaK1ES0dcZgp2Ck+oTCEYFSsLa9QUe3+NpffJPjd97F5atXqCvH3J5per0uZVkTR4per8vyvn14J6hLj7UFx4/fyUMPPMTrp8+yf98BRpt9Hn7kEa5cXeP++x9i5coGkor1tXVurm+QakG73WJ+bp66rEi1xhQ5Li84eOggZ86+xfrmCt99+jU+/9lPc3Njiyvv1yRZTK/dJe702Nwc0s1arF1f4caNNXQs6E6nGOOY6sSU1CRJm8FgiFIpMQKVCWSkuPvYPbz62hnuPXqc6dkFVtdXubFyk3NvX2Juep5UFdxx9Bjn3jlPu52xvTMgihW/8Ru/xZPf/Q+cfvsNUm0xvqa0FY898jhrK2vcd+8xep1ZvvV330KIisSGic/8/kX+2T/7bb7//e8xvPk+yhe89MrzpJ1wuKicQyvP1FSHUTmiNIZuKyHLKpJE0Yq67F3ex9rqCtIV4EoqC9J3OXn/KZLOFOfPv0F/6wY1MClytscjOlGCiixFVVK5kkRpeq0pur0epoJJblDOY4oKKyy1z6msR8YKV0t8ZXCuojczh5Zt8q0beFFTSkchYryI8VZgjKaYOJBDEpnhraY2EYUZgAwV8lJMiESJkFPYwlHXwSEhpKGcVCgdI20SvJhCUjlwQgces5P4qnGHCo+kxDiP81XY/PrQxmRdhXAOKcOGSnykjSxcO9bYxnHELnumKHOUjoIga8MmJ0R4CE6ZKEbXgsqYsM775meoMPktygl4Txo1zUwqXK/B/OuJI884r3C+DmwqG658JcKG64P1wt+6+j+YBjYP2bB5PiwkAeA8Uqtm8BUmsA5H7R2TfIK10Gl3SeIBpfOhahnftKgplITahGCNp6lJl6EhzOJCtMeHRplESWoT3EpCK4QX1MaxsT1EEETuVrtLpzeFEaG5LUDnHU6Ehk0ZEll4pxDoxu3rgjNJanSkkEpQD2q2R2Xj7q1xUqJVhEM0TXESHWkq75mOYqbbU5jKEAvFpCqbSJBB+KZdrzZUtgxQaufA2914hWzE/UiHuFuiY3SiUCIh0jFaS+JIkuqUtJ0xNTWH9zDdmwr3lAYMlSUZUZJgfEUrSSmril6vR2Us7TQliqJGDwxtOYIwUY+UpqhKosb1k0WB+VRbQytLyNImkmFCM2CcJLjGLW1MtStQCOcoipIsCwKS96HR1DX+Lw/hftHEzUDgfHARSBGm9BIRXG4iNAFOT7cxIrT6dNJW4FRFEUhNWY1pt8LvJqTC1cEh0okTvLFBfGrcDt6Fa2MyHjXQeUmksyD0CMALirygKArSJAHnsXUQoG9dJ765VxpvqasADwdPHEcBtG1N0EwbJ6D3Lji4vIdb4HofuFidbhDpjAkMpdp4rPPEIjyXzgSwbF5UwXEWR8HFkcZoHVHVVTNQdIFN4hxCSiId+Eq32GauEQ7qukb48NoVSoWooRDgZRNfDdcxHiIdB5aXEjgvggMlikiTFN84uJSOmr9v2DNaaxEKqrrCC0NdVaxcfYPVG+coqxqtJO+89iqz0/OcfOAh4riNdaHRrnYGjcQikVEMKqyDSmkMvnFdSlwtgQA31knKxz/+OS5dfIuH7v8UxWjCx376Cd6/cJ641SKOErY21+lv9dneGlDVju5Uj7k90/QnG+xduJ3lvcepRpblgwc49dDnibsxWZYirAttUEYxyUf0pvcgdMTb50+HqvYqxKQTmWIKg/UeU3lUJqm8Y1yMQUr2LE5x7OgJymGf0XCT2hR4N0ZLz5UrfVpZhI5T7jx4F1mWcvryWa6tX2JuzwFmhzNoFQXXbpwSzIGCSCoW5vfT605z7cIKqzducvJjjzI1M83+Q4eYnZ3HKs38/AJaSgpXI1WEtYFtI6VE+nCdWG9DfDqJQSg6WcK1S++y9+BBRoM+ShF+B++oyjFlXRJlWVMgE1ILpQkRXy0jat9w97zE2hDLTFSM0cGhMsgLqromiyKCPumxdU1ZFMHh7jxVXoff2UtWb66SxcFtEukwZKhrg8GTxi3iNAuMQaUZjYfhLCQEUmks4d5qjKeVtdE6gsbdFJxEkrTdxTVnHeU9pbGoNEHoODTKOsG4KJifn6OyniSNqesC6yTCO5KoDUJjXYW3gX3YanWDSNS8Tpw3ZDoJZz88wmsm+ZhxOWJqthvKOKwJEXcRnLRIDyoCIRmMBnTamiqfEEcJtakphhPavXZznlCBT1hOwloQpUjdNLRKhamrUFrQamGNQ0SC7XyHbrtFHLep6gqpPc4SkAI6wrpQ2JCXBYn2EAfH061IjDE1Og4CU20cWgvyKifRCqUjBJqqNlhraaUxIo6oTYlWmv5oTCQlnakAQrd1cGEKH4Znge0WGl2zVrYb6dttr24GQ0qppnkTJA33GUcUBaevFhpc4HtFcRwGSUogdIQxNUkSk4t/YIL//+PxExeU+u9+n6//+B1mD9xDNFrjpjEkruLokf1E5XXWrm6QTu/ny//4n9N59kdMH36Qz9xzGO8tjDZ4+Y3zbF19j3LqMMeOtLn83nk21/rEcUq71cKakkleUkYxGIsVnss3Vrj7vrvZvnGBgTH8q3/7B9SF5+rNbWqpQ65SKd6/toKzDpRGpm1m9x1g//wU5145w5E7bmdz5V1WNx1SpaA1sRa88NpzPHL7In/+N3/BixdvUg9zVJxSe4v2jpeef47+zgb5yhXeeudt5ufmcCjeu3iJTz14DHP+Ih9/5HE+e/IY57OYnbLPofk5xGCVXpZRlY5RbdizvI924ri6us4jjz7KYFSx5+BhbJ2jo4xer8c4n0CssTZMZgWigY5a5hYXObj/GKvrm8zOThMBZQEff+A4zz/3V7zwQsLa1hAhI7ppC6EiGJZ88xtfR8UJk8mQ4aSkKPvEcRdpxoyKEp9oEhFzub/O6N1t3r96hae+Nw7TawnTWUQSdVha3s/C0gx1XnL6zEvsbG4gncJLwanjx7ly5Qr3nbiPCxff5dC+fbx49kUiJ3B1iTEJe2bnue/ue7njwGF6nQ7LC0vsXz7CTpXT31ljbrpHXVdNFlTuTpAhNKx8IAY1F55vIgPc0gqaaejuaeADR5MngDQ9tzKqAuEd29s7PPX001y+cQ0hE4q8xCLptrIwpfGCvMipjEVECjPJuXrzPSo82/2S0egq48EWeMjzEUhHKwkLaJXnCAXDUZ84SpnuzpC2Erw3DMbbFLVpbuqBN1KaEilhUo5QOqasC/bMLLO9HapErTVIJTFItE5IUxlcBq6kqnJqUyKUpqpLtDGhnasuiNM2NTHlZIek12laMEI19aQak7X2YEWoBtYquJjG45qV4SV6bUVeWzYHBQERDv5WY1azaZQNJwQZkxeWurRoZVFKwS13TyCoI/2to91HrGK7B71bj4++BR96kpuPi4+4C3ZFw+aNDxnQdoWljzjUms/ZjcR99NfZPVHeArsKGSagIlIhKuBBeY+QgdWhpOLwoQP8/M//PBevXOKll19kMl6j1UlZXDzAyvWbtLKY4XiCb1ueff40X/i5L7DRz/nhj3/A3cdO8tyzz3Pi7hO0Wyn79i2zvLzMA/c/zGtvnObYnUe458Rd7F1aor7LcvjoIfLhgG//9ffZ3tnk7/72B3zmU5/mic99nj//xl+xsDhDmqW8+MrL7Fvax83NdYbjEiMlP/34YyzsPcjVjSHvXrpIv7/DoD+k1Wlx7PjdrF6/QVnlmPGQOJUYV2NNwT0nDxPHGRfee480y+hliu3hGJ21iDLVGMgkVe546O4T3HnkTl59+UW2+jtcu7HJ6tYar732Bj/9+E9x++E7Of36GUztyU1OrGB1/TLOV5x57TQ7O4aHTz2E9zFXr17j7LnXmOp0mL9zlvfOXafff5MbN9Z47NGPsW9xmdFgm+trO2xulfzyl3+D914/zY+f/iYrqxexMnAAbLUN9NBJhhaedi8jSmvuv/9RhLS89OIZOtMp3lisEGgVwMfzexa4fOESMo3Z2u4jVUpRGqZ7U+yd30MatTEY+ttdzr97lmymy2g8ApUwmhisUERViJYhA5ekk7aoK8f2oI/VglgqkmiayjoSqdFk+BrKcga8JE41lYkY54as5YnjmqKcsLNumYwHjSNDIqPA3SsmjizT5FVOmrapbYXSmpmZBUbDAY4A4vWOJjojGseYIorSANqtJrSmu+R5TaSTXUdCbQ0yUjgfBASIGg6QJ4ojPDStI8EdlcZxWNOdx7vAJWgMLAHgLQRKiYZZ0qztUmOtxUuaj8NkPCYWniyCqg6uESEkpnJ4r9jYWmVcGGqnEFoTRTHOWLSMwoEbdhl04eL+UONkwzXaFboFzYGC3Y+H5SEAswW+ibOBrWuKyZisldFuZXhbh2igI0xFVagkj3VoSczi4HoJ3zJwkLSSjYCjkBJiG+zxOlYkIrAV4lgFN4prDs4CkiTC1nVwhNQOid8VK4RiN45lrUeo4HiJVIRXCotFZm16uhXii4gmtirBB3hwXRmKuqRYHePrmlgo8p0+K9ubeARGhZ+VNA1bSRQHMUBF6FiTREEYiHQUgNJKksQRUZJSljVaKrRWtNKUSGmUCnB4ryTdXje0Lrmw3uokQjhP1ECoXW0h0sEt0m6xtblNb2o67BNs03onwXuFEgE2L5voXIREehlcKEqSplkYOLkmFhWphmdjuHWjCFsOi3M13lmSJAEBSgYgrpAaIZoQhbMoL1GyEaNEuHdIKbC1RYX+qV2miZSSyWiIrQ0FRRAupKMcGJw14UAlJM6FwWtYapsBWhlq71UzvCkLh3OWWEUkSSu8ancd3mHKHzhJBqU11oGpLa1OO8TOhESrGOcNdR3cSnZ3Ek4jzATRRjciq45CI5aSIbqmlMZaiNMsiJ3+VlQmFAJEUgcuoQzXfVlMSJOUuqoatyOYqgrPn3VUZYWKFHVVobTCN/+nKArcud37vgvv981+Q4lwzdwSxeqqwpkQZXPeNyUboVVOeIGWoXWrtmFAVNd1uO5qE+rJJdjQwYV3ijiOmZ3bT6vdZdjfYjJeZW7mCInuYmqP1h4tIeCJHcJ5nBdorTCNa0crHfYyOqwxjgA5VypFS8mehb2sr65x7uzL3Lj6Lu2ZWa5fusFMd5bezB7ipmVTyeA+2bdwO0v7upy9cI5jJx4ncoKNcpvBep8HHv44XnqkjDGT4LiqjOf9d19n7/LR0LhlLGVdkCYpM1Nt6qJiYGA4qAkgZ0lhPAUeaTSJV4y3J6QtySTfZn7vQfpbV+lvr6NiRX8U4b1HSctUq82Jk49RFxO6s8tsr28zMzuPsA5E4O44gqNU6yBCjPIRWTthamaOdpqyf/k2ZNImUTFxlGLKCn+LL2RNYBYhcD6465yQqDhGeY1OM7ZXV9h721GOHL+LZ7/zV5x6hOCcMS64jrynpXQQHGRwEuVlEVi02CAQ4ECEe6iM2xSuIJEJVVURKYV0BLZmWE2p6wrjfEgbCImKI7SVKGfZGewwvzjL+uoNpFTsWVrGVMNQ+pR2gmgrw9nFNrwyIQReC7STVKYg0QEajZBU3oLSFOWANMvIkla4//maylZUwtJL2ngXWhPHRQ5aoeIYXUMoRgrwatckP6wLjNu6NiQ6ohWnoFTgVZkKrZLmnj1GyxiJYjwaoKMUoTPqKsRFrb9VrBMEYCEFpi6bQUoWxFYVUU6qwI6KVGh/dQJfBSi6jjRSx809NDT7OSHQWYbTGlflxFFMPtpiamaBqqrRCjAeay1xEoe/hw22L1PVZEkQdUAircNrjzeCrNXCNhsHpRRuVNNuZwilET48H0msmqbU0D6Hkgz6AxZmZxq3U9inOGtD82DTjimQtNsKHYdWOA9NyUFFFMV4DdaE+PBgOKDVbofhtgxcPgjDsvD9VYCmVwWtVgvQWFeQV45W2uYn+fiJC0r/4n/4Cu0Tn+TzR6cQacrt0yWvnH6OnZ1D3HzjBb77Zp9f/c1f5959GZ/7qU+y79BhemmClpZRJ+LxLOMr//5b/PN/8V+x/sLX+Ndv9lHSMRyPGeU5Sgp63S7OWTZ2Bsz0Uia+ywN3HeHdt84wmwquiYJLaxMG4xyiGCUVc+0pWlHNMA8TKxe1+OTjn+WJ+w/zv+ysMRqMyOuIWDp8nDA908Naw+ULF/hvf/f3OHTPg/zqLz7Ki2+9TbuVcePK+9xY36LvDM+9dpq3rl7j46ce4sDd99D67t+QLS3x5Z95gvNrG3zpE6f4zlP/F29f7fPgyVOce+tlnnn1LPiEfFJQG8dMp4v0W0xPt9k7O8f9n/gkx/dO89Jzz9Ht7SeNL+Lo8su/+PN848//mL4JXII4TZHSc+r4gxzcu8CFS+/zzA+/z2Bzm1YsuXL5dGghGo6Z5JaoFdHyNUV/wNPP/JiyLHEGWq0YJx33nLyX69evMZoY7th/gmPLizwfR6jaYXzN6mAzuORkoMyPxkMKVXBILdE2hvdvvE8+HFOWYcMxtzDP+XPv8dBDDzPs7yASzbg/YiqbpixyjK2ZFEPiPMWbivcuXWCmM8WNq1e4/+Q9PHzsOCsrN5BeMi5yHn74Y4zHk12oYpCM5IemyR/gt4UM4saHGp9RjZX5ltskOFzEbkWxcY3DxFhMZXj97FnyoiBOO3gRYHDj/hAvQwXkpBGUlBCksaCsPK1kjlhETPI+42rUbDwVadxBpxnChKrM+aVlMI619essLR3EFmM8lrnuNDs7mxhbI4WlNjlCCDrthMFOSRJbLJJJMaCTCIQ3KA1VLajzgqHYZs+eWUwuGIxGAfxuA3fDA2UxxhiLsCWtOCGNE1rxMpW35JOb1DikirGmxhqBVYIkaVFWBWXtmORjVNSidIqbmzWeNRwagQpgYSnxNsA32+2IoshxeIwPG3jvwoFFeIdM9G5kxAvwzuF9E238SETtA3HoIyLPRzJrt973oazxP/C5H/UdfCgmd+uF0vjfb21MgzgVgKW7EWY+cCo450NcBUAGDor3rplOh+aGmakpelOnaHdmOP3qq0gNB5YP42zK0p5Z7rrzGN97+vtAsJJ3ewk/+8QT/O7v/kteP/ISUzNdVjYu89hDnyLRKYsLi/Q6s8xMTXHP3XdzcN8hWnGb3lSXVtbh9MvneO3VZ/nYI/dx7uxpynLIgw89yvRMj//sl75IMbGsra3z7oULHLztNlZX15mbWeTg8u10Wm3qSnD58vvML3Z57szz7FtY4su/8Iv8+EfP8dIrrzAzl1CanAkVvrJ84shxbCW4cOEqyg3RUQvlW5S5xeUeozzGhYz61nrO6e0zCKFYWb1BmmQc2b/I4489xomT93Lu1TMcWN7HUz/4G7SCSVExKSxHjxymsJ7z77zJ5+/4Am+fP8fNtaucPHEXn/3Up9nY6HP+nbe5tnKD0bCkzmO+9OVf5+K7b/KHf/QH/PG/+zf8zu/8Nk8/9woXru5grSMvHQaBcpba9ynrMS1tiETMZDDm/PkzdHuLTPJtRoWk156iO7PEtevX6HUT+pNg9fZ5xWC8Q6/bod1O6fU6GCN5f+0Gh247wrjcoDc1TXtqntiHCfN4vEKataiMZZL3ETomztp4M0JYQSdLEdJSG0t/+wZKp2F6XWpc4SCNwFeUuQFX4WOJpKauglPTyoqs3Q5ChHbkRYHqtgPzozZoGSJzsUpw6pYjswAhqZ3BUoD+4AAAIABJREFUCIEmaSZoE9JWi+3BEFMa4kQiIigGlixJsEUFziFljPcSi8Xb8LcRQoX1Rt26LhzGmDAVTWRgbsjQQmLrmlhHGGcoypookljrsVaAiEKDk4wCR6GuMK5GJdDrtRFAUZZIJeh1E6rKMRrlOBvcVlZoZNLB+BAPdgKk/xB3jVutkWFoEZaS4AzyPthoRGPR8M2a0BgW0U3MLbx5a9gT3CfjyYTFXo921qLM8103QyI1kfQYJ0IcWn4gBHhhWJydoZOlSOWpnQibVx/iH97WIKE0wUUbyj0sUoSGqqIYk2YxdW2oiglaa5RUKK1RWoZNtBOYBkrvCByxsqjJq5yiLhiNJzhrcVVFWVVQO6w0KOl3Ra9IJ8RxTKx7LMzvRUY1C3s6ZJ1pnHYkweZBqjOk0kQ6iH1SyUYcUCS6AZhK6LYypEhY31oja2XEStFKk7Apt4KdnT5ZrMiSVmDYKDBljYhjrHWBbeIsVkrKqiZrtfAW4iRGRRJTGTwhZkgTuZNKU5mKgCkP02EpJc7UtFtTaATO+lAVLcProHlpg7dI4RuxIgiYshGGQwnGToDf40iTFsKHuJRxFluWoUHNu+b+AtYbpBckOqEoa3SSMilG2DKAXsMhQmO9Q9hwUPaE16s1gYESRwqlAxA/iCUCrTVVVYVIptDEaYaOYqwpg2BKuA7LOlw/OorxnhAPFTIMo0yopJYi1IvXxpFlaYiN3jLrNZP14FCU4Tm6dS/3gHdU5QThRSMshThbWCcgTgPg3DpDHMUUkxykIE4T8ryg2+kEUVGAFpqyKsMkP2mT5wVxFDPJw/6m2w1tada6IEB7GmegbJreJMZYjPVgDFVpdmOoNG4R7x3OhlipjhSRUhRFEVrxCA4yYw1ZFIV9nhDN4RrSTpfu9By2zBl31xhN9qDiLnMLyyRRJ8i7SlHbEDmsrENojZYSY8ogTEuJcZ5Q3usCON55VJaBcBgr2H/oAD/42z9jzIQr1y/y2c98mffeucjK9ct0Oi2QHp1ExCoKXB/fQskF9iweZPXCO1x4+zz3PvIIFYZL504jVYdOu0VvahZv++wM1pnds5+qrkn1NMN8HdnOKGqo6+CoHFUjeu2EsvR4BbWVpMqxubPO4kKPwc4WM/NLHLr9Xt56IzR8lqMJI+8QlWGnv8mlH/8di0v76U3NkSZjerMzTM/PU45zVCRD41bjRKuN5f3LVzh4xxGuXb7EyrVLDHY22Fy7wOKhA/TmppACCluHvawLZR5SRzjCa7TG4b2nFSVIAVmc8vblS9z7wKMMxyMeefzzpDoNg5I6rI2xDs423/DsrK2xtqQTZcHF5z3eKrAWEbWI0zZKOVQU4rba1UgpiZOE0lm0F7jSoCWkcRJA+irixuXLaFvy8vM/5t57jvPCS89x8OhtzO2Z4a2Xf8jtJ+5BTu/BeYHUClOGMgSimChO0B5AktcF3fY0iHDU18JRmsAfnJ1uGtNsEAKNC+6WNEopygrtPOVwxNLeBWoriKMI60IMrvI1Og7sJFEbvIW6rHBaMqwrpDGYusTXNpRE2ArQSB2aAysK9u09SGUgkkF4lrbC1mUo3wBSEdHf2aSdtPBCkqUtjKup65pOq4lR6yj8XBtYQTpOiWUYgnnhqYsSHUVB8GkcasM8b4QUj2qE66pumlqVwliLEJ6iKhGiGaQLgvtLSYpiQkvHwXlbhwKk4TgnTZJwRvBQmxpBjRQxrraUdUm3nbE+GNJOFJ12F4EODl3hEUqQRIHdJIUKJTIyCHnOB6akyUsSHVPjQYkQXzRhABFHIcqo45hIqiaNE+LoIeptkCLBqRZSxSweO8YXTh3iqZsZP8nHT1xQWpmMebCjObqgGfVH5OMB28Lx3HPP88abb7Htpli5cpHzr2/z6GOf52iiUKLGeUizDu20za998WdY27qK6x3g5z77BG+cv8L04n7mpqZ5/83TnH3rQgM4dmxsBcXuT/7sG2RZxle/8XUOLc5TxyWPPP4ZrB3x7htvYesRlQ/Vo1Io9u5bZH62TVSPaPmI9UmfVjLN/vkY61Nmlxd467Wn8blkYgqqwTqDrTYfv/dByp3rbG3N8l9+6ddpZzHDsmCuo/neUz/k3jsPgXfcsXyEtY1VfvkLX+CdM9+lO7WPB1v78eMRL7z2FmubOc6PkUiyLObixbcpjSGOUp579hlOHbuDrz7z13zu0SfwtiZ51jG3fDvXLr1O4QV7988xHG/hraN0NefOvcpt859j3F/hO089y80NcFHwtmup8T7Hqgg5KRnYCq0FtS3DhYRnVBbEWcqebsyq22FYaK6vXOFf/pv/HaqKVDgef+wJdCfjG3/1Leamppnfv8S1i+fJy4pnTr9CJ4uJlOHI4cOsbWyw0t+mk7Voac1Tz/yIz3zycT5z8iR/8qd/RNZOAUGUpUgVYWyOE4K7j53gwtvneP61l/ncJz7Dk8/9EOscP/f5n+PeEyfZ3BjQyZp65l3byYenbCrEj6TDWYsFIi+wIgAQa6nC51ofqsytw7uayoQcPt7S74/Z3Olz6b0LbG/3wx5Bp0RRihAOkoSZrMv11ZsgQ82wjEIbyNzsEq0sI1WC7cEWSkQsLXRZ3x4Tpwl1OWZj2Of43mUm+YjZdpfOvlkSNeHilVUAJmVBN4mY2TPN+uY2Qkqsq9jTalMXlkldYZ2jraEY5+hkCmtL5nsRG9s1rs7Z3lrHOksrTagrQUUdmnWsw/uK0jpaWiGdbYC5liSxjPwQ62OscUy1p6lrw3a1hpxI6mpCohO0zih9RZruxUjP2oYlySxp1MGIChV8teAE090pXLcLQiCRRJFAaYlqNrtOCoQzoQ61ObSF9fIW4aPJtPkPbUr/o49/UDH6f378I49/IFr3YTfUbvKtOWze+ppbL72mfazRoMJC7sUuX4HGqSBEyEdL4ellLZII7jx8mNFEkA87vHj6NO00Zm1zi85cm31LB+jNLnH86FGK+grGdHn2hR+ztT7gV7/8RWbn9jEabnPbwUW6vRmMdTz73Cs88+MnqZ3g9Jsvc3h5D1eu3GB1/SaLB/bx1b/8Cr1umzRqsXx4gftOnOLu48d5692LLC0usHxwiSf/9jv42vLy6TfYu7fLb/7GP+ab3/prjh06wMceeZQnv/M0B5YPcH11hawdUVUl+5cWeOWF5zl2/E727Fvg6pUhG/0NqlohqhAls83mTQrFxYvv0u1kTPUW+OxnP8k9J09href61XXmpua47/6HMZVhY3OL7zz9PeJYE6uYzf6Ev/vOd6iqnK9/+y9QQuE8LLDEm2+8y/333c/nn/hZfvDM99l6sR9iFWnKPSfu5vCBJc5cOMc3vvl1Lrz9HsZr8lySthKsh30H9vOxU/exdv0Kly9fZG7fMhcvnCGvLfn1bXqZDy4uE1OMd+imPYbjAYKabq+L9C44PJJuOGw4jYthafkwVa049tBjXH3zBdZ21tBRj4vXzoNy0OoQaYfQ4cYfCUdVF2jlkVaBiDDe4agCb6V2RNaR+5LBaJ1UpODGeG/xVU3csRS1pJjUqGYDWHuBKKFyCkSNndR0ujO4ssTHoW3lFk8kjttUvsBiMDY4CZ0vEE4g/Bgdd8nznHxikXWINzlbBxA6QXQ1zgQ4sg8HbUmw2WepBq/CBtB40laMtZ4iL0iyLEzmTU2el4AljjQ6VtR5yTifIGQUrPwNtwcnmZrpkSjH4kKbMq+pC0PlHUVVYKzEK0Ljl4yDsGQMtfXoNEVFClv5plEF8BYQTatysLAIggXdetM4Fj9oWvHeBTdJs0gIH7hCyGAzlyKsXbUJsYpWK2U4TlC1RChPqkSw6FsLKggiKIlSAunDpljHCqUCYLWuKuo6FCgYD17FSCVQKDIVBHHjZGBQOIE3ofVKiYh8MqEox4zzHGcMCo8xJWVd4rwhsGnDpFkpSSvRZCIi6kREqkUUTdPSCVGsUHGKUAotNQKJ1nI3MrF/70Eioai9YHZ+ibWV92llaSMmSNIsQ8hwsNfq1kQ2NAFKKUnjlMp42pEikpJYBZ6Eryw2ZBXRcYbSOsSWmvYm7UIzmI5iEAY7zkNDrFBYGWrZlReUxu3eTmTwl+IQmNo1/65BeuJIUfggvNlQk4ZA7rbwiYZZZExY440t8A7G+Yi0lQWRVAUnTBRrjA9DpXBrCNwfHamGs+dQOkJJhRWhPUppiZ1UpGloalI6IY4UNTWR1vjKUDtDlKQI6RGYECnHBLGNCFPX3HIUCKlxfoRwNXGrHRxdnsA1kyEe4lwQdiKdIYWmrHKEDxXekYa6lAgtMDanNgF8G1geNIDr0Mjom0GfFwqtUxwhZpTnOSrV1NUQEYdGPOMdxlUIgrgTRQl1XVObCmsMRVHS6/UadsotTG5wlBtTBVeCjsI9W4IxVXAqRfqDLYN3SM8uLw0HQnlqE4aHt5hU3tvd+LxvorjSe3xdhaZD4ajLijhSGFs1FuYQd/He7gpoE2NwIkDMpZc4NO2pJdrdBVauXiba3+IWNF44wNWABuGIlMJJEYaUkcbzQQGAMwZX23C4VyLwy4RhanqKo8cf5PRr32VmaorVGysk0x1urlxDqxAnroynEI7ra5uotIdUKb3WFOdW15jfu8DS3r1Q5Pzgu3+JjFParTluO3wHo/6A6dl9DIbblFVFO51Gqy5xlrHT36CuRtSmoJO1GNum8asK7m3b8Ag2t1YZD/ocufMISdZl375lrl7aZiLCc9Wb2sfm5mWslGwOB1TFkP76VX7pV34HGUXBSZ9No0Rwtmxub/HOW+dY2r8f7xM6vRnG4wlHTz7A2TOvsLm1yW23HwsDyrIiihT5pEQmcXjKRNN4aC2lsQg8WmrGK9fZ2Nhk8dAROkLRWdiPEZB4R1UUeGdI4hQdRcRJjJeS8TC49qROIPjtQjOp97TiCCEcSZJSlQaZSIYbQ9Isxnuze1+snQkuy1aKjDW2NCTS0t/awmM589ZpUiW5eeMaP3zy61y/ch7V9ty/9zYqU5LoNkU1RmiJioLAb62hrixxlOKEQ+omneEjxjvrtHVMErVwVlCbmroqMWVJ0mlR2sDzqWzBxIyo3ExwITV8NilBS42OWngkTgqcKbGuQMkWEWEAE0mJyBReKXAxcRysx+PJgE63AzIBqhDD8/6DljnnUFpS1jUOj0qCU0c0DvdIgoyDu8njsabG+AqQDYYi/BxXBai9jiMcEmNrkqTFYGOT2xcWGYwmxFHYQxpTEccRvrY440Lku8jJ0iQMwmRopB1NJihf4YyjtLfcnJqiGNCZDvtwqcFKh0wyIhVRY0iUwhNRVTl7ZmcCk1dqIEJgiRONlhHoCOlBYFBxEBcTL8mLEULJsG66YCiI4iiYCtoZeEscR4g4RTpJmkQYV2ErixEJ9GY4fNsBjt1xO7cvzpHomDiVvPlW9R87LP1/evzEBaUo7vLq09/j7Zd/hPOKfbffyZ65Hred+hgPZ4pnTl/jrfOX+dLPfJq1905zIRWcPHYwgNmERirBgUOHWbn4N0x5gdi5Ri9N+diROa5evkwUWfbvm2M4LCmqGisM3gtMpVg4eS+Ldky+scPnPvYYF25c4Y59C7znRkzqDB9Lpmc61DhOHDvGlMv54Q+eC2waJRgOh0il8GiOJvuRQocsa+04f+kKWmjuzmaIhWJpfo62gqNzbZ55/iWuiZS9U9P8/u//ATsTi1hf5dzWHP/o0w/xPz/5Na6sXyYuczatpD2zh2J1ByU1aStGOU9ZCrSKiaOIy6vX+Z9+71+hdMzZN9/hgVMnOP7gw/zql36NJ5/898wd2KLjLMNcsG/5diLv8OUVzr37IvedeIBXzoxY2VxDeknuKmrjwaXIqqaqPNYI0jhUJLY6LUwVJjOJFGwOSg4dOsH1F16nKCv27F1CIpifK8HlfPqnPs1bb55FyIjPfeKn+MqVdzAlZMIR+wpfW1bXrjIqDd4ILl++weOfeowHHlrg6JEjvPzyjxFxsDfW3pA5TafTY3V9nVdfPs3Khfd55+IFbmyvs7axwd23H+U7z7/Cxx9aZTJY5sVXX+Ohe0+xuHwwTIF9sAMGK6xEyDDx0y40Bzl8uMDwGFWjnMB7yaQuKCcTiqpgPB7jreLS1aus3LzJ5RsrbA6GjIYTSmvYMzNN0glAs8gVwXa8s0JR2Ual9ig8No5JhCQTBuvGCD3k6IFFulmE8JadfMio30c6uL56g267x8z+Hr2sx+nz5+nnBb0oQviCSEVsD/rUJieL2kgRMZXNMH24x8vn32XvzBJ13qfVmmVUlEgqxmMZmAO2oCrKsPF0Lgg5MqE0JappV5DaY6WkqEpMrYh0Sl1OyNIe2ubMt+MwkZQ95uamWOlvUqkYV5UkKgmCXDXBCo/1kvEQxpgQTVEGKXQDkmssw9A4HyYkeaiDFxEcmpkjlSlahA2hdrKZINrG/kpICfChqNvfj7fdirjBhz7rQw4n8ZEv+U8+dlkqu1/0gePpQ0nLwIoIBM/Q8PNBmjK08tgPmBNCqlCDKiN++rEn+OIXv8js7ByXLqzw1b/8CnmVM9VO+K1f+Ces3txhsNVn0pecfvUsrY6lKK/Q7WQcWl5kZ1SwuDfhwQcf4MgdBylrePK73+XK+xd4/d2z3H3XnfzUQw9y5uxLfPoTn+S+U3fxzsWrtNIui7OLvH76LD/3s09wx7HbWdq3l337D/GjH/2Ik/ec4k9e/ypf+cuv4eoxh+bn6fX2UgxK1vsFTz35AvN7Z1lYXuLq6tWmESyivz3hV3/5V7jz7pP8H7//v9LuTrEzXqedxUhbU8WaUQnae5SoaGUxRWVZWJonTbv86Vf+krXVm3zmM59gYeFzPP/DV7hx431MUdDqhmavtOPZ6a+jnaV0hlhl5LVBGM/b5y8Q6w7zS4scuO023I+eZs/MFIcO7afV6fKtv36Wdy6sMNNd4uyZNxEyxZQTWt2YPXsWmerN4KkpRyP6gzEoxXtvnw7OkDyiLse05zWzCaytDRBxQl04lLIYN2YwGGFsYNrl/R0SOYvqTfGpB2/j737wHJNBydnzZygmWwg5YH6PYnZqiUrnjEdbwVVhPc7klCEdT2lEgMp6SxZLyjJH+rAJdiqwOiIRXABCtpnqzTM7HTEav0pnqgsipa4hixXWapCWMs9RJGTthCovAjx/VIaWUO3YGq6RpW0SleFkmJzFsUTHU5i6pBg7Wu0udVSwM6pJlSDNWtR1iHVaaYmilMFoTKT8rpsnxFAc4/GEdtamNzXFJM/J84qslTXuJcFkOGFmdop2N+PG1etM93p4HMPhOFxLDnqdDpNJhRPQbndotUFbS1EahoMJQjny2jDOczrtFkInaJ+ATrAVGAn40E4mpUZ4i4x1cFO5W+6gcEeRzaDC+9B2FmDiBCurDK6kGIXxoeFL+mAgChE4QaQ0QsnAvKhKUh2T6phRWSOcD9N277EIkliQiIhINfZ0a/FEWBtRGosRBuEU1gWHkrMNPJngxLH1CB3BjRtbWOfIi20OHjyIsp4rK9eZVBOyOCGJUtI4ZrqjUXELL3po3SKJI9JEIrVA+IhIZcRInHKkaZeiHKMTjY4itIqRQgfukRDESRRiKTJwQiajLdAR3hqW5heJtGYwGhILHWJKIhzgtI5wJogrUjQxAxUm1VILhAwcCyU1RjqcN+Hwp3XDxKmoijK0k2lBbQypVuR5tStO4D11HqJDZheITmhQxDf3F78bLXPWkbXaiEhSTWpasQ4ROXwDsg5xN4RjMhmBlyhBcMrpCK01OtJorYMTSyuQAukjlJZEcUqe21B3LXVoKHKOWKlm+NBEwEyJdzVR1CUvRiRJqxHdwDVxfgggbymCgEnTQBvHScP2sU10RCFlRF0JvJAoFTWxnwqpAkxcAFUR4nRRpLG2wtYG70KLU4DNg/TByeAAHYUWRqUkQhLq2G+FVlzDplERwjnqqmA46LM8tUx/Y53u9N4ARfahMcvVjnySI6UiSVPAk+dF839WjCejJvoZorJaxyHG5QuSJAmuJefxMojGiVQBSivC36MyRdNmGYWWRCGpTUEr6zAej7jV76t1+NsYG65/IQROeOqyIop1s42RDRW5gTo3cV1vHdZ6TJkTxxGxDuuLkRDJBIMl7fSQzoMODX4e2US+wi5JSEU+yanKilTEbI+2ESLEFWmigbutdDa8rrWAvcvLFM9OcJHgxuYr3HbgIRCOui6xZcFoXILXbK9v4q1n6bajpDpms7/Osbvupzczw3/403+LF4phXlIWN8knfbIkYt/ybQxHAz7xic9SF46t7XXG+Yj+dp+Zuf1s3HyXllakCHIPUUsjKoezkmIwxmQ9Tt33aeb2LFKPBpw79yqrO9so1eKekw+xubrBKFJk7TZf+Nlf59xzzyD8AKk8adpmXNRkaQeMIUnbDLfexVhDrGPKvGZ2aZlWJIlUxsEDd3H07o9RjA1WAjLCeEFVQbcVYX2NRmHr8PxlWUIUJ7TjlCuX3+PwibvZHk9YnJ7BORda9+qG4avD8xPuDsG1OCkK4iQNfUHOYtFI4cmNoZW1kN4hvML7kAQpy5I9Mz2MtWEwW9UYV6MThVDhHvX6mZdxxQBTVWxurLHvwCG8m/DOhTNk3TmW9t1Oe3Y5rD0qCXGt0hHggI66MkRKMDRlgI+jw4DWKcqqYmfYpzfTZjsfEPsIqR1VE+FLdIZzAq9h0J/Q685gRRTEDixaNuts2g4NkEJSN9B8rzVRFgo2nPNUxtJJM+raEyuNUGCLmnFZcnDxNqrKEwkd2GvVGEsYJAkBiVAMJ0PSKNx7w/e0mHqMTAIIPBIyiF8ytH5HcYzQGrQMWJEiNOXGUlFXhlRoBpsbzLdajGoTHGXOU9sS62psLbAqICyqqkZJSJRGIfEywpYmDMKybohSW48XKaMiJ01TlIgQsoH3O0GcJERKYytPnCT0t/p0o4RO1EFFMaVx1MKSKUkkY1Qc4YXG1RVKShIZ3KcWQCWoWIAUREKQCB32HcIS6RgZxbTSFIDaQkFM3JvjjiMHuPvYIZZmp0ljjRYquK9MaKxMUf8vTkb/6cdPXFD6s//zf+S/+70/pOzdye1T4K3i13/ll1i98jbPX2whW20WDx1hdWdI0jtIYUd857vf5sbKNvc/8gmOHLydthpj+tf4yrdfZ2b5AFPdmj/+2jc5cPQUh/ffjrZXuV5tNnZVhxYONzvHb//WP+VOdZP/+l//EbeduJvHPv8zvPD0N3AiIktiprpthoN1jGgz2Fjl5Uuv8eY7F6hqR92AQfvriuPLUzz1vW9T+vAkG2N4+OQpDvQSDs7tYXhzyM7qDb76tT9lY+sag2FFaQUff/ReBlsraJ3xrWee4iv/xX9OURp+4Uv/iP/tD/+EDdHmZ3/6Z7j2xrO8984ljJdUeY3zJd4LYtVFyYRYGLa2+wghWFm9SU7M7/43/z3FeIPf/LXf5N7jrzEpKyrjOXxgH88+87c8/ewlLl+/ibNnGQ4cxkUIX1JZx//N3HsGWZrd93nPSW+4qXNPntndmdkcsNiASAIEiUBEAky2RJUsuyiVbZkquqxy2ZKrXJTKtEou218sQxJNEiLBDBoLkAgkAIILYHOY3Z3dnQ2zk6dnOnff8IaT/OHcngUpV7ns4gffDztb3benw9w+73v+5/d7HtlGikKlTjgtOIM3hkG/QEfYdi2Ni4yripOh5EPvfZinn30FbTKytkEKxRtXh9z17iWsl/zi3/6P+Mp3/4xbDx2lU3bxjBFSMKo9MVaUSPqDeW66+QBlx7B2bZOOKnjwHffx3JPfQzFlYoRU59je3SVaOPPqa5zGg3BEb9neGPP1S+eZ33+ML3/nO0SjePWtN/nwj38AFxq0TqYRpXS6mccjfSS4yNrGdV5//XXqYBEigTib0OBby/rakHFTE/CExuNsTd207AwbhBbkhaFb5vR6Mxi1SBkbOqahk0t6eY+B6bCyPWKrvobRGda5ZNNpR+nmQCvuvuUg2fGDjKuGa+vr1O2Eychig6cwJR7NldUVxrZhX6/D7nAHGRzOGTQe23pGjcUTkb5GK8ObK5dpfbJ6UW8xMzPD5esb9JRKlSIESkW0N4jo8Nah9gwhIhmNfAARJEFG+rqkbR2ogsZVLC7sZzy5Dj6yOawosk46lXOWjjJIaREFGB1ovCDP0kl5pjXeRoJMHfIYCqJIGwCJmE5aAkJZqknNJOoEBQ2wvrHBxs6IxeUF7jp2nPn5AYO5GTq91O1NQ8Ppjb+I/x4oF1L65+3HX0sc/ZWn//Ua3d5z/npK6a8/J/7V2tyeUU5OB0khEH2cMlbSU0JIaYf07UfGOxNCtBgNvYFh/9IBnnv2BR75k0dYWbuKFC0f+OhHefihd/Orv/q/8IH3vIs3Xn+B7kzgwoUr9Ody9i/cRFQ5j/zJV/nkT7ZE4dkZDlla2MeLp59ge2eN5YP7ub5+jX/w3/x3HHr0ID/zMz/Pb/zr3+Hy9cvsDEdYGl4+e5YfPP00txy+iQ//xHsJdc2Vyxd58pknsFjuuuMWttZ3uLy2xu//wRfZqYY89vgzrFy9zIc+8BAHD9/Jk49/B2M0bQyM6jGnX3qebq/H1midnckuIgTysmW0I9JmWAm0AeNSRTXTine96wEGg1l0Jjlx6yHuPHkbO6tD7n7gDt71I/dw4OARfvZzP8vDP3I/L7x0irJXsr69yb133sdLL54mTk9zm+h55fSLFEZw5113s3JlhX3L+/nKV7/J0QMn+MafP8J9Dz3In/7Bl/FCYuOEsmuIJlC7GjXeIbTrXPLnqXY9dhIR0tDJBxSLy6xevUAYjhlGjzQDttY26PZ7tNZRlJI2WMZWI4Kg18kJoWJnuMZv/vGrTKo1tOiyMd5mcXYWJQe0oSAIR7/cTyEqXLuLzi1SW5K1ax43HhNCQxscpijTpi0oVFaSZ12aakiMgaLoMpqMaIVnY1ghwjwIaqGpAAAgAElEQVTKKTIzS6/ss7u9ym67BSanyLrYNjKsxvSLjCgjzjqy3KCEpPVjAjlS9IEWHyLeJ+tJUZSMtjbx4zEmK8hkjRYqmd1ocNGC7IBN4GSpA1qla05M/luU1IwnFbMzA4o8Vem0VjitUErglWQ8roDEBnBuyogREnSgrlqGo12UKvB1Q9HvgGtorKVpFZUP6SbSaPJOH6UNnW6PycgzmTS4IJAqo1vk6GnUX5qCaBMEXKoEPU3pFQUi3lDMezeF8MeQEkzsMZcCSkBCLgj2xAEqgJIBLQXgaWrH/FyfhdlZlpfmGczNs3XtWkrHxEisaoKeJo98SiUMJxOayRgtUrpDiIDWJOObFBQmJUYwkWAERXcGHzxNU9PrzjM/Mw9aMbO0MB2WJIadbdPabJRgcSHZDWdm+jS2QWeCTt4hkxmTtkZE6PZSZSVTEkxKvGiTJW4WyYyVTrAjnobo4xTA3OKjI89yyqKgqSaomCGmdSji3vAtDWyUNkitaCuPIBnbgk4JvShEYgoqTVQSFxOjZC9NFqxL3KIwnfepxO7KtaKuHWWZBjJ7S3iMESEl0TvsVDuvCEihsa2lmkzQOqm6k+hDgJhWM6QkhsQESpBzAUGjtMKYVCvUxlA39RSenUyeYqqmh1StSDKKiJYCoxMrUWsxHZQIYlRTblb6PMkEp7AusMerUdPaYAge56YMr2ml0lqLlIosn4KvbUBnZQLWIghRTsHg6RrVNC1KabTOadsarTWj2qEzwXgyItMZ1vqUAqorjNHILJsOXbmRLkhpofQzYspI1FLQ7XaxTYv3Ea0lTVtTGJ305NOanJmaisqiSKbDELFNQ/CeXrebBAEx2Y6EjxTGYNsWT9K3V5Mq8RiVmF6HI8EFxNtfSnq9hQR+b+s6MUsCuBAoimSk02paEWRafRPpVar2KmqCVMWNPnHHfErg1m2FDyKp1YWHENEiDRPbtqLIClY31llcWKANiV1TmBLvmzSAliBi4jvJICmyMn1N09qOjxHrwzQpOa01CkUUOZ2iR14WbG2+haifosUg/RArHCoaDh49jNSeC29eoNftMRxvEJqUsFJFxm33P8xLf/QcN9/5DkZrq7ShYjKx7FSWu+59H4PegAtnz/Dm68+ysbWOCQXNaJ3gA4NeAA1FleEyg7WWmprgJSvrq/jTz1IaTfSS3e0hUmR84Ec/zPJgH3/w/Bc4fPwO7jp2F/ML+7n58AnqGJmdO0w1bhInqd6FIFm/do3Gwbs/8EHeOH2KV19+hXc88BCdfp/aT8jzHCMDPmg63TLVq5sRWTkdBMZ0oIxMa7zJC6RROKO5eP4it9xxB6EekWU5dlSR9QqausERybMOqGSpVApCaxF4cl0kw6fUGAnWpoSLFxGjO/jQpErxZILUAmRGWko1la/S77HpkmUS2zY88I4HefKx7/Dk099jYWEWZyeoIuOuex/mwfd8BNNbYjDTo5lMEEoxHFdUVUXZzdOeCGiqlhCh1IqMZCmUyjDcWuHgvv30yh6Va6f3sBo/HCOzJOmwtkWGiKtrDh46TOVC4nlJku1OGpScsqhci3AOZ1tyYyiEQkVJCKl1lA75p8P66GjbCYNBmVK/vsXkmtpabGOn+0IPQuEReBfo5HmqbqHS75YIzHUXEr8pOmwzoakr5FTMIIRGK0WwluiSDdVaIEp2hw1bmyvcevIkO0NHphVWBETjkswhK9La4ixjW5NnOcYYPKCFoLGOItNEZ5E6x4YKUxRUuzX75ueRSHSWyhmZzjCKKddJECVMqFkadEEbxq5FeiiFQhuF0AWIZFCW0/StzwtUDMTp36F0quIqZVDKENoJC3MDjFRUXlCpLqbocPLWm7nzxDEOLs6SKZXWqpCO5KNKVxIzbdQQ/t8ctf8/P/7GB0qHjt/Fr/zj/xq5cIiNVx7l3z1xnqJruO/WgyzMfZhPfraLRiHqitYGtq9f5t53f5R9l17Ddxfozhh8JbhYD1i6+WZmBks8dFjw9HNPMdy6xLpeQkrLcLQJKkvAPDymGvPdR77I7186y3joOLx/P8thyAN33cPKxVVefvUsu8NddhuH0BV//LU/wWiNUTkzgx5lHDOO6RT0tn0Dzp67Rsx6BNfQNZLHv/8Y5/bNc/7aFkePHGGwfJT9B3N4q2RcnwNhOfXqRYIPKCGZnZ1ldryDHBTccctRPvGJz/DAPXfx8qlTPDseE3SB8B6CY1I7Mq0ZhzF33HmS7eGErJCcOnWKT/zUp/n+9x/lhVee4sjcHONrK7TbO4TWsX92kd3rl3jy1HNUraf2Q5469TRVk9MpS6JV5GiiaSFGCiOJsYAoyPMSlMc6S1Zojh46jJGaffsX6fa7FEXOuHZcWd3kwNICNnTZPxhgRjt878knYFJz6sUnGY1qjM7pdhS2qWmiIMsK7j1+N0eOHWSm6CAjPHrqRXoSrm9cp/EK7QNSCyLpNFFmBpFF8gDOJltgXU84dOxu+rOzfOThhzj/+gWeffExRtXPMpMdIrpkIyImqCEieVTOXTrHH//xH3J9bQtMgc4HyRgkoA5xCraFxrukpY5Jb1vk6ear19HMakW/bClz6Jg+ghm2doZcv77Lme03WBtalAhcW3eEoHBI5rodlJFcWl1nazjGREe/E1hY6HBgoeTS9R06WZfKTiiLjKzoYNuKrbHFR5fqi9GRGUNUkSyLCGHwTlK1DS44FBnee+6+6y5WVrc5urzAxqTm4EKfDEFdWy6sbULaZ+CRRKESgBZSskZFOjpNyGsPzu8mpsD2DlpqqtZi8hIRMnaGm+yOPd1CMT9YYFRn7FQNO6Mx19ZWkmZcasqsh9AK5SWZTjc/UoHQKhlJtEbLHCPTXV2uJSEm6OeVC+e5cPZ1vvPd73Pf3cf5B//xf4II8e1OuuTGCeJffeyRT/76W3/oufHtP27Mom6AOvfKbT/0EX+FvTS9UZ4mnMT0jjROTQ9xCoRlerNJmG40JWnDpCS+tUgi3lacu3CO4e4Ot912G4OZPk5UOCagU5//jdffYHFmiaOHl6it4DM/8ymsyPh3X/w8jfe88cpLXD1/nvvve4BIZH4wi6/HyAjz/QVWrq5w5NAMn/q5n2c8ctxx8n5+6Rf/S7ypEVKSm5y7T97O62deZ1JvsLZVsDUacuXKNZT2LCz0uH5ti1/8hf+Ux558jN/63S8SzQZlJyNXPcrBLA+//yN8/t98nkmIUAcyIXnfww/zqU99kitXdoitpp93WN1Y5Z/9t/+Er/yfj/L0s9+n353eWJU5dVtDDHz/e3/J/NwC73r4QT732U/jradtWl59/FXue+gd/N5vf4mVzXU2xg2eSKeQnLz1Vl585QxLC0sUnQ7nr1whiEglHc+9fIonXniO+Zl5Ll56i7Kr+Zf/66/Sm8m5un6dA4eOccf9t/Poo48je4F+t6Qru5S6ZGHxNspsl0ujdaSATNVgSrZXt8mzebQJOFczMztIrxeVODDdfk7cFhRTUK2mRglLbCpmB3NkZoluNuDQsRN4VTLcvMzuZMJod4eN1avMzCxPNecaiyO6iPVXGfT6VLbLzmREXTWUJp0s+dCgpGA8HrJvcR9V02KkZTRaZbY7T1t1qJuIdUOK0lH5BqG7VLWl1+kT2opct/gAMubkpcC5kFIPIVW7MqPI/QwhputjjOnUvHY1mQ+EKJidnQUvCaEmy2AyqREqR2mJpMI3gqzoIBDTuiMpDSEDwmiCtQgJdV1TliV1Y4ki2aPG4zGZ0UhtqOuGEANN7RBSo6YWp0wbyqIgeouLgp1RIKqSeuyJPjI7P4vpl9S1J4S06VdEWtsmnk/UeGdBTs0yMaZqgDBpnTSkG2OfBqA6BsI0SeNikiUomWo7EejnBdIYhBDJ/iKmaOVpjc85y/rqGpO6QkTP1uoKxkiq0YTdzV06WYbpGoRS5Jkhl5CVBUXWQetIjB2ClDhSOqrQyeBinSNgMbpkPLEsLx0gNzkiWrROiuq6FngpyDsFs4NUzajqhgMHFhn0B9Rti5KgG4FWedq4Em5YsIbDISFaGqcodXZjmOZDSCpmpfBNS5ZPWT4xUJYlk+GEPDNEJNoYvDMgVOLrBE8UyTqWhiLTzbp1GFLdzFmHydOBhJCSYNNiq6aDPhdcGubIxJSIAqJLwPjcaCbNBE9M8GjVTxwoYjqAkJHg0kbGWktWFmiRNkzeWtqqYWa+TPwKIWlbR1FkiOmAp25b0rwk2ViZHthIrRPLQ2tkm8x9IQSyPCdVtlIlTJksJWHaVHcSQhOjnSalFKG1GK2o6jF13ZL3O2ipaH1i80XSsFJMa3t71yGlFTGSUltSJI29F0lh7huUnKa72maajknpdKXidEDdJwbBnvnMKINRGY7Ensy0QOUdijKfDpLSCUoIe5yi9O+4Z3YzRYY2yYSlc8VwPErpNRyZFIzr8fTzJRucmjJEYnRTiHGOEAmCLJShti3aGKTYs0Vq4vQ+wTubmEek12YIMaW1eLu2KE3SvVvryDJDmu/5qYEvpveHad5dJ2h3utwLlNr7nkM6IxMqDRL2Bk5imhqMDiVARpP+ZpESU7np0lma59rKebSK6CyjrSSlUVROJMNga7FNhZ4O5GR8O0UXfKCxKQmXoOcZBM9otMOVq28yv/8gm8Oag4few86VM1g5ZlxNKFWfVhtiiNx28lZGW2O63R4QqUYT+gsDtq9tEZ3g/T/2aSbXz3K93sbXEWFKiI56PCQ3OcooOj0YNg2uqSnNQmK1SUk1inS1RMYB25MrzMwWbI9rtPRcubaCUZoiFwQ8S3P7eO3Fx3hyY507brufh97/QZ7+8+9w4qbbePO1C7z3Ex+mahvqakJbObQxVKMJ1WRMmRm+9Fv/B8N6wtFbTiK1odmpEAc8RadDt9dN1SUR0USGkxbyBFDWQuGiJwpQKkNHhfGSnZ1N5nKNiRFT9HCtRZQ5MoLzDh8CmSqSyl5q2iCoqnTYrmU6TEKm9kdtWzKVYYQiM5HJTosqNNtb68zN9albi8wz2ujSNVVHyjyB30EyaUZknR6f+MzfxlYjHv/eN1g+fJDl5VvIdIGMgbZu8UGmFJyfUPZL5mYXUiK2cljhyMsiAaZ1RiTghCcKQacc0PiIJ8lSfJM4YEWnIIgkUmrrhn5/HqVzQjMiy8s0ZIotddOQZz2iEFgizkdaD91eF6kEdVtPgfUZrXXk0kDUNNEyHG5z9OAhtusJWVbgnCUEh8JNmXQZQinquiVqQYOga8oba6J2guFoQmYCNqT6ohQKP60ia53aBd56ciWTuINIFIaN3UssLS4wbkNiUyLwbZ0GelLjgkOgsCGAzlEqw0+vVVZ4ZJZSacIlGU+RFWxXwxTWEGmNy6ROFtBMp/q/b8jyjHFdkcmYbKESjJdoE7BRI6fp5CYohJEIMU3XBnDW0ThPkSV0TZYl5pFCUO0METMzNDNz3HPrSW49vp9blhdRgAjpUDvECEKmAzT2PJ0SF0BLQeb+f255i6OatdWz7HMti/MH+Kc/fStrF5/njx99jHPrQ4Rz7G5tk80vocsuB/ct8vjrv8UvfPbDuI3LnHvhEpMw5qc++Wk+Jz1f+9IX+Fe/9S18KDl74Ro7OxNcNaSKEKoakDiZIWLgG999lPn5OWw94te+8Nv89AeP8hc/eIXDR47y5sVL7A49uSpQSESnYHZ+nrm85MrKNcZOEEyHDoE/+N6rlFlJVIqDi8tcX73Gxz7785zYP0dvfpl33nWCne1NOsUsw90tLm9epw2Ch06e5NnvfYvffeTrbO3u8B/8vZ/jnvd9kA/dcxc33XEvfQ+Lc4v87Ic/TLWzw/Yk4EPklhPH2bx8mVrkfPrjP8nJwzfx0kvf45VXXuLOQ0u83M/5F//qf+Nj77yP7z71HQ7uO0lwLaNJzS2HbiL3XWJV09gx1pfMlDlLcw3rQ01TCSpvQRsMOcFN0g2j9+gQscEjpEIFz5GDRzh37jXuP36EwrQomeoKNtaUGn7ji79NmRk6gw7Sb3D9WsC6pPOMXqNNTmVbNsfb/ODZH1C8mIH0HF0+wfbkGv/kX/xzNja3iTIgZE6ZG5p2AgKWF2fQQrCytkbXJE3rTgvvuvkY+/fN8ehTj7Gxsc1Gq2m8QflAUBEZBTFYKtvSVhbbNNSjCceO3YyNmu2xS5sELWljnN40Rrxv6GSaoHoszAyo6x1yWXNsqaCfKXy0TKrItStDNreHNHYEWaDf1Rw7Msud/VlklHzrmau0bY3zLdZuszOZRq6D56aD+zlxbB8HFufZ2qi571b49tOnuXzdMbETsiyjqVv6/T59MqwM1MERg2Dctsz0BhxanOXitU22Jy0uSFx07Ns3R6foIfU2x266hbWXT3PsyAEOzu/nldcucmVjh0xNAZKNTbpoDUw3jABNY2lbQU2LyQXaQQxjJh6UMajoCDaQKVBK0+v1OXTgINd3G8qmYq7TZWVjC10YCpM2BFLBjMlpgoDgccHh6pASUhFkdIDCowgikstkYgnecOjYAT700AO8+10Pp0m88ymRNE0H7YFH37b78TZe6Yff8O8NnqZFuL1U0Y1h0l5d7oc6bAmo8PZH7j1X/JU3T4NH6ZsSSpI2CWmTI6aqVhCIoKfWDVheWmYwM8M3vvlNPv9r/5Zjx07y4sunWdvZxUaHJOPa2lXe+dCDbI8qrq+scP3qQb7xja/y6c99gicefYp77rqZx595njcvvMkDm3ezdGIfFy9vMjO3w0c/9hFeeuNVrly7zte+9W3ePPMWNgzp9+e55dgt7NYVZ159i2eefJFOL+M9D9zHweXDnHr+JXZ3J/yjX/plXn7xFX7/y1/iV37ln9P6yIH5JaoYmZmfZXd1m7fOvMrvfeF3ueP2Ozj92st0jSBThtfPvMr/fnGVi9cuU3QFk50Jd9x+L1/70l/y+tnXcMLgiZisQztJa7ZU4Gi46eQR2jbw/DOnuffOe5iMxvzlY9/nttuO8Ru/9uv8rc9+glOvnWVle4uO6xLXRhRFxlo1wtTbZFnETQJRAUbx4z/2blZX1tmdrLNVVRT9Eqda4vYOH/rUBzh+/D7ePHuJtZ1NRFAs7l8iixkraxvoPGMSB4wZo2SHrJyj7Je4ZpP1bY/qdKYDCc1wOKHTLRA+R8VAKSFk0MZAaCODgcIUA/JYIJWik0fOXXyGOI4sL+9nWGuW9y3gbcRWm2Q5TOoarWBhpk9WZPihRLscJQMZFikmuDiDkB0GsxpLZNRMGHT6KAKhcTTWY0KBUSEZgrRkMhyiZQE+JSxCaNOAqVsko1x0bIzX6RQ53f4MSkhqVyG1ofURESzBRlQ+SHWOPEs1oGjxwrK6MyLPysRuCBGdFcTpTWqc/h6pzFBPJuRlwWh3hJKCrDRsru/S7XegjTR1PeXPeHQ3ZzDTJcsU2dgg5BihJE0VyLWi2+tQtQ3dbk5bW2xtKQcziAKCd3idMa4CmcwIxiXWjRIpFestucqQRtPpzCIVeBGxbUUIkOeafr/LngUty3KyvEzjAJt4EzEGpI9E52itpW0ddlgRvaX1Fu9bZPRoBVlmmBvMsrQ0T7dTEH3E5DllZvDLguwmgTCaJGwTrKxco5gqygtVJp5VcIzGNb1uyXy/wEhJbQOmyLBtQ55rMjlhcXkf1rZorchMjqtaEJvkRRchBdqkIVNelAhpqOqGaB06T9UnSBtZLSP4Fml6iOiIiKl2WtzgFaopPso5R1QxgWe9T7YeJbG2odctcS6po31wSK2nQ4cEaJdiryQl0MJMEwSR1lYMOjkh+vQ8bWiaGikNShpC9OlrjQkVYK3DuRYUZCojOEeZ5QQ8RZEDESUFwYVpXSglSrRSZJlB5xoXkh0uRglaTuvK6RRXK4GIaUgSg8LZVNVLPw+f1NdMr51apdpIiFPTmcS5lk6ng7MVUjIFUidxidL5jeubnKrRa+8wxjAcDqeA7DR0kcIAqbouVUoaeW+xtsXahhg1ZRmng5CIEMm+WE12iXh6gzkm45Y8y1L1S4LzdTL4xXSdTP++Adum2nye58hGIGTAa0lmSsJkyF5VLk45gTFA9JEQA1KmwZhGJZ24tfS7cwx31ul2+xA9TZD4JlUYGzsmU1mydwVPNakIzoMiVR1FYnvRJtJVAvJqRpMRnbKLi/5GzS7VJKeKdWdT8of08c5Z8iwnymmKeNqYD96jM53W9z34cPA3Pm+CGiRsu1RyarUMycI0fXibuJzBQWYypErDP6nzlKjLBEWZIUVOU1U0fo28M0fjwMcp0Nyl10Sv16dtXargxcRnI0YUCWIshZyyuCJrKxd48cVH2Vh9jaXZRa7vGrqDHO0yaDXVOJLrjO21dVZWFqAsufTmGRYW59gd7XLx7CUWllre+b6HefPUy3z7+b8khjFBZRw6eph77nsn4+0xKsLyvsOczw+D22IwO8/+/TdTvbxK6OTU69ucvPN+Lq9e5ic+8mG++51vI4TE2YC1AYclWonSktXVq0gZ+dzP/xfcevQOdneH3H7vPUyipL+8TDmzhBYS0dHkSrK5conTTz7GiXe+j2Jmjvf+xMfodge0owmZMazvXsK7Fmn2rGOSiKGxFdZZ5ns9mtZPod4QhE5WvujJsoIrly7S3bePiW1YnDlA5Rs6WUqnWOcS205EolbJYhpI9SfTASReBkTUNKEh2Jb+oEeM4Os0yHGVpXIN82qOECTGFBBCSg17C0ITpgw17zW5DCgZiEWXuX3HWJxbSjzgt05z8633oESOiZbN6yvUSGbn5pNZrU2vWz81SWptkm1ZprpZUWRoLamaikxrINAGm4YdSiYzmw80bcXi0gFGk3E6SJ3yHNq6oVPkKWHYOGQA24zJRHqtNk6m1Iv05EVG1bY41ULrGI43IRM4dAKbq4gOgvFoTBQWabqookDEQDPcpSgEJispTZ+d8RY2OHSI5DrV2xob6RUZ26MapbNkQtQimV29x+8ZFKVJBmVrmZ9fYHfXoouM6D3KRkRWMCXk4fCE4NBGk+UmrWmIlFgOFtFGlMpx0VHqnNGk4sDiEkRBJ8+JUmBbi8gU0SVTpkAyGk7oFwWNEwjpbpQiTJb2aVIEjE4XVBlAhkjj06HQTF6SmQwlDLULhCwjn13gnQ8+yH23H2N/t0zoA8D5iBWgZLKI7vlnPZF09rK3H0r/aZz9v53j/H99/I0PlCZuzJG+5Dd//0u8+0ffw3Pf+U1ev3AVNTgIKufC9XWs7vKBO+5l5cXv8bLT3HZ0gd/9nV/jhTde4f53fJJzZ54idr/Fz3384/Q7fYQ02NqTmYzRMBH1y8yiZ0sm22Oct2gB+47exkffexd/+Hu/z/m3XuN/PvsSnZk5Rtkst588wbMvvkwMmrzIOHboAEpqlvodNjfXaDPF8SM3k4WKN86/xbCp2bewj66J9BaPcdfyMhfPv5r66OEmRGjxvuKWg/s5MD9HP1d8+xtf5gvf+EuGo23WR5Y7bruPp59+hieefIq//3f/LvsG76IdrvDrv/nrrLU5BxaWKArNrB6zHSdMtnf5869/ma+MambnOlTjFiXneM/t7+Ar3/wWf/jn3+fmE/uZjNZY2dglL3JePvciiwPB3EKHzd0+1o7R2iG1pTezxNJcxrlLY5ZmF6nshJYCSCp5SeIfRODSlcv0OgPKGPjN3/kiY9tgvcDWkHUzfEgg77rxhN0Ji/MyGXQCeCyjqkaoQAyOtgmgK7xNHdY3zp9hrV5jPp+n35ujIxWNtVRCY32alPq6YuwqxrahcpBriSo0r73+EmcvFbzvgR9jaFt+tARjG77/xOOcOHyQbtmh9SlCUrUVINjcGmJdYGFhge3JNZxvCB6yUlPokl6ZJxB8qDF4SlNzsJQsdpaoqorn33iLiRvSKxSz/RmO39Kj219iNptPJ4A6R0ZFUzd0uyO6nT71aIz3FUp4Qm5Y7GfMz3fpdrqcfuMCr62sMqksG9u76eazTsM6HyPbU1V3VnSSxlTCg8dvoVcahsMKT8CJiDSK6CL1OPDo08/x8P23UGaaowvzhKFjs1mF0JJlkswoIon3EKJLmwIRiR5USCeIZJ5ClCgNQabKgoiONkbQgjiN5ZNJMpMTXcConKodsTXcJgrB4vwijW3ZWl9n0J9l225z4ujNxCBTbDUIfAw3AL0+JIiqEpJxU9PJctZ2tvk7f+tznDh6O3UzhmkvOsTpLavgRuR/r1b2wx20t8dJN0ZE6T173ZS9ygJvf9zbYaW9QVJ6695Iam+AlC4mqRIQb4yu9qJITEG2ESGnaacYp4aaHLHX/IiRyWTM8y+d5ts/+AsuXr/EC6+d4vCBgyACc7NLVDsjjt98kq99889488w5xvWIy9dW2N3Z5tWX3yRDsn5tlYXBHPW45urlVW455rl07irdouToTSf55f/slzn7xvO8dv4sUVgoDeu7GxyKJyhEyfGjh/ncT/80jzzyFRb3H+R973sf/ruP8/ypr/LF35mQd2ZYmB/wY+/5IF/4w99FqBIbKi5cuIKznqLQvPjWi9R+l8JkGK2IvsF0Z9iuN1L1Vc8QRUSieerV52iqCcFKfCGwu5Ys17TW8o57bucTn/gUW5s1165epRo3vPz8y9z6jpN89nOf4Pf+6KvsPzDDL/1X/5jP/czf4Uff8z6KfJav/dmXKXv9dCpsEsgUPL2yRKrIaFhz5dIG1SiANMwvLrC1u0pvdo43z53nwvlrDHqDxIExknNnL9K2DU0zYjCzyNzsMkprBoMum6tbrO6+yeycZHlhie3JBlLW7A49ndwQnWBtYyvx5wP0Oz36ZUFZKFrraWLD2tpFMl1zbbVORiSdszMaolWOyecwsqaqtsG3dLKkUzd5Rm4k3Y5lZXOUhubG0JWOTp4hsww7nmB6c+TBMxmv0++WhKjIjSHQ0DQ7dDrLzPcXKE1JPRpSaEsjFVF2U4pAZ7iQpA4SQ1sFmiKZ1RCp3UeWe7QAACAASURBVNQ0DY0dY4xBBIExkuh8SgtpSVtFekUfQURHj3WOLMsxWtH6ZJ5RUiZWkHOpapIlVuJoMqbTyfA2JUV1lhJI3qdh1Hg8weSarFNQEmjqFussUkHbWvIsYzKup+upxbaRsjeH7GTYtsZXNTKXGJ1TRYeUim6vhzYa3ybguG0nqeolFSqLDHp9JDltLfCuxjXVtBIViN4hSDfnSidVcGESi6dbFhT9EqO6oDVl2aUsC0SM5LlByPQ1t7WnDQnMH2yDJCAyQacsCbYiywo2hGJmMKAsDUbl1HWFipF+OUDqjCJPG2RtLTJqnG3IsxxHPY1HRqRPqayRs+S5TjYvpaag5PQzyaVBEGkQRKERIiSDWwQXEiYm6xZU1S6aVOMjOoTRqULlU+VMSpU20iFST2qyIkNJTZ4l1lBmDMPhBO8tRiXjTFSJoURIaa8oIirTNK1lXFeUnQ6FKbBCJq32pKKaVAzmCgIpYZKkHJKIxDYtnU4XYcCIHBMMrbfT1VoRg8T5NEwSpJPfBJiVUwNQQHmIIcGuhdRTq2eyryXIsyfLslTn2Bs2aJ2uTSLVqIRMgzfb7g280nXEmFRFc85NLXCSum5TDUtGvHd4HwnR41ygtS1CGtrW0++XU9uXJU6ZF+PxiBg8mWnICzOtlQaKPEupueiT2U8b6maM9x6lOnQ7fZpmnbI0tM6mf2uhkcRp3U0jtQfvcbGlm5UQ05BUT4d+obG0NpKZVFl0LkF8hUh1QELEtpayk/TVNypxIeC8p2/ylEqLnqhSekJCguR7n+y/zmFyAyrSOoeeMq+I6SocXGBYT+gURYLmukQ9a52jyAukSAMlNVW8B0Kq0JQdBAmGrKcb6mjTDYEI0+TdtLonSNVTG9w0+ZVeqyHEVHcU6kaFUZIseyGkOonKsnQ/4luyImN7e5WxrdhF4ILj5VN/Qdntcts9H8c1NSrLp0KDNlUxibgYMCLVEiUyDR4gpeqlJAaBjJEnHv9TNsYrzO87wHA4ZHFWYkyLtTmNSzzH2eUF/Mgx3BmiVcZoNOHJ736b7d1tZhf3c/y2k9jW89arrzA7OEKvvDlxH4Pl3BtvMugvEbzj8oVzzC3fxB2dEiGgqRuyTo8qBu596P1cO/0yN937Dl587iWkDHQyBSKnaT0uOpyUBOuRwtPLF5kpeqxtbDK3sMjrp9/ko7/wMNa2LMz2uHr2PL35RUSW88arpzEzixy5+Tjj0YQD+/YRomXdX0mvN+dThVOmLW0Qgiw4dsdjolF43xKFJIQGoyXOJQEBQaYq93CDmcN3MJzU6ExgGp8GqG2kamqyzECM6CgQIdI2LXU7JmqNDzkIRRBpTcrzHOkjXkAdarQx7Gxv05tfJitm6SiNzDSNbZjEkDg/eY4NASECq5urjMZbjJuWYC1zvT7XrpzDZ4qf/Pj7GfRm2dwZ8tJrLyKN4shNd1KWXaLw6bDItck4ptLQzDaRvC/ZWdthMNNj3NaQJblEEyRNhNJkbK9eJOvkSFGwduktxsNNZvcdRklD9J4owQZL13QTkyx4gmtp24Z+twc6pbliaPFNy3azhu4U7NqGLJYMh7scPnSQYduSmQxiqpl668mLVBmOEkajIVqD1jlZUdB6l3hl0acWRJHjnUDKyLhucdFjtEoyDBfA+5SC1WDyHB9ge2fE8r45mgZEJ133bNsijMSoJG1CZbgm1VxVpkCnNUurxGAKLvGVglIUUrA1mdA1kugjLjqCVITWo7VBa0XrLLkxtK1leXGRLMuILokPurMzyTzra/IpW1CagmY0oejN4KNnNmoiklopXLdHsbTIncePcNeR/czlGXuH4CFAiBYtTEpoTRsUN6oVpETTdHvy9uE6qQ78N/n4Gx8o/Y//9B9xbVOyePu76ZuSE7cd56k3znD19W2OHDrEe9/zY9xx/Bg9PeasfC/l8q28+1Dgf/rCs7RuwOkLl/nMx36a7zz9AktH9vPII/+a9VHiJCUagaeODusk997+IEo5Vi6e49yFiyzMDVgqInMLs1zbrOgMZsi7C3zsQx/Fbp1nY3vEqLE0TcXOaJdm0nL+Yps0p2XJ7u6I99x1N6ubW8TxhBPHT2Dqbdbeep0//fa3uP2+u5lb2EfP5GSZZuXaRR575nEurG5w9OghLu00vPf+d/LkY49Rzi7xs5/5DK89/zQvXDzHtx97guNHDvHVL/8J57Ylh5ZnOX/hIloHnnt+E6KmNzPPs6+9hYgaddnT7fb5vUe+xD233sTi8j526xHr17eZWdjPu9//blYuXaBuK3qDlrwzhzIVu7WgHe4ydl3uv+cBzpw5w8z8MkFJcAKFZW52gbLfY3X9Oq715GWGl4FTp08x1ymSYUIbWg9al+BrShMRccIwQKa61K1iZ6zodiJNqLBWI73EBkupNcSArxu89hRaM8g7VLbmUAmuLnjonQ/QKfs89fQPUArGkxHee7IY6XbnCb7FBcfV62tkeZfvPvUMc70BtRzxje/8OUb3efDu+1mYX0ArRb9MSuuLKytsD0fsX55HeMFsb47caDKTYbQnxAlFHNPJImWm6aiCxjrGVeT8ynlWdyZUtuEdtx3m8NI+lC6ISIzS0yF9io3qINmMDi9bpFeETNA2Ai/stKZlKLOMqmk4c/EiZy9v8uA7b4VoqIhkoyGbOw3WB2bynNqPWTSC4cQiTM76zoQr15NWWARPjsQHgZKRYbVDr2NYXWk5NNhlMmlp84Bzlq3hhBjBKMX2cETrdOJKCAdZ6jJ7BFoIMinoDLps7WyS62TAKIoek7bBqBwjM7yvUcJwdWuXifMsLxwkMwPKfovxLUYqFpaPsNjvJo1wd5Ympkl7iKkipoRKEXwiUeTEkAY3nW6XMtMUnZJON6e2zQ29qoi8retOKc0fGgJN/+fGYEn80J9vP489COv0/Xv4o7dbbWnxjTcYSmLKWbgBW7jxafYGR8i3B1iQlNPRu+lCPX1rjFjbEtqIx6GyDptbW1y9usK1tas0zQgZFJcurrG4b5Zbb7qNs2++yvbOhGee+wof/fjH+bOvP8Yzz/8BRbfk2rVrlKVk2BTkgwGTtQ2efO4pHnzXgwxmZtBKsn//Ap285PYTJ3n/aMJf/ODbPPbED4hmg8efeJTZ2UUkgc9//tcpejlHDh+jmXg2N7ZpmwnPnn4ah+STH/xxbrvrDj5d/xRf/sM/4j//h3+PZ06d4Rtf/zY20wwry+mzb6X0ho7kuaaxkfGOZaG3jx/5kQ/y9W/+CW+cf5NC7nXoA1lUVEhqL7ANXLq8yte++g0uX7yc0hRK8q6HHmR9bYPr1zd5+snH+NCH3s+TP/g+//Dv/yL//T/7H3jf+x9gYXEfk2qCQGAEhKiIueT+Bx5gZ3eH7z7xfQKasuxQjyp2drcJtWDELq+8OmJp8QCXrpyj7Bisa8g0RG/omC65ydgebjHoDdidWOrJCG0kKM9ovMXOVkXPZMzMR8bOEDxoVWJDS4FhttOnzDUnjp+kdY6d3RH9gWF7eJHhSNPJDzFuxwzHI0KY4DeGDEpD2bMIZXFekudLhNBnMtpgt0q8tegd43FLXubEuI21Iwqd4Sa7lFkBLODbXZCBqNOGB5kl7bhqcU6gVMa4Hk1fzA2D3kEmjWfSNhRlByU01biiHo+JHZdU4lIhpCfEht1qF4SmzDJyUeDsEFDT+5YMERKzTcRI29b4GLB1mxIoShFipChynLUE5+h0S0QUdDudxMETEikiIbjp75GgmtRU44D1lrpu0g23slhfpXU4pIGFbZOlzruAHe2ifUFmoCwNYnpirGVKEVa723hrEy9BizSPFBLd66GEZ7y5js40RabpZBpTZpTlbOJGGYMCpE4VXuscM/0+eIu1kTzL0qAlBoqsQClJW08wRqd1MDToLNDrlMz0C5pJJAaHMgXa5AgRaaxF5okhU2qVqmpZzmTYEJRAawhS4NqaIAJ5NBgRENHRLYqpAl6DUjRuDMIhlaEoS6xryfIsgZCVQGZJsqAEEBzBR4JKi2Tb1iihE+TUOYTSxFwTRUCTUiSJ45I22pAGCyG2aJVjXYsxOc4Hgm/RUoLIcDb9fJTppwqkCNODhsT4kCpgspK8m6MCiBCIUmJJw5oyN2gRUnhfJ5ZSxOOjTwrvxtPpDGhtkzbm1pLlJda7G1VFnRbpxL1BEOL0a/Ap4dLYlhgESmgKY2ibJlXNSWkl59LGMcn+Ul1UKkPTpppH8B6tFcLraeVpymuKHu8iRWlwPqVjfIRqXKNt2jAxrTTmRYFWgrmZmQSQtg3IiHN1Sj44izEJaNspS2zbEqNOKR7AWpvA4OHtg6Ki7NPWbXrt+mm9wzYIEVItVOgpkLaltSmVKEV6TWspkCrBeZt2QlEUhJCqQFKmNFcUIh2y+JAOZfBEkeQvMtNUdY0wCpObqcxkglTJqGZ9oFQqQcpjSpMRIIqpqckoqvEkvd5CSMM9nVHkOZNJNR3uuAQcl4ljpaS6kUQjJuC+nq5FiV9F4itJkEHivCMvisSBCqnatmch1EpP7xXSEZbY+w5dIJuuBc6lwVOuczSa1tVIlYxTq1dPs3L5NLnKubAx5u6HPsLNN92fdjQiHQS0TU3b2lRlA7QEoZgeXKXUicxMsiNKSYieajLhngd+kvmLz3Hl+usIDTO9Ptu7QyCj150n63Q5ees9iGrM2vV1pC555/0P8/if/Sl53mHp8AEIgRcef4xjd97Fbd2H6JgcjKKeTHjrzBnoeV44dYqF5X0s9RSvXD7F7tYQyow6Bn7ig/8hNIHV11/llkP72b10iroRiTGVS4rWMmkdlRAsDHIkLYdvOUzZGRCFQWaKIyduJi8yRGNBCDbWN5hfXmRj9RqjpuHDn/ocdtyAr4kypQRl3sG2E9rGsbV6nc5gFokG4QlSMKnGzMwvJKyGkvjgibYF7zBCozLFmRde4OCJW9idNHRMxqQaJZ6ejWyPh1NQfZdoCgI5/xdzb/Zj23Xf+X3WtKcz1XSr7kRejhJJUaQkapan7sTdHeQpbQRBggB5y2OQdP6TAB10PyRxdzttpd0NtW25bcuWbA20KMoUxXm4l3esO9d0hn32sKY8rH0vqbYNBGgHcAEkLot1q06dc/baa31/3+/nG5ynb1vyrGA23cBHldqflaTvOqQi3XuHPbWRiqZZc2ZrB0dAGvDR0TUd0cN4NE7uxuhR3tMcHXDx4tt8/vMvYZXh5tUjPvXpz2EKwat/9i2i6MirTfYe+Qwbs9OYokhtkU1LdBYVErPMSk8fNEEFsAIfQeuCdt1icpOu7+CJruP6nau8+dr3KIsxgZzxaMIXnngi8ZWiwGQZ9WpJFJLG9hhjkBLq3iKkJisngCK6nhASp8+MMsqsQrXpminyCiVzonD4EMmEYtU1oANiKAqI3oPzjMoxKEN0AQbAdxQCWRZYhkGFyljMTzDaYGQClPvgCQiEEmTGDMDyHuEbRuMz+OAxSuFaC9ajqyKtCyQXqEvgJ7SQ0Dsigd6lr40xJBZgcEiZMW8O2JuMCAzNd0YjtMIYA4NAn5skNJdVRrQgTBoYaiTeObTKQUp0nmO9pBxFVJ6KSuKoYPPMLo8/foGnz26xYXIG8hFuWLeUTNFmyccswgfO0YdnmPjxOhrEEJJOUDg6/3c88vbaNYcuKg7e+kv++eFl4vyE24crvJVcunyVpvXY47u0XceZs6dZX/4pLx9OODcyvP3ufR6RBW/87GVUU/P6qz/l7LmneEnNuXzpI24fzslzTYiC1lqu377KP/rKFyhXd9m/obnz3jt869Y+G+WM+8rSLpb0sUJ3Lc38Hq7t2BxvUT36LM89dYaf/PgH3Lt7wLqJ7G5ssTw+4WB+j/N7exx8eJmTO9c5vLdPUzvkuRE7SqLXK17+zu/ye9/7Lss24oPEZIr5D17mM89+np3tAmc0h0dLPvvFL5Jznxe/9EWOD+9z0vZ841f+ATfvfpNb+1dp+hTHEmKMkJ5Te+d4ZrNkvV5xeHTIp7ae5f78Lrt7j/CPtrf499/7D5w98xSPPHKBMxszfuVLX8WUBTduX+fu/duMpituXX8frz2PPP11Hnv8LF/5+lf51re+yRde+gY/+uEf8+Fxzf3jmi2h6DuHaz312oFUKD1GGU1va5SPVCJj0dZEoHea3ChyoQhe0Hea3mpEJuiCSooyoENBrgO9Sy0tSImUjtxnFFXH3fk+Y7PB3fuHNO1ttCoQokMKg9MjtIKmbRPIVyaYp/WWo8P7rI6OwAimo1PobMqHV29hbt4bFnGJEIKu69gcVzSLE8rcsDVSTLKGQrSUmUL6tIlbtR37Bwvqbo3EM84zJuOKx6Z7tD6ys7mFLiYpex8jfQhARJuMUmQIKZjFiklWYr3FSYUQBSF4etujTUHTwE/f+ZAP9ueEGHBN5OyZDZaLlr+8egVpKsrSEGKgFDmLdUvXWmLfc3R0wubmFufPbWHWBWPbUS86eutou0jTSC7fO0ThmG5POKqPOb63wEdNLnOclZTVlHa1TJBJNLrIqFcduICSFpCsVit8EHQxopEYYTHCk+sELF27no1ywvmtLdZtx439W7RNsgBHIotYc2b3UTaqioNlTfCKKFIzixBpQyRFap9RInEZnBQp2xs8SibrumssajtLAtqw+QshZd2FkMPq8onc2ccWoocKkiDysTT0scvowWcefF38xX99/P+H7/vgfz1Ynh/YQ1PEgAF2Din03afHJ3kYBTFZwWq1oF6u0ApGquDSlcu89c5rqBjIgqJtLNFI7t29z+efgRde+hrf/4sf8fnnP81Ln/0Cv/PNb7O1s4nUmjLT/MNf+ft85zt/wnTnFDvbu3zqycfZmG5w9rxivT6B3jGqCuR4gz/4w3/Jan7McrGisYFqVOFDi+sjn//ys+xsn+aDt9/jrfod/uDP/gO9SOye//F/+G8Yj7f58Y9+wiNPXeDC3jZf/NI3+KM/fYXt3THHizmqK2ijI+LZESW5ENTdCnCczHv++A//GEWGCQ2bu09xq7vF5qTE+Z7YNzgkRZZzZneTFz/3GRbLE5RWfHj5Eo8//hjleMb3f/AjvFFsntrli195ifu3lvyv//P/xOHJPS5e+oDoFV456nVH9IIqL7l+5RbL9QllPiIvClzncLlisawpzIit0+e5d+sOd+7dQOYgM4OUqZpZ9pZ129AdDYdQOlzXI9SK3rfEVlMvHVKWnKwjZbTovGVVCyaTAt03FEWGF5E2aq7dWdH1xzi7YFTmCLvBaHqeEDJav2CFRWioSkluLCH0KAPCTOlizroOrBuBQ6HUBOsXmEIhy60ktPoG3zcok+O6Hj0cWK3PkTrDxgahC+Z1wyObu+QK7t5dIZVER4/3GabIkf2C4Hu6xhKURJlk+hbkRAK2S1y3KARBSlTUiJjRC4uKSYwpsgIfFQ9U33W3xhR5uq6LHO9TZXs/ALa9Cyn+1nUDdyXBIm1vyas8gXBDYKPMBzhyTbte42yPGoCYOk88QIFjnJcc3DpiMpuQF4aTk2Oa9QnjWUm5McI2LX3tyFRO2znKomBj7xRZXoIW9G3PbDZjc3ObybSkysYsF4vkOPAWoxQM64+3PaOipMhzjldLkIpSaUKUyMyRZSoV7UhBptO9ICsKjMnwweNFRxSOBywDJyIqpGgZPm0oOxvJRJYOPyK1nEkVUxtdlGQiogj4IJHKJFGpLOmsJysNAYeLHo2mcxEZEo9P59kg6kMCvICIdojLpQYdIR/klgTBQ9BgQ00UjihNipRJQcTRtW1yuYrE20kCZCRGyWxri6KYMj+8g3U9IkZGVUVrW7q1RQk9xHbAkQ7pUmnarqNvWxyOHI3zMcVSQqpnNjpLTiiSG0VAul6DRKtUvGGkImAJMiBl2nwbNUTcEBhjEm8nJoZNYu0kh0wcuDuht2RZQQwCS6CPAS1EAqwLEgTaOkyeI6JI4kQIuK5LU/e+Q2oNPtK5DhcC585u4lyXmgWFJsQULQlRMBpX5HlOsD1CJAGtKMZ0vUOqFOHyoR/aojzep4p7ayOjkaJtW/q+T8KI0mnuIcUAmU9QWufA5BL78DEk521jLXluqFcN2uTpUOUDMSikLjBZRtuvQGic7VNDVmfJximipxgq2INPLqDgsdal/RikRkLnMYWhWTWURUkceEttW5NplfhryCTGxdT8lrhHkWiT4yiVnejEr+k6uq5hMt1I/BbryIuM4JNQZHQSXUJITmJrHcF7qrKkd0kASyrqYFIJJPCvGCInWhOcx7v0LovDvT9tWZITS2hFDOkQ6ULEuogNgirL0vMoBoeATjE6U+zx6BMTPrz0OqfPP04WJKvlMaemU7yAGHoI6dodmxzfD63FQjxsQOxtTwq69RidhE7vPI898zxPPP0M7779Ctc/eg3MKbr+Q5pVQ4ySc3uPs7uxjSgNt29cQ1RTZltbPP/lr/DKd/+UXAfee+MtprunqEYVhc7wnSU2HZk24D23b95g+8xpnnj2U7z/ysssD4/o/Jrt2Rlmp1/kqUef4bd+858RTclrP/4xXRNQIkPlFi9r9DijaARPPvYMu+Mdbl1+HRUybAzkShAaS+h7ju/cQ2aKk/mc2cYG84O7XLt2hb/3n/8q8/u3qcbbaGModZ5cpkbjQ4YQ0NdLxtunCSK1Djb1Mrn6QqTvO6RW2K6m73pG4wmxyFk1S1RhyMYzTFMzmWzTiUimSwgWpRVlMSIzOUHLgS0X8V6SVwUYlQpZpEgO3BgRQQ9yqkArQ92tGY3HKK2G950A2xFcOzRCGrq24dJbr3Jj/31WiyWzyZSP3n2XfLqDNIYb1z/i+v7bSL1gNqpSjNIr9FMbnN4qE1Op7fF+cNE9MN57R6ElB4cHlJOCvgscHNzGrY/Z23uEk5MVH771CnZ9l0ILNrf28A6+9Eu/RufTdZREfciygkkxQ+cKJVQCf7s5ZTVKjLzgU6W9T/ubST7GWo/UGYujA7anMxpnydWwZjoLscNkCqlyEIauWyNEco5GkdxBdduhRLr+dVEl4VhoXOextksto1oNg98kUBuj8TKt68eLE0ajAtF5tFK4LplIlElNjC4EEImpKIfom0w3JZQWuL4fmFQZMSTW2cmqocolk2qTLnp0odOgPEYQCu+SA9LHSFXkBB+JUqB0jtYFzntEqdAmJxcSnZf0TctkZ5fpqV2efvQMT+5tU2XJjRzjEOWUaf3RWg7nj4ej8mFg/olx9+AaTUeftIeRw+BbxABC0vJ33KFUr+aEukGXBnlccWq6w8xK6nqOjXD/4C4vr1sePXuaO++8x6JesLe1y/zohNlkwv2jO9y6f4/puOSDj36buutTxSMpdx+8oHcp0fzR++/zm1cuQoSARpnIrYP7A3xRIVQkLO/zL7/5r9idldy9fZ82W/BsMeFUnnNmMubW/n18lExKxfJozo9+8irZqOD03ine//A9lC6oNrbYm1T83re/xXTnNN7VrF3G9nTEwf37LGvHbDLmtbde57/+L/8LHt0ac7dt2Ksy7puMXgZGO9s88/zzqO6If/1bDavWkuskJhRZsjEfHt7luce/wHGEuW7IhOfwzhFvv/4mzp2glcF1NW+98Rq3Tm0zX57w/PMv8qXnnqNfn+e7P/wh2hiOjgMvbZ9mWuQ8srfBr33tl9HjMc8+/RQfXrqN95Gbt+6QZVmyqxtFnmVEEVBaJr5EFIToyUyBUhCFx0aZbtgmAwlVVeBdj4oSHyMtAREFi3UcaiojtmkxI4GNOZUUKJFzuFxzWF/FBUGVBSQ9Qhh2NmaEEDlcpA2x9Z6qGCNkYLk4wYZIJSas6iWTqMj0iByBziK7u5vYruPW7QVZtJyZ7DLKFZlUONuzXrfcO6qxdgU2sLm1RYgdn3niHJPxmJFJDQ4WOKnXCGPIpEKKjOPlikXdcHKyZDQteP7px7BegHVE7dBRkwuF0hZfSFyoaazgJx9c4/bxnNGowHrJT975iPE453i+RpkRkkClNW3vKYsiVaFmBut7pFHUbYNSirM7Y77+ua/xb37/Bxwsl0gFEUlwkf2TE7a3dvng6u0US1EOKeNw34ookZYbqcGESKUULkRElDjpaTpJpQ2CBIRrbYPtBut19BgCzaKhznvm9ZxAy2g6I3jJdDzh7v2bNO2CLq/oWo8LfdpUu8Q0MCZPP196tjemlEVJMUy1e+/J8hxHg8nL1HLzQJgZxBn50H0UHi6KMCTYfsFtFH8h7oYQDzemw3/yEJX0iY+PBai//kMMP0QpOQB4I25wRCgR0qZaK/qQYK/OBUJwrOsmuZky0Drw9a98mdF0xP/5f/2z1IwlMoQy2L7j9sERj50f85kLn+LO/kWuXLlG26z57/77f8zRQaDrTjiar8DkXLx8kQvnzjOZjHj73XcxeszxyR26vicGjWPFP/j1b/DO2x/xJ9/7DtOdHdrOMp1tMJ8f8aWXXuL5Z77A4dEx+zdu8NT1x7l+e5/gLFk24sz2WX733/whr73zFvfnc377m7/NW2/+lHJSITAoFVOlagbBthTFjGprk8WqYd3XtF2HCgIZclZHJwhrefqzz/D2ux8i88TTUKXm61/5Ok89/Qw/+fFrPPb4eeaLOT/7+cs4G7hx7TovvfgiVz+6zrXLB/zT/+1/Z3rqFFcvv4dUhqwMtH16D4+mJad3zlIVFakUSLGxucF6saZe3iSIQB8b6nqFyWCUT1g3DV3dIY0gUxo9krR9R4gCLWC1bhhXI3CWSgbWXUdRGPoehM5pO4ECtAHvHFmeI4zF6IjSJXV9wrrZR2c9xmX01nD69GNEkWG7O4gltEJgJPQuUuQjRNR4KlarBVIWZEVFqQpUFKxpkTpPUGlAypyiGtFHTXA9QafGpsTrieA8re/IR5KmPSZajclThbG3S4TOOJ4fY0NNpvMUS4sZSiiyrGBz+wzL+ZJ1e4/eJii2FqliOZOG1jZQk/CZ5gAAIABJREFUlWifoZTGtSviMKEt8gTTFkbg2xaiQBmFjpG2twliGyNdnVxM6ZCvEkB0UIcTBNmnKKGXKGEwhRp4Fxrf9ml63naMik0m0wlCwnqxYjQe0bo1UnvqeokaAJplJZiORxTVmMlkxGiygXMdQUw4e2oHI0sgVX4XekC4AVoAyqemOaXJC0VuFEpGyixHSIs0Bh1Mij0RkTFNoF1wgExg1AARnWrM8wytNUZogvJkqiCIiDAKu/bkeYq1QSQIhe3WRJkOughNiAqkRwaGpifoXctYj0hHGQcMAkCWowb4avCWIBNANLXHQG978qokWI8SGh98WketA6MRPlCUY3xnU0sSSVhztkvRyJiqy4WQOG9Tc19Wpn2gSAu1kCJFtaIihmZ4DB+D6eIDNpCUiBgpTI4hw4p0TSqV0XQr8jxP7aBKgkwwaSGGjbZITToohX9o4xc4DyYvaOsVmUi1971P7BklHppfIYImcZ0QAqFFchI4hxKC6DtWvaUoy3QYkDKBwod0gbc2TahlhBDJlEEoklCaFwmw2jsiCaIuBheMGHg/3vnUZioGY+3QAh6FxlkHiodxvWC79Psi0Vrhuw68Q6kMpMb5QGrJM/R9TcQhFWRG0647TFHiXWqBSv8IrO/IywxBRAlDlJ4sU0gZIKSGIR9SbKkLgTxKvA1EqQCP9z2+bxPLKgTKPBuYh2kQJ6NksVhQFGOMkBBSnMu7NJyQSYkl2J4QQ1pXQhgOT4p+cFxBek2k0mglfsGJJeUQ1c2SuChkeoGVTFBaMQiMSktiSPyc1BGS3odZlqXXInxMZUSk6b/zATUMlBI3K0XvI/6h+8VkGVrnCJW+PkQxCJyBvfOfpigKop5RjCbIoLB1Q19URA8+KHxM8U2dGfpuPUD+U+QyxTAl7WJJUZYokvOzzDLyvMC6ngtPfQ6pc+7uX+XM2ed54/UfUuSBm1ffwS1PeOzpJ3Ehohz09YpHn/wUb778Q15/5RVGm6c4s7lJv64px5ss3ZIrF99FqIyT+QEXnnySyeaM65ff4vbxVdZxTZYFbt3b57MvPM1f/Oi7rOojiJ7D1V2e/PRnUQcnNO4YR0Rpj4kCIxTTjVMcVLuJX+chqwrmB3cpR9MUE8o0y8WCECzvv32JX/57/xmr1RJrV6iiRElFZzu89/i+o1+33Ll9A5Vpnjt/Ftc15GVFs1wiQky8UqPRStI3DHHbEmLkw5+9wmhzk8M7N9jdPY+TEmM0Sgqa9ZpoG4TMCDLFO6UQWOdB+PQ+Q6S2zxAIwaONJPQ9iNToqAU0Tc14vJEg9VKlAbX32ODJ8owgYP/qFd78+fdZrA945LEXObl3jxAcu+MppVKsmjWb26fJxCbt+j75+BTIMZPNGVIJ+vWa5ck9lM7IjEBoECZHZppgHX3fsrWxwWq1xuQV7776A+7evEiRb3KyPKRbH7KxfZY6aMbTGavGo8oCL8CojL53qGENUiJFDOumJohIUVZJZI0gfBLlTZUTtYa+I0bovScvxti+RWaJGdf2HTJI0ApUhohicPllCCHIdIZzkeh7RHSookhlSn2HKTPuHR2SSzWUMXh6H8DbNOwVAonGdo66XrGzPcPKFIGVSpBJMwhaASXNw2sPKRiPpknIVWqIy8bkUCTilUeT0zct29ubRAm5ShHeru/TPSAmQVNrhXcWIdM51AtJXo3RIsXro8mQmWJjc5Nqc4Mvntnk8d1dRukXIJCeSykEQkS0+o9PKfLjM8pfd3b5K43YcSioTiJ5BOzfLkLp/wcot5GoqHBdxESR+Ag+PakGxXg2SxuUCBvjCfViwXKxhFChZIftInqySVUULMMJvvcElRpa8iIQfcDbpMdVeXpjBhUTlb9PtXpSyaHOWOCC587xMfcPT0gbxpb333uT9uQO2vdMJxv45ZL3P7w+3Cw0eEXf9pzaOU3dWXSIvPXOGyw6x+L2HUxu2NnIOLx3h0XdYrTheNEyGW3wo5f/nP392yg54vd/59/y7W//K8499SJbs00uHxzy3N6Mdb2mrEryTJEpIFh8kLTrNR9dvcqN6zcZb+yxqFc0Xc/F6zfpQs0oVyyblj42mLjm9s0rnD21zc9uXeTDazc4tfcoexvnuX7jgFdfe4Xq67/E8rjnhWef5tvf/QG/+pVv8Hvf+XOqYkKJYd00VGXF1iwHYVmuLdYGohe0LqKyyObWBoKeZbvEYBBS0PQ1WuiURQ7gXEQWD5pHSJR5ItIk+J2LFidbWpvhLIigCLJPE/boEyTdW1aLg6R8BM+onJHlFVoZ1v0CGRPkebWeQ17y2PlHmZaS7emI3kJpWuZdjYxrZMiZH51wEi1CCpS0FHnOzqZhPDrLuJgyLqZcvrPP6b29ZG9HpU2ACFQmpyoyVJaho+G1d1/n7uGCtrE8/9xjqWrTBjIUIUiCc4jgCNGTZwptZhAcUiv2Zpv40FN3oJRg2bac2psh+yS6Hc1XOO+xIUFEyyKjUDIBsfMciUZJzQ/+4i2EEIzyHImjd5IYPOfOnif2aZEvqjzFI9qGVd1gtBgWlcQ9cSRQpik0JgqqomBVW7rYkxGZmDFN2yC1RJt0+JEhUhUJyDkal7TzOavlIRvTHVy0ZBnU9THGS8qqxEuNUYpmvUYJSZ7nCVrb1cmtptUQZZNkKokxibmSP7SRP3AFif9I5vlk0k18wnH0yS94sGACD+NpAx7pofPoF/7uL6zFn4jPDT//4c9CPLTBa22Q0SNi4iwc3r+HV5K93dM4u8bbnslkSgyReX1CLOD+4QGXLr7P3pkdnvrUBW7ePuLSR1d58rHzPP3kp/nz732PxarlzPkNEJGNzSkvffYL/PtvfZ+vfvVFfvt3fpe6PqYwhv1bN/nRyz9AaPilr/0aIWYs64ayqPijb/8xjz91lp+/8TN2Tu+ilEEGzcn9E5579gnO7Z3n1Z/8lJ++9hOevHCeT51/hAund3nj7fd4+Uc/of9ioPEdN65dx/WB3/vD75DnBu8FyoDMBMJKtNDMprs0bQthyd7ONlduNGzOxpw/c5Y33nwXbTv2Tm/zl2++g1aAEuggCH3g4GDBZz5b8fWvfJUXXnye45MFN2/f5Hvf+S5lDk89/Th/9O0/5f/4F/83y37Jm6++yflz5+jqnrzKmM/XyEyggk9RyhCZzbawVqB1QV6l1zMKQfSW+ck+WxunkN5yZnOXWwd38cHT1paoIujBNhwC1sPKr5Gxg2iRAvIRbOqK3htWbXLOhRgIDO9jD42vWdfJkWCInJmOyPKALUecPnWOg8Mlk2pC7A4Z5ynipKSm6QyCEucdOgSkiiitmE5nnBzcQ2vP2BQYAZePFpzbPc+srLh+9x6i0KybOZkQaO0QscHQDNc6tM0xkSk+aowZ46wjxBVCG6qQIaSi6ZObz+QGFyKutbi+TY1TWhGdpTQZuRRYuyKEFux0sNBLvBcEemKAIq9ApriO9T3eebxOF5nSOtm7VWLL+D5F4jKTkxc5R/PF0E6laNYW53wCIusCIQMiODa2JqxXPa7zNKuOWmrGkxGr5QqTFzxy4QzXbl6jrZdUuSTLM8bTkkxmtK2nazuklBTliLbv8S5wrW04e+os08kG+EBUCrxNoHeZKscdHqJ8uMG0Lh24kwnCpVYVLUGkanslXYpsiVQf7WMgRJlEfqUHESU5SaJSDGVyWNuSZTn4dEDumo6+6RFKEaUiyqRgGJ3YDN4nhoJ3HmMKnF+jFTjXJTi0SzGgpqlTU1OeU1YlwTta7/A2iWU+Jn5PYj87YnRoVWGUGvgSHqMTDNvjUCqJGUKKJMCQXE3aGJZHC3y0iCGmJpQCkVhywNAiFx+ut1KmmEBWFLSLRaqt93FwSvnhsBYYlVUaKsYHfy9x9aIPqDQS+cT4IeJsjzQa5xx+cL746IiuR5IYNVIm56yLkQfmfyXTDqZtWrQA7z1922FjTHGGQaQAHpZE+OATp2ho+Ey8woB1ls3ZNglxFFDqQcTO4ZxFCJ0a0bwjisQcFMokJ5hL0WkRFSLKoUUt1VcHD2VVEGPAhgdNbYlB1js3OHxtOnR7PxxwgeFAK4Sg7VpMFgnBEqNIVdQhDlyg1L5nbWrGCz6kqFxnU4SnblIUTmmkShyRBwcYKdMUX+kc73u0NvR9itoVeYYxgwCkEx/LNg2TKk9HqJCYMkJJcmEIw3MoRRpmWufobJc4VMrgmi65hFxI7qYHjkKRHMZpHiTx0ZMLlUo0HtzzQ0TrLLklo8foEc4nMdKHNEgKIe1HlEjAeu8tymR4nxAcSmlc9HTWYr2nIAkJIsYUI3UCSNe6E4rTFz6TBAffc+Xih+xsb6GAzCQ3Z5kXaX9EQInENxYxEiIYk9HRpPenksgIOssesjHNwFz69NPP8+rP/owgQClDkWXY9ZKmniO0xBM5uHeXJ7e2KSYTlosFF554lsNbN6iqEYtmxer4hCuXLzHZ3OT044/ipWIxX3D5ypvsX30XEaDFsewVP339+xgE67ah9WsKGTnz+KdYNx8gOslifYSKqe3r7LlH2Dt3nigEz372hVQDoAS3969y6tEnWK5PWMyPcdZy6d13+fqv/0MOb99gtnOGdW2QLiCMog8h3Vt8asLLJyNMUSBMBr3DOsui61LzslDJJdp39C45OhGBi2//jGtXL/Kp6gXu3bjC3ulzuGgpdUbXNjR1T+8VVZYhlRm8KxHf2yE+aSAGokjv2ygUDA2MQoq0JiiFCwGdG6IxyCxL65EFRGoRXC5uc/POFTqh2Nx8gma1ROjIhQsv8N0/+tfsbZ7DechGllmlWXWOUHuefnobozS26+jqmvd+/hMQLUErPvfSLzOanqIwY27d3SeXgfW85Wh+Gy0V89UxLghWi0tsbp/mzJnP8exnv4bMKpQEKUusSG4fLx3CO2I2XFs+4n1IDa1FgdCKzjm87el9WtNKM4KYWGN1UzOaTuhDctZJUpLEu4ZMS5SukEIll2UgsTlDaiBvG0/XtRS5wqgRzvVIDF3XgO8piyrBHgOp4EBGjM6QMvHbFss5o1HOeDxBFWMIPTIrCV2f7nUD3iJGT3CpbV3LJG4nIbnDyORqzYwhykBTt0wqQ5GN8DGVbgiZBmdKqXT+lan0wGRp6IbKKQpNOZmByZjOxkx2Zjy1t8OZjTEaMfBhU6kBw3onhnPLJ4IY/2kfw0xepNvWw/Xub+vjb11QmpaS3gaQkjtH1/F2k+PjI6TOKKuK7UmFVoredjQiklU5x0eHCKkoyi2MGSNMmVwWWUHuery1SVEUqYK3iZbgBS6EVM+rBfh0AxE8GHxFBApNmvgYZR7aoL1rOTg6RIuIzKrktPGpKaTta6SSFOWE3OSU7Zobt66TzNmSfDRBYVksjtAqY3NSsOp6Wgfd4QH3Awl8GSK/9W9/h3kdWctrjGfHrHvLu6/cwasM4QMipCar3qbH7ENk2Vk2d05x7txZmsUxm5tTSj3CBYULHdZ7+r7n4o19MlPSdg0hJLFmtHGWIDWT8ZRpobm7f5lbVz7CujUfXLzOwf0DJlWO0ZLT589j+55u3aJFx3Ld4EKLECVKRWyM2BCYTUr6VYfwkt29U8xPDrGDUOfbVNMqZaCQKaPpQ07EpkrHQFLgg6dQBSbT9H1LpgPWp3a5KBQEhw2RrnUgHJIEIpxNKjZmJculZb9dEyJsjkeoXHB6FnDdioyI85bFoqFpWppuxcXlglOzhufP7/Ho3jZVlYPUBBnJVQ4Dj2htLRFJ13tWNjUfrdqezvU8enaHsiixAjphKPIKmXlMkSfb99D2cf9kQVcvcd6SZxNmszHjoqDIBJNRxu1bx9hocSrjM08/Qh9btrd28F3Le5eucnCcruzowIlAJ3s8FjPUTp/eKTg8rvn5hx/x3KefQB+vWK3XKAnBgQyKOwcH+Jhs/c56hBhAsERkTIt/ICbrvoJMjwihoW0Sl8NoRbQuHT5khjEChEwbNxFZ9Z5JDOxs7LBcrWnCkrpeEfoTRibZifvYYLsFTfBsTXboux6jkzVWxIhGoB42rMWBAZCWyjhsuERgODD9DR8fD7U//sMnVPiHn/rEX4l/5Q9/5Vv+DZ99EKmL6YAwLOsPWuUiaToqpWS+WKAykw7AJDdTXowQAkyZ065WZGXOr/7Kr/L0059CKtjfv4OMP2Rdr3nzjbe5c3DEZDrizv05r7/2U/7xb/xX/NN//i94+onHefWNtwmxZ2d3h+WiTRwSGzh3eosLj57nxtVDlosTRPAcLw55+f/5M5wQfONrX+WtNz+ib+4zKiRf/uIXuXXzDvVqxdHJHb78lc9z/dI+JtPMNre5dfcGOv8qR8sDRqVh0XcEZ4lGUJhkp5VegE0HZCUVRZVz/+iAu/dr6lXDeHqG0EmeePwpBKn1Zv/WffTEpGrxLLkgbNtzcOeQ0XiD6zeOEEJy68YhH3x0EVVK3vzgAzrhefm1l8nQ+Exxef8KCsW8EbgYKUREyAYZ6zQBch2bGyX1uqOSYAKYTKPoycoC19dslBNMljOuRqzbVapW7+1Dq7ALPLQXV8qQ5YpMCmTUZOWUdr5ilI8JWuNCB7Gj6yFEz7iQ9L4lRKjykt4pZFaxXrXcu3ubxjbYZp3ctFHgvCPEHNtLfKgJoUOZnNV6ieqS2BJcIB/PCI1g5TyVqsB61CQBZYNv0LIHAkJUBDxIQ+x7KiNw0eIJxG5NT8AFS6E1UaXKbOcsXri0MSOCC8Rg0+tUJ1h2JiTjfETTrAlRkFEQvWcy26Lv2zSNEzlN16PGE7quS4fCB1FRZBocaE3bpfiS857cZJRlRVYYyqpCnMxT/CS41HalDa7tCCqxbGLwjIoCFTuCd1jlqeuGIBxaZVSjEbf2bxN7lzbaraUNPadmm0wnMw7vLxLnxznadk3XdLRtjwywO93BZ+lG3FqX7s9ysIjHiA8iCdRS4qJAmjw5CHDgkjAIPAC/IVAP2WyS5GhLZQQCJTUhegKRiBnuf4k341xHMS5TpDgEXLdGyjQUcDHAIB6l4FlEh0iWGYw1SKmITmKEZt315GXJuq0RIiPVqUeyokBpPfCOAuKBQBMTVyHGQByqnOVQNy0jSKFSnCrExIIQGo8CTwK1xzhAuiNBBrQXw6E8iWpCSIJPDaNap5hHjGFoe0t1Cs16nZ4+kZgUCZybANVxEExiCEPTWqpuFwPjBpWi02n/l6IOzvkEr/YeQnKjeB/SvlHJFMFW8uPgwABjLsr0HBmlUUaxXqdmXC31wxhBEj6TUOEHjpKQafCQGZMehxie8ywnxPS+07khRIm16TEJnZ5TMTBxIpCpiI+e4FIkNB8OLG3bIEgHJyEzsswkV5hPDhkhVXIIWTs8ryL9vi5gsjzdr9QALQ4B5xylyei6jixLkNcQExg4OXI1fd8n0cQF8jyj7pMo6VwS2lP0gqGGXSOEH6KfKW4XSVGyFG9Nz4VzySEWfRIEEDK5uIbXTkmFVioJWtEOjKrkZurajszkKC1xtoc4iKuuxXvPdDRJGTYhUDIxfLTWg+M+oh7ADkUcANsepKA0FUiJ7zukTteSc0nIkTIJBSHEJFgNuwYhwIeAD8lbqbVGm8SLdH2LHBwF1jl0niNCRMmY4OMyRytNa3tynSOFoFk3TMYj1vUyibQyIQK8D4OTTWAyk17vaBIPzJjU3utafvwn36RbtXz6i19mtT5mPNvh9M45drfOEp2nc0lcrGYVEkF9fEjftWzMZsgQee/Vn1GUimpjl+V6Rdu1qLbmow/f4+lnXiDPckbVlKKs6PoVTR+IdHQuENSYydY26ztr5GiD5bpP54i+xtvUIDYbbzEd7VBVU7Y3HSJonE6vdV5NWNUn/Pxn36OPPZfee4cXvvp1YrDcvH6RfFJxcnKX3eIx6nu3CASizDFGM18tuPDYYzgn0robPevlCiHjQ4dmDBbXJ/d8ZjTXL77LX3z3D5jt7HH75k1m2xMObl5i99HnwHpc09H3LZXOyIxCibT+e5diVloP7wNpCKHH+pDuc8GD1g+3j/PlgslkghjaJ9NBT6C0oShMalQ7rFkcH3Fq9xFUEPz85z9id3vGh+/9jMlkTN2tKPMp+egU1i9wLuPOzdt8kP+UfGsDI0vm925TL4+4d+8qeT7itXbF2QufZu/88xze2afUjnp9gw/f/0sQkVv7l6jKjK3ZKZCa7dOPE0XGrf1r5Fpw6swFlM5SfCtYwGNIjL4A2HZFiJZRMUm/k0ustuAdJkuCToo7C+qmZmM2xXs7fD7d5yISIQ1KpXtBCD15phAyOTPxkhgShyzLKjQKaz1FWTI/uM+sKpGZRilD2w/3liwjKImWkrZLUeCtjRkqS2uyURmeJK5HIZHCJ5nQB4LrqUaT9LIqjQueKBRSP2hiE3gZ6Lo5G7MJQerETlIa7z15lqeoXkwFAy4GsrIgr0aMphO2t2ZsbW9yenuTU6MiiakC4jCkEiJx+ZJ4LT6hIj2oG/pP/3jwLR/glXz4O85QItgUNfMR6x2LZg4qopVlMT/g0npFpg3WC8bTDUZVhpDJnt27Hg0YH8nGOZWUdNbTdAJVJMU+y5KKp2NG8JLeOuIAD0wZ6rTxSHnyRPfXQgEBLVOLTtCKpmnT5MHDdDRGiDRV0QUoL2nbNSFYRkWBERIXk1WcmKrn67bHaIGRMsXFbEjTST9MoKKjcwEhFNanN+j66ISPbtwFoWnbNb1LU24hDblKv8utuwfsbE7pupbWe2bjEutajBDY2rJatcgsVRFm2YTOCWwX6J1ntWrYmY05VUi65X1ev3ef43rOurYoNLdP5hilsL7nyUfPkxH4+bvvc3A8x4dA03mCdKnZS3h0lnPl2k1KrZEeXOwAS64M1icOgQsRlSXg8gMrZ4xxmPJFghdECibjDYJvkiE/RrTU5FolmGjWcrQS2KiQypFpg+sXaAqe2NnkSE+o6xVHS8uokhADy+NDOu8JviNXip3piOLUDuPRhPeu30XlGTvbu5TVJMXIYvJ3L+uWXKeWs8Y5CmV499ptbh3OWfcOiyDLBNtbG5waDgkiGrxbpalxkPiYNqIn9Zw79+5BaOmd4NzpGW3v8XFNWSToqBcpBqNiw5OP7rE1nXH13pyb9w6oyhE7W5J1t2LVpKhaxA+bU4V1jus37nC0qGmdY16vqOsaHzQm16z6mvc/2qe3LVWZgxfM2xWTUZ788iTx3nqbGCZDBMFEhxApQqaFRBLIMk1RVNRty/bGmHXj0wFSwrxucf6IOwfzISdusEAuBaPRKbJik1FZsX//mEIq6qbGW0fbBJoubYKNjokVlmBDSfoVw3RbJbDcA4h2fLjpS0vKX7uU/kK+7ZOf/P/w8Tfm24Zv+iBx9/BnDCllOeA4Y7KOrus1RVWk+JFzNG3zkPPxYPKuYpeEF22QeUXx6IjleoEShr3Te7zy01f5yktf5sOPLlJ3NcvlGp57igvnHuXb9/8d50/vcLRa8exzn2Y8rjg5mnNm7zQ/e+M9nrzwNBfOPcF7b1zj+tWrvPjCizzz7DP89LXv8xv/7W+Aq/iTP/5zslwxnmS8/fa7nN07gxIZzzz3PNvbu7z58zfx9PTW8cgj51itaspcsbG1R7O6Qh8jZTFBK08wgnVrMVlqhDo8OGRzY0xVaZzzVKOM23cOWB/P+V/+yT9htax5+ZUfI4MjlwU2hHSQioLb9w7Zu3fA0fEx8/mKU7t7fHDpQ4KRTGcbHNw5RBrJeFTQNj0iBBQSHJSjnGVXMxpNMCqQZSlTLlVFkIZbd67g6hVCKU7vbdMuj5ltn8eEJJxnOr3fhBSMxxv065p106CLIjlbZaRrO5ASoxWFMlgbOJrPcUGghhiXyaFrAn3fpkYSVaKFxeQ5k/EORVZxfHTAej3n5PBugimjWa6hEhXeL1EEtBYYVdC3HUoLcinwocX3GUJloCsaluRlhnQdq3qJJQmdowy6GNCkhhvr3OCEEUThKcsxQW/RdPfxdkVuTHIHmpLD9THSdQnOTIfwIERGZy3OdVjfEm1kOt2mLCus6xIvqY8gPaNxyfreMXkOBEPT1qzXxwnCK8sENB+4AjFGsiKjGlfUqxWhd1SjDJ0ZrLW0bQtAUeZ475NzI9P0bZNQJEVJWWRIE5mYnOVyjtQKoURiC2lFOVKc3FxiXU8+UjgCbu3Yv3XIxiyJTEYrhIgcH8/RItWae285PjrCti2mLLE2MJpUBJvu9WLY1EmlEdIkUU0btEzOjCAEWguid2ipccPB3RGGzVscJoIB6wLLxRypSBDkGIb7qAORHBZKCBAaT3JOJLdJQIphYzsUCRSZQUYwOiMzqclKCInrA3pwQT0QYHywSJXi7cFZCJ4YInKolSbGNLwMYRA6k9NExEDwDqXEMNGF4JL7W0ByjiiJs4kfIpUkOD+09fkEMpcK4QdBXilMloYdISRJ7cFE1jo3CBNqYFMLemeJNg0Vw+Co8kHibAL35sYQH8SkBUNMILE3XN/TNWumkzEqz5IbzAmEcGRZMTyeQeyIif/jgyc3ZXpOhgNkgkAnN0uIIAcxKbWapWayQBKUpJBomQ4fjbUYY9C5xNp0YBBCEV16jMELUCmiqGWKm3lvUSoNTq1NB2AfeqJP0HPXp4Y5o1MULEY/OGUSlNXZngdNqDFGlEqNctkw8MhyQxjcVIn5p/A+UhYVxuTEaHHBI8XAgQmpVl2IMAheA4Q7pn12esuEoZTiwXMyPD+k/YaUgrZt0+cViQE1HGT63pGbJAwEb9NzK9Jh3fskqGmtk8DjA1EktlKZF4nZohXWpWsIMTTnWoeSYhD/hus3PIiADCOtZIBj2BaiTTo/oNSD0VH6numOz8dimxgOnMm9obVhZWtscIyq0cBhkhDFw4MmDLyzkKJ/6XkNmFzTrhYUu6fp+wZnW4yasHIuObYfOKxFHOD3ieHp+ySw6nzYn8r0vimnY2RUXLn2Nj7MObV9gQt8iLG/AAAgAElEQVSPfprgJXkmaNdzhDQYYaimU+7evsFyccRiteTypXfIignXLr3G0y9M+Pqv/zpv/eUr1M2am1cvAqBNznSyRV7McDInhJoqF/guMN3Y5oXPfpXf/3e/ye6ZJ9ja3EW7jsO7V6mynNNbezzy+PNMpztUownOefquoxiNUmEQivfe/An7+xeRYsxnvnYGo2G1OuH6/kWW7oTTexeoJjMO9m/g2xonNNV0xq39K4lhKdLQwQdBvV4yLgoQQwNvBGct6/Ux9+9e5oM3Xme9XtPfuUmW5+il593bl5nuPYpUmq7rcN4STZaE7cwT257GOpquZqPcGho1JT4kMVdGUMaAlmntqdfYpmdzvAXD2m19Au/nVQHa4LyjGo3Iqyk7szHXr33AdLaBDYHNzR0OD++xdWqXstzEGLh/d54aJJWmDYKu98wX93jv9Vc4PriJwtPWDcv1guN6Sbl1lq5r/1/m3uTHsvQ88/t90xnuFDciMiJyzsqsiaNIShw0kJRbU7fVbblbDRhe2PCiF17YK/lf6J0XvTRgeGigDQ+CF17YoqiJaqolUuJYpWKxhszKyszIIeYbdzrnfKMX34msKoktowEa6AtUJSor7o2Ie8/5vu993+f5PSxmcx49usf++/dQIlCofPbXZQEpsP/eOxwfPWXdrPjExz9NIieMKXJTViiFLAoCEZRmueqoyoooJTLk+9z2dlVTZIsgQtI2K3ShiEKRtMZoQwoRGSQiCHRR5TXUekgBU+TEPCU10VpS6OHmqiCGjkJJgg+QAlKXoDSRzGnTsues6XyPr5dr6rKiKIueYyjRSvdJmwKfyHbmKAjBU9UGXZSkfuAtoscoEEKhhEQpw3I9x+hIURkCkmFRQYwok9XeIUFRVwymYzY2hmxvTdnc3GB3OmazqnvxZF47kkgkVM9JA3HBXbsoO/oS6KfSTPoJEqfUr90/zcdPvaEkhcD7hIgSESRJ5O5w1zlChGXTkWgxqqb02a4QXEdrfabnd2u0KjhfRJarXoItclc0+pweITEYoQlaZaWA7SiLLP9NySGCRKKoimyxcj5vXoJE8jFHS4qAiJHKDNnY2OR8dkZRjYjrjtliTtFZGtdx88oLTDY2WawW2b+PwEWFNDURWHQ2y8iSotB50yuMpmlW+WYTihgSQyU4PT97Pl3LVqy8uaeUN1mCpFt3zMUcKQQb4zG2XbPozillZhCMqwGdt7RNYBWX+DYxqhV1Kbn//lu8a+es5ytawOgtoGY4qFivfT4sRo+Wkh++9joxWJqugxTpOo+3kiR89plqyc7WBouzJdF5tAqczs+z2kgXeVpSVUgCnjWJSIjkg1yS/UYuEUlR6pxSEn2LjCIfwJWkVAaCJ3mHd5ogAkpnv/v2pALbcnpyxnxmado1m+MhG2XF5nSLo9kJL+xt07gVZT1gb2eX4WBIXQywneCoaWitY922nK/XzJuOxbJj/+iEa5c3+Zk718ArtDS8f3zG4XmTrRd1SWEkSkmEBhVFHwWsMEojVZ46tjbwxrtvY+0CLRXb2zsYJVmv13mh9XmxyshZhRYaksSICs0ZP3z3PUaDktvXb/BwP+DiMh/wlETGyGQ0QEnB8WzF6WKJloJ7j56gRU5D2ChqVm1EG8nKBUamyJP1QuSYU5WnC0oVOB/RMvXwOUmUEWcThMCwHNJ2c6rBIB/og0UmSdtky5oymqbpsF1LS6RQJUToXFYWnaYF14Y71FXJYFCjRD7otU1DiBFd5GQkrfNkN/U41cwfiHkS8RH/2d9ePD/S23n+EB+Ik/pG2cVTn1vbxIcW4w9J4J/D6p5rGi8GAb3d7kM/x8XXXcijksh2ChJEqTHVCNV0jKthVin0UtL8wef3SJuC88WC1WLB3t4us3PP4eEJz54+gwT33n8AZUAJx8a05As//3m+8ad/SlnWnJzN+NxnP8PHXv0k9+/f5VOvfpxXX/k4G9M93v7xW7Qry61bt/jB66/xiU9/ik994pP8w3/02/zKV/4+3/mLb/P5n/ssD/b3WbUL3r57lxdu3eGlO69wdPCMx/tPGA4qXNScnj5iOr5NVVX85q/+KmZ8iZMn/xsvffwOP/jh20xHBU0UOcVJRIyOhNRhQ8HGZASpxoYzQrti5/JlFmdzmtUa7yLagOu6PmVJYC6gprpkbSGokoOjI04ODxgNBihR0TaHbE93kUpjXcfp7JDZbMbuZo3zkkIqUlQEYXh2sqYoYXdrRFKJpmkyP8cotFcU1Fza2iOuZjw+OGa5eoBPDiEMzma+AClQ6irH1rYLYsipHiFAWW/T2S5zULxlvj5hHEeEtM5K2qQxqkKLgo16wmAypCpr5mdnlNqQygK7XBAL0xcWBYPRlNP5CaUeQA+mBkjRUoiOpDMUtnUl5XDApas3WBw/BQHFoMRZCykQvSIlQwqZAxCjRGpJVRhiMnTWEHxLSBYRPAIDaNbLFZU0eCLZdW1JXlKaguV8hi4EpdE0NisErHVsb+/y7PQE1zNgzucHVBUoVeEcFNYQoqUqMmdIpFw8A5mnZz0bkwnr1SqD+IOnmc0YTQYsV0ukyly+bBeItNbl6Obk8KFDqZLoIz55zhcrUooMhzWgCcGzWpwTvSeJhIsJ5yKxc6xmxyzna6aTDabTDUQULOctSkmG1RhdFBwfnmAnDVIXDOsBcjrEWY8QZc/YyaDQ/Bnls0PwGYLqYkKlACnmUALviWUuZvL5JRfjMYXc2PeeejBgOB4gkkMZhXWht2Z1KJ1TYoJ1WQspMwBd9vtyPjNkqxZC4GJEm6wIieTf3ZQFPnQ50UWAbfK+pEjEGJAiEVJWbkMeOiiR01mdc6Dq3JQEXApoXRB6W7ePHiFzUlehM5g7N3QSPub729PL9nvVjo8BHxOds4imxYSQ1WtCYL1nc7xBWC5IveUxpD4FzWc1m1IqD6lEXr9jv7dk5lG2cveuwf515XPljTLZxhCCx4fcbJD9+1aIrMbN7b6cghM/tNPElO/N2DfffHDPAyekyj9nQvRnnXymCwiUlDStZbq5TXCWFPxzVVBOUWtxPjIZjZ6nxaWUkCKDp4NtCdFTXKSeiqyL7bocHKC1Rqkcky2F6BMZ8xqilCL0Q8wUPVqbi3em/+zB97a4iyAJpbPiMYRISpIkBT6EXklGBge7BqkUMWWlV1lmxVYiIZXCO5/5XEohRLaDhhAJKjeU6nqUd9de9RtTwHvHxsYWWiicCMj++TF61usGekahEOJ5wppWqmdngZAZb3EBwc1XbG56hZAnQ/k6KDEmN88ulM7OBZTOn53UGufanruUcvx5yqeDmGJfeKbMdBTZ3inJwSGd7SiqzEWTiNxw7YdmzmfFSuzf63TxGcTEYDBiOVuwe+0G87NTjBZEZ/uGXL7ehSBDwUVuGFZVxdLarCYfDPrCFIp6xKs/92u89e0/4NnJj6iqIT/7+S8jQs3Bo32ULOicICDZmI559N5dSPk93t7e4/jwMZ/+xS+zXp2wd+UGo+EGN194tbcYCbQS1MMR5qRk5/KLfOzKFe6+9SNuvvQx7r/+Ay7fuMNkuMHm+Cqf/9zPU5SSY7ugLAvGW1N2rt1g98Ztmvk5icR0OuXxg/fZm07pmoaH+3d5eviE6ASUDQLLj177FufLc+7v3+dwecClnRuoomKwdZnQtdiuZb5YML18DSkVR+/fI9o1PihCcpTFiOgjSStc1/H+vbc4ONzn0fvvZvD15jarxYyjpw/ZvfYFdq7eYViNaFzbw+tBlAatDFIkWp9tqsYU1PWwb/TnJDClc3pkvg/z929XLePBGCkUQhfZfp9SFh70a4lIkcFoxJXrd8A2NN2KF198FVUPWS0D48kmX/nq3+fhg8e8+dd/SogeRMlwY5Pdyy9gKLDaUdRT6uGCYjjk5PE+V27eZrJ9i/bslO0rlzl86JhOtzkg38+D4RDvOs5OnnF6fAgoJts7XL76Ik3rqO0aqUfomDlxlR6SRI4ddKsOrSWjjY3cdFIGVCDYBl1k5WQIWd3btg3D6QgpTG6G9ut18pHKlL01LatblRRIqXPTNQasaxGC7LYQEhsz1uH49Iy6yta5QMqKsuioCo02Ei01bWMJ3jEe1eiiIqKyuhiB7M92JuWBhksxi0fGEyDzklLPLhNEUghEVaClxHeWre1NlMpg+CQLOhEYTsaMN0dsTSfsbU7Z2BizNR4yNuY55/Ci4rhwaHzYUiEuFEnp4r8v9qCfjjIpv8zffq1of7oQpZ96Q0mpATokKqOwfkX0Hh8iPuabTRnZxyrk5pG3EWdXdG22o1nnKOoRnsTW9oCz+Wme0oSEd5GqyHLXkCIGRVnUBGPQRhOSJ0aNawPWRmznMhcHgSL0EtacZmKUJCKz9F5rCinxrmFQTygGU2y7AlcQgWuXr/P48DFN12BMkb2NTtJ1DS4EpDCoJGg7m+nzwRE8FOMa4TO07/TkmMW6oewtH0bmWNN8OEoEoTLLIziadaKxLdZHpoMRa7vup4CRjcmIs9kS79asXIcrBbtDy4gZj5YFC+uohMJagzGR6DN8MqbcSEoRus5y/8EzhFRoA6VJCDLk0MeIysM5XHOOsx6jDUIEXJuL9E44BkZTmwIl8l82XhJFlhoSAyqRJ+UJXLC4VdfLxE2vwok415FCoOkUxkhiSHifWBO5MxqwNx0RY2TZLVDCs7c15valy9y8do3vv5nY3drjW299n7mF7a1tWic4PD3neD7jeDHnL9oZG8UIF+FkvkCKgnVnGW5t0nZQ1wNi/zmUSmIkpM7iRPYKC7KHvTCCelwSkmBQZE5BwHL7xlWuPDils5ZSaU5nc8qyZLZcMKjyxMI6ByKQOs+6a2g7x6XxmFt7l9naHfPClRscHM0YpwwzTSHQuZZl27I5HtC1Htfle6MqCiDStYHOtmhZsVgsePGFy8xmc+q6QnpLdB4lFatli+98TlEQUKp8MPQhYW1gOhzkpk4SLK3HhY4QHSezGaUpGFZTlm2TmSPVAOtyk6gqSnRVUBQjiAlB4O1330WYmsnmEElOpkFKVD+tVTJL3y8aPFKKXq2ULUZS5BQVycVU8G8LkMTzv/jg/154jIEPLcYf/fNDytGPfu3feKSPfM3feDHy9EAqgbWBZt0AuaFdD0fI7PckioT1kboeYbTGd5ooAqN6wPnZKe/eu883vvHH7B/uc35+jhKSuw/fA98xHpXcuX2Lr3zxy/zrb/wlv/WPfpPdnV2atedP/vCP2dqZ8KlPfop6OGHv8h5f/8Pf51/+r/+Kf/of/2Ps65E/+dff5Iuf+Tyf/NinmR0t+eTHX+WlVz/Jf/8//g/8+O5rCBJGC87OTnnn7jssFkt2trf53Kc+QV1MeP2Nd/nhd77PP/mt30BWW/zSF7/Ef/bP/nP+23/x3/HjN17PSVApkLxHFIaE4uR0QduWlCpw88Z1qnrO/Lyh7Tq+9b1v8/DRQ4pC0qYMqpRGYIykrErWbYsyBcuTUw7377JaLdjZmEASbG0OqIYThM7AYq3zNTgwntl5hzEKZ9fIyuCCxq5AmxlGKuyqycVuMWRlPRuTXdarJcuz8zw89payLulspGvPae0aJUqCz1wG7yJaFfiQCNETKLDJkQgZfG8cNrisTkl54BGSoqpLJvUlUgGzs0ekENncfYVLly/zYP+Ayc1bHJ8dQTimWXf4oJGFydYU72i8wKhArSyFSrhoaYNmvTplMt1ibS2yj3Xv7BqfHJ1zjOpeeRtCntD6wLBWJPLU3bcLYvAIIj5EyrIihYbdvas8ffoIHztKMwSd1QzRZnByXVSIpFnbFS6sKarLdG1ODkrRE4Pl5vXLPHlyjHchM11kge1agg1ZlZPIqSs91PLC1qSUwHaZceed61k2GW48nowQSrI+OMYUKtudCNimIYTAum1xNlDVmbVgytzILUvDrRevsuo6zk7P0ZUGHbDCIoXm/HyN0jVJdHjXq0RiiUwBhaBwgW49Zzgq6Nb5GtZSU2ideUcCIGRor8xDEykEWkp0ykdAmRI56TiB6IGhJEieEDNLUusis1KkQmmV1w7nsK5DIihkVvz6nsMn+maHkpLEhfIiD7eQAhd9TqCUEmtdH3WuwCfoE7WC91QbVd/8yWtuBsoKord53680MiVoyGBUBKQMIBZJIlPMtuqYzxTee0TKiZ4xemzXEIVhPFYEa/GQQeUpYrsW7x2+b+rIkJVKSmSYfF0Pmc/OclOgtydlBZTIChJtMCqrZlJyzxWGsZeTXqS8qotje0x0nWU8HqMuUtisI4mE1EVuwvQ7jRSityWKfFZMgqQyoDX6lDlOAhKesuyTSGUipswW8t5llVBvQZI6q1tChKKsaJsGYiD0E3EhE4XO1iVtiueKlZhy8Ayij7jXBVVV4gOkFHBWkGJAFwVlmX8HHzMfSSiN7JPNQujx9iJfh1IqYoiUdW9VMwbv/XPrWraqCVLypJQVNSll5VZOXsu/m7U2pyf1Kir4QE0sRVYU5WvaZK5Syuoi7zzOBTang2wH0SXWNljb9SwiSdd2OG+zoqfITaL1umE0nvQNrEDqXQ+j4ZAU80ZteoC1QPQw7vRc0SdIWOf61yyykiykPqlNomRW0xXmwsqYf89I6tcs1auQVB5Gx4DQ+Tmpt9U551D9+cEo1Te3OiAjLJKIef2IiUBWOCWfhwGD4ZDZyQkCybpp2JpusFgskVo+bw7GHnJMD4VGZE5ZCDlJz7bZYi1Lg+8S0+2KB08XoEtsu2QyvYQ2EuFbcB1CCA6e7tMsV4wnY5QsGW9MqQcDTFHw0md/jhsvvYrrOi5t73J2PuPOyx9jfnJGdJ5m3XB55yptswLbsTWeID/+OcaTTV77y+/w6me+gF013L/3NqdHdxHFAE1EhIQSqoehJ4rBgFXTcrD/AJUS1XjE9tZlzs9OiCrx6K0f8+DeG6x85vApXVBNNnNTL0WOjx6zXJ/S2MjujdvsXbnG+f4THt97j8nutcy1uTjXicwi61zg+OiQ46NjpptbWZG8cKzWHU/fv8+tr36Cv/jjr/OZX/wFFmcnbO7toeoBdTnAuS4HLfjAaLKR77WUWXMq0SMcchOXBJ2ztK5jY7BDkFAbQ4yeEDNWIiZJ0zQsTw6IMTEsDcO9Pb4wHvBo/z1uvvxxFqctdaE5PHzM/OQpiQ5JPlPvXtrl6vWbFKag3Kp48ZVP8f47gY2dHWZHh9y+8wLV8GO8/u3/m1/5B7/FSejolmdEYdE6nyG8D6SYYdIxOW7eeYXbr36WqhwSw5LJeAfbRuLcY+OKQTVFIFiu52xsTtGmJJIVmcGuUaQcjiIMLgWs7UgpUZohUWZunkgQXW5ql6bM6qKY8DFQmDLfgzL1fMCAKTTGZByNMgXWRWLsMOUwH89TonGORFbvyQgpJtq2RZeSclCiVYFLibLQdI1Fp0TyAaJFVBXedZSFAZnPP1ppgk/IlBu6QUaq4QjvAhuDIbIqsbJgsLPLZDrh6uaEvY0xg1HFxqBmoHVWqybyXtYPdaBPj/tIcXMx1M481otC5YPy5Kdnd8uPiwF7HpRIZ3+Kr/3/Q0PJWtjc3GJ1/ihHd3qXGQsKUsq+2SyxNTjfcXjSoRQIEXGpYGtvFxMtKydRBIwSdNZnTkUAgUfmQBA0Kke5Kui6ZU53Eybb4JDImDeOuixIIbN2IjkdJSqNVooULGezU5quYbFes7m9yydeuMXjg8fs1ENWy3PO5yfcunmH+fyYg6OzbOnzDqUM080hLkZGheH8/JTgHc7laYmWidGoom3XeIYYIwmqI1pHFwTqAr6lJBjBuBxAcAwHQ5zvOD05hc0aJXPHtOsaDg5O86RSJELIcNDzlcVUkhQEUlRsGcds7qiMpbMOgkRpgXMtVTEgpYQLeVP0ToBPlEZQKoXS+X0lShaLhihLFOC8YDQeomSgS/ki9MGhix4QnQRCBazLUaMpZCYDKdKFQCUVQmi0ir23PR8uuxAxRa/sSFme6n2Wbd+4fInV0vPO/kPqouTF69eypFwlxpVhNj/DdZKGyDvvHnK+bIkyoY0hxcTjozNOdWBQD2m9YtmcI4Rk3cwpxfUsGVeRlBTRRbyIWTKd/ZKIlCXKEklRaLzMcL8UIqYw7F7a5drODYJ0NIsFIcDT00NcTCzbJTJkuWQi5jjkrmPtV5zOZ7x09QWsCPzgtR/TdA1t6zHBIqJDisS6XeOdox5ork02eXx4nrkIIRf1rXWIlLh+bZcvfOpFfvfr32ZnWtB1Hi1yo1IVsm/eKVxMDKsKicB3jkJB2zpQFusDSWhUXRDbHLNb6gJdFAykxCefo1IdSJkoiwJdFiQnMYVhNj8nEFguzphu7RFTlr1H58FHhNZ5wkc+4OoLuwD0UZjkf56LjCKkPt/tb9jfPtrk+dBDfLhblB/p+b8+aP5fPC4AsRcpbunDX0wviU+9ZaXnPfUuTpSUGGXofGS9WlFWFVGE51NF530GoyqJdQ6pDFrDxsaEg5P3OJmfsFqfMxgIfuYzP8/X//CbWJ2o1Qa2q/nh91/jv/xn/wWutdx+6SXef3+f+w/e40uf/wJVOeTg6SHv3X2HoujY2DD8wdd/j61LV/ja177Gg4fvMTtp+OqXf4m/95Vf5MqlHepqwN7mlK9+9Zf44ue/zKMH+2xvb/LGm2+ybpZ89cu/xG/9h/8Ryf8+9++/x3e+/waXr71A2zR891vf5ea1G3z3O3/JaDDEtoqirJmOxiy7jmUzxy0bhqLjzu2XkG7BarnivG1pIjRugTKGjXKDxWLOeLLB4mzNe+/d5fHTZxRVxcnBPvPTOcVoEzPYoDIlhR5Q1ANiVCgB1fZlludnBJ2lz6N6jNIdIkU6FMHB7OSAZHMiaFlWSKVZpoBOgcXpDN+tiDHSeseEId6twfisIkWw6taEmC0fW1t7+K7lvDlluqmQKoHvMKpkazpltlii0RgV8P2VE4SksQ0iWGy3ylZZt2Tz0g2eFKdE61jOTtAqQmwIy0Q1neDaNT4pBpMBMTbooqSqLHGVFaMuRg4PHmIKS729Q3u8hLhmtVgzHBpKOQBt6FwHqkYkz3rlMLVkd2fKydExLuYIWy0Ego7re9usbMe4HrB2OeWuKgyd73AkYoBSKqqqYNU0hCR5vP+UpDyDcsxy3VGWNV3TonRkfjqnHtdU5RiiBJd5YlIqgsuWKiFhOV/k5pFSuZiUktQnOColCc7jnWcy3iCGQHDZgm2KkgRY2zEcjrJ6LFlWa8tIarZ3N5HScHR4TD0eMx5uIYB21VCobAmyrSVKxWJ+DgK8CzgP0/EkByDUA8ZDqIdT1qs1Dx/f4/qtVxE5oo0NpTGFJKWs+tDaEKLLP3/KKWEh2F6Z5ImAkQYRyTZpUYAISCRaZiZKQtAtW6SIiOTQUmB0gUD1jJ6IkkUfMiKfF7IAgYiWBc521IUh+UjwjrqqcuEV8qJqrUNLlSPAU1a6hBiwyaFFAucRvWXS25YYAiJElEoEG/MAsOcExT6dDOFJLhKihKLOCYvRYwbjXIj3DUKNpIsu2yGCR0mN4sIylscHRZELBlLCKIP1DiHABY82BjtzVHXZ8/UkMVwoWXLSWm6qiP5Yns983ju8d5RlkT/rkO1sUhuEzCobpfRzJYuUfVNJ6QzE7kHgkFk/RilECjib7V0K1XM/cuFUaJOVUAqEkjhrM3dJa0Q9IDQtGI3SmloNsa3D4ZDaQEyEaHvljHi+l2ld9JDqiqY5J/iUWR2qoijzuQKR9ydtCnje2gh9Q6dPwvtQypnsk9cugPvRxl6llJtYot+b6Ys/IdJzxVCKAaNK5usVg7ruAdeZY+qd/0D11L93PjjoVQpaZx6VkOR1qj+HVEWR1WdakwBlElpr2kULKmMmsnUsv9cxRApTYJ1H6dx49MHn5l9vw/POg8y/p7UWUxR01mL0gNgDtMuiQqrc+Ct0gbc2A8alIHnfJ8NpnHcoqfIwhYtzQlaFhZTxBFFC8Vy96DMbtQe7K5FZXdFnhaISkuhSryqqCcLTrJa4AKUZME9raqWIAoLI58+YcnJkSmSFndbZAtr/TDEGyh7OjEnowZDNyRWePvwRl3ZfYTwes5odEZOnGo8Jy5adnSs8fvIQoQVLZ7lx5SrdqqEu69zIpkASkUmwuXGJ5cmCo6ePmS3OsXbO0dlj1t2MN773b3j5M1/h8o1r/P7v/u/8+uc/j8JhZMXp6ZzJpGS1VDzdP2Tv+ioXzyErQ8bb2xAj8+UJvm2hbSiMxnUt9978IctuQYiCjUuX2du+zeXLL7GcnfHondd5+uQtVs2CneufoF11jLembF+9xv6bf82nrl9FYbJ6xuSkrmADi/MZxyf5fVgszliuz3BuRYiCg8On/N7/87tc3t7hRz/8FvfeeJ3rL77CV/7hf0KIic562vUCqQuqeohLoa9vesYWIE1WAkbrWJ3PqeoKoQSq0s/3A8j3nQuW9XLFcnbG4/tvomiY7r6IKkcMd69x7cYd7FZgd/cKf/UXv8fZfAa2YLy9xXx+zuzkMevZM0bXJlTDEYvufc5sgz14Qlkl5scnlNWKnb1b/Mnv/Z/MFsck6xEiYL3DdpZCFZjCYLShaSLr+QnCrXn9Rz+gOdvnS1/+deat5MdvfZtf/c1/SkoR5y0pRapqlK1r/UCoa5t+/TT4Xsm/XC8YjQeUZoAXkRQskaz0M1qjyhKRfB4siZiHJynveV10eb3vbfwhWSpZMTs9YlyVpACykqSQ96PxYIBQpj9LCITMKixlyjzMShEtBI6MmAk0lEUBpoKmZbKxQURlFRWCQEdZakg9u1kWLFXDzsu3uHrtMje3N9geTqhrw7gsMfLC0SCfp0ZeyJLkh2sV8VEPREriebPpg9G3+GiJ8xOG3/+ujw++38UQPldEhVT/H8/8d3v81BtKUQpm58dZDRRyYk7eFPvZkcgbuVGKmLKtTAWBUiXJJbulUc4AACAASURBVC5vXyK1S84PZ5y6jkIq6lqx6tNZrPMoIkJBFxzWtxipGA420DQsmlXej/uo4hgCo8GI5Bw2KVqXp5OJ7H9OItJ0HefLFSFGTk+PeCtm3363PGY9z6krqqrRwiNSh5ZDUlEghGE4GND6hjtXrnJYGZ4dHOKlIMUCkRJ3blxDB8e9Z4e01iJCltmOJiXdOhczQQhECNlHHRJV7SikZnNUsPJzotdMdE2pDW3nWXeOJDNgmSCY24ooS5AVJjqOug6pFavW5kmUyjGYjjx9USrL5r3Ikxi0RJmEiyEryVJWckmlKEw+SBmp6ZzPgDqZOQ5KW4Rcs/QFIkGlcrKb6w+ehUwgDdJbUFApj9Brlp0kSU2FoI2eqh6gk2LVeqQMrL3n7v4Zxgjee/+EaCKudSAqfLdisVoiKoHWNc9OllSl5OikpSgM0+mQzemELiYm0w2Oj+ecLE5QQqG1oFk5ms5SjcasDw56ybDIEY5aowqD0QpCtgeqfgP0GgIJqfO2UFLQek1Z6ewrHpQcn8+oBhWXqjHL+Yp1t6QqDOvWsjka8uTwhDeePKM0NeeHS56eHSOjI3lFGzq0DiR8vimlYDoZUxjJ6fmSj92+xvl6iZSKx08PIAhab5mOxzx8csqw1FSlouvygSoKjynyhLX1HXVRZKZXgCCyfaMsKjY2Nzk+PmNzY4tqaDg6PEMLTzkY0KwXmCIzzmRMjKqCpbPM24badsz9mlqXbE03efXOy9x7dEDWK2W4a9stsNYgRCINJVuyxvSe50S+RsqyzHacGPs5PNCXBiA/kOVfwBB+UtOIDz3tJ//H33qIXvae+0gXUwDRv+YHE4IkLr51r5qKESHAFEUuhnQuaO7du8eN61fxPh+Ij48f8fIrr+JDbkRIY6irEdPJFNsFZrNzlIx87OXcWKuk5urlS5yet9x/9A5bk22WrqWuK26/8AI727/N/sPHdM2K+48f82ff+lN2dgxf/NKX+LNvfo9v/eW3OZuf88abP2RY79Clhv/ra3/Cjb1tfuPXfpU3frTJL/zsVzk5OefWzZs8fPSYdj2n6Qzfee37zE/XLJYrHhw8Yh2XXDt5xt3793h29oTZAoJPtE2LNAU3b97iN37tl/mr732f1998LafZuMQPf/DX+ACq7Hj3/j3adpWl1azBr9HaMxxsMXu65vjkBNIhVWlYLZZIU9P4lvniCCaX0OWIS9sTUhBsTsfMZjMODyoWzYLt7S0mgwFHp49pXcQGSW0qmsUZTdOgjMALR62HrLo1z1b7DOoK4SPzdcfu5Uv4GOlCw6CQoPNEPimB7w+Ju1evcPjwAcNywku3XuDxk4c8eRIZDbeYtZnTo6RmPByztB3D0YSQAuvlGUY6hvVGnlY7uH8wR5cDfNsifENRJlK3oixK7GpJSB7bM0Wc61iFinVfuKbgkEkjURSqws8tA1PRNCWvvnyJFAKz4xlqQAbgyxKhEiJahIbz5Tk2BoS3SGFoQpsTu+aGvd097p8es3lpwny+oO06uuAJSWGiRPnI9nQDEXuLrA4IUxCd5+rOJYTtaFs4X5yxvbPJbLEiLBe44HuuQkCh0Tpbc0iBrrVsbo5YNd1zxYOXWZVRDwzeBWan5yRAK4mSRbaEp0jwkcFwhC5qTmcznIuYQnJytOCVj99hubY83T9i96qiHo/pWkfbBi7t7pLtQof46IgyUg9LaFLmO5hIPR2xcWmKKQSt05yuZqhS8vDRe3Stxeial4qS8XhEtJGiyFaYpAVY6PBU5EGNUll9KVPK+3vI0esiZcuMLlRuJEiVbYsxgtGELlCXdU46lZnXJFN6DkI1PcMtZSNbv0/3hb+6YLuJDIXB4XxL0grhMww/qx7ytNSQaAMQEylJSiOIyVFWA1LrUXUN3meeVW8rkiknj2VVUW4+hNQfmIWkc4nxIBcaMdgcMa0hrfNkXpCotUHL3Ggyva3KmIrWrnJxnLKiKatM+qFX9JTVpCeYguqB3lKobCnq+U+SvBdrIbBdl5XnhUEriYiS0KuOEQIXHKUxOWHVuQx8tm0G0SKzIktIQshvZ6EktSpoo0Nq3fOGskrKuS6rdLRCKI0SkrW1FIXp2T1ZPV+aKoPVU7b+aWWy2663VIWUGVcQSCkglSAiUckjY8T5hqIukLJX18RIjLmREUJuoBVFSUq638fysEYJqEqdFWmFoW0blNZoXWb+h5KZCZQyiiEl2ds9oXMux4R3FsEHVhYhxfPmkdS56VEPh5mpJRVC5fO+SIGmbSjKGkFAyV7hhCQSGY02UEb3g8Kc7obIKoOqqHqFcerVT3mAlRVxXU6dC1k5qk2Vlf4hWyQLJXGub6iJC5WAoOvyMLTrGmKC0bDOzW3v++vqA+j6xUApXTDGVG5mCiEIKSdOu+iRFyyv6NEkHCBSzA3emFVVkmyJiiEgZCRGKOsRo9GYoydPqbe30IViMt7ABQcRTFkRXEKSC+4kBMSIMAWFhvV8gS4rQPXWFc/u9U9T1lfYvfwq1q4YDkacKcV63dL5jmo6ZTDa5O3XX+fai7fZf3CXqiqZbl7iuD1ECcHB/hNufOwlFot1r4YrMVXBg3vv4aPn8ZNHRJHZZyend9k+vs3LL75IaTR7e3ucHj7m4OiQ8cYOpakxepPjgyfM5qdc2r7MycEh4uQY267Q5YDdqzf4o2/+AV20dOtFHt4Mdrn9wkvsvvAKt669yMDUjIYbHB3f5eTpOxSVZNZULM4XXL81pipqrJ2z/+gRHwse6aGaDohBQmjYf/qIyfYeX/jFX+Ovv/MNTo6eIssSU40JbcPZYomYtwS75u79H+Fty7xZENyaL/7Gf4r1ERs8083tHLYgZFbDhEQUMbtvhMK3Hd26oemWTDevZEUR9I36PtFTSJLvwFoCsGo6hkqxPDvmZ778Cc7PG7qTExKC0fYGN268zNZoyjvvfJtBrTifC5yLvP/+PSa7NxmZHV589ZNcvXqDk+MHvPPGmkt716jqEftP3ufw8V3GZYGSJUlqCl2QosC3K5ILJJ/v06Nnj/jmH/0fJFOwOdnl8cERa+f5zOd/AaNqhDKcn8yYjCY5QEfl9bQLli402bmgM6st2gy7L4cDggjoJLE+kqTH2ZZyUGdVZoCubakKnXPVpMI5lwc0RvcK2Qzeb9tsL0w6W2qFqqBdUZsCU+WERiGzTVoKxaCqMUWFj1CaiuBaKi1pXV7ndTVk3q4pqhqpKoSWlIUhdB6bBFZpbFWyc2WXF6/tcXM6YWNQUVcltVG9YEV8YIV/Xlt8uPb4SV4LnjeRfnKVcuGI+LsqmJ/8uGga/a15+/Pvm57/aVGU4t93hZJb0baeycaUrl1iVIHDg+7fJAdC9jI1ld9Y14Kosrf86PiMymimkw1iaJidryj0mE+/fAfXLHhy9IxFm+1gQkqkTnSto/FLChWJKfvXkVCZinW35mw+p1KJxsUesEjeuFMg+kDrApevXGa1WJFEZLFeYKQmuog0gc47zs6OqIzOccFllvB3LtL5QDmYUJiC27s7qCRZt/scnOSpwaODIzaHAsoGFh4fNJQJ4QNSC5QGXCLFbGmLKdE0kSQCV3emVG3k6X7L0/OznDpGnvRKMohUKYE2gSZk8DYCghBEIdkYRLo2ApZgE1Ai48W0LoOzBX0ogUhoncDlxWo4MoSY5fAN/RSsqNnZGnK+OCL4BLFktuiweXAIKaFIeC8gKrxIaCkoZRaT+2jZHHecrSbUdUHbJnwILG1iIKA0hqosmE40y3XL/f0jztYL6lrRecPXv/0dKm146eoltramjOsRIRlc9AiVI2kXqwZTSiaTIUYF9g+OWNkWiWJ7Y4pUkcGgRBQ51ni2WlJWIJt8IFQqU/2TJNvzUobeGu8zBC6oLI8ToGQgyRYdFaiCq7t7bKeIbRuWq0W2IwRLXZdgBC/cuMptVfNvXn+Txq1QpWQ26xhojRKZXTEeV9jOUleaolQcHy84X7fcvFFxY1rxlZ/9BP/yd/+I40UHSXH3wROiSnjbcj5LBJ8ZGaoHZ8YQkSScbXF4CnK6SESwtXmZajDmiT2gcwtOn2XmzcZokiHEsxl1PYSkSDLmpARv8dEzGF9Ce8V4tEFdVwzGQza3L9RJkAJU1ZikJC46MIqUZE5EyYNNTA9rlQhSzPdsShdch48uxB9mIT2XHn2kjf9vbyBdqExFEh9Zo3NTKT1vGJFSX0D1300KYog5Ohz1geIpCpSWSKdISFrf8cJLLwGB5fkZvpXcv/+A4DNbZXt7jLI1MQYe3H/E48ePGNRDtrc2+ewnP01MmvuP7vI7//V/xT//5/+Cm9duMd3Z4f3vv8a9H7/HumnRpeC7r73Gw/0H7O3t0to5ZXGF+cmc9eocHztGgwHr9YJVe8j/9K/+F5AFAwn/ze/8Du+8/YB37v7P3Ll2k2tXb3Dj8i6//Mt/j7/63nf44z/7Gjs7Nzg7adCm4Pj4hNAuuHHlFkezGaouKOvMIREqT4pfe+Ntnhw8ptCa4AU2uizNF44Xbt6hXeUkzhigsRaCoVl5njx7j6QFy5WjrGvsfE7ns7Q5NGtiWDGbnfIP/oNf5qXrVxCqpm0bktdMN28w3UwEazE6koRh5daZTxNbrGswg4AZDPBBYtOS6Fp8FxhtTWmbJdYFAoZRXWGrOboQpFRAEKyblhBjTuF79x26ZUMxGvD02QrvS9rGsr1bY7oVlzd3cjpNUdCFGcFbFssW2y0IMhDTgrIck5KnpeceDEcMN6+yOn4PlyIbwxKJZO0lc7tE4NASXB/bLlVmvO1OJly/8gLloOPh/pLCGKywNE3EuhWJiAtrRpNLtEuPNkVWnKgFpaoQ2vDq517mz//qLYwuWC5XpLSgWgy4evlKVk62lnVrQQhs8CijqauacTWgaRxNnBFkpJYlM28Z+YQRueG0PanZPzzHOovsWTkEQSaaJLTKxWPwnrLQXLl8iWdHpzRdm2+oFCnLGmcDG9MRg8GQzjqGwyHBZXiwXbf4kNgYbWSuU8xWHm0krrO88+YD7rx8k89/6Wc4PVlxdnLO4nzBcDRhYzpFy4Rza9r1CqUzvFkpyc7VHeazc47PjjldHGK7ltIoJoOazfEWpycr9MjQNVmpkM95+RApUgCR4Zoy9lHjMiG1RsoiL1FSkUg4Ut4ne66QUBIpBClkS7RKCmcTm+MBRsm+YE0koemsz8/TfyP9JWaLsG1bBIllWKKTwKsc8CCVROgyT6ML3StqMgdEJdB9mlbsFzYjdYaWxogxhpQswXu0yfaObDHzXJDmQoxoY7ItIESU0hTGIFOAIHuOUx5qiADJxaxSUQphek6PTQx0QfA2r7kxZNtdDChyMZ5iysV+AJ0gKNnbNSLBuWzJR2R7qvcIrZkvFwyGQ2QPWe68AyUQIu+PbdMSfZH/jtw0cC431CCrDgRktQsJYwqaHhodXaB3xRNDypZtJfpUrwygd84zGo+IZMV1brzlxkRC4J1nWNeZsyj6NDEkpR7gfZtZaDFbaVJ0RATBBcbTDZp1gxYGT1Zj5uIk9qwgk59Dtip6nwsG1aeFIRNtmy1ZSglszBYqROackcC2HUKqbO/t7XfJSOp6wPn5jKIq834Zc6qTlAopFfVwgHMX7CGRP3MiNkbGdY2QCut8ViY7B8g8sFK5OevJ9jDbWUKM1IMhz8Hn0ZLooboxgMjXUXQWqXWGp9OrHfvGY0qJsip7VVYeSnnvKYuC+XKJVJLdnZ28v0iJMTpzlfpGp/e+50FJgncokZmoiWypTD5SlSXr+Ryjp8SeCwZZAR2zvw9hDDoJRAx4b0kJxqNRr4S9xI9ff5PPvXAL13ooNNhItB3dYoUQ6rm90wXfNxMVRVHw+GSfrbJEakHbrCmLiu3t2wzrqwzrMV03RIoCVQ4JPrCezbhy4xU2R1N08TY3XvkYd3/wfaQyoBXDrQkxOkxRcvTgCVSGzfEUbTRaSrpVw871qyxXBwTrQCjaVeDN177Dz372i6SkaFzD1tYee3vXuXtvxubmlOs3XyF4T2gjpqp5eO9ddq7eoCiHgOXBWz9k2c5pUmazRVVx5/YneXb0iGu7N1idnVFeHudDW2nYfOFV7PkxA9vy8MlDvvQrv85s/z4/+tE3GRSXkM6hlODo8AlKGP78G1+jtY4vfuXXOHn2FNd5isGQrZ09tq++wHtvv856MaNza05OLAhL4yJtnPPWO9/jEz//G0Q9Aq0ZDAbZnWIkITqCyCrBQhtEytfEYr3CxogxChs8scvXU9et2dy9QhdittMD1XDMZ37ltzh97z7nT97ju3/4++w/fMD5+oRXP/4JPvPLv81ousvJ/j6pXdMgKQtFu1oRuo5g19kOKTR/+ae/x+2Xr3Prxiu8+/aP+epv/jwCQ8IRbY2TCUSkqGpOZnNqDMnlYYX3DucbXMg/9+0rL6IEbFYFlzZ2CYuGTjb4tGRcb5KSQF80Vq2FCJUpc8MH6Oya4SA3aqTok3SLAreeoxQkmW2s0TtSjCgzIvj8XkbvKExGAfQSH5SAxfqEejTOKhuTk0t98FSjAS6mvnkn8b5jUFaU5ZAoJSpJKl2z9B6ZPBpJEjKrIl1g98ouREmShjYJwsaAzb0RL9+4zK3NLSZlRWl0DuhIqV8TxAeC0L+zAvmbXaG/a9D9U5Qk/du+Q392kELQAvLf95S3W7fu8NZ775JSxeXdDebzI2xUjMsJPqxJKiekdL7D+zxlQuRoWK0lNjgODg4oBxXaGK7duMnsdI7r1hitKHQJqe2nchrQlANFsonS1Fi9wPuAjppgPUZoiqJPhVGGJCVaGS5tbiJdy9myybC8dctosMGVvS2+/d0/ZzSaZj95MshCEFzL6dJhO997vT0pKoZxwtbWJWyE1WpFExqiHKL7OM1xCSu3BtmgSoltFb4NjEeGgcnMIC8g+n6alxJlKRiPDG0zR6ua0bZEWsF4uoECzk7POV8tkEqidMKnQHAJhccnj+1ihqYuIlUNV6YdyxWczQts8JRC4UQk9dHFWii6ECkLldVkRYaktcFTyQqXIj5FVGw5W6xR4f9l7s1+NM3u+77P2Z7t3Wqv6qpeZ+Es5MxwuAypkUSKpK0kTixHkRPHgAMLcRDkJlf5B5SbXCVAEMSOZdhwYMuQBFu0FQlSKFILKYuLOMPZ9+l9q679XZ79LLk4bw8pQ5ZviNgFNLqrurr67er3Pc9zfuf7/XwWeJ/RWEHrA2gQXtEFzcikGG9ZNB1Bq3gzawTBRROfsw0CB21LH6J2dn0wJhWSqukYJBlSehaio/cOpQN1EzkL5WxOsr5J1dbsiA2uHxxCsCjvCaKlqcEGz6KEo+MTNlfGaBcYJRN0mrO1scXB0T20HBI6z/TkDLu9EyfY2pAoFTWweJzwWCyJFOgQbT9NH6hlBM5bWrzoEEiC0OhEkiLxtscrF5lMgxznHEoleKeYjMbk6YBnLl8gFYp/9a3vsLu1ztnhjHNb60xrycVza9zev08AyrKjtpZESW5fe8BPfO4Zvve9D9k/nbG+sUM7OyVPJfOmZZDkhCBoraXrPaFxyFRG/TbLzZfXS3OPYDQYoqTg5HifNElp6w7bd7hO0JmWtqvIBwV5OsB2loCjbzsUPcN8lca1jIqMsiwZDtc4PlnEtE7v6AloFbXWUkuUzyNrg3hDj4g3yafTipXVVTrrkSpuyliaFJFLDoL4CxbZj44E/uI16eEi+nAY9fBLxpPweNIbN3Z8xGkKy1NSuUxFRftXVIQKEW8otVIILXG1Z5DH5BVOMxplJFnCG6+8zng15cpjP0O56Lh37z7nzq3xl3/2Z3jpldcZDRIeuXyF3km++OLn+cbXvk0IPf/3r/wz/pu/qblw6Tx7F7awXnDv9j4v/+Blbh/ewL2uSITnbOJ55c03GQyH/NTnn+fJ5z7FL/+DX6ZvA3XfMBllGKX43/73/xUnW1bHE3zw3Lp7n7XNVcqmiupxkbF/6zZJOsLS4b1lPgv8rb/9JTrn+O53X+Pa1Q8ZjQsIJS40vPnuyzRdA1aSmgKZtTR1T5IlLDrHtZuvoo0lCI+UGVpC7TUy6LipEpp8MMEMAsXqKvcP9imrdglnbDg5O+XeYIW2nLGoF9w/OWFzPEFpSeca2kXNcLBO7wxZmkGwHHYHJLonlYJF09O0Fu8hSQ3TasYkH6DSOX3f0+uEQTGhdy1VH40u3kOaFRRphrCCuZyyc26P6fwewyTycG7eusraqGBlbZP7D+5QtZK6axgmI5COoC3WCQozAZ3R2pbUtwRvMfkK5bV7cTSp+hjn7h2dljStxwiBEhotND74WKkTCU8/9TgXds/zh9/4JnPb0DcLzDhhYDrOnXuad958j3lzQhAwSfcIvqF3Hc89/QzTwzPyrSE7O2usfCnjrffvsv/ALdmBBXsb2yzqY+btjN5byqZFBIWS0HvB3cOzmKIgyhVAIGxgNp+SSU9XN2xvrHJanjHyGU0VSFNDV1YEYnKC5UmmJFC3LQ/uHxGEZGdznSAFdV3j+lgjmZ9WGJlQzquotvfxNepcwDnY3z+M6uzeIhBooRmNRkyPpnzQX4uwZetp6xaFg77ldP8A6y11tYjpCANt2SAFTI+PQAV631NPS4TwCBF5UkIn7O2Omc8XHNanLKqaNR9rVVLHQUlsHflleihdLksCB8glSBlhUfEQE2d9TIeoCEH2y+FhCIK6a5GLBV3fE5SkrVuSNAER7VVSKkQAKeKfk0qB7yE4uqrF5BmDLMeraP7qmu6jyL1SMgJd/ZIhI02sRAUf4dzGoERk7QSp8HgaG01wBon1gaA8ve8QKlb1lU4xJkVpRVM18f/KxVqExWNkZAhaG2uA3guCiNU6JWQcOPiASXKqpkUYjRcR8Bxc/D7OqxqVGKTWcbOilpa0EFBSkyzvmbyPBwEmMfTWxvvDh0wdG0hNStlU8TDIeRJjyJIERzSj4T1aaszSEKyVxvcdLIdAQkh615PIHw4ngmfJJgsYoyPvycWTeesdJklwrse56PuzzqGVous6fHAkD417wccfQi7rchahY3JVS0XT1NHstQRDZyZyjbwPBGdRSRI5T+FHrpdLBpUQgtRk1HXNcFiACAQHfd/jbYf3Dq3zZRosJtaVEpgkQqadcwSWsSQCXdeR54NY7e5bEGoJTU9iUi08bK/H2klTNaQ6wehY/ysXHQHiUEjGTLKWKtrpZGQs2q6L67Y28d9lPUpGNIQ2evnaj0M7rWL9y/plbVEoCC3e2ViNXKYfUxPZpWo59NNSIDB453FOkJpkaeAKPKy0xUBQtP895Jz4EPXw0ei4hMfjSZSmtQ63/D+IZruWNE9joqqPUpxoajP0IdZoR8Mxp7MpxjfUDaSTFYKDdFxAECzqCtr2o6GejDoovA+kSmPblmKYx0PzwZCqacizAQKJUQlVVdLVc8aTlNPjmjyR5HnKzvoGK8MhbVWhhEaphDT13HrwgNW9c9S2IuuKpVVSUAyHsfroPFKlON9gO8P6lc/y6MUrlLM5QsLmxha3rl3lzvX3efq5z7O2sorWCYuq5PT0mB1/GaENeZ6zsr7DzTe/z92rHxLahrXJLl4aTmdHHN69TkfPb331l1nZ2ORn//J/xemBp+8sTzz3IidHDxgcTyOS5OCQb/zx13BecHjvPvu3PuD6+z/gxa/8At/5+td49vM/zdHREbbr2bx4kec/85Mk4zEqy7h45XGMhR98/zssyimDJEMpyE1K35Scf/JTTHZ2Obh+h6wYQmPxBFyw4KPJD+FRKITvcQSqas6584+gkSR5jtSSclEifOD46ruEJGe8topJDZCwsrGOaDse3L3GyfEZddWysZLxiRe/wGC8wmPFBic39unNgEsXHuPOtdskpuPw4AFX33kTvAY9QJqM2x9cZzo9YnN9xPpKxuWnnkM0M6r6jGArVOeppjNU3+LQoBKCkAxXVxlt7nK6f59UB+4/uMmDRYusD5E68Mrrb/Of/NzfQCcJXSIQrif0gq7rkEqxurYeraVa4lyFpWcyXImvPx+wIlYEg5OkWY6U8T66qpto3JQKtMC5ftkQiMBtqRQKYsoaixE5VegpdErTVIg0idB7H5ZcK4/Eo1ODNwqBwoh4SCIRtFKgTcK4GDJvW0bDIZXShEnBud0tPnZ+m0dWRgy0iZzlAIilSObfsc/4D/vt4THQsosRoCImKX+cb+qXfumXfqxf8P/97X/+S0GOePzxp2kXd6hrh0lylAaDRIqoi5c4mrJBehkXdSvQJiPNEuaLktH6mMd3LzHJE2azQ+4fPuDgZEaQilRHfpCzAd+DD448LyiSlBCaj0w3JhUIoRnlmrLu0NmA1Y0tUhcIVYnva2xvUWgub23T9CUHxwfUTY9E0zWWEDRJolmbrNJ0DZtbO6gQXwgIKLKcPI03nvfuXOd4tiDRjr6Jp3dO9EzGawhb4r1jdQK4GCuW0mCSyFpqg6O2ntVihFENi6pmMFwnVQmDDIQLDAcrBGVZzA+QQpEXKU1X0/Ue4QxaS9JkwGS8AUSoZ55BkTsS5Wj7lC4sDRlB4MLydAmFUSnBCazzaBPAClwfT7EQCqkDXdvRh2X6pY0njAJBpjPyZIAWUUnqfY+SAR0EWMfa2gpVXeOCpm46rJBolVBkA3JjSKRkUZWsFhVr2REniw5TrNJ2NYNBQVEUnNvd4/D4mOEgpe97suGIR/fWeev99yJk0gta5xA6mqjKuqRpAzYExsWYrilJssDx4X1EgPtHD7i2f8CzT1zh/sGCsrE4ASoxpEZxcWuFtcEA5wNvXz+gbFtMMGjdc2ljm+PFEcN0yNWbD1CJiswcGbva9/cfcDafkWdDtJa4rmNjOODc5pDhYMz6Ss6Ht+5w885dds/tIpWmyAtOp1OOz+ZoGTck08UCGQR10zIYZty9e4uTxYKydPRlw97WBokJHBxMydIBTRc3F0JGgbd4fwAAIABJREFUPXBQHiE8eHAWpJc4IDEZQlgWiwXT+TFSe1xwOOcpsgGDYRqfX4MJRidUzRzrmji49ALbdsznM5Ks4Oz0lOl0zmyxYDQa0TQPq5M+vr4lTOe3kKJmdTxByhQXAg8eHCEDFIMC7zs+/dzzKK1/JIkklj+Jj9Kf4mHtTTz8/R9JLf3I25/9vOUn/JsBp4/eWWpRlzfAAYEnfs+UiqklH1wEjcoI55RBgJTYeO+JVIr5fMrZ2ZSu62ibkld/8BJHh4foPmVjc51yUfHKqy/x8svf5+lHHufjTz7J5z77GVbXz4Hw/OqvfZV//eq3ePKxR/iJn/opbty6zpOPP0KeF/zxH7/EP/mn/4Dj2SEQb7THown3HtxnbWPExuYOw+GQPFljYCQPjqbUZYlQDudaimHBIBtiRcd03nB2csjW5hjhBNPZgrpp8CIONYrJKivjERsbKf/d3/kfGY52+Pt//+9xbmcVo8GLmCIlJKASJFAvqsg907CoLKdnJwjjyUcaj8N2oBIIWuK6uC5mOtpwirxga2MT29XYpbkseAchRSXx5Onq9Q+4fvNdTqb7zBcLptMzjErpWoeQmtPjY+b1lJWVdaSAcjHFS4dJBEp6lIwSiFzHNKPCQ9NQNzO8d7Gj3/kI3R8UDJKcvq34G//Zi0wP7vHxjz3KB+9dJRlqTqo5AkUvpgwGGV3ToqVgbRxtMM636ESRmZzt7UfZ295jZ2eX8Tjn5HSfrjwmMzXDoceoAmEKimHOdDZlkEWNsFSxQpLkOS989vPcuX+Xi+cv8v0ffB+jLaUvGSUwGlr6pqVpJTuXt7HBkqZr1GXJzsY653a2uXLlAnbeMxqM2NtZRwnF9Wv3OL+9gxKQrww4OjpkXpUEFVlSw2yAWWp+hdYMiiFlOYfQo7QihI7hIKezLSKVhN7zyc98ktffvoHWirZtGRYZSkVOoEkULoSYTjACkxmch3PntpnN5wxGA+QylZPmOcVwiLMuCiFMSj4YxfqXNnRtg9SKREvyPI/6eGA0KhAS5rM5bdthloDxtfU1BoNhtLH10Zp2+dE9ijSjrCLQdjAoODs5I2DJRymDJMUEwXC4waAo2BhP2N3eY319A6M1wfr4/RFg+3jAEAVkAuc6kiylt3HRsn1HVU6p6pKmswipKLIMk6ZRgb4cfrShx3tBlmWMxhMGxYAkz8iKnCxNQCzj9Ut4ciy+RQZTubRhFcNBTPp5R9M0gF4mZFqSpMAsLVhKapAGGyzJcuiS5xkQQdtVU6MSjXINHovQxLpNkPguIILC6ASTZDEFRVQ0qyxlmBf0XYOUGq1jzaq1Eb7svCfPMowxRMtXZO2sbWxxenQQK4Q4fO9p6gYlFbbrkUIwyAuSJMULERM0QpCkKYPhKHIrlFjWuBRV09B0LalOKPIi1gKFoK8bkqKIhjhp4tDIx+ueWw7PskGxBKebONhwMaGk9EPOo0AkCmUSrHW0dUkIgSTJlja1gLU9znuGwyECQddYEPHwLJGSuqxBiqUsQ3z0PHEhguVt38QLCxGO3tU11nW0S57PoMjpbIcUalnlT5b1UUOSpEA0l/W9JUtThJAkS/uSIIKkzRLsnKYFQsUkKcTEkbWRQ6KWoPfgQQqF7Sxt15Nl8bkStddxuCbVEoLsPUZHmHXfN1TVgtSkUQTgPWU5I0kl3vUkWY5JcgD6LgoPFFDX84iFGA7j2ZKUtDYe3pkkgWXy0bs4UFosnysPh2naRPGItQ6tFdkyHRVcPEAVStG2feSmhECSLsHoNgp74gGSX1ZHxBK8bknTHIJA68hQ9ASmsylrk9Vo7bKO3vUx9ec9bW8ZDUbLAVQc+Hk8wjmQEqkUi/mMLM/53v/zGygjmWzvxn+dSpA+pjdVunwutj1aa4oip+87nAp0VUVSZCzOKtLcYIJBakndVpTzM27eeJPD++8TQs98Pmc0WWNj9yKH9+7y5HPP8e7rr7F3+Qo6yfngpd8nXRvz3ve/R993nB4/QNEwmKxwsr/P0f4+O1ce5+Llp7hy8TEOb93ncz/9ZT7x3Cf51u/8FpP1FQbpgL7vWV9d4+nP/AS6l5we3aNsKrRWDIYT8rxgc2sPk+Tcv3cD10J5fMQX/trPc3z/HnV5wrw7o247FJqumXHnxg2srTh/5WP4psc5z50b13F1w/blK5ydHlM2M7J0hEw6Llza5c7VNzk6mZGlGecvf4yzg0N8XTJe3+LSU89itOblb/0eb7z6J0ybBasbm9B7HnnyOW5df59idczZ0ZRJOiIpRiSDIfl4jDKR+/Vw0Bj3cpqAYjEr6dqalZV1BD7C0vue6ekpX/8X/5S33/guV995matvfJuD/Zus7l5ic/Mct95+g489+xyPv/Aiuc6pD/dxwwnBw2R9k7Yu8aHn/XfewjUls/kh45UV8mLEadOxc/4il648wcnxCScHN9C0nB4f89xnf4a6dVx/63VkqgjCx2uUMmiTxgqe8+RJyspgTFlVNPMZK1vnGE3O8e7bb7L/4Aa/8F/+PE0Fmzs79F6SmIS6q7GuIS+S5TUlVr3nZ1PSLKHIxyghaTqLVgbbR0NlnqaRveQcXdcxnozxPlZsu75BoPHKRNGEEAjhKRdTUiOQKqI6EpNRtXOSLFbEU20iRsdaAlAUw2W91mNyE5nLRsXwgUyok4TD1PDYpz7BT3zqSX722cf55N4We8OCfMmbU0KiH5pKxcM6WUD8e5gsBfhztzv/5pn6R7/3b3mIgh8Oxo4QvPfGHT7/zN7//ON6nD/2hNK0kpTVgtc/fBXdNEz7jkQ5XDBkKsZtrVb4IJdx7hgbj7tGi3cNUkqmRyd8b3/K5mRA0zVYJ/FKoLPAOB1jEktrA2VZxmqFtZw28WOCgHSBWVXHzrpeZWN9k0VVMpCOk65msr5GmjqO7xzx6eeeJa9PuDcr8cmYRy+scevgLtkox9Y93knSZMjKisO7no6AMSlaKoz3UNeEsqUnLjJllZOIjg7JWDr2D+7ihUYHjXCORHt6qSmyglRJysUC2XZoL2maM8AxGm7x+PmLHJRzkm6dQdqSpDmn1RSdtYQuRcvAuY1tprOWsqnxOC5ffJS+nXNn/w6DxFBXljulZ22c4j1kRmA0qAZEouNti/AROt0JjOwotKUJATCxQugd1ncIGdBFirNL6GDwOG/pGo9SJS09SiXkJHH4khmSXDKdnRKkRknPOEl50Ci8CnS2IXhB7wPDfEwwZ5y0FS7x+LDAi8AgW6Nra0TvyU3BveNTHtvZIQH6k0CmNNBhMSgEqTY8dmmHctExGY+4euMoLma2x6Gx3jCdnnLz3pSkyHnj3fcIvYlT6BAipFIA/fJn9HLolnL/7ITvvLXP0b2SfOj45FOfQArJ9GzOSprTucDB8TF3Dh6wsjJkd3NAmmlu3D1EZJ53bt/ly5sX+Jdf+wOuPjhEFyla9DjbcnRcs5qnzKoOLQVVPcf3jsrGG8a+jya+uq4RwbK1vUEIlsnKhLU1x3Q6RSiDFI5skKERGBWHb2eLiixLSFRH3Qt6JzEmQ8geudwAGi3ZWFtHWIUMhnObI4RMeHB4gPewNR5z8eIudw9rTspTmsUJJ7MTdjY3yfI1EI5r198nBE+ic4ZZgvSWpmppmwj8rRtLkgluXL3BxsYaIniOju9jjMYMouVPyyWoO8ST4KhSFj8cEv3o25+3aIo/W2t7OEIK4c8uug+n9QEwOt5cCwTCKGwfIv9DCIKwCKE/2ryBjWprpZGBaHKrO7QWrE7G2Kam6XuO9me8+sarPPrYBf7q5hdRcoMX1GfZ2V3DA8N0gg5jrl27gSdwOD2lmVVc2trkhY8/y4O9K/zOb/0BoxXJY489gTLROPb8J57ic595gZ2tPd567yqvvP4Kn/nk89y6cYff+8bXWd0oeOTSHs6eMptWbO1t8+iTj/PtP/wOexc32D+6z8rqJsfTltdee42d7R12Vs9z7/g+q9ubXLr0NHdvvkdXtbx/7Q6/8c9/m8/+5Oe4d+cuo8xx7eaU1EQlufL6h6fcxiztVwFjBYlQKKWZLRYokeNsNFo1vo7ffR/rxzM55+z9t0m0ZJgL6lbQtJJeKqbTklEOZ4sD0J6ejtuHN7hy4WM4HM510a7VN6xvTLh04Tx3736IdxleBoJtETIy+4IUlHXDUGi0igamNE3p+yamzRINNtBUNa6tuLS3x+mhY1EG3rl1xqyDzWGKDy0b5x4j02W0LskORYOzLTJ0rAxyTGIicNX2XL92m3EhqNpDjmf7SB84q0sSn7AyaTG24Oj0PrsbAwQFZdvQ9i1tcLim5Ft/8h22NzJ+87d+mw5DqkcYu6DvGvLiPPcO5nz605/hw1tXaU5rnN7HumgezFTB2nibwaNr/N63vsnHPnYRRcF4vM7G9nmmR/ucHZ2ASuhstMOtpUNWRyNOl4OZbKDY3t2iKSvSQuD6irovl0DlyLKZtg2/9hvfwGsD3pKpaKPUUtAsB0kQhy5SC06Pz9jd3WV3d4u7d+5xfned+0dnTKcLZGqYT0t2dva4f+8enoDJE8qmwWQJYeEpZ2dsbK3QVDWDYcZ8VqKHGcpk+K6n7jqkhK61TOdnHB2dsLKygonhFLZWRxw6z87OOn1I6NqYpvLO05UJat2QjdYRWpAslcVKGJSIFaI49hD0NorUlCCmUH1ko1z78Brrm6sR8BziTbLShlGW0jbuo4XICEEXFEbAzLYkmWE8zAk+1sliKMLivIAglpXdEEUPIcKWrXOEEDf/eZphfUuwPYpYkfFaY3tITEycdG1L8D02WEBEuCkx+RLCw3pWhKbGTX6KcyIOWPoeG1ysDFhPL3pSHc1xTd8xHo3pbRtrakIQGovrLKpzNFWNMgleRs5mXIEDOo1ylqZcMByNYuLERwh2mibMjm1UsgtJ8IG6KuldZPzJxNA6R+djgsU7hxUC10V2Tj4c4FhydfoeYXRcp/pI8Xs40GJZTzJpspRoLGvbMo7tpIpJJikE1rXkchjr0baBZa0qSZMI5w3yo6pUTL56nI8DHLmsXPV9Tx88bdMSvFje5EtUukwEBYnwILVemtDi/ZYSkjRNUUYj/BKibju0NhT5MLYhwxJMvqzCKbVkkgiB95oQBM45siRlPm/QOvvhpTKwfA5bQKO0wPY/FFMs2jg8W5Ql4+EQvWxfOh8+uoYGEa18wVuE62MqWZtlTSQwGOR410U9eMx1gI81kgC4YOn7jiyL62fwgSDEstYYltYzh0kMSEPdtTG9ZBJSs4TXh4CSMYGsjUYrSW8dyiikU2glKYoMIyUhQN91ID3aqJiIYskWXd5JRDuxiqwoF616fehp6obEGNIkpawalBIMihF4R9mVZHkOSkWYOj6+LkWkfcVqqKCpa85fvsL8+BkOzs54Yjihn09JRKz5gQUvSbIU11vaukErhVOCRGlmtmMcAlW1YDBIqEKJUVFIUVdzPnz7LSYrCpWmJJnl8MFdLj71PE1bUpYleZHhfIt0Nbfuf8jZB9+mmXme3thFG887r71EFQTYwGBQgGvZ3nuM4/sP8KLH+56qqqnLCpWNWN3bRh9NaRYzhBc0oeON115h9/IjrBZjFqenSDx3mipu7Gcln/qpL7K6vcOFT3ySr//mV2GQUFan/MJ//Yvce+86t2+8xcVLF+ibhnde+jbXb99ksLqK6g2bl/ZoyhOeeeY5bt1Z4d4HN5mfnPHm0S3m01NOTyxr5y/ySJpx5WNPcOPqe2zuXcQ6z6LukKM19i48hrx/HYVkZecca5urPP/pz3D73rt85ot/lfG583ghyVcnyEQjg6Xr7NJw7NFp5Jq1bUNdzhkMRsgQ8EohlaKeNbSnC3xXMi3n5FnCfO7oQo4Unt4FxhubnB0fsrj6Lh9+8BqbaxnbW48wGG/iZxUfvPldposDJuN1qtkZ0s05ONonyJRPPvoUN956menBPapZBVZy77Tl8Y1t3n3pj3nvle+iC0PvAiE4hNMEKbHBxV2TlDRNw62bH5AOCtAFly4/wXdeeomVUUExKPgX//j/Ii1W+cJ//Nc499in4totY2VYBv0RT863Fmd7iuGY8NBwJiPOpO5qssQgiay8RVPjjYuSAB/AeaSNgx/rXWQohphmDDjIx4gQyLNV5uWULMlJTIJHYpbVcicsIlFYKVA+kBsNdUOjBAsRSHe3ePTxC3z63DZ7w4LkYRLRLW2mMpYkFB+9/H/YcIA/M0z6/3O4JB4+nvDnfPzP/OIv/ApAPKoQIVAHwP8HzlC6tLONUR0PDufoYoDTx/hgyI3mZP9BPIUwmrZpSVJJMhzSdRV9E59UpetJBwnKaMYqR4qealrjACEFc2Gpqx4j0nhSoCWeeBrWuSpyWTyUrgUhSVVCkRU8cekcP3j7PW4eHWD7nubkiIlWGASLg7vMu5JOr/Dk40/iZg8wZpdbd+8ShKCra+4d3efC+T0WsxlBBhItSHXB2sYmw+GQw7pje/Mi1iWcnO0TlMBoTdM6hjrntAzI3FD1Hq9ahPMcHBzjnESpGKn2LjBbgDTQ9ce8ce09Pv3xZ3AlNKHhbLagkIo0KcBB1VlMqtFGkRJV7A8O7rK+tsHmxjaLxQJMAnZEqzNqNyXNe4LIQZVx+GA0Rkuk0bg043ha0dYgtWS4qulmMSpoOwU6oJyj7B3S9qTKkOiA7S1GpQzTjMZ2SK8JwVG3p2SFYlAIul7Q9S3DQhGUomwDLvTokKKVRBtL7TIWjeXx8zsoK7l274h7+7eQQTJbNLhgubJ1heAX3D884unPXKK3Pt6gSkWWDjmZldy6d8RgsMbECmxbU4saT4cWcZJddz1GaRKZcOe055HLV7j3zns0XWQoiGKITjJkUMwXJcPCMlld4c7+bSw9r1x/n7/98z9DKRtu79/hw1s32dncIQjF0dkpXkqOZjM8lq3JCl3Xc/eg4fi0ZXH2Le6enWJMTAp96dPP8c9+9w9QSUJZdlRNSy9TgtAIHVMy1joa22CCQ6aCgUp49tHH+aM//QGzKt6ADYpkaYiRjAY5XdXStVUcfJpk+fxS+OBjssMvYlQ9zQiuJS0M65MVjvcPaPqGk2lgUkyiCtqVJFnKuY01QoibhNJNmQzHtFWJs5LJuEAQOWhdb/HBILwiLwqKwRrew437+8j7B1w+v0uaZqSJ4eXXXsL5nu999yW++PkvfGSK8cHFTesynST/ghXzoyn9jw6Twg+vBmH5WbGp8MPThoiBiLwH1zuyLItwziAJQtH3EUwvl4BRRHw/1hei3SkEKOuSeXnCKM3py4aVzU22zm/yCfkJPvfCkxR6xKJ1FFnO6mSPd959mwNxjBCSyWDMT3/5C2RZgsrhrevvYkkIUnF0co9Hn36BP/qTP+V0Nufc9hb//X/7d7h48WlOjk4YT3Y4eHDCS995let3r3Fyus/lx17gb/7if8Gv/JOv8nt/8luMRgNe/OwXGKUj3nn9TQbZkEt7u9y+cx2VB6p+werKhOAt5dmC+/Iah7dvs7qxzv/5j/4uDz68xda5DcqyIlUCZGBRlaiQILXDJPEEHG/RJsQkim0RNTFmLAqcFRH8PD9C6wikdKkkCRlBEhNtvSdRCVpDEXpOju6yOhly/dpt2nKKkY5qVjIY5JTzU5JCYZ2P6letGORrLMqO47MFg+EQlRkGpmD/3gNynVE3M8qyJkkiG68Yjqn6Km7g1AjnLLbrccrhUse90zOOpw0qwP61NyhGq6TasFKsUddTSgt5mhNEhaQDp/HOc1a2pEWKWMw4nt3iycuP8td//ueYnp3wO3/4Nfq2Jpw6Xvz8C9y6cYuThabpU5JsTFk9WFZ+NNIplDJoabhzdoBsW0bFNoM8ReePk+nA+++f0PWB+WnAVxmpXqOzPVoJbt66SW8D+XAFZy0yMxwujlmf7FHN51zc3eOODdzev402kmwwxJcVUsKirWi7Gh8EvZXYzuG6nmJ1jXunB6wNx0yPGjCWs6nAiZJkDEUY0HvLcJgzKAzzWUnbWLRW1HUc8kTYpkFIwYdXb7CyNea9qzepqhZkwHYdxWhA09UsqpI8z2jrGoSjb2uKYYptBSdHJySJpusF+TDDiYBtOoYba4T5nN530Pc0db0E71osHWmmmM7n1E1LbVuc6/AykOYJ1gqsXXB81iNtxvmtLSAOuJXyUTUcAnLJC4z3GgGhbKw4pZK+6slSw3iQIHWK6yPDQShB7wVKiGhtdR1+aXJr6hoZJEIpmkVDsZojJJggsT6mgzwxdu+W6QahNB5Jb2skPlaupIxgWGeRCKSCzjm0jgp656KJMghwdY3WSdzMax2j/dbhOocxCUpI2qAISsdTX+vxbR8330mKXlaYHsKhwzLpcXz0gKLICX2Hz1J0ppFJxryuKJI0Wt6kisO5zjFYMkmE0UijI+hbOISOmwqvJT7RSGPovKO3McniQ6xUixD5O3iBCkDw9F1HkWbxfR+o+pZUaqT3y0RSj04yfJRWE0S03unE4IMlMTnOdsvhimdzc5NFvcC2EcSvRWT19D4akwBaIoPROcdisSAvhhEC3bUo4QkhVqtcFxlURZ6TJBlSarwDJQVJZghYvAxIoVHKEPoycp86jyCmCpQyKK3ouybKU3QcMPoQkzRaR8NYWF4DY4IqAWLVLYR4ELtYVOjEUJgREQ7vsDbWxKSKw0qIWm/10P4mBNrEHZcIOjL1nItV06XFTxAHrS5IrA3kUtLUFVkWD7h6G5AyZZBleLGsnqslENx7siJFK0VZN8vBU6y/Sy2WlTVB13cRvq0TetHiXQ+piYZbH7lrOtGxLuuJ1yhChIE7j9YqYhweVsiC/0gkZG0fzWpSRegygcQsmWhBEbxAy4SyOWY0XMELiQ+WQT7EKEPfRpPcKCtAxWujcHHQZ70H5zC9o/UeJ+PByxOf/Rxvf/cVXv7D3+f5n/w8rm+obY31Pj7ntMYoQ+Mcs8UCIxQqS0hCHPwqenoMg2FKnmfs37/DV3/jHyLoOTsj7pCTDUauwwZHN19EppuKw9ur73+fm/feQSUZoRaMihFrF7b43u0bHN69z9rKJtZCPa8BSVOVdG3HyGTMjk84eXDA3/qffhHblOTDAUkxIc/jobvQCSJo2mDpphXVbMb2pct8/me/xEu///U4+Cbw7h99i7qZoVXGUA75w9/4dbTydK7mjZc+BDVE6SG7jz3F7u5FUm/YffwZMqP42r/8u1gh6GVgPj1hY3eTs7Mpznhuffg6ufKsrOzR2Z7BaMDR/gPWz+3x5Kc+zVf/0f/BUxubrK7v8f0/+B1SMUDIAlcWCC9JixGt8+T5gOAdddngrCdWXROETvEEattT246VlVVkiNUq6QLOl9y+9ToHp/dJhxlGp4yk5mNPfJxze5eQnac8mXF3/yofXv3XbG/v8YM3X2Vw7gIXL7/Ib7/yMgc3b+Bzxwuf+QofvPs24UFAJxJF4NVvfoO6niJCR1n2YARPPv8im+sX+Oa3f510nNA2mkRV9CGHNNC1DcoJar/ApClIwXC8ijEJTz73An/yR18nSRVpmjE7vs+VRz+GM6u4tiELUDvI0gS/rAC70KFkSlmdoUwEajvhcb0lVYKmr3DWRztlCLgAdDXrW+uEPpoWO1sTJDTBYVSGUzEh5KqG8SBHCskwVfS+YTwuMEHieo+VEqGjZTRLUwY6IVjBgkA3zhhsr/DcpT2ePrfJbpJFaVfwOJb7DOLgPWqAAgQRwwQiTnBE/OhSvhk+2mv8+0gq/bsGR/82+tKPNjMEgIzrIvLH9cDi24+98vbLf+9/+aUPbtxlOptRliVG6GhG8j0uOCyKrBgyGg/pu5bhcAwikKQpRnukc/Q+kOrAymRAV9UsOhtfuEEAUQPZNv3yIh0nxcFDWbY4G2j7loACEfvwAsWinnFuPKZpbATMNTV1E2PDvrM8uncRkWZsb23z4OAuEsHZ6dnyxCcWcZwPrK5tMJmsYhpLVztkiHfJZbXg1v5dssGAzHjqNmCtpxeOndVtmnKOMoLxcMDqeI1EGGZly9raKlILehsI6AgtdjFWPhkO6KsZi6akms64c3gDj6WxPXUHPhiMSVhUc9q6ITiYLUouXXqcTKQIodjd3CUbj5lkGRuTIacnpwgEaeKxHjrnl6dw+fLiHU+RU+PINJzNu7gBIND3IZ4MWU8rYt+9MNGypNMEgif0ApUMEFogZENTWzKV0vSWWR8YpwO8EKRZihDQdDFSHpZAQ0NOWfecNlU0DgnFIF9ZXvig7mvKusdjubCyyffe/ZBgDAJJ7y1dsIxHY7Ik5+6dA+Z1S+cqTtuGYZrTO1gbDzi/u07fwZULe0yGG1y9dSeyUEYpG6sT9jZHDIsU7x1tVZGnI+6cnPHpT1ygdpa//sWvcOPWMd/83utUznJuZxshBYumBgxPXrrA5XOb2GbGycmcRih21saczc4QytA7wYWdDdbHOcNhwc07ZwzGKYg+RmmlJoTIdgohxshXx2M2hin7Z3OapuaRvct0bRshnijqsmVldYQQlrqu0UmGJdB2HoFGKdAqRQgH0uMEeBwiaLwLpGnOol5EE6Jr6foKGyyNdZyWHafTBmk0Acn69hZl1bF38TL7+/cpa0cI3TIOHPWpRhuCtUzygtWVVZq2ZV5OKcsFVbNgbTJhfWWNUb7CZCXnmWeeoW/7eFq5PBV4uH5KKZdKY/mRce2Ha+syxhkeNt1+tO/8IxeAH/0Ty6+vlrpPDZgkxS/h9tZarJQoKWKcPoCW8VTaO4eWGmt7TJKgtCJVKaPhmKqruXXzNk888QSffv4ZPv7Ek3ivSbRkUS74lV//57z9/iuMVye8+/517t26zs7uHt/61u9z8cIu+XiFH7z6MscHt/jw9i2uXX+P0+kJjzxymQ+vPcC3LVc/uMVrb73L917+U67depOzxQEvfOZFnv/403zqmU/SNwn/+Fd/hU9+4knef+f3aPc6AAAgAElEQVQdTFLw+ss/oGoXbJ+/SF3PWFtbZ2W0xvb2Dl/68l8hy8aU8zMOD+6jpaXp5yxmB8xcySjfwqiMrm9pqjltsBEcLTVOPGRZpHShJx14EIHO+ah4T1KEFQRvcbWnbRQy1VgR6B30rsMoRVYMSJKUJElZ9CUIz/GDWzgCZVWjpcXoFK0ypM4YFgWBwHR2iu17xuMhgyIlU5pyOmc8HlHXc1pXMZhMQAacq1AaViY7zOdzvPRkpFEwEARBxeqF8JqLFx5ByMB8eoxIFMXKCr5dkBdJhPtTcP/ODZSs0QgGxQaJWccLjRIZa+NNtrfGPHZhg9XhBmsb5/nw3Rt85St/idsf3OHFz3+B2bRm/7ihq+aM11eoFwckxmEShQkebVoEDdq3jNMJvvXsXXqck5Nj5qd3aZoZg+GYqzffp6pAJvHUMQRB1deczqcsyprgWu4e3mZzc0LuHA8OS4qh4fDBXQ5ODiiyNdqywzui1coHggtkeUoxHLM+GaKMobMVna0pkhQbHEIZrKuRIeBsR9s6etfGzbgTS2DxQyRa3NA1Tc9wVLCzvcO1qzdoqiby05TA2TYewsnI0yvnFcUgBxkZOTIEjJIMhxlN3ZElKV3TY1Ss4+gkQWoYTYb4vsdbyyCR5Jmibmqapom1QtvSNBXjUbTdzI8XbG5tkKSa1fGEtvG4EPB9IC8GjCYrBKXQS3iw0klcS0TkHxmpEMLQ9g3z6RkIyJIMjwTvI9BXavoQh6xpphEKQFK3MUXXdXZZfR4shRAx6UJ46LsIqIeLmog1W6UlbdPRNA3j8RjPUmNf1QBYYpWKAIM8i+ukjMMj28X6X2JUfHzaEIRgMZtRjFdwXQMIsnQJm0WwaBvqriMzmkTFAZBUCu8sfe/QSUrwljRNEEFGwLXStG1PXTcURRENaTrWLLrgWVlfp17UdG1MXkgR602pkPjes2gbhoMBidH4Plp+lNaYLCXLcvwS2i6XdUDfW8rFgiRN4xBFCGzXkyYJQcDq6gblvCTN0phaCrF22Pc9xWiINtHyGpyntxbreiQS20WQtVSSNM8J3tHU9XKYEjk9EbIe9deDwRAQ9F20uQXnyNKMeVXGIdMS6K90NOghIseq7xuCjfBl7y1VU2GdpW86ZBK/brTr9TRVGU28aUbfdR/ZlKUUOOfjIGiZlIoJIej7Dms7qqrCaB3B5UJ+ZNQLPqBNtNgtG+FLsxm0fYtQErOs/3nPsqJrYs1raUCTMhrjut4yLEYYbUhSQ9e1eB9ousBoZYyQajmcBSEity1YG4m9IgLwtTHxL5IxPadEZIEJoZAiMp2UVBTFAOfiJl9I4oBQa4zReBcxDU1VLZkv8eKfqgTnA1E1TuRwwfLxB/SSW6aVjL8GbB8rmE1fYesenRqkDGRZEVNrPuID6rplNJosQecBFzxNWcXEhjbxPsp5suEYkycEG1jZ3eXw3m2SoiDJMpwPpFkROZSJIfg4uFtfXaMsa+r5AqPifcjZ4oSuaVgZrzCbzfjNX/uHzHyPThIqJyBbBTPg/JUn8dMFH3zwOleeeJqrr72Msz1HZ3dZVFOC84zXznHu3GMMB0PGwwlNU3Fudzdez0cj1na2WJwesDg7pZGaxaKknU95/gtfoK1b8JayOuPczh7WR4zCnZvXKVaG7F04z+bWLtXRIZ1tuHvtfS4++yxXX3+bxlqGK2s8+eKXee+1l1ldlQxGE/YefY56UWLSLQaDjCee/hR5sY61no1LFzg6fMDq5jbvvv0Wzz33Aneu3cKnGTc+vINJAov5Ebf3r3L13fciOzApkGQkaYY0hsnaLjtbu7z5p9/k4OgOwc74z3/xf+DJz3+J8+cfY3Z0yurmOUZJRnCxshhNh5IkTeMgtHPMT88I3jJeW8VLj9QpvfN88Mqf8sq3v8ZoskroOza2z/Hsl/9TssGYtZ0LlM2CosgpywUq0exsPs7162+w+9gn2Lv8FLtrq7z55nd5ZPcRvv3Hv0vTTfG9Z2W8SlmWzM6OCNbhHXil6Lue9ck4Wk6FIMsKHn/uL3E2O8E2M/pgUUEhTYLJR3R9tK1nScHm5g6D4YSzs0Pqpc02KMmLX/k5Pv7Mf8Tv/u6vsro+ZnX9XOStyRDXSGnonWPRLBhkY4wp4r7RB1JlmJYL8iTFKBW5iV1L71tyU1DVVUz+eYeUAiUjv0grgdSaul4wGY4QTkXrZJZglKbrPTKRJFm8HvkgqQLYIiO5tM7Tn32Kv/LZZ/mZK5d4dGXE+P9j7r2aLLvuLL/fdsddlz6zHFCwBAgaEASbZA/bsL0ZdUdLEzMaKWYipNCTnvQR9A2kF71MzAeQFKGRRjPSaNS+m2SDTQcSvgCifGZW2uuP2U4P+1QB3dETGkVQId23Am5m3br3nrP3Xv+1fktqQghYIdAy3a8l8sne5BPC0CdhCIFM96f+0PD/mZD07/v4d3Blxaf+e5q7BI4tfPzObb7+hZs/s8jbz1xQ+m/+2//uv97d2adpW0CjZIaRqt8gtTRdzappid4iXMdyOWcw3CB2c3zd0YWWLiiCDqy7htxs8uIzz2LocD6QF4ZMJQeMi6SWDilxNjlQPJJqWHJ1exsfOoIIPPPUDbZHY84vZ3gLG3nGxnhICAkKOSmHrJfn3Dk65GR+AbZjOl1jcoOVrrfdATpiypyJKcmDpBhUzNdTfLB0tqOpmwTy8o7lukFlGQcHN6iqitl8Qds61nWLs57FagUyUmXguwT59j4wGk4YDiQ7u/tsVUPuHB8xX825rBc41rQu/XujVGxv7GOkJMSW0bgAkeztq/mMy/kZ63rBfD6nWdbMZpfM5xc0NYzHmt1hwAaJ1AUqHzEsRmkq7TuMsOwNa7ayNecdFLnA2mTVxaTKV6nS1Mr1i3vXdDhrUapgZDS2bWhFQEqFkiNWTUjVkcGhomZzNKKrLc4FogjY6FPta7SE4Am0CCKFkqyaGa3w1MsGFbq0gFcVKs+YLS2IyGw9o2ks1/Z2eP76FWazGeezKcE7ZrYm04pROWQxm7MzLvntn/8aP7z1EZ956ipHx4dUxvHiM3u8dHWHrbGhGpZkRc70YsX7H96lblpaKfnmV77Ov/6Tb+HbwLfe+D6X3jMebvDy0zcYFYYqKxkNKp5/6hqv3LxOEwKHZ4s0oalXLOslOtNY1/HM/g3+zbe/x3zVsfaea5tbTFfLBDGcNylSqUhtcQ42RkOuHezRrQLWC84WM9bLC77++peYzRvqpqHf26KEorMtq1WLsySlPziE8EiVxE6hJNYGMiUwmeDy4hKlI41rUVJzsLuPlAVr17A1KVAhcnxxytn5OSp4tiYVq2XNYnZOyHNESLZyJVKdelnmDIc5UXiaZsWgqEALtjZGVFXFqJpgTEmRFXz5S1/gyvZeP03kCTvpEwxScl+JXgB6DEZ9/IwYe6O/gEgPTu2Dx/FxpAP62FovUPXgUqUNLkYW6yUCgdE5rbUgUmtiaH1qP8lNap/wguBTp0TXtnz80cdIA21n+eC9Wzx4eIeXXvgsk9EG0vdslZCqKqQQfP5znyVExfd/9AMOT09479b7zLsVQniWs4boLEtXsznZYFTsYW3k+Wef4+e+/mVeeeUVPv/5LzIoC+4+uMdyueb88pimbhhONsiLisnGFtPZEf/Jf/pPWMwDf/rHf8pgUrJ/dY+2bjg7PaOznnXbUo2GEAqKckhm8hRDu7wkRAulwq9qqnJMbS0ySjpn8SJi8gFgaOpUK42I7F+9hm9SA4/MFOMiJ1iRGE2+Y1UHXP/Z6UyDDWkCWFY0tsbZBms7IhFFYHdvlywbM7+YMxlVGOH56pc/x8VlC7ZlNrugqWteeOE5nr15k/ViycPDO1gRCEoyGIwIQXN5fkG77mito6p2GEy2mGxssJ4uGA/GKKW4urfNc8/c5NqVqwgR+fwXP089WxMJXMymdOsl4yJSFJrlfMHl5RoXHINhIEOgZMV02dLajpCleutKD9k/2GXvyk18dJyfnbJetdx7OOeZq9eZrQLn81OktMzmU0TWkAnJzmSXIh/jO4t0Nd4ZxhsHKJ3hQ85iecbV608l105jiXQEDBuTDVbLBQhwzieWw2jEzu4m08sZ3jq2t27w5jvvkmUZ83bKvJ6T9+wVby2ZNuR5gYuedd3RNR6VZXjf4EgxPJMXtF2HFjJt8FSkQ+BcoJCG8WCSQLsu0jW25w0Lus714POcwXDI4dEJVZWTFZrFoklcCgRd48nKvG9dsiync8rMMBoNmU+ntI3lmeee4vXXX6W2LY8OTzE6YzgZcvHogvNHU1zr2NgY4azj9HSJDwJjDJubGzRtx+XFgtlshRYKozWT4RC6QAywbi4RwiHwtF3DbDWlMKlFtC/9wvQFDjJCpjTed6zbFV3nMHlBWQx67k5IAGql6HxExECVJ4ePbyNd3UCWyism4xFSZ6Ai0pHcalLR23D6iE4AKfpqdknXdARIjTomHXqt9xAV0uR468m0wvTMH+s8zjuCdUgFRkF0AaEzIBV8DIZjcC0mk2ip0qBJKjrbEPHkJkNLje4FJe8tTdOhswwRkiPK24Y8S7D81WKFd55yUKKVRvWEckmKbc0uLgkEiixDovC+RWcZtm7pvGVzOO7hy47Qx5+GwyFKSrq65bG6kYZ+nuV6zXA8RJokfMQQntTcN60jU7ofWqRI2mPRMxBTxKztaLsWbz1Nt+7jVsmpJnTih/jWYus6tc1JyaCq0Cq5YyBienZR03bkWZngzRHqtsW6ljLLepErIkWqu5Yqo7Wuj1gmgcNZS4wK7x1ZrhkMh4nPUy8JMZDngxSBcqmtR2vV85PSsCM5cZMwEmOgaevE0PQeZQRa5alFsU3RdCllOmjrNNTxLrlzTk5OQKXI3aBMTDLTC0lKpoGj9x6lZYqMYVFSJFFRKKTSOOvx0VNmJVmRkcm0/xak15dp07O/YorOZ0m4DSGm72yMVIMRtrP4GDAqSxywPE+x5pj4hl1n0zAu6yH5/drf9WBzY1KEUukEBibGpFnJxy7ntHdQKjm6k0NZ4HxEaIEyinXv7npck57laUAaY4rLZU9EIw/RY71DAMVwgM4LVJY+s2I0TmB3KTBGsbW7y70P32d7Z4/gEsw/dF0aYNVtchfKtHfTWtHVa1bzS7p1lxxaUqIGJUeHd/nlX/s9VpeXnJyfJVZfXvL0U89wcv8+ZxdTJjubCAR377/HxfScotKMBhM0A77+K7/D5ckx1caY2FjK0ZjFaklWFGxubPHBmz9mOluxv7uDb9eMN3e5cvN5vLcsz+dEbRhsTJBaIYuC04cPmF9O0TojKwref+ctsmrEYrHk+vUbXD48IR/lmGLMC6++xigfMjud8dQzL2DrjpPpDOuW7F/dpxrsMdq5ymSyQaYk+wfXyaoRX/zqN1lfTBFKcfToPWzjCM5x47nPEWzA2whZxtPPvYQZjhiMxgyLMePhiO/84b/gRz/5DvmwYrG8ZHb6iM98/hdZT+dIY9jcHafIolJ03qd9tk6RLmsblssFs/kl480xWucIZch1xmK6YHlxjzsf/ABPgzSKX/z7/5iNnWeRxjCYbNKuamy9pKpyXnn1qzx8cMzF+SN+4Xf/EcPJVf7sX/0LTh58yGw1xxPZ3tpnPptTL6d0bU2M4KLDo9BZzs6VA/LRNp/7wleYDLYY7OzwS7/2m1ST6zz4+IeomMD8QUW07MsahGTdrmibFXmWc3rxCBkEmc7Ihztc2RpzeHTCj995g9/93X9AjAVepOGVQJEJg183NO0akfX3oSh680aDsJ7huCLE1P64aFZM8grXWCCQZYYsU3ihEMpgMplcS22H0RKRlal4ypRkgxxhJTrPU3FAkdFORgxu7PD66y/xG1/5Ar/43E1enEwYCIlNIDYQAiVTOx3ExDMTjy06fdsnMWXeiE/EpfiEtvF3qTXx08/81P/7tFfob8OPYn8u4e/4uU/96dO/6vEE/N8hGH369fyNSfzffrpIr5cYOXGC2+99zNe/+Oz/fxlKdj3n7vkRjYuUgwmjjU02BiX4JXePa7oYcDbV2WcyJ7qW1XxKXS+p8gJJAXjG5SbRS3bHWwykYKUiUjpkjChd0FmLQFJUI3IjaBdL1p3HRI+KgeOTB1gnQRmWs4b9G9uUwwGr5gIncnaKitg0BCVwtuVEBMRgg67zNM2ajshmWTCUGcFI8mpMU695cO8OR0KypQtiDKxtxyx4NIasGmC9I4GR03RkbDQX5w9xwrG5tUXTNXgfycsK2S5Z1ivwEaLGmIigZWNUcX1rwMnJJbOlJ4jI1vaI3OVkusAM0gRwYzhi0cxx6xbjHUoVBN9xOq1RvWKssHi5pBxKDBJTBLrG8WCdIKgmaxHRIqscYySdS+6qLi+4MnDkWJQXCCeoqry/MEH6SO0CWgtkDH17S6QqUrzKKYH0GhEcNtQMDTiVOBQ+Gk7O6wSBVQ5hErMhWonAk2WGddMipcUKQ8wUy2VHmSmCLGi8ZUvlrJrAc888zwe33mV7sMV8teZiOmO9v0WIjjwzXHZLGteyocfYzuFQ3Do84p/9r/8Hq9mcW7fvUuSCL7x4k81qTJYVBBEZ5wV23fLO+7eY10s2yoKb13b5N9/+AdNmzf/2/TcJwbI73iY4uLxcsm5rbh8/oMhydoYVF5nhpaef5cHRlEfnl2hvcUgWjUc5x5/98McYqVitO25e3eHjh8dPmnekJtXERp02bUjOZlNmi0u2qjH3Zme8/NxNPvpozsnJBTc2Nzg/vYCYOB5CGpSpkG2DwqfaZyTWRXKTMRzlrNsZuRJkucS1HaNhkf7umEMUrJuazOS8fP0Gr774LLOLGW/decCpv+T+yREPTxSDTDMYjZEqp+46xuUGw9EY5yKZEYjYsV0F2m7JfN1R6pJCFZTFKDkRjcIHS9O1xD5KIOLjMEK6EUqh0TpL008ESEnUPeegz2mDJIS0ODxuu4nh8WihDx8HUnMjJJBilEgRwEdOTw/5yZt32DqomOQTdq9fQaDJy4JlPSOEBlPkqDw5LlfLJoFrJUzGY+58eJvnX3qey4tTXn35tX4TK6id5e69u5wcnrKxXaKM5t6DQ+7d/bg/RCRI6lAVnD06I4YOlY2IQbI1GaNNxc3tHX7r136dze0rOBs4OjnhO298lze+91cMhxXeKa7deIYfvPkumcx5+81b/P4f/Mf4NrC7vc/+3lVs1/D5F7/M5u4ef/bnf8Ld+7fwIqIyxVNXnufs7JzFbE6z7hCmoMyGjMfbPGrvs7mxQ1Nbdva3uPXeikp4slGJswIpOhSgAiwvpgitaOOavN+MxyiTwCk1WgsyqROvqktTZ6UFWitUVKzaFVGCFlCUQxbLNd4tOdjcohwPyExA+YAWhqPLI5ztyExJVgxw0TDe2WO8vMQJ6NaRanATFy45P5/RtZbc5Gxu7LK/f53RZMj80QXPPv8iTd0ipWBnZ5/L80uGuuKjH79FlcHp2RmDasTeRHJ0vOQpU3F4eJ/x9gFKrcjLQLOqyFRFjCvyvKCsStDwwd2PGI6H/Pidf8vNa5ucz9aownB+csr981MOH95CRMkwr7h+bZfZ8hBrA4PBgONHF1y58jzPX91ha2+T92/d4fDBA7p6jURzfn6CFDnzVUNmBkyGQw52Dzg5O04Q2KiQKkNGy95wxOVoDHnOH/3F/87e/i6nFzMODvYQGJrG0rgFwTu8Vni3guBICP+O1fwCrxy1XbE13mBcDKBz1G1kd2OI9QLtJGIgccuGTBdUwyFxMWe5bhJwM0RMrmmtY7WoeXDvkExrrlw5wNEwm9fojMS3iZ7lbJHEkMygtKbtWuIiQTyVMpyfz3g/3ibTmjzP2T/Y5Ox8QZZleB8YbwyQusDFhqzMUDqj7SwPD88RwuMcjMclq2VD3rdkjQcV5XCMInC8WCD9itW0pqgLNoYjdiY73D9+wPb+LjqnZx0lFlL0Ak2G76bkmUGZxH8QWcY6tsl50otBQQJGEW2DyRTC+xSfyHOsWyO9xCEIQRJUckfGEJ44nIJNjTdKwnq9QOsSUGnqJRVaZljbkVcZapzcmj5GohRkWYYCFiGtB96lQZFW4IJF9oVjSNWDUtN17IJHR40hMaXQIrFrhKBtHSbTROvQQhO7kO7FUUBMbBGtVXKaAI8HAFL2zjbXkpvkoHEhudtElHTRk2cF0WSEvnnVSEMQMk3/2zXed4DoGTziCS/ocVsYMRJw1OuWMq/ApLahEFMjFzEQvCMr8ifOLy2T66TtOnI5SJ9ZBzGKvvnM0TqLizEBbY1ABZfWrxiS80aRBBptkEpg5ADb1UTboYVCmYLYu1wBlJbE0CKiA6lSzKJvxrVhjYuRYVYiRZrSex9RSiNVaiCNMSJUcijSu/NUNcTZFqPSNr9tPDEq2nZNUeZIoQnRQwg4b3HBkfWtfYQEUY8yAfWLsqKqhhSDIrmHfWpmrX2gzCpsU4NURJE4UIIMIQLWtRiV0XWWTgZs+0lZQySJXKovIWm6Dtd1qZSASC4VnbXpwCslhTJJfBHpc+hch/cpzmedT7pr8HhnyfIMQUoufMIeSZPhqANCpejl4yZX2UfjhQB8/9V9HJunZznKXixznoBDSYNUkhhSg5vQaXjlfUT2rv4YQz/kCr3zUKNjaivzMjVB2hiJUiIDlNUILSTT8zPGk03aeo11nqyoaAkUKkM6QbSeIiuIE0ExLvn+//w/8Yt/8Puc3z/iMzde53f+4J8ipOTRnQ85OrzLpBwgg+PuBz9m3Vq6uOCD97/Lcj5DFZoidhgfqFeWYgQRj8pyTu89IC8qjh/eR/at2sfHR9w7vMdLX/kqhY98+JN3+KV/9I9plnOKrOT25QlXbj7TO8ZgMsyZbGluvfcReSXRecnm7gGDKoPtLc5PLxjujPnBd9/gi195ldK2HN/7GK0i3/3Ot+liy3g8JKrAw6MHdLbg5udfpz67ZHpyRplXmKxkvD3hQ+8Z7+6yfqtme/8auZS89trf41/9D/8cNdhhPB5TViOqokjiZ3B07Rqd9+Um2ze4cfMGNzaewtk1TddijOKD7/4Fi/kF1599ie2rL1A7jxIiuVa1oRiM0KslRT7Ey0CVZzQW6mbF6bxBDQfEMuPm069x9fpnOT08pigLtFBkWjNvHOfv/oT64dv4Dv6Df/BP2BoecHl0yEc/fZuvffO3+PjtH7O7u0053OXo4f0+UpdKEwhJDhFRsFxM+flf/x2Obj/kT/78f+E3fv8fMl0suHrlgBuf+QYffv+PU1qoCzS+JfQDj+gDjYWffvxTBoMBKzslr3LGWzv8n3/4p+iq4Le/+TscHl4w3oRqOKQNFi0VIUYaOsabGxiVIYVJwhXJqT4cjxEhEnTE2YZAiy6GWLvC6CwVGkTQMonSqhdpmq5lvDmEzlJkhrwqiVrQjgR6XLJ1fYfPHOzywmTEsF8rUwQ6pAiblGR/Q115knn4O9Nej2Wlv5l/ePx4/BMeUodsauz9W8/6ux6RdFYR/zfP++T5sY/Y/l3P/5uvDx5n15Kd+TEvNkbSwAKIT1xYPUJERrogqFIbw8/s8TMXlHQ5oipKdsqSiKQsQMk1dx/cpV5HMm3Q2hNdWuh9TCA+nZWJMaBSxnmxaimMoXUtqzaQKYmI6efWdp3y6g4yqchzyXyaWDJGVjRNQ1lssLc/4vjkhOOLIy7nJ0yGQ5xvmXeOtlkhbJsaRKTi524+y6MiYzAa887b30OrAo+nyEdMSsN0FchMhlwnlO9FfUEUEaOHbI93eOrGFc5ODlkuUt36en6ERnJ89hDhLcIJsrxgPMpZL9aUZc7ldArR4jwYnZPpnEIrKpGnVrv5mt2dimExYbZeUJVDVt2cjWyXQilWnaVzDu8cbUw59RAjVTlgvDlhej5FSoWPK8osEIOlXncYXaClRsVUtTrMWhaLu6ybHISitZJ5q3jrYQA5wDrFaCjYKAserebYANFnCJLd3HqJjIJMVVTFBGsbdje2mS6maUPUebxQSFUQacikoA0CIz1GpI1z7OihmhG77jjY2Ga2muIiFEgGW1Wa0qmctlUoPKWQ1MHTuEAhMgpl2JmMONjaxnVQrzoMUKHxwVGaQAgrhtUgAWi3xqhMUI3GCFVhihJpEuCts5H3PviY+ycnfObp62R5QZ5ntJXkuau7PH3tKqN8izff+5DluubDhw9p2y61CW4U/Pj2bb777vtURY7zNavGUSmJD4GcCNawMTHM5isijrPzS9auI4uCzKQp2rpt6WyLQlGYjDIrQUsCnq+89CI392/w1k9+yq2P7zMe5cRM4AU0rQccIgqkjKAlVSWwrcQ5zyBXTMbbdOcrVAkDZbAyp3NpkouwWB+4uLxARIkdlrynI1IYRuNNpqs1pfFI5Yg4ijLZ+zOzzWw5Z5BnFOWAzk6ROKYrz7JuERiybMByuWI+b9janSAnWzgVKEyydAuRJryPQaV9LzePa5Ahta49jsRJpcAHRIxIQh99Sz8f+spnnrie6E9LIH1IjQ8mTRxHuxt86fXP0TULimJAMShYTGvmsaVdtTw6OWRVtwyHFWVZ0tiW2DYYAyB4/jPPMiwrXnn5ZaQ2LBZLXBcYDDLKzHDv0X1MdUCmRsynCzbHm3z2hZf56M6HzBZp0lTpjMHWhK6DydYOq+WCZWwpzQ2+9dc/4sXn5gg0f/XGd3jrne9TFYqyKIkhsJxPMVnkR2+9TTWsMFLz6PiIX/61n2fjYJs/+cM/4i+/821e+9KXyZRmc+OA+XrBcjrn3XfeRsQCLSPrxZIre09x+OA2esvw9JWX0NkAuzihtZEYBba1sJ7jkahMIGzAxYDvlrhOYGOH9VCpApRla0RqUpMGVSpEG9EmAY9t8ORa0fm01OooCUi87bAuHSIv7SmqK5h3DWdvf0TnwLImekEXPacXC1ZNoLMr0CVd3TIabtDWNU/t7XN6eHvwu3YAACAASURBVA+pHKM8R8qAaJecPbwgEDg7O2FxuUDnmkcnDwjRU69qfuHvfYPjh/co0FgbOTr3LGvHeHtMflyydg2DSoHUSAmZFCwirJYrmugwMrXxvf32rcTNEx3jXHHzynUmmz/i9sf3uZxPCWqD0bCArmV3ssH7P/2Qi4tHaJXh3JDzhWcy2ebe3UMm401OLmZYf4FrJEpUdCqwNRwhCLzz3o+p8hRbRqlUYy0cj84vOTo65XNfeJWNwYSNzR1WnWNxseZifsoo20DlOboqsW2NzhXLNlWmR9GxWJ6nZr58wPRizUzPiB6qfIB1SWRSxRYPDx/goqMNLRWDJ7EbIdJB3zmL1gmIu1rV7OxuoKXk6HhGphXRt4goKIsSFxRaaUwfsVmt1oTg2N7dJYpUHz69mCJVQErJ2Wlqlrn69A3efesW61WLaSOuDalVVYA2ORLBaDAg1wqTG44fXSKE4nK6wijFRgwYOcCYhuDWxKgQuaR1C1btCpOr1CCHwgabKsGVx9MSY8BFgVAaH0GIiHOOpmlQfdRMaZkEcRtZrzs0krpr0msTCtGDzmN/25Mh0rYt69WCrfEmWgo675ACbOsIzpMVOjVuCVJbJ+lzFzKSqbKvYu7jvTFxXLwPmEwDES0SMDnGiAu+Z9aAMvmThjThUwGHkZIiM2SZSYfw6Om6Fl0UuL7hynqHCwEbLM5biDE5k2TiAoXQ38tFWo/UkzizIEae8HqstZRV4hlFmWDPKqYBQ1YUrBYzELJ3cgls5whRcO3qFWxnEVIilSDPxlzMpmTjivWqJisKIr1rt49jKqX6NjOZ3EQBgnVkRZVAtjKQmyw5+bpAdBJnU0RM6RTFRkhCSPiGEGISvLPUeqVNajl6LExIlSC2QmoIkUwX+OD62vs0aHC2heDprEdpUoQvRFzXIkWKZYcYWC3XZHmBCAFrHSIEBAGpJNKlNdQ5j/MdMQSGgyFVVdK23RNot5TpmsqyNExK9fCJXaS1JssypEnxxuhjf+ySSFKMJHiPNgpBAPEJ7FxISRSeGC3RpUa91jlKUxF7KHZMM0qC9wmgTkSZDCE1QniElGghUPpxs1boSzKSo0gbTdcml4ULgbZre8dQYh0ak2Gt6x1UfclKZpBaEzsPyD7OQn8a61vkQmKO0e87Hh/IlDHQCwFSCqJKLkLbJpFRyfR9Cj72fMEkQhljEqw5ClwXKAYDtIcuBmTUqeDDeXb2r3N2/IiN7V2cbSmriug9ygeUoYdBJ0edjDAYb7O3vcVPvvsGIVj2r99gPjuDqNjdOuDrr3+Vy+WKh4eHPDi9T1unIfLRw4/RRnDl6gt0S8NifcrLr/wcg80ttMnYvXLAxYP7DDfHnHx4zP716yitmZ2eMa5GXNnc4Z3v/wCqiqvXbrA8O0cpw2q+IB9WdI2lKg2HH93m9odv4XXHnQdvMdnaYXtvC992jHf3eXj7Np7A9PwR7/31Dzi++z5Xn36Rd350zqLt2NreomlqsjInL4Zce+4zbO/scraqiSKw7ixbu5vgBbjAlWdeZmT2GJVDNq8/x4OP77B55WVe+4VfY3trwnhnD193SGTfQttw9amrPP+5/xJdlAwrw/TRBYs7t1hGQbee84M3/pjR5j67T72EVJpMCvK8QGiD0Dnz2SXZYEKmFSIvUDKj7eYUZc6rX/sF7t95j9/7p/8FZb4N1uNsTTUpqJuOux98QKYCcrTFR+/8OZddh5OC8+MZp6fn/PJv/QFFZljM/gJ7Mad1dxFSpvimSFFj7yXBtoisYzTYZXrvAd/9q7/gy1/7Ob701V9hvVxzfvIRe7tXebRxwHT+CNF1iJiuJSUkOi/Y2dnh5me+wLs/eRMZI4tFy8ZeRErNlavXuH3vNuPdK+wOnyb0IpRUiqazKbaq8sQFExKkwDc1ZAqhPC4qFDCrO8bZAN+m6yvdCyMyJvabkBKlJI11jMYVA1ViTY6Y5Ax3ttjaHvLclS2eHo4pRH8vioLEy09rwb+vcPP/+BGhz6v34O6YXI4kAVoQk7kC9cnz4VNOKHjsNBIiCdfEJAQ+dg+JPllB7/yPvWAkSLqhEB6i/pS7SfK4iuGJJBYDCPW3fE9AFKh+yC5c2l/8LB8/c0HJOI9DMBxMKLOSplvTdA3DrauMN1MLQ9Osaep5v9ECXEyTlpwUH4ipvna6WuI7DxtD2mZNZxVlMWAjSwJBKx3RWtoFRB+SGEVHCDFZ25sZZZFRdy0OxeVsgXOpZcVHTyQykIpOeN47ukdx5WkODgbs713h+t4e55dn3D96xLlrma9bhsUInRVk2tAJgbOWrdEmvq2x9RolBaaqGFfwSEk0gqKUGDegI7AxHjOdn9L5Jc1sigstmUjKpSZtwmDE2fyCZQzILEMKRWMX5FnOyeV9WpGj1Dk3dvfYHI8wjWS+mBO9YjjU6Kamadc0KxhUOeVwk8Ui0PVVrOk61wQvUVmOIDJfRZz32CgRIdHuL6cWk2dEWgySsorM7CEegXc68Ry8R4iIFBZihpCRur2kblr2BzsEGkQUOAdZlWObBdCxFCVVIVHRYumQCKxNA8woJSJIFsuOphW0PjAeKowqGRSQCcUi1oxyybpZMV92FEYyLA3VRs7uzpDbt9/n/umcdRuoTEGI8OKN61SV4eHpGde2U53l7v6Ib7z6JbQuiCJtIDKV2kdOZnPq0LG5sUFWDBEq0HrHlasH/OpGxe72Jrka8+5HH1M3SzbKEX7dsDUesarXXNnfpdjSzJdzpgvItE7utQAxeLa2d7i2v837P73PeDPjfLZCa8EkT9b5rmupW/BBsXYe62pq2xGioguWK9t7vPneO8RM0kU4X68JQWKbdGtRuk8ES0mUSQwSwlOUqVVnVZ+RCcHe5ApRembLBcOiZLmcpxphAk2TMs0rpzk+P6fMM9pOUa+XBBEQIZAZQ6YlO9tXOD47wUhHlsFoUDBbSPJszGzeMlvW5HnGcFKipaa1j5sCH29aM9q2hRCxPG51S8BUqUAIg1LJ7SL7dp7gQ5pGuLSYSRLnS0pHJEP1wpPAp/aeEIg+cUmETKA95zvW65a1bWiRqMLT+jXGlzgE3nm8lDw8fMRfvfHX7O1s8dJLLzMeTVBSIKWkrtdkTtCtV4xHE5b1ip9+eJfnnn2Ws7nl3v37rDvH4aMZXX1GNR7x4jM3sSHgYuTh4V0uLo5xQbC3cw1TDDg5uWC5WKAU3L7bcnj6AOcd+1sHdCEw3Nzm8vIR+wd7KJnhYseHt26jc8XV/X3W1jLYu8b5tGFr6ym+8Uu/yZ/823/JX337Wzz70iscZBXy9D4XF2coBUrD5eyCaCy17Zjs7HF+esxnXnqFzkVat8DZgrIwOCeQ5ARnCQRaHzFCoqNBi4jq1b7ORkQQdBh8TIdL2WaE6Akxo8rLJDp0NdY2aCHIlaJ2lt/82ku8/8F9PjxZgBmw7JYQa9ogcV0CT4eQ7Oa3b99KwqJUZLpgPBiwvZ8zqEoGpSG2Ndeub3OwXXL79oz12RSKiM4DmQ60fs3swvaxoIDSkb98469Z1Wu2diYcHZ4ThaTcyBlujsgGGSjFpNogKwJOByaDIcuuZTlvqOs129tDunWkYZUYIjgmGxXLekVTdyzXC1AleVkwLHOCk1yeLjBSE3yNUpG6PiNsV/z1m9/DNlMGBzu4+SVKBHyb08SQYjZ4dK7R1iPFiuAkUg7ItODq3jV+ev8+q87z5rtvI8sRl9Mpn3/1S7zz1nvsbl4hzzMuLmcMihHNusFaS22TcyKGCEoRGo8SlugDXXDI6FFVRdMFTs9X/N7vfZN/fXZBFzzz+SWzyzkxJCfKY7YP0QPpek+tU47L6QUyws7uLqfn57RtSxcs2qSI0bpOsHxjElS6bjra1rG1NSIKwXrdUA0qbNdycT5LjVPKUK8b1NBQFAXrVYdSGUj6liSBzyJDbZDS4L2gXSf2kxUwmYxhHhgWJdIUjMcjJsMJInoG42EShYJNB2Ught5x0izRSmJ0lqLoztOu1mhE2tz1QknTdjgRUCZHyYjvAkX+CTQ7+CTsS5nGjdYnF4cyySivklqFCwIbEvNFxYAQmsVsnoZvQvYNdCnSE0NE6FRT70LoN8YyrUkmRaxiDAkIL9J1nZrEUgLAuhYISCFQQpFKeXy61l0SKRbTc6IEfCDLCpRUOOsgunTQCiC8S827QqSpuHPE4FEmQaOVTCzEEBJguioLUoudQeUSJRXZYERhsvS7H0+UIwRnQYFRGi88SI3H09ouDSCiIPr0mQXvkzPch7QWxORS0UYnZpK3yZljMtbrJYXJycscHzw+BKyrcb5NLWJaE4ToW38kqufaaJkElhgDwVlc54gRyrJ8wvoL/vE1kcRHZ22vrji874ghYruGwXCEUiZ9diIJL0Jqgk8Rr9FwgtIK7TzWpX216Pk98fF66SwmL8iyVKct+tccY4qUaaORvcuKmMQKIWSKG0aXvve9mJQieWkdhfS7pPokap6M7CnS+KRaPQgUCYAthX4C9vDeo7VMDYQxooSi0DkiJKcBISK1ShJSJH0HZWp2LouSrrF4F5HSU6/rtO8h9oenJOy4zqWYptb4GKiUeTLnF7p3apEczFIkror3of9zckYnmSkSvEUDmdF01j+JOYbgUdokvEcI9JCI3nWdYqohkg7xUmCMTAIgGkjgft9a8mFJfBSZTy8pigoZRCq66NmS1lmiEGlIIyJN2zDtGg52dzi9OOT2Rx9y4/nnMUGQicCoEPijI6bDVLpwUh8TIyniLhw6drgYQQxZtg0//+rX0FnJ4vicwfYes8s53nrq+ZrN3SGH9+6wbhr0oGS6OOO1b/w6tl4AjmY5wzeOLC/p7AJpDKOtPZ575ee589Gb2Nkx09NHzPwlShe88IV9tvd3mJ2f8tkvvY4Okb2rO5xdXjKfnaFLjTIZtlnT1Wvy7StcvXGTXGua9ZK6qdkwif+WlUN8cFy5dhUXIk89/TKv/epv8Oaff4s/+M/+QyaTTZp6ibMeYyqUNugYuXfrbW6/8x2+9M3fRxQFFw/v0fnAH/33/4ybn/0Cj86nfO23/yM2hvtMRhOss0jVXzvBIVykWS6YjEYInZPpjOA6mtaRFwWz5Zx/+J//V5SDMb71zNdTunWNlLt45xiON7g4ecDo+k1e3NtnMT9he/8pfvjGX/LSy6/y7o++zRe/8U2kLuncKt3rbBJWlRZpLRaRqFNBQik1P/zed1BKcee9H7P6xiMuThv+5f/4z3nt67/CqBrQuhKcJ0rwvYsleMFsfslP332Ttl5g8oLtvae4PDsnuI5iNMQU25zN5mx3DZkeoKSGKLC2TeKQ1KDTXjuJ6p4yK4jSIKWmXqeSgtwUtK1PTL08Q4qIiBFj0uetjKazLZu7W4yGA3Z2x7y0v8V+XqQzJ+n9d9GjhEIKUAoeCyr/7z0+5UiKgehnT5Yg0cflpFAgSyKP73GP0Ry9kygGiInJJwKP83QQVf+r1Kf+FfJTYlPf3hlJeykh0r3lMeepH8ikXywQT4qJPvXyHzuYBDiXhLyf5eNnLihdzM9YkzGYbFKIVK8dheL5p54heE/btJycHUHoIX1EhNBkOpJJTesCg+GESTni4vQYoeBiOU8XyqDgyvYOG4MBy3rG+aKhWVny3KDXAqEKnG2QUvLo9AQlNZubW4TpCU2b+BBpN5EI7zFGvPDMfUtWFAyC4879+zz/7HOUrkOPSw5P0mJ47WCfrq5BVuxt73L48A7exnRTloHp/JKtrQ3c5QJra3yATkp2iwGPjk9QZsR8MSNTGjOosM6S9YLYbK3JZKRxYMYjmtZxc2eHel0z2RpyenaCd2tcDATnWEwXXJicwaBj1S0RJBGE2KF0cl40TY33HSYfoKTEy+TmKscu1fKWJUWZM5sf07hI2ygyk1RULfvoURBYZzCloO0CZigYV5JZzFI8LajUUJJFpJDY2LCsI5KC2XxJ13mEjAhZYFSOVDU+FJg8I9cd9bomlwaiRxqNMgXOQdtaZvUqbVpkwPoO3yhEUEQjWC5bFgNL9A3Lbs71/REmCMpKMipyQjMgsiB6j5MWJQ27GxV3T87ZGE44PJ+TlzlioSnyAZ4estwl8QvhGVYV1/avMC4WjMcTmtAkJovruDwXnM1qBjodaLc3Rzjv2NvZZzlbk6uCZ/avoIXlR+fHNK0lKA3BQzR01vHSyzc5enjMa6/cwMbI4emHqKCYuzrJ1iLl5JVM10cUgsY7FAEtJR/dv81oMKGQihgdnkjUCayZKUmIMTUguL7s3hmEDChVphuRS9XAURiWyzW2i3iZpnxSgu8rAPKyZDgYsbc9ZrGqcb7BaEOpNIGAUY5BOaDzjkGR4Z2k8Q69nlLoEkFOXV+wWq9QWiSumXdYbymKqwigynI+unPM9HLBMM/QOsdkAm1Mun9EQVTppqmkIi8MRmuyHliutGIynlAvlgwGQ+rOgWsweZ42x8qADwQb0SaBEn0URBPpooRCgTBUWmGqER/++F128hLbdUgp0BiEjrzw7E3KMk+cHwm1bVk2Hefn52ztjjk/PUUKhTSA9MzmU1btCmUERVby9I0bHD06o7YNHZGT0wte++JXGAxKjh9VjAYbvPXWj9i/coPF4hKhJCFAUUgijjv3PmZjMGRza8ILL/0y333jDXyITGeX3Lv3HoNBQdN1XFye8t6tj+i6yMZkk9Viwdn5BXtXr3H48Yrj+/e4fvMmVbXJ/HKGlIqmnhHcgkVdMxjvMx5vMT2/QMrI7qTi1k9nBJuTlQqWyaXUOZe4UCEiRcT7Dl1olFfY6NKARRja1hKkRuv+cNM70LwXrOuW0XhEkCnCaDuHkYIYRwzMNsMK5m2LVIK6SwBIESETGZ0IRBnTNSIjIXTE4OhaR7QjKhEZKEHT1Hzjq78K7YqfvvcDqu0JMTpOL5a4jdT6JLXE0dK0Fh0lXkBRFT3TDIRS4OF7P3ybUkssinZt2d09oFstE1jZtWlSLwKz2QVVMWRjtMX1q1f58muf5+M7d8mMYTzKGQ4U87mjzIdML8/xsWO2PMPHVaqM95LV2vHx3XuEriObbHJ0cU5mGpTJWHYQfY0kZ9U1KJkxqjLW9RqhQAuPDhItM7JMErTn0fyEMisZV0MePjjimaev8sGtjzicP8JosCEnSGhbDwSUNnQulWRoJdjfP+DR0SldY3FR0rSOQCqPoI+bROtwPiaQvYx461EStFK4YPHO0raSAEQleHh8xpdef4XJZJu6s+S54+JimtYhowm9M2VjlFqzVqsVtmvpuoLZdE6ea0whWDctLjqigPHWBi5cYkxGVZUI1bCzf4D3jof37+NEgoXbpsMiyLKcbrkmxshqPSeGZXIhxZyBmbA7OWA82k8b8GiTSwORXI4CurUjNxntukZLSa4F+IDr4zlKKiyR0WhMZlJkSguZVNzgUeu6BztHiJ6Y6mSA9D6F4DBGAyHVyccENkXZJMbonpkQAtF1mKxKh9vYR8uI+P6aoxcQtNIpnhVTVF4GSdcGhNY41yCiw8fYH+qhsw48CKPxISZ3pxCJNSdFag3qGTZRJqe5EhLbtkQkUSm8cEQLyigQgs66xCDqHUZSCRASYxQ+BobjSWo6Q2J9SCKyAJNpurbp3T7pCCFjSH+/VnTR4+hbmFRyBqm+sUuJ9NwU43N97C0Nx3RmkuPaWaIEFwOZ0ayiR2Ya6xwxJtdk513vODNPoNaJa5W4e826h5oriRAxXSsJaITJc7TK+khVOhCIXtBT8lPCDPTCqyTPS2I/IEkDbEGWGbx3GJND7yqD1FT2hNskJMgkzvkYKHViWFlHH9eKSeAlAbyFTO6k5NCBvMjS++GTKJK4U+mr2zmLMjne2X6KTu9ITPFDeoCtjyE53XqBSklDtI4udImLFTxlaXC2Q0pJkffw3hjxLoG+Vf+eRERaY2WKtJssx9oUevfBJ65UlgFJcDEm60HZaT+FSoddlMRbh5AqvUe9uyD0EpAQKg1AlEqV5CH9vPABoiTvHXpVoVkuGkJMTq4oP+GcRCESByt4ohDoKJ58hirPkSHt6UKMKDRt0yFIbuvJ1iYnD+5z/bnnCfTxcSKrziVhTil0bhBt5OTomOFkwNnhfebNBWXIuXrzJoPBiNlph4ySdd2yvXdAu4Dl4hLv0j3FxsiDe4cMB1t4L3n+lS+wWq0obWB6cc7B0zc4enCXSAK6C+L/xdyb/ViW3Vd6357OdMeYcqzMyirWwCoWRVES5W52w4Zlw09+sg3/XX404Bc/GLBfDTdagNztbjS6JVFNiqJYxZorK8fIzJjueIY9+mGfyKJgGTAECvBNJFAVeSPuFOecvddvrW/RtjtciJw+esqws9y4dTPDuJWm7TaIKpfk6CIXAeh6yve//wdMteAL9zOOTu6AqIn9QLdaYWTi/Ntv+Wf/7X/P2dcPcW7Dxx//gmaSOJlO6ftIlJGIR2pF3SzwzrE+P+fg1m20qRi6HcVsjkgC1w9MphMg8cmf/yVvvP8Djm/cZug6UpJoo8ANKJW4vHzFw2++4KsvPueND59y5/6Mz3/1V3z59af0MfD1V99yfPc2b77xgM1uoNu2lIclGjX+HiqGtkUoganzPsfogquuy22QInFydIiUZea1kRiSp5jPUKagaubsJguObiVu33uAjYnl0X/O//o//g+0m+d8/XjCrXffJvQDPvWkmLAuD2ii8LkUynlsjGhpAMHFxRlVWXK13WOtZr16zsvzNfffeIfd5QWrzTnOW6SWVFrTti26KtC6RirN4HuqyjCd1Pz0P/0v+Jd/+i8o6oZ/8p/9CYeLd9i5lklZY4eBSip6a4neUVRVLmPKVAqiHSgKhSkMSufG0uAH6iYPd8rSoIxBF5qkwBQFZVMxm0+YL6ccH0x4+2DJYmxZFiKr2HngnJ2z5rWEMZ4v/5HlpGwuGsUh15O6n4NskJjxmI8gNZRvgTokjTYkMQ5wEiB8B8MnRJXF4hyJVSMmVoG5OwpSrzX3717f8AqRbB5gvE5xjG5NVYFakgNzcuTD/R0Q02teoBAw+LxO/F3efueCUhcDs2lFqRLt9gyLRonE5vyCaVUh/J4Sz7TS5AZNkXPfaBaTKaerKxamZlYpLslCRVFq3OCI0XJ2dYFAMiknLCcFL7pXrDZtXnjhKLREmwoXcxvLrt0hoqApSo4PD7i6PGOwLu/tEYSU6JNgLg2d9RwuFmxXF5xeXrBpd7mGVWlOjpcM/ZyutfTDjn7osTGwcx2TsmS32WJdrpx1Q46AFFrgXKDtPbWR7NotR4sFQtQorTAisHctSM0QIiEplDHcuX2Lk+Uhp6ePUbFHyYpCtZRaknzEupbHp4+ZTGuUSmx3AySB0WSQmlFErUk+T3W0VgijwTomhWDdZoj5xrsMG0+ZWSCFADVOgKIeNwF5odB1Ep9KiiKghCSR8AgKJfLFMCR8iCgJtYbZTLFtI1FoZlWFUAPCeGQoOJwI9t2AEwYjs4gTCWg8k1pRFoltP05MkYiQq9ptbDFiQlXXQKIsJNNU4UNAGY1PcLndc77d4TwopXHJczSbIrTm+dkVd46OeXJxxj/76EeE4HExEEMkJMlmu2Pf71kslmhTYooKVQ5Y79jtBi6uLC/OXvDpV18zPzhiXlas1htundxk13XMZ0vsYGl0yfl6w9XmivXgEFogk0eaglprNrueQgnmVcPgHK9WuY2qoCLGHEGIPtveSZHKlHmxmBLICNGjVMnO7pFSUFcN+7alMNn5k6Nj17ExgUgCISJVVeC9ozAN1g3oosTFxDBEOuvR2hGTZTKdUeiCzWqDBPqh4+IKnAu4kUqbBZ8agNmsGds9tkzqhEiW1eqU+fQGptZjJXCg69c8Pd3RFAVRRG7fvocNUKmC//1f/1t+7727aBJIjRjbfFIUWXj2eaFVKE1R5t/Nqq4R4+/i2/fe5OLsnDfu3+PFq+dgPTfv3GG2mOdYUhSU1YT58oj1rs8r4kqiRIEPjifPX7I9e0mxmHF1dkp1cEz0uflCKc18PuPy9CVXF6+YTRcsl0t2u1UWr1885dmp5/nzx7gQ+OC9d5k0M3y0LKcNQx8ZXMej0xfEKNnsO6b7lgdv3uPWrdsUVYkxExbTml//+hdsNhe0doNRBb3tOTw8Yr3vWF2u+Nkvf8HxzWM+/PBDPvjwDygnJV99+iWn5jFDt0Fqgy4Nf/Gzf0O72/K9+x+QUm76qcqS4xu3ODt7QbvZcLBcsL1siL4nCosQHpUcQgYO5lNeGsNmc8Xl6hkxBl6+fJUXUEGATtl1gMSLQIxgjKaZTCmjZN+1tK6lEHHcXMIQHKiYoYtlSUJhvWc39Ay+53C2oCoLut2af/tXXxGjR9Wagp7QD8Q0XiDH5j1tyC4AmQXYwQ1IIikOID3vv/MWj16+IOAxwvPx58/Zux3z8piJadBasu96+hipy7xIV0pQGsnh4QEH00Oudiu6zrLZ9azaPUUh6DpP1Vhmk4KrV8/RVQPJ5VinAh8FO6cYguUP334fieST3zzian3KT378EzobietzEA1GBnoJl+srpA4QskvD+7yp6a1HKYnf52ayZh6YTmG33qPILgWFp24abh3f5pPf5PgeUiCTpLMDi8UBm36gDz2F1iyWRzx69pSqusfxjZs8/ewlB9OG1eqKmBTGqMwW9A4lNALFbDpnt+uwPk/twzhpH9xAED3fPP6WbbdGS4Eib/iklKg4NrECZTPBWpeZZ1KiKsNsuWBxfMh2vc+V5mN7qJQyR0fKvE5IIZc3BOeom2rc4DgOT+bsdi39MNBMq1z3rRXNvEEh0YXBhz1VWWDKCednL9l1W3zf5cjCWORhmgkpagpjCLGjKCNVMUGHzPfr9z2FKtBS5TiLjwitSC6iSRiTF3BSiZE1AtZfb+gFZHwSMuUBZVQZ7hJiJMVAVeTWJyFVjpylNE4bs+Vd6xLGxJqPyAAAIABJREFUsoE08uFSjBitM9slZeC/GGNoud0rg6C1VFkYGsWIlGK+X0yYoiaJXK5hnUOXGmuH/BmQF7gpgvcpb/6JCJXP2SkKBu8omirH2kQW/U1domT2c+w7C0plYDcQfaJQBh99dsOMMbksZuRIhB8dUEVZZJkiZdFDm9zKZYxht9tkFw05OpZSwgZHU+drqJASScLogq5rkSaDrbXSo2AiiCJHxK+X5EprEgGhBa7vaepJnrgnQd+3qHHi7KPLK3Kp0KbMolcMeQ6kFC64XFBiMkdTSvB+QClBMipvaIUcgdTXTaOZNyOkGktmHFKoLNoohdYQk82ijs/XRqUL2t2Wppzmtr2UxmNNIFUJKeQNR8pRuJQyLDe+nlwLApHgPSJJtMoD15wSF8iUxb/daoOSOk/TESOMPjfYpSQIzqG1yo8Rs1NAqu8iHrnpLPOqtJav2VkQcG4gxuycBkFZVShtCNFnB3LMolBOgCSkyoJsBJTWWJtjp85nZqbWGbiOlEip82sVuS0KIiEE6iqvH30IWbQeX/N1yUd2bIXRtaaAHMGJMUdTQor4EKlQEFPGR0iJtz67zlJEiBzPC94TYna/yhEM7FOiNgXBWqy3EMbVtMzHUPCR2XzO9vKSq1dnHN+5DWTWk5G53VGXBYUxrPZddswNjkePv2RStcRpw4snz5m+/16O4JHohz1Dew5+w2JaMFhNFJLVrmXoArqy3F0eMEuRl998g1SK41u3kUJw485dEoLzZ89p9y27/Q5VVHzx67/hzptvs70848aNN9m3+ywma5EbOAO4weaBTRxg/4I37t3lxp0HWOv45jcfc7Cc8/CTv8VvXyCixzSGX/75X+HjwKwRTLXHJpfP68WM5fEd5kfHRJWHjUJKps2MzdWW+W1Bu2/x/Z5uu8NVDe999BG3H7zD0Oc9Uo7NBi6efsPqTDF4uPf+h2wvXnL5/Dlf/vV/5PT0OW5oSUWVY5NR8PTLL1ncvM92fcXsxnH2q6m8Ftn1LcWkyWK1FPhgCdYiJGg0KclcJiA0u26F89klKXVB8JbgeoQAFxORRBhaEJ6D++/x0Uc/xWjDx//x3xBwWNsz+DReZ3OiJIzunuvhQGEq+i6LT7jI+cUF2+2GoDRffvYr3vn+h1yttrTbc4yZ0rWPKUzB/GhJTJJ+v837D1Px6Zdfsrxxg/tv/zGH8zs421IpRfAerSTIjDNAa1RRZCetyCkTm3qEMpDS6DKzxGRp6iXeWdSkYrKYMplMmE0qDg6m3DqccaepqEY3Lym7pJMaZRIpMNeWoN++pTHqNeon/3iyUhZmfvsZyOJ9kBWJBGFH8ueI0Y0tRgUnXYvWQpB8h3AvQH2YrwMpAh7hLkjKg3njO9VHXEdtI0QJ7adEkUDOkDKQYhayRBxIhUY0P8nXxdEBm0T6O889o0Dyf3UO5tXfR5L6h99+9wwlXQASby3OtRws7qCSJwTPq6tLEAJlalK/wQ5hBPIlvEhYZ9Ekgm9ZrTc09QQXPdg4CkDQ+oGXl5dMm3ywS5HtwjFEpFAURYlSkrLU9LYlhJxn1krhxmw1MeZ4lo/ZTi0006phenDEcrFEuR0rIXAIXPSY0iCiZDGfINnw8vEjBFAbQ0yeGBVGF/R9z9HBAa+ePkch6dwOd5FFM6MNIrUEBoauxSe4eXSXwq0w/oo2BqQqqLVirg39bsvZ5Sm1nVDIOVJEai0ZVCKQ60odFhGnkPJGP6PMJHYIJHITxlwIbPRM5wekKrDrN5STmn7d4iMkkds3CiOY1R6fBNbni74gW7g1OrMxvELpEoXHkiGfWmUIdF70J2IUCJNww4a6lLiQWMxKXq5fUpuCugiEcJVbxlKND4mAyNb/lChqhUmJzmcb7lRoKqnY9B2pKFgeLpCbjt4ObG3LgzfusNu1NJMpDx8/YTJpEFLR9QNVmS3cJ8cLgpRMmhqvMkj2zXv36LY7+s6x6y1u6Flvt3z15Fse3L7HG7fu4GKgD4mPHz7i2bNTkjRcra4QAlabLTuxBWV4db6mrCqMNAzOs97tuNqu84k0qddZ7VIaDuYT3ODxrUNpxZPTZ+yHjkpmDoYpNI0u2e8HmsaQoqXQCuciPiqcT0ih0LpkM8bIqqrKbQ8hC44+BYoixy3bfSSkEVQtDWWpWSyOOH1+yqw2WNtTNQ2dG1Ay80bqomJWT+h3PWVZ0e63rHdbjFZ4a5lPpsQUqeua1fqS88tnuMEzX5QEBzE56mpO0cypyhIilIWibnKzmNI1xCIDMTWk5EDmZjqh8rTU+3HBGix9O9B3NrOQUkKIPG/3wUORWSrffv2Q1ndMPv8NLy8vOF4uuHH2nLqesNkPTCZTbt2+hzKnPHn6ghBAL2dMmxJZaf783/2f9Fc7/ugnP+L7H76LkpIoBTZFXpw+48tvvqBbb2h3G/r9wNX2ksm04ni5pJkqdnsL0mGHnn17xZOnz1lvNgx9ZL3tqOYzjo6Pmc8mpOS4cXxMdPDk0SPWqw2np6/46xe/wRQl2+2Ksqjp+o4YJN3QIZTmxdkFUbwiFZInz18iTMnp01e0+w5GjLmRCmstp88fIXHsd7epm0N86CmU4fD4GJRnc/WSpnmL45NbXFw9R1UCEUtKnTBKMKsqTm4u+eKzzyhngqpQo807gMqV8fmcK9BK0Q0B33vqaYEOUCSNahbYtmO+bNisV5kXIgUx5rhwlxyUkv3Q4VzHBsG9m/eZ1hXr9RYpNUaVtKkjSkkpJD5I7t495vTbl+NkGSbVhPmiIoSe58+vWLcdnz96TF3M+ebZM7zKom1nB2bHc95/73tMUsB7y8dfP8Jay6SZcnK4pOsHVAykoaVFUMSAV4LoLd+7d5OziysceeH/1v23UYXnNw8fsbmyGDO6AVwc7c4FnROcPn3CzrYcHEz5s//r3xOjAD8gqgZpAro27M9gYSog4VVu1DNGo73ADh4rBsqqRtGy7wbAUxUVh4c3uLxcs1rv8Q7qsaENJNbDN89OEQLON2f4YcCIgoePHxKj5vHzZxwsbjCpZjSTzKQZvEWpkqZqWLUt82mDjIr5dMb52TNSyhO3SZ0h+EY1zCclX3/7DUkGEHlyXxpB9HkxlBtePVoXGKNoO0tR5ljadDHh8ZOn9JuWzb7FKENRVWij8c6jx4jrfrvJTJfgmUxnpBQ5Plpy4+SQzeopSiomk5p21+NdoKxNBj73ecBydX6GKTWmUPjNQBQQvKM0hqHrKOqGJA1G1ShTUlUCZSoKU+AGS102hBDGRV52pGiZ6L3PwoeKeZNcZndEjGJ0i+ZYr5IapcXY+pT318bI7HwYuTohxuw0jtdxobx5V4ns0IiZayM8RB+xvaMsMq8jt2gNKJEnwR5B6AeaskRoNTpgspgUQsA6R1mUme0UM7cmSUlRaHD5/KpFdhqElBuqfIoQwADCGJKNaKGomgneOgIJWWpUYRAhN4la76mqLGjl8dYICQ8hC0g6x9mM1AgkLjiU1HhrMVWRnS2I15ylsZoX2/dolWGyUkC0Of5jpMSHiFGjmCCz42hSTQguYnTmdKSYOVUpZS6FvJbQUnbUBeso5xNsn8UANUbiY8pOnkk9IfqA0Tq/Kimw3iFUCaPrpzYZWeD9gCC+bl6TchQGY2bSXYsvMeZGwBQTzvnc1Goz2+u66t65DHcGUNIQfMTMMgsrxYj3Lm+aR5FFjZyqLDJmd5IdG+GuiytiTKMYlTLrKOXX42P+DFMSFKOok1IWi0L02XkaBVVZok12cGktX8f58v3z80rEXJRSNXnTKSXBerTWkFQWrLTMAib5+3KV+MjbilmEDtHneJ7IG04tc6OdFDFzxZxj0lQjpyqLQJDFXOcDdd3AyOe6fj3XW8M0chrj6OK7bo4jRqIUdPvc7CaEQBYlPgmi8wihiVERgh0/v+z0U1Lhk0UkMLpAGsNmdYlpGiSJIXhKZQgpIEyOCyU3EGV+Xc10SrtZw+3bhPEzlSm/twIFLrFtW0xVU08mLI9vIdvnvP+jn/Dk4RW79QrvA0YJpJ4wnR7S6JtciM/ZXe052+ZW225IfPD2m9jzS+y+ZTFdsmlbZvM5/b5lNl8wHHSk3jJbLFFK8/zZY37/j/857/7wh2xeveLw5hvE4AgiUs9nKKNJuza7zoREKoONDV6WlNM5T3/5C7r1FV/+4hkxdBzeuY2oKi6efYOZNehL6LyjvYz0VhCC4ebyhHv3385sPVNgmhqCY786p54dIYKnH1pWL59QTKf8l//Nf0e73uFdbuy0/R4RI6dffsYnf/4v6NKeGw9+yL377yOV4Nd//Rf4GHj3x/8Jj/7mV3z/Jz/laHGAFgUndx4gpKGNKaM+igKkyu2DRCZFhY8J6SOBzAtLApSuSEWZhwgxsNvvs3AcPaYociIiBKqyzAPkkOj2Wya3T/jg/Y+4e3SP569ecXH2LSL0Y840IYRBvDbDJUqtM5tvdDC5kDBKk/DcfesdjNry8Itf0dRT7r31DubFmi/OXoIYqKcT+mHgzZObmGqJKQq6neX47h2Obt5lOp1zcLgkUSJVj9SS4L9zq4YUKcuKQpVImbmmKSSMNkhhMBKkNHRxT318QDNfMJ/XHC2nHC1n3JhPOSwMhZDIkSmU/1zr9te0oHy+FOJaGrl+9YwRr39MIenvRspSkojoibqE4uS7BxYKETvSa36R+K1/u46/RZK5j6zfAeKoGTnYWdAaZJ2//tuiWRofW3hoPgR1I6dY0iht2R0ifcPf/w78XQEuACJJtiGybP5/LijNmxnSGPpux6ZrKeqBUkV65xlcTzf0VCbbVF0S+CAwhWSwkV3q0KpgPq3HDXXB+eUFIUqSFhgpcM7SCggEppWhH3ILQgyJqtYkFC56QmfxLqLLfGEVUrDdW4KPGfCnJCJGDhaHbPY7ynoCvkOrE+gG2tbx4N4DmvNLZFHR9h0+wrazlPUSFVq8HQjOMwgDKhJdz9nLUy62e0KUHEwOOTs7R1cGomU2rwh2m1to5jeZNzP80FIWAZJjsJH15pJ9NBSlpHUB33ZICYfTkgA01QQXeowRpDBeEENAAkaqPI3y0NRZ/Gm7LZvdivn0Di4MmEKg3BpdjGBRD1FEDg8Sx43jfCsQNHkK6hVK5NiUkoIos4IuR8shMjJ4gdGSUkRckuMJxrPvEjEVGOW4XF+RBzGCWDg2Y0NfCJ4gE7WR2Q0VJLvtQBKKaTNlWhXsty2Dtzy4veTWnTc5mC959uyUV+sV82mDiNB1A8aU7PqefW/zcwiBro00TcOtGzdZzmY8LJ7z7OyCD+/dZNk0nJ9dYm3k4bNXPHr2LfNqypffnnKx7VF1xdHhEcaUbHeO1gpS2uNS5KN33qKpGz7+4mtu37oDPqKNZL1Zcb5aoZREKzFOIAVCjpqwELTbASkkry5XPLh7ixTf4Msnj2mMJsjA0fKA49khXz58iJEQUHSDxTvPwXJJ2w9suh3TScVq01KXNc5ZfJKElCDmCWR0CWHGFrHAyJsZ0IVmt92hlM5NOsNASmCMoSwltne4YcfaDnjnSexz/GA6gxiI0ZOkYFKbzN0IsOtauj6Q1BUTI3GxwA/QDpdMqg5NYN5UCBkQ5ZabR4eg5hS6REuJSCCTzxXkPjsCQgzEGHG9Z7vZ03X53BB8AJkntEJKXOdBGcxiTv+yIwyOYtbgpeJy2+Kvtuw6iynXrG0kJsXXnz/i4uySanFIqQM3bt7gxVePOTo54fzVBV+hkeYRd+68QVJbPvv4C37xs79kMakpjGR1sWK9ueSP/uBHXKWBvd8ynR2hy8j6+Rm/2p+zXUcQEoemnh5ST+ZYD3GzwXU76kJycHLMt4+eMplUpGTRpsqA1aIAYSC1aKlwNjd57Ps1y+kcLRUPH37Jq5dnue1rZHYUqsCokqgMOjqGwXG52nK3PqQwBYfz/Bkez0sei4fsL18xmS156QRdP1CXFTgY2p6z8wtCAlTezE4nC0J0bHdbQCBldtIodJ4cqYjzgdXFJVoZqqpmcbjg+e4FRbUgvLrAGE302bESRKBPjoQgBYmMudHncntGXUzyol56QhdwaeS5OMHNwwn/9Mc/4H/74inT+SyXGZRZAIlRE1hhI1gPf/PJp7TOok3BX/7tl9DvmC2XzCcNx6Xk/OyK/WbP0cEh3vc4H7C9xQ57qrLh/PIRdVmhyzkpCZqi4ubBMUTPbr/l/GrHD77/NsPHXxOD5nBxjI97nEscLKZsVwNffPl1FhqUpOsFn3/2JZHE3g1MJ5Gu2/LWm2/x8OFzUipIQiPFgNQQYo9OAmJLPT1EN4pGV1xdlQzDinJejo4aR9vvUBIOl0dcXK5RoqL1e7p2z+2bN3lx/oKEQglFXZTsO8fFxSVuEBTa4LzD+oGynHGwOKYsS4anj5jNJrjWsVutaZqa7baHJBiCZNX3HE8XnK96Lrab3M6i8vUoOIuiyBsglRegfTcwXzSwj0xnNeurHSJJikrTtj0iSUxR0bYdEolSZvz+vBw6PFrS9j1CKXablrrKrVdVUWJUdm4YPQJxnSP4QFSSsirYtztoE8poRBI5hifyhjDFRCrzhtQPPYNLCFUQ/AYrZoRuTz2bE73NjhPGGvoESIHQBjdCQZuqQhZ5s6dkBos7n8WTJPLiO8dssis4Opdf4DWDZowfIQQhpjzNTjKLJzKLENEnQvQ466iKihgGonD0bY6Jh5goqorddoOox2p6mSNB1zydlEBqgdSC6HJ9cl1PkEJm11aM2UEUM3jaeQfXzjJlQEhCyF/LhJm8gUeIDLdG4WyLIeSWsRH4rXQxwsOzcyLrc1kcyNFuSyJlvqZWFHWBSCqLvOPz3my3OO/y55jBizjrR2KpJAaHUdnp4+yAiAmtDG23Q6oyO5pGxoQIkZgE2oixHSiNbuDrwgcoypLkHFElRPAUumTo+szWUVkEAUjDMAqme2KMlMZAjHRdT6kNfgTXxphQSuQoWQpIacYoVP69iikRUxaXfHBZBEmZyOO9w2iNNsVYKy9QWhK8wwefRUchsW7AWYsxhsH1CJFyJItI8AFtDDke54hxjJXp/DqM1EglR8Eou4REWRFGjocUMsc5lUIZRT3J7caSLISk8dp9DZxNKYuoIcbsHvIJTBZFYwrUVYW1NsfjvEVrQ4gpt/QRSTHHb53PThVnHSCymCcSITqKwuC9Q5AoigyTzxvQDO3PcUXQI3vrOpkmYhhh3OMGZhRspMwuDB8yp04gGdyAxVOpmqIoESmSXI5hyiToB0+RcvOXKguUVNmpohVKGgbnWF1dcXu5wIcc30pAFAI9Ig5sn4fsWmuqacN+fQUxosnOjxA8ymSXkmsHgvcsD094/6M/ZFIvMOaHHN/8HmevfsPp02fZ+SgiKSpuvvEeNw8XbFYv6YdVfj9QlCZxfrWh3TvedpFnl09494MfsDo7Zd9ukOYtirqmmtV0/Y6hG6jKKR/9/h9RTmrOv/0WkTxSJpKLTCYLXBAEmRmeRVFiqiX1wT1effst0Tl22zWby1fUYs9kPuPowXvsLlasB8udN97l0Zefgi7pfcJFgYySoff4wbPf7nJbX0z0uw2bs2e8/9M/oXAeqQL/4V//K/7wT/4rvM0uSGLKsV3vKZRmu14z2MB2+4J6ccAnV5e8ePmE2eEhD97/EW235vbt27zz9vvcvPeAn//pv+T4+Iij+29T7rYMtmfSlIgYGNqeupmiTZPPT6oYo8QKaSQosiuSSN/2eOuw+w3r82+4+eY9UqywbUvqO0IMXD7+nOb4iFvHtymEhhT4+tc/49XLh/lcJwSlLqimU5TUtOsLjMzuaoRiCJ7ptKLdWVQ5YX1xgd2vCdLwvfd+xMc/+/d8/uu/wad83MYUOL51G1XW3H37+xwc3WOyOKLbD9w8OSFETxIRo0qszUxVIF8HpCSEkI0FZYWUhsJk4T/FgDcVQQnK+ZLZsuG2WXLn4IDJpOB4PmWuNWZ00bxOecNrwWj8v9fawm83nv22bHJ9+Cbx98spv6tbjiGPsbWUwD5CaD1ajsdCoGBJsQOa71xGrx1NI/NIz8C8Nf7UkYEUA6QVovgR1xDu7+RCxqTJuBgyR1lQFmaU3SDpGmnN33lXcrPc9fsiXj8eZMZi6yx3f8cK0O9cUGomMyoZWe/3VPWMEDPEc7tdse9bEBB8bhkZBk/CUEhNoQTF2CahUuZxiLKkaQr6AaqqQMYB7/MF9xpYGaWgqmc4N/5sPDHkZpWyOeRkueTZq2ckXSC8JcRMxR9CQCrDYj6lDZGDwznr9TnPT7/F73bsXaBRNYfNnMthi4+Se/fvcfd+yebiCc8fPubqyjMozW7osXYHMbLbd4QoMpixd4QI01nFcrakKaBtA1olRHIMQwY77oZAINJ3iapIHC4WXF68JAZDFwA3sJidoAvHvK6wu469DxiZHSxVKbA+EuOAFhnSKqSkLGC1bnHWcbE5I6VAVURE8IQk8ChCChgDx7M8+Ru8pB/ygsOohI4RmSSqyifH3nnKYoQYJoENmTavRaIqNNaRs+MyoFIgOIOPiUmRnRm9l4RoxpNDRGtFU5eEKOj6XPNrqoEbB4Zu12G9x4ge5zpmlaZRhtu3TlCFYbPb8PWTT0Eb7pLY7HMrT12WGD3BekdhNEeLBWcv1sQkmCrNq6stH3/1LYUuEKLgxcWKJ6+ukOGMy80GUZUMSRGSxLo8zatMyeVux+HJjB987wHBCTbbFlBMy8yo+vSLR8QERua4gI0RmRKFylrzpNC8+eZ9vv7mCajIixen9AmMKZk1JVEG7t2+Q7trEQSW0xLnFS8v91gbuX085WKdWO8SlsjBsuRyvUJrhVYSiaL3OTMvlcD7lJ0/hcpMgBhwg6PnCoOg61yumLYu8wakxkgQaWDTdmNDoGC6aLh36zar9QbvoSrmkBzb7TnNZM7BwSGnp2c01YxZXXCx7jlbnzFtahZNYtJU+L3A+ZbF/ID58jaDdWidxV1rA4VIJNdxuW9zdFU1JKG5urii69sx6jBuHESkrDUpBoYgsEPgcuMQZsrgPGVVIlVNCnmye//+HcqywSdBQDJfLNludjTaIJ1lgubHH3yA0jVvv/Umvvds2i0///Of88GPfsB+s2OzXlMbQWUqmjpzJZzv2fWWvtsxm884P3vFkyfPODqe0PuCsql549Z9btx+wNnpS54+e8KrV6fcPJmz37/LdveCoqoAzWADQ58Y7IDUYoyMKJTSGFMSwsCNk1s0ZsaLp0/YTaYIchZ91+0hKvq+42ByhC4KwhARKDo34GLPvGwojGA5rbl3OOf3Pyz56otv+OLrM4QfqIuag8Wc7VWHMQWLgymtv6RcGnbbliFsENHje493Aa3IzCMC1WRGiUakjmBzKcN8Puf2rZu8ePwcPwScTRT4zMSQkqrMrZEXV3sEFUiFUrBpdxAUb79xxPlqy8W+JQpFrasM7jYls/qQd773Fn3fs1gu6TrLyxcXdK6j63qSTgzeErzE20AMihevzjhazrF9zy9/+THv3b/FVEsW84qr3tEP8OT5OcEFiIFbtyoGLxkiTAjUdUnwlh9/9Dbr8w2/+myDkIIvvzql3Qtu3TjCVBN2raaqIDrLdrNjsZhi7Z6IYLNdY4SjLGvaASai5uJqT0pnFFoz9B6pZI4oS4iDIwoLpSPKLW2X3bL7TuLChM5KVtuWuqnpXI8UmhBGVoFzIDzedmyuVhiR4bgiSO7fu8tvvnoEIg8cSALns0UfAq7v8F3HtG7wg8daS987qlRCVCQh6V3AR4fDc3XRYUOiMAKlEyIZjm7eRAL+bEU/9ISQAfS7fU/fd+z3JUmCrmuGIdIOiaqqSUIx9A7Q1FVBsAOSvAEPITAMFh8iUeTrRbu3nBwfgoh89eVDpvMZxydHnL16iZDQdR1Secq6zBX3NjeTBpsoDQzDkJlwk4rCSIbO0vXnlJygiwJPYrVZcev4BoTsfJZS4kRu0RRKZXfGYEEKyjI/jtQK4fKwJo5tLcSxmYnrSaUYRfu8HpJEvLfZ6Ts6cnxIeSMvBZGAtd1YRhAoqpKqrnK9vcjOKGnK7EQxGiWvXTejQ5Vrx0hCCcaY2Qj0VPkaEq1HaUW0ITPcnMuPB2O9el7byBF4jJAkKUhx3KQnjxAFKXl8DASfUCOINCRBaUxeZydIUQCSUhsUkiQ8yQdEJDttYuS66TMJ8DEhlGDoOoZhQCs9rpYlITmUEK/dJWG8rxsckbFNDZV5Q2JMYLksJiiRYd8hhfw8QnbMaikzI4qRRagEUhmUMji/yS1qUoNSr5voriMgQqg8DHAOEdMIEIfg0zhtvh4ykZ0OLgtpSeTNhQBidISQ0IUhBvJEWqRcclJphr6jLMox0pajY3F0A/V9R2FMbj1SOq+xTTVCoGMWGH12NJGgahqqsh7B8Jm6pbVg6LsxxqazO4IcMYw2ZOHzeh3uPFEkohDX+iggs1tSKEJwZCQ3o0s1t8F57ylKzX63B7JuJkVuyGv7NnNVlCLJ3KJWFDUkl6H1KruUlc41cTGlXD/+2o6X9yQxRbx1GGPGo47XUcr8OYzbLXG9B8yu2zRGJ0OKCB9omobVdsV0MsFZR1Mq+vH7UAJjNEJAP/T0mzXOWa7OXxFS5PjkNrPlkuPbb2CqhtgPkCTXREEjJdvVFWiVBT1tUDrzwwZrqavsXhVa54Y6Idh0O1ShKYxiPr9HsB6pCyin3Lp3n8eff4YOkjgtCUmgTcnm6oIUa3on0FrgRKCaFHz89WN++Ht/yMe/+Dkf/ORHrK7O+faTv6KcHnBy6y0EiW674+LqktV2zYP3vs/B4QKUZnAtvhvQhWHY7BFjPPk1m6sosmOrqmm3LY+/+IKyzHB0byPYwGa1Qpoz3v2Df85XP/tX+DhArNBywlsf/oBCCJKNxMFhJOyuzlE6YUzB+nxLtHv+3Z/+Ga/OvmJ1ccH3/+gn7DvL1JSBIeiPAAAgAElEQVTEELC2R8jsWLv53vdJKvDZz9dcnL+i85K233FwcsSTrz9jff6cZn6D80dfY3d7nnzzK/rhkn966w5VPadfrdAiUTRzrLXURyckpdBCIIyk3+VSA2Uq0ji4FQI2VxeEdsOLrz/FpjNWLx+DnPL80Reszx5ydO9dnn39K47vHDO98SGvXjzjq08/42//8v+gmQmcV0zqCoTm3lvfY79zHEyWDLszBtdjPQihsLannBf8+Kf/Nc++esTLpy948ME/4fLp5xRNwdOnjzGmJgqoyoK33v89br/5LpP5IcvlzRxL1lt0YQh9wgiTnazklm0QCJ1dty56mqrK3DMMSeYUjT6oODk44d5yzsmkoakly8pQSzNSC76TOMToWv1tuej6OP1/3AT/b//y//mWxujZP/QmSRAsxGek4ifjF0cBSNUQGrAbUnWAoPzuqad8n2RqoPzOwUQk2XPQBiFnpN+S0/L3jfdLHq7PoeSHE+P7kcWugtc/EsZrY3rtdBppfeNdInufKFX8B78Pf9/tdy4oTSrN2asvkPV97pzMEEHh/e51leZm1yK1IIUIqaAsS5QEUxkODw5xoeNyc8E+eGg1y/khRhVoIdh2F2z67Kjo7YAfwKiSbPCGqi7YbHZordFNw3wyJeGYT+YgCxAK6wP1ZEZpNNv1itPzczwFGEUfQKApVEFKW3btOavdnhdXZ5TVkrciJLfi8uxTpAg0kxItJwwuUk8n2H4HKRBsR28Tq+0epQyL+QGTxqAkuF2i6y29jVgX6OyekBJdz3hC8HR2R+8C1aRhMl2wG/ZMZycIrQnukvOdR5UlqBGerQXeZvBfEJLDxZzppGZwuSJ+SC1S5ZJXmSybtiBJleNpSGZNJNGx6RR9yCwi5RKYRLKAHrPHWIpCoGSFEBFjBM5GehfQKlIKixCaUpcYmfP8IRkQkeDBRptz4loRoyKKyHIywxQS6Yfx6FB5WpM6fPBMpyecX24ZUuAvPv6U+7fu8oO37uDdhMH2zKcHdN4Rkcymcyb1BCUMkh0JS0gDn3z+iK+ePqKuFywmU55erljtt7xx8yQfurKAqGiHjsl8xmLS0EiN8AKiJMS88SAobp/cZHEw59O//YZd37K5vOSD995jt+vQeuSPiAwjVzrn3gut2XcDgcjx4ZxvHnoevXiCdZGbN4754O23KU3JZrPjs8+/xQVH2znW644sMecq2mZa8ME7P6T+9ecE22OHjjvHJ5xdnrFYzKn0hPOLS5yPaAP7tkNJQ6nyhC5EgTQaEMSUORm7fYvWBhE9NmRxUckIhaAuZsgUeePGTR7cvM1qMoVYcufkmMvtmovTFcbtiFGwHwaiuEE5OWTqL5l1nkJafOjYd4G2j1SlYTq9RZIFvd1xrNdMKs+zl9/i95Kz51usrNi1e4yqcCHXj/ZDdmoNCaQoqOoSoQoSCQUkKTm73DGbzjk/e8ZsMac6qpmfHGOkQpca5yz7tqWupxzMF2znK44P5hxNb3Dn9g2KMhCGwM3DOUMfORQzPv7lrzFGUk9K3nrre8ymhuV8gus7zs8vubi45Gx1yXxmkPOGy+2G+UHJZF4Td5JCGdZXG6R6yfn5Cw4Ojggp8cU3D7FBMVvcYDmdsm97dDNnsvQMbsWde2/z+Se/xuiaYfCUrsX6gSIxTuBBqAptCkTrOZhPkZRsN2e4fsvELGntQDOd5hp4Fca4j+ToQPPHP/0ht9/9p5x+/gn/y//8P/H84pRtFJzc/pD9LjLsLKvdjourU8IIFVXWZihpgqYquXkwwdpISAldTljbjgf37lKVmq+/fsx6dcUbd2+TQo82HlVkVmG0eWp5cnSTybyg9y+pzYTLqxUiCrwP3Lt/xI8/+ohf/u0nXO4uqKSgHwYOpjOsDfzNJ19y//49nj15zMnNQ2zXY7uW5UHDvTuHrHZbnrw8R8iCQHY1NHWDbR2X+46Xmx2d2/LGwSKfewbPYrng4nKdI6UysdvvsVHgQ2Lwe+pacNk6vvr2MRenV2hdsV61bNozVKnyhtYPGQ4sBFfrPaiCqinZD7vsphAN9bTBdp7oJjhb8vLsjM22Q8m8cRXJQAgkLMlbohTZ5hwHZFDEYkEUG5pmgnc99fIGD7/6lEUzQ4kCpKQwhtpM2SPwsWPfXTKfGlxfoKOkLgpiCNy5e5uu3eN8Yrd9hS4LfBhY9yus9dT1nNA5kvNEAt3QZ6u3SEgfmNUltm/x42bS2tzKmMHCI1NAFegiCynWWZyLlHXNdt0hpGB2pLC9RyuDdwkZI7P5Ic5aur4nWUtdFQzWwbbNIot3LJZTBJKqKZlP5rw6P8sxCFPgY2KwHmPyhjM5jzGZ46O1oG4qrPOEmN131bQamXCKFDX7wRAGz+VuxXS24MHd+8ynC1aXK5LWeaOZ8oZcG5WB9C7H6AqjURQjw24EX4+UHp3GzSkJoTJs23lLURSjayhvvpPwKCVgtNUXKse0rPUjW0cSXaCqS6TO8TIlJEbmmCS6IIbMurtegGcBJy8ec9totjcnn3k4mREusE7A6OCOYyV6bsZTxBTyOm7kXKWxHahQEkuGPldKAhk8bGOOXxmTeUtFUaC0wrvcpAUQgycETYclDJ7kIm6w+NFVnkYhTIg0pp4kMkkKbcZWMoEWMFhBaYrrDNPoQkqZA6ZVjgMrhS4UdsjtaSGFzBob/2Y1QRJ8yGUQ+XRL8Fn0kzK376QU6AdLYczrOKe3liQzhDc4T1FVhBRzDE7kRrJEjhRKYi7B8AGlxvawkD+blN89kODtGI9MESVronCYoiSEvJHeb3c0zSS7iK75HDFifcjXBjFGJQc5soXka+aQSPm9TzEhpcIYMzrAsogSnUdK2O9bClO/Bo9noPW1+zr/zoUwZHdfiAQZUTK/j0JohMiNZjE6iqLKx4LMLrIkctwxjWKQEBKpFIO17Ps9vXPosgalcD58Bw0nYnTePKWQo0Nt3+fPTStCTKQIIX7XAtgPA2VVjYIbZJ5JfselVPgQXutQ17tZlacm2U0I9L0lJpg0E7rO4qJDaWi7HbpKTKeGQhc8e77iL/7Dn+VBiyjohz261CyODjJDirHVbwxaKgFBKK5enlIsDzhcHBBjpCkbVErs1ysmzV1SgqLOcb7gPNu+o5lM+L+Ze7MnybLDvO93lrvmUllrd3V1z/Q2mAUYECBWEuAWICWSEikrrAj7QRF+8D9C/xV+0ouDD7Ip27JNS5RNmKQpECBAYIBZu2emZ3qr6q6qrNzzbmfzw8kagBApMiQ8+Eb0lp1581Yu957zne/7fZuMLEVvyPTslL1rN+gNB+gsZ7UakxU7G3ibRakEnZWgBTIE9MaeVYWObtVg6zPuv/3H7O68xnD7gDuv/RzloM98MmUym3H89DFNW7Gze4XgJUrHRdcP773L9vUb1JMLevv7kadlLCIodF5gQ4Qp6yKjNS1X73yKyXiKq5d0yrOar3nlC9cJKuHDe+8i8y0StcWv/u5/xXCww3o6pij7TI+fsJ4tcF3Laj6jWs9YraZ8///9U+6/+y2E6Njdl9TVlGL7CBMCqU5p2hn9MmexXHFw40WyMqeenvD4o3eomjVaSU6entDZDhkcL3/u15iNx5j1mtniKa2oGD96wPbV29z/9reRWvHKL34D1dsi0UVsPVYaLwK2aWL0VyqkiN9X7zvOxqfMTj7k+fEH3H3t03z89tsk/R2OH33I2ekDgtbM6gozvuBXP/8iP3jrR4x2Rmwf3UYzZ9XNEc7QmI6u7ej1tqixJF6T+pT50uEdpEnJYLvk06//PKP+FVbNguX4nLfe+A67uz2q1ZJ8NOTWZ79AkWTc+dSrlL0tdFqQZgWzak5elnil8Uk87xljSJSMzcxCkaoEFQKNFyT5AKMS0lHJlb0e17f67OWaXpYyTDM0Hi8DOkQH5KXg8R+TdP52MenyLPkfu3/4D275a/f9zxCTLoHcIjiQDqlHm5ZHHa8NKgFVIHzEUPxE3i1qQj99lJeUbPMY0bu5ifL99M8oiBWpYXO7Jwi3GVdsIr2XkMZPfvbwE/eP+4i3hriQo6BxIb6nP8PtZy4opTpDqCGj4XYEd2lDKhSDMqXzFVqBNQ3GefKy5NruDvP5Ga1JY82pWcRGtiSL9j6VUuQJ55MZi6pDywyRpLH203tq01DXNYlUrJerWKcoNPtXDkgkTM4vNjnxhiRV0d7fdtES7z0mBEhSbh5dIc+22Bn1+cN/93+gtebtDz+iPxxEir/MePfeG8jg6Rob7X29bbQMhHXDVn+XdaKRtuNZtUL6gBAZt2++QLCGdb1g3SxoG0gThdaeqltGu65OaKXAKcdiPQcv0DpCTLNcU5Q7iGBp1gtmyzmtS8lcBFk7HygSQZJpVm3AeMditSZNEoJ1JFqRZpBqz4tbBW295LzRLLpLm32CFJ66g67WaJLorvYBExQORSI2C6zKk0rFalWhkoCWHnKBcAERYlVv2LTFGBNjXzZEXHqhWpZtTZ73qGyDlj2MDIBlZ7jNeGzx3uKcpyHFmBzHivn6gkWw9LG89sKrpDrw5rsf8nw953D7AFO3rJoF3boiURmTesaqrZHE3P+6sdz76BFCN/T0NsZ03Lp+k8++fJfjszkdHmO6OGhPC9K8INElVddQhpJ1XeFMS5Im6K6jn/Z4880P+Oa3v8v23jZNXVG3lovJjDzP2d/ZZrK4wEnIdIKQAqVStIGzZc0P37nHsqupvUcLibWancEW88mMs+mY89UUuYkaTeqG4DxlViAJLCvDmx99zPl6Tb2a8Jvf+AYP7j/l9s1Dil4f2WrOzqZEu2SMEmgF3kbwuJaCLCtwxhJQ9IcJ5JK2bbEiCkw4RUg9O4MBIeR453ny5ITVdEaW5QQheXD8iH6vx7Vrt9jf3eHZ6YRrZcFgsMPZxYTp7Bl5VlJkPXRa4NYXVM0UIQYsVo5lc8z+YEgqSqbjE6brC6ZrTb59N/Kb+gPG0wWms/QG2xyPn2OtphgWJImiSIegFe0qTjDTYogTAR8SBjvXKHop1mvmszqKuN6QJZr9vSuMtrZYFEsuxscMi5ReJkmwFFLRCcvTB+/Q6+/ybDzm8GAPZzom8ynL9YLWRLFwb7vPjtgGL3n89JzarEgePMF0S0bDPstloHMwHT8nySuuHL7IoD9iOIiw93v3x3z04XsMh6dcu3GXw+s3uJMXZIkA+VX+6N/8a9I0jQNx57Bth1QB782GUVFinMe4FVIEtodbtEZwdf913nvvu8zG5zSuo0hT+r0Rq/mKrV6f/UGPL//cVT71+pdR7Yi3336D8eQJMg3YRcXJyQmHN67zl9/5LntX99ge7HHx8CM+/akrJLbHx8en9LZKpE+4c7DH+axlZS3IFNNNSJSgTAt0mjBdjHn/wX2k9DjTkfcExgtEKnDW8+x0hprHiHSv7GO6lt2dHqP+iGs7B4xGQ1bVNMKE8XSuwyKQnWA+O6epMp6entP4lptH+9x4YZ/Da0d4Y7g4nyEcHI/nhGBBaCQWJTr2Dw9o2hXT6SntckyeaFSQSBVIQ4fFkucpd2/d4vj5GStbM7lYoIqC9XTF63dus5gsWFU11aLBEUi0oW0d3WpM6xpEomlsQCWSrlmQa03wcUXKNS3ebMC1iaehRUuHMxWCKPiORkNMc8HSCpwSFFsjrOs2LSw5+zspVdOR9nLmF8ccXd3naPcKVdOQlXlcjZcptVXgPEni8KLCqz7GD1g1FQhHU7UMB316vYIPPzynKAeRg5KWSF0xX85AaIZlD91JnO2wgVjVmyo0nsHOEHs24bW7L/P48TNqG6u/J5PppqEqVmo75xCbgZfeNC1JJVhPl5jOovMSiWK9rCnKHs4H8IHgAqPhFkmqqY0hAE1jWC0bdra3yFLNcr3m5PiMNM9Zr2paa2nqFtOK+DoLsG0XXRQBtoZ9OuNoG0vWLxASbNfSNisSmVHmBW2ziOwUG9t16mpFIiSp8ARj0TLBiAhMBk9jDfIyqtNWKElsJETQOU+mMpASayJQVQtBa1q0UsgsRaca7xRKBJzYTGI3jJs0UajgsR6UyiLDxhhSmWIBkSq8FAidIdE4ITbNW1FI824jNhAdNM57lIjxRylj25zpDEmabOqYIUk3kagQBWUtJUFplI5xKEeMraUqwsSNCQiZ4DfQaIyPLXiKGGEOkiyLTUfeuRiPSmKkQ0i5cYZIvAx0rqMoy8gECbF++rIIRCeaqqsimF8liHDJNoI0jWPC+J5sODwhig/BWbTcfA6cjQssLsagJBK1WSKXIrKM0izfsFeik+uvCVvOEIInTRO8N5jOYK0lyTKssTjvSbLImAsbhk9nDNYZlO7RtZEPGeOcehNjjMctg9iUm0gq06LShKIsyfMU49VGeIrAV+ssWkeO5+U0JLpC2DCFIsfMO4PQUdQETZJsQK5E8LYXxBamYPEEVIjg8hil8+hSx9Ibx+az5CNvybvYxuYEzpkY1xTRCSYgimjexUSCtQx6Bd5HdxTEJlmtFXXV4jecphACrTXoJKOnM5IkxXuHMY4s0xhjSNMsuqh8hM/GMKDECb8RL6OgKUV0NYYQgetpEoV07yJLKzJRNhOujfvOeMtl/iYWfmxgulIwnU4IMjq7rQfvHHkmcLMl2VbC+PQJwUjeeOsNqvWC1z73ZXp5jycPPuC9t97g8cf3Obx6xGtf/BrCtIhkEAG5m+/RfD4jk4pB0YcEglKY4Dk7eUo56NPrb8UFpU0cMAjFoOhBmiETSVZkLBdTtAykKme4s8vJ5DnzVYsQ0Cv67Gxv09vaoalqTp8/oK0WDEY7XLsyol08QquMO5/5ZdrnZ7xw91WKrZ3Iw20b+lsj0ucpSiWoVKK0xjnPtRdv8s6bb/Dq17/GveenHO5uY+oGJyxeKHqJInWSXCgGZY/haIetnavs7+wiskNqY9ne3ua9t77N2fMpIuvjFmO+8tu/ztGVa0ihWE+esXd0jRACTz98n+n5KZ1ZM5k8Yz455zNf26O3fcj8/B6LuuH80SNeObhF27QY55FJikPihCItC3jWMZ+tOL9YQJJiW8sv//Y/5sEPvsX1V1/lhde+wsm7b5L1EvZvvUrZ32a1qDi4ldLZwM7BHjLPKYo8isJBIYXD1BGcr3QaXTxK4KxlvV4w3N3l/P0fsVrMMJ3jvTffYGtnl4vZM+p2xYMP3+a1z32V3Vuv0t895Ku/tM1qvmCUpHznj/8VznrWVYXKM8Znz+iXbTQRWCjyAuOW7O9dp14sUTJjNptx+vwJt1+9y4dvf0RnO4wbkvd2uPP6Z/ncl75GcPGxCBUbE61DakmWljgXF8eEiIVNKpGRK+YdTnhWQHZth1tHe9wc9dkvc4pEkct4HRMybHpKJZdnH0Q8e6m/p55w6Sb6u11Fn9hyfuLvYnNd+Q8FqP/U7ceaVsAJhQyXTKso1hA8wq8jEymoH+fxRNhEzy6dk/EkGISC7iJiUdTVjdB9KfKEn3hSEfUR1Ga/+ieOSOBCFxnKm4hb+OQZftrrJT95XGsM6v/vglKRJ0g0dbMECUErtnolbWoIpFjTUHeOaH3pY00XWTuJ4/T4UeT0BIE3HQ0tbWs43N/jytFVsqlmfDbGdA1Be7TSDIoBZd6jrWs660hyhzOOF/e2EW2L7dY8fz4lS1KEiAOAQGxXiXl/h2lW/Ns//TMO91/k/DzQ29lBdhJnA22zpm4MdTPmYnyKVhlZnjIc9LBNTd3MCUFiO8Ph4XWWizOQKU5YXrr5EvvDjOAdz8fPaBqBzlJ6WXRtGVsjRILpBN5AlkoIlsViims6riTXOV+dc/vGdQZCM9UdiVZkhafIMvI842I2psgCW6Vh0vS4WIJSCV29wjlPRyAXGd3K8LSdYn20+qdorIkrVl2nWNc9MPECrVMdwceii4O+xKO0w5WgOsgSScgCGY5gAlIHSu3wXlFtwNFFGVjVLcFJeqWmthHS1nkHLsFph8RRVx2LWcV82USLr+lAxMaD0WBAUy0Zpn2saXj+/ITKVnQNnK/mtE3Hemm4OsyZLDsqYrve4eG1yAzqWlobkDJlmGUY23I2r7g5HJEmKdbFFXO74S4FKekVJUKl1J2h7WJ1shISqVPS3PHk+BkPnz7lxs1rfOnnXuPJownDcsisVwFxULhu1vFC4z3WRCijkA5az+l8xk5vyHqypD9MWU9b/urdt3n9zkusn6x44XCfycWEdevpD3v0hyXVomG5rHn0ZEySSRazlu3hASfHJxxdu8Zb77xDXqyZLzsat0KpjDwrENJHzhcCnWYkWnHn9i3mFwtmyxlF2sN4w3yxoN8fYKyJUbREkZSO84vn2M6RqoSl6nB+iJA5UnjOz58xGm5zaixXtg94+vwBxx+/TdXNEKpESc1osBtbEdeGva0B2zs7IDWT5YxKOh42Da5ruJi3vHiww+FuyXSdsqgFVZvQeHAyJSt3ED5DZn2MbWisJnQdAr1p2PEkacZkOWF3dJXBcItutaa/u8uw7OGDjYyVAE9OnpBowe3bR7x49CJv/egvqdsZwdeUSc7e1W162wOev/sGWpd0bcvXfvnr/OCN73Fxfs66tZx9+AgpFEXWY7C9RzMPzFctvXzIzsFthJLkHaB7HD874d7736efbXM2PubohVt86pXPMX7+hGo15/DKPvs7+5hBx+mzZ5i2xdiaNMs3LTMxYiCcw4SWulrHSUc1wYcaJTV1Z/BO4USKSnbYv7pP09YMC0W1qugagVQpVQN/9b1nfPz2v6BZnvHWg/ucVEuqxiCs5vT5MT4IkhSsPaN2NYt1yz//p7/O9/7ilEdPniC1oq1qfvjeMa216DwjTxP2t/sMeoZMGTpTkeaSyrZUtoPZApkmdIt47kVKrh+MePmVF9kd7jJfLXlfdnz1S18gkyWPPzphPgukRZ9eMUPoHRbPLijzEuEd5SBnfLrg+guHvH73OiIo3nj7Hg8eHrOuK/a3t9gZ7PDw+ZwkUQjruHl0CLbjK7/4dbZyyx/+u28ynY1JlEClGeu2IUiLpCMRmocP3+P2zTsE9nln+S5ZpukVBdiC2llIHGXaY1kbhCpQweF9FYsohrsQAq1pWFZrpEyQ2pJLRddN6ZUlxgiMWTAaqE8g81qnZCpQLyc4Z8j6O6xWK5zJoqCdbKO0iK16Cq7svcDDe++Q7B8SVMIL13d55/49pvMLUtWjC2vyXiDTnqYNCLmmdYL5csTBzlasgZbphlVS0nSGtlmzU/RRIaVCoNOETBcokTJZ1XQ2tnK5IFj5hrzwdN5RV4Y8LWJDk7W4ro0cNOfQiSTREi91FG9MjJ/oTDKbLaKbwzqSrMCHirZr0FJy9fAaWaoQeC4uJvgQGG716Pf7GGt4/uycxXyBc1CvK3b391ivL2hNQ6Jj85IPDueJHBMlCcazu7dLXuQ8fnzCYDBguVhFsL0whDTgQ01Z9Eh0StGD+fQxR8MhN49u451luZ7ROovwCSEohNQINIdXDiCAlS1SphRFgQ2BzlYIBQ4f3R+bdjHvLDYEykTGOJzzJFogvSBRkqAE3hpUFofjlw1gPgis06AzhL1cQY7CXXCevOgxncwis8x7hNRYG4Hi3m3arYoMofUnol/AxftgEWgSHaPqEeJto2tJK2Ln3GYir2Ob1mq1xlhDWZZxsqk0NrRInZCXFisUUl/GkOIvKTdOtw2LLYoDEiccCOgP+ohNdfyla8d7F4H3PpAlKWmi8S6yh2KzEFhryTbOoRAcXdexPdqhbiq0kEjnY/W7sXgbWwVVomLDLVEk8D6OLQNxQpNl0UEmN5woa2J7VyyNcBt4uiNB4Lo4IVOXUTDn0DoCqxOdU5YlMigyKeiaejNRUpuoV2RWxZaTgDMerfP4muoU0zUY60n1pg1WpZF11JgNLDyKNGzEN+ccwZoo7nhH11VIlSGFjmMfG9vqtEo+iaVJFbk+EVzdkShNonXkJwYLaiPgGZBJGrlHztOZFiH1J+1SqY6uYOc8flPWopTcMD8iV8n5jn6+jTGGooiV5Z4AxrBZ09xA46OLyPvIiSzyfCMWuuju27i4QvCbGGSEd2sVHYJRVNTRYcvGvQYEH+OEIXiCC1wWaHu3We338ZYQIpcpNjensT3YtuAtbesoewnBON764Rs8eviQkMD1F19ie+8AbwyDvSsUywl5UdDf2qVQihZJvbigP9rHKEfXWHb2rpHu7tDUNVvlPmSB/Vu3OPn4Q86eH3PzpQHOxvekWq0ospyQatK8jO+dTOmMxVqHShNUIhGJxzQLhFBkaUIvzRht73Dtxl3Gxydo6XF1S6PHBOG5efc19g9v84M33ubFVywhaIKztG3L9Vu3OH3yhDRJePLR22xt93nlM1/A2dhat7W9h7eObDDAztdR6FQpFkE1OePs+XN6wyHWWarlkvHkgmL/gIOrRxx//Ban48fMFkukyhEycHTrDvPphKtHN9jbu0q/N0RfV2gUzgY+euc7CAGDvSscv/d9vvZP/1v++Pef8Plv/C7Xf+7LBCfQScJ8dhHdPOs1/X5Jt25570ff5Z0Hb7F99QjpJXK1oJ/HggbZCCaP7rM+fcRr/+C3uP2ZL7GYTGlXU/p7O3zpH/0XzGdTnAvkeRm/i0FBltCtJuAlUuUkQtEFg20Nq8USs1jx0dkTEil466/+lMV8hScaLFyQKJkwvxhz844ksS0P3vkRX/rlX+f//u4PqNYNnfMInZLK2A43PTtBpClaB6xUHN39PKHuOF095fMv/QrTx8946y//H+Znj2hXNQcHR5S5YP/adb741V9DyRxva1zXkeRlTEms1mT9DIHAYMiUpEwSjA10QbJUMDrc5+7eFre2+hxsIpfJxukmRKyGQvwYKf2JnCHi1UMQ3beBvzt69vd3E/1N0a1LF+JP7+Pyvn/bvv/254y8p1jeIK2E+V8gwuX+XHQcUUN27TKP9smxRKic+EXbb9cAACAASURBVET0uWzhDPUxZHt4oZCXAvdPOo02xxSCJfga0T0EWRJINsKVRjXvQnG4eehlVPzy8T9hu/xk34BxsXH0Z7j9zAWlRetwac5qOWZS1yRZH5VcYTgY4lWGtxCWK7oWTOeYzWeIEAgqxWYCRYarO/ICgtQRuLp9wHaZINqKZVGSiYSD0S7T6ZR53aK1JksLImfQoMucDx89wroVtdHkRU5wLnIcXAAXB0TOWRTxAjKfLmjW73Dn1me4++IdRoMdFvMJjx5/QNbr4a1nOBqxnK9Ikh6pKlhMx6zrFSpNsG5Fb2ubtl1vSPyQKMH5+Cl5KpktFqQ6QcmANQ3BWCClaS1t55E6oZ97Bqlnsejo7x+RaU1mHQ+P3ydzJZ2L0MtUKoz1tKsaQUpXd7RlbC3CaGzXsk40etP4JHJNnigMCYlusN5g8QRZECz4IMBIEiFj3K1zCBUHKMgAuUJISzAa6zOUblk7gZYJUjcE57BWRgutDpR5i3cKoWKN5LrusFKRix4iGBrryULMg6dJyqyq8F6hpQAt2d3KsNYwXjd4EQiuIRWak/EJWdLDWkEicrouDk5Pl0us1SgNKokNdcF2bJU5TVNhXcei82ibkSWaPO/RWEXiEuarVRRXyl4EfRLNi6HzzGdLRLhsrYlsldOLOVme8g9/+Vfw1rIcBoRs2Bn1ePz0hMlixnA4opcnnJ89i8wPAkmakMnY9tZ0nr1BSaEDPhjSpOB0NqaXFggNX3790zwbV6ik41e/8jrvvP+ARGd86/vv8uLhNebzp4wnC37+1Vt8/0dvMZktGWyl5GlJonKs8RjnscbRVrEhsRiCSAPPnz8mmBTTNFzYCBE1ocP5PqgM6RtwnotJi/MRcu+lIiszsrLPdNZy4+gWj58+ZFXVNNMLOtOwag1aWI5uvMbp2QWL5TxCFL3Dhoa2szTnLb08ZTxZ4ba2cWFJphRZscf+lSs06xn7g33mK8eoLFmjWTlNf/cA7zPSYkjTVvQGBVmR065XNE0D2hJUoChKdvb36ZUZaqvP7tUr+M7SredYa1jNlyQJ6ERRVXM+ePgOjVshXA9r1sgy5eHTj3n2xtssFktu3b7F4w8+pvszx2w9Z7S3hVYKNJRZnw/ufczuwXW2ZYY9Pefw6BZJuctiMmZ8fk6aWAbDLWaTC2bhjDTL+fzuF5nOlpydnWCaGcKvmJw+Y76qeH5yjFmvuXblOufjJyA70mJI3cwQ2uCcpLGS0IYYEd4Zkag+o9E2pnEc7vQRd+5wMTlGB8l8uaa2KzoMz6dndHaXZxNLL0+Zz85ZVJrJ1LM73IPtguPTKc+fPsUKw9nkGbtXb5FmT/lf/+Q+8+mSRhpoc5yH0aAkC57KOC6Wc7Jc8cUbr/Leu49RIjYazbsZ2SCnM4ZeyDcZcIEUgTQt6fX6bJU5i4sLlrNz7r//gLuHdzm6us/04oIPfvSI0dEIvEQoz8n5BbupJn/hKut6xWh/xNHRC4jOc7o/5WT8NmvjaE8XeHOO1IqsSOlWS67s7HNyfMob3/8hh3tDmiXYLsGQInVCvVrRtRGY33Qt/YEmU4KjG9e4/+HbDPKcF164xXf+6juILMGqQNNNqbtAYQf0ej2EqJE0rOqWxqjNhChlZ3uPrnOY9hyPo+oEdJJ8WBDEnFxobBa5KV3bEHB4ndJWHUW5Q56MYuwmF6w6z7peo7Xm+ON7pGnGle0htqmZzhWrtkJnW0hZ0i4adO4octBNQln0mDaxCev2p+7w3vv3mCzOqFYNgpyuNqRFn+H2LsoF1uuGqqoY7R3ivWRvZ8TT4xNWdYX3LdtlTlcvSUTK+bNnDHf36ZaGMk+o68g0jC5aEZl7xIhPva6AbON4ERxc36VZC2YXU4pewXDYJziLsTWJSlFS0+uXKK2YTxd4POWgYHw2ZjgsqKqa3rBH21XkuaZpO0Z7I/plQbNuaLuWgyu7rKuKdrak6tacnD5Hq4Rnz0+RSjDY6lEvW5QE5TXOC66OdtnpZWhhGKQlOkmonMOJ6PySoiGRmuAVztUEmSN8wKE2kbZYGNG0lqKI/IIApDKK4IiA0gqlFc74CN7cxGFkIuguxQ2d4BF4GRecvAuxEUo4pA+oNMG0jpCmG76SoTYd/ayHkmrDT4rRu+j8ii1biOhyMcYgkriAZr3Bmo6mAZWkEDx5nke2TvDIAMnlKuemlUs6R5posjRBSIXxBm8N3jrSJItwaRFpMUgicylWvZGIGKNFCZx1hI0Ak2cFbdfE2nMVh6lyA+92zhDShM65CAzvOoy15KXAObG5j+Ny5B6CiNy3NME4Eyc9UqGFwktQSbSxOWtx1m5cNJLWdFFECxIhFIiA1inWGV544Ra2jbE8pQVN15AkGfNmFqHZKnbasWkoMqajV27FNjMCdRuBylmWb6JZfCLWhU2bWUBQZj3SNDbxOWdQWiCUYLVakOUbMWTTPOe9JRDI0sg8iYKYi0JOtOyQpGrDDQKtJZ0Dleg433FsPovxeAiRG+Vw+E3bWldXVHWDVjmpjhgJY9ooyAWPbTuSNCdJFM4LEp2yXC7p9yKIWkixcRwZEqURRNaOUmojGrlNA6CM7reN0IiK7qtEa6wPxLI+gfER2m29I82iq1eIy4ar6AhQUpJmcZLsnEMlcSU/8jk1WsWFZikFyA0QV2waFnUUCQWR3dV1He1uw2Q8YbRTolPN5Lxh78YVHjw+pjOeva1tdvYOKXSGM4LdrW2KT73GYLTP/v4+9975Nh+8d5/WSH7rv/znKBvoxAqdZWSJxHaCbrVgvhzz8TvfZevgBUCwms0ZjrYQzlE1Hbv7W5FFKmKbsgsBrSXVYkbS76O8INNlHAMHiUwSRJKSphl7+7v0t/YIUwHZkmAWqHwIUvH4w4+Yz86YX0zo7VxlejFB5zlaRVeSUornJ894+fWKk48esXv1CmcfPYifIRkB2lqpGK1VHcuzFZOzCQc3jnj/zW+zc/0293/0fT5++ICv3HqRtq14/vghnTesjSdzhrxQvP2Db/HFX/wtZDFgdLUkBEFSxtj41sFV0o967N+5hfKCi4/uc/PmHUox5Iu/8JvgA1a2KK8QwZFnmtl0yZXdW9R1R9Lf5eu/+pvYDh6+/wGf/uIv8+Yf/xG93HP27ASePOXZ40ecTU74td/5r5FS063mJCqjN9ynqTuCiSKedwEjHaGq8VKwfeUQqQR1VZMXfR68/y5nx/c4fO11/sHv/jf8+R/8C+ZmwtJVyNUYFSx5LumNBuxfO+Lj++/y6MM3+fxXvsH/+Pv/PctnT1lVS9JEkJYFWZLh6hqSgJctQaQcvfAqSSh5+OQtImtN8Zfv/RWv/+Kv8e73vsXW3oA7N17h44/f5ude+SyZ7lHPzvnh9/6E17/0NQY7OxgREJmil+SIusF6gUlTFr2c3k7O56/tcXc4ZKRkvE6KS4E4iuFyo1v8tJD0Y39QLKK41DZ+TFH6u7e/TVj6scvwb/7/T7jYf237T3flCE8UxrIBpL+6icTKT2K0m5NuNBGJWFjD5rouNry0T1oAhAAXYktcsh35Rp8c7E/9GUCQINgm1OPo9paOEDpCiAsSQpQbF+1POpwuo9w/3tvl6yWMJ/kx4ulnsqnf+73f+5nu8H/+l7//e4hoj76YnbMynsYE8qzPqChZzCcE4bA+oBBxhRdHlvcp8pxVs0AoTS/PCG2HDwn9LGfQK+mhsK6j85KtPKVtpqw7g/eGQmeRlxA8Xiq8a9m7eoPDrT4q6ZPkCfPZLNpyZUJZ5ojgSXSCCxbrY66+Xi0YegGLOcFXJE7hvEXplK2yx1aSErxn2UxYVBXGxzYJb6GVgp28x2QxJ08zTianPJvMGU8r6lYwGJVYY+j3S6wP1MsIXeyEZVm3qCxyCiwdLw6ucvzslFXbMSg65l08Dh1krAktNLZZ0tae2gaUKhFKkPQSEq2oTbRVB8BbuH79JkJ6lqsGExRWxYGm3DSAaRVtxDqJwk6iM9atJS9ilbsUEkGCTlJaOqwTFEoSWCNCivcpXkgKDX3dRsVd5GihMM6TIeIFTwTQccUxkwrnW2zX0SuhTBtaX+NUQKicxgYgVuMGp8BJGiExPoJKB0WBcZEzUtWRGVEUmqatWbUV62pF1TZ418a0uorMhd08IUtyTk7PqWxDZ6Kt3nUtqVJYF+Hji+WC7dFWnMR0jnXbcOXogN/8pV8izaIYt16vESLyP+arNUJprO2irdW3aKHxDrrO4n2sJ+71+nSm4fDKFSazBaum5WQ8pl7VPDtfsqxWtE3D1jDl+elzlquGJ8enXCwafFfHRp5McXI2oV8W9IYFL9+9yfnFDCECxkCZp6RKojR0zjPa2SFN+hAC88UMqT3WtBzuXqduI2C6zAvKrB+Bpk4hZcx+Kx8wJrBY1ZwvZxgh+fRLL7N/5SoHO1c5GV+wv3MVLQtWqznYml4vBwdVs6b1TRykC4HzCVmaU1VL8lRSJnDzhbvsXP0sSbqN8QnBNgzLZ3T1iqP9Q4q0xKsc5wIIjdIZAknZG5CkGeVgRLWYkyYpg1HJYFhQrVaML0549uwx69kF2NhCIoRjNj3F0tKplmmzYHw+YWHWpCphvFwgNQy3B/SKgqdPT3l+eh7jgkUeV6sRDEZ7jM9nKFVirEWSMtzdp1k0zFZLDvaP6Bc9RHAoETh64S7Xr73E9WtHBCGYryNMfTwZMxufsFwumE9POB0/Zlmf4nzNcHTAZDaP7UBJsrkwWbaGA5K0x+7g6sbVkMXoTBJrWxsjmC7PCcLhXIvralrr8SaWBiQqx3rJdL7myrXbfPqVL7C1dYWL6QV1NaNqmrja2bZk2jNfn7BYHNN0CXYTqVCJQmrJel2RFCnIQLWqePp8TJGnrJuOol+wqhpuvnCNs6fjTbuVJnjJ2WzCfPqYuplx/8lTEPDSS7e4enBIr6d5970POD4/I0iPs542WFIveeWVl+inI4xf8fpLL3L/3fe5du0qz2djPnp6jmkDznaY4EkLTdsa7tx5kffu3UOnPRaLKYNeSXCGxdrROI9ShqpeozyUiac/0Ny9+SqHeze4enVIs56xXM54cvwYryUuaGztkEFTLxtSLRmWmv39q+gkRJeAGoBIabuW0WCLpusjGeK8Idg+IDm6fsTk4iwCjLsOXMD5Jk74RKzpFkohrUHkCa5uKLZ3cLKgm52jNOzv7pNlOTrPcNZxdnFBEALTttRdhbGCcqDwvmQ293SdwrnAwf4BHz68hwRmqybGyzxRqPCeEFoa0yBUoK4qxvMLer0eTbuO/IAgybZKuqrGS4Wx0XbdNhVpnmG9xTqH9Ta+D3WDyiRbZRE5JTIuWGRlympeIZWIbUTGUOQpiRZxrAAs1xVVXbN/sM9yvWI2X9DUFYRA1sux1pEW6Y8BzEp+0sJmXSwc8N7StR1N1zGbLVhMF5RbxaahRsbJePAM0hivy9IBW70U6aFMc3plD90vqbo2Mn5ag5CKJC0QUtCuKnp5EVcrQ4J1seI40ZK6aSh6/Rgz2wg5SgRsWyOkjPBWD0JJTLiEP8fvibGWtChwQuCNQQdAepxz9LMEJxxeKkSIrS5SKdqNKFKkCQGBMx2ubfHOUzctznr6vR5pmtB1HUqAUEls7VIKazsSnZAmKYqAVBLTGYR3aJ18wkIyziOVpq0qVKLJ0hSUoFmukUphuo48L1Ayxot0opFObCaaAiVi+QBSRhaRszGarZMNWDsCoi8FJSHVhvvkSJMkxg6cxXUdWsQ2qRACOkmwbSxgMdaSFX2ss+Rpvmmrk3Te0ZiOuon8Hy4bc+OIHJ2mtMaQ5+lmniBxWFJVbFrFUuquRSUa62LDmlKS9XpNURZkOkYBo7NJUNUdg2ERWUZSUjd1hIHrH7u31Cbi53wU+drOMRxtUxRlZLsQPw9FXlJXFcNhfwMbB6U1TVdjjCXPctJsM1PwcTKhk4SoIymsaWNbctXinKfXG+BtFDSjyBOZUsmGw5SmeXRdEPlGbdsglKQ/HCICGHPZFBcXafM0R0iFczYC7LuGsjfYtN2KGJfbvNgx1h0FUgDrHN66jSsridENpeisRUq1eb39JtcRxUbvPFVdkRf5RpSKrr1Up/gQ6LqWrCjiAvLGpeQ2zrIsyz8RsMDj7cZtICIoOFE6AuAzzfRixu1bdxj0e9TNir29XWprefutN0nLAZ0P/Npv/Davvv5FDg5uYJ3ZMNYUOsk5/vBd3vnu/8KP7n2P5/M1Itd88Qu/wPziDJmUBOGR1lFujViPzzl/+JcQWpLyKtPJAl3mDLa3qG0HXtLr9yJPLFUE5wimJgmR3bp3cIPp2ROsXTE+nyB1rIsvipIk0/xf//sfcHDlEOsNi+UCpQqyfISpLJ96/eeZPnyISjP+8N/+IcX2Lrc/9TKz6YTpdMrp2Tk7ewcMBkNuvHiXtMx59vgYnacsp1OGg5LTp08ixuHkOdZ6Xvr8Z3l2/DFvvfXneGlYjhc0bYdrKs6mZ6yWY6wxdFLgRUDJjrPnJ3ivuPvpz1NoRZCKJMmp1yusiufV0WgfQcbLX/w6o90D3v7zbzLY6XH40mdJkBgDyAR0wnwyjY6sbkVnat783nf44P47SC/4/Nd+hfXFBefLjmxnn4PrV7l6eJs33/o+H73/A5588A6j3evc+fkvoESClQntqqXIc9JBQVbm+KqmqSd879/8bwz298n7WxRpyfMPfsj3//3/yatf+gqiC8zOTrBmzY2ju7SrFutbTGi4c/M2D96+h8Qwm0+Z1/Dwzb9gPDtBCcne0V2+8LXfoHUF69UsOpW9Y7S3j+5v8+H771HVFySZxjdr/tHv/DMunox57/6/54tf+DpnswmElq/++j/m2ZPHfPdb32S2OkcEgw6BPEvRWUHlJHaQsHP7gF/4zE2+8dINvnxljxv9guEnzDmJFJv0xiciSNh8dX5aKvIbaUN8Iq78525iEwnf/OuvPf+lC1Jcfo//9r38Db/+rife/CY2j9hcz4WI16cg5cYJqYkcubhPET552OWREes5BCHtIeRlUVUgyEvu4uXmQTjQCeRXIb+BKK4TihcRxR1EfguKmwi1tRG3RBQVL4NvP6GoCcB50FLw5w/WfK53wejw5n/3d//gf7/tZ+5QQsSK2Ot7R8xnF5AUFCLFrE95PF4wXbb0h7sIabiYzdGZYtV0uG4GladeC8ohzFc1OutT5ildveLx4zW9XDJfLmgMXISO1sYWLe8dXQgIaTHOo4Nhd7DFcF3jCNy9fptJ1yB8YDqfk+QpwXV0TY3MoxW2CAWDLGHLScLJBVPvWCcGsxlw1N6xWi7oSc3aBKTwbOsUr4irVjJw89oRT548oJfmrJsamZWUueblF27y5nv3sY1ECkVVS1ynCTpBY9lNJf00p2s9NZZcFrx/8RCXJGiZ0FaS3Z0RdXVGZxVt7RgmilHPYUx0Hk2Wln6ZsbM1Yi1mZFWKU7EBL4QlibacLBeYLlp5y0IjpEaPQKs165Wl7VJUGgghwzmLCJKqchSFZu078rwmuBaFpxQpxniCkiAiUFb5hLqTLLohUkNKbI4blAneWpIgkKlCtjVBZ3El0UqkkCgcQRrKnmSrn7Ba1bSN4PBKyelpwIeWYHK2khRUwvnFjLP1BYkSDHOFTCVGJAgKEBJJi/OWREQrda9X0rVrOpZ0+gZ5b0Taq3j59nVmizlV7XEBWudJVCAvcraHA9ZVw6qtsUJgvOPK1g69JMMZR+cNWkLnLCqHne0hx8+fMV/NUMQaSYfHCAgitq7tbY0wXYuSGfeefIyvA4NBSS/RNMGSqIQ87zHcKtgeDNE+0NMVw/6A0/MPuFh5ikygJQTXMiwO6ILlnfc/oqoWpEkRq6ylQDgRwbMprNc1o60+9bpBSliZhus716jrhs614ANd3dKFDqUd+1sjVKp5/OwhSEfVdQgE/aygqS8Yn+ekac5wq+ALr3+ek2fPuLoHy5llrRXjyRN0MmDY62N8gZAxilA3NVoqdgcZeZ5yZf8GRTpkfPaci7Nz9g9vUJmWIk8o8ykX8zFW7ZGVJb2tAdYEEJ7FbEzbSLTQXIyfcu3aNXZ3R2hrWE3PKRIBpqHr5jgL49UMFyIrIk0iPHY+noN3DLZzAlCrliANicpJVWA6u2AwLMlaz9VrV1jXa+49+gjvBXu7S0bDARfTCU3TcuXqES8e3uHKjSu88/YbHB5eJxOON77/Z7QovvLlX+DPvvlNlrMx+3vXI9RXSMbjKdtbA7p2zcXkKUJ1HNy8g1kH5rMxeSIiJ8U7bOvIkpwi2SbLBlRrw3K1wDpDYx1V26J1wezilDyNGXrTdRSDAabuCGWF8RmNdQTjqNqG9emYDz58QuUmrCdreklC5hOauqEoE0gEmgGLlac3KFit17igaGcWKQRJogghtilaJ0lVj3/4G7/Ev/xX/xoVIJEZ4+MJhDhBjvlPR1kkHOztMl9XXDvY4ctf/BI723vUi4azswWT+QyRZGTZgMEgYT8d8P57H9N28Hj8Ma2VvPneR2wVgvHpOePTOcLBoJfQVFEQ7tYtupdwcbYiCE0INZDw3kfHvHj9iBfykrKfs7o4oWvj96JfZpT9hNl8zCu3P0Xwhn/2O/+EP/qTb3Lr5Zf4H/6nP0BnikQFeuk2oZTcOOrx6du3uH//ESJz7FyR1NYyn7YkJiN4wdpWZCohhASdKKxdUtcVqQgYp0hkj7SX0jULdICi7NF0Bms9okwpsj6LpuLJ4w8oQgKqT1PXTOWayboGr6irJcF7yqIfrdkIvAmMn2UoBVVjkCpgbIUzntHggHUzjTFG0zEot/CtQ/kYc/KmQynNYDBCVi2ziyllmpNIyWQxZjkx7O/toAElt5iux/hUY7voTkEL8BtWSpJQaE2aJvT6jro2pKnCCVDBsb+T0dkU3woG/RQXDE8eTTFdG2NlQXL/3ftY7/DBUa06BqMtmnVN2SsY9PvMbMAYs+HEeeb1kmG/QAFdY5CJIMsTzMqxc2Ub05mNSC2Zz5ZI1dFVHf188P8x92axll13et9vDXs6851rLlaRVZwpijYlWbKE7pba3elBcQbDCfKQh8AxkDhADAfIg1+clzjIUwIEcBIbaHTacbtb6YZ7RA+GutVqtSiRFFkUSZGsYrHGW1X33nPPvKc15WGdKlItIwOih2yAhWKde8989lnr+3/f76M/0MjQBSURSYz9aCFJpaJuLd4JrNYY32JWJsKAnSc4IsjZO4KP1famtRRJBoQomGTrmvfgIttFaBoREb02gBIab6NwopREiHU/i2Tt/AkIknhDIbYLNb5BBEGWpZiyRnuBrRxJFnlVeV7QNC0hBJJURzdwWBd3IR9NR63xJEmGEArhA61dc3psdIAIpRFpglAS2hqto5Mj0wohAz5IlLQIkVC2DUWWg/JYBwlgZBSKhAWnFFIrlIjxI9a8pDRN1u1r6hGw3IYIDzfORCi0CI9a4twasDxdzkmSFFcaUpVEkVip6K5SIrYLKUVj2zhAFI4sS8mTlE6eI7WmrFekMkFKHV1ORFaQINZ/BxEisJzYuBZCHGgiYrubWrfghRBr3oMLoCBJkshUFETxKUDAIRS0TbsWNGIMMLqNQGUJMs3WLiNF3S4QYl3VvX6jWWNpWwuC+No9hJVLiTENCI8zgbJaxqjo2klVV3FdG9ZCX+ObyNMiMq7STo4zDVIrvBBIrQlthWmX0eGjFVLG2KZUnuDl2i0gUDo6ovRaVELE5kqzrm+PcbVAp9PB2Xb9eCNY3FqHVKBVbFMK65imEhItFU3dkCTpx69LkLi2JtNxWGhtFLG8czgBzkbOmQghuouJ4pt3DinEOhIXSLTEWKL7IKy3fA8n+1IQHGxsDFksoiihhGA2HeO0YnPvBLN5yfPPvkR/MEQFQdU2aBHb8pqmpJMX6KLgxsGM5Urx2JPP8sWf/DJ/8K++xpnLT7CjU07sncOUFSJYZCapJg2jE3ucufwU9Ztvc+/Dm+zu7uJaR9bp4ATx/GTCOq4YePPKNxhsnGHv9Fmsc/S6HZIsx6iA1oJOt8ubr/4FX/jpX+RPfvdfUM4n1HPH5//9n+fuBx/RVDXDXp8Xf+6r/NY//2U6ezu8/PLLHNy5xRuv/BkygV4WmBzeYOtLX2Qx3md8fETjpszHD7h/9R3ef/07nP3U8ww3ttm78ARnL56nnC1IZcpodArX1JTNiouXLnL/5g0miyO6mxskSuOXk7WIOaC/eZZ+r0unk9IsSoRW1E2NQKKd5+SZs6RJSrbXY3x4wL0P32Vpr3P1O39IMy+pVEa+s8szz7yEqS29bp/jgzv8xq/8L8zLKc4blJPkiefbf/JbdAY7fPXv/H1uf/8NQtlw9dZbdAtoTIkWA8r5McJGJ2NSFOTbAx58+D2kazmerZhMJqR5gcsTpFIgFR/deJ8//oOvsTy4ia0XJGmPs88+w+Lb9zF1SWtWjAY9bAM/ePMKTkhWD47Z7Xa4dOk0V16xDIc7lPMFJzb3EDrlhU99mtfG15mWDUYK6vmEjf4JTu6eYnYcaNqSw4Mxv/+rv8K8mfPY+ct0t05xoX+OlVvS6e+hwj6uXtFp4ebVW9x1KS89dpHPPXeRJ3eGXChyUiQIHyPWQZAS46IKHglEH4s3j2xHHzuUHv3loTf3R48fDXb96OEfClWfkKIesc/Wf4/GoIfXJH7ot+UPiU+fuORhpHV9ww9/Rv4b78UP32OxzrKEj6WyR/f/0fUR1rx88bEQxceta7El8xNCloDwyejeOhr38LYgnq8FD5spBeCjZhT02j61vja/doJ94pl9dB/Xj9NaR5Yl/xeP9f/98WMXlMZHD5BZwWQ149TeCcbjA1blMYfTlsZ7JAVdNHmm2N7KSaTjQXOIqTVCOpJhQttUnDjzNM8/fpabH37A/ngfbzUWj/Oe07sn2OgV3Lh3nzRJqNvIWsp0j8tPPcH9NowDTQAAIABJREFUWx8gTMO92tAkilsfvEO3N2J39wTGWqyxLKsqRq8aT5YqklTjdUGlBTYonLRgJVk/xVlH4Vqs9ngjGfRSUg+Jg1SARbLSREAXlgZL3it48uKzdPsZ9fQAlUgmyxVnT23FBQgpu/0BKtRM5wfo4EkzTVV5jMyYzw1bo4KmXpD2NpgvFlhXoZMevg3MJg7jonU8TyUiyfG2ZTF7QJAJFRblFXUzpdtpOTi6ztmdS0wmE+rVhKbxyDRuLNtSErxGJQLTOrZHFbYWOJMTdFwUZEi2hyn37s0hSahdQy+1ZFrjWoFB4GWK9IGONug0pawMSeYJuqVuVQSz1QEjBFkA7+Kka6MX6GaW/VkgqAJEhGZu7W5gKoMUOYOsS9Lv01IyncfJ7iDrUfuGSSkIUtDv5LgAo9EQWsfh+BAtFUVnQBCetOhQL2rSvE+9WCGC5OrVfYxTeCIA1doWTcBVDa7XoWlqEi1oK8vj5x6Lk0rvWSwXgKL1AbRCG+gXXYaDDdIiZzY7pm0cHoMmkHUK2spwMJ4y7A+pq2VkJ+CpakOjLE1ryFRCVc9xtuT4wT2mS4O1zRrQWpAlLkrMMqd1gv3JIdNqyagY0Ot0KStH2zqWi5okdSgVEMZi2xWLhUWKGJ/opwU2NMymKxIiMG64vUUSBLPJPWyIleOZinWzwToQCc7WnD19jvm0gnRJkp9HVSvu79+j6YfIjBEmCrVJwnKxpJNrhr0BnhjNsK6mrhvSvMPdSYO5+R5tsOTFJrN797F08O4Uw+2EJO+SqT4uxHYYgSIvOuzsDkiVJE0EhNPU80MW0/tsDjtU8ynFoIuwFRqPyhRlCLTGRuCls7QthKRHEJ6GQN0sScaBum7op5IybZk8mNHtdMmylMl0wnQ6Q3nBY2dOcTieEdDgGpRwDDYGvHHlG7wQ/iovv/Qim5sbVMsaoQyvf/tbfO9b38Fay+HxA27cvoYUHiccTbNiWS4psiza671nIHJarThu7pFmEZSYdTt08hQczBc1fXKCtdjgWCyXNO0KhWSxvM72zhBrOigmzJ3HlSsWx0tm8wVZEvB2wagoOLWzSbfX5aNbN2gPHUGDywWpkywri9AJxhi6whOsRARB28QK7kwKtI6x1STJqMoKZxac2h6xt7vNKJP8zFe+zNd+9Tch7WG9RevIipFKszna4Rd//m/iqhpnPdvbO2Rac/XwDh/cuM6tu3fI0y5nzmzScSk//XOf5w/yf02mM46ajINywuLA86kvf4mDw0OOxwec3u3x3Esv8q1vvokdH2MdrFY1n//Ms3x06zaXn3ycK29cpdMrmC6OOf/YBY4f7DM+XqCyHrVpkC5hedBy9txZDpc1nzp/icbVtGWPc6dO8oVPf5FvvvotLj9xEVNJBhuWz77815gfjlmZVWwLaxK6qWAVPKPtU4yGKVfvvE8hO+RpB5EJiqSHsZ4kG+DKBb3RiCAagokuocZWNCY6TbzoULuauZ8zGiU0s4BXgcHWCaYHt7CZop21jxg3edajKg1VHd2gVhhSr5ACOmlGU1eM58ecu3QBaR7jyltvs7GzzeNPXubtK1e4dXCXre1tTp08gxSC6WSOcwaE42hyRLfYQJBgkVTGspV2ma5mnNg9yYc3buKlY2EaihCFBx8iTDnJM7RO6eeayWSMsX4NeYY7Nw7Y2d1ie2ub+w8eUFY1WVHQG3bRKqNcNZTLEmsNaZ5R9DoEJ2iaGh8iB8Zaz2K2pOh0KLodmrLm8GhC3knZ2hgRXMDX0X3DwyhEkj5qg7IuISSWfqagldQri09bQlcSrAEXgfKttdSNoZcqXCtwto0DhqZE+IAJntZ7cCBlGp0WCoLzsQEvEBs3hcS6gPEP22ACiYztcCIVNG2NShKsE9iqRAaPUAqvYtuaIw5isBaRaBRgvUAn0bUl1sKCSCJ/JwovnjTNUevLomDjQEVnmpY6NhYqQWsdXsZijTTVWGMjwFVKnPNxM+8ikSJLO5G2Kj+OIQQHWkmEs8gQwdvSOfDR3SUC0Y1E5DoFwLeGVqkoFoi4eYMY4R4MhhH+vV4Qh+AikDlEnpNQiizvkArQQtI6g05SjGvJspQQIqssEfE96bxYw8EzvNa0bYttDVle4Fyg1+lGQSpYlIxNe84ZtNIxouglwsfnIPKeQKg4UJVC4F10jK3mi/XjdHiX43wLRIC1lClCNCipcS4KkZFJZEiSglQqJIqqrcELpJYkSUJRFJFl5CFJMqRiDcBu12DxKIZJKQnKkYjY5Oa9IwRDCCaKhkoTpKC1hixL1s13UUuxVqJ1uo67Caz1602bIssKdALWhjXjSCKIIO8gBFIo2qakrmu0zvCsG91wBOmQ6/df6wxSRied95GLpFCEINZtbbGpL0njALKparI0Ax/dSW0T6+DxFqVifNQYG0tpAlgfXwPnA3rtHnDrprckjcwhKWLjcfDQ2shiSpNYqALxM48AnWYY0yKVJsni50HKhM2NXZTUFFkXrAShSEJknug05cH+u4wP7zFbHrMqay5efp7N3SH/+//8P+BVy3vff42//Xf/AcIaHJ400aRFn43zz9EfFXghefz5Z7j61hXmxxOSrEvWEUjnwTc4IWKKxyfc/PB9SvsuJx+/ROVahkqQpwmmid8l9XLO3u42i8kBk8UEFyoscPbCC3TTTd5789v8+q/8Uy48doYz587ypV/8WwidUxvDYjnh1p1rpEVOknS49u4b3Lr6Dk88+2lW4zlnLlzgd37plxhd3GC0qdnePsH2yV2a5QotJYnQjHp73Ln7Nlmmma8OWZgFZWN4/snnufrO65TO0Cwdulb0dzM++9e/zOp4RpplMalgG5J+h74UHNz6AQut2cnOMxr2ef2dV9Gyx5Vr12HrBJ/+wr9HNuzFz0O74lu//atc+/BNWu/JdQ/bNlhb0S4b7lYfcGJnxT/9R/+AF17+DKd3T2HtAcgerpri25bj6YTJeEzaG6CUheURf/p7v8RiMePcpc8yvn2DJ1/+IkJolosJwxNn+OBP/4T6+AFIxwff/BZGOPZOnmOynJEIQRIs5bymsR7hQeeC3YFEZwm/+y//V/rDguVkjM4y7u6/y/nLz3D44B5Na5AhngMm8xl5eg+ZFbS+QQkV+XTDAXvFLqd3LzIYjLh78waf+Rs/y/zokFe+9afUmWb0qRf54qdf5D/+2S9zNu+uBQGBCx5LQAuJEqAexadY/wRr0eQvCyI/fPmPyhk/evhAjGITMTE/dNlaYonfTet78ZBBBFF0YX078odvSXziz4fRt09G4KSU/48Erb98hId3AvGxq0g8DNhGV9DD+N/DK3z4vxaP8HGQJogJ24DgYRJQC/VDityj5/fhgxSSID7GbbNueovC08PHEz4h9vEjd+KhO7RxFp38/xzKfbiY0peaUdEhlFOmxweUbYJUgrw7ZNjpUa4mCKkY9GMNdKfIqWwd3Qd+QaIzOqmjX0hO7mywMo6d7S3atkZ5uL1/C+lHDLM+WbfPZHaMlJ4Hh3c5a3bQrmJw9gyDqsbpDO0DrcwY6JR7AlrbIIAiU2gpUUDWHXDq5B6z4ynj8SGlqWmcAxdI85RMBBKdk/X7j6ZEKtGY4KmMI5EpB8djgotg6TzPWJYPmCwUuZ2Q5xalIVhHJxEsW0NabJCrgul8ggmGtmowxtLPNMOOoNA5IbMIb0hloNAFdbsCkVG1kqKT0tOCurbYdSOMFR2qpiFJU2Qw5FJAnZCPRhzPHqBlQtYrcGUV6w6dxukYZUmVJtgU/AobUlCgVFQ908yRuxotBK2VdFNPNxPgNW0QsfY1eBCeXtrijSfBY4wmVC2STrQ6K8nuYA/TlFStR0goEodrA3Ud4uLeZTSN4Xh+QKoKcB6XdBHtAuMagqoZ9guytIM2EpevyHROYwMntrbp9rocj6cUSYesSMmTnIBgYzRCyxTjDa+//QPOPHaB2/dukqYC19Z44XBGUntHkeV004JeXjCZL8i84PFzj3NweIvVqqI1ljzViOAQNmCsoywrsiTleHqEqZrY9pJoQrrezPVzLu+c5cHhPVwqaRpD4w2SFOsBlXLmzAlWqxV10yBUh+4goVukFBru3LlHEDESkBaavDOkLRueOLdDLhR3HjygdjFmtzvsM+z1mJVzTDtD6ITtrb1YBx4qGmvwTgIJWRY3CJPpA5z1JKLleLGPxNAbZCyqlsYIrCnJC839g9so3aGaNeTpmP5gk83tIR9ef5dunpNIwWC0yaA3ZCzBNyu8jRb+xoVY+yvhaFqyqm/y5MVL1CIjSwry4QYq1figER56OiXoBOHBrxsDq3KKbSoa7whmyeagoFnNSHyFFgm9QtFWK0aDPvcfHJFoSPMOpmwJ1pMNRiAcs9t38dKjE0m1qOj1u5w+cZKiSLl+7SOa1rCzk7O/P8EFz/bOBo+dOcPZx87w6qtvsbW5w/mLF3j/gw+igDoa8Pb3XyURDUdHHSZHK+4e3CXP+1y/8xE729ssVyu8XZJkEYiuswwdUh5/7Bx3928h5ACpUt778FtcfvYFPrp+l9auyHSM9i2nYwI1bbOgrRo2Nkes6jnOtRxPb2PaiiC3ubv/EbtbG/RHHe7cOsYGh7ee5558nOeevsxmf5ODo2MODo8okh5arygSwHkaGShGBT4otgcdXn7pBf7wj18loLBekijwCkyAREksAudgfz6lDpqvf/01/ou/95/y3VfeQwmNUSLCVV2cwORCsdXpkSYF9aqh0Bk4QUgEH167wbtvv43WiqAsTz/zFK/8+Vs0K89zTz3Fb/2rP4Z+yuULu5ze3iYh1mF/5ct/ndWkYmu0g1KSJFf4pmWnHyvU/8ZP/jS3b+xz4uQO9WJJZ7DJdOm4ffM2RTfFBUeSSprWsLe5x/Xb97jyzlWM8awmh7xz6xafPn6BV1+7ws7oFPfu3Gfj1GnGB2N++3d/J3IQOjnNvGYRLF54WpewswXPXn6aunJcv/0AUy8osg28M8yn9yjLlqdf/BTNvGRxdBXbOho8WlmyPGCtoG6PSFnSUSt6W6cJ1YogckR5TO0CWdBkOfS7PR47tcuDwwXzpqKlpp9kBBqGeYfKaGTTMExylsf3OXfmBHcn96Ojx3puXbtNtSpRQRAaixYZCkWW1LTraPBwOOLixad57bVXybVmdbxk52yf1jmMjQwTrWHU6YGMy0HvPM7FKM+qrpBIik5GU7d0ujmCgG0bhv0c4w2ubchSyakzu5jas5wbOt0UIQJto0BpymWNFBGmvJhFlprS8hGLZXY8I5EqRtpbR71qAKhWdXTIAFme0NoYWe90M9q2IREQqkA6SskTUMLTSwWNixHyOD4Cj4n/uQgoFs7inIrR6eAxdY1GcurcSXSvw7IssU3LytgopoiW1jQxJiajwV0I8EYiEsA7rINOmqCDw0uJtXHBprREB4UKsW5dSUVqLF5JvJK0pn0k7Gghab3F4wkqIlERKlrshYhxs/WG1Ls4sAty/eF2hiTJaI0lCInQgjRJkD7QmjYugr1HCY0lEh4U0BpNpgWZTLBSR5EjOIJ11MZgEOTrzT0hRAyBd0gPXnh0omidi+2oWqz5ihapNb6syLRGIbEiELyN0X2h0QhykdNSg9bYpl3HEKJLywlFqhWLtvl4VyE8rlkhdcBaSwjR3ds0DUWWAQobWpIgIFFUyxX9wQbGVCQywr2DsUgZRQ6BQuvYkNd6hw4W6yxZ0kH4BJklhFUZ2/CUorWG1WpJr+jF2vEQIlfDa7pFhxAM1gsSGSidoZN3aOoFsQK+gzEGuY5Seh8F2ocxuMicUmRJgW2bKKgJgbMR6N22lk43xztLqhISGYtKgoiuU+/aOCSUEIJdA9PjtiXRKb4F6w0gUFJhTEDrDAk0dU0IcbPT6RRAIIQYiQtrB6TuaCDyoYRM4uYwQN00YFekaXSNSRkdfSpJUEqQJZqqWkUMQ4DgDHmeEVzkTj1kiLSmRQoRN6LBg9RxEycl7hN8Eectic7wwRNcbIIkXTv4QiDNM7wPZGlKUWSU1ZLx+Jhhv0/VlPTSnG63j2kia8mHFoRFJSmmrTg4us3333kVlRcEmXDtylu0ypF0ClI9ZGNvl+V0wvXlknNnL7I4PiYtOgxPncKsSpbTOYOtTU4/dpHJ4TGjUwOU0Kg0pfUteI8SnsP960wXM0Ka8r3vfJ3TO2co+hlCaZblgsMHBxTdgrfefIU33vwOIYAKkl5fcXj9Pe7v32dy8y5nn3+Wra0uB99/jePxXRKdkiYpvX6fLO9iHJhqyWL8IWdP9rn29nd54a/+LNXKcunJF/jw4D3+7Jt/xMUzD/hs/hPcu7fPE5eeR0qBUopeNuD+g1uUTpCqWPqwmpRImeBM4NIzL/C5n/y3OXPyLHXZkuWS1fgAlfeoTc2D29d59Ru/z/79e+ztnCHPcq699TrHqxlBC3b3TnL/xi2Ozr3Lk2d/IUL7Oymnn3mWo9l9FnXD6fOXqeZzrr31Bhc+/Ve489H73Lx1C5M4bt27wd1rb7KSPS48eZmP3n6TvEj57Ff+LcYffcDJF1+mnrT84PW3sSalUAUfvPltQprxVJoxPbzN1/7H3+Pv/Pf/DLGxyeDM0wQ75S++8UcknXie0EmC7nWxQtDWS6wxaCXp5128ttRlS7/XY1VWtEZhTcvW1gne/N43uXb9Pba6I556+a9x6vzzvPbNf81yeh97fEQny0j7fQyWU6cv4Ms5h/dvYk3J+PAe++9+j/Sxs/z83/+7/NRTj/PS7hlieUBsbjRyLSAJse5q/Euun/8bxeUvXywfMY7+zZwjQcAi+E4Fcyv4yiDE2xbQrt09//ie56sjyac6xDjk+jctsPTwLyaBu0uBCQG5LlFSBLoahirwH+5Kuio6ZB8eIXjGXvA7Y8mQgBGeXEgyCcX6YT9ReE5mURwKgBAOj0QKuNYKTijoqYcRtrXrx8fzXLIWg4SIU5aHMpdArsWkqIp5wcfiFIGPw26fUMDWv+nEQ9eXg0fCk488wjXLSYSHz+onXpH1U+/X9+mTglKmf7xQ7h87Q+kf/3f/7T+q2hqahlW1oDQekg7buyfYG21HWJlZxkmMtfgg2N7cQumcIu/irCdXCYfzMYPOJnubG+A1OxubXDx1iq1+gbeGO+MjyraOTV91hWk93U6PjWEf72vKWnD58cc4e3Kb01s9jpYVMoH5fEVd1WRZEe3eWiJCQKgsTmhoWawWtG20Vg+6BZ74RVEUXXY3RtjWYL1na3ODQbeL1prNYZ+N0Yj5asKiKtna2qYtSxpfMl/N8brD1s4eiT3COceiruj1B9RVze3DY6ZVCV5Q5BmWCiUzXnzqOcaL+1grMKHB2hKCZasb6BWaPOnRyTdwTVw42ABeOrTyZLmgChVfvJhwOF+xaB1l2eJNQ5opvJQUeYYQgVRChkaQojRkCowTaJ+wMi1buxnYGeNF5Cx5IE0jYH0yl5hWg7BIJfBesDSRUTDqWryV+NaRiCSKTsrSOkfVCrwSJEhaGxhojfAZjdPkWY4QAilSUl0gQyApEobFiEU9XVeVC544c5bGWAapR4oMF+Lm0piAVBlbo2GsWEVB8Az6feq6Js8LpErIugUH4ylaSap105uxDUmSsDEakRc51nqOpzOSJGEym3Hq5BY6Tej1hoxnc4xzNMZw7eZN9g9usVpOadoWQWRUORyJEGxsbPO5T79E3RqCN8ymJc4Jtja3gej0evHpy/SSAtM6JqZCBEhIOH3qJDsbG6QdTd02WOsY9br08i7PPH2J2XGJ0jE6amyNN5ElNRyMuD+eUjYteZazvbNFmiQ09RIpKzKZsFiu2Ns7RXAasT7h9AZDlquGtpUYZwkixwaF1pApt+YaBDIFMumwu3OSPO0wnhyxtXMCqTr0u7tMliuOplO86NAYSWMNG7t7DPqbXLzwLI9feJ4L5y6xd+I8uhiQD3fAC1xtUaqAoHDGxKpiPCI4gq3oFAmp8CShQdiSRHpksCjtUNJSFBlV3dJ6gyIyHkxr6eRdEJKdrT0QmhPnH2Owu0XdVHzhS1/ClxVXrryFtJbTp3c5c/osOstZlRWD4YCLly7SHXQRwZOmBd28h8ozvvfmW2glGWz02Bpuc3S0zw/eeZvbd77P8XSCD4ZlNWOxOGZeriib2MQSXECJhM2NHQ6ODhgU0RF0fHyLr/70F3hwb8a8XEQ3gerQVYo0kVRuiZEV6EDVtlhnsdZgjKWX5Wz2eow2d+kXXabLJfPVjLSbsNkfcOncCTaHI46mU6xZMRh2OHPqNN3BJg+OjijLNi54spR6VXNia8TzTz3P/PiYXmfAZHYcoyYiIKXA+hYXLM5HoL0MloPxIfOyZTxfcDQ+JivWTJMQnQGowLkzJ3jpxU9RllWcCBcFiS549fUrHK2WzKqSrNPh6vsfMZ4d0HiPUoJ3Pnqfva0N/t2f+0Uunn+aPOtSNTO63S537h/zre++xmq1iNBC4dnZ3uLegzG379zhg2vXCBjOntrj/sEhx0eHSJGgkoREJezubDHsKC4/eYmD2QGNc8zGc86d3qapLddv30BozaSasbmTMZsdkYYomiQix1oIMsFbgQoClbTYZsXGcIfLl54k7fYYj4+ZTGpGG32quiLpKJyUKC/odvtYFy39SsaNXidXyNZibUUIBbaUvPDcpxgOhgx7fQ4OjunlKYXSbI82SNMCvGNVl2xtjTC+wXpNwNHtFVgjkMEhVULjPbfu3CXROVubm3S7GatqhXF2zQJqOX3mJEIKRv1NjGuYraYcHBySKsWsLOl0uhwfT2NktClRSeQKeR/w1uCMJdFx8bNazKjKGmMDSqWsyhqdKISQDEcDvJcEuxbmrGE2m7OalxRFF2MimypNM1yIDVZJFlum8k5KXTUoKegP+pg1Y6XT66wrxP2a3yWiKK0CpjG0bUuaJxAEaZ7hjMd7AUrS7XYodEYx7JFkOQLFsnXUxuGaBmcdWdrBm0BjqriRVwJrLNbGz6NWlp29bRrraOs6bnR9jAIpCXiPzqNoJwAe1tMnsWXKWkeaSGzwsc5ZhEfV5zFqLta6iIyxIKWRSYKpG6qqotfrIqJtCWcNxgesE+RZHuHOBBRrYLOI/B58QGtFbVqUSkArrDUoBFIpsjwDLK61JDqlaS0BR5KmCOnxgkdQ67ZtqZ2l6BVkefbIzF/keWy3CYCSeATWe4KPk+oszxEIUp1A8NQmOrLSNMO2LXmaIYlDLGsMzjqEUmitCcHEKJZpscbRHw4J1tDNhwhvCBKCMYR1xNu0FXVVxedDRJ5klhU0xpJmMaIWfFjDiBPquomxwrbGteZRLE6nKU1b01oXG9qspWkMQSgmiyVFNyfJExAgpaAxLTov4nUrRdbJcTY8+q5z1pH3+ySZjmKjElRVQ683oCwr0jSNjmHn1+1uNrqpk4Qse8gSWjNFgo/10OtYhzEGa2JMLu/E9VUIAqliDCLVybqFKMQ1gZB4Z6mbFcGDkhn9fo8QPNZaBAKtI2uoKDp4F9v1fAgYY+N7JniMsaztBvQ6XUwb3WchxKIM9zAyKAVZlsXJ/Tp+poSM66kQv8fdOiKnVGSVBOT6Mx75aSEEzDquGXx0FWZ5ZGx5F+G4QkabgJbxuo21cV9iDFmeAwG/fl8GfHQy4akrQ6/bo9fvI4KMjzFJY2ucjgJZ1RiKVNPWJdfefxNdDNnZOc/yeELjLEmRUJeWL3/lq/Q6ff7iG39Kb9DDLSr621soYuxZ9zu0VYtQGVs7exzevQFFwmA4xAuLDNEZ513LH/3G1zCrBUtnOH3uMQZ5TpZ3OJ7PCSpjczBkMjnkw+sfoLsFWGjrFVpn3L72PikNwR+SdLrcvvkm94+OKXSPU+cfZ7FaMJsccHR8D4Vgd5TQEUuGgz4+dHjuxc9zNB2zWs0wdYMIli/97N/i67/3q1jjOPf4kxzdv8u9e+8znt1EpF2G2ydoK4MmQQXJ7pkznNjeYefUSV78zE8wGc/YPHWCxe33uPad36b2JXn3BMYLZuMD7h/c5nh2yHvvXGGxKvnc53+SB7dvEFTgcDGjLQ2XPvUZpBQYA2/9xbe4dfN9Llx+hq3NHcrK0JQTjo4OUHTAeTKhOHHhPMvVks/+5M9z7c3vgRY8fukFvv/anyOTnNOPP81gMOLUucdo5jNu37hK6R2L5YL9Wz/gwytXeOkrXyXUFZvnL3Dm1C7H+/eYTadoKRmMNjj9+JN401JOD+NnTAqEUDTO0njBchWbS5d1jAjnScpyPmM5n9LJC3o7Jzj/zEuM+lskQjI6uYvOuxSDTZyQ5DJlPj7iaDnn0tMv8Nobr/DCU09zML7B//Rf/0O+cO4Ce90urbUEEYU+JaOQIx5Zfh5GtX5cxw9f2cPglydw0wT+bAEDFdiN2jJOwD8bC27Ugs/1BLsJCBFRLDH45amD4HsN9ETgF3Yknx7CU73A5a7gSMDUSv5KF3IV2UriE66fQ+f59SNB4+NtHfnAXSO42gbeWsLJVHA6i5D/hw6gNsQk/3+1L3gcOJnHKgWJ4MjB16aCu6XgcvehSytG08z6Z/6PZeD3bwlencF35oJXpvDGMbw7h8NacKkXzzVCPPQZxefoEPjzY7izghsVHJSCB7XnuIKjWjAzku18/ayKQBAPpan1i7lu3ZMBXBBoKfjjdyZ8+XRFMjr93/y4XuEfu0PJBMhCoEay1x0wL+fsbGxz/uQJptMJx7MZq7YGoejkfQaDAcNMY+oFRsKoW0SVb2n48KOPOHXi8xTZlGp5zFFbk2rQ0pMIT2MVC7OitYaN0RZPnz7Lzs6A/dUR+03Cyb1zXHn/LbaHIzpFh7Z2dDp9qsbS6w+pqxWr5SwudExFW+V46+jkXaQPoDMIgl4emUJJVqBVQicvwBmm0wnOOkbDIbPplOFohJJxAeB8IC96zKcPSNMRbVvR645o3ILFfEqa5Mym10TjAAAgAElEQVSmxywXK4KAbtqLzo1MUy4D/dGAqlywbGo0Kcs6gMoYpQIVLErVzJvIMLHaUXR2kc2EqolNVoGWUSG4O65oXUqqUkpjkKlmURr63Q55pihXNZlssSJQmYatzgjhDK1RaG3JfIJsHYtKY4UkVTl6bSO21pAIsNKh0hThY1NLImMTybSEXK/t0gRkaEBkiMYikoAIDiccCocOAkmCx0Vgq47xuUTnKJ0w2txBOMWg3SR1JZ2kh/Mpy9UC0noNzo9V671+j7IyHE5nEFgzGjyLxQxjDK5u2d3b5dadm3RknPRKCa61aC1IC0FSJOSdLovlknNnzpInGpUohoMOYV3xuVrVBOm5tX+He4f36WSCqjWUVUBIidSKhMir8LbllddexVkfYY3K0e91mNc1uUq5cPY0O6OzvPLG6yxWU5JUEkSgCQ5rG4LqUpoYcfLScDA5YtkeUAw6salGB07vbmP3W0pbsqhqxOQBIVhM6wndjOOjBWW5pPRTdkebBJuiNUxnh2t2BiglmUyjI0cnEqUKBt0RRdZhPjugsZaApqpqhr0h2/0dqsWS8fGcjZ09ytUKgSRNE8zUsNnfoNvp0e0M0JlmtLXFxmATnfWwdQXEDUyh4LBeEqyKr30IqNgRRbAGKTRCeKQAHVrqpowZ8ESTyEBAs5iPyUY9RB4jMME5+p2Cw4NDbJDsbPfi51gpytoy3j9ke2+bdtZy/e33Ca6lWVYcZzN6/Q7HTc1oNOT02dN8dP0WV9//kE6uuHj+PLvbe7zz3lX8wT0WsxkP7h9w+eknkQGu/eA9vPB0egmD4QbLxQFSuAjyFZ69rQ3OnLxA0xhQHmgxRlC2M8Zlw7BX0Mxqnn36PKksuL5/g0J3kCRUtiUlYVXPybMCbxrm5QqdaPJCcv70KZ689BTfe+sD9GDIajlnY9TBOclnX3iOy+fPU9U1t/avU7YNexs7aCXYfxCFbhJJYxt8rXBNS0KX5azmJz7/U7z29lt0ewVVXSGFWld5QyjjhnOz6PLY+dMUac6Nmw+o2xInBa5tETpBBhMZGkiM94wPxhwfTqjKkvtX3keJ2KDX2BaA2ta0ixap4LtvvMvT53YQUnN6a4fJgwcssiXBS7RIeP21d3j32kc0NlCkmnOP7XE4H9Pt5kwWM0Rl2DvR4/Hz5/BOUS0OKVROd7hB61pSIUkITOua199+A2/n5CojSTyf/dxzvPPeNfqdDgezfVItWC0hoY9WBltZyCRpqmkbE6NTMqVXFIgk4btXvs8Lz2ScP32GyXifd9++ifI12AqZ5HRlhnKKe4fXadsaLXJc8NSNwxm3ZokoZA4Sy0c37vNTX/gc7773Pv1On0E/4fLjT7CY1SyrGpI8gvTLBT2ZUCow1jCZ1wjnqNDUZc3i7j65UmiluXv3LufOnCYQKAY5uUgpK8+tO0cE35LojOBSQJEOcnbzHQ6vvMvo9Baln5MWOf2NEffv7uNcjWlqIPJKlJA0deR7mcbjbBTutVbY2uGEJ0kCIsCsWlFWJca2SOXQQqJTyXLZsFpV6ETFCJ2K7iTrPNt7O9gqbu7rpkGIlKxIH8VolEqpVi2tbTHOIFWMa2mpUP2EEBxpWjA426NduAjGr1MWixnbYYODaU0iUmal48TJs/R1QEqPde36sTnSXkJbVUSrT6CtWrZOxPVAIjSNr2O8zTYkGmxTQZsRMoGTLUiBIrr/YitZnLamknUcwuOFA5HhgyRZO4uUzGicIVlb14UUCNOi0vWm3Dqs97ElzsSKeicEkVAjccFHMLmMDJkAEALpuiVMC0FjLK01pJ2MulwghMZZh04zbNOQpQnSgkoTnI2f8batSRKN15I8LdYT2RjRUkIRiBGlh9NYD4/4N85HSLIjIGyEVWdZRruuuXfBg1yLcH69WF5Phj0+NjK1DY6ADQkojREWG0T8LlECHHjnyNKc0c4uwXuaeoVSaXSY2QbnFHUbSwicCzhTofW6lt4FpASlIxxcSkm3KEhST6ZTpBbopkGrFC2OKdbxORECtrVoEctPmqYhSZMIJG5bECEOcZRAa0miNXjBcrkkyzKcW7egiTxygKRAKRkbfgNoqddD7Xhu1mtkAVKunTtRBEqSlNa0pDqP/LhY6QsiutuCsyDWrh4p8NYSnMfagFaOxXxGCAIfLFmS471/BLY2pl4PG6K7XwiJdS0EgZQagSbRKdauolNLrAsB1s7/KDauXUlSrKO8nqqq6Pf7WNvQNg29Xhf7iVY+JSIny7oYlyR4TBudiXkW1wMQ4uvvIbh1r56KzCW/bhkEUMSNl0CgUoGUETIvHEBLkqbkWrHyHoFFa4UIHu9sLHcBpMwpUsezz3+Ow8kh46MJTz3/Eu+89W3GkxWdosMb332Fu7fe4/TFJxl0enT3Nkk7XexiQZakKJkiNoaUy4rxgwXz6RijgBMnIcRq8Ac3r/O7v/9rhOqYvKM5UwyY3P4BJh/QK3aZLEt2n3ga17b0hl1+4W/+B/z2r/9v+G5Os4zsr8HWaYrdHXrbO7z1va+zdWqLfr7J6YvP0LSGbqfLaOsEeZZTV3Mqa0mV4N74iPEDx7W3vksjPL3hFqc5R+1W/N4//ydkgyF7e3t88/d/A2Mb7h1c52iyxAuHOC7Z2dihZU5/o8fd+7cw9YSd1Zy7tz9ib/cM41s3eXD3DqGTMRruInHs7J5i7/xTHE/nHN27SWljkcUr3/gjUi0wxiKEJuttkyb5GjAfePlnfoanP/Myq9kRf/57v8nmybNYoTh1/jzPffYnuPHG97hx/R3uvv8ReS/jzo2rpHlGvxfLc7q9HdK8R72c4cua1/7kD7n25ndpGkNrA6iEi088z7vz19jd3sB1O3Sk449+89fYv3udtFPw1Iuf4/DeEb1iA/qO47s3EYoohuuE2hjsArAGKRKSTNDv5qQyo3YVmoTR1h6XLn2Kdjbnux9cRWk4f/oUmZd42XDxM/8O249dYnr1Ks89c5H51PCf/Zf/Ob/8T36Zv/0f/SeEIGi9I1WSLInfBQ8PT/hLwOv/74dYt5p9AnsU//0Tt2mdpDLwZ1NBLuB8Hvi1ieBeBVii6I2AEMVusc7UOSB4wQsZfDp/eM1RSDkMgndqQMT2zBQROZ7yoV4m6YrA3zsTGK6F84BngeC3J5Jcex7KXg9B2mtbLlpAR7HO3gnqILjdeI4qyZe3ojNLrN1d4VH4zDMLkqkN/MR2FLkaEahM4D0jaY0niNi6/jCyFlscA2MPX18ICkM8f4n41eedpBGWYdD8w0Fk9koEIqxJV4LoLn5kdBKI9aChaT2sz48/ruPHLijlnQ4nT5wio2UxO0bLhOPJmNVisp5irAgm0M1zmmrFDEiHPVpX0tQJlhpnJYO8R90a7ty9gwyW1WzO/vgGeEPTVJi1yqhkTq9T0Cl67E/GDAc5TsN8f5/vXHmb5XLOjf0DLpx5jLYpCcahhKatK0KwcRqDxRjLYLTHYJgzn89RIokLtzShXI5p6prNrT3Onj2HbWvKquTo4AgrNac2h9y6+gMSKehmKVprdndPkSqPJ0MpS9YWdJOUo9JT5NscjQ+xtHQyye7WJrYJjOczlnMTW0Cqku+89x55lpBmOTtSUxtPvxiyWu1jBThlceY+zuaYuoDW09GObh6obMKqTnj30Kwb3Dyp1mihGI5GODuL4HPhWTUC6+PEJpUuOomQ1LZGOM14HBCiIE8CiIQmNGBbEqXobvXjZF5oyuUSqSzWe7JEAx6pWqxft3kIibMKgiKXjoDDBUltAtcN1K0jKIv1hkRltLbE+RrjW2ZziRQ5QiakoaDxNUfjewgPq6XCS7MWemKUsvFzttJNjo4OaI2NbSAytthUPtDrxhrUrFMwn8/wVpBnBUJYWtNS1yVCCP5P5t7rWbLsvtL7tjku/b15bbmuqu7qBhpo2AZAEgANZsgx1FAzE9LLKKiYkEIRMiE96e/Rg0IaGUqaUQxJjUgiSA4NAAJomDZoV11VXfb69OecbfWwzy20RhF6ERQx+XSjbt7KzJOZ5+y9fmt9azIcoURqpknukTXWWRbrDfP5EolEqz657mPaDV4qgrAMcg0ykClNmRcolbNY1KAiwXmcd4x0ZEvknCzmPHx2xPlyTVZI8jZjazikKHK8s7T1Be8ePeR0vsRIj5YKGtga9XnnZx8QMtgdTrh2sEOmI3khKXLPsFLI0GOxMBjTMvdrtNSM+1tk2RCZaVR9gS56xOho2hUiRvpFTsg0WZ4TY6Ru1xiTFtvD3jgtfPMe+MgHj39GX05oQsRQI6whz0tOZ6cordndOYAgCcGymC85Oj3m9u077GwrmvUc7xyHV2+x2jRooVn7FZksyWSavhpj0Qqc8VjXUFU5Sii8b2lMTV17iJ7t6ZTBcAshoW08jtSsp3NNVva4tncAKkfrirIa8uzkiKbe8KPvfcBifsHR48Dh/g6TnUliJmjN1miUpqoyGXOJgcFgCirHRMGmcUyn20ymW6wePuH47IJcaarRiFxp8lKwPz3kY9dy0TylyBWlyrhx80VGo0OePnnEfHbEtavXWLYt0Rp2xopHz1b8eXuPq1dfZLMxDPI+i8URyyhSVCDLkMUQHGQISmkIAnTeJ8qc+x8/5vbL19kfTRHARx9/RH88ohqO2QTHWx+9w70HdxNcMkbmC8/pbEZjavpZiRYgMknMKp4dHSH1VzDWsr9/wP7pCSenR2yMQauMXCqyTLPcLLh+uMvJ0TGvvPQy880pINhYz2BY4FwDWqKCQuWKUheUVYHzcHoyZzDq4aXAzC3eB3YnE0bDCffqp6hMUCpQeeTG9dt87Ru/QtOCyDKm/RKE4cWXrnO8mPPo8TOELhmNdjhdnpEXGdeuvMjx00dcv/USD58e40xLWRT82ld/ibw3xtmax88e8tZ77yZbcBEpCoX1a8rhgD/8wz/lfDFjb29CP1coaQnGEIVjMJhgW4NEgddYF4gyw8UGv1a0tWM41Hz/vR9y82wPomU6lQTnEapEZjmbukF6y6Ju8BEKaSh1IC9ybBRpYygcfenolQ4fjqjrhuOzY0TW0Ku2GUymfHD3LZCa2eIMXWhEFDgPw0GPtrbYYOj3Ms7nc8gzJnpKL++zaRMoX+icXjFg3awoJ1vUsWa1mqOlQlc53mzIhWJ2fs6nPrWPippRT9HPRxwdr+i5QJ73mU5HPDl6gm0NQklMG3A2Mu73IRrqeonOSnIpaDYNL7xwyLwJtG1LUJqoFNEpolBkg4psMEQuHdu7FU1Ts1nXZIWmaRpECOm8n2cUWUVrLNYlwTO6VAqRF5LBcERfBebzRccbCZRFQVFUxGhYnG9YzWOKTWU9VqsFzjlMXNLvVfTyEeOtLUy7YtMI+tUQ7yEqi3ABEZPTQsTYTd09eQeEFqogErF2Q3SOEBXegvMtOlR4J1M9u9uQZzlEjQ8JuuyFSBvfEIg6EkRMkRwhkN3CWfiIqHJUt9J2wVOWGh8M4rItrVtFay3RWhCjJ/iI61xJKpdI9dxsnwQupQgyYlxNmVdU/T4CmeLHOiCyAhMWKDRadG2MzRItNU3wBOeoij4KgbGOtm1TNAs6nlPazFzOYoOMIJJTJStSBEkqgUYilU4tvpLOBeXxPrEWpUiNcTrTSUzoomRaSURoUQpM2/D2T99gsr3D1f2rGFtDpqiG/cR7ihEhk8vJ2sSQQgoykXctRhGJRGUK7w1KCbQo0iYkJGi2samVDpXWC0EK1m1NVlVoLfHR09ZNer1RUMok4kiZINEipla4pm1TFFqBM4bNJrUgap2g4HmuuzTEzwGvvhNCLhuWQgzE6BEiOY+lTE407x1KKIy1AIlB5j10DCsEXRtr7IIaIgHkrSF4yfZ0C2eTeKWUJkpNr6xYr9colR4jEcEk1tQUvQLnA8GB1LHbCKZKeecjIV4yjAIhQozy+XsrpeyErnTdEyK1spm2Te6qouR4foRWiv5wSN22IGXii8XUTBw7yLZUWRK9hEitfSHiZUDI1D7sQ8CFiIsyHVtkwi9ISTQRqQNZliNlpMxHqTGybXCmZjIaprgkoDKNcBqtBUqmQpYQoNk0fP5Lv8xbP/gL8rJHrmpiMKz8mt5owrOjj/ln/9N/w5df+wqf//qvsV31ma8WFP0ex0+esHd4hSzPKUZDnt67y8GNG/SqHsPBDvPVBafnT9gdbzMaSo5P76F0n6rqM9jusTIGjUBlOevlhpO3f8L84im//g/+fb79P/53kAsujp5wcOUQIRRKb3HzzjfRouLqzReYn5wzOz3mvbd+zNlsgRKB1npmGw3BI0TL2+9/F+sbZFT0Ry+ghCU4RX+0y5/90b9i2SxReXLztia1STsRGewfMntouHv/A/SooBrudqkWRTEcE5oNNz/7JT74Uc3b77zDS58bMh4M+eqvf4tXPv95/vh//m+5+9E7hNjifIPzJdE4Xnz5s/yj//A/S8J0iDx78D7HR4+Rus/dd37IvJ5z/O45wguOHtzjU1/+Ja5++rPsHl7how9+xONHj3nw9nvcfOU1bn/2C1x98WUGk30+/N530c5wul6Q7e7y6jf+Lj/9839JlSXe23C8w3hrh9//vd/j81/+DP/6wSPOTu5DkdpHHz74GNXf4tG9D3HrGeVgh6Y+RwRPCAJjW5wVCC/RyjHQFbmQqZ1TRLKe4NUvfZHVxYrVxVNe/dSXuH77JiHPaVYt+7cO+PUvvMaLgxHy9c/zL3/yHrdvC754eMDBf/2fcmU8JuIoVIrlpvRTB3mOnYwhApfUpF8EYef/LfKW/l1hiLzQi9yp4AdN4P9Ypv39b+45/ocjRU8lQUl2Qkr6y3T2CyLQEzIJN1F0ohjYECg6xHZqVLt0GnkEChNjcjULQYtEx0hEUgK/M47kpPidQJCuWpJLMlGIYGKgCYIQJScBvj0X7MrIlVLgY4fsvoyZdc+iDZHbA/g7E/HcwWQJFHXgvbN0Ag6I5yyr9EKTSwrgd69EbvZAikiM6bX9vtW88cQThCAETSJpfqIprkvkifCJdyFCYz2Z/recoXRjd5/Qzrn37CGq6CNlydZgRNOmVhvjHApNLhMA2rSGKAObNhCiRZU9oMVi2Brs0s80p6uaw2s3GE0mnM6WQMCZhvP5ksZ68mzI3vYBwa358ft3cbYlhIZHjz5iPB6zPRgjhWDQq5gtZrTeoAMQHKKrwfbR0dYLZu2SXCgODrb5+NFjXj68w/ce3Wd7MsFvNqxOT1MLhZBkWc5oOGR7MuCxjLT1knVrUCim2/sU0XFw+AL1eoaxjrPzU8pCP/+gNa1FiAylHYNehY192rbhlRfvcHbyhM26Jev12RkOOTk6wztom8hFU5CXFX0NpbDMXGDl1oyHA0RwWGepDWw2gTxPlb3exvRlxNPaGSKmyb/wmhg1QqbJzd5Oy/qiYZYJVivISbXBSkPrIsKn+mEVJA6H0qmedTZfE7EIGVAoiJIoVGLvJJ4yhSwQwiMjOBPQhcZYlyaMUSNjWiRvj3coVMlqvUDIHpGIsSu0jshcszs55Hh+CkFQFBVVpVg2hiAUIfoUGUEhosP7iIueKqsQPlKWFZkqmM9ngKDIS7ydsTfdojErFssNLjienTxBSE0MHVvCJBdU8IKL1YoQPEorRExTR6KlNQaZSUqt6RUlaZwlEg/GJ/6PQuIjCJGhi9Rysr01om5a2nZD9OBc4GwWqErdTTEjTd2SoZIybTTeNGyWFqkt/bKHNRvqdZvU/G4RqDubIypi7IbMg8gswRWs1xc0zYY8z+hlJYvNghAc/V6fYFKkQtjE/VrZljLLKXs5q02DtTVSpAuBzIZ4nXHnhVs8eHaPvck2p8enzOZHKKE5l5GDg1tsmsj5as5kvE1ZbuGdIKCROme+XNO2lixALhVFqo9JNcMpR0XoHFOCSNtsWK9Xqemms6UvVxsQJlUQZw4TBTZ6tEhtdNZHvHUQN7jmCbksmOxtc3F8xku3b/Lw43uUusCUfRaLFY+enXJxdpdmtWK8NWG6PaUsChCC0/mai6VnNNriytUXOJufs6lbin7F7HjOsD9Krqthn9n8LNl3fQtCobOcpq7J9Yb5xTGL2Sn3zAYTHc6eM+kN2R0P6fcKTo4eMN3uk2UjesOcrZ19Pvzow2400YFsdeJQFBKijdx/8DEuwD/50j9mIMcslm/z0osv0hhLs1kxEymeUvV73Ng7YHu0y+n5+7S+JrSOvd0+n33tK/zgjTeZtWuWswv+6E/+hGs3rnLv4WPOTs662nKBzB1FLtmfbqPnEJTHRk9VFdy88QL33r9HrgTDYsRivkaiUiQ3CprY8OT4KDm7XnmBK7du8OjRMW/+9MdkDv7O13+JwbjP3Udn/PXffA9VCnSWMZ0e0jSR73zvDearOb/6y19mOhlQVj1E5hlMKvIq4+5HH6ZN05alkH0mkwl3P3zAxcUpvTJjd7zH3uF1rIh4P8A/PaJX9VmvV2AjHsWwyohiwbOL5Db94PFTYvSYNlDokDbmwpLl0LSBIks5dWhQWSBIQCl8sKyWjnfOf8agyKhkhTGG2hralWW+XFHmKbqgECgiPoDzEWM9RX+EUhuk8lSlBNXy0f23GfU1z45aLmbnnB+fUOSS4/kc4zdMxwNmsxVeROxyxeHeAev1OfPFikwXKKlQGewfbvHB3Q0ewfnZGf1+n7Y1VEoz2dvi2bMnzNdLVKaYbI/YViP65xd4KSlLgfGW61f2+PD9h4gsY2s6Yrwz5Xy+IMYl1rm0oVWS4bAEPJuVRxeQl5r1uqU/ynl2fo6zka29HYJ15KOCuqkxJnB2OsM6S9u2NHVNFKBipKwKskxzdnqW4itSptiMVhRFTjCp4cW0lq3tLXb2tvj440csNyuWswWtdJxdzMlUDkJjmyYxW3SOAmQucQECGq0KlMrYbM4JQlMUJTFWmNbhYosXOa2zZFKz2qzY3SlBkmK32uG9wTUtznuscF2ExxO8IXYuHBsaou8TArTGUuYlwQWc90gJWmZoBDaGtEiNAYJKG2fvCZ24EYIjywYIkSUngLDJdVRkFMMhMsTkBhSCXFwCIhJcWUiRBCMlkwvLQQiSLC9ASGSUhOCeO0ESuyH9nTN14iGpjovUQb+lEFhrgG4KLH6Ock2mlhSfjcEjlEwubyERweOBXAikVkRj0rI8xq4VjnT+j5FMXS71BTiPd5FentHUG1ShOHn2lPPTp6w2C/Z2drt2L99tZ9ITuWR2xODJlE4g7qg7YQZCcOn67UMCvKtIahlIUd4YBVpJYvR4YymrktViQVXlSXBGEHxybsHPt1dK53hbp8KfmCbIuSqIHoxriNFBVM+FrzzPgdSoltw8KVoWYkjtgm1quHXeJZ5H1sUakc8dPcTIptmQlwV5nifnmndIlSXwdpSXw/fUmOaT4Ka0ZFOb9NmMCZQrpKQ1hn5/gA8pXhdcei+0yvHOIYRESoH3kbJX4KNPTrOYImqXBJEoUvxSS5nibJdz/pBa4aw1hBAoyoLWtGzqDVcPruC8S2KVFMmxJMB2TrckpgWkkinuFrsIW7fhEiJ9hpTWtMaQaUWUqTxCdhtVgUhojAhloVlenOFMTb8ckmUaYz1EcM4SQqDfHxGjp/UWIeCFF28zGE+YHt5gdHDIw/ff5uOnj9jfPaR3cIPv/M2fM97a4fHjI17ZbPjxz95C9yr2dg94/82/4dmTbYiKZ8+ecH7yELTiK9/8Fksxx4eMz9z+dMrtxDlIjfWex0+PWWxgMr1Otb3Hnc9/jjf/6i95/PgBVw5vU+oR27s3eHryCCUiDz76Get2zXRrn7y3y61Pv8ZwMMU3luXFMYv1Ba3zDIuSXBdsnEFnabVdhwaEoFQ5i9OPuXrzJlm+w1e+/rdQIWAVuHbJ0eO71DEiQvqcP/jgHQZFxuHhDV7/zd9meXFBFm1iu0RLb9Tnr/74n/P2W99lPJmiqwG38pL+YMioP6IoKqbTPWZnH4NSuKZF5Z7jo8csljMG1RbWt/zlH/wLjo/vUfWHKRXiJSI6JuNtYnB89JMf8pmv/xbXrt/inTe/g9QZFsFv/+5/jBU5sW4Z72wRhOGd73+P8uA6r375a/jGc3zvfbZvvcD9n36PD376Iz73tb/F+WbG4uQuy/k9dqZ9js8WbNYrDg5hNKhYbk7R/YymSdcrJQM2GJTIcBGiUrjokXkqv3DGUvZK9g+vMl/WbFYzhjtTxns79HaHfOsrr3NzvEXWCfUxREIR+ZXP32I7T2VFV0cjfEjMvUvXTCr7FJ17KLBuLUpCmSVW0C848/Z/v8U0HLiMtV7PBL81hO/WAr8S/L0xHOaa/01A3gkyl8/oufsnCmzoCmLi5e+6qJeADqeGDD//OZ3xQ/q7mO6dd8fi8iqSC5Ib6bkCk9yXSkosggz44SLyzKY91iMbeLoSjPrw3jryYk+gZeSSHi46TpIjMpSBunMXqhhpguTIpudgg0h7q6RqP+ceeR8phWCSQ+sEhQ7YECmRaB9xXnUopiSaxdg1KiN+7k7qXsrleV0GjyyLX+hb+gsXlKZbA+59+JCo+wQ0RVVS5DmuFViVNuRaaZSUrH2qin/w5IimNkStyJzHNC1ZnuCDR0eRjY+UeUaZa/a2kzjULGdcnJ8gVTq5CQFZodnd28Yvau5varxpMKtUC9u0nnqR+Ea9qkeVpWpo06b6VKkkT548YBhh4DVv3btPkI4fnzxBeYkxFm8N/uFDGtuwkakBQ2vJYy1Yr9bIsmbR1Oi84HTxkCvb1xgNBxw9uYu1lnW9wLsVy1VDlecQI72qz2g0YFRmhOhZRY+rWw5396gbT68oePjkGGSO95b5qqXXH5FXOZvVksbl2FBQ9grKsqRtLdbpVKeZbXCiRWqPlJGcDIKnqQ3IDBcFZUwKvguCHMFHTx2uybCduBNFSNW+ErwEZxKLQboAMrJsajQRF1xnQU82xCaOpR8AACAASURBVLat0SqCzvAqolSalO6MwTSB47mnn5dkebL6ByuTy0LlNJsLBpOr5LrfPQ/F7vQ6pq6RZcatF26iHylidJydnnJrO+e9pzO8qABomjq5vJqWEBNc82B/isg1w6LCO8H9px/R1A22NXhvWNee+XKGMZvU6qLg6PgJwXu0yHHWEqXHtoHGuWRrtxEVAw6BzgXCkJpfJPhgqPJkM7emxeDxwaCyDCkTr+HibM7GJZW4bR1llhZazkWisITWoEQSAquiggxKVXJysmQyGrBabhjnClrD0hhsY0BB7QxlptkYi3WOshKEIBF4qlJh2jXTgxFzUtvZZr0h4FFZ2qT4YImyxARQQZGpHlp6nG3Ish4+gHUrBoPdtAFWktXilFHVo16c4+ySfn+Mda6Dji6pehNeuP4So+EYZzxru04TBymYzeYJnmoMfSmIWFw0gCDLxKWxNVUJR8d8Pme5nDEc9vEu1Y+XebKo15s1laqIkGzxxYBeWWE2G6pywGJ5wdlyRVZorh5cZbO+QIkab2v6Pc16oxBSs5qv6VcZm0WLxGPalmdPzhiMB4y3p7xw4w6D0YTHT57StC3DcZ/WGmZnxyzOIqPtPsXgCjEYrkx3aRZnKNmwNcqQvuX46T2kCFzZmdIbFDw+uyArSvq9MavVCXUM1PWKxsyZDMfsTHcBm6puhaRQisFwm4ijzQt6/RLnI81mxcnZnDd/+hMmg0OEW/DkaM1LN6/z3ntvcvXqIbXZ0C97iCAo83QO25mMyaeKr3zxi5yeX/Dqp27zwx+8SyhL5ufnGFezaFpEpohSIKTHy3TemM2XWGO79IlkOJqin52Qa4lUIjVDxUiWSVoXsEQePjrmZ727vHTzGlVVEh2cnc5ZzVd86dU73Lp1lbP1El2WtKZmExTvfvSEUbkALzHtmk+9chvrHG3rufv+XbzZMJ2OMNbhYkYIhvnpkpPFOWWlcSExc4KPPDk65vd+/4/Y3pvQrNecnR5TqgAh4FtP3Dh0L6J7B4TMkGWB09mSfiZRMkcXPbarnM994cu8/977LFaG1aZByCY5K9B46+mXFVm/5Gre4/jpPaLK6fVHNBenjMdjjF8jZGKFVUVOXyceUO1dggFnkjy3SN2QVxlReibjCqUg2IJJf0iuc67s79HrjTAfvovWmn5/gLXQthtciCgZ+OynbvHWj++ybD3CBaxpMM4yGBasNhZjLdpnKa6jkhCeFRLRtpiwYH/7RfKsIlIgDUynQ46PZmzv7JP1suRyrDecH5+xmi2x3hDwaC0pCo3KJWWpqXqaa1emGGMxtefB3XT9H29tc/XKNc5OjlgsF3hrkUCz2iRHgQ8p4pNpmnXD1taEwWjAw3uPqfoV1rRYayiLHkWpidKT5xmNEpwfH9NuVlibhJ0s08QOno2OlIM+VTGgKDLmqzPSCrsgesNys8QYT1ycMu6lCMRstQGVQ2iQucZbCz5Q2xotI7nWRB+T01IIrPM4H5KDIziQCkskOIfzARM8BI8JC3r9goPdbbyTNKYBBDEBH7v2s87pIWJqTNOKYD1e+k4ASOJB8EkAERKst+ispJdXWNumCvWu7SzEQLIZR4RWiJBGmZIMb1LMS+cZSmiIadOvdZ5a+qQmk0nUaoxByAzrA8F6pE518cEFlJAQ00Y/DWBEV1OfuEUxRoKLFHmCqmupCC4NZC5dOM4khxM+CSLRO0LwSKWex8mUIr0XHZ8Ja8lFxt7uLsHf5ujsmKPzJwyKPjhLrjICYI0hhktekKcs01pCSAg2EGViZeciRfKCJEXZg0OmirUkOsjkRIpCIqSkaVqm0yFKppZMSYph5lmOaVu07gShENBCJXB2iGghcNYkhywSFwL9Xo4PaYAC4H1CHoSQYmxad0KVShvKhA1LMccYYyeK0bl0Ou6VypAyucmtc5Q6bbYCSXSMweOcxRPJexWNMTyvJIqQZVkqqFEKlWmCTe1xIXaRRiFSdFFKjPMomaE0uKZzzYmIFAko3vkNkgikVBehg+hDej0deNx7j+yYTVprogTT2gRtj/658BaIZM8bkURij0W49BwodemGSjBumeUJPu4vN10xMc1IbBktkshkrUFojY0wqHrYEHA+Pm83VFoRMvAOfAhcHD2iNxqxvXONz3z562SZYHu8xfJP/5hhPuDm7dv88Id/Sb9f8cvf/A36VclHH73PZ7/yFZxtsXbDo4+PybKK1WpNXpQ8uv82e9evU+iS/qjHa69/g/fe+D4711/j6fHHOJUc/9o6yib1QUbvGe1MuWobdF6yWS3ob42ITwSh5zmbHTOdTpHBs5qdsbU1pVmmwoMHD+6yXq8oc02eaySKXh6RylLkOZkYMVtZ1m3LuD/E1xHfrHn43o9RSnL19stMRgO+/b8/4+DqPpPRlLvvvQ3e0usNGFYjvvS1X2Uzn/GdP/7nvPGX/4rbL71GaFve+tF3EL0S4zVRF4wmU5TSPL7/gNV6RWNaGhu4cvgS548f4IxnZ+86W9s7OBcp+2O++rd/hz//g3+G8Z6qGjIclczOnlENR7SbhqePHrD37CGP3v4JZ7NTiv6If/gf/Occ3rjDw48ecHH/Pj603H3zB1TDIV//6jeodIHayrj5xV/i8IWbHH/4Fr/6n/wTYhzz1nf+T0ZXDnHrx/gYqVRGURS07ZLzx+9SNy2oAtea5H2JqWW7JO0XdJHhnGbn5suc3n/CzsEWw+mE3/x3/z3sKvDWT/+ar33tdV7/0ut8/qU7lEIhY2IAKtk1mEXHSKbop5byOf7j8ssrOwECOrYg8Gi+YFxk7I9Ux//5xUKb/82bJIBIApckFYV+pZR8oYI8QktER4EWgSAu3UZJ+AmXAlKMz3lo8XLOQEzrns4bdBmRE594ZCMiQabvuoufEENiOtdLAeqTakzndjIkEezMSYIGJyAT8OkxHBnBn13A9QJ6kufXrkttKQtwbBQrFxESdIQ6Qs9FTC54cwlfGqcygOepwwhWRKyIPG4EYwmZ6WJvIvBwJRjTKWadOMcnhjaRnwtbl/9hRKC8g+yTqPL/77dfuKDkvCWoCmUhyIBtLZtYpzx1VuC8om1aNnUkdiAw4x2qUCAL+iqnpYPpKcGjo2OizFmv14xHfQoJ57MZ1qTsYcxBZhlg0TqjX2WsTMtIZbjgGfcqiDXLxRzhHI2xFLnGdE0nWlpc8Ag0IUSskGnRP9ki70synYNxbJpUfUlrwYHAohtHAFoZ8DFincVFR5ZpHtx7j+VszUv+Bk+PHuNDmiY6FzEmZzTqMxgVDPsjqiJj2MswbcumMcw3S+rG0YQW7RVZUXHzxi2OT59h2wahJKNehfJrCDnSSoiG6D3eSyaDAY21qP6I+WaG1o7GOYRWaCKNUUQSqNXpQBSqq24MmKbEe0+QLlW9kqyDwQpQoLXoausjZIJMRWxTp+mlzrG2wbmIJBBVaskpZUQH0sRSB9beUZYqXbDhuYvI+EiJJs8HnJyfsW42FOWAUg0IQRJI9VJPnh4RgsS2nq1JwcF25LgeEdQEHxyn58d4FCIInGsZlAlSeXZxThyOadqGzbpmvjrDFi2RyHy5AQRKp7ypMZ7lIrnhBIoYM4osLeCGVU6ed/EK3xKjo8pyZH+MbR1KC6pMkEmNDR6tM2rjyPKcQb/HRbtOC8CqpMoie1tDVsuGxXqTILKkGMelDXvQK9jb2adX9Dmbz1lcLFGyZTBIjT/WW6RIx1ZmGes6Q4oCREndzAgepExQYx8TFHa9WZIpQe0sxA1t21JWmraxCCHIM0UQGl0UXN/eTXXzQvH42VFiHUSJaTdkWcGkP+Hp0RGmXaGjR5YZUuQM+pME0Q2eKEFnPVoT0KLtBgiXlZdpQa2QWOewwSBCRGdpqim1RilFu9kgCWwPK7AVgsBqNYcix2lABERwZJr0PgSPXS1xtaWqSkZ9Ta8YUVc5i8Wc0yf3Wc9mZPSBQGssxydn1HXL3v6E8daA5fkCLXKstezsT9BZwez8nPXyTRCaxXxGxLK7v8OgVzKZDCkLiQiB5eyIoc6Yn57SLzRRFqiipN/PENFgnWS6O6YqK1Yu0ragdR/rT5BiTcwVWuWIqDi7WGL8EoD5as246jOuNFV/wGgk6ed9RAbrdkGvP0JLyfHxMaPxhEcfvMf9aNBK0++PIGb0dAKjOivZGoy4euWA8fYUgLv3P+AzL73C177wZb793e8w3R+nc9t8DkKT5RmqEKw2DbVPjY5FBUfPjnjh8DrDsuQrn3+ZQa756KNH7O/v8NGDDyjyVMuskHiThIzZ8pzhoMBfzPjxGz9ECMVrn/8MWVnx5nf/gqOFxUWPiBlr54nNhnc+fI/PfvplXrx1k2CTwPbC9SvMmwvO5uvk6jMR72qsUFjfQFNSlYKsEJg6p/GGenPB4smSTOVY79HSJ5eLafEuooxip9rn4GCLj+/+lGHVo7UN/X6JaQ3V9jamFkxG22ya4wRv9KZr9tBolXHt6gFZnjPd3mdxfsRq0zApHErnFGUP19SEaHCuRQpFbVoIHpV1bSsqQlzjTWTZWIqhJFrByfk9ghnyyou3qFeW+UXN1nSX116+w/2H92k2KSYaHUyGQ7x3vHznVY4eW+qTZwRalsuG45Njold4a7DW0OtXFHnOYrZgurvFdGuHquohlODBvfs09YaD/WvsXT+kNRve/PAx77z3IS5AU9eMhhWIQF5phIm0NglK29sjticj1lJycXbOCzf2WC9rzMbTWEOvzNEKnn78kMV6znq1IsZAmaXZpAvJbSSztPjUSuI67klV9RgOe5yfX6RFSAy0mw25lOQ6RxQapTRZpqgbsI0nKxM8N6ZkE661qWFMwbDq07ZzpOrRGIMWunPc5FS9KaIsKITGBcd6vWAy2UmLUiKr+Yp+P8eESE6gNg5ChvcR4ywyJs5LWmE6jPO4tk2LZO9omprd6Qv0+gNWa4vZbNImWYBQkkBEZgqdpeYyZKTQOY1vyLROUGidot+iE3HwHh98xxL0+OC6IVpypcRLkYfO/UNMG/roaU2dotEdKwiZOBRSaXzbILPEl4khOV+0kp2LxKFU0UX5XMe3ScMR6xP8WAWPtT5Bw4NPxssQKbLOjSOSkBaFILqQJvmqe21AG0MSn1QStIIPZLmmbQwpKSVRRZmEPOc4f/wmi+Upwa3QB6+ipAYpsTa19YkuKqW1Rus8rQuFRRDwUYBIQxUlBVJphEiioZBJCErtSJIYIMs13pgEuwaMM3hjIIYUxS4rQttSlmUnqAWiEvjoQYo0OPAkbpILGNtQFhWzxTxdx30XwZASby1KScqyTGUpwXcunTTsueShJEevxHuDEJDrnEwl5pLtzjsCgfMpDidkgsyn9yaVrjgbOudQRCiBVALTpoiiEIoQbHI3xXQMiD8HzIZO8INAW9dIITtuUmrYu2RXFUUJqJ/H9DrnnHMOpbLEZHKOYJPzqWkMSqvk2O22jCGmiGJquosomTRTKeiaIDtRMyaIfIz+eWw1hADBp4aqkJxMIiYhEJmanJZ1w/ZkJwHOYxI+lZCpsVFnBCTeW7y1DLausHPlMEXdipJoHVduvMjnvjin1x9TliXjQZ9mveDNN77D1vSAi8U5P/7eX3HrpZc5uH6b+eych4/v4oVgurXHvfffZTafsz3M+Mn3/5g7L7/IcHePV770q7z31l9hpUerkr3dPZQsUSrDucBwNOHxu2/R39mlXpwzv3hCUSkau0GrxPUyG8PhlRu4pqZtEhduvTgDPApJkaX1dFnl1ItTXn3tl5gfbdD5ktOzU3b293nt63+bR2/9iDd/+G2WjaAhcOdTnyWQMxxNGE2SMWA83Sfv99F5ibeWxdk5RTlm/v5b/MGP/4ZBb4ILnp3RhJuvfJUXX3kttZJaRzEccOezn+P02x8TQ6QsS7QqKfMJ/WpAdB6lM7JMc3DrZX7tH/5TrGm5/5M3MDYJ9bde/QLnj55wfPSUkwcfg63plQVf/I3f4gu//GvYjaEaT3h0/x6r93+IiJFMROJmidzax3tPf7pDzAruvP4bXH3xVS6enuDrc8qiIJoMbxPzrcgEkg0E8DZiTU3wFhs9ZTEgWkNUJHh80Bzcuc7f/6f/Ed//7/8XxEDwd//RP+bf+fVv8cf/4k/4m/MLnt19j/1vfINCpJimFCo5PjuXTUSgVcEnKNtdLCz9dCkYGdOyaltyqSgzQZmlKG6M/FzU+P/tJvGA7QQQ1T1mToquBdI1Q0nRPZ/L1xafh9lCFGxcany75DSFKDi1sQN4p3NORCQ3LRCFoMMrAYmpSPeYMx95v4abBRxknQDfBewuj8naw9/bEbwy9MiYCjKaGPnBRvDOEjIuuUmd2ajjIq184IUsspN3sWIpGAC/vRX5dgN/fQZfGkGIMjmcSAqZ8RIbBX9yHimkoPLd8ZGCuw1c05fC+Sdvn2x7+8QtplcqcSD/LXcomSDZnkw4Ol2mad/8HBc8uQRnI1pnmMxgvE/Z5eiJndhBCOT9fpriK8lkZ4dYzTmfrVBCsVm3zGxDaxx5XjLQmjaki6bxlnbVsoiRqiwTnM0JdC/DWsdicYYxiWFgoqQsKsqioG6aNAERyeq9kYJrd17m8NoVvF2wXm5Ybdas3Zoq76FGmuYi5S2zpiEYm2CaMuBEZBO7Rh2GDPs9fvbuO6zWJtnqMoU3guFozPbOhO3pNjJE7KbBh8CmWYMKbDYLVgj6vQIiXDvcYXcyJtcCbw2nZyfJ+k8gywLKpUXifGVYtTAdV+wx56K8jtKSeX2MFiotdNuGXt5HxJLWLjDBdRbzTsnWSVhCgsgFOksqeiYjQnuyzBECDEqBiRnGBZwPSFV2Vm6D94kfUeUZ2/0lj89LotQMSkH0DqE00TraJlmyvQ+gJbIElMNFTW1rpM7wLrA052zv7aKzEf1exbOTZ5RZzsn5nN/51g1mRw/IS8WiXtMaw2pdI1BoWSJiTtPUvHX/bdrW8kQqIgbhFUp6Wr/C2YCzDiVSa5BSGVVWUJUFWZahs4xC9ymyDCUjpVKgsxTVcgYXHFq3OAdNm0DTTbNkVjdEIlv9MXmRMxltcT6bUzfJKux8y/Z4zNZoRPSSTVPTtglKKYQg+OTZNEZwPt9ge5pmExj0MrTYoLMsiXIhLS5XLhCswQZHFiW1tTTGd5tlhcgUbRDYYDDLyLjKupprQ/CeXrXN6eqcLNdEl2JvEkeRp2NyMVtwMT/DdQ1aAockspg/pcj7tKbGI3BOQ3TcPLhCvxwCyV0gBCjVOd8AuGQ1SIxpUtRCQK6L5DxxNUoJyl4PHxy23TDqlwx7OaYucM7SyzIIAdManK0ZDXvY1iJCmiATA6NBLwGATc2g3+fa/g71asK9+/d55fZ1hpMJf/7d73I1QG+Qmnea1ZqTozNEDKwWK5yPbO8IjLQE6zifLVLD4GjI1s44LVjbDf1+zt7+mHq24mx+hBwPGY+2me4ecDabc//pUzb1CbvjKcE7Ts7O2dmZUOqMi3PD+dljjLUpIy01tQnUZk6vyOn1+gTnWG0sk1HJZHsnxQii5+Mnz9jb32I43sWac6Y7h5yc3UNJS56LVFPfBB4dzzk/OQFvmG5NeeFqzpW9Pe4/fMCoXtLWhuVyg1Y5X/ji6/zwrffoVQUvvfgSf/qv/4L1pkkTSpnmH5lW3Lp2wGBU8tN33uXa3gHXr+4RpOXJkzN8/JDJsE+hNZmSZDIjuoiQia1RZCXGOt5988c8e/aI17/8Bbb3pjx48pR167hYzqFj0EQDLjgWfsn9hx8T/IYrezvcvnqTrcku1kpsu0QXGoxlurWFNzXbE0XdSHLdS01UMm1Ws0wzGgzIyPn4eEY+rdCZR0WHl4F147D1ip2btzkfTPBonpy1yCygbODBk1OeHX+fne0xZS5Z4vBWovKcGDXRRfqDCbkQ5FlO27WICZFE9NlsnmKxMRB8SC4YoVA6I0aZuDS1hVxhXSRXCdp59GxG3dZUA8lg1KeXR4TUVL2MxTzQGMt6s8E6R9Xr0+9XDIcZm/M5s9Wc1hlaWzPd6qfWSZtguy4aNus126MRMYftrR3mixk+rlMMz1lMuyZYjzEtea/CB896VWNMQ6409aZFDjK2pmNmFzNMgIjHWIsQkdY6msYTvOf8YoUPjl6luVharHfMFsd4n0Tt7ek2w1Gf89MZ3geyrvXLtAapBfVmw2qxYjAcobKctnGoLAMhEUgGo2EasgSH1II8z8iLVChhaofOBMEHZA7OGpypsa6m18tTnCf4xCX2mkzlHOzuE2Lk+OQpo9E2mc659/Qx1XLB7cOrVConyojWYC4Xw0p1UZvU/KaEQoiI7Xg7zqR69hgizrZIFckzRYyK4Fb4tukWiWnz7YJBSPncBh9FSAMQH9C5wjmD6pg0MSb+UfCBGARKJahzDBC7Oh/bsXvkJa7Bdz/HkBgy1pPnZTf97GCjMSG9iYlvFztXrewi594aTPD0iwwBHXA72T58jNSbmkzr9N44h+hcN0J2m3ZiigN2MFWkRITEs9BKk4rrL0WoRJwQsqt3donLE4VIM+/gQWSgFDdffJXDx2+gpgesnUINKoRUCJvcWUrnyQHXtZxFH9JGoosfKJVEPKmzJIjpjlUhdBclSRuLy7avzaamKnv46Ak2bSpAdODpJLBkeUbbdtHtKHARijKjqAoKnaN1xsqtKcuCQOJOhiCTE6FjXtHFzJTSeO8TKzR4VFEiRef0ieC8A5LTxzpDVVZdA1bbuaVSvVKMyeEgSS16qSnRJweYvGwWFOnYIajrDSor0n19EmdC9GQy76Ie6dgEH8kzjW1Mcs9lOTpPDidTu7S7i5dssG5dbx1CSoJNa0XZcZqsc3hn03dByY7HFJFSpaa2LnJ52bwtpCR27BQhVSfICRAKFwMR1Tm5kkgXfERrmcQiQUckEcQAbWvJ84q86HXNcCTHI6JjPoGzlouzp6zXS/J+n/Vmgx5Y8sIhYiT6wK07rzAcb/PGX30bKyTeGp4+usfTxw+JSmC8Qecl603Lo0dPmM9rPvf6L1PPzghC88E7b/KF17/J1Vu3uHh2zO6NFwnGcefVb3J29gjXSqbbU2Zrj1QxDSqUpCwLzk8eM5/PGY93OT+aIVRJOSzxmw2mkTy8e5edw2vUzZr14hznHbmUIHVqdhSOcjRiPofD65/l8Uffocp7aC/ZO7jFzv41VkcfU3+4ojUVx0dPeOHOZ9je2efehz/joZDU7Zpbe69y/eYdNs9OUZmicZbPfOXrPHz/HWK4z2q5oswLynzKiy+/xuzZQ3yzYTg9ZHp4lQc/+yneOrwSfPj+O0x6I8pccePlVwhaJ0i99eiqz0uf/gwPP3ifshqzmM2wzqBFYPvwgP7WhKMHH2CbDYoetz71hY7RJxlOtxGl5uLBPfYPbvDww3f56I2/YLi1Q5AF2gd6wz6f/uqvgw+cP3mIDEvuv/MTjJEs1i1CK5QAGQIWTZCOKpfEqPAxpxztEpzH1OcUkyGxEfwX/9V/yW/86rd42RX8r3/2h/zuP/j7YDyv/8rn+LO7P+Wr3/w6N67dRndtn7GLkHYZ0fSJFXTtmgHnU8NkOlFeulc8G2N4drEg15pzU2Pzhn5RpfNLF7uSiEtNim7pzifyYP+PW+zu83ODj3x+/0/+1SVhaKxTRCx255ZLOSYi6eeRLFlb03csRhAKGSNCBCKSn9Tw6DIGLSLWRz4ycF1filDi50+7Ox6bIFgF+KOzdB/ZHccjJ/hgLfid7chu9m/wjNIZH4AbeezO6en3GQJNJHTlAJfR7gjP79dEwdXi8jjE5wfLR7pY26WZKHbXzvR/OCCPkTsDGP1fzL1JjGVZft73O8Od3hjzkBmZWZmVNVeRpepuUl1mk3RTTVqGTQuEDViiAY+ANjLgreGFV7Y3huGN4UEb2YZkErYBQQQoWZYpcZA4dJPd1TXmUDlGZkTG9OY7ncmLcyOr2vDK5kK5KSDzVcS797537znf//t+X+KR3bM0BMmsgLC8vCQ/cdK/ulgvs25fE7h8C6r//3r9/r/++XMXlOaLBcpVOLOkQYNScWKlFNa0CJWSFwVtWRNMvKkHKxiN+tRlze7WHsHVBAT9foHKNFVjWB9vQfDMlzN04kl1oFxWjEZrpFrSViWz+YL+2gbf+wvf4refPiXkI2aN4Rfe/4AffPYZhy9KhJSMR+tcObhCNTvn2WxBCIHGeq5ducLJ2Qvy0RDTLDh9dIezswlWpNi2ZaVjpfr6KzfZHo1oTp4xf/qcqqyQXdxDqhCbLKxHWk8qMxLdopVi1B9xblqKQUFbr2jKjDzRVM2CXOWkiYa6RCrFeJRj6zkq6zMrz8lmfdI8IVjo9zQvzqYomaPTuFj3Dqq2wqA4vjhhJ1mQjA9YSf8SiN0fbLCsnjNME1QQBBtjZlJ6nIEgNDYYvIxf8xhZsWRKolJPktX0E5jXGiWgqgxNECQiI4gQF8bBdw98Sa/fp21rgshACsqmpa4NQWY4L8gSwar03YJNkAiBdJ5VWeOcZNAbMOgPqc2c/a01jEtBONJEM5/NIHhenE2ZTedMJ55pJbr6V48IBqc9EsWqbml8CULQ1AGRCJT3COGpfEWwmjxJ4gNRC3QC66MxedZDJrLbCKcEooUbGS3ojnitY5wnaupa9midZ76co6QkSSR722tdvW3KclmhE4HSsb53fVDQWNBpQp4prI2LI60FkQetcR5m8zlNbfHBYF3oFleq28AkmO79GBuPyxhDVa1iC6C1mNaxsbbB1sY6R+cnLMsT+lmOVAmJAJdIgvekWULRy3EOEq3wruXp4ZcooZkta0xb45VAiwQvYiyrV/SRKiXNC3QIOJGwt7fD2toWWEvTtFjTsKzmBNOik4L19Q2KfIQVcQKwsi7G+wIoGQjOsSwbxqMBRZ5jrSHPM5I8pW5qskRjmpI00RRFyvl0hjU1RZGRFwVXs6ZCnAAAIABJREFUruyxKudMTmcsVjPG62N6eU6SSrJcUZaW4SDn2ivbnC8aDg72qRarKOR4i/SCQaZZlRXrwzXGo3EUCkSI1v4gefTkGdbWrG9eYXI6ZzjuoURgMZmwKmuKvOB8OiXd6XP1yjvk/SWPnh8TQnQ21m3N6XROaWtaY7hYlYi2oZfleO+ifVUEtjfHrMqG6WLOolzFaWkQ5EVBv8gIUvLk2XO++PI+QWcUhcLeW3Lrldc5fPYUpfqUxlG2Fe2zYxrTxAIBYyjrkmtX9zDP73H3wV3qlaOXFazt7IK0vHrtgB99/BHv//S77O3t8uTpU4wx1CaAV3gBm1s7pJlmd2cjssOC5PB4wo8+/TFpochSGWMxaGRosd5FZ5+AwWiN+4+e8sknn1AUBQdXd8lFzr27n3N194DBcAPpHkJQXJydc2Vnl0dPD1ksFhy/cKyPClZlw/37R5wfr9C5QImSfm5ZG99gev4M00ra2mJMTa8Q7I43WKQ103LJeDDi6MlJN39KcE5SpCPadkELpNry4P7nLJcr2qZGC4f0Am+jPVsiODqbsrXRJ1OKLE0xQqFkgpcta2ubfPLxx/Qnp1S2JM0Spqs5eE3dNgwGGUnSx5gJShqklgSRAEUURsQyTtO1Qiae3niXxaRE4GK0iMDG5gbPjldU5ZwnTx+xKuc0JhCIzpS6LTkYXCfNEsp6RlO1tMKS90YUqs/x8xOKwRBXzWhMxaJKkQjOL6acTU84X5xSJBopNL31Eauq5E8/+py8iCwXvCXRkkxHJl6BY7laUNdlFxmJcOrFfBlbzpIUYxUPH79AAPtX15GVwxhDXmgkKVLq2F5lovNFKUWSxo12mC0xto2waRUrv5vaxFhWovHOs7G7wfVr+zx58CRWpBOYL5e0RpDlPUxboxOBMSXWGLKiR57GEg4vAkEPo/jnI3tt1N/gyt5VVuWC6WzCbD7HO0u5qqjtlNVoQNBjdJphnEUHT3DQ7w8iA8NGwdtJiQrQ+kCvN+jYQgbZOmxrGA6LKHLpGDcybR2dRlLhXYJpLGme4Y2Ljg0paUNLIA4OqqpE6yQ6kESMAYMkUSlKSVywCNWBS4NHBEdwASdj9byS6uU5dc5hnWOYRoGNAMFdbgskWZoBGmdjs1qaK5xvX7pKk0RHRmWIDhzZMf2cNfSy+H6CjzEx27jIGZQGQhYjbzo6XpSOMXHvAiJVsdGtm9zKrk01xsA6qO0leLo2IA1FL0OEhGJ8g55XmGyTdmFIlURqgTUQXAAlO0ht3HTJWLmDEhIbbKTuCPEy4hUIMWqHikzFJApKLniEcxjrGA6HSOXRKqFxHoTvQN/Ea9wJS1J81XindYJWKUhJ3TTYtqEYj2maGrqIiJB0TJAorMku19E2dWzaIw6BlI4uLEJXLCFixNGHrhHO+7gu7wZp3kegt5QiiiVdTFPJ6PRomhbZReq01LSNpa5rhl3T22WMTKkYW4vrwTjYkYASgrqOUTWZaKSOG03nI+Mo0VGERMq4mRIRuxCAJE0QQrz83DspCT6gkgRTNfFYhcDbGF0UMgLqLyHjnhjRC4huo9aJYiIOUC+ZSUJIjHXxcyDidyUeb+Qp+SAYDsdY57p1XRQKQ4iCEzhMXTI9Oybt50iZUi5LNq8knYjaRiE965MIzfHhIYiACoKmMahUELygWTY8+vIe88WUcrVk2N/g9qtvcf/Tj1AYXFvz5M7nfPsXv0O9v2Jjc49mueT2299g8GSd+dkx5bLCBf0yEpSmGaOtLWaHJVVZsb5zkyDuMNoYkEiwdY3Ke0ymp5w9f0aSK+5+8iccHT+N8ciQkqU9bDAkaZ9eb527n99huZyzf22fbbPF4d2PefXdd0jSgiJbx4sUDAyKAXu713h49wuk9qSZom4Nb3/jL/L7v/m3Wa0WCJWjpWRycQKi4K33P0Aaz2q55M73/4DZ7Iy3v/VzDHSKD4K6MmzvX0PMc+r5BGsMs7amXq7iZ0Zr6saSIDl7eJfj+5+hlGT34AazxRkff/+f8M43v8NyeoGQkbW3e/td7v/RHzHorzNY30fPz3j64M9Yrqa4I0ttK548vMPu/U8Y71xn8vwpvbUxo/0Bq6oC1TFMM8XkosQoS6Y0JAlK5bhgSTNNkQWKvMDYwM/+q7+MfVbz6PgztvbfYr8+4d/67vcAR/btbzFJDAmaSgXsMOXf/Wv/Ju/duEEifjLS1GnflOWKNgTWBwOOzubkhWYt70VxwlqOlyXjQY+BTuhlOYoFT58/Z2N7i/XhGh8fvmA0TlnrD9lMs9ieKS4HwZdi1NcjZPHe9RMCU/j6330lngj51b8JIBPwU1l81dcR0UIEegj+yhrkomPdEbqWtjj4GAK/MoLWBWyXd7MiQrG3C8GWhkwIFF2kNkRQPwQOlOQbo8A8CBoEHgheYELgShEYJXTku69EpAjgCOxkkMo4YLlEdQsESgoy3fGY/FcOLyF5+aofNXB0Eo9dEQsaTBDcMXAgL5lH4auzKaAEekLwc2MYqNi+aojcpScVnJeXbXLya9fg/3Huv37thCAJlqD/fCONf+6C0uHRE4QJtK1D5posiWJMKxxKSoZ5Tq4DiyZOE3JVIPKA8OCcwQtDngTq1pImOT5Ihr2cIpNIFEL0WCyX2NZinGekM5xtaNuKYBtmFyc8Oz5i1Ri297eoqhXTquXWq29TNpbz8ylZktBWS+pViYbYBqISkl5OoTRf3vso1tU2JbUxJIkmQbKqaoxaMdKK7Z09/HhIMJ76yROUU1R4CBYVIFEOY0oyLZiaWCvaliVBKrSWVPOa5eo5g2EPnWiq1QpkjQ4tadpSL+fMy4qNdc3R5IIk22FLLrB+RZJq8iJFuATbLkHE6YjzsSVkOm/pbR+wpjP6Q0FZntO4hrZ1pErjTUliDbr7UroQQAmkgqbpqp5lIFiB8A6VRjVUOEUbCrJkRNUusK5EidiuFjA4IfBOkSQiAkTVkHnrkSIupAwJufAdJyEq0nVjX9oBvRUU+ZgsLTAq3hy0EGyOtqFacTKbRIuxiRXRoyJhOm/5N375A/67//Uj3LKJcExHFI+aBuECQQYSEU2PSmqCFJjGgALTWrIsIUs1Koks/9YamqbFe0FoJb1eH6Eh0RKPx0uBQJNKjSMCOhGeICPMNxGKca+HdTUIRWMD89U8LqQE7G1t8/zFc4rhiF6acFE2nJ6eYmyFlx5cwJq4sOv1oqBkTEOqUrY2tnh++IKQRCt27QwqRMCrFhISgXcRcB58rNcWIrrm0rzHlau3OJstsQaS/jbYM7xyeAJVVaN1CkqihQYRF7SmWTBIFUoE8kRRmhhhq6qWNEmZ14HbN3aZXMyomipm5q/ciFXjMiGgqZua6eSM2fSUIh9QN0uu7N1EZz1EpkBrrDGkHYcgKzJ0kjIYDSiKnOVyQdO21G3JoJewtTamqUsuVhe0jQbv2d7doK5almWDC9C2VXQAACG0rFY1L16UHBcZWRKBwo8PV5wvVhxc20WEwJVr1/jBH39CrgU7u7t88cV9ev0eN67v0TaRwXN6cYEDRj3NvKw4P37BfF6xtdPn9duvo6Xg7OiELx8+5truVdbG2xRa423Lwd4OeaYQKsMTGBSDGOeqKoKEYb8gVSlV22C9oTfso5OU5eqimyoJUq3ZXh/hg+H0YoEXiuGo4PzihHQYkGScnE/YXDuPLYFt11ATUs7OpjjvGK+vMxyuoZXn4vwJeRLjda0vub47xhjJYrZgY3eD9vstzw4P2dvcwNuWL588RWaaIhVgLLNFxbW1fa7u3yAfj/BScu/uYxpvKGcVVV0hHZc9pxHa7xueP3/M08ePmC9KpJK8+86bnJ1NONgzvPbqa2xtraOyEb6RDEdDjp8dUvTXefr8iBs3bnD64hgXUj6//5hPvrjLaDhEyJYgDNmgx+Zajys73+KHnz2mWp3xxuuvUk7P+N4v/jyHh4d89Pkdzo9PmK9WiEThTXSOiEyAzJDCcTFZMC9fdDXalkERkB5s0LQBXGuxxqDnLjK+MoG0nv2dPebLJYNeQqoqLs6ekCYGTGBhagqGpJlCFQUqSVCLJYmGJBHREZJl9PubnL94ivXRjVrOG177S7/EH/zOP+CtV9/jYjbj+PQR9dJgm5S6XLIoVwRvsd4SlGS5mmPahI8+v09Ztexv7zIcNRyePGExWaAGkqxIqZsZWsoIuZ6ck+qUsi6ZltNYNJAOGPUGPDk9IuiKqixZNCXeO7TUOC8YDteoqprVakFZLrDWd6KQp64MJy9m1E2LsZZ7Xx4RkCgd3Zc6yQhBkCaS8ajPdLJkPpmjksj6Cd5TrhxSR3HKNA15vxddFkHQK1KMGcSBVldzvpov0DLeT0xrKKsp1kl6/QFeaZw1jIZDgg+sjcYoBcIFpos5IpO0pgU0QklQcVCxPtqi2m6oTc3dO5+xt3cdq2aMxjvY0pKlGukdynjI4kQ4OGhMwBMHMdZZrHUoGWjaBp0qqroiS1OyJKUyLSOlEErhmqaDtyS4NkE4A17RGo9tWoJKaUwJNmCQcZCVxSGIx8TYl46gafB4H0WQyKwREZiNe9lgJhxRwAmRySDVApXIbmkqcN6htUIqRUJsIQ1YJJFtFVqL9wIpQeiOeeN56dyAaBmRKk7SpRAoFLWPzIhgPc7E9l2pFCY4VJLQ2jaKNd7FBb7znTO3+9kdN8cB3hkGwwHTeYVOYkxPoMD38Ou3aKsaj40b0rrFmjoKEzisj8OS4ANCSZzxpDrFWktWFNFF5mMsTgC+c1VF0SXCn4XwRH0ruuKiQ07imoYQQnQWB0+aJh3bKMbR8RFWrGWKFIq2MVjb4kMUsKq6JknSyAZR+lLv6Frp1Eu+EES3UmxhU93ezUUcRQgd5F2ikviM956Xr790RsdzGyKMncg5io6kGDm0zkIQnViryNKsg6VbWufi66H7XRprTcftEgQhYgGLBB9c5JN2ovElvFxqjZQqrrc6ftLlNY4w8CjkFEXRncPI5DJde50QvPycyDTF2uj8BiKPiXjyJNF1RdcCFSOVohPCfBTiQsA5R5LFY5Rak2YZxsSYplQxnmeNI0pLoHXCzv4NdKqZnU/o9XtkWhN8ZGxJBDrt4a3nysFtVmbBdFLyyhu7PPz0006ISrg4PWZta4f9/Wu88db7bG/vUR2UnD17wI1bbxF8yumTJ1x7803W1rZ4enEPEQKD/hpmtcRbw2TW4oXEB8H8YsJ0OuXk+IjZ+YSybij6Cqkc1apE4giupa6XzE5PuZg+4/nRA5q25dr1N0iCxnvLzpU9xpvbPLB3ef7lva4Dy7G5vc3JUcNoYwOZFHwzSXj05QNc2zLoDzgOjiTRFH3FZNZydWcfmiWT8xMe37vPxv5tlLK88cGHvFX0kOWSJ4dfUq6mfPrDQwab+6isoOj1kUnKjbfeJS0U26+/xh/8nb/N0eEjnJB8/Ed/yM/80q+yXC04n07Z3t7j4cc/5Mn9z1nfu046HJBnKfVKMDl6xuH9e2T9BNM07BrD7s4mWdojTwT/59/5W0wvXuBEYG/ngMV0zmQ+4+nDuzy6+ynVaklvZ0w+GHJ29JDnjz5nMj0heMfNv/Ahx48+xbdLGuNZuQV5b4Of+uDbiNWC40efMdzq891v/ix6z/NnP7D8yr/961z8k99FC0lrPVvbAz64eZ3WGH5w54e888abXNUFD+5/SrK9xTAdcH19k7KqaJxj1OtTNS5yBEOgX2Tcu/eQf/A7/wd/+Re+yfvvf0iiEzRR3E+VJvWB7//R7/Er/+IvMr66w+5wgBGeQl52PRIHnLKTgcJXbLsOTNbd26NY8XUBCS6NMyIaGEL8tFxqHVLAWPFSnhJf+x+1h/dygfKXkk14+QwRQpALwQe9ONwT3T4yiueXzqoocghxiddwiCDxQnIr8eytx3uCiZJZx1+Lv30sL9vVBJdofiliRO0/2IREXwo2HWcNeC0N7GpBJjsxqcvI6fgO+SsjwdJcNnESOy0IBA/rOezo7ndeinHdMW2JwDvDEEUsBJdtngC7MpDldM/zr0t+XxeTvnq9EAEDcdij/zmPvDWrWBUcBBRpwta4R7mCxrrY6lY3OAzeB/K8x1Y+pDQVIstBaYJdcTqboLIx1/IUn0Uny4vTSYRx10su5jPyfIBUgrKK9e5ZktLv9ZiuFtx9+pRlcKSzOX0sn9z5ktu3X2d7NGY6K/GICMxzDqEEyglGa2PStqVwNbPSoESGVpqgEppgCa0j7fXpacXZ4wf0dMrOjVfYfv1NmqZmcnqKeznUkORZwqg35Gw+Ic0ygnVMmhVFb0SmJKKXU9aGLCvoZwVn50dI5oTQELxFiT77V26zWp1hvKRuKxZiTiYDq1oyGm4wXy6iU0BGsKQQDkKLkpJUtEznM2qzJHiJFkmsQPSCvqoItiZojfMpPmIWokYbJAOlsSGKBvioq5omYBqFGKQx3uMNiXIUuaBtFVkyxDQljgadxk1EYyw6GSFEQ1KklOUUHxxSwTDrs1jNSDJDIgf005y6dTgTM8VCBJwQTC+WIDJOjloap/FeoJWlaizOaG69tsb7715j+Nuf8+SsJBUJWZbQhAasQCiIX1kNNtDvr1PXK1ziyRMdGRsKTLBU7QrnfISMW0OiJUU+ACcw2uCsZXdvhyTNOv5EnO6BRCOogmFeXdBLcnb7OYtlw1lp+fLxc3RPsTses7054vHRBTrTHGxtc3h8waIxrFYlSR4XcV4FrBXgJbb20EFHrbVUqyV125JLic4kbenINNTeU0hFluSoLKGtWtbWxtR1Q2ssUmpm8yl37t+hqVfgNTY0BBU5T611YBoG/QF7m7tMpitOzp4ThEUpSWlsnCzIhDztoJsyQkKNqylXU+ryPILk8x7lakHRl7R1zWq5wGMZrW0xmV0wWV4wq+Y0teHmzTcY5GsIZ0h1QiIjmk8rDQlI4TFtg3eGtilZzKdMsZweKZxxBCdZNBVJmnIxmaGFpnWBZ89e0Oul9Hs5WkkupnNs16RzPj3DWsf21hZSZ7z73rskheRPv/9DNq+MeeOd2yznE3Z2tpjPZ1zZvUrbGo5Ozrl9+wZSCB4+PiRNNINeivOGjc0+prVo4JXr13CNpf30U9KtdbbW1jg8OiLVkndu3eLLx0/xwXBle5vnRyfUpUUnGYk3EDQyyRinKdtbW6xKy8X5jLaOgGYlA7t761y7ssfR0Tl1s2RtfRvnPNcOrtA0NZaW73z489z98Ue0pkIr3UWuLHmWoLKCtqk4fH7MxvptGhOoKtNNuRsONrf4+McfUaSWWWtQueLF2RTT1IyKIX0Vwc15mtA6x9Gz54wGQ6YXK360+ILPv3xAXa9I0z7Hqws++vRzkiQKpMZbtJQUeY/BeJ2PP/kCRGBna4vHx2csJ1PSosf6xhrLeYUTsmvq7KN2D3jw7CmZzrhxZZeeVrw4OkL6BOdqXrn+JucTw4tpzcHOPj/1+k9RlgJTBpb7fW68usNiodnZHtPvCaYXU3589w47+1v4NrJSZrbBJ51NXioW8znDYZ/5ckWSKqQz0W5NIFUC4RxKRweKkGBsIHjN+fmEZbvkT7//+yyXJ1hTYawmo41tWtqCkZTLRVdBYsgyhRbxPq7VnLYuCWEVN2NSgxd89Md/jCnnPDs6Z1WVnOmG5aDHIBlwNd+irS1VU5H3emR5wWQyxxpDVdU8Pz5hNBwzShI2Vpus6pKL82PyoodzltaBUJ5RP6NpBPOypGotG/kYJRJOzmfMFzVZ0aARZHmCbSB2ZUlE6pDGUrceIQukNhA8TRPB9jJI6tqjkowXp1PyVGO9Z9xf4+r1V9AaApb55BSpbATkWofS6VfLIhFZhUJKekXBaDji4mxCU1UkOro8dCKpypoTe06eJ/iuBUt0LunxcMRwNODFyTFFL2cxnZMkCd61oAIhGFzToIKOrBypWVYrXpw+Z1D0MW3L5mjE26+9Rm+wyXTWxxqLbVeoTJJ07hXvYhwrBIclYGV0pFjrqCvDoG/xbXSl1a1hNO5HV1mwHTNIE6wlBI1QFmOalwBt7z3BtKAM7fSCjfVNkkEO1qKCx7k25oe7Bi0tNFooXHAv4dDBRZcTQKK6qnUlY6trUDg8UmconUbRpJuaah3dqaJTNISIi2CpBLY11G0bmTpSR+aOVFgXBSqhFUmaxXgVMdLghQAlEKITQUTceIQu+iuUwNUmnlcfP2vOWpyxHetJ4LzFOcNyNiXRKY8Pv+D05JxXb78bm3mcQHZOr9aZ2E4lAgpBYyMofb0oqOsmCpjE+FwQSXfccePw9Y2T75AN3rvufcUlu1QyuraERipwXnRrBGi8p5enyCA6YQmCjy1+xvnI9JJxw+RMjRKRFaWTBNEahEoI1nQJEt9FJh1ZVhCs7zZasSmvqiqs9xRFDy2jO0hphTMSKTVa69jehiDRaYR6d44pZyMzSQmJ8Q6VJngbh8KX8cQgBJVpkTpBSYWxkcPmnesExID3seI6ioga114KPrKLTsbI3VfurMjE0t05NtZhjSXNU1wQiMuWNgG2tWyM1yirKgpqnZtKyK9cZEonL0HmWusI9/ceoSJiIxIrY3uTt7G5lxAh4N65l+BfhIjCZl1FVlSHyZAitsoJEYUlhSR4S1lXzJcLkiQK4L3hsIsP+c6tJ9FZSrVY8OEvfpfV7AXXX91lNMhRLqVfJFx96z2kkGxu7xCMpdfro4Tk4PYbXD3YxzlwxvHpj/6Q2/1v4LwgKQpOz44p8pxESfJ+Tv1iSpezJmjN7o3bPH/ygL133+PLu1/itWI1ryhXCwZZTtXUmDDlyZdfsHl9n6qsufnaT/P2u9/iyRef4Z1jbeMK+WDMW99c4x/+xv9MyARnh46qbjh46316a5ssTx9x/e0PGG5c5fGnP+TOD/+MixdPKXoaleSkyvHk3idUF59ig+X80QNuvfs+mQn8/K/8GmcnT/nN//6/RsiG/jDlYP82r7/3F9m9eh3nbIzI4piezXj9OzcYjDfpnZ8gs4K9q9f4J//b/8hq9oSybdm9epvF3GKC4vDJPbywrMqa/voWZy9O2drdJckFpy+O2N5c5/Vv/wKrWjKfXPDoxz/kmx9+l88/+oSt7aucPn5IVa/44uM/xLcB1zaEfo/eeIc/+Pu/xcHNm7z69i9w8eKYgzfe4ezJl7hEkA1y3v7m9yhe3OWXvvOX+e3f/DvUbeBKrrg+7nHzvXd572dvs3fjKqvtLSSeNM1QUjBeX+e3vnjE3/wv/yb/w3/xN7i4UPzm7/xf/PKv/itsFWOcdyRJitbRCToeDjs+mePZs5L/5D/7b/nuv/Qt/tZv/AYfHl3wxacf8x/99X+HdLiHC/D4+Bmf37/Hz/3MN5jOZwyzHkKkFEK9HCbEr2gHuX75NOiEixBAXoo+McIbuFRVur2lkB33SL68h9K1mP1kef3XRJFOd4rPsa/+7Stp6dInFaNeohOaXt6nX77PS/dpbBlVIbqPhgpkCF0sMEbBQpzcEks8u/gaIjbiBY8SgVup7NhKgA84GQWlNSlYk53TKnQRvo4jB4L3MvAZ3cDh5VOlg3bHo/r6MXQpYF7XgldGgZ66FLAkuvvvh5nAbsQqBSUuvWOXx/81Uam7hBJHFeV+UP+cQ7mliA8SAri2YTaNm6VY6ye6vL1F6rgQCErxyu4+VVmyKlIKBE/nc67vjzh+8pTRxiYjnZAgmJQ1w96YV6/vsjbocXJ8zHnZkqiE7XHBolwxHAx4+613kNPnnFuD8ZbzxRllVaKFxHvDyswZqyJmw4XHhIB1ksXJMbu71zGzIxZtzWAwZrla0Zg6LixxrIC2Njx7+oh0PGZje5PNg33mywuU8chaElIQwVGtFmiZEPwSgac36LOxtk4vT0mkJNeeXtajl2jO0cybjBaHpk/R20D5lLOLktFwC2+WLP2IZJySFpZct8xmpyhSclmz8LHWVArF+tjjxYT5akXIirgoVzCdLcAHaiNpDRgVv8iX9mDZWamttwgZIxPea7SwOBHwPsF6QWOmBGsiMFj1SLIEKT2hsQjhcU5isPhmSl+MECqBoJAkKFkT6KOzDaSZx5p7JTAhuo60zlFKY0wdGVu+IklWpEGiSFmsHHkqaIwl0Yr9vTVkkGiZM+wNKNIMpTJO51MGPWhsRT/rsygNWsfPXl70WMt6JNLTeIU1ULYrnGtojess6HEh2NRLzu0CIWON8N7+PmmaslytaK2hLJdkWcrJ+QuaxjCdTWE4YntzDZXuYXseuappzIJenrG/dY26trz3+nXuf/EQmWrscoWVkn6SYqyNHSvGsz4sSJSibh27u2MmswqdeG7e2uX5s2OCKgjaE6SgNSbGIb1HFwlt27AqS6w3EV7rBW3b4FzNcDiMXAWbsrO2wbPn96CLHsgsw3vBqlqSJBmBBJ0oqnZFqnpI53C2jO04zmFcrPMtq4ok7yHKOSSS2fk5Zy9Oma2m5HlOkfcYjzZ47dY7PHjwMVYEZuU5xTBHSxgVPVaLJbUKTC9OCd7GCaGIE24RPEWmGRUpVVWxnE9JVULeX2M1NdTWwsqRZDnD/oheP0clgtlqSVOVICHTkjyJNuuDawfcvv06WEvrA/fvP6A2ljTPGa8PuPnKNtUiTl/393Z48OARWZ6RpAn94SByw5IIhfXOsT4ckg1SfnznDheTc46P5+h8wOlkjtInfHrnE64dXGVv+yoX85KyXnDz+gHrw3XuPn6EqxqKOCNla22d9999B98a/tmPPsaYKG4KJHmqGA8KDp8d8vzknIBntlyhVMLWqBfju6s5G0PNqpqzu7ePKix7e7t88dld3nv7TQhw595DTk4v+PEnn/Hqq1donGQ2q/ngvZ/hfFmzXD3FmDGnL07Z3BpwdnLMwcEeL05PEVqCB+MEQUvm9Zx7D+/TGsesXNK2Db1+wnxqeP/9n+bq9gG/94//EYmOJl8ZFGuvAAAgAElEQVQvPNYanj8/YdUYpBY8OztFCYUWns/v38N5zS/8/Lc52N+LD+RgaE0UF6/v7nD71Xdo60+oU8mjw+ds7q5jheP0rGJ7d5d+yBgO1hiuJTw+esYbt97iy89/zMI02HcCeVaQZIorV7fY3T3ANQ3Pz18wbxdIIVlfW6ctLxC5wtmK7Z3rzCdHZKMe5apCJSl4TaIiuFcpGPXGhDqwqhwtio3xBheTZzhXgRwzKgYMeoZnRyfk0sWSLusIMsIVjTPkaY9ekeNVRVW3EUzrQcpAkSVcnDxDpRmL8hSSdZxzVNYxmTwmzQX9IufgYIPxcMz25g6///0/42wyjfMxnbIyLeVyiQ6SvkxxSjAtSwaDDZYXF+hBjkoUtqzpZQmgUUjaumK5miGFp20DSuQoFMKXiDQlSQRXD67y/PAZZ5MlbePw3bpOaR25MwI8kqZpCU6Q93KWFwuu3upRtjVPP3vAYFhQLRdIHN5bkiSl6GWkSUHdxCmflpqsX1Cu6uhiTROKXg/nA9OL6HRJelHQGIzXqGoXgd1SIjSsmprqvCUvesxmC5RUeAnVssEHB0qQyQG+ia4zrRXGGo5ODxn2RowHa1gv6A+2SZQky3oIKVG6jxeGWT1jrEf0lAIV3RBFr4/UGi0Esj+G4FmuZvgkYdmsUMojpCGYBOE9Pgi89bS2QSpi0yjRTezbhmANMgRq09DaFt1LI+MmS/DeYJwhyXJEB432IQ7QQrcHkDJQtS0iiOgcQYAngq8D2BAjeGmWExAEa0FFsUPI6OQl+BiJIvKNovPKdlXtsa1NdG1doQMoexch7bJbI15uDNrWMhwNo3tDKYx3JEiMNfSkILgQ3Wkhbg+8c+A8jTWAJy8STk+P8OUZRZ4yyPs8rabkKgKcQwAnOjFBSPKiT17kpHlCW1b44Hj29AH3HnzBeH2DN9/4Bt4p8kJjvOmaW10nqHVBiG6jYG0bh0suJUk0KmgaW8f2N0Br+VLs8B7SNI3xQi1xjniegsNeAtJfCpKOpHPDWGuxziGsjZE/EQDf/RxNmmQ0TUUUvQRplrEql2iVRpcyHoKPcGZfMij6BATeG6SKHCLZHaP3DiEFSsoOjC1QUmNsA0oQbNzlSBE30/3BEOtMBLz7CNFWSYyZBeKG6NIFVTerGDuRgNI4azuXk8MLTVACkcTz5a3FORvh3t1mTna8TykEWZZG3qBU0ZnefTYIEdpPB9P1oRPpRDw+2TkPvLdfvRaBl5cx0dC5oWILrQ8eJePnO4RAkipa62O8OU5ioePMCCWpqorDRw9woUa0hsn5jO2bb0DaZ9jPwXiKLMeZmiRNWCzmKJ3xwbe+wfxsytWDW/zoH/8DNnd3GfTHSBdwsiaTUVDNih5eK8qqpj9OWdu5xqMff8qbH3wYh50+wuETHfBk0Q0VokOx1x/S29mj/yu/xmK5oL++wz/73b+HSCRNIILyQ0C1Ja23vPrOBwwHG1x74118Y3loPqZsDQdvvEeaZUwmFxRFn5VvmcwuWC0rvrl/QKIz0IqkN+LW6+sM8oQvP/sR8+kxrlkiZYoMUOSCanVGb/M658fPorCK4ejJfX7vt36DZT3j1Zuv0Lbn3HjtHSbHzzHB8+p7HyI95PmYWz/9syyPzjuYvWO1POPhFzPa1pBlBpX3mZyfce3GBywXS1bLc5xwFGsblKuSxWTKeDzEr2a0dcPDTz7i4Sef8M43/iLXv/M9tm++yY9/8E/Je9ucT+YElUI5Z7ixz/iVq3z22Z8RvKSpG77zL/8ae6/c4k/+3m/xl/79v8bv/N1/FIeelefm1j4bt36BH/ze7/Lsf/m7nJ/PCSHl2H/IR49SXuSK0WiPs0XCeGObRgX++OMnfPD6Abt7e9zSS/71v/rv8R//p38LNWr43i//a/zM1VcpdIIUgqXwOKsYa8HhbM7eWp+yqdkd9fjrf+M/5O/+7/8T9+/cY9L02Bjc5D//r/4bXn3jdZQuWDUNR2czThYr1iZLdFLyyv4+k1XF5qgfBxGxMxRwBK86Tl104MjObRO/f/IlysddRoiJzCMvQEkHXoEMeB9VDnXJORIBGwTipTjikQgsIHyMwMZ1RVdKEJ9OgOjEl68YTZdijHgJGP9KxKL72YTOEXmptoivBcS6zJrgqxha1GskaSeEie74JKL7XXSupMv31NlIPRHYT2yeexmTvRTE4kY83se4dChdeoogE4FUf9XcBnQFH4GRCDgtO/bcT0puX405wlexSAI1gr73BPmTUt7/3z9/7oJSbBWJN2zXOkrjGY4EWklcN60rG0+OJvgKEwZM5lMWZcvm9g7L2TN0PuL49AWLeY1+cc7GYMCtq/uoPKGfFgwHY3pZhijnPD8/ZhVgMjX0e30an/LKK7eY/yDn3Ho2tvd488Z1vnz4kJOLc4IALRKcdTgLxnpccNSrCYmUWC1JScGWJN1DYthbQ0qHDArhAkbCyWpG8vQJ2zvbrO1ukz0ZIuanGOXodS0PSdGPdcVtCSSMsx7SNTSVQziBsy2mKZnWgqZVbPR3eFYeUvsEVS0xbsbB9nUOrl1jqCXPJhUqUWhvyOQ548wxF5DnmqyfM5/HBqjWQusrsqzH1c2cZ+6c44nAJIFxntAIQRjm5Jkg2ATvUpwLaGJzjnGeQigUYL1D5xpfGUQq8W5JaSxFoiiNRNfREtz4Bc7EVhOdBFwwCOGxTUWSDbH1Cp063lhreT6ZMpl5lAwo0ce2CUgXY1be0JiG1kSAMzJjMAi8vp5xOGlpRE6epKTGMShydjbWeHR0yuH5CwIJAYUICQMtGPcCsybH+cjZKcs5/b5mvpphjUUoh6BAyCJORF1shguXFZVe0lYNRa8PSPCSsjWsmnOOjw6p25pFvaSfF1hjKcs5UilK27DwCXu711CrmtHIcnzyiP29a9SNZWPjgHpVcfPVt/nBJ9+nJXSxgQItwAtLOlK8en2dQTHkzsMLXr1+k+OTZ/zar36Xo5PAP/ynPyDPC9rwlLWepnneYBpL5QV1O8d7T9MEtHJI4VHZgP6wx2tv/jQP7t5lOFBoXXD6/BHegTEwXEtYlBesqim+tgQhyYcD0iShaQ29tE+5mCPQSJWiE4kro+Ca2R7ewXBtg7qZc/jsHo2LYvLa+nW2NrY5fnHBfHnBztYuaEEx3gQRgbeHT+8xX76g3+vhnOF8cU6eDmJDVxMItmVzY8S1g6s07RLrDFJKZvMpKkm4vn+FZbuiKmMNdxZg0C+YXVzQyzNGoz7lcglecuOVm7zyxmt4GyM+hXT0hop3t26xsTvg2aNjfvz0iOvbO/zst99DhYSqrTk5O8eJ2F443BhRtTWL6TK2F+Y5jU9ZzSuq1YrVdEHR79EfDXjw5B5vvXGLi2Xg97//py/birRKGY3W2VsuKQp4+PQZJkQnwtH0iMnpC1pfc+3KHtPpjJ3tMQ+fPqexdJGSgGsN81VDqnKubO/wyrWrPH80ZnYxR+djjo6fk/W3cU3JrZtXefet1/noR3dp6obxMOedt94kz3JOXpyRJ5LVZMGqbuj1+9y8/Q6L+k/Yu/IKP/jDP+LweY2xMVaihcbbyBDzGGbLCa0NrNoIjsU4UJLZomarV2MaQ5bnZClYB95ULGeOIilog2W1qikShdAJj5+eUbUtZ+czfv3X/yq0lv2re7SLmlFvCIni/sN7zGfnPDo+ZDafcWVvm8cPHpGkPX7u536JvfGQcpVwfvSCu3c+4f4jxXzygrd+6qf5g+//gFf290hSQyIt0ER3mYhsuZs3bvGLH/4MP/ro9/j480dUy4pB0kJIEfRjw7p3ZHmOa1b0i5zgWqazJSIZxEiVM+zs7VLOSnb3r3B+PufCGGbn5wgdN7K2AZm6WD3rA94EkiTHW0FVOxqnCSFHCIFxsRrcU9FPNN4qlG4Y5Vt476jMksOTp1SLGq0Vr93aYntzh17aI1EzCIqT6QkitOyOtymrFVLnDIuCZmoZjUZcv3qFBw/uIIWIriidkKUDWtNQ2YZl3SAzibCSRdOSKtje3WQya0gTzd7OdZ48fYFWGbP2AjxIIckyHeNQIrpurLUkWdo5BQQnx6dkyYS2rdle2+SoXNAv+iAD1sdK8IBisSgJPrC5u01dVeRSdzFdjbE5UknyIqdtGxazBeubG8gsY7ixzqpuWM5WqCRjMV/gvWM47NPUFWtrY7SSqETSSwtW8xbvAk1rkTpFJQojHVVTkWWGJCsQPqHf6wOOLZ1inMFKR7AO7TXCxmYo4SXCW6pySVV3QG0RYkW8zkh0wWpakwhNopLIV7EpTVtRtyXWOmRwpENNsAbhiA1vQSKUZ7Ws6Q8KcLGmXXhHWxlEL0d5j288Mo2iNyKyIC6FvhAcUicE7/FCRwakVrEoQSmcdWRZGpvWAjgbkFrEWvquyt1Z24FeFbaJ5SJJkpAkWXyeq9j4KkV07DhjUSpGqhKpcdi4Bmtb2rJCpRqLRQlN7SxZlnXOjvAToFPvLxf78d4rQmBra4+jO09pLz6lXb/FeLTFcGMtuh57PZAaJ3wnlHgm58fMJxNSc8akaZiUjoePD/n2h68gg0Il0REXgkSnGu8CwV+6qUIEcytFfCuXE3yJEBprHUWWxKhcltFWsZhFdY1080WJD57gicBp67CtRaURxB1CjGh5AkWWs1qtyLKcJEkhuQR7Q9PWcTgku81JF/0SCpq2YTAsiFHHeP+QUuNDjIqhFL6JUTPVweNb0xJcQOkY/yB0mxwfBRYtJFZ0hA8Zr4NQEtf9Dtc1J6Jiexudk1ulEUjirEWIOICUHloXweoeSaYzkAoTAt7F9k4fPFpHQa2jxcdmO+tIiyyuT5V6GWlzNjZEiw6QrmTXHGsduYybu8uYiXPRPedcdCTIztXgrCfJLlli8e+SNOuaHkUXbxTYzg0WnEUlGtdxl7J+n5uvvcHhwzv86Q9/wGpZsf/Gm8zOj7n3xRG3b7/NejbAWEPRKyjLBe//Cz+P8pLRcI3p8oLTyQuefvk5b7z9Ab71sWmyc1/JRNBay//N2psGWZrl5X2/857zrnfNPbP2rqWrqtfpZhZmYRgx0hgCIctgjCSMAissbGSFFZYtEVocHoWwQCaMw8gyy0QYgbBMhBAIwcAwMMz07N2z9TJdXVVde1buy93f9Sz+cG7VEOGPnvySERmZN+963nOe//P8niRSCCt57t3v44u//e8pLg1oHCRRCnPwuxQBURxhG8+ci9KEOGvREpJWq8urX/4solE4YQiMwrgQ6zRpu4NQIWmrSzmrGO7t0Wp1mE7GLJ9YZ/PGm5y98CTnnjjP4tI6o92baGtIuy2efv6Fx0JpK1TEMkBXBQ+uf52mybGEzPIpUeIbB+sm5Du/7/vZe+0t73CsvDNxMt5haWWR/aMDMmm5+caXOdrf5eyVZ7n8/LtI0ozF9SUWT/T543/769x7cB0RpjhTkjcFAKno8T1/6a/yzVde4YnLT7G8cYo792+xff8G1XREox1xS1HqKUunzqHv3eHCe97P4fW3GB9uMx2NaG+cRd6/ThgIzp69yOqZ82xdf5ViNuHe/bs0jSY5cRFz9ixmZ8RbX3mVRl1hp3gno+htjgdbiGiR/Z199v7g45Q6wy79AKPhTRLxCcr2RX536zRqN0UtAXsBk9Etivufophd52O//DOcTDOeWe1TP/ssv/Krr9N+8Dv81tH/w2h2yMHAIhav8gPf/TzPLiiODfzsr3yCtQ/+INd/75u8+ye+k7f2nuCtW10ilbJ5f5PZSsbs4C5vPRSE/csc7H2BC88+z6Unn2at3+fLt0bcaynORyFLCEAhhONaAadTQXsOw9Y4psbjNyQCKeZrkHN+j4pA4h1Ac7CJl1Dmrh/PFrKPPTXgnT5CzNcfEWAx3l07dytJ7Hxt/BZz6f8Tl3Pgi4O+9RugsY9ZdWDdPIY9d1A+kqnsYzHHO6+ssL4NMhCPRZlHkT8PRA8ei1ePnE7ysWvKO1lF4B/745jgY+eWf/SBe+Qscv4+f+vpmP/8W44s5tG8R1FEh0AKM68cmAto82f8z4pS/u544St3ENmGPyOffVu+5Ec/+tFv6w3+4i/9/Ee1NtRuPhkQlqLQQMLqwgpJHBKEgkY3WCmpypKiLBhNpgyHR0wbyeUL57FljQ0UsUopm4qqrihmBdOiZnmhRSeJODzeY2daEKk2KpD0egt0F1b4jsuXuHbrdWYiYXlpgY2NdXqtiNF4TKRSyionEILB+JggDB/XjVZ5ybiqyBt/YS8aTZp2SWPPO3mkIAolyZRkJWwjleTu1ts0ZUNe5dRYDx4XvmViVHg7bxJ3iWNFGljqpkIFkko3VGXO/uAQoQT5bMSsdjhbE8dtimpClLZoyYiqgcFoB2c8ub9udtE6R6ouiVpBygylEi8eiBCwSCxVXTAzCd00JcsEC10AR5ZF5HntRQEZESqJDHzlrMHDgBunESpAWIE2AdZ5i30cJigVUc4a0jij31nwFZjOk/Kt0wjpEBJ8sUjOdDJA0ODqhlFl2BtYbKNwKOrGEs6nn1porLBgQ8Iw9I4pGqwNmOSGJGtR14Z2oojSjO//7icRecO0EewPBoyKGY3VWFHhTMWkaCjqBpyhrEtMbRHCoQNv/S9qg3ENha7RjSWOYqQKsFYjsPN6WT+xnRYzptMJu/u7ADSmQsiAsvTuqkhFLPX6rPRWiOOEotH0en2qqgYsx4NjkJLbt3eQYcS1+7fQZeXtnNJvTpaXT4AIKfOS0TRnUlo63QVOrCygS4mMBd2l0xzsDzFNOTePCvJiNLd2zxdj7dlg/bYkCv3EW2Gpyprjw010PaNoCgwQSwtKECpBKCTKaayLabValFVJgOXZq5cIcIwm3sYdBIDwE+RWq01VGo7HQ5wDJWOCMGI8nvkpqLEoFdLtdnBOk5cTtBWsLiyzsrCBNg1RkrB3uMdsMvRwRhuysX6OcjqmKXIPWW+a+dTQ14hiHYv9Pk+cPMnZJ86QtVpsLK5y6sRJuv0OKyt92nFCEkd+I45i48QJVlY3SMKETrdLt9thsddHiQZDwdHePtsPDxkejYhkQL+dcnSwz4PNLToLKZNihrWaLI2ZjgtWV3t0+ilhlHJ0MCRUAm0c+UxT1SVLy2tMiwGXzlyg3V0G09Bve+6bcAHdzgKB0yyvr3H3zl2iJGQ6GTM83KMUDbNJQb/bwYqUg+ERQaApJjlF3iCUQMmGMIqpreXUiZOcOn0CI+Da9bfotlvkecFwOmQ2m9Fv9zm9fpbxeEReTOi0FEEc8nBni/F0SBRnnDl3iVMbp9l8sMXWzi6RlRwPRlQmZ3l1nZ2jAcZ5QG5ZeBdKIyTTWU1pK4JIEIoQrYFG0Epi0qzD4GgbcPi9e0AYCupakGQhUejF5JXFVR9AMDUqDTncO2JlY41WK2Cpu0xpDVXdMJtMePrZZzh1ap3bdx+wOxpQFpqjoylRGnN8dIRKu/zhn/wpdXXIYHDAsJxQWkVZwv3NO5w+9QRvffNlpmXOw71d2p1FhIgYjsZYQoQU3Lx5m8G4JFAhdWWYzWaYwhEFCVjjq9KdxpkQaQJknOFkymq/xzNPXaDKcwpdUuYzrjx5mdngAWmU0F/fYDYdUOEIaFDSEsoAiBCiw3A2AhxWhwzKEisc0jrCKEVR08oCZJBQHjvavS55fpO4FTCdalxjCSPJYDxkWtSYWnP14iUSFXI4GHL+7BXWlld5uL2LbqC3sEBR1eRliRG+6a3RGmu8C8RojTWatJWQRDFoTWMM/YUl3vPcBe7e28IKQV3D9tZ9Do+HVGU5PwjOWXlSopSvgu/2WpRFhcMDhJUKiSJFtxOyuNRCOV9lPxrNwDlCpZjNRTKrfVtZksWMB2P63Z6PiVkx59tB2ornTBOJrmvCQJC1MgSCqqhpd7rUdYVwgrrKSdMYgaDbbeOspdvqErVSjHGUGLIso9deJI3iebOhRtcanOe7VGVFVZe4usA0FUYLMimJEkkSxvSW14GA6WyKUAFh5NeiSAl/+BUaqw1pFKAC5d3ccUDa6VEXOfl0hEURhn7Yo50hCCzW1UzLikZremlCmKbYJKOeTdHaEkrftGlr7QMIxuLMnKjtLE2dU0wmNHVDGEVzl5IHE3vXhmQ6nJB22o+ntASSKI6Qwby23RjQczeLlOiyIS9902oYRQhj0cZ/ZpvG+Kic1qgoREmJM5q6qTC68UULUUKr1UZKSRSGICDNUnTjXbaBDLDC+evA/L3pBCRZShgoRCgJBYjJhNnBjItPP4sOFMoKwjpHRin1rCCwhma6i3UliysnMFqyeOICSbtHmiY898I7kDJEBSFCeNErQGB9S8ZcRPIjeRn6JtpH7B0sNFVNUc7otFoglBfnmtqz1qIIrGEymdHttLyQpBsfT3GWOIlJkhSjG4wFg6HXW2A6ns3B2fP3tvbx+KoqiZMEFYZY4w8IYRRicVRlQ9pK54cVi9WOuqkRStFpd3E4mtoDsoWQCOmLQhzzOIebN6UpNX8/ecaQL1lSYDRVWdHutBDO3xbz9d1ZH8fyzCFJWZaEsaKcFd5lpBSRCj08uDG0O11aWYtwDomdn68eaUg8ai6SUlIWhRf4tCGUat4M6H9Fz8Udh9+LehFMUlcFgVTEUeQPqgiqqvRQ9wBk4F1hxmissURRBPgG3TRJvMnA+MifExahvGgYPGLMiACQaNMgrWFyeMAXv/Qp9g4egnJUs4KV5UXSSNJeXEJmXQKNb12LE/KqIIkUYZyye/8W97feJM56nDn9JLaqCUNPYZFh5jlXlUbNm7OElHRXV/n6l77EwtmT2KKg1hWhcJTacnA4whpIe33a3TYK6c8tt98ijUOKwZC8mBCqNkU548ozLxImbShrbBzx9ZdfonGafr/PvZvXacqKy888x6uf+hTFbMrR8IDxYIesE1GXFcPDfdJWjFAJcbtNIAOy7gJZnLJ5+zpGJGS9BazTVJVlYfk0L37oBzi4/5D+xirlYJ+XP/lvGM9GTIsC6RxnLryDw70DkqxHb3kDpWJG4zEv/4ff4KXf+w3eeOOrpN0uiZRMRkOECwhJSLIUGWSsLJ3AhhF3X/0yo/EeRT1ABHMwsglwgUCFGcXokOe+88M89/1/hbNXn+fwaMxyv81XP/VJVJIweHifdqtNFLVYXlsnziKaKOUn//ZP8KPveQFlJb/5G/8X1fIz3E4WOfzsz1GXY0xd4tI+qhkT9E+x8M6fYLazR7n/JazbQ+cnGE4GXPt3f5+gucvdP/7n9NlmeLDH+59Z4zffuMW/+MVf4N994k8YlDfR/SWeffd38dmPf5Fvvvo2TTDhQ8+cY3fa8M9/9V8zDE5Qt8/TtE9y8FbNaBhy92sfx5bXKIsSJpsI/BnHVAe8/4PP8bd/7Ee5vLrKNIr52O2MC8uKF/vQOIEK4OcfwJtjwff0BY0QVM7yR/vw69cCvrAFf7ot+OxD+Nym4/NbAS9tWz6/J/jMjuDlI/j0Psxix5NJQCGgsIbfPQq4O4EnW14oyXH80RHMnGA58s3rkoBPDBxbR3CnEDzI4eEM9nLYLgUHleCgshw1gsPaMTKCsfWunnB+TrCBY9jM2UaPHE3CzZvmA+TcISTmwnKAP2d4N6NAPooMC++mksJHeR8xlvx65f4M30jMQd7eyemFnMc0Kpg7vWA+eHokoMzXLDcXtzwO2DuhBD5mq+eup0AYcP6a2Fgv6Pl12w9ejPXXI+vmgyTrh8GBs2xZyRsvv8mH3n2GIGj9k/9fos+f+fq2O5SkaNHrtKl1RZYlHBzs41SKlZJpMaY2DVEYksWGaVUxtWAmtW8gMQGxsNy6+SbjmUajWVk4xcm1JabjId1OHyvheDIjSVosLq2yMhzTaIkmpJiNWV1co56NccbR5GMidZKH23vEaczy4hJ3bt+n0SA7CQvdZZJIsbe/R2fxBEupZJIXxJliZ3cTFbSIlSAKBO1ORm3V/E2hSaVgUBzz4Noe3f4SvcU++8cHSKcwTUONJg1Xee7p83z1y59HyIqyEcREFHVNLhvSOMUYRSja9OIYEypkpCnrKZUrMCYnFtq3AzQzTLmFcjOU3GBWaY4KRQIYWRNHCWmgKVzNaFrTWexhyxGNhKCuaXdXiOOaaTFiWoS0gpRup09RjOhkDld5AJx2IFXibdMqpCpnaBGRJDGNaTBUFIWl31smTR2N1YzyMUIIIgVF3VA1ljRTRAHI0JBkIyYjhasDDmiBhlakUKG396VJSqgEjhrpnM/jW0cgE5wuqUvBkTMkYYZuJsSyQ0BIfymmjeFjn/wi0zqhNhaDwFY5WYiHTrqSWgu0bYgUBLJCBgLTeJFFCIm2/nUJowYZGkKZkJcBeVFibUMkIYpDQmkIgprxdMxwBjSalZUVtKmYFTPCKCOKIE4cC+0O1sFkNGA2HnpOTpyyu3dAeyHj4cNblPWUOAyJpKBuAlAxcRzSzlaIggAXlHzfh97B3n5NICKSJOL+vQNOn3kX7bTFa9e/wTufeQ8Pd+8hkxBjLKLw4DkrLEVlOZrMF0mr6Xegzm8Txt5OOptXVxOBagRBoKjKhqbRaFMRhQ3RHH555842ZVkTCIetLUYaCCTCCLKky87xHmvLy2S9HrFMmI4Oef7ZFyiNYzI+9jDVQOLQdLOQ9ROXeLi1g2KT/tIqh8fHnDp1gt2HW0iVsbpyiiiKMfUKB2WNDCJOn1zj8uVLHI8G7O7sURY5R8dTZrkm14579x7wgfe+n6WVZbZ3dqimNafOnUVrTSRDjo9HZK0WnXYXEwgO9464ef01Nne2efLMCtlamzu393nq2UukzwioU7781VepipKDwz26VczxuKCuLVIJLCHrp5ZJ+yknltf48ssDjnYHGAfT2YjO0ipv3n6dDzz3FOurJ7Ei4uRKn7Ie09Rw+84u9zYfMBodM7nxdbq9HtOywNmS0UQSVA2JjGm3u5zYWOPsWQIAACAASURBVONTL91mbXWRvJj4+nMgihRVZRFOc//hA0LVcPPaHR9z0TNefPoF3n7wNp24w+raCp2llHe+51nOnT/B/t4hD3bv4czM11fXNYm0rLZaXDh3kfMXL3Hz7bdQSnDjRspg+5h2mPhYqPEjGWctEoMKNMIFtESMFt7h0Rg4sb7CrdvXIPKfTymg1fIskzjLOHfqFKdPrXE0OAYZsdDtEASKt+7coaw021s3UNUaF0+dZXGxj9gMGZc1n/nUS6iwYW9vi1YcMZvkRFHC8fCQxeUWn/nMS1SV5a4u0QQ0laDWoHVBq71CUeReOMfRThSD4YDxJMeZmqPDAz7z+W2y1KIrg8wUrXbKcHDAuSsXOTqYULuGRGlaKqYoDKHShDZiNp6wn1ccHR8zHRxjXE2oLDduFISkHB0PEHWNMTXCBhgiKAOyOGZ9ZYNpHtA4AxiiALJqTG0EmhpVW0hinAnJx1OWTm/w4rNneXg/Z290QJKllC5iOKi5/XAfcesBvVaXzkLGM1fOc7Czz3Qy42B7h/ZCh8HBAGNrLjxxjtfevI41FdZWaAdOC+IoppqVrC2vsLjQ48HuJqaB5eVFepFi/2jgXRsBTPWU4cwQhpIoU4gaDxkGtG7IZ5Zev8U73/cu/uB3/oimqR83ihlnORzMWN1YIEtj6rFjY2ORldUFDg+nWI6oK02aZbjAMRlNSdOUSjeoSKKbhlYrxVjL4f4xWZZw7sJpRoMRVV5SzgqcDVhe7KMtdLstDw+f5IRxj1AqJpMps+mMWT1DNzW2cnSSFioImU6PSZOQLO2D9MDhlfVlpAhRkUNXDutbFLB6RlBNUUrgJS5LbQxlUVAUpWcJOUtgDU4E5FVB2ZREWYfGgdYzWqqNEDEqbDOpFa6ZkmQRRhuccNQWRKPRkwmdfgctBFo7WkDhNHU+I0tidO0rynWjCTzswXMW0eT5MU1jOXf2EnrOldBYIjfnRThQoSJKUpra8/N8ax/UovFRIOsP2I+myf6gDifWV2mMQGiLC3wTW7vbRaqYQXFMpBTWOV+aAdR1Q5K1iFqpd/84vyk2jUGkAbYxpEGIth4O3WiH0QbdVIgonhef+YPD9nCMjk4SXVqhHtzkZLbEzbuWznKLKFvGWAu6YLx9h/7SOqqfsXDiDGGWEqUtNk6cJlQJRjusMAhhKWcN/YUYPb+/xuj5Y4aqKrGmIQ4j6qICV6GtIZSSQAqs8w4m4yyNs7SjmOkjrqbAM0JU4OOCTpPKwIPs52w2hI9ulnVFkmWPY3Q45uxLL7pa0+Ccefw6lLN83pjmjypVVSGlIi8rWr2OP6C4OQg7CDzTys0jkS7wIGwlKWpf1GFqf/u60FgLWZbRlA1C+OZb7bwoU5uGQIVEYeTPA2GIc565aYz2tEkhPHDeWYqqwoUKoSQIM0dleMFQRZGnhAQKbbQ/ABpLVTWkrbaHlStFUxb+e60xxpAIiVTKu63m8b1KN/TThXksx793H4HhjbGIwHsLnPMsEhEIcBal/LTfNP54WBvtxSbrgfIIHwF1zItRoohiOuHatVeYzbbp9Fq4JqTf7uEsDHd2CYD+04tUGEJC6qIhlcoDr+W8NKbImQ1zdne26C8vIYVBEvqSAa39ax2EOAkWzdqJDWInGN57wMqJVfav77DSS7BNQ9TqEHe6mKqkms4IuyHGOS5eusrs9Fm2br/F3qRBRhmqEiwvrbPz4C5hu8va8iqJCjl/9hIPbrxFYzSJCnj5cx9n7/5d6qBiYXGZvDzPrD6gGVXsbl9j+IlNPvKD/w1REBDJBGcqRpMRKukgG+3LZbbHJK2IpN2jchVnn3mBrddfp8kWWVt7gtHmTdrtPkl/iUBJLn3H+znc2aMYWSIpuf/WV7h9/zr5rGJt/SxZt8Nga4s06/C3fvrnef2LX+Z4+z75cMKV97yfnYMDbj3YIm/GRJFniKYqJg0FadrhyjPvZbZyhsXzlz3z9WhGb6HDJD/g6ns/yIkTJ/nkv/2/GRRjgijl9KVnmMbn+et/48f40JOX6AnoLXUQ/b9AM33Aj55e4X8xklPP/gi7b/w+S0/9JOOv/wrdM08z3b4D+Su+CGn/HqX4A/LxAxJzwNa1G0gpuLVzj2g25r/9rU9gv/aQVFVMz17m//jffob9W/f493/6GUojWT5/gv/qP/0Bnjtzip/+2Je48ZlXGFff4In0AwRhC1VOcRdjFD2EdGSBRgtJ1dQk1RgdOgYiQJiKN3ZG/PqbihcvZnxowTemZQJ+bQ8eHsPPPeddOMI5vj4RfPKBYMFZShvMm86hIqC0IKwkbEBLS20ES8vwvf2A0nj30ksDybVjx9+95AUUg+X39uCgFryr6zAWVCD42Lbh9XsSayBsHBUg3dzlZPGOSSEIHcShoArhO085/uJGgDSgpOOfvC04GQv+5mkoHESB4zf3BfePHT91BbQT5Bb+9EDwjS1H5ByhdUjLfB32biQpHco5wthz9t51VvB0BhrLVAteGzlOJ3Cu5ZXwI215OBZc6EFHeW18hmNz6GhJ6Y1KASTCEQKBBCkgdF5NF8KjED0vLEC6bxVMPXJASTdvxv6W0QqHRfmpP9/yXvH4b+raIPIZwulvq/7zbReULly6ROBgOjxke3ebrN2hlWbk0xmjWtNOE7T2AR+kxNU+Ay2jAGdARI4sWSZpecuWkhHdTofldpu61rQ6KQcHe7z9YIdLp5YRosKQYkzN3viIw7xgpQtTlREqhVFtvuPZi7z0uU9w7+GAvCqJoowkiQlcw3BwzEw3JOWQnUHNTOfowLLUW2E6PmZvOKMTJaQ2oZX1UNIQRSG9/hJOg5zOaC8uoqbHlFjyXFO7gom0tLo73LlxCxfHWF2jhWSiC8IgxNXQOEmtzXw6qFjq9hnvbXPxzJMcDB/SzWLKQvBgd5vJ5IB3X1hmOukw1ZLxOCGJU4TzYGTTjAhtiZIBVgY0NmdxIWVrWBIKS62HrLXXmZb7xFGE1rDSb7OYxWztbWIcaKMwJqSdRnTafYbDbRDKT+mMn1wpE1PhmJY5EZI4ykhTQTErMUbihJ9cKgJ07WjHMZOxopIBceDhkyhB1ooJGFDXkkhJJCmVDTBOzvH3BkmNjEJcOcZUGbmaooKQVFpCJVjqBHzmK2+Q5xXaKVa6XcxhhVWOdmxAW5JIUTSOdtR+nPOvdYWwGiljJGpuodQEwhEEEf3uMkpMOC5qhEwwc8U6ikPKuqLbWkBrw5VnL/Jg6yHSCfq9FQIcgfJA8bdu3eNwMqCdpVy+/AJt4P6dOxAJLpy6wLU7r7Pa6XBclrR1QpjGrC+tsrl5b16PaXFSMBhOsVaye7RNvxXzypv3eeq5I772jW/gjOOLr7/EQphRlxZpNTqSSCdQTlLXFislSeYoXc3RzGAqKAPB6RMbjHcPEVZxdDzkxefeST7JCRYD9ga+2j5EUNWG86fP8tTlpxiMp3z166/QSTps7++hlKbVW6DTX+HwuKC/fgoxqxhPx4Qq9JP4MKCaKoq8IFIFu7sHrKwukLUW2Rt+k5MnnyCfjlHG8PaNa8g0JtaCg4MDJuNjZOBIooirF89z+uQas7JgOh4TBxHH4yELC0v0F3pgHCdW17Dace3aW0gkgYJ+v0dIwJ0795kVBZcuPIlSLfa3N5mVE05tnOLocEDjAg73Ryyvd5g1mle+dBNr4OTGEmGcsXd4zKSAqrGEsW+FjBJFe6VDFiccj4ZUZQEhnFzv0YmvoIspz1y6wBMbTzAsCq7dvsnx5JjZZMDZjVP0u13evv82eZ1TVzVh0qAwnDh9hdu3bzAtCoJWxNbDI0bZjI986D/i3s4Oy6s1VVmwvbtLUTcU2tJLMyIqLp09x5nVU5gAPvPJzxO123z4g3+OorI82NkhRDGa1WxvDrl+4y6XnjrH5UvnuX93m7fv3GNra4/l5XWee/EqMlA8de4qw8kO5hzcKGqCxpK1FFJCPqmRMuTK5QsMRkNu332AIGB5ZZWHd3eRTvD5L3+DLInIEkFd1gTEqMhRlBpV1b6+Wgp63SUabbl76y6jWU5lGha6MBkO2QsDth4eIBLFuXNnuH3rLmfOnuT2/XuU2vqWEmlJUoWybe7d30EIyKcNrXaCs4alhXV293dZbK8St2LSOMXqBKdnEMYMRlMmsylpIlD4GInOjT+YO8FoOGF5sc/5i2e59+ALtHspVTGkKRwqbFHoABFlxB0FJmc0GpC1U4rKgBIYIzgYHtHUkthW9Jc7TErvcmzqmn63iw0EtZ4gIkmVl4RpixPLZxns71LWEUqAcTMgJu0ssdg/y/kzz3DhxAUqW3Hn7jGvfOGrEFiiyDdxLff62AKUMjz1zHm+/PVbLLRi8rrCKtje32Hv+JhONyPPK1qtLs5phsOaqjKoEGpTUuoWnWQBrQ9ZX1jieG+fcTnBBCFWgsMQpwqURoUGKaDWfpMjrHc7aK3ZfXiXLAsRQcJ4NEWFKVb4pq+NM2fY3dljMq6wtaPWFqyglbaIlEEEIaPxhFlR0Ol3aHRDXSsW+gskLYWSiv29fabTnK2Hu8hAEoa+zEBKi0VwdDhgOp3S6rZJOhHHx0ckSUxvqU+YRLhKM5sUZP0Ove4ix4MDHDW+L2aGSkKKyYTZ4TfoLy0yy3N/oNlYQzlNIkPaCpwBK2I0DoFCiBAZWOLYVws7vOASdntMZ2Ok0xBAJGOkS4ijkFw5essLTMcxWgfEifDAYaspm4bSOHpCEQlHqCKstTTCUFFgQ0c1dqjIg4SV8sB35hyh2ayil6VzwLKi0ZpYKJyBIIJSN1TWUE6nTKuaaO7CN7UjSRIEDmsdOgClHFBjbIUTkiBpI6sKJ71oIayf0GpjcMKgnKBpNMaCFBInFKGKfDxC+ICEcQYCkHFGNRqRxLGP2DnhixqcpjQ1mUw8oNlZyllJJ3Z8+mtfR0m4Q8N/9v7nWb/yHqrSoDA02qLCDktPf5h2L+boYJf9gyPWV0+ighCMJs9z78wxhul4SquVIebAa4lEqghDhRSKpmyI44g48k2qQjia3BCFCTiBFL6NLnAO0XgxIp/V9JdTD3OdHwKM9gOXMIxwThO4eewMQdXUpK3ET9EfwVyDeYOZ8GxH3dSeUxkIlIrQuiBNY4zz8RBjHIFngBMricM7o7SpcIQopdCNnjuc/d5bBtCUJUlbQhDQOEGWZVgN7V6PB0d3WFz0HLdAKjTV43OAm8fLhAgoqsILdDhUEnmGlQqZNhWNcGQEJASIeUT2cVER82ZeYamainaWYYx3DAHzJjbvRAoc/kMnBGEU+scrPYTeaN8KF1gv3KkwoKrd3J0k5nFFh3eFzveB4lG0xD6y2ftoSSD9c+88b9THbr4F/rXWUTQNKIkMIxZXT3Hx0newsnKChZV1xNVnCcIQ4QRJJGlsw9TmBMbhOgnGWRYX13nn+/4SJ5+4xOHWHtHqBlJAFMYIFVAUFVVjyGKB0IooSyjyMSfecZXbX36FlZNr3gm23MEQEMYB6xtr7N15nVvfHPKeD/5FOr1V3n7jFTY3b7B7vM+skGSyot1KeOuNr9BoS7/TsH3nTXq9HuPBAfcf3qG/vkIn6zA+2KXd7rJyeoPReMjy6im+94N/lV/86b+PXDvDuUtXSNI2LvBM2aPjXXb2tgk6berDXab5iKaq0Q08yG/x3sGAsBXx8h99nB/9qf+RL1z/E9bPn+VwAjLd4N6N17n6HX+e05efZmVhkZc//XHu7zzAlDW1NpiqRAxBOIlSiq/80e8xmZV0+8s8PLzG7beuceWd7+fSxSvcuX+DyuQIO3fcobl89SlWzl+g0aBmDWu9ZV67dpezT17g93/hX/Ij//gf8snPvkx3YYkyMNQN7O7P+Mjf/BH+kw+/l7YUICX/0//5+3SeL2jfq/kH//lf433f8xH0hXcQfPM/cPjFnyJMlpmNDpCD36GT/zFNpGiahvHWJ6k1OCJCoZhWhywvL3MkBLf+15/nh//ZH5DG8M/+++/H7h7z2bsV+/sb1OOHDGavcjD8XrbHOTuddzEt/5gnfuCH2X7jgHz7Z1laX+Dkk3+HWSPpLV+h0mtURy/R72ScXF/mv/hb/zUvXn0HqQz4p39YIlzJX14D3Wg6geJ375d88rrjF783BQ0EjgcV/Ovr0NWOQeMbGM1jNpCPvYUCZgJ6AspI8HfPQ20tYSD4WgF/sgV/76qPz2kn+NwA7s7gB9egrwRR4PjDkeH6w4DEGRoESG86eVQ+EAAtCzrw/9MpeG7N8efXIJEOheBfPIDEOn78lKC2kErBH48df7pp+YUXQTmoga8MLX9wOyAzAmN4HG9zwhG4wIvd85KnWMGpJS8mFc5RGvi1XYfO4Z0XPSPw0Dp+6bbgVCK40IXaQCjhH1wLsLsOrSHCY2WckHPciSOcc6OUgjiFH3nScaUPKoAv5PA7Nxx/5ynL6VjiHDzE8a++AT90VnB1SdBYeDANeGlTkDY+waICiAMILbRagn/z2znPjF7HHLyHYOPbp/982yNv/+pjv/zR0WDE8WCIUxmRkighyOuCdqdFK0toTM10NKUpNVmnSxJL8kmFJkTXjjhS9Ns9zpxb5+T6GsOjA5baGZPxgId7+1RNw/FgSJqE5LOCxgj6ix26nQWWltd433s/xMmk5uWb1+nGLTbvvMFX37qBcyGhTCirmjhLiELYPzykqWvG4wl5WWFNwPraWd5x9Qw7uzsYIRnPSrq9xTn3xNu+hal4+PABIkk5d+osR3ubbB8cUwlvYw0DRxrPGI3HJFmKNZYwCYGQQMUIG1DUBiv9BVQFgoAGJyz9xR57B4foyvDMpRdYa3dZ6PcZFhGNUDzcvU+tfUbeNDArBmBnHJcllRBEiSAIGpIIqtpxYqFLpxMhki6TyYS89tGoWCnyWjMpa5IYaCxOxAQqpZUGDCdTQuRc27SkrR4g6WY9WmnGJC9xrmRWTsAJtDMY55viHBIXKvKmRruEtZU2kQqIIk3T+Iu9FL7uNwwTGqtxpvE/Q6BticNHLxrj24YCEdJO+shQEnVitra3uP5giG1SJrmlqR3WOALr1d52GDAtIHeOwFqMFkzr0gPMjMXoAK0dVgqkiJFhGx1EGF0yns0wTpLECYuLS7SzNkWZ02m1KGc5LmgIlaTfW2H7YJfF/hJPXrqCbuB4UKBUSFNMCUJJ1lrk+rVXqcOG7/rghwhRlGXN2to6aMNkWiGDkMOjQ3RtsBo/IURwZ3OPvcMR6+tdNndHZHHKa9dvsnO4i3IObEOrm9BL+5jGswecnm9whG+566QthA3JC0sQZThbsbDQpqkzWlmbdnuV557/TmbTMXk5YzzYQ4oEgSBNY9aWT7J/cMT+wUNmecHyyhrT6RSBodNKOdjfYm1tjU6nx972JlmS4BzkxZjpbMp0OqSVpmysr3LqxCl63UWm4xH9XouDg33ub95gNBpw5uwaSRBwMLpNVcx457NXeeeVJ3liDmbO65w0y5hOc7rdDpGKqLUhihNms5yFhR7aGs6dPs/GxjqT6ZibN25xeHTI8tICnaz1uDEvbWeMj6eEAlq9DhunVtk/HPBwc4+dh0csry5xuDti92DA4soSl5++hFNzVoRTdBYWmE18Y1fSyRgcjBjnU0Rg2dseYmzBB973AXZ3jllcW+TV197g5u03OR4OqauGJ86d49TpswyPp5w/fZJzF84znYbkpmBhocNwdISoM1QcgDBoJLNyyu7WbXYP9siLMYFytOOMIIox1rKxvIJtEtYXV4mDgG5nmS++8jXOnrvKGzfe4HB/n4VeCycs9+5vEiSSpZVFWlmHhzuHbO/e4/y5MxzubhPKjIVej7Kq6XRiIpVR1ZoiH5NIxdUnL7K0vsLW5i7nz53kfe96niov2dw6YFxUWBkQthIiZVDSUFchIgixgcPZAAKFdpqD42NmxiAjxd7+XWb5kH6vS14OMUZwPN0iiBZ5+umrtNOQ5aU+9+/t8vLLX2M4GtJqpRSzGU+cPUGaBYyGYz7wgfdSjAuksiQthbUhxjTkZc47nnua9733RdrtHq1khfVT5ykr2NndQ4V+7Q6EwYkG4/xaZXTN+oqjHbbpdRcZTQ7RdYmwJWkYIVxIqS2BCNEmRwWWK5evEHf6aFuDlUzGE5RQaGdZXFogkoq6EJS6QklJmjQYkyOlpdZTqqZkMpkRBGNCOSOIFNiU81dfQAU1tXbsbN+jLCqOjvbIZ2N29g4o9QwVB4SiQNkpTz11lXw25fz5kxgt2Due0pgSYwVLvS6tJKVsCt9S5RrSVkYQxGhdo0JH2kppakNT5kzKEVGWkE9noALKvKKuLEr4YYMOLML5uFVZ1VjjD6adbkqWpcRJzP7OMaHwNu98WqHimIWlRbpry0ynBU3RsLy6QhanTGa5j4lkGYPRlNoa2v0OjTE0dYMQgnYro9VtkeclcZpQNQ2tTosojsinOdb4ZtnJZEZvsUfaSqmbxosXSoLxfJg0SZFKgVCkccrC4jq2brDUdDttuu0+jbHkZU67lSGDkNXldSyCOAqZzSZ0u4skkUIFliSMiaOU3vIGVhgm0+H8OXbYxtA0FabxoPM8r4hlQBzFREFG2u0Q9rtMRmN2H+4iQt+bY2xAowXjSclgNCMOI9+MKUNUEqKSlDovKfP5IMSUSBVQlDkI0K5Bm5K6nCJcQ5ymJK1lLHLePGUQwiCFoJjlSCGJsoRACFKpiKIYFag5yNO7PJxzBHiIstY1QkK/28bWhqooSEKFMZokS2kaizENUegdJ57dE1DriiiKSNJkLgpIP0h1FiEVTVWhVOSdXeDFKGOwjaWVZB5yrb2DJqDNcOceop0yrAzZ+XdBlFLUOVpXzIocJRUqVty9fp3X3/gq2wcPWF89Qa+/SBq1kS7w/KN5BX2r0/FOO2eRKsQ5R11XfmDZNMRhSBAIAhdgtMNgSVopBCFCSIwpMNZRGUO702EyGvroURD61jNnqLSHa7eyFs56xpZFoJQXmXSjkYFEhhJjvbNoNpuRZgkqVNSVftzEJwJHXTekSYZ8JNA4fOugCEjimLIsvYilFEmUEgQBVVX5yLpSIOzjqHqcpHPhRs5dOd6VNp3OaLUyrLWU+QxjjN/PRRFCKpzDl4qUlWebVRUEvoEujiKm4wkq8AKrDCM0nqnmHBAIwijCzkXpAEGSpFRNhcGRRDFa+1ZCa71Y7AQYC0ma+SbNwMdnEd7R1mq3KesagsB/FoVv5LN6zjhxjrKqsM4RhuqxU8nfhiAgwOBFWhAYBAof5Q2kb8MKhcBMc/I8JxKwvPoEy/0NpApJOl1EoBBBSK1LzwlrDNNyQqYipEoInMICi0snUMZRTcYoJQizFkWZU1cVgTG+5VcIXBAQJ4rJeEaDQwWWrVt3McbSb0dsbz9gNBjTikMOd26zfOYKOIkpc95+4yXu379FXTYcj2vaaUBnsUeSOlqtPtPxmNl4SqAi3r7xJkVZel7fdMI0n2JFxeb9B2xt3UFYQT6eoGvDU+9+D+vrZ+mtnsYRMDo45HMf/22u33yNyTjHasfhwQFNbSjqEtMU3H79TW6+8imm04IHm/cYTmY8890/zMVnv4PZ9gOGk2Oy3jJPv/v91JXm5le/xNJaj4uXryAbiFXE6slzCKEYHBxz+OAWOw+vsb99g3E+JXRdTl+4zNe/+GmsKzCmIVDeLUcQUOYl3azPu77vh9i5u0ly5gTjTsbqUpvzH/gwG6dO8V9eWePgi6/z2uSYjQ//OO//8X/Ij75wmnMtxUzCD/3PP48e3uGv/+B/x/rsiF29zSA4x/jNr5LXhyT9Z5F6H5lCPb5OnPgoltUORAzGsXT2gzT1HpaAunGEDj51Z5PPff1VPvqzP8EVIdlSCdfuH3L9079GFo85/8Iz/Mcf+Qgff1Xz2jXJ+MFbXPyu78K1FmlFTwOOhecukaTvwLa+C7P1Bfq9ijI9xwsfepG/9hc+QoLjY5++zY1RzUfe3We9H7AQOm4Bf+9ffpNf/rFV1giQSjDQhp+5FdAqvHhB4LlmUgqkglB4JIULHIuhYBgLfu5536qmhGDTwP9+U/A3LlguxYLGwfUc/uQQPrTgeKrjb+NrpeB33hYIDXkjcDagFtBYQWM9dqFCUOAjXS4QrPQEHzkpWI8ESsBvHRluDCT/wyWQFpIAXq0tv/Qm/KNnA9ZDqK3gdq751TsBaQON9s4n67yYJGyAdr6BE+Fjc3EG/+h5h7YC6+D3BwFbh4KfvCLoCpg5+M2Hglg6/vJJSJUXk/7pHUGz45nkoQCFLxhQkW+RU4EAJZChgAg+8gS8awWUMNxsBL/0muCvPCF4qivQRlBi+cdvCJ7tBPy5U4JCw2Zl+KXbgvu7sDlxPJjAvaHgzkhw7RDeGAruvz6gW3+a00+cY/nkmW9b5O3bLij99E9/9KN1EHPq3AWeOHeZldU+2tSsLJ9kPDqgbkp6rR4LK306/QX6acrh8YgoyUjbfRaWlxiNJ9TWoCcDnBB0k5T94YijYsasqDkejzE4hsMxB8MhzgVkWZ+l1WWW+32a6Q6hSzkaHLK1e8iUiFMb51FRCxXHrKydIJGSg709dG1orCOWklLXXLryDAv9lKqckUYppmxwc/tyohRpBHHgGM922TzcZ5ZrOq0Wd7c2yWyEmsO7W60uzz31Lu5sH5ClAbY26NpvvHCOSAXUxnqGkW2QkSJREaUTnFs9zWh0yP/L3JsFW3bd532/NezpzHcee26ggQZAgCAJzhRJUaZlTRYt2Uws2ZZjqWyrUokSK06cxLJdjsuV+EGOn+wkTkqWIkdlSbEqsiRTjCiSIsEBAjEQQAM9oLtv953vmfe4hjysA0rv0YNP1X25t+49e5+z7z5rff/v+33b21fY2dwiiyBrL5FXhof7exir6Pd7rC1tkLQjGnIar4h1BFKQSE9lagqjsbUgabc4LSpi3SXPLe00wpkmQIXnecT5NwAAIABJREFUNQJN4xRSR1R1gXc1hZlQFA7nDXEscZVHCEdj5+hIYqxHKkgTgXAKJQUSRazCBEtLQt5cKvA1rThCqRmNMQwnoZWrqkqSJCHWKePZnLLKQWmyuMXUzCldifQGi6dC4WoCR8JJ/HzGtKzptTWFbdA6tCQF1pnEWEVpDZVtwEPdWCrZ0IsyOmkHvEKHg6QwJVnUIYm6xHHK8mDAUq/Phd0dtre3WF0K1+TpbEwxn1M3hPNykGVtRuM5587tcDw64ej4gMevX0fpmOF0ytrGDqPRCaejI376r/0NYgcn+8dsbO3wxNUrIdZz/JBnn3yane0NNldXORuPkVrwiY88y2d/4OMY43nysUfoZZrl5T4vvfoGTz52nbv37/DB93+Axx57F7LR3Hxw/532TgSBhxSa+sqwiEIjaWjFNbPpnFba5fj4iN3tTc6GB3SXVmmM4fDoCC9KvK2Z53MOT/aZlSNm+YRIKfCaIi/p9wdsrK5xNJwynx9x5cKj1M7RShJ2z1/hZHqGtw3F9ISmrjgZjjg5OGY6HXJ4eo/h6RF1MydKLBc2N4l0RmMKBv0WS90+j1++SFM5TFNwcHLG/b0DvDH0Wi2qqqHOK0rryZKEpbVVtBRkaUqWpgxHZ2gJs3xEFEVsbW+QJAllUZLEGuEchwcPEcKxsjTgi1/4Mk3ZMDydcHw8pdvO6PcH7OxuczaasrW1QaQ09+4eIr3iyuULLK30iJUiUpbbbz4gTeDsZE7alnSSZe7sH/HmgxusD7rs7J7n4HjEvJiyNOjzyKXLJGmLw+Ep62tLqKjFS6+9golKjCnY2rjKaHRGFiUoErz0HI0OQHuiNNRRR0rTyXpY48jilKuXH2Njvc9yqwUiIUvh7fuHvHX7Jvcf3iSSKXlZ8cgjl7l4/gKb/S5HB4d888VvMhyd8OxT11lf2uY973k3b7x1G2tDU1GZV5yNprRWB7z5+msYJ+i3OnTbHR4eHoD16FaLt+7expqKZl7SXV0l8o6myFGZDq14UoBokELhpURkmrqq2d87DK1pkWE4HjKczRDKI+MuG7u7pHHKxYsXqacNVsXcfOtt7h8dcfHcDmtryyg8n/rox9jZ2iZylkuXrrCyscLde3dRTuGoKEtP4QzbgyXe8+6nEa5mc3sJaxyvvXGLk/EIISVJJGhnAuUtcdIKU24Xs7bWECnH7b1jJpNjui1H2lKsrW2yunqBqi5wJkeny/S3rlKWJVWZk7X6SKWoihmCiCxNMHVO2m4xnReIuAnCTSvFVhLoMK8KrAvx0qV+TG8lwZgSDIznBZnsUxZjrl5ZYe/BPvcO3uR4/JBpPqWaT+kvrSyAvXNOjg6oasOD4zGDpMPx6ZjOoMVwOOXaxUepcktlK6xy5PMKU4ZNunOCSZ6T1w1KZjgTmptaSQvpCow1REIyb8I1IoVGaY3wjtqAjiRRHBFpSUTgAyk8+azA2zCBk8DS2jIf+vj7KGclpig4OThBKsFoPAmeoFkRmqcQxElKq53RlIE7ZJ1lNp0HdkpjmEymTCezEGEB0jSm127T7XZomia082lFp91GCkm33SLLMiIdLzg3hqaqKE2BloL5/AxjLEmchZa2OGZ9bQtTNmxtbXF6tEfjK4TWbG2th1iMCCbzVpQE593SJo2z7O/tU+QF1rrQ1CZ8iHepiFhEZKlHaI3QkixLaA9WqYuCYpajk2TBdwkMR5WEGE4Wg9QOESnipEeWtZjMhuTzgjSJqOuGWLUYT4YI5/CuQfhQoR6lCWmckLZ64BvwDmscSI0HpsWIJM2wTYNrLEparG1wwiOiCLEANaMj1KJRazYv0XGKTjOaeWDtKaWxXqDjlLwo0VqgFtwbJSXOe8qqBgLrIU1SEBLrDFGcBFi9NQsnySJi1jRUVYVznla3QxT9EbDca017eYXXb3wLg+T+w9vce3sPoRVvvfkydempq4ZXX/0Ww9kBG2sp53e3uXj+CYSMAh8Qj9YJdR0YaK3OIDTFubBm8N5ijSWKAnT7nZY8j8fYJgCg0zYyDNRx1tEsxBucp6kNrXYaYm5Vg5cKayFLOyRJim0ajGuCayxNqMsarYKLyOFw3mGdZz6b4ZzBmAbvDXVdB6HNCaTQJEmC955mcYxFVdPr94EFl0OH4Uqko+A2a5oQ+fIuuHBcEJSEC/wNFtFG3Q6MJ2MNSZxQ5PMg9kmJF5Jocb0KEdw/WodohzU1OoqIs9BIWJV14JIoHThxKjiyTGNQSqOlWgDhg+DjrcVah/SOKIoDx0SqP4pwKEUcx8EvtIh+OGMQXuCcI0kSnDX8EeA2QMWdd0RaU9cNTV2FanAl0TJ84fwibhf8hlEc413goXjvUSoAs11jKOuCuqnpr21w/soTbJ67hJaa2jZ0esuoOEEpiTAWJyW6Cc3DrTTGLUpMimIWnjPynJ0d88brr5BkGXGWhs9OG9ruGqnQcYoyjnld45xg+/wl9m7fZnT6kHO7m+R5ziwvKaYjvIiZTebouM3Jwxvcu/stCmspi5o6N2xfvkqWSqSVIcadZDz73Ac5O3yAVjlWVMRJisIxnw4pq8AHXNt5lPHRhPs3X+HqU0/x5isvc/76M4wf7rO6vcvp4QGvvPhVCmvwOExV4tGhCdoLNOCEoJ22KE3N9s4lnvuRv8T5q49TFzU3vvFlWv0e7/nY99LUhtVLlxBOcee1Fzjcu41tcrrdHksra4zPjjFNycrWgKfe9xxH9+7x/k//eXqdAXNT8eYffhljG5wTi5bSIMrFKiPtbvLe//jPcnFzje9+/AKf3l3l+kqXZ7d6XO1q4iTm+uNP8egju7xvPeV6cY9Xv/Y8lVb8b//q/2bv93+HT37v9/OffPJJfvHXf403XnuVp97/g9z99u/xM//930GXFVU7ZePcOpeWu+zduYn1kqqsKfIcKWBychPlFZFsSIQj6fVwkxH/4//5L/i+Xo8H85xb44pvDEf0V1vkoxHSWV7JE1556Zj25hKz/Tvs/pl3odYMq0+vEq9cxe0VrFyPiWZzmL/N+id/ks/81F/hP/2e95ApzZdKya99o+Bycszj57ts9yI+twf/+F9PeLx9g8++/xozG6DW/8NNQT0SmHeEXCu+g4CWC2cSApIIxkLwXzxlWdeBKVR7+LtveH5oEz46kNQOjozg3x0LnkwFH18JzsgT6/nXb3viQtLY8Lc0EAtBrHzAkCiIJLSUQGtB1nZ8ahee6ofj+PpM8PkHkp++7FmPPZGUHGD4B9/S/NQ1wbs7nsJ6Dhv4Z7cUcgqlBRfKZDESjJOB+6kENYKODu3o/+gD4Z6ikbxUW/79fclfvQwbkaf0nt89EdwZC354Q7CSBIfQv9yHe/cW6IXKkHuJNYLaCWrrafChIT0Ys3l2y/OpHU8sJCdO8s9ueD66JvjEKlROoBT8d2/AtvX89HVBbmDqHL98V3K8J4i9wDiBEkH08sphPcgETl8b8mT7Kzz6xAdY2978D1dQ+oVf+sW/t7m6ijE57U5MU42ZTCYU5Qxrgqo4K0u67Taz6Yh5blhfP8fKoE8Uax69eIWmnNLKEo7PRqBbbK6uo2PBcqtNPp1SNYZ5mdPp9ul2OpTWsby6SbfTo91e5pGdHfYf7HFwckJpJR/52Hdx/bEr9Nsxk/GMwfI6Vy9e5vT0kLIuAlg4Skg6GU8//QTF8JiD4ZzLm9sU5ZhpA1fP7TKbT1jp95C+YTg9pazrhdsmZW3QpiobrIDSNsSZZDgZ0umt40qD1Io0rpFeE8ngrIjiYFFWKiZWijRpURqDFpKVTodupplORpRNyWQy4ezsmNF8SmMqBm1JJ0sRNJT1CKkUqcoQSKyXFJWnk3VIkxbWTYi0YCnbZL3Tw2OYFwVR3CNNOygZkcQZUkQ0paUxllgG4LNCopymsiCURKsEsRBoBoMu3gRJ1xiLFJ4kanBNhcJhjKTxNYlWCGtpzBxrBTLqkUQBeOYQzOoK55tgXVZQNRXeWTIdoeKMSEY0lUDKiLIuWB9oOt0287xhXgSwq3U13nvyuqSsGyrb4HA0QKJAaYEUEcgwIfXOUbnQ1hGLiF53lXa7xdIgwCGVIFhRx3PmVY2IWyz3l6jrirKpwTniSHPt8SeJZISOBUcPD2mlKcPJKZPZlHbWo6orptNj+u0u999+yBf/4Hc5PnlA0m4zG59ycLBHXVUomaG1wDQB8t3vJXzkuSc5ejjixq2HzCYnnD+3zkvfeoujScE8n7C2skm3t8Ta0jpv3niNs3wcAJxCoCNFkgWe0+qSDBW/vgnxQhlx6fyTGKswruTi408jqorzFx7j9u2bzMYjnPe0ukvs7l6g1elSFAVNU9A0lvF0zO75ZXa2r/DyK9/G+gqVpPQ6GUtLmxjrePDgDsfHD5CuZNBts7a+zmw25uK5dS6f3+K9zz6JLUtOR2esLG9zc+/bxJFGOcvTV69T5UM67QGlNaE6utMmbbdI2xleavYPzyiMY2trG69ksN57QaudEUWayXRIY2skniReuBEc9DpdRuMZ4/EELWNsXRHFKXfu3uPi5jrPPPUY3W4XpOL8uYtoIcnznLv37zMajzl3boO1zQEqCtGQqqqY5TOGp2PiTOGEoaostatZHgzY7PbpZQmtwSpv3XyL7bVlJkWBFY7IKlZWlnnzzT3msylZO2E2OyZSbY4fPKDxFueg1++ytbnClfPnqGtDUea4pqaqGkbTErCB11Xm/OEfvszq+jK3D/aJ0jYP9+/ifY1UFmgTZxlZ3Ka7iJDUpmR9fYsPvPfdXLpwjSjK2D894bd/67c4mQzR8wq8Z2l9lZWlVb792pvMqylHZ4c8ePAA4R2jyZC3791nVuagPVIJkl6fyXFBf9CjrEt07FFxRlU0YVGearaXV2iaEqEUTT1lNpkG4Kn1NF7RzHLWl9Z4+GAP7btEkcKWnq8+/1Uq29DtZBzcfcijFy+xtbWNjlKuP/k4g16XL//+HzIan7F1cZezk33agwFrvS7f9z3fjbQp+ewULwWuhKKoOJ6cURhD0hJ0Uo2QDUutBuscxkpk3OLhyZwirxEqXkRPIiaFYP/gBERNHEmEismLCfn4iOH0DKEVppjQSEO7k2IbS6oVESHm2l1qg0gxtaKxCXiF9+FeluoI5SVm2kABKEc7TlhfXebCxcfZ2bzI/sFDtGyoK0GdV8hIkSVRiFBFLrSp2YbT4yHWnVCZnOOTKcZVlLXjwu4FJrNpiE07i3eSVrdDq91iMg48sNKVaAVJlHH50hXGoxOybod5Pg2RayFQMkJ5R6vVQitQcRCYtNILUHHDfFYhkaRpjBKKsgqMk/WVDiLSvPcDz5CmMcdHx8zHsxBPbhqMsVRluG6kVjjrUbGgWTRjRUlMv9thPs9hAdaVEvJ5Hv7vlVy4WhzGWNbXVjm3u0WcJYyHU4qixFpLUzZoL9FJQqI0vV4P48F6g3UVZZ4zL3OqekZRlPR7XYo6R2KDw1hEJCLEZOJIEseKweomVqrvHIuOY6IkQipBpDTaK4wpiCTEkQpg6lZEb2mNw5NT9o4OA5OxrDB1TdXMmRUFGEEiIE1TlPekcYu03WM6zoMrxlmUlVjhKKsCqQ1ChLY33ziSd1xNWQdnPXVZB8HAGZSA0dkZrbSFbQoi7ynzGVVjqIs5TRUcuAsaDbEEaxuqqqDVTmnFEVVZobSmahqE1qg4YjKb0srSUPO+aGkzJtTUp2mKkuo77J2qqYl1jDOWwpQYF0ScegFdhgWbKWstINkWvCCOYlq9AWvrazhbMZuNGY4nYObUxRnL6+fZ2tpEi5qlXpdHr72XjfWL6LizWMM4vJIYC0WeY52n3e0vRI7AG/I+cMGUUjRNQ5QkoaCiqmDBRmu3eyADX6ypPZUN5RVlXiAVxHFChMLXBi/DgC6UFjjqOsTRnHe0Oy3KoibLWov4GoFH6IOY0e/3Fo4iFSJzcYRz9jtCjlKhav6dWFoURVgTuBl+IZTEcYptTHDiQGhsUqFJTccJ1oYGIbngHiVZyvT4jCQKbWrGWpw1If6l4yDqvCO0QGB6NBbhBFGSIqOYqixpqoBHyLJWALvzRy1EOgo9SXXTIIREaYXzi2Y2pdFxcEAppWlsgNU661AquMLcgsNlrENIgpAVxVjvF0mWALQObnpCg7iz1HWDt4YkiknjOADQrQ1/Z3E+UZyE3/OB6RXYU4KiLJjOZwhn6SYLhpSK8NZR1BVx1kLjMWVNWZUIa5kXcwSSNNYLFpiiKnLqesrdO7d46cWvM5rOEE4wPT0ir3Ja/QHGVGRpiyxNaJqSUT6j02qHe+FgiftvvM7SyhKTvOR0NMRUFc9++OOcO7eL94bbt1/kZDJCKEUkJbOpJckGxLrhZHSMahI+8xd/gqOD+9y48VUql1M3VWDXeBPuF8TIOOEnfuZnefUbXwVpKIanOCd49nu/lzRqUeU525euhIF6mTMfndDYOsCQHRjn8FGMkoJpOaYRloP9farjfR5734dIen3W1nbYeeRpNi5dR1pFlLRYu3QFkZeI6gyR56S9Fd5863XmozHGGNrZKnmTc/XZj/PBH/wsb7/2bXwx5/bNN0mSCAX0VlZpDwZB+B8s87f/q/+aP3XpHNfXB7SEp/bBpeJcSA0YU7N/+w3+r9/4db74pS9RiISdSzu8cuMGn/u3v84TH/wkf/37P01n0ObDzz3HX/jRv8AvfuFX+MHv+ghf/doXGe3f57/5n/8Jf/ETn+aNu4e8/uqL1HUdrjkvuPj4Yzxx/Tnm44dc/fCniNY26Oye4+/8/b/H922f44V7d7kxMTy73eMnnrjA+64+glg/Rx3HJKdzpnvf5PTbn+fCIzn/5Ic+yg+fT3g2m/LkZsk//bmfol3N2f+Dn+fKUz3+8X/+GT6xYYl8GE6sKnj3Y10+9cQmTwxatKUCLfnuZ1Le/9Qm60lKrCRDBJ3Y8diaYNCCa2uCzbbj0fOC7RXYXBasLcPKkqDXEXzPOXhXS2KACPjlM8HF1PGZdUHjBY3w/P4sDJe+bxMSASWCXzpwTEtJ7gRSW6xQeCGolcfFgBPk0YIHhEDFng9vez6xJpECbpbwb972/MA5z/VWcCtNEfzdNySfXhV8et1SOcncef6Pe4L6hBCX9SIMLxb3IyU9kQwOySUNI+n5b98nWJKhee5O5fhf3lR8ZtvzTN/ReME3Jp6vnsIPbAge6Ydist+deZ6/JbENwUYpdRDEVRhEoIJTKdKB+XR1zfP9lyT9KLCd/sXbnlUJf25XgPRoBT9/H6qx4+eeFdSNp1Ge/2df8MJb4djLxmO8wDiPweGcwjWCBjh7fcL51jc5f/4Rdi6e+w8Xyn35ylXGwyHCSu7fvU0US6o85+h0SO0E7SRCS8nJ4SkqikmThK3tVVJnuHHvLc5OHoBznB5NWF5aZ2d9gBczymLM2XBGu9sjavWYlXOyNEMKw3Q2I9Ye6Q1VMaI0oUVpPJuytPkI0lpiIiKhyFoZQjo6bc1KO2N0BpHWlLbh/Mo5Zvv3uPvgAa3OMm/u7dFrt9DDY8qy4eL6Ck1TcXw6ZpZn9OMU3++SpAk3b75FK+5hjaeuLFoXjMoRG8tt2llK2UzRUUNlGoqiodXps9RrcTacIqQg7Wf0uynjsqDT6ZBEEZEUuJYPYomdUzWO2kriOGE2n9EYgY4TnItomhqd9cP0w0GrUWjhWGolWCkpJp6xOWMsDGmWLaY/hqydEMkeQhjOhicI5UIcQEl05InxzOqQi63Lmnbbo/CkUY9YCAweJRTVYmoWU9PuWObTJPBRIkEURcyLKXUtUW1FJzLUtUf4mKIOVmMlM1QkyOIWAtDCLD7IQ34/VhNqO0e0JHcPTzm3KVleSjCNJK9rSiMQIkxAvAwLKUyDwWKcJiailbRQcUIrjtk4t8Le6T7d1hJnR8f0+n32Tw+YNTWp1kSJZmNtjc2sS2ewxDSf8/pLLzCaTILjoCpYWj9Pv9Vlj5pqZsDVjGc5xtrwXJFhXgewd54b8mJGu9OiyisOD+7z0vEBnSimLkvuPngNvZcG54ZUGKv45V/7AlIojHN898c/zm9/4ff4j/78jzL8hd9Fase1q4/y2puvs5LFrK31eTB8gK2bkM9PIGtr0jil26qJI4cQmnaa0ZicSAebdJTGFHnF4d4Ro9HXGJ2c8ujjTzCdTFhZXiXSnr2DPdK0g3PgG89gpcfJ8Zjjo29SN3NWBuvMmjFHRwesdXNiqdhc6rCx9gjdJKXXblPUFdbC67fucXI6ZF41mELSjaHbyWjHPdK0z7179ynzb3NWjHht74ALO7t0koxW1sE6RzEvWV9bQ2lNr9Pm0pUrTKdTsjQJmxIcUSSRCobHJ/S7XZIowpuGUZ6TxBmz6Zys1WJ5dRWakuXlZb7no8GePy4nzMcF7XaXOzfvUlQVy2t9pvmE9a0+Gxc2eHB/n9dfuUmcCbbP9Ym84tpTlxjOTxnPc/o7Hdxcc3h4QKwky/0u5Z37NGXOfl4wLaYsL/V5fXiD69ceZ3dnm8PRkNnwmDz3tGNIuwOa6RgdSaazORLPysomVy89ygsvnKBjhbURG50u1lZMS8P49IS1tQFf+vo38E7jrlqsNSwt95gMHdMyRyvL6OwUhSBSgtFoSGEaRvMZ1y7DV776PEfDh7T7MSfjMx56R5zGmNM5X/13XwibuUJz4cIOw/GIs/EMITW+KUjaCVKFD+/IVqSRCZytgcVZQSy6uNzSVBWR18SZJo4cSku21wb0+h0enu0hfcpklPORD72f0+Mp2sX87pd+k+ee+QCXLp4LYrxKuHf/iMev7HDlygVanRQVJQihKGYNVT5l4/wGUnucU5iyYvvqFWrgxRc+R9ad02lfo6o8WScG68miiF6nDxQoDEpLVlYS+psrHJ+MqKxn0OnQbq1wfHwHKxsQM7JWB0FJFGXMizNs1ZAlijSKmU3OwM+xtWVaNwhr0D6hFg14xXqyxH5e0NiCSDvO766Rlxn3Du7iRUzlCPXSKgYkWdzj/r0DdnWffDTh2qPXeOXV50mihChVxKlmWpwhjKOyNc7WoflNR4jEQ1nR7nSwNiFKJK+8/iqrm0tsdnc5PjllPBmRz2a0WgnLvQFnpyNcpJFaMrdzjo6PiIRmdanN8fEpZdGQtRNwjrqxpN2Ilo6Yzuc0WGxjWR50qX2DbTztTptyXtDrdOj3PUJpet2U/Rt73GgqGtdQ5XOSLALnMdbhhURoQdoOUZbGGoQOzWWD5R5SS6b5DGMs3X6HqmmoyoJiViClZC2L2d7dZHg2YjqZkRezEFHr9ymrEryhaRqEA6sdbZ1SlAWzeeDn4Dy2rlGRompmmKpie+s8GqjyiriToIFOu4MrK6QKkUlPhsViLZTzKfMiDxtfZwJY04aWF9PUqCQK3BwcQqQI3SZLE1YH/eBMsQGYbL2lsQZTVETOoVyI7UhpcK7GSA9xRCwklaixZh4is1bimgZnKhKtUDINwyLhsbYJTCRbBWHR1jRWkWiJqSSVt9RVHVpsIkWvMwhVOAswNV7ijUN6RaxTTGlwQi+EkposBbDEWiIRmKbBeosSgTvUamdoET7npQjveaoi0ArnLUvtLsa60ElU5mi9EHLi0EbmrAlTWBpElGDmJefXL7K+vMlXnv8NUj1HuhnoFLeIdz7+rvdSjs6IZUqk0hCh9A5jPCqSOFvinSOJYgQmsHSERAqFJbiTrA1V9R5PmedgLd6BjhWNDR2O1pjgbjKWSETkjUFGCqk0zgXxyktPp5cRJy2cD9GHSAucC9NyFcffcQe90zTmPMGZ5YMoJIQLDWUOmibEwKWKA+RVB4dUaCkMtCC1iPpEesE/sWEsLxdNxqGwJGzY3nEqYUzYXElJaSqyVoi2g0RF4TVUkfxONFEicN4FcbcoAh+pqkMzrVRkWYt5OQtx3sYEoUwFUD94qrpeNNv90blHUVjrShWEHgdY7wnmumiBZwgQJudcaIlDEulo8V0Zmpkk1JX9DrhcSBUo594GwUHK7zgdHaH90Np3XFpyAYhXgWeFXLxnmnaWEuCqCilkEOQag2gabDFjPnN4HQXBLIrpRDHS1lgDXgkkIaI7n80pC0urO2A6m/Haay9hTEkr6/Cnf3CZbz//Ra5/+GOs6QtUxhCrmCyLMFXN+tYuWb/Pvb23KZwnanW49viTLK9tcvRgj1svfY3x6R6mceyeu8rbN94i6kWMzx6idYeWTqnrnM//zq8yPLxHlHUpixzlJPmsRmmHdeF10Yng87/6KyyvLXN4b5/W0hKzouKF3/hVrr37gyTZKvdffZnLT16n2044uv82ta1w3hHHmlhoqroJe4VY45zBRnDrzm1+7Z//I55878dYPn+NrZ3LgeNVzamPC1YunCcdrNGYjJXzT5L12jx4eB/VCbHfs7MDGBta7TW+8tu/Qba0zCuf/02EEDQmuO9knNBKOhwNJ/z4X/sszzxyIcRJpQI8sRTYuqC8e4zaWeXo/kO+9Ntf4OHpkEZ6Hp7cYv//vc28NJy7sslf/uHvQvYSfuu3fouV3U2unbvIP/jZ/4zNRrO+ts2NV7/JBwZrvHpnj/65bbROMXjSNGI8GfI3/vKP0dUrfGWpy1/6qz/O9rVH+eqdW7x/exdrDfdvvMiPfvoz2KaiKCtmwxOKO9/ixz74Xn77d77Kl298k/l4xIc//KPEWvOLv/15WtsX+P3f/H1a7HPvq/8r/X6P2f4b+NkZOau008Ah6kuPK+aM8pJOb4COIh7rhJYwQQ/vLQLBOoLn2o7YWZJBDN7jhVqg///4I5S2CBEK7GMRxOIfWwWJwntBIjwx8Of6Hjl453ckGvjJbYXZCaJ5JYIobkRw3NRA7VlcgwLvIBWC87FcCBoei+AzlyRPpCAWTd3P5/DBdc+PrgpqL9ECbtSQINjahNqAdT40VC6+PEHsj4GJ8fzU47CTOAySwsM/vQOfWIHFvB9pAAAgAElEQVSPrApqJ9lr4Cunkg904V2D0Ab3YglfvK3QNkTphA4uJCXA4ohkiCWrRcR2pS34nh3BeuIpvePXDwSiknz2EqTS44XgV048+ween3tW4S2gPc+PBV+87VnSjqIJraNC+GAycJJQROlppKdxJVpIGqL/35rPH3/8iQtKTT3Hl3NGo0OG04p2v4NDEiVpEA4iTRIn1HUVpoK6pmxyjMlx3vPw8ITVtRUGyzvoxBLHlj989QZNY5nmNb3uEk9cvYpvOuRlgXSaUwlnpyMirZiM59iy4OjwIVGSYas5rThiOh0xn87Ip3OqwvBKPuLuwR61tSEbHimUdRRe0ltaY225RzEuaUlFK1Xcv3+Dh0bQHSyj44yV1QG+mCHilHo6YpwXnIwLdCywtSOPNJ10ie31XSYnb+Nci7qBMp9RFjWlHWFtQawyrPMkSuOMYTafcuvefS5vb2DjhDQSnJ2ecXx2wIODU+Jei821FaZnR1SVQ2pHJ1bUzoIvMT6jKKYoHWFNgdIps6lhXNY4N+Tc1jm6ccKJOsJay2R+RqJzfHmKK0GJBC88ZQMbHcAYpt4gFXjjaBrIjWRrvUtjczQpMzNGC4tDkSgL1tMYj0gNprbktkQ1mpaWpNKiVcnM6bDAcBFCetJIA471lYiiaKirMkA8vUYhaHUkH3vsab7+6hvMpCKJYGMpZVpLypMKg6EbZ2yvL6F0DESMZ3Map4lVSrvVQUUytP+VBa205trFTYZDy/LqKjoSbK7tsLt9nnY7ReLI0ozGe0Sk+OaXniefT9i9eIFOkmGamqPhKfce3qGpQGqorKEVtwOQUgoKU4UqaQtOWQadAYnKkM0p46MTLm/vcDwaYrxEWUmUpgitGAyWQ1NLPkEkiqXWEsYJPvjsBznYP2V3e5vXvv0a9oKj3e7QWV7h6698C2EcrTjCOk/tLKo2eJtijcOLCCNCxlmpNXyakk/O2Ll0geJsiIw0a+urZFmL3Z0typUpcdxi//Auy50gyuwVFbmZcXx4QKRjkkiysbJMljZ86KkPsLl1iVSnHD14gNaeveMzqrLgbDTm7QcPKcsCKWBee1559XXWlvo88653sb52iUG/w8baBVKd8urrrxBlKf12EmIGSof9i3CcjEYUTcPa6irLa5vM8zndfh9F2NBmUUJZVix1e0zHo+B0y7p0Ol2a5pRpPmf3wnl6gxWwElPn5FXOpUtXOXx4l4O9A3a2tlhZWcVKgcHQHgx48eWv0x206HcyjqSglQmUrnnrpXvoKOXDn3wveTOhKR3DhzNsI7i4vovUnq3NXV598y1anS4HJ6d4qdh7cMzySos7D+8wyyse7B0xrqZkUYfT4YwPvf893Llxj1lzxtJyyuHxkOz2Ha5cuMy5jXMMlno4K3DG4pTn9t69UM8edfELa/rNW3eIZYWxFZfPP8at+7cRXnD+0i510bB3/z41kla3z607NxmOhvQHPS5f3WF8OMOlCc18zuNPP4nxmhdfTkg7fYSAdz15neFozBdeeIG8LolQRFh8DdIn5LOaleU2WeaZlZ7xtCBeTlFpSlNVNE3FyfEZUZyx3u+xs72LtQ3L7RntzhYRJ8ymM97/3PsYjidU0YiDk0PyWYXHEacRm2t9Pv7RZ9FOYuoA8U1ijY4bPvHpj/LGrbfZ27tDt6+oChMYWXv3uX/0Nu254sLFksHqFmlvwFs336KWgiROSUSGEm3iWHA8bZjOThmXObKJcLFj0F/n6OSEqnF0khTpQ5ZeOEkvHdDomqzdJi893k1oqpIsjdFWM3dTGqHQtaExlkG/y+rOBXSkKMYTLl48hzENWM94NsF7g7ExabZEHPW5f3RMK9Kcno5IIsVk5njq+nu59WCP4XyONBYpokUcOcLWJUXtkVHK6UjgmoTuoEc1y7l06RLlSs7de/c4PTwl6/bRKkJoQ1HMsSbEYqSzpDJFxwmtVkp/5SoyqtBeI1Vwx2mtUNbQb/WJkoTJ7Da2stimoZhV2NqSJDHOgbGexnrSLKXb7/Dyqzc4eHjG6anCNODqBqUjjHUoqVEqsC68DYwYZywSyLIUD1RlaJRFhdrwrJPRGWTUg4pyXnB8eBICSc6SJhGnxyc45ynrIsRMUkWZl+DA2vB8s/mUwaDL+toKhw8eMp5NAVBpQpK0GI/GCO+pG0s/7oHqcTYa040gTfSikDkBK5HOobOMZOFwkd4hXLCfN86itKO2hkwItIwD48TXNM5SzAp0pCmNCREzFwQl35QkaYTzIEWMl4vyCKUZDSckWYJWASDurEfIEPVxpkGnCqU8SkR4F/IJjQs/R3pqW6ClozI1xjqqsqKpGpyrSVEIJELE2LrG4cmbEovF2AapXBAnJCgVWlSTKEUJTbfVDjXrQiC9Qi/q3dWCaSOlCJBqwElQ1iGtoxFBQDGNQQqBcB7b1EFokWHT4y0E8JJGShdiLLrDs+/5fo4ObnL3/g2K0vL2nTtkaZetnR2irI9QCi8Vpp4jnMIK0BE4E84jylJME9aqSiuMa6jrkkhrmibU1ntj8daA99SNQwkLpiaKgmM8jmJUpGi1Mw73K7rpAO8czpnQVCYS4ihbYKFD9M84MFUJ+ACu9wtRy4cBnnENWi8a3xYw6FA6FoZ/UaQRwmIXAhNCoJRaCEfh4Z1fROE9zju8FyA8ztsAZ5chXiVCZzXWO9I4oZnlKA/GeZDBHSQWjWd6wQQNDUUOTIMUGussOo1J0iRE4aKYSTUjWrjNjPPBaUbYeFprvuMKs86ilEJIGeKvziGQoV57UcVdNxWtqA2EiCQisJWEkCHgJgTWOZwP61OlFxspJfCVxSof0F1ShQ1yFOFEeF29UPzxZrjGBHYYOsKb4DIQApIkIl64JkxZEqVhbSvi8BqbqiZtt0iyDJHECK9pyvAeex2HenElKKs5vZUN0pVV6npKp92jd+06adZCExhU1sPbN16i111h/+iQna1dvBUkrTY4QdztUU4PKec1abfH6sY2cZyx++gTbJy/yB/8+1+k3ruFm4/xytFOFFUJz7zvE9x95evc33/A8dFD8sLgclAyoS4txjVEcWj0i3SEySdcvv4kL375KwiRcnp0ysVnPoT1hluvfYuP/tCPcfMrX+TBvdfYu3+X6XyGdSE2mCodROA4QeAJb5tCWIfQkqPDQ17++lf4xLlHqWtDq9tBZmkQ65Rm+fx5HqmeY//ODV5+5UWEiGiMIY5ivHfUPubW7deZxQmPP/E0gySl6LbJqwLlEyaHxxTJmKVOnw996IM0eYkqHWKlC0i8gPm05Mbbx9T37vPCq99m87l38T/9yA/z7Rdf4cTM+ZVf/xUeHB0yGAz42b/1t+hsbfOtr32dWKd84GPvJnrqA/yXf/qTiP0zfvxv/k1arZTHr+7ywisvEC8tcW7nCY5vvY2zhl/4V7/MI+cv89mf+hn+4U//JH/vf/95vuvcNR7Ox9Rlwe+9cZM/+ynHwWjEyfiUr795i6K7RHd1l0Jakn6fMs/ptGKEhEff/xzDV19m971X+StP/32+8PnP8eCt59leu8w//6V/w4/80J/i3Rev4BzgJf/y336OVl/w2U9+N4NYh88LKagaQ96ULGcdGhxfG51yNYrYkoNwPxaADOBqT4gvShf4Q9Ei2v7Ow7rAutbvkPcX4Gvr4R1ZKhKhfCFyHoQj80GwfcfJI3wQdkOtWXhuv7hvvHM/fCpjQVZafE9IPtX2+LbE4YlFiL1+pA0fesQvQrDwDnzfL87FYrFCBrck0AO8l8TAzHv+9lXJZuwR3hELSU/DZ3Yd5xNBJIL7KPbwZy55KiMWTa4GgabwAlzgUPmFkCUFXOw6ri15hJfcrgSFlXzmPCwnIdVzo/C8ceD4608q+jrEe48a+Nw9y7lUUVhBFAVdO4huHu8E0nuaxOMTj5INKnaI+E9WAvoTF5Tm84LhfMxoMmEyL6ltg44kS/1l0jgDIWi1U2Jl2dt7gFIp5XTGbDJmaXAeZI0TimuPXKXMD2hLR6wFZSXIkpRYCo4O7yOVwCIxDXivOJlMWV1dpfGOK+cvcnqyz/Unr/Dl57/G8XBEFmd0l5ZJz0aUlaPTW6bXXyaSBePZjFjHHE9HXN1aIy1KtFDEkeRwOqPT63A8PEb6Ftpa1jotlPScTQq6cZvxfIilDs0OUpK0LNYIuukSEsvhyRlRK6PKS4xQRJ2IWAsm8zNWuiusRJJiPGYqLGfDM/aPznC24JFzFzFScjIe4eMMqcAWBb4csT7wlHWG1ZKyqtBpzbw8YzRLwQrW1laZTgs6dUaSbWDLQ5oGpvmMxFdgcpTs0e2s020lDE9zGmOoSoeXDmckwyiiygviONQxOtliNs9ZXzYoOWc8HiOlJIoClJXIUznNbCbxkUIJGxYTPtivjahpJQuqvQQhG2IZbiNChvDq2dlJmODGBtMIklgTtxZtG67GGkHWihjO5zyy22E69/T7a8iyYnN9hUd2tynmDU4pVpY8+ydDytoyyYeYxpO227S7CYPlZTa31kG0ePPOXYrK0W4vs7K0hHcND/fucnZ2RGewwtJgha2VdZ786Cco5jmTyYibt27SiTrc27/PZDRG4CnyerHA0KStDvO8xuLIkojGNZiqpNXt0sr6FM1JiPiZiiiSGCfI65LEa7I0xRjLuLFUtkDpmF/73PMs9daIY0s7XaF2jvv7+9SN4ebtPbROGSxFCG+YTuY4o2icQ7Ys1nnKoiZKYoyJKEpHNC8oXE1tKsaTCRur69x889s8du1JbrzxdaSypEmXeT6lk8RURUUaCVwS0ZaS8bRma+MCnUGH/b09RsMZaysN33jpVZSzzKqck+GEnZ11Bt0Bvekc4zzeNBTlHC0FqxubFIUniWPe/cQzHJ4V9Ho9Ll8+xxt3H/Cx9zxDEidMJyOqqmQynmGbiqXeOZ57z/tovGc6m+N82HhqnbG5ts7Z6IRiOqPTauFNg7WWoiyQUiwiF57pZEgUtXFlgXMG7xqqogDTcPXSBU5OT2n3BlQIvM9515OPoLWjznOWs5hpr8PZ8IxES+JYMjo4o54apBUI5fFIppMTkjTl9bducnC2h6v9ghuWEWeK2hQcDU9oZZ0wFa0ltTNsrK1SFTk7G6scjedkumZ3o0+vpSmrnNXBBpeunMNbyeuvv0XZlDjjSdptlDKsriwzmcyChbbbQ6uE49GQZ599lsP9fe7euU+73yN3NW/dusG8nBMpxd6DB1y9dJHrj14lqRNEr8/zX/sSRIrbb93BO8Py2jJHh6e8/tZtrIdYKvw78RcZMRqOWFvpY4o56yvncT7n7VunRHHG2fF+EH4UOBUYaluDZZ5+7DGMDxPicysbkMQ08wkvv/ItRrOc0ubgPJtrA+7cCnyxSAiefeYJer1lJsMJnTTBA/8fdW8Wa2t63nn93uGb1rz2fOa5XOUql122k9iOk9hxxzamSSe0OkgdRSIkEmohEKgRdy1BBFIjIaAvUN80ETRNC4jo0EDHTmzHcdsZHNvlqnK5hlNVZx722dOav+mduHjXOWU7CQHki/Dd7HXWWd88vc//+Q9l03Jy9Ij9/TvceucuQrVsbGzx6M4RTdNw4+YD0mKLaxevMFuVnD7doz+SvPD+93L/4JDpZMG5M2fZ3T3FnbvvcFQeorIWUWukNLiqxYWWXpGxWK1wzpKolOAkrRMoYbASOt0x5fyQcX+HfDRmazjiwf4dypMFo81TTA8isLg/OaY5OKaqS05tbTGbbKCk4tTOOcbjktViyWzZEIQlz/vkyQHbO7u8fese3Vyws7PD3QdTJgf7tN6S5rGbJ/MtBBIbFCr11BUoG0jyDkFmzOb36Xd7rKZTdKLx3jAaDJguDwFIVIq3hv6oS1NVNK1hVVWsVje5euESOQLbVCiVx2GbVDHC1wRKM8dZiwwisgasR0pFmidMjhdkaULeyZjPZwQRaFz0a6tWAiE0SkvaxuBc9KBRUuGsZ9m05EUWE1CkIsk1OpW0jSdJNVXpKasSEkE3ydcSaoGW0ZdIa8VysaKuKvw69lvrlLaqKToFIUCqs+j1kxUIFPPZnKAEIlEMekM6eZ/ZbMlysaDf6zPe2qU3GlGoBJ1A8BZjW0DSyBKPwxEw1mCNjRoKHML7SEW3Ld4aklwDGh8cXkTJkxKCVCcIrSh0LGoJnsI7XBuNhj0x5lwLQfoEmFHgPBbIBl3MmhXSthUyFaSFjEZ7eJSQNPhokh0ESkdavpYpbdlEMCLUYKpoqiozAgIRPE2zQuCwFpJOhyxNEC4QWlDeowhoGQfmQYgnEiEXHhf4gcYYMp2gVYx6D+v/I0T5T2g9BP+kVNBKgbdRUiVjUwodDbN9UGSJpNUJCEmSK2TdsnXqMv3emJODE+bNnE6vS3RuiWay89WMxck9MKA7Y7L8dGQq6YSmqjFNS5oV2KaO/jnOIxKNMRVFlq7ZTcQGu4csK8jzDITGCbDGkWc5tm4j2yeRa6BDIZQA6RHKE4IE56O8y7kncqtMSnyw6zMd1pHRHiUTxJq15r1DyscgCmtfH7GG/yxSKXSSRIYTIl6HIsrfmyZKPr0La5aTxTpPfzB4kqImQjxWQQjapqE7HKFUglo3GpFrryQp8AJQCufie7BuTEx0lhJk3HfnA03T0Osm4FyUxa0LMAI4G021pVxn3nqPszZKztbeVRCwbRvBKiUfB0w9+b1f+/YpJZ8UjD7EyPLgfGRXPU6Dcw4Zoi+MlmlkJhi3NoaJCU+IyLiqyhVKJ2gVow+9i6mEwjuEEpGRJiVSR3A40QXeBeyakYjQqKCx3q99mdax4N4RnKSpakbbCe285PjogFRnnDr1HP2NMaa23L7+MtPFEa00fPl3f5tL155jcnLMeLRFlubgW4pUMdrb5rvfvc5wsIUkJev2sGsZ11Pv/yTlwuNoGI1GNIsFadJh9uA+IlmBVDQVWBvTciUgg0eqhJDEcIEQDFp3+N1//tuYumJns2B+NOd9H/woe1eusf/yt7n93T/izp1XeHjvLk0TSDNNMJ7d7V1su2JWRhN+T4tExXQ9LxlvjOhIeOFnP8Pu2cvUZU0ILRZPtzdEK0mnGKAvv4/DgwlPf2CDg4d3mB0cYlqPcQ6dwfmL5/mNv/f3uNrf4Ms247df/mNu3b2FSDJcW2OlYzzsIkSgNxqidYIXHhniNf9wMeOmXqDnFZeeeZpnr14j8RU/8wv/Ct/9xncYdkccZVNOJlOkEBwen5AW0e/sxa99m3/jc7/A//yPfotf/7d/nbrI8MHz8MYtXvq93yNRnn5niN/aQynPB37iE+ylmmunu6inP8g/+u1/yn/47/4GX7j+Orlt+fd/9e+wrEr+p9/5It98/dtcefZ9/PKnP8udd+4yOH2eq5ffz6snU4q8z6Ksea6b87n/8h9yZrfD0x/6cU4eXOfSB17g3/mVX+c//s/+Cz7z0x/GX7hKCB4RAomvSVoPzuG8ie9iIXm4WHJsWzY6PfCBT23uEohy1Ahcr02TntCU4jPt3elxFiKka6VpbIREICc+7h/fYxHQkSK+B9ZLju8DIZ4s3vMYQPeEdc5ilGCL9X3Oev7w5FtPxKC0EN+3TfF9JPjBdElYX/NCkfj4ORciJr7F1xMbyhOUepI4JxDs6MCuVuuXQfSRe67zg/ytd7fy8dEJ63VH4CoAhMjWfb6A58+tj956/69m8J++T8S9DlGivJ0E/pPnZPRhCuCDwLr41xAB++AFrYFDKfn7f7iiq3M6ow4/yulHDijNS8dgsM3h5ICk040pMnXJql7S6/Wx3oIU5HlKkiqO58esylmMRh2d5uLpPe7cvc/+/i0yZTAouvkAREBrjRJRYz1bLUnzHoPBgKoxVI2hP97GKLh26QLTo32KfgelMra2T1MknuVsQkpA9fpcuXwVmpK3Zm8SbItTCVmvS5HmpKMNNrp9pm2L0ZqT+YKqTUl0pO8hBBujPiznKBHQnZS9rQGhShhuOkQ45P5+gpOG733ve9SNpZ9Z0AbrPN20xzjXLMOSTC6oDByuprRe4r0Eb7h7MOXpaymJUlw6c57vXH+V3qBHoSVnhi3LZUUlupRtS9UYermiSDuYTk69bDg+jnHIpgWrl5zePE1HD1iVJcu2ZTzapa011ipsSOkP9zBuhrTRBNV5kGqAFpa9UUnVpJShQ1k5njsXuHN8jJYJNkjyJKFpA14mOK9xgFABJSRBOpzQsQMlFFOTYI0kKEdrA56GIo30w7qJQFaSFqxqS21aApaiO8D6Ea/ePGQ8HrBaGjw1jR2hM88wSShyj0TTOM94rDlzahOtc/7kNUXTSvqdApl1GBYFOivIMkm3k9Pv9GlN4Pe/9nXOnk1YJSlHRw94/bWXqesV73t+QL834Pnn3kev02H/4T7WBzb3TnN29zTf/M63uHDuGpPpMaY5ouj00WrtD+JahsMxSiqkUdRNzQiD7Ga4lePho/toEc3LkYFUJmAdJ4cH7J4+w/b2LvPphMVsgQiOLAhMpjk+WpAXKYfHj0hUBsGvmTiK2awkzXJoPc62GBuwRiCcpPYGLaM05/BwHyEiwKIDPNi/C8pxcnKTEBpSnZLqBtlL6eSaNOnT7nvmyzmNsSjgPVfPcevBIaVpufvgAZNlyc13rjPo9bAqQREIwtHYmssXzuODYFUvUBL2xruMBwMePHhA2wZUY0gT2D21Q1nOOb/Z0lrP0cEjrG1JkgyhMjrdjCBgvlqis5S8yKJfgm0xwbEsV2RpgeoJVuWccrmiqVvKsqGsaza2dukUOau6xXpDmiq0SNnfP+DV629x+dwp8jzl0aNH9KqK3TPbBOHZ2dyhqlbcO5hy/GDO5GjJctnS7Sg2xz2aVUu7auh1FDLVzKaWVeXodWBve0h/c8Arr72MV9D6iraNnc3twZhcd1hlFXmVEBI4vbuJ8IHZYsKlC5fQomX/cMlr199iuHHAqL9JuG3ZGe7S7/YYFSMWi5KApCmXbO3usH//Pt3+MGr0S0O/n9MddBm32/zxH/0xKk9JEoEPUS6yLFucFxzNZ9y5fYtqYZjdv4dUijfeeAPjUna3dji/c4o37Os01QKk4szOLg+OHrGoVphFCzIl7+Z4YXj71i3GwxwvNFaCac36BahIspS9zQ3O7u1y7uxZ8rxDW1syrbj3aB+oSXPBnXtvofKMF579MG4RQwk2NwYMhgPec+UitmlQSqOCQBcZ79y6wXde/AMsKZN5Q5A1m2gSDblOWTYrXnjqvZw6dZrubEGRR5DctgK8p8gT7j/cJ+91qJqKVChKr0m8BOvReYeDg7t4O6FXJFhP7P6I6GPiBHS6PWzdkAnJJz7yYba2BixKT+lLjtsJjoZunqCKgsOTWUxds1FylWdjdra2mM9K8l5K3tlkWj5ksVyi9AkXL1zm7XfuIZWgalc8Otwn0RqUxtsWYz0KiXAeYyHTPbJhxuHxCUmimc4XpP0OqD73Hx5w5+5dOt0Ol05fZVU2yJAy6HU5ffo0h0fHHByfoBIFeEzr8dIyXy25P1thpEYlAmc8KIsU4ExJkgg6RY+mXheqNiA1tMbTtpaik1HWDfPFikVV0+1qrIM0z/FOUJVNjAQWsRsfXCD42Nps64ai04msoqohKwp6vZTeoMt8NsMZS7MqacoKfEBpgU4j2wmiPCzKZhxpnqBVRtPUFN0uddVgZSCEljQpaNsaGRTG1CQ65dzZSwQrWK5ahuMey+WSxXwKOiA6faw16AB1u2JRthT5irPvcdhgEevUTtZFtffRXDhLJKaNCakxOc3gvI0DSx/T1JwTBL+W93iDsy20hjzREYQIj1PaNMIHjG0JKFzjcdIjAghnYqpuloBIY0NHCISMLIyY2OaRIWG1quh0epi6xgWHrefUbcuwN4iFu5QY165ZMzHu3rsWEQKmNrStRUiHqaOhcmNiMlWiIlASzVtj7H2UXoFOdAREgqd1nkynEfxQGofAreUASsbjIRBRNiYBAj5YpNa0psUDs9kxiyomCQ/GG3QHWziXsNU5Q3ASU5d4E8G7k/17lAffopwu2XvmU1iziQ9tZBE5Q7fbJU0V3scBvyIeO+95wnyJXkHx2HjnI2OIx8fVkWY9lpNZ3E+VxOva2zXzRgPqSWCL99FbSGm5Bj4iKyfEFeIfR2ZLGQ1k1+WJFILWPvbKWv8NEcDxa08j5xxBsDZFj/MaY0iSFC99DF5ZR02LtWl6WCeYISRSqbhfIgI4rjWYtsYRSJIkgklEtoH18VxbH9ldUkV2QMDRmAiNJUpjnUMi12yF6GsZ1pI+QgRIWxMbQ0mWolQSgaH1/jw2AxZrXy4fncVRKtZg3jmkXv82eIJby/5UvG8iO8AThMY7kFIjhASxPq/h8b0Sz/WqXNLv91Eqo2larGmRicJbhxYSnEMkKawZVRGQE5iqxg9GuBDZFT54nDGoRCPWceRVU+IBlaV0hmOe+9BHKOcz2qpkfuhJ0oKD+7dpbY1dai6/53nu3LjOyy/+CZ/93C+Q9Xrx3HnHaDgk73Zo2hIrHASJN5GJ+J73/xjlZMm3/vj/JMlzTJLS7w85fHSbNqywDoS3DIYjbDVBS0ErYyFurY/yNOfwQaO1IM8yjG/wwrJanTDY3uWVR7d55cWv4JQkeIXzkKSKRGdcuvoM92++wcoEdJ5ilnOMayhkhsVQzueMzuxy6Znnoz+d92A8wjjyJKGqaoyHCx/8MBtnznP/tVfoDbd5+egrBNkgVEAoRbt07BrFaHPMX//1X6H71dN84St/wI/99Cf45u9+nusHDylrzyvfeIUzp8+T6ASCIAgf/ZOOZvzv//0/5m/+2q9x8trrLDaHvPnSa3zkMz/L6Z94gfOv/Bi3vnCAtn5tDh+DgapmxWZ/xB/+zpf5+eeeYefSHqac4Vzg6OCEm7duk+SC+f49ilxTnNrjU5/9DH/wv36B3//ql1iGlvnSMxSBX7OMYxEAACAASURBVPvwRxDBI12g9I4PPvMcT73vGZ49tcNmv0f3qat88Nln+EKSc/edl7h++wH/3Re/hrE1tm25t19x+4tf5mOf/Gl+5W//KtdffYtT57f5yPs/vA5ikLTOceHS09y4e53v3rjJeHeD05un6SvNVr/HYM1k1CImHQsUeZI8ATlYP4ZCeBxPsGYuBQFrjtIaL1o/q6JcTSIe3/ZxfuBdy3yezPvuFOEYFSIADQoZnhCdnvxGrkGu7wdv5Hqb4tLlk++Txxslvm9Dnmzxmg0V2zlxaU+wnTWnSrw717trE0+OjV9vSWSAgkOiwrv76YV87Oj2ZG/l4wWvGwhCrI+dAK0Ezguk8E8YqQXxeHZ4zMoEVGSJvbuBUTn0Xi34r04N6CwL+sO/4oDSajHB6NiVy/MYaRvS2C2s6pJur8/GeEDiSrQIJELiPPT6mwTnSHTBuXPnOLh3nbcPZ4wGAxovuHjuTASTkNi2oSi67OxuoxBM50vEasWqLMkySVpkbAx69McjtAhxYFE55osljXUkacC2DW3TUBuLlSqmvFUVxwePkEoxzBRv3rqDygpWVYNQsXO6WJSMhgYtM4ok57icsrF3hs0NWB22FLsVB4/2CcKxMSqwpgIE3azHajnD1pJGWCbWIrxktmqZ1xLrFcNugRA2+jC1hof7+5zeHPPOzRu0JrC1uUMuW45nt0DvUruSYFYkUmKtpF9skyQZR+0JKu+yO+5zuL/P1s4mmc7I8wKJoHWafn/EbLricLWk0+uB6GJCRZFrXKjwvqUsZ2z3NYOsZFZDTy84AeZLWFUgQoIWOUnSo2rnKJ/jWgve4qVEyoTgaox3ZCGJHWeb451BoNf3aaCnLCNleViCIUciSXSOEIK29TSNZzAaUqRDfFvRtlOUlLx27xF5XjCQ3fhS6xQU3T6722PG/Q69fodnTI/Zql3LCMCZFmEDNkl5eNzy2muvcP3669y7f5ei10N4wc2bb7GsZmxt7NLtDvHWMC+X6ERRVjW9ImE0HtEpCl543wv0Oh2+/dK32N4RnDl7hapaYZqa+wcerSXdzghteszNI4RULMslQoDFo0QSb34bsMKhRMC2MT2jKHLmBFKtaWvD/vFDut2cugqsqirG7aI5ObZ0OtGIzRj3JAHFA+UiGp0XRfQEKOuaVFqWpacoNNZUPDjcx1rDeJzhmgk7m3tM5gu6nQ5p1ufmvZvU5RHWxrSmze1tslTSGfRh/4C9rQ2cyHn06ICd3S1OJnMGo2i0Wa5q+nmf8XCLUzuWvHOOXEbD+F5vwGI6ZbaYcTw95qmnnuLecoEzlivn90jShG6vQzAJ3d4ImehoOBvgwcOHbG1uUnR6JJnGIakqw3w2ZXtzm3G/R6IDk5NjmqpCpynd1lBXNYgl6JS2aVG5YHJyxK2330JKxdVL1yh6KdeuXqQoulx5z2Veu/4G0+MZr772OvPphMl0SrmocMYS8oy9vRGjjV3mr04J1tDr98jGCeg+y2XJxsYO7fEU4SDTKjIeVIZOcna3LlAulgxHXaaLOZ6ao+MDVssW5y0z0/D8pQvMTx4ilaC2FfvTh/THA4oiJe9sc/vePrXxiGAoVyX5fI4AqnLGqqmxJmW+hDR/k7asaf0Sv1KIRKCTEOm9KsfTsCiXHExOSOhy6cpp9g9GfPfNd1hMLD/zkQ+wXEwxzrAxGtHv9blxbx9rfdSdOxEBYZ0x3uhx++gmrbc4H1BEY3RnHD4Icpmzs7mD94qbN+/w7Hvfy9bmLraqGXYH7GydQuou0/mcIATVEl558Q36vZyAYbDuKuJDLLicAzTlfI5XOQ+OFtQh4BpDOzlinEratmaxmlGkBcEGgpWsFkuOjk44PDngwf59Or0hg9EOxydHlKbF2RgOUDY1P/ahD/DmnRvUZkqgJk0gDQlSaKRLCaal6A/JsyHT4yM6iSZRKW1pGfQ3SFVBNxmibIXO+7RK0e9sMej3uHvzDZLM0x8mhOC5/fAOi3bOIO9FDx1pKVfT6CMRPFt728wmsWt/evc0ebHD9Xe+i9QSKTStqUFkFGmfqm7WhWmCqZbMD45RssOrr7+O1jF6e14b0lzT63XJU0WuEwbdPtOTOT6Fsl4Q6yDJ/QcPyYroM5emGi8DRS9j6ipEotne3kWoY47dCY6WIGLSlMoUKtHIRLMqa1AxpUioWKgaQ4x013EQZI0lTdW6mIu0cKk0zlvK6YoQBOONPkmaYq2h08mpQsDa6G2T5QnBWWwb74terxdlU1KRZhopFScnE0Lw1FW9Ltijsa93liDBixh7nqQpR0cHWCOwwdK2htFgSOOWKCVYlguqVYmWGm9rlnWNEZ66ruIAT0hiDJmLRbqPbCbnHBiH1wEnWlqbQGXotxZnLa03a6+FOD4VEqQMsDYtFiIQFFFiJxVKBtK8QEiL9gpPTG9zeJIkQUiHDSB9wBJABqyxVFUTPXakoKxX9Ho9TF3hBZRlSUAhVGR4CO8JpiWYaFqvUoVpK1SAxsVirlquaKVkUZUMN7bJ8w6y6GKJBa0SgtbbKG+R8Xw7H8EviUCoyErWMpoxCwnCxuhm6yxShMgQ8T56SllHVhS0bYOQgTdf/xbH8wlboz3yPEe6hG6/R1WWbG9v0bTxvNjgGW/u0nFXOS5fi+EV1mJDbB46QOkEISQ6ifJKLfW7vkIh4PFIpSMwsQaRhIhG4ULGYkCLlKatSbIkSgG9j+Ca1EhklC6v5WUCgXUWIRJCiPIvY6OpPFKihIhCEiFBBKyNfpN67fuTJMmTYi76IYU1PyeWPI+/S9asGKRcM3HCE/mITtM4jw9rwNCRJlGy6ryJbCUfPSshgl5KZ0+S3STxnk2kol0ZhF4npq2BLdO2SK2wDlrvSNegVTQ9j8BarKne9XgSMsr2HsskEQLr3BoYiowlEWLh5ddAkRCCVGkEHkRscnrvn3hyuxCvuUA07pdSxZCXEOVXjw+bkCLeh95jTAsErIuAalyAx1hDIIJgqV6DUsESREB3c5bTCQMvEH59bpoWfEuQWZSmlDW33/4unhQfFP1hn043xxjDYjrl8M4dhF4RpKZqLc3siNa9wqO79/nxj/4MQibkSQdbLQhBonVCXnQo6xbfNvE6amryXoeA5PL7nuP1F7/EtK2RMsPjufb0C7zzzoukcoWTktF4k6mtsabChyih0UqTqPxJEI6papwLSBVwWrJ/+x18W1EulniZ0liHtBZrY7BOkhYMtnYo8oy9tqUuFxwfPqToDTi8dYcGj6waLr/wM5y5/AyTO7fxtqWtNUhJb2OEk4JLVy4w7BbIfsb/8Tv/DGzFarEg7XWA6EH7s//6L7MK0FZLXGgZjcZ86lM/x6c/9UlOtw13WkPtDHeu36Be1aRphlBgmxaRJNx96bt0e3t88fOfZ6Akdw8PeP755zlupyxaxUc//nHe+d53uX/zHRpr2drYYDI/hsSS9noMrOe1u7d5a3ZMcv8B7XDBvCxJshS9MaCdr3hw/w5PXbtKJ1SYvuK//c3f5GRV8tnP/V2wASeif9HKG7p5wcc+9CzX377Bb3/h8/zSX/8c5zdPRRN+Jbj03g8wnS4ZlSVFKvjoxz7GLPF84mMf4a995Mc5VXTgwhnuPfs8bdOQpzkuBP701VfRSckHP/gCX/rDr/LRH3+Os5t7zNuGYZJhzApkD4iMmMjS+UGmDeFdKOYxq+gJZZA1WPJ9Mzz+9/czg35oid//H08+hB9cwQ+BST+4EvHnfPtn1yD/nF89/vznzPVnFiD/oq0GYgPi+xlc6snndSPg+w/cn1myXINL765XBNDih7f7MQj1Lnj3/TOF9fcueDQwKgp6vqDT/SsOKNl2zmpVUluHdiU6SdFJhpaS1ngKB81yydHkgOkyxplnukOSpEhvOD6ekCYJddVStha/rFFKkZNwrjuktA13yxV5WjDqdCjLOVJCN02Z7N/BZQnWC4I39LoFG0VCkmR0Erh1+xaL5Zyuyqjqdh192q4flIbQOFbVgqquqZaH7M/mjEeaXn+ALgJtu8J7ifcCY9bdz0xhmgWl8WjRRes+86UgpJ62nuO9JctzMh1Aw0JAXTasgifXkjRRdLOUbtFlkOccrQyDnqbIE1rveTiZ8nA64+mnn2MyOaalZmUFG70RPWqa4GmDwIQuae80afBUjac/3maYNTz0DiU64BxNW8aOmNMEJDI6g8bBvgiRRq4VSnaol47gDMbAG/c0+SBnUa2wMuX1QyAkSCHp9ToIGVAqIEKJ9yJK5lzA6gQpBLlokSLDOGh8Gzs5Mo00RJEgvaejJVpDkOtQV5EgMCSpwtuaqjlksozIctOsOH9ql2UJnX6f/mCTXkcxHo7p9IaULuXhxJEs5vg2+iskSYIKgaUJrErDqNjg5t03Odq/w6KqOH/uEmkWi+rG1ggBeZ6xnM+ZHB9StTWzxTFtWzM+u0vdOCSB6fSAVdlh//AB165d4tTOHieTCYmCo5NDTNswPrPJYj7npKkJtNimod/pM53M0amnbWJ3TwJJIpCJYLWcM5mc0NiWVGmapiHrdAgyoXXL9YDOg/JIBVLEQUY06rSx2y8cGIv3MbXGWoFznpALsiyghMG4FQTIi5SqqcgTjZtMmCyjr5lK5swWJYOsS12u6Pf6bAw32dvd5OBgzr2H9+l1upzMThj1ckbDUxR5l8lsRussO5vbjIdDqnKJ1glF1qWXJrR2hRKBM6d2eOn119jeGnH4aJMHD+6TJAmDTp/x1g7HHFPO51jnyLMMrTVb4w3SJEOg1j6aj2PCc+pqRWtq8lyjdIqxlqo19LOMRCdUdQNyRd6XeONwOkoolosZH3r/c3R7Ocv5lMsXz1HWjqPjCS+9/BpVXWPamnNn9ljVNfbYowQUnYJHj0ru3b/D5s6Yva0RFy+cZTFtefvOlEIl3L7zkNnyBAigYNjrkScdvIXDg0OsMxxOj2LkdOMQw4SqnVNZi6ha3pYPWJkmJgA1Fpkk1JVjsajJOxmdPKPXyTieHtPvDlmWK6yMMhgvAl4pThYT/I2KLI3AuAgCGwyZUox3dmlNyv7JPs47bu8/4sPPfpCLF59iufgel8+f5dX5TS5eO8f+wQm9bo+zZ86zms6olzN6RYISgUUVpVlHkxN8E3jPtSvc2X9AtajAO2SIqVOBQG0bFssFnTzn+KSlLkuKvIdXgvHGkPPhabZ3HN/89rd5dLjP7be/zXhzk0Ev4/DRI05OjnjxlVd46sJFQEUPo7bh8lPvIekP2f/KlyDUpImi01H0i4rlcsr29gUIhoPjY4KVJP0+RT/HiRYhNXmRE0TLo4MD2ha8CySpZGNrxN7pXd648yYq1RAKvBYIayjShN7GmMVySioEJ4ePsLaM3cjplG6WsdPts721wWQyRdbLyOaUkrzQXLv6FO1qSmun5LlEAUma0JE5eRpo2hLnWkoraRdzjFuwWHk8bTS99DAoBvS7XVpb0vgolwlBUtuA94FumpGmKVqBtYGsKxFWsFyVtLalNoKtnQ2E9Kzqitevv0LeG1L0cqyrWCw9wq0LWQTBRUmJMwaEx9gUi6M2LdPFitbYx/29KOsJUNcNQQTaNgIASZqRZhlaS7QU1GVN1UTDXaV1pKbL6JVEkKzKkiRNaNsG7xw6S6nrCu89rTFk63SpalXjPYgQfVaqsiHROTb31FVMjQLBatWQpUlMy+p2SbMEnGReVpjgYpfax+eKc479g4cokZEUBd4HmqYiTTosZktca6hWFb1uSr+TUYiUIsvXkewxgcqvn1NCRONlJ0AoiakDxtTMRCDVjm5m8S4CE1JrhNIIayMT1YFzHm8cSoKzisa0lK2hF6AxjsZapHDoINYMjOgd44lGoBBi4u66eeklmBBYTpb0Bh2cEzhnoi+jd7S1YzQqCN7ifYLDEIEJQWMcRS6wtUUlCYJAtVrSlqt4jExN5+w5sjRd+/RE4ZYX0ezUhRBjw+2ahSPAeUun08G2PoIc3hHLlzULSyr6/SGdosBajwkxBlxKhTUWnQZOn7nA3tkLFMWQ+eERrijYPXWeelnT6XRomprpbMJkNiHLcop8G9M7T+slwcVt8SJKBtIkJagIaFpj6Xa7lDaaN0P0iZIqmo2jZDSWFpKAgcCTVLumaen0uxD82s8n+hYJJeL5CR6JwLlYqonA2hx6fWxCIJEK5zx6nWwXiM8oQkxpFEKSZ+namyim6LWmpuh03zURDy6aSCc6gnMh+jlFQ3aP9zHYIoI6kbkp1mND0zZ4Asq72FkXoHSMX9c6JY7QItDHmqnlQ4im66yZT0hcU5OkGuOiHO8xkUEKgW0jQ0+JtY+Jjef/sf+WQKz9n2KxpITEhsclVJQDhvXxVTIm1nkfx7daa5qqIlVqzTaIbC/n2ghoKbVOs4NIG3q3NPOPPaxkNB43pkWsq9ngIrAXQS+NUkn0APVh7dOW4qwjKHjMdjBNRVb0aACN4s5br3B8+IDO+CxZlkfAlAzvPUWn4PTFi7z1ykvUTY2UOc6vWMxmnD1/iY9/4tMgI/BpmhWPuRZaJbimZvLwAds7Z1BJQq4TQOKMxQiBFBLbNNQC5osj9s6doZzeYV7VTE4OUd0uYeGQokGtWRHBCUSIQQIiUSDimFnJhNtvvMY3v/QvKBtD3umjvMWtSmSAtg0Mt3bYvXSFzfEeSZFz46UXcc8YJkfHPLpzlyTRpGmCb1uWywVNkCycYW884OK4xzMXT5Onis08YaQ09BLSn/wp/vPf/IcMB0NaAnmRkuaaz/zUT5DNVrz2pdd57tOf5IWf/AjWexZ37tM0LR//6IcZnznD8f0Din4H4R1f/Gf/grlW1MsFL738MvrcZdy9d5jYmhdvvAb9hLfKEz72wR9nWbXo8RaDakVva5OtYsSf/MvfR5HihOKd773GT/3df4++0Ny7M+e33vwyw6ygd+kyH/7ETyNPVixPjrn/5uv80Te+yas3b9LmGZ/77C/yt3/2U0zLJaNej9/5+le4fPUSV3Yv4K0lyJTucJet0WYUb4nAxXO7/JuXfwnjKj72zHPIRHP/eMFSOp7d3kJLgQue91/cZWP4SUDgCLz26Ijf+t2vcnzvbS5fvcTrB1M2en1++uoH+d6dQ15645tcvHqRn33vhyjbin6arTlIP8we+v/L9FiO98Pb//iu+cum72cx/d9991dneiz8E0Gs5aqOtJBkSf4jXc+PHFDa3d3h5OgARGBQ5KRpl0QpbHBokaBFYFnWONVlOFZoqVAqZbmcs1zUNHVDr9AsqkCvNyJVgrquqCdzptMVU+kQmUD6mrJcMl9OmS0mWGM4eFTS2zoDLhpEdjoFu6Mhx0cnnHr6ClIEmrqi2/esVhNmyyOcNzHCL8uxoUaqguDnPFpIiqJDnibsbmyS5B3evnGd2lqsNQgZk1LO7u0iul3m+7cinc1Ft3gtFGUddaidLMeuHtG4gMoUrgkIJ2gMSBUYdS3DLL4MhPTsjDpkWcK0WnL3/gSVZSSupW6W9POWcc/j2zn4mtqkyKRAJykOS787JpmtSEXAmoBOEuaLEwbdFBM0496YPO2RdgqkUCxXFaa1dPtDUj1HJyllvVizCRoWTcK8yugrRVlrBgWkWYe6ibIunSzRKiKu3huCEmTCYR0U2rM1bMDD/syRFFC7hjyPHWB8gvCKshXMlCTJHFoEHBqddihSz3izz2w6wXjBzqnzbI13eOmlr3F672kOjx6RFilF3iGIQJb10OsY2cl8HrteQoNMKMs5OumRpwVeKhpSRts77J09z4PbbyGbit54gJKK0XgzgjJpwo2b19FacfrUGd56523apubKpQsMutFDJ9U55WqOwtErCgSBJMtZlRXd/gZFljAejFAC2p1djmYTuumATr/DamUwOHZ2Nzg+OcR7se7+GpqqRogEhGfVNmxsjNkYbbA/OWbQ67FYztEi0uSl8nhb0zhJ0cnIdLZOQbGI0OAdtDWRLpnGpB0VWpCS5XJGliXoTLEoaw5OFgz6ga3NbYxtOT6ZYk1gYRuGwwEETTfP2N3Y4O6jR1y99BS37tzE46nKitnJlCsXz7O9uc1bN66TJYKj4ylN0+KFoF5M2Xr6KVxd4YXj7sMT7t6/y9UrZ3nrxg0uXzpL07YMe12U6CDClMbDuOjQ6/aYzKZsSIUU0cDTe0fwAmMsgUAn62CtZblY4K2Nw1upaNooI5BIjGnxyyVaZ9RNRa/fo9NLGfW71MtF9PUw0dj16HhC0R1SmcBwc0g+GDPcKCHJSZNA0e1wdDLHO8d7nn6a6aMZRycN00nL4cEx1y7vEjBMJkc4JzDOMuz3cW1MA0qzFLtqIqMEj3Oe6eKEtJthykAw/kmB60WM/bTO8fadu4TW8+yVy5TlkmU5o6lWnNra4GC+jPHDziCVptdNqRJBmiXoJKN1Fk2NN45yJZCqIUkb8sQzm0aZ6Zs330ZlXTIdzTrruuatd27z6NGEIktJU4na6PPCB96LTHvcuXeft95+izpY2rKlXTme+clzjLc3+MqX/4DgM5wxsRhJJUp6VuWC8WjEtfPnyJNs/aLzKBTjbp+tUc4XJguWiwYnNLt725THx1jvmMxPePtmTInZ2dyKxsWlIYSANYZMKoxq0ElCMI5WB4KQpFnBa2/c4NmrV9nYGTIYD0lWiueuPcu1KwYLNE3D5OCQza0d7ty5jw0O42v+9OU/xQeJt4BWbHa32d7cZn7ScObsLu/cmLNazDFli8wCPnFcv/EyO+OzWAy2atjeOs3+3RsEG7Cypqzh4PABMgkkIiNVOVmSs7vZJ8+3mM0WLKvbyGDpdTSXLp7l3v19DmYTgmvWSVwVpu3jSwOaddJnC1LhhWEwUPSyESodc//RPnmaMJ0dsbV5miUCnUusCfSKPr5csjCGyhhMtSTXXRKR0E26zKoIEqgkJo1Ka8B7SmtZtguEVEwnU+aLeRxbuQDeP5GbPY4AN9biQyCVEhGi9MmaEAEJFZCKdSCDo2ksmxsbZFmOVJr+qMvR4QGtbWJ65iqs494lQusYQBACIgjaJm6ftZ6yqtfpby1ZpnHe41pHd9CjqhoSmaBlgkdizZQ0zwihpTVlHNgEiVYJaRpDNJarFdgKqyStb9E6Je3mWGco25JRf8zmYJM07dC0JjZqvFsXsRHgkUS2jbEGQosNKUJ4Ov0ORd5BCbnmy0dfHIRChIDWOU1jMMZghKZqDd1BLLSVTkkShxIKFXwEWoVc+zcJtBDoNZtFeAhB0NiYsiSkwllIdMrB8SGdNKFazlFKoTMdpTtaEJTCixgzH7xDI6idwxcJoVxRTo9JtKCuS7qd/hMCjLUNEBlHygWcadBSRQbemh0GxMJfCFrv8TIOhqUPMeyCaBRfdLoopbG2hiDiMoKLjBRdcOnSs/gQOLz1JuXRTeTeebxvEUqwWi14/Y3vRYAwTbhy4SpZlnDqwjPknQHCOxQhgslKR7NwHKZuCc6DSgltTZJm8TyuZQfW++j5tfbWceuSS2tJ05T4te9RCCLKGteeV0LG517APwHFsjWbnLUXUASuAlpLgvForfB+3aEPDrX2W4rR0xF0a5smLjd4Eq1pzfo6WnfelU7itfl4e318/wgh0InGPU62837tfSRobbMGq328v6UGJM46TN2AVEgVnkj22taAIMq6ZARrmrbGe0c37+OtQanolSSUIjiHW7OhhIgpedFwXD2RnnkfrwnWjDbnfWyUfl89+JglpbUihMgcC0HgQgSWQMbzGi/8mNqmJDJJcEE+Ebg89pd5UiqGQJqkaClRa+ZSlDwqdJqgk5gaZ2y99mnTWBtIkwypoxTRK0FwFoNj0OtilhVSwXjvNKI3QuouSR4DB2QQSNEiUPQ3ttg8dY7e7im+8ydf59Spi2yeOUVH91jMTtg6fRFoWZYLvIjbHITES8mjBw/Y2LvP6YtXSdMUL8A6g9AJhdIYUqqqZjY94GOf+0Xuv/m/YJYLfFWiSaMh+hp8DghUkuCwCCxaCIJOcBq8bSirBd/44ueRWpF1EiQSlaYMN4csly3BNHQ6BZunz6CTjMmpQ/bvfY9XX/kGIZEUQuOSlO/90b/k7Hue5YOf+CRPndvmwplt+lKx2SviOQ7RR8bnCc9/9uf4zB/9MZ9/dI8HD+8yqVt0Krj5rW9x5Sd+CnPrHqpToJwjU5KHt+7x5a98jRcfPeCv/Y1f5D1nTqHThNXLr/JP/of/kQPlWc3mnH7maa52DC/8/Kf46he/yqwx/Mnr1/nXLl3l0s4exsDf/Ft/C+9bXvr2t/jq177OfFnyYz/3cww6I159+Rv86i/8PDoE/LUrVN/5Op/++Me5dOEab8wWfOR97+Vjp87yj//Bf8O3vvUiswc3GW50+OVf+hu8eusev/W//VN++mc+wd//r/8Bv/53/i3G49NsZikXzp1ie3ebIs1jchiB8bDgzKkzfP3bX8X7ZxBIrp7axHgfm/RBxmRPJbiysQFC0jhLohSXL13mzltvU3nNv/pzn2avk6Ok4ORoyj//nd/jN/6j/yCGH8BaQvuDare/bAprP6E/f/qLgJw/D7RhzYT6i1ceftgM6S9d7uPJ/wXf//C8j7f38XL+34BJf9Hv/p8AWf/fp9hHimA7CJpVSTqSTzzqflTTj17ytlyhREYvE4x6fVKVYX1LKjXKe0xbIZKMQbePDrGDLhX0UsWiqTmZHNDUitZBIQsSmdJ4z+17d5mhkIMu2+e2AU21LElkFjsUSrIoVyS25f7Dh+SDbQiBcxev8Oqd25w7c448U7Sm4eT4gHJ5wHxRobICbTxXrr6X/QfvMJmXVJXBeIkOAutaHh0fI8SCVRUHDZPVkuNqxbnT5xhtbNMZdJkPBtg6cOPuS5RtitAJja3Q6ZhulvNgCml3gPRLulrTNAFnPEUBKmkxYk5rExoH+9NDrI2JGlVdMshSbty6SS0qmrbldD/B8Lr7ewAAIABJREFUmwrjA6URZCJhWS6QSY/RYINUO8r5MclwRK+Ts5iXbPT6USvbWLQ2hGWDbQ2KlqppafMchCDN8hiLqzMW0xYtNVpYqtqhVEGWGUCtO9MBYyps6xDSIpVEK0GWtljrybSjn2ruHLY4YRhnBmz01FBCkaSwagSN9RzWPqZs0OICjIZbBNPBucDe5adoW8GZ85fQKqXoZuzt7dG0C2wI7G5vQxDINSXbe0GWdVkspiwbgbU1qZYMRgWb27vkXiHzAbsbPeqgybIOd9/6Lr3eGN96Noc71KuSxWLJyeyQD33gA+R6gHd3SVNNnqWkSQdjDqmrku3tbW7d7dDtDjHWYFpDaz1nzl5GEUhVglAZRdZH1TU7e7scPHxElqTYaBWHx8SuZgBnBc46hPToJA5YbGOYHR3S7XRJRaCplygZB/I6URT/F3NvHixZdtf5fc5yl9wz317vVb3auqrX6m51i5bQglgGGLFNCHAEhGbABhkz9jAMGDyDBYHCDo/DweIIG4E9hIcZezCeQcJIIATWhpaW1Fp6r+6urr3qVdXbc8+7nHvO8R8nqxFjYAZGOLgRFRXxql7mze3mOd/f9/v5xhozytnoJaSNIxyMJgyG4yBCzDkPtZpGSUtZluAcvaXAo7rn+Cp3treJEJQOppmj11EUVpKVFd5VNJoJjzz8EDs7fc7ec4KrN26wvLrAWrRMNZvwhQuXOH7mBOPhkLI0tJodVnurrHQWuXprF6HCVHWaF+wM9qEqMEVFu9Xk5MkTTIc5Z06epNFqUhYlSRLjvWQ4m5GXFVGUhlplN8SUFleVKBVRWkMSB6u9KQzNRhtjSopZaNZKkxTvPM1Wk7woKMqSvDJUVhI3Q813bguWVheJm3UkCgrDZFag0iaDwymPP/o4l2/eZKHXI6kltNrLZGVBrZEicHz56acp8ymN+hLP3LxKmU/YOezjSkezmWJzAEctqTMdjdjZPQxurTgh1RHj8QhXeRppLVz5HVhjEMJRUTLNclQMo7xE2IgodRRVwWg6YZobdkcDMjMjq2Zc394iyzN0XMMaSb2Wkk0mdFqdAMivoF7v4cgoBrtYJylnOSazJLWIymf06inWGeIkotvq8soLLxHHgpdeuYywnrIw3NreZmmhx+rqOvVmi40j64yHh9y5XTDNSqbjgmavyZmlZT5VBbihcSUIT62p59cLQT2thzp4EabsWgqsk7TSOsNyynQ8wjrH5vFNDg4OyKdjRByztLzMsbUNhuMMV+2zdfs2SatDktR5/qXzZMWYZs3Tbsbs7htmJsIZwZ07W6wtLxKnKZ3FhfCFKhRJ0qEZS8qypEodjz38BoqqYPv2NmiB1HXGxQgtGngVxOOvffwtbN/ZYSJ22N25zWS4h45TGo2UwkxQ2nFwcIMiGzEe9ugttihszMwYiqxEJBF2knP+1RdxlaHbanN9awtbThnOhtx39ms52Okw7G+T2wLvptS04KEHH+cjH/8YrU6PPO9j/ZTOYovmzgLD7HBeXiEpjMWKCUnsSWsa6aPgTDMWJWMGwwGdVpM4VkyswWQ5ucmx1uBshckL6p0GSqTU6oJJloESFIWh3oiIIkEr7TC4eYf2Qh2QjAcTrHchpmTDRlVrHZZLpQcdoLPCS1Q9AlxgliiBtxYda8o8D6KDFlB5jClRSlGvp0ggTmKimmSW5aSNhFhFZHmODJYSpBCoOFQTV3NXBl5g8sBhiZMaWVayuNAN9eiUTPOcqKwoTIl0jjKb0GhErC4uMM1KkAnOSybTMbYygKc0BQ5H2mtRTTJsLaKuNN4FWGmqg2PK2oLSlBhbAgI5d/FKK0Ijny6RXhDJAP6szSHCQkniNEEEikIYOOBwTqKERCuF1CE6U6/VUIAtK8pZho4kZdh547EBZG3nZRiIObBcUms2qI9icpWj2s3QuNpoYF0TLUoKUxLNHcNyzl2SUuExWF8hhcSUVQAYO8FoPMBZQ+VAK0mkQ7U0zmKdnfNrQpWxq0riNHmtIQjEPNKlsCI4biKnkAiM94EpNDem3I1RVpXBlSWDYR87bw9r1FsoqZn294n6r7C+vgTNRYx3OBwXL7/My688h9CSU6dP0et0qaU1ammKKSusybCVx1tP2kowEqxxVKVBKomXkso4SlmGoY2zr0UylZIoHThK3nusd9TrdUbDCY12M0RSpcAKP/++D8JViGOpEH+7C9i21XxIGdrFgsARmEKBoXQXoh1gz955tI6QWgVguwuuJx3FQHjtPARXmI7mTK5yHmULLYg+QJnwNkDjHaHrWkhNks7ZRFESwNM+xOy985SmJEoT4kjPnYmCKI4oshncfc94jwXywhDFMbHSlNbNo3thi1i5wHiSWoGcv/PntdpSBAGUu+8FwJRuHn8Lbi433+kKGVxDiLkDzPrXgNnyK0QmRIhiB8NTYK7cBa14P2+Jei2qonBSEs+bkbSSmNfENkWsIqL5bVlbvdZQ6azFq4goTckmU+rtLmY2JYnqVMaiVQRYWkurTLMbNBdCMYP3NmAarEDrBBCsn7oXD9SaHYa723gkZx9+PTdfepr1zbNUxZQsL5ESlA9tdCpOiGot9rZu0e4tkSYxRZYzHQ45cfocWxeeJzceZ2F1/SQrpx8m0h/AWolUglazTZVn5Jmh0+sFAcMZChMa6vDBUavTBFNYwDGbjXBOEM0S6o0a9XaDOKkTzUJ72q3Ll2gvHUNUU1SV8dIXnyTLxiyevp/s2mW+56d+jr0Pf4KXP/JH/PA73s5iZ41Yhc2vnAct74qjUgp8K+Xbf+xdrLzv/fzMrWt897d/Jx//449y7NhpGkcWOHbqvnnESuKdYGFzkwfe8AS61+DIYpd6mqAR7O4cMkyb9NoNxrt3qCrLUx/6AFfOH6PfL1jeWOfvfe/3sNBMWW7WWL7/LNnZeyhdycXRPv/pgw9y+Znn+P7/6B38zgc/QcRD9NIaeVmy0qrzk+/8u5w6tsH1gyGnJxNOLrZZHDuOftM3cvHDH6a/u0Nz4SH+j3/zmzz7hZd46fkv8KmnnmJw54AP/O4HedMjX8NKskEkBeNixvQw42ijjZx/tvZHGe/7nQ9z4swjbPaW8XFw1Ekf4soH4yFCRyzWG3g8kVKcXujyfd/8ddTShNc9cJpzJzeJgTgO0dSo3uSBzVMh9TN3AYs/K/L2FxxiXsrwp0Ul/+cITXcFmj9HZBFzQfnPv7d/z7P6q/7evy0g/dsC01/0e38d5/3vOu4GngVCOkBRFRVpnPwlXsF/v+OrLigd9g9J45g0XaDTrDPp9xlNZ9QaXToL3WBbVhKponnloCeJBLtVQSzqNLxnNjNEKgAHV9st/EGfptVoByK3FKMJspEgZExZQZTU5qwby+qRDVyiabaX6c8yVo4dRV26ws7uHVwRrOSHw0Na7TZrR0+Rjw64eWuHtFYjSRQHe31mpUXj8F4xmk5JYkdWTqgK8NLji4K8DF8AjVYHHQk6C4uUs4K9Z/pMbRQAlJWlmzRZXVlhWg7xlOAjIhkxE5oqdjifY32EwaAiiG0D6QVZOSKJYgpjWex0yId7WFMSkVJUTaQWTCaWaQUyDiDByjimkxnOVNjSMBnuo2XI3huhSHTEwXCfKJbExHjhaHXazA4OGY4O8HjKMqfeaOBMQTaTwcosFYX1NDo1vIzmpRyGONKAw85bV6SX6FiRmwTrDFHc5fqgZC83JA1PmRfoWCKUwfgKpSzWJlgLuXAkKsY7g/cle6M7pFGb/nhGY22ToydP02o2uXD5Co8+/s1orxmODkjSLmkzwRQFVRWagYwxSKnY2x+TdBfBBavzIK9IfUy9XicvLZX2aBypCKBAhcYpw8aRDZSUXL32Ms1mneWlVSLV5HR1gs3NU7TagUuyvLRAo1VDCsHGsWOkSY12u4PUMdNbd9jb3ifPZjTqTdaPHGX51Cke6byOK5cv4VREGkWU2YiysOAV9VqIBZjKY5UPoh0KhaQ/HCCFpOvh9JlN0jRilhuuDW/SaDSpNxrkk9sIL8lmhr29XabTAokkTRRe2MDX0IKysFhCc1tVOsaDMRElnVbCcOLJqoLD8SFaaqS3CCmJhOTq9TskqebKzTvc2NrBakkiYW84ptduYK1nOp0htWJpaQEVafYODqmnNertOtJ5GkspOwd7rC0vcuHyDe49vkFL1dg8djTE2KzHUlHmAhlp4rRBXhRkWRYgoJVlNBojETQaXeI0nk+qg51TKEEkIrQKjgelFTqKSdMUJ6AoS3Sk0bUULz1Ru0VTKxw5e6MDVjorNLsdjFeM8pILly7RXlxibXmNOE5xwlGvd0nqnna7QVZkHDmywUF/n4qUVr2Hryf0xzlp4pE64qA4JEpiXG5QXjCaTUF6GmnEzIyJZYqOG/OIYQJeYs0Q5SVlWRG3I7IyI4oURoKpKiItqEzJ9v4eeZFROUva7DKcTPGlZZyN6bUaVM6AleTTGZ3OIt3uMoWbYSoBZRchNL3uApWpODzcRSJwVqMbdQ7u3KTdOMPunQFrq+vsj/bZXN/gSv+QyWjMYneBsrLY0RhvBGkU4YRFx54kkXzpqWeQOiWOIpK4JC8UKoE0jSiLjIP+AGteZTqdkNQFy0s91rpHsBYaaY1LV67gyynd5RbeTcnzKQZHd6HNkaWj9BZWuH71chAsfIUwlhu3r7DfP2DichY7C7jSYb0mm1XYvGRppUs9jdBScePqLSosg/6YrRs36HVrtOpdGu06tTTixsVrJKkmtxZshbMBAhzpBpGKef6F8/QHwyBgVhPSWBGnkqKwtNM2rWbC3t4Bs2nBdLTFuFhgaW2Tzc1Nrl+4Q9LtMexfZ2YM+dRiihnTyU06bUeW51y8ch1XNmk2lji5epQbN7bZ2rpOu50TySl2VpBIyIs+Ozu3WTpynIPLBxiboWkQCUdV5QxHJVWlibxFUuGtp1FvMzMlFZJiHOIeg+EOxh8iYkUkE6qyQitBkRfM8jGVC5s7Koe0lsJXJFHYkColSNM2k/GISCu8lSHWM3cUBDCuIo4isllJGs+5AyJECsGTVwZnKrxz1OeipvOC2XRKWZSBySfC5tpaRxRHRIkmjWKG82tCOmfUlGUV3JtCEkUSZy1lUYaFsA/tSpWzTMYZeM90MiONI/K5kNto1ohFiiKllkTEaZ3xOEPpCOlCNKb0GZQWW4JSEWuLq9SsIxFQa6TzOA0ILYjSCMrATwkxIovTDudLIiEQVqMIayKFRUpPmc8oZjOsDE1n0st5DbzBVlWoKFfzjTShoUrGiiQNiE6Un8f7QsmG8szrb9IwrJQKqRWmgqw0r4GcJzZHC/DOUOUVtUaMEDpUtHuJ8gJMcOxInZAVRdhEl57JcEAtSZnOKrq9hMqYcE3xkqqwoa1MOrybx6+tx5sSpKYq8+AwLCqyvKDTbQM+XAeND5ts4+Y17gS3R1XhqpJ2u82l69e4eesG9oGHWT+2ga430EcfociDC2Y6GnP16gWu37jM0vIKZ07fQ7e7iq8gLyugxLkquGBE4E6kUYRzFXiJE6FZTklPEoGzBj13gAQOFPOIW4AxKwlVFd4beZ6T1hKUUkGwdQ6t9NytFmDSWgf3sPdiHg0UlMYEoVUFMc3PI3R3Y3SBSRTo084JdBS99vnwPghbWiuqqsLNYdTGFAFu7irw4f7u3pYQUJYVUlbBJTP/vCgVAaFxERc4WkKE+7WE9ZW+6xIitPGFWKxHxX8C7xXeY8qStFF7LSIm59sa4UP0UekIpMA4GwQeCba06Llrx8M8nmcpS0OtnmJLRxKH5/bucyqUCq47Ny/TsQ7rAqtKpxFaRxRFEcQJFWD5c2UpiFHz1yKcePgjlQJUcOwgsH4eeZQhYujmMVMhFMgI6yvKcopOEpqtLtPRkMqUmKKk3mrfhRLhcoMHyqyYt+uBcAr83NWrBVJqkkTjKsPaxiYLy0tce/FFtq+/iu62uHbhRbobR8nycg6v96HoIUo4duYss/4+l84/B+4ct66+ynNPP8X6xia2EhSzKT6uMxjmyLIijmMaacKJBx7i3BNvZOul81y99Corm6fwruLmlVeCWDkX1WKdMhoOKY0j1TGZmyFkjCS021VlxTDbp1bvcuqhx1haPcpgZ5e0s8Qrr7xApAVLi0d473/73/PhX/wF/rN3fBeDs/fzv/30e/jVX/01/vN3/SjrR5a4uymXLgz7vRJEMqKKBUu9RT7wmSc59+j9HD9+lPVOh0defw6BJF2szd01QYro3nOcdxz5XrwQpLWUKImopgWH7QY/9U/+EctS8Q/e9YNcfPYL/MB//CN89IP/F8MyA+/40B/8LqfOPoJrLHLpxkV8GvHypz7FfQ/cy9ueeANPHN/kn/+v/wtT1eZ6/xA8uKKi1qrRMWOG2zsMz1/jxOP3c6zdxUUl3/L1X0vj+nUeeOQ+LpclLz97nqc//Um+7Ud/hM++/0OsnbqXl7/wDJdefZZilHF1sENndZPjrTZIRZ5NycoJrc4q/ZkmUgm1JGWY57SjFBSMpxOUFnziuad5xxu/FotEC4HUkvWFNt/3t95MkkTUomjuZoFTZ07z9rd/O32nWY3uOgXnUtJfMuX1ZzmU/vTPxFf8/ecJL1/pCvqrHn+RS0j8Bf/+lf/nr+pQ+us97j6f3v/J8xPqIeazah8eX5nEQciWX93Y4lddUPK+ClPe3DJKJC6fMBlnVCT01jaoJSFbbq1Fp1Gw5wIrR47jhAObc23rDqmTTK1Bj3PeahfZKgdcdWMgQe8YosU6nU6Dw4MRdmZZPrlMW1q0s/QaNZQSbPUPUXGdpAaXLr1MM7KgDKK01JMGsRCM8zIAffMJWTZFaYHILCQR0ltmpkIohVaaSlhcBTYrQ/WwEEgpmY0HnH/5C/THOZmVJDJCS02zUQMF62tH2N27gfcxqgq1jCrxFC6n8gWRSshNhaDAlBE6aXNm7SRXd66zuNhB2CmFLxE+Iop6SJ2SlVMGWYExEmsL6lENVxpG4z0KM0ZLg/ITvIiIlKY/7bMaLVJvhKlvpDIyB8PJGFsakkbCxnKdrZ0+Jhd4V+JtWESFKto59NmWWCMovKOVhOlLnGgqoyiNw5SCspDU4hZ5RmiWIiNJNIMBYCVLDU09aTMqKha7PfqTfbrdDkU+JbcKnaZkpiIvhmidcmz9BK3OAkrWMDZCNTf49FMf4tbeLe4/0QLn6E/GYMGbiqIwtNsdOis9ZqXB6Yjd0Yz28hIqimklMSgoZYWbDDDTHWLtMa4gUjEIRWZKvJKsr68T6ZQ8H5PGMcPBIYJgV283O+hGqMKO4wYLvUVMBZUx9Pd32d3dwroKs7REt1en1uuyuXGM/v6Qm3e26XU62DhiUoxJdeAuCB9iaVlRoaOYu20EOo0QFZw6usajj5zj9z/yGfKspNttMp06WnUHaG7tTXGiII4UcZRQuVAfLVyY5JUGrNOkaYR2Ei8ytgeHWFvR6baJaxKfjymLHC/msaw4otGMEVRUFdzavcPy+jLb27e4fbhNI21Rq9XZ2b6BKeHlixfwrmRn/5DpdMITrztHr7fOpes3+NKrz9Oo1XBCsLW9S1bmPP7gfYioxnQ8YUSF8wahQj219Iaa1mgpcLai22qChESn4AzeKbwNtdhxpEPzjq+IdIQSzDewGUVREquINEnJjcFXFukckQ3V1c1ancnBAQPXZ3FxBWEzanEdZwwXX36Jzc3jyLYjNzmTWUZeGiK1xiTPOLF5ktW1ZSKvectb3wJUHFm7zLVLFzi6vkqvd5Qnn/oElcuINOS5hQiyomI4NrSSgkQmOARJUg9tKWiKsUEndWauIKsKtJIoCYmIWel12FhdxZSW9aWjGG+ZZjM67S4my9DGUJUVsW4gJAzLnCaWvd1bEMPpk+vopSVu3LzJnb09TGl59P6z7BwOyLMZB9t3yA92uX1nn/Fswtv+1uvJSofzgkuXbrKyukQ9SejvHjCeTDhz5gyPP/Y17B0MKIQnKw7YurNNWYFTlkhHIdIhoPAefOCgdDsdNo4so2PFeLyFWtugqWpMpyVPPvkcPtLcd+okaax45dLzNNUK3/i2t/Ds519kcaFLlCRYrZHEfPmZZxmXU3JniFQKJAyGI4wXZIUliiNSNSHSKzx7/kXWjmxw4dLVwGkwM1aPPUhnaY1Op8bVy1e4tbWFrNfJphmVmRLHEiNhPJnQbKyxvzdlPB0SK0G7nZLGiqzIOLGxzkP3v45Iw43rWzzz4otEuk233eLIkSMU45KL8hZRVWLzEmUNzUhjvWdSGOTMIVTENBtTixT3njnN2RNnifQzFNmU5bV1Ll27QWUyKm+Zjiqy2SV0HFPlOSUCLyxpIoEK5xX1pMHeYIKIBJEWFLYgUoJ8OiTSMY16hCknJKmiKAOnp6ocg8GEPDPM8lmoK6/CAnQ8KhE1zyQfoRTMpgbrB6hYUW80aCQtRqMpeVGG5hspUc6TRBHUElKtkYCtHCYvcd6/xiRxCCaTCd6aUOohQl15XgaukU40k+mYJIoxRcFEKrJJhk8dS0s9ZCapSkscK6QQNGt1KufY3e/TatSYjaeURQXNGrFWxEmERVLaijiJUVqRT2fIRDNSGe12irOW5eUFOIB81mdWZZSmCvFhmaC9YDaYkdZrNJIakZVU82YrPzPYbEphLM7JOX8kRPpCE4+lHeu5OyTBe42Sikir+UYdIHCYpA0lyUWp5mDhMGWWwqMJLq/KFSES7ANDD+tDk2BpEammIohTSkYoGSOUQGlNoiOkduQmuMYwGik9lbfEUsyZLsFhJaRC6AgVKYrZDBVpynxCLCSVq1A6sHWsk+CCp8B7g7Ue5QTGVVRmilWCSNep8hxTZOSTKWmtRqu2iMBSITG2ItYKJSSls0gFOBGg1hpkHIGKabdajAd9Pvn5P+bY1mne9IY3UegWtw8vcbj7KjLtcOa+x9GJ5PTm/bRbPaRSzGZTdJqQ1upopZFKMRwOMFmBUmGkk2V5gG4ngZ8D1RwSL0OzmQgbeBVJpNRzUWHuehGB6QkJUgiM80gVB0yALREqODiVFDhjQhwRgXcirGn83Ql/iAVqHQcHkwvOISnmjCzH3PXkKE2O9YHDZW0AZbvqbiRQhaag0gQA/TxW56zH2RCRTJI4ONIklJUnihSuKufwfIOVEDFnqZlq3uIWYmnWOXQcY4oQOddazzeoIgg43pJEcWgcU2F9I+etdcjg4PJz8VpoQnnGvJFNcLdxKTjIrLN4B1EceFDWh9iKEDKIRPh5PCfEzaWU5EVOXTf/VMBF67sCdxC9AjU/bMLkfBXmfOA4eebNg1VgYCmlcXddd4B3oRHOiyCkl9kMZES3t8j+zasU2TJSCsaDO+SDEFULBj8ZuHrNdO5Sc3hrwBpkJOdSShCha2kNaTUn7ruX5z71GVZObJLZKfFCOzTbeYeXUPmKNGnRaLToLHR5/tOf4qJ/lquXX+ZgsEu30yYWMZUoSGQTKTQXnvwsTosQb0azcvQ0ZjTh+pWrbN5zH1o6skGffJYB81gkELUW2Vxa5cr5F1FxTCpjVjZO0Fta4Nr5p2l2ajibs/XqedYfeR1Hzp3j1MIaX980vPu/+wz3PfIAX/6DP+DS6JB0bNk4c4IHTh7lk5MJau5gDi9u+MxJHVHMZownUxyWX/upd+PPPUrz6gX2SXj4gXup1WqUs5y8EVMX4fXCwf6FLawQrJw6wmw8YVZZammN/dvXuOeNb+bJP/wEY+9RvuL8i5/n1s4t4npCaRwXX77A6j2P0mn3eMujT7B7c4tPXrjKrb09PvpHn0Yoh9+ecL1/h3/8P/wifVdwuH+H3/2t3+TGznV+5mf+G04/cg+5Mfza//4bbN24gUwibu0c8F3f907e/3M/j/M5reUa3/K2J/j4k1/mv/zHP887v/d7+Ve/+duQtDh+/xl+4Hvu50irQSQlz1+/xjgvONtKeOzMvfzrLz3JtWcv8uA9S/zE972Ll2/eZG15if/xN/41t/tbfMNjD5FGLXZMSVfHSAG1enA2Q4BBG2s5u94Cdy+LkeTStUusLSzS6fbm4tx/qFrwF93Av+vG/8Pu/K5j6v97/HVGz/76Rac/6zHNpfzXOEoAylmSWvpVp2B91QWltBbzSLfDpes3uXil5EgaM5nNiOttfDHB6hjpJVUVsuN4R14E4KSNFLGXrC4sMBzNWIhrlDd3eXlgWUwTzsoOt8uCXT8LsNLKkBtP6TyDw0P6e7v4/piPP6l46xueYKnbJvPQrcfc6k9CxKCsmGYjbu1a+ocNfFUSJxHjfp/ZtCAvSlrdReq1GnnhSAl1t0JpkkbFNMuJpSebjSnGGaLRo1FvIpynn804fewEzzzzJWq1Bnu3D1lc1nz6i5+nFWua9VBR7JwhETm1JKcood6Q9PdLfAWGnEdOPMT+nZvEqaIZG2RkyfyQeu0YWT4lSRRaG+pJ+LKrxUkAIhpLOZuQe4t0OY1EISpLXKuDnXJzb0AzKqnpBDPNmbgGpE1KWaLdhNV2ys5uzrgQ5MUQryyq0sE2LCRVBWnaYjqbsdBdIFIaIYZk2QTrU7SOWOrUmExKap0mvbrjiXP38PwXdzCmYM8JfC6YyAQzb0nyTFnqLtFpOiYSHnroPh596AE+/YXz7G7v0Vvo0YhiXJmDEBzfXCefjmiunOJMu8f6xhL5tEJayWgyYX93h9FowD2nT7F59BQNK5iRkizVKbIxt6+9Qufhh1EuIcZSekF9eYNaZhGuCq04ruTY+gaJhsqUDIYjZtMhVTnCujWee+ZZljeWePi+RyFKiYSk16hTlgU3trbYunWdvd0d4qRBq7bAbDbmqWc/x/G142xv3QoRtDLDFjHNRoLQjsrk5GVOpARaehSWRrOJ0ppeq0FZCQb9CZdvbLG5fpI3PPo6Xnj5Ja5uT3G+4vrtQ3p1QZYbolTQrsfkmUFqWF6IUcJRGDjsC9Kp2rC0AAAgAElEQVS0QZZnJE1Lo2ZANmm3lxhPMqQv6bQTJuMhQsYkMkGi2T+cUboxRVWRKE1W5awsLGFu7WDTisloSKQUiyuLdNptBuOMzsIC9UbCrZ0drty4zdGNDU6ePMOFi68yyCfEsWLz6BG0rnHz+nWsHaNUm9P3bKCpIYFiOmM2GhNHEVIF/ga2otYJmf9EaLCOosjQUiKVR/g4bNRsmGKXxqBNSTNu0Gw1MaMBznkiKWmmNfZ3g7C1sXIMoWBUTojTJpGX3HvvWZ5+/jka7QZLaz3sRIa4XjZhsCdoLnZpt9psNI4wyyc0oyZxDexawUKrgzQFzzzzNI1GArJJoy6IJiOMK4MzrzRYJbC6INKKJFHM+jOMk8xsyXKtgbeSrCpYX1pjOBzT63ZY7q0wmmQMJgNmtwtm2QwvBcZCojzaWx459yB7/Qmusoy2bzKbZsRAJ+ogcolVnqnJmZkJxzeOsri6zvlL15GxwyqPTiJ2d3f49r/9jSz0OkRRi/d98PcwtqDfn3F04yR5JZiZiqu3rrGysk6kUkQkqLUGDMsKaR291YRi4lDSY3KH281oNDUL7SZPvP4xOmkdb6HVXCCbwOWtqzz74gtM7ZR6o87R5RVevfglfOagAavdReppyoljayy2G7xy4RIvXb5Ibh1SSyISerU6zkoK4jkjSrGYTInxHOzdZmGpx8JKh9ufvkNarzHOMvb3DonLkheeuoGstXn0iddxZOU4H/nYh9k7GHE4ykmloxKWSze30UbQbtXJbZ92tMCxzRMMh1NOnjxFPanjbMXiwhLddoNzj76JS+df4mMf+UPiWpusnFIezljdWMFVkv7+Lg5JZkpGE0ESKW7P9jixHtNsd3j11jUO+lOWm21WlhdBJpCU+KIgEYArKfKMOIqJ8FivmM0s9ZbGVoLJZEy9u8QyTQ73dqgngvFsQlk4IgmVUcjYk+hVNteOMRlnDIb7FLMZy70Fdg/B6op8WpDUmsTCkZkxKxtHkZXm1au3ObK6wE5RIESErQhOu9KCDa1meEGqE5wweC/ptVrc2RsGt5D3eCdwQlAZh5KCOE6IpcYYS57PkCrCWEPqU06cPkESa27dvk0xmSEUGFuxt3uIkoper0MUacbDMdNsRhRFNOsJOpIs1nsURQXAaDyhJRoYG1g0kfc0koSNjQ3G0ymNdhPnCuK0yZG1dfZ2b+NsYCuVDtqtlLjuUWVCe2kBNctAGGylSaLgdHBOomWdWFdzkeFPmqtSEZPNxlCUCFGj8uCkovRQVJ7clEgjsD44qqz1oUm1KkikRCMDA4kAZsUJKuNJNMgKkBFSerwK9epeWKx0WBeiT9Z7vJMoHxrhytJD4TGiQDjDbDajk0pyU1GTKd4rLDAzhtJGWOnpTyY0G20wU0ojqExOs9mcrwgdOpKYyuEqj6sEUnlMUeIJsSbrDLMix+YZo8Eh7d4xLB5p5+EpFxhAxhqKqqQepfjKhOggGochjiJWllc4deoUd/b2qKZ9IiX54nNPsz3cJo4KmknK+Re+yMriIlGkUVEEwqPjmJpuomQC0gZgvqnQWob2PGdxIlRmx2kdh583iMkgsnqP85IkjkniCIkjMxVKSaIoDtwl6+YDDwdIhNBYa5A6Qqjg/JFKUJbByeedQ8oQ3RJO4L1FaxVq6itQUmOdoSgKlFDcnawLKfAOVBxh84LCOrrNOt5WCB2cQ9Ya0iRlOsuRWiFcEErcXLJQUoIKDpxEhpKAREVMjZnvIgPLSwgwlcF5R6xipBDzdjSJkJKqKtE6APYFgijW2NwSRWmIZ3qPFWETIpUMsdCiQAJO68Cosh5bWaI0RG383BhhqhDniyONjnRoZfSgpZ43v4VhLyJE8qQIIl2elyRpHaU0ZWlBBaabFHOXlhBI4XG+mgt5cq5jCEI9m8BaiHUYAEg1v795PA/vg9FJhgGhKQpefek8cT1leXmZva0X2Nt9mbXTD3P91VeJhOTLn/1D3vRtf5dYKFKpKKYzKN08omfxQiFk8hoDChmBkAhSmp06px84R0nFpWe+xGYkiZN2aLOzwekm0oQoTui1Wjz6xjfzpU//Mf2DA5zSPPiWbyGaTvj4H36Ag8khq5vHSLptrl+5wSNf983cvnie/Tu32L19OzR0L6yytLrIcHuX2XjEzv4O7XadmY1550/8FJ//7d/h9W/+Fq6cf5bHvu27ObLW5bMf+iBaBxf5ZDpFzgr6T3+Jv/fmr+PU5hL7X4x49P7H+dwrX2Jnbxczdbx44WnufeBRpifOsl6OEaWBaY6oJ3jneeVjn+ELLz7Dk09/kfX7H+DCMy9y885V3vfLH+Tnf+g/4dLFLxLtTkIiz5bI61uw2ENUDooSbQuSxQ6yHlNTTVSsuPj+/4dGY4kPv/df8EcvP0nfzKgnDb785acgUZgqOCu7K0f4hq//Os6tLaOl4jMf/SO2Dw9590/8OJlo8t6f+xme+O7vZ/Jrv8L7fv2X+L//RYKwbW4PD/m2v/12RFxn55UbvO9zH+PFL32efDqm12rzTe/8fqJmQiwgzwqK/Yz3/vo/52d+8ifQvYSf/Yc/xi+895fYPLbKG7/mYU71OnhvcV5y88JtLk+2uf/0/RzkO/zDx97B5/I2//L3foOj938T7/7xd7G5ssTIOo4v9/hn//K9/KMf+ifUHSQiyApaydcEB4RHo5hUBTvFhPuF55c/dZknFp/jh7/je3A2iMh/U5w5X53jL/NY/ixn1d/kw85FtHD9dPkYL1wo3vgqykBfdUHpsdUjxFlBp1ZjWG+R6IqGr9Om4uIrL9FZPsL66hp2HkPKyxIrIBGKNKlRZGNUnLCwlJAdDpgYx31Ji30zZA/DwFpmQEpKrZ7iC4sf73P91oDKFKSp5PkXX2Dz+HHsbI88m/Dq5YtUYoHd2T7OK3rdDZrNDlJ5yumIvHR0Yk+V1hC1JZYXl0l0YD+kyjOdlcRRSmlmocVukjGdTDn/yksMpkPi2KN0i06imIwPwiLBRlhnGY76zKaG++65B5MbTOVopzVQFdYLaK4h7m2TPXsZNclQztAf7rI93CNNIyJtQpzHSSQO4yccHExJawWxLHA6CY4bC9vjAxrdHkklSevLFLbCzBc2RemppRXD3FEYz3L3OCtxShIbtu7k2Eozm8YkqslhVlDv9BClY3YwRAhBVYVxTVlWZKZEZA5hHZGchCiVgI2VJsfXurx0/Tb1NGe52+azXz7PJDPUBXQSyaSIKQtAlyRJgReGssy5fVCQ1trEtQ7NSLC6uIBOOjQaEdnokNv9fU6duI/1lWX6e3vYeoeDSZ9OWmd3bxeUo91pUK+dYPv2Nnd2D8gqxeLyEVaPHEFLxYXta4hmwsvPPs36+hlq7YjJcMR43Gd/5ya+LKisJ58NWV5aIZ9MuX57C+sKhBX0FtrcOniJ/fGIOxf2iVWNh889TLS4QG+xw872FudffoHC5KHZQ3ukK5FlQSIFuJwXrtzGWkdCglrqUpaG2axgMrakdQnSMCsscZJSS4OLw1UOX2Q0aykLiwtMTcmR1QXe9sbX03pBs3cw5vzFywx8RLtRI26kbB/0qUpPrCWzrASlGc1yVJTSiATGCOIEzt3zCE9fu8NsNGSWldTSmLII7gQhPEpleB+xurpMu9Ol11vm4o3rNFJBsxFR5lOE8fRqmlprla1b+wz7GQ+cPsXZY6eIk4RrW7cozCGtVo/l5Ro3bt6kqCrS1PHyS+e5VrtGnEiETukfXmNjc5l6GmONR1SSSCi89SSNlKIoGE3GdFudsDiuHF4F5kR/cIhzsLTQIzcS4Q1SSlrNOt6HymdLYH1EccT+/iHJ6jLdhWWe+9QfMxzOeODee0jjhHKWI+KUtY0e92WnePD++4jrMVGkaNQTdg/2iHRMq94iFppilqG9xKscP43QUtJQMSJJ+dZv+EaGswmf+dKnyIsJkVa04jb5rMKqEXGsKF2GNYZ82J8DWj1KxuzuDanJNAC084JYa4aDA8bDEXmR4xRIGVNL6uR2jMIzLAvqOuL29h1Gs0NsJmjEdVzlWTu2wbA/5blXXyVNY7wUJGnE7sEhh4dP0lnsMurvooSk0egFobDWBVnDIXjk/tM8NR3QPzzEC0+lBLd2txlMdjhdBHF+OtlB1yQOSFoRo2GGllGoh51XmUutyV3O55/6AtXEMRiMGMzGeCeQkWVpqY33JceOnuWzn/88Sntc2eadP/J9FOMRtWadwXBKGsVMsileS6gMWe7QEQz6+zASZEYRRwopSrrtJs5YpNR0mgu4ouLes/dwbesKS0urnDp1FlWMWD+6yT0PPUCzsYQ1nu/61m/mt3/rX5H2FigLiy/zUN2dhJa208fuoxjlkJXY0YxXnrlEdgYEGddv36bZXmLUz4gbDd76hjcwnM144flLbJ5cw5mK0XQvQE4rS72e4JyhciVeWKbFhJtbV8gqwWAyQSrYfepldD2hJTOMLsgLwWScUE800uU4oUKNs/AUM09lDc4maIZ0e6sM+x5jHBWetKGRTuJlgRJ1XAk7N29Sa7SQvgqOAy9YXlqkP9xB65hsltFeahHpFtvXBzz8+ENs3T6glnSoxTmKhG6nh8kNmVBYF0C7SRy4Qp21FWzlmGUTILTUIUJcOmk0MUVFmWfoKKJRT8F68rygXq/TH40Bye7tA+rNlEatRn93SK0hiNMYXwU3QWUt9VpKmsbs7x9SS1OEEPQHE5rNGt12B0uFsYdY4eYtXZbpZIqtQizQliWNWkYzjekuLFIax2SWMa3G1GstluodpuaA8WAXXA1sydLCCtYa4kYNqRTCO3ScYlVg43jvEJUIjY62xBpDWWTIqB5+T6TBHeQqKhcEIqUligitYlAeqx1F4RDeYo3HCQ1V8FKouqRma2gp8b6ichUYiyRwiYS3SO+RwiGERiGpzIzMjsFFOG9QIjBnkCFCLFQcNvmeEHcTEElNpEFFEYtrR7EWcJrKg5+FhslIBHYHlUEKFTb23gURzDssob0smxWU2Yx8OqDTipDKkaaK0WSGROHKEq8NXjl8ZfEkaCfnYHCHEoFV06y3eOR1T/BQ6RCVYzrd5/rVZ5m5hN5Ck9pKwtHuAueffZJGqkjic1ReEMUxWlvAIGSEtAVVMaPeaKOtBBymKkl0hI4FZhYYX1oKvAsb/7vX7DD0EGgVIXCoJGE2nhLX6+ADZN07UMpgXIkxQcaJVEXmXOAPtjt4IbBVhTEFsU5wDqIoZjA4oNsO7YtZVoQhitRUNqAktA7nUhUl3jkiodEeSgt4gZMerwJTyTsfYmbzyNvdIIdU4X2B8BR3XUQCqipE5Kiq0ApbhRa+yjt0nOAJ7zkpFNo5hHO4eYxNKEmWZUwmU5pzfotQAuXAacJznGdY55BRRBzH4dpgbQBuy8AVuzuBr6UJg+EYKQVKSTwBGm6rwA3SKgqOsvCwQQbhSEhJvd6grIKgjBcoBFVVBjehd4GJ5e28ESk4u8NVJcz4tQ7cPRkMUOGcZIgr6ijB2wqFR1Q5l57/Ii8892lKV7DUWaDVLmFgkPUmaxsn2Dxzjlc+9zGm/QOihTWE9URJAyeqEDW05TzSGOGoEL5CRwprLUpZysmMhaMbjPp9Nh98kCvnX+GxJ95I3xmU0JRFhhj0MZM+eqVDa2GRJ77l24g+FTMZHdJbW2Olt8yNG1cZPv0ZXn3mad70rd/J2soq9z54junOTT76f/4GhRecfvBRWss9ZpMRDzzyGM9/7nO89bu+m/H2Lp31TRZbi5x78DFOvuXN/Mrf/yHKgxt88qmPcGv7NvU45i1v+gYePH2K3/v93+HyqxcYHQxg07D6XW/j506s8tPv+UleHE/IDh2/8j//OpEv+YEf+6/4wcfvJ/KaalyAthxu3+LTT32KO3nJ9njAZ97/fpaWFnFC8p1/5zsoTEUnm/LEo6/HiyAKZgd9Eumw2uNlTOeRs/ProAhcOSmJi0OeePvf4fqTnyFunuK7v+N+PvjR30dFEa5yRFKS1uosqJj70iZ14BM3L6O7a6wvdDm9uMrR7jK/un+bH/3+d7D6ysv85tN/yNn7HsYUOe/9pX/K6bVN7uzv8uHPfpIvf/FJ9rdu0T3zEK/s7fKFn/1Z0rTJYP+QerfDxtu/iR/84R/nqS98jp/YXOIXPv4B7jlzirPnvoYPffD3+fZvfjvHl44Anq1pn9P33ofyimsvvsq/+cBv8dKVITU7ZjEteeDsYxSzi/z0P3g37/65/5o3vOUt7O5e5NjGfXM5xDOdZewORqwuLqBEgM//F//Tr/GLf/9d2Kril7//G9HSBl6Z+qpLB/+/Hl/p5Pnz3Up/84675/mV0bZ/O0r4Z3OpRLjWCYEVUAz7VKYIa6+v4qHe8573fFVv8Pd//Z+959rwFi8NclqNFvfcc5ZvfevXsrTU5v+l7s1jZMvu+77Puefcvfbqvd97/fZt3gw5M5zhkBRFilQkWaQkitqcIHYEWQplMYCNKDHiWAFkw4rt2IIQ2DEsyUFEy7IciRItkaK4iMNlSHGZ4Qw5+5u3dr/eq7u6trvfc27+uD1DRSEFwVAS+QIPD2jcrqou3Kp7zvf3/X6+0ygiK6Ez13ttSoW0EKbgaJqS5xllprEtm2bDp930SSwQRUazsigKTWYgsxVh1+f08hyd3jyDWcqZTojRMTMNK/N9RlHEtz38CH/8hT/i1s4MSxiUDGk2+vQ6c9x35T66DZejg110VbHiCZJZTKe/yoUzp+h0eqwuN9hffxllBGtnz7HadYj37jGL6gWFH4b0FpYIfB9LWFx8e4PRwU1GuxZpGVEiaPoNZtEMx3GpZMne4IjQVQRySpEnjBLBoZVRqRw5K1DCY388o+EHDIYDGv4CtmrTbK9SlRbapOTExAlkST0VUdKQlgmjWYrjtPCw8dyAZHaI8kN8LyRJIrrdJZQFYGj7HWwRY/Qhh1GCEQ4HwzFGSOI0p9Xq1jGCUqOLOrMurIokSVnseyx2AuJpjnRcorQkN4pZrBlOs1ogySuGo4yl+TZvvXaRrXtbhK058sKgq5jKNLCl4mTTYFAURkKlaDf7dDs9jmYFtqVoNzt8/olPETYCivEEr9FkmqaIyuB7LnO9HpWom4Q2NzcRlSaNEsKghRCCLItxrApdxKyeOk1cuOB4OI7LZPcWH/jAv+TGnZfY3t2uLcJFyfb2PaaTIcPpGOkaFBLPcVlZWOHu9jrdTpezq6eRUrG/u8XBwS4HO9scHYxqC7ipnW5pkuB6HraroNK87sIlCp2ztLRCv9ui22lyd2OD+y+dZjw+wg1sVueXyZKaoTKZpUwmKQv9RWZJTKfVZW844vrNGzhuwfr6Nnt7O2zs7CKli9CGB17/eg4PxuRRgj4GoLq+S2VsqrKeeI6nCSsnlmmFPQCGg318x2HyamtGliIdi7QoyIoKbQRpmuE6Dp12l2a3wdVzV5ns7NOfX2L3YJPF3hJ7g0MuLp9gZXWR/dERnWaTbqtJgeHkyTXmunMo22E2nbE03+P2xgbLJxbYOxjQbrTYH4wQVcrKwjyOaOAqhzieovMSaSv8wK+jE8bQanVwfZu8yKi0QWtNp90lSWOU5+I6ikoKDg+PSJOETq9Lu90mSVOKquavlGUOuqQ/12dzc5OlpSVWl1eQliQ1Bc1GQDKLKUrN4vJCXWVu1TFdWylCz6tbtoocWwkank1VluiyIEljoAazBr0mt9fXuX79BZSwcVTAudNn0HmJVeX0Oj0qcmzbpyhKqBRZUdTMFyAp6+x6Eo2phMbxJMaUSCmxHRvLKjE6Q9mSsoSlbgdjOSx22uTakGb1dGJh8QRlUtLpNLBdmzSZIaVDVVrEaUySFmS6ZBynqNLi3MlzzOKYjVu3iPMpG5s72BJeuXud1BQMhvuMD3bJTUY8S7E0BEHAwXRIVWiyWUZlDOkMLMsmLwpA4zsOvU5Akdts3dtnOBqR6oLKltgNSbNjYVkZbhBwauUktlTcvr3LyfPn2Nnb59b1G9zd2mR/eMBCt0OeJwzHY5aWVri0tkboKKbRjLzMQNgkJuXSqTUeuPogdu4SKzizdomw2eL5559jcDCgEhW6LJhbXOTk+Us89czX8ZRLp9disL3FzZu3wbY5sdiinEWEQcl3fMe7uXzxMg8/8ijCpLU4IAxJnrA33OTe3iZZekRRRBwMRyzO9znRP8XtF2+TVwVHekqZW0zjlDyvIfyiKrF0gcTGFpK8cOj2FnnDww/z4vO36bR8tNAMj8a87qFHGO6NSeMM4Uk8TyBlXV+t8+MJvuewtLSM68EsSml4cyS5RJua0eE59WbS9RWObxDC52hvjNYCxw0ps5IzZ84hZEWz1eBgeERlG+bbPkvtOV5Z38ZzK3JTsrm5S1VqpuMJR0cjppMpWuvjqE69uQsbTXJdsLc/IC9KbNeugb1CkqUFtuvWcabSUGQJ+rjBDVEzglzH5dzlc1QSpsMpvh8QRzOyNEIphe+6SGmzMD9Ht9uuHaajMdKRLC2voJRCSoszZ0/hhi55UZKmGUVRYEpDGATMzXVpeQESi7l2iBKwtXvA7sEGRuR0Oj0cy0chmOstUOQgywJlh8TxlP3JIUpZ2NKmN79AScXezg55Vke+Kl0dQ4YFynIQQuNIiSMk2IJWp4MXNJiOpzWA264jS0LUIkxZ5pg0RylF4CsoDO2FBdymw+7OHpNRSpzm5FlJlWYUaU6WF5RZilSSMGigEHh+g0a7w3Q6whiJbzt4Th35k45DhUAKjWcMjquwZO08CcImURwxGo+J44hoNiZJJqT5hCwy+FLiOjaOtCnICTt9tIEojqmqotYkMo3QNVDXmJw4i+sBlSNRTkjgN5mOJgisOs5ngeXUG3mb49Y0XRwD0g3IGlStZO3asn2FpSz27m1x8uR5rl6+Qq+7CLLi4GALqRTNVpvB/jqVqGg02zXPS1iYvCCexHhND0cokjxHWmALhd9okcY5RVlhjmvFlFI4UuF6DgJDlhcoIcmzkiAIyOIZnh8iTEWFPmaPyzrKpSxcVx2rHhAEDXzfoygydJkiqFDSodQltq2Yzaa0O506EldBJQTWccTJsuq2uziKaqdaXiLtegiS5gWOI6k02MrCVja6NAhpUVnU3CGjKbXGdpx6XS4EpgLXdaHS6DwHXWG7DoXRaG0wRVHHLh33Nci4Uja6LOv1vNF185nRZEmGqQxu6B//vXW7neXYVBWUWY6lFFLZdRSvNLW72LaP3UYCx7ZrLpOySfIM23bxAx+da6RSdRmAqAWCb4CP6ta2vNA1n8gcM0UsSWXKWngv6s+TPo7FlVoDdZyt5jhJymMm3PETUDvCJKY0tUvKgFSKiooSuH3jBZ78/EfIdI5teSRZSaEd0ljit5rcevFl0iLj/H0P0OnME8UZlmsTtFoIXbcoGgs4BrhLYVHpgsD32dm4SU6FH/i4fgPXc9m8c5t2p8XzX/sqYSNk/e7LjJOM5uIq7XabvfU7FCan0+tx/uJFnn/qWRqezfzpMxSTGXvbe0jfZeXMJW6/+DLX3vQYNorb11/Ech2uvfEtNIIAXcALT34Bz/cIG21e//b/jP0vf5lb04KHfuz7Uc0e1vYNXnr5KZI4B2WhpKIThBwdHrG9f8D8fJ93vv07WFhYQDoO6fptfu33P0rrzBkefvgxfukX/xHTHfi+97ydbHMPb6mLCBS6LKg8j/lGh6ee/Cq398b83H/7s3zljz7JzFWYUjKNY6SyyaOYH33Xe8GUDJ5+lqzbpdga4lqC8cvXMa7CbQRYlsJYgm5vnmc+8yUuvfu7+Ym/9kM896v/hmcmw5rRVNRNikmacvGBh3nrt307H779IhNhEYwmPP6xj7J2+gy/8A//CV+9eYv3/8RP8z/903+AFhbrN28g/D7v/N738OnnXuQjX/oKn/3wb7O7u8n58+f5u+9/P+eN4pW7tzFVzpWr5/mBn/0f+Nvf/7284+JF3nH/Nf7ev/wAT1+/S360R9GyOXniHI+94QH2yooXX7zNyzde4bH7LmGVkt/88Mfon7ufW1/6AhvrW3zog7/F9tYdxuOET3/i47z+/Bo7exM+84VP8MZvewvPbI84io7oBg624+I6Dra0SUzF3PwiVxf6GCFQoo6QW1YNVv9PwZfz5zm+dfvc/3fHnxaKvtU59TrgG+d8A3b+DY7TN3+MumCg0obCsvjtTz7Pex8SdJbux7Wtv/8X9Xf8hQtK/9uv/NOfn7t8mbYloNHm2x+8jDQ53U6DtVPLICuyoiL0Q3TlonOIZgmOZx/D/zS27WOVGZUFRay5Nz1iUE7QVt3cUiA4yItj0cEmz1MoMnaGE4yReMpiFpUsipz1jU2i1CAsnzMnTzGcjbHdgKW5LjdvPMvWzj7KDlkKu9wbj9FFSjLcY2d3kyvLbXRyxNbuIUURYYYDQipKU5CjSfKMTqONU+Zkecpb3nrAk5++wyzyyNICx/dpBi3iyYTKhlLnDCcxiJJxkjOIITMS6QpKYdF0AvQswVIuJxdO4AcBuqroNBbwbI+jyT5ZnpDnmkpXFJZPv9GjyGZEaUmSVLTbTeSx7Ogon6qSeJ5PpiuStKLdnaMZNEjLnOFswDT2gCaOJRGyYJrmZHnJ+OigzpIjyNKknmxVFs0wYL7nsLGzj9dskmQRmBKMS6ErijKrW8qyCqkCFhoNNu5NSYTN6RM9PN/me97yALN4hp3ss9YSKK9JaipSXdDrdVjsdBkNx9x4+VlWVk7Q7y9x9uJl5rtdrt/bpNNsk0Qpe4NN1lZX8F0XdMXh0ZASTdAIcF0PWzncvbtBnpUMh1OsToe5+S6h7WFbhg99+HfxPZfvec9/Tiuco99sgrFIdcbC0iJXLl7m2uUHGY1HHIxH7A4OcI6re6dZysHOJgeH+2ztbjOZRiwttTh37jS+F3A0GdfOCAeKsmKWRHh+k+949E287tJFzl/+bugAACAASURBVJ85x4c++nEunD/LLIo5nI45sXyKNz38bWzc2aDR8Lh26SqrqyfZPdzHFDlzcx0C12E8m7GytMLte7sMJ/uUgLIc3MBnZ3cXz5G84eEH2NjYo7Ikvu/j2h7CUhwdTbAdi27P49sfewtf+uITTMuYaWpQAhzbwnMrKuPR7/cpdYawKi6cv8DB4RBb5azMLRMdDVlbWealG5vM4hnKs0iPYh5+4Bznzlzm7IUztFsN0qzAsipcv45OfvErX2eh02ESR2itObN6isWFFZaW1mh3m1w8c41nXniB0uQUBYxGI4TR2LaD77kAdZWwzonGU2zbQdoWh4ODegNbaPI8w5ga7iuEqAGaZUFeFEynEdFkRuAF+K5HVRSMDg5YXlrEFBrHU3WIIs2xnQDbkWytbzPX79f10FWBRT3pt6XAURbKqjC6xHclJsupCk1cZAhLUlS1xf72rVsMZ0OCwGVlrs/83CqjyYw0S7hy5kzdqJelVFIxzTOqHGSgEMqi0pIy00ip0KLAUPNhbCXx3XpBWcPfQ4qk4Lvf+TYO9/ZYPXWB3a09JmVC4FsoR7E72Maz7RpYbimElKRxRJ5UFIUAaWg25xknQ+ZbXRpNlzs7d7m3P2Bnf52725v0u526YnhyQJpFSBwunr/KLM24u3kLWznk4wwv9CiyHC9w0GikYx+3Ghpms4TxeIqlNCdWFzlzbg0hajDulYtn2di7R+CFSDPj3vo+WvqcuXye2zeeRXgWwzhiOBozGk3YOxwxizPWTq5xZu0Ui8vL3NtcJ9cWptI0HRtpO3z/j/wo9zZ3GBwc0ms0efxTj7M32ifoeBgTs9jvUyYFn338C9y7e5tXtjdIipynn/w8GS73XznPWx59lNs3v0Sj43Du9BXmm3N4XoBdSsJWl53DXcajI+J0Rl5ECK9FWRp8W7A7HvPss08TpTNmucYOJFVWN2S6ljludK0I3HpTaVmvjo8yksiQZxlJdADSYXF+hazQuIFiMhsThjal1uSZQSkPKW3C0KHZCHDDkCKZoVRFUtTXf5JOkLIugLBVjq1SvIYCC4RokaQFw8MDtCjZ273H1u4We/sTsryAysFYsNzxmY4Txqak23IRuERRiiVrkaoSrzIfK2xPUuQZhS4IGx5ZnBKGLsqxKcu6ia3b65Cn9QbVEmBL8FxJp9Wk1e4wnUYMRyOKsmBxfo6lxQWagcd0WvOBKl1vGou0pg+nSUZZ1IKU5zdJy4Kj4Ygsy3F9VX+PjyPSOEPaFo6tjj/jhiLPQQhCP0DrjMPRkHEaowtw7BBL2VhKk6U5w/0hjfYyC/NzJNEO+5MJQlp0uwvMLa4eR8lypLJxjgGwrmtjhEFbGlkZPAc8W+FJSaezhNdusbe3zd7hgLzUZHntaCqKjLLIqLTGcxyErBCVoTO3hLBcsrSgpMLxbALPx/dspOehHBflSJSo8KSDkBZ22MRvtRgMdhmNYvIiI85ysjwnSxLKPGYcZYSBh2fXjiSo8Jo9pmlJktcuMqkchFJYwsWyFJoCJQRCAmiavUV0aUiTFFSFqSqSNEVbGtuugcmzaVQ7nasKx+0QNDrMZhGCCl2mdWTOQFXWDJmsiDFGk0YzirygM98njqO6Zc1zQQqCMEQpid3qcOnC63j6qY/w/EtfwRhDnuZs7t5jY/s2u7vb7O8f0QjbuL7HrTsvsz8esbywWJeSSInWOa7vMpqMmU0nlCan6dXV2lg1KN1U1FFGU8eylavw3bBuwENjdA1EerV1TWuN53l1HEvUDWW242JZFkWR1q6hSmDZ9jFJURMnMY1Wo66qP34+YRmSJMXz6oKQsihRSpHneb2GLOqG1aoCYWk8L0SX5XFbnzi+p9agd13W/CNlqxq+bQkc12U6HtcOpWMXUJFn6LxkMhnhhgG24wL1RtNWCqMNhalww5DA9dBak5oSLIknHV5tWFOqdh+VRUmRFUirZppVVUWW5lSVwVHq2KFErQ+J2k0ohKivY1VH3oAaYG5Zx26jV5khFnlZgCVxHY8i18cth9RxRFNzL19lPVnCql1LeVE7z8xx1O748YRloWwbY6pj0a3mPdVw89oBqHUNi7ctSZymtLodWj7YYUqJ4ehwQOlJ3vKOv0LotVHSY3I0xG/18X2PvCywJEgM0nGQVo2vEI7H7t3n+cQHf5mVs1fZuvUcX//K5+gtnMD2XEQhubd+h0k2wg4lunBYmD8F6YS7L3+JuYUVuiunMFqzdvUKT3/yMwgpaDZ8mu0GX//C53nzu9/N9vPP0lla5fT997O7cYesMpw8e5bVE2tk4wHr11/hMJ5xWFpcec8PM93d5Gf+xl/j3fdd5MF+wMoTT/Kh3XVMoTECpC3YHexx6+4Wpy5cY840WDtxlhNnVpDKYesjn+DDswnT3SlveuRRPvhP/jk/+8/+Hs987Gu8srfNXKeL1/Dq9/5wwr/5lV/n1//wo/zM+/8mV7Tmh9/30zSeeYUnRnf5W3/jp/if//7/wuTTn+ehtz2GFha//YEP8q/+8OMcrW9z73DAUCrO3HcZSf35tQSIdsjqfRdpdkO4vsEv/eP/lbuuwopKCgSh3+K73/WD9IFH3/o2zlTwxX/77/kPX36Bt7/9XVS7OwyOBrzj+9/Lr3zpD9h+7iaeA61eyO/++9/lN3/lV/nD3/1NXn7uS8yO9slzw9lL53nnO9/B9mef5IkbXyctCkazEUv3X6IUPsuNgNBv8563vZkf+8HvZxCV/Mj3fRdr97+dVzZv88bLF2hbks9/7nHOnjjJ/Vcvs3r+BI63zO988N/RnA9wLYmnHGwh0ZVmMEwYHe3wgz/+PkbaZq7l8Ucf+hhPXn+RB69e5cUbt2i1XJRlcX5hHmkMllS1G9CyvkEZ+qZOmP8UjnrA9R8viZlv8rvf7Gd//uNPC0Xf6hz4f4pP9f9/AhD+WpncsedUHJPghMBUhlxa/M7jL/JdlyqaC9fwnL/EgtIzTz7x84vdDlfXTnPp5BI2JWWVEscRRZYwGR6wsX9E0AiwZck0nuD4HooK120dgx4hnu3zwis32B3NmGQ5R1nOji5IPRfZ9HB8j3bTZxZHTOKIo6hkpiWxLpHYiGLGYH/MJB0zTWvrba5NXddbZsSHA7IoYZIXSFth6ZxxXiCEotNfoec0WOqG7O+vM0sNzWaLfjtEJTMs1aTbWWAaJ4wOhkSb9xjv79JacHjhuRGjKSysrPHYA/cBGmWHXL5wHzraxwgotGCSWpRlDdosRwnFGCgcHCpONCVJkUJlo4yoEYAm587WHeKi1hodWbfZ6EpT4eB5LXIhsJWHNIZYlyAUYbeL43q0Wj0O9u8RKBfLcjka7zOaHDKNSyaTBCkFj15YJY5rgHqea6y6p7W2PVs1+8CSgizKCHohuohwXJ9K1HZ8yxEkZUmlJZWEvmfj+ga/6ZKXAmVZICVWbnjpRv1l67gKu9VnqdskLzJW5nqEnuTpl17gKDckRT1ZbnstcmHTbIYksylulZOnKStLbSpjkemc0tT2as/x8b2Q0eiQ+cV5XNfmYLTD/PwqfddFlBmD0ZjJeMLZS5e5dnqNUEmyvGYnrSyvsry4TJ5mHBwcsre7x+BgF5PXUbAkz5hNZhR5hZE18Bpp0Wu38P2AaTRjrtdDKckkjmg3moSNAJ2mvHT7BufXzrC9s8UsGvNtjzzI73zicV5/5QInl0/yyc9+hul4gNGCUTJDVBA4LrnRvO7SBVrNLl9/4RkKCpSqWSuOHSJ0iS1tgsDlvd/3vUSTmLv3tpC2ZGm+z2g6ZXg45sLZNZLccPHcGl03wMgGWZ5TVAYhNKYoaLe79BshzaCJ7zR47NHHmOv0efnWDba2d9m4c5tKWzz+5JMYS5IVJfPdLiQu9z1wkcBxUK7CFBaz2Ywyz1mcX+X6CzdYWOqzMN+n329SpBF5HvHxx7/AtQurXDl7nmbYZDyLkKLAsx2EhEoKwmaIF/rEScJkPGF7Zw+/4bK0tExVVdiOQ5IndDttPC9E2RIhJJ7jYUnJZDJjNB7TbrXwfR/l2MfwT0FSZly4cOW4sU8SZwW5LmpQrWMjbItOv1vXD5tXb6fimF1h1cBQWaF1zcdQSpIXGbosEWikcrFtj7UTy3TDFo4dEiU5k3hMlkbMd3scHO4zi2MmcUolDUKJWlBIc/qdFtoSKLfCdupqY086FGlCmWnSrMSqKgphqKyK23fv8ZbHvp2dvV2G4wFFZZFlBpMfEgQhg8MxWZrjhyFCmnozXgl0mWNKgW8LTi2cxLLg9u42SZGRaoNUCquqUG4TXRo0ICrB8sIip06cp9fvo6RksL9NVoLwXXRWgSspK4NJC6xK4nguJq+wJLi+C5Zgf3+H6XRE0HIpsjFZMcV3ehwNIybjghNrfZJkipQWR7Oi3pDqksk0ptQFQeAyGR+xubXFnTs3OTqaYHAoC0MhLBzhc/7cCUb7Ey6cWUOUBXuTA2wnRAjJpQsXeOSBh/CVoDPXIS9SJBmHh5uUaczV+y4z3zlJGDq4QYvJYMxCv8sXPv8UlWVQvsMLL3+VzfWbKNtjmk5pej5ZHCFsD8sY4qxkksXM9wMmUUQ8nZIUOZaumTpGSmzHx9gWc/N9mo0+ZZliy5KXXr5Jp9Pm4tnLFDricDhgNk0YDIf4oQO6jmWHrgIUyAq/UdDpdpAiZ3iUIiWYIscUU8LmKfIkRespmAjHbaALiSfalIUkDD2aoUelK9KswFiSCkklIDc5niOZm2uxtBxw794+7c4SaTbDUFCWFaWuKE1JxTFkV0CeF/VAqKxbhKQjieIUZStsx+PkmVO4rktZFhRZgqkKsqwWgeM0pbfQptSaLE3pdFo4to8lIPACsjwDBJ7rYoxhNosZj2coKZGOy/zqAo5vMzwYIqhhtaNJwvgoohKCMq/jOzV010LaitLEYAxSegRBkxMra0yjKSiF4ygGgwOa7TZ5POH+R97Czvp1Sp2TlyVB06Hf6dOfP4EuNIPdXbI4qd1USUoSJXWLWxLVQratcLBwXIHf6hA22syGQ7Qp8GwP13HxbA/f9fEcG8tolKiwKkmJoTW3iOd5TCZjoiSrRbEyIi1j8rQkTWPyZIZlGYLARQrw/SZ+o8HB0QFFUdUOF9tFSAvftRGujYvEtTSh16KyJVWl8FsNsiwnzzKqokCYAsoEaQRJMsPCwrdr1AuWwGn2KMuKg4NDSlOh84pCZ7hK1S68OMMkGaFnIyzwm02chkMUR0BJVsRYlo0QElNm5CbHmAqdFUwPj3Bdn0a3w/7+Hk89+RX2Dw+Ijga0Wg3+6JMf5szZK0ijGY0yfN9mazAiKwy+XXHffa+n1T4BJZxcXaEZetx85Tk29nY52NzHCRrkZUmuC45GY9wgIJsmOJ6DsWpENAaEsHG9EEtJpKwFIkvZ2LYiiZK6Ac0CY9Xf30JIJuMpCINlydoJYypc168b3rTGHPMtKlM3uUVJhG3beK4LxqAsSZ6l5EWBMeD7PrZSaK1BGMoyx/U8jjnVKLsWrSypjllMup5YlznaaNI0Ayo8x0UKWXOspMS2JFmSE4Qh4hjoLTDkxyJUu9lGHdeJIwSWY1PkBRKw7bqMIS8KKlOLQ9Kyjl2HdWuaJUTdTKzr4gRbKUxR86FehSbZjlM75LBq4DQVWld1e2upqeNx5ti1Vb9/HIs/ujIYY7BeFdWOW9Pi6FiwNBVQvzfCOt6kWQJpK7QxaGPq5jlZR4mdY0Hw1do9cbyxNrqsOXASlJIE7R6255NNJqyevUSj1+Vgf5es1MjKxbYczl97A1ZpIZse+/du0jt9FoVBoerorqlI44jhwTbCUziez/atF7mzdR2B4vnnnuf29ZeoKsHFa/cTzM0z3riHouLE2mlG44Tu0jLnzl9m+dQ5Fk9exHVc0lzjBV0uPPwgX3/8k0xHY64+8m187Yk/otNfYmd3AwuHo90t1m/cQOcliyfXCJtNPvWRj7F9sEs4t8B//3f/Dn/1wav8wNvexkrTpSoUubKY3tzmo09+GTdwSLMcy7JwpM2ZtXP8nb/1t/mJH/0Rzl4+R14UCAmfevwp3vu+/5r/8X0/wWNveoS3ZjO+slXx4JvPcuP/+A3ulAln1k6hXJfP//4f8NXr11m7cpEfeu+7OXv+HN0zp3jDylk+9R8+w19502NcfeQ+Pv65j/OJj32ahVOr/MGnP8W//sAv01xaQfkej55Z5auf+xSlbdNsNcmiko/+0q+xeHoVk4B/eoHbT13nkXd/F9F0QlnO+OH3/Bf82Du+k8H1e1x+6ArPbe0h187ysz/+Y7zrbY/xhsvX+OBv/Du++sJTvPH+R/njr/wxXemRlyX/4t/+Gp9/4gmieEQ2mWGEIM9zzpxb5uKlq/zOlz7P1uE9fumXP8Bv/96HuGj5fPCTv8vP/NWf4MvXv8an9vbY33qeq0tX+Ot/86dwQ4v3/9CPsuA1OJrO2Drc4MqF85is5HM3X8E1BtVySW6t4188x9Re4mCwwYMPXOOt734Xt155ge/8gXfz+lNneaC/wL528LtL/J8f+Rgv3HqB1XPXuLm3x1qvjbYspBDfGNACoqIWa///0JP+POm0P/N1iW9xwp/3gV8NB/8JEecvHG/9Z7yCbyk+1a+/es1FCabmTLzmYJKlIRKS3/rE1/i+BxxU/wKhq/7yCkr/+n//5z/f8R2k41AUMcYI8iwjzyKiJKPIS/b3hiQlVJaNVC6O69Pqtgj8JkHo40ufjY3r3NsdUxjQRpNjoawaopgXCY7tsdDvYCvJeJqgrYLAgYZbc10C2+coj8kzQXbcLjTX6dLp9CmmCadLj/NWm3ExJbckh3GEclz2RxMOJlPa/T4rLcnG7jaN0KesXGIdsJdKjC1xLRiNR4yylNRUBL7HLK0Y7M5ICwspJL7JiUYjVk+s4ofzZOmIorRo+A08pUgyjZI2tnIRWuJUJSc9g6sFg4nBcQOEKplmCWWVE+sYN3TwZEVogytsjMgJ/B6tRpvQqx1RQRBSVeB5IW2vRanrzVc8mjCaxeQ6Iy8jKuGS5AKBjed4XF2dQxvDYFahKwslwGhDVhR4boArJVkZc+HsPL6TsjMqaIZNkqTC9z36/RahF2Dyuqb3MJqxNOdweXmeYTRhOD3ElDl3NwaMY81EN9nLYTAuGEwTzq+tcnKuQ9gIeeD+B3HsLr25OUZRTik9LMsi0QKTZ9gSGk2fhmeTZQX7O/tUpiRLYw6Hh0hL0uv2aYYNuq2AlcUV7qxvURZlvTh3Qs6eXmMhbBNNxxyOD8mSmKPBHgeDLQ73t7GKHGNybm2tI0xdBWw5EqOps6iWhWXVsD4tNJPpiJ3tLdJMs9DuY6FQ0sNVNpWumFtYJJpF3LxzE892ObHSZ2v7gJX5FqdXl2l5TdY3dknKnNTkdDtdlGVzeDTkgauXWV44ye7uDsJKGRwkWOQ89tgbKdOMIk8pkISez1y3w3gasbFxD9d1aDQCxsMJ/U6LRx96PTfu3OHyyUWSWc7C2knW13dxfQdXNWg1enQ7PbZ3tim1xPc81k6uMJmOsG2XOMpYPbGMYymOBocUxvDGBy9RGcWb3/wYg51dlOexvbPN/t4uz924DRRsbe0Sdlu0mj7SksSziPn5RQ4Ptjlz4QoWJYvdZVQlaPo+cZESxwnKtrClYnl5FbBIophWK2Q2i5jr93E9jyiKaTZrt0UjDLEdSaU1ti0pjaYqDcpROI6D5/uvcR1sW+G6LkHQZDKdkmQJlq4rkh1HUZZQZAmOY2NBzZV61UnPNxbnNcjTIKU8hptCnKT1FNlUTJKcl6+/fNzeY7FzOGV/OCSOIxxL0Gp3GcUTzp45S2UkWWaI0qQG5VYCWxk8RyAl2BY4ykEqF6PrphmparaKqAwYySzOube1wfBgQJrFFFqjsOm1+nTbi6Rxgs5hOplwNDrg2tVLnD9zgYceej37ezvM97scjWbc3r9HktcsjDItcW2PwG+h8UijCY6qkFKwuNjnwsWLtPwmX/vqM0i3ju6IymJ6MMO2Lcq8AlTdPKYFgWdz6fJZZtmEJK6jd8urK0wOxzz88JsZjqco6XG4N6AzP8fS8jK3b++g/IAkjoknEULaSGnhuR6u45HndXtonKS4bkgSxYStJlWW8ta3PES/08cSBq18Frs9orQEARfOnePa6SuYNOfZF57lma8/wzgekpc5qdRURjO4t85wEPPOd303n/v9T3Pt4TeQJHD23BqLKyc5HBzw8vXnSdKMvBTkpcF2Pfpzp2vyhk6ZTGJMVXEYHeK4PnOLC9x/+RrdRocoMpRlhOfX0ZE8g9m4II1TGmGH5ZWzSAmWhNXlM0ymEeOjAzAZs6MRjVYP1/YRZYKyPXyvgQoddvcm5LFNkhR0Oi6W0IzHgmZvnmI2xXEtpOVw4dKbUJaP67TJdO0mO3n6NBcuXCBLUybjqBYcpcCxFJWAi2sL3LyzzXy/y617mxhhKAsDlXUcKeG4ur6uM7eVTW+uSx5nSMvC8SRJUjC/2MN2XHq9Nr25OZJ4Sp7FGFPQbHp4vlevYOF4kw1h0z0Wfyp6vT5HR0d1PXVR4AcuYcOvN4pSUFbQn+9jdMVkPMFyBIPBhO5Cm8kkptlpIqTE9z2SJGdhZRFlO7iuVcN2dYXtN+h358nijOHhESYvcV2PJI6wXBupNUkyxQ4Kzq6cot9oEjoN5hZW0GXCZBodCzW1OGQ7Pp7nYtt18YEtdO3EwCJo9nHCgKPhkNEspqoMWZETpxmzJK4bx4oCJRWOIygqaM8tEAQeB4ND4iiuhwNGUOq6QUxJWQsLRf39JixJo9kgDJtMhlMqY2FLiRGGSoMoNGVpMHmO4xhs18HSBmU5+GGb2SQ6blCsKA2URlCaAqNLmpbC9myEKHF8nzDsIYVNXmoqy6KoDGmaAJIKxXA8AFngShtLCRwvpNkKmY2nYOr2Pd9zKYsCIQymrAcfyWxEOpvQ7rToLS6zs3GPnb1tDgd7PPfi03RFhN3s0esu1QJdlHDq1GmO9jdZXexw8fw15ufPMddfYfXESYIwRGIRBB2uXbmPwKk42Nll7fxFZvGMldVTVCbH821sS2KpGo5sKgVC1mt4KZEV5EYT+DUXqxY3DFgSIVTtQCpz8jytHbbKRlgVVaXxXJey0BRFdsxlAo3GtV3SKCZstEDUwkeeJVjH7hhTGVzXoyhy8jwjyzKEEHieT1kalFJ1658Q2LZid/8A1/dwbIV81TFV1nEv13WxhERrg+O5UAnyPKvb9Kr6fqALjU5zhLKxfa8+3xgsW2GJ2rGlbBfbshGWIEqz+r1BYkt57F6UIOrPWB4ntQtLWgglSfOMPMtxXQfHc17br9mOpCzKGvQtqmNekqwFJlPzkyxRR/trPlv1mlvJkvVGUB7zzLI0rcs+lFWzuBz7NaC4ZdXcqFfv50h5LASCbUuOv4yOm+RqEcsSAqEUylIgbCqtaTbazC2s0p1bYP3lFxgMR6TTGCkknf4J7nv968minCqJGe4fcvrMVco0qq8rk1OZgoPtOzz9pU8wGh8i3YAbz3+d0WzE7v6Ag/1d3vpd38fqqVU2Xr7BlYcfI43HbK6vI7Ug0wVzCyssLy5Tmoqg1cGqIC9Lwl6TyeEhXrfJ/p07nHv0Daw/9zzru1tMJ1Pue8MjdFfWsAtNmk45ceo8585e5id/6se50F7gJ/+rv84b77+CkIJillDZLpbSdRv01m1+7yufY1JlWJak4fu4gSKdFdx33/30106CEgRK8vFf/S3W3vpmHnrgPEmW4jgOz3/yq1z98e9FHoxR3QW+/IUvUcQTPvuxT/I7n/g41slThEnGtavXmDt9EmUJlGV410+/j87hmP/uh36Ur5QDjKf4wtPPsrx6gmQa8fC1izSk4PpTT/L1m/f44lPPsLK4gMBi+ewpPvyP/gVveO93MT4a8Y4fezdP/eN/xRNH91h73Rv5qZ95P0889VUeffh1LHbaLAchj73uMh51o+MTv/6bfPTpL2LZNnuDe+g4oShzvEaTN7/t3ZxfW+XGi8/T63QwhcZVNsUs5vc/+ge8dOM6rdDj9x7/Qx567B28mMB9y5f5B7/4cwzcgLlM8OIzT/Ohz36OtdVlfvEX/iHLjsfudMY/++VfJTo64C1vfIxf/dxn+C+/4zv55Kde5AtP/AH+1XP83Pt+kl/4mZ/ki1/+KjduXGdjY5ul+R6P3HeV+1aWqCyLyyeXeO6lG9xLxvw3P/LDnO/3OL8wX0durfp6f80hc3y9/0WYk7457+fVZ/kWh+A1weRb/vszj2/lUHr1l/9EXPabPrDh/y4g/WmB6f/d45vG445r9wy8JsKLijpNcexQqqioMGwZwcc/+hm+57KL0z9D0/f+8gpKv/kbv/7zWZLVQF8FQlfEScRoHFEet3Zs7g44HE3J8wILQbs3R7PVww+aNAJF4Pmsb6wznmoCz0XritD18AJFVtTtTcJSLM33aAUhs0xzcvEUrpQMjg4wpaknILYhTioQNo4SVFIRNnv0koprqUJPJtyrUrSj6FoulXRJk5Kg4TGLpihRsNQP2Nof8fzdQ4ZFyZkLVwg7c9hhk/3xmEIb8jLFoNgf5oynSb04swM688uUpcAO2+wOthiOYwLPQ8+GxLMY6YT4zbm6VrcsULLEsSoEDcYaysqQFRGmBFHN6vy7yOn6hjLPibQGMvKyZJwYlHLRJmc8HTGeTDgYjvB8iV3VG8+94SGGeuHQaHSwKkFWFDS7J2n1zjOcThgnObOsotQZvm1hSk1WFPiuT5FnlFZOoyM4u3iSo8mE0G9Sloam57Daq2t3leMyjibYtmE8KcnyFF/A9sEAVZUcpA6FqRDUk7nzp07y4MUFlto+860OoFgKIB0NyHSTpbkWTUcRqBK7ytjcvEM2PqDfbGEJl/3dPdY3Nii0IcoTlFMvMF7N21vSwVQVTbe+yc/iCYP9/4VzRgAAIABJREFULXY3brG9d4PkaIjIUipSmoHNhZOLrJ1aYaE/z8u37nB0dEglBZZUnFyYY77bIgw9ZrOE+y+cwQ9chCnxbAdbBZxdO8Xy/DwL8z1OnTrJ6ZV5bNvl5u1bDKdTDocx67s77A4OmEYzFLB/OGQW5Zw6tUJeGcbTMb7n4gYBRZZzar7PNE744jNf5vylM4jSZRaPCR2fweEOmckxGiphmEZTOt0e97Z3KMqS6WxGXhSEzZDN3XskacTewYT94QGrSwtEszHdbptknPHA666ytbHJwnyXo+gIbQoWuoso4aCTmKLI2dmLmWZHnD11lgvn1tg9OKDTCChKzfBoilIWm3tbLC8uMzc3T+D6QMXq8gLNRgvf8XE9xXBztxaFlMOVE6fRSLQl6msNi739Q3YPD0lnMUJAFM+IZjG2a9Pv1mKj0Ro/DHGOuQ2v2jqVtOppuC7RxuB5HsISpFmG4zg4jouuDEVZ0Gy2yLO0dng1AwpTIKREVeCFAZvbW3S6HYqytsobXdXA3GNUpxD1VEAgKfMCISQ6z+oqYDRziwt0Wi129vbZ3N1l/2iPZhDU7gklKIqK/eGANBtzYvkCnu0xjfYRqobcOo7Cs22KokRYCiUUealJ06J2XAqBMhaWLbBrli6VraiKillRQ9PzXFOgkZWm050nSVMqy8IYm1Mn1piOp/T6Deb6i2ysb5NPDwhDn0A5GMugy5w3PfwwnVafzZ1dhBQ0mi6e5+N5DRb6S7jCIWiGzKIZo60jdJZjWRKt6wYRL6hvgGVhuHzhHI1mi8H+DovzC7SbHYaHQ+bn5xG5zfatdYoixnJhdXWR3e1DJsmYPMtZ7Cwwm0YUWYHrKOI0pzKQFzmpzikrwOQsrC3jVhWdtkKYMb3eIreevcHdjVsczvZptjv0uotoU1AWBXfv3ODezgbCddDCUEmFKRWeCMiMhXSbDHYG+AF059scHR1y6aFHKZKYV26/xCu3r6M8D0s4gCaOI06cmCeOZjjSI5pGTESMUoZ+r8diZ443PPxWZrOYPElod7u0Oy6u7bLQWyTNxzV/wwmYRhHtdoMgbLK3s8v6zjpFFSHEGNuVCAp0niGp2TdpmRNHOclMkRYZDT9lfi5kcDghyiqy5AjPVehckenaYaHTjGk0pek7jCcRw8EOpsyphGEWjyl1QRgGoGveVLsZ8uD9V+j05skjQ1RmGFPRbCqkA6XRmKqi0hoqwdxy3QA5m0VQGcKwdkIsLPSwhKHd9JFKs7+zS5FnVFXNmynKmnmmi5I0zXEcG6PrJjhRWcxmE3Z29snStI4BWYLpLKbICoqybseqMAyHY7AElajI0gzbdUijnCAMsCzJdDrFbzRYOrFEv/t/sffmwZamd33f51ne7az33LX73l6ne/ZNGqGREFoBGQgQyxibYIxTZSc2IUDgjyRFJS67TJGEcsqBQGyIXRVUMVsMkkVkIwmBQAtiGEkz0qhn6em9+97uu5x79nd9lvzxnB4wZVKVGCpUxaeqq293VZ97+tzzvs/zfH/f7+e7jnAwGw9RWjAcTxhNjjgcjUA74ligOhlFPsFXBYejIVvbp1nvZGSo5fWdMVjbwDaG2SzwpKyxgS9jQnStLiuqZkGnk+G9J4kieoN1onaPo4MDFot5aI1aHoRjLUP8xXkiIMoCT21ta5soSSmXwOgkCcB9FSehRctZalfhTYVUHq00nU6frNdn7+49pvM5pizx1tLUNZYg3BhXkySQJBHSRQitSNttGmPwApJIEmu9hHRHCCzSNESJIo5TvE+IeytUpubwaJ/aODySOImRQlLlC5wpSKNoOf0WxK1BcHYsCpypA7tOR5RFYMoZ0+Camvl0TiRjVjfXkVmbXrfLmVNn2T55io5qcfHik4wWBZvrJzCNZT6bsrJxglQn7DzwFEp0qcuSVqdNlERoHXNv/4jd3V1eefUFqqbg/IWH6PUGTI6OyPMx3nlc1XDz2lVu3bxB0uvipccsOUs61m8IGlnWYjGd4bwhyTo4b0AGxo+pLaZxJKlGReqNinqto+B09Sw5PizjWYqyNsRJgpaKpizA29AstmQGKbV0ywKLvCRrtVFKhmsgUtSNIUmCg6moKjqdzhIi7qjLCmcdUaRDnAuBlmHgUlQ51vsAo/YO2wQ4d2lqsrRFHMfBpUNgCDlrEc4TxyF66IzBNwZpPSrSqDi8BiEUQiuwljIvUHop0hEa34RSwb0lFSyj63ioqmoZObNIqYii+3y+8Bru85OkCp8p5zx2iYHQSob1EY+SCh2Fwg+0/MNzqgxteQF2HpoQQxRRIJFL9/OSIyN1EK10EArvtwcK4RBSYKwh6fRYjEbcuPoyhwdDXBOeb/PUQ4z3b2LKMV996UusnXuA/mA9QOitQdgG5xw3b13l6rUr7O/dxNY5i2JKPpsEl3UUceHBx/n4r3+Yt77zPexeu8xrr15i58wWk8N9ai/Y2jlFvz+gKkuUiLDeE6cp+6+8xGc+9iGe/Zbv4OalS9zdvcNjz76L17/wXIDIxynv+evfS3V3l+vXr/GmRx/nu779mzm3s8aTb3mS1Y3V8J54T5QmNM99iec+/zxTm/PjP/VT5CsneM+z7+TWK5dpD7rUJbz7vR/gyZM7tGKJNw50wmPv/Bp2Tm1hy4a004LZlJNnzpOsdKly6F3cpD1o8U/+6c/yqcsvE61t8J3f9s3cu3aZn//VX+P5Tz9POZ1z+rHHaXUd8fYWt778ZV6YHDG5e8ijTzzEK6+9wtNvfZbXP/s5fuwf/hSfuX6VF668zu17Q8a3dvna97yVtVMn+Zpv/UbmR0c4rbny2ZepTp1Erbf4X//ej/GVT3yaa7uv885nnmL99BlUloHWRHGM3Zvy+qU9DldPcHTjBsNiTF0XaKUpi4L3v/M9/PZv/J9UjSEvK4RvEMJSVwbTOLy1VNYwPzrmA3/5A/x3P/Jf8PijT/PCRz9Fv2P55Q/+MpdeucKj3/g+vv0b3s3XXniU519+mQ9++MO8+Adf4LEnHudXPv07/MX3vo+HT2wTb0RsPfMW/u5f/iv88H/9o5x74AE++vo1nv3Af8Tp7irRoMPV67v8zu99nNvH95jieexNT/O15y9wZ+86vV6HuW/oxhkW8YfyiVheY178qXCU/uSY1/+dWvTv/F3/hOf4t4tYwRH0RwW0Py4g/XGB6c/m8W+PuoFzjrASuPAqvMM5g3OWxnoWpaEsS2bzOc1iyMs3h7z8u/+SZx89TXvlBL3eyp9fQekjH/6Vv3/u/DaurNk/GuG9xpmavKqwOixS+0c581oQtzt0OwOyOKExNcJZbFNxfHiTF166jI7aSB8qRXUUIzyUZYnHkkSK1U4LKyXTqqKVas5srDI8npCXDWXjiBJNolOqpkQISRJnJO2MdJEzWDj2q5xbMtTRRxZKCVVZYLylNjXnTp3ElVOee/2QxkJZ1rSTjNXBIIAXV9Z59LGnycuC4eiQvC5RSqKFIElbtHtdnLeMxmM6WYr0NbPFMYs8J05aOCFC9aJ1RAqiRDKtJfOmzcnVFYyvGaxuYp3hcFqxtnkGZ2d4oKgFWRbjZBsvIhZljTANvl6AK9AiJq9rUBWumeK9RutQUd9UNgAbtUJLjc66OBmzmB8ymY9BxSivUDisNZR1E4C/1NTe0MtStCjpZy2aWuCtZXOlxbxowAcmVJ0foSV4JIV1HE0WbK4qhtOanZ2zxAimZUOaaL7uqfMoY7h7b463DuUtLRVx58hSRy3SJOXkapd8PMPWNZHQiMqQeMN4/5jhZMy0XNAoT7/XZ31lnX67T6TDpmM+mzMeHjObHXJv7y7tuGEljTixscK5rVW21ntsrK/RztpEUtPOOnhPgE7SUNQNVWEw3vH0ow9ijGE0m5BEkvF0Sq+TMp9NyFIZDiml5Ssvv0x/pcfpk1tIqbh06TJHoymRsqwPuqz2V9g/PKYoK5xzRFKztraCaBqm84KiNmilkEvo56UrN3jl6ivUoubNjz3B5RvXEHWFFYrBygqj4wkIiVaBO5SXOYt8ToTDWYP1mqopsHVNXXraWYvGWa7fvkJRG5qFYX19QKQkt3Z3WRusUpUVeTlhURZMFjk39w7otNt0V1pcPHUaVzTc2bvL4f4hhbVsn97hqYce59LVy3RX+qyvnmA+L5lMxqyvdknTFlXjaJqKuiqYLQpm0zGD1Q0iLxGRDNBtKUlaKRfPbrE5GJAmGe12AGTrOKauKvrtLloovJRIPEprmrqm3W7jXQAoOmuQSqKkDJZ3IQMnYXlwUWrJTBEQR3GYvHiDaxymqnBS0Gq3uHntJpurG2Ei6kL9tnU2xHaUwi8PzkrpNyB5VVXTODgaDbF1w/BwyPraCnfv7oFv6LV7GOMZrAyYLQrmiyndrIeWKcfDu2gNm6srgTtDqEHWMsbWDY0zVLZBaEUSa1pRhlIepw3OOwyKsjJkWcqsKIljMFYQJwotQ5yu02vTTRNaacqTTz7G6Z1tFtMRR/tH3Lt3hyQNEY6sFdOYAi8tVVEynx8zmk+IpOLiA49wYrCJa6Df77F/cMTxdBxchftjVJQyKwqyLEIqT7cd4xR4Izm1vYnzhihWXDx/jjc99RRp2mZ9MODg7iGHR4c88shjvPlNb+ErLzxPnIa2r7WVAavtLtPFhKauWcxqpIzpdduoSFA1wUllXEUrgqJuWO2tUS8KZqNjrBFk/SzwmqxkfLjPrVuvcf32FQ6mE2pjkcognQlRNOGJUMSRJHdzdvdukw4GrPYG3Ns74t7eAXt7N7l7cA+hdIC8SoGzNZGOSdKIyWSPwcoai6JibQ1EbXnskWc5tXGK47tHXLtxiziCOE6ZzUe045hea4V8kVPXOVVdUpqK4eKA0fCIO3evEqeGLNZ4ZHAwSIijcPisTE1ucqwzSGlxVYn1lqosqKuE0sRLzp7FOsWiqomjGMcC3Va0sx7OW5Q2rKyssihKbFNTGsPDF84zG81QSvDow4+gvETRYm4MCklTF6ysdpEaqqaCgI8J7YhZFOJdcYAxN1VDWTXgG4RzVM2cw/1Djo+OqJsC70KEJNJJOFQikEoiVURd1DRFRVUVDIdDqrwka6VILanKBu88cRIxGPTodtuhVW6+oKkqqqLEW2jKhtW1AVIolIgYj6acOLVDq9UljRPKpiYSHisslffUrqSqDDKOWBQTlJesdtYYL0pkpMl0m0wKWioODW9RxGB1i7KuOTg4XAL3HU4ABNA0AqQTxN4jVYNMErJun85gldFwSGNtcE2I0N6Fc7hl+1caKaJIUDeO3upJsk6LgzvXWeSBg1hWFb5saOo6xJOaBi1CdbxSkk5/hU63z3w6xQvCfiBJkJFcRtwjIuHBW5TyeOeDgNzuMZvPQ5y5MdSNpW4WmMZQmpoEETAGKgC1024fvGY+K0ArHDYwdKyl9g3GOYT3xEs3apR2yHo9pqMp3pYoFWPxFIsFSgqMcVhTkZcLslZC1u3Q3zhBU1l8bYjjiK2zZ1FxxGK6YOPkNpiCWV7Q77a5e+0yyAgtFWU5Znp8m/5gQJ2X3Lt7G1sX3Lz1OmcuPkF/4ywA5WzGZHKdlY0NQJG2MlZXV2inLXAeqQVJmoSWOCForCGKUxaTMVnWAgnWhkOIQISGHdPQylooGRrwlIxwDhaL+XI3LQLoGke1FOezLMOYkqqul4NoSRQnRFFCkiQoJSmL6o0hyn0YfqRi6qYmS9oUxRTnJe12B2csTdPgjV0KSjE6jjFuuXZGinwxI1E6zLhdgHfXTWAU6iRFxdES3eGRUYRpmjdA+loq6iY4R+vGIrSmNBWusQGcXDeYukIqBSpa1ssb6toQaRXWa4IjS0lFVQfnVbjHusAbqhuWlxTWBefgfXHSLYWwssyJ4phY/5HXKmVwLcmQKHD8UejtHx7WhNZBlF46lpAhrud8uCZYXp9ShlOnd34ZJ/Q4KVDCkaYxd2/eZDIekiSCfD4FYViM95kVQ8qFZdDvAJKs3cI7Q20cVVmzt3uH4dERTWUpC8NsPCON2yipmZcNV6+8QpK2eP3lS7zy1UsYBw+eOYWScDAcs33mAv3+CqPDQzrrA4TWLBY51698hdFixkOPvpkrl77I7atXeejt72bj8YukNw6oNLz33Hl+70MfQax0+Pr3vps3PfPUUtgLEVkhBMJaUJL6lVu8Vs759Z/+J/zW0S3+mx/6YS50IwqRIXTMm594gh/6O3+La5/6OB/8pV/kuRe/yuOPPkKSasgNUa+FsxaZZtStiGq44Bd/5n/kQ7/1MT74v3+QvcWC1cEaSkh+/7O/y8u3bmJlynf/p/8J737bM6ydXEe+eJWf/smf5Vde/CxlZdBace3ll8FrEtnwkU9+ioNFiROet7/trfy1v/JdbDWGnQsXcNZy595dfvof/Qz/4l98mKfe8izf/Je+gbPb58iE4EM/8/OUa6s8+cRFdCvDWkssJNQVthFcfPfTfNtfeAcrnR5f/NznaGRDlRsE8NJXfp+yySkrSyuGQTfwHWsctW2WJQ2Sfn+FT3/yEzz4zFv46Ic+x4tf+BgvffUS50+f5LF3vIv/6vu+j+mNXW6VBT/5wY/w3O9+nGZ8zM0rr7P32hU2NxPagzP8Z3/ze3j2icf5z3/0R0mM4A9e+T0+8o9+mjed3CRbP8F7nnqcL1+9wUJm7O6V/NbHP0ZejPiFD/06zz33efaziPNnz7GmE5QI6BOW14XFh87D/48Sb392j/8nYpX4E77+s3vcvzeFohOPcyHKW1UV1lQ0xjKdFxxPZuwPh4xmMxZ12D9UDl5+6RLPf+6jvPCZT1AOhzx4YZv+YJvB+uafX0Hpw7/0i39/o9fC2QWzaYGpDZM8R3rQXlA0jlv7BYcTS6vTpdfthFaTKNyoJ/du8vvPf5HaKRAeJQVeCCIRbLeNcWExbHVYXVuj224zmkwQXhALh7OKu8eHKC3C3+mIqi5xDuJUoVVKVsFaJch9xV1Vo7wilpKZqTDOk9c5EQJTLrh275i8EtRNOMQ1VYmOFVZGPPXEMzx0/jQqijg6uIutaqxxRJFAi4TD4QTranZOn2Nzrcflq9doZx1ObA4QQpIvyhCNiIJdOEkT7KxAJi1Ob62HjV+2gtKrHI52iXQLrMGpjJo2Sqas9k6QpT3SOCPNunQiQ9aqcKqPtQZPTqqgqmKiWLDaHuARzPIwMe0mmkgnyLhHp9UQa0NlM7AOLR1VXWNsyPDrKEZoydMPniGfj5lOhgznDXVjaHxJpxM2/lVVUNYzFJoHHzjL11zc5vrdIatZholSnnn4YYS3zKuGB06tYo3jtVuH4AXXD4aknXXWOyfJS8/+dEpZN5xaWw8LPwInoNVr0zhP1Erpr60RxRErnR5aqmAxNxZTFkS+YaWtObF9gp3NVQbdHo9evEC30yGNgx3b4VBeMJpOePnKZaJY0Vvp0O5mLIoSYx3TxSyASROF854zJ7YwzhEnba7f2SNOYpoGIqUoqpwkiTmzc5IsjlkUNa9cu8ZwOmd7a504ipjOA2vCVg7rPM4Jbuzd4creLlVT0e30EFKw2utSVjVCe6TQPHThIlev7KKiGK09Rkju7h1y6vRprFNM5wsa2zAej8JGRwd13XqH1pK6MjQ2RFOkEDz9yEWu395jXhTkZc7tvRtkWUyn3WNjdZVuN0MqyNIueZGzOegjG4dpDJXJORztk3VanD65Qz6rOXP6JEkS2s6ms5zxZBSs/O0e4zxH2Ia6zNm9fY+VlTZKRHSiGOMNXkkSJZEitMJIIWm3uyRRhPeC2SxAVyWKTq+HjhVKyDA9VYr5Ykar2wYXIjYBlBkgsPiwyY+TwFRyOJz3SwdbsLNLrcJG2Gtq16DjiLoKh7EoVqg4TCODtTRUCAvPG3BQROBk+OW6VDU1GE+336PVa3FwOOTGnVt4D0eTOXVRIIRnPB8TZSlb/U2OJ8dMqwlaedIooshLnIHFfEFlQ5TUidCapj0kMqKxjsYY0jihqqtwyIiCjd97TysKzTOtVhYYL42l3+2zMRhwcHTI/uE+127e4JXXXmf36B5SKwSG7Z0dRpNDYi1Y1DWlKSlMBU5Rl45ytmBrZZXTJ7fZWN9ga2eb2zdvMZtP8TQQKYpqQrurEUpga0u1bJvQUrG+vglesjbYZNBb5czpU4yPxlz6yiV2ds7xzNveyvHRhHk1IkoUo+GYd7/3nWytnmQ0G1PVNVorkiQiiTMa4xBakrbaRK7AVVPasWNlZZ35aITXM6SPmU4PwBtOnTpD42vyRc5ompNXjqY2CFmhCBPiWDYkKaFiXVhk5JkfHdLOEqoSSpNz4+Z1lLBYSkxdoVFYYdE6oTvoMZsdo3WCdBanPLYx+LrkmWe+lhtXbzEZDkmyDqPZMXkxo6gWHE8LjHEYD1JFlPkcgeThczukccqpcw8zGc8xpgmRWmHxzgCS2rnQypgJ4jR8v0hFtDNH7dosSomOWixyg5QJUiv62YJ+t0/dKFqtVeq6CnXLixpTQ6udYpqS0WSCw9CUjtlkwcbWJnhL7S0XHnqQm9duUNU1eVniXHAH+KUdO59VKK3JYsXwaEIUQ7vXQUaCe/vHeOmYjOfB0aUlzglwgnaWLVsOS7TUdDptjDFBtG3Czw8RNuRSSoQME1RTG5zzZGmCcJ7J8TiAdh0kUUKWJRwfzcjSlPXNDYr5gm63R7VYMB0PiURDuViwPx7R76+TpRlNWZFEKaCJkg6mqqiqmk6rRT9NieOMSEsSFaOkZG1jncaHGKZWgc0kZQSARIa1VTiUBxFJIp2Qtjp01tY4vHuP4XBEYzxmeSi3TYh7YSuiCNJY0zjByvoWrSxlNp1TLJ0mURyjdIzSEhUtZ6rOk8UxSkO3t0K7M+Bw/4BFUVDbOriSqgpnbEAV1IZEClpRhFYRrXabpNVhsSiCM1AFN4fWoeUKGaNcRaQFaZTiBXR6q1jrmcwWgEd4gbAGYxqq0uCqhlgZpHYIFGnaod3tcHRwSGMcKulQVQXWheZCZxvyRY5H0G13abe7tPoD6rygLmuEDDy40WKfxXjKYGWF8fiA3Ts38b7AScvqyhpVuWTTKMv6iXMc7t4CVbK5fZ7NtRM8+tibgoDnalSkOXPxKUxpkVrT6vTQcYrUGmMtSkqiJEGqED8TQiNkTLGYE8Waqq6WjD2BaWry+RStwgBKLtepSEdMZhOss7RaKVEUoXXYzzQmFFPEsaYqCwCEVIil0CoI8XtnHYvFDCUlaZqFFrXlhN0jiaOI+WxOmmZkSUJTN1hTv9HoFqUpCIl3liiKgpuqqol0gvUgVBi6WmOWa2aEUKH0wtkQqfN/pGlNSEFdFDRNg4g0SZaQxTFR1iaWiqYJrjOEJIpTIq0wpsHY5UBtGbdRQgKepgrtpgBKqSDOGYPzPjRCSoXWcfg/3D8Ae0ee53TanQBOv99GF4V2Oe/EG6+bpTAkAec8ZvkzCz+j8G+tscGVJEVwKvGHjgG/3Bd4EeJ2SsXhpyMFTWXp9Puh9ENqMJb5YkKi20RZyuVXvsDWyR1avTWEkBgn6HR7tAcrAbGA5KE3vZlyPmUymxInbc6cOUdvsIppFEJJOq0uxjes9NoIFTPPK3rrG3S7Kwgp6a2v4uKYfDZnd2+Xx975fh77unehDvZ5/fJX+cB/+O38yHd/F5uvX+XXvvQiLzz/JfTWJm2VcHbrJI89/ihxkiBleO/viwoegW238Knmc7/+G9yl4Yuf+Qz/6nc+zfHkiHyRs9Xf4rUvfZFf+tSnePV4yHQxJ64cjz/zNKNPfJL2ow9jFwU6TcB5nCn46P/y03z89o1Q0tDKaHfWOByOaWrD1uZJ/uZf/aucbg04cfok0kHz8uvMVzp84jd/AzpdptMJTsfU1mOyNeK4hVOa97z/G3n7qbMU1y5zaHKSQZ9//j//Y/63D/8SdbvHe7/xPXzgO74FUzecOLEBacyFZ9/Cwc1r/OtPfYTdcsHN3UNcWSK9prPR42g0DpB+7/mlX/0/aHc6FN4jC0vaUjjjwUGUaJQO935nwTuFQJJ0VxFJihKeh976dnbOPc2rf/ApVKfD6PCQra1VxsdDfuInfoLCzHj7N7yXb3r/tzA/GHLj1k10GnP+be/jdz/2SfLjfT7zmd/hiSef5fjoiGo+Z1hM+eRXXuAdjzzMf/tjP057JeJb3/dOHlg/wdHRMb7fodtb48zFM/ydb/oPONtZWcbK+TdaxGT4sIfP/J+qevD/v8cfdWj9cSrTfdHo/u/WGqqqYjabMh6P2b2zx43r13jxxS9y7+5rlFVF40BqTbfTYWt9jbV+l3YaU3jJpctXuPbyi1y/dZsIxQNnNukNTrJx8tSfmqCk/7Se6P6jchXWC6SMWd/YpKlmyDxiOpmSI6kRVMZiXcP+4QGumhFFESc31+j2Olx+YZ/DWc2gv7LMk1cIRwAHG4vH4Sxk7RbS1hweTiirmrqokZXCGo9Ektce6wxRVKIjxSI3GOtp6hJEYKJY4TDOIqOIWkekVVCLrQGZSG4ejsFrjHNhiiagmU+5d/V1Vk+dw0zvcq/cxxYlmyvrlLMpjRFATNU0VN7TsgmuLhkf5vQ7G+yc3ITyiIWvSdI27U7GfDHECE+aDNCZR6UxkSjZv3OXeL2DXjkBvoNpnUJMC5oGvExIOh2cPUKqPmkiGQxWKBaWyWhKZQuQFflcknlP0czo6wYrQkvdWi/GVFU4LHtLYxuefWCb2SThuTsa42Zou8A4i4oEEsdGt8OiiclzTztuk7sh0gUL8+mTa5xYXWc8bmhlmvHxGI/igZVVoOb0WotequhEGcejAmEU2xsDVnoDXrkzY2elj80LvJLobsLtRlLFCXk5wwvLcDRGIlhUBePRBBl58rIIJkVraSUgvKFpDOuDARvrW2EjjcO7hjjrUTpHZizKKoQ3ZFFCYYK7xTSe0XTB1dt3GKz32VYnsc7Peow2AAAgAElEQVTjLQz6fVZXVjk8OuBgPOH97/g6hKmZ5QHa/fCFcxxPJksbd4hcWWu4fmsPX4VNcK+XYfUmUaRotVoM+qHR6NLr13AxGBfEgjRWJElMlsZ4ZziejolVRCIVjz72ACur22z0G4igXsxJEsVzw6+y2u0TmYjh0ZDNzRN4Z9m9d4Bt/DJ+ELLQXoO1Dd41mNpxffcutlGBk6E9/X7gXXjvWBv0+eIrt4KYUR2wtdEHBdvba5zeOs1LV14nnc/oJC2Ejjm3c4bJNOfwYMRsVuCcIU4Vp05t0047TBYls/mYVpxQiZK1jTWe/9JXyfMpJ7a3Obh3yNlTJ1EyTEAkoWlGCkE7zdjZ3uZ4NGKR58znM1qtLYxxAda5tKovpkF0arUyXB1EKR3pYOs3NU3TEEehNaU2BqEkdd0QRxGNtSgEUZIiraIuG7QOz1UUFcY64iRFheqqYARW4RB7X2iSMkZo0ChEVbPS69Ht92mahrXVVSId020JdroDDg9HTIsRs3rBTv8sVsB0NiZRmsViTlFYtIpJhCWvamKhkF4S6dDciHGkOqYyFVVjQSi809TWoV1DomM6SUK7pdGmQmhDUwZ+1OHBkDu3dqmamvH8mHbaYlEZiA3tJCJyhkE/Ye+eoKossQqiXqJaTFzgQ41nc6bFjFU7oK5rFkcjrl2/jiGnMhbvBHEiUFFo3qqMwjuB8TWHkxGHXx7RbXdY6Q8w1rB35x5ffuFFkiTi2Xc+y2c/8zvI2NLprbK7e4teb41XL73K17/j/Txy4RGqquFweMTaxjqnT53nYH+Xw+EeopgimhqBo5jn3Mgv8fCDT6Jjwb07xyyKBXk1p375RWb5nEVd4oVBCQ06RBqLpkF6QTeJeejhx7hxZQ/XzJmZBq0iZoXhcDrF2gaLZTyf4IXDI4i9RKKx0nL75u3QGChnKBFjC4u3CXWT8tnPfwFdVzz48APc2R9ivacsofGWXrtmbbCBLitmeY6QEUmS0B2coq5yDveGNEbQaXc4vbPDzeuvgY6DiCM8XoXWMxVpohh8bWlqifEG5xyNlcwLQRI52pmg3bVYN6Eou+jZgkgmWOEZTodYK+mqHiu9Ve7e28dqEBryYsZXX72ER7NYlFy/fhsLNI3FGh+uDykQKkROYq2I02XTWTplPJnTRhGZiKSdkbTSIDaqEJepK0NTORaLiigOrUqtVhamcmWIvSSRwjpPHGvKoqIug7MCIUKduDFMJ1O0VHS73XBolLAyGDCbF8xkSZxo6qZmsNrDNSVNVdDOElQDXho6nR6ZSgL4P2qQcYvcjpagfM0gXePszknMrERbg4jC+yx9igW8bSiLHFyodw9xJgfe4BqD8w1ppPFCgbcY75bInYjW0t0C4T10xoLWNKVFInBWonzY60g8hQm8HmcCXsCaAGe2BIh2JgRIh5Q6cFoI/D8pBcKq4L7Qkkha0ApqCYShipQe6xSICJRE6XDIdt5iHQghwZV4GWJXSxwodunkqOoKrSXOhn0cy9p7JwTOAgaEVkHQ9orKe7SMmM1nNE1BGic0TeDK1KYiS1soJRAyODhrU2NcAz5C4Hn5q1+iXkzZ2txi9+4t9vZu0VRDtncuMFhbQ0pPq3URi6XMZ8SRpyhzZJTw0BNPsZjkKB2zmE2J2x2OhwckKqFoGnQkETIw+lAh6iSFAi+wxhMnCmvqUAEvLdItHeI48qbCexGiUUou424ej8Uthx5KK3Cacimk1XVNt91dNrUFJ1dVN4EfZA2OIIhYG+DWSRoD4V4Wxyrs83RKYw3GeLpREpxGdRCT6qbCCRFEOxfiE03TYO39Nrhw2GlKg7MChCSOE7y1eGPAhcGYdhbpPA6B0mGa3jhL4xz9NEW4ACbXaIzN8c6gdWgdlNLjlhwkpMAsIxwB/ht+CQVRpJfNahoZabwxKBkGKGLpEpJCBgcRQfyJkxSzhHbHcYwjRNnuQ7zvu27wwclsXbhPumVrnFi+v/cPeHp5j1mmUILTyS8dTEKC9SGOp3XYRyLZOX+R0xcvcOUrmmw6xHnN9de+SlFUTBdziBOuv3aZ3upZuu0WsdYBWm4Nti5QCurplKauqJ0lrgu6/T5PP/Q0Omlz78ol5rvXmKuUk1vrHA2naBWzf2uXTm+N9c0NTJyxurPN2cee4B3f9s08vb1FP435tm/5Fg5fusLXXHyc5uCYV+8esLG1yZseeYwf+JEfZPTqZfZeu8bRvQO2HziLFOH+7r3HG89o7w6XnnuRf/A//UP2Rdh/zDwIoTDG0u9ndAcDPvf85zmsF0RxwjQv2Z3lzOYTPvKhj/LuRx4hf2mXt37ne3Ea9j7zPC95RyttU85mrK+scnplje//vh+kvHmDJ59+hHhvwq/91m9TNsc8cv5R8lTz3AvPU0iQVY4xFge00ojv+Yvfxuc/+Qm+Mh7y+M4J/tIHPsDP/d2/xyeuvMIvfOxfM5wueMc3/AUGZ87i7h1w390HjshDMj7i1uc+y8vTXeaV4JFHnuHTv/mb/PXv+WuM8gm/8Csf5s1PPcRv/PZvIhNJu9/j5KNv4YWP/Qba9eivrTEeHrGxfZ7x0QFleRScrDoUVzz67Fupiobj61/lP37X+/jxn/hZnvimb+LG9T0u/d5vk3QG/Mo//1VOrK1z57WrfMP7GsRwxM07t8m2TvLs17yZxWhGWVcsFnO++Xv/Bi/9wSWOh3s88q738snfe4W//f3fw7/69OcppiOeeeQbefnFV3j+xS+ye2+f7zqzQX9ljZmvKcoS03FELHlhXv6hI+n+F2J5bfKHcax///h/9/ij7573nrKqyfMZs+mcfJFTlCVFOefo4JDbd25zsH/E4eEIrQyDQcb7vvFruXDhQbLW6htrKwS3pF+uA6ap0bLBNgaZJDQlLIr8T/X/8acuKE3GY46OW7hmQdUovG9I4pgsiRlOFxTxCVobXVb1CJOPOdjfY15X9FbfTc8aLJJOb5VBb4X5YoQQoULVWv8GJE9qgZSW/emYeVXTFIZWrDgeFVTOB+jksorYIcjSmLqRrHS6lNUMqVbDod85UCBUBFqiS0dlKiKhqSoLUWAVSAFaihCPwWKainKR86UvPk+cZUzyAmHN8vWJ0LokJWknIc3alFWFkoJ+v8Vkcsh8PgTdYm19QF7PUJHEECZK0UaLewf7mEIwmk7ZXLMUZcPWg1+L7q4hkozJ8WWsE2GjWhesDNZx9YhbeyM0Fi0aFrMRKlKkkQyvR8WsZZbjyYgoW2G91WExdQzLCu0XeDvFNoLIGpxrMK6kNnUAM8YRStX0uxJVZezePaYdV3QTgRMWsjbnTmyhhWLic4bH96gaQ+Mibh3OOJjfJFMldSMZzyv6/T4Nioun1hnlglY3pRVNsS3FSpoS24Sj4zGzeUEcCZSw3LhzF7zFYxiNhpw6cZL2ep9IaxItSJMIWzvyIqfd6izhyxZrcqSzgemlNEKoAHR0Dc46pIjweIwpuX14hBOQLfkOUsLqoENmutzYvUOUJXzLu99HP8tYzAuu3rnHt73r7fR7K1y9dZNLV1/HNoY47jDo9ji/cxJsgGcO+l3iqCCf51x8eIe88Fy9foUsa+N8ybwqyToZxlRUNkQja2ODiCEinK05L9aJhOehc6eI4rCBaqoZV6/d4ebt22wO1lCR4vy5U8RRxp3dIxwOX4VpmvWhtlgqGQCYQnL3eBQm+tIxWRhkFCGcoaxyZtMRx6PJG5/rfDFlz1ZEnMSaK7TbLQYrq7R0zImtTY7GIzK94Hg6o2wqprMJZ7a3ME2NagsG/R6Smlarx/luG1uB8Q0iblEZw+HxkNW1Pv1O4H94SRDBhKdextmSNGEynVLXFaapie63y3hHu9UO7V+lpd/voZSiWTrshBA0pgmulq4KDS5VHez5SpK1WpR5EQ5zWpIkKWXZ0HhLmrUp8pzxdE6r5ei022itw2bK+WU00qOlxovlIQuJ9DGWHOsAJ0h0ysZgDaEsG2vbgWdTLMjLKsRmDw9wJgc0i8KhY0enlyDQzPN6WV8NvnJYZYi0pGrywBhxKfNFiUTSiiKUbsJ9sBacPLHNvcNb1MZjpQqCexmYdlKKsAxEGc7N8ZWHtuHi+Uc4HpVYG96fTtpHVmA8tJMWuS/BC4bzKTvOklcNN27voiNJt3+Ca7eugvdEMZimxogImWoab1BC0jhLr9fBS8O9ozt0Oy0uv3yV2XzOs297K9p7tBA4CYfTGZtrp9kcbJDXc3Si2dk5ye8//zym8RwfHOErQ6SgpRTWlGjdppWGz85wMmZzfYPV9S2Gdz/PQ489xZ0br1HbCXkxQWpJHGvuD+GE9zgDRClCt1nMxRvA9ZaOGU8TXr92FakD+Ln2Du81XjoUkshJTA3eOJr7kFiCkyNyKY31zCeWYnqTt77lCWqjSFttsiZHSMt8McY1NYvZnMp78rzk7OmznDpxknv7Q67u7uOrEdsntyjLCWUZYiBIjZApSRxRVpLhUU63J8CmYC2Tw4Zy2VpknUFFAp1FxHGLRXmMksE1UpYlTR0cI4uyom5KKltw/vQDHI+OaYRlpdPm5GaPo8Nj9keTcMCKE+JWF7+YY43FOAKoV0iUiMALxsczykURotE6ReuYJA1ijcdQlZ7eyoCmMtRNjVSKTqeFFCowhtIEYy2dbvsNB55cNmp1+zFNY8gXRdhQRRDFQYjL0pQTWxtMJlMOh0OODodY61hf63F8NCSajjm9s4UXnsJ5wODQ4DVlkTNXM0QZ4iiLPKcsJ+TllPV2h1baw9U1Td0gpaCqHVoH12BdBdd0HMVL0RlAIK3DuiYcipsAzIxIUR4whsV4RFnmGFuBETTewZLB5E2NMgYnFPY+D8aBEhppXXBGvHEAF2ihkU5CJJC2wrvgaNEibP+8UqAkmnBAtsLhrccbgzMVVjpKY0An2PsHCOswTROEI2fwNrhgjXFEUgAOrT2N8ygBVgmiNEEriTUhmouxKAlCVkgkwkc4a2gEIBRxu01d1jjT4NA0VQ3eUcwXy3t2AsLjhWI+mXD91usY59BRSic2TCZHOKuYTBaY0rG1s01L5LQjTTGf0epu4BuLlA7ReOKsz+nNM6RZj7qowkAkiiimE7JunxtXXqXVblE4xYUHLpAkcSjuaAxS6GWbYWDpKRkGFHEc400RHN4KTGVxTXA5RXGyjE8bEMFpY60jjoKrpa5LnHEYFwYfOtawPCwoFSGERSmwhjfG22Vd4RxEURwEES+xVmIbg5Ah5iqVII4iqqUAp5UMLh8hME1DpJYuIV8Tx0loSiM0mpnGhOtNCKIkDiBvtXQJR3q55142rIllW12zdBUJEe4HSPAOY8IL11ripAreVRmcxEKEhEGAad8/1AYxCII7SUVRgPtHMSEWp9BxjBBLiLAM664UEqk0XgQnHUvxyBi7dDaGCLuQAuHVkrm0FHCX7CWPD87j++1WCLwLLXXWWu4zVLy/L0OIJZ8qxJBN07zRbjcdz6iqiqPxHYgTsu6A6uiIVnfAnXt7nLh3jUXcYufcRfLpmBef+yyXL3+FweYWxpRMFlNarYR5McM5S5K1WdveISmOePXqK7TWBiA0URqjWx2izQ2yzU12Hn2YCxfOc/HEGhtRHEShxmDx5DblB37ohzj30DbFl15m8MhjfE/nzZTznFNnTpJVJfneEKqlEOx9AMlbhxKeT/2zX+bF1FAJSLKYZlaEw6wPg77h8SEf/1RgCLVbbVb6a8TtTVa3Nti9vstNUfHf/+TPoOqC79Vz3v8d38qHf+7nuOkdbec4deECP/K3vp/eouLc1gbphTNE/S7y0ZR3HdzhH/wPP8HPfvgjfOIf/xyHvYQnTp3h927cwFlBTENZ5vzLD/0qL7z4Jdr9HuUipxnOePKZd/DcjT3m3Qg3mrK5fYKzFx8lv3YTZwJI37uwh+mmXb79B3+A3V/4eQ5HU77wwX/GhQfO8+pXv8jPf+bzvPzaZT764Rk6iUFbuv0OzXBEFEesnz3L13/TB/jYP/1ZjkYH5NMpIDHeI7wlbWdc/sLzmLxi59Q2H/rQr/IHf/Ap3v7dH2DFKt4i3oEfj9k6tcnm5hkEDQfDCVcu71GUC/72f/nDKBNz684uB2hyY3nhtz/OaGIw1vDdf+M7aSfbVNM7jI6P6A3WeOm1Gzgb4WvDs1/3Pl68fUjn4JAnv+ZtgFi6Av9N18wbfhp/35n274Wkf5fHG1yk8CcccDQr+cpLr3Ln8pfZu3eX48mUqqqQhPVoY3WNtY01trY3GQw6XHzgAR5++EnStPfG8EZJHRiT4VZLXRmmo2OGxxOm85qVdkbTNJjqz7mgVFqBsZ7FbMG8lvQ6KXVpoIFIdlDJKmI+omNy8rpg4RzDo0PuHR6wmm2T9XusFA2LKqcsC7wIEGmUWt7EIMsSTG3oDAas9hNu7t9DqWDXTnRCFFfkTVgw8hJ6nZQ0jUgzQV6UFLZk7iSNB7ykwoGEoqq5vzYbHzZpTrCEXYkQnV62zUxHI27emrB1agfrLMqBcY4kEtS1RbYEcdImbbdAauaLOZKKIl8gfEymMqaLBZNiQpq0iKTACYnKgkX9cNzQG/SYzu5iRMS5s2+jqubQ6iFnKXGyzmJxQCp7KJ1iqg6mmTEpGnpJTK/doIWkjWbcaOIY6soiVIdBp0VRTKmMwlpF2dQIMaUsFJGUIWJUTlE+VEU23uEbwwOn2rx2fUzZ5CwstPodFnVJJ5NIoRBxSgVIqZdOHcO0KpjPc9JEcJQ7Vk9ssb1zgsODCUejMYtKoq3EiwwiRWkFN/dGSKWJlGClFZO0NFKmtJKYSAla0nL21Glc5MAGxgMCarNA4kNTjfAB+ig0SgmUDy4rgMo1VK4iElGYxJsaXGgM2VpdY6XbRQqJ8II0Tui0MnZOnuCRi+fYWukwngYGAT4Imeu9HuLMKaw3eDRZp4upcpqq5HA84sLpM5ixJ+1mbK1soHXGK699gfMXzlJZz2zkKV3DSrfDolR0uxnK1PS6K+SF4fDoGB1F3N495GCY86bHg2NptJhgqppT22s898KXWVQVWbvN3t17nDl5EiWhbhwQNnr4MK3zDmQckbVT7GKM0hIhDK0oDQfZsqasGlo6WPiNM4H3ISP6gz4ra1ss8jFvfvARYqk4e/okImpxaXKVSTkmlQnt1QxHw/H0mG63TZK0ERKipI2MBFnWwlU1F7d3WFsbYETE6VOCu/f2Sc9GpHGG9/aNliK1rPROlKbTbnMwX1AVJSqKwqTesQTehvrjyXhCmmUIIVnMF5RVGQCmCCbM6Pf6ZGnGfFknXNbh8Gq9oCwrfBJAmwhNWZZUtUHI0PD3f7H3XrGWZud55rPCn3Y8qc6pXF2pq6sDm1SzGUW2RCUrWpIlWTJGJiwLmAQIGAgTAF8M4MFcDXwxg8GMjZGsgSRLkCwqmJZIm5JFcshmajZTt7qru3I6eZ8d/7TSXKxdJQsTAA14MYC8gQLqosJO5/+/9X7v+7zeBZwMaCkJy6ph//hwG7eyzhkIIbq9vCX45VYz0WiVMK9qamej40hAW00JosEQ0NKxutKhMQZjKzQZ64MByMB0OkVoResMad5BaUWvO6BczHFtTiIDSmY0jcU4mM0bDvcnmCbgg0MQaL0DpdAIBp0i8tdQ9Ac9FosFs4ljUSW44JDC8/SVp/DJgMnuHvOFZTydomSHpnHMpzPefvsas+Nz3rrxNlLCw919rFXxBtgReCMQWR4Px8HjnEJLhfWWqqnpdAtu3rzFzu4OJ04eR2eKosi4cP4SSaG4vbPNdHcE/Zrnn32BvFNw/cYthsMBxzbXmc8WtHXLySdO0fohk8kI33ryYUGwAqZzqtazaBt6gx5bx08y2h/hwgylaqxrI7tBJshE4a0gz3tYl9DrrlNXLdP5mE5P05qKqnbk3S4iGFwI2ODJdQHKYtqWxjqEd2ysruCcZN4EuoMuvrUYrxFBorXk6tWnGfRWORxNSbRC6YSUgiL1FDqlaiyGeF144twZ1ooVJpMFKhGkshO5XTrjzoM79FKFt4YkheGwoK17TCaGyTyygoq8oGwDBMizHCkSnG6xTmO8Znzo6RQdqspTFJIQHEfjCQvTAIJMRWGlV3Qp65KTW8fYPDZgtVMwXdxHpQmnTp2irVp2ncEt/56SGr9sjwoBqrLFNQaAIk/pdTtknRStE9IUXONYXe+zfe8QZz060yiVEpZC2GJRsra2wtr6gMl4znw2o6oadKJZXV9jMpmipKLodDBtCyE6Gqw1jEYjgvec2Frn3v0dgjP0e0O2jg/ZPzxiMhthnSVVAm+jy6hqPIvWYmZHFGmBoKEsZ0jnKAZDUp0x6A9IZIrIPK6qsVJijCEXDmtbrG+wzmCNxwdBwEUR2ts42xiD0wrfxmuGrGrSZaV5EPGQrbyKv1cSJ6NYZ1xAGYu1LU0dw6RS6ujSCAKCwwVP8J7gokgkRRSPpFDx4C1lZBKZGA+Mh/0YYQw8iv1YtBSELCzvoKClJklSbPCIoAgqEJwhcXIpkCTLPxvdesHX8fOQEhfi6w/eYoxBWlC5RiUycqJCABmYz0qMrVFBLsUIh3TR7dLtpKQyir8hwMH+Dvce3GM8mVEUGU+cXGN1dR1bS4yd0rqW9c3jqGZGsJY7t6/TWd1A+kAv65FkBVmnG7lpdUkTAs45GhEj4k1Tsrv9gLOXzzPsrJBlBVJpjGmR4ZFLNrL6EMuK+rYmCIkP0UHrnMOHyB5SKhaSeB/wgeiwsRatdYSuE2votVbMZ4a8013++44Qomj4yA3t8SghET5g22UhjkqW7nK5BLRarImzbJYnRI9YQCCWDpr4HJI0IRFyGZVbsgelWjoTwuNVeowV2tgw5wLCP0rBRCFIKomWctl2GsjSBBt8ZHUJSWsqWtOSyChGSQCpHjuURACllvEz+Sg6G0iS2IQYiKKS90vgeNsiJSRJgjNxHgwhtkJa50i0iiUtIYqp0aUdCMITzcVy2WYR35NERne0CTYujpZxuEB4lEdZfh6RofT4qL3kzXghkTq+N0oKrLEkeZfFbEJvbZM7X7vJtJ7T7Q0oq5KVteNkaUrQGbdefy0KdnnBcHWTrDckzXvUdcXdG29TNwZrLXmhWV1dpbsyRFpDCCmDK8+zt3OAkmlcpq8O+d4f+kG+/0MfYF0r+lkeQ3nex7hqohE20L16kafWu3hnyZ88xwdHz/ClnYeMdvbxziOyHJFm+LqKItEj71hQBN/S6eZ8x9WzNJ/9Cn9U79HTmqZtSZflAC5IjBegNcEZZkf7hPGYl+tDvvWFf8fNB9s8/51X2dgccuf2A771mS+wd/IkP/X0Zb7255/iysULvOfFd+IOx1z/089Tb21y8flnWF3TbO+NWaQJv/s7v4FbGfLf/de/xH/7H/09rAC1hNsvFgu+/MqXkXlGaxy7u3vU/ZT3/cTfIl1b5/r1t/i1j/023/uOF3niuWcoPvwego/XIrto+fwf/ymdM6e5/vYbXLx0mXu7I/Kkj1YNv/Wb/5zFvKX1oLt98icuUR3eZXDhCvnunJveMdCKb375M0xDRV22SB3TDzFOJvA24GRMihxO5vyP//Sf8ex3vJcnzp7mF3/6uyi3d/jZn/4ZPvQzP0hwG1hzSEBx+dwZ9s6cZ+fObd79nu9iNK85/uTTFF9/hbevvc0P/Z1f4Auf+yTPHDvB1RPn+C//ySf4xsuf5+SpLd7/gQ/zmT/7Iv2NPi999/vIkj4bnZTvOH+efpEvl41/9REefcWJ196/btXb/21D2d+wxyPO6v/1EQDJ3HhuHzVURrJ15gnOXClQQKYc62sDVlfWCFLh7YJuoeh3V/HeYNoalaQooVgaKBHLy9XhbMK9e3fY3plS1QaBp7Yuiurfxse3XVA6e3yTyeGI+0cHIBJ6+QbeBRblDDNtCXf3EbMZRTVFtpZUJFgNt69foyM9VVWBrzG2frzREyqJUTcR0Cpl0OmR6gQZIElT1vo57WSOF5J+pjBecDCxhETj2sCq0Az7BatrG7Rtw3Q0ZywKPJJUKioRsN5Teo+UKc47VtYGrK2toKRkdDhiNq3xvgad0EgJtkJKj7U11nsa6zBSMkygtZ48L8i04mh6REdp2moWt3VpSqICTkRbcJKvkKYZUsbmDIvFAF5oesWQRTJAZX3q+T7NYkEw87jJMw68Ju0ep3GdyDbRXerguHBsnZX0iLIs6QrDbE+xueYwi8DK5hYr/S7X9u+jRYoMAVu3mHqP+SzQ6w5AdIkoxGXVoPdARoHmcHKIlpAkBSFZp9stMSZQW8ugK0hzSafTQ6ga31ru7+xjjWM1X2VuU053t/C1ZftwjnEzJJK14Rp51outNMtWkpVBj06W0B+s4VVKwCFDjK/pXGJcQ5Jm8Vkut7FWRAdSrEsUS3RcrLgOHiACam3b4JxFp9lyYIpK/KmtY2R6k0FvAEhC0CQyJc9Snr/yNFW5oG2h0+my1844feo406bklAykacGFMyfpr2wxnsy5c+82zgdq4zhazGlaQwiCp86d4e7DffbGB2zMjzOdHmKtRylBp9PjzInj1E3JaH8bWzW4Ng6OZWUpq0POnsmYzirms0OmiynOefq9DjIYykVDb5CxvbcfoxHEoavo5DgfByOsR0iJ8YbWyOVACXmiSZWgaixN5QBF1UaibqdIUFqRpB2effIdbKxu0LQ1rZUMuz188Fx78za7R4esdrv0+jlpt2DQ69G2JWura+R5wcFoTNHp0s37OFNhm5a6rHl191usrx3HO8+te3fZPDakm/WWhyFLojVS6gioxVOkOUVeEJDoIJdbaUWSpBHyEKCsatK8AKXRWUb2KAsuBU3bULWx5caHQLI87EqtSJOc+XiGS+J755yjKDpkWR7bbESE0FvvlqwE4jCrImfBWYM1Ft82UcAUDgnLVifD2qDP0ewoOgiFQElBnoBxNTKR9LunKUF9NlMAACAASURBVKe79JNAkut4PZSW4XCN1bVjXL91jYCkrgxVWFB0CgiWRAsKr5mXJW1VI6RFqRaVSO4/2CfvKQbDDonO2T8akWnFyqDP6eNbBKGoGkeS5tx/cB+dakwQTGcz2qbl7Ikz9NfP8pndz1A3YyAgfEB4i/eKnf1Ddg4PqFxDisQLcMbglaSpIU9zVBCUrUOhGPb7rPb7LNoJIQjK+YJFOWNl2Kfb6XDj5nVMCNy8dYsX3/teVsZzdurb1G1GXdXY1pBmive890UW0yn37z/AO8/Vq0+xs39A2TQ0vmRvOkY0At3pcf3efU4ay/ETp8G0eCSHk4bWJ2iZkGiFVAneW+ogabzENC1HoxFTPad2gBNMSo/Go3FkqabIcoTM2Frb4mhyj/3DBokg6+c8cekCh7sTyr0pQfWoykP63QGLcckzzz3LmVPHqecVh0cjjHRLN69GyQGu8rTGIKWkO8g4Otinu5XR7ea888p59nYPmVcz9PL6ZaxDhBQlDZoxWeI5vtlBhcCi6TGdlORZStVUJKqHzgqqcUtvo09eFNTVgKZ61D7VREaYFPTyIjYXhQTrLL1el0XV4L0gOPBecOLUSe7f3aaeT9g4dgK8YT6dR7GVyDMKS8G1yHIyHdsWO2lKU9UkSjJcXWE6G9MpUvQSehsEuCAICFrrSdOU2WxOCIGzF06RZynW5nRai9YJs9mcxaKMDqZBQTmHtmk4Gk9IEknb1gx6PVZWOuzuSk6dOMaisZw6vYZMAg8ebC9dQ4FyZknzjNDGAa3TXYnuH9sglKCbryCDxnuFlgXOWJq2JUsEWZKglUbpBJUqglOEJV8tMt8gkQrnYtRh0dSIoEilx3hIig5plqKVQPjo1CQs21y8jdEu00ZotnWY1qCS6LxwPvJ2dAh4Yf+yITl4jGsx1uBlBAZP53PSXj+KEVrHYdB6NBJsbJl1QSBDgvcC2xq8tTGCZQ2tbZd8Ogk+Qp29iVDssBT5VZAEJUEJEhU5L4rokvV+WcJAC0oAEilSZIjcm0RJpExihNJb5uWEQqURjozEOBdTeW3D2qlzrG/fZzw6YG1li/0HuxjvyDtrtH7GYn5I4xo2uyukSSDNe/i2YrHYww83Wc9P4OqKID2tk9G9rBVHe0eMJ/vojiAIzebJS2gf32chYguuTOL90eOWUSwZZyYR7xFRmNcEH7/TxrfkaS8KJSEueIQUWOvQWiNkBD5772J6ykWYe9vUyx22wJgGxBL0vTzXWR/ZQ0pH9pIklr54Z2nbGi0FVW3IBwOs949FGr+ESCcytpe55XOSiVo2qcmlKyU6la33aJ3Eggq5FMNciFFwHz/bGMULWGsj4F3H2JwMkAhJYyq0ivyn4AMuxO9wdFXF64aUMd4dn5N7lOIAIaLbR0qcs8vyjRijEyzfr+Wh1yxddEmqY4GG81HoaTzOGZSO/FKdPBLNiJxGEeeFxEeH1CMgrvV+KVbFOcqH+LrFo/ibX8bmpARnESEuoAgGlXRJiw5X3vU+JqMR6WSX6dEBOwcHPPuOc7hyzKWnn6HXX6cc7aK1JC86PHn1ebIk4fqbX+VwNsFZjxSKrY3jHDt1Ad1bRfRSFl8b8z0/93f509/9FyyqGhE0g17GO09vcX7QJ3i3jOgJhFySn5ZuxerGXZQ9htraQJQtdamYP7jPg8ke8+mC3toaG2tdRF3GBW5QS/cRIBI+/NG/C3sjPjWveP7dL/Dw61/CB0VWZAjhSdIeyjnm7QLnHdY4gq+5U8/pZgVbp07yn//iL3D6+CrN3bvs7k34mV/8hxxce42vWkt9NOPhrbucu3CWNvNMJyN2rt/gywf3+dTtNxlVNb/2v/8Gq70+o/+h4s/euk6iFN60IJMoCiJoWoNAMC0ntKamPxzwru/7IE9fPsNAZ3z4O1/gm6/fpBz2eLhzRLeT0q9nvHbtOmsbQ37n138FvdrHyi7v/NBLuGrE7s238KFFBsczL7zID/z0z9Ic7PKRv/V9+Lfv8hef/CTX37pOtZgiC0kIS9FVRFkueLCtwZgWpTS2rTj71FV+6Zf+My6fOU9wnuH6OsdOn+Hma29w9Tt/hHJvStKWnD15nvr974dewe3dXcbtgp/80R/g5T/8lwzXV7l46Tzz6h08d+4ytq75yLtfZP/22zx8eJ2TKwWJ9AzWNnhifYOnzzzBaqe3/G4HDmdT+kWHRMefq+Vt6C8f/x9Eof83ISmy1/5mCU1/VVyK3sfTax1++LveSVNeppvGa/neZMz2g1t00hAdcEJRN1OqssFbGSdS7ylCl7zoRhOmj2LqrK64c/MN9rfvxLSSiEse78A6+219Pd92QamTZdzenvHwoOTM8U2qyiJsxf50THW0wMwcwXlSYnuVsJZ1kfLm6BCZPBftzCLBtpMlvNJjlzRAoVJ01qHIO2RKkiQJvUEPuzhgt6xYNJKFqNFpglcepVOCb1jMZ2xsFPS7Q8p+xd7oAUfSkCuBktHeKlwcfgCUFHTzjNV+j2AaTJFS1y1Vm7CxcQyCYzI9AuWZTce4AEXeiY4GGRBYom/CYJuW0sctV3dlg06qsM0CKTxFpkll/pg14L0gURohNcY7hIWsN8Tamtn+HYwVaGEJQWHKKSJaTXAiIagMJSy5FJxY8zTTmtq1BGmxEowPzK3h0vENQluTdRJcE3lKxkYWzO3dMd1ug3QF0lsq4/AigLdYIXnl1gFJp0snLPAyUHQ03U6fewcl26MJLtQUieTQRJaAtYbZwmC9YlTnrK6sYw1UwnHi+CZFfpzDwwNOn9hiY7Cy3LZBWRp6vW4cjFQWBxxhAYEFUpkipSMTikaY2Joj/PImGQc6KTXCeWKrjseKAEFhmoZgDFrGTaAkzgA6VZw+fgyCIEkKxPKiGvkQliRJKInAszTpsDEUfPe7X0RrifOByXSOsQ1rq5rpdMydB/c4trZKr9/h7ZvXGc9rnjl/HpHA7t4OUiXcuHmD8dGYJMnxUjIZzzi9tcn9BzuUtaU2U46fOI5IBA+2Y9PgbNZy5/4262s5t+7e4/3vfYEHd/fZWN9gVllm0yltY7jf7i+HWxFjEsKRZYI2xFpgRx1BoQRwgdYsGUMuQQj5mBFQZAXPPnmR7qBL3USIqmsaRGjReYfKtXzjSzeYzi3vfNeTDIoezpcIIh+irnPauUeYBQ8ebqNVSjNrgZamWrA/PuT1G29w+sQEbxVnzpxEipTJfBajZcst7mI2QaexyWY2m6GUYjye0O12I8vCmThsSoHKEoqsg0gTcG7ZthhYzBfoVJN2MkIIGO9omhatNZ28iIy2AHleIFWsL1ZKkqgIN0fEQ52xlhA8tTW0y8jD2vo6TVuTpssonAg4aymbedwChsCsLMFZNIrKNti2JM8U6xun2D0cIUk4vnWKkZQ00z1IBJnKcT7Q1IbpZEaWRddVKiQEw2K+oDWRlyNkYFE3eNOyMsijawuHzjOaypMf61KVNYVSnDl5lmOra5i2Zjqfsqhannv+XZw+uUWWJnzhi19hPBtRN469gwM2Ni8igiZJNJ1uBy01Ow/32dzcjND6aoZZROdJToAsY+5ayhqME3jTEoKO7gRjGU0mWLvAo2nbGRmap595htnRhO29Q+7tHqClZjSasra+zsnjJ9g6eYadB9soIVlbGXLj5kO8q2iaGH08PDjk1s1bPBzto4RHZAHfRBZMLjM21k6wsTLgjddeR0jFfF4htGRtY5XhsM/RZBpjO97R1DWNs7iyQaqcPMlp6rjXf+7pp9g7nCBEzfrmJheeeJayPGI8epucgBcBbx279+/SVC1ZkVFPSp66/CxH4zFa1ygtmE92WNQOg2Vn94AgLEWekquc2lqM9+S5IvgZTTlmMROsDo/TGfR48/Wv45SmlwQ6RUpTNuRZl8ZMEYuGC09cptddYbp3jUUz4K0WrDaUTUVdN+gQ6BUFmU7odbqMZMrKyoDR4RFt2eCEp9fpc+rEcfr9gsnRnOHaCovJEffv7ZKnkumo4tTpTXqrGW3VsLOzTZZ1MI1BeEmwBo+NLVZEF0KWJPEgt4Rn26alVpDoeJ+ZTeYUmaLbyxlPYotYXdcRpJ2lWGuXfJcGHwLGWHSiSTLN4f5RhAULwcH+KLoZpAAfWF9bW/J2JOPZnCACxrccjeeMF0f0BwWDaUbVeJyr0VqQJhrbCnQQuLbGe4OSml4+YHBsk3Y+Z+vYJlIkcUmEQNlY5y5IISzDMUvHRawwj9cO5yJnr20bVAio0FAkCcon5KlG62TJtFk26oQY/5UChEpJEkOhU1Kt8SGh0++h8xSpE/I0J/gYBRQWvIxtap54H9AiIfjookizDG9jLCkQkCE6eJWLImBrTIwFhwRCQ92WmGBwEpRK48+Zj05NJQQhyyjbmgRBnhTgHNZYrPMIH93D3nvEUhxr2oZEekg8Qfhl85ZGCUVoDcG56LQyNaaqSDsJVd3QLdIo0BAdWFJI6vmMRHmcWTA62qXTWwGvWBke42GyH91PSuDJOHfxSSYHD7hx/ev02xYznaGSBGTGzuGYp688Q9ZRzKYjfNvS7fQZDAYkUnGwc492p+Hk2SdxLraViUdNSN5F2LO3JEoTgid4B0ojiG6Y1jiKLNA2bXTA++WSx9p4CA4uMksA70z8TKqGbt7FBcjSjNY0SJVgjEFJgVYyCnzekxcaIR9FbRXW1NGlhsA4j0TFRWJbI5XAtZEXpBP9WFQRShJkdJtLFRcuwfkY63PRkWWsRfpl/IulAOxifM9HtSveC51DK4UNMTZmCcv4nkDLBIjimRIsHUQxqiFlhHLHM2YUg4J3yEQvo29+ect/JPAJgrcIEWVKv5z/YulGfGECjxDxl1QCncjlnAS4eKRTy+WTVAq1ZAcGiM4j7yI7TEStFgEuBFTwCCHj+xais0ukmkRr2sUCqWMMsttPsbbmXe9/iW+++jkmh3t4KTgY72LKOXJ3h0vPvoDtd9h9eIuqrhFCsXnmDNvbN9mfjFHJsp0uJJx56lmuPnmZzfUhf/H1N3jpnc/y+udWuX/jAbWBopfSK+J7HKSAgwmvf+YV2vUBxze2OHnlNF4I9MaQV//1Z3jxH/wEzd27nP7g81zZuc5Xb74N3qPzlFFVM93fZ/XZJ+kNBvHAJ0FYT+/kOrf+4BN8i4bLpqWT9jl3ap2dg21OX3mOv/0DP8yDr36BP/z0n1FK4rIhjSJd6QIuzXnl5c8xP3sW3TQ8/30v8fIf/AH/4l99jP22IdnZY3/3gONpynhUcbs+5LNf+RxvPrjDzTv3+PCP/RSvfvyPuD/a5Xd+92PUGrCxXTQEhyZGKUFireGb3/oGf/ixj/Fd3/O9nNw6Tn7mJB/52R8jzXMOyzHnTq7TusDn//RPqGYl7/mJH+Y3P/Z7zAKEwzFFWrLVUdwfVcznDa21aJEgrGe1rvnw930vo+mUT/72b1EVGaJ1SJ0QlrYkKQRy2fjpQ8DYyILrdbqMj8b8/Ec/yItXr7KoDWm3w1u3Djn7wgtsnT3FyZVV/t2116gHG7hMMFhLOXPhAq9+5RqnL53h1bv3UEWXpM34o9/6TX7yl/5jauvJdcJzz1/g458cUjUNn/n0n7G9fY/nnjrD6V6XtU4vfu+FwDnYW5R0Ox2WNPqlK4klO+nb//ibIib9++6kx79/rJZHUWY1V7SyS7CGuo3fr7TTp8hiw6hGkSebaCRqOStMJlNmswlZmkVmXOuoqhmj8REP3voWTTlb/jfRVSywyw/02/f4tgtKSEdnmPF0cY5yUVJbSxY8roUWiZCWwnsaEQhKIY0lNwGhM7a2TnCwfQtbNRgvGHZ7JAlMJ3NE2sVqjUw1QiVI4YgNnpLGOaraURtLGwLHB+u89L7z5BlcXOkym4zZncy5/+BhbFRTgcNQkgVofUDLyA7qKUHtLc4H9nYPOTgYoYQn+EDtAiJJUUJjXY21Ftt62npB0RtybP0Yi3KCa2qQktZ58iAQribIgv7KGkmesJ55JpVhUZbYoFEp6DSyCUxbE/KCTHsWtcH7QFIvIM8x1uIDWBetkkR9BVFXkCRIKdBKsbUqebC7Q7AWmWTkWQG6Zm8GwTiOtt/GuQg9LxdTZgZMo8m7q4TMc1BWiHSBwKCke3yDNdZx9viAO7tgqwYvNGkxpN8bUjKhqQ65PT8CvYIL0U6fJIphf4ALCVcuX2Z9ZUCaFxSJpqlbskKx3h+S9/toIcAanDekWiCFj5ewsBwUlhuiJCRIlS5ZDwEviQObiBq6kDKKRUIThMdFnEN0MxM3pM47Et1ZtnJY7PIimcjoapIi8lQURIdJCKg0I000yPh8Ui0o0h7eChqruHHnASoNnH3iSdI0YaXf5YmTp5hXNcJbjh9TnD11itFoyrycc/rkGVYGXR7s9TFlzWwxYTqb8Nat25RVyaC/Qq/bwzQNvUKxuTbAoNBJRqIVm5ubvOPpq5SLhrvbu6RasLI64MHDPYz12OCQRIt8rhRFp8d8NifN0sjt8CkoixYyMlh0QVXWaKER0pGkcfvb76R0CsG5E5vsHM2wtsEEz3x/j4NkxjfffJvzp8/y/DNbTMopWkKKxssEGwISRWtbim7K1uYGSZpT6Izt/UO2t+/RG3boD1bZ2zvi7NkTXLpwCd96Rkcj7t25z3DQpz/oU1UVx7o9EhmBnMEFysWc6XxGf9CPkdQl68kHh87042FTK0m73EY+jhoEjwwgZYgDk5Sg4qCT6DjsCiRCRmHoEQNCK8l0WiKFoNPp0FQ1Dx9uU5uGvd19ijylrlpOnj7GpGqpJod0+31SkZAnaawZDoJB0WXz/CVaX3M4nVKkXUTQHOzcpd/LyEXG0WKB9ZIs6eKD4Gh8SKfbRcmCyh3F24+E0pgYs1XQ7Q0pFyNUFiMb9RyUik0/o4MZK2tdnG/xHmaTQ0bTXY4WU6TIGB0dsdLv8db1u7TOgBCkus9XvvYms1Kxe3CICDXHVjtcunCVl8cla90+T1y8hC4SHt6/x7Vrb7O+0ceFnG+8/loUA6uSopORpwqpFCuraxxNRzF24T3ewGC1j0w1aaERQjM+2uOpq+/gzv4uGx2HJ/Dq66/jq5qD6RFXr1xmdDSibebM5yWLsmFne4cmNLTGstLLcMLhhQIvSTsZe/u7jA53uXHnDqW1S7ZeFCJHo0OMEXR6XVrZ0PqaLJGo4AihohCasp1TaIdpJuSFo65rFpNd9vdXOTi4R11WKJEitMa4mp3dfVIl6A4GXLl0mX5nwGI6B63Y2XuLg1Bx+dIHCUEyL6dMqzlJLvFNS92WeEw80OkFAcdsdocTZy7wxrU3CKKh3y04c/ISd++/SaJ7JGlGVWq06tPWHj1QrG0dp6g0+wctZTCMRmNc6ghVw5nLT2Dqmtl8gg9zPAmdjqW1hiLro5IC44AgKbKMelrSlAaJompLBp01xuOSlWNdBNHddHS4dLAJgUJEsUfr2HAlYDjoMT46otfpohT0s4TGxBjccNhjNikj9FbIx7OOcza2ttll5ETA7vYB1nqaKjqZvfdRbNHRVVHNS+gWS8a0jKIUcW4rckWv32V/f0zwnnpeIUJLJ0+x1tFUDUURa+XRiiQ4vFkevr0jKzRJlpMiUCLHtgtKGSLnQAlSIRDa46RbpmMcwZvlvUVEHpRUeBXQMqNxDuXjd1wFS7J04WglIx9t6QrxS4vLX7oM4mvLtY619G1DWZZUbbN0+VgizijQusg+6WYZWZrig4iNW0VBlqURqhzifaNwEq/je52lmjyFbhEbzZIiJet2kIdjQnB45xDGYoPHWoera8pqRtrrUtYtwoNKE5SPm1DxmEETP4tUpfjaUAeDTCXeL2h9i/UWpXW8ZntBmiYUSY5xnrmosEu2pQg2ipYBukWPVGfM5yUra+t08hVM1TA7GnM0GtPt9TmUR6TdTfJOhyMUqAKle5TOsba6TjCCw8NdqvoJvFdMDiesbW5R9Pu86ztewDpHwDCbHMXvTtPQS7JY5ewCzpooKCFRQsTmSaGBCO82tYllM9aQaYVWOrLPlgc2qR61tYUYbXMOZz2dbo7WGi3iou5R5EiKGFMTIuCWRQJ5muGcR6axIc4tuUd+GTnzfumGNzVZXlCVFiUFSRJdR8FG0YQQYvwuRMZQYw3emsdRCo8nqOjwEUsxyTiP1hoXAkmSRFxCouMhGjDBo6xFCoX3niRJIlxca4IE4+JSIlPxtcrlEie2B7cIEb/vwbulYLtsa13GAKWILqewPKgrHV+3FAFwhGDxFqTwqCS20CkV/x8XYgTdE6H5zjkc0Q3E8t8TMkbjpI4/y8ZE9hIyzow+xOcjhSBNU5SA0jvQOSQa4QNZ3mcaRuzt7GJtTF6Mx/sR/q0F3lS88dXPs3d0CMR5VirNweHekv9JjEerhI+86xlObW4RXr/PsZ/+MTLrMW/cZWwrkqQHSqB0Qlhef2W3YKWnqDaGMOzgvaBqaw6CYOXFd3H3tz/JF2+/yvd99D9lVnm293f45J/8MVcuX+RbD+4zncy4Ml3QGQziTO2iW5mgaKdTKAru37zHRz/6D3n2qUt85RP/lkpn/OAL7+az12+wMhjS1hUBi0oUGyfO88zJC7x17SYXLj3F6dPH0ELwF//br/DPPv1vuL+YUFrH3f1tvvjqy6j5Vc49/yzn1vv80W/scnh4xKDX4yd/6Md5tm35X37/15kpyIInUwHjJVqwfG81NgSyTsa0bvmX//rjvPzKy6x1N/n7P/8PuPL8k3gBT50+znqnz/gJT/fhOT7567/O9WbKtddep1/0mJmS2XTCp/7w95nNS2yzwAvP6mCF4bsu0908xj/51V8h6JytM0/yy//VL/Pf/KN/RL42xPo2OuWaWGQgVUJn2OMjP/i3ufbFz1IGww/93H/CFz/+x3zku7+T5y49z63du/yrT32C5979bt763Bd46+Gn+N4f/X5+9P3v4eHtGzxYHLFRaPo9eO+Fs4h8wKevvpN7f/IXrJw4TXN0QKoEZVkTELz+xpsY4/jyl76KTHuQ9amFwoUIoId4rj69uoJGcDSbsjYYEggYEVA+oJY/E3/dx3+IvP0/PJZKvie6Q1vraJoa7y1CSDZ7PdY7BQKLUglaaowpqKuSxtTUVcXR4T7B16SJptPr4J2gXFSMjsbMxiO0TugM+hjnaINnYUsWs/+fM5S6RZ8zm6fxpub67TlCOprKkKUFaetYa2uS2nOIpwmO2ksWznLp/AkSIVlfP8bRneu4EMiHPT70/Dt4+ctfZFo7tE5wxnI4OsDUJSvrG6ysrGPQ2ACNE9igca3lwa23SJSgGq5wbNDBu5a6NDz13BXOrmW88s0b1EHQugaEZrqYIYhDKULgvad2gVRE2F/wHmFgb3TEmZWCIs95UC+YWqiqhrqtWB322NubIaSiMjWpVDQmcPrcBZy36ASUL9Gtxdc1TkuKIgobBkfd1tTNMmaT5kzrBaltSX1C3baEELDOLQ/qEWq5aOb0U4WQHi8M3QK292qevXiCvb190mGfJ08X3N4raU1gfzSh319h2Fllb/8hWil0EvCu4dzmKodTx7id0oiSbj9ZcmwkuUhIVZf729dZW1sl0132DhcgugyyDN8IDiuPCC3vunwFHwT3d+9S1g39tZSLF04SQk6iJYJoAy4I5GkR25UItELipcY4i6xtZJIYR5ImKJkC0RESgiEYh7UeIT3OtaQix6gUj6JpDbQLnPGEZoHxLS44WqtogkfouPUKLkJ0IW44gwvUTY0SMQITXTsGqR1uMsbVC0S/IFGSqo6VsQiPEI4Tpzao2wrrohBoPUymhwz7qwwuXgQnWO33kDJjY7jBrCw5HO9ycn2TWwdvUUiY24a9gxG9TkprW1rTUi0W9Lodnn7yCdY2TjAazXnt2l/grGG8OKCazVm0JcEIEu3JRcAIh3Hy8Zbu/NNnmM0s3aLHopkwnS7o9QqKImV0OOLYsXXG4wk6SUFF67c1lvXuKoLArXu3WR2ssDHcYNDbYPdwn69fe4jXiuOb63Q7gpVeh/F8n0U5JwmKLM4yKC3JdQepE7Y2ezjjuHPzBlW7YG11jUGvx4XTF/ny175Blg1oZzVVU+K8YfPkOlmaMhlP6HX7cbgjsLG5wc6DbRprOJgcojsJnTRG4JqmJk0LvHd4F7kWIXhkEMtNropW/ZgcQASBs9FuLJWKW8gAUsRtqhQCnerlEL3c0kiwxjCfzym6XfJ+zng8Ynt7n+n4iHylYH19gLOWweo6nSzHGYsLhlk9pzfsc/niVcpxxRs3v8XB3kOKdI3h2nH2RgdYY2ibBU9feYFXvvpVMmmpncM4i59VdHuabm9AXY6ROJQXoCPslcyT5h1MMGgt8DIggyHv5Ji6pZoloBST8T56uMbKYAsvNLNqxN0Hr/H6NELlrYBEy7g9DIGdg21mswlKW3b3PEV+SNsYFuUiwqbRnD9ziclRDaKhrR2ucpAkuNAglKObZSADW8dW8K6lmgYa3+KkIM0z3nzjGnVdYoxFKo2tp0ymh0zaBemgy2QyJs8yGi84mk4oegnOK2rbsrCLuC0mthoJpfGlRxGbdprWcvfum3R7mjTzVMHThhKdJczKEb41aJUzGdc4bxGJJtEZTVnS6ziCCGjrsAHG0z3IIqB2bg1v3/4W3jg8+bJC22Nly3DYpxMKnn7yOfr5Cr0Vxd2bHmRgNj2irWecPDGjyApOrW9RzCyNW6B0FmNCXuCcwgpFbRTdpOFzn/1Ttg+OELlH1Atu3bse7z3FJs7UVNUc71sODg7Y2btNngu8Tzka1zRSceb4ORyB6fiAyegQnUoypkhlSVPD+grM5hWBjLIWHI0butkmayvHmU4m9AY9Ap66hauXB2zfHVHWFZVpCJmirEt6/R7OOdJU4YG2NY8rtWezGWVdcfH8WVQKu7v79Hs9JrMFK2td1taGkb+4hLr2ejnBw3Qa69ezXCMI9rLi0wAAIABJREFUpGlCXc2XgOeAtZI0TamqioCgN+jS6RSMj45YtC2NMXQ6OSEIFguHTqNroTvMkTouKJAJYdZiLcymdeS2qYLh6johOGbzGSFaEmgmE3rdnDTTKJkjpcNrga0bEArrBdprvI0uEanzJacvukEi08hjjCNHkylN8JIg48JIBEFTtbRNjVMqumuI16YYtRWPnZBKKnzbYBYLup0OXkSGTcBHZo8NCKtovCPxLdo7TIgwYx/AtSZWDluLwOFDZEAFGxlPSaEIQiJVgpYZCRq5bJwLMrJiQBKEIwkJHRKKXBBCS57nFKnChzS6UoTAeoGzxMavYHDeAcmS12cYrqxSdIfUbfM4ci8ItMYQ2gZha+oS6kSSFzFuhHdsbJ7gcDxlY32Fg523KauS2WSfMii07DJc6ZJ4S5F3CR4GqxtsbZ5jPKtogiVJKpI046mrz9Lv9zjYOWDJZMaXNddv3mRcNlw+f56nTpwFFxDe0VQldQ1Ka1KdkCZ5nANCZOwovfz8QnyeqVbRFZJotEzwQWFCFNzkkr9lGoMg4EzkYKV5AsrTtg1tY9AyjYyTJdcziioBoaIgLxDIoLC+xdoYjzSNoZtnS8ZWIFEJzlpscGRJSrLklC63bzRVjXOeotvBhch/ct6QpzmmrtFJilZLwWnZXqiWsblEarSQmKahPxxGcLWITr0gPEInCBmwuPidljJG80yDUhIl4y+x5Bv5wLKYY4hWehkpjFgGb2NznRAx4lG3JrrUBWito1NLRKe2dTGWGEJsO30E2I6OwQBK4hAEGX9uxb8XR4lOshiJ00rirY88omVsz/rohpdIVJ7GxXJVEwIkaf6YSaXyGOmtFzM6q6us6xOMp0f0+n2GgxX6uoMJCYsgsMLij0Zcfc8HuXT+PN/65qvsjY9obMt0XPLKxz/F1+qEH3jvBykuDHnr9z7NvfGY4dYxDqZTOqxEZ+dozJuffRW1XvC5V77I0auOv/NTf49//Mv/PT/yCx/l6StXyYrjfPk3fo+v25Kf7He5+NKLbPz5H/Brv/8xNlfWMN7z3R94H0WneDzDCwlYDyJwZ/sh+aDDVpbx4z/+IyACJ9OCu2/epVgfcPHFF3jP3h5fu3sDYyvqpuUnfuAH+Z7v/E6mB2MuPnsF51rKt97mtz7x59yuxjhvGQzWeOl9H2b/1kNu9I/xYx/8IDJLeP6pZ+idP09vseC5s5vMuh3yTFO3HqXiRlgGQXABrWNk1wVPUqzSWzuGaOeMfMLJU0/QO75JmmRIBKdOn0EKyZ9d2+frX3qFYvMYr3/jazxx4Ule+8pnCGkCXrK9vQveE3AoNPNmQfX1r/LxuyPevvYaH/iu7+bq1Q3+p1/9VVSeYdqGRCc4swTT6xRQrK92+P4PvcjrX/oiG+cvsrLSpfveD3F66xz/+H/+X/mjV/8P1vo9/ovnn+dXPv9p3vGBd2NnB3z51l1+7Z/+cxa7d7l+7T63H9zg/U+d5eLF5/n7P/9THLz5FT7woZd47eVPkf7cL2C15uWvvsK5Z65w46sTpi5wamudl97zbs4e24yufRM5bnVrOJrM6K6vc2P7Hv1uF2cdtxeHXFk7EeNpiL+2QPQfhKS/+njUHOl9rDJAEEXmtkXiEIqYXZOCIsuAlLZumM12kViqyjKeTDjYuYOzNWtrfbJ0FUJ04+kkYWVtjQ++9BIvfPB7uH/jbT7xb/5tbPsNGXl/8G19Pd9+h1JQSBFbD/qpxhhHZeLgkQRJzwcq50hIIHgWEhZBcCJVPHh4l3I2Z1bXeFQUeqqSZy9d4IuvvYYJGW3bMpuNaRtDSLt446krGPs+BkurAzuTkrYp8Ynizs4YLSQ6FRxbX+X1a7fR0uC1ZGN1yMH+Lk5Ltp68RFuWlPfvE5yPoECv8RJU8MthKu6FuiJg8CRyabd1gfFRSZElZEmKNTXNdM6ssKTdlZg9V9DRCu0jzFAGcFWLSSt6g4JaKjq9Fbr9lGZRkKicrhAE4UlCS+ssIRiMd4SgYouUEHGoqxbITNGaOQ/LCULmBBpGsxovBJdObtLPBU3SozaeuXdQ7pPlgfGkQQmNb+fsHRgunXuC6w8PaYInBEuvIxjNBaqf8nAmuHjxKTaOrdNNOwjv2VpfRycpzp9jPp3x1sMbJEVBN0uXh9kUnfQp0j42qGVMzy9tyUTewKMhRkTwciDanUk1EkFjW1SwS26NJ/iYqVeiASeRj/zWy81e4xtEmiBcrCz2IgokQWcoCTpRLBZTekUPJ2OrmW8sQWswcWumtKCpLSFoyrrBNIYQHJ2gqEysZPfOoYXAKcmZ41tMxlN29h7y9o1raJUymizYXDvGcLjOfD4hER6VaVZThTFz/k/y3jTasvSuz3veYY9nuvNQt+bqobpb3VKrWx21RpBQxIxkpGBjM9kEWxBWCCshMYGFEZMXIVYwJDYCY4OAgIwEkhAYSUZIQt1Sq9VzV3dVdc1Vd57OuKd3yIf3dGOvlXzJ4kNWOF9r1aq6556z97v//9/veb74xBO0dcJ4YiCWOClZXVwEGpIkYW62y2Zds7W3j6ksTeMpxp6qMLx46RJxJCjGI1Se4ERQDtdYFpYX2NjYwzlLHEVMRhUH+wPuuusEm9sNu1t9xkISCYvwnroA4yOSSFJ7TztNkU3JQm8WLyVWCcqmYby5wZO7L1LXAdr6tjc8zDPPPMW4PEAkt7O6vIapDePRIc3EMNObQSvB4HDA/mjC2topXrh2DecMnW6Xdp6jtSTPUh685z62x4dcu3mD5cVFtre20VJgk3Bw7vV6jIsSYxz4lJXFVYoqsItMU+GMRqUJzjiiKEaqeGpuAekCE8O7UO8TfjoMBJTS6EhPgaMBnN00AZjrXYOT4hVTibWOoihJIo1OE25cu8Htd97BbSdvw1lLpDM8J1jqzjGsDki14qtPfJXbTx/l9Ik7ySJJlkQ8/fyz1LZhqbdMlra56857iVSOt5LB8JDJcMyZM3exvbuHo6EWlto4yibYktx4RJ5kVI1Fa0Mnd8yoNsOhZzzpo7SmEdCvHZGMMI1hYmsiFQDjSnpWj65w4tgxBhPLsGqQ5YDhaA/vEvqHY1q9LkkSMy77lD5mODhkbj6lKoY4GfHC+Reoioa4P+bihfOsHTvKTHcO6Sznr93kVffeCQqiWJDYYPGajIf4NGGu3Wb5riWefPppKhMYF1vbOyBBasHa8hrJYBfvHXedvp1uarm2c8DBaEASS6yr0LFifr5NFkn2DwesLi5yOBpS+WCma4qCw9GY1933WsaTCTvbB7hYMK6GtFWCckNUmpBEmrIYo5VHKUNdhySJUApTN0RaTAHrFagYLypqUSOtwurA99GuROuYbnsZ3wgO+iPmFxfpzi3Q9YY7zt7N7uaITiemHo1w3jKTSybRCjOzPazR9OZXqFyJLBI67SVU1Gd9a59yXKJ1xmFZsH9gWFheZby+Q5ZHWAxHji4xPMiZDA3zvVl8M6G2Fq8Eja0oDypGE0vUWqCbdOm2ZwPrxg4Dy0UJxpMSJTvs7o6Qy448ldSVxJmKyjXAKqPRIU0zYTI4CPa30SHnLlzCNA03djZZXVji9rvv46knnqK/fzhN83is9VPgeYBwR5GglWfMzfWQyjHX6UAquHpjg831PaRSDA6LYAuLEjySuqlJs4ROr40Unv29w1AFQRHFmvGkRJgSrxOa2pBkMWXZoOMEEWmU8KhEQUD9MCkbhDFICaPdMePKhOSQVuE73kCUpeg0ZzwwxGVJt5WT6AypNVZAWZVEeUVZZjjrMNZSVRXdJCRYtUyRMB32hCSV8aHW419On4QncdBh0C29x/qIWImQLIg17W43DBamaQnnHNJ4PHFI0QpNhaOYjEmTlOFkjK0bqmn6T+LDd8w6XFUhIvnKfVdLjXMglArGMR0qWoG943HE6HEYgiE8InII5VDeEilFkiZ47zAWmJ7prK3w3hNLBWKajJLhXDgYjYmkojH1NC0TvlveeyIRbHAGSZy1AhxaKholoDYI5Rgd7jHf6yB1D1cU3FpfJ0tj7u6tEkcJzggWFo/gmgqvBUXZhwSGw4Yoa3N0pc3B5gGtVsrc/AIYqIZjmrqmnQq2t65B3Oa246eYjCe4siDJIpSARKXgGoTrk+qEmIiyqkiVxmExXqCEwDUNo/4hUZYCbrp51jhXIXyo/ykVTLOgpsp6j6tCCk+gaMoqmCade8WyGUUJOImt/fS8Y6fnJkCEtdjLRrSXByjTSc800eYoqzHtqIsz4fPnX44YWFB5AkKipaA2VRg6CY+KZBjKTEGUXnisC5WYrBUFy5z3CKGDOVLKUCuTnqYuEEKRqITG1ngpA4ZASYSDSEbTBFdgTNW2RniIZEAwyCikiYX1GOvI8yzcr6XCTgeqSiiE8EgZLL7eO5DmFaahjPR/cv+2AZ/gPfW0/qScR015rAI/hXMrvGXagJhy4F5J1U0fot3Lhtcw0AuA9CCC8VISqRRlw7kJqVFaABahJEgNUcRr3/Et3PGqe3nuz/+M5y+cQ/qIhTvupzl5mm/60f+JI67BXLrE7/2fv0trNGJm8STf9g9+mE98+De4tbPNYTHhV3/3t/ngB/4PWvesBYvjyQWGWnNw6UVGzhDlMeu3Nri5d4U//tSfcnX3BpOyxMqGLz39LLc2rvGG3W/FHC/JWilnXnOGH7rjFDLx1Nevcn17wqmvuZ8fft/7kBs3+Mp/+EsuPXmR13zN61C24dp/fIzFNz9Euxrw5MYmtZPsTxr+6A/+hO/4znfRVCn3fcOb8FJy8tX38AMnj/P8pz/HJ//qc+zPdrnz1FnmFhdYPLJEhEXphEc/8nG+aA5RTuJVizc8+BA/8sM/QPHCS3AwJC6Dne4t972aN6708EIRpzHbVjAoHDqWRMrSAE0NWa7ppjP8g7//A5R7Ay7duMS16+fZsxPe+5738to3vpGLN67whS99lvZMh1THLN57D5tfeYoL57/C2HuGB4dcfOFR4jzC+IR+/xDhHEJLjK154zu/jstPP8etF89z8utu5+D68zz9whyf+O3foGhAKoFzEosmVlCWNaZuyLuKE696kN/6vQ/zmnd/M3eu3s5Xnv8yP/Ff/yMefeYqhYbf/OlfIPPwUz/3r/m2d7+T1z30ML//73+T9/+d7+N/+bEf4/EvP85HP/pRbhxcJdIZuYh42x3H+a0k55E/+Ti7sWVgLT/zgf+dQ3b5u9/8bfzTLz/O//BPvo8H736QlXaLPIoJEbZwFE4jzYWtIW5+lt/6k//Aa3/0HvrjIfO6GwZJwuE9DMcjmrpmbnbulRHA36ah0X/OfZpWXYCXr64vXzf+05exnto0FGUR4P7TAb+Sf/1c4l5eBMiQWG1qw9b6dYb9TZz1U7ZdeD4djUsclna3R7vTQUnANsF+6R15K2NubpWi1mysX8cJQZIktFoRWZ7/jb4ff+MDpU9++i9oRQ7fFIwahZehxxojoazYE5JSBuirFRLR7uBjQW1DZPDypWdpRZqRq7nvta/hWCei6mtmZubZHrvpIdXhpWRcN5y7eIPtYUEpUozyxB5q0SASicJS1CWR8MRRRqczT7+/T9E0TMqGuj6gNpBoz0ynTTqX44VlbfUMVXHA9f0h4/4BphjTn4wDWNHE3LANEsvARRTCgG3Y3NsjzjQdqREubD7STg8VeRpfk3kZNpJCo9KUW3t9Ghkxk9QIOcAREad5+LBYSR1piimwsqk9VqipQj0cAC0S6SCyNa4+QGBpKcHBxLKy1KGTxvRyjbGWi5sHjExMY3wwkZmaqLI0aHqdHpNqAi5iWCkOR55UaCQSLwwj21A38ODd9/Dg/XdhTEOcZCgn6A9CckRJjXEJ7bRLf1IyGNeBP9FEvOPNr2e5N4dSEmEhvDMakMj45eGaQjgZKmbOkUhLL4vR7Zy6cQgZ0TSezFuQhv26QMQSKRMa6/EYXk4ZJUlCoqCd5niVUJkU68qwAdYx5aHBmgZrDd40RDrCe4kVBmEtWZrSynOEEkQqwolg2jFRybg05EIjYsl4NAksEDzORoyGI3Y3tuj2WqwtLNCfGK7eWifNtrm3u0JpLLpu6MQS4SX1pKGZNPhuSm0N2mm6WcbbHnqA/dGI/qDP0tw8i50Znjn/ItuDA/bOjac63wRjPE4KHDGuqGgQtLOImZlZrPT0OjmH/SEIwdUbW9x9x0m2tvbY2Nglb+esLR/hYHBIt2UQzpJk0Okssbm1Ti+JmJ87go4Sspk2cdLi/KV1PJ48TpjpdTh1391ESrAys0RvOWEyGdPpzjPpH7CwvEBjDU3ZEMc5eTuhGRXs7W5wZG2Z+dkOVy+/RKQALZmb6+KsYtZWXNp9ju2dHYbjTc7cdpzZ3hyDwZCinCCnlcWqrlhYWWLZTKiriqIu8HhiEVOZA1xhabXzcFgFGmNomsArkUqgX2ZeEOaQSiq0jqjqEohQ0wO5UorAHghVShVFZHkKCPrDQ5CSqqk5HEzCA1asmZRjtg/2OHJ0gcHhIf3JiGcvPMuJ48epTcWkmbC40GG+18VRMy4nrG9tcO+dZzl92510ZrsMR2OyFL7y3F8GWLRXaOFJhUQhaWrDYXmAMRUri7PMz81y59lXsbG5z+VLFyjqgqFtiEV4aK5qTyeOSYjotHvsHxxw48YmiUyYnV2mHeXslgrVzhDaszZ3grW142zu9hkMJrS6PVZ7M0hp2R0EFfbs7ApXL19l5/CQvh2ztXuDY8dvo7vYo7vf4vjR4+TpV5EBo0IQbkUwMpQVXLl2hcPd/WC9EpJWO8e4AucblPa8/vVvYaYV0+vN4UZj1neeRMiK2nfIXMRjjz3BbHcGXzd0spSF5VmqmzXjw4JIRgzKBp20uXL9GqPJIe1shmJwiNYw28sQtHBFw6SoMV5CAihPaUJVK5JVEEhikSpGKGicJI67OGsobEEsQeKoqpqZbpflxSPkeY9Ll15i9cgSprLc2lzntv19XBzxwrMvMqlLWqoDuiBmjjjKuHFzg0hX1JPreC/odtdI0px2nnD+wg2iaJa6OmRcTKi3tkiyFt1WGzvZAeNZXTrO0VefoL+/z9L8IjqWjIZ9bmy9xMbeCGMiohhmFmeYTLZwjUDKmiSSSF+BCgYwV3lGhy12qoq6rPDC4kTN9RtXOXXyFJVxGBVhveFwNKTXnWVrZ4PFhWWOnLiNCxcvUQ5HeMKABQ8q1ogp99E4WFic4+xdZ7h69SbrG1s88Or7sCJUtHZ3+swvdOh0WgyGBcV4grU+LBeEJG+1MKYO2xkxBee6wNCpKkcrTml1WzTG4bwNVS5hqeupfMB6msbhvUCrhDgVVFXNcFChEompHDqO8FGCIaY/sriqodINTSKYn1lgUo04LIZ4LUirBXQmQq0i8uBivKlQicLaMDiQwhHFik6nFWpaBHNQY6Zgf2nAFjTWEfuQ8mmsw9YGa2E4HKGmAyXnAyOmrkqEdSR5jHGBxaSjnLgdKl+TKTPEOYfyEh3pwDFyBqECwNwSoaRG2nAfMcIGi5qHytdgoKgnmLoiShIkEmEE0gociklTMxmNUSiMcBhXExlD0xRIoSmtJdYRwkl01EKqA7rdNkIqrLHgPNaGa4GpHRZB4YPaPoqikAyJA3vOKwkYqmbIYb+ibCJ67ZyW7tJOw4DMK4V3DbgGh2R+8TauD54jzjugRJCvTCL2hgWTa5forRylqcZUpqTdyanKPeIM8jYY02d8IHFlyVYxoDc7z9BUHDt2inwvJU1jyqqmrMuQ8poO7CoTkl693iyxifGxCrBq0+DxVHWDlGFIImVIEHtriFSEtA4txCsWYedCksYIT2ta3ZQSjA32XofHVKE+o6WjcR6QxLHC44hkkFMYU00HHpI8z+n02ngrMNah45imCcMjHYWUuHMhdWNdMGO12u1wnzRhgCIEOOExrsTTnkJlLfjAxQo2RwEy2FJVHGNVSKMJD0JrYqUpjSXN25TFCB1lQRrSGLw1WCXDw7oMFWnvHQqP1ilCQG3D4ApCSkYpiVARQoaau3F2ytRUCB3OzdaGFFOcJAghqa0JJ1EdvYJ0CK9p8m+aGBBTvYsQTIdshO+NUoGbo6fcJARehLptEmlEpKbVTYuOYiIV0TiHTDSRguW1kywsnmAiPIfLa7zm1FEuP/IV3vXub+T+pSUiIZHeMl5d5cK55/jd//gp3vMdb+CbbruDp+I2+3Gfoip455vewm2vOs3mjQ0+9cEP8+8+/WF6J5dRIqYeD9ncuMVvfui3aOk2Y0rGdsKoGjIqLXJUUVfwzNNP8va3vRXp4dEnP8etK1f5/ttvY3hrxPt+/L/jS3/652Tes3b2LrafuUC3HcyBxeVrXLx4gZW3PkDxyJM8srHDN7/nPXzfOx7m3J99gTiL0K8+jtQa5wwyiuksL/K6934LJx96HclMl9nFGaIoCsmM0qBSQbk94Bvf/d1c+fQfcrl21OMRWgjmTh4lXnOIIzOAIM4jVB7TeNBRxOVHvkRneQZ3OKQWiv5hxcRJOnnOwuo8f/8734XQgouf+iwf+NVnuFWO+dCv/yqH+9u86V3fxUc/+GvsbG6QxJ6ZKGF9/QBFzfxcjpppYcyI2fkTyGiG9qu6nD/3OHe96l72d7e48eI53v0TP8PnfvVf8pGPfIhjR07xre/4Vn7hiefRuoGJ5MjSEm9673v58O/8Drc/+AAL+TzXX3yK1z/4Kv70k3/ON95zD/fccS/vftPrmG136XVneMtr70B7Q+MUP/8//yA/9c9/hg+d+yBf+7a3carXZdNZRDuBRFANG/7w4x/lx37oDN2ozf1/9z188g//iF95/4/yoY/8FZdvXOMb/963012c5wO/8r9xcqnF2dXjNHXDpKx45LmLfP7Jr/B93/xOVhbmeOPZY/z+n/4lvahCCmi381DfDEAxXg7vxXHyyvP/36ZhEvw//7zh6hSG2Ma6V4RCfpqOLOuKLIkBgu3UGCQRTVNw0D/koH+IMYZYR+CDQMPbik47od3qEkcJ1tfURQF+j0i3qMqCly7vMR6NaeVdejMLxFmbKFcw8pTWULkEJyMiJUhyRayT/9v////b19/4QOny9R3mlmZYyCJGZU1lDUnWIok8jZGUKqaJLV6GDmmUOe5YWGB9c4P25gLtrMXWwT5CCHpK4Io+Td2gkxZqUiC8DTydKMIYycbuHqU3WBd+nNq/DN5TZDKnVhLvaqSMac/P4N0Q0/csdruU5QAEFKNDnnzuWbyIUAiK8UscX13g7LEl/NFFjKnoV57JsGRv/5D9coJroDQ1ChV05FJSVQ2tVOKFJOvmKA2T8YRI7lM7y0xvgWFt2BiUDHxErHIGY0cxGZC2O+Rdi0cTJyklDd5JJsUBWd5Bpd0py0WQRwJvS6p6hMOi9AFx0sKZWbJuRr8c8xfP3CAXCVoJVDqDc5ZepxMUpMZSmwndOKUq94m1wsuUzc1NDtpDWlKjnKIclRSNR0vNyYUOvnS0W0GX6yJJGschWi+CdcXjObF6nAvXLnN4OCKPM+Y6Xcq6YVZKminYUSBROibOEsbjAQ6LFB7rHMorhI8ClHyqGcV7hB1RWwGiwguJEinSaSJVUzZTm5ZUeCVphKWUDj0FgCoviKTCeU8i06AGRmNVMKoYEaDsiZbUjcHW9bQWF1hOzkFqBaVVPPHsM+wf7rO8doR777yL8eiQg8MBH/vzT5FnOQ/ffx+nj51A6oTObIcsEfR6Gc7PBDNhLEm1otftceb0KYb9Ea9/4Dg31vdQukaoktlWzkuXLjE47OO8YXc0YlJOD9uuodeOMFHEpKqxypJFmijKOBw3nD6eUVvPaG8Q7EzSk8Yx3SxjsHdAYz3HVuboxrBwbI297Suo+oDXv+XruXxtn631q4xGhk6UMioNB9dvIJVmZXmeJIo5ceoISwtHEaLm+o3LdNptlOyxvrHN8PotivEu0lte/5qHcGnEYFTRafUoy4bR6JCTi0uApyoNnbTLwbDPjeIWUZqysnKMLO/wxa8+irEwGQ3IkozJZIJAMtubBxS1Kdne2SJCQhQjZNhuC+nJ4oSyqSnGE5TWGOtxOOoq8EUQgjQNxiEpNWkaB56Dd68ARJUQQTrkA3VFOIsXmtGgnD68adI4YXVxkWo0phpPkO0MnGV5doVrGxtcuXyDY6sL3H/3Xbx44TlUY3HGUQ13mMtzTi6vcdivOHVEMeqPuXr5RV599x20dcbK8UUG/QNOLi5xUFYUkzFJ1MI2BWCx1pAkoRqTxF28zOl2Ojz95PNIqVHakSmJihMq5ymNBGeQMsHhsKKkP6p49oUBt50ynD59G0VTsbF9k9n5GR5+6M28+OIVtjevE8UNCzOznL3zLK12zh994mMsL8KRxRkWFh7kq08+jWuGjAxcvPgETrQY1fBHf/wJCm/JGk9pHYnUoQbgLGmWMtw/JNUanaSIJEIqjy09fmIZDDc5svY1tHXGZFDgjOD2U6fY2LnIkeMnuXH1CuOyz+GkT2wVqytH6PXmSbcPiBhiypq6ahDCsTOp6c102eoPyFOBkyP6pSWOZynrioNhEA/IxtHJJK1Y4ZvwsFFajY4yEm3xETSVJZUtrG+oRg1EjtnODHkrJom7jOqaw/41qtGQSy8OKSa7NLbmzz/zUZbmT7F2coW6ttioYutwyGy7x3PnL+DqGp1qTJQjpzygY0dv5+bmHl6/xPbOdRIVkiOT8ZBOHCPdECEFt66/yExniYNbl1g9epaZlTVm5hfY397i1v4tZBJDnFLUhpu3zoeqSyPQqWVt+TRVdZFZHJ3ZHkKe5sa1y2wdDvCiJtcpM7Or5GlC1sqZWVhmf2+D+WKRjZ2bXL91neX5JXrZHIkSZNqTaUVVOSobmGQaSZKEwezsbIeb69s417C5tU+3naGl4PJLm0yqGuc8e3tDJIKyqKYVE4FEYZ1nZ3MfRNCYp3GKsQYhNIv19vG8AAAgAElEQVQLiwxHQ0aDgnY7pZMlmMbhGktdNFR1DS7wT5KsBd5hjafXmWeiK/Ymu3gj8Q7KsgmQ5cZjm5osjzHKMi5HzM/MIpWiPzrA1zuMRcM4Tel1uwgrGbup7UxqUkBaiUPihGI4HGGcR3iLcw1uWrWtq4pOGgEC7UDGEuslmY6RUhHr6JXBlHEO4TVpGlFNxripUl0iiWKJsp44EVhilAhLusYZvHGEUpqE6fJGhEI0RlqK8Zi6rLEEbozGYZwntTCkQagINU3bSBUMqq0kx/Usxnkaa1Eio7E16BjZTKDxyEQhZYyUYUlWTIZIMeX02BrXeMo6XFNbMoPGYb3Guxg0TIYFXtggyPBjtHcoH8QbSSyITYRUKTprc+vaJa5dOE9vaZXZVgfjDfPzZ9jf3Qrpxf6AXr7MpXqLxDTkccR2XYFsMR6OqMqC2fkFdtavk51o09iInd1dOisLrK/fojO3hJjs0WvN0TQNxofBg5QCW9Y0ZUlVlwgl0fPzOByi8XhjqaSd8nU8XhLYQHGo+OEdzlkaU4WalwDrQjXHGIOz0wEbblpDbCBKcV4QRQlpEgQTUodEmzEGL19u15mwOHMCpSKUigBCDdIHNlFdhy144P0obN2AkNR1gfUgoxg7HT5V4xpjwr1WJzkWjyIoqr21gWVmLYhQBzPGEudpMANaO/2Me2rqwB8yBukdAoNWUJrAzZJR4BVKEVJfXhDSU5FGa0ld2+n+3+ONJ40jGmtxvGxqjaibCufD5xkvsC6kq4SUVFVN04T0tpza4nBT9pULaRLv1NSU60LKwE3B+FOu18vyRKk0xjuiOMHUBill4DYxfT98+F3jBQkSaTz7PizSF073ePDoEt/9DW9GPvcC/+Pj57hzZMmWBUQSgaKdpTy0dobBba/j6+5/NScWWsxT055rIYfwmc99jtlf+GWOnj7DN//k+7jz3W/l537xZ5hdXWR7cEhVGS5dvUYiMtYWj3KitcSWVxhzSD3FeGyNBH/6/n/O7z/xODdHO9x7T8mvfeBf890//P24T3+CQT1A+Br6h2zcvE5+9jQqiemcPMLTzz/Dw+bv8Fcf+zPm7r6H//Z934nCsiqTAFiv6zAJLQyqFa5lSkrWzp4KKQulcN4ghUZF4eH2rT/yQ3ztsUWeuXGJf3buGa5fW+dwd5+1I0fwlZkmP0BWhuF6n+zUIhuPPs6NqGQhi7mx7ygijcosomooyxIzmlBu77K+tc3P/st/xbnDPpESdOKcT/7BH+Aaw/7eNplUjHb30EsL/Jff+z08dHKZn/3xn6Q9v8DO3hgZD/muH3wfVzav8Mjjn+OxLz6C8Y6F5UUuf/ZTXNu5hY8lg3HBxz76Cd73L36Jjc98mX/767+ELUu++NEP8/Xv+AYWbztLuTvkmS9/gV/+uV9k5exZklwyP9PG1QapJAmWdqsNeIqi4Kd/6Rc5/8Rz6J7k+NoJPvH4M3z+0ce4+NhjvPT8OV79rm9h0jrBf/+z72ez2uenf/z9/PA7306e5bzmSMUf/8Xvc8fRk5xIJGu3nwkpRSGxQrLRWL568SJve+19rC6sEGuJwXBtZDivF3n0yks8fOp2Xh4/CK/wwpJl2bTm+rdlkPTXFVim16CA559edD001jCpJlRVgRIQTauNUoc/xzZgxhz0t0CGKrdxISwzHo9BeFp5B6VylNIkScLqkVWcKaiGfUaDEYOmz87BIaNhaCS0Oouks0eQs7DSarO6vMxsp0OWxOG+gsR4KFSXT/3V46R6j5l4hij9/3hCiUhx+vQZ/OAi40JRO0m33aGbeHbd6BUNcNkYhNLYUpDNLLOYdsliiOcXuLW+jtBdIm1ozJDCgpMK62us98StFtaFqpnAogmR+nDTCKA+aSVjDEpGodcsBVJEJDpHuoqoFVM2CleE4ZOKU1KpKMYF64eblCi4tM2kKsjijLw7w8rCAkuzp9g92OPClesg49BVV2HoIqYWDJBkcU630yLCcLi3Tp63GBYy8BFISKTH157SW8ZAK645EgukUuhUkXhHHnWYdCVV2RDFNWmeYpwhiRxVZRn1B1R1zSSuaZuCrNOmE80zKkpmOieZmZmjneY4r8JQzUpMHQw3vTxjvjuD8LO0Ztv0JwVKSBQRyIjGeIzPEc4yN5uSyn2MaXHh0hXuv+frKG0TIJS2CVUfCc44YqU4c3SZGzcu423NsJowl7eonAm9/ylc1HuP8+HAqXAoBMYLGu+x0mIJOvtIBaiijjKsr/EmQolQK1CuQUYQJTFESaifKEXkISZwkmKt8U3o/zs0jTCUdYGMPI2VaEXYvIqIxo+mPXePNIYojkAkVLZEKnjy4nleuHqNk6uLvOPsWYqipJXk1D3De771WzBVQ5bGiOnB5+7Tp8NFRkd4YbHSkfucxnlanQ5Lc/NoLbjr9Cl2dvpsHOzx1LnLbKxv0h+MKOsKtELHGXkcUZuGdruNBZyTxDpjbm6OW+vXyXOFFopbmxu081aAh3pHXVtSrbm6dZPd/QO+5uEHuHLzOn1X0mtJDre2eOvXv4P1LcP2cI8kD0a0iUjJc83Rzgpz83PUteH2U6dYXFihsgZjCs6cuoP1a9dYWujx9HOXmZm1PPDQG3j2hSeROkEKiJ2nPx6QxilLp28jjlNsVXH/vfdy7cYNbl65xc7BZb7p678tbAGF586Tpzh/+SVu7QxYWj2DFyVFbemqkDRozXS5cPEySwtz4UAaKRrrqY2l2+uhi5rhOFji4igJDBEhMVMFshJqysawCKGpTR22tDIwJKy3OCyR1AGqK4MpJMk0poGyqDDTf3fUH2AaR9Hfp9fusrgyT5bHvHTpOo999TytlmVt5Qhj63nsqS8yKraR8gjjSYlXKWUd4LJZr4txis5M2NqqNMabFO8aetkMtfW0WjPEsaCphpRFnzSJWN9Yx29rvG0YjCfsjYb0ZjPiokS3WxQ720gvmTQOa8cQNSwszKCMpz/oc+7559i4tUmjoGompOkKn//sZynsmGpySJLVzM/N8NzFq9y4ep4sE9x7+91cvr5FfzQGX+GNxUoFImbka8rDMW9+/cN86StfJsoSqkEd1MmuJELyhc9/Hu0VJ0+foDM7w7kXnqcoxpjG0mrNkOo2udfkSY7vSK5v3OLUyRO00nmef+ar1HVMZSboOMWjGFcll65epr+/QxSBcBFV4Sl9SaxajCcNSgviWNFMFP2JZG3ZQqRQTY2vY7xTTKoGWzXgHE4KxsUE0WRUJmGxJ4hqz5kHXsPm1WuMBhNmc02ezCFjx97hTczBDpHu4KPwMHdkaYWoFVMUI9bX1+lPhhgpML7BjDTbg3Vm50qaRjOz2COLcgaHu1y5/ALXb95iq7+PV4EdGCcNZeNISWnlcRA4eI/CMRhv0O0sUtSHjG8ZqkaxuXGL/qhPnHu0bQKIlig8rErQtWBr9xrzs4FTMtzepCQK+vjIE8caM6kZHO4huh32dg7Jk5LJcEInydiXMUm7S2d+lv1Bw97zz7O6uIhPHK7xYSPtBUmaEseBrTQej2h1EyocnW6LWGteun4DKzwnjh/j4GCfeprikFIhdYDm6mkVWWtNniVUdYMxhkF/zMmTa5w6cYovPPIlsiTGG8dhMWJhaTbUS8bhoVdoSZImGBdU6uPBiGvjMd25ObqdHvNry9y4dhVZhyFVp9MljnTg4VRjep0WTngGkyFxlNBky+g0YlKNkIcRwjuaoqGbK7S3GKkhFsgowpcTkjRCOg8iRok8ALiFwFYm8BK8wQkbKtw6QmdJMDTGUyObDUBwZw1VWSGsAdEESDdgrQIr6A/GGGuoiwqnwgO5aYItzZmKJE/xmlD9lYERl7QyZJTSeIsWBms9mTHQGJpJFexXsUchcV6/Uu8bF0XgGfqaSeVxtadoJnQiQRQnWOdReQj/G2NpnCaLBV7EOClAWVLhqf3053fBvBdribWWvNfCG0uUaobXLjG3cBKdZcj+iP6ta2gp6CwvcfnFr9CaX2Fm9Qg7Bwfh4G0so2GNFzGDyYh2K2Fzf4Njy0usHT9Gt9dlf2eXWMfMdo/Qnb0X6w1NaTkY1LQST9Zqs9CbI8ty7HiHjUt/ydEzb8fRwdcNrmkohKUpx5STgrqZ0O528c6E1LQLKVdjamIUtQumJTEtQhgbbLPGBaB0Y2uKukYqHc6kWjAuK1QU0BF6KjVwwqOjmDTJpqmlYDasqxocaKURUmLqmuArUVhjpuY0SeMb/HRA2FQ1URIH2HdjqKoapSVNXRFHGulDnayuJghpQQmSrIUjnPWCDENQTu1unmmy1zucMZTDMaWSdDod6togtMdWFZ1Wl1grmipwDq0FI1WoO4ZtDsa6V5hjUgTTXKST6UDMo6Uk7waQvhcCFWkcAp8KVBQhtAywcOcwlcU5Qd0YyrLCOULdExneIzlNjXmPUBLlQ+XP2vD59Uog3JRdJjT+ZVnMFOvghcYLT5rE0yqcQkro5G3ipMPAg2tFrB5Z5KETR7ijnREJhTA1ZRQjtw5onTrLb3zw1/nx//X9GNOEIeDiAm/8x9/Dw9//3Rgt0Zcv05AQWcND972Z2dTw8U9+mAf/i3u59idf4Ad/9Z+y8dJl5H23T/lUilayxPd9x3fy7nd9HVy5wo//7M8zsAZlHGsz8/yzH/sBWps7/PLH/5Db3/lOnn7iEcal4L8aV5z/wle5NWq4+PizzLzxDQxVwuZun2v/6t/w6HOPs+PBCsUfPfoVvvYnfoQk0lgvmTuyFD4PeYaYOGSWTutUAWuBBxnJVxhUENiUHkd+Zo0KSI6scfDFz9E7dZzP/NVjvP21r+bYHbeH6zpAopls7ZGudfjk73yYF/cKWsZx9Pj9vOrOBT7yhx/lnrMPYvducuX6Db79H34vpZlw5MRt/Nr7f4qnPvNx/u3HPoZPEv79b/8OnXSerSjje3/i5zk+3uXvfft7efoTn2Z2cY2TZ29nYfUkph7x+7/zb3jsq48xk2R4rZCRZHN7nT/72O+hXah3PnDPCjuph+eukM63UdIzkILVlVM89+wTfM87306eHfDo0RMkrYyDnXW+8NRlJjcPePPbvhY7HtFqt/nZf/EBnrn6DLu7eywdPcvJe1/DhWcf4dLNqzT7V3n2s59BAt/93/xj/sl3fS+rrS7/6Lv+IW96y9u5eWuXf/crH+Tq7lVGjeUb3v71PP3olzhYbHH8yDFA0tiKJ194gQ995BPcvHKe3L+F/brgHfc/SCvO+MnveCcOj5YABuH1dKRikUIh1F///v7/+nq51vaf19sAPMbUQdBlAojfOkPT1NOUaDgHGWPxSKQNMoGNrXX2+9s0VUWv26Pb6ZLnLZTKmOnO4W1FXRY09RjnDIPDmuGkDvKOpEXjJE63mD9zmjO9FrOdLm0dobREqSCTEoJQUQbE9FqvgJnuDEqHyptudUlarb/R9+pvfKCUnbqdB07Ocv5FxZ6sKJ1ERB5E0NLiwXqBlCHu1ThD2ZQsd3NG1YCUhE4SoboLSDPm6vUtvO1SVwLnNN3eEkszHW7d2mAw6FO7ikipYAmzjoZgYailRVBinaSlEhakJ9Ee1esiBvuUZjzttboAxo4S6sYi4wwKx8LiDHZcYg4SKluwu77Dzt6QVpYAllgHwF4wKoYbeOMdjfAgPFopynFNkuTMzmbUEowx1AbGxlNagqVCaLyUzHV6ZDpCKyAJWznvBbnqkiQVdT3Emhq0ZlzWaJmwtHwCLwWRb1B+CApWV1dpscZT519if6dPpQ3L85reXI9WJ2N3y7CwssZcN0M4yWQyIFIx3eV5pPG8cO48lfFQBz2raDwn187Q6fS4sv4SaabwMrxvTjicBKscWsgwGPJwa39I3mqzs3vA5o095s5mYEOsHusCMFc4nHTINKKpDFZKUBHaSoRsaDRoFTZLzgm8MRhXI2WwhiEljZdEPsKbMb6aBJNDXWJl2MJpVOjbEKbwOkrwJsJ7h7ASISo0CosFF2wsToaDtpIaQTT9+1B4wwN33sNrX/VaZtsx3ngSGeGcZy6bo5YVfbtLHk2/0N6FrZaOUdLjhUZVhrEbk2hFFMXML82ztNJhYXWVlSM38HHDMxevMpvkZHmbVrfDoBiBMyRRjJaCNO0yGO1RGYuvHWfOrGHNAFsbxqXF1IKmniC1opk4kjhBZ5p6UoOC4eGAjfVtzt51mssvPoNIcp56+hyDosEZhUpSJqMRKysJCzOztIXD1GPuOHM7rayDa2pSpfC6RZR3SNOc3c1b3Hl2iVMrJ9jrb3LfXffi64YGODzcx1bBoFMVTdg6Ks3V69dJpEJLqMm5eXOXV52dp8pj4lTy7m9/D+X4ZZtam25vdgowdWiVglF0WrNEsWc8Goahovd4II4UUnbQSmBsg5SSJIlJq4RI68B3MeGAGQkJ0+GjbQxKgdOCSMpwmLUvt6IF3lmMqajqCV4p8khx9OhRPve5z3Ps+BGEM+zvbiO94fTtR9grJgzHW7z21ffigVc/8Dr29tZpJ23itIUvHL12i6oZooqEyahBJJpH/uLzHDtzhoNqgBaSu87exXjSMC5KmqZkMAjDs3FZkiURlYVnzl1kvtvlxMo8L1x9CZlqlrRHyQhdOQxQIvGDBukTynKCkoLeUpdJWXOwN0IQMTioGfbHqLgmjiPyVHLz1hU29vsI58m9ZrYzy7G1jPboEONrDve3sM7TuIZyVKMy2O33qQuHUwbvLDoSxHh87UizlDvvvpPXPfxGXnjxHGmsWFk8yckTxzHA3tYmw7qg7nsyrWllMSPrWJg7zbj0VDhG+5LF5Xm2trfY2t1hOMmQDvKZlIkYE5UJ7dY8W9sbWB+jM0mWNEROkCQS/JCZdo/DYUUlFco7iqGnRNPKPVoalPJ4X5F2O4yKijxK2b50DoumG8fccfpB5k8e5zOf/ANQjqqxHL/tTmKVcuHiBXQ2x+xihzlXsDjrWFxY5bOf/ix5Z5Y3P/x6nj/3FLUdkSY5eeqYTCIWVu4mzhP2tzbJiw6TcoiKLdZoECVSeyrrAEUxKElFhEoNE/pcr54kjpfY3NnHVEParTZJ1qGm4WB3gJhIOr0UWxuQETRwsBcTtdpsr++i8kNme4ucWj2DVwmbGxs0TYlSMeVwwNLcDIWtuffYCfY2d5nNZ7jn+CpbBw0q6jA4GIWtZ+KgJphgJIzqEVVV4XxM3Eo52B1wx6mTKKV49vkLHFldojGG0bik1W3T67QoizGj0YTZ2Q5zswuUE8toVHCw3wchSbMIaz2jYcHNzW2SOKHb6zAeDpGJo6wLBoMShyeSmqXFJVp5xsZ62ArGqSJvZSAEQssQSXeKKI5JkoiqrPDGBNOb9extHzBI9vGpxAhBK1sgTiW2GNBdPI63FtsBXx9inUSKGu1ShGuoyhIX5HTT644NFTZrqcqamJA6FtqRRTGRCjaoZlIy7B8ip6IEj0EKjxIOsGitADsdKjlcBN00Y2Ir2nmOwYIVwfKFw1UTlDA4HI2XCC8C/6mpGRUTqB2FqPHGYw1gGrxvEJkieMVcSKMoj3WBBaVFBE6DbnBK0ihH5SekkUAphzcKYxxaKXrtDCEUjXGh3m49pnZECETtUXkMQlBrR0ZKPR5hjKOuPGtHjnPuWh8hC3zZp7e0QK87QzkYk88us3z0DtZvbbK1fZ2JsXTTHkOG5LFmPBpSRIJJuce9Zx8IlSwl6A/32dm7ho+OEdVdirqgqAV56rGjEaUFU43pLi9RM6LM56mkxhUFjbNIBFQ1tWmo6hKtJHgJVtBUNcY4GmNROMbGIeOISMahAqpdSIYT6jppJ38lLRSOkGFAlOgoVIKcwDmLdw4dK5y3SCWxzoRhPeAbh1Y6QL8d01SNJ02TacWiFQzBDiQK7wTOeeIpjNu6BsS0amccSZ6DUhgTlMLOWKpJRZbmeB+GisaFxYtzNhjIRLDFlWUZPuNK0ml3aOcdClGgY8mkKlGpYlyOXqmf100dINpTTqmOY7AWKUIySMURSRIRpzHGTuHYQhDriERGjCYlWmqQKiQadQRaIKQPghOnp8bOKcNJBKtiFEXUdQ3S4RAggtXYaYtzEOv/i7o3j7b1rOs8P8/wDns+8zn3nDvlZrqZCAmEGQQRBVEUtRoaAQcssctWrNK2SkGtUrBYyy5Fu6wuqxxQFMFSqxgEEUmCEgiQkOHm3iQ3w53vmac9vcMz9R/PToAW2u5erNXV+6971nnP3vvu/U7P9/f9fr5pjGhOuIseQVVFQU7p2MIo0zTy1ZIcYwydVOGlom8k2ew884fmuG1pmqt7bRoqLsitia7Xynsy7/md9/4Fr/gXb6J/5+cjX62qGK+vcvqOz+CWDnPFzdfTlQW//cv/hlP9LWanD/Bvf/mnmZnu8sG3/hS/ePcdvOiaZ/LB9/4B+dwMO5u7HD56JQuzS7zxe/5HXvL8Z8Uo4/QUP/PTP80f/If38Pe7lxjv9Xn/b/02H/jQR6gXl3joi/cwdnB0bp5gd7j38YdZD55Pfv5urrv1FhLn+eI9d7NRewZjy5HlFRKpaErNjcdvAmLscepVz0E6i1/t46dbhERFTtXk+0Q+5fEQxDt0ni4+8VqS7lfMLD6Dd7ypyXs+8BeMkwZ33H4n165e4rZveSnCOkKnSVsU/NrPvYvPndzjfX/6Z/DpL7L0mpeRu12+cOftfPD9/5kf/YHX8bqXfj/Pf+FL+NmffhuLvQ5nH32AOx48gWu1MYWh1Z7G1Z4/+U+/ybOvP87aww/xq//TWzl6/DnMHDrApQtnuLy5x8L8PI/edy+z09MUowJVWxIXoks+V/jCkSaSz372XpRy/N4X78EawfT0NM+89Raedd1LGIyf4GXXHOdP7/kzfuJNb+bC/phP3/0JirXL3Hn5DDtJQeOa23jP972Otf5OTOM3IKkEqxcvEyrHH/3ab9NcnOeNP/kvWT97iWceWmFKN1hfX2fv4CG+9OBj/Nav/QoHjh3ix37l3XziD9/P3XffzwOfvp23/tjrWTi8wqOPnOY7vumVfOmzJ/nC399F3s74yMc+zm/80gvJpECKuE4dlH1mmz2C0FQ4WlIyOYPD1xCT/qHw8v/d4+tBw/+x9xhLMGIhwFduV9cldV09vR+XRUFVjbCuIE0Vmc4npRyB/UH/aRC7FpqsGV3Hc3PzzMzMUhRFXNMTUzu7/X3KqqSoYqxfa02SdOhNT3Og3aXRymNkWgYU8fXlVyQpmMizEZj+5XVNrK+GjZHj85/+W9zOJuJgi0arTbPR+UZ+3N94Qem6IytUwz1GJWwVEjdR/Y2xOGeofKASRHBugNqUFMUAnwnyEDC6YHZmAVFXfOGeE1zeK+j2EoYhUOHoTXVJEqhNjUHhg6QOE+CuiAtEEyI7JY4hJF4lNFVKGiTeSVIR66I1gV67hdcpWd6kEhX1uMD7lF6vy26xxTVXXUF/+zKn9s7SbU4RhCbNUkbjMTJAYWsIRbyoJk1MrQkoKuO58oqryLBsFyU+VEgCF85tUwyHhNhRHg0sKJSoY1abFEHCsBiTaE0WAsIrgkxRaUar0aWZ5EhBrGgNAVOVWCPIdWAxVxRloJdkbI3HVCHl0HKH0e5FNsezXF6/QGkqkuWDhBAYlWOarSalqRAqwUjN1u52PE/4gFOCdqdLc+Eqrmh1scZT+4AImsQnZC5FiASCRQiBRbJycIVhZTl3YYNuJyMLDaRUESoqABzOWrAChQLvI7dGxsmkItBSbVRIsM4iEVglwUisLJEYJAHnCjQePy4wdYVVknoy0QwiOqGMcDhq2rKFCBbhJTYEvEtJMwkyQeqAnnAqAhHaHILAOjdh1yTUicUUJb32NDKX0c6OBxWbpZSON9q1N+ggyNJ48AshCUrijAFfU5cjQtbG1X20d2xt7vLA+he4uHqBgOJZ11/LxQubqExinEDXBuMsg6pABYWq9smkw+eBUWm56/MnmJ9pgbPoNEKuO60uG5vbKJEAgaIuGY9rrj1ylE67SavVYuPS+ch9EJbTF/bwwTDd6XL82JUsH5hjeWGJB+6/nx0x5uorr8I5wajok7VypOyiVYq0Aang8s4GW7sjtrf2OLqyRFl79od9NjZ3OHHqBIdWllk6uICQKQ+cfJQ8TWm0Mqa7Cb3ZGV55w9Uszs4zGNds7W1x/ZXXsN8fMShHCAONdov+eEA5Kllb3aCuKg4dPIhXFj9pVAmICDIVk2NKy6ei3vgJ/yDL86ch8IF4QUkaOTv7Oyx2FiisQYRA4kO0qxMmMYGAMwUejXce42sUGZfX1lhdX6XbzbF1xeOb6xw8tEI765JUnmuPHOHsecnFM2scPrrE3tYOs70FpmcP4aVmf7TBiQfvI80kz33+y/jSg19kXGxycf8cq/dtYmtHI21xx12fZ2VpAVMbZCLY2esz1etS1IbFhVmESFnf3sYhWN3YoZk2efnLXs6n77wD6SVZrkl9Ejk5wbDb30NLiSU2byWZ4tjVC6yt7nLp0nmCUzTbOc2mZLAXeOW3P5e//8LnENazv7PP9mAXK3JEkPT3xwyLijzVJDql3c5o6ya5SPFCQSkiCH8S9RB5wvLKIi954fMpSkun2aTVbjA9M824tJTFAFNWqMIwvTKDNZ6k3SF1jkPzc5TlPieffIzZhVl0CuOqIGs28bKm1YwV41OtGa695hrue+hBGllK2miwvDxNpi03PudGHj3xGUZlxebQMjQQfDwvJVlKmilS7RG0UHpMniukLbGixLkRW7sWwTSlLTh1+hH0xTM4E1CywezMPFu725ja4lzB6cdO0b7s0NaydPgW2v0xSR7Zd7fe9iwurp/n7Jlz5HNzDIoaLaaZ6vZYXbvMcNBHagXBIJUFa8kSi0hS6vGYoBJ0ojl45fWsX7qAkBqkhSQjSXOuOHaYqtpB6TYPPnAv1VDQ7Wi0aDI1o1m9WCAbGYszU0wvXkmSXeSJ048zHr6y7VQAACAASURBVA5i5bXS8dxVC/o7A4oMRo9bWknKly5uMn9gmotnL2NvuJr5hRbLh67izIXLnDqdoFwUMNJUoomV5LKR0J1uI7ViNCpZ39imM9Ui+MDu3j6b2/sIkdBpdSiLEWVR0ek1yHLF7u4OWEkzSakk9LotvBB0O22MsYz6A1rdJqNxSR08aTvHmhrdShBBotAYU1PVkdU1HPWxEkxdQfCoVLF9aZXRoM/8yhLj4RBXGXS7we72KEa0IrwFsR+YXpqjv3WRpQPHWFw+PokCDamNo6EE5AKCiq0tOqX2nqIskWFCPA2xZl1Jjc4cwptY/Z5EJ6QjguGbrQ5eagIy7gc4grWY1GBGgogiio7aPM+piprS15jSYrAEEQi1wwtPbSpCVdLJs+hiERHsiYBgPU00VeJIZQMnLSFTiJDiRxoVLMpHmLGSOlatZ5Kk2cCHgPYx0uasJRMB5VKU9XghybIYK7JVTX9vPzJxfIwJWO+oqhrpA41EoJ3FOEiDBmshaFqZRNqa1b2UZquBTEasFxfx+3NoJChNaS0yWPrDXTJpeeL8o1xx6DhCOOq6Ju9Osbu3gSDjxEP3MNNb4dKly2yubyFlCyEkO7uX2NneI9EJSZaxuzdAd9pc3jlLd77Lgdmj6AMpziqU8ITaUwuPEw5Xeco6ivvBTVzyQiG8QYeAtQYhFVqANzXWQaOWGFOjdYJBImQgJYp8JkQ3XjkoUVrjvcfWjqoax9aqEJAqlrJYFwFlsS0oEDQEEbk/LniEklgf0DpFTu6vhIilJ2VdY01NlvSwxkQn2yT2LaQiSxIUEbjtiY2EHoFQkjzVmGGB1mmMSeoIGs/SDCEElalwKjrg8jSj8jVBE7ENSKwXCDK0VNFVJCoSlUwWJIJg4zFirZ0cMo4Qksj/lLHQRSdJhO+rBJU3cFLEBjatUcLhJu13Ckh0mETv4mfrvaSZx9isx6OkmhybfNl9JCTWCYRMEMLjnECrhJAElmam2R70qWtLK9NYV8dIayIo5mY4urLEixenONpp0BQCQhzCGh+diUkSmaoNEv7L//J23MufyYuvu4r/9N4/J3hw/YLPf/DP+IP7vsi3fftruWXu+ex96lFe/O3fw5f++HcZpppP//5H+c6ffD2JdcwtrvDa730TL7z6CHd89u+oWhmLM0tcffVNPOe2W2JBhlbo+Tnm5md4w3e8hc/++1/gBa96LQ+dX+OH3/Z2fuc9/5pDx57Jz/3Ln6F84FE+8YGP84S3pGnK/MocnV6HzlyP2z/wYd72sz/DnX/5cZaWjyNX1ygkLHQm98IIVKPF8LFLJAtzZGnkcxHAW8vWidPkc7M0D8zFOK98CngeOVtSgM8Ey996LfV/Oc0fv+/32bp4jv/2wYe57duvphwWNDtNQjD85Z/9BVVniT/60DvoegPf/RJ0Q/Keb309g5bmu7/5VpzWSF9y/xfuoDU1TT2GD911Pxu1RpSOXMd44403HOf44YN4BLf/7K9z/upp0r0znHngc3zf23+R9Q/fzofv+hRZs01VGdqdHnU5xnpDhiaxApN4XAVBJlQuQUjDwaNX8cSjJ7nnzrt49Q+8lT/5Xz/G5a1f58QDJxi/6NkYrXn0/gc4c2ED1y/47Gfv4rZbT7G2v0kqBVVdUmz32d3YotFoIHstnvv9P0JeG5YXpplLAiuHDtJuJnzoE3fw7372J3jnL7yTTqvLP/kfXsmVnYw3v+Pn+PNf/g2a7SZ/+icf548++Fe89vtew2te3eTQVQe58dbbWFu7yMzhZYzQaJ0ipKQhA41kKroEpaAVFJWHRH59Z9J/L2ISfP338o8JTELIaACpy4kLqaYox4zHeyRa0+3NkugMKSV1HQcK1khM6kkmolKeNVFKPS1YJyi0TCFIEp0jW02CFBEFIyULvYw8zdBaxcIvAvJp0PeXG/WidmQnDdaTAoanx94T0ZanbzUid1kENoqaSkmUzpBZRtJqkjb+O4+8zcqK3e0+Z3YcSXsKWQ7ICBFIqRso41HOg0wnFbmGYCXL8zPUziFDhejO8NkHHuChnTG9zizNdof+5ireWLY3ttCdJjoRMI4NQcIzqUoN2BAt64RAcJGtY6gpZIPKe0oPQjZo5hVVOcTgkDJWS0oXJ+qiKchVTUMr+v0LVHZIc1ohMkPAYUqBcBOHEgAKF+LF0tmobipVsbd9ganeLEudaYJwXNpYY317hwRJ4gW1BBECxlQMigoDBGtQQdHO27FyN0tQQuP8FK40BBswdYlOYaqZ00lTvMzJ8gU67TY5mke/9CDKluwOdzlwYJrPPvAAzVaHteE2r37pa+jv7CJ0hg0lswtLsZ0uzZlHsrmxydbmTmz40AmitjSamqo2pI0erU4zuj5CoPAl0ioyIfATcKJzFicDShsEAq8ERpUIG5k1nglY3VuCC+B9rOnWkzYtPNZDLQK5DKR5Slm7GG/0JcoHZBAIM3l+WaNSiwkCpTPSYGOVpwsoJdAh4GWcqEqtMWFMU3TxokTIDqWvJkehj9Bnb2Nriwso0thIh6SysRmnwJCYGKOTwiG9QAmJMx5qiZQaVMCHGiFTvA/oUlAPah567GEGps+Vy4d54PTjLB06wA3HruOJs4+ys18x1+1R7hVkGYyqitpNppi1pa6gNDXOW3IN3U6bAbt0exlVXeK8oqktzjpqk5LlKeOiAqEjeFJ4BsMt7rz4RORUqQStEjQanSi8MLS6KWvbF6Da4cH7HuSKo7NcceQ4mW7ig6OqLf21bYQaMzU7jfIj+uMBy0srNLJdkixFCU+SSQ4051GywX0nHqY2UIxhZ3eNcTFiVPbZvbDDM6+4lk6aYY1kZDTnHj/F7NIsYwtKK6gs43GJs5ZGs8Xc9BStLOeJx5+k12jSkCpWzAviTUmIVujgPXISj4s26ygwSxHbFLTUk8m8o9FQWOMwlUGrDBnKuMgEKmdJkgxjPNu7A7JGg+AD3c4Ua2ubGOO4fGETrQXLK7OU1ZjzZx8nzRpcd/UtyFAy1WljfcWDJx+h205pZC2EtZSmxlYlN998M5XznH7iSbZ3RqyvbUCjyfzsMjdfcxX7Q8fJ06fpDwYszncZlRWzc1PM9mZoNZrR4ZB6rj12BY88dpbxuGR+bpqpzhTBSkpn0FoQKGh0BMYQQbFKkydNqrpmOBzRbXRppopm3mB2boVLlzcoCosKmla7yVWHrmRr40m63UN86cRJ+uMBgoSd/b248E8lV19xPWeefIKbrr+ZAyvHuP+BE8hEkbpAisCqhKIw9MuC7d196tqxtbNJohPytIHSTa4/fh2Xzz/O1nCHTr2AF7HYQTQS+oMR1x2/jt5MC5G3uO+++0hbTVKdUFVjDsyusHlphxe/8NkMigppImPO+ZoL65c4NHOIjY0B3fkjjC5uoIzj6MIRLq9voNOEVpaRZhJrChp5i04zoaj2yISnmXiKYY1TCseQZkMzHG7gqxzjA2JcU9TbKCVJZAW+YH7hEFoF9nZ22dvZI2gFTpE0O+zv79JM2rRbORKPq2u2t9c5e26DYd2PCzcB3bamHJfk+Qyj4RoqDQQjSVRC0ppmdb0g1TP0plI2ty+wv7/BsNrEVmPmul3OXHiIuipRskW7M83WZp9yaPBK06JBVScEFGZsyNOEyliyPMFLSd7o0mgJtrY2uenKG3A2MLc4z5nTj5E3YnTvgdNnufUZ1yKNZmHuALPzS2xvbmAsJIkEAqM6MlSG+wV5UzI7P01torPh2uNXIQn0ByPGoz6mKhgPC5ytaDYUvTxB5pLp3jRlYSnLfY4dXWJkas6eKWk0FLs72ySZYlia2PA2KhkPRzSbTebmp5mfmcUZx+b6JgCpkgQtaTc13d4058+tggCtoB6MsGWJ1gJTFbGxLMtotDrgPP1il9KMqRHgHW48xkmFTBpob9DKYWqPTsKEXaPpdbsMBv0INZ6wBk0VP5MsESgjMLaimbWQQeGcw9Ql46JkNOqDtzgvkCGe28qyJA2WtJnEBtOnbjqDY1TFena8QEmP1NF9kqbRTeusx1mPl/G6iBA0Gx1GoiRxFV5MBp4+EIyFUEcXQYiuaScswlvKUcmgPyAVgtK7+HvjsdaTirhYDkmC8YYgA3Vw5O1WlLB9wIYIU88mMF6fOHSekxcSEyxSZYwGlxlsn6Y7e5R9F5iaWYFgWZydY32rz5n1IcYEpnoNyuEG6d6YlaxiVbRIVJOtcocsbSNtoBwPIAtYrxmsXeTi+nkaSYN2o0urOQXCUjnPQm+RetTHh4TUW+anZtGyzW5/i8fPPoIUklajR5o0I7Dae0bVAKEDSaInN/cBvGW4v0eax2ZiqRLSJKEqC6TS1DYykoz3NNpTZEmO8Z4k0aTO42uDt5a8nSEClGVJImWMESpFmuZY56iNiQsLH9tzdaoJIUT+UoisocllLwp7LsbrlHAE4ckaWWzA9eB8oNHIKIoCnSRIJUB4rDc4E8tMWlmDRAiCqXG2RqiMp9YzOonuX2tNdBchUFmO1YLceqSHkTWotBndiyrg5YRdiCPIgMWhVWyAVlIhZIxslkWJkCIOBF1N0CmttM1oVKC0JkkUqEguF1ohdDJppPPUlaAyEZBtnYcASZKQKBWHmDa60yWBoGLELxBb4pwNZDrG4bBjEilot9qMxzUbaxtMzc6TJRmHDi0x3e1xaL7L/HQnuu7CJMooJm9NqckCESBglUQ9dI5PP3GBzf0tTtxxD29/zzt58Df/EP3SF/C5omBQWVrNjIc/9HEKITl+8AALSYsvnTrF7Nt+mureu/nIhYc5dvR6Xv3dr2S8u8Ozb7yNTVGxtT2gKPuIEAXFuFsarDPsH1IszM0ytdDjaN7jDa9/Jc277+Ll/+pf0JrtoG48xjWXnsnG1pD7185x7rELXFrd4HlXXsVtV17NL7/7N3nRc1/J617/KsRjTzDMJJ3uXJzeYai3tnEbfVrLC7gvPol4wbGn12T3PHiSzvIBbkmgOTOF0BlCPbWTTpp4E8GF/3on9+zs8uzdPh2d8V0vvInjVy5j9sesnjjPYDSmWlzirW/8HlrDiuqxszRffAtrj9zPWkegVx3J9AyHlxbYa+Z86aEL3PasW3jrD72R6ZVD7GwN+MB7/5CPfPJvUAuHecMP/jCNPEP7mtf81m/wzDMP8lP/6qfoNFo89P4/47EnzpK2WwiV86xvfgX9i2s8cuJe8kyhqPDBRPdhKgiVQTlB1Rc8tnuC73zdD+Azyaf/2/u47SXP4Jarn83JnZKP/dUdDMotbrz5Gbz7l97JE+fXePev/iof/uuP4eoROmtSFiU3v/r7eOwTf0NlAocPtPi5V30TI2twRcr5cszhpRms9Tz+0CmuPX4DZy6dp9fr8fEPfY677v087/yZd/HpE3/Pm3/2nfz1r/9bDi7P49CUdcW1Vx6ikSqmF+b5ybf8EDdecWRSSAN+ApKWQkFw2Al/zzuFVBN20P8PHyGESUQ3PK28+Am/sq4rRuMxdRUFf6ViK/h+fxfnK7IsYVSMUYmm0WhSmIJiXJGkCWmAtsriv5Mc7VtM9RKyLCOgSZQk0RqhxFd8ck+xmEJUfyCaTYKf3AfKWDIg5Je3Fwngn9LAv0rae0p4kiKWCHiiE/DgVM6V117FXZ/p0Eshb+dkjfQb+rl+wwWlS48/hrOGfi2Zn1lgHErGdUkmBGnSxNkaY8d4nqo9DVzc3eXsehclLRBQekCzpZHbAZod6spRuajIVeOCjaLAWhsreCftZ064CHV2avIhxryzULHCb987wCKlpxSQhkhXDyEggsW6fbz2tBKHthVVtUeeKk6fPUszT2k1ElAFOQ2sBCE9SEPqLMYpAhqNpKk0Q1eDhMpbNvc2KPWIksDq+hpJsBAUQQa0YFJr7zGkJHmX1FbkSUJOA+UdrnBIZajKMUsLS2R5Qq/RpZHnKB014v6oJFWKTCeUu3sMRmOe2NyhNJpBf59bbn4ejTzluA60tKC5MMOdd32SPM9Y7HY5emAF2ZlGoFian+d04xzGWETwKFTM9U9yz95aUDkRrBCQfJleb4UghATpDKmM76+yFukFQinEZEIrpEQKhQoxHugDKC+x0WWIChIVZGylAaSwaB+wqSax0JceqwPKCIJIcF6TJh6VJnG/CLFO2Qni1MqA1n4SO4j2P+8lzsaDTsoYL/TeovE4b7AI8BKhNLmUJImkKh2iGkebukqxwiJlQoKK0+AgEMSaRyU0zgo2tmIc41N3383O/jZDP2Zta43SSAZnai6fv8TW/pi6NhR5wtxUC6Ez2s0GDz9xHi8DnVbKbKvN5cv79FpNrj12Lfc8eC9JpsmkpNOeI8kku/tjxmPDYLQLUsRpofeMB2O0TClsYHZ6FiEDo4FHyQRChQmG6Uab9e0NMqXY2FAsL84wLgx7u9scPNBBywaNxDFWioEtuHj5cXIVp6Grl1c5ds0NNJSiPxixu9qnOdVB4zmysoh1juFgn8W5LotLHTa2NhiPdtkfbtFtLbK7M2Bnd5e1rQt4WZKkKdPdaebn5xkNSy6vr9FodVCJYnp2msXxAjKLWNk4WFRPN07ICczTT6askcsUI24ROJvE84KUaCXI8wab29tIKVg4sIgiox4VkEQnU2U8tfU0Oj16vR6bWxvU1jE7N4fWiv5gyPbWBtWEP7F6aY25uRlGV4zYK8fkzYRm2sEg2Fq7yNHlJmmaMxj12RsOeezUo3TaCTdc/3wunHuImZUWqZqloZuceuQso+E+KI9Ulq3BGtZDnqbs7DmcMwyHI/CB8WCPmekuK8vznD19jns/fw+v/rZv488/+gEOHzzG2XPnaGVdTFUBAmuiMwDnOXzgAM1mg539KMKVdcXcwgyDvTWCtJx48CGWF4+wunaJ9YuXkamg3e0hMUyZCPC//tgzWV5Y4fgVN9DrdNjZG6EkpDl4F+Op46JGyMDG9i4fvf2T7Ozv0G3kHFyYZW5mmjxvRYhh2uTiuUusHDjG3v46jz16imuvvo7egRlCqFhYWGFrfZNhv0+WClppgpEtBsMxIZU88NDD7O9v02goShOwpuLwkcOUVcGpU4/Q6XQYFIGGVDSzGGttJx0WF2YoqxE7RZ/BYJdG3iEROWW5h8SiVQuEI+gGzW6PjD425NjM4d0IScW4jtcihcCO+2w7j/EDctlj7fIZrLa0uznCO5YPrXB56zTWeuy4pqwlFmg0Y649TQNmvIdWINsJadUhuEDpK7LQxLoE68e0pw5gTMnywZu4fPkSThSsXn6EyxdMhECTYn3O5s4OxoxZmD2C9RZbj9nZW6e/cwHZnGJ+aZnLly7gAkw1e6i0wdR0GxNqTp56iLnpBfCe2akpFheazPWafO7uM8y2e6wsH8dXJaY2k9p4SSsVGGvQJEil0TLDVpA1EgajIXqnz+z8HFIqrB8yMzNN8J48T5idnuLY0QWyTLO6usPu7g5CKopyzKDqk2Ydpma67Pf3GI7HhDFRzCeQ5DkHVpaZm1+AynDhyctYU1ObyDvQqcQ5w9ZmnzxNabZS6soyOzvFYFgig0d6iRDRoTjVnmZ2boa9/jaVsEgZaHc6TPWmyJOc8bhCNzPAY8sxeZYQ0HESiMLXjqJfYIMhTADB0gHBU5UjmnlsJhVBIrXAC4HSTFg5SXyOIImxo0AjUfhiP4o4VhAcpEFgA3SaLWoTHRbaVRgV8FbGGmLpSUMg+BqCRngJXjEaDqjL8unFQ+Qnxsr6pA4kqZzEyT1K6Mi6SWMrqQtEkLTzqIbBFA5tDUiBCjHqJnyYiBAeoRS1nQDXncWXBcEbhNRYIfGKKPgHy7jsk+eSjfoCSuYMx12CSBnvp/T7jqGp6bQbdPKcVnsqNlD2DrPSMAhf40OFDwnWeRYXFxiMKgwVVx65ksXlRXb39ti4NOLC+XN0ZnrMdKYYF32qccFoNGJh7iC5kOR5kyfO3sdjF88gnGJcCNqtnKXZadrtLqNywEy3RQgeFzwIQVmMUDLgbEWaJ1QmREi0t6gkoS7GlGWB1Cmzh6apvKOqa4LzeOeorYnHQpoSMegKgUcpNYlhS4xxCA9KBayPQklZF0hRRZe1D2RpRlWVdLutyfcLIcTIivUFWd5AqhhN1VKADJPiiRwlc5QSeDvG1g5T17Q7XYDoLEsTvAMlY9MZUhLEhPU1aZ3L0pRMaWxdIJFkWY7MmgRXxTipSgjWIoxAJZFvqJSK5S1SooSIrBZhaOQ53tf0B0OWDh5i7AravQZSJggp8SK6p1QiUWkUi2prKV2JER5UPFaEDCSJonaOPEmRWlMUdQSbqwRbe3QiSbIswu49CG9ptptICbv9faa603z7t76MTCdMT3dYme6htZygNyKvU0qBUlEIBp5Saierv1hjIw8s8C233sbnheGl1xxnWno++Km/4bMP3MnR2UVe/T3fx/TiAc6cPsvy0RVsMWa9HNGZ6jA30+J3f+v3uOmV38/bfvJHsK5EaI1xmiSNAPs0j0w872KD4yN/+xn+7t7Pccc9D+B7TT7z4U/x/vf+R2pv+e4feyO/9vPv4MaXvoCXvurV9L/wOG99+z9n79yTfPDf/w6PPH6aV119JSu9WX75l36QV3zzC6CRsvdX59gVsPrYJa669SrcmW2S+Sb6edfEhtybD2FHFbqREVzgOS94CY3ZNl9833/l0K03cfT5N8V9MAZ2cEJBf8CJR1c5Ndrlubri9g99jN31PQ4957k004TFqxbIzl/myfNnuf0Tf0u7L3nVT7yB6sJFfv77/yn3pzYO7qohUjj+5i//kp//l/+GWW/YWd3j7+/6Ox67dJG7vnCShcNHePe7fpFDK8uISQFE99gUjftLVuZm2Kz2CQcOMVXWjFfXyHozLC8d5uXPexl3ZiknT36BylSxcVomKBFoNXLGpaXTmefIldew0sr52Cc+Sb00Q3CSzfJBrkxSPlePSPIGrePXc3FzhwfuuANlS1Jrcd5DqOnN9Xjbj/wI7xg6blma4WMf+XPe91cf5cYrVviWZ30zJ8+MOLWzS6M5y8nHt7hpVCK9wkvJ9sYGzD+D733TD/He//1/I4RpPuoMnfl5jl5/K//5T/6QrfXL+CRjZeEK9tfPYw+vRO6gjOslKWBvMKQ2Fd1uD01kz0a4x1M79/+bx/9ZCvlav+drbiP42q/81JbhH9kOIajqitFoiLOGJE1RQlJWI8bFACEk3c4Uadp6mkOX5U0Ggz0QktJYghMUlUJnHWY7c7RbHfI8J1EqOh6FjMPur/F//ar3FJ76eSL+AxDZcl/+C0lcwAYQT/mWBF/LgPVlp1UUqWSIwpIWhqtWDpD3lkjzPVqdRdJvsAT0DReU1vcGBCfQ2RSZEogsQ1FiXMD6UZwQSAFSELwmD5ZxUbKx00elAWEF7ZZkfzSmFgIlPJUdElycWBgEw7JCeIvzMX0bQiARcToUtCALlgJJmigyaRnVisJ6jJm0sNR9ylCgZUA8xQOSJYEaSKhChTVDpNNPfzkOg3Y5VrkY5VAB7aPtVuEj6weHE5EnZGrDVNog1QqEQgvNzNQU/a0hJWBchQpR9JJCI52gkyQIGeOBnSSj3WqSNxLyJGF/p8+BlVm8jRdapCIISRAWG2qwmuFgwNlz5/jS2i5jAx7FsCiZ67ToTXdwTqLTnPW1VdY3d7CV5ZJK2DsXobfp/AGcFzQTzX5pCJp4gbXg8CgnCcmE1+AjmX5YG5IabIjRhhA8IniqssJ7QzWqCTLGAIWQEyB+oDY1e+UAW8dpVpI0ImMiWOpgaUuBtwIvPC7E11JkkVVVjqj2h1gpwCSYukTgSZ3AVBV5pnDeIZxChoBDUHmHshLjPaPSE4TFS4W2HuNKvHFgHTqVaJGjRTrJ7wu8VEiVUdSO2g5BShJdgXWIJKFSDZwtGNXDSa18QBE4f2md2+++i6o2lFWBwdNQCaNCIZoKX3s2ii18UMwvzLC/O6Aoz+KDJ80z8lYCLjqu+v0xSsJgt+ChR08TQqyTl1KTNTTHjqywtrnPE6cv0mqneGEph9XEFg8+OIxJqE0Z26rSBs1Wl3I0RIUxg7ImkTlSqcgqSJvMzExT1Jatfp9m3qEcl9x78l4ubK6jnWFuLmOxd4j1/i6Lc0tcHuwzGjsS6Ti/eoFet8f81BSJEuhgKKoSKslsd4HVbBWvE0Se4EpD3mxw0423orRla30TQk53KlYWN/Mm3XaEehbFgICnriLsTmmFiBbF6HhjouaHuLgMk+YZY0xsfPEeEYgESO9ItMZbx8MPP8zW1jbXXX0sVnJiiZ47RdAJiRT0BwOytIFWmnFVMegPue05t/Hg/fdhXEWr02B/f0xtJSdPnuLhx8/x8uc9k1TNMNVqsJulnHz0NIdWjlBWBqzl1htu5uChK3jg/lN0Wm3a0z0eO72Kmgn0R9t0Z+axVcXq8DLSJCAMIzNi6PYIKgGR4ILA7O/TdIK6KCmNQ2vNcFwiyVhb3SVrpWATwCClQ6k4oXEW+sMhrU6MryQiYdDv401J7T1T020efvgRLl/eYn+8R6fbRCcpnWbO+uYOpq7xCIqiojfTpZPlCB+PqaQpwYE1gTAB3jZbDa644hjOVozHQ7KmwuLoD3dZXliiHJd4oRk4+PTdn6bXznniyTNkzR6bW7ukqaDZarCzt49XAd2Q6AZUQ8vW/ohgAsWopNFMufVZz+fhkycZVyVmuMXebvzuq7pGJIqVg4diG6JOSBsp/dGQshhEPkgda8LbraM88vBdEbrqI4Mj78a2QR8UWXsGjaUYxtYkoUpEcOA047pCScXC4hK7m3uAx9uELM9ZX91l7dw5ipHF1RJTS8YuVninXtPtdqndkKzVpvaBRtCUKIK3tDspqayoql2me8uYag/nHPuDPcblHjY48jzF1I52nmO9wKEo+2MypdjdOx+vISo6egZ7ffxQk2d+AoGuqKs9Ul8z3PNkac4oSyhcATrFtwB18AAAIABJREFUi4JRMWKhNc/S4jqPPPI4B684TqOZ02w32N12JEpgKkdRxUVqohOSpEGrM0V3pkO3N6Yux3R6U5iipKw8w3GFEoJWs0WqMjqNNrUtMcbGxkqt6XS71Eaztb/F7vYAYyos0Go34sDK1SQqIU1Sdrf2KfoDhA902h3G4xGjMJ7EPFMEls2tfYL3HDy4xPOe90w++rG7MMHRbecIkdBodTm4skyn22ZudorzlwMy65LrDJxibXOD5sIs9XCEr2oaQuJEIMkm6GVbEwioVEemH1HM9s7jg0NnKbYaEhA4X+JFIJiasjSxppzoSvE+svy8cxhr8F6QEoUFgaXyFpUllMMBtY3g27Efx+e1cdrpyhqfalyIt9kxOiXIGhkOgSK2waU+RmOtUZTY2PZFjBf7EGJbHLFa3gG1DejgqKzB1w4lPCmCNInNYUIoauuoTIX0Gmfj2VUEMEKSTKLZSkFFjFaURcH83NWsb44haKZ789QofBCM64pBMcZLgRaavDnFkatuAXme2lR0mk3Onj8BKmFcDhjVfaRQtBs9rr/+WuamZjhy9Q2cfOAhzpYnGJghSVPRyQXCO4bVEEPNqNpna7hDgSKQcvWxZ7C6epnaDamMY3Vnh+W0QTNvoFExcoaLzhsfCFJhaksjkWAcRhlqE5CipihLyrKi0dLUtaE2JVU1RqQ50kXXuhCRWxRcDcLiSEGGOChREmobv1cRSz+0kgg0UmoEkGiNsYEkSaOQaS0iqBgNNwbvAn4yoBYEtJATxlcgVwqtI+jGe4ObtP2lWQYEpEgRHqRw+OBIdQ4InPNUtcULUErRSFOkByc1xjlcWSE8WBmLMiQBjEcl8bWETMDHoZ+tTLy/SXJqY+h1u+zubuCDpzfd4tLGGu3uDCkZBhFb9BSoXKOzBKFEdI47gSoFOkThy4wrTG3JstiuGN3NIUbuEo2exARNXaFkQjNrMj89z9z0DFdduYJKNKmW5LmiqmsSJUiVmtxXCBCKCdN7MuiaMK6EmDgU49JSugBzKd/xvd/Ja44cYHziAqpqcOPzv4n7T9xBs5OxMNdDecPqzjbjuuCPb/8kD26v4ZziDW98Ez/5wz/Om3/sBzDVmKSRMxptsjfcQ/cirBwfEQ6uqDC1YW9vnzMXN1g8eAU/+M9+lLlWRqORQYDdJ7c5u7HB2iMPoWWbb33tK6ifuMTc4jLXHbyC4cYW+oXP50U3PIMjxw4hraG8tMOd5x+g7wXTB5cYPnoSdjWdQ9NUuwO8B7O1w7mHz3D8215M3smZu3qBsDfi2a97NUm7FVvzXBxO+yBRIlDtl3zrj7+e0S/8Kv/8599Jf2Ob4zfdyPrmFscOHyEMC9Ye2+HY0iJ33n4H73j3r7C9uckXf++PebKXMy1gUA8J4wYymWJvr+Jd7/5FXvOyb+EVL3wRf/eJ2/m7E6f43rf8KDMzi+R5i9pGNq4IHldajr32Fbx1cIm3/4f30N/eomp0efl3PY96Y413/c9vQSvFdc+4io/8x9/ijrtuZzAKkAmkg07eotUWfP8bf4y3vOWf8MHf/wO2djf5+X/6Zu46d5qrOk3e85mP00gVz3rxN/PPXvVd3PnHf8An7/s8/f6YECS1t2gnqHcrfvf9v8O/e+sbedf7PsB0b4rP/c1fc80b30Ajz/iWm25hZnqWJMv58V94B6fu/RKrF57gVT/1Mzz50P387i/9Ar/2vg/zhS/ezXd90/fSmJ7irT/yZs6fWeX2j3+SY8++mSRJuffTdzJcPcENR4/R7Ewz0+5MolOWXqdNZTK+eHGdm2Y7dFvduCeLryf7fKWA8lQLGrFp8Wv8RXhaIpm4dP6BUCImz/PU2cpDkP9g0/CVL/t0QuyrOUohwLiuOf34IwhfcWjlIHmaU5QFRVFCiOKR0jlKJQTh0SIjk016vdn4PEo87aDUgq8b//vq9/91fhLhq37+us8kvzLa9n9HyJtsP3nCBpLFqRYmX2CqV9Nu9ZDq//IJ/h8/vvEtb0IythaRWWpXk6kMiaFyhqKqsAgSrQlSUclYZqtdzf5wgNZxQbhXGAZFTZanNHKBNQOErJAh0GxYjPCUhY9fhBB4KSfa9lMMgoQgHUFIkjSg6hpvavb3+mhtqF0N2pOIBGWjYOCFQymBIqC9RCcpprLIHJycWNVFtIybyhECsYXCW4RSSOKESCqNoYQg2BuNufrAIRwGWY2oBzuUrsQFED4QgiRIiVKBohihQ83SXJeg4k2fFAnWWGrjsEoyrmpCECSJQod4kAqfkCZtEq24/9TjnDx9lsoIHBaEZL8u+NQ9p3nRLTdw6OAKPjh63R7LnS4b4y2sc6xu7KAdHOvO0en1Ys372FAHcMFRlhWJlFRORKty8AiVkCUNOp02goTaV0jh4zTGe3rdLrluoIXHGoNITLwR9THm12x26PaaFEVFqgJSJOg0xzvPoL/PeDhifX0L7Q2dmWl6vXaszNUpeUOSNWMbiJYJLtUgINEthkIhMbhgSXwSuTdCIkMUHpqtKTrtdqz3TZvxRt3nuOAjm8TXZDpFqHzCFDCEIEl0hhaSmWaLkCUkWZPxaIgOASE1TrVJyprYOigpS8ejTz7Bzv4AU1uUcrRbTapgOHpgkcOLhxmVnlOnHyJRkrnpaZp5hveCoqxYmp/G1obVzV1G4xIlFFkKi3MzeNFgc3OTqakuU902B5ZnsUXJzTfeQDEybGxvIydcJznJtLfbDRqNyBlJWpp2M2FzaxfrHSEIpBdMzXQZTKyc/UHNQ4+vYuoRB5dHHFk+yLC/z95wh5XFLj602ds+B9UGspnyyJOPcPniGaamDuClJtMZ43qTK684jLCG0SgutFOpWF/bRycJ3WYXYwtuvvFa6ujR49FT99OensV5C0ja7S61czGbn2RYF0h0BiJWBCOioKyUxLnIzUKEaKH+qtOSJE103F4EpAg4H6MBywcP4ELNzv4eZVkzNdVGuAAiobQBK3xsgRGKNI921v3hkI21ddI0pdHu0kslrWaKt5qt9cdoNGe58tgVccqgPAlwaGmFS5cusru/x/LCEh2d0luYAlKuP34VF1YjNFWpdVqNFqaqme11mZ9dwj7sMNYinGFc9Smp8FbA/8Hdm8dKlp7nfb9vOUvtVXfv23tP9wxnKHKGi8ghxUUUpSiiZUmJHMuWFziQ40QCLASwgSyAYQFOpCCKHcoGFBmRZSaKHClWtJCypEiiTFLkkJyNHM7W09PTPb3dvnvtdZZvyx9f3RlSkWLAYGA7B2jgdt2+t6qrznfO+73v8/weElQSC1jjDEE50obg5u1XOTjcR2tF5SrW+31m4wrvA41mB4PFeItRlmm9YHbrLlYU8d8XU5TMIuQ0SB64/BDPfuVpmu02/a1TVNZxNJlgrMfJnEVh8D42lA+ORqRKMByPY/qQCTgUWaJJVHz/Ewnnzpxh7+AeihZrg3OgUopyDjrwla8+ydzWYAKn3vUu3vn4+3niic/hnQAh2NzeQngXVYBOsCjBWxHXrQwY41hZbdNOM9b7m3hvuXvwGqlWpM0ml85dRAZDJ2tRDOdkmWYyHxIw0QpiHTY4TFUzqY5IkxRvLOiMYr6gn/fYWF2j6PSYLyyrvS736ynOO1rpgNlkiJUOYwPr6+t0Gl0WecpiOkRLxWI2p92N9sVWq8OwmlCGGtXIaWYNgvNMFos4Ke11wZUsigUb65tMjm+RtlOK6QJ8hZnvIGWHWVnQag7Ikpy13jp5s8Gd26+wqGqkkMznPoL9E0FvdR2lM8ryLhqD6CkOjytk1qKhm9Q+YbqoaDY9o+ke585eQArF3Xu36HcmKO1RSWChCi5duMy8vMHzzz3DpQcf5PjoaBmBDpMyWqAG3SZp2qBYVCBm1FXB9ulTiH47pi6mks2tTSaTIdY51lYG+GAZTuZo5el3WkxnJU7A+sYaq2fPcv0zTzCfLej2mnGAUxgaqaDZyjHGY8sCV3tkiI3kReFiQmyaU9UlCkGz0yZVmoO9Y9rtnMPRhI3VLqbfjBYgF0iEIlQ1qdQ0ej3y/RFKJbTyBrlOOTAFYjFkpb2CSzSuKOKm2Choxtr4BPAZVbAOXzucd8jgKcsFiYjKneAlHkOSpGAtVVFRlVUcgkWSEsFHq5TwgYCKgG/vl2phFRUnOAgK7yLA07vI8al8JDI7dGw0uRBtDK6KyVkWjK8RAWpXgfUEW5HoBtJLnBC4JYPOmprgI6xZhBii7kVkOkWQqUX4GhnbUGilaDSbEWzso0nPWRO/XwYSp0gNVF4uFW45Xjk2Tz2CCQpXVrEhgiDL+6wODFU9i2tAeOZVRVlPIGgWxZRFaQkmsq8WC0sjT5gupuzt36Iud9A5jEb7qFSQqoS9vT3wJaa2HI0moBTXdu7T6zRZwfHWt72DF1+4zuUrl7l99xW8hdootErJdILWOg4HlUIGH1npPkLTramRMsFUdYS0G0dZLiLI+kTdU3hSGyAYahc/X60VVV2gZUq31cFbj1MKpZNoW1zGfgu/3JBIEdlKUoD3FIsCUFhnyPPYOQqcwFujEjsRCd7VKKVRMsXUliAkaB0ZlLXBeUFZOVSSEoJEaIlzFVmSYn3AhRDPJREHq8ZYbG3jc8q4oTHOxJq5qgku0Gg3yPIWQioQjtrGDaPUcsmD8ujlhlWqWI+38jYjNaSz2iPJEgqzINGbNPMWVW0xzuFltMurTCASkFqS+oSWa5ImmpBp5mGOVpI0S6lKhzUSnTTo9JqkSUZpKhpJQjNvsLa+zrm1Nc6srdBovJnQx3Jd6yzhBIobjImKK+URqMhdY7nZXG6m4w5nuR1UkjCdM71/TP+Ri6T9Pm5F861/+bv53P/wIr/z6f+LLz/zFFne5r0f/vdYVJaVK5e4UC64fXTIsDYsyjllbbnxmSc5/e5H+Ref+CVuHe5wunkGpwROKoIzHD39IovS8OhHv52Hv+ND3P7cszywsUpr0EKIQLCe/sfez0+WY37sl/8Zr104wteGxaKmv7nKmUffyksvXeVwMmN/OGStWLAhBJ/6+D/kf375JVodzb0b+xz+4Rf4ipjzEfMeDl+9Q9Js8q3f9R2sdbpkncZJaw2EobXaQugkNi3rAj+16PUuYVSgtzcw9+8zlooPfdu3kVeGcw+/jXNnzoCvGV17hdaW4oG1jDtHLZ743Je4+tST9C9f4uMf/1l+83/8RzTf+gC//gs/z8VzDzIJd3jofR/CzEp++md+hufv3KbRa/DqzZd5W3+AVHoZfuBxkym3r73KqUffypdfeYF84xR3rr/Eez/yHWSJYGdRcH93j62NDd57/hzjiw/y5NNPYoSmMjXdMxfZbg24cnqFH/1PfxhjLHUdePRbHudn/5t/wI16ilIxCVxJyTvOX+CVZ5/nsy8/y6xeUCwqlI6sOW0hP3OB46/d5of+zx/iyre8DVMvcKpF7QJaJ+hEEmTABcP7Lm7y0hc87V6Xs97z1Msv8k9+6Z9Q91f41kc+gO5l/Lm/9tf56b//M0znFR9+/F386I/9Tf7Xf/77eKV5+Mplbu4ecarZo4fH+sC0LFlttsALLq2s8dRLL/GBd70NDRHEH2eTf7wR8HVfyyWjaPnZxziDZfNn2UiKvJM31taJTevNVtPyB954Irl0h/mlxevNNYbnDZi2C4HK1IQQyJIUJWNaZFVVKCVYXd0gzzt4JEIq2u0uOkljmFES+X8Z4uRlvtmkOnGmnciLTr73r+or/Zs4Tl6XiInpQeWoNCNNs6io/CYe3/SGkpKaPHHMiin0WmSpQJFSVjVOCBqtPCqNaoeUikQ1IocmseRJTm1LQrB02g1QKdKNUdLTUDW194hlspgHtFQoBC6ccASI6V8uJsx445EtRaIstam4vXufZstgfIGyEpVBUOCFjaBmG8ut2ntMCAgZN8CgESxTxkhxRIWNcy5anIipGtIvQYgskyk8ZNJSFQvMomD/eBRvoMbEyYEQsem4XEF5kpBnYmkP0AStKBca7+YIZ6jKCI0u62jnkdRoEVPKClNy/+iI2oNxdfSG4xFCcWdnl88aw+N1wfmz50gVnO92mdy7Tyk9LjiGoyFH926x/fDb6a62GM+HmMrERosx4DQiRBYRIixj15fnqoJUZ3hXxbQbHz3oqITK1lHajMPg8DLa6KSQaFK08Ei5TARanvneC8bjCQeHR+zs3KO7usK3v//dUeItDUpopEreuJBJHVNQ5FIeLZVEqZSgZVQe4TGuIk9SfKhRyuM9KKo4zRMK4RVWKAzgBKRKIFwEnkXeeyCRMQY6SRrRD6tTqCIjAhHe+Nx8iJ1hrSQrvQ7HoykuhAhi9Ckf/tZ3085XuH885oknn+DC+U3qqqSZ5QSV4oNBColINJ1OBx8czSxnPJ6hM8U7Hr7CF5+ucb7m9KkVXDnn/PY2QSseOHuOW3fvkiU62vuEotkSPPzQBUZHJUeHEz767Y+wub7OnXuHPPX0c1QWVFMxHM3QWpPKjM21rXgOWM+sWDApZjSbORdOn+fsubPcvHOPlDUmY4OoPd5nCHo0Gg1SAhcuXiRp5AipODo+YlFbJuMxdTFHa0Gj02fn4JBvefAStZuBSAk6cO7Kw8ynI3rdLjLExL1Go4UzHk9FCJ52p4MzhuDAC4dUJ0rQ8OYF38dNjiAqEO2SNSEi5OwNu7L3jnazTa/bpd+VpJmmni9QSYInIIQn1Rpw7O7tMZmOWe0PkDJhc+MUs0nJZDynv9JBCsX62iZ37lzl/OktTGgxO9onEMjyjGbe5nDvLsPJPkme09IaZwOtPKMsFtSl5WsvP4MPJeORpN1qokQgT+DRh9/OeDbl/s5tinJB8AGlMqyDlcEqwQeOjg8QTqGTCNw2piCEjPV+n3JuaDW7SLOg0+ygNJRFxXE1oqgNaSqRIqGRNqjKmnZrlVk15Wg0ZzJ7mXYzxQXLtddvgoxR9s0kZ9DpsFsfs6hLbrx+nWJRsihrJNHqaoJBiJxyYckaKT5YdnZ3uXX3HqnK0SFFohj01tg53Gdv/x4zMyFLM7wTPPf886z1unR6axyPj9BZynQxYzYe0u8OQAhmiwKtNMaVaK2xxgANXr72Km9961s4Ppiwu3+bCxcv4yg5tbnOxVPrPP/cNRp5Sj/tMZ4M0ULTbvXj++E9B0d7BD+PcdEeEhVtVeOjHXZv36LVzvDBUBUNTD1ic/MUebZOUTisLUmk4ODgmDRtITVI6SlKx3g2pz3o897Hv41bd1/ly098CSE8whpImzQaLbqig9CS48luVMw5w+T4MMYRzCLvJVEpQiVYP6PbbpHnijwdsLV1id29A0wtcEKSoHBW4RNIUs/KygNkOmP3/hHO1XQ7Kzga5HmHYTGi2xpQ6CnT6YR2u4sxJXUxo9/rcv/eXZq9Fonu004MaZagW5p79+8gkgzva7IG2DogT9ghSUKSJ1jvSbOE1dUek8mIMxfWGY7GvPbKjTc2oJNpjHzXIrC/P2Q2nZClCbUJHI0P8MLywkuv4YMnzzOwjn67E1WzZpn+WVakcpnSEky0HjkIUiC1RlkVQzmMpj/o46zn5q097t095C0PXaHba3J0NGU0mmCM53A0JOu0cPMF1llaWQe8ZzwaYm1BVWrKpMBWJdoHgk9AL3PJWSZKWvvGbFFJ8CHGq+tMoK1AiBShFF6aOOxIMrIsXj+tj2EBIcTfKYyMgwAXrf2WpVrZO5yzGG8QIdr6jBB4Y3DWUFsbJ/DSo0SCTpahEUGBr+LVUkaVoieqbawBG2pkSFHORTs5gjRrYDzYEJA+2rQSAS7RS6ByhkWQ6shLtL6mriqCiHWS9x7rLLUpSYNfFrsOobJlHWAJSIJIY+Kt1EuVl6TnHP00RSpDbRb0O2somZLowMIsKE1BO28zrQ7w6AghVxmNvCbPLEpKDnavcnhUUNYlSsUQh92jY+oyDpB6/Zx+c4WD0YgKuHN7H6k0+JRTa5ewtqB2RAW6MwTnkXppTwsSaysWi5Isi7wkLWLamA81KmhMWZC3c7x3WG9xpiY4h3HREpVrxbwqccYihKUwRRwstXusrazhnQEiP9BaExPJ0pRIYQXrYiJcbeulSka+YesXQmCMQUlFgowKtCXfMqatxbrH2hpTlks3QUxDllLgXTwfpRLYOjYVI70gkCpNJSQIgciSqI7yLsKWXUA1coSQ6DQjyRpYa3G+xjpPnmmUiM/llhzENMlZW11nO0lpdpokRzlJM0UITZ5kNJstmnmTPIeirrAhkDQSZKZwOhBUgpQZjcQRSkviG5QdSyuVzBaGZA2aukXpF+RJTpqmrG2sc+nsGpmKG191srU9SVM6aRSdKJ1DHDBXwwmVF7TabVQzY5m1vqxCAvKP7TYF8Tow+Oi78MKTXFmD4YTnP/Vpnr/5GlI3ORhPSBczjl97mR/+0R/jwmCdV194kb/7E3+H51zNHz71PN994xZP/cFnubp7zP/xm5/Eba3RHE+wQkQbaWmZz+eElQEq1wxaDXoffi+q14qbbkAmitpYuu94hA986S181/d8H7LXo//uNuA5c+4ML3zpaV65/TqHynL9xi1a66vcnsxRSlKMJ4S24txml//qF/53nnn+Sd729nfzPe/5IHI04fTlM/HaJSNqmCpyR4ICnKcejfC7Je2NDj4DYWqy7XX+yo/8JdIzZyluvM5o7TTVeMwrTz/Pk3/0JV4c3uaFG9cYLebcKASPf9u7+Ng7PsLFtz/A2t/623zl2lcYDDb4Rz/5U3zl536e1f/wB/jVX/plXrh1G5UERsMhblHzvR96nEG3hfCAUsyeeY6hFeT372Ga6/TbA27cuMETn/0sp89e4c/+4J9HElPQvPfcHo2pnaPZH9CRKe/5Mx8jffE1HnvsrSyIKZaPveNd/OB/8AN8/Ed+nJ2DV2inDVbPnMGMpxweHjEMx8zLisXS0VF6Q6PTZjaZ8Hd/4u/wT3/qZ2l3e1RVxWBtlQcffIz5aIxzlun4kDRRqPYA4eDxxy7ziyrnH//szyBEyi/8s1/lv/+5f8zvf+lJfuDcNluDdd73sT/H2e3TZPWMTprzg9/7ERaq4pmv3OJXPvNZfvzsKaDJ127dYreqOS8lD1+6wKlOzuZ7HuXefE5fJSTO00zTN3s9J8C25fEm7HoZYrQ888NSwheWqwMheUPJx5uKnaiQOlHkyJPinrCs64OzGFNjbRXrdZWgdUqiE5RUVNZw92AXISVbK+s0dQoSms0Gp7cvkCeaLE3xCNIsiwEif0pvQyz3p1+vihJ8w1/+jR3/r6l14uR9FLSkROZ9Ws0hSdZYqqC/ecc3vaEkU8hShbeCVFkEDusdWZajc7Ek/gtsFhA69io9CmEcjgqpPAKNdR4nLZU3CB+nc6kI0ScdAB/5KQIRJZ2RmoT0iiA9LsSPv3YSpQVlZZgUM4KOxUOuBMJbhE/iRS1IPHHKIpEEJwleodAIrZDoaINCUs/nSCEJCqwLGOeQUscbc4hud6klpzfaDHoZZag4qjTDWpKmCdY6hCIWTMSbd1nXFFWJdA2kig2KRCrIPN4l5FrQa7Vwvsb7QFlZ5sUCoaIVYDqdUhR1tBYStbZRbxVZMwdHR3z+2a+xubaBVtEGZgME5zHeM/KGg8MR55Rm0Oty1EypjENiqJfgY+Ed3hhEEn3GLO1EQmq0SKI02pjo1z65QMgE0jymbaiArz1KafzJdBNLCBovljdcETBlzfH+HmWxAKmZLIp4sRcyelOJrALpBFIF6hAT47RKIrNBg1QpEoGxESqphMB6T7AO4aKM0wuJDykQE0WElAin3+huKxVtUz54cJbaO4KUeK8IOIRzCClI0py6tqRLP/4JS6HRzLDOsLa+iqfi/PYa127uUZmA0hWlK9lYHTBbRLDyxYsX2Oz3ubVzl72DIYPVFdbX1jjaV7jKkSiYlyWf+/JTCJmQpJp/+cWn2eymbGxuMtw/YDwbIQRU1qKVpplJHrx4mu2tDW7deYVBv83WSlQyKCQXL1zg4OCYVrfJ7d37aCXpdTpMFnOKxYRUCjIk3UYDrRNWeqsIp/DOM5rHSOhG1mI0nrN9aoONjTYvXn2B2hYMBgOajUGEgxNQWlGY+L6dP9vnGFgsCtJGF4LHeosUlkG3F22CwaIT0EmKUorJbELwjtWVAZPhGOMdiY43sBDiVTOuYoETURYriBu3mIojUUsWGMRprjEWpQTtdotGkpEoRVkU5EpFKKmzZM2UG6/f4pWrr1IUBa8nGSur66ysrjIeTSnKguPxkGamMNWCra0z7OweYc0uw/GI+0eStdUtNtY26KwOyOo2k9GUkCcMVlYJ3nLt+jUOhnfpdDOCUxRVgVBgbcHF85eYFGP27u9wf3cXVOSWKKDdbjE6HCOSFOM8rUYTX1dolZB3E0RlsdagpOTC+dMEodnZuU+r0aKRwuFwjELR1DlbawN6/VWOn/sata+oMSSJJBUa3UmYLBxaS6yrEEKjhGK1v4KrPLP5jGde/AqNLCNPu0yGQxKh8NJTe4fQkspWNFsJ49kUqQU67dHudPFScu36De7sXGNrrcf5U9u88MoNLp+/wGuv36fTblMbQ6uXEnxCkuRUeAYqoVrUaA9Sxyah0Ia0Hc+F+7v3ed97HueVq9d54MolHrz0KEIZfG0ZHo+ZLGYkeUYY13SbXdbXBvQ6fY4mE46OdpjPh5FcEhxJmpAnLVTSRCULbFpSVxVCJ8wWM/CwfzCisHOK0izvV5ZQe44Pjjg8HjJYaVGZCi8ct+/dop918FYSREKaeRbFFFc6lOqSpB2kzMhEl0Grg2saDvfv4nzG5sY29w/uoXRGXc3w0tFMK2bzId50OD7uYGpBp7POcHqMFXHzZ2qLyXOmkwUmg3Z+gfniBRLVxTqPThStXnO5PlRMoKocZWnjZs46AlNmoyGbq9u8ev06WbvFZD5lXlTsH+3T6nSYjxY4KQjCIqQvUgN7AAAgAElEQVSiLBa0Wxn91Q55u03S1OwfDikWOdPhmEG/zd7eEUg4dXqDvJFRjGcMj8dI5aJa2DrazYyictRE66Qxcd23Wm0SLRhN5vF6kipCMBSVIVESrRPyrIUXkrIyqFRHRo1Q2CAxziGUZDSrmM4qsryJtZGfNB7PyVs5eatHqhOCcfgARVkxn01pdDvIrIkWAq8STF3gTB2bCj6qJoRcgjhF5CeFAGrJ0/EOnAOPwfuAqCXFYoFKcuqypK4MNkRrEyHEJkFdg7PkKka/SwHWmHgtBGLEeZxeBwJJACsCeAMyoGQc6EgZQcxSxEZbOGHzWAMQ03KFigV+8FjAC4kLAVMb6qLASYF3PjYNnI8g0yXuISCwTuCDQCsVi3WtY90QXGzUBouiiEEYb+JlcAQ0KVJLpPPUlHgDVjpcsGgJjbRFCIL5fMaqqZiWU+4f7NDOt+i1GhwfVGxsb7GopyTSII0j0ynd/lmqypHoY7SI4RohSShmFSzZihe2z7LaarJ/uMer117mZnaTtz3yzqhUlinO1+TOYOs6NjNDfI8k0UJlQmAyn9OmCUJRhQXe1mgNi3IeN9c2ILIY5mKdwTkDMpbkdW2pFnO0FBgf1UjT2YwzKxuxBgws0+M0zsbmm3M2ck9ktN9JLZE23j+dc8vENIdSCmMqEhWTluOtMwKslYzBIsE5ameRSWTMKRnvnbFOUnFrlSj83KPTLNaxKjIynYtqprzRXA6P4/3HGkOj1Y6cS53GphQCG+JQUSYpUiUEb+JgMkiSlmZja41mo8V0PiXTGUkiyXTOem+VRjMneCJMORV4p9CNBBLwmaKrE4KMakNdg3ApduHZ2mhxfLzgwtkVGiqqibSIn90fb/z8yUeI6qsASAXO441gcjgmtyoOOVUEoXvr8JVFZBqhYm15oniQ7Wg1l0FgjGX03FV+/dOfIV/dwBy9jEsVWguydic24NY7rK1v0s0S+kmLR95yhTvX7/DuD38bh9bz2LvewQu796lcwHhLmjXQrSYbD1zk7t1DJpOCrNVEbLQJXkRVG1GpqHVCXRrW1wdcPrUSVWKpJvhA/8wWrX6bq197iTIEvvwbv8bN23dQDz1Ce+82spXSVpbf+P3f5vSDb6GV5Xzn+z7EQ+sbzA+P6T5wZjnHi/93sd4HIkojuMBkMmc+XNAOAa8E1Z0prctrZG95EKoSX3hy5Tl47Qaf/uxn+cKta9ze3yFJAlILgpnz8OWHeP61a7Qu9PmNX/kEv/PMk7R7LV69cZ3ndm/y7M/8fZ783B+hO3lkvqkG5XgOVUw41Ahmt27zys4eD37/d/Kbn/glfu93f5sDU9PuDti+9AA/8h//Df7shz9I8J69o0MORhNGicYrhZ3P2To14PYXnuT8xhovWM0HTWBVCN71vndzvHdAmXfIpOTU2XU+/F0f4Qt/8Fn+8LOfZnywB1Jgg6Y2hnZDo5TkO77vh7h+74Aaz4f+wg/zkXe8i//2v/7bvPzUF1jsnWJr8zSH9+/xyCMP88jb34UrLJ/65CepfYWrSi4+epntiw/zSLdJ+sGP8t7+BhuPBL63/yipTnjx2lWuXf0aly5dRqU9Fltdzm9/lKpcUJsut/eOOBqN+fTzT/Pf/fh/jlQeBxSF4aW7r/PAmQ0eXNvkG2U68fDBY1yNs0ulITGpzNkFeZ7Ga8Abqym8KfsRJ4/E9SVCwIWIrbCuxtcVxtXYRUm1mDJZjEFLOv1VWq0VBHGfGP9Iuq0OSZKQJUkEVSPINKTd9tK+/Y2v+0+UGol47v5bqUCCP72ZxLLZtGyHKQGy0aHZ7kQFlvB/6s/96xzf9IZSs5ViUTQDCDej5gSUFy8kPjgIghAMOIMTOk4ziEXHSVKTD44ldRtBIEhLCAZnJNaIpT85YEPAhRid6omTEBGRyrH75gU6E4io4MY4jU6i/L32Ae/ixCYs0yZkAILEeoUQmkF7ExccSZqSJxnTyRRnJ0vZtyOouPDlciojTyLJpeD8uXNsdLp88dotXr29F/lC1qCFXA45JF4ovPB475jNFni/gggR1q28Q4QIZwvCRPSUjsVgpmIks8wzsjRlNh1jbISMx+6vX7Z2NQSHBw6PRty+v8vlM9sYlWFlTqvbxwqHDwLR3wKdkGQ5emnxEcuNuhMC6xxZomJB6F20+4UTGb1HygRczcHhkJ29w8i4UZog4gQS55eTT4hQb48IDhFU/JyXIEkzn3Fw+3WOioKFlahGxt7+If1+N0ohQxKLIOHwUWIWm0FSAA4RNCHE2EfvLdKHuPkyJsqOZSBYB16SCLComD4nIjD8xO5gvcfURYR1KxFtAdHcGONmg0EFgEAQnhAc3sVGWaJTzm6fZWd/n4sXz3Pn7i3ytEmSasaLOQHYWluj0+5xPDvm/PYZFvMZZarY3thgPi9ppxmbq6u4xYTQTKgP7/HIuYu8fn+EUhotHLPFgtl0yvHxiK21TdK0yQtXr2NMPF+yPKcsLYe7I0xZEZTntev3qHwgySQfeO87+bVPfYp+d5Wdg4QHzm/zLQ+/hXkRuHX7JtP5lDpIrt28zXgyw1tPt9NlPp1wNJmx3muzNmhTW0NtZxyOEqalZFEfcW90wKDZp9Na5fT2aVaVopO3mU5HTCYzEiEQVoET1N4gnaUqFzQbXbyP7BalFMaZWHhYS11XmKogSxRCWLwLaC3QQr3B5Yj8WrWEGoaohlMx7lpK+eYUJSyHKScA8zca1W/G3IbgCXiqsuTO7btxyp9lNFptyqoEGcgyTVU62p0mzfUBjUbO9ZvX2Tt4jU7e4+79OffuH9LpdUjTqKabTcc0E0V30Gf38Iidw5vUbo4QGWnWglAync/IVM4rr77OrJwzLypa7TVm5fEyVhQunDrF/tGE6WROb2WN0lRvMjQaXWp3xGIyRpKQCljf2GJ8OKbf7bN/sEOSCvK8g6mjQuHunZukmcMUh0jksuWrSXQT1bAkiSQxOb1Gn2I8ZrZ/gMYxHU2pqTBVRfPUgPFwDCikCkSxiECqlKr2JAqEUBhb4r0jSTSj8THHowVJkvLY26+gdZ/Ll85TVpJ2I0X4HhtrFxlOJ9zeuU+wivFwxvrKOllTM5pOlxHZM1ywDIdDNjbWmM9mnDtzhssXzzGaGKQMWF/z7DNf5WhRsFjMWWmt8NDlizz44CXK2tNZlHhfI6WlLsa0O+sMum3a+SpFWHB0tIMNgnq2iDaOIGmoFmVtmJc13kVpsciigqGcV+RpzurGOuPxHRCBnXu3aZ+9TDNrc3brLC6zvHrtJRqpYGOliaLFaB45YUVdI3TASUG7mbIopnjnSZKM0hXoVLGoShKVghAcHd+lNjEB0JuowFXRL0XwgtnkHs2NBxisnUaP5xyPF8wmRQQ315Ed5r2g3ekyHU2ZL0q2T29SVzWtRouDcJ/ZbEbtBA3d5PKFNW66e3gso/EM6YhKURl5MlYFFuWcTFjMxDIaWYbHx7Q7Kfv3jzl34RSTaYZOE7bPnmbv1h3KyZzxdMZg0EYlKdIt7821ptnO0HlKNSxABPYOj2k3c6RQJHlGkgiKukQlim6nTbfdo9XpM5zMKA+OETpBpg6VZRwcjTk+nLK2MaDZajKbLji9vc10todzlrI29AYD1gZrZHnGfDxiUZTUxjCZDxm0N8iVwjsTWUIS8iwnKI/Kc5IsQ0pNbWLgSPAh1s3BLe+hgcpUEBKkE6Q+gEowwZLpOBBSIQ5RQog/j5LU84ra1+Q6J0iPcY4chZSRGwgWvCKEGuOJoGRrsVIsmymCujakpsabqLBxNiqujYtJs8bFa6BHEFxUu8UjqqiFTlE+xrA7XyOEIklqVPBLtbDELrkoeBEbZj6mvIbgsdZhjY2PITCAdzY+dzAx/dXGaXYMvBBYX1OWU4yfsagUedqm19+iNCVVDTpp0mg0ECqQpR2UbiCkZlLM6eQN5jMw9T1EY4PaCwgG50qqWtBpDdAiYKyk1eoQcJw9tcG8rphWC4bDI1YH69RlhbUlzs7IZCvC1FVU+ljvMMGDkqSNxrJxGRvuiqWS2VtaWRoV8Ut1Fz5yroJ3CBlT3ZwzuEWN0JLFrEA3UqTwBGMwzmNsjZQOa11MJHPR9uiMIMTuIFrHe1lVVUBscLjleYeKyoCABe8gQJY1yNIUG2PhSNPI5VJK0siSJTNEIpMkDg+9XwoHoiKxNjGdLq7D5aBQKiSxGeiDQOkI6XdLGHsQnkRrtErxIaqdvA+kSrDS67K+vkojb1IUc1QjJ2+ltFsdzmysYqRguDfH+kAjjZbzNEkRDcjbDXKdI5QikZpUaLwFZwONVLDaapMlEiX/1QQU+MZNW1g6DHAOVEyYyzdX2d5YIQTP5GhCMTR0VlbIpQTjkQksM2He2JiK5WeCc7BwzEZzPvCD389i7x4/d/0VyDN6TU2vlbOYz3jxs0/wL3/tt7hRz+m0+6z1Wjz4yCU+/VP/gL/y8x9H373Ll2//c2YHu3RW19BSoLQGGS2njVYeMZPL4S3EGkcIga8Mtr/K7v0htqjR3QYnigw56LOxfYpXnn+BdHPAK3u3eUC9kw+98zE+/3u/waQo+PQffZ4XnOc/+Ys/zFZ/hTODAePxkOeefYbvfvQtEQ2iFSfJWnY4xmc5STNjcTCi3OhFK6fxqG4eazk8KEXroYu0+g0Il3j0/e/lhb1beGspCYxGUz56fptRMeHp49vc+pVdXri5QwgSvdrnn/7i/8bBaMaLLz9Pe2MFaxxr22cIOuMDH3g/q2ur1K/d46XbN3nm85/jyes3OH3nKr/9yd8lpDGYp93tceVbHuWRRx8GCePZgi+/coPJZMatvQOCh/lswu3yOkejCd/5X/4Ek5UuTzz3Nc5tDVjXHXp5zsrDD6NvPM1kf8xnfvNXOZqVrPXbKDNjOF2w9chb2Oxu88znfofv/dhH+YH/7EdxQXCx0eZDH/kQt16+RrAJo8N9LJ5PffFLHN/do8Lx2DvezbV7R3zh5m36K33293cZrPWQBG68fpXH3vEBCIGiqrk/X3C21eLLX36K/eNb/I2/9tcZpOvs7I546e5VBv0enzs6oH/6Ml+9fotGf42Xrl3lnW97LN5rpAY0rWZjyQY7WRi80Y8pjaWoS7yLykUtBc45DvZ30MqzeeoCedZ8s9ZeDu+dqWMSqK1YTCdM5zOKYk49n1CZgmA9RlToSiGkhlaDrbPnWRnE/Y+WMtoXhSAVko3e4P/RcBG8qYh680V/3cL8/9UR/0+xNxAIOqHV6cTG9hv39G/O8f8BQwl0UCRKQjAYH6VpMngCCXLplfInDf7g4w1Ge4SI0z9YRnf6ZZRfnF/hsRivMT5u6nEnk6F4o1Y+ILwl4JEiIPOEdp4ipabQhtorrAmQglAKLSR1iJ5LaUGlCbU1JKJNI2mB8GRKkWlH2spIVUK/mTAZDhnPpgShyJRAyxh/qqXGhviarLXLdBvFeF5FHkSSEpwjEeoNRYwPgsoHgnccz8ooXXcepTVuORU8iW8NAJ5l88JHBkHIydKE4KINTQAqRG5CkAERHAqHd1HFdePODmur6yxCQqWbXL70MCubG9TWsdLro7I2iTgiMnslSsllMRknSZlYJnC4WIB4IZdFb7yKHI/nPPXcKxwMhwhlscbHxCPr4jDHS4KDEHS05aDQLuCqktE0NqHK5WagOKo4qhxyXvMHTzzFx77rg+hU4zB4AUJFbpYIkUex1DuRComra2wwWGdJls0x4y2o2FgUKsH72GSITaDlzVVAWMK466rGlHMESyaPjVyfE/mmCx7vIFlKMr0XeBt/U5JCp9Xk4SuXObW5yUtXr7Iodzm3dQZszWJas7V1htJZyrqm325QVoHbd+/y0JUrbKz2WV/ZoN9qc9Bokqc5aXaas6fPUZrAyqDP3u4haZoyLAQv3LyD9wk6y6Jdjph0t7IyIATBC1dfZ25rrLc8++oN8izj7KkNvvbiVRbWM5pOUAJS3eDOziHSKxIRE08WxYx2q8GsmLKxsopzc4Ly1KYiz/o8eOkSi9rgTYmSKXna4HAyxIeCVtZkrd/h1GYfgSZJNGDxvqYuZrjegERHbzMOxtMpnVaHNElgOcknOLzz4Ay+rpiNRjSyBI1EEpuCwjsSPOFkekpsJomlFtcSltOJ+L0TD7cQsTjUUi6bTfExZz1Cx0avrRxpmpHnGeudVbZObXLlypXI2bj2Kq1Oi1NbK6ytdpnNavbu38L5EpWmnFo/y/7wBjvHBzAcMug0SaSidgsOrYFXU6wTTIsFs2rK9noX7zTtRpNzp87w4rXX2dnfxdiaK5cuk6Rtpotj7t29jatqTO3JdMrYT8h0ikozpnZMsVjg6wprKrQMNFtdrt24zWRu2d7eYmN1FV9PcX5BZWBew+HokE4jI6krZgUEoVFakuqUZtZAZh5jHKtrG6Qyp15MmdUTLMSUTRNB98fDEaUzpDJGUmutsS422Y31tBotWq0mOpFMZ3PsnbssyhJQNBodVjorrPU2efmVV6N1Gkmn2We4f4zKm7g56JBy/uxZLj9wGS0lB6Mhr927yWRqUCFBkVCXnpt3bpEmmiTJOdy/yt37d5lOFwzHRUyNbGe0Om1Weh1arSYidezs7pBmOTrvEzycPnMJ7aCq5gwnh7hKkcgWhZ+TakmiFM0kR9SBXm9AI28xnI4xztGUmtHBlCRRNNpdEp1QFAW99gohSNrNHlvr28x9zanVEUHNyXUjriMTmGWC0hUUsyk6lXjpmIzv0UgyWq0WRTnHOocwWTRVBBWZAV5jfEGSOtrtLqkKTCfHEApEKEnT89GiYwfU1pHlHolCC6hcoNloxHtqpplMJ7TGLc6eOkVdz6n7ffZ37iDTlIEVPHD+DIIGzzz7ZExHkgHnIyRXJgKVBWpX4ucBmcS13GjkODyNVoO7d/doNJrkrRRbR17UbDrFO4sxhtm8INEwnVcUxYIkazA7rmk0mnR6bcYHU3SS0Gm3CSwYjyYxATPP6LYabPT6qDRjd3c/DrUcdHsDLlw8xeG9QxaTOWurm5TFAp1kvHrzNvfvH9JoZlHdlOfUtWGxKJjOS/CORpbQarU4Hh7QaTVR3RVSJKlT5KnCKUGiNFJlCJ2g0wyEW9Y0gFdIYQna4X1GmkdFWCoC7XYXmXhCsNTWLBWY0QYUlkoTQiDTCc1WRuI87VaHrNmIk1xnkSI2b3wQeBHtAt7LaDMQHs8J18kiM4UycQwnEdGibj1SKerSYY1CakGaJiQiQQiJ8zEFDuchCEyw4DxFXSECKCGoCKRpBoBZAoL9182khQjLwl4hnFgiwUOEKwcVLUNSYOuaREiMLzBuyvFsPzYoc8npvqaczqhtwBoPIaqne+0BwsX1ECpPrQLjeQn2Hqttw/5in8qkaO1IkgrnJGtrW5SLijzPCLXBCcNGZ52k26SwjmJRczzcZ3R8hJKGNJO0VtpgY4PcE+2DAo13UFsfB3LeRJuZdUwWUza6HZSKapVAhGFborXeOocQRHaRicmkwdZL5VAkqJbFgkUZm+M+BJTWeJEgbKwjgzyxocX3vygK0jwjhECz1WA6m0XLtI7sPSkTgnPxawXImJIaCEveiEGnWaxfJXFdS4E1NuJ2l8pfQdwweuIGUi0ft0LE2lQnhDRByxiIEc/F2FRTSRLZSwFSrVFZTreV8MDFTdZWelRG4FVgOve0u5ozW+v0Wh0KU2NsQjFa0G4mKJ8idUA2FO08J5dNTraPAoHQwFLJl2b/+kTaN7adMUY2DrLTWHuYsmZxPGXv+JBJv+TCW86QdmKgzIn95Bt+HghCorRi9Z2P8D2Z5Hf+p5+nv7nF8dE+Ng28ev1rfOJ/GTLZPebqzdcYViXSzfjaV58hlZ7f+8qX+csBdodHjBYTWg0wRYG0DqSidekM7csnEeRLvYJ4s5kEMZWxearPn/nuj7LYG9HrNqK6IQRUknDx0nk+//STfP6ZaxzNx7SaCbe/+hWOJnNCM+VffOb3ePyx9/K9//5HmBcl4c4dfukP/4AXb7yO+fUuH3z/+1i9cHrJzhFce/o5XhsOWVsfoLMGajKKwq80J23FBvRiMuHGtddIgqRz6SzT0ZDPPPlF7h7sEft0jizN+aMnvshXrr5C//TDvP19H+T7/8JfpK4tQlX89N/7SS6+872cOfMAlavJG11+4D/681w4d47+8ZikduhGRn004qnnXuBw0OC53/pd9KBNb2OblbTPd3z7+1l74AztNKWuS4pqykMPnKed5Nx86vNoqZByyfVxjidefY5sd8AjFx+I57iALEu59MA2wUGFojgaUTvDfjGhlcb97Dve9lZ67Q2++Ee/RShqPvmrP8dP/K2fYtFu8ouf+HlWVvp0zpxj9+aCs4MVfuhj38fTn/8Sdw+P+NU//H26zVX+0l/9q3zi4z9Nt9Pm1kuv0hoc8cnU8rlnv8rf+5v/BVvrPQobeOnmdZL1bcyi4Lf+4PPU5ph3P/4R8t6j7Owc8amXn0W8fMi3v+cilVrl5375V/iHb32YTOScX+lwevAQSnyjuic2AeOhhaKZNt5QCsU9UkBKzWR6yOamY7lzYlEZDvbvU452cYspznsmiwnFfMGkiMEb3UYDkoRmZ4V2c4XGRo9Go02n36Pb7ZKq5MQf9+YKW379xpr7ui/EG4/HhlIIJ6lpf1JT6d/thlNYNo+FECgB3ZVBdBn+u8BQEsKjpSRYjdPEyQyAj2k/iNiVlwiElzgX4c94i/cxajN204grEUAKRIgqIdVSuFxQFVPK+kRZFKN+CRaBwgVBo9UkTQOlcaS5JLGCZqqRRNuYkiCkx3tJI2uhJOQyZaWzQo4la6U0dE6nIUhabUSQzBYj7ncaHE4WKJURBTsVMgi09EtQpcQ7ibUR5ls4j1AaQYqQMVY5IFBKYu1JkSUiG0lEtZMMahm/ahHCROghnqX3K6phiB5e421UgSGQwWNDjAz1Qi79puAJqCCZzOYoJdgZjjiqDAfTKeevPBTT6qSgrC3eKRAaL2V8TnzkRQWJE5rga4y1y2lSVDG5EAjOM68KRpMJtq7ImtFmhhMIR4QQSheXpCcqkoRiNpnx0suvcGPnHtY4zp7ehEabsR1TeUcwNdPdA7781Zf48OOPRaaTUEvGjsDWBuEdVBJbGbRKkRKCcTgb0LkCAc64WEiLBKliIRu5XMtJk/fIIBA+TnhF8IgQi/egYpqWX8bdxmJdsb9zn7y1QEiN0B6TJrE48I5Os8FDFy9HSLbQbK5tsJjMUNtdjg/HvEXDxsYaw+ERrbzJ/fs7ZA2Jq2rWBj1Wel1SpUhlQlkVnN3aZNDvcvbMeXyoOHXqFNfv3uLUxgoPX3mEl19+lbzdpN1tsbc7RSiFc5ZsmWCwsT5ga3uNojLcun2X127dYmN9jUwlbK2tcPnSFVpZTmkds9GI/5u8N422NLvL+357eKcznztPdWvs7uqqHtStodWSGkFLIJBQGAxhinGMDbGXvRQCtiFZXsmyQ+JkxWZYBhsCDrEAYyRIIiNQJAUQoBG1uqXu6q7uquoabt2683DG97zT3jsf9qmSBMbLy2m+xOdDrV7VVffeOsP77v/zf57f02wE7O5npKMB7U7CTCshlIaTKwtc2RmyYr34Fseaer1JnmfUdUC71UCHDkSbySgnCZW3tCNpJjHNtRMURc6tOzeZVCmlrSjynGZSZzAqWFSCTqtDmmbYqiKU3uWYSUFmKybjknrUIdIBoQ6obImtLFppKg9CQ0nrhSOpsH7liVBqeqhT3h0nBVL5IaooCpoNzxRQWsM0UiCFFxbT8ZjXP/4wC0sLKKCsJggjadcTxmkf21DowDEaHrNx8wapKGk35ymM8qBWoZA6xrmIRqNGlofk2YTt7U3mF1ao12fIsoytrT3a9VlKpSmrY6I4oh5rwrjL/efOk44nxInnwx0eH3B7e98zdqRAS2i2WhwebBIoRf94n2IqYBuXoqQiTce4qmJpZobZzjIHx8c0aoo8TUnHY4QzFA5AeiiqC+mlGVFYI1AJk3zMyI4ZDPeo3IRIaZz0z5cONCJQbO0cogmwftLyW2yU575Yi5O+vCAdjShtQUv4YoMkjsDCxq0bHBz3ORwMOO4fkY4FLAgO7hx59oaUPPzIw5xeO4l2AlsVnDlxmsNej1iHtJImWMGtm9e5eWtErdbi1vImW3euIKRiNB6Rowi1JBIR3U4LpSRZVrC7s8O1a1fJTMogHTHbbbG7fYMyg9xNCLQiEgmNZkISxahAo6VlprtCrz/gxPo6g0GPNEtZml9lcX6eKy9e4eDwiMloglSQVyVVWhAsKG7e2mJSTDCmQCpD6So2traQMiGIOggcJ0+c5fqrl3BI0mHPN+MVFVGYUFqFNi2cjgiVb4FLJ32CyCC1QztHFJTcf/Y+RsM1Nm5f9gv1QJFmXgxsNLpIHaKEpigsQZURRRGDwZBABRSiYHd7i7nODJiCTtxCLVomk5T97X32lxZYXVlle2uF7Z1tolhTWjt97SHE0W62aLWXqddCdnf3CWsBzlXo0EM95+Y6LCwssLOzQ70RMOo5wihECEFRZKRjQ5aXRJEijgLAsLg4y+LKIge1Iz94WzcdaC2tVoPxOOP46JBIBTQaswgrCIOIST7EWUu30yUgpswqTq6f5sUXX0SFMTMzXfrDjCBQxGGNMEroD4ckcUS9mVCWFdZZ5sQCw71bHB0dE+g6iYqQ1rtXlYoQwvn7b1Vgiszfh43xgonx99WiyJH4bWplLDmCQAiMxcfZ1V0mo/EdcdZR6QqDI440oQ6RriAOA4T0wObgLgRcWN+yVpYYASoIqAWCKNZYIQjjyLuLSrwzzVTTa6V39vqPryTSIbUkJAxjkiQhCCMfDZK+odY5i7ABJSVhEDKZDGnHM4AhqdeI4tjHloMIKQFhsVaBMzhRkZUlyklU4HA6pKpK0vEIU1aM8h7F4Jik1mO9W1gAACAASURBVOXw8A5Gp1RlhpIaWwkGoxQhtqh356gcNJMWoQgwxQCBJVKOQGk67Q6U0Go46lHJQtxlY+uYoBaTRAGBytDkuLIgadYJsGztvkSztcapmVP0bl5jMj7kqD8hyyYEgaIbLzCpLDEgXIlUIYGWaAEBYF2Ftf6/lVC+KGR6/1FSoZR31gopPcMT4d1Dxng3deWLGIwxtJKYypYgJVmWQ1VgnPU15RJc5SgtSOmHojwvCeIEnETpabzRGKRSTCYTLyy46ZJFenQDQtyLs+GmqzNbYUxFo9bAAoFUpHmKEpJxXiCV9C5z6RsMbeXvs1ppXGUYlYX/bxw6iYlrNQ+vtt7Z47UF4Qs3KksQBWgdgBAsLCyxvLRCnISUJidKuiwvS86f7TLbaCGQTJSmPdckdpbZboeAAISPWGupp5GWv4CHnH5d9ZWilJ9zdKCYPTlPMlvHFv5c7t1gburE514LHOKu2wlsWtE8McfNT32ez27cot1qc+HcBVx5xBeef56gvsyF+86zsbNNWlX88I/+CB/6Zz/JBw82GJqcj/3OR/nYxmWqSUaGptGcRUlJdjhAWwjmm3/mnyG+3FMOkUa5kjNPvo7J5j73mqSEwEmYX1+jXY8ZvTpAhwkf+fjHcWnOUAqwmpWVk8Q6YOu5S3TvO83NP3wWUavRbsZc2dyie/kyX3Nq1b/mxrK9t8sfXbpEJSyhavE3/9r34AR4g7hv8D7q9XnuYMCdZz7HzKk1jm9t8sL2JlUc4QaGVqNFIUrGWclKc5Ef/N7v4E0Pn2fc6/OR9/8qX9i+Tq8oOHvuDP3lWZ7/5B/x+JNv4z1f/zSzzRaT7V3Ceo1wbpbXdd/Ju7/wLP9i6xpKaL7hW7+Np9/8Vto65syZNUbWC8o3jobkpeWpxx7n8isvMzCFX3Bbz/wUGBZOn8KMDfHhFo8++A5s5hnCK1pxcm2Rb/srf4Xf/+hH+PyXnsEBWQmlivjSJz8FBrqdOfbGhtuv7vDh3/sE29du8Mv/+69w30PneO9f/QF6r15h69WX6Y2OyW3JXGsWcsnMTEB8co2Hzj3KH2/fIpuMOf/kkzz46JP843/w37HW7ZLmOe96+t387Pt/lQtPvY0L95/nw//Hh9g7uM75869jbzgiakb86F//ATa2R/z+xz/At33/DxDkub+OWTdd5d41ud3dzH6l+875ayEBd6lEQliEkMzMLPhUgY6mriTBOC+5dvMWey9/AbIMpwTN1SXas0usNzo0OjN0kyZo5Ze7QYgOQqQUqCmi5O579asU2ylb6J4XSfDl9/X0jzM97/67tZU/HYt77R9CiCmn7TX+und/9qlYprSiWW/4S9JrfH18zQWler3jN0uVF45sWSDxLSNOOISLfB27wLtWnPCOkGm9ZSnlFMrnOT8aQEiE8+pjEIQsLswQSsHmTsH+MKesrGcRSsDgt3ONFm9581uIbcnx8Ji93h7FMKM0OTiDFNPGJwytVofTJ+c57o/oDUY04oil2S6j8Zj5ThOtLWHsD++4koXlWfZHBeNRAU5gjPYRPSqk00RCUVgwlaGcZBz2egQ6miqg/od0flWCdblP30wt8NYWOB2DcygHlTM4fCa/rDL/5rCWssim+f3MHyzD6Cts9BYrPTlfWI+3FE5ihSCvLFpJ0nGKsZbjfo9B75h6ow5S4aqCtEixSsN0j1lWjjwr/deqLFVRYI3P/QuHFwWF5yLESrDejDgUBWUoUK7ybVrWIDFUrvS27MoLa8pZDg8OePHlq/QnGdYJJoXxVcPGc7Eq6XBCcOmlqzRiydn1ZUBhJN7FVVqczcnzHGMgjBOsjHAmn24IHQaLKSYEU2C7U8qn7oS3jluMr1O2xgMtnUNS4mxFbiHRNazzm1YdgBYRlTCYUcrG7iETHTHXrRHHCqVCIPSRQSloNRJWlpapiorJZIBSZ/niK1/kDa9/hEfW1pmpxaiwxtLSHDfvbHFt4xYPX3iQKIzY2TtkY2cHpODw6JD5uRW6zRkmZUpvf4OZWkgpLbOthNXZLlc2NhilGQjfEmEqx86gx9kz65w/t06rHlFaR5n16R/3CEXFw/ed4qELFwh1DScL+uMxt9JDZjtNJpMZukWL/nDE6aV54lqTpeVlru9fpt1ssrSYkNRjBv0RtSgiHfQIGjVmWl3KouT4YMjOUY+k1aZT6xAqL7DoULO2skppLEEosS7AOVhbWwXrt7BRGJJVBThLIDXNeox1JUdHxwyGKUmSYGPBKB0RCA/UC5X0zX1S33Mq3o3HlqUhUAHWSu9Sc0xZX5b9vX1CpYm1B+zbaQOcjiNKa5jttJmf61AZn7ePIk2ajlhbbXHr1iGj8SEvXd1mfJTRz8dUVcV8a57JcMLFc/dTb7UYjifc2dpiPD5kkk5IopjMwDAdIXVAFCWcWltjf3+PmdlZrly/SulKmt11zp08S+94QGU86yBJamR7Ewo3IdSaBMXO/g7LKqDeaJBNMm8rLwXjrGLiBrQbdeouR6km125tEMaavDA4U1KrxSgdMBwMCOKYMBbEOkEQQpjQ6x8jVUhl4XA88HQ26Qdfays/tCDIsgzrfINeEPrXYzS0yMhvtYWGoqxQSt3bWCFC6u0GMoCj4z2OjrfJS+fZdVqytLTE0f6QUWYIipyVlRVOrZ8kUCFxIMgnJd1Og+WZOQrTQhrFwsoC+3ubuCDi5EOPey6HbvE1b3uKP/n8l7i5e4h2FatzC5w7eYJynCJRbNy6w/b+PklDsDA3w3hwTGZSGvECFx58iNm5ee5c2wEtSZKYQEOzFeNsDeH2sFbRiOvUdcC5k2uUacXJc6c57h/6uLAocJRsXH+JPBswyS1Hh0c055oM85xmp+kBvKMJQS5wLmVwtEskHLo+Q2glpSgoqoLhYIi1Bilh1O/h6gHGTnCmwBS+ZUspQV6MGI172LxBkQJVk6PdAbn1g+tsd5akVqff6/vYuJBkecbc3Bz942NM7Af8m9dvcP7iGRTQqjfBjbmz2+eF569w+n7D+toqo0EPgSV3vnjCWUtYawIBWXpMPokocr8QqFzJZFKwsrZAFPh4xWg48U1TgJy6OvJJgUDQakbMzzTojy21WkyrFiNsRdLw98siLxiPvfs4LyustQzTCVHQJwz9AOpchTElYRghRUCjFbByYoVOd4bOTJdarcHM7Dw7uwc4WxDHMSfWTrC0skg6HnB0tDd1CFlUqKirmH5VUqYljVZEicMagXZuChgucEAYRIgpW8hYQ2V8w5nQEluUiApU5BdxQkm0VFjrzyfG+vOBM+CspSxzpCm522rr3S8OpSsmk9S3zzqHlNO/awyumsblUEiLj6JOnQk6UJRGEWm/BJNSU1UFsQZNgZYGLT170jdKKr+sEgIrpnXt1mBshURSjyKiSFBWvh01jCKssxR5htaeWQU+Nm+NI9QhOtQkcYBRIXEc0+/1UKFmtD8in2R0FppkuyXtVodGJKjSDKSmN55w1N8gPDpktrtMd2aJYW+HND0icBXD4R2SeockiVhY6CJVTlFVtOMu6s6BH/ZdQpoO0DIlLyRlXjIeD3FWcX1rk51R4Vs/7ZCqlHRnlojjmFZjxvurXDG9mfiIYlEZrDOESlNJh8emS7RWyMILds4mvllNK5yz9EdDBoOUsixp1mpTBlVFaSoaUey/hpgyR6xFWEte5kSJ9lFF6UVKh6DKcybFhE6SUNmKMJCYKkepmKosKMvCN55Z7wkzjnuLF+scVF5c9MU2pY+S6tC3dpqSalIilaKsCpJafTr7C3/G0xEznTkvVFYFwkqSRpO0f0SS1NAoHCXmXqtcRhDGhEGAEBYVhAjro3rzJ5aptdoIIQllwfJ8mxMrszTr4T18USgls2GMWAwIg+jL/KN78+WX4x5/5vFVrVH/YY97MNyvmNmEUoStOkEz8fPIV4BvHV488kPetKl5+vO6msaMC3a/+Conn3iM6MZ1vvu97+F3P/RbBLUZnn7qaZ44/wBi8yafGfS52JjjVw6POf+ObyGNbvD5Z19ke++AsnK0kjpmMuFge5tJllMP4z/jrTAV3iWo5NS17ZessqWJZxtwOIKZpneqCQhWljh34izNSy8yCgz7Rz2cFRS24KmH38KP/vD7MJOU3v/5O/zm70m++fVv5VvPLbHxueexi7OcaDdx06SCVYoLr3sdy48/ytWP/z7H7QXW1ld92ZKQuMqnTob9lHE94s7mFpcPd5lfXEE1O7zxjU8y2NmmtXaKz37031ClKT/yt/4mj73hUdLPvMTwVIO6Fnz2+ZeojOH5F77A7OwszTDgTQ8/woyV2OGYZGmerNejt7PD7Kl1DvIcOzdLvVB8z7d8Gydnuz42KiS2FDzTn3Br75CnT51icHzAKxuvkoQx2vg0TYAAUfK2r/t6/u9f+9fc3ttEC8lYVkyu3OKjH/ggc2dPUKsnHBwc0AxDGuun+Np3fzvZ3g4f+Y1fxVSW5vIsa1/zFv7WE2/n537yn/Dq1atIKowo+P6vfzuvLHX5pRsvksiKxbkap9cWeeTim5gYS7vdQqYjJkHE6uOP8NTjj7I/6vEN7/kufvmXf50gkHz+mS/x4Ouf4Fwt5nc//GFe3duiHrT5w2de4PR9p7mwNsvjZ0/zprOwFFe88ew6b1tdJVIRRlh/DQmDr9JYvhJW7a3+03f31JEGEusqojihZpo44XH3EmjXYsI44c7RGDs64uz5Ezz62Jvozp0g1BFB6Jlrd6nL98g/wt37pnc/418VYL2XSvjTj7t/6d/+f//tj79Yd9JfhJgEd/W1u34sRxBYwjBh2pABr6Go9JoLSvedfWhK8vfbOQPgwJQVFVPOjAOFH/zKKchQUPka6uk/3N7NJluDcBbjHNZYFFAPFYEraLdCNu7scXPzGOO89dpMZdKluRm6sSAQIQuzJznjTvpWo94Rx71DxuMRlDnWlcRJncXWLIvdOoNhm6IUtOIGo2GGdSWVkygrEcIihaZbq9NpJvSGOZQl1lgqIXDGAw/RFTZ3jI8O+PylF8jSCYhwug3yjUGCylf+mhIhpwwgHUxt5w7pydFgrI9nGbzd3p8qETiKssKUY4IwwFbFl5tgmL5X/FPv8/1lhZSSLB9xcLBFmuconxvE2IIy0ygdMUxHtMIAbS2q8pu0Ik/pDQa+6ngSkecjAu1jblFlCMWUWTWFjFdCU8kERMXW7iH1m6+yONf1bXjOUUYVhfH/Dq1CdJIQxhGkE6rK+MFZ+g2Th456vpETgs9/6WU69RYLyx46LlWAjg3VxAPgxnmOGfSQWnvRrapI8ggpFVWWoQONChWlM1R2av13FVIJjM2ZjMcUVY4U/uJXlmN00CAtPKvLOqiQBJGid+OASW9AmmeMbR9VNOg2FTpMKKqKQGcoIbBSEmpQOqEjl5mbW+LpJ98IhaPdjInq6xz2jmk1Gxz1RjSSDmVectxPuXL7NqWpSMIa28db3Nre4OBwRKe7yJUbt5BSMRiM+MyffI6iNOhQIid+2I9rNc9McI6syLm1eZXz5x7gygsvEQKnTixwav0s6XhCmudMJjmh9sDVdrPD5u4246JAGMFcq8aJ5RXipEVSi1mc7/D8S5c4sfYA/aMUrTRFlnPpxhVOLS3RqC8wrnIQ/nW0RYVNDJUwiKnVPYpC0uGQ8WiMsZaiSpFKcntjk6rIWV9bJYliyqpEaS+ahlFJGMfUGg1QmtI4RoOUZtMLUkEYfPnQdteZJCRxGFFY32bjD1CVtykLgbN+YGq3Gl6YFRXWlkgdUVl/AVMaz5QQGlflDAcjDg53mV2YITMTRv1jer1DqhTG42OiKGLn+JDXP3ARJSMCHTDMUzSK+0+eoDszw60729y4lXM0OCSs1cmHIy6crXH9+jFSQxBIhIVseEwgK+KgwdZgn9JVXL9xAyUEzVqI0pL7z17gpZde4uB4H0uByVOkBmO84D2ZVAhSVhdWmJ+f5/nnnqFyltRkVFQ0axGu8PGDOGxSGahFTbQOKftHFE5QlSlKhYRSIFVAOilRsSLSisJUFJXAWU0SGEw1bb7JPD9PaYUUDmMlZVbhypyF+QV2D3aJw4BOfZYEQTnuMczGNLunGI4nxMKwdbvPeDQhCjVaK86dP8fVl68w321z4uQSWVGQjca0opjD3phAQDmpMDYniprY8Zit/jGUPlbUOzhkYWaGo71dFhZnadabbO0f0ev3CKOY1RNLVMWYhe4cIxVTmQFlIbh9/TI1LQiiCCc1aytLxFogVEB/OEGjyfsjWs0G59bPUNMxeVQhwghlKk6tr3Hj1lUCHdBodJhfO8nNVzeZm19mmB9j8pJINOgkDeY7M2zv7VOWlq3tDTqNBrWgRW94xERWJEGEDjRxqMjHI6SqyAsfQdFopPXOyrx06ECyu3tIMRpy5oHHGfUKjvYPWT5zkmvXrhFFNcaDYwyGUXpMFCWE0xhMnMTkZYmKA45HffrHA5xQnFxcph41SNotXr62zYvPP8/62hqNMCGbjBDW+WHdZ2goc2jUa7TbXU6dDBmnE67fuEmn1aLbnmFzY5fbG3c8dLP0LaVFXhJISMKQWhIQx5owUDQbAb1eymynQa0W4wpLFEXUT3TY29nidrbDaDghlIIwSKhKmEwynDNk4zHSwtrqCnEtxhVQJglZPiEdTeh0F9i4tUlVltRrviAjiJS/fkw0taRGFBiEc1gMJ06cZqEo0UiMmfhzinaUzi8lbGUoSj/g47ygZJ0D4xvZirwgURJVi5GVIWkGHmosFMKa6VkBcN5lYvFMGjcFdAtnkTrwbpWipFELKSr/eXOmpHIOYSoqYyjzAidyrIgIVYQS0zNYkXuHFxWuhMJWuAJymxFVFaoWY6eNcm56vTRFQZkXnr1iDdZZXz9vK5TwDEwprReulEQIRZxEoKSHAFcGa3wDW1BlBFJiRUUQxggZ+LNCJei0u8iZeayT1BpdoqiJyjOSdoPCQm84IgoVZZUyHB/Rbc0ySocw8Ry0/lEJtQ6BiJjrxgzSMQfHE+woJa5BvVGjO7tCWZVeuFQxWdojl4qyHLO7XyKPxjx2/jFq9S4mbLC/vYMWmiSMyScjJlmOCcFUAicjZms18n0oiwKMoxDOg7NNjjQGTTWlTgZklSXNc4qymrK0HEe9I/qDHkmoCZSi3fCOS+e807cymXcTTePZhbFI66Yu65LRqIcU2jcsAqYoqaQgDCXFcIwSEOi78cIpw8l5AdcZ38QlrC/NsdYQRiGj8ZgwiTBVRafRYZiN/dlNaaTWaB2SFSUiCEmSxDOcrHfF+cifJIhjqqJCyhChfCyyNJY4rqFVgBPOA8TzAgRESYQMvAMoDOpoKdGJ+CoRKJ7GAEUY3Pu9eyPkV86VU8Xnq0a21yDu8VVsFvHlIdW/NnIaNfFcqLu/73lod8/LfqkJEtIeot3izDuf5PqHP4pbPEV3boH7zl6k+8BjvOWtb2Z5vsu3PvV1/Juf/zk+t7PH0//Fj/Fd3/JOJoeHRPUGdz71u9yq1ag3G0z6I/Zu36Z33KNz/oyXr6zFSokVFqUkAokpSlSopjxU37YsOw3M7T3kbMtf65zD9lJ6O8cUhZmmJ0AriZABVX/IydVlijJn9Pq3cv9owPJD90NkeeSdb2Nnc4urL1+FdoPF1WUQjsX7T7MUaJbGJVVzxv88zvjnUDqMNQxLxXsvnufshYf5jasv0Ww3OO0W6HQiZu57A+987E08vTLLJ//4Mzz04FmUMTQuniKpB+SdhHe98xuIVhb54m9+kGeuXeb+lRXazSZ/+PHfY3Zphoefeiu/8PO/yFu/9ikGZcnp7/4O/snpVT7y0jXOLC3458I3KBGrgPOr67TqLfb2bvL+3/5V9oaGo6uvMspHWGHI8zEzrQ6f/pVf5Q8/+vsc3jrB+IEH+OKv/QpPnHiSK8WE2y/ssHFtk/1xStGa5zve9U28++l38L/+5M/QfPhBgsOC0dFtZlzAb33sQ1y5fp3hoI/Wljc+dpHoqEfpJFnm6E8qDrb2WezEPHvpCzhp+ablb2R8vMe3f8+30rUdfuof/U+snz1Bd/0ih/uHzC/MsXRylde/8c185EMfYmPjJt/1bd/M8djQWllhxwgu1jsoLdFS8I43PY7WjkpHFEVBZS1Da0kQDIqMlUbzK0Nlft7HIaYOTaYFRw4P/UeDMmOkqwM1rDEoIVhaWCSoNxhmx2yNRuwcbFNvdBlVByS1WeIkmcbyhTenTNnLdwWkfxeY+t5H9Ct+/Y/rIZhmTVHC+uvsX8Dz8JoLSkEUof3dwnN1pk4ZcF70QWCkRFmvNQo1FZCsj3ABUxu1ByTj/AHKOIuwXlE31ZBi1KMWR4zHGRt3jjHSYgoP4yqd4Nz6MqNBDykgHToIYpI4YXVphfWVNdJszM2rLzJOJwxGA164co3+cIQtS0ZVxfzXzDBxkrg2S+ZKKqmQDoK4gQ5TJBprHGVVQeVz7DqOiaM2/bRHoGOuXL3C5u6Rr653XhARsSKpRUyGY4z17hnwlb9aWJzwzQfSWb/ZcA5pDYkOadTriLsVrNOwqkETaElZFpSupMJ5+yXKx9DuNUoI7/dyjhAvMIHD5Rm2LCFyWFuSpkOiVoAVFqkN2jowgkZdkaYlWguUi8lMQWkMh4MhURB5QaYsuLaxxZ2+36DXNfSHYz7/zGW+5V1fS72ZIKyG0GJs6lvXhKNeTzg53yWwGa65zMzyWQ6PR9y8/iWM91chrKJwFlcart3a4NGL57FCIWWEkBPuLoHCQNOsNwiDhEkxxlWlV9KVIFO+plUq39ajhMQKM23kcVgCwlqNWpKg8LD1qqgRRAlWhFT7KVIHKGswIiHrDcFmlHlGFCgaiabbbiNVQhh5OJybvn+XZru8cP0Gb3n8CSIRsLwwj62kbyBzBXGsaDdaPHT//SzOxnRbLYSOOX/yNNdFSRAGjCaz/N4nP0mnu8BhltPLUzQpi7Nz7PdHCGc4eeIkt802eVp4W/H2IXMzTbLJkCu9AVvbu1w8dY5HTp7CSXjm0gtcvP8B4oYicAkSiYoqAhVyZ2eT4bDP8uIysciII0kcR1gneejcWeYabUJhmZtJfMTDwtJKgztbL3PfuRqEkjsH26wutciqto9fKeGHBSTGZLTDiEYckJWWJAkwlSFZmkUpQaQjtFLT2mGLsQIpFXEcE08rPrEQRRFSOpi6kJywHkzrKqY6MwbLJCsInCJyEluViAiyPOPm9Q1CIUlHA3Kp0UFEVRVY9L1IZaQiqiJHOIMOArTWzC7MYqVjNMlptRXjUUoqNMopHnv0UY73S0ajAxYXzvD8K9cwZsLi/Bw6itnfO6LXP6SShkBG5MMhC7Oz9PoDhpMhuSwIhYeX6qjO51/4Ak888gZmOx22DvdodeYw5QAhS8ZjS6Bhpt3h1u1bqEhS2tBz4YKKRFnKXGEmliiqUdqME6fXGI0zbm/dpkwrDtOKKNJ0u3OMsiFVaZmdWWQwGtBszjAejjFK+2ZMrSicobQQo6fxicIfGqRG2pSqLHEqJKxpolhR5iVYsFKgYsn6iSXqtTaHB9vMtCLOnztN7yBi2NuhN+4TN2MW1x7ihU9/BCliwgSSUFE5w8H+HVrNGkWaoSqLsAIVSEbZhHRScuLCWZRQRGGNfDLg6pWXOLO+zNVL14k+VWd1fZUrr9zi3MnTnLvvLJNhDkrTqDd47I0Pc3i4ypUXnyeUGuWsdw5IKMoJOwd7FBPB0sJpkiRGOh9LefXaSwxHOc3WDPMrDTq1JQJlqMWOuNPlytwyW6/cQqNxmeX+R95AGCjKUcr6xfspqjlOrizQbDVQKvKMFBWzvXeHdLKLFSHrJ05x58Z1krgDRcWJhVXWTqyzuXmFwmRU1ZgiK3AmJC9LD2KN21hjGE8UqIDu7BK7O9cY5yWbm3d8/MgZRCA42N1HhTDf7BAFMTOdDofHB96FVhXktuD27W0effwhVFh6l5YKqEUaaeGBiw9y9dIlyCcclf7+oFRAPWkSxQFlVpHKIS6XFMYRTIsaxr0eg+NjSlNQFBkY37YVKgiVIooiBI5eb4wwhjBKuO/0PLGG8WDApJ9i6o40P6J/lFJMCoQ16KRGFGmaUUI+mZAkAXokcSiatZh2lFBgSZUkHU7IJxlpf0BhLM1mi/n5LnmaoqSPQFtbMRqlFGVxr3m2tCW28rb9zKTUkmDaIBTgD2/eRaGmZRp3rQxewNEEgYLS85KcE6TGO/mkUogoIBL+a4Pn6WAE2lYIFXpGEAIxfS6z0jOX8txgc+++tKV3BVMZbGUIE7+NNB55hBbK92IK72Ym0CgjEFoSlIIJBhsIUNbHiIUHP0eRj2DdbZ+rjAMXUKZDBBVCax/rm8711hiq3DfEltPa+cp4l02A8FERIVFBPBVNHMZmtJIWZZVTWUstahIFDZRRJKGGvOTE8hlmlubY2b5JJWIG4xGDUUo7MaS2hDCkFoZIWzBI97F2Qq0Wk1ewtLzA7OwiWtcx88tsb+2ig5BheYibhDSiGo9dOEGe7jM720ArzWA4oRE2aTbrZHmKKQpCIYijmFhp2t0288tL9A+OSLMcaT0wPQwCciMxVYUOYqSpkJUhqoW0Wh0OD45AjVDCuzIbaobjwwFz7Yi8ctQCMZ0JfMlEVRmCaZubnULOXVVRlhmuqnCBPxBVZU4QBBRliQxC9o8OCcOEbJziXEo6FkgdorVnJPnSCAvGTbEAmkCBrLwAEeqEIAkxgx6NRgMlBUHil6WVE6gkRAUCUwmQkiBQ/nvHEUL497VUwp/pnEWo0I+iUqBlMF3AgVLhdPEzLQyfRmPvPr68V/9TI+JrxAT5c2u4/xyUyj3gLRVK6ukf8A3OtjKYUY5KQoSWoKSPw3I3fqNwgzHbX7jK2rvfQvfMKt/8g9+Lk5JGPeGbVr4dJyVxUsdpRWf5JCuNJpubV/nOd7+XxbkOutPkn/6Nv8Hzy/8qUwAAIABJREFUTpAIxfbtTRr1Nrd3t/n19/8Lvvs7/1POvP51OCFgGm9/5Usvs1hrsfbERcyoQtVDfJW7hTBANBJEP4VOjESh5pqcfedbmHnlObIyZGFhkVdfuoSIQz738iX6g5Rup070NY/ydWXJ/uWXeP8HfwedxJQWcpPSQ/D2Rpv2TMOLgELQfd15PycKgWJaiCK9mPro686hyoytdsz+zi7bk4LF1RPEpeYdzVUebHcplk9hl3YIlIe/u0igpebGpat89uY1/up3fRd/sLlFphxXbmzwv/zcT6GSJkElkP/sZ3nm8suYwPDQmUd56pufJgkj3m2hPymZrXsemlSedbbcaLCQxHzi1WtcevYGaTagGOwhMAhrKEtBmk/49LPPEJYlCw+8nkdkjd96+Q4/9gNP8fKnPsvO8QaVrvjOb/pG3vvub6fdSOjImP7BDv/jf/mjXH/1mJ/76X/AB/75zxDMLqLjOUbpLVxecbij6I/GLNYjXv/AaVRecfXKq7xy40XW3/w0Dz72Bu4MhmytnkRe7fPbn/u/EEpysLnD3Pxp8qLk+HjIfCDpVoYvfvYZ2t2Ix86eZTg5ZnF1ibPrD9BJ6jjrucCDLGUz7XNhYRmCgAAILEysIdGBNwndTYT5tz0KgRPaFwzkEwaHu+RFxe7ODn/0Bx/n0s2XefObHue7v/X7qNfnAMvwaIfRoM/SQoO3v/1JnGgy6KX88gf+JT/2w/81rvLoGmscSqjpveX/++f9z/2s///scZcPFQiHnL5ur7W49poLSs3Eu5OE8cO7EH6rhvCxKyEUoXToUHIvtygdttS+xQxLNWUMCSzW+o1JIPBDI5ZJWVJmBcZAlNQJAkmZSW8fN4bW/CwrnRlKM0AKgS1z7CSlNx5TOUsQxgRSQGnRTlFrdFg9uUZyOOSgf4w4HnLjaEBCwXCUETUCFBYhI/IsZ+9gyPZef9oYJlGhxBjD8soi3bpmNAkwSjIcOorCQxaNtHTm53j84gUageMP/uiTjPIKiWNpaZH7z55mbqaNsBpbWcCLQa4qccof2owzvkFlihh0zm8ycZY891WyzoGwgkB5+3MpBepuHSO+YriYjBlnKcppxlnOKE2J44TSjckmA4LuEgES50q00ORVjnURoZjQbtQppxHGwWCA1hZjMjY3D7h6fYN+P6coLUJAbByg6Y1G3Li9xcMXzpMXI0JXx1WeNSGlJqnVWVg+QdSeo7nyIKMiprT7LK3mbG2+4rkr+C2aCRU7hyMya1Ha4lzhW2OkIpQKyhJTFsgwQitJZT14PdEhMrK4ytcVCxeDqICAynnIuf8WEmEVQkmM81FDja99tlIjhCOzE0KjqAK4ub+PQZCIOp3W3fpoD5wX+JroQCvqUcwTjzxMpxWBFUhZ83wsKYlUQJY6Oo0uj1+sU2ZDtA4JoxDZTChWl+l0WqS5oTvT5szqaVaXFrhya56D/S2kDbi1s0cShmztbjPJPOvFYqnXY1YXm2xsDxHOMakqXtzcJOnWWOyukdmQGxu3WF1eRFQCqRJcVaClZWV+jm67TrM5S6IFcdTAIIlkQGFhYXmO3vYRkQ5wRAhZUhY1NnYPmOncImqepMhzbA5VbgmE9iIb082ddDgjUChCaQmsQqoIGwjiUIOT3s2oIxwaJwQqCIni2r3Nn5JTV5JzCKkwzvjPPAKcwOHuNeAYa1G2wrm7MHbfQNRoN2jWajTaLfKsIC/964JSlFWJDANiHWNNgRaRHySzispWuEjQbteRqiCQIUopsmLCbGeW2VaTQf+YS6+8yJ2tOywvL9JsxBwcjXnhxWcJwoCK0m/2RcLu/pC9/R6PPvAgt7bvUG8r7j97P8eDglu3t7m1fYwUR6yfOMVCu8PGnZeYmVmiyCTNKOHChQvsH+9SWIOoQMYWk0/bFyWsrqxyfDRgZXGNTqPOzt5t7uwqCuOvYTLW3NreoREmiESR2ZRGXKfUhW+ZJGRU+tiDJvQsJ2soSoGpQOkK6woa9RZCRIxGfYSswAVkaUHcjNDKt+5s7x1x/swcKyvrLC+vcbC7xY1Xb3Lcywhlg/2bt6id9lyu5fU2Wjh27oyozSdsHhzyUKtOKRU3b99hbnEZcNgs59zpVYJAsL11wMLaCVqtgMHBhMsvXuX0ffdhcAyGA7Ksx+mzZ5FO+Rurs4RRSJwk2JYlqftGnK29ynsJRERGg+1DaMocY3KoNJevXOVo2KffP+b8hfMMByVbW/uUsxMWZueIo4gkjlk9t86ffPrTGOuXJa1Gje07O+xt7/H42x73In0aEcUhyJB6omhcaBIEkt0tx30P3MflFz9H0hTIQNNZWOSgd8zjj70RZRyipnjxhWcIdEhWFuhAg6pwwlCmBTrOCeMJ21ubrJ1YoNntcP3GFebmZtnZ2WRmaZHVk0tUmWN75zbNWpNIaSIdIeqSsjJMsop+b8zlFy5z4aE1Jk7TbrfZub3PyTPrJPUGg0nFWDgf1XYgJMRxCJSkxRhnC2QSMUoznnzsInd2B7xy7RqTLEdrh6284zcQ2lduO0m93qDTqhEngrJIKYuS7TuHVAgCIp544glevnyDQZbTH4wRTtJtz6KVpp7ELM7PcDzsYwXUGwnjccrlyy9hbEEtqGOykriRMNPtMJmkrC6vcdA/5vjgwLtotZ4yA6FWS9Clt+ojBbHDX8+xhJOAIktxoZqKrHfnT0kkQxw+FmGmziJrrW/jtJaqFMhQE0m/ZLBVxXg4oChK72pCeOeksX6B4QRJKKZcHE1WVlhKhJOEoV8mSWshDAmcplKFbyW14ISjuutktpYkSphI3/QmrMNKca+6PRBA4VCJh6cKKRDCkJcZWZr5ljJnsbbEVAZbGHQUUBQGDQgZTq/Hlso677qaOp2QIFXghX98dboz3sUulSWpJV7MT2pgK0ITE0URZVWQW9BK04okp8+eoT07y80btzk62CautQnbCrufMRwWrK112Nx8mZmFeZxt0W7OIpRi77BHWYZ+ECwskY6xSjATLxAimZlt0qrXSFoPMtuY4fL1z1JrCmqteRwSU0GJxuVjcHdb7DSh8826la2gLHFISlNhKoMS2rMnwwgjPBtQ4qvlTWlwzmJdhSlymrUQrS3WlZSFwwbS8ypL7wBFaco0525rqXUlVVFOYyZegDLWICq/VKwqC9Y3TxZZiiTAOQGUGOto1OtoNIUpvSDonGdV4aPiOIeKIsrSIHVALUl8s6rwMGLj/MLIOTtlfwqUVFRlTqPbRTlw0oKK0dIijCBIIqwQlA4irQgChbACqSKcu0df9cPjV8w+XxnS+PcaBu8OvP+ej/+QAdNNWVI+Mm+mfiiBkhIXakxhkVpRVV9+bu5GCT75/3yKTzzzWf7+e96CDjXNuElV+TN83Gp5MU74z01zsU3NSf7VB/81b7v4OBcefoA/+Ls/wq+9+iprJ9Z57vJzNOI2VkHz1Cku9wo+c+km6w9dZHTpFb505Rq/9+yzfO2738NZHXDlQ5/j7JsfQTVCsBXIwD/XtZjqyg3EYw+w+ekv8Mwff4azX/8Ubzh3jjsCHn74dfzzF68gheSgnPChD/wm//kP/WVKBMoKnv2dT7P2lid4sDNDVxt+4/3/ks+/8gIPP3KB9kyLu2kodMCXeU3+FyO8w1UqONgb8YHnXiCcWeAb3/UNfO973oFWkt5eD3C033iRtc89C4CpKoK4xuZvf4hf/MKfMJKSn/iff8IvIyvLyAk2to55+zc8RVSO+PgnPsIP/fDf4RP/6n/jzA/eTxwGKB1w8sQqehoJlsrHhYtJTv/omJXFBRYnhnPn7uPFvV0CJzCTCYgKTUImHKsrCzy/vccf//qv8Tu/9Au878f/LiaUvPW/+iG2/8FP0GtKlmc6nF9fZ1SkhKrGd7zvb3Pu7H286dEmtdEu/8Mv/VNGuxv8tz/7D/mZ9/1tvu8f/jjf/653UotrvHDtCp96/nk2fvODSCR5lfOX/7P7WXYRP/XT/z0//b6/xyc//Qx/+MmPIYShl5W88uIlls+u8vf+/j/iF375F9jWn2B/Z5cqmufnP/ZhNp+9yjve/gbe99fWSVot7n7KLt+5w0Pn7uO5lzb5x7/2i9y/NM/KqVX++jf/JaycfrDuKbzePDLKMj79uU/xpWdeYOvOFvv9IVZIlEn5+v/k3Tx97hFeeuaP+Ds//t9QT+o44RgOMmxZMegKpPk4e+OKJ7/2vXzdu76Pj3zuk3zLW5/CGf3V2LLX4PEfg5jkwN87cL7EKAj/Qr7Pay4oPffcl1AaQumbspScgo2ERIvQR76kP2nGShEARiqsloRCEThHgXcxSOFwUnjLoXJIBQGKPBuQ5RnWTUUP6R01CkeGYyaJGI97aGlA+kpX5yxxILEEICxpmjIpU4wE6RyBVKyuLHNm/RT98Yi5bp3nnnmOncMhRji6zRbtWoIWcPnGLUZTDoRwd11FEqVDgsARKCioMMIgpMaUhocfeZDlpVlmmg1EmdOK6mSTMUiYa3c4s7pAqByR9nZBX+Pqq+qliiidRckIV45BSSpj8WHBCqQirNWQKkCIHAKBEiHF1D4qpm4nh8Waiv29I6rCokOB8fRPQNDvDxmOxkyyI0pXeSEM/zMkAYxS/PZKArYgVFBLAqrKcnxwxNHhyDvJnEQ4TRRohqMUay1ffOkqzVaLxZlZ8jyjyivKrCAIfCPN2ulTLEcL3NyecHy0j0wCvu6df4nPfvJjXLn6aeQ0LoAV9MYjBsM+ndllL4hL50UuMiosgXOUpgTjcBZsZbCBIkwSJoMR1ua+ltL6GxcixJjM/x1RIkTiD8HWIIxDA7Yokc5QlRnE/y977x1s6XmQef7e8KWTbu6co9RKVrYky7KMZSNjHBZjMMksAwO1tQvM1AJm2d2Z3YGBYShghjCsvePBYExyBDlKtmVZlhVbsYM63U63++Z7T/7CG/aP97RkQrE1tYI/pvbrqu66VafPuXW+c97wvM/zexr4yjC5dQo9P8Pq3CVWh4bq1DmmZzaTaoXAYhCgJVZKZJRSS2MiNJXwr3AtdBQce1ESqo5x4LUKoDnAS08sJc6V7Nu5k/UhPP7i0/zAlnexrTXG5kaNrz/1EmlWQ2vYuXUrTy4cxytJHCmiVHHqwnn6/T7TUxP0+z3K0nLm/DkO7DjAnVddw/MvvwROhoFaeJSS6CQiH1jmFxYoN1qu2rUXKXRoZCPYtB2KSI2+3lHYQB7YvhutFWcvnaYxuMRgMKSyILSk21unMdZCK4l2jqEz2NgR6dCQZ5VH2hIhg3vRIkatex4nPMZDaQzeW4ocEhXhlQii6is+82BsD6cOEDhpBBu/INyXqgwQew/lsKQ11iKSwWGUJgnWKqyriLTHEBp3sI5GmlJWFQJPltUojaQ5Xqff67Le9/S6GdONhLd891upj9Xo9D2ra6cZ2AFal0y0UsZak8wvrSG0orA5kY5wMsNWgqLM8Vpz5Mx58CXTG/bw8suXObT3IM3dEySNBnmvS1ENuHDpDNZ66ukEmzdN0Wn3OHL0KEUOvcpQKMd01ERVPYrcoLRCySDyfOuJb7Jn1x6UbKBlHedyfOVG+X9N0mqRxhE3XnUdp2fnyXsnEVFFWYGWOsD1SwdOQjYar5BIoSmKHlv27uHCxQt0252Q0JWSSGcIKdFRSj6smF/o0l09QpH3efnYefK8oHKGWHvQkEYpJ48fY9v2LUxvrHHu+AL7Du7g0uU17nzDHfhhwXw+hzQxVXdID0FzrMXE9DTzi+s88fTT7Du4C9OxrCz32L1nB2sLS9z3vvfx1c9/kRtufR1CDFhdqejnOUuri5QnDP1+h7Pnz9PpLNCspzQmt2NtiDAN8h5vfMv9XD56hFZzAxfmZ3nqyGEmx6a47tA1tOpNBu1LdIeWdNtm0iRhbXWZx575CssryzQmY1YXHFkcYcqcp594mp17dpJEdWxh0Tql6A8x5TqT0xuJG3VuPHg1SzPbyG0bqQw7dl2LjiwLpxfYffUhvv71b9Acr7F6ZoFeJ8cCkUqxlUMYiaGHpiRSCbgSYxa4vDAkyRT1RotLFy+TTUQ4o0Iz3nCNOEkhjRjYAXWVkkQRUaxo1iNsOeDSfJukLlEWbrrmKjq9NrftvBWpI8bHJ1jqLmIINepppLC+YH19HlxONrmZ1kST5fUOZy6c5+ixC9SyBO8txorQ1OY8zgcXhvGe5W6P0pbMqDHyvCJViqzhuXh2GSc1Z84/zMTkNE4oxlqT2JpBCcsgHzIx1aI1XiOtK87NLdDvd3F48qpiZWmVDj2aWRpEbaUpi5xaIyXN08DXqwzOSnAKW1iqwlCWwdXlhUXY0KpG6fC2opFGRMIHSDNQGUdeFbT7XZSQwTHpPQIHWKqiQmpDK26MFn1XijQMY80GZeXAh2i29QrnDL5eo+r3Ri0tKsyLwoa6dBUgza4yAdKNYFg5wITmXAR4iYpV2ChhGPRziqrCVCWRjChMHyU0eVEgjaWRxGF89T7MqUrgvAx17DpsOrzXgWUoDYKCSOgQJfcVlbMoEYUWRTxGENYdziBtjigLlAzMQWvkiPtkaK8uEMcJF84fp9Uax1ZjiMrjyoKsniCFZzBc59yZ4+ikDpWl2RyjqkJEJ45TZuqTWC9pNBtkUY12X6NkgfSaLIlojo1T5TlOaLyyTM1MUav6HD99lKy+l0g3aJ8+Q3rTDGnWZNif59L58+y95hasqTBFgXIWISXWO2SsMcKFlrahAQ3eGbT3GFdibYG1ESYwh0mFBq1QkSKJg/hWWYWOEwa9tYBRcFmAo4twPwdFRWkMjbEYYwsSEVOagqochM9kJOAKZcR5LAYrwBV9hDcIYyiGJXEkMcUQJwWTm3YQJUnY0FtI4oR8GOD8XkqCmT7E04rhgCSrYUX4/Kk0wZQVKk5J6q1Rc1gQTVASrRRaK4qiHzhixiFE4E1FiUKp0NgqkpiuleRJwuTmaaJm42/sLf7Gtu/bYdL/lNc/sPeUAsTIOSFHddzOO2ZnT3PsyEmK/oD9V+3nqkMHwxgLdO2QxnyXL/zRRzjaaPCJj36G7/3Au3HWEsVREK59kKY6p86xdP48X/yzT/HsygV+6P3vJ0sUL33jq/z7x17kM5/9FL/wy7+MdKFJVzk4tG0/73v397Fv9xjKeY6+8BIff+QhrrntJm659RDCS/bfdBAhNSFAorEmCIIqiagSxfoXvkFy3S7KyZTZoy9ydmWdp44c4SsPPkSlwQ4EzSTm5QurCKHIl1fwLua7/pf/AaTEtbs89anPcnxljbHmFP1+jyIv0JFE6eBiCfVofoS1EiiCCBoJTVQ5NoqYfXfexn//nreF+B2SDVumiHTE8twFvnjqJJMXF8EYjpw6zL/51V+nH2lMdxVd05SDAqlilFdMjddJBsucO38aY0q++cXPcn51mZkdWxBCMVifJ2pMIqXGK0FZFiRRgq4lTCYbWM9Lxmrj/Mhdb6a6agfPf/1bfOL/+k2MT+gYQzNp8NjDj5DVUqxUtKZq/MFv/SZ//H//HjMTW5k9c5HxTVM0xjaSZjUMoHXEO26+OTQ/Dh1/9uUHyCvDvgMbkCeO0V1eZPapb/KrjzxIPDbOU089xnre48Ybr+PypSVuef3dnNeG3//oh9i0qc6zJ4/wJ5/8BJOTMywuzZJFig37d6Fm9vH4gx/nI7/yyzzwyS/wrasO8p7vey/XTE/x6O6TdM5f4mf/42/z1u96N9dtmeC6zfv43PMvceuBgzx34jle/13v5uLjX+Wm199Pb9CjVRsxtuQrwTPwguXOkJPHznHk6Gk6VRXWtkKwa2uNe2/azf/xH/+Ua2+8nt6Tz7M0v451Ai8qUmVZXBXMr1wmn4z53h17abbGOLY0yfn1Ifum0m8nj/1/vr6dW/TfqrB0xQ3JiEUcKYsQr7n0A/wjCErtdhs5im7hQ97ej5rJhFChIpQRAs77QN0RYuRKgkSF5i28CwsjAYzUebxEOwWiGo3eCi8MRAoKifMeIRTG5Fyav8jYxBT1SCE0KBFYMgHCLEjSNPBSbKhnXVpbJvWeOI7Jso0sry0xsXUrWVxnUPTotfssrC6TD9q0ezm5t+HkQQa+khSe3OSsdz2lMWidIiJLLDwm0gza6/jpGlJnRErRaNRZavcDl0WGDXFYGBq89Vgp8VWBk4LC5CFn7csRaNsHRd9feZ8NY2nCjukxUuVZ6/RwskITRD2HwHmHJAgZ55cWuUJYks5gq5K03mQirZPVx6hTjPLtAqMd2ib4ShJFGXhP5BUVAu8cZSVYWesyt7BEVQ0AkF6Gxaqtg5IoIcgHQx578kXuuvN1SCmw3pK3BY0sJdYaHdVIaxPMzLRAeNIsQVcD3nDjHSxcOkG3v4y3JkyWpeXMuYvctXELeRmEt0jGeFnDqjxM6DrwmqwxwcIrPNInVMM1ilZFleeIJEWg8bZEGB+cTVKN3i8xOmlyFJUJwpCx2NLwzYe/RrvTY/vWcXZt2cj5S8tIDcvrXY6dPM511x4iTppIp4hHIKtExEQ+gkqACjX1TlpKEe6RsQaHIVKKstJY6UHYsEj1AuViJtIQO3jjjTegIsFCZ8gnH/o0461pGkmNy/NLbN1YUq9pBoMSqSN6/YJaGrNtxwzlsEczaxLFdV4+PcfZix/n3tvewO7du3n0ice49643UpQFOtJkOmL37j00JjPG6mMkcR2JQBqP0GLE9iJEHWU4X0qkxkpD5AW9tQ47D2zhLffcjTcVx06cYWp6nBvqV6Nl2DRkPqG0FU4oKgGJ1zgZxCDjRzGMkY1WKQXCQ+FQQpLGGusMGvXKCSm8SknwBLA23iNVOGlSMpwKhucNyH/n3aiZMghSxnmUFmgRY90oZuIJkFyhsFR4F1rKTO4pSoOSEVs3buZ1B2/EGYW3CuM8WhQ0Wylbtl/FwvIU/V7FWnuV1fVFBIZUZZQO2oOSVMU4G053o1qN/TsPYHHs2D3D/r3bOHl0lry/RL3eYGVpnaWVLlFcML90kaXFy6isyfTMDI3WDC8efRatwPdKUiHZsHGSsoCLly7jxBAVa7qDNmNZC5Va9u/fwt7NO7HG8vzRl+i2u2QT0zz/wnFuvu4avvXMAkoY4iSw7GwuME7Qt+BdhYpKGjWF9ob6WJ1Ll8/RXl8lSRKK3IILEcOiYylHEdZuYSmzQbg3XpNkCQd37WT7rm14p1g4v4DKMrZun+Txxx8nSTzveec7OfrsMbZt20h/vcPMxgbzl5dp9/v0qwKhJC+fusCTTx+m0xvy1FNP8r53vZMdm7exsLrGZKtB3m4zaBvuuPE2et0eXsUsnpplud3mpTOzNMZStmzbQdaWNJKE1912B089/iiLl5bYvWMntrdOf3WdF1dfQuqK2265nlrWDFYcDdfcdD3nTp6lrhWzLx/jhZPfYnLzAfZefR3LCyssrxyjWykee+I5WpN1Dlx/NVmjRulzXOFJmw3a7QLjK1IRIbUka8LLL8ziq4zFpVNMNZtMTAyxXEDFjl6/w7DwZLUJHJLeoENVGlpjGVlUp56k9AcLCKWZX1ni0uI5Gnor0+MpzcYYSSrAhHaiycmZ8OVRDmzFeq+NThOmJyfI65LcFHTKPhcurtHKImaXl4lTS2tsnKLTYW3tcmjfdBYtw/zf6XXRSUQa16jVJlhd7yIjxezcInlZMTndoF/k1Os1tm7Zwrnzl4hUaIutbBls+q6i011DK0urFtqKjINYR6y120RxjNQZ+IpNGzbRG7RBei4vLXJ5/hLbt22m3ooQ8wZrA3tlrDXFlulJpNIUeTWqUBesrC5TGkNZhDYs6y2hlhSqEXcvUgrnBZHWxCrDJQZTDUN0X3msAKEVTliiRNIaHxsVcrzqDLLGEacDuoMuOnGUpaQSPiyVVUJvMAhcSVNikTgbNnpVmRN7R12nWDyxUiAsReUZDAZgHTb4QJEIKlNhjcdVDl3LkDIiEiE+LKUmqWW4ITRqGaYyZDLGmBKVJfQ7HbwEw4h76QOIO4oUVRScBc4EVqZXFl8OMd5hXWgEkqMmMVvkdNptUh1T2tBSZ50jL0rGoji8t9JgXR8pwAlHvTZJWRbkZRsxFDRb49SbTcquxZnQmietp7fcZnymyXr3Mu1uh7IcIoRmx86DzM+eZeFim21bp4lkg1SF9ZWsZ9h+Tr/bIe8PKPpdlA8RQeciNk9v59LiChcuLxD5FI5HKOXpl2PIusLZEIdVQiI8WFPgcHjnQ7NRFFFrZBhb4VAIX5KoGlRixDAKsGslFLjADHXGYlwoNCgLA1bixSgiGIMiwyvJsCxYXFqmmr+IKSrGxlqM1Rpo5/DSI3Roc8OM3E4VRFFMkedESjIcDME5hsMO/TxHaZgQFfgKgQ4FZiqInjrS9HtdojgmNJS54ESKQlNuYCgpXGHI4owkjsFbKlOgtSYRMUZ5fOUwBlCauF5DG4OQCcJbBj6mH9fYvHUzV29qsXesQSvSyBEnyv+taEYQXl/dCPrR5P/qftC/8s9rozn97Wf5u21Mzjr6ec56e5726irnzl9k9uJFlpYWkKYkFZ52v+Br33yMXQd3ce1VB9ixcztX7z/ES088zPP9Nu97/w/w8nOHWVi9l5mJJliHMRUijhAoTLfP1772Nf567jiViHn4S1/kLz/yEeJkit/4td9gZtM45fI8Os1IpCTWkpmpGvv2TOCtQemYPds3MdXKmH3xOZbOvom9112NmVsl3r6BURVzaKvWGoFAbt/Gi48f4w9++4MsmTWiTPETP/bjJM7w2LlZuv0uWRazOL/Gj//YO+ldWGVs+zR4SWkMYIizmH0H9vLzW36aTn+dBz78Ed76/vdw4x13vHpfR86kV+6hDyNY5SqU9uweH2Pf7deTJsnI9+X51Kc/zY03vo6P//mf8cDhb3HidwueffpxevkajVqNojdACMmwk9NIUnrDAu8cF2dnmbswS3PDJAgFca1+AAAgAElEQVTH5ZUF+rbkwqkTuFtv548PP8dPvvltPHP4a1x7zZ2kSYrHXsmF0Iwi6nfcAFoFwUxJTt99H9985AtoBlTeMz7WpKhK8sEQO7Q0WlPgHWvddaYmx7nn7ru49847AE+5uMaTLzzB9bffycPf/BZfmZ3j0vmLVK7g0a++xMWFjzDIpvmTj/0l9TTBSktS1yjhOfLMc9RqdZ76ypcYf/4wy3Pz/Pb//CH+xQd/kff9/E/z1Q9/Cj0OcVFjqtXn1376J/jZX/8Vjqy2eTQv+be/8q+4c9ceDr/wBD/wxtv5yy8/wU+85R6uP7CHxbUBZ+bn+Pn3fCfDYY8ffed3s7K4xBeWt3DzdC2sjQN14krSbXTvPLtmprjnDXfy9DNPU+ShbKCXF8Qb6vzpX32Zf/HBX2BrnPKXw4pHH/4azUyOuLqSUsBcf4nf/OC/48jROb7jDRt5w/YEqVJChuS1u/5bFZH+7hXWFQ5BLAWMHKf+NQkNvnr9IzCUwtOGjLRAEoCRUoRKVKUi8IHU7p3DeU8kxQjWLigYTQxKvrKI8lIgLYDDCodEY6vRRtELGlnMoB+2Kj6SGCMpnYc81GcKG6IxAo8WCi0UxobseyQFUknGaikaz7CsWGtfxIkqVJlaTy2RTO2cocinWVi6zNzSKjiLdBZkcFa40uNdkMqsVOAMG2amaC8uoaVifrlNa3qM+kSLZhST1WooFazgUjlKk4NOsKiRmyhcDoGzFcaUQIVVAmMrlFJ4K/Be4iqoxQmxjigtOJEg3BURKUQOhRTYwlGbHGdlMKQ50aQuJe3eOoNhH6kUU1kL3WxQtOeQOkaKCO9z8H2GxRAlDaWvgNA4Y63A5hXnzl5ifb0TgKGjDDxCIrWFvKJSFkHEytoqaSxoNcdZWFxEpYJhv0u79ER1z1TdhoYCIemuLbPUuUxNa67adxNPPvUlVKyxlcNEioWlNZBgjUN6TUGJlQLjLRaB8TFWBBiiUCMEpvBUlafb7ZHKBKlGTSfS47RA6QjpRydr0lNWQ/LKYFwPHUNRtkmSSTpr65xbWeHE3AWmazWiKMIUAis1x09dIo5rXH/9tUjp6FcldQRVMSSkqARKRAgvUMDAupFrT+Ns4I0pLxHEeCRKxvhIUyhPSsSGZnCzLC2u87mvPsgt11/H5rEp4mSSPzvzWZ4/dgpvPNYLpKmYmagzUZfs2r2Tl06epNHQTExuIVYJZWn40qOP8IPvfCtuww46xYBGOkZpKhSGmvJMtFo4IcNn0oMXgtKDVgIvJCZgznC+wskYpSOSJEVGLZKkyaaJCbzz7Ni2NVTMO0b8ERPEYB8hiBCyCNsfESIAglBAcKWZwNmSyplXuGxahEd5N9qw+NAcJEaQTpy7skYJIiwWbyqc1kQy8M+ccEgZXHtpkmAIzVBX4ixCCvAWOTI/OW8RSlIUOdY4GvUmOEcrGyfL6mGsskHgEj7EU44eeYmp6WkmZjbQSGKOvfgM4+NTNHdcRZUbxseaVCS8fPpZWjMTLMx3Ec6xcXqC/tCRO4HWKSuDDt3+eabHp9i2+xpcvJ2zsyfplRW7d29k49QuvvnVx/A1iXElihgvDQiPM57SGlTk2L9zL5iKLRvGaNRnmJmZZmysifOSVn2cLKvx3LGjrLQ7nD3TYcuGGQaDAWmUsTToYkrD2HgdqiFKwLBnydI6Wmm2TG+k0+uTpRm1JGN1bSHcB2nxKLwJrhWPRytJmkiE0KiaZnpmjF27dpBFMVMbppkYH0PIGGdyli4s8s9+7APYruXaQ1fhvKM7sLQmWmyccLy4cJJOZ8DW3Tt56cgLzGycojVe0O4P2LxtJydeeomV+WXuuvd2PvShj/L+H/lBqtIyGJacOjvLxMQYWifU0yaxSpm7cJkbbtjHdLaBjdNb2LJhB1rXqNfG+dajT3Lj9Qc5dfIc1xzYSyQlkR5HOMv02ARKxWzYMMPl5cukkwkzU1s4dOOtHH/6ORpRiD5NTm3lnvvv5tFPP8COrZvodQtKn1NJS7O5AecFy4vzjM3MsLR0iRePPk5/UBHFdVJnWW130MkyZtWjZI1NM5u5YdMWnnniCbrdNr70pHFKIjMmJye49eabmDs7z6XLT7GeW3Scs2/XFC8+9zKTMw3EasLtd91Ea2ycyhp6nXXOnDpHr+yzZetWdmzdxcULl4lkwkQ9R5KxutZjfrFH2lhAqZizp04xvmkjUihcGeYbgQjxDmlRUjAxsQXlPBcXlqiMozKGqekWeV4RRQovBMOyQCnJ+MQ4eT7EkhBpTzEMLXxS5hSmZDgomGiOsWFjnVbWol9ahHLgFXlZ0e30cD64EW2Rc/bMWeKaop5FZF4iRER7ZR5VDJAqNKpliSDSGfVaTF4WeGdp1DKkdSGq5R31rEZVmeDC0OBshRvFmdwVjooP8X6MJRYSW1T0253wfrgqnLA7haksVZnTyhQIibAGXAkqDuK9tVgXYkdKCFAhNqeVR1QGJwTKuVfcEN46mrU6RnikAO1H85+vKCpLOVQoKqQQKJGA15TWU1UFQkG/H8ScyjucKahKS+IqsAIVRaPfQ+KdoRwW5P1BWAsYjwVMVSFtRZqFx2on8KoRIl2xJKnVkEqQECNdECakcnhX4UbVz1lSG0UC61inmRirMVG/FydLFpa6mEHFcJjTrtZopg3q4xMcvPFWzpx8iXZvlfHJjfS7a5jhgMHKKnGmGeYlw6LPwtyQfqFJW012NnbR7g8obM5qexUhBuzcPgSRUOUNskYN05lDRBF5aVhcPoGKc/bvexOm3IxAU3hPZCvkCGgtnURJgZQSXxn6eYHDolyJd5ayrDAmHHkYX5LIaAQiBm8chTUhyu0dSIvzBq8FThBi/ZHASUuWpYxPbQFRUlUFRZ6zuLpKqjVTrTr4wCqKtGaYG/AKjMWWFQiHMYF3WVYF1aCgNjmOljE4gfMWhUS58BzOGnQUIRVIEaMihVkrkDUZmE3KUos1cRpjhUJJP3IgCaSKyashcTMijiPSNMaPylaWnUA3xpncMMkN2zeyd7JBQ4bTN+9HXCh5haB0ZSLn27Si0Q9/X5TtNROSrohZo9/gyqGV99jS8OLxWU68cBwl2nR7FavtFYaFIa1rmpNTbNi2hRtuu5lt01NU66scPfwsFxfmuDx7hgdnzzOdFJx55/dTO7ibf/VLv8x1Nx/kQ598gKefPMH9999GVRmUk3RenuP8i0c52b7EXz/7GIurq+R4lvslb3jTO/jgz/0Mu/Zuoio90dYdJGdPU0iJUjEKSaQEToQY5pb77uGfrS7z61/8NP/h936LXezlPf/jjzATr5NsaOFmT3HsM4/Tboyxd/t2drz9dbzln7+be374rTz2Xz7D+ZUOb3rjPdycC0597MP0UFgrmJ4Yp5GOoSdSIKBHYqUwnSHnDh+n1y65+l1v5LlPP8DYwRv45GMnOLWc8/a33kWjliJQrygSdtQ4JwmFPMJ6MqOYnmwCnrnVdf7wscdpX17nE0c/wX3vfi8/2trCZ//oo9TTBnfc/1a6Cxf4+oNfI9MxqU7IK7jm2hu48dDV/Oj99/PZz3yOp1YXOH38RQ5efYjiBcczRx/nwOU38hNvfgveWG6+6R6ePHKcc/1V3nfrG6icZbi6Rr9wbNw8HSKhznDNvfdyeW2Zrw1y9NgEelDS7a/iLYyPTZAmdQZVh7d/19uoup7Pf/5BHnvxBW574hHe+o7vo74+4KGPfYaPfeEBDh9+hv/zN/4zn//936PVTBnolMlWjFlZI5qepN9fJtIZNi9wOrh12oNVpILVfoe7vuN+/vOffJiF7mnuv2ovC3e/g51nn+GLX/407/6Xv8wfPvB5vudtt/PGA1dx8649zCQJa0XB5t2H2JAm/OJPHiLyJd4WHD53iZO9Lr/7Az/Kv/tff4p33/denruwwHV7X88VUTVgV15FqgAgwWGZaDWYSGIWLZhiQKYbzC4t8pu//W+hGme1u8bi8jqx8jQjQSE1WZbQzw17br2RjVPTvO7qrcyurbFjfHz0fXeM6j7+/+u/6gqSnwESKfFo1GsqzYXrtfc9VRYlFZUtsTi0kAivsB6kBOtNWDxJQIXFSDWCzgjvkITFlR85gIRywYwkFdKr4EQQwW3gsSg0cV3R7XVZLzzKCWwU4nLrwyFxpVA6GrU9iRBbGgWkiqrAiFA5Xw6HeB3UeZVGGKHAauxwyMCWdNYEOIevDImKyUWFlyNnhAsuq3KYI2uamk7om5LmxCStVoOlTg9rFZ2uIdE1kjRlw+ZpLlyco5cbBv2KsijRSuEwoRixMog4QJ21j5DGQR4WsEprnDPkviISCVIKsixh285tnFhYwesE40oMAuUlWIuSoKTjmr27OXL8ZQ4dPMj5s6dZaTtWlpdYuHyeeq1FVeVoVyAcOF8Q6fDhG/qShovCWke+apfvdPpcmFvG+mDvlSqIajhHWemw2C0lQnuKMmdhaZ0NE9M0soSpqdbopKygUhneSDwGrROyWpNIS4r+Goeu2c/RU4fJOwsYHaBii2vL5FWJ9Y4Yh3YCVzqUi8LCTlg8NkSifIIUYaLzvkJWEpvFaK9GG5sQV3C+Gum1GofHVI5ICio7pBo4RCGpaONdiak8kZZ0TEENBWgiaxlgOHPuLJu2TDM9s5miLMA6CtsnRjMAGirC2YpKSWzlSbxCj+q6K1eM/Huh8cXaCuE8kVEIHRoClYOoFvGOt76ZdrvLxblLXHNoE9devQ8RaWbPnUWjSSPFeCvh2v37aI1PcWmph2fA1du3cNs1V/P8sRPc8YbbcFXBvt1bKMoBCIUUBiESvBdI65Da40RoAXHSILAMSsiSBGcFUlm0jbEEtsNYo8mhgwfYuHEKZVUQ0VBY41BaYY0BJ7BO4nQ4sZdW4ERJJJPAL8LhZMj9eu/RUpEgELGjKgtU9OqkIhF4E1xloYw+tMj5KzZqRmwxJYmTKDA8fBBbpNSUVUWapoHZ4sCJUGXq/RU5K/xBeKRSxEmGj2KwULmSNGrQqI8jPOQ+tCYlzTprK2vsP3gVL589z5n5w7z5tts5eOAd5MOcsxcuc271EkIMmV98GWMGxGqcW153DWfPL/LwN55CKs3ePZuA/cxMb2bf3r2srq5S9HO2z2ympVOOnXyBo70hJ/VZdENxYnaWOI5wJZSpYSxTbJic5vTFUygtGa8lvO7au1hvr3L2whzOe7qdVVpjEywst1mcX2K1P2SsNc3Ve/bywtGj9Is+WkFNx4imRkpLPQ7gRaklLi+pKpg9t8DubVvZvH0LLz57mKIoqMohUo+j4ooq9wG8KxVjY01qacbq2jJJPaPT6/HIo99kst5i/8FdHLrmFvLc8ORTx5ia2UykNMNOm2E9o93uML1hEklBnCh27thGpz9kvd9mbEOLHZs2MT29gZMnTlL0Cl58/gS3v/UWTs/OoetNzs+eZDlpcmH+CEdPX6BWHyeTGVIJ+oM2zuacOn6KDXduZjCoWF/u0m6vUR/fwNJ6j288/hgzrZhjx+fZvKHFrt23IEULW3miRLBhciN5p40dlrzu1nu4PDfHiROH2bp1C6Wt2LJtmsc++wC33H0v+dCgVYIwQ3wliIQiijKmJmdY7/Y4d/Eiq+0B3kI9E1y17yaef+lFdDJFo76V+972Lo4eOUq3vY6Wih17DjAcDvDO0O/k7N6ym43jUyS7YNCxeFfRicfoD3q8593fydpqh5dPnuTrX3qYelZj9/49XH3zIbLmFC8deZaL504zPTHJju2bqfKKyYkaR559nhvvu5MXnznM3MVVxuuK544e5ZCrGJYDisoGmL4NnJskqjM1PYmrLBfPz9FuryGlJk1TkiSm0x0SJxmxjpneMMP4+Di79+zi9IkztDttojiIL8Z4BkNLIiWbNozT7RuOvHye17/+JvJco5KU9nqPfNjBOYP1FdaaIFgpS2UlupaQJimTE5Ns3jjDwvwCrXSM1XaXqhxSeUG+VLGyvMrUxDhxHLO4tIL1jnwwoLO+SlmW4UCHwEKKhHxFHMpqoT1NRSHu7HSMTDKSLEWpsNxybsRIdAZTKXxpwEKcJSBjCm8RzpE2W6jKUFgT5lEnMGaAYNTCZT1EgLdoofDK0x0MQ1TXQugpsGBL8tIgbEmaZmgEDol3jlgJykER1mXOh7FPgFcxqbaUVRVcowSXNyIcctSzLDAvhQ/Ndq7CGKgGCdicygiUivAukK6EVaH5zSmMC3OIdQXC5CgVHFvaR0RCE0capUqKqsNqL0Ga0BhWVZZK9RHCUa/VqMUZIviwQdaZbGxhemorbZmQp8ssXlrFiIostnSHXRZziTQJU7LixPNPIOo1VkyJVgnSxnQGgqyeMeyuMPA9slZGlZcYCcNqwObpXRS5x1QFzhmMqxhWBZERJF5iqorKC6ypkKZEOIcWCkmJ9zIgB7TByAhKQSxlcN9LQRRpsiQJQonz5CrHVS60cnmJEpqqMCivKSpDUQ1HNlyLlpJceEqbU5iITKng1MfjqnAg6bTD2JIkSRh2u3hl6Xb7RDoUtXjnMDbE1uM0wXhDnMR450mThNJVpFkWoOJaU6tl5JVBoKnVx3DWvBItd4BTEbqWYnNHs9akqjwDoZBpk2zjBG/ZuZldEy3S0RzunMdZRowu8Tc4KeKVv/g2Xenboyr+2x7w2l1XxCQ3ctldeY1hlfO5zz9AXyQ4+iASprZMcs93vpnNmzahkoT4SiRPEPAKG7chKFFH2kxv8iycH1DGTd546600VQQHHXOf/yozt9zN/W+9BdvvYy4u8MiffJYHTrzMy3OnWCgCt9V6z2Sjzne88a380P1vIWmv4s1mLv3F52g4w+7t29Bj46RJzI49u19dx4y4WPvf8d2898x5fvupb/Bzv/OrbNk4xsKxi2yeqrPyyNPYe2/lrj0b6J+4gPcOWxqUirjn7W8OjZETDTb+8Hv4/mee4XeOPIEtHSbSPHP4Jd7y5jcG56AWYBxeKcZ2bGUSxyf/1W/x6Re/xdu/53v4hXe/F2er8Jn3I8bu6P1VhO8KeLSPyRoZe/dvhW6PzmqbxBh+7m1v4b986hO88973cMv+PaS25HP/6Q9wjYgn/vqvGAxLpNCUBeg0YryecXn2BHTnOfz4IzQ37ERlirzq8cjXH2LT9Ca+8NDX+efv/yk+t/Qo33HNbSQ+4vZrr+G6ssJ4WO10+NLTz3LvrbejlAzMOR0x++QTfPrTf8Gm7Xv5rg/8FH/wv/0MSa1Jb3WVAT1M2kbEkkvnjvGmO/87Ls1e4Cd+9n/iuae/wdL8LKeOPMXp9gonj19m8tDV/Juf+5cIX7LY6SAzzYUzl1nvLpOmwV1aloZYCZQrqYajMhQHVVHw4AOfwhYFVJ4P/vt/za/+77/DLXt+kvf/4vfx43fcy0PFs/yH3//X3HP3uxgUBWQZE0lCphi1HvvAL3Oet9+4H9fvsulDH+b4V7+IuA/uu/UaQOE9aK3Dt9B/u9MnqLlSKGxV0S0KCmeDU9Z5mlnMenedZq1FmiXs2b+fS6eO0BtarPcMKwvCcvWOrcExawqqIg+pJ6/wI8wM4h8WQ4T4uy7Cf+ix4fv+j5+h/ad8rb/n1REelBYjDvNrP2q+5oJSoiMsgBUj1TlUnXoRgJSCK24hKEz48EVSYkaVds6XI2vh6I1HjjLZDj/6f7gQvUCIAJ/0nlYtpVsMKVDERmILBzoAdisigpkpDFLShyYD74LF03tJaU1oVxEK60L0yAlDFAWru1MKU1oSa8hiSXsYfssAnAwRYKkURD6ASHXEwvIKMktxnT7gqHxFZYZYH1Gv1Wm0xuiVa6yvdekNQgtHaoPQVZOKqhKYwmJE4A5UwoUGN+8QeGIRIYwBW4yaZiqcV+AqKueRMjSl4ME6zWQt4eLli+zbu4OZiQmee6kANBfnljh/eYlICQprObR/F2MRaCkpKovAoG3I4SuRhQEDj/UV8wvLtLttrHSvKp7e450kVqENyuNxvkBKyeWFOa7euw3nLPgQP4giHdrahELHQUzzUpI0x8mSGsOqw1UHb+Wpb30GlaW4Imfj1EZ8KbC2ovKesigw1oRGFeupqnAC7guLEy7wDoZBSIzr43hvqaoSRBAarSdwBvwIPoomSus4O0CVLsTtIsFgUFLXEqmv4KRCY4mhwgiPspLVzpCFlVVaEzNUpsQMh7hBiao5vHQ4X+Ccw2pACJzwOBeF+KePsD6wtxSSwofNBs4gSXHeYURFqmM2T0yRxRGtKGF+eYl9u3ex1mkzC0AQbzbNbCBJE4SX3HzzjbhqiMhzXFFy3f6rKYWit7qIsCYsLq1DWolwFkeJpAKvkDbARZ0bCTTCUiJABKs+yqFETEMkFJFn14aZwGHoVwjhSVUcFicusJCED5tbr6AiVJw7LbFCoK2AUWDDeRdOQqylqCrKqqIyBbGKkSpk8JHhZBUxOrkUbgTFda/Y45314T23Bin0aIQJfl0lVbiZQoKwYdxidMqv9KsVu0K84nwSSFAQqQSV1MLJs/OUWESsmDs7z/GTJ7n5+v2cOnuG/Xu2sWnrDiKRoXXCnh2KwaDH5fk5lPbUdYrWkt2bNpLGTXpbtnPp4hxbJqfoDUq8De6p1tgUW7ZspN8dcmm+oF+WYEpKU5BmMdNT4ywtdqg1EoyytFfatAenGY81WXOSQQ7GSXpDxYVLK0yM1ygLwemzZ2mOTaB0jZlWgxtuvoXMCxqNKZ588jFuvP0aLpx4mb6tcA4SmTEzMYMZEywvL9HudrBWMr+U0BifAgS+FIioAaYgnYjwlcd6SRynKKlYb3dQkWS9vUZpKmSkmGzBjp3bEMpy/uIczx9+iR/6wNspipJOt8c408QqwRYVDkdpIM+HdHsdevk6WaJ57tjLZP44k1MbeOjBL6IaGUdePMnF0xeJapLHnn0c7z1T4+NMTW+mVW9hh8GF1RifYny6RdnucfTFk8TyHIO8w113387Z2ctsnBkHmzOsVslaMZWzlMM2aZKFxkYUpiyZ2LiZ+blZ2otz2MKx+8BBykFOEteYPXaCN33nfUT1OlZ4BBWVsXgvsZXFlAVzS5fodHpInTExsYH+2gpaexbnz3HDra/n61/6K5qNjcydP0tvfZldew+wurjK3r076KytMb15E+tr66wur/KNh5/A+wHrqwN8ktLKFIOi4vDh57j1lptZXZ5kLc4Zm5zg+JmzrKx32Xv1VTQaLZYXLrO2skJvfcDF+fMcPHCING2i8dxx64186eFHGZYO1JCzZ4/THYTmU6UiPJaiyKkqqArP8sJFSjukPt5EixCpKI0giSPiNMV7WFtuMzkxwcrCKt67wHBRgub4GFMTWyiKDnMXlimloPQWlWiWVvrUJsY5fWqW6ekphqYiTiVVpRBO05gaI9KKQWkQUcKwsFRW0ZycorSOifEmu686wMLcHC7S1LKEfrdC4GjUx2g0m6S1Gp32OvWxiVFdscMRWD0rC4vUBfT7bTr9DnIokZWk0CX97gAzdCgVmlCdDQUbxcgBNegPySKBUwnKgRaa2AuMjJhfWQmjlPcoAnRHeI+phsTSo5RGKM2QwEizpRmtkzQKiLQaiQSaRJe4YZibkRKhLFY6hFe0xjIq7zEmOMYBrLU4UQawNwbl4zCv+wpjS4ampKgKpDcU1uOMwZgcVxgiqVD4sPZDIVTYhPd7OcmoOcxKj7MCU1lSrcJBggAf6cBhlIrmqB2wMCEmZt2AtFVH9MPax1UOa/o8+vUH6A4MRW4oLlX01s+wZ2PCeuKI9Tg68tTrLWw1xMuKoXPMTEzQnJzi8sIFBt11+kUvtPvqlPVhh7HmJFP1SS6vzNHMJpicblGWYJzCSoFSnriUCJnidRkA21GMUhrrKyoVEWcZ3huUqGOtQUuDx2JNST1NAw/Lg/GeQVmSFwVaKqqyojAl3pbEMiKKLVZoskRjvQ/MrtF44a3FuhJTGYQIh3ZSaERUR6mYlbW1cOCYZEip6Bd9htUAYRymzBlrTo4OAn04ZCFCENxHURpTCYOIInTpSeKITrdNlNWJohghIoglSkJVOHQSgfDESpNJDWgq3aBsTNCYnuLmrRvZM9EgemWNGNbxUgYH9N97fVsk5du8Sv/w9WpO7jW5gpD66s+1OOV73/NejHXkgwLrCprNJlKqVxyKdnSALQhOZ6UV05t2saO3Tqe/xPZtMUeeP0Ox2ieZahFduMDK7Dzf/3M/SDXIibMMt3mKu3/yh7jFOFxl+LM//AM+/vBDDI1ldXWVL3/hE3z1wU9w64Hr+LEf/jE233831af+nEPXX8fhp5+ltXcPvYVFEAJhLFQuNPc1M647dIDNR57ghYe/wdcuLfKNbz7C3Xddw8c++mk+9Jm/5PmHHmPfrbdinUPHceCpbhqj/+J5kjjF70i59zvfzF8cf4G5pKSztsywKEkyNSoKUHgNUS2hXhM89J8+wscOfwsTSb70uc9wavYEh26+m/vuuJXxsRbOVMTxq6DgUOggKd2AQW/AsZdPse26A1h5meMvH+cLzzzOem/ILYeu5tOPPcg9u6/nVG+Nn/65n+Ern/8yL7z0BLGK6Zgev/ZLH+SvHvoKLzx2GDWM+cAHfpK67fLRP/8oQiTUM8FgUBDXJ3jg4kXu2rOTB7/4Zb77nd/NcFiQZRFt59g0OcEH3n4fIFlebzMsSsZrGccW5+iris1T02ymCnuDKrhyrTeUAjKhmdm8m0O79nCkrinLgs9+6Ut8+E//mKJXUs+aLHWX+PH3/RLf+MQDdKKKiaGj27lEowXtng34DCCt18I84CzOhsZQ6wRFlRPHQZD1WcKTf/5FfnfHH/Gmt9zPo598iI/M7CXvrnPXu94BThCPChXyIqcsBmgdI9OIyCgKY4mU5uEzJ3nvtTfy8SNbOX/hFDt2HKQyFd45Tpw9T5Jq9m3fiXch+OYJRhBjA9uvMiW6suTWg0cis3wAACAASURBVOpR2owkUmgJKo15/Y03cOzxR1haXAIh2bx5jOuu38Udd72JLK0TRQmzC2vs3bAxMG2l4m8TlK60tH17W9t/jWDzTynuvGav9f+ioQvPKxiQK/9BCEuOxoeNLlb6wE19Da/XXFBy/w91bx5sW3bX933WsIczn3vufN889Xs9d6vVHRBCCIMchILBEEjZccUUValyBexKANsYBbtiEsc4FKlKKiZFGQyyiRHIBkQgAiGpUUODRE/qp+7Xw3v95nfn6Yx77zXlj7Vfd5uAQKihKuePHuqde945556z9lrf3/f7+UJsNtMKHWJDW5ASFQRSx4lWqLN7udZxWhcEidSIECc63lqklAglSLwkeIkXAi1rkLyuc+chVuxqAXY8wfpAq9Gm1c7xwpImCpwgrWFMEUgZBSIpdDzYSocLjmlRxPhTXXVozAxvXczEN5pADQFOA4lWiLqOXOsEgYsTq2KGtK0ociBopRmhPUBs7+AImJnn+vUdGs1DEqnI8gwlPJPJiN3tIYlWpCEgZOBQztBSRzaBE9gyMJvMECogg0MqsN6jvMBWDh8KhqMpNtg4bQyeYEGGGDVsNxLOnTnB4nyDQa/H4X6sRyZJoiNMgJExglIZgRMeZ6LlOfZm5kjho3dHiNg8MorV05W3LC7OkSLZ3TvEERBK1OwrTS4cVagIWrB+Z5dyVmCrCaNhgrAa7wMTW9LowNxgBeVBYCinU7SWjIdDTh85ynNJEyUcVigOpiMuX7uOSnIyDcI5ynKGqxxZo03pHbassJVDZykyOLwMlLZkcrjP1DgS1UAJTRUsEOHLWZoQgovMCQ/QBC+xdoojZb8csz2t4tTHyxibC/HzSpBoBKao2Ns9oDpeooLCmMiVmNkKOVX4rIJK4WYWIQ2VkDgzBbmC9zOM8Civ4uIpZJw0FlOs82SiW0cLFLby9JMm29UOlamw1nF0fonnLXVtM8zKEhMCTalJvMSHFOuL+Nn3lpktSBKNEKBVSggSpMcjaiC+jIwM6fEixCx5EEjvEczA1tNzkUTMbHAgBA2d453ES48IhmBis1AQ1NEwi7MGITUIQ5AB7WTcUIuADnf3krESWaFQguhMlBqdRqdL8JETEkIUfe5OE+8OMIKvOWwy2nMFIh7sfIwp1Fnb2kIf/60UYANBxPUFoWNW3hMjeSrGSa3zNYwVgguEINDR0kS7lfH4ux9mPDzE4ZHBk8hGdM+FGK90QjCY65C3TnLl6hVu3txgkPc5euIs/XZgOpnwwsvXuLaxw2h8m4fuexCp5rj40hfQSjMpK4oqUJUz0lyw1Fvi9vod0tRhrWFaONqdDsY6Tpy4l4NRwYsvX2T/8ACJYjjaQ0hHM81ifNF5pqN93vPuJ+j2egjnqEZjvuqJR3juD1/g2PEeWanYPdxl6ipuFus0W80oBmUZS/1F7r/vEbY2rjCZHGKFQCUCoQKilATp0FmGMRXT0uK8i86zJKfTbjHf73N4uM0fPvt5jhw5xrOfvcgTj99PM+3S6zaZW+yQ6S5lUVLZKaYqqIoSW1gmh1OMDYzDlHJmmJmCg9kI5xRKKbJSElLHYHWeg1FCqqHZ7jI5MBxfXmVlZZnxaMKt27fpNpa5cm2P7f09PvjX/yqX/vAizlhef+kF7nv8A9y59jLTYsrZkw9gzIQ87+IxhDq2I6RAecnK6nFGowNSDQvLa7zwuSexpePUI4+wtrjGaDSCLMEHSFOFmQW8nSF8BUXBkeUBcyvHef2115kbtLhx8w0GaYuzx1fIP/TX2Lx5k6KacuTESQ53dnnwwQfYvX2bJMs52NxHKzh6fMCN65u88cYNPIKF1NFqeO5/4GvIdYunP/t7NPs9lAocPbpEv9vm1o0bPP3ZT9EZzLO4eoSF5TV2bm/QbjYwRUmz32f7zgbnLpzk6554Ny++epnDwwOcTJkWMfrs65pxpQU7m5vsbG7RygU6bZK3Enqt6P4JQiCcZ3NnHxCMhhOMcbTbTdqNJoPBgIPRAdPgyXtdempAMAk7eztYJ1laGjCsLDdeu0qr3WE0LRnvj1ic75E3UhpzPTrNJlJIxmXJqDCsb2yRNZvML6zRbs1hTEkj79BdWAHhSXRKuwVlUaFUGvceWcr84iLO2bixrcdeeMd4axelAj7LUKJJs9EiRRBEFQ+Sy4usHT0aY/J1JPz6tSvs7+4i2y3sZIwpK0LQOO3Z2dtBN3Puuec8iW5EmHbwTKcTdrY2kYWmnI4ZVQ4nDCpPmYymBCHotjqoLMW7WErgnKOcTiPkHIkRYJ1AWQ0WvPSMx2Ud47vr/HDYqqIw0UnaauialeHxKjaNCV+39Ko01hBLSaUkpR+hgkGqNArxOsUHQyvP6c11IguP6GYOzhEKhfBV7fYWBOMRXmJdwJkZhbDMqoAUgd3dbYrNK3RbHVqNjFxnVKXBGkGz0WZ96w1aRkGAncIwnjg6cwrhLLPZjMqNSXSX8/e8i73tLapixmhvj+FwRN5JSJoZkjbHlnpUlcFQIUXG6XtOUh4egMzJswzvHEJYTHBgPcL7yEPSEqXi9NcZQ1nNkCFQOhfxf9MS5y0pEqNqq42KXM9ExL2tDYGQKPCgvYTgSEQU24RQiBBopBllYpBKIH1OYRSNAMKUCBcIFlwApCEEz63NfbJcs7a8SDEek+qcnb1dmnkD73y9R3EIEdCK6F+ruYNCalKdEIQmTRNwgryZkyYJVTmjkTfjflpp0jRFSUklBbS79BcXeezIIqd6bRIh6jifA68QSnwF/JK3uZPe9s8veRNxRP3lHOj+tKenlaTdyYH8rWci/vjXJaWkO7fA8bMPYqoZtixZXXsQkWgSpXCtDqdPPQAIkiDZ29mnGo9pN5ok3QaXfvkTvHjxixgqjCuRiccozdLxAR9/5ve5Mx7RqeDabILe7SB0gkiaiPn5+NR8wE8topnGkqF7L+CGJRd3bjFRBc/deZn27hn+1g/8A374H3yY7nKHI099hr/7j/8R3W4vruVZTuueVcS4wBWG/gfexwd/8WP83J2bqBIePH8CN66QrTgcDQG8t4zGU67s7mKagvsuPAojz29/+inO3Xsvv/fsU9z/4LvopSkLc/PR7VK71JyPLXdf/OKLfOS5p3mor3n8iQe5df0Sk1s3WN/e5bv/0ffzz//hh+mvzPMT3/mdfObaFTa3LxOUx1tLt9Xif/7xf8G4qDh5+gLf9L7389hj5/mXP/m/sz+eUM5mhEQSqPibf+u7+a6HH2W0u8Oxr/4arl16hYVjJ0mzjKwoGCPIG/G8N9fKkTsb/PT/9JP89gt/wM7hLn/n+/8xp+YGvP8D346RgX//Cx+hmSuEC3jr6M0tsb+1yeZwyq8/9TvcuHaVVqfP4mAOayztvMXP/viPMStnPPaex7n+zBe5U5RM7+xEkcYYunmLs8fXeOX1KyAj11XK2JosfUTDyCSnsFPagwG/8n/8BEiFc5af+smPcOK97+Hnf+T7uLy9weneArNpwf7WOvv723xx8zb53CJpaXjigYfZnpWc6PeRAr7xr34AFRwCcFXJtCi5ffMNHnv0sbjHdnEYIVXkwgUcTsQUghI28uZkQqhgVhY0chl5gz5ghaC3usCFc0d54l2PsnLkDN3BClJlAJw7eTSetZM4Zg7/kWXxLdfPl7uefDkupq/09pf5d32p52B8TBb8RaGj3nFBqQoWpECFyGL3vnYiIPAh2rDjJau+SVsf7hS2VtW8sTHWVZXxABkiLNfI+LMhrlS1AuypRLwg+mDpNzWNPLC1fcBAdGPjmLcIH0UTEaJlVMhQHyYt1jiGk5JiUk/kdO2gsBYjDE3bp9lsI9IUKwRCqTeHII1EU1mLcYGimuFcA2sdQeckSU7egUSADQ4lLDYYtvdHJCICLfNEU5WW0fCAvCWZzBKMlzF6p8SbdtBqJpiYA4RwKJnQaGiM9QyHs8g2ULC+O8YHhReGNMT3xodozb/v9Cne866HqGYjxpM99vZ3mFYmNrb4yESSNRB5aaGHHe2C9NGOHhRVVZHm0TIrbOQnzSrDZFqS5opzp1aYjT27BzMIBhc8s7JCqgRbTxwDngqPcQbnElKZ4FPwxiOsxZkZu3u3Gc1KlGiTpil7wz2msyGNNE69hYkXmV4rY3muxbgssBWMplOK0kT3zHBEOiupJQ7SRKCtwXlHQCNkhhSGIGsHVTCIADrETZ0LgiAl1ts6QiVAKmbWcH1rl9sHQ4RsRKdRABc8CbGqOU6tJcP9CbPxhFYjjZGvVKJUgqnGmJCCyKCsEN6AClhv8c7grEFrUcdDReQoBXDWUQaHT2K0wPsSW1pKX5ElcGTpOEp7NncndVxW0Mgb9Jo9gglMJoeopIH3DjsbxgphoSlCiRZQ4RHeopWOGfZgMN5Tuni4KCuDl7Judws4K0iThOmkjFDsEBCa2KroIhAdAc5bJmaCCxrrfLQy1xDT6XhCr2Y+qBod4bKALOuctBcQ4sHFO0dwPlb9eY8rDTqNEcAgYpNfxIwoIN5PUItGsVoJEWKdr/QyKvQiOv3uNi9J4vokrHtzPZM1vJ7awBQ81DAppIgNkrYyb7bGORSeiu5cn4O9fbw1nD56imaacLA3QSeSfqdHJ+3y0IUHqKYzZsGzsbXJ+XOnOH/mHEI2IRiWzSr7wx02Nm6jteSVS1cZLJVcu3WDJFHoTJFkBToBEXLOnb2X4WGJCdvMJlOUywkqkKuEyWzGcP+AdqfJ7mSKAPI84+iRRcYHuwShkc5x/z3nWFiYxzlHs9FhmO7THRzh9vUt7tzaRkhBd67H3sEhlXeEYkSS5qQyw3vHK69eZHPjDoWLh8REOnSlmZYGT4J3M1qtFJ1IOnM9rBN4J7j3wlmWl+d5+aWX2D3YYH7Zkjfg3e95nNtXNsAKvDUEPUHUfI2qMsyKku3RIc1ei0fOv4sr164zGb2KCdGNaPAE62jmLdq9LkcXVlnqVmxsbSJCxomTJ8jzNlXlCEIzm1Vcuvgq5y/cz8PzjxAqxdXrt3nl9iucPX+a5dVF1q9J1lbO0m2fxgdDYRy2sizMx+uG8HHjI6RkMD/HzsYe27c3UEk8TM+1mmzeuolsddjf2UOqhKKcIkRApSlhIuh1+3TafXKpOHHyFNPhPmGq6S/2OFzfptfoIBaP8eKzz9MZLJMpaA6b9DpdBseW2dnc4sprr7G+fYeVYyfQjRxjMqazknazxdVXr/Loux/n3V/1AJdevExlC+7cusF4XJB1utx3+gLVZMJoPOTK61cJPk6Q17c2mI33KCYF7cEcRxbneFA/zDMvfJ7xzIAPcQ1xLg6OhCSRgiRNaxcXkVWlU5YGA4aTKbZ0pDqlqkp8CGRJSr/TiZZ65/HWU84KRrtT0rkGrXaHoiwpisBkZGh24rVa1Qf0PM/rzZugkeYszc+TJCmjaYHb3iWRKUfXTtLr9Tn0gkazFUsApMDZuIY4F0iTjLzVIkkT0iSJAH8hcD4WjIQArnS0GzlKRudzZUuytEG3HevQ8zRBhOgWFlrinEMQ6HeaJKFiNB1j0zbtVk5KRrPZoNvukDbbdBqxMYsQPbNpIjDTCZVS2EySJppUKrJGgyyP0NLz9/XxIcTyAaCwBa9dvIRzZRzwQVy7gmMyHdJodbnwwAMolWKNxboCZyquX3mFRmgxPdzHzyS2IZFWURxOSHJYXFjABot3Fk9gsj8iTPcxXmKkobQWLQ3WWpzzNVw8utRD8AQXHTJ2NqWVK3SQOKFjLDB4rK2wJGQypZGUMb7nDc6VDMczTCmZb69SlIETZ8+zu78XWR41IXZ7y6GSLnZWMpEz3KwgyxJEkNy+c500y8labbyUtHotCJJBa41MNTg43CXXgsPhDoSEts5oLixiqgbjybgeiAaki7H41MeoqifU10KBEBFYrZxHpgJhBc1mk6oYQQy/YePpuR4cKVKV4qXAeodUGTYIPIGZt2RCgwzoRGFsdLd5G8srrKniENZ5ggtY55HexmFqmjDXn8M5w9b2AcEbiskhOtXoTNaMrYDEEbwFnSGVQkpJksTXEIJBN+J7ZQX0el2sMzTabdqNXoxJpoF2f0CnP8fRpT5H5tpk9WcwBI8lDjclCr6c2u+3TeL/yMD9Sx6KRB19f/v9/6P/f8duf9aTWRRYkqxJolKKcIhKU+bn2gjnoduh8dX3Iwgcbu/ws//sf+WZ0Q7f9U3fzOrM8ZFf+xivh1FscpbgXEFZzFi/vUvaaHL51m06g2W8mTEbz0jzBtVkyNHF+VhskmpIVRzkDce88PQzzN97L//3L32U/eEQmQa0PGB7fMATX/9VnL7va3jql36Wn/hnP87f/6cfppPHobrodvC7M9ThBLfY4zu/7dv5xE/8L+xlGb/16U9x7L8+iZjNyFuxwMd6z52tO/zuq5ewTc2sMuwdbCEV/MzP/hyq2eV7/26f55/9A/7h3/leUqXRUjI1JZPpjOFkj8vX32BrfMjnP/95fvep3+b02dPoTpfq1k2eeOBh5potLq3fZHj+Pn7tR36YfHke4QUqS3DekiUtHrr/Eb7lW7+Dp5/8DMPPfpbnnn+e8XgfJRQLg1X2D3b52E9/hM/9xif5ge/9Qc7cP2B3fZO8Ve9rNjc5ubxImxTjLHubW3zyox/l91/6PL7p6dNidWVAsz3ggQtn+M1P/Dof+MA38YUvPIv3ltlkjJaKf/WLv8DSYp/hzSsIHZ3w/UGfna1tdKY52NlFNDOe/JVfxUiBlg0IAg0UxoGc8cKly6R5ihIRFSEIJMKzsDxga/eQWTlhudWhmzdRy6sU05LhZJ8f/ef/hAsLx3np6hdRWYtf/rVfZW6Qs9Q/yv/2r/5PhA4UM4dzU6598JsZjw45e+oI54+cZLnVJAQYTSa8/volTAhMJmOajZzR5ICqKqlMRbfdJWn3kEi0lGS5oNHMUVridUarG92o3kc8xrSa8MTXPs79993LXH+eVnMuMkhVgpTxy7/WzNk9PGB5blC3AN7FgH9lt/9fOpP+3Lc4ICg9qOCg3r+807d3XFAKriLRLYS0uBAvrkoogivwwYNKEUK9Cd71KKQMqBqy6/GkSYYzBtIsghuDQsuAextTJUiLlpF3E+qDt9aaPA1sbGyCVFG8CtENgQ84f9cNG0BHG6cMApzDWY8NAek1hfHI4FDeUQLICqlKsuAIziHr1rAQoJlptNAUxkZXT9xqkOgEO5swGu4RXJxcT8sp8z4nVQEtA0EHtBLMpKQwgem4QqoCKRRFELEPyQek8ngk02pGcJ48bzGtYsuaCTWcuwrMqsgiEEHiRO3gQuNFoNvKOTjcQ5iCYlZyc/MQF0B7gVQ61iAjSPMWvW6X3fE2SBknV6rC2BIhE5AxChSqEuNKSmPo9JvMd1pc2dmMzIYAKkCiU6ypgddBkErFPWfXyJIGZVqRZRKkRkhH5QWjyYSi3MYE6PebCKEYtOcZbW9y5Y0XCbZEp5qGFcx1OuRpA60UoiXpdzKqsmA8K0FaiumMkXUoBKpImRYgiIfGIDSJAlXnt5VX0T5a/05dHWWTxPx8wOOs5fr1G3zx8lWCznGlJU0kwTuci1GFqDvEGOfGzh4bm5ucPLqK9wGpM5qdFlUpkbqBUBkqLTGmBBUwQ4cLFoeJVdQyRaskQrlVIG90UFlGo9HEmHiwKdMC4Ru0izHNZhIBtC7UNuuATiU6EeR5QqvVJsmbGONw2tPMWxgvadFgOBkSRGSB1CExAqLeVCY084xUaiKZM9pKjXMonVNMIt9F6BhhiJJRZD0oqclVQiPvkKYtgodEeiofsCEn1SG+bx6qEDflOAFBEYhtexBjrx4QqobT1gcs42vBR2hsiJ/jaDcScaNex+ViNFXWkaS3L1ZxQYimoqhM3RWKBVFvlnEmUgtSogaQg/MxguLd3fBciGuVkAQnEMKTakVrcYm1Y8cJLgq8SgkqHLPKQZLQ7KeMtnZYWpjn4YffjS0cs8qws7/H5SvX2Nq6zdrReUwp2R0esHEwpNHMGXSXaDRSRuPApJgwnQVurm/QaDRIC4XVMJpammTkWcb2/g5pknL/yXOMC8+0GpMIwfG143TP388LL77A/u42R46tQnDkMscZyBoJ3V6bb/grf4Vnn3+eqtrDMaGVz7O+u0+v0+bBex/EWsHFSxdZ37gV68OdZ7C0xv7OJkJqbIiCvxaKI0srLM13Y5xJJLigSQRQVDx47h7Wd5t4o0izDh5Fp9Og3W0QTFY7LCxbe3vcuXOHdpIxK0YUVnPp9Ze5euUNAtG5Vnlo5Rnjgxlf903v4cq1TXrza2xdu83yyhpbdzZR84rCGCYbkbsz6M/Ftry5DqmC/b0tDoeHPPa+d7HYWcCVI06sHOOhx+6jnFiklkynBYWYRAEfRZCG4GLLmQuC+ZVlrl27irUG72eoTNNsakQamwsTBU7J2JyZaNJmk76EJFMcDPfY393H2djKVYUoYgZb0p3vcvT4MTbvbLEzHnPs2FGOHF0l0xohBWM747A85GwnoZUd48jSCp/73BeRjS7VdMrVK9cQmSUbdChvH7K+vcPCXJ+jq0dYWD5Bq93k2huv8crFl0HB6uIy7V4jsljSFttX11nstVhaGaB0hvcFaSax1tcQ/1Bz4ATHV48wP99HOo/WAYFCo1BIdKZj7EUpWu0my6srpIliPBxSmSI2YFVRaKpmnp3NPc6ePIo3t7i9sUXWbZGmKZ2FOaqJQ7cVk2JE6iV91SFvteh1epAMCdu7JGlC1kgxRcA4SZZopHcoobHBoqSiKgrymnsU2z7rFE0ISGRt64/T4dI4lIrRA++jUG+cI290CbjoLJGR/SCEjPE0iDElH5vKhBOkuSbRcc0VSqFqVyTeI3wg0zn9zhw2zZjMPN5XaJWQpQmJSkkaGmchSeM6qJREWs3aygrVbMRkfIBKBO1mizzJ6XU65J0uUiRoneBcoLIVs8kuvWaHgkDim8z1+kipaHWapM2EZqdFp9etr42CNNPcePUVNmcjlISkmaPyFlpB5cZMpiNWj66yemwtRreloChLtu7cYri3RzWdYF2o13XH5HBEO29y5p4LaCUwtqQqphwcbiHGmma7QaYkMiQM9+6ws7/NeDii257j+KmT7NePeTAaUs4KgpKoROHLwCxUHIz2SU2T/YMdjCnIM4EzjsnokKmcUZQ7bOyNcJUmoHj54jN0Fo8TjCEEiVCavNGJjA9vCKZu7qN2cYXovhTEYVMgcqNsiC4wbz2FK2mEOl4WAtZWGGNwIl5HrCmjO14GSBIEFkIsu3HW451H39XPZBSwlFIE+VbbsQgK6wLBWVKtqGoOiVKaZp7HyJyUsXwCBQi0jqJelmYQHCrRGCdptzuMDg/odQfoLCfLegQC/cEKzWbO2tIcC90WWX2N9YTYNFg3NCvuArbj/vidGJCHLykqvYnt/hN+NnzZjoav7FY7l4RAyCgi5mkjvicCRKbhsMLYitvXXuXKzg3kYJH28gIXzp7mbyx2+Z0/+CzPvfE6O3u7bNuSCk9HNnngzBqLaYMT7/1aPvavf5Ir1y7jdU6eKzpZHIiJAOXOPlNrufj/PMl4bsDxUyd45rnP0aBFJjyfevJTLPUucevqdT7woWsM7YT1129z8aWXedf5+2i0W0BAnl6muniFycEevSce4niScDkXfOw//DILq2ucOXWUcxfOoZxhMp1wY/0GtHNOr65Q7qwzG+/QbEiGwyFnj57gd37r13jPN36Qg3LGfJbz2tUbrK2usru9ybWXL/H5Z59FZi1OnTxNFgwPPf44g0EP5QPPPf8M/+3LX+D8Y1/DsT2D73UIiebUsfsZ3rnMoROYcsrkYJcf+x8+zLkzF1g9dYFOfyky84xhf28XrwRozeoj7+L0g+fJksDaw+cJQWK9Z/dgj7VeF5/njCcFr9zeYtgd0FtbZO/ODXb3LL/8Kx9ncO4MH/03P8dwZ4dH3/Mo2AKURicpP/PTP0UWGly6EvBZQKEIzrC1fpVyZkh1RiUEoqpodbtMigpXlTRUAys92IiCkLXoDBoVZ50oleDNDCk9J9ZWOL24xKSyfPA7votPfuITvOf81/H4qYf529/9PbSWNT/8w/8jWW+VzY3b7O9c5s7tOwgdh73GOl59+XWe+vRn+Jqve4hv+4bvwHlPVXlubW2AUMyKQ5rdHGss6xvrvPbaZYwd8ehDj9BstPBBMjOGx77qCZpZTqZydCY5fmSN4DTFbIS1FYtL86ytvJ+N9TsMh0O6/eU4OH4LYEYQiv1ZwfJcbMDU6suHSX8l3/cv92f/oteWPyXt9iV/ZuZCTBzBXwh77p2PvPmYpRdSEFyJ8wqvNMJ7KjNDSE+qU1ywBA9a6vrAEd0lSEEVbKyoddGFFNlAvCnMIOKEsK5ewktBt9/CqCiyjEYFi8uLqNrqJ5AILUnq+IsPoLRC4SkUBBWjWYg4+VYoCCIyn4LCW8FwPCWVGg04L950KKSJQvh4wZciTg8iTymQqMCNgyFWCmQIWKCZN6LtVyikb6HUEIInyTKyZotU10JbiI0f3kY3lVBgrMc7QWEmSCuRaNACqSBNFHkCSgRKbE14qCW7RLK5c8i4mNJNo0384HCCFLFxo99tMp3OGJdVzZCJskII8X2IjeqSIAPGBxxVZCAJhdKauW6XRKSMJlOE8IgQ6s13xP9EKcexurTAY/eex5oSpGfmLEkNoJoWloPDgmae0O8v0GjNoWRCnmmkULx2/TIy1RgCx5bnOXtqlVk1qR0kHuEVChXzuc0WecNG+3zwGBddLZNyQlWWVJUDLUitIxECJUJ0YvsIE/TWIlXAORvb16RiPJ5x7fodQpAY70hVqLsoonAXnCMIgRWx43BclOwNhxx3SygRsCFC6awXJD5a+IOQmGDIiFW7QUiQkmA9CAMqIyiJFwrjLNLVTSzWI6WOXKcgCTIKXhAhmkiHVhItMgIaZpfp+gAAIABJREFUG2S0OtpAsAJLXOy1TnAWpA3RmSfjVs+HuMFUuIhv8pH9FM+HEu9lLcSBDB4ZYgMapFH5FiE212ERdcQC7+uoXNxk6hCZRsgo5MVwpwOX1jDuKCJJanFIhAiKd3GzHozD10006ASVpjioY3BR1lXcXTTj4ygZo3Dh7nizts6KeucZ6vtHAO5bC26QUd0Pd3ewIa4/dzfIoobCKRHwweGFwxCrtKVwZCpCThUReOu8ZXQwxgdPojWdbpdO9wL7+wdIpVlf32dr+zbdjuKw0yJv9EGMaImE2SSQakG7kbO4dALrE/b2X8OFwOHoEPBYU2KBkIEKFYJAlrRQGhYHHY7lfa7cvIqL2V9ESOi3F1icWyHVUfhDO0LNqNEqo9Fv8PVf/16q6pDd/T2uXrvK9uGURtZABUmSNTi6eoxZUTCZlJjplHarzc7tbZoDhRs7ZIjr98riEg89+kBkhYxnhKDY2NhkZ2OL4yeP8uiDj/HpTz1F0IqtjQ1CafFqgFIpqY1R3yuXr3Ht5g2WFwZMphOsdQixhfeWMpT1+iSoKk+n12Rzax3pPFdff43icMpMGoaHO4zGM44fPcnKXIc0zxlPx0xnE2brMwa9Lldeu8hg0OTcsfMcHg5pN1NmicQKSZqmCCXJMos3sdXU14d/4UQEzztLb3GOdrfD1uFtpFBkeUKn3UckAqdU3AxKj5lWhOCprGU0GbJ3a5fXX3+N0pf0u4sYA+Xtkjxpg4d77jnNrcvXEImi0W5y+dZl0kbgXPM+ep0e3XaXbneOLEk5c+YMIQgWlhZQOlAYya29Ta7fuIxD0O/0SFWO9JrZeIRdqJhNBceOnWQwWOSlLzzLwXCP+XyJRDSYW+ux+cYt9ncPydoLBCHI05RpXRrhataYkhIpJAuDAZ1Wi8nuHt1mi06vx3QywVUG7yLjLrhAK28znU4phIyORSQeibGOg90hc50my/05sjShrCxZmjEbzyhKG2NfFawdOcLeznrkwGRZFIRCqGHaEWB6eDDEHxG1SK7QMroxRJq+KR6LIJAhrilKRJHdRXsAhDjQKoOjMiUKSWVMdE7gCUYg81pqjpkAnI/rqQiKUAVkiG21wnqCLRGiRRA6xsXx0Z0ZokSvlKydnRXWWbyNd5GJqiG2LkZv63ZKJaNI54zBWhMjbc6jZYp04BOPTBMQGqVSsrxZ1zZnKAVZ0iBVjvFUoZXEB0eeZeRpTpJE8SkOkOMgpdlssrQ4YJdAo5PT0ClpJmj2e7SbPSpVYYxFhiQ6YFRCK8sIeY5LErJU02glKNWg1W7TaDeYE5qqsigt2blzk7UjJ+HGdZYW5rh5+wYb4028n+LKId4F+r0u/WabwfwyDan5zd/6DTKVkrdaCD2mLC1l5ZmNxyilmIxHeF8xnUWhxR4eMNfuoiqL9wIhHVkjo/IzLl+5Tp5DIjM6vS6BlEGvz9geooOLwo2UeOMoigKdZjRCwKcBj8KJium4gLtiq/MIV7vgjUXrlCTP0RKE8xQSXBkZj9qlcbAoHSZ4hEpIMoHwjiTEqJozBuEVoR6mSCnwwsfW22DxNvJGfe2+VTLuXpAglAKZxNcQXL12emQtLoUkI89zKjdHd36RXr/NYK7P0qDDoN1+y3AUavdZXWoh3wRTx+/OXXfc289af+rh64/9oy8lFf1xd/n/3v8vQ0z6o68ttjWXaJ2Q5A2kTOMQUsT9iVjQuNGUP/iNT/Pi3jYDH/d17TPHudBKeeXS83zDf/ohDvYOePKTv8HVndv8Z+//ED/w/d/Lx/+7D3N7uEliS0ol0b7Cmyl3btzk/Ml7UFoidg+58swz/MKTv0HRTLj6yitsDw/wQuKFR2cpu3u7NBb6fOqzn8QFWOoN+NWPfZSF7/4ezpw7R/ABJSVT7XnyFz7G8Q+8l8apI4gXt9kfzfjn/+LHeM/jD/PhH/l7yMow3B3xuU98mjNnT3Ps2BLrO9usrPU53Nnl9ct3WL/5Bq++MuGh++5l5b3v5d/8/L/lt5/5HN/yTR/k8qVL3Hz5ClMHjz/4IP/N9/09nvudp3h54w5PP/8MpigjsuKg4uXf+gwvVQapFe993/v4+9//g/zSj/4o//7is0x8ye1bN8ikYDo+QGrFN3/7t/K7v/4fuLF+AxcsSmUkSL7nb/5X6ERHM4QtSdOEQODRU8e5ducaS4NH6HVafO3jj3J6aUDSSLjy0X/H1G7xcz//76icYaGVoRLFs0//ATrVOFPFNI1XlKaiPddiUo5x3mGMpyqq6J6vUzw+gKlsZOdpQdbR2GkVTRWmgKDJZUqiwdQmibludMW2eh3e9eDDXLr4Cv2jR2l1m3z4n/xTqsMhOzv7OGM4dfIBzhw/wbHFNW5cX+LjH/94PQS0SDxLCwPue+BeQLOz+RrDyR7tvE+73eBIWGSUN/jcb/4ejz/+OEoqmo0WvV6P2UwzKwqmxYSD4YTBwoC//Tf+S3SSx1624GNCwnusKSInVlj2D0c8+fRT3HfvGQbzKwgpSJwmz1sIIWkmkntWlxHEduk/q6Ty9u/fV/J9//NG6f5yBes/+Xb3HQsECi/xrozvYH1Gfyc1pXdcUCpDCbZC+lhfrWWLBIvA19MPRSo8hR3hAijZQ6rAzNQTBesQUmBitgTvYzYzSBkPyzUcxb8J3BUIHV1O7SylmpU0m43YPuJNHY+Liq4KkUcTuIv1CjgbEMLGg66Sbx2gcdHiHlJmpkAIMFIhuWtJhuADxlRoLSNHIITYGFavCjsHB0zLGTqNgpqSijRtYl1JUAI7LSLgTARUotBJhD2nMiF4SUBgZeTWaC2RwuET0DaKcbgI+fRuipUCbKynFchYpS4D3nl6jRZpmjCeFMwmFfujEePSAJI8zziytMjm7i5TYwk+xgsCIKVHShWdZaGC0IgAOCEIXpOnCe1MkWBIUhh02hwejChcPExrpTC+iiwHG2jmGYn3OJkhRRLdU8RsvZLQzJvMzQ9ImgNMkNhgEDJFqgaV9TQyRVkYFud7NNMmZWFQOolTP3zNPqrwZRJjOHmMOGUBlMrptFKGh/ukSTwYWO+oPEghKcu46GsUFDOk1HjnUNohpGRzcxdTH36ErXBSxnhU3XgQ2T2RgeCILYZ3eREAIdTT6ABaCAgWoWITSwaIoKGuiI6NFyHeR3iEiL9TIQzO17k8ESLwVFhccPVBFqwtkUqjhI7ROSEQPrbQSSSSMg4jpYzcnHqSGITGeoFWURCMFdgiCki1wAgCJTRBxfYYKeLmIoQ4EZd4NFEokyFGTD0SKSJ4HySEyIHQgchLC5HJEUSs5lY6isJe+nimwscYkSROaYlgyTSNDTne13YiBeCQMsX4+P45Qowe3T3U1a9BCupookArgXOON4WjUBvjg68PhyIKS/VhrVZauWugF6GmLwlBEDK6l1BofPz+iAjSjQJ0wBtPZQwKh7WW0lVxndEKZ0FIQ6YFqQjs7q5zbPUIQSi2DvZpNBs08xaD+XmKCtbXbzGZHJBkCcEadvY2MGVF5SOY17uKosiQSqK1IajAi698kZWlYxxZOEpZVRSTkmK0RaIzTp44Fts4RED4+DuJFegOj0fYgPAKERJGoyFSJYxmM0bDfRYXG5w7dQJwrG9tM9w7ZGdjHSE9rrDRpRdie2en04rvnvdIIWi2WzS7Z3nx2WeZTQuSccHGxh4hcTz9u7/HwvwcSytzpGkTGTTBC1ZWV7m1ucnVOzfJEkkzyaMLRCqkswRhSYRCZylKB7546TLLg0XOXbiHVy9dYnRwgNeCZqfBwtKA/lybG1cvs7ezR1k6Tp09zfUbu+zs7XDhgXejvWOuO2A23uX2xk1Ur8Xq3CKNRspwMmQ8HJJmKVpFGdbXhythA95ZptMxs8IgE8380iLGBRIfP2amKnFlhTclhwf7vPH6FXb31hlP9jmcTGm2coajbYJV5K0lFlbnqWzgjdffYGltmWavz40bV0mbCZt7O5SXvkCiGgQz49jyMus37qBIMVXF1uYtTp4+jRKGw+11KpmSBFidX2Aydug0Z/dwD3v9DY4fO0anvYBK+pw4eYo3rr/G9TdexTiHUGv0V+bYXN+kO1hDelg7epTXLr2KTuO1WtQikyfCOUdjx3g6xggLWmOtQSsR1x2tEEoyN9fDy0A1MyR5hgqKcupQBA73d1C2RSIUuwf7VKWl121ipCQoRTUrMTNLIgXLS0sU4zEiwGQypKxmjGezeJgXIKSK64MSNYsmfh7x0QECHu8i80jUVe4i1MMSokMk+BhF9s5jgsVWBu1BBoN3sQHH+8gXimjruKYE77DOMqsKnLWo2v5UmYK0mQH6zXVSCQgqrt0EH906tsK7evDlQQmFkgnee7RK4ndAxDiFcw5XFTFCFlzc/9QxpwhGhpAQiyFqod0HKL1HBosx8boqg4tCm5S1wB9jB0JEJoNzhsoHjDE0XB75PU7hvcI6GQUaQb0WxVh1bItVtQgR3VipBKlTvK+AyJ7xzpPlDdqtLvPzy0hfMB4dUBqD9I6rb7yGDYpuaxF17DSj3dtcvnUFZwzdo6skypOkkv2DA1ZXjoBImRmLD57RuECIjJXVYwRTMugusLPp0F5hvGWwNMBM9/nge7+F7c1bnD7zAFoF8JK93U2mo5QkWJI8IUkycBbvPGfOniM4gw0erXPMbMxLly5FOK03JCohSxKsLXHesbC0SmeuRAiBryru3LnOtKiQSmJcIGiQlUGiaHd6tJE4F9vmJqMxs/E0CjUyOhi1isJSo9FGJQkiiOhAq2YMzSFexjh5QNcOOoG3jtF0zLSsmJUl3XYXkScsnzrBUr9P3uqwvDCg37h7vX/roCKonVK1bnNXSwr13EZy9/TCmyJTvN+f7zQj/pj/+pNvfwlxk7t/xduezttfWyBgnY17OmScZ9WN13dzmtILVJKycPo8yeefxkrBtJgRjOe5T36GT//+0/TPnuHe/+SrOX18jWub1zixukTaafGh//6HeO7Tv8zPjCdolUMoGE9mXHzpdb72XV+L6DdIz53Ef+5Jbm/cYtd7QprgXSBvCrypMCah0+zR6vdq7locFu5sbHDp5S9weLiDlJJjx9aQcwYWNb/4r3+KwZkzdF9/hfViDy0ku1tbZEmLp3/713n+2ZcwjRauHPGxX3ma+SOr3H/hHL35ATubezz6vveTm4JXXnyBX+20+KmP/iLvefQhPvIvf4KT5x+hf+YEK2XJXN6nsJbm/ICHT64wt7DC5Wc+T6JaVGJGYQua7S55u88Pfu/3sdxp8f6//u08efMaB7evEYLEWU+7PceFhTlODlo87cr4HXQCExwnjq4xKoY89ezrnDyzSuZSHj53HwFHMRlx6eJTnFpbQadNNJqrd26xUVVkWTNuQbWm326SCkM1nYGUVHaKowXG43BIJGmSsLdXxrNekuCCwlqHKS3WRWejlAIpNc5LhPck0mPlW+d/awwhRDNBliqOH13hgXvOM7d6BOUF69tb/NAP/hA/93/9NA88cB8q04xm+8z8mP/iP/9WOrrBNAmIJEHlDZp5Rt7r4Zzn+InjPHL+Xv7aN36IX/i3P8+zF3+fb/iqb6NyJVpriqLg7Ml7OLF2AusMZWlYXVlmbWWN4Wgf6ww7W5usrS3jXIJWFltHnZ21IAST8QGj2YxpGY0aZ06dZq7XYzjaIISEwjuOr54kS7L43UDxlgryZ1sz3ilB588jDv2Fi0lf4uH/6Gr35tIkJcYRhxbEs807bFB65wUlaw3WOqyNjgwlh6RaImUgISHRFkMguArroKIi0/WBL9TV8/UhzFHVB0oBIUEKHTc2tbtA3J12OIe3JQ2dIFpNsuDI0iRWDcroCQxC1g1p4s0LnA8x6qZkHWsiPrZz0Z0g3mTiBLSQ6CR/k/OgtY7W4wBKywgMlz5OeygQBGZlbH+Iooclz1Mm07vRCJhOZxhrkTKJQk5ZYi04YeMBG0VkT1mMU3FjJ6KQFYKPQEwpkSIBAVmjgVIa7Vxd/ysxfsZ8v0u/16GsmlhjubO7jw0CrUElmsNpSWHrzaSD0WRMEAEtPVoJCgPOmMipSVT8gApPnmmOLnSRiSRNNfecOUplDFfWt6PLhkiRd97hnSPPFJAgtEZVCiUSnKvwHlqtHq3+HCrVEUzpSoSF8fiAZreDShsIUbLQadHIJNa8xb6JESSL9R7nIBPU7AqwVYwpIisSlRGsQ+cp0guyNCUIcJVlaqs4KRIZQUd4t7GOxFR4YDgeEfD1dFrWfKO6DyyA8YFERIYCCI4fXeXU0WMkKsPbCEmPLh6izCHjoiO8xAbw0hDw6Fo2AcndFhdvXaxnD3FbFmFk0YHmAOkyQlD4IKiqMm716vckMswiXN57D87XQZMIxqSMMS0ZJB6BFQGBf8sWSVyQ3qQKhYCMX1VssJF7phxC6NqlKmqXj8cKgZcqxg7vPpKg5mDHeJ0K8SDhXfxz48ta0IlOgmgVim6HUAP1tVZxiuTi95bgKGcTGnke3X+RLlsvmrJ2EvG2HLOoW93iJtea2FoRW1piNO1uce1b1wXP2+EPd1soZf2yvI8XOik0Qri6o06SBEmKJ4i3nmsIHpUmBGPw3sZGBqtwNpBqT6qg3WlQmDbOzGi25wH9/1L3prGSZud93+8s71JvVd2qu/ft7tvT2/SsnBnOkCJpUeJIlCVTFB3JTgTHjmEnTgIECGIjCxIDTqAogRB9SADDyCLAkmOLkijQkiWRIikuISlSHGqGHA5n6Zneu2/37b77rf3dzpIP5709w0VLIkpR3k8X3VWFWt5zzvP8n/9Cp7XAXG+VJMmItWJnZ5vReISjREqHr2uEj9BRipmW4MAYycFBzuJSD+yM4WBIbRzLC8vgYWNjgxMrq5xZfyAA2cKG94hGopD+qG1woSCoawSWpaVF4qzL1vY9jLSk3Q5J0qaX7XPsyRN84w9fZLK1FWQfpqEwyyYBM0kQXqFkTOVrqqqkO99j8dgKG5t7VLfvMqmmAYiuDWavYjjeZ6GfkZsZ48kwGHI3DbkRCpFCu9NFRQnD0SGFDfuP9SV1XjM3t8gjjz/G4nyP5782wJuSrNPlxNoaaZxy984ddvf3cQhKU3H7znWSVoTAEckIW1W0soz98Yh8WjM4OGB/a4tON+FgPGQ83GMyW+Pc+SfIkhQZycZHTAY/nlaEBPq9OeY7PfLxGOcktSkxzd7gbM3m5h0u33iDshrxwMnzrKwl9Ds9hDCMt3d5+OmnmM1qtu7tcfL0SWTaYXYwpNfp0lEdBoN97s3u0kq7tJKYubk+8x24vXGL/tISRT2mO9fmzPoFzPPPc2dvyIPnTrHYXSJRNQejQ3Ssub1xE60kaZZhjaGoCrJ2ilBLHOxscvP6NU4/cA6hFFt720Ras7S8zOU33kBqwIS15rzDGMdwOEQKiwfmWwuoWNPutpjMZlR5iQTSTkaaJQgZpKbOW8pZwWgwoipCSMZ+XZBEMVGckEQqnMEiACRxFBGLmMHhISsri8Rzc5STAfksNLu1scEnkABkCu9QMqS9Oh/Al0CIDAbRR77bIf2VAOYT9iBzJF9Tkk67jZeG3EE5DelOUiqEDMAJhAZf+jeNOYVSxHGKb2RmaIm1dWDHuiCLEgJ0FDduzWEPN8ZQVzXWBJmd8y68TeFROgrJb0Lcb+iRnqIuqU2NqRwuss0AQdyvn7zzGFsjvCdSGiM8lauQvomStwZrLMaUhDl6kFjhLcJZPIrKWKqqwpoS7ztYIUh0ADKkDKCUxyGEDjunDeEtVR3sCJRyRCJFyzDAkCIASVpH3Lv2ElY4tErxzqJUQq+9SGYrymrKmClFCTWKcVnwxqvfQEYxjpK0Pcdo9xIqE1R2zNrKE4wGOUUFK4urKFESJ10evPAofjbF1jU7O4JOK+NgeMj0cMixtZOcfeABFucXWFk5QZ5PQwLuZEDd7WGKGXEaB/8XIYmjNIQ12AJRW+I0QpMx10qI6wQpUpJ2QhIndLpzdNtdWlEWEtq0RgpPPh1Q5wWJUuG804o0SWh35zh9LkE3QzCEZ3Cwh61LXJ0Ta02kNK20Q6vd48yZDEeQ1CkZsb9zF1MUOAM+VkQ6+CVppYnjhODwJamtwFjQWYcnH3+YxSxrLCbeWhU0Z2zD9H2zcxH3//wOXdr3qoH5Exu2P4HF9Mfr5f7E69ubTP8mB+uPeDfivk8jzmDrirouac8v3e+RhVZI73ni6ad595d+nxumwKuUyXhKu7dA2u1y7/YtFhbaLB5bYqHT5eO/+zEef+ZxvvLcF/jDT34Gk8ZQ5jihqZ3gzOOPIBPJ7u4Wm1ubPLdxjYkpGQ6HFM4RxRpjTFCUoEmzNu94+9MoPKnWdHttxGzClz/zSfaLGcfWVvixv/pe1lYXeeeP/xBVbvnDV14h6SbY3YLUJ9y8cYtf+Ve/xif/9W/x7F/9ID/xo+/ll/7p/8Tq+kkeOnOGsydWme92idsZP/U3/i38dMJnf+/j/Pc/97P8lQ98iO60RuK48dorZEs9Ni/f4R//43/Cw+dO02knbOzucnLtBFee+wrOh4HASn+Fdz37LE+8552sP3CK/MYNPvLRX+XudI/ZrCJJUt72g+/jzMoae5s3GQ67GJ8S6TZlOSZJI7Z373KQ5/zOR3+bB545w1LS4/zps+SjAcPBJtPNG3z0o/+KE6fOY6Zjvvrii5y+8BinFubZ0DeCz2k5Q8Wa0rtgcRCFfbM2kqgZ4t7b2qYuK9rtBGcsRVHjBHgXaiztQ28EoDQoHImOcZUN5ugywgl3P8krzlJanQ5PPvMM5x58jMtXLvOMe4wHz57hfe/9ADEpRk4ZDKccHuwyGR5im377+NIi737ySV547vOcPnWaCxce56m3PcYj5y/Q6/b4iQ9+kK2dm8gmqCaOU9aOLSFEzv7uFr3uPFma4I1kNhlRFxWzfEIcaQ4P9uhkXYp8QqSjRoobUksHgwH5bEiappT5EJuP+eKXv8GFh88jyFheO8X9NDffDNib3uov+vrLwjT6U13fjcDV3Cd4j6k9SjQDgO+Ggv8Zr+85oCS8QIsEFUUhVUoQmhQXJF+2NmHRiAhnJbZ26FQQNYlsDgO2xMqgJRc+sFu0jsN00VTU3qKjNBQdziNUjVIWJQTOKaSoca6mFoF2673DWR2kPDJ4E3hC7G6SADLoZK2rUFJinWpufIujRKAwztHrtIlMiohjej0YjyZ4U+FtjRQOiSBWYQonJCjhwkSimex5W7N/cEjoPRXegBAR0ntm+RRL8BeQSJTyeB8RaQnChTh7Z9GSgPbiSWNPrGPiKGiy57ptVhbn2dodkFuPFi28klTGB7q7lmiVUJQFUgk6nTZL/T5VHUypFZLaeQ4OJvQ7HudCoSFtTVVWFHlOywNHBqVKcuaBdXxT1Pb6Gb35Ln57F+FCfLRvPAG0Upw+tkBpapI0C+akzlOXY6zLMEriXU2el9SNDA4n8WWYuuqkzYnlDhdWlzBR8JbyjUTRWxuAPycwBlRpsDow3VwdaABOepw3FNWUuBRYF+QYOoqa38sFnyclQ/oJnqIyOGux5SwYgjasFo8KFFXvcSJIq5w/KjJAKsHxY8v0e318XYEIk0AvDEKEOGZNHMwuCclo4bOAq2qMtWgZBRDIerBNcplVBEwqFG/CW0wDTnmpqeuKwWCMlDGikZLaxidICBl+D2OCXFQqBCGhzjrZAKc0xp4G5xs5nXcILFKoYJaHC+CTtwiiwEBxATCLoyjI10RgaQgRo0RwQBJHEo7QjhCElaI5QCGvS4T3FC5IApSKESgsrmkiNNaF7z8Az42OXHisLcknszDtaVh2UqqQPhG+rea5YY/yRwmRNH5gzmHqmkgHdphxR4xIe3+vPZrCehpfrcbk28vGo4Cm1RLBM04RgDuUwkqPdwYPqDgijSTVtETqKEgfXIhQNqaiKia0OgssrZ5kWsy4fes1sllOr9dm9dg8c91j3L17j2R+jqilQTps6Rs+FugoComaWBbnO6StLnU+I1EZWVczl3TptZeIdMrm3g2Q0J2LESJIa5wnJFhKi5BRKDSFQFofWJXOYG1NO0k5efwUtoSd7THd7gBnJ3Tn5llZW+Vl9QpZS1NNaqSWYB2i2dt0HFEWRfNbWHwN0hnW19e4/MYVNrdv0+pG1L7g9MlzHOwPUA271RSG69evcfPWTbJWhBAtrK1Jk4y5XockzTCmxJgchEUIiZGSlaUV2v1jjIbbjPOCSGuk9Ji6YDbYR1pLuzNHrz/PeH/IweAO1iqEjtjf22Zhrk1XO+bm5zl77kEqXfDNF7/OXK9NbUtabUXt5nG+STtpDGlVpPACWlmHRGpUMofWCiQYa1HCobTEy5RiWpFIzbHVeWyVcvLYGv2FY+SjMf21Ve4ZyXBnxN7ONv21NY4dP8Wd25tU+ZB2W7C0fIo7kWJ59TjTSc7mzRvU5QGn1tc5tb7OYDyh1+8RKcn8wjInT55nf3zIqRMnmGv1eeBkmxe+9jxlben3+mzf2yIvS6JEMz4cUpZjpEzwThFp2NzYoN3tMty8Q9xKcHi0CiCkRISIahHkp1ES0l+msxGtVkycRo0PmqNqQHshBNY6IqmQSmBrjzGWPK/ur8G8KDl36hQq0RgnGYyHDMYFygsSGaHbCXll2d07ZL7fpawNnTQhy9rUkzAoiaMoBCU0oRzeWyKVUFUVURRMoaHxS3NBDtWUtCF99sjHrdmzhbChP3Uhucw5QAV6v/BBA+8bVz4f9ONorYnTNOxducHi0MZC7YNc2BuQCUILcILa16AUSZrhXZDZIXxgTcngyRTJ8P1pEby5PALvBFl7jlrFWGPvF5K6YW9KKcMeWofI+gjNzMkwGXZBhiykQkUB4MH7IIlqfpFwFAUmo0eC1hTFBBn18UoTSQFKoKM41FUN39U4S1EH8+5IBt9HJRRehvWC81jrULFnb2uDtN0mWziDs0T8AAAgAElEQVRNnRcINEmaMJ8tMsunLKQJdze3GA9zyrpief0sVy7fIM1ixuMDfKyoqjxIDW34POsnH0DJmv2d6yyvHWO+t8iorNnauYyxE6qZRzjH4e4eT7/rWe7cvkVnbhFjw8DC+WCs5U3g+FofBmNCChCh8bNWIYVFK01NjtYqjAiFDOww71EyCr8BJVIGYDCO4pD4qxRagZIQa00aJyRpGs6sJmFUSEGapnSyFmXuiJQkkjoYyrdSSGOs9cxmgt78IlU+IhaCyhhEBFKGgaiQQd4mhUCoCCEl3d4cuhXT1erNafa34zBvzab+Ln3JtzZjf9GN2R8DKv0Zm8RvbzL/NE2nUgongjekd4693Rv0jp9CBspgGNYpxYmHH+Bv/tRP8pWvfZXH3/EkSZaweu44WSti6gre+MaL9JdXwUnujQ/43//Xf8aly69TyABwg8JUlvHBIc/9/qfJ6gGRs7zwwnN84+VXmMxGKAFaBDN2vKMwod7Z3tvlxrWrPPv+93Hr1ZdYXT2Nk4K7W7e5tL3L3b0tji20yd75DhaWTvO+H/8xPvHJj7PrKuI4xpmCyit+7cMf5Qd+8If5O3//73L91a8xv7JOL4votBTlcMj6k09wbHmBbiJpL51irhkO3H7t67CwwsFozGgw5mTyIIVxbN69g1SStaUl8sGQT336U1y/s8F4cMiDJx/k3/lbP80P/MizLC7MIYRnPCjY3RvhyxmRhjjSJGmLO1df4/XBPtHcIirpImcFD144TjGbcOPOLa4+/xw3Nq7yn/xH/4Cv/sHnubZ5k7V2F2lKTpw8y5XbW7z0tefYvLmBkI5Bt8PlOzdRbU3LKBwGi6X0hjRKcJFFmKAecEicCHuq1mCMw9kSFSW0kpjptEIqgRaCWoQBpnCeNE4pjUOIvGHQO5SKaGUtZsMxdWHprayRLa7QaneY5SVRmiKQPPsD7yGWCd+4+ALtOCbWUfDMbfaxajZgd+8uOlG87z3v5v3P/hidrA2EBLaTp05w6sQah4M74TiQAlNNGQ13KQpPlnbpzc0zOjjEGUPSShnt7KCiiNlkwu5OGPbUZSCahLZOMZ7N8MYymh7i8bS681x46BlWlhfJWj1WV06QRHEzoHffus/8qUhK3/qgoIKgAZL/qBd4617xJkA+qyt2R4ecXFgKzN/7xJ6A1Pjvti/+f3X5t/7RvCER1CZCeKpaoGRzfgvH9xoC+p4DStZ5Eq1JohglUmovcK5CYqlt3bBrBEoFLb5UzbRLSJRwWOux3iGIw+EvJGWVYxEkTVFkBUTCY3zZGPF6pITKlGjdCp4u1Cgpgt+AD/G5UgYpkNCqiQR3aOlxUgZTUKHAB3Pi0J5FRAicC7KsyWiAlBLVWA8nkW+SOgKQ4KVC6yAT8j54RzghQwNtAwPKNkPOqiqorQtsLeko67qhbgi8UERKgDdUKjSsASxz5PgQlS5kQ3l3GGuQjRHrYj9DacHd3QGmLImUYjgq2Gkf0JvLKGclRVkTRYoTywsszfcpq5peN0VsWw4GJZPpBCVDkpsDZBSxuX3AeFKwsrREnEUBeHCeJItDop8xoGK0lAgPFZbKBS8f72ueeexxslZCbXKkiSlNTVUVeOsp64rcjlBJjYojNJqqtggR4b0njhNOrs7zzEPLSDNjWFShmHeNjEAIpHdoaZHS4XDYBr73PkgYlAWLpzSCug47gKgD0FQ7Q11VTTF71CRodCwwlUO6YL5a1aaZNxNADQxeaBwygI9OBO8f5ynKksq4xog6wooK7zTC+iBxEOE5kZIYpQKDzlpsVYeF5I+YPARKug+yDxpQy0kRUmBcYBU5EQp9S/AWkzJIDpUKnkLO1nilqaqSJFKAQvoY6yRWBnN8hG203MHoOoAUjbQhkE7DGj+au/vgBSEtgT4tPQ4Z7HZlaGiacOlmykBjexbuc+EVvpmWeykx1ESNaaWzNcgw7Q8MgiCj0UrflxMGOzXRAFCSVhJjjA8RzlIHQJrg7+R8mMIbG6N18GSSTYpiXuRESpImcSjy1ZvsEiElSIGz5s29+uiMO9qzfYP1N7493psg/vPgG1A8MC9Vw3povknvQCimswPyYoAQbab5hMU4QzjJcLRFq92hnWYsLy8y11kgTVtY57l1ewPjZrSyjLl2l+k4p6xr5js9poWlNBXL3S4PPvo2Lr9xifHhLsfX1lk8vsTgcAZS0u728K4O6VMK8EEG65xHNbF7UgWGjRaOa5v32N+9x+rqEqsrJ4njFufOnWVnZ5+Lr75OtzvHI+cfZHhwyCyvcF425rlHjWe4my5du0SWJPTnF5nvdIiSlP3DATdv3GI43OLC2XV0lrG7u8Xbn/o+Jnu79Hp9RpMxz7/wB2xv79HpB/Bnf/cezkS0sjaj0YD6cIfZtEIpR9KG2TDw+MbFgO2dLYY7d+lm80xnA9ppxtryMRIraGV9Fk1NkrZxy8e5+MqUezsHKJ1w49oGnXYKziBUYMZ05ua5cP5hdKqoq4L+0jzHl0+QRgmmCnHzqAClxg60jlGxxBmLsYF160QRWCUixjmJqx3tOOKBtXVaWcriwnH2twb0F/tsXt9kc3Ob9VOKE6fXyTqL2NKw0O8zl0hu3RkilWJtaY3FhePUnYJMw60b17lxc4Ok1WJzZ5N+p8OJ9dM4BCfW15mWu8x3F1jq9fBErB9f4dbdQ86cP0ukY15//RLLnWWSJMW5Eh1p+nN94jhiOB5jrWEym9JfXKEsirAWJagonHtpKyGJa6pqQrvdIYlidve38HaBvDKUtWFa5FQOEiGI0oQo0kymJVJGqCi6D4g7T0jnylpMqxIVxfR780xnezhT0+8vIrxmZ/+AYTmh3cpoZW1kFID1qrYMD8dopZlfmCdKNIUN7KE00QEMEiDiiEgrjmjh930YEM36DgwnL5pBggx/eG9COqwIZsxg77+GdwFUOmJQhtdS4AIbWwqFd4baVcFD7ojl5AOgK5RsvBkCeOOcC+5SIgrMWhmAK2MMkQq+H3iwNkjybSQR0gewqwHLrBdo4fHOBs8dT8OerhFCEKmoqZ0crVarkQtKjiogLwJLy/uwLydJCjKirEpazhIp3YDIoX7yTehFMGoOHj1RmqJM8BCxhJrMGR+GFBKsrXng0XegZMzwcMDhYBszKmlFLSIv0V4iSehkMZKEY8sr3JuNWDuxzuHBPUaD/SB9rw1R1MLriKzb4cT6SYwtmUwvsLiyRhxrtvf2mI5yyllFURlkKpnvL7Ewv4YpCoaDHVZWV6lqg09jiqqkqvIGUAt1aDBe9/cDIYQLMlxTW8qyIq9K4iQhcrqJbw6/c5CGhZoRoG48Ga1rUnUjh7OElEGhMDikJJxRSLyTOOtxAlBBZi7FkUF3wzB1Hi0jjLEgQwKzaKTwoqkvww0bJHBxFBFJdX8NHBGR4C1/fEcT9Zehq2quIwzMf8c//3Hcpe/pdZ/JFEo3RJyCj8h6bfIrlxgOByz05gNAKCTjwZAvfOK3yPOSF69fZPLr/yfnzq4TS8ep8w+wcLjLSy+/ws1bBRWW4WCXwWsH6CRCOUckYorKIoHRYMDvf+EL2NE+D62v4KoRTz59gUkx4fbOiFYSN48rqFW4H7Sw3Lh+k24345tfe54rG9d56PxZ5heXmbx+lYXePHdu3+PTdz/JT6+e4qsf/wwbecHiQp/bd0cYaYkTze7eLh/86x/k5S99jkk+oSimXL16k85cwvH+Ek9//7PsXr5Jq7dI5K/y6S9+Hh1Jbt68TT6ckE+Dwf/u1j2890ynY2pn2TzY4nOf+yQf/53fZn8woddd5B/8h3+fd7/3++h0u+SjQ6rhhHR9Ddlvw70QTlObgle+/EWkb3qH7V2ybsJ4OmI9WWU0nAKCX/kX/5LO/BxnTy7ykVs3uXnpEv7sGdqiw2NP/yCduYt86etf4ZGnnubKG6/yuc9/ga3dfaJMU1uHVsEeottNkVKSl43nqW+SzSiIROhZShtMpueTiFhFFCJHxoqGKEtZhWTVVjujZSx1KZDK8EM//GPk0xGPPPIkv/bhD+PxDPYPeP3Ka5w5+yC3bt7msWceCSE0tqYsC37j1z7M4uJJkl6Hdz71bibjIdPJjM989tPsD4f80Hu/n0cffIhYw8HhLpu3r3L+wkNcvXaNa5de4aEzx5iOc/pLXTrtDsf6XbxKmY532dy/SV0LvBIkWZur14/A/AmrZYnWMZ2sG1Jr4xYy0ixJiZJBFq5URBInaK2CDLrpx521WCxaqm8Fa8R3WV/fse54EzhqhuoQTuRQfTcLEmg6Or51ZxB4HLUxfPWbr/Dl55/nb//kj3D2+PlvixRoLC+OAKijbfGt7MVv34D+jNcfv8MehR989ydVtSeS/n7v9L2+vueAUlHXKKkRtSfRjlhKJmVObSxI0CrYKCvhUcpS2RpRxUgdgXPhB9cxOE9RVhitqK3DTEt81Px/FGN8RVWXRLpFokLkqcNR2SlaaCpTYWobTApl1DCGfND+28bMRjWpXC4YGIbmU4SiT4AXChovCIHAVCXBW8ngnMO6IDvyPjBCtA4HuG0YECqOw7QHT9TI9KQKRaLSjth5fDskjcU6QUuBk+F1lVbgAtX+/sko5f21IaXEWI9zNUJZRF0HUEt4WjEcm0u5tzOkRuLrNre3R8gophiPsd7RiRN6qUL7AhFBEic4t8Cs2ANpMRaM8VQCYt1hdzBlezjj3nBKq6WZSzLaacpcV+GlD/43pibV+r43jtYa7TznT51keanHcJaDd+jJGG8VvtMmzy0vXrrCYFLSarVJWi20l+RlHcpx76ilYCEVJF4zM2ECXlnbKJYc3nikJWwVDvJijKEOxW4V5Ha1r5FIvDHYugStsMbgIhUmy15RVBViOsN4jRMCX1cURY4tS7YPxkF26EyziUlkI/OyLrDTKieInMMY2DsYs713QJK0SCOJcR5TC6wViBqcEAjnUVEwYq/qQ2bTCWZWIaWmNAKZeLyxVKUhbiX3vS88Fit0kG4Q7rkin+HLmtqa4N2AwNRVkKDWFc4aNArnLLU1KKfAhcKxrgqKYhqS4VSCMxWiSaqxxhDFMSYIFlBIcC74ZniBEwFEDpIJB5XB4kNqj/RY40gbQ1mvGvNuESYGUnhq77BSo5M2zpWhIEeimwbKNfIzGegCWG+pK4NWcWB2ONBSoaUIKVDlNHwmVzfR5QH5MdZSlRU6joKktoE3amOoyxrdDQVVXZtQiAPW+4YaHJ4fxwla6/sJVjaYdzXrs9nGm8mSkS40nM7S2BNj7RHdNBxcUsBgMmFnd4P5hQWUTJnsb8PeJnUhONg/oNPu0l/o4yz0O0sYp1k9tsb+oWY08kgZ005aODdkLoqJfMWwOGRxfp7u/AJbd+6GxKFEcXdrG2Et44mh8gGM8N5SVDV9G5iVEBKCnCBM040LYHhiGE32WF8/TitNSHSMsY4sTTl75iRJHLOxcZOvv/Q8QsYUeU5ROZxqGhUERzGb1nk2d7a5s7XLQrfFmQdOc3dzm8O9XR578DznHnoUqWOMrdBJim63iXTCxYsvsD/aojQlJ+aOs9DvMjq8Q7s9TxTHDAa7WAlpu001LZAuoirHGF+yd3DA7vYXeOKRJ3jo7EmubARQZ/X4OsVwRKwVc+0WQkAUtUje/i4esQ6BZzDc59aVq7RUyuLqcbyD42snyaIUlSSUZcGNG5cY6X363QWUDLHs1ji8hDhK0AhUlDAdV8zqEvB4U+HQxHFEXRtMbdCJpNdZIOt1KKua0lTs3Nwma89x/MwZVtdXSIVGxy2chCyKMLpL0uoiHKRpho40WmUYU7N07BjXb9yg0+8x18kYTQtu3bzOHalY7Mxz5/Z1lIhRUpDFbVpZRpIOOdg94PG3PUl9xnH9+hXm+l3anRV0JDnwAbwFg3MwySdMxgMO9/dBquD5AuhIk0QtUJI4zmjHXao8p8orbo03mc1y0BG1Cc2z1JLBeIzwnvFgFAxKnaE3N4eNNLv7Byil2D88ZGllES+SICsQitlszOhwRJq2SZIEJROiKCZRAmdrppNZMJQVkna7TSfNGtVL4+7SMOqDF14TS+F9MLjWslnzzbonDHQk4fVCeEcARGjYiHHSRnpBsLLxCBnYS55QG4hwcAS2korASqJEBw85H6GUAxX2jcBkiUOx3UBU1ntiGQrhoM4L760yFXEUBz+lxhD9vg+aMwGsByy6YT3LhhkhEahGelkiCUw7rEM6H0zLpUbJBhxyb45khTxinmq0jIm0boCV4EXlraU2NVIJsKCiBC1qtBBEMsgH7ZHbnfMoobBeogXU1tPprYCX7GzdYzLZx0eKYwvHqasJOwe7ZL0a6SZ0Wn2k96ytn6K9ZHlpsM+knFHVhjSJ6XVjRsM9vOvRz3MirTm2ts7lSxfZ3t3i9uYGy/1Fjq8ucuXGZbI45dz6wyzML+Jqw9VLFxtvorCdxVlCK08p8gol0vB5NdijwVTTtAgpcK7E1Tb4bMUp4ZsxDYPeh9+5GSg676lKQ1nWpFGEiMJwVWpx/7sOczQR0gZNRZ7PcNYTRY0sXoahkm9qHq2C1NDamtrUoTYVMniR+gA+iYa5f8TclToEBryJyvwlAouAtzZ/3/r3Wy/xlv/13/KsP9d3diRtbdaI9x5T1cyKKe1unzjNOPe2d1M7y8HePgtLi9y7u8Evf/gX+ebLLzLLDXvjCbt/8EVe/lrGj/zY+/ngT/5NRD7l4Pb/yIs721hnWZ7rsT3cJ1aW+c48dlggqe/XRtNRzstvXOXajetAkNrvDfJQV7oZpoY6IJUIZ3BWcngw4o1LN2l1u9y+eZflhWXSJOFHf/hZYue49NpFnnzHU0Sp4sbN61RC8D/8tz/LR/7n/4Xfe+5rCKlBK3QsOPPUE9z4+ue5fvkbjIgobEHWmmPj5ga//4U/5O+941385i/8H7xxdw8MFLWhNCVxonn8ibdTbg944bWrfPYzn+bWnRvsDQ7ZuHozJDhWFefOn8PHBaPpiANTs3P1Ip/5td/kh/7jf58rV79JrCV5ETb3vMjDGhUefAnjkkTD1cuXGI5HXHj4cR48eYpXLr3BR37j13FC8Fsf+xhPP/MU/95f/2luX32DOztDvvr8N1hY2WZ3a4ft7S1caTG6hTEOHUkm0ylPPHKBy69cx4gIW1ucNdQuR+gwoBRCYZu9b35hIQwKxgdBHh93yPOStz/1DNeuvIE1lnyS08papF3Jf/D3/g4Xv/4CvWOn0UozLcbc2bjD448/gRIRZx44T1VOqa0hTTK+8IXf4+bGXVRrng9+4EMc7O5y6dJFzp49x9z8HB7D+soqs8NdNv2Mve1dXrn4BtcuP89zX3+DbktxYvHdzIYFxlWMshKdTFFRyng8wwlBK50jSzO6/QWeePsycRJ6+CxrIaUkiWPihnF0BJrfX5eNF6qQ3P8/j2/O3O8EZ966pv4oUKQhETc9cVCkbA+GLHVTlE4bsEk2j3nr3nH0emEAklc1onSoUrK/c48za2caX9jmsc3Dg0XNm8//XoNIf7ZLNNt38ItN5ZEByf8PACVjPEYYSl9h05BsNCvrQLVSmizWWFvjqalcGW4kFFEkg1uUA+/TAJR4HaYpQuCUQCUZ0gt0HGHdCOsM0tVMGnNP54MpsEJiXaCrC6tRcaNfbQ7OI4NeZ8A6GSi/OLwIko9YR2AcXjUpK42ciSY2PERjSCKtaLd7VJWncppuOw2fRSq0UpjCNUy9gF6+uVgcStGwkI48XhpTTIJpszQBPHPeN+bGrokxF4ExgadqJt2YgEpKKRAE6YxSGqk8dVkglKSqBNc3DxE2RyDopAlJFjWvK6E2zMUxWRziY9NWijNVE4sePk9uDLvDMfFEciALEi2Z6yYs9FJ6nRZR5PDaNxNWTyQdaSvjoQcv0E4kaXeRcjwO3gJxiPa+fXeXy1duYURovrTURAjq2uKEI5aa3AvOPP0QcQKFkdhZTeQVtasRJkxmrfcgNVES460jdhYRRYgkDpNYpbG2JNIK70qEyPDOYEyEbjYe2fgiaRW8iSofJrMbe/vs7B0GCZX3oBXeyybNzuKtD1NID9qBEw5rLToSpC3FLJ9SFznWWnLraacxqXa0swyfSWId46zFywQRBWS+qiZIV4dGIm5xFEccbIU82nmM8Ghhkc5QW4urLM7UjZksIY3NSZyMcDJ4Ux0h/8IF6akjyAzb0QShUgomCGXBOCpT452hG2lcoG01QEyQmwkJzgkqa6iNDUBumaPiIDX0OjQzLd3GOI9upqZGOIxwWCUZDvYgilEywpQ5ghALn8YpWkeN6XW4D7yQmNoyy0ukioj1EQvIkRdFcDlSASR7kz0UWIce0bAZG0e65jDRSpNmKUm7Fcxsm0ZJELTe0oXVKZxHybA2TG2wNjRctvmtrTfkVRkAYGuDeb+1zM93Mc4EQK15UyFFMoCSeT5lmheISc5kuEVRjtnaDj5RSdbi2LEHuH7jBpFKSLNFjh1bQwvLXLdNFmv2D3YZTAYU5Yy11TWQEfcOD3EEmUR/oc9sMmNaCypf8sbGFeoqplu06bcVC3OLFLOaQ/YblqPCuwgramKpUVVF3NZUE8Mj58+hBEgLNVBXjtkkJ4kU/c4cN2zFwlJG1llmZ2ePurSIJPjVKTw0/inrqysUy0vs7h8ynhwwnkzZOzhk9cQJVtYfYDgJ9Olef5nR7jY6innj1dcpyxlpS2NKw2QwZmV5Fe8S0jSjqAXGabTUzKXzzKoJJ48tsjBfcXv7FnG2yGq/S5JFjAcH+Moj0oQ7d+9wb+MeD517iLIaIGNNJAuk0rSjJFC8y5IT6yeoy5LufJvhvU2kCLKgOGtz/dplLl37JlW1QqudkcZzCKeQUiOUh7Jimk8RQjCdjqmmefAuiVKkSsLeYQums32ipM+0sBSmYndrl+FgzNmHzhJ1u1x//TKbuzvMdbq4ckBvcYmiqiimYxYW5tk9vENpDKdbCYd7I4qqZml5nv3DA7rdDp0s5ivP/yGvvHIRm49pL3TIOktcvPQKH/zhDzIcjNnZvoeMYWtvi9a1NutnTrNx5yrj6ZDl9jGSOJzjEsV8v83u1ozxKKeVOWqjKYojzzOPUjFKJ5jCkCVd6srhZjXtpT5mOiacjJYokcyKmsODA8qyppVm5PkMIaHbzXjo7HnKyQR9+SqzfML+4YA4ici6CwCcOnWKsqoZDobYOUGr06XbbWNdiVCgZBRqBQ1pu4UxgsoZqsKADcWhMRYZx3gTmMy1nRFFURjsNKxTTyhOXSN50gQjY4XG+holQyKdwGGFCGcaIRhDiCYMRCqUkqHZlzUoCzLIYJSMSVspWgAiRkodatYGtD5id/rwQoGdIghNkiQMa1RIm1NKgpIoHSG9AB88nDSCyDcFuwoDKyFFc77UuNLjbEiQ9bJC2cDg9uHYaZJ5AtvJOot1NIxP2TAaw9BQEDz2JOp+jWdtCN+QDWDtZdi7hfOIyDcVkMSLupHigfJhL7QuyCm6C0tEkaaVRhR+hJYFZ889ijcVr198nZUz57l5+XUOD6bYBizszC1gixE60hyODtm6t8OoqphrtbC2Ii8qtg9usNjt0Eo1BwdTnJLEquLE8iJ3N6+zsrLOI0+9ndp4ZKTAGCIVo3SKlKYBZoKRrvKSKEoxxSFK0wSyCNJUM5bBuwrC9yBkkAILgh+fVqEG7mQdJuoQrZrRhxCIKAyBpFQgHdJJlJDNenMNG0kHabrSiPv9jkBFEhVpqgbEFDIwCPFvOTNpZMnN/81mM4RuBfDw/nWfo/2X//JHDSvfSkgQb/7Tn9f1HY2uCL6rZjzld/7Nb7JT5Hzfu9/FwsIiX/jM57jw5AV+8Z/+c4pMk08L8iowDRd7PZbme5x99DTduYy7uzepopJydsjT7/phemg+9n99ljRR+LomSRVLx44xGgypI4Exjp29QwKzPdQqvjJo7Wh1Wkzykl6aYUrLxDuMrVjoL/PM2x7hnd/3ODdeeo3uYp92L+PWtVvkZcXKqXVeef0lfvXDv8DnX3iRR595J9VsxD/82Z9h42/827xaVkjgM5/6FP/u3/prfP3lr3PtIMdFFjWRtLo1v/BL/5Jep8tnP/05ruyMKZzGO8uFx5/k+88s8Ouf+DT/xT/6T/nFn/kZ4gS2tu+ytbeLs8GTz9iadruDljn/2z/7eR599DF2R4KHzqyxeG6Nb3zx8xwOhqi4TWVtAPZ9SB4O/kOKsrTI2NFqCd7x5OM8/PiTJL7m4pWaP/jyl9jfn/ETP/UhfuUX/zlvf+wC1bTg3o3rHAzG7B9cYjwdUhYzpFSksk2rk3FwsMuT73wH5/t9XnnhMmmaMqsLaMzvYxS5r9ESNBE4y807N0FBlsX4wmDKEGC10GtxubbsDYYoK5GyotdeoLAF/d4Sd7du0ZufY7I9wFOwvNDn4qsvYk3Jx3/jo3z/9/0AN+/cYWdrhx/9wAfY3dzgJz/0oxxuX8MUewz3JYvdmEuv3QIzoMw32Ht1xssv36Df6+DI+IkPfYAknWdpeQklNHHSZq7dCccPKthISBmSUKVEaR1GA1IwmeVkraypdcO+8lZY+ohpW1ZVM6AKi/Kt3j5/HIvmrWlqRwCOb3qct6ZJCgFV7RgdbLPUPfktLMuj3hsfyCTWh3TjMGgKFg2PPnSKMyfX8PYw9ImieaPehlRW4E1w6v/tjvHnfYVvvrSEM+PPafP7ngNKSQRIR142xZo1lJUFEYyUR2VI4ImtDjeU8sRRRdsnjTmpJk3aWNeY/tLE9uoEgaCuplgnyU0eohWpQMUoBa1U4FwRrFpo5BrGob0jz2tknKKEozIVKhL0kgzZyHqSKMZ5g9ICYcEJiRYRIg5afk+QKTmvA1Algs9Lu9WinXqiyJOlGudKvAy+GGiFbjYyIZqo2FABcpS7hXcgHaaZPTrvwxSsocI7GQoK6UIR6rx/Ux/xqrEAACAASURBVD50v2tuCkIb6M3GWqRq0uZCaY/2UBaGWKZksWGh1w5GabaJUhc12sNCt8V0ltPSglLLYByMY3l1hbow5GXJtCyZ1iXj2nFQ5GwcQhpJjnU7HBzMKOrGKFUInIRIVNTGEJUKRI1CYGrHtCp59eoNKmsDbT7WPHpmneFoxN2tA7zx1InDOk93LgsSMBUmpDjTTJRDgSOFQEYC5SSxC34rwlu89LSiFnVlwTmEdSDjwPrJBM7VVCZQzMEhI4WINQmSTEdMRlOuXt9o3qMDFQLuj6RcTf4a1pQIFQeAyQmUsAgsifKoNKL0NXNzCYxzalMwOhhhohgdx8QCXG3JrKMVt2gBtQ0TjEhHCC8R3tyf4HKfTk8AdnRM0urgbR42RqEwwqEjaKUtIkA5i9IaVAzGQu3wwWqDdpqSdPoB8JTBx0wiaNclZVmERD4hUXisp1mn4V62UqBTSapiEq8Z+QqZalQsUArKMjCObMMA0AJkI/+SSHpzfVbnF7GmDoaSKiQXBpmUakzPLUIp/JEBr5ABiJVBuoaAKNLUpg4m+Q3LJvBtAiCsVACAQyK3axhFYTKSJklIbHImNH7iTa8npcO9pZUi0mHPEkhk87eSqmFCabIoNE+VCV5sVVESWY8yAXgMMkIQGLwKZvUtrYikJ5/uMKsKxtOSUVnSpcdaf5VIdTh2/CxpGtGb72C9YTwbMZ1OSCKFji0nl48zGhUc7O+yuraGKXNUmrK/N+Lexi6H4yFPPP0o+wd73Nl8g7qsGewX3EsT0iRDJy1euvgSa6t9jq09Spw4WjrB2dA4xVGL2le0kzbYmsa/H5Fa6FiSNEHGEednj7A0P0fWybj+xg2qahb8uJy9P43TSlHXjpOn1inKnHaygFCBhnv33jajyYDZeMC5Bx8lbeV0+x2uXLnFvZ1NrD2gnkmOHzvJqdMPc/HVl5hNZmzOpiwsL7G82OfkyTVuXL3LgxceRMSOOAt78WA8w9U1X3/xOZSQZFGLtJXywte/SStuMZyNObbcJ4k00gviKAUdIZOUWTHlZH+O17/5GqPBgFhq7DSnHWmmZcXBeB/poRiPMPmYcVkwHg6onSRpZaytPUgcZ3SzNl7vcuXaJc4cX+HylSusrqyytn6a4d4+UmmqYoZ1nmI6YzyYcfahC8H3wDh2BgdM85zrN6/h/QSlIiof7vO5LCXVhvnFE4z3hqjaIJ1iNszJojbjwyG3711nYa7PD7zvvYz39zmYjtm4cwcvu4xnBZaS29t3MSrm1PoFtrfu4bzlxNpxXn7lJSKZcGxlCVsYJszIWi3a7ZSHH3oIZyV3795DZJKiyEFJqrpkNp3ibM7W7m1SGaGEpBjn6KhFlkmKqsJaQaeTsbC8RFHUTKcj4jTCe8fe7i6jvUPm0pQ4TgKLMQJU8G1rt9ssrRxnVtVs3jukrCq6cRyGTnVFnKZEwqGsph4XpKmiqj1bmztEp1Kc9rjKkvQ6hMY7CjJqqVE6DiC0lMFzzh8xSkKohveNnMv6Zo8LwwYZtmicDOxR3Zh6SynwTjXpZwJB8Hkz1oTnEMILahEi5YPHUyN0PkrI4SiYwWGdvO8jqSKNMRCpAIAFiaLDerC4IJt2oY023hMTJG1SBRa2dRYhzP3hmSBI97zy9wFyHYV6xTX+GjTTY994wCkpwNaNIXnDyvQahERrj3Wh1hBa4YQNgR0ojAjsCOkNsdINMyx40knlsVUBUjE9PKQYjvBZi127R38hwxrLc899gbjVYTrY4cuf+W2ybp9ubwFjgwQ4aaeMiykZC3RP9Llz+2WwBa9ffIWkPc+5hx7jgSzF1yXj4Q4Hg32cNXTmz7M/OOSVL32KC0++n+9/9v24yiOUxBQFQii8V+HzNclqSkUI4XHOh0GOL0lkFAZQkiaJz6N8I0+TTfqqDFYJUio8BuPrwKBvQMNIiSCL9EdnoApnn9QoGaFUI2XzwRtUSoEQEQKD1oElceS5JJVsHidDvdtIxkNmR0g4DsPSNt12JzSCfykZSv9PLv8X9vbfyk44aoid99TOMzk85BOf+CQbxvKpz38RIRyRivnYpz/NtKh416Nv56kL7+d3//W/wbcyfuTZZ9HOcPv1N/jdX/51Xn7jMuPqEGM8t65dYjSrUK0E6zxSBhbicFBTlTXGG2rhWewvkijJzr0dpPUUlQ2122QX4eD8Iw8wOii5d3ebWmh6C22efvQ0T77tYd79jqf42uc+wcd/72Nc2R4gVcJ4lrO4sMhzX3mV3to6kXI8/cQ7EQl86Mf/Ghd/9SPozhyf+dTnMdWQL3/lEiqZAyyrK0tIGVjUN2/d4MwjD+GTBFkrZqMh/+Qf/UPuXvwqP/9z72Hr8jd54bUN0lbMYDTD2hpcCAOKo5gP/Oj7OHe6zdbmXaq9bW5cn3D16kXms5Sdrc2Q4usqEhU1bMcSIRy2bjw+o+C5mrXnuLpxm9GkZrS7z/xij6Tl+CvvfJQffM97uPn8F/kv//P/jLOPP0m5e8Do8JA403Q6GRgoi5rZNMczw1lDfrjP57/5NbJWQm6qAIxHmjRuUcwmpFHo9SLteOLxMyyurqKM5aVXL2FFSPg2XuL9jHE+4em3Pcq1axs4Y3j7o2e59M0vsb1V8Luf/yzD4QxjYGfvkE9+6lNMxxO0VJw8f4b/5r/+r/jvfu7nyXzCL/3yv2B3f4MHXzoOxYTBeMJHPv5J7t7b48zJEywsLnLjwPDoY+/i9S3LoDXP8PZV/vbf/SGE1rSSGCHCQFUQ5N1V7THOYKqSsqxZnJ/HOcu49Dx36XUeXO3xQOs4sUruAxgNfyecZ0hmZUgBP0pvP3rUW5fqW5lI/zdz7x1kaXaWef6O+ey1aauqy1eXae9bviUhEJIYQBLCB0uMNhhWyw4wwwbMBjALiIndHSYCYgaGwbPDsBhhZoDByGFk2qm9U1dVlzeZlZWZN+/Naz5zzP5xvuxuCYkgdsWMvoiOyi6Ted13znve93l+zxdjl71atbTDYwxOI4m3Hq1h7epllpYT5mULL4Jq2FjT7GGGqg6pmaKx/tbWMZuEtXh7POL66jnWr5/hhr3H6LQX6c7t4hWfm0GIiJdVkJ+nUPxyuDyCsQHd2KDFP8Bw4EveUGopjfEOb6EqLMICfidJwGKdDUleNH7+ptjyrqAyjmEJqXFETTaUscGCoqzHuTHT2QwnI0obJGuRCMlJwoGPNM4rytognAQp0dJgbUmBJvI1g/EMKT2JDMBqoQRC6RBB60MMupOWjdmAbtpGepAqDjeA3+mYhgLKm4KNqol6dRWKFJWEg6Y1Fu8k1tfEBHWH9RbleLnRY71tNv4wHbLOE8mQPmNFwxSgmSQJgZc06TQNNJydg31TeDY3bRpF1C6wo4QQGFERC4/2nt2Li4xGEulnFNM4SPMJh2ghJP1WwnRakcoMBEjVRFZWFXEkSNOMto0py4KyLtAiZieifXtWsjEa4Y0lWHwMvpiwuTHBSUjG17FVGfQKUjK9PmJzaxz8+lqyf98u5hbm2BiOwgQTgXACJRUXr1zH1BWJDlNbI2qk04FtYwOrRycJ0gpUHCLEa1ugpERKjZaWoi4Aj2sWL+sEQjW3lfVIYZBYnA3WrKsba3z2hZcYDLdJ4whrbYBGN0ox52zTvGxi5wmNBd9YCWaTKe0kIlIxlQKhE7IsTF8X8oykNRdsLXXN+StD3OoGs9IgBKRJRLuV02klGO9JpQgR1anF4AKQGhAygjpC1hYfR1S+xnqD9hE0NgIjFMYFlY2QAZQfA9gahMTKwOgKz0MHxRrNguNNYJlZBypYLb1ySAdKWPDB0uOsxAgDWgUAs9AUtcUIj2o4TNK7wBZConFgAsi7cDWmLtBeoGXcWE5Ay2AZ8U6Eg5xzKCFJs9AMUA0DSWmNVCHhqPIG74N0f0eJFH51jaRfvLwFeO/whOLEN++hIExvfWN9AYG1BiV3vk/T0KKxNHjfcMIEIBHCEDlLrIOK0BuDTyqUinAmNK+dV0gbuFR5p8s+eZzKGsaXTjI/rzDrEWZWcfnKJZQXLC8u027HKB1xfbDO5dWz1NWEPO2zsX2dbncOqSXXN9cYbg+wRtBpd5iVU07ccRSiFk995knSFNqtRZYPLbPY28W5M2d46OEnIFKYasLhoyfI2xF5HFMVDhlJxlVoiCdpRm0Nk2KIdoIk6QbJAiH5w2vF4lyPvNMlzdvkWZtWuklVSpyNKGzgslhXs7a2zrGbTnDXLXdw6fI5Xjp/kbXhiFaWs7Y2IYol586c49raeSYzx33H70ToA+h4H5cubLC0NBeSQoYbxHHG4tISk2JMURYUZy1pnJPFkvn5JTrzbZ5+6hlUXuBUjG2SCYtRwcpgHacydi9qBsMNalty7PARYh0UmSKKUFrQyhOwjqPHjnPy6VMsL/TwXuKinEx4bjx4K3kSMZ2usD4ZMZnWbA3X8R7uv/O15KlmxU45f/0KIvecvvQ8z7/wMKPCs3drBdXKyRb7uI2Kuf4ck+GQ8daUY7fcRKs/T9ZKefbpZ2nnKePxFUw9I8okk2lFlGqshevbJREVeTvGiWXyOGeut4h1kq3BBqvrZ9kcbHLvPW+kl6f0omUOyGVuPn4js4nn7OmL1OWQJMsRRCzML9BKMq5cucLeA/s5dOgw506+SBRZRCZo6S5pHOFaESd27SdZWObBj/0Vl9dXSEVEVbrG+jclzTzLvT6t9jxuNiNKY4wrKArF3FyfdjuDOCGOY6rKcPL0aSajAoGjriqK0pDNLyAiTe0dysO4KHByRFFXeJmwZ88eoqzL5ctX6HTbWFvhnWc0nhAJmJvroyvHdDLDGE9hKranU1qtBOMtOKirmiiKmE6naBkhhcI0KbBShb3WOktVlHjXFKK2xmFwOlg7a2upEPhqRst1cFVNoSBB4p3BegNxBCLYzIwLzQGlBVpGOBfAqaWt8FWE1zYMS+SOhjmoq4UHrcMaL7RCKk3UsOe0iJAqwlNhCc176yoMoa6QwqBFAErXdREUM3JnzQwqIuMsWoRJs9ZRGCI4i2gGKEKEAzLeY9hJ4QxKXYckpH76oNAhjHWVJKQXybDOOiQ2dFVe4c9JhWzKUutDWm2S5ZRFhc403Zbm8tYmSdzm8vUVpsWY0kr8bIopDC+dPsmJO+7l6ukXSZBsj8fUxQjijLiXU1Se5b37uO+1b8AZQxSlCFPzxKNPMKmm9LMeAkEU5/TylCyJeOc3vJ/ewhJU4J0NYO4oeZk35X0IYBA+2DY9zfOWEu/i4L1oPh9KSrSU7FR3xjbpoY3qy3mHd00anpQopYmRoQGFDZwbqTFCYYVDiTDwFCIMGHdqyTCcbNAOjvCuufDeOlfTdDgbJEQInQliekEzYWyUB59/YPtymsKLL/L1K7/1ioHlc68vZJb7kj2qz3uBguVUoOotrlx+kfkjh9m8ssJkOkUJyfpgi5bWqCTEzr/+ja9ldz/jV37l/+HDH/ko+w8sM6tmfPLRp0iTnCReIF7oce36GlYm1I2lcTwe450BH4HU4T23nulowsRZvKhpJRqcpipqvvZbvouO89x735381X/9PR5zBZfXJrz369/CI3/xcQ7fdIDNyZS0v0waK1raMpiUGOM5dPQYD7zuDaxdW+Hkc8/yu7/xi7z7G7+ZW7/qAZLf+Q1KalYGA/7iY4+C0OhIgKvZu2sRtkacWd1ERTFPPf4sg80N9tywi3vvu5eoNLzxbV/PY3/0IX7s3/1HtrRAFCVJkiKtZ8/eBfbvX+bc6cs88rGPEr3udm678xiPrYxY6iakIuOuN9/Kn/z6aSzQW5yn2JqyubXNXDdjWtc4KUmFItWSsrScfPEC7/6Gr+F7vv1b+dBv/ieePnue86ee5/FHHyaNJWcun8HVnlMnT7HYn+O+2+/gmVOnGG8X1FWNs+G8ab0hiXMuX7zKtHSkUTjjVbUj9TW1r1BR4Hl6NKayrJy9zK4s4zVveoBrF0dcWl9nUm+jpeazL56h32tx9NAuTp++iFaSBx98mheefBpLxMbmGGMMR288wHd+29czGY75/f/8Ya6srbF77wJHD+3h8Uc/wqcfPcWzz57C+Ak3HLmVfm8RYxW3f6XkD//gw5x86uO86c038N6v/WZQisPH7mKx0+HF02fJWp2AlVCqGVZbJApjPNc3rvLnf/03dHbvw/iCb3rLV+CNp51GQSBSgvT6FRXRy/dcsPxpD508CwOEz78J/z+sMTs/Z7i9jReGbqvz8lk0kpJDR+/gzOlnmL9nP3jPcLjFZHuMtabh4zqMd8xshdIxSdIiS3KSKKOdtFkZjHjx9GlOnvwkrUhz481HuP2utzQqyMDQ+2JrwH/va8fetl1Zdkmg2YG/1NeXvKFU+3DQyjNJNaswtSSOYnCKsq6xHrwJ9q0wzbekUYpxlmkFdV3jzYxaS7JEYaoZCs20moFQ1K4p4pwJ8OpI4azHWoEvDLFWCGepixqtYpxQIAN80tU1URxjsUR52lhgKgQWHUco77C1bVIQHNYOCSVUlyRJ0EKHz0zTwXSNDS4oJTTC1myPxoR48aBVT5UOll1AN0UW4pVEKIND1aGR5EWY4ssm0tHj8LaR88mgtlI7gD8CFBMRCrwA1Gyk+MLirMdbkCIoWdp5znw7ZfXaVfI8w1Y11Ww7WIl0BDpMqNIsIU62MdLiqLGmDIlIzmKdp6oLbG2RwpLFGnyNcKC8ABeKGSMDd0FiEcRsDYfU1AhUsA0Ki/GWSWGCrRBPv9NmvtNlNq0pLUElIh2Vk2gNJy8NWd2ecHiuQxIr1ocj5ltdkEE5ZIREmQhrDCrWYAMgVfow1RMywlYW6SwOhxeCGkHiwmtqXIXAE5cVRk/IWj1WV9e5cm2VWEu63Rzn4NrmJqKhMku5I5cMzUsayb4QTcofIU0tyVrUvkZHipZqoWVEWc5w1pDHEWksObxrjqXde9geTtiejahnMBlNGQzG1MbQSjTtPKMtFCqKguXAepypMFiSSOKIkU6hm4ejIoiUQ7oKvA4KN+eR3lE5i/BVwHigsMIQtrnAwNIeLFlIKxOSgJQPk3i1E2tgHTJywQ4nCRZMaRvLqcEbEYCwGLRXSOsbaX34LEsdJhWJC5g8qcK0FiXRDTtJ+ABZl8I31jIfnj8CfID4xxFh4tpIb4UUr6oYdyxsYY8KQFgVim1P4EZJESDzKkDChQvrU+hm+cCMUkEJYp17+f4XngZeHdROSIG1YQrshMBLy4wapbLAnpJhbRTCh8YyHi80rW6famuM9Ipy4mlpzVQOieKo4bbUKKXBGDY2r1FUY7p5m3arjTElW4MNZjPLwcMHuXRpldJ71ra2iIGXzrxE3prj4JF9bF5bYTrxXL16DektnbkYI/Lw2fcZj37yIXqdDsdPHOXY4RMIPFVZkkhBgcOUY4rZmMFgnQNHbmJzI9iOe1EXV9XkSZs0ipEyQHqVDAfiKJMUQ43yAiUEBw8dImr3mM1GrI82Gc8G1M6wMRoy1+nRbrWZzCZsXB2xtLiPjckWy8u7Q3KJaDNa3+TBpx5CEqHiCCsrjPQYGzHemnLjbfvZd+gA0kXY0rI43+X8pU1On30ap2LG4xlZrEl7bWIpqKstJmXegNstWZqFQ7MHLyWamKquWdq1yKUL57iyssbx22/HGYeKIhIFmxszVoaGc6uX6GQdSifxZspff+JvuPOu+zl3/ipboyky9pTbloSYJFXcdPx2jHeYOhyeh+MBF85dZO++vbT7HSIpGQ/HZJni3kN38NQTA+ryEsIKjh4/wmB7ndH2BtZ6krxDpGFr6wJqbjfadsmzBQ4e2E+n36LVWmWwdZ0ouglbSGSkaAnJ0u4WexYXuXrxDGcuwnhmibVi6dAhyqLi5FPPMrd7kf7SApfOnydNY2ZJTDtPOXTwRrJ2TpZ2SXs9igufhTTBEpJopoUna83T37UHUTtmpibPYkgSlqVi9fqA0y+dx1SGWWXodNuMRyOiKCJJInbNd1FoUqUxwe9LXdtgx/UC/Iy5Xh8pcqJIkbdyvK3odXOkyMjjUOTYJpI5jROsliwv7KbTbgUrSgOklXgirVFaEekoBBtIj9KigVYrlA4cI1OXRFFEIR1eCaT31HVFMauJxpOgWMlyfJJjyopKzxqlB2gf9lLrQTjLaDDAVQWzvEPbOOqVa0HFHCmk0AgsUkmqchaGZ3jKqsDXFTaJcDrCbwzwTgCONMmJrMPbElV5fO2DSslalLEIa6mtxQqPJtQd1tQoJRrmRLDwVtZghcMnEdbVCJGz0//xjcLJuRB4Ylz4T6oIoTwWRaJivKtCY8RJjKiwLuzB0kMkJBMfLNkaiZYJEGGVDwe02pDGGSc/+yKtThftJZ0sI52W1HXBcDymnSUU9QwvBdPZjPd807fwzMOfhrjHrBQkaQfrJ1TTISsb11lfW8ci+fCf/wFatzl4aC/9hXlOaMG5C8/SSxPqMmdvv4+UG5y/eo32rgNEIsJTBtWWNcQ6Ck0eC9ZC5Zp6DAVWURUVGoFxDq0VvtoJgQBrPZFKwYJ1FY6QhGmrBrKOAKfCHutKhEoQaGxlKYuKpJuj6qA8901zz3nTTMXDnuqdxdoKFWVgq6D0snUIA7ASHUuMKajljtIsWENlU9eGnBxBrFUYYr58QHpFCfDldWj6Am2hv0en6B/C+fFqdUJwM8DqygV+93f+E06AK0coW1OXFVm/h9se8c9+5F/y8Id+h+3tir/4L/+V9fUNTl9YQWYtNjY2uLR6lbd99Ts4tHsvn37w07x49hzHjhzm7OkzDGuDcJbKhZRXLQVYQ10bhBJUrmQ6Kbjl1rtYynMee+o5sizi8IEb+ZZv/jY+8ae/wYc/9TjTOGbf8jJ3nDhCeWmNVMEMy8ULL3H54hU2Ny33fNU7GKxfZrS+yqc/8mFmXvCpTzzI+asb/NKv/QqV87j+Er6YBUVEVdLKc4wR7N+1l7e+8T7ue83buHL2Av/+F36OjdGAe+65l24S8cM/+a9ZW71EmnR57KGnuGYMkdR0eh2OHznIxRc+S2onjFZXmAwHRNGUxx//G3b3M/7Xf/kj/OJP/ite995v5djenP/7p36edGkvs+2Kd7/nG1maS/nVX/1FonaKLUrKasLupf2kUZfy1Bl6aYs9B05w38238aefeowPfNd38OG/+hs6rYjBYJttn9KrJb12m5XrG2AjhIM8F5iiBpFhbEi1rmtDJ+1QTGYkUYep26Aoa8DRiVtEzqCSDKEkJZaDJ27HDmdsbGywvTWjVo44VZy7tMp73vmVbK1PuO22vVw8f4Xv/I6v4/f+4+/gki6plxQexsWE5555lstXrjb1FgyrmmefPc/8a97OT/3Y/8g/+yffS9nb4nX3PoCxNVpGFGXJuVsP8tcfXeXZF57mxqPHOH70Zg7tWsTZmtfedWtgqynYSVoTQuGMpSxKHn7wcQaDLb7u699NURRc3x6zp99HCXj97cdxIqR779xooWH9ytfhGPt5d2DTBHZ/hyrp7773LJHUXB9uUZQ1yjvm+j2MT9i/Z4m//OSYhx75Ud7+Vd+IUG1UFJOkbebn2iRxFLi/TSjGzqnBCo/ygoW772Nlvsvq2iqz6ZALa+vc7EHTsJmBL1c7sPPBFTWtSlJpgljkH0Cy+aVvKJmQdqV0iBrP2gkIRzWpsSLAn8MhvLFyyWBxqaRFSoWzGrTEWphOaryPqb1rhuEGpYICxLkIVHDvIEFhUSKA6LyzqEZQ4JzHGo8mgJCtrXDOEottTF+HSYxTTMsZSWSp6hFCQCY8pjQBjhzPiOI0HCTdTuJMw0eSzZmVADIUCmwZ4ubjSIYPGzKomwhP3dLAPv1O2kv4/SiYioK1znkSmeA0GBOKyFjIV24yGaLepYjCDeoddWNDEt5TSUOSSKqyYC5P6XY1a6tXMV7Q73WQQlA5SVEapHOIyiKEprah4x4JjXIOnYRDbdIO6XmxEph6gkDjhMYJg7AC3xyIerOSaVFTAsZLWlJDmhDmbICPsH6KdjFaQ7c1Ybg9pTaWyXRKHBuUDQWnFwQLHzHS10wngu22YVbC6asXmO9l9Dst2pmi307BeaamIhEeLTzWmFCoRlDWRWMRDGoxubOwOUHhwg3mnGwK5WCN2r18A6PhmPn5LpPRNpuD7TChbRLWMA7lJYZG3eQVxtvAYnI1+JpIp8gkR1bhPUx1gi8DLgzVKNGcxdWGspwhNXTaGXE3QqgYi+ba5nXMrGZlbRO5uUma7oBuY7LYU3nLdAZJSwcug48D5NQqaquCUgCwRoDTWFfiVIgkBY8UHuU0tTOIVAaoPC4c1JUBFFrIwLG3YLynxgUFETlWOLTPgqXQaxwlQmkipbA+wPDBY1WjanIKr2TgUSgRJr3WomWMb+wCoYku8E3SoJIKoUJDVygZ7AA+TFwBZrMZUmtqu00ko5crRe8bea0LEO1gtwsFt/cgfYSXEi9ANUlHQRD4yniztoYobtIkRWgW7WyEtpnSB4+4x2mDr1VQkwmF9B7hQiqfE75J9wrKSOmDagsToqG7rd1s+ymD8Vm8U9SDGRdnq2ysr3H08D6iG3r08z7d/X16vQ6lqdjanLJ6dZVuJ2LvvpupJp7t7SlZknPDDbt57rnHueWmBV73mvs599JLrA82eOHUKU6euYASljTNiRXs27PMidvuphiWPP/cU5w8eY5bbrmNhfkORmnK7QnPnDnD2ZNPcODAIZCXWV9fI89TFheXKQqPtxXeqjDBqgsEhlg4pAi5gF4IpJOsXLrC9asrDIohw/EqzkGkPUo4ptWQ2CTk7Ta1Demd61tD5pZ2sZjP0T+xxPPlc4i64t7778YWBc4VnFmfwkzwwNveRBxrJttj8naOlhGamDe84U14kdCdm+PZpx9jaC1LeYdyMiOKHOVkSC/rYuuK2pSgo9BUdCV1PQkHPWu46cSNPPXkaYazKYmS2MmUgH7QrQAAIABJREFUjY2NwKKra/btP0C3lZPEkgsrq0zKGY888wiamERLXJA5kKaL2HLGgUOHeOn0Kp987GNY4zlx7Cg333YPSSpJZBz4OrYgyxJm22PGm1OwltFkSren2Hfwtbz0wscZTKZ0RMKBPcdJdEwcSZw1VG5KliR0tCDyjvldh1F6jolfoxhvkOmIVjaH8xN63UXuuK3H8y+d5dTzLzC/tMzBI4cQqua5Z19gZgtuOXqMa9cuMx4OWFg8FhR4DWtwrj+PtBHKxxhXUhUB7B+4XI611U1Wr1wNr5W0DcRUE2nFtCjJWhm9Toc8SVhaWmB7OqaczLDeIBOFUiKkfypJlmcIkRDpiHOXVoFNdu/dTyvOKGczFuf7JJEkVgGMH2cJ8bikGM8ASavXIk0zvLekcRhCWecJo54oNJBlsKUKJ1BaNBAhgdSCPM7ROg0NZhkhnCNSkC/mtPMWrbxF1F2ktzCPMxYZpUQqpEjWrmQ2HCNdmBJ2Mk2sI9pzXeI8Y2lpjmBz25Hth8JWuoLp0OJdjTEVWknKWiJmBXMqIkpSjC2RkcKZCu8NViqcDhbnoqooywkz3yEjxq6u4mWE1JI0jbCVIc1yvLdIESFQTErB6rUN0kgzqwRWj5BJiZAeqcB5jW5qMu89ZT1lPJkx1++ztT1hTuRMZ1NcWYfEUREsfqY2GAxGVnhXU1obFGBeIn1E6Qtwgu3JmKyTsnf/Ls5sX2Z7PCJJI4ws6IiEG284TGkc1zfX2XfDEU698DTXr6+AnOHqAp1GHDh2mNHWFc5fuEiet1EotosJvXabPMm5+cTNnHpmStFeDsxB5+m3OjhlmUzO8eE//W3uft1b6WS7OH7zzSCDWrYuC1xdIqjxVAh0KACVbkJDbBPeEqyP0jZYA0JSaqQESZwGVbxVQQ0MhOzgJvxDZzgZUgpVkqKjYFHUOsWaCcH+Ll8e5gkaNYEQGAtZGlOIoKYTOgDepQpwViXTAK9XUWCGiLBfKhHsmcITrPY7jSpeUSd9eTWTvsDlv+CX/01+7KtfGykls9mUMy+9yE0338FNJ27GO8Hzzz/Or/7Wh/C5xl4R2OEWu3btY/7IPr7iXV/Nb//sv2f/ocPMLSwzP99n8vCnUAJOn7rMhfOb/Iff/BBP/f6vc/b0SVIrUHF4z52RiAhUHOorhQjoDmF58vFnKGYzFpZb2LHnxc8+zz//J9/J+QsrRO0e/Uizf6HDb/3S73DT7bfywtPP05nr8vAnnuLOt34D+qmn2LhykWP7D/JXn/gET04mxK2EvYcOc+bMS/hMELkIKWZoH/TxdlZQ+oi8lSKEop2mLC/2eOL3Ps325lXueMNXEk0Nu265jX/3o9/L13z3P+Xkn3yUP/jIx1HzCwyHY+6442buvvkQ/voqp8+fZ1wreguLtDPBwvIyqjfPeHCNtc2rlOML/NPv+WlMbx6PYHerx3vf8Xb+z//9B5lZzWyrpjI1SEUnzUgV4ATnz1zg3MUn2CivceKmQ2ysrHH6xRe4dvkigykgJlyfThmOBpRFRRonKA2T6Yw07RD7GIMjiSWzaYWR0MtyfuaXfpl3fuVb6B7ci7QlWntwEmsKRBnRX+zx+GceY3lxCSk1hQrcutF0m6W5Fu98+5vJVcL3/4sPsrirx4E9e5gRowHjK3wkufu+u/i2938/v/nLv4rIBwy2n0Zv1/zE//Bt3Pn6B5AJ7NqzxMXBdQSSwXCKwFJXgicefY7O/DLrnQP86YV1rsWXeNuxo/TSFoZwrm00ELhGrUhTi0fdLvOuz2Ka4+KEbVczNZZenCBVRaQ+r73wqp70q9VKL983X+Qegs+3kL1aX/jKn0+nE2bFhDhN2bf7BrRUjCdTRrOKXqoRSvLi2Rf42je9jluO3Rv+nXCNQKARcOxoBDwEeKFo0jhhNC0pnWd+YYFSa5YOL6OlCns08nOfxH+36wutdj6k0YqgwtbYcBZWQQTBy/nd//+vL3lDSWiwZQ1eEadgqoLKaHSSkwmDFxDpsHkG20xEZQVpEiO0IzUaHXnqssISIoOVCKwB30Sz48Lk0IkdFmXY7KqZI07CQc1aRSVAa0GmoDQeawMnxXqLMIou4QNa1zXr02skMbSEoKo0tQBnBbX2RLpiUmyBaw623jcSQIUSitobnJBkqQavcI2NrSp90HW4AE2sgIjGxoOlQDQxwxZJmA7VviAmNL+8TwHbxKYHqSQybmTJFuk0QoSiXQpQMjSunLNs14KiKOm127RzzdbGBviIXh6TaDA12BLKeoQkWBEdEmtVYMoQoq7NZIJMgr3KWIuSEZDgtEB6jRQap3xIUVOSTrvL2uYY7Wqkj6msIcejlCCWEuMsMQneC5R3LPa6jMYzqgYmrVTj8ReykX6H99vYcOhYWDzI9asbSGVZ2dxmbTgmk5pWrul1UtI4Yqk/h9MSW5c4XSJsjlciWCbqgpZ0VM6jZQCBxkJQC49xNaaOqR0oW7N7oYOv9yHjmKIcgwxpObV3JGgM4KVB+VDMealoZSn33nMzR/bdQDEtQrpLVVBV27i6hUsTal+gVIZwCiNqnK9DalCUoKkxxmIIKhahoJMK4labTqbJOn0sM4pZxXg8YzIpGZeOjckV8lGP7em44XxApCJiGVLsrHMQhSQ2LyQiapKJrEIQh5hmG9gOQVwnwccIZwMXJMh5QpKb9KhSIhNNbQqUWAZXkgjFVHjwGtCkqk1RFiBDaqESCuFDM9b5kH4WS08sLIXUyGZCLqQKzVtC+qLzwYJRVAUO1bDRQoMOQnGPB1NVBC6Ja1RI/mXwX2gOhHQlEf56SG4ToKQGXGO1MK/Icz2AI26sd9LvgGOD2kGIV+YRzjmc1CREVFTEOqEuKnTsKJ0hFjpMBIQLBw0ftmvhJAZLp91ioTfHbFZz8XKXbi8HB2fPn6fdirlwbY0Dh29mMdvLaDzEeo/WCbeeuBXnbqIyI/AJSZqjfU0nz4iTjFtuu5PLays8+cQj5EkOwpNlCe1uxnS7ZDqbMKNmfjmmFefM78k5sPuruTy4ztOPP4Gpal7zwP1MtmtOnXqIG48fJc3mWB9ep9fN0EoxHm+BS9BSoURo3s+oQStMpRE2BlEEhZgynL54kroyoDxpmtHtZVSxo6igKivWNtbxtmJ+uc/pcy/R78fUzOjPd9i6NOXRTz7MTbffxE233cL6yhVOn7pArtt8xbteS6ffR/mIjfVrSG+QWuJksIAeP3CEA8fuYGvtOmL9IvVkzN233EGsItJORqvVpdNtk0RpsFl6iZkUOBsSCaXxdJZ2sf/GLV545EHuf8MDqHbOvqPH2Zxuc/jQIW48cjPG1ihfUkwnXNkqmNVhSpzEhrm8xaVrU2679TizasJ4ClcuXELYkvtefx+33nETxfYYXFCcSuG4ePJprg9O0+vNc88bv4IzF88Qi4gb9h6k312kGt7F4TxjtDmknFnyfoqUMZEMypLJrEC6jD179zIYTPjkH/0Wuw8cYUTN0sIiL517hDhxLM8t8MyLT+HjOfYeOsT11Ws88ehDtPs9+nN9GG8wLivSvEu9MeXq5QGdfJ5FNFJ6pHY4bVE+KJyqIEdmMBjw0NVr4BxzvRZz8x3mO3sQomD3wm7G5YTRpODAvr1UNYwnIzY2B2yuDzFl2N8W5gS9bovdS0vccGg/SZJQ1ZpiWjKderanE4rC4AT0e328MBgHpq7BC5Lmvk90TFFWiDpwY8pyhiDFi5Ca5rxBqxRBCO9w1gWOkJABoAz4hoOId6jGjuRlCHIQtaCqJbryxN42PCLAGYwIQEwlBVo04RsyIVExcZIhrURZAImwJkwdfPh/8M3AIzCdojglzxOSuE3ayenN9Yl0irUGsEgpqWtHXVZ4GxplcRLRyrvknTZ53mN+aRkfKaR0RDrDGojTjMlkE4nHSUeeKtqJZKE/T5LlzC/1kVGKtQ7jKjwOJQOvSUjYHE3oJAmudtjpFq7dJVIRpTQYU7HDO7Te44SmLmpmg03yPGXj+gadfsnWxuBltgXSk0QdtjYHzIYVq+sDkoXdJEoTZ5Z8rk/sc1Q+z9Uraww2ztLrJ6xdD0lRc7vnSaTipfNbdPuLCKd4w/33cOrUS8R5j1k54+mnPkMx2mZpuc/V1U1qA1EMaTTPDbft57EnnuSzL3yKLDnE0RPH8ZUjarXDvuMabhGSSCpiDUqWxF5ivYIoDFcFUHuDFRBJQRxp5E50tg8MK6UkSjTcTG9xXlAbQywDCysRCpVIqGukjwgcwVdUvGF4YnBWo3VGokNUOY3iyRvb4CUaCDgRlgojKoQIya3eC7wI2nIhJU6GfS6Y1ZsJ6pf99epD53/rK5hSjTGUsxnj8QgpBPfe+waSrI0V4CYjfv2DH8OJhAOLR/ixf/Gv2NXv89XvehfPfPoxfusn/y2ukyGVYjAYEkcJw60pH//oJ/ipn/05Pvgz/4Zf+5Ef4uFn/gzjBDIC6SuiJEURc3DfPq5ev452NVo2SnBpuP3ue/nAd/1P/PFv/TwPP/0sf/RHf8g73/UefvH/+jH+5/d9J1F3joO7ulxa3eIv/+ITPPDOB2j1+9z95jez/8hxrr10iknk8alCxhHVTDCZFmxNLnJw9wEur7xEFUm+5h3v4FN/+WFqp7C1pSi3iRLPoUPHOXrTHUjdZv7oLdy5NuAfv/8DPPORj7Dupjxz9jKHnnyCn/jBHyHZt4+WT/mF3/s1Ln3mQeIspfsVOfdMtzl/cYX1tQ0iPceFtRmbVc1P/x8/w/KRm/ngj/wEb33fN/Hs7/0+73zde/jxD/5rfvmHfpCNQrG+volIc3AO5wwPP/kMtx07xNEbd/HoI4/w8IP389hjT/PkySusb1wjzjt4n9HqG4aDYVDnOEecaKqqQhrB+7/nB1ioJM+dOku31+aTn/wIaSwZbM4ougnf84HvoL+3T+QFUxcU7N4GAYDxFetbA4bjAfe9+U2sbIzZmmwzMkNa3TkGq1d54Kvewnd/6weQ3Q5V4fnjj3+Kt7/lbfz1px/BCkXk4cyps1xavYBRQamodYJY3scf/smDfOoz5zn0lvs4ffk6F1avMRpvMK0ty/05opbjtjv20112/Og//z4Eiul0QhIl4D1avDplbaf104TRWIOtDfv3HWFtPOHUygrHd81z4fo6o+FV7rjpVuY7y6/YYz+nW/S375ov1of5wiyinbb8zq+hGV7UjrW1K9ywax6VtfB4sjwlcnFY9zy8+51fw437lvDC4B3gJR7XBBHIndnNF7x6nRxR98E7hpFmvre/UV2pv/tJ/L2vHabR326Yfe71hV7Ez/s3jYvEN0or2ZjeRutDfFIE1RWEPeRL2AT7kjeUnDUYYUllirCOmoj+XBtvS+pIUVaWSIeENakFcaxAOLwzqNjRascIIRjUGtdgG60N5BOldZPI5jEGauNwjnAQRRILBcIGe1hdESct8sRhjaesa/CeJAoRhkmSEgFGiiAPLi3bhUBkEZF3SByVC7BmYQTTegw0FjIlQEmk3vG2O4z1dOLdxDpFVQ4poa63UHHcWOMsSZohnQFvUXikCz53HaWoKAuSdZcgIXAJvCCWCXU1bRLiFEqnAdbtLU4C3hPvAMttTZ6lFKWlHymWOzmFqZlNJsz3lpiOx+StFF8HdYbHgwlYcuMESZIS6wD6FA1nKFIBHy4gyJ/xARrqolBo+CZ1xnlqW4UOvAwH7iRSjMqSaDCm129TyZACI4SlMpYkTul2OrSyEeO6YFLU9HoRnU7O5nCbygalihAQSUtd11xc2WCunZLZjKr2TKqSophRDidsjCrSOGJja0avm5HEipbRaBkgySrSaARZq0u9PcP70BSSzmOsRMo0NHYapkZZWjqdLijBDYu72d6aIoRHu2BfcgKkVzgswgcbVaQjFrsd0iRmOpuiZIIUcZg4CslsViKtDxHhkcSYGiegNFVozvjAYkBIJA5la1xpqZVjMBiAgLTTpp2mpCpFuYrhYEjS7zItms66tCilQ+T4eJtO1sLXkKnQULG+QhQarUPijDcGLyWRkDgTFiE81N5hvUE5hbUKrEDIkIBgJHhTkWqBcFWYuvjQTLA+FKCFLym9D4BtZ5EugP0cFdLWSAFV5THOkQrfyOhppvKhsaRQeBtAo8IHNVWaxGitcd6CFygdUTlDFEcwLQJ8PEjOCATTBt7dNMWQQSnjXYiyVjvpks20QohXNjLYsQpEzXjWNUlFQSHYBIyHxVTsNMtqClOhIsL7KEFoibcBxBuadk06jybAxp2jspY4Sjhy6EBQMCnB5vqQbtdw7MT9WDxpLIi0YDQccW19naqasG/fYdqtPtJBnmqSJCPOYpI4ZnHhAFdXVtiaTDl99jL7l/eQxx1sVJN1IoxxVJXk3LlVZtuf4sTRw+zfvcQNywvsfsfbOfn0aZ5/9Fkmfkp3qceN+w+xtT5l74H9pLqNKWsEktrXXLhyhd3LyyzEEb4cUhVhGrhzqFF44rYkUhHHbzrCrl27OX/pPO12hhQ5g+2K2fQ6K9fWEU7hKk+nkxMlFZvDq3z4z/6clStbJCrlsy+cZjAYgrdMpjNe89rXMN9dopjNOHvlNP1ei+m2YK6bkMkc7QX7Dx5ClFu85fUP8NgLD6FkxK133MHGtQFnL1xiffMktjbs2rOXEzedoJ21kMYFrpeqMXjOPv8c3pUk8x3+6qGPkeRdTp95iVaacuzwYTpZymg0YWtrkyOHjzI9OSLTlvlOzt4bDvDSyZMoVbFw4AZynXDms+e5ev48r3/z65nrz7N1ZSOoGyMNoqauDHsOnqC3vBfvLYsLS3T6XdqdeawpcNZz+PCdbE02OHf6PPGeFOEVsvagDVrFqDzGyCnJZBpSyeaWuDq7gqkkp09dZG5Xm3vuvIfVcxcZDyuidoWzMw4c2M/1a9cYDgZYU9LL+1y5dBXhHLFMWbmyQWUU/cW9GN1idfV6AEVbqLwNRDYdM94q2LtnF/sP7iISgrm5nNjHaK24tjlg9foG83MLbG7NiNOYtNNjdPka1gi6nR7OWSZFgdSe/nyHJMvIW210oZAqJ0qgdoJJNUMRAPxaReANUZKENU5IhNYIEyxHlajDbE4nGOtCwlYcY6oamUu8tygpiSMNInDUdtg/O1HvntD0Q0mkrVEiRnuHEpZICqRwQQ2yw4qUEqEk3r6iOnI4CunJYwFURCINTQalguVSeZytw1LmQnDEjkeptjWymCDjEA1vRRX2dWcxrmlkSR/6Ul4QIZCuQpga521IP5ICb8I+66XBOdOsjQJfR0TEjS3Oo6MAlw7NtcDy8c2aHFJFa1IpaecJQkakSYRIIuI4QSiPt66JoRchut6HmiLqtmhlLdppi95cm95ChnMSpRVVZUiiFGcK2kuL7Dp8glkxYd/eW9DUOCe5euoFtibbdHYfZDTM8LS4696jvPDc85TTks+ceZEszYko6He6PPbk49ResqQThqN1Lly8hKsEUTTD1QIj5jGTYD2Z+Ih3ve/bMW5CHOWYypP1etTlLCiyqprJaIwwjiqNEdc3mBoQOgl7mA2HoZBgmlBUJYPtEXFZ0qkt28MRBtmAzT1xHDf7WlAYWu+ZeY2KPIUt8D6iqiY4VwYLtREhNdkbaL7Hy2oipajLKuw9lSeKIqxzKA2xihHKk+gkDEelwhJqcekdCeHQuwPi/fKHcn/eY3vVKelz/mSn7v2HujyN2lqhW21arVaj8gjpuLGUzGTMD//SzzIZzVjYvRDqeRscD6996wPcfuftfOjf/FuurF5kaX4PKME/evd72d7c5Bd+8oNc3Vhnfj5lz64W+WCNTCsSrRlPPJWccGnlHNgYg0CjqKcFshaYyYhf+7mfZvXyRYRIGYwG5K0u3/7VX8+u4ydYXohwqebErcdY/8wL/Of/8nF0K+G1d9/BG9/8Tu66+37+7CN/xh8/+SLjahrOrA5aeZcTdx7h2sp59u87wHe85908+qd/gm23sKZEhi4m+w7fwoEb76GVZbR1l/d/9/ezvLRI3NL8ys/9PEZp/voHfojlQwexpeOP//KjjFdOMhKOOx74Sk498kk6e+Y5+R9+CVOX7F1e5B//L++nn3U4+n0f5Dd++sd54A1fxWBzkxt37ec97/1HfOIv/oi5+29j+LvPk6UtbFi+WFjcRTvNGAxHpC2F14onn3uOk+evsLgsKEyB1CnjWUGcZszNLbGxvolEUJoSpVpkrRYdZ3nDm9/Anbed4Pu+9/vJb/Bk9QazvE9pC3Sa0haQqgg/BiF1sCR6gSkmmMpQVYKf/dlfpRWleOVQacrWxia97gL/2w//MJ986jTv+7av5aE/+0vuvftuXnjwSVbWNsjSFITg4J6D/OYv/xpq9y6Goymv/br38eMf+AD9dvvlj+X5Tz/J+YuPMdpcY/eewzhv2RiOOXP6IuPMcWa4yQ1Zl4dePMnthw9jkoipqzjSnqOJR8DjMUCsFFmW87rX3Mfvf/gjtFLD6297LeB5+vHT/PanH2H/88/xA+/7TrrtLonaCaN5eWX6e68kX0wJ2XgYmsfVfCU0Dz55mtUrT/It7/0WDh++HSUUiQwRSl447rv9NpRs4i/k3+9R7Kx93nvSNEdHkrzdpt28vq9Omftiz+HVKXSvBoh/7vP7/Gb9F1pzd5por/5++m/3oJrz1Od+OwEGIjkJa7ttmLdfwnX9S95QinVMpDyRArTGG8+sGGJqS5IktHJJJKF2wYMqpcXJkAAijcKLADjTiMBpVIo6dF7CREeFj2WuFc7FVMYjiEAoYl+FDSMGXyjSGLyvKUywqbQ7EtlwjLRu+nYu2FgylWJsACYmeootBZrGHmSDXSt8rkxIPlIJ3nqK0mG9RcdA5PDeoDSUlWFtuIXUEdL6oG4px0TCkmuFRlATomMj49FYJBIlknCeVjXOCGoB1lYhBlZqnA9KiZDGEWw6wgdbkhSestgCrWirVmgsSMh0B2cN3V4AoNlGKaG9REpPEMZ6pHU4DCJSlNZQOYt1gljEbK6Hg4RDhcaBSJDSYwlqtJ0FxzaJbUhJUYO3nrXBEB9ZsIo0CeoP5wS2qPFO0kljtmdjJrMps9k0NK7kTuJYSJjBCbyr2Li2TvfAAqBI05Q872N8i2lVMptWzIqSUTXjyuY2eaSZayVMp9DuJkRCYmSwbkWJxhEUObauaXJtmsy/wKWKtURGcbBldtpUdY1UzWdOiAbqLAi0aof0ktpUjKcTFuwczgmcN1gzQdgIbRJ8PUMIg1YJjgJrwzM0zuBsmIhbY4PcUoERgtq5hhMkA2TcgnQBlG2dCfZOW9LOW0HhIyQRmlQpIiEpigpTlGw3FkotBWniSb3CuBBv700d1G1Zird1cze7wD5qwNYe8EISSRnscTI05FRlsJFCCEddmmYxMxBFoWGjQDepa9ZblHSYqEYJ84pFwBTkBJuR2+GENak13nucteG1wWGaqO7wcwiPzbjAFN8p3hr7imz4KN4FpdJOWpIn8MacadL/Gvupb+yreB8ati78fdV8H17mmzXLsAgbhiRwVJwMMczWGmrnQjFlPZIwEZEywSr9/1L35kG7nnd93+da7uVZ3/Xsi3RW6WhfLMuSbYyDFwLGBAZawIHSYQltSFtCmqah6bQpk2knMEk7DRQITElCQ4Jp2O16xbaQLGRLlmRLOufo7Nu7L896L9fSP373+0ryQkzxkOkzc5Z5t+d57+e+ruv3+/6+Cx6RRUYfhdmjIQaD0pq6LkjICK7k1IlDJHmCj4peu8NgOOHK1Wu4smB1cwNtS6Lfi9UdYgyk7RxrEmyaE6Mnyy2nTp1hbfkWWkfqOEAZx9rqOp0sxxoYlTW2A4cO7eHShStcvnCd/cf3cWT/IQ4cneOOe45x7tJVLp5/hac/+zmmruTRBx6lNd9hu9jm1tIq124s8/BDD5AkhtXNDQbbrpEpB4g7seGevN2jk+XcffeDjCYDZnpdjh4+Qqc3z4Vr17l4ZZ1ev4PSCcsb68z2DL4IHD/9AJ994jnmZmb4prc9SnCKL33xFabDbW4/eYzUBLZGy4xGE86dPwdJ4L4zD2DzjKATzl28yPGTJ0nTBG3hTfc+Skgtvo7UzkGoOHXsODdv3uSFl15gXA55013300ozjB/jsDhdk2YtDh85ybkLL3PlhbOAxZFjk70ok3Nl5QbPff4pynIEzrM+2OLkqbvxzjDYDEycwriEMB4xMSUXzr7IfW+6j5m5Waab2+SLc5IqaMVYud/tE5SiXXqK0RBfaTKdEMqikYg7Kldw4ewFxuMxvc4M2lh8VBgdibFCBUuatCmTmvnFKdvjIfOzh7jt4HFu3dpiWkzo5zmdE2c4fNtxVjeGlK7m6q2rLCwucNvpkwy3R0wmG3h3ifWtIXv27iHsq1i5vsalsy9y95vfxUy/S0IUTx4vBs2JTTh++gDHjx+lqqfUE4+pIJiStY2C8WSMVnDz1iqYdWb783Ra4vHXSnNicIRQk6UKm2lcrJmMRyitcT5F65S0ndMvAg6Frwu0FlGR+GA1RvsII0hFWe/WC4hM8EQjQyVrLM5VBOfQxjTm/GC1bgzlhb0Zg+w7NQLAqChnqGxAgUQriEIr9w14tBPRLkMYOWeDcgQcRhmqUDaSd/E9id4RtKYuxdtIK41pZGhgMViMFllebsRvUKOF2WM0+LgbDe+io1COkDQBFSgsAZOIZFhF25h4B6wOVLGSOscmKBNA1STaY7TDGAkBUUo1qbJa6oLY7LHRUbsSYxw+tFGIj4wGXPQEBzRnsIpRrndZ4ayBLJV0o+DRXnz7TDNgqOvIcDzg8tVr5J0e+72ilbZYXV/nzofewpdefJ7t1VsYPP3+HGU5IbGg0czP7qHf6zAd36KYrmNNC6M7uKokUHH42BHcpGS6NWGzmrIw06M/3yJD0eq3eeWFj3H7qcdJtebsC88wf3Afh48eQ1mLSXJMWmBIlYaDAAAgAElEQVTzFlm3Q2dmhtn5vcLI1QJiGpsw3RK5o8WgjCZNM5I0RSWWNGvhXS0pfipK0EiIVEVJHRVTE0jTlOm0ZnlpCasixqbUdUGWptR1jXMwLQOoktoX2O1V7EpORGNsiqsrlBWPyRgj25MRWkXqyhPMkGg3SRKRzFtryTs9UAaTiNTbGGk8QpBp/v8vH38JpCWlFNa+sa0Ss/pGWBMiWbdDdIHW/jZTV2AHE175xBPc9d3fRqgcup3y8ONv4bef+ATLW9tcv/kkR287wqm77masHLVRtNpdhiub9LN5RsUGSdYnySNGW+rSY2zAJsLmDlHhVMmrVy/R7y8wd+Aoy+df4W/+1H/DvpDiklnOXjzPpfOWv/797+ULT36OQaXozi5y28kDJG24evNVWguz3HbiNq6ur2OjbfwkPdbApfOv8B3f/R/z1kfv5WMf/jB3PfggT73wp+TZLMEF6mnFeHtAq93COc/Jx9/E7OI+Ln36U/zbf/UbqDzFV549hw8xGE44c/okn/no7/LsEx/mlcsXeVexwXve/4PcfP4LtLRmJYH9B3sc6Le5dv0yv/+P/wue/9I5rly7zl99//vpZClPf/aT3H3mMd52/5spzl7nl/7od7HtFlan3H3mLpZuLbO8XRCnnqzd5SMf+zj9/gytWDOdlERaZNpQlyWlC3T6+3j0He8ltZpPfeh32d7c4ud+/p/wz3/ln7O9PSTttImDCbQ0VZwSK00VZRxf1hV5npOlKWVZ4VWNNYFISmos3W4HE2qmxZRxpXjLY+/g2Sc+zmc+9UVO3X2U7/i29/P0732UP/jIH7O1tEGv2yFqTVlM+eznniF2U/7xT/zn3Lp4jre9/T1o5ZkMR3ijSI0m9HImg8DP/dwvoU+f5Kd++AfYXlvGm4r3vuWbONGbwwHvfPDBZql4RrWkHcvCET9aFSOFLzHRMNdpcWpxnuvXV3nsftkn7nvsPt7+jke4cPkag/GEmW5/t1jekbL9mcvw68Ct34CdxB3sWHrOSbC8fGGDpZVljh27g6gyQEvAg2vCgfSOUfjXYkB95ZoG3hBE98av/7M3lq+W+vjVPOi+/LXI17zxgghjTDcKiZ2+LH4VltEOU0n+qyKgYTC6yWZcYzzYJnZmQQVa38D9/BsOKGllm2KiBt1GG090oCyUakoVFMaLYbHRMsIJMcj8OmqqKMycpJ0zrRytLBXJiZF/nZsSXIny4u/T67exKhNwz3lcvUWJp9fLiEyogiJJDXkrRwdJatG6YSU0lD5jDDP9LmU1AeWw1uJ9KcbTtktQAaNSKY6iIjEpVgGkZM07qU0k1Qmu8uigSFJLr9sn0YaqDnjlSFJNqCsCUEZAJQJU+UZmZGTKp42hrIcEF0m0mNzWwZEqsCrgcThKrNIolROpReajkUmHhzKUBAUmajHBVL6h+Mn7VAehOIOS5hZP9FN8iCiVQZKToHEolI5MiwJVlYRo8USiHkIUeaGKYlLsEc8J7RXKSSxjmiSsD7ZJNh1tnVBMxEvLIhNYH8G7SGpShpOC7eGQbruNNZJvtzNviwg9vK6mDMcj8qxFMR2jlCHJUvIkpTvXx9WBspoyKSqKKnBzY8zyYEw3T5lrtdCt5n1KDBoBNZ2PYuwePUnm8aFiUmuJ+G2a/bX1dUbjKZYEpyqMUYRaJsw6Sgyvto683SMxCVYZTISgHLXThKpiZe2KJPuZJkIaS13VoDPquiLXkipUe2HlxQSstUQPq5trDKYj1EYkt2NUYqmKAUGljEclR/szVJUAqta0MDYjzSzz/RbTaSG+Y9FRDkuG9ZjKe/r9PknWxgdHmEzIYkJbpxgiQXmC8xS+JIymZNY0zVkjcSTSKjOKUUHca4lBwKIIjSm1RBdX0xLnC8ZGi4cIEYKkEY2GhZjke4+JRnzGYmzMv1WTTuQafw71Og8l05jIS9NolMbFiNsBd7R4dcQAMrnQBKPQ1mISMf6Wybpu4pajSHaUyDyiUs33CzPSRYnQfu0hMGJUOzkJMjXwTXITlbCrdAiooMiUQTYoj2qYh4oIxoKPBFejE4PzCqsCVlmsNqiY4IwmuhpjUwkiiJ6Z/gx13WKtWGOmt4BWbWloVUD7QKYTkmjRSoq0xYW9qBg4f/4ysXZ4oCynEEqMSZhb6PH4I49w+4FD1Ccrrl66wdK1LVbO3aA72+KOu05z9PhJjhw4yLNfeBomQ1760qsk2VV0ZhlOJmwOBpx79TytrM+rZ88RnMPbiqSTkuSGycgRraKYBI7umaPXa6O1Ybu9RZq0WLp5nYsXXqEKDkvKdDplz+wcNlEMxmPOvfwqrcxy953HObT3EFXlSB6xvPj8cyS5wegUqxKKyRSlIt3uPFfXRqS6RZpobi3fZDzdYG5mD3Nzfbr5IrryaGPo9zrcd+89aK24cPVVsIpXL1+g27Lcf+Jepq6klaSYaJnfM8vZsy9z9cZFEqPxNGbj1jOejrlw/hWWl26gCGAMWavHzZXLKDdLt91hPJwwrqcMx0NWLi/Rnzfcc98Z8bIjknZSjE4xpISoBVeuPV55HCWpjoJb+EDwqrHy0mgbUapgsHmJ7r7TaCuecsaKl1mIntSCKhMee/RtDLciefCcOryfykRatss4jhmOJ6ytreANFOUa6xtjEhTD7QlZp8WehT0MJmNurW5z5x23Mdud5dzVa2xNP8ZoMiRo8FVJcBGdKPr9HgcP7pNBjlMQHcFYcp0xrQeUrqY/1yXpBG7dXKIox5gkwVUVeZqyNdzGe0d3po0lQwXFpHK0nGpCNVKiN7RnZ/FWs7F6i7qqMZ022mphO8ZGppZovBYDfWeCmA0nVs5BhXjjNEyCupY6QKnXVrxCPBljIyNWUXxCCB5jxdA/GqipMaFFJJG9qA6709AYQEWDDwofJSo+eo0JBudAqUR+jtKoIEA1MeBjJAaRhe/4woWgxGMrRlQ0uOAxiaUuK2FTqSYSHkuiEqZR9isfPT4EAdCDpMeGIKaxWilJA7UWguxXWqcEJW6QKshwjyZ5M4QgAwAlrGqb5k0kc0MFSLTUFlGeL+id6bT8bZSRNLEkEhPfYHyG6Cpi1BRFQZalKK2oKsd8fw+9/izlYIjpKlr9lNn5BfJOh1Z3liuXv8BosEK5PsbqLkoNmGl7cuMInQVuLt0gyaA/M4M2OZmpGS1vY2zGtKzwGJLMY1zg5uYadvsmr1w8z+kz34wvRjzz1Id58ze/lwNHjlHXNUU5wdcFig6KgMG+ZnaqNMqDTSSIIkRHK8vIsowsTcjSlLzdJm91CLXDB4c2mjgVn8Y0S0itIk3atBLDnrk99GbnpWpTYJI+wUc2lw1Zakn60G51yLKM2dl52r1+w8zOUThaeZfl5jycafcw1pK1c2yisc0Q2CYaY4VRQIh0ewJQS5iM+oaASf9BDL1f07D/pT9ea6KjeI8B0cp1zKOF2Tm++JGnSO+/h7aPtBdmuO4KsoVZ/NY6ymZcunqVVy6+hDUaYsLFW6uk0VKVjhMnHmJcFYw3NsijIvgpedqhc2SB0yeOc+7zn6YKgcXF/eRJh+3VFfI048xdJzj31Ev8+E/+Df7+z/w0x+9+iE8/e57zV5d58NHHqDY2ePJPPsvs4hwXr6wyHg9ZWVrn6NFj3Lh+jclkBHmH4WjIX33Pt/JDP/I3eOo3/iWt3n5yfZl9c3vxOrI9qCjrCc99/k/57X/xy9y6coHSwV95//cSuy3avTnKrW1ihO3hkD39PqNig//xf/pH1JQk3ZzZ85e4d+U61y5d503f8l6GT32Mjz7zIpeHIy6fu8SNwZDczNLv3sYn/vAptkdD5mdn+LGf+Ads31zibd/zfbx05RxPXLxIHSJPPPFpJtOSH/jxv8mFP3mSF0ZbHD55N6dPnOGPP/KbkCV0rAMS5m67nbUbS3Tm5rj92Emuvvg5imJKVJ5TDz5EgiK9cYP17S0GpSVPNLPtQ2xsX5PUzU4XVdUszO1ha31ZQPc6UHtNYiJGR+bzlNGoRqmMu08c5Wg/49Ztp9naWkOnmjN3P8DRg3v58f/sJ3nm9z/G0198num0YmkyYeHoUb7zP/lhjh0/w7UnX+SXf/E3eODkab75fe9kWBV84VNP8OTH/5Dbju3nB/6H/5qDvX1Qjvn9T/8xN65f4cDifDN+icJgNgaFZSbdWaNyjgYiL62ucH5tjXtnu9y2eIiDJ89wIEX2e+Bwpy1nTmY5ML+HytUkmcAMuwCQZteX6SsXy79/f9j9TIjsmOEqIE8TDszP0c9yvvD859izuMji4gFaeV/qfO/Isnx3TUKTWv069tDrP/flrB85TyV507n6dcDPzhd/7de8m3T3OnDpjc8XdlVBr/3Q3V3jNeIRUX7vKF7M8ks0pAv07l6zOyBvgDzvSvEB3VglzkwF51Ai8/tGPr7xptyhxIdAVQViqMV3wEailsJOeYVzgWhEquZCkKk+MI4R7SBLPK6uhKFEJAZHHadCvw2uMTtUVFVJoi3aeFRI0Aaq0on9ig0UDpQ1mKiJsaYBKKWpCwGCI+LROpWpKo2BbBSD8BgjSZpBLNFYVIDaQVmVOGtRscQHofVjxEMgaiWx7FlGr9WhLCZ08gxlUhQOnSbUfkpVO7QOkuKihKFSR+h1umKM6BNcLKm8wzST3kSLrYKkvaVC61eiZ3WhJrddLDnaamonqWo2kSbckDYNuwftiDFDIxG1MVaoCInJxYhRW1AJUXmCCuJ6H1O0iSis6E9l5osKrpEVKTRCkbbGMzUWG5GpMYqiSsiTWqaTKqBwYkSpIEsic62U7WnNqKhIk4YWymt/vK9JFCwudul3uiTKUoZIUXsmwwKlSmxa0G536Pf7dDoB5wJlOWVSlNSlZ6mYYLZhdeUK3Zk27Syn3WqTRE1wHhdrap/gvNwjMTpJaVEpt1Y3cVFkBkkjmTXWiB+PB1QCKlBNHKurWyzOzEkjUyOpCkkkyXKyJEOpjKIYYnRCaQuSpEtRTFHBoHEkWpFo9TpKpqfVSugUXbS1tHszVPWUVndGwBZtwEIxLIg+YI2RpDtlCCGSWksna6OThHquJtaGsqzQucZ4x8raFNXOGZcjyuCoA1htMbHGu0qm9T6SpgkGjXMVCqjUlKgdIz8lM310DHg1xcaEVDeG9wiz0NqEoORgMlpBsNgkaySVgNZUsUYrkZjIvinyux1pSe1qaufxrk1Qsj6jEpC4nWX4uhbvGVc3lFiZ2guDCGE7OfHAct7JfuUcqmGnmaZRi5jGEF6Q/TSx0BjeByXykR2YUwz6ISq53jpqNMI62iq38aWnziJBDTEYsryF7bSJO+eCkiIzhoZtqGpoUqBiI6WEtAEKU9odQyRhOt1msdhLN2/R7baaqO+Icw4Xa5ybElUXbVKSLOf0ydNYLJubS1y4chUrrh94F0msot3KqAJoWiweOcSRY8dZGazx5B9/lKXNJfJ0jj0H9rA23ObwgcO08xlu3LzBxsoytatQMXLl8k2KyWXSVCQxSotEOWsl5EnKyvYAYmA8Lbh+7Rp52qPfMGrSvEWWZYQismffAsPJlPl9+ykmY4bbF5lb2MvenuPQgYPcuHqN/sIC1bQgb7Xo5mIIPy0r5vYtcjqF61fXOLQ4R6eTs7p8gzopubZ0gxtLGxzaP8uRIxEdNEYpiqqi1+0yrSpwnjtvP87V6zfZ2FhFnRJQcVQNaMcuz33xGZaXrlGVjgP7D1NVI7q9fQwGjuefeRrbyjly5CiDzRWwhtmFI+zZN8to3TM7M482CmtTvvDclyiHmzz+9scph2OKEnwNNmpi0ESlJRkwRkICJknxW4rhdAS+InFtHI1XWB04uHiQfjuhmwvrSmuJmxfQvmGNRkUspwy2p9SVJwZLUpaU1uLtlFCXRA2olOlkm7qK7N+/n4ARA2IX6LQyDiwusrZ+i0tXrrNvZpY3P/Jmzl+8ytr6EsZaqsYwWvavQB0cgYjzkcrVTGpwqeXi6i2q6QRWYTQp6Hba6KBR0XPgyF6s1pg0MB5PCAaiBhcCaPBKYaIBDCbJyLTB1R5tNUmSiLSsSUSLUaTqpgH5rVHYoEmThKKqCVpi3nemnFH0X02R3BSeaicEIxC1bsIjG3Znk36K9uyEQKKR9EusJJE2RaFS4t2kqFBBhlYyllAEFN4FVAzCat6R6aKbwA8By40yGKuxxmKTBB+UmD5Dw8IUsDw43zBSEHAxCFNq57X4EEgsGCXpiz6AELcCsSwxSn5PbRJC0LgggQI7Fqbyu0jSWIwSruJ8wJKTxDZEK2C6EmPz6JWA9EpMqQNBACVrMSYl6hQbNNZqokpAaWpdMRmPCdHRaSX0+20mkyG1gq3VIZWr2XvwTs7c+wAvP/8lXEhoZSmbgzGd3FEU68x1O3jvKEaa2c4cVYwMNjY5uL+DJWF1e5NabeGrmjzp0dY5w3GJtQnr6yPqSvPSi8/wtne+l3vuvZdWO+XWzeuMJkO0qRhWA8arI44mR6ExwNYkwk5VEHUCTsCaqHakGg3TtelDQgwybGn+hODYSVWKeLwPwspzldSb0ROcaeRxcubXjRF78CkKAT3jLo3WNFL2iCbIkDW1ZNaQJjKUS5IEa1OMEaawtZbN7S0xpqcpPr8eCsG/5/EXB5O+XN/xxs+9HjbaYQa+1pz9BZ85vp4N8PX+Hrur/3XPHyGASizOR/6jX/hZPv5rH6Tut4mm5PPPvsA0VEQVcbpCW03LdokhMhmOsMbg0xa5zbh8+arIi9OE8XSA0ileRfYdPMy73v3tJDevUOgVTAHveve7SYbr/NaH/oi/9WM/wf0P3MXSh5aZ3XOApZXrbA1ysnbKxbOvYHWNTjSb20O2hufIrOVN997H+o1bPPzQg1x4+YuMlYbNghAmPP2J3+XbPvABjpy6g2tnX+B3Pvjv+Mj/83sMqAHFS2df5bf+4KOcOnUHb337O3FlxWBjjbSVor0jTzP6Mz3e/+3fwe//21+ns2eR6TASlOPlV87yK//HL/L4I2/nkfvu5dbSJdY2t3jq2bOktoUKmu/6kR/Gb094/B3v5pd+9h8wJHL2S6/w0MMPo194kZWbN0nzFJMo6sJiKvg3v/6rxKrip/7Lv0urB3Oxxyf/4F/R7fbx25vYmb1cPnuBv/cz/4gnP/Z7fOnpJ3j26T9BWcNca5Y3v/U9HDl4hGf+71/h85cmjAZj7nvHd/B97/vr/PSPfRdh7x78aIzOW8wdPs2NS69gOjlaRTKjCa6mBpbXNynrgu7sLNdvXuHy5cu02n22RwN+6L3fz/7ZOVSSEMaOzz/zDHq+z/75WYZuyF/7zm/nx7/tO3GjKW9937fwfYePUA8K/uX/9Qe89b1v4UO/+htM04rRcMKHf/3X+Ht/+79HhxYPH72Pqy+dY2t7Ha2gLMRLTZsMrW1TPdNMZg1VcNw5N88Tv/dJntm+xv/yd/4O9504tJteqpA0MR3hzNEjxBhIdLbLcdoBVXz82jbQUcm5pKPaBXu+cr9o9kmtX7eqNYlV3HfydrZunuL+B+7m0MGTEDU3r1/E2Eioppy445E3sCy/mhTtDY/Xfcg0W0lVe3YTub7sC7+a9E0p1QA9f9bu0wzbGnNvIX80F7VJkIvNIIgoyhTxf2pqiub30VpYiZJSJ0xxgpwno+EYNVrGdQLVaEydO5QGS/5nvK4/3+MbDii5MlDHiPJN1LzVGCvmlb6SgzEGRWos6IiLIkVxeKyyeBeoMNTeibl2w0LQ2uBjRahFn6wEi8D7igor0b8+UvmIUxFfC6CQBNVMBaLIrCJEHUg9WNMki1Q108kQtEOrIBKZpilUFGKkhm/eUJHI4QMuNPQzJyBWVXtiVAJKuQkKTXCBoAspLrRih4qviU0qucjGYogNiFUTVENFb+jeIiWLlK6iqiVlS+uUOjSSM+VBRSo3IQQwUVH6SmK7nUYpiw1Bmmah5BC0GMyFIH5GWkVslhKj3JwqOmpf4lyk3SR8BSPFqCbF7DQqBohhNyFNqUhqFIlyRO3QtdDOx76i206wKkgqHNKcozQ2Tdm/dw8zlRh9VsVUmFZREu90s7BauWWm10ZHTYXHa41J5Dmd91RVSagdNklJkhSbGjqdjF63g3NQ1DVFUVKUUybrQxI1QGcJnTSl18pARUyZ4jOPTmuUFrPNcVUxVCmx1SFVBldOmj3WCFAS5b4GzWhS8NKFq7jo2bd/ho7PpKiONRqLDoqoKgFSlJfmp0l0qaOYcUtSnBR+WgsIpW3FQBdkucHoiiSxVHUtiWahpKwU40qYNFobtDUE5YCazICxHrTFRo2LCbmRRJB2npNnJfP9DpVLSU1CUdf4SlMU0iCoKMk3TkUyE8WQPSgyozHREKuAT2uCjZgGbY9IU5M3scM2abxBohfZh69Qzoi8UClqFEpZlDHiA6Ll+zXgazHBT7QST6foMU3csUw8NMoYrBEfK41tGGAyJddaUm2gKSgVeOeE4aCEnae8w2lhIKBDE/f7xsjT0BTTTV2+c0qKRMEmaCRFzgdFsMIeWZybxWZi8myVQlndAAFyXSWlRxgJPkZsc5Du2KaCarydlOxVHkKsyfOc44eOC0PQynWyaGyWYfOW+LaYiGrkfgrFqeOnqOsjmKTFiy99kU6nzexshyyzXLx4iTuOteh0O7SsEW1/WdDtd7n/rnsYFwnbW2u0kg5L11dot4YkaU6/O0uInsGoQGtLZmsCkclkm0SDm5YM6saoNIJNKhbmeigi3U7G1rjEqci+AweZlFMuX75IiDWLe+ZxlePGpSvsm5/j0P557rnvQaqixLUrbKZJbI9udpLJoGQ8mVL4EQv797B/YT+rK0Oef+ZPeM+730NiLfeeuptJVbG1Oqb0A7I0opwlWENqJAp+dmaON93/CK1en7neXuYWuwQNKhhptLRlYXYvd52+i/FoQG9mlul0mySbZW1tmypUjEdjpsNNuu15OgsH2DO7yJFDiyynm+Qtw+zMXsbTFepqTHemx8zsDGXDxoiNIbxSjVymAWGCCpigmA6H9HLZt2sdCaUnGo3Wmtn2LHliJPHUpMSohe2BxiopZYLymDTH+JQqTPFGmL/BQ1UXxCB+UQuLCxzID1JWI9I0p3YKk7ep6wJPxCrL8UOHubaywuWr19ks1tlz4DY2lhOm07q5fw1ExWA04crVm7SzTUJdUNVTVjYC0ackNuITORfbJiVrWRJS2p0Oi/sWSIxicaHH2voGZVngnIDAaEW0mojBxBTQsgYS04AcFudECuy8I8aAbVL6JOXKoBLdzEEacNg3ax+IMQhw1TSAwgASH7AQES8gJI0yeI8LXiRsPpIog46W6B1KeWya4l0tXxtFQi5DFSNr2kfAEWNNolJS3TChFUQlAQCaRMJJEW/DHflvCB4fk8Zn8LXiOxDBB2EsGgEBnG/qCCI1ihYCyEWknpD3y6O8xQUxGI9KUteCU40huRMPSUJD/5f9VgzooqSbuhqjWgSqRvItBa1vZkNqx0tKXCQJeqfZTtFBi1xRJlhMBwOSdoe01WZ95Sa3Ll1hdeUWra4Ygx/Yc5LFPfs4cvtxVpZvsTVYJwTFxtoKyii2hyV9k7A6HKFMF+cUkQS0otdukZnI7OJetidjWqlmy6+jjOPy9assLC6ijWYwLtFZh2vXL4FO2XfkLl5+/immMXL00DGoYWtjg6AjBxb2yXAiiOwwRCOm7dQYq1AxaQZVERcDTkestuid64fG6ERYRUbOrRhFvmlMRtCaNBFW2I6fl2m+Fy/hEjtWAYlN5LxV4onJjpE8sZFvVxAVIXqci8J2NFpQ26ilWVONdyHqddN4SQr5S+YXfeVjp3H76pjS6/77ZzRxDevqz/N4Y8rUn4dtJcxH8XNjV4ICYIzC1/DuH/1eKSlc4OTeg7zw7NNsWdtYBUQqX2J0St7ripIhSairwHTo6C20mI6mKKOoxlOszenEwDedPk36+Hs5VXje8sibue/uM/zaz/88Lir2HzzA2VcvkmiDsl7kou0OK0tXWQlbzHRaJImiDpoQYGZxjnK6wdpojRcuXuTBBx/mgfvu5w9++zf5yIc/wwfX/g3Hj93LgRN3sHj7SX70p36aVlXxv/3rf40zKXXtMInhAz/4Ac7ceTfnn/oU/+v//j9zcWuEtZC2Ut7xjndx+OAJFlptpklKf89eXIws37rBC9NzjF3NucvPsXeuw+K+Pre2xuw/eIxiuM7KzVUYeravrXDsxH3UScK1517msUceZ+PqLeoANZLMHPwUfI1SCTOzPb743Gd46qmnKGqweZ+i8nTSHpujAc5mfPpPPsRHPv4RkjRDYzhz5gHe89g3881veRMnTxxh+rEP8ryCVt7loQcfIFa3sGkLrSKTqqbbbXPx3DM4C66UFGu5KzS1c8zunUUPFRvDDRKTUJWBu++8l+l4ysqFsxTjCbQsx24/yemTx1ii5ur5V9Ea1tdvcP3mZaYvXWTh1DFMEXjpQ0/xgz/+PWzfXKbC8+7v/X4+88Hf4tve8S2EGEltygMPnuHVK/dy7uINHrh3zOrNFVaLDU4fO8Vspy9eusRdENwEOWNarRZ/+3t/FBpWk4QnSY9QVAWlq+i0WjJoUIK9KB93B+Tma2DSO6DTtCjI03SX0RPjDgD0Gk+HKNL6HbarSNMVBw8d4MCxY+TdDlmeUdeRJz79JC+ffZ73f/d7OMEb1+/O4/VMpa94Xc3HjdZkWd4MyG1Dqmj+/hrf+/rfIcBuvd+MqZrPQYwO7wVf8K7G1QW+wRVqJ6modV0ynkwoJmOSXNHpzqJsC2Mt/Tyn3ek0DCzZn11dMRoO2FxfZ/nWVV46d47By59n2L6dyWiV9sxeUqO/6uv+//r4hgNK0Vlh/0SZiCRNspfHIZ6S4l1UOjH/083UwwN4SWmJAVwVMEpTTCqh0NmItQLY1DViNomDUFNjwZUNJQ1CdJLSg8EHcShYNLkAACAASURBVAiqfVMARvA6NAwAaQ69c1R1ENlLIndpIMqUc4farhsWTmJk+qNAO5n6CvXbQzMNFcqg2p0USkMq0hyZUsoN+Xoi287hUnmHUoHgnaTBWJm8Bic3nFaiiVaJNKax8dpRyhC0JInULkJwFC6QJDk+1qAiyiaSHBKFneV8QWjYGgpIU8ny0MjiNFGKzOh9Q7EPeKYkZKioUUp+DiGgmqS9qKQZ7uUJWmuqWGBQuBioqxKdaHwpMcwuBvJWzuzMPJ3eDG3vqeuSlfGYujFRRyGO9FGK2bqoMZkR1n3TACgtHj3I20EkULlKDNUxpGmKtgntzJK3MqhbOO8pqpJpXbM5nKJioHKe7XFNUZX0O52GkaNQ2tLqzlI4CMmE2vlGNpnQzXPqumIwFi8QpRXDqePc5WVMplnozaNNwHtJRwihJhorzbWWZsUqj1ZONpUAMWp8dNLkKGkqMyX+GGiFsRkGha8EELXGyZTbV1KIGoNRkiDmvaEkgtckBlztZEJgNDgx2SvrKSHUKBXRJqFlNDo3tFNNWWiClnvGB0cZFFWoUF4xNJ4qGLbGFXnMsFWgKgO5FeaHjZHKO1IgGk9UIiNUBGxQKB8JRiZ+ppmc6xhEXqF2UmuiMBJCTYxBpvtKKJ3srOHdlaReaxCDoPoBaUK99+K9lAjw57wnNVYim4NnZ3Yfo5JpehCgieioysbstgGQhJr6mh2gbHwCACoU0RiM0k3aS41JhNmlkWLdIM8BoQGVm+YxirHgDrjsBC0TFmP0Ddjg0MriY73r8SIMDN1Ib2Rdeu9ljSIHobg4eTILxw4dYDgYMplusHeuT107NjbGvHz+Je48cQczvQ42t9x88QY27fLqpWs89MD9nLz9EOOtjeZ+n7K2NSSzkiblqkgVAiYznLzzFH/62c9hE4OfbpF1OoyGDhsNxinaWYfZuTkGoy1WV2+Rd7sMB0MGgyExGtZX1/BLy6RWc2TfQc48cJr53j6REhuRNxsioQr40tPptujPzTKtHDFosjzltqN7uXr9FSb1lG6/xd6Fg9RB0WtvcvbcmNpFOq0USKl8QSSgrObggcMEInffdSd1OZFURDytLEcbxdHbj9JOuuyd24d3jnarR1EXxFDQbbXJ85S638IVFeNRxXhzmxuuIDE5zsC0KklbHarJBof37mc4HDIpSwigE00ytrTzPu3UCqihhJmAV+R5StZtoUnFcyL3AmIqQ0xy/ABcLCXRhCB9IUHYNjHiI7Q6bbJWQpppbNLBR0+qIqoWL7w8QFkFknaLmf4M07LEVQM6nZwYUhJrceNAmjtOHj/M+YvXGW8PSe0NbIzkiSJ4C1HjfMBgqGtP6UegPJEKbSytmS46K6hdSjEt8CRkaU6ico4ePkRqUwiOVrdLNZ1S2MjmdsV0OkWrSJrahg2omlRIaXajj42EXthZMYpHXl3XuFrYHFobUpsJQ0A1jBzfDLsAlMLVdfNzaIBtAXx3z2wV0Sh8HZhOpygCVakk0j5UpDFtWGEygiE4ielt9pCyrJkWpTBFvcZEhTY7E1oJKlBElBI/wYikvNZ1QVUVgMjfjW5qE+G578qAlWnkkNHjXCCE2Nwrsl8EdgZcunme1yj0rknNFKNgjTIR1Zy/zcvfre3FyyEIC8nsXHM5l1CpSPxknEiwwt5UsRnBBqkpJNYkEFUkGi/UTe9ZX13itjvv4drFsxSuIO91OXDoNpwT2YFH45XsP1VZ4upagltiQh014yowmmakCSSZIYYptYJMp7JnzMzQabe4/egJXKjwbszm9iajSYnJclKVM7Nnjq0r1whdw9L1y7TnZ9l39DjXl5aEjZ1m9DtdTNZBJR1CMy7U2uyGm0RM837KtTNNLSk4TxNV3ez/jbFXc48ptE5RyLUSy4xk9302VhOCAFcBYX8RZZKuJdYUg8g2vZdBaFQRbWzzfy3gtdHYxrdSqWagonaMpOHLGzC186FvIKr0jZTBfdWW8auBR3+O53vj63vt+76+17ybR9s0wTvVCrsft4nG1w6UAJLtPONQ3uLmdIqOVoaXrqbb7hKCZ3N7Az8doJSi2+lx8ugBXvniWTAQU8CXxLpgEiMPP/wI73/8TQQFbrvgroceZvbJj7HpHJ08pyxHlGVN3mpR1VOSLGHPzD6OHT7CK+e+BE72g7WtVTa2b0LM6GRdHnzwYR666w7+3a8Omdmzn83NZZ5//vPcc89dWGsYD7bRnZxer8t0PKUONVtb20zGY8rhgN//F7/G9fGA2kXK4HnLvffy3/53/5AP//Iv4DUcWNzDgX17mU4KlleW8QouX7rKtUuXSTPoLy5w90OP81/9rb/Lb/78P2UwHPHX3vu9/JV3Pc77vutbmU4d5//P36aclnSKAYNJgYuOrYEwv1SQ4f94OuITTz4FJiPr5NTjEXuPnCEdbrF66ypzMzlPfeoJFg4eoZqU+MmE4fqGgD8Lc1z9+Kd44uxF1lfWefCxt/KpP/4kv/Lc5ygygxqVKKUpJgVlPQCVorynba0MIqym1eqxf34f1wYTEpUSMEBFPt+lNztHd3Y/zz77edoHF+lay82b11hTmq3hmE6nzcsvnuUP8z/iyp++wPf80AeYfew2HvyR98HqNr/ws/+E+XsO8zM/9iP8zIXz4BWZAmUic4tz3HHnHXz2uadZ21ona3WogmNtOqLf6srQQEmCtUKTWEAl/PAH3o9GAmiKsmRaTEFBURcsbw9Y3VrloVN3kWctMpNQOSds42YftEpLOMCXyWd39pU8k8RggKKY4L2n1+u9ce29Xh62M+QFWq2cI7ffwVyvg1EZZJHF0/dyQGWcPP4mwPDVVLtfDRCKTT8vRbbs2+1Wq2nXxTOY2LBL487+HXf3hZ2E6aoqKIqCoiyoqhLvaozW1JVjMi0oyrKROyuci9RVga/H4AO+jownE8bTMUorkqRFkmWcPH2cAwcO02nPkiQJIXhcXTKdDNhYW2ZzbZXlm7e48OoFXj1/keW1NTa2h/R6PYbDfYxGY/pljUnSr2P/+vof33BASdQ/CTtGdMp4TAx4r1B+pwDRhDpAbAzslBGZWdP8hdpBtLjoUcFhrET7KSem2S44MaVWMmHxTgAkFyUcR6uE6IS141GNN4EmeicbelDy+eAE6YwQlcJ5BZUU4s5FjAkQHaYh6O0ARMKgFbZRDBFt5bm1bowLnUxFXeWahk/hvYANBKEFRgQUEUq5QkWND5HptEJrYXGYnSmUkXjYaCTxSkdJfAnBEXb0qFaBh9pVGC3GY64MeBuJocKrSB5TIgEXHKhAFZwUPVpjVUKMCWgt3i5RCaVOeXwU8AelCb7Epl2hT2MwoZHdRWFAoawAXEbAsNJGDBNAY7BYa5rj1WOba1ZWNcOVWzJNdjW1rzCpJQlSUEflsI0Y1EdLWb8m55APR0nRaUgrxigxGY0CFlTVFF1OMWmCsSIBaqkWedaiGzxFMSFNFaWbMJ5MKYuC7daIVpqS2YQ8y8iVpd3uEbMOiU0ZDQdoa5idm8Hi2b40wiYp3U6bYioeTkvLQ/b0R3SzlLqq8VQURsypUSUmS2T6HAI6KAhOpJWACzVeRbmvCaQN4GGQejsxitQqvI4YFcXIvImxlimwQaepFCgu4nwQ35Xa4cuamMh7HJ0iwcoEIeiG1ynJf8KYqMlsQiuxaG1BW+o6YzqZgvZMByXOG4YjTaIMZV1T6YjSFUnaITpwJpIlgcQIQGiilMw1XiZ1SsBcYk0Mye7UOkYlniWIL5hSAuTuMg2V2p3MR0AZaWK10Y3abmfDF/aAb5pGY+UwJAqjqooQ9Wt+JTsNePAip/OhMbgNIk2Rmy7uFqkqIj9XVHYYq0lbOcbIlDf4GmOyZs00XmNNI+tiICgt8/oYxU8tipcJseEUBDmgdJCvUapp+JpWjRB3tdLKiM+bNJCyJi1y0+gmuWrvwh7uOFXxpXMbXLpygduPnuC2244Qg2F1aYV60mHuwD42N26y78AhLl+5xsUrl3nwgYdodVp0VZvZ2UWOHjEUZUE0lvWNDbZGE145+yXWN1dIUlAEfMzEEyhW+CpSoJgWjk6nx/WlW6xsrhPXthiPC+raUztPMZ2yOD/Lo48+Aj6h3+qJtj+3VGXJpBhjyojVCb3+bBPlm5DYFI9hc2WJyXTAkUN7mI6mTKqK7fISC3N72d7cotfLabf6jWyqCYXQiEwpCCiuvfjSKBzRNIyxKMw8T8BEg1MC3m9srHPt1kV6/TkOHT7BwX17SIzGVZH19Q1Wb91gMg0cPHGUweYGc3v3cmuosGmb4fY2m9vbdLodli+vsrayyZ7FvRw8cIhO3hbg1ygIBh+lINPBkwdNdGKQHLXHKXmvNYbEihcb0NxH0tTbmFLEJt5eC3wgwGuUcFQrQwljbaO2UmytLeODp6wkGMJ4MYyuHXSzDvP9nHU3ZTLYlEFI8LJLGbk3Z7o5hw4tkETPpJxS1IqKmmG9CqHETXfAW0M7s8zOztJqd1EugjICFtSKSEpVSexyK+uQ6oQYhP8h7D5PWZbSJDaGZ0ppWc6h+VBDt68bU/7oA857ATu8b1iJyNoKEuXuvEdbAzt+QaEBWSTWDKMNWZKC0dhiKg17lImn1gaaEADfSJHFzNqLh0YjSQqqydGJsucGJUMs2SmkcI0BnA+UVU1VVyJVVwkaRWLsLjMzeCdMoEgjv5Oiv65rAcuj2fVO3AWbG1AnIomUMQa5lhGir4kxkRN7R1qnYMcIQwE6KspKwLEQZX2kOpczDfPa/rzLXg24UFKUY3wtA7QYfONhJcOQ0sPivv0QPc899Qm2yzGdrMNMr894UBDjiK2Ngu3JAGdTMRn1tXxv0PRn9jIZ3mr8ETXddouynnJg/14ym3Pk0Cli7SjHm9RVQSTDYrHGkuURbVOOHz3K3P4+flqwsn6dZ57+JNYkPPrN7+HEnZGNm9e5dv2LxNRJgEasm+so9g54D/a1Kb70H413n0w+0cbADoOoqYyIEe8CeI9OJbhld0ipaBincj0lKMKjQCTlO6wkLV5JwmxrgMRmLYBugCqD1nKuqwaAArMbVCPeYg0NQL22pv7DP3apCV/z01+BKP0Fwaq/KNi1C0W97sfsvMQYhWVvbNJ8INDZu4ejB4/w3OUBeavFwsGDrF4+z/bWFp5IMam4/cRJ9uQ5D5y4n3d861v5+z/5E5i5WUbbQ5IsoZPm9ICqmBBcA0iurZItLNLpddhYXxPw0yQEHzAmI++mYGe59847OXPmDl5+5UXq5v5x0ZBnHe67+yH85iZZkjNc36TfmuOd3/4+PvHBdX7n936HarRM9IGNrTE3btwS3zQv1gKraxssL68yl6TcGI+oYk3lPcpm3Lq5xCc+9Lv8s3/2T5nMdNg4+0UG23u5tbpBHSLGBZSBynlmFw8wM7uPb3rb21lozXB8/xE++soXGA82ef7J59E51GVN/vBpWpnh/LUlyl6fsLYGNiHUYtuQqMZmotViuDXkze/6K1z7089z/2NvZ/3Jz3KjvUS/3aJ36Ahvfcs7eOKPPsLZ4SXWlpa4cfMGn3v2GbaefZpVv0lnIePVi89SRSh9hdUJSgesTkC3qasSVE1uc7TJgCm+Ljl55zGOLBxk+cYNcqM4c9e9XLp0jh/8T3+UG184yyc/9RFeefkXeee3vo3t8ZgH3vQ4H/rER2S/9JHZvE9mcu55+1s5dudd2MaupRhWXL15jfvf/i4A5g/Occ+9D1M7J0bd0TMz2+XeUyc4ML/IrdVNTszPs7y5TNVbwFpLapPd+1SxM8CUIVf0kas3lnjis5/Bx5Kjxw5z5PCJJsxKmMzD8ZRbq5ssLV/hHW95HO8dkxDJrbA3X78WVPNEpgnBCEEYO1U5Jna6O1skb1z8ryHbCiFCnD56O7Y5fzWBb3n8Md752KO0jWnO99efR1/5eH3C827AT4NH+whFXVFXFdH7/5e4N4+x7LrvOz9nufe+vbauXthkc5VEiuImWaJJSvIar7FHsZXEkZfABuxJEAzgIM4MgsCZGcHjzAyyIAN4MnY8HsMex7HikW1JlrVZi0VJlijui8gm2exm792113vvLmebP37nVVPeY8vIA4hudlW9qnrv3HPP77vinZNYlXnN/nSKCx6jxNLXeY8LkaZr6XyHUlII4roOlSL7e3uECP3hhNWVZcbLywyqimJpleGgR7/XF5AqBoKKjCcTJqMJ1lgW4pXoYXNzgzOvvMyV82e4cOEsL7x4kiuXrjCb1tRtyOUZMjfZGAhtx3w6xbc1rve1s7vBXwOgROFJJgjAkAxdisKWGIMioILCFhqSwQcvA2ABWiexUflICIZeaeg6OSKrKHY1D2gjqo0A6CRFUKRESNJ8Fn1BkUOPRZ4e8BlsILO5Ia9Mk/LPpCMm56OQtKgZAsK6KTmkxxhFFUMkhqwWQIY+57M1SGmsVnRNx6CsCC6IVagLuBgoCgNEvO8OLgytLbawYncLkeAdWieqfkFVWZwD7wNd24kUWuuDlPqkxYZGZqBiEptfsiYHeCZqP5fa8wgFBV5HOt/iotgNJa/HkFTAhxZFQUgalCVpcCiSlqawXmnQqiAojcZj0+L8LkCaQZDaQgtYFeMAqwyTcUl/PCG1LdoI655iIPhIO5/Rzmo8ovqx1rIyGbO6YnEx0DaevZ0NCqPpDUoUIWdTZCn34oLXSvylgLZSlSwZQgAGFQMKD0Fyu5IxOOepehWmZ0EFxr2CfmmJOYy56zpp60qevqpolcGXFcXyIeqgSL5m7jWrPY0pDCHJOlpeGnJpa5fLG/soznNoZSy2i8251C8nTWETy5MB/f6QcV8yr0IIGFXglQTUKxIqSFtQjGLpQtTuuc3H4F0NIUkGV/AolQSkVIrSSitkJFEYhQVqlQh0JC+DShE1wcmAE0nQdbLpapWtqBGdJGg9pYgyItMflBprBzRFzfqkR1A9kjIUU0cXInXdMMTQdjIwND5iioA1mlKL0qZJgTJqQkgENKhCArcFdyXFPPTmAVFbYVblZ0sZUFISWJu3H5mDr8lXjVYQdLaQZmb4NYf3KNO2sOU5MDZB3iciMSRMUWQQWEMGbkhJ7BwpyT6mNXjo2ZLSVBS2QqtSAGQv9s24iIdSi5u0AGJyXo/ZlZBIWotdMcUDUINkslRWBk+VD/2KRNIZmVagoxFLcdmHqA8Y8KjB5GuBlOiXJeuTQ9i1w9xw/BYmS8sopdm+ssPG5Uvs1R2j5SEoy2hUcujIMS5d2kAnR6ms7ImIvSKGjtFoyJUrlyDVvHpqB2WSWGWMotmvwcesuFOcuXCV5UNn2NmZ4WPB7tUdDIoj1x9l1O/zwskXqPoDjhw5ynS7JvgOH1razhEIGBXp9Sv6VZ/93X2iyg2g2jDvHFc3LzLt9ml9w9PPPS3ZMCjufdNdbG++xNraKkVZ4p0XpakUoy+wRECDzuCC0qBlmFMxUqZwTUWHIoWGpt7j0KE1XnfbXSwtrdPVDSp09IeWyfIKh4+s8dRTz/PiV55HKY1rZgSX8K7lpjtex/E20HroWhgvDem8Y3tvg6pYoyyGxCTrXuuSFBQYUZwlFWT9pKyoJQoYYXso71BRcnlAcnJQuY1SGUwqMCkJkZHES68KOYAlJC8soajKHgEB+sjXntTEVxhlWV9ZZbI0YRYMp06eZOYyo6lBBXDOUc9mhKKQsoR2RjCQuiCKHS3AndYFxhQ4B3vbDYXW9HslShlW1w6hjGI+DwwHA2647gbA0tSisAhBLERd22RlTL7OjQINtigEEFaeFBu886IgVHLv0EbJfTSvgZib2WxRYqw9yFuQ5aAkO08ZiA0xeSFJrJJfRwVK00frvJehM2u00HrI+9GvepA6vK/pGjms+3CteUby2RafnUBpykLsgCk4uvksnx8yQbMgxhY7W1ywqIqqqtBWbPCSDSdq6cV/Pn+fBWNstKGsyqwSlgr7FEQ+tWi0DJE8AcjrZpWhSKJ0SQapqhd6B1TOdMrhUkKYRFxIQn5FeXkUAVJBDGALqbX3PrCyepiRSWxf3USpgsK0zGf7TGc7eNVypDvBqVdO0SWYrKyytb3FYDxhUG3SaY9JBZPRMq31HF/qsT8rMLYipcDGhdPMfWB57TjgKIs+wWsmgwFLwwG+8agq4UlsbZ9nPFji0vkz3HbT6zk/m+G9KF9nsy1W19YxSpFUtvMpIQZSvpf5rsvWB1HSSUufzmy7gG1C2slZVlS4HVpXeKVytlfOItXZ/ph8Xh/pYG0plQRcUlps1QtcKGc6XVsrSdRtGfBKWqzJNq8PrSW7S1bUtbHytX98rR5/luXkT378WT/An/88f1QR9VoMSn3V7/unPsFXoUN/McGW+lN+tAP9EnHecPHpk5ze32bWH1Nk4LGb1xKJoMRyOKtrvv9v/z3KS1t8w4PfiBoZyuVl6gA+KgwFW/Oa/++DH+boeJm/+U0Qp45HP/QRvrC/D9oyb+ZoBUZZ+mXCFop+VfG93/tuTn3pUT74wd+i9uJuMMZgTY/15cNcf/w6Ls/nqBiZe/hH//Sf8OaH3s66m/Hppx7j8198mO2dHZRZ4sFv+Gae+8pX8MYQXMd0OufDv/d7fLje4ZlTL9F2mqNHj7G/vcvWfJ/3/dovcTl5ep3DGzh74RIuiQAhhpagBZjf29th4/Jlbjh8E2E38MVTT2Nt4snnn+TX/p9fIfU8mshoPOa2G1/HY4//IYW13P/1D7CxcYVXXv4KpleKgqRx2BCpTOS+29/I9NmTvPrUY5x+9SssHVqhmc94zw/9GN9630P84W//LkduuJFQT3nqicd59qkn8HGPLjpiDMz2PJ3K6lI0yStRjMeaUlkiEWtKgq0gdlitOX54nfFwzGgypFKJ4+uHefMD93J8eYX73/39/Mov/SJb3Yz77r2Dp195jtUj65y/cBY9HNPWDZc2LhO05+3veCfaajZ2tjDlgE8+/hTXPfRWXvf627M6VbM938QMl9k9f5nrrztOWfZ59ewFHn7kD3nppdPM24Y77rmT1eVDHF1elTwjpfJZKKGSwigrLtsQuXxlk89+4XMcP7HONzz0IK8/cSuT4TLD/oCoZE0bW7Ax3Ycks2xIiXObGxw7tMag7LHIjlu4TmQ7FJuYURrXTqmbAYP+0lddfungGkzi8BE5EZXNbhXkZx+YPE+pr77eFvtAyn923omSaD7FAk1bs727z9bePp0TN1Rdt2xsbeGahhQDpiywpaXQBm0MRVnSs5ZSgSlLqsGI8WRCf9BnMhkz6PUBJarpbs54aZXReJniINMp5q1FlNdik5VTXOsC05199qf7XL6ywebVK+xsbvHq2dO8/PJJ9ne22Z3OqbuIJlEYmSFtfn1VCui8xzfTPZp2SuEmf+6u9V/y+JoDSrEIudJeJNfCdoBSAtzIISgcHHZSlJuZ0YKgRS9DVgjugJmPWd0TlJJ8JqUpgBREwRGzzUqRiAFMWZCSVPrGGLG2yCtQbtZojaVAJU1KHlDEICooUeVkdlMpOWDqXJuabXMuCHCitRzIYpRhyaIwuZbXZBVRSomiKvBtDtRSOXA3K7USohzRUW4pIUZCZhljSFllI01k3nv6vR6mKHBe2M2itGhraLuO4KK0bfmFuzPhM7Ck0bSpE8AuStNUigEXQBeAMfRKqSU2i+wYGaExJhKUpnaenu0JcGYLVJDNYaFW0nGhqtBYJEg8uIalyQBVKJqYpdhJS4ixiWJ5Ikv+FfRGQwbDESpKy8nedE5wNVY7yrI6sDLJASTkbfs1WReQh4rFZiOVxcoksRxqK4qO4AV0cxJ+naJYG0otgCUL0hC5kWkdGWrNvk/EZBiN1pjvbzJPhgGRw0sjLm/tMW/mHJ2ssjoZsL9Xc3lzC1soVlaWaX2inteEriMEuLi1T1X2mIwsPauIRcloqCmMBnUNQCCBSx3ohEkRvNQJ+9DhOi9AZOskkD4tsEoZShKy1xoljKUuNNZZsQyEiLaGQMInLa9fFAuk1gJyeRfylaUpkkKHvIEnsZIquUCwPXlPqGSw0EGzOukxndbCaluNTx7XQBM8XkU6p7HKkqaesigoisydW2H+U1D5W0WR7C+u8phBFCT7Q3JFxGwQU7h2s+GamEip/PPlQRkW3mYBD1GyblSW2iqt0cnQBrlWgs+h3CEJm55kvaUM4lqjJJi3F6iKsVxz0UjQNxBiwEZF0K9RT2BQSWLr9SK/iSJTyYg0OC2sCm4xFciaF9+fgG4KEqLyjOg88Iv0IaREpeW6UzprA1VkMBhw09ETaKsY9kcYZYkhMFka0+uVnL9wiRPHbuXM2ZcpysjVy3vMZ9u87qbrKftDer0eTSvs4nw+YzqfMhz3efO99/DkM8/SzKYQI0k5XBtEeRYV6Mj23iaPPlPja2nHWl6ZcGx9nWM3XM+5Vy9gbEnbtLx67gpljLhmTq8smKyv07d9GEgLXjywFCvZ27UGPIePHWbjK+fZaSPzWXtABqwsrzCfRo5ddwMqpmzHllB1o2JWwBmxEetwADLpIERGiFL7LUCfDMtaGw6vH6dtggSMo7IFSRraUhsZTZY5/rqbWd4YsP/MZQn/1gIKDocTmuRJeG6+6SaOHD7EtHYoFvloWuxLMaCUZC8cKA9yOHSeJzEq0kUB3FNUArjGHK1ZZBJFW1AOks1KNlGx6NKgCw21FysqYj9dWj1EXTe0TYf3OUdQJWzw6OAZD5a58fgNdLrgzKkzKNXKAJKE5DDGUpQ9atfQZhBcxYDrwkHBQDQQo2a27wiuo9Jg+iW2GGKtouxZYgoMBjscOXyEnu0zq1tICa0jUYFViZDD4bVWFIW0lGmR+rIgN1O+J5P3SKU4CLSW9zsROo81mkGvL2eZ1wyBC+VRkg1FGs4ykxljR9QlUVvSa0olxFakDkgoUU5JhloK2XaUEIWlVhmnSfIcUZ7FWLFI6czeGi0B4YLEr2U7wgAAIABJREFU5O+V8+lCiGgRVeXcB0NymjYhg0UKLHLuFhPugXFYi0XKFpYIqBgwStaqQefzSPyqYTqqRK/qEXuespBXUmlLTIARtTYqN3Vm0s4ky6Ascb7ANzUpdFi1dPA7xejQSuO7yNd9/Tfhkufsy6do2jkaTb9U9MqCarzM+qGjvMgL9CYjVg6totot1iZ9dvolnW+IIbG+voyrLSWwcekCWzvbJBVw3R6Ng+39k6TQMGsKRoMlDi+PKY2i9g2j3jLXn6jY3XkFbXq0+9tgNMaWjAdrmASm7LE6WaKwFpVt1KJsS+g8SPrQyT0pCeFpcp5UDF5IMUUG3gJtN5fXLVPjMUZURBpCM3mgcpNf03U0XZtz12QtxHz+S3gsUs6hUqJtGrx3FIWAtahssQwRaxbrYRHoGg9uoH9W3fXX4vFfBib9eQ91bXlmIvmPC5bUaz9d/lhUuaoMKqWDJ/gTvsVXvwZ/lVdEZRVpiBHfdnzpox/nU3uX6OuEcZ5+NaK+egXXtGhrcW1gPBnx3JNPMp52vPLyec5snGbe7wHS7jxra85ePs+XnnmaH/7bf5dwdY+nP/owH/jSF3lyd4PLl68Q8SStKHRieXSIw8cOcWVzg+eeeJqvvHCSrbmAAEUpwcoqRqab23z0gx+i7hqeOvky1x06yk/8w3/AdD7nO37kJ7jjlef4hX/5P3L33/ge6r05t9x2G1ErdKHQTuG84w8efhhUh3Nz3nTH6/mhH/wxfuVn3ssb3v4gIxKPP/oltBnRNTWDfgGxJLgpCYWPCRcD9cYGxMSzJ5/kscc+x8aV87jgefqZx5g2jv6gpdKRui75zMMPowuL7Rf0D6/ir1xgMChJRtF5zd1vewerSyM2XnyGD77/l5ntOvppTjFsGB+6mbve8RBPPvo4Jx95ljNbVxmtH6GeN8zqfYpSo0uYt4477rybF594ilTAaLxCvb/N7a+7jxjglQun8kHUcvzIcW6/405OPv8UVzbO8/STz1H1x1RLyzDb58knvszXLT/Epe1LHB6vc8PNN3H1yaf45Kc+y23bmzz72NM4W1L6iLKKV06f4bNf+AQPPfAAS0kznc44e/Us/fWKb3nP93Pr2iEUmjfe9VbapqNXOD772FPc1QYeeeTLPPyFP+T5k8+Qguf8xQsM18ecuP5GrDrEQaD04rp/bY19gsGgz1veeh/vfODrufmG2+ScNZkwyFYqYwcM+wOOH/1mfHASGB0Sm9N9jq+v5ytTns9Fj/OBixfPMxz0sVpyR6veEFfvkXrjrJCUPXFh1V7cwb7qWsz/G6IQ5Snm2JEY2Z9PSTFQlSXGFiStCSHS1HOuXLjI5oXTkGouX75IC4zXjzOaTBj1RiitKZuSfr9kaTxhaXmJwWDEaDhkMp5Q9Xoi+kBhC4u1uUktGZkpMgZCXESgiEPp2k6zsKAr6nrOxYsXOf3Kq1w5f4nN7U22t7fY39tja3ub2O6jupam69hvPF2IQnBp6Rq1SQ6GioQLnhRFSVv7RF076npKf9j9FXauP/742mcoAWoRtJgH85QPZTEvhBSEfTcGfNAYl+TQl2SIU8qggpdhM8mC0PraQrEmy3ltInUC8igFRVGJnD0JC0vylNYeyNWMMRKknSQvwEUJuU0kTAEu6MxGFigt9YlojaiKc+2fysqgkEgpZPIxH8aiDKVVWaKUxhgjgdJ6cUsTClFqWa9dSDFFCepE2C0J8Na0XSAlR1lUjCZjvPO0bUAZCQ31QdjyIhV4FwidWHvUAuwyJqsjBK11SYKrfXAoUwj4kA8TEgCpZAiKHASHlmjwUertiaTkqIoeMSicjxTGHAw2UauD7JxSQWGgtYpKK6JzVIWhVJZghI2K+chjFBn5FrCvaVsIkknROcdo2MdgSZSZ0VYZxMoqjYWU/uDQKsCCVDsHUbghA6MpCgENFNJEpDS2KlApEjqPVmS714LzhyKDMYXSWBvZbBLWlPR6Q2oiyfRYXVlmY2dG8LIejx1ZwQTY2Ztx9comw6FkkgyHPWL0zGYN9bxlZzZja5qojGJjr2Z5tMTayph+T9MvK0yh8MlTagF5UgiSN5TtFhFPlwJlzCFuIZD0om2vQKFydphYMUptaZQFrSVHxkqIbWGF4bTGoEmEPKkmnwhKYfOmq1Qi6IiPARvksBmCpkgBqwp8MkTvaLoAhaIoJWDYVpWAjSHhvaLznu22xptI01maeYdPe5L9ZCK9Xsmg18dqfZB1YiuLb2LOSwnYosS5jtJbQg698z5QlfL7iswzo/6oAwD4NXNUHjIFLFpkTMg5Muet+Yj3nhATRWHRWQ0JUYZPL2pMHcRCo6Ncc0F3hORwREqkCjzG7KtSYlHTKuEJBEJWEwmj45XKtZ8CmKXkZN3reMASLSxYi+O/StfGQ2MsqjAo5Q/YHkO2hCpQaApT4cseMqWQ2SFQKVBYw/HjR7G2oOk26fWPUFQrpFCzcekK58NVRpMJVa9gd2fO9tYOjo6VlSWWqlVuf90befqpR0En2sYRQ6Qo1EHGFLqDWHLddYcZjYYcP3Idq8vLbE9nnDr1Kq2PrA4H7M+2ONRfYTKZMKgsRXktL0dlAFpyeaStM6VEWZQsLx/illtfz+DiFrMVy6mXXuT1r7+Ro2uHWe4/wGCwjG8aIgGlCtACxImCIufS5cOfSmKHksEvELXcI5ICm8BpsFUP17Vi30kag1QvCDER0bakSoqjt93Oyy8+z07XUurEkSOHqGceHRL90hC9KL/GlUKrCpIR5W1wqGQlO0hDymHuYAjkDBtYlCrKz6x8XseBsuzJOlEaHX1W3Wpi9PgkTC7Ivc45L5liCiEXTInCkTDU3YzCmKxUXOQfVhSVhEFOhssEd4UuKmI0KJMoq4rJ0gQ1VYSuoyIxWuuztbvByuoR9maeWTunc5HkhFnbYUZ/OKEaTIixJSRFTBpV9FC2omk9nQvErDyNKdEry6welqyfoihp5nOUlkxAOSPk980WhBRyjpkSK3BuRxMxdYEP2bYUr4WJLuD5GK9loRgjFjardN5nAo5IXydU7PLgKUoPuVfJvUUZYWJT1Gil6JKj1ENUFAVhivm6zLa36ANER0ouN6QpFFbuhYmcTSc28xgkw8gYw7xr0NGhfV7bCaIKYqNUYk8TziLkbAkB6FLed4JKEl5uxCosRxahA6NagB2SPSchUIlCl6goVfSKNs/e5hrzHDNRlkTlGDLroTRQ5ANaTDJ8AL3RMjQz+oMRLnQUpaWyY4rSsrO9z7lXLrB+5DjWaDZOv0DPOi5fehmvA8ZoCluytjLhaguzrmNrusOkNBxaO8retmHt2Cq9quCVF14gxMCkaugXiaatmTYdb7rrIVQZ+dLnf4fZ/nnOnV9h9fBNmKpi2BtTJMdgvExZVlnxITZrKTaWYczaPmW/QO/J+x5JJJXovKdQko9p8mChtaIqerRaQOmoDGQSI+WbocrrT6ns011csxlwViK9zCrWhZUxv+06ZXBS1k5IKee1Zds38m9N14qFPg+UfyXU5L/WIw8NClhYXf6UTzp4pD/2sT8b7PrzP+Mv8FBA9ESjuBJritGI4+MRz79Q8h3f9m30ZzPe/4nf5dxsG50ShYW1lSW+6zvfztb2LuopOPmZsyyvLDHd3idaRdPus1fvUvT77F25QjEyDI5OOP/CY0znc0xpMDaDx7FjY3OTpp7xxFOPMJ83tAEqWwgJS+KBB9/JiZV1Pv6ZTzPd8ly6epEbT9xCW89YOXSI9/+L9/Lf/Oy/4Ppjt3DfvffzO7/6y3xh3vHGu9/CS6++yOZMFI+z+R7eea6/fp2+hofe/k08d+cH+IEf+Qkefv9vYpJGGQ1dQA3GFMbQKSXAFAUpRbro6Jc9tIqcPfcqkYBzDkVLv1xmqeiwRcFsdqDdZTrb5Yuf+yRxNkVpyacpqjHBwTu/6wf56P/1v+Gtx9gWH2qqYsDuhQ0G04qPfPLTUBTUzYz6wjlMWVKUfZp2G+8T1WDAxbOv8p4f+4d84H2/JORdmHHPfffy2c98EZMCTou4ou2m1PM9cbVozfLhFapoeeODb2VUDfjCJz9F19bUW1P+3W/97+x3DS61XNneZv+RR9ne3KAsC6IPWCz1bMb585f47Q/+Lm++535Ov/wKX37i89zz5vu46873sLq6itKGm265hf5gxKSsuOXmG9jf2eDMyWfZuHSByk+wOjIejXH7M9ZHI4wxNG1HWRUHSvprF4koaG+95QaOXvc9HDt0mFkXCL4lRodVuZFUG4xWuACv7m4zqfoM+hVvuP4Elb2W3xOyJXg2bfj4xz7G8esPs7t7iW9/+/1cvNRQFC23lkOi7eE6z3Q2ZTqfU/YrlpaWZSZNic61zOsZ0+mUpBWrK6sMe30Kle+rSVxAVVnRq/oHs3ayiVJr4soKlfK4UGN7lvWjhzl63evp98cYVRFioPPiFipsgV00zS0I+8U8mlQ+D8icHrwT9W4WxCysw9okQoR6usfe1hXOX7jIpUtXuXT1KhcvXeLq5Yvs7uzSzVu872gyaWaAiY2MBgalLLsxCPYRhQFN8uQURghT5xxd50gp0DnHtG1pGylJ+Vo+vvYKJeQmli3xclMzJttWdGb8JJ8ApVCWPDQpjEmoEiSJSUwVMWRWRueWFbJuRskNsD8sUF2kVEqUQ8Q8YAiza4zG+YBRwmijNI5EVA4PMgxqhS0SurR5MRhCBxGLscIu5Ts4oJDrQBh9ghLPalAoVeC8QxlDUJC0onWe2EbCQv68QA0Xdq0kU16KEWUMRb9Hip4uL47CWkxZktCYUhGaQOfzQvWe6Ltr2RExUVhDDAnvYmZ9JJg6AKGRFrUQIylIAkuhjKiagqPpZhilKUIipRGBDrRBK0MMMkQYFQi+ps22AG00OiYWr3xEUWTJZ1KGEBUhBYyOQqYmsZeE1yxACyw8/CmI51OyY5TYdExmj5SXML3MuCUliiyNzuojJesidKTo5L2MkZAiaEsd5owKyQHSRoayRB4itEaVVgb56EWpYExWNIl1UStpxznUT5zfm6JsyZJORB8YDEb0ez1mdcN+3bJ+aInxuGV3d4+mTly+cIWesZhCYWzJ8niJpUmg6xyz6ZT5rGVja8rV7X3OXC4Z90tWxj1WV5awpqJfjbDKExQEVcg7GgI9behCpJnNSMGhVZLMoBRo6ym7qqMqSwaDgbANUTKMkvIZpNW44JnNdwQcivKOSAZYDT7QLyusXmRWSTJPF8TiWNcdl7e3GXUDKt0xnzcoFemajunOlBACg2EfjewHSWuMtVRGgyuonUOrQNSWIkFE8tGm+w3NbE6ZcwX6vUqanDSkbLbWWjMaDAk+cPzYEeZNQ/Qe7zp0IRZBozRdFFuAycDngUUus4xK5+aVfMgHCe3uXEvjHN53TOcz+r2esMaL9aIU2lpsQpRIWqEo8F0kFfmazmH1Icn6N4gyRKUISdh/FuBQVGCFZSi0QUVL1AEdxZ7jxSwhIEUS9VHMbEdhNAGTVRCWrnNEJRBOyl+zUGQsAJmY01SsFsWaj5IN1KbEsFfRuA6jDEfWb+TLjz/P7W+4iUlVsb/fcnVrl93dbUKIXHfiMBcvXGQ2r7lQn+K229/Ii8+X7M1a6rlmMrYYq6n6hs47YkqE6FleWWG5P+Hq5R2aznP29DmWVsYMguXOO++im03pjQt6WKqiRAWxL7kgsl2hTfN7li0ask9orjt8M4cmhykmR4mt487bbhUJfG9FjPAZeEmUGZwRYMborHhVCqIXq4k1okoDPBGlPQNl6QKgDIZAkQPcUzSSbxd83rgcVvXR3mDLHsarDFBFUjQo39EbC1mgUwZtUwRdSCZd9iuG3AQptqMon5tasakkRVKemDSWCqtKnPICRqREUoEYBJwwRFS0OSwZCIGkugP1yKIVLIusUDpSGAEsB71SMgS1prRWmtaiQ0ePSYnhcMTO3iY2KaJSeCOggDWGtaUlLLC9dRXf9jm2dpz+eIjRDcaUdFGjo2J15Rht2+FDgmz9dc4Tk8Loirp2OKcpihIfJHtJq4g2Bpvvr1XVE4WgNvnwpdAWlDKM+kNqnSvZkWr00HbYwsjvbTTKFrDIOMyMaM6QxmiBeWOSjCizUAxCvv7z/S16AXvEe0ZK+hpYrcjXJBClx02RKI0maRmcYoiSa6VsBsBTbj4V8DdE2btRoohbAAwp5gwsJaSLVppoSoK+BjKq1M/XiVgNYwwCoiJqqZQUKItR4IPI7o01YLIK2F5TNeVdM4NKZCucztlMHkUlCymZ14R6ByTEW+7hyiDZP+maKlB2JoM2QppV2mB0LjHwToiesuLwkYJLV07Tesv9X38/G6deIJk+s70pylYUzrC0fJjd7SnNbM7l3Sscu+k27n/bg+xt7JBuvJmmnvHiiy8zqxWHVgsGZsr2zg7jJclaG68uU886xkWfcztzzl59mZ3ZlLtufyulMmjdx5oe1hRYI617MUGKnqRl/RgTUVoRo0ZhhfzKLGlSXs4yymTrfsoNpKISq4yAhBiTyQ9zYG+USKRFwK2EahuVDqxMKUWSDrmYIaBNgTV9aQBGZ+ucnGHVIsspRay19Hp9elWFrLQ/Arr8NSmV/roffxL4ow7UUa/5fdIf+8vBw7MYnK49m+gl/uTP/4s+UgTXBV46/Sov0/FKvU8T4ZUzr7I2GhGNoTKGVCq6dob3iguX9/ju7/p2Xp1usvfRDxG2W0zVz/EYCvDoyvDK8y/wn973GzyzfUFsvIVkdc725mACx25ZpR/hMnO6aIRA2GsJwRC6SBM6Hn/0ES6vHcaUlqVhnzCbQpxx/vwZJuMhr25e5Gd/6qf4qX/2P/Pwb/0GTz37HO3wHKtLq8x3Z8TgIMgAP17u0+97dmbbvPef/RR3v/V+fu3nfp6PfOxDuH6PemcPqwNHj59g2Ovz2ONfImLkbGQkU8ygOXvmLG0S9bxVBXe86TbOPf0SrrVs7nX0zRrzXNKUgqFtHTfdcBtVSpw5f4rkHFcunGG2exVT9fjhv//j/Op/+DmS6rFxrqNzLZ/40PsJKtLUu5jCEHWgNyip5zXf8m3fQ+imfO7zD9PGhgtnT1PZgpYaUp8P/M5vkoKhN14jzveAgItSrrC8PMaFOXtbu7zjoYf4lvsfIqSCpx97mr/zPT/AJz7yEU6efJ6rm9uoQjHv9ti9usWwKiWwmURIjuA9Dz7wjbzx3gc4+dxzPPbFhzHB87nPf5of/5EfFxJVRYbGkFzDYGWVN1x/Ax/71Cc5csMat+3fxny6x91f93V4B+dPneEDn/kM73jgQW5dOyL3/NwsSZIZ3EfPbt2wNhmzNByKylkrSl1ycWePni1ZuH0g0QbP2mBIPWvZaFp2tndZmww5enQ9z6Iaqy2PP/4ETzz9OCsr90Nb83sf/hjPnzrNP/7J/46tq5eZ7k+J1lKHyKyZMxiPGY9HQtigpPnbGAaDAaP+kOFggDU2t0/LvlWWpRDnmQzx3tM5h+sahuMhy6sTnA8Mlw8xHPaZjFewpsqXtmWQc4cOSoNUBqwX+2EmeFKS+63RFlMJLgJQ1zOuXDrPpQuXOPfqq2xfvcRsZ4sLV65y4eoe864jBEeZPCWJ1suMqpJnoBJDq2l9YtZ45r7FqBKbJBM6ofBBclO7CC67iBYWTJSci1pX0zUNXef/0vvVn/T42mcooXBdInSFbLE6ZsZToq2VFgZY5eFVLYakqGhJFEqL3Bmb7SilsD1IKKWPMhBaqykKTfJJ7qolRO9xwQnCrQRVr32LUH0KpSPRaKL3KPqQ5GDpQqJz2SamAmWhDxQQ0QsAJHYUuXFrYyT4N1poJQfAJal7V0oG9Og6Wu+kic3khjQvMmidmb4k3cC5vSMv0BgPmr20MSRt6UIgdCH72YH8+olVJme5xHxjNPbgxhZjkPaIIL+bDznMnCT/ppNI5pMlBoeLQb6m1IzSAJ0PKCLLCzgVaCL42glDqjVtbFEEWh/QqoCkKIuEiYplbQHNtKnpl5p+VZKUJQZFpeW9N0ogwkVmh0izhbm1hSFED8YSUoHNVh4XxcGRkqhDTLqW8r/IERAwc5HdkKWRShi+EFtSFKWDtKJFujbgncgFtTECMrhENOHgEJ+CR+c1s2ICQ2YURclm22AYMBlVzOoG7wK+kY0+EjEmMR71SEahiJKh4mtUCZWpWF2dMJ5A07TszmY0jefi9j6X96b0r+7TLwpuOHaYqogs6REu266MEjCvACbDFS7t7Et2AhqroV8V9HtyNI8xkYxkgmFidgRGolIYHSkKublZBVYX2ELTVYbUtthFaKpJFFbsnrZwqDik7JdMJmvU86lYc7TFW6nRDinSho4qloQouWM653JJJpHY2KzS6CphEGAjogjZBqC0Zm93yryu5XPLkv7qgKLIuTdaceHyBQaDIcaJQs9YAZO0UdKAgNR7m0JCjIQhz9lb5MN7blFbnNRDCjgXxP63uKZUfh1jyu1Ewgg3LpB8S/IdM+VI2mC1pt7bZTRYIaZIoUtCUqQQUKbIwb0R5wXfMEkjQLpFRY3ScngS+WuAmCug8hqPhNyIGQ6anrRP6CKhi3wAUJJHsvCWSw5QykCWKHzm8318dKBKohPVpXfS+PLCiy9CscN0f8a999zN0qBAuUCxNmDt8Aqdc+ztTiV0+0TJyZMvcHH7Mk2TBNAKicIWaO3xbaBQJcYCpqBzLS+dfAE39xgj+Ue9qs+Nt91M0+xy5tzLnDh6IzvbgRNHSqJSWKwwY0aAgmgSLhnms0Ch9ykKm9/riE8GFRRpf5c33nSCY+vHhWBQBcnV+BCwukCnQPKO/XmDdxGlG7QWe4g4TjyzvRlLSwPJ2XNgYkmrJXzRKkWboGklMFlrJCslQjAFqAZle3S5gUoXFh0iRhmOrR9iUo0I1hDrgE4agihNfSEB8EYbdIygO5KKRCNrO2Urpk0KFyXPLgaHS5o2t3Ja1EK8QMIRY4tkaBnJSrEG2wW5X2tHvbWN6yKtd+gQsEnYNxc6EZ/4Mis+kbUVvWhVigJlDb2eFRm3knuaSZpCWUyUbMHKFEyGk2xdLajKIZPVAWuHhyTbg6AZj5YBTT2fZVWxJrRyTaYQ2d/bp5nP6Y8GkucUFRhLF6Q9zhaWsqqY1TMGgwrfyHVtbYUyYKuSVHcoC1hF6BxBOwa9keRE2ZLGO8kp1BqCz2pjLXXTKRKDytlKOaMvCeAbnBZLa1L4rCxJIUEMpIC87kaC/iNKrMZaSjKU6eM6T78Se5ktLK5zWGMJiIq5iwI6yH05yh4Q5P4fU6C0pTTB2kU2m0HkRZCSIgVNtKLQlRhCYZlTisSg8++T98bUybkkiRrKeUVMFhk1F09rDpRvIpSRptAQWkIs0UlhTE82Tp1/4yjgmVFRMhczEGU0EBQpFXJGUAFtTAa7MtAZBWQrTEkymtg5qYm+bczVSxt4F7jlnnv44sMfxaHQJjGfd9x59wn2dq9y9upZQkq89fa72d/YppvPWD56jJ29bfamGyjdssyQbj5g7dgR6s5z+OiI4AOkjstXd4m6T1kmxis9bKlJwRJsj2QtCU3SFpWV6TE5Qog4F/I6yRBcth9rW1KUPYw2B5l45kBt3ZGUB1UIKJrfNzFMCOHaRQGZdM5KUkosmDHbPkWAp1lkEKoMhiYl+WI6W+S00ZILpnU+h8aDspYF4/5fBzzKqBkLMvePfIz8sT/2kWugjjr4+J8O96Q/+rc/BxMyr/0f9dV//Us591LKJUXw9K/+Bi+4Pab7ezjnuO7Y9dx7z1089tlPsD3dpLBSStPrj/j9T/wuX/jcZ/j19/06Z/bOSWaeyzmcnYdckvLKqdM88fBniCeu494T1/P5z3+alRO30E+ad//A32G1srzp/rexf/EM//af/xRPeyuAtQpEHei6Oa0LXNy4xN7+DiRDr7KM+5YrZ07xeK/Pz/0vP0M8vMJLj36B8XXX8YH3v59dq+nme9RtK+cro/Ap0R9ain5AmSn1tGPPH+H5555k5cZb+b73vIt/+3/+e3orR4ndPm+45Q28+fa7ePwPP49SlrZu8aXc/zoczBTRGJaXD/PWt9zD01/6JJOlktOXN/nlX/8wv/jLP88jf/A5VN9glcYUBfbIcVyKpO0rpKamaXf5xX/3syTXceHn/g2bGxc4tH6crpmRTMV0vonSHVUhysMQFPvzXcmaMz2+9V3v4s6bXsevvu//5bEvfQpTWGZbDd/6be/moXvv5l/9y5+mf/gwS4du5cq5lzi0fpSbb30Dn/2Dz9Iv+jSh5fBNt3DyxZd58J3fzFsfeJALV6/y3d/7t/jEx3+f2klejw4Bow02WUJu3dSUGG1odve553U3sbG3g31xjRcee4Q7H3wLVVXx7Iuv8Oi5l7h3eZ3lwxM+8PGHcaXmhVOneM/f+nZuv/EOXjl3lrvuuo+UFB/6/Q9w/51vYmVpjYeff4nlSnPfba8XYj4FjJJ25PFgQOM9g6JAJ02fwNZ8xssvvcyFyYjbb7iB3miFnXpGpQz9fo/3f+j36a9oru5M+bYHvh5SonEBayKPP/E8X3rkS9SzhnOnz7E2tnz+sS9z31vuwDVTXNextLLK0vqtGUyX7MyyKHNUhbS/jvr9g0trodaUfVf2xgKFD57ai6qtspaqLKhK2WPFshwZDMZopSRcnRwgkoTogqzhyJE9iwS7xX6qjSYlS/COSxfPcv70S1w8e4mvnD7FmbPnYXqVpV5iUk64dHWL/S6x1XrmbUsiYkm4lJjHhFPi+KkMlMbSBsd+2xGcwUZpBGxcpM1uo4ViXSIqRQgwKi29oUZZg9YRFRLJeXxujP1aPb72CqUOClsK46cNPgZMIfIvsZvIi784jFkMUXl0sphoKTS5ccCICieCTpaANEFVFqpSWBSVsyRMkXA+4ZVG2yq3lhlCCFhrUcljc66BMYmCAmKiaQJ8ibfIAAAgAElEQVQhAFZYbVLEGg6e27eOrpG8gRAU2mYGU0FRlujcOuVzfb3RWhj44IkqZTCmy+G0kiMTU8C7mPOY8vrMDJEmB3Nl9RXJ5HYWK/a1ELGlhCiH4HG+k6pepSFmQCZ0SGpOJPis+lrI61DEqHKziPzMIUTJntDS+OFiwHnJ1skxzigT6fyMFCvmyqGUlUyPFNAm26CUIiWPAVoXIRmqXh8fIzvzKZt15NjyhJEtSMHjVRALTMzrJiVSVm3JbmFECq88itxEYzQhKdAJHyTbR2h0sSrFHOJsch28qJUi1mqSTlTGkrxkJ7U+oKnwKeEILGSxsink4Ew0Ielsd0noLLU1ytMimSPTmcIkzV43J7YdJkJXN1y5usV0VqMNXHd0nfX1Vcp+hSFJfXUVqV1L41pUJzkLVa/iWL/ER8ds2rEzb9lpGvaahq39Kbdcd5idnZbJcMbyoWX6OuJii8u2YryozTLRSb8aMKh6uKaTkNYga0XUQgYfWiI1PgWsVhArMB5tJPhQR0Onc/OTErA1aE9ygeQNGIdSBaNhH+KUQmlS6KhUSWcsOhhwotJDJ4LOQF3U+RqDstSMBkUO7c+gqNYoXRKiojKWyhY0bUfnAylGdvb20XmYj9qwu7eHVorDR45Qas3e3r4MLdYyGEoInoQaa5IW+0BaKA6VkgwznduvkOGoQMOgwhayIWttUEajiRKib+SmoiP0h2Oi7/CpQ1ux32mgdj0SLTYNBZA2HDQoyhAgPRdWLbIyDOIwjZQaiJZIRxc1VjpbJY9OC8KpkkZjkcIpjy5kkB0O+5hCQnFtzidzAWzMlj8l4HdS0B+PGI2GhJgIzhNjSYoDtE2sHj7E1e1zjFfGDGyPwlb4NKevLFBgVcAXiWJQMWbA5K1v4fSLL3HqzGlCEjlvWSnqTjEcSfOXThNed9M6J44fp2fH7GxuMFqW5sSqVwmPoo5SFH3KcsDGlat0TjJkDKIcNCHiCURlZDgzAW0UyagMrss+EgpDih5daArTI4RE3dXoEEQVt2AigpHXU0nAso8RFSOVUkTl6RUWbYYiW+9kPy8KK/tLEgtlDC3NvMWUCm0sEjXm6GqHR/IftAHbt9jaMhiOGY+HdMFTpD7BN+zNdgmqxqQSZRQuSbC2VNYHuq6RoEtVkWIDeHSU7DopcXQ0tRMAMnmxjydFcp6oA9OuYbk3kpt+odGFoZnK/u2mU4wtccFTz+ckVVCWpYRNYvDzlp3pGZbWrsN7x+7eLl2oqFLJ3uY2tt/Rxg5jEjog4bFA0JGgczR4jHSdY2UyZndzh2Q03TxSjBNHjh1idGiZyWiJWV0LKJo6rIJoFZ2LDAcDKm1YGk/wymNiwhSJ1jn2dmuC64guMN3do+3mlFZly2zCNQ0+JFzb0bhWAP9+R8ShSpjWU6b1lP5oBatMDvaHwhaSrxU9wXt8QgK4kxYyRCGWyViKytoakpKGS0FJIPpscUWy7BJiP7UYKiVh3iYZaUiz6cCqXpSlAIPaEHUpVlYR94hqMXZAKRk+Ws47IjJRFKbAx4QpDMmLopGoslJqoaxY5DhErNH40BBCVgdFORoWgCYQSXRB2vEkO05lpRFiY1aBiATTmhhxbkpVjXCpk/k8Z1kI8xUO1IWKgEGIp5CcWB+iqKpVFFtiUCkr2xXeCQtbGgHnyrLH2g0nqKcNCsWVixdw3tEfLgMKVU5ZXhrw0qVdZvWMXn/MC888yfXXn+D4jSdYP3ICpTS7lzdIXUcz3WYeYLS/zY03nGBWd1w/7vO+//yvGa2uMTxyPc3ODg+85ZuYbu/Tdi1Wi55eBGceUxRy/srWPoh4H0SdrZTkW2RFkNiXC7GfRSF6hLHPgI+BqA1WC3EZYyAmKEsjSkZEie4JVCbnCaIxqhTdWwoE2YzRMZFyTIJ8naghlVI58ysTD/m8qLQ0CL4WslkAS38ZgOnAOvcX/4r85wJYuvZPB/97kIf2mi977ee+5vv95bVDX/2k6qv+7a8ItCWEODNw+fef5LdffIamFluLcy0mJcJ+gyt6jFbXaWY1gRkqBrpuxna9w6XpFQgyB5myZDafY1BErzl97jz/x3/4OXpln3/03/4D7r7xNn7w3e/m9LkNip7m7d/8EFpZtFbcePwE3/Xd38fjv/ALmKVl7GxGCB4ftdjXXcKFhsoalCroG88tr7+T/+lf/iv+47/+WX77Y7/NcFjxT3/yJ3jk6iXoTTC2Y9Dr085qUmHE+l4kxr0+JTAPNd/zne/g59/77zEnnqfXNZiiR+xqYtJ89rOf5g8+9nuYcQmdR8dIdHJUSsrgfGBlNOL2e1+Pqvf4x//8f+Uz7/8V/v7/8N/zzJc/y5cf+zKD1QHzrqUwosg8fv1xfvSHfpBHf+lX+Y8f+SCbsxkKj1GGKxtXiF3HxoVXSUUkzmeMxxWzNuCUEEIJcB5c53n2qad485vv5bmXT9Gf9Gl9i3OeN73tft770z/L+tqAw2fO8ZvPP8Ejzz1Lf6lHu7vB1pUNuq7h8s5Vvvkb38GLTz7Gj/zwj/Px//Sfeef3/g2uP3yE9/70z3Bx5zKjYkJKgZQkU0gKdAIoQ0TOPBcun8e1NX/vO76Tv/nQ2/nwr/8Opy8/gwJsoXjbm+7hsU9+jq9bvps77riNzz36KPe8/VtwruDE8RM8+5WnqMrE5q7j6PrN/PKv/N9s7bW86+/+CJ/40G+w/k9+Et/AYFBx9uImn3/iy7ztvju557Y38fK58wQdefnSRdaWxhw6dJjLe5tUtjqIL+lnFdP3fec38eKFc9x+24D15UN85FNf5HNf+Dg/8aM/yq03XsdXjq4SmjVC2OXlV6b0ejXvetcPoZ2mm51hVl9hxd6MtcN8pvj/mXvzaNuuq7zzN1ez9z7N7V6vp16WLcuyOje4cAMxPYGEFBQhjJgCChgBKqQCjAoVkhBnUBkkReMEqEE3iiYYcNEUNthgwAbj3rKwkW01lizp6T29vrntafZeXf0x132yAsHGuAZ1/nn3jTvuOfees/dac835fb9Ph856K1UlpTz7tixF9ywNClMHghGh9ZZR5YMhz9zj+wMkZ+0nPZGokAMdEsXatLdmP0SoYCgMIXPm3AVOnTrFmROPceLhB3no0Sc4ff6CokFamDrD+orl6UsDw2yLxhTmAUJOV/E0znll41JojcOQKRH2lj3znBkK5BhYNcJqZ2kkEvuidSeCF6ERHTxtjIS77ljHrh7j0VM7ODOqza5clfSfvcdnv6FUqIVNRiRifWUXFIOgliVrVG7m1UNDIyNyzhrcaoDidCKaXaWSZ025EoORQCo9GU1iEzI5amFvijKIBEORjGsdrvFAxJYIUXDeQ6NcnETGisN5i3cKOS7VK2pMwXtP27bEUG0aRZPJpKZzeKc8iRxrA6popLAeCJ3CtbPBenMVqImpQOySyaGQY66qnMo9MsqL2Afu6pQo4Tud1FpjMY0lFUe/rAwVUxNY6vMqerPgW+VGqYff4ZuGFAd1fOhoUUGAJUEpWCw2etpmjKQaR1uT0hq3wpBBSlBfvTXEqB5/ayrjASqsNGOKhZA00Sup5Wx3FsjdgsZ5PFItSRV2W1CmFVURJQEx2miAqBDSBEmMcl4sdbIawBhtDFb2TImBYgFqcoAVYsk4E4mlR4LTIrn0ClwGFM5OvSb2bUKWmAopa7x8yAHJmUQmiaXpjrC5d4HRdMSlnSU7s6Dwt0HY2gqIMRzaOMD6gQ1VwdTpKi5RysDINFQRBPN+oN/dAxGm3QoHD6xzYB0WiyV78zm7uzNKLpy+fIHHQ2B6umN1OuLIxggrHZNOkwikNgrF+Hqw1QaclUw29X2xFTgvY4iJRhySCiYHxDpcsWoDdAYZauFbVW0uaDJh6zKNH5HLFq1LJDdRC10pULllxg20Wehq4mLICuTLKWFNYYiZlC1dMXq9pawcH4OqgkphSOiEWAqNdwwxMhp19H3PldkMYmboB86ev0A/JA4eOchoPCLlxHw2Z2dnVw8YXYdrWrpRp5GnknUtEkMAUp3CqmPD0PgWT6IfLHHYt2kpm6Rrujr5QBUpvTZELR5ypCsNQ1miseYKWVW7XkZKQNk4esBKAKJqjiyZEos2yqIWq5JFI6nTgDClUAj7fi+pU8TKYKMkCh7rrCarbUBG0zFbI2QKQfLVSbmviXKNHZExBBeIMSAuInRce/wwW7sd3ma6tqGkXgsYHGIgOV17rDO0TUubJoxeeCenzlwgZm3cTDrH1qzgvGVnd+Da629gY3KIG697Lv18YGxampFhNJ6Qi6lWn0I0LW0zYdLu4uqhPUrBpEA2EQy4rPDnkW0YTcaI101YfdJVmWMblvMZxlhSXGLKkpDBmoaSBooT8MKaHzMZjRDf6rWQ1SicsyoOMUAqVRmaVZuRS5V1C+24Y31jgvct3o10AGITw3zOeLxGWCSGYaAxIyg7mM5rQwoLOWPalrUDa6yvjqHoZxhSIsWo63QamF2KeGMoplp9xRMQpERVKtqWlfWG9Y2DeNuBNVqAR4gxsLpyiOXmNsYmTYKzlvbwAcpQcIstGFSlOXKOyWSEs+4qGNkbOLJ+DQMNbeMZNZ4Dq2tgYO3IYbxzeGmxCIOFnHQ/kmyuysIBuqbF+5Zrj69w5OhBxhs30IxWmFeezqLvCcMAObG32KXxXGUOZDQcopu25OzZ3NlRBkJK9P0cjCoLrTOsjw/oNTssWfQz9hZLQsjszBdqTZfEYtEzlB4pPaVXlkGMCd9HuqkWmsvFUsGaYtjdndGHhOs62jYSJNCHaq0mQIpsLbaYREe/hJA9EW1oGeNVVWnrwKgoY2LoB7Z29yhiGJmA3W25dPkCkoSma/DNhJwHTQkLfWU4Cn0MSLC0TWAxLAkhEHOPs5amaRjSoOb/PqqNqlqhLVpTWbHKazK16ZAFbyq3KxWcEfZCIJWIF8GZTNNY1DtoKiTeqo037/fmhZS1geJpIWrR7rwqYeIgiLWVb6dK0RgNFI+xDY1vEWex1lxN0HR1TY6pEMOCrm2YL9Rcj9EayQm84N67eN/b/oS2W8NGw97WjGY8wfYjTnziSU6dP6ccROe47sZbWJuuMNvr+cgHf59+MeeGm2+icYZLZx7n1NkLHL3mKIvdGRvXHsbahuPX38rpJx7lS/7ht9M5z2SyQX/lYQaBFAdMjmDUimaMEC2qni8D0GkjKKsyF9HmkLAP1R8AXSONs2TJuhYWISaLkxoIUXTvzbHHKPIMk1Wlv89JLHVQU0wGEjGqlVasDkjZP3zlVD/PupdUFau6BVCFaym4aon723vUZpJUS1n5C9991hf7Z8nyST/6N/4NSqkKhE+CffPM6z3r/3/tphnVPgjnH/ggo5uv55u/5Ev4hZ97HQcOrnL23El+5g0/p3y7PrFc9pS0wBuYx0QyUOZzGmfpxhMkJ1anE4Z+IMaAKYYSFrzspZ/LKz/nZRy99hglJ25/qXDl997GO3/s1/nS/+0bca1lmM/58m/7Lt7/pt/hD2c7dE6YR1VLG2lIdfDVh4FJ1xKGXV7z7d/OB97yJj7w2P2kFnb6yPvedx+2sTjbU4isjiybs8Coa7Cux0rGx0DEcejANfzi//VrnA2Z8eZ5tmcJxi0pKmrk9KXzHD+8TprpoDoVqdgDTeP23vL8593M//C1X8N73vJb/MKP/ziveNFtzHYv8Ka3voEDB6bs7i05fOAm9naucHB9lS+6+25eccc9PPfzznDfB97H5Qt95d1C6HtMyYSYERnU2TJETNYgBCQTam2GDXz9a76aK48/xKmnH8aKpTFTNmdXOCwHOXjgIHl+iS//N/+Sjf/0Ot735++hk0NM11o++tE/Y3d7i1vvvotbX/oyPvzH7+E3/uiNPPXURd78Pd/Hoeuv5cRDH2fUTrm8e5m1kSo+ZdLoQLQvmgjeCuISoe9577vex5d/9TVsPXGBx0+c5OLJJxhS5qd+4zf4ke/55/zwH7yVW55/LYfXLL//26/n53/mFzHF8PGHH8F7z/mz55lORmyfOc0jj3yMW593E+OwzaFrWh6+7494yx/ex/rqlHfedx+v+rzP552bj/LEqUt8+GN/xrf/o6/jC+58EWcvXmJZCnetrzNuOj5x/izPOXaMXM/9zhjuvPlWHnjkMc6kwO/+P7/D7Xeu8/BDD3H+7EledM8LuPWmESNXePcHPsLzjx1ixQjbwyYba0e5vP00abGJWxnpumTN1TVPuc3P3JEpZ0Xr1PvSWluTyZ+5R5+1tlUm6RAC2zuXmO1cYdR6JisHcc2InISUE6NuhLOwvbXJJx58kMefeJzZ7jZXLlzkyTNnOX3hAnkx0Ira3EwjvOw5GxixnL24zanzu1zaSnjvONw2dK0gTmiyYXPek2OiNQYszHPCo7a3WcisNLDSGi7uBYKoKt2KPscxY1kGIRNwDkKCkoXr1z0vvPEIW6PDPHF2h1EbyRalt5bEZ/PxWW8o+QacteSkBxhKVjknhWwDGCEHZZpIlSUn0QlVLMoZIgLZUbLK5SmZkgzeOrxT603Og0bTGw8lqYrCt+RB4bW5ZJZD0o2exMhZGqtsIm9bclEot3EKxV2mJc47hapaFXOL0wtPVUmFHAvWgfUW1yhoM4k2qax3GNuCRELKuCKMx51aL0yViBuLlkcK5C0OtVVQpxRoQ8naKnHvI7hSeTi6ueekc3URoWkaxGriTEmi1r/Kieq6RqV79XlU/KP2nq5tNHGpoPDeCoO0ueCKY70dqZTPCKRIN245PjpWp5yZYhUG7YpGyWRitYgosNwCxiQkGnbmC66/ZorJUxIFK5pKZ0xSwYZRlUZC1MaYI+IyEUs0et00VWKZEUxOCHUxIWKdqs1cMQrTLhUIr90NhEAxDl8KpcSrzcJG2qp6gxIKsTRY8fr+ljrlFzTFJxssHmFOMhGPZ9Q17G7vsrvMTMeaYGFRoCnG0o1HjDqPb1v6IRJTZuQcoezRVB6FMRYvQm6Eppmwt3DEPtAvtknDAmcb2qZleuQQB9ZXaJqGZm9GLLC3O2dvd86Ziw2tgWsOrROW/TNTuZxIkinZELIw5EJbCjYpBFWAnGektMIy18QsDJIixe1nJgpZMjbtgzmVw2ETmKbFNQVJkRyUg5FrdGqOjabSyUSvbRKNVf4KuTCIgnTFQCix3otGWUQiZCm4op2lEoMeGipA1KLgWaGrgGDPqNvi3NlLxJQ4ffKsJocdWMdYTyoDMUV2dnbJZZfVjXWs8+zs7BG7EZPRQq2MaGpPKblGhyuHyhSqOjARkq5PGe1zmgK2NCzjNrZAFIOzLWUAa8Y4u82iBNZsV+2AqqjMNpNqQpQhazqbM5A1KZJiEDyFqAB2ooL8a9Fv9ycuFUStkHYAQ4kRL4Z5DmhDSiHeJltsjjhbSOj6SAFb1KbkaipUEYspQjYZouc5x1/ASneYFIUYLJKzNjSsAUkUSZAKJSinxpuWps3M+kwxQhwCY+fZvBwR03D6iZO88PhxbMlYJ2RXEOs0dSg7ZmnBQMLlBZYJ2XhCHhhZS6QwUKf3OotQObOJQMAmtcskNL3T1MZZLoZl0eaZaTuGsIsM0DUNBm3G9wQslpFtAMGURDBqb0omIcOCEHoKGglrgMEqgtmVgE8FGwErhErFSYMjR0dMqh7xFNpG8N0UX1pMaXV/zL1eS0nwURVnKaOfndFGdy6GIh6fhVAizhhCVrvvUNQGU0qhEY/H6ZAiLQklEgYLJpHiwGAGBgEXdFghQ6YtmaE4BpOqZVY5TwVL9JomKr4l9Lb2MasSMmW8E3LqwbS6h6WCtcoVikRCGogpY502jFrT0DmrSmDbYjqHHY+QXplEEUPTFRIDU+lwVodRNI4cBEqknw80naZhmlJIMRKWS5wpjLoRqytrIII1hp4e6yyjtsOaTMZryl7SoYt1gi1qfx63IxrnGUJghX3FjzLfjPOsb3i2d3dpx1O6yQiXAv18F2MKZMfYerK0bKyuYK2wurrCgY0jDCkhplzlrpWc2HKbpKhBEo3paLuGkfc0o0bB2ig/MsWFwq6NKnQEIQyR3e1d0kRZGivrLbO5rv3Jqq19vrfAe0dj1EZb4oJ+b07sB4Y0EDOUZoyxrRb6bWJZIuNRR857hBQxObGzCJidOSsxs0iRZDvEtDTOVau+qxL6TAkFMyR2thaEFctSBlYu7zCkRtU2VQluqy3U4Ag5sJzNtJFihI1mYHtnS9mJ3iJoqAM5IM2YYblFyoVlzrTesdcPLJeRsROuv+FGPvHYg6Qy5r97xct48P4/JzSe06eeZDpew9mOY0cOs721x4XT5zh27XGuu+U6nG04fPgIOxfOMATL9TffTFmCWMuodaysH2TaHObG50153m130O/1XNm6TLENUTzFOhAwjce6FiMWK5lAofMdxqoCGhMpqG0vRR2A7gPfrfV432qNVgMHbAHJiZYCWRRyLgVrGwyuBi5pfemNpvPaOmnXfpxGfJMzhUC2DSbqMLbkkSaixvbqvqqDXkOxYJo6VPOVE1JbJ5+KnfRXff8zSXIr+4qDv+njk5ran8lDnvVL/NV//1/68/+tRpOAWF0X7vrub2Hnvvv5T697Hc3qGt4IN91xE48/+lEubF2hXyZar06LKIZQmf+paL3cz2ea3rsINM6ou8OqYPeaY4dZO7Su95+zlHnPoS/5Qlbf9Vr+7//yG9w4mfLKr/97bJ78BJtWAN2/jTF4HMOw5ND6IVZGLXv9NogORz74/vt572/9CpfKNh2ZbB2ZGaa6NsIyceHiJXUOpIAzib4I80XGSeHy9i7RFPCRzV2IWbCuQ1rDcjnHe2Fz6zJZRsRQh4teFX3Ge0IfsAFOfvwJ7n/gMWa7lxkfeSnvevsfc+7yDocP38Atd97DD3z/a9k8f4af/8kfIw+RxlpO721zOWoET0qBRKYdrxAC9Lu7SBZa17BIheWQGWymk4am6bBhgWsMP/XTPwbS6PlOPKZfMN9dctu9z2E8LZTxQd78kz/L20+cZrq2Sshw5vxZ5rM9No4d4lu/8TV81Rd/DY++/Et54MH7+LLPu4l/8i3fwCu/9Ct579v+mGBhdbRCn2eMV8cYEcarG8y2dxhmC5wYusby8EMf5vSpp/n5N7yexe6cg2tjvvYf/mO+9Au+gGtvPMqDDz/Ih/78Pn7ofz/Bt/2Tf8qocdz/4fdx+PiNvOu+D/LG330L3/1t38TlrTNcuvwkN9x4kH/53f+KZYi89M572Z1vMlo9zjvf8yFe9ZVfxJ233M3FzbPce+89fPGrXsZaN+GRj5/g7IWTvPiuF/LAn38U96IXcf2BgzijKa1Q6EaelIXLm5ewo+NcKQN7YeClL34Zu3u3sNF2XBkb5pcvs9GMeM7R5/ILv/gT3PP857G+fojLT51nNsy4+8Vf90n3lg6thhAIccBZi3dNVeq6Z69Hsv8zV+/YT7qfVa0bc1K9kW9IxrEcBmwN7jh9/hz3/cnbefLBh3j09Hl2Lm8TS2bsnQ5OjKtcxUKUzM2HJtx8aIUrezs8emqbK30Ba1jpHC4WhtgzxIA3LR5htSnsBBXl5KRWWFOT2rLAdOTwJbFnDW2GocCF3TmUQmeF1bbhhsNTjh2acnmWOXFuC0QToPc2t8jzQAkGQmaxWNJtb/+3F73P4PFZbyjZRjunBYu1atNI+74mLCUrsBsgRlXmOFPAZO0jlYAzDiRWu4haS5wXorVk00JJGCLF6iFXGt18Uw6I34eqQhMg+zpZYB882hFFVUEJZRtIKZqyIR7jleNjbE18yqAxtvsdTaBo+lNBVQ3WOHJUZUPslXsSQo/B0DZe+Uk1AnbfZWONxsvW9ocmhe/zC0S9n+1IIeYp5ZpoJFWVrB58511tUhkiuVLeE5hCGCqzwwiNtxT2mTGGtEzKJBBD7nUCbqq6L6dIaowWtWVAnNH0KgZlHJhCTgMm5Wo/U8C1K9pAjDGp/NsW+qGnTz3jskKJAXFGYdIxanoRIHlQEVK1/ZHUjpM0CkUXi/q8iaJ8k9zrZ4EnFp1USlHGQpGiEPGsh10jnlRTvCwWa5Sxo5yAqJ9no9YlBY8Dxak1oKLDnRM8AfGOnAwpC3u7S+XomMLZ7V26tuXY6oTQ9zjraRoHteguYUEYClkcxqlkNfQLVsYrlOlUuVBxwDs9UklpoFhCCsx2ZmAsa9MVWus4fGhDIy77wGI+Z7bsCTlz4sx52sZXRV+hGK8JZC6SBohEGpcxtqVU1k7JyiHyLlHSHn1JVV5pKMUTa4ffI8SQKCZS+obUtWolAfCZZECk0SOkqLWzazq6yYi9tKefW1UZWCv4qFasjEN8REsWQAIx1SSGVo0QpWiylfWOMCRCihAGnHGVMVZwfo3zlza5/QV3cOLESRZDpO8jSME4SysdVizzxYIwaINp6Jc4YGdnu6aQebqJ0HVjKAp6tlgWe0uF6iJXGWj7FtNcMsn0akciYU3HEAuZHpctjQgtDdEoZNtZD6ZRgH9VxMV9mW0VvGSTSTbXO1qbzJq6XdOmElXm7OrKEXDGYEykjwk8ZCn0fU9kIOaRKmEkAEaZOkXIGJJkTZ6LpULJVJk25B4xHQ5PI2NEHLYRlsMCkayH41ywURv+tha13liGfkZjBScNqRSsFZYlYlyp9xUUK8SigNkiudpuQQiq4BJN8CqSoAScWWBkrJHtYsg2IakQSkJMUuiiHeGMVw95ES0IjE7em4JynGIkFqHJmeUQWYjFugg5qB3N1iZfqeqrJLTFsIwOMXpdumak6Yp5IOZIqVOgKJlsVFFhizwDY7cWYwuZGTFNSFkwLuFENGkvDspOQuHNwahapBWPNULKrU7nbWSRIr1XVd2cHm8NMS+xJiNW7YzWCrZtFGodHbYIzmWysTTGsr2t6uEsBS9qdcopI96p8tdpplsnQjaqVshBPx+c6IFVsiahFUGKw9kWY00Nophf1jIAACAASURBVKjsHhMxWW2pNhdyVjumo/LYMJhUMMYRe+V9CQ7nIljLuB0z7lYJ/UDfR1LIlOmIMCxZxiUujTDeYY3HhoGhBKxp6LoxxjaE2KvN3AjNeMJ44lgMA8vL2+RZwjTgO19tRnpwqrAiSgrkPNC4qSp+xVQgtnINnXdaqKYMxVOwakMVo83eIdFOV5DGUqzgq3R+Pw44VzXyPqum7Qy+bRhPJ3S+YzJRi2zjp0jR1132u1W9nLE2szIdM1lf4cDKCpPpGoeOHiaEhLWa6DIZ6/2yWM6UxeYS7ZplPJmwvrLK6uoh1o4dQ6w2VbVWg5QH9kRtKSZ6Ng5ssHZglfXJBtOVVQ4eO67KYWqdV+Hwxugi1qy0bKyvMepWmLQd07VVpgcOkFJSVlRVN8/djCyBEiKOQkkDmDHJC03bUnpNdSm5NikKxBBBYAg9JRSWxpHdFvGxj9GaEe3hQzUteEEcDIshEW3kebcc4+mz2xy/7jBj3/H8e+5ivjtj8+IZLp66RDMZqyphuaQZt8wv7TCTOddct8H2pU2ePnGSg7fexuGNQzx98jxGCilkiDDMl+xubSN9j/cO263T95G2bVWFaqEtHmICa1imwDz0OAKj+YjlfF4P7jWqJGeGode9OwRoRFN40Rp1GAas9crKqhiElFQ9b0qsg4I6HBKtXQs6SBQpZGM0MdI5rGlwLiNWlNVV0ywNz7zv+6m5+49PpVb62wZ1P9vgJs+oleSTvv5rPqFcjc989qs8u8n0KZ7mr2imiQg5BeLJc/zBT/4sMh3TX7zI8dufywuffxsPfeg+Rt2IkU+cPX0W61taYzE1nbePkKIenmMawHpmy8AQoe0aUrbs7PYM84HxeEIuGTexpGR45T/7Tt70znfQ3H49//zrv5YPPfIxtk1iKIauaeka6JcDd95+B9/xz74H89QT/OjP/QjnZzPEr/LOt/wel3YWRCP0xZJtT2MsbQPLQZgFMDHjXWY3OUzfsNJkWlEswHSyziIu2R3m9CHq2pKWignJQu4TC2cooccYoesa2lbTTYchMvYdDz91go+//vWMXKKbTvilX/oVnnPbnbgy4fKli3znP/0XXCOJN//gD3Fe5hxdOcyDf3Qff/SxR7nQL8lDoJ1YDJnZzmle/YovZyv1vOdP30HXTpTnOrFY68llSS4D7WSMbQy57+mHOSkJQ9jjNd/8vbz1N3+Nd3/o/bznI3/GteOO/+P//PfEaw5iO0dIDaEXkni2L23y5jf8NkNsefUrX8EHf/w+fv9Pf5Aoe7zxDb/MysYKr/uJX+Lfft93sZSOfm8L6yfsXNok5cJ43IHAfNFjjGVzsUve3sFbz+W05I1v/A0ub19kfmaGsYGutVy6tM1H3vMeLpy5wIlPPMzf+dxXs/qVDadOPsyv/+7v8Hlf+CW85pv+Z04/9RCr4zWOjlcgJ/oQMGS+6Ku/mFuvfS4b3RqYwvbODptXdjl47SovuO0WDh87QDcacf7SJY7vXODgtc9RtwI6qNJQJrjphhu49frr+c8/+K9ZW5niC8hyk4/c/w5CXPD2d/0ZZy5d4qd/+7dwTrhw+RxfcPfnEvZ6nvjAh9i9sMONt96NnxzCNh0Fg3MN49Gkcjs/FfftmdWg7J//K+x9bC3jtqNwVFmdSesrgMl4jbf/we/z2IlTzGIgN0JnGg62hpuOdGTUor5YOs5vzjl5dpPHT13AG8UkjDV5iDhP6pYiszeouwCbWGToY2EoBYmJiRdG3iieJxbObwa8qKJJMJgctG9hDNjCMic2d3c4tOZZXz9IM4PSDmwcv5nU3IR76l3IpGG5DJCgz/8/ZyilaLQ4sfqBFYI2Q3JNELFgG/2eOhca3UgFXCmVRRCJUX2Eufq5Q8lI6rEkDEIsUkGXhdKUamHSaaOCLEUPBRgaNN0qSQaJxKAR52RhmYIepqzQxx5JauFKFGV2x4RIVssSqGqilDrBLUi25DgQlolh0VevfyYOmRCDNlpKJqRUN/j6NCjPJtdemzEW7yzWWQUSlzo9tQ6RtD8fUodE0iIhpEAZIkY0tackTfUxZErSRpEU5Ynsx4prbCwIhWJFJ41SY+hrQSMpkTKYbJEUabwnBa+HQiVqIEhlXRliqlHDtuBMo9BCa7Eh0FqBqPZBKihSE2BqCHOBIgVnFUxZKhPKUjBYUtTGkNSJc0xJbQ5Fm5G2butRCtlqsp+C0hRWnLIyHLLNlTlTiAyAI5VQQZWGEmtEd5Eaoa6Wv1IyLtfEGqOAzFgWjLuOxSKRc6abgrEDxk1pjSZ3ORPrQd5DslUFohDZnHX6vD2b02UHNlXQaK42KkspVi1JWDKW3dkOfT+jazuctxxeXSH3U5Y5sbW9zTBEUgjk0CNSWC5mnDmbmU1VPmpMiw8ryr1ohZgL2er7F+NAFkjFUqQQcqGYiCsFkxNDru95TpS0SykJ340JueCNI4QFQxYkOyQnXAaJAtHU9MOCzRFrfJX3R03LSrFaFizieuKQiQVKKriRvgeUiBH9XcQUkgNXG4F9SoiZ0nSFna0ZO5u7iDMcWFnVz0sEyoj5bIbkjGu0obecLQiLgVnRxnGOiaZrOXvhEpOVFabjEd76Cme3lJKYzwdSTrQdtAHEqXIyp6isFdNAdtWe02JKpKTE0gk2elwRiiRteJoCKSNpP/WnxonW5rkm8kR8ZQQ0jdExY9biVtlxFUBeqpVC9MY2SUByZWIYionEVMjFYyWyn4IJQdkJRcgpqoJELI4IzpKL2vxisbTFMotReXTR0aBT0mQHjNU1XlJBGDOdTnjVq76Yt775LQQTWFZLbEgRMEiJ5ByvKgBFPGI9uVoDLRbNN0uqqrEwRIcrlTtjIGWL8RbfRxYlMBBJZYDaKDPGaJJhymr1seDEkFFwYxaHlyUa4a6Nk5YGKQ37YHZJogc4MoGBRXB45+qwQ5suyv1KmOIJBYac0TDSymIzMKTIKAmUlr6P7PU7xBSgFeapx2kP/epBsJRSD4GqczKlUPKAyZmpFN2fyLj6t3gcofRIVuix9WsYcTg05S8ZVB6bclWYOcoighsIXaPAeO9wg9AEbejaoiDfXLQJ0phCM/Isl5pcl0omEYklIDFTUk3cLJDQIsnlTKSaA8VWfkWVwRkh50jSGQDGaVMukbG2oQwLisnEfkGY9cRYGEIi9AMpDHgMKQ/kIaqSQtR6XYg0Vm3zQ4oKHxYNj9BE1sLIN1xJm5hskFIb5iLkkhDyVTabZOXMaE2aMGI1bCPrQcZ7tbVjNfnPiWEQtXirWt0hUflUOWUEV693VVxoMqFaKBrrsFjCAN3IYMUCSe2bon+XLVW2Vvl+uU5Tc0mkHIhh0P9nKjcHcs762WfBFEtJDWUQwnyg7yIhlsrTyxSJaDrnnDwYDa0wmlRngtrPUs7EpLgAZRj6WjvUVD6jn62zDZAriN5Wy+C+/VEwdl8Bqw1N01jGo4axb+i6lslkSvZFG5wJnG1YznfYFx633jOdjulDoJHElVMfpDOWFV7CkAeag1MuXnoaNzIQG06eHfDNiNWx4djRozz0kftZLJc8deKjjJsxh4/fwI233Ey7vsEwJIZl4ObrjuFXGtbWDnHDDddxcHaQGJc03QgyhOWMS1JovGU69jQjr8y+1QnddMyo7TThdLSKsarsBpCcGWIE0zDvl8xnO/i2pWlH2jQVPeA4EZYlIwswMsMYR9/3mKgKvphy3SeUSbpc9sznAzkV+mXm8qXLTKIOw4wB1xokBVIpLJcDi3iFvh2p6jlaRpMFqxurZKsD0nE7oXEta+vrqtDnU6uT/r99fLKS4NN5XK2Yn/UMn9Yr/Vd/534/af9J9r/1l/1Gn67l7S+8BgZ3/RFe8qIX8uEH/ozBw4MPP8YD938YsYYmCxbh+177Wt79prfysSceJ/c9znmi62k6raGn444r25HFLOGdBp5kybzjPe/kxfe+mC/7ii+sOAFNwM7XHecfvOY13PejP8R7H76Pwzc9h82nn2Zl7Lnxmts5f+ZpNsMVbr3tDu65804eOfUkX/eab2X3yhXe/Ydv4/GzJzGNoU8RT2YRM6bRwW1JkdCrwyNlwbWQZWAvCZ01tK5wZe8ctjSYwdLkxGwIFBKd9SyHhBTo3Ih5v4e3jiKJeYgYpym3ixjwQwslcOe9L+Hi3jle++//I4999CHe8va3cOH8Zd75gffz3Fuey5krF3gqL/iO7/1OvLeEMiebwmjsme/sMZpMGPlVZk64ePoiK92U7KEUw97uLsZ5VlZGZDPgjHBo4zjbVy4wXyzp+4Jv4Fd/+T/TjVd58MMf45u/7mu46eiUyy4Tz52jsxOGxUBxhWQGxHoe+NgDPPbUCd7+5rs5eOAAk6Zlbe1ati+fo52O+f4f+F/Z297CtoWYHXnoKTkzGY3IRZgtZixDwkvGD5EiDct+TlwOPLi9zVd97dfx5l9/AwfGG+wlQ7+9y8+8/jd53guex5OXZ5y7dIG97T3OPHmWx08+zdr9H+GRRx5ma2ebX/6113Pv3Xfwb7//P/ITP/U6PucfvJxXXf98DrRTcsqElGlHDTetHNNzI5nD0xWMtez1Cw6ONzS9tq1IFvRaMMBtN91IzpFjGweIw8D580/zyKMfZPXglGPj4zz/fM+HHnojN15/jMMHx7zktjuYlSXjQxM2xkcYHbsRGa/SjVfouinOeZxz9V76i17XT74nRW9UQK7ul3ovqgp4P5lO73UdgOiemtjdnnPixCku7i1hWJCc4dC44brDq9x6zQoHxhMeOXOe7b2e8ajhylzPmuudoTEZjLCb4cw8sJ16vDEsF4mVUcsQtC46OnVMnAogGgyzEBiCchBb7zgw9hgpLAWG3jKPPRSh7Qov/pzbuO0F97BxaIOjx67n1aFDOsNzbnguH74ywn70Ka49usFkss7KwSnT6cqnXKv+Oo/PekOptZ1OZnOs3kZ39QP65CU+UdBE3Or5LiAS8KUBUSuG2jliXaQzahhWL2YqhUjQxJFgSEnjuxMKg82StXGSVSrWp57OtwqHjJHksvqCS8JEh2kETaQr+9dSLdA01cvkgKh8BUSIOWusPVaTf8TR56C9KacTyWyzsqSqymk/fULVQvpaivvQw2CMBt94pHZXY9bpJEW9mEnjepQdVKdHYPBOG2IWhbYZr7I7EVOn3JBCVg5BrlGGzlIqG0qh4AYvMPQDHofxniEmoiks+jkQ8RUGrAlxavnbm+3Qp0wkVlp+S+s8Eg0SDWVI+K5TcK5YktEEspJ1U9B3yuEwYDMDWmzbauXxRjfEZcm0eYSRuqNL2ueKUyiVBwOaJmjJpYJgUUaUF1EYZRas1zhdR0OpNrVoE27fSlMEU3xtemUFI6aAawwhGXxqiFF5FKsTw2rnCMB41BJyg7EKXTZiyAVdCPSKQKxOumxuSMXSx55OHMu0wBpVksWU8a7BesvItmhcqv5Niz4ii4Gw2MO5Bj8ZcfTIQULMbF26wjJnxCob4cylS5w8l5l2LUfWVziwqmDCWATTOFKMpFCw1nPu/IxshdZa2q5gTSCEyHK2oG0F22hzw9uMiwnmPSNruLQzo1k7RCeWUgZiDkhqGUgslyrFNEaPv4FAQfB0JBZka2hshrykiGHoM6EYxHfEWDlPzuh0Q9Te07aOpnUMoRBNorWRRT/gx45lnpNKxLWGuMx430FUa6VYp9N9b2lGLU3SKfJoPKXkzHg6oRmNiLGwu7tHvwzErEECbdfiXEPTOZqmIUshxAAlkgmUHMk4PUoLZCOQHLltsSZhinqVizQUlPtjjCWZomk7NV41F1X3EaHxDSllnBW0521V1WUSgk6LrLGaNGnBFqHgKSZhGJHTJibrumSkTr9FKgA3U4zDmkFBuMYSxWPEkKxgogObSSRcycQS8d7jUqY3kVQis3nixIkzzPa2uOWW61gbN5V7Ymhcw6idEtOSGBd6mM37qZIOjK2pHLmqRw3O6mF0mSypWCwBolo0DbnCFzXlzWKIMYJEyLZallpV/9RBhh6zVF1irasNBE33UJ7YGFcNhX2p72spSNLkRFvUJjqUgJgOI82zko80MYBqA9a1w4lafa1zIIUUEp0UTB4QFzn12BPM5gNjq/wmmxNUW7Ku66pEM4jaYUToGchFVRzJGbwppLxvP0HVS0UIuZDQxkikgKitLKcEkumzJmqaFMm27quprqVFwFqcDbQS1GJkoJCwYomlaPCEpdrXTLXsolZXCeBHqpSTQRs4GEpSjWc06HVjlBk1RLX/Geu1YEsFa5RN5Rvl3knMDMvAMqgiQ2uGTCiJRMYVTyKyCIYUgibsWWHUjSp/MZOiUautUagsqZCMqBzeForC0yrfDLLTdBfbeIak+z6iLD2MrYpXZfyUlBQ8LgYjNd0uBox4MpBFQyN0n65hE6YyJovuyZEKCs0JYwIjv0pBG3wpZIpRi6WIoVhlmVixeDci+oFW9Fp0ztdmi/7++r7WGiIGJAeFMSfdy4yAtwYvWRN0faMq6xSqNa3eL1nXKYwmt1kZqzqnJL1/s1q2NGHMI2JpnScOCW+VTSnG1CFbZZrlrGK8rAoE4wQjTg8eWZCgdVUpGiVtrqaUOWIoxARU62BrDCujgxx98W2cPvEAf/7B93Dd7XfSuTGXzz6BFUfUsRTbW3uk4Tmcu3CGUgKln9GZVY4cvoU777yHA2uH+cSDH+HsqUdYXV0lhkAbWnwRhjhgayRz6qPWajmRRZVDVhzetTirWIbGK0DdWEtGD/pIJsfAxnQF2ziaZoRvW0ajEa7VCbNrDL4dsdiZUkzDZLKGMYaucVgrTFc29D2VFltT2nKOOAuT8QjnW6aTEV03Yn1jldHKlKZpiTEymq6wWOxiraVpDN10TOsd3XjEwWuv48jxm2qiqSoxqOmo+03uv72kt/3HX++1nzGx7H/x6Vve/qJFplbudX1+9rN/dt4Tk1XhuDFa42C7wg0338bJRx7iyeWCphvxrd/xHdxz+Chv/tVf59TJc4TQkyQxWyRCn2hcy7hrsaFQQqZpDdY4RpMVlvPADnMeefRxXv7KV7B+aJWyM4dpx6kf/SmOfcdreOR99xO6VTbPnGGY7eIcTHzLt33X/8LP/od/x33vfzc/+L0XuHT2KT7/K76Mv/tV/4j3/v47+eGf/hXMzhm+7198FzIZs7M7Y1mExQxytggRqvo69hkrBRkL7UrUYIGlMAyJmKFpNLBnHgJIwRm1u/azhaq7S6JEh/XQiWcwPV/7j7+BJx/4CE+dfJpDPXzDN30PW6fPcfrkZb7vX7+WX/2VN/DAu97BEy//Ah7c3WROohm3SAk0WZM8l4tdvuZ//BZmZ87y3g+8l+fe/VIWp7a5YDKNM/RxwX//jf8T91x/Cz/8Iz+AH48YloHd7V36fiDEQnY6ap+OV1UZP0m04tlaWmLJTFdHLBcZ0ygD1rUrTEcNy51NXAvrq563/t6bWDu2gfTw3Nvv4t3vfj9HDxm6kePel3wOf/qOt9G0Y7yNxBC0EYKy+A5sHKH0A8OwIFnDcjbnns95Ceujlvs/9ii/+dO/zM7eJt/0Ld/Kx977Xv7Vv/s33H3HPfRD5m0P/CkPP/5xjhw9zN5yk+fcfQ/3rt9BSAPT1TXOnjvHS19+F3//3r8PUZX1YhTPkLLjqVNn2Nrc5MTJp5AGPv/lr+Lm48dpm1ZrBLQiA8VWFBLnz1/k2LFjlKxii904cM0tz2elW+Xy0xc4d3GGyT0vvvNF3Pa82zl45Di33HIXk/E6qysH/tK1qNQ79erdWcqz/t3/mYIyl8u+wCOhQRDiwezf0Vd/cT1uiqOIYe3wAa6/7XaefOhBop0S8sBQhEee2uH0xR1cSViXuebwOpd2EvM+UIxwaVlYhEIrnlmMypM1qiy0rQA9o9YxTp4mFyQUpivayJ9Fbb6uTwwHR4L1A7u7wnIRma40fN49z+fw82/lebffxR0vfDl+dABNbleHTcyGxmWunLhIG6Ftp7Rtp8IJ/Gdl/dp/fNYbSs5kJaBXi8Yzx/rKTaGQU6nKkAIELYopSHFALeCKsn1NUeOHQpI1wqoQaY0gyRCDJqSkWIhSave3QE2vyDEqyNkabYQEnTJq6krCloJEhRkX2Y93VTA0tk7R6+RtP2rc1IZQyVBEZXJGLGDwnSfPZhQLOdaDjaiNTYee2lhK+1ud0Qs8h6Q2KwHXOG06BWWdqCJKr299mZrC4RRC3aegdgcDSSCmSEka1QzQDxFn1d6UaoEwDPuScj00W98QC5CFfhGYeqdWF1E45NbOBbzxWAYilpC0GI4l6uEao4WVzFgZe5w1uFIIEunTDIMl23R1mu2KxcRCrne0HkarjU6kFt6pxjgKJkUGq4enkiOmoNaK2lFORa8jEauHSLcfS58xOesBAcjJYsqA0Nbo9pqKZwQjpUbCPrOS5GJqY9ATK/fHFvCNwTXCbK7TntF4BesaVVcUtVsJNe0PwWRHwetUukSsKxotjHKOLKowU4ZTIqdAS6fNQUvlI3jEi74vRQjAMCwxWErSibsRVZEZHIcPrDMej3QRT8IiC0MKxOJZ7O2BwCIkpp2wjEJMhWXMpNkW8xAUGJ+gaUc0TmWhs3nPbLlJHgLZFEw2PHlmm5XJmJsO63RitGoIYUEO+xODhhzVttr3c86c32K+u81sueDw8aOIW7KcOZaxcGHrMiuTVY5cc0hlpqmnOG3CxRKgFGKGYYg1IjmTgPGkY3t3m1HXQu5VAZMGrHXkFPGN18m+ZHzXMEqRyXhC22rjMMdEYz3jRoi+wayqamLZR5ah58rWFUoutCPP+voa464jx0BJltaPCCmTjDLbStZGbI6WkSsUSz1YqUorgzJuQCPhVbKA2KhqOSuEVFTkGfXQljLEojY4YywlCakYJCdsMWAsOQbIhpx7GuuxrlSFpR4ic0wktNkvuRCHgnhVpfVFY7ytqQon0cbXgkROvdrkCizDgs3tPf74Tz7A2fMXEZOZz2a85N67GLcN2RaKOFWhFF3LrTf40tAnQYza+HLMlKTqlhxTbaKa6hfPpOQoJeGkaHR7zqrsyRoTLCYriy8UtbrGqI1UMTgxqsqyCgO2RVM4JEaQREhVEVkSiCcVBZQr/0yuKr6SlArjzLhUMC1kxWAjueCNIZlCMtAZT2dHJFFFYYrKI4o5YYmUIkwPrOCfMMyGgQ5LdkJOqlQpOWEAi1EhSl2/NEZcEy9zVtBkJtIUYSiZVOGKmEyKPalfqoWxKmNjGJCaQIiA83VgImo6pQgxJhpRaHyyqXLEija7clb2lNVwBmMMKUS1lYWEdyOkNKSojMF9tkvMuud5EU0yE7X1hapCEhO1USKFFHeRZhVbof45LImLGcNiTt8HVtbWEafcsuysNuwMdL6jZEO7OibHJ+maThU11uhBHrnKQCpJ11lSoekcOSRM4ymusvYag8mQJDFqW6x1Vw+jOssUvPPI2GF9oymPJallMVdGZC71ujektNB1X7SpQG1uXrXe5KzA/axKI2PU2t14r5ZWsVjjddhUBv15FBpqLfhGSKLXw2K5YA0ql04HSTp9VQ6crerFUG3mmWp/37fzxEhyYIzDuYaSYhVEWsgRa7QJlET3Sanqg6sK6FTqZ4cy3CYjBFOvVaMg6ZJVbWr0UC4V8Gudq9HMFW7vO8iaHhvDM8EHzntCHIihYKLQYIjOIU44euwG1jYOcOeLX83qNdex2Oq5OH6cxz7+NDfccC3jbszKnmc+nGXNH2Pn4jbe9rzs5S9l4+ANTFY3OHnicS5tPk0p25jQqHIxFgIWcY5sIyFHrAwY05JQxmAkkWyp+73Wd4Lu1zEHDFLT2XQeOoRAYw1O6qCj1lc2WyQKpgWTe1xakvKczoxQUHrWA3W25NJjjUZjl1K0eYWq6kqp4TEla1M1KQ4g59q8j1o3mozaQrDaONSyS5ubYnQIEgcWizmsTT/tZsxn+vhMYNaf1vPWf8vf8PffZ5h8ss3tM3nG/b/zLxyIjd4Hd/ydV/MfvuLv8v8y96bBll3Xfd9v7b3POXd6Y4/obswAAYIkBoKDOIiSLCWaKEuRpfIU27GcxCqX7Dh2XLErTvIhTqpcTlJR7JQUJ66KpSiO4pguSZRFSbREUQRICCAogiAmYmiggZ5ev/nd4Zyz9175sPZ9DcmWI9moSm4Via5+r+9w7j57r/Vf/+HWOy/w4mO/yd/5b/4WL/aRcRc5c/ZW/u0f/CS/felFdl7fI3UthIrxqEEUdg9meHXU4yEpd6TFnP0b10kCd1x4Lx/44IOMJgbaKBmXIX7oEf7Bj/9d/q9Xv8bQCx/75Pez/dpFXnj2ea6+9RZf/Gf/jINuzvrqCW65/z5+5K/+Re6/8x4+/d/9OPe991E+8PDDPPXTT1KNV9iZLoABK+tn+IE//H3Uixk/+b/8A7rJBIf55jpRKpSRWoBNpxUqHgKsDIfI0R6+HhCzI+ae9zz4EK989RkWWYkx00yUeujxavHvLz7zVfZ397njwu089+KzPPaX/gqdwM8//mXOrVR86G99hJ/88b/Nf/Jjfw4JZuTtJOMFqyeSUR2++qUnuXDXg5x/4BP8wk/+BClADhVdmwjO8eLXnuS3fvVXaIajcq8rBzt7RO0Y1A0nBkNmbcuinxOCDYVm8zn7R3NalGHvDKQeTBh65Z4H3sVf/As/xm/8ws9xtV3w1uXL/IW/8mO89967ee31bf7Lv/Gf8qN/+S/xv/7d/5l3f/A+/qP/+G/ytS/+Niu3nMB7z+Urr1jnNI2sjTZYaUbcOJzS9SZrbUYD6mbEs1/+Cn/5R/997rztbtbPrPPtn/gYv/3Zn2dlJLzx5iWG1RAvyqgZ8PrFVwnNrXzXx76Nu+94FzEnVlfW+fQ//UW2dl5FVGiTJeGm2PONV97kSy88zS2TTX7+536GB97/CKlVrt/YJuZ9Hn30YVQHkrcO4QAAIABJREFUx96fWOeMZmjqAhAqVFXg/KlbiF0iBHjh8CWefOZpru1NuXLlMj/yI3+Nzc1bDUDHPIXNRccXoLvcW7pECpb4sRzfc7/zflue6AVsEkGdMa+dLhElOx9zOdspkr3KKR/94Ddx/Wuf5+LrV9jdb9lrK5wX9lur80JQtg52mffmDUyC7U7wQelTR+MdJ1cw5U9UNoae02tj5ilTDRr2jloODuac3hyzPhny+rUF/c4Bk1Fg5ew6Z2/ZYHWyStg4yf333M17HvwIw5XbUFdUPlHB2+DPl+AMJx4JDaMqMBgUybN3OP/O7rnvOKDUl8lSVvvKlsapIQSbG6vpxVnCKgaTHX/pIpZ95ATzp3BW9CzlICnbZlxpImSBbB5CIpko0czaAF2a+FaB3CmuNsNl7Og1SU6RgmUy0it4PZY8WMKa0fRUIXW9TSMdJSELfFXZF5YdTl1piOyzpz7RdibXSmUztWmn0ZQzNz+3846qMu16zuZ/ZGltYokwFGqzGIAkWoC6aAbdLiuZSNdHNCveK1WojeVRWFYpV9aASTBnfOz6Lr+Jo3ZGJY7aV8xzZIQxefrFAsmVxd1LZK6WuGaTP6FC0MofG+BGzezFI6rkGLsazYFpP4NeDBjINVIlGi3Ty1imEWIxjTadBPEV4kx25rUi9onaC5oFKQWqulKYlvGnpe+BE4vU9GAm6wi+hj721FXDom/Nd6Qg5s4Xb6viTSVkM0SjJK7kjM8cN3i9mvlaTB2j8ZrF/EpF6m1Kbn4aHajD4wqjLKJO8dlAMCfm12LFeioIfpl5iYkaFv2CWgf42hl1PffHdE2tawbZwE4PqGRmthqOvaaaIDTFk0WDsdOceLxrTcuLQszs7R4gYWBFP4GczYw6iwPpyWlOkgGVD5xYm7A6HrC9f8R0fkhyjqM+cXhjh639HYZhhZObc06sDDmaOXwFVW3SDVHPzhtXOdi+we7hIYuUqNfPsD3b5a03rrO/u0vMiVvOnEX7jo2zJ2kGA5IK4+GApDOms0PiYsq8XRAGA1wI7BzuUdUN8/aA9fEptF3gYyTUlgLYtgtc5S2USw2QS8kScGwqBt6b3w+aEY1mrO0rJsOKybhmdVSz6Hr62NO3C2Yp0rc9+0dzUhaGozGhCYx8g5OeelhZ0lKMiG8Y5kzVO6gzWpnM1Ger03Myrxd1JodMQO0MUJFgzLYkGXVjS/Qp49LgIkmESE/Q2qanUhp+J9ZU+LKJZkvZNIAaIOLKz0SNJRWqGl10eDHJbK/GXutTRjWSUiZ2cP3KDXZ2thkOPV0Pr791lfsfuJfh6prtvQpVCCabXcrD64rcWuxq1GwTe+ywDt4TvDPZVu4L0FP8ZkQK08Y8rRKRSiBpYbe4AU5naDGv1uxQ542hmRUVwbIjjY1ZB5MoxaR2AKfevJqyN/Ao2jAhqbFR1Cmxb3HjCb0mqmDyKXWW5olaUmbCgiGSYEOKbJ4xGfN9yckxHAyg6qHvmZzaNMPUhMnaKClNGRAlu0TWQFShoqLTiOItitzZhCvnbGdP9maynIWu7Uldaz4r9kWQipSw7421m5KWdQdUntz2xGwafVVL2BLFWFjOivAUewNA0CK77HHSGAhfgImc+wKgOzIJh8PlhOYeJyUZ0RWQQw1kSbGnDhVOzIDexVTOGmM2ZY3M2yn1YETWRBU8zaAxk2ZXkfpE1RjAJL4qAIQNV9Qpqe/QFEmUgIpoXolSzGq1N0DAZTHAORdpeuG4adlj386hN8DfZntOzVw2akK9JwUjNmlKxTcugPSlyM03vfq0BAwUY2ZHQL2B9tp1eIx9Z02sw2Wx9+SlyLE9QXzxynHHhXXOGRds/ccshNAsaWSoGtvTbAbMFsCKdCz9BiEh9NojYhIG57wlsQWLuzeSsgH8ORdvx5TwQgE/7TmayhjmwvL3rVDPy5h61ADPbKw7Ld57GSjdQvk9G70tfadwZoSvOKpQQ1LaxZTR6gbtoiVP56yfPMn+9JCQXycmGE8mnFldpZdt3rz0Gkkiq2sj8vyAjdVVJiduYX/3Bu0rc5BVRqunLdSlnbKS0k2ZrpbvLnVo1+MzVARjYGUDltWbhD5qRsSXQaihNd4be7kKtQHdpW4VFEIie5P9Jjy9N6a1VMHO+ABO6lIXetBsskQMAFe1gBOzUgjU1cjAIpHjQa5gXoY5Zzw2tPU5mwzFe0IB0VyyQWMfTWXwzsM8/+Lj9zSzhn+t119yh/5N37uWfcr+3y0dK24++e8iKf2/gWK/5+f0Vl+effBeVGG2t8/+cy+zyJ7JcMAsCpOzpzh84jG2dnbJLpOd0KhJrRaLGakzgDouFjiUqq6gNuXB62+8xi996he489xtXLjzVnRlRL8/5e5PfIRTn/00fn3CYmufr3zxCc5urjMceFwjnLxwgR86/UkO92Y0R1PGfsjaiTOcHQ+ID7yL1LZcObhBGI3oZpGV9Q1uP7XKn/3zf57P/MTfp/YCPhCy4Csbfog6pKsgdzjNVK5CYyTOD5nUnmkSZtPIXXfeyV//sb/GX/zTf5S0MkE6ZTRoGIcK3wxYW1/nlo2z6Kxn6/ou124cMhqOWD29QrM4YCYDtt+8ytO/9Cu4geLinDAMDJsx88PFMXMwquPajUvE2HL/uz/E0YVb2LnyOnUY0ZFQmfPGy1+3JNNQE2rzoMnJ2FckZfdogRKRYYX2iT62BD8ATFmyOztkGGrwC/oknD59ikce/Sjvfc+jVFXF537501w5OELrddzBm4wmE37x5/8po7HjlrPnuXVjk/HGOh//vu9l9FbP33/+ec7degs/8MPfy+UXX+Pprz3JHXffyeXLV9jau8Ed77qXE+snee61x3n16qu87/47GEwz/8GP/Airo5pXv/YU525/iEv7R1y/fpUudow3Vnnvw+/nlYvf4OT6SQajCW3bsjXdY/3sbca8Cg4Ljwpsrq/ysfc9zDO//TRbu9u89cabXNvZ5fS585wdFyk8WL9SWKeKcn1rm5df+TIffPSjpCSkHHnsiSf4wmO/yg/9wL/DJz76CY72F/zDT/1D3tidQvC07ZzhYGwMdReO70ld2gSwBGt/5z35L2dVmm2NM7YIoMTc0bWt2RqEClWl71rmsz369oi6GjBsVln0HTuvP8t3vucs22cqfu2ZS+wcJt7Y6xhVQhfV6t1GWB0ItReqCmZdpus9XYqMq4qzq5mqdkyPejZWRwzXGu48ucFgdcLlrUNefvM6LRb4cM8D57lv7T4u3HqKe9/1KIPRKQZNYDBZox6dxrsx4pIl6QUBDWhhz8Ly/FUOZ3MUtVAj7/BSU+Rj79jjnQeUemvUc/a4IKhaEyziQMJNMEm1xJkGm8pLBhKOmkQ8Nq0lGUCjEsxPJ1vySvIVSyjSgtzNiDCj9Nn8jYKIpTJ5I8KpYFPsbGwYSKgDp1ZsamnsllF6DiuERBx9MiNnXXoTFM0l2aZ9KSfISt/3BYSyIimmWKR9Utg0b/sCi7RNjbRCwqaVItjvakYqXybKzhDTZPG/IOAFF0zetJwoi2RUPV1vfhdLWpMXgVCViZiWkZQ1XU4EV66fOcLb+3XO0fYtw2zve1h5qlSRXEYk47NDxdPmXHx9lSCehCeRaEuhOW0F8Zm+zzjpIZoPhjE0lE4MQQ1SfCEEqmqA5kQj5jvU4hi36VgOkrXCDEEjmuzG9SLWIGOfR2U5dQXU4+sxmczIDez3iqGU2VmYnEaKB4YL2Qo1sXQCX7yuDLE2cLQeiBme6sgwbF/KDm3s0PSCOPPUcnhLZUIQX0PMSAg3WRBATOb7RK6Ixa5ZNeOieRgZO8UmHcF7gjiqMMRppB4Hrm/t0at5TWVVhoMJk/Go+Nfk8j+lqsu1xxfg7JQV7JJJ2dvBQaZLQuzNnyP2C7rOEIKV0SrnzmzSpxUW88x0vuDw6JC+TXTtlC5GgiivX9rixOkVzp1aw4sjpMzG6oSTQ8/Fq47RyjrNZMIbb7zBwEMY1sy6xHR3l/3JiN3tPfAG8K0OG7RfIM7kaZPJmNoP0AxHu0dUVcN0d4rbPAOpR1LEqaeNHVoAhLaPDJTiG1SaAxzO2X3vCwgdnKApobnF+GWBYVMzmYzBlQSGrMhE2DzRM5tlDmdT4jSy1e8hPjDpJhAzs9mcZuSZzqaQelbW1xlvnCiSlyVTSYyklBSRVAzLW1tTKua5VNgkS61RdtGkdjnjQ20eYsnWrjjb2cU4Gsam1Mze3jbaGzPEOaHt54yHY1wux0AGDSZ9Aagrx/X9PXoX2d3tefWVN5kfHTEcBW5ZG3Jtd0bOwmzeFsDdGEnOKWJhaQhClJ4gBhhlhOm0Y3v7gNi2qCrD0QqINxZUqMzTKYJkm0Tt786pGjNEd2GI6xJZW1KOtNNDfG0SLfMRMmmU8ya5ilGZzVv2dg/pZoeod+R5S84B8QFfB9rFnGZlBMvmrjAwvHNEX5PVc3A0R4IBaLmPpNxbcxbNW0bLWvJiQKDmaMCS1LZ3u8S8VYKfkNmnGdR0s47Um3S5jRmIxefP1pwrvlFJMZleShwuDqldjUhDzJngQbuOLkbavmfgoc9zYjKPBudsgJAWQEy0MdOmlpSUrAHajhg7ehVSVvrszUeOfGwUD2YMn/tkjU8ZGomaDJXliESNPaVa1pNTepQ+CfRKSiAl1jRHO2cdFOn4cu/M5gVIog4ObRqTN9WOA03UzaAwLyJeHUIidR21D2TtqdzQ0vSCNwAiGicn5YyoUgdvIJiY+LMrPkbHey0GPDfOTON9sHNhWbgaia14QeUIBEtsTNH2/AiiCQmDkoa69GGSY/aQSJGsY4mLgWASQZaieEGzMxa3UPysrMYwllogE0ipx7lR2e9NQm/sByWlWLxLElFNHlo5m8471JKlXBkeOIokuMiTpSZlc2ty4m2YJ+ZZokUiqdnWI0HMA03LlLd4TGpMuKoqkocCajiOU21Zgm0YGOh8WRvOoVq8yTzEmJACrpfcEFStqRlUFVW9BHRSYb3D9vVr+EYJ1YB2ccB0Z8y5d99HnU4zPXqDD3zimxkOVqhCQxUGxqTSxHj1NJoCPcrVnVcZrwx5/bdvMDhzmgtnz3N0NCdFZbqYQuztmifQ3sCf4MwYX8o5nbNBEFb7UUBELOEXh68r7E8CWgajxU9PUypDUWNp+RJAg1oKsJll27U1iXsJkVGghImIs5rSbl7IsSPlbPJGUdNnizdGXRmYKcmuZylTU1p+Yf/fPP5NAKF3Agiz+bKd0TbUdWU49vZXeWeaMiHYgMHDeG2Vu7/143zLy89zbTLhQ+9/iLC/z1c+/2vmfSqOzkN20fzlUm91gUCKamnRNabQ6B19E/nKi1/llTdeZfPMKRazA/Ye+wrhve/iqa+9QH3yNu5anfL017/BxVdeYnNtyHg44Pv/yA8RYuKJxz5PMxxy4sxp5tMDYvCcObnJ81/6ErtxH6kdaysTXOUIPjHd3+Jwe5u1zQ32UyY5pY3JhhiiHImaNFl7gq+IzluoRcgQe9rYcjg94s/8h/8urFRsrAUqN6GpJ9x1593cuHqZy29e5PVXv8F4ssJk0PDQh9/PidVNnvjcZ/kzP/xDvOtdd/DS81/nWtxDgGY4xNfCfe99CL+A57/+JL52VLM5fTfn6puvs799g8N2DpLxssBXFWiFr4TgYHV9zN7uEV2bTHbmlMlozHC0ytFsG/FC6jyOIYgxwp2Y+qQZj0DFwhzmR8wPdhivnYCY8U3D+TtWededd1C5AR994CGup32+eu0a3/2DP8hn/+E/4Y03XuXpX3+Cl3/rK/hhDaGiycJbr1zk277ju7j3nvv52f/9p9g/3Gd/Z58TH2z4zu/+Hpoa3LTnxv4uGyfX6buOn/3Ur/Bt397z7gce4j0P3MN9d92F1Mq9585zbvO0pfqdOsNzL32dH/6hP8KoGprfoG9s3/CeM2dOkN7see65l9ndm/LEF7/AD/3wH6MKa1y/+spxmrRgNdJsNqVtZ/zSL/8cf/gPfy+zeTTPvMEKjz7yIULl2dnf4/VLL/LwBx7kvof/a1Qzq5OTeGmsL9Glub4rw/XCDC1ey0ZiuQkwHd+lb2MFKm8Dn8pgYzE9ZOfGZSNVVDXeO7q2Zevya1y79iJVcEyGG7zw4iX+yS//CrfUgRMjYWdXuTydMRnU3L7eMF1kpovI5kBYa2ywsOjBF3/HWzYDp9bGnD+5wav7+3TpgGkzIjRj5OStnLlwO2ffvcL94uj7BSc2Jpw/fweDwQp11eCqCTnB7vZVFv0+Y21YWQ1AQ2xL7GNBvV0w9YENyTzz+QLvWiIw8UbooG/fkb1r+XjHASUhoBpN+54BSVhKih2U2cXypVuShEl0Mtkl8xIhm1dGSeoSAqjRcwkRTR5HTVRLCMrBWTpY3yFByM6ZfEAA7w0ldd7qSs0EEs6Z/EvFwBgDFAqTpGiZncNYVdkm1vWgsola1xtTxdnn62MyMEZt8l2ro++zTZJzmXAC2UaNx5ToUhkdF2j5+K8smUpwxN4K9xTjsUTGigtbDDnbJLmUuUXf7W9K4kSO5X0qAt48F7R4GjjnymSkTARLY0thTYmYfC4S8bUl2SVNVFrhVGkVkhq7iCA0QY4L95ShdTaJzjhy39oET8w8tk8dTozBY2IbpdeIgYrQRSt824Kukj1dnJp0TxNKTZ+VXArY2mGSPF/hcdRVoPZG5zZIIuF8TdIej3XdwVWkZC2oSyZlcUVip5S1gHlp9FmMVaECKZnHjIrFwWtnjXS2wtnQAfNcWH6xUWIBIRWnVixmMrmz65HK2ljSqp2AumR+DymS+gEJR0wLkwAhSF0Tu5ZBCMxmkYwjakdORrHvUmaeerJGGkzSJz4UFN/RxkxdVSDmAQODshYyToRh8ETv6IMn1uk4ojvmlqwOV9WsrnhWJgNW1wbMpnPmbY8GYdZ1XN3eZ3t2yNWtA86dOMXa0CNHB7TTI5IqG00gzfc5PwmMtWVl/QT705a3buxycOMK16dzYlbqEDi7tsrJ8ZDBuKZOSt9FYlywvXPAvJ2jFeCVOtTM26ld9y4xX/R0XURdz2LeMl5RAzHbjsoHcsrFY4hjea6ZLUvxI/FkhC4mghMCFq3sXEkeQhjWgfFkA80ejckMX9/a5szmmMnqkBMn1pjPZ+S+xzWevpjeK+b7lbOiLqNRGVQV7aI3kETKz3KRhGhh5OUMai24k+OcSPCQiARXmAvlnvYFxB+PGnKfqX1NMxhxtKjsuXKGGHHOmJMiFS545rFnMBiweWKNz/3GF3jxlYu4CtYGA27bGKP5kKwmN6xHnhCW79eYH0IqBblJMGtnoEWolNFKoA8mu7O2J5Z3GyyZkd6MxtUzHo+gqtAKvDRUoSJlh2qLSz05g6Qir1QrOsD8Wbyat1kYDA3815ZF5S08QAJ107BoF2WCpuTcFd8YKdN+8CjBlfTJhLEK1OSBSUxeIt4jwfaNPvdI7owdqcF8mXrlqN2DYuw8alZoZy2aMm22gIBRZYwVJeAJ9MV/AooPYGyJsUFdV2YiiSiWBhK7BV3bE0Igth3e1Tg/MMq1OEKo6DNMp3OGdUXrEyFZ+EFazJGqJiIsFgu6vmOEsSpEhNh3LOZHxBhLYITgsuJSRnwkigHeTl0ZKLhjlg8aWUwXpB7aecc4FPZONbD9UQwgR5w1GGKS1lSaXdtzgWzvY7C+UfwBPTH1hbHb09SORTvHNwMDU7DzTSWRYzb/oRAKpF4YgSnT9z0VikSTjyXt7Lyty1qOEV9S2lJeyvaL1xmZPndMFy1oT0zZ1ocDJxVeHZVbWjS4Yx+xXBjQbd8Scw+lWV0GVHRFombG3Rgrx5kJak4GVqq2OLzVOVjRqBlCFdBkY1pRIcaWJAUQQ83fzVsurBSgTbNYOmAVCCGYt3a22iNi4RI++LfJdcxL0mHTz0Qmps4YagXUtQ01Hr8/MfMMu7fKwC0mY2SLX66XJZwmpCxFFufKEMdSGJfSrJgT83ZGNapZtFPyAbRtZPvKjIP9twiTNarg2JzM2Nm9ytbWGsMw4OzJW7j77nezmHfEmEoynrC6ss7a+iYHu/uoi0jVM25O8vSXn+aDn/gORIR2dsjezjYra2uEpiEXHyWTEWeTHkvxFivD72X6Xck+xLkK54z5TAGWlKWgwsDAZYOkSVGNiNRlCFC8zbIxtQyoWxJlykjQOcCY8vbLyyGZFHDY5HhJTV7tRAnOmO+aM04NDPMFSFniJsrynPmDPn6/gMvylf4Ar/G7fZH+AD5Jv++XgONm1WHKgKVK5O2Y0jvxsooWD0Cr10/cczd/4m/8Z/Rtx+qZE8juIR/61u+C2+/gqX/+aZ7cvgEpEbtsdax6nM8lIMF8Bg1nCnQpsjM74uKVLWa/+Ot89anfhNDz6j/+R3zu6S/z5/76X+W1Lz9B0hcIowl7i46Da9f4u//932EQKl5++im+9Xs/yZtXrtC3PY9/5WvEtTf5Ez/2Y9w76nh0a8aHv/t7+L///k+wurHC8y+8yH3f9GFOPPXPWUx7prMWTRA7szKRUYUEcNmRokBOhNrRNIJOHRuTAfODXVbXBgxC4KPvfw/t/jZvbB3wjZefI8ceH4T1JnDL+og+2SDlPQ89wG99/te44W4wfWOOH7T4uYOU6GJk0lT47og47/nExz9BhfKFJ36TmU9E17NYzIz8kASqOWnR4atAO49QD9jf6ZnNFmUA4wguMxgOuO++e3nhxSNihsPpHEoAAS4yKMxBxRPbnqqpOOqUiy+/yns/cJo+dXzgYx9j+9KbXLl0iTtuvY1/66Mf5taPf4Sf/PEf58Unv8rXPvd5qpB58Stfxo+VIHDt6g1+9p98igfuuYsLZ87yyCOP8NLjX2L74Bo3draZzqe89vIl3nrzEjsHe/hgxIOjo0O2dg/59C/+Kjd297nzzntpmjGvvfUSKUd+4wu/xvf/4B/j0pU36bsZo3pIjB113dgwyRnfMauyeWqTP/nH/yh333Mrn/nlz/A//b2fRLzn9nMn+LN/8t8jT9aMCKGZpqm5ePEbPPjQu9lcP0/ft3ixfu3E2jofeugDHBztEpMxkU9tnmc8WrEhDGWjc8t78ibQC/bnlAszAzlm7WoZUKUc7dxy7qZ5tyopZY72trl08QWuXHyZxdEemhacOLHC+uZJptMZwTmalVVu3NjnuYsvMl0knr22YFQ7plFpXOBkHZg4syGoJTGoa1wlxA5849mohpw+O+GRh85z4tT9qFac7Duq0Zjb7rydUxu30YzW8G5gAwAxdrArHpZHU7suw0GgrhvOnL+DuhqRciZIKKEiCeeDBYppJhdMI8VoypppS5WVSj3kBdqPrMZ+Bx/vOKDk1RLYxCVydOBr1FmCCmr6PlVvnkJiyWyuSBzMsDUaAurshtScy6Fph5sv+faKN2+HyswyxQcyCY+hp4hNc9Rhpp9kg/6xaZSWJB7NUqYOdpOIlAhhDDxQtcYEJzZhCu54WqnZjKGX0fbmG15o6x5ESpNVigoAi6Z7++uIsYvE/DRSLF4I5FL0YiAGRlDQwmASkSJLWP4+Jd7UGQpegCEDrCgVjsV7Q6n3svkoLXmCQrZJoDMPolIx0sdEzJk+G2VRijG2VzOCVRW82A1tIKCW6fbSH6Yne2N9JLHI7GW/0ZfFrwjqTa5oQI6SxfxiyCaiiMkkPuYJk1CfUTW/qV5MdkJeQAafKkSyJYipJ2siuEBMPYNQgXhcGuCyUAXzRHHO43KmLxtX1owr/w5viVwqghDNmNe7EgVvm2ytQp9DMSktQYdirK9MOpYvOmeR01GkFG5F4ujNn2kJNjpnIGYWZ75kKmUDDSyiGexK6NBUQa7os3lteLHUQ586Uqv2vYkn+IwvNFTNiT4K3WKBqwxkUCwxzKJ1giXVJfOECiLUlYfa0s8Uz6LtSV1HdplhLTT1KuuFQj876hhNBrSx5/ruEdd3p1zYHLMpiRBLAl9sceqJ8wV1O2URE3UW+r4lSs9kVDPvlbXJhLMn19gYmM7ZazI/HAfTw0P61HJ0MOP2W8/Rd5muy9TeEXORMBbpqhSj9KauaOu6JCjeNN/LaimEIt5krqpvk2vYlKUgJDYIKIWk10SMBnyqOELw5t8kQzTNydikWQtktZSpOIIx3FCWLVoqPidBK0R7lgrum9RhDDCM6eY+gN3GSY1VaQ2NZ8mztM4mHMejG3Hf9rCs5oVGn1Bam2xWNXVd08sMXMBroCHSVOYZ5HygWt2kuzEnhgHDzdtwYWyfMWcD9ZNSSQkESBBdtvcnwqhy1G5AroQ+tlB84lRNTmSFmJb9C+rBChrs72rf4CoP1CgGqMZuaklV6hE143FLajQGoWvMKNzVsewDFc5X5oXjKsJ038DbIpNyFg9JLsAu3jEcDWwvFW/JdkWqHTL0XUucL8q6yEhWBE9wniRCdoIEM1WP3hq7k6dOsLa2UZLglNRmYjs9XouGJXhUeptCLzKTyQprK+sE3xAFNEeCM5A5L2rm0XwpbFBRGLhL+VoBrTc3Nlg/uYZ3Db4eotrj0hh8RVLhaLrP4dHcsCBna64KgcFoZABMTMxnvbFQBfAByYJoNKkldnyrTToIIoyGNVUd6Fp/fMZI5YhqBqWyPNeCsZH7PtF2Jtu0ib0BpKNmRFM1ZoyehKYyGbd4qFymT5HghKaumE21SJGFKpjMOJdbPSUrOnM5VD1CzMtUNYcP7pjJayENxg7SnOyc0kK4zwopo30HBUiRSqBIoNRJqSGWE9KbkvrUzYldh8RY5J4mRawQUBsyCMYMsgbfE7uO6eE+7XxOpT1SGUtJ8qAwXAqru0DJxsJMzI9act+VoVRhAqqC2vPajiPk2KI1xLhg0fXk1Jb1Z6l+qewoSC4Ah7cGuEv07ZyunRk7LxUTbqz+onDIS0GBF8h9T9/NQeLNOkuMPW5bcjBZ45Kxg9LHBX3fWXknEZFfMnruAAAgAElEQVSKGIXN0QqKI4wHXN1+C+8dw2qIOuHoKDBZH/DKxRcYVOt89CPfzGI+xUljbODgWMwX7N3YtUEBEHzDufW7mAxWeOC++7nt9ru59NorHO1u8+Kzz3DruQus3nKerusLg6fURVokZpgPmXPGzLYk0Ezf9lYvOTEPLim1FGJ7o4pdK7V9yuSm2QDNXBGqQIz9TcwlawHw8zHTPBcWzfLMcJpLqleROhdEzpdghCQ334v5fZYzRYLt58vakz8Q1FMe+jv+fHP08TZw6hhHkreddL/PV/rdzdA72hwdF2KUk6DU+rl0Iq58ht/1Od7+DMuGV97+fL/343f4M5UCcrSxhoUTKToZ8/A3f4IPf/8n+emnn+YrR4ek/RkJR/CBYV0BHdO4wCHERUIlWMI0wkHc4elnnmJ+9RpPPvcMjW+ZtZHRiRX+t//xf6DTlnpQE3tLrm3jjM8/9SUGvkL6jp/75U/z8ltv8dAD7+Px177BBz/xHezO56w2Z3n44Y/zwfd9kF9c+xR3vOsenv36c9xz7m4e/uC30T/5OJe7uXm+deArj1ZapJ0Oindu33n2+hbnK8aVI1Obl1pc8Mwzz0PKzDUTmiH4nrxINBpYYcZRn6FNfO7Tv8DmrRe49d4LnFzZ5Jmnf5MbO7uoGyCqnNw8weZaw6k7TrPmRzz2+FMcTnsGKwNgQbewayUMaGpPcj1diix6SzutRiNWXODy1nXEByQp0+mMl577Gm07A23I2c4gdYnFIuOD4CpH7juSKoPVdb7vT/0pbr3rXvq2ZXd/l8FoxPbrV/jME7/Jnbfdydb+Nu9bX+eTf+SP8xP/7X/Fm7uXccMBaW4DhSgGPt566y18x3f8IUZ4Fkd7tN2MnJXFdMZ4soavj9jvjlg/cZLdgy2+57u+k3/8j36GvdkBV69vkTXx7LPP8vxzr/Gu++/k3IVzfPcnf4BKGl585Rs8+MBDxNQTqroEVebjPcGJpYRXwZJ63/fw+1l0Pffcdzddt2/hVLpkOwreV0znHQ8/9CgpJapQgTr61LG7t8/Va5eZrIz58m89ycbmKt/0Td/CTcjd7h97bbNqWMqmU4p07aIE5XQmq1ZH17Wkfo5TwxBCqPGDAYPhBNQxnx8gfebG1Ve5cfUlHB0H812ODq6zaAfsHl4mZ8ct585x4cIdrE0WnHvrLU5c2mM37XK0iDYIFpjGyO7cwPggwrDxnL9lAx0GhmsrnDh9Oxfuvos77ryflbWziB/wYD3EO0fdDGxApSbwTn0ipc6usbOk9ZzBDxrqMLRUW4WUe6QkfYp4qrrGSSj19DGn0sg7mNqm8oVk0gsy6JH8L9m4/g0e7zig5Coh5ECWSPC+0N4sMtc7temKukIFL5TeZN1QJhdqb4bejGeNlmaeNloqbfNhMIAoiLeLtzRdgkL5sqbJCrJi5lzSQiRgkcEp3Tx4vZjPQNJj5NIVM2DxlkwDS9qcO05iE3FGJ07Gioq9yYs02w0g5iyOGSoWZpD9xBZDmUpavLHpjHMBiVzxOnLOkaP9ezM1z1jCCvZMZfEsgSF7CMXIqqBH5WdCeW92rOflZD5lzHfIUmOyJlKMZYpm/65PEfXLl9GSKueIKEGsgDcpRbZUoByoAibrkJuoMcnRx3B8zppPhb1nxZcCHGuzxRponKCphpTM2DcreLEJnndl4yoHfM7WyJER6aGkObnYk8jMYiRkR+/mhNJAqJpMQjGD7yDO/Fgks1INCSHQtgvEOfo+0mjDAE9w5mMiwFFvReTIWdOTBSQIMXkUwfkOyc4SLbwjZ6H2kJNFttu+ax/ero05LUSFPhvYJITCPLPuKHUZZEFOc8gmWwzOJvttP6PvnXmrKPiQzasjp+N7JQFBYAY22RJB0ttlg5G+FJaDUcNgMKbxlh44GniyE6btjK7rUWlwLhNyxaCuuPX8WRZtz2wx43A6R7C0sqYWnCqxz3g1WUCjynS+YO8wcng4Z7Q6QD3ghap21JW5Q6UUyX25pyVTB8G5iqNZx8poxdgIRS6SulSAPWMHNJUZX3rvCSEcM/1iNMYYxTDaynrb3FWE4MTuj2Lat0xeNJaITUCMUWC3eswJX8zzHXVJNCtMvWzyJZOClAm0IRk4TPIZBJMOiXHrlt5qSqbrWuazI1CoKn9syKrlfrRkM2NeWniAksSMuTWbzNEslcw82Do/k+D0KSFeWKsHBixqJrhELZ7zG+tsXb/GXoJ6UNNsniDuOFI9YSsNePnKgkHTM6qcFY54otj+5ktDbVI9cNS2P+flFFyP9xQpYLpkR8KTRWnpjBmWA8klS9X0ybBzZ633EkzTAqZ4cTa1FY8mk48ZmlChRGMuqjHTRIO1ON7jfGODjdQbOCd2D6YMrjCTNDskLEXCWjB5JWL3naKFSaIkEapcAT3TgyNjzaTGJsjHQFqyRrMMJpax8HaCmczXL1l0ameU90KM2EAlObudI9SN7T3kVCRE1vTH7ICERgNFMxAkI0X6qZJQcdbUuzJMQArTwc5GKesskS3a3iWSVCQSGpU2HtlZrebpJCqY+Ys7vj+MueFRMWNlxJU0QQtsMEagMw6QM8+lqrZIdvEGYuRs91hlyEJhddigKKWevu/JZFJM1CL4EEiJImt1JHXHUvEgddkF7WwWxTwaxM5dV+gmS49H74zBY+BxJvjAZLxGzpF+PjO2DZBSexNgLU8shengBYbDAU6VRVWBmJeUE5P3+axESaQymNGkBF8TghACaOXQTshS/NRUbCWKIyex8yzbUKn2lXkTqu19CUhObI0XUGhpFg6lHkFo6gFdn+hmthxySgV8d8clvs1KbAoqAlFNlp3FBnrOhd8hOzCZm9VCqBKkAE0RpKrI2Zjf5aZk6Z/k3c3UOpXEtDsi1MKpyZhh3RDbxHB9QlXXhKbmXe95P0998QkygSgrXDh/G7v7b7I4gGbcGHBYmXVAu5jxjeefoZ3PqEJAY0SzYzxcR53w4IMfJsbIYj4nVI7DrTd48+AtxouHTX7edUVqr8d+i0WniBNjA6c+0ncdsevJ2pG1RrQqA0BZVmvlTFG6GOm6YhVRmKlRbW8WtWGQ8SateOoWnQ0FJCOieM2lhrDn9r4Y/HuYTado7koKrf1sORxZrtWMmXOnGMvAopja/mv2Hkvi0BJIkrfVqLq875av8f+bx9vfi61FEUckU6q548Hf7wUU/YtGwP/qxxJyXb6m7b9yDLalxdw8r9Qh9Rj6bIPelNkYj8gxkRFELa0qOEvmzSWhcxY7Hv/Nz9IuWuZdx6Ku8K5h3re4YBLSyXjEwUHPtFvQJwPQazWD+X66zxe/9BhPPfEEfZ/Y/bXP8sqVN2n3d/mjP/qj/KOf/j953wce4d7Tp3npzVd4Y+syr12/zmw2Z1x7uj7ROsiS6bOj8sLIWXrxoQqqje3fydiZZ2/Z4NzZMzz15ae4ES1pOYtnRcueqcJMHVvTjBfhlS8/y50P3Mvf/M//Fu97//v42z/6p9na2TLANEV8JaytjDl3+hS3njrJC195hteuXaHVTJrPCLG3OkyASvGNSZFz1xNy4NTZCzz0vvex9eqrXLl2DWkc6mDR9nR9S+WN0BBQJiOYxczZW26nmx1wOD3gwumzXLmxy3g04oF776NpGrr5glffuMi5k2f4+Z/9GT77zBf49u/8Pi698Apb812ubV1j/fbTXN6/iqch6Qz8gD52VGQmkzHPfPWr7Fy7xvozX+WZV7/BvI2MRyM+9amfI+VMFTypaZmMBpzYXOXBR9/Pzv4hB/uHzGNHe22Lo6NDXnrlNeZd5OJrb6HxiEce+TiDZgRqSaQ2fDDGaIolEVSEzc1NPvyBD3Dq5TXuv/duiI6d6VsMhiPjcKixMy9dugwuMxxMjPW86GnbA3Z2d/nSlx7nzLmztN1JPv/YF7j77gs8+OCjDJph8aWzQUNe2tWUvTJGs+NYLGZo7iFF5oupWXV0Ld5nBuNV6mpsddZsn4OdG+wcXGdr6xKnRxsomRMrY8LmOoNBw9VLkdwfsr+9x9G8Q3PHaDRhfeM2PvbRj3L63F187Znnuba1w9gdsDoZ082PWG9q+i6xv0hsbq5x+913cPauezh/+11snryd0eRECdrwx0O0rEtnNi1+uIKvHFEKocF5QlUzbG4tdjhLhZHtJ10f6eKMUFd4Z+m1lLoVKdhA2cO1i0b8IFrfny1I5Z18vOOAkumMl4BFMn8eV5pl1eMkHikt63KCR7aGS0RRepMRFM8Q5wyMWDYddpAuD1fz0KEU9QAuWBMAuRRBqRxcVuyKFnNsL0t0x7AXL1bsZgW8UbkXCemLD4KX4rNkJoZS5GpajMLrpqJtYwG3ik9CVEvsybn47RgzKGclSaHn+ZsAlQ+V+feU1xFnP7OJdJkW5ZsFqrjfebAd/xH7XEKZNJe/X9Lhbz7KdI3CdCpU7KTGCEKsqMk91uA6u1ZLk0xrdM0snSxoLyS1xDtRCI2jnS8NJCF4ew6LUrZpfSYhEvE9ZFGSlnWBxXc7kiHBatNVJ+BspEeUYsaNNURmdQkq9t4Va95dNnaFFlPUVq11a4vvAq4kKikGHBQATMksQm/fQd8bEwTFL6ZUOOoQGNbWCC46ZdJU5MYAqIyZwicdETNUrkdya0i/c+QSAa6ixQWsyED1ZmGRgJiF6KxgF8zDw/YTAzNUxFhZlHVHGZ63PSm1tgAUsjP/p5gzTpIxqmBpWWw2upqRbIwqUMQLWT2pz7SLjrQqxFQzqMo7ViGIUvna5tcp4XKmEo9IzWAyYn1tQJci0is6X3B56yqp7xgMDfyaLVpmu3NmPbyxP2VnsWCqkQaPG1Qs2o7FYmFGkd7or7mPJFW6rmNjc429acfO7hG4QBPMm0JRi5dXDPBS7DvNGAupxJv3OZKd+VZ42zYMZEVJyZIRWfqT6BKcWa4lK7qJCYIBCbGYWPc5UbuGnLPJenTJN7KmwBcwAusFkOzw3qQ1BdUqe6gx7DxCVVX44AuLxx1LaJfSEwMlCyyWQXwgxcxiMSelxNAX4EoVjXZgVfXITJn73hhSqTNII2eys7Sp9RMnGIwGhFlPmyKXto+Io3WyBvbazJMXd+k084G7TlFVlQEqRbZT+m+j3YqaO5iqfV51xC6zuzhkOKzwXggu0JUJsE1jbL9zhTl23JyLacNdAcYSyRI/nTOIQIvMNBtDNjhProV521IRELXUGe8Ep3ZNk5okcsmwkJIsUjdDSD25b8vG6qgKWzEixa/P9kGNCVJPTMZs8Y0BVi7U5Ngh6hkFR+M8PZFkzutkMdauqrPwieU2XgqySmy9vJ1tZ1i/FXbee/ygIgxqUpvKHqKkaLKmnHtACTgk2/nVp5754hAnnqoeoqnM3p3JeZdNrHeOvusRzbic8G5IFRwSbTqWUkT7vsgFzOtnKSE2Hx5BcsY5tZj7HA3ALvI4KcBNzmWqthwqFB+jqq6JyRqogN1usW8xzNnjm5p2Z58+mmx6MKiZTqc4X5mhMh4RR9VUSNui4iwNdZneqrokMOODJ6V0zP4Tbp7xUnzWzCdHylrEzNtzpjKKI+YMmWwaqLl8bzfPXJPPWSJuJY4YO1LfESjXordDwGXr9rWARpXzZAedJPt7MVAHMXASsYGO91a0Ou9p6gFF4GTeUeVcNHX8EjAreGs2ALuqKvPTU7vnsmk9be3jrU7Q5bXw1NWIuu5YiAA9rqSQLeEDEUuUKcQ+XFXRDIbErjUdTDZfwqWBtVML/lCSrSEnDOqGtpuyt7eDoJxaP0HwHh8888UCJ55zt7+bUzHy0rMvcn37gPPnb2elGjM8eYFL0210seDo8IiqycyPpkynB+AdG6dOQ7fgaHuXSsxbkBjJ6mnqivN33EXXTnnk49/BwdYbrN52G3vXt3BE6HMZVNjU3gko0ZgXYvdQ8ObDIjNj8aFyfI+UiZ/VYWKsvhC8nfeaiVEL+cbZ95HVEn6XYKrj2A9yKc+yf2BR2JbmZkBpu5gRY6RgTjeBOtsqSp1uw1acN7Zt2b/5vbGT3+MhN98Kx64nUIBp+6+xUvsuM2iat/3+v/hS72zr8/t8lHudAiJpAcbsZ3/gC/Kvfp2yFI49YLT4NWo2+w0HMqoRL1x4z/00zz2BVjVtO2N6OCej+Mqb0EMt7KLveqD0Us6zs79jQJE6JiGAV0JUsiQefPDd7G7dYHF0wH7s8c5bEnGOJYxIy/lk9/HWzjX2n9xi/cyEn/o//h5Hl7f5pgfv49rXHmdeCc9+/WUuX99jFByTsdXzofH0OZFmmc01z6jq6ZNwiKNxNUlrUlVRS+RDH/kIgwzPv/AidfC0Xc+N3SOq0FEXP+F56ri4m1kbrXHbnbfy7kce4cPf9GGubN3go3/oO/n133qC0dom6Jy+gq39bZ575XVefO5VXn7pBfZjYXlkZZGF0qbgAnR9xaJbEEsgwn3veQ91VL7xyuu4ZmADIzK9mDeqU5NtVy4xWRmSDxb8zb/xX/D5n/kpHn/zNR59/wf5zGd/1QZfbYeOlJ1r13jtha+z9m7h6uE17n/vPXznd38zj8XMr37uF5isD/nox76dy69eZDbPdOUW90Xeev3aNbavXUFz4qDd52A+sz1FHYtFx4lTq6xsnGT3yjWkdjz+xON87OPfyq9/5ldZrI75+Ld8gteffYVvvPQaRzPP5379MfZv/DO+73u+mcY1zPpEu7vN7ffdQZCK4WSD4WiMaib1kcPpEadPn6Ui4+MMSR2/9JnPc+c9Z1ks5oxHq7bfCLx59Q3uuetufvuZJ3nfA+9nd/cqXbvL1tUbfPGx32Dj1AmGowkPPvIwV966zJNf/jzf8vHvoaoqFOjamZEcMGZmFzvadkqOBtY7Z4zi+XTGYjYDTago4WCOk4q+a+m6I46uX+XitdfY3rnBuhvinEeD1YzTWcf0YA/6Dhcy1chR1ZnBpYtognN33M/5Ox7i4Yc/wtVrl9HZK6yPN7h27QqhdsxnR6xunODkhfewtnGO1bXTNNX4WClhQL+WM9H2ZF3iEctN2O7+4omYkJzo2gVKT11PipTaem8SLNoFPi0IoWIwWDG7oeWxUmoXdZnuYAdXkl+zs8HKMev4HXq844CSFdtGrV4yLVTTzcNAlwknN72ETDtMaebtkAuV4EJJ2nKOoMtJjh2Ux8+pQPElEL9kwdiheuxbpFooYEa8JmFJXG4JRFkDucRmivTcoo8rAwtcOeVUBEoak6jgjgEvb8/trCkxyV4uE7lcpCg2IdWERXyjBTC6eUiZ4feySLRVYaobR6iXxuRFSiZyLC1Yprwcn3G/a3E6isGntwZAMDAtZ6O3+sr8jCTb5/POYqeXp7sxmaSAb0aRj7noVgtFugoVXjJRE8EH0B6CMJoEvDZUUpFdMt8k7QlUFv1OMfnWm+RGu+EMEBRdXgejLnpRNFc4gTkRRyC45XWCUKQaWUs0s4Cq4L1NjF0WOux3tExFzYiyXLzSaCqYdw0Y6WMAZGscfDB/pqygjdCmzCA4nA9E58zoEqhyKBIkAWp66VFnnjje9yaXE4/PFapC9kahp4CrTqDK1pA58dYISAHhMMNd0WBsu9jblD7btQLB+YYi1EAkQPIo0SR0viKQSGLpPcsULVEh5Bokm+xQQYM952LREnOiCx0KVN7R93OTIoVANF0TSiRIiUAXGHgDcKSu2blyla3tPVYGQ06uDLl444Ar1w9AGna6noTjaN5RuxkDHUCKTEJCU83KeMygMdvq6aJjZ3+fNke2d/fZ2Z8xHk84e3KVYe05eWKdg6M5XR8JTU3XWdKXpaqboXyfwdc1+KVvRDEhLbKt/P8w96ZBlp3nfd/vXc45d+ttumfHAJgZbMQOLgAZUhIlkqJMkRAlMpZcklKWolQqpUhOOSonVXFc5VTFH1yRXZErlksVidZG2RblaCMprpK4gSJBAiAw2AYzg56tp6f3vts5593y4XlvD5XETpQwtu8HVKGBvrfvvee8z/P8n/8iLpKZHUj2mEgYXaALgzeJ4c6Qvb0h0cChpXmR30bxeep3DToGCFHOnAwqkySZURo9YRsIf8gQcOgkBt1ptvXXFm00VlmqTkX04rkSYsTNAAYSXikZxEKiLDS+duxs79Lvi2RprirplpYCkaKhDabqSHR4jFibZWJJiXG8Lrm+M+Tc2hrDVtIT69oxublBGliiFrBzt645dzVw76klFkuDUYnoBTibkQ6ksSWfISIkGE0nvHDuVdY3dlk+ssDDD9/Lwvw8UcUDWbKZGS5mQFQpJcCCzr4uJAIC1AiRXuOjx3RKmlquU5d8HvZKClWKoXmSYAfZyRtSzLIeXebGXl4n4sGKBESZfG8m8fgLKeBTQmmDVQKmp6hJXti2Ril0YXFJU/YriS0uLJ1uh4A/kPNaFfFKggBUNlI22W/FKoPTssnSaEKuKUmTwWEr7ChTYMsuxnQIpkWhMUmJrEUlvHNEW8g9GQO6FZ+VGGXDq5XCpIiJAZUCRgtjU459gQa0AhUDTkU6FGg8hdKMWy9LAhSoSKEF9NZWhuqQghjGym5fFI1aS8OUpG7K+S0svZRBzyC3Ihqoqg5pxkJWs2CGiEL8obTWjCcT2qYhGYVzHspK6r+SBFFlNLbU8noZvJotHsQfQvwTQwaVpTHhLzM1VJY0I+dyShJzH4kZ5BygTJEHL7nmZ942JKnxMfcSAUVHifQPJdJXYQ5J3ZjJZnxwzMQ2KoEKKdfjGciTPdZyTzHzOgrJS38E+FnLk4yk087YZ5AXWghAkX0OZRkjgKy2JksnxRdLKUXwkHICWlSRFAXcA6lVM2BcZXQ85Qb3gAkVk0SYR3kO1EyBH1DKorB5gZCb4pgotOXwwgqDwUBASq3pzQ3Y2d3HqQpTKPr9LkcOH+aVi6vMLx2mYxwXL22xfPQYPnjG0ylVEKnX0qFlVo4ew00nrF+9BDqhU2IyHtLrduh3uhSmpFUeY3ucvOthjt1xN8F79re2UdYQfcQrQ6ENWGE1qKjwJIwV7y6sxphsRyCc09wfzhixIfc5pfiR5fQ9pYwsHrR8jsYUIofQCtHsKYrSUhgr107K/qTZB1JlFpvV2XTdSh8gJShLsZXOvhuC4mojvVJRdTDGfocwk1kPJ/6aJgsIDvrv/HlIaM+tF5Q29pah7r/bhwC0fFu/XWABJ8NqZhrMunf1f/jVgz5czcC7f8tLzQDn/I8D6O2AHQmmU6K9+J6G4Zgjhw+z1BvwxW88g4qyrFjo9VBpQkSWWAZweenrvZPzLEHHGtzePh/+ib/Json8xm/+c9785rfwsd/4dRovyZzWFtK7qFmPL2fxzDDeNZ4zZ8/y3ie/lx6KQa/Pn3/ik7xw5QadDqxvbIKZ5+E3PsjuhedY9wJWC8FAGLTGJDyRbinhB/PzCyRjGE/HXHntKiePLXP3XXfRRzGNiXPnzhPE+JWIw1jodDq87Y2PcGNngw9+4Ed46ktfRPX7vP3Jv877nnmO6vbTPHfuK9x2+wmef+4ZHnzgcfr1lIsvvsyhhcO0k11q1xK1AQO2qEhG09S1sIiN9CFrV1dhbp7b77+H6898HaUNKmp6gy7JT3OIj8mpouDqxPHlFVav3aA0HR5/69v47Oc+ja0M5849y/jYKYY7O+xefZ2NxQGH7jzKE088SBxusjhING7CoFjg609/k9tuO8Hz33qVslMwqR1GSRDE3nCXxYU+t586SUng0tV1XPAUpiK2jsXeHG9//K189k8+x85on5devsCpY3ewv7/HtJ7wtS//BdeuX+O2+85QFRVPf+Ob9IuCbz7zEnUTmVtZphmu4c4PmQ4nHD5xB6dOHGc4mvDq6hXmF+apJ7tM6pZJu8/84gqJhjNnTtPr9DOYrTj30ovcddddvH7xMs89/3mOLcxx6eIFOlXBc3/xHK+eP8/h4R7Lywu89fFHOXr4CPvjLS6svoq2moW5ZVJo8W3L3miHaesk/bUsWJxbEAuIGNnb2eLct55je3OdntUoI/UzNB7fNvR7huNH+sxXJZskNrZvEoOmaVr2JxOcD+A1rY8sLmnuOXmSxYVDOAdr1y6xfPIUiyvLLMwfZTB3CDeepzIFS0dOoYuK0d42MU45tLTCwqETkrI6UzTJDT1bKdP6gGun9LodQPwXZweGzynUkniamNYjtBEwtyoH2UM5SMpsWRCDk0VwkJktpURhc/3MOEI7HUkaa7QkxA/SxP/AASVplmSrbpS6RdNK6SDhI6nZASyqf9GuCxMFDFFZObB13mgl0Mmjc0qcShkcESqKPFcQ+rawhmRjRwKdn0MlocyXhkzrzSPOzOOA/FVGiUYMUYxCZxfCjAmkZv5ESRo3HaV50EGKS1GUmdkS8vNnbwUl/k86p4gl42d2SjIwxkCMklo2AxOSFm1xSrL5Sgd/ay43aYaXxdygBQ6kfnm7J9triag/SBuZsaGKzDCKM3+eDMYpjU9BhmmFbOuUbN+VlybXoLMBt7yisWWWIAjnpVCy3YwxURSa+W4PS8LHPiEolHIiH1JCf0eDVqWQ6VNgRsBQgDJSxpOK6JmvUipwyIZd64rCzqo2WJMyPTPKn6O0DIUqZQNmaWhrJ2DOTCEZkNSWGagYooAiRimszWHYKdEGkVmREkZFKgM+JAoVSFahkkibUlRivkkQWZGWgyIAJii0yw1fFL+omL2WNBE7A44yKyPGSKEjRqf8Hd/ypJD3ZgRU1bMDRH6fGCVCOxn2hi27+yMa70gElvo9jix0QEOhIcY2Swtv3TcisxMg1CNa5dZDkaUPwgxpUGlMZ2ERFRM+WazSWKMpqjz0OE/wicZDMBrVKbg+nbI1nHBxt2U0EYlX1BZlDS42tC7STFraaUC1I6a9gjtOHaXqatrWsb03YnN3j+ubW+yPJiRKlLJcX7N0rOW244cpKmnQO1UHhzCWopLhqtKKxjVoND4GqsJII6ULil3EzMkAACAASURBVLKgM+ixNxzjgzBOpK9KVKWhLEu2NzZYXbvJhYtXGU8mJG1Z6JecvvsOZqi0Uq3cl1plzo0AzwoBYzXmwNdMGdGcB5WymXwGsFPAGHuwHTVqdr1IIpJOCkmOyiB3ivjoKTs91q5c5dTpO+l2u8TaQazx0eNqmLae6AK12sOmfN+g5NrE4FuHKQLPv3Key2tX5MpMoHVEuSGdCUS7QCy6gGJ737O9O2auY4VdmSPog0boNylByqC6vGPWNrZ47uWXmTSe19du0OtWPPbGhwhR/GBS8NgiEZLFpywVTSoD9fk2wBCjBDDozLnDQGE6tHHmhRdRdPI5AymJ5NTMzscYxF9J2TwkJ6y2pCigT/KALfGxhZAQEZuX7y5TsFUQJlHQEI3InUXyKDGuhYFKF0ysAmtpg6My/QPPlJQ3iyGJfEtTUJgKay1tG4R+P9uQK5GdqsyAkcNSmg+lVQ6oQJYZSkDwGERG51PEJE8ICq0the5QFBbd7RDdNA/2UitsZrAkozLrSxisAsTN6rwBBByXBDVNMApNgdGF1LDsL+ZJOAVlIsubpBZL+pX8LKUo/41EWQjDwrmWTlmiQiK0jbB6rCxylNI0dcPS4mGm9VBkSKVFpUiMsmlPGSDTRup7QnwOdesxNlvCp4Q1ihQD1hYYW+QeQvqAKJcsMz/HnAkI+X41MdfKBMZWzPyWVAZ9ZJgWI2xyUpnOUvxUFCIzysNbmknQlCw6gvfCEkoix59tJ2VhkqRxTkl6nyiBEEopkXflZYxKMyokZIvofM1lSUFeyMhCLEtPlYFkKW2ZG+K8dMrXQQyyQAtJH/QeOqUsnQSVE1F19qQShnn+LLUA4irmVKrc1qhM1Tda6mjwXupnTCgsc70F5jtdYYvqJCyMJN57iQL8kMlkRFlVDHd3uLGxTtktuevus0QCK0eO5usyStKn0bT1CBRMXUvwkbl+n2Kuh7YFKku+pQ4aqsEi+ztbMmBjScojroImSxQlKU1ZS2i9mMEn8aGKiHeRzjYHWpnM9CWzdfK4kSWjSmtUIRYRSct3JQtBYSiaKMwI6avJ9ObZNjyb0sacHqwleTahIbOcEznkJfuBzVrLQgvDXM+2lBm4vwV1/D97JMQGQZYyYt6vZn06MJ1MsFVJVVYH98nB785QmIMh7N/HIx18L8E5bCm17cAPKt0CgmZ/Y4wxA8i3Hv+3eFgis4JTlqamg9AdY+UaoZCwjHj5Gp956ovc/+i97F+7QrdjsaWhNxhQmZZKJ5KNbO07kpYeHKe47543UKqWVy9dYjgect+pu/npn/ppFirFl/7gj/iTT/8xdSuBKz1bEnybr1GFUiWRQGG1LB3RmDbwEz/+E/zA97+X3a0bXLv8Ot/3oR/DfvYzvP09f40v//G/5u7H38bxao5/8fw5pk7u4bKrKIsin/GG28/eyXPPnudDP/5BHn/iYX79H/0S67bLd7/zCfZWL3P/u97J5uuXmbjA8lyHZ549z27j8VGRgmNpfomrGzfZ2NpgtL0JRcHb3/wWet0+P/lzf5vf+a2P8PP/9d9j89VzvHrhIvc9+Cjp5Vd40yNPcOzBB/nCn/wul9bW8pkuS4oumqRayqJi3LbEGFm9/Crq8Am6/XkKJWfsoeUVzt5xmmurr7C1vw/B4Bxs3hzTthW/8Hd/gRvrV0gJrlxdRYeWxcE8//Jjv8N3veO7uPeO05S24stPfYXjd93FA2/8bm5cusRD3/W93H9hlaNvuIft9cv84Ls/wC//4q+xOd3lLW9+hD/73BeYO3yI9/zAu3j/X/tBrr/0Kp/81CewRcH8/ByTyZTbT5/h2upVXlk5x/zcHNvDPZqx5wtf/gKT6RBTlrz8yivMLQ34oSd/CD8NnL/4Ar3eHKdOHOH+R97CK9/8Bm95y+MsHL6d8d4O/UPL2AST+hr33/cYz37jaV785tPcd/8DjKZj+nPLtPUE3ba8+OzX6XQqXrt4g5ubFzhz5ixf+sqXme8H/sn/8vcpO3MQC3RMvO2Nd3NzZ4RPLceOHWducBSATreP0ppO2RWPuBhYaA/nOhooioJuJWnPKUS2BmsMt25y25GupDKnRNvUTLf3ubL6Osv9irNnboc4wJSW1clFfAMkL2exT+gAXWM5PuhwoppjIfWwSnNjd4/R5iZLR8TLd2FhAdc9Q0gR2zR0+n36CyfZ3bkhISAH6QwzzEAOAa3IywKN85HWScBL3dRIuqAVVqCS1FWUpddTOOeYjLZRXU9UHSJOejrVUJY9ClsdnE0JWUbMVoEA9OYEZEoRG/Psr76zJ+t3HFASZrQVOGXWHGXMgKgkTULNPlsxz4lJ4VWUdkQnUsyFNsfVC74mH0qcFes8U0ek8Orsp5OiNLDS7mnR/mMh+zaozLhQWZJmcrM8MxwzVmRkydqsh88eGeLgmbfteZsTsv4xKoKPqMwuMhmQMUqABlQUbWMSiUrMPhzp27aMWqs8dGbulqAIsplLkWQM3uXiFm8xpuIteEmeK5vaKhWybMKBEjPUEDWkWxRyi4XsrRIzVV/nlXSK6aAB9MELuJQEzFAxp5og29moFW3wEmNsIoUtxXBNqiRFUYo3gU552pJGQzau7mAwdMlBDNLsaUWMLSqDjEZrgtL0SktlE8YkglfoIF4apZYY66QjhVZ5GxhuDT8xEXTARmiUQiVDYWW4KpJEgoYUM8NDqOaFSigk3cxEmzfIIlWaMQUNCR2hSB6FbOlnzKWYtNAL803deNn6yuZdTG1N0ngx1smXh1A6UYYyQaTF56ZT5glHaWTTrXPSEUlJMmIS+WeKVt669qjQQkyMp7C2vse4cUgaHEwnLY2rOH5kAD6zXIImJhmUhWwkrAgVxdi+pUEEJJmd4oWSGWIi6AmdoiRoRbIRE600u3m42B/us7W+xng4prQlQ1dzfegYp5JGdQQG1WVOkRB5o3eRGs9m65iOxjJQHV2i2xswmkwYTxucd6SkqLoVJItWGhciO6Mhy2qALhT7ey3V3IC2buTacR7fKEaTKe3U4WNDci3O1ZRFV7YiK0tUvZ5A3SFydGUZmob9nR22rq/x3IuvsrM3ZXdS41IixILhcMLuqObs2duY63ZwnYIuiUIL0DhrmD0zHXQeS7MsRkYU2VprJXIrFaWZTyGSvM9eJZkxQUQlgw4xg/MlKYrsrp2KPKvb6YoxcSH+IFZrojEEnwhKE1pP3bQEDaUtKCuoCjl7XBNYX79JrD0+b7N1PuhNPaFbJBoCSVfUHjZ29rnz5GHqNmBMAaGVMz9ljzYtAKlKSa6mpqZxngg413L+wipHjx5lZXGeejpFKYla0KpAaaEAF7YURmGIRB8xRUlRlITUEAg0bU3ZGaCtoSwsNnf+moBRlqALvG4heWIULxmMEnkIMwry7FyVc1KpwEyKo1OkUpaoo9x/BIJJeCV/X5yFDPgkFPoo36NOBpeBGpXyzkOJHFdHLWBiaqXGNQFtPZ2yB0CrWoJupYmIkcLkOhEPuK3E4PFOzByJMxAt++95D84RjdyPjhYdEpUpKEyJtjkZMMqmLCYBO0IUUHNmxzcDBgIJp4KAG0kkOSEG/Ex2k0RSrHU6SLoCL1K7EAmlsP5CFJPuTr41Un4fB1LlzFAJUeTzxhp0TFhrWej2JKlRw+GlJVwTCb7EhEiRoGs1hJbClNR1Q7IVVhvKsoPRBVZZ2jil1NC0DkuktFrkImTvtBnbM8lglWZhIQliaoCAV5HCFfio6PgKHQ3JiwRNgIJs9o/OwK8AyQpZuqkUsEr8TEgak8B/m5wmeWGRxSjMiBmjWalZkqIMZkqJF5TRhhiFRZXUjBmVcqCJbDCjJi+cxDicJH0bZDADYZfOTP599CJfzU1xTLKNN1ajG3kPIn8PkIfOUlthGh1cP0bCWuKsB5PXscZgcs5omDGtoyxitDGEVqSUM+mWQqO1MHrb1jHAsnhomdFwj6aZsLE/5Mq16/Q6Fetrq/SLkkPLK9SjEd35OTqdCq1LfGhJyCARXGK6PyZ6KOYqep0OJmgosgcmWWZgIhmPoVR5yWWEcVxoYQnJeS79YpidBwGiJLXIZ6xUDj/JTPakZk2D9CZKiVl7Aq0KfJT04xRCTvyMeV80+zyVXLNZGkkSEEmrgpgcMVq5/lI2HdbZa4ts+p2XVtpasXMwsuSVeSPXqZmc7q/yiIHN9atoXTBYOESn0xW2fIJ6ssfu7h7HTpzK2xNoGofSUOQkpv+/eUnfHif+f/65fI0pg2oxJ+O56DEUTKcNWkVsFSl0V0DnCM10StntHDBr85By8Lzf/q5mDKTZsjo1DarTyVYh4L1nOBxjy4K1i6/TO7zCi5/6JC+O13nPiSd46rXnWZifp/ZgTWQ8bfCdAl83+CbivUJFRa/b50c+8MPsfuvrtBPHNEQmkynDesKffeLT7BUtN2/sY6ouc9rhmsi4hWQ0Sotc0fvE1DVEIoUtWOgu8JY3PsHK8nHaSQ1lnx/54Pt4+6OPUXX73H/sCHNLR9lcvcxc1SG4lqqEZD1OeYat9GrX166zN2kY9Ax3nT2MTYknP/Qe7jrZ57Kf561ve4w/fPU8vcGAt559hI0r62ycv8JP/s3/hHe+8x38yUc/wheef46FhWP84i/+Tzz+prdyaG6Bhx56jNvP3sOjDz7IcH2H8+de477TD3Lv4AjX5/f4yZ/9BT79x/+K3f0xgYCyHZq9EW964rvZWl9nevUyKXlKDMtHV2gmQ0btmKvXVumXhklIFGXJyZPHmeyuYTpdNtfWcUkWoUW1xIULlwjRkaLiNz/6z3HZImEybLh8/hJnjt1OqypeuXSB/+wD7+f0HY9w6vgDhKT58L7n4Xd8D1t76zz7qc8y3NtEdSt63WWihqoI3HFihXIS+OzH/4gXL12iacfsjcb8wPe+g/d9+Gf4+Z/5KY6dOsWN1Wf44Pue5GMf+yhjp7jt+AqnztzLV7/4NIfmFljqDdgZb3Ht8iq74wmblw9x7coml155AV0WvPraZ1i9eJ53fd9b6HQrmsbRuDFXr17jjttPsb+3x9eeeY71jc+zenmNx9bW6HQtastw5carvPVNDxPaKR968t3sbezxxa9/jrvuu5OH7nszVfYJeu3SKqlIHD98krZxzM2tUJYd2tZJ6AoGoxWDqkdKDtB41+KGOzjXopNC12NW5rrE4GWpExI2KGw/Muj3sFWH4b4DtSP3Ybdg6hrUXMGR5R4hyCIqhcjNvSHnv3wBm2B5YMUuYTKiRXHi5BsoB4cxRVe8EJ0Dbel0+xypepiiQpvywJ5EpfSXAHmdFKXVmEEP8vJHvIs9bRO4cuU8Vu9x26k3UHYW0ckSk2M82kWlEVX3hMy3MTKpd6mSw5gVVEo0rqZpa+b6A8qym9dfmqapmdcGZRSGnMCqzHf0PP3OS96cDOQhyNAvVNs87KeQh1/RqCqTZWJJthe9qmIcfAY7Em0y2ddGpGohL0dLbAZIMj1eQcqNi2tDZqlnuVlGkqNzCEU1+5bkx2w0E4BGPmxiHqQtwlhixgRKt7wEUiJGJRIJHyWtKgoINDPwRSXwgaQy0d9E0c0nQSd1IX+ByqalMQMRWgllPfiAsrkhVLnhSLekguShR6xZcqHKvhoHmy4EDYtJhp2UUt5gakItdBytVXZ7L0SqkGTMDVG8lHSQYS8khcSlCygmCX0aYwzBZ6PXpDFEXHLUbWbU1K0AJiqh4oioPNobki5lYxwtxMg0NPgUKctCkndcLRvrmGhVIiVLx2g6pqTqapHYJUPf9LAHFHCwKhteKoPR+TO3Gq3FF6P0YnrWIcmAEMCYhAotGk2hLBgBoVTMvkVFIpmIVh1sCzFAUGJOG4i5cYYC+TyNUrTBEVUHwy0fgjYkiJpSQVBTEoYiWZEnRJEbaBWyJESGGhUFpNIkjPF5CFHZWDMSjWHcjASYUgpUbsBtiS3FdLbe26d2MkyIBDPik+Hmbs3xoyvYjiTBgCRXoQM+U/J1EpPXkAJVUpQ6YnUiRgPayAarFWaFCxGVAj46kR2NwRYF2pTU++vE6Q5GFxhlGY8jzmtqF4i6IBlJtlEy3RDyoKORlLtJCGztjeh1KpZMlzbK3RuRQ9t2KhbmjtDpVsS2RtspprR0yhJjIt1el6oqaRpP2zR0TCK1LePhPkp7TIwEJ2aUjXdsbm/Rn1+g6pWYqCgax/q1K5w8fIjTR1bwe0OG/W02x2NWd0bsTT1KabwLTEZDODRHCIoQPMZqnPcix4wg/hrgaURHDcJksuJbkAAXVJariGRJkFGRQMzkY55AMlp8FlDsDkdcvnSFvd0hG2vbLAy6LK6scPLUbahUI8bMntJUNCpSj0Z5UBFvo2njSNHQmStpo8Hqgv29XUpVUvsmb1cywh48ZaqJukOoOhAi6zf32dnZJSqReqRWgN3oHBiRE4lPjpjBH+53uGOpx839hmGCG9v7fPJzT/Hgffdy730naeqW5UEfWwgQrcoedRRzfes9KnjqZkoKHt+0BDy2aBnMWS5deo3R/g69fpeyU2LnF9FRmKFizCtqhug9Te0kZcvaPKjJvWRQuGkjJs5Bgda40ODyVKkyi8kHT+scKkZMzCwSQOFxvia2Ee08Vhms9QRqyiQSYbT8PSpaCTUIHh3E98jZbAOb2UU6GkxImELhgtzHJIVRmlIXFGWXgMVqAS908hJNr1P2BwSdIkFFQhRza0eidB5b5MamLNClnEfCOAFiIAZhIKkgyxMVKkIRsv+bsBltynLipEGlA/9DhbDpksnSYqVJxgABk5OnFBGCgNQmp6QaJZ4yMSYKo0ltwKEZj/a58voVDInt3T1ee/01QozcefIE04UFvI90qpLgGvbHQ6rBPC4qXAxoU+Kiz35I4nXjmzrXX2ExmlJquEjhpQMIUXzFks6eNhkswluiFrP7VBiCTjgCxoiMXHZGOehAZaPvzNYWb6FZv5D7neCwSiSxM9m8sG4VCZvl9CFL0yQwIBHxPmKtSC6VVuKVEltZ6qXsBReESWWNAKcJYUvNHAB09uZK2bPNRS99lm+JSoC+AyYSM+kf2GwSnQICAPW6JBUlBc1FUHKfCOhFBpkMSVvZNhOJObBCLjsBp0IQZp9rpR6Kt1XCR09I0LMWU2qcb7CFZdxO6Qw6zHX7vP76Oo+99RGWOprB3BzeeYa7Q/Y2trGdHm3rGU/HaBLN/ghVVnQ7FaUywqpMARMcrRMGojDEIsRSAOMsgxTDeel/fAxYo0TuO0v0TRB1yqsCk88WAW1MUYhUPYfOhJyqGqIXz01tpd5rBclDCoTYSIIoufnLrFafFEWm26sDvz4B/tQM5E0ayMmiWmqJ0rLe02rWB0uDOWPGZ63iX+mRv0LcdMz+zSsoW9Gbm89+j4mmrRmNtpmOx3jvsYX0ndpIiMC/K4nbv+l1ZjIRuUMCrWuFURw0G5vrhJhoxw3j6QjnG/Z3x5x/5RnK/jyHFo7zrvd+P3O9Xn6u/D3MgKQE3kec9zjX4r2naSacf/4FvvzxT/PwB97NxadfYOnEUVYvXGRvb48TJw5xqFPxjvf/EMfuvpPDC8d48flvcGN3j/6gy3Btn8WlAXWcsDN2lKkj54MK9DpdrI587atfYfW1V3noocd4+YVnuTre5R/8j3+faxcuEsuC0cYe7/7B7+LZL36aFkOKkdJaKq1oc4DkocMrzHW7rF1d513vfDcnT56iHu6xs7vLf/T296B1ZHnlMLYs6KrTrN/Y4+TJOxhUJbYp8L7F5VAhHTQTNJOxZ3lxkdO3H+b3fu236Z06wrFOYlB1OX3yFL/3yx/htd0R//nPfpBnP/MZ1jZu8sN//T/mJ//Gj/Pa019m9dWrmNSlUl3uefQhLr76KhcuXuKO2+9gbnGBB9/8DlavrPLkh36Ura1Njt11hkZD1e2yfXWH/X1FUAXJBebn+lx89Rx48cTVuiKamuhaDi2sUHUHjOs1yk6PTqxJ3vPS17/Kz/6d/5anfv8P+fjNLeljg6hqpkoRnJjfb+9u0zEFr164RDv1rF1b55lvfIMzj7+ZO++8l6OHTmJVSWeuRzOecsehI5w8fIL9V1/n05/8HLvR0/WOO8+eom5aptOG3/tXH+PTgz/mxvoNxnWLV4m5/gLnzr3Mc6/9HVZOLvHNr32V7b0x3Upx7NQKk9GEra1ttnaeheiJzYTzL36VBx9+M3/r5/4rPvXxT/D5L/wZL52/wqRueOUf/1NCgIDj+s3LFCby7vc8wQ+//8OM9vdZPn4PTZt44IEHefqpb/LnfJm3v+N7uPv2s3zpzz/Fj/7w+9FtpK1HJFNy+5FTONUwP9fj6KFFghdWzv13nSaElnp/A+c9frrHpdVzPHDfI7jW4wl439IrFmhTzaC/QtNMGA5vMhnty+LMeSbTfdZuXKXT63Dn2fsYHD5DmwLL9zyCsiW4MUpN6N+mOHP/Y8SypDR9bNnJQQqRtmlYvXCRT3/yT7n4+mX2h4mFgeIzf7rPcGeb9/7Qh1m6/WFKVZFI1PWI5IYMFo5TVAOUMuKbqlpJ6rQSjhFjEhkxUvsFN5eZvSorSQmnZTBYBB+xpsSYQqYcrfCpoHURbfaEpJE8h1ZO4r2onMqywISE1kFUNEgtSBHCaJfxeMTO7iaqN6BMNa4ovqPn6XccUDp++Aytc7SxFQf20BJajw/SwJqc9CGs6ky8thofctoLSnx1ks5NMZQG2jQDRxQqiDt5QqGjMD1mBsHayMY3aiXTQk68UrPNOkjqINlPQAmAJHThAFFoyyoXaqOkWRcquD5gIUkjB8nlhjNplCnQ5S0amSKhbE4f04mZ/0fO65EmIgE6SlcWJXUtMjPlVrfMvFCZvZXZSSm/P9LB55miGDTOFFEi/xMW2EHhTJkZIWZEeSucZCgpbFZvJImCVNIMJSXynKSDbPRnpqtKoSiJQWW6fRKZYlS0OLx2uGTEWDfOaH+N4HHWopTP6KkMPFHJkBxSEJPkQsnADAh/zTONkWmaoCcWoyxWwzhOJc3GllS6Q6kVDpevsZnPSMAohzHCBmiiosTRAMHr3Mxk2noEjKKNiaQslRW2EKol6oLQBkLUebBO0mgrMcXVIvQQoCdzsFK+/vwBpbmiDhGP+OCg8nDjBYwJgj0SMBRaHQwwUYFyEsuugoFC5HNllO/PZ78fkxvdkCLRyz1Wt16A3Xz1zQwyg4c61PiQMEaeVySAgaDFOFkJjpE3oTJsBK8IUaGNJtICGuOEFi4gVMKplnESQ7h+2aMKNXsYlC4IrScSadB438g1qzSRIOBmnEk2si7digvjyMHGyKGrhOkO8GmXJoIPkThq2NpepSxleDl9agVbVGgjRsSj4QilDWXVE++oBvo20Tk0T1UqNjaHzHU1c915tsfb3NxrOLQ0x2jccHR5kdQGji/Mc6iwpP19Ti11GXePYtY3KFTF89c3qb2j3+tTqIJhGyhHLXNz4rcgW0dLSBlQSQUxlbQpUOiCFo/FZM8LA3hmkqDZ1lm0z9kEH0/ILvni6ZZ46dw51jd2qF0gNRN29iumX3ua204exqSEjoWwQbWVjbZNVFVBt+oTs7m9TuCVZ3/submxQXSBRnkB1JPP3iuZTRIlBcOnhE8NO+MhvUFXtuumoNAlIU3xKRuOB5Fn+ehpQ0s16HHi8BKN22AaE21MjKcTvv7MC4zbEQ/cexexsPhUo3VXmAsxYlUgeIcTF2lMZTFK07SyQf3j3/8k1zY3CCpgjWHpuUUeuu80j77xITQBb5wAvdHReE8MLcaBShXGFMTgc11QON+gfIuPmuBbTLL42IgUVhl88Gxtb6JQWGPxzuFaT9Q1XVsRWkOFY9o00LS0kwipIClh17QOxqFmd3uHTq8gRjmPirgPuxpVdKjrEUv9OdnCAXJFx8ycivikGLnAcH2LzqghepHqhSLhfYOKLe2wZmFpHnHZQhYSIaAAj6P1LdpaJnXDaHMHUqBbdVBRGDLYRPCG2ifcZIjyntAWmM0txnVDELtsZgsQpcTzy2iLT57UeqbREaKjUzZ0tzYpx2KKunTYUliNaz2ta+kVHaw1hKahqWu6vQ431m6yvrbJyWNH6ZcdpptbXFp9ndX1dYyGowsL3HPiNhYWF9jd36bf7zJsamLTYnsSyNG1HabjBkOFJdGEkO+5gGtbQgRbVihb4Was3JTEoP6AtSuADQE5s5VH6QLvAqPJlDJLnOq2JU3GMrzbQiStCHVd2A4iTXXOYzsRFz3jtqYfAmPXio/k7BxQmUmSl3VKKZwTZqgFvG+ZdR2oSAgKW1h0EnlVTB6fguB8KmIQVoywVUSWliFryKxH54LIaqWqYOjkRVaQZEvIS7U4c6cUeY3WsnCxwsQsbZHThgpSEjp/inlxV1iUDxhTYq3GFKCNlSVjUpgSgs9M8SQJW1GLJDJpsEUJ2S+i1xvQ7XYxtqLXLVHdksF8hU2Oqqwou13xrOr3SSlhS5i3faqqZFIqfL3PelJoW2BtH60DldaUVcQ7qekuJHQhAI2PAR+cMJOKEltYiqKDtRWBQFl28NFldmqD1uDI3plZslZYYWk0yR2wl11MJGMxyWarAoM2pUjnfJLrE4XWIfcXIo2Y2TMU2Q/QkAMNMDmYRZgmSkkPHD1QlbI0jQI4ylo1f80KLDNw5/8KVPrLbJuZub2w6XLKnzYMlpcpqnmqsiO+f0BZliwt38bSITJzToAtSUSd2TakbwOz1AG769/2+Dcxjv7fPFKMNNMRTTNGJcW09WzsXGcSxpRYalezeuUyVy9foqM7bG+N8et7XBhfwPvAu971LmyhaKY1EUVT12zcXOf69de4dmOLnZ0Ryk0pioojh+bZubHGKzef59Jvv86dZ+7mqJrnwTe/gac+8ycMR4a3vPmdrCwscnVrh/e/9308d+FZnmmuELUnVInd8ZjYGpQ14j2nImVMhLalJvL0c19jKoEGCQAAIABJREFUXE9Rr81z4vQ9vHbjC3zlq1+lP9fBjScUgzm+8qkvSdx9W9PpzhMCdPqLVDGwu7fL8eV5KiLbKbByaB6lYbCwwom9PQwWawJbG6tceuUqf/DRj7KvCx5442O8sDuhxWJLxXxVEhI5NdnQtp67zt7Gb/36/8bq1VW+78n3Mp5Y/vTjX+XMPXfzxae/we3338/Lz77EH33qS9hjx3ngkTdw7bUXubG7zb3veIKLH/8E519+ie3tbX7iP/1pTp+5A9sp+NV/+A/4sf/yb3Hp2mucvPd+jk4nrK++zid/71/y1Lee59rGBrFwBBSlSQysWE/0+nNsX71MiDWnbj/C/s4m+/tjrC7QuiCiMWWPY3fewWA44hO/+4e89PyLaA1zZcWwDmjj6EZP6Btc7ajKeZxrWdu8gYqWgTW84d438QPv+kH2Lr7OYLAgfmwmUU9bnvvCU6w8/lb+6S/9Iue3rjGe1Lg28pH/9Vfpd0paF7l6YxOtG7xRnL3vAfavb3JjY5350/dy192n6I4Vj7ztCf7uf/P3uPOeE/zsiZ/if/6Nf8bV7W06uqbQJRv721zfWufD9z/C6kurvPLyi9TO03qHVV1GwaNjonY1V9Y26Vaato1cu3qd5YV5pptrxJBYMCUXz69yaGkOXe/zwle+xPbGRW5chMn+CNvrcPjY7bx87nVubq8zNzjJ1bXzLMytkLDYwjBuW7Qbsri4zOc+/XkWj1R85RtfY2lhnjc9/gNMmqkElKSEthW93iK9xRP44Egp4L1jpZ5wYrTL/PwCS4snUbo88GtECXklRmGKzbwGpc7OZKxCvjh68j6uXd5k7do6u/WY0W5ga5Ionr/BW5+4ytLJ+whhQhs041HNC5ee4+TJ49xx56NU1bz0CpmBaLRYKyQ1c0IU4okxtwAdrRWF0qhUUJUWrwq00cKMVhpjLIO5RcBxY2uTva1rLPQVc8vHaGpPUSZi6GK1ot/tS1ptkoVHiJFm3LKgIov9eTq9AabTofH+O3JWzh7fcUDp3rMP4aI09UpBW7dSeF1L61rxkHE1bVvjfMvU1dKko6inSUwOg5OmKAnN3ZH9ihDvFm0SGDE+diSKpDA6CWiVJPVKpYTKtH2lIOosqctgwczkUVt9y0soZX+dPLQkl0g24LN0Dp3pnzMPkFxPJe1JUlfI8g5FApPQURFUJHoDhbBU5H8T34WUIsEjoNKBWbZCGQHHULPo4eybMGvvjLCpRBKXQSab6dQxoctMX0+a4OLB96OMvfV3kw76AZ1ZL9GL/tuUOZY2M4TQiPY/s4BicjkSOgjDCnlPPieWAdnDI7OzNCJJNAUkSZFS0aPMzLQ6CqaWYztF6uIF2LMaG5XowUPE6jx06YTDs1e34h+joNQ9Cl2K1wca5SEqkZEpHB1boJOBpGhSjVUQgnj3dBTC0MKQlBTllDSpUFAYvHJ4H2maGqJQwp2VGGujNQVCyy+seAgpJaacYhqv8UGkSzE2kCwmBqFuao0qwMaIMTqbnUdSEp+pSlR/tCqgigIbIJmETQqngshKIlSqZJIE7VdKo6OnVD77uQQiU1K0iHG8x0QoSkt/JkP18rlLClcUyn9SB5t6ojBhihllTwWSctK0amG+ldHmtDGNSx4fEsobNFtMW0+wJd57JsnRUmRTd3MgK1GZnaezZDGlnMCW5Pob1y3sTjl+tAtNFCA6Coun9ZG2bainY7pVQWlE8hRcm012YdSO6RVKwAw009hgvGJuaYnh1h7KKMpCsdAfsLHbsHZjnf5gHhfh8uo1Th1ZprswoNnapnCR6Z6jUBV3njhE1bF888IG4+mI19cjL128zqCseOMb7+LuM2cQc38NOmF0wGXgmJlfjFIH91obA4aQQTsRGYJGawG0xadeQCaCpyw0N9a26DVjOniSUXivwTom+1Oa8Ygu8n2kjhUgxlrKskNlCvHjMIraewpbUSTFnFFMyk6WvMrheWvonLH45V7SSlgX7TDRtrXIr+II5PTOZtZZqBey54xKdHsdFk6cpF4bEcKIRBJmn4m8fOEqV1ZvcM+ZO3nssTvp94wwVzC4kI2blaO0hoXBkjTBqc9LL73Eza0NEh6CofGeHbXHuXMXOX3XXax0K4pkxMPOKqrC0OnPU3UqjCkxVQFJHSSteR9I2XMlRU0OmDzY+tuiw8L8PEdWljC2h1YwqvcEnDAdbM+yldYZjTcYtjVaVxjTIbUN0XpUSlS2y9EjPZYWl3CuwYcpSQW0KjG2Yr8eQtOAFnCjSolWiVyndZ6UHJU1zC3NM5hfoHXiuaOswrWO4Fom5R4mGQpd4NsWVSic1WjRuOGSh5DodEqKwTzeO6zRuFrM/mf3vC00i4N5uqpgsNSnPzeQeuyzz4si00wkRSSkgJRPjS0Mg35Fr6zoDeapenMYqymMAPmFMfS7PawxVLbEx0RhDc1kwlyvw6lH72d/a8Tnn/oS25ubDCpLoaB2LZvDPXxqWdvcYHFpgfG0pld2SaWnVJqOLSTxbjKhX1qim9LByhkSkHqhVd4kSu/hfcwg/K10Nyn4idg6CJEYDDZJypJNWVYWI65pSabNUuIASti8Mzm5NuLd1bYjQqwYjgPogr26ZtpMKYxIBMtOgdVavNxMpPUtu+MGlwxN2GFeW+zekNi2WFvinEOXFbaw4AIpiISuqR172/uMh1O87jOvK5JOmGQoqy6tCywszdGGVhrfmNjZ3UcbcPUIW5aYqifMtiBSu05VArJwiskxGY/ROlJQoIct7eEx04lDG5OTLS2qABccTiXGkyHKtZkBq/DFHF5tC8M3+1slLFZ7YhK/pq3tIZNRw9zcgL2dPVRnkBngFa6eYqsCnSKF9RSmy2hrGxUM3aal7PcJTvwxQ3C0TnoR55IYnwfHZLRHcI6yNKjdIdy4SWwCPkCILb1OHzetURFcE5jWE5pWWIqD0T61E2lxXXiSniX7ioWCmwYmdgqqoGoC4/FEWCo5VZAsk/Q+UrsWM4ooppSdLr5ucLVDl5q6aeimkhCkt2mDEzPu4NCmxTlHKAxF0CKVtiKFJmlJXUqRhCNFjykKKLMfnzYHkk6fvCShpsxGy+f+LWjp1k8k9EP+fW/rJru729iqJPgh6JKVY0expoS8aScZ9KxfReceisx+D7SNEylhYfmr+Db9fwWT/lJ9U5EYG6ISmSBJ6ncneHomMjc3YNtWlJMWu9Dh1KF5ru+Mmfgd1tdeZto+wlxxiE7XYouS0C9YXOpz9z23gylwTUM9mVCogqrXZ+fGNb7vyQ/ypU9+mvvf9Ci/8Yv/mCMP388rL73E2QcepZ7WoBWHFhfYenoDvXQbK0fXuHLxOtYUtKOpLDFDSbTi2dgdzPGmt3w3ejLmL/7iCwTvuL51lUm9ByYRfeTeu8/w9ne/nU/9yu/wc//oF/mlX/jveOdPPsnnfudfsJECVSyYNg3douTS+VdZWOwzDQEXa57+7Gc5dvQwz335Mxw/+wZMb8T2+hZeGV7fXuOV7Q1eWL3AMDqUiZhSlg0uRAwaExOL8wtcubKOCwVLhxb5wI/9DA81LTtPzvFbv/KPufPRN/LVr/8FTz//CnXdcvboCp/5/T/gtdcucPree7i4fplx2xCKyPWda/zKr/0Sf/u/+Hkuv7LKU1/6Inc/8QRWF+xt7jDnWv7sVz/CH/35HzIxiahKlIXp3ojewoDROGBwPPKWR/m+97+HI/Mn+Wf/5B9Cd4FmNKaJLS5GSp1YXlpm58pVNtuG27uLjFLN1EdGoaBbiDl3oQyVBr0wz113PcjLz32LEDzO1gzbxBe+8hTPv/gq/d6AaSfxtu/5fu5YPsHCoXmO3PswHe85efZeTgL7W8+gVaJNY5KVM9cUFUprfvTHf4yf/tBP88nf/k026mu878m/wWRnzMd+5yP0iz4Pftf9nFm5k5/673+KYmkelSxtjKjUMh1NOHv3PRxZPsz48D6Hlw9xZW2dqW/wusbakqmvCd6TOgWxtPzuv/48X/nyt3jyfY9z4sgRKt2hiT1GzZjTZw/T6waevniON7z5bopOhzvvOE1ZncC7krQQefJ73sdwUtMtS4y21JOGS5deYeXIMebmFul0Fzj+0JuY7G9wzz1v4PKN65RVD206WFsyC9AgS9LF+3dGmsjMwjz7CxM5ZG+iGa0k5nucg5lDfpDPgJBIYcRwPGWvbdmrA9Epok6cW4v88kd/n//hnrtZXLyfrvV0qg5Hjh3D2IIQIm2Y0in62KL6S2eSMTLrpKQYjWpi2mVp8fCB2ogs49amYtA9CqrKgJenrDosLh3BkJjrL7O7eATf7KKipyiKnEicz9TU5nmjwBrxnvbLy/SKRWwpfT9Fwsb/wBlKIzdFlzN6t6HsFvRkCkCnmM2fwcWAT4Hat+KK3za5YDt8cHjvmUYPTSMO5i7QxhaQraqPThK6EhJtGgN928HolHXjgTZ4eX6FpPL4mGugMH6MyXr9QGZEWAxKUuXQxDLdMvVW4llxYAYLecMn8ojgAn4ypSjF4LgNNdFrovYobG7QJH1jxrwIPtza6AmelKUBSRrVrGAiu7ajvo1qH2Q7JWq5PGGmHDMaEPlANgSbyQwFgVXZ4iJlCm4240R8oAia6ALTcS3SvShvVqPzVlI+A1saJNEmgY6yWVI2L5SEXRWiRackSIW2khwVNZECrYKkbDknz61m34psXbWV92uMFemITqjkEW+TBDmSWekZh8kAJS4FWj/MCVEGlfIlrgSQG/qGLgLc+RDQRuzTo0uM5cqUYV0h8o4Y2W01lbaoaNhrJmgVxaizUJhaTEuT1pjoMCmhjKGoNKW1FLaiU3WoigLlGxSeqlogRYvSDZWyOAVNcKhSmACVtoAUXBC/Em0UpRKDe+3F+4AERssQrNIu5OYV5fFtJFQ9UlVilWapctxkyjTklMCgcRqWKkOns0yjfGazRapUkGKLVRlQVNIApuQP4ihTUtgkctOYrACAKqBCJb4CKhwY7pU4QpsYOtlcu1okL8IyFGEQScvGP+uCU9JogoBK6n9n7c2DPTvv8s7Pu53zW+/atxd1q1u7ZEtqeZEseQfb2DGbgThACAEMBDKZYSABHDOVCQkDQ8JWmQp7GKASnNiEYBYbgm1hZGxsS7L2xdq61fvtvvv9beecd5s/vudeGVdI1VC+VV6l7r763XPe5fk+z+cRISPgiSGwPZry3KmzdAYHMEVJ9p7pbJsYKowRmKQ1Gp0UThtmURxuk9mUZlqxdmVK8g1Vr08IM6YjTwoighQhkBtPTokDy3PMfEQlWF/f4fL6DseWF6mbQDSaytc0TUPXFOim4fL2FJ89N15zI488+SLKZnbrms1PP8psUnPytmulRaK9SKqWs+a0Aiw+N2gyKWmM1ujcATMlRYPe45vkLCJtFs5XVu27p4VP9NpbbuDMxXU2613WdzyXph6fYHc0oxh26bg2iOUbYjMjpUimILV8OWcdCoVH0ahM0HUbS5mhrSJE8SqIuCT/QkeSTqACmIiiIxbpmDE2tWwwaftyxuH9BPJU1gmjmOVMraShLrYOqBAT02lNQ8X9jz/DmQurvOtrXstguNDCgx1QvxTjtQoqyCFy+cKmxC9TkIm7hZXFeb75H/xDek5Tb14GHFG1NezZ4APomPGpwpIpy5Kc2slSlDiRLh269mgvgOnsDClYgkk0GZqmwUQjF3lUm0aZYZoBVUhYu0BvYUA9yjSxQumIyw5jSrQRMUcuVC1OJYlDwZHRAeFdRWlQrXJq3axgnMK0gH/VNrMVumXBKbBOY02fOJWLZpPE82bRhJAlyRcUNIGIkbUutlHwpJjVXva/FEhoYjKU0dLYRK00A2uIKRF0JmuHCgIG10bjjCKrSJMzgUgHjY4ZZyyFKbGt5VqcFrTiTSaFQNMkmtkMOiVNVeF8ZhLWqGYTYj3lyMoSR69aZK475MLli1y6vE2MiQNLy1x3/Y08/cQTRDzz/Q7T2QTXMwzKLrGeYUIktzBnbTRGWbQ2wpPSlhiEUyWCL+25I7Wfr0wacZqsvMxxlKFLZFB2GQwGlKVj+cACneEBeefVHtdPMZtNUNpInMs6+mqefq9Pb26RfnfI3EKfrhfIplIZY0piqORwmoRLtDg/ZG5hAUfk4PIKywcPt8MKXnIWp4bt1t1UWEc56NIdFnRdyfyBeQ4cPoJcOzXGFqikcD3NuumKw1fBcH6RuQMHKKxmcOAI8wcOs48TSJaYPX42xiqwKbO4ME9/bsj8gauoxleYP7CAckNA4ncaS4qZejIh4EkZloaLLC4uop1mfmGBueUlcgrUVUVZdJjWI+JMws3OWYbzC8z1ujhnmRv0GHY7JONEJCottnDMgpwpplXFcHGFbtHDGkXZ66GduF27zjEYWHq9IRv+AlpZOt0e3U5Jt9NHx8DC3AJzcwtMJhNc0sQg7CFjdOvsoq1xlriYNVq4X7YQ5pcrSFpJhC01ZNWA7oEWJ56PDU1oSDHIs9WyMiDhwwyt+3J2iTXVdIavPCZplJJmw5SiuD2rmqw8uTSoUDCaTikLaOoG7WR/SHUgJ0vTNExmE5pcE0hsbmywsChXrElq6A+GxBBZOXKE7qD868agvRmk+qL/Iyu8h8lol7PPPc1TD9/P5dXLJJXoDkpuOXkHy0sncMMCpSQ6b7KRYWnOND6yNRqxtDBHoWUir63mryGb/pZC0f/QsZQRa7bZY1rJIDilyOXz5/jIn/45O+PLvPPtb+WWl99EETXBa0wI9OZLUlAUxmKM4tq5AaOhJjUzdutdXJNITYWioKO7lEbYSlkplHFELVe+nMCWlk45AOSC17t5ntGVDb7yq97G088+DYfnuffTnyDlyNoD99HMJvQXD3D/B3+Te888QXBL7I52cWWgYy0724GkHbZTkFXEe+gouObo1VTjKSdf8wZiNeFzD36eK7tjshPWJT7w6mvuZuU7C5783T/m5S+7hR/+Z+/jmpU5/uNvvZ9zl8/R6RiULSi7C4QQGXQUv/+RP+SP/usH+cEf+2GO3n417/+lX+RUM+MHvvf7uOe1d3Dl0Wd45eKQJ594nIefPE3dBBoPRll8kxj0DbVv2BltEJ3l2Pwi3/StX8/1x4/ye//0n/Gr9/4pzWAOn0psx9EvEkVZ8OLZU5xTmu5gyPPnzhCaWtiAQGcw4NoTV3PttdeRB0sc/KsBf/InH+Trv/of8NiDn2PFWj72yY8y1ZbpeJeya4jW8g3f9K088ulPsBsi1nb5gf/1h3jgTz7MUw99jhBGFNpSOMushphqmqZmvDWiKhyLCwPOn30WH2qaZMhUTJrEcK5DCF6cNHN93vW17+axRx7i9le/ksce+DyHrj7KW7/iLbzq1ls56wNf9dZ3cv1Vx9pGYIP/vfv4tl/8WTZ3N7j7Le/kr/7yo8wvHmQ2ljbjJgR8iFx99TJvvesNTNbWuOmVL+fMvZf4hZ9/Hz/9E/+WleU+v/Lbv8m5c6d5/x//Dq++627Orl1hNr2AtSX9wZDXv/kNvOr2u8mzMaUfU4232N5dp1EGosPkxKvufBnHrjrKfR/7GCdf+Qq2LowZz9aZTQLHrrmFQ0dv4OKZdVYOPsFXvPVdzB88zsmvnOMVt94j93TjcMZyYe0Kr3/dO0k5Mdc3bdAmEvWIQ9fehAOUMfR7Pb7y7jcQQ0BZy/UnbkKhcU7uuXsmBtqzs5R+5f0rr1Z7raTiNIwhUDeREBuMMa1bPraCvAy7cs5EX+NjDbrgytoqXVUz13GMZw1lJ7JYOrpO0Q+GvL2BPrrNhecvc/nSs8wdXuD48dsoO0OU1tLuqWhjvm3hWMqgPIqSsnRMZzO2d9bpd4e4okTrRLfXoSwdOQbqpmIy3aJwPVCGqh5ROE1pBywtLDOrHLN6SukWsWUHrWnFeHFepQi+nlEUBf2dVayfIrK+R/kCFf3fal39m76+7IKSUxCriDMWn6W9I/haeAkp7UMBZRqosbpEuxLKHirIRR0nkSyvFaUSBolG0bQVdya37IcYsSHgQ0PInrr2JF+BMgRf4XKiDJ6QPE0zI7tC8CUtCyGF2Dp/ZH+0zhCqtL9hKnKbg7cynbNyWJcKL4gxtZG3jO04VGHkYSRjjSMqj7OWqBXBQzIC8c45o62SKEAQ1oZteVLikmsFoEzrDmltcvml9ie1B/lLsmFmxNpmnQYnbitjDdYaZhMR4nKSRpO9MYze8zUrcXOpVtQqSyMxCcQaWGpH4yOmFLbQ/kTKtpwM41AYcs77kUZIWKXQprW4KxHssn4pcKVVxhZKyPr7LhULJpOzHDabINNOqVKO7MtbbZQRkO9dGYkKtjXlCDIc7do6Z1rnUA7CplDCdYhKhEGnTBsra2GyrRCXWiBnjSdbj9VKLvdZJs1GuzaiGIlK4OlJC2B8UteouqGYboEGnwTwOyyD/HwElMQ0BCwalFwE5XCaKK0VVhHymZk2AkVWEAQgb1SBRWINnozRBUoXFDqSvRfYrLYUKlEW4uirg2S6nTIsdB3RJpppg0kOCGCCtPi1318gkcJMnEhJ3ovYTuIViahESDPZE7KHmKm02Ii1ETF0Nk5Mq0zIUDWeogClWste6yZrJfr9/9x3+u1HBKzA7SNMQgVhgjKabFvujDbSymdLumWB1oamCngfhVdRlGilmU4rJr7C+YJoIBWZuqs4OljAdTWrq5tEB6XrEVXGdgd05+ZYjJkXNreZO7yAxTILBdlEptNdrr7uaq4t+ywsbnFlFqho6GRNkwIYzVOnznH8qgUWlg8g4G1oNHjVthxZEQPLjPSUpUSjPTYbjJIYRNhbHxBwoNZKoP/aEjwM50oGJG7Wc6xta3QcsxECJkxxMZF1JLdRVpMTycvUX5UiPIQoDU1JxZbRkvE+QaowCiqvBPasIlqLUyeL/ILNmpV+hzuuO8r25jYpZmaVJystrtGcxCoeAyEaaS80jrW1HR75/Cl2diqCThilyUne3hQDgYwuDefWd3j8iVO8+U13M4kzTBCHUVkMUaqgqSCGtpXSAc6wYob0upqd7QkHOwUP/cUnueOeu9qomMLlKM5QnffLH8T1pQjNXtumkahxznRzZjchFWWSVSYrifjqXFAoh8QAxQHgjEFj0DZT4BinGktmmgOWjE5aHGNWhDlDkDYoJVXvDmm+SkZiNqkJRCXbo44Zn5M0Z/rUxlWyNDXGQNyzsXk5sFWxDZQbEUstwswKKaKzNNwRMskqvMqUBkyWwYxUxwc0EZETM0oHNBmlKpRqK9FDapl/an8KN/OZQdC4VvhUJmJdp40LZkptqZM0zrUbGjkmtDPi5E3ieHWlwzlFXY2Y1rBbV8wtzLN0+AAbq2NqMpvjKacvXcQN5/j0g/fjnGOp26WOiujEcj6qJnS6JaqAarcmmEQXR3QWU5biDDSWWVWxJ2/tuRNeYi0K60bOM06GP4APCa9KIoYQGsbeQ9hrPVPE4FtXmzznSSHROGWYV06KEbywRUgNMXiMskCEmDBJXNYFEmc2GWxhZYgUEnqvxlyJ20wcerH9WBOERJwFtC5R2dCEiNIKR4Qg/7w2Fsx8gzEK/AwdKtJsRDE3FG4WCpJEbrOK4uDFtsMbQz2rGAznINWoJE1VOjVYo2hiRhnE8ZGhVI4iCwcw5oBTJUm1n6vSONcFJfG7rGW3aWJCGyl9sWiStuiyxKgSWzhC48nKo6kp3JDCyvPqCk1pHEpltDUY5bCiBLaw70xS4jQunGv3YUO3V9AtSpIP4nItpGXW14ZMRBuFdpqOU3RKh+t0MK7EmgLlFFprStcBpSmcZX6wQK/fp+h1GQ7nGA7miSEQfEQbjS2kgMQpxXy/T3Yd5gZdUobBsEftPLaQvU07SxUrFIpex9EpSrk4zA9YWlrE2S7GCuut7M4x2a1JOdLp9hkO+xQ9Q7c7oN/vY4zFGYNzBSiLc4b1SxeYHD9Kb2VRBp18kQmg/XdNC5vV4rRb3VpjPRvGg2W01hy46gDlylGmBIZazqoGuy9IKaUoC8Ph5QUg77ddWuda4SXtDxv//3ztCUl/o2PJfCmMVqKfK1ddxVv/zlfy3NnncHNd0B2ccTir6HSElRFGGT+ZMa2n6EHJietP8PwDD0MzY77XZ2xE9C8Khy7aPTuDMdI+m6InZ+HHNbMJncGAD/7U+zjy2jey+tgj/PdP3Ef36CGOXXecEKcUXcszzzzPZx6+n7MXT7O2fprRKIGdMn/oCGprjE6y/5UdhR/voCjR1jLyDX/wBx/k9htvoqciDz71BNqKS9hoQ57WYCz/7b/8Z/75T7yXX3v0vZzf2uQP//A3OfXMEyQdpa20q8kh0jQR3RNGXO01udMBpcizhieeOoW5/gi/+HO/zPf/k+/kN/7oj2nKAZPJmKIzIGUlgc/K0+9rjEmEYNCFwuqCi1vrPPa5B7iwu8qR5SH9w4dpmgoXM6YJNDmyO44sHrya0sL6lTWi9OHhjKMcGqJKPPrYg/yj73kPR645zJWtVTZ3N/mzj/w+t95xN0cPH8cfWCCfv0inu8A0jPlffvC9zF54gU9PpUl0NtnlPd/0tVTTitwNHFg5TO2nOBdR2bF04DhvfNOb2byyzqnnn2N9/Qq6SYQcIcGx627iukPX8MjDn0MZw8x7Ds4t8gs//+Mcv2qZ65fmebawLK2s8MJTT3PvH/8B3/rd7+Ghez+Kfu0bmMUZ1193E5O338i5n/xP/PFnP8s33vVGlo4exU8j1jmaEBj0ehw8cpDXvu4kBxYats89zb//+d9gY3aFn/vp9/KBX/8VHnjmSc5dmLC4PODP/+JjnHz5PYw3xjjlyClxxytexr/8kR+j1EOSUfzJf/k9VuOMv/vt38a9H/044/V1fvT/eC+PPvggt117K39h/4Tv+d73UHKQK+PzDKeajdXAzbdczWY/c/PLb2H5wAGa0HDylntwxhJVxrmC3Z0trjpvJk80AAAgAElEQVR0kBgbrO1IAYGSdXZxuMjScJ7TZ89RuBKtZbBptKwRyUuxRVAJ26IXfErkpmbWVIw213DGYHs9UHL/3qsrIRvqeoYPnuQTzWSLsizxvmYwGEjZQkoUpUMZS7e/TKczT1EMeeLIUXrdx7G7Iw73OiyViQu7DReC4xMf+zRvivOsjgIPP/M4r+jezg1lH6UKEbF8wrSdL9I0HMgpiciopbRm0F9gNhtT11Niiq3YJRyn0XiHyXSDfqcAV+CbGTurFxnMOexil521TTY3X2A46NAbVqimJ/egFkWSe0sk5djdWUUnWN88x+FexieFbqt2951ZX6avL7ugpLQViKZSwtrJbS46tTJEa03LyFSnNLoVbjKmV0j7GZkC8EoJvLhw+BgplSO27RbdCF0lmcO9qr3YQiaDUiIWKchNwAdPHWt87eVyrkBraeBo6hrf1PiqJsZA03hS8MToZeLnA0kn4iySCaI8Gr3PDJIsu4gSxEThLGXXEsjEkKhDLUBsLS6MvbacveaPHHNr0JDqXaX2Yj+0h9kIyYsLSem2wlNespxi25qn2g0/txMzYRalmIQDoUQ0QyEXB+nZkMu6gjaPRiRgjEWXhhS8VHZbWpaDfonPJB+gQMu1uBXab1gigTmTMdLSoyLaKnI2rfDl0S38WWJ/GWvEqZGVEbB01mRVolOrekUBVAbV/prsxYFFC57UElVULcMjqdDqEi2zpYXCKrvH2S9QbfOefBoGJcXRmL0K8oy4LxR0VKbKgaxF+S7bGGLQQPaUQGPlW7EgF20ZW4JCILUqyGEaxW41JqtEUEFENiU15KkVEJWW6FxuEi5HSgwRTcxBBKaYUDpjQ4fCZBbKPtNkUXTaZ0M22awCiUhOmuX5eQ6Pp5yejaRPRymsUiwvzxN8otdx1DFCajkWQeChMXt0UsJcyLF9ylJrXFOoKJdfreSzDqqmYxwhGTCKlAKNnzINiSbmVqEH27KEsjKQfes4EXHppUNr2nfCJCAavd8s1OSMoSG1TqkDh4+ws3GFfrcnPrMQiMqgOwXeV2QFNZZkS3QJJRo97LA72kEX4qbbpeLqzoBevyA7TS7n6FqFLoY88fQLXFpbl0f/C5quitgMzgeqGayu7lB2+xxYPsqTjz6Jar9nrRzew85oyjOnz3LXypK8/0qhIpQUhBxJ2RB9Q9GJNMHjjMNmjc9y+TJKkYj7AjAqCwAdESZzDuiyy8XzI4pqzOXNET4mThw8jB+NGXTEYREJOONIIZF8y7nAYpSIiSG1wk+TUBF0qshRi4i050lqSwRAkZTFlEMCXe658xZOHHAiYJuIsY46VhTWUecoa2qyNKnCkxmNZzz9wjnWdnZIWqFblp3SRlyUsa2grwK2sDz25BnuuOMkRaGIydOEiunuDkkZBjmI00tZ5vpdiJEbrzpI6RzV8gK9wYBm3LB24QKHr1pANZVch5oEsRFuEhJpiFFEBaUVwSSiU4Tc4CnlfWoatIOYHYXrkP2UhkzL7hW3QdBEFSmcpvYVSTX4StZqnzQmtO+BUUSdce2anqwgjnNoyySswWQt72UWcHWdAx0tztLISywADSQ/I3iHsl1CjrKGxkRWluBrnPU4FYlZY9t1zmRNZRQ920Vi14U4zJLETmLrktzbx5XR1MrikrhUOqVlagyZBq0dMQr8N2foG8fyYJGdarcdIlhyaAUZklTutnXYuQUKJxTTqiI6aWYNARbnBhQKnj31HKuXrpCzYu3KFU6fv0RV13S6JSdvvpEUNM8/9xy9fp+Td9zOaHtETIGQpH6+1ynZdbvkGDAdS5h6UCIq5PRS4YVzBcZoirKQdSorYvTE1O6XSirYfYoyOMJQpykLZoZTPZzryvOcW15VG2W11tAocTUrZUhKMXCJWE+xw3lS15C1QmthAqIj0SR8UPi9oUnOaAqMKimtxlqHtVbW5HaPVTmjVYFSVlrc0OiUKIwh6YTKHhMixhWyx7ZR0iZrnOrQEFGuQDdRPgs0VoHKkawtRsmeFoIHGrTxJNXgSgUmUbatpbYdOJEzzgCmZcjlKLXkyH6vtUW1LCStRdzOOZJIWGvxjTT95ZgIfiYRLQTiTAs61wgqACy1n6JdH6U6aBWpo0dbR884FJmmmaFViTIFkbbcAOFSZa3BZExWxJAhW+rgccq1aASITYOKQRzYqNax1K6JOaJ0FI5V0SETKHTJLJYkxoQmU7hAjg0+BGk1jEqYGxZhX6BI7ZoW64rkCkKUN3GPiem0RuQkcR0neWlJPuGbCFSgOqACMUn1eU4ZbeQcFYLaf7Z1kjNtMm0ro9bCD7UvRUm+WJrZa3/LStQeazUHjxzl7UeO8va/diPI+78yxZqQ5RApAwZxBoj7X9zwqo2d/m38SF96OfrS/y3vdutI2vvv+aW/qLLC2pJrThzn8FUlMW5DrlG6Q9aKHGpGa1uMd85w5fnTMD+k3xliypK5lXma7UBRztGkK5x/8UUuvPg8R0/cQEhBigY6HTnvOoexHSBQdAf42HD3134j//Ujf8ipJx/jqpO3c/aFp3j+2ad4+a2v4uy5M2yMAknDi2vrFHkOUySiSZw9c4Z+oVB1oDtw+GZG2S3JaUrddDBOEXPD5d0rVNWExgijEw0Lg4AtLbu767zpNXfxGz/+v3Pvww9S+Q7/6T/8FvVoyvZsl+HAEL3ixNVH0MqwMRmj9Ab1RkPZn+P9v/5LfMu3fydveefr+MwDT7NLzc/+u39HPehTV5mi38V7SWiUFuhojFZMQkZncarmkFhYWmF7MuHnfujH+Nlv/x4ubO3I4C3Uch5KmsIVXLl0VgpjCivMRx3pliUul3znd72b2WzE6iOP8NSzZ+kOFjjRXeQ1b3gzcwmOHrueC08+TYWnVI6FQZ//9mu/xOWtbSgs4/GEbmlJNoDpYnLi0vaYrtMsLK5gteXrvvZb+JEf/uesrV7ip3/qX/LJT30aTGRpbp71tTWW5rqceuZBtEmoskO36dC3jq2yYn1zzIc+dhbj5nnqsSdwFlL0fPpTf8mZlSM89MCnKbpdXnfPbcwt9/mGd7ydn/yhH2XUgSImdDODEKGUO2NZFvSKkiOHT9Lpj/j7/7Dit379V/mRf/ELnL20zvKBAzhj2N6+wtu+/ps5dX6VIydO8MILT3Pg0EFyKvj+f/R93Hnnq3nXV38zvcazYlf43Mc+SZpljrzsZu563Zv4zF89yP1feJR/8zO/zOtvf5uIyNyG0hbvG6ajKQ898nkWDyyxvHSEre11jJa2ZWcLLl2+yOGDR6QUwjjZDrVi70bWVDWXLlziE39+L/PLjtfe8wbmF1bIaGIYURQyCJ2OJ/L+CuiV6CtGuzM+8on7qENNszPiwIEe7/g7X8PS4pH2HGfo+IG0WBqY1ofYK9vo9XpoLTFgsghRhZOylCZmLk9q6Bh6XWkN3qoCykXedffNlGXJ2ugFrr/pq7j+la/HFhpw7bA1yXmh2bvPOdEXQmQ23aHX7TEc9vZZc40fYZylaQJNvYNSEr0fdIak4BmtX2K2u8148wJlcRXT2TY+jekPD3Hh8inmti9z4NhNGNuh9jUuW0KYgimx1hLQ0jqXp6QUhHNXTf4aw+nL8fVlF5RMFrhxiJHCGKli378oyuayD8hOsW31SGAMqZrRsX1iO/eWB07oIcpa9F7FnZx/yBlmKZBQ5NQQQ8ZZhcq2tbCBLTs4V2JjB7pyCDFWY3R7GNFQNxUxeLSSuEIMgRREaKpTw6yZUIWaZlZBlKY3XzVEH3Bt3XIKMlUrC0dmSj2dUPlGBDVH68JQGCUAwj02DUa1E3LhRGVlWh4NMqnbmwXthczbmmCp1aWFebdSkkrtRS8ghfYSYxGXFcBezK2FjZJbk08Wa3/rmnFKMWuES0SGUAesE+B2pt2o2whZbi9foMhRE1N78bW0DW3tn5wakspySbVy+BKxSxOye8khwN44KqKMQaHBCRNBOo2EMxSjgEVT3nN9pX3uxUtNYaatcs0Yralzg9ESxekrQ6UiNu9BLTU+I9XROqEMhByJURPQFJQo5QVSmkREydpiMvgscG2rMlonEZMy7fQWcjatQyujUwIrrikdNegom6LJFMnQ5EQEYtJoMg0S/4o64VVsHWCymajsyY1nu6mYcyvtoqhJRUHQidl0gvcjyIrpcMir7zrJXf05ki0JdRamkwl4Dy+eepJCp7Y5p4t2DovGFjLVjb6mbgRgXBSWQWdASgprYGAMMzKl7uFToCAStfzsat+ws3aaPNqW1qrUup68RWeNTl5+3m0NqDBK2meZvUuFuECEJaZwzqCNpakSjZcGteFwHlVXXHv1NZw/f4psNKQZoenjlGaWMt5oYqlR5RC/NcKXA1IObJy+yJHjRznaH3B+a4OOKRguLFJ5jSodq+MZ3iiC01w5c47Ny1c4tnKQsuU0bY122al2ufG2V3BpfYbqWvRuSaQBlTE5M/WR5y+MuW6r5uDBLEBpAqSE05qcGpTV+KRIWrhEMQSyAWPlwO+ytErmFsZvjRWXZFIo5QghsLwyz875TWY+M7fYIfcWGF57LeXCItVoTLHnskSGtEkHmtSQk2vjs9JE5DH4XJHpUgWJ+IUU0Nq2PC3ZKMuyQ3ewgO0sMR079CHH8lIXowsiCaMl/qZNpEkZbRN1SPgGJtMR6zvb+2sJKpMRoLuOClnZDTpC9olRPebpLzzHna++ne2dTVKK1L4h+kRZ9CgGA0prWTh0mE7nRWZaU0dDp7SoYLnq+CFCCKgcaMjyuasESmIpcu+WyzwtfNli5bNXhsbX0oaXPEZrekpi0zOkNS1o1T6zbTQ3ZabVBJ17mGSgaMjK4oqE10qMTgkcAvildSTGnPFZKtRFPGhh0CjKZAR7bS02yL4XQpD4UUzEKAUVBXtif9sSl7IIcdFKV0WSd6tQhln2JJVonIKUSDlS6kKerxTksq4sOYf9+vIq11jTJWdF8IlZVRGybdu+ZCUvMCxYWJqfpw4NDgXJ4KwVFpVSWFOQk2/nGgodVbuHa3SK9Oa6WNvl/MVLnHnxDE899zSjyZTZLKBUQOsOGcXEN3z+2RdQBjpFB+ccg/kFjhw5TFNPIWqBYmvodHqE6LFaMwkVygwpnMM5zbRqRF8xRpg9QSLM0pQipRd79ema0F6INRWRXmeIpmA8nbHQ6wiXTJl2DxY3TMoZHyIhhpahlKktdGxE5QarTQtSji28GlzKOBI2B3Trpos5EtKMJnZJCqKKbTV9lgmwcRIt84GoMjFJZDKbEkUXRSFTTJXallPhRvXKEp8bQqikZVZpcgBrSrEvGyMxBFpumtYSzYxOPLSN7PVV8NQogrKYHNrzTnvmYc/dJ8I6Wr80SIgJnzzWdVrBSSa7zmgKYxjFRE6eGKReXRnExWTE8axVoprV5CRlA52yINYjuqZP0uKoBAs5EVPEmoDKTppHs6U0BtVIBXSTEkWnJ+UCpiPxWiwoizGuZWnK85H2xIkkTYghRgrbEUG3kMGgNhmVE4Uz7UBLYbQitS0cCiVczQQ+tZiAJE151imBcucsjkClSCniQyS26AXdOnu1MZhCBmx7ztCcQJFwNkvsCIPTBtciuL1KAsdWkh7WGWrv2/OL2hdaZX0DEiRkP/hidom01NEOPaRAQFxCiZREEFWIQztE8FWgmo0IjaduGnbHFUVvwKEjS8x1bduwyP7vL0fE/4nclGmjLBFr9b5ABbRnzPySxvWl0/m9+wmWwq2wVY2pqlXm+072PaVIuabxicbB7toVtosrLC0tcfCGW5ib7BDKDmv1hFlSXFy/SCDxyf/+Uc6dv8wtr7yVN7/9nawsHgA8xhbUzZRO0eFjv/P/0j1yjMm04v4P/z7dQY+oDH/28Y8StMWVhfQoBhjNKgoHs5ApnSHR8kSbBLFk0IVO17K+UQOO4AOnXngWpbscPLhCuLyBjw2r6xXOQnG0S5hNWZ1s8ravegsf/sh9XJntsjg34PBil/XzG9xy802842veyPMPP8WV7Qljv8DnN5/mXX/va7jaOu54zev47n/yYzx03/u5OBrz4Q/8Lt/73vdx7wc+xOefO8ODjz7OcK6EmIghtxxCEZGPHj/MpfPn6A67rK9e5pd/7qd45MIFenMdmlnm2ME+vV7JxUtXyNpSaEeRYDKb0e/PsbCyyIVLF/m+7/g2vutb/zF2sMKVLzzEH/z5X/LNf+/d/MB3fCef+tCfspUqSWioLEORxtNkhetqXK+H95GiMHS6Q9bX1wgWVA4Men2CUtx155v5zF98itH2No8/9gAXXniWF579Ao33cn8YjyhKxdOPP4btOjqqg8sFKY8488Jj4uJVJb1un8ksCKolJozq8OijT3BpZZPXvOwavv2f/ih/8bu/y2vf8VYe+dQznHW7/Ouf+Wne/6u/yRObz8jeaC2j3SmHjl7Nm97ydZw5c5nPPnQ/l9c2Wd3YYOWOm7iOHrvVGAy86R3fwptuvI3/+30/w6/98q/w/NPPcP2JmyhUwdPPPcVtd57kzIun+MR9n+Dxi2cZLC5y3Ymj/PZv/S7/2/e8h5/4xZ/k2OL17G5s8a9//P9kSs1cv8N3fe8/ptQlp587zYc+8CHufP1JuqrP8tKA1VPnOHRkmRcvXOL6a45x6dwuMQVpP+3MY4qCwnRx2hBy4rkXTjF/ZJHXv/F1LPUXMFri0UEJx7foWBaX++TMF7VRZg4cVPzADTezPa154tw5Ds51OX74yL4xQ+yw+wsYg367jrVilkyQSl5Sl4XJemBxjr/7zd/KNUf6/NGH/pTLV0ZUzQxjE3iP00OyU8wfOAhuURpIW/e7tlJ0UVU1MdbimMrCHjRGUThH8BVNyIwn2wy6Dq0KsvKk3KCVMKJHkxlbmxfZ2jhPtX2a6669CddbQAMH5peoYqQc3E6zs0apSzKasixa8UwLDqU7xGeHavmFTWgwZU1WBU09+5vX0r/F15ddUKqjJ0ekejZ5sea2rhth3iCLCgAC4QaLyorCiFLonKZuAYIGsVinACa3bVpKGpz3XBZRiRMAJ1Gx4CNYjYoRDDhncVkTgrikUo6EEElNC4dGEZqMKyCFhMkaZweUtqSrFXMskhRYQwvrktrV5APRt/DNULO4uMjuzhY5AEkxGC5KW5DW+KYiBLUvsMi3L6DGlGObJfUy2dLyMJDiPqBb6qmB1NY5Z1F3Nap17xpSEmt+zi1EXMnfk/cEJ+RSrhL7D9z+C4VUZGu0RPpiKzLRtqy0L7XE8vLemRCFQKSNzrQxZpEDEwQFKkXIUvGbohUgbKjRSgDn8nlEOXCrloSfBercmo+k3YxMT0NQkrvFiHXa5PbXkyisTJlClslZBrkwJrlkWaXIUY6UtQ8oq4hJNhjJuGpqxBlnSbQksPbskYlZgObKSJTJ5SCilaxwKCuHNtuG1GJqHWdIpJCsiSR0a2MqCotPnlJbovLUJrWOG4kTpQw6m5YRJdB0nwRKHnPEksm5xOdM9lGm7qYgxITTGUOCGDE50qPH0UMLXHvjTaztNlQ4YqPY2N7g4pXLdDodjMr0S4t1JU5blHZtHllBp0evfWuVNhhXyEVEy6W6o0x7cFRyKdIaHxp6wdC1R7GqpD+a0BnMYR1cOH+F6Ti0z4eFLHD3DHKiVq04KH4eUfezPAupQeIRIUg8xhpM05B9Q7WxSfYeYzUpeKbTCdZKHWhpHcmUaFUQtaff6bK8PE+zvkMeNezkGX3jcKqkmozY2J1x6vwVnr+wRhVBdXuUw0VyU7NVVZRB4q6TXECGS488yfZOhVrogwrigDFKErIxs7G1y5NPnabX65OUBRpxyKW2SjxDNCKEajK5Bb6LgOlFbotf1Fa5DySUty7jmaZI7QtsYUiVZ9xsMg2Rrb/a5K47jkFyAvy3hqiiCHQ0kEsIwoXIKqJNwiSomikE+f5aApu8F1pRWMPiXJcDcxnUDmlWkZtDVI24ZwbdHnXw1HXAQ9tyZZlMA1cujjh/YY3ZeExhwSQtTq0kDriINN3FDNpBThpM4JkXTvOK218GKeEnM5rdKdN2Y9alw1jFoLT0reOZM5epWjbJyqDPyYUlbr/lasa7OzTjXXY3R9SNlDjML60wv+zEWVWmdoqWiD6jcqSuPbowpBiI3hNDpCj6RO1IbRuYUhCbyLSaUdUzBoMBxnQokyPGBhPk0isAYkNIHh8anBMAeI4VMfYYjWesr6+RmsShAwcoFgY4MuNQ0eghRomo1xaNkbQmKSWBNGvRARExUiBEj8oGpzMqBnI0eCzOtpf6wpBHgW6niy067G7vEnyD73RkXVMID4mWHd+ulRopFdBRoUkClyVBkoupDB0idRO4cuasfI8Joos0YY+LJtXU2hi5WLeOlJySHLq0IU1mXB6v8eAjj3Pu4kWUAt/EllHQayHp8nNa3x5hrcG5gFXw4T/7OG978xt42c03cuHiZTrdLlon6b9I0oSlUegc8HUje14SXla32ye0jZUpyzqTUsSoArQhRhH+sA6MxmT5PT2RnnbgEyolYqhQxsk7rQxkmQs5K8O2QjtsAMeQrAoU4tpUea8LxqCsa52asjdG1aBys19jn9MXs5PE7S2JzExhFBaD0lmcpGh0TmSdwBqx+7eRcK0zIdbYLO2JPkS0Skz9mH4q6WrZ98UtCSEGEdg0wujJ4vQqdSECpG7dlBG0FReQkRMdSstwTWdFSF6cf1nhVMIpK0B5CllHsyJmaIKsjeDQpsSZgjZdDzETcoJkGE8mTEc1eSCxvNXVy1x8bB2F5sT1N3DP8kHKot2vWhZdikHWPSfNbSEWOGfRJWDkAppTIgdpVAsp4WMiKSPDT7T8QxphbFlliVmGqiolcVknceVEX+NsT1xZyqLEG4kyFud6wg9Uhpik6S7tMUiNJdUilgVkjTItGiG3TcTGils4h0y2cn4TN5xCq0J+H4R3pxDHlbMGsy8KSfwwZQhNJDQC7Kd1NeUkbZ8xisjtnHDmWqUVa4X/SCsYNY0nZc/mxjanz5xmYzTDqsBsvIUpOyzMLTLo9GmmE0bjMYPlFW48ssR8538C427XJb70r2eJ926urrG9tcnxW45DvYdHyGAUriha4WhveNX+2i8RqTLw6P2P8fTjf8ltt72c41ffxvLycUzZoTuc4+rrbmbr0irTagulDGuXLnDDrbdy8JaTnLj1tXIBdj3KbodXv37M5/6fX+bh9z/F0auuwZ+4jquuvopn/+pzXHPXa9i6dIGnzpxjfrjE8+cv0Z1bIZMIvqY3GDCrAskHXKcV/LolnUEB9QhfGyn1UXKWrqeBS2PIUTEcZLSVOLExHXyInDt7noRBOzDW4jM899zz7Fy6wBvfdJLVp54i9aGaTtjKiW/46m/g0x/+ODvjivGk4F3f8V08+Zef4hOf+SwHB0u8+Z672X7xNB/8tV/nzDPP8+H//Nvc/Y6v4t3v/vs88KE/5dLqJXLc4dCRAY1vqMYNhbVyX1GKZC2XXjwHMbFxaZ3EDo8//AQ79RjrFBSKY8eO0U2GtbNrVLrGR42vJJKeAqyv7VBaxwd+6z+ydfkK7/vxn+Tej/4B3/2eH+H+++7jN97/QX76h3+QjzzwSbwxWANKy1lbpUIwJyljkqfWme2NKwx7Ess2uksMDcuLC6yvbnD40EEunn+RyXibIwcXme87EjUpG7mnZMtgcR4dNRtbG/yrf/VefucX/i2jYkCupaVyMq6wVjilrlsyHCwzmU04dfZFbrvhKg4PFnjL130jl06d4pZ33M2/+YHv57qrbubJzz7FC+de5FVvfjNnn/wCF9ZWuenECRbcAqOq5tLGKv2yh+0tsPbiOhtrqywu9gHN5PIG/+KD/xeXN3b47OcfwijH2toaE2rmFg/w+IOP8MCDD9O9eoHblgcYZ3jdPa/h45/5OMe+4k4+8JsfJIYZdjDHrW97AzWOomNZXjqCirB8BE5+xVdyy8uvoyq79I9dy8Giy9lzp7jtzrtwqiArKLTGGLfPuN1D/Scyb3zbVwiygvbuowXgr43hwsVVDh5YoOM0eY9dBy0OBkLIDJ3hDTfdQGueZB/W3f4ZgnHYS7OovVvVnmVj74Ys4jxSTLC8eIjh4jF80My8p4mG6DW/87kXODg8zbv7nptvvUhjNck3DBeW0NmikRKm6BOZyLSu0FphXYG1XaazbcpiQEwGo8Uxm9Q2s8mMutphfmEJ40rmFpZAK3yYUTKm35+nKObAdpg2DajIcDDPKBesbZxFJU/jPZ2exVlDp1NAjETlxCGYO6QmE82MYFTrGP3yfX3ZBaVMwmgHaJJpm9ryHpTOiuUWafhJOYuilyVKJFbbvQOrNHolhBViEIBeeulRIuQkF9mW17D3e9NykcTskMWW3U7VkUE4TinQloRMqrQzUrWqNXsV3THKI290gXZ23wWkjcYqhe0qdNZMJhPGkzELiyso7eis71L2u8wtLdFzBb35OSbTHZoIvvH4aSWRjbqhbhqSSqAydR1apEwEGsEfZIGzKiJKmRYgJc6gvQmfark7ew6wlDNyx5EXKsX2U2snpdJwp/aNUkrtZeHldQpJE9OeuisH1RSDCFa25Tu1oMGURMRpwt5FQLdNcO0BViETQKuxRrXOBjlcZ4RhkpOGKDFJ4SQJv0W3IoVVSuKAIIJZe3iWqb1puUxyiNaJlyIz7c9Lta1nSYlTMgBWGWFPtO1ZSknzFl90kN8T5HzbNpiziDq0ribJ8xqxvSvEzZTl56CylgtHTpTI1M9naW6LUQ7IOdVYY6hCbAVEeX6zRuDyLXQ+K5lYWxSlUfgUcHLLpsqBTpLoCDlRNRWlyijfYHOgQNPrOHIduLx6kZ3JhAtbFSEX6LJP2e3SeMCUTKYzktZ0rMCzVRtP21tkU5JLBMpjrTinjJEYjjS02XZKKoKy0RpjMpVPVCFiOx2WFoYSG8nr+GqHqg4o1aA2HX8AACAASURBVJOfEwL+hT24nrjVVJaYX04SHW2aiM6GrutAlEazpCLLi3OcvPEa/vyBy/gonJ/ptGbQL1A6krPBZiMAdauZG84zmeywPFgkphobu8QcGTHl8MIhzq2Nuby5KX92VDTTGdqK+D0aTfE20O320FpxfnOb5D3BWOx2pOx1mU4rrM/iHtCK6ANPP3OKROSmW25Aa3lgo5J1zmQRhUNKMk3XkAmgJM6SFML00pYUvMRJtTiUEpnZtOGJZ15kITRsT3cJlExjYuvcKtiC/rzljhuuJwb5frIqSLGROBWKlBrZSHVBThU61NJa5QDkPRUIuwi9ncJx6w2HuOPma2mCYnV7ys7umEG/jzaBZjqTfSBncT4ZeX/6Xctw3jF6ZoeDiwPq0ArOXn7Gu1VDE2U9kVXJEaixuuDy+hZXtraZ7zi2L03Y2thlfTJmZ7rGjY3h5puuZu3CBUb1lCYLcybmADrwilfczoUXnsSPxlze2mB3LA2kCYVb2+TIkaMcv/YopdGELNEilWuZeLcV66mdXvW6XXLwhCQV6spEqnrGs08+z/lzF9mdzDh0ZIVrrzvBysFlog6Y0uHQdFxJVvDZ+59kZ2fMYH6e+bk5VlYGBGV5+LOPcer0KTyZE8eP86o7T9LrdVqQcyQnKFQi5CTvW/aY6CFFsjYE1UaytcZgpKUuZULSkGdo0yGHEkxmWlf4psY4h59MGU3GVE0FVYE2so42IZC0pvaxdTAhEO8yt/upoXROZgwG8Ims2jirknVfjlURrQ3JIA1DsUHhyUm+R723XyTo9XvYFHn2+ed56vnnuLC6ymQ6lZueUZiyS8xa9qxg8KGWrTFE6qpBIxy8e+/7LKtXNjl2/Ci9uQVGVUUuSopel5YQK0wK70UoSuIeKjolKUZMoaRIxFgq5dlz/qYUMC17gaSYzHbZqTz9uYIQM03SxIQ4K9tY/p7ok2MSnkIQjpnRlhQaYhTeXZRJAoqM03l/D5Zd2gLSYpqyh9ROM6Ps4yFGjHb46DFOiSMPSFHEWklwlZANVRXJ+DZmpoheWjU3Nrd5+JEnWd8eMb8wz3XXHmdxuZDoXCscKPbgwqmtbBYOXlZhfz92TmNIWKP3K+llUYsoAkpJXMVog4qQbCQqYUnSnkuMcUTtW1FEhCjlCpwTToWmLVZpeYpZawrXxXW6TMOUnd1tPvvQY3S6JaGOrF7Z4cT1N3DTDde2iAEL2rZsydS6iQ1KO3RGuGAoAahOGpwTV4Vp2R8iEGq00q1bx6KUI7fGK1pHUZMEC6DRFNaJswtxi4seJ4eToKRowWoE3WDl/TOlgMR11uwF9VuTeSvQ7Z3AxcFslAwis/r/mHvTaMvSs77v9w57OOeec+d7a+6qrup5kLrVGlqgGYSFhBAEYeMQzDKJDSaxY5zIiUMcwDErBnstnKwFeFrGNjbGBsmgCY0tJEEjtaYe1HNVd9Wt6c7n3jPt6R3y4dmnqsE4K3H4wOkPvbqqus659+797uf5P//n94fESjMhsrCsLc9qRa2VcOCUDPFmZCEXHNO6pKhKXGhQwVHXBQeb1xjs7nP58nUwgXsffB3HTp7GWvn+h9YhFIOTpFolTdvcXMrpM8c5l2f0spwk7bRnRluTogVo/p9wH92Aa89cRbM24BWdx6xW6S52yPrHSMwcz15/DhVgfW2Nq5c2uPW2s/T7fblmWne+irO/72ZzZVXK297xTr717fexf32T6FJsJ6UqGra39kiMYm7lCAv5KcqqZnfwPCd8ILEdlhYzut0e3juGO7vsXbzC3Q/cTf/6DhcuvogxjsNim4/9u39F5yu/x2iwzWXn+b2P/RZNVOiqIrMKV1ZS1xnQRCofOXPqVobXr9Pr9CmiR3cU13cPKMqSupE606dgb1yXUDVQU1O7hlwn6Oh5zX0PcfGF59maTqkcXNweMf/lx0h7NXnaYVx5qrLgdz72HzgYFCxpzVNff4qLz73AxfPn6R1Zomg8v/UbnwS/z5eeeoLPPvFlxocVr/0zKeXBiA9+9FOsnDnNqTvuYnF7i+cuXGTiAyZNwARCE1nt9Dl32y089vtf4L/9iZ+gHlzm67//FaYNwtEKcLB9gF1e47/68z/Er/7aP2eqM3GapimVr0TYDuDynE9/4REu/ff/JYPdIZ976jluXz/N/IkF5k8usPZkh+26IknkvsjShKATXFGiUXir6CW2HW4r+nNzdDp9JuN9sixjMhwwGk0ZTTd45NOfZzEx7BweEJSndhVz+QLjouSdb349Gxcv833v/7P8nz/396iMZjVfZqoqxju72G5OgqeJBh8tk1JYPm9/7/cwf1hw6cIzrK7fwcXHH+cDP/kzfOM3fpXb//I9vP3N38LHP/Vh/vpf/HH+/t/9Wa5tXuelSy/zqS9/nqe+/jiPf/UP2N7bJO30CA0knbR1I8LTzz9DurKAn8u4dvUqy6tz/MiP/SXuf+ANPP6Vb/Abv/rPGWxfxYRFRsWQv/t3f5bjJ+9kvr/A97/r/fzaBz/GNy5/hQ/8yF9judendpCnsj3klWKxZ3n/d7+TI+vrdDtdIoqqKnnoVa+F2a2qZjiT1rjQ9p+zMywFiFKPNd6TKov3DVuHE/6Hv/W/8hN/9X08/Lr3tvesnFsz96TWUNa1ED2TFp9x434OzHiYEG8cGzMxa/bfM2mpVaPkvAmwf1hRKTA243i/pqMN+8OKSWW5frDPwf5VJsWEcrzPyrFjLC3fgs27+AidbpfGWYpymwRIbI8QNHuDQ3pzU7pzRyiLKZ3cSBqvr+jkXRQigqdpB6XGhNBgu4tMY0InevIsFw6bn+Abj2/GuFCTphlNHSj299EusLQSMKbD7mCferRJ05FNBrQMMlRwf+x5+5/7+hMXlMSjEfBRtVOPKI/MKJNeTbt3HWn5HbQpGbGdTkMVFImeKZDCIooIQFJpLYCrtqspQiBRWganEbGotw99lZhWbZRIdqW5sQNPlDfwM1dO27jqICKAdx7TJrL5CNGFdg5lxBmgwCsRq8pphVaGJJ0n7wSOHTtNd86SpV0So+nNLzCc9NG2i2kby1RMDVRNg6OWPdRxIYpscNS+oioriqZmWsqufeMamRJ5EZ28FyC5DwHvI9ZCmluUVSLSREmSayopE3wjTCAtMJ8WSN66g0TNQ2tL1p0jqgqGB1IEGSMsKQLKiEvH12LZFvuzl+9zy/IIzjMDfYeo0G0ynjbi0FIBUP5GgamkerwBUJxBxpU2xAai9SQ6JdcaqwOByKSpUEATHWlQMqlvVWUd5WIIUYQhE6Uxt0mbgAQy4bNGbPviB4dgsEbW9AKBFpMlYiYiRDZREYNpRTaPB1nhFD89dRSBrfWYyMpnK3Rpo4iY1qkk37eyloLLuSgY8RCJxrfavcBXUYYQnHTx3mO0RQUnriui3MZKJq06gPKeGCpiM6GfR7pkuNiwefkK2Os426cyc+xv7pHlCWk2h/cak3YIKKomQnTSOqubc0IVkc+D2CaVNsQa+WwROaTiDDgvtnzfVIwHBxTTguPLC5w+usJkXLKRBEz0AvGnIczOi/YaMsZKUawtKhqMFnEhKgF9Gy3A+UlZYhLZpbYmcuHyBuNiStSR/f1Djq0fpQ6NCKBOSniLIouavs7Z277EYj9HVxWT6YTJdMCxoysEDZs7B5RVYK7TJdaRpqnxjYguuv2sIQYq5wlA0kmkAdEQm0g/n5MEEiciqFeRMjg2rmyxtLLE2toyOprWEaQFxozGKsEfozzCnm9F2KhwMUrT28L6NZHYwHRa8bUnnmE0nnJg5dQbTKZUThwcqfI89vgFbDQsL/bQiaesauaSDmhDE2oiDQqZroSgSEzK1u42AKFxwnZR8UZjcuLoEq+/73ayCLvjQ3ppStA9DosRITTUoSK1cyjlsNHQhAqlO0xHE65e3sLUDXcfXeD85R32xiUBsNayvrLI1sGIumpaVodMzLXRxLpm49IVzp5cZdoUbO7u8dLuIRUJ0+dewsea/Ss7aCIGL2s+IXLulnV2n/kGw8EmXqdSawRJcUQrynLC7s4mq0dX6PTn0EHJ3nmUYURRjumoSK0iTShoJpqsjkQS6qqm8YG0rkgoWV7OGFdjnr/wMt985hJ33XWGu++5hdpHqgq0Tfn9332UJ5++hM4N6vIVWaG0t7G/fcDGlUu46Gli4PLVq5w6c4xTp04Qmygx1o1H2RTvKmkgfEMTKsq6ptgaUNWehaVFVlcWSZQAZRvv0TaVNVgXMCFiPbhiymRSsD+asH9Y8fKVHXYPJlil6ffmWFxZIM8TlBYAv/I1QXsM4taJXq79Jgh4XQDs9oaQMilLEj3BZxYXSnLmpHgnyjAEJUMoJclwrpIV16qsuLK1yWNf/xq7BwNCCBglcdNg8HULYPci2hidtWmlLVtPSazyzuCQy9c2OXbyJCbPaIqSPE2oSoc1Eas1tr0WYnQ0jSPLUqqqptebv+Gqrn0jja8ClMEkiuAbaBpeeuEC+wcHeBVpiob14yc5s5K1zxbwzZRysI+rHUl/Hk8QcRhJIpTaN4Jq8CqQpyl4iwsCadc+tGWwqLkqBoLyDEdjitrRXW5obdFyTutU3KkkuBhpvDgRZ6t0noann36Wlze/hLU5t952K/ffc5bEQlEUfOEzv8eV0QijLfuHE+YW1rjzVgkCQM3W51soI7SDHeEcRqVpfMRVJanNgISoTQt+n6kfsa1fAk27PxXasz1q2/Iho6wFBoNvQvsslDU7rUR0t6HlZKIIPorAFi2uGuN9pD+/zHS0L0MHpyl9oJNHGg86SXC1a2sQcSiEKO+RqtC662Vo5UMjK1TaolQkeHMD1RBbEdcraaxkvUqQA8EraleTpVYcUMwE2fb+U+Led0oSgISHJ0mOTZB7pNMOalQwNwZ5N9QURetG1+JSsZpoLMpYtLE3ajJ8xKSK2gkonRZlIC2Ubt+7rRGR57ZCBMvNzQ2ypKKT96jqCYOrz/LYFx7l+SubnD5zjrvvuY+mKYEEHwJlWdL4BmtU+4wWFtlcb56sk7f16JRqUjM10Pga1wTyzjzzC/NYI4Oo+Ee4TTfh2rOv/4/rPOTXO1kHZS3TsuFjv/05zj//DH/2B/8LimnDQVPw8EOvI7Ntwpv3N8UkNVOpWve/7mHiOuvHVzCqD1jSpMYFRTGaMBqX9JaWeO6Zp+kcOQ7JPE3QbV0tbv6D0YDHv/kV9qYlp287x3Q64KO//TXufu0bOXrvnZx/eYMjZ85x5HDM9WvbBNvgtWdhdZU7ls/x7FPP4Kz0CasLy9x75jauu5QH3/R6FmzDv/21fwe+QsWGXpaQ2MiokMCDKnCjD1AqxQiKj16W8i1v/BYoCw7PX6BuGpKsQzqv6BCoxoa6cnTzmoOiwquc06fv4rUPPMjnfuc/cG1wBXe4x7BqOBx7/uu/+j/y2td/nZcvblBPa17zuodZ7uf81M+eY+vyNt/+/d/DtRde4N/883/MBx95hMoZUmuJseDht7yJw82rJDajmpTsXz/g+fNPkM73ia4C5xkVY9775vfSdQ15DKi6QmF49QMPMZckXL66wcFwQuUafuCH/wIf+vVfISY9dnae5vrVa/yFH/0x3v627+T3P/0FlnKHj57SRYppibYR75v2TrBkWZeFhYyyCbznPd+NXu5jOws8+dsf5sLFa9jUUgwm/Mtf/VfML/ck6MSD9qBcZHm+w4/+yI/zgQ/8GJ/63GcgNYTG412knpbkczmdfJ66LNHa0J3vs7S+yF/5b36MS7v7RDQbV69z6aV9ro32+M3f/BAf/if/GH3f/fzyv/in1LXj537+p7iwcYGoNI8++mVWzxzjoTe8gcsXX6QKBVXjqBtPats1JwN1XfH97/tevvs73ss//Plf4J6HbufOo6eww5Jj88t8x3u/jxefeIovfOkzYDQf/9h/4Cc/8PPkaQdC4Hve+238gH03//pf/irv+3Pvw4UEry19m1A1js3BQBIajbh3H/3qV5mfMzx4/0MYY9pz0bSDY3XjVo7tM1u1A3sUXLu+zbQqueX4cSZlwUKvy5ve+jpuve0BfB3xuiazGUQo6wprLePRhPFoyKlTp9q/9JVqs/5Dp8QfOjPafuPmB7rxG+2z1HP7rac4trrMagZ3HTP4IvL0lQG3HV/gvle/imiXaPyYa9fPUxWb+PKQzsIxTD7HXG8NrQ1lMSVf7JPYHNAMJzV7m09x5tyryKwMMQiObrePNhl7+5s09YDVlVvY3dtmWgy584676C2clT7TiVYxKWqmw01cPaKTZywsLIMvOH/xItPr18nvANtd4/rGNdxkiHcLRO9a13AgNn/KBaUYBUoqh7RM2mhB2uK0MK1zRt10EhHbgiCIhRxoQsS2EchKK1SbzDb7f8XmrdogG2nuvJdpl/YRa2U1LDUWFSTNTQSqdu2sZTrJNEessjrKCotCYkuFoK2wSthGMbRWuCBQZOUlYcf5VjhopDBYml+j300oygIdDMWoRoRAsdM3dUU5lQmyD5I6kmV90n6XPDFSbEX5s8I9AK8jZV0Iv6mSwsS5mmkxZjqdMh4OcXVBqAPaG7JuTt7tEJynnNa4xtFoh7GGxOYykYzgnCO4WXy5IU8yjq6ts72z2zbNuhUwaoxNIYq7Qykn62lekk7kPpUbN7YEcNU6rJSSS0HUZLFaKD0zHErzG9v4ZtVO9GKMKG8wNsEay6Lt0MtarogPjK1jXJcM6rEkXbWpHVGJ40Mc/jIhl7BrZB8XUDdA6CIUqvazR0AFaXCEayWNs2qdWFoZlJHpnlVaGosgQpZvV15av5Mo6CisTrAqQbsIGrRLCMqQWI1NpdiLCNg9ba2cqLZx1+Li00G3a5HCvEjaVbRIINMJjVLUw6lMBB1EVZOUBX3tWYpgfU2jc3TZsDU6hLxizCFOd1lZOcHwQEBteXeOxpXSyBt14/BX7dQztvfrjfNaCU8sqlkJJgmOykrstwIyYwhR4sknRcnh8ABrLEZLizQj+ng8AY9uVwaUApMYmaB6uV5CEHC61rRR35pEWVbyHrvDAVvFiBdqEaUTBYPhmOUlhzIG5xuK6OllXTKliDqQdXOcbzAhJbWG0WSEqys2d4ZsHxQkWc7qyjJXt/aoGnnPGUwwsQZjRVhsirJ1XRrhX/nQAloD1lhq525wJIiR8bTg6vVter0u3byDDELibLOAgNxb0rtZEXqCbie5UW4mFTAoiqLiwoWrXLyyRVlNUQGuOEk6FGFI1ojqssGFyFMvXuKe229hfa1HrzeP9h4dXSsYebxWLSsk4NDUjQQZuNC681AQ5ZxdXewTS8/W1iaHBwcMKsXKmdvQQVPXsmoVgzSxMlBQ4OQnPZ4ccGa1x6vOnmA0KjmcVKKL+oaTR4+g04yXN65gjYgTKgS01vTnF1hZmZeV5m6Hg6CotfD1mrriYHeLwWhEdAGrhOmx3OuymhhUucexhS6DUc2wrNC6wXkPQdyxdVNSVg1KZ8TgMLFd7/MRa9rUyGAhyn48QdxPMcrvJwYWexnleEhd1JI6Z+HS+SssL3boz2usVRSTkq1ru+S9BOcjeSdhbX2eI0eOceX6NbwKKCX3steS3uWcYzwpsEbjnCeLQ4q6JiehCRWj6YQXX9rg5UtXKcqaIydO8I63vpEjK/OoYLEB8DVN5XFFpAwTMJbh/oQXLlzh0pU9DiZTpiHiorDetFKYSylzecrS6gJHVjrS9gZNEyMuRFIdCMh1r9DoMHMRy5naqIRxbAhVQ3C2nZz7NqFSE1rGmAqxFZShmBaUBJ4/f4GD4VDW4YLBR0mviyESG9c6bjURTQiuHUwgEEyrxP2DYlIUlFVDVXu2d3Y5cuJ42z86MhPRwWMJhLpmdHiI845YV+RZyngylTX3KCsiPnpUkKFFMxqyt78H5YiTy30W8i65hhAbFlePyTUSS0bXLlNcfInxtKG2Fru2jp2bZzo6pHaOqBKCSWTFCeHquIiA8qNMWmNscK4Wx0jt2d48YGNzq4V9zrF68gzOBaw1cka0KVLB1UynU5q6QkWPITA6GPLkc5fZHE2pm4a9vQN803DrqVUuv/hNkjwlLY1MQIGzd91OnqfE6NFovG6Ten3772iZFg1VI8y41FiaWoSUGD0xSFKgjiIG+RCpqsi0aFrnjG2HBSmzcfXB/gG7u5tYlWJSccDNnGdWq1YIvJkEuL+7RzEZ44NjeLAl0HAbSILCBKhb2HYCrC4uipsIx4yjUdUNk8khtWswKiVVELVBBRnwEVouT5LQmcsZ7En9FWKUEI+gJQH2BmdSYW3SVh6KqiiZTicoJF3RmptDPNppu/z0BY9Q1yXESBMCHQ3WCucJVYkDG9sGiHiqqpD3VG3aLupmozTjBmmom5phVRPReA0mNoC4AvWN74S8govUZU2aWlT0dBeWWDRHWV89Tp1GVq5cYXnlBNMwZDgckKYJzonw1ul20ERCUzMZH1A1BT4EqmJMXZVE78jyHqm18rxPunT7PXF/qRnnc+Yk+OMcS+qP+eX2TxuDMVJV1I1n+fhR4qVLuKA4ceY4v/nIB7n//vvITHutacEgxOBQ0QrGQc1QEAlGLbe1lvQXzhuWT50hMZrdrU0whv78Ovfcdx8Lq8tkSSrnk5KVzvXjx3jzu76LJ77ydXoLq9xy+gzv/a4fAjx7WzvccvIax8/dxac2d1l8xyIvPPs0l/f3uePWM1TTSmzhTQK153BvyKNf+goL/QU2LmzwhjfcidUNAUvSBtEUtaObp1RNQ+0tkXZAR6CX58yllrWVFT78b/8pgzpwfP04cybh+Jk1nn7sS0xJqUNClnjSVAZmPoir7OTyGr2uodxpOHH6NB11jTxAPfRQWT7wt3+OS098ndN3v4qrLzzN3Q+8kbtfFZlujpgeTLl+6TI27RBMSuNqokn5yEd+h6YZk6c5v/iLv0jSiSzN59TeSfx5tBwe7vHBf//rpDplRItOiZpTR0/y1z7wt7j6/PNcvnyFq5tXeemJp3n4ne9jeW2NT/3rX+G2Vz/Ehz747zn/jWe5uDWgs5ZReygrDz7Snc/FLds4kqRLcVjwvu99P4Nr+3zzy1/m7Kl7+Jv/24/wqUt7/LPdT9Cd77DTlDTBMCkKGW4qMKmlqaaEPOV//tt/ne3dHaLep3ESxDAeydeY91PO3Xk/OxvbBO143bd/G700YevKZb7rXe/juYsb/Mt/8AtsXL1GNR6Q9j/PdFzyl//iD5EvLtAEz95owNl77+WZbzzHyXPnOHfuTh6+53UUOyM+9Tv/nsuDvRvcYWJgMprwzu98Gz/w/h/mG1/7Bp1eh42L1/nrf+1vcGT1CLe/+gFc0uGpZ7+J7XV58I1v5vXf8kbSNENZI47J2MKb0y6JTciDxWpNXTuasqTa3+WZjZe59c7b2N884Jf+2T/lJ/+Xn2jNIu12h6j3N+7YGCTNWCPmiOm0ZgJ87aUL3HXyGNponrl4iaNHj9E7egtVkfD8/gWaqubVd98DQCfvEIl0OjlJInLGf2Re/P/y+kOfUVG5wO7+FvfftkYnWaRvM8b7hyRLHd748F3c9YbvQpkj2M425WiIUgWm06F2BbaOKLVOVQauX7vEwvztKCU9XuM8z3/zSXpMMP3j2N46vblllNb4ICDzzCwRQ5SB3vwy1nTI0pwk6Yr70R1ybXubgyvPUUy2WV9ewNR34ZqE1ECsp2xcfIosX2a479FKOmHnG0mzDRrv/5SvvBHbOHdt2gbUtQ84TQyeWaS8ah96un2UaWWkYVOy+iTMGilNkxbMp9qpDe36wQ0Ydfv7IkC105cQSdDQTvlkBW6G+Kb9c/IwjbST6tjG3hvRqwOyghaCb9eRZioE4r7xQoZP04zh6JBJMSVLE1SIEgVbOJT1GCNijYpauAVofBDXkfftup5vCD6gg6i5sWUiGZMQWmBikskDlzkRN6zRBB0YHOyzceEig52GuixROpAlsNRfpJPnFLWnLmqaxhOcF+isjkSd4l2Dd47UKPodmRLgA66WpJgkSVno9XFVpDOXQ2ZIcknyAXBVI7C5OBv0tN+fVuCTBD9JIJEbPbQNmLjFQojEljVkWli7Ne3PNyqIhqxRRNfQNI4aQ0DRTzv0e/OEkWZYTUXkQxpzFcWqqFCS3qIiKsrEWhJEpOmJXtw9MdAKHNLUx5YFIrGWgWYmhOJbbhQE37q9aM3/StbmdIxYo1EYEqXIkm4rKimyPCP6SKIkSjNNErRyWJuilSFFWATSEIgQMC0qytq3MdCSwJKYVGCudUE37+C9Yj9MZZ9YRRZxnJgLJEbKy6ZyKO3op4Yq77BdNkQLy6t9lhf6FMMKtEHrjMQI8JWZ4NdyJmSa0EJp4wzICkq5lnmFJMYEif02xmC0pS4LmqrmyPIiR5b7ZImh153jzPETHIwce4cTfBBumXz+1m5qNCaxRB/FRRdCK2QKtDnFYNH0O3OcO3KCcVlQVGMSE1sdWFE1gd2DQ/pLS9QYygCdvqyNxRjIshzfeEbDMUtdS1FUONewN9qhrB3rR0+xsrbOy1e2aOqAThKMEYeTjhrvPFVVAbFNdhD4u5xTgWnl5L7XCh9mKyISfX1ta5fVtXWS1ZTExPYcbM8i+WaitcLFNgFRO2Js0FG3PC5AGTY2tnjhpQ1ZOUWWYnTLsFLR43VsN309rlFcur7HYDjh1Xee5uwtR0i0FgedNbIe5oQ1ZtprfKXTg7CDjxGtIiEaotLkKGJdc/XyJUa7A/ZGU8Z1pAiRfHEFF+RadE3TuhDlTonBY5UmDbDWS6CcsNZNuZYa4baoSGgqjh1Z5+Kly/J1+CisrhB48MG7SNKc8STw/IVtNvdHgMLqQL9rmAxGNE4gz74Vg7PEkqnAbbfcxmiwzWB/JCJG9OICIeKaSFHVHOwecOqW07JGpHzLMEnJ8y55N8FVkCWapmmovZeCyYJvVMv6i8INxkNKpAAAIABJREFUCRG8xGlLpLYwAX1UNF4ERtcCr2er3y40eKUhSQjOoY3cU1ub2zjfsDS/QKc3T4iBTt4ldw02KsrSsLm5zebmLpOqxivFdFpSB0nX1FGcbrVvmF9doDO/ROMbooYXv/4iT714lcIFvPbUyrWiusbjaFygGlc0wdPrHGFtdZ5YlkTlMUSMCbK65GdDIylAJX00QKKxnS7aaMpKUhnT1AoU22iiV63xJmAQ9t/+YB8VI5vb2+1qs6H2jTBrRLmSy78VoOT4Fa7UTFhSrSs6BkdsGorxhO3rW2xe36G/sEaWzmG8wimDrys0mklRMBkXjIZTunNG+I9G470AVIvxGK9l2q/rmnq4i3WOs0fX6GYJOoAJinFw6JgQ8kBTlOxevESxf8C0iQLrbDR3veledlxJJ88Bg7ZGRMuoUJgb0OUwq6uUQmcJabfDZDpl52BIWTdEVfPSixu88e2W2lckVtbhlIYYPQZFnmW4SqDpThmG0xKHJ9VK4LTFHk9+9Q+4+vw8+/vXSWykbwWAvdLpcPvJE+jmgJnYc1M01CIyqUCWJ8yzyHC3FsC1Vi20OrSuU3WjuSWCVYpulkNVMMv6QYEyls3Na3ziQx9hZ38X6zULiyvc/9C95FlKt7/KaO+aPCO0uJg3r17h85/8LNPDfSZlw9LaMjNCR29xmf5cRkMkDYqVuQzTut7RSoJGlHCtUqPRUbVDoVn5IcICqgIV8KFqm0RLYlMaNQUalOogDu9Evta2gZK5qcKkGX7sW9dt0nLGkLXIdoimJC4Ym4hLyLXPX9WWuOIWNkgSY1u7BlkdtVpQBApp4AT4Hlr+kThqo/Lt3ysuVPCt87B1l9MyxVoEQGIMvqlomkCiLcEHjO1y7Phpur0VltdPkSY5TSOg7UQFgi8YDwbUxYS6qWmaEudqst4CvaxDqnPqckzwE5qoSWOXpfXTdNKUGWA03tjlm4XKvMKh9MpO8Qak++ZvxPbXYzvUW1pe5sj6UQaDffZ3d9n45gVC5aAD0TlpupXULeggtWP7HlIBzRouWa9pPAyHE+66/XaOHjnGZDjEktJfWCTPBMSf2RxfVdSuoZxUHD9+lupV8MVHPs3zTz/L2tIKk3KCynOe/NKXiVnGfKfHm77zzZx/9hlSo/jGY48xnE5JbIdQCrOPVLF/OOBwOGB75zKF38FmfZbSQFHvUo4iPhh0UJhgZM3VaOEXBs+dd9zDa+67h6OnTvHlj3+YJsl523d8J1tPPssb3/N2fvrRLzOeyzFVSZIq0qRDN8nQnTlspjHzKToxLM4vcu+dd7A3N8dz58/zMz/z09x/z928ty5ZPHGGTq/H0TvvZefli8zN93nyM5/l0W9+nYuDQ2zeo/FOHHVRkycapRJx+GaGOhimdaT2gabWJNYQcWwOD2lqh48abRRZpnn5/Dep9g+45cytrBw5wt2Ht/F3Pv95fvln/wFb21f58D/5R7zjO97Nh/7hL/DE+fPoXkJZtaEIMdKdsySpJqdLYyqyLGU8POTKhQscDCY88fQTvHjxOt978S8yd+QU7/uhH+TRL3ySi1eHqI6F9lkTEHG70Z5xUXLh0kWCdqgG0nROEAbeo5VhudvjB/7sn6MZNlw+2OG1b3wjd62f4Bd//u/ziY9+nOPHbqHYOaAJDeQJXmk8kf7yOnP5HINml7e88x2cWL6DJx57hqTTY231JKuLyzzwmlfz9d//Xa4Odjl+6zk2L17DdC3Wdti9vMdP/cxPc3HjJTCGRgf23QTtJ8SNZ7n17F2cve8OTt93L+9527u455ZbsFpchs41JClsXL7KXXfcysc/8gkijiRLcS6yu7vL5YsbnH/xPL21BXYGuzz4+oc4feJcK8bevG9juxmkaGt9pYhRs7m1z/WtbZKVJV5z/310TELhPcfmF9m89BLZtOHXPv5Rer0uUSvuvf0OlNHYKGdbJ8+lb/qPDon/59cfTYK8eefLv/MsY/3ISVaz+yB6RsMpMTcsJiucvu+NJN3bJBW+hmk1od9REmqQpJi0R1QwKcY0zUR6QWuIRrO0uEodhFk41+nSWVglSxcELeMLev05rF5iMplSFEOmkxGD3avk3T7aHiexKUtLKxw9dTtNU5AMDSpRjA4P2DmYsr35MsdXO+h0niY6Epu2gwMZrMxCsRx/3Nf/n//6ExeUZuhWH28+nmiTUITp6dvIcWgrwXaFTN10UbfrT7F174hbToOV/ew2EIgYVLuepMSyrGmTGMSlM2MwxTZFhJnjunXe3FhxUzMbjRLAsfcyMQteQM6RVmxoI2Fl652gZf0ECyo1BKOIiaYqxygLWQaJUbKaYhTOO/kzbUNrrGpTtMT9FI3Ca4vzlTSNShOCJtZRgM/y5BeZxIubQCeGNM1YXl2VdbUswVova0LRQmsvNb2cvkmpyhIdFJV3eKXRNiElkhGxOjIsK/YPBvgQsIlEDi4tLeOdYnG5j8pkquxdu37oI0q1hfCsz20nTHUjSToxBojSRNVlIasticK7gHcB17RFDYD3zGWpOM0wMsEMHuck1QJrKLzD+kiuU47Mr6PGA6a+lIYCZF1Mi7Bg27Qw4XgJKBV0u6YnCxJWG0zLXJLtvJZ/pNojKoZ2Sh7RYUYZkMLYRZkmCx9BxLKQBJDLlRgnEBWJUUyckPstYIwmjC3G1GgSlJZYZttyPFR0NMExrRxlLY3vzCBiVCLXdggctCKLiRYC5Fpzpu/pBsWoDEydoomQJp5RIYBYayyFh7ouiL5hLstookQ1ay1JLLT3Hkp+TgJkVzf+mQloAjWVe9YoJZukSkDdSskaglaBxGr63RxFZFJOCQZsYul3O/iyIrh2kqHlXJCiWKLbq2KKUZ48TbFWlrK6acLqwiJLCyssLPZ58/HXsr3zMofDmo3NTYH0LSyQ9ebAWhKb4V0kzTJZVdCSYFdUFcZG8nye8eiAaVlxOC1wUVM738bu3lzVUErjvABrQQRUpaVBkVQnabJABDD/CvvtTf4bTMua7Z0hi/05TLeF8Hq5v4MXB9xs0SVGaGJkWjU4B42TWfJoNOHa5n4LSA2vWBNol9JUJESNUlJYqtYBcTguuLixyUK3y/LiPGkaxPETFd6DMrJ6N51O8VXAaEsTPZkSwV+afMXB4ACz2GGlP8e0DKQpHBwesj04kBhtDzbRrTtT3FJKGbp5yrnFBY6YQKYUi3nKnUeX2BsOuTys2N7a5r7XnJA0MCVfm7EG13jWlxZJLYzKhu2dXbz3JErT72qyOKGcVrSQNaoGjizNsdrPOX5kjYW5Pm4yIMFjopIYYqUpg7xHVXsmo5EIcrFNwGzXb0PUBKfwseHyxlUuXdxgWJSkSjHf73L0xCr5sTUarRgVFXUjTqzEWDCO3Z1d5vvzNLUnIuETup2E52lCluTsVo69JtBEy8SpNmUr8MRzL5Cdzzl58jhni5KjR5fpZB2sluff4eGIx7/+DPujMZUPpEaz1p+jn2XECLV3IlD7gNWWQEOWJly7usUTT16gTjwOebbK+g+Il7MV19FMJmMubVi6nRxFQ2JkhWL2TJ9OpwTlMSSts1V4a5euXePo8jLra0uo6DCIS0UGJ/Js91HWfa22TP2Y4XhMOZpwOBqhVAvdDqGFFLeC62wQpIRnJ25nOeuldpAVvcQa8tSQJrJWnyQJvonoJMNaT9bpE2NkbnGeeFUxnkxpfESnOa5Vc6y1eO8Y7O8SNIRo6ARI64JcezrKyD3mBN4+mER6GxdZvOMWgquYjoYUtfDEvFdMBgd0sg5apyS2FWVQqKhFVAsBfMvmsqp91kS00nSyDrshgGroJpqVXpe1lRXSNKVqpoToIcha5Yyf01QFm5tb1IWIN957VnLLvNbsj4aUowHDg5rNKwGTKFbnF3jgnrv4ytPPcvvJY8xnCYOxY67XbZv1cEMAmg3l0sTiGyvpchEya1qBRJLsxHnSCgWIodja1okX5brEOTpZyoc/+FGeffE8Wa6JDQwGe3QXc46sLLDkapaPniROhhCEOfHCU09CecjZIx2+/swO5cI8RkWWF1ZJjayazyc5PgbWjq0RjMZ5J9dv5IZTXSsrzk4VsTrIHosxLQ9JcAABj3eyNmNb9pRYSUNbwMh5H4MMU63sU9LpdEhTS2hkOKiVOG0lwtmL26plftjEYhMLM5dgYrCpRWlJkTUm0gK5CMGR2pTGlyI6zeovZdontb0xiNJazruIx+rWcY1qf04yOJLvg7gqkjRjsH2d+bwrR2oLt15cOgN2i9B4DkfXqauK0XBKU1XUfkLWyVtOlMckCanO8HXDsK6ZHg4ZbF8mTbp05jK6+QKkPYrJiMQmoGQ9J6pIlndIbU6edTBWUAtowx92Lv2RhugVGlOIimKimJ9fYXAwYLizRz9fEId/+1xVCGvKmIRXMpSCazjY38YbWFxaQ2tL4z3XNgd89vOPMt/r843HH+f6xgZbW7u8+U1v4+677iQ6xzPPPM7mtSscufUsZ289R3SRpSPHOHffA4wOhnzjS4+yPdhlZ/sydnGZenPKj33gf+JIr8v3vP+Hee5rX+by5Q2ubF9lZziSfmYWXCA/WrxRbO8d4js5PVejnEFloCsnwTMqAROp282L+d48Dz3wEPeePcEzTz3Ole0D3vwd72RltceXXnyaK79+QO9Ij+7cEpPJkP2DIZMKjMrQMXA4GkCny7e+5d2sPPs0ly+8xPmN6wyGBb2lee65/34WegvkISVG6HbnWFhbpzg85NL5F3nqhWcptQy2CIHoZGAx9TXBB1LboS6mZEsrVFUDiSGf6xCqAptk+IAEJfgKm6ScOHOKycGU3/3dz7KxcYlrO5t0kxQXLP/H3/vfmT+2iFpcZOuFF/jmc0/RW1ulqRtOnb6V8889Jdey9mSZlSTIMEdV11ir+MLvfY5zdz1M1F1uf+BBvvjpz3FubYW3nX4V+uGSFy6cZ3FhkcOtq1Sl9CZBCdNXRUUdFD5ArqByYyyZcFt9g1GGtazPPe98NaNgGNYVWS/nDW99Cx955PP8zqe/yMQEJuNDOks9tMk4cmSed3/3D/Klf/dB9rIOF89f4cvXnkYbw8r6ERa6K3zxo4/wj/7Nr3Dx+kvUseaWpMNwfMB3f/+f4zXnHuSjj3yS888+y3Q6Ju3N8W3f911svnCFnWsb3Hr2HL1sDrNQ8L63vQOVZDSuQScJ1WTCM889w/bmy3ziM49x/dp1dne2STNH0QSaJlCVBaplK2bXNadvO8efecvb6Hd7SLcz8z623OSZFb9ddSvqGpWl9FeXOHfiKOevbPHCYJcH7rqTT37yC3zxq1/g+s4GP/rj/x17gyE/+L3fR9k02GAwmblxEsw6z///L2EtRSKdBE6fOcfBXkC5kvnVMUtr6+RpxOQrNK6gKUqmh3t0Ukunk4q/JdQkaYZCk9iELO3QVGPquRrjLXE65PjqAt3eKp2sQyfrooxwcIw25NkcEYVNHQsLqyz2+6RpSl3WeH+d/vwaxnQ4sX6UTpqyc20ZP94i0zBPoPELLK7Ms7J6C3l3DbXZYNMvCqNyFq40W3/+E3z9iQtKwhYW4UWK17YgCr41Ds0mVqF1PrRAX6QRFUYKLWjSS4qFmgG0NNaKs2VWyIR2/UNe8caKREDh28+i3I3ZP0q1gK52mj+bmLXGCNmZj7JuNEu2UK0gQSscxNaNgI54I2wh8khMI431DKsRDYauFkixTgWqW/uaaIywnohYJZZUbaw4u6Ii6pspZ1oJ4d67un2YyirYzIEhCVARa3MWV47QX1hjaXEeaz3FYUE5GVJUjqpxFEWNNrWQ9k2CtomsUDmPNYrUKIIrSDMBXnbmNPpAPqu1KVkmEdGhanDR4x14H9HGYnRyUxtW4taoypq6aciStLVfe7LUYpSlLAtcHSWRqJ22edc6mFrhL7GWbpoRPfjGMYkeHzvU0eFCytQrtIMkz1lZWCGMD1ugahSmlpKHqdVCQDJIY6IVNA68r28ka6lXRNzKAsWNTonZoadVbN1xAsZVNmJRuNCuRAaEJxJlNQcdbwRohyAOp0AgKEeNkhUU5fFB1oKUDq2T4GYsvNORkBoSI6JfjLFNXm4FihDQ2hGDxWoRSvpW0+80TIvAVGlcm27SKEXZ1ChlMDajl3bI8pyinFL5htCuN3XmktnRL3b+6AhxNiWUqeqMNRC88E7E+TdzDCKCaQBoCMFRlFOuTyfMd1Lm8oRxUbK1s4dzDUdXFrGThu3BEKUtdXBomwDSaHT7PXrdhF6mUd5RllOsVuSJnAXRwLX9XY4dO8GRU2dZD1AZGI8qevM9vAcXAomWNKrEanwTBDCvZJWotzjPXDfn0Fq0gbKq0WmHykdGuzsCXla6dQ7Glq81axzaSXG79uRdILQ8OBVEgKIthn0rCuoI+EhVTmlcg4/CNCPK6m+MEg2vWjZZwIMzXN3f5/r1Q9IsI80SDsZjxt5A3hdGnBKhWgdp8pugxE6sVOu2iwQnKUD7w4oXLw84UinWq8D8Ypc0NZigCY3HJikb23s8c2WXJiiiTtAaXIwyFTIJm3tDLnUSbl1ZI/GRJjr29gbUMZJ1EwgKk1i08ZLIF2WF0VrLXH+OUIwYTSqcC/STjN0IVfCUkyHWQK/bYVJU4iwEnAtMioLlpVVMtMylGXsBHA5jLdZAGUX4rxpPiJqFXpeV+XmSLCfRsLy8yurBhGGxh81SlsjYmpRyD7TOuLyT0xQTIprgGzSBNEvwZc20KfnSH3yVrcNDiOKqzBNNOR7Rn5vDBU1ROGpXE5XGeVAqUBY100lF0zQCMm5EtNNGiu9qeZWDpWX2NzapJhWuka/D6EDlA1U94fmXL7E3HHJ0fZkHX3M/TVUy2Dnk2tUtdiYlQbVMQjRVVTE+GNDJtQQhRHGCSrS8QVvL8y9cpI4VPighvquAjrOZvJzoCtMC4TXD0ZiDYU0/EbE/KI0L4kryoc1LDUFcbABRMS49V3cHLCx2Cchzz3k5L2KExlUips84cCjKsqIoS5wPrdtTzTQVuOFyaW0bUYY/IYo/TytNVOIqSiKkxtDJLJ0sIUsT5no9kiyVlVqbkXe61HVNtz+Pc9LEOufpdOTzaol+ZX9nn5cvvMy4mBAinDxylLmmppNo8MI5kpcl6oqmLLA6JaYZJk1RU0NiDIVriCGydeklQlPLe8qmjazdS5VExONjlIS2VoiOPrC9vc/lKzsQ4cyxZeZJOHf37VRNhU0ywKK0kzMjgnNT9q+eZ3p4SGZgsjdmvr/IiV5ON83Z7hmeuzCkUQqVKObzhDtPrHLPA/dzdXsXlSSUVU01mdJbmH/FRFcGLlq3KOcoAkiMgSY6Om3FNnOiCydDXEXy1YWWvSTthpENPQiRa1evoFJNOXWoJCG3MJqMOXtqkcMrL3D73fcRFxfYuXQBnCcLgVMr8/RyzcnlDpUOVC4QtGeyN+Dy3pTunIglp/vLLK2t3EQnAER5UnuEV6iUQRtDajMRnIgQLFap1pXYroRGD8FjzAzUDTO8g7A627pAh/Z6Vy0CSRzTWsUbQ4qZG4foUWHGu4riHDaJCB5RSeS2foXja9asKZixw1C0Q9Qo63GSekPwIrJa5dubyUB45b0Vbw5dAYIjz+dJ06z9WctnsmnOeOsqB8UI1zR89dEneeqFK+R5hzO3HuOee8/SScUZWdcFzgfGozFee3wRUaqha2cbAgnN5ouk3UXmOl2pF6ZjkrxDf3GFkM6hVSRVXRFd9WzDILb3xSuvx5sNpbg/A6++53YW5zK29y6ydm6Zzvwym7v7HF1fkxTCG69XOJyIOFczONhl2JQcjA4ZVxXe50xHjmnVMBiN+a1PPULPpDz11DMsLJ3i7jvvQCsYbW/zyG/9Jt/6ve/nW9/6VnJjiEpx7/0PsvvyZe67815Uqvmlv/O3eKGa0BQNb3robZy99RhN7dh98HV87uOf4Fd+418QjMZqSamOOuK1bFz4CFc2B+CE46aMoWMCWE/tE7TNxPFeTpmzCUcWeky3r/G5Z7/CUy89zUGV8ZnPfJ7p4ZBR43j5q1/j7ntOsDM4pJNnVBNHaTXFaIzRhpNnUm69/R5e/7o34f7xL/LYcxeI2oIK3HLyBO/53vczmhQML21z7PajfOGDH+HOd7yVI+fO8q6/8mNc+cWC64/9voikMWCVOKB966zTSUYcjvnzP/yXmFx8kedfushr3/F2PvxLP0+c79PtLLG8uM7VjceJxvLAq9/Ciy9c4MMf/Rgbly/SKBF/jy4c40Mf/U3+5k/+HVTQfPoTn8TbhKosOHv6Dt717u/jEd/g04TD0SFVNZHNh6JhMm3AGYyxTA4G1A5efvkCG08+w2LH8vDrv5WXxpsAzPdXyGLCxqUX8cHhnSGalqEWhMnklBeIvgq4IHiUreGYf/3bv8XDVy7wlu94DycWl0iAoytH+fZ3vZtLv/x/EdNAYiH6hroZc9vJde44fQefHRziFwwvXLzMytIqITZ0Oxlud59Pf+Ij7B9ewiaOpgx886mvUeuK1XyBB++8m1c//Hp+6if+Bi9PCr77B76P9/zAj/DF3/syy82Yb3vLm3npa0/xoY/9Kl959BHe8+73k9mEjeef47O/+3k+/6U/YHS4y8sbAxID2ioWrcJRUxaB4CIhetJUUACD3QG//mu/xoXXvcTdt57hNa97GJQENoGcwyG0XDwvaXu9Xp9enrG1u0dVV3ztyaeZ0wmff+yr7O5f463f+Xa+603fxqPf+AqmrBmMDllbWb1Rh9+8g//j1w2g///rV+CV1ohet0snu5eqnjDcvkisA66ZMB4PWEjXabzwC2OIlGVNNS5xboghI5QV9f4+c9bLOe8DxXTA5qVn0E1DMRxizTW6/RWSpE/UCY0f45oalCVNU9bXjwMK52rqcsRwbxMVavoLJ1Cmw0K3x0YZKHaus9TrkriSk2tr2KxLcArqQDEdQe1okGFKdJ4QLNH9KWcoYYQrogPcBC4Ds5SyqNuipAU4BxFrgkADUBaJ6G2LFYKkY1mtiaGR92hdQ1qr1hEQCWiib5hR4kMLETVtrRxaq530w7MCVAQZRURbcd6ECE7NVuFAxyDOk9a7p6IiRocL7v9m7T2DNL3O88zrhDd8udN098xgInIgCQIgGEAwilEriZZcXNESTUkWtaVVWGvX+8O7Ja9UtldbXtkl25K4Squ4sixKJC0RJEVSzARBBIIggMHMYPJMz3QOX3rDSfvjvD3Wn63yuvihUIMqzEx//fV7znnO89z3dd/kyIRmOqW0IyhBVU+ABCkzvI5FvAvgZZyGWOtBSFSaRkWIDfGSG78gwYXozYX4A3fNBdb5JmRFIVUzvW9qA1PGSOhibEmTEBVKZORJhlAOU00oy4o0y8jzDrqlkWk7ypgFdFqKRFrMTIE3htFkGj8fB0IkJDolWCLwERGhwM41SR6mWbDxZ+ZkiN+fTLAuKjeMicou6yymioDphIAUcfoCTUPGBoSUJErebE5pCRNno8LLQbCCwhsSUZBmvQbwFz+/WK9F5dj+tFY0KSyCqIRzPrIDamOJrQvROBlDI1aLE/PIX48MEwnR+hYswUcLTuwBxAaY32dAOQG2gcKKWIyGICldAB/wMkRLlIomOhnv+gTXfG3n2U8fcKLhYYhoiNqfHjoBQcbLkgsJiUiQXqMSSzdNqBGM8UzQoGMyXO1cY0kDmaegI7C1svH5N65ZWyHGpRdlgRcVUkeekQhN0c9/PhT227xB+iadpUnBEsRURxHVd8556rJic2eIOjDAEaiMo9vJ0YlGeIMSMZ2nmg5BRatEXRUcPDDDA/fdzaCVsHpthSvXVhDBo7VkfWODqnSQaM6cPc+BpR6tdk6etWOTTaWRKyQteVtDiClKQXi8i7YkIQWTyZhzwzV2d4cI7ahsTTm1IDYoXQThi0ZpGKOT95vQsoG2Rv6Ldw3jTaqbv0eGgJNR7SUcUXXS7EFaxGmzIELGHSImWDUNY/BoEZMDvY98lLXVDYraIJMUJxVGapJ21vxMQtwviV83CY7EWYJ3WO8Bg6lLpHFUtWNzOMIIwfbOmHYno99vs9TrMuhqdNrmwo1d1qu6WUOhaYR7cq3JU8XuaMqV7YJ+VjCta9ZHI6alAOVJm+mvUpFD0koTjK1BxL3UK8loUlFORuxOCjZHBTeGBdPa0NKK0d6QuUGf0WSzUe1Fi+n65h7HDi0hQnXTZhhEIE1Seu0MUwXGexMKU+GFYG17xNzcPNvDki25RZa1mOsN2NwZkqQJrgJrAntFEblrTXMkNAlFhHhOlUVJ4mtuXLnMcHcPnaSRdQfUzrO7PWTt4lUmxjIpI3cKv59sFps1hW8u0jbaV2NSpCLt9xkfP85WUVNvbhCsQYn9yNv9gshT2Zrt7R3Gkwk7eyNMZdkbTqiNoXZEBaYQGCTXhxN2q5IDiJimpqMF0bnYVH/59AVOnb2C0wHv4rOmmoEJoVGihXjB9SIAmuA8O+OS7qykDo7Mx7QpHwJZlsYGnIRg9/ujUfFYONEwuCJ3LtYFtmEqRm6MlApnHdY6RsMhtqpIpWz2PBmbtc1e63y0wYrg9hE0+637OEDCxUmckARnaevY9CuKKePxiGUp6LRzyvEOQghavZxiryZJWiilaHc6dLutCOjOE7Y2dnj6qWc4deolgvDMDAakJrCztsqty/McaUlMUeERDKc1tbWUUhCsQ+kcKzRVHbDKUlrLxl6FvXCeo4dm4/muNfuH136DwIf/bGEKzf586fIKz337FJvjMQJLJ1F05vvMzPcJ1iBVyn4qrg8CGSzF9lVkscdM5lHS47xmedAlOM90WHJsaZkLl64yDo6ZBF51dBHtLdV4hJSal1fWOXjxErN5g85uJpoyiCZEZV8S0oRY+NAgChr7r6Cxbcmb4RxxTTWTwiZRyQUik8NZQj1F+Ti4U8GR5inLg1ne8b0/xF/dLK/YAAAgAElEQVT/7q/HGO/Dh1m/fJ4kzTg4O0PhJrSTwNH5AZfKwNBa6nKXsp4yqixOG1yA8+dXePnceU4cOxKbhU2TUojmWSMO8YRKI9C4adII8Z/PPJpQmJiUqWMinNjX7v4d1h3x+/RB4jBYa0h1ZOq1RIZOFCqJSnopJUrJyGXyzWVGxgGjas5/KWMqnRQa38DRZaMA279OieZcAhHVYcEjg4z1sY+qSe/j2Gxf6Sdl0vz55ucrEqIKLVBMh1w7/S0SKTl0693xPZY149UbjGzBpbNX+JM/fwyftAg2cOrsOV44dZZbjx/m8GybIB2dXoc01fRmFxicWCZTYMuKJGvRHcxQ1ROcqygm0XI+Ho/oiXlMMcJXFlNUJEmbRKe0u110HpXOsThV4B0342WJ6rD1y9EGvjS7xLVLGl8GnFZ0eoOmmR9i6mjzp0KAMK2gnWBMxWhvl+2dIWdfPsvLZ17mytoNDh+5jXe+4920OpL1GzfY3dwitAdolVBOovrv0PFDvPXd72G6tkYmFJkNlLtjskGHPFccPHaE+eUDPP6ZLzAOUE5rRtMJX3/iSxw98cNcPXcZEywuiZbXTO5TOSW1rXENX1EGy2RqUSFgvSNxCdKNCEojdWwOJ1LRJufEkaPsXL/Cc099lW63xcLCAh2fUg4rnn/yGYajIS44rl27znAyJCQDWnkX4wK1sxhrkVrH4afOeOXb3s3Bhx/ha3/5MT715DdIbcri/AKhrhgcnOPFf/87/Prn/ob/+fhJDh5c4vDBI7zh2N18/euPM5EpPkxBEDmkQBApWaZJ2j0+9MMfYvq5r/CZk9f4wAc+wMaXv845hjz8yHt51W338sznP8bTLzzPePU6k90dVtfXMLYiJAl+WrN4cpbdvXm+9tkvMdoYU4wLSFIGMweYTEYIpXnVK1/Ls89/E1tVzPeX0QcOsnXpDMOdaySyRZalXLlygbTdYmdzhbZMGBvHY49/hjIYCJ7rV67Q7Q1YWjrE5sYqdRMSZZ3hoXsf4NTVC1Tj3TjscJ4s6SAzzff98Ac4cehWvvqJv2RaFbz/hz6A6PTJpeTKt5/mwYcfZvfsaT61chnlMopiyvXNit/4nY9w2VeISvHgg/fjSsUL33ya1bMX+fjqn3J+/SXmekPSKoYE7A0dnXaHT//1p7l+9hLHTt7O1atXaQ1SfuaDP4bqztJ/0+vpmYp2nnPs9jtIWrPcWF2jGA85c+EMv/+Hf8i3XnyRnWGJUi0SJeJwtYZpER0f3vjmhGr2yQDallw5fYrtG6t8IW3xz5aXOHb0BNESHPZnEUyrCqRkZW2TKzeuc3TQpzQ17VYX0jZ/+Nin6Z9Y5JZ75/ng+36ERCne9YZHKeqK2cGAPMua5r1vUkDFzeZR3CubPfH/VzPp777i6ZvoyGVTSnNtZEhCRWcwSyc/QCsbkKYWUyyzuX6NvbUNqAOqJUELjJFsrq7QblmoppQ7N1i5fJHJ5DqdXh8vAuurGzj5EovHOliXUFcTrB0jZUKadkjzLt4LSltgyilVUbJTrVCXFXl7Fh80bjxia3ODyU5ASsvM3IDUSHY3K4Rf4frqEFeNqEyLnZ0RCIVUbdx3R9J18/VdbyhZGZOHlGrULyg8rlHdRPaKb7xtIQ7jgH0bhYsXchkaFXEEawcCNS6qJBr7SYxEFc2UY79TJPfFXPGC3lxMo6DJN/+nYd7Eej9O7kNMr4pBXfsHcWxoeBnfovQ0hUVo4gqjmiZ4j20OX6cFqYwgaWTMWamFxzsfWSg6RViwlUUgmZppLLJ9vKQqrTGlpdNqoZOG7SAVaaIwPkQOS1O0OedANVBDokS3Ksuo9tGCpGF/ZGmKzjQ677KzvUuaarqdDkF5SDSiFadjQQpskJBEr3jW0wgdAYM6byPGJUneRupY3Fos1texYFRRwi1EY1tCoWRApaCUIkniwk9bCuFttO04E1NhnMFVJl56jcUrh8raeKUoTGymSR9Ynp/l2vYYLxx5AjrLMFXNtK4wPgLMg4jsCdn4cjOZRWWcjIyA/ZSYJG2Br9GJiMloxKLMy5jkR/OkSKFQIuCcbUT+/mbz0JoAWsWGaCPtR8TnXrFvOoryQiNCwwRzEcRO7HIK4dH7ceQi+pVVo4DZt8MAzTQ+RKuTANnwyQof6KQZvvZxJTuPTgITCxOfUDZ2TheigcUR8F7SabVpt/vs7A7RmWVclug0w1qHL0uofROVHrkmolFvRYZSTGERNy+fMQLb+ebdiri+vBeAwgWFCRE+vzUaE1QDrMw0QkuGk4qqqvCN7UU07Kv2YEDwFXk7ZW5uQL+Vc/3qdbyL8OvgJK12xqQqme0cZHNrnVZb0en1yZI2deVJk4Rps26kiva9JEkw1sV9RUGSaobjXbwZsr61TZY3TU8b2NrdRKo0Wu8ilCTuF01jkuY9Sxntr6WtyHWGaNRPdYgpRPvMLq0ihyI21zXFpIysnGZKraRCqqiGUzJ2DYUUJK7CGs/iXJflpQEvnb2ALZpHQzZ8IinwQqFEhldx+hxE/NkJqUhkRpAxet7YHQKSuqoppyWVqtmdjFnd2uV61mLQTZmfH7O1V+BRSGXpoLjl6CLnz6/QTjMS4ZmZ6TJ/8BYmwVMYDy6JkPVEgIwNvbyVo1oaUVVkVlB7S5JoauEpguDa5h7boxG7tWenCtRO0JKCnY1NOp2MPFVUZYX3sQAdDvdiMyb4mGYpYnNek5AJRSsDEkFwGcIHRoXn9OVNXnVgLtoGmoZop9Wn1Wqi4EcluUqoTcnOzg7XV9YY9NvNSWGQwRF8gW4rVi9fR6sEJaEkNmi9B+sFk0nJdlWxVzsqLyM7RQVKEzlKidZ0spxqOqTycQ10OhmmrpDjKZQlYjpFCYmT0TLjfNx5XPw2qcqaIANXr63GRmMjL4gNrEZd4BxV5bl2fYuZbodBNycNKVJokBJTOS5fvUFRm7iEm3/2gyvied3sNfEpIxDVddPxEDPoI0ISbdvEkAZo2B3Ixl4ZzylcTSCjtNFKp5VHhjjwCMGj0wxc3BO9q5lMCkajId6am2oMH6JiVYhofQvG/p1m/v5+HRlVNHvxfhGZZwm51JE5Z0ogsLe+Sekdw+1tRCJJnGA8GtHu5oy2R+StNkJYqqqgtppLV25w6qWzbO0NQQjyNGW8vcal1VWK6Rh5ywL9FMqypvCStNUmn+3iXIlud2nNDrhx5SqFqdgtDZvTwOa5K7TzNBbY0keLsAdUenPIJRplpHOWcy+9zLPPPc/OeIJMUpaO30FLlMzdsgg6Nry9ixdroTXCeVxVUm/dQEtBX0vKMtDvdGhLz+5oyo21dQ51O1TW0U5SXnvbAY4uzrA9qlDFmKO3HuPFz32Nx598ilsPLXFvp0vvwME43Gh0LKKprWKybxwsaLHfrPCE4Jp/o55ESXFzCBf2z7YQE990onDWMJjpowpDnkSrprGB47NdzMYmwRq2Vy5DFiO/g1SkWUaSJ6gGBaBUQu0deZIx3duNASuN4v3KlWt87C8/wavuu5fXPPQAy4cO3hwkeQeB2NxxN/f5xrrnDQ4XA15ktGl6GRukQcrIaRQSncR1IWLQLYmW+BDJj7VxrKxtMSkcB2ZmuVW3ODG71NjuYqy1p7rJ/BRKIWUzdAs0AyCLTFKSNIkgaTwumMj53LefE4jmvPjZxo/Y40VsdvmG39Qk4kRUgdhXVfmYiofAeYuwgrK4wbVz36Q912fjpTNsbtzg7Knv4KTno//pKxROoFxkOG5sTNja2mRtdcj73vdO7rv7CAdmZwhSYpWnkw/wzmC8QcqEVtZHZl2qySajvW2Ge1uxgYGnHu5R1VBMK6ZTw+6o4ODsAo+85xFa3QUEhhAaRp93BJETjGXj+mW+9qWvM7N8hM5gxNWrFzChphNyVrfXuE/eR+S2NjgLAd5aLp87wzNnX+TlMy+zub7JcLTNzuYmW9s7GGt4+aWz3HbrIY4cnCdNAnvr1zlz9dscPXaUXAb+5Pd+n9c8+ABJOyeZGUCW8NlPf4ZTTz7Fuz7wfm6/607quuRzf/LH/NknPsaWLdEE2r0Of/rnf8QtJ47z3GOf4Y7XPUxnps/y8kHaS8u88O0nmZjIn8t0xm133cmN65cptyYYV0HLMRzG87HfaeFcyd33PsDulYuc2b7M+sYq06pkVBne/cjbaGnBVFjWLq6A75L3dzh34QLrexUzMzOsbdfIJKXd7vDIQw+jq4rdles8/sWv8sZH3sC9Dz2E3B5TPvVtvvnM87z7Xd8Xw1e6HSZ/9lF+65Mf54ZxLC4t4kUg63V5/Xvfy4+srfBHX/k8a0bEoUr0lKOUJJEJst/lhU89wTvf+Sg/MNljcWaW9/+9H+X3Pv8xXnv/A9zSmWNy4kEOHD7BY499nCs7OxHuLR3BBH70p/8HHjh5N1kr53//V78SLci6TS/NCQuz3H7yTr7xuU+yN9zj4uVzuODZ3dzj9sE8P/+TP8tv/uovs/zgW/iRD36Ij/xPP8Pzu2MSV1NmkuWFBdr9DisrF0izDp3uDO9417uRq5t87okvs7KxSqvdYjIyzB07gbtyDSEynKnQWRKt1gGee/ybXFpeYXtvxNYXv8htd9/DW173Fo7fdoI3uTdw4MRJ9p46xQuXznNjdYVb7zzGD7z3Q/yz/+UfMzi4hAIunH+Z2+5/A93OgLXVFUbj66hORagdqatJpCJTGUpohrurfOtUwVe/+RXe+8EPMvrWs8x1e1ze2uTzTz9OvbLGO9/5Dm4/fowf/OEfY+XKFX7rI7/J6pVLnLl8hUlZAIGH7zzJV791EZ3HGtZWEuslWkkMZVSmWosXsDMdM5N0Wb22hs8yfuPX/jU//TM/Tz67wFynTZrmPPv8M9x1x71MKsv56xtYH3jq7Bnuv+MEopXw3kcfZv2+21maneHKyhqpMeSZjneDPCeE7KYi8SZLERo23HfjtW/S21fZehKtcbIFlaEjHFlnCSEVmc7ozS7SHRxgZ/sKQlYI2cEYQ9aaY375BMX4OhurFxhNokXu1hPHEUlKMR5zcfU8E7/L7PIJrBzgAox2NjHVDjOziwz0SXyQBGsI3lBWJV7UtOhg6hxTWbqJ58iR43hXxIaUAZ9YKhFV8KPKkScJic5QSpJqhcgU7az7Xfq84uu73lBK0iQqZ2XAq4QGqoJUEi3yyBxJE0hCIyeWqBBl9UZZZkJC6U1Mw7EO7cH7GmumFKVFZy2UiLGcNFYqF6L6JBECY+qbqajG7UOFYxJPaFRJcj89rplsChp2jAhNI6iBACuJCREsrbWObSPvoq+98Z8H4xspssa5+PtbvS7BWqRI4hRW6KjOUgnWOIyJBaQzJSJAnrdJsxSdaOzIUJoJucoIWBKtmiSYGAcbqzDbpKEphExu2tJqaem2ByQ6Wg+DsRgCXmhkK4Fkis4y2v1ubApJjUiiyL4yNTiLjJUMWbcPKiPIQGdxkdoKWp0OItE4a9FlTVlMsHUd0z185ERFIKduipUQeQVSkeUpebdFqiUEHcG0eHwosXUdAeeOhskUbW7Gl5i6pNPq0V2Yoyta9KVCeofXAuMtk8mQ2ns62QCpJInS8dcsiVxtD61em3oyxVrTMJR0tOOlCiF8TNQJinavA0EwLSYY65jpz7K4uMhkssdwd4faxumztw5rHJV1WOpG6SbI85ROklFVJcZ7cHFK1E0VRQ0jawl4jBeoIEhEw6JowMiImPbiRSDVGalOKOo6yreNw7nIPhFB0VaavN9BVAUu8wjnSVLFRARk2iKf6VLtVTGBoVG4BFHjhMIpzczSIlt74yix9BOyNGdvtE0G6ECU9RGwtpn2S0HwDu8DTgiC2ldP7dvAmpmmFxEkKOLBY4qa0gbyPKPVbTEuYwMwBCgrS2UcB+bnmLEgRU7tSqwiPotSsL2zy5e+9k1uP3oQKQUHl5cjcLh2GFuwW1UUOzsYn7A9MVRXthgOt9FJQrerohIuSRq+Sryc2obDVlYGnWcIl7B8y1F2J9OoSislKhVYB0rug92IXBYRm4U356FNwwjnEFbgRCxwqxjAjFY6Kjd8TBOUSkWloYCqKllb3aYynjQtQQhSpVE+INMUEapoAfY+NidmUu68dYHRcJtr67vxvXqHEjXOipgKFiY46RugawS8p60egpJyOm0EARESrlLFzGyburIU05rSVBjr2Jl4buyMKJ1BiUBtHXcdP8jhg8tcPneNbishEZa5hQNxr3OBybBgmgTQkHVyWu0cnKPd7cSESZXSzwQ+WFCKvVHJmcvr7O2VOCfYrSVV0xizXlBMK5I0Y2amxdpqAVrQSlJOHl2ktiVegyM2iRUJpTXUXiBUiko0LWGpa4cL0JYZi/0+0tlGvRjDBkLw0RJpoddu44KhmGxy+oVvc+c9dzE3O4t1cG1ti8m1yAy5fGODWhi8ic0876NaU6U5/cVlVAhsjh1BTlAaitKgrKMz6NPv9ijLgPExLcp5RzEt8ZVh4dIZmFlg0zv27U4+NIENwROISj8p46/ex89qX1HpmsFM7AgFrKk5deZlLl+4xLEjSzzyugdxVYXq5EgtecX9d3Px3FXWp3H/EiGAb1S6wjfY3qg+kcJjncBLqKuC4AcxKTMRjR02kCrBfqMUV8eGkYzWzdCoIxPpwLVwMqCsx9aerK33mf8Ya0nTuH9PRhVaStpZQu0cRV1H0LOIiZFRgRTfnyfctC9FVU8M0EilYJAEBqEmVCUuaBIJZTWlFlAVDq08tgjoJKOaVjz0yOs4sDQHNiqzbO0Yj/YYF8VNNURRlmw4Ry0V14Zjxpc89x7u4+qKaS3oZzN4akglWicsnryVG2tbnHvhFCMXcEFTjUa8dP4ah5a7DDKNDTXaS2xweGGxtUMoj3GGvZ0tnnnmGca1QySa4AyD/hzHFzJmM98kKYLHosnjviRhur1OOdwla6XUVYkCFrodDg66tHTCaFyQtAcsLh+iiyNVElMZEukohiMqE7kxa+sbbG1tcX19h9ePDXe+4naUSpqaKlp5CYHalaBFBJJKhSeuD00TuMC+kiyW/UqAVCASgVbRBqOzFq948AHqy5fotaCoHZOyJpWOM89+ldDWXLp2lRtFTVeJaOHudNm4NGEy2ebcjW3U0kGC9IwmdUyKFToqgyXUAW5sbDN6/AlWVjZ4z3veyR333B5PryZ0wPuAVA6FJkm7BFTEHxiPdYZU6KhuaWzQiYwBETd5bypyi6IVPNrnrq9t8cyL56mqqE5cW9vh0uo6d2/t8cib3kSqfKPaiKpeiM3URKqonhaREyqInLMkybHWNFY1idQ61rUqoHS0yElqvNTRNieIzDIvSGTkUiqSxka2f32STTptbE4rpdkbbrNz+Rzt/jovnX6ZjYvXUDpFdtr05lqMqpJEJ1RTQ5JolAhIJdne3kakfQ6duJdep4WrxtS2QCVdXDB0dY6xlpnZI7HOrg5y49wpdq/coJoOWV/ZZWtvwrhJUq5riw2enavXmOkJXvnWR0nTFoQislRDvPRNh0OeevwLvHz2Em8/cRdpqrjtxCGEtCwdXGZ+/QDHDi/f5FWJRjUnpaMz2+L6hQt855nn8HWFMSWmKullApenrG9s8wcf+W3uuu02bjt8G/cdO8TO+haJLzj70rdYW1nhyoXzPPyG17C7u8cX/uN/YPnOO7jvwdfQWzhAkqbcOP0Sn3nsr1grtiknU47fdicvffsZTtx1Ky984xtsmQmnX3iBq2fOsrm9yaFc02tJvM4wE8OrX/Mmvucdb+H/+Y1/x7aa4kuLzBUqNajQQhNQ6Qwb6zuMxyOkkuyOh4BH6IxnnnuSPJvlbT/4AR54zRJt4/k3v/gLPPyO7+fSM5+i8AN+7mc/zMmleb710c/y7p/7x7T3dvjjX/s1/uyPfo8wnfD3Dy3Tn+vzlg/9A8yNMW/7/ndRVxPy3gxXfcUwyfjtf/uvmL+2jrr9CCiYu/02HnrNw/zt177AuvcIb0kThU40R4/cwS/+4j/nFz/w4zz0tgfRh+Y56eeoKsvmpXMMt1bpzS6TOove3GV1eIOiKmPQj7PoTNNOe9xYvcF3ppZzL7/E1sYqtXP89m//IWvPn6Fz3xFe+PRneezZjzJud2LT3dZMzZiVS6f56EdjLSnOn+JYb8AB3eVjf/5HfOKP/4Ci02b76mXWRlsU0xIhM4rxFs/87Rfo9BfpHzrJiYdfzxe+/DlmOvM8/ZUv0FIJpdA4USH3rejOc/7082SXLxCspzvu8clPfIZnTp3n4Tc9yvFbjyGTFudWd5mMhxgXoLZ88/FvcPLkMdZ29ujOzfDKe4/zhgdfw+Mf/09IOSXJcupaURkJIkVLTzsHMDjhsDgmxSqvuP8uHvvaE4yKMTPtNq84eIQXd/c4fOgw7VbGax94kF/928/z9JPfZDqtqVwAL0iSlPMr6w37ENJMk3hHKw0MyymzrYy5PGFzWrFnawrrOLrQp/KeVldw5vkX+fWP/Fs2Jlv85v/5G+gk5+Tx23DC08oSThw9QI1gpSU5fPAgvd4AKSV3HDpMCJ5c5Xz8rz7Gz/13P4U1FVmWxecZhXOWl65s8Ndf+SK2LqhLw+KBPt/7xjdy/PDhm+u8qdb/C7sY4u/81/5QPxYpWd5jY22LpeUjWAFJsAgnCMZg6jEhBIzxOFcipWbmwAy9uRluXBwx3FkjYOjPzpNKTW0sed5lfmGRdt9j6gKd9ej15hlPp2xunEFRoFROcBGbM6ks02pK3s/QSQenEsY7u+xsXmFjY4WZdkZntkvS6pHNLoJISZVk0w05c/ocOtMxrEkFdJqhEvX/8Rn8172++wwlpbAiIUjIWnm0lWhJOr9Id2aRLE3JWx3a3X5M2HGGTpJjVaTvJzJBaEHiHOPJhNJMCKMR4xsXSYoKJzNSKSirOs5VXQSspqmkmhY4G21Y++k5OHdTDSsaH1tw+zynOEVSIl4ygxLIxr4ik2ijUkKjtMJZGw/voJAyslaUDwSlcKYkSTJw4GpPqlqUdkpVOVSqmmlMjIoXBAzxawQEdV2Tp00hLjydfpfJcI+qMuRZRh3AN5oXkGglGs5K7PAL6WPsqfBo3QDJdRr/vmCQIb5HgiBohUVghaYW4JUkUQnBRJm1UgqtBUIHQmPJS9Ocfn8RU0YLU6olopvSCq6xhklqU+GciakuQVLX9U1AZVVV1KaO9iCvCOhovxEanWqsjeoC2LcQgbE1sjJIdEyU0Smpyrj1YJfJeML23gTtY5TuMAgSGVVBSgUUljzJSRNJZQKdfj8WIy7QSlNMXcfLgnOUhSFJFBNT0k0y8nQO78FVFVoGennK3KCPcjV1NkRLSaozrLGIFDZHBdZp6rogFRmBQCeXJDJlbxLVW4TIdBrWJcaDqy1CSayI1lDVPI/OebzeV5QIskRhrKOoqjjxtFWjGtDkqeTAYIHRZBtvLWnD1tJNge+FJE8zJipgQoF3NS5I0qxFJ+/Q78+Rhwj2Vl7Q7S0gkaRZOxb+PsT1EAAlovWHCMoWIpClCQSPtQaEjpwzH9ea8QF0ig0W18ilfRB0+gMWlheYjodcX91iNCkQCGZmZmi359jZ2CZVirmZGVb3thAuYXHxADOdlHoyZnV9Ex0kxsHi0hIPPvB6Hn/6SbafPxUT3qYTpqVmzXqm0z0GgwG9QZsszclarZjY1PDJnLconVCamn6nh0lqenMDFg7PU1lD3tO4oFi5uoaxLlowZYQI73u2ZTOF9z5gg0P6aN3xzmOFJU0S+rMLGOOwFVRmEtlsaYapPZrYxHUhkCRZLDokICwWTYrAoOIl33ukhPGoYK6VcuTAHNdWx/HC7x21jf7soBr1m1CoQHwemqaWtRXe1hG+LQRKeDItWJibRSvF3mTK7t6E4XBCVRu80hgXIaCpEhTBcX1tg/n5FtaUjIuarb1rzGyOuOXoLfhWTqYF7USTZjAdTcELdtd3olU1SGSW08477O0Zxr4mpJq0l7MzDVgUtipQocYJT1VXWFtxYG6GjfUhCkW30+bgoYW4/oRvVCyCEAyFARcUEwOV86A0Qkmoayoh+PQTz/Hme48xNxPYK6dM6pKqMkzrQJYr6sqilcSZitHqDW60O+xsDXnxubOsb61S+MBsCBxXDucUe84xxFMEKAJU5ZREpbz9rY9y1/0bPPbxz9LKFVIaWlKwPDdDKAyJyEjyHkFsI0kJQJ4m3NfXrNgJo1bKpBzjbASq73ODVICulmStNqNiitQR2q1E3PPx4aaacJ8HU9cGXOCll69w5923IpzHeE9bBLqZ5tWHFvji6R0qleCCic9NvAKjhSdpAPm156blGwJBBgyWIFvUaKzxJEk8TEUEDxIgBptLsNAwzBQOCFIT0oDUEXpfG4MIgjTRiE47Dl3qik4njwol43CujkrJIKL95+ZQcl9R3DBVGluqSBKUDKRYpC9xrsSJHCsAlaDTHLQH1UYJz2hacOSOk7R7PYIxCCmQzmOqirUbN+IZRhx2VCYGTsSLrGZYGs5uFhzoZIzrmtXL19mqal4tMu6+d5HOzCxqMGCKog77fAbD6tYaUmuWZtp0iopOL4mfrw8E6fBB471ldWODrZ3d2FzwmqKqSZKcmfk55HQXmUhGm7tk/Q5CW4wJZEnK7sbLmNqSZpqijiy8TMF4NGRraNiqDOXaNV79wCvZXb/GdGcVLQXFeIqe7XDm4hpaC4zzVNZxYeUq5ssFqYZb77kDZ+OZDzQKn4DxkqKqcFoj0qhlMtY2ivDIFPHW4p3DOvAWTFFRZzmtzgJ1aTl07DjJgUXSdkJtA4kIoDXr58+ghaQuDWZaIJKYZNm75RbOn36B0yt7bBnF8SRH1GN6vRnOr64jmsanAoT01D42es9fu8Lpi+c5duvRqO71gbqeUIQarQJGQ1UVJLWmKkpMXURehpAEG5Be4uua0hokOUlVUZVTEAlKpSgpKOuSNPU8/4q+wY0AACAASURBVJ1TTAqD8BYvFGWomWxu4V88w12vvJ/D8z2siWdm8AHjamxRQyuL1tHEU06mFJMRwYuYnonFVBE3MC6qRrmZ0aoMw+EIlcS90Tc1rTMlQQYqY9FagDRgaqom5dB7h06aS0YjyG3NHWNu4RBoRzWpaA1mWT64zMLhk9Tjbf7iTx6jTFMmw1GEnAtFKhV1PeXFF1/kne98E1mWU5oCGRST3V38eMLpS5eYP3yE61fWmVuY4/rLp7l27nTEV5Q1e5OC0knavT6ddoZEovI2WSfl8CvvQyU5MRgnxQeLtXuk2SIyayOSNiGV7E62ObIwy9LSAkJ6Di4vcuDgMo8/+RLv+Z6HSZVqNhEPUqNaGVvrG2xurNNuZxG7EDy+jimZh+ZnabdyPvyTP8Hc7CKVrch+/Xd4+dwZnn/xWQYiY6W0mLteyV1vfjv94yfpDGZ59f2vYmlxDqUkk4lnIhLGkwqVJly/eIEHXvtGvvWlL/NS9g1muovc89rX85a/90Ns/cEet99zF+dPX6IUisOHjvKBH/0Qg8tXIww76zE1AV9NyPMOrgiUlQKdsLNynplc0U8CBk9lLYeO3s7s0gl+5IP/kPXHn+Ke17+X8fPP8s//+D9w/M67+bWfv871Ev7Rhz6IwPDGRx5ldzrkueevcujV9/PVsy/x8U99hnseephXv/o+egcP8uZXvoIMjbkxZbdWfOzTX+Sn/sWv0D93kT/65Bf5iYfupZ0q3I1Vbjz7FJN0Sr8VGAVJp91GVIH/7Zd+he4LV/nwj3+YpWMHeew3PkK50OeH3v8B7vz+99L62kdZu3AqKrP1lOl0jXG5g9YCJSILL2l1eeHrT3BKxCFkVRrmlg/TbvV45PWvpa52+NKls9jBgLe95x8gtzb4289+lEBgb3edFyd7GGepVq/wkz/1DznQarM3LtmbVHzz8a8y3N0ArSPrydT4BC5dv0iyvoaWkvvf/Cj/9F3v4vd/6V8wme7ytnf/AH/9Z79Ld6bXNGEUVRXAeorpblSUDh1f/+pXeDRTHG69i+W5BfZ2Jnz6bz/J4u0nmTx3iu985wxv+oXvZW/rMuu726S5YLY3x9HeDAeEpup2mZuZYWvjNJWSmDoiCXrtbkyGDhWd1jZioPmdX/2njCbw5HNP8J43v4/Xv+IVvOqOO2knLaTSbK1ept5bo7KW2oEPmjyBnlRs7VToRFCZIVLlGBFYaCUEoXjotiNUuyXODQmJwtSGG3tbQKAnU5zIePrbz3Po6Cyruze4pX+AQjsOZDMkUnDHoUXGtWEml6R5TqrT5j4IISiOLR3gvd/3A8hmOBwaMUVtHLujgv/7Lz7Pi89+DVOZeBBpR186Fr/3++l2BtyUIe7XC82g7L/mZb0jzxO0zpBlgZUJ03LE+dNPcu3s87hgqHpdZuZm6Q0WSHWCd5ZUt9gpDDt7NzgoNMPxJjrVzB06yJFDB2n1+9RWYsIm/d4tCCeYjAv2kook65G3F0lbHWb1AImh12ojRY4ZT3C2oH9oGTfToSMMs7MDsmyW2ikmdYGUgaos8MIiUAil8DJBq3RfpPpde33XG0rF1JClkrzXwXmJISCDJDWCroi08+Ac1WiI1AI/KdmzY/RMi1BM8SJBZ5qiqKmGY6yymL09tPB0tGdjNCTJMoT3WO/QUpApiRSWajoi5lGCRKNFwIQmZ/gmuGvf3Q773vjYgBIRlhtcbDw5G5k3NMoEGXXB1npcDEWKuMyQIPDgNcIoRLCN6kkyKSYkLkVmmnJaNPH0qim+HNZa6qqkTBTGVszPzTM3d4BrVUlZ1RTeRrBnMyveDxEhRCB2EAaBxxiLswbnDNNqgvOOaVGCVATdXISVQgSFD4rKBnZGE5I8oduW2MpgyopWpsFKtG4sYyqllbVJZU6qW1HVZEWMRA1RYdRutUhlivUiNt3wJCppGFOSNMtJlG4KJUFlYuMqxjwrvLPR6uajbD6KXjRaJ+h2jhJJjE9PEnoCru3txgKlqiHiWnAoUtnI8GXAO0siM9JWipIakWiMnOCNpawNXkicEJgQk6AkOU5IghWkWmFE/KATGch0tHglSuHqCEtPGlWOThVpAK0ELQRH53rceXCeK2u7lFNDEWqEEkytIc8SjIEKcVM270NDIQoR9CnwqNAk/gmJsVMILsrdhaTb7rKwtEQrzxlvrKCFwIrGRiB1tOg4H5kLQkcQp5QEC5mW5FmCVAIdmmcaxXA0Je108SpwYGmRuqyQNuB2XLyQRoZ9vOQ0CyfRikynjCcOYyyVs02wVmx7emnROiE4ifAyXjK9xFYOJZuERB/hft1ul0QJ8lYHZxzzvQGTuiRPMw4MlvBmyExvHgGMxgU7u3sMi+scObbHzNwRFo+OmYwKqqpkNNxDq5hEk6YpWZbhXYgHVGMtNKUh1NHm6GrDuBojqinbGxOErxBeYKyhriLz6ybvrVEn7b88TZqgaKwpOIQQ2OhbIZMpmRAEIalEXBPeWDKpydsJk6rAWMPm1pD5A4sgHQJH5T2hHFNJybSuGmaTx7p4GdtLDH054aGTlqTtUKHgda+5l8efNjxxagXrLKUPsXErHPhAkii8A+Gj4kUgkEHiast0sku/32N20GVm0GM6rdnYHFJbR57V9Ds5xdTT7iaMV7ZITEVZWkoPTjjM1hqZlgzm52i1uygL25sb0donBNPJHlpnMdXMGnxd4caCfqvHTH8BfeQk9xy7l+2J5dTT32L7+nkIE5QK+Npw98lbuXZ9yO5wj4OLc7TSDhNXQG0YtDO8qVFSU9eOcQ1FJaOCMo9KUyEFo6Lgxcoyc22V+9NlxpOa9a0dtkZjuv0uWiqsq2NKn/IEX7G6coXO3C205mcpblxD43hVr0O322WYJsyVgT2lKL1hoypxtWFlfZv7KsNtt97K7bcfY/P6Cr6q8NZwfnuDLG9Ty4xuZ0AnGTF1llanx/F776Mut5hVgnaeMiEghEME0YC5NfiK+44eYmtYMSkVwVta7ZTgIrw7V5Is0aQ6wRoTQcp1jUw142nF6XPnWBr0aNMjUOOmIw52U25JLFeDZtycjD44dPA4iPbTxhKnPFgZE6GCD4zHBaasaPd7ZNubuDLat+N+Fm3HSIHwGkUgCEvlSkShsM6gE0lnOMW6LaTwtOcXEUExGu4xnUwZjqdkQNptY2qDMw69PyQK+w0lcfMsj2ViLBSzNIkaGOGikljn6KwHVoAryJRivLXNxqVzyHabkCYMegukmY8NSN9YlK3j4qUrvPTSWbRKMM6SpAk+CIK3DSsuvo/tcYHxgkkxxdvA+LJjYWmbavocZ146zcvnzlPafdt9TNST3rG5vsPq3Cz5TIkIGtPaYerieRmV03D14mWKwiB0tJWpRHL9wmmW0lswezucOXOFPOTc8+bXMRJDNC12wyY711fxRrA53EboBGPh+tomCzM9itozEV20yhDBM3foEGdWLjA2JeNJRV3mbK5tINMU7y1BCIwXXN9a55tPPkW71aY/10emCbVxkYnkFKaqqaYllYpog2y0i5QNoltKpKzBGVyIfJZaSLLeAu2FJdJOHx8cvcEA0RsgrSGxVYwU7/RYuud+ujvbWBOQ5YiZbk6et1m5cpXr19cZ1pIH738FO8MtWt0+V66vsuUUot1FlJHXYbGoJhWwKsZcu3aFna1NaltQ41AixCRiPKmAcjqN4TBaIlNJR3YIDkxt4tpoppWmMtR1zXg0Is1ztPY4KUlli+mkQAjHZDJCCU8QCaYuEVLTyjNaKja0kySJAwhnqCuLCDV1HZP6ppMR4+kEnSRxQOph35Mqic3kRCYo2RisQ413ijRt4b0jSTSmLjEhNpTydhbdAiE2R9tp1ij4mwJTCCpT86qHHmZxfiEqR2vL9nCX4AIz8/M8+ZmPs7lXsbDUjfWpFrSylNlMMybQ7XR47skvk2HZGW8i5Rx//vt/xtyhQ+xs71ILQd5KeeiBB7jz9gMcuecYB+aOItMckWa0VE6nP8NkOMUFjcOh8thwNyWolm6a8mOoU2SeYm1JMRwThiOmW5sMW7Mo2aYoply4eIPLa6t8/K8+xdvf8ttIlUfovYg1mDclRbkbn8vdKWmSU5ZNep4MqFCzvbbLtedOccu7lllcOsyP/tD38ZFfv8j5c7ukg5zV7XU+/cW/4DWu4J4HXs2jb38rrVQxWdnh6tYuh+68lQ//9/8jv/u7/47t0XlsldLpDnCu5I3v/nHM9nW+/ZUvMz23xk//o59n4CuGT5zl1T/2fo5uj7h1ZobLf/M4i9kM//oPf4//4yf+Po9PIUxrJqHCiw6JmjCTJwg/ImlpysIjVaxHfuKDH6QbJE9dOcfixZfZLNb5zie+wtnnX2Zt5XkeePB7+ON/87t8zxse4ewzz/Lps1+k3+4wGlbc//BbuPOOk7zwF49xvDvP8qtvR2nDM89+jef/9Mu8/9//MoPU8bmvfplnP/GXfOBnfpZ2t4Wva7ZOX+TilU2SpIOmppsljMeWV9/9MCePnWDWJaRveYBnP/4ZfuEX/1fe/9M/x2tfv83SwSVOHjjOcH2V81fO8oWvfBnZttgQXQIWReo8dTnBAbIKDEe75FmGNRt87D/+X3z7y09z+10neeaJbzB/y2F+8O1v4lWHjpAN1/jCC09QuoraTPFOkApPafe4vLvBP/nZ/5aJE3TzFKU0vQOH6OqUdzz6Nla21/jUJ/+aB9/6KNs7a9x76ADvfdPbuPNfws/+1C/w1Jf+BpEm1E6SaM9oVKG0QqWQ6wxT11EUkAXaaUpLKRCSuZk2H/7gD3LsgYf5J+97H1/y8Ae/81vk/RlUmlDUln5f0qkcyxPD2UFGNRkzHu2wN5zgSckIFFWJSnKC1BR7U1SiEaEHbsIv//K/pPVLirc++t+QyJRUJ1TGkLeiA0a4DOMLFIGlAwvMEvDb22yNLN1Wi8oZ/l/W3jTqsusu7/zt6Zxzx3euuVRVkqpUkmWNHmQbg20MeEEInRVMvLwMBAgQaPAKq2maQBgMSYwh3UCgg2kD3cQOCY6NGQzdEPAAtmVZRqMta6xBVe883fkMe+oP+5ZgpfMltO9a+qRV9b517jln7/38n+f3VE3DaDpmdSFnUI9Y3x8xdp5psIkJrBRKa5aEwnpPOa248kLgV3/913nL338rX3HPa5KgG5MJZSHXdHWWMDPRz/faAi8CWiluOXb8pXjbjbeUiAJnaw421qmrEbNpgxSKqGBcjpNzds62CnPX8o0yhr/rp9dpk1UncA6cH1KYgoPBkMeefIzJ1pc4d8s5Tp09j8l6NLMJV59+eG5ECRSZ4OIdr0bky0xmE5aWWmQChJbk/WNE0UFGS7SRaloxnVQIXyJqjYqbZLpFDAadgV8+zmwakSpjobvA0oW7QWTYsqKq9mnqGbpxFCFBVIaTiuhS2ZSSoIInSoeIxd/5Wvy3Pl92QUkGQVVWVN5hWm0g4oLG2opqckg13kO2WmRFQW6g2j0EnacHz3nqxqK7HVo6J4QGESPe2/l2N9GtvU/sIjm393vpcU2TDuY35Jcwh+7GBJMF5u1Y4iXAYmqPmTOY5sBUIcRcKEqHSGsbrPeoeStaiKkKO4ZkupNzYSAGT9mUFNogdVrIZ7IkCOjmOa5K4lGuM/QcXA5JFLMuMQYwGV5CbT3OO3RoEUjZfqWSndpF5pWzyTkSBEQtyLoZJhYooTA6o2MMQkjq2mJjg/ERnUtUiFS2pK6nyHyJYAzeVukCBQgq0Myv25HjJzBFwWQ6mLfDaaROTJzQJEHM+joxBAgIDbjE2pFzoSMTZh6BIjm/kPiQNjIxOjKpUbpF42pSiEUQvSczGUoauq2CPMuwIXAwK6kEjEdDlAJXe+qqBqXRWZb4AT4BuZ11Ce4sLOPJlNpaKuepkSgP2hhU9ClC4R218+wf7tJt5SgNApWaYubNM8qnamcpJB7JaNYwiwEjHUYoNIKFrAUestyQFRmuEcgY5jB1SSuC0+lAZqLEzyfeEYgu4VgdDiUVzjbYJkHFQ4wYlbG6usqpk6e48oUn0SqmmlOlqL2bg8nTE62lSZBP6SgUOKVw3uMaS29hhW6vT4iJ9SWzDOsbMpUjfOJ4aKlSdToWP69CtS7Fq0JMgOflxUXyTgfRBKSzSKVTO5jUeA1WSryvcMGCEKgsx7T7tHUPszdFiBqpNSJrMZ1FXKjp9Tr0llusnbyX/fGAotdjeDAFYbB1jW51KYJiMpnw0JOPcvamWzl5/BwbrLOztU673ybXhk47Z2l5lczkNMojlSEqjXASqRIbQhmD945mVjOdDBjs7zMcNRy/aY1qKplOZul9JpK7jxvQdvG32CEkltmNivUbIlMkEL1DZYpMSJywRJ8ejmNtwWKnxdVDx86wREjD4eEhwlcYr1MUTTucEHgX8dGhPAihiHikC1y4Lee2POPgoGEyzXnh8U3qvYybltsEMoQK+CZiEVTeITXsViVKKuxcDZ+/ClHSY5sZYVZiig7dPKN1YgkhMvZ3N9m+fJnKR4aHBzTTCZkSJLRrJHiJC4qD8ZSi36OdG4aDwySAxIbg6hRrdTO8UDiXWG22dkyUIkrPidOnKPI2R6XCvPIBHv1UhT14FuctwTZYHzGZwFvPseMrOJeeD2sCL7/3IsVij2eevUJdVpQ32GzWYoNL/BnnyVswmkzZr5fZG05wQnM4HjFpInnjmNZDXIi08oxC3IjqBGhKXvuGt7B+9TJHux1OrC1ywnm6jSWb1kyEY8NHtvMCu3KMY7ecxwgY7Q9oK4UoRwwPd5l6hfQNJ7r91Ja1tMTZO29j89IVVJYRETyzeciptR4ER5ACGWR6hkkR04Vem167w/YMjKk5cXQVZTq4sqZ2nhgcKnp6Cz1UK2dWWbY3dgneI7xnNrO019romKCAB5t7tHXkxFKL3BRc258wtYLKp8pchMAlHy9+vn5KpTAu0qoCnbU2hcrI231WFpe4NtnCR4uNjiTXSvCRVpFhckEmc7SOFJ0W3bZCqUDW7tDtL2GEJ2+1QEC5Ub8U/Z3UFTYmblJuDAgxd+PF5LydA9m54U4iUphivoHzKDWvrG/1yPpLcDACNF5qRrt77F69whTHoIqsdtu84c1vZjCbQoSyrJlNp2xuXEcqCTGVJYiQGFNEkNHjSIJecJLDZpxScXPW3LSuePjzz/L8C5fQRYEViY2XuKRJrLbNkN29Q15+8TxtAkeXl2ktH6G2M2KEuvE0dU1Vz5BOYbQhRof1nqeuDDhcf4GlfocLZy6ystRJHMQQmdUTtq7vEYSgqQMiTlCmBWsd9lzD1Z0pu3GJXOZMpmNO33qRUq+iqbg2GFHnFtNfoBkNU8Q3pnh2FSIvbu1zMJhy+uZzCGPwdg/nBVJlFJ0iMWSUYmGhz+rKUaTSNI1DKfAeordMdEZvYYWjZy8gtaGZ1RRRUTnL5GCAFpFQV/SOLiGEoLFTJIbjZ85QW4v3glwIbJQMt9Y5stzjtjOnmA4n7DTp+swOD5lOGlqdPs10i6hjYnvF5FgSPjDen1E1HqVyRFBIbWjlhk6nhxaSopORtdsUKt2fOtM00zFaR1ABnWUUpiBXgn6vQ7+/gMk7iDkcPS8KhsMht509xeWr17A6IwZLlilWFvq88t67OXniONHaeTX83N2XCUxsUbRysiKn3evR7vSQQpC3Wmij8bZBG01AkmU5WV6QZSrtrYscqTMyU5AallJJDGSYXGK0ItOKLDP0O10EEqkMCRDp0xcV4rx1SCCCw1qHyQpmoylBwKf/y6fYLxtWibSVojAmrQ/WImLgynPPcc/dJzl+00mOdW7l1IlbeeRjn+L3PvkgWW7S761h/dom3/k938PFey7QN510P3hLRLG/N0KQsXZqjagUdWXZHM04Y1qU9QghBDv714gzh94fsX59g889+CDnL9zJ2fO3U1nJtHJc2riK9IoX9zdYW12kCQ0FxTyaCN6OOLh6iaLTp99Z4mC0R1NVKKVBCWrvEM7TuMiv/V/vp91ucf5lt9Dq9Dhx/gSLz12mu5ihlGC/nPAHv/8Bnnj4Udye4+ve/Go++FM/xYnXvpabbvsW3vA1X83D7/slPqYzhjsT/upTn+b0yjm++R+9g//ww/+M1SMn+NGf+2lW1xZprm3xHe94B8t338WVD3yES1+8zl3v/D5+4R99I2dExuz6IfpID7C0pEIVFmU9lXM4HWm1OgQ7pZ7B9etb/OSP/gjjwYAqOv79x/+cXg5tLel3+8i8xPZgd8Hzkz//M3zx2hOcvO0M7/iG7+J45zhu/5A3fMs38dB7fpWf/dEf55ve9jY+9cd/yp9de5J3/chPs7zYYnlnnUn+at79m7/Br/2PP8nb3v4tNJXl2GteyT+99w6W3vvL/Nrv/S7jRlLXM7z0vO8X/y1HT7+cm4oZn/vsF/mND36A7/22b+PH/8WP84n/47eRrQXuvv8e/vP7/09Ev0VdDZhWUIlU7COiQkRJcBWNh0xn9BYzhFF85k//ENMp+MJTI85/5RtYjJLf+IX30Oq0sTJn5dg5tvauIJWnCg6vc2w1w+Qa0xJk1lG6hmnjEIMDTt11L2995w8weexJ2pOKN771rYwe+wJ/8qd/xgMPvI6jm5Gf/5l/ybv+xU+wcvQY49EOp0+dwdHn8tOPkOUFIcxot/sJ9WIbpr6hwZFryfVf/COe9k8TT57m9Fu+nsUPfwDfa+NmQ4wQNLOSJx69ws5Dv8enx7vE63sMi5IoSqQAZwPOCpSErChQ7VVmgx1arUVGwxmtoo1wDSjS/l+p+bCvYf2557j04jaTWUPeapNpSdV4nh0OWVxZQzU7CCGo6xmB1J4dYk49iwzLmv0yvY8yY5jUFhUF6wcjOu02LZVhgSc+8wXueflFOg+8EeccWun0N80LKELwc/d/En1ugNuVnjuLRHyJPwse5wWziaUqG6yrMPNY72ReVuKjR0U9Lw36/4be/nsb4Ooqsr+zyelTp6F1Em06SKU4c/NFPr/5JIuLC7QWVoleIgP0jhl8VTM62EMUBa3eMkYvIIIgVBXbh5ssdHNkUGQ9jZIZBwcbtMyEl91+jqJl6HSO4lwBUiBlhgqAMjTNjLpxdIIhz7t4H6i1YX9/hAoDinaX7uIC7VaP9sohKlMYPEpmgCBaN4dDf/k+X3ZBKcjUmEb0+GaKihGhMmjGjHYm2MaiW3063S5DX2HHM1rtLtPtMUWnwFYVDAxCCHRmEEjqyYDFtmJKEgKkUeSQbsR5FXztLMGneaUggZTnWZ0E1J3HdoC5Splu1FRdOxdARLL9CqlTUwqgs+RcQc4nbAiCSI4BEeetZsIRXYRZIGqNKYp0o6oUw5P9Lu0io2malFeXAucsjW1wwVPZGmEdg8EoTUKbBqllYueQJn2C5JRJv/VcCJGpvl5FOZ/USrz3NKEiIiCAzlNcIuDptNv4psJjaZoZuskIjUEpUEUqKJbzim5EoN0v8AFKO6OqGoSKSC9xLgleIoaUF5wzZWSIeGfTzxYCrVKVepCpHUIrhWscCnDO4RuPMBKpBZkyuJBiRFrlCO8xUiJCSPweoZlJiZaGoBwiesqqpokBZT1N9GRGIFX6nsra4qKn9lOsS418AUkmDBGbwJcx0JJ5guCKSO0a3Myy2C6S6yQ6gnTUrsRGiNLgbGBWVlS2IdgarwRaSoQWNNZzdeuQw6pGNAFh41yIUBAiWkn6xtDYQO0TbLMOkkxqhAkQHDK4BEhnDn4WApVp6mnF6TNn2Lp+FREsloCWc7EjipeqWBWaPDNpwxwh04m5glQ0LjX9aKPZ2DlA5QUi00zGQ4pWwXgywNua3GiMEYSoEI7UKBhJ969QKFPQ7nbI8zzxFITCuchoMkUIqJqGGOtkRxYSlMaYHCVMikbqHKkyfFDoTh8tLNGXZB3NaDjl7C2nqQXs7+6xeuQERavgyqXnGB3so7Oc4+duYTIYsDfY49iZU1zb8GkhU5ETR4/RKhSZKei1W1RViq8IIlpItEkOpugDnX4/3du2IdbpnjgcDDg4lEhRIGV6FlPO+IZVdv5OkUlETk9WgkNHndyO3W4XYxXtLEdkEjVtGMYZ87J1iCHFVr2gshPKMqOjBTPRkGUabyONEMggkHHOoYkejGSWtfjcxjJ1eYR6dMAiE245usC5mwqOVpGxtShX0kTHfiWorKQWyWk3rRxGqfkBPL1H8B4TJEIrgiuZlGNAJYF2eEDZWDBdBlsTtLzRGDRHvgqBjdBUDdI7qmqMq8d0ugXjSU1EEGSOEpbcFFS2wocIpMKBSd0wvr7B4sIJnFlgsd/h7G13cPXhazhXolUGtsTNKqKClZVFXFODkGQodLvNradPsLe+x+aswjbJKRZkBC8RzGPAUnHhws2cXoh8+rNPkeUF47JB9QSDyQiBZ22xTctoSmupvMP6El9PeO4zH+O+++/j/HiPb9jZIvpAddiwH0dkjaPdFJzKwVc1cnaK8eYe+4MDhteuUNdTpi4waQK9wpAt5Uy295Fb25y54yL65jM4J7jy3NPU4wllLBBS02u3aKYVdQArBLlMou7VzQGj2YQja0t0sz7bOzuUzqNCxLsGSO+mpdVFFpdWKM61GQxHjCcv0rhIa74u+QDjwZCTXUXXRhZWM2gKpk1kUDZMXOJYhZjEEikSZ2WxlXFyuY9gggqrxODQPoACfIFAQ/AoHCFIfMxYXjZcvHgEOxMMm5oMj/ERmpo8Ty1akeQMNVlGXTfcaAitvScXAq01ZdPM4ZsCqRVKpMGLSKNKhEwHici8/ENqMqPpri1h1o7jhUDLgIsNQQeEgnbHkGvFwkJO1kwZjYfIdhs/muADSKO5+fwtLJ84ye7uAQfbO+xsbzGbTAgIjEoTP2NaEAIiWJqYnGVZu8XeaMikaRCpIxt1A7Yt5q2YQuCjZXdnh3FzgayosM5hQnJxxighJFahIA0iIoEYhQAqkwAAIABJREFUoOgsUEvLcFrxmte/jntfcQ8+QFSRvOjyxEMfY3trl9ZKH+s9y2tHOH78CN0jBSpXjNlhtqMoXY3MlnHWcvHee/jSZ/6SqAwnb7oFsoat9XW2NzfRUhFDcm1Ws5rRYIR3f+MGEyKAswifvhMpIvgAIW36Q/QQFd4nXuJkVhK8QriIVA7vLTub22gjsE3J8SNHiJ1WivMTaSpLu4iM9qdpj2cyfGeF0gaEKmjpjOlsyuNXrtI/eozgRjQhUg13WV64BSczbGhQMcGtAxItInv7m+zt7nBiuZW+JyHxwiQIfgYyBIyNRBmSCzUYojBENHgJwSN0QIgEfvfeoaMH4Qlzto+zgdW1VW4/eZRrlUMJRcsITi70WMp02vMSyUwq4tBaYkSOEDUCiYthfv0iYv7+9n7OqPQOJT0BixIJTC/SI5HKZrxPtexSzTmCEUQgbdE9kdQSprOM2KQGKxdSi52QKjEt5+JYURT0M41tt0EINjY3mMbA/qTmyEoHKUEFiVCScjDm1gvnuPuue5jUY0I148rjD/Gxj38S2VvA2zrtu5LCyNPPvchdr74LKQLCzjjY38fVEkGbm2+5FW0yXBS02xLf5Kxf22Zv9wpPP/YgWxsbYC0+CoQ2XHjZy7j77vvJTEZEsbTap7vQ4ulndqn2r3Hs1ruZBIuOjj4pXmO94PLly+xcfRGdCfoLfYJPYv721gZFkYGP9BYXyLsF/+qX/zcW+l0Wu31m0fINX/u1fOG5x7mycZWige5yl6Yd+a0P/Dt+/j0/waStOX71MrWDu+67k6fHAw68Qi12OVkt8Lv/9x9RvfcDPLr5HK9901tYO36EaC3dm89w+6mT4BpGd99BftcFsqMZ55cu8q6vfDOf7Ury0YDYNeiZww8DPgsEIZAhpxpayjJg60BZ7TLrDDDtNiEYiiwjREttK7bXN1k5vcalJ57kjd/9Y+x/9lGePmhz7dIVfuU9v8jFcy/jTa/9SqQw3HbfA/y9E8f58Pv/Lc/mjlaR8e6f/1/50Pt+nYeH1zn3x3/Om+5/I9/89m9ClgE2ZowXMmbjGS/uT5k6RR0snW6Hv37yQWS74Ae/+3t537d+Oz/1n36H73/1K/jp3/otho8/xp98/ON8dv1TfOgdv0+UiyAj3qeESIHACUEINYPhiCg8IrQ4f+sxru8PuanbI+DZHR1y/6u/mn/8HT/AH/7yz3N5sM+po2scbq9z/+vezH/56Edo7BaFdEjfkC90qYNnMGjQJqY9bJR4H7jzzpdx89IyW2tHOL60jI6e27/x7/H6Y9/Nf3zvb3L2tffy99UCPyNLZhPY3z3g1gv3srV+hSxvs9Rpcfb2O3nkc5+l2+piAmxe3WI8mBKPS47dd5ZvvufN6H6XD/7Ye6hyjTsoiXlMCBAJT+1Mefz6Q9SiIg8N2khy1cKWNQ6FLtpkaBYWMiY+w3rDdDbCaagqB87w0z/7bvipBbqi4BWveoAnPvNp3v/v38eLG5cIGmZVyWA6wQVJoeFgOCVIRavQLK4scfOpMzz8159nMp3y5Kym8els622grCqCjDhXUylDUCV51kN4SRA5rSxHI7DRM6lrHrl8iaasufPUaY6uruF9GlganYTCG3uEVMglcRI0kqACUUrIc6SP5Ai0FCx2MrTQzDsq5m2y4r/awTPXBv773EqtdsZwtMfm9ec4dm4Zn3XRus3x42do9ZawrkQJSb58giIErK3wdUPnyHmkVhjTxk8rRrtbDHae57lnnqAlGxYWFmm3Wpy5+RwqW2Kwt4MkEIuCLCo6/ZOIvJW4yE2FVAX9hQX2N7dRxqRCFpEKxi0S13i83WYx0yD7NJVHqgAyxRSDl/gmIvK/e/zvv/X58kO5ZSR6mazAwScgYKipxkPM3DUTmzGHewOyPCNqODjcxUWYuQkdmSHdDC90sqjHiPCOKHIylRGFSwskEJxHqCRG2KZCKJUWqABKmfnhJX1uNFhEmLNUbiQp/yZTGW7Y4V5q1kmeAyXTjXvjz8QbK/ZcMZVy3lw334A3VZlYRS5BNV2MNM6CJNXZWz9n1KSKWtR8oisUTeNSxjEmoUiQprFyXpsdZWp6cz5NR+WNsPu8QVVrUBGUlHhnqav0c4WRiJCmLEoKFhZ6ZLlB1BUyRIiWoOZtc9LM/z0OpTRKa7IionVyr1jbYJuA93NI5DzmUDeWSMRkJsWLrCWEBikT+CtKgTEKJTVOK5qmIs4b/7RR5NKgjEKKiCsrMpkYStpkbG3tsLO3yWJnASEiVe1pbHI8xZh4IkEk8VC3MhYW+xR5l2ub29gQaawnREu3JVjpt1AyYF36b2JDinnFBAwPPiFpRdSAYXswxtoKqSR1VbPc7yGGB6nRRmWsLvapJhXDqmSp22K10OzFGZPK4m2qFw5S0JYKg0DkElV7qlAnh5sCgiL6gJQ6cb1CSIcPlSxMvbUjZEJT7u4RVEC4CFlqQSxkil4pmYTR0jbkusC5gIyBwmgKZZJY6j1be/tsbm1T9JfY29yg026TGUVdTpODx/k5RDo5em7coyqmaXltK7b3DpAiYrKCTruDC1BOKpTOk1gb0tstOoerKg62t8FW9Pq9udsGtJIUWcF42KBURjtvU1vHcHTIdJYszNNyRtFtcdtdL2c4nHB4eJiAzBo2NrcQWZvJdMza8ZtY6LY4feQIL1z+AtaF9BwFn9oRpAEB3nm67Q6T0YBqdEA1PMREx6wqMEYTLBgNwSuMSQe+pInNywZCfAlOztwlkZyScs4t80gfmczGFMOCrNvHekGe9XCixc5szDh6zOISZ44e48hiBx2TM89N9nDBs7R6jNzaxIoxaTIuRXIc2cZjyylyvM3LlnPOnziGVhm7A0fUNUoqcilpfIHMI5uxSsKg1HghEzQVhZep7j45QwNSWJTU5DJFC9xwD1dWqTnRT1FSEaOiDpImWEJIldRGBfIMFlqGcnCA0Mm51W+1GIwntIRH520CUPkE2291UwOGMpqqmuInQ8xiQeULllaPsNNdIpQeXeSYvMtsPGNpcZFcQ+U8hUwNaj5agqtS9A6oGpdcdCGkw69QSUj0nnvPrnLH2RVCljMZTVgOio31y1jrWFooaBcaQcT4tHEro6KuJlSxTX8lpz56EsZjRF0Te4LZXiDXiq4IWCSm10Os5hzubzDcuEI526GpG2JQCBnwITKclLjaUdYz1i9dYmFxgYWVYwwGU4a7h9QxcvLiHWyvX6Ncv07bNRgVcB7ahWZ5qcNiU5DncHCwS1PXtIzB4yhyDULT+MDgYAxectPN55ACNrOcelammK23VOOS0dYW+6tdsrphuZUx7Ths37DcBCrvabzH2khlLXVIQuLa2jK5VAQJVXB0TQZaokyOVTlSpXVfeoEQmkigKqdkEvIiZxQGRCepVKTbXsBFTSENLjrGs4pqOOGFa1eZNhVOpHbGiXXJ9RhlWuOkJNfJBahDBKFwMZJl+bwRViKFRwvoZJKVo2t0j59M8HSXmjtNAJUXKK2YDYb0llJRgTYmuUJJ10mQNq69VotZt8/qkTVuvuMWDrf3ubpxncOt3fk7ez60MgXCRRwWYSQ+alpHj8PGBkJrQtOQ4vGQbEopzjjzlhevH3Ls4hJGt+dOa0UU4BDMnAPlCS4QrAAl2N++Tla0eeNXvop7X3FnKjjRiugF03JCd2GV13zd17J87ASTumZr/TpRWqqRo5xNOHp8mbGdMJmJtAa7ivN33MZg6zp6Y5/Fk0tsPP88D7zpLfzn33gvut9L7kDlqZsZm5ublHWNLnK8CATj0sApaIgaLSNKglYZNnjMHFrtUUgJvV6f0jRMqgn17hjvBUXbYEwHLw27hwcU0iGKDm42Y3V5BW9rGifTsKUqqZs92gurtI8fo57u8eiTX+LFseXiMZDaoIPFh5LxeA/RzvDjGcgbyHYPaCbjiuubu6x0ThEtRKHRQqOjxcQco3MsAoNLnDuh0hR8vm9UIRIri78hBqm0H1FSExGp9c02tJYWiVpxsD9AqogRkEvBNM6b+WJM7y6feFPOlWRG46OnkAnULZQDEZDCkBtBVSUxNypDDCmChxR4qRLuIASUmQ+mQkBpicJib7j7pCQIlfyEUhK0BuuSQ1CmCE5uFCo6pMipmxpbV1jrmYx26C4vsLa0zO6swQbDLUf64C3DyYyysTzz+JP8kQi8/Ktez/nb7+a5T3+cRkoWiEyjppcrTq2skmctlpdWufPifancwhhO3QxKJhdZKpcAESLOAyrwxPPPMtvdYnN3h+evXsOHwC0XbuaeO+7jzpffSyBSW49WbUDTSIi5o3t0kY0rh1y5NuO+25ZxpMhgFWtCkbHV1ByOxwynI8qyTnglCXVVExuHjophKCl6hkZ52uePMDjc5JntdZ64tkkrb2P6OePJgOmLU46dOM8PfN9Pc+kTn+ChK8/w2HPPcvH+u/nGt34Xz/yn9zIcTHj/hz7CWtai+fZ38NtHMn743/06689c5ez5m3jxwSf4+If/hHNf9RUsnTvH9Rf3Gawf8Cfv/jc8eESjdh3qSJtyWuGdTCUUTqKiIDhPZS0xmjSoCh5nBURLWxsKHE42RK2wBg5Glt7xjLeeWePzu7ssL6/xxq/7Nh5+7BFkf5FTd96GVJHV197H17dfxZtXFnnbL7ybdQQyq/nc4QAyuHDrrbz6/nN88o8/ys/+8/+Fg+2Sf/jWd3DTPUdY9xVjAsjIaDakm2me/eLD/NA3vYHF5aO85YHX8iv/8Xd4472v5pff/u1cGj5LLqF36jj7+yVZluErl4oDaBjYwNQGokrPdQ/B+eOLbK1fYWt7xLjydNp9XnzuKX7w2/8BCjh5yylMDvVsyl986D9QNxMK5dlx0LnjbpZdRTHYJg5rZlPDyTNtSmf5B9/xT1hqFyhAqYJee43nX1jnZfe9ms//9eP85daAs0WHf/hjP8GO9vwPb3sbBxvb/MlHPsza2nFkZlg5dpJatohSzzl8DU8/+jn+95/7Od7+Ld/G6ZO3croo2G+m/Ovf+RUe+4rXsL7cppqMQDp6rZyFquHI7Xdx+cqXWFwsMMxoXEOULYKPTKZDjh5dY7i1yVv/8Q/zgd/9XYKd0gxn+EwSbE08KHnXu/4l2k84f/4cm5euM66mlHbCdDojL3q0ui0aG3FNTbfw1AIUkZ7q8+ijj2AyhVQpV+HLBucFWauF0FAYQ11ZrG2YqUieN5Szhu5Klwf/6iFe88qvJ5Oan/vt3+czf/phXKhY7HZ50wMP8K1vfxvnbr3wt9Sf1CodRUoGKJJ4EqxP66mxaOew0bLSKlho59xx23mWFpdT6wN/C3Xz/yPuBrC9s8O4qRkM91hxE1r6CDIqlteO8Kr7Xke/IxDFEp4eLlY4P0N2uvTyPpkqkm7QVpjeModrayysrNEMdyjHBzgcW7sjZtNtxsNDVIj0ex1cNaIqpzS1Z7y/z2QyZHlphe7SCpcuPc+F86dZPHEeHwTj7V3y2RgXM4Z2RrW+walTGdZbIhKsR7XnbL3oEgf3y/j5sgtKk1mZDq8iOYccCTYbmb0kviilKYo2eE1Umu5in9o5tIJqVqLmYM3oPc4HjJBEDwSbHBYyCU1OpqpWoSLdbgcpBYcHA4TO8D5NYm4YupROjB8xd8/cuK1uiEopcJTiZKk1Jc5jLSHdtPM8UbopQSk5V0xDcmJInaJGRGRUiREj0wY21I6matBSEnHEkNqGiAElEgS1VXRptXOkgCzP8M6DTNPIGJItTwuAQNM0zKoaMkWuNASZ4OQIDJALhZCeqBOcN2hFYyvwEaxNEzCl0VGkaxtSuAEPofFEGdF5Rh1CAj7bGt802NqTGY2zFdGnrhZjEpcn8aFIcUQ3r3X2SeSRIl1d71IMTSBQWlGoFtbW8zajZEfHBoiegiyJZRKq8ZTpaEyn06N2NU2Tvleh5NxBc6P1RxNDpJ5W1HnBUr/NzafPUtZNmoBriZYeV40ZllOUKjBKMq0nlE0JMYGw8TWZkXRIrKFMSqQxjKczhBAMx4dkrZyx9VBLDvbHoOBof4mOSILZWHqEalI8Q0naOjF0hFS0WjnTOEO7jFSWFHA3LiBJfII0VXTzPHE71zz/9BMIBZlSpCOHRJqIDMmdhnBAcl6VtSNIA97N72uQOqOOit39wTy6qWgVOf1ul/HhgMbbJND5NA31c+aOD8nxYXSBb1yyl1pLU9X0uj2KosDWnsFkgpSz5FwyOkFrbRJ0lEgOuKaqk1AYE4upEILK5DS2wUtFpjUqRnp5CxMUhc7IhcJXFZkWLC/2aCpLa2mFA7XPcHeXxf4yptVC1iXDgwN0zChMCxAopQgI8KkpLbGEkksAKSmrhlavjbAeYVI9upKKpmmI0TDfbqc69BhSPfPcJp8iN3MmkUxHlOgDS0tLlKqgms1YWljB5dC4iMoKfFVSBsHRpRVW1haRvqEaDYjVBF9XmDzHl2OsL3GNR0aRaumJEDXEgHGO1SyjLQ22DLR7mm4O1jvauWZaDTnSXsDOHKPGQhS0ipzpeDzXngMiSHwQNE0k08ntFklsGBcDdTmjDCVRhuQqzVMDmL/x746JwQXQX+yiNDTO08o0RQSkR6qIjTVKtHF1Q7QBETxLvZyNzQmZkkgZ8WGK9mPqqqTdWWL55GkOXthhudslCM+kqjmmMx7660toEzm6ssJqv4PWCkSg1ynQ86x+WncUfu4cMwikjtx+4TxFiHzF/YvUruGRJ77I3iVLp2tY6vboZC1q2yClxMaIUKC8oKy3iFuRtdvv5qHlE9z32FNYOWFJFkghGMVAkJJSWHY3tihjDX6WZmoqMYd0CASpGGxNMJ0WMQhmdY3dWGdpeQ2ix8VI2VjqrE3v2FHO6Qo/G+GqwMTOGweLFko6jix0qKcVZApBRvCCbquNC5FpWVFWlmo2oZqOuOnUcTau71FHqIkUSjHa2WNSzohqke7iMl2zyGoWGASRmBtVhUUx82k/18kEQSjydkEHReXt/OCcngXb+LR2hICJCj+Pp0cUswpmZWRpIQLzAVBUhCZg0OlQawO1rfj0X36WRx99nNF4iFISKRSNFzTeI+frrhbJgZrET4N1kVwpvE2H6ywKpJRkKtJWQNkQ6oasyFACDBHpoZsZ3HhAq2jjrEWaDlm7y9bGdVpFC1enyGq7lWGioJk0qACTKtAyLc6duYVbbr6dnc1rjCdjJjNP4QI2E2S6TfSBdreFUglGjk8b2iACSs4dj3OnTKBhODgkyBUa4ZOg3SR2mndlmvhGDRLqAFor7HRMt9tla3OX/+ejn0Q7uPn0GXqLbU7ffitnbr+Itg0nTp5gPJnQXujxzGNPMNobMBhN6Q1Kjp48SnssUajkyLINx8/exubsCwwODqiqmrVjZ2jnBcQbDaQSqwRPXXqOi88+y1333o3yHuXS74vzyZ00jxIE4RNoOXikygCPCxYnAuPZNEUS8w4qOMqyZHg4prPSJ5Qzlk4f4+qlbY4fW2ZSjTEilVKE6HAB3MShW4usnL6VRx58hBd2S4QAa2fJBV7VIDN802Dy/rzBTCFCQ8q1B7yt2bi+zq3HF1KQ18e0V4yBts7nslMS/+J8TRRSYH0Ci9toyYVJcX6R3odKpfejNu0knKPZfP5FvnhlnSzrYH1DIxXb04qZ9/iQ3O5GZC+5aW/M05VOHLXcZCihU2uRUPggCN4RbaSVFYS6Icj0pzIB0nuiTi3IEo0286bRKMG5l2DqhBs7XyCG+YDvhpvJ8+ylZzi+tjaf+FuEd6hWzuZzT/Lk00/hQqB0lvrQYxvPar+grgNSGoaDIVeeegwXcl5x72t51Ru/gWOtf43pFJTKceroEr7xDKoxw6nHiGT6kvBSKyoI6qnDE9nYPmDz4IALN5/i/pe9ib3r17h+bJXRwR+xtbXB5eev0I497n/lq6imU0a7+0TdIQrBUn+B0e4u6y9e43WvfD0dYXC1o8lh0hzw+FMP8mcf/wtm4zHjeoSREDTYqqGb5YQYWFzuIWSPcrpLWUY2Dq9zdWvA6978Sj7+lw9y5NgCB6MpxnpE0Dxw8ZW8850/wrnVJT789GXufes7eOPr76erBJ9/z89gul2ORcWJU6dwbopazNnvdPFixkf+4EOcPn877//VX2KffS5UL7D9xUvsliOmswrbVty+cAqTCwiS6aQGL0ALqhKUSc8gYn7I8xG8RxcarRRVWaNRFK02/XbDTDXUZUU+q/mf/sm38vToOjMh+POP/B7Hzt7Ca1/1BhZEGyciSksa79Bf/ZX8RBn44Ed+k09ce4HFVs7lnTF3veIumJQ88EPfyQvvfCc7J8/w+m9+LZ/+xF+ytbFLnhXMJkMyVRBlQks4DZtbV5AdyWc/8VGOjWu+67d/lT9/42vQrRw/CWgKoh1jo02tptJgJAilsdOKk7edQU4q/uKhy1jZQllPJhSNs7x47UVyKWi8ZfNwA4oWs3rMxI5p5y1QkZ959y/xjq99Kw996mHe82PfxnQ5Y3p5zOa6YGG54EjR5qN/8FGqWaB++As8crBJ59w5PvmlR1jJF/m1H/1B3v3e30ScPYrceIbBU5d59OGHuOu+V+OqCdsbV3j+mUvo9nMcP9qhHs+QMtI0gk9+5q9woeKbvv0H+di73s+3/M/fx7/5Zz9O/rrXsPylp1kfTxARait41f138rLjF/nEH38QqddwdkyrXRMcLJ8+woljZ7l8+VG+93vextd91/fzr371fdx+pMuknmJcZBotwk4ZuQ6d3iJPXXqO6cEAH0nfqy6IeFQWaKOp64TiMFpgnCa4kk5vkdF4F+scdVURpSbXbbxzKClwkrS2TgNrS31GBxPuvfMc9d6Is8vH+efveDtf8/0/xB//4Qc51dbUsoVC8uz1a/zCL/86p1odvvOd/5QjJ0/MXZnupeIqiaRqauqq5nc/9HvI3SssLbYwukO/lZO3JcuLC4nXGsVLPG7xX9uT/g6fxZUlXnH/6zBFC6n7+LohhkA7Lzi6tkwnk7TaPWazGdsb60hKTp4+g9HFfHCQ9qZGSZaPnqbTW2Aw2MNsPMnR1WWcWmBn9xpVcIx3t/ETS97JEXmJtzWm26EZDHjx2rOs+TM8e/k6V59+nJe/uAFijc8++iBnjxe86qu+hu7KSXZ31pnOtsn8FC3BRotCEILAxORo+nJ+vuyC0nC4zkQU6CDQhUZJ81JcTIjUtBSUAuspiharq8cwWUZVjqirhqyjaMoSnSXGyczOyEyKn/mYWEfRebyPWA9tY3AyoLXGZDmdbp/JrEQZmRZ/n6bVLqS2Jph7kl4yJsWXQF1CpFrxxFdK/08gkpYkRbI8I+acoIBUIjkVpKBotefspdSSpaVgMmmoyhLnPVlmUuNN3SQgW9pPEiM4lyCQPkSmzQxnfZqwh0hIPwyVGZSR3DhXOpeEoUzreSV8RDhPrAPOuNQIozNMq0CYHEmbZlxRSZLg4xxSBzBJPIv+BpNCEUQCKfsgCTptJH0MeJs2UTEEoidBnqVIG2SV2nqcb1LcTRukSXEpKefxiRCILsG3pUw/Q2pDmMPTfEhAMhMF0qT2o7ryjA4O8XZu544pDgECrZkD3CJaeYT0CJ2qSKuypK5ntNotFhb7CUTmEzRVtrq0o0ogcSE5sdRl/3BGXVuCt0gCeZYlBx2R4GA4nc0fxECQgtmsQgqFVmB1mrpuDCcs5wUxzCibhhAcNoASHh9EqssmgHO02gpjDU2T7P5J+CAB7GW650JMDjQlBMJ7cB6tk0ArVUQHkWDcIiYhXjiIigwDKlKKgJUGLSJKRBSRcjYjN4u0hKYsZxxZXaWuKsrZjHRss4gwF1ZFcvMJoSAmsUubDOcbQlA0dUOZNTifXkwhgLUWZz15u00gRak0Bp1nyEzTOE/t3HxaKpBBJYi8taiySsJaXcFcaA7OMSunCAR1k+IwdVninCOLgsPhLgtLa9jZFFfNkEXG8uIik3KGryMuJlcgyuBJ0YEYfIq3VpaVpVUyI/BZQZYFDvZ2aeUK1yiCUHhvMVoRX2pn+pvPS4hdCTYmxpaIEeUdXoGta+pmhs5zoo+YtqEZVTS1Z/3adXa3tlhpR1qZpi7HBOWpGkflpxiTo6PGi8S0ESJVOhMCRVtw5ugyyxKOLPZQpqAqx+ngZqHb6YJwuAhKpTKrPDNpQjEn+wsR0SLFJ6qqonEJ+KuNRuuM2azB1ulAElRq1/LCzdsub8jwll67xVI/Q9YTFIJMgVKCqglpMKDaTCd7RJkTQoKt7+zsUtaePIsE12E6GNKXGdK3sToxNLQxmE6H3d0BQUqsiuwfjBAGdvcP6OYtlvp9iram2+3Sag0pm4Y8S+4r6wIZHh89tt/jTyear2eCLRSf+/wX+fxDn6fVUXSNJstT5DW98gU+JmB/EAItNHUz4dLTT6Fffi/aTjixvUF7PGVvULMfHWOpmIym1Fs71K1AaEeUAK0dnfk70NqIV8m9qbShcQ4LbL94lZWlFTavvYiWlhgdRW6oGs/h2DMLApkJTNtQ+cjKyio333GCPIyY5V0Orh2S9TM63YKpd6hxnYD+KAaDPU6dOsrtF87ywtVNmqZGtfvs7m4zaRpsdJy64xydIzdx5P5V8sVFspYheIV1lqube1y7fI2D9Q0mVcnaiZM01ZTB9jadmFo6o2Eut6ajaKpqSNcwykhde65t7LG4dJSowUtBIxvaRZYAlCognUQGzcbGBk2dYt5SGJBy7l8VhPn3I2KKLpssx0jNQtGiadIU3jEXLYUgExErNZUTZLlBaU8U6X7wSrG3f8j2YEJ3VcHEc/TCLextbZPdENCDI9qAFanp1eQRlKbwOfXggL2tfcqFFWKe/7+svWmUZdld5fc7w53eezFH5JxZWbNqVEmoVEISkkoSk0AgwBiaFkOrQd0GjGF1220LGoxZtM2y7GYwxjRa0AKB1CAkAZLqgruaAAAgAElEQVQQLUqi0FRVKlTznFlZlVk5RGSMb7jDGf3h3MiyvfpTW/ElV2asyHgR7957ztn/vX+ba04cS6UbrWU23qWuWya1ofUB33WoUl+5b2IUabDWP0F8FBRlQV3XBFGmIVawqVzCWVrbEIynyEuMrRMj0CZg9+blDdYjKM5TaM3C3Dw3v+5mhBI0m7vceMMNNLMa3zhKkXNgdY29cY0oRuzutawdylkaadqmxcaKyfYGh48fJT76ZGoAixCUYm55id293RSBQqCCpJ017G3v0hmTSk3ICFojWofEE0OKM8UYe4VgHzbZQwmCpJm16FwyP1oihsDpC5c4+9zz3Hz7jSitOPXE8xw5eZiqGmJCzaxpiV0SF6xz1HWN04rj193M0VuvJz/9DM5YtNTI6PEhebiTK3Kft+WJQqUClj7KuXFxnc2dYxTCoVVEyIw8y+lkGodHud+imJ6bKJLDqXfvOiIZrh+cputfo7BdR1loOuv51D1fQo7msaYl0wrvBfXMcv+XH+TwgaNcdeJ4QhuIvgBCpsFH7CHhIJFa4ZxH95FCIZIr3cdUhpKcPKnxN4jE20gvVuAFiKCIKHKVYqSCSCF7zmOIV1y3WnAFXL68uMThg4fIVIGuSoKxaCX4rZ/9OS7stNjeBRyCY2vsqK3j4PKQw3MF1k2xoeT0Y3/P5z77Kt75Pd/BD/7Yj/M3f/YnHDu8hPGeTWPpikW+6/u+HalkAoWLvmgkpm1HPlRMd1uOHF1C5JIuSrRQjJaWWTl+ksXVNc6cOYtwkidOPccLL77IgQOHmF9dAT1EZTnPPX+G6XRGbCccObHA4QND2uAICKYhsr4148L5TS7ubCVswCBHyEApJL6zWGfZ9ZaVAyXNTsMorzhxZIkzlyZ85YuPMn/4AFt+j7Z1RG2pBgNuuu02Vra3+dX3vY/dm67n+4PDtx1xY4cXppFm3HD7NText7NHdWCeelrzxKUtRicP8bFP/wFTm4MUmNmY++79LFoXBJHRhRnv+uYf4lXXXcu/eehBxCAwUp4ZGi01UaZ9jhSSSuYcPHI17/yRn+LSs4/wd5/5BNVogf/mv/0lDkbDB3/jV7nkG7SBdpSQFMMjx/mVf/Hz/Mb7fhq7tMrrv+Vb+abX3MbhvCDbtQidMAZCZ9zxg9/BDdescflXfoYzzYjVwvBvf+PXeeJLX+UHf/RHefTMOczqQWZbE7rO0DVThDdopVPjrPZ0XUfs/JWD7vt/87d58Vsuc+sLZxlrx9rKIYzPac6eJi9bOgddmMdHjwgNSmYM1tZ4401XcXAQ+dO/epKu0szqKXog0UXOeDzB2UiRSbqdMc9tfJW4z3UsJTp0vPLoMR74xKf473/yh2lvPk4cR37oPT/Ns/d9iSkdn/nkx7nl5FX81LvfzQf2fptXhSO89vWv4wN/8AF+7F/9OLOtbQ5efxPf+T3v4mcffZAHnv0HTN4y2brEtB0jiyFCROYGGco6lhcrPDN29mp0OeLs5cv8xv/88/go+NPv+iJXveMW3nvzu/i5//hu8sEaKga6xvChD32ESTtDjQqMdcwtLjHII3e+9ht5+Ktf5elHHyQqy2e/8iCffuinWCocO01ighoc88OCuYVlfvZf/Uu+89v+C770qb/k//jffpVLe+uM5kZMxgZpHIOspDENqipRRtE4icocu/WM8TQZAabWkMkMGQXWGXKV41wAL6njHgvzc4ynY978plfz8IMPkeWLPPC1R7nuDbfx0vpF4nQLWy0zyEt8hO1Ll/iBf/7dLJUjCqWQsa/e6MX66FMLeNdafueP/oL7Pv8l9mYTrDconVAn33DDjRw4eKhfY/eFVfl1UZRWFuahPEahF2mtBd2h0Nh6jG0jp85c5OO/+2+4596v0MxqBqXip97zTt75vf8IkRc4s3/WiylhJQOZ1DivcS6ytLpKNVrEzhwYg1LQmo7xS88xKgYM5w5AUbK70aLKlzh8aJ5BtczE16xfepzGX8aZFWZb63Q7hjOnnmC2WrF9ocO1DZ2pMNZQFjleCbqm/f/1+/j/fnzdBSWdDRBAcJF61hJpUhMSIkGNVeqkQAm2J9vEGDi8ukJ9eYPWWJQumM5mZGVBYhuJvu42bRgJaQIdgUwkIcST6rqLoqJYGzI9ew5IGxkhZAIxugTQVSqJWs7141chUnQrpbZ6SHJaXPdriNMWNpGCfEjOJUJINnPhCVEiQkTqDILDRZccQ0IhQsQ2TRJ/sjzF3gR4EXrWQGquiUEgpUoPybSipp+tn+4Jp9BZyg6L6JOlPPoUl5Fyv9wOrRWZ1KndTmQ0AbKoQSmyuRxVZEjnwHW9GyXg96dkUiBkhlCKGGWaAsQ0EQsh7ofbEl8gps1TFKkaODif4kUxELyHPLF1rlgMe1dDIG1sEgAdoowILZEhIKJChoAK8coErTUtk3bab5hyVF4kYKTUWO8TpLJQrC1UFFKglGTaOWobaUzLytoy0RuCE+i8YHFUIaVgYXFIkWdYG5g0hoyCWdulyaoUZLlmbWmRQTVC5gWjOIezHcGD8xEyj5TpN6KFSJlewBIoFCATmDVdqRLXq4e1cYxkjiqKnqUBTRtTw5gu0veP+41qSVDSSvaOuF68i+lalGWCw2eC/rVo8r6NTYjUTFcKhRA+cauixDuBHkTGdYcXjs4UTJsmNTEYw2humCrLQ4pkitgzomSynWYqo0tIJlSWpRacXpQIPTfMxT7q5iNIjc4LikFJXhbExhBCh1I51nnGzQxkIIiAJTKbtcQgMM4RZUauk2MiBs/25maaDEeBFJqyKuhagzUd1WhEJQXCW2b1JDX6eIeNPftMkCbUMeJCxHtFcJZDRw9jph3NbJPprIY8QVOliMzajizTEJMTJkVmXz7Yqv1joU/clkgkyECWS647fiMPfvmL1KZFqxLnO+pxYp5ARBhDHqEIQ/Qo4oXHB4mTiuAMzkeGlQShKbOcKATNdI9Ax6Bc4NjSGkeXRgTv2dybUgdPriXOWMpBhRIZ9uJ5ilxiteLA2iLn1reSQ9CbFGeUlq7Zw8YMj8AGR1ZohLRkrWfbuVRSoCS1d+RaIoTHRYhRUGSSg8sLrGQFwXRIaYlCkhjG6bkmdYZQc+jMo31GEJGqLGjaGdYJWueY1GNkPiBITzEYIaMgK+eoTU07nZLlmqXRHE0z60GQmnHdMa03yLIM71NzUYwR72P6epFEWScVrdC8mA14yTtm59e59+EnWD1+hGsWM4bRUuUlMST2nQ81ynuEi/jgcFLiugiiZnt3B65/Jc+dPsWBmUV5y47vsKpgWSlC29AOc7pW0lgBMqMoPDEogkv8qmAMbdNSlCNULolasLq6zMLiGs5HRm6GcxOmVQH5KiORnB/BB85e2OTI6jKHM0957QnOPP8SVCWtV2TOMSccPpOEUtB5j3SRZm/KLbfdTOsDpraE5cC0jTgxZPHWN3DVra9gsLZEMJFMKIK1aAytabG6YOHgCWb1lO2tbWw7Zf3ciyiVE4Im6gxhNUpBCA6pCqTMQLjeBafAOTY2WuobK4zQ5ESkzIlaI3IQLoG2x3bKxvpl8jJHJGd2P8zpY+giSVaJR1kwmFtgZe0gMgg6H2iCw1t/xdkcXaCOjnUHc7u7LC8MQUhCP0ma1i0XLm0zbGZUekD24llOvOlqLlw8RzUomRHIlEIGlZq36pZyOMC6GQrH3HwOg5y9rRbZWZrLe+SDOdYOH2X5yBEm61t0CPYaj/QaesHNi14cJq31UqTw1HRvhogWFywxgIwCqQqqYsCRo4fZe+o0Sqd4Y/DJFZcRWMgVV199NXd/y9tYqJbRhaCZNRxaOYwMKVrVkUTeam7I8euOs76xSZ6vcuzYMrOdCa4VOAeTnRaR7bF16RIHjh5LpR+zCQurq2xvbSWYfwholVyT46bG989DKfu9BIqoJD46vMhwMSLJkDKx42QMeOex7QyCo5mZXtgOlEpx1XXHWD10kHI4j4gWFSxtO6PrPESBNR079YSNrT2atuWojQwWVrn1ztfy+KNP8uLpF5IDygmCSXuwxHICrQu8Nf0zLa2jXgp2phP2plMWq4AIPa8oBLCBTI3wrknuTBTCped7giJIiGmvFIQi9i5PGcEGjxYF9372b/nUJz8DgxKcR8kMv19jHeH82bN8+A8/xC233sodd76alaXUmKaEJAqBihlaJnYoIZJJjSQ9f32UCJkTQor+CxkTtkC83GUs0Gk46QNCOpR6+XNKCoQUSC1QMongITH7032mFXMLc4QoCTpB9qXQ7G5ucGH9ImE4R7u9RUQRhCMKmHYN9mJDIQ8hJczqjuEo5/EH7+eu17+G20+ucf98iQM6A4NqwMracU4eO5Sinv2QYx9Fse9SqgY5xnmW5+epiixpk1Zx+cVLHCjmUWiWRiURWMwKVg+tIlXB6efOITrL+PI2pmuYXN7hns99kWvvOMGB/AAiBOazkptP3sAjV1/L1qRlvL1HvTvBW089qamKnKrQCJHx0kvn0JliWGYcu+kkpy4+RDub8vo3fQNfvPc+xtMJFy9e4rbX3EnrS/6X3/kA929vMv3yBq++9U7ufO2riNcc4ed+599y9COf4kd++t00s5q//3d/wgOnnuHxjRe5cGmX1qdmT2tDipRGybRukLIDH/nkX/wH/mx3QjEaIMYzlhYWyZspe8YSGoMSGTqCE5HjR47zPW95PV+zDV90mne843t50+tejc5zJv/nr1ELSfCKmet4+2vu5Bff9wv8+vd+N8/YHU5mBaPGc1wVuI0x4cRRWN/l1P0Pc+h1t6OXhlRX3chrj7wG37WYy1MWrlnk3ke/zHuW/xn54RXm5hYZLI2Yj5HCBjrrMc6ivCQaQyBSqALnOvRIcUgscf13vIlrluZZWznCrA6I9jLDzCGFoJIRY9q0GiidHLHS8pl7vsQdd1xLHbfBpbKJudWKlSzn9G6NjZ7oOqoKrj6gqGvLxlhThQmLywd43//wi5w/d5p41TKLsqBaXeT9v/w/8q/f98tc3rrAt37Xu/jsX/wlv/mhD/NXn7+HoRb83efv5e3f+u2cvOpqnj1/hrtvuo1P3P/3/NgP/BP+4N/9LidfextnHnySssoJMjKsIsp1TKOk8an0p/YCES0XLlzAyl40Lhz5V/f4tY/9GUvHK7bPz7A6x5iGpcUFZJHRtg1SCdYOHuM9P/zjvO3Nb+PUM8/yyGNP8YH/65f5vh/5KZ6/7zTPPvkwZtwiOokuoZSaynZsPvsI1Vvfye233MR3fve3cfHyOZ746tNMN88zMTXFIF1DmTaEUKBlZDxrMNaxsLCAcZCHgJaSPMtwJu2/Ykycuhgjo+GAW2+9jm/71rs4uHKSD/2HP+X81pinz5zF+ntYXZpnYa4AJzAiMlwsWVmZ4/Wvu7tvXwxYF/sBt6MzlosbW3z8rz7F1776COu7G1iXDBrSQeMkh44d59Dq4dQkLpIrU8RAFFckpivaUmTfTds7Nl/e4bM/Y+wP/MSgGI93cHunWFxYQ88dRuucYFICYa8L3P/cJT779w8SvEPmkrGJ/N4ffozb7riF5aM3MhgW6HKBZrLDuQvnWZqTlNUKopzn1AsvcdyDygZsbFxmb/Myi0vzTKygmza02RTnHXk+5Oo7buGVr3obXg5Zf+EUm2ceZVZf4PjyKgvLK6zvbNG6TaKfkOsiJZZsGox7F8mHOYgiNYl/HT++7oLS8spRREw19kCCNwuBELJ385De3JjEku2Ny7i2wziH1hJvLVprgrcUWqO1RvYOI4kiQyJ8rzqSLOQyeqRPQLBMFQxGBc10lkQO37st+ovDuwRtFSJFN5x1xBhwPpLnWcqbE/pUS5oOSSnw3kKP1RUhwRCDEAidWEHSdmiVpfY3H1IW3lmGwwEhekxnyRAoIdGCPlYnX25qI7l+jHM4nwQsZIZrWxye2HUooVIcpW0gBrwz7O1sUxYDMpVApSJEvIhIVWFEnkQwnxqZtFJkGrRw+BhxbYsPCa6rlCKKJBxIqeiMxVpLDAMEqm/M6aHkIYUalJZIKa7AUveb82IvnsQIPqQGMGJyc8k+D09Is+dUVRsSvH3/6/D4EJEiRxBpW4tUkjLPyPOcxtVEG9FZjhCWuQEcHEryImNcW4KN2C7QNo7d3RmrSxXESNM0hGCRMsML2N7t0mEhRGJQqTmv35xlCDKtQApGc3NUwxxjLUrkNE2LMQ1106RNZbDJuUTAuABIpo3tGV5Jagje91GHFAYRziIQfSwmEqJE9oKHECm24Xs/ohKC6B0ypofj/v9KEGjo76X0b92+CBTSn1JGlNDkBFqraI2DJrVrLIwGdD4QgiCIdO3v7M5QSpHnZZp4hpDcLN6n9ylTlGVB27YoCdXCfAKniwSNRSURxJnUChORCCGxNtAZhw2BtkvAbikV9d4YWRQp2mU81li2OoOzHSorWVhYYDAaYk2Lj5HpdIbOc5yriXLI/MICWmmcMXSzKfNVBSRXVQLFkt4HEXomWrKBC+Fpm5azZ87ivcXMZgQc1UjhbPo5tU3vQ+y/rt/bpv8ijaOTiCZEP02GEBVlrrn1msM88AWBcx5lLaIzRCmRfS1qiAKLYKuxDBcrRKwYlnNMmxmtmzFXDRkM5pjWDW1MDoOirOg6hw6Rrm651NUM8gxTt7T1hKgrnI8YG1nf2MHqQF1b1puGabtDNpwjOksIDq0Ew0KRaYFPyjrKiQT4tx3jaDERCpVRDgbsbO5iY0DK1GgYBcwPBizPDXDBMRmPISTeTVXm1C1kOgcBQQaKoiAGsCYdiEUUxOCJ1qG8p2smoA1FNyDqEpctsNXWXLp4GSkVy2vzaLXCbDplurvbH2olIViUksyXms5FQu/Acl7SRUfwkTklaYzgid0dtm1G/cZv55AwLO+cJrQThPMU1SBFPjOg8ygZ0b0ALrsJrvC0exOGJ29g/dpX8vDDX0ECC1Jx3cKQapgx7hsyJ21iw4kAc3mJMBajIloL9upk149Zx4gCqRMHbTSqaLoJ6y+eQsYmOTZFjtCJAzUZezxwZHlEbiXLw4JNrRHzc+TBYxuDMx0hGLQMIDJ0JpDSUGVw64038NDjT5NX20xnNQduu57tznLvvfdhG0M1GrFy4ACD0YCqVDjrmdUesgKtNQePHafpajoHl7c3QHqwEPJ0zwcc0Se2Vuzt6QIoCsmgKjATg7QerSNaZbhgsF4QjGFvd8xDDz+Ok0W6y/KcHPpijXBlTSCmqHRRDRjOr6DyCjut0VJSeEEnVAIIRonB0JnAutll8vCM5YV5FpfmX467RkcpHN0sorVl4+yMF585wOpVJ2m7VOkOAiEDKgeZa6SSBBTGOerWUE/WQQ2ZNS3OtezsRiZ1zW1v+S5WvuUEs42XePHJf8Dv7bK3s0PXtNTWEkMkpIdHsuVbj8glrk2sKqLA+haJpNSaG2+8lscee5Iu9C5fAdpLvunuN3NiMePqG1+BzgtEDLigoJ4Rq4iJBcYbkJ5cFyA1C4sLiOhZf+kF9tYN+WARUVjGu3t0MfDAU09xeXsLWZYUKmM63mH14GGeffJJ8l5QQgjKwYBjJ49TDSqayR6+F2Ji9AktIANKp3hfDFxx0AQBdWPY2Z0ybWZcXr9AM+tou4ZoOrTU5HnF1TctMxot0G1v07XJmRUzcLkijxW5nrAxbTi/vknnHuXGG69jeW7IBUnaL8mckBXEaBEhYEwHmSY4m1y32YBoO2R0dO2U3fGUgiw9mwUYZykLjdjn21mHlhkeg/QKZyx1PcE4lwaFcT+iFfDRcu708/zVx/+Gc5fOkQ0GCWFA4nTKK9PyiPOOjc0N1j//OR56+BHuuvNVLMzlzEzipWhE2q/ExEDy1hNF6LfugrqumbRtioIikB4ymaFVRtrBWpDpvpnsTpg0DVWRJQ5nAC81URWEmNyoot/ldk2DN6BFSVVVZDo1HIpcMHvpHDvTGW0wyS0nUuFFuqQljXN4AXjL9qxFZwWXty7yK7/0i9Q7L9FWA8JkgiBjMm2463veyMHlES4kWPj/68MDLuBt7FmECpWnaN9oseLETdewO95k9aklDh5ZBe+4+vbbMZ1hPJlw/nxyPZ67eJGt3V1q7/jbT36SV7zmdn7oHW+lyhO4u11eYnF+ia7pEF4nETTL0JlDZDlGaqpiQF23rCzPs9FZChN413/5Lh576B8YX+yY7jTkQZHNz1EKxf1PPsrpi88RheWVr3szt73hdUjncHXHcNvyj971Th7/k4/ye//+jzgl95CDRep2gvUJzdG1hs6R+J/WJZ4lES8gy0v8XIs3DVkh2NmdEJQjJyOWA4zxzBpHlWt2trd46onneOWb7+a9GxOuvvMO/v4LD/Lpv/0kF+uMzkZQhr31Kevb5/nrP/wQf3PpBVw1YFvVLB5c5blnnsFNal555ysQR5dwywPWHz3LgduPEy5M+Ce/9Rv8hI48+/t/zv/6R7/LppK89z0/wdRZvv+utxKaDrW1STbewYt03rLOkGnFsCr6fZUhFxl1bFheWObTH/owTzx1iuH8kLVsRjk0TFrPtFMIIVFKoXR6rthuhg/w1a+dI6ocjGI4LPF1x0ZscH2trdQFRaYpHDjfcKACpQMHDlzP8xcuYvHQReJiZOvCJrY2fN9//TPY06f4y499FG0tVV0zFzzGR2664RX8wPd9D4tzc9x5/W38xQc/yI98+3ey+eQjnPjR97L5hpv53+//aZCa2DUMlkEpj+08bWex3jO/vMyJY9dx6uln6Lo0DFk6uMr25kWy5Qoxa+lcR6Eko9EcgUBrLSFKbNvxTa+9i29961upBgNuvuZqxucuMzd3iINrx7g8b7n+2lfyxANfQOvkjF3MRiADV99wA0pp5haXeetbvoOPffCDvHj+PEEJFlbX2NrZ4fjaGmUeWHctwaY25iyrKKRCZRVOJMxB9MmgYU26V4VQzGYNN77iGu56wxs4cs1dPPXgZxHCM1+VTJuaqqqYtQ128zKDckBelFy4NOP02dO88vbXMqhKYpRs7e1gOoNrar7y6KM8/MX7UNJweXuDtpkSgkMogZcCIeb4m//4FW55xS284TWvR0uVTmBCpXN9H19+OVicEjgve5d6HE6MvWtC9Dt/wea45VMf/zNee4NkcekwZTGP1iVeegaLayw1NUG9xKweI2NH21l0VnBhb4/GG44fvYmuq9ndPI8qWm668Q46O0YRWH3lGwkip93d5NK55xiPd1lYqlheXUVGzSW7wc7uFqrU3H77nRy74S2ImGO6jky9hNKBg6trLMzlzC+sIlWOMB120CHVgGa2g6BDi2H/UA10VqS16+v48fV3KCmIIUNmOT54yoIrEYnYO46kTzwFJ0EJjXM+LUChjy5pie4rIVXf4pYpgZUJqu0jadoFQMCnUwSuccisYFgMMHVDjBaCf/kAHkkTGZHgXFcESNEf+mO64fZfba9lpuhcP1FKOoggRpWgai4mGHRj0MKkVhNriD4tznmeU+Y5XdsSXCDTIrXR2C5N7wRpohrS5sJ5j/fJCu9jqk22zuIcEEXqpOint96l3LrvPHmWUegsNfLYSMxUUmfzFDmjd1aJkISIaAPOWFzwoBRaq/R7kanhqXMOaxJQXMjEBfL90TME30fWZO+yEug8xzuLNSmiF1wS4oIPCBGuAM1DjEkcEYlHFaNHxNC37ZGmVFIghMJYAyJVNNsQ0MHRtJ5SV2TCg2mRKHanhvG4o8ozpJbJpaAVdT1jb5wTfBJm0kxX4GLXu38yZEwPmiQeJoEsvfNpI0cMINIBONPJQl4OKvI8Y1CNiAJscPjaYruW3XpCdAEXJaFPGMn+2okIopS4ACpAJmWKJUmJ86lGOkRQOk20Y6RvbhOo/qEW+2sY0uZU7bvaYkCT2ANdtODTzy0y0ErhhWLSOBofoOtwPrLXepxxdJ3przmF9wrjwfqOXGfJ2RQS8FtrSZlrbBdTLAPPbDxmVFWU1TI7e3uEoED1h4grlZwCYyz1tME5m+KWIrG0rOsotMYZiw8B23lccLRtzXQyIVca23Q0bU3XdkmgyRIY2zuHrgYEZ7EWykzjXYeUkRg9+22DSqgrDP3k7g8EIjLTID0xGigDroGmi7igKHAMc43x6fcd+onL/kMjRVt7V+P+zDcKcpmxuztj66Un0UqCtcgqMXhTlCatU+nwke6TWd0yP8pxpsaYGukjrWjZcBu03ZQiH1DMr+AkTK3hwtjR7TXcsLLAyaNrNM5BTNGOEAOXx4ZxdOzMLKe3amZorBAIFVBFjnMNmeobHlSg0hqhJD5mZFmJ3drGmtjzvWBxYUQznuKCBREY5slFsjhfkOcy1ZoHm9otMp0imiK5EQRQZqnFq1HJCelt1zsZU9ulcx6cSc9zO8PPdhgtLXP2mXMUq6u0L55j+/I2J08cJMsUQiWXw+54RpFJBmXJcGFAzNM1PhnP8NGCSc2HZBm2m3FqWlMVi+TzOWp6DuFTe1xE0LUNWmsKnVErg3ABLRwxdkhdYOpA3ewxmY45cPfbmWYz2osbjDZ3iVIwdZ7aeNZty9Q7gk/NkjKH2DiqPLnHOm+JQVKFxA0ysw4fPFkucSFHoCiqRSICGyJd45mOp0gURVZS73ZUR1fBGgbzGbmBRigutR2NcASRYOHag84s0dSY2ZiVg8dwj1mefu4lptay9exZnnjs1L5MmprDkGRCoHKFLjKk0uTFkOHCIoOyxDsYri6gynnqeswgy1JBQ7Q4k5hJSkqCztM6KSVXHVzl4PwiopXgJN4LUNB2cP7iFs8+8wjnzm1R2xlRV8QokTH2E8WW4CyImOIQMdnFh/Nz5FWOb00q2yDtGXLv8SE11LStwUdPDND118qh1rK4MEwbyRgQ0TIcFSxoTTkY0O1tkcmrmcXUfCVj8iAqFELlRKkQecFeA9uNoANcKcmaDmszjIi4xrCxNWbhmhoDRJYAACAASURBVIy5o8fh+ecospKrrzrJ3nTM5fEUs782Bo+WGRmRanGZ2gpa7wmzGV3XMqpKgpCMd3d7QaEgOIvGM5wbod2EIi7g2rpfmxyZLNirx6wsryEs6JgioCIzCGcQMTWO2c4y25syygK6czx/5iKyGlJPGrJiwHTWooeC6XiPpbUDqJgGADlp/3TVdVdz5MTxxJtrDZNZTdMaMinRKqKA2DftpoFi4r+FAHXXUJuGyd4WO1vbtF2bxHjvsGZGfPIp6knDq153F4evuYHnHnmQLNe44NBKIXTOcFASnGVrcwtnDUIEpnUDMg1dMlUS4pgQLUIJjOkoyiG+qV8eevWHB78PbFcZ0ntkv3+JKEQmyXSGbT0+OoSHICUu+ATCDf1aHPb3DIrNS+t85I8/zF5rUHlB13X/D6d2ePmei/vrFAil2Nq9zL1f+BJvf+sb0blGSElUaSihZXLhpzXVk5raNEoq8lwRrUfLnhciFFpnWJ8GOkoofEwtcjpTSKFBaqTu0QRin7+QXqLSitFwhFCaUZmjRB9pFJ6IhvGE8zsdcqQQJIeCizaVzIgcVZWIakCsHbuzloOHj0NZ0jVjLuzWbG1OKMuMtdUBUhjuvvtNCCJKpsNdypInVlXaNCY+VVc7vHX4oBgO0nBm9cBBymHGsRPX8Iobr+LSixeYrm9y5qUXePDhJ3nx7CW8he2dCeOmYTLbY2F5yPji86xfuoWTxw+hBFRSE2tHszMjIGnaDhcDxnqq+QEmePbGY7J8jo1Lu6zOjZCd5+F7v4BSgosvnMXXhrteeQeizBDZALt1kTfccSeHl5Z5+msPs3nqNE/d9yDjlWVuP3Iti684ivr95/lascON197E4489jOpFRqRPJUFeXGFaDouMXElmTcd4vEsMlkwpOuNQRPKsJMo8MYUmU3KdSlWef+kZPvZXf8LVK0c4/cILfOSxB7jw7ClwXSp9cBOMGTMYDHjmqSd4/NGH2BEJzSCLglnX8cCLz3PNNSf7SKLk5re/Eeqav3z/b7ORV7ylexMn7jjOte94G//41EP87Oc+S9M2FFXO4ZV5zp85wzNnnmPdTpMzMASc7w/vQqAjlAsLHD94nFe/6xvRl7a47s47uO+RhzDB0wKZlvgyQwZJRjq3WAT4SNeBFAFDB1aRq74AqbVs7U3JdMny0hJra2scGI7YO/80VrapgCkOOfXMI9z66rdjfWSnndC0hs6Nue+Rh7jlllfwxWcf5d4vfJZ3v/uH0fML3PWGN3NwYZRKi7ICi2Ry9hyanOsPLHNrvIv/6dc/wOfvv4fVuWV2mwmDQtK0kayAiCVGjc4r6pnhicceTmUvVqJUjqn3qAqFaWqE1OSZQsoUdY5eIqPqb1nBg/ffxxPfdDevfs03cu5vH+LJp7/Kr/3W7/DbH/4I9QsvYqZj5kaaxniKIsfSsbK0wPXXviLtYb1i6+Iuz7xwBiNJbauNJc8GbHUt2lhmJuBbhw8ehWF9a51yOGJpeZ65smBrZyPhUaTv+cGeyJTXvvkufvD7f5wzT57mM/d8imI4YNa1eJ/OtVmRkylNDIFSCvKipGlnhNgSYsHW7oTf+eM/R4/3aHfO4wK0vmU6nSLMlOg8w0yxMjdgYjxtdFxz/QmWDxy8wq6J9Gf0wP6GPf39ymb+imF0/8ncf13/DzGAkNz38MNcPv84gzteTVatEGVOlD3r2XTgYHdjG2c6Mp2+2EUIVuCMY1ZP2L54hp1LT3Hs5FFUMQUzBSUpZIFDsNc5tte3mJsbceDQYZqmY/fiWdYvXWY2u8Rb7/4+ltduYbJxmd2dLS6ffx47PoPIoSxL8izHeEcMnrwasFYeR0lNM3uWEBzGe4QXdCHiXMvG9u5/QsX5z//4ugtK3huUzBOLSKaqxWTx9r1o87J4IGJqgjEuTY+ESE1MUgggu8I/yZXCkaqAhQpIrcFZZIyp8QOHjylyJEmT72GW4USkmTWJnyR6N1AAVBIsohBkRY63KS8WSa6ply+ul43DsYdXpetRI5ROApNPlk1rHLM4QYkkBASXMvZN2zCoKqrBoN8cC4TK0MQ00Y0gCPhocCH9Xy4kEc06B6QmMTAQ08IqMw2E1F7lU4SudUn80f1kGN+m7xV02kSgUT3rAhzWpwO8i8kOHn2qh9YiojKdoj690JZlGqczlPN9sIsrG6R006U2E6X0FZEu7NuWheBlNPrLIp4PLt2s+1XKMTk8pJAEBNY5vE+OiFRp7nGNJZYZQklynSEyhWs7govYEKlNoNxHKMueQ7I3pijzVEEpInjQMrIPFI6kFg8tIs71HCli2iCKNEUJPgk9+P0WQJ+4EUKQSZ2cXXn/mvvXkraNvYsOKPOSoATRJUcYQiFFjo6WqDNcSD87MWJ7TlXobZpKJSu9EMmyqKVCxJCaZiKomDaMDt9fp5KYZlngIUZJHRW2Fy0lKmVzm9QM4pxAiLyfnJNuEiF6kKxLIoiWhGiJVvWf58r71HlHqVV/TTlylWKFZBKZ5WghEwdCSYILePbdaennS8/59HepM3SUKNsxnBsxWphL0/2+ETCS4j/pXpBYk9qYsqIi0xLXTBPvbB/G1y8GsReRVb8hikJQzY0wwhOlB2XJB0lc1FHiY0yMsVr19emxFxrjPuvyyj2gCo3oIh0eHSMXtra5cO82eZ5jbGBOS3SRpZHwfq62v2+iSOyx1kCIhhADPmh85+jqjjzXhAieyHhvDxcElzvLRtswrCoW2obGWTxQdx2TJrA+7bg8rdlqDPV+Qw4gg4CokeWITLWpCcdHbGiS+OgMeabpGpsmYKjEflKwvLzA3mxKpQWrZYlQkqWlAQMl2K4tBInMcxAaJXNgSgge7y06F3iXoLNNzwdTeQbBEgm44NOBNQi2L2+CaxhPLfWsZfHQEbJyiJmNmVeLbOxssFJKtvYsWgaKQiPxGA9z5YD5hSXOR0G7vYdSRfpeB06Q9/wJs7uFlxnDWFMMBmQ9Ty7YlrzKqbSiy3WaoPoM4XqmSeiwxnP5/PNc8w2voXrzt/Pwpz/BC6ZjZ2fCwBh2omHXOIKSBOvRStDtzfAmgFAYb3AuMd+ssShV0nQdPqSYYmcC490pk56tE1xi7gglURrazjOrDUprQp1cX6aeIZ1grsrRmaDpPE4ITAAtkuvl4vpFustjdrcv9xXuDik1uiwQMabGUcDESBMceIOfTAkeot8inD2TWoOIKX6bZeRSsDdtGY465i5uMqtrEAlmHEM/2YuRpu5o4hRZeWJ0eFHiXKR2gQfv+xpT40iqd07qMexj0SIkIViltUFI0EIxNz9PORhBlIlBICRCiMTKImKMI0TIi2FiHBIxLmJCy86kZTAYEGXEtFMKBZXSzOqOcrDAbDrh3FOnGR07RPQhwcfSokTrkyu5tY6N1jMVGp2XBB/pYkYbE2dFxsClMy8yOnyAqijYmToam5yZu3XH1CZHaIYGoRgtrpAVBQeOH+OxM+c4vz2lGU8JUnDixHGKomCv9qweOYZzaZjjXZec2s6lFleRHCwgCD59XuqQ9kQi4r3FtS2z6RRdZgzLiquOHMPvbTOvPMP5DLs8hzh4iK1Hn2E0KFJszGeUUWEQFHmRhnFZSRRw4fwFTp0+zeLCAirXjObmaOoZ0hti1Agsum/Y6Rf6tJuKEmcNyju0acmCo3MeWeT9PZMzno2ZPvMYKwcPsHbwCJQZne0ggmsMUghynTiK1nrG45qinLKxsY2SGdEFpEqCViQNNawxlNVcWhcFDKuS1eUDXDp7ls56greUaiEdMntRRiDRKvGegnSoSHK+IhJrLtMEm9bCtEZHikzztfseYMd0KQIYXM+e8v2MMvY8vv1Ba3KqextACiZNw3hSs1DGfn0XCJ3EH9GzqJL7Nh0wtYRcaIywgEQKneDnSiFjSHB7mYZVSvXikXBECVrmKCmRImEKYn+fJVFKpgN5HzmJMuI6S1kpzjzzKDvOU4V4hY8ZY+JLRunJioomaLIoWVheY/nEcaSQ5LmG4wIvzrG6vERZlmgR+fM//Sg3/ut/SRETWzH6kNzqMsHs0elZMhgK8iqjaR3egcgk3cxx6cKEO9/wehQBZyT3fO7znH7pNPc//DizNjJcWqNrXRpkR0shBANrOP3YQ5w4eDdCaYJXGNGwurrC3t6Uzgp859FFwbRp6bxFyAyvNJnOmR8t8N6f+Kd88eOfZbAg+NrXnsUcPsBPv/efcejIIeaPnWTz/CUW5kacXJrn8x/+NEM15KFHPsdz045Xvf8XQEnc8grSOc6cfi7xUoUADc4IbGeQKkt7L5lc7nmhaXXGzHTgBFGBCZBLQWEiWZlhXbpWLYmH2rrAAw98gcfynFnTkcmK0aBkNjNpoIwgy5eQwdM5gcolKigimp2dXT72kQ9x+8038/qr35L29dbRbGzx9Je+zB9/5i943nQsVStUQ8fePY9zphyxTEAtD3Gt5YO//++5/56/48ULp9j0EekjwguUSNen9Ypctxw+ehU/+c//O972zXfzq//VezgbJ7Rdm/ZGRjEOEERqTY3CIYSjyucw0/QzGJ9iSqUG41ti67GmQwFaeqo8473v+UkOuoY/+L2f56W6wbaaaqRYWFH85M/9DH/wZ3/O333uU4Rmhz0z5bd+8/28470/znONRK8e4KOf+EtOXncN//QH341dv8xXnn6aBx55jFvwnDy0wjf/4+9HKMGl8SbP773IWCqUVgxKSaYNne3wTpOVGS6zuOixRhGjRwXSXpzIdFKRiZy8hK7umF+SNJ1DyoAxnuhdaiXFEwqY4hl3hpXX3shbbzvGZz7913zt83/DeLKNdDAa5rjOUTeGw3MpZfHCY4+xtng1X/jMPXziI3/EEy88SRCCZmYIMZJXiSFrvaLtLISAj5G5UtNYQ5YpgolM7S5FponGE32kUAKpBIurC5x56lm+9MCX+exHP02nDC4orHCoPF273jukDwgZMGiqYcnS3BKZKqm7wEc//QVmL56mwOCjpXOBzc1NnLEUKrI8LFgpJIVO8d6FQcbdd97BrVddm/b5/XmeEAhe0bsxQKTz7r5XKQ0+ruTgrrAbRS+2163h4ulHWF7ImexNaJpNVDmHsCXbG1uce+ortNMJvtlDK4kgDc0BBpVgbn4Vayy5EqytHMQYy2T7HNVogc41WFODHiB1ztLRqzl+47VUpeaFU4+w+fwpQr0HneHJh5+kODVhOpmgsogJEswuJ6+9Br12kGA7ZrMZulIcWL2GTA1pakNEE5EImzQV7yWPnHqBz/z15/gXv/BL/2kx5z/j4+suKKWGiORKECIg2QdbyyQRCoHQpLYJkQ6SSiuEUumATkRKcEH0h31JjAElXubQBOeJPvT9a7F3EKTD/mw6RscAWqKFhiLHeE9nTP8GJyEnYbBTxCsSehGL/jXtR6/6i+yKo4Ar2UspFTJmCYgYHD5YsAGhUwbc92BFa9JGs8rzBLnuBQspJZq0aCsVUTIkcLQEZEBJjfL7jhRSU0e/wUibJJlA50r00bIk4IUYESE5noQB4STRytRAp2Sqg+3BxInRKwlC4IlJ/POe6D1ZllGUxRWWkZASlWlkTEDt3jCTQOey30z0V8DLh+7eThj25Tl6l0i6XSEdHPrj7pXffSBxQ5K0JBEyHVRCjCgP5JJyfsQgRkLeUEvJeOwRIdWGKy0QKmI6z2zcMKpqlpfmSMpZ//pjajMRMiZwuIsYEfprTPTteuB8SPBooXGiF0NjighKkdhRSoHUEiMSH0yIiIwR1dvAkZKiyjEhyUxCJk1G5XnaMCmBDwJiINepTtR7g+hxt1omq3MqOJKI4PsoQSDIwL550/uQ4gZaEoTrJ8KCTkrq1BmebvgYCT418oWg+qlYOripK+6/tKHVMZJJgZbJlWNNm1xXKuWTg4/U1lHFAFmGbzqcN2idsa+8RAHWe3To2//Yj4elVhcfY7qWZWpGTODvnOWVFRYXl1i/cCG5WCKpjSyG1L6XFUiZXC7zgwHtZJcqL3C+TZM02Tvy+oUjXbP79aHJeeRlAJHsyzonTacFyd3gBbEWCcER94e4SVx8uQES2m5/qpoiVypofJaiXoFAnkmUgCjFlbhvb69EqkgUls44fAw4l5433nuEzNEy6yODfbNRzzKru8AT53cZFooq14xnDbud5cLYszWLTIwhyHSo8CQXnOyfw6ocQZbj4gyRrI+9EC8QIR1SgwDhIzMJ1icBLuAJQdN4KJVkkOfgHSoGyqyicen57kICxdpgCWiC7yiQFFmOzqAzqebetslZRYgUIjlX9rYn7DYt65ubOAJ2NmNpbY1bTwhWc0/II+VCQdO0CJknRpNMcUlhDAePHKashjT1aULTEI+doDh+Ei0VBw6uYS9v4DvHvDdXIr42uHTIVeL/Zu1NYy1P7zuvz7P8l3PO3evW3tV7V292O6uXOCGJieNkYpuQITMkiBGjCA0aBWmk4QUaIpBgXowgBAQCiQGBggacIZmJnDhjO/Fu92633Xa5q7q79r3ufs/2X56NF7/n3A68QUi+L7pVra6qe885/+f5/b4rRaHFtlcmjPdCDjjPtJnS7N7FDA27Vy7zzEd/lje/8OeEtSV2Zw2zpiPWhuWqYtL2+AiN80xcpIs9VVUzdykPK4HGOQyaUJd0846U25Z8ziCQs10+ZyF6OueJwVAPLClkq0lS7O8dErTGFRUhabRSdB7aqPFE9kPHfOcWh9MOHwMRsdjqFETxoKTYIAR5lpMW8FQlOXuTFsuZxAJDHwOqczQJ9puWYueQ7Z0JWiWCElN60vl+DoqDucO1E5aUQZlCyiii5/a9MW2fUDYRg0Oy4+TjQFa2mUwuhRgJEdZWV1lb32CwtExwHl1aSAmfvNy9SmGLCmsrjrIRDdRJUwyHGK1oo8K5yOG8JdhSrBC25HDeS/vg/T02yiHFyNJ1PYW1hJAYT+YsUbO9P2XiRemnraFIUnOOUWigTJrbt94m/qDk2IkzHBzu00WYuZ5pJ/lvCkjKEIKncS2dS/g7d5js7HJrbx8/nVMPBtzenma7kmJl8xRVNWSwtoSbHTJUinpUszPvKA9mLIfEoCwI0TGZN8znc6yVwOSmm7M/HjOezjk+3GRUjxguDWliw/j6FcrlDczyKt/59ptEU9J3LbqqxEpQlxzev0U5EIKmWBoRvONwb8KVd67xvueekRnMSDmE5FbK3broKovRZyVQJERH33WsDSs2Tq7R7W/jHfRB5hHftpTDIX3XsLN9n+nkkEJBMpa+dagEVV0QzTLHjq1z9eptJrM549mM7ft3WV9bwgUHNklektboKASB3JfyzJ85d44fe+E8f/XgHn3f0DXzo+UaRI373pc+IupSSESVUElszirlvKusyuy6hnt37pG8wgVR2YQQUXohkc1E5UIQlDO9UkoYtNRsz2YsFbUsPVoKP5SSZsBFVIKEaItinBiOMi1RRhTlSuzGRgtwqZQhhiAZWGVFDD0URv58Y3Ftn29mlc96yZO69NYPODjo6QD6yCOPnOazX3mVVBZ03mXyZvE9BUg9oWsYH8xYq0oeefQcvmuILtJ0PYPRCsc3NynLEaOBRRcFN959k1e+d5Ff+PHzEnWQEvFgyuywQ1UjBpsDJuOee9v7PHRujXnjJP6hT/R9x8qJY5w9fZZbV97mnUsX+MFbF/EqMG8cPQPcpCGkyKAoKJXYo2sCuzeuodwHUYzwTceVd66TQo/zLmdLSdan83OK0QjfepxrOHd2kxeefY6Hjp3h2PE1bIrMJjM2RyuoDr730nf4+U+c5IWfeAGMZG39/G/9Bnq15vH+gO/e2ReAVsG1MMVFT980NL0Qc9oIkNkpReM6YpJf9zHSSngUiohDygiMMvQEKpVtug4sFcvDJZTy7Ez28C7SlEL2h9BC7wm2p0waFRWJkhjmNLNGzv5cluNjz827V1hZHXDn/n3G4xmT3R2uX7jAF15+iatuTnSOsBn5b3/vP+PnPvW3+dmf+igXXnuRD/zGv8XbX/wcn798ma9d3ENZiXggibUxeFAE6qKnLFqGReCFn/wJvvDPP8OV6V1e+8G3wa6jQoSqpA0tZZkweFzoUNri2zkuiAq1ayLVQKOspZ+3HD9xitnBAfXKCNe2oEpS0lx+9/u00VOzjO8DNiZCGPPZz32Gog2URcXBTsvDDz3MQ08/zd0793hifYWvHk4IwXPm5EM8+ehjTMqa/+BvfJwpiXeuXOWtl1+m7xuWj2+yuXma0x/6EC9/9a84trRMTIGqdGjlaOaKYCxe5XIhJXdS0iXGJHRMtPMJa088T7N/k+FIE5Ki257RO1HhGqsxhWE4qDn/+NNQrTCetezsHfK//OH/zItf+zy2NPh2LjPrzFMUJaaLTGY9h9Oez33lq1y8ep9vff2bXLv5LvO+xUXZs6tBJUdTTLiohFQuNENrKMuCqtL42NM60DEQE/S9pK+VtqALPa6H7738EjeuXmd/OmW4VHF3/wGKAp+CxJxETWUrydELmmNrIx4++yiDesQ3X77Ii1/5ImeWA42xOO+ZTGeUuqBXkcrUpEoRdSApmUlTgvtb9ziYHrC6tC53UtSkpLh04xa7Ow8oS82pU6c4c+IExYL0UOIwWNgH9BGBLIDt/oP7PLFaMI6n2dkD94NXeOanljF2nbt3rvDdC9/l7PFVNk6usjwcUOEJZaKN8OyT5zi2eZbpzjZaTVlePwblkL2tG5iBpe961EqkqCtOn3uYUw+do5nPeHD3Cjdv3OXO3Tvobs6x1SEexXjnLkr1nH/sKfbHkX4649TZ06jhWfppw3i8S1Up6nqV6f6Mvjmkd52ABCniQuLBrS0+86ef53B/+/8b0vn/8fUjB5SkWULYFwnUlgtTa1lRZaGTgVFFuYR95+UyVQllRf54VNOaEjYldJDMIOd6FIXk8QiiQZJ4BVF+JN6rh9WKamjx8xbwonZJcqlKzoMRNiQv6yqriwSwTH/tp5IPmWT8iIVLgh3J3vOMGyi58BcKpxQEPOm7DhUjeSQRdUce0pVWmKQoraIykgllcy6UJaKsMLDJgwpIq4fPWg0lkmhBUkFpKw9FzjJQIRJ9/v+UwRtkqI8LKxrC/kaFRDckQhTGGqWoBjVlUUk4N5J/pBaZMUdsmwBGPoocUvKmMmiAZD6o/L7nqQdyEOl7/1B/LRRNFu7oZRhLKgOGMdKFntprovOk6DBVjUolAwZ0XZPBHU1RV8x6Tx9EzbK1u81wqWBYVFlGnVFpRHJOlNBSq6SZKGT/bO96bFoEw4qyxWfJuklgc/uU0Qqv5DOutSEeNYJJGLS2Rj7LUYLLiQIK9r5nMBxQF4ayc2gSw3rIeDqRbC8f0Boqo7AqHgGfNmV00xjJfABizs4JEWyuzjZacqF6ZfGuR8cgTYMZmC0ioIRVDF5sagLiSSixStLZZG1BXVi0qemTePiV0hB7VKXpgmfumowNeGKQoTR4J591LZY87wMxBPk85MfKIDZDvQhKLRIgCE5d1jjXS/bV4nFU6ihHxDk5N1Ai60dFlCkIfaQuFJ6U2VxpqFMp5eweOZ9iiAI0616Yf2OzgjLmv6/ALdoHyV7slG2bGXiTT6xGJwFUdUqiulKKLiUGRqOUBJ56lVshldjltLFoJeeRDwYPeCfnR/ARXQVINdEZdrvDrLD0C/qEu+MxFx9oloc1rm+ZeMtWl5i7Bq0tSYlR0ipFympQUkSFEqolHBYT5xQmCvuKpp/NMbokRUVwc4qqZt479scTnE/0RBrf8dBoQCQxnTf0ITIYDIhtmwfigPNZkaAiEi2vKWzOo1IebbS0A3rJVUq+pzCJvmtpYsS3c4zRtPt7PPP8M3zwhQGTuxPMsRGxtmwMDV0whCR2PkIE71C94+mnnmLvwZh+7wB1/jlUWQibrVaJJ0s2XYu+t49KkaZpmM47sWFqnU8jgzVG8tZMxMSSukpMfcts1nHlu9/mQ3/zNzFLq6T9GWl5RHMwZaMesLlecf3eDjtdwIVIHyMuapKD3geCks92TJ5WGUYh0vcNISbm8znTaSPPhdGYQqN1orA1ShV419EF+eyURYWPgdYH5q6nMT1OlfTRMu4tbZ/og8fHjqP2ziT15CEKOLw4y4mB4EUVSZKWJbmbMySQRAEU8llolICPqIhPgb3DXdBGgjlJ2KpGxQ6IjFvHjktsVHC8zkrfGDmczIgLxTAJvWAFk8r3b8xXgzzro+VlNo4fZ3ltVUBlo45CrelAaUMZFd5q+iR/no0hszHyPKIibQzc2z/AHCraepNeC4BolOdkOeTu/piwtcOxMxsMh5W0lzaervOUdeRgJsrfsqiJMVBYS1KOojRYJ2d/1025d/ltnOvZ29li7vsMzBt8iDlnTgKRU4h4N2faTQkhUJSWZA2tD5jk8dFTVZYy1NiksLakXlnn7MYKS8OSO/d2uX84xXWekydXmDVT7u7MGHfXGBxfRxca3/ZMDubE0TrF6klcPeKgdbQUXNtrOX18jXcu/hAHGJUVXjkXrqwrdrZuUxQFbSssdWVrzBI89vij1PWQ2eFhJpQ0JumsRdJHd7rK806MAeda2rZjkODkypCDzVUm3RYDDJ0PbHmPygq3rZ0dirIgOU89qAk+yKILLK+ucv6Jc9y/e5/b12+Lri3kJjer6boG70TBllMKUEnAoBLNSr3M2c3jbKwsc3A4ow8Jn1tkY57LVJ5TUiYPYlAom5M3wuKaCouLCaUs+zu7bO/uE+J7wOyioWgx6yzU2+mIpMjkm2w1TOZT1lcG0hqnxSqt8uKjNe8BvzGwmLTkz5O5RSux6WfISuYSEtpki1G24htdkIyVmRAtKokcb5BipNCJP/sXf8L3fnAVFyE5z/teeJb7968KIZkWeSPIOaIgIMHHnWvo6xXJURwYXBJQ2Pc9qysr7Gztc+r4E8yaOTF4/uQP/w8+8NQ/Qgxr5wAAIABJREFUYmU0RFtDt7XL3vaM4cNnmW85XnnjGq98+5t8+Bc+KAHeaolSBWbTGe9/3zPcuPQu3/rG13n9jdfBauYhEooaU5R4DH3scbMZqytyT80mB8y7SBhvYTYfpbl7h+nhBB9kzgreYazBBydAiFV432NSx4c/8gn+jY//Mpcuv0voLe9evcrWziHHV9b45he/zqWbbzMarPDJ849gCoPBwPqQVFpuz6Y882Pn8XcOqZ6s8VVFdOBdh4oQeseJzRO03ZSmtSQvu0ZRgNVif+x8AB2FdPBZkZMMbd9TDtY5/dQz/MKP/xjLXeTC5bf4y5e/gTeyP6XkGQ5rZvOeqBOOwFJlMMGhCosZeKKWc76PPbWykDxXrlzmD/67P2BYLDGfHbA92cVn4H/e9fyT/+oPmM4PWD24iv/hjF/6d/8eH/+1j/Hitet85ep1ITuDMN8pRZLWJJXQVoOOTBvFu+9c4b///f+cN778F1zvx7h+SOgdZWExNhG8QsWIsR4XAzEUGBUZDArJ1HQFdSHPpLYV9+5s89u//Vs8/8L7eeO1V3mwvcva2gbX2sjHPv27XP7263z3u6+wstzRm5YffP2PuLM1ZNoGDqcdn/rFD/M7/97v8Pv/+Pf4yv099sc7DEcrXL55mc989l9SlSUfXl/l8aee5GeefZ5/+Ad/wJ3xHQ4mB/z7f/cfoDc30T7QzsYo48BEliq5dxsnpQWBCMGjVUkMBqMjyhhiP2VlaYXpVkBXivF+S/QaH70846bAFJbnnn2eT/3ab/Dww49w8eXv8xef/xyvvvZltI10zRwVHbZGCje8xvvIdNIQk+Mvv/plhsNvUZVDOt/T9EKUVIU4CVrfoG0JEUpj0YUjhsisn1MUlpg8fdtlBXElzYxKVPk+BipbcGbzBO97/6M8+tQzfOb/+qJkFRs5f8SZIhbl5eEmSimefOoJzpw+TR8SX/rS19nfucFqdUrUSe08iyEShcmuEDzjuWcaW6wpUCguvfsu97fusTJalcOOxMXLd/hXX/gcO/duoiycOvcwzzz9FL/4cx+l1gNZRzKelNRix5Ud8WDa8K1vfY2t29/jFz/6YYYnXmB35xbOtWzt3OeHF6/xnbfu8ma8xt29KVVtKZOhMpqmb/nEL/0S1ixx4/LrPPbsaYrVh+j7Mc4Fbl95g4cf+3Fi1PTzMaaq6Jue65cvcfHNr7J9+wJJd6ilEjMY4oLsrIWyHG7v085bdg8Oefetd6gGe0SEvCk2Vgl9Q3BzIOAijMqCqioZDlf447/8GtPxNtou7qYfzdePHFBaZEeklHBRLlvx0CPgz8J/gfxbKwEdQkoYbRBtRALl8wKniEmUIlLnnCt3lYQYKwXaKkgS+ChqHY0yBmOULAomQmpZ/OVaS6hs5Igmys1af02KlAdd8p+ZUso6mnSkqlH5QNVZRVOVlWSD5MWZlEQVlCT8W+eq1oXCKCaVASkZ2qN3YuULYoswSZRKhS3olZdwwqSIyRDICiMtjEYQFIf8Mkt+QVgoIhRBi3pGR1lqQw7WTpABEGTRT6JUikkUIEVZEIOn71phtL0EUJvs6Y8xSsZXXtAXXylGUXhke1RG0bKtVeX3/ugJzq+BQI0mKWkWSdnukMGrmAJd/j6sSehRPFJIlWWJC56iKFAURwed1om26ZiOp9TrFpFyL3KNHCRpgokpooyoOMh2Nu96Ga6U2Ka0hhJRc2kjbSu1kVBdYy2pigyqgnknWVimzEtW/rm8DxkFl49Z6zrKVGGMpa40g6JgZWWVgLC5OkFhDDYFdJAw5cIarNayAAJdCBJ03bYUVpoPrS2w2hIQr2znO7Fg5nc5BJ8zLeTz7KKAR0IeBUBaCkOQnzkaCF5TFANMEPVMTJpERdIOHyLz2TiHhnuSl4Y7rSJaQ2GkBcIay3wmrYQxyKBbFqUEypouK95AJQmQN8bQdx0hiPIlkm2A+fWezyc417O+cRzneqlCNmJlPQJ9ovzMC4BTAlEzAJ2tpaWp6GIOO9VesiCQDCEMpF4TDRJ4n5EtgYYXB1lmtpO0NYYig1YkDJE143E5iDEQyEJJsaMoTdQaR8yguEhStVKYrN7QNkkuVgTfeUDLgmEj1/bn2MOWQWkpVo/TjHekLRJDSpLZlTLAqZWSxVpDiIZWr5CUxppWwEcS3azl+Z/+efpild17t9C1ppt3dL3FdS3eOU4eG3FqY0g7F0aTqCkKQx0lF0yDWOBUVncFjS4KXHDE1EuAuY8EFzIg6iF5VlAMdY+hYLiySTvZgr7lJ86vsTIEO5oz0Gs0XcdyUVCXiV6XTHuHc9JG2M0blkYVjz31MA+uVEyMpVKS8zGPCsqKoZsTux7vWubTCZ2TM62KmiKaXMyQmSosKckzNaIkpsT9u9fpp1PWz51jenCHYnUZfCCSqI3h+HLNQdvQpgRaYZXFB5UzRgTggMRgVFEXJX3nOJw0NM0M51z+LPH/UKeSFMFFvNYcjMc0sym+71hZWyPNO/anMw6jYdZrOh/wXixmAkAmAkKALDLjQuwFAI0KLz3oR/d2CiqTHTEDPDorWfMdkYPAVFJyp8nlTud6Wu+wPlIYqIwAU32SXLYYPTEaAhbXhZy1Jq9zTLkiPStDFyTJYDBiuLLG2sY69bDOBRaZbIoelfMX1AKg8QJY++QkU4Z4NHuAqCH3DvZRWFS9QU9CO8VSadjtAskYbt7dhrpidX2VGBxN29L2PVUqmcWOoipJIaFij9aVvL4ZMMInTPRMD7fx13tC1+KdlJSEEBYBkPln9aReSUOY89myD2iTnXYBhccWI3RZy9kXEPN60hiViCFlfEpKMpQ3jJvAg+YA1UXMYEBU0DiwoaRt8u9rGupoGR87yyxa/HCJ2ilC6FheXaYwBRooBhXJBerBgNlkivI9GydOUBYFw9HKEWAtYdSBQudzxygiJtuORRGckmI+75hP59TKYYvARmk4NajZWBlxcDhm90DRzhu0LTBK0TUNznnKQaKsrFi2jaE2imJtjc3NY7x78zYpisW7MBatpEwjJlEXeyX3iSoKCi1WNV1YRkvLHN84xvVb95k2Hb3z4nJMQsAlFEEtVDteZoAMzC6QGVFlycxaVxXvXr3KYTvDJy/i45TJs/zPozzRtFBm51/n+0Np2Ns75MzmJj74PJOKzS17N/KdI1a2mNXfEmcgRJ9CAtJ9dBLyvshn1FBocwQqLRAtRSRF+btUJqsSEqWw/eAB49k+pbYMrSZM7mJUL3dnvmNTji1YzJLKO5r5hOWVNW7d2aKdVlTlEFvVdG1LVRUcjqcYW1IWnpWNde7cuMSLL77GJz/xr0nUweYao0LT9jN++M5NPv+Vb/HdN77OVrPDb/3mr3P27DGMCvSHe8ymLZ/53/5XXn7jFerRkNXj6/RRgtN9d4C2SxgFJmp8mBOi4+rtm1TO0rZTqtwaGwLoUshqsfrFPOsoWj8juo5CW+7dusnn/uxz3Lz6Nu1hpDuc4juYzBq2p4eceeopzr3wHIU2AqTsH/DGF7/OD3bv8MPvvMzyiVP8/b/7u1z67Jd5+eI7zFt536uy4tETJ3jk2AbXHtzhYO6wMaIyiF9qjevFElxihJhPShTVnSgPNqoh7/vJD/EP/8O/z52/+hrf+9pXJB/OOaJKEB2+h7IqqIsK54JkMHlHKCxdzEsEWTWuEi72uHbM1mzCs8/9FJE5zWEPMVEag06amWtZO7bGV/7qC3z0H/0+73v+KVRRcvajP8sHXvkWrxwcEFufx6R8uemE0gV9J7uC0orPff4zDJYMZdSkVJBcYlhWYksPoq7tU6SLoHzP6uYm68snuDK9BJWWIAvv0LGkcy3LwxEf/9gnmGzv4npP7wJPf+BnefiRc9y+8CZKJXYPW848dZ7tt28z7a2ULWnFxcs3+G/+yX/CmxdfZN4YUAbXz3nn3bcJFDzx6BM8+WCH8+efZuvVVzFuQmUaRqnnwuV3ee2N1xkNLLNmX4D2NqFrI3NL8jRNQlmDVgarDFErSAWz2YQU4M3vvMqg9oQu0s+85ORlsl9rQ1FqHn/6cc4/+yzjHq5fvcY7b71K8h2pb0g4tBU7LjHQ97nRK1p8SvSuox93FMxQqmB5bYUPfehn6A/HvPnO28znc8lvU5YYHdFLm1mB7CajuqS0Aa0Cznt8LHFRoYlYEiNruHTxFi/89Pv58M98kv/0v/xnlGoJ7zoqq3BdhGTo8lm5NBzy9LM/xsmTZ3n71gEXfvAdjp/YpOkbku+J3mWw19N5ARhLpWhCoHE9da0oKWmbjr53+ZyVff/1N95ifucyRdPQE7jdNFx554c8+ehxnnzkhfeGraMol2yVS6CN4f7ehFOnNzn5+HOUo9N0sWV7e8pf/tUrXLn0FocH+7h5i/Mdx1aWs5UxUpeJE6dOc/Wdi+zdfZfnPvQkRbWOMYa3r2yzf/M7LNtVxnsN3iWm3Zxu2nL1nUvcufkGxraU1mA01FXNcLjE6sYKrg88ONwnHIwxOnLv1l0iD5hM5wxry5OPnoMu4JG8PKMUhdbURcGNO/tcvPIuxhra/Dr9qL5+5IBSyl6hhHjChdKXNwhjM3eFMCyIEkAb8dOWRSkDQOwFGEkBkpGAYxAGKgrCTVTSdlCUkniL2KEkjwWS0gQEWBoMJSzUR8esmZHiwjYmy9Vi6Vz0BKYjJVEGnmIGFN7jggRYWgAeWmGMpShKtIb5dI4CFnHg1tpsldPvjRAqkgiElETO2HmMbvG9J/QOrCH6iC1KYkwYbfE64LwCbQmxRykwqsQUFmMD0Xv5fnKWjtaSwxGi1JoTIWkBgWIUv3bKoNpiRjIIk5diysytxjlHMxMGVWX7oT6SCspwHxeZPwmO8qoWw5LiKG8m/5aMfMniFFNmwo+sSZK5FVMO7w6inIle00dH30tAZh8cS6ORDNdFSfA9tixoe4fLCqeMg3O4P2N1ZYnCWFleorCQKMkeUknq0VMKGEQ5o5JHaRlQtVIEfAagZFEBLWHLSmx0g7pCbaxRtTXTyURaObQ0F+Lze2Jy24BSwhrEJAwFoiZSCIBqdIFVisporDL4Xp6rgCh0og6oqLDWEByUZYUxVVYVQELTe1mg+tDJ75NRkxSjMIkIoKkSiHskiY0tiepqEdbpU6KPCR0jUZkMhGqx9NmK0kZ0MqjYYNWCcZEweGsMdV0yGgwobEFK4P1MmkyUQRUWH4W1DynInGE0tigEiM1B9drkpTNL/Utd5bNfQmJ96FEoDsaHEKUVUJoFDUbke2ikZVFGb2kuhIiLER8VhcklASEbYlVCFxrVy1EWjkqyOXp2VLaEihoTwBOizvOSYtVozq0u0zcHzGbNkY0zJWGao9JE46hswAdFNdB0LsmiojStmqMxJJPQwUotNB6SQfWG1kexPJS1VGUHRdKFKMUo3lNrImoSnXRWDoqSsDcD5j5RMaOM8r598GO/THniYSZ7EzTgu4b9vUPm8yn3H9zAHt6hjofs7ffM5x3DuiQS0Eby6HQhAcFlVdM2Hd5La9J0PMeWWvKJnKiUyNl6YMAHHhoodpselpeYjO/x6LFlnnl8FQ7GhFoGfrfdMqoKWh0pigJPzAq7RHANzeEh559+hrf3eg68gLGTecdIG3yCsm1w00Pafp8QItYYuuBpnaMsCtFT+YCJEaNTVreIMnJ1fYO9q1c4uL/F2fNPc+/NlzHW4qxl2nQsu8Dq0oDT0XN7dyYZVSmgk8WaiFIFOola64knnsK4xP3xIV3vYTFUBlGJkAylkffOeVEF7U9bxn3NZP+AeegYLq+w2x2w1w2YeMnfWyhwUzaYLtQhKii5K414bl2KsmyqdNTWuQB4RJkheS9HFp0kd4q2JgM+YrtNMRBCoA8BrQ0pdeiqQhUV2qjMqIrlXSvoo9j14uJZyIqKlJVKhVUMBkOW1tZZWltiOBhgVJKg9ZToA/g+QJTWGZUt6iHKs6CVJiYBhpU2R2SQUqKSDjESVUAn6JJBGU3nYHrQEvqONiUOmzk+M63TpqftHWUX0KmgMIpuNseaQDJW7FQ+0JIokxEwLnq6gz2KosAqg0sLYBwMQsKYpNDB4Y1ckkonnJHPmkFJCHgUEMB1LdXSilhXQ2aFYyJ4TxFCBtqFVGpDT+cdccsRTUEaFrSFxhRDbD1EFyVd31NqRbF+inFhUcdPEqY38NFg6kJUKz5y8a3vQ1mytLGOqioqq1leqVG2ZNLOGU8m7O0f4HMeYzQlISlqIxYtlZB8pwgxOpqmoQiejVpjnGfZJJ49tc5oach3d/aodKIlgCpoZzO0EaA4ZVuXEHcFKniG9ZATJ08yKOvcrChMuuu9BNtHmS2VgtXjp7DFCGtrYnBsbW9x++ZdTj58lvLtS+jk3ytr0KLOk6ZGjUvSlBqFhYCQJAxepaxikvly+/5d3vjem7R9R4xZdb2IKMgkmlwdKs+UvHef5Nw0pQyHhxOaroFks7pIo4wo6ZxKoIWUUMbmNlyk3VIh5Ry2QBtDWVYonTM9lcJFcpGHlIvEBMrK/WizYlQaZjO4FSOrw4KnT61TGMXpjRXKwvIgJnxUmCiEXspWCsl9TKAjoZ1xcLCDb8Y0hyVnVjZZWluhiy3OGfquZd40WGMpLCwtW9584zt86ld+Abzj9pV3ePPbF7g37rm1vcO1G++QholrVy7x+lvfZv3YMvfuXGNjULG2vE69vIaqhjRdwO1N0dWQqBNaVYz390ip59yZ0zTTAzrfc/X2DfpJz9e+/SYf1Wf52ndfI4Sepm3RSpp1Q0jidwGGo2WSEYfDi9/4FiWapx55iL2DlhLF6ZOb7DUzlk6d4n0//n6e/8ALYoPVmpvffoM/+ot/yYXde1Rly+zOJWY6cf3CZa4e3ia4SNKJn/uZX+BvfuqT7L59AfPGBc49Aq++9g1apVheWuJDH/4gzd1tXvv+BVHfR4cyBTo6rEnYusLYyEPLqwKGP3eev/Ob/zbrW9f40z/+I6q6InY9MZOTyUV0KPHJ4ZJklAqOpNFGMygsDoV3kbKUEPQHt6/j+plwIloyZAOAVwSvObt5jA88/yRLx5bRRcHZj3yE3/71v8X4c3/Km3fugDZUlcWUDh8ThQ2ErqesDMn0RKVpfIcpLbVpid2ASkn2zWDYYUxPRyAFaRSbTyc0Y4/zlQgWEPeG1QZfJT73hT9nb3rIzs0bzOYNN69f5Mz6El/4/Bvcn3WkYpmtA8fe1Y79fUMLzJtDyqLi0uVLXLkfju45UMQI1hScf/xJPvHxX+G5Z59kNBzw9QvfYaYca/WAx376J9iZNgTfYiqL9TUuzQgOIdpioO0U86nDlJaqrimXRpw+cZKf/fAvc+PWVR5+6BSf/cP/iZmDdu4oCgO9WMuq0oLxKHouXLjAK6++wgc+8hE++pMf4FufhQd4ur4llpmkD4EUZE6NWdVrlSUqjfceD5B6No+fQfnIdDzH2ApSh1WJEHq0CvheEZyUN5EipUpYHfLOnVAmMDCKOkU6r6kSuLbh5a++wVtX/mtu3LzP2lJJVcv+GJwjJAUqcm/3Put+FWMr5tHwz/75Z3GzHarVTdq2hdDjnaMP0tzeh4jS9qgUoQ+BMgsj2lbKoRIytzchsn3nDsbNaWczOhyWSNt03Lx+mScfeUGKpkxW1GYUQL40q8OaT3/6k6yMYLiywWzmaJtDpvuOV196iaFxVCpSL9csxVKsmElJ43fyfPUbr/H8E49xds1RFQXGaCYHnncv/oB12zE/OOBg74DJ4ZjpZEIRYby9w/72DqMyYQcVXnlOPPoYZ557gaI+xcF0n1uvvEI33uPJ9eM0XUszCfTjCaaK7Bai6l09+wR26QTlyhrstxhT843XX6V30nyo31vLfyRfP3rLm5Fw4ZQkzFZlmE9EJotlNx2R+sL4R5JrgILhcEDqQw6MljwlAxmwCBBzo1FMYAqRzftIqd+De5TKqCwyIBf1AFsUtO2cLuQK2RTxwUtooVlk6nCESiqtMs4kGU8hX5ZamyP5MQpRVUWPLQy2KNAkbClsPBGKoqCoKqLLS0JWa0XeU0mFFKXdzcXMTOeGr6IUdk5bklIoXZJ0zNYDIzk9ppC8JYGiZbjPgIkIjhYKMJWHuiAtEilmi98i6UChMKho0MmjUxIgLAZU8BAc0TkBGmyRQTxysFlWg/DXgKP/17+FrM+A0eIrLT4ZwnJppTMIJIOaj0pkvikSsu0sKSU5M20g0aCAQTWUhdsKGjvvpjlnR6GswcaE6xz7+4ccO7aO0YulOsnFisHoguh6UgoCOOpA2yeiNYQgB7G8thlQjEFkxAslQRC1WlGW1AqapqHvHSYqUZYZn3MWsvJBC2saXSAUOjeOmaPKWK1zQGZuOinrChWLjM9GvJdB3bueedOJBRKFUYnCGga2YhFKF0IQ1jjbT5U26BxOqrKyLBOtJK0pUAzqGmNlqYgxEJWWgTTnoKUY0IVhNFxhaWCI8479ZnKkDpLhX2NNQVVWlFUlartqgLIdyYtCAZUZbaVJ0WNMIRlMpQSRhpnYN2Nc2ERkGc5POnVdo4yhqgqqssa7FpUKqeNWmhQWirAMfIZA13WkGMSKusi5Uvqo+lqbAu8k7wNboozOOeXCqi1UBgIAiiV1cQlpXcnynjSRwLRxXL69w/5shvMLJRNkCRPORXlObZDzLOmjRj2VRKIsmpVIMiHb4PIyCQKaK+iCYj6doZQSWayW70eAeRn4hVEO6OBJJkDSJGVpGEA3I3aOUg3pOsN6PaJaXaIYWegDw5UxZalYvVrz4AdbdHsNKQS0LlC6wPcBbaBtG7SxstgUlr2dDl3WdLEX6waSN6bRlAmil+aernXsazg3HLG6P8UvDXGd5yefP8vILpo2NY2JdG1PUWiCjhirqA0Eq+mDguRpJvucffJZzj20yfXtnn48IS0PmfetBNG2c7T3dLGg8x2d6+m7Bl8ZBnVNbUHbAh3BRIdxRtQlKhLmc1Sy3L1xjWp1NQOJCVdV7E167DRw/rQER/fuAQdNw9xJy6KO5khtsLJ5jBNnznDz4jVS9PR9T/ACsBRlQV0VAthqJUsw8vpevr3DU5sK2zbs7u+z127zwCnGboBPXpSxGbBXObMPLZ+1EMDFgEnCbGvMUWZRyNaKxTi1uBHS4g8j5dyGghA9OiZ86IkuyvO5oGGSAM+h98yVphgOqKXzS0Cf4Cm0lbzAGPBKLNfKiLV9aXmJjc11ltfWMMUAFOgUIMoSQYK+dwQnBRGRQGksvg9472TJiUFIp6z0AXLAcX4OtMnnqAyzkpmmcA6StlBo9g4brly/w8bmCvPxDN87Zk1AYeldK4rqtFA+egxBhlylsEnyIAyJZHPbq61AS4NlpTQmCUmRbJAmr5jkPY6iisBaklGUqqBSMG970rJknOlMSMSkBOT3URTHKaEJaB+IbSSoSBfnuLmiHI0oTq8RlCG4AFpGP1tHZskLsI2iNQU2GXpVoGPP9u4BIRkKXTBaHTAqLKVWdL7n1o2bTHZ2IAQGw5Km9aRaYYKGqKi1wuXjLqqINnKXdiGwN+8YFpFjayv4pNmdzpiFwKC2OddMU1Ylg8LK585oXBdYXhsSgLZpUL1jbXmZuq4Zd620A1sFQT7PnVJYpVk7fQ4zWCb1iaQrvO/Zun+PV196iY2NFbQqOXXiGHVtCa3DOU9f5k9tkiUuugQqiR04/zddFCwNhpw+e452MuYbL77Elat38EHLTJQJSp3vhsWMtJiTEuQyioVSSEpV2rZl/+CQ4ysF2nYYIkttw3g6lfbczmCtEwV+9Djv6OZzdAoUtmQ8nhKrg6P51xpDVBETA23fZfB3SFdFzPKcyXhOO2/pnaMe1BRFha4tLnieevIcPHoc71tKa9m5fZ/eC1gWQsCqTOjEIM9WnutIiXZySGgKZhMNUbPRjXFKsXp2k9j3khuUPFU9wFYD7t69zosvvUx//x6f/5M/5r5zDJZPkLRlZWPA7HDA9j0B7V7+0ovcu3Od9z31CCdOnOTYo2d5gY/w2iuvySIXWprOsX6s5rHHHmXr3g3m00NicLi+YzJXjA8n/Ku/+CZL1XHevnKVLiTG4zm2EJWqzAyKpmkYjFYY1ku0symjpQHnNk6wcWqVxszpx3NWT53k6qW3WN5Y5ROf+jiDlZr+9hbXX3qTL7/yLRqzzKc//tN89Yv/gnut48++8HlMWdC5GVEljq9t8nO//G/y/g9+kBevbvPpv/NhbKkxDl6/9DopKapyyAs//4uELvD9y+/ikkcjxF5RVJjRiOgjh3tbxKSwxzcozTI3rt9laTjCJ5djMhLJd/hoZPkNjuDEuVAUisJKXqjWHGXraROoypLJeI9CGZaKgmASvoHVJUPba/6jf/Af8+xDZzh26jgBIQGr1SV+4tOf5Nfv3OTK3Ts0RUAXkZpA58W+34dERHIiA4paGdZtge8cmJKRsYQ4JxpHPVAsFTWd63j0/E+zeewhvvqlL5HKkn7WSu6rMtR1xUp1kq07N3nlpW/CvGNpOGTr9nWuvzPlO29eonNzJt7jtaU7PGDs4JO/+mt88f/831k9s8F0OiEmi40JVVoqu8ZSPeR3/t7vcqYvGM5ajp3aBOAnf/Nv8fr+lF/7lY8x+eqX+R+uXGPZBJY3H+JGc53KeJzrmTUJbQTIrWoFWKwq+ejPf4zf/MSv8uwTz9OpwEoyXPjzP+FddUg362QP6qM4WqIlBs287bh8+TL/9J/+jzz8lc/xN37p1zl75lG+v3+TrouoQogJFQTA1kbjksQymMKKK6Es6XrP5unTnHjoEa68fYn98RhnanxIWUSRMIXEwyzIdlKkjy2zBGUsKW2J1ZHCOmIIGBWYtAHDEtdu3MPd3Cb1HRtnz+N6x8HuLYgFKUq2YKumGANf+NJXeOPt27z8la9zcqOknTf4XojYrnEC8tp8o6dEUJGkYy7LinjfcWxYtTwQAAAgAElEQVRjidXVZYwSlarWmqYdo7uGtpvjQkci4nu4cfPKkVD0KJFFLSYgQCVKo3j04bMyEWnDg3s3UV3PKy+9hsJzd2ubk5srFKbCVrU02ReVPGtRcTAOvPTdt3nhyZIPTHZZKvboJ7ucO76E8oGtvfsUS0NOnz6OW11jMhnTTCesFhXat6Ja14FqVLN68jHqwRm6B3dRveTx7t6/S+8jnXMQhOS9FQ4oR0OWN89iVod4p9msB1y/f8jl69dEwes877ksfjRfP3JAqTBWApRVlFBsLxJKn8GDFIPY1NRiZBUU1WLp5jPJUCIvQbpEbGNZVZOl9ypEQhQfbhEihRLABasI3qOjZJAoo3N7hVx0IZFVHBHvW1kwZSWTJd7kizKHywoLq4+YqJREXCybdzpS2pgsI07SlygNZPWAEDzWmtxOpwidI+mELUxWCQmzGEVwJeCVtlAkUcVojYSZqyx5RrJRgspZjsJqS04MYDQpOhIhAwyJpMSyERKgNSF5yXFIC82K2AyElYuoYEi+F0CqyIO3d9hs1ZA87gjR432LceaIBRYUXyAiCQDOL1D2oi5UHSnKeyNKtvfYu/c64FLOwzL4mHAp4pKiSglJdHe4GNBBM5+2GCUqHmNrurbPldH5NczAhveevd0DVtfWqY0FCylEitIetXhJLpBYw4zWUgmqNKsrKxzuH+Y8MGlZiyFIZ14K6JQzqKKEDToVBRDKTYJJSeOSyYopn3MXPInaWrq+h6gJRUk775iNJxR1ydKgRmt5z41OGJ0tVQqwljIanOnQJgNKKQFB/r/03udrYRtUSb6PpBDkVyWppDVWVARaFr+YJGQVbVClJbmOoORZmM9nlIMRtdY0TY+tI4NU42xgVJSkrsMTMQlRAylNDIm2dSglFfGSqWXQppBDSIscs+kDVZlBFSsNLykEUZD0HcYUcujHSGEt1lrKumBpOCJ56JNYv9CJFOQq1BlMUkoAN9c7+lZssOPpjLJYYt7sYZLUUUc/RyeF1WVmvATQJEkulBLpSO4X0LnmOEmweopY8vMaIcbE2Eeu7G7TNx5lLdZqef60lvek84Re0efA+xTBWoXzEWMCWDEZGaXlclQRHXOLn5YAU2VqoioIvoHYi+YnaEySNp+F0kTLti0KsuBRRuObjtGwZqkaUDjPR//2v4OvNjjYn7E0WEIpw4yE1QPCbI/JzXdpJ9uEvpc2QsBai/NiLzU6Mu8bQNG10iRZ5gg1W2h6L2dMNSiIhWE+nzNr5tjSYpdGzKshSxuK6vhpZjc3+Kn3PYWZeFTf443FTx2BAqzCZhWANyVehRxQ74m+IfQd73/uGV750ndoupZiVDOyYt9VbUMXWjQOpaR1sE3SiLbs5DVO0QnEnqSgoI+emAqa8S6+MGxfv8EjH3wBUw9xwVOuHyPMAlOf2Dx7moEVS9PuZEwbDPP5jEkLXmmq4Qonzj9LWQ7ZPdinVU5y61ASgomHNlCaElWU8hn0YlXtvefdmw94fNCxuztmNyoOzAo+5lyurHAkidVRVHNZTZQLEqRpTkBttTiec9bAwh5Jbgc8Oo8TOWi7JRAJIeaQbzKiLsOWUpJ7F5Oj72Sp1vWIaCIuQHARrQyDQcFe02MzEG41rK2vS6j6UKxUMWbLdBJCKcSE906KB/J3ppG7PimEIFJGbD0hCaic7/0FAaKiQiWFi4ufkxwmbFBBWlSjUTQ+cH1rl9bnplgiqZvjoyd2Tu7FmAgEQlrkwkW6mChzu1qMUOWWLh9BByFIdAKNwZZidy1tgfMdw2qFhEKrQDCaQoPxgYjY5RbnQwBRki7G/SQ2AClasBSmJqUpMTl0/h6qzjHwEeO92OdVxGZldsAQrBR82CD2hbnzlEpThWzdGgw5trLMxrBg+/59urYj9B7XNAzrkqaZ4lxPNzfsbEM1GHF/O3B/7FgajEQpXlXM245YDtntA8MEtmvpfcetfY9dPcP6AGad4/jZszz21BMo54kpSXCpNqSgaOc9AD0eY8X6sVBVK2Rx6rsZJnppVjUSXGwqQ9uL6jJ6x4O795ge7PLEw2d57vzj0E0ZzyOdj5RtT0ukmYzpkpznynX44YrMha5j7/ZNDmcdt67fYHt7nyu379G5RaftQqEUsxD7vcFdbG955iQr2ZXOi4xYjA4nU4w5i9aW0or6LIZEVQ7xwWONqDZKbalNgSkryrLCGovWCasLOZsLw6AeCtkWEsNBxbCu0OWQwXBAVRQUVmNHI2bNjN719LEjMURFqEclTXNI183pWkXrWrq+yQppIaKSlww2pRRW2zzySQ5mn6Tl8P7BPtpXmGKAnXkwlta1QvwqzaAcsr+3xX/xj3+P6Dq6+Rxswhw8YLi8ydL6GivDmur4MXbvPOD621eoS8PN6w94cPsuzz7zLL1vuHPvASdPnmBlbUQfD5lN9uiX1zlz4gT3799FEenmPXPA9YnXv/cm+1tbrIxGbG1vM+9aTC+q/Bgh+oRBQFiXVc94Rdc7rt++T9PD2fUTYBWF0ezvbrO5vorSimJthZM/9iyffN/jfGpYM+g7Ln7z87y7v8t83qD6nsIovO75mV/8Vf71X/pZ/Kzj5Pmn6VPPxQtvs/nI0xzb2WL12AqH9w85WO85mHZQKKwrwSesGeFTYFCvU9ZDAhIPcX9/zovbd7h84fu4pDh+9gn8/iGT2Z6QIMnTtzN0ivg+UtaVnO0owEg7aTSS2xqilNQag9KaAen/Zu49o7VL7/K+3912ecppb595p72jEZJmJCEJFQQyQhbIoCCwwODgrEWxCQEDMYkdLGxkEpLglWJjmyR2iFEcsOmCSEIoyGqozKiPpveZt9dTn7b3XfPhv88r2R+yVtbig8+XKWfeec7znL3vfd/X/7p+F8vVgtqNyE6zXjeMx2Ne8fpXQcnM//BzlG++l/UjI9qNdU4dP02NpUdKQA7LYELKJCxaOUpYYm2h9JCUxTVj6qqgSsDnHqMcYZFJNrIqiReeOMfVZpfVKmKyGYRAccnaquZbv+v7ef2LTxPnC77wyBf5xEc+yBceeYR+Ebh89Rp97qEk6towv7HPS9/wJr7/u7+PP/ut3wQ03bzn9jvvYffqC9z9kvs4PTnJn33yU9z/mU/xujP38rpv/2Yef/JJjm4dZePECX78p36Scx/9FP/7R/+Uc90BOq4gTjFYDA2FzCrKWXTcKFRlsWqdYgt/8Ztexzfc9wqmzZg8nbLzb7/EmlNMjaWsK3yfUU3CdhofA+Qaow0xJx55/Em0jqy1LQdhiR+EuEwg9InKWVJJGKuxWkqqTAxAoXYVJ04d54d++G9w/+PPcO6Jh+n6BdP1KcHKOVWrgnWtPHdTh+8T7UjT5UBlFY2zrOuKLQVdznRApSucTnRaseg6atcwGRtOnr6L+z91P1PTcOTIGnvb25LaiBFF5PFHHuKpxx4j546mOYOf7WFKpM8BnwIxytnBGWHQukpc0LooYsoo7TmyPmJtMpZinmH/meopi72O63tzapXZny8pbsK5s89SSqFPnpG1w1H1qw5tWcplCF+AbhWYX3uar3z+S5y98Dxr0xEXLwYmkxalKnKRYYJTiqQUXZG0w87+kk9+7gpfd+ZTfN3LAl3fcfT4BpfP73P+0kV0U3Hi+AqnxHVKCoycZTSZUtYaVmGBVwa8Y3v7Kk89+gBrbYfTR9neP4/vZmQVqWzLKkA/L5x/5iyj0Yhq1rHYPkd17Ch/9okvE1IncUMy+c9ZAvpzF5TiMLEUnECUfzm4YET0kPYrsf0yMFNkjFVrMxxwzRAz0lil0QRyisQY6bw00iiESzQPCWcbXO1QxQ6vo0g5oZJMfXKWiZVGUVeNRLfIFAwpeUoagIXlUNGUqVEIQS4kpdDOysaegjFS254OI3aUoVo+S0X6oRjhRBQyaqjvRTbIOTOwRYZ4QlYUqwScqmRSoJUmobBVJY4oLeBhOcBmDmfCkrEXSzNJIi8xSZCEPDCaBkCjUtIilAa3jR7y82aYmistXJ0UIklpYpBXkTyqVNLmEqEMQkSS2ndrK2FC5UN5qNxsw8u5cAg7P6ylZZiKo8VFlnO56ToxyME9lkEIVJraObqliBrkglWalAPJF7w15ACmdsy7BfvzuQgrg/CQAaPSzWrs7d0DTh3bIuVIXY0Iyd+cwaM0KYnqW9AS7yPh1tbY39uGknHaSbSGhBO/hRy+yuFEUgJGWhuykgjXoagkdlz5nWsUrqoJAzx9ez4DLbGWUqDvAmNrhspc+YyUGdrbZA6NcQ6D1HTmImwnSobsyTHiU7zprMtKBA8FQ0wrC9RaFCu5n4ZIRimZmIeDNQLxliknoBU+LkE7qsqgK0UyGp1rqnYN03lhzpgKV9W4phanm2JoqEEcUsZS9PAbN45Ch6sqilVDpawlRHEqynWURfcyBp0Ma5trTJoJo3FL5WoO9rZlrWgbmbJWLfPFnG6VZKJDGcRFhmZGS7/oOXP7S7l84QX61QHrx27hmWcfpWnl/jy0/ptBEOnLIPzKMjbUJOubmqlMNCVqQ5YJHU0mj6NEzPohIlEGZ+DgUMw49HBfZX3Tz0kq5WbsUiklzros4MFYpJ2yqIJRLcFHUukHMT6QER4dJQuf9RBGnwqZiDI908rx0pe/jNbBwYXzuGbCPV/3clIz5cZOR53nmCrTzz2rnStcf+5zLK49T7/sKCnTxyiitY5oWxNiorFaDs+qJsQFdWuxShF9wFU1q/kKZcXl0KVCDNCphPWBthSud5Hp5iYn7zrDKbVkc1RYLeeE0uNDwfslViVc7cRBmDtqY1lphvdeiKGjn+1yxyu+gVvXHuasTBIG4aGQ/EKeVTESYmTVBVZdROVMt4qMrNzZssJWAzjSoXKPCuJy2bl2jtvKq3FNw+rgAN/NKNHju8JqHjlxyxove9Fd7O5voxrL8mDB7n5knjMrLOvTNa7sHjBbdWA1xoC1hmI0yQ8L0gBW91HRBWG/GeDKLGCWM3Z8ZGbH9HmInhUZIujDA6yS2HlORdqpBlcd2UCBeNOVJF+HYN2cIyT9Nf88uDkHiSmWJM7LQ/ePkmcXg+g8GBRkcNNLe1RA0VUZ7zR9CLSthSxOutrAqTN3MRmvMWlqDBafIqoIByrFIOt9DGQfxFVZDmu0K0ocQK9Z1n2rzc31RpzG4gAppUjQt2RhWqg0PE+scPsQ2LHJwpSJxbI7W0IYHMSdR/lMDomoMspU2CyuYJUjVYlEnLQS6ULSw+8wx+E5aDHI66YsPCWjLUSFSQq7uU7aPyCrjMpG3KGA1g50omgljs/D9zgwGCXaq4n5kPkShcGkFRiJWkcySRWy70hEVGVk7SJji5IiinpM7hKqBEoMFOVQrcJlTWUNR6YTwnImfEA3ZKy0oR6P8KGXoVMWcP/OvKddem4c7GOrEc3mOqZACUmi6RhQLca09CVxMIbp6WOcufUWxpubYDJbJ46x/dRXcHXFsvdYU5gdHKCt7K2yySy7BWWIBeYSMbYi+R5dyXCk0gYdElHLZ1JVtQgFFmzx1EROHd9kOpkyD3NGraOpG5rplMrVjNeOMlGyFwy+wtUNMUX2Dna5cfUifYIrVy5x7aBj3ifQSiLWSPGJ1oaIxOi/+nXofin8+1/iKI+konBVRVvVNC6xNhrTNA1tPSalSNM0hLCikGTgYQXib63DOIN1CoyjcQ5rDNoWirE0TiIZtakkTq9lX/7AA5/h43/2GUBz59338F3v+E42RobiA37R0YeEjnJNohMOR04L/FDiIuuKCJ55EJiLKqiUiSXQ9559Baduv4WTR09w7PgJnNLMF3OptdaRy1fO06UV5Ij3HSUZTI7sLOeMu3WWsxXr0wnRZ+rKsFwccDF4TpzYpDm6xi3HN9g6+mW2jh/lrpe8iK88+GW6hcc0loPZAYvVgrY25Ay7uwfiLs+BB2dzyJl+OKB6H+j7Toa4xVBVFW3TUDlDnzM5Lrm+f4B1iltvvYt6y2G1w601jLbGLLsl07aFsWNy5iRTa9k/f43f/8D7eGh/xnyRZLi77HG1oXY1Jzdv5dzZbc5+/rMcv+cOfvXdf58X9q+LE9MUdnZaSkrc/4Uv4mMgEWirhsVizn1veDVnn3iE3Z1tTpxUfPGBj/Ff/Ow+zz7xNHZrjVW3ja4a/GqJiv1wDquoc6BXnlyq4YwUZTBj5FlgjJO1C4GCx5g40h7jtq3jvPktb2K91rzvfb/HC8sDOjKf/Z0/5R3f/e2Ermfy1leQqpq8M+P8A1/kY5+8Hz9qUMHjc0X0WQax2VO7TPArQs5YLxHILqw4dXxNmK39DBV74srSzRzKGVTRVGuRkm5wctMyahP788J+qDi4seBv/Y138YM/9kOMm5qwP+P4zjU+ExdcvHGVbpmZd0vhAhE4snmKv/MP/2f+zXt+nX/0j34Rewze+YM/yG/8k/8Vg+XeF72G2a7nE1/8BKZ1PPXCE5xqN7hw9hL7R6ZME8z2VoyaCZ/5vd/lrC9M9IirPrE2WaBUou96QtDURvAFJUvKptiIXxY+98RTvOmb/yLWKEZktt54L7e97u3c/+F/hQoBsqF2joOQKT5gG020BZ0jJcHjTz7Hf/rTP8n29iVaaygqSxGIsrjiyKXgMHQpitnC1VilWHUdu9vX+chHPsTu3r7gMYxhtrzGKvdUymCcOBC7HPArz8nbGgyRVDQj1+Cyw2SwqjChos2FqOBGHZinHmzFgV9x/PjtzK5eYWwVJ08cwdlImhbaekS3DPTdipwDVhuwmu2dq1TaomOm6IAPgbgojLZG5CQHTPElBCCTo7AfD2POMcraVDtNdIYrB/tklSkpMD1xHDeZcOnijGvXz3Li6B1Q1LB3Gs4pg7cU8k2h6YUL53jyKx/nuQs3yL7DDiw6XWRA0PuI1YVizVcLR5SwcC/vFH7rfQ/wV7oF7doWO9tXme1fZTqZUitL8olm/RQ7ewforVsYUVP767RbDSxqVqtA6A6obcupreM8fvUcV69eZHPc0nVL3MQyMY5kNXs7nouPX6bPAXt0m5MNPPrsJa7cuIyPyNAvKrD/gTOUmqYi9P0gghhSjGAO42Jw+DBNRaZs9vDhahQhgSsFj8LZiqKEvaFyQEc9WI2lNUeXjDVQUiTkjkLGGjmUaaXQRhTrFKPEqazCmoaYMjZYoKKogE6FHKTdwjo5uFtrMdaRygDk8z0oTR6YRPFwY27V4JgQ27sMg8Ve2PUrKlejdEZXIhIIdBzhDeQoPBsFymowlqSF7pJVgcqRuh7rMsbK5Fc5jRriNqaIVfUm86bI5i7h0c4Sw+CcUNJQQREIt9LidlC5DCygr+E/WYvRmpSTxKn6lQxvh8+wAMpaSko32TFlmP6WklBGchUahTGyuXcVwnxKaWjBkya2PFjCtTHSOuQHoYoiU6AUBBSZDTlEbM5kq9ElUrRY3rLK+JDx3tN7z2q5gpQ4bENDmG8kpYfaXsXu7j4njmygtMIHT5/8TSCxVgZtJKpZjAKr0bZifyabWJeldS/GxLgaE2KgqjQlaRJiDZbPXFqFlBFny+FhJislP/sQleg7EVEygIbt6zc4eeIE1fqUkiLer6iqjDOOogXC6Kw8iFpdS2SrQGXF6VOUuBJSOGwClFBILuIQpIhbqB/a5tKQCz8UOZSxwgNz8nrKiLMrIbBtGVVLa6GuM81kA9O0BEDbFmUD9XiNtMjgLFkbkhYLtXVWeE8HGboebYc4npXfeVYK27SkrsPWlUyataJuKirX0Pc91jnIBe0cRza2AKTavtun7xbMQ8/auGZnuQBlBC5bWfq+DOJtlDr72GFdS8mRqnWcOXMP+1cuE5Rs7vqVRzlQWu6RrBReyUND7k81MOAUDnmIHbLEFEDOKFuYTB2YSEajG3FDqmwpaXBYFCAVETqy2NdjDGhXi05JAUTA9ORhM6+kERPhbill6dKCXMAWYU5hrbiTsALAVnItcCj0pkhdFPec2ORld5+mdZ6rtWdUn6ZPhTYH6kp4VFO1RGvL/PrzXDn/GIvtK/I5hiLlRX2k+MSorVilDpUF8q5VIgdxjIQUsQ6876itJcQVKch0zBlx6vWrwNJ63LExdY6MdGK0adG5J8dArRyhW5CTYlyJ8N7HoRZcebSR+IUxEBZ7rGZ7TBTcPXU8+YXHsCdPELzn2I3nOLHYJubAsvP0XsSJylqquiZqKUtw1orgnoJsrpWiUUhrRhE2wPzaFXRVo2JPv+xIyzkzXzh/6TqnTqyztr7B+qSl9x2Lao11O+dyiOx5qOqWEvfou47JkXXcoStTZZZBorA4+SyD70DJEMSg2VtZSg5s7yXspkUpYeehBtdcTsOlNWyN1FBbngehfJAxYQDsy85nGKQkmciBuCGzfP9rD8BmiDEpxHV56KQtNyPNg9JUIJMwwUBaMlt5VivDdFkx8xqMxjaa204cY3PrOH0USlksgTQw9HKKpBzIJROjcG6UghyCvEochNicxBmZh7V2KIDQWqGHxi20fB8skQRR7umQBBB9ONgCiCnhSoZkSMbSLUSoDyaSdC/vPg/0ryzruimOVDyhOHwRQGxWA+NMW4moxjK0mDFEhArRZvqU2bjtFEFD6rqB+Si/7xADOisqW5FVIBZPiJ5aQQwBMzBsZCiTidFD8OAcWskWTw0DhRJ6KdzQmjLgJ31O6KqiD2qAx4tvKWspRrAlszldYzptubKzjclybWAUse/ZvtaDUVRGfkatKxKZ0fETLHevsTEdk5F4VjEZ006xVUu1sYEyNdkHpl1Hjj3XdrfRO3NaZ5nteOKsI0ZhS1ojB9Bm1A68jMJ06xhHjp/kYG9OThmnIRVNDqCLFANYY+j8ipiFZVbrCi/mDlwDk80tKmfRSq6Fmo4SFE3l0EYJVD2LmGeK8MBm29fpugUpGVSxOFvjDt3fOZJLwhgz3CfCTSyHLujDPQHDNVqyDATRA/8rMxqNxPGjipj8a4etK4oSZ0mF7OdiOdwPigNVA9UAYVXIdWYGN5MqA5/QCt/QGBGPn33mcd77R+8jKcE33NjZ45WvfCXTr7sNMuhscV2iSwanahyW0O1htCLnINdoSoc7YGluLUP0FIW1jnm34uTJY6hGc+nKBREwtSWuFuRUUIPjoAs9ufeyV4gSMw6+o3OK41ub3HPPPVy8dI1uf8V0dIKYA7iGLz74GN/21rfwcz//c/zBH/w2B9uXGY8rFgczHvzyA6TgqeuW/UWiW/Xi2kjitj8UrevK0fdS7lG5hhgzRYkrq+ztDk6zyPFbN9jfWXC02WDr9FEOdrZ56Svu5qHHH+PEmTsx0zFdzDRDCU9IienRCcsnHmQx28G5hLMtvqq49dQWL7/7payva/7wV/8hp1/1Gn77F9/N89uX6IsmJY8LiWsHuxQLtWlQOHJaoci0dcNs3mHamjZl4qrnyuwyz519jqAN5bkgB+p+idk/z9GR4WoMLIvDo8hekbVHa0XlFMZa2UuYwtLPKMnSNC2qOF51z2v4qZ/4m7zi1fdR1TV6MWf85EWu3rrBwWM3+NFf/nvkmLCNpVQ1jkSqp6gjY7Zne2Qre5rkxW1aWSPD22F4b5RFqZYYLZO2pzuY004jXi1xxrLMGZ8tUztifc2iSezM95mMDetVw/kbu0xONnCk4h3vfAcH/ZJ//Av/He/8Wz/Bnd/5Dr7+iSf49r/2wzz60Q/xvg/+EbmqWXYztjaPMztxFLU54tr5x1k7OuG3/uV7eNmrXsvnvvQpfun3/4j/4V0/j21GjKc1r3zNG/nWt38/6xtj7ps0vP93fpMDM+UvfPd3Mz454r3/7PcJquHH3/WfsfvsOUKKlGSpnWaVCk4XSblUha73WDfic/d/lk+85JW8/a1vIzx5lZ/6hb/Nw1ceZ3NU4/sVq+RYLMSpqpwj4kkxUpsarRRvfMMbedtbfoAvfOyD/PGH/4AVoHLEWMsqePwqQGtQAxPJGAOm5s7bXsSp40d5/smHsKoldoKsidkTYkHZSPEaXQJFJUZrlr7zKKWpraX2lonWxBToDIwGA0dlDFZZalNQ0ZLwjBvLbOcGjak42JtjjKci4f0NZl72012A6XhEpQ2zgxVVZXE64LS0jE5HFTXi/DFFRBinLEYnuhAwubDqPIWCtWCM4+Fz19l74SmydtAvuOMV90I1Zb9fcnrzFH/4gQ9wx4teyivvezmV0qzmM2n91tD3PaFETt16hta2nL1wheADOwcdxa/AjdDGMV8E2okhpA6DIRZHGViIqWSsUYzrlsef3+dzn3+Mu88coc+ZmHap2y2cGTHzJ/nV/+X9XL1xkWnbcNfpY3z9nZtsn7/MU+euct8d51nLLZOjR1ntFr706S9RltvcemzExuYam8fXaNt1FtcOWNy4ik8RQ+HExhrzmeLZ819m2cnewWpHcAnFf+CCUud7FBBXKwEqG0PSIqYYhEUD3Iy95SiOHe2k3jv1HqME3q1IhBRQMUMlnAA1uFy6DCZlbBTGqA8RNbZYW8sBVlts3RBUoO97fIzk0JETGOewlabzkRzEIu0qSxpEnkMzeR+8gGt9LzWwOaONoyiZuhol4N0h90ahDEBhS1oIq8VZh8KTwrAZRpxMMQvXRlsrr6akhU02vocbDtkg5txjdEWO4uSxRgvLJw/8ihQhizurZC2T2TwId9GjBpU0lzAY3CVGpbQwabR2aFuh7YAbLwhJP/QQB/7E4HCSqI84r9BgzAD2GlwaEq3JKCWgSmXkm0UXYRKocvPAg9aUlKRRLHqcltrhkg+jF3Lg6Xwv0MmUpI5eZaIb4lDKsL9c4LTBFz+4nDRatBJSyhhjCTmgtZYGgJho2xrQjJ0lJLFrk8FVipzAaXGsKTS5izjkvSqlUaagVMJZ2axm64YJpNi8V30i9lGcGaXgzJA/dlJ5jBmgnFpJa421rGLEhcz23h7T8ZRVt0KnnvXpGIUA2osuUGz5k5AAACAASURBVCxKWVbzGVnpoSnP3NzACmxdWJI7nUDsOIwiFlnc0mGT1CGvqsimL3RLTF3ROoexFmMtMSeZJpMIPqAGh57IdtJaRtBoIkEVmvGUWDI+9KjSUylFjglnDU3bSi2vgqwl3plTISlPJKGTOCuMs+TYi7V+WBtAYbWhGTd432OtppuvSAZ2t3fxoacMTWgHswOMsSy7HmscRdvhvpBWsZADVy5cpLmuGNU1cYjQBFmgqExNwZP6SPAKksUiFtYkxj+sUTJxH6YTeWgDyogzbrxZo3UhKQMpCN+jNvilpmhHQaDqxRT8KuNyYVZWNGuOkJB2QSJZG2lRknonOfQO0Q6lNLGISJspdFmaMlWx8t+rfHNddjkPjhuBBkefQFnq8YTHPv8Zti9f5U3v/EaqI7cxu36A1iuWKbP7zEWsm3H5mc/T7+9SOQN9Zne1FBdbZUgoYb0pgymZRegRALNDmPOByWRMDAdMpi0+OlbLQKVl7S0xkmxkZ39GAOzRI+xsX+F4FfAlEFNPFQpEj1OZVGVy5ynekyz0MaKyhpQIOVEOPP5gl/n2Nc5sblLt7GJK5qh13HnlBZSNrDqPc5YuJJpKYYZWwZwCXTQo25CJoB2kiNGZpJUA/DOgai4+8zQlw7JbUYpCKUe0hrMvXOXMqaNs3nMKW7csckOfMvuTmtwrfN5jVBSqqqX90EL0eYgOSzlAMxphjCLEQlYBfCbnFcqOyMvIMhuiaQW0TgDjUOibwn9BjKAKOZDKsjMI+ZqbKWSJval/R1iS6V8eBCT5w6UgMViQiJceHEkMkVItLtkyuEPNcM3mAjF7tIUUEos+st8nSDVGae666w4m4xEUgeLHIMKxykFaXWJG5SKCinIoa+j7XpoiB6eSMQaSOPGSHq7zIm4uOXaIGEca1qyUOKxUDCVTVY6UgjyPSoZDP8kQFbVO3IB9GMonAFMyDjg1mbCzv0eFRlvFXsikIgwhYy1JLEYYrWStLEVmDmh6xI4fvWfjztvpR2MWGWxBuIWqSGW5SlgS1hrhzhmHspZghB+RlbCjisp0fYf3EhPL0VM5Q8penNd9B+MRWTliqehUphCJCpRx5MqI4yspmnZERcbvHbCxucGRtmWxmNOHFcUoXF0jfQAdIXqkJ8Ci3ZTtvX2SrUHrgWulsVrT9cKnKziMa6nryVDUUhG1paSRwM1LwsdE18+pSsNKZfbCkryK0HnypX1cpRnVjnY6YePUKe4cTdGpY2Ot4vr1PVazjulkDdO2tMYQu55RVWOUk2bCTjGeHuUb/9Kbue/McXavXBK3sDFUukEXRW8UytbokDGqULQ0ahVl2OsV+7HhyMhQ24p5CpR+KQxGFBElDV3IAQ0GmXWIuzHcm4ci7dc6uimK/f2D4fsBnd0w6Bqsi4qvTr9lTkBiiKgaYGg4Vmhy8pTihgSA8LoKAaVGhGLQWdg1R7Y2uXD1Km0zxuqKpqnQ1mD1mMpl9BFLvH4JrxNRKRQJaxt67yVay7/3PhCmpXYNJoHXnr3ZAfNVR+s0xllqa8BoYujpu8BkMuHYpKZjG1ut43MipY6No2NOn7kNW2D/xg2mxuK0QKCVccxXS3b3D7j/c5/jDa99Lddv3GA+3+XYrccZr08I3S52VJFjpF+uKEAfBB+gjTwqtZbnLhlSinLfWxmyTtp1QCrKs4ILF29gtGapEjcO5jz5xDPUGxu85PWvZ96t+OhXvkRTTnD90Wu88d5j3HrfHVz48Kd49OIFXvrqb2XvyjWefvbLqLygXxj253t89HfeQzva4D/5B7/EG7/pLfzqf/MLfObBT2PqilvPvIiXvOjFPPT5T3P5+jVS9mhtCb6nrhvOPvkct999ksXiMko7JhunOD2a8PBTj6BGmpBgWo3ZHDtOH+8weyteuDaUGihFMBqjQNlM0hGnHLoIHiHJAs/m+ibf8z3fxatf9/XSRm0UaTTh7f/jfy338PU57tQmO89fol0/SrMmbnIVApONLW4fTXhgdQFtMrVLpD6z8FCCZX3LUDeGbr+jagwhagpjtJ5jNDhrKFH4f9l5Ol2YLyK2GqHNBsFHdnbWeftf/evMH32YP/7M/fzx73yU1/z4O2nvuZeHr624RWt+8m//Xe572cs5uZzzhU99nBdix9r6Ok8+9xXqf/orHFy/ymzZM0kVfb/HK77l9dxYXuW//Om/ySItqVpL10c+9qE/4dHHHmGC5lSzRj1JnLrjCO/+qT/m3JUn+Nff+3a+/lv+Mk994WHWxyNSMRR6AUWrilQ0aSlNrFElfOp56uEF/f41jC787n/1c3z+2mOYfs4idcwPInYk+5OqkiGiAHELVJBry0tf+2re9LbXcae1PPzs45w79zS5rtAxErJBqQhK4n1Z1Tg0ximyLsTQs1E7VimBCijb0HtppY4r2d+OW4WuI2hNSCO07tgcZRo6wrxG+8y+SujaUqEJuTDKBh0UKxVZlEIfNdW4RS2u0aXI1Db0q0A0CmWHsopSqEpmWjnWNzfouxkqaJQTppcnUWtD7D1tXbOKHjOcb0MSLeELn32U/6n8Oitdcfz0SbZCw3rl6bem3HPPvewdzFnsXOP203cwW63oL1zk7FPneP8fvpe3ftOruePUKRarFWvTMZPJOvXaFKvE1PGSl5zhww8fYTk7i0bjdKZ2loPlAXZU4fueSGHDOYoSoI4YNCJ1bamdZbc3TEcNOSnWgLXKMVObfPDffp4bl1+gT4W9/RnnLl/Ez+9kvsxc2Q3UfWRLfZLRaIrKirzqePJaZGexx8tdwaYNLl67wsH+kmW/oKkzlRM25MUr1zk4mLPoO7S10jWQFaRDF9afz9eff8tbAgy4tpEfWOlhEiLRFZUFsCpTTeTwGKQKMQVZKFO/RDcNfZDaY3G05KENTL4qLbXth/Z3UwqLgwO0cdR1SzNqsZ1MbNGKmOPN+FEKiZR6coFSND56shf2UIyy4TSDw0pYM7JBVtYOGT35GXIaHDVZpr9K6ZtwTKUNoY+k6MnRCTcIhkPeMDnWBmMd1lWQ7RATMAJpzZ6SA9lnrKtRKlFSLygI44TzpGXzXooZoMaQi6aEhBTJisuDQ2ZSESfEYZNaHk7HxRZUTjg5sUrsRimMq25asHWWz5pSBvfEYe08A4MCicEVgSibUsQyGKWxRRdplipK6oNjgRLLVxlXpaCKlqm3UpSUSV3El8TxzXVu3NhmlWWSVeJQ354zXZBZe+uUiEAMMUcQQK3WBG1lIzhs3vZnC5wREc8YOV35EFAIoL2yhtoKiLTEKI67lKHSlNBLXW8EivAOrC6UYiTGoDI+dfQlUZnB+TN4TdIgypUsf9VK47QmlUJjGmZ+mzSDEhUxZo5tTaQlCKmhZxCwyFKhnKIA3WUKKO0LztbiTqoNTTNmMdsTxwwSNctKU3SFjB7lYHN4DylTkaLC9561ccu4rrGqoE3BGD0Iq5lVtxKwa4mYmEEHUrSUWMBWtO1oiMjkQZwM5ODlIKfBWQdIzv2wZbBpRuQUsaUIJ01XWCqy8dTOiTupFOqqYTKZDu6CgFYW3wfmq47gl4QJIsiURBU7KqtwVUtEEfpESCtCWOD7Jb5PpKmlrivmsSN7iQ3EmIf7ddikl4IucoAVuO+AURvYZ26IR+YhUsMA7RcguFzTOULOmrqxGBsJXiLBuiiSLxLbNQaWkaICpYKSNREvkQZlURa0NjTKCCvDWsY2kEJk7iuC0SIcZ5n2qMPWxYI44wbwL8gBZPdgjyvPv8DammNcOZLvUd0B482WC+dvYEsk+h1WVy6wOtgj5cRiNiOnQjQCrjY60ccAyyW2KGiF9+WTBZuZ7XUMRdWUokm5k/WSLGKbk6m6HiB3i+WCxapibXaVySmYpIqy9OjK0IeeEB19Csxmc+argKoyfcj4UEjZka2mX61Y7u9w4+I51janoBTd/oKt7WdQ2ZOpade38PN9NEu6LlG0xafMvMvcciRwqwOlHH2MOArZQMqGGocPGTWquXrpCmvjTXb3DmiqidzT1hDGLQejo1wan8YHzV4dmfkZanqEWEE9PUaoxzTHHMduuZ1+PhOXkXOolKRkQSlSUZhScEWRVeDW206zMdXE2ZLtix5d9fR9oqqsRIkpclEOGywR7+Gw5EEEpkP+3hBBH76MMV893KrhuTYIRKVITL0MKpXVdihRUIMbdNiUpHIzJlfyV5sKtcrk0lO5hhB7bJGmjbXJlNH6hLCMqBpK78WNG4TNk4boXkoJnRU5RQ7D3qCJIWCtEtdhimgz1MrnhLXybiN50M0LEt4QiSlTxPWVZehw6IrNyoCR43kpmhQUplE0FaSlxxuLRg33WeQl99zKZx7Y5u4X38H+3i43LnVkZ7BIvbUtjhQ8lYXKKtq2pfeJ5aqnrp1c+xjKfAU7O4xCwDSORQgYVzNqGwgBjPDBbBJ3iVZGxClAK0Mqhi6FIV4sQyuKxeeAsVYOzIOjhOyhZJJp2NvryHVFkmUBWzWEkNlcX6Obz4gKDmLiVt2zf32f7MW1nUMWAbYUdBJVI+bI0s8JZYXOlv3dXYLR7O7NifNAUJ520nDbkWNsrh8RsTn44f+hIBW8iuQUUMrJs7KqKL1HVSOUSoTeE0pgGRXeWq5dvM7+3gHJaEZNRUwVzfomse25/dRxDBWp7xgfn1JrJw1oRRH6HtdMaCoLKWEKpF5RQiG1GZ3BpkzJHnQmB2mx1W3L2Wee57EL14jVOhdXHhsSB/NERolDWKRonBYunmwO4auFJHl47g1K7wCPJWaUMWQyRzfXqa0DbcTt6SNOtYDCmYSzmZAUJcqfR8n+zGUlgqR2kMGa5vAlyDnRd5F6MkJpGYqNRhWtXWN/b5/aVKw1FWvrU5rWkrLlzr/wTtqm4tip47z3l9+N54CFn2Ndi0T9pcU4Rz/skw3TyQTjLLOVl+h4CVgcKhey71kGeTal8QjnDG27xtHNlvF0TLfc5+UvfhXf8ubv4Lff+x6ev/Ik687QLgvPXzjHtcsz3vjab+D2k6e5vr3LftdhMozHjheeeYonvvhldrev4xrF6sYebvDzZp/p/dCOx+DiLGpwBzO4CGTNSFm4k+DRJbK5OYHa4QmECOPJCdCWfj7jucee5sztd/OOb3sHH7v/fj7xkY9w4CNvfuO3snHPhF/7wAd57Gc+yJXVNfJkg3/+Mz/Offe9hE9+7FOscsv2/nk+8q/fw878BnvnLvLf/+hf4c1v/xF+8t3v5p73vIenzj/LLfe8gtMnT3H2sUfYmc+GASAslzMwkNSSp59+jmMnjpG6OW/+kR/lP5q2/Mgv/CzZblFCQNnE9T4xu+pZLdQwmNW0U03pEq4xKJVpTY0mEXMYhugFnRIOQ2MbRpORuO62Z5SkufrE0/z6v/w3nH7tfSzziq3Lju/6u3+VGDVX/9V7OfnD30t71y180/d9Bx/9Zw9xo7F0XkS9EBTZF2b7HU4nlO7ISZOTofRTlkWhayipEGKglIpiHb0qJAWz+Yppu8EsZb7xO76Hv/fzf4feK34xRo5srfHlX/sNZk8/wbe98x1cfO6LXAot9+bIa976Nn7GGCbr6/zB//m/8YmH7+fxs19CKcvUWVYlo9yEa5dfYLVzjaNHbiFdXTAejeitxncrzj/9BMcma/zYu/4+Tz72JT7w/t+kx7G9vc3JU3fz8EOf5MixCf3BPt1ygbYtJfcomzCqwVjIKjJ2jugVVeP40Mc+wDd/01tJb/pm7vz0db746APElUNrR11ZssnMZitco3BZ4ZzjB/7jH+L7f+wnON6OOPvph/jN/+f9PHflMrUx6NJLQU2VyUVacPs+ihihCyp4DrZvcKqC0XTMtRt74mrulpgiLcA4x9pYUxsNUTFyNauwxOBYLAu5UlRhRRMzy5wp0TCtLa2zNMoR9YxU1ml0QeVd+n7M0nuKDgSnCHY4S9iv8lGXq8ixdYdThWwcfbcUZAIGhyaXHq0TlckcLMVt1fWJFGRYdvnSNtc/9DH2Zgve8NqvR7/4xSzne2ysrfPQ448xbVtuP3U727u71M2I7Z0drl3fp1aOhx96mte/4c3cesvdsn8R2zcAIQTuOHmKsn6aLnya1oKKmemoYtkvUDmTs2Hll1j2UM5i2inRJ3Jw5BxY+sSN7Rmr1SYxWZyq2Vn02OmIdWM5MZ5ydmeHGsV+gAvXtrl1bcSmzRhn2EcRbSLPIrvdiitdYR4V1fP7rNI52o2GU9MJt7qG2WqPVDIHux078xVX93YxBoqqUPSyF9Dp/1PP+f/79ecuKBmlUcYQKShjBvt8xho5WGdlhpiCkqkahaqp5bBoHF1KaC2xFJUUVilp2FIWpZJYbL00mSUlMSWlNEElateidCKUQlp5gt+Tw3fbElYelMR5dGUxpSF4aZ2xpsJZS84edKAEJZDUwQ1QuZqqqYXtk5LAOLPwOEpK5AE0nHOm7yN97+l9IMYg3o4kdvQ8PLSMtbKpzwMQO8kG1SoIsSf4HqPks/Qx4ffnNKMGozShyOQ3xsFx4jOFgLGD0BIiJXjh35QEJQhIuxR8lOmZuFWyNFgNEMWshmaowWUk+p8we0ouAxdFOC4SG5UJmBhgBj5FEmHJaEvMh/0A6ubBQmlpp0uxoJzURgrJSuMM9N2SRQjUxqJ9Yr6/IurEaGOE0nKwsD7jB9ZRLCLw1ZqbVacpBWKRfLZsuBM6i1XUOkdJmeVySZhIg5A0Bg4PrRyw9QijNH2OpBgFjGs0EXmoGSNOO1cMfQo4Vcn7z4BS0rgSesxg/5+FBRwe7nuPrZyIaMPkBwXOVjir0NoSY8/ePKCMoVkpJqOKaV0Pefbh96YQ1URrwBAHy7hSMkGvmxZlLE3dUs3mZLIczqK439Ig4vA1tZF6uDJyKaQojr/p1DCpJ2ijMcYQgme1WtKFgCoZjRUmWnb41KGMwjhwtqGuGnyRbLMdrvU8APlNY3FlyDqXRMma4DvZ7OWM74s02GhZotIA8Y4xEVKiMS2xQDtZ5/K1q3TJM5/P8P2SEOX+aOqKPBl4aSUSYqKPHTplsAlTF4zT9EQWUcRkrQ0ORVWLtb+UgreFiCb0Q5QGsb4ZMzRgFQiDy8to2ZiOpxN8SNiU5JpXGbJGl0LlLMY5Yhw++yxiagpQTS1Oi+VcYkYFmy2eBH1G95FoNH1d0doRRyaW209vsru/Qz/b59r2iO2+RkJ4Ih0Zrb/6/+NQVDUE33PkyBFuuftuHvvsM1w9e5HTr1aE4rh8/gYbW5ssty/R4tnZuUJKC7puRR+FWVeKx6hC9pJTV8phrDhq6rometBlBUBQjqt7exzZmEjVmEm0raUkiEn4c6kT0SjnTBcVxo5p9C6zPuH9klUo5AQ7166TjWF/3tPnRAyJWdcTswIkSun7wO7eddprV9m61TE6ugVV4uRyl4MQsFazmO3TLfcoxaJNzbwPLH3GNpZUBJxuTcJqTUyK2ii64EkEUo4En9m+coXm1FE6n0mxY318knte9SpO3/t1tKOWVbKE3IMSoLh2ipAXGD1BV4Yt2/LKN72NVZhz9itf5ur55/EpkChUTqKeVUrYQblfXLhMVxSbt6+zduYoi3MXcZWVhsoi7W55aDEDiDmCUminyUEEewoCLlVDi2nhJrT+EBYs59xyaIZg+CdZH2ThkIHQze9l4N9tO0QfDn/isM5YklWoaOX72dOadVKQAUzJPVEXbEp4IiEFGlsTkkBBMwqcokQRdeMh00kr0EMzmpg+UYAb7OaogUWm5KdMCINO+B2gCZThmo4Iny/ngEpK3D8loXFYXaOLx+VCMoYQepLRfPbBJ4la89jzFyghUYxG5yJNdkaTdaYe+IcYLZ+bAV1Xcj+mjFMwm+0yvhRpjSPaFq1aKtfguxV9CGhXkbIjZT0038pAJeSEUpqRrqlpmJWVbBhzh1Ke5DXJjXGbG+itLeJyjiqJgEKFhNKRYgzaJ1wpBAKTpuX69W1yiagEJ7e2RACInlgSGSfR6Mbi2jXScknoVqQEVdHUdQttQ0qZdrLB1vgooe3BRdana5zc2sSpRJ+y/F4xEsGmYIZ24JwSsZjBRVPjUKyUOL37kDF6hLENuCQueAoxGXaX4qCpQk1BY2yFGTlK6mlMJpWAqRqa0Yiqrphdv8K5fsZ8MWMVEzlq5iGxbiyryhGSIqcgRRra8pmPf4KPf+oLJCXV0H1O5NgRTSGEJAIqAvNPovbIMAcjw8TC1wi38vwow98LaF1aB+uqJh+6eY24hUPucaoeHKiOUjwM/BBxJ2myNWRtiLFgrSEj4hwoonY4UxGzpSkZVywXn3uOTz/4CF2MrI0atiYOoxR+0WHrmlfccyujtqGuHXF/mysHc44fu4NHLz1FYxoy4u60ODLiJuyWS6xrKNGjiiIqRescR9fHRJW5sXOFydoxJuMJ41FL3YyonMaaxItf9BJ+5K//NPe+/B5eenyd/+s330O0jmcuXGK1qrmxd5mvPHedO0/fRdQLXJWo2paD7V0m62Mu7V5AG2nbLcaIS0odFgYIN1JJ9lfOK0Zg6EoqdbHW0mgnHLJhHVx1S/CK2XKBaydka0BLSUNVG26/504++/iXuHDlKm99y3cyV4EPfeDj7O5f58ixdb7v536WB/7kvSx0zZc+d4WTmyf4C/e+hvf/2q/xex/8HfZUz4VzN3j3P/7nPPgH7+OVZ27jdafv5PW//N+iusB8vsczn36Iq2dewZVrl7l+/Qbrm0c4fevdbF87R1VX1LYwXx7Q2DGPfO4hHjx7nraaSjS2doxshY+wl8oQ5Uk0ztIH4WP2UaNtxmY/rN1yHuuLCKM5dezvXefRX/9dPv7AV5jv7fLps49wEObYjXWOzs/x5jd/N9/7Sz/A0ne88Ed/yj/4P36F//zu23nlmdt5/IuPsmPK4KBXFKKcAxDRs+gVjVonpyUKS5d6xirj+8QqFqyp8UXJeQthAqIUXVrgmnX+5P/+XT7x4Q/hpluMlOEd3/uXeeNrXsXOh/+IReWxozH95bM8e+kWVlev8+BnP8tnH/w0L1x8kiPrW4yrmk4vMVWD6g6wpuZjH/kQ3/aat/DLv/JP+Y13vQv/lrfwT971c7SNoe+W6KPH+Mj73s+lc1+kix3L7GmPjNnf3YODPbQuxJKpKktKPShHToGSlwQizlQYXeN0Ya3KXHz2y/y1H/h29hdLltkTlSE3wrYqwWIUTNYNIyuN3M2o4urTT/DJP/4Qf+lt38Zd8xU/8V3fzqlTW/yLX/8XtGsWi2HUtJhWkYOm+EIIWfhuTtPnFY9cuURdt/ioWYZIDoX/l7l3j7U1vev7Pr/n8r7vWmtfzj63OXOzx/Z4jME4BoxdMNgBgqLGJSiEAuk/VZCQKkjUWxoUKVVVQqWERm1a1CTi1hbTNhWES4FgXCjEgDEYsI3H9mDGM3Nm5lz2Ofu+Lu/lufWP37P2mCBVqUKlbsnS6Hhmn73Xetfz/C7f7+c7bzt2Wkcwmlg8Dnpvzq9FXPSUlDh7WDCtso9pGmYEgkk8HAa6QRWkWRxrs0H8nEnO2On2efTGDUgj5+szQl1MlBq+4LxDxLJJGTZLUlKcjBihH3qc28UlyGIZwsiUEm3JDNOkopWciSLstQ2xKOO0EU+WSDKOL376Gbz3HC3XmAx377yKnzU89cQThFQ42Wz4w88+y61br6/uHXNZ01hnKSReuneCLRloGVJgMdc0OpkUhbNa9ZQ0cvXqVVyKpDhydHSGGM+YA63f5epjj/PU3k0ogVdevcsQhM+98DwzG3l0f87ZaiASScnQtXN2Z8JbvmjBW7/0rfRBePHZP+JsPTK3jjmBxbxjGoTh7pLFzcJ8vmB1FDDzzLAZeeH2IetJE/iMDJreKLDTLv71hzv/Gl9/5gOlbDI2o5YjCzEGXIUNhxQIJarsuKpgSGAkIykyWUPGYpNFCFAKY7LYxmHFg0SiCK7xXN/pmHeOkGGalCHgLcQqY51CZOonhmGsVi9tmXMumKg8FW1wLYXCOE1YkxHjqvpA7Uo5JYb+nC7OtDi3Xg+0SzZOVnVVSWotyIl+HAhhumSqmGovsuIRqwX4FBSYbEvBtxbrjRYuYWKLg80x0rSelDJhTCSHDpQqi2oLUZYAHrWjpTBq0ltOaquRpI2/yqPqUAdVWhmnMcnWEPJEHiONdaSgQ7ICl2yOlNXnb62rF4KCpzU2vLDFOJQSNaWLquZiO8QSdfjXVfkUAzkX+s0AOdE2lmmzYXl+jrOGq92CdsdpwsZYuJhGJAoDyrNJRXT7J5mQBRsL5Hi59VNgcYYEkpIOM7PaJcNmwlhHCCNSasobhSymDr80KSknQ4yFMI2XFrwpRLpZo0DiDDFpg1pyACOYbDDR4IsmxtmoPKYxp0sVgFSriRHBpIxrnEb+WgVR56LDs9PTc8J6zfWDHXYWM1WxNKpe2NnvOF/3daCVseLwrpBiqml7As4SxOqWHsi2kIs+11twusYbm8viyRhVHcQwKTvGaWR63Fo2rULYI5FxHJnNDGL0M9C2VhVNUnDtDDPqcFJKwThwrqNkBX6HaVIGkTcMvQJXjbGMY6TptJgWdIhsikL627ajaxZMY2SxmJG9sFoOhCHStI1+Foxld/c6TzzxOAfXO/rlhSYuURiDY/f6LomB5YWq0nJJ2EZthMZYQoyIq1ydLX9sXiDoRlkq/0qCtteCoRWYZJtMqJujXAxzuyCEgXbeMU4ZpoTzmrLVOCHjCNNEKWo7sIMntQOtnWEMZJMgG3wySCuEST8/sbdsYuLtX/wlvPcvfD33X/ocx4d3mX7v4xwdR0KF42vsdblkPIlITfxLFMncufsK157b5/YrA7dfhadv32P/5prh4oijVWbRBk6OX6VfnTMNhRL1e055UPih02jpmCbyCPN2l66tKT8yUYzQOGE5TnTeE6Mmu7hiCEYHqA1Rk15ELbk2zzi8f8xTl0VV4wAAIABJREFUN6/SZqGcD5yd9fRxZDSW8+GUsz6wzi1TVV32YdB7QVpcsvRTZL3ecHF6zPzqDeZPPMmNPDINa/rimNZrnHVcuXmL8+UF5w9HYjEsFg0UTfC6GNa4FHF+QRZhhaXEqFbhkpmmFWG9Zm/+Ot7w5DNcf/z13Hr6LVx79FFyUsUUourDUBkpTfZYu8B2DdY1TFMgjWcsdm/wxnd9HW5+jXsvPcs4nekCJk2UvieFgM9qgR6Al/74gsXegma+IKdALiMhavKa91vrc9H3Wh9THYZWu7mpOs66WtB7uwL7YassqndE/doOlky90S55YVuzb7XHFd0S6Z2RALEUA2OKdCnTdi2UTBiU0ROHkc7PQAIpTWAceRw0qZVEkURJuhwpSc+SAkgOdMaquiDpIEIHaAWTMzkmtYXbCs2n0qOiXlSaHqc2esw2sECIJdbQD4MvaNMuGZqWYld6ryA464g5szGWbBN9iPXvQdWxCEEKPmeQQrFAyhgaDQcoGesMYWuDSxPTcmRnb6b8PVEmTRFRT78pOMmYkmsgSMDYgpcWUqYvkZAmtZxOGzaxIGME79hbtHRPPclqs9YgjRSJDGTr8dkiGMgTe92c85g4Pj6BlFjsdDTW89jjN3hw91X6MDJRII7alPsdxHkW+1co8znkCXEtjb+KtAtOjo+5fnCVeeM5DxuMaeh8o4EVBax1SEyEospVyYaLzZJcEi5ripUO1sF7YTVEzjcrihQWkjX4JatCsYgQnKrzXIZQsnJ8SJhi0MTYRN+vKBcrHJZihfPDUx69cYO2c6yCELAM68Th2QndqtDHTzCbe7yx3L7/gD9+6S4HTz6qCaFDwFlhTBGbAyRPjIVcRpwUEK+hCWhjKWzvj/qZ0mjYOjB9Te1acianSDDgKotLfKfWDmtIcarszEzKhiIeQ4TtorNE7KVr00OxZAnkQe9d76HILqtxpJkvOD9ZaXJogtV6zZUrMw6u7GFdRymqUuyHwP1XXuCF9Yy/+p3fzQc//J0sHt+hbApFPBAxWQhZQ1+GtNYap6hDIZQCbsG1/Y7l+YqDvQN2F7sYm2g6RVR0szlveuZtPP3m1xNj5M1f8x7+i3e9m0/83mf54R/9EYK/wnLtcH6PN3/ROzk8PmTT97ROrUh7zQLTzjFxxLmWMmXms5Zz59isNVEub4MIRGraJYjZWoW1pm0WLXEUUlTeJ5KgZDonhKmnFIe4BpMCt66/mfXdc/7D7/obfPzZz/DJ517k9uFLNOzytrf/OW4+9gg3D66xOV/yprc8yTf/5Xdw5coV7v/Yj/BPf+qfcOgalmdrZteu8qF/9gF++Mc+gPSJ0liSTciOYza7yuse2ePe88/xxV/yLt7xV97Bv/Ndf40f/4kf52f+x3/IYr7PalwzTYbk4O1veT1/+7/5+/zoD/4QH/zF/4VQ1iSZMNJhs9BvtFcRE7m5Z7h7arFOQR8ihuyyqtyDDrynFDm+uOC//cH/jjFE3vtN387Bo09ydPsjHBzM6e/f5bu/7/v5yL/4MN/yF7+ZcXXI4TQgO44f/Ikf411f+3X83Mc/Sh8yU0xq446KDcBksrP4tmUzZFJuaUqgLwkZdihmRRTLcJYJsSFLrb2MQ2Tkz7/3z3P04gn/2ff9PX7mH/8AP/vhT9I5y4//xP/AwSPfw4PjF/n3v/Xr+fpv+HI++bFPkc0VdtuOrgs8PL/DajXx9nc8w0svfI4cDLeuXGd1MTGYzHIsfOPXvBsfAotXXuT7/u5/wr4xhCB4cdx9+Tb/8uiIbIJC661XNbMZCNER8wXFevoAM+OJRflHBss0JbJVntFibjHdpOrbmZCDZzrPBAq7HnCeOGUW8xlzJ0QmwJBDZG/R8q1f9x6euPIoP/lb/4g3fsdf5Q+ee4753h6ln+htz+YkMdsV5RmaBSaNuE7ILmvaaU6kNNFZwQtsBJJkmq4BmRA/I48DN68dsFmfcXY8sdgzWJNpnGNooS8FZ/RMaoqlY4YY4ZRzeufIU2HHXUEY8c5wvtpgcdq/lEAi4kXr4CkWpuMTHr+6x37T4d2CMSVyMUyScDEQpGCzJaXM2SZSQtAAKlPIYeD44pTo5nzmxbuUWFh4w8xnXnzxDutxSRphf2eX+f4cjOPs/BxwZAfrftCeMKOzgmp1tanw3L0TXvzUb2GTqsYR6HxDEkXkOGfwjSfmyvwTi2RD1ylWRk4zb3/LPl/ytnewPMucnb/CbKahLY9cvY4fM7MmUXIkmYZpHOhmc47PNpyMA7sLS2P2OQ/wpkcbnsk7PHJtzufPzrj/8jlvvTXDTp6Hqw3zhceZHW7fO+Xuw0NKmrB+rk4wAgZh78re/8sJz//z15+95a1oyhgCJVSAZqZaqQwG3cxpbPEWVFwHL6IgxUwGY4lRQDKOgCkt86bjxtUZrUfJCGOAokkVTpSdM/M6BGhah81zLqpsXqo8PIdAGANbaxSoqiPGUIu7urEwCtzO1S6QU1aVjGhRnkHtfVmHTqrb0ctJFT/U38nWAkJ1A5JVGp6S2vwEgRJJSRssK5CNWmiMs4QQ0Y2wxiMbo81CrnKiUrTeNVktgFmKJrxYweCU14SyJMRp8a1WP03/0cSpgJFIIjExqZUvF/1dsqq0RKCUVAsYq9tgqy2FiNHeQ2z1AhVi0u1PTVlnmzakKq4eTKF1rabiOSHGwLofWK17shGWw8RcPM45xmlCxkwvmsiz1T7pZhuSWEyRy+StXHkxlAxisJVFJUn92Ot+w3K9Vu5Hjd7cbqhyVrCx2AoQp61FlRYhxljCVHlFdYMYwoTLhpwS45TZhHD5XitTR4c3JWWNB9OeTA8d4wk5MYWeKUUFKFc2VjTCkCLHpxes12v293e5Ob+BF0OZUo2SjxWYm0hReVFZErFoYpFzRg9GlVChuyGqvZIvaBrVCiPaZZJyYZwC4jTGMtVBXc6iTWJO5JQIw4BxHY0RJGnqF1bo+81W5FA/T5aUSlWaZUKYaHyLRWi9raA/S9t0gELUY060jcM2nhgjbqfFdzM2m3OSKIj+xmOPg1h2dzs208T6+IJbj7+OResYx3OmKSvnQTJDGFj2Ky5OzynF03WOUoeHYTMQg9oabdYufLDK1HCmFndBByqpZLJNOG+RvmDF6mevFDrn2DWGKRnmezs8fPUCpGEcAyULNgW1euTMfG+HuFySQoQIcZWx2VLmUbctqRa01tThbYFkyaHF2omz25/jYz97lxtvuMn8xlt4uHmOYgZSCnjx9fOqRXORrfJEqjDOcni05lc+/AnCsCKVwrCe6FdrxjBy9OCQLj2gH9ZMMRPGTJKJpoP1+URpVBmap8Ki6TDWMw49nsDyYmQ280iJZBlxbUcxQmFEYiaUTD/qAiBEiElwMw1hiKgaYEojffKk9YajiyVHZ8fYxT4nQTg5j0w2EpK+LlNQpV4vidZDyo7kW3KBi+UKu7/PwdkrrIJhnDbcnLW0ixl3XnmJ9Zh1kCTKkdid7+JdC1LwJeAFegptzIx1w9jYwtmdF6AUnN/nK//it+B3rxCHyLQWbNfSeA0uuH86IKIJirlV8LcxWjhdrFbEkDm6d49hc8HF+pxJHMbt4KQg6548jgpu1oNWFZ3WK6PFKAMQjA5BpFpuiqq5MGqrzegwSf7E8Ae23s1LOzrb1FBTtaW8BuPe/ie8NoSiniE6nDKv/blUCDbbxE9RWPs0YmcWK4Z1ykhjMKlg5lJVvEKRxDROVUlVuX2olVSVoArYFylqSM26oFCtS7lUfERyhQ+by6WPFMF7e2kJjbHy4FKqej7dfJuquLJNq2dhyRjfqM20FN0yS1EbwBQwGUzSVLdca4rRFhxGUzSlkOrQ1HiVUXnvNLEz6t9r9apiFKnK6/raCVAyjfjKravKaNHXw1o9b51o8ts6DOzOd0E2GLFECdjHbzKVxPlqjS1Ja4yYcKeBzibk9IJ0XjjY22E6PWNlLK5pMNays9OyWp6wPF8yhKjMKdtijGMaR/Kwwu3uKzsnKzfIGcNmzLTWc+36LeLZOYv5jJIz867D5EwMhWhyvTMjOanqfHu+RuuQHNV6bAxShHG1IuaM83Ns09TnS5EERhIl6TO7qSqgmbXEkmmtZYwRZy3OeYaSMY3Tgao32HmD9Q6bA9YpCHmcYH1yyvnZBbPFHOcs946PQTRxr2sEnKedzdnZbWqEdyHlSOwHDQgJkRAzMU24KVQQdSGXoODbos+hKbVGqZZpEYVnmwJWdAFhcvWb5oytsOdUEuvNOf36TBW5tVYxztcFgrmssa3AatxQnJ4LaZroi+G3f+t3uHN4iPUdZ0OkL56nn3oLs51dYt9zeBIwreH07gusx8jf+of/mD/8tV+gW+yqfbX1ZKOfe2u1hoi5ph5loRhlEvkUaXcWxDhSsqXpOox1OGux1mOdKhw3mw2bcWCv2UEEfvlnf5Ef+sBP8unnPoN4h2sW3Hj0dTz11KM8PPlSXvr8Szz1zNM8dvaQz3zm44RJG6VSHGEKnB2fQ9liKioDU6SGgugAcqvM1ro1sVlpAhhFWaBxVNWzcYYyBbIUXPH0q56veOdb+A++83t44onXc3R0zEd//1mmMeNc4vT0lGc//gf8by9+mtuvPs9f/6K3Mn3+Hh/9+Z/nzv6KtaLfGMNI085Yrc74zLN/xDvf904oGr5RcqF//g4/9T9/gI+99Bzf8x3fxl/5pm/iH/3tv8uHP/tztNYQ+g1DHzFOMFL46Id+kp86eIx3fN1X8+Ff/F/ZzCzr0TKkiX6cSFi6Bvog5ADzWWHZZ2WehogTizcHlFmgWwive8MbaYpw96XbiIff+41fZDq/YLcLDOWInat7/Od/86+zPh+58ug11mGkMZlhHfnU7/0qz//R7zCeTvRDZEqToi9wOGPAjCAQiyWmDV2zIEnAxRnFWii7hPGUIhpKY8wMTGHhZyzmj1KGhve///2YzchXvP3dZCv8/C//OpMrfP/3/k3aKzu87tYTPHj1VR67usfh8QW3XzhE3Ihv5thmxi/9yq9xcGOfmQ/s7S04vJ/ps4XNBR978Q6/9d1/g5/7/d+lO2g5Wk3M2gW3bj4Om57N6kxFAnlBKsIYViSTcDhiMgy179zkjDGFMgwMOdO1jqao42W1mYjVjto4oTNzijdM1tKagfVGU7aHFJgYdclAxpfExeED7r70Cnz6BfafeSv/4O/9l7x6doLJE8kqPmb/YE5hwLiWYZkoFkraxsno0iYFDQCxtjC3Lc5ov9dJ5QvaOccXgTjoIPb0oahFdDcxxEyxGWIiRUFsYI3eISs8fZ+Z4kg5PKbvzmh2PLbdY1gnQlWaJVMQm0ipwUiDz1YV/zbRUWgtBHuFIcFyWpJNS4xBs7YbQ2MdFIszhms3rvNVf+kbeeqtb2MYhP7oIT4NBHFcS8JO5znY3WVn5hVx0sxpm1aX343lsVtX1RSfC+kLSqVQEr1pePq97+el3/0waXPIMI1425GM43zY0LUzxHqMaeinQiwbppTp5i3TFLGt5/r1qySzw/n5yyyXPdf3r3B2fkpMI2YKOKCpNb9tWpjvMHQjDx8sGWLPtUffwJPPPEm4EN7z5e/jouxw8uu/SVq/yJd+2ZNce+QtLFNkHI659xBeuPsCF6sL5R5HFZykFNmdX+HB2fpPD3H+Db7+PxgoRYz42pxqI1+KVWGK0QSLbZx9yiBlQrDEYjGi6S5iFF5cXKF1DdYarPOMcWKcRr00a5z83qzBOx0CpVjYDD0jiX4zsVz1SDbV0Q6IrfJ3tUdV1bgCBK29VNJIUaaCpKRck23STRX9Y6QOGVIFkqr6aav8MeIwJilIWbY2Ai27Y86XAx2VPOfLAhlTVGJXX6NU06DEarKXNdvXUL3gRjRdRi2eqvDYeuXF1u+fzWWBjdGGKOZc7Yg1UjmrGcBo9k3F60iNJQaQOsji0hJHUXuKDozq70+q6iUddIWgBaGxhjhFclKIpIjBN/q+zmSOkInRM7gR5zv6kJimQl8mfA5MJJIUIgrFJRt9LyqLRazGHoekm+aMNiK5bFkX5ZKhVEohTZF+nFgs5oSU8VZtGNnUTbKtKiJrlUmlLwKmqJpHQcKlNvr6/oskjFjCEJjCpOlgVK1Z0f95azGXFqlcmz0wJSKiyr5Q+UrWGChGWThGh1XDZg1cJZWCazocmSkkxGiigak8JGMsVhKdImoYycpeK5mcXyPyaiNZbRglauGFNkA5Fzb9oNYGZ9Uik7MmtyQdduRYyGEiZh0eaqOqw2Ax7pJFIFaqKkAbqxIj3lgkQxhGHSQD49jT+nn9Pk7VBC7TNV21lkYuTk5q3Leq/K7s7dM2LbEk2qajxZOGwkV/QSmBtpnTtTvEkri547nx2HVCzkzDyDiMnJ2esRkGNpueGDKb9UpVQ5KUqZK12MxG7StSmx6jvhOy1clxTqUORGDKgVTg/u1XNZEjqK0jSVKQdVYmm8mvqUSKKbrBCpamKhOkeKaUcWIpOWCcxuXGAHszWLTHxM0Rd37vmBeOP8HYK5zdiRAJlKLWJj2YKzuHrUiwEMYBPBRrKaOGCdjG46yjvTrn7OUNJgnHZyfseEsYJoJk+hA52J1TQk0PNBbnHb4YEg3ZTAxZhxp58uDk0vq7vljTzTsoQszCECKx1OSjoGqxHCNp6EmT5XxInJz3PDzPMPUsp8KQhH6CIUWQrErNejqP0YAIyxXcLIkHyzXXzAIe3CWEiRgiZn/Gg8OHtItd/J5hGAOGwk5n8KKq2rN1wDBwbW+HMSRCTKymQPGF7Bc0ZsHX/7vfzM7BNVVcbCYKmYAhh0zbWVIJjLHQOE/rDe18QS6R9XDB3fsPGDcjd1++zYP795hWF5poaiy+dUQndMWSxWEkIiVX+4gee76bMwwrHVTD5dlatmyvUtge5sqm02HTtqEqZWtLK5esgNoWwnaQ8Se+qvxmq2Ks/1yFm68Nk+pARSrbrR4xmuYTI521zK5dZ7U8ZO/qDq5o8MK06Sli9J/DRNOqkkmyLkCcGIx1iBemkAix3qlbIWwU3fKgQzDnnR5FxlRGEqoEyQXvHH0cdYOVMlWUqhHvYSSILohstrhkkCmyszsnzRtWmxGxRgMEEnjnCMNILBmLIxFx+gboS1Yym6znncNiTbXLSkaiYLwO2o2D1jraxjBlS2P0RpYcMc7TeofXrQ1GjCqvSsK2Xmuparedpgk/63j06i4lG9Zp4PD2C9jzW1hnyFPQ9No4kaaAbxtm1pOsYX2+VluigJupDaltLauzNWEMhPrfjiZgjCpGvfc0RtXV2VTu4qwhbyLdTseDO69yfW+PuXSINczaOaXoIqakQowTIU+MITNOAVMyJmvTcjauEGuwoj/v1G8UqVAKxVhCgXHShENDpuS6JhSwxVKSkJ0u8HTkbIjOYkOCFElFmIzaK52ziFGYdaJBfEdnMkmEbr5gShOnZ0v6VY8Tw6RwIKzRlNX26j6+6fBpg71ywK5xeKcLtnF5zvpiSV6tyERCjBB0aRlTIIZEjJGYgtbGLjGbNRhjcNWyaXxNFDapBjaAsY7FYkHXzergcpue24DVOlLEYBwMfWB/d8HJsS4lXnxwyK985OMMIeJdw5R1MClZeHB8wYPTDU/tP8LBFcf1azv80i9/mr1bb+dr3vUmbv+fI84apFiMFF1gWEuOmlRaaRbkkkgZtQ1PEyebNfMcyWJo3QznjTalxVCSkGzifLXi5FgHkNM08fnPPsvD0/vYrmOMkWla8/j1Wwier373V/KN7/s6lqtTMJ7nPvExcig4L/hiIUdW6zXezSGp8lqM1ra1grw82rZDPCiEMGmgRpwIY8F7Q+MtphQ6awlTZmBNazxvvnqT1ekpn3jxPv/19/9XPPv855hf2eOZL3kH4+oKR3dfwjWeNz/1NJ/42Mf4F+46f/l7vpUH/+SHWFOYhpH5rOXq/IDF4oBNGKqCR8+nlBL3Lh7yuekMmXs+8OM/ys984J9xvHperfMm4bsZLiSys/Rh5KSf+Ps/8HfIWLrOslM8kzFMMTKMuSqpHcZkUszMmhbTTMotDYKQsXKB2I7WG45eeoGcI2IMU4D++D47i8Ki2SCmMIRA210jFM/5wzPEG1ZlIltP58GExBhHQsqEZEk5YKXUutlo2FCCUjqGcWIqiWw27Mo+MRXaRvmXrZnVMAZd4p6dnhDHid/91f+Li7v3eMOXPs36Z17ixkHHUR+YXb/OfmcoZcnXvP29/PEfvsir0wOmssakjoXTUAaZWUII7HcLnv3MHxLF4WNkt7nBT/z4j1Jmlma/JSwDTS6kcWC1PsIGXXzl0uKtI4YlMRtcAdd5hhxo3IwQNqpIjzCKQZxhMxWSzXp/JBiXkWRVDHHVF3Z3LesUld3bF8YAbeyJJK3hc8C3jufv3OEHfvC/51u+/a/xFV/7XmYf/hDv+7fewSc//Lt87sXPYbxnMyR22l1iGIljgBKgEbUXOu0RDImC3rE59MpUdQ3OWGIIrMczFvM9rHXsXJlxdhKwrSXhSXHSqBen7oMUFUFjUiQVRQAOm8TuXqd9YUwQzzVpUryeURIwaKiWMY4xJk6WG570B6R6Bg4bDelJyZDMAKlgbFvTbLes38LDe3f46R/+n0As1lv2dxfV2uoQq9iTQiYadaVgDK0xeN/impY3ftkzvO2r3k0aDatpIEgBAuvDkVf+6FmOXnyVzcP7TKHXujauKALLcaQUHZA6gdN1REQXFCLCfDbDUQiyy+0XXqWEwiuvPGCzOufi7CGvf+aNfO7jZ0z9miEZMp6HDy74zc2n2L96A27cYjXscz1d8K53vpucn+LJp76Sw8NT9q8dcPbwRQqZ9XrNRdwQx4n799fcffBAOdNiCCkSKDTdHN9Yrvn/n0O5yY5kKuSShOAqTFsBeAAiaj2iBIZhZD5f4KzD+Q7nwUnBi8rZCtA0XrkPFPZmHd4W+ikzxsLmotfhS1F+T0qRGBNT3dhma6riJl+qObBWp+RVxFLQbTv8yWQbQeODLxe0hSqVrwk34qrUg6oaKnqRAjFpfK94ryyHehCaClvV1N1tqppUNccXRLWrXwBrBESZHlhPyjr8eu0H0t8tidr3UqZa4TRZphhF4qoDK4EzFThYaqxrAklITYQyVQ4s221OXe5o42DYQncy2wBqbeWMsTinSXmSTf09gqbUIPjGY6xTpkvWzXicBqiMEI9oCsuVA9Jm4u76XLk3xtC6DmcKeYykOlSjWgkQp1vKDEHjl7hMZRaIJdcG22CNY0oRYy0nF2ua+RyDyuYF6jCvaJOB2hZiVt6RZB1oOYEUKrOg6IAEDEbUkjKNUa1ujdNENXRwVACxlrQF3tZB0TZJLaZEkFIZY6psMwVaceSoCV8He3vMTFM5Pqm+3nqIO+cgpnpJAyL41jPrOo3R3Cbrba2A9fkRKYg1mpKlP5Y2nFSORYoYS03sszgcNgZM0O2nWIfzLcM00DX+NRtrlemVOlASFDyqw1N9qEIKeOsw1tGYQmKjst+S6+sSmWI9nQ3gBD+f0bQNpmnJ00gqhr4fGHJAcobiKCYgoiBxi8N4h8k6MBvXqixqbcd8b5f9K9chq+UnBKAk0hhZjxtSnBhWa9bDhjuvPGTaHKvkGnBYGuNZl1FfRwquaAOdYtRhZmOIOZEjSI5Qco1DF4XQux39nJUEWfRz48FYr5vuKdCYhv1uh9YUrHhGIseSWI3CvSVsuhHxE0PbEjfqP08lUcoX2pVMPabqn1X1R0EoMVDIJAtDiFycDWBUkbSJwtnhQ4Yp0zbKRktk8JFNv9HULanD/DyqStC1dHsz1pslUxCkUYm3sQWxEIsjOGWUxUm3YsYWGmuYSmG1XBNy5uR8yRAdaSw8WJ5xmj3DKnC2EUpuGEOhzxpGoCVw0dc0G5Kx9MdrZld7ZG6ZH93h7P4hicxmOXKxKBxcaZhCZkqFSTT1pysOg6EPgYtNz+M3D/S9LQHqJbw2LRfBQRG63QUSA601jALiRZMBs4GmUXB1KFCFm+fnDzk/O+blz/8xh/fusV6uGcYNUmKFuetgdzOMFGuYuxmNLbicsei2rGTBzx0xj+SU9HMSQh3waHOWUtYBk61Lga0F9l/5es3mar5gYbI9n177+lf/fDtE0ru8zvWpyqfLs6WeJa+tacg5MQw9Fyen7MzmzJqGNE6QMmPfa1R40FCHHCLWO4oxkHJNL8xVARspVaHRmEbVtmFASBSxGCOkEGmaVn9u9WLXhY8OsERQ1WPlTeVqSU45oJHDtg6zCjEEdmcNN+1VwnDIVDKm6AJqqsopvX9qrLPzGoiRNeXUiUF0KsZsPle1WwjMdlusBMIU2WwGnHNc6Tpykzk+G2m8MN/ZpREdqs8Xu6TQb2f+5AgxJJwteNHfMaSJo8Njuq7Bzjpmj1yjOz6jnJ2yt39AyYUpBqakXAobE1PS8/U0qIpm1rZYYzk4mDGenZJsS5KqYDUeY3WI0s1aWm9xQLYeGoFQ1KYeJpp5i4mRdtYpp8p7XOuJ06TprkU/uSZFSlDLw2as/x9aP5ScKCZW/2Spy77E2EfCGOinnpAnvBTaCmLPOsmj0UxyTWjLSW34RW3/Yn1V4hlCLDhXlUCmAWPwzpHChHOC2Mw0BDYhYRq9r3PSQbYJhRgtuXRMY2F4cEaeeoxY7LzDtAUXMuINbn+GNQ0L63GzjsXBNTrvWZ+eMGxWFJVrcu3GVfYXM6ZimLKQRfQ5zGBSTb1xihCIOemCwnpdZIrgXR1eOr2DTdFha4ojOSew8Fu/+/uUYmitI2JxRtVV4xD41Md/h5PTc77rP/pP6doGWwrPvOEWX/ED/4C5sSxiYNY1TDEjOerzLTV9yhSIqrRWa2OuCznh6OERt3YadhYdjQOHMgPVqurJMXC+POXwwSFPPXGLT/z2R/joHz3HRQqYhaEze/SbFXc293n08BaNDBxE7xNdAAAgAElEQVRc3ePh0SElGg6PTjDFY7OwWg90naXpZnSmY7VaUYrygqgLaWsbZa4JVQWn55Q4xV7kkjVlrKl4AtGlnSGR64Dm2Rfu0PObXL95lbPhnOs39lnsL5j7wrV5y5e/7R00XtibLZjEcv19X8Yv/9rv88GPfQTjPIbEvA088dSTvPFt7+T/+OAHOV9cYVgtySFzcXzESy88zwsTzA8e5cHJHR7kgJEAQ2F3Z4/Gt1ws18QcEXEMw4ZubhkR1r2GehhTMGitHYL+vjNnWYeeVeiR6Lm2MLTNgNhMmPTZixO4zpKLEKaEF/A24kJgQpg1FnGFIkua7LCtwzVQimE9JqzssVmOivpK2h+JMQi6jDciDNOgS7lRlxzJFRrJgFrpCwZyQ2MMi11h3Qf6MeJnLZ/89Md5aveA898+5pN/8FH+vb/zH2N+5If4yGdfIk2Oq489wv37t/n13/gIafJswordvcKwFh6erunDoMs5G4nThm6nYbM85/rT7+HilTWnqxMa73DJs5jp0nwYCqvzJTPnGPqJ93/7txFi4Dc/9EGuPXYdsx65d3pI30+IjVgd0ZFCRBptxrz3KqhAcHg6LxSb2HEzdYxky6I1LJcD+wctwzoTJu0JjVerd8mRo4sjvvjL38G73/3lcBS4eW3B+7/6G7j/oU9ye74LYaBpOozAuNHaHuPpdpLW6KKhSCkUcjKUlLU+NQZbstZuOTNrCjltaFuDMZH9q4IplnVQoYDYOdaEyu5TxX5XEuKABcQhE6VQpogvHmyC1ECu84CsaqHFXovxEKZAO285HyP7jSfHyNwlVusVILTWYL0lOyGsE1Pfs173WMl4b+hmDd7PePr1j/PMG58kW1HnqiRCzoxjYhgj6/Wa5fkZ167s4pqOdqfjG//cW/lL7/kGfa2+oJgpZJ5/5Wv53u/9WwR6rl+/gkPZWOshcXZxxqJtOD4fCCXRNoXFrCUWR87C0Pc0YvjAT38EJx8mo8O8kgpz77n15IpT5hQT6GY7xOMzrIFh3TNtXuHhnQd89A8+y3d92zv5sneMXLv2GGcnx7Szhi96yxfz8u1PcW+1Yd89BBEOjweef+WMzRDY3dsn2xlpdYHLkHLgYt1z8/r+n6oL/02+/uwHShIULIjBojHIkBGJOKNbQGsdi3mHmMLdw56dnRkLazCdo7Uq27Q4Nv2kypocsMayCZHVJiM212A1QZytcfQZKVYHNKIRhKEU3GWBsVXOFG0865ZVBThGxRlZtypmCxcVMEZj5Nn+e0gFKNaNbs6XsORSFGydqw2OokVKloxxbvstLnlKRgymxlXrw/uaEU/zTC97/EvWU0xJgZ/Oq1VGV69aJNUlrcLDtUBw3tSCHsRWY0LWwduWhVS2q110eKUfI6mQZME5nZwX2Sb71Eu4NtfGVuC2WI15tqKRoZY6yKvbCExVc2XCNEIuNM5hcq52kwUNlosh4otguob5fM7B1auslxvu339YOURaBWQRLWCyyrp1Da5R1VIqfwKo9XLtfASsYb1ak8t1/XdF8KCNS8qXNkXJCnPMVfVDycSiCUo5qRIHLnfyxAxj0EM/C8QIFB2kWLYqjdpglaKWJJO2D0VtjDO2RocLhWyywleTYFzDGMfX1Ej1vZSim31nNGVQQXL62i5mHavVmmHSzZTOTbc/saoI1ZVRk2aq5MEYg/NWud+i7aQYHSyZUTd5vrH4pgVjMa4jScYZB5LrM1JZLTXbWN8Otdc477DWVl5ZwViYLxaEMerTKPpMlJJU+g2EacKaASMFokLBrWkpEmlMIU7pUkFnxCqvohRNhBNLnhLjJlBmgmsUvpzz1vbpoERCSBjXsGudNm7XHiFMkYtV4eToWIcnZB559DEeuXWLT37iD0lx0uegqH1PrGPYDKRpBIQggqsqOh3Y6evRrzfkKdTtqSWJIFMhhYy4hLEdi9l1FsVw88qMeWs5uhg575dsBsO94zkntiGVQj8VQtHBZBELVZVZjFRWnDK92BpGjY6DTVaorSlCzsLm4oJ+jKwOHxL7kdOTNY2DTezJgxYhre+qOlPVesbOoEQwSQvCCN7MWY9LbOt0uF4cXRZ840hTYewVxi1osV6C2n77KZFL4eGy5+GZIy/XrGJDxnHcG1bZIgXGLeg6b68wlZlU3AUXfeT28Zpruz1XNieExnP04IyxDFxZO1wcML7DVflMJFRbZmTKRYd6KTDkQiwQiuFoUzjPgZLBuxXTOmC9UHwgjT3khDcWEoRNIqSJk/Nj8jJxcv8ODx884P69uwzDipTqoFkitVOnpKiWGBFyEvqUwbUU0xBCr69v0vM2lajPdNY7hroASKnecbLl+22taK+lul1a3nK93/J2UJT/dBG1ZSXJdrDEpUXutT957RTcfuWytUnXzyJapA4V3nz96qPYSzu4xt132ZCLIDlha6JhqreTFVSpK/q72SL1OS/V+p6rzVzZJ95ZbP1nHaDqfW+NJaZU+Sk6bNO5QyGHAJJr8qiF4sglEcOIkUKzmOszMo5ATSMlY00hGmXdJKLyjYyrKqWiCami9+jO3oK+HynF8PjN6zS2MKTEKy++iukWdJ1n1sw4ujjCeMe1a/ssvNC1HfgFy9N1TdxTZaS1jaodjZ7fUhWQ6zEwKwY5XSmgOAhNEaZiNaWPrAPKUigp4vwuzeIqj73pgOXRHaZ+zXixZFgH5jueHBM5TVjnseJorKV1jsYrd9CII8WMN55N3zOFkSY1iKOGlohGLxc930IKhKTKv34zkLMuVGLQ+6ukRB7XSDEEieQCY5i0QiqZlANhHEjToDWYqc+OMzQJkikYZxUCnAVvG03wk4T49tJSWEoihQDe6b0Ssi4wrQNfg19swxQ3WkvWOrGYQkyq1kMKpkT9+wxMAiYnZBwwY1bljhFKUfOqM5a96zu0j7yJ3WsHjJ99FtmMyLylbVps27AeI6UMrKeINYbDo3O6LuEcuLZj3jWQI6kYpvps+7qATNslkfW6aDVGb9AizEzHK/fucrHM7OwtWPcbMIGc6/kgltl8xub4PowrRBRh8eb3vYcUdOn05GNv5pGDa7xydKpVRImEpKzMUusatZkVrHpiKZLVsji7wpX9PXLMZImEpKeTNZk49hzef5kXXn6RG4t9/vnP/QKvHL6IN4H1xQWlXZBS4PPPf47hdCCXC9oU6Ga7vPz8S8Qps9NdZ+qP6OPAiGXv6hXaZo9mWBM3+vxcnlRSJ7NG726MMkJd44hRbZjGCsnWUXosykUxUllWhZ/7hZ9nZ2eHp9/0NKdnZ9y4dQ3rCndf/Dw2Zu7dfYhvGxbzHZJv+dCv/wrNzLLbBtpiObjp6Uri9md+h5defglkh1/6td+kGIMn481E22amIPRDZLa4SpmWlKxniG0anBsZpgnfqANjipFSMr0eZ0yTLkWdNyTqICFHZmLBa4S4EdhpM7uLwCYUZQLlCcSTkgbpGHGICJ2DR+c7zHzG5kTwmcGONBj6i54cW4wRdmf6/KWChihlTZlW1f121ZAx1hKZCCGpVdlafDHEMDLzljIJSRrECBRLjonGNVgiceqxZpdAx5te/3r6o7scW0u7cEwDHJ6tWSx2OF9uiGHD2G8Q6/FNpA+BmbV0rbJFxQrOeGIJLFLD0dnLLOY7lNxjnNCaBtdd4fT0DNc4iJl5l/nk7/8OX/UX/m0Ort7kO77zu/jYT/00Z6szYoyMkaoAVnxBQTEwJUZV1pRIFMv+wVX25pZps2To9dmaN5bOw8F1y7JNXDyAMMGUMikJ2UZmXcNsscPZ2ZJf+uc/w7/87Y/xy7/6GySjtX0pEHIg5IitiXm+KxibkOSVExtCff4dxWVCyuQkzKyB0uOaDps7yAkJiQTEFCmSaZ3D+aZyWB1N21Gmic5aplLIURNPZ7OWME6X1tYiDRHFc5TymvBkSku61rNoDbEfWMVA2Zkx5UCX9WyLISDFg7UYbdxwpuCs9mU5C2FIUEYW8xn9OCogPUYwMI2RfkxMIRJCwFcG7rxVJ8bF2QUXmyXzbqF9bu0jCplpGGgYyY3nymJWay2LN7BaJpCASKAQmM8MXSMY22GNYZgy4wxu7s05evgq/VDItjCGAK7l2RfuE8IGrGczjkjjmB9c1TrdiKZ6h8z//kufweOQ7h6NKVi74PN3XubwzoYuwRspGLfHdFEwU+bJa7v464/y0vFIvx6JondLQnjx7iF/ll9/5gMlMRZvLEUyDlul5A5vnU56HcwaT+MVWHh2ZFk0HtJIiXCyDkwhkXHkrB/AxmR2WlvB3knltgLeaEF4yakuSRkDZIrJmCgat5tTlXlSC+RSY0OpQwhUbbLlxBQUXItO000d+GzvH5XXbVUq9Xt+gbXktW2uKATTiIKwjE76sdrEqFKjFoJYSs51MJVrsVMz2ZKO56SycOI4ILlGmCtCAGu0wPXWUyRocYQCPKGKeUSVYmULXa0DDFM99ltLGGwHRuCqFVB83exuv1c9GC+tESJoB26V75BS/SCijVPWGkML2ETOURsKY+pwzmCcxbSFphnZnc3p9vaYLeaIFQbjKmtrC4/VIl2yvq+ak71tnHK19XDZZGwtH8loI9f5BodGwSu3AYo1NFZTUnKKNAZwCtYVkwkx6evqBJzbrvixVFZUBWKLqD1QmQ76jLqmYRsrvx0e1unCZeqCqr6gcY551zGliYI2nM47ijUE0QQ+Z/S9mPmGfhr1NbVUy5MO/iiaKuiswVpDLMoauYTFWx2S5TDqeCopZ0U3eR1d1+CqL18hGa+91wVNUmm8o2ShbZTZY2x5TbJA/TlyrkXba8yCkvXvypebZx0sOKcDvJLT5WAqFlVeZQri6vNrFc5vGz0XvLEkmyk5EGJGSrpULZasP6sYTzENxnZMdRh7mTgpupU2GaY4oclDdfgcE75yKSz63nrv8F2HM46hjFiEkCL7i33atmW12tDMZ2pPMRZjBesc3hoa15GNIYXIRT5jvd4ot0UgF8M4JHzrsHmX0+OJ42HNnYeORecYimWICm0dMgzJqqIjC7Ek1NkYlZ+zTeKqZ0zViegAukaLqy204ASiNRSbGUJklUbun56yXPfsX4HlMuGT0M1VRRKiQm1nO3NyNyePA5JH8hTYDANSPH5nQSyWlAvDkMhS2WMxkbNV62IdgkvI9CGRq8Dl/CJy9yJwcRw4Kgcsx8gyZkAH7bme+WIKJevZo6pPffZCyjy4d4wp8MQzb8T4fe6efprN/83amzxLll/3fZ/zG+7NzDfU3DPYRGPgCIKmBIq0LWsh2ZbkCIU1MKiNw+HwEP4LvFFYG++88VbhcHjh4MJhk5Ydlk3LkkKkKIUoEiAIgAAIdqPR6Gp0VXdVvXpDZt57f9Px4vwyqynJ2ggvoju6a3gv8+ZvOOd7vsOi5CYMq435SbSCqkdaYb9UVj5QUmGzWRHCimnagjZ22fN8nykrD7mR9jM6bSnujG0zY/J5fwO1kmtjTpXHH3/Eu2+/w/XVM3aXl7SWySglOHsWXQ6i/nA+HhEfRKGS2TVlPayQFpG64DHwUzMGijj6+z9cY0fd14tzRu1MEulm2p2l45wx1uRwjx229+H/D/8hx6Puj50B9lLtbDgkVtl9aCtNe/pn04bDHe9JSTvG04g6odRCLSZfLakxbFZdttvTVfTgDWVpoNMy9SbePA3AaNxg60CcHu9s2/v9/utNo/bX3KqdKUezb8sspqaEIriBXvyLfW67CbdaGcBVjdVr6XqO4kz6Kq1LTBt25lXXgVtrQjsGZKO2YB6SznmT12lAvHn6hcFSvRQl+oAPSlZFmkmjxTljrPX34rGLzrwDzVBV1ZFaQfY7mhhzoHhH8DAwWmpkZ76pwKt3X+XzP/6TvHLvFvv9BV/78j/l2UeZ7BMxDubJWE3ibQm9zjyunLfaqVVqa9QhGjM3J4J3VLUUH1FjK1YglcKSCjknUk5Muz25ZqpASt3XKlXGlSMXIe12JntoJgFpzZpdbdmYS0o3o6YzhU3i3ppJF8VHxjHYM68ZLUAQhMKgHpaFEmBYjXRrS3BQtXt7ievmqhaw0bzdE0OzJDDXCpoSDCcMwUPGmM21Up0DKqUaYFNVqdqYpont1TXh5JTn13uunj5HtXHv1i38xszIpyEyRM8YIt979z1Ozm4hoqzXG4ZxxeiEfQIdzsiq7KujZuHmZgc+EscNwQWKm6jSmEtFQuD99x5z68456/XYI9xd9wq1xME1Dl8SV0+e8vzihslPFGwAQF341J/7M/zZ3/sK/+P/+T8biFYU74P5jXSGYhe8dpzfYt5bWvjo6QWbszvGbgqNuqgNW4MdHNvrC/7gnXcpcsofPfwe2+0zhjEQYqPWBR89NzfP+e50w3T9mNAsYXne74jrAdye7BKlJlYn56zun3F7vMez6yf4VIwN3K0BvADeZMSHerGKDWhb8ITNipYLTYuFDPVghFIVVxur0VIXry6v+OCDDwiDh5R5+eWXef7xFRdPfsD28jnOO659oLjAydoRveOV+5/l3njOSh6Spswyb6mrhcvZ42PEqyVj377j8D5zcxUpNRCcInEkZcAX9rsbwu01cQjEADWZh16IkbPoKHNhCJ6rVGxQIRCjwzWxQKDWGIKQauFqMhVJEc9cFd8a0WXzBtNICDA6x7nA2ehNnlsm9qUQVwP7ecfSAnkGNygh2sCzFfMEFddVGc2Ssh1GLojesWz3PZGvEpqynwqb1UBWx8oHVB37qbLfNfzg8GNPbGwLTy+for5wdX2Hv/O3f5U/+KPHfOqNVyjbhYcfXRIDOLnm5bvKlCbi6AhqQTanmxMcM2OIDMOa3bTlzr27/JN/+Pf4c3/pr+Nutnz1j36DSuHW/df4qV/8Czz5xte5/+qrPP3B+3z7D7/FvVvnvP766/zH/9l/wje/+g2+/K1/xrBeceeOZ942luKJ3pFaRRfQbqnhu/S3iULwLIsyLxWtDqeN/RWc3j0x834nuAiuKrlYLbykRoyVD975Lr/yP/z3/M7v/A7Pry/B9x5LG6V0zNTbIDMEBfWkGVwzAoSGYF1zFUq1M0+878O+hpMCOtKYrNaU2tOD+5DAB3JNaDaFi1dTBaVW8cMJmoSV9zQp+GC9r6ZAacYedX3P+WjN7OBOOYsrUp7Z5x0fXDwlDp43bt9BsiPlmWmeGdeOkU7DEOmestKHdRWy5/r6hru3T3HNQUlocKaSaDaUGkO0wTkFhw2Xn188Yb+75NbJ+YsGV7F+ZV645WCWBsHTFsEMZaxHSIupI3KqbG+2uBMgrK3GKUodI9969Iz5ySWjKKfrFScu8/m3Ps0337tkbIVlmsitULIlxYegFn4VPUN0zAj/1+8+4t5tx2q0Ic1+2hGHNWE85fkOdLqkLZ7P/MgZr8RX+MrDmYunD0ETXnt4WWnEf9Hb4F/r64cOKN06GyxtxntWcbCJn6ObT5rO/3I3UeuEqhXeHz27Rh04b8aJ2hSk2iXUKlEM+LDUEzX6OHRGhU37W6exNutPkXZI9TrYi7ZOfT8UmX366vRYCH+iLO/vxsAn5zpnp9PmtV9Kxz/amo1QeWEcegCpFEM46VOk1g6TaSv8Dtwg3yAEQzvBUmgOSVygJkmr/dek0UrCx6EveOkFs21oSxHzlJJYjaOxhJrpOJu9iN7o0i2hDuafHFlbXgTvgk3qS0+isTcD/T0dJqPmk2U+T+ab046yKe+MlVQ7i6t0E7YQxxeFhwRqd+ivoxDuBG6v1vghUKQRmmO735sM8gAaddCuw3YGGfW9UZs9Fvs93yfT0g2KzWfp7OTUIqI7yIbY1KS67jViKwzRRhDXJ+3WFDQU6YbcB2N3VKnFzM6cs5+Zaz3KK8QZi6h1xhYiRDeYtFEDiKfUyRhAwOgdgqem0psqiOOqyxu8UcVFcFFQLR14UoITNmNEFHaSGMbAGAIpJcxqpvUGsUu3fLCGpJovkfPW5Dng1vk5YL+uggE01UxXRc10dhUDKZmlrRw7z9b3SQcdsTVp1UVvbulWvk4AA1xqMwCsFDVpJgY81ZoRwaZLKO7kBM3JUm4wMEgA1dQZhtA6t0F6sVxKNTZgUbSZ/4O2zgxzcoD38HFFNBSGVguuM4zc4RQRoTlht5uM8RUCLGb7XlW5deuMT7/1eS4/esT69BwXwIfIGAZjZQVPCCNzMf+fh+8+5Nvf/AOTI1RBQoO8prSBqhVZKhoiE8JuOxPiaM0wasauFi4KzcDpKg0vvnt39TOuvx89IMAHnZIYkG39kzU6+3lm2V8z5cp+n2lauLme0FKhVc7cSM0wlUIMwvnr94nrFcvVBVqFZblmn2GIgqw35BkYIr7ccDnvGMQxeg9aKYfmozmb+GPWys5HqsI7T5R575mWQE6ephmTOxk4IN3zQvsednpg4xg7cVHlB4+f8tqD1/jZX/h5nl8lnr/3NjctcDbN1JJYDSMpJ2quzE7wg61V0QItswqCZ2D2EVnops2Z3ZR5/NEj7r2ibG/2zLsbnj55zO76iuvrS66udlzfXJOWhSovJGcJM3WOOGu0XTAgo6/Yw3lPZ1hqTUxzZZCAVw+uETC5FmLJJ4cwgVZfME1FBaEDVd2v7wAm2Z483IH//J33AjyS4w14uA0/YdT9ib/2STDpcO/Bi+GEfc9+bzghVOX01BIfacIyzQRnpvAhHlis5mHSVPHOPO5KzpRpJkZP8JGcLKiiHYHyF3Jfk36aHPgQsOEO76nfrSaj6leaWghAmheG9Smuy3IPQ5607PHBAkA4SNicM7YQvRlFcAra7zs/GKjlEFp/T8ts0lv7HDyLVpNFDw4fbfjmwsBmMDZA9J7SEte7HWennhA8Q4gMIZCa2D4T7Cxr5vFnILtDfWQ+2RCGyIiBVa4ae1sSBLfm1vkprTo+/dbn2KzX1CrcvvUyP/+lf5Nvf+OrvPvu24wna26uBCfB/NzUmIXRB2PC9UWjrVKlkquxsq2mUFI2WeOwHkhJKWUhp4X9srBdduz3eyvwY4RmCbA5Cye3T7m+2JJyMslRO5RdzVhCrXs3isnSpGUo3gY/3kFdwEVKWjgZAy7Y3Em04DSieFRgP0/My8L9118mrGxKXedGpfRtYaAiTvFYzZlcM+Cqr739/obVODCsBkIOzB2hWIqYZ2ITEIvgRpRcJubdJTcXkbTfUZuyGkfONmsGD3OtIGqyNoS5ZEJZaCipKUOpRAd+dcp41zPf7MgiTEtm9+77nN+6YhyN8eTGgKOxz3BdwK/u8pNv3uHy2RPGcUVDWFKvKbWxloBo4Tu//22+/W+8x7AUpqpst3uqFsQ7zm+f89LmnGe7vdVMIp2ZZCxAG5LaBya9djTQz+GDN5BGBvCC7wbZKc1sd895+N0/IC8zz64vjEWg4DIsaW/gTxRadLZ/o+JbZXU6kGpjv7+gkWiaWd894/Tebeq+mZQek++7JgZgdfcK5OCopNbsKpa2rNrBZmtCD16aVZWSrS4LYaDlgrTK/dtnjM6xHuBSCpcXT/CqlNTQVglnt5j3mc24oeXKz/6JX+Dtrzzm5PaKeLEn15nSVtQyU3G0AjeXEIMjJ7WV0LCBu3jiAGmfcG7Nm6/f5tnlY1rdEpzgO3t+CMo6WgrllKxmj9EGZUkF7xqjU+YCj68qQwucnQdKTwM+WwvSTBJeq8cHOF0H1uuC+hlcxjfPWXPstpX9TWY1RKQFokZG74kjXORG9lazuGpWEnbwmqS5qTGoTuOKvGR8NEN9hyeiLC13L1Htw9oGAap3XNWMz1f8/re/xemDFb/0y7/M7sNHvPP2u6T9U5ZBePm+MNcMXojDGW2KeCecnzrmaca7QikL+2lmdXZKWBV+6ktf4Du//o/50i/+B3z1d/4BULl++pDP/sQX+KW/8h/ynd/+Tf7Whx/wg/c/4O//2v/CT3/xi3z/e38Ig909Xjx3zhzXO0BiT12t3TfMgpWcL6xWMF1/SK7G5l77QJBE8QP7naPUwvVFIogQ4kB1psbJtVJy5evf/j1+9/e/gmogRnoAhE2ENFuiXlx5Ws3gHbV1b0FtqBjrcYiBOZtNR2sVoVGlMIRATQuDDEhwpApLLjgfcaoWFBXAhTVlyfiWSeqs/3ZCTTOr04AuDZoSR2XOEMaBwB6vFuTTWqUl219+Y0EKrQZwlVqFW34geM+SKzEEbuYJWTJhVEvWrOZXLN46w1IqrSW2VxdovY9lp2dc29hnEIQQInE94kVJk/mBOSfs9zv2u5seZGJ1tfTqp+Y9b37qNnNOiHYbHQTETO2f3uyP1iklNfZ+RkUJztMQdFHGGJldoHnlZllI44p//Lvf5ObiKZ999VVubc7YlsTT5x+yzDPeVWIYrO5yDRdG3r7aMr204dXX7jLPE+PqBDaZx9eOx88bdTbVxNltYdLK9W6Hk4ofHCVltDSC86R6kF/9cL5+6IDS7ZNAyYpqp5Zro9RKWhZSKszVBnjOe4bBG72uFYIOFu/qOXqMeLHm0PckKvOtliO4odjk3YyerYlspuSiNPOK0Q40tF7c0BvbAz3XQCLhyCzqv3YAmGpH00Vc96GxstRojOZfpM2aVZsO2yJTNeEfat4zrru2v/jZHNk6Kop3Vpg5Z99XVC2Z62B2+AnvojjYs9VSuwG6xdUL7jjhN6DCCn/nAyKNUsrx0m9ajywFUfMSOMgFDQAzbxvvowFhXQqo/Tk677pkyYqJqnRmSX9w2hlUXYvetFnT0yriB2tNxB03qojrFFDBrUbGuKGVHV4z835hmvbGfqnQTCcFhwbyMEk/NlJWGBzARsdB2mBgjRNYbdbUZshTO0BPSkej7H1UVxiqGYVqB53sCjQQ7ZDs17lQ3XD9hWmtFTEQnbEnxBv1vOQXcsOm7njgeO1yN4yllHtDtFkNxJVNyyqWEJRrRp0H5xm6D1Nt2iWarUdf2//H4DHoqx8exz5PWa9XtI6EGzgSRIsAACAASURBVJDJkRUwxIgilGy0e2lyTIvSgx5eDBxordie6JN+e+6NgxeX/bgOKIXQG1wDPu3LfLhaZ984Dr/e5ZmtkZaEKIxxMMmkKLUUhtUKEY9KsWRBp92/ydaDgSl9ktFZCDiblGm1WHP6pETFmD1W79hFVXLrn5lDqUgT0pIhF3yzeOqKeTYt08z5yYbhwWuc3TqzaZEIvk+4m0Cu1iish5Ef+dSnePi999heJ6pAFPBuRaqOmvfdaD++YBS1ekx50lLMzwMMcFbsDHD2PKkHKL2DAe6AGtv+NGAPfLMJWNABTQ2XZ6IXVD1LyaRs56wqtH0lOCgqaHEk2VCqZz83fCmkrGzLigFhvTRaAYZI1oSKYy6F2vS4ZQ0a86QKuBXrk4iPAxIiFzuhZQPH1NlnWZuAegS7yL0M5rGCHtSv1ih2aCkpfP3rf8DLr9znZ770s7z93vfZOc/zBmeuopo7O0Uo2cyNxSljENCKd5BK49nkDPAqttZxga9/9StsNiPX1zt22y37/c7AKa1mECxC8/QJr5nuOy94Cd13pIcetD64UH0BWHdwxon0Xy/mCScKbaHVYh55x81shvtmsG8g0gHUVThK2VQORtpyPDMP+89ADvljQNAnjtY/dnbI4f7qd9Unf+94zeon5L1iE9KmShwGSxHDZElFKz4GxC+0nIkro5LnnE3i7JRcCiUvaM2ohzCMODWvJG3VZLO9MTxIC2rTDnQroUkHP7T7ItpgRTrb6RDO0WplCOEIMAsCpTLvdkgciSEQJQCNqo2AmbDa1WF3mXfmZVgx/z45nG/qWPaWttOwKHXXmrEKqUjpxstikdrBG+CRc2WZZk7Pz49JZeIjvg9KXAyEGPEhmIfZvbtMtTCpp202xJWHnNHtwgrzdnMycv+Vt3jlpZdw40BYjeRWaSQkF+7dfcDP/OyfYNyM/ODjjwkhUnIljivwyjDET6y1FwM9FyKazKTZB4txXKbZpFMlMS+VedozLzPLNLPMEzVnBh9NBtOE0jKII5dC3k3kBqtwuHv759qCDRi97wEX+mI41EGMuiwwOpBGzntGGQgK0dMn457UGlMpSG1Mux237ty2AdoBX/DSZbwJVXtdji79d/5Yv6W0Jy4bG4wRzF9QjKUT8J354l4woNT2Qy2ZlhaG1chrrzzgfOVZpj10aaf2/eOdx4dAv5hoJdG63GTwkRwjMQTStvD84pLalOAdrVTUR6Iz6ZFfn/AjP/ZZ2hDwmw33G8hqQN1ISYmWF4ZmMpDx/m3u3zvh/skGbZX9nGghEoLjc2+eE6vyve99yNX1FVfba57fXLLd7dgtM3OeWWqicjjP7CxYr0bWMRKHSBiH4/nQysKcLml14oPvfo33vvtNtrud1d3Z0hWdZhtG1KUnxDk2t0fmy4mKo+aMo1KkwuA4uX0LiQP75do86rypBcS3zuI41MfdcMD5Xudrl2mC1ANg2vd3ax36p6fVZnKrvPnmj3DvwSnPHj1hnvaE0IhDY64Jy09WynzDOEZSU66XiXh+yubuq8w3P2BqjZtS8c1qjCrm3zbNjizQakackGpmu5vZnK4ZZWQ4UaIIZ3de4ma/Z5lvWG/OKMtCqiaDXLnA6C3x9WzVGFeN6yvH5U4ZvKe0RmlWHzZnA72CgQfgiMFb7dQatSr7KkxamOeEA07XQm1KS5G2LOhaLNhE4XTlWPnG6UqZtVj/lK2P885RasZ5xXcAXarg3ArvFXGF1SCElPsdMzCcup6+5XFuoIowrm6xvbjmphTeuPdZ/uJf+Pf5rb/9v/NezWzCiEaQWpgqrEJgDIUlKKF5ihaarywJ9lNGJHDzbGZ1K/K//a9/i+UK/rv/6n/CXVzwjfff5eLd7/Kf/o3/gp/94hdIzx/zy3/lr/E7//A3+dr33ubvffgutdVj3c5+II6CdG89IyJYRRa9gGsMg+fOnYDUyryrqBZCKDSfgMK8RJBGHB3RReYEJ6MN03YzSIbV+gwNjZongmuUUqlmIGsAfHOUpUFV0qoxdAVFbtahnJzd4fU3XufHP/PTfPnLX+WP3n2HmkzKqK0SEapk2zNejOHZrQUWyaaAcGbqIV0GmbLdjaJGCMEXxvVIC5kmntYWnF/IpZjctnV2vQrTMtsZESMrCSxtppTMs6sbPEprEfWe3VwZTu12LbUnI/c6XPp9lKds4LB3fc7V64Ro+z14kyJLD7tyoixLIqfU+yB3HJop8NKDO3z+869QxfPewxukOgszUBv2zKkQQjRigDhKqjhXLPwGwfmGVptsKEKVwu56x377ET/z1me4c3rOyeYezz/8ATllBmf2BnPa49UGZSE0pqS8fH7Gn//Ft/jg2WNWg+Pu7QdMU+DRx894/MFTPn6649F15qbcQKrcOx9RBmqu1LZGGqyOQ8gfztcPHVC6uU4UVXJz7ItNk+kx9KV1E1aRLk04TJdBmnkgtGoTv3ak7rtu7Of7odI6+GEpXu04R+1TU+nGv3Q2UbX0D2PffoK+Jtj36ua1B43ksbzuZAttrfvLGLuFgx+Mlcw0rbTu82IrtvbvRQcVtBeM/Zt2LyQrxPrP4viyesHfjhNV7X4VKmLMBBFqrnYJt2K0b4cZLXeqo/aNBUKtCk45+EVon7DV2j041N7fQdN8ACGk/wNWzKgD8d0r6pgO1Ith4QjcHdke2unwWCNcajUq4sEbqksy2iHtrj8bxIpD8c4mkEVIudCaxbX6XjJWPvEAnXYAzx8BjNYn9IcmAuz1iDbWqwEXPRklcoCc1KRktZn0QA8fyCf+G0GoUIVDEiDdu6I1iwZ30JP4IEhAfcVHd2zg2yHeW14ALV4E9XSZYjHD0CDENlDCmldefoVxFc1fRRuls71EBW2NKA7vR3ANtLCURj74oYgzk0kRYmekHRpA78wvYb4pZpinxoxzWMJgLoU4eETqUT4juP5zxZLcaqW08oL90A4fSweVOnvosPvcUfrWAdbDPjqsjdY68KREZ0WcayZhk2a3WE4LqOm3Uzb/FK3mVSEhIl7whD4lPbCPTCOv0ix1QQ+sjtQB5y6FlZ4MWOV4LuRqzgNVe3CWwLTfsX/0EPJkgESzFIX9fiaXxDyZN1wzJJEqBVHINVFKtclwMWnVK/du83j/jL3SwWugNJSC+ojr+1k7U5PWUM0Gdvem3tZT99ZSodL3hGpne4k19odzqBv2q5h3kwsOgiOXRPVKHAISvLHGJFBbBbG1dQjUKh4+3iYzP05K21c0njOcrnB5S0qKW294djXjknmFlcPaEzOPLgghmPZ+GE/wzpFaIzeFasCMvdaKN35ABzOMZWatgAHM7bDOtLMkncmuFlG+/JWv8pf/6l/i/kv3+PCjD1k/uMfQMqSZhid0iYu6gB+Fs3EgBqEReVqVm9S6H5wlMrkIH/zg+1bcNj0a93OQlvXBQFWTmHrB6N5YIynd2yi3bM1Sb1SP9kRKH1oYGN3Eskp9A03FmLVd4nU8qA53lvZmVoyla9K2F75HxzVw/DqAS4e/+8nf++Tl9C/+Mh0AkU98D5EXd+3h33r4bBqMXYrjqhloDsGxJCGuV9SU2HiTopWc8H5Na42SM7nYvkcUFwwIOph404H8Q2jEMVzjiJvJsSg0AKoeWYeHYUbT2llI3WmsqdUaqqSUCCVTcHbuqc086bKF43vtLGADDardaQ6CE0sNbYVWesqps8bKbuVGKYLzgVpLL3IDuEDJhShiLEcK3gfU2fRWfGTwwWj73jOGgfH+fXZSaNmjOVOKsHu2ZZwzeRxxOhL9yEsPXuHs5ByJ3lI71Zl5KI2hCGdnd/mpL3yR8pXf4/LRR2SfiauhGz+HviR63SMmWXDjGjc5NqcjfojUtJBLxodIKpW0vWGe90wpkZZETcluFXFoKrRi03LnHdvtlnneQghHvydb5HbO+QClGuPBho4W0BGc0CTbPm0V6dIwkYg2uhy8osGDBGopkDM3l1esViMNk1DPrVEFSqrsr286Q7unIDqPugZH+Ucjz5ONUBRLzqyWuLngzYZA7f7xOPw4mhR4mmlNuXvvHq+//IA8b0mTJRhpyVRLU6GmRE4WDoDHJCVqA5Xp5prtbmJYb1hSsvXTh6y5p7JWV5FxhfMDue3Z7oTMBt8qp8Mdzt94nd1ux/7DD4kRVieRW2+8ymtvPeCVu/dxvgPW/b5pvMlnP/c5ts+37K9vuNlec32z5eZqx83VDZcXVzx78oTr58+5eP6Mi2cXXG2vUVc51cCqRVzpktIgODdwdnaL9Wpgt72gpi3eB4oMx/tv3RxRBhwDpQp5mvGLpxYxxmaB6Pu97xxtaehUGdYj6/NTWi0GmmTIecFLwDmHk0jw0VjzrTFNM610ZnozXxZ715aFpRiQ67G9vuTC5uyMeUlc7m/4yU+/QUmJq2tjuVUac1WCr9A86xa4vrni4cN3efMn/zTvf+MrFHmH2maT9wtQezJxT2BGC6uTWzz76IJWhNAKoxPuvfyj3L+94dGThTGesdWR9fgSz27eJ8TASy+9yRe+8HP8k9/4f5Byxb1NhrAwiTHTUrWQoGlpJgn1Zj+hMtBkobYB7wPOLVAqpXkmztic3eXjh99lFR1tSkwls10C0TnunA48v0qUVpgWxcWC+gXXwKkNbObqOqPUBhibGAjBcxrOeXRxgTbBJaUMCSeNokIlEWOkLRWtA3Ue8cGzyzsmyaziyOb2LX79//5Vlu1CKQnnCkNccXUFiyr3ToVYnzOu73Lr9Jwnl0+ZSyNnZ76aNTPtBT948vaKOkT+/t/5FX7hL/51dr/999CPLxjnLc47fvpP/il+7md+nqv33ufrH36fJU288ep93v5ga3W0FlIOVPWUtFgdEBw0wa+UISqrKEQnlCTgK6GZFFp9oJTGVCutWFBPrdaTuWiDlBgdTlZ4t2EVCnNNvS9oDBLJx7u3op397nw0WwwGM7AeBxqezdkJX/zSz/Ptb71DQEyqLYFSC14Cc90xriI1NbxbIUBasg1QQjIAFLvrpEEEhmaAvE+OuPaILhZCsK+UsmdaZlqxHsW3DEFozXOzv0FbZeU9++uJVgulOaZ9IYhCgBAiLQXzzqWxio7RjWb/oRY/I30AW7RAGwzwUsWrosGbN3BuFv6gvX9rjdYyteUX1Uuvh6Zp4aMPvsfaLXzuR1/l7e9dEMTYsqthoKwtPOSgRLnaz2it3Do5YbUZIASkCnEYGDenpO016hw5Tbzx4D6vPnjdLBiCZ1pmzDvJU6oz4o0qY/du887z6MkVt2Lgeh24v/E8uH/K05sJcmO9dYRt4/EMz+dC8JHmIteXF+ahKOafeRJ/uBDQDx1Qui6tM02UompTVC+WBlUBtWV+0MIjao1iny7WdvA9sck73qa6Q2cRKNZ0NTV6t7FwOoVQjPbmMVDGDAGlTw71jwE4R8DpWOoepECHhqX15q43vZ3hYi/Oiv1S85ESbxp0a3hF7WcbEGG/X7VHuh+nwAY+HIr8GCIhWHpcae2F70wH4FqfZBrmUM3LQBuNbHrcWnpTYtIU5535O+RqceeUnjB3AOvM96D1yYPzvSFp7WhqbRc9R3kbmAQRjB2lxdI9EMG57tektTdE9jxCiAQX7YmrGQU7ke4j5Y8siWNjfPR4Abce8TPM6arXkUr1WKHeGWUiVoy7zkpAOgBk3fXxtYjYZ9Ra5fzkzjEhrXVGmoji2mHi6qhaWcdo8guR7unzwijdNazh72Cjavd2kD7xxhghTgWcNzCg2HtrtfV1KcTegDoRO3BawUdPXI8gleDh9OyE1WAXQc2JUhecBovd7MCBBEeUSM5d79e9O7xzxCF2Bl9f/yqdvGVa4vWwoqaFZZoQ7w1wLIV5nonhxEzKO6DmxCalTc0XStVkduo6Q683x9oBvwPrQZRunG5rzNaVgUAh9P1bzFg8p4I2xWtFW0FqwrUKraAlMW0r837H6dkJwXtaLpR+ZpQqBBd6tLc9W+nLwcBFk+cFsRSsejATpRmrA2N3tUKfvCu1OVJeaJqtPxVlnmeefPwx8zGtyOSsQzCTfUQIMZpUQQyMSLmw1MJqXJm0rwMm60E4DWaEuC9CpSBaTDaitcsJ1BIqikWjOq2WaibdnN6gvr7v7NkfWHmIAStyMHEBnDpEIlVsSjd6S+rDz+Rp6fr8Ad+saWr9XG307yGR8ew+Lq4Z1wMvn7/O0w8e0cIGmPAxsKQIwymr28r2ox2+7UxeURreW9iBAqdna9abs+M6E02d89fL96qdOWhrhtY90axUMl+6wxi5M+REDUCrWlDn+PCjj/n44UPefOsV3nvvfZbmSXJCW/ZIBO8rpTRqMzNnrZV9SuwKfFzPKZptai2Hu82kuHYY9HNZeMEIgl7cmTGt57AIba0rBlTKEcCxtdYOqE1vWKxQ64ylpl1EAkNvrI9kIjn86wAmcZgpdMbkYfc7kNLv2vbi79PvwgOYpC8GHZ/8+iTgdJSxfaLwau3wcz4po9bj76PK7du3TRbTfZzGYeD6ZkK7BNyJmLwtZ8bVaGu55i4lt/sweOlAcoZW8cHuEuMPd/D68FjU3ozrgxQO3k5id5+IAZyl9jPN2cAiOOmM3w44tUZLHWhyjVGFQDNfrP4eW5cNe+dN+uw81UHEXl+uFWmFGCNDcLiiVO8QPxA3FhVPKdSWyHj2KbPb7hkHS6QK0hOqnNBEu0m5NwtBbCrqh4CEAXFm8o731BiRfYYlmzQvCLQZ70/RqqRqo699jVZzRdtjw/qUz/70T/P40cfsHz3sNZMZ+GvqHSLGAA9+xbA6YRgbp2cntsZzZpkX4oljnhNpmlmWhZwKpZauQTMpuzZjh7nQZWGtEIYOVLmejqsYG7XZe3DeWfSzeEJn1AavrHxkHAdmMTNhJFIKZLsooFW0dVZ0MSn39c2O09sTt07PQISdgzhErq5ueHpxg4uDLW0f8NEaJLodQBDw2cJjcI4mJp93A7iUaOrR2ojO2IlDXNHSwnJ9w/npCW++/hKnJ2u2y4RTayprE4LrMHltlmpI6KClDR1bbSx5YZ8m9q1R5olBbdgj3uFkMXlQt0yoxZi+S4WrWqnPr9inBvdfZbdLPH/0jPPzSC2nfFQ+5Nd/9Tf53Gd/ih/7ubd4cHe0eh3z3Dy9f4ezl+92o2rb51pMLrbMmWWfqLsd07Rn2u2Y55l5V5hzJs2JZZnYXV/x+NFjPnz2mKL3kGViaWuu5Zp3LiaWUohjAl/RZ5kyCSE2/HhO0BF2A0NabPCggSGOBDJTymw/uCY9mRgHYe0jF9vEONgQzGHPdrNekXUgp4rUYsO2DFQDi4IfUCpxsBChVBpEQXKitswwrFgVeH65sCwXXFxcEfybCFCKIzdPbpglhrfU6aSNi+uP+P2v/BY/8Z//Td6cPb//ne+zH3a05I6MCVrDUYmxIlJJ+YrtfMPoLZmQEDjf3OXWZsWH7RHaHONwxvXzZ2gNXO8T0S988OEF0z4xekfaO4o4fBNO1pG5JHIW1iOcnChJBacjPoyciENKPQ5nVSqnd1/jz/+7v8S/92f+bX7tv/0bfO3jhzx/PlPcigacbBx3TwaubzyLd6jbUXKlNmhFiKKEwTFGoRQoxYY0ZjVmw/ea1RjwEpiSgB8odAP3ybxuXMvUqdBcQTeYGqXNvPf213nt3pf4nd/+JywTeAo5F64XZckOLY67Bca1cL7x5GSgrZ2dwrSYN+EqmI/ZuIr8oy//A/7qf/Rf8oUv/hi/8Wu/yrvvfIt/69/50+y//wF/97d+iy+//zbFK0JhPz3G09hEwUvGazCDc6cMQFz3NOEmRIFVSOyvGtSKuEbsZ05O4EpkDNYb3TuvpEmoKVKqpfD66Ll1+5wgJzy9eNxl2PZ8KYqEwDha0EzTaJ5HHiQ42mxsF6qSppnL5895Nm155XM/zh++9x3qvLczPns0mqxM9xzP6ykt1MXUMgGPBDHGUzUm7okIq2hDx1ZgP3t+5k9+iT/69lcBYZpnI48URSKkCqF1axIq290NO8XOTRVqMr1D9g3agvqCyoiNEeBkXFnqaWks1QzPl5S5nBKtWa0z+l6HeUdRYZkzrTnGcaDUXltyIAj8ceaOKngfuNxdofstcXNmf5YCzZPmhbQU64+byaCnaSHlTMqZs7pmtV6zGlc0tfT33ArrsCJyw1uvfZpcxVjCSyKV2fqfanWsw55v9A1pwhAbHzyb+cZ33mbYFNrmFhdPnvHOw4/Y7S5xpRJOCq/dGuBkxeOLwvVuZj9NRtI49g//kiLvX+Prhw4ohSj46kmlsI7R0tfEdLit0/drN8R2tfV63Giexvc3U0aThdlU0ekBBBJaUST0Yro3EFpNaqZdCdUALWqHVGs4MXr5oZA/MJyO0NJh8iUmcTtkzzjneoIO/c8ZwPNCFiDWrKl2o+naGwk5Fs/ibapOM3d8M55zJgWrRzqHpWoFk6+VbOwDJ+6YOGaMlwODAyv43QHoMbmO9xZf7zpLSiTYZqw2jfXe4ZxNQM2Q1N7DkcEDx81UESQJNWj3JnGdcWWAHgq+VKQ3J4IZyRmbzICnEB3BBzMlXgdCzORkaLA9g84fUXpB3CjSKKkhEnBxIGthv59ATFpQ+2s9St16IyW9FzqsExSTE3hjRQggWjg/O2Nzdmrgjx6dRMygThqtmFxCxejZh5Qk61e7iV5rHaCyIspqvu5hcpR3YcBCl6WJCrVmSq2EGGzribFeLKJTiV2+OMYN0a/Q0cwOg3Pk/plXhZYhSkHEM0slSsB3xtQqroiDJ+e9fb5i0glxDqmY3MZ1eVqzhJvbd+5S6sK03xki3iopJab9ntU4HhlkKh4XMIpnMFPsOMbD0BjwHVQ9gI82ez8at6bUU+6MKVD1RYNufkveJBzYtlhSMiPU0g20+z9opZQFaRZlX6olaNQindHXfbCcHAHLQ3drWFt/Hgg+GDvJdXabOkwm0IrtiNJQKi44fAy0YqBorpUnu0zCfOG8c+ScuXV+ZqkNokw5kXJlAWiFGCKrYTRpXy+ApQVkmhid4IpjMzgGV3guiiN0qYCdE6I9cKAdGnRLp7Tm2d77IX1SVY3w18+t4zP4BJuiczOtOfERFRgwIHkVHMMq4lRI3kAcy9VzOBXi6pyT07usXECykmTNeHaLWhLT1Y40brjOjtvjLVrbcvdHPsNH730P2jWoyVaaipkOx/EF261kk7Io9q5qNQmfCBa+a1Hy7fBMAMTYEhwkzt4jGlG12OcmmYby3e+9z5uf+RFCEG6uLhjPVmy8x9VKCJ47pxvyXBlCpIlQnGOvgWmWDkK0flaLTZApBhY7bPrdXgwt9Hiud4acO9wqdoeYW5T2c8/O1L7F+046rF07a7ty036/YYmAvPh87Qw9nOnaoSXbay+KBtdBGLH0SF6AQIc9/s9L3v5VX/9/f1aP/5Lja9amx/14+84tY1a5AwDVWA8D+/0WKYV5MYZAHx8Z8N9rBlvz3eekluMd61wwSFU6ni5KVez8kBevrM+Y+sPszL8OAlrZdghRCOAP90b3CFwSQiM4k2bXVhA3dqZvNkaBd0eGsPPOXjuCOjFD+ma/HqJJen0HiCTYZ1JTpY6O4Cx58Wa7o5XCSVwRu8ha5FBfQNSDZBucmO8ICE4DQqF6b+fWrVPyUpD93rxDzu5wstkYI0EV3wzQaSlTQmTSwHko5OZZn7/Ea5/6FO+/966tNWdDr9anNypCFU+ogXvjCXVTOYmBZ/sb9nOy+mN05FrZLjNLstS2MERWMZCrMUzi6iAVsDMsxhPOTyBLtelxN68vnfWFVmO2ijf/Q7H9dLpac2dwaM34as875cxSlXEcWK1OyLnhh4gC26sbllLJuXF9vXBrcwsvFU2NJ0+fcLHdk9SSZz0OSRVxBiKFcbAUy1YYQzB5nHpETCbknTXHrTaT8XiPb0IrlbLfs+z2jGenSIgGIg+BYYzM2fd967rsE2IcCWog2oER1nIGZ4EbUk3Wxjji1yeQDIRtYgDTII59mXHaSDqzXF2z7PZMaWKqEyU3lqsLkA1hsyLvr/nNr/0+37qc+bNvvsSfuzcQFWrNeBf55j/6Gn/w1a8ybtYEGXjp5Zd48Nor3H5wl5O7G27fv41/7Q6H1GTzSjFPLUsNVGoqLDcTF7s9YHKZejOxvbjig4dP+PjZR1xd/IDHDz/i+e0dH9085iYv7HaFOJ5w+fyKs80JgczldEFYxKQy61M24ym3z0/5yS/+OKllvla/wnZ/TZoTGpqZpi82IJLapeUlcTKecBJPuLl+TmvC5vQun/vxL3B1fcH733ubabtFBDZjJIxrNm7k+dUlt2+PrDZrvvq1d/DOcXJ2jguZy5sbCI5htWI9rGmpsOyumXc3PH70A9545S1aBh8CRROlWjDJYRBrg+1KrrMNzcSx5EZpA4MLdh9Us+UY4yn77Ye0CiEEpmXPd//oG6Azw6Yxz4rIgHgMJMBxdr7m9rin1MIqKGXy3H71RynzJcvuktYaOQkaT0g3iZ/8qZ/izrax2y64Qdi2DX41GGtmCDy82JLDSIsZrQ7xlc0o0K0DSvNocLaHvMfFjJOBW2HFSjD7jhCNOMCAcyZRDc6GARZy4rn/8iv83J/6Eu/94e/xgyeP+Mu//Nf4P37lV/i93/0GV8+vECKpaGeAwiADwzDw6U+/wZ27r7AaBrJmHj76mFYri5hVSPQB6oppmTlfOa5v9iwp8c++/k1+99tf5/MN/pu/+V/z/e++zbc++C7Ppz0qhRYqz2dLOh6YcS5QpnIkqq4ihFAJbk3OiVAV9oJrhcEJtUSGEzXvoZbIxdiPARjFcTlBLcbsXpZAjMpNu0L9nqaFEBdcgOKV0CJths0aOB3YbZVSDBR1NZBaAwl87jM/xubOPapLPHj1R6lfeYfVIEi2IfHVdSOosJ8dp6fR2EsYwG0lmlDVETqjv2FJiHEQXFTKZCwoCkb4AQAAIABJREFUCQ3KKTF8Gs0fUlKmFiVGwbvB/G279xp9ENdKZb0emBazdqjQQySEpECuSDVAMiUDg703oL1WI5psp73JzqJQCHhVqmYalRBHzlYnpLQYmaB2jctxgN5nUWJjvGEI3Lr7Bt+5vOT105fw3pGy0vLMbpt5fHnDfkpsxmi2CF0hkVLj4vmeO0UJeIaQexleOYvCeP8BIY7slz21JaaWSCVRe0K8djVXUyG3YvtcbTjy4eNnfOaz5+x3lcQVV1fX4Cp375wxninnpyP+Y+Hi8jlkC+9Zet3U+mD0h/n1QweUaslERpNKhBcTzaoWXel8jyVrYlTtwzgXJZdECJ6iPUmlNy+NAEPr8rKCNEPxTVHfvU+0UWqDdkisMKDJ96mlpyc4dBDgIJU7VPBHLwo1xsKxCPeHili674pN40QEvH8hSeuNmQElhy7v2C0g3ppt5+KxGDSJkXbPFiuYVczcV8Weg3R/Har0JgRCjP0109kwZngYobOADibajjBGtEdN20RPofSoyHaQ+HVmkHTfj/7aUs1IsUZfnE3nxIXugWKHdFVL0YPOXurfM4R+0eWCBO3TY0scQ+heWS+m4Ad5lqr5gAxupGgjzRkNjiARr2YuqP01N7QzLQ4UgQPQJMeGVFXYnGzsvTY4P7tthX2tHGUaas+8CIhaAoY4A4RSb95VgoGjzS7B2v15HDbhLrWawVltBtyBFY+IpfG07hkkgSFGM54WW18ikDUzBM80Z2o1Cdf56Yag2v2/DDQoAmhAWcxzzJlXlPl+VXwcjFLvB/xgCNQwDgyrkVQyznl8h1RRNWqnNIbV6vBBmLl9O6whM6ZzrktOOzgUgxW83jmSfELYKe7YZOC8gZMHicHxc6ZLLJ3JFaGb8ntatYSSXDK5KM51M/gOFHgfWG/WrMe19YPBplMuDEgquOjM96Id4qytKT/suUPDeUg8FC99yG7NSBOTfzkCUpRKwseAGw6MmHYELJeWbV2odP8wiDGan8mJyQ9as0Y/hHCU49BKd7PyTNtrpumGLFjMagWfC8GNR+DdwGzzbJE+VWg91VD6fVA6w9ICC3qkuTeZLO3QzPbzGDH5pNhnLGK/Pzax5JTg8YPj/OyM75eMRmfUXiDQ2Jze4s4bn+Hpx9d4v3DvzTc4f+kBy+4V5qsbwt1XGdYrXnJKqRvq1RXRKfHlzP7R9/HphtJls6vgO7ukdWYlDBi7sqpSguBqMUZjU9R5nFNCdf0MOLbT9mhpR6mA0IuLokQX+f7DR3zm828xDJEpLUy64fTkLm7/lFWInEZPVse4WptnSFYuWyRXO1lql4SKgrrW96LiqnuBBDmDeY7sGOx8z5+oUIyN2f4Y00eP70K6hFiPd+eL3Ag7CKoq4RNss6NXUd+3Njs5sPM6S7hLPC3qXHsDIi/OXjgyC/9lQNG/CmQ6SOyMvfJJzyY5DkzAAOb1aiCebqjajilzrSkSbPiwlExKyQD5LiWqpXQPL5ONORdsqNFDFg4okThnkrI+RDqwmVpr/W4xs1ER7NxsB76XvW5RMztfQZeUv2CZaq3kZQYXceOIzo1KpSJkB0W7FN/7fpu2zoriWCQffXG0EJ1j8APiCwHHYLpG5lrYuIG0FG7fOmN/fWOMOIMfOwx5KAZdl9QaE1X6uspV0MGjIeC7/6KPHj0bKfMOlokwBsZVwNMomolVGJpDdM/Kn9BaZkmZWirzlHj28SPmklmpXbXijJVlULy9x7PgEXX46pmXhTJNZEn4BVo9Y5dnkyQ4YVxtelyzxTmPIRKDt886L0wq7HeZswhoI/iBJoWSShcR+X7/Wl2ktaGlh0AEj4wDlUpQseZ52uHdhuiUZZ5oTSit4IeAHwK6CDlXnl9vWZ1sONsMXO13ZoAdA0TbH9LM06RRjyBw7U3OkpM1EnHFahigB0esTu9QLz5GpB1C0CjTggqkec+zlHF+4MfefMXW4DGlVlBJtLomFzPzrbnYYPFYE9jQ0TVIy0xtgp6MuDggxWwN1Ch4VnN5pS6J7fWOm+0eyRXNiSVNoI1WlZjMJHtYnbBQuNld8q2nT3gaGy89uMNbm4FP03jn+gn/8Bv/lA+fPOWDD54yhIFNCNw7Pef+3bu8fP8uL9+5y4M793nw4GVeeu1Vbr18h7P7t9ncPudk7dAzkLtn3FOwkAhBq62Jn8jdsy4vTEtGSyWlhd114Vu/8RB/Z+G3/9+/C+vIh4+/z2bt2F4vPHzyiH1OjDqjk+fm8Q0/ePJ9TsKIG9dcNvj/WHv3mE3Tu77vc53u+zm9p3lnZmd2dvZse9cHMF4MGAoJkDQkgYAKFEKJWrUNVKSqoBGNIJUoFaKERG1SRa1UBVVVqEik1IlkQiGQYMAOtmHttRevvev1rnd3dmZ2Zt7z8zz34Tr8+sfvet6xqfJP61eyZsczu+/zPs9939d1fX/f7+dbxgHnp6RRhVgLkC0mwd72Dj4ETo9PyEVbeJtmwTuffoytyT6fef4jDKnDNVN8MyHmFX2Eu/dOOFuuuTSZMawG9vZ2GJOuUI1r2d66jDGeqTUsTeb4+C2m8xbXLqDJDF3HmC3Xrj1CCJ6j27c5XQ9EcTR+QXd2TEoFI4kQ9kjRk6zyenJUjk1vLLOtXY6PD5DiiFFFqNAWxGdcAy6CmMSYDb6dExysM7joGEbP6anDTG4T45LWOpoGTQC4KX/he/8a3/gt38x+CHzrn/0OXvrtDxFNITTCsOrpmCLiKTZjjA6OvFX4dNtkxgRx8Fp7XwRjR3xjaG0k9oGmTZjgCKHFjkuo8U2RiHdB9/rFYJqGD/zZb+OHfuhH+Mj/NeOff+iD3Ltxj+tXr/PyqzcpER598kHuvfoa3ggXpxO2p7DYv8Sf+4vfx80vvs7zn/scB0c9UizDGDGjDjF2dlr6VUe/ErrQs7W1w4s3bvH+dz7Fr/8fx/zG7/xLhtgp227sMSUTvKIyUnZMgsGYADjEG1x1f5bsWKWAgjZgkEKOkf3tCdvTlrPVQB9HhhjJY8IQSBEmk8Dx0jCmfN5i27QNi8WEdtKwXC6xPqqLzyqyIZdATEva3OCdJ6XEelXAFXbmE5qgTNAYB771/e/j6775z/Bv/s2H+cKnPkrJHSE4xiQYW5ASmEwdvtGhd5FECBCCwzRCNhvmqVenpvWMUujHgjFzluvCMh7Tf+qPWK4iTeMxGELQZmWMYeKV11tkgFJIWEr0jPW4GFMP1uOK1fhWsRgbyGKIRejGkc35w1nPWEZ6MovJrJ6xVE/QlnWNic+mM91xWY06koUSE87qa6EO9ah7BiGz2L2KbbdpJ4G9xZybbx2Sk+OsXys3MSddl42pDeZqWEip0A8js8nAmCak9chWcFx74AKvd1NuHt3l5OiQEnuwlth3ivlAz8lZ1A2VisE7bdYuYliuDRf29vjsyze5PPVcnDcYM4VBWB0tWS97+lNDSl1tct+smaKoi3I+bfuqfH3VBSVXLEMZ1UUg6pRJNccNsOGjbOrVbVEuSe3rOK8ztueizoYFUhiLPpy90YMuood2bStTC6FYcFnIzlSnkS6OelNrta02uBi05enLtuqpZjDMxreiTppSf825RvOsrYQY/TLG1kORq4czS64Vuwbd6Bqjv1pbD+eVT5RztdmVQoyDblByxlpfDzECkrBGc4+u2sE1lldfua3T8tSfCzrqZkgaV/MW51BIo9UGPj2MZm1bEM6dHQhs2uxyjFU40ngQ1tZYGxWop++p1PdFP9/NKSdicJQRTKoMDasOKip8WRlKGzFKG+JSKrSTGTZMcDFC9rS2ZYg9wXl6NrBxdYqcH2bg3MlWahyuIAQMl/b26Lo1yz5xujxhd/EAY3XOseGfGL3eilF3gIJL9BCm4ojB2RleIuf107YeWuui2bQtJabaMgYlRy1PEzDF6qbf+Op2SFgsW5Ndcs7EErUdCOH07ARrMts713F16tzYWmMvHoJHkk7UfU7Y4BEjBKcHQn2YNcolzxEfAk3bkldLdFyi91XTtoQ2nG8mQYUxay0+eHVSGc3VG2vOXWXebj7rTK4T8dC2pBw1liMo08daRYjY6oQIQSdWBqCKI5jqYKrXTb3GU5ba7qZuPrH17xmjr80biuj3c9aeOwed0xpuUy1rpj5EN1BQpJDiSEr1yF8FZ2qtd/2xOI+x1gOhngkztsaOMOpSoNabqxPLENNAt1xjcsGFQMkJ4xoGFMhnUHG35AKp5+TmS5g0cJKcNrsILPvM6Dpa6ygmkEsii0ILregROG3EoSpIe+eq02Rz+DeYWhkrOrJR4cxuYqau/pwR51usM6xPl0xGGN1I007Z2b8AIjg8qXS03mN8YHLxEU7Wwvb+Lg+97WGMm3Lr1pKzk045aQX25zP29rcxdkrYv8zy7l0mxyfI/iX6WwOUhLeG6XRKqPEnjNBUR2YStYAXm+tkG+XUmVTvf8EQlTtUgSEblo4KBjoty1nVGA+cnp1xtjymDRPOxsR6nfEXL+HSCZjC6WpQqH0PyMiQHUM0WKIOOep1klPCoy7anCMWQ7CBYuqzpF4TJlcxOksVEzbixn030cY9eR5r24g8m/VUlzaon73UZ3QpheQMtgrj5+KULkjVDVQdTAWMqS0v1DoBV69puS9c3V8D5PzZqo9t+xW//0rOUhXyzxdD6r9vz0UmfUl6l0wmE3wIlEHvf3J9HXXyWQRKjMrtEG1rUa1cHcfWatxG8n0xVNdVUwVkXwczNeqXVRSSKoDkPGLJGoUUpe5gNFqSS9QBSP0PmCpalMpSzSnSLHYYRLBdT8EySGYi2t5HyTgXar+kvjeGTeRRGWvWwtbeNtcuP0DrYNOzuNjZ4WSVKM3IfDbn0YcvcfHCNs/fe4tiYTRC8uCSRuFVm7bnLELlnhRKEnCBJFmLSTIsGqvlKI0jWiH0A9kYUtdTzMg6DrgiTM0UXGQSE+QVd06WFGtpGsfp0RkuTMnFa3TWC6BuZtdM8QYkWLo0IhaGfsSIozUWCZ6UhGE9EhrHZDalMS2FQiw6rVVem9bLGx+wkknjmjxbVEedFgFkYwhFAfa5tqhuYpLBqAhTciJbYSwqEJYkxGwRNIZVREhjhBAIeabrufNgOig9Z4eHrM8a0jiytzUhmhnWTypQNdSBgF4jg2RiGlkeHzN2PUbUWZusQdKABM/8wj6r1ZEy4ZK2WQ6xJwy63qbYc+d2z4Vty/4kYDC6f7WCNW0dmOleWc73xFQnlx4wvGhNty5YUZlYOVJEmARPsQYbAsRCn0ZKt8T2I2lDceh1LbYmMA4jToR2e4pPKny9/sk/4Qtpzfr0LrJ/mWvvfhvr559jTeLuwQEHYwdjj7XC66tj3OGbbN1yLJyBqG6Ehgnbk5Z5s2BrfomHH3yUx9/z9XzdX/lWZgGmQGgMs0WDt47Jlq7PAmwbXZhNUZfa4088jmkL3/Fd34hMLOlshZ0Gjm7e5tmP/B5vHpywWibmswl9yZz0d1kdHpHJBGPpEE4Pj5i2c5p2m8mkYexXZJvJDPSrFWOKmDAj5cLzn/lDrjz8EN/9F7+XN+6+yLDsGfozmtkCxHD54gMcH79Ot+yYP3IZu+so2VBWRtfq9cD2Y5eZtXv8+b/8H/CZ3/gn/FH6MF/42Ke4/D1PUcoJTYCtyRZHB/dY7Gxx9eoV2qNDDteJYoShz2QRXC5YW2CtnJUsCSwqcJvCtYevc3Bwk1Jm2DYhvvJpcfiQMDnicsDYQBkSR7GwvdhjHDtWXWS7dTTxjDQWhqlh7HWv8773v58f/MHv5/LWAt82vLssePfbvplHHuv4+HN/wHxvi369IudE22bEi5Za9IZxAO8dzggz21OsZy2GKCDJsxxGCnCWEm1rsemMvXkgu1OwrYKYJeBQPMdse8ZDD17DG+HRd72Hv/1t34KsDvkHzz7LOgt/+fu+Dzm5S/aWu7cO8WSu7Lbs7Mx4/aVXeOGFF3nt9lv0o94jgxiCWJq2YRYCYzsyjZa87lm5Bb/5j3+F9O9/D2Vrj2fe9S4+8psfQnyDmIzYwhALLjqcyVy6dp07t19nGgpD1jiuFUMqgSIOazzWFG2jtJZQuZ99WtHHQrEGJ4HJvGWVLYOoy6UfM5MW3HSKsYkxrRiXa8gREU+WlrYZ6XtDF9c03rAaLNvBg0R8KDRhhoREGXqCb9nZarh27Qrf+DXv5XOffI6xrBliYVyusUy4dnWXPCZOTntiHLHe4eyEpm3PTR1aUlCTGEbdcsOYCE3LejnwI//5f8Tl3Uf52Z/5r3n84YdYHp8SmoZoYDKdkfKg19o44gO0YUpfRqQRxDlIKoEkyTTOQB8ho+62zZ7diMagcTgHW2HKdz7zFA9fu8zKbHN8/JbGxVuPsTBtPEYyq64npkKfCmXQ4bGz4Nz9/c3G4W+MZWd3l+2Lj7O7N+X6Y5e5efsG3gqLaUs3DIhELBNNZ9Shn7Z6e7oxc9qPhHxCNpY9hLMovHXzNiEt2Z4F4nJZTTmG1utZPNfj6LKaExIRS4NgOV2tubxzkc+525gcuTBbUEbH63fe4u5Bz2w2ZTkIY9IoeDudwvKMKNpcff4GfpW+vuqCknhP7gZMEkZJatctFbTsPThLMUkr4MeR6nzHFs31bWpVN9wQn3Qj5qxBjJYr51wFGke1Gyi3CWd10fVaeY/RDZWjYEzWiVaROj9Wt4HI/cYXpHzZ+ytV8DTnTQ8aL6gMhbrvti5gbSF4r7XkRnlIFFXKhA0UVUUnqhvCWatZ/NqF65x+FFLFHP2GGvexjScYQUqsIlXGWa9TZ9DomFMrnzMFu+EzUbBFcFarEa1U9pFUELSAKXXCXzfR6npxVdDTmxRURNDzjh74RGplc6noN6dOoQ1o2lSegxTNYOdSMM4SpVTFFdQUVWONrh7wc2LolqQ8Mg49YgrT7TnlNNKtV+fCw+Zj2sCGjVNeRUoKPwZV6o21WGeYz6YcnNxl//J+bVyoUSV98RSUf2TqtFejCPUw5bRV7ZzpY9T5pHu7Ctimtq+Y2v4mYMTppBp156lzBmLWOJU1QtM0nJ6uzkU55z07Wwv2Luyys7PDyWlPipk4jphc8FOPJP3+nRhczjgSU+ewRfksxipyJhtHlwdSycrsMLpp3zgivG/Y2drGGcvRcq2XfIXPO2MxpeAqJFqB1XXDXnSSmGLCLxxDdYSA2pHVEaTKv36qKuJ65xGrhzhrShVWwdiAkIljxnlqO1mon3WhbQJb8znrdcdsOmV7a5tp29I4ow9b0QataLViPOdcHQoFsf5cZNlAuqUIYxrr/W3r/byJT5nKatF7v6TCGCP9yRm5H7HO4c0GbAzObIQnFQSapiHFUd2IlXuWS884Ck4s3lggc3T0Fie3b0LfcToKZ2K1DbDAQCREw2izghS9hShQFLadqDwkLKJN21CjeMVbsJ6Ne0lb+GrQ1yhvSUyNbkihmERxAWthlEjwGTtE9ha7NNsLjK28LGNACnuXrvDoe97LjVffZEg9L7/8FsG0PP7Ot/HEu7e5d+MWz3/847jpnLfu3uDBq48To3D5iceJq4Fbq4HcblP6A5z3+PkMvNXGPGdBNA5CFsak0ZhS1G2arCB5JBcV943Vn0sdgDpoQDh/BlmpTIbqtOvyyJ2jM3zrYVlIaaTLQsOCcXmP+WLKznxCt+oYcqFPlliUu5Zqpn5TuBDLxmGjrYBSX4Oz9nx4IugzZvNnm2kX1dGWczl3sRrOzU3VZq3XYkIfls4YNqakaPT+DhsbVP0XNgy6TTTUGnX9bZpKcinnrp9NA+ZX8I3O15+vdCPp5ujf5VCS/9dvNWpbztdZkSrqVEFJSqFEbUIVEWLJDDHWiCzEcaRtLQnB5Vrdix6gtSzLEWOqr7sKeAZ0wXX1eVWf3aYuNkWI6GsyxuBEWWqlij25fs7eOv0MK9jTomKfWIWb5qybvcFozHsmjlQim/C0ycovdNZhrMeFQE7KTbJVtJ9PW2wZGSTj0WilsQnXCNcv7mGLsL/VslotaZxjGCONWEIxyiLJui6bAkEKvlCjg5UFYh2TYBlHyCWRkq6PxjV4E5C0ZLVec/fkDKwjkmlKpgUmE8sYoQmF6aylF1gPA4ernmgN62HA2ozLhklocH6GCVtIjiyXkRAGZFgx2ZqSukJjZjTTKW0TaJizmAZco66/IQt5qO2x6L06beZk8XSrIxoDgg5LhKhcOwLGDBhTCxXQ0gAjAiVRciLMp9gwJcWCWC1pEevqd8g6OykqFOaYq/MI/bSTtuEaa1mvBma7u7qOOaFxvg7FGsQ6BbA64fT4mJMYiUVwCZwrlDLqOlYyW/sXObv1GuMwMuZINh4YQVq2d3fY31mQS2Z7NseZhPctrc3VRTxQXIOIio+pGHxdn4rJen/V4acxguSIHUdkHBjr/8SCt+pcTmPCG8PVvV2cHHPY9SppWiEEz8w3hLYhb5oynaeZOvrumHR6yMlLz3NycsTLHxQuX77EYuo5G3rGgrqzDDTWsPCCTzrAHWJidB5vB9YpQn9CXB7wmZOXeead7+Bti8Bpv+Zzn/kSlx99kPLCbT7+j/8FJvZcu/ww165d4crVS1x67DpX330FkiFF0YoG8YR+ZOfCHmZ7yu7+Dg8//RhFPFIjsCLCGHsOX3+dU3cGp45/+/u/y52jxKc++VnWo2G9XvLQ0+/ioesXaaYTfv+jH2W+XGHDlNXyhPUq4spF3v74Q8wnjnHwDKcrZuOMeavRs3F5xqQJzKee0+OB7fmUvasPUaLWvR/e/AJ27xqzrS3+05/526SfPeanfvm/5dkPv0RMOtQ7vLfmdJV547WRS/v7vP2xxxCfObx3SIqxNsoWjYc7R0kjMlnQj0tWcY2hcPPmbbZmc856PXgG7xAJnK4yF2ZbzLYGTk9a6HpssExMSxkh0jCbJp663HC0WtNuBe71kZg0wvTKF1/iT17+Iu94/DGMszzyYz/GL2xP+em/9TeZbi04Pb1HTJGZ3wy2CliNMvWj5/RYSMUwnwXmi4xLIzE70piIxeKdsFytuLq7gFywsqJQuLfKeD+lAVKKZGBna4cnHnmMB69d5+Jsi/2HrvDLP/ajHI+nXNmf8/GP/2vWqw7feGZtRkbh5MxzePYan/z8K5x1eqa00zrgAUwuWLGsZGAZDSZF2nZK3yU+98pnWfzBFn/tJ36K3/6VX+HipQe5eXgXaw1jFByOvs/szhpuvXmbQsDZTBOgixaxCeOEYBzBqBM7FUVZHC8jq1XPSRrAebwvTBvL4XpEphMkJsY1ZCwxZYyLBN8qU89C7qu7NlriSpm/rfcQC+IKq9VI8A1h4um6jrg2TJ2jmVr2rm3xzDd8gKPjJb/30Wd5841TMFMmi0tcvDDl7OiAnHpCA00bKiPQk1cwxsR0rvvmbiyIeHVI+UAB2tDShUN+8sf+BrKa8I5veIaf/i/+Jn6yxqBsMmUxRbr1SMyZ3e0dJu0upT/Bh0xMPd5bxtEgTrl6QRoKkJwhOq+mCjRurDNnw/TKZZ5873t55l3P8Acfe5ZxeZMLl1psY4EGYyypoIOCMiCSiEWL8YSiPGM2eyN3vs1pvfDU0+/F2xXv/8DjfPalu5wd3+H05Jib9w607c2iXDAp2kQrgkimz9Af9+xtWdoQOLOG0zdPODl+k5m17M0vqs9L9EzTWI3KewrOCMZaDjKI1fc3GKHvC/245vKlLWY2YDshMtJ1hntLQzpdsTSemGGVCzll2mZGGta1DObfsa37//j1VReUxmVHlAxOIWDGWCzqMGLQw3HOmdbrBHLMiabch3HKuXupLgZON31ZQEpQC6xXALQ1DiRRiiM4ZQ/50JKzuqJq1BzQJiFllhWtCC5FNyWim30MWje8mfwU7XdNJcHGZVQPN8o10imw2uq1rtdgwAjOebIt1S642bx/GbDUghGdUOekG1ChEuJjJHhPjqOC+QQka/Gotl4VdSPUaXU2KnjgHaZU+DNVFa2uFs/9pjnrHd56UinEeqFLKejZZjPNtlTcM8YpXUbNDU7jeaV+TqLuLY2z6WlIW8wsIWyijejhFlOFRYt1vtrv1D0mpfKHkBrJcsR1Zn224ngYlHyfHTFDsEGfHVE5NqpRWrK15zEXqe9xlsTce6beEAk8/vA1PVTXqboxropdOoFxRhNd3jmoFZKMSSuDc0HsoN/TBcQqr8ZpbRmp8nw211RC40uGTczTYYshD5lSLDiL9w0Ew2QSmJpdbRIqhcVsxnw242y1ou9W5GIwPjBtPXhPGrUJzoowYAgpY4dEJGFsZcxY8N7ivKHUyYuzypPKMSNZq0znsxnOwNmRY9MK1fUdTdMQQqPuIPT6MMYgTg9wKWViTGQMqY8Urxta65X1o9bkGsMyGh9RodRinMMHWx9mNfImKgI7owKA9XpPSi60jWF7axtjLLu7F7i4f1EPi95iacipgPcqvuI0kuqUy6ZNYMrHElFnkF4n+npKlvPXoE8KziMxzngt/K0OCZMLiCUHvR+mQRtQhmFUR0wpbO/uMmmnFIQU4/0JhQiJRMrqzGgmC3avPMSbr71JL2tc0QmjMYFZu2CrmTCdtSzXa85WS6yxRMlswrqmRlTJCgvG2fuukSp6bIQVb2skb/MMMLZGGSFI0Bpza6Hx5DxgsrCzt8C3c6Z+QidLioGLO/s88XUf4FOfeplhvWSyM+exJy5x5dJVbr74JW68PHDv3iHX3v4Y7/na93J47xbvfN/7+af/8z/l5sGUlBOzdpvdx7a58cInaJqWNkw0gmUMuUYaxkGZR4g9d+cYdNhgrNM/M6H+NApyNyLn5QtG2Bwd2USZVNgrnBwfElPElpGchOXpCRdsZG97wdb2AlJP03hWvXC01ulvtImqF6h2UythNYpmaqxS/1CkRoero0mAuBGupd4P5w6YSp+r3DAVuFUNyXWqYKyhOEhVHDMbVw2FJKJNRGqUA9GSbjXEo5TIAAAgAElEQVQxFdVRsuBDq+1WVuPg5yaiP/X15VG3LxeaNk5hdfv+6T+3dSqZz6+9jai9EZfOY5agglKK5JQ0qm7ASSH1fS2b0DW2GwaC91rmUXlnm6eF94FuGBWc7UNtT9OBkDOVuWj1/ZZc1zjMJhWNNYFiR9LYqfPTWIxpoPRq8DBKU6JozXhVlRS0LaPC/uNIgxBF3aUqyOb77mPvKSEw3d7FjJl4dkzMhbZp8daTx0EbhbAEZwnNHLoTXafXA0uficB66LSprcwZGbD1ZzRSML42shZ9aOl7kFlsLehyD0WvmwZHkIJIokjCOg/isW5GOw3stB7yoHyjbk0Ilkt+Sp8TjWk4POt1OAik2CvD0rcUp+2MBRX5EiNRMmmw5CbTLzu2dnfZ25kxncwp86SQ3DHTp56xH/Q1xpE0Gk1TF4dIZLHYxkliHFfEuNa4Zto4q1VAtQK+qDvbOY+fTdm/eAG/u8cYE9Fkwu4ejYPujRsIhZhGLFbd80nRCrbGFa2xFL9pQ43MLl4gtDOCgZEExmNMwflAFt1b5aQ/Z67V5kJW1+BgyZqTQ2JHf3SMm3hyTCpO5kgePbsXLzKdTlXAiiNjzhjb4Lc93mpUwzqHmMBh1zM1lpUUWuNwVYA2jQPnsTHp4S5Fhu4Um5VDkotgs77W1dBzOvT4Zsp0umBHlFUaGrAm15hFT+4OSOsZbrKNjIXh3l2G4ZSj0yXjoARdUyKxj9oo63TvZa3XPbuNpLqP7vvE6DPWDFg8PsJgBrCX8Yspg+n57O98mLfW8My3v4OX3nyV51Z3efXVz8MLH8P7CW2yXHnnN/JDP/iX+K4PPMGdm0e89uLH+OynXuTtT13llc+9Qdf2fMc3/Tm+5lu+jmY+xwZ9Ugpgh8CdgzPeeOtV3v8NH+C93/zv8cgTb2M2n3Nwd8nNu0eY4jg+UThx2bnM22/f4vbNG7z+2ssM3ZriIq/eeo0uLilDz87eFqv1KT4YvvT6n+BmwkNbD5KT48r+gwxxQDI8tH+Ztnhunh5x+9YNFm1i7Gf8wE/+Pf6X//4f8uZrH+POcEDDNjJ1hJiYSGDWGvavbOMPB2688kplxKqYLLGQ28IwJqZJn9EpD7jcshrWtI1nbgppFIxMNLlhCuBYLwPJqCA3m1smbeDwJBFC4YnLEE9XdH3A+EwxDrcQJn6HfLrid371H/H2Bx/gma/9GiaX9zT69OYXydZCUfdNcgPWBoaie7zQJlKfyKVlFAsDmJAq79GCE1yxxDxSrN6be/TYC5aTYUIeHKH0rEYd5oZJIBf4zGc+yzNf/41cuv4Qk+mM7/+Jn+KpLzzHJ/7g9/jwJ/+Q2WxOlJ6re8LZceTeccd8N9FOYdmpaByc7v9LyqQI070tur7X9SZ4Mi0mLVmfGF784vO88Xd+jh/60f+Ef/4vbnPr7htY79QhLRbjCqfLyPbWFt4lbDMyrBPiFMMgkggiLNo1A5446IAxl0w2I8W0Km45kLHD2zlgGPqMN4FI3bt2BWyi+AmrcQ1J16teCjIUpqHFkViXiIsWJvuEBOQ1YiJBGvpOOFtlZuYaL7/wRf73f/KLfOqPPsHOXJ+/7cLRnZzpUNdOMaYnJ0sp2lhnSsPejhDLijEVjLSYYjBok2ZMwvJshVlO+e9++ef563/9b/Fdz7yfz//4j/P3f/GXmMwKsjoj1UipOG14S7mw6tbEVKAUQnA0AVLSaJttRx3MD4bWW322S2YctOjHWfjuH/wefuLH/waXL14miuM3PvYCFx+YY8MMG+rAyVhWfVRRLjSEQQWflDLDMNx3+2/2n0b3Z8fHB8TVEbtXtrny6Dv5O3/32/iB/+xn+PQXPk5oLJOgMdQMTLdmdMuOEnWg4Y2jWNgKDW1jOFqPvOvrv42jP7bk5Q3a6QSbJuSVcgeNoOkAMWRvSUUTPb4UkvFEMofrgdXpPb73z387z31myY1PfxjfzDiNkaOhx5jA4NQQ4mUk5pFYlF0VkyX+Kfj4/9+vr7qg1I2DvvtFgU9xrJv5Sl4vBbytjW9WNBKU5LxmOcaeiZ/U30MxXt1NIprndfp3RdDa6ZQR6bXpo7Y2qRU8MhbBm3B/92w1wkSNr5WiE5SSc21dOicrAXoQhsoGYnMoE4WBOo8yK3TqWRCc8Wwqq9lMmTcTX1NtgejCLqJV67rpVgi1Dpq9Omu8R+JYo3R6cMlGRSRxhoIhW08xXhlT4qjmcYx1pHFU+z+2JhCqg8hq85PD1FYU3VSllBmzGvD1ULKJ7+mByW7aogzgnBaeFTl3Cilgu07GK2fHu6BVkNQprygbICMkAcg45zd6m07zcxUUg6VUoW3iA6tuoPFBYckpacTAGApZP4dc6oGqCmOim5tclClhjD7UTbXVb8RCdV5pbM1Yzzw4Fs6Rk1CSHmgzVkWhonPUvOEkWVsjl54mC92YyKPC2KRoHFAB5pbGO20XyINeH8bgwpTgGppFoGkaun5FGyztZELwnqHrGeOIc4aJa5Hi9HrPSVFFRpBsiFJYFoP1BTsOFGMpWIWUisVmff/HOjXy3pBdwDcByYkR8M2EZrqA4LAJpouZbpyzaBaYzUE01/YwxxAT/TCo1TrrAz0Yqw9QGRDjaEKokMH6uUplzyR19aVSIztWa1vHoVeGVNFrwxqj7r1WGMeWbt0zLhKL7W2KZJJo2wVUkK1vII2Y6vgzxWobUl0gqqVBo6FGcM5oJhvlfm0OyuOoU/DZdMqFvSmSCuvlim7sSRK1GdE4UikkI4SsEYVmMmU6n4IIMTWIMXgU4FuKThaNMcRUiLMFj8y2GLNOHo1okLNxnuAaotPDtsVy4/Xb3Lr5hlrEa40xpYLHazsktvZbqUFEIzCb2BJVMCgqNmwWSmuCHi4BciI7z7x1bE2mzK9cpJnOGYYeJLJ96UFevnmKpJ4n3vN2GtdydvMO8fYh04XH5BWL6cjpzbsc7d7Ctw2f/b0/5pv+yndwcHzCH//e7yITz+pkRbPYpTEjmEIZE7EbGeMIpdC2LSZ45dOkjMSMowEN9mJc0ez3xossKvDjasOlPm1q7Ff/Ti4FrOXe4TEpdhirTILV8QlPPHmVx/YXrE8POT09IedMnyxFthDpcaYhywBVhNShgzbMqetrI57qc6YYFZNSdY25qknooMSdq5abRkioLjOjDjRbRSWBWlpX1yWjEytbVIDNueBMva7PqU3Vm1pUqNpE3yLpPM+vP0N1uNWaA8tXikh82e/v/38CqOi0yeFXaROMHh5ERB00AtZUiLwxtSUQwmSqj2lTGGOprxUmITAWFbSdCeQ8khBCDhirzYmavDOUlDAFmjDR4U2uzlHr9ZleFB2as0KbDQYXDNY6ctbmv9Z5hiiMVhvX+tjRp0xjYBxHZhNXnavKyjP1hZqUdV3NI2L0MBG8PpcM6lwL1hHahuAmGBoGViry58wES2in+NaTxjWt6Bp1cucNFHDiiM0M8cLtL76BM44Y9LldorqRDEajAFIYEbzPzHSWxViEk9U9eoy2VhkFawerYF9KJDQtoRQaelzsOTte4lzAzSY8MGm5vGgZvWCTsI5rXnn1FcRmxAniQlUvLbmZkNsJfgCxhjI2nC7XpDyynadMd7YIFqxplP9RIkNOdMPAchwp9WdwPtRW3KRORAHTdwyrHjtztG7B2ekhJQ51z6ERNS+ih2SnDu1FM8OOPfbgQMsTuoi0HSlH0pCxXtc20SkHwYLkzDAmfNvi24DLiWQswQX293ZxNd3dREvxFomWKObc3eysZWdnm265ZN13iFewrBhBYkfwO9x9/TWGktgm4E3DkHU/6RqLn3hiKgRbyBnEaexdcQCQi7ruTRlZpmMomVYsxjvdFzuDxVNcg5sZTAdDhoNlp/ewbbRlzyfa1NLs7LPnW6xriduRLRJmjCRR4SmLtqRiDd3pit3pgnVeksYlKQ/kvmPoO0xK5L3L9Kk/d0YV1AkasIhRN/pYEskpRFm5KQ3RRBXNZjOWpufu7YE3XzvgyR/5boausLu9zc5soo2MGPxkwkG35MGvfZTv/c6nWbSBu89/mtduvspnXv5j3jy8SN8J69STuo/w3MsvceHyJV546XWWpx0DcOPm5zm6e4uyHvmP/+opDz31KF965YtsbV/gj/74RZ5+6m288z2PsDy+TDaF93/tU3zx5Vd49pOf5qknrkLpObx3wKMXt/i5n/053v7k0/yzD/0Wczdn8fAUeeUWH3vhk3SHhwQRLk3nvHJwiPMqHr9245AzM9Jsz/jQP/tH/NL/9A+5sneF7/iG/4qf+Av/J2Z6gXjc47zBFB1cxbLmdHnEI9ef5IUXPs+6NwTR1kgXJuzMF6yOTti5sIMrjolpyW3L1Z1tzo5eYTZpWB6NDP0aaTKSEmenAw9dC0z6jltLYUwtdmLYvtCyWp+Ab7iTT9iaN6xzZOYNpXhsf4oAb7x1wI037vLupxOzacPv/6vf4dNHK6TPdT+cEBrG4knrTDPNGC/41mqD3SCkaOiHqWILcuJ0JVgnSNEUyWqABy5cJLpjDg8jTXDEUfmv1mXSKFx/7GGe+aavZ7aYMqyOWa2POTs8QM46Xrn5GsU6jlZHzJgwzA1DMRQbOTtNDAVyavWaLDp2mrVTpIW+71WonS+I6yOss8wX25yuj3nr4C2MHfn5/+G/geyYNAFnI/u7gZPTjKCNw2O/pt3RJsxs6s9Goq8xbynKOjIlkawnhYam9Zi+Y5SEHQPdeoGfOiQKq0Gjg86qkNibgdBLPZcmnDF0JRKlsDNvMJLoJdEnofGWwKAICelprAWJJGdYD/Cxj3+c/b09todjHgwdzhoWFx5jbXd46J0P8Nzzz7JaH6sZozHkZWa9TuzuNIx5JDkwtiXFhM5PM620hOAZ+0zjLL/5wY/wq//rr/H8jc/xDjdlfmmGPV2TXYM00EwNcYAyCMvlmnGMzCaOdivQ2EjIjuxGyAbrG22+zR4xLaZyBJej7jMevr7Dt37rB7i4exFbtA23CQ3T+S5jLgxx5OTWKQfLY/y0YT6dY53n8OSM47uH7FjL/sVdmmZybvrAaPqnWydefOlZ7n7pD9kNT+MfeJrpLPDDP/Dd/NFHfp25y+fNkCVFjo6O6yAvkCXVUinHxcWULnbs7+wSbCaUjjE5ggvqim4tJatWUjA40YbTJEndpBJpfYvLMEbh8y+9yVpe4IMfeo4ndoTT9TEvnxYynp0gtN4xFBDrEWkY8gprhJnzmjz4Kn599aHceNIwYIxu5lPRB43UUbM14MiIsYgRRlMI6IMEEazzCpitmzgTY2WsFJIMRMBkrVfX2AyQqz03b4QcnQQ7Y8439aBMG8FixJwfjEtRBlBGK5yBunl1CvjMtXobanwLtdYBeYzqvKoKe67W7ZKzHnZT0j14dWyUejhU9sD9DbuvEO9SY0MiWlFYitaq03h101CjcmXD4NDv54zBFIMrmrE05j64VKGMjowezi2CVK6P3cTSNiPrUpGqIsBYowMNrgk479nUNnNusYYN2Po8ZuZ0mrw5tHrX4GqTDPVgUYyhdSqCSS7amoRVAHPO5KTsqLDumE9GmtDSDT19OmF3tkNcdziiTkSrAKWtPtW1pqcvziUu0eYBa5QhpREOoBgVEXOqlnJBxDMUnRSGkoi5kFG208R5fNDrImcVyGyJGDdRF1VRR0RTmUDZCOIr68mKbq5EI4IWFeuMRAUmp6R1nlhWyzPIkdB4vFU3WspFN6h4XFvf41Kjfll0Oj6i6r1Ub0ZWrkIUhSM2YulKqnwPR67g6pjANy3eNYxiaYK6L8YYmfipXkfWnAN/T/sREZ0eDN1aYbWgzKC4EdvU1yaV66BHV73OUyrEmBhMxDmNguY4kvNQ70cQiQRQbo+BElWoLGIRr+wQMQZvGo0oUJgvduj6nuX6lAv7lxDKOaB/cwDesI6cbeoEeMNf0erqak5iMpnShIaUoFC4+MAlrj/5OG986RVWJ706hmI8jz4OOfL4o4/x4NXrpKTxnaZtdQJeLDnr4TQbXaBaKjenbKmFPVWhqeR6jwu+afCi7Jc3bt5DfMALJBcrK83gjLsv2KJCKlRnSX2/9cCvz0A5d8jocy0Hg9jCpPHYIDQuM2nnTPa2aWaei1ce5PRL99ja2sfuPsTb3vUUL8XEyZ0DwmSK8TC9so81lqmdEJpdujTw2p2bSD9w/cGr3Hv1C2xdf5j92S77D1+ju3vAkYmk7jYlF7W8DwPWWybTWX2iaLsXKWHKfb6VlawHThKIqyy5DFKw6PPfCuT7Zi2kCENlpi2Xa1I/YHBc2N5isbPH4uKjLNqILJd0Zs6qrDgpgZWNxFyZTTWipo2lNdJZBRVbW+fEQKncPFeEUiHXtoo61qjYLxs3CVSeX31kZXXyajxMnW2uQhSrtQwrG6cOkCvzzRqK4ZzZZ41y81RUr/7SUuq/VF2h9c2Req1sfq+/3OcqbcYrf1pcKl/2e1vHqvp82DSjbf47+rO5+rmI3G+VS0kHM843WJcpjOefWRwz3htoCoSkTrUKzw0hwHrQ9q6kTVbOaeww5Uws1a1WweM+KMxfpIrwqMusbSaslz05RqwtlNST2okKs1J0nbUGMQrDziUjY8dka4e2nTLW5i4IYMbzQZQtlkkueFdIqcdEvVc9wu5WQ2MzJZvK6Ct0uef45JB25zLrtR7Q33zjHnG9VidsBaoPcSQYIYsKQ5uBmqsNFyIWWyKWoPwkY3EJfKjTLYFxLOQkHJzcYfWZO7TeAYl4OvDY2x/HPfwkNjS0bUM3Ju7dvsHZyR0mHl1bnUeMshCDC5BKFd/B5ZHZZJu8LlxcTDCpMKaEDxCHHu3pUdfzhe0dxAjrbqRvNH4vUQdsjkI3LDlaHmGWSWllQV3Dpl67KWsbEiWTU2HetvisXBk7EZBMYzJmGJHq6hOjldSNd8QhMWIYcyblTDPAxekOk51dhMx60DUl5zrAc0YjDE5j45u7v46NVBgvSR2ACmWsufPE+vAAExrGYhiLNvhiHNPJlNm00YFK3R+W89yr/uIAkxWgO+ZIa4VBImT9LHw2lNjrszJYBqstwgl1c49JsQylGDIevNBu7yjM3VtaGvJMWIQAztYW2IDzgcU0sFgsaLav0F59kJhHrj9yDVuEyXSHk9tv8PLLzyO1dc8UXWBKFsYh4QrYInQ5KxctKCsvj0JoGqbew2CZLab8wE/+KMcmszUMjNMJDz1ymec+5+hLojGJxk/55ve/j6a2U/YLz3ueeYbt/X3+7XPP8ebBLY7PTnAPXeOwnLJ68y77Vx/gsXc9yu/+1m/z7HPP0XrHTjvhg//617nywlUW02129x/kT55/kU+/9ATfefhnGMbEQXcKpfDAA5e4+uB1LYrwif/wB3+Y1XjKu596Dxd2L/K2px8HLH23xgJ/dew5ev0W2fb0Zz2/89v/iqmbc3h8QnpkySQt2J1NaPf32HGB7rRnvrvLM9ce5tmDLxC2psTSMrZG9ybFcXxwilm/Qo6RZDLFpOokjbjGkZ1h1a1Zph7BUuIZYzzBtxYXIrQCa2FqCu3UsrVI7E09XzooGp1edsRiGcwZXhI3jgqNERxnLGSizqKQmdiALT0//P3fz1/6rm/XFboUfv3//i26sce2c3YmicYf0Q9zzs4CfQdNMwE6GqccBh3Cwclpz7wNiIPQCq0Ip72OU5Zl5LOxx6aCCQEZhKFPOlwXQ0qRL778JT74a7/KR37zt3j88cc5OL1D44QvfuKjfOnNOxSf8G5GMVu8+Oo95rNMprDuJxRt30FiYp0iMjUkIjLo2rM322LSzOh2PbnPjDq+ppQBG2E2m1AytbE6c3y4xvtWK+6tYUgO2xeS08r6afAa040aYffMiGNhPhlxfqRIYugNrVNct5hIKRNip2vOOMg5rFyKYRocyWawBi8NsUSS0VKm1OtgvR8TTS0jGtaJtim01iMmQgB3GthbzLh6bZtv+6b38ZuvvIEpjjFmtr72Kf7eT/8Cb796hf/tF/8+v/Arv0RoJnS5o1sXHI5uGUlOcN7RTDPFWXLUgUuyI8Y0eLGshsyMjquPP8w/+Pn/kR/6L3+G8mv75LNDOgqS1NXa2MT+hcAQA5ILfdeTS8fl/T0krgBLGxxOLH0XzxECGlGzmEbPesE3BNcwaVussbx85xhXeoL33D065vU33iDlNQ9fv8jWZJdCw+3DI22UlkxpPE+/+xmuP/iOc16lMjsd8ybw4HyO9/t0Y8GWhPEtk8mUFFqgq2kMiHGT/CkU0cSPaRzBGg6HFTImdvYXfPoTnyJ3I0JkeXSHJi7pRUU6ayFFdeDnMTPmjTMdhnHAWM/xyYhhiw/9y09wFqc8d3tkQJlgBvC1bEOkkKMifgxgcmHMic0A8qv19VUXlOLQV/GgwmytgmZNdeMUI7CZ7EtmlMK8TtcUd6BuHYytGT9ffTe6IbcGnLF4PyGKbjasK6yHtcZbTFJQsKizqVC5OGbT/CVVEKotA2hUx2ymwnUjzIathFS+zQaCWFuWciJGFQd0I13IvsEZFThSzKSo/78Vr0BRZyv3QyfmkvP55r2t39xYdVm5ptFDu60tP1LB2KgYViWuypVQgUsjfdqOdL/60JGyKKC38Yyp0yplDKkISYf6et8oUVajS1brar33eOfwzmCcHspLqbud+jnr4Uonf4ZahWwDzjj9bxmn8RNbhScplUVkaIKv770KPmPU2Nd6fcZZv9Ka0bEw9xbvZsQxgtFWKOVj1UMlFfK9OahZi8Hii7J+mtDgjamtbfWVChq/8jrZFgMlGcQoC0tZPIJDAdfOgDUerDbIqIgEpgwIBm8M2en7n6VgnMEVj7VeJ7FsmqH0PQi2MqiKgC3VVUR9fZWtBTVeoywxBf56ZT5Zr5Nnr+1GpmjMzTgLxRJLwhUFEzfWEbyli0X5OdZShkgUbVrw00BoJ9iizIkNJF3Op6U1kliES4sZJ5KYTCe4EJi16jRS55a6CdQpp5tbFbgUSg7V4VQ/tyyFPMZzMYfqolPfvL7fTaP/LMUypIwUW8HWGWM1xmmsoRDJZWQ+nTGdtIyDkEyqrkSFrUuNJzUh0ISgccvqPKxbezIq/ErOtK7BmkAna6TrdbIfvDpnrAULEwlEY3jf+96jHBbvUbk2gaMKj4Zc1F2izkYVGmy1XIvb3FLVoWLrUV7ApCqYe4vNBptqpfnmPavPAhWuqxBfrzODCvf6+K2ne7LGcpxHaJBS2Gpbxl5oFp6t7QWhaQhiuf7ku3jlpWd5+uueYf7Ik9y7cYd4eszQrbCLKdN2xslbx+zbE3zXcxqu0hXD8t4B1x+6yNWnH+bkxj3+5BMfpZSOZj5jdbRi69IV1jfPkHEkDSMxDdgcGIooDB6pDJLqqrIbWlJmAzsUVAg29RC3cSbKxkYkG7qIPmMdBkvi0v4Ojzx6DSuOB68/SepGuvEIY1uMn2st9VDO2Vol6zPMWr1ei3ocSKjguRGtN0KKtqXlGgNWwaVq3Njqn/oK0LXo39HAGufrp0EFI9GqsC/7rDVipC5dqb+vcoZRIWpj2TZ1baVolDendL5Rqt0F599v83ruXyfC+cl287owG21Cf6Zz4akuB/Wfv/z7S10vRBdvJOln3Ewt3XoAY9Wh2XUKWq7PEms046+CmFYDN41GHX3jiGuFqCenzxqfa3Sy6P3i/eZeVP6RYFVkqvEvP7G4CLFP+u5Lg8ERRWiznBdtQG0Qqwdm8XPa7Rlp1WnUNVmkTZiYKWWsPDWNQUjqcSkzir72gtCt1sqZEN179LlgwxybEkcHdzH/D3NvGmNbdt33/dbe+wx3qKpXVW/qN/TEbjZJURQliiIpKhqsyYodQbGdyLID2Ikjw1EgxE4cJDGSADGcII4hf4miBBFsJbAhyFIceIwmaKAoNSVKpMRukj03e3jze/VqusM5Z0/5sPa59RjE3xgg9wPB7ve66txz9tl7rf/6D5VhMpswdN3GWNmXe58UOy33P2GzkIPaCASXib6n7yt8NgX0UyuA2kBad7iYOD+fM3OWxfKU1NbE6Al9x+0Xv0R68x0W1x8jtw3LIfKVgzusVgNDELKrsNZowo5oMASitZG4ClNXPLa3xUpqJq0jeK/JqQLWZHKIdKse206pnDCsvO7zMSmTNAVNyRH12prXZZ8FBSfEMBRAzeSogFxOG8C1CwN1Xeu6iQGTvLKCvVc2ghOd0kZtinJG5XM5kxN6bQSuPfEkrt4mm8zh6QlZAsGjCblFclyyPhUAsxW2qoksla2T9fwyrsKnQEyJFk3DrY0lx0A2BjEtMVXqe8kYGiHYPA4Eyp5mdehhTSakTFtXRcYrJLEEm2msMMSOMOgEIWdLTgZd/gJZqFyLTwFyQCJUUuMlKDiWtH4xRmsPiZEUHBmHCR19MqzWa0IfqCMcdw85PryNiR5JAVsMerXxhi55QlIGcLaG7IXQ6yCorRrq2QRDwPQnXNt3XK8SB10in66RIfCec7tMjdCh6gZy5IXf+QOOPniN+dRz9Yn38Pnnf49PP/85UhU5f+Vx/O27nC49T+8/wbc98wRPX7nOvXt3+U3TkqXSoWpjWJ50vHTwCt5arly8TTYNr375RV7+0ksYMRwvT4gpcW5/H2cMfuhwIrhmB1dFrDuHqw+4cbLkI88+iZXM1jlDXVkuPHWB1HlunLzF93zPn+CZD7yfOETmWzPanbk+9+LVYtG9/1u/9y/zzmf+CZ97/RVOV4kLs21sY7h79IC33rjFu/Y+ISWmxtFXpjA1HTY37OzM6Bcde/PEnZsHhBxIc4d1C+Kgw5pJA1OXwWXWveX1r2SWyVFbyGLJQ9ABe2XIuSJZy8PuPm5Yscw1kiumc0PvV9y9d4OT40P29/a4e+cu7779Fu/eOuZv/28/y9/+K/8Ou5eu058eqWkznhQmeB8JgwYkaF2YMbkhW5i0mba2XOBO7ckAACAASURBVN3a5sV3jjhdJ1ozcHVrGzHCg9NT+iFRTwVTFbPk3vCJ7/oOfvwv/xhtVbE1m/CzP/Gf8R3/7l/iF++9zK9/8ZDp1g7d2vGj/96f4x/+9P9KJz0ue1SaJjQNGJsIUXCVMKsjJ0k49onl+ph2NmHWVgwm0C88tVhqk7l89b1Mrlzl6M5XuPnuazw4XfP9P/CDvPbqO6we3meQU7q13vdBEq52RNMTvehANWXWpW/sBsuE8n7UEHLF+mTF4DPZWtoUyVQ4E3QAsYZsHIPkEtARWCaPszUTO8cmkByQ6JhMLCKRbIBklNjhLN5nBi+kkKlY8sqrr/A3/ru/SX88IHHg6z/+HH/zP/qPuXJ+l4fLFZ999w2mtSNk2G52aPbXnNxfEquafp2Y1DW4gNDrNYrB+8S0chwtO4TMqvPspJZf+If/iLTb8okPvp9PvfFFJtWMLpxSNRaXFaJ3ybPsIjEbQgczcSy8gWJhE0Ii9QbjXAlTV+m8DtwMl69e5epjVwjFk/O3n38Jk1YcnDzk3Ru3YPC8/7lrNM2U1Try4OCA5aonDBE3n/GdP/BJ/uyP/DC2kByk6OQdhtdff5t/+s9/np244Fm5yuWnnqGdXOHCjuPi9jb5eAklbCXnotQpO7vYYjeQleyxih3zvV3k7l2cCVTbO1x44gmOXv8SRkSZ0lHBKB+FHkOQiCZ8e5LVmmaIjlffPOX6bM6t4xXJao1qEE19jOqhnHMkpgXGgAtCHJOj8v/PJW/WUJzIBSsNKRcPIns21YlWmSw5RCpxWKkQUeaIkbNLMiVNLWRBTIXJgZQCtmwEBlsAq4hofjhILL4Oo/xDzgCcMkMcNZTWWm1ARIoEQD85a8yf/v/SDGzWrFUPgpSoazX03QBKsdefj8qoMqOfRiJlNfjF2k3RrNiaamiHoaeuGxDBOkeKvhQnGUTleLV1GsMpZ0ZfBtUeZ0lU4jYFfRRN88liGWIgSSiLJ23kGaAmn9ooaBKcTm+tNlB2jPQuMgfrSjF+lsxGARxMMUbN5DLBM4hTcM3nIhkswFwen23WZDuDGscOKWtSWA4M/Yrcr5EYaKuG065XGZnxeAJd76lqq0h1cfnOxWw2oybgWYRlCGyHxCSr+auIUGPxkqmNw8eID0ETVdBJv6srhETVWobBUxmVZKUcyWO0bVI0PMWeHNPmZyNnCYWpmHGrMYhKNUJWUME6h3OWBkcw2rAKsNW2nJtuM20nRKMyRxlNiRGWXY9zotPTHLFWGwtXaaSmGKicZd2rX08gEVIoja4wNY6AgMmIBLoQmVYVYjJ149jdmTHf3WexWuNyIJUGVIv2RDRq5r136TLbszl122KNYVgPnC4XZMlEX9ZtSTc0uMLaiWQpWuKkbIxMwtgKJ3LGNjFWAQBrqNuWuqpppnMmIdF1Pc2kJaHNgRpQq/FjTFF18VXNUEx/bVZ2ZIjarltjvwoENcUHLcWRX6Ax62IEkpDTQDKWrlsDWoynuCbhqHHFCFqZii+99EW+5aOfxPsOa1qsGGUNGIPgcYJGN1Mgw6RhAsaIsjJLkp7F4FPc7D/g8b3H4PRZS19YZrL5X5Wq6vUzAgVyhgtIYTSlAlRZMThxalruhN3tPcAwbVuefvppZtMtnK148uuf5SsvPccT3/hRfvc3nmcIK6IJ7O7v89yHP8T5rQlb3X38/WPu31/xgQ89wRdevc85Jzz2+BO89JkXabcn5HXH1qzh/ttvcHq0pmkN7e45+of36fqOmII2M1ETTyQnfPAab0+RUaLR7wXyUMB8BDkoU8dyQCZhA7gZFEysRMghcfHCPn0/8NaX3mF9NLBzYQ9je4z3LHvPyVoYgjIhDMqOHU2uY1Z4Qgw4igdCYeKMCMooBRNR/z+9vuIZJqNV9WjsnnT9jeygDQVZxi+o11EA0fHvSEYZsUkbdVcp0zSnjLGm+Pypcbj3XgH4bPAhYFyl70A6G6R81WeDZJ6dh4+ejf9vn/EMyFm9B0WApLHfudwjJ/r3Ysy4CiqbOY2eEDw5BPXQIG+YWllUOhQTuvcHmO5MFKwnYZ0eJsY6ZbqpsaDKn60oQCiihWcWQlKZu+5p+rPrSUOICd8DoukxVjQBSc8qIeOQPKjc0FqaWUM/LAuoL0R1ylUT9CxI7Nme75ObCf3ikK3GMJht2umMc7s7VFWFlUwaerCGZbb4KNRoQTz0PQfHJ/TRb/yCrDjapmZqK3Z2tpnPGmS1xrYN850Z80a9Jo6qCXlIJGeINpJs1qS1NCBBgZRpBBtXiO/0O8XMe+pdntw+x05bMbFbIDU3/QGvDGvqqqEVtIgtckvjKirRvT8VXziRBClQ1wHrDV2M9N1AiAPkgB88az9wbmtG8KEUi0GNhWMiDhmamslkymSr4fD2DfWtLO+AoJJqI1I8+eLGMH7dZWIIEGHLKmA/xITJmW5Qu4UcdF0bI+oVlIToozLKBXAqx/ddz865LartbY7XL9OdBpLRaPYuDeojSMZlTRwLxRutMkJOFskaXIIbzeIFcTpQ8DEXpnkkm4HBr5lUNZlMkoxDLSGy5LPBIiA54TDYqiq+nAqvD0kZ3hmorMOPPmkiUOmOIUm/1xA8WNG0x6TAauMqPGNdNo4EM0Z0sLRarQr6ITxcromnxzQ50klGfGbw+sfKbPdsEgex+JDpQ6RyVg3pU2ao9B3am05Z+I63n/9VfsFkrj91meF4xcUrFwnrjnfvHTB45X91wwlZDL/2sz/Nv/3Sy3zrh57lyetXeP5XPsPLL7/KN3z9R1jlhMy2uXn/iOVvf47cTNnZu8ztfuDh8SmT2YQ09BwdnXBiDYlIO5+RW0NVtZhJw71bN5UdWlm65YqbNw4xWWjqiijw9//3nyEIfNu33qC9eJEr+7vcO33Ila0dtvennHOWWiqsGLauP0vfdyrrcZmUK/oukvFYk3FVTcjqb/gNP/anefZH/xT/1698nhO/4Np7nmFx9wHP/9Of53h5lwv7T3HrjVd44eUX8cnTTBOGQNcdMWTh5ru36MJ9eqlIadAnmCI59OxMszL/vSX2jmXnOF17XGNpY8bWDtsIdTVhWDuEGWFY0Lo9nOmgq0hVzfEgWCf89m/9Bt/8ye9iJjU/9Xf+Fl85us/1D36Yp89f4I137nDeX2F1OrC1s1Yz8KTAiQ/qR5dVmoEGIDnWa5hULRMMqc8k0XS8PvX0a08YhHWXmTpLO0vEFHGV4zO/9i948VO/yLd++3fynR/7JJ//vd/iV3/rF/imb/lenr12lTeXB1x77Bo/8EN/ihd+61P88u9+nvl0CmJwNmGbDtBE2kkSru3Bl09WtHlCMkt6f0jTNNi8JmSHtTXOwtd960f4ob/4n/CF3/4U/+B//Fssh7t85tO/xrntx5jv7nBij7Bk1idCNXf4AMuk6Ym2UosKsAw+89hzzzJvG9567TVqY1gu1ly5/Ax3D27grOd0kXFW+9psMonIpLbkFDXpHEdl1RvLlYFt1635xPd+H1/50hc5PrlNv07kNBDoOF05jKlpncdMK0KwpBi4e+8GlcxoG8fXfeSb2d49z9/5mb/P/tUrPPnBD/P8b/8y264iiyeIIxkF510lBBtKCqqjqUUTOZOylOoWKrEYl5lMHevLgf/8P/jr/PX/9G/grKWqM7PpNstuRUqWfp0Jg+jAgsS8bVl7T+8DdVNRS8NJv1JWdgHckwghCtga54TnnnqSx68+rsl5RuhW9xCbWKwSnY/sn6uoq5bFKrLuE56MTFpqN7B3fotn3/s0hqYMfMsgLAsima1zO0wnO8S4pHuwoCJC0/Lhr38fl55+inc+f5PWuiIJKMxz0b04ZpTkUVv6YMlZ2Dl3hXuHX6K1a7Zdy/rOLToSMys40YGmLXtPXheMIQUaa2mNsMyZaVXz5dsLPnwlc3lWcRgiKdlSCyu4pOFemWsXz/PGzQf0QZVXMX+t+Un/HwBKIUWl/ZfpsCYJiYIboKlOVouCiIIBKalEzFqVcwmGmIShyFNykbClrMabsUyWjMkQdMIfY9hI1rIZkUWhjDhhAww90mltRvn6z5qcpsCAlCLfGIpR9fhjRBtlYzApEcPZ791UPUZ/r7IodEFJaTa0ibVlkqPaM1uNKW95A7ZY1xDWgYymo0mCkLSRSaXxVH+MYuSKOvqnlIguE7z+rMEoBS8Ej2ivrteQwNiS5mWFJElTh8r3yERE1ESyjLmIJdEtp3FyrZ+zqfSZZMhYRdETiZhGU2/9z8TKxk/EGIstjLQkHgkZXE1Mka1JRddH2qblweKUISVyodfXrtJ7J5BMLqCHK42myhVGWUqOWnhqw3PWRPnkAVNAs0w0wkCmH3rqypYEv5rKxrJuXXmWlknSWHuPI5mEjfqMXaxJIVLqOS0UcybkoFKUPC4SwVY1iQprE9ZWGCNMd+Y0VqWIY5pYQploISSGDDaqpNBZBa2ssVSiIIQtHhuUBlfZRgomtPOZsqe8fm+ViQ6EksB2/fpjPPXENY4XS+IQ6HzYpJeNzaVk3cz39/Y5t7Nd0voyvm6YzFp8CConiEFjURGqWp+L92qwnqICf6offTQtC+KgcroUVPplrCnvsOBcRd1IAWH1eaTyVRFIPtI0DcvlihS0uB374srqtKAYvUCKeK8MMUE2W4KRTOgVsohe5REhRO7fucvDB/fohx5ra52GPHaVxcO7Cj6ngeeefoLQLbBOjQsjKpHIoQBloswJxj3IKMggWZs+CnCXMxhXkbMwEBiIEDe5OyQZARQ5Y7SQ9eE8gkeQyn0Z4acNmFRRYE9CDmzPdnFtw2K5pp5eZmdfjYQnk4bsVzC9yJdfeBnJgdBndpptrHMsDw5pDm9Q5RPWRwv6VWD1R5/l6MDx3Cc+QcyR1VHP1vktLuxchHrg7umKZlZRmUxY9BtPtEwuSY+Zvu8U4DPlXjB+Px0WGNGkGynG3LKRgYVSsBVHIaMSR/XB0b0pJsP9g/vcPzgmS83D7pjTmz3x3BS7WnLSJZa5Ihmr7MGxoR3BfRR4lqyM01jYQOO7IUmlOKOPkuRczoOz80EwGxaVMuIKu0mUjZpGIEkUJpRH2VaiwHDaPPNUWKPK3IO0GTo54wqQJWRjtLhAsGWoMS6TDYD0/9jPx2EBmzU2NshsQMvxz9QHEB49CuHMO089vSoG7zGxpmktRhL96ogYjcpWrRbLOavZtjVaeIUQiAmausVOtKE2KVNZ2ZxFKSlTkZLgKRgtmHJpqFPGh0BMOnyJIW3Avelsyklck3tPSoEQBqSuNbGyDL7AYKtGJU6hI+eelIUQDHivIILoN545IYrDtS12aTVAodnC1i22qnG1njfWClhLOj6ktplglR2Qku5llahhLQnqylJbw6w2tG1NO6k4PDpiWldUdcNsa4KzAV8YYCYN5JRwOGJUKZYLge0MzqsVwVau2TETkMB2EI4eHOKabXbtNqEdaH1FExy+sjgn+JjISRM6K7T+UkloQnzPznxO7AdtwJPWUxj9LsvTJavVkno6Uy+MMjVXNl1mGCIpgY0ZEwKxF4wXBYWcwyYKUKl+h6NHpzJo1euwD4GHfqGAT4I+qO2ADxlTac2gMlQ1Kw+F6aXTZEPjHNYKyyEyGxZ0d5ZU9ZRQDQienDOVq4u8S1nvABIHamsKEFQAGWc00CFmTNLfF3MkFOPsHAP96RGhnRLrliQKtMQciAxgBVM8BpsyINViNKpsGh3cOknobu7wWYNJck7qt1JAKAE9hzJKR0/KdhexWCvoOFbPVZDRipKhXysjUDI+JWZVQ55NGULHNCdOVoEuduRc+FUy0mwj5FzY1WfAtRFLO5nRTOY0dUtF5PDgNr/xL38OCT3BONrJDs32Fvdu3aMfBmBQGWCM7My2OXjny/zm3Rtce/waxw8fEHPN/WXPnYNb5LrGmjmLozXvvv4Oq+M1FgO5xtDgqkzOASqoKsd8d4tLV67RTmf46Dk4usvqZMFka8ZWPWV1Cl03EIYVYnUwa6dz3rpzk63ek7zhC7/668zalg9+0/t44rFLvPLS68Rlz5/413+A0CfeuX3E7taUx87NmU5b2slE3/0m4WzxCRT1GTr/zc9RxTVuZ4udx3b4lt2/wOHpAfvPvZ/zn/odrr749VzYafij5z/Fpfd+My+98GneeusdomQCc7bmERs9kiOLQ5hN5ho+kDLigJzxMRKzo7UGW6sPXyWWCsd/+F/9D/zuz/093njnHvuXr3P/3gvY+ZrBJ9beMDEV25fO89nnP8Pbr73Erf4Oh0cn/Nf/7Y9xbnGfWe2obWZta5VGWUNOHu+jevq5ElyThYBaoXRdTxoyx+sVezMHnePSvrBcL9ibzrFtxRthSYiR4AVTGxpJXLiwxbxp8WGgDwOLOLCk4XOvv8jB6hSTLB/76Dfxf/zPP8mdd0+YNvua1FwlUvBkH6lrrQc7X/GVNxM5OpyFpjb0wyFCizMVOQyImxDimuf/5c+xenBEs3Oeo3UPWCRrknQIPX6dsbaiahKxyxqc0IJJib7PKlP0A1QTPvaJT7J1Gnnt8y/Sh0T2wsODg+I1CpUAUZjMpnR+TWUzjXhN3o1SfJV0UOMkYe2EyWM1P/YX/31+4if+Jw7vH5J8j6nBppYg6mEqURn91mm/HlNm2mRCzDx2/knm7Yy/+iN/nslszl/98f+CaW2JPhAlMalq9vemeBvU+87oMDNkTdysWqteiDkxnxuaypCy4XQ4gW7K9/+57+f4tSMqW/Nw1VHnrIQCq6oO1xgqhG4tYDM+9OxNpyoNT57OZxpXkbNR64OkO2Eisj3b5qknnmQ23Sl1sdAvFgzZ0LdzlsFyKTcEGoxL1Ckw295Blj2hcrTzXS5ceuKsxtkMBnOxH0hcv3yRipqZswyrI6ahJ/iBrdqVQctYIxX7mg1ALyQslTiSeK5f2uWkE7LvCc4wqRuOF6d0faTLMLfqNSZG2UjKTM7MXcW1vW36mJmkyPGyZ9kFbi8Tdc44ErkogxR4UwuTLgSevXaRtZ3yxquvMxrCPMKj+Zp8vuaAkimJO8DofXs2JUcLAfVTiASFG8CodMmKAxNKo5lx5YCTKLSuYhA2f5YF1aJnTcTxI+kmgsREEm1aY86FcYNeDMV3plyjmqpSBsKq8deeT4tvKegkRjZSr0dK7/JYznAr/Wxm1IW2XwoPEcQ6lbElNSCmFDMq80AboKS+K2KdMluyekUp2slogISkEm1cvDMkDmTReyKStRiNA0bUh0d7VimNhn6TbLWx13rl0TSuTAyeMYN+ZGypNE02A/Qz/w02chMpAGIqpuvj1Dpno11X1udqRdS3SSIpeUKKuKr4ZYWB5XJNznA0nGoRStj8PjFCVTkmTcPh0RGjv4YKxUSlKsUI1qPJKiFoSkSWjMSsRqIELceMpZ1MmG5vkYsJ8ax29N2wmRKDgmYGBUCHoB462sufdVrGamMj6P1UmaeUptBgyBjRYtzWja5Jo+yBKIlk7EYSI3mk2GsD60S/j0kWqVTCkbKhFwprR30LInpNra3JlQKf0+mUgUR/dALRkFNgGDKTJhPCQF3PODo65s233mG1WrO9vQ2uMB1KI022NG0DNhdmhgKRIY0MATbsGRFb5Ghq0l5PZuqbkkYPFwHRKVEqGzAV5BiLhEl/a0ix7M+jfFYLZLGjNtkQh4D3mvbj+w6TawRwVo3TR9BYCh01FAA6poA1VsHsInO0JR1RnBrmDt5TVZbd/X3qdkJMkaZWU8bO1ohEUszcvHGPx5+YqvE9DmMEH4QsEYclSiIiSCxSFdG1r4w2px49Y3Ne6+9ORsozVlAhGYGsTXUcgRYK6I6uL8pOUpzMdF8qvt05jcwYBdFsymzXNTkHol/RHz1kUjf0IWLaloc37jDf3+f6E5e4KYnTN+6Rpg3T7TnSVOT5ZfqlpapPafZ3eChXubC7zYO371Bf2OXck9eZzae0O44bb73FbNawvnfIucsXuX2r14Q80SbI+4Hsak1ZtGWNWClyLwNZJc/63VxhLmizr/vPmSwsQ7k/pWkU8DlTxUDvA5KF7a0JVWU4PF2zdfEiw9ExSx/oy7SenAsgkscNTk3gy78fd2yKnG6zP24AXX0PUvkzHWiMMwzZUKNHCdn4HdI47xhnH8XbLhtlKaVRxyYU+WTYgPmSVfbqivRUg/4S1jn8EHCuUjAynZ1i4+er2UejRFzKWsnlvj/yXTgblqRyhojoe6sMUTQAQjSiWVOw9NweOqFuhNlsymIx4JzDFw8a6gqbdTobvCaTte2Era0Zzlr64jMEmmCayjubTfEYLNc+snv11gZiUkZu8AOCKEXfKEg7nzV4axiGnph0Em6dyo8yGalANN2AylhMVSGu0xolWqLT/Ukqh6kMXhpyykQx+NRAELrec9J17NkJTgwpZAwe3y/xQ0dVtYgR+sHTrdf4pOEOTrTINkPmZLVAcmK1sJwcnnK4XoFA7FZMGse6W2NsgyEQfFK2Ws4wwHxwPN6eJ/dr1sGwIw1zWk0HS5ZqGEgmcrpeE9fCljF8oLrI2zIQbE8f15vE3VTVJAt+WKl/2qRl1lTUrQ5iXF2R1p66ajg6OOTw+JC+H5CHRxxPDmnqFhGhD5F+gJgtphJllIbI6TrhTUKMgyAMRKxRWZYU4FkZpLovZHTYFjGcdmtqqeiHwBAT3RDYruoiIC8DzKTJhMpuT0zrVtMEPQynx8jlC1oXLjtCqRcSAjkp26act2TBWcf+/nna6ZR1NxRQJzL0Pf2y03M5Q0xB97oCdsao1gm2Vp9Aayv1eYzF1FsypERPxjpDVTw/x5TJkCIYo/cmlcRfHMbov6+cwaLMXW1tkjJVrSmBLbo+WkbLAq3fDWXuIoYhJWqEGLQeH2zCRkNbWU6LrM5HHXxu9unN6WOQGEg2I7bSc2zoSXUFWb0Z2+kWJnSYpiVKpt2qqR2E1LNOHT4mpk3DfDYlGsdkOmNiM1kGqkrYvnyJg8URh8tT/MNIM+uYTie88MUXCKuBi5eusFiu8ClSA9QV1cRRNY7k4Y3XvsL+pfOEHPGLNTkETg4esl6t6ZYd4iqtOVOibiZYAhf299h76kl+99Of5eDhPf617/4ubDPh5r07vPTCC6xOTsnWsnNul8N79+kWp8jpiupk4H3PPEdTGZ748IfYnm7h1h07u7vkWcPNd98lTKeE8+ewYlh3C3BQ3bpHHRPf9m98H5fObdPbhu2PfZxXbr3KU+f3WDx8wOL0JlPngYRfRmSa8R7WYYJratarXv1Y0V5oPp+SB2XQn54e86f//I/y8e2an/n8Z/lr/81P84M/8v3845/8KX7q//xfiDVIXlCLcHLzVdbPfIhVvyb0A0NV8e3f+GHuvfAC733yCrdOTqkroRsyTWMx0ulJURiy1mSdTwOSErXUmKR+URcngXp7gu8PaVxG8sB0NuOqCCfdmkTAIcwmltqqN+ArL3+Ba1eeYv/8ZQ5uv8MXXniDuplyYe8ce9U2Qxf46Ic+xGu/+ik++P7HCbHnpVfeYBhqhhSwCCFkhpxwTcXcJXzSM6wxNSdLT+VmtCZxrm1Z9Ke8+uXfxU3O432isi1PPf4ETz39JJ/+1G8iuSGnAS862KhShUlCGJLaMwi42rF1fsadN17j5Tdv4BqDqTPVrGI+aTg46MjiMC5y+dx5+nbGjXdfZXsrk5KQNBkJaxLtdM58MmdrvsPB4THDauDHfvzHufPOAZOJJkWerjxXHrvAenFKskWNkaQM3GsaqzV+XdesfSSERN3WxCFy843XgEzvu9KnWlxdQejZ2nIsTjPLpcfZRDsTnMvYrHuNE2HZr/G+RWrH1Bjy7Z62qVj1kWHQQCHJGddkXCNUDqJ3ZAm01nKutuq5KolVDFrTiClhQegwIwuSYGd3myvXr5CL5KvLwoc+/lF+6N/841y8cI5P/87L/OR//1/S3Dlg4T3iHNt7uzz78W/hqWee4eve9z7e+/h1tSih9K1ZB4OLkwVvvvKH6hN4rqXvPCeHp8zW9xiWa1oXydZqEqzV+swUu59I0lRzAs41VKsV3/Bt38iv/9E9JjV0CTrvWa0HNfEGolfswJU+LpZB8tbMgSTqRpNGt4xQO6EPxe8xmw2OMXdCXQnRCqckKuO5fH6f1197U+eb43D9a/j52jOUopoTqxE3Z8wGGR3QtfTOI0Xe6MSIlAg5aLpbYuPvsPEZycqyiCkXOcooYMuqCycpNa0U4TnrIZDyeMidySFyjozBSKMvBHmUFpzBQqPpavmPNg1BimWmnJQxpV4bYK0yYiRr4R830dD6MeVKDOV3WzUpNDL6nii9LovghwGrudQ6YRobqTLVljxKr4peU0pUe06E5Iuvkn4Dax0JO/4QxkxntQ8wo1JjAyrlDaCmn1SkdaMXSUxnfkUb4IPiVpITYEkul4h2lb9lURkgUKbVecO8GSfuaeihqVkvTlkPHUkcPmeyE3JjqH1LPySa2mLJbG/t0tQVx4uFuuJvXo68AQ+SqCSEYqg7NhtiSvGUtLGzWdhqZuxdeIyHD+6S+5X+uc0EPARbzHghEhgxplSeZ11XLFZr/DBQ2RpnHUNWmCSm4imSCgXRZoxEmqqmEX0GFvUXqExFZSu95/lsPZqs6VEiaDpGEmXLGKcFa0kzGl86ixqJ+mTI1jCpGs7vnGOymPJupywiHwNDl2AGKalhcN8PrFYdxEQMJbmlyEYsYHIi+UjsB3q7Vt8pH+l9IChdSTf74k2RYmFqGIvJ6sWViJvUtbGvlcKmQtQjQGzeSF4lqtfIKHzISeVH+k5GBSZNJllLjL74IxU2GcIm+vwRVoUIuMrRiNusYX3NVZ4Uc1Tvr6Cylrqp2D+/Twhq4polkAfY3ZnTe8/QDzSTGX3vcc5g7MiU0EUSJODj6BWl92bc+K11GFMVILeYpPQDGJV6pajszZhNmQZ7EsVYHk2r00mNR5k2jgAAIABJREFUgCiMIknZcMkoUzCWfc6I0ok3rB5JzKYOuz5ldfddbi8e8ODjH6Npt6hCw4N795nNKvzJmvXCM7+wz87eLhcuXmTeTmgmLavcILFmXc9p6/P0Rw9pL16A1nB8eMhyq+bo3XuklDi6/YChW2LvBcgDMXuyRGLQAbwdJzyp7CfjHsvY0I2m0sXgPBcJL4XJN74zBaHJpSAYgZyYIq1rGKrM+d1zRD+osXzVYC9cgYP7mOEEyQMFVlKg+tGDt6xtM7JeKcAPIxLE2V5TzoMxlIBH1vvZIKyYaqM+MTGPyWvCxo+wSKqiUN71szPUlrNhvEIx6lOBKV5KFJA2lrUdYlk7Z9/pXyVle/TPZbye8fc8claOkudxPUIZflCeURaaScPezjb9yhNDoiNjXE3dCKvVUhkq1pFcJvQ9Q1LPrEnbMp1MmU5aovf4oGaokhWwohgCV5LxlbK/YtDIbCc6NUwxa6hGUvn5BiwrT8G6GqaO3veYYiwYQxmSiDbI6r+h3mq2arCywhj1gcySsS6TsmMtVr3cqBlEqFxVcNHM4BN970nGqB2ACDj1DpxqfB9V5UipfMeo3oN96IlpgNizWmvKTTd4fIz0/ZpV8PjgIEDEkwkQAsSMy8KeNzye5+xWNetgmIqh8YbaW0iROqksyebIyi9p7ZSZrXl6ukMOSw6XJxqmkkCSIcdAGJbqH1hSRbOPBBexQ974YPWrBYvFgq7rVZYusFgtWBwdEoeB9bonZottGlzl6ESlFNk5pHhF5qyDFmOsRtFHBXY19lvDQsbwBw0vSXgSXQoaCZ4SPgYaoyCNs6aEHWjarkimsgZrKrp+ja0MD+/c5sL1JxmOTqks+BJ6IsZsUlpHeWom4Zqa7aZm2xhG77Q7796gW3YkCznkDZtO9wqD73q601O2JhMNnAiZaEqCm3nk3ZLRAUxUbmLU/1JlrbCRb5NLwrCCOykWqwU0fc2SlbWZVeLnrIAPYCxdqSet0ZrMkxQIzpmMDq987EvIjiVbHRbFOPrzSQkkMCWtK54N9bIONHMBOeemxQN18VjY2r/EsDgh9WtO7t1j1Q0sFisoNeNkOmdvbweZtJzf2WM23yYMAzJxNGbO/QcP2N0/z/K0IwXP3rlddvb3CF1kOt3i4NY7pNSTa0tta0yJ8HauwqTEhUvXsEBcDBw+uIs4BSn9EPGDJurWdUUeOta+Yz6b4k+XpPUxdfA8uHWDb3ju45yfPMa9J+9w+513eOz6dXa2tplMJpwcHHDMXV4/uMH9t0+QpuYjT11m+eaXefHXf435fIewXpL3dmnOX8KuO+p+zfzCeazAV6oKasMTWzV3Xn+Hrl/jbr2ta9jVuK1tLu80NCYiecEc4c7RisPe4aKCsm7a060zZjFQTSKzeU0aelZdZjq7ykvPP89f+6V/QbryDH/83/oekhi+8WN/jD8jFW/e+iKvfO7TtO2cdupIVSDEI1b9KbvTKV/4g8/y8JVXqSpPBmpjWKVA7QxNVUMe6EMqvngGMZbGaa36gavnybFn3lr6OnHncEndZuY1xL5nPXRUtWdiIslpVLw1htfefI0hZS7t7eGmNR/42Hdw9zd+md1Vx/27h/yxP/MXOLl7RNPU/P7v/x4//MM/yGc/9YvcXy5xpibEjCnjNskDtraIVcPjGC07jWXiAsdxTVNZQs6Y+hx5taZf9wSWtG1DCp4/+QN/kq3tPf7wcy9ysjpBhsje7pzudIXERAwAFU1TkYhqk7Je8ocvfIpMTap1uLE9aVkul4QAbV1jU8fV9z7L7/3Op9meWZCIdRUmNMSUsE5l303rODq+xYOHR1R2Sg4rzu/VeD8Qc2baOrYmE1anB1SMXlYJk4W6tTiXcWKw7ZwXv/AFbn/bd/PElSdZHhwQujvk1BPigA2wc37Otf3H+fILf0iyjug1gCZaA8YQfGYIhqYq/StOz7NoicBy6DFW98zaQNdHDddJDiEQk8Uni7WJiauIIiCDsmyjwRi1/hj8minbJWhBsBiuXj7Pc8+8B1vY/lMRvutDz2lyLIm2meCqlmgSwxBYHa/4vh/6bv7Sn/0r2meM3odj/1i48f1q4Dd/9Rf5lV/+OZ7ag/e+9zE8Ffdu36DaepFXX7zN+v4tHX5seszRRkcBiZGoHoFJY7l/5wEc3WQ+MTTJ8eBkqb5NWYfvVjIuZ/WTJTNkQ8Rw43jJ8dITyeyd26YukuXGCI2FIRlWIeFEmWutCF1RbDW1Ya+ZY4ocL0Qdpn8tP19zQCmLVnejtp2RwYJOxE3UJiejbA9tGrTpT6UwlPIwU6E3DSnTxcCQM9hyXBtTGjal9SYp/hYjMpLzWdGYzsCLnEf/DX3QadT0bq5/bBGK3ne8eqPbz2YqHCMpBnLUOHDrXFmEI/KbilyuXKfRg92Q9ZAvQNDIFkh5NNYu0dJAGDyVNRvQS69MC42Sgq2NVvFEcs6WKXeRPRTJiLhRzocCLFoBaBFQJuQbRAl0wlYmTGYE/lL+qucpj/z9Ryf54zWmZIjF0HQ0Jhtvszb4ZsOSCKk0wU7TaY6XS4YAIVvWcWCrnZDINCkhbU1IA7PJhPlsRoqR+WTG6enp+KjLL9F7a4G+65SsNU71S5KKyMhmEkxVMdnZwlnLtG6RxmGbmrRYl4JZwdAUVcuacizFlCWZSFM1JSJSY4NjULo7pZmsSmqgWvPomnCoJ5XVVcEoDDVS2D0ox8QkTanzCcRaTPGUcc5psVfiHx0JI6NpdEmnQmmP5y/ssbu1xXxnm6qqODo65eHxQ9q2Rs3AdV0uTk8RUXNxXxoawRZwJ5OMNgRIousGmulEryem4n2i019lsun3TzEUJlouU1r1KBLAiT1b1cUgGxH160LYJC2W60tZN05TKIEpJXKQAl5GYjoDTcVIuZdSwCeNUk9lml0Vf7DykNC3SRkOlVFfFmMErC3sQoMmSwayaaA2bO+eo7LQDZ6MGq7GETg2pkwN1CuptqZIETI5mw1YmLKC4Zmskc1nuw6ZTEiGK1f3OT46Zog9Pitov0E1SQqkwEYOQVbvOUClrkbXkghkY9W4LwZELHPrmfuee/0K2a75lV/4Bd73sY+QgqVbHWPbcxzcu8fi9BRTNRBmdCdH9KcLcoqs+wU5CHUaOLz9FjYl1q1huXpAXgz4uGBYe/xigY0DFdAdH5AlFpaYLclVCpJVTY1NyopMScHHERSKuYAhEkhlgCAFYMolhCFD8XQpYAEKNkkWKtews7PNzs55Lu1usVguOV4MiPc02zu49Yr08LgYKJZ7mvOZXMwUHmQBpTdy6BF5kvGpne3rCmwp5C6FTZo2ww59WFLARx04FDANnU7p9lzYQEYHGYYNabnsYTwCZhV4qZyHYnWiNw4lcnpUNne2J/+rQaW8AcDG+ctXT7Zkc6+lhDro389lD9CrbNtGU2EaoVsPSBCMa2hmFUPoiOuS4NX3pBQgq3n3dDpnNp+TgfVqpXK9gt2ZMrSxxdvOkslWvTtiSVuMEUIYiKFXYM1UWFOVIYn6XEWE3i/JPmNblfnkHHUEklUm6KxjkMRieYxMd3Gmpa1rxK8JwWNsTR8i4hSkzmGUYxp6P5AGnTiuUBPlTIKgkuumrfBAH9TzYDqfEY6OFAjOQhLHkDIuZcIQSCUNV0S/sw+eytSkst9mP+BiYMfV7K7h8sqy1WeMDLRAlQSbI40EcgpMJOOc0NjEtp1QVw2VgEuZx3LDbTOnCyfEmHBkct9D1QAq7+1i4GHfsccWJvRsT/dYna7ou44hBFI/YIzT8IGk1xhD2KTmkgMhlkTeBKZ3REFlaTkUlivqAZdlnBqChAIsymYwl2PGNY7KDHgf1C+pDBB9VAAlG1FftpQ14bRqMFaonIMM6+WSuzduUU1m+kxLkIS2G6bUEFpPjJdCOa8QoV/2nJ4uAMFHld7lshYkU7w/lMEtVv0qRYyee1abZmX0CdkWH44ETiCkpPL+nDRsZgxJkYQGYCSVCKWMMQnKOvHpTL4uJFLQ0BdJY906biKPsPxSpA9LUrYMoaNKkIbAkKP6x4WgLERKAmVS+wT1N1EWuCUW1rHKF2e1U2ZhjkhWuSsS8es1635FN5Swk5zLMAma6QSXM7PZBBlWdN0KKfXEvG3x1iC1p0ue9dEhF/b2uXr9OsY57t/eZnXY0DQK7BpncUZoTcPu7i575y/iFz3XrjwO3nPv4D45Q91OaJu8SaIlQ9etyZWjO3rIN3zT19HfO2T3yessTgcWBwu22ymLpsFOGlZdRzudYpOnspkHiwNWRw947LFrVLUw2duh3j/H1tNPcuulLyINpBrWJwvk8C729I56zTQtEiMnDw7xq45FXHHx5rtMgX4IZX9u6HIk9kLnEnmyzXRuaaRCYmayswdS8eCdt+lDjyPRbBkuzbZpJy3nd7d487WXmZoZr77zDk899iTXvvH9fHN/xMuf/wwmTqmYUjcNr/7+r/Pw3ltIiBAH/t7f/bt89KMfYXG0wkgNZqByyqYIvsNa7ftiFmJI+Byoy/s6q4TFMGCZcutw4Nx2Te165qlhMYucxI6TbonkCmcqhlgRBk9Inrq23L13xD/7J/+IOi15eHibygrtbMKXvvAlbvzRlwmTCedm53j8Pdf4yssXuDx9nD/8/RdYJcuYhlzVBldBioZTn1iuEjt14DhYWgciiRQ95y4+jmHGm7deZ2BB3UzJ3vNz//gfcHK8UuA6J3AtH/327+XVX/pn3BOn9XtbMZ04hgGSBPUTrGqOT5W5Wxnh+GQB1lDXFf1qzRPvfYaPf/J7+Myv/RJ2+yKrDvVQitBUwnbb0veRrhpYdYnWttrbmoBlTTTgpgaThRs336ZuTJG6614hqGy5bRsaq9Lsl770Cm+8+wZPXn+CL//8P+eoO4EQSJKomJBzxKYEYhlCBheYbiWcVV/ZlBO1VRC8D4KEGls5Oj+ArYBENDWd79VrNTma1jCt1Sc4W0fdOlyrido+DcVz2GGL4inlzBACxrjCIA5YJzx+7TLXrzypJIlS7459LmJ5eHjAtHbENNC2LUvv+dAHntG+OEfde8ce+JH65vD0kM9/7rPcePs+cj8yl55zV/Z5MPR4//u8++pNZH1aBoCFvCKZLOplZORsAGhTYlk5Du7fZ+4Sk9mEyWSLP3j3jvYyZTAcNxYChZKSKfuq4dBHmkpwzulQKmv/OGBwkmktVMaQkrDwomdMMbnY2Zpi6poc14zzvq/l52sveZMyNUQfymgQOBo3ZmNUjqNwhXpEkNTYV/KGfFuEZMp4yeBDoC9yrDy6updDUJORlAqm/w0guUxKKU0ljFNTUzycNukzeaTrsynCRwhnTA/TsKri/aJdDMpOOpN5OVttaP0ymkcWYEMTqRT4EhnjBBUwi1H9daTo3FMMZTEp28MZ2SSFlR8Om2F33iw4NQgvoE9WyRWb+1PMYsutE2M2zZopBcG4tkaGkv59RUxHcG9kniUUNLRVpSbiqXgwlevaMMmK1uYMEtMNIRe5Ys6pEL30Hvb9msVqjUWZNyJAiPjOU6VAXTlsEnZ2dsDod59PZiyXi3HeUH5fwgBOjLJKUsI5S7Ra5KcC5EQpjC9jwFrWvRqrN64pEd8jr0zXXkoZK66AgdoUOmyhoRpyVsP0JDpNNEllGcoqC+j8uFJ/DKNR5KZy2FwynmJhqBTwA6xSxhGMSTRVRUigVp2ZVIrjGquSwFEIZLSwzikgZNbrNZITk6bl4vlznNs9h7kldOuOPkQimQeHD1keHuuaqMaEIy0xrdP7EHzAx6ixnsHjvdd1b+yZvKo8VymeCimO4HI6A/RSWUukjQTu0fWn7/WjG7uy83LSyZbKSYUQvQJ+WSe2ochmUlQQzll1HoqjYYZRgNQU9pJe59k0OEtW2UGIG5aesUaBwgI3WVOrh09W49RKHILK5GLWJDZftHm1s5hcTATFbFiR6nejnxR9kQwZBcIUI9JpuKi84crFXW5+peHgeAkFnKD4oWUxmyQvKyW+PoFYPUbMaG1BSc20TTEdzlRVwocFKTvU0iXzpZe/yL3ju3SrxHve9352dmbcvvOA2C+ZbU85vn+bJu+Tk+BjwIceCQbjG6TvGBZrZlf3Wd66y/VnnuLBrVs8/vRVbh4/oHWJzghh4ZXtNhqzl8YsodJUZRkpiyOPCW7l+ehqGBMkFVSinCeUPVdvj5ALeDPyVGfTlp2dXa5ducbOrKHvPZeuXCdVE7qQOYqQlZpS1lx5F7WvVyyprMvNfsPZOjV5HGaMTIRxX31UjqifM6BTn2Maf2Y5XpKUn1FYSkGKXHwEm8ZdVUp6aGEIbBrrkVUklkTE1SWG1jk9j8rZtzFvH7+HfPXZOrJsdYsbhwhn5954hsIZmKV/y5Q9QG+es7oT2tpRS2a16AvgEpAciGGg73s9/9Bo+kkzYT6b4pww9J3WE0awpfgzRe6okm4t4GKisHwiIejgZxgGXWvGqiTM2LKHGEwGkoci3clW9z4RixGHcRrEEWLWQcE6MN22rMUxabaIcaA76ZUR5CPBetoYGbo1aRjwdgUIMUR6A3HqyBicAYjM2ynx8lVW3UAujfr58xcQhJODE0LOiKnK8820TaOgAygLBWibilJowLIn90v2qHmqrZncPmVet5giLY/9GkfCmYQTSAzUUiMSIAhZ4TWGZEjJsiXwbL1NJYmbrDlFAy8oSa1lNTOkzPFihUMwy57FckUXvbI8gCiJEBMS0f1VT1B9v0sCYEhgTK3rnVA8sYoU2RokqfdRyqaoGc9ASz3Pk96vLNTWsk4eFXTkEt6RNudLyupTVrmGyurQpJ3UZR8G362wVb15fzFCJOgZlh8Vf+r7oPu7+hgdHh7ikyYVpugRMrbUQso41Vpi7SN9SBrLLsVA3qDPOoE1/zdzb/JrS5ad9/3WbiJOc7vXv8ysbKrJIqtjhyIpiqYhUzJpwIZgQAY0M4eGYcDw0J75H/DMM8seGAIB27Ih0bbKYiOKllgSi1Q1rGL1mZWZlfny5Wtvc5qI2M3yYO0495HyyKiBL/AS2dy8N05E7L3X+tbXeFLbD2YwK2D1WC0txYmKc6HtNS0ABWPvzkz92HXMFplenIFstLoUbECLMZURq79zhbRv/616at7bYLQMCB3TMJDGyfZHcU1F0MpTMalrRRs7tqkDfCBE2wlT2jOWkWm4Yn91TkqWlou3+5DGChkkV/aXFyw6zzBsybuBQfMBcEt5YL9LlGmic57j5YKglby/wseO02Vkf3xEF4TNbmf+XupIDnAGisau5+zOXeo08ez8GVqLgW0qxNhRamZKliBdhz3jxTNeuv8mp3c/Rlz1eBUkdqTNJS+99jqdb2EhWHjCNA54Cr5zrG+cWEKxRD725mdgseD45l3OL54jqzVohhiIix68UJx5rO4cPM8btlfnDOnKGHzOrm0kc7nbsL8cCCHQ9UsWR0ec3rqFD57TG3co+x3b1ZLoV7i2Z9y8eZvl0ZJhs+XopY+Rq+N/+Yf/B5989bOIDvzpP/s93n36nLA6ZnnjDrdff4MP3/km3eIWN5ZLPnb/Fe6e3efpR8/59Ge+wD7BuLvio2dXnHbKRdmRXGlDEjvkU6poFPqonI8D0+S4GDb0/YqPH3WkvZAd7HVDxbXaKQKB3T6Rp8yQR05OjvjU6z/F4/ffpusnuq5Ss7AKS/78a3/KyfIeP/+Lf40/+6N/zre/+V269YIpC773yDhQinmPiRamMeN6yJNQ1PN8B/jKetXRB0efYKEjj6b9ITm05h1VlacfPTbA2nmkCMdvfJL/+j/7L/kv/tf/jcdnZ5TNFT6CDyNdDShHvPTq6zx+/B7UC5woJ4uMFtgVj/Mdz7eXvPq5n+P/+t0v0S1X1DrShUpODWQQh6jnaLWkP7nJVCANTYnhHWlqwRxDQaMjBrHAq+apVT0wKX4q5C7ThYCWzJuvv8xLt++w3w380Vd+j20cuNjtIS4Zy57HH+45v7JgIDXTSPqghKjkybNeQXGZzcYz7h2lJvrJEftILsbi3SZHLdGsILyBURYStOBnfuGLOO9493vfJOSRlLL5Koog6hrI3XrZFjyCCG4RuHvvFp2LVtPPHa3zxg4Fnj0/J64EnZwpcVyTPDvXZHoGAMwVz6HzEPilv/4r9Aw8/P7X+eDBM8aQuHV2l82kfPV7H/LwIlkoEF2TzNlGbh60TYWDDZQrMA47jqNjmx03T4/ggw6pe/t/sGllVT0QTJxRdZvSJ7Pol6SmSlEqmwpjVryDI+8JCvti+jmnCdRS545PViyWx2x3VxwajZ/g108cUGq16EFuNXssHNRW0XwdnNq01zvfaMpG8/JYP13FWATNPKhR91uBzLWUbJ4EW2FxCF8FjPZf1Yy9Z9mCxa63YkBaMS/WWNIK8fl1yloODIM85ca1cVZMFEUaSOZV8WqmjKhFrnvXChs4NBiHor1NP+dxrwE7Vi7MwJfWitZkhuPND+nwyeemvG3QIuBUbYpWC1JaDG0tINrS1QrzIEsBLU26o9aYzB4Zdrm1RbW6puOcDcPn31mZjVgPk+oDiGCeTBY6ZQsDGhOqFRaVpm/BpubavHe8c5Q8GWPHgZZEh5LGAZ0mahRKStw4PcX1nTVe4ln0kcWiZ7vfW6HYnmm7Amprxmg0cTMKr7O9hhVy3mjmadgh2Q702gDRWq3BqcXMYe3aPfNUr6pjKmYsrMWknXh7t+e0llwKRa35Byiaid6Rc5N+teK8NLbZiwQwKxAFL5HOOTwVcUqSSuTao2VG5M15vZW7qkzjwEf7S5Z9z2rR40MkZ2Hc7Q0E7OyNv7i4oJZMCJ4udnQhUpoX1Gq5pBR7L3xj05RaGfYD4ga6bmEH6gweOn8Aa2YG3DVQVNvGOTfiM2tHDFDBmloRCBLMA6Rk8BZ9HpzgMSBSXtABi+W6NwDBJGvet6mMVnI2MYhv6YXGgqI1A/Zj3AtHibRnJeKadKLJHJwxq0J7m827ythItRSCClkqU652ra4dCAfAEw59thrTzPu2jr20hAlv0wcsJa7vIy+/fJ+LzZYp7XEevIsNSC6mhxbBabPuDopTh9TaZMUNoJ9BqhANG4/K8/2e1WLJarVgOt8QIoy7DdvLPRo9u93IwkdeunODk7s3uHj4hHt3Tm1aui+49TFpSpzdOiE/GIixZ3m8ZLNec+fOKR++/TYMiZIyQ04ohaSFNKXmB+QQsSbVBzPyLQ1cAQP07Oibi9IZ07cdyTUQY17vM6hpzC8OwIcKLNeRPnqWvWO5XnN2c8Err0bGnHn7h+8xXl5QWgNorCgrnOZGUV9g0c2OhoqBWDPoYmCztmu4llLPhtoczpxrwH8+xuYl/+IxX9sZ4mmSYzHGqGCsPb22zXrhnW0iQfHUosTYNRaNa3OJevi9vjEm5+ua2byHk/RwzRyuV//Kf5uv/HDOtZuh0g4clD5GM9rHGtrzYWCajI203w/knGy/8c7S6J2jXy7wwVOmCamFGKOxOVoDbUB9Y2p5zzAmaEmRzkdysuQ45zscRhsnmN8SiMlxckbTSFBhajHzulwhzlhJzlkqZcljQ64yXTAD8dj3+KGZh6eEq1BSQlOmpkQuia5k2/e1IJrpvKOLHc5ZfSFFODu7QbcZ6KonRDN5LTfP2G8Hpv2IBJuiXjcTBlSUlPCs8N5RqSAZubhgVQpvdKfcREl5ovoGUCsGBDmF2gAHB+pgkoq3KDRSLlSpBO/pRLiJ4LtTlmHBWySu6kTKk3l2eW9pb7WynyacBIYnl0xpsOI5VRsQqWsyswoEG1RpBecpbW2I8+ADWUy+OpXhsK5TS/atrc7w4hv3ucl+peLUk2dJddeBjIj39o60IaPWcvC8DEAnAhScBGJcUhFC5wnBsxu2EP31e63z5vLCXtPqp9ICXYbNlu12i59ZiA4qEe8CfXBstkPzGSvs0sTVfiBGj2upcaoVXLVBSSnYUM+8FefTvjQZ8OxMkBvzPFe7Hz6nF3wBq035teLFTN+lfZ+6WRZsDahgAzGcMRtyyvgpUzThFbo+UqlEFygKm92eOvsnznth8zAxP6Y2+LLDzpJxvUNdIKU9w7hhyMYszZqhCtFHYhRjni6WxGVk3F7g+1s8vzwnjdk8N1MyY+tSSdPEOIyEaNc3TQPbndIv15QpsQiBGGEvYtIUVY5OT7l69pjt5SVHJydQOuKiI4TOdjQ7WKyOaaCOUHn3+98xwOgtwb/6But6zH7cEWLk8vyCj3/6p0njhG/g4bOnj3n/3bc4f/wEiZ6jkxvUDF3fc3TzBj52nPuA7rcEtToR71gdHbFeHxmQlSpx0aPe4bsFw7gjp5GjtbAfJ/P03JqBtosr1idnuNARQuT47IS63/H0g/fI49aUAClTu1Ouzs9J+y3PLy5ZHq+BwPMJ/vAbf8bVRx/gZeL2Gx9n2lyiXc+TZ+dkf4Jbv8abn/kcv/zv/CpP334XSuBX/6O/Td0M7LYbvvqHf0R2wkePH/Cjd99lyhuiVKgGDpsPa+XRZkRH4eXTJa/cWHIilU1ULtnhVegdRL9E6NkmYZq21FQ4Wd3k13/j7/CLv/xv8ae/94/47rd+h2EYKTVQamRfM3/jV3+Fv/G3/jZf+9I/4Z0PnvDDv/gBi9NThlyb8bWRClK2fqWUEfUeqqdoBzkT1OGYeP3VN7lz71W+/vU/p1t2QCL05nGbJkjVvNCGJxf8x7/1Wzz68v/NW5sd7saZ9bbOwKqcCwQYgN1mB0yYqBSCj+xHZSLjF0ve+eEPePdHb5GCR8tEjJVxzCiCC8K+KEwDl+cfUdPIauEZhox6pUYPKiyPb/G5z36e93/8Q9K44dnVY5arIy52tneXWiipMIpw9+4ZX/yFLyBxyf/w93+b//3H32U/ZHaq9E1hsPAeyRPeWWDP+kgpWcilMSxF2Y8wTSZ/y0VZLE1elVImhhUF80gyKVhjI+iyAAAgAElEQVRhSlDFE3rHJz/1cYbLgYf+L8gpo+qozrezClBPmiYQ85vLrW+/eXbEz3/h821IPe/TRv6wukrheI2rAUJlmipSe54+e277k9YG+L8wqGsDh3u3bvFrv/4bLCXzL8d32W+fcbUfeXb1jG/9+BF/8s132V5NOIXgLQhFZhk2YnJfEWrrXVZOuNkpd1cdk3oWNxe8eXPFkBwfXBpj+LqWtXuKNNxBTErXdf11Py/NDxKlVGGPDVkL5jnYq3WQse9Zdz23b95k8+SB7U8tTfon9fUTB5Tq7J80N5BzVKQYCyTGSBeMhllKxtOMA10lOjuUihaCcxYzeWiU5AAIzB5Arn1vNfSBijVLbZYNDQLRF5oTrTYVm4Eik7W14rm2xqQV6EJLn3ECWBRt1UJw3qY8zjI0ai1EH4jeW/pUayqc881fSQ/NSOsn7dppE16t1JrNlBwBzZSU8c1sqVZLowqNCm0fTQ6N95wyhLRDuNr02abf7T6H3iKO22SrPRxmyZx3gmu08uIKNQPFjOq6vjMT4MZSEm/NcwjBnP4bs0rqPLNr3kgHp3JpbDWjXzMTvaQJjLx5hzjviCESXCClEa+GTscYGcp0kGicnBwZtbQ1P0TPcrlkPwwHfHk24SqidNp8TNq/r60Ky7W2TUDovaOmyaZcOEoaIK+MMdQal1osArtWu157r4x2Lura7HBsEIMBCakq6qp5oMRASGYG2vUtaatNNXNpkb4vsuWajsbLTEf3+MYCqwq+OlKtltJXKs6ZtEpaMR5E0OBJ9mEZdc+035GKgTH7aSJ2C0SNfeRb5GXsuwMQo6otgdDWnPfh4FHTxd5AwEbzr2pgjd1/S0IUZyBN1XlVXsPBOq8ykTZ9n50irn29zBdCm9zMGslZgmjSNQfF3t9c7b0OLnCdStUKW+fJ0sCmaoWN1c1yAJKtibY1If4a5JqhVNsGmkdGuzbb9c2IWaStT6BrHceUC70PINqMks2AdV4aJvmQZpZtz67kBmBwLRMFz8c+dpdhGnj7vfdMsuZjA8vatjEDYzP029ZXuxO2P88sGAcuWvM15spl3hGPwO3Mx2saMuvTU3Y1sBsVJuHW6RFpSkxZ+eDhUxzKMCY8iVQyo8L5+ZbFkefJ99+mW0Xef+cBm/3A2z/6gF2yxMcg1rDUYntv0SZJqxUtrYjQ0sKCigFJagCPO0ySOAwB9PC54DB0aGBSYxC390lYdOZRZskiDu8dfTS5ck0jlGT3cPaBR3G1Ffnt9+tfAVZq++fZi6vOA4QDmMIB4J2xqMNXe8AHEEevQaV26Ye/UgtIoM7m5PPP0hfYk47DXjGfgTPrYf6987pmPn/mi5T5XW8vp75wHS8A9NDAW2tpD1Lyw9XKtVzHNxbiIkTO7t5BtDF5XQEtTHmiVDu71XfQAGShslhGghf2wxap5qeDF1wx42EfIojD+djO0Ha+tCGU8w4tDpyx2SwH1O5FKY0Z2WQzuVRjLoijTCNp3OH63iRa8oKktoHbOkws+siyJBDPVlq8MzbIMalaYwuq1Q2I4sURxRGcgSfiICh0vkNWdq66tg8sFh3HN04oekkX/MEnTSmHukCbT5/gmhTSUcbMrcURt+iRza4xFiechsNQx4xLZxmlw4VAD8QMrhaqb/WNV1IuaJnopeMsLFlUx06VkRGnlmqUUyKKAfYikS44VKKxw+qcsGpTcnUZ9Y40qUViVDGTWFWCg6gWRV9U7J1ovkC1gaiopZL62W/PgUob7uEIKu3+OjNNr8aWCcGTOwfZVpzzDsmVzjfxaMlk9RTv6bqOrvNMmtvaF2M4aQON26ptIzYDUioEUfabDUVNJqLYmZhVWK/XLI+X1PSQKVv6cUojF5fnrDuP63py8zIIc+CEYAmxYAw4DEjHy+G5SwOnjIBl9yrmTC62FmuplrTlABc4VDRSD6BiwWqa2WDfhUAIHV6EKRWihyi2X4Zkaci5JLZppFbzFcN7q/vLIWLDkjvbMLhqxcdwqAO8jziCBeg0ubNU84f0AjEI67MbdF1g2iTG3YZnF+fknAmdPWdHoOTCoBmyJYulcWDc7XHOU/IVw37LlAZ7/7xvLLXKar2ieNg8eYIrtnc8+PHbXFw+JZeJ6HuOT06YpoGSEsE5cJGr8ycEhOXqmHG3Yblc8ey9d3ny6Bm3X3udfrFCUrL3pBZccAzDllQzx92aPgQq2RIvNXP16AnPPvqA9fGa5ekZboSpDUeDD0hVpqqkNFhwh6vUMuBcIU0bq8my0HcrXIi88uZP8eqdmwxT5uLyimG3xwtkHXGamYbMbrsnHC/ZXDxjGjNo5vI8gnimwVIGL588IMaO6fyS4A0MSWIMfd8dsz69wenxDfo3l9y8e5+jowVehM1+x6SV7tYZH/74AZf/8Euk7iklm6fZmEac80QsBv3uuufjZ5HgFCjoYiJmz0vhDldpS4wL9hUu91ucKCKBl1/+OF/8tX+Xj3/qTV5+5ePw98754MG3OL/8kOqV6hJPt4/42re/QZLCcrHk4uI55+OW2BLmKsYg9LIkFWORplpYLwO5ZNZBqGliOxV20vNonFjduMnq9IynT3/EcgFoQVfWA1ztMouTytXDH/Hf/P7vcnV6TL3cgAhDGoElxWVSuuAvvvM1Yil03mS8V4PjJAjiKzVV4tLxrT//13aeBGFK4IqJuoOrqM9sNJvH3li4fbwmqKfkTJ59cRy89MrH+Oxnf5Ev/Pwv8jv/03/P0fqYey/9NN/4i+/QB8hlYhjg9OwWP/9zP8vtGzd4550f8w/+5/+Rbdox7rbETnAuM44Z76qlnBaToUroUKnUydLczjeQkvW/wRd8jCAmxXRdz5iFUqSx+TMek72WFtn2B//nl+goxLrDpQaYqyWcK45BhYz1c77VPtE77ty8yWc/8zOtLrEd+UCWMHNGxqs93itTKuynjPcdf/zlL/Pv/frftR7YzzXXC0O+9tdcC0MZWC48y/4m7zzZ8uWvP+TBkx1Tk1Ubw/7aXkHwSIvMtLPNsWyD4qE4tlPhaB2R6YIv3FvycL/kg91z6pQOteU1daZVc6ptQO3bIPGaQDHXokMtBCwFMDraMMXOUl+UV+7f4p3vuzZIzPwkv37igNI0jcSuQxpSKM3AVNrEmFLw3je5QwNb0JZGUilik0YUNNtm7L0jAskytpkdJoqaEaMPjfXRCmFt5slKo7MfZkkv+ETILJWwyZ9vFPgZ9HGNYTHr3l1wBJ0bAqP4+ugoOZlzf/BWwKoxAlzzVSqlGMOi/ezrxlWaztOaV3EgXg8NhjF8xKiAzS2e9vlp0hhrQK3eKq2JUT0MzhuW05plByFEpmkCZ70JaAND2qvbWBZBW+KSihkcdx1Ui12mSf9mGZD37eVWgHow2TbT8/k5tEZn7u7czFq5nuo3xrsRFUvGtWK5w7WJV+VouaTvOvoYkCaLmE2j16s1m82G/WQN4SyDQYSaCjVlwjKAU2qWA1jnFGLoCF1PGhNBPC6YeZpNFh1ZghW97po9U6s9cwj4UuhiZHTZTOJmTNI5SxOzl9IKrVpwVVmEHl+V6mewzRh2crivrgGCs2TMpol5NoSfQSVnVFV7J1tyi1gCXsEowBa7HJlGYwE4Z3plwZqSkgqOQowGii6WS3tB1D5z8IE8mZ9I7Hpo73bsOmLszUAWM9D2PuBdbCac18+47XoHSY3O3jDeH3yO1NlnNoYI1ii3Zyi+AxcssU3bfWjaIKO4VmNwNBN/Y5Y4a1BdxUdnSWtz0qNryP5hZ5ADQ0QQxGsDUbWBBfbMp5StqBNhaAwQA3DNlN8B1VlaEeIaK802+1LlIO8Q13zmZmCgAVK255QGyNHkSMYwOT72fPITH2O3G3j45DkijtQmN6pq+8y8htrnaoGKTVpkLJeGPhglugjb7YTTRAzgIkgP+13laH3MzVc/yY/ff4ZPIxVhs9+gODbnV6yPzUx2fbRmv9u1RsGzHwppv2G/D9TOk53nckj06yPG7RVxtSCOUOWCTDPcFpBamdJIcPYJTM6jzOy2otWau6ocki3bQMAARts27TnOYLYx6aL4Jl+zSRpiiYnRmb9ZqRnVTFx43M4ApRcM2Q4yunazD++KtveUVuQYN86APNdAbEUPbKS5I/03/IrmGYj9JPvWNpwQtWax4hHVNgwRVI1S7dt1uhZHL67te9mkhCKNFSSeWqa/xEaSxiBtLnh/6bpmBub1xb0Idb1w2TMD7HDWckBLXQOVXv/Ex3n51TcYNkM7Mx1dH/ApUqqxIVQEKRndjcYqdtYc1uKIziPB49UdTDdnyM9JJOXCmBIlTUjwVsxVKzbVgcws25Ip02RJCWom51WBEC3IICVKTYzjQHCOGgLeK1XN80fFrnPcD4jv6V1GfSR0C5SBWh1RS0t1USQGmxjnmbnlrZZo50+m4JrvJFEoVCsCxRi7JycnTAl69cZ+agwfrUb392JJmCa9LpZYhHm9TLKhT5VSR0sFFYHGziml1SneDMBLLXTFCl9JZo4anKDFsc+jbRlSOa+JbR4pacC1M2IsozV63hGdAb1Oq7FUxxZMoUpAUDJooeZCqlBFEDGJsm+BDdVnWyY4QujJpUALF9B2rjpv7CTEJJAi3oJQajOfRnG10oVAGROhgXhBhUlzi1I35qmK1Sqqyr6M+LC0giQ6oxKo2D2eTd3F2IbzoMe20+vMzWEYmxeoHRpBDTA7OTphcXSM3oXnjz+iZNsvxmGgZKV0wQBS2jMGqnpUrB7xDqi1pZ427o/YEMGGgYK0QUnNZp6NmNRPKWgVJFpxYglELwDeej3wdG21RG81ahcdZ8c90UV8gO2TJ1xtLzl/fk5tDY0xkGrbZ2xRaclYXn21d8V74iIQtKJV6PsjEBimgd3mWVMYQG5BFM4pZdyRqrLb7cnOajl8YJoqXd+xH7aESS2FURxd17NeH4FmnCv0wbfas7AbRnJStNjgJ1XHa5/4abwXLp88ZRouefTk8SHsoJRCTtnA0BBwpaISgEJ2wmZzya1bP892v2Ma9mx3Oz77iY9Tp8n2DrW11ruOZVzR3zuh7wKP3/+AOy+/wjjszAS4jrzy5ieo1ROOjklPnhvbWbB04prZXT5jzBN5GnFSiaEwTJXduEeCp49LXIwcL25w69YN+tURlQ23bpzx9PET9mm0z4MylYrznml3xTgNNqDLO2qCGHvG/QXbzYbh6hKVSodnveg5qT0A+9EA4ve++33Kswv6fsXtl+6xCh2xjxSXefbsktvR0/URWS1YxZepaszIiuC7BexHfKnc6ZRNycQucHy6Zrh6wu7pBT/7C7/Ct7/8R1SvEIVVgXE3UMVz8fQpD370FuP5c1759Kf53Bf/fT787e9y5CLV75BTx/e+/TUevv8h8f4Nvv7nX2bvFJkmfCeNpW6WGCdnt3n60fuoLOnJxFCR5Ol9oWolqfDOg4fw4TlH6zU67Fj3Pd4lVJQ0KkMB1czRouPPfu8f8P23P6AuTpi2o/Wn1ZKUb96sLM7u8Oy88PTxA3rXIQj7CYJTSt96qCmxiI5xsnO/NKA3eFBn5uGWuyH0rifGyOZqYlvioVdxsfL8+Yc8fPA2rj9ms73k5Vfe4I1XPseDB4+4uHhGFc+QHc8vN/zBH/wLnl5ekPb/lLw7R1NCROmiZ58GcJCAUI0hPeUMOSJEXBdsyJV7JGX6MOIXwpSEUhKrdcdUt0z5uIVa2Z4gLrLsIl6UNEw8n55y69Rb8pyacgOErFYjjrmpFiS10KqCB5Msh8ZaPpQw0groCiq8+93vonnHbj+xHwpTKnz/O2+x3T1jvbg5N8xW6ci15M0JODzORRb9kn/5Fx/xte8/4dHFDgrk1PyPsTMSKk08T8XsalQqpwtP7yqpKI93yuWUcLvE0iuuOM6zb+eXDVOCVxZdICdjgErzX40+HJKotfU/fmZm4cgUvCjd3AvozOB11Jq4d/c26jpUJrL8/9yU+2pzyWq1NCf/2OPai2EPyZLsa7bYZtWWcOYMbCoNVfTKQdfoG9pQRZt8YAYh1FJhpKkIG5Ch7Rc5o0ZYussBXJgRv/kFsIVX86xF1IZEtCbG0B8Qo7xemxe2A/pQPMsLE9s2t50LZBGCc+R27Nr11uuXVrX5TikH8lHFtL0VwHxGZtTUvCIONKjWeMoBlJolFqgVaEo1WroDpRhrQRw25bTrN2RVLepePHNsomuUX+eCUZ6jSamK5iYDKAaQuGvjcJtKGbiGqBUpTts1tLvs5JBKdjD3rhMlF9J4SR2urECrailmY4GacX3Per0ygzdpzLDWNHYhsFwsmKbJyknBDutGGbs4v+CsGd655nrvsI3IB08MgS4Ye6SUhGI06lLNFFmoDRisB7aZIGQ12dNJ9NbcSpPlYCwCLcUm4CnhFARPlcRiES2pxhsVP/iIjyYdkJlW0gAG1zaD0m4V3qa9VQtdiKbwmEG5Buw4CilXo41WA3FXq1XbzJWpmC45NTq8iKNf9QdzZ0QIMR7WzAykojYNDc7MwMV5XDBzUT+DtofnymEiLu6abSMzqNh6bDd/b3vfaptWGynCzfs8ipKrmVBqY7uZDVmTxZZszZr3TKkBQWLthZOWhtUKvaLV9Nmam2TDH5gBTkxm5rzj4O+jrdkTA46qGNiIGiir7SCr1agtqa1tDwyTbegz8G1MJg4gg3PGXkIrIVjkegju8Nkd/hp0UgMKRO33uVKpmg8sLFe0saiaJKpN4ubtwlXsDdFs7I1ikojUtORRIln3VC84Eq7suRoKi77ju4+uWKw6plrwfkWZPNNuz5QsLn17PpDjks3miuBWLO/eYnv+EWlKHN07opcFm/2GVG0yWz1IbuBMtcZHGrCqVfHR1m9t03fz5AAXHQc5ZbtLdghrY/jMeZK2D9qbUnDVMex37IYrxnxGSQs0OrQmhEwMjqPVgjStOb/csRsGqqst4nvmxNXDJMqg3flEmSEZWjPMNVjZ3nvnrqVlh8vj+nt1nhcwS95mmfA1A8K3hJSqxigIWkwuaWKug6TbVW3v/TyEoaFkMzDkXvh7e7dm5ubha8bkXrja+bvnb1Cjax4+n5l+2l5RKSzikk984hO88sZr9H3PtJ1IZaKURPBCFwJMheIELYqkiZoT2QuZhe2LPhCCmXTGBmQ7NwNiBrhf7XfknKkUG2LhrYFu/mK1MXi0VqO/zG+JArUQxRkI30XKYFLMJNBVWziqmSoOXE+VucnP7PLA5GyyjFozEHAgLcGx7WWutnUZMYDJWy3g20Ov3tFVIR7OTZN1BTzLUrnZBYqd2kAL8ajGiTU/HFvnJVdCzgxl5EICt1xoNgKF6sUK8DaoEAXGRK2FfU5kdYQqDFdb1HvS5Ak+crXbEI5OyD4zMDFMW6Zpj4qY8b9zVAe7VOgbI833nlSLGW2ro+SR4AsSbECUSsHu0AwYV0qN5jEhakzPnBtz2RtI27yNlELR1NaVgRPBB2pVpppwJZtFgKqBid0sg7O9uZRKnsH8A9Orre4qaM4470ipMuUGQs4AUaOvG9jTZBFaWkXnSNnSUw0QN8PwPCVWJzdZLVdUrazXK/J2wf5iCz7QH63pjtfNh7I0kLCl8jZ5oro2DFHzNpLZT7NdS5Zsp0UutNtk73cNh/Vo26FCaYCbCrXJIB2tjmznsmIpr+ocKzXPJ+fVGBB5bCy+AWrBV/eCjYOFiFj9a7WRVyVUmLA1Ii8MkitCzcmuVlu4ghbzAi2CjjtCSqxPTiglc+P4Bnjl8dWVMcnEoZ3DV2NMHJ+ekDQxDgPLdU8mM40DTrzJ1KaB6huQnpTV2W2kjvT9kg/eueTszj3CZsOjBx8SnIdaKTUZU9219apWb1xcPGWTMpdPHvPeW+/x6V/+VaJ4SjXD4aqZPizoj2/x6md+lmkawVXe/ea38LHj9v17EHsCcHrvJXKCzXCJTjtj2/nAmCbOz5+y2z4nlYmaC53roKXCnpysuNpeUHLGKQzTBZvzC+okUEZWN844vXGDJ+//mDxN5FTo+jW37p2y2T2yZMNhNC8ZhNBFXv/Yx/nhD77DxZSJXii+MfHyADkz7MF1kQ8/fI+PHnxA73viouf09DbL4wVlmnh+cUVYeToX2Oz2aBWcVDRAFztzSF0f0TlHorAHkxH3ay7HSnf/FvHlN3gqXyeeHnFydszN8wsmrihVSUx8+Y//ED9m7r/0CreOjrn36s+yP7/Dwo08ffaAxfErvPzaa/zJv/h9hmLTObNVqZb4iCIysnn+I1vXOeDoka4SjzuE5/iuEPGsbt7m0cPnnO+u6Lw9m66a1DBnYczCcfAcH1d695jjZeaqQBfW6D5RUqVfgMpE2p9TRzOSVkBzGxJ5IxcQEmU3cet4xX6x52rw5CxItJ7N+bV5g9YJTcbczPvCsE0MqRCo+LjE7YVtfcqffuWf4LsFNW64cfMeORVeufsGTx5fIH0ma+Kj5x/ytFae//4HON1w++U3efLhpjWOZt3Q/pY6CS6Y7YOlkFliZUqePh6hKNtdZrmINghYQR+v+OXP/xpf+uffJJAZchtQNxDc+YIjs1x0LJ23GpoEYoCe4knFBk+OjsRArRPeWxhSmfZcbZ6j9fVWx8y1u53zV0Piw/e+yxJPSolShDwNXDxVvvuDr/LFn/kN8zJ2/gX2dhsIViN13L//Mv/tVx7xjbceUvbVzqkGwudcWHaVk4VJsp0r4KxOk1oOwQWaK0ngIhditdqxa8SSqzza1LrVgH1wHEXhosihphSB9XrJXEhKaxbF5pTNw9MGVFktbdVVG/d7Z2md/cJ8AUXdob78SX39xAGlcRyoOeNDIPmBvu9xzowtvY+NUVPI4lAv1GRMo6JtmnkoEgviTVsfnKDtEIje5GYqniwFpx5oMd7MFH4ryW2hzvK76xGwVww8ab/zLxXbamgmrVgxqm6xCapixmbSHnqTnVVsIjODPlotkYP2wjhxhAbieIzq33pvk0totYOqZg6mvK3Wd9KaQ70GwgwxLU1S1JoGfy0j8tiUUNrULDiBmsjFErMUd2gwrai25kO93fc6U7uxBiXlhOZ0AM4M7KnNhKzJnBpLaZa21WpGsaUkfG1oxwyKCYekobmJKtNILoWgllSVx4HOeaiWjBNDYLvfc/PslFrbRqEGirh27eujIzOZnpLdiwY2ZREuxx1cee7fuXOQzlVVUil4reDBO2VK5kuBwDDm9j5MxkSZ368G3OUpAY7FsqfrI7kaUGoNjU08Y9Np51rpMDDOi6OPEfEQuh7NCsHAN1VjZhgIN9MdHdoM53GhvZtC1y0O/jHe20013x0rHmd5V3CO6Jv8S+ytHqYB9ZEpJcb9hHOwjB0pJdP+1ooL/tDlHkyRG/Awm8Zpm9z7OTKzYtNJx8H3zLy2bB1C+7ZZX5yvmRHmR2WMvtnAusFFzYuh+b7Mf5jB4tZ+qzFwRKCPBiDN4JgYjbCxPWY6qQGiJVfEqzErRQ9gjGCm3r71z+o8NVj6kKow1cK1KXBbE8VRs02uxJmnEQLOh0MR3dS7JnlpwGPVufkXQoiWlKezca0xUsRDysq4L4fngdDCBeweW3QzZFVia9R8uzeGCjqyWNHvU0WksugrKY0EF0kqDJMiuXB5cc573/k2XX+f/qxnGCpHd0/54J2HvHT3NjVBnjLrGysefPSENO04Pem4ePyUUAr91Y79jx8TV2s8jsvtpYGluVCnjOYmA1LbC4r3qPONKenJZUDVGISdOHKtpAaO6iyBtpeyDRJmho20M3WezitUAzjGaeTy8pLLzQX3bp2a71yZiAK98/ROODk9Zn37Do8fPOL8+XOSZvDSgH5jA8yegMiM7csB9HNtzRwGDlzTlq8HF4fjiHm44JRDk+3nhyuWXlq1NDGmtzXdnulqGei6nmG/M9B2Pj8lmR/NYQVB66CvzfCb+dKBXt3Oyfnd/8tgEvMiaJd+/QG0rVegSdz1cL6c3rjJ/ddeZbk6svvjEqoTu/3eWB7Ok3I6mHHXUsCZv0jXLwh936bJAWlFUh0nW7ctPWuaRtI0IVqZtBzk2/anfWZvIQ/qBOliEys5VAtRTBYuDnwfKKPtxcF5+515RFDzLQgLqjh819Elx5SFsUZgJGhv96JJl71EvK9tT2pJcc7MZaH5YDnz8vPOPGRqcTYIciYjGnIielivAttxMAC+gi9myio1G6A9cUiXC064u7rNagxMOuF9JY0ZOgNwXXUm39FsKZudpcP4qjgXKV5w1RK8csoEhVAySQuxjCzzyFgSRe08il2wOHlvBtI+BDSsCOWKLLUBeoGxwAKTW2ZMZuVpDGk5uCFZeo84uqCWAFalMd5t73ZNslfau+eksXCDZyGeNI4szk6RlGDIlLYWQuzIseLVIWVndU7FpDjFZISJzHqxACo5T+RkZ/xYJlrMSVvSFsRREVTqYQq8H7a2YzurV6tWuqNjbt+/jw8Bl/c4lOWip9/sybNsSx2uTCiVTGhJqQAToubFqILtfbSJdBtgAUSxmsRQ5Xaezp5VVEuc9UIaE9EH6vSi3LUNNptUVAVj+fmA1kSoHb5YKmCZMv16Ra6V5eUVQYPJHFO7M2FmBtswzeEPk3WcIt6TxonisDQogIK9dzm34WmbAwJ1ylSvuCzULAxxYp8ntMLuYm9nCBnnAwsym6cP8IsVR0cnTFcXjFqIvafTnlwqXbeipEopQtrtKHlk5SKjD9x99VOkD35ESpW79+7z/PFjpmkwyZ5AbNJ/54SkhXEaePrwQ57+6C1e+8IXuHP/LiJCFM80miG/3D7Bd8LNxT1SMY+49+XbvPe973Pr3n2ohXHM5OkSOT6i7Pd4F0l1tN5EM8P+ilIMDDLzc2WoFipDzqz8mm3dGYtKKv3iiJNbd9hdPqcMewN1Q5MPFTubQh9gBzmNTNstWaDrItvtnh9/8D7D9opl8NTgWZ+dcff2LdLmgmjtWAoAACAASURBVO35JblOhGq1Q8qZkgvLZc+dT/8U4/ljcvA8e/Au47OM10otJjOacqY6R+gcnQjB97jlAmIH3jGWym67paAsb5zxzlvv4G/eQI+OGfwClpHjl0/pFiu8S2zGDaVkyrOHPNmd84Vf+SX2Fzt+9mP3+cbv/j6yPkJVuHX38+x25+z9lrtnN1l0HQ8fvk31ozGKszSfntaj5BUSd5QuWapi7jl/vmEczHtnfRRYhci4XSJ+oHMZLYnjlaPrK/ss9McLzp8kC7jRSlhC1sJ2SEjaspsUVz1Tri2YClIKlOhxFDoXWZ8InQT0PPH0oRCOHBK9+S25iIojZdtvttuBfco46Rj3G/7T//y/Qljx7g/+NWe37rLZ7/mzr/wzrrZbvvhzr+H9yLe/V3GdI3qlJiF0JzBOJK08fvQDPv7a5xmy8PC979MTEMkGqq4idAWKMOXMNGZevf8x3vzsX6PrVvzwh2/zo+9/nVxH6xUTyPIWV4s7aCrcub/i6tJ+Xs6ZcZqowRZ8wKM1oCQDYCSCh4VbIbkjhEytwr2T1zm5cQLZGP0npytWq94G1cwJ2TY2ii7yla9+h3H7DJWRKSe2O5jGPaqRf/WVP+GLP/ub0JjCIg0OwIY7Ux353g+/zX/39/4+X/nWezBlpknBw1gLTjI//cqSf/uTr/DeVebbH21BPOJmQoyRLFQcU2usiwil2BUOpZpNXm69gGuKIyJZI0XHw75Is+2YGVRWrzm0SYtrUwXl1vs68WYr5Bw+OLwLxrqsk1ntXp9oP5GvnzigFNUbq2MaSZIY0mioonj6vid3LZLX2aETnE2WwtxsZmVXJ7ouUqRR2ksDKmqh5sm8E7DCqpLNtCr6Q8qZvjC9AdpUpIJcR3XPMiTRavIqMc5SbZHM1s81RtDcwAioa7TeJg8r1bw+anXkrNTSDnY1iYvDwxwf6Jvbe5sQaQOvLNLWNrPSEq/MD0PMoFSlsVusEXWK3T88lWCR1sWYLIekt9bUi4CPja6t85TKGvCZrj3L1KAZOGab5omYmVop2aiHsymYuSEjzqRVIhZLXauxrSYtFA8xWNtRS0EyLXrbFpETgWASDq1mXK21mhTCBQYV9nkiOFiEyEm/AIHeBwqpgZSAyKH5OlouSUdHnD+/IM2Jc8KB4XV1dcXxYsXJyTFaDSl2ztOFQC/2/rjoCHFpi10ckcDSR/M2mJt4NRmmlw4n8PLNFfuamcRoykK7bzVTgDEnajb0u48d6ionx8cWVxwCuUxtumfdo8PTB7PbNm8Y8xWwxJYMPhJiRJt3mPhIVYtgrgWc0wPzR1XxIRC6aGaxCi4G1v0J3kemYeI8naNqzVkt5kMQY/wrxtqC4JpPUbH3odrmZAavtuauDYJdw5fmZ04DNF5kO13/e6ttmwdGuPZeMd80K3y1UepBEd/ep8PPMDC65oxH8bHDC7apeyu+fRBqMZ8zVcx8t2TEB2NLxGCTOm17RmvobTkbgJWLJeIBaK7mNaImT8F7ooPamyzHNebSlAq5SJt42GcwNkdtTCfBizWvtRZ8i1cNXsjFpE1OWiKaFPtDRtVb5LmYlGOmwiQseU4bsGmx6PXAYgtScZh849aNE9547Q0Wi2DAZif8IP2Qpx89Z0owTFfcun2bVVzhTiLy5BnrUimPHzINCfYjF+MTdJcRMvt0Re8Db7605rVXb1LTitsv3eTBo8dI3dOXDK5QSsZmhdXMbKt5BCx8oAs9KWX6rqdUmvzWWHQR23/McHvec+bJepMyajX2wOwth4FuzYGF/TTy6OEjXrp7i/ViSQyOiiNGz6Lv0ClBf8TRZ1/io4cP+PDdt8jDxFRtn/WdUY7nPRRo+/O1fNje+pnR0xqnBuAflHT2dJhlZnPG6XWuZJtw0UBztYQs8Y5SEq/cOuPW/RMefXCO9+Yb5tTYDY7GEnVt+tneBQO65kLkRcjIQEmZJwkN9Po3U9wa6CRcr2PmNW0skiLWzIoU6Bx+2dN1HfvNhmdPnzHsdzhV+tWay3rJmLZ46cwvsfpWTBYWQQgBqCP73ZacJ2rOzVMQSmky71IaO7eg1TGScOKb36KidtMIPuK8ATtO+qbvnH1dIillu3/agizqDCbNFcOEl4oLkX7dUy5HRGIzvhdEK50L4DyVyWZG4khTAvxBMt1hGTQGABrQm3MmDQPLZY8rhRIdjJX9+Tl+3DEOJzag6AJxULpniePk6W8ds94I3Xkmh0pXEut+wWun9wi7gUwklExYGmvGVZPuR1/pMT+xEB0lJno6Vove1o8EpBayOnrRZiqeuNs5dlNl7634J3T0XWfASxchVfrVEr+qbLOjeE8Niq/gqg1opBqDjmr7Z3aOGByx8xz1S7qFsUP9JIyjMI4ZR22yOWO5gHkgWjpmm86FYP6WsYcQWa6XpKcbVidrUi242LFYeULIdH1krMq43TMOE9vdgI+BxXrN8WrJsgsU9YyDnYuzDJFqTEGHojUfhiRGZCt0Xc/N9QlDzQxDYthcoZq4fPaQl37qM1w9uKCoYyzFPqM48rBj8+Qxq9WqvUc2WKzeHdaeaIFotbWIhSuoGLjs27liB57Y8Laz+lBrRapDQmPRextlu84dBm7mZ9dSd6saM76KsV9Lwa8tNj2lypgzLlg9X0Mzh0ep1nuRpRJiNIJeY7DTWFy5QppG5OTIfC0pTOOOqUzonHyXlSxNdudD85KqXFw9ZX16hzIOLI+O8GVLrZWBgmRjcA1T5mixIA0jOe4YysDiaEWgYxwcKg7Nwl6gJuHW2Snb58+Jt+8SOofKkpc/9il61/Ho4ftmgp0yy6Mjbr30EsP2iqur57YP7yfUeb711T/mbHnG53/qU/gEdbthUzJl2DHuJ0pNVgcU10I9qqWqPXnKBz/6HjdfeR1/1PH4xw+4d/MYijJUZZdG6qOPwFVSyeADQQIeR+fs/lMyvfesV8rFw0y3PibngnQ9PkLsF5TdFWUa2W/3pKkiVfFl4vzZY4acGYfEbiy4RSSkzCIsuHzyEdN24Oj0lCllVstTkvS45Q3S+RWjVoR82MPWZ6cc37rN0fGaUAcWaUmeCl4TtdhzH/PAmDCT5myjkSITbtqwWnbm1USl5sK2JNLuOcPilGka6K5giiP4jpP1mkW3QHJk6B25yxB7Srfk8YNnHJ3eQPolN179BJuS2V1e8gu/+R/w9OIZcnXJ5z7/GWQc+N3f+Udc7baUUhinQp32SCgHxvu4ieTFMTlU8D3j1cB+vycEYayOUJRFrKgbQQuxC2y1sDlX0ER0S7rs2TFRXKDzxuTX2uMEFr4i0dQuGUhJ2aaBxeTJqSJ9wK8gDR4CrJbtLKdQx70N+WulUthXZUgV7xdItyD2ju9/7cv85t/9T/i5X/pltleZ997+Jv/h3/kt3n/vIf/yS7/N997/Kn51RXCVRd+jPnB0dIvdZsvmSkmp8t4Pf8giKEceki6s9s8DGitSTGXSN6VISpmr83M++wuf4fL8igfvLsibPRgngKvB8+zZhp/+mZ9h2O6p+4fkZAwaEFxccLxY0jHgWo/tJDKVzN/8W3+TEFZo9a2nsuADfGDYDuAdZzeP+aN/+mW+dedtfOxwLlqgRs3gAn/8h1/m/r2XqDpxdEPY5YQvFd85nj7KfP2bX6VqS2rOiS4Ii36Bd5633vuAf/yPv8TV6PiVX/zrlJLI+w1jFXKdeP3WklfPHEV6Ft2em9NzTs7O+PCjCy4urkg5ExZK14IwHEJBiM6TsaJcqnkwhRjZDwmpjeHq48FvdS7Lttstq8UCsIGcNX5CJ47kKoL5/Kq0FEOMMZU14foF3/jOd6iuMNRK+X+dGv5///qJA0qu89bkije5UimoZhIFKYJMhrRVUUIXSDmz32+s0fKOWVLThx7UEbpI7a0g1VzY77aURY+PvU39aFPdaolIITS6sJrcbUYsUbUmuU0GrbhJVK1kZwd00dmfxibeNY/WGORKiDPVuRkxA8xmV86jLiC+MwPjZGZzIdih7ZxHyYi2aFkUpJnpapOANS8ZajUPGe8aIcUc7ikteNNxbRIu3v7gDxHiFfNfUcU+t4NmIgEtGcQYG8EKjEattw/XwIM2XRO5NuzWUo2JEiLQKMMugOvM26ShpgZuKSIVJbapuhptGENEDwlHRS2tpM6ME2MKhWj0SrJ5D9QqeFfwnW9eAoFF3xEIbCaTQJVacSGwXK242mwMoHJNftYGd1WVi6tL1qslU8lWmHlLaBtT+n+Ye5MYy9Lsvu93vuHe+16MOVZVVmUNzR7YbDYpEQQtCvQAiDIowUsvvBFgCfBSWmllwEtvbHitpbyRDWgjA4YhWIZoggYltjh0t3tgV3VN3ZWVc0bG8IZ77zccL853I7PlpXvhBwQqKyLei/fu/abzP/+Bro/QPAtUzAMiY1phdYq3IzTNFcm8irzDSUcQ076qMxo5zfxdFTrn8V3f7kVhcA4tahTgZlQZXGeeIj6YIXY1ltLCwNFF0lCFvjNj+kXOab47BkYsHVvUpCAGipgpNuKYs6WPBBzq2nXzdvgsTR7YtflWWgqgD8akqW3h0mpyuNhFnItomaz+9HbALDb4UGzsvxL/0ABfZZF6GtPDfNBcK1RdSwwKLjTwZClyl1O9/XsBUFEDa0tjByLGSMAtuvPmuVNe/b1Uqhnf+0A/rBCaYbcsbAtp15NrEEwVcLKI8IihsQw8xBjteota97ouJvRm6i/tYG1/vlKyGNCspbFn9LUkGSwVTppvl+HDBDHeSPQOj3Wfkdc6zWJAQWxML+tQQHGY6W0jpYj45smj3Lpzwrvv3meIZrwfu8D+MvHkwSNi55FN5sbhivPdyM3DtyhseePuLSQI+/3ENM0EHO8OkUmtGHj5bMtwo+fjZ1u2uXL54YP2XidW1dGf3uT8cqYbDtHtSxqWSHU2XwzMtnSMrDOht3GVZ4sdL9q8lbDCozYQXox+h3dmvpybfMOATkEIlKwEhd1ux8sXl9w8OKauemjAo2BF5S5VVqsVv/KNb/Pme+/y8vlztpcvoVSePvh586Iy9tD1nqx6bQ6uGEtMwbxjnI3P12o4qmvi2LarF/Racrq8Tls07fdaFLXLlVs3Dvitb95GWPP86QXSws3kOl2zMSqbOWRp0mSL9Frm06sURqvRve0f8mqa/YKn0uvNGF6XyNnabaa3NFTbWEJl3FPHPe7wmKurK6oWhuMjpilxsd2xe/mC6D0ShaA92zJRirDfJ7Q85/TmKXG1QiTgYofoSM0KdAYK12y0+2JS2ayZml6Z05sse2ENF/JcUZ1wbkbBxnjpcBLwqoxacS42VmIFMTmseNsjnUAdJ2MOxMpJiKQp4bVes4hxmaIB32SWtGAGqSYNTlQOWhPHuYiGQsmOnTo6lCJW9xdxxtyaRl5uN8TVgN9m6i5R956+Kn4MxF3GjZmIcCP2rGOk3xdIGa2zRcaLJav66AlVCFIQqUhnYzO63uTBIlQx36nNtEd8IHtHUccLYBsdl+roXM+Yi4Eq2fb3WIWURoLzhHAKFNYD5P0ZoplSEkWFXCzJxtJwwHshhsjRwZpV3xN880TzFScFFZOCpXmmOjFGS2kNuQai5/1kZ6/oiDjGeeQiBMJcSClycHrEuNuz2W7xWHqf1mLyJJSkiuRE33V20J8mQgj2Pr1rrMMG6qIUFi+8ZndZoVSDyLtVzyADY5jYtgabC5GL589Qqcwp47ue23dXxBBxvjefH20+TPIqBEPJOPHkkvGlu94bpIJqMhZSrfa9oqAzFCHtM1JDW2iUpBmJtl/G6qkuUL2jOjX2fJsn0tZRyRUndu51WsnTHqfOGsVj4nxzQZ0SMQj7VIw1hhLUt/fBtXxfqp2RQ7W1lzgg80TJhf00M+1nYnT0occNiVwzpcA4zezHSoyedbdmfbBinECrmfiOKXNwepPx7IKUEnFYcXD7Lruz59RUWJ2c4EXYT5dMecIpTKmAOAt/KJWHX35JnubrYJlaLCWZcSZkWJ/e4q33vsLdd9/l8U8/pEwz4+aCVIXeC5od93/9W/hse7x3Aj6SkmPOW45YE0OAwaPaEXzgrXvvE9ZHPP/ZQ+6++zZdd0S/XpMut1ycv2TejuBaY74UvERcnhl685Cs1dEFz9VVogTPy31Ga0e17hRaJ/oQCCeHbNOOMu4o8x5xleKSFcTzzDhPzCmBt0Tp2K2RrsNnA0bTNHF69zbzuEPzSIxr3HBC2Y5Ms+HxVOXw+Db33nofFeFkfcL3f/w9aPe+Vig5kWvCOzGfSVfN846KpoAET5Wt1Uy95+bKmn3bzRl5Ski/BR85PHmTW8fHbDcXXFy8pIpQNeG6Y+69+S6DeMp25sknj5jGyMHJTQZZITmy8ieUAXzXsd+PnLz7VdzVljqPdL1js9lztduRxkR/fICeXzGX2dgzznF6cpvf+s1vUHTiO9/535nXA3E9kMuePE54XzjykYOh5+pZorrMnRuVs5fK3HyPEMdq5Ugp4bXg/UwXI4TIOFU2W2W/mRl6IfqZ3dYz7wodkXJQGbPtRXNKrHuHR8kaudxPBPEcdx6Y6VZr/u2f/yH/1T/6x7z71V/jzVXkf/jsJ9y+/w67rXL6zlf5W1/9Fn/6x/8rF9sPmccVOTkuLx7hh0Poeua0NUP4/oj95hIRZcYjGvBd4KQPHB8K23GkqCOXifd+9av4wfPZJz8k7zfs54nh1LM9L3z96x/wn/+9v8dnnz5GNxeMLx9xdnHB2csLXl6cUYsyDEeUy6ek3WMDzIqSi/Dhjz7mzbfeZDhYcXh4SO87qx2LMtxYW71ehe/+u+9ac1G9EQCg1VCK950x9VDwniM/UDWB8zx7csk/+Sf/tDXhjZm8KPkrSvCOdTfQ3b5JOU14H6lltiTwZHX9yzKhqSLrnvffP6DiePsdm2fbyz1zGTn1Dpc3HPYHPHp5wYvdlmnOaNEmAW/zQ5yRJZzgfeRgHbi42thZRsyzabPdcnp4YIQarImnYt6ti5g4q6W8oUqtjt0m8dOfP+WzTz/Ft6pyfV1P/XIev/yUt2LAgTohZ4tEtKSlRsVfAAXUTIpVSbNFw9rPrJO3LztjgsyBNO9ZDYFcKuNuR5omVDwSBEczbXaOEBuVvMlHFDOddN4TfGNXYEaWEgTvesQ7VmIspFIrqQE6OWfmnAnOJGtpnuyg7ayQ9VGIMZJVmXIma8YTm7ypNEmLEIMBBDpXqJhhsCREgnXZm8GvJVg5yFOLw5UmCclm8Nc62U4cTbbaWFZGERexBQZJzeiyAVDN50WrmfZafdUYH0vyXBNa2GHCtc4q9j2tRskG+zvOm/xL7LrU1zwzrh+t01WXVLjXmAKLVAnBmE686nqjxj+JIeLFKPGWlNHAQoIlQ6SEW/XE4GEqzLlQMa3z0A303Ypxzk2S1YrOxtDYbcfWTfUmbZBEr137PJ5AAyZcuB6zYVhDNcaIlkLwwVJayGQK2SnjuCfPW0QdXdcZDRwlVmHamMloKQk/dPb6fsBVRxx6hr4n+tAOq7ySkOir2s9MP5XVKlqXsi5uGgZEaHX4YAZ45ttlIJD5EqlFY7eknDKO1FAItaPURNf3DMNgIGxtpvhiXWLnW/of1mX2+opyGWM0cMJHyE1uJNZ1TUaVamo0Axit62jIZ1W9ZpR4XqXT1KoWhe39K2P/VsA6t9A8q70v700uWZv5cL9iTjMhelb9QCqJnGfm2TYFsDFX2nzw0SS4aU7Mc6LvC+vDwdgsDZRa1irTsLbP1zzDxIvNHQ3GImyyVidyDeSqWmrT0MXXwDUaqOtfSagWT6VGX1GpILVxGRwxCCUXM0VvQKkZoRYEK2ZLK65q+wpiuXnoK/mVos3rSxmGnjs3btKHwRIBG/p099YbiO+oFM7OH+M/7MnhFpfzM0Qrq9XapINOKertE+VEGkeoyjwnHnSBtBu5c+cOw60Tbh0PfPoXf8FVAN1dce/rH3D+4ozdZktlNBmhBMYyG+/SR5wTYhjIOZFTtqINQAJeGiPL0XxojLmk7doq9doI2Ym5LDmM0TTOEyF5Xjx7xps3TjjsB4ahYz10LflOWR8cgO9RHO/cfpPbd25TqvLk4Zc8+9knyHDYmAqYv0YDZppW0catcu0Ptqyv3lkha0b03p5qQh9ja6LXhva2MjuCK1Qn6DjRDZF337rHV947ZbzY8nT7Ai+RVfSMac+1wT1WcHvnmk6v+UCpQkuPQl+TkL5616992fryGqEKMNBMRF/zzmtFqGibp66Z2cPZ8xc8+/Ixp8enhOhZH53y+OFT9uOGNG3xvcdLoDohV0cpM6ka2098YBpnxv3e9jaHNYswOfXi1ee9JZEKkMrcUFPzOVvk9KWY0bDTbGyJouz2W3KpuFwoZY+oI1SHCx3RaTPbD5ixf6CUmbm9/v78glU4Zh8ysxS8+CZLrgyxR3YTar0XCgmpHqnGdJ2rsSUExYtCMcD/akzcDmu6mnAe5umKqiPBN+meFkKItj/6Qu0E1URsnh4iHVGDxU5X85NLtWsq6Qa2iuJcbcbtyox1TLUmQujZ68RclTxVhq6nSuWiVh70nsfjjE6JmivFB6ozya8LKyKOYVjjMvjVMWm/odaMpgnV2cAF75t80zGpoLWYHB+5Psy71oEuquSpkFKhZIucLmbRYwb57exnnpQLyzqQaNLQnFEnTDWh+xk3BJPcTDOzOmCkamFMhdXRCSenR3TRJMN7CoMPTPNoTaKUrM9bjBm5nCvA/DZSA7hrtcZadOb31odAd+MGWZSu77n13n0unjwiz8p+u0PEvIScZkQCEFCMmY5mk9i6CDq1EILSAGEDc3NWTO5l4x1VRIPJLfsVUQRCRy2VThOqhUKhin+VdFeUrKnhy3ZGFRfoOui94FpyoFYxw1nvzOA5ge8C4gU/27Wo2B4vuZJpTWMcofOUlBGBs6fPKUU5OF3Rq3JyfMrhes12c0FuEQ2LkXeQZAnAVOaa2F6+pIvBZIJdT51G/NpzXAdihkLl4tEDfNcT+zW73Z5pe2nJvbFHqqXtERxFE3ffuMH99+/z7MFj7n3wFepsY2G/O+f05jEPHj3mq1//NY5u3eDZw4fMaWLMO3ZltlCSOLAZL80fVAKpKMVZ60+ycnl2yZeffA61cvv+O9y5/wFDiPjDjoPUEd+/x+c//Jhv/o3fo/fCxeMH7HdXuA66yRHWEUl76phYDX1jF3vmNKGuw4lw/mLXpGTGAlOELkR2k4UfjDuTnVZNTZlgTbBpTkzJIuiLCiTYpIlv/epf5+jGCT/+o/+T9d271LnSh0hOezabHQdHh9x/4y22+5mUR6btFV98/jOevzjj/fff59mT59RB8GJs+JQSlXrNAnaNNVfV6ggXOjQK+2osxCiCr57NmBi6FS727KcR6R3iPOfPn3P2/BHr4wNqruwvLzl665CDdU8tlScff8zDs2f8zd//u+zKRJ6EQeDxl5+xz4UfXJ3TxYHTW28wHCcutxt8dIg75+jgmJwm3vvKVzh/fsnF8xfMdaLOmfu/+Rvcfe8DPvn+dxlO7xF7j7pMyjMZx50bHQeHwvnLiTEpx6cn7KdCYcfBSvF1j3SRzTgyT7DyHYowTpVeK66rHPeBfr2mlwQ1UxNclcLq2JqhOWP12ODwsXDj5k1SrsjTcyQ7ai4MB4Oxat2af/wP/yG+W/E//rN/zt/6vb/JV2/f4Or0Gf/gH/x9/tv/5r/m4bOPcH3A956oSug6slwxTRNjKriSqXXg5dWOWwee6FcG/o0TOxKHq8jJyZpcZw76NR9//zv89KPPSWVifTPTS8e4D4S8ZRUH0jYzuIqsDgj+bbrj29y9O1PmiXHas8sTzx9MvNw/xzOzT7CZC598/jknt2+xfXLFxZMXVIWLvaU47qcJ5+3sIdVqiy52BhqL1Q6KMs+5NQgE9QUo5gElASfm3WfqG5tHLggiwYApTa1Wdi2MAVSFqWSOD9ZWg3vjHS3JEeICIp4udsRbkcox6z6iVVj1PfffSNxTh+aJ3e6KzThxebXj5csrHs+VNI2kMjPFHceHh5R5xW7cU6USgjBOiXroWEIRzPph6Sia4ksWYon3eDynt475s08vmPdnFCpk4fT0/+eAErWgzqJKs5rnj5dg9EiRVki9ZmzYAKbFYNW70DZnK5mqZrwMLdkmGWClxQqZ1AAR1/xW9rBo8U164FpX1w75Zu7ZE1zzDHCtXHVCiB0SA0480fc4dYwhIbT0rb6zDd4boBSAoM0cVo3aXmoz727dR++FLtogH/rQpHATTTGGiJn+VYyp4+oiWZutGBLrbxdMQmAPM2v0ODKGzKqAbzIeV23zl7p4RLVCvy5MjwqtqNHm/0IzvlwKDEtpARAbo0HMVb45T9RiPjrqyjW7SaDJxDBgQIWck/nY1IpqNhCpZFSVrusai0IaQNHufdOGvwJDinVrUiZJMIwieJxCCJbUpM4Q6dQ6fMPBmqtxT85LlKNdC6lCdYWnZ2fcefMN8Ca7SdPMZrtFvOnfEdOw1uiYa2ZOE049cxZCtLHT9ZY0chBtUZJqDAgXoOqII6ASSY0141RwfQe1cHxwgguebZm5P9xoIIm+Ig5gLA1VpVQseU/EfMmUJjepzcvILn7NtnAaPdIOqqELFO1I09jSYMyXQ0tu8LuNv4N+TdcPIEKas81LpZmXN/BEBAnO4nVF7NAr11APEha2kIE+wdk8DCHYYq0NMFkKgOs1wCj75u2lLd0lGlioSl7y2tuCYV4PJolbAFDnGtgSPSYt8cxpNENyQNXSDXSR5bXub4jOQMJ2vXMpxLb+CHrNSrBpt5iEt/fTPNWEDtQkSNCSjVSbvMUAXx9oaYiOV1DBMmuWIr6BuG7BXE3qZoU6gMM108bazKm9BMQvHkvWZfeNBeOuaSbt/ikUMTkgFEsdGnqOVwctAc3uTa6Fo5MTDtYH7NNELRNXfXpyjQAAIABJREFUT5/y23/7tzl9523+7E/+gm/91q+y3e745AefNzA3c+PeCTcO7/HyxTmPP33AV779dR7+4CPu3gqcvH2Pn373Iw7vnBK7Fbk4Hj16RugCd+69x9mTz8myYS2Bw6MTYt8RXWCeJ/b7vYHhziSErh2aFyefxUyXtvZayIJJ6ESbdMwvbCcDZl0MjPuRs4srnj57ycHBMb4LxGEgeEfVTBwGspiEJuGYtjMldDz57AuCj+brAhYOcT0uFg+idv1pBxQx0FDUAFnFgFbRglMae5BrplYL5LN1HfO+6L3ja7/zdd784B7Pv/c5h72ncMzu2UP225Gshao2fp0s88y3FE+7XtZ0UUrWax+5awaSvj4mX31LVQx8eP13f2HUvvrlpXnk2zgXArVO7PZb9tMeVaHmGVHz4xtWRybncMaYnKbJZLni6foVYTDguXM9vnN0/Yroe1QzLdSKJYre5L2ZlGw/1WqBB6IWpuBca9Kob8+BYXXMlGfGnK4lGs5FVv0BlNkkdRWIxpApanKiqkod93SnR2aAqpVcQKVQo6dIJoSKuGDeHHgURykwpdlA74MjOmfXLUXYX14xzXsbe86k07sxGeCojqlCr5gPjRa6zlOTGVvPNXPQH6Ip4xVy3jJOlxwNayoFr5EogSyVOSd6Z+tusRGCqwZeT2XPJI6aBN/37EJgL/BRnpkVM/UWSyJb9wPTJIgP1BAw0/IZ0ZHOC3nMlDxDMl/Bqm2db3NiYRXiPFINSonBgPWsyrBaESTigrdmnfdNsi8oGbNltOh4FtmVQiTYuQNPmRNpni1mfkmjrHae0azkUvHiWfU9MXY4DzUV5s0O6XtiH0luMqBGpCVq2llNRMjNhF2cWJqvOHywI3U/GMPXIbhs4+cQx8m793j48Ck6B8Y0oWo+oVIzUgsR+1zJcCNqyrbXLU3ZZuyv2hp8LFYHqR1zCxCbFA1czq2FERG10AVEoAeouOrtVCcOreZhJiKsB5Mh5ZwoAmvnqc7S+NBK9gZQaXkVTiPts5v6WgkqaDJAt4+RPCfEOS5enEE5pAwdXW/n+MPhmIurF8R+4Fd+5etEFT786EPGaWcNEi08v3qJ04APYqnKVZmfGhspSkCi7RPz5TmzDxweHZuMnMImbSmpkBSGcIB2nh/8+b/jR9/9Ll1VfvK973O4GqjeNA/7zY5xzmzOL+ijI20vmVth6kNgnio37hxzdHzEreMDzp49oNaZk+ObvHz+hEcPvuD52RlZZ6L36KPKxcUZH3ztaxwdHfH853vuv3efH3z0b0jTS4KvvHj6mLIyQMDXilOT0M9k9rsJCPR9YC4JWxAiKY2oEzx2pkeFO2/d45237rG5OKO8cYt5t+eTGPj4w48MrL3eu2yuOTGG+piUcHSTYTjgd/7g7+BkxdmTh1y8fIZqZLeZuPXmm9y59zbPHz/m4vEzhnfv8+Czz3n+5BHj7oq+H7jZnbIVZS6YckMttVdzsaANJ6RqMt+SHfPsSXMiOkcvcDbtcNHWrlkssCFQuXzxJWOCbujZl8I8jxQpvHj8AB8i/9Ef/AF/+S//N37zP/l97n/tXZ58+jP2Q8/JO3fZ/+V3+PLFCzanN/jgG9/k5ukNnCg/++iveP7wsaUGdz3r4xs8/tlT+uM1YbWG4qH3TFPm+3/5fabLDYe330A0W/EcTqnrxA5hc7Znu8sc3BrYO4HQc6MfiQGOBmE3PoatZ5ssZXLxfct15GSI9GuYpj1zgSiOfRYikbzPjKOAZJICOXB445Q+RnYXL8nZGv9DHOhkYB7PmevMZXrOet3xX/4Xv8/b7/86v/27/yn/9l/9L9Ra+PjjH/CN3/pdfJn56Uffxceh+fAIq8MD1mPlP/v7/4h/+t/993zlV3+V8yePmg9XYlhHTo9X5FnwYgzy5y+f8OLZC2pRC9DoD7lzdINVd4Ore1vee/8e04uXuFzY5QkpG/OupeKdElY9MiaezRu82jzVIPhUufXWm9y7ecRuU+i6U3ZpZH10yMVuR25MIkXJarvDNFuNDVBrJXYd2gB4YxEbdj7WGepkvpNUUrJkyapmweKqWANLm+8vipCsZkzWDDl7lowZW61+KS3gwbCOtlZj87KLgdVqZftN1xFWa45XRxzfvMNpjHgJFISpZvbjnqvLS9I4UqaR413ii4cP2W13bOcJX3ZcrgJH/Qq8u/awPQnWSM44xqzNRsD2jhA6Pv/i59bAzJXOOaZ6yC/z8csHlJzgfQfajENLsUNpM9m1BR6jZvomERDzOHHONxaRsVa8ONs0/ULTV/DOkouyXhdcmEKFRd5jB1szL17Mcg3nSORcCd7TedfAlnZIKJdMKaEoMXRmYDhnoNJ1A8PQm0xEk9HFiho7pSilqnVIvRX4LvS2r0vGqfnA5FDsoK8OV1qCh5j3ghEgFomUVRLOQfCu/ZrJAA1FNWquxaYbM0dVUW+diSrWFfBUutjhCMwtOWTxGqjFjJvNQBXMwMQ1thLX17/VmNeFgyydRNdkJgvZggVUelWUqFpH3ADBBiZWxYVoZsELkAh4H1tRv0TgWscxq2njFxlLTolxnAlxYLfbI9LhpV6DcbUBmAddZDMMlO1IrpkOi29fmCybeeRWyoQYsD1YzLRSpWmitBVi5hPhxCGdt0SqBuScb7ZEB/3xQBDwLuJDB8Ho1LVkYknMRcnO5IIyZ6iV7qYnTTtcTozjaNGqDURbZBqqQgjOpE8IMRrjqGRjQxQwcFC1zS8bR27xPcIYM33XE7ynZNOz9+s1XdchAuN+JIae9dExLjjG/QxuSZoTFhNfaUbPy4CwceBIU2oSMCugfTADTu8DfWesr1qMebSAMbUu/k5LXKVeg1NmkG3eJTa2xBgdDURSWrfYRevae39tPB67cM16C7Fjt99TgZJrQ+6bDK4tI1oKc8pAIKWJOc10ITCnQt+uTxvKDYSyv7PMv0W2Z3HTLV2qzU8XzI9N2n2xdc82l8XzQ9r4Qtprv76Gtm67oboezRirQCJ97Fn1PRf1kuys0+Kc+bLFeu25eX1t1TVgHRpItYADcHrzlOPTI1OuqgGjWmf6VeTWW2/y2U9/Sn84sNvsmC5e4N79Cjdv3eXjf/NXvPH1t7h9a8UHv/ZVfv7hF+zOz3HHhzz+/AHf/Oa7HEfh9lfv0w2Vn3z0IbvdOTOJ3fklMXvu3LzNG++9yfOff0nBIzPI2hG7DlRIyeaG6uKvZjKTgK3pSa1oETHZsXMteStbgZMFajADUwM3DA6vEvAxotuZOWW+PHvG4c0bDOsVoe+JITAnYZ52xMGA36mlkiiZ3cUGjcYu9USyZpbBYrHb0ubkayCMQM5WGGrrnJlviVI0X6chAa/UyQ3LrE4oSXn/W+/wG//ht/Cl58WPH+FKRcKe43Ug03O521OS3Xtpa4MT3+6rgxYGsSQRilsGtx26fnH4yTJ8rnlKr0DQBRCVX2Slth/pNaXSpKA1w9Onz7n/lR37/Q6qsj7oyU4YdxM+GhOuzMX21Cg4IkcnB/QUYnCE4JHQN4DWru08T1YQZdBSjS2cZ1LKXAN7hiqyGFcWcZbmKOZhIF5Y+Qh4cuiBGSnW5JqySen6dQS1w6OrQkkWJJJlRseEHnTMKaFerNit5rs3ldQaHkqqGQ2RIoVQJtjv0OMBvDfzTAlIqfhSrdHjKkUCV7stTm29KcHkXwiUALVGoJDq1Nbsym63hVrxmpts0mTdLi9sz5GkhVQKnXOgnikUgloS16Yk9kW5uTpF1XMlwo/mPfsyUorDxxVSPSqFKU+kMhK0Q1OGXEhareOrUDImoyo7hNwYtw7VbL4dHko1I9yskIudqRIQ+74dyA0MiMOKvJ/IUoniUDVjWsWSIEVNal9QSAY+mT9evWbrDl1HHzrSqpJLYlYoLhgb3AmEDpxFd1dglzOHwdP7jpEdpZTm2Sv42qTXzTfIqdDF7hpMFmdjTQLUbOe+vu/RIKzXa95//wM+/+hTZIyMaTawSK1zLghUG6fq2hjWpSm6JBA1MJ2EUljSUquD4swfT+vCdJzIRRHnqbk21rVZKUhLhzTJvJDnyRp6vqMGR6XQhUDnzZcv5crZ+TlX+z0lFcYpU703eYZie15LVnTt2qjzZFX2szUz5jTSdQObq5dc7IRV6PHRcXx8RK2VNBcePX1C2c/GRIseV4W4OiAMFn6S9qOBTL3j6OYb9P3A1fkzhugo02wGz/s9KW+QIFQMfS5lBhcsOKhmnO7oh5u4WtlPl6AzkxjbYE4TOSfSZWJuTKw0Jbp+YJxmjk87tvsdDvjjP/rX5lFVYb+bmwS+w7uIiqdkYb7YomeXfPGzTwidEIeBjz79Ab0P/Kt//j9beNGqx41XOPW44cAaRz60hD9FC+QyGfPUV6iFGITdvrI+6KnjRPGeRz/5IZeff8Jmt6M6x3674+LsOVodzkMISpDAtK3kbMCVl8AwQNo9N5ZVDCS55ObtE47vHPH0i0ds9zPPnz0hhI6vfPvbfDz/OW++8x7/8d/5u3z647/iO3/0r7m6uDSPl4MOdAuiJAx4Pb15g8PVms3LS/K8p7jC4d3bfPCNr7N5/IyaZh4+fEA/HFnCY2tIdCHiVUk54cKK22/e5Wtf+wYPPvuULx89QMeJ3/j2t/j8xz/i8fkz/uDOTcJcCPuJgDCkxNXFGVB55/7b3Fx36OYM33XUq0sDIXYbpGQ2+0TnhIsH50idEWeM8Bc//4Lo277iAg7XGvEFL2uTG62OuXEMroNcHOoDR1HYjol8eACbgcMhMT2/wkeT/p2sTyhpxzxuGB24UFjHzFgybmXzt5MDTofE011GC/gA+/3E1fMLxpKZpdLFnqrKbrqyYBM8o5vY70bu1JtM85Y//Jf/ggc/+x5dd0reTXz8Fz8kdjNdEMCTipJyQKeCuMC/+Gf/k3nX1ZmDdc9ctnRxTRDHu+//B3z84x8S5oiyRVHGfaXvV3QRetejEgmx59hbUMsT92PWh4fGuRdLzHWhUlptWPd76m5PSpOlETtP9Yl5l7jabJEQmHSPbwqKGAZCmKjiCepwvrY8LUeoBsxXMUm1c46cLQ3ZNz9D7yO5jK0pb4l1lordEshx1zVyqeZBKA5qbkoKtTNlFDtfplJMyIAjeH2tRrBz/zRagMhuO5JKRn3GFVjHFYRI3/f0w8AwRELXc+Nojb95gjhPdB3f+mvfppbC+TgyX+2Y5j0hFS73V0zTjJ8nVm5GaiWn1nZtSdxDtyKXFeNuj3dC7Af8cIvL7QW/zMcvHVC6ces2TgItvZo0zVasO2NNAE0aYg7k2vRb0iQf4o2O7xuF13t/LX9xPtL1B3Zmj68YHS0n6lV3N5fWnDdatCkipCHxplE0SVhtRd6r7vacE6IFXyM+GCXT4cip0KJ1DBzILaq3Gnu46EzfrZnGPSDMk0k3ppTM9EwFmwdKia8KdrEwVTtwiaNbdXhnkqY6T62TYMk3VczAtoqhjkWK0ZDV4RRSLZSUm3GjFdPqjCdeChSp5tvhfCsiWmy9WiqN1Tk2kWoD8ZwsTJWG0DZgwPkGIjiTANX2GkCj/tvDhXAdTShukUU1I92Wb6CNmSW0dBxv/k7SvIRqMbNu1UqZC+t1T0kTBU8/eAiJUBxTqtSSWQ89d4+OSONkB1ba3/MYLb5k5nFk1R0RfANJumidxjaWFmN2cY7VeqBkh0QFb0kzN46Pia6wOjwgV4uIVa22EIriQ6SkguSJvN+SNSMuEKsjikcp5t+UE8N6aIlotrZF7w1Fb2yfGFoX9hrgU7y4FmX+ynS3qCXsWMEoDDIwT6klGLmWfuTo+h6nQgg9uUnAqPZcar1ORlpAqgUQWSSA5l3R5IDe45zinRnlG3BrCTmtlr9+PqJc85JKAsw7yT6XrQcSpP1cXzGFWCilrzGjnEUVu8Y+ER8QrcQump9CiES3AEjmZ9TUmbYe2SW1Dmwx8NVkf4tUyF9f80U+W6WBpE3y59qaAZUQuvbJfAON2nrXWB6L1O0XgAZoALi0LvjrwBPXBZHWDBJBTG55sFobEIsZcletJKkNnLK/1LN0ijEw5To63ta7vuu5eXJE8K6BNVjR0oDnr7z7Dj//+FNqGUF6fvi9H3M2d0QVsmS+/PQhXej4+Q8/Yz9ueHF2xrPzZ/TBMZ+fk0tiu73gpPYcdrA9OETLyHHOvP0r73D2+BkPP9+RthskTy1ks9GNWzpS8IGpTDjxJtVAmVpyZVXzJqraOkqtcHMNYDKQdQHGjaFVBdI0cvViQzdERIRpnHjx5DG3jw5YrQf6YWBPIuU93iuzq4Ts2GxnNi+/YD9eQGjRsCQczTOsQS8L3LLsSThjw1iCqQF7FZq34CKdsbFgTNTFPcXWW1eUDs/V4wu2l5e8d+tNbt+/w/MvvuDO7QMClbfv3mZ+fME4vmjeSzaHrSHjrhkW5o/3ynNLXx+H7aH6qsO2JIn8e7DRdfeN60+j19+XVnTb3DVwuB8GQr+ibjdMuwvz3egDJWU0GTV7Gkdy2qMlUUMgpZlIIamZIMu4awW9Z0nDXB5VK2Wa0FJtnizfr6/Pt4JoJctMri0JU7RJQk2yYpJu8/hJ3hhLuXicDI0VWEhkzAOtwOYFnA54H8jTCN7M71frjlANQDw+PUJR9tuJ6isqlXGc2eWMi9BJRLzwPO/Z6MQ+V4bem7RsnlBmS4hRDGX0Qj2CfJ6oUqiipM6RxxGtE16EtffM2rEr9h4Wm3acAWMlCVPFYuC9IzuBUpmr7fXqA4/3I1/EFVuKCZGyydvynBroqeaPogkIJp1mMP7Qbs9me46TjoIBV0aCUfMTDBYmIBlUrDig7/Hrgd6JSRCCI8tMrZV5mkAruUyIeBtbameCoiZ9rDTvtNWAV6F0Han5LmnKllrWBYaworLGjybRrclMqLV5JolfAN9owR9O2YtYeqbavDWJYL1OmHViiT0+tMaaN1mmxz5ndomqgdJCFnwQuoMV8zjTOSVfd7SbJ5tv6cLZWMXueo6pzV/anlmXjGKTVtu6aECuYN5TFcFHA5PEtcQ38cbWLmYIrE4NALmW9IN0YuzyxqJEqzGbfSUOHcSIVGXtI7kW26uuE2NsXlkQRKCLHVKU4ODg+IDOd0Bimvd0nTGjLs5fkhV8TlycP2fVr673K+c9VRO7MbPbdQy9ME5w9923+Pqv/ToX5+eMlxeM056aM3ncoSUhSZEaLYwjN8kKtg6I9wxDzzhujGmWYcyTee2JsaYW+fk4JYoUY5yPM8FZCI0EA1eP1r2FsHjH8YE1NlJdmjkGKuaSCDhivzJ2ZbYmcKJwfHJImrKxO7yjNtZ01oqSwbdGRBCiN3/YVO1cnxHUemnsBFwtfPHiEfPlJc55Jm0J0tmCcvrO0UVH0kLA0UugX0ecg3Gcefz5RzwXIUrPVdrSqRB7OyNcbUfG/cyDzz/lB3/xp6wO1nz0ox/xh/8H3Lh5m3iwoj91jKWyH2diXBPSnlId3it1HtmkxD6Ndj2co17u2D9+TvTCp48esR460rSjHxzdycD26QavyvHKI/0B2+LQaeT88pzNeIV4x5gT3/uz7/DJJx/zW3/jt/nL7/4p35DM5599BH3Pz88fcXZ5ycntE8ay4aNPHjFtJ6hweX7BXDOhF1ausJ03XGhF9okqjn4aKbVycnNF0dlsC+aMxEh1gYwpVcRB9g7EkxN0vqOIra0SMpvtjigHZMkc3z6w/XmIrA/XlDmxyjNddGwvL9mPG672W2IW1uEWIsIb9yLp2Qt0VrabPS+vRnpxFPcqfEbdZKmpo9JVRyKxjp6L+RH58wRzTx/W7C6foR7Or87pfcTHiltfmQJiNNlW1x1RNxf8td/9PW7evsMnn/4pq+TZjxNHh7fQ/hgfb9OFjm7lOH/8IeI2rI47gu+52Dwllx0n62NODu/QRcecRtgaW1O0AeYYyaJoYXP5gt14SfaFFJRZK/2x5+LqGbm8zTRB55SDo9vkOXN5dcacJlbrW9bAUlptYqmpgpE9JHR4BB8623c8xNgbE9CtCC3llRrAe5KY2sAa9AHv7YynrSZxMVLniiPj3eJLHJi2W1aHB7TIDRbWtzWhC120cUJrkM9aoRSb+zj24540TrzIMwGPqJCdhTeEYOtVN/TE4YDVwcCdG7cQ5/hgeB+cp04Famaatmx3W8RHYhy4eHnOEGGSDuaRrnOkcIur3RVDeE2F8Ut4/NIBpTklHC0tzTmoxo5RIKkVvVBsGxSjO2tLcRN5ZTK8FANIY4jQtPNGqTGE2DUjKqQlINk9dMG1Tf61biV6/ZomC2pOI00+E0JnG2ApBO+JQ8c0TlaQ2Tph3W+1w4xqafHwgqp5MFAiJc/mozRP5FwX4asxKZwZTtdajKaPpWmVJhUK0pmJljSfF++J3pPnqY1vS7fxXvAh4lxH0UAVA8m8OGrw+L6HnJlLRneTIenBjDaLVvBG23feDjFGnTYmineuFQP2MJxrMfpqvkja7s2yYbaiTlk8S14VFq9TL1wD8Zx79X2rERo6XBZPJ6FRc4zOvbheAnPa4cOp6WVrQBwM0VHFurLZOXJJSHBINAqnqMM5hWppdxGLYD6UYzxCEEeaR+bRs1qt7J42E/KyjLYQQE2bWpqZdhzM5yVoZXadxVzHwRBr78i5cpGek1oHsBZLXKOZTosIU5pQOWr/3wpAeZUS5ZcoX7AFDn+dcEVjP6RkYy700RYy57DwhICLlagdtGLV6JyVgsMFYzBU1cYosIXQ8I9metoAHQ/G+hOxaeNdYxo1GEyXsdBkZdepUk3iQH1VmbbFXpyzzQWB5iVjnk12YPftudKMqS1tUHENBFnMwl3nCSFYB4tIqdB1gRBi60xa/HXK5dp4G2dDLOdEjMHML715gy1G5Uv6oRO5BolCcHYd2qMsoI8urI0GaqiBX6VWnAuWikcDt66ZeEJVA2NFDCCiLXHaDPRV8y+wzrxzdDEa6CCCK8ZWi9jv5EZRSY2t12BznDbPJbFZd3p4wL037rLq1g3QcmaKGS0C/M137tMNK6a6pdTCauW4/423efjRU27de4eSCmHlyPOGsi2c3Dwlpxl33HNerjhgZo8lWm23E93K484Tt+++iY6JLig+7/B5yzaZYXDBG0vOLpStt1WbYayt7+ZhZwavC5vHO6FZmXMtDK5mUg9WpC0soCzCrDOH3QGrfmA1rCgps708Z1jdZRg62M94FfJ+Q10Hnjw5o+8CabdtaaEBj4GNpV3npRsFtC4Z1/Oitj3EVjFbJa9/R9oTlnujDUBtMw/U/IXGiTxnioMbb9/ix//3T7h1y8CTdd/jioK2iO6FDSIG3i9LcNWFkm1/2C1MR5b9t/GRrhGk5Zn/PqRkP3rVYFgYQYvvm403VWPg7qeJkgp5TsxpBh+JoUd0j1CY0mhgvzOpzgGB42DMhFKydf9DNLYvDrytG8tD1OLuDUhra4oY5Kr462aJLsC5M9lbytVYymRS3VGL3aQqFUJPTa7JEQVqxrV5lEuhiFJEGSYzf5+0sPJmsn/7cMWz7ZbgPEdHx1xuJnDGLJg0m79JyaAeJ0rNiTdu3mSclLwdcatDfPDcf+dtLp49Z/PinEPXUzWT8bCKcDWhZWfJUaenjPuXIDPZsCHCEPD7iTJntPMUJ7ji6F0kB9eS7hwSOjoiriuMyVFFeJxHfhYy4+4KjXb4iUGIcUAa0A6QS8IHTxci87glDAFNhSlvqAVsy1yuvRXq3kdqzkidDaSg7fFlZh534AOOhI7KNE5st5bERDvQl5osUVGMqVi9Se9tWxFSY5/ZfG/egdWKkzjP1JSpTmx9UJOdhBBAM6m2AkKdpfyIYzvNbYyBVJNzaKnm39XWVxWH921PU5Nd2d7T5nbbszpgv9tx48YhQ3SMMdr60GRjor61shp41Bj63jp9xA6ct1RkiklKaQ0lqr2XsryOd1ADQSG3TpRgQRcWYGvsd60JS890qNoq2rlI16T//eEhcVhBVTYXF6S9Gc1WZ7Kzu3duc6saC6Wqsb+W+2XNEAHfoaXixQBV2wMdwRfyPKNEPNBFIfQrvA+UlMhlIvrQoq4roTNfklXngEwZr/j+n/1fiO+ZrnYcHwX2044p73ES0DnjXKGvfTvHC1Eb6CvBUh0lEMRBZ41WxYBosgFyc2t0ShVK2VojOEZSTnQuIqGzz6yVgKOQ8dVfA0LoYr7vremYMzjzCK3VGoNZCxoqUQoTzhIQpSKpGtXPCRIgz8piERCxNLCuyR63uz0+eKLCydEt3OFNvnj4gP2YcE7oxFMLjHNml6pdi2EgiJn6SrAG2aiVTiujVgO0gif6wHYe8dFxJD3JF8YijNuJMHTEAFdX57iodKMjqbCKjjLP1DyxBIyM00wqoLmScyF2jjlt+fKLj0lzJYXCuSiDBDOb3u5xCn0nJPHsrnZMaobd5eOdNcdLpvPw8GefcOvkkJebMy6ePOPZs4cUlLzLjKVQSmGcLnnwyU/IY6JMZgdSEIZ1bwFKeTIvIRfQgzUpKTVviVK42r60JpK6ZplSKCUgRRlTIVGJK08SUyoUHXEuMjuI0dL5kmCpXSyNr2Aeif2abnVILgUOHaFfceiOCcHRRQt3qDFw53hFqol1P5M0kUol5soqDsRDj+qeMlaiy+QMK6dIneljRfKG9Spy/1d+hx9990+Yi+LKDmgJw9lICzdu3ObmwQ1Ob9/j4c8+44O33yGIcPOv/23+8k/+mOgK0wx5d06aLrkolgwubJFu5vRojYRDcrrC9QaYheg4ODpGnFBrsnW7TNR5tqZ5NRbQOCc2s3C1DcQI8cBS9KLv+fLhQ7qTu8y7c27Mld048eLsOYdHJ3hsT0akpcu+Ou8gSteF5iFrwPngB5CCyIDpjARCNPKCKlGiAfrF7lMIEacRFqA3zfjOMaaMiKfzA+KVslqRppGT01vkrEyTrUMinq46qXHXAAAgAElEQVTv2qruzP+2JtZhzUwlrCviFWENIqxqvk52tyCLbK+3T2yu9sDLZglkNd9qGIgxMqyOCN3AEAInxzfQhqfcfeMWAjx/8ohv/tr7jPkdzp6ekfaRq834/z7b/X94/NIBJa21OY7TIp2Xfq0dctuZuW0+pR0OGhThpHUPHIu05lo+IDQzN5MjGbjxGkjUijFTylg3KTrTi6tvVVrrrC5Yx4JAKQYWObUul3POgIPgqcUQ1dps302m9WqD1trsCKcJt6pEbwcaLyZTKzVT9q1THYU622brqNbBqvbZ7aClzDk140/TlkYwk0F91cGuslCuLQLZ4xtrA4ZhzUHzgNCcKcVsN637ZRpRvH2uxW/KNUBq+VLq9YHAi6eWZFR8tcO7LazN44iyKK9wrShqAqnr66NwzaKxQ5dJ5tw16GQVn3XUFe1Co0w38+TGwvDBW8QsCt5ZVyhXuuDx3kHK5GJaWR8ip+sjnszn5oe0+Ds5Yzbsx7n5rhijhyyMs9GlxTmcOqKzAwLaEpMcJLj2dPG+o8zZqOVOWfcDzg3MWBxj31WODo+4ujxnzokg9tr7NNM5i2cuuZBTvmb+lFJNCyyvfIZqKzJr0+nmYgCe+Qs1VolzNjeczZuilZTmNu4bTbNJh4z8Z51e10zwtRoIbFHcpc0puz+uzUdd5qpb5qU0kFev2UtWXJp0QwREDRz6hZq0LPd9qU302nellEpO9l4soYnr9BlLCLGiudXahBibYV7FVZPdjXlkM43GUGjAdgjeTLCdNNBa7f6LknIhpcTQ9aQ8ITG2NaIZbTt5je2weJvZtVj+vXgVwQLE0ViJi9R0+a/NjOV+S/NzWdgjLEk73gpiMCB2kas573ExGuaq1eafGtheqxq4jqWF1Yb5KhCctHthoNjJ6TH9esU4T63w8YgIJU+UUuj6njffeYvPP/4pQuakS9QvH1AutyTtmbIwDMeI62zjmoU6jpRY2O+u+GQjkHY8e67s9+bRotuJKZ3BlFkFMw6+2uwtgcg5ur5r7J2WGIleg0h9F5qpuRVhUl/p2s2MtPkCaetKYeNU68LM0utCbZwS6hxxveLo4JAYA7tcOa36/9D2Zj+SZUl638/Ocu91jyWXWrqqejRsUhIpDSWMoBcBgqAHEdC/LeldBEiQA3BmRDW7p7urq6tyi8Xd7z3nmOnB7Hpkj/RYikJVZ3ZGRnhcP4vZZ9/C7c0N5f0zWhbG8yOpvmY6LBxubni6POGJCHE2EeB5NCv7/vwMKdrf7tg7u2F1pNLFfkn7lthB2euK2kFA4dI6T58+Yd98x83dLT9+2vin3U1af/rhD3z69ClSbwaJGmuTeA074CM7FuCg9S4Fv74WPlujO0D6j8Gk3VMtnsPuoSf4M7d41in2ngiXy4WPDx9Yt5XDzSukZs5PK6bQdPPmicQslRvJ/Gf2ii9OM/+Qn3ie8xWAd8qo7y8Pa3gZfPjzzde99/KaUryuSM1L2T0GDUouEfcuOLNp+MRxCDVPqBUfdmlHoynyhtPTxKxOTNa52Oams8Gqu3QHETQ5ADKso2kf+ggyOnRFzNg0mqulkKZMGxtJ3JxWpgle3dF/+sBkieaHgbs4pA217pPJqbPlziT+fqYESRsFo6eBSqKqs3lEnGGNCDUlyhAKLr3MA/6U4Q+18Onp4ub9eaKkzGU9MUb4DmVzNosqOoSmF3pvsBo6MqVmEsW/n2sXEKqvmwxzqYwx0cfF99Ho2CZYH4wwN08IrbeXpE08ZjlJ7L2oE1/4cb5evam368AlqTNc9vNcU4oz25lBpUSiDrvUPFGXiVqLDwclhgBxFmFGKi49i9vXrzI1JAULPtap2v7qEk0vaNtAC43EPB9J9oxaCjtrdRbMvsuuZ1nDmEg4u2k3lQcn0PhAo5DwmGkNzzBrCUkjmj33n0pImOVLgDrO2EaVtq2oNnIVyiyRLuxBHKoD7crt61d896tfMd0eqTXzhz98z7/5P/+1p6J13Qt7VxckCcAukUTpeNhN2zZIyYcnpQTDfYLWIQ+gY83X/+F4h0U9/vHp5HuxGg/PZ16/+cLvG1PmIvTtQht36OrKAVNlmqaYWHqdN3S/k8WlxiqQmhuM1+JAWHIrDceuhWSGbg1MqLNLzttQjI2+BduChSkNcoIRtUJGItXRfRW1JE+ZnYvXvUDNFe0Dy2A2sQ4P2Eil0tQHpKId7Ypr1ZQ63yIk9PzEFgOXXCtjrBxm94n77d/+Lb/6q/+WL+6/5t3lB5f6TD7k6t1oKTxSzSgpsdmgSEXEh3GrKVN20F2b8tDOLu0x8d5rFkqH4eZfpArHpfqA8PmMbsL5ckYtudetRrhRSujoXPB0XQPO2+C0NQ8BWQeqwkUb2Tq//MUNNzcZUuGnbdAxSnG28uP2TE7ZZZRjMC8T0yLo8wPLnNG1YWJcNqX1DgzOJ2MuA/rGlM2ZU9MCJWr/dSBjwJw5lHuyrTz3RmNlXAwVpYblypYqCXWPsNEd9DkLkhva/HwdujqLTTNr1HhoouTEUCKlTdGUWEvh9nDgdjmQlnt+bO+xLLz+7jv04RMXSWi6YbTGcjTmdmbtXq+XtAdSDeaq5DLIeaIK9POZj8/vuH37Gjsnvv/tb/jmn/wVH969ZyofeHU/sSzChw8fgcrb5TVLXvjx979Dn08cc2c+vIFUuLt/wzS/4lf/7L/n7/72X7Nd3vN0esZyIi2Jdhlctgvrwyf+6X/+L7l99Q01uY3B//yv/leQzLvf/57/6+//jst68d7LlDbc8/CrX3zFzd0N5/OZ3ja6ddrYGG3w8fkT/eE3PDx94ptvEu/e/cBcKyl9YKpHv+fNw1cYUfumCKoK1YUZLvUWo3UgQpazONFir7izeDiCpkirLSVsZBLYiATpwWzZGU2tc/r0wHJzYI7e+t37n3g6P3J/84o3r78g50TJmc0ESQvaGiVXSjH6aFhVevO7ao50bVKiJl83NjxQTLVHuIq4YbgMVAfPz898/PgxVGBCSRNzrtSlUOfKVBdqmfny9YGpFP7Fd98gCU+b/hk/fnZASWKaThJGd8M3C/BmTyITwQ0uc3J5GZ7+YSi1lM+KW2fdpJKx3U9JShSTym7Mquo6clK6FhLmyEYAWFFkmhD6t0j1cqDJhgMAe2MOjrp6taLX8bLjHnptzHAAFCOhzT/VhsWvhaENiQmW5OoG7IMwKhzo6K5hToV8mOLCXVnbmaEd7Y3HqVKyJ6RgzsoAN+EjrUieSMWLuJoqNWVUHHwptZK1ogEY+CZRUsluoH2d56eYLkcjGlVNyrs0z3+ve0pQVK1plz3Ijgz4YnYcJJru0NJr6FcV9YheLKRxMbEPDyH3fQjqvSlFclRsbiA6RUxzyp7619rGeYWSYWuKJvGppUE9LpQnl1Z4c+ST7JoLuRaKZA6HBTMoKVNL5TDPpKkG8gzLSNTDxOgEkOj62ZKMw5KdGaJKl8x86+av1ZIzT/DG6832Fr1sLj3ImcNyYFkWhg3yXJFa3Eg4JX/44g2qobSmIeHhuq7dPyukVrn6r6PwHd2noSXnAA73IioH4GpISS/T07R7KTio5wNob4hydv+VnY7vjal/HxNn8Fgw59p4kUxiiskLC2sHhXcy04s59S5DjSYRrvsKoJR6Zf7kkq8MiH0C2nrn06dP9O6H7TTNkBLr+UQf3dNtppmbmxumafJzCGEk3/Otb5He6JdyaxuXy5l0d+vx2nGe2E59jPPG9dT+nFQ9hljEmTLOroz9tDfl7M29xtfw6eQOpvnZ4peq75lIUAzbXP+8PcHMqJNLQrv5OjAbdNUQkPLizZSSg3FmqDirc4gyl4k3b94yz0u8rT7ZGX04QyzW+Xfffct/+ru/xyZI40z9+Lfc1K/5/W9/R6Lz4Q/+DEZf0eYG/V17JNQZ5dxpB2OcV94cC2PaOKonCGVRnkbnuStaYAoZ9L5O/HeZWjydM1Gczm1+no8dxUavgNLOjMlxWHvTp6EhE+oAUqZ1946Y5gPHwx3LYUaSsF4ah+VIys7yWJ+eWe7O6ICnx4+M00qdZrSHNAXZj6YrO2l/p/Z7SPDiJqB3PptmuDeUQ1CE8JGACHfXKwfYRGFNXB43ns4nxqVw6o3f/PjMNBprd7mVXX2TvEjaYX3fv/u+2uVsu2vTy8efg0n/7z8ze8H/40sjouF9F2Dy9fOJ/W2slzPv/vQDX7596z/f1rmcT5h1MHN5AMZf5AP/zfKKtz1zbo0fzDgt2f3WsmEyvAmMl2iCp4EO2WcSgcbtwto/x7EdWXdGmSYwwrdJc0hdHJBzMDeRayal7uD2SJ5oJd4UrqYkKpYKqhtg7qlXKveHA9u8MDRxnI/cTjPnhxMpOSNCckGTP/+MUlLC/f8HKc+ouDFnIdO3wal3DjrQkNyLgS4ZmwVLhZGV8npGtmfmFqlfZgxRNjPqcOaeJcPYQorrdRPqYBS28Vgzvx1GuyiUirB5GAYOlrT1hNdbBVO/q7ptEDK00aGkgo5Mrclji1NFpaFsfvbnTC6V0gpptWCyZpQwh04vBvKBCLoht2qsL8WS3wPXOlF3SMlowYAp2YdAipHUkLF7aTnI6Czq4QClOvMtiZuVyjDK7Ob8zWm91CRs7Ow2vxt9Le22Ci5D81osebJvTqzDQakx4KkN5pRhDJbbhTwl0pZoBNAV7y1IML59I+VI+cuRZkQYy5uYp2ThATOjJNo6roCvAFZwc3T8vsgpg3qwjG8OT89KJZG1MpfC8bBQ58qr+9d8+803vHr72q0UkvHujz/wH//Df+C3v/5PfHw6uUepd8fEV3PQFkAGEjXPNGUul43t0tAubgFAIof3YcqAZGS4N0lZCrUK2+p+eUOUZI3L85l5PrA9PflwRYy+PbPMsD59oo2oz6S4qXvNdPWIccnu75hxKagPnDo1u2diyc76UVP2uHG6p8nmyXuDZg3CtzObMtpwe4MBVhNi5Qr4AcGuN/fAnI9XM3pVxdqGJoOeqQWspQAihBkfWHVJbKOjo4WxvZGG11YlVVcd6BbDyOHn2Fz5v//+b7ldKvM8YLi/2EbD8Kw1d9FQLMXwZih5SsxJEKqznmNICRUGLvdNvqdy9p6nD0OaUbK6CXsS5jqRU2JdG1s8Vwt7EVMjDa9/EGcZe9r1BtbRkpkOhUNdIGXO2kGHqxdikGgowxIMPzlSyVgfrKdn8uyhFKk6e6kUnMmTHLDuW6NUJz30UZgYnibIYOhgMsiWwM5YV7BGi+FjnSpTccZZ6TFczCDF6wXJKQKFvDapKaMGS05sOuib1y69eQpqGolLjDxySshhQXJiHYatK7kW7PGRy8MFbhYP9UDQVBmTMJU4I6KNS3Hn5kPhL//JL7mbbvnNb37H8x+PvP32G2YVvvr2l2xqlD/+ief33/OLr95wkyeW5UfWsfL69VuW6ZYvcyHp4Iuv/xnaG/lwwLRw/+oNv/uHX7M9fqCkleOxsA2lbReWaeHx6ZHXb77k9uYVN7n4e58S/+Hf/zt66/z403uGdGoqWCnIGJTitiZo4fVy5DUOYJ9OF969+xOaVkq+4ePDhZESf3r4IylVUpkpU3Wv0uR80StxBCdQoH7PdeSFwICS0nBTeDWsiDeqUSIN3UCMqbriw9S9lbfhgKKwMkxZt41pmemmfHp4oFlnrjPnyydOl0dUV4ZeIFjhQiWJV3hl8r62b8PDu/LESQcoLHFOSHFyh98JPnZg8gH62jp304wPUTKqF0+1HnYlDrS18+nDIyrBSh9CLQnLMNXEMh/C7/Xn+/j5ASXsyqzwVIq90Az/FNshhGh8PmvYVOSaKiYihOmQTzoiBt3jg70MzxZacgLo+MxbwYjp9D5BjWLl+mEWlDCNQ9OFXik+p3eP1PTpmoNQTqoIoCqK9B1G8V9lkkyYbdFcFxBD0gR4VGsiZEG6N/CVnCdHlKu4Afg40sZG2zYkzBFb90QNbWswPxImmVxWJLtO/TC7wdlYV78oy8QwN1gjWF3dnEI7WieXyuGwUPK0PzFHjFtzBpG6VDGJJ7B1VgK5+KyBknhT44C1fRruWv+UEqO161NyMI/wINmbbn8/dF8LCCUVcqS6SRIkTXzx9i2H+1sw9xiQoCObGWvzxAoUTAfDnLl0f3vg8eGZPFXuj7fc3d1xc3fk5njDzc2NU9jj56g5M+VCmWt4TwibrRAeWCmKziHKIQslQTIvLOfemG6OJHbT5oTIYGtnvvziVcTvemExzzPTPKMmVxDAxDWzOxNqn8QK0byKgwMQPZP59CtJcvNyHfTuUa0p/Kcy4jIkcamfxbRRQu+VUiblQq2FQJ4CKIznCi8Sx7SDrYTcLIp6M/pwCWvOXvRiJVhPjrSPKzPK10PK/r6nKFhMlT66T/AjChyVMDF2htK2bqyre2r03q8sBWxfO57SoMMLgzoVaq3My4Gc8pVl6F5KFuwnZ94NHGDSYCxJgHVCeH/sQEecZSmVq6xTKPFeBwvPdsGSN6wOFHjboViYlPuf7uD0jjO5V4q/xyMkbhZ7y5JL6EyEw81MqYWxbfQAVwre8Hrqzv5YLHpoB981zqzb4w3ffPW1czcsIuvFzR73n18N3nzxhlKqT5et89qeqemP2Cvhw8cLM/7Muw1nV2Gk4rKHRUDlDF2w4yAr1FwQ9bTHi8HH50YbwO6pZ5BL8smuugFx1+aysuSyRGepjrgzdh+JYPzYzlICSCEVyWSBUieeHh/pY6DAuvpEflpmDocDSXAJVMlM00w7XTxy/PlHZHrL6dMj6/MzFD//xz6tFU+lVNt9qHgZdFz3asi14yMFvrMDOg6uS5yfO+T40jCbwWDw4cdHxrZyumxIyfzhw0pli8ABI0t4r4gzgovJNb3PBynZQRx8u++31suV+PK7f8xM2ptx/7P98zxIw3QHmV8g1Cv1XNzQ8uHjA7fHA08fP7Hc3fqayYmci0uxNuWv0x2/oDDaxns7ucGwhKxVPPlMitCHkQNYdB/CkGPb7tG230ovAJkRtaTYNQEGyy4x3x1fVF1u0zffA7F7nckpASIbQvcYcklRw3r6YKGQRZhnf+4FRSJd1b+10mNdCB5YkLNLInVMDIMq5ubq3bxRJMymcYm9xP25TZWnCVZRDmpwnDi/vWP78My8bbQxeDc6l2HkujmLWfNOnvFCWxxQUhRNyvfA49aQ2plub9ieN3rfXAZQKxIyZ0nFG3MdUeNlehuUeabkCZHBfDyQ18FmLbyweqw5N8kuxf+l+3pMKNaFXPdzNZ73MCztIIlcywjbz0Z8ae+pirtxnMuUjC7u5bOEhNuGuCeNbs6Gt0EV8QZnP/tHNISlMMnGmqALFNnroTjfRYAYusTeydXDFAT3uUnJh6bWjdPpzHw7UdNgvp24XQqXS4OWwgNEMenBXkguxZLkLC9zD6AUck33BPJQBokm21Td3L267+h132YfejmPCaRMDiKJBnM3UevEPFeOh4NLaEtlmmceHz7xm//4t/z4p594eHjifLlAEdbt4vV4glQrEoymYT3YhP1qjH4BbHRne4vL/nV0nHWbGZsDfqmIMwGB3jPPPepQBkuZaF2Z55muja1B1YlUMxpysqTm5v4Y8+wNWxY3otbqIGKmO6kbY8qK5BmkOnN98u9xfngAHc4em4RSvQm9njcpX3sc0UjZS5H2K8TAzjxdMhI1dbih/NDOMHEASv3Ok+Q10uhGJlMnX+u7Cfw+AK/JQ0Paur2cxRlu5pnTekIuhtRCLSnYGUqeBBmZMYRy8Nc+hnovoT7Q1BiCec1VSQWy7kqC7qlwyeWYe01T9n4hrB1SS/SkzHXB2koPkD+ZD+Wusm9J0Xd5PUh1k/tcE3k+hA2DkhG2JOReHKxMIMPIFTYbThQWcykl0Ay2AXntTHNl21qkCys5EhB7d1VEronR4l4wH99YVtKcyH2w1MKGp/6KZCc9SKFko1b3VRv6UmdJnpgmC/my70XNlaU4i7JMFWsSNef+TAeixUECS/RNWRbDuvL84L6RU8r89P0DQyfK6ZlhMdSpBYmaSbIFUzdjpZINbuvCzXTDNmDUAxxvmO/e8tXdHTJNzLXyZZ2Reeb1F6+oJfP1qzdIEn7xy+9YykyeJ+6XQzD+hJ8+fuLuzbc8bSvf/fJr5jnTrVFT4eHxwun5AdOOMWAYv//tb0hSORwODDM+/vQnPn36wGlsjNFYyoyJ9x0Jcx+2YPGLCKNtPD+fqVV49+5HPn364J7M4izeIpufC8tr79Hjft4Tj+Ok8yGFDUhzDFTC+y7nF1sTc39A070e9ggX8B7ah3KGJFe+XJ4fWEePIcuZu9evOMz/hKRCG51Uc4RFDA7TzFSzewlnqCRa92RmVyaYsyEpFAYEYzabp8Jr9O1SUqzBROuNORWmMrE1H2jnUhw4zcnPHymU2pgPh2AGDve1lUJvK2aDp+dn2mfWAT/Hx88veYuC2g+ez0Ad3UHAaN/lZeppWBQF6dos29DQoweDQv1vNu0eZbQ3ZTuYhB/CrsYJovte0bLX1HbFPvapsIWfiZnr4i1kMnvzvBf2u5RBdmAMbwwVrheGDS8cdIBqFBvJL01GMDECDPJG2oJV5V8jiTNnUi5km6m1eaqdKbmt/rMF+u2Lf5fXuJo+mYGOSIRLtBGUcYZ73URzqWK0FsbiyacjJWjh2+XCtrrsZei4Ag47GclsRAUXxVyk5O1JQSYuPUIitS5AJOcc+OWoaMiuiMYwNta+iFS5ubshT4WlFqZpRiRz//Yr6J3z00dKVo7kiHkVTqNxGm5CCUJOmbrMfHvzDa9fr3z1+jV3rz2SXEQQDY17AAP+syjaB4NEXXIsnUiRk8zQTkKYJDGl5IAAMLKhq5LGbgQMKTtFf85LMOiCuSUee+rT6Ryyq5BWqQNEuwG1Dxx2kE72ToBwiiZfp4IBbKgzndrWnI1VfEJAvD+9bR6NmTNSKqW4Z1DJJQ5Slwv5vR/stCjV3fzaJ306lJLcmB0TTN3Txxlsu0dLFPDhIeAAloRvkLpEwhy49SmpUOZCzs6UWbcOWLAD9OpVhDgDq9bZKe0Il/OJaZpIuXC5nGiteyxnKdTQRhMyPNXx4lnk/6Gtg3XbyKmRshsEJ5mZjw607pK9nZ2RrgDqvm7892N/a2JPX3tyNfZ/fL15g5oCsLqmYF6X/4hfB8AqvidImSSF47Iw14nLevI9Iw6W911qJ35xmfpkF0lkxX1hZOPN61vevL6Pc3Ff/7uHTpyjo/Hq7o5lOfDQH3m8KD89N27LxuH57KC1KdswNhvOUsnu4lGA3N0MWHsAieB+YaUy+uBxEz6eXd6Z8AS+6bB4AaqDto2QGoU3nLYYQAAy4hyP8wVnYRXJvu9q4f7unpu5stzds2Thzbe/5P/43/53Hp9OdDW2bSAqrkE/LvS2xT4vLKXwqa8Ine3xifT2NafHD7izWWIEmOkT493vKIYFOxAcYGdyFOKlQd59AlVjwBKNw/W2iUt0/6XPgxliPH04sW0XvvryDYepso3Oees4Q8QLoR3f383dvRjam20Hcfvu+4U3SNfv/o9ApH8sg7uCSvFpu3yPKAL3O8D/O0iJkB9CXwdb3DcDN6lNOTGa0LXzqmeOBqf1GR2NpzTc0DT52TPVSiqTRwBLAjLaRzALV87rhfVyRnVQUmVaZkh+b/XhshEbyhjdvRIcxXGvNjOwmO5jwRZRGMqpPTPNhXmanV2UBFTRsTJdHtEeA44kDgLUhZR3aXbm4fGRbd2A8OwxWKaZqU5MwWxUc4ZlRlhmjzhOwGbu+6CS2MTI8fwtzpNnCU9K86ljv5n58bRxenygMThp5oDwWmbyGBSRoMS7B91ucj764FwT77VDFUbfuDx5oW/WSQFEFqeR+PkQuIsDKplCogTAoAnyMA9cUb8TRhygax9Mhc+mxT7F97vC71oHaJyZ4AbcscPMQXGxkASYgKj/uezXtQ87hBeWnv/rxtW+WQMYEB+Y9NGpyRm9vnKNdduoUa8W5CopDtH+FQ0eIWtLEjKxnDzyPQlFMi2p13RjIJbIU4BSuXK8v2F6Xn1gNOJHREmZAA8dzkR9r6ruowqCBfoS5LGjuZJioCSZjEv2xwj5rAwkTVfz8ZImRBRLHiqynjvn5yd+3DrtciGnxOvX9+jo5Fo4vrknXyqtn/h4emI0wZIxlYptyc/Q0RnBPNwHsex3X5w1qsOHWbg0f5e0Y5DN8YO2NW+6EtAGlr2x932bSZODG13dvDxHwyTmIHcOpYSaUkp9aThNGX0jTz4kVODN29d88eZL/vj9HylLYWyDZieyCGVyaRM7lhmqhpy8nt3BOqWjF+8lcnLG1dibxmB8t81ZRvv68ddjDiYmTywkZI8+c959AP1dbs2H3NdQhWBebW1Qcc+VpDALqF1o20Yb2Z+1ZKa5kIrQu9BXQy2jDNTcBmKouTzOHDTd/Qolv7CtI5kIQ6h7xHoxZyLidWOajLSpv5hgwjoQOq4m+hZgtBIBP8X3pkS/qAHaDFNG8zOhVh+6+mA3h/Q1PCm9EaNpc1+wNGGakTEQMVrzlOz5kICGjbAjGEY/DzT5WccA3TYfMLSdkeLvU87CXBrbCIaUKcVypJBWRvfURQPqlKnT5FYUgAW7TQceFjNcRj0ETD1sJSOsvcW+j/RxawjO0kYzoyvJOnlyvzPrho3BSALtTEqVy8fBb//m79jyxHlr5NFY339is0xeOsevvqTYRqIChbvXXzLdKmVOvPrmK9bnZ25fvWKpC5f1AlPhMM/88//xf6BKp06Z9MNPpFp4fX/LuDROj49oH3z48UceH3/ylGtJHOvEpTd++PFHtsuZ1jd6azzYJ3QbdDqJQbPN70xNiGaKeCL4+XKm62A+LmyjoZu//8tRuLs5cDwcnd0l4QOMr7Ewv8WS1+WSlCzBLhUJhVRBqiA6SKbXftUHSL4vdQy6BAhVKk+XM7mHfOsAACAASURBVO/ev2dtK1OG482R+jyHUkM43Cyowd39W0pI3BFnQPtdaYhu5FyiHnNz8mFKLskHMlFj5ezrXWMI6ox7H1DPuYBCKc60rKkyTz7k7zGzlgQlVf9FThzmQh9GmYqfaXv//TN+/P8AKLn3RdqTrFSuZtmmO3IIPoPyzSbik9kdsfO4P7+kvWD1CX8p6VqQY0KLQgyC9Rfgyt4g7ePh/TvukX670e6ug4/Pjjdyl7ftBfr+eXItWnyKHEwcXi5Dl5UFeGIeb+tG1PkKPCUTCF3xfkuNmMiLFTcp1/Bt2s0oEw4yZQkcK4CHoIUncXZNxgEhZ0oEyLP7IgVIN3R4AaHOjmhbcyCgVDe13Daf4g9v5HNaqTmHFCnMxY0AyhSxiG7fqYbmpFqX3bh3kYT8yYtFZyH489lBRX8uLinzZLllnsil8Ob1Pa9fveXyfGHJByQNZn3kvlYqialMjJR4T+d9vzBSptSJMmXqPDHVgmRH+zXM+XYUPMH1Nbg0zxPDGM4Iy+GLsU+mMr6pM+naVCESzAhfCZLCeJzQNpc5mr0czc4+3QxpYRQ6vtZcKhXLOAqLF+r7tUkN5o6pxdQNkohfOmOEt45dC8uUcvzdgxfSOYXkU152T6ztHuw5C6BLwq+rRHWuw8L7rLs8DsO04CpXlx85U0AgZ5ylJoze6L2jo4cJvR+OJQDUfY2ezhcHkHa/reSG8imHfCsJh6liBrWEKXq+QcTNeKc6MU8ze+KgT0KdweXSBv/ezhCJxjL28tDBfFgcTPWAqv1QiDMhDnV7AZeuReGOUl+BUm/qJS4TL0qjQY/zYgfYvdj1N/fFUNh/nxCP3WWXgyWWZWY5zHx8irVrznYIp7ooCL0xyld4X6m5MInw1S++INcSHho78OAX4v4bNWOuE69fv+bTnx54/7DxN2p8cwQbna4eP96GelqFQtGdldNpVtCeGDiNt+tgdFh10JtyNgnmnT+TlN04cWwO0hQSNk/uH6YwAoDcJ8WSCjVPlJyZp4njNHN7PHJzf8Pbr99wf/uK483Cm6++5uHde27ffME//Pq3/Nt/++9Jk+9FHc27TlM3Sy35OljQACFZT1RR1vfv92sLFaOoXveOilyPg3iRwagJ0D0WS7ouJ5+caZx3+4fv0Zd7Jni+V6nK89OZNBoluffLpRsmL15o/t7tcsv4bezhlzX15x8vHNv/78Lic5Dpz5LfrnvA9+gubzWNs2x/FAakiOydMod8w7peSJLR1qAbvW3YfMfD84ljb6xj45yUlCemaWI+LhyWI3W5RabqVPQ8IQqHw8Lp+YmPjw88Pz/Szidubm65/+ILUppQNZ7Pz7TWsK25754pTYf/unX62kA3rCcSHbGOWKZt3Rl0Ww+vl/DActollhpN3Z+m5MJmRgaen05YV7beeHx4YrQR76k/mZKFqSTqVD3SOHdy9ajnZfa0LSkVUZ/+awopoURYCQ5cahgMYxHikWDF+EHdp2QicTMfuV3ukPWEmE/XzfY7AyxlktzwXi9uQJwyNhqMgU5+SaXsEgTNk3sR5sEYnmyWspFGw1pjHUqdXT5CDg/J4aDQsME6hHlNHCeXxyaZkNSdSaTCpRs5DIlVlYFSphlD8KBTvyPzzka1EYOViZJrnJd+RohwTfs0INfM4eaG0T0Jt3X3dxw6OJ89FazWmVyqT7Itsa6dpkouhbQbgF+BrNhbGls4S6S7xd6OfZHxoWpPnlzs8j2/v8txCdbXXsd6s2CBhmWKzyHxpJ+UJM4rI6eCjhfAxo25h5+3sf0keWiATIJYpuZ6nbjrUPr6zNo727qytY0MlJxYaiWnzO3tgVITloo3gusTp9Mjz5cT67oxtNNN2dYElGBWB4vNdhnqi4+mJ/OJU0kmT6n1+8Ku54yougfTcAbvfoaOFgMGde+hcXrG5gS9XAGZvq1sXalT9mcZaoMxfABQYh+JZLbu0lBtm4feAKfzienmjlw8ebHWDOHvmuzlWauFD6q4PceIRjQlje8lUc+GTDGBDmE0c88kuNYi3ig6g3eZS/QPwVpU90yJz3I5Li+DOYvPEbqf8VkQ3BzGktB0xP3vq9LUZamoD2lKEbaBS25V3Ps2mPlmOwM+hpgWAGew5vZhBeL+SKXEvrCElExSyKOSS/QLOWGjkTR8O2VAJszAvTFGjExFVEjJA1q64Z53wAjeiD9Q9fPvCvISwTkavWIOxpf3InXKTJNQ6IwNmhISamcHatTuCfexLQhJetSBFslgQkqdsSpQIjBHfRjRdok9LsPKBjmz6SBpRiUHYGdIdkAMddJDj69/aupMspohUqOzZCdMJu+bSG5LAZ09LMZr2gE2GNZ52i583Do9ZVThOCd++sOZp3c/cHNz5PD97ziPxMPpwrSdqApNKrf399jDhgcXJWbJ6LRQjvcsU+f21R3r84nnbWAnhZpI97eUo1LfvmFtRv7iF3zZL9wchLuyXA3drQ2eP31iW8+gxnq+8Hx64uPjR9g2Wh9c2hNJKve3X/Dl3ZdcLo2PH9/x+PTAtl64XB45tRVkMEkhjQmaoMXBmL0ofwnLioaJHP2bYVbdewiXmbs8NQbu3VnTPkz30IUiPuppIUFzJUUhFeP8HGnGn5744u0XHO9uEczB7KjXU6mOc4jRuwcTgCeFKsm9kXKck8P9Dq8WI1pQwiReoPXuXngx+HBvpeb9ZxibD1W6DmfX5krEITmwBczZGAOyGL3Z5/PEn+XjZweUdsRFr//HvtF8QmFXgMcLeYbFhMo8RjAlf2MJX51gRqQkVMWnU5RrY7er2JwBafH9dnp6/Fkwjtyexa5+TAao7BCXTwItpBuy//faUMZ8WvZOMEPxxlvVoCZGBg+LTS/GsPvUKGRHKQk2vAmUAA08rc6ugItZp4ccxyThFt7DfRzEL5Nhxp4clQMJzdkb77w3F0MgeWHnkr/k2vFkyNCr9GgHD0opjFpdWhKvvbUWzbk/AwOuKWNEoSA7G+wFnvMmKphdcSl7up1hfW98ovVQb3glrob9DisCeVPuTHhzvOWQXerz+PzIYZnJJTPXCabKXS680sHj6AxxeZDKy3s5bM9XkiuIZWZXT4T9tWokuG1heGs6SGMfH3oXJWVP3doBCW8yLTlIUfafK856wRP2nIUi16+ze08lglmXErv58nU7xSK5Pt590cSnSEg2HbTwi4eyNz+hLZadSkr8nHwGaARyHgkGKd5lU/UmQo0kPj0Xc8aLiMtDRvd0rl0KhmQKBcmenIfubIyQfgmY7UkqAwtGieG+UFkyaZpIBlvvHtEc+iBVgz5idSWfRmKRiihoeFtdJ5FDKVkQ68Gc8ueveESoiYAUl9iVGcLMvM4LbV1pzUGt3Ux+B1EdPLWrNPblPdmptvsJ7efQC/sQgtvK9Q3YgZx4v1NKV08mlxAJonp9b3Y9da2J5Tjj7DVngiXzAnqIhRG3//29WNeQHN4cFr7++qurB9D+sbNLdgC9SeaA8t0vv+Uf/vgP6Oj88GC8f1YmGaQwQlc1WkjQXLLpz7qFR4YEANNNQOXqz6ZxB7j+3Wng2+nEX/7FdxyPC605wKdjRBjBIKdKzrAcZ17dv0HMWJYD929eMc8LOWfu377heJi5PK4c7299ArR6iMB/8V/9C/7m3/yNrxftTIeZQ50Yrb+cC4BE0qAgbhi8PtPHxQsQTZSraOnlDHw5+2R/96/P9mrBRTSgAeTuBaiwA7N4QbTve+J+U0gJ1nPncln58Q/vOG8dy866EOkUKe4ZcAUnndH2QpPz73FlksaZvptr72Dpfub8GSvpH/2ez75iks/BpNgn+Brcaa1iXgxtz2dKTtjurajOzlGDT/3M99r5UgdqHRWo80y5e8XxuFByAYRtvXA6PZAkU6aFw1LYemcqE+nujk0K03JgWW5gGOfLE/306LXBcDaS372ZnL1Y1DQhcuB8bkzs+8nj6zkZo198CtzdE1FHh1zRw+GF9dxA50zrG5+ehM0SW1tJ5zWYCsXB3lK5uTky1xpDAZ/ey4B5WphLDQmNXA31DcEsxVnvZ+P17iRx0cakAYSKs/6yFJTBm+Xe5SsaoQRhOFokOTuFfbrbaeNE14FmZc4zwzZ0hPQfkAKS9gCQ7M/Se0gawf7YziHjNqwW2mg0/exOtexmwsMtASQbJbuUYeQwTt7vurJQs/sWlVIwg7nOiBmXy4XtciaFhDxPCwhkgto/PPRFckFMKVPi5tUN23mwrZsD8CuehHtpbG2lpmdKqczzgVpeO/Nm3a4+mdehwV7vR73pDYD7XWik+maSf39HD7DhTKcxBmsfHNLCDkb7MM4CLHSfSb9eEiSlhPwB0tXrKxmkkr3WS/ud1+itkcWNx9d2Zm0t5LDOihcxrMPYNtCB1IwhHOYJ7Rt9O3HuuM9VNVo7Y+Zpt71vbJcHtnODru7hR2K5uaFMnn4HnsxoXSNR0mucyPPzWmGXne4eVDG08lYr7qtkIT10NCqnFAPORE7OfpQhkJQpJbJ5guXalVQTObnPoAXIvXs71lTYsoW8EeaSeXj3E08fH7CcOD8+eFL1Dp7HcRel9FUW9rkX0m6+3tX3pZr7qO5AX446rNSodVRDIg417uacPSlwOPkW1U4PX6Fd3ply9DgWbiDiQ3nb1Au37P/bzejq/5ookvQKrLbNw1kye9p11O5JKOqgaEmZbi7X3fsD4p7eh+u7fE2sIAwfyCKYZsbYnKkrbmh8vTGssCzF2f5jkGahVL8janFZjpqvbcnKMnlKWu8g+/A0ZycDqNDcuAgTo5tLUmueISmjwdb9vqtJyHMmi6JdAqhTyt6rxhAcx7KR0ZhqYbThQQji6g8x5bwprcUANlsw4jwx2yz52VtmLDcuo1HLRLKK4aqRUv3ua+phE5mEZZf0DxNyKUxZsB7BUCZcxO8AqQVrjR2QTKl43xRgtfc4iomh2UhZ0eZyuIf1wvP2xHN7oJBibRTetxOny4WyHFnev+fh+0qqxtPvfnD7j2lhvvmCm3mii/G4Xvh4ObOeLtzcH9hOHWxQlpnDrTOGRDpv7w/ev5GZeyMl46v+La1vJBPWy8rHD5/4+nxhSdBJXC5n7t5+wb/453/NX/3Fr5A2+PTxAx/fP/L8dOHxp/f8+PEj59OTEyqs084XLu3MwHg6P/B4esdqm58vaQQTR8kps9sB9O6eXYdp9gADVdbWOF1OpATH5UiuHug1bGDiw0uA28PC3c1f8nx55vf/6YHT4xNG4nBzQ10Wl1DPM3vYzq4sGWME49D3b9eQLIsDYBIglFr31L2d8bdfhuqqm7HXbTa8x+puISGlMLrbTZA9EbukUJ5ch8SOERRJmHXqVD/DaX6ej5/fQ+k6hQ9QYaeBfNbk/FkRHSIl857sejgLHrWdcqFrQxmRTBC09M/AIv++3pCxF8byUrB7AxFaWX9x8fcFV+DuF8znr80PyM9hkl21r1FEIclTHcbwaN5diywaoIszJFJUIJ6eBaTh/+KFGUmC2aChdez+swvOARYD2+WA7gHzAu8EeKfqztQxOTM1UvakFVO/0MxGfG40CslBhiQ4bTOYKwgh+XPj4649ItW5et5YfN892c0botBFS+g+xTX/pN1s22313ZC4h/bX5Yk1Z6o4bV6SRzdOqiybUJ5OvL5/yzS59GH59muP4hQ34E45M0mmqpG2lcdtjcbcX5tIpkims/9eQoa0rzeuU5Acfgg6OiOpp1NIopnR9XPT+D1Jy6VGhl9o/sV8LQ+RK8Cg6pLOcW3c7YoNKZ8BaQBpL2R2iYldARmJggTUkXghmGwvaWEpvC58Xe0A1d6dyAsCzr7QvWjbfUKSgBSBoCmLGhLyC9lpOXNBTdDwcJJ4zT779ibRZWaADjezzdkTeILlpngiX0r5BQzu/QoO+0TRQv4aKktx0+gcR4uYoupfy+Oc/Uibaw5pyn4+OLJfaiUP9bUoQh/OyJM0OcugDXKutNboY/f5ijMhXvcLJuhTNXCwaZeh7iyjXZI6zIsJonHQKI5IL+clFpOwXRsvewqXa733xDa1gYmbi17PuOvzt5hEvBTw7MBUgE83N0eOhxu0ub+HGw1xXdP7gVdTonfju19+y/xv3BxdMU4NHi3Y7PglJZGaNSwuUAs/ITFKyowwCXYw3s8yjFjP/kDNjJom/pd/9T/x1S++pDdoq5uktyhsdRhzyRxub7m7f8XHdx9JKXF3f4uJcdoad/dveH73AU2JaVl4fnhkWjKXbeXbX/6CZa6cGfSuHI834SviwL0qMBSRAIVjEJJQkvo0R4mfTdUZeHFZ9wBedvQoOK3s2CHxPpnk6+ScK/C8A92fg1BRuAvXIce6dX5698zDj++w3btIvChNRbDxGZwZU3sCILkCQddufQeRuDYDvKz0+PMXMOlzEP56bOxAODtg9vJh9gKq7SbBWc0TyJJPq3cDdpPMu9Mzvy43PBYlt8YlV8YyscwL03JHqcnlyE04rxfa5cSrN4Xz8xNtrF40ilGrUDLQV54+PToLrW/u31UyneHJOOYm0D0JOvndWFWwrvuWwNaLN1MK2+aMjByslJIrlCOtO0tGhzetul24lMRF/UwYIS2ToLwX8ZhfiXqgi2DDICemnFx+PBo5ZfowggwR09aMDsGGMtcIBKC6fM0MKS4n76ZkFSqJV3kht1MUtt7QOt9733d+3hzJiHZ/LUCqQutGqukFbN7Pq5Q88EG7AygBnnkYqLnXiQ2SHei9h/cZ0IVmnUvb/OzNAsHiXkp1b5K+YSbXVNYUQ0dngCSmDJIKZoXE5MwgURIuJyHOipTcV2JcVqoIeSh6ubC1TsmVMVX/OurNR8M9bBYSxwla3zw5aet02ffx7j8oVwBWQm5KfwGWMJhzcuAgZxAlJZeWdfGkPB2ddlpjWLqDhi+1lV+Cw72JEObJpfqpFrBO35qHSqinvVpXb+S107KDSHtdqL2zWQoPELc2sOzDhtbcfHg9WbB5lZwzdeqUnOg5kQSmqbjUJmWw1es5FUqZef3mLdOSyXH/XS4rrbm0ZfTB6M6gG80HRAOBHkMZ83olZ0/n82Hmy7lISJZs7GekD6OkFKwP3+tpMBDOvUMMm4kBQRIHPzxtNZgokl2qZlFrh9+b398d7R79pGOvv3wgfAXAcCDP0j6UlJC9ueeORZOvcadbADspF3KpziQLw2A/N53V1LdGa0JeZiTbdfi8P48RtHbHQfx/J8l08TS/PBdSSXTTaDb9Th6GA27dG2dvKBNFCrXuTDr35krhVUUqMRgf7B6zHuziz0VDklmiXxvN2Vm1FmdQ5AxpXM9Sb5orpeb9VmA6+tpSgyyZPiLsRILJVuAw3zIunoqppgHQZbqEFsQvFEpymazbBXTa5ulrBsxLoSQ3Hj816EMgB4ts+J4wFbZgSI9+YW3Z2SLZ6xtTeHoOBhqZkl3zmyUh0wASKVW3ZmkvdV1KQg2GutbM8bayrcrahp9b5h5m81ypk5DEa408TxRRtqKsWyeJyzZzCqBakt894sSAvTe26MXqVP09FCXXiaVvbMMTjal4yuEYtFSx7UIt3mefm5BS5oeHJ6QbxUCmA7fzESg8rquHM9jGwyTUeiCXws3dHW/fvPGeJBmX7Y7pODHViYxRyUjJSPU7rhuU44G3X77i7u6eNozLeuGXv/oVf/0v/zv+yzevHVhTD/wZA9qlc7o0xjaoBozBej6zXk60rrz78MCvf/09nx4/kQe8++mP/PDhB/+87dn3NonVnnhug8EF1IOx1vXEw/NHxuhsN3fc3tyxTAvWQZNxmJzpvdSZj4+PbFujidDUpXKfPn3g1f1rJFcM7wt2dEPMy0WvDxUp2WWcuYC6F9NOrHEK4QvQ60qvdK0pBxY2nh520HkZaqRESCBDgkvz/juK7ZwqtitoCcPvzwaOP8fHzw4ouclc9kbdjER2Y+i9OAb8B7SXZgiuBSuEXICIHyWaOnNkcfc/SdeORHbcwA9bSZHy469njwt+YQRFk6/RaLHPmfdmKIpl2yETApjw1DEvgM2b5ZTjsojmW16SityIzrBgEZn1kKyFN5QFj1FAcDTasN0P0umQSWEomkJ+E8AXBIVN/Fn5a3aN/e7H4zR5iWWzT9TD12RvYAJn2JO4NKawGp4Q3rFq+Nxw/X7N9Iq4vkhmZO8Qr+wKLx52ECIu7eF+TrU4OyXnxKHOvJoXKs6umoq4AZkY0zRzO2WW4vrvnI37u1v34WmO0saQmCUJtzlzEdgk2OGxtjLCSMIQmBTnQ6UXM+C9qfU/8fWRzMh4wdeGy7mGGqYFKTul27uy65rEm2y1WOP+ZKiSXBYXzeRVthjrWJLshKXro7x2o/G6bD+UvJNn18blvdmDK3C4F1X7miboys6S8oJ1L3oI01CJ6afk5MwYM0fRVRHt4fuT6Jj7gA0HN4b6Gt7B4CQS39v3UcLBnxGghwSAlDBPsRsbvY8AxGICbjuHJaRCPobxyXgWugVdNN78Mfp1WrgDPyIglt3osRZvIHKmqbFtnW27cDmfnak3BiIu79QxqDlxPl84HJfr+QQWk7kcMNP+7sb22BtRcwBXI3HGsKvXRnSS/taqXZs8bJc4vZxbfgu5pMmLBX+ul9PG49PzFaS4ApPhH9LjTM1JnMpuRCEM9zdHn76NmLiyy098XanalbmoGG/e3HH36hUfP7wjzz7xIOSdFkmGLhHbATe5AiVi0EPCkjJXEDcFzHpNeRRnOOUM33z9NX/xF7/EEJ6eT1y2RgLWtXnRPjrLceHu1RtUjfP5Qio1WJozonA5X0jzTCKzrp3b24m2de5vZt588Ybzjz+4x1qprG31fdCVUopPLX2D+VmeQLIzO1BQUcQ0jm4HfXZJwg7L7P9+Dhhd8Zbk70e8yfgNRwC5wQCNz3amoO9pzLCS+fXff4/ZtB/NYMrrtzc8P/o6tus/fAYkxdT82sBwZRX9OYD02QLkz37zchd+9iFAyv41et/v7s83g//8tSTm7E2djcG6roxtdbbNuqGa6evgd+PEe1WWMvH6yzcc7u7IxX3VsggdnwbnlGGaWC8XtstGOcyM0UGV0VYONwunxw+MzRvyVCqSPSigUEgFdHVPDSmJtTsYlysYnQJ0G+GpJTAV9zLU7nT4mEbnVGjBtlU2MjO2dWRy2rmIBxX4c99rDZdEmbJvQL9HVBA8WCFdJ5rGdJj44tuvUYF1dG5lopZ8NXbV1Elp8qk/ShudpoNhiUPKpLHF1/Q9nXU4g0jkeh8MM+4QvpTCj7JhZaKN1Y3xY60gwrZtIS0rYIPRfchQcqaIs6NLraS2oZbZ2bXWnd4vZqSSqXX2SbE4QCMpUbOvkd3gepf1iOwJbwN00NqFmitFDCtylUKnMdDWaabMh4UaXlSn0zlk74lt3UjmMspR1UGnHaDA03VuD0emeSZLZrtsXJxqwsCoMW1OwUbVvWYVf38zCXpDUqI1BTW20em9I3V2s9QBeUr01nl+PLu3VwxTkiTS7L6HCa8VNFeyds7rBVsbrTd/DttGizVmIkx1dqAWx4xzEY7LwcG4HTBBOV8unE8PXC5P9GARJRuIOuNpmSZSFkpOTCVsJnrII0hel2r31C0RprlyczxQi7CE2fd68DSxbbvQm0vct3VFew9vpAqTYt1r1hIpsyq7l2eKvzcg7eeWe0L2YB6P5h6ffbjcpavRhjqOIQSTKTxLEpQKOzu71onmaRBeJ4d0SgDtbhmQpPp9SNT6Q9j1FZacsZ3MfbIUUHGA2uEwPzGF6Bvw0BB6eEeJp6GCgYbRs8HlsiEyRWDezuZ1T8mX09TrJ8VN1sfQmM94216DoeQpsX5X70ExfYwYKqv7RG2Z5ZCYpgODgeYcNXMML5NFbZlCIq5e68lnCgsNX77uNdf5fMLMWZe77FPMj7qpVFIWtghNWSY3wt9DUkqpziargo4NUagpI0k9iWv4z68xqHNGdzTTJdO2xtY2JoN1W0kkpmOlFvefO23KRb2+TXj5VdxjhNEMa0YbjZyKv4+Rcm1DYSTaUPqQKzNJ8STNKp5ILBUqwsyAzc+2nAe1OFgwlczWG5fWySUYvXG2Gh1JUWMYdPVURctCnhNjHehw5inxuvpoUbv5e+a+wZkeYGWqlWI+IDlU2Bq43YqxbTHMzePK8ve7slDmmRVjXDrzUEpSPtmZMQqfnh5Jl/f00yf65vdDSolSJqZSwSAvmWmeeH08crMcqfPMPM3My0K9OXC8v+Xdj+/Y2uC7v/zWezNx78vbeeJ2zj644TOGXxU4JO6pHoTkN0pYsXjF1Ab818+NbessCB8fnvj+4Zk8jD99/55syu1c+MPvf+J3f/o997XST4P37z7w+9//A38cf+Bpfcfl9MTz5URbOq1tNBncHo/MxwP97IOltFSWaf5/aHuzJ0m248zv537OiYjMqurue/suuCBAzJiWoZGiOA96kP7o0YNkMplsJDNppNGuoUw0kRSHpEABIHCXXmrLzIizuB7cI6s5er0qGIDurqpcIk+c4/75tzB6p7bqw+qoM14GMIldnZXSzsBzcDoVpdUeDju7ukGjJPD9LZd8VQMN8f5gSR5SYuZhJ4iRUglyg7kkEsVGxYk0DsCqOkP5pe9zlv6PTVH68SVv7PR3by7s02hWiwJ2n9KHOaPLJZzhoSHPqSqoFqcATgXD3d1lR9xi07NPLojh4IZG00b8JFcWk7z8rkXB7i8nNu+X5j1+cUcknJEUv4sZXeJDNdijzm3//XibIxIR9g33GiUezWMfrqXEOpL90OjDmRYeWRpNV+Y6EYvu1heYEJHUPjVPDNQ0mEHiIA47XdiLTFSRSNTyBs9ppr37hr53p6LhA5AcCe/BPhpmYeoaPkuhG++tBlIeqTzJJ3Wu7fe3nZN/lodpZplnDlNhmRNzKRx18o1CBpPAbrCeTCjiANpOl+7DWR/Feb/uEyDu9RDWUQAAIABJREFUWTQFZbcGjNaBGfX0kCHkKOR1Bx12c06za1NtO9vHDKsbLWSMYoIOo8hOUwdMQv7VccRXQRJRQgcra28SXyA+saDQB/DnVOYrIvGyFi3+LmFQvfs8BWAraW/gg68WAIsz+tyXY1+XIx5f2KVtvjH7vxmxiLx57SPu2WDuaWZXnbXha9cL8Z2S7lyPpBar0VsnB6FcgmaxL2zbRm3VWVyteaaymxwgaQeQDZIG6OaNRuvB8OnVk8B6pbZ2bcKdat7JZaLM3nj1IWy1cT6ttHGm4zTi1jttCzlc90Z09Mbd8canyikxBFLODqhdr9w//P89JdIsfOOM+Dx9r9Ed2JVPWvQ4LK8Ad6ynEZ4jukuVPpl27muk98H79x+5/3Af5KigvUezprGM9LpGogwNkO72ePTG3gYpeTHtnkTe3O7+a16cuDzw57/4Ge/ffUsiUnPEpTe+d3rBjDpQ1HTE/d6vK8wwZIQprvj3NMBOSwHIqDCasa6dVGZ2NuicZzdvbgGUTsI0z2RJlLTwWC/0BpqV5TDx/PQI1mNSCr2u1E347OvP+D//9M9CEiIwOtY622VDigOoOeShBlxavSa5+LRPQX0/2tMonUHkBY3PLV+Aoat01Q84Z4rG923sgJHfd8ncN8X5oy5fJOSxhrPBBgNLwrt3F27eqKfQjMFxUn7+zRv+9rlRCc+9TzxersENn5yVO7PCz9AdeI619AkT6Sp1272grtVHNBMBUl0BcHFvFv0EEE/J/YVS9l1BdSKNlS4KbWPbNmyeGeLpJZepkA8HDp+9ctlKUjf57Qm6gy5iuKk6HjrxxezT8K06qHypK9vpzCEf3DNIU9xnCRVo1VmQy1xYh3nyWu8uC8qZ7i7GUegm3nz9Db1tPP/wWwfD1c/sRKfbxKCCdLK5hKz2DcFlJdLdmwESSS0AiTgvxFmbIxhwKNfn7mZYc/Ds9c1rHk5nXwPBbG3uVImqJ3X5Jtg8EGPskSiZ1CvXoATbWcXqzOwAbgRFe+WbUbgAj73StMXr9vPEh0+RrugbhUuxNFGWIztMvCwLTR/Iomzr6tKsSMBSMco0o2XBM/QG1TpDOiUrx5uZEvIna5UyTe4v4p2+s+6SQ7DJnDmlOBDsjByf2oo4UJTVPYHiBaPTDHW4OXXYA7jHIByPC8ty8KYgktRqa9ezqAthtxtAuSOCXjekAJJ7XOPeqDnSrRCkDabj5BJvXFa0duPcB2maIGWXJbZBr5WH05Mz6mujDUV6Z+tukq4lpFP6IjNNSYHO5XJ2IK4TxuqP1G3zXcU8DKNuK2J7qpIPwRwkIM5vQbL7tSQVH7Ro+DMOpbbBVh1MufRBLsXrdnO/0zlNpLR5rZdv6a2zHGZavfB0PmFDuLu54/n5yQGA4X4eistSUGXbNr777gcHiAJsRRUrPoAcrbPW7rWBDDaD2t1nKqmzqZK6x2jJ+/7lRWhSpXcflLkHacJSZ6+iDSNNCc2fGKCbxh5imPUA+gdimTbcrFk1DPI717N0D9ARxdkwJnjInLPuwqoeTEO6pNf91qse9/rT6F9yUTRn7znE+52sSpfBtGWkq4fzuDYVSXiDMlq0Mw5ibWvHGuQ0qCSshldYyUh3SXDdNvfg0r2+NQffYvqREowuyFCyJHpfcR9KrwUTEkwnv/TV0wNIwQ6SIbTaonZwFpn7bmZnFvUBWrDmfopNPO3SJTy+26QY3F3qxunxido31u3CNByEXkpyyaxVaoNzrTSTOP/D71aVrTba5vV7nieXzUbtI7gvk4UyBEkBznvfM5JitZGLIdo5ZuGIUbdBmkow8o217jU8V+Y5IqHYcWZe2ZR5ylz6mSSZ86VjyTjOykXcs8vDatz3KqcAxzSGHeAg1oDejMu2koMN7ri4sm4bVK/jS9SpSS2A14yVgs4TR81sUkndvUqtQN+EMifqeaNtF9q2BrvTsb5h4mnWCiUpv1OhSMKSx/RNmjkuBw7HA6fzBS2FD7/+Da8//5w8O2P0eDI+vv4Jd9/MvLqbKXkXAQfDWYgaydfhzvwVBnMWvpgPXncP4fWXR9529x/9/T/8GUWE26TcXzofTme+mgqlDy618vx85uFx4+OHEx9+eOTxwxPnhwfOj4+8u//I6eGBj/c/8HHcM1jZTk98dfiS364/gJ183mEw5cl9AOkvg1ZcmZPThGlnjI2wbiJJDoCnk9XhGF8ffhYMU8rkYSApwGhXA7snce+GSENz8aGUuCefM5O8Z805I7lQDf+cw7+5jU4pMz/m148PKKmbNZrFFm6+UaQAipp1b2bwhAc3WfTNKgirIEJWZSQ8TQqPDjWGe1rICzouyIusJ/rvqHEDhNlfWBTNOw1EgrWzN4PxrX067MW2BHrsB+4gNvJ9I7CdGSJXsGzgU5Nhvnk7VdsLPi9exL2RcJTbm1UJquC4Nq+aNEA5w8SneDai8b62Jn54CTvq6AflbhcLQiopCqdwlBcvkovtfkH+UDllcs4cDzdobLK9OoCXU6a1HhOm1WVEakit2M5mMLsaiuvkFGZvsAetD47LxJvbz7hdJqacUYHjNHlhaUIWYVdb7xLBXVI0xPX1CaHWDTRRJAcQ6OslkkVZVFly5rxVp9LGdH9XkwzMkx8CAHQTQn/OYX6YEgCTTwpca52TkKYcwJaBKUVw/4hmFDFM/AChd1KSmDSNYMJp4DV+s7sUzAGSl6l+LNrhIEWctX5995vJLKZcmVZrfKZ+nVqPiaO6Tl1V0VRiEtIC9FByStd1axA+Uj7htxGG7cKVaVhb5bLW2LyUUX3dqUIRX/XSa0j+fAPX5M3lVqunL/VKN2ithxlnJ5Xi3jgIJQkpJ0YbaEmeBIIfkKoOeF4uZzYfsxBAvksjspvlglHmmeXmAJbZ2sZWm9NTW2frgxZSUM3JP7va/ObBi0ZScj3/8KJgNJ87Smz2L5I2vTbrIjurx6G6FKbpmgJIxzeQJHIFn3yP2u/XvYCUayKNfy6771slUVwb31cenx64XJ5dCvUJqp5Qj0C1kG76LgYhVUhi3L2+QXKhyC6ri33DeRPsMEcLJpmNwc9//nP+7F/9H+hwj56rbMDhaPaZ7JAdzRrQ436CANfiMhhxLzgQqSNAHFFOtfLu3fuQyXgzMRRKTu6L0rpP/4MxmfOMkKhtMC0Zk8Hl/EwpmUMp9G1Qzb/3v/+P/zP/+X/2zzmvfv/W1nl+fmYpmaLObGrFWbHWq0terbt5Zk+0evFGIehFprj+PsCfgHxc5hQyS/OpAj3OpDBKw6nXsLPTdqboy8AlzhLvAjxXx5QqxmqDufvPGnB785ov7265f/PM7z66t5BQ2dO3TBwklBHrWAByAGH+dCmSaHxtcj3vrnTo61zFZSK+P469qyHiwtjTEMOcI+QZsU+mFA21P65ooqtiJNSUYRuMwbYayxvldTE+bit5yvRUcKPmdr3v9hQco/N4emJZZqAhDNZga6WSKFOmj5XR/WdrHYzuwMNA6VZhVJIONpwBoaqYHjh+kfni7hXTZ5/z8Otfcn7/LWqDKS1kOr/306/4za8fWKXQZVB7R0YjbQkbhSEtWJ+JNnxAgQ7a8D1VowgXBj0JW6tovQTNXRBz5uC2Vqj1Cij3a/xxGB4HwB+wGWZ+8mQZzN0Zwi6h7C7XRJgD+Nbwl8yaeFsK2pW/a8b71uhDqdKAwmQGWbE5gyWmMjk7P1jbOSemVMgl+7Q/zixf+w7iW+/YujHfQkqFPhrPOqimiGYOy8K8FKidwcxxWVCDOpxZIeLNZa0rkEjTFL5mniCYSqHkRMnZDc/HwG78Pc9lRutAuqDJi2rHjzN3dzcsx9nPLfEJsiRDh3oakBppDJfjx/pl6LUeRPBhmEWDF0mTOnxvqCVz9+VnIeXvbKdHzo9PfPzwnlobdXWZlbXN68d4DW5EHn8u6mbivXHZKqN1RttiUOCfw0iZaVlQ66yXZ8ZwkKeZ7+0pXj/htyJAC4hRTGjdfWlK1Oy9+dChj+6gygApXhOYJlozUimMjrNlxoDi4Gink3VGcyKXjDGzNKWUzNs3t2R98Uxa1OHFPM9MYtx/uOf99x/YJLn/Z/K9tq0NEaPZ3hFAoji7WZ0B3lEsO/g0zJv+a0iNeY0pAeR280piH0a22uniA8MeBrlJA5gZI5jV4mtRvQbpNsIGO4D6mDJb1EUMXIWpvv59M42zT+VqQK74WSfhKalx1lytG/DaulF9vaVCa42uCYYxFeGybpxTYs7ODjzmBVKj43K1ZtAvleY5GQxTxrpRg8kwq3CiksxYLys2zWzWoA+y5uvwwNmDvj7Jznpo4o294WduHmHOLhosDEctd39Tvx6RidYHOgfzprsR9aUa8wxNGtOUGZfVz2aCaZkziPDw8Z4P7z7SRCjFB1Nt67QqpGKc1o51YzMYqsxq9OFm30UztQq1bZhBmTLTUtiGUdJMfbqwzJlnq/Tun1U5ZF+L26CURCqZ3jpbW3lVMnc9sSCsc+bcN+blllY378k2B6pEsoeQ2XAJahrczBkUmrnxcj2vWOvYXHh+bKQ5k3Iimw9nky8gPwNHI4vXC2bithwK1nvsYz7emA8TSFjId8BnF9TzGckZKRN9QB1uQTKXhE3KnN1cerWGlsykM+te/9IC4HMp7sCHDtZha+Pax43mAPC7JyWl4mCkdL779jfkXNxEOs/8zV/8BX/353/BTz7/GT//6c/5/V/8Pj//xz/n5vUdN8fZwe6J6/1l5mAM5mcf+wBMfU+6S943HiZPoi4MpqXw6lXhRhwgvTPjK14HZjFoXRnNa3NPhvUAmsulcrofXE6Dd+8eWO/v+fXff8fH7z/ww/3fI7piljidHjltj/RxobHxtD4ywjJEVan1Qs6ZlCeMQdsGeSquYIn3MfaBXqQPZimMOAObDVdD7XujKoiHedhwLCUlV2KNbr7/two26Lg3sYPx6bq3/FhfPzqg1PpLAgK2T/YD5LG9XfHpd5bEaJ4Y1OsgFeWCMJFDziKsDKbjEcuvXPIUzZrTwKKgN5/m7ga6xOzF2VJ7Yf+JXnCXn+ygDDv0I58U2v5YEg297QW/hrGyENN58Qmqo1HocLqZFx67r0Y85W78ZH4NXhhLYdDV8bShAKhEIgkpaHM7UyUqejfdFZ8qlZSZNLGtq09P2P2QgrYZN5vFNCrlhJJCzuZmcClnpzGL8Hx6H14vfo1b81jtHk74DjQ0JhaXBcmtRxceJnLJtO5ytJQVHYk5JW6WG5aUKQkwlzipRQLZHoEbDBwNpgDJX/OIz81nMBIGdPvn6Q1Gb+5ZcCyZtWfO4cczJBhpcen2RLHrh4+Ev5KQNcXPxfQ2JTdOZFDyTLWBmoNE6xhoN7Za3ddIxcG/lMMQ2Qtgn0E4ci8eqs6g+QTVMjLMTSjZX5Kvc3/L3pzuSW0aEgWGMS+HWCr+fpbiIGSNAmtf4s5WyztZgt2PQ3Bdv40WOKsDAhp+Wuu6cjqd3QQWn4TklCmLkqR7/K7sEk5Frp+lcT5XTqdnByLDm0FSdnpmgq2vDniJT5r8gBDyNJOSp0K5oqdhY3DZNqe7F0frVZW2NfdHyE7pPN7csdaN5+cVaPTRruw6yJSiTmfPGQy6uJwhJfXpHL7hD4Q5JzyZbaCS4qB0ADslfbl/xbfQ3fNI1adjeZdipHRlfUjsSrGpBDgdLEbxqOPd7NMZZX7vZYkJJhJAZiGnmc7m8lSuZHyufkpxL10N+RjkLHzx9rVPKEyC9uqsCLOX1xo7OYkJSiINhd4wpjjAnXG1g9t7op4RpuWuqbmCEv7t/WcIfyW5vk8HqRzg/uUv/5rf/0e/x93tMYCJDcho7jydnzkut26WaZ4UNM8zKRVyKZyenrisDtjmeUEYPH/4wL/8L/8b/vyv/pIuimmjMRi98qtf/4qbmwXJuxQ4YVI4PZ+xKKIlZdY+rrIYw4JIGNcprpeO3Vh/v4+d+RXjBvZUUZDrNdkp+zurUD4ZUuzXS0XYM6BkeApWv1Ra7IHL7cRNKXz16jXf35+dsaiKSnb/EFPaNjivG636VIuQr+5s1DbcCfaFrbbvQiMSLWMHGzsgRZyVfubukr0iKYCbADrxZk6L8Or2NV99/TXvf/genQv9ufpaTgdSEv69f/onHMvkTfTzM+W0wXxDE2USn9rVPpBIdh026KMyBpyez5SUsW7UVhm2cTPdcnN3A8Dz4zPrtjmTBwlJQ6evLWRP5hPEsXqyWl44lom3X/6UdPuadXvmNhnTXHg1Z26OC6U3vrw78vTG+M377/YrQLo50AfoOPnz5UKr3gibOEOoD+PS3VdK+wqayCKcLiulzD5oEmFzMw4ubaOaf/YJY5LE1tVBDZWQnsMIYE9UyV3pKdNS51h9fNpCwqKxNn0DKsgYYJ0yMl9L4pjhfRdW9aSjUhY+0HkeG/fV6NbY7CmY1L5X2NYobwpvbxae14k6IOVBjfly65snuSFY+ButfaOZA/pBrMK6UZKzMNZ1JWdlH/mU8HBZVbFhHJLLs5BBzh3IHOcFLeoeOXnCulwBmhbx3EMykr0YbREzXYIlKOrAWUlEDZOovVJKZtQeTESvKydJLptXoZTi5+YOOg1jay4pONfKzehcHh5YpSJZ+eHvv+f5cQugxgcSumSmNNFq41JXLs1B1NrOoMqoPoBVVXrzIIHGQMKf0ocRivXmQxhrnmwc9WOLhiaJUHZbipTCK8iDLTou17zUDZVMGvIJIOP7brNGM9wMewxG3SjzDefW3bNHEr118hxBIbVj3Qetx+PswHI0w1mcta7AMi/kKfP4+BRmue5bmZMzoIY4G8cJzRrDRL/1+nDpmyRIZQqZXCcXZ4U1AsQdR/d/cuM4LHx/tu71RjMfcBrO0O4uAXAvVJUw6w9QO+YnA/fGUvz5+3VPj30z7rUuLvMriLMUK1jyecRujK3qDPtrryDu/bgDBJhEQIEyxdBuOhyp5xOwUdeFLOYyMfF6oYsyhg+1p+IMomHGcnug141tM9q2Ib0zkkFxtUDvrr8azYGQnItf42hUR3bmldfrHmkvCJN6fTWl4j2aF7J+xoQ6JUU4gJfNibG5vNF61CPsCeDiioi9v8MlcXfLkQ8f33N+enCmeU4R7CKcYgBSBozNR2W1NZJAyZnafWBVxf3fxNxzKJcCyZiY/OcPmdoG4xyD1lToawdpzHNiPniC12awkHk1lFkTNwfjOASzxCyFx8uJoonnuGensifpFZIK86QMGpfnlTI5cDe6kadCxc+KNym7TK42Uvja7cNf1USLHiqpG5fLUOxktDqobSVPCtqw5HIyLYK0OKeHwbYh08VfW08BrBc3Ep8y5+HpihvCRZwBW029X4ie2EKN4VzR6P0NP2vUaNbCP2nvcY1T39C+IdV7no+Xj7x7+J0DLpb5bPmMr27f8tnNGz777Atev37LF1++5Rf/6Bf89JufcXx7w3xXyAcDNU7Na9qb6aWrN0bwRxLdJMzYkw8jwgrkpTpVJvb9Tl+UBjboJoyfddQyjS9IQ2i9YSMUD21wOsHloXN/f+H+/RPvvn/Pd7/7Lffvf+D7D7/l3fsfeF4/sp3PSDLq2JiPE4JBydG7G9M8eQ/PS3iV9Q7DwToRHxp7sFDBpCLSgPCrtT0sJeo19eFTEaU3/zxyFnIMn36sr/8fTLndGNrgmoagQYVHQQJl88m7XdOxJDboIm46NqVMCp1sj+LeRgBGyeK5QhgRDctVvWzROftP+UVVB4vMkaBPFhBRWH+K1Bm7J43tr9O8CZAe077QdQuOtI8KzCElkUSTxu7pxH4INSALmeSGjfuEFyMPaMOnljI8PrKPjYGbTlsYOYrnc7q5a0yyaYNaV7qN8FYSGo3W1RNwphIAmINQkgLh35uY3l0KkpS6bayXFYjPI0/MU2aZbqmtscrKvMxMc2FZbri9e8XheGAqk5vxiUSDnhBT6nYmNcgMZslI714eitM+4xxlDFjtExPk7tpfn7jHBGjY1fzZkoNuO1zTRw+N6GDWzOfzDc+6cq4bm8Fm7VrE7AwuExg9fk+8CCRStvyhBqN1LqkyF28UFkteqOGf82aK9eQmyewpJb6WWoNhmzf1KQooDGsXRlYwpbFd1/fuYaQ7yw9PW7mmyJibgl/ZdObNc7eQKJkDEyXtgOu+6Qij1SuAaa6h8vU9+hW8mKYJRHk+PfL89ExrjVTKFbCROBwMj/At4tHrWZNHeatw//DAx6dHZ7CoJxNpMHgkABT3GAKXfYlT/pOwtY5YRZvQWrsalPYAyYbBoDn4iVOK5zwhKXM6PfHb779lW1eW5ZZpnnx61C3SaJxN1EenrRVRoUwZbCLljIj7eCQzLOROAG2d0MUTHlL4O8gVJvev6zRB4vAJ6cr/x8jY/qGUaP+Pj0CJ4kB9EoEXBr2ZNz0YOnzaUIMZNawHwBO/t7+goKabWZiLCrMot7dH5nl2vwJ1rXdKwjTN7L5PntI2SJbpNpjyQlqenVJrdmW8EMX8MK6G4YKDJL43jgCV5Pr+r0lh9JCahqjAdkAF/tt/8b/wv/4Pf8rd4Y68wEFmRhpc+qCuF37x06/54YcP/Af/0X/Iv/Mnf0yaPHK4bSu9VeYpM6Tzm7/9K/7sf/tT/tVf/CXPl4qmHEb7zUHsYdw/vuP+wxuK/oRcCmbC0+mJx+enK3YvAt3OVxCWKJS8TIHgU+4zgCu45lNvnzYPM7ZYT95+RJnTHfj383JfJ58Cy9dHv5qQCu5p4gMZZSrKXCZy8qbWU4F8P2yts61O6fa1FZ+xKzFobM6alQAFg/Ukw8/MOgYq/cVbbS9sxP1izDy6vZu6f8Ko4QXoAIHlzKwenf7Tn/2Mt2/eoI8fOa0nxOAeY8rApfP1Fz/hcDzQW+ex/pKHtTvbZAy0Nfb8xA50625A3Dq1evOR0hkz47xeUFHmeaL3ysPHB86nZ2dZEuCmCsvN0YciT57otFkna/HGqW+0VOipsEw3tPOJ1DqzdN5OM29uD0gbjO++54svvuG33/+OkSdymVju3vD8/A7djEGijYJqdSkJ6jfLdZjh94r04Q2pRl2gSlYhdZdzr+uJRuKQXOrULcyeAZGMjmDV5ExKkMz9l2zOcDiQtwsAOQyLh0DXQcqZkRvSXcKqfXNgXoTbKdO1kMT3mK/7zN9Z53FtdN3BK2/uVbw2+fzNkalvTK8K1hLrqsx03j+eaX0jIcwIau4WbH1DzJu6WdxHkj4YJbtBeCife+zbh+Xg/hQr0DpSynWwYCZMJRKgDK8X8wjvLBCPvokkRKN2YZC9nxrBftJEzsGmNyENN/ktyZ8nH/wsdgVWQjsxwNnYzhdqXd0QveNm5tWv63w8cLtMFLmh9Q1BKPnAYfGhX+uNul5odXB+3ti2SrfKU0iDs7mcRQcOlPUcLEhjxFk/IS4JscFI0Df/fvi9+s4RwFALqfouHSrh95dLYkqfgBkKW9v8HOq+Z2/bxiBsBqh8//47rx1LgWDvZk306pYIqm5O3hu0bmgq9JAXW+xJI4zLwbDW6dvG1juVTsq+21aMum+POrhslaUsNGskpwMzOpSDJwGr6DW+uw1nbosIlna2TUdGZ54SvTdXTLTGlJwpkszld8Oc2eWKhHbdjzvizAgEa0ZOQrWwAMDheJWMJW/exuhXZvxGpOcOpddBWTSea1z9eXwg4UMMT5aNP8d5wgjRa1Kez09Yaw4ijZWkC6hwqStjeP/gjJ6w4hdPXxskynyLToM1XRi1InniEn5I8/WaOBDVzcdaWPMqvbkfZQrbh5yzy1xVo8Z0j8ylFE9e7e6DeLMsTNK5bC5BQ/1krQy0hieUCufaKd09qjSk9V2Ng2a2rXL/dGLtRu2grVKTp5uBcpgyWd2zSFPi5u4zdAj19OzSP/E1XOLw9jql08+d2qH3jakkzufK2oyS3ErPaCQZTKKkzQ3jP0vCXI3SFD2YBzRgaOvcP5wd3OyV3jxUJOvkPmzJWToMvL6tfo3nXDj1DQ4Zaqd1Y710JumIuoTaxq4siPAW5TokGCr+FlFG3UgTHJbCWjfvtZJgkYbY+wCrjA2ePzbytnK8vYPpSMudUpx9NKGs9URqq7NdkpJyyKoEagsQSWJsup9RwZRXPAWRklz+2QwLQkMPgXZHKQbnVpmsI7ZxqWe+PX2L2EA2YyoLvQ9u8sxxfsObV1/w9u4t37z5itevv2DFSEfln/zhv83Nmy+YXx35yTe3NEuMInx1C2d8iysYIwbWelUphJE/LiskthwhkYBE9jrMwgc2OTNrkoJZ59UbQX/PwG4x+4ox/jHN3P+5rsbjY+d8gqeHlaePjzzd3/P88MzHd+94frrnw8MPnNcHTpd71nriUs+4SmdDo25WtSARJJcoi6F5ojdlmnNgAeLJdAHgurl/C6yjYVaQnrnYhR/z60cHlPZJPAbDnAFAyGN8+ukfGD0M21Jy3T/iVED1QrmNDlrY+uAmwByDiE3di7MAdOL5zPbJaACvYXr74lfCFewifmf/g/wb//QpvPQCOEWzEKW941YjaGkdobuEZTho0sYenS2oZgg0dLSKaqb3LSjNKSYiPfq0wCZVw4XJI0NzzrTq8KSFwVdSZ8NocmhFUiKVQq8BTrHLbNwrJpfCUPe3SSQkRxRtcpCv1Q1kcDgeMRNuX7/i9nAb0oFBXTdSTpRpIk8zy7xwjaSPa1/7oMpwZkMyJjI6hESjJCHv5k+44XdOyf0rxM0V99hhb5y9sUsIaA66sfuxuDzYXJYkikki4fI5xZh15jwX7reLU2uHuZwsOxMk2e7bFY1S/LdHd1tyQkoimzDW6k21KpYSefjkdDentOsj+GvP6pRRjaah4fI2M0glgzj9cAg+3dTMbnDex3CdOfvjarB5PLB8Bx6cHecHhz+v06l3Zp3g3iCIS0y2WuOzClR+9BfPiaw8P514frz3SNExKGVx0CV8Yhi9wf6fAAAgAElEQVQ72wLolZQFyRNtdB4fHri//+AHjSYvUCX8U1TDMNglhKN1lBwU3aCzN59WuS9L9cmYuQ9b0kSZEm10ahtkEtO8EBSYkFYI8zS7fj9743Q+nahbh/BmsOF7S55m937IiWee3dNpO7OZM/LW88aUEje3R9bROKQDWFBL96bUJCI8X3aL3ej430zGKkVjmuRH076lgEEAkXuhN8Z4YSV2BzdT0IlRB+bPD0+M7sanqMbU3PcoZ7Dt+xbxb+ACXKV2v/equDm+qjCC6eHrxKdeDEFy4vx0Is2ZeVlY2wUzcVYbL0DR/vp3Nt3LnfCyd17Bkn3vFrzQxv/uLEyhifC+DR4e7+kffOLShyDZC5ffvH9PN+X//mf/CV/9i/+OP/qnf8If/fEfc3u78Ltvf81f/umf8zf/+v/h23fvqNZJh4KEEaglZYyM85E6ORn3Hz+QNXN7fMV2OfH8/ExbtxejyuQ+Fkb7B+eBS2NjuGCffmtP5+MKHhp2ve/8WsU5Zf/gSl3XjHvDfLq0nNc4VNmGe6kUnN03p8Q0DQ5Hlyaft7OnolSPZh/qyT15yhxnYv6QaWOlDF97bRBNubkiw8yHPwSLwaccETXvdGrREZ4lLjEy87+L4lN91L1PknK8OXBzfM1dyfz7f/ALnh8f+O1vvuWX332PHJShC3cZsMSUlN/7o3/CX/1fv+RUK1qUrTlIZb2678pWeX5+du8chG1bMYE55AflZuHp+cL7d++vxpan0xnRzLzM3NzdMnpnfbqAJIbCYT5STbDtjEyGWGc7n7l9Xf2cKZm6bjxJ582ribxM3H//LT/9t/6AX5F5HC75KZK5KUfu5cQyHcllpl0eHMwzZUnKIes1wTLl7PNcGyw5c8yF1v1cDOY+27mSluzpUx1GeOaU1KljINzE4w2Q5h4oapgK65uF+iguw4YYTMSa69Fk94ZICcbB7vEUUpcErRktDc6j0WRQNJFKwmymSqccJzILx/lIf/c9x5v5ajq8BGtc8oFsRtKBZKWL0Wz3YAHtRlsv5LKAVujGul3IA2xk0pyo24WUfXI76MgYbMNBRQ0pFsNZCC3SclN4VPXmLMw+OrI5qJOTomrUrbGNwbEkJGc3uI4UOEpyzxk657pRT+er6W1vnljrQTQud3MJSyJPhfl2orbK69d3YX5cePpw5ryuPDzes9WNer7Qzmfa6GzmsuUhxoazaArua+mMHAfKkrrsIUoKN06OtselEP7v2t3TpkeNkky5Jvuqhgzehzei2YcX0pHiYKWzpF3mWuuKmVAva7BzvP4YXfnw8QOjVd588TnTzexDr9WNuJebowOr1pmXBRLoGLSQkZhVXpeZSZW6rZwxPjw/so4VyX6eYUaTwToak030vvsVGpmXeG5VBxU9AVhhdLatkXNItNUCoGn07o26iEvlWjOQ4nVyixuPOPOHkUp2Q+ZgNuWxy94lvKLdxkMsTPtRZz8gFMmYKDVYSlNyQFCGs0zF9U+fdCGg6sBIa+7tKZICQNrXuQ/orXVXEahCzogMLuvZwT1JTCXz6ph4rhe2gYdPiDnLKYJMRAQnJhXaEEp4qebk4KqLg7mGFDgT2bzOVk9mfrxc2Gpl9O4y5dFIKTvQNipafXiZgyFTcqGbOqvUOgXl3Cprb17zt87NzR21Xki5ULcY/BbhdG6cHx85rRtNjTL70OxSN4rM7pmaM891Q3ulyETaImkyPJhAWA4HJhHqWkGUZV7YbKC9s54rbXPvqIQ6aD+MkmcPmRDjqHCXhWQdJDM0mMoGFLjTzFor2/D1P00zMvwapSx+tq3d72UVptnDFlpz8/0kUyS6Jc5bw5KSUmYqzjIZ5pO82huJTNLiCqExmKeFTYxsRi5OLMgp0QX3p5JMb+6v1xu06nurmbEOaLrC8cD8OtE2pXdB1gujbg5mGeicUZI7pqZBtg57cqKIg/m2V7yDafJ+qOREw+0nTBPCbvPwkgo9MPcjE2HtqxMlWkeSePAEKx954Fff/h32O0WaiyFbFL/HfMNhOvLm+JqvPv+GUmbu7l7xB3/4h6i+5vB64Y/+5N/l7ddH5oNgiZDjO5tfrbudBtGrxn3vs/1gNYvEPpFxDvmeYBiMJzNUBpPBlBK2NF69CRYpM8Yr4OeBXfhrX8/G6WnwdF85fVx5+PjI4733Vu8/fOD+/iOn0z1PT9+zbQ+c2xNGJCymztoqy8FDW7zGzEh3hmXv5ub5wWq10REt/JhfPz6gNHyCqUawR3yzF5EgLn/i02DOCum76W3spyOizrqa08aTU8r6cA8BtZf0mpQ0LESiSApgaaeQRvv2DwEiBD4ZFMZZ7E2efULZj7/D/r14jRKz6WBaieDMFrOrXniM7kyF1hiWPdEMNw0cIfV8iU0NKV/xwz+l7A3WiDIhB8ggSp6cFqvo1ZxDRUglU8qCJCEvC2wr27oCgbRqYvSG4R4YKfnvJ/ED+DAvftNwJOXE8Xjr9OiUnUqNy+tsnq+HqqjA6EHJDWlP6NE7DookOtWMRTqFhcyg+MjQB2HBuOrWEXsxtkVCAzqMFhNxXHhEBDNi3Q9SST7pMQZDHQFPktBkpAEyH9guz+49IeHHpOqePzuoAVeAB+yFcWHCSHj8JoaqkU2o5mypZZmpvbHW7ZrOkjQz5UxJPoHsKiziFHRNhW6DPJzBMbnb+9XY06nAcQ9p+AfFOjBxkFGChh3uWQ4y7lO/aIRdvhbmycOlYvM8OasJc615NVq/cDqdOJ2eWdeVw+FIKZmSF4bB6fRMSuFxZEaZJrDB1isPj4+c185lvWAIUxHmPDOVTJlmevXJgzex8R5w5k3rwToYg2otMJ9I+BHFkjkgud98IvRmblBXCpdaUUnU1ni+PPvnmQuG8fj0RBJlmiaWZcFEnIGCA2u1VVqt8b6fAnSWqxfV4WZxKZUqo/Yw+HyRKhFAX9Zgk7UdSHSGyl6kjfBA672TPilQRTQMbwVVB812ZssIrysRIacE4tfJJaDCpVbuHx/ZPTF2WvjAk+Qm8Um8xhqvfCqXdbmJd8hO4e1jl4BGPPMAG+LFUesMGSzpwKu7O37z/YlS9IV1FMODtENIOwNwf67YIz9lKV0BNZxF5d93SYOJ+6X04b4n7h+mQQ3uTLiBsmFcsvCr9+/4zX/xz/kX/9V/jWpiWyu1D3oWbMkwlK3uzKAwITb3mUpJIB/Jt294/3zh3ePq0cYh+dJcqDaQXtieznGuDZAwvkZCRuvT626NPS6CWAcqu7zI/LGHufeGyFUqscsi9q/9Ou1ssx2EKghb7+QYEAx19mEaDuiWA6RknB/PNDPKvDAfZiyi1Y+H4nIggWqVdV0Y7URrG3X15l/UHHwNUNtvu12eLqTsU+LDYfb1WZw1aWPD6IyhrJfKnmwoYlSdsXRLRXgjna8nZyY99403/YnPX7+l6sLlh++ZfnFLMiNL4+71Zzy/f2AMpbfqrNBaqbW7l5J6amNWv5faVmkBNm39RJ0Gb17f0Efn0leOtzccb98gqjw9PbI+n1DNTMeZaZ5d3nI6cV4rx/Iate7/ViN7e8DaGj+cNr64GCUNrJ959+d/xqYG1rmZbhha/L4WZQqAZ0rqQQY0Pn+1sGS98txePn3h7vbOBwB48lNtjbU2nuvK67sjxVwOoxZMhW6UHLFW1q8JokMk9hG3DHjqkIcwj+b3v2rIWEAkO/Cig2FKGv5YtRkH7dSeWGPNXVAomZGVPHnCrVaDtrIcbxiXJ/cZEuX5+YFSZrbtwrqt1DHYMMpcmBUurdOa+6JMuXBcZtJc6H3loLf0IkynzrlvQOWOwvPlQtKVIcUb8tjWTAhGjGFZOTa5gv+rdUgZGxdonc6gKMioSK/XQr5vjVyUuQk3qiRR/v79e+4vF39sM3pxwAd1n5I8JXKKhMlc2Hrlsl7YemNJkJKDgO+//Z6bt29o/ZnffPtLtnXj/Q8/UA1GS5i4Ubih4Rfla6KIuDHugCEuke/dd4OtWXjyxU4hjT1t0n1VwEZijEoJU3quYLU5Qyy42p5I6omtQwcaA7dee9R5Xtud1rOnKeK+gftwy0h8//jEpVXauvH6szsHcCzUBkvhqDOnbaPWlV/99nfcPz1eB5wfyg88np4RdVDx+bIxcKbvLsnezexrbRgNJUUt5EMxQppbysQeBrJLEbFBs5ezaDe7dhmtA3IpCTKMnDNmLfZ6qHVz9m/4zWCuqiDH+RV4e6+DUYA20JpBGiNcBxISjNFgyfeXZOFpcS8kmvs/luwscT9TNk+q8ykjtpuj02MWsfco4TUrgCU0ZcR8sD2pcWudrTfOa/O9XTzGvaSZc6tkLW52r7vFhwNdJU9odjBiiNfLNoafXfvAc6ucbVDmiZQyp/M5rGB9fW3b5sPiEjJH8ZAU6xL+lwk195TsSdARNhllYjksHG8SicaqyrZ1ejPW9czj6d4H9h3WtjkTSxMR5heGxn7PnLczzRwc2vu+KSXy8EG6lsxWK3a+0Hu9eri3zf0os8JxWRijseTEISXmpNykwd0EWzPOW6McZiZTdDLEKrVu3KYFjoWbfMdTA7OZ5eDAkXUjkZ11H+evM86VPHkybeuJKWVEhFYHWPJ7NKmviRHSrAF9PSNZgE5Pbm6PDcrwHsnY/egEGY1sdmWKD7qLDPtKu8DWzkwDHhRe377m0l2e1evG2moM/pNfPwLUtuhNpxSDQqMZtD6Y1P1nB4PaA/hO3nj5ELlfA6VkFB9siksEF3wvWW1w2laMjnUhbXKVt0gk85k4wPXAiY+XB767/D3/+sNfOCA2zfyn/9N/DJI4ppkvbr7iqzc/5Sef/4Q3n7/l7Zc/4fMvf8JX33zO17/3lru3C9ONUMo+svfDZmDYqGEfI7jlDhCpkj66DVZjytfh4IhKGXixpQnlOTRSMuZbePUK+L0ZYwE+A7w3rRXaZmxn4fTYebo/8/Txkef7B959fOLjuwfe/fBbzqcfeDp95Pn8wHm7Z20P3vNY81CdcoPaRnWRLz/m148OKKm6B4ioR2pqLKJdxrH3FSl0l5r9xvaph0/gJKfr1KUwvHHrLsVQ9WKtmW9+rQUYpVc86gU+sh0pspe/Ilfg6Mpu2pEigz2xzQfIvvvIJ0yfHfjby0Ef4gRnU8yZSGwxyS1Yu5CysJ1XBsPTsNRp1m7o603YFhGQKel16laWgma4XNaQp2Q37wJk+GFZcgkPG3/fbWu0foqY8vBPMk+LmYvTjVMqlHniuBzIJRgSvWEdyrSQSuL25hU762CYU3QJynUOw2T3/4jmqbkpLQJjMo/0rdA1MQ9B8nAJo5/FgHuDmHlCBxDa8RE6a5eU7VO31Yzc3QCxmccn6r7JikT6i70AZupT3ymMym7niYfziabxOfdB03FdA0YAfcCemuUTewel+qictwt36ehrJujQZhtJR3gvJcDTf3LOAUK4/KMZiOVosiMGu7hxnK8+p0jvyKbfK+oeCDFZMzPXv+6HubkJZFZPI9s17wC9dVTFPSh0ordK3S6YmE8CT2cEeD49M80T8zxxe7zxTbB1LuczqrBkdSZS7/St8vHpkdPzs0+xMLatcnNzi3VjXiZUvACx6jRyp5xbNOEvX2awbReW5eDySBwU620EI8Q3by8WHVAew9lcbtB9CaqvUNT177V1hMwyK1OZmKYScsbEVtd43sG2rXH/G1OZAvwxcoDTJTk4l8yTx1rvlDT7+rJ9H3HJUg3Z2Z5OqRCsluERyJ+yTlSv941o5up9FJ41FhTaF6ZTCqblvk+4r0OL6N993WY8+SHF0dVC4z4jJAG6J9EkUQ7Z/SpMsxfEuocU646zR2EAbavOMhmdPM9kTaErj31WJJhFvina7v+0f0mw/UJ3YbYPTnZkfn/fvn/7MFj8YB5eRFcdlCFM4mCGy3YHdRiYp/icxCdjOon70JnQW5gUB+4uozvbQSTkEMLh9WfoceLp/plzL4zh4NWr17feRJFYyiue3v8GSXa9t/bhx/Xzw/egEQDM/jM+3xda+KwQALOb5HM9J/d7e/88r9BbTK01ALocZ0XyCsRZKMWQATfFOM4Z0oxaQ9NEXpZgxSmihTRNmBhlJBgXLj3Thg82dm8LiS59Pys9QVPDr88p1RL7DQZT9j3NC02XTA5xH4CbkkirMc4bNzp4Uw6MeuL9u3e8f/iB2+MdWiFNlf78xGiwLJCPN9x+Vjg+nEEcFEmAlIm0uE+giLP1WmvM0xTMzk69GI/v3/P6F79wtq4or+7eMKy5hOeysejE4c3i0/A26GtllESej5QeAy6d0DSDFBh+xqY0cxrGh3Pl1eT33G/ff2DTBdMG1shTYj31kEB7DaBlInefIqackJxovZJxubKoA4gtBmvNBrROa8a6dfrqZ3mzQRNvHscwmmV0JHa/kdHNfXekk4F5CDc/wCw3VLuw4jKDMTpp7CwVwXQiD8giiA2GZOai1CHMWjhq4aOtVOnYOGMrXLZMFUWo9Aa5dU71mVdlZntaeTp15lv4uFZubm6wLbxQZKKJe8Ls57uokqYjUxZsCI+XJ0qemY9HbJnYLg4wT8tE3QbtsoEoW2g3VZN70YibKbfsDOwQZ6PN/RzPioOnY91PfJLBnCYmA04rfZzIb458/dmRh2L8cBrIlNCcOCRjrQ5QNTMKQq0rl+7DgVorp3Wl1Qb3Sjaf5L/54hXr+kjRgTU4PzYuK5FOVx3ANiXIoxT2hMfOAaUn8Yho8zUnw9lZHfEgCYHJi9frHtXM93j6oPb2MtQVj7fxGiLM+WNgoRJM0ORITq0rosqleXMcc166+ZByZ493a0wpcV7P/Op3Z777vjDNC7e3d3z25hVlekVJidPTR/76r7+jPT6RSrk2Wut2cWAnKTlBtfC2Cv+ekpxpM7aNDUX1gMTZUsQlICodyQnrK2NVT6uSFAwkkOHDtWoe6pHKC4vApUGVeVrQrCHAGS6JmvPVZHuEikAshZeJ16MiICX2dVHf5yF8lLxjTCgi+/DUzyjDa6o8FVJXVLMDzep0iRxsxR4AoahLXHow0G0YRRJbM/IMr2dla9C7+/eoQSZxXp01erPMrLVyXiunxwvk7mqFsZFLCc9Qn/SWVK5nfCnZPZPCa1GSOktHJ7bmZuX+noxSittqDGithvy9M7TRupHniUvdOGN4IJN7ZBneH4xo17T7+zyfnzkcHdgqw+htY7uckB5IXlZuD0cenlZnrh1cfpVC27FaZ5mKD+CmzHltLrkanZE9Ta6OgaaEFjDJpJSp5wsH3Dvz9uaAbRsTmYJEwhqU8IJLCrY16mj+5yZQN8iJCeVwnFi3xjJNNIP5RrmchCkrOQ0umxv5S4HCxPlxoywzW+ss03T1sU2lXNUmvdZI6XUZZe/VQcXhPmjW3Rw/TQvg0vQRliK1Vo7zQquxFq+KBaOJhwSIQVmV7cOJswwuPTFUqFTUBtlkn/jBqL5jFU9IHWE+r+qBHLkUkhAJi92TCnEyRo7a2Xp3Fo91knVnQHavqar4oC9roY/uPljkYKJ6LdDMmVy7SXjfNu8hJNFFKVNBR6NpAql87GfuHx75m4+/RP7WmfIZoVjhthz47OZLPr/9gm++/JovvvqCL7/8hrc/+Smff/mWN29fcfz8hsMtTIt4Wr0jY8FW9LXHeBlA717GsNd9/vOa9zr4SqWIfYlrvWwYSicl4CDojcIXINzQ7Qbkm+u+vK7GeoHz4+DxfuXDD4/8+V/9kn/53/8zxvo730MYrL3Qny5XNuqP9fXjeyiR9q7BpyLqyOWO7CHe+Oxl90tqkk8IJAsZT6cYMhhaPCavB3A0PN3kyj2KAv7KLArUb2cROSh0fUnX3/NnjwksnjxgOH12BIg0fODD7h0Rghc3sXRaEvs0UgZXU2LFGUOj+VijXk5+cPdBb6sngYjvnDuTyVqjmieaNdMrkwJzedlOUZZotMGo2xbyjBReNYFcW6GPzWOHc+Zwe8ebz1/x9vXnPtTIs9MKW7t+JoInHDUzLuczvdVodJwxlnNGs+6XOoCX/Zr4/yhKVxDrbpzIgK6sYsyakIh9zpJj4uTeUKoTzezKxBFxJ6XeCU8Ol4u0mA62PrhId8YOMTkJOaXXmN39g/DNdxFlIXESdemPglzBTgcQ9xJOhqPtRZSCA5sApg4KjDEge8yvgZuIp5kRsbWGm52ZjND8++8XcdzaUnZWFcIklTymePz9c93ldxJmjVzRfsCbjz6QnEJPK0Fb77TaroZsJj51HGOwbc+czydaPdNbp3X31TrOM19/+Tltq9S1M8aFunmccEqZIn5gne9P1MuJ2tyMU9W9FFA4LDNZneY9uhusTqVEwRMVaNwuxgtDx6L4P53OTlLrPX7H782Uc0gS9Mp4RPl/mXuTZUm27DzvW7txj4jTZOa9t6pQBRAgCbARqaFmegqZaaShnkBTzfUQmvIN9B4yk5kGMooGihSAKlR7m8w850S472Zp8C+PvDUvmunAsgyZN/McD/fte6/1r7/h9e0zYzqlLDIyTTGRM6MshYoSbBJw2zbdlxHvBYkWMdpHil4OGnHKAjP30egTytS/mcC+q9E+WDmjR7ZZMMYIWatbMCfjs3GAki5PrjEk1wQL09CjcdezPZLqcgCKzINmnjjSXk618O5y4tMP0tBPE1tlnyqDRZB0FYYGIwCtPGG73WhtZz2vKrZjOhQb6R3gnmPSdvlIzSzezV/99d/wy3/4B2YyFefhwfFHIOGxIwYD59hlj6GC9g4PU+7D90sFzQGkJHeZg0bhaq7JrCPQfNcglRQeY/v9TBB4U1BzkTyLqTFCSJDCS8QPcWpmv+7MMTmtK9tVZrRmlWSPDDrZVtHq9wIzx6eLFE7/8qGPxiq5RxOha5sxFBlxXvghKzxM6KOI43426bsfsnFz0LQ9GGQH+HasFzNqSSylMGbm8WGVp9roWM2KgrZMzTmigXtM2zt4w02TwFS0pglwFBP4OEMSpc+mJK5cV5acmd4k1/LEHIkxqyTsYWK/5Mx/81//nH/2T/+SX/4gBso5vfD9H77j17/9R7aZWGqRUXRK7C+fOI+d7JntOri+vtIjiavWgnsRYyx8TLapPXIe522pLJaZlri9vpFLoS5nLuuZ1nferi+M0am13J/ZKSkNaugN5jY7mclMDZ+F9w8nSu589I2OcV4WHtfC+cMjNhtpyezLI/MtkyiMXBjtjcKZzT6zeec0NxWSHdZcuJweqMuK9f0u41BxqT1ryfJo6AP5J7WJ7ZM8JVmStJUw23fVVvPHybcZIpHrHVVsHSTb8ByAcK5QumQLddGk21Wr1JTVDOKc8hlLRvbMWk4s80be0p0YUZFE3WuGVOjBbrIhJtXsg/O68HB55tQH9XaHtMjTec4FSqKcFpY8wDJpKSypah8fg7VkLg/LnbG9+86+bZRlESM1AyWxuGHJWNZVqVqmYJjH80WgeNvZRydblVeNFf08IHvnlFfePV+wvuvd952fPK789tq5tZ19a9y2K9uQHPvwC6kpx3uxxP2DWcXy27aNdUk8//kHDKOUTKfxtr3idIVFJIE/Kc7JHCb37pLN3xiUWSJFTswbmx7M/BnsBpm3DsviGcihlzZ3xKjJqpWckOsFKGQH60apZWQBjG3fFd+edM6p5KkwCngLY3+xPMtINCu0OamRYtzmYHt75e3tlY8fv2X9lWRa1+tGSZUZkJknJ1WDkWE2mZjnNcDt4/12+axMMbhCk6v0Ylfdbj6pyyJQtikUYpiTimq9I7/UMcYw1qWKMeyD3o197zhKK8OH2D1+pPFqEDDnZM1i/M6sPbikwmjizOaS8F1+cymDD9XkY4p9U7IGi3vvjN7UMySxqGeXqbRk7uGjFNOdlIy9DT3jNhi72LpagfLDypa5zc6705mSRpwhBdokTXnqSBsiuXpZUpAuXQxMHUYS7EzT/oDW2R5nUS2VMZ0+OsUK1oyWGnmpeO/yySyVZV3BnWZNnmWt3cHy0SXbz4vutffBbQ7KlH9Un5OFRElOLka/bZhVbi87o2uY1rZX8A3LHr2B00sXVawnxihiW85OxajLgi9FwNYenmQGp6Wq16NTk5L+Rh+UBLRO7Y575+F0Jg1IVlhL4XRWBHz2SZudl5ui4QsFbxt2OQa7Sr10y/iopIeTWI4F6pLIqXJeCvs24apE2TkHPo1yWpg2eaiVthue9e7WsvB2u2I2qTnSbv1wkbX4JR/d1q7yh835DmSsaQl/4kUqIMtYMM6P+mTGHp4TvL58T1kXxudEWs+8XTu2KwgmRw075xRjL95Ls1AVxXkkm5Jg0w9JkzUcy/ehRrJEXld5Qo3O6HukwWvPU42qdFYssQshZr/7/6hGDZWr/F7zWSCaSj8mQ8DU7OQRNWaWD1opVUzIDN1vXOcrv/n0O/gE9R8LqQ1WqySrnNcL5+UdT48f+OrpK37ys5/x4d1P+ObPfs77rz7w9JP3PLx/4ul55ekpc7pIxm9pBhtM164NLkBm4379B6h0D/SKGtpkfAG6E0BiRhAM977ZKOvk8WTwITE44Sy8+zff8O9//7fU1zO/+MU/4ZQf2bfObdv55W9/zZ/y67+Ih5IHCq8PrSY49kc1AyZ/jkLCNznPmx96SsemXvxD8z19EozM2GRjco+MoyeaAhjRgUeno7+uxs1Cy4/9yOckXkWBWnaM51XgmTaUMQY2k8CUYIQYXxr940uLXQ1ZH000vqF0i5kkddNClwFbyZrMubnkONOpOamQnEp2SKXKYHEMpkk3LumLAJe6yA8km5gI2YzLwwOnhwueHPfEw0W/NzOSD/DE1nbaLVhUJYnua4nWZeSaUyalQts3AQtLDQq10FJ5QolyOYdMl7ERRmHGSGoy9jGZqfPQEjd3LkmeOoa05i3WQkpGGha62hQsA93ngUWjpw2xzS6EfiZysP2b6/4coF5Kos0WwuycyWUpfGoZZrP51WIAACAASURBVL97/Iz4LIe3kZm00iBQsQfinA2qFUpdsFrxPuRNMsFTZpkF8gbFNfXzjLnSzCx7mDlrit68R05dgllEO5zhFcABvHxhJLkf4ohDRhPI9oT+I12spYjCboO27YCztRufPv1A22+sS2FdKuupsK7PpAL9tvHxd7+HFECEyRfKcsL7zuv1xr7diEpLrEIPX5k0QxKZFUluFgkTAqHC4AqzTOSek5GUpo3Otm1ij/RdzLisaelyWjSNHB4S1yFw+aBFt47lKrCpyFzzAKbNtaO1tyYKMxOzkCVEzGxdZbBq0XjnVLjtN9reyMl4SJnrfmOfxnaTh0jNlX3b8cOcwuTrJHbeIFuRieth4lkEiI/R7v4HPlTkj77fGUfzbn6qvcCaivQZxrwJvR/XeaMcHho58/j8hP9jlTyMHoCuqdm8H0KxH4cceOJse+cPv/8DP//zXzC7ZE7uMvmdw8MMPphUAdbuo1Fn4ev371jXNZKnCFPm8GAJAMWS/Qho8Tt4n81CiskdYA3IjC/uH6YCnaZnNp3JYPFgzyAAqgwPkIwA0cEK8WwyTrl/rjnj/XUP9mDo9LOkEf/iX/8bfv6zX/D9t9/x6eX/pd2unIvYUT4mvuz696dxR81lhpvuQ4rDR8//iHX1o3tgIXubYpLl+NQiPB3/xu9n5wF4CUzSvRnHIOb4MxO7oSQZNeecKGnhvGrSP6bTbrskRDn2+FJI1KDTr0wWil/BFmgJ6Ng4EF1j0nCLiRuHK4AzzCEZp/IAdsgIgtXQjLpmJvKH+PaHF95//4m6/oSJ8daNNUOqK29b5+3aOCXg2gW003nbOmVM2jYoZaXPDWNi60odk/22Mdqm5riPex2ga9Z9WU5nPGX2fZJ8o6wLJZ8Z+wteFLBBsAkP6fzwCWMnzc42Tqy1cLpkTpeF60vl9emJ/Hrh67XwZ3/9l/Cr38C1M6dMfIsqu2DZNWzv+HmhD7DmLCmTfbK9vDJLxpMKI0WLJxJiXtXTidYPgMiZc6exM8dGyoM0pwI5tPkgfEkg07DJ4l9A7Z/kwmlc2XwTeOJOSnu8u4k5G9nkaXfKSuXteAzDOktysk1GcupMLB0VwLng5iylsDSHKjB95go5UR9OJBs8Pzxj5nzeb+z7oE7JqqwNHEMYjFNrpqyLmALa9OgeUiR3alYj3FyJYmnJpLXSxpTkaGtsAUDPIRY4JcFMjOtOHwA693PqkCRxtDk08Ex69myTt9sL23WjtCvY5NsfvoWZ2KZYXx0jTUUzW0Qzl6ghVIuE2bXB1z/7mnfvH3l6Piu9cE4upxP71sm5so1JQl52GgDomfZA7EbUwCkFIz9lJbXlFKboOo9V/3LfTVOc5znql+T3SjhqL73Tw4GUNdA0MWXb7LTuLDZ5enrPennQt/bB6/WNl0+vJDPa2BmzMAL8EctxagiLUbSBMUdjn+O+rvptYGRG20lPq0zmD9uEksOOwFhSleSnN+1/HZb1jHt4/5kzR2NaIYUEr29dLKVVZ1IbQ/IrF/PKpzNQQ7rEWTC6EvIwp6xi6Y6uoec4UgyDmrXNSJOzCBjxLsDfjTIAsnrbFPXBSGIpB/iQcpL3ZnjOzRHDoARLmpAiWTgazBTglSfJhmqu9L2TOSRBstRw22jAxzcZjaflrCCVQbDcJZPLtVK8klNnZiXWbXvBrDALeg9EjiTHWaRQpUlrI/xbjxAKWZLsARLVlLlcHgR2XTd6MswqSykhY1ZfNIDZB2P0sHRQmpz6QUkMZwcbN86nE2PT98cmLy+vbK8fuTxNllPh7S2IBz5YFphdA0KvAmZufWj/mIn91snDWDxTlwD9kljkPsRO6e60zQkHec7rwuWyQJtiCKbG7JNqxnXfqXlyyobPjKWOU9i3Hgxwh1yZY2NJN5blPY3Jp9vOtEIpC203Wh8sJ5Nka3O8TYwuT6LhrEvmZTbcCntvLKXQ2o0ZNSimsJwypXqZDBmNm97tnHPYdSz0rmTtnCNgx1LUsBZhBtHkTWd2l8eXDbZ9o6ZKbc7WPF4Hpyb1KuQUEmR9f0yuW7kUAaTRs5QSXkNqZvDZmQNyrkAOk3ul6J0t44s8oSZDYGQkhs8OuWp/n2mCD+aIHiCBjBE0JLp36FMM72kdq1W1Zlb+49h32lCISjIFAMyhelN/33m1G54mn22D7Q+0G5TfJfhPmTwVMHUqZx7qO54en3h+eM+Hdz/hp9/8jD/76U/58NVXPH34wLv3z1yeL5yeM5eHwrpWeVHmo58N3mb4r92Da4zwZNMAG9AQAKK3n6qLg/kEUKMHe3yC+fV7vvnwU/7Jv/pXrA9PJFuZvbP+7e/5U379yQElXAhpsUgsORod7nNV3JIe3NjDm1nYaiXRSdiasLapMDAPAEk+Juk+0YOUJP2wGfySGRP/OFyJw9dBVFU7NNSEMVmU7MOxIsaKrlMP85Dd9X0DV0pCCv8fD+kUThgdquEuVeZ/DOTTsRRG76SUKaXExFkgW8lFcpkA1FTKEy/3oLcZgJmThqhp7i6qZMqsdeV8unA6nbisK+dadIDVQu+7Yg6ZjNtG7+0+3XQSxbNoloMvnh5DvhklVRxYqhIzPNC5PzY9Tz9a7DEtjabx8EWxZNg0Zp24J6wWyVCCilIOlPFIWbFEx4KpNaNRHXhSXPKNTSyEMKQZfSrmNVkc9JAZnFynsDS1ilYeswlkm66kvmiCq3+R7XhM42QRlYKt4aQ8mKlw5xUGY21SFatrXaDdweHmAGhiFD7TveEs5ND8gluGPDFPWlvRW3p4kAigDDAbNd2zD6YZ+95o266Ju4H3ztt2Y98bve3s2w2fg9Op8nRZwTuj7TCd1/3Gtl1Z4z6mqe9hBmN29ltj7I1aMqfTQh+dfd/EiMoyXFyXhVJyeDTJCNbnDNN8Td9SgLi9D0nueqdFfLCjuNN10fS5lhR6aGffdxUKU8Cl+wGuQa41AF+ZifbWmb4zp2I755zUItAolUoOMElsCg+PI2e0G9tt43q76tDN0n3PMbhtG3N0LpcLy/mBW9s5LZk5TabiDGrIN4eBpR2wkIf+iE2WYY7OYov2q/wFwLaIWLXYR1KOcyDkcilYU9kF2m6uQry1hgQdAx8CwVJOtBkcoJC4pumKUE7QYvPd2uDv/uEfYVkEaATzyYCajgaWu1+T0iUSb/OGj8HjwyPf/fAdc5kyfA7wI8EfhVe56TBzIHlXvHHszfNoejyAiNg3PECTJWWliBjg6d4s2VSZ0M20X7iAFTeZshvh/cMIM2N9HrHsYt8//pzEh28+cHo68fHlI2M2xtxoPnheLvJDskwm497oeY0TrCtynAO+iCLMkAdUAEjZ0j35LyFfEr3vRiPo5QEM8aOT8UhhDGdK/ZekM7Oid2va5HFZtBukJBp5FjuyLkkAQc4yMh+wLMZaCqWe8NOJpSQui3HdMiXB6+0mo07Peqa0mCgGUHa/Y5La1eAXH8xBM8lBx5h0umQ7WXHq/9d/+oHffw9/828fef+Q+O6a+Yv1kYfLM8vrJz6NG99/GrzVE48fHrn4pF8bv/3VLzl9+IqbTbAiOdK24aMzt85aVlrfaNOxrIZljs62d3rbMZtcX155+MVX1KVSq2E2GaNwu27MEQziIz21T/YxJD/KJ5aCZDQpcTmvPJ4X9rcH5umB0zL46vmBz69PklAvC+sclGlclkpi8OGS+fX3jYeTJoivqBGbwMt25dwWSUzMkEjXmZEsuc8uf0OM5p2Xlxdwi+m+zqSc5UlHTCr1PHR4jDRwG2SM57xQktOHCvMFTT7dwvg2Z8nPq4r7Skh3o2hVVIjO81Oa/KVX8I1vx8bNJ8Mro23y83FnuZyxeuHp/SOve+N8qbRb5fcfXyRJGLrO1pWymafhKdF9sG2bPOPQoCqlTM0C3f2k5v46OiPSrXpvOJCnYWNiGZYkeU6ywsiSFFEynifeE227xWBORrhuFWzD5+R62/l+f8ED8G9tYD7JvfM6YVLwkBpO0/BP7PbEDAbt6GBWmX7l8vDIh7/4mktdWQbMvFFZuFzOlKakr8rUOMARmAtMczE0zAJsBLOJdqCdSRGCbjGsYWqIlgmeksYHmLz/zMJ31ATS3bcX/UvJH5H8RiRpV30SUgxLLp/LDQEhi1NuRLVOMEDVvvkMDxTzCFIRW8EnWLOQbjl7amKVXmWOvg+ZgeMyaFeStbxFL8uKTWOfAqZwWKyw4tzMJFNqxvVNg6d1CXA7GSlUCtOVXJdTooQEzVunz0mqK94kl8U7UvKkMKwFhurMA4BOKIpdfcSg5sJssM1BG5NTkqdWATbkV5ksgFJ3copkKATC9TlYRwyPgolhLs5k7/ITTK66oyMAy6O4SDZJq0GunMIvrfvkkU572yEkQ7lG9RjDpfNyop7g9aXTRydVedLgilJ/OK+xzidpdGaD3nowstXcu1cB4Tnp3MjQudH3SOYd/YtHKWKMWcqsKSa0tsj7NCfYB6MPhrksOAayKyhaM2nA9e2FHz7/QCnQvbC9Dm5NxXrxDAu4N6ZJAlVSklzRnf3thoKPDIrkjoSXYQ62Xz4G0gadxLJkTglsuzL65FSLZJKeeLneSObUUwU6SzLsXDTYbYWBLBOmZ+paWHzn9e0Tr65BwPOThoE/bJ2ZnGKZEdYtzZ0Z99RzJs/E4+nEte2UaWCNlCtu8gT1Ocmuz6STxJnepbRosACXU+X1ppTEnGKMlzKppqj5gxmXwFpndmMUp9QFXxbm+ZmeMt1utNlhKuV5ZiXsGn4PAsrRE2SHapOZtVfrSwb4at8VdCAbCNld5PDgPPpK4d06DwRG6c9anyxVksw+Ndz2FL5p7krIdqcFowlTbzgPhYA5LAUbk+KFm09ydlJ4Qs6QuCabtDHZ4tsk73iPc8WTUiiT7CVIg2Y3trHx6fMf+OUPE/9lyDljoLnME6f6xPPpiYenZ37x07/g629+ytM33/Dhq/c8f/Wedx+eOT2sPD0WzpdCrVXDw6LBoSWB50ZIvYPpz8F697BJ4GDLg1Vjeyx4O3N6d+Hx+ZlhC+aD5WXjT/n1JweU2hQ922xG8ayNSmCNRdx6uhtsK9FI0xhbVlrr/M1f/2v+/m//PdOFkFITp1q5ls7jw5lkksNMxhHcdW/IZw/plEeih0GpRTQ8J/SdQmln+CWVWsg103bFWqZAdscc9LZFhHqLZnTowR4f+AAB/JBaiL4uz5NIZts3cl5wn5QchmTB5MqlUGqWX8nwQJ2NMY31fKLPzpISuS7UmjhfHljKymU5hb5WzbWNqTZzdLG6xjGpEgCWkpJl5mEGnBOkLJNb07TGYgrvh/wlSbrjxCF7x5MEBB3Ahx0INx4eOrrHh6xPVOud5otSHnB5SbQwJwwjWMnFdCB1h94cUsHGUJExI261FDWTcSD7DPkMSkKT90y8VElI/JIXDE1nB2I85JTZw8BYiJJ9kfBx4JJqqmvKrHWJpj+iMEtRAw+iPM8DQRZDwh0cUbMFBwUoFI10CtbJsQNHPREg0gFrxjs0CSNn2G83ckoyvh6N63Xj7fUFXLrukpyn98+MvvH2+pG9T9ZaOK+Ftm2kJD8Kny6QKbx9RofXtxdqKaynhX3fue5XSs6czyddfUTxghhSZse9MAipZkqZPgbX687onR7yqZwLdV2o1WijBRPOIBJ5yFnPLtCtsoQHwpzMFhHlvcsQMHet1aNxT5nTWXIci+S6EabYftCtTc+qj0lvuqaSC5aM3hqzN2pKYTxeWc5nzBJ1ySpsUyFwoPv7nezH/78fswNFCFtgihHxbPHzJ5I9TVeRe7D+7vsJBydMkk9mieJfMqoxJzaPSGbR3w8W0JwzCjmtt4OFNwAvhe8/v/LPUmEtlUMDXyzAeMI3IpW7oaihtZhz4s/+4s/59rvvwMObKapFj4LiKLoF3Mi7qJvMZYtBE/YSv9TZuIWkylxyTcT26Ife+MfvIogV6XFd8fMlySL89QLQxKL8JmjG2uNIMgD/+v03uGeGT779/gdePn8mLWdNTM0pJu+HMT1kSK6HErLO6ANDFiHge1gweYJZKDRIk+COQLfimnIf7Nbjsd/ZaoSYwb587sMyU8mcxi9m5tucJNXKYfKd4GHJnM9n6Cr4nMYY0OzMkgqpZJZlwZFfwZZ6TFa7PMuz3uE5B3T5FnhIZsxVuILOuumNmgr1XCOGPNFyBiR/oA/2Mfn+beP3f/hE75O3nKkPzvtvvuGWKvbtK5/6jd+8vLH4C/v/8yve/+wbfvHX/5y3rdF++IwGUAX3Jk+3B1Hk2+gMVpWlU3t5nvD28sa+d374/nvOlwfGsrCuVaD4dMgVn03M49GZbnit5FqpVPaGmG85iTna4cO7Z07nyufasJc/UKbz1S/+it+VK3+eVnnmTLC1UAzKdGx8zflypq4nXk4nci6R2DOZEZJx911zPcNPL1dOpxVMjfq+bXz++CL2SM60OdRUj2BUAVijh1QmlRRrS2w/ErA3Frd7rWTjAMv0Ds45SQEmuZsar6Ymdg+/CqYGOj+lkNKFbd5461fJd0LOmRxu10F7TqQ1hymuIttbG8G0MNbzhXx6IKXBGkERuRS2287b9UZeCqkPhmVaySynlTwHe9fn3G873ofYwFnn5xidNJRQe/0sAG5mFWa9K9Je76DMmUtM2Nsc4QOZeOmNfW7UbJyLkpR+83Fjd4H1JE3sDXn2HDVVzkUeIVGLTMTMSMsCPqhpkPJCaztLSjxdnjQMGcggXYVU1AwWzLMZ72KA4eH+nOzwZYzmCz0nnUc55N+ZMTT4EqM8zkATo2V6JC6jyX4akp6N4X8sYa4LaS2QLfYSSW9rXblet9hjE8mGwkaOe5SzJPBT/qjDwW8y8Z0BgPcocvY+7vt2taw2yI02ewwYxSSpS6EO2Ad0OsxOm5JV+tCZmEyNeclhu5Aq00LpkFWLyadK37v3EUKZL3LkfUzy0fuiIUbW5BdPJqmvOXsf4eOmc2ffO6VWMGhDQMyw2MldDBAfTp8BgibVzH0oXSxbAooGjC55yz0RdposMqaTzcmLsfcZsk4103nq+WY3lvWkJjMXtr3x1jtLNzE3cXw0+oA+FC2fnbDmyBFIkRkueX2xCSXhKeOLGIzThxIcTf6KraO6qA/eXnf6Psm23EM2PIuhnZFPDgkUAKJAkPUsqWiyM601psuqoy6qH3JK5Olstx9IpVGXC3Ma171z604xqDXUIwHkzemkWmIoOaO/kAx4WDznGOalIoYbI3Omig2DBrGXNdHfNtVeViiW76EpOWVKlidRWeA6b9x2SHOylioPyrnBrLzeBqOAnU4wxXMcbYR8G9qmwU1x7SvZMpSFSdfQ3yY//fqB0Z2Xj/J78lQkCatgdOTbkxgus+wxNCQ4r5nTArd9Z5ZMLdpjRnKsrqovRg+QWbXAkowWNXheztiyMFJh3zsjBrKOyycwGbM1Zhe7XkQNAY0tgpIO396jn+pjF1c7BvYwSJboNu/hNOne780wtZ/yU52HZY5sEdwkdc4YyZWQSY59M0W1berJJ0cKslGsyFeRGUQIV6BLn4xdgOBwyfnU/5aQDqOKbDSSp0iK1FCq0HDL9G7MphpuL0jOOSb4D/j+O+Zn8N9OHv5+kaVKWjmXC+ty5vH8zOP5Pe+ev+H9h6/5+v0HPnz1Dc8f3vH0/pGn5wtPDwunx4WyVta1spZKrkrPSwksTXrSMMuA6+bsHz/xOj4yb415HliRPNfOJ/6UX39yQGm0pjY4vC/IKTTHYfqXANPUfca0YCJD5lozrF/z3/0P/yP/6//yP7Pbgrc33l0eKGXhtBj2pBuV0jEZkZnx9CytdRODY7rLByiliDfWpiPjWDXvbmIkzN612QW7QKEtSu2xSOyS3lbzgVxkTDuisxl9xvQifI6ikVVjMai1spRM2zYZo05t4r0HzRWlhthJBsopFUiF9x/ek4pSWFSEwnk5ywB6IMGoBYUxQ44kI/cAkwIBMgtE3j3YPZHGFDTtkYMhw+HrclBiAi2LP//SwHMM0NUcRnNl8zDeRMybkOZpd1X0ZaoWrKdJR/TRdFD2XOuk2tRni3Q/j+d5rBUPBcrBQCrJWMw4pUjBSWFSnNR0irXm8XyaPHkA79G0Wgoy0SHXPJgXzpIzqazkonQxWMQ8C4aN+5QEbIg6fcSjB9SmC03i6M3ud5bc/T6bvCMO8GEeTVxcs0d8Zesyai8BZvXe+PzpBUbHEiyLDMFLpLjd3n5gDtFyc83Sn982pQ6Grt/HwcgabHvDk0xk+xjc9ldKyizrSZKDeH+mK03sLnvEwLLWT3jdvLy8sO271iHyD1iXRWwxDyaRC/ioKeNmmpTlElNX9ew+RYcfY3Lbti/fM2t6VZcakskwtDP5+/jU6jqYTQQT5zD2HlPm/iVHwRzg4ixZxolhKs6YJBs6WFOm1hr715d0NaZ/8XhysZfcIE2xNB0iweeQdgWd/ACiOJaghU9S4vA1Cr4KBwNmRMFuJUMS82u61mEC/dwvcI3kA8Gom9MZs3EbnW3feH56uk+FDhDMCWkw6Q7GC+BTk/3zv/wL/vb//g9KmkkBipkHwGP3buQgb4bqIf5MC9y05XNo/g9S32ldeXq4cHt9Zc67GJmUCONINbwYd/nyMRnLKVFzMFchGrFoslwOZMM9Gu3EOVX++m/+BR/ef8Xr7Y2/H39gefogcDEXyR2msfXJaXngfK73vSkduusALO2Afe+DhWPb/GO3vhIAQvfwnyIk2xy+SOGBczzw474FjfsAnC4m7yxnqtDPhjUjsfB0Mb7+pvGbz1d4e2FMw6eSlsbY8VmYTUlX82B8+YymJ8Cx4aSQuo3QxkycNqEi7f802PeBLcZSZFB7pMLlVJhWYUaiqA/q6cTl4T3JMr9k8nVZePcMj9WwbyfbtvEK/N0//IrvPn3mb/6rf8XDwxOv6TWOoQGpUJcL9E7rG+v5DKfJmlZebzdu1yvkrOhrH0Aml8Tl3SPLsrLfGt2uYlQtJ3Jd8EjTceTZNHYVh9nkT9Fub7R2otTKeVkYtXJ5OuFpZz0vPL1/oHiJozDhfVJccv/0s5/R953n9888PT9G8SwJPOh+e9RJM+k5Pb57RE4mLkkLYhiXXEI2rX3K7KDjB4jKjLNcxXKewVpy5+SZmZs8xyzhQQTFJylJ4qBifMY+vEn6OjPZDomC1mOaasz3IR+dcVw7QtbfmJyeHyk1UUrG5MiK1XivamI5nVnPK7WaAKWis+O6Na57w7ctzjQxTdarAP5t37nuG9vLjZQrNSWkjp/4GBQ38hqszkD9395e6b1T68LD6cJ6WvGtx3mggSMJti7GJZapS2E5V/YOf//xRabDc6JUsWPvSkySLAhSouawRJimBEkzebH0zpySp+39xpJlL3BQIabPGCwFu/cACdF6mFFL2EjUJLDFPRw0JjGATHSGQIt7zeDhcxXMTDt2KTBmeE7G9Zd5D06QS5FAs5ILbcoygKn3IaFEvsUyb8Eenz5ib4Yl6qrZe0zKBdiPKf+Q2TvdVA8mTMPknEOqLZ8dHR7pPoXXwHlE8IwDTT6jMxhZVmE2nf11wYuMfftQuthxiM5h5DLJJCbOyEZNYuYOdA5OVN8cpW+J52JEHUGi3ZQ4aR7NbhELEB/k8BjNnrgzTKfHujiUcwOPaHMVnZLwSwWgGvLwjjNGsL0mueg6xnRSsKlbV/CJZaPjLCXzsK5i7ietsVxW1Qs5BsUpcdt3xtUZAXRlM8jQ06CiZ27J1JTeabTRU6RCopBNte/oHYm0ZAQ9esiNplMWyenG7OESH2qL7LIzsczt7cppzWruAyDI5fAGzMyx8PnTD1xvGnzWCq1pyH2qmVoKPgejDaXFWfRhEOypqb/TXAbk2ck5ANTwUctm2FSh0WenrGBLp00NiXPUd+0qwOsY4Fy789I7+UZ4iCZKdmbfuXkhTechHWtH+/g2J6/XSS4yNt83pXqOWHcEMaHFgH/GEs4mQCTnGmdHIpy/wBQaEGQc+X6ZKzwgA6lwOVVa66SSuY5JWiqpLGJhpyF2satVw7TucsosZaGSaYhZlGcKyS/sbWBHT4PWksVE0cfEhySRqai2ma7K544PeKhZnLuX5GFvIX+lw8tYg87ZwuzanX1Xvdfm0GcHJlO+lTHszInwLVInKsPs2IORN+PedlKp9GG04WJZJtXBw+XtlcwwCn3qOYWug+4zwGA9qxQsZHwwZhe41WTb0ZpTSpIv9BQWIh76YPpNyoP2A795+3X0qkpyr7mQ08pSHjktJ57Pj7w7P/L8/J7z83s+fPiG94/PPL1/5MP7Jy6Pj1yeVtbzmeVUyTXzt7+78sN//E+c03f89sPf8/pxo1xO5LXw6Q//P2co5SmgICfF5eXwO8pJL3quC9OGDFGnNmnvjffv39O2nZ/+2cr/9u/+Hb48YL1xOj/TB1zHTtve+P7bP6ieZ0bxYJzqGcsL+74JRQ0quOJGiUWRJDGLrqccLIYeaWs5DjkGY+53ed3dgLLITHkemndMcgpiI14ql4c1NrDMvndyyTC0AIfL4DAVefCkpVCqFug0WC8nHt8/sZQLNS+kmiPKNbGsC5QiCduY7H1QY6rp6CBOB7KDGt1k+d7d9Hl4BREeUHEXbGpKFqirWyG4Ypo2xSQ+vqsAtxxVFWF2e9eTH7Rg/Z4UPiY4bRirVfo03lpnOSQb0vNxaM4zh4zGKFmsil6gdbWeY/boUlOAEXqZS0yPlhRsoOjSx1Ti1XR5GxxgSE45AJto7FwpbcR6TSmxLlXXmQr1/EAq4dI/dV9n/DtzHaSS3Nid+ml2xDnbvUDRRvdFxnh3/Z8jaHaAi0Ez3Rmj0bZNssGp9nPflXDmLs+kGhROmw2zCaPHepc3xXBj39WRm4m9k0qibe3O7spWyEVJOSnS8vLoOmijINVzkfk2Q75eHgCx5Yqb83a73ady5IfrOgAAIABJREFUOUBYu2/ImljWnFjduO07oO+TS6aY/DeU0NWY+4h0mgASg5GTSyGlIlZhJP3lHJ4EXQzC4xCKRyxzvljjyWIqJSg/QCfdrzFCWmuOJRVH+xwUPOjex8vgUZRr+R6pbB6NOQksQK4EpLpwSLpSvEdYsIeiYBMwFElu8R4QEgHJwuTf9vLphd/95ndx/wUmo3rw/r4Pd0ZIIA7wt2CM/UbbVq6fX8g/+WkUz0fRriKBY1LlAu77HNQpH7Lz5cLpfOHl80eOVAp9rmNv4UtDgz5rpC8fWFMwl+wOlB2hCd98/TU///lP+Lv/+J9pnzUmPujPAli/7G1B/VNaS1ISoGjS953t/r+HF1uKJgt3Tg8X8jlzu10Z+9BkuBRSqtTlSdT2PljIvPv6mX37rHfHFVc943nc98aDWswBEh1NO/cJl1JNNcQ4uIfpAJWPvfQAkuI6iYZQP0pTTFLm+2LsHOy1AHm7vC7Oa+G0X/jZV0/84bvPfNwme5vc9k663rCqQs+BvTWdf2i4kFPS/kZ4VrmMdu/G7VNm7VYSZKOkzgimrwrEBixYKrSx8XQ58/Of/4R3j2cupxqAsvNdzqwG72bjL56vfHX5mt++Tf7u843Pt1c+f/xESeUOwgpM0dqpy0pZKqU1zsnYbxs2GngL7D5Ty8Jsm5jty0K77dxe37T/XC6UXDXlnYNSEm8vb6w5sS8r+7ZD1xp9+/iJh/NKfniM5zBIReDNmDuX9YntbQaoOu5nsDmkoWS/EomFAj8OGSj3M2QcgG2amhJnC48kyFXA8Qz2oWMhndbashjGWHI1eFM1QcEEQFAYc6Nk51QFbBx+U8NkoG5pkP0wco6m2AmZqoZo5IwNgdnemxqa+Pl2X/4uaX9O7Ledre2cXSbQI+kv7bcNb0rxzCWzl8p2lzDD+XJRmthIYlp3SX9mgLkvn9+UPlorNYvdWkLmnyxBFguvt07OWYC7Gdu283B6xHJhKUoEwg6eMsxpZMuUapzWzILzn3//e77bbyQv9DmpaYDFmRYsWiPSmfIB1siTo2TjdNLZvN1upGTMAW+3V3JJd3mwcezbdh8qEbvDdMQWC/mrW6R3pSSPtwApjhrGcLA4J9AanBbDU1xyUYKBFv/tSHc8LCmOQVwhcTqt5FQYrhTZVOQ7eTo/8PL5M3V02pA8s7vfzXV9ImpJkpXAjH6gWA5lwrjbOyRzhktyzdTA7xgqZfRO9THYg8GcPcvf0Y3FXKBYeKcOF0iYSzwTUH2Z9Fy8KyjmdEpYNW57JElNYzkvpOFKvUrO3hulFjV95uEN6PQuAKvq4KUTagPUyKfklCRR8BwHACR2QhsR+oCaSA9gL1sS42eI7WKpklOAL36cXxaej2Kp5ZTwLI+7du2MBJ7Bl0SfLVDPkPtNgT1gZDLTMmUt2ve76gMNxnWO9L2BD1KukI0ZAzXLWpMW9fVMADmsO4yaTMCp76oMJlhJDFPq1+gzam/Fx0tSKObzaIk5dw33kYftmAXaAJ9sfcc9U/NCRpYYNh2ShqXtJs85yRwjVbkNqkm5IUmX+pJSEm66H0sxTtmgG7fh7HMnXTJeBDil7iRPYmr1TvJEShXmoNRMzZI6Ts8BlgjEcIe2ixFfmvzBpiVsFtKUNDOnwrYb+y6Gep+DkizSB3uAw1nXnibXzTktJyx19tsgFZ3brctbF9TfpprpLQBY0zu9uTEpnM8nhg9qcsrpJI8jV3+IDegTK46PUCVagVrpMqkkDwHIpKRn2+2e6Abhn4rAIaWYx/rbhrx2i4WNTQxNLRJ342yPtvNevfVIrfZ7ZReAt5n6/dbofVIg7CSOvTR2xKn6eviQXYAPkum74Aq8sazzMqcabEAxwsxl0i7GuwdgPwWEeteeQ1hcWMam0k7laX4MtV1eWhPIiRyJ7NM1vB/oXeoz+sgYMui5hQRyNnxs+P4Ze4P8EVrfNQSyTEnyg1qWlaf1gfPpPc+P73i8fODx8ZH1dOJXn1751X/43/mhbuyfX3l6/Amndw9cHk78+vOE//6/5U/19ac35Sbo4unQU0uKdkgA3r37ipw6//j5RfGK1thdMqnrywv9l3/H31+vXB4/8PDugXfvP7CkRjah+5r5ix6sUxeBGgkhvvukt52SSvQ5R1MslBg/kplcjfwhLpkH3S6owlE0zTiMUz5SNrj/0jRf1UHOhz5VqWy3242aqiR0tWjhnip1ObFcsiZ4ZtxuN8iJ8+VCXVcMGY3NLhYXyUQfbwXLio3MJMkQ4j4fJuV6DQWY2DzAkgP4IaYgYfg8nSMJj4MqaAEiHQfZF1Mg7nHYd2DEjnF6FEKJuw1v/CypYDR1aHNiVHDnGibj2cVASMQ9ddNmg1qsYpM16YCYqGhuMSHPlqmiQkVBBUyLabs+y3BR3IcpBUu0yRINoQ4YS0YtlZoWGYrWJMlX+D3NtCtRLUARMWdCt2pq5i0mfpq+oMPu+BwxndC9mXcWgrsO2S8yGj0HSTWnAIMAmuSd1LUefLAcjD8cxq4NJsNSBS6pYJTh35iiiidTkTNGl3nfFC261AVHTIMZ/wewJCWnzS/6IuZQ02Pmks74FHNqe7u/SylijEsusRbLvWCdEFOJJCN6F2NwTsWejm70LiBNE7FIcUtZhp5dGmj5W+miDJlr4+FvMboKNofDO8cCfCwRaTtdRYuloEW7ptyYSdraOz46fShyttrCtt3ENAsmkX5+CmaHZIySrkn2N2PaKoDo8FaKY3Echf5904yGwO5gQ/7R3tWjSZij8/HjZ77/9tuQd+X7E/NoVu+gchxWFk3ogJDw7ry+vGiyfDyPdHgc3RES7dfzYNIZI4lFyo/2ASV9HBtEgCj3n6t9YljsJT/6sx8DTIYmgLUYo22xh/54zxFL42D1HQ3sjO91pAZG1aG7Z/fbev81jvs6Jj/98z+nLpWxNfZtY3/9zNw2etb7ui4XyqII5LFvvP3wWVKSGc8X+RTMGevIuRvdHld/vPU5rsdjEn5043cGgd8vXcdQPLsvayPEg6Z9ZeaFz0lefmsqkuMlTbAXd55PCU8X/u0//4r/4//8j3x+u+F9su2TwmD0GzbFgulNiVUaMoifoMnZlymf+eRwUcJh2xs9PIiO63SSQPARMocquviHy5l/+a//JW4nedYANo3GoJUzfv7A123nXb7S9o2X1Lj2yeunT5zOF4EKGPkknzVmDzZPRGnvjZe3T/R2i/pCHj3rUnh5+Z5v//Bbzg8rJZ04Xx5JYfw8W4OtyTh4ih2850m6ienAnHcZ+uv3H6kpqwB3yHnFutHT5HIafL4KmB4HfznA2VCi32n5TD0/Q2wzs5CtxYEgtovYYkqJChnU6KRSxVTjKEwsnhtUB8hB95+UpCVTUgmZ3Rs11uDME58BTB2LdHQ10g1y0jtvVrSbWDCVh/bM7hJFCKgI0/uuIY/PweV8oVqn3QZv143L1ri+vvHy+bPY6mOyLGdGqpQyaMUp3VlqpgRzgFRgF3g/3dm2ncwIzym/s0BkFiyQNtciPzHLce8trm+QamXbN/IqAKq7K1G0y2utWCEV+OpceLcM5uj8ww+f+c3boKMkNMtKEvUYGmQ83kvi7FIdOofOoKVm1pPSFeec7LddzYQZk8S79x/wj/uPmPPagy1ZYOXh0RP793QjW6d1kMar01rIZqdCClSPHLud6gNjxG8PH1EiKyOaTY4ad36RX6KQmPVyYamVnF3/PTuWFp7WE68fP9K3F7GoLFH82PcC/E5FcpMctYJJAnd8zo6SyY6dz33GPD6A/wmOpvzjkD5bxt0otmoAMgXglqSB5URBB8mT5HMmz5G8IADdjdEEcqyRMnZ73aEqGXO/vdG7k0uVlAcNA6ZpmFTCGD1nJUq2kKvprTSWYMdnQobu/T4cUsLZYV6um+7ASMFQ6IOSTgFwxfOaR4qqTksPGmkqhiU10W7IU9AHiczt2tiug9O64k1KCTs8LdHRM4c8/XKVz+VE+2kt8mOZXX5wY3bJkSJdlJywYhyxEnPq8ydCktSUoFdTpZQsc2xT/TqG2FnzWB/jqNEbsxutzZDh+v0dbtcm0DOrvl7XcwygdWAegyjvkzEmR2oupv21zWCW44xYe8W4v4OlJpaUsDlpGHZeWCIdcOuDk8nnqNtODbn3Yok1V9IUmSC5k/NKm8Ye/qTKtdD71HxybUNyXOuM101DwGVw2wZ9k7qlzRZDQLHaU1Iw05JgGzukib9lRkvcbruYRAdoPB03MbTcO2Yywq5ZPlBLLVw3/ZuZMmPbKCXHrDsxU1FaozfqWOmb1qtPp6xZNy1bAGoTUqQxR4K4j7ASmKrlY9Ih8DgetkGkF0ouPOPcCwxQg2tXEA1JPYDjodiIvcsCiDbZwSQ6M0gVB9P/2P4siWUtBUmcvT+ie81mpCpyhnyxju38y9B4DFmrgHo1zFgETWMeZI1yDrWHx3A3eoMk0NKdsJ5JnJYqXMlzWFMoLc+CBexpBmtUe+kIxh4jWMJK+4j+rovB5rCT2MaktsR3r+HXhKxfsmlX7e5sc+Nj6nz//e9Z8kpZTpyXQhsJ+J/4U339FwCUxPLIRUlhHiVnLpnH0wNr0A1zrlhOnNczzz/9mvZ6o18H6+WZx3dfcds7eQ62j9/BYnA+M9yCquj3n2VoCrZS1BgiGVsbh3mdNmRhD0dK2jEZ5t7M3aU2RFN+Xyh6USwMw5jzbgZ9pJpt+05ZKp/Wz2oA22BMmQ3Otof/kAOJ3jtrXcTKyFksqpzIdUAZorpOI01N3kuRyZ/nFTdpZM2TDp+IOVM7QBxtse4spCxBHfag/8kp2GOaeifRxD04CoN0/31K6V4AHzfM7o3vj74CaXL0co0DkAqWSx9DFHuMrXdyjsJb8MC98cdTTNc8qNEqqjLaxHPWVOv4mgfgcqAecViLfSEZ3UBmd56M6kUJF7mylEqqVfc5ZbCKWSR3mKjTrrOUQ8Iy1RnEVR0EqzD8swCQAuE2ZKKbMNyHWDOu9BFFh6uQMtPGYzMAmtFEJR4Dm9pYDoPfNIeM+JIkFCUZ58cTYwz27SqAJurIHjKHOZ29bbqGMQJ8qkr3uzc+O4b8axwCvIpGZLqKxqQm6LZvjHFlzEHbd8ySpJRJpnxK2NL0Ug2/nrKHB5Yn0cXHnLR9p7c9DhnRoJcqquaX5Lv0R8wj4cNG3yfN97ivBBA67yCUBWU0hU8S4XNxsMZGXM+ck9EHvXXavlGCvUR28rKSSqW1Qa6TVDRBPcAjDdfvKGs0jx7MkXFnxcyptan7erwypptvB8QS9PPYiY531kDRvwNRv534fDE1jMLw2M+mh7QsqL0jWIfJ5a32+vZG603TttgwPIDDGZOt+9seh3hCzcA3P/8pn3/4lmKiHPuMtERtNV/23KnUqRnvhDnk8BI6GosDXErAu6cnvvnqPd///jvs08uX9/tHYNSXMyb+ICWW8xkfI5r1A636UWNlB+gBFTHk/uk/+ytR3H3w+Q+/4vb7f2CmE35KtNePbHNnkHgZk/b6vQyAD+AnRVHsh1zP7mfJwdiY0wM8DWGfKQHxaDC+JOMFxHj0grHzHvvIIV3Jx96aJqmc8JQ418KaK4+PmTSbdn+Hp8W5PF441cLWldqVQnrWhxgHY4o1OPsew5M4DHA8W/gaHKLESaFASsGalE9g8cHYJ71PcqRO+UiMPOWRtyz02xunywXKmevLmyQiE9qU38evXwavc8FfPjJm5uN1Z+8ry23ndn2lI+nEHEsUd47bZGs3+pjs+05vil9vYwqMSHpGfTZePn/i+vrG49MKyZi7Unq01rN8dtKUTO62Mec1GughuN7g9e2VtBYekYlyWR6oeWVvk+XiEd88xMidARJiP6pRlBaqEda8z3DGPOKWNQw7GEspgCafg9t+Y2s7KVWlUeUYwCTDp93XSsoJc4HoTCStLpB8x2ywjUlJB1NaDZhNF3OoA/vObI3hCc8JkuKoyYeno5L7hsMYG61duY5dUsp5gJ2DP/vqHYmd3tTkug/Gvit5FAEAsxcYE+FlE6eTkisNdx6fQbIeWwoJAek9mM1jjBhKgM9B6/r8tQTrLGqfMeUZVVxJaBkxxZhd979PMTTcWTM8nSrVJ79+bXzX5b+WR4U0Ja1yg7ySDTVkwZYtpVDrSknBDKuDp6cTH54feXc54e5ce+dUKqWe2PrGz3/eSfb5vv9/qT1nSN8cS5llCWAjVYqLCWE4Njdac/Yhr7TuI6RCKYxtDe9O63sMFj3W2girCNUcakpNwSZFCVnMeW+kdF5BG5MlL3SDxGRZVvJVBufdxdZNZuF3c4Di3P1QiL8zDrmvCI4wTcmvPiOYRn5Yrq1dioaDoZAUbOJRY7YO59WYszHIkq252BB2LuQEdTFyFZB/WhLXMei7mJepI/PsWrQWPOrNlMhuIZ85WOTar2u2u1zUpn4vn9dgUFrmCP7wQ3aNSaXg6laOevVohKcraSylGA7nFANryR6PfRiXx6BPpaDmVNjGLc6TjCeYVmCHtGZu+5WAI5Vc7IAHgBkBKJageGFvTWb2ODNX5sHEnWKQC8CR/UAbjRzDBcuyMxgkFBpbyKv8BpOHPYibwMK1/EjiqX/vUwEQStrruobpDJswMm2+UZeF7I2cBmMmWg920ZIZrbNdr+xjUhEYZzUxh0I15pTyxLBg+ohRY1Xm4KtrDLdenkiPD+xt47ZdSWnFqAx7ZU+TW58UnFMaZDJPdaEm9Zk1PEVnOsmzKwFjsHUlDg53Pm2NYZneXlhypnW5IY6uYIvhYiR1Peb7kGpW3atSVrZtY3vdmTZZ1qJ6EqKuUC3R+oTZMBMY5UNDdXoMemMQI1p9EAlDIpxI8pZrg546OUGpsU59hGoCbbxFEntLiN1Nlq+dEwwfgh0kmVcbjZKDSRpWCfIesqNE0ztmsc6zqsJU5LE0/f9j7l1+LMuSNa+f2Vpr73PcPTzyUZVVt6ruq0W3QD0AgaAlJKY9QUiI/xExRM0UJkgIJATdQDe6EvTt+6rKypuVGREZ/jhn77WWGQOzfSJ7ngN8klWZEe7Hz1nbltln3yNUKg65wDxAVsspLOoWCfiTnmKSRt05RKZtRzCBZoKtNqI3jnvjU68KSYbBA9Q6bDKy72y1IBp2NKoaIQ7hSBy11jRxDmdNCedugVypxKrRcjkfD2dInk1jURv/WnIuirAkTawiOm5PnzwLZl9RNsg/Ez+jH7OFZycyjaf5DFwplyeqHxzdn+7rp/dQ8riAPbmvI9kDhYb1Kx+/v3DdJk5hXRfu7k786S++5G/+zd/xx3/2J7x9eOD9uw98+PBb9tcYrB/uH/jFr+/CVM0+0dAAzFpuWQTXkk3Jp8Yd0gDbg5IaKRYzqMMuWfwt2THckNY5gtpXSonBXP3mswMH2BR6SPegqm4jTIr7AK0rlIrURqkrrTXK0vAe1MlSKqUo67lxerhnuVuRGlpen2m26AbUKAYlU+Y8ZGVqx/YiWUQSQFOOW2T7Gv9N4/2KKy0pQQdKnKjrJ9+Rw5kqilTegxzjD7d/dwzBx5Yrh8/jvyXbJoZ85ZCuDDeml4jEZXDMhodGRORHOnaX/JkhXRtjHnu3/D5+a1qCeXI09MmzkRyJSsGrcLeuIA2tBdcSzXI25enOdCtQng2r5UNLXpCSqLt5StxEbkO/2METOYYFwMjGO2Lao7mVuGxy4WxTQq41egxJoweDCAOPLb1qpA62lvMyh5eX8/LxY2zIzZIpVGK4ImJYD3PCpQZV9ZAIqToHHa9AbqiOyHr5dGklG2jsg8u2hxSNoCvf3Z3ztfFpuJEaJy3NdA7mkDtpGjq5vF7YescsfKG0VJZ1CRlbyorw8Lk4tk97H/Qxwvi7BlBVRMHCWN99BnUVDcltCUr7nJPZ43u5FuqyEtr+I4FuBmhgFv4cp4ZvHVyxYWxbZxblfC8pfSV19THki4VXxA3mTj+MeTwLRX8EimnUEjIpi2w6b1KWeL2lhNTo2ELbnMy988PHjwwPmefRJAWF/JOpvklIDDQNixLLjkoxJy+XK5f9ymlJearLjzzELEGMTJszx0uc4QDKjDEHldjAp/VcAKT5DqTiAQdWrdFcJrNEOba6x28eTctpXbm7v4umMkk55pZ+SlGvQiqRz5w5a1t4/PwzXt7/wAwnkPzyW105ytThb/flV7/i/s3CD9/8lsv33/D+69/Snp+YLJxPK9o/8ro/scuJSaSA3fjYyY8N4K/g9GyKUxp8A9SOnxlvgsgnebLlXQRHXZXjFXNAXzGcHD5dlrUUluVEWxsD47QqtTTOJ0E66WFUeLMWymd37G5sM/WGePiwFQvD46yvzGAlzWPgkGAj4M4t+TIlerjHGSBjcj0iuCdCDa1ygLCi1Dk5rS3Am7HT2kOkMWLsMzpZd/jw9My768bTx8lJC8vPf8WvTmeuW+fpw0dOj4/sc9Iy1r57UOlxR2wm3b6weWx0xX8EjJoH3d7g0ndkD08Vl4KUMLkXi2F+9EG/XjGCSYDEEBKBGleefnimuPFYBE532Ar91Vmm03Sw7xl3nBBcUcX6jmQKpadfVUT3xO8eQCy3Le3MlDeTwhCQMSL5bXRm3Rl9Y5jTR9DlrRtjxLJqzo6NnV2U7eVK33ae+s5ffoB/dP8WvV5p2+BeCsUnczpjELK3pUI3bOS2e0xEwuDVdAb7RaO+XUR4sZ19v7LPPc5n1haG8ebNXdzptKgbbuxzixRFnwxi0K+eUisbyBhMLXhK+iMHd4SPElH3pwg+OudauLjdFlWQvGg35OjpchjrFud2znkDQ6uHf91wZ/pgekf3aMavffBDH/wwjbos3C8VMWEpjkqlLiu0E7WknUAyeuRHcn3EGXTaeuLUzsGSLxog3HSkwL5H5Zsp546bteSda8lESyjgYJhYJGaVqpSyoFa51slJI6mHIpgqPgY+dupDYX7mcfamMYl+1szirI+d3jc8AamSM4374YMG+GAbkuCcU3ziJaQ5692CvgiyeTJUYrGpKfMwNL7nzHvQPJinPm596mTm4BTpvkLKty2DejR60ZZ1x22Q1sWIwLQAzrRW6ohnSzTM991n+ipG71m0hocSM+RAOM3hvDb2OdgvI3pvDSlr1TT3TmYx2d+qBfOwW3jRHHWypvVCSFgDhBrTKV6J1n1EfRjJwKmRIneUXZMAd8L0RdIL0GFqsCM8pFTmsO0DNTjfBRNobFv0ot2pZ6GcF0gZ0jgYp5Yf8By4Whg2ayS61aKc1oLQ43fOtLHpwdbiR8sPJeVxFuw/7xOsMroCJYHWZGqa4EzGHvKggqNFftSXK+HRHYwL9YpoC/lSdd59/IG+PaEVltNxDxrXPecyEeaYoYpzYYjd/CXVYsU1Y3cYC924VHFxmgt1zmDcrI2yFEzj3J7vHvFR2PfOq28gce4nhSHCKFCb0iTnEIvvX+oBzu6Acp2TVZ0NpS8Lp1p5HR0x2J7HLTxBckgQaZAJd87k1E6oHKwWwaakt2vMOSTYiORC6Og1RZBSoof1wbRgEK6nE699y1VJnDOVqGVCzEfewJa4r6rOsLfwESwkDzVAkUpZNGxUDna8O8EQCLkpuZTEJlqVSni4ap6n8D7r3BRMGuofSyg6pJ96C6wxC/By5Dt2A3eW8DU6lroRPmP5tsQcXWqA9fN4TZRbb0nKyiLdPH0pzVOVEXLP+L1DzhvWFwJacGmUWlglFkqxVCuUBtYHM89jrZqZU8nAdWHMqC/qZFACAR77TFKwIzeCTPQV5ZiTY7wMNqsEgNRSIn9THRDzXjD4S37OkQJ4pPgKxu4T0UNi8NN8/eSAkk5Ce9gNWyc+JrUuMI2Xp+coSKS/Td/p2zP/5z9/x3bdWNZ3/F4b+76x7Rci2UWZHpGSaDa3EpeNefqF5FYk7rDUedoRzzlvDbx7eJSQBzmpIZmYkIcyjefMO5rRhKHP/jGaCBAP43paeTzfc3rzwHI6xYC8hFHy6byiPqjLibqE3I0xkVD0hKSnNcp5YYgxbEdw5oyNNma03EiLhnFfyeJRSoIherAl7GYGHmyfoF1aNmCR1AGgqb3/JE87TOxi+PzEyAr5zuEL9AnFxaMJtmSwHElNMVQ5qN42sXhsBMM8WSGpqC6KSWXz1JMbQJo3QnrGCGUKXYyhQbNVyRSTw1z8mN5IE3gUywbVJRutephnBg3SeurJ3W6XTLCjEqBLRslIOVRIL4IVFalZ6RfASBwsUhLi303MOsMGs8fWWmtuvjSp1vvOy+sLdu05GK8JmsxMD0hDSLc0xE6ZgnX23lGJdI3teonmU53aCqq5qRdhv14jxWxpLEtljI4QhTguingOyMvfsNuGndweKwG49jHYt/C/8KKxlV2XTJiKBKaDQcSMLVFbYovS+0gtNCDKtl15ebmgWqg1TBtVC3WpuAV4oyXR+hmNi81kCHJsKoO2XIpiU1iXNYxkZ88BPo7e9bqz7Rm3rTXMnTU8IcZ+ofcBKsECbCs1JQpehN1HUKn3nWUPJo+0hdOMlJhyA2DiwgvPC2NZGrMfQ0NHykIpIxth/VH9Iv3VEmiK8YcqyuaOjsFSCiNpzKPvPF+uvP/wnht6J4ccSdJHTdASF3a5GaZzYxg5Tsd4vVy4PD1z+jxSC2du1/VocJxoZNUzzS1MKW1Mvvv9N2FC/6M6eDBZyBZDCB+OUgqLEHLAOVCNgfnGvEFuIMTrPrhejV/95o/5wx/e02dED99cvG8g0ScWZCuFtVaumuCnf3olh9Gt5YIqpOyT+7vGt//yX/DDN7/DxqBfB0Xg8QRv6wvz+Q9ceMO8/xK3SPqUptRVMTkjdNyNviXom7GwB0NRPICNox4eUkeVGsbzhDQJshRyCJCSw3LbwpN+OZr+X5N1eaCuCy3PKARjcWY/qTJ5fKh89rM7fvv77xjbhhIJN0KwSSYWYQRF8akhB1FPL5IEu5KxFLeKHUZ1AAAgAElEQVRdyDpN/GjnYkkwJdL4xmBYBHEEQ2HBZ/gYeoW6PXMZJSTgtbL3iHjv1wBDdi/86b/7j/ntX/4bfvHrP+LyfOXh7sz3f3gfbI0M7+jXDgJbDlhzWkhgPbfo03GPulvEiTSe/Izqio/OPjuSKXSDgaHoDj473je6OOaFLk5VQTKKeds6r88v3L9ZGHJCtaNizN54qPCd79HMJYhofpzHAI6OzYFxGKAHCBKzapyFYCpLLJM0NqieErk5IuHTmMweptnXvrPtG64w+gkZA1fYrXOdnZc5+J2+wRaY1w3pTzxM4UGEhlJMcZRhSrcNs4hjJuUHRWFqoXvUz2czPuJcq/PqPb00ghFUPTawnz/e49Opp7AAGDZxCXN2yyh0fOZwSGxW3RlSA4DIq8eyfks39rFzag0pzs++eMO7D+8YUlHxfK25jFHAjFOpwYrEoU/a23vuaw3Zr0V61bR4Fnw4Dw/3LK3ycevU9YH75R4pFqlkwyjeCfJbTXkJXDzMMoJ5GLWmVL0xW4uUGwPTLEx3975D0VjKfLxENb4hy6EJMuy21Jt05mY3FqwhaKmUxWAmE8J2XITqLXywRBmqCIUqEn4xTW4MUjW9gQVShR4Hi75v7H3HrCNzcFrvgRpDlc/wUoJgxauxns+c1xaeJH3G8y7Kbpog+ORgahdRukwuZlRStnx4kmQfX0UQV1ppAT4SvkOrhunyAaxVAvTp4zh7wj4nhRxaBbSFLOwwXi8u0YcNT7lfAA3rqYbZugVYEWlwEjYERK8b2Ldl719oJRPc3FlKeC32LSwItBT29L6sWDAfkukVASaCVzg0X54L6VI0PdaCRaoJOMd95eABAA0PxrKH03D0OjaD5VUqZjsLztoql6dLLBQPqphKLvkC9jIDs4FpWHiMEcwhr421rezbFoz5HEjnsTAa3BbvUsM2mGP5KAa+c902iihFOnYkos6BezId5wxjYsLGoaHo6LgS0tRWcBtcX99hg0ghLGEnEXNOsPl3j4CVYJIGiKdVY5Cv4Yk2rdO0MQS8CGVRlsU5Y6wODNin0F82uO609ZzhRyFbVG0sbYlb0Co+9pBciTMxllKoTHqPOeJUG/seki5x5bQuiCxQ4++UVpl9MMeIKwGnFg9z6LHjm1PqxKsx+sR9x2WlA2MfeNXAbSR+556/f3R6Ma/VGuqSYcK6PNAd1iVAJnGneo/7yZ2SC0MpMUeyQrETJxSxHa+R9hb+srlU9yC4BduxJkHjaNHSWN2dWlueP0EkklXRoC+Yh0IJidoZt6DjpJIgJWaWn7fj1Fqoyaw0lBLjcaSbirNUDeZtgrOhCvlkl1ApoYiYAzS8h2IJp9TQQgZxhGORaexZo5fi1MQsxGM5NzMUy5NBaRp1x6dGguIk2Vi5QNJMz3XBPRIVSW+2GD3jeRIvmE8Oz9p4P1N2SkjphBJgvYT/ci1hrUO+V+qhDggWVDCyFLv548bdEzVy/sjW5qf4+skBJSvQxCnaItmpzkjBwHi9xFZuKRG/OHzgrrw+P9EEXl47yIHMjZvhqtZIbFE96JKJzmUxmbbhVgh88lOqxOFEEehlNHd2ACnHkiuBnZtHh8bB7D7RkVKsWuOD1EjGaFUTIDpzd3fPup4py0pbIwXKHwM1bktDmGmoF+wJJQyQhYKrMiRTjDxQSWem9jweLkv5jifV7zClPei0B2PqSA87BgFJ+u1tuiYuomMOFD3+f27Ecsh1h1Ib/m/9Xfn09/I1OIf07dipp6zlYDipIMG2pJYA7j59DpH0JdMo4uzEdkBKyhHzu4aLUdK5nTAK9JLIdYBMLpqGfCBFGSoJwJXclnHbA2AJpmmYnR3MjsPvKGiHP7q4rOa2Jw27JeBklZAYqOZ2n3jf9n1PjyLLASspwUWRaby+Xnl6fWUbI7acM7TjvqXZXPA1QyomSSVnMsYeuubccL9cL0hJkz2bmI30SsoUs7nHdq8FY6/3SauF2moU4Tw/AdqEFlpG/PuRpvKi8fts+54DkET8curjUZjeMe/Y7OHZIRHzjCiXl1e23hP4jPdnjhFxvZnI1doS3knTma8bxnERBZOwtIpaQZcAevcekgBDqHWhlthC9hG0T1VhWWKDiVbKUjiVleHRhLrGpTL7Hklu5KWU8qVSQtphffI6lb4NmJ1Zwlfiw9OV8hKg7+3Z0WAoYk5ZF5aWFFSB2TtLHZQaRnzD4wJd60IrwmYjosu7xWZNQxJ32UZKOOJU7vvA5oU+je3yQtPwr5n+ybgPm3ip2T/mjtvirBeiIaxIbEh6Z79eWZcWjA6NuF2345nPfEYdKZ+LlJjpk1/95tdc/3Jnty2Tz+J7Jk6Wz1owFU8tzNZ3BjJjMzvzAi4pyXUEaZXdJ1vv/PyrrzitJ67bRLyHGehI9lGWIT/8v04nPvvsc56+fw83SItsyo80jvCgUnEWlJdvv+Zbe6G7IdaYWvj851/y9r5hr0/sz69o/0DrL9z/0T+E+obdB01/gUnh51++ZfSN/Ydnvv/uD7x7911e8nmhpM/esXqw6L9zkxd/JHhBGUntIUtNnXLCekH7L64oBdES8pq1oWI0LeH75pViJ2y+JCvXuWuNL+/g7y4f8bkhnMFArWOz5BK80PsV6RqvZSZNWxPIL/H6wrsuPZX8AAAl/fZyk6YxaKIhw8YJMMWiKX754Tvk7cIvf/kFz08XtusT+z7o153eOw+Pb/j+99/yer3yF//q3/Dlzz5jf73w5vO3XHsP3zdgjj3p5/HZWgJKFGXO8C5Qz4TWvBdH73z88IHTw+c0WQKsEw8fJZS9v6I97sR5HOBcyJgmG8SBseF9A4/FWKMwdHIZnfXhhP5QwmbXHPWI3TaJOzbWPcqQGA7FjcNVbjDSmL+wz04xZa4l00fherkcRGIgmKqS/kmejWYDZO456AYhXryDDnxdeFbhUpQfesd7MMGKOD4yb0cLvXf6ZmyzB2BZhHMV7k53vFwGT3tnopEcsxSqDU6udPsEK59O95yXikuYBVvxOKtFg00WXIQA6vyQYcWx73un26SVxlC5pWvtdEptUUu3wR++ew9oDOuHbkpL+juFJ2MoxA3fY6h7OJ1DjgHsoyd8J6xt5fT5HZ+9fcO2Xbhi6FqwPrluzuyTYju7BFMVM6o2oGZSWPSTnsOd2WT3YN88fXzm8bGyLmdaJpIWDdnojnE+3fP60uMcJljix3YvVhTR41oA1au3eK/dYL+kB0owNXCn60bJ4c5xfITsRfxWmoPp1cft86q6UGultpX78wOSHk9YZ/hk3zfMjbv1Lt7jGWmrFeV1XKjrSr12ugd7Q6YwkhEehslyC4oQiyXt9Oht3PI5lZDfkgEe2ioydxgzPVON4Yfs7BiblZqbe8WZKjdg2Ry6haQzvI7CcmOm9yMCxTyYtX0G28xDltNaoY/OclqiH7EAieI9iYVYKzVniwDgy1HftbC2Su2DjnIdUV/MRjK/kzlHAEnTYvkZS4DwVzUM9fx5BNh0SCJVlb6HQXWpAfCPaZhWvMK0Tq3KGEqTHn1nXZh9j7NVE0izAHVrKWFBkedl2gwm29YZy2DsEzehOlBmLmot+uPpOew6XUBLAAvZBXNL0da4B67zio1B8fZveffgMxM7HUkWYVhUGC+vr+GFKZXpHWyl7xb9uxH10Z0l7QympHk/KQGzQr9cM8Ev0wMJ8+4mji4VBgxr1OUh4ur3wWBj7FuQFAbcP5w5LQv71pE56VMY6lxsRLrfqVBFqYtw7TPZ2kppymenhc/ulec+eJ07oyz4lXggJRnN4iEDI/t8YGr4lRmOjh3HufTJ1i8MFpYF1EI101GWWjmtFeoCorTTGsx3lwDeqyDLEj6kHmfVPIMeDGbf4xyyoLVR1lhArtrQIoxlYUol0s8GQxpjbjHT5owjJcKCOObYtBBxH3j+GZfD3iXOuJYIVoJIDSW9Kd0tQbNP/q0zZ0A1iRqfQDTEP4/5rhS9MfncPBaZ7mAaCxyinqgY5julluj5k4hRS1rqaBiVL559UYLLSvovD3Af7CPkZ0UbFEdauXEStJaY6XL0nDbYM1FRzCMETApj9jgDpQXukY3jAaS5VyTVOOITkSWIFfWE+cZyqI+yD/MY/gOo8priuGPZC06J2QWjlcrG/88BJTlkQCXYBadSePv2get+Yes71sNDZ4TzHiU3Pbo6PnJrkb5CkpKOqpnmkIZs4QsUb5G7Mr1Gw+KTl+2KHiqFvD5DOxtvoia4ZbPH9nbO0OWrUssSJs2tcLq/Q6VQW6OtC60dQFAcvHVZKO2EagtwIKO8Z9KTg9aqEdcsQqslm80RGwmLBnCqckQDqJDUwQFeb7DKDclNPfwhQTgGGclG+OBp3YAeD1PkoysNCUZo2D99YJ9o+i7GkSzB0eBIHFgVSYAqhzXJiERIVpKE2XBShCU+JsJCOQ3Lj9eYbKloxuLzOYbtcqB8qXWVmppuLwyLYkeJjbm3SGGbGt8DCUaHuiGHgSshayAWZrH1KcEGmR6FVxJIUsimLH8zMSgJbHlQlClRwIoL++x0N3wIY2SamURUKwZuO8+XV64jQBPvM36eObkao7UVMaNY6J3jYx7M2WOL3vdowoA+BrVU1vOJ0QfPl2eO9LP8aPMyOapSxDeTjeU8NtCiQXXMYjd6gGClFsSF59cXet+BAHSXpYVnDkdbYTdAc84AClttmDnvvn/P675RpXC6O1Nr5brvvL68JJgUnlU2YwMTW7Cgi4qPYHFogA+1LagKfR/0OdlHxyX9kTxonFqVfYt0oVYOmrYhWmmqYbSJ0GcYh5daY0Avyno6hfY5ZSPhveRMV05jUndBTvcsrd0usKCkpxxB9JYYVdfKELAtQJhuzqINbUGfdnGkKlIXBtC3jek96PW15fA8mQcophIJIi8fafVMN3h6emXfN7TEdv8wAZ6e7KR8Ng9PjmhYw8PgxuFM36uX5+c07CzZqsdFemQfCYb1ICHvdolhyuDP/vwf8PXvvqY/b8nGiec/zC5jyJJaaMP4L/6r/5x/9l//dzz80Rte3m3hDeYWtTlrlLrzZl356rPPsdl5fX2m1UaYDyb6+6nqpWwuLuplbaynNYEYyYSQBHKOzwoSNBeWtfJ4f2J/fklw2fji7Wc8FGN7/4F9c9BIb5HrE/O3f4E9vKHWM88fn/njf/Tv8fnbR8yc8dnn1HPlu2+/ziv7k1fYAe7bUe+0/Uiaa1SPejVzw2ger/rwtRMRZMDDw4nT42e8XI2lhnG+ulFqBZ/87PNHFMOtYCOMWWsp1OZsM6WiB+uzGyIRhVw05ZqeUte8PgIEjzQnQ8BLNigB/BetuJZbfZkOZWRtz+iqKYPSO8WNN49vkXbi8eGe9x9e6CMYRJ999gV/85f/L1/94iuenp548/Of8fU3f8/5vvHrf/DH/OHvvuH+s7c8//07xrVzfkzvDmmZbmgJMjq9d1oJubl5eAf1EZv7PozL6wv79ootJ6LdEbQQ3j7XyRx73Il1wUwijc1z8z8Md6GWQmudnStt7iArivH8cmV9WDgVp/dgp+4W9GOx2FRPz0h3LGQ7BzDwabeDM5LNA4tZ1H0J6ryasyo0CaC8pDRW/VOvVUtjG1ecinvDcJqG2bC58ebzO87nL7Exeb10nq8b/RqDxN2ysLuz05msGEIX57Ib9vYOOa98AZS6IK3SX1/oo7FnLzKzF7k7nSgysL3jpXFfgiWjogzyvEksWEJaZECDaRSZMILNLm2BVpLMFNvm6cZ337+DZSFWL1HLFKUmuFqXlbUtLGXBRON51JBTjRZAgrngO4gY43rBzXnX9/DKiZNBlQACgh0y4myY4tpCPm3BsDgS9sa0MIL29NuwK7sJf/hm4G/fhAzMJp1GO5943Sfc37FcNup1sFuAMmrcpP5KghiRb/HpTO2GtNisxxo6ZdU+KIesLKeRGchr9H0iGfKRLMJS6fuOVsHolLyP1tqCMbNUzrVwWla+fPwMWovXNYQhOwPnD3/9t7Ry5unjC2O/snun/ahek/2FutMmbHt6iWIsujCY2W8pMqEuldNyovc9AYeQ/6mGrHbYjDOI0IowRpyC9aSM3bHdqDNeo1uwu+ckkpQkosJjeZjSXSfTjwOkKIBoS5AzpNZKDPyWg26kOBm1arA0/JDLgM0I/rjuG9feEa3gwuw/kpRkaEGi8JRkDbk6K+dg02Qf7H6wE4QpAbT0q90W69MmIiGdocbvHJKWAM1H78HKEk8pnX+6Gy3AKUHoo4M7rdbbvEVNYIbB2FPWWcOXDnEKxyxjRBCOM8kFKyH16ePKvIaDX/gVOqPvgIW3DQK5ABWJ+vDmXOnjib1fKZL+NuIwAsjcx7gZNjc5mFUx/3Qzug0edWF0p3gk+/VxRS1S7Xo18BOMyt1SkXWlr402DTndsbaFl/HC8/NLsG+mc73s9G7MeckzqZRl4bRUqgpNKmt17ktluxq9KCaDu/OCyiAdwZjbBiMY4WM43UYwf1qh26TP6E29wm6DxQT6hi4pwXILQLJPvC64B9Pp5dXYRdJeZeF6vuP05g2tnjA37msAxtt2ZdXKNifTB9s+gYa2XHKWyrSCtJX7dc010qSVE5s7cm7MbaOs2UuMgWhDUkmiQizyCZnlsEjqLYX0vQtW0kxihEHKwKNf3c1wTeNtiz+hJRiVtS7sc9DN2S3ICvsYNAoihTEHrYSayEawgFQLRcOQvc+o5VKgiWbCpWIeIPkxCEky/E0KpXj4wSWbT0s9RtcgN9SCMfEZnmyl1Jx0I72REnd+zJCxCCru4DOwhFIoHlJpTcBC1dm3UBeEF5VgI2xNTHp4QAPaTkyPgJmzrGwjQFDTybkpu4UM2SYUai41wwPNfwTAAVR+VJ9+gq+fHFAqOmCuMbDOzj4m26XTivDV5/d8/d1T0q0c0RjmQkKpESU7B61oROlpGLwdzbZrogKSH5YdyQ4JUsygX/cZxoJzxs85EklUKyphGL6cz+GDkWDL6e6epd1RWqO1RltPsWFMn5qETePnM8MyIdFmS+aKoNSy4maMbU86aDQ+c4wwmS8FSzrfTUNvMciIag6qNdhX2XLaPJqF6BFU5NM29QCADhQnt8nJp48hPlfmhxzOyb8uQT+UTG9yJzx4budNbtTX+BnZsBAO+YfXhHs8dIcfjxo3mVxhYtf9FvEukttvP0Q+wQhTL5D+WDXBr9hOOUMUK4WpjVKV0aJZrzSMkn5FlqU7I8QlqNVHnPWwkmbDnjrlNCDNZoGkYWdpwS38F4Y7XTpFg5YtUujWuWxhCBtgXMuBJOjo/XIJaquH34xPZ7fwf2oC9+uJWYWmBTOhSY/BT8NbYfQdmx23QauBOosqS10C6b6OpNOn9GNGkaql0Vowl8acbNsO4iytcWzt57RI85FC3zfO6+lGBX15fmXbrgHkSKGmr5Eexn82g50lmnIkYV1XzCbff/jA2DceHt/y1eMDRQuvl43vvvueaYPTeubh7dv4zPfYFNe6cDtWGKItAN9MX7terrjPkDmaxYarJoDrxNZBoC4lklkkh0rR20ZYSiQOaYk0H3MJAKiF1E5bGO4VL4Hqi4a322nltR7abnJT2FL4aJS1UWvlXE8MIs3k9fIaA04RTqqMblzH4LxEPRnTmHunJ5uqlTNuk0vvuCptrdxXZfSduW+UGnHzc+z47GzPH4NO79GQxM7TgrFAbASblHg9KsiU2zP7afdtyDB++PjM62Wj1SUn2wBdjte2myU1O+ClqTBS+jhGZ1nrQWZKQDBTh/J1vDk1fvmbX3F/v/DLn33JX737e8y3jBuWHI5jmBBR9m3j8c0d6+nM6XSKylCDFRUgZvpskP4ODjXPgUrs+FI0kuOm34ClQngM3d2/4ed//Mj3v32l9aDcr/2J/tFBl/CFGFHTbN8Qf0HefcveBBkL3v+U7fWMuTJ9Y1kaa2287C+YxWoqfO9SnplNgYpCjU30sGjIcaOKZYJfAMKRVtOjBnfjs7e/YH18ZJ9PybyJAak6VFEe784UHVz3PTy9cLw6dV15/PyXPJzfRay0OdTK2J2ykolkErJuNJYBWffId9lzmXDzvDLDZcYWnZAbJkYWviE+mD5RC4bhuRT++Ddf8ebxM/7kN7/hK/+M//v/+Oe0Uvj269/hO3zzu+/xuVN2Y98Hn31Z2S5XXq8b/f0Hug2u1wv34y0QcukpYDNe25wBTlZ1rhINYjXY9lcmgo+M7O5byGRjtQlbjxSa6fQEAspwRjGUGik+dWF3Q2cAJ1Urry8dxiv9K5jlyr4tXDfl8X7l3d8/ozqpREjI8FiwhM9TjWVGejp1P9hGnqC88vzDC589PtDd2FwY18Hzh+dgi5CsNg2JRGq64jPSqEdz9ugh8gZTAjgfGAzB5Z6undfRuV6uATqVQp8dEwUq7pGQ2Q3Wosj9G6oY1YPZfbnu9MvOhJTuBQgpCF98+YBvO0UqVcC1IGXBCC8iPwh84gl2ZMrdwSg3peHUMkEKzEJFGHMw9it9OvdNw0OF8FWqJSwHTqcztUScumihLZX9IizrCT01vnh44PX9R04Pd4zTyNYmJGrn+/uUlyh3d/e8vr4w587z6FE53G9LMRGhq7A4uMxPoCv+I58sDbbOPvnh6cJalPvTCSkn3GskvzEDQFoUHYVmcferpFmsyK0/cndshAddaylMtnzvyzEIRR8Xdhgen/nxcBIDVwD+M4aiuSMVmMrbxzdc+5X+/MrsStPK58tb1lOjndaQPPYAGhZXmha2yytf/voXjK+d+/tHSi08v3zk6fkp6oX1kPDMiRZlvr6CBmh554XNOosEaKhS05S7oqeFMhf2y+XWG/uMG7eIRp8vAfqKdLyfKEOpy87WoVPYZxgI15m0glwqjDQm7h7hG6XUBDRmymSyDyVAChdhCjd2VOSwVK7zQqlhxTD2zus1Qk7cNhat2IikszHmp+WkBihwaCbc7MaMWNeFMXdagXNzRta1olHttcxgnkv6UY2YgQL8j8F4DEdMuX84cbm8gDZm3wlbi/AKmiNYWiUTCzVZMrWkZ6EJdVVKa7y8ZJquNNbcR495WIcEeNRtpERHQCWALY8k2CKFiw+GB3tm7juzW3jduAcDymc+UwVplVInbRGGzwRHDpasMnt41U5PK9kCc48gCoYipTL2YLVdxiW8q0Rwr+js7KPTlsq6NsZmSHVMO8OUp5fJ1MbjmzPUkMHWesJmqF76HFz6Hr2vDda10cfO7kYdynI+UWvhsg/6uMSyls70wsvsXIbweh2YR0qsljBQdwvXx6fX9Px1Z9HJyZY0KZfwwOozZNxaaVLpYwZ4uyiLaHgSIhQzRr/QLfwC53qinc7s9TPevX8XMmIPya+MPe47bXgN5uJkg9rQumIE82ptD/G9S+fSA5Aptod9ikcdMcvewSs2g101k42La9TWSYDYw2+MHccDSAeEmobZIUUexNxXkFt4hBMgTavKNjq1NnzGvThziBDxUESIhSTO4+cUSYsAG0iLuzhmVvu0/LNQRwTIHQb/aA1PsAShuwvnJWqwYzQVFlkhLXF8nxH6cyyc3dP32RkWPQeiwdSyieuSDMbAmPFKqfHCxwxpuEiwwJsu8b0ItcWXn99x307803/yJXd3wtPz5F/99ca/+IuvqTXmvHWpAWB6JPAqsQyUA5w0R7TxU3799JI3iw9hc2cdghR4vV5jGw60tjCsB7BSorkNejpYCaouySjyGYWtaqEhodXXMNTkKPa5oXHPJJLptOXE3fkOqXpjgZSqtLqwLI3zsnJ3d6bWRm0pZ9KK6JIIasjsukXS3MRuwFHQYGtIzBEwwtMnhwiM1IomfdU9Lk7CtCwy7zX1lRqormTMIImcmicgQgIwENI55xO+mGlXxBYVyIf1kzlu0FaIJyuHSiA2KxAbZQ8YNkwMub3mw5fp9of107Yf4r0/DM2DMWaQmw9VDT2pBbOprgs32x6fkQIklYZimXAApBGtMjW8ACgFLyFZoZwQn1xVw1zVBrvP0NXiWAm2hLrG9l/j+lYbIcVLyU5s4ltQgX0mfVlvbvqkRpwa3EklmGxhDNkj2rw1pkeUvc/Bte9cny/4ICVvHZK+WAXaunCqK1I1ElkKyLUz9isyBlfbkfSTOCjPtSpKSCbH7OzXYCbUFp+vzfBvOZ3XYBeVGnRKTT8O/CZpmvM4K+HvcFpbINqm/PDxA08vr0Akv9W2cFpXltbCy2OEzOxgcaHx+9gG1y2Gv+36wts3b3jz858Fk6h3Pjw9MUfn7u4UMbYJPEpKSUZ6FbRWY9OkJHBl9N7j/cZoNaM6JfT8AYrG86gKe88m88a8M6pWXJXZd7Yttrut1rzjYmhumhxGgbosQXsvLbx9auXl5YX7+zdcnj4iS4vkETdaKZyXc+jhzdj2HR/QWuHxvNJTRjgmrOtCUWX4zrg8M7PhWtbKbsa1d3QK59M9kRLVub48YQpv7u7p+8bT6OhyYimnjB4uYSZ7PM3TODRW0x2XlJaap3F4PL6xoFTU4wJ+en7m5emZu/s3N6D5Bh7n841GHbQ+s2ksfP273wHOaW2Mblnw5MZQFFXGvvPLf/hn/G//4//E/eOZ1+cw8VUC8K9RHeO9l5AYvn/3nrs3d5godw+PUdNUYJCMqaiXJp+SNLoNXq8vITnBmHKIZY/ad8BKkWR0enjLx6cLTSpaw7h8t0lxwVvh8Zdf8ub8htO54a1QygBd0QVeNqF8/gueP/Yw8bRKszuW00Mw8jJJ1rxiPhO4jmdV68LYOl989kitC999+x1WnOEh0S4WFHv3iTMoKXH+6osveB0LlStFIxZYHZBJrSsXnwlIOdjAhrJIo1jDrFJqxWqAAXNOGmHAjKfcTrJOtoIMy417DLHTA1BUqSDBAA4ZTsQA7zO8dYpkMhHOFMW68WqDz7985HR+CLntMigPd2z7he6Fj+8/8giHafsAACAASURBVB/9k/+Qzz5/yz//X/8lUuAf/Omv+cP7d3zzN19zvWx89823tPs79svG3gfawl9FJOqZ5Z09xxZNl+TwYdCvM6FTZYqwj0gYVYS+X4MOr40wly24rrFQmMY4gM6i1LuV7d1HSjk8yILVhmv6Smy89sHDWUJ+nWbcRQOsxJ3XMUL6YsEqHDYD9EwNjrvz+rTx9P133D2cmFvhde988+3vef/yAyKFIi3qRrHwbU0TdnMoKIsOdq10OshOFeV8KhRtwbbShkX8C9oW+hGSIZU5leLGrB2Zweit5ni7w4axd7gUUIsFSu/C1o2RKXMtQdO3b07s+44tsYgo3qhSqRpMk5CK13j2kxX9o80VhrB7xI+3aSgXvFXchD/66h/R+Es+f9P417/9hpGshzIn1+vGnBYspVKQslM24eXliTEGC2+55uBxKsfv3KPfMlCXSAKtFbPB/Zv7YGk2p7KEZ8wsuChXOsuMBUQtId8dBAPosGDAQgaNCpVMgTud2K+TssayEUsD6/zfbkTSUw6c9dhE15K9S6SMKoLMeObJflLGHotFVaYWigRTpvce4APJ6EuPveERhyLDuTudaW3l/bffxSCnyvr2HtbK8EigVRca4dE3++Ry2Vla4+npI7oLXXZeXzZkqXzxy19ybnc0LWFW4Mbz+/dc3u788PqMbpNrD2brPi7JGhuUVjmfzpxPC72Hh+qwyTBLxlj4gS4lkh4vhLxkdtj3yaqFSaQg1tZSVgZSNJhHBGu2j5Ayjh7JgmMaNkP2u/tgaRW12Nl7LkoOv0ZVpS4rdyJMGwFyePQKpUpKzuDN/Ylhg5dduPQw+1UtlDIjIGXMkN95skHHpJXC3VICWFrO9H4E6gjd8s7HKYuwJNuh75N5RKm3e2wOJpNtTGqt4ZGXEt/wcDpSOh0SRLNcRI1pLHpibhOxyV1bGdZvK1pwlqUxLCRtMWOEjLW4MywWqy7OqSxc9p3rNkMSlIuOtkgwlYaAz1SMdJZFuVuFy0vnqoN9xmc+kDA4dqcW5fVlDyYMIXGc82g7JmUUMKVUqDO9oiQArLELdSlQlX13HhTuSgTavIyN625QFl4MXAc9peGPb+65W1feffwY0s1ZYJ9s141x19inctK46/ueZvOt8boPhhX6uyvb7My20O7ObPukOYw5glXYlngPPJQ80biHZ6CQSycFFUP3znpeP4EfBFCCh+l0qS2MwuOkBpHjtbOoYx9D+SN3Z+bobJcrfVyjzi+ELKoVNp/UqQgbg0IpC30YXZ21KnMfsBs2QlLqMyTXJTRvqTgwRrJwI9GvhZpAPvnwjtGpNYAOd2WfA9WBKqytIlmrita4b21mfxqAko1Ysoe3XCRda8kgniJ4CfGjiDK3SfcdqeFZZJpsnwST3IN9p5LEEVVsdmAwp6cVDszdqLWytJxrc85WuAFIQH52AYLHnSCJVcSzPGcEclVRItiJG7PQR8xWYxioZQ3LhG8Ukc55Wfj8TvnNz97y5f3Cu5dn/vf/6xv+43985ldfPbA+nHn/8iV/8VfvUIUZJnWhjqrKGDN6zvSYthk9z0/59ZMDSu4DmYKYsLOzl0q1kFNIQnGumjF4Eeu9SWqKo0uMpKmi+G54C4BAWw3tJzO9UzQ0idpo65l1ucOK8id/9gVlabRSWe9OnNZTgEAYrQXl/SD43LZ8Hoyh0dMEUcJsFKIgSqZYSDJ/DiBFPAwQSy0xVmnQlY+tR05m3GKZj3/mkBP6TkJ/6SR11m5tlkjqNuXYA/rtfY50k/h2cV4PmMn/rb9P/p4BB1lOWxoSZmZ8LskwCBo6cdgsKIendQkfizljQ5BsJnPiPRHwOcLgUCI+3syw0TNBQDIGEkhabJFIAQkIrcQgWAutLUgpjJLDJIV5INoWm5HiAXypVo5Ic0hg7di0u0fDdpgIwM0cF2p+pqA+P71XB5AkwZuybliPM9D3Qc+zModhry/s1hluub2xNIBMV5gS4EcrNc5cfLCM6yV8cl6ucLkmtV6CDyCxBccD1LPe2XPDV2rlfA4w5fXlhdYap1NLryaorXGkbM3hqKb+2JMRdxjEagCU333/Pdt1oyZo9LMvvryx3CKa2fIzTE2vCpjSWsVUePr4FAynrdPH4M2bzzFz3n/4yN4H0yZ3d3e0czx7Hpqe0Ol3D6AigdNt23APg9Cacj0/ZB1oKIZqpUgmjbmkwXOjUCPdR7LQA6UslKVwve6M3mPbV0s2PPG8lNx++TS0Vd4+PrKuoTPvFga/S1t5fvmB5y2G5UUq67mw1mBmXC9XzIxlWVjWhdexs4+O2uRuveMwBdz32JiWVtGm6ec0UFHuT2eaCPvYuFxfQeBxWdlk8vz8RO+DKg0fRsBixjY2tEXdmT7SDDF9vWzyyz/5U373178NA9Cj6fJ4QlzIbRhcX6+8PL9w//AmzND3TB0yD7CtBp147kFRf/f9e373t7/lm29+T10r2+sl1yoxHI4fPYtaK3/329/z9d/9HbqsPH/3jGN0cyrCXuKfVcLvbGqkMlVpfPXVz/mrf/1X1Frplw0L6CnQaDL9kpBtFvRTKof/GED6VGUPA/ClVGwO1vMjf/oP/4SFBeOKMWlNOJ8fWduJUgpry7hpU2a/8rob23cf+f3f/i2XcR/JVzIwBrI2QmLoHNp0ycEScrARYXv+yH/6T/8znq4v/Pd/8//AeaX3HmA2NRi9RHOBC6VMXl4vfBwbgy2o1XrIJOIZ6l7p3gNIT4BkkZDQPW87UqIZMc9BawymCa0URhU8jTN9JrNMQ+qgFht5N8d15rMjwezUGF6LK9ODDeH5uUJh0cqbuzNfffUFQ1bG66R1CyZSU2RM2rpyPi9onfzZv/Nz/v6bD/zNX3/Hw+MjReFnf/5r5JvveP/0zNY3tr7FmZzhu+dEszQ92HSkuXlBoMUrcTd2hDviaOxjp9aCtwX3Rp8DUWNR4WIhWQyZU8qzNmdMoavidkW0sfedUsL4v3qj9InNylKct+cT758vQGXre0jfzak9tq9DYmEQMciRfluo7MN489XPMZzeDS2RNPnrf/zv88P/8j9TvIcBNWHOHtJuchESkhgpNZZOHs/wBKaEobKPkZ4/ITOzOQMw0mCbWgkDfd0abluy0grLsqCnAiW8iQoLZVlYTivy9MT+8WN0JAL3d/ecTwvPP/zA5/cn9inMU2GbKadpBR2TjQBgiiTjbUZvox5sUhfH7ULxxi6TxSqLFn7x6694/va3IX2vEfO+SC6gLBYQWiJKHXG2McKw3Ixt2xhjUItwcei2s5tzeXqhEn6D57t71nrPw/nM/eMDTx/eB5gizirK6e5E0RMvc2dqJDFZsqlthrdhJLlOtIQcvlhh3wcP9/e0UnmpRrNYDk6B8nDGn5/ofc/vEY3c6JOxhweQZCS1W6eUhaaKnBpnlKorm3f8FH3QPkYOSuEV5ThopKBa1kHNJUosYwQphY9j52V7pYlS18p+feaFzsP5AdXBLMbUGIafLq883p35+OEHTvcnnu52Pn73Lc/Pr5zPb7kzhTIYrUX6Wq2glc9/9gVfFGHVwvPsTIS2d8b1NRiJz8+0utK3SII0nxHHLaFUaJLJfT39RnrME10tAOQJh8+lSvTnJBjkFqa9W9/oFlL/uhSkcJOlGhOmsutAarB3VMJnsqddgSD49sKyKgXBRCm10ZrSWsP6zrooawtwZZsBVLrle67KooqV+Kz7GBl0MTidzuzzCdMaYH/L+yQZC0Yk21omgCkaht9a6NctmI4t7pp9bNTSWErBi7LbxLzRWmFWY993dhspK08AFGPaFR+T8+kxlnpT0dJiOG/CDFp/0IO8cD7dxVziBj7Z+zWTl+H1OiItzrP3SEFH0ah9JdOv7teFpuln6cbrq6GLULzzUE98mHH/92khf0Xoc8M0PNNq+u68+k4pFaUzh6K2RCLYnBFxPwhbhCUknWWNGbTWhviOzcmHD+9wh3LXWFplmtL7oKiy1BWTHfHKXSbZ7ftg00rZ07t3Dj6+RoCPMem1IVp4PK28MNkwzufG62Vn1cJ1GGh6dhKBSvswxn7hVBembnz+ILhdmaeCy8b1WlmW9MCZxhiE1cNKMLpcUA/g4FQLzMH16WNIY+crm8PYOr4PSlXcn3GrzFGgLGEs7WdohdE2RjtR2srH62C7XNheXkIqPTcg7vFaD38vp489WfUV1Uqf4SNaKMkQNqo4fdupS8vZtrBUvT334csYPczhhVm0sdukSXgPhadrkFHSlIt9GFJasB1VmcO59pn3WSYATk3j7U9rx0iBi5mvj87hU1jST2mMgZawwnAmWPg5W36XUkokDmrUHJ1HBkfM9of5RFWhrXchRUzw6PHhEaHF/bSeAms16HNDJe4An5nO6c6bYfwHf3biP/mTE//0v/xzvD3w3/4P/5r/5p/9K6S841QL3z4JjRLtp6RktoNJJD/WlIObVIamaf5P+PXTeyiR23e/hqRl27mbATyogJcSG1bRGHZzENYSDIageilqHppp04z8U9blxP2bL7k7P3A+nSmnlbqekFJCDkQAB3rzKEiEnvCR6GPewKRgz4bMTDzeVE0NaMgW+BEdLjjGEXMYwE5QG2OgwXpgERKx0kEY8B9jR7eBXZD0H7IbinkkJ0QPILchUfjkIJLK9PyGgUQHg0k4hrpjk//ps5Acco4hS2//hRJJCPGjYxgqGkwPNAxYixb6tgcVOI2UD8CqpOGdkJITJSQJPfDzw3ANM/wwg9UaLBQNIaCrIP8fc+/WI0mWXel9+9zM3CMiIy9V1d1kN8nRUAQBjQABetOPJ6CXgYB5mAFHnCFFcjikpqu7q7oqMyPC3c3OZW897GORxfd+UAJVWVmZGRd3s2PnrL3Wt5LbwCUGdC4OmDMPTHxz7K9lIIlPvlR9/gyedw8wW18MI04Bb37f4lXBr4ciDidMfzVwSYygDki10RmdGflaqQZVldYb+74jY7aPhePDG82UFLyBIYq47T86CK5dPzHq7hZ19QdUwjdzFJ8gC0aa4pbqdATZFIbMvDVx1juez2fcSD3ts/O9NfE/B8a+O1jbN5IOwmytc7tcqNW5RWUpLg4GP7CH4GLvXuvrxvNwrY35ddfaebq8cNtuzmJIPoXerxs5+xR1XReW8+piEF7t7YKSv7chBLePtgYE9r1NSLdPXFP26Wyf8UkJ/vXXOrht1fPMwBKHx3vyCWJExSNjoyv73rleL8B0MbRGb40QAyUnCoKNjRQL79+/4e78QEiTMXZsRGWwlMTtcnOGW/ap2b77RC6VzBIibQy+3ypo45wLpzXR2mBTP8ydQuS8nrnRmVxNTrmwBueHXPZnujZOy8JoO8/bhW6BJDMSibuGshk5+mHMbe79C2NgioVrWvjL/+Xf8fHbH7gNZ13M8NI8hH8RpPd95/npE49vHwnM1oy5LiDiPCf1jcd/+/t/5B///h+IObCuHnHsqbjLbT70nafkG/8u7gL8xa9+ydYHsex89/vfuphs051k5s1c01WUl8Lvf/yBt+8e+fD2HX8/fOM5DrfmBAA7J2zyknR4tNh8TbTpMgw2BS5VDpPoIpHl/IYff+yM2yeWNWLZ+WgeGfktSQaBTK+KiQOwBeMG7Fsm5IItzuwRBWJhWc9gLr47Vzu+wiQFXxMsJmI58el3PxBKIsjCUOcheaZdUfO2HBNlREOGcWuVoQuqXg17QFSJDrgsIUANmESaNIJWNCdaGtS+T4D+FLjG8EN3klmc52yyIN7+MjBPk0+h/7hSdB5Mg4Q5VbS5aZbXQUmYDtaAotKdH7AubLqjRZFY2cXLJoJEam/8+//z3/OrX/yc9z97x+ff/8jDh3e0242Pn6/odz9Qlky9vND7YHu5kdPiGzd+Yief62hXnRu3Qc6FWwrc8EFHr4rERDRvikv5RJ3unsUWUoI1KfvtRpyTfiRw052724W1ZOrN70lV0B4Y6uDq0T8SLFJb5KEon0247Tu5+J4mxuCMvZkPG+otUTqGN4INJdD59Jtvebk9c3f+Gb35xvz693/Lwynxcm3zke38vBQWdrqXeSShZGcFNW3ujDGPyj/fdu7rhXVd6eIctYI3yV2iT4tT9Fpq1YYk8wi5+oxrWCFqoNvu007xhlLLoCm6wxdDh/D+/Tu309fZbtO8mpvqYN0ogsQ8naaCdEd0dwm0+ax2elNnCdEHQyECXg6R35wJS+S6d3JeGbTp1PPnRFBjmfubaIJFh5i+Od1x/vCWlx8/EcvJW/v2TBg7wWA5nyi5ULeKmfLmbiGNRt8uuBs18PbuxPX2TIttRiY7TQJLyiQTQnFGxeBweQ4iQknKKWXu798gAr3tPjwR3KUVZqem+BTeB1r+/I6zbEI7KEq5u+fu/dd8/PX/cEDzqL4DTHBK+cu+N0TevHvD/f2Jl0+fuV43dHgLkAOzp1sZ5wvl4rGv07qw1Suj7mRtSIkEgx1IHRLGS72R1hM/fnomlIVmERHldnshB9D6xEv9TAvCut5xXs8ev24DeXlxF8C6eGWhKlIWHt+9JbwTvv3udy6Uh8E6Cs9TIBJzfioKbbjYRA5YAiWiWgka6PtELzSlSWU9HS2xXile53B4WQJYQru7OoPhop3A6DuRwgiVkDNtDlD9QOv7oeWUWVZvGb5W5/zEYATz2FszpcjCy2UnWGQRoc511Ex8IJsjOow0zwkyB4iNSB/CEHfa+GAxEBRy8gG8TdB5YA7aCYw0WMzdiKrKenYIfRDfT60p4cu/Q+BjypS4OMYpRMJomDqTbwDX284Yg8fHeywoQwNbrYQQSQKSIkMhpeTrGN6at5YTZEFvFYuFq7bp9umcpoBHDOg+vBAgNEwq+6bsmuhimHSieiSsWWNMJESIgqaN3r2d082x7vQYeOOyBLCcyRax5sUGwYxdd0o6kSLkUHlY7j2OHDPEzP2asZhI8sJ2q7w8b7Rl0PbOmtyVLeZDWxXhcrv5uQljbDcXY6NiGjApyHKGPjhNkeTz/sQ1BIKcqbuypFkZvw129WcTOTkDbQw6lT7gfo2ofmKoUWuB6MNPMEafbi/z2LR1j7IK3spZcaF03xo0Q4OQgqNXSh/evKgGo3lgJorHq6IxzPtPbTdEO6NdMCLsV6zfJsPW7yHd3VHVDTeBKC4uHW0wIUGfrtxw7Cu7Q+FrQEenLBllIBYIGlELdLqfhYaRc34VhQFqG4T06s/3M/Ms29ma74dLLNNBPd1R4K6cACku7iAXd/li/nvHmcdM6BpczRJhKSck+tBA5ll09O5n9hRmq3x73VebOHcWM9rE8ziSwV5TWY7iiCx3K6bw4fE9XSMPiycVhhm9mhsWzJuos0z27mPiP3zM8Fedf/NnH/nFz/+YX/7xhb/5x++ofaNqp6Hz2H8AC5gDTmcAmh+MXIcY/EF//OEFJXFYbOBEaL7JMfHspgXnnAQ5Mun4Jqg5PMq0eW2jd5SSU+J0f8/7tx/IZeXx/Zn3f3R2xospfda/utuhEqS8unLUnDVy5D3MzOvbZSoB4XAI6at7xePSR+zoUBnnG2LT4dNtHuImFNvc4XM8rEPgFcDqNtNJ/5jilPMo7BifA7OxhOn28Sscjg3+JN6/7vBnXpR5UIK56ZfD/XQcH/37/qnANL9zBxsf4tKRdxXxlhjDBY3ZukAIDuyeN25KvoFFgDYr3ZluKeYDLyRSjuRZ567qSrSXRXRCipAyTOujzO9X5wQkS/Aq5/k9xVdFeVrtw+QtzUw2GnH4nzNl/H2ZrzGeRY6zWylk0N7m5M7V4VE3+mQCHZ+tt0Zvg703Rt0nfNo3rSLiDjrzBe9tzogE2mgsGLEP2naljR3MJyUlJo/RdUXFhYHRxxQPpzWSn2aMDwfXfLuDs0tCCtOJ4UybJRefdgVvDRijkVMi5QwiXC8Xnp6ffbqXE8uycne6exU8hclusTktJrqaXgr7vrtIJcrL5ZnbZfM60ryQUyKGRFkXh3rWynp3T87ToaYu4sTpUhtjzOrrebDyLlrWdZl6gF9n2g8gv1+wpsb1ulObUltDME55wSSQUpotSc622rcdNeH68uQsjeiMNMHQ0Si5sJbi7Jw1czqdeDifvfI5RiRl55PFwF4by0lYTotPkOciHaML210HtVa2MVjLwjndsdWd6616VX2MnJczIwwue6XZ4D6vlJJp2qn7lURjxZ0D/fbiWfNlhTGQoYwIto/Xr+l8/2ZCvd0mLcEnsCIBVPnZH/+crz98zZ//z3/B//03f8MRj9Ygry4xmaJ1752np2d6q+QQ6eauBtTbW8ZwB8O+Kw8Pd/zxL37Oxx8/vlqb02zK+Wkbh5p6XKspj1+9493XP0eD8PRf/s4tz8lF6GBfAi9mSkg+wRpj8Nd//Z+5frxw3L7R/B7QOU214OsY5sOJMf/b3Ru4i4VANt/Mq0EyI62Zx7sH4l0kJW/pEovU5OPTnBJDgr8OXlTo7qEZm3jzNkCfsOQh+CmqcT4lZwCauxSH4GvR4RidS3GMgVQSj1+9J9qBPTeiOE/JhxQ6hwiBvGS+/uqR//e7jR4C2hpLgWTBa+RTwGKCpKQRMW0uWnDit7/9xD/8P//Ej08X4OTrVFgYYYKPzV09JYR5GBayfgGfywDV6axVhdARcQ7b0c3nxW4ZYmG16HxA9UPt6IHffvcjdnni6RT5N//2V9yXnWiRBSPcR9Zb4He//54WA7/6y/+J/+uv/j2SMywB2QZ3D3dYDPzud99T9226jHzQISbYqC58Dag26GMeEpcFP4zOQ4YqvRkhrwgbut8IudBDZusR5/ltZHa0DggJjQtVfep+9+4td/JAtE4MwikHulQ0GxIr2/U7SnnLwznycIksqdCGPzsUj6RZ1C/uEA1+KOsHGBRavbprRwKS4Ha7oLcK1fknwZQ4nPNWRGgyiCPO9iwlJyOpUdUYMtlxGPvHK/c/OxFsxgSS8XR54WVvnMrCCEKtlSU4k6vJ5L2Y8maJZGne/GNTjPblgZMIlgtBIMXIhw9vGNWoWySxMOqVuikjD6ROcpsVSM6dSMEYeAQgzmFaipk+Etfh4rRHYiuBlfPdmZ4iaUset2jDResY3DCBw7eLeJtePdalAE/f/QAzghYlYSlQW/cI9FAanVIKa0i0uvEv3/2O69MTMcP9hzc83z6xX2/UcaMn5zQ5fHiyM0NEo3MGozhq8+58x7IEznnhfLdQ9xtrWbhVo08mS8PvFZ8Xe4yXCWKe/iIC7uJtPo0irYXryw03YvnrtjePJoWUyDEhXejX5g7dbq/DgSOuXkqZ+3RxSO4YkAqLJrRtaBc+f3rBwspdWggx8nzbiUvk5emJfC4sy5mhgzGeGaPSJRKsI6bsF+P66cLz4s2Ubx/eeQRXAs/X7u+ZCaPdeLlsfHz6zG1vvH3/fvI7hRJnAcj4wj4tudBadwaiCEr1OCfJEQMCZpneBvevgK/Z/pddFMhAMwf5++BSWO/O7M05c00hqtK23V1cMWLiTcNqSm1+BhgGRmRvgywCyYexb86Fqsqb9wtLCjzdBt+/NLqfZd0Vgnk5IWHu/QrbraNBESlIdqyHWHdHnnhk2WN3RytdxLTTNZAwLASHBlcHPWswnm9XukJeC8tSGPM8ZL0yaidGSGVBxeOeiXm4nBXk23ND8s4GtB7IEv19sVmVPuNeXY29N9+TAcvdiRo27tZIre5mEgn0uiOhQ3d0x5q9HGIXKPlMigUridvtI9E6zwOa+CB6tIZWfT2beCOyA5Fj9PvO/UuRpmEynoy9Dk5lnRGowbu3J9YCQZUbjdYHa1pZz4WUFlQrj2HFSqL2nadLZ5nth1kKe3smdmii3sGUMsMStMCaVzSI33PAVp8pi7+uYqDizKZT8kbP223zweGCFxoAo7sgPrqiDSon0EAXJUhyburwmJZ2dYebGqMHcgk0cWREnOzWtg1MIjFmcu3OwWwViQWRxDJfNZ9DJHJ2JiR02jB3KkfY6pX68uzDlnZzAWaaPVp3/qupx2KPtvQxHAOgY9CbTkeYu4e1KaM3bEyWVkrkEudZpBP4icCjx55L/Qwk/vxXOz7XbPFTnWd4ob/seCM7cyipEL4wApmYGpHgA/3gAn6MngLJItgQCKBaiWNyNYU5ZHRLh43JJLYpcMlhjgmvsO9gQpr7kFE3Qt2RmCEGvvvuRpDB08t3fP3hV/zm0/espwUEHt+8583pjq12T0vFzPPlM9/vmSV3/uqfC++/BRZD7n/Bv/vffsXlZWfvF56uO3W70a7PXLfr5KD2WawSpokHL1tIf1hF6Q8uKB3T86BXb/Gap1afaA1XVgW6BKxF1nXh/v6O85JZTidyOXE631NK4e50x7ImlpzQduPT0w0nce1udzQjkdBjUsp4jbWYynStyHQT8epaCjFiQ+cUwF5B0IhwcDvH0JmvlCmmiLdPYNM9pFOU4nVaFw7J4fhkwV1Ar+rPjP0dB8E5YwX4EsPDKfT+P31KMfWoWQzmY40o/pA82EZ2VAYeH2w6oJjuLJhg8ymyDHyfNb07LqRNYcr5Q/5J4xSWgrgkgyi1ubXef9/dAjkKZW6sQkoeiyiLbxI4ILVhckLiq1VRptWbKbwZ5g0g8yY/JpEmM64nM7sr0wMT/Gv3wgkX3jIBgud4DZmU/MgQRatvwLa6EUOmDZsPKmEfyrVWRAcyKtWMPoxkSpHkrBGZzIUY/LUNIHVn1MqiDoNr/eaRzhDntNInrduwuSgdAEjxitLo7gshYr26yAkumuTsk0QA1OtUJ2sBhFqbC5gm7u6JBZHA88sLzy8vAKzrwuPjG1LKtN647RsxBHJJjAmL1Cms5uKTrpfpZuqtouqWXhFYl+wOshhYi0PsdOwOe8SFoqENxJ1jvU8hScFmq8LeOjlnj9f1hkiirIWuDiQPOP8FjNo6+97dZZC9trubT1vqOACALnLs+8a2Xci5UHKcgjdMsAAAIABJREFU7jiDKCw5+6Gp7uQYWdLCm4dHTstCKKtPesSdcjEGxvCpy7u3X/Px999RyhkV50Nttx2AWCJvSqF2Zb/e6AapZE5zzXvZbkgQSlpZYgIa1+0ZRiXNBsGtbjQdLMsDKaUvMFOJxD55SKVwurtjH8Ohh73NlcI3msQArfHhZ19Tbzd++W//hH/6p//GS33BD9e+oe3HejLXqeu1cq2Nu3NGDBZ8bdGAw7mnG+qrr77iqw+P9FYpS6H1wX/9r//Ib37zO+cG+dN0RhSVqM45eHm6YkHZLxsSbEJ8p+F4DhUCkIKQJCNx4XR/IuQzP3z+jPQ6v0PzAgGZOEQxCnBaV+7PKz9GPXzG7gY4xFIVEn6I+HA+cz6v/lXGSJoTKAlpHlDmwz/6+jxskGQypMy8OUNWwhRE9zFgFNa7nRA9JmrBrd/HAENw52SvVzBjWRbuzivp5BNwccWUw02p3v0K6pueLJGFQByGNXcyvTA4B1ijsZYTt9H5sCxcPl+xaIQUSebCRwj4xtBgNyXpAab2FXlUhcVb7TCFNAjDUDpqzdd438US4kKW4FOzIJgsvkGJkbTe4ZVKlWAdtRv7S+WUoJzOhN2vc8w//6ncU0IFOtt+pf6+8eGXv+A3v/4tuu/86b/9M/LdSvz8wqff/8i+b4xW6ZJQySwFWvWSgK4NqkLImAmm1a9u82ek9k7dKsvpgXV1d+c+lHD9jNVO3RpDKyEWUvCvPxChdmxfWQasdydkfGbhxocsnDASg9QaPP2eaxvc/dHPuAsXHvKOphP17hu2ruQ1o3vj6XJh1MpBs3b3s7FIJL19w/c/fnaXYIWHfMfLXcXqlRIKJfk9HpIR8yDsvgkOE0Kdok9F0wDp3tx3v97z+PV7byjV7u5eKfQRvM0Kj5j5XmV+7OqO4EBiJAXydPf6/CeYssSCnN6jH94QY+B8d+bd/Zkffvgt+V5Ia0ZfjFPJvNiOrgm8msNjkcHrlGPw52pXH/jUPiG7hruUekOLoNVYdFBSZpd9RrAjjUHQQXSj66zRdhGc4dDjVAp13wniFfIEd9tKr0gWF1fGPAitC20fDAJyznzz7g2COx0JJ2TszsWaDYhttn85E/BGjBkEH3ACkRVipG4bTRUVOC2BIQWRQhjGbV34/PmJLcqMmeNFNMFdRClmTIzzqZAY7m54ODFUZyuvrzMGYO6UGVYZYzrNujItUa+MjqodS8IiwbeoXVlCRu4ERuJ6feGyvaCfxNtkR+CuLNxuG2ldPTqlO9aFhYUQ8jwwK+2ygSXHU6D01ni6PDEkkPI63fgJGYPQIi8vH7l8/kx5eMNQQULk+XqleccFTQ0hUnzrQ8nFn09jZ0kLW1VC9IFAr8Y5OxsnHoPigO+T51lAgqDN6DPWKqZU7Ug2ikJO86yi7l6w4cMaicK5JNYotN2mI1W5yxEzR2SkDE0Hl0vHsqAK23AnVQhzUGgT+i3u0g/JcQTBhGTltSSGuf9PAZ8oj7nHIbKr/1z7RDbIbBROgU2dOxtx97iqkYKXr9jrQBt32kYXicfwPd5aCmlZnGmVjCqBnFfi7tyVvVYHw8/Wrq3tjDgLaSKodkwTTaZJYCQv0FHFSOQs7kDKC0EapeyMGginO0wXugbqdoHbznpqbBd3NSK42yj4ENzw1scIs/XZnYRpCUSN7L3iFfcGS0dDnoKjsO+NkTqXFtmbEiLsEmgvg9GunJNw9/aeboHLJTJsZ+/PaDCGZopCMnf/S/d9mAVFUuKmO0Od7TaoYJEWBltvmNwj4uzfhrLdKiEKa57uzT681TgpTQshdp7HTh6BNU/DQxuEMt0zo8+zmkPyB0bf/dra2825w+LPhRYADTTt7iKSRAnGkN3FsG6Os4gJIU9sSIKoKN2LZHqdkfxGCoKq7/Mczv1FnM0IKmOaICIinlAIyVMJexsMNXL01FGSRBIHx3dVJM7WNVUkNd+rDY/4RVxE14lnkRgOOYyUBB2OmrEUkTzvo8mD9HbHgGiEoLxygkP04e1kBYtFHxaa+PUjE5Njx2P7y7M7gKNeoldxHiVbYcLpHZrvezbM9+oWnfHo+7vhzizxM9zL838lpUTAWU2XpyfW8z1KoPbK7fKJut/4fHpALHCrGx8+vOP+/MD5fIdJ4vH9A6YPPLZKqzu1NW6XK59fLtyuz2h9pvWKzxOd3Sn2/3tBKZJSItqR3ZYZH4pIjMR0Yj2fON+debh/5P7NA0tayCWRxGGA7jjq/lCcsQgdfjiXEEnBD0mG28OCTVlGDwfOl6/HD+rT8XOAp82Btc6UmbZBjo4imQ9pm04Qv2htfjA/KNjrr4FXcWXqMa+fNzB1pDgdAsNeDUQ2BZvj65u6ibuKDmFojuIPELf95M+pzSnHlIT+lTNpxuuOPysTQGkTBPrKIjF7BRmbTYFLnJPkZ4mphg9mvhXUIikXUgivN1bEozWYIbNFQoIfF20KKEiYwptvKExtCnLzZp5CGfM90BkflDC/WVMkBaz5RAZz4clvds8Ox/lxXEjyKdKYfAIdt6nsG0j0DUtvtGH0WmnTeTEvWrf1ElgW5zikEKm4wht6x9qO9Q0dE3JmgxzThEMLSYpPHMVb84bvcRzAOXbUlJyd+xAMb/Iw38SUnLzGNUQU51e55qavMHRUPaMfjCJe4Xq93di3yu12JabEw/09ZXGbSp814gLc350Y6oDKMbrXc0ogxkirzTP0tflEcAqfKTubyFtC/M/21uhqpOBQahvD3TazpeLYJI9hPsnQQYqJ+/OdT1BqQ9UcUr3faKqTu+DcCEIklxVQWvfJoASPhPYhNHWA3bDNYefSSckz8DLvixDDdCkKQmaJC2uJnJY71mWFFB00LIF18fpxv5UHIygpZ+IyQZOjM3rglDI5QjW4vVxJ0cGIy9RGt+HNLKlkovgE9XK5EGyb94ozXfrNnYHrevK/t9/8/pmTHImR+7d3pBS4Xnb+4W/+llGri9FmDtoN4nbpVPj6/QePd51O/Plf/gX/6T/+R99UiD/8RSaja1aGXW9Xtn3j7nz2qBrzwYvwkFe/bsStxMMGkch+2dmuO7fbbd6peMwEc5ZO9Anpw7ryzVcfaNb5J7XZCON/42g1cwFIOC0rjw8P5JKnHVi8HrlFxugu5M/FbEzRiiVwXk+UcsbUDw1ix1qsc62acVyDd2/f8LOvv/JnirgbNE4J38zm5HyusKqYFCxMmDeRZMMjQL1O96bHr0o6kUKm9yvHEnbwVXzpstl+VlnXwvm08P7NA7/+8RMWvN3SnwUefT0aUFPMPNy/I/3QUfUIztbd3entpXGuz5kuHo05hcJduOfzWLh7uGN9eaa2GyHeOaOAQFgEbkaVzlKKi14BOhHdjS7KaF52zCw2QMUrwYNASHQpnFggCTEbsTTohmmgWyZaJJF4vL/nw1ePKDtlXJBV0H1wfz5z/ViRGPnnv/tn/tf/43/nN//yHef7hee2u4CE8vLDR7oGRhu0bsTkEF+W5Fy066AQqTLQEBjNq6ZdADNyNGzs9FoRWVxQtYbtV3hpLsqs59dmOp0xK22GdSOOyvuu5ADX1hntxugro0MMmfX+kd4bEnYkBe7PZxY9EWwnvT3xm9/cSGFBl8B+uxEksYgRxSHd8f6Oj9uFT88v3EnmbTlxub7wsr0QhnK3FHbZCDnPR7oRTXGXhK/TIXrb4ggKPRClsgCj39Be6UXIsfB4Loz+RI5HuYm52+l1fzN8PVEhqDOATGaDHyDd3Vun8x3npdO7EiVzfrij7Q1acKadQUcYtnNeI/vmXMWuRkkrRRLdhgtdBkkHUeaBAkEtkFKhrwuWE1KNc4YlL1B2aM4bKUE4pn/meRZ0Opt6a6zLwvl0IiJcr1eCwejuGmsYJWSWZaHWPvdpRp2HgsUC27XRRmcnYDkS8olT/7LLGuaDDVNnLY7e2U0JKrRwpWpjs06OiY/bzSvUDVoOlODtlEMi5/NblrRj1ul6RIh9GNZtPrMlg3kLcq9O03Pume/7YhRi4DVKodNFLvE4NCmWPMVBhGwyyymMve9eeR0D1QanN3eUkjit96BGLInr2Cn3XkIS5v5YMmhaOMlCm3EZLdWhvbWBBMp6Yl3fEMOKEbwsA+G0FL774Vsuzy+UULBaMWuo4g5u7XQdM3UyHTq9Us6rD3Y1QRaGDFLvLMkd15XOEvQnrEBB2sTzx7lmHvEeYHQX2S25u0XUIduk2U483SL0wWaNJoEkxpIOx5NX1eeYWRbhclWCFC5VJmoDoqijFAg+JJ2HVcEQdR5SiAtLdHd9E9+D5uguyzaB18OAfjjrIEn29tzob2wS6DFyKolaB1ttxBmJ8vvK5j7SY8I2Jj9K3cFGWOjW5xnEnRqtOn8wZ+fciIK2Nt3DAtV8HRLDYief5RVI3CZwPtvkQYUAJGJJrMs9ySomDimXOsW9a+frh8Lt+kytKxJ3dgZJMgmZfUaFpM64ajTicQLZjZte3CmDlyqgsPfNo/bBqFtnLCfW0+rCQPJzyfPtwmg7d/kEdBd6QkLXK0+bJxdCdyFkTcCMnKpGd6wMJafg+zYTdx+qwPCI+WiDrokB1Iv7D3P0qPjeG7CxloVYEnkRYp581B0Cg0VA2yAf7tehhJAg+DUj5o5zAQdUz2SK4S5sif3VkROCN9d1U5DuUbgU0H5DR6G34tHg5FHGOBSrDWv+jy8nU9Ae7pxSjjPrdFsqiPqQP5oxzIsedLhzP6jvv1Jisj8VGjAOLnCYwZmOBUW7EZO79pKARTA1ckmzGGYaG0iv91lwKz5jVOJMwujEOSB98vbidELNfIgaITqr0szh547oaJ4AMXdsSYgz4u/OqVeesfGKhBE5uMiRV+PBsc8UdyhHwjxfD3JwJVusUaux7Rvh6Qf/f7NAABUuzx8RVfY++PbymYfHt6S4MIZyWk9sdYcYyKVwd77n8f0jcTnxUeBmldo7rfme2sI0hvwBf/zBBSXCSkwLIRhlWVlPd5zPd9zf33E6nb1mcZn093nAVYSmDp/yC75NK6NPbC0690HnhsOBlD4Tl2kDddeLIcGB2Z7HlKlOetTMBZ8wFdXJ3DCZ7IvgUTb8QID5RWWTUyNTQfriApqHl3nIRVz8EI7Dlc6X1wHH/0pt4hCP5n/LsTXwX9jkovgfkTnd8JvhsPmZeMGp//6M72GvLh6xw3E0P6ENn0ZOAcfmQ0YPkWvKbog4sFH8dYkhOi9nMpQOcehwYc2fZoDOD0MHD8enIpNRwny/ptTmEaLjL05ZbPKTXisuTQkHYIwEbThrqXue/HD4uINBnbekyrA+xRtXm5vbl/z3mtJmy0uQMN/rWUEehFDifG0hmueCYzRG30nB0G33xdIGot7uEMxB46hXxY5pCw4TyNhlQkh1+JQTCDlAFPbq9txkzqWKMyZo5o4e5IhOelzsqFlHxN0sGK0Otv3G6IPz+cTju8cpSHjGlxlnO67B2uaij5BSdlEpCLVuXC5X9t1rpZfssbCyTIFxHPyq7kDV6FA70zEbmAK9N7bd4zcmYYq8XskpJAfMjebCnIi3MshgqN+Te90hOGsgqBFzIS+rNzhXb/cQcwaW2kDFq+1jisSYfHrEl1hgDMUFvpz898vC6RQpyUU4qYNcoj+gRUiW2PZKrd1bz4CynPn0/BFSoKwRHcqteiPlelonnNXYujtClpRY1+Si2X5jvz6jrXNeXIzbu8NFSwmv131AWHKgd6X3xvJwT17PJIH9duOv/+Nf88P3389Fweb65ffpMOPh4d4bNGvDgK9/+Ud8+Jd/4fOPP0LQyS3z91/VAHUg7N5IOM9sNkljJjQbBPX7IMy2pSiBFBTtwrHSuS7kYrK3LzqPp/YBKXB7qc78ONY0ETwCc7gPnct0d3cixezg/fSGdTlxu90OqXquTT9ZPF3xANygdaxGOtffeHw6hGSwns/Os2nqzC1T6lxk4wQ7M42hYX6NW/fNZB27x9NMfBM6nVBJvLQgL4WtXuczaU5omRsIc5D2GEZXI5J4c7rjN+MZi14Pfqz7x3dhQJDIw/095+Wz16dPkXy0wd6Vsq5ISaQgtJeXGfHIlLcn+rPf84lAtDbdjrNKGUGSkZcMZMwGvVV6U49FMJxzYvr6Jclcu2cmnBwCQwbnlP2ZMAIq02lpvi70sbFX4WZnRggUubHvV24342XfqJcbQxoPP/+af/jrv+X733/k/u2ZMZTnz8+0upOWwulu5XLZ2FvjviwuPFgktEEwd3xajNNBqd6+9zro8Ejk0A6zrdMP/wNbMpYEDYk2gXiZBRGj9huhNWiFpQ1veKRzOhXieaGKOxBC9latOhp6u/D2w894nz5DjXzu3tpVktBa4H7NxBxZXm4kiyyPD5z+9Bsebxd+98/K89POn/7Zn1AvP/Df/77xnIQlRcrb99NxC2tOviFPLrrmGFklkqyQbOM5eOSy4/Ee6UqLjcRsZRRF1O/FIJElJ3pvxGDcnYvHA4dHT81+ckPgDTgigWWNvLuPDrwNJzR5NHpZMjFE9rDTBtTgUWcLSs4rapWHr96y1UZrc08jkT4HJLmciEy23thIdkcMEUmNlJRvvnrk5anx61+PyRb0SKZEf/Z2FVJwUK2pc+72fWeru++P5n5N5rAkpuSAWZ3V67W6myJ4QUS9DCgegfZYiLdrtuFxjJCiRyMmzwsRaIOYxOMbOkAnk7J1RtvpCoxIDc7HQ0BrpV5uHnoLc28VPQ6Ug7uN7+/PlKWwpMAPvc82IcGO8gwziO6mJDh3KIVEjZ2ICyBNMyMPcsdZcTEjobCsOq8FozcPtfZ88tKTXifLMDLKilmmiIsIirHev2E9P9K3p7leBDxE6GujWSWIcv/2gbSeyZJJyfjx2//B9vzs7CJVUl493t47fe+M7vtBnYfUbN7KanuDGWW5PV1ZJNG0Ya0SgruybnslXS88xEgheqmABQJprr+R87JiauzWGL1jbY5tTZDojVvOV5kYgOADnq4dBdbYsNF53gIxCafFuL1cqTVTj5mtTfVOoruN54FSEY/nes7fxR7tWPLr1sgY3h51MGede5UYdMZo3J3u6Hv3qM3wpsUUF5oNegvznKBY8usichQFeeyOyYh1l0kgpEBtFQkejezN95whJCR4SYfhDWUxRaIGhrb5dfaJCYnovvmeIEbMfB9mNnz9kmkGkIh2b+obHTDHFrRR6e2F338atN3xA1vbkBwIya+t3owyh31mYQKRJ7d2Oi5BHH/C6ueSCWmX0UnljIaESWZZCsvDwt522Da0Bbp0nl8urEl8P0vnjQxyOFFH9CKRoHQJLtBkP+P14+zUlRgNVRdjFGO3TBtCz94oeAgo6XDD4a69psPB4X1wCgXFWVKZgA53E9UJ4Uwx4aeI4e3ZuDMmRd+LG511FWpLGAu9+xnJo7/DEwc6Y8XTaTT6xvUWyPLAmhcXk3UKgzkytskb6uYoCdw80pns13m+NGUmFDxi3OfsUOE10trFxe0svpcf5i2MQZyvZ4Cqmw0O4bz1juAJEBN/HtXm+yU0MLrShzMUDfX08BRymGiaIOJnBXH+sKonPkKYznD5ktLxgaA3eYbgAqSZvgrFQaeBYhozTOa+bw41vZ1efB2wzhh9bqaEGEGyvyohBMf8qO+ymhO0p07hG0oRx3eo+B40xkBKPpTYX57YNKK2sz9lqsGufo3EkFjXFVUfHqvu1MmiM9MZ5fvD/viDC0q/+rO/YD0V7u9OlFLIky/DIcgw7WFTyRbzg4zF6AuCGFH90IZ4xbSLQm7PdvXwEGfcWXRwNAQfXk/PHeBvrGtJfvgCefUiTa0Jm1IHxxEpJA7v0DQeHfoOwKt99PUgcKgq8+2RA1KNvLqiXk1MhwA1HUNHpM71IgeCf/mZL8LOBIK/NmYd/7b5QeH1O3gVy+YnVjNiOEQu5gSeyeWZ3/P8dRB3dRzfWz7ia2HeXPNVP2Bfrs/G+fq6Mmszahhi8gnefF0O19eX1+oQzlwldvaUw14PxpOqzniMuAfYfKKqIi5kuCzsopL6ZK/Nj299oN3YR3NWkofEXQEXt/u9vs7zAeqLSifaIE3lPPRO33fK4u4ql+QOfoxPxC14O6EFfBOpNiHILmqZ+ia9zQdxbAFGJKWFu1RcUjN//2w2jKhN+Ozw9piQZr5921CD0TvbtpNiYllXTo/L/PvyqqyPY/NpXrMu5tObmBzEWOvOVivaL1xvV9aSZzwuTVHV6M3b5kJwkcrFWePgFBB8+tv7Pu8deWUySXCAa4zh1R5qOuZG3gXI2+ZT0pQiYbggkWImLysi3hYRxB0l1pRWHcSc14z1SkyRsnitaoppaqZCCm7JjjFRlkIu0QHbayLen9DgQvbElc54nzfmbPtOa526d2637cuCPvx6yecVEaUN5VZ3pClxXYhLII6O3ip1vzA2h4OXkBm1EnP0NRFB1R1aGjoyBqO7K+z+3XtyXqEqL1vlP/+Xv+Xb3/zWN25jvu6v0qw/rB/fv0NzfBWNlpD487/4S/7Tf/gPr24GEZ+sO3xc2Htz0cY8KhUQrxA3Z5wQ8LpzE3xq6fdiZ17jx8NzXg5eJOzrVNeBpQkhZdZrM+9TO6Y4QoiRsp4c9CjCUKGNwd47xOTwcfFJHDK//xDIufDw+BazPleiuWKIA3KPKIiKA/Pzeuamipj6ICMET3khWHcAIsxNh/lhxqtjhVQKwXyaHIMwxAUeUUVKJmavrZ0q8L+KFos4242QuX94gw3hw89+Rvj2e8wc3Onnj0MlO7bHgXVN3J9OPu3EnJsQAn10JAqDjrWN/fICwcsBXKMTOo1ShLxBswpL8c1sKlAiWYxgnX13908/IlAhT1u2vorZMQDRJ7+GkNRt7LZEb/AM/hVHC8RkXtM8lO5naUSEHBrtcuN282amuJ5p+wtfffWeb3/7A1998xaScX124GtKwqenZ/Y5WUXVBZzmESVvKFuw3rAwiGKvEPpdbyDOTwjibTdtbNOqbxjFD1GmDF0wGjE2dzlqR0cFybSc2b6+Q64/IteNHAo5ZKIaJQ3ePSZGy9QxeAiNnK6k/oTGApKRU8KSEJ9euHt5Qq6Vu/Nb8p/+AtbiTUUx8Ys//iPy8gOinWV54E/+zS/57tvvOb19pCx33gDJ4L6A1UpS5VwK47xTToW9BoIsnM7GmlfWsjuovTeHea6BJRtsF1L0TXBO2Q+wqqQi3J6f6ZsfeJc1024vcL4ngINwA5Qk5LBzSoGcXCy56UahEUugpIyETBVFrLLEM5qUb97D9z8+IcOIFgmjMkwhRLrk2eTqbB3J0UXlsZOa8yeyNX72/i0yrq+DAoJPu5kOcx0N8skXw+qDldvlCsH3e95aGycL0Z2RrXsts+8NlJKzF29YIOQynYz+LFvyl9fLh3G+1sT5/1Eloqw5E7MDz2MpxJhYY2TLgajevCfBq+cRYYyd236l98m4icCMyocYWdYTMb8lRn+P12V1wTx421HtHoEXM2LMHm2MyZ/Vww9AezC6NoLOQ4648/rufkXIMIT9eqUNX2+HdUQrOSTiErl/fIPgrLU2AbarJEY07j+84/btC63XeWCdTWopkFMgL8WZjmIwGkYgns589Uff0LdObZ3ad9rWvNa8tteSk2OPGeYMWNV8wFm8WKOPRjXfeyUThjlzqu4bYylwOhGjD5RE3D0WEBrQupDyGTl3tpdnqErXiKGkxR1Iiu/hrPmRgunEvfVArX5tFIOna58ijFGHx5l0CBYHWMAcODfdZy72xhDo5tevKTT1qLboFJhkYMPju0MHreECkgj15iLpEG9NC5bR5l5DFY8WKcrB5OJIYoQpcJq/jkag6/DYVN8JkwvKwfGJg2zC1tzRIihLiMTg8R0zJadlDnCM0XQC/pXWO9E8lL8jEIMbCcwPz70PdMx9Y915efrkbcopEiyTMUrw4XpM3tI1xiG6+cAnSXhl6WxDGd1LD1L0va+Z79kIEGNit8anW0AaPJycE2rd3dPpfE8SWOMg2JVNO0uCJT4QhryuM+ZwRT/QizFaAAszCdFpXbAubDYgwR4HKhGaR9KGNtYcOa1CHYrt0E1eeX9oh5Gn4AHNAr1HdyXheIsUPQradQ7dg8encxLaPp+NyBwkuQjj7hgX4DFeeUGgWG+0AbG4gWKXRi5nokSKBIYJm7rwvNcbieznFTe0g/iZw9HAghFe2y9dMPGUznJXPG6uxxB+7tUEem/OoTM//9mryUF+Yrjw68bhwu7yjz468abPnBja0OEusDl3dzcSR/QNBMcYaPcCDg+RCiP8ZH+Ii/tH8/SIHvXLCKbdn1e4UNzGRDLMdndD5h4TN7ioeEEZU9yc57NaGzF5KVKM/rotycXuQ//z11g84TH8vSD6e2lqrOeznyM4Y8NjbKm7BjC0crk2evf9fwyRHOf5+tC65jn7D/XjDy4o/fJP/wSfZ/rD2lNEzgI5IlDC0Qzji6TZjGRFe30zD1eQYsSY6NZep+hB5iFddMbdDuvfl9+DA5jlIsertUiYCr0fUJx89OWiPZQfmdN25mTBfwR+Cu32Dyfz48jrBP4nv/mvP69/pukQ4PXjHEKX/GQDc9z48pMHKxgH21Omuvv6Y07f/Er0n2R+ziARESMmXxjDfLCoyJSGJkR23jwBv4hDkFeh7jgoHTf24YoSCYTZPeFfmH5xHR0K6+shcqrO7nuYF7ZMXSkw+5+J83VzRoEg1hGNLgjpZLD0ace3CZUenaMRbR9K1+YA2nF8nQATDjcX4CjzmgzT0aXdJ4ujI3Qwfygh3rShwxdrwzcuDCOFBLE5QNJc8DiEU3sV91zBhyMSmlnK4pDD4AJBn3lfkS+uvRSjDz57o27dNxrmU70xPN/71Yf3UyDzv9VHp/fGUHUBNnrOX0KY9mAX6Wrf6K2xbxe6QkmRx8d7bzQR4WjPM4SYsjNwxpgPjUGMCUO5bjtpMgMLEh+RAAAgAElEQVR84zMICGVZiMHjj2FOuExciMhLpnXP7gczyuLA3969Mjtntwd3NWDQJ+di4G4Bi+54iiUQ15M/3Od9NY51IbnrKOZCKpm0OCheQqTnQA8OI4x4g0xtPlXRAbUPtq3Seme0QY4ZFkHNG0ssKNteuTzf2M1YU2IpCzo6Y29stTLajuqOmINr4xRbw4TguUmo01Vxo5vzaB7ffoCcqepg37/7u//Gt7/+tT9MZ0PDEF9h5VhYxHh8/84rladw0/rgm59/w4dvvuHX/+NfJshT/YD1OlkZXK9X9tEocUKY533hjLXwCjd0wdMPMTEfQjSv65JOmf4ViD+UJS/ssZFSJrTBobsfzCU1Y83J3avLAgZLWLDb7kKAzqrreYh0fdbv5dPpxOPbB55fnmdbqL6uMTOwgM5og4RALiuibnE2OeK9x4ABplzpkHdcjAw5zekVdAuAUG2KZmakGEgBSslTyOVVZJvjCBSvdz+tK+++esfl4zOPbx9ISRjd5nNqFiD85Nlx/Ho9FSyKv2gdfwbGxO2y0fZKH1e0V2/F0Y3RNrRmgiX++Ou3tP0H6u6lGBKLr30BVomodW5xRozaYInhFYJ5DE2CGDllB00e03dxgZjJSFxmnI45aIsl8xAWllzo3SNUMgTd3X3n4H0oy8KPv/2Ncx56ZdTB26/eOXRZGzln9tGci4JNDoq/PirzgIa33BHaHP6Yr9NJWFboQ7HRCTqjM/P6s+BusYhxq53WN3ZVYk6kuGAC1zH4/PE77uPgfCp88+6ecgc53CghEM8LfQilnH2inweNk3NaEDYC7VYpt528DWiVtkCOSixhHjIgp8hXXz1i5vHRu3Xll3/0Dawrqax8HR+IcaBPL7TfN756fM/D1wtPLxvvlkz/4TO//OaXhLcr/RZoGlAJHuUJLh7knHj/9sS352c+PjVEOr354TGIURWqeQxnuw2EnTfvKtdtOGlaFM8bnJwVIhmxwJoDy9uTQ/zNG3DkVDlFkDJI94aFBeIjt+EHPxFnJ6kO5x6Ku5BHLBiDHJL/mk7rxnbZuHsolE+Qojt+mUON47lyDNOOCey2baRTcQEk+nrlMN+f7N98Aubx/eho7Dq8kSjiz3eiP7tKymhtvn7NezrME0tKAVPfqK/rwv2puJsz+j8xZVZ1l3Kd8QkVJaaA9O77YPz56Qfmzph72WRzutwLqLI9PfvakrwWXqYzIaVEiJm1FE7rit07nkDNY+txMkwVkOEsU1OczRVgfXNHGQvXl2e2zQ9MZT1xfvdIyf5MBmdkihlZzIsSRLk8/8DlxxdGdQElzkFBLisxZi4vV0avtBlXvPad3i5I7bTRudRGSSujdxQjBy8GOVotp1+JWBZyXgh51q13QVqbbE6Q4XE+UWPbdmLJLDkRxXc+ZgOT7HH6CJIDpWTQQqfS9ka7bZgWPykHPwfsrcEIr9GW1pzVBAoxOLurJMY+iKYES2y33Zt0TV0MiGkKofO80iCExJgJjN4DIct0nCg6mjsF+/Bf9+HxX4UukbwsxCS0VmkxkENiBHPcyOQrBL40ScfgQwr8kp/CKLNREHIOU/zyNbZ1fJ0OfmfFuf7vo5PFGUUmzAZo5t4tEFLxg705CKv3CuIOMVNz5/fhqpNAbzuXy2dvoItnMH/+kASxjGTDxONdIStjeFxT5kC12SCSqNK9MCnjSBTCxEwIqShlSbO+3l2Zl93ZZr03msHDm3sWCUStzsHSQhyVKMZaMltrSPT3S6c4cYBIQgpsbdDrFKuZUa4QkDCge2OjaxSewonRCAop5dd9zfj/aHuTH0m2LL3vd+5g5h4RGfky36tBrGaTTVIEqYmiFiIFCaCgjcCF/kwtBAJcaaGdBAiQIGghCpCoprrFZg81dNWbMmNwN7vD0eI75vHI9WOgCoXKzIhwNzc795zvfIM5Vhy8aw4ecLkqnCgNw031ctv3qNsJKynCGZzZ5CfmKdEuhLRxyg7ANHvNDvT5Bi4ilY674WyMzXFWCoVhxuydvl8lSdyuYND2DbJSGGcfArujnzvM383V+7hPkmvun3DrLXNSgq9Hr2PMm4R5YDLhPjYHWWyplCswWXOm04PBqIWgDZmxO12pdUnqiOnQppKrc4CAE4Uj5FSlcuhAEqv16FFz0tk8UoreJtINUxik+ww1lMzyh4+oMTNmbwsCww+Z3hZ2CdzCbXpYbPTRZcYfM2FOSX6eCAw/1cQcLoZ2yiImpMSl7cGQ8giymCKPuKZsd6NkYqkpLACk+LJY5PyYXz86oCQWzAwtYaBxZkFdm7dUKztagDDMPiCbnMRgSIfmMGhoMYNANPwjYAk7MLbDyDpo0AdokwLqNcKk2/3Abm/NiBqTkLMd6/bjFR0v7Lgr/AfNSHzf8dreBiz9/SEFuf0IOFhsMSDFwPQDltObpjFAMZ8Qvjwp3q/IR9pkWzCxmPFv4/piRq0ytZO54yERi39z042CmTbvN7MyjpcUzdcPGFmCLeKymN0GS/Db+zuIOcaMBLfjvR1uVreLFGCSXsPb3zjMgY04tOLBPOYZBuyHT9KcjK6NSBs6VGaAmCkQMBUTI1lhuIWfywC6IjetazwXX/N2b2j4HHSPZDtQhfIuxlh2mnfRNucIvyAVkGkBprkOkJrWMF2z2zDrpoMm8Leb1A1X1HTrKjhHS8VUw1zLwsPjAwcL77jxRiRc5VRYlhIAle72fW/yJWuNbbuqQbPM3f2ZWhdGC2+YWDvMIRZHNnkhyRM9RYph4nrdxAgbg8v1OOCMUleWulDLomdgHp+40HnHuLamSPpstNaxVBhzUk93TM+hPjLGPhhDPk2tDwEBUwy+uqwhcQ36sRmkLGDaEm6SJVhNpCo5QCrG1nfGyMyrivboArBTkp9V75PWG30MDs35ZMo8EWhjp10Ge3NIlXNNmE+u2wtzv5Jm1ybLJbkpabKeVlKC7apUSkMHe+9qGnNeON0/cHf/KHZJFyX5//mjP+JXv/ylvAZ8xrErSv7xqEyDU1l5uL8Pppx8Kizp8Do/PMS/dbCjVh73mXN5eWZrjeV0lq9aElilLarRh9hpknaEIWZK5GBevpU7DRoauPT7lpx4eLinlIW0X2+PvMUwiMH5LL+fHOxDn3BeV87ryvOTmJlz9hs70xHAdfdwJ/lPDFMWQMeYGpKP62NHrS5KnMkmUBRH8lQcH/H6DzZOlIKSItHJJyW2SimKY05KZyspc6r1DaCyoxKixgpt4R7u71lr5VPv0byLzWghCb2J8M3jdw76GJzuThqYRgyvVWwdZzL2nefNaJfG7BfstPD9N0887SsKpcjhITUiDUjg2lJ1/cdI0t97owY9fGweLINCNt1xH99/wd4kvXQreCrYUllyogDFC92MUmRMm1JStHwpXF+ubNuV1/6OrcvLYYxgP3XJXpf7O0bfGc2BzuvzEykb9bSy5MRyXrlbF8VE25TZcNxvO9rKYWqYLEIq7s4r7+4Ll0vn9XJh7ht2eqTvXVLlCCPIRT4PNgspd0qW7O2Qv5/y5MOD8cXdmffvkgxaSYxUyCwYm5LYTD5q+zCcV8bo1Mf3uN8DRv74Hv/0PX63cr08cb9kSl3J1wHffk3NifXxA+37Z/j+E2tOlHd3UHb88srl6RPt+8+k18b9w+9xPi9427j+7jfUl431Fz9jSZl/92/8TKzKCS2GxjEmv/36yoefn/jyi8K/+t3GaYm0te48ngvenNctml9P1JoYbWcMgfq6S0vUZz2ruZxItVK9kf2i2puc92vGF5lk3y/G2J1xt2L75PnaGZbZpzyI1LNMZiGkRaoBnUmeCfPG9vLMFz/9GWvR/Z+m3RZmluyNoW5adnjSvTDHoJZMyjV8Kio5DJkP9u0BsI9dqUN7HwyfrD4CMBVjLq8Vf1Xtm6YNekrpBuI7xsxiLJVS1GOYNs+Hee4VJ7uAhcNjMqUqb6Eybj2GzxkpmwIbMwZ9MOdObxd5D6Zgt5iG0rqsnM53nNdKTsZ6WljawhxaMdiAWS3Yu4O70wNlWbBEsJqQ1HWAT9Wn+/dfcPfwjpwLs3VSriRvYloPsXOv24XrvjF2LbtE9Iz61Tqfvv1OzKHRNcD2xtU3+escg5jJxmDsu6Q5cW0PoM1HLCOnmDdrLrxeupY1YcngHObWGqKu244/v+CmVNo3i4RgdZj6sNamnsN3mWkXZod9H+QqDoLPAUNsmsNU3NPAx6DUuG6FGOoTaeicz2akoc8RKzFIC1AkZ7pPSqgw3OIsbRmqSa4dvqHyjxXbw31wsKR8yDNMGgEtHcVEGBxWEJNjKJfUXgD823JX8eYabkFSvJILNrsApFA3wCRN1B9MY+8dG5JC+gh/xOnhlwrede/OZOS6kFweNyVl9q3LGD8Dw7henpVwh4FN9do+mJ4YUeMrx7k6yUWD82zOGFoe3eSsJn8aP9wRZyenzGkVazBbobBQs3q767bRuqwL9pcX8rrw/eVKGYn7MjilRLYLzpCMFIHfO5mRDp+zTu/5lvglOcmkJMOzlrCj5Ui3BeZk7851M3zmkOtrWWjFyYsxw4dob0Osk1ID2G5h5TGk0MoChWeCmmWx4Gj5lFLC90lOk+VU2LbOnEUm2W/6j7dhzQezX5nXRsLZh5FLZuw71jbm5RUfXcstJtUT7ZCnmd/IENkSDLmGefoBWBH95uG9NOd4mxERqwzAclgvTA8ywFTSdNL96CZQJbpIeSoOJ2f5ABoT82OW1H2TSyh+UmKMQetKk6vFBaJaAKIWM6YlAbmhNukT1cqhns6TnheR/eRBm+PX9WCTH/ej+zEh/2DuTgLMUrD8ciq46TwcTbVppkhWdZmjrzmRs7GUpIX7APfEPuGybbRID8cFZuJBPknoGTksX3RIcyi2ZnTrP9bXjw4o6b4Qev9DidbBosimgTDNo+8PvSCxFEBNCYnw7VDTbdMpHih6/C6LZDMxkw4tO7pZsRvb5qDsBPkICEZSPMwe9LUDOAELad2BG4W87VbYAjVx3dZut7/S19u9rBswhpBj0DrmOw6g4GDpHPKrKPxvaLcar+TOzdg2l9u1M+SLkYjBKGsILqUGCnygxzoUBVqFqXbWA5SC7XMAbCXlt88O3v4ORE1P3A4oOJLk3t7/AYyJcXuAbkfS06ERPTgB8h06hkEPOQlTj2KPKzWmDjaxkLqGqt45IruTqoEauqQt4VC7KXrlaAHQgbvMLTko8Elt4ZHCpuPrOMgF1CQTE2Lc7phJHzsM/ew5J1iGSOBJBqlGJH34MSWUtoUAdDGIYmMgdH/S+xAANMLQNydqrdq4LfcCR48CjAz58AAIcZl1T/3tvgtA2radEdvRdV1ZlkLOYqGNpjQtC+D38EaaQxuGfDDn5uR63dmbDmIwllo4rWcN2KZo0BSmoyriKspjDEWyczQpzoyNS7Z8M9oW6CjKcms718ur3l/KlEXRprUumIullUmRjnNIOvU5yQAU+a0Nhz4FSs1Jb5OOts3Mg4GVSdbpfQRe80af763R2y79dAazAksVw6hv0DelXBHyW9RQntdV8sKa8SkjdnbJUUc0YPV0x/nuHcu6So7hShb6wz/8I/7iT3+Jzz18sOLsjy3jUUKSO/fnM493ui+OtAnDaH2y3p/JOfGWKXnwzsT0eXl54Xq98PH9F4gH4rdD0Kf+zXD5I90eb1Oi4K028LbncNRU7m2P6PRBDgYR6Ri9jmpqLMsKlni97hp85uQa92yK+vlDRkFCC4PHx/dYybeh8qi5HMB8gEKG5J3n08o8NvQpqTm2SOUwNcV6YPUMpTB/LyYpF1mveEYNtZRiqEDGyEdfFmea3+qcGHBfffmBJRU1wyE7uNWb4wrG6z9SINuuuPFiMk8maTCdAf57d556xv2EtUZ+t/Jnv/pLfvOauO6dNU9KIWKqVbcsyfB8NCUJLgmek6jXYw5JVdEZbOj999G5NsdNDL+UEp4S1SGbM4saVB+dAqyWOYf/1/X5lT/+09/y15cPYIWaj0CM8OggU+vA0zv265XE4P5upUS6SrtX4udyEjti5ix5U9DttcnURrSUsz63ATUvnNfEKQ2eX3a2ywvv7t/RzW7X20xpkac1MYppM7jcM3vDvLNW+PKx8Ne/Siy1cI34qWnq1DxkwYOE5YFZJi2Z1i7YvtOvG+ePX9LahdfvnziPwXJeGHPSXl44fcjw+srcGuTEqUz2l2d8u9ByIr98ZrDRt1c+Pz2xffc9aTh5f8/j9QRPTzx98ztyn6z7K2k11uuFr+bGb5qR1xVI7C+vuFdSWXh3V6hp8vhQqQm2a+dnX77DxiuvF6O72EK11BvoMrqizi1HJ+WAFbAFy1VpUz3RLdEQMwJTpHqm8u+8N+pr5+sY9jF5bObkmIvJLubvwKazqXvhrixsn77j+2++48PPf87Ly4W0LPhVKaLqLwybh8TfWVKmxdk4mnysRprcLYpjzimzFIW/9ABQxIacYeguaZUngYrTD+N8AWR+bHmP3jGY1GJ+Z+7PJ4q9Lc/G6FjIMaehGhig+q0Sx3LpkLq7gRV5+nlNLMvCYsZEyXWjayg/VjVtKMwjp0SfC9sVLpcrz5+/Z4whP6OpAbTUk2Roa+KuZnJe8KQkMvpk3ifaruVSPq3svZFeL7xcX1hP7/Ch9MceS5fPn7/j5fkZBSAc5dewGbKptGnAH8gFyBFokaCcztj1whyD/Sq/q+5QYkYYU4wHc7GN1ecNKE7OMC67UqJMi+kRbG9H/nz766ab9l6BG8kCIIqTSp+dgA7LiXquzL7D1tX3Hf2vontjkJ1YiSCUkdivkIpjSb6I2Y0lAaWINWLqg1p4YLoLcBmxdK9kEfPNcXIk+BrZ85tvq+mzy8Q8VAAbAeYYM08l8g6t8RM1rCIkrUs5lvrHwjPYtZhmKAECGejBpIrnfcpPTQxfWTqMOI+NKka+O22fZIzdB2tN8rYbThs9ejGd+D2WfbksmE32do3zrmKlkw7QDiXJpUVeROSJNwEh9aS/f5mQKCE1m3FG65ntszPiNS11kHqWZ2+FuzVzymfacC7bJkACo20Xhu+0tnOXEyefMDq7X9j2yv1ygrHH82sUy0rM1AjBHOF7lZyUCunU2VJj7urFc5jBMxPW4WVMmssAOgcAUhad03OftN1uAG22rKASO5NGY3Mxgpal3uablMRAb0OsMh/yJL6/WyjnzuvWFa40R1Rozdg5yddU4KOSX+d8hbRT6qIesF+5Waig/iDlpJSzYGkek6Lqu/q8ZGLKqr722JlpOSc2cxAODsbp0bsm3X+eZM9gGJaP6WbSbgvAzBiNkpTelqa+X+2VZPmlhgVHkO32McSU9E5zGeq7q8fJAfgcfV4y07ORDB8Nm/pMAl5gRohQny1mxgDyjuYz+rwZvfbsx4LHg31/IABqHidONi3+pukcmnOIlRizS8pG2rqW9zlAOzcxqIY+o5s/6dDvPfAJd5dM1I6FBlFjfryvfwspb1E0D9DmAEgO0CUJFCJAEgv5QU45JDnSBY/hNwQPYlvgYdQXBq+J0J3rXosb20J3GAABh02rDnkQWn5ANhbNocWWwAJQOdg3+sPjL97+Lz/8f2bx129r8UO2p68AlW4cm/BDQu8n3dCoAMCCuSQ2hglMMsmu8IM2pw1FytrQWEycHq/HPckEMpDIMXvc6Nri+u1gEOBDJEcdw5tHMynJ1AwQzW7XQb/nANXm7WfdEN7DrGwKA03mmgDi22QI3gLsCqQ8Pt9jiMVVAEafkPxmojZ2HQIHUetw9S/1oJmGHGgObOwBJm34kPTSPe7ToAQThW4e90MCn357oC1leu8s4cHQfdD7ju8CcnI5k3LRFiQJUDnYXqqTx6ZohlRjwBA2X6u0uwCX60bre0jrxKpZ6kqpYmKA38gpMz6vFO+npERaCr115piSMu27JGY5c3daKPUc92d4LGRntPA+mNC6WEuEfC2ZfDFaa2r2WhPCjXN/uhNAnPKN1JdzZcxxM6A7AKWDveWmDYGANMNS1ecwtUXuXdGubTS26ysEM6iWQi4lfJxE2ezh37TtkiWmiBFdTqvAJHe8Sb8+mHgXAFlqhXgdIKaNpyQz8Ju5utHG5SZ5K0UJN/qeAPG2V2a7kl0A1D4b5s5SErlKf15i45GTsTVF9M7RGWOwtU4uJ0kXDPYmfXxvg3/1L/+cv/izPyWNTqPFtYyK5beKAkmg1/svP8ocnQBR5mQko/WdL7/6inU9c91feJPlxm1gYpp9/fU3PD5+Qc2rhsauzXoPf4LphMeQ6rY7lLxyA6Y8PK2dm0lkzmI3DXdt9G/gvpE86M85c3f3gJWV5gL/mME2bC2kaQSYqfph7hSUNCmMpZJSvQ1Xx7WZ8X2OczqdKIcZaQyDifTmF5ftrfbHxT7AOdH139hGyd888VLJYjpGeogfdTFkccT3MwePjx/iMITeN/qYWEiQZ2zp3Y7FR1zz0Sh5kdn31EKg1IKVwpIWrK6QMg/FIQua//zpmT/5i1fOD+/56U/e83BX+ed/8sSlLEw31hKJUBF7rtqxQBr4Lu8SN26N6nD4/vMLnk+YKXkoJVMDF0kz+WBWxECAQy0L2Sbb6PzJn/yaX/z+3+Srj+/oIw6A7Bokkm7atBQYg6Vok56yWJKfPj/x9HzBc9WywCY7sM8h5z4Hs0z3wbu7O/q4ki2TyTyeEsvDHb/8yyf2bcNH51QyrA+SXPUmhg2uJJnZJa/2QcmZ9w8LH9/DeRWo0ptD0UbYPMmipCrlpruTQ2pb04n/4K+cuf7hJ759uSO/+4J+eWZ7ecaeL9i7d/TrlctvfsX+69+S2mTcrfjvfkv/+rfsPtlL5vqNkoycwTaMtlYShW+3Rvv0xPWys+cTtTrffvM7PDnb774h7RslVTYfZCbn88qyZGotPDzoWfj4eKKknU/fGX/ly0fS/h2//W6jN8kSvvzwjnI6UTZnGwMjc3deNZg7WK3yvJhDKWIHPWEalzHJDNZSmd5ZTvAxOd9tapaTYgBIEeFsMfgaktlYFojr7cpDzTzcyYvxt988QylY1rB/SE+SZUmd0VlRamXsTUEiqDkfCZm110zuhd52jgWiR594AMUpvHhShGz0NniaXZISTWE3QChFwzJNfnFLsfBakSyHKYav1MQG2bSQ4+gHjwXj22LVmTfLgxGM8eaTlOC83jG2poQeHFOgtqRoOLMPNt/Y941+eWUfg21EU+qTVJ9ZawF2bA7WvGJF/oVba7y8PrFdnnUm+gZ9YG3QU+LyemXGMOfmwQ4f5LJQhhheNuWFhbu8Eu1YCWoRuE9jrWfyWuVp1Qe+vbI1BR8Uy1pr2NE9C9j32EDv+8bSTzIgjz/3obpuTIE4riF8+OT6+qSFQXoUu9MAJN3GO+5FfoFDALvVSsolwMhYVpIghah7DvKYrHeVmSalJkbb8JmwJUA0N/Ji6nF6YU4NfBZniCeFMcxIxU0+sZnxdSGbhuni8qxyn8yk5+Pwc1G/LPm7/Ig6o+8a0oPJqsWp3RaLjpNsUk19muFMb+SUKVbprmCTEp4uY87bQultftHAfPjERPNPMihLZrYWagIBUcN1lg2HarreNWdqTrQuP9FUErMNLMXSfEBdK6WIRdQVUkymkgokVItKTQxasMgM86KJwIyxXxm7Uc8nGWCnhbUs9HYlr5Hk5VCXgi0PSk7dLuAbJQ+yTXzX4sXSyj5zLDuj7iSYozCO4CcTWLQUPdFl0XN+eYHedTCelwXPztiNbMZlH4wkhs10o2KMPdN2l9yTY1mha3MwJ2o+uq5ITncpbmbrb8wck8nMMOc6Juky2bpjHn6hadK7FtDdldpHDsNwT6TecGv0sYvZ0js5+2120/wBOSd6V0PpcY7PGYvtWIwly1gxrGfcg0GU5Hd2A6Y8pJPJOEIODhWSHtcDbDluOfVRc2gOFHqSSLnohUUfaVOp4NOnLEnaZEw9K7LJcEjCB3Ig+YdpwoFBkBzzxOhDhJaDSW+E5yJgU2eNKXHZo35NiKAx1R31hjGnu15fn0OMsxTrhQB+7dboB0hkcY2x8DQ19iZ2r2cjewGbku2ZJG1MmZoL+5D+z1Msd0MaeATa/FhfP37KGwIj5H3xwyY9oJRDHuSS5iuOXp5KE8dNaCkzDq0DFMpwOKzfQDVz0UAt/8AXZB6f2W14Og6mAxiaAX04cbjf5Fb25pcUUoSDQn+8GeFNb0DT0RAdg88N3TI13jLWGgGQxIARN2/61wy79cCkGNjNZSR3AE2ios7bwyx6f8R79i5aaUlB/4wmO0wZ49HVIIDdfJiSHSNQXAM7sFILnb9Kl8f7uqGp8aEeG/jj9ep/DR+Sc4i657fPYRzMjECSFdOdb9fbULTpGJN9agPTxyFxiILjOuRSuo1sAuDMMTppWvgZTQFKjDBL0yEsgC1zmODO4zUzxTxxSejGHMH40uflffL08onWmrb8NVPXJZDilZKVsHKAVfiIw5XYrOlntaHfemzW9svguu9cmzZ+OZnM7EuVVO/wWbKIinePjZa2rR7Uxm1vSrXZrmyvF8pSFKt+Wm6N9ZjjB2lI4Qc1IRXJxtw9ACOxqnDjchW7aQ55Pqx1EbNmXegtCjry/5E8T9vtNjtba/HIBdDr2oSliOs0ZEA5Brw+f2Jvkiv2qbScZT0RMBpzxvGS1Iz0QPitLPKlqpWlrmoo5qSkErIsJZjUslCXVQB0N1KqYGJlaJOpe3lGVHNr+rP1tAaFdOJzY98ueN/xcYU5FYlaCveLgCzLHrJdxJiazmyd/boxWiflhev1wp//8i/po1Ny5eH+HqsFd+Pl8so3332P9aZhJdg3bw32YXGvWrSUha+++gklq/Ma7rTQWTuDU1lv0k8Vxah7sX3xCd999z3btpFO9XYYJ1fja1OgZQtw6TDSKcuie/JgT5nf2DlzOmVZNeRNsFJiey2Wm7yRVdPOp3sSOt8v6roAACAASURBVLAxbWf7VNrYtEM+Z2ILDNHoo7fVEJZkbE9IEw/t+FGTZOoZwQL+lmB5/Nfd8Xhu7Xb46r3M6YSCHie8q2JrPXDwyb5vYb5/O/w4VhHygNMWcGCSO9hge95krohYGUcCEAiQkfeTggkKiTQn3WQ4SjEeH97x+PCg5BqrfPzJBx5//p7X5xf6d9/S+mdO1llqhfuPPLxfeHmNukUi+5AvhU06k3MMOLsZsxT6nknIN8fjLNMWe97qZyFBUkKQJfA+Irgh0iz3HWeyX3YeTpX3Xz4qrnjq/LdssUGL5VIWxb0kGeMe94o7NM9sQ/f9iK18mjoDTAUMSNw/3PG733wLOLXCqUw+vL9jXZ7ELEuJUs/MVCnD6Kb3OFuT4TmO+SvVCmt2fv4+8/FOsfLNAS+4a4BXms6I5cwQ0Og75AfWXPmH/9k/5K/+wQv/9J/8j3z31/4Gy1c/Vyx430n9Sk5dzfj7dySf5HM8L188kHLhrlYlW+KYdcpweH+PkktXtt7x08qyfknFGQk+f3rWIPLlBx7JDAo9yZS1anrAbXAqiZ8+PJDLK78qL/z044ntRQA4wJIy7z7ck/LK3SkLzLDEw92Z+9OZNBsWqYEFJUNNU8JQBVqc9Z1GppOyUaoDuwBhGzKUD3k10Wh7SlAqZTHyNO4W5z/8934f+rfcr38b611Lx2MTffRu8RzP4diSgwULaaL+LcBeyaLF4PYjycq00FJlnDH0eGyhPWDlxPWyU5b1B3YDRJ0IH0hctX64mECWb559ZoWSRpyt6Cx5axqj/4zFWtTJQ1rb2mDvjVKLUqZq5djOelIfI4AYyFqyDUtQihYrY/xgMHNsduY2aK9Xtnxlt03HQpKxbe+NsQ8aG3Z9weL5r7liw0NqJ9dMS0ZdVtZ6wubOFvXVp2RXOWV6NOLJMiPYI+dSZVIrHRnn9UzOOZYyhD+PPgswqsGaM/seS7QB53pizy/kiCD3OSiLMtJaG+G5qB6ptyttO7GkzMwypC0pFntJQ9d0yEjmkjSYBBtNn21LmdQ2Rh8kExiKj6j1jcUW+uWFa4ecKjVVgRzFqJZoU+lpljLdpmwopkfarWLEmUNZ6i6grB69achzLR3+q7o/RoJcE3NvuEe8ffTVx/k3u4bPkrWANws5WEqkEcs2FKCS8wEEuoAEU886fUoWTvjdxvyTgJQsFp5i5viI/tm1ABGYp2XXHINi8ci7frZbY/qQTVtK5JwUtjJbXGeUmuZa7vbeNU9Zxr2LQWuqByBvM0/OeVmo54X7cyanynJXGS+NfRBWCmKP1XUJ9m6HoTOsXxAoSCEXsKprMUcPeZ6e49YsACNCsjRZUqXmybVP+h5oW5W/ns8hc2evsobI0JP6wzkmPtKt161JoECO3knLfc2351wYU/Oc/DfVv2CSd1m1mF9SsI8W3DZ8HKEeEzs2gGhOC69+MYKiPxs6fAXeeArgRtem+4ieTz2BLv/UZ4ZFaJlCMuaQvC3w82DMGzmX8HqNHmvKR2ogv15ZZMS9PyQD8+zkmSDAGFkAwJFgq/9MWek4Un8coIGYDOSUqBZyM3c8ByXoZomjxcebc8IB4oqYIcKEzuY+mt7YHNxiZw6FVYCNY85gFyrBczSZgRthS5AEfpfwtTJSYAoB4h04Q0rBILcb0CRmr8veMKs3I5YkpKTnezhZm+bb+8thE3EDrn6kr38LgNJh5hwPeSBvHp8XflCJPahr/mYWnMBdH8qgU46nBBmsAbcGQsOMpBiGmAVC7ogDRvSwMQ+tYqB/8UFqIxTFOR6o25e/3Ug/fF8Hg+Zf+3Oz2w1wYzSlQ5YXnjMEzX8GtXtO5jjem5hHNRs2d1KIbSdGKccWuQTjyAV6ZAJMEvBzgBMgcy+wiIJX0clBsz6M08Qmmhp8j2JENDLHzRg3brATNYAGeDDnEUMfGJ0f6W+oqQmt5nAVQlm0S5Y2RjCDojFsQ8W0j8GcnbY3ep+SejmYLeQSbIKUJSs7kGw74h31wGRzvW8fYeio3znHgORvRnnHx2dCkNW5KyrU52HTLlBpa52+d0o2ci28u3vUFjNliMGnJN3BI5Czw7BvInAtBQg2cVKFy2XjZduZ20TRvYXT3Ska3DBBdsIgm4iwDRTJtWHKCVpr7G2ntcF1uzDHZCmVd+/fsdYlZDtR9IKKOoGS/FYtJd0RSLiUQmuDbd94bg2fM/wZqgBNj23vGNpMRoGTh5H0fD4ml+uViT7TUooMfLHY8mTMEmNAazvPz0+Kuu+TWhbMjPvzygxfhIF8mXwq6UM3v7MsYkfUKtmMWaK1nZIK67pSSg0MxZGZNOxbA2TO16cADB+T4V30+tZIGdbTmWVdJCMwp7eN0Zskk3PHfKf3jelOPZ04ryt3dwt9yO+gJjE89iGQz/dd1+L0jrLccVcfuPt85evf/AXP/ZXX5xcO4oYYcA0Lim6aKWSzHgNObL5jiHp8fMf94zuuYcQ5pzNzZpke9VBH8jEwST9/bEq0+Xh+vfB6vbIsAT4N2G1gLkp5sSM+NX7+NMpab9v9YQJNLdiTTCctq95TgrVU9LQQoJ1q0LIsnO9OsaUbUUsX9taP8xLiuTJDB6Il0nTdMy6G2Xo66Xunapiby4QwDuXZ9PmmqL9zCnTaXdsyXcuojfMHld9Vt204ljTwMCVfObz5Ru+K6CHOkAMAJH7m0PD4/PLMdr0yWufT62tstgIYtreUzKMYmxmLCazYhoxKU07QXKl1a2HOxuvlwsPpjt/7az/h/eMjeyrgv+bT540//s2O1zv2VKnekaYAmDIdd1KwEZsGlADevK7MdomB/wcHo4FuzIEELNHcZCOFyeSCsyQYfWe7blyeX6n3d9zlC2sq5Aw+YmGRBZIlJCFw0/Y0WSLH4HJdV8pJNbxvV/kEJG3gDQ1KPhvrqYih03bVy6TElYcTLNl4ulyZ20463Ysh544tBVpj5krbt2jonJyMU0r8/H2h1LCWifqjxjLkwEPSeJG5JmZOmZ1eK/7pyt/7z/8rrn/2Z/zTf/Yr+i9+AR++5G6+8tOzsRb595ndSQLdJEPxn92x24aNhZl6nJkDZoYuP699DoZ3ejdJAXtnGOwzMdfM0jvVjN4ND4PrYs6kM7u8te/vtATI1Xi4Wzgv9cZUfvfhPXenE1hi5EKNe+B0WtivjZKd0zGEHAslPCTHTp2wk279nno61d+xN/KiM7OjuiLQQnHUlgqLZfJi3N9NPn39l/zZ90/87b//X3D3bmF++0Q2xZF72CgccvF9dFaTVOwNvIFqMpAVeJNvi7EZfnwH6KTnLjoZF5N2hCdY9hT9pgy+SYfRrB9dn0IrppMWgS744XMjPz2zYHwyxWgKhqwFwJ8O5lIsLjVI6f4aed4i0v1Wr9SbDY+zI4CHJWcokobP3sglerzwXcoklrqw1Cob2zHw0RmRBuQH43wmxlDiWMEYyUlewAqTLFDXxJicV3k3epE5sPw7JrUUki0CYr1xfy6Upd6YhUtdWU5R//p2S0qyDH59pY9BZ1KRT0/OGSsLp3NlH3e8fH7SNZiDNGW+vFa47MZlE8hA71xenrDesNOJJfrzfdtovuPDOJ3PLEthDsWpW8oRNKL+NR1y3eSQ5NfpwOgh6Rp7sHIyae7MNtgvBqVQ88qMJe70yWywLs7Hr97RrkoG28x1HadDSSQG1RpmSuEkwmEOLxiPXn2pC33slOUkyd8+GS3CKJC023qTJw8OKfyd/Kj9AplSsLpHzFqqd+q5ZeAb0iNLt14EDhWKMdpgrQVPXWmgPWNoQTqDyTHHZEdL+pRMQIKoFCQrlCTZ3H59IdHwu4UxjN5kBdC64+E5KouP28SFM2FCPWWsrKxl4fGLB2qF9vKKkXj//pHRxcRvc8dnh96UCDc20mxgC2kkck062/NKtkFzh2Wh5inwqMlqoQ8tEHNx+VolhbsUn6w18Yphi0A6hhLBMpNa9XkqICLjvetsdS35pnd8GsUEMCaLRL8kgDLbkQRuNyKDDJtjWRizYUI9T0PWDocPZLdGtgK3+qvr2EKaprKeKSXJiNzkZ0kshcP8kVoyHjJpy1EL/Xi/M4IG47NKSWdKqCt07RJLTdiYbE02FiNAlYGDqf9MMzMMWt9ZOOFt4EWEgxr9bEI2GmRTvU1vHmEpZaiwpkJvCgo5JJu4WIJzDklIOc606D+DebV5u923Fr66pSjRMQX2MFKwtKLHmC4FzUyZSdfnc4DmLvxC5MvDJD2Wp3PcAKVEovsAH2JzueR5low2BO43+wFwRiIVgc+miSlUOxGOFKOk7hV+1K8fHVAqDn3O2Pr6bbjGD/RNhU6FBh26c1KqqG59JjzlkMrsMlxNQiRHyhSEwmMCphw9SNkjQjKQIVGAg3UQqL570FCBtwS4t6Hr9nn84Mv/zT8I0OD2jz0GpQkz2ECJA8EMJNEPtpZe0+FRkkza2hxbk8PodXYNDzL0CweilMnLCXJR5GwO+qkTJr6RohQAXsmVenAEETycYhA6AKPDMNluKFwM4AQgFw2IyrWLPheNvvtQipc+UOYQgDS70tZyKRjaArnD3pxcgwXVB3vv9H1Xcd+bGEkus7mUFmpdKVlORZaQ0Vsb+vxcn28ONDpxPGyOjwYM0Vij4XJLwco63itRSIB5mBXGYd87+67GZqkrp/WB+i6L/TU9JJv6uTPM/yzo8u6i7M8wXiZYTpjTZuPlsrFvMoU+rSvvP9yT1wXrknktVpk1aO9TppZzDtbTEqyqKM7J+PT0xPPTZ7ZNaUj392fKqbDUIuS/d/a23/yXDhlfb073Ts4L4CxlkV/LdmVrg7a3QK8Vq3o6raSUaL1jmKKJq6R/bW/Upcpkcnb2vYekDJzMssShGch9rhWGs207l4skecOVGPdwdyL5ZOs7Zc1c906qC7kITC1Vkp2JKbGtKGWOMZneqWWl1CpQKhUdsEMHsCVFi6aUKClz3S7s20bKmbu7ey6vV/brK6fTmdNyYvQGPmLDqzjYfXth9gaRHljryrJU1ruFNa/c3VVeXi/SWSMPi9fX77A5GFS83JPTnWRHp5Xf/5t/wIcPH/n6N7/i8zffsu2veq0OFadP6CaasgYBDTsWN+th7v74xXsNL8PVcx7AchdL6ze//CWty6zx8K764QYHYFw7l+crj+/eYV6OnZDq0ETOQ5YZ0+KZdMqykOtC74MUW3xhWqof98d1rFVMyEjznGhpkE1JgPVO3iaWioa5IaN0YhjlWByBBrL4bdftwhhNdWEE9R3RvHEJQdpx5+Wk9KYRdOsmk8cJt42VT7EINWiq6bYZcj3UyM8xaKNLpjj02oZpIPvhWeG3jUScLSYvrpenKzDZ986wSXGx9QahnY/rnoBTLbQ52a4vjC5mB0VnVIqBklH49OlrLs9fc91eGa9XPn965dIaw+E33zxBucRAIIZDSgkvjry9JTcdXVvLo4MquTBiQXMbbKP5Urs1wTu4yXMj2CLHD/AJ7bqzPT9xbReMMwuDk12hDP3c1PGcsa6FSGLQ8gWAapWZJ0bmUhBAMIze/WYKj7vi7EMOfirG5fvvcYJx2SavF/nokOD69Mzn333NcrqjpsS0onsNSQ/Lov5hUpmWOZ8Sv/hJJcfSqnGNLTPk5LQpsCfnQi0T7y5z0NQZ6cxffvMbfvHhnr//j/8bPn3/3/I//Op3pI8fsZb4O3/T+P2fJRYfXNtg9Mbzs3F3WjBg6xtbm/QBWx+0bdDHZDQlXl5HovVK75O7h8zs8oi4btDJtF54HZM8nL1HepsbZjuzafOfa6KYk0ZlOZ0p7HTkVXc6raxFRrIliTGqT3YwhgxKxST3uOkHMjIXu46sGpBy1eIoZXp39nYi16weJRIjj0Yq5SST/ZQCqGz85Z9/za/7K7NNCpP7emaLoI5jfecBcprDbApv6K3TR1f8fCnQE1bEVvUc6b0TMQFDgkZ0OQco3ZixhIFt26h5ZVn15+YCUMUeDn+6YKCXrC10a1NS2N5ocygxKdiQxHLvWODderIDkBbSH9dB8qOTLaQ5STnTxb3BDKoFsGtK+lpSUXZhMJasrnq/dvy8+B05RwIOSu3yhOdJ865lZ5ev1ziYgKVKdhasogkkX8SicCenorNq9mAWJFI9cT6dcc/04Ywt0tXc4/MfLEdQiTtLqmIbWmLvW0haBP4rlUk+OEvOrJapLJRc2EbjasA22CcsGcZMkJSkuc9J5irPnKcnSsrRW0OzzmI6y5ZcIcWSIAl4DP5F3KUCLy0vpLQoon5R/WLf8CwWS6fAHErtGoPmhw+o7u9sin7fLxcMRcQPnIJTUjCJfFCTEpsuU2bbREKTD50vta6sacHzdtwRUBKFQhtDQy/qiR0xbH1KqnuKIBRpk7Ru8r2T7tTfEQNxXYqYlAdz/fBOtC5WYIc0TexsTImiqVCrafeQEtfew8pCqWD7mJSSSVakyJidNGE9JwErQCkrnUZrQKuMNNnDYzIDFtJYSLhrYbege+f+/E7EIKu07ZnRO2XfMfRsvI6LfG+GA5m5N3JOFCqlG9UGdYFxEdPOzfTeU8LNaZuzX9UPn9YKSczjnid354U5dqwK2F7c+eo+835N+Bz8+mnnpTvbvpM9MwoMbyQinc7FjhxT57MFS2f4ILuuM0Oz23AtBHOW39YB4Pcuhlkfg/vzKkBuhoVMhA6dlkXgxNQi10NJw9C83vadkjTTDnNF08/MkgukY0aUpYTF4l7gj+pnQV6g0/X9OQBw1kT2TGo9Sr960Qb0AENsBvkDo1oWDJItpK1JTG9kXp+nQHFPO2b6jMyOgCKxvKcnzMZteZGTErs9Tfp0BYuUTGta1szbIsRvz42JciSmsIvY4dMUypQEoxxcl5SFaRw1/WD4Hd6mBPiZMEqpWqCiY1Fzf6TNWdRtF3OyONBNZ0me2NCCYyLP4WEeRu1vyX6H963ON0glU8LioeSsGvAjfv34DCWXN0aP7aaadQ9gJHHQrtwTh6H0zENMhBh41CC4NpHxKaWIdh9zhBVPgERAscKkKY0ifoR700Y3qJpiJ9kbXeygKv+AaXMgRBadytHga5g53uCxzTIOHObf3OKmAI6I915+QH9LuAYST8GKcnx2RcF7V5R9smCCJ1Jdo3HLdA+QrJbQeGpjbo42QTm9bQw9pFcHrTFZaOXmbcsgHTUBwh0+JWEWGQyIPuVjQzRNhhpqA3q76uHKGhIFfAktvuxNMhYMM/lMtK3T9o1+2djbDl3yNk9JqUGLkpssIkcVXT9v3gPnpM/GPbyPbN7YDQkPxtKMB0jg4Rg6lC1lyZiIlAG07fIwHtzbK9s+KGXh7vyedV2p5Q2JD6VyxLgOPPxrzJT+4ESiQ484SXN5AV2uXF535jTWuzu+/PCelJdIHpBpJ2bk8lbgUwyk67pSayaZsW+Nl+srl9crL5dn2t54//6Rr778isNALqWDFtyioZcevvVOnzIgraWynldqKWzXK9999x1jiiWYa2VdFvlQFLGw9r2BT2pV42OuRJHDS2H4xIe4WbkEaGHGUuSnpK2wDv5t33l5vXC5KPHLknG33mljm+QjU3JhJEjnBcu6JtoUDoGkdQH0uZakCPtSKhxRnpZorZNzoeR8YBLknBmj87pd2a4XPn78yJzO56fvmKPx7uEd67rIy6h1zJvozT55fX2mbZuo8gXu7s+cTye93pIEIPqJ5JnWn/n86bditVjCl3ekvGL5FDVAg3vJCx8+fsX79x/YLi988+2v+d3vfsv2fKHvI3KVoLjBUAqGKPoBSBvUZNzd35NS0TUcfju0Ss58/fVv+eM/+uOQJB0bJmRIrRKnZ9snLy/PtO09I0/SyFh23EqYphPgs9LnHMVon5YT2+VC/yFonxKWMsv5LDlaXTnVhWGFnHV/KnLbWJcFd4tUHDWGWNbQYn5jH06Os7WI7QeMJhBWenXp4FMAjjZVHxYSsw/cjNUkD+17eL7kpMjhpWgbNN4WAIchrLbUjiWxm2bfxeTZh2q8GbP1aLY9NoUBTh8DYjRXe+uU08J+Ma7bJqNcB+aQ/9UhpTEBW/ePj7z/8J7RJsvpzH7RBvzqk+e+U/cXnr75xMvTC3O+sG2N1RbWpZLqibZf+cW7xMevPvJ///l3NA8GhE2KJ8zFmJDWX8bFB5fNSlJ8bSQixZEkAM5NyuGqISOBBlA/JIaJsp748PiO8ylzuT7xsC48roPL+B3rKXPZO6daSBnK6URrjepi3VhyUqpirzTnxc6sqbIZpHSizI197uRSRMM3MO/01iklcyoFXwuXrXPdV1quLIvAi2ky7jY70bBo3p3kk9Uylz6p7tzlxt/66oG/+7c+8Jt/8VtmhpkCLMAx5J1Bn+SiLfGwCcPwvGBz51/96hv+zj//X7n7u/+If/Bf/2N++d/9E/6P68brcuLbz5P/+D/KPJwmfr2yt8zz9/DwxRnSJ9rr5LJP5lbpI/H6OmhXNdw7zt5g9szrlnj3vmK9M9y5bpNplbE12nT266T3SmsbbU7O64m9/QFu/5ztsjPTYMf59rvveXqd9ClvvZ98rFS7sCRdn1MqKAx1kk/v5KOUxHQts2t7T8JcZsZkgw3ykgO8Hlx2o83K6U5BIck7dBjheZhS+K4YLMj/8evnV+7ywLZJu37Pejf0PGcB0tPVrCdHxrZDgRZt29i2qwatnLCm/spj8QWxUDqWZbFcspApG051C184DW/7aKTTooXSGOTyNlgVJB8WGymzt3a0mMxdYIKkw8egEwtNg5kNL0nyKJfBsA8BSUcwyuaNu3mKpV/AHEnpcjvyq7OSGAYdV+KQg3nGvSkty+zGahAYree+JslPBk6aBdu6FqBxxhID4tBqXIDIIKSCqq2khKeixcdEvUMtlHLH8BIpYgP3Rr/s3N29Z46u5KxcaF3DpeWDPabXW9wkA7XJdd9ZTyvvz++YvnFtk3Qq2GVh8cz0zsvW6N44l0RBA/CwHAyZYMSTmGXFh/rjpZx5fPdAXU4ynD7Mb2O+OHriEq/JfYa/pqQ7KVUN0dWoo0n2ZHtIpjKSyarvHt7ow7BpnJYH9l1Jr17029porOmQDyX2nvU5Taf7rvvWCh7LAZ+dvnXVnSSJ0kO5hyRwqm/y5xk4Npp8ipI+12sEyNg8wAGlZbXtVXNKzhQr2ISaCtN3fArML7UIKJgjzL/FoozbU/Kb2Uk50yLxC2TfgBl5TCkuWmEfCoRYkrFtG9MHZieu7cLY5Y+1I68rS4nRGyVXqTI4ErEquyfu1gdOp5UvHu/5/PyZT8/f8+505nQ+0fpg3weTTgVKWgUGdy2grUP2wjlnpsf5vFZ2dtmPpMreJu6ZbZOqYVk05c9uDEtKWrs4I+94kim7ZGaV0yov028vxsuuGUX3WUiZTMCxDREL5Oc6qesCqTF6gMs+eW3BtM+LFAi9U2uhLkoC23tn67r+wh41A7beqKVI7tXCp3jRTH6wko5AkLJU6jnBzEpIHa5kx9ZYz/K0G2NQs0AKgsxhSPVhWemRYirJ7aqs5TZXYulmvj2bgL0SM5FHSvuKiU1dDYpRJrR9MrMAmdk7M6TENaT303WO4Dqru2/xrEom35Fvc1oyaZrkfzEnDo+IqGCmz3n0lmKIieSawZUqd/hFyX84cIE4xw5wK5MkH3XDs6xVWos5ZQ4tZFNmTKcEo/2YoUtJx47vpnDyG0jkjD4YrqX8alXzbm+kWjSfOngAax796YxnNod/3Yx748f6+tEBpcYkzTAZm5HKkCx0vUYnaJI+bsgZiD68m8mvZAZFjdis+XFYc2P5MFz+PCbKPgBTG2ydppm2x++WkRGHWeJhAOlwWyvfNkTH9f0BSPQDuEi/2wNtjIHh5oBvAsniB0s/iorGCCCHaGIhmPI+w7jQSHkhQFpIlYmkX3NO6pEucpj/auEmpk743TgjBmi94uSHFl1SsUOXT2zhRBfn2FvpWkFotvXza063GNBY393MrXMWP6iPzpwRWTkS5BIG2YXWOtfLlcv1WQ9tpEx4UnLOw92ZVMP3YHSghwHhQvdGtUkx6bLLoobsoF6mABtzLvFwz/DSgmSZvbcoDtD3IxnIw8tJyRj7Lhbc3enMFx8eWNeVm4lbMLKSQ+sqEmN06dZnlwl1F+NHqDyM2Xl+ufB8EV17XR94/Pie+7tTsFf0c3x2FJ2bUCqmQZLE6sABe+tcXl55vbzw8vLKaDu5Vt49vOPjLz5y3a+hQT5orlM01iT5SV4W9r1pYCuF07szOcHz8yu/fXoi58xaV+nIDypmvEexF+bNDNw9GpvRab2z1vMbayEpxa7WhemJ/dLU9FqJYilQ5vn5meFwWu9utG2rJho5znUflOWM10rbmuK8EcOq1BIMOQ2yS1koVWCxu2mrCJRF1OneBn3sNxnddbsyujydHh8f6X2ntY2lZJa7E8USe7syx2C7XlkyOIPr6wvXduVuEQi3rJXz+UQOJsyMhL+np0+0z5+5vn4DKbHzAKlgnnRotA3P2vKZVTJqyFJOnB4f+L3HP+Cnv/d77NfG07ff8/n1CX9+lfdC37lcdO0GigdNKfP4xSOPD/eSRSQB15vLm+T7T8/8i3/2f4E5120noWHD43g5aoTjMAdz36g5a4Ncwa2qobz5rKkegcDe07t7Tg/vePr8PXWiDRPyHMIm6XyiTccvjWu7MvpGcaPgUCqpFu7fPVLXNVIvRA12S2pQDkK7x9rAgzAgFIatD0l6rvL88CFAZCIGn5hQIe+tmbarFtSi5m02beC9DW76M+J3hYeE0g/VHDuJlAnK+LyxAG/Lg7fd09uhEWeJp8x+2Tjf3fP09W9kJO4u0NAEyBxLCg0Mk/dffMG7u/c8f36llMJyhpfXZ4HW2+B1+0xtG7/46ks+fPFX+f2/9dd5OBlf/9lf8hd/+ueUAv/+l4X1vPH/+sB9p41CHRpEzSbZC3nskao0VFpmAwAAIABJREFU5ZOFtvC5FHrftPCJ51yDXgp2l+7BlDKj7W9nBpB8knywnE+UukieneC8OHNeWE6DU7lnKV/gubPUxGw7NT3gRcAS1w6psIfshARtTrpLEpPimovtpKHz/v6e52++YXSndXhtzuenHSdhxVjff6DerWrcm8c5WiQV86GBPpjP9bTy4cuFr1Nix8BqMILD8+RgvyUBb6sV5miU/IS1zDUt/O//0//CP/rZT/j49/5T/suvf8W3//3/zK/Wn/N//mrye384+E/+wYm6LNiWoHdODwn6+1gsXcieKVMMIdJgXhJjyih1TiPnQbbOYeyas2PWsMXkM5E7p31nT86cmQ8//TmXx0n/3/4/fv3NxnnpDJx/+evv+P6p42Pji8ePPK5wrgPfN6g5bF0qu9W49k4ZQxts7yQUqNL9SrJJ/v+Ze5NeW7MtPesZs/q+tXZxioiMiBs3894klZk26UQGWQiJFE4JLBoWGAnkBvRAIP4Af4QGQuIXUBgZaNhCCAkyGyBlYgNWGmdd3Sqqc84u1lrfN4sxaIy5diQ9N26D3YmIe+45Z+211zfnKN73eSWj2c+63iMlKNvZ76QcA6Ke/ujPTqANJQY/p91W3SnlwO2bV4x69jqqKa+PBw4ZdrPJh/RFRZifS0vMjbA3cmrQcnS49nClWiGx2TW9ze3eIbmlwBlKOmtCH224tXZaQfYdi8lDItRtD86P8sXcULd7x1A9jTQl9skBG7g1OMz6TPB/TwRXDZqfO9FcOSmTJRcRkvr5rvMU3y8PmCjrek8IBz90ZnKQzUXsGEYX/30ODp/KkqFoirQJT1bzBZ0nwe5es4sPTPx1+LBjG95kh8kri1J8uBIAMlHnwIPBELcfijZK8MH18+U9o+1ApqaNHItbPGdTdgV5q1U/w6MQ8gHtjdEulHg1OCWvcYNb03yQImQp3KXlZRm9xEwMwtb9cyBWSWRv0tWQdWFZM6Xcgg16q26pV3upoWdVPt+7aUOxiOigBLfvPzw2jgscUiTlxE023i6Jp/PgVJ3nY+aDu2HGGIlaK89P732hHiJthxIXZM2YJEIUtBkP9YK25qiL4IsWHa7Eb2KIeVKYhODphhgiw4cJITjvJcTZH1w/067Ii1OlYKPPhZ3DxMO8i0LAlw19EJdESckDUoo3qluF0CM5Cl0bIpG9DkymoiMu6HCuTJhcXGOQl0SKhbZvbNszxuBwiOzbRu8dxWaYUKKNM0PmwlV8MBNjIqQwB9INJdE1sqy3HG/uaf1C3c4UGq0N1rsFCZmYlHO9YPU8zwLnENXaJ2NOOYSO87Ai7WKEQ0LqTquDsHh63giQi9+HMU2cSYKSbri0C5KMOirgCZtFhKfd+9njMbCGhSU4EJnkZ58qM03PLW46BxQpxrnA8IViljj9GMqyZMyMUQcp+SDJezBnzkZx223X7tbCnF4U2j6PXlhL+Atn3oDusffOGnQm6hjeg5e0+vec82SkuQtGYqC2RhAhR08X9CG0r0TrqKjC8bC4vbaOyS+aTiMbBBLXdDcTHwrlMAc20VWl2Ji8rODnUA5TLHl9PuOLECMGV4dpn5FcptTWyAia/H2SHr0elcDeG3kO6COTgWTGlank4GrvrQPJNdrdGVJi3iOJAGpo724vEyfXuW3PHVnkTK3t5WfXTYkxMHSyu0Z3RdxEkAg+YwghvAzKRGd4BR0k07oPxBpjKqQjUt3eTpi3mPncJCWvmVJK9NpwI0Dgp/n1Ux8oCVffoh9qhKtglHlxOCz2RWEf8ISUMbflch3UeGk+6BAydOZDMn1/6XoJT+8grs5R2/01MH3Booy+EyTN6MbrhPTacAT+YvX/ElHNX1QtfXvBXO1iL4kc12FSnLHy6oOkq9TMNwDT9zw8wcjVJNP/HxOESeO5wnNgplh5IkAqZUYWKjlcP2RXJdSU1Jl7JU3+wqu36/fjxbOYTIl4uP7yC0gXu5IFeBlOmIEMRXTKE3Xa2iZbR/E/K2ZXa/Q+2LbG6eGBre6e1KSADufwlJVUAll8Ch3wrWHrFcFIV4hb230bIuLMjQBBlNo6YTKknOGkRKDWNpubQC7rC7wvBKf+O4x8o1tnP/u0X0S4vb3l/tUbZ8fM90Nn3GYfPiQK84GX4AdgTA4Q9jjYPq1vnctl5/LktrFcCp989CnH4w0EpY8dhhf9vqvx1DMhgPoAzfAzXUf3CTPK09Mjj49PhAg3xwOv7j9DQyAGuOx1DtMyZi7/vQ5c7EWCHihl4fbulrpVHt4/cL6cUFPWZeX2cMPx9uCWyeFbbhsef3tNlyE4q0knLB2MXBb/HM3Pa51pffvThoTIkm5ZlpUhxocPjzw+P2AYMWXW4J7wGBIqeMypegFZDjc+dKzKUg6+RcIwHbRL9USSHCnr4kyb/UIQV8GEqOT1lrpv7LtvvfzluTUvzcS8q3Kv1grqvv8YYN8ubPuFre6sy0prHfrOoHN7c2BNicOaXaodvYh1AH3l/PRA2x7BApJfo7K+SFGR5LBb8+fXQdNjApZ9OMK4JuMZ63EhLR/zkXxMVqGPzl43/ugPfp/T4yOM4XNdU17d3RGBfTvxzVdfc3p6T+uVpRROpxNxAdk7KXrKR/b7ZBbmw4sPC0RJXM4XLlujrIlEYqjbJfvcrorORmUmw2DCsh5AoieCiQ9UxSBFkNowKi0qGeXf+Rd/hZxW/uCrL/nyq/ecNbCkBW1uq4shOkctKDHneYn6QxHEm7FozhgbUSghEIJxprJrQ68FiOmLiv/KeDosq/PBen8582OaywuY2zRvWMZMCfJjONFHJYgPSoMYMox8HWA76dQB5VxhpfPPn3JvwxWOp1r50Q9+yJvbe5YcpvVFp/feZurJtCSHwN3dHRHlm4dvOD9fOLcL2Qb7Y+WTn/2UX/7F77E/dZ5PJ9ZcefjzP+DxJ9/wHDOf/zM/z0+++HN+8/f/lOPhI0q+Je2NFjyu+E6UOAojCBYHUl0JWgzPFIsRUiHIZQ6G5103X58nMzpvSlvzYd4MjEg5cXt3y8988qkPZE8XDh9/wml8xO+9/4qf/OgJ3QevPhY+/zmHyScKu6g3v/sgummcIZEnGj2aDzdkuKUe0AjWvbIIQ1mzEKeSse8u/3YQrpKiP4N5SVjywjH1HUVQayidqr5BBqGa8OU3Zx7f7xxuhf3JFXRXKCbSCcE5EFfFgAv0BlkzI3b6fuZHD41/9Hf/O/7Kv/8Zv/Brv86v/ejP+Xu/9cfUz3+B//EfvuPtYfAL/9zKkgN6hLQGRDt3CFmFmYmDpltCq4goWiMXgx0DSRzWA2c5wy5UFS5qbBdFemCMha5z40ziRo6M09dE7bx7OnGzRlQDP/nxxumsqBYyhXB3R90FDQtxMggtwulx4/Xbe7dXSSNhzF35ZDqYg6MlezpmXME+wBiczzuqBRNn4HVRukw+oESayYxcd5vDMWQOrz9DOaNn45vngQUf44U4xdYw7Z9G60qOnRDKt0vC65BmSifOl2fKTGy9fjnMe/4s1Xx4B4y6+9IAZ8YhUPcO2TzCOQ0Olt0SHANNFdSVQgm3Z3Rz6/EQ/z0O/JrbZpvKyzADMNT87sOTzq7N1Hm/cHi6sJdCDIHT9shaAm3stHGmhIRJ9jpHXaXpbLfmdqLJyfC7yOtORMiSpuXZuOwX6nZhoHQdM810wu/FlwzJ3EIUQkbEcQYxRdQqMbjNvZnfa2KDJFNB1U60/Zk6dpbiEGRVhRS5Ymy51sI62Lbq6ZZLhjDP6CA0VXKbS1FNHkE/hBziVFgEYkrkkDEGVeuEyQuLQMy3kN1aX9aVlAqOzAjYPgMgRp8qBNzSqf7rOjxJiRDo7Zqi5JZG08TjudOzq2zubxrHNdLbymYRnWlZl01fBjUpL4QwsFB9oDDEU4gtEpaVIUKKiZBWQkxIrV6XAtGUgeMfBkptG3VESilIjjxtnW91DbN5Fl+ihqnsQ5nBOH1ancybzK5k9eQvXWTylQxtFR0+MEg5UmunV/FlmTHh8Eos2d/PoT6YI7BEYY1uce0MiMZeL5zPHwixe2KrGhKjJ9UZpJkOaqlgY7BMJUsMgTa6p3jGjBFpFe7v34JEtsszkganJ+X+9R23cePd89f8zOuPOJ0utFaR1ihrpjFou8s+gwxCNkJ2sUEcnXaKc9EUuTsupJJ4rJ0YoWQY09kwmt/xrTn7ZxsXRl+hBy4G6QDnbefSC4cnV1aFKC8L6hQTvbepzpvqHm+spspeGN1ZTUyFWUqLCwSiBzGpmvNBxevzbXM1n8hcnG8Vk0xeygskuohb4FLOoEZtjUabScpuTYwyuVoS2IeSS6LuFZmYlizO9ItcU2nVVanD0w5lhgzFlB2R0XdCzrPx7ASLWHfbWMj5xVHiPLhOCFDKQsdQC3h4tNdYQ+vLosqGkGJhKcKgubpcBE0+dHJbW/L+dgzGEPJEoHTtbvcPboVLU1Xn+JyZ1q3XIavRtPpCyZzDdShlgvDdZRWSw8J16HSvuPjAglses8gUvnj6cxRn8w79lu+Jystd5AvNRnzhBrvtcognsLvt0xOiXWjjTihVIIUXV0kw6HUmUs/BlXb7dn7xU/r6qQ+UimSUjsU0G9RpU5rT8esUKYq34mAs4fpNZ5D2ctkiMx1IImY7g0GJPq2u3UGVNhUQKeDRfql4IcGUec14xetg6NpEvJy5L/8+VUtz2CRcf4v8f34dvLG6/qt/T+Ked/Gt2zB5sWDxF6LOx9zQ2VSkiOBbkbmZu/51mJGivPghtXuxK8K85L996S8vcc7EvIbyQihOj7G/ZpcTKjKbW/FBll7X6P4hjlOWF1KYf55rrLbNN1CHtUDMbHtj2xvG7vykbpxO20vqkSCsxwM5JoJByJM3MD35mBGtYdZYgm+01QZBvRtMWV6UREh5GUYKc5huSkziA7oYsNHpwzcGEoSQ3Jqy7a5CMhyueXO8Y1kOlHVxNkkIE4Ts7xnDB5QxGNobbfqsA+aDFfVpvxm0fWd7OnHZGlYC97f3fPrmLTkn2mWnns4ghkZPZxHrYBHVTkqJpt0v91m4Er1gevzwgXfvH1zCfHfLzc0NpXi0q+rcQDGHjWFGmo7BFaJ+WI7+IzVj2zZ+9NVXtNqQKNwcj9zf35NioI3G6XR2FRZMCLwP1eKUote9TvulTyNyWVhW3/KfzmfcAdBRC6S0EFJBTfni6y95Pj07IG8OfSQkQkpITPTmjK4UArE4/Hl0IaSFw7I412kOFoNEcsocjgdMje3s/KPlcEBC5nI+IyHz/O4dIaUX2W4saQ5GFa6RqlHQ0VmyILmwbxeeny6gSi6FcjwSSkS3zt4Gh5RZc+awJNY10Vr1g1ihtsHz8yNSL3QCmu58G6oNxeNlsUay7qqLF6vBTH1UnTyPjg1jiEO8RRN729BuEDbMAselkO/f+CA+ebJKzpnnx0e6Cd98+SW1nlAq2yVP+InHvYr6f7rSTF92r4krLBAag+dWuRudEeu8eBoyo5bNsqezBbc4RhVulxuOeUF7p2HOF0GIksiHhZgTWOSv/eo/y7/1K6/48qT83PlnOJ8u/N4P3nFZjx7tO9wjXkLxLWbOLPNncx0KeWKJD+N80B6x1oldoDXfiM1zccyEuKj4mbIk2r5h5oyX69B92FQ65plGibhVxbygHxgpLyBGIBLEWMW5FE2EfatYjIQJKAf/vdNEMJWx807YO6c2+Lis3Ly+RUaFWFAHxCEy5vfqn7kSlPP+xMP79/zVX3zN+ZT46qHx4ek9rz56yx/8Pz8Ca3w4n0lqnJ/e8cmnn/D9v/xX+fh05rSd+fju58lL4v3TI/o0IcSjozlSBRKeWCJlpbcLMRix4Qkt4VoaXFUP/hz6sMdVFE07qfn9eIWbRwmsOXJ/m+kaWdfCq4/eUmPkd37/zzjVSiTw+I2yvnri9u4NIShNXVGbUpqcEf/7ow2C9kmrgxE90TWZF3v+8wzUAQWh3Bx4neH0/Ajm27jjMvwzdh5Ym7wHc8ZDiF7MmXQSyYfCcee5LTw+C2+ORx4+PMyABFfQRbIXdRPYnKIPHSoZklKAFo2B8kd/9ue8+Z/+Lt/9m/8h/9Kv/yv8+R//kN/6+ke0Tz7j7/zPP+A/eHPkO7944IYLZX1DswuSnzmGI/0OqEbaKsvug651T1xS5ZgHkcT9wTjkhUvsHFaj9sIlw751nuogjoF03/j+zOtGaE98dhycLUNYSbmSloI06CaEdWVwg0ZXT9ThjCdtRlkTx5IoZh4vHgZhCNeMtGhp8i6ULIJaRcJAtHgzkH1xMJpMy6fXWs52cf7DUCOVSKOT1x39cGZ/2vnd3/tjwmGq51QIE30AzpizEAhEVMK3NV6YuTviCgAdDmDftguXbSOkRIzRmyibAOYrZ0QcLD+G0S0y4lzQdWeonYdbXdWUuvsQJobC0/OZV4sQg7qytBmmrpAL3iu8WNoNv5ZyzoQIcTCVmv56z8+P7H3n7u41a6/s+zNPp2fUIHGAuKIEknnKreFJUwleoNJB5wAtzVN/BlJ4PPVg2x49LMBPbmeBSSAlT4oavc2AA1cBlq0TDgkrOHNHG6bVE7DqBZHAut4AoO3C0ApDifi9HzSjkvw8RSYjZqLNRQkzoUq7p7lhgxwTTQdVhNN2ItiJcnvvqoj1hv3yTI6wmT/b0YxjOXI43BBT9sY+eoNNFHIQ2gTwQmdIcAD1kjCFXvdvC+zZ4CKBpt3xU/gycKirdZHAeTdaUWRbWcx4f6k87tXvWPMkMVVHK6QIYm7pxQJRmi8YkqK9YbGQ+nDcAKDmA7SggRgHooOYnT0YpFGCD7nBbTBEV0CozaRovaZ7+lKki5FDJIeCoWxjcG7VB5lj0Bn0yzNLyp6EFjOMwLYpfXPlQ5Dsdcg0ZIRY6M3VEkvOrAG6dZbo/Yx2Y+/G8/nCpV64Bmokg9AcNCwiHKIrnRBB2yCFlTA6w3c3RIMcOsagdcjLLWsI1MuZqI37u9e0Xrn0jZuyslvjR1//xJVNPbKWAylndP/AIfpybg2JEr1fOqZBXndauGU7Qy4F6Gx1IxGoTZAUKdHV4DJ7TMOHnyXdcFJDuwsnLpuBwkKj0pztVCIxRfZZ94Qc0ToDAsRdNCllMOXx+YlgrvS3oIC7B5IoJA+iCHigQSqRZc2sLbs1DGj7hvaAFYO5vLWhSByoNQ96AOcMRVcWjeGWKGKEtnsoUY6Oa4iDGAspRYzqSp2p4gtBkCjkkFiXQms7or7MvPQKdFJviEU0QFAPiXD8iDHaVak91SZpobXmSbJA60zFhFt+zQStsw8cFS4z7Tv6kLlrI5hQkgABtUjBqMEX+t2MbZx9yJcKSylc9g3ByBI9+MLU5wfDh9Mx+IBPgrrqsA8GbQ7tI6GG6TRx/Icnd5ovroaDsd1OOhnOY7hNOTpbsFr3nkV9RmAm844SbPj3sfeNJWVoSpeBhe7g73kfMXzyodWdOp4keT3QZM4bAipXO+pP7+unPlA6HDJnx64gZgT17UgQnWldLr3V2dSE7ioNl9Z61GdeV5BI3XbSuiDq190iiUMs9LERgR5gmE+YwR/SMcn3fXJ0ormEXa7KpjD7jqnuuaZ6CDPOWK5mEOEFkGhza2GzcJ6DpCuEK6Xs08zgsGq3gwVCTB7FOlVUdlUNpbkZD1NWPFlR2n0z5CkIkd52Ys6U6JBkGTPKfr53quLR3iKzpPOvCbf3aTQuSXevs7wMoNQMCdkPieEy73CFTI5Ka8repm86JcrhSB/K1w+PVH+yCcmn65fTGW3+PpRcKGUlLcmHZ9MrLFwh34Zox7Qiw5Pm1CpEF99J9Pd7DPfyG0K6Kr3EP1OD5v7s3vyyqjO63HyqW3tjv1wwHaR8IC8rN8c5CBneWLV2mRvMK1fhKg10ZpGO5geKa9lJCcgw9s7jh2eeHk/kvHB3+4pPPz6wrgsibr3azo1AJB9WhjX/Psz99qINC4GtVpd1h0iMyvPzmQ/v3/P4/plcVm5fveX27pq65QWrfxp9uBiJmA23egkTGurS4dZ29tp4//BAjIHb2xsOh5WcXW6918aOEoIRxD8XOjq12Ux66zw9P/t7n33YYzZIuRBT5LJtvkmQq7IuTU1B5PnpxLt37zGgLIuDl3PyGF812rYTk/nwZllpfaduOyEmcspuOTufAB+AphD981TKt7alZYEQ2Fqj7idEHK59qmeKuC0thnmuYJQSSdH/m+FJGrX6Z6C35mq1u1taq8Bge3xCtXG8ueX2sFCKP3t1O9N1EGKh9cFlP7k1Uo5YLKh0xBaaddCNoIFm5oc90bkGjG8TK21u6Ofw2cLCeliRAJl70EYKDq4cNhUg4mo2DTNK14xi8Nnn3+Hh+RFt3ZWQ2gDnKtwXdbD28APLz0L3jEdJpBC5v39NMSVInqmYkXhcXAUS5+Al+GBOQoRoLHc3LLdHnvZH97rjTXQOkSJCiQlL0EbgP/tvf4O9Nu5eHfjkk0/5znc/56vuW3ILIDbopv7c90QpC+YifmwCfHUqZIpk7l6/YVmO1G04Z8Ou/KhvGSIE98l/fPeGcnMgIuSYqL3R8KIpzC25LxDcm94wxkwfC+bMO4ccRoZ2SohkM+Kh0FW5u70lhUSz6zJk3iA6SVgiYLsP4nX4QDquiHgTG2cD3IlE67x59Ypf/OVf5tWrV5TlKx6/+pLw/Mht6Owd3r55w7svHjHdSTnQ+8aQQTwu9L7x/idfcTze8erTj+n7xudh4/Eh8K4b2YJfnOIg7aCRDAQWBpUROh0gJSStWNsc9m4JMYfJjuo/h7N4kuMxBGQFumsODktmKYncBksInE4XPrx/x2gnongaVOsXTu/f88mnnzlTKrqahDHotZEXI63ZocraZqKXD/WcEauYOrcjEUhl4XB3oHwIxJvC3e0rFoyP7u+5XB6AM5FGFthnMRfFLeHZJQkeP63GjWWInbwciXja4TURxYIS6AQCPRrdBkkjFga3S2ah0sJCHNBz5mSDf/wP/0/efO/vc/Orf4N//W/8y/z47/yv/PDDE09vv8N///ff8R//R99DDyt2c0fiNaV9oIdO0idYMyUqy/LMvlaO+8LpsrCfzqCF2zcLx3rhKe5su8KaOC8BjZm3N4WHuvHh+YlFOv3pPY8//AGvbhoRpSzCx0fjTp+59MSwSl4Cr9ajhyLoQIn0FCgaubk7kBclTNbjiyI6zgWVCBoiwcByQ2JxUDZCa4GkIFlpMzVIYySaNwvd3JIeY6b3SjQH6Gq70FPgt3/nd1kOd0jK7LU750XEG4uUiNPao8PT88KVN6nGbp37HNmrUffqS6/mwRuDQEq+1NvqzmidNSZau1DVBzQig2AZw0g5TCZN4LQHhgmYs506g68fhHosvLk5kKtbZ8UG1kDEm8QRrgpxV2VJdAtn624XFrzWyTmzromU1BWnIXLeKvvziRAyt2FBQ3eVHJ7oBZ4qS+swkROuOHClnsWBsbONC8d4S1pvEfVUqrpvnj6Fs0V0KCVGLq2zJLeogWK9+10ZlP3SXHFyeYBpBQ4+xqM1r4XFAms5oCJsw8jJeZQofPx65c3dyo+/eaY2Q8dKi/iZNoYLeN0w6By8FOh1Z/vwDUspxMPB1UbmyXKmMkN9jvNkb2SDbfPmcAlCjyCTCxbiHIiTGaMSon+Oem9cU43T1V43vGHrhivlgsfcd1Mk+VD7w6ny4ew1goXgSpsxyKn4fdMrte3s+HDHwbyGpIWaBos4aqHJLBC6M1ax7km78zzMSVzt1xVGZwkJsQgzGXLvm3cKOvmX+OLUgrsURus+NAydJHCXC3UMGoNs4oqYMTgugkmj9vAyBIrR/Hk1wdT5lYqSsq8aSvRldVZfTL5ZF9pF+aZ1Yq+kqcbLIqTszol+9oXQPhx9cVMKPXhoxLIMchHqBVoI7K3RTFiOd8SQOe0PrMcDbRPOpycOh8yHeuHp4QPH9Z6QV3pVGGB7pdUTRSuv00pZAlU2hIXcAsecMTItH4m3C/b8hKwB3RsSFkoUajdPnJOZUhocir3kzPnian8NbndUIIv3GKaFfRkcV1hRrE+7L2FayQDr3heOHWRFpMxaxAdNY+yuFMwLROja3P5rUEqh7Z6S3bvXaklWwuKDdot4enYUtrYjI5NTnK+/zbCrqUCedq8QAsua/YmearSuF6R7b5JzJg5hqONdrEMfjUMORJQajFSMuxDYZQXzZWw0R2p0FA0O7c9hKuoMXxh1l6FoN7AMZozRmHs6TymdTqUlO6vMpt3ZXS+gVxcQcVrXhCUmdnNmq+WVVFzhh0DuDue2AGh0paWBhgm9D4rl4SoiU1R9EGckFyFIBzOEmTZ6nTWM4D0kOnnJbsU19SVJ10EOnvgWQqCLL/nFXJ0ZTQgyGLr7/z9AjJ6Ap+apmYxOx/ycmGouk0G49mrBXlSdg0HMgd7GP9Vc55/266c+ULq9X3mbbmn7hcveGMMldj6CcJCdiA+WZA6XzHxjH2OhpMRle3RwVICkgxzE5dEBttG9CA5xbv4NYyafiat4vGGyaXUShnZyEHL6dpOsV7/5HDaZ2ktqGkwpta9e53cm1z3KnDX5ECjGMAGNfsGMEcDm/9PMlSlzu4VN7+W0k/mk0Nk0PnBx32zvPjlcjzcw5XdB4aqyMvwykXhVD8yLFH+oGc52UDGQNA8c+XaoJQFP0miAb7QiwuiDNhVLInC8eYVhXE4XPjyeuVxOrOsBCfD48IFtPxND5Hg8cnM8eKqEGiF0gnVEgw+rurryyZorMiavQubPYYbbeYFo08udCgDZDL8JvHitbSBE6t4oSeYF36ltePKCmbOZ7u7JS3HO0dxK75fBGNXh0QMkTvujuf7McEXDdbAXJDGNSzw+nHh+emKocv/6Dd/93ie+FRzdL8Q65ud5FgoimHViAFH3kM/ZAUy7z2V74t37C+8evgKM+7tbfvb736Ms2RU7auj/pvTfAAAgAElEQVRwi5vgTVSKcQ4xBmlKHoMItTXef/GNpzt0j86+u71lXZ2P5OwjHzLIhKqbuepKgttDQwhcqvNQyrJg+AWUc/ZUk+HwxZSy/5naHbqog8u+8/jwxBhwc3PvsM7on7fLPLTEhPVw9EFkbWyXMzlnjodbfzbMi94+FNVOXg5+uJrRtgvrupKWhb3Vl+1dLAdEjMv5xP3da0SUHNzeemV9aasvxWNK7iXfTs70yjE5jPuy83h6ZEmR29sblhw4lALa5meygqgP5Zqxb402wGJCYyakRLEj9E7JhRDdDNLMlReGTWXFhK/TfAhn/tw3VXzkMWgqoEoJR7o1vzTUB6EDl+YydCpJ5vDieOD+7WtidEVmCAFVZ5yZ+EXfgiFjIMztbAwOUY6JHCIWvMGJIU0u6/x7otuJzDxZK+REUiFF43h/S3iX5ukYiAx0JHp2G0wQ4bf+j/+bh6/fU22gP/6G9Ls/4u7myHd/4Zf47Oe/7yDEoQT1z2BeM7mkeZ57jHW4bgJEIAWWm4WYjRivD5XMyFf11A3XR7s68GYlisuZZRhJgm8ep/T/Kg8188QPb1RdbZPEG8lqjRjgcDj4MDVG+uTSvb57Qykr9dz9/uHbRcEYiiNi4b74BriwEk0xnB0npt6c0DATPv/Zz/nLf+lnebUKP/6TA7/zTzqHZWXr7wlH+OKPfpv6EAgH52qE4dyQJEK7dE6PjxwPheWw8vDwji/+7Id886zY4Ug1KC2/nLkxBppOGGVwWXkCLAiaItYdKqnJj+EWfGjnFpBIGMrFjEN3kCgSySXPpBP/ce3PTzw9Hqndnx/BbcVLUULwe8It0ztNvQGT4sEAzPdSh5GnMspCZNcNgoOBBUOCAoPQnlhujxzjwiEEvvvpW97cF/7R7z3x/PTAm7YzKP5JtUazOuPO53kROqLCvhX+93/wBb/yqTAyqBjLTFmKIflN3JozblLGRiVqJeKJORdL5NhZP3vFw0/e849/8zf45z/+Hm//+t/k1//kT/iv/7c/RA4/x++lV/wP/9WP+Fv/3g3topRXK6MVwtrQLWFU7KDEmtymIL6dHwo64HA0TBZGHNg3DvO/PYBq4ameWbPw8e0t1jba6cLz44U3ZeFuWbF84DbsfPrxkdOfNdacaZcLhyVwQ0LzDXtrSPCFQllkcnR8mBRQJAyiRHrH7xWLpCRseiSRkHCk1c7WnrF4IIeDD11V6aoviuUUnPMyrBNDIoZC75VeG2KJHBbqpbMcsg89zKkshpHU3AI7n3ENE+Vo0NSQJH5WmzMY26yHrHmybK/N1dDmDEYdg9YbZn4Hx7xwBWG3MRCVuYwZc6vuDTKqtG1w1oXEIC3qddpsOkb1pYCpD6kpaSbjOqS3zWZpYDAESYXL+ZEQnri9vyNQCdH5GDaMdx88tbAsK0VWMgV/CmaNp97wjuHBNd2MrBn2DV3OvkxMmcPtPdYrSQKj7XOIZhyWhaxKyYV9GD0LS1m9LgrKZb+gMoihYxLmchdvYmIijeRBBhN+LLmgbRDKQjUfEPUmXM6dfa/Umf6rrSEKYXL7siQ0OndLdHO1pLpNLna3COZlIYmxNw8IUXFGie39hTOSUHc1AH0IXQNBXTkWR3f1nA6ku+0oTtWl4CpnmX+n2kCCYwH2thNCoJhhQdGpvtfRcL6j0cwHS7nt3GRjTZkiFQmdMWBTb/SOckdIvkQNDIJFH1jE5GmaWsGG20oR9sszQkUtk0JmtwuEjnVvGh2D0Vy1YM6O6BqQaFSF1t0O2PBmXsxYlgWJgaUlLlbpJmQCOUGvys3i78fp1Bm5ILmhuk+lP5N/arS+k0IhSMQETqq0vjO6KzCqVtoYvCm3gCAxM3pzeHo8soZBzwWxSC4Nse5w+ZxoA9birpN931hiJqjy+v6Or9+9o28VcqQsd8SwE3UnLiv7pZKGcJcStylzUwp7rQQKfQQkL7w/V26WGy5nJcXGq2MhRq/hhsAaI0/bxmM3VxdHV+7kYFRtbNqQskzWakK6WxWXmAlp0AI8747TKCEQTfA2rL8IFVzw4wpp0UiU5FKLMYgxTwvZ7gM9m64MlL15OlgICyn52eYJN8kH7OpJcRBJ5cDAa3gxXy6KeF8gIcz/bZCm8tO0Y8kh7lld+S8GteK9ZfSBtlXDLLIb0M3T/qIxgvPhTL/lRUpMlDyRLd4AoBanTXmqkpqy1UGQiiQv1VKIGIExKmWZbMMZ9oVB7YOOq+dSiLS6TyurV6nRx8OuYjdzm2z3gBfBucEKlJI8YU3HHJh534wNZ4wmRz/4cs775t7dqjh0ugEEggkxXWUq5rMKm7XuEmhdp+W0u6tIDDFXm8Qs87wVx0OEOM17fm7ZTCRu5la/IhFRpYVB8pUPIzjw3YVfPhiP4mKaMP5/PlDKZlhrxJx5lQrnS6V2w0tWXkCecbJUDIFcuFkO5OPK+d2DNxIIQTwWb4hBSCS1WWwYrV9BYG7Rce/ildbUSXhx09UbsBiFlAshhNlE64uyB8KLMuYqAbM5eDJz/tF1iyXze0jJY66dnj5HPXLF3fqlJfNykSuPxjwJy1Qc+IwRg1CudrDh/x0npLG3Om1NXiCI9tlTTZ+kCTYbLZMr/8gvvavywQHgNotv/5DblevEbA7Uoed5FmPdFad8880Hzqdn2mTsqA0eHp+wOax49ebVixxQpn0nptnWWUNGd/BkCnTdfV/UB6qDGPLcqvGiDBu4JTEnQYJRu0sTW/OYyKGe3jVmbOTzyaXJdXRCKty9esNhKcTgkZlDfVJ/TTaRJORUaM3hdWG4rmYizFzCjBLED7f9svP09EztUNaVjz/7DjfHIzpj48/nJ2IK5JSmLVNe7GsOsg2IypTSC8N2+qg8PT3y7uv39FYpyys+//y7HA4rmKfE6TVNRRyGrnql83/bfKbkzWndN2r1LSEI67KS80ou2Te2OqjNbTcxRZeTD+e6OBzd/dC9OyTcMF6wYkzIWxCMiAaHoeruYNg2BufLhdPzM12NnAplKfNS9EtHp0Ij5QXBkw1yF0pZiDk7lG4M2l7d8jCUZTn4EDb4CwnBX1ezwfPDB8wgl9XtD8EAl+gHBhlD6GgftFZJIbIsZQ6FBtu2UasXMw7ZXmi1ct6eef3qFTdrZl08cad3Bxb30cF8gLXvldNlsHeYrS5LDA6itUpYIvv+DCEioVCkE5IXgA5f9MuzKyxp8TNmDI7FI9jHaJhEtHdP0RgLkmeqXfEEPFOH1Opw28c1vvrKdSMGB0brlMJ3I6TMCliOhKkWNAnzcvMzpcToG8iw0MbuEcHJE4x6c6VhNAjDIZMhRm7uXnFYDtjljGP5M4RBwsjiTLOb4w3n/ECKhW5G743dYGv+PS558eZKBBsbUTq55BfrScR8IWHe1MUYyWtBbbg1mKnPFIcmNxukWczfHo7cv3o1k1RcFSGSfEAvwohKqxt770iM3EhiTZmrbClJRHHr6O3hZj57vpgoZuy9U9bCeji4xXMGBrji0c9dxLdLawk+7LlZyaJsMDkenjYZJJKD8embVywGn370ivG8sQZP79hOidoqj1+/Q3lLIiBBuPQN7dD3gelOr2fC3YLp4OuvvuYHX5+9oUpHNAhNlAXnqzTxRjjGSBvN32sbQHC1iGx+v0ywVJ8NnmEU9WcgmSAaXU2YvdDygDhP7er9zPPTAyMkUnKrkITE48PXWPtZjMXZWdHhOFJcQRBGpM1htOEN/xht2ljN1cDmTDSGP/shJS5PT3z23Y+x/cI3Xz3wfDkTorGsNzTzQaWaK9uCZZpEgpnHK2e4iLLK4A++vvD2JvG6+PN7XegMn8ZTQoSpGo7mXMEQB4sGkE4x4f6t8H6HP/rBl7z57d/g+//q5/y1v/3v8uMf/6f8Lz/4kuXTX+A3P1T+9D//kn/7rwu/9K/9KuRbVx5kRZ7VVTw2o7fNSCiHFKh2pR4OlrBQD8+M5wFDaMdAoBLNI6NtGD/8ydf85EOl0ri/fcXpAqOJb/9bJZbEeW+o7ViOpDg4JA/bHrJSQqL03WupKIhkhjjg2awTQkNwFV+U7NZehEsdnFtnSCfP+kgCJHW+kPNWzC0X3Uv+ppXX9wubGhIn0zAuWACtzZdSwRsDhsv+lYCq38NDFQlezJupN4XDC+qgfp6EIMhwFVITV4vaUMZUXNm0HshUYQVVr09ims/4NPvNsIpkzrbZ6Xx47Lx5u3xbE1WF7BaiPjrRlIyf3SHMTfgs+mtQOgaXxr5vvHn1dlpAZ6S9RPbuUNV2eURHoxwjQf28EoRmYwadeBNjNjCJ7OMJ44zwFiERVN1+IZFuNhuhyaBTV99YTKQSfQgmgkSo9cJKwKJQUybHiInQgmJ7I9CmlTkQywpSfAE7G9Eyz5z3T098ePClXTgsmAykOxNLJBBzpCxHMOHVq4UQOl7+JVf9mv88QwCNK4groA7FbSWXc3Xvc3CUQ0nZLbYteNplwJWRwSYWYi52U2AojH79vQNJRol+1tmY7ojo90wM/l6lJCiOaIjiPL2QQczVp10bh6VwMGG9WbgxB3Y/jcaGcgJ/fV3oMms1bZP5B6MLayncJeHu1YGYhFgbW33ifNkhFVLw+m6oTAu+K6tMog8XorO0rA4qQojQGZ7sCVgfpJI4yoS2t5m4nIGkvqCO0GpFm0xGmadYaY48nbsvP/PZWV6j0LpyaYMdr4cZgtZA3ZRSYIkRHZFdG3dHIYdM1cronTUJfTeM7hH3McNcrKYQubm5obadh6cnlmXFMBY1llwotpFlodfAIURKDB7a0uHhvJMXRzHH0TGNNDXOrSE58bok5PLkttcBtQnxCMtaKHtnV6E2j2jfhrEsfr/V4eetJ1Y7d7EOcY7a0RO+MQ9UuAY1pei2uaGCRYPkNidGcmXcwPEhITBsQPAF2BjDGUGHG3wS5f1OiD7YqDuIJFSbDz7iDKUyZw/m4mKMhP+sY/All9EJcbC3QLZGoxNaIUf/+wPRe4LpCIoyFzLTFiZh9g5d/TkST3HXJNTmcwKV4Y8ec3Ab3ZbpmD1hTP5fWROI32MhuYIoyKCU4ufhZLAxK8EgYQb2eC3TbWDDfNFrzMPN6z+Gon3CzNtwoQs+l1CbtrNp49c+z0d8wMMcvF/tjqZQyky6Nr97rgp4VD1JV40QEm1053BVSClRx47ATJ1jBqME56WKcU14Fp2BEtNpEMU5n6L+GQ7Z30tU2LSTYvDFbvABlA/yBAtK7zvpGtbwU/r6qQ+ULs39nDZ8wok4Nd2m/NYfAm9kc8o+hBk+3Gjv3zPqzlZ3FnPg167GEgMlBi7gD2MwDscDrblEWWIgS3CJr5hzRsQb1ZiyF47RbTMiYSrrPW7QU2z8nzAVM8GLaYkumzbhBcoZJpizD2e4Myef/k/zpKxwVQ15NeIxozbVWZ5scgWs+WMwFVFhxrC/QLuiQ8TMk0hMwmTK+J+nk0EQYphpbQ6jtiuxUn1kFKbM1abUVGDGWdr8NZffPT4+0bpLJh8en6aXNk1p44GYgwORBdK0Ffbe3BImTHVVI4iRkxddo1X/+TeHUsbg38eVaWPRHLDn9zZxippq7Z4QOBphwv9UlHa+0JpLd5d15fZ4nMM9ARISvWHtY6qahicYDRzebepblN73l+2J4dA/dFBrZ7vstNYpy5G3n3yfZU3k7O99rc5s6rpzPB7cx6sdUGQq5FwF75YS5+V0To/PfPP+HefTmZJXbm9ec3d7Q1lWRAZ9NG8osyuz+rSP2Jy8m8h8Db6NOJ/O1P3C3hzqfXNz4zHsMA8984FKiqyLc43GUOpl43BzpG6Vpq7G2uqMkswO18zJVRnO7fJB7VBh725DrK36RnF3WXhaDiSJpFSIITHGIKTslrU0U5iMCc1cSXNwMcagTshlnN93DJCXjASX8Q/t/lyo+bY8FnJ2a5zMNMh1KYScvLHQjqlvwdbDQk4FNWOv1eXArYF1DmvxeNbRMAavX7/m9d0Nog2sYn1jLcUVWNYYrbLvja0OaocUVn92tRP7TubM6IGHxx2zyuubhbtlmTOxRKuDfaiz1tQ4JmfYgKAFggXf9Itx2h9ow4jDyHmBmGaBYNCaP6PVG6icCio6N0k+SFX1y3egaK1I9iIzZgehYq67E4Q8XLm45jR/3jLPlDIDDebm/XLBCOTFuSMyFY+Hw8L9uqD1TFWhAjrcc1tKIrXK4xffQIyM2rzpToO8Jm7u7tCmxOwWYUMZKvTeWO9uiASqTKm6eOGhfAvQ9ss/TvWlR9Qq6uBmMcIw7t+8Jufsg4l5Ri7Bo8tF3WI36mAtDoFNMSEx0F/mQuopIMsEYeJD42HefHraSeB4d4t88xXMsxxc4dT7QKPbVAdwK8JNKaScMVOSzaGZGIiyHg589OkdKTVy6fzSL33Ow9M3PJweeBDlWCLf+eSef/LlBra6gsISNi7sdbDXnTYuqN7x/PDAw7tHvzOI9NopOdNM2YZQwmB0v0eu8FtxVTeKElMk5uzby2vC4hiEHAnJsNqxxZcEIQYOMXsDeVXOAr01Wj+zXQ4s2smhcLguMAyC+Q9XFf/cRi8KL73SmqdkPe2XyXZxsGzAY4BHcx6NTDl4jpHv//z32Z+f2J6+5nAfuD0YeT2SgkP/Y8gzRWemzKpykIUaB5amhVedV9Baow63soY5vPPh65hLIodxIoOwKlKmPiRmpqYF1SOv7yrn7ZE//L/+AW8+/YxX/8K/wd/82/8mX/wX/w2/++EHxNef8/vPnf/y7/2A/+QvfUz+5CNChNSgZYHWCEVflmtJI3kmmCYCsgbscmFdMnbqnIZyaJ0+Mlmh6sb5fOKrLyrnZjRLpJCx1IhJefvmFYQvPJksBPoGOWwcFth6B1lYJBFlJ6RpTzTXbOfhdooeI6IRkT4rmuZcDiq7nViXwK6KqtBG94XEVCmJzYj1NGPtZ/rlpXZCzGBeZ6WSpwpqhpyo7+bHBNyn4Mr0NOHDgm+/ixRCd/WRRVcmR/XnuMuYKkHnWHbU1UHCy2owhjQ3+J7aE9TTeWxyi8bQF8VVFCCoD83GLHMYXEzJ6tydPga1VkZtlOChECKDOpzZRBRO+4mkvvbbg3Ew49LdapjHTJ0zb7y0d5p2Z1HhY64xxgwWwVOtUqG1M1v9CpHEvS1sj4/kw2GqieOLBWPJEQR6n/S6qXYV9dVbzJFYHH4eLkIpK+VQGFvled8JKpT5nJopvVZydgucaidWt2yveEDLrh3W4jVjvOFUK10rSKNIJtM53L3h5uaWoZ2eHHlQ605UYU2JWhuxZArGEmHJgbZ7Qp9rVx0vsBRhWSL7Fnm+zMTIGInJ5m08gdtmbjdPEWges63qKWdt0IPfozlnXwKZECTjHr2BhOCIjzxVlfsgjERaj/zaz33GX/nuG/7wT/+QuhlnvfAmLzzKgS9Gou0JojJSIdrkowRl1O41VT4gsvFRyqQYuPssYr1zeh48bcrponwYg2FeZwGTiaYEtrkbC0B0kLK4ZTSI22KWEF293HUuMl1xFkzYd2MY1CkQsInO8G97UEp4Ue1HEkMb78+NHTiPSm87bbiqkeSqs9aGJ9Wa16B1r1ys00lENXaBnA8c0sF7uG7sw1mmwvz8JDwMoA40BlIU9r1zsy4sZhyS9xg2VTIavYdqe2fJkTUXmg5Skcm3GWg/O5NnokM0ZT5UdeWsBIaoK8gQQjFq7SzLQhveyGjrnOtOMmi7cHy7osE/ZUF8mb0sgXIoPJ0bdZs2QjOv9RGIHWIgNh9gxBQcGj0xJUOVlIsvVCXMPmKAzQTqJgyqB7KYB1PU3Z0cVxGDg6cbWcTr0OAD5qEesuBohEzt1RVE3SA4PH0M5x6O6TBAncUqBuQEQ1kSPNWKWEEnmFoxYg7kkPwz5mqIF2tdbwNTpSyRWAJD4/9L25v92Jam6V2/b1pr7x0RZ8g8OVRm1tRVHqrtdrfbyAM20IhuCWwZCYwNwsAF+JL/BiFuQEICyciCC4ON5As3eGjkSe62adztGrqrsrKqcjgnzxARe++1vuHl4nnXPgkSN1BEVUpVkRGxI9b+hvd93mfAqogpeafwq3UoZEUgjRQ5GivLCkRkIt1VU5kV/NKqBiBOuJi97xhDlgrm6iJjkMwkux7y04seMJa29GMLBAf6Y5BvUx/yQzLUTzLESAoBrAl86kGgtRRRCu+KPtBIOQlo61KnZMQ07ZrnkZJqnY3Zu3jq46j63jpWQtf+jkE+eV74irDhd6RqrcjaNqOcn87HTx1QGmOwmg7UtXZ67c5SwE34dMkOa5zWKuBHXT3DGikmSp40NUAFX7Qo34lwxKyCT5stBUcNO3HgWkmBPxGlpAg1TJTDjnneC+AJgVEXwoiXCPotDSxkXTA5bTI2vOB2pklwyl0EfOnhm07QhPl0YoOo/G+PapZjCK/TYvx7hzNTIFyoc5tpYkgCvEZrlJzAJ0lEgWYDOc+bm39tyHWMWnCnpcn8PwVFyxrkFMCM9Xzk7v6O83J2ja8KIxXNiUePHhCJTFmTwc23YFgDouJ4CUxzYdRK7ys5+bNvKxE3MeudmBPDDxJpvzoWBjlu0z4BTH10ah3eGMv0bQzoQ5Ogw27P9fWOPE+kIlKfLnRnirn2X1IIgXwE+aoYUVMfqiikNrAOy9qo65GldlLZcXX9kLcfPqTk7EVRozUVJ6VkebqMRhuOiUcVY+o3hthcHdbzwvMXz3n56pYA3Nzc8NYHT2TIXXXIMAR6BjfdU9qXNn03eQjk6FHLXYBhrat0w/PMw0ePtKeCWHi1VtcKK37dbMjHq6swKdPEslRqXUm56PQexu4gs8LmE9DgrK6lVk7nldYFoi51pbeuyauzDed5R7PhKL2RcvY0B+nIoxvTJwc9CJuRt55n7wI7cAlYH76vIsSpyDR0dHJOShbrgz46h70kcQHDmthqKcvYtUR5SvXWON7dUevCPM/sd3sYjV3JjNrkQXS1Z5oyoS7UdqaU4JOQldO6MoYS4dp6Zj2thFC0B8ZCoTNPHburnKvx/s2edx4VpgBmKy97Z12UXFcITCESZyWiYavMzy2wVFh74NzMJQeBkhMpDxJqJk7nE726aV+UUflGJuut0dsiINun4KSEH1P02lziK4Dbeqd2B5X2M+e60K1gQEry/OjWaaOynk5KHJnc8Lw1GfGPzpwy//LPfY3x8hEfvXzFJ7crISeu5z03hx2/5+1rfv4v/QU+Wu45v6j84Hu/y2/99j8X6+f0gtNBMufdFLDRqLUy7yaubh6gXN6VjXc6nCESCcwujz4HB9bB6cVqYmQ6P3j0xpsMB3e2LxomY1WCvEWmrIjpkaLApDGIQUmLMajo2h1mnY9BgwLzSXtr0szvD7NLJmw71rWOY8BCI8YDtTZ+/g//Hk53z+l/o5MCkvdGeWuJFWR8/tGP+N9fPmf97BHTdM3N40f0KTFdX3EVEzVGwnjuDJ1ItZVmg5d3zzn+8J5nT1+Qpx3PP3/B7flEjEYunWWcqBYpFMlfU3KbQAHiEcNdn9xXTqauw9ccfp+a308pJ+p6vshuY8lM2RmBEe5PJz757Cn99im9RFrv7C1iUyfXTgmFXgLruRJHukjwxoBeO+u4p9eV0k0x5EEsJef5M+VEdzArT5H9YU/4/CVvv/82P/neC7g9Uh9Gbl9WUogMa1Rb6S2KuRpUj3S6mxobOVRqT/TY2e0Lh72YcNFlwjn4NNXZDBZgxErpidhl2FpyI8bC0iJjHTy8yrxrE8+erXz/H/waf+DJV9n9zJ/k3/qVD/mv//rf45P7z7m5esiHxyP/83/3bf7N//hn6LsDMU2E1BiObqYpkkZg5EpMgzkW8hRoi9Ka5hhp+ysO9wvn0dhPiTlnXh1nXo7M7uoBN5bIx0Ga5K1wcz1xfvmKw5iI48y5Zz7+7HPeffuKZ5/fEabArsDhesZaJWcjR4EzYUAMQyarbQBidhIjEyeMveQkyytGH5QSmTLsk7Oxg4CFgIZ12x6PQGvQyfQgkIAgn6xqGiJsnoJKvfGhXh80lyt0hnvViZVL1nCi4WyNL1RvW4iIxXAxQw1ugBpKuDAOh7lUzT8Vthq1q0Bn80yzwrDBuVZiUROVLWFN8syMEq9WazKHtkglstrguJ4pKMa8WVMaW85UAoRZd3BfxTzxO8Cie2lmB3G8kWmYEoZsEHqFsBJDJsYD864ACyHO5Figi9Ffkoa83RpEw7pMyi0MYlNVvQuJM0ZdVqkEQqCvldPxXrz3GFndD2aXEzZWzudOqxBLkQy8L6RutBiVXFth2mewBUYlM4jMTNMNuWR2UX5+qQhkqG0l0llHZ1nEBhhIpqb1Aa3qfMUUspLVVdObhtqDQSLRe0WWE/InVJ1i9N6IQ+fcNuEPVaEU5gw5bKEEgSElybMl5kLACKFDUz1qfbAvE/v1xH/yF/88X/+Tf5rIiVc//i6nH/+Af/oP/xEfv3jOP/7xHT941eFUGaEyshrmNAY5DqZD5g+9/yb/+s//Af6FX/klPv3tX+c3f/Of8cPv/y73TzTAHw3ujmc+etG4WwN3Bj2as3pMv2NMWFf7XVvDRmbazaqTRxPgrFKNBaUvz1kAWhtNjE6GmHCjE4lkC1A7IzRa6MxRsvJpl2nLCtaUjrt1Z9EIthBzYKkaGuei+PPlqEF52u8phz2EieVcyRNM2airUiKHy2QFGKnXSi5DKrMGvDkHMYZ6YV0ahsyvR5XMO3SlRYegAWHrRg2JnsWuW1pl5Cw7kFFpTSBtcTVI6wOShiS1gfVOzpljr4Qi5vdo0uFqmN004EgCr7b6Gq+PLWy+WcWJAjDlSHHg3IBGpHdzln7yAYeAvNGjhwwpwj4Gv6tMv2P0VMnh52okqE73O3AMk+SuiX2cI4wAe7L8t7LM6KWcEKhluIdl8J9rwp3MKnMXA9vC5hGc9fodrAkczsgkOwwlxBEiZQo6xxZPnStxIL8AACAASURBVIxJAG8SgNLHoORyGb5nNlBLw3yGCB5TKe6Xp55iiu5tGnxE6QDWQAOzEDTgFJDTHWhyfKOt5DJ5jZnl52QaboQgz82LF3NQSrglDdRzkFqpG+Q8SeLmBITRDZIGAQQcAh9U05DLDIJVsgdbqVZKWGh0Q+oTH2KVBNnM6zX137i9S3Smt5lYUCWX/yco5//Vx/8PgJLkSKMNZ9yIcSJLDvPupzM8+WwEFe1LOxPirJSm1FnXo1PKpP/uvQnVjM76MVy6xcXo2zy+x8zoQlx0SMQAbRD2kZQnhgVnXVQxkhBIlLNrlb057hubCpkkmnpvtijo7bVgo72h13RfjuDPRJQ1obfDgY+x4UlwWbC+BjQpJkCQf050x4LWO3jhE1HjQ5Q3zEbt7t0b+66DoWSPfmzuDXBeuG8L9XTUpC8EplgcuOqUaWYqE/kLGzXg6qMxxBhx9CQnsQL6umhynbQJhlOQbSh5TFpTj9E29IcPSXwEoGpi3PqQuWVtdPcdSjlTpsLjmwdiYYjHrkPvwroSSTP6+zQEJQrQQBcyRNZ6QioFYz2tLEunro1UCtcPn/D2zQ2lZMZomjiumkxhxmupqRgrkexUtK3NNdblRKsrx+OJVy/vqEtlvpp590vvsJs10dOUzi6sKkmH3ETedIkOa7rsHOA7r2fWZSGGyG6eOez27HY71tY0OWtuvGmiT4Ikck52F7DbOqWocO+jOTMqkbMQ9doadW1+mehCWFvleF6oq3wItGd0WeaSHZXPQu3Ta3laiPm1GR2Oc/oBO5zWH0Og5MywLqbQ0LMNTjEFqOtZKUdTZs6TA1byWLm5OhD9UqiturmmiSlX5FN0vL2nthPBBte7HSVBb0d280QJHRJKMbNBbAthdK7mJNPHpguonhaWtkBrhD54UCbFoYZOKp3rbBwmuHlDvksPr+B+iSytcl+VklFsEEuiTMkvd6Xbhdg49sq6DGjGWGUavZtn5hIJKWmKv1TaudOGG2Pm5OxJFQ2jv36+ht63XBStO2LwhBvXqo9OHF2gSYykSUbrxWnDzTxppkNdVta2MO937A576f1b839UVO9L4me/+gZfjVd89+Mb/umPXvC8NtbbF/yxP/4ej/bw7JOFrz8+wLsHvvnlG27myD/5zu/w6Q8+oh3PhLffo13dkGKkzDNKtlCqYQqB1WEznfWqcud5uoCOl+jT17MBDCUg3uwPhKZ1YriWPBhtGKM1BSCkBEkgQTNzBqg8mE5LY5rkH0bATW4Vxzq6mi7o7KeJ3TRzdzy6FFqFgk9PAPj0k2ecv/I2ux1QB3Ga6WGLMJfsqq6D3/nOj/gkwg+/W3j/Wz9LvXqHvHsT2gIx8uLFc1p7zhwiI6x+yRjLeua4nGm98+lPnrLLg0Mybm4i98dKbZmxGm2Sx0cMkaBNgTwMJOJUeEP0KZ5kyQ39TREfEAQYKQNRch1/hjlF5mnmvCz84MMPef78lhQiH3/yOdOAmAfBBikMrnaFOSXqYuQJ1jqITZHAhEBbI2sf9CAWl872SKMKgBjNo341nc05craF891Trh/esG+Fdx7t2cXKk0dGS5GJxKl3+dZEmVoqHaypElsbOUSmWPjg8RVf/9Kej3908qQZ3YbBZVoxBgZOJQ+DNCZKaGL52HCfqkCadrzxsGEh8dHHT3n8j/8mHzx8lzf+tT/Pv/GTD/kr/+Bjnlvn8PARf+vjO778q5/wi3/6a7r/3cetnaozeCM9ZkhG6okYRZHPCWqW7MK60VvQQKIlruZCf+uK+TDx1ssjx+XEi/s7HljmyZuPacdb3n4UeXoKfH40fvzZS/J+T13OpJB4+80DD7OalpTkwVdGoA39/QnIBFponmIWGSjmvtugH886U/KBEKPMR0OVKbpt3pSSrwxLDloO1rWSy55xPpOKpNfoWvMUnc0/JGigiE+amxrcjgnEydtozwt2ZxqOsIFKbs4fhtsUbHt3u/EHAQ1sLrUnatDbUJgAwcQ0MjHXJbw2Uhu0OEijyyssZw+OkU/JMIHJmx3BWFdqjM6MUAJTWCs9bsMtWLVLSSl48M126KnGC+ELxeoY8n1qnf2suPoylddyYdO9byErxdM0BNSR9XrPh415kwxGI1jEcmaMwWjGfp6opyS5j2/WERIB3a+9NxlhjwqjMWd5/e2vrrh+eMVu2nO1n7k9PsXOmTOdnPY8uDqQJw3xzqeF3COKux/QwLoGJPIhiYzeOXVTkI/3Dww39s2Jug7JfG26sNLN5P+DDyIwhVhEt4motRNa9LvHiMnYAYHmHjRdaZSmhKsUVjKDwwxzhmgydn/nevB733rEi9/6q7zYfcbhq7/A9Tvv8uC938uv/Km/gNUX/Mr/9j/y3/+V/4m/+ZGRUmXkSh7dQy4GX3pU+LN/9IZ/8d/+JeYn3+TJt/4Iv//P7bn73j/i27/2q3zve7/Nixefcdqt3OzvuK/GXYMXtfJq7ZxWDQbHyNSqfiqFxDI6vVeSDUaE2gT+jKGE2Ot9EJusrqpfsjzoiqsLxhhYb0qyjlEs4W7MOTPWxjgvJAYhiUGYrRFtYDUw4o6ROnWtXO0m7s8nyDtKmThczezmA/fLYGmdcBrE2CXbH9uADM7LemFjhWgsrbKmLWkL9s4avrBgsvy+osGcNUiNOdFDd0sN4zgi55xpAdbqPmHDAYsQ3PDAh//VsJCo3STdj5FpVs25rgspB3JcWc6DUQc2Jdmf2GCpndFVG1sUySGltM15NMhPAoVwQC5Gj6XPmeT7bPRGq0rcjslI2e1NbJUPZnHvo6haULZ1my2KfIqlYhfQFU1+k/Iaig6iRhJZ3mkhaaCPZGWMrh6sCwRpLBiBGhSy0EJkBPlU6nhyY2wfjA1vjHNKSuluJiuAzfMV7VXreuPkw+yAWlBNltAwIESxR5Oro0jqw7cgLaKed7fAqI3NKznE13eLmfx9mzXv3Yxy8QJ2+4oUEIzivnwOcUhVIhkwIYN1YjIULJKFAzgbewtWioglXkelm5IZQ5BRdw9SdbVuhKCU8XWV5160odcYg+T+vXhvLLl3uPgFR/yeGMJLavtCouVP4eOnDiilVNQYO5rSQvOJh1+2ITgyqAhZTX4Qg6FE+nomtKYEgJCxIHNuC7ivisy8c0iaAARpUmtscqcfHs/tU6tBx1qnp+KXo4CIGAROhKjPJU/eEMVziMEC+px5AlnQ12xA0QaObPF+0SUD+rM2xMltNAgCS3pz9DJeTMOD/65bE9LNkAlFFHtpqLjQQQIypNwWLozeZUI7uhY6WyIOkiedV86nM21dfbI3wFamPJFLdrf87As8ULu5Hlb0RRuD0MW8CdGn+0MMheCLNCYHb2xrbEXjMxuKhjQBjMEkSSQYvVb3b9I0SI9TbJb9/kCZFT2eojOjEMsiOrrXe6fVxadwQQZ5AF5cmhdpbW0srbEuZ6wby1IllTpc8fjJDfNuJyO20elt9SZTB7eZTNQvYIjpvSCaH+ArS+2cz0dPWKuklLm+ecTh7T2xuE+Vg4W5JHl+eFE6zKhN3lAhDlprkqOd6+WgmUrmjcePmafia1drJfvfG1OU7BHY/Cj6GJyXhW6KeJ72OxkJt848z6Kxd732MKfQ4p9blRJ3XhZpenH6rZsZ56S9E2PRRCxszmMOGl3mvxvA5Gu2mUs+w+X9iSESgorl4Qh7X5X6lrO8oraiMAQ1gKkkN5fW908pM9DfCQIkT+c72qiUCIfDnn0pnk40adM0XWbBJLmIOciTYj0x1sbaGsvpTKuVZMYUjYdXe65L4uGUOMyBmM7cTIGrnZLNQmgsa6PVE2vEL2Q4HCbFNlskBlngNzNOZ0XPt25EIg+uZkbOpJSxodjg1o3j0mhDnnIxa8p1wWXBWV3e5BAUBFCyS4GiJtZBTMdelX6RUgFn5GygXx/Nwwqgnhex4PYHDrtZIMnoLHWh1oq1RowZm/esNhHTYLXB3Xnh6e2J+PI7/OCfLfyd3/gOPe+JVzve/vJXeOfLT/gT/8rP8eaX3uTX/u6v09bGup6Z8kR5cCPJ2Qa0spF9AhdvOzSlVmOnaZbpctHZPAAHdEqZKNNEG40cktL3TGfJup6wYezS5EWBGmZtIYHTtVWis1SDbYMM82AFgdi1rhzv7ynTxOHqitvjSeefn9FgDtBU5sOez+9WpvVWErxZf5fmv/q6zZT3TOR2DRCK+kKXQp/bSq0NcVNlyBjD4FxXbp8LaJEZeCXmxJOHhZw7L27lcxNaY1ggTIGV1e8Y+YPlIPo55r5/fjabg/OqUzQe6yMSkuS/s9zXXfrT6XSef/6c73/vB/J2C0b/+AXvPTkQHSS02Hn0OPFgDz/RhaB9ntwXsOu9HT4MUB6XR827PBpzpuuQAfzonbN17PMXvP34IW++/RbTVaK0hcPN4JzErl2dvRptEIqD7xFPQ5kcmI68/SDzzlsTzz6SHDWG4Ywa3CtPayl0p6IXSWJU2BUsqGmZp0ApiWM7c34j8oPvfIeb9/42j37hz/Kzf+4/4F/9+D/nr314hF1hfedt/uo//BGP3/4JX//FN/V+5plYDKuLggWmSGsuZ8+F1CotTgqbmKukNX2hLwkLxhwjc0pYMcrDHfvVmHLn82PgZr/DgONN58t1Yr8kQtlzvq1QCnTYXe0ouRG6hndKXw9KGTJZC4SwDQ0FMg7UlEDlblnpwLRJ9rMRV2f7OXATXU7oF4MGiF2MG2nHgvv9CPiucCnELnHOJgCpyTjIjXSDSyGCzsPWXeYcwfKlFt0svrfabiv+YkqXYU10RtvlLOqyCmguj1BdpvFfsEBvC2nePMUkURu1SjYXFZwQg+7qEJR+mNKWRmTOPm/cH8+EOBHSoFevn0ySJPlwJnYObLZa5R05Gq2dqevKaTmq8a+NkjpXh0wJAtHokGKWmbVbLWCeFBSghiEvJDOqGb0N6q2Rph1xyuQwMXqg7ybORc19NTEncggkg9WZEQLN3FdrNK4Oez744G0eP7zR4DENrvc76nnimDJX8zUfPL7iNBofPT/T2lBtOoYnjek55iSmYHIQY7Tudg6osS5qxNqIArbk/6AqJLoVRURgW1TAiep8gUspyCslRQ2nhzX3twxkEyu6RNMgtFZGMKolzpZIB+NmDlzvAzf7ASw8W1+Qv/urvPGjv8vh4Q2Hxz/D9JWfI1x9g8e//w/yR979G/wvH77kuqhfuJoHD3eBx4fIuw8y4+4FH/39/5J3vvp15puvEA/f5MFb7/ML/95/yh+Oxue/9ff5nX/yG3z4O7/F009+zP16ZrGZV63ycl15ea68vF+46wYhsY5Bdmlp35gjvWGpkELipiSuigAdI0PAmRRddXcMMvlNWZ6vqVMmsQhrrUohDJkQO1PqCr7oMqOWnYGS4VrOnGqjtR1xviFNUWBPbxyPlaWpbs6xuweu++Q23dk2STbU1kZrQQyiXeQ2Q+0r04A57ZgmpUHGELmaEmsT2EmM3B2rmGihs1hkuT8p6MRZe83EzNnqWMzPMVNSFyXJuyi4pccYjGUQS+R8Howms/S1GjDoYxXhIqqmGQBR9SR50FZnmoRIMw2zzFGLGAWOqTZQmiIBDS6TvDGHgyIjSLofoiSdOWW3Awk++A0QJRXudAEgfqiXGCSNivEyDA4bdcr7kUAU28uZEjFEMkPDfgdolrYwlcx5PTPN2UkDMos399PL8XV/INKBBgk+b3d52EaqkNIhELxHi74+9P3NJF/f2DvmljQCrSI9SH7sKMTrgZGZ4xPJpYmJLVFp0Ond9TS2+ZaOze6VQHIJn0C9EfRz7QsXy9YXaSOZBis+tOjDnGulO6Z29SmqydIFBNzOaRzACqGR8vY+yN82ee1qnhyaXWJHSCwOttuo/DQ/fvqAkh/ShlJw8jQRuhsje2O60cFkPo1PVmTgLPod3lSJatuHYuezgzVKXVCxlnN0BZXeyBjSxRRrBDFWYhSKvh5PtOR0YcMb40BkaCozzP0VNkRUv0/0wnH7uPwvXxQbVVafF70VNjd7CEFJAITuVPlwmWLjX2OmMmUEZ0EZusxyEto6tOisb0RtBzcM6F0RoL3Lb8QCx9Mr1qXKI2QMbZI2OJSJabcjhh1lJ/28maIeRYDSexJyIQc3aIyBuqrx1u8qdDv6++ocK38CbnY+lNYGfg7VLv+E2ui90lulj0aMkyLjy07x8KWQU/DCUZsjsLEQEr1VByhlStxH8+anu8+BkPx1PbMsC6fTgvVAZ2AhcnW45ubRjmmaKZNHFrfG6ppU/YE4cIMXkhHiuLwvrTXW9cTpdOK8rNTFIAyuDle8+eZblGmit+4Nj6avYpT4BMDMvZG8ebJOa4ozXtdVzIkAu93E1dWOsmmSg96fYFyYdRuLq7s/WVsrvStZouTMFOP/ZY3F5LHAVeDBZgAOgePRfVhqc6DJKNMs1pOBocj4YKJbCu5/vT5jyG5y2UjuT5U8cn5b62FD8AmMLS2rSkJFkE/GtJslsdIIEWvdk5UUsZrVTWpd9ZWSZvna1IqFRlsq0RoPd4XDYWbKWSkzboY6pBfwmGUj586ynFUgtbPM8MdgPd3xYNrxxtWBJ1czbz6YudlnHsyJvtxjqTDtIjmcOZ+O3J/uOVcvwFthjMDhapZUp3nD41PNpRnrEjg3+SOVFEgFCIm2dnrX5GoZaDIXPVUibrKQjZWp81EeZIlcMkRn3LTgz9UZOe45IlBQADIXgF+A/2iN5hr5adoxTxO5KMhgWVba6pLLELjZH8j7Hb/9k+f8+O7HfO+z53z3k1c8vV2IBK5+fTBuV3Ku8OoVnz39mKc/eZuvfPUrfPODd6l/7A/wO9//mJgy+/2BKU8+cNDmi0EgHwFv9rR+yiRZxuibfMWjtuWp7+kXgXmesUlNdXdfrc3bYD0vkq+OBiNiUc8w+euPVqE3ym6vM83Ejhl+ttsw2ugsa6W1Tp4K82F/MWkNjvYnH24oRNd4+uKO9fYpPSQwTT0FZymQYS56Bn1Urq6uefTkhmefniU7GaKz93XFwhbbHF1urRnEJvWFQJivObz1toqK5x+SesVGZ5juoHU0LG3XWITQ3S9lQJD3nDnAFRiXRmwDAJSkah5h7ZPAoXP5eDxS64LPYC7sInDz7QXefnzDkzce8r0f3DG58tlSYI4CKIcfuMO4yGCD9M9gppjjpAMlpUyrKyFkjqcT4a3HfOVn3uNwPfPqdz+F+AoLK8M2j0FfZ91QQlxgDubmoVBy4uH1xOE6MaXgd5mGXD10SMOZW7pbDnFPiYqC1vNUQmFJgVIyh0PiwX2GHdxH48N//GtcPX6L9M1f5k/9u3+BV//N/8Df/fQFqc7cXT/hr/3tF/xHb8w8+sZDUjbYvfbtSiWQ930jrFF2RQ3H2p09kLGDCsm2Nhqwn/cEJHPsFpkPmUe7TCkzMU98UK548I5xPwarOes0ZFKPvPX2gdRO9ODNDPkyTAtBZbakE5lgdRvFEQjUtXN37F8YMurcLjmRLj6W6fLzEm5uTPD3fxDD8OALBZPESyVm22iCQZcVwTZgc3wKl3r0obTcxmAZHlLxhfvZvPmLW43jjVaOGlZIqrABq/6am2zE7+OGUfDB4xj085meEskml3KKLRQJioNPSlIMANFjsFOkDUnaRWoPrM2N7HsTm2BswIbA3phmyjTpr3D2pI2Vth45tUVSk1BIuWtAN+0Y1uSxYjJQb8t6kbPqTsj+f+S21zZfvi5hhY3BPGYsFtRGqZ7H1OCN7n4kDjRoEj505plkifXKWNaXfPrxc07LmcQgx8ZyqtSWCGkwWePZ6Z6zx2B3k9Sy25DXInqdnLM3i1CiPE5yNpKnhI6xpQAWwN+LZgIrkaanpEiJA1K4yHm22iUgf6wUIqlEQtCgsVc/k1Ikl6jkUYzRAmuH5da4vTNudoNlD7f7yrOXJ958cOCt65knD+958NYz3vr0t2D/kKefDf7Bj+/oGKfVWKtxYrCOJNZUWmgffsqnt4X3v/uMt9/5No8e/m0evfmE/OQPkh59kydf/Tpv/L4/wS/cfs4nv/mP+OH3v8ezH32Xpx//kKfHz7ndB443g+fnxqtj47gGzrXTrBCnSXf8pt60Rs6dlCpWA4xZexjcboBLL9N9anookZIWbht0S8y7orpqyAMqju0aSVQCmU4JkTxllt4g7UmpUFvn7q6y1sapCfSNXXVzCf62DZPnWQxKBKsL0QLdZNgfq1HXzhqMQzDVpiDWWoBTaxrKNRNoP5qGBiFC7KTYGVaJcdYgxKB6LU1wgMEiG8NFxTHE0QkmH6IyFUZCiamm5qIPY1lxYKprnYZItMQkOzlCdFN9l9hvvaksXaLuez8jhnWvjd3UGnlSTjv3QzLVB155q4cMXKTGdNU4xECKTgM1NwAfGqSlWC6vPwKXwKfksuUxjBGbQ+GREhPJVJ/kmGASE3hLIh5hXAbYZnZJhQ6hUKIPcIL2YoiqNYJFQg/U1ogEDzXYlBBehxAcFE+eLu4hHkHD2GiRtq4aiPqQ8DKg9f7A3Fu4D/3/5CxUM68BkxHD8HsreMKhzPvFTdHvPAJiNG/1qQ0GFXPGTXD/Tyy6n6+GhNsaCQS3zwmvPfPM/aGGF8cDGeabK13gNalje8dNwREpfsFXmeH94E/v46cPKGVNvSMylAu1uav+ZmS9+QwFetsWdSYRJTdrYjTJSLk7M0jT6GCOig7RxWSwrYSxzTDLQrj4+LQEIWR2ZXdpmjSBfd2QRp++jguyGhxp1OERLwiumppNOhFMh5joxfjEki9M2bjQ8IwNb4wXJtJwB3ih0pdZtrZ6eI2AD9v8gIKkCWObSmmhjd7prXI8ryynhdOpOqqp74/ZN3aI7K+uBNS5PKi7T45AsewbT7T64H5MAWh1dUQVQvoCa8f/fXBq9ZYytRmejSGjurquYsGYCg0ViIV5t2feXcvMOfvEzImkW1paMDXNwxFz86ell/Tixp/v6JVlWTifTiy1+oGYKLsDD3aZaTfJuNrlcmM40hvEkIvbVAEBLeaGfDrMO+fjkdu7W87nRT8jKq3s5g1J0HKOLpVsEJSeIiApu9QGpdi43j+aiUmznrWOLZJy5vrmmlLShX3SmhgWMci7q/fury8JW2ti1NRlFRKdMzllFbH+PoitpaZtOyR7N3rrrHVhXRdO59WLZB3Uu91MjMmLdl0wwwvqzdzefDqTUiKmfFnFW3oNbgB3ucx8MqrielDP8nWYp90lLj6lzddAEDQxYr16OoW5p4kuyFIkfWptZan3MIz9fub6+hE5eDB7X2FU4uiMoAO8Vfkv5GjUvtLHmePxllZPxGBMEb715ce8/+YbXOfEVWyU0JjzSqiKLp6uZu7HymevnnN3f+Z4rqQ800xpODHCWisjRHqTfKe2k2LaR6KPiRAnUtZTW1Y4rwvnpsTB3jo9S1aYPFls4+oEB1lG7zqnUhbTq4gZkfw4iphLZSFmTc9yiZQkIUNzRts6OuvpLClcykyHPXOZSTY4rwvreaGtlbpUUkmUqyvKfoeNznd++JRPfvgRt8czxyGqfCTwvO148uYj7p/9hDDO7POepx8/4+7pC772jc/5vd/8Jl9+/2f56OM7Xtw1ujUsKgkJL+pUGLVLI5dAVOANRAGfuqnZEAVd5/M07dnNOwd4ogPTxno8MnvCYNkmYBs4D2JirQtzmQTk+LXce9ewwBvUtTXOR8mCCHB1uKbkzFoXL7QhBAHsteqsivs9zz+FkbbUDYEZZsaUM9e7RLLqbLAjr25fEMOOjKZyow9GPTngo3ZPjU8SyBS0VwNwdbXjwZvvkvPM11rmRz/+iZr7MWhDvkWtmHsgwUjaVzFEJPrY7tkgOrppbxcGMRdKkGyy90HImjQrJdBN292YNoyB2iGxCl1VggVPuMqRnDK7qIJqbCk5Ni5AZ/Rp6wYQBIxpmmjjqKFReM0MWdaVn3z2gvc/ecE3rt+ToTjQR2XqqzzYGExph1F8CNE8KREfdhk3V4X9DKlk1k0GELjUHSkI7CLKm6+MKB5V0sAjB929y6kxhc7VVcFaIabK3anz0d/7Vb7x5D3Se3+EP/PvJ3Z/+b/iVz/5nP74Cb+7XPG//q2P+TPvXVNmyX0ZxjifsBgpoWC5Seo+BXLoSgLKkV5cWlsb1jqjZhSUMRht0HOhk6DLh2r0xuEqkvaRXRX7x4aGbTnveHg1s96dWVKgNd8LuHeGeXOypfiGwBYGMkLjtJw5VqVPTbtMcdOIJSUldF5kbxuvyYNLguKfZ5O8ZUqJCg4io3UU8HX5WlptVunWyNGlpsZl4hwccK4WKDjw7LWbD/0dBPFaxweFkvj7YCRstcbwvWb+X1W1YtCZ17Amv7mhpkhySf+W0WhjYEO+IJt0o3ejjsEUs3xv3Aw/xA1cbV49C+QiRKZUXCp/QQFY1hNrXRRMEyJ0GKvu9pyS13BAM1Yb1KZ7KoSkiPHe5dfUJKm1Pphi8lh7Ae+tN6wuXj9D7+ELzPlO9b2qmyZp06NU49o7az3xk49+TF8qFTWUwWBtRrdInRuMe+5GZKQdxc+cYarvpzmzLGdCiC7V7v7oFVKRk+wWau+E2LVG/a2cJxlGR8XZuXeriYmK+8OY1+xoP68D0hDgPM2R1geta91aSy5B7IQQmQvMDHpQ7/NigdtjY0qdl1czz9YTH786cvg88+jTxDu7E8v8nI8+C/z6bSMXpZ6JrDY4rkbvhXUJfJIWnt0vfPLZPV9+FsnzC77yzkseP/4+V48e8fDJVyhv/j7K9c/wwR/+Rd7747/M+dlP+Ow7/wc/+s4/5Uc//Gd8+uwjHqaFu6uEjcxtq9wvsp44HTunXeG4VM7roA4N3fOIQKPHTu1Bvne4v2lIHkYkRckYhg2t694knU+Cni9g1UA177p2lgoWZu2DnBl0og3uTo1tq23+PMPENgvOmEkBb7ADJSZaG2CdRmTWnQAAIABJREFUFiDWTAqwqHzVvWYwu5qkD/WU69rkhQWYdamUQkTOLJ1q8nINzl5tGwAQNGDtzb83babZXb63sxJFbQRCMmJ2MsHlHECfS0HgS5cZfIi6c3saRK/TZQzvHjtR3jfbkDI6S2zDh7b3IiaBWsGChykEZ+r01wbNqNcbJlB9G/qOIRZ6HQJJo8kgPAQjDQ12zeT1Zg5uqyfUwOpCKAiSDRMgJhmgx2gcUnSfSWOsr/utEKB5iMJgk/A2yZpD8XXFRXaoWlD/qM9yzyJ3Itr6VJyNKnbTpnrpNPeUinaBBl4DQt1BmSAgrZqUNwwYcbA2N+F2v6ZNCg2DOARch+QpeAFXkDREeE9idw5ZCFjU+pLPctF54jjFsIB1DUXEYgqXwUs0o1tyHyjAhBukKH87CM5Mkj+r0dksef7vnNz/rx8/dUAplok+Gp2V2roWRut+eXYGnkgWzeOuE8Mkewkpk1Mhtkrn7DQ4tBDctJNuWHTgpQ8ZzodAyFlyGAcmUky0KPQ2xUQcdgF9hPn4bvZPCLH1h/uFKVR0QAE2ap9+RtgWR3ApgDcjF9aQF/Vja1LstTHaVvSbEK3L72BeiKn5F1XbmgrxTCANw+2IOB2PnJdFXlVjsCwnLagBxMR+v2c3K4Y1utFiyROtd5d4KL2DrQDCNjqOkGBZxeuwCe6lFHTIELbC3o0xkedJHzKAlhRNBru9ufN9jky7HbtdYZ5npiJKdUrFn8827VQBNYYKVbWQTQfB2AArPdRcMqMad69ecT6dWVqFEElpYt7dMM2TLp2UKdEE8NgGyBUC0TeWm0X72vCbghCM5XzPq5e3HI8nRlcKxeHwgJwju7mQsmLE9TsNQhQrIcXs3hr6qQEdGCQlS7x88cpRdxU9UyyUXHxPOGxgsEkI+xi0YCQ33LNghCH/g2WtitxMas4k35T/gsA3c/Pg4NTzQa1Nk5/TmbVVem3EXCC6LrtkgkeZKsFEUlOcSSS6Z7hQdWMSiwCU2ickHBl42/Y+6mBrQwwPLDDliXmamaZZzMahdVdSIppo+OYudGLIKfK+ZDESl+XEupzovXPYZR4+uuKw30Fo2NpIzm7UBRcJFukj0qou1GU5cX/3jKXfEWzlwaHwzQ8e8+ThxNvzgUxlTpXU5QGQWGj1hMXC6bjy7PaOp/d38ovIB5pl6oDaZNA4RuRs0c3UoQ2n36YEJUj/PDLnDufeOVWxk3REFEiBFIrOtAs4Hah9yMcISRZiEugUUwLrHhWs2OMQVOjEVIjZvSB8KpODJuCn85nROyUXpqko4QYl9Kznler+a9M0c3V9TSiTT9E7jZWzDRY0DYtBE6mPP33B4299i6sPHnN+8RmLVXZzJ8TK7/7uD/n008958+23ePL4TWzAZ7cr8eqGHDKYEr2sSuo4gBgb0TIpix3XzWN3Q3SOwbY2dXLlw6TnuEniBtyf7im9iznLZgRvPvmR0LmvKylK0y86+QZaiWJ9udjXBn1Q9jtSTjx8+IjD/kCtohFLyCavAcU/G2XK3N7d6h4w5AORtkJwYE3GwRbg9mx88tk98ZCcjTmofZUZ7NArDFthNBT8rCIGb1x3U2aeJ3Kc+MbXvoqR+Off/SEBY7jEqMtIhpREjU8uk4xJ0zu6JCrmBZz5ZReDa/yjm+pbUPxwyRcvGetdcijrEAZ44ZQMRgw8fXXHg/szxEb3KN5uScaoZhe2bjQ1cZXhBbT8zXLO0DI9dfKk8ydNidEj9/cr3//RM770ta8IGDif6bYwXb1BKTvWZaWuK3lOF8n66GIAWmzkZDy8zux2mcM+cboffqaqYZfs1EgDUfODkgVzTDRrhJSIxUi5czw2luf3vPn+NVePI+G2Y7Hzyavn3Py9v87bv3xFfv+b/NK/8x/CX/7L/I2XL5gePeIffrbw7t/6hD/2S+9AVkAHWUO3SKbsBGAlIKfM2A0VmVMEOnknLyMLYLWJKT1DHcbaq0C7qTC6BhJxKgo893SvbrCbkgzzo9HzABPzfBuCCfQPEGQyTw8up25YSty/OtNaYLc7sNvtCUSmGCm9aS0E3fK4hCEEAUWtd0YMbpkUVWybashL/YYYTZfmzIJMgfvwtaOnU6LOzGBGHsY0uhfrusOSyU9pXIZ9PvzZoBtTsqQYEa8Z7GO8loNugxRN4fT6MSXKbsIsMdoKbIwOr/1GZ7QVG2L+TjkRcya4HLv3SoiJbBpe9daV2AZbrgl5SvIXZKvlPAK7y+syOLO9hZUxMrubK0JWoxk61GZUYEU1V9mGYF4zKBTFJf/uVTKsE4KatRYGEZm+khz03p6NaR2ZCdRqQ0bMV1OQfKmduT8psdWCB6TURpXuh7U2Xi1wfXjItBdrNJRAmWTy23u7nM1mhkVnpaRIiIp631ZpKWqkj4tkeKObSxUDh50bj6MzZPUAEnMgO/odY75O2hisFvTzqzGVTB+R2AdzjlTsUgvFFEnJbTtiwnrm45eNT+4qVzOU/cTNNHgwQUuJV+2Kl0vS648I3X1DDWoPvGyJuhqfvjrxaD/zyd0tc7rjk2eDxwd44+E97zz6lDfe+DZXbz7h8Oa7lIcfcLX7Bvtf/BN88Av/Eq8+/ZDPPvsez779m3z/27/BZy8+4dNz47pMzGkmPsmcj51P7irP7ozeE+sxMdbgPjCNZXQCmQJUIudWiDljrbKUQJnFum5E2rrQGn6vV9Ym1YQ6NfcPG2BU8rQnIFZnbCvV/c6COQPK11kPgTjcqiTpvtnNgdoStxZc0oYP4CMWEzUGAVBsjbbRaycEo0aIXT2pgNl6CSMaZjoz16Y+xwR9b2FTYt7p66JJZtRX7e95UuhPDoUQG2ciCi/AvacCMU4y0nZQqq4upd2kXtZIyL9yqGhTnezoaIxGjpDT6wFHDEYY8tOzodT1NHtPOtJrYH5sUt94ITFsypos41zq0LOPNAoBG5k4ElMuSpbsYmdG9/bd9k0d7qWLPLkykTjcsiJ2SoAGLEM9UE5O1nAgP44N4G/0LqP40dUPbxOAGBIjqjePbpBkDLG4hnxfiWKtpgREMU1jccbPyLpJksEQoWLDDEKUsicF9y6NgTEW3UdDIPpwlY7OvCFPMtCgxIcrMSbdDz7RMO+aBVB1kisuVMtHwWBBHsNEpDbophTUIQVGQL3ToBMzuoXT1m5GtkeE95ghiaWGSZ6+mZH/lPGknz6gdDqehVoGT1JoDhIEh5Hh0iy33gkDLAamLMPCgNFWmbuNYRAVcS2fh8RAm8WIhCxz25R0YIQYdfHbNr0RsvcFsZHT9rcCYEOBBLDgvx3ekGjz+ZRUS9y/+gvfZ8Etm8RY2sCo7nTAjcWR4makm1jrKhO4FN2vB0fLRYtrTcCEWaAk2JVCXyvreua0rpyXI7Up4r43Haq5FK4fPmSeZ0KSVjwR6CMQJ1EVmxk9ynuntU4yLTaCs3UcBNjib1MKl/Qja10xrA5oRWehjCFw4tw7tVXWdWVdZJZaSmG3n5mmPSEpNj4FTxLRacGWaqdJuz9V29DexrCVQLoYIqaUaHXh7u6Ou1d33J/PRCamecf+5lqMFcfsNsrjYHhTrlfKKblcI3qywKB7PCsBal24u9XPb2sl7WZ2Vzcc9nt9LyaTvRTd/0Bu+9LcOzC11ZkpELoM3O7vj5xPJ+Iw9rtCmSYBSN5kGe55g4pOvsjSCkLe64DjspKCNM3BAvP+yicUvuaHWE3djOAygNZNaW+O/J/OiyRMvZNyJs97+TglGeyaaU3ElLUvDUaHVGac2fz6ADdTyk8IklsA2HBK7JbwJuPt1ppLizK7vZKxFJs83M9HscXN2SDWm9LMyuyXZ2Q0eSSdT3cMG1wd9jx+4032U6TkQRiLmpsQCHlyXwOlDNbWGD1Qm3F795Tl9IKSG++/c+Br777Pl96aeTQPSn3FPtwLLAP6csK+MHFYW+fZqzNP7xYsT4QwMYjcr8aydGDCYiaVmfvn9/RuirlNiTgCpMIInT7gXBvnBuemKNzonlQCgocnTkA3nwgNfZ9541+mSedgkJdWH/KBaGOQStZEJkWxk4I80NpmKFgFJnUz5p2AkZQywYzT8UhfBJ7UtlJy4XBzzVRmup/l3QLLemJpq0/iNvZfZzlXnn72jG/9oV9gefwWtS+sn37E8fYHLMfGJ0/v+OTjF9w8/Jg33nsTWzItF4gTMUrGcG4LLgphWLoUh6u5DK03Qt8m85c6Q9K43ezNZqDEyPF8xmpV8z0kFW0uoSCaODlNnntlmgX4BFG2196JQ0OMMZTe09aVw/UVU8mUSdPVq8MVr169ctAdL3D0rPbTgdHgcLji7UdXlH0gtM5y7pzrYLfb8/BLX+Z6t9PZWyZq2pGbAzL+vpXdFdYSwwLJgfhQjDwiY8j0d5ozNw8esSuzeB+5iHnUG7EUUceDY1Gu4afECztDXi4CLsHvp4Aa1xDEFHCDTZw5mNtgVzLWBmWeuLm64fzic/oIlN3eGaxGHoNTNo63C7fHriIc1QFxRJfMG4RIDuPimRf8fIsxY11sqmnK1NFIzgoqMat5GMbnn7/gxdNXPHzyJu+/+4hXq9HmRG6F2KHXhdAr2VmYMtFctPZiIk9GngI3Dyae394zUhKTOg4BjGxrbTARiLEQooCflBopR9Jk5FhYzoPzi1sevH1DvJ6IqfKiNb7/4YfEv/nf8s4v/yXSV36RP/UX93z+X/xn/P37Aykf+Du/tfLg5hnf+qMPJTfOYLUzaO7NFbC2ebxIQhUX3c2lRPoGgg4FdhAHKXHxxxhJNUc1seiiVcaSaNE95WojjE6mM0cBPxureai38wI8AJ1GZITOsp6YuebFqxMxZIqnMq5d7MkSlX7Uq9ZVd/dfQ0BGd+8LtlorBo9jV9Fava7r7s2jdKrBnDNzlJFp2ICimC5ynHmeefetJxzvj6yexRyiCnu2YV+AOUVurq+p55XctX8b9pqR7hf89h8ndF+A+m1afiiT/oQ4C2j2Pyf44CjjrEenYcSSYaiW6t4Mh9Yd4NG9M2pnGwgmsgZB/jt160RndeUi7zGVWB2mSNrDUs+MviMMZ2bGTLLoUuFO9eawuXQwpEhymVk/y7x4A5WiJeZdwHbG/X1hnCvNY8C3xkl1XcDG1rAbKRcKOm9CToxq1G7UoUa9RAf4e9JZZaqJIoFeVbcEB3nCQF8DSml22W4fY1PE6v3JSbJySyy1E1NSEEyA8yrAP6CeY6sTRx80c4UEg+K1UTYxz4c1akOeTbpIxKoeGohkApgYYTnIEL33wNIiL05GP535LEj6n8qBMCXWEQg05LWYCEMy+l3J5GCsNM7nwMfnwE9evSLa4PHuyMOrwBv7zpcfzDx5/JKHN5/x6OrbPHrrmifvfon9w/eI+T2uD1/nwc//Mt/4uV/i9336Y27vn/LZ93+D3/mtX+fzH/2AVy9fMXrhg0c73nkwOC2wngIvmySxLZjs1WonJ2O/i5QFbpdGHyvWJuIOSg7klHl57NRV501vnT4q1SSRDN5rSJYPMU4wIrGbM4ICCu0xKS2K++WYD3nSEBPdRFKYimGrEYJqHaeXyAg8an+eh4Yd2YbY6DkwhSIJU4pkm7DYZZ4dqoDGrrAp2Q9kSKoDzJKz/jstBbJ7UwSMsosOTA+m0p3JHxkjyfcRVK81aC4DTJhM9/trhnaIMtQWHiGfMtuAAesXML2NQQPCcG+/EBgxeBDQgBGZi2S11ar6W7ML44Ugcs3mlxqD2Jq5iElEV/rt2o21VaqpT41uwxEGhBhZh1JTY3ptW1Byhq67cD1V0k4WGX00DUGjAJRgAsRlhSG/3GGJkmcwnWltCCCS9YeYlAIJ3TMogcXooQBeO+D2D0P90UhKr0vOXuooFT6EJA+mIVbYliCMy5jDSJfBA4jgofc7ug0LtNbZ9LfR5J2stDdzfEgy+daq2KBxY29Gl+yJAS1/tyzSQ9L7HixfBsyRiOXirEgVI671ogfTPe+MvOipfcJVqhNigp9ZP72PnzqgtNQT0RLVkCmlO+8LgRZ6eLlUTchgDDBapXp8+FLviRYVS5tcN+nAUZrmi1FvAEXyIfmAWj9nuCBTa3lr+BTMi9LNw0lrxSG6rQEduH8HzpoReugwgV9q+nfDLzkVo5u0SChnxySF8PSr87rS6qrpbhRLiyB0cz03alVceylFjIMsdLgv97x49hmvXr4ieJESolFyYbfbs99dAZmc02VqunHyYkpY94IgBU8S0A1bZskSxpB0LW6TQsJrsKhV2joI1phCIOYMRRTt8/Gely9fcTqd5D0QRW+dSuGNNx8KPIpJKXMIMDCi/GUQUGC+iaIbyQaG902vNcPRn1/rjdvbl7x8+ZLTcSWmiWm/49GT9xTfGMJFu2o2nGWlSX5OWe+fu+qH4OkPQ4dqjDrQX756xfPnLzmfTpRcuDocePTgEcyBebcTsAUwmoCToYSMmDTFMZeSmU8UB3C8P3K6vWW0Rp73vHH9mFRME908/Z/MvduvrWl23vUb7+n75pzrsM+7aldVH6rddrptK24fYoeIg4iI5HATcISVCIIQV9wgIfE3cI0UiYAiLkgkhBSCOCrEUkISy7YcBwxx28HtPsTdrqpdtQ9rr73WnPP73tPgYrxzle8QUl+wr6pUtav2mvM7jPcZz/N7qN1s/vawHjeKMA6hcne9alVqKRxyJcZIcoE4zeYucJ7esu1Ih7utYUC3shZKLpRSBr9KKSMCFaaJMOJqKZl77USXsxaCgNw5yOxl4bw1SjhvWxLtnWlO5JyN9yVCL4WODY0hJGuQO9WDJs92czZgyrbRA8UFe9CnaPGOmg/mlIkzwcfxeZ7E2kKuey7vbYnesZknXLKWLBmQWB8iXaxCt2GMnC4V1crLl69YDrdMofHld8740rP7vPNwYusqod8g+8bFXI1646xSVFwz4XTJ5KXy8jrz4iaTQ2SWDXlU9WY8Hqt67t2uv2PueAnWSofiow3Vy6IsrbPmkcMPBryMIdDUoRJwUseG2IbnUvt48Qecj4RgLhTvQJsdGo85U2sjzpMJVFjj2Qlea887E52OhwPi7Pqepsm2RL1SlpWSMzQo2gjTxNnmAg1CkzuJhzkG3n34hOPrW163G/DC2Sby5N2n3Lx9y3G/sFS7NrZxxye9s3+diTHSHVzllcOVcmgVd/bEhEWntKXiu0O0DdHDBk8RsU0iBqxtLQ/Qqgn9Q8NBRNimaKKkCvtlJR8PhGCbuBACEhw6HDoMq3fN1Z5Z0Q93rLlpojrW4TZyTqiu4GI0l6IzV2BMke1uS/DO2n+ww3aXihLAVdaSefTOUx6e77g5LtzfOB4+2djh9vxdHr73ZTYp4iTh/YinNosA6/FI6pMdpHsBiQQgiOfpvR3z2QOurhtXV1e8+/57PHr6AcEFciuUquS8mlthLEzstedtIK0VLR5Jnw+jiKecMjq941wYSxDb0KoTkuPuMC0e0uTJrXB574If+/qPkr77PdqSee9HPuDm+Q8QoGqx63SFtdimzjsb2HDQQ2DC2XumVKBY3buN1wZ4FXvHnu0i4QibKZi4kD2TSzQpHI97Pv3Bd/n617/KN37iS3zvkzd850qYJFC9PR+1VrozXpTTjnORFARIVLXIw+VlYPoYjtpH06iJXTYLNLzv1KZsohLCBGLNqUkcEc/9h5fw2PPJP/0uIUS2j2d8jLQKV68b3/39f87F07/L5hv/PvMHP86f+3d/iVf/xd/iO5cf8Eoj/9tvH7h34Xnv6xc4nN0XR0E9xAl6qSNSZdt6FzLHxZZ4UTzNF7R36lJQjVYdzqkCId85x1sxR1j0ntLLiB4mDCvjrNZ4xMi8QpVO4fOIGJi7pebMcpvZXlb2xwqh4WfAe1zvtvllgL2Ha0BsNTzuYZunnLcDd1IbznEO6c5c1+OCq3WMk2KHrDg5ptDJefD7wKDpAs0J0UcuziO9FdphHYBrNWbTyX2nEJ03cXhZKTLWjydD+90hYzxsdBwgg7NqaDEnrkMGz6UTYrR4aKk0zOkmzhsbMBgLLjZhExJtzUgQZpcIODYbP7QuDyMybn/v2KaJFCNOdTQCD7aSE7wH3zq12wwenbmSxDv2x8UOYFPEnVgdI4JSuolcNmuaOwwBLZ3krcFV1QoJvHp0doj34Ow4YS4uSx2o2OxX0RGX6xwbbGNEfMJPOw7lSGkrtRXUYQdN1RGJEnIrSE9MU7jjk6EnUK/NsL0rc0onbjAVc0J416mrRe5FQAYmIXpzkVeswbf1TskWd0vRSkJOrUuOk/vgczyFaOLEEq2tIF2Ygtiip3foJvhbkYs5oxVzvxkM2dFd5yzOeOkUFzg0T6sB1zsei6rnLki3Nq3NiIM7B0E9+EYI0Ap8dlSeH020+oMp886Z58n5gQfn8OTTW9796JpH9z7h/pM/4PzJ/wXXv07Xp+we/CSXX/1TfOFrf5of/dOvON5c8/Y7v8Z3fvtX+cH3vs3L/cI0b/HnEw+1crtWbrLjuDTeqCUPnBfitJJKhOBZcsftO35K7A8L+/2B2kcjdLd4M63ZYrsbhW4OnoY9d1RtUWqiuSFQzM9kAqCMZERwwuQVKWKODDLiE7ODrB3nJqpWkrP3vAlWyp7KoVXOnGPj1ETZ1sAb46m1imrAuWLnTyAfzS1jIuqplc1jUIVmhoYARE8pSphMvMy5M6UdMVkx1TYpeYGy2jVQRzTQonjV3qtq25tdmsYCsVrDbjMXYXBCSsFMB8PRc0KS0LKVAAx3Sj/9c1UruhBwMtoMu5XB2G5wGDEYTqvT8iaYczj0hvSII6C1EZKJ/dLbiAHbc8Ma1hzBKQ37Lk1WFUKYyLnhXSd0z4o5kY2/N7AmfqBturlsTbgWe+4jIIKXTkjRhJfBB7aW82EUaWqLsLHU8yMIpM5Cl94biJ4hkp+Yqmb8OL2XQLqn8vmCoLQ+mEefP/otEWCCHl1Q5wfKgLukTe3VPudu0bcqVoQ0xTTeH4xFjb3HZTQ0y3CanMql6KcInkNaB9egDE3AO3oXfBg6hjsB88esVA03YI9PM5Q4tbPXD/PXD11QQp1tvcoAtZ0AiWoci+G5sA8LYMB27eVgtfTiEk6FeWvA3xSDUfuj4kIYN08fLohuB68xihiQUUd67fP4WT+5cUb1IUOFVf1jH+nJImO/lSFZ2Rcho9ZRQbxtQfxwQ/VmCnBTc/cYBK2bynk6DArM2y30ZuDlATBFTYU8vzjDSWBZVpZlT2+F25sbesmkmLh3eZ+Q7DCvGMMCzE4n6u/cNzqstmm0dIQYLd9edQgtg1RU7c9lQOYRvfLeolW1EVA74AaBZpT79XDDcmgsy0LLFR88Kc2kFJnTbK0l48AxZL47cYW7Q0xH1WzbztnWqrc64iT2+Zpzx6Elc/v2La9evuK4X1AXubi85PGzJ0PUsEYU50zMCcPq3PqYKnSITM4UbERopdM8+GCH8ONxz5vrN7x+eQM4zi/OuXz30iCg9BH/ssa83qtxDgaM2nk/vuNm2eaxNSmlcPv2lsN+QcRzeT6z20yInAYiBUnWQjCePgZmU8CENnHDlr0UlnXBjQPrvbNLgnNUZ4wRSwGai8T5wHJcORwXlmztEbU1gygPdpiqkKatCXXOHEHOWbQtpnBnV4/ehlcbiMxd5lzkrna027bYOU+p2SzrakwvcTY0OO8pJdNVCcmg0jGY6yZEzLGj9r1ps+tkXQ7EEJjn2RqkRrNd10YvebiNGk8eP2COzlxZtdHKipOAdwn1nqV0nER88ri2sOjC9atPub16yUaVr3/hkg/fuc/TBzPnG6Gub9B1wbnCZpcQJ9Tl5LxyVK3c5pWPPn3Ni9eZqhMuTojbcLOKiUIEXJjMmVkYDrHGvcuZ/a3xm2J0rLVzm22wrs0Z5+z0fQy7b3DBrNciePGU3ijV7LbemZA0TwnnbAOyNNumlFLoCNO8wU2B5L1tSfm8QhdVyrqwHpchhEykZDDoPkSp3srdizAkIW4SHXMOQLWi1Nr5ynsX/OI3fppPfvarvLq65ZBXfD3QA5T6iDfrOfuS0a4cW8fPO3T7hLUcTAxCOAI318o979htGitHCJ4vfv1rTL1Qnv8znl+9oqqnO+XdZxd2PdfC/mZvgpK4kzt4bN2tDph1hSasx1uSM2B5Sgkf7WDkvT2DnDpqzebGi2HsnMYrSu2W9QoEoa+dXDLzPBtzYHDlghd2Z1tCiNS13w1odqBo5FZIaeKz58/5o89e02LicKi01fPk8Y7N7ozddseUksUZh+h9iluklGxrXzoqCyoyQMGd8ynw+Mk9Hj57zHo8sDvbMm3CsGSfanA9ImlENypCsHYqGe+N2pDhaFM+P/CfQJz27vHGDGjgfSIG0FJozWzrbrhjpxB578kDnjx8gEolesfvv/jUyhNwbH2A5mkiHNvCXGzh41McDVWZVhXTNG1eUCzGIN7j1bZtZ+dbmizMs2OtWGuVZpoKSyt8+uKKrxwWLs4nlm/fspYziMocPKITvR2p65EwJbO3e9uixiDUpVGWRJw9Idn3jhQTKgSUZjbz8Ux3YiyvOU4ErxY/9g4ftzz44mNunz/n9cdv2dxLTNPE2UVjua3UKfH7v/Hr/Mn7D3Ff/je49/U/wy/98hv+xt/8X/nk6Zf5KEf+/j+54c/fizx4byaURtGCI9ihQSvUhk8bIh0/B9ajcbKIdjiL3bgfdDHA7zEP58RgyfSAdBufWy0kH4i+cTYLPlY6HpwyecVLs8gtw62HCVc6JqYXr95yva+EnLk5rsi0JaUdxqBUSJC6I2QrE1HLOJlDULFGNAa+QOyAEmNEChDGM9OZ87Wjdy4lJ0KrBe2F1q2YwDbMtmzoqswpENxK74VGMx/6iZ2oxuws3WY3KZVcm63tT6TxsbAawCbGhcDZbsd5bJTF7ks33uluROpPzvUYI6LG3qnVAMDO2UwZQmQ7BaaWrCkn/CB4AAAgAElEQVSqZ5a84uIZLphDI/pA86MhrgM+jJipG4dhUAIde6eu2QCuwUdjDrpk78VoEfhcynjPwCRx/IhCx90tFV0DxnvJljrmdJSidNc43AhdGqWZyKtwx8CMEsz9hYCLaO0UUY5audhd4IKnHjIisJ0D3kerPm9K6QXnhM0cmaZAqXUsBj9nkdofV8xlEkzYK7UPwUmhC/M0mUtDoWpHCJS22mLai7HHYkQkjDIVBg8ShEZKYmD+DscMVcf/A4t7NfUEGZUhakwU742Z2KrFBJ1ag1zq5iAO0YTTQ11NYKHg3cbmHDEelYF6bUmsKmS1c87aHGhD+0otJl6fb6pxxtbO27Zy9dzxnc8cuw083TaePSg8vVh5vLviweVznjz7mCdfuM9GvgkvtuT8lOnhT7D94s/x9Etf44Of/4scb17x5nv/mO/+9q/y3d//Xf7o7Rt2ISA9misRcyFbw/bEdrKW0dKh65bjYmyuXJvFk8UiZr0LIaa7+8/LKNlxHjSzmc6gVhPTqmP1DNd8h2otieYMUibviF0IaaWFxlqhrZnqBXogdMM8GC9TiBG0KwXhgOIDRKfE1pCewTech2MOBlj3UKqzOduBqFDGObGLkvs6GngTKTiLnTsh+Egjn1qkQK1kZh1xejcpSCCxodXMkhsVw0G4MRO3EQfsONbVov8xBrxTJCgnoPZdmsDZctVKYNTES4yrZw6JweA8uVll/PG6mFA3Bp5Ti7QgSLWFdeuKeseyNEQmwyNIJ0yRhjmlS8UWLWNocqOlvKN4jRzXOpiMjVxGRVcYz1QcPkQ7ljcTeSzV58e5C8SHu/IfO50JbZxn1cCbdt48GRJQyrIQHNYo7xRrjU94SfaMH0yo3sWMEWL3vHMD86FQeyN0pTk/BDczEvSTO2xwqMQoFngdyxf8iDEaP1iqOZtrtaQQuVm7uGu4rrZk6N20EWfOK9fsuwrODaOMRTad9zSttr4Ohptp2tAKTYoNQuLs/3syxQzuozn7EiAj1vjD+/VDF5Ra6ziZLO+vdQynDctS21bFiX15OI+jo904NM7erATZWOVsrzjXB2uoobKaYtdPghF3mU27A8bh1wXqAHorjto70bnx+0xRvBOchGFnZaSVBPoJsThurtOkJFZvmPNgBylDxBoZSnc6FI5lq1j29myOhBSpayWvZViL7eKYpw3ee15/9oY3V2+swUo7SiVFT/IT5xcXBqE2SRR1HQhodwbPHFnX4BwE429YY137PI6nindm4xMXzNIfTOVupdJzsY3IyDd350A7NRu0uZfM8bDQvdWL3794yO78nOBtoh577BH1MrHPx2DqajXu0gnZZNuaNtxc1k7nvKnuqp3b2ytevnzJ7fURkcjZ/Xs8fvyMeTJIMCpoGcLFKWIVAh1bVzo1MHwfADJPGOqz4OdEa5WXr15w9eoV65I5Oz/n2bP3mDeJYWwHHCImfrQ+oNNSzHk/xE9VRVvHjXr7w/7I9Ztr8rIwTTOPHzwgpmh57dNDDfDiOdRG8t6+Q7EqYxG1QaIJS14oix1edudn+JA4EbwkmtMrhsiaM90Hcmss++VOTDosqwmDwbYXBl034KEL6U5MVDGwtfFwTIGPwVGHJfcE1xaB2gza7dQRg0VmGBudcFLU/WmDq9SSUe1M02yH0FOEr5vKHr03YVOFqpUo1upHV6Y54IOjU9nf7sl5IURPioHL3ZZpgnbMZiEWJbQAcUPvjjQlclttmFlvud2/5OXVJ6B7vvLskp96/zFfuL9hkkrLV/TrldlnE3JmR6+ZV1dvidOWpsLt8Zabw8onrw7cHjtp2rGZz8jNk7ujNOVYOj5EytiGxmTXWwpm6y/NIltLVUp3RG8tDoTPWRwOE+BjDPQ+QIdqDTutmmDohusvTpavrrVSB6dszdlccyEYH0Y7zQ94aDfujLnd7N7zKRHjxDzNBO84tAyqLMtKK5k1F+ZpAhcpuY1BxMRyc85kdnHiS48jD3aXvHg88ebmwHKcePXqihefvWRd9lx3u95CmIjzJY9/5B5rPrCuxV5y3plbzm/teVwbIUTee7zjp37kHW5+81v80XTOVessbuZyF1mXSs0N1xoPk7KUxk21wyXOxA6ZZ5qbONy+IXp7VhACKrbpDIPDhRoAuGkfzDV31+iCF1ozwH4STxc45IU4gJYNbFAYW7qUZlKM5HUxBh6DGSRwc3XNl35k4rs/+ENqazQqBw/f33deHQ68019z/vRdeo8oGMhbT61rjZKPzClScqL3QG2OqLaPRyIpJeazHcsUTdAlgPcoha62AIgxUAW0BRzOam1HLLd28L3fOTq72HMjjepmwaFeCF7ovRHIFvV0xhBJMbIcV26a0HcT08ZctE4CXsG5SFPornOshUUrS8bA5j5QWsb3YIeOzODm2LhJB99Oex6LlbkmTGliurClgUTl9Zu3lDaq47tCCzi/o/TK9U1mNYylNTWB/bV2tC40geQjwXWkZ3quHN8WNuee7ZnjeLQGq6qQTqLcWCoxoMNJhOSMnRImE4q986TLr/H+z3S+9Sv/kP2LI/e/6NhNW45nHlzlRRJ+67/92/z8v/cYHv8Cj3/uF/nlF8/563/nm+yfvc8/eylc/PpL/twvPmOzO8O1UWs8BRCPykJRPRlMCanSSkBKITjHxie6U5ajMYqmZM/p5DxuDnY8XAqrWtuTV5iJbDaRKSoyD4aKK1CH4FDBdSORtW5qXqHwydUV1V3yyccLvcOcMMEci+atg0EWvLe2JlHWbtd6KdboiQz3A7akOZWleB/wYbwzmlpmU07tc1DWOpzjFsMIztu97DzqG5dnE3U90stq06N3g4VhQkkdB0Lno0U3nB9LUPtcbYYcV46cHAJCOAmLbniLxRY1TcEHwXdHDxalmJrFJp2Hliu9KFRFvI7DjLKsCzfryqoN3i482lo7mnar/u6ihCCEKY4ojbl6WlutHbUsaFtta62N2mBzubP53CnRJ4MH50rN2Zy/seOCR71N1rWMVq5WKSjdB5qD6QSgDdZkaO4Gi++4ESFBBT/OANF7YivMIVo0Pwk9nTOfnSNU3nlwzhT9cAXJH+NRBjbTxLNHl3z04prrRcit0XPHp0DOGeccyQVbJmKuCtGGjHhNGK4o5+zQ6EICDUzp9I5t9NyGE94clr3bYdSLGLO1g3qrTnfe3EIqlghIXsnZU2sh46mlIy4RBKoynDXmlhNx9N5oPQJKCiutC6VVApHmhIrZPYV+VzKB8/RaWceAreO6W5u9g3LPSOtsR4zn3mwpgmOFl2vlxXXhOy86T+5nPngceeewcu/NNc++95rL+5c8frLl4tkN6eZ3Of7G36LX94nv/xkuP/wG99/7d/jg5/5NfuHtc15/7x/z3W/+Gt/6P3+b33vznE9vMqvbkiK0fk0tET8lylgASLdilZDsYFuLUNXEUO11NMparXwKW6Tb2QdV4nbLvF9ZQic3a2mdvZ1l7AAPuTmu98KT88a8bby6FXIWQkq2SKn1bjG3SSYMODE+pA+Kc4Esjv1y5MwL57PQZEOvnbUlGoWgidYdzQ/ekhNzNiOsWdFuJTJVO80FwFtsqxXEQa6V4DwRoTeLfdE6vfuBISj4NAQVFZa84oEUxzmyDrFEzEyhKFUbJZvTxqfIHy+qOD0HQwrU2gnqRitbM4el2jBSWjVkxRC0vR2Eh2AzGi27Z8j8BCye7Hyg1EbwjRCt7U1HpCz4SG2ne6kT/AxOWUrlsBxJYUYQ6LYIP836lqax9lpw5GalSCF4tNtcLhJsiFJQcTQ1McQ7yL3CYFx20TvuqhNrNDZIvKE2sioBRXVhEhN/u/MEjKnrxpLf9Dcr4vCKlQrVNpyudqby3Y9IeSMGA6aLYDB4HGEMMA1j957QIT65wZmUz92etdgM5YW+NkopaLBW2Y49W7UrtRq7OIojRU9rplGcYv+9N6Q1fBxLEurA/gxxyUHEUdSSvX/cQ/PD+PVDF5Ri2Iws68iKikC3PKS1adgL2UdrLdJx0AjqxvVr8lNvi7keutUHon3wkxgvdlNtFPtgVGwrbf2IHbQyXm22dev9Li+oOizDp0ib3ClG9kOYxHr3uwWgWzby1HJ1unG9s6FOtQ82CdR1AXVMm8j2bMN6OPL66tXdTT/FCS8GGHtx9YLj/hZxwhxnBIMab3f3ERrzdkOphTtLorMhuGMArxPIzCSawZ2RsXUJp1hfB8RcIP0E1lPK8UDOdujX3qlrxcVAjGarPtweKbWwHg84FXabLQ+ePrUDUzEYdMFUXSfcxQhPNZJaC63bprYWyyRbg1ez78INgcM71uOB5x99zIuraxqO+w8e8cGH7zHPgdaMTu/qsGBLN6eAU3JdcD4i1TaZCIi3EbC3YfMLNrxev3nLZy9f8fb6hpRmHj5+yPa9HVP0nPpJRKY74Ue7HeiNiaj4sBlMLWud8uJoTrm9vuLV1VtqKdy/d8Hjh09Gjn8MEsHUYCXb4XVkpVUrS6umtTt7oB5zJh8WYtqwvbjAD8DqHahOrOo3iDn8SlFev3pjokEpLKPevTdzFQXv7iywitzF2JzYgCMyYlQKPlhEKJfBcxiDszE4jFkwTzOo3n3nnc4cN3ZQ7UptnVZXkEAMkc2U/pjlEgy2bK2DDBt5a1bRLiFxvr3ER0ethevrK5blhmme2G03pOTZTAGvDVeVECOlKNKEEBw0g1Bfv/6U+/e2rMsLnr/8Aevhli9+4T4/9Sc+5L2HGy5Swx9uWa5e4kNjOwXyegD13L7KthlLkVevD7w9ZK6XyuublR4im+05GifeLp21WKH620O2bUYxR9EcI9GbsyqcNqkhkrPltLvAMVe6KDEkhMAUg7WfjIO1vWRtU+mkE6aEc/G0/yUX29ZKN/ZaV2VKyRyI3kOMd648KETvWd7uWdaVeWvuL+/s38utcVyPVArr8UhfCyKeedpYDt7NwxdZkGr3u9ZCcsr161f8o3/0fT7+6MBtWYkpkJLj1e2BFzcTNTZyPeL9BFrxfUvrFW0VP8oaWmm4JvRJOKoypYmgla999UPa1feJFR5cOGKOPM/2bCndmtD+xBcf8qMfCp9+/BnfebHno0Pnus/0sGFzNrMur4nicWHGTx4Jgbx2IsbHaNoNAFyrRV0m6wY52S16V+Jolm6qlMOB2jLbsw1eGUONbaFLL1bLHQKIs59TsLYT7bx88YpaC9wsPHr0iIawPxwoJXP+5B6PnzyyGGyzoUF7o9bG2hreNw6HhfOz0bJJsu03gkjH+0STLb3onUCZS0H7yqkZapo2eLG+Ne8m23JrN5eSG2LuGCybs6ICdzopjwFEnH1uPjhTfIgGYZfK+WzuCxkRv9JAS/+cQ6ULsSvqCgnPveQ5Sxs+Ph6pmw21gvRGFI/sbBjvUqmarX2w22GzUiEEmlZyLlxczrS8INo5j+fkcEaQxr3dzIdf/Qqb84gcKzHtkCWRs5Ime1+JT2yccqxHohvxUG8OtXmXyIdKOhcu5sStZko3V6alYewz8uNQ3WQ4hYPinG3E52h8Mw1nbL/4p/jizz7n49/6Fv19xbkjmxl0Djx4ecsnFzP/x9/4L/np/+iC7r7Ke//qX+IvfPKf8d/83zfkix2/9Z2FR7/2KT/3Lz0eUSlBwhbfKz1BKIWmBm2ft4Hy9khW0MG7ctGBr1Adyc8UXwljY1+10Jsgbh4zUebYI1Oy+KF3QtkU2qpEnaAXimt3kS5x9hw+Hheef3pDuBforwviNjx88JgpDbB8U6Q1JvGsg1zhRgSuN4O2T16ozlgZkyQaGe0mZBpPpeOcRbT7cN+N1THLcaV2JbjRaOPHtlgVSuXN2zes159S14z4aey57TNyqkQdcakQzFno7Nq9cw3f+WLGQWqMjaKK61ZlbbvQjvhozL4qaDD2hSjgDKTuRajRXEI6INr72z3H26O5YMTTfOR4zKxLxlHQ0bwkAuoC1uvS6M1idK10oofbw5FSheS8LdZEiN7RakVlJo73kk8mOvdaqVqhmHDsxJIAvYOkyVxOpUFVqljpgPMeiqKhmZDmMXeTCAFhEmUKio+JRMCFzi457p1d8nydTLDr1kybyxHvhO0cmXZCijNzmtnMgcuzwidXB0oJNOmo97ZMcAHUeC420xurcYozaQB4c8nk0szpSUS8UGrBJ2t2E9xd7K32TG0Ra54cn5vzZIV1Vbq6EYtVQgLVgu9ioqpLIH2AqcU4sN2DtIGv8GQd5wcUtzbQSK8CWigU/EaRaNN69GmAm9WcWepY85GlmZuLZuKKE08LlSBC6RP7WukVzqLjcue5kB3LurDPK5+8bTy/zZxNb3n/4ZZnTysfHA/84FrY/n7k/tnMw3eekC7/gPXb3+b1N/8m+A+4+LF/ke2HP8sXfuHf5r2f/WX+hfWW/fP/nW/96n/HP/iHv8lv/O4LnvcJZodfYJqFvFzTNFibpPOwVsNPODu7tG4xwAA4P7Gvw5koGVeO5JyJPjBNkbZUiGO5Xx2pV7rYve/U8dmbwkUL7KaF9dDYpIkUMutqqQsfOrtNoJLowZzJot04erkjPlDF8xYTa4+5EWbobG3ZOsYBktJzJ0YThrsKfgpI9OTcSNEbeH5y9GrXlHOBEC29UbEFTe2ZPvAb1mAtkKbPHT9VoTvyYo4WH2xJ3rEoaS2WKFHtuGCRr947Mdk2oWkHbxFmKYqbTSQN0RpzWzfIdIe7tso23NR+LK1DOIHDjX3ag5CzMSZjMMLXUkDcSL2opUCcc4PD6clrR7qjZiuJShEoDkgUsVRKbR1cQdVjhQ+NpsEMJWplAMFP44Hb7VyHUHS4osXbbNqVUxIZtQVZGJCkosX4oT4RtaO9Mk2TlYUN/mavJwuqieNVKziLc5pOEYhzuIuOOS2EEIwnpsYCK6rkfmKDmcM8uDiWpv7uPaXNkCAWk7N4spPAFITSG4sWXBOkOQqF0htBToK5mkMTqNmKQCJKP0WtHcPNbZ9UH06t3i0y6rq5AIILQKf9/11QajQmb5XnSRJVLWfvh6rrnMEIRY0B4J1C79aMkDtNlNRMvXTqRhOIbUtrazi1v8d1q04UsY1SB3WORrYvsbnB43AEsYNX11MlbR/NAiOONdxHfSitOHfnOpJBcbcqS7upUewmEtuYjLSnqeK92X+DxmefvaQsmXm34Xx7RoyR/f6GN1evOBxWSq0WZ7t3n/PddiiObdSq2suwtHGgiNGiW05w3eBfd5EYC3nfgchd8DTfTc3vOrA8eneRLUthXVd8CGxTsmxza/g5UFrl1cvXHA97phA4P7/k4vEZTx49ZL8/sD+s3PZbQkzGSQqe4NQaOLq5pES4q7cU7eS1GujMndg8JiQdj7e8+OglVy+uqR0u79/nC1/+EebdFtd1NEw1e1CJtbqdWvJUBkjOQqOcYJl9wNC9t3ra43HP8+cvub6+AQk8fPyUD58+42w7sxwPgNlDU5qG0+tzh82p8tsmTovmKXboXNcjL1695urlFfNmy8NH9znbbO1Bmm3gCjFYfhmhYTE/EyerWVkbzFNkv79lOeypRYmbLfcePhztd6b0O0mI65Ypb8YmWHPmzSFzfbsnt2zWymLb1XmzNUidtxe66gmSF8FF27CMh3Xr7S7KVlq3CNRwC4oIvQ6GT/D2GY1YlNiigRAm0iZyuL1lGVHOebNltz0zy7kqJRc7qA2otj3MTGBqPRODJ212IAYAvLm9Zn/7FgnKvQfnBHFM3qqxQ60gUKuzmmONbGKk5syrzz7mbLvl3SfnvL7+mJs33+ULDzZ86ce/zBefPmDjj8j+irzv+LrHS8WJcrvcstwemaaJ3ODQHCU3bjN8/DaTq4GQp92OVoW3+5VlKcZe0ErJne0m4sUTponJexq2DRHrnyXQ8S7QGuRWcHG2mIMXYvC2ZXbW5BNcoDuLr0kEr2lwJSqtdsKwq/bxwhB1bOZk4qE3F82xZIgReiN4x/X1NYfDnvN794zz4r2JAqVQqjVe1VrJJZNiYNrssFIA4VS1a6DG0RjYoWnjO1cOKRP77Om6wy1K0kD2Z2weJWqpuFqY5y1TnEEda840bchsTTHaxdq5esdPkRgcX37vfQ77PZ/+wR/xRALTHNlPjvxacLmhrvDOw/t8sD1wdvSsl5e814SLRzP5na9y8GekXliWA2m3oQeLjVEbU7Iq6TKarrQYLybOG6bgzbVjJCyLEYo5ItZ1ZT0cSLuEVsHFaPGW4cI1WH8wC/IQqL1gTs+WOT8743iz8uEHj3h4cY6smX7/guefvkD3V7z7eKb0Zi6BMuYnsaBZPhRr3xKYorXPuO5p/YiXxHa3I00Tt/tbi5h4B30GB6VVSlHm2RMmZc32XGnReF9qAEKiKL0VMh3pQkgTwQlnU4Dk2SNsUyKJPQPxGIumd1IQduczvVSOh4qPjm3cIcWcJiF6nIvsy4HkAr0tFJ+5PV7hUqCX1cDDPVKdsVlad6xrG2wTYe3N7P7Y4Ol6Z9l30tMtpWeWXHj6/mO++N5TJh94+PCcB/e8vcNj4nwbqblzk2+5iOfQ7b3RgLjZELEoXClCmSBgZRTra+X+03NCcrz69JacV1wUmo9MIqw4RCvShDwpqVfaZEuJFjp1uYX1CkmPuPfVr/Lm40948c/fcu/dHfPZjJLJceJpWPl2EnZ/7a/yY//BfwLTPX78L/wV/uX//D/lV24DeUr8yj+55fLS86M/sSWwsYWJ36B+D6vSlwOEc7oeiH6iUugtGostdNKkxvRRIVQh4myJNBecj7TcuW1HwOFa4+3rhY3bELuz8gEaSiFTqV0sCqIW/Wtk3t4eePDgEeHijJxW5nd3xGQLqhhg7dbGtTZolsAj+kSVRnMQxWOYOJtzKrZ5rr2Zq1oEQkJHc6KhQfpd5F98Yppna1CqSlA7LIUuHKXzZl+gb/CzbZd7ddae6QyqK71BqUSfrDXYYZymYA4Cq1z21DAiEmqO29k7XBG02pAv6okePAFcN+7fWvGuM6WAECza5LH4jtga/Oxsx24z8+Lqmq7CJqVR2W2HOhdNQKGPuI8ka0ZUQ0P44VjRaocbgBQ2tpz1ERd3qBRyqWhtFit0nbgLaMNKGFaG4a4j0ZvL3TaYNhs1GcUfC41OxFSQGCa2846oC0EaZ5PjYmtRsuM+49LEBkiTvXdcDUjrHG2kJjroubNUBb2BfoWIcO/sjP3KACRbBAZM3AliC5qcG9KVGB21raj2wYOyGd/5QGuVnO1zlhrws0VabK5sBPMuWNyu1LFktLIfVWNXKoO71k0I6C7gnbEWo7f/XlGldovHiDhzNwSHdnMVd1fsZ8jg4kSthYBQ8mAcOk/TYrFFxJzadaXVYsUmXU1YcYkYMq55WqmUsFIJlGNjzcqaCzt/Q0LYofRNZBHP7eL4vR8U/vBV4VtbePjQ8/6Z48nNJT949R3cxvHs/iMevzuzvfctjt/+HZ7/RqCl93n41W/w8E/+Kzz46p/l57/yZ/m5v3LLm9/5O/zm//xf8T/9vd/kY73HYUpInLi5uiKXzD7PzH4yYLV3lBPT1tmCvIun1WrPUHEsJRPcmcU4XSd5Tx9LYvGdeUqE0NmvleOhoFo5HIQ178bn2xB1zN5xthuR1TqKc9pwtmDOpSZW7tQ9+LiBBnGqhG0w7igCBHs3+kobTVqud6YA3kdyr+zmCe8cay/kwWw7O99xfXNt5SDBIk+tCtUFvBqT8GRjaKczB55WzeUYJov6ttbotSE+0KUR4mCl+kBu3YpWvAc8uWVzJjcdzFghl8qyLGziiHH6zyNyXQX7EkZUTJyJ9u1ugjGBuRs7UuZI6Y21rATXiWpsrBNP2Adv59dS6Q2KZjwdUQ8DzA7gRqurdxHCWB4N9pptt+05aqJLGygNU4xaqXYuCyPWqiCjWMQ7c+eRbBHWWyOqYUua6ijl8pRmUWDrx7SZr4uOdjxFi2kZXsxpWVuh+2hlAaKoeNZmVEdzDJmz2fuxZ+sWSTZlA3qINr9pxQWLrPVqbsShrJGLte9uponoDFVTWmX21sT8eRtxpfvBVnOeKoUoYpE3NceXVzeYf2pwej+KwpxRbFTsO0sn9tYP6dcPXVBSaeTW0SZUtS2CbVTcXfUwY4ujtVrt4GjGEk4wbKvO9ozmHR3ev0EuDw4Uj1NzBjkYbT5WMdkxy1fXZhYwhCyKkwiidzcxzkBpd2JEN8W2tz5s3J0pTYgzKnsXs+G2Wqm5DtdKojZzZog4Sl4tn9oy777zjN3ZhlefveLTTz/h1cuX+OA5P7/Hw4cPOD8/J4XxghRAG71nbm8rzQkpRLpTLi/usdQCVAPCVWsqEvHmGhDBO7UcZmf82ezBgThCSrS80tX4R5vNhrPzM46HI9e3e2uJQUYcTnjy6DEpvGsioNrN9OrqmiCe+WzDjMX0Sm3UVmBECrs0eq/mghruCAlhvPib2XvXGz779BWvXt+Qi7K9uODh+x9wsTuzGBBKXzPeBTbzBrCbpKip0ObQOkXQ/PjeDGjnfSAlz5oXXr6+5uWLl6zryoMHD/jSlz7k7Px8ABw763IkpQTYz46aE0dGxeOoVkO6gjO+QWuN5fCWFy9esCwL9+895kd/5MeYZm8WxT4GkeDvrq9TFEa6AxWLdaA4bRzzwtXrPUpkd/6AeDE2jk7vbKROvA2kNGrp1Ky8ub1hqZ2mK+thT10bzJHt2URyCXHBWCtq25cQNqPiW6h0U8mzCXx+tMCJWhMGaoIkvVt2Odg225KYtglxA/AcR/vD/uYttXYDmZ9fspk3HI8H1uUAwJSm0QSh1sI47B8+Cp4JJwY0zb1xc/OS67fXXF5csNnOeKyt0Gk3J0C3e9/72dx4tbM/vMGXPT/z4+/zyUcf8fH3fpeLXeVnvzLz/oMz7m0EX1/huw6rc6f1he4ab2+OVi3qE4ee8JsJPQaev3jFy7d7jkWJmw3eTez3jR2WEHcAACAASURBVLKs1JzNLqyB2uB8tyHGjb2YQyBzarYJHCsc18LaOmtZWYsBWpN3Njj2zroMyLuYel7HxtW5gBNvYpIRJXFBxjJ+vGQR5u1MdFa7WltDvTDFycCDznH99oa1Fs7vXxJ8IG3SALk3ci3UdRntf90OGJsNzSmzj4yls0VuEXIzJpbSiD4S55nNeWKHAXt77ZTSCAh5zYTQmTeJtJ1HQ2MzsD+Qi8FMDay6kpJjNztibbz4+Pvs31zx6sUb+uUlN9d7vv9WeXV94GG55sOvPWY7C7y95VA6xwI+2jPD+0ivjePtyrw9t3Yjtc0ZZVSPt4ax3MytudnMTPPMyX5tB4HPByUVtRgVIBWydDYbPzL39u+V1a6L8/ML8u0btGe82PZptwtEl3lz8xk+vyV/+oaojXsPHR/85DNefOL4rd/6Pd75yo/x4PFT1jWzltUMt9rpJZvwo4HaCz5E1rLgtRGBWvasy4JIpNdCbgHtVgLRBtC/a+b8bMP+syPEUcpAQ32AXKEX3BDQXHA4Cg8vtmzOPUjm5nbP2TZwLyUen898dH3gtq5477m4eMzTew+4vl1Y8y2KWjPgzly3QUZUbu0cXOcyRtb9npv9lZGZQqItK50FiqNGYcmddVlRrfTRYEhXc6y0jg/w5maBFgibM+KSOewP3HvwhO0E4hq52JCz5E5uUEtGlo5sAC3WdGid8SaSaWYtBy62j5inQo9Aa2wvPBeX93j4zHO87RyuFm6uhVVvQGabHbKyBOVBtDHce4ej0qVQj58SdxXxjftf3PLJ3/+Msle+8LMTbW9lBcdJeRYKv/Pxgcu//Vd5+hf/Y+LjZ/zCX/q3+OSv/XW+Gd/nlST+l3/wmikKz76U2bZ7ds2GGe8z6mbK2vDuEpHFGl9XYyp01/BJkKa4WodLdGUSYXaOGgpLhZQ8eQkE6bS+EsKO0jPRN5LLI+ZwgquPeE49cnUrhPmSJ+92cIHp0X32+z0dg56rmAPjFFePHXTvWHtFAsw+URZbRHlJ0Kq1oGZbhPkwo74TY2RduzWeDe4Szu7ZeeM585fs9wc6C8IAx9Po6phlQ9wF8qZy3N9y7Ob+CK5jqCCPS7BJjTpcCEpH80qBgWVgRDFti342By62jv3bZgey1q1enA6us5FA0WLO8do59owL1vp5Km7REKnHAyk5DvuF882Wy8szksOYQtHz9vaAX4QYFJFIEE/3wpysxMWLRVYnFaL3OBq1F469MqcJ55Xgm72LYzKEgeoAEoN6h5uCpQW6OXKGBkB10J0QujXkgpVy9G6LRBFHdBP+IpGnA67cMjk7dAfvOFSLq/eSeX2rbOeZUgSZHyDlgJaZTrG2NYRm9c8E5zjeWqOcOh27Pbt2Wxdys4KFe5cbaJXaKtAptVmTWwgW5wH8lKDYXFxKIx+XweEM9jOFRMT2MFo7rVRqb2ivqO8oGW18DljP2cSqIFYq1D1xFJxErzYf12ozba1WG948MmK3FcVVi+I1DYTNjPOTrR9ruzvU195tDvSjGrw34/eMeEZA8X5GBJLYXKcoTYQ+zdQCNa/0YvFD8Z3goB4LL3Ll9hh4HiNS/4j72y3zXHDTa7a+8HDa8c6THWeXW/7wu3/It//H/54LmfiZn/pJfvpf+yXu/cy/zsNv/GX+/Df+Mr/4H/4Bf/Cr/zW/+nf/B379n36f7y/Csj2DFGh1MNycOdr62pH2+dmttcZuSrS6UCk4qRSN1GIFI3MMpBBISdgkc7UfDh4RjwRP7Qu0RgoTnkaYAnG2Nkk/dW5rRTQQvLVi1yK05mm94kMnJMfkHSvWFBqdcrZzlKNYyx8wpy2g9JzNzRstmu4ruLSl1dVcvXTSdgNeuX9+wXK7wBxJyVPbapgWgpV9jOOGNXDJ3ZwnwaDjvdsCwIwCVrwQY6KUYuYDN40ImVJKQ3y0e3dVXBeDnqt5j45LY56TtX3iadUc9ojxVe1MaWKHdmMsqjiLuPU2FuX2bI9+Q9BuZ1btNudYUJT9am5vXMdpY04BkWgL62CtnlLsWVTUWXwPT/IJjbY8UIbjxkOto5VsRECbnHyigShCPPGYYTT/Ys9hGYVHWGJHMLfX2hStxXAlzmb2Ps5pHRMDpzkAajzRURDV+sKialzd0Vp9ctcWGYkBZ4gERAwbgzVWWlRVCPNMWRd6zUTvaU1JcWbpCyFZazOqlLKOMi07LW3jRBmikhebAbt0+5yauSF9HIw7TgKbCZNdjdsUgrHvarR3tgIa/7/pO/9vv37ogpIPW7wbtfcdxEyNGFium22rix2e7NRtyuMp8y5KF4dHrSaWQGmK78awCKMNDO3GSRLbI3TssKoj/9lNKRp5XewmxYEYB8GI6SOGV8eBSe3Pg4zGsmDMiFIrJecxXFhdpkXTgrWgiSAuEpIwbyb2Nzfsl8zz3/tdbm9v2M1bHjx8yNd+/CfYzIlWGrf7A7f7a1OXg4k+3jm2m5mcCuKtUjERyMWqjBV7EchkjobWjT2k2mi9msVRLNPbx0GnlMZyPFByYUqBNEeurl5x+OiAqGO73REtBI16WI5HDgHCdgtqzW4pRSROqDbL3Wun1WoAOqurs5Y6+nBEdTOzt4I6Z8LV69fcHvbkm8L24pynz77I5vyC4B29LrRqPI6YDDB5iluVbOJOcIKEoVgzblBt5njxHlXH25sbYy/d3hJj5MnTp1xcntsmpDtKzmZnHjBvq/0c1nVnB3U3qs/tcB3xaeJmf8vrjz5huXnLxdk5Tx4+4vzeOeDotVNbtWF5qMYOa9VT6cNSCXR7kbWycFhX9m+PpHnDo4fvgnh6K6Zmy4QSYAzg0KlVeXtceXtcyMdCb5WlZijKNM1Mu4noBkgabGuKkGKyGKm3YZnioTvWvNjLigHOH+0VfbS2GevCuBfeW82oYC8nUGI0psrxuIxGtcDufEsIiVorb65e40XYzBv7HtVAgwbsLSYsBWOqbTb2Qnz1+gUvPnvOZjvx4Ze+QG8NlTKa0fy4z70Nwy5Sm6PnxnbesDuH609e8s3f/nukrrz7QPj6ly949FjZ6QL1COrQIvw/rL3Zr21ret71e79ujDHnXGvt/vR1qk6dsl1yU7ZjiCIZbAxGJCHJRRBcRNyCxAV/AULmH+B/CEJckGAJHMcB08QxdkyIHeLYcVOn+tPtdu211mzGGF/zcvF+a53cwUVtqVTSqdp7nzXnGF/zvM/ze1rptdanBbziXcS5QJWBU248e7HneCxc7heWLMSQaNVzqpmWM7XkvkWZg2saB1KabJIePA1nG4qPOB+Zl5m5NoiB6B2S7JBMsxaX5gSVSG5mxbdn0Z5/JxEXjHGG7y5DVapor5i1jLhz7jZeTgyBpRkw19G4vrxizZndOFGUDjs3fkQtC62saJ+yOOcYNhtz1olY1StAtefY1kB7x8MwEH2kFGGm2hrUXXfOQSkLiJLiYLHdVlnmldKBpQDDMJo4VSop7GiqfOnNe+w//QEff3LJ5fFAofD9K8chO/ZNKc5zMy+cpYGHk0MOr7iqULw30KcIRRwtL4QBwMCezhmvRLpAJE3vmlMslmuHWgnB4iqu9TXG3JulLJxubjg7O0NEGNPAWuywVGq1bHsVPJ5333jEj50XRhaGlHh2OnJcZm7mK1oLfO/5JSFmWl2494fXPH7nAR98+Qk/+fV3eH515HDYA4G6QtOMUllyYZgCS224oGw2O/Y3lzQJeDKHY4b9gTU3cl6J0dpQXXfi3trr7+12fPr0xoYQYgepUBuaM24QcKFPEW2CmWLkfIhc3VwzuJVdec3PfP1d/p2/9g0++2ff4f/8wyu+O89M48CSV6rOlHXhePDkZaUsJwNTD4kaItf7yoWDzEoaNpxerLiwIS8H8IkyrziEUhYTukWpSwWM69fEhj6DH/BamJeZY154dO+MclPQNVPXhgZPWZTFZZoox/mG/TpzajtsFStI8uhaaC0Tw8B8yjx6dMbji4n33zkjhpVWhHxqVv5wIWymM852Sn1vR7mEw/WG49UNl9czp+YYpVDzht2ZY5sCwkxIIOsVqo9h+ID7X5v44Br+8a/9CRdvnXH2cGC7qQazPcK9x47f/qM/4d9/8rcZf+E/4eGHP80v/Y1f5vn/8Nt8dv6Iby+Rv/OPrvi3vxP5xi974qRICbS+ns1qIhzNmr1WV8gLeI3UVgg45iaobzTx5ByINVMRkjQWUbzPlOIIU2OYjmwjoNmKO24q5dioWRAq16/37HPl5ZpMKBJjx5RSrAHx1tXTDB6+HhcKzmJNgzVGiU8c59kctFTUFWtEa45JzSnnVElpMnfzYQ9q0XOboNu/i48e6soYky1dtTJ2ET4i+EEILlJOJogTlO3gefPBhv2SefbaBjxDcLRsv7ctDfWJorY/Wvytw+vFmJXH08xSrJBFaPig1GKO3VU9PllzT26K5IYsxeL+KeK8FdOclj1Xz1/w5P4Fb729AxFOV0eYF0oNsGbeeOcCr+bGuV4cu2Cw4ttIe9XGssxoq9ybRhxb8roQN1ukeqKLZF1wFMYx0oqSq6LFhrU29BFiNJj2Wq2kJS99ULbb4KM595OLLHNjWbJFRCi4YAKHObsbpdngKAwjl5cnpt1IWTKpu5LcaOKXBgfF+JSIkPjCU+/vWjONcRLFdQZMRMTEqeDNdeCCJ4hjHCIyZ5a1sc4zLjRcC8Z1QXoJRWQ+HYxh6cSA/iH2U5Ht565B015tHu2Cl2KitUKINuApxeDFpbuupV9UbSBraQdu70Gq/X8zZ2urYjEmsfRD0GqODqwmvKmgzZN722d01ugnHdqrzduxrtjnZu11NlAvufI6Z6YkTG7Ah8pu8tw727Kd1NYqhWHccjYEZAjkfMOWiKTKmR8QqczZkZ8XjsfCjUT+5OrI7/0f/4R3f+f3+Maj/5p//S/9m3zll/8Kux/9t/iRv/pf8rW/+l/wtz7+A/7w1/8b/sH/+hv89nde8p3TAL4X97guGrtgNfS5knxCKMRQTHEgU/C4aGdRsPTB/lTZH2yYnAvEAM15lAFxmZBWhhBQDL8xbTIrjjg6wwdoIudGLiut1u4c9ziJnNbCEAaGqYCsRBySEuuSoXnW02IDSS84l5AYjFuHQ2umqFJU2W7PSb6CWEmOdyN1MY6lx4awIh6tzfbfzgBr2WDQtvdqn+SZS8ZFG0A2dTTNnVFlBSqKOYw9jdJxFW1VolhDr+9uH588q1pcMPBF4qP1v8p6FR29BpYxWlu7d51zKUpdIXaHcKPY+VwcQ4h4EXKzVvW5LhjrEOa2EqQzkzVg6TZzG6ooMfUCn1bNOSV0zq5RY4M3WHfTZmex/g7dnksr0kXenp5wPUmEtWxqq3gHy1yI0aKkoqGDzS0yfVsKh1NKo7fLNWs09t54t8WMX+KNa+qluwX19nxlf573WGpK7fw5FwzR48GtK8l7oktdHGq0uhCjdHWnolRctHu99Iio85XkPN4NLOvcXWgQQqSVyNoWQoPkreW6iUUDW7+nODW+oDWs217aXO2S0w/vl/+VX/mVH+of+Ju/9Q9/xYnrE3pTgO3DtijZbV2GdMdCoUHo2pJikD8JiHpb3MUhriG+cVoXXOxuByzyEaRn6LGLsW3wJh6VWu4WdKFBW82umtUmv3LbamT5S9friI1qX5nnhTWvLPPcXRmumysMZibeHuRhiHhp3Ly+4enTTwygK46Hj9/g7Xfe48GDB5TcyGvh9etrEGG72xFTIoTEOE6kIZkNrl8WG0rJ1rjixbLAwdGrwbVb/Xo1bbCDtnhPLgbMXRYD9KLKfDqhLbOulZvXr3ExmRARB4MlqwFqHz18wNvvvsM4Tl9MlWNAWyUEz7Is4MRqhzXjnKdUi88ZXM+hvTUqOMfVzZHnz55xdX2kVHjw6E3e+8o7nF+ck1IkOUdQy1WnYcCFHl8zu5lVzbv+rNAJ+30RrdJI0bPMMy+ePePjjz/m9X7P2e6c9957lydPHjIMwSpdoWdxo/05YiDp/grYd9s1bzssGjhwf9jz2cefcH19zW6345333uHxo3um9JZq9mu4q2yXXquNqE21msUrpT9Ll6+vOR5mfBh5+OQtLi7uYUBdW8xjGmwSIVhUMFf2p5XXh5Wr/cqyZI4nE0e8PyNdnBPDFu8TQQNVPVWagbi9PRdOMCEle8paTMBMER+8saGqxWicE2IaetsJFnsakjGvSra6Smef1eFww7ouhBAZNzs7nGHCrXPGR4ohdpfaFxFCUFJKDENkuxkRBzf7S65vXhIdfOWDD7h3tqPVbOKpt3hf9CPeB2Ic7KDaKqkJ+EreP+ezz/4EX/e8dd/zsx8+5Cf/wn3eerIj1CMyzyTvGZwBMec5s7ZGHBLqRlzcUfzE1anw8sWJp89f8/LmRGmOaXtGTIklV+bTSs7G4koh4lwiDuOdQ7GJs8kHDhcCSxOu9icOa4GQEJeQDtS+PUgUEUR63XkTAw2G1AVqT/DBHCQIIlbVXpuYVRYhjvZ9RWeAx9waRa1xIig8f/mCGCO7nX1H03Zjh/O8UvJKq81+T7MK3+3ujDREfIjEEEjJOCWlVdZqkRPVxpCSia3O3/GDpHNy6BtpzeBjIg7285hAhsGiO7sL+vSpH3oQeDI1/uJPvcHXf/QdvvzwAY8fjMQSeH04sd+vtFbxsnJ2dsGUgPXA05Py9JDJzfggV2tgBcZptOc8uA56hVoKa+lV6dXy5WmcCDGaK0mN4XdbJ9t6e97peMT5QBoGi7n1ODZobyOz6XhrBdHMG28+pp4yH336lG99uud6FkQ8Dx69wf6Uefb8JWttHEvm1cs9WgoPHm0Yw2Cwdy1Iy3ZgrAbpPTvfsayrOXGd53Rcca1YobLfcFwrN/sjeamImnugtMZaK7UKa8vQCq9fXBpryaBjUCpxtIGGcw6nkIJnmyKb5Fn218z7a1SN2XfKlzzQI+++s+F8O3J1KcwtMq8rpSwcb47QxPhPuXA6Lrx+vWfJldiEIQxMZxcsdUT9SBpGCIPFQtTjkiOkQIieUivLWrC+QZv4NUwoqApBIudT4q03HnBY9oybwP7qFeMudPeETQhfvbjizz87cdMmtPPGzISaO9OgoF45k8a7b275ua/uuIggXnGqrPNqB8XSCM0hLTCewe7hyP23LjjfOdzs8MuMj8L9h4Fh40ghMj16E//468jwHiITysSQbmjHSz76g6e8+f65DbpU8ETKWlhD4Hv/8gd85e0B/8aPcO/+Q9LrT/jWdz6H3QVXJ+GPPnrJj799wcV7b+D9ZIfMsFKXQsupe9sLcOuQMSdJbY51zeTFBPNST7gUzAlTentoBrwStHC2VbZb+iU4sD/Z5fLy6jXf/+wHfPOj59SwxU/m9xct1sTnO0exKnMxCKyqoE06XzBydjYSPRhf0MRq3xTxFqUotSHYRXhIiTQONJSrmxNzVnKzC5WCxcDGCob6QUrmycXI44uBLIn5NBsg2TX7zqtyPgk//ZUtH35px3y84epmJXfOTa3mgFqbMGPxuZ4OuVsrpDWiKi0Xc4e2hpeBcRop0qMn0rrzvdgw4pYpVooNNbUZw+i4cr6bePB4opQjV68O7E97rtcTRRMxCeMg3NsIj7c7YkioM75RxTihJS82vMIRgzAlz27n2J5trUU4V9RFcyJ3YG/oTY63juyy2rqhzng+vYbO3sDaaHkhedBqPV3m3hfUd75aqwQxToe48Y7j+PqmUiUyOBii8uTRBmnKWszNI96AyRqMB5WbNd5W7XsgAWkd/N3PaIFGy5miFh109KIWlR6d7HtUH+KorqDV4q6dleZuW/6qxQAVuxtId/uIwDgOiFNiGlhKZc2VoM6iKK4XbKg5jq2YyLGWZu5HLH7jxeFd6DHRZkMIhCFF0nZjQ+J+B3F9f6rFatDBmG105klrFe+EmEaaFJREJTCXQq2OgjNHlwvMq+cqK69PjZc3haubwpIDPgn37zmcX9lO54wsPLwXeOdiw3uPdjx6sOO9t7Z88N4jPvzaA378wzf5xocP+OBRZPCF67LhmwfhH//ZN/njf/QbvPwnf5f4+jsMm4n01k/x1s/8u/z83/gP+dd+5IrD6095nZXjXslF+2dy27CFuai0EkcleeN4OjexCSNTEEYcUTwZpYgVSBjnpDFE43FOk5DSgK6KuIEqMAwmChgIPaFqQ7fWW4UlBhtcFAheiSkzTGLlAN5RqBSTSBGUMcG4AT8IS639ObSWZAnCkBLoiouetVa0RfKSybXg1Vwt4szld2dsaEIu2qHJQog9xaPeTBnaINk5i14uZeus4Pt5UyTY7uh6OgQlt4XSCklt0NmyFTlEZ2d/UWji7pzXVtyjhm0xrkw//zWcizj6+bWL1+Yus7NcwRzcpdpa0FQ6f8iG2R4PTVjrYu+fSHeu2v/Xx4D40HlMAKYPaOumAazVu9TKEEYTstTWPGvDNTemDeH71tfMxSUIMUVc8MQ00PJieoSAJKFQ0ap3Qws7YTjER9Q5rFHYxN2GFdMMyfJT4jAXcO0pn1xZS2VZs7W+VysxogtvvvZSIhFc5/w1L33vK/1+aigfu5DeOqQgVyHX7gprVlZmDkqlSH+ntD934lG5dW7ZPnrLOS6qjMESKa01/rP/9D//r/5/yjv/n79+6A4lwGJC2OHB+dgrxu2yYzDfW8OVgQm1V3OLWDYUsRYoK6s1hR6x3HRt1r4gWHY0twoyEITeqiOIWiY1hmDupBhAzaZtcG+77Ou/8gLbA6bkdaHUjBd3N9kdx56nXc3REofEOA7UVjkdr3l1OlHWBeeEi90FMUUKBrq+ub7m/GzH7nyHl8i0GaySu1YTMZxR+2vtgMemxscQxzg6nBuYl9k4EmLw35isTQBnMa15WWkoTgyCXopN6k7HA+ucWdeM7wLD9t49YoikGJnSyHE+EaNnSEJdV66vX3VxweymtVoL0M3hYBnaBhIU1zzzMiM+sNltiT4yzyuvr694+eI58/FEGiIXFw95sjs3VpUWlvlk0MTYBTQbrZjwgthCKUptFe3qsQcaZtW2XOzMvD/x8cvXnE6Z3fkZ77z3JTabsYtP5uwRHEMcTPgqxeDP4i3+4hK1FVqzVhUwp1EulbJkjoc9zjsePbrP9mzCOwM+5GzgUhfNhkoxx2iMwZg2SIfiQquF4+HA6XDEe8e023G23SE+UrWxlhPOfjJwnlIxZkvNHOaVw6lQc2YpK60oTj1nuwcGPe9igwsmQK7emtYGMeiga2afvbXMhuAZ0tDb/+wdAxDxpCC4znuK3SKu1USHdV3tPXXh7lI+jiM+RhyWwfZiE9bWLCrqg9XZz6cj4pRxHIgxdUHBWiVO8zXX11cMo3BxNjJ6a9hzweFaNJu4BPCBpTi0FmBmiPY8zPMVzmUmOfH+1x7w4cMLHj6ubEPj6viCV88W7u0A51jLwlIyOZtok7N9dVXhsBz4/PrAsxcL+9kOrj4mzqYdh7Xw6vLYP6OES9baU5zgXWBVR852SWsKLgRyU/aHmVyVos5+BufxKXTxTtB+URaxKWStldr0TrCTvhFUVQO5Yow2M3tlcGLfQW/pc8FR1gyizCWTlxWOC+NgMS4F3JA6R65RSiGvdtluueBTIA4TGvshrzZciJyOJ7P89stUQxmm/i5Ar5I3a5SJRHYJXErGxcCQhs4SAtTEJGssaybCVauV9sn4cLTG033m+dMrtruFd97a8eFX3yZ/I/Dt51/mm5/u+eijz6hSOT+feP460w6Bj5/PvNxnxDXO7ivbzcKYzlirEmol94l+Ltn+3fuzX1uhdSdqQ0FtWmnFBl0IVZjnheW4MJxbZFacY22llwTYHrK0GVRoWtnfXPHZD77L5asrrhezJlMK/rjw/o8Lb3/wVa73r7l5/pwabd/63ifXNCc8uDhj8rAsiaxCxsRpdKWsBdesMnnc7vjShx9S88q6nKBWllYpshB9YkgRxfUhi5U1BIm83F9xaBnvG5qtglcdzGthu9maK1Ehxcg4eEJwDA8fU1rl1fPnHPeNl3v47rf+lP/gL3+Fn/uJd/mZ/cjvv1K+9+nCnCvZCSEUQrTJa4qTFQM44d52JLpGJZKXFXWBadqy9CjymII1ZnkDFwe/41SV46s9NdiEmznjasNJoOjCixev0Z/4EtFbjOrpq5XNtpIcrMm4PddzY/RCUnN+zevCGANtNTdXlZVaVq4WOBs9m3RkWQRqxHthOcyUojy4f2ZxBApVLIbhAzx46z7ToxP1+oLl1cx47pguJuL5G8jFh+DfAAZwFUnnhCc/wY/+hUuef//3+fYfPOPdn7vHECJrgO2UWOc9r7aB3/+1X+fnHr+DO/9Jfurnf5FPPv87/O7n17TtjqsQ+PV/8DH/8ZfP2D7ekaaBNl8wncN6gOV4Qh2kWHEysGTHfCz4tjANpiUOUQg5YS1CIzf5xJKBUGkVLq88ZTnx9sPM2c7e++PVNT/49nO++b1XPDsVpCViOXGmiXWZqVqJLaG64HHkHmu181OxljEBJ5XtYCzE42VhWQpZPYM4Wims/QzptzviAEOKjOOGm+uDNZA1OzP4DmeOoVHWRi2OTYKLaeBrb000v+FPPlGSVxwrdTG3w8Um8eHjyMNd5V/86Xf51ueV68XhUiLEZLGgvJBcI2pgkUpVh0Sh5tW6X2gszS5ErvPUxs0OiZGNS+S8cKiN4bYQBhvS2eftyGWlZiW4xvmZJ4XG6fqGq+sDyyrU5hnDSBsm9odrSqlcXzY2E2zP7qHOon80i/6EYWCVhXU+kdeZqrDdDkxeMW60si4L4hxjxAYAzng8IhZTLmoRWakOw/5zB8CW7mDOOeMkomK14aEz8Kqao79W4dQyKpV7LnGcF0LwvHHhePPJjjfvbZnXE3/4+oaahUawCyC35zNPEI8Wo0+KmCO3tJVbUIl3Dvq5RMS4TqdSyOoAY54SOr9FPTE5Sj3ZDAEJ6AAAIABJREFUdbso63wytwjCdjP00qAej1HtFzeFDmaXLohSbUCuXoz9A0gMuGoCkbRgbmonfQCid+wY8WI8ni6MhRC5VSmTj+aUasY7yWrNo6B48YiniwnGP3ROyKIkP5rbXE109wKqSwe127AwuUhuxqp5dqw8Ox35wWXkwVPlyVnj8e4p0+C4uE483544SxdsNtfswsCDqbI7D8RJGEPip378q/zM17/K9XLi+Ysjf/bRFX/68sBvPn3F3//v/zZf+dX/lnffep+BExcffsAnf/Z73I87zvTIS2dneY+g1fhmWqsVhIigxfg7+73w4AFQGuNgg6CYjHcj1ZkQi8P7wjB6NpPiQ+N0KiQ/2P2LlWM2U0LQHtWM0HLFPvZAKYokD6qcjYqkSs3mhFmpNPXUIta2pI6inugca4WqAV8qiF3wa+7CqArkCr4DxZs9y00sbthatUiSQmve7rz+VggCw7I4q7LHEUaD+TfMYV274xPfeXMKUBm9I4hjGqxteC6CaKF6b+d+B5oL3LbO4ahVqWJpAa2tGzuE2hy5mJdXq5k+nPc4Z417Tp0Vwoj2AZslCG4bFe+ML811Mpm1bmdMIG2r9uFVsxY6i9cg3t6r2xm09AhxE09ZM9EHSrOzmfOeFOysbM4/iye32pizDVA8wZyVYgzc02K8oYYZMFJMOLFhYK0Gt3dijkFjLlmxTkieVSyauGqGbA5K34WnEG39K5hAb2UM1mqae4mT1kroDEgtCzGYSFbXRriFtGNsPrpDvjWjzTo1xnOMtjalMHEqpbft0pvjjUMYnK0pgomRxTVC9B1d0YidSZhLwU5ZP7xfP3yGUrUqUdWMo4MPwWCHAmAbkDQlOEeVLuxAt1/1aRPZptdY/EIxkJiKw9regrVyOO2unt6m1BlJzin0dpuqFeotkEvMVnvnKGyUbLXcVjOvpGSHXby5YtbF6ldjDCDC4bDn+dPP8N6ThoHNMDDdvyCGgKixZxS5q7UXEYZhREStTrpfJp13vbXsdsJmUGQTjMVgxj0H6lxD/EhwPSOK3glxQQLzPLPfX7Euq6nGatbcIQ08ePjEKmblCxjzui6UvHSniEJvj7CqRlN+8Ta11GpuA1QoRiszYG+MHI4nnn76KVevr1BtbDY7Hj18zNmXzggpklvpjRQNh2czTf17sIOJk/69i9iGUovF6gRKtoPC4JVaV/bzkVeX1xwPC2nccO/+E959f2cOoVagc5REHBBBq10ig949nyJiUOGuNJsAl5mXA8ebA1phuz3j0ZMnDEPEAU47x8vZlIJmrQSqFpm0O7UtMKrKmhdOxxPLUgg+cf/xY8bRLPilZHStHXpthwAVEyqXZWF/nFlzJldY1ozWiviBaUz4GCiuW4AboImMbbQbF/Cqd9R+7ewpHxIxRVSa5bR7bp0GEiNpijiFIIEiZuFfTjM1L10lt4igvSsVweF9sriMmrX7bnGPXxzuBGWcEs7ZJyOtEoLYxXctrKcbHpxt8F6JPlr9Z604Is0li0KJgSoDEFNi9M4yIcuBtl7S2oF3H+x451Hg0X1F8xW+KedJWO8llmxNIVBouVIQ1gZNPae18ezlJZ88v+LZdWbanLOZzkzQU3j2yhwV3ntzRvmA4vt0WVgqKNaY10OC5KVxWosBCdURhsSQRnDO3iPEDiproXZrsEpFsdpT74OJnnRLNEpZzY4vXQiqzThH63zAuQjOcaqFdVnIOVNKYxgGtrstTYyFsZ0m+gJKztmUNGwKG6YJPwx4wSYsCtEHWq6AOYtanwTFabANsFm7k7UpdcZGy9RWWXPBeYtx5NprVLUasDL39kEPOa8GGA/ehNjSoFY+2Teunq1sWbg/PePLb29QHE8vr3n++Z7TaSG3wLPnkRgT80mZS8V5pRRhOTaSr9y7GCgeNFdCgypil3/nTWTRZow/b9Es524nYNa2ZM1VdphZloVpuzUWmIL62zVb0e7oiRKY88zNq+e8+dYjPrrac6hKDWazRxrjGJlrtsp3ceTGnddaDwvf+cEl86zcezQxbS9sndBKbsbdUvHgKjF5pDefVIfNFhBkMddkCgObabLnh/4a95+L/YEpbJAYWErFS8AFe++bBpIEUnRM08i08STplytxlJhY18z1vjE5+M3f+gFvPdzwzpOJb76oeHGkweLT0zjZ5H1IxGFiHOyz3wweaZDXRgojc17RGImdy+VUCEmgWWTz/tnEcS5cX6/MzgiJrRYyFa9CBl5dzexvrtmdj+TrmUMTro+Vs2TP3pzNvv74XuLmlFAizStZTJiP3nMeJoLLxCisp8r1ITBuPV7UYlK7DXktLE1IVfAyomXFRWuOQpSd39DOFqJ3lFNhZgW5IaZX6LRBggciyoDE9xje/ZAf/Uuf8cf/+yfsnzUeviXsxL6nuPOMi/J83vPt3/gf+eCv32fztZ/lF/+919z86t/n/9nfEGLkdz6/5u2/+y3+8t/6Km6KSIy0OeFj7QMbz3gBtShxbnhnQFGWiVxhnAYk9aKOXBk3QsHB2igtUlNhP1f+/BPDDjRduVoOXC2CG7dsxQYxVOW0N07Q6VgYLjJSDRXg42iuOu3NvyjqzHlSmzHGhEjqlyqnQnYNy2sLKU0MqRE3A7jAYZ77tNbchEjt50fw4klOee8JPB4qFw+U7396TXY7g/Bma7892zq+/EC5tzvy5z+45F9+f+ZqdozbDbuzcxwFtBGqtbSu68zYPEUq8+1gwEb8OInEMBJSIHlrOMIH8IoLkTRXSpk7HwNqyf3Ab5cgBGJ0uLKw389cHY6s1Vp5h/ECOUtoqdS58uK0cjZE5jxzrHt2Zxd3DVLBR0JS1nwk12yOZXW8ul6ZWmQryXw+3W1eekOwNMFLb4IVcN4RaqPWQlUhugDaTChKVnazjYlSM+tSwQVqWY1rsywGzW3V2mHFarY3aeTRm5H3nwwMA7x8+YLPr5RSIhIaLjeaenNsiJXvNDDArXhjBqq5clTVrq5q518fDVXggiUTahPQak4DZ+c8qQbd1TAQnbl3yrJgBT0mMIcQSEPqz5Q58Utr5hDJdiH3fVAcnX12KEixeI0V/WAxmtrbu9RYroYzdZY48NZIZ52vKyoDa12s3bIPhl2INIo5//sa7hR8sOIeUXMyxSCsvXkKb04NHwYUTy0nEMMZqCoSHF6itYY1Ya3w8iCdVSQ8uOfIBXzOPOcVuxBJw5Ep3HB+FjiPkbNhYHMWON9EpouRr//YfX78J95mPc185+Mr/vCjH/Ddjwu//sef8PS1MP+9f8gswtVyxA/REB3OXBSjc8aJas3ihNKYl0peA7sz4WzMtGqDnyLOWqWboBptdKsL4k2g0FgR75jOI23G6ubVs64OR+BicMQAa3VksWeiqDIO4Q5QnF1iEyqwEJMQCIhGTiXjUIbBE8bIqZqTkrKgTXAhEppFPIkeqlIK1LJQmr1P5s40QHNwwYwEufXWcBM7bgtcegyGViopmSCGa0gXPw3Jkowd2wpBIuJ7y6BTshYkKME3XBBba7zaOcOB66xaV5s5SVWtiQzpTZwVCF20M4evYM9/rbfPpA2PbwUQNSnY6u2dta9J6PiZtRov7FaMFemsI8u9Ou8wAwpIszu63La2a7+oq91NK8YJW/WL9EMIJnbbfxwxmEh36zKHxi0LOMSEI6B5xeHJczaWVDMxObfe/qimK4CjOrEWT7i7j4v67p4Vcx+hNkALJvx4ccZfxCDfTnp5QF5oebX7fSvG8S12NncuUl1vJlcT8Zs2ongQQzSo2vlAxXA/ztvz5rURkrHZuHVX9ufaVfusFTVObjCWqTYTzn6Yv374glLPkWp330jPmDZLpJqaKgas1H7xlN5EpR2qrU1QgeRSv7iviNrGF6W3mmEPpmKLqP09xu0R12M6DlqzyNst/A0xy6Gq1aybXU6ppYKjOy28gcmAZV07bNWEj1KtNenRo4eEGO1hNoWHdZ5BqzFSUAiRGDxePKVk2/CcWHYf7e+AKQCuuxxaNiAZAr43YlWbM9BqY50X9jcnswSXYn9u5/9s0sD2bCIOVj29HTeM2w3L2sjzkYaxliRYbEcwF83t5+PEdWHEUUtvEujTRS+9OHxeubq+5ng6knO2HLLzPHr4iPPze4ybyTK/3lQP6XZKLw7nrJ7WgBS3a4B2C7JB0FtTSjMbsVTlNM+8mI+shyMSErvtGe+8/SWGwRbUUlcTkULqDg5jPHFr3VTt+XJzgBg3qeCdsCwzx8PM6bQyRse9+w+Ztht7Xrv6Ky5An0SXbp9s2Mtqz3WjtkotmTVnliWznlbSOPLw/jkhmg16zdbMcmtDbLXeHVqOS2VdFg7HI8uau6yKAbWHHRKS1dLfLi7V4oUxBkZxNNEOEHUdIme/13nbTDSXL54pL5YjdorzA0VsriBNaUcTO7VmcxIO0d4Dtc0sRYtD3fKDxIW7GIrHBAEngmg2B2Ewt7yJckpdM6UutFrYDIlp8FDN/qmtESWibuqgZrugxmhQ1egq++tLLl9+QvIrb2wDP/nVt/nKu2cM2wV/uqbMlXaqOJdJVI77wqFkSjFQfNZErsLN6cTnz695cXnDqTZitDjAaSk0zK2xro1hiAzjQNVAVm9QSSx+ifOID6CeOWeWkllKvYN2pjTaJLGL2IiwroW1ls7cKaxLselGsA3YarNDLwoo5r6sQOUOJk8/aFdvcNi2rt0VYLG77W5rEH4gRGOPlKZ9atmoJVPWTHOCT4kQLOLoxGKSvgv8rVhMuHRr/rCdSDF2V6frjRx0i7RQ1WI0DU/scThbAZpFCdCeFLZnNddeLOA6kcp5VAMxFg4ZXi6VP3t54ve++T22g1DcyPFYWZ1nmBLiHZvR4dcI5ztyq/gUeHT/Ho/ffpPHbzzgW995yuXVDCIEdztltMNaNUtZh/n2gxCYoOEcUrnbF7Q2hntbs2C73v0jjtZ/j30tjilF4tnINsLD3QZdLszJ5Azme5Y8HGfWWiGMuDigZObWKBXycUEvD+SxENtsU3tV1nkhpNidq+aEkL5PFiISHbSCD0oMZksPcaRqITYFqkGtg2NKiWkayLWZwOY9RGtBSg5CaEyjZzdZhn9eCnldEPE8fPSI5Tgj6wlYed3gf/pfPuanv/Em+9PENAVSg7ZmcM5KEsJEjAMeay8Zk7comgiijuvrA/POpk5NBK8FbXa5jc0BjWEc8XGm9nVMu+jgg50TFlGuXu35ygfvcDq85N52S5kz08UGyKQYGcaRsHE8/0Q4NSsnMBaFvX/noyMNBnF9dbjhuy+E7ZAYU0QITJNCNrF4cRBUiSVQEHy1c4uTiq6N9HDL8dk1y+uVuMuEskd0wU6Om75mOnTzdd740afsXx353j9/ztn9twijI60j21RZN0qOC99/+h3Of+fXePxv/Ec8/Nlf5JdePuPyf/un/Nm+cfHO+/y9f/Epu1/9Fj//N7/CbjqnjlukvrZK675mSFC8V1J0DEOCVsmxEYK1fDoPhcaxmljAIeKWxqklc9OuKysRFYdPyqM3Nzx4U9gvhdNSrVK6Jo5aOL+wCHQYNlyvxQZS3i7cTew7E/WAY82Nw7IgktmMGAC3Qa0WUwrnE2OPz8XNlvm4cDqtFq0A+jSHIJ7oCohBkjdh5dSUj/7Z51zVBwz3Ij6mLtibS7Zq5c+/d82ff7JwKNEidcGzztn4OOKMUdEWfBosslb6OUlAnRI8bKYNw5As/qWm8Pp+KXLOkQbB+9Gq6akdlxBMBCgG8FyWmWU+cTrN5NKrnhHunU0WldCFk69QCksx9sjUrI00DNbc6oP1yYINE5fcO6oksBlHWi/OEC9styOqhZqbOVe9QnB3jhgJ5lT12KS+0odgYFN5pa+bAt4xxkjLxispCGXt37Mzh8PpcLBnZIl4lKuDom6kyYp3oxWuqPH8CtJrv83bEJq1HwkB1Jz9WSut2fDDFQN/S8dqqNrf7dUa6m7H1NqfFxGHRNdb5cxhVFuhFuVUFm4fK+c8MUW7ROeKSmHpDhTDXzimYFXiWfoeJybONWxIaFQac03QbBBhMGrFiV1e13ICn1Ay3gWLCvafv4RGyeWulbo1GyiW1qjZ7iLGj5X+XQpLXU1IctY8N3kPrVrUVao54aVh7VmeF/vKnAeum/Bwo0yhcD5tKdGKPrIo16fK9WEhlD3jlHiw3TDu9owxMG6Ei+2Gr757xntPPmQ5VX73n36P//mfP+WjKuQlMMlAbrXfnU288BjuYlY1GkpHSCiVB5vGw92e5iNXx8RpLxxXO9dqNxh4Z5eIZa74VnE+ELwNiyjGIy0VfGh2rlVvde+OPvxsLFqZFWL0BLVoUIiJ1kaGIKxzJfZIm3qhFKta12o8JB+DFTuUTHTG9MJZOUlZreXXBrLtixZxtbY3cL3YJmNFq/6OAVSLtXaLs3Yz0dun16L24h0ZGxqY47q7bnpUatgknDjm00xzHieKdsGpdoHj9hxnf3aj1NYB9krLNnz20VaUtSmSK1p767ML/Q5r5/fgzWxhP2GHwudGSIJEuXP0JB9vb1BUgaaOIhaBFhqitRtCeqOkiQr9nVTsb20MwRhvrv9d0geiDXPhiLNn3nuLztUVXAtotjbPGKO9t3XtRgBLmejt3eM2eieWzmideXprTmjarGSgye1i0XE7JvwECX0o3kwMxxi6mzggxdGqIMEi0hZ/bFRdadXOzd5ZdkUcJiIh0OhD6A6hxwp7MnYHr6LWgussOSA9ZieYiKtq+wrFysp8f19+mL9+6IKSEwNGOwAxnn0TmzzZP7WpAY2utLXOzKE/jL5DusMX09v+InpveWbpgpWo0tQOLCrtDpjYXLXDdo/oGBX9CyZGrZZZp9mi65wnDtEuNa1DDRVOhxMhRWKI1NpIMXF2Fu2CIFBrYzkdidERxONjwLsEzexut2Mz1+1sgoDv4tXtO9JviKWZMFLVcvUitjmdlpVlXsg1M88Hs7T6gSa2KE5DssatEAn94QlpMPcTwtXla0JKtnl5R5CJKkpTc4xYI5stLOvaQGpXnW0DcwKHw57D/si8P9CcRQ69C2x3G7Zn5zgnVumbYo9FNYM4OiH0rLDl4G/V6N7Gp1j9b3dA1KLUmjktM6flRF4yOM/mbMfjhw8ZRxNW7HMzN5d3I6oGbaVPjFDX3UMGf3fOLvXrslDKyrKc7IKelWmz4/yNiw5p7FMmbYi3g4m1E9oUSEUt0uVsMyi1sZZCXg6cTtYWtpl2PH58H/okzUSArqY7aJ1xlYvVYZ9K4XQyUHVejW/gUsJFby1fzRYS700Qak7wIYAXpFZaNR5YUbvkDjGiAkVtwtiaxcyis0mKiMd7xTfIpeHFxLBT7gd/jF9y27zYVPFuMCFKXI8umvVTAQkOh9m6tfVWHioutDuhIgSoZUWrwfnidmRIox38ugW05pUhOupaqA62Kqic0LqyHK+43r8m6MJX39jy1fff5stffsJ2UpbLTzjuXzM2z+Aj4xR59eLA4epAKY11EePp7LYQB25OC0+vDrw8LhRxbLY75pq4PKwcT0dUhd12YjMMEI2flGngIoSEKaEW9ctrY82FJRdWbCEfp8mmqN1xJ2gXGwu5NtZq339pFiuLKRGjVai6zrZAW89GW2PabdzzLi8fLBqH2nqmphSSQiSMo/GAnLfjmRhgMDhvTW5NIXhCDAwx9TYM6SK4OXnWdYHayLWgzjGOowG6m63SrXQBE5vUiggl20FoSoMBCTGuh2IZee3PS62NNc+gShUoa+71sc4OueJw0bEJPRo6TEz3z6i5MD0ZKFoYfSNJYwzCT/7UB0hQnl1eEX1kHCKEyqvvfYer5zesxRssXlu3hhufJa+ZNE52FujrnV2mblvnLMCa82qfZ224YEMGA6qbKH3LH0ALvsycJ4efT/zEB0+I3/gRjlfPKZ0ptH284Y++e8npZE6zYTOxrt1y7ANEjw47MhFpxYYszbOsmXEz0mo1d6ALiB+oWPWta8YnsMvjaBwJr1Clv692wapaOd8lpnDO9c2B2gTvEynalUuckkLm/hRJY+XVfmWZM9psv/TRs502xO05IcEQoMYN334+Mkwj56NwXBvH04qqM5aC2OAH55HmaVVozTEvR6twDlahrH6AlgluAFWS64wqJ6xloWm0S1KP08chQnScuS2qBtlvWnBj4N5F5NXrE6s6NtEYLnHwhObIbsZJNrdjgVayiXqrMxfktENc5dll5sHWs5sSUZUkQhoSV5cnNA049fjdSFtNWPeTff60iCyF8VxYbir1dKLuXxDCFmFAgwc5R2WA8ITw+Bf44Kcrh09/n4/+7+f82M8/sXai45btdIP2Neh73/5jxse/xfk3/grv/8Iv80uvXvD8d/+U5/OB9M4T/rv/6xPG8XP+4l8bCAGII0GV5k8WF2lKS8GeB2ftsCkX0ujMxVsT0+QpN5WlFB5MEzduQaoyt0ar5qgzZ/VgEVuE7RAYBqHURl0dA566igkc3iFs2B/sUk13q4LghxFx0ZoMu7iZRDkVc4GFvqZ5sWhFGiK+wnw82sDI2YXIGBOKeHMYohUfA5+8aOyvMkVGWvRsgmNo1nzpBNbS+OZnC4ej4NKWbRRKE8q64KPQWmAIFj2KMTE6YZ6VXIEg9t9qrsdpiPjobR2p3DEAm3OIBozn7GnZoj61mDDknPELFWVZMvvjSm4ZW5EcadhQxXwApRW2m4GxJTuXeGeD1WZ8DTomIAh4FaYhMaWI1h6ltiXCBH6NNnDwwQZJTo3DW2/5IX1sEgdz3JdiRytVWhGb2NOHFJ1XmiJMm5EH90ZjZi0L85JZ18IUHDkXbk4rn185pPX2NYwVWLX1GLXr038TPFrtF0Zt/TxnSZ+mru9vAlps+IXtabWU7mqwz82JnQnVG1vQOduTVIUUA0uz9IJ3gtIbb9E7ALBH+2ft8USCrMZewzHnbFBm38+knYe1aulMFb0bmNi5qzNSKeY2qJ619Li8igkZdAC5FlpvZlTarWkFUNZiMfvSnTKFTqYVZ64O9K58JgQTn6x0xxiiycO6rnei1+BHnAhXx5XXR2XQlbMxcH9MDBtzEk2bQPSBoUJalHnObA8Du01hmwOtHFkWc4SH3ciUlK++84g/ffqc0hxLrRQcvlRzw2HvsEkkxSJPzphUtWa0bNAM88lxXDxzE0qwn8mJw8wfFR+gtWzf+94RgjBGMZdoW8m14byQqzBKIqNksbKKEBxSi7Wh9WFRagHBolbz2sjZECPWTmb7qfM2aK79fupvZcNW0WCFVJKVIURrENOMF7uXSE9eqFrcj2ZQAHPWte7AsxtOGIwDaPuev7tHoGYEcCKIkfS7eaObJ9SRl0ourQP/LUIXxOJy2sz04b3c3kDtfXEmYot3tBVLZYg58U6znTXKUvANQlJclM7H7G4ih53zmrN/H+mw+lwYXCS7WxCJo7aVlAaWbPd774O5DpvFPKXaXd45d+dYAtt/rMm79KG2uZBd1xi8+6IZTTGHvZmc7J9753Ex3BkxPIk1L6DGjjMHGN2laM3Sta12T+WL8wdwJzIFCTagvAWEd+7arQvVi7kOWxdR3b8S69NgUWXpyQTTTbSvQdobHu0M1/oVl9ZXaTHdwzu7Q4vaOVa0mgGBXniWxO6D+ZZfmMGFPhRWfpi/fvgMJbFIlSdQumJvXy39obAf/FZJNQHJpucmRRhs81aBFq0G3b6LXtgXjVar9pQvXs4i4KtZTF2FUoQmhdasYtMBIqY4+yH1y74t1uuaWde9vUzF3FLTZsIJeO8ZhqE3gak1JFUThVJwpOAtKqbO6v7o72e/pGk/GJsSWrtbql/Ma98sgZZX8rqyLIvFZlqhVYPI+eCZtjuCSzZh6YcnAx5GgvOdfaOsTVnWBXFCmgxEF6ItSCV39w9mrKqqlGK2U8FEvlIqy7xwPN5Q1pW8Ltb2Ng2kNOCDZ7PdkmKyP6cLOdIvJU4cLvpuvevCVLPv24Bs9vcarFKZ58U4JctqGf5msZ1Hjx6wuzjDaWXJM60pPnhisAhWKY18VykpdyLdrXIO9vkejwu1rsynBYdN8c8v7pPiZN+RWLxHnDNh5FZUanJ3kOnHAgQo68oxL5SlsBSDzg/ThrNxxIu5OEwEvRVEsZasAmuunJaF07ygWSjSq4lbJYwGJvfdYk5pBDzqFWdwIsDYXq1a5KO2Bs4s0uYYKr2JzOpFbw/lru9HNG8ibKnM62KqfqukGAjJWqpWbR1oKf3ZS3gVfKt3cVHnLQ5oDPKKl4aLAhSrpfUW6WytMS8z1MKQAuMw4EIkZ707wCkO8YlSMsnBII0YCsfTK06HSzau8uU3Jr78xkO+/P4j0gSH5SXrq0tcm5m8WOT4UDjMleUItTikKptpYAyJRT0vXx35/vMrXh9OOBcI48TcHIe50qpjGDfspg3qPLmsrHOlivTvJRnoDiHnxrpWclZCTMTBIPTW8JBwYI1NNGsdU+WYM8ptY0MgRdvsfGdKtWaOuqoF5xy1FHK2o0YMg01q+2HKBX/ncjKhxuE7sDYEAxu22rqo2XAN5nW1/293tvlk0VCPsRhu96qyZHyFpfy/zL1br2Vret/1e97DGGPOudaqqn3o7t0nt7ttx8iOcSwZyZbxTXCkyEkAmQtkCW644WNwj8Qtl0QIQhCIm0CQsJCJFUESSw7BDrFb6e5t793du/eu2lXrNOcc4z08XPzfucofYF9Q0lYfa1WtucZ43+f5H5Vttt8dRkCuAJbmnWA+/gnQ5VdvOGmW8rJ6f2rr8T5Up3YJjd1U0z3r7PA45uQkX38bEvhaC7033nn/HakbcqZVI/aOuxqxVpxXn73ifHrgh5+9oRdnmhNX777DqSeJsCNSPI78KEuBXjYtU5fl1kw1wJgWNPTO103qtmmXxnkSRx2uFGWOE5syEep2YjufqTgvDhP7vCekzv39I+eXd4RkLNeR0/33Z6WCAAAgAElEQVSJGgN969xcv4sHsetxWGXmXWaaF2IUuLjWBnEizntynhSiOyl/zivQsgJcxx1CNPzSLtQrtfYxnFQoagF5/izx7a9/iSlllt2BeZn47Mef8HB84N2bzHtL4s2xcXzsnGIUwxkj82EvFUdIxDlz2GVulollnigd5g7OxnGuI3x/xzTN7KZZtkhczHQOTHWhWsXqRiuNPJusHqaGV0MgWO/OqTjnVvWcRwjznnl3wFIkh87cTuyWzu2rT3m+u+HmZsdxrZzWzovdFSmqLWWZ4RAqW6ha9GzjbnuQbbgHsm28dx24urmhbYXHk3GssJTO1qW26M0p98YaNsIUOEQFNU3zjGcjtEbPJ/CJtHQeX5+gByy+JKRrQthDqsOGErH0Lvlbv8bP//ot//gf/jGff+/Ms2/PzFMEpCLJJfJwPvP9f/4H/Px7L1i+8ev80r/zN/nsJ6/4n//lK47BSV9+l7//T9+w3Mz8ym++L1VrK5inpzYcpxJSI85GrpFlMuIcNIcYTMBV2BEfVkqt7HLEbcMnwz1h20X/EiGr0bETmIIxRSjmWEucreMhMQcn7CaCw+O2ARWq1pu0ixC0uOzmCQ+wHjfaqeJKWB5n40XpsuP0cEctR2Jw5lEeUVobxEQi5onQN2Xt2DXTMwi9i53tXVaTaSfLWQyk3cwhF1rZlCtXfQRru0jBBt47u5DZ7SovZuNhhdoDOR/A1W7bg8D1i2LHh5q0F4OwYSlSLBOUZI3bOLuNp9mPmIjLgV6ylAljqTydHgjuUFfef3HDbMa2nthdX7F247g6qikW632uG/TKnNXKFC1z8+zA7WnleHK8FZp13WcjT05Nm4p8aFRiGEGF3Udjkci11qQAa9XHHVeASPON27VySjDneRyjK9YbU3Se3Rw033mkh0ykDZVHH5nlOp8ueXQijfWPHA8dguYRHxNnJDwRVgwAqA+bXTcpmRo+MjURoG3DPTNIm17byBaNlB7wKtW51JPtLaPPhZSUu0ENW5C72k27BaK7QLChlEgxvFV7DPfENACljvItLURFGoyyIkUFQDSR8LX2oQ5z2d1Q5AfSNw1gUcpmqeah9cacFTYuUnTMbCZCqCO14DRFrCVKVVP0edtGmHkjxImXx8pnd84uO8ts7GZnprNLgWWXuJqdfdxIU2eXG7vlgatd5Dou3PvKn/7ZHX/2OdydjM2LZtxBILtpSc6TMuy8K6CZrizZ3gK3R2cFvAc8GR46sY+4adeSfgFKpOaf6D2p/XeKpFSwVjQTh84+GJM3NozustBZyDhSKoVBlq10QlPeW7AM9BF6rz0whogTickoZX36XrQhaK4OQVbdlAPVN3JU3Ii+R4ehGr/EZQwMVwCPB1IcZPiweyZPAoT75bzQ7GGjBRr0L5f2cwtR+UtdG0sfav/afQCxan2rbkR8CAwu2cQm611EgJurBKqNFu8YpeYKQXufSMLGZNqQ3AVeBo/00AaEAo5aRxngR8OIVXY6vV8Cj3o1nWXuY37V991DlY0uRDwoC7P3OkQrF5W7PQEx7j5cRVW/B/BgxCSwC+pTbtWSEh09Y713pbEwBCv9ohhzWtAzGu0inAkKGx+zLTCy3Hw8E29FMx40Y0aLKtHyjrmauVsrWIzKa0qX3bzhtT7FDfShmei9jDZO5UU5DWvCGcKYpd2DFGUXsG94h831tlhQrE13KNX4In998QolFEzabQzoT9B6GAt/GBk3cEEAeh+SNTMdmLUSLVC8ajigkzAsTQpx68N4ZHrRzWEbzR69jEVqyHX7UPqkMZhUc13mzcUk9aYfZExSC0yT7HjD2oZr4BfNMVBTGFYgSTVTMGIYobUhyyox/OOXG0yAzXg7xmdRqx7eNhao0+nIdlYyfwyR65srcpj0n1Mm58yUsl42hMLHMJgjR55vVzvH1c0NtVVqr2xto6MlSADsGHhG6BsYtTTW9cT5dFYDzFaJwdnvdzx//oyUJnJS5lBMsl20JntZDFJY9JHPxGBm3HXYBEZAmNmI33fKVjg+HjmelBmEQ4yJw/U10zyRhnUjmA7JFBM5TojP82EzufhsB2Q5/nxlIp2fwLnWpOC6vr5mv1sUiomUdFgbCK/+3t4FAl3+HHcwD9ReKFuhrZVzLbhFljxzNc8KQx0b+dNn4BLY9aag5NMmq9FxgFC1FWYiHmZJD/OstzEG+YgtEZORDUlTA09p/7EjlUoCz5Ew0v3BqG5YyuSglqQYk9R0puWyt0LdNrwWsapBy6dsPk6hy7aUIznpXRVrgAIsR7vKGJXUSDE8xIaApGW3UOtGKRvbdianyP7qipyU4dU7mEnNV6oO40Qg2MYSKtvpc+6PnxI48e139nzznSveezbx/nXnEF5DbYRwpHIizYHQjO6ZjYClzLQ3pnnh+LhSLXLeGh9/9pofvj7y+bERUyBPkeMGD6dK8Mzzm2c4ga05pfioO5Zq0eKEk2gdSmms5zM5ZfbLBCFqOBgNhQ6jbc2wkDmVOkLyZ8oAV2JUI8fFqqqX0gZQqJyj0tUgkqNoWYtRcngzeiv0KvtNHAqiuEykEJlsPMvm8q13x0tVG01zpnki5iwmx9QSggmE9673ufZG9cbzww0xJoHd5iqs6fq7KlSzUtZNZ8A8S7ljl09hhAuaPbU7raNZbtrvZG+KYXzvPLXqBNQUUtaV/V45UBd/e/cBeluiBmOl8eevNx7uCltbyMtCT5nENfkwE5Y6ZM3Qh92tITYvpASDeb5k9F2AZDHxknZPOTOHKMA+yAZTuyTRW91kKeod7wZxJu5mthj40d1Gef3AaY205YYQnceHwM17X+Fcz4RQubrZD5BE+SfK60rjvtEAet4eub4+cDhc6d40VVvHqBDMKSXc1PBnlSe1ZwhiqUIY7XoWca+YTXhMnFbZPfATxze33D08DitSGoN2YD4ceL7T0uHdefHuc7X0hcQ0R5YU2U0TbYSeJzcSmZR0f+U0DYDTiCk+3TcX8MtDxGOgIuuDDebNTUsV5pxOnYdHNaYQJmyOTFmSdQud1O558TxR+onbzwvxWWDJgavrHcfHSo8QkoCq54fE+1ePPBxlU35484r7u1d4h3QVySXyOa957/pn2D8TiKCwVWPrnRgj+6tlLGmB81qY00xjxe5hubnCKCh425jSFa2trHcb6XBL3r/C8w30GawP5VbH/Irlp3+GX/zVN3z/X31C/JFx/bUr0uvKmQRTYwqBN59+xo//8Pf5xu594otf5Df/1t/m08/+Hn/waiXOe85f+YD//h+95nqJ/Oyvv4tNBkzgDeudvkktaHXYnEccQTSVC3iqzDEw+cz98RFzmGOi507zormri92Pg21uVYuNR9M7XZxEAlfwdEpwswcLEw+bMkZqU4NaTs5h0VK8nk88nB9o60otyr3Kc2dOsjqtj4+cTrfUKrVTsEicMq1lammU6tgusUyRtimjKE1ZKi3sKf9vnjMtavEOMapifJqGeh16F7Nf+2iUHCqVwxSZrOEd1t7Z77Xs3la1G2lU96Fg0F281ULoRm8Vn8FIpCibaZ4TbaujKc2Jy448LSL3mqIYpAIVoRrjRGlSCtWtE7dKWvbkPtqNu6CWRKB2Y6uVSicnlUQ0+ahl4XVoI7cxjeykkBKh9+EcGLtfaEPhLcKXKStLVMws3oYFbTQMtW48ro1Wt6ez3ryxnrYxL2cpBgiEqEKA7hdN1LDqO+SQRDJfAKRhC+wmgM+8vc0FCoE+ylvWreqcMKmAbVi4LwKfcFk+TU1/vYvgtWiEpsU3JMhRC5x7VtsdOt9qq4MglaIqZbkuLvalGDt9NBMrO1Xzr7vul9obdJHi3cFsKFKCyLeNRvBMcggjrsEw2Wlq41IcEbgE9CZyTtQtEOmEYGzVqdVxNkKeBDTEPNwbI6/HBQvnmMgxEKZAW1X84W5sPQ9A1Sm9cb8Z6WQkGocZ3nEpLmzqpArnGnisxukEdzN8/4f3fPhj518/FDYCa60jdkLgriIxEsetCLw1I4bIuSpywGLkdKpUmwmxkV0KOwXwZAZ0gveoJrdpGSrsQJ4C85yYknN6aMSwUZthvvBI5dSgh6R5ZhAxnUavPpS/ASNraTcf96uySUOMBNMs0B1iUCC3m6kQoAWsqxylRf28RUp3etKNToSEE9qwy+NSPrkRsjKOzCHkia0p2zEONXoIDFWUvQ2gHkIAMz0n2rpN6q1gmE9kLwNtuDTTRn2CXUq3dPn9AyipTfYtcIWLm5OyypLylIkx0C8OBfcnF4eiPxrmgeCN2hotOSlENTYGqbDkfAkjbkDAcq2NMkQlNlTzFgP4IMAHsKOPQu3x3TvWBuBrmg+latL30lFuU7AwRCqdbo22vo3X6X2AUTZsR6AzHEY8ip7PgD4r844l5VvVqt02pPE1Rn2UCmp8ZCmj9zFKwWRB4hfl1jqtFJGAFsf3UJ7ECykmwaXDLdJoeIjKro2aw2vrEBruQfM2f6k8wMZOzCVmZ4Bcdom3ERD9Rf764hVK+kyFtF8OQze9NLxlHWx46QNDxeJiAGvdSITheRVibA7VIOdpvITy2dd6qZV1ti40tDkkImSBD9HA20YZjH5tyrIxC1rYp5kcI/No6ai14r3pIBnh2rUUUlIDlhQibVgkHOXiCFmOI1NDd+A4sAZYFpIushBUr76uG+tWWc+rgrSHb3M5HJjm6Ym5CimzzztiSuMii1oqYUiRBwtjRshRORvAaT3hrRFyZJoS6+ksNqoPVNyMKSZO542Hh3tOpxPrupKygLWbwxX7w44UIx2pynKKNAR+ya+sGmFAnylChnt7CyylGPEu9UZtlePDA4+PR0oR4BYG2LCb58GQwOWlTFGXDyGNd8EHYt1HTtKgm8aLU2vleHzkeHzEUVPRbrdnt9uR04KFNj6vy4Chz+GCaOvPFvjnA1xqW2HdNtYqiWXwyLxcsd/vUOHQSWDSWIxt+NxrbZzWynEtnGpRK0ottB7oKbJMB2I0YpDtyG0MPyHIrugXa12jdh9BjPLChvGsWlD+wSUgL6REiDOyA4p5Y+ThlFIppUEfMud5IlpkVUCPANaUZP80sZu9q1a+90YKUta4O60XUnCWSXlJIbiGk6Qw7dPxkVo3YjBurvZM08hdujzTRNzCqPQMpBRYwsZ6uuflq08J51u+9hXnW199zjfev+LFPBG9EtY3+AOkmwPPdjN9CdRz4/i4cXpsPNyt4HDaYLfsaFPm5Zt7Pvrkc17dnXlskZh3bN5489DYame3vyJPe049UbaN03l9CkCPKUPKEBJbaWoALJUpJZZZ9rfSmtinAKVrYauuPCsjUGobQwBAEKATA8G1gCg4UGecbKeVhi4e947bpc49DbtEYasbpVYsBZb9gTzsmsnCE2M7EBJKKZIP21AQ5fDEjF8o2zLYXO+u1hozDoeDmovkAcBd57kji3Jpjbqu1NbJu0lSNS7DyZAM9xE6iwbrWirLsoitcR9qBx92aCkjfbQszvPMMs/KfxoV4sqgk6VzrZXmarHJ18+42e0UsJzSCPpuoiFCJFWnh4h15TlN84Sb0QNki/RwuZcGMNQ6567BZtotAmfn/MR6RRsgTYxYzrRNqktV3SdqAFImzgv76Wqw5hUjcbUY25uV/W7HskjNmNLMlKZhZdTPsXWneQWD/WFPCAKHcVczyQgt9pjUOpICbFoqY4zKxsrGZJBTFiPfq77/EFnXjfvjPXOdCG60/QfEBKcEL3ui7ReuFmdqlfNpw7tzdX01GPzINE/MoRNTVuDjYNlCUPaYgFg9425a/FIYeYMWiFGZUDONbRv330WtAU/KgFN1zt2Iyx7aaJSMUOvGfiq8uIJnu0qvyntar5zDkjkszulYuF87YSyoKcGXX8x88vmJH33yCfe3r7k5RJacucqV5xPY8YHXH/4FX/5r3+H5PhEHmOlo+Y1TxGvn8baya42VSroW7RW3lRQNghYhi4npyjm9uqOsZ+LpDWF6BVPWXTTy+brtCM9+lvd+6XNOD6/53p+85ttT5vCu0R80UlWgXWU++9FfcPUv/oD3/q33mL7zq/zW3/ken/53v893z0baH7i9fo+///uf8R/uEj/3y89hKsR0wOxMoFDO4DGQciWlTo4R2xndVk6bQI+eKodpR6+F1BtzSrTS6ZNhVWG+os+7kgmouMdhszG82QA+A5uBhc6exLkFvL9tOZtiY5qd0+nIJ68+5eHNWWB7byScerynRYjzMx4ejgJouOTUOBUFmcb4tmEnJAdTcLH3zpTmEUwfqNvGnKKsxZvUvSkZKY15K4lGSs1pfWGrJ3xYWkufOdeVc6tUd+4eZEltHnXXjoKVMIpc/KIYKZXaO7GuRPxJYdotkiwPVUZRTo4ZMTodnTUTUiKXEZFwcqcECLsdZ5/Yh4lpcepWaWMpjxaosdCokCI2T9SQCAlir2K5iuPbCjHSk+IKvKNcp2gDBBmAxghGt6AcSY2PF1mFjZYovd/BghbymOhx1oLXKnWoBsLINQlRC2PnQjhonndj2DxGhsmw2F/KEgQy+VgQlUnSffweH2G5YbT8Bn1tEGEbRgOpjflvngObBbIFWYcvhHYH4oXo7kMpp6yeyMgXbI0WlHIVo+a1GKLs++OMtgHYxmEJb6OIp/bGU/lQb9iYeWOKNIXtjTNStehRHzPNbDg1UEzIAA86uod2U9Zn2KvC55saDw2YMkw5DODPqB3WVXYazMlNhK13Bft6HEqRUSHWu1Na59Qat2vn1WPlx9PGi51xmCJLjkxz4d1l5vhwx8cvG5+cjXOZSNEVnj9ASWMUjriplMIiATV90dqw/ABZAd69d1YqOUyjWUwqb2U5TgRU/FG2QkzG9TJjZSNFZ5oC1iuVwNEEsFYLA1QVell9EEIDwKXCZpXWZUGMMY3ojjjAmvH8PSmRwiBwjOhS9DcaYRoNlQ1K3QSM4uNnKGWgOU8KccOJ2SEqT/GSCyxRg7IpL46Xi07DERgfx1fXzBj0cx2zFQZTUA6WoggCHjoLRq8i8uDSL6e5tTYjdAHJpEH8uZQ5cUpy5wQbd4Ce89ZVzjByrAXg9KCc0CxVUogjr9iVqNxbp4/WOO2YGh7NlKk7+SQCfbxDmJHMKBVqgCd7bNOu0kYJzEWNRGS8e05pFYsiCluBFhqBOAqi9HNVoP5F7CLwzV1q2+jja3edMS22i2RMQD8MEE4/Xj2j4+fUDe+aq0uQKycF5dUJnxC53Nto1QuaMxmWQ0x/tg0XhALc9QymJIBJsJEa5gZdN5SuUtu31hSLECVACFEzVnr6fr+YX198KDfyC+sJHfFbPlyHAw32wYw5piDD1hSQbRG80kKS7NP1mborrKy0oqrJqsNcUudGHAqkgBGy0Ld1O7OtBWqVImcwzLtpJ9Y0Dl/m8NSD8mgCCijOGYp3WVgsMk/yZ6saVhWG2o4VNu0gu1jbxnqkXzHpOy21sG6F1grlXNg2gVJmiWm3qFp9knUJc6Y8D2ArS2XTnZwufmyT0Ec9ogJZaGoQ67K1hGjEKXM6n3CMFCPzNGFuHLeNh/t71qMUSd1ht99zuL5SdfQka4d551wqu1n1t0J/FV4JCm0NwXRgNqHmIQ7JMBocz+uJh9s7Hh6OnIt8q9M8c/PsQM55WAXbYE0ke0whj8MzyI+LDUWHghgVZNaHKgmOxyMP9w/UWokxsCw75ln2PB36Qm7FaA1lEwL3lD8gFknoLqqdPB1Zz+sA4CJxmliWiWQKm3XvaqxClcvmAhfWrXIulW1rsvKV7alydk4TOe6ZQyRksMESDnIAgo3AXan2yrj4xLInySVHrlIf4JqZEaNCVVNIAhRM4ZytNLay0baiw5umSyIk/f4hOZ8m5W+RZ4Ef3ihN+QDYxJwn+a+9462TgzNPnSV3Wt242u9wAuu6spWCeWW/m5lSIk3xifV0xJJIfilZaMpGr4+cHj/l8fPPeL7b+CtfPfDVL0e+8mzHl14kvEgVGKNaGbbTibbJ/nL3yZHbx8rxDOcT5CmSrp/xZnvkk5f3/PDTWx5Lx/MVFiMPa+X2YSPmzGF/YL/bcS7O+XgkBhv5Q4EcI0Sj9j7a0/SzisGYp0yIgdJGWKiJda+uvALhzI1t3WitaqE1LRspieHCna0UDTEutU8fDEYyWccuViiChs5SNym/RgbFvFtIk4BBDZpoQB+sr9emylV3ZYSlAUr0IbvHniTN7p22riSc/dXNwG99ZGQYwST/jwTKaG/qrRPnBVIcIahBlawjxL2PcMCtbDw+PDItO4H2rT8BZoBUE0PFWc4VI7Lsd4AxxwyM3cAU5Hhhevtge5dJ2QrNNGxeAnsVXzYu4OastbDsh63UjYpr+B8sgAWd1a1W6rYyL5HdTqqw9KQnRtXOLhm5uUJkPQT2h8MTKG4XYDhAaJHaBaJ6k/1ud1hEDiSBhTkphNjtsjAbXsUATimSB7DPuFneDuc622IIeMpMy8LusFdjUIy0XpinScygR2jj7G6N5XDF4fCMYEXMcVKOQUWtlpOD1aKswHUdSyEQ+sigUohqH2eXfk4a5ANSPaagoa3XNgbaEVQahoItJM51lS3XnGoajTqy4p7OR2pZsQaxB0JZ6cD1rnO9dEKAu6NCc7/0pXc4HA4kc9I8cz937h9WpqifU0zw7vMr9tNLHl694tvfesFXbjJxO5MDvNjtePHOc15/9kg4Hdm/cy1lD0GozgBWQwpsj2d6zExxY7/MhBzopdOnqKpi9J6FlLHJ2O5OpHRLmF4T4hVus5Yiy1jcY7wgvveLfPUXbvnowz/iX/7Rj/jVv/ENpoOxnjshRJZkrLnx0Xf/iOXd97n5hb/Jl371t/j3fvIhf/cf/oBPTvfM+3f5EVf8D//Hp/xHMfGNXzyQktP34DHippbRDEzZiFOXMsVldTg/QmgZuwpcucF2guK0FmXhSgZbZQPcg/b2MLG1DtFUx22d1o1ditCDlKPZ2S2Z82mTMiPCkiI5rrx8/ZrT6xM//cGB1uDhWCnNOFej2cZhH6gbeL1EHghQCq1oeI5pLGVjrDa9j51Aafr5pSlSeJupGHOS6qP1J5u+8nm67N0hEENnLYVgkXMLWNiTF5dqeAzpceQYWowidIaa0VzZhiUrANW6LFatn3GfBOqlSOyRGNROt5VG9aqcSBsRs8FIaaHUdaj2GhYvRMcAMnMcBFQgRWhZtdEhR+WXmv6MyR2fFopdCh6k5HdsKAJMM8RQEtMcb1JF5NnZz4GtOKUqNgCQfcJtqJY1l2FqObIQ8CjlrsLhdW4DoyjiL6kCLIzWKG0R7ZIhF2xkPT3BdGOx5+lekNJIZ08c9m0thBf1gS4DgVXKkDyfDeIgAOhYlOqmNRFNF7XqJfvVQlDWCZ1a9XfZSpVlLl7iDdSgF1znK3RiCqNAx94Sy0iNHDwJjA/aHazL8hJyolsmIfKOKkIXS1gyMNe84Kg91kVmRT1IZOKwa6lxayuVaDDN+uRq1ZxYaXSv9LWOnBZnf0hEq/QgxZh75LRV3dFBasetF16dCrcnmInkCZ5dR3gWOD4ceX3fuV87W9PcG2wiJxvAc6cyrIpDRWKmWnsk4iBkWeSlqA0jsFnqvz5QNEP5Ob3DuqoMhQBTiFg5akH3Tg6ZOSFbanG8aamsHZVHoLu6Nc3GrXdOp6b2uWllWqRkDHGiu8LuL+VBAQElF5tMjLJsRuWd0HogBJjmRGWTe2aAm3WowZOKelEnVHhSpVUv2o3aIMBd+TziC13vt4dL34uArqjnU04GG2KG0cbWOi3ohAzex6x4sYrpxZPTRaCURZHZMSaRpQNA6yNDSH+myNNg4/n1t+9mCIb1QPUx37pRmyyKrUkW0q2iYscL8iJQrLtIu4st1qKP87ZQmqygoLPhEg5+mXvN9TNulzst6lzqI5+qFp0vFwCaXkkhDuWkY9HeBqBbEqHQLzO+irviIE9CVHnRRaX1RPq707qUSLKQKrw7R6nOLzEqfeyb0RLtUl4VEu51CCbGh2nDwRXjyCaULTSlSIiOe0KhGD72VSnMqjzbT6IJWXUFkNd+oVz/fw4o6fDVMCjJxpBWPT00o/3ApTSqQzrWqpapMIbq4kqdP583WlVyeo2QieSIajstQNS/1nVj2wR60CulO3OO2LIwpUBKMx6cXgt4JbSRGB8MhvVEBIGqX4UIprFD+JNk1E2+zhDjeCkZVdodgkD9GHS4WxQI1XtnO58o2wifa7Df7ZQxMU8K49NHRRgPWjAxCaVV8rBoYQ1ao5Q2VCw+HhYpIHxIw0K6ZJHIEtGa0+vGy5+8kQ2pKkNizjsO+wPTItVEDPHpZ+dDcjjFScFfSUOLmxRaMQZJwzexZ2koA3DYauF4fuTN7R0P9w+kmFgOB95954boUs7EERpoDq0FrEcNBFEAnZlezCFpwXsdKfsZ3Ni2zsPdLefTEXCWZeL6+iAVUQikfJEQtvFOKU0fj0PCzROqHYaqq5TK6XjkdD7RgZgzecmklAfQFRWuNyo4jUwyWOtGKYW7VfLathXO59MIxZMqJcdEyoGGmjOsdX3fcdRejucQh161ZPegIO1p1JRbdwGJKNugJ1mcYhLjqyY4g9qkqtq6DvyAWk1MlcW1niEv5N3EQWkEUp41AU+hq6ksmkC3xGDoAhCMxcRuJxrzlJT91Tvr+cRuf2CZ92IhRxC7oQGiDV93jJlkK90LD68/4fTmFcnv+eWffsFf/dkv883398TkxNaYbLsgJSSMOCfO68bd7ZHteObxtlE80nzh+vqGsLvmwx9+wp/+6FPW0qkesXTgsTgPp41tq+S4cD3viCFyfDjRujOnKPlvvDCmnXLaWDs00/8Wo2ynMWWqSxVZPeAmZWTHOJ1XXX61Uvu45IOUi/mSgWSBra5iKxs6/5rUczHFEbRopCmAq+5U5FmjG8z7AzkN61o0soehBhmDjoO30UqRM5h+nrviW4YAACAASURBVG2Mx93bYI11xmIKo80xsdvt9HfQPgHD216Lzr7eG6U1Wu/kecFi1llvCn1212B8UZ0WnNPDIzEp+632Pho0L779MK6FYTftnd3V1VhUFNZoI2+gen1qWAlcLJiBOC0alIZy07yPDAwB0kYgxcZpvI+9NZaRddVoIyTdx1lU2dYNDHJeJE1OcaitxBIGXMArdtmPBBZOWTYzeLJ1dZpAlryjAeetkGNiWSbow/6YgsB+U3aXlFABGwB5zokwMiPCCOFU5qATk7FYolSxjPMys8zLWKZgGsxmGDkk3VRnHdzoQUN9I0jd5hCiBmEP+pnIJiL1w0VWfvHit7GMmg27D2q1mrNs2SkJfDezAao7MUuROE1JLVS+5/h41HKexDjjzunxzF/8+cd8fndHjzPVBV5t0r5xk3asDkeXUva9Fy/4qW99lXZ/QjbmzPVh5vXtcfzdEt4Cyz7w/ovM813k6+8nbm5PVDtjW4Ow8cK+xJe/fYNNDWsdssJvw6bvh6g64Xwwzmtjy4X5mCE2Wg5YgZhsfMYKZ85XC+dXjzy+vIP4CTllwi4AL7Cw4D3htiPlr2Ff/Qbf+M5HfPf3/4z/9//M/MJvfEBogTwr3wQPnMqZj/7ZP+I7736F5Wu/wk/99d/h7/zkv+S//sMzJbxh2j3jh2f4e7/3Mf9x+im++os7zDKkQooiyrBOmLQMts0hRwIZfGV9iCRLxF2BkKXUTvpZt270PIJjTTmV/iQra+QsRr+Z8hsSgbUDwVmmhNE5l2ER63qP5wJ/9ZvPef+9xp9/dNLXtcDVLtHzzD5DPuw5HRKf/OT+7bKEQSm0uhIx9suVwq9N9vnaGsGg1ELbChFYchr2NwEF/TIHuBP6SCTwiHcBOzlqBum94KQB9gBm5CTyazMN596H2tIYdqtRcDGWkq1utCqlvKE8HSn+pJafLWBFAdyYlirLyunYTQdqOQ2gdWgl/C9nP0bdT8nw3DFrlFoo1emhi3BCakibdN6rHEb5jUQRPuZB959FFJ5byZPaH61vTCZ2u9Qqu2RKmitcTWQMS5j3tyCVuT/l+nkwLj0GdRB5cahr3RjtwPZEGJQ+Pi/X92mDlDaTqoqgTBy5DlxggykU3obVLMRIjFL3Nmc07CZS65xoyr2kEmNWTIZD7WUoRMZM5gC6n6c0VE8j24cBYoU+cuBiwJLOOYtG7UX38bmSo9qluhYMze4oWDg1xbtYcM103glRVmaz9gQm6PtSu1sbAOS5FHJPw0YLOWbSJMfC+dhYmxN0TavSvjRylrW5lkrpG43IWiCHihdZppJlxQaUTu8CTFtruEExo2KEliiPxvF4Ym6PbF22qLR1zltjdNoRwoQFVXV0Llati2VTZHiOgTTp7IhBi3upKlyKiyyQUhpLxeJNc0QOgZ4q//Z3vs4v/9pv8PjR9/ne6UN+8Ccv+eHdxrkfyHlPSsZW1ZxXWh8WNtn/3HSn9mHxrs3x8zpCnk96aHdXeqZMe0hvVYRzvChU3u4tVmXxtUmq/54maE5iomepx0kCYK24SmiL7lcVUA3Qb5wrfRD42CVO4GKOGsojdywOxYtFWUHpwwo1dt2qFrWtN7qJIPTx+80SnU6W8ApzZ46JU6+6s7icj30ob/T3kmKwXQAA7aDBsGy0KtCJYdOMKRNRpl2laXYYeT+6T+ogyRXWr1lKkSwxwHm7CFIuivnGpTwpTBOmsEwBPUN905saKovqDYmxXzAoLEc8KB8umMFo2dN8ysgukjMoBoMgYKqN78nNhqDxEmWhZyB2fcb6bLUzmnX9+dbV4FgrOaVhVx4umd4gjMwkyWaG0PJizdSbcxFFmMUBPqkh+hLqrrmsj9lMKi73oaQiKsQeExH0Bf76wgGlDnrgBp/NaCK4PNg+FDUgNr+7llYBBY2twnp/4lSFqhtxDKZRS3kwLAqAKrXB2ihVQM2yv+aQEz7PQghao7YiqW8/SYLqssHFoMtcbw/wNABnhX23DVnh/SnbJIyAwl6V8p+iwrx7qViMCk1NE+v5xOvXt2r+qhveOldXO+aUmJaZed6JYYp5hIMq00N/Py1EAmky1i5iSaecN3mehxyYsXg4YmliyJRS8HXjtK6UUmitcj6eaNvKMs0AHBaFpR4O16Qp0aqUFDYGVtWHJxwjRgEtU5zY1pWU9bDW0mluzNPEMi+c1pWXr15z+/o163om5siUZ9774AOWaSKZjZY0e1qwQzB6r4TIYNmGusn0PbauWltAmU2l8fjwwJs3D2LQp8TVs2uWeRpf6y+j5yB2qo88r4vUFrZ1tJGNBpDHxxPHh0fZd6aZ5XA1LjMNJ6CwzTQGAMXaif08HU88bFpIay1s20pdN4JFpv2OOE1kGxkiQEaXoLXAnBMlNhKRUqWM6uaQMmmOJBPafHmnLtHJaZ7USBG1ZOjQirStUrY60G4NifNohug4vlUdvvtrUpoEergArVNXLs+cMnm3YMFJQ+atL1AwX0mhq148B2qRsrA3Neu8984LQp50mDYpDo00DkI9W4mAlyOl33O+v6Vtn/MrX7vmZ37+m3wprjwLd6TjmWmfac04PjzSNliPJ1JtVAvcl8J5PXF8WAlhJk6ZPM2YVb774ff5kw9/wrE7y25H6fB4f+J+a6yls5sWrvcHrHfW01kMUojkZEMBogXjcas6uEMiTRMpz8SsvKutVM6lUzyAJVo3qjfWUimliJ0dUv6LTHmaMlOOpHF56d0c0vRyqX+9ZC+kYZH1YSeqgC656bAw5z05ZFUGj4GUpmyE3hprKWy1EnNmypnqCnfvXommBrgwshTcnFIqhrHsD8NaOxjfNFQXQ2I6BJ20Vt+2YvqldlaA09Y7eVgNYgxs9w/EZdZCYLLAphgp6NLPyC5Yu3LVdvtlZN4kAUjDPlB7FSDiOo9LUxvMfr/X8GQgGXmkuIaNy/KRY+D4eCSniVoaKar100doR0AhrAoKa9StEFIUYJISnSR1qPcRgKqmzuZd+ShAnBaxSzYyQaoPVSBMedh+vVG2wrwsTDlSq78Fv0cr51OILF0WnXmWSixAMpO90SHYpFDNYKxJbY25O8s0M8X0ZFN+UkkZtK4z9pJt1Zv+f3gay9mw7ZiUIBr8ZTmxquZUs47XTholFfLADDZtKKVaTPTtRClGb04emXiEIMtuEOPaa9HfLbkys+aZ0uG4Fn7w4Ud89NHHdDrPn7/HYb+wdqf1QKsb9w8rD1SmtHB9NfPBlxfmqbHimO3ovXOYEscpgRs5BwgKyPz2N9/n4e4W7n9CK8p72tqRco68+vHnfOdnv8R0faCHRClqNWzVWSbwqRNHK5nVQusbzRe6b9jZhg3LiZ5GYGsiTzu4gfP9ifX2jhR/jL03wxQgaFYxKt4DcX6X97/5Pt/+6Vf88T//hKv3Zn7q594lVjVUnYEpzHz+cGb+/X/At/7dTLz6N/il3/ld/v2X/xX/zffPZHfC9Qs+vF35H3/vY353/3Xe+elJBNkUSSXR144VNHwTiAY5Q2fGehH47BM5Bq5CxFC86rkMo+qYgwqdtcnGaL1T1oKFmYlLLtmwIrXKHMDmjJnUrLUaV+/sWXcT33x/4tNPP6aeOn0bZ0Q9Ea92dO/slh15SdzdV25vT2ylUPqwzTAy1kohPVu0ZmyNPE3K9WgCU8tWiHZNnoLO4Cr7RBuNQoSL+dYErlh4CottI7C7wVDkaDa1EImpYeNsKE0LczA17OQU6CMvJIeJmPQZIbGRFsQB7AZzQpip1dhaHTZfLdfuylmsbSPGTHNn21QucEljFcBwWQylLg0I0Li802nWbGcpCjRyLVHNC15lu0vhUsZh1KBwXlw14O5VBE8zqjNAdLWe6iR1pqx7QO1iDJW4AHYb9xy9SsnjbeQeCbAOI9i8j+y3OSaBN+M5JRq92bAxyqyTgyxwffyZMUYWGxXuQ5GmdtNAtqQ8H6IUY6uUdVIySMVn3plSZngg8T5q59s4z5Lu9Tkc6N7YLSoUscYT0B9MZUNSHE9D4SPAQJbmYRocd2XthmXodIICK4etKxGny9sHXi8EqULv12Ecb90p61hQvbPLCYJTXZk+tRtbC8pkDBWLegdq15mdWJQ9eq60mNlWZ8mBHGWr2ZmxVQTmesRNCqzejGmOEJ2745noDvVMWSPVnbWO6OABvIXhSUouu00fAGR3CJOBN3qQo6K5lK4hDDtad0KqYJ1W1QqdTNbb+ZBp2wO/8zd+g2//9u/STg88lkfuP/+Yn/zrf8L3vvtP+N4P/pzvf/TAD+8mzjzD6FjdCL1SDbBMcCmiJEJIChHv6yB0Oo8Pb3BrxDARkWW9+0zOIocJCQtJ827SnJxiHxk50Iaq2eIIVPeC0QkzrFtnPYtATSGMUGYDwohJkEXZh5oIfGQEh3Emmx6qflHGyFKHGy0qCNyAGpQXF4b1sqKIkuBQujMZIs4tQuxMYyaOMdHQHewwsngUIG+WME/DUdRG+60sao7e5TBmRHCmnKGPFtiRXdWbMrRoI9nXlXlpQzHYohCekIbtsXVi0wzUepWwY4CVQRQSwRJuiOiohWodT0YY4h03gUwMkJquAguF62eoOuN0YowzzjpGZUqZsrWBYzjzNCmaIg7wvEkZFOmjcTmO71/K0N6MS1WPD4I3mXKdOsPVNdRVOpxGSLm7BCQObWtq94w2zh3NcY69BUk7WBw4RhS4m4II/3bZH76gX1+85a013FRBXkbWEAwpGj5AkEsQalBw9FpZT2eSGW3IxJck+WgaS1kbF+bWGu10Zt22IRHN7Pc75mfvMM87/HRi3c76ellIZwh9hPk5aTAIYXizFR7t4wUdwAMwzzOlbuPn2J/CRYXOG+fTGYDrmxtCjDw+Hnn52Svu3ryhtsqSZ/a7K8wqKU1MU1JuzUhxtygfvY2lDAkauWTPWdYFGU0AiAW9FL0qLT8kDWyn4/EpU6hsK+W08Xg+UdvGbrenbpsWxWlRaO+y43C1J6SkBrd1FQsepWToJr80piYac8iW1RzmgbIq7G+3nwkEbu9v+fjjj3n58iXeYZonrq+un1rgpjyaEWRQVdBavwSCIrTdpMi6qJJa22jDgtZa4fhw4uHuyPF0ZNlNvPPeO8zzREpGK/6U4yTZ4lu5sr58GNlJCuL0LrVMLZXj6Za7u3uwyNXNMw7DEoj7k89fQ6X+jgwJ+ulUWavzWFba1iil0+sqBixF8n6v3JJghDiRgmw4TsRCVa6URXLQUFZKEVOXlU3SLarZoFd5b4dfPk8Tc5zZTMs6RYql7bzxeDoLlY8JD2qeSOPgapuW3Gk5DCWOfP4gButheyQG43DYM+VZqEE3rBeMSrCCcSZZI8dE787rV7dEjOfvvQPBFWh/qc/tRWG9Xa12Vo2pg/cz59Mt58fXBM589cWOv/KdD/jW19/lsBSW48rN7opeCo+3D/gmwGu9L6ylUEundGerDffK7mbHtibut06i8k//5EP+4vM7pnlHWPY8bI3Xt/ectk7MievDDYf5IMlnWUkmzzEx0ipqTxtSUDcNc/O8w9KsYEuL3J821lJxyxAyW2lspeAm5mCed3p+go/K6ai8saxA0taaLHS9sm6bmO5plookmHJ0LOsSKZW1luF/bkO5k4cqcijPugCq1ipOZzue8A5xmZh2M1p7AoWmTDLQ+wcQAuetYL3z7HBNSBPbhf2ZZMvDJMjrBLay0Vdl3MVhywjWB+go1tYcehTj9/hwj82JOU7UVsf7MOrE+2ivCQo6XLeNKSfyPGnQ6U3V4S5QJsWoE7Ku1FOh9zqUf8pZ6+OGrTQiI8rPjOyNsm2kMJMngWvdndMofAhdw1nvsoS2UphzFkiZjZwFVl+8qRZQicBoaGm9YjjPDleSpjNy3oKNzBRHdcGO98rWCrt5h1cNQjlnYsi0Bt7VWNlNA18platlpzWt1dHmCRYi21mNSxqcxMD3EfIq9aT/pfNLi05zH1aMka0VIylMo2UkjVyzEUp+ofCAKWZOrVB6JQUnx0zvartKdmmnUa2t8jsqtYxzyw16JDAJ5OuyALa24s1Zzyu1NmgrW63gnW1deXX7hrXJxlPWE/NuJtvIqAizcnhKZZ4m3n+nY+XMFIyyRP1MB2u8TIHTunHYZSKdfnamGPnaBx/wwz/+MWcMq2eSz9AqD+czx8cj9XxHDDscNZB1C7LdIabSmpGvob5prNdn9u0a5kJeJ2owPFVSyMTRFMRNp55PbHdH8pSw/WeDbR5M++7rmiDzN9h/5yU/d/eKjz5+zR/+4495990rnn0wlLJxpd85ZWd89PoT5v/tf+Vrf6sSrv4av/6f/id89p/95/wv69fY2Qnma/7V7Rv+p3/wEf/Bb7/P869GsExaoJYjnYa3PWkxYhOZN3UFSJdzox43WpBVu+07hU33tjuzSW3amogld9Ui11akLt0a8ZCxrZLniG9RSsZuzJbwqZEN6unE8+tOayc+f4OUdl7oHRKZkPbQGrE31r4RUydkMa4GzEPhU3vj1e0rln3kcFiI80ytVW6Ucc6fj/fc39/y4tlB8VVDHUmTta20KtDN1NjGODN7V/hqDCp0saAsF49OdSkQc4BqWtpKLSRXxEJxJ6So8OuoFtm4jJmzDhv+mIlJJqCFpGyftlLWQp4SORshZCZ0VtC78kCqQ2wiH4MJVLdOGspnL01n3qXO25x8CdvOieBi5LuQMqZg7GYjBIe+kSPKicqZGNq4vyoRAeatBixqjTNTQU2rktrYyKy47CwiWXjbWNullmzDJt7Q+RQHqBfG+X9RRlObZuMBXAVTOYQspoO0NleLM7LNxXRplZLV3kMn5kntYjlhZWNzvc8RKUJrVWxFHDPxwLFEPHRTviSM/Msu0CAF1q1ph2la8rZhJZtChhowz8Q4qrqtapbHaTXIah/DaFStanmtysayccc5hochl6qKJUgkOrIL5hhG5IVIojRW2YYsdlNPWIIYBaLWpv9+3SqegkDy3ui2UIPzuBXyLFEALivXnPX95yyA5NyUP9XWwmNN9LIyUyA2VPDQqFVtwvQ0QJtLkZGeueaOufaf3gOzKa91qyvREyFFDiFyuDY+uVvBA61JteUwoglWbm6e81/83f+W3/7T/4df+pVf45u/8pu890u/xU/93K/zb/71B07HW+4++xd8949+j3/2v/9f/N/fvePH9ZoSZ1JcSV7Y2igVMKcFhbDnGLF2ERKYQA42ei+UDWortBaJOQ3bJU8zQxwW/xQZsRpSLyq6tNNGgVWKiTkbORjbqoKUOPaZUsa/9yKA3pLmKWCaZtmnuuxWvUPw0TxnNp55vYvBedK25CA1EgGs6b/dvI1CoPYE/rnrfo8pKeMNw2shWFIe0CCcpZDqtNafRA5huFx8qMpFSnaBDtZgvJsXtarmyKjcVgCvI2ZilCiQqK2MeDRlgsaos8lLUfbtsLxZ1OffzHESrVWmHAm9UYOyKt0z27qqlAnYeh2ZeTaUmpUQjK00ppyJGdm/qwEJt0bO4B4pax9Wu4qFrF02DDyhd7A0lKeRbDpH1MKoKIniRbNuF9jsrmchRM2U1Tu46wwXtzkcFYqaEG7i45wVAH+xI16KCNqwDvpQ5KeUiReJ/Rf06wsHlLZNIMw6WPXQ5X317lIg0Tm3M+u5YlXp+TFGiBMhG9GdGhx3yYBble3tXCveCtkhp4mrm+cszw7kKRO2SltPtNNr2nakbUdWN3LY6wK3iCcthMmlTmIc0haDLinzIbcVY26XcNtg4IVtKApwI4bM4fqGViuffvaS0/nMlJIunmTkvGdKmd2SiWkmzTONTsiLNK2OhnvAmoL9zAxKw1snuSqh121T1bL0lHgvbOvK8XjifD4TYuSw25Fi4vFe9jLDuLq+wn1h3Qq73Z797oplmXDEPq2lsT48KhMoZyyCloxLy4JUREK7tTSFkJj3Gcw4bYXvff8H3N+90Ys6z3zlK19lN+/Y7Rd8MPhhePojUCqYVVpJTDnSh4/2onJoXVZF0DlYt8bd7R2fffopaZp45533+PJXv8xumXC3AQ5VhdaZpI8Xn7ykoG/zpdoImAtkttp49flLzqd7lt3MzfMXLLsDrahZJYTBSl0C54YNzT3ysK3cbxvbqoWlNzifjtSy0VPm2V7gokcbX2swcEULsdD7QK8CBE5lpUaFh3tWLk8b0kQrevxSiAPMVBOh19Fi8P8x9yax1q35edfvbdfazTnn+87X3v5Wc10uV5Xj2EnZwbEdTJzYVGThCQgiYEIi5AiFAWKIzIQJImIYYORJkIJANgHJsXCI7KTirpyqsuMyLpfLrrrN155+77XW2/0Z/N99PkvMoAYc6aoaXZ1m773e5vk/z++pmZITuzlRaEQf1QHWKY4Gg6SittEhMviIp9JqobqinJlq8N5yvF0rtNx0C6+AqRPOJKJVGB99mnF1ecGSK6f373J65y44yEvC+aDMAeMQ1yhzIRuF+1VZyPM5bbmk5Svurxqv3z/iuz/+gNceRUy9IJaCdZX04oabp5dMQZsV2lKZ58Iswn4utGKUk7QakOI5u1w4v8k831/x4Ysdw7gmrNdcTMLLi4VcKsebFdvtlug3tCpMKSu/I3S3h1dgZxKgN3mEYDE29uinJ5XCflkoAsYFjPXkBqX2yYL3jHHsEHo9EHpvCTHgrWeZZ90oReO/OVcw2hbTyAQ3aEbaOHJeMFYvfUuuGB84unuMt16nlprX1PhDLuSa9NnNBQvEzQoflJVTpGoLI+oiKUhv9tEpnxPLdrvCRd/hgj3rXrReullLKoU875mniWHoLYnG9CYUXeOtWGII1NbINI2NWst2XGFKw4SgrWpiyO2VZTmVTF4SWMNqtelgcXPbsFEQdTFBn6g2jINaKker485iMLeXECfKwauG28iLVHCDTqo6mUSFr4P5Dm0WollmWxiHFdZZQnBqvTZ6SLFiKDXRWsGFiCkKzI/93z9EuavU/tvoz7N4MFkZp6grEzvgolfeSlUnVuuxDmsM1TUEi/WhsxEqw6CTslY0qlsRPZgbLa04OMCUgaJOSPqsS0x3tbrOt2owDA6hx6cNemBBnXq3mE4D4tRtYbtwZYxRl5sLQOdnGYVJIoO+P0yvGlaadKFf44cA1VoWgWY8Po5a2S7KoQjOEq3DmYoPlpQnLs+EuI7E1bGyZDr70PqGD4657rm5uKS2I3WBiqgrxAf21ws308IqWgY8uRrubo744+rJZmbdIsELBccswpIaZppwWwu5aSNgZ+bl7AirgEXw0mhjY38BsS34XNmsHMEHmvFU01n1rmGJxJMNu3RNulnw8SVmiBizAhMwohdD4wJu+1kef2rHD18Iv/wLX+GLv/YhP/Uz7zHeceAsJWtLJ1vDv/qjP2L8J5EHP3kCd76Pn/67/y4f/Bf/gN/zb+Oro929w5efP2P4pY/4mZ9+jfWpRk794BiixQWNnxkLoyvsrKEYwSPIeqQWXTcGH2ixITWp42EWalCTVbONnBK2BaZaMFkFoZoaw8bhloRYp6B70QtH8I716Nm9fMbbd0dePjvjqjWyCRjjmFtjc3KXcVxRy0RKOxbRmL13+imqoMIIFmnKpyxlxmQFwoNa/qNztLKj2ESpwpL08u0cOC/UFrFVKFVjN94HHc70yb93nmYLRixNsvJanLqU+51BL1tWY3ClVpZSWFrFVyGI0NzhmepsNfSyU6qee6xpmN62ar3X19Q7msm0lEhNY5zQ8IM2m0lzymSrKnIPptdtV4VpV3rTo9HG1pQzpRZaddjRIaVQjbrTvHU9rtfItaIEKh1HqNMs473GfquzhNqIGK52CwUHRtvQatEF9VBgYI0yhMqB+YayX5DS1xFlE2ldfEOKJg7oFe22A14EwKuoiwNbu6zUGqUL/YdLre98KlrnqYhQpeKNskyc1+9VW8GNQ08FKMQ9z8rh0mavfOsyVrOVngVzku7+Ue6iiytlWPXhY82ZEBRALkXYTxNSe7zbG3WVEHAh0KRg6bGtqmKAcxYXB2qr5JpoVfmYWB1EW3H62bd6bq69wEisKH8pJVIV5pz150nFA7kaSDrM9N7TWiEd4u+p860srFaOsQzIoGcCIwLVkEshWy0xCCEjUtn6ESzspFKuZ41Y+pWu8eJwoRCt1XZtdLBrjCE1GFp/Z027jXu5oUexXWRtRlJe8Cbx7qPIp9894pd/54zrBNiOVOkO13GAxsLvvtjhf+e3+Maf/D53/qefJ56c8PH3PsMnP//DPPjcD3H66N/m9fe+wL/2hY84+/oX+eo//yW++Jtf5at/dMbFNFJ9ZDgKrFeZVtSRQ7G633mgFRpNuaXWMAwDtWiUvZSMb4nVuKK4wDZok+xSbXf/FOX/Wj17q1mhQ71RAWeMEWcL0nSvx0BYNVoSpPrO8lx6RK0LSVYHObTeAt0ZnbRGlYJIB+Zbjc/n2p/xLqi7jo2RrExCZ10XnjRVQLPklkF6NI1Xbn4NeejzpZyew03B04PxKnhZT7BCwGiRCK/KaLzpf0ttBO+I3ql23DNnpem/W1vqg1d1TjVRhEhJpQOodWiGQZMkZtCBARnXGjkLiMHYoqU5rTL4qMITdGFbxRZbVfCsNuO8ok4ijWpVNGl4alMh9zpnxArBNqwPGi9rdJFUI2zSVOuITihVy1Jq1pbsapyyvxpaPCKV3MUx6CwpOUQhb31L6jqlD2ZRXeLgdhLrCNJRPFJxVhlKmgdXYbrSOivrO/f1nY+89QUueJ2yizVa4T4n5lLJtcPpgrJfRmtpriKmkkQnHa5aWhbOr2edqkvjaDUyro5wqzXGefIyU29ukJyI1uDWnjh69jiMjRxXx/F2TZaicMKqb4xxUSdo/Y3BdF4S3VbWrwANqM1Ssj5IIQysoiqP8zTz0ZMnzNOeGAac9VxdXjOuB07v32czbjWKUJLyj6xOM+akNbIGg3d62RQRPEmpDAAAIABJREFUck4aP6kNW6tCd53l+Git0b6UWUpid31JFWE1RB7cf4t5nvjow4+4urokxsjp6T3WKz2cO+e5f39FjI5S2y3lfZoTcRW4s7pLyos6MkrBB0cI+p4taUGsKsI2BKIfyFl48eI55+fXLPOC8YY333yHYQh9YXj1ICMQfdCWD+vJeVaRBYsNyoI5qNWtFFpp+KCQyd1+z8uXZ8zTnvV6xSfee4/NZksTobWJ0jLejT3CI7e1rBV9T33P6jd6E1xPnM43E89fnJFT4ujkhMdvvI61npYaOWlzEv1CKKb1zLoKmhepMk9ZGwCDpZXCfndNK4VxM7LabDEu6ntrDk1/9jbj74JeY63xYDR6lKlUa1jFtS7SUlly0kW76udlGC0+dosjnlIaThxpWkglI7Vou5oxXX3WS49UdfH41aBiiTTlZuCoeSHtC+NmYLPdYMLYGTIFJ/33lB3BZoJpt1OG3W7P/nrH8dEJb7x1T+FwQcgVxvWWUhLNQE4LtjWaN1AbyeyZLp7Trp9h8453HkQ+/31v87F37uKAms8wsqMtwK5hKqwfnjLPE8u+MqdEw5IlE+JIPNFYVrOWp0/O+dbTaz66ybz/bM+7jx/wInk+eK7T9zF47m3WuvmbqJ9TYxmHQacG7lWVOUYPdbkKR3dP6CZY5jkzzwoCFuM7l0eXzZS19nbduUOaWzZdGDI4H5TJk1OHe3cOWPDKLxBzG1+owXdujroSEUjGEH1ks92CtXijh5AqopGI1IHrBxaYdxrPc5EqMHid5DV0kj9X5YglNDJcW29dM/S1R5hK6Zluo45no7wMamO12uAG5R+ZbqsV0eaaVivWFI0kLIWyZMbthpwyOEs0ToWQnketnTNQUqbVwnqzxfteL0vng1i9LC6AFXWnRhO4mK45uXMH02MSxmgbDNZ2+3NVZ6W1LNOkk39v9P9zjlzqq4EBB2ejsJSFOS8Iasm2NvS4WiOJwdZETjtaydQ804qKb3fWm7536PfSq42jibLmpIvc19NOmzyHLRhdqwRDado0FKzvbshGm5cOZbd96qnPv3Coou7CMuiUeUn4EPB9T2m1H/lEwa3Oa5lEiBrfGYahizsWZ3XkJbyaYDU0Rq1RD3VoDDGqC6CLZYggpqpjQlwX3lt3RQ1YQo/f6MFGeVdeI2RNa8abGAwRqYsm56zFhshrrz2gLnuuLm9IIsCO/WUD90ydmpuV7p03lfa80Pbn5I99hre/93PdaWIothJCw5jCkrSNyKCDDWMXnl1MbKMhbhYaHme8xpmt4JsgOWPNgJSMDxqzcaKRm+oM0jzDUJh31zR3l9AcrAyFwuAdzq0xIQMWUzIhWlbbEb/dYDcRsxTEnWH9GilPMPGhmmDdhuHeJ3njM0/41B8+4otfeso3v3qH7/2R1zGjp540aoWUhXDa+Je//Qf8+Lt3CJ++j/nEF/iP/va3+K/++3/J5cOHpP2CufuA337/Q9a//JSf+hv3GLdqE5HQkCFg9wXrhRodawTnRxafYNYKe1M8vsBmpbyqaZeZJVOTMFhDqxp5mpbEEEJnGkWM6sTKF7HdgSANvGUbHEdDY4qNzdrwrZuMswFJiR2N4Af8yRHFGawErq53PH92RiVSbDfYCrSamKeJmjPOWkrWKLqRoq2PDnbzxLx/SZuEtlHO3NL3O9fjztI05lC6u0T6c3FwTVvjEZpGJ33VdrOa+yTe97g+mNb0DOIDqRZKacRBzwa4zrFoGofCCqHDXgtCkKauHxHwESOFGMNtnKtWYT2syDmBtSoeOL24QMWbHpkw7bZB85U0rK7R3DJLThhxjHHQM1kfdpXW1P0hDpcy3kIrlUTGuMrpetCLZXZko1Ez56BIuRXCXb/klwp629dLF6JuxlqKsmYOl1N5FQ0XY5FDYgBdh6oov9N2scwMWhjjnTL2Dq26tWWF9GL0otksIhqbVsB4VUeGWHJTB6aPPdLSDLigwxeMNo3mhLvl0GiM0XmvbKQw9BZqEKlM09IHVJ0vhLpSrLfKlrIgrbOvkqVRsaazO72KRcUoH6+JphSkaYGNFW3W7TYUFXPJNKfCrGuB4IVc1AbWulNZgjmgbnQNbnqPwDbEa5EEBsYQEW+YlkywDiExT4sKZQYdPhmjAGWfqaZyOcNN0ljg0coRrAoD1iVqtuynhDeR6qU7XLRl06GD5EME1UiB1hk7Uf++IWhKwLbQXzuNvrUaiKWydZUrnDYSAtbq+b65wFJm0sUZX/hr38MP/uVTWgy8uDjj61/9Ml/6+7+Inbd8/L3v43M/9pO89vm/wjs/9B/yxg/8e/zEzbd4/nv/mN//tX/Mb/3Wl/nSnz7joh6TV1uCX1PShKNSq6HhEPHUpeKinhEkCpvoyUvB1oVcb0g3QikgG8dmPNL3F3UBIxqstdbgUbapmEqlkXXsq4Mwo+LzYEeKS5AMRhRbUWsm5YKXzDjoQD0V3XtpejYQBNMqwQPo0LMi3cVsO4NS2yZqMT0aRT8HqHPQ4NSVeRDxmw5QhdLXsMOQU11P0Aimowm6WGitpTnFOVCz3jt1hQWrZSOHxvK+rONMLwbwHmNg6OzLPOu6ZNEzdq06mAU1sRhrb9eHqSxaruAMs9XGbmcdpjkd0nllsoke9juDU53Nh+OhD0N3YAv7/UJBW+SN1aFalUowRge6oucyYz2mu8Kkt+aVJljR5xtrKeggxppASouunU4dbjZYPXca089TFScRKwpzN7Z1x1/VAZwPZEHXQNAINa3HrNUBb6zubblmfT+MYNshlfWd+/qOC0rZGaiO8/1ewWfTjIgQnMKnh0EZPYdq7FZRm1cW5fi0xLQUXBi4c+eE9fEGZwyuFfJSmS7Pab25zbamtjnv+2QnMgyGOIwKsut22LRPBK+gOBMMJnhVcY22CujUWGGgKvBoU5oQNW5X1S58MydKXtjvdszTnpQSpVYent7jtYcfV+6GqAovBlarVY9E6MTYH9gqABjyUtQK2E9HRoTBR2KMXO+vef7BOXNZyEknsXGIlP3Mt58/4+zFV4gxcHrnHu++/S4nd+4gIlxeXACHSlV1dzTJYB0+DKzWY4drt95WVhmHSEuZPCtcWqy+Rz5Gpv3Mh89fsN/vyClTpXHnzh0enN5TJ5OBcVipuosuNlTpk2+jEHQsDquXyT63pxZArYeFytmLF1xeXVER7ty5y5tvvM7Qq9kPdZCOqBWUVRSSKUU3+hCwVRfEg+25SaHUid31jquXE80Z7jy4z8lmC8aQlkmdEw4Gr8ptqlnddAgpCfs5kaRC9TRrmFPC7RIlV9b37lFcJTiDaepkaP05blJxPepn6NNtp80LGmccGGxAnFMLZ87kTuR31uLjyBiiOsdq7c1PjZxmrncz1VriMPRmJ6v2SWOpRXleLljG7VqZT6bSrNrw56SOhu3dE6ILSKvk5QonDleFwRe8WxCXsaJuu2k/cfXiGj8OvP2xNxi9Rw6VxHpE6KB73UCMg1QSURq17NhfPqXsznnjrufz773Npz9xh+3RAIuKo04m2pKgGUQiqXla3GLrgBkm1uMR15c7losbQgwsouyZb3/4lK9/6ymX+8hVMkyM/PHLSjawXwybVeRkMzCEgIjuEM0Y3dDRuKgitw7w+4aLkSFozXQujVSE3axtKs55hYl7T+2Nkxit+zWd9wU61Si1EuOK2rSat/Q2t9LU8egPjodioamQixgk64ViaZk0L1hnOXpwl9Y3eJpo443ROHERFWaDCRgMYTVibaQa3chzbUiHU2fjCUaFxVwKUjLjuNbNxhj9HQXlMlkh18roI6UU0rwQnMHHgSIN58yrGAMH661aq2vRFr7N0ZE+Z9YwGq31tn8mXlzQDb6lzDgOOO/632P0UicVU1DOhrPY0gjec3V+qaBxizbB9DgovdqZdmjQAEmJUgvDekMttTcTiU5MpeGtI1WdzKacWFLWw4CzGuH0Ci2V1ohWxQ/n1yoG16oONEkKH/ZRGQkilGxuOVQiBuMCpRVEhNUq4oJV3p5mObCm0ppeWFWMcdQMQxyJzusB23odDHD4nPUDl/7xOv3vDix1A+lk7xBDtEUdv2oLN5QsbLZGobPIbRECdKdU9yoFH8lUgq99ymn6FF3djYf9slXT7zyHv1v6zwKMJVdtMJpTUpGz6QRb7d6GXSqwn7SCXQoP7q5498F3Q3Ssj0dMa9xcJl589JKnH51xvd8xm5lxGHn3rSN+8GOf4a3PPeIrv3sBJiLWMahfHNcK82Vh23GJ1nkurvd8dLbw2oMNr60ibZkxJJqLmH3l6F1LsZnmV9RcqUWoVJw0mh8wqDvRtkiUDKmQa8TdNMImU3cNNwqCg6COaFvX+G0gPXvBbByr8ZLx8Sntzn2MCYhdYewRtIFmHjLe/Rjf8+de8sHTmS999Vs8+tiWe+8eMRZIR5mWHKVEzu9PfPF//A1++O8+xt39Apsf+Y/52a//Z/w3/+ycNq5YXMSe3uP/+L33GVrl3/jrr+M2WmkdS6NaYVoywwDGG0KNYB3GJ1wbKSZpdMsZVkPAt8YiGSfgZ8tR9NSamaTQqsX4Fa1kYhwp0wQRrGkKzpXGtOxwYeByf8PDkw2yP2OfCyZ1RpaJJBM58gHqBG0mOseddebp0xuuk7ArQjGO4AynxxuG1THRR5qFq7niXMOZDqP2gTfffIez82twkf00Kai5amMORtvIHGCNo+TSJYQDL6pHhpyWIEg1iK09JgagTpiMMpOsgegFY0KPiC00p9FjK/q8V1HRxxrlRVGFJK23RFko+ZA4JcTY13HDlCZc8LigMQ4fHE20CMBahw8qytva9DkwAL2h1BsVWToTdH8zMaxX2KDxfGP6sEAqEYc3meqgZW1UutllanEaERdhHC2rMZDqgSHZDh4kpIhehJyen30MpGnCu0hr5ZZr6ZzG+29BuBp26WISmGZoSbBBGXzSW0ub0fUbp4KMqYYsWdEPNSlLCt3fMQ5nPaYKiYItBes73xVLtgK56gXTGsI4ELKjlqx7I8rhbK0yDp7aMs56vEApur4aYyhLuYW5N2nUXMBou2TtBR2lZGgFY4IagqpVDlHUz5316kKxcnh9DukFwTaNG3EIGlmtpm8CxutZ0rSG8xpjdsHrkLcIzgUMooU8VUVPjVsGvQOslH2JifrZrK27qG2/lHtMG6jStInO6LNTRUizCqBiR/Clnwln2qKuWOO1pMGiQkMt2kxYOk9qtDpc8EeR45VgWXWHXyZS1d3rAu/vM7OZqaKDGENlvRoxdsCKsOSFMKz55uWOh39kefTolIfrNe/86D2aecDFZeGDb3/Av/jFv8f8D/5b3vz4Z/nUj/80j77/x3jrR/8T3vjLf4e/Ktdcf/P/5Bu//g/5lV/+Vb789feZzGOu4yn4BcoNwTqMHRBTydpZB7Uwrgd2N5kl6Tmm2kKcFiQXhgEWLFOOxLjCGsvR2nG8sZTmuLquTEmfswzqcvMa3q/MWhFPb4o1FuMN3gdCVJZsSZ6UJ+WqBWX3hKDtz/00pCJP+bPth4dCJxWhvD3wfPScYI0yiUwfDveLq4q7+pCqW9P072FFh3mAONNP2doMZy3UvKhDpum9YYgDzRRqayreimjEy3hss3ivFt+GdDaaJa5GaNquXKUq26qLyt2yhXfacBiDAavOutBdTVLlFay7u/YBQoiUnDGm6d9qNGKsn3+9o6rI3xTi36ze2VQOw3rFSkQEyUUHow5oVu821hDMK15zsBYXnA526XtQ1sgtBozT85ZDnz2sDoeDsZSy3JYmSKsUmjpED3uK2P43vnKG092PIQZlTtMYhkAp/z+PvD356EJr/awe3FeDpx4aL+jcJAGphrpkUs20mln5AYzHrTbcvX/S68YT0+UZNPUMaYwIfNBJRLBRhRqBWnTy7nwg7WetGzURgDiOcEhoWgh+INdCSQUHFFH7rOsPxWo7siyJtJ9wMYI0pmnh2ZMPyTkzjiOboxPeOr3LMI7UlDjA+FqDwXttw7GOsiRqSQzDyPHRhmmZqLlQUlUbJcJqjNTauLi85ibvubp43rkuCtZtJbObC8uLJxgcp6f3+NjH3yPYzkcpladPnmEd3L97j7Aa2e9nnah5Txw3uMGyJHVbGDGUpNymECLLNNNqJVjH+uiIVDLzPvPi6Qc8O3vJahiJqw0nJ2sePHqgJPmmLKBSs/Iy6Heb2whRv2jnPUNY6ZRHiq49ThXrab/n5Yvn3NzsOTo64vEbr3O03QKG1nJvY6EDx/Qh1wlMb7wwKny1Dn23Tt/Hadpz9vI5V1c3DOOG+68/wsbA2kemtHQeQkSNmdosQI9jpLlwMyX2tWG8wxfDPF1zkxac86xWI5uTgWy1cVAPMmo9ddaBd4wELKbbpDuTxFiC1ZhVE83VpmnG1Eq1Gj1yg2MzHPcJlh52sNr8NO0zoRnGceiRloAR5TzkZkjLDTGu2J4cK2BQFMxH0WfDYDhabxjigKmLTnQBT2MdKyYmaprw1enhpBVePL8EY3nt9dc5Ot5gpVJLwXgwEhRG3SzIjLeOsjTMktiGzJTOadeX3PEzn/u+N/iej5/y6ETY1Al2O5oLhDBSKFACl2czy9xYUub8yTOSNcRVUBYRI+PDDbsp8dGHL3l+seOjq8TFtELMmhYcmzFwNWeGMPLG3RWDN7Q2d1Blh2OLoWGx3hKGSKqVVLTNYzVusGFAXGC3JI2FFsGYSBwH3VxrozSDWEtKCvGLo8LNrVVHkrHaBig9ztCwVGfJpagjczVgnSMvCePQqJTRWvUmlSXNSC0M2zWb9ZHG0oIHKkPsfCt6NbJXPleaFsIQe+a+4l2gFWV37PaLPpsrB9UgtVKmhc16zRBHiog6djCIQ7P2wGqlG2xJhVorq9WaJA186JwfVQWM6bWxopywaTezWm1u48EBbfGhN2da0clbS9owZ51lGEeMpU/ihUEMi1FkpDeWRRpJKj41TK34ozXVgF7r+7Wvc6HEGg5NS/uUCauRNC8MftBZvQiLKMwz14KVzkRq2njig9NYnw9YF0i9EeogVitE2zL4wNXuhjEGhXE60UMIFofcArfFoa95TVBhc+ekf0YCWHUOtepwmf7iVGoT5pRU/A8KX0e45QCKMRTT3UVNoxmt6WdceQ7ttjnEH1qpkP4ZE2rVNU9k6BW+ymvTGETPOaMidTOQSSx9wi/G6IG62+0F5Ss431tpasE2KNl3F1zGSXjlzgSwvb01F3KaaeLYT0nFvKaOEJNnLlIieMfWX7HZDBwdrTh99xFvPT5hN2WaSbz5hvDpB/f4xBsw7y8xy8ISKhFPaV4v8V7I80yuA00GjLU8efGSi+s9H/vkY0YylqQHZBH2+4Qvlg+/8XWGtz7J5mitB1VjSU3ZeUM1jKypq0zcHnN9dsPR41PGNkEeIRpEEqV6vBsUyDsUPdc8vMPy/AZZgeSkz7QorBUq+FEvDHc+w8M/v+Mv7iZ+5R/9Mb/zz7/Nj55+Eh8dK7+mrjNLaayz42JT+Vc//7/zvf/5p7HzZ3nj3/+v+Q+e/h3+/h9lopyTVkfko1P+ye++4NHbd/hzP7jBb/f47Qpb97gaKDuduvtxQRaL1IEUMkbcrShgrGAGzyaP2FbwsTAtgneFjRvJooDd2RrmnHCmYYowWPTy1au1082OdH7OOx875qOnCzcZFmks3pBKIU2OoWbmWok28v2fPebNxw948uSaP/hg5k+eTNQaOLlzRPBwvZs5ez6xaxanIBFsLIQQuHu0ZrOFq8vG5W5RIdoYbcJy6uw01mN8QEzFNIXEG6ORltaaVj9X9IzRB1AqEFR9+0TACLlqLOMwNtSBZKUumeaC8pkcSFHXU6Wq2GitPjel0VO8Gqu0Xqf2IrQqxCGwlAWp6jhEmra3WXVbNWMR62mhkYs+9w4LTp9qFx3b1UCeM0vJtLZQM4Q4IF30t9Z39qkhDHrZ2ZeZdhDgOzx22ldc9AQPtlZtb6JQc1b3g9N2ShPNbWS/0cBZTNHIUs2d1WmVUWSDlvMYcZ3T1gWkPsDpMJrOoVRnrfKOHM5bSisK265ZI7fN3rpRvfPKNREt56nLQq3C4Afo/ERFA2h7mTe+uzQUGGwt5KRR9tw5MsEYjo+2mJaY29JxQ0XZkWIV42E8BHVFORyuuQ5vV5ZRozDYI+W90hl83RXn+qC220z0/NsUzyC1EdxAM8oNrNap614qwfh+cdQ91DodpgQ3UFuhtIptgKkYWt8HtAHRBk9wOqAsWSMzwQPR6BCgajypGKHkTE4NG0SFqAbiog6E1PitTDlMb8ZtvSjCstl4Ao3SLKOzFNkzNYutC8GPjK2CEzyB003AsGc7wvkuk6oHZ7hZ9oRoWCNsh8Askd/82gV/8fEJ15szticPKMFg48iDU8ebn3qNH/rrlpura/7kD97nX/zDn+Pqvws8+th7fO+PfIHXP/+vc+eTP8MPfPLf4vv/Juzf/6d849d/gV//1X/Kb/7uGf/XhTCFDcO6EZyQlkRtAYyjzDt9r6zBmYpzjvsnkdAC2cxgHJf7GSPqEnl+ZphvBjbriBdH7Hvz6AIl2NuPe2mVlfcIThExeFJbSFQ2w8B6E5mnxLqOpHwY4pvuJhIopQ+MBIPTNahpisPiabkymIBzOuxb+rAQ6VF21DlMj5U66cGqpoJjD1lR2kITjZMhnuiUReV7uQvd8Rm84lRKy9igLqHUCmLRYiorykmx7rZ0xhkFlTtruumhC2JN/dLG6s8yTaPLrZReIKUDOie9tbhPkpOp2A73D9ZhSwVviETWq626vucFK42aNJZqoMf8NSIeXLj93XbTDVWEqWRsc70tV/2h3nWcd98LMBmM65HJQKyWUoTide/0zt3ea7FWHbPSCC7SWmYIHiGQa6NYHRBqfaU6aGsValaxy1lIVs0qDos1AeM8HmFO2mz5nfxyP/dzP/cd/Yb/yy/8bz83jp71EHBBM8VNQArUObPkhZIWqJkweE7unnD6+CHr+6dsT9YEW+Fmz7LfMc3XNDQiYm0j9qp5Z30n5OtEhxgY4pqjo2PGcUXLFaQq1BitsW9WlXI3RJ2hiG5wxkV1hfRa0f1u4vz8nJIXWm189MH7fPD+tzg/e8F6FXn86CGPHj1ktV2h9c2FEAMgZGms17FPo/ViMIyBcdyw211rnKIs6rhyWr+KVM7Pz3j69DnzslCpiNMP3rCNzPPC2flLAO7fe8CDhw9YbzeaHxeNujQR7p6esl6P1KrcJR8tYRgQo46j6+mK/bzowcN5fNCpSi2V9WbDejVSUubJsyd8+/1v8+TJE8Zhxf37j3nr7Xc5Oj7m6Hit3CkVuFnmCRF1Qwl6SNPLl0LlaqsYo9ELMY0QHNO8cPbiJR9+8BHn52cc37nLW++8w4P79xmGqFN3FBimBwWtk+34ekR6RKXbpTWpqJfg3X7HR08+5PziihA33L3/gDt3TgCNhaghxTA3dSKBIYs2xFynzNVuYdpXnZJS2e+vSbsd4izj9phhXGHdAM1ivdFDZbelhnGlkQ6rtmQxOkUDQwgDLg7a/lAbRSq2A/nUVglhvWYcgk4ErNbtpmVhv9uTcyU4ZakoMyJQDLRUmcoCWI62R7SonBil5yhvoqSMt46wWumblgvGNZyHFYI3OwanTYjSGkO0XF5cc3O15+HpQ954/XVWY9TKUhzGqCVZxCOi9bOlWdL5GWW5oJAw00u4fsEbJ4a/9Kn7/PlPP+LeiWfrhaEVZKosS2b/cs9ykbh5csnNZaKVhs2G86sddu0UAl21eeLZy2v+9KMzvvnkkm+fL5ztGyZsMeOGq0UoJrDdbIlrlRnOL6+py8J61Kz7AW5pve81ocq/acYQVmswnqUJZzfX3EyLOgzXx8RxhfrgTH/5CrkolHm1WnWXiTCOI02EUjTuW0phLolcE6kUhmFkXG+I49Cbh6rWPDtHrpnaKkvJ0ConJyesj7aU1hj9yGgtxji12aMHDG2J6/XNK08LGluwRllDzgWWZaE1IUavTZQCeZ6J48hqtSI3nShZZ7WsoGks4uCyqiUxLzOr9UaFlXBou0AvirfzaI15Lvu5w+zBRo81RicqRteaXhZHaZWyJKQ1xtWI6ZcEET1gG2tum+k6dpNoHOeX54zrDSYoELz1dcDQmyON0UNtSsw3e7zz+OhVyHWhb86C6c40a3tbiSgDJjjLehwI/Xc35mB9FprxGmO0Cvg1tjHvJ7YnR+pSaxprcH1yZA0461X0tparyyuGGPFBwby5ZozXgYhWnehlks6Hm+Yd2+O1QuHREoHWgeKHc5ExHbpfYZp2eN+ZI6LiFnTruajN3ZjOrEqZ65sdx0dbQC+9h2he6XWydGu+Hky15WgcR3wYegxCW6Na0yn5AS6J0TW2VAWaOtcPdD4oHLwVWlLm17LMtFZpqdBKxnuF0/rgCGPADAM1eLK33OTC7nrP5csrLq5vuHx5RtktXJ7tOHs68eTDiSdXkeK2GO/BdtcfBusjU2rEIeC9wQ+Gr3zl97nYVz77XQ8ZpnOydJ6MN+xz5t6JhxPY5yPG7ahrvB/YRMsqeAanLUoWcFJx2bPejox3I8Y3ha5WwbqAH7rjx1pcVXhmLdr0Za02tNhhA9Z37a/oPybg4pbNcaJMl/zhH75kHQdOH0YMVQdizSO1UYaBjy4L919+xPp7P00rJ9z/gTeov/rLfK0cYVvBHB2zmxfmJ+e89fbAZrVm3ELsgrsLA0YsLjqcbcpzkoJUTzUZUu5lGRqttc4gqGvZicUbjzhDYiLYQS8SVKYl4Z22IAlQJXP18pqHJyu2w8I3nlxzs6hTzRttV7vew8M3j5QD5hzXL6/56E+e8KffvuLi7JplWki5cHF5w4uzHS+uE9U4jRF7zeqWkljmhmsWauVqp25K6zxgqaVSUuqth11w6UzHQ9zt4Kx09s80avbxmcih0lkFWfqmSk+lAAAgAElEQVSk+bbxrLNBFMOo5QlLH0y9qspWZ59IwyN4o21ypakLZeyOJ2tQLp4I40obufSoJLfMNq11UrdBy1UdIQiU1mNGVt22VtuXmm1Eq6cFaU33ALE6xQcVgEXPMnEIeGvZ16IsItQJevjdRfR1ccZ3UUovf2KEkpXTJRWNOhltoJT+4okat7VdqVW9/HbBiO5ske6OoCgTrlQFFFtj+3lEBRuRhrc9ulpVdNF5huuMSR0oHdy9Ig2aUM1BbFfR3BqrETqn/3nY7fRi5/sAojGuBkIw7OY9DUtpysorTf82I65X2xcVZV3QAt5gerNyIzg99zkf+xqujMCck7o8u5vLovwk2wTbdK9Uwau94lH1+LYyAk1/wfXn29Y6kzMgqEuplletdKADGZ27qPNDB2UGXMYF5cCo40QNA8FGSlu4mTPz0odEtjMpQYdbxvTPlZ6HrbEMzrIKhTiMpO5mm2vFad0a3nqiqQSb2S+O3Bz7Wdgvjnmxyga1BuMtw6BDWqmFO1vPG8ewqwt5V9mfz9Rdpu4r6Xpg2hWWm4yzhkev3eV7Pvcan/juY5z9kD/4jV/hS//zz/PNf/aPcLsLtncfEB9/jsef+Ul+4Cf/Fj/xEz/IX3gsnO7/mOXmJdeTsBcVeqJkmsvY0ojOEFzj7nHDx0qWWVuVadoO1+8BtSVymbhZZmqGlIpmILtDqBplGkkVajXKMXRWY1ZeS30QLVHKuVKzxkNj1AFOM069y1X+zGfbUtuM9ypAS9Hv76zgfcPY3r4nRc+x/QzhukAerOuDpB6vE0s1WkzQum/Mo2VaWGU6tf7+WmvIWYcnrTblwPV1xjpdd3WN1XNU7esyPXZsMOSiukHwDm96Y631WBdeYQyMIl/ENIJxSKnM7QD71+NWtJGCRvWkCVVUILLDCrEaV85lJouKZhrd7K5GUVZpq41SujsK9Nk1DrGO2oS69Db6lrSgpXXTimj80RihVcPStOlSatWoKfTmQxWHmqlIRR2Mrt/ba2ed9mKv1RC0QKano6T176EMFy2uERUZs1TSnJTJZBw/+7d/9r/8fwg5/y+/jIKfvnNf/87f+k+lGfCi1Z/UxjzPelBpAgFWJyccnZ4SwkDNC3m353ra4yj47p4ofRNwRmtJVzGoAmk6p8Z0G5n1jH5k2Gx1k0kFYyu7y3Ou08w4rLUJyAf8sMINa4wVaprpnHBqXpDW2N9ccv7ypQof+4U8J9Z3jnnw4B7bzYYQAimlA4+xbzD6wbLBdfFTFXiaPqhLmvE+EONAzrP+7rX21o1GSQUxQloy07zn4uKSVgvDaoMPsF4fc3J8hA8DyIJUVf2r6L0hhIjxVmtLjbZkmKCXH28DS57UmeUDzVSsCdSccBgGP5KWiSdPPuLZkyfsd3tWR8e89vprPH74Bpv1hnnJpJZI88zgtclFugvJe0dKCSs6tUo59w8wYIy2NzS9bF+cX/DsxTOm3cTmaM2DB484Pb2DM5ZckgpS/bNorOl1mQYOFmiDTkaKbu3Ss7klF66vrjk/OweE7ekd4mqFaYcMqyCdhH9ghKiybagC+33iOmf2S1ULdclM014PDuPIsIoEH2lVP4+V3k5SJ7yPmMETMVorLK0fWjyIA2+xLvYWqoZr0gG8tTNFIsF7VjGQJWtzClBL42aaKVVFOIVwa2ZXKLAUEgY7RI42G7VQi372FNScKFWjHWN0Cl4risgzoRFsYyMJT2KpiRBWeCqX5+fMNwvH9+/w8PFjbUg5xNlcrxaXilSFtOdmmKZLyvUlw7CiUJHphtOQ+OyjxGe/6zUevn5CcBkjhSBg6wKtslzsudplslgoUBzUqbAvCzPw4bfPkOhpzfL8fObl1cK3X+yZsjBlyywe8SuWJpycnOBFnQhpqeRlx2gtq9jjQ1hcHMF7heELtJwpFZ1K+xVTLiy50oD1sMYPQYF/tU9fcqH2BojoA+NqxDpPKVndaHTB0npKLuz2U2dLeMIw4kMkxkGh5wefbanKnuoH6bwk1psNw/GGMmV8F7u1DVA38Vxrr3ztLuTg8E7/t/FaOiAYUmdUSMn9AGjJ84wPgbheq1G3KgBZ28joG5Q+c1MuLGlPjAPWDfrZsQJicaLCgO3MCjBMKZHmBazDRh0kDJ0N0d37DKIXqJwzadLfZVyPOrnt7LEsGiHIUtXJ06BIY391hXeeMAy4Q42r7fbt9mrtSDkxzzNeDMNmVA6RMcr56QcwbfDrl5kuotRSGILHe9/3GHO7p3nvu/3fsEhlZR1Xux3RGsbt2KM8yisJLnSQrHJCcmngKk/ff8HmztFt/r8a8F7fX2rV1iqjB+WUE8s8cff0RFtcCuQO7j7wDQbfo79SyLlyfX3N/Qd39eIkKlDdXriM3EYNcymUUnn27Dmvv/aYV7ETZSzoYVZ6+8ohCt4oS2JzckwYgsZOUI5M9FEv6YbbCtraKsu86GvQdN30IWCdtt5QK3NWISLNi7rirCXVzDgMBOd6tXZVZ7M0mhV8iIShKiD2Zk9ze+LJPdYtsjkxjGiMIplCNFHr0aVBaDw/22M8bL3BhIHf+OJXCbbx9njDMk9YtOwji7AaPe893PDGZ9/g2fU9fHCMg8EHffbX1hPXgnGN6FZ4I+AL84dX3P+uU1bDGitg144wKKvFxogLAWO1+baka5YXCTt4YvCsHryBbE7B31Mx0GwAwdQzyrOv8I3f+Rr/+Je+Rt0Jf+Wvvsej1zZIM0z7xvVcuDkXzttEeFL5a3/zb2A//VPQtlz+/v/K//D3fpGvyDFxs4LVSHv/KT/6nuPHf+wBj9+7gzWJlrIy2cRQ5oWwGlnyTC2W5aaxJMv+cmE/T6TaCCbQJLObMvslMS2NVIWcLLuUqU2Fp/0yM2flwp2ejORSmOdK3SdeO808+dPnfP3DHUkcSSquRLI4Jut469Pv4FpTNpWrCIlWDfNc2C9alIKNVBPJpZG768WKQSykljDVcny85vR4xfX5NdOBpWl6aUdvIcagMTivw8FaGzUrw8cYbif8mO4OFQVZ3wpKtVJKJdeqzXJ4DBoNNVIp/SLdsoK/8Z5qRAV8sdp029cj4dB8loneMURPHAaubpY+Idf2ubxoxKuKroU+jFhvKEnPicqV0ybLVjuj1JrOAtUoS56EUksXnbXB0HudkFvjKC3TTNMYBYZ50jW+NY03OmexTgGx6loUZZCg/MlUtO0MEwgh4EcPFJb9Au4gDHRobef3idH2S60c19ZVizaxWaOuzzknPeM6vaAf1qoq/XeV1v9Rl5MY/fuM0/FHc1o1Lk1fu5a6kI4Kv8H67sRF4ca64agzCUWVG1u1LbCXNxg5IDz0wCpFqCWpwGINqSnnS4s/NWZsq4FcsYPHBXXGGgOt7Mm5qBuji5rGhG5Qbn2QoNEq0zEPuSUGp1B7FTzV2VB6RI4qnUWlQwTfL+hGDhEfx1IWXAgEF5CSWQ0e5xs5K7qidiG0tYp4R02NvOwxVJZJXb8udN5f5+0YsVQr3X0l6hB3GhNCijY7Gos1EzlpfH6MA5SFEMGx6vctbTu7mQ3FWkwQYhzwYri+uGQ7Wh4MwieOt6zGwlv3jjneNk6O1gzrY05cYDs61huHXRdWwTGsI3EzcHQUsBtIF4U/fXbON3/3A158uDDEt/iuv/CDvPuX/k1Wb30K5yLGTOw/+G3+8Iu/wJd+89f48u895Y8vB64kUi2so+O148zcMiVGXLEs/XWbF8tcRhW9TelFD43WsjpUOyYj19zjs0G5fd4yrAdtJUPFOeehlKoinxg9jxnpAqNDGxZrd81pGUiqBVruQmxAmmJavANj1IWn759QMgd6GMbofz+0/WkDuaIDWj8vVQRa6YUaB5i/xoaN0SSQ84a0FKS5LggePiMOa0QH187p3Vw0UmmdpyZ97oLVxEpzKkrn3HQ9qkLovElNe+na7a2y1oq022ZhKUWdkLXpvVIEh6eJIWc1ojjLLcOyomI7CKN1NHI/02rzXZZKqUVbiVHHvJG+HrSiAhcGMTroFTEMOGWU2kA2lda0sVtj1Oo6Mv4gqitrzJjeNm4aiO/isZbuoD2WtwOVItrGSbOdh9k62E7LskrT4QrW8LUvf+3VYff/49d3PPI2pUqWQqwK9HVhYHV0rNauUS9WTQr1+pz5Zk+pmTAEtuMAzVMlI8YwWq/gKGuI1lMErbV0gDkIDk5V/SGypJlaF27OzrBOWPbXSBz7xVGhsa1WhqYgUWWbFHbnl9xc75iXiRgs6/WK6C33jrbKshlXGAc5Lywy46zvjWSi8F3n9eFp2oRac1Mu0kE97e9/WhYF0uWZ6+trLi4uFVbdM8+Hdoo7d08YV2uFhlmj0O/oqLXQsirF0pqKRiqt6Ee429qwr6ZmKZV+IdXFxVqPGMPuZub506dcXpyTlkQMjnfffJOHDx9iw0BFWKbEi2VP8AFaZR2cUvSd1qC3IqQ0I9JYpll/ttPae29db7bI3Oz2PPnwA652O157/SGffO8dzc5WQVpRNkM/UKhabfp9W/qlSC9/rRW9vBuPs4Z5WTg7v+bi8pIhrji5/4hhHTAlQVFeUbOopbzqxqV1nZZ9qVzPhVw07oMFKYmpuyb8sGYcY2fFFF28Y6f3l0QwgttqjFLEk6XootYt0NZYnZKjMEhrjTo6mtCaLtrDEEG0QlUrtoVUEvv9RM1CiKPWSxtADM3AtMxkEe4MA8fbAY8uHN5YxDhKLZS8sLGB49VAc44sDStdSDKFkYSVQpAKQQXZ3e6a84tLtpsjXv/Ea6yOIkbUNtt61l4DNrpxNeuZ88T12XOm6wu2JwNTmngwGr7vE8LnP3XK9kSgOvLNGXOtWIScMg0orVBSpqZCqbDbJZLj/2btzZoly677vt/awzknM++tulXVExpAgyPAQRQhUiEGQ5Qsy7LCgywrREfIEf4C/gD+KH72s15kS6EpJFMRsqkwJykkDqZIgCQmAY1GV3UN997MPGcPyw//nbfh9y6+gEBX1e3Mc/Ze6z9yWhsvnr8mzpmwTzx/tfG9D9/w/M2Zl/edtWc8JkKeebwcOLYxTPWN1uH+bqWbc7Nf2GddPluVQoGUacEEyHRJS7sqKljPZzqBvOzJ8zSYO2ddV85be2D9UkrM08w0JS3hY2F39xG2PXN7dzfyiDo5j7awlCX334rYwBgV6FrbCELVcJj2MyyZddtY5kXZPfEieVVo/yXEHpQFF4IGiTAodjcbNrE2TofAnAPH0z0hJeb9gd4bdQA4aYAUxRWYHVygdDkd2S0zHoYyJyq5oVf98woc1ZC41qKwv2WSZD7IFqW2KKMicLd4F1lQCt2dZVFrZLwwws1JDAbOolg8hq2hOfPVggc1uRG0jPRLCG7XkO2lQnfCPNEZakYexDayEnSXB100vNjmEB+aW2JMIgvG0OQOKcmqPRFGXfCJp289FXtsiZCSWPYOtE9ZKzC248ZaKo9iFCBLJ6VJrLqopMGWSy7femeeFyyqlVJMUsBdQa4MUMmCslvM1N6izDl7qHNXvoZzKfIQsyVAFddzHYKWoRA6nx6/oxpdHzOtjhy3MAYwxIyFIN9+jDbAeNkeotlDTfKlQc6QBaT1Rq1V39cAsVotdDopRg7LomcCBgNrJFdQdk9gzBAr86M9p2PFzkZNsN37CLY1tqpg80jFR9tXSIrtW81YQuQnf+aLvP7TP+J4XHGvxFk12uf1jp5mPny58fh771EPlXZ2kmXmKWJW2VrD7yIxdSydKLayn2dOp8KbUycdNpbgRGZ6C5RzIdcGqRCSEaIxpR02nTkfj9jTJ7R6R2yB2p2Yrx+Yarcd4dH7fOGnN37x1Yl/9c//jD/43ZdcXS8crhJpaUxrYr4qTLed7TH89j/85/xC3jF9+W9y9RN/g7/zt/+Y7//vX+PlsZFzprx3w//1px9xPn7M38qZtz83o7dbteGpJdr9mbwEqFGtel7IE+wITCMyw2vW5xIiUzzz5lgxq6xdQ3f3wj5PZGtsbaWWojkiV/wGnn/8hu8+37itDmjx7V5ovnH16C0mq3rPrarZyhfZ5mZYUiSWPIL+YUoTtclq2r3SurFPezw0lhi5WjrbIdLOKIAWqXiFDo22LK946SObRs9+QC1M3mWNA/33ZrJq1K6Af6nw9L6FQSxdQOkQAzsCpWsxNFeDr0XZkzApCGOMD1mUMQV6j5TSmK9mijXlNlXAO92Q0qY0ZMrVMpOCjcwRHs4wggwb2RPNuyrHQyCe9TtT0NLh7qxFgPOU8wCCp5EDGnHrHJY9mwV6XSlsYBfLWRrqIql/+1C3CBiKbLUSrLGbM31zzmPEC5ZGnXkfFtvRzLtVWmAs3pJo2bjnOq5F8QJuDCt+DGnku/iwPSuXDht2aG/0ogD06AJ5Qkyay2ICBHibBS417AQtym6B0BtT1PwfkpS4boplqMMC33vXz4FBhjkvdO+cS1dzlCnUvzdZ0kkuW1MrmE/aeRDgGUyxEm0oNPCRTyMZKDEkSm8DeAukIPVzCFXfiQUspNHTB0R/aLJqjMbqKRKRereXRkpZQETrpBRYJmdbK00uHcLIV8TTYAHBPXDazlIyWWRtRd97s4f2rxiNlIOeXe+Dc1bW3SEnzmul9DyI0NEU2mEaIMHxXOnB2e2NHZ3Tlmg9Ez2zns6AUa1x5sCf3t9hr8+cOrxzt+dtjzxuxiu/xfrK9S5wNUeurzJPniwcqpT28U2A2nia97z9yz/Dfjfx8evCh9/+DX7zf/s1WnzMj/zcX+Xdr/419u/9PD/33/8SX/17ke3FH/G93/6n/Lv/59f5j1/7Dh+/OfHa1PQXGe2QvdLDTG1dpRsOwaPAgqB2aXOjVsesUMuZ2BJrOxHTzBxn6nZWVmUXedgGYCwgRVllCroeJSXd8BGLkYKssLpvZ+qlzMgrMIBYG2qddcUsjedb6gWzqHYzb6Sc8D5OnPFcBpNjwcJEwx9Cn1OcBJyZky/nYehUAx8xEiGAhSYQCanMbeD8oXdqWQGBwc0GOKoVnBizQOzAmJO1B6dkpDhTWhlqvKE2bLLT6Y3woSjvlKrinDlPBE/07sp1Lg1LnZp82EeHtbZdZk94dFg43W+y23nTjm6jeCZIMRpifGgibmacvSlPt5XRXJpoUcUGUmO5XAUhjCbzobwywyx/2kjfRVj0AZynmKVGNWPKywDaZUXtQfdzAKkko0qDPstfnzmgNBOYYiLuI1dXVxx2V7QYWE/3+N0b7u+PrHXDqKQgeXtcJg6HK063r4lposZAJhFjGI1ERWyJB4InbFzwhi7WmoVUbmXlVApx7ex2N3ow0aHmXTXZ68tbjm9uuT+qUjzlyJRnbh4/Yr9bOFxdKcwxQAoa8LZtY1oUjGjJwPKwLKrmNEWx5Ntp1aVS4f72luWwcNgdeHN7y/l44v54z+2bl5gFDocr9vsbecdDZtkfmJdp4JvhQZ43TTPrdiJlLbrUjsU4bDiDoRgHdquNXpskjCnTe2VKE+v5JJvD61ue/+BjPBhzjrz99BlPn7zFo5vHlPXEaWsCPmIgL5lYnDRaeYijLtWrXjLTpa9AMllWtlp4/v2PefPmDWaJ1lZ2y4G3332PH398A+O7bNXHIhwflAXyz/YHdZPkgCMvZlyC3jr36y0vX35CKZX9/jHvf/GLpCwEu5ftQXotSSakkPEqW9vptPFmPXPaKpFMq473wnk9QjDm3Y55mkblMJL8IrVR3QrRItMUmJKaoro1BXEiNNtCICcpkiR9Vm35VgRcBEeWTJOM2XvFLLFZZ1tXNW3lhTwHvI9wNhQgvvXCMu847BZ2KdHqGYh4jpyrrJQWElf7vax1A71OVGZzJj9jfiaETnBlxd29vuP27pZpOfDjP/Fj7HYZr42wOiktCrDukta3S4BdL7x6/Ybj6Y7oG1dXV1z7yl/+8hVf/XJg2RfabWU9dkLaCLan9Jm63eNb5Xg8UupZwPHWOZ0r9+fOy9PGxx9veM6cWqEbvHi18uLVkduzU9kRpp1yKMLE2mzUAyfW45leGssUSVPm+rAbmT5NA2maOFfnWCsNWXDpEQ+B3lWQPC/6891h2xrrpnwFDYAKxJ+XhZTzg31IZ5AAgNqcrQk4MDPmSaBwSmKqg1dUWw+1rNRtkzVCIg72+wMeIs4IacXIMdHRwrGuBZDCxFFQ65STFC5o6A1jsdlaJZm+/RSc43kl55nlcBB2EU1Apqmq3SLK8ShdIdzHE9OSFVA/GJ9L06BbHYoX3XG1dXxr5CAbRM5q5Kl0MkmZP6O5qK0b3Tt129hdX2NJuXbAw7seRntGbwLs11Y53t6xPxwe2n7SqKoPQkaGusdUt90qU49M06TlygS49AGsAlqmYCgo9e+WY5SaYNgLLiBUw1Uv7QLQkgVu78/spp2W/m5a8lrT39WlbngIzfbG/d2J5eqgJiiCWiS7D+tBwW0ATcFhBC32FFjXTeekI6WBSb0phWSl1C5Wvl8A6mGDG5+qARbCyK8Tu5iTFEwXe/HlbAWGhWfkEriYccehiUF9UMF2o/klv04sfx3ZOT5aV7wVWq3k3UFtma2peW4AUBDIOdO2jWlZCGaUTQqFkOzBiu7elNuDSwURItkUan/KAcsLpEb1RI6V4/iZt/VEbQ6mezOlia3U0aRTCJ5YC5zvKnMuhO70bkRPXM83HJ494VU2TrevRCqFHdFkd0kj30I8jUHN3N1WtkPg/NEZe5pVHhGqljozmul+877g0cA64dk10ydn4tMFWz6ghUCKy1AnSZHtlrHdOyzvVX7qF1c+/KjyR7//Me9/+8SXv3JDtEaYNubiPF32HLfGh73wh//0/+TPv/15wuGrfPFXfpX/5pv/K//g36+c7+6xxzf0x2/xb/7s+3zu317zV//bievDXndt2Qi7it87eCfPQVWPIbLiQKSW+NDWZgYWZzbr7Amk4FQqsezoYSV7Ii0LJxP7W9fC5J3zVni5Vu6scPYzoaXxDHXMMnMMvH61kvIy1BNSZlY3jDwWjoZ5k8yfPgbvQK8CwC9ByDoXMyltTLMqq/FLo6HJaspQeYIs++i6q44ak+THfWhfMkZrISMYGS1DKQ67Qysic0Kk1MqcJoIFsgU6xjJHZZ+ZwCk1g40sStO9EEIk7hPNjbKWCyxADHHMUFJEWm/jHS9IUCw7iYKQo+qh6bJsuMJkA5AvjVIhjHZK/d3busqaGgq7JmtndIdJzb1TgC3YQ/h0rTofQlTI78VxawY5y37o1khTkBp0q3RTLlzQofXgPIgpcVGr95FpZkjt33obQeaZHGYsGtUr0Akm5TRmg8y7BCGoSTW43BK1VYIpCgC0oPoo6PEor4iXBlFEaqtNcRlBzHA0neGh+/h3CwKYXepIC06wTumXaAaH6CPB1ei1joBr5Q9NcR7WnoZTcRfAryDfRPM6QHmBPHXbZGWTo4gpGiGoPGg9n6T4bnoau2l2CKO4IoUge/ZoRXZX3X1AltcpR5JLneIEatnYcmAbLY6MPCnzAZi5CCwnMuVEbytzKNAh1DgaxWTRi+HSm2GUJjiXvomcHu9OXQMkUzapw25/RaBzWtUOXssFKFBbmvVAPW+k6OT9NfvFMV+5L5kU4ZtvTnz4cuPtl5UnVy956/GexolsjSnAbtlxvU/s9x/zeJq52Ss/0a6M5JnbaSLvZn70i5/jS186c3deefHhr/Enf/8fsbd3ePdH/xzv/Owvs3/vJ/ncr/zP/N2/8b9g9SNef/23+I+/8w/5l//mN/jwDdRYCXnj1BI5RsJo6toatBHKztC49wBziIRlxkvDYqC0Fc6FVPMALLOyh2Ie720fUQGDmG9D6XPJQosOoT1YWb3DMs3UVvUMu9G8KByfS+aYQtet61mrXc1zKQVqPSuXKxjZlOOrd3mcPRi9q01RCk+p1M2dKdlQNknxqczwEfNhwwZ7QYx8WLa69ttwEUq0SiZp969lWIJtkIYmMUcwNtT4aIZiYFwAu1+G7su840EA/lZopSo3HNce2MHcJAoyzYJW9B1sdSMH7WfBdM/gsHWBhmYu9WmMA1gdBFsUkNiaZqtgSaUmdaNHkWyBcYAGcK9jF0RzATbaQHWPEZXjlKNaGns3ukfcCxb1/ocYCSmPBnFFyajB8kJ8fja/PnNA6en7z8Q2941yXrl7/jHb+UT3QnTHA6Q5EPNeg16eydNEaCMzIzYSiVb1pbfxkPc2hgBXPV/bikLl9iZ0vVW8N/aL6udjWrB6Yl1P3N2vrMcjZd2AwLLsePT0LXbXe/I8y4qDvjgzHXyqVRR4MyE5XjWjjuGhuw3fsVqceqmyINSi7zgFXrx4yfH4XXQXK7h0GVk2MUXyFJnmWXaAoMVT6bRdVZkjz0Iy2AChY0y0okrRbpJ2dzfZxkpVI4dFtqKckhfH59zd3VO3E9O08OTpEx4/eowFmKYJi4nztmIpERGKq2nGCFnASk+uxopwaRMTw2zDcnI83fPi+SeczidSCuyvDlwdrri+vmLKE+ZJYc5xBLINJkeViPoMjXFp+ZBJmtO62r/O55W72xOv33zCNC/sDo+4ubpmdiRbHosISM5r7oThMz3Vyro1ytYotej7a5Xaz6xbJKfOcn2tGveo3BBntFG1jd4qcQmkedbz1+FYCmYK1p2CWJRkUb7WemlXUpK+0QSCjuDJ0rRUK6AusXlhLY05KCOhDluQLvxOKWdiDBwO12RMFs0oNmzrlfWsbLG8z2TLBJePONCI9Uz2lTl33DR49d45ns/cv7knxswHX/pxDocDKTQFZJKwyWnm43KQbLo3ZzudOR3vKGVlR2UXKz/+xPgrP7/n3Rtje33i5cdnZZMlKMUp6z3rUYqOsp04Hc9AERPaVcW6VdhaYn60hzjx6uWZ7z2/4/a+cSqJlvYs+2uqaxmelongznldqedGjombRwdygHP1MbCoZa+TKNVHpoFCgRuD7ZGyp+kAACAASURBVAyRFBPL4QojsdXOtkkJ11rHm97Tq/2OaZpH48SnNfVSkRZJ06ukv9OyGwGpCuaXbHmoFS8rQR/tFMPWtZsXUpaFMMZMprFE41S1KFCVyVJbo+NMy8QyydLTu4+CDamFOk1DMo61zum8EZKxOxwGyaFQasyYDPJIQCpVbZPr8V7gbsg4Uiz1oVajSR7ffQBpqNHCLutXEDhnAzwtrj+z9Q6lig2rKgKIk352bFgObKiIAHFG47nbCtM0KcNjnBSbjwD8AaCEMTCUtlLaym6aidgIc/20rSma/uzWOj6WjtoV9pqyQNg0cijChS0bv7cHY3KB9pFAmBfOm4JNbSxvPgYb+DRTJcYIKTFPeYBBClC1AZYwAh7N0qeW3ygAu/czKckfb0FsoxHA9GcL6GvkrAHcx+fJYLgcNbU4NrrbB/TosNtPdGTz1YCRH/5+nc2Odyi10EJThhNx2F4hhKpg4Kj2OR/WFYs2FmypJvOsXJbqNp6bhCcj9aHKWzJeO6EpaFch5GIBQzC8x3Gut2FfjJgpCDm5QsRbcTw1bFWTaMcUfNw7vV0ErwoMLwoeo9XC9PRtpv3Mkjo5ZXY58ujxxNXVnt18RZi0IG9r483tmdYj+8OOQ0osi87ImCs5TXiEQ4lsd/f84JuRZ58/cNipxU7ZSRreLK64Z8wmYsq0fKL94Eh89zlhegxeUN7sjJOwuMPtCTbNPHqn8XM//4pvfvuW3/mDFzx5b+adJ4klmsAoM+J15dEW+dMXb7j5J/+EL/3dzzPdfIG/8Lf/Dh/+4B/wr79zpKZMWA6shwO/9m+/x/tvJ372lx8zT5FkmR4a8zJTtkpLXdlIzalTJ/skhfepY4MJtQj7HGGthEmAwP0WiJ6ppdNZyXRCHAqikR939fiGd21i2R05niv3W6C1zJRm5rSwFudUT2o7sqDBu3YBjtozRibIWMd85J4N62+OndoiU5yH2l/McUh6Hnp3AYJDDe5jpjGkMBR0JSA2Jik6a3WsKleoGFhI43wZmUJR7UC9C0ivrWlp7gK5gql7OEQnhmFb8opWq7FEjO2ht840LeSgMN2to3rqkU9EHGTc5W4JylBrvY1yhT5Uj5DM2EY+EYD1SgmBKWeEGQ+bqwVimsf731hrJYVIoxHOTee1h3HGiPCyFAhBM0LzAb545+GfiGqmwlUP3l3zXrgoKVyzbBhRFhdQTapT5YvorNa5H9iI8wX+G/8sNoDxML4fI0j6pLPQUQmOpUEuqJm1+ogiMEU0YJoNYhg2YftUhUHQjXBpr5yziGXDZCcZqlC1q+rstyzFj7mTk7JfpRLtBDfatupojnHkPqGiEpo+c/RH+wUEDVE2pqGmSuiMsuqkZQelYL3iNlRItWNVZ4/nrnzA8f1dLEelddI0Ig0IpIQI3XNkW0WwXVRaMahRW1k7nd5kD0zTnvuj8jm9ag6hFzzOkAxLsjt5Z9hhBXKZd+oG23ElD9tgiAZxIqbItt5RGjQSFjutBrGhtbOfJ2ovai7eGYcUCDXxumn23Ai892hmmjsbjeene3ZzGHmaRgiFuEl5/Pp0z4e3zvW08ugqM1/tubZEopCKsZ1O1Lry6DDz7Oljaivc3/0m//Ff/DrODc/e+zI3P/ZV5s99menpL/IX/oe/wi/86u/wx//0H1Aev8t3/sMf8ifff8mffGfl+XnjvhS8SpVnlzgJG9mQfWOKGojMo5RFEZqr6XxrhRRF/Ic8Y6NeJyS9d1ImDRIwqQgJGwCDBWXbDWV6GPEi5hNcCK1xjrZLZIg1ctR06V5IQZRbc2URx1FCg0vBbDb29aFsT0CLUV7QYZlLo8XM+zgjXCKAPt7hgMtuaka08Tz2SqBBmAdo9UM5dDDa3hRN0EkPeUMXEG3zpjnT5fSZch7B/4UYwwgLF5loXaBN9xGmb8oBq9Y5r1VgWxpEboPWVV4RUFh4G0SlmeZzuo3ZCEJ33WfB6SSso+iJMOvPMc1C3RVkr0IGnXHYaJYLKlnJMREblAfL9OURkOKM8f9fZvSHcPYky2DOn20o92cOKJ1ffUJpFbaNHCOERM5GnHaENLzOw+YUQyBPGiDbUSoc6sheQEhjuLCrwan9rHO7aVmy3uirEUIn5pnuhWDGWgrnV6+5u7ujbJXNnf1uz9PPvcv+sJBnNf6ELsSqh/HwopWzuT8wUZe8DXexY26SB7c+BvbxcIY40+jc37/m/l7Lc0wzh/2B9bTx+tUrDld7bm6esNvvlYtj49JxRqOZDpFOFMAzL8C4DBqALnlZRLUau+ti9QZlbZTTibU0anNuX92SAlw/uubw7CnLvNfyEiPTnFFwc6X2ymx5oMSu7Jwub35tmxqAQqBWKGUj5cxWK+fTPS9ePGdbpYB4cvOMxzePuNrvweJD41C0NuSwjnd58ZWJrYEb68oIGghwa8pjOp+OnI5nzuuZZdnz1vvvs593lFoVdub6vZoDpOiJXUPcsVSOZ333rSg/IHXZALt38jRxdX0gL3EMM+hAbI3WNqnDciLvJsnem3JsAgq+TimS44KKduVNvnyeYSjoPCQsTZgpqE4UjYIYa61SyLiTYyYHBR42eMgSiClwOBzIYWY8dWJpWye0SkwTz3YHSUFxZZT1SqSQ2kpvR6BjLrve+bxyPJ3AnWfvvcv+euGQFgGXYbQmDILLIrTW8FJYtzvOxzN1q5gXrnLhR64bX3478ME7Dq+OfOt7JzqF9SjFxNY6vamiuLUV387E5FiUdPRcXXCbBYiZw2HHJ8fIdz98zUevN16fGiFNhGmhx5m7Eok5k6bAaSv0XsnReXLYPYRvrqVRCbglYkwUFI55WvUsd5y1d/KwssaUHhopWteC0bqUFCkot0LVq2IK1Lqgi6y1zloKx9NpMGbKJZjnRcCwy76lxUf1we5iM2T56kxpIi2zQIdgYrFDYE7pwSrZ6mBUDIhB50WKQ30p0KXVAWZIdkRpRUPFdibmyOGw15katNiDQllTYFicnFSd4/FO550ZrRUao8HrQo3bOHd6V15IKbLEhlGJbfKbK+chEE3Pc+iqa2bI/HfLnjyWDVAIb07gQQHD7lKWrUXP+7LswAUmWRAb42IaHoaK4BDdCHkiTTM2Aikv6pyYEsH1s+Up0bvY8c07eWTOBYsYn4btijVXGyRm+GhJsxSljnto4+ijrMAeiIgo+QOGFI1TUvNjiMOAEGRjNUzDxgA5ey0jG0MKnpwzebD29KFe8IuKSJldbSgnLmMDNpiwcLG82AMQ1Dr0WjmfzizL4eHeVkh85GJB7KMFxgIjcHxYJVoixSBVWLhUAuvy9KEYExivLLhW9T1JZBVljQkaqHD9vbUUrDsxD3VCsAHAK6BcYe76zz4s3aV3POo+ijtZ/ZrpuVZQrevcHiG3RmPOkbJVljkRYuLmC++T0zssU2fOmZ0HhYcn2VYEwK2s5Y61Zqampq8WQd1DPizmiiw9zB2WRxxfrRxvZ5YRHp+mMIb8gHVZdRorgYl8fUN5dU99+Yr4VsBsgTpDzgLfLEI8YGFH2L/mnQ+e8TM/9Ta//lsf8wd/cMtf/HOPORwSljqRzq5nmq/EKfJ7X/smh9/8R7zzK/8dN1/48/zVv/U9fvD3/xW/9/q1gOnDFc9vK//s/37B1ePEBz99YI4mcsfEfNrWdWeboTdKi8CcMy0L2ItVwf++C0zWsSNghWgLJ9tYeyd6pltVY4TPWGtcLzO76Yqnzxqn1lg3Y9u0VNRiai91p5QmhjoIuul2UctKZVgNvA9rdrgw2VL9hBhoQWBAqZXW1cQpglLPbUoCc0spAywYQC+yqxlRSg+DkIcitUqlHYKP906HZDDHvDNPkRilcPdhWTfX6qffA1jGQlKGUZdNCQLYp6HdtWwYUrrWKrVe76Mh2IwYxbC3y797DCInNmXz6ceKtJCU3xbGP8fIqUtJ1puRH4gFAW69jxZZ2frUVCSwuQXZsEJQxllMmpUreu+lrtEn0l0hv8sySXHUOnGeuepGaZXVZWuOIZD8sh/0UU4yWPVhxaEVQu8EgqzVNmBzv4AdYRQ6XObjoUwNAqKThUHYataeogoSehd4Htw1uyXDg4oI+iAIcFdkgnVa2UQe3xeRTGZSTbaqpXOUZzBanrDwAMZ0b8ShmvXWHtqqSndZ/MaZrexDRTfULlA6ZbkzYrNxl3UqujNiSrDWB2AsmgLua9C8iEMvD2JD5W02KYzyNEKtgbappdB9uBCq9pHLda17gXGzihgJIdJaIuYnmDk5b/S6EnIm7vWRZwOqFFhmzjQZ9ID3RJ4CXgqldNIya0+olfOooBci0KAbDYOoRfhC/u+SQK5TqbQa2FwZOFupvLx3ek8crqTqO7dOjE4qnVgqsZ+ZpkReIpGNlFfs48iVvWK+Stxc7Xhy9RibGjE4ZVux7Y45TFw92vPFH800r5xe/z7f/PXf4m4NpPA5lnefcPXsCfsPvsr7n//r/Px/8QWsfMJHX/ttvvX7v8fXv/VtvvHd/8R3fvAJL+427lqn9gSe6K4oAkuIBAFaV/lJTomQVGzSgbpW3Its680Iw/Zp1sGkVIw+AFJEgtequ9lsABAulZONIo6Y0rC8X/I+o575LvVxjIo+0IE3REHYg13VTHO+3EqawvoI8y966AgWyVwa4rQTypoq+51bUIB17jSxexgqfujj58YuJ6arVKsL0HVE6Ol86COTd8xwI8Yg5CA3QRtZU/ECSsv5xLDIhQYEx4Ny3LrJcljDmPHDhf4MrEVKUAaCoY+1Pai8rDt4UJFrkiU3hnhxxUlBNsLJtzbEJYBZJkV/AKt76Hi3cRdJHRmsUgngETOdbRYvsQij7MaUG1xd73AICMT+DH995oBSXe/JObO7uSKmROlO6jy0dfllEE4aGBlJ78Wc/dVjct9Yt3t8a9RWgCZbh2mI773TW6HJZ4BvK/IWb9zfvuL+/kwplXkKzLsDj96+YdrNzIO1VgbEGAFGSEQY+RVhLBEXtkZSRJSw3wbPPZq7dNAZ27rhtbKtjdu7W47nO87nOkILb5mmiWePbvjRH/sxpnlSs8PlTTYbMkRJl7vL1xoGS96q2PEQ9TPW4krtcoFZak4y7u9PvHnzitP9PWWTCivlzNtPn3J1fUVOkWW3o7eORXlUa6lI1hjI0wzIYqYhRmhwisqxcqLqnFvhdDzy6tUrTmeFje8Pez73/vtcHR4Rgi56tf7IH2+hPwwiIZl0uoDyh0YGTY+0XtnWM6fjifNpZd02eoBpt+edZ09JIdGrKmntsqwOlqyjz6U1hQkf18payqjJZgTRafDPu5l5ntUsZUmfbVPDWa8VXAHOIRp55LU0NyKZHo0YZ8k8s5Q1wRmhlpfMLMeDGoF8DDCXAc7G8FKrvMVuSlP2roBISSU1JOY5k5Kqc90bBSngcJimyLK/IUZlKFl3kjvRT1g/Qiu0phDpjnNeN/lxrfPWs8ccDgcsKd2mdgE7CmUYlp8eKFujrkfa8Q3nck/AeZIbP/r2wk+9P/GFp51YNra64nHPtKxUz3iYZY3pgbY1Ym04CywKslzL9sDalgpbga0b/+mTWz58vvL89gzxQJwPbD1RPVFakB2sdNV79spuCuySie3Whi4L6zJT0RB23hql6cJqSqJkWQ7KKEtpgB5JLVnbpkOXyDRF5pzI0yXnxrlUeLob23bmvG4a1ELCYnpQIoXACAiMuqy1StOawp+3TZW/y7SQd7OAvCibcAhRknpvVBe46rWP9jaT2i/Hh0YuRlOOmaxddeT2eNf7oIrovU6rEPW+BKkxLyCJztPGejxRayNNsvYSYAphADg6q+umhru6bSMRPIx/O3T5Dmm9I2DObdQtuxNGns+0KDg2DqXipelOn5uAyNbkRd+OKykpvLCZAk8vIBhBA8alaav3Dq2JBXYtdQr6tKEGHJ/ZGH4MgYJaysZyNtgrM13wGpT6g0LPTCGmcbTA0Z0eGXLs8PCsxHBJNDHOrTzkXOE2bCcwglgeFATBGE0sUjvEYUPRkigQqfU+spl0R0j9JcbcooazQepJPesIFDLDk7KQUs6cS6EWWbm9JywriFfyb4ZqQm2BZdvY1o1tW7XIRlmx1MoiJUcYzS/KUdFnOk8TuAKofZAJNkJx5xToVcNp9YbFJOZ/3Aymj4oQIlOSokyLob655hBSJtE53Z2wuCeN5d5dd6cVAdfBFGofIyzTxDkIEMnzQk6RGBcp9eKoep8mpknWFXNGhkyiNAhkGK0+GxAtkEvGc5cCqkbWdaW1zpvXdyzLzP7ghNSkgjEN3SFcBssGKREfXVGevyJc7whhUVZVK5A65hfSKGLTM/ZPvshPfvnEN75b+f0/e8n1NPGVn9mRYyDZRAgbrU8cl41ja/zeb/wOf+npY65/7r/icz/7V/hrv/J9Pv6Xf8i379/QloX4+DFfuz/yj//FR/zq/n2++GOPtEy0QogBT2e8BkJs5FkquRACNTVsg2aXwdeIScNzSs5SIpYE7vdtZauRHEZ4u8FWGt0bc5hJvZEcdlOgbGe27rQSqS1waoU2o3weA3Km9MY2FF9BpnS9C26y/F8A+BEUHVIiEsgxiYTyPgDk8c4ylJIpasbi0/ns8kvKH/13MWkJkYp+ZHrABVIaoK6PBlBlhtUB2HhSK4/aDwcQPizC2yUHCOUyWdDf1QbIrkyyOGYyMc8+frYQI3PKTClwrsreYGQ2XsC2lHTszHliXTd6h+NxJVz+L6iKPaB7pbVxitlQgpuy2UIXkB2ClrDaZEnpTarFi3qmY5StQdIzUsdZxcgjAtm0jZHdMk4AqQqGDS4O1VX7dFljTH3WH76cC2JNCFLteOgP87WieAcRlyaVDxgE66RhFaqt07Yiorg2NUPrJB7LrxF6GMuuDZGM4WuHKGdF5gKq624yZPUNAdll8FGAoe/Vk5btEJMAxTiaIL3hIShrsnflqg0bmKHm5GCBFJMyvEatk1Rl/SG7JXQjESDyaUNsVT7NZX4IpijhkLOe5+hD1SDViQ+1fxhZmrL7jha5PlQUwzbavBBTJM4zYQrMORJQ4HtpldIYjXyRVpVrozyoRJz2NLYBQhpbqeQ8SiIwYoDgalROk2aHOmzK51WtqWs5URo82iumIs4i3l7cOS/bSrBPwXGzTo7ObDAdVub9TAJC7LRa8LWwf5W5yhvX+40cE7u5MUfj0ZyYF+f0pjIfI1PszHHhvS88orrz/OOP+ZM//l2e/+DINE385I/8Bu985S9y+NxPcfPWT/ALf+dX+KXdxP1Hf8x3/vA/8PWvfZ0/+eY3+c5HP+Dl3S0/+PienhKbjT3EHVodgK/OmxQlOtAt1wVytIYPcvgi2giu56zWMKy6id42QhilLX6xZ+mpvZCqmke6Zo8GKSx01kGIy22hjEbG3uhjL4Xmbajn+oPqs9WC50inK7doELM+Zp3LrKzZRWdfskSjSgXYLwopKZ37UGFHM/IUdff38GCrVAnJUNObadwSyqu8pyaltkflpTFECRb1XvQB0PeRhSc3UqQVcBtEWu+yGAdjq4p8SWZcWsi1V+mOcIAk11FKgVAjjn62xrAjP/y62JV9KN7lRDIDupOD9mUGgIb14ZhiZJ02Ne9hhC4iIEbdX4ov8QF2+Q+dqZ/Nr88cUFrmmZwn0jzL015USx3HMNFb1fFuCCQYl+I0zdAL6XBDSIGNo8KUQxl5H1HMNE7vhXW9p5eNVlXPvHXlVqSrA0+vH3F9WAhpwkYaUbsokIbkt1dlmsQQaSZ5cClVWUSjXaYNZK+7AqR18agRKADbtlHHgnW6P/L69kjOxry/Yn/Y8eTmmZpcHVotbFsbg4SQ5gfGX3pcvdwMu4JriFBgdZUlxcSK11LGkLJxPp14/eZetc7zzGG54vHNDfurK+bRCraVRqlCm5eYiWEeDIUY6JgUTOx9oKYpDzbHefH8Nctu4n6r3N6+VmDsNPH48Q1XV9fKfrmwPC40WCHl/kML3GV/GuG5Q1kQxsJ5PN5zf3fkeL7H3dnNO548e0Ke1CrXm0DEGKLqzOkDcXZqM9Za2dZKKZ1zaxpcykalDWFGlrUwTYQ0cg5cjFQrHbwRieRpVlCc+zgERt7OqLFd4ggoruBbJ7oOg9Kc0KsWZJu07I7mreZiRrspxZ8AMU0ESyMzQQDrpSFpypEpxSHfHsNxN9wSuzkTJ1Mujwe6n9Vu1ivRNzKVEOpoioLzaaO7AjYf3zzi6nrPlONovxvMmVfZYqLYcG8bdW2U0z3n9YiXyiF3PngGP/fFma984RFT3vDNORlMaaVFY14zU3fqDK0ktrLSUmTbdFl1y9Ri3L1eOa2NvCTuzs6b+8bL+40f3BXuz528PIK4V+uPBSqBblGW0AGYLFNiTggQK47HRMyZVhX8e67O2jYcWTRr73gIzPPMbn8gxDzYCKOWSrnU7waFbecIUDVEY6Q84b1RWue8bpQqUChNEzEmWqsCkwYDkmMYjIoueQsKJRXYa+z2eymZki6fZIHpYsGqFfem3zeeQwuROI0q5QCCKkZuxwDDzS+yX7HA05Sl+LSLfVO17sE+bTDrdOiN9f5IaYWYEykq9E8Dt5FTprhaXlrZWE8nnK4GraGwixYe7GqgZzliGnC2gqdEqZXdMpNSJqUw7BmyEjt9KMtc6gMz1vtVC/uoHndUgKCBfcSN2wNxKkCDwWpxsaBdwquHguaB0R4Ch94f7gOBqcBlkTFd4LVJDWddobNuTkrSaoShhvGhpGm9E1Mih/QwzNC6QK4xJF0AZh9/gQUNRT6APQEyCnKPIQpsM/15jGw3qbJcAep0QmjkJFXW0AjprjPTeROUFZIumQDxouYQ6KnFd+S2DKBIbGGkpyRAu6jcQaCNQO+LMjRG9VOKERRJYdawqkUtRCfF8KAAC+PzTiPIvI0SC4KWYwgjSLLreQRC132klqQ2rPOR7c6kiAsBxNFpQU06L8xkD0oRcoK0LKylKBDZ+CE7TsAWVZu3LgVA9AsrnLm/P49cGyOHzjSHh3tB9m8jZgXj+lHkz4uPjtj7E4SJnIyUGs0cCoSecIYtMs/0myvamxO2f0tDpHWcVblb/YSHjMUr0tV7vPvBS37mK/d86/u3/Puvv+HmZuK9t535OhBboJ2dZ48SbV15Uc78v//6N/jFtz8gv/fn+Mpf/i/5yx8+55N//33eVGOaD9iThd/73ne4+sff41f/3p6bz2diMqxr/iCs+JqIUydTYQM2oyeDOkDkCDk3ttWZYsCzlM4X0Blv4841wlhaz2uht4qlRAp1qCVnfDMsOx6dhVmFJN3w1vQs9UgsibNVtjqCVc2ZgJ5Q6DtglsZioDa1FI2E0xojx0sLKZesjzAG7+YPC/QD+TdAXItqi00jBsGHxeKSW+aXGXP8eQAxJkIIbNtKqU7KCXxYuzAY+RseZUtvXQ2fikJAGUpVwG0IERutoAIPwmC5pdC+KOpTUr5eb5G1q/FMCkep7LBMtIyzUQYIF6NylaQgD3jiQQEAPNR4B8CaShwG/KbcqKEsUM7OqLaXX0tKIxcBqplan0tKn94ffbT0XWZHuwB7DyCgtio9J10gShchq8PbpTbH8DA+fFO+p18y3qpyTkMWip8s4THgfcViIFke537FXeRQp9GjUcogL2NQcUfpWFe+SqdJfYEAMaE2soy3KqvgpQSBqFxXMx6CriOyngQ6ybT6XMh2utNaZa3KU5qyPks9407Mgei6J8sg2NxFwiRM7VFhELAGFsZM2XXWq7dASrI4K26kDcw7xE9VwCka0ySlYO+Rso6yIwSGRUuMr5Bl2uNRcs7WndIDHrqAsWiabcf3FFMW8BVkZXV8NCw6rTo5z6TUhxI2kLJUzdtWce+cSmcagdYxqvEqRVjyxC7Aq1JZq6amiJMcAXsLWFbQ8jSKlXqFOWTiAbJn+hS5r52dRdbzid3keJ851OHe2CWUpVjxOwhh5umziV94+gU+eX3P2TfC3ff5/u/+H5TfT+TDu+yfvM/105/g2Xsf8MHP/k1++j/7Hzm9/h4/+MYf8d0P/4w/+/rX+Oh73+Bb3/2YF69WPrxvrJaxnEe0gZ7PXsf8EGzcfwJOvDcSamJU2Lus8jHtqLWOd2lYKE0An3fd5SM0SAA2kJpTq4HLHq8ylo6ZbHq9+VApiZi23kgBzW3e8Qrr1gXGt6HOC41oiikQAaYdBJNV/gKGZYucusid6OOOiUZdB2jrOpuk8NSulkynVR+T0MN+1YZ6CpRV2XXuNO+fkpPjbAluBKTwCWMXFx5gxNCpES6t9W2Fml2N3BaG82YoxOmfnj9dRQnmgV6dnvzTGTwOchMj+5ilg/4F61Bb24NNVXNWHi6hkAbQ1iPeO8W3H5p1NSlPUTNQd7XmPUg6AlzyMz+rX585oPTo6hFBnXs6aG0wPYP9dFNbhIWogQxjzgmSUc4bkcT1zTNe3J10gKRE21bWbaUcz5xOR7bTeaTNR6blinneczhMHPZXxGkmOMqbCZKRKeBVzQoX5ijES66NUEO9QM5WxJxs6wlViGYpolpj21a2rbCtJzG32zYAIGOZd7z73rss+5mYpViI1pW5MSkXwN2YUqSNmuow2Cr3oS6woKaR7mBVrQhdYaTREtu28urVC7VS9cHYeuTpzTN2+x1LTsw5q24QBanRHXJkTv9/Nk7qpkCpqzzUMckK4lC2E/e395zPZ+7PG+dVwN9ud+DqsCdNmWmZ5Tf1T19uG+iR1F96EWAM+F2SU8kqO3Vbub89cX+6V1BizOz2e/b7HfO0wzFq3S7h9oy3fliXJFk/l8ppUwZRrQ3vUrW1IWu0uDAvEymk4fO1AUL5g2w3Rg38yeQHrl3BuoRAiFkSYQu0gahbF6vexr9nCIEpZmLudIuaaAO4acHstRF7U05YEGNpQVkIrVR5y2Mi5wkPQUuGS3rauhatPGVynplSYnUpbfEkMAAAIABJREFUlSavRDrRz8S+Ecb7YA5390eOdytpmri5ecKj6wNzCoPS9E8tfgMwiyNvpGwbvdxTypHtVMg4P/JO4Kfem/mRzzlPl4ifz9y/kaT5vHU1t7Vb1m3FN+POC22F0tXM05sYtuPauLvbWPuZZTdze+986/kdb87Oi7tK8UycDvS0w+PEWpyQMlOI47KEZJkcjd6KwDhTO0YlcXuqGFlBu1WDbbDB2phsVstuj8VE6SPsDw3qrTkxZmKeqXXl7nRmHlXAMU2spbKVjdobtalVLOZRbdqqhmd4YLzlIdeD23qnnFfZgIGr/RW7/SJVTBTbF3+IzcQH4DEuwZTEROXx/LbBTncQk4iGsGSBilR6uymTl+VBOeCtUi5BsyFoqAtGLSvr8UTvjWmaCDEOmzL6vQbNdNlt20Y9q5UyBLUYXhrRQlC2lFR4Cv80l3wejK0UBQ3mTEiRHCIWEha1ePhgqi7tL+dtVUvebtIZYlrsbahWem9cvPGgz7jjYuwuy5Xmecb2gV3OqGG1uihpcpbiRsHdl6tq/Ml+Cbo00pS4v70j7/IDQIUZ1kf2husSv4BVIZgyuDoQbWSzCPyLOatVJclS4s0vRNZQEiRyzsSUZKszsWDhApRdFBZRC321EaR5mZgGaCSWWgOWecCDpPLtAlImgU0hJmTrke04JTF8PerviD08SMaVmydFWa3tU+Y6ToPJM1IKrNtpfO5hgGnh4UtIF6tp6ExBVtPe21DvDqAGf7DtWXcgDlvGaLvDpAQLgXVdCdNENilWohnEgM2MQVnVw3hXy9kliyWM5lLgMsW13ulNpIMHJ5kxL4F0jKzFOZ4by+Tk2knBiV5HTbqG8ylEWszUUih9Yz1mlgk8tAFUaKk3ZG9gsMT5sFBevMLXM77bKc5C1ydO0Z1gC7a8z/LsJV/64BU//vm3+Hd/+F1+9+t37HfXvPcskktiO6z0u4nD1Znt1vnW8+fs/tU/5+f+64nlCz/NL/2Nv8Z3n/8zfuM797TziXRzQ377bX7r2x/y1q99l7/9P/04bdGSas0JtgMvWGuE1B6U0VighkbdXJlAU2LqgQastTDNRjttpADTlFhrG1EBDSKkmDmvmxjtHDHiWI461TdSjEi7FuiWRp5ZZUrDrtsyFhptZC8qUzkQkgLeQ7KHjJsOEBLJC+Y2CDp95xoLRuh9SuP9H6H6+MjbCwJRGQx4lAK71jqa2QbgFPRcPmQoXBQgwYghqMp5MPdt2IQDYYCu8YcUgnXYI8OYXUTMxHFO+VAnGgrLpQ/LRpA1PIegSIihVm11NOXVUWsd47CqpUF4KLPHmwwoeZw7anqLeud6w7Y6lhupXkIKpCwAOIWJ7iawyxmLlTEtme7Kn3JHJgsTKBOGKlr5SAoVrgicCjDswAPQsziGwU6IF6LhEpT+qbopXEBM/HIrKcMzQXIp9N0Nr0NJf7m7cyD9EHhYa5cFzke2i5sysmIUsN06Mev+XXv5NG9pzJb6eYJ+jj5mz16oD4CmclkcB0sjQ0kzetXOO57rNJ5VWTEV4NsFTif9TXko3h5I7/EdXPRZ7jrjbDyHI0GH2jcpIF2LeZoTRKkjPA6lWBkkVFQJkiObmwXXrpVmtZvGkc1jbSjD9H2GEMjDVpWG/NQ9PIBlF6WEiJEs8DTnof5TG18PUtg1bw+fX4iwxCggyUTU5hQIbECn9Mbr1tl8EsncOscue34y59xW1i3yqGZ8K8rDic6WAlc7ZXA2Lxid9awcsa021gjHXFlaZ94y11NmThv7NBOWldwTaQq8dT1T+8L8aCYviVM/cfv6Jbef/IDvfvff8b3f35N3n+fq6Y/y9ue/xOe/8lN88Iv/OX+pbtx9+E0++va3+OjDb/CNP/sjvvPNP+Gb3/+Q5y87b3qkuKIYlC+sd8IQ6qJygDSwoaFeiTO9Ga0rcP+yrzlxgMBj5PMH+Fhjt9v4nvV5a30Lw91jhJE5O5Y0LBpzUhTAqan4amud6AqiDwPMqfjDEDuMQlKUI4eQStBkd59iINDpWUTWVCPbUEVJnT5yscas563Sx3lpDNBrqMFtOD6CORdlj65/ZZqFcWbFrOKXNvaDy+witZ7KDhSPIBX/BMwpKP3MR8snA9gZc2XsTnfZ75QjZw//e+8NQmStfcxkUF1zobzd/SHbTWrEiJEx6yN/i6H4GjO1WBzcKr2LNG0aTIk6qEbT+hgyPqNfnzmglOaJEKDoBocwrFlRFxfuJORbt5yVl1AbpZ7BA/v9nn7/gvN2gt64u73j/PIld6tqVuM8Mz96wmG/Z9ntmOedPqSs3AUPkVAaeZ6ppzvVzFokmSTYalUMQxILeMO6Aolb2cCQXaU767by6vY5p7u7seCVB4Q3WmR/dcX+as+UZ3aHKyxGSlvp3YdX3rCQxjKkILutbMwp4VxqDlXlGwiU0vTQRLU7tFY53p4orXB/d+R0d4/3zn63Y9nt2S17rq8eMS97VIla9TKNyyCEBDlhwSm1kEMSwBUkfRXjGnWIl8rzVy94/vw5p+ORZT7w1ttPefv6GnPI08LhsCOESG3bUDMNC0cfbUDD6iFPuhgIG0yNDqvO8e6eF5+8oBRllyz7met8NRqc9N30XumuDIR+eTlcDMupITXSpnrb0rrAxrIKKMyZZc6klAUaRSXm96ZDTKuKk9OEUcfyqZyVrQmsSllKFQuB4AICvOui7yNI2ZLUEMk1YFZvo9HnUqs60PcQSWlkHWDUokHMQmSZIzZNeuZCpDIcjb3hBPI0qcUl6OjvVMwbyTvZzyjSbST5Ezme7ri9vcNC4ulbN1w/OrBMygvDRyaPa0BvFC2RvbD1ynbcCK1Q2ko7H3l76Xz1S5mf+ZHE9dShFc63K6XIEtnKPaUatXTWGmRRrJ3bpmW9FqO0E15UTXp/XtVoERPfeF750+/fcxpyzJVMSnt6Xjj6/8fam/zatl3nfb8xq7X2PsWtXv34KEqkSEUUVVCULUWSIdmSIEMwINgNAwHSMZy08m8ESCudtNIJYBmBnQgCEiAOIsOIQ8WQFEeyLNKkxUosHvnqW51i77XWnHOMNMbc5zH9d0DgAbz3nrPP3mvNNYrv+33JlQGTb61UO0JzZKma89PEhlzamUBrM44NSs7OIpDBeRmH9MXZOfPuDJPI2vpQ052+lwOATZXbw5WDgoevqpuxHI/D6uA9Z4rOS5HBX4ujgI8jPcvVyQ0zoW4++KrbhqTIfr93APpQmngz4QVtPQGD1Tuj2hrxdH+JjH5XiKPQlLFB1LFZNPV0mpwTKRdvYHC7Zx8NoPeAPsixWlkOB/rm/AVVjy9Ws2F1DdRe6Zuzj3TbRoMl5Dxh3kWPh7Y/lE+xziZKM08s2tT/W6aZnNOd8iYMtY7hvnU7vWfDXhVLurN6RQYXIrjFqjdXevbxzOljEGXB7TQ2HtanAqEP3k4Q34I6OH8ADaMXDqfHqowqxO93L54JiXUkDM3Z4fwmMrgYbrtEnD0Uw6nQUJo2ZxicVFBDPXBaBAQJzhBSG/+GcV3IOAt9o8ypKLl7jUO2Pw5G64qMAAVv9Ef/gQ+K++Acmfr1shyPOPTW2ShuV3MZu4jfvzbsdafGhNGUnFQCJ4WTb7y9MY4xUkp21WNPIK7gCTF5A2WejsIAy6acyeXEJGscj2MBYj6cCGOwpHcNu7+vAU+KoRvTPHF9e2A3TcBQcln0KG33E7l1SwK1Qw7KnLI31GEoBgwanWwOS/ZIA7dXKpDnxMVl49nzxtY9Wj31jDQHosfsCUy+kmqE6IVoDkPxbkNFFcUVMdEHiQmFnrHRJ8fzGX3yjPiqD9U5FfsWQVcfKoYz0tnrvPLGY37+cwvvXx/5xttPeXQx8cLHJ872iYscoAZ2rbBuxvO68lff+mvu/79/wsd//QEvfOoX+M1ffZN3/7c/45tXR3SZiRcP4MHKv/yLt/ixHz3jp37zZawHt6JIJWJIVajJZfVFKVHGfdgJW0NbIKRA7JkpJGKplM23tz24JVOb14IRCOaw3b5V6K6UDihr9IAWT19zGLeIKxTbaMxzVLolLGV/bjYfhPSwEQiUEO7sQMGyD6VDINuwnCa5U9y4unPAT0cDLCNJ7XS/hfBhQiK4WkeDn6e0dscrEgkj9dZryKCMJY4SUmIKzrhrbRT6w7oUh/ri1NipGnXz8JMY3as2ZhP4wMNB3+ADYvpp+NG9WRHcZkmjSGITgcUH7ybmOiQRCMnVXeLsIjW/59FTauiJz+T1WUqu8/CBEqhWgnpdmeOEAmv1M0PNiMktKbV2hDAWEm7bwIaabTRqHajjbA1jKWE6bCsnS4j/s7GBF0LK42zz5tOXBf79bAzeJIjbbW3Yb1W98RnwbMP/TIIvoYN5Qy6iiLSh6PLrztSDGKKd3i//PBAhxQyDbdTH4N+G8iCQOLGJzJSqvjiSHik9QAknkYkPk7qrW+njdxjJmBhsdfPETDxFKqdCi0aJkZQCUpXQxqLG/MyxAfj21GJxdd2AxBPy3bW7Vs+PDlGYckHMPxPVD+2Gp2WZ2Yf9TQrVnzdB8RFMIDa8CQ8eduGN+YDec7rnYDtunmaXfJCVUkSt0cbytW8Vi/7hbts27udEHEMmCYZaIEimtYYEIyfhsHRU8p1So3dj2ZQUlBoChyVzQHiWOkUa01w4m4x5J9RmlHRLihWJmdw9jt1kIceV/UjZ3RVjVypTiMx5YT8Ju5gIc2GfFSOyJeGsdkoRHuxn7p/PbG1hWzuHm7/m+Tvf4K3vBf7yjy9Ju1d48MLH+eSnf4xPfPYX+Myv/z3+5tP3ef7Om3zwwdu8/92v8d1v/iXf+PrX+Pb3n/D2EriRPZJ33v+MGqCu67ClRtAM5GEbHoyhPtSA5kttA6yNa2zUmy5cC2MBMOrb7iqo3gcrk1GbjtFtkLEsxEgkQgrOjtNwN8haa/X7EbsLpxIibSBeRpkG1shBsDjg1iLOYAuD5qd1qO5cMCABT5kNfl3LqOfsdAX0UV+E5H2/MBZlPmQS+ZAVJsFt/dqHk2YoJFWUJIU0hCAmY7AbgvPM1MfYp2v7bmCjw84XhN59gRbFAf3gyrq++blRxs/V/99yEx8k4X1lsIpYQquzLrt4sRJPtWJg1GeDAU304VP3+ipEt486+uaj+/rIB0ohR4Z92Xkwufj2P6bhcfYPLYhAdNuEsXns8bZw+8FbfP9rX+bqdmXdjmjIXMx77r14j93FfULJTGVmyhMJ7wQ6DkQ2gWDOk1gP19y89w5aEucPHrm8X/yCU4zeN5bDlatsutHqSoiBrTaW44G6NZ48eUwbmUN+0QYePHrEbt4xzTMxOygxxODMDRpJIjGLF0nBGwWPare7AUxrfmhP84R243DtVq9YHHy5HQ88v75mOd6w1gZd2Z9f8PDBQ/bTTJn3/vOj37i9bTCmvCkm2pjOW+xYczZAMAc8nlg501QQM66eH3j38Qc8e/6M2jr37z/i9R9/g2nasW6VqcQxGPL42xD8IElJPqTq+/3q7213J3wc9pQgUGvn6ZPHXF8/obbE2fnM2b09JRVyHofAaetmhllFxgwYhUNVDrWiVbgxQ5sitdKWha15alraFXKeiAOCDYxmxF+PmPtUgwk9uBQ7RI9uFVOQBDETSnZJbzs1rob0TjNvTEIpLo+Nhq5KG0kivTsEsEQZVhNvGB1M3FibOf8pC5ISU5mJsfumProtq7ZGNKOkCcnFr5sh5QzRiH2jsDGJobq5lTRmbm+uefbkGcTIo/v3OL/YMRdXZgU8QrObH1A6hijBoG4rrS7YutHbgcO28fLU+fznZn78RwoPsodU9mYOo7Xum/ig9Kx0Lb4ZNCWlzGadXeisW2TRDcE/t+dXnbCLrDXw3bc33r42FjIxlruHf6C4vc3A1g5RqaYeNys+wU/gzcI0+QFuxqFBt0AncGxjwxy9icvTxNmZJw2uW2OrCzqSXgxvJlpvrFsdkHRh3p0xzRO9Vo9P9h2dH24mdywEV6eNwci4dkuZ6c23psfjwlZdxRijJ0ue7c+HFWEMWtWLvmrmCW5jELBtlRA9OruPB56Mwl7UFWbjNiZHBya21pwTl93Kk8Ym21PgPnyoBvFB9uF4oC4LedynJ7acg9kDfasOiF43am20tmEoZd5Biq4ECV4Ex9Egh7H99bfK04aqNi7PL8ZQxeO0/R53foON30XNGVOHwy05RmcEjI2qjoc/ONcnxeHBx9+3Zh5PnCSNAbErVby48i1W136nTmrdY1hDctWLD2gYCibf3ogE5PQAD8K6LIQp+7Ugfk0kcVl5sHG/By+uurjFxP3yDskcBg7nAY7vqWZ3v5sPQjopuDomDlu0D4HHQGU0vWEwB7RtwyJp4z05saJGuT4kV86BGjBfzOG+ePxzbxCkE6P/DFMwFZB0umJ8ABaHHFzc3mH6IevPFRjBf9dRMGGBGN0SGmMchaWO32Lwtk58gsCwjQ7lpDrcVpsPcU8cARc5ubI2EAhi7M9nbg/X9DEQIrjyI2og4tatHLxC7eJWhzQXah13tjVInpKDCnme6HXAeM0fbcGUeZeZVpetqwasu6r6Q/uk3cGdp+JcKtt8UVWrq48jvh204IVoYyhpJSA5EPMljYY+/QB56d4dC8xkNNlDVSDzG8yvdj75U5Wfvzrwf92sfO17z/nUm2e88eOV3bSjnS8cNXPRGwcVbq+Vr/+HL3PvlZe59zO/xRu/+Jv8xvff5dmf/IAnx2tsnkkvvcTRlD/4l9/m1VcveeGzewIJCR3JgWAF65UQmic2GVSTu8/VGVwdIUNoYJGYEzvUN4wBenA7jfMp3F4iEVoDdHP7m51MZT4QlxShBZIqhOTbbZRShNgd3q0S2Hr1BDIRwhQxbfTmCu8cE5kjSISohBg9LBG8+m74gGB8lnQj5+x2u95pdN9cSxqDyMEPUVdL9B6ovQ9gty9MYxoWf4XQg8e4hzFcMK97hDH0HarRU0Pni1j8bNdKyhm0IONFC/57ySjhrSvaVrbQoTl3q0tAumBBiON+rcGtZa03t+aebFUheGKYBpopXaGJp/sWVYaghpNyVXBkRVVlq0NVK/XOanGajsToCXNNbdisjFgy2hplyjDSiHxeErAcfbnQXaFk3ccP4ED+mJxhpl0pwf/9KVHNmiuPxZyFdPpsw4jO1rHkK0HcHnk3qHI2Y21uez8ddCF4EmqjYyGirYIJvbr1xBseATUPmZDoDfr4vZu2cdYKSYwkH35v7f7MUm00jYRY0ZA8bVO7h9SYD8qqv7l39viAD+Gs98F2dVi7BLcspRjcDh18QWp1qElEkWQDXoyrTGwsBMxGenRw5asIU8w+4JFK64IOdk7XzYe9OtRuQIhKTHtUFyQIJeZhBayojZ8fkzOcMGJxhWjdqqu2zLDN0LayOy9kwdMze0NFmKaJmGCRgphbtUMIlCmSCz48sUhMGwXlLB1468nG0nxYkGJkG/ebhOABIJZZeuPm0MgR5hC4qUI5KmXaKLGzS4HdrMyl0RdDQyOo0eZCTpXDIVCyn/270tmlSAnC5dy52ilh2VF2G0tKzDvxFNNhj95PgXnOXNTqHKh6zc3NM9781tf4q68K7X/9J7zw6GN8+uOf4dOf/wU++/N/m/6Lf5cvPHuPq8dv8/73v8qbX/1Tvv6Vr/L1b7/L959vPGemlz0yZR+81RUbTFXDVbfAUIg17thH5v+fnyyARHz3IaRwstIxBAXjOglC6/JDCzBfUvVWsRSYYsbEVWmi0KJfB7YCzSvSOAwIdatuXx28YEP9DA5ejyIB65tbTPGhoIy6wAfwzgT2palr/tE+6lG/76P4YNZ82u4L+uw1j+c86FD6CLX5yeoasJFGFxIalJQKra+oeOCUjHNGu9zB7Q1X9rvtdbynHp/sw7SxVBS6//wQhghhWIer844tCqdQkjgsoWHctyYuqDCMnD3U6bR4DIMH4Zjz4ZxAhpIRJDk6R04BER/R10c+UKJ1Dq2R9w8J24KkTJ4ysRR/480bU0OQkqBXbj54lw+ePubmvacs9QihUc4ecv/RQ/a7wjzvydOOkCdMqwP/VahiiLoM2ohEiyNqXtkOt9xuC5f7S6K5wLObUuuKrgttccWPhMB0NtOt8ezZLc+vbzkebti2ilhnt7+gxMKLr7zGvfv3SCnTBtOoaadbJ5w2A7gdR0w84jhm9ytjWK9Y84ex4g/1J09uAOF8f44E4dnVY957512OxyPTtGOaCvfv3WM/zUxlz1TKKFxd8rest6QcyDESs99EtdVxIOh4dokPJcQP4JwT3ZSnT57w3nvvsB6P5Jz5+Bsf5/79BzSF1ja3oWGUsqM3t6BYt7GNHkqi4GqP3nyQFIM3+4ZwXFfWwzWP333M8XZld75jvnjIo/ML4piQCuLQSD4Erp2aGO1wrI2bZWNR49j07kGyHA/YciCkSDnfU1JCgyCxcOKC9FbR3t0qlL0IdFBaJSYvjLsqvQmX8w6ZPGK+tQ1rdWxf4h18eAqFFL2IdJ6sEXJ0kHrdiAoh5R9iyggNt0i1XokSmaYz0uxxtSn7AR4s0epKb5X9PBOKp8r5weQFesIoVHKqmG6oKmWa2ZaFt995h9A6Lzx4wOWDc5ebihc34QRxYPB4Bqpk651+vKZuR8wqx9sjLwblNz6X+ZmfepXLfCRIRweMPmikF2G/CU0hLUbc9mxpYZsbcfUo3n3YsSw3zM0oc+Zb3zn4j98XfnDdePuDxk2NWIYpJopMiNdzbARXvXSD5NuEHIUopwl+HJBo30orga11KkBM5JToOJ8ihMhUfIsQYmKpY2sbk8uze2ddK7W5DDoEoUyF+fzcP8M+QNgpj/dQx+b6VPQPBUyMri4MLjvuw3JZa2U5HuH0fYsPtqac71Qgp0JOMBjsHELyzVLyos65GN6w90Fg7QKIjWwGT5RRE8o0u3VYAlU7vX8IQE2SBpDbi99tXVgPR3/ohuAD5xjJ2aN6tXX6svlZIQ5bxSAX55B9qEg5MYv8YD/FV2sMtKMPKy93Z+5rF5CubiXyx/soRv1sthA4HG/p3ZgmT/ZxaX4fA1pXAgV82+m/Pf4dYnDFCW6PMoSRNetbRVVvSoM4V6craS4fSqLHEOwEiMWcTWTjc0r4NXq2nwYAftge8DNC/dfhNLYz7VhvQ2HkSoCAD9nvBkq4Oskl1/4zfa4ud1Y3L3w/LAYwtxN68WRIjugCKWW/ZkRQ83bbzDlsbnvog5vmg8PWN6Y53fH8ZERkn5S0RD60rSCI6EhbGsMgHF7pxU3wHj3+UNz0UAjcQZFHNxpTcc5Z8EJLRGit+pZ6q24BDhCk0AbfL4gXYUH8e5vq3VAW60gSdvMemhAmIYWTdXgMGU8bveCA2uGew/rCZoUiE5N2ajCSdah+tosJOgphMSHHzJQM2xomHgIikn3tYUaUjIgR4wQCWQstVHqF403HzoVJ3CJkHWceBJBUCZyuoUDYT2wfXDHdPEXPIWgf3LT9aKyPEO4R9p/g4mMHfvanbzgeN/7jf3ifv/jSU3bnD3ntY5H5vHCxKDoJ9+eGLYEPbo9849/9BT/98ieZXv1ZPv87v8UHb/2P/Ks3K4fnz0j3Xia99AY/+P63+Wd/8HX+0f3PcPHahHQDEsROyBC6+SAuOgQ1hkCPnZhAJNKCK0pzTD4oi54OCkIvhm6gopSYsdCJsbA1QbeNpkpMikinSyCEzNY6Fv3sC0DqkSaGopQcCdo5nhheTRAKkoTJIhr8NbvV0j2QUc2VTlFpbUXEv49aQqKnx97FWUe3wiOKVqXr4mDnImPQN1JrY6DIgBM3ZdNGnn2YqnTisAo758M5kxp1hJiMVFgLiKShRB2DmxQGW61Dc+vwScro6roxacch1bquXo+FPCwkzvAMEcKcEFPqUdm6q07KOL9j8OWXDlivdF/T+vloDO/oncUVHHbfh1pyIO1BT6oGH/jGKCxbc1tiCJR9RE4wScYwpMUxKvXXMeJ2/FxMnm9rqgRG2EPHm6+xKJOhfvNG0hVGw+Dt3wMYcgqyOlsHrZRpZm2rLwRH44n40sNFGWE0cr4cOeEoZKijTPvwWfqhIgxr82jSoyRnrA3VEiPpwYcaRsnOZUoS77Acp7pCenB1awxE9fCUilBpTDGRoi83Yhh8qK1xrNvg10EK/lAy9QdYipEUXUm/rM0j30fgUYh+rs6lkMfrba3fLdld/+vDN4kBqp+qIRpSPaGwqyF7X1ru9jOZkS7XfFgleZxx4sp4T2N0JixFsOpKR4JRNyXiCmkwxBz+TTdf2HOCnUeku52xascEJnX8RTMjkDx1Mrr6P0gaOBBX2LqabAy75omlK8ehgM8rlGCcTZ25Khe7W0oPzAJTyqSguDW3IpowCxQNrM3IKbO0Rj7uCFlJqiybUQ1KVkoypAo5gEQjSeFiToSd8GBfeeUF5fZw4Ga75f3DV/jjP/33/Ksv/j734mu8/uk3+OzPfIGPf+Fv8spnfo6f+MXf5ZefP+fqyXd5/PU/47v//t/y1a98g6/84H3ePF6wzQnLPtCMWjEMlcJqnhbm2bNDoSR2B2wP5gsB+kKVhoQ9MeWhMBw2LfMlk8RhEVcjRL+1Tzo0gpDHInuXC806ed7hQbbd631zVb9zEsQHM2ojKdefAYaiTUk509pKCG6H9tcNbaiJT+xaMUFi9tRvbUMF6S/OVXfu5ImkoSx2Jd00uaKt1s523PzZ3EftFDyYoInD8s06lmwoI52XdBfewEjZ7eaDOHE2XRtJtXHIsE7BMft5ZqkreterBFQYKeniwKM+BvdxOFako+IW/64MxbtzlUCRAY72jsWfx6dwHFEXFthd/f7RfH3kA6W1GtPugnQ+k5aCFiGVgvZGqzo2Mo2b6+e8//67PPn+W9TjSpx2nN274NHZI0/hyjNnu+IWn7wf8k23mhEDJq4c2mz1DZnIiPh0P25EM8mPAAAgAElEQVSKiYuHDyk5OxdJj7RW6bUjbWVZbhy6q5Ht5sDT59c8e/rYLU8xcPngEfcuL8Dg0QsveDEgxmE73HFDRISYhJQExNujlALadEhjvanLOZHKDkU53N5Sa0NMuHd+QTfj3bff5r333yMEuLx/j9dff50UJyQKu8nT6Wpz+We0yLZVYsnMu3OXu7XGsi3uSceXJq1W3E8bkZKYc+Tq+S3vPnmLm5tbkMD5xQWf/NFPgsBx2bg9HDCMeTffybwPy61PNWOE7pv+EITaHP4l4lt9j4WFq5tbnj274vHj9wkG9+7f47WXX7lTGoTow6Ou6k3xXa3i8ry1d27WjeOirJvD4Zr5lre2lX7ozLuZ6fLc4ZYUH+wEnxRrbWBuiZIyOfxNXaVjFojAca2UYJRS2O0KFl162PtKpJFCRC2iUSjZ5fbYGIChpAC1d9bDQsTY5eSAUjN6DGPj02mbFxCXuzNyCahmunSHDKrRdaP2lRwDF7tzmpzO13YHDyyhUWIniEfNh1yotfL9N99mOR546dEDXnz5nqf8WMTikFoM25zKgDEaCJFtObCs17S2cbttnK+N3/z0ji989pwXXzV0W2Db6Bt+sG/GphutbdRjZTsqWxO6bg6r7AGhsXZltRueP12wRXj72S09TVxr5a/fueXxVSDKzFQKsQDSPDlQYEPoMY2kAgfxTrNLinVzNYk34xmJmS6R1r0xDjlwrBtnu0QJDmtMOVPKRMCHZ9vWyLmQc2at3cHaI+WBAGXeuUXOjLYs42clyi7SqsM5SxkMo7FZzCm5BVx8e2Ei1G2j1s2jnsUfFmf7M/bznrKbvOEZKY3BZQ00U1prxBC5XVdKTn7tyoAWC1jrw6rojXHAG/Laqsv3B5uoMyS2BlZ1bHT94ZOGiuh4OHA83noxlxM5+5A5Dnm0qYMwY06shwNr97ZiPoHEwe0XYxPdGakdhCFR9/OvL43d/pyUMtGEkDNpqPdsPES7fOjhXtaVbd3uitqQBxzahnoIv69SPqVheiolQZhiurOLMTZn4cQFmCKqJ+im88/AKDHd9WJpKEcHn3GwIMZ2SvyamLI3aD64cpijYm5DsgjWRqHqfUPv6gVNGFZvICdP83EJtTMrBqhg2Ot0bPs+5AGAoM3ZQqIQ8xj6MCw6wzYSBltkGEGAYUPGh3FCcIsHnnRzfnZJmRJCIKWC/9p+//Tuas6hffCGuLUBdLRhNUignvqDyEi68zc0iDMIJA71zTjn1XwY5FG2o0kJPvBLMZDm4r+rOleMsZlzjpWzMwQjqJFCHlbFSJkuuDkeOY8zMY7IbJx5E6N44klwNoKqsvWVU3qRRFdpRI+ucoFIlDu1XkiA+L0eit9XazeWzaHotVbOVRy6jUIdKqLkDW/tK7ZuxLQjpYmEDUSeM7Qs9TEoM9QKpR2we8r6g28yf+qz/t4PO6PZ7JMB6Wg4I17+NI/+k8iv7TNnBP71v/0eF1+bePSgMF0q5+czi95y3pMz4Ah8+3tv8fDP/ohP/p0XmF75PL/5D5/w9L//X/jjJyv67F304UPOP/Yx/vI73+F//uff4R/+Z68xPZwpjNRKUWJxS34W3+h6glqkxsayBnZUCIVpglQqdQ0Ey9TDQkqRoM2fLZgPDbvbA61ktHZaU2ISGI1kTh6r7kYaHxQnMs0anebPC4NMRLMPI1UgWkc3KOIJb31WTyxSIakQu7IFTzATcFZLTCRVtDpoOkuCGWpzu7knWXbaBmlwMo2hQhQdy8TMsS5sy8KUCyDEOXOSNJl5wxJCQIND3Xuv/lwIXsFKiCDqQ/7hD1RV1rqQc7kbyHrJqz6OSYmUIyyrR8lHT7GN42QICL2Z1zQMUK4qDCWs4waGZSQEkkIxlya4Hb8Thrqs09nUmHOito2UfZFVmxJGKp0ItBruFONJPGa79UYMbiGK2VNFw+AOCl5fRvMQHobdpFMJwVO7pPnApos5xgJXLvv//KwIcSwKToN0cxVXLImSBK3+XBSJLNrpIXDKI3emm9K625WD+FkWx/NOZFy7UegqI9XVoLVh0/YGMoUfChE3t5xtw4YZQ6ZtSi6F3oYCeYzrzdpI98qoBiZJ5KFgB0G6N8gSxVm1LaJs49ryT1pRV/7h1iMVoWqgqz9Lc46IVdKUmHLy52JVSvKFc0mZZVmx1kfjK74wakrvjRiGUkhAop+duq6E1rAW2aJB7Uh0pa0NRbFkHw563e8KY0ORdFIOCRYjdWuYFLo2H76q0vo4U5uHlsQgxLVTl0pTIeXMjW1YrxSJw3IZmEIkCVzMeYT4gGkdllpP9fXBaYDoSYtNA7Umjr1SqvJs6exiZIqN+1NnPir7fSHvMpsFtm1jVWUKicMGuRrnMRBm4UY6OS+UOjPJRpwi+xgokxLSSEQbuIAWBA3eIzzczVxeXsNl5pgqV0+v+Os3/w1/8qUvEn9vzydf/TE+93M/w6f/xi/xxqd/gTd+4lf47G/d8LePN9x8889480//T/78//m/+dL3vs+3V+Fm9xBCIcTOrnVaN6o1X9iEOK69PoYn4z2pRosRrSu5rYQwoUNVG5MrneMIzJChqjQZdmLcoWIDGeHybR/qpOB9syR3dkxnBTB67fTmC621NaZ5Rmu7SzBet5UUXA0ax2sc1Q2bOXpABseN4MNRX/R7EneI7pmV7s6TZGMsNVhwp8ENqmOxP+oChRx8YGP+AknRuXA5pWGBk2Ep9mWhD41sLCyHKj+GoRA0CEbOnuK5rkdchS0I474C75HUe4TWXNFMC16XOFXbVZCDCx0kjtpmpHAOBxbBU+NVvb5xNWIcteRH9/WRD5R2u3PSbqJ3IZ3vwXxrLwjH4zPe+d53ePLWew793RfOH73A7uyMfdljwROQSnD1UdntSSasy0oUVxiEMCZ1+EU3p2m8+YbqytoqsvlKJpUdcZ5o6y1BndURgwOD27bywbvv8fTptfu7z87Y78649+ABl5f3mafsMffiG+NTo5by4Dq0sdHwSnlsehNwUgaFIVONtK1zqCtrPYzEss7N7YGvf/MbLMcDZ/szHjx4yP1H90fynR+0JU20OnY1YTzQBaa5+BR1c7VKKIF5mh0YvW5stTmvYTQlz59e8YMfvEkbcNxpt+OFFx5xsb/guK6E4EMkJNB7RemjKIjsSqF2n9R2baTgcFN/Xb69VjWePLvh6uqaujWmqfDq66+y35+7lHA0fhazp4Ooa5LAuUIiwtY7h824Pa4clori0cnbemRdKyKZ3a5QXjyHHJFuxJBIoUAMLAq1Lp5OZ8Mu03VsNeOdRcQinO/2nKdEjWDNsCHfBU8VC+IgSYnJgblDxmzmEHCawraRzzJFM2ZGMyNnIVqlraAhMO9mZ4rJmJgHb0AP65EyCuDdbkcLSlWPc01RUW3sxdgFbzZO/t3QjPffeper2xtefOlFPvOpVx3s7qgJ38VrR8w3v12cK2C9sVWlHZ+h7cC6LoTtwM+dzfzGb2c+8fFz1usD/cpgVbZlDF1aY10WjrcrrQXWbrQWqW1DNFHjOhQ9Gzc3yrPjynKs6JrY3X/Adx/f8o13ofZM3p0xxUKIXsC2KphkGh1NE8dDJQSY58QcHHAn5oONEBIdoRJpXVjGw3BrSoieEBljJMbENE/EmOmqrK3RuhHKxKYGW3XA9kmGniMx+Wax457mVIoDDcewofc+4JwuFc3DsusPzOBDndEQblXvmvzdfsc0zf56hl7Yk6AivTbasCW13kkpsa0r+5JHEy6kEKmmngoxBqRpcBs8Qt4fbCVlplyc26HQu7Gab9+nFMe01rduujk3CTEPNCiZXDJRnJew1EZtlaor1ox12yAG5vMzUvGhQ7CxtZcfgvyry+hFHLi6bQs5RmQkJpYcydEjqWMMtOAQb1f+CLV3Wq3kOVMmV0A5O81VYYyT9sQcCjEMgAeDlSFj2DPspuPLDHRzy4yXjsK6rkz7nU/dT39pDKdOm8vTTzxRI1btrrw05wv5htmfDZ5ccpIWe1OWQ+a4bm5ZMx+ERZ9MuDpy/MwYHc499mx07ZTogy89KbR0WBnMVVdbV3JIrOuCCtReOcuFYVgcRcIJYO12VGHYeABryrwraFcHF4cw0pa87VT10AodqqjTcNy5dMNqaJuf/8OaBEqYJ7at3zFowhgytdroQdwm20ajn9wWFHEGk1ehHdWN2jcImb4NXln3BYGY3j1fm3T6coNFI/fiysDjNe0ssa0+HMhhpNdFVzEEgywuwSdA0MTNesvlmRfwbi9VQhdInjrTulGprj5sgaUfqW0j7/yMiCmSkg8GY030kAnZz+yAEXaRoDvsuHFYD9A70jO5+BnIFMgW6CmRtg7xGZskaG6d0ac/wF78xFBCNEQ62ATtyGlzVM4+weXrH/BTn7/hg6dHvvL1J3zyjcyPnV2SzjvndYJDYLdTrraVRZWv/OWXOH/lZV75/G9TPvUb/IO//x7f/ydf5HurwLNnbPcfML/+Kv/mu29y/vuB3/1Hb9Dn4slYtSEpkMOeer2SpWJzQpbqR6YqNWbUFt9ar1CicNCKaWdKfq/WptRmbD1Ta6bbAnRPuBLobaPpgpkz35SOaHTblLgaJzNq/9aw2ugaaBppw/4QMKIG2rrRpsi2raxbHxYCb56cyebXF1loZtAEaz74cEW6nzUOTFWmLDhKMxOjYVK94R4W1hCFKSVfLqwb07SjL6svIHOi1ub1zclaJQGTNJQX6uqKEIlJCKF4Spc1Om4D6+tGKiMUBS9dZLDCSrIxOB08PzWaNVcXbT6wGugot5kpdwy4D1Pc5K5JO9W/HrDgz73BdMVMWIMSkyvn7XT2hs6IG3CFdRyyXIGtg/VEZ1hhzAdxljyEZds8sckUeoie+olbmiK4SrLIsFf6s7Ztmw+4CYh4ArDEAMPi44oLH/SeBuJTTqxdx1kZgIaakm0M9Mz7C+3mtpzTwDxEQmIsmCGY0msd6lnoQ0WfkisVtPtgzd0KENspEdlAhW01ZzHOIxQBV+F0/2NPdtXuzWjwtK6AP9PVjLUayYwsEabJ06IMtm2l1z7qIq9fdHxmIXsNHySw3G6EnRJo5HnHcdncWpfycDUkUvbF7rY2+ubP/hQG2zSOBlgbqIcObdWtfrmNJZVEaqs+oDehDc6mD+78vSipoONsbzjjtHdjSsmV6jnRtDPvCuvh4O9tSH7dmxHHkEqs0ENiNfOgEgMsEM2I5nVVyubnRFLaWLusqwe8+EXvAxALAZWJtRvGzFoD1jNPS2dG2B1WylyZUmAKmblkNjuStoKUCPmKOU6UuBJjY58WznJgShPnSYi7wFR8UBlTomSYTyKFKAQOFNsRp0pOwouv7/jYa4XbdsPzK+W7b36Nf/rPv0T9vd/n1YcP+PxPfZKf+5Vf5pUv/BqX/+k/4JUv/D1+9r88sL7/NR5/6Q/58p/+EX/55f/In7/d+UG8IM0zhQBNsS5U6wMS7cucCGjJzmeLgqTTmXkkSHG+ZpgJ0VP/Ykg+QDrVM+boABNPYl+35jb4EFGruCbB6DbcCdYJaeAgRAgj+djU8QGKqwN775TkgQgmQlTnKhUJvlA3d4eYVqaxSF10DKerYlaRIEzTTN+6hwqcfnY4WVozdhp2SkD7RscXwCG6ArA15zN3dcWtl2gO7fbS0pd64W4JOI5H81Rcxjmq6io64TTTHkmg4At7E1rtENzTdlK92+m9MUNqZ60emGHBrcWB8d/BX2swrNYMhroLDz7Kr498oFTu3SNow9rK8bix3Dzl2Q/e48m7H3C8vSHuJvYX93jxEy8wnU0UkkuXCcT5jDjtSCUS60YKie24Ec2LvV4XfNfiF28MbpnylB/BakPripoSe8A0c7w5cGgbJRvHp1c8f+8JTx8/5vnNM+Z5x0svv8YLb7zK/uFLTBpZ18UTmVRR7eQycfX0imkq7PaT2822xdkGNuYQMYyo2D7UR7CujdB9CLYrkf2Uubpaub6+4vrmAOZcpNde+xiXlxeUaeJwPLD1xsPz+4SUqHX1YYEpZVhNmiptyD1PsGta57it1FrZTRPzxSXLtqBq3D57wnuPn5NL4aVXXiPlwtlupqunpO3mHYxhlfaNVDLg1j3VTkmRY6vYekTMk+ZImYuzM0yV9x9/wJPHTzjcHpjnmf3ZnvP9GaWUAUYdioTgzXfvlSARjYaoos14fqhcbxu1+2fZ+8a6HdgOB3Lesbt/wZx3I3EIl/nlRLJIM0+gMutubexePFXxG0o7RCpTTMxnZ0iKlA4H7bC1AYgvdKtECcx57/53q7S1krqzgVq/pW4bMWR//VNkve1U8c1vmQr92EgxMBW3aUoc0dDqkurWGrfrFblM7POeKWWWOhgCKSJSmVGmoqBtgIj9cH/8wTOevP+YRw8v+LnPfRbi2BQhuKYf9xiPaO7hk6D3yuH6hvX2KRqV9Xrjcy8Wfudvvcon3phZDwvtpkIXltvOth3Zeqcu3bdvTbBQICqildC8mG+2sixKs1tqi7z59gcEOePRw4cs55GvvPWEHzyLpOmSe+nkWzbAo2WDzFQaq2aeXFfu7ybOsxFiZx9nSnamgSJIyrQeOK6dtXWaurkoJOfm7Hc7t4OaKzmcG+SbtjZsml2Vbd3G9nskjAEEt3oR8I1XLIh4c78cjmzbSpkmL/C6uqTcb8mx/XB1zLre3sng9/s95xfnpJDv4oGdYQOMRuIUIw1uD/Uth8v7TxDnoMZNX5klEMWogoP/mp9zIQ0GnXEHvCREsjh8XmUj47aELsb17ZVv42KhpEwp2RuIkOhdqePMqBtI3QghsCsz+/0Z24lxc1InjWFOROhBR3qcsK0rqo3p7ByLkf3kwz4ZNo8eRnFvHpqu2liXI2bKNBUf3psNa5c/mAcFyH3n+PvecFhrSWXcI2EAqR3cfFLwiAh0ZYuGNR8ulVK8GRkWhDi8+IwGrIvepQZp86hbrLvdYijSRqjJGNo4E8fwhrTVdgdtrNYoYzJl4wwUkTEPG5ZHuHutJ12Rmg+7Jfg1fSocYoy0uuKHig7bGNS6kfKAYaaMmQx1nSs7VD26Wm2cUXOkTDtvokoY7Cm37Gx1HTV1IEvAJFN1pdfN1UMBT0BLye13wZP8ZFyHbuWz8ZzsWPfBUUoTxBO3SVBpHA4HPxVyQVU4HP3sP9ufuRIwu8oiZ7czZ+/O2Kist80H/u3oRVczcj4D2cgl3UnXXVkjSHS5/iSZVODJsydMUbjcFSQpZZ4IRKaRFLhtlXVxS/a6bUNRkdnNif3FxOWueOrMDFWVEp1BkWInMLn0XGCNgfX5M8IWST0RzRO1QvCkN+mCpgqafHhAIN0vHH/wmPnyZZj241oDxLfC2A1oAN2I+4/z6MeP/OJ14urqhj/64/e4//LESy/OnJ0r6xrZ9cx+jnRdeLoof/Unf8rZK29w8eovcP6L/zn/+Pvf5r/5F9/ldlX6ukfKjunlF/jX33iH1754zi/9neyWqbJH2kayFbko6DpYGKlh14Jm0E3IoVAmI4g//6LsSElouOWib4GlNVb1Zm6tg5NBJ3d/Vval09eFjQ1SQlNDu6udpHU/SwBaRLeGSSIU51QlcTuwaXIbhjWmWIi7BuqNUeuK9UiMfk/33lzVhJEndQYXwtrH8CBkeq88v/ZrNgY/Q7t2PPnQn3PLcnSbVKuOBKhKKg6/t60OlZPPWE6NFwyb6RhjG6OZGMNqt35GJEfnZpgD4EXGth4hkZhjpE+BGJXDuqHV6ObXfk4y7JY+IDANbKOepvfB6/PBVBy2YsUtG2XesS1Hb15CchSAubqwiZBxhpFbTfOojz1Rtw77bxMFy1jH4cli5O4KoPm8uDWsK30k5AW84cIMBqjWZAyIoycZYwPw3dTjw0MYfCMHnp+eGzkk1lapCIelshupo+vNkYgvjIP4Fj+EOFI147D4edLTSaNkmthG0IEEYbfb0VtnW7Yx/DG2zZvzkzWtdedhBrJzSwyadOKQxWoz8uQLQawjfTBPRZjmTDehVrcIWXfstWkbY9NOM5ClE7ND8ynR1Q0IFgIdt2imFGjd0w83cxL+uvmg5vrqQK2d3a6Qoi+LguAWdHP8QzNPQu4aycmtM6ixS57wt64LBhTJSDTMGq36GdF6hRFHHwbnJkv2505f/BkxFlUxKmIespCmyDRH1o2xcHAFX8eYot9ftbriIyDMKXrTLEID6EIzZQFCq6TQySlSrCA67JVJB36j3CnlSz49y2R8loG1BZ6vgSsJnBOYV9ipuVrz5paQYR8E1YXUJm50JUlnnzpP4y1nJZJkJafAlIR9TJRkxDlwlgvnKdNUySGTbWPJ8GBSppBZ24qlQK0B2ZSffG3H5z51n2fXyltv3fC///EX+Wd/+H/w6r0LfvGnf5K/8au/yuuf/zXmT/0Slz/6S3z8d1Z+e7vm8Z/9T/z5H/xTvvilb/Hlp8IH6Yw8nzMFr0OCdlYTtgixF+fIRq/5tFds1NgpJGpr1LqSUiB1X/6GmP3MT6fBh9fLEKh1Q6OMwacHr8ylsPWFARqAGMgk8hgAp5Qo0qi1sq2NPFQ4NtQ/ZhHt1S2qY6B7qhMYJ8kUGFa9RgiRVT1p3AfRRpTB1IuMwffmQhEY4O6R8Bx98KkCqcxUddWPar2zh8bwoSrTGdH4Upc0BkJ++J/+ThRnwp0CoxDG4jR+aMcNcjfojkGopmQLaO136aMSgi9f1B1ATZUkge5JNT4/OClR8Xo4hI9WoSSnmMuP6uu/+x9+z775lS/z3W99h6vDDW2pTBf3ePWNH+PR6y8Sg7Ld3KLmxXUMO/J+B2KUHHyrHYSwbrR1odIJ5oePk8llSLoG0K1WL85EqMstbUzplBUscLxdeHb9jKv3HvP86TNKTtx/9IgHLz5kd+4pcfty5lP92thUXU4fuVMeXVzu6A2unz8bEs4x/Rt7mIBL37sZU46c7faEkFhq4+rqmnfe/h7X189pTUklc3H/IS+98AK7/cxuntjWxuG4cXlx7t7c5jyVXBKtgdaFNO1ofaXVTi55NB4OfIwhMu0m94auK+89/oAPPnif4+2RFx485P79F7n/8AHVlGmXoPlD3gup4dfs3dOocBXE/ctLDre3HJcjZ/tMq8puPiPOM603vved7/HOO2+hqjy494CHjx4xzzuX9A1+UUrzncKgdmO1IykUQvX3+no58vRw60OAALUZx+tbtuMtKc2cP7hHnjKqLoufImwxkspM31aHnumwAPHhwQ+eLBZJlFi4ODujaeTWjhT1P7NeIUZmCk1dBs54mDl4ud8lrbTD4lL42dgxeXLW4IYEcc7Q2htzmdlNk29axoY/jLHzsm3kBBfzPLaEweXIIXphFYwdG/uCq16CU/hvrq547513KWXitY+9xv58djm4Ci10orVTp+FNrXpDrdrZjis318+43q4JdeWV0vhbP/0qv/z5CVKnP1/cMrlE1vVIbY22BurgiFQ9cmwda8KKobYiPRB65boGYigsN9dc185tTczne959tvEXb260mricErl4Mdh7pKtP9VUiRuDZccMIvHC5Y/Zqgn2IbFFR3WirUrtxW6ESUck0jWPr4ZHdu2lmN+/oDIKveDy1mpDyRGudZav01kfj7wduDMI0Tz6UGuDk09aztUrbVmptA64ah3c8oWJuyQrRN+zbylbr8PQL8zzx4v2HrM2LwZQTNtQvMqwEqI3hah+pcmlcB2NBFqL/WausQ35e1ZPNdN1chp4jpUxMubB1T4eIkobpSSFCHIlYYNw+ufaB25zJMbGP2VkNwQf6y7a4aqVWat1gxDjvLi7JYzi5iKfjuFpITh0RvXc//1pjrQu7UEjJLQ27/Z51W8hzdnAsgV3KVPXgAO0dbRtTzqSY/b6JAVPuWEkKzitRL/rcttSIITDHgkkgBR+Onfz7qLdmVX2o0nvn6vkzXnr4yNWG6oBXxXzzHxjLCaPjWy5RodeNHEHyUOKYWyNCdAZOhJHwpWyt+bXQGpfnl8xTIZeJWLKr7YLzqWqthJTuLGQpBn//+kj2wzdaKgOi3k+bZoe4puhnRu+dJ0+fDldbopTCvJuQ0SCZOr+tj+ACM99GrevKvfuXnnQ5GpaU3J63rhWzRu+dZfVrQtUHVtOcmcoOCTCX2d+P4MleKWXfOjdP4tG+sRwXV2LlRMmFlCIp5mE/VrT6e9F0SNWjcDjccrxduXc+M+eMpEScZkrMlJRI2a/naJ3FQJfG8+UZ7XDg/vkD8rxjyidYvrA1ZxKkKEyRYU2PQObx1QdMAR6dnbPbB6ZZSD2TJkFo9E1Zjm6N6L2hVomiXOzPef2VB+QzOEewPCyNedhjgrPLBP/7asLy/EgKxvnDTJ6dyZSTkGIl7PZj6KywKZJ8UN2PjRgeMv34TyJWIE2YnCOSfVEhg1xjG70+p7/3Zb75777Fv/jDb/Ajrz/gV379PsE62xW8d3XL1bPG1Y2yNGM7dr7wEz/CZ/7uPyae/QiWG1/9r/8r/tu/mshZuT2/JM+XLO+9yQNW/ovf/QSf/sIlISakdeh12FCUfjxAhW3dWLfOerOwHjLlEqwLtE7VzrZWjmujSyaQ2erGsihrD2wKy7D2gjiMuwXack3Vxm33RjtYopGofcC5DUxdTXZcFixE8jxhze4SCnOEXRS2ChR8kWWBquqLyhaoCk0robvSKsQJlcLSGxGPMG/9gFljrZ7015uRQ3IYO17QExj6HobFwM9mV2ToSEIsQ9GkwwXnzBq3ZrmdJ0W3gknKrroeytW7v9M8FdS680lKzty7POf8fEddG4fjQtfGtjbM2t32vKsnjCHpLhGoj8G0DDVkSPFODeCpnfhrMX8+Oe8vUHsbDZl/mbliTHCmikTn3tnmnNOlrq6OjYlqPuify+RKQtERjuENmo2FrvxQczZE7W4HHHxB6x3Uh0BdT6qIoVaJiZKcFeeQXFe5BYFtu8vjXqcAACAASURBVCWHTO19NGHeqNkYCoO/BhkqgN4dvRAsnXBSPmwaiWcxe53notWRDGyDOCfBB2KGw6/xZhv14WVQo4XCxcUFOQtyehb3hg0bUeuKavJr004pcoA65B6tpBwxMeY8u1K59rvfBXWVaIwBCZl53tGlcXs8MJXkKj48ve5il9ioWHMG5DQ5KH3bqrNrK6i6erX3Rgl+jVQ9KUyg5Eit/kDuvY6PToaybdiIjDu2XwDUjKqVta+uzq3Gfs7sLiZ69CW91Y1kgbYZlgPnO1ctPnm+YupW4xQ9ot2V+yPUQs1xEtXIKZCiW/W7BJSGNO8HUoBmnf1UyAVubg40y5R8QY6Fq+fvDtvx/8fcm8Xatp5nWs/3d2OMOedauz2Nj+2kbJI4TlxRqip2EpNESqiUEKASBaK4AAJIdclFVOIKISQQV0gIISRKSCCB4LoQEKUqlER1SXAqpBwnMU5jO3FzfPrdrLXmnGP83cfF9891clkSvsiWLFn22WftPecY//817/u8SjABLCk4RDKLCFPIpNkxSWT2niLFYNCiLDGaQjOYfTqqYxLj3/rkuE4wdSAJ3s9EOXIdlvE+CvvJc0gLcfaE0KE7Woa8WgCMiPKiC9+67Xzj5TPee/PIYY186pN/jp/6kc/w8Z/8WR59319Ar78XaSvl+dd599f+V37z7/0d/tFv/yFfuck8S9cwzSQvSO2cakPwiAzHTi14jIXUsSWXKQNt4DZGQsQwmVKyKSLBautuqjrrCQVtgo/Dxu66WcUYCInyIexaokO91YMtmyKw6giKUbPxXvAzYAgCJ1aXdDEgO3WogVBiikiwZXuvWN/YFAawu3dGHWdJizKsczAsznI5A8WYrt0srSI2OLVeYLDmxoBexGpSN9LMvdgieMu25I4+4Lyae8IJIjbAlUvtOwCCTq0GVd9Mrdu6cfac9SfeW+9gjipjNbVxB7Vmn8Wl57gsh//gi1/5UNb///PXd32g9Jd/5l9UBdKDHVePXuHw5Jrl8ABa5fjiJfO8ULdMColl2eGWA0weiY5yWom9ctqyFc/i8GHIrEeTUOoGvbJuG+ICSRxr33AEtvXIdIiU05F3332fD975gOOLW2idB0+f8ui1V3jw6JpWGuW0gnbmZeZqf006zNBtmCLNPPOMBIySbfo4L7ONcXpBSzF1Ujff/LLbsex31Fp4/933ee+9N7k7nnHAbrfn8eNHPHj8mGlJBj+s3R6m3limHWleTDo7hjrEeA8CVrUG1LnBhKgdpDFPM04c27byzrtv8/77H7DenViuDrzxxkd44yMfZzcvHM8bXZRSstm7PHDZjXt7saIbyUooecvkzdQT+8MBpeOc5+Xz93nn3fe5u7sjhMQrr7zKkyePoDdaLhZHr+bzNBZINCuDKs0586qXys2xcHfe0F4tHrEqp3ykbivTtGd32BOmcXGr0kRMbo+j54pvQne2dbZEE2t+O54mAlRSmljiYhwaIOdMu0iaXSO4iXNd7eUnwBhcijhCss98O55wpUNytCRM3VHFYImzCOtZ6VqIy8J+P+Fo1Drgb87UDr1mQIjTzBwEekUkGtQUQVxlEUBW5pRQjOdyPp957+330Fb56Mde5fGTa3o3iHfvHZGO0z6Aj3ZZooUmnlJO5Jc35HxHL40nofEznzrwuR+5Zto16l0ZjaajnDZerCd8NZVBEaXcZk6l41QoPdOrTcRrd/StUF3j3ZvC7bEwRXj0+ClZhS/90R1ff5lZZo+PiSkKXhUGtLB2U8M8Wwun6ni0Fx7sPJGIH9+ddlPiOCpldZy0seFpBDr2/YhTUvBc7RK7aebm1tRBMSVrBICtVEppnLc8BoUMXo9xXCw1xA9Fl8l0bRPZqb1YxHDHhthjI3Yp6FEM/Ngax+PdUC0JV9ePSMn+eUsI9MPu5JDgByBa0d7IObOuqw2TxjbdBYte92KsCBPQqEFNe8PVCl0JKeInU+bcb+LF1CHGIlOCKKfeCKWyrid8nPHelGxuDEO9N2tULo28DRg9jSkEat5wKSBhNltObfQYBoO0G0OqVErNKDrSxoQUo22JRZgWCxNoWs2S2Tql2NDk3CpalVrOgDJP04B+R2JM99LdcUTRRppZrZXjyxu6dxx2e6LzuCkaI0SNhwRWzF+G/LVbA5bzxqOra/OhD+968AF19u/N60qtpgDVUfyXvDEvBkGNwYZw3kd2y3KfUJe3TM2FY9nY1jNBhAePHuOCZ4phyKDtvc3DOnKfTGRaBFNR1Xr//XuxbRJivvpRjo+0pcHx6J333n5mBaqX++Gq8ybXrqXc81ma9vvG7ObFSw7XV7ggpDCxLLP9DGe2il4727axrkdKzZTcyblwuFo4HPYIbgyIRlOH8eha1T/l92+sx1sqnWneEX24bz4NZG+NV602VI3RYMTn88rp7szjh3uudsZJcn6yM7UJ6ovB+ceW/dxs+IUU8t2Z3WFHcoFoqQcUsaGvdDXW2D2EWJBWuL098vrTJ0yuE5YIakBpcQ3nOtupkjNUMrVUJnHMMfDKG1cclsiUElOyba0TG6A7MbWpOON1oUo+bawvM/PiiXvHMnmmOBNEcFeNNGCgUpsNDYPDhUi9g+Vjn8A/ehVkD+4aZL5/BtRdjUat0bevs33rV/md3/wW//hXvs5nP/u9fOpze+pRuXm+cbzJPL+t3G7dFBanzF/+Kz/Hk8/+ddQ/xumf8Cu/+J/wP9cnxL7hrx/TtLN+5y1+4PWZf+uvvcEb37sQJVkhS0V7p2wr5Zyp2x3rOXA+Ztbbxnwdh2Kjkltn2yrbqpTemOOMqKc0OLfOuUBrjuO5UzSbuatXtCjn9UzDttNoMJ6cRDJmAZU+AklaYd3WYRmewZkKJPrAVZq5eXljTE/svStqdoXayqj3AgE1W7aOxLNuyVy5Ko6KSKdgQ6zWlPV0xgkWMW1lFTDsUd3e8TVnvCp5WDS6WtKZd9YMm5qyjaGTDZYsLZTBCYMYJyyd1AYmOhTPqpbCGrzj6mrPsps4nuwcc+Of7X38bIVse1Zj8IzKRww4RMmF0hsSHD5GovOWmNo7c7Tz696u6yK9ZtZiyWd+xDWZtd/CBGQMVekW755Lo1LZ1mIx8ZrwOHbLTCej3dFqHw1R+1Ct2W0x4sa5eWGMqBNc8ONMFHKttny4JG+KgWhxxkWtzViSTaFTCT5Cq3gH6znjolnrvbOFkTM0jAGDYViz8z33z56zwcgTGxQEF0efUi18SC2l2c4dGe22DebEg1Shu4DOkV1KxiItK5KrLba0gJW5BjJWq1MQj0oYTMY2BjKNMBsCoXcxuz9+qCOgVlMSN+3sdhO9FZbdhHOOrXXyWvAIaTLr4LpVFmepucZANVaQtqHm0kHpE0W9Ka0P80It3XiV/YxXzyUR9GJvEzGYdXAB38ZwIdj9s26bpWLpUO7HQFpsc9NrpZwrNLMwu0nYLY7j3cbpbFZOpKId4pRwXdHWCSnYsr11+viuwlAVNTWchylPFNHMHA3vIUHZ7fbc3mzAnqaR8/ac6DvmsLSnsvdOLmecn5gpdAlM04k9HedM6ZikMC2WrE3wIJUkniCKC4GQlL2fkObZTYYjWJISnKlqD9PCPADXkQWfrEcOUyGlSNXIuW7k40ppyi4KW3d87cUzvvrtzHvPMs5lvm//hJ/98c/z4//Sv87VD/84kh4Bnfb+H/D+F36J3/pHv8KvffH3+dJ37nh3vqJFqw0ijp6VLo6qjRSEqtGGtIAbwThoNTVPv6RQRvLW8PEySA9mEWt9nBXggiNGU+DU0U+bcG/U3P6yUBwK7RFKQldoUEslj0WjKgTnic5SZ7tzTDGN976z9kbwik/GG7bfb+ym7kzY0JsJCRjM39qFWpSAErzcM5BExBa9w0cs3p5hqx/tPfc+3CvtAfvueyV5CzLqo7JzgOZGxzAw92ets/fLdZOwXOo+ZNjvxlbTDZZcH0NwC4Dog5tpgzRTxo7eJAQQex+/9qU/+rM7UPr3/4O/qftHT4hTJE0L27ZCd/TtJS+++W3cdGA6HFgePmDZ72CDrXeQitOOdFMwlLH9LMcTmgsaAl7NmuVG6oKOxrrWjbvTHae7W1688x7vv/M+nsj8+CGvvP4aj548xEujVbVJfOscDldcPTRrmTal9m3A/jo9d3wwe1mXwcXw0Q53LAHD6wDS+kD0kXPeeOvtt3n7nbegZ66uHiBO2C8Lrzx9jYePH1JrHTHfla4VH+JoNCz1TJuljTQ1X2mulSkF87Y3bPiUAiFGbo83PH/+nBcvXvDi+QekGPn+7/sUDx89ZpoSHaGuheY6ENBWrUBwNtwxJfG4srWjpVBzMSliiKSQmHYGgP7Gn3yTZy/et4fTwbLs+L5PfD/zLrEd7STvtVHVIKf3AG6xIdC2Zc6lcMzKizWjGIByPZ853t7iqrLbHZivzJLmm8mMNQbEj813N8uduEbEgQa2VkwB5MQSkroyTYndHA081uwzpJq9ZucU8GxkYnO0aKls2rupThDQzlYzpZl31g8Sv+JxYhdyyWdCLuwP9mdWtYLT0K2VKjKGk9ZohRAQKrErjpnqNqQ35qBEzcaTCnYAalOePXvO6e6OV58+4cmTR1xi34MLtsmkDjlyxFdLddpapelGvrtjO71EtbBrmU89cfzc557wkY9HzusZ1Q2/OU4npZ51JPV1+l1j7YXqAqdzxbVMdgrimSQirtJL4cXJcXs68+57K7vDgo/Knzzz/MZXb/ngprGPxsGIMaGuQkjMYcJ1R2m2NVTvmSbPLjRK7yxztC2wBo5bJ/fOqRbK2H5UNRyrG6yXFL1trlKgNytU07wQnOe8FdZqjfu6ZboqMS128QmkGIkxYlgH28ZetmitVnK2wQPa2e339r6LSeyDj9RmNp3T6WSFiY84p1xdP2C37GjF7JfOWwTwpYBkSH/zljmfThaLLIIEjwt2AaaUkGDFD62btLxUSqt0bylIpvwzEL0P3uT+zqSwbliDu1NqzfTcWG9fEncLu93hni+TRHDRk3unbHkosjIO86ejSpgi89WOpm7YuwwwapwvMfvA6WRbb23k0ghTYjcteOfYzfOIY7fvrqmlqzFUMtZkr5xOR5x3hN1s4PQQ8SlaMTCsca2atbPmTO/KeVvZH/YEH4hjM212t04Iflig7We0XKjaeO/5M54crpmmyb63yThCdDWp+0jGK02NXQVQu22TvH3WXiwOPE02qK7ah7WrkEvhuJ3ZTkeuph0PHz8yu0KwARTiyK2a8sIqX1IIQ09mdkzFwKJ+wHF7Z6TijV/a8c4+f1VlXVfe/+Al+8OEE7PapjSbyrc3U9XUci8lr9Xs2DcvbnnyylNqXZmmhXme7dnzUDZLycnbyraead2k5lvOPHx0zX6/R9RZcMbFAjk2XSJiiuE+4tNz5rxueD8xTTZwEafMIViBaLcQOhIJnXM0hdPtkXmO7BaT0NswdIRgAOIg4FnXdQy6FbRwWo88un5IFEcKHoey9Wp2EA0k5/Cuo1IRD7uYuLt5SXCeXfK4MDE5h2AWpShqd9cG6jutbWixM2W/TDx5esXVfiJ4JcbG7GdSGgMrFOfUEpTUvo+7D+5om7J74Jhnx7Iz636cA9Pe45Ij0mg9DvFfBddxdWL53h+C+TEqE+L3KAswIXJhxwjoc/rpG5y+/bt86R/+IV/+0lt8/ude59HjSDkLz16ceHks3J7Vki8rvNIjP/ELf4P9R36MGvaEP/jf+W/+8/+R3959lKCdPB9MYfDiA37yB5/yr/6VJ1w/MhaeqKI06I5y95LcNtopcjxtlBPIXEAjtWy29d3O5FpYV4c2h4+JLoFSm/3vVSkF1mxA1qIOVbtLW7bUyJaFJtBdoGEKk9KMT6e9kbWiteGZTeUZIcaFfZwoObPVs6ES1FEHpFhVBmTf7gh6w4vxaHK1wQZqimL6CIUBOzNKZV0z4sSGqvfqFFOxXDbGfZxjtdr555zgQ2Rs92ypoeOdHc1ErfV+u2wqu0hMyRo3sfTNUgvaO34oFEOQEQjgSPNkQ7nex3KlmtXWDkcLJejYneoiRYeSrBazIzlBg4Ng7503GArabcLRmi20mtj9E2XUMGJqTFPQDBXOSGDpaopBbfDyzhRJh/3C1WzJnq13q2Wa4QtMQWUptcbpEzw67GxuDCrqva1aLqDadukPjBnUyuCdaGcKEbz9WecwwgcETpsF0wjeFkjBBoNBTD1sw0sLh6lDWZbEYLzqAiGBDP6MpYkpeTubgqoP7YYCIeBG3xW8qU8kJlJK7JbJ1JHbNpZWldqKpQUPPIJzgnY3qHlW/6p5ynA04hTv1UTiPTIa14syxGyWFe+ENCdcCsYZrcpWC/spmYCoN0q2pYR6d19n9NosjQtBsX7s3DZbGiC20HBC6w0GM8reiaFGEgGt1iBj9VdnWNCdDermtKfmI24yJXSnEERYTxlttrhCYE5mn1xz55zHi6emGJbacd5U5fcWdSdE54jR2EA5Z7tf1RMjiCtIsxZfBwh/jnt6F/w0czrfYL17HYr2TtNGVRusaLfBV/ALMcIkGzF45nhkcp7rZWf8nlCRhrE7nSNKwqfCLthZHncTTjq+ReaozLuFHcJMoIc7HJHmE06VmU70yhJnU2CGRmBHlM6cKtsKb9/e8GITvvzWxgfPC9M585nXXuPHP/85Pv2zf5X9J38UPz+04ejpGzz7J/8bv/V3/zZ//7e+xpefbbyrE81PiOTRW4G2SJeAd1jin4deFLoNgPzkDH4vntJMQaU9jgGj4EikZTIrenS00tCq1hcHbBDtvfXt3b5TpZu1rDaz0DcFbTQZ8sXBGS3bhjhYDjsLkpDR5xfjjy37+b4ealWhKjhnKIVmi2WziYndQ11o20aaHaWN5xkb1AiM5YHVDjrUp6rcK7J6H0xL9H4pbXYzNxAP/l7ZZM4Fq43EXay1VivW0qBXgotWI44Bs3oZylb/4f3j7HM2NFAb6I9GzY2Q4hBTKF//vT/+sztQ+o/+q7+l7WR2j3K+odSOts7ts7c4PXvG9OgVdteP2B+uLV1GHNUbIyTQ2PIKar72shXopkBx4kZKm3k21+3IVjbaaeXd997j+OwFeWs8ePKYpx95lf3DAykFWimsx8ISPGnZk+YZP1kMYSsrTi2xaRMIDbRnDEo2rHXB4Khl3Si5obTBjmiIePKaeXlzw3k9UVohOMfjx4+YloXrq4dMk0e8p5UCMI7PwQcZgwLvh9+SQOuVWhphjqSYuHnxcqTuCLvDzPH2yPMPPuDmdLQ0g3nPx974OE9fecK2rqy5Eqc4hg+F3irL7oqWN5QhhYue3uwgK8UajlbtAl52O0SEdS288+abvPfiGb1mDlcPePDgEU+fvMJymDifN463t3awd4OvtW4sic5Fbm7qiuPWqd3YELne0k8n7m5P1Aq7gym7jPthjZb3EeeFrW+0okRn8MbuFFG9j85tVdlqxYXAfjoQUxobuU5pmaZK6bD4QG4d5xUvidlbNGWmErFLvQI127PVpCI+4RlKInGUbpu2UhrLnLg67E2WLhlaookV6KdacCiHabLvfsACu0CgE1VAykhuMwnlJbL2dDzz8vkLrh5d8ZHXnrKPE9ot3BLE5OCYHU/FlHROM1nh7nRHvnmfsp04hMQPvur5mT+/443HnXq3sq6FlpWtNYu+RugucndzR8/KRgEieNuwt94pDXK1oYMKvPP+ma99+xlPHj/gtadPuGuVL7258c33N7wEnjx4QIhQh31ZcXixFIxSBEQ5LGPA1oXkC36KJBFKVk65cbNZukrpjSaejmfLJpVP0Zrw3ZTY7RZAyGVYl9RxPJ05ns4gjm0zf7SPidqs+E0xsswLPnqDDIqp/XprrOuKDNBebY39sgBQWyWlhB38Brtct7Oxy3DMabIh5m6h10bTxpwmVMVgqU7oaod9bY3z+QhqhU70xk2y4bmwm2baUOVoHrL2mkHMiiRlI8weDRHvbfAwZFT3snGDCRfy6Y7jNtLcUiJ2T4hWSEdvG961ZPKa6bUjvYFcWDuetNsRQqB0+zsYKNAx4cjbxmmztA2t1gT5EIgpoSIs0Wxeiv3ec2301pkR8Kb8ynmjbZnuwM8TKUSij8YBGoOKWqsNuXofjLfG3emONE3G2MEGPPZOcM8JkiFhzrUMaOvG6Xjk0YOHpGSF+wUeXS82uhHfjZoduNXOdsrsDjsynSlGJjcGPsmSN1ttFDUl0LZunNaVUjJPHj/isDugIsTorYPzwWwTveNEzabiw2iwhDVvtnH0wfhCwyZjg3+956yharJn57i5ueG4buznCe8C80hGBLPLWcFkVre1ZIJ3tFIoW+XR48fDPmKqVzPpWOHTWqXklXVdLfoZOJ5PPH36hCkZ+Dt6g7Tbud9IKeH9SHoqbTDLTvauiMf7ZBY7ICZj2IgT21SKKUjtXjUVW22Vw7K3IXAYtiLf8RiktVHp1XM6rxZG0QtoJrmZeU7EKRC9WaHWrWDg9oaItUHJ2+A2AGhh2gc8jTklHB4/eaLrtFzJm9KDNbi1DJbWBocHM09eTVztIjsfhoXZMY10F+cbSSJoNkvPWnnxcmO/TCzXgWkKBG/P1nwIRN/BRTs7Q8OJDUbKqRIOrzB/9BMIM+ITuB24ie4nnC6oeLqekX5DP3+D01v/L//0l77Ms/cLP/azHyVI5e5m5ebYuDt1XrzcKLWTc+dz3/cJPvnXfhEfryEu1F/97/jP/tv/i2/PD2maaNcL23HjervhX/np1/jcZw9cLwEZASWUTqmN7e4EFGNn3npcVEpuxs9phbZ1aobcTa3UFKw7s4XMXenUUlg3T2mRra1D9eLQulKyMSpzU6JLNIRKoXW731WUMrbXpXSSRHKH/TSzLJHTaaNro/RKd0DDGgW12qQ1N5JzoJRCcB7XC+daQB0aAr07ogSqmCWolk6p2bbWMJQwDe8vVjDbqjs121KphdqGrcHZQgLxQ41t9VkfjUerFgiyZeMNdZsEMc87O/uHWtSJp6oSgic6U2YiDg0jEGAMqF0InI4r0swapmIN2CXFyI9AgNabqVAA9ZdllzOlzX0SpJ1hbigmdUCew1DiEGybnjeDXTsf8M7kQZaU5kz5V60hv9pZre7EhjPb4Jc0tbtbLhv7rnjX6erHoELu1XqmRPL3DVvXbtt454YtRXAp0hn37xguJG9KrFo6N+fz4NtZSio4U6Y6G57IaAB9dGznjFQdVm5MTSpm81LBWLAXi3uuNvgSWwc6Z/+MdFNEBedg3jFPE74XmhZ7ppuxRmu1sB1zshiHxYlBpis2yOqtWvCLQm/GBuxi9ZSIMAVb1OY+kAyjaZ5nYzHGONFaYd4fTCdRM7kaxLw7aLWj1YZUyUUYlqeuCqJDmbqxDL6q+EgvxZ5m9QOF8acGSZfmtxd6N7agl2RMx9IgFCRCiIHJKzEIz56fqNWULTEIKThTzVShdkfyibubG4L35DZskwIxOD58NGU88ma7UrVBg7rGbk6UbL2acwbqFjEuVUgXi6UtGLvau1Kb6Uq0V0o1VaS2gG9maxTvWHwhLQPb0gqiG8E7Hi8TV8kRvdJchm7qSpGKek/3cGgLU1Amb4fWFAphdsxxJopnSabi8iHjXWChs/gdLRnjKq8rTiMhJNbzSg6OF2Xjm995wfsfVPKqfOzJEz77F/8Cn/nnf56HP/h50uExIc2Qv8WLL/4Dfv/v/zL/z29/lX/67e/wtfPGrSwDlO8pCqpupJrJsIR9yAgCU/x676n5wq40V0AKi7lkxOHU0llDsv7feTdqcFPRXyZ2AQhxpvShHnRm+3Ijttcp9+yi3hvRwT2JWrxZQcVqD+cCTmGKxtWs4wy2cEurEWOcWGtBi7GStlrppRODJw/kiMglma2NU18v4mQuAiURZ46dcZaFEKBCSonaKo0PAdmXs16c4T1E7blVhhNBTUXfTZqIqgUdXNSZ4syPKc6eARFFvDeL+kX92q2W/MYffvPP7kDpP/6v/5bm43PaEdZuYCstG+fn76Mobt4T9o84XF0z73b4msmbFeYxuZGK4DieThaHR8Mh1lRq5nw+cXx5w4sP3ufF+y9orXP18BGPX3+F3W5i8qaM0t5Yyxm68ODRI3bTzmSPJQ8/JDa55sPkJOl9WDpMIpxiYl1Xk5Ui7BazZNze3fD82YuhVDjSO1w/fMBrr7zK4XpvEbW9AnHI1w0gznigvAxmi/fgusnCB0jLHnLHum4UrczTzDLNvHj5knfefZPj7ZGYAteHa66vH/D0lac4sW1+64rr0JzQaybOiSigRJQMAyQs4zDs1ThBFz//ljO3t7e8++679K4s88Sjh4+Z5olpgAe3Yhsa5x3JRzskaqN1S3OovY8t5GrDnm7WhlNr9E05H9+B0on7A9PVE7wwGEhj+2U4YbRlOsqEt0Ie8DHhg1C70lezYUxXO9wUmcUj1T4/dUoXg4HXrvepH4HKHHac84oPaSREQV1HOqAfihVxXGwogkJzNBrztOCSyXClVeqF89IwW11pzPPEPFuzpdoI0gkmNCRqJfhODNzbqxTh7u7I6eaGaUl89I03OOwtHVGs47vf1nWM85JV8V2hZppuHF9+wHY+0nvhh1/d8/lPLXz6hxJoJq9mK6xa6EUge6QH1u1IXhvFK+EMJzU+l9OESx3vlVaFUivPXxRe3jRevjjSr2Zwjj9+3vmjtzvPbguPdwsP5oWsFoHqgiBDlbFlJXdIMbCbPSGa2k+0E1wznkJuHHOjaKAOoObxVDgW6M22jzEK0QeWFNjvZpwPlKJsFfCB42nl7u6O3iHFNDai2DBJlWXZsUwzPniaNnq9WGVs03uxOV14NWFACMV7g+Mh5FwoZcO5oVQJkSkamFW6DnB1wAVn1seQQKw52bbtnlsWRnKd6wx1mtjvQyjRIk1d8+Re8b1z3k6ULTPNuiuHhgAAIABJREFUO0LyiFrhLGOb19U2GK5VSlk5bWfq+cjmlGna2zDNJ6IXYoho7+SSyaWgtVpD4C2WXoE071C4BzUr3INapTe2dR3cpI2mEFMyi0SI43Ox5BzvjB+x1QKt3jdRJW+c727xfmZeluGPj0xT4pKqQVfbyHRLauw5I2sha2e5NlVgSpFgEkV6bwYtBUvnGMVBd8Ldyxv2ITLtdqRpRgUmN4Y5whgUjHCHbg3Mum6kNJHmBS8gzoYFIU40EVNFYcPrVgu9dM7nTO+VqwdXTJM1IcF51NuGu+RqyZtOiN3TxDbXrsNx2/DJbF/eMVJE7fPyzlk6h1qBU0ohzhPvvP0OUwym1IqRNFmggveX4edKq4XWy7BpeDuLT7c8uHqMeGHeTaSYzNPfGbyXRquZXAulVLQ1jqeNp68+YUmRPlRq4AzAifGDdABXWzU1Rm+ZbdtoKjifmH0caVQCztS9VjKqvY+qxBgpuXB3c8d+vycEZ99zjKhYhRbEULQds/pupdG2DDXjgrKbd0xTIkZPbnA85TFAVDM7dUVGTLK0jKdx9WiHls5+SqjPhGQKDa/eopNbp6hyLmdazqynM8vVNR99/SFXqTMnU/8mn0gepHeLUnc2PAjiUQrPn9/Ss2N3lVhmR0iB4JXrZYe/qog6xCccKxqsQdet02tk9/GP4x+8hrgEEuluh0jC+QXkYHYd3ejtPfT4Jrff+R1+9W//Lk9ffczHfyCw3TaOa2HbOsdT48VtJjcId/DT/8JP8/Dz/zZBA6SZN/+n/5D/4v98xkvXacsVbndFPx75yC7z8z/+hB/59BWHgylXL6yJ8/EMZeVu7bQjEJRWhNqyDe9zp5ZK6UouxRSkgEpCZGIrjdwr60nI1XOud6Yq6ZZAqMVUims/00u1z8AHmojVJf3SbDurH5qpKkPaMc3G37Cwi0pp9n7VNixQCtoUHyZwFlOudcU5oNvAq4vQNZi9uFusNBiw+aImoasN1hnMntFU+THosNTQaglBMCzKxmTzFpGEiPuQJSTYIlVtSCtjkYl3Fi6hps5U51mmSHSYRXBEv5rNU0xNdrGUb4VSOpfwgj74gF78gB1Dwey1xpsqZrdTJU3BrPwC0pwl0QXB9U7LVrN0N1glo6krTQ3EfbExjfbFcVFgVmIMbOtGro2tY++nc/ZnUBuQ0wu11HuLXuvVYLxicfOMs8iLRySgvdCoxhxRkNbQIGNcJ0RnwzLXGepJuXfS1NrGsMTqczcGVh0bGgZvAxxbdFjjeEmTdFi6s/OmcAhhojuh1s1q7lF7W0hAYHIzXSCmxWoJLdSaxxLKmko3ls9byZR8tgEZlpDnY8I3hlbCGZeot6ECsSVvGZZnh1kBETHrYrIeRRRqaez2O3wyC6OWNmyIjRgE8bCdbcmQ5snCKcQCiVprlFoNxBxNdegdtHMdVmpHb8ZcM56R8ZzmNIE0S63tIAOO7pwlAlZvf7ZddHgHp5OB17WbetjoWA5RjzpPLhuqpnsqCLQNFU+43PVjwGt3iPGeQoi2fBm3SquWbutMb0WVxhwCng7e4MlOvCVpY31IHonbXpxxOht4L+RsQz7BlkkezxQtzTngmGPjYajsFiFF+yyrNoIqFWEJe5ILzHM121gwtXbELNHeN2bvmJNnDqaI3TMRwozsIFKZgrf6wCf8bO+G00Zfj9ycKt+6WfnKu7e8+a0j/XTm449e4Sd+9C/xqZ/6eR7+8OeI82OmZcJHZfvqr/ON3/hlfvPXf4Mv/MG3+KObzvNmqp2GDVDFefDJdp0u0sgE8VaLj+VTbSdimEE9ZdReXuxMC3MgRFPt1+ypRRGvdLEeWZoj3idAyjgrQIO9b5OPtijuWIiKawQNiJ5IU+K8Wl1U1SHVoPAIln4YhOAxpWcZAgwJ1N5BkmER8jYG546i3C8xPA5V6yPrwMRoM0VlG/zN3rvxjpTBfbM5VxcdAT6mjhPMwmqXBOMsNDtrzqYujMGRayH3RppmSs2gdv6hOsR6o4d1jPAaO7u1NlyDtRS+9fVvfdcGSt/1lDe9fcm7v/8V0vVjZH9FjJHeHD1E5mVnMj7niD7Qt0x3nR4cTjr1VGmukk935C1TaPimbPnI+Xjk5bPn3Lx4SS6NZb/j9Y9/lOsHj3j6ke/h8OgBz//k65zPd5Y0p3aoXr32qgHlthWL3rTPruQNxeIareBzNAelWmR28J6SK6qdw2HP6bTy3nvv89bb3+F4OjIlY3688dGP8cbrr9v2F9v8lGKA5konYqwWVehivJ7ex8MyEhKcMwsK2V6Y4+lEihMPD1e8994zvvbuH9F65/p6zyufeI0HV9dM82KNay6s2RQTKVizFLzg02xg5lZBqymrnMlzWy12+YzP4vbulvff+4CXz5/TgVdefZXrqwdMyWIbW2+cz9v9PXS4Ogw4X+G8boBFpG5loyPGCRGzOLVcKOc7TudbvE4c9nvkENGQzB6Es1jW6Mxz3htRhyRczILjQ0SdhyAWSZoVFyOHnSWF1bxxEkdyYUgUxwWq9j2GYckIMnNsBXwY0MdOyxnvhLBcBkx9yMzr/SDKB9inA+IduWTIQ80gQs2WCBiS48HDGcTYTwEhOCvknFaiq6RoC1k1ByNb3njx8iUO4Xs+/gaPHl2Bmvf1QvSnt/stkNJoHejKVs6U03scX3yAw/E9B8cPvbHjc5+Z2S2dm+/cUrNQtpXtXNjKSi2drSlbW9HqaDVSm4Jkk/7XzlmgkVmr0Koj104+VmJY2F095Nmx8NXnnm+8t1K78vD6YAe/dOYYDcynplYz2LlwSIHg3eBTKXNoQ12mnHKlqbASEIkU3TifCznbZ5UWgxK6ICzRM0ePdjXlVFNyhfPpTM4Z7yPLktBuapraKtEJS0zG9tE2EgG56P4HhLoQYyTnjRgj8zyZ3HXs0kSML1XrRvSeFDwpJmIMdpY583VPcUJ8oDXFB/t3C0ovlv4SvTPLQowIBkPVAWZUYUAhO71YmG3ywu22QW/MSzQej3PgLsMkwAT60AtbzxS14ZVzget5oqjg4gSihOihN/K2sZViVlr7Gw5QX+Jq2bNdNhriSCFArfhghU7FtkE0U7kFb4OdlGxY52LAj1Ksd7ORTCFSHCSErWbyVuh4G4A4iM4xpwTelJutWhLSli1prtVKK5lSC8vhAN0GZDKKiVq7wR8ZsuVq/90rtDVb8TlPg11gA42iHXF2wat4ehAb4mY75GKMpoJLljWCOhsSjUuzOdsC5VzxcSa31VR002TDD8SUB85iZLVD8omtZVwd9stxBpeWcaKkAZLuI8Wpdx2RyALeihqnivfBInurxSwLSnBCaxcotNkaRDzIAI6rNaK9ZdBOriteI9onumJ3FGYpB4eTZKqAPhQGo7kEGVyjwJjHWtPNWMqIB9uZAwbldWJQ8i52BxkMMkBnJNqMNKRuQ3aB+wAOHwywPfJPsAiGoR521oT383bfoDg3YJniDPCsBizudIPZd3BRBsTE4btBj0s2S/LWqkV1Z8FHU2xUhYIpeVWrPTspUkfBuTVHqOBio0qlZJiCJbfEkWaUg+IkMB+uePHuDb7U+8akuM6pbKSiTMnYXK4FXDNFH3vQYyV/8AHLFNCQEJmRsNowSeuQxk/AjLgDsrzG/vUf5NM/dcPv/r1vMF2/woPHgUmMTxe7wzvl2e2Z9drzxX/wBT7/6kfwn/5Z6Mob/87f5N988z/lf/i91eDqIRIPe945VX71i+9zmB2f+v4DabYtfuuNsCQDDp9vqM7jY0TbeWxQbYHmmikjPJ7oA8e1WrEdRuqXd5RYEK149dRuLaMA4i2COZSJ7nXYgDJNHKIWWV37xf43oxRUB6C9K70VRMI9cLprNeRAG7YccRTtuGZLK+d3iBr3J03eQNi123PvhtxBHU6UGK0JrsUG7hZ48OGWvg9AuEOYUhqMDVMdo2LNeXD27g6blgxQt4xE21I244/0CjosXuMZusTKp0ko1dOL/cytmWU7Bqu545RsCdZXG6Z1HQnFpsrpzTbZwQlhBIOUbGEDip2N4mTEsXdaV6LauWrAZ7NsMN5RQQZSAjqGiUAMAO5jpAl4CVQVKkLuSqltLG1Gk+0hzoHahHUTpFqtnTTQW7Q/+xgwSPS0xrDBOeJIe9MuuJgQZ6p2aYXejDVYxdHriqUme4JLZnEelhXttmjSwQvsWMAI3qLNXbRhvNuKWWb6AGmrqbS1NaQ7op+shtNOl8GRcg4C9Kogtnz1g91aq9yr1ZzYnYpPyOQGn7NBq1DGUEX+FMDch6GMMAeE9sFwunBr3IffT3Rmf4kBQ3+0SN2MFRXdZEqnSzqgBFwQS45i8FcDlJzBWX3Tu6kuFTX7fSk01+6fHRnKrNoKRY3j58TTqOSeCfghJhFjxDRlbR8OQC+OCJMEmnKjNTsjehdzMgAeG+r3boEluZsrwImYbRQGZ7ANda1Dx5i4DkNh62PA27upQYqabS6ZQkybDptfggDCsKi6gDbuwz5iCITQaBXWCuVsw9cUAje+Ma+VKTmCN4ucLyYE8OHIFALz2VHDiYShUUJ3OFeRWNnNyRAFHhYNTKHi04lZFsQX9jEwT4Vlt7KLCb8IS/BoCkwe/lza8cbDhf5JePuU+eYHJ/6P3/6/+Tu/+mu89vQx3/s9H+MH/uKP8ZFPf57dk0/xib/6Y/zAX0/8G29+ka//+i/zT77wG3zpj9/iqy82XpRCrlbfq/NorwQCbXC+fPCGLsAhwVLiQnDEcV60lmlrwTXHKo6SBeumwMeI08AFfq06wlFU6Sr4LiRnYo7SbcDjuQwoTRWXJsHFBWXm7uaMYApm/AgiKNZfdLH60DPRVQkusm6ruYmiI4iQRwq1QbfVrK32yuElGOuYi9XV7HoXuHdVhVwNF+CErNWUVX1AEMQsdF1tiaa5U2UMjYOnDOeLc5bs6bxhYETsLOzVthHB2bCsj+GSqi1GxNtANAwV2Hfr13d9oPT8nTc53h2R5ZrrOBEnzzlnfIj4yRQ+fSts5zuCF7O30GG945wz0Tlubp6R1yPn44njaeN8vKNulRAnHj58ytWjB+wfPUBbYwk7rh5eE4DHr79GXq8prbIdz+wOe7bzHVOaIBrALtcypuBuFAUMj7vJWfvwbXs8aOX27oavfOXLlDWz2+9IS+LR08dcX12Rppnoo3k2W8PHRECYwoxqJ4mlR9CFEByt9RExO+bqYi9Rb43zulJGGtW2rbz19tvc3LwgOMeTV1/h4fVjlqvJhDPauT3dIdgGPKVol4R2am+W3NSsGbHqXEBH8o8quVSOp5MxjI5HzusR7zwPHj3kcDgwL4vt3rqlg8Dw+3el0zgfzwOA5/A+WsGRs20Ym8nS1/MJstLKhg9w/eQhPk0IzgBjTqgSjH2ixV6OS+F4mZd2BeepYoWXVGMITNeWVGcRiibz7piaRXQMLpw1jl7MTnkpS6MIPZv0XFNkntPw7tt20/dxsHWMWTAZfNZpp2Xbhp3aCfD42tjNM8t8RQy2tezaTYLZO75mnGyEKETnjZ9Vbahxc3tDzoVXX32Vx48e2KCk2fbN6YhJH1Pm1gp0i+gtrbDd3VFvnzPFMx/dB37mh675oU9MTK6ynTbuPjjTSmDLdVza1hRW7bQNYKHmaqklYnbE0kGbNYO1Rray8ez5Bi7w8OEVa4t8/a3Ot+6Eu2Mmzs5UHy6QknJI0QhS1YCUIp5lDqTJo+IQPD5YvHrtjlNpnLsnN7usqxr4rnYbuIUpkbySppkQTO3iRTivG9vWKIN7UYsJ0a2EFYMpqtKqTVxSuqjo8j2r7AKINEuoAaadEw7XeytunDXCyIgOzxt9gKjnlMZAKVghjhUNZqEb7K/BJvNeKTnTNZOCqUhiivexq+LlfjOqYwDachsDkcp6vKNrNcvaiE83yLeMbZvxjS7DqbxmTscjTjx+3pFrIaQ47DeW9nA+nsaFZQ044/d7F1nmnW1mup0rvVv6RBPHeVvtYsqZVgptvJvTbhlRxZ7oosltvbcwLawwa/0iNc700qi5MO1mG645U2wRx63XxbgHY+DTWqfVTqlKmGZ8nHHOVJZu/P+MYWunc7HS2za0cnc6sjvsTDafpqEAsKbNOEX2XtEHDtEJ0mHaDaB/G/YCH2nah0fdilztnegCa7ENZWuF/dViw9OhXhANpmDsirRGE/sZfdgVBdhyGcBqGewVAzBaspIVuX1sbhFjRnhnWyxLKTQO16UZbeiQd/ehjHAG0b2kJnn7T4h+FBR2L4lzo6Cxxk+dFYCuw+YquRYmtQYDGfG3qDFEhkV8+IhsYK+KhGhNtzc2oDT7c+k450VBRyBEL2VYfG3bn2slBG9NPNYwM1QODNVFb4p2GZwqBZdpXTmXRuhwSf50eDSadcc5U4wIDWlmqT6fbqkuoFlJkgiDwxXE/n69BWpvtOZRHYM6Vda14l3g1BWKkELDO09pjeAh1W68oWJFqYZAjcLtuYObqbWZurYrzYsBZ2MbNhHFt4ovnk5jPd7AM0fcBVMkhpkWJ5zboeERhGuzwvUz6IqPkdf+uY/x7I9f8p2v3bHbPWQOEzJBpbJ3E2jnxcvOi9T43b/3d/nz+8780b+Ec6/z2b/xC3zrv/zv+aW3OtvxhiqONF3zrecv+cKXXpJ28LGPzCy+0kultULZMuvmyaUxBSU3aN3sJ6KNIkoTpaoO5iKU00o5m9JiZdhGup1XuXRUw1im2KBSvUc10TXTiqlhVG1Iaypej+LpAwDrWiVEa2rA7Ny2SDEAfvAKKhYaoULVSu9WE1TteBFqq5Yy5C7nhdmhkMEiGkPZPpZJpVkqmvZmAQZjiIVwH3t/sd1qN+VQbd3e917x7sOB0eWZjzHhfbhXYvY6xNTSCQPNEJzZbGvrY/ikcPnZ2nDBU3vDJ49XR96anYnehhQ2nGmm3hs1lARP9HEoCaxexjmiXAYdjHfSDZue9foF43sU84NZ04V972GcU6KCqCVACZ4YBO8vn7GxRAxs26EpXk0BIq2MobDSm7HzfDLFThdFmp3vwcv9c4FTGkqM3gbMQw1bW7U6tHa6t3rUi7kKUjB1UxUbFjoZyW4etFjikxO7+90ykUqlV1sIta73CmARCx0J3tmga5oo9cMEqEtcuHi5hwUb36+h1bhvftTyMqx1Tox/dSrbqOUcnqFGC/4y6R+8SKHYFNB4Us6s7645QzwM6LEUKH2zz1sd6vKwXIehjDOEhyAEVbQ0mlo6qhNLrQIlhnFfxjGwAlPNqanVFGHyYdQ8mSnM5N7GwLfS1Zharirq+mgK7N2UbmoPL24AnNtYZEELwqamhIpDZR7E0cCCGmQ8h27AjZ05VPxYnF/uzxgjToIpCUXx0c4AxVQlPUMXszFaEy3so0f7horjdDabbHRgkVKC4kiTspaCdGv2VRybm+kN2iZ418BXXI/GRfIN35Vzt2d86+OcWSvSHa6b4jzkyuoDq4CfK0sMnM9H9rOnKhzLLe5m5rBk5mA80mVWliWRQmAKju6VV0T4yNXET37yiuc3yjee3/I7f/w1vvD7X+KB/1/42Ouv8+nP/Civf+YnuH7jh/nkv/yLfPpfc6xvfoVvfvEf83u/+0W+/LXv8NV3X/LeaeP53UZujtb8SCHshKD2Pdg43Ab9DsBCcro21lzp6kYPlHHq0ZJxElEvqIZxVpniTIb9tblG94M71IfFXS3IR3tkO1YkemqzROZSxnNBH3yibAuraj1LbdUGTNotGEbMKdFbJXpTUDY1TIh2GcoiU2Ve3kcwlb1Z6caZ3uz4UjF+q3GOdKiwuR8MXYawVuvaO9rrxUZuKBwbIndTwonY2R3kXs2to04z599lMGtzhJD8P8NU55/913fd8vbv/nu/oDULh9c/yjLtUBr1dKTWzNobfjngWyEQ7i+31lbubm44bSfq3cbN8QjHI6tabOXhcMVymJnnGdBBKZ+Y9weevvL/sfZmv7Zl13nfb8w511p7n+Z2xSp2IkWRFNWQoCVZlmG4kdskMJAgQBDAf1yAvOUxSBAEToIgiWw5lmVblmTKEiUVTVIsksW6ddtz9t5rzWbk4RvrlJ4CBOEBigVW3Tpnn73nGnOMb3zNe2oQWzi9t6E0M1MyWN+U5tBGCzPvEciy/j7CBT0nadzPd3ds64Xz5cJ6PrFWbQyurm4pU+H65prlsEsMjuwxHFPJTHP4Sgxnu2xCsstEbVt4YBgtTBSNTJomWpfJ1t3pnrdv33K+bHjbmJcDy2HhnSfPmA8zkGltxV2JSLnMkUTlMXyNBw8VT5KAMDZyymzdyfMio+LTifvLmbu3d6ynC1eHmavrK65vbpjnJei+FUyAlMf20T1orFOOGGVt6nofbLUqMruLXSW5Q6UUGb4uy4xNCWvSLUfXpeZk9GAAhOeMf3IBEuBKS+ClsKTw3uhOBb33u2QvG3PQWDFo0bQZahhE/YXUGge0QWhzYWqd6trEi/pojJSDXlqCqTSwYQxEQ699Y5oPPD4szHnhPLpAqyQzVtrKRGfOQ/KvMDPsrXK6P7GtK8+ePePxs8fMRYVIFrIdj82LIjZ1VtqmWHdvJ+r5Dam+4UtPFn75i5lf+PIVT26c+lZ/btTG2jd6lQ9M7U4bjUtTRGY9Z7wPmq+so4PL2yDVxH1buVs791vj7jLYRiFNCx/fGT94Zbw8K4HtqiSOh5lD2Xh8tUAtnEbirhujabN4ezVznMWoGebkCJxffXCuxtp3vyJnHdJJM0zU6iIK+vVSwoQeLmvlUiPxrElWKePNzDQtjGxhzOwsRV40HlICcEnnUo4t4JDPBM6yHMilqMimPW9BgERt7WFbkVNmnsQSSgxteW1PLunhMTRTq1rVLVIZcW0I5yyZm1sKeap6xhT01D4Eqm4j088btd6ztZXD4UAJORlATmXvE/W8YHivtO3C3d2FOjrTsoAbS4mEm0m+D+t6YV33ZjGeDxPANh8WmZUaD9s/mZYn7u7P2kbXSqubtq/DWeaZ6XiIQaZQ5hmIRBsXsKhhS3LitW1c3txhpXC8uRKVN2cZcaf8MKipt5eMprfGum3U2ri9uRGwHdIiM4tGJLT0AQJstbLVlbZu4M717S1pWZRYU8RU8yFgZ10bdVW8ffPQ9tfO4eaaqeQAR1XHDyHpk1RGAFbHqevG/d0dtVaePH0SrEiZpZeUGUl3lohOI5qosGvxzuW0MoUUb0fTR5P8bt+o5qKzmxylGblzev2Gw/UVKaMoXNeZtD2+t3c8wgFkAjuo7cK6nVmWI6nMLNOkLXn6y3VHDK/e5H+Bw3mVB9PVslDMsBIgjseAE3fOLuuprQawKsmKJ537NJAfSwofizApnsMkUgs53SnJYAlPLcvybrIYvGREbIw26MPotiegyM/NTECbWQBxeJgFq5kr+/caasSG12i5ElNO4SfvzGYQBrjDNCwzBlOCJcMyOxNKrhsZLHWZ+I7BMosZIIZILD8sSeJuJgbGkpln56qUSHlMLEUs426JqYjRXSb5MuW5cJgF4KbJyfMBmzKUmVSuIE8y8ByD0d6yvXnFj773E37/d77P7e2RL335ipJhvfQ4+537c+futPH8deWrj57w6//VP2T5/K/j9lnuvvW/8N/+N/+U33nZqPPE4foJNirlfOIXP5f5G3/1EV94b6L0Sjs11mqcT4113ShL4nQCWDm3TGuSrPZeWfvAN6Nug74N1pYZqXPxwdY7tEzzRm0dH0d8NBqNQWG0EcBjjx7C6A3cRoCpE4xJkldvkcRnrJcKJFpTM+27b1oYPDsCIboPLeVc4MmUEslEBhlDYFgPFkpKOwgs4EIJQFpISC4htp3KYHij7YElWj7Hn7NPPNMwcirByNNrMVdiYPOQwjUlAmkp6pSSuD5ec3VIXC4XtipAfesCrVJOWAwS+1LFuz/0csbOQNk9UJylaHnRulOjZ9W9o/qTERCVzMkxIHbn4a/kkEzMr77rwuL3G/E6QADcvqnvepOJN1U1OUC9XBR74kNpUpYFrsfVTU5AEhDN0JJmZ0b3rvcfUzR8MlPIToO1bnS38CAqzNOs+9EE0u1AmFgRkm2O0cMzpogpYYlBJ7kACY/J0oJtCiEZj1o0z5JOWtYdcalDEus5k+mMKi+yremM5hRU0ITuhBTs/VQ4bytVtCz5rLiLRWzyx8tFi+2tjQA5B6M39Z6WqU2J1SPAT6yLoRWmz9tW2d1fLes14/rcekgwe9Tx4Zuk4WWiIlZ28tgVBXN2NAUy5DjzqSRGN6xbgPEXFFGRSUMszd2XdQyBXzaMjBiqyQSyaJx3LtsmhmFSMt5kWjpOkWyrfUQYag8t8uxhmVOoo5ITTEl3D1kLQ/U+Mlv3Eem63oM1nMPCoJLLJOKCaYHqZAFfdJLBeWuSDU56DjFTIp07tQs4uzlCSRV65XqamScjeSOnoVCVkXGrkI1sgynDlJUOawdjnjJpOFdzJufBITmTHzkejTln5pzJc+OmHDmUTJqMeYKcD4zSyD7wNqi9cV8Toxbe1M4HL17z+sMzuWY+97kv8NVvfJPP/uKv8eSzX+Hpe5/h8OiG/uJ7/ORPfpc//cM/5k++/T5/+oMP+eHL13x8umOlcTYgTeT0hK3VAFTUe4o1p/dbqp4RklJjTgkPqWEOVqck02Jjz2VmnjOePcKUCNBKs8fWtDj0rJ9RTGQWzaS673OAXNXlkem9krxQhzzMyqK+IbkxhpZcKQv01ywQ3qwulpYAAc25Wm7BoDMNsUo3DRuyvghm4gi7B0s7UG/x3qgXs4H6M0LGamJzt94egLoUthHZDE+73FhsyR3xMT3G/Om/+/ZO4fj//fVTZyhNxyvykjje3JK6mCo2TczXB9aPPmR785r5MLOd72Tuejmznt5yPp1ZzxvNnKkceOezX+LRZ9/jUIztfEdvlcPhGPrpxHQ4MC2Zut7roQ9zz95d99EM0SG3AAAgAElEQVRkEI7zuWhrLma+P7APRtLmuI/G69Md96/fcHp7R60beSocj0ee3txwfX3N9fUNZiFZCQd6yKRI3ACZiaakJjcVJRd06kMx6m5hDleovXN/uuPu7i33d2+UrpYLyzJx+85TDsuBaSnMZaZWXeCHeWHPxhkjJBuInZMtYgJ9TxFxzGa6N85bxS9n3rx+w/l8xs1Y5omnt+8qrSei0bcqdJ0AeOog2AXRIJn0m0HCZasb5/XCtq6cV+nfxxiUaeL6eEM6LEwsgOJVR06k1qhW8S4/KXyIhuuKOFVjlh/YGCVllpTZvEfyVUe5UYWtNw4pyYujyD9EoBq4Cwyo2/YgQWKIzu2ueFzfBmsd9ORkQt9fipgmJkPmgTbg9C5zypx4en0QMdagjo3ikOmkPsh0MjU2hnrftrM8Wrx3ro4Ln//sexwPV9Rgw0HUM5PnQB/9wSOg1pXz/VvaZYX6hmfXzq/+/IG//gvXXF81tsvK6dXAW6aezmxrYwswqvZBrYPWXOZxXd4VqQuka2vibr3QcqbdNd6sjXVz+UhNVzQWvv9h48dvB+cBy5x5dph5dEjMS2fOE5cV7jdn65kxZaY5cX0sHGcU751N3loV1u7c18FF7FBaHWzdYoAdpEm045zgMCduDgXceHuqrLXLRDaAMic09FMiT2IuLNOkM5PVnDoWlFFJW5MJxHIEyqZIIdMzJTnP6GF8GZP0DnhY0tnQxy4G2RgdRxI/UWdXNSVZYLG7PzQ8D8lAcWGl2Li5a4DpLu+D3ipjbFhyjtfX5JTVTFv8PqS4HPT6vFX6unI63eNpYjoskGBJiVIkbzAf0oB7/PycY3NiktkdZqxMbH2g9F6HLM+ay1l+ST1AjFyC0l4S11dX0eTqGcxmjABPvUMiMWyEbEjMvJGM49VRwDcuI+407eQkYITsyoLZlrDuHJZDgIOSjqmR14UoRoyoyvvnaHmiWovXWChkUdZdwwAkvIl+LFPz8fBMY/r8sPCoyAVPmRZA0HANPduQZr87WJrkL4LAoB4AZ+sCnwzksZUMN6XkJNPwWYeia0ecQx/ymchZGyUzI3f5/xjQTCBxOR4UTuKZbR1gnWKJ3C30+XvCjoYrff4TFLh0sdta64pJJ64xF/tN2ywNkq3HfdAqW4W56HnLuaqZgZjm1PQonUq+Iwon7wyawgccymYBBiZ2x8ptlxHH69gTSS7B3pLf0SfbQovFhAxxLc6OGBGWJQUpJTFN6eG5lyQkmF3eQqIjFonin00ylzSoRebIa0ia9GdD8hebxjpgbJ2ekoybbRL7IA8NMV1LiJQG88hMNqhZoHDJPW7yzhiZc2tkEqnD8EJuYu+klCEVbSLTYPRM9wAETElLZnrWzHfgbJZXTMpMt4V3Pp/40lcvfOePnvPyUeZznz+Qj/HnR+baM9Ubfmd868evWP63f8lf+c8nyjszV7/49/kv//FzXv33v8OfNBh1w+aFOg++/aMz1398z+PbGx5dZZgMS1XDIZk6Er2tcDCsBpNtc6pn1ppoEcAwPNOy0Rry0OlNiWg9BUCz4t3oDHkfBZu4ewC6XSl6TrQUVGR9bNRe6Taz9UarQ8yUrrO9M7aHedTHEX6awXgcShTa3JnLxLpFIqRLCiXsV/VcEc/x/uNapCDAxluXf0ZW9HxGQ65YPKphCcIXR13M5pvqfNL5wwdme43gAXg3IVLyKOpw2Zy1dtbaae4Mwqy2d0T0sF3/gLmxhvRf2/S9hgpYunQXE9ws+sD+CQiGkoi9y+x29x4lpQCFQ5IE8mPsTnJFjmuQkXQn4QIPDPIUoIBbeJTEQBXR28Ml22q1kYp6/pxntmCupeRxpaUYtiZ5aQ4Ztu+E/dGhJYeh15hsjvolsEFDrT5TnQUNdKpJSDoX9a27GFKqR06PmmcYpWRGVl0bQ35vRA2voiBGb5Gx0vEsg+l5gpzic7gkpbyNHsCZlijDIu3KTSzQqGsCCVuAefpdWh/UADpzgHcp6a5KKJWq9SGPlgedgBhAJe8SQnltjRog2QCbJnp3SkFzEE5iIhnU3vS9cTyAtBQybi1Oyv5vGQ5b73gn2G4zJfxtvRR9YL095MF1Hzjy7UkYlCTJYAzgU87BoJVRfRr9gak3YqAWM0yLBRxJs/f3E2PURisR+96hb2LtlUleijYV2ASOgWLn165YefNB70r8yvMkabbZw5wzF4PU9Ri2uHfTLsUz9e4jcXffydPChjG5ejOrzpwyCYUMJZNp+pzFeJqLAL+tO2lsXPxAyZVpGLNtpArHMDOfJngdstA8VY6zs9hKSU7KM0sewYBuzEvic8cjX/tU5s2XO89fdD54/mP+79/5gPwv/1ce3zzjM1/6JT7zlV/m05/7Cu99+W/zd/7mP+E3Tx/z8s/+gL/49rd5/zvf5jvf+3O+++Mf88Grt7yoJ4VpZLFqNEsrxMSyRq5ESN69yBvXIXelUWaUHowJ9G1m9LWKGXycBMqb+rB9zu8DchdY03aWZI7laSyT3EQM6Oa4iZFHzWGO3cOSoUiOiYB5VVqxoQ3CFLvH/CGgVB6lmqeVVpdljJ/kHZ2D4ELcJTsj3X33fYzFHeMh8ZJIOK3BrtMdKIAqxSLEg2Wvn635XvJreCjSP6WvnzqgZPmAb/es5wt4I+UD85I4n06c3r7lUiUzuX/7hvWiqHrS4Pr6lmfvPmbMmZvDLZ//pV/CtjNvPvqI4c7tk09xvD4GK2dEk67tjI9BRppli0JCly/JvBSUcip0sntoeX1w9+qO169eiJW0beRSOMwTz568x9XNrRKBrg7gMvGUn4NiOHOSES4hnwH5muza7R5uW+taWeaJsiy0Wnn99o7z6cT9/R2n84VlWnjy+DHH62tJ1ywzRsWSpAq16dI8zBOtbkIZA1D13kPypQS87GpgGqLZClzYePH8JW1bOR4Wbq6OLMcrDnMhmaLDh0U0dUhg+tCF0k2a5Naa0Nw2lCAVXgKn04nz+SxNrMuc93B1xbIcsCSqac6JyxiMWrEemvT9Mwp2hLYDFkOUthtWCpZGMKBkyp3GHn2twr1MmUOZ4hjvBUd/pq714aFZioqC59DwD7FWEs7ImaUYpQhEcMt0ktgO3hGVMFMOE8s0S3qFK5EkbBRmGnk0ShqkKE5gbJcLl8uKm3F9dcXjx7fMs5K9WmvhDRJG4lmeGz22Pr1WRj1R79/g64nbMvi5dye++dXElz+b8Vq5/2hV6uHItPM9l3Nl7Rday4zRWH0ocrPL80CSz87YMj03trXzahV7Z1wS09XCs6sj23zFD+/hBy8rH71tNJybm8I7V4VHh0yZJ+7XzttzkgGrKbFoWTJzLiwlM8+DCckdzm1w7nBuTnWTt1ZVA9HdSUXbzlx0lm+OE4cpcamV+7WxVjUz69YYrZNzYp4XNT6uBjKXwpzmKOqw9qrozagXUykh7wnQIOXYysWm2XJsj42wFgpwSkalMmjYvdBgMCIhrGNdRoS7Cau5gJoeYOnAaV0bs1hQxkZaDdHo+/nXVnmeMokDI2dF0yOWhwrsviXXAOLdGVbw442A1TAsdoMaktsxZIg5yvTw++yNu4Xcb+xgE4nqTgFq67QhsKRMMyNMkRkDm2Y2Iv7YM72b2KZjoMfHYvMumdM2JHUs10/wuShlxmHtsI3+EI2ddgmb6XIew0jliJXEeQwmiiQzVBhGDvRqlwjp15L05Ljc4CmzunHaGnlAwui14klbwzyyYmFJDybpno2xDkarGkySk02gSFalkcBu7FIFp5s2V31VMp37SkkTZgXBjrD2XRIrxpA8irJe+1r12dJxwkcIHnx4LMnUfM6F6k0Gjo48SJoAJk9OscySs5KQhs5fD3bSCKn3QGyhyTRgy1MjIXeiiIOOO7K3kIDnEudRDFz3ThojpHcGPZiYmFglsakfwawoyWJgDtAx2Se/WzCcBHyp4doZH/I81JCqmU3Aj7uHvFlNV8kCg0mx4MnE3RINWWzJCXAIU6+AO+byFktFcsced9H+vYeFyW14EqSUY/MsaeY2EmaDnMbDM+oxbArsyfhIIafR5z6GM5jwhmQXuO7HDLTGMhUm032WrdNH0rBCmB9bosiaFU8CORMbZgVYsTSRmfBy4Hhzyxe++i6nV5WPfviW65vCo6eF4/VMorO5cd8SBxJ16fz+dz5g+T9+h1/6TzL58W/w2b/1n/KPP3zO63/2HX7YJPu25cDFO7/3p295fNX5q998wnWR4fJsRrfMNGf6QcDrNA+8SJ5Glc9JmgTuu0OJulbyQvcCZaO7jKLBaSRJXZIHizdBD5+SfcnmarbNJF8jSaqznyH9r3zHdtbD6GLUKaXZg+Ogc5xTegBia2tiGxXdOWl/9j3FWOwP5zIl5EWUIq24N0YS+j3FBnmgu08OaOqLEqbFIh51f2cL6tzubCidMS2Vfai2ENIf1ftgxbjuKcGNAlnoiHkev1cPs2ZIxMwtNp7v7j0EmLlLWsXsSAES9BagiwXDfOjzTHv9Gc4YmWEmkGTwCasAe/DxSwapx0PuCBANI/K5zHR3Lp2QwHSOeaY21Sv1rqor2QJotrAx2C9z3x9NeZGM4aQe4Jxnpdp5EcvNBUxIkhK1ynXXevTfFoAursUSttcFsW7MnTY8ukwV831JhanOuBveerBl5L+a4zRLGm+c6kXAHYTBcPhXdb3GugUi4UnJfRiUGaJ2uBODbCywMNw8gBMNmbmoHkboOZZ1doebzqf8NB7Ad3eDnLRQsfAbi2HX43lofURPJ5CmdbF/UUctuTKx7Gj6rDDjUitLXsRiRel40HFvwcwW63Nnrx6XieaN3uMuoyhR0IKNFz6xUyzh1CJYgIGxuNmNpONOmHLGwytpC/np1hWm5E1qCAuPnZTlzSZAW33cXk9ykrH3QN5YkCk2SKnLDqWrR+zDovbpzOPEEjwzTZnaBx39bCNTirEkY6aQR9NawowyEpsLnFiSCyCslYyk45OdGcAhJ2YzeZ4ulVKcdKnclMyhnCm5UKaZYo2cLhzzQj10Uq9MQ4DY5x4b795ecXLjdK68evGK9//ot/iz3/8t5sNT3vvsF3n6xV/gi1/8Kl/82lf5K//13+Obo3L+0bf58Nvf5j9+/8/57ne/w5//xz/jez/+kJ/c33PXZnqZSXOhWCZHR+LWBIzG8qnksNEwI0faGaPTWxeIaLscfjAsAlu2IFrwyZcIpGIbReUR+aQQoK/hRVK9XBbKlmhV0kMtImCMTd/Mdc5T2kF19Rl57z20CqSkTIUHe4IlWQR+oICqnPYdmxRUjOj9g9keSxBJXi3wB4Ld5Htx1dLNEMwVZ35nwPawWsi5BPvyp/f1UweUlsPC+cXH1Oc/4O7uDcflEbVeuL+/53R3x+VyCn3rRDkcuLm94pAK733lq8xt5cOPXvD4vffI3rj/6AW5zDx99JQ8zXiv+KhCj0cnF/nMFMuxjepk9GB2H1TvrBsPBZ0hSdbdq9ec3txxOZ9JCY7HhceP3+Xq9oblsHCYFlJWqoXFxZljANVAmh/oZyrsSYWgi9a7tQutDa6uFg7zjKXE29evefHqJS9fvsCS8ej2EZ/9zGe5urqS6fQQsyp0ETIitvzQRLTW1LwkXZK5yJS0bhtrqwK61P9yf3fPm7tXnNcKZhyPR549e8JxOYRhq4psG+OTIugaAgEcPTC1dskQwk3//u0954iTPp0vGrjDbF0JbLuEBg2FMVy0oY2+PAE0OGaX4Z4bpKnIvJbEHMyk5k7fmrbkDn1oIMTl95LKzDIveIoh0YeArlrJTWAekwwZcxi0esTWrp7oqSulK1g0ZpKHWAf6kNbXjDJPlNBeZ0LWMQYFUeEnc4p1+R7EoLJuK9tlZU6Jm+srrm6vWQ5zND8qIBYouJq/FgbNMLpR13vq5Q3b5Q3LaPz804lvfuWKLzyD68OABtvaIKIi1yrPnTW8vLats26xo/WhVLyRMKQ7pmTa2nmzdr73wYl3n93y+PEN6TDz8ZvCD14YH7w5cz6fyNl4vCSe3Rg3M2RzzqfOqSI2E5lDdlLeMBKtXqDP1CrkpTbjPDqNQh+DOtRE19oiwUWXt5WMbw07JNpmvDh1zlsT46N7yA8EFpQ8sXWP7aLJKHEoQlqbXqcOJUrs+9/ajWzhs+F6vwiWhJ4Io9OxXGTgKVjgoTgLg4xNZKD9fYh5kgY4IyjsYphZV8OWCediQykzMdxLKRt66qFv4qNDmtjCj2C0RI+o81Zl4rhvGoRJRaJIFtNp+NAlaTIY9JVotMSK1CWm9ImkiVvePi08M0g016tWypBBmuLdkU69jUZPGt5aFShE2tkonbqe6SYjcPMkUNEHY+tYmRnMbOvQe00C66SAXIY3rIX3CPqsLSUNNO7QRcvv7cKwTGpqgTEZZgonzDA+AeB601DlZljX5U5tjNQpIQ3qtrMWJMNK7njVpUsC2qCbk4rRUOTycDUrYgiIF5VsB6V31qj8E7RbkHxsmJGG4pwXU0IV4QEnJI7Qwju9ggY4WYX2aIKJq0YHTIPPFAOdZCKOj/AFcTUaFkw5HymkmINiRfK/0IuYx1kOarabvJ6UopLDaN2x0Rk7mh68aYvt2G4K6xagWDDxzCT52k0sHcd7p8d9zcN4o9PmMWB4ALwWW0viZ/gIyaam6ZC2ldjAaUDOps9kuDxDbH+9RFlAIR0JMWixBLkFYKH3aF9bETLshJhjw51O07nJMmJdTKacrQFh8jon/4QNiJFNYJ/6OJ0lmjEVDfFE3dmp7j7swbPFRLEDQjaSJCPZQdiRNmwYZme9m3nGc6EsVzx65wlf+NqZl//qBX/xvVd8eXnG1XHieG0YjeWSOB4KwxL3afD7f/R9bh5f8bO/eUM5/DK//A/+M/7h8/+O/+Fbb7gbkuPZ8ZY355V//vuveXSc+PpXr8h5YsmNkZNCt46JvCnm3apjU6IjH5OWlVyzWqK2ymQ6G5PB1hdy9FtjVLoN+phpXUyAvUIXM0av0SOEwXQCeRvpNBXvknWnHoCP0dA57xHrPZkFECz26z544mKTD1dsuSXJuj16vsChNIy76mIy0+cQw0ROsbV2DbhbHyG/SvodLe6YYPjsybvpwWfNHzbVOr1xNoJBgynlyvAgjGad++TkTsRIi91KQiy+YOCkiPeOvfX+GIrNHa97lwk5zmiSf6diFDfMs3qX6O08piEjhWRD3zPlPZDE5MV1UGT2dokkNfPoYROtNvWmrs8oBQiSDKx2bBKTpoTXXs66X3sTuzrvCU0hO9zBaYEp8QT1rhflwYQd0EfVnTq6XntR2ivGA0gVkLFk48MDcMvx/ST1Tikkx2kH3CDnqFvBvBK+EoyCCE7YX1ytWrL1Ed6gsfAQU4GH+pWSzt8IVpmOfYDgASJ1tBzaAbX9908hvW9Rl/P+HlkATMNjDtC/J6vHaU3pvzvwn3KYGAca2V0M4+6OpUIf+ozq0Gejz3SAy2ezd/UHvUvWqFTYldpypJ6J8ZsGMHS2pySgfipa4rXeCfIaoygFzF0+mp1OJnp3i59tu4em/B1L1PaH5ytLzmY9TJHLJ4BDa52ttoclRc6STnncQ210dnP0lLrY1iPjY2dNumqTE95pAjktqXdroylMJBhJ3jemaaKvFUZidTjXwTnJu2wqRYyi4iwpMbaG2caSjdvDgTEaKTmjVpJXshdOuXAomXzpzHXlMHUynUtGyoNiXPUzlgaHMqBCqXA6nkkZruzAcSlcl4knKZPfSUxfzKx18Pq08fJ15fmLP+LP/tW/5zv/9sjV7Xu897kv84Wv/jJf/Po3+bm/91/wc+XA9vwHfPTBd/jw++/zg/e/xZ//8Z/w/vd/xAevT7y2iZNlRpoopnqVyr46kGzVUWhWsqxlZ9Sa2gany0byDTkNiF1U0sQeppCZtCgiVCIuwJRk9KT+r3ZXmqPZg0xZ1gMlLGXku7kD+qPv9XnEYlXWOgRQZNFbzsg7eOBQ1LsdclhfED6ysRAwTP3Z7sYU389SQBqAp917WP3Bbrj/wFgy1asdTMsxd3iT9P6n+fVTB5TWu3vS7ZH7j59zvr/j+U9+wumtULxlzlxf33B48oxHj24Zm+RSV9ePmEumnzqf+vSnubo6UN/cs1zfkCdpybfLCegPFwOI5ZGzaLTeOtYlU7pYRH9PEx1nu5y4f/OGlx+/5HQ6ky1zdXXFp957j6ubA8dlpuQJLDNSxooYCQljKnOgjeWhefAo9NooVUavjCHW0vHmivNopGyczmfevH7Fy1evMZwyT3zuM5/h5vaWlKOBtaCo2i73UjEvJk1pzjsLywWIxBDdW2VtZ5KbvE8SvHr1ilcvX3DeVsyM68dPOB4OXF/dkpCvhQ1iK+bkJPbWcF1wowM4vTfReE0X4+l0z/3dPZfTiYEiO4/XNyzzTC7hfQGS9YweTA2njaTfC23lGRmS4w0aStgoWbHXKWtw2LpHMpCapd5FzS4Yx6lgZcFzotiElRkfK5daWduqJgOjTAglNmluB0rDA0ImNWNpRBz3eNgKpGgXlqyEn5KVTNP2IQun2OBq7sx0zHYraHAr1G3l/nwi58zNzRU311fMU4lLd7/T4/J3jdGjowENuGwr9fyWUS+07Z53Ds5f+9ojvv7VwrPrQasr415sj62eaL2wXRrb1hmtsm7SYK/NqR15Q5k28N4lRWpZ7IoPX668Wlem4zXpeM0PTis/+IsLL98o0ePSG24by5K5ZuEwMuPc6FnD6oFMT4rFnunULdEVgMcYjdok0HJLrJ7BNkxPsECiEQi/q6Bvm1K5TmuKra+2cnv/pAKs5neNFLTWlfaRbeA0knU1Xx6UcfeHJnrrleRiaKjQxtCZhsBEH6Qyx0Yzi9Le5VkBRk/7f+Nit+jAkIMBIjaCkwe0BGkIGFETGRTwfYtocfE8bE31TLsZS0pUZFKOf6LJ3r8SaAuL6lDzACJrJDiUgeWJ0RAF30WLTlbow8IvJn6TeNYsfnaOzQ4+HjwnMoZnNTru2tpZMskoXLCQtoYafEYTWEb6hErfhyRTyXL4ycm7wVOwBHfQg8DeckK+Aym08KH/HoOe5a2wJAGU8hGRQTcuE0KyABuDoAYHaOhKjLNUlKgWhq1B/JfhaNKwa4NoDNWoFNvZSDyYJZI8ZEbpYYskREiMN8tT6PhUF5ONh8Y1p4jzZtBwEWuIQVTh9thEANky9WeXWaHUzn0gLYhZlqPL0GZUW+XhwU/YB5Ykdq+YrnEWPTbmQk3kYaddtbzIhoApw5iS/AtykqdRjuVBLvLRyDmTF4KZlOmjisqfJiTZEYiTU6G1lU+Otrw4svuDBCcl/ZVLjgHKHhY8xJZOjBSHkDxpIJXPV56mh9jxKe67UtQjWIrAhjSpCeqNIkqY9kSpMGzCUUronIm4aZntj14lp7qMB6+0uSSuD9qQX09JyZQHJdSMaPRKSmTUr7R1YzJnOWSur6/JZVBKYZ4Lx3kKNltWQtdRNS1T8NTZ3pzgOFOur7BpIuUDlAVs0medDPKR5ImUO3M+8O4XG++9/z1+73c/IM+FL//sEw5HNerHkjgeZHbvF+fcBv/237zP9bMjn/qVieO7v8hv/KN/yE9e/k/8nz9okcAI5eYRH7/Z+Be/94rPf67whZ95hJfOsjr5WOlbplbjcqnQJ7o3KgLd6uasq6LJBxuXNTyQemK9NLbeubRObhMXT1QXO280DZ7ZjToGfTRaa1wujc2hjs7wQsrQW2KZjMkqazOGFyiS+6x195XRuOguUOE4Z9baAtgsYlc2j7ReZxT1YY6893osCnrIS1Pa5YdZIKjJ00fhLwIQPFhCAjks2Gs7QBtQgyV6b2Jv2g6TxoLTBO6qBkFKArxLTrTiJAbT+ERWlAIM7UmLHsLbJ4XsVEw6dSfCutIDk0jeQjClibGzWWRlErW7xRPs+z/U8xfLRSeWdikpMdQShYTlQWU81Hx23xPbmcP6P/IR0pGesu7Q3iMJDshh5OtmFL1J4YujQW4PwTFLePQFWufpvZT0VrHluPrFnMVO3nHzHsvXvRf/y1/7a3ULNuIOjJvBX2IAJJmDPix+99dnKRIhTd4pYyQuW2OrwZxLsXx1D7Arxtauz0dve7xx4X1qllhFXZCfKFIMSMirM2MOVgojinBygUkeAKcFYCm5TZyHQKssIdbagDkJVBzhwUWaKCkAtlRg28ToIjxQY3PhQ+bFvk+9rjrZt0ZNA7cs425iLorPNsegfakt5NiwHCZGrwGeaDmvFMhGMwW65CyvR8fotcXiJbxoiKS+8D8jGb2OkBhp/mvdGW3V6xzgyBdnhKmlJbG6l8lIpgWgx8IpxfC4W5RICtXYzdVhyAcu2L9ug1YSk2XMG8sk39hUB15Va9busOnZLlm9bLGVuXRqPsgoPSf56rGRhlQDpSfEs3ZKd1rI+E65kaoxFedqapTcWAzeTCeeTAdOvWILXFLiqk8si7PIUpIpF66vrrm5ueLz7xqXyzWntfP2Tefl6WPuvvecf/Mff4d/+8+fcrj9DF/8uZ/ny7/4dT7zS7/C53/1N/nmmxe8/vEHvPjR9/joz/+Q9//9H/CHf/pd/uT5az5sDZ8XfJo5WIK2QproNoKxvIPfer+HO9sWk4NrYeI5s7aTklV9otnGKGIxJ485MCe2S5WBfMzzliWx7U01SrOCalUaGVw9Ys7gRT1o8yHpulgaD+yqNKUAriwseMSiynnCR5O9QdZsYVFXxOT3mGc1LZiJhWZZLFeL2ptHqCss2E1jaBkX7w06ivG+xPz00/Xk/ukDSj/58Y95ef+Sy4uXXLqRDzOPnj3m5vYRx6sjY904vvsZbq5m3n70E+arwjQf8NG5evaYZIneJT/LTWa1a6sPDKE9BYag+uas6MfeVGg9Jw7zxGiDVy9e8Pz5R5w+fsFwuLq54dPvvsfVzTXTPJNLYpqnB4NEgDg3ceMAACAASURBVGmadRmWBD3kZd1x6w+AjxB2sSDU5MJxWegdfvKTD/no+cec7+5Ya+XR7SNubm549uxpRGr2h4tbqUGFvEzsaUOtNaYkZL6F7lkymCJ0coygh7qM72rjzauXvHz5MeeLTHw/9e6nuX38SPHSrdHqps2DyYVDXiTG1lSQ98sgxXbX0CB4Pr/l7d0d5/M97onD8cBhPtL7YD4oIcb29DIP4nfaUdJEGVC9icoplyLWy8qcJ9Ic6USx2WrinEt+01GyBc5cMpMZOS/aAhpsMVzUbWXd7nGGGn2DbkLxC455bLqGmuaUtQVLsdVLNtjqJvDAs5r3adLWIWvjWLuAgiVlDsU5Tomce2inkyQrrfLq5SvcB7dPHnN7e8M869EaLiq3RyO3bx5r7ViYJbJV7k6v6O2eMgy2la887fzaVwtferaS71Y+fnXhUs/4vQCj7Qybn9hqpTaDASsdKlxqJ7s8LDaHtas5Gc35+G7j5Wo8WmZGvmK+OvL+c+d7PzyzWpcPj8+klDhOC8+uCjfHwpTEYBlmeDFqFfurtZVSCq2De2LrCR+VU23S1iP2m8elOhAVXpvY0DAH40/NSkyYpkt395ORn00wBXfz0jEgG7U3LICjOsbDRlE+Y4UUEcsydlTPC2oAeu948vAgIwbXEcki8jQY7jGQa1uoeVag4C6xy6ZBIrs/pLCNJgPX0XtsYcGSiw2CQdf3CixE5nldkjG1rvKhCocIRKuN5wQenudaNzFS5iLg2/QcZjOmiGd3N1IzAYt5Z5P4J5JT4iKMZ6t3eYC1eFPMXZHgO+i9N3ioSdplE3a4oiTFw9swRirhO/QJAGNhorizS1IAVMJmdsqvttCY2AiDIVo3YZjsBmEaq340gDf/S1tYPIaNoPi7kl+qiymxM1TMLQYeIzB7gU3RUA8TaFCD7q+YbafEmYMUg1VYlyYemDLJIU1qtPdhY0QD6HUlQ/hOCT497syFJDZUd2eOGG/vTqOTaUxLIpdZ9G6cFN5vKQAlMZP0DPSxS4wzl/vXTN6Y8iyzeYs48UiQUs3q1HqRab43AVDZuL55pLRBD6lqylry+2Ca5gCUJD2rTfKb81qZS+FqOeB0geuMCKvwhwbHPRrqaPJxR72wFkPJoJRCKUpttGALtt7CqDUMes0gPFUOyyyGxNDGNxd5Fy02M4aMtM3FtMgBLmcaa0s0WxhZoN+cEyVrkz2Z2K+jJrJNtOnEsI3rOZMKXN8m5pRYisxPp6UEjT0YBGNQNy3CckosCQ4YyxXcLkf5m+XCMoNbhiLTz2k+kKcALb3hdWO83rCnB2x5BKWQWLC8gC/0IgvlwYyXAeWGQ8p88RvP+Q///od88L23fOqda8iq9alkbm8zfmf0lMh148V24fd++4/5O8+uOX7plqdf/SZ/5x8856P/8Z/x795WRnVSOXB49A7fff2Cf/O7b/ncZ48cbo/Mx0Q6dLzJ/67cVXqbVGcjKWmrg3oJZrQdoKvXs5G59K70NzdOp0b1zH0d1J7xRYamxcR+6GR6K2zHzqV2tlq1zMqJvmWmg3E1FU7rRmvBZswz0wzrFsygkAf3PnGYB9fHics2qGPC+kYpAV4yxfC5R0A7fWyMh8i1vacxsImSC2aq/fJzHMx9RKAEYY2A/EM8JAopiyESkvWBqQdGvjxuSCqKKdEMMauyGVM2RoGRkoIwPEEaYYfgtBIG43cXtq2yIW+bPE1M8wHL6mf2Aaf5CON8sZ7mWaxGO8qbKU1w8IW2BgMzNuEJCx+1FtISsQ2NMEPeNjLOnBOX8A8zr/LSdMh5Claj7sYewE9OCHROAlinofd7RP3EnVaVwFiCAUeSSe6S0wOz1HPicqm6B0OK5vHfFMBGY1T1hZ7kfyMT5x5c3rivXOCbFio7A4a9WZBxeQyFDZdPUAlj4bhClQiYgjlmjLGRaUqhDTB/Z0RZKBb2Psj25Y12ovKYIUjPaZdTWhiyNw3DCIiyJJB9Z0SIoSPwPqcS942sCHowxvBEnnRHWyJYw1oHeTKlVJqRiu7wHu+FpJCyiSjm1CZrDfNPzu4SaX5eElPKsipxeTGlrOdZANrOsJAsE0vUpp6gtwaew3Qf5qzFUxvhnzbCZsOgWKahxV/OHs9T3MWWmCYxTOxhtenBaiOAgjg3iDkmN8GQY6UR/VRMe65PRUx7vdfTVAQEmxjHrQmYdoxSwv8nTbrPiu7DeWefI+9DF1FGzH83PM/6/i1zV7XkEPMlKQjLYEmVUi9arFE454zlgaWqfiJ33JzJKonOPBuPmLl+dGRY55Ab13PhUCpXB+NmOXB9nLg6rlzNB5YsKeLxeuLp04kvpAPbubC+ufAXb15xfvMx/+Fff4t//dv/M89uv8jPfuVrfOOv/w3e+fqv8M4v/Co/9xt/n298/Jy/+/z7PH//D3j/d3+LP/72t/jWxy/54DRxmZzJD5Q8Y9lZeyeeNPXR0QumIcBYz07X/JwTfWwPM3wnkUyBTNlnsquP6j6gGOuoWjLtS8lYKuJK5PMuT97hKRLcBOCUFDYrTcFjpMTWVp2xCmnWmUpDPp0PEtokrUR2sZmTWyztjMvo8mb2wShFd9AQODXqJgbngyWOBh0DPGTJArLFtlKvmB9wj5/W108dUPrud96nzEcePX2X9955wnI4cpgOHJcF907fGsfjgVZXltvHFDeW45E8J9iq6IV9UMcmhgmiQaeBokDDcE1FtNE2aVdzyXiS3OsvvvsT3j5/wVZXDtdXPP3Uu1zfPmI5HsJ/ZaIkNXp4yBByDISlKLGge7COErmoCMlstIb3hdD0rVbGaLx8XXnx4mNev3rJNM+UeeLpzSOefeodnjx6wlYvD024ZSVr0XRplzJJr28yGmvbGUZhTpltVVpUr51WN4opxei0nlm3lctJiXTLceZnvvAzTNNC98HlcgZHZrbxAHSXF8BubtaiIKdSyCh2/Hw6c76c2bZVaVijU+bC1eGG3QRGxc5jONBWzixMwWPQ7F3bRm0DYr1E5+rmhilo38O1uzVTTHB2w0ZXikGeoBTIAocGutQvdWPcbYzJ8IKYRq7o3WEDkqK9JXvSoDstYkfkSHvQW99ZaSg9oMgcMZeHi7H3DqMzl8ScB4cCxznhXvE+yGVibJ2XL5/TzxuPnt5w+/iGMh80zA3wYLc0QxGfwTncwpjztK20yx397hVtNJYE782VX//GkS+9u5DqHevbSm9Qq5hIfW2cL3CqTkvOVlesyvdmq87qrvfInd4TrcNmG3dt8OGHg5YX3n1yhClz1xM/+RGc1g7HmWkInTc3Hi0Tz24DQAuypLxroJOYh3gSYiQZZ19xT7ShTY8VRbXW4YyQfRnyTBixnbVUPklbHDFop92k+y+xeOJMqYkXA8iirRtNDZyGb2CoGYUU6QtiD6huCkxV6o1YftruCqy10CG3TZrzLopRNMLBltoXgSmpf82SMPVI+xgWm+pgULQqILqUSb93EniWoskz21kuzmgtGhY1oDNKWBzZwycuq6n1QXY1F5L6uBrwPGHSLGFZfiajdwEmjhhBHmk9Odg/8em6D7qleN0E+NPJs5KPQLLEaEfJSRvbGJ00kDli/qQCwxnENrrwsN0FtGVk70iVmESY7Us2WZnng9I6TDUhoQ2QI48WXDLHPti9VfX+jcFIinYt8d/0pnOzmDypjsHIwgwbMjl3lNxXctD8TZIpMWCd4Y1jbPYzatxHVp0zc/K00N0oedK5GzKCTMXI4Ss6ZaV6WoKSE5dTo22rpHfupGwsWalrPsLLoyhR1IbkrKMOzvcXHh1vub65FUvB9KbKSFwSG4bOk48AVOjc1QtbPbPkREqNbALQj8vMsiyUoma0jUYpRq0rrSZWWzGgZMkMlllmrGlnj5VCSlkbORu0TcuJ1jvrJbauyO8P9Lxv66YkoWAfmTk2F+QFJF8SAcLyJUgxTE5ZyUXuon+XnHRukbfC8P6QTEU88wIYYzs/OtOk9KICWIY5EeaWzrJktjUrNKI5ZQLzSvZgFxUBT2PKpFXSkb4Z81RY18blkrG5MU1H3fNzDHhWSD2SXzwpMaYYI0Njo5+vGKUzJw2A3TMpd7LNJJtiu5hC0pmYb2+43L+ivnzF/PmneqgoeCqY3ag+echkU8Jthgne+dmv8o1f+T6/99t/wYvnR25un+I401K4GjP5puJvneV2xt8sfPDmzLd+69v8yvWB6dO/yef+2t/mH338krv//Q/5bjear4zpQHr8hH/x3Rc8/e0X/K2/9RluI52y8wYs4wfjctrUbNsg+yRJgMmQ3rqJEZLhUl1hG9dHUr2QzbhrlUqAMBQGRSzELGBJLDH0HnjH26baNiWWKXGYClsdpCkYHUmVz2aTh0kf9AT0RK+JMhuPbuDucpGJq09casOH6qqnpNQgMqUs9C45vGT9+x3RNfwGK/FwOLBtG2YCXltzpqKUMAtT3QH0kaguAGEugmcS46EXJAaWnBOedzDWKBkSYisntEBbyqK+yB1LI4Z3KIeZ5p3SJDktJQXrJFGWGToyE6+DZuJRppSo65kyHaBJWniYC2nAhRI9oFJ4+1Att5QZW5XfTDBFJG8OBlEMOTAomICsoQF7XqYHeW5CbJ4xuliw2ohI7mGwpIlBkxQ4Pt/k8ubCEj2LgTMwlpypvTLNSYtoItEpfEcKmTKlBw+nlCbmKUvm3eSHM4YFmzUWGZGcN1APkC2TouYwHG9NQ95wzOZ4X6JfnSb6aKSykJIx2YK5kWghU+70rqU5KQXTqUjPnRIkJc65B/MbC5uK8OwKpiejk4f6mB7gRhnyLbScNRflzNYqZZq0SDH1agXo3UIKJ2ZtbwL1IJIIo+/33aOuVfqo1OEcD4UpZF11yARf+/Ghmcx0jvc+8JCzUrt7ZypZoTZepEqOoXrvXzw2SD6gNcdmpQaXrOeupBTsWPVOe9qhWWbKU4BGe2M3FJgRi8PaN3LOOv/ZMCv0KvLCFOFBrQV7W54l1NaZZsFQqRTapasfcFmi6C7LD3VhuAeTZJc7Oxa9Tm1iqUpCC8k7c9FZnC3hRcDc1mT6PlzmzylpaX06y15mmMBIvGM+OEyZeYKryRh9kwtt+IcJg5IPVxrOsA0rmXXtHCcFINStMrmzHhKX68rd2ri+VG5L43AwpsPCkoC5k+cjV8vg8O4N1+9OpDZhqfPyfuPNR6/46Ae/xT99//8i+RN+9ue/ztd+49f51Nd+lUdf+Lt8/ut/k1/4u/+Ev/f2Oa+/87t87/d+lz/41/+Mb/3oBd99M/EyFfkumRQOyZ3umcYE2ShxTnaPY7ELtYQw9zhvlwh4WEmjAJN65KHz4K7FY7dVh8z3hNFEylXkhJSoPZa0IeE3wKZMJoN1cp/o3fCkdMC6bdH7ZKYSjHbXcruEDxP+QPpkmWboUmF0A6pTpkIT1VBL2a4ao1k4BUFSIKyemVjU5mDe2f8bmvP//eunDih97dd+jWdPP8Uyl2hIG7c316yXlWEz5ZjAm/Sv0wTlimKdboO8TPTa5AdhLjZOSDJSzlgxqnc8mrKcFQF9Pt3x0Q8/4uWL55zvzizX1zx59pTH7z5lLrM+CIvtQ87MZWL3iTDLYfIcdLQuOmgQAWhVcd4WW9XeG2Uq+OjUrfHxi4958fFLLucT8+HA02fv8N57n8VSZlkWhreIXJ6U+tBlKj0azNOB0YeAoixTxZwMzxPresHKQsmDq8MVd/cXWq2c6sr9/Vu2Njjf31OmmS/8zBdYDjNbbeCdeZJRdSFx2TbmeQ6ZkNGHClXrSjhIlnj95g2tVmx01to4nU+M7kzLzJOrx3r8ctE2wyWJm5Iok7vB7xiSNz0YIYcx3ZwLKc9YbMaKyeMko625fJbQg2tGmoo0+mmiJTXvHoDD+XRPqgObBf7VocG6D21bkpiI9Cb96jzrH0weIGFOKCsmk0bDkwzXZOzdgoYq1D8VOEzGkgfzLEtL940pZwYTr55/zN3dWx4/fsyzz3yaMinlwlGD0fYY1aRtXRrBsvAVG5m35ze09Z40LqQZrjzzK582/uY3rrm+HbRTZYwDNg8sD8gFS85WJo7LRqliwNTDFeu2KTlmNKZz53hcWDdjG8ZanQ8/bvzwZWM+3PLukyPLfORH94PvfnAv9sMyGK2RrVCGjACfXs0cZzSge6ZhVDO2CmNo2O51I2P00WDkSDgZbCBWUMoBMppAH5eBNElAn8MD2yClXQ4WTcsQtVR0eV20liTNTMECsqyiO4bLR2F0lmUhlUmMkWAFpTwFeKCt3UhEMc2SAW4b5XAg5ynkQtIXi/6tzaGPSorzDoNeK70PlqPi1y0XsUMsMcZgNQGdvUhgmj32Sua0rdO3FXL4GTWlbtSkZn9ZZuasFLMWhtOtahux9kY2Zyoyvc1TJvnC1uWp4q2THc5bl99X7w9U3Me3t2oapxkKjNowTxR19WxjhBSiU6tkhFcl8/Gr10yHA9lyxK3/P8y927Nt2X3f9fmN25xz7cu59E0tdasluWXZlmNiW7GTuJyLHZkQwq2SAooHXoEH88YLD5T4P+CBggqYFHEZYuMklQsh2DHBxlfJqpbULam71X363Pfea605x42H71i7/UIBVXrg6KVLfXqffdaec4zf73sVy884E+gC0RwQm1RiWy48ubnh8mInW1ZUyKh8RSaLAZ2tVgHXPRMx8rYxOcfZ5AgpAmDdE3y4bQnzyLpWe6eFkZfQYL8dqL0whcQcPCkmji0TkhdbVQsB1RhrOWkiCJCKJ7p5DB8dN1p2YgyEESguVld3SGsnZcPwoXvY+SQ23DptU4NlbZ2+VULQ++sRSOWsaznzfjBgnegDlk72PUcK8xg+HVvOw+MgQCuFpIwFrz/PwWh8kYIBL2bKNVlkCZ22ZpJFzne78ftkRSytELqnncoKTO8lXYoSZ8Z6OCgbo1XoYSgV+lB0Koy22mgDbJWc67hvoJQN6EzTQkoOQzYuGGet52Pf/1D0iREXoXP6VU+5aL2DaYDWV5FKqzWd/SkmWlvpteBTGorGE4ep/Da6Z4pOzTl98Myl4XeBiao5wzWsafB2JqVkrbJfW+u0ojOqlsZhrZQ18+wR8NJEWBsuZwwv1ZYfKj7niDGqfrgWfFDOR74q5IuA2zouNcraiKdlyUk2r3wSJ4VDTMRPXrB95wnh/l3ich9CoXJBMMOZZh5z50BCqUET4fxTfO7H3+RbX33Id771iE+8fsEuOUpXA94UImdnlauryJ1lpe7hG+8+5OKffZUf+quvkC7/DD/0l3+Bv/Toir/zf36Xj2rBWsbHiT5f8qv/4il3beZLX47KOAwz87HDYngfqeuB1rsAkzrUgRSpvhj2vOFWsNAJNrOx4fAQDwTgUBprUUNrxzDXpCjpbWS5DetQrtSqs12qHmO/HsEirR1w3jgPiVKcsged4YJpEVs7U62cx8BN3ii1jArmYdHOgxABMMON1knZbvzHRIZrekaGosE5TwhavFOKI7S636oggnf4UAX+lE4bKtbkA4SuBuIQ2IbCIY5iGBc6KXpm3zh0aLlByBzqFWnaEUIUDNdlu6vdCLFifZV1ettwpRJngXSyd0iJWi0TTDAENI6b5g8/eVpemdNCSEENSC1rjitS9rvmh0qiUUqm9M40TVrSYqB1h98KoPdj2xq1F3rdOOZGsEg0WTgineMAjEFKJIKjVwWO+0lnX8/KzdGcW2kmW2U2xh1ZhtOgKnqCkSdXoeVK83WY+Ib6pBd6leUrBH3lU/h2Lmqh9F5B84Ya6lyXFaxYpfgG1bH0Rq0Z6wUrjVY6LhqWOyGN/FHrTL5jJI6h0Utm8BMcWx97UVH7Xh+14CbQPedOSl65gV25iH5kkrbeMe853wVm5zishetjFpDlVUoje6IIkugVRM0t8O4UONxlb1c7qYChbg0/JFIpelzwbHUjmKdTmaPsxQbM0eOq5o4tf5ztZ61SRzPgjCcX2cHmmDTrdW6jSKQuEaAXT2UovYGXzZlut1EhdJhcIleF6hsiJmvTmePHbBqjAOrgPFtpbHUcQlNUO7cbOVldTWygFt0yvs/WB4/WDLonbzqLjsei+847Ulz0vTp0a/U+yA7D+SAVcheIp3lYQfBFLC90qTvLADMlCOsfP5dVc56y3aSCbC2w9SKCsXupmr2nbIVSYd2crNrJE2h0y8TSWVqlBI9fKtEnnmyNO65Tt+NQCwu0fb415mb43pjM2PkD884zhUSKjRjO8cuHXLpL4pxYJlmQLUZefGHifMm8lgN9cjx6euA77/xv/O///O/RbeGNT32GP/0v/QRv/PTPcP9zP8ELn/4in/yz/w5/5uaa6w9+n4e/+xv8wW/+U37jj77JH3+057Gb4OyMFAIJN5wBBmGEULs41IBe+UGj7V1GValCW80wPAFtg+biyNwTmKj4FmWShiDiyvkBtg5Qs/eP1YdyNxg21MaG1PtbrwRL42e2kav2b0PzHiMXKZ5EL76Rgr7OOggDnxLrtqkEY6gDu1O+IQ1lL2Ka5byAfIHOaOYssnt+P3993wGl137gTSlK9gdyhvM7d+llkwzSRzGdYR4ZC7rwq20EP8vG1k5SUrtdwFxwrGumVDFp5uFw/Ywnjx/y0fc+5NmTK5Y088IrL/D6Zz/DNC9i070xhYnkI91rIOy1DUZooPYwWNmKNSHJQqT7YHmUE9Ero2UNrq6f8+jhQx49fkzOmd3ZJZ/4xKd48cUXODs/Y384atI1KVV8GmnqTjfaMRc9cNWIIcjb3gqdQh4NLrvzS7o19jc3fPDB+zz86Cm7891oYIAQEp964zXmaWbLVS/KyJjKWXL+0vXAb/ujGBg8FvQj98FY140nT5+qzpvOth6oWUv5/RfvKZS7wZTm8dip6tCHBCZWx5qQ/dpUL62hSRWQ3hwuBeJ4GXMpFNPSbL6NgdxI06LFZChE6NCdZ/JK1d/v9xzWle6NM6/w3jy2ptZPMljoWRLpEBXcrOwU2SoEPoCrRVXzyeOmRQBSk7rESif4wjIZc3Ia1lqBlsF7ok88fvyM60fPuHPngjff/AHZVZDiK3ldbrVtg6HU0pVLZisNHx35cOB4s2HrDc0fmaeFhY0vvX7kJ390Ynv+lOdPK7mogaZvjdyOHKsUV3lV80UDtrbSmsKRn68rtUS25mn9RkNyDrz9cOWDveNsdxdzjmd14fra8+H7j5l2Ahe3A7Qe8NERkuPMPLl2rm5M8nKaPm/vsKrQy4NrzBd3oWz43tkVz9orx5zpvXHY6rBUmTZG87chn2ad3TyTywgp7J1a+mC4pA6LMeJcUFtGkOWntUYyz26Z9XuGDdZS4Op6z+wju91uoPM2lEFqK1lLZQ7KcaldYHBrnf165O7FjrPduZ4RL5DGaqcVsQ+1ZDE/CExdc6XkzPluxzJqYRmMaE3G5BJ+0+Kh/KxKROGjuTc2V/DnCZ8mMW4W8E62nBQia8+S2NaRQzFsBPv9Hu87S5pJ08Q0JV0WgDsc2fJKB7pV4mRsuXJvntgfDywX51ycL8NK4NhGBg99qD1GZoLO50RvG2laePjee9y5uMTs1J5lYF7ghyF7HQIEaKr9rq1wc/2Ui13Sb0dgQUzxlk1UamwVK42qcGWt6MxTJHiTXQmdJyEFVN00sqLGRetMmWy1FoxGGmCc9wI9A1IKhT7yWXqnjhwoqdn0zjozNYs4T1UatlSsTmyoFB8CJrJJAUYdlrQY1LY2sih67Wo6a0PK3E/AZx3NGkORdgIoq1rQHMbkvM5OZ5wkja1k6JWeC5OzEWqsJVZKMDHrcagcalfjlB/EjJi50SbpjGPJ+J6HxWNmmiK9qn6YPoCPqmd8246yVJ4aL4c8u7WGc4FSUGj6UHP1FpAmRzY0Oqz5iPeIYGkQk3KZOhrAQgjkfARk35SirN8ubmoLVUFFbVIS2chFKcOqsdVMwNEYn7tJwdyamOBgTjlYBs5FjutGLrJV6DlzWO1wdOyS4+YoK+zWK7F4LAVJtPoIvvce5wque8KyUA4F8zPX28Zy9BQcORk+67OsQ43TOyrcSMbsFSrf2o62FuqhUeeOK522OFoNOHegFo+rjroN0DoB0QhhR9ndkN//kPj5e/R8xPVnkCaoGcJEZz+WrTOs77B4h8tPvsGf+vMf8g9+5Wu8+9aeH/zJC9zWCKVCC5ynHW02ruhM9cDTmxu+9nXj7qtf45Wfus9070f56Z/7Wb734a/w6994wnFEA/jlDmtv/O3f+oBXXl/4/E8lfPbUtOKrp4YiC8CqJSya0Vyl1SIlW9Bi73ymBYc/ynaw8zrT7rsdT8gn+Q+1K2umbpvedZdotjGniattE2vrh7LMjbnER6nDvCl7zTQL9b7Q6kalyVbQGvtVtq7zeeHJ9TrUR8rsFNF9UiRJoe2HLVx3/ga08dwGfEhjWTwtG8MCY45CobXG8ZhxPhBTJJiBD1TXZY/rjRCMbipMKGWcgxguJII7KX5Gtlgttzkd27ZiUaSFORRy7IAlUZyRc6bXSohSxZRVjJrCvB0pTljLHOpR1oneOW57du6MFh37baV3IwQT2eoNb03B5+bGkiF2XE3Bnc5GbI1eNSNaFUnknFQ6UjiqTVd2NzUS39qi6VgTI1+aEcdhkhvYUPwXKn0rwxrWoZmAHK+YimhRKmSG3Swwni0bbcJgro/WZI8bREIIsnE754gpsG0rvTmSU2zCbbj5OMJ9cxBlt2qWEFdeaA7y4YhbAoFJBFvy5O1INIHupamWPITAgmOtG7kVcq+4rrDqhoAUfSpVpIcJGO210bOpEW1OLFFAtjOJnFqR7Q1OCjtHzY3qig6r7qi9EoJUs32UoYAxT7DmSq1OOUvUoQovUjLHiEtGPm5yYwSRyc5BDApCb13vH3hibRAFtgYLlHXD9dEyHQIuaJnuvQ+l5iBCnYn868Y2LIkdsBgomyrmU4iyKzoHRaD7FgAAIABJREFUHiaLY5YQ2FjLhk+JYlUE5PHIPIss6xYG+an5tTa5V06V9d4nzI3QZhfo3VPKpiwmG+6ZYB/PDU1RJyJJFS/S2kklFcZMZ7i+STFlnZ4nmpO6to7Zbd0EcPmRb1VGGlQ0gSMueFrQ++dcoJWN3hxbKfTWcC5ROmzNOKyGP6jebHJH7vqMb54UjK3B4WZju+nM0eH7RotNsTHWMVcJJeByISyFEI1kE8k1zD/kcudJvnPmK2lxpJh4IV2QZsdy7nAxYAXuTJEf+/zEj3zhLs/3K++8/03+1q/8H/Bf/1e8+vJn+HN/9k/xg3/x5zn/wpc4f/mv8cKP/Dw/+Df2/PVH3+Dhb/99fvcf/0P+19/7Y/7g8TVPXIQpMcXpNn9sa00Zinm8lyFRS6PbaGkcYI4csH3MEEdKtUEeFOWxlYJ5Ry4OC4FaGjHqHXKnxI2qOJwQnLLzWmdrFSNhpZAYBVvRUXPkwifomvGhkavUr93k0PI+0LPevTktyjDEmOM0ctU8PXSOtX6s3mzAcO/UVnGnvKSRTxxCklX7+/jLf+UrX/m+fsFf+3v/81dqq2JlU8T5MFqQVKOXvFiJ0ooYbt/xFrCihPMUkhj/OAmoqBoMJVffeProId/6xjd4+4+/yeMHj5nOzvnc59/kjc98hhdefGG0PETiNHE+7zAg05ldwBA76II+WTGpR3odLWRdIFOM47BpQ45YG9tWefrsKd9++x3e++532V/f8NLLr/KZz32O1157jXv37umybzrQPUbphSlNetlbld2sN5ZlJkSvzKS8qamgFeIUmHc7rFUePn7IBx+8x5MnV0xT4tXXX2eZIilE7lze4+LOPSpQhtKqD6tXbeCC1ErdgY8TuVbSvANkX8m1cP3sOU+fPSOXjIC9QvCRuy+8wLI7owwJqI/TaEHTZ2bDEqKgF7G923Fl2zI+BGJKxBCJ0ZOckwQRY183gofWi6qSu7HMC/P5xDIlog8kCySnF62UzPV+z+FmxVkgBCdg0CouTswmoMK3TqZpEJsSKcnKw0jNdyNPpsu0jUsTljzNSaJdNkm0PY0pwsVsnE+eXRyLpYMQA8frPe+/9y6ezqc+8xovvPSCApu77DWaZ+pYrjVY9JPUrUNd99w8fcS2f45re3yCC3fJF1468Bd+5IZPTZ2HH33E8cnGtq/k68719crz9cDzQybfdI77zr5sXNfCVqAcjMPWuTkascju0Vpnq4UPHje+9tC4qTNxirgQuS6N9x49p1yvnO3UNOBtwmJgiZFmRiWyVni+Nm62QnaObBPdxBRNS2KeZ5wLXGVJbI/Z2OPYto1j9eQiOaj5wSiZ2LcQPFMKnC3K32q13cp6zSsPrONISV+/m+FjYJomUkws0yz1XesCKE02vGPZ2M0TZ7tFC/RQLs0p4ZGFLsZA6FBLppQMrZHXI0tM3Lm8IEbZwJxp1O8Mqazr5JbprbMdV2oRoBSXhTgnARNDdOOjV65ObaxNeRA28msUNA1XNzeyPXkNsXHIzM2U/3bKSDiFhTY6tXaOx41WG8u8U75csNtmxLZJ6n/MCnOsrZOH0nMrGR8cF+cX9GYawpusr97QkmGqPHZ0onXylvHecXj6XCBemjTABz/sVbJmyJY4Wrh6Ux26ddbjEeiczTMOI00z827htk2oN7ayUXMRAKl+Z52dHZZ5FviEhuVTzbxKPOwWnHchYOizW9cN7xy7aaZFJ8VgR4v3AM2cM9IIXu9NTVu1NmquxCnpGUABq2LE0SBio42xVEKHKci6VoeSJqaJFASYtib1Wq5ams0Lk47R4YPdhk0fDgcanWmaceaYUhTTHcPIQOrDV3dSfApcK+sKzlh2Z4AbtgG7fQ6HmB+HnZTO9KY66sN65LgdxrlYcH4ipXAL1jjnhmJCuUnbtol59frCMUbJu80Nub7AR+dGNkrt5E1ZBad8mXXNlFwwM5Zlwg9rRAyyBp4k2H1YGMsIOLbBHJ/eBe8/zlALXssNJ7vJICFq2YZtRSrX0goxySahXAwbAZj9tpkKp2H71IzVGyy7yGHrVAt402fnnJcNpUOMampr/Ug5CHRupWARypYJ00yaAuYq02TExd0qqHStSuUUnBQtVhrmpFyOy0JvkY6egzaIkK3mMSAK1LCghkHbwfr+U9y5w8LZcAcb3U+oYzDS+4rqS6UuNArn50fy8yf84e9+wKv3X+DypQnLjrV2HAo/Pawb3QfWLXJ93dk/fc6rr05Mdz9JvP8FXvc3vP+tb/P4uOFcgthxIXFdDnz3aw/5sTdm0mUgtEC1ghVPpY5cyjIC4aU03jYRKGttbKtX5snmWY/GukpJUprHW1XuYxbo2EznRh3gewhik72PCuTtBZ8iF1Maai9Hq1C7AB/rwzIbjI6/DWzXXerITc//Mkn95sxRm1QhtY5F1zwnZwHdS6XNaKArutNqK8ooMyl/nFcg/JAr0GnD7dxpuRFdwoWOS13Pp8l2gclmWUo5SUqkguywzIEUjXVTiHjOWSrVriINtXYGQkgEF0esgxQNhZFBOjI1jRECa46UJhQk7phDolcpKMq6kctxZHXobLORJScCKWhetCIAoA/7npOSuY7m0j58at5L6eOHOlchylJAryeFl0WUyCkCD4PgE2CsOeNdZE6RkBw4fZ7d/GjtqgQbTodt42RHbL0QnBGA5PU9tt5GqK1hXflarZWRWzKKHsyUTeqkdMz6TQNIOmX7jXfeuY/VbN2wGNhywVejGkyTsg5DCLeNpr2f7thxdrgRzeEV4n1qVtOMIDCotU4McShhh83KFDRtrVBzkaLfw2lxPbUv93ZS+StXq1cpx3E6NToj19Uccai+5xSV89Xk9uhlZLw6x9kSqdWpwc1LudRrJddR+iFpjTL7hhqqGbfq0zp+09o1L7XxiklFKwWKZpEupdkYt3ORGmkrDauNzsh5bboD9ImpCCOMeARZWDvtuFLzyJxxnTRJuuWRg6S1Eazfdd8pv89wbmbyEelA9GqGaCIGg8OicjVV7PFxW6Dy0qD3qvwmyXVFoCGSFRulF95Tu1Nm3LhMZGdU+L734+cC+CgVTW+mrDvfSXGWeKI0ZYuZ9oXSG2YFsyibZq3kprIbCwd2/hx6pviGq4nq4vigja07+rFhWyPOhp88Zgmcp5IV4ZZFJBbXWavhquNq32h941nZKNcbh62Sq3G9L1w/PjCT+KFPvsQXf/AVPvvZu+zTyj/5vd/l7/6t/46v/p1fpb39O7x0BrtPfpp0/wtc/NDP8Pkv/01+7q9+mZ/77B0+XR/jHn3A0ydPeVIqJTR8hJbtFMcvl5JjZGcOJZFT5qbzsqFJ1daHrbGwlU0RB95RapYizkGvq0LvuyzrpziYdTvq/B/zRinjDPJOFv8K08i/rEjJL3UdnHKeeq+sx6znrur7ULajZyuyImtWGll43hNxxCGG8U4WuuAUWXBqEZVq0fiP/6Nf/M//n5Gd/3e/vu+A0j/5R//0K84bIS7ENDFPie3mSuRyF5OpDh+FmtZWMbfgh2Wk10qjsh5vCA7W7cjVzXPe//Z3ePvr3+C9d96l1c4nPvkJ3vj8Z/nkZz4p6W+M4ANpLJ1+DMfWpVIwH5SPVNUI0mrFqnIznDlSVD18CJHa27DVeB4/fsJ3v/0dvvX2t3j86CHOO9749Ot8/s03Ob+8lES6VI7bJtvLqAvGdMhJhq8wrTnNMAIJ8/FIzap2jslzeXHB1dWeD95/n/e/9z0ePnrEYTtw9/I+F3fv0oou5d35OS4E5QM5qQZC1LBUa6M2o1YxV3mr5CJbzfGwcn1zxdvvvMOHDz7g5voKQA1rZpyfX3B2cT4CvWD0Z2AWxHa7QK0axGtprNumS9qMmCLTMot5NQ1SIFm1G+oHTBYbR+UiRXbzjA8CDtxQMPTeuFn3PH92xXrYSF55HdF5MStmJNfZupjqWoy1VZbJc+YDVhl/d8gti0lYC9BoAfw8C+wBHeJFCollMu7uHHcWx9kUCKbLy3vHfr/ng3ffY9s2Xn31FV751Kt4U3hgGBk9vdfhVRUIx1i05ek+cHPzhOPhhmSd6CF0z4/cc/xbPx/50usTk0s4n5jOFqYUcTO05LCQCcFIMTIljw8ybgTzeIxdVBjv3QnikvATLDvPda588KDgJ8+58BcO2XNzfSDOgfP5UlbFk32rwzbeAw008n6naTcCcR1T9FzuIi449sfG1VboI3/meeusubMV47hWwrAthhiG1dGYgxb2eUpD+TBkpV1KrlIKu92OME3EGIkxkqaJeZ5IMTCFIJtdy6M+XYqenjPn88IyJ40JpoE0jAGjNghJF70OY1msbg57lmniYtnhfSItScOK1yJuYxFvJSt/5uZG4dJNQNVumYnejWUa5pgUbu/gsK1SujSdI7k21vXI/nCQzQxura+lCuA15zgcjuTjShtnTy+VbS1c3+zZtpXdssgy4RPeBaaQ6E6192W0LvVaaaVQjg2HkUvhxZdfYWgwcNHfggzaR0brTZMlodbKYV055pWbmxvcIsDDeT+sZRoyVSkvQFCCARvSdCkKl92ZQJo5EHzEhzCGqUbJVedCGxluQ+W0bYU4TezOdvpe9Xrhgiwja9lo1ailjda5MXTXgm2rmDi4BeV0CLVhp5JCqdYyGHABVKVWKcPmWRfy6SIzjfKtKbuErmDQPuyStCawEA0Bznn9N10AYOs2WsZMBIbX5+Od1Gjb4RowUpxvzz4b9oTbtiN9I/TauFlXaG0ETsJ0dsHkIz56aq9074bNQQB3bZWbslHM0dC/e35z1MDbdZekKbEsO7WX+UCMstuZnfK1xgc8AKrTvWZjeHVOyqEQHK0VKfkGINQG6ZDzxrZtLMsiIClOIxNJ9iIzh/fjjnZDPeu4XdjMjJQSIUjdHJ2A31PTG+OuoY2WJtMd5Z3yF0MY4b4mpYj+u8YyT7c5FgKlmpTCQwFXOiKYzNS04g0XdbZ7U+5e7461qP46ZzWylLWSe8fVRj5WBe93j9VMCqPuuOrn1PqoFS+G9Ymbp3sgifnelNvR6zrsNhHnqmS4mEi4ESe52Z76bmf5zD1oZ+ArzUbTX5dq2eoTzN8f2WEr5htn08Zbf/gu33t4xRuf2zFdRrZrR6biXMfXyqFULHS22nh6cyRumU98eoHlZeZP/xCvPPkO33z/iqvtSHFiX6d0xnefPefBN5/yw184IyyByERzWuLH1qhyDBrNqkDw0mnrsHH0NsgZDdX7lrFio3Wz0nJXXg6e2obCISg7xjWVG/Sgs2I3nRF9o9WiRuBBEtJsDOddKmqntp6RIo0b9tGtFOYpkWIXUDwWNR+GldoNhea4931I46zTgF/LWMxvnzXjRMidzqnTe9fqIBMMQpqI43yITnktA7UaAIWCelsrAtOXxBRltym9CaArdbSbChDIZhTEvnuQRXfYgW7/3l7K+bCLhKSQeAuJYNOIOFCGHkFLfa5FOXBVqk25oRVK62MgxhE4i0iAEKW6cT5QS789/1sXmKFl1wawkNm6/AK1d2zYd5NPpDmqpSxLDemjPpNujWp1NJgGzPwILHccWx5KsWGl7bLuJOeYB+ll1lQu4wM4Bf/T+i3Q1YfqxMbPPAQ3MlClBMg5jzylk93fYFhKHbKTVU5nodp+MWVimennK7JCBLRy+QQQtLEOu6E86KeMKVPLZ/BqUvQxyII+JamchwujIsApBM/WR2SFGdY1t50UfVL26yw8FsVlYMovMhvqXQvEaKR0ypySS6HRmJaZ41rouRFDkHbG99s9zwYI2mlQ2m0ZXhs2r1PwfW2NOojS3rh9jjV3DIDVSZnqQiRvVeRDF2hgJiDIBshXq56VTsNHz3K2yLLUG2F2EBUkXlq7zaEpVWpc+igwMQW1e2fM04KzOMLAm+42P6yMJjL6BI66YT1spbPmjToIsuRkYztVuHvvVc409sfWnCINuqO1rCwcExHZah82cGVjliZHzwksrFTtmUGB3LUNgiYywCgbgImWougirRw4ZjiUSjtU1twofY/RSS5iyP7b0Pm17BJnL1zgg752iklqxyh7mwdciMTYeCGe0YJjFw1CIpq+113wTLPn7h3Py5+6y52Xd7g5yMnSCi+cF37q8/f44R9/Gbt/w29/9ff55b/9y/yLX/ol8lu/w4tL5ezlTxNe/Dx3vviX+eK/+u/xL//1L/OvfPENfjTuSQ++x5MHD9hvmR78eBYdyZvIOnMi//SC01plK5syS+kjNsNjTaDRulVaqdzsDxIe9JPSrA6gt96Cjb1JvEIzFTENJ5F5jwUnJ3FXeYHrJsLcQUrag8wHUvKy443zq7XGccsce2OtZbiA3O17atY1cwbNZ3G817WrwdCPXCiL8Iv/wf+PAaVf/fv/+CuhQ/AzPiWsF66fPpKvz8mD2AwBPUBKUuvUXum5st+O7Pc35HLkex+8x7e//hbvfO0tbp5dcX5+xqufe51Pffo1KWnmBaoUOfM8050jmCMO1Jqg0NHT5tGbwpC9jYsr6ELyKd1KVVvNtL7y7PFjvvHWWzx++oRSNs4v7vDpNz7Hp994g3me2GpRkFep45D0I3NFEsVSRgtNrsyT6h/zeqOHtzamOHHv/l3Oz3ZcPXnGW2+9xXe//TZX18+Z53M+9dqn+dybn+Ps7iXrWph3O0IMtNJHy5sWWW9eIFltsj9tAPq7xRg57A88+OgB7737bR48+IApzVzcvcMyqdUnpknLFMjiVpGSYbRDYUPCvRVaGRfGsCTFFD+23JgfLK881rUWrBc1D2SxHzFFzs92mE/0FHWZoPyVw7pxdXXNdjwyRdkOgtdQxgj8btTbKtStVmIKzMt0m92UDFJ0t80anU7wkSV5djGQa8W1Rq4Z6pF58dzbwd2dcb4EDZMmy+O2bnz4/vfYP73mE69/itdefx2zDDXrgh8WlVI1kGIN/AicbgLPjtfP2T97St4y57PDd8c9PP/uX7rgr/zCzG7qFF+IyeGnjK8GoeKyw1IihoUwzbTox4JWWdLMEjvJB+J54vIsEbpx2A7YYead9x/y4YPMxUvn7KbEcZ14cNU5lM5uF5mnmWgJzLOOi9JOIhvnWPOKmfJnzAkFT5MXcNoa27FzKOC6Kkhz89QKeT0qhyYmseShE50jukiMgd28Y54ncl7ZitiYjp6NdTuSJiHzu2XBxUBIiTkElqCqbgEfDCWNHFPRGZfnF4RlFqvQHTHOYE6Sau9wSWqSMgDG3hvb4UiaJpaznQDREJXH4h3beqS1jbaJwT5smZura7FQIRDjwrwsYygUNH6KealudJONvIDW1K5DrZQts5VCmJKyCAymkJgmgYi1iBmevWdOEy0XtrySaya3wt3Le3rnJp2XUwq3igqyJLTmFKQcnNqlnj17xr1PvCS7zxgorCtov2ss1VnSG9YqpY4q0WBcP3zC7vzsNriZ4IlOwIN3HscIf2SEEPaO68b1zQ0pTUPu6zHzOB8FiKOwy9kFsikLI5qpiaXKXnt2dsEck6TF5mhOgbknoEItacpQCD4Qg1FzFoAzJQVE+6BhR85HvHkN1WioD86TUVbQtq2kmJgmhWEzgqK9UzaOmeTwWuKNKSj42p0AK+dv66V7VwtQ5eMgUDVU6nMPPimc34z94Zplt7tlXcUiqShCx5AWTlqjN7WClawcN/PGbrfDG+TepTtpCt8MQWx9YzSbAXkod8rhAMfjICE8KSSBuDHigx9NOn602wHmcUHA7skWGdKMmR9ta4FpGi1hTtbSfsrgGsqIkwJ3d7aQUmS3Oxu5S1JIthGQmkZeFoz9q/db8if6kdN0q8bQ59sHa39ScrXeFYLPaRd0uPG8xjELmDNiclhrhAGU19qo1sl0guv03IneRuaBk5rIpNCKwdEsY06VvH4sRxaMWhwtOvLaODufCclRh33qpJBzTnbItSvLbUmq2O7WObaVsmZ2u0CzjD+FhzvwsSlHyAcs2FggGuRCmBOHpx8RwgX+fIYqfEDuUi+wctg18S9hNuP9juXMc9Yqv/XPv8ns7vHya5dMS2M9dPrWqcloxSgNdjP05rl+vOcswL3XXqHFV7n/+dcJ3/p93r6ptHrE3EQuhTnNfOvxxvb+ymc/f0mcGCpDzWaDfMVcB1PYdjepeoOXEkMKlEbzhVSn2+Xcd1k5N2vj7FII71bViGgm5Y6Pyu3zYWb2Uie5Ac705llzlarCHDq59bXjIFecTVBFFuUmSyxdxSx9qFakZJDSwPmgv6MEypozfaeZwGDGAnlSIJ4KDQZmqw7I3odaSbLXWhu73ZnOwz4y3GIgDgB8y6uAgzBzcbawTKMN2HWiE0i8bVkLkaQQstJ3mJaZ4CMxTFhTccmpJagbCpLuG6WsAt3CRO11WHsbVuVCNnO0NYsgcKdmNhE3Hc3G5dZmKFVPdSI1aq5sJY+5S0w9QHPKBPTOE0xZfbLBFracBc7YUJmWRvSwJJGa3RwKQRbgf2qLdNFIBD0/WeHfzqtF2HXl2bReB9GmociPM6ANK9kJjDmpKKu63lU4YCIubOB+YYDijDtWP1tP7SbVjxNQHdNEcJHgHTIKNnz3Y7E0wuSpaG7t1mSVMQhpqEOddDHBdXwMND+wwSDg01Dou3eeQGcOkbx1tib1Fh2Ccyy7+dZuVVqlNOWUtVJHJktVIdFYunsV4dkayp/qyiXqDlpuipfAk1smOr1XKqBggDQ6W7eacQZpnpjTpPZWf4qu0F3lR2lSp96+R7WJSAHtXCb8D2q/VWVU15mnmTR59UybbkdnAnVrqbQ61Ll9KIUqWO0EJ3upZk9FtjgLdN9UzuATvfnboGfvk3YVg4ZIr1N5DL2Mb3OcYciW6LyRW9F/02Rdl0VK99NJGNG9o24ZRcFO1FZZN1kfm/M4kgCfaLJzEcjHUwC5AAXNNBV6JUQpVehhkEKajZ2HtUZAYKezhee5Kxzcn3FoDtcC+yzgGgeZys0BSl1oFdbrI2tuHFd4vsHVYePB9WP268TTK8ejwxUP9pnnN1dcPc88PzSeHgr7Y+bmuvP8WeH6yUq+KiKHwkQNhf2+UJ817p/t+NKbn+Anv/QZXnwl8Yff+hq/9t//Er//y/8DfOcPuTs35jsvYfc+z+4Lf54f+IV/n7/yb/9N/sZf/Al+9m7nxcePOD58n2c3BzbfCCniTd7RU+umjcZvEXo656kFhsLHG7IPOxW2lC2Tc719XtopgB0RSu2UE9sKrgdcb0M1KPDUjTsnBgHwsk+P9mtDYelec6kNy23tRumN1Dp53IXKJtU86b0UbLp3VbKDl3Jx8srHLK3yi//h9w9Qsn5L5X5/fv0n/+l/1iXFz7QYaMeVZw8ecXnnPn6ZFMDZHbUX8GPpqoiBvn7O+48fcP3oGQ8ePGQ7rpydz7zwwn1eePFl4jTJEpcCfp4F5GBQMt7LahOCciXEog/Z5BjwXa9qBsFpuHeyqKkpR3lFDx99yAfvvIsFx/179zg7u+DOxR2mszMl+ueKDfajAy4GXJxGyKsYr5pVv51iElvQYcsr3gWC14PaWuHb3/kuDx58wPlux0svvcgLL90dA3Dgas3k7aALGs80nWG9UjInEayWQu8orQnAGjfNWjJPnzzmeNizrUdKbaQ50rtj2S2UsqnBKU5qhkLVmkI3/WgrCGOpU5CYipgqaZnkeR7efobEWay28mLKJv9wQGBdioklyjZRUxIjQ8cq7MtGP65S+UyJJXh8q2y9031U4wEB1zr7nOlsLH4ZFdC6+NaiMD3fK1s9Yh0x01HLlXWFBpYtY60TFs/9s4kUK7s5qYK1QvSeddv46KOPuHl+xb37l9x75R7BZnKvJNMyfCgbzQcFjOIJFHpVla1zgeNhz+H5E/K2J0bj7GyHP2x88VXPlz5duXu3c7w5QnUcaLDXgHPNDXaY2OdVUlTbBpjXKaN1IFvhuB7gOLGRwTdCTqxsvP/Bc2o6Y95NPL6C9556HlxvhODYpYUpGBaNbTP2yDpRK0TX2coK3UjRk5yne8cUPCnpUKrZRr5RV6sACOwA9seN2jtTVABz/xPAXAqeKSbMHNu2kmsRE91NOQLVMc+zPOhOiqY5zpg5NR+Y0Z1YsVNIf62V0mGaZ5KXSqq1hvMJNyy0zRKuNwpFweFbIW9HDnnDOceSJmidMCdIgeA8qTtyVTh7y5mSVw7HTctx7cxp4uz8kjaCUL3rBOu3y5sWpU4pkp/3WvS9bivHbSPuFsqWoTaWadIgGTTI1OBxrWGlsrU2AgUrx8PG5cUlIUjx5SY1UHiA06XUFY6ZcxV4AByeX3P3pfvYHLDqcbXRfR9h+gI/HB7rjtozx+1Iq2ITnz76iBATPvmR/QHGRBg7/8c7fB9ggtp52pbZH46cXahlyg3Fnlr8/kT4n/Pjz1fGQymNw3rE0sSUJqydqodlkbF2ksJzK9cNLgpk7o12VMZPDEMJVTulFnqS7DgMawPOCBWyh547uVXKzZ7l4gwX/Wj8O8mN+xi40ADblZkQvSe3jeST2necY0o6Z2prsqJ0Xei1Vpz3hGBjUBEbaR2eXV9xdnFOOa632RxxgDNagkyA0AgDPRyOAqtKxvnE+fm5VHDDD39qjjll0LUO3YZEf2sUg6tHT+hsAKQQwXXOdxciFaYhlTdlaWybCjXqqIHOJbPsdsQ4CZSZJqLTeUEPUg62rMyKdWWrAnj2w7Z8994F86I/J/pbHZjOfe+FnVV0v7Y6bHc668KUmKdFwJA5MbDmhvVVakXdu5W6VdZeSG6oqMKk4T84HFIP95qJ5sfgx1AuZ8xESjQ2JufJrnMsDleUXzMFxxRM70ETA936SjsYa++378PTx89wDs6GnXu361zEmSl6YoLuG6VowL8zOYIpZLrbnn7s3Lm7EM4ndlHnnjPHNEV80sbkTAuXC17WlXIkUzh+O/Pyn/sCvZ9jIWB2SQ+XH4OTFsBnJM8cAAAgAElEQVS/jLbDJ9T1A/LD3+PX/8t/wO/8wfv8G//6j/LKZ87ph5VnjzzHm8YaNp7vM3lrtF457I2XLs746b/2ZS7f/Atk9yLuW7/Jf/Nf/Lf85jN4crOxN50VFyGwPX/Mv/bFu3z533yZMxYtWnljrYW+VfqqwOtt6xwOkIuj586xZQHHgMwAqlsurbNtReUha+YmN3Jz7FfjkNXYF00Kp9IC+3Uj+IV7Z2pzK3Vlqxv12Lg+KHVkmqNs8U3zZKNTm3FzbGytq523688+WypW1Ep7KEbB31reTow0Wu9V+95Xcl3x5qVcGeCoc5PgpC422UzWrtq0mLTWiXECB9FNxORGLpsINjByWTnsj6zHgneBV1664GzyHFeRA5XMceusx0zNheYa3kecg7Qs7JYdnkZtnlwruRecNWrZWA8HainKOeydKSS1QJqyMa1u+GhcHWTF7n1Mdc4zhUiKgWYORomDdVWy++ioeVObW7fb5dkNO1KK8yCbRLrU0UzmTOdrb41SM8nJ3tdGSUC3YfkiqDBiAMxq7UUMf9FZaMDapQIK4iZYwkwuGUuO3Ir+Ls1GHtu4D6rA3WnkFRUnVVApR7wlujWRvqOUoVY1fjUDQ7lvQjzcx+oagF6Jlm4LGVKo+KJigwY0L6dAL401FzXnGkTfsSY7jXmH9xvUxra2oaBRy15HhI+3hpVGMM9h3SSMCGMXMuPi7g6rmd7h6c2eGBy9dA77VYSNG0Ci9yxxovSuwgIH3QLrvkCQErrnPpRXStSzqBKg1sbd3D9WwDo8wYw0Sd2dS6OVAVT2EXfS1Y6seUOAsUKM5dToZiznM/TKtleREk3KtxTDbSyBHCKF0hRDMIeIt0Bumrdwp11qzLpdrbEdE9BNGA1+evasS5VSbeyYvo872A0SrJBzxoc0yLcItSg4u6Gw5NZH+pHO+jws4snrXXLODVtvZqttBDBrnghDIXkKgl7mxHpYybmNO7USUuXubiJnx/W2kTdwvsmqav7WUdK73CxmUp85a+zXjV4LyTecRXo/4FpmDpCmwrIsY04a7aO+MweIDnoIYBnanimonInaOI8eS427KbJ4r5iUyZhT4MyrGCKliAuFaJ7zaSJNxuXssKhd7LAdOT6thDYz3T1QgufbHx352h894ul3r3llucOf/tLP8GNf/lkuf/xnCfPLtBAx5wn1Oe3t3+Ab//DX+c1//M/4X775Dl9dK1tYCOmc4PWu1WIDvD0ptQPHfCS2AK6pYdJBqVIC99EM350bGZYdn8LI8JvYWiEMRVZrAjVPWb99sOSxa6514VR2JcDKbBQ7mAiOaminbQa1sDUwRKx2wNnI90Kq9z7OMO8MLCm/rBbohd/7na/b/0eY5//21/ddofQ//t1f+0op8mRPIZKfHUl37nF255LkHcFPqhMvG2tZOVzf8PjRh3znnbf5zje+zgfvPyAfC/funPHaay/x0isvce/uiyy7c5azc3yK+JiUNWGenvOt/NE5p5wP3KDuFSAYnR/NPkaIUYqEXNnyymHd8/jRI979xtt884+/zsOHzzl76WU+95nPcnnvPruzC9KshTgXtSJIrhblE20NnBhxAVwdPxqM8naEVuh0dvMZPsgX++GHD/jWN9/i4vKCH/zCD3H33l0anZv1yOGQyaMh7OLikuS1ZBy3rNYMHwYAJiamDD9yrY11zTx+9BHPnj8l+MDhcBxBsHE0OUxid3wkzWd0ArUJ6TQXtSTWDohFN6dh+6Tw0oAe6BiliHHzPg5bgRM62yGmxDTPzLuJMCWCT0QfcVENa6U1ainsD0f6YWOKkSlFuhMAqH6gILlhg94a19uBJS1SQ5hjq4XSIDtITj/PY15VfzpFNSZsjZwb+bDRNrFsr9zf8fJl5HI25ikOCXej0Xn++DkfvvcBLhifeuOT3Lu8JJjHuU5wgdIYnuOM66rldOgwF4Owcv3kMVdPHwGFOSUufOSNBX7hJxM/8QXZXcpen8EhH9meFA7bnueHA8+vO/vjDcc1c8yZw6FwczS2LbAdMsfjytXhyNXauKlwOHSet423Hzziw0edyzt3aXHm3Y8y73yY2ZeN893E+W7GJSk+cp7ZRgIOXcx7bZJhp8kzLwEfPDtv7JKsomtpbLmrKaUbW2sK8yuO9ViY/GDXnAYq5SXNTHGWLNe0jOfTgNUlCweY5glnnpgiKc6czYvCGIN+zt4FWpHirdVG3orYg5E547pXHkuIzDEQ40R3URJPUztOpXPYNg4lM+0WlrMzLadR01DvQ9HW1GjSMCqd7j1lWAFiDJydK7gbOr5Jfn9S6LXWKJxACJ07tasR53Cz53x3JpWkgZ8jIUX55EOQmgn9u5yzWCqnPJazO+fMUdZhhm33lOUCaHgBNeyZAu4PW2W+2DHv1HjhvYIaQ9TnZEFSWzcsx8f1IAbV4LDfk1tl2Z1hMQ32VGoj5ySpV2bbCGIeQF/pncPxiDktEzYWs5OlyMM4KzWIdRQW20ulbgo7XOb5lhU+/XLjqhvUAZ1OHP98sg/XkmV3YrDSw6LXrA3dAaNWWYN2G9kMNWd6q8wpYeP7U9DtAAir3u/W6gi7BbxTo50p+8KnpCEMnV0iaPpYsgT4Byd5sfPKFKlVhESIsnGd8rIU1Mlty6h1sfm9cMuC1pqZ5nlIsB3VPh5E3XgOa6t/gp0Puk+ccby6YQrKXMBkm4JOSlHvWe1SDwz747ZtrEcFcx/XA/O8G0pcI3qpz1ptyhEJcZASkvX3wcKbD6zbyrJLTGm+VfOdnouTbTFv5WOrXGdkVSh82LvAFNOt0k4ZV6ccp/G+jX9u43+yWldq6be5EoYW2FPOSSlFyqwopjjQNKAb7Caj5tH20xthBL/ilLlivdJHlXqcPEtsxOSYPMyT49nVnnk+tRQ6luTYRakWJh8ovZKJI1fLCEkqrZo7x+uVeTcyZ0ZW1Ml+rtTPPqzbeiabNUJv7I831Ed7plfOZRtxgBOBhgtgO1mAqFhbteCkhRcuM3/82+/y4cOVT756h+UiEhbj5tgpa8OFTs8COC12Djd7wn7PvddfIU73cfff5E17xFe/9h0el5Gh4z0+KfbgrXeecRkaL35yJjqH+TIM9SKyWmvQRFzl7mhezxHN6MXTncO1iqsCIOlONoOBUbemNtDeG1vpWki8rEt5AEJTMCbf9Xfp7tYSWZua1aJXPpM3LcRbVyts18dM6EbumjXjpP/TmqOTR8EMgwTIOuf7WKZdHBbd0fJZOp2Kd+kW/DUn4P3UEOud1JW1SK3Se6NVKZFOtrStZWyOytEzFRhMSRbY0iGPTDq5Qo04RbZaaBT8JGtTqYXapQLrXeQIrahdrvdhn6603lVE0dqtGru7iHkpSGzMaJ7Bglsb77HeV2X+6WdVjhk3vqde1caWYsIGoKTa+2GHGkuXG8x878rL7PQREt1Z6yBgUGucc6cSBL3xJ6sdfVicUZGCj57QR/18V+Nb622EdCtT8KRIskFKxugIAZKHum0MvwWtVQ5t1ZnsdYCdVLslb/ScGcIHMJWV+Nuf9+n7hOAiKUZ2i2bf/f7ImqVeCZPad0XiMmxpuiDNoc8DKYxTiOwmxW+UqvtZmSmaVVuXrbR2RX/0ttFbxjXdb6Vr1vJOdjlGUVLtCocfn6jsXRLRsmbNLwLAReqLyDc9U03PU1SQ6lAPy444LYHaNnrrTDEQAjSTLb6b1JiYwA8bF0gbWbUMQsuZsQ17tTcny++wj5/uGN8HWeRGK9ogAUttt7lLMQR6K5jY4XEntaGaVN4RVflkAgmVSzP5RPCdYGqmC0NJWFojBil8S+kDENaMwYkotRE3cVK24wbRIWWfeC2pgRpi83wwzkLg3jITggPUEKYw+cIUAqXoeQjBkxbl0pqp0c6cwGxnH39f3dSB7RDB1a3hzfBkYvCsa2dbOxYKLhjdErkpMuOkhO0NiUWc8hDX7aBM0uZpTXlzLUAves7W3qlO7qFe5b7ZauFYMmXr+B7ZKqx546ZkbkZ7qrfAxZ2ZsIPD2lj3lTsh8MNv3ueLP/4Ky0uRr739Fv/oV/4nfv+Xf5nDH/0Wy/qAeD6Bu0P9v5h7s2bJsuu+77f2cE5m3ntr6HnA0AAIiAI0mBJJhS1RClKSJdH2izyEI/wFLD3YX0Gfxc92OBwOO2RrsiRTAyVYDBIEBwBNDA10N7qruqruvZl5zp788F8ni/YzHtQIRDSGrjvkOXuv9R9f/Sqv/PKv8+f+9n/Nr//aX+KvvvWQd08vsOefcLce6bGQ3Sp2mauGSnM89orhhCjeDpg9+8pM5QfBUNFDaQJRW/NZUqUFISSIgxBnRuNlKQyyp+Jq7M4WSwH4XhFiwCruMBnk0Mkh+rkSGEOOqzIcXG1cVP6B5ISpsIy/8++z5e3/+Of/+u/NOYsMs0Sed1y9/irTbqIVgUjn++c8/+xTPvnJB/zk/R/y0+//hOOLe+ZXHvH2u2/z+c+/wyuPH3G4umK/v2bKO1594032+/1F9kwbkndFSQ67afkdvYnqDDrQkwc1DquecA/n85G7u8/45OOPef+7P+DjH3+IWeTd997jy9/4E7z79luElDVwTgJQ+hikGPxL6wU0C8Q0y2s/kLytd6xWRusKYRyySjACH338Ee+//z5lXXjl1dfIOXM+nwGYd3vm/Y7D1bX7mgPLulDPK3TZcgZ4jtGgdnlxS6kcjyc+e/qUT376Mfe3d5zu73nx4jN2uwM5T6Q5EUImzTtCyoQ40QZidiSQu0jQcWAuZbG6F/l28jBzZ482EGmAqwzqxT87zdPF820uPTWMBYVKp64chMM8M+3FZg4HOSy5RLoO7u8WMVAhKVsH1fu21hmeX9NqZdRC7ZLNBnSIb/Jis8icYH+A124yNw+1IIeYXI7auT+f+OmPP6aUwlufe5tXXn/FQ499EI9qHAlIiUEViLes95LA9hOn+1ueP/2U1gpTHhwm47V95i99JfPXfinyxmvNWYNBHyuF4O0fSu1tHjQdQoJkWJNKTPq6Qg2NNVTul85adFDdnxuffPic3bzn5pVXWNfEB086TxZjd3XF45uHXO32niekoVvvjxgUhqTIV7vE9SwP/xwnpmQ82GVZghqeUSFf+dntLGpdFOAYHVyNSZLg/Twzz7IBlVJZ1qLMrboFXQrkPByuXRGiIO6UMh2F+W+2wtqb2OwuhnCaZ+b9ToycBbc4bRJ1D7/rjXUUeuksa+N8OlLWE3OePDhxC88b/hl7Nsww1loVqnxeWdYzYciStdvt9V66rSGlICm2X5x9C+tEKpctj+ju+Qt2+/2lrSHnzM4DxlMMaqnqegtHdUWMDcpp4bA/KMsiqcggOWsRzbxZS0NBa64w643bZ89gVB7dXEPITDFRVoVHL6UoGNKHtO297V3qg9Ya5/OZBw9uiFOWetHZOLqaZmrzUN2BWJzRqaaMqIDJeowvJK5+DdEHv6imnDYEEIqpkQVIfu/sA6AHtPqwiHkrp7+x23k8emP4YBdTJKTguTh4i4/nfQClLPrMfXCpo3E6n5lSxrLyMKIrZba8qOhqIgE2EB2cjDGqGjqoTW4rbtjUsFpq1PwRooAiDYEa1M6n80vbiwc8btkhZpI0bzJlv8ZEuAaBHGmeLy12oQ2mnNl0xjHpa+r3FnjZHgPr+UycwmXBCKZsjmmX9T1iCu6lU8qqkHy3rvQO+/1eSpkgX35Kk6JggoNQpeu8Ghq0DcnE1+NCSonkd5iucLUQmXHJ5YoO/PTW5PXv47IAha1VEC5KrM0Cib9zFtC9YB76OxQWG6MATovOxFojxUBb1XASI8Ta1MwzpAJRHH5lWU1LQRjKnRg6t/voVLdyp0mDf1srx7s7eh+sZbhCU5XZ85SYd2o0Skmf7boaLTQ6Q2rM2Ag90rtADUtgPWKm8OIYBfgNDwsWkCmgqbVGzJ0XH564fuUGu3oNY0UZSiKJhg1URxwZweX8wH5/z1yP/LN/+T676QFvv7tnZgdWqWejluH5WbOfmYn7J3dczws3b79N4IrpK3+Gz336e3z7w1vK6KQ8060QSJQU+cH7T3n3wY7Hb8E0TKpDbytqa4Ky6Psznd9jBI7HwkCqhuC5WRnFCsSg6moLMFqk9khtnWV0B4lk219bpXuDjlqYgKHzAxO4LFWh1A7KwAgEEtK0DUqBEQYRkX1tmGbBoeKWNnR/vwQIYJM2yuoo4rG37o1yAP2lunN7wR0g3JTnzUGhbsqVSaZF02JUDXodWJWyYIzGPCUsDFkvuiyAqhrHM8ESZS20Bqnr3GpDdHeKUeefW/Y6Wq5j3Oq0G610tfoOAe4xTdiItFEv2W/JixLCkBU4TZNIGIO6FH/2ZEdfaiVPs3LhkL1Z+X6NXguxK49Jzl+pU/LOVZwhKpuUSBtQWnW7rd8LiDyQvWlgrhoNQzP8CALgyYnWB1NSLs5geLB4R1tYJ1tgzomI2iOTty4JYJFVe6D7tA/lcuYRCSaiWaStlwu1JnWJKxpjEEjUMHYp++ffVKpTFENRFsVNtFKoa6Uj++UuZIJF9vtZs5xn4O3nSYpaV7RKTem2LtAMMLoAmjEccFbzmjeSEIrIwTBgGY1h3pZoTnLQyJMKMmIIslniLYKj+e8eJlOhgvmS3D3TLbhVLUaBILXJajYuNr/AsnaGZ4q54Iit3GU7y3OMzNMk5eNamC25dVaft1m8qPpGl3odV4TEGC7h48MGtS2+MybfhQIxJaboKsTh2WxD97wU0s2FT2q4U7OzntfkAc/ms0MIQ+DYQLvR5bBwQNkgJJGMw2TlLE0q5dMoYIPRdOf4tkTtVcrZnOnd6FXPGkGqw0anh4B143RSZuU0JRdcyM5J9yzTARHNavrOZLNMcYYRsTBe5kUysdZG6UatkVIrpa6stasVbt1UWMbad1Ke1qLzpweWZeXUCufSWdbAuQ1Oa+fUFp4vheNpsCyN5+fGqa2cTwvlqEbMchzUAvfnW2qFnAtpmqltcPfkSLldePPRjq997XV+4U+/Q34bvvvB9/nHf///5N/9L/87n/ybf8r+/kPCNBjhIbzyHq/80t/gF/7T/5K/9pf/An/xnUd8oRby7Ynj+cQyKmqsDiTT51z76ta0majHwa2mWwu7nEbbHGuhw1hpQwKT0QNQCaZc55iTg1BbjqYy4wRv+5/vbggbspkGD8tP5q26Xu4TtzvEkE2+grn1NUTFw5jJITLo/N3/9r/79xdQ+kf/4B/9vT6K3v6QODx8rMvjeOSzz37Khx+8z4/e/yM+/MFPeP70ljTtePPz7/Lml97hlVdf4SrvudpfMe32CpnLE4erB+wfv8IICiATmooC3EZjRPMwK3lGQ5DFYgAjdkYv1DI4nu558uRTPvjhD/jg+z/m9u7Ew9de5Stf+zLvfvGLHK5uSCRC04u/efEVjBcuknbV0W+eWxnQ9jnTyuq5DYPlvBBy5v54x/l05tnTT1lL4dHDhzx+5VUOV9ekeUfKE9nZ/1KrmgNak9LCXgaftiaFSqlSaNQxOC8n7u9uefLpp9zf37svfubBo8fs9leXzIg4XSm3CCN6gHetw2WnL3+OLeVeF7YWQGxr+9ASaiGKDQqmFpVaGK0w55n9fk/eFhogekX4MlTrTG2kYMzRiFP2lpet7lYBg21A9cDvOE/s98ryiajufZcmhbLSWZcGrSmjJCjUNXqbn1lgSpFXriNvvpp4/eEVEQ26ycMVl1L56U8/4e75kVdff50333yDmLyS1jQYjabWldo6waomKQKFyhgry/0LTref0s6FkAeHEHh9N/EfvD3xl79qvPf64Hy85f6zlfW+cvfsyP2LE+cX99y+OPLixZHj/crtepI9cS2cW2XtjXNplKVx3xeOa2E9D+rJOC4LT5+eWU9w8/prxOmK29vGx7eFPs08frBjng4uDR4+0ERWBFpc7ZIHyXV2OUBv2AhqtUjGbpq8PQ3Oq8DLRmftaug4r0WhvllKBzUrqo1tnjJzlqz5eD6zllXqog50PWvTNLObD2KNokI/tXCqbSqp7sYZXF3ArXfm/V7tX92ryxHbMvzgxTq9asiv68qolXVZOXujVsoKMkw+5ARXI0SfVsoiEKn2xnlZBLpGY97vfTjRYh681WYgGfa21NoGEvTBuizcv7hlniZGMP+9TEzTrJBwb61SxqyWmVYrnc55OStLKs3EHJiCN8FF1RQnhVRQe6WUyvm8UoeAil4Kb7z5DjHtmNPE+bQoY6xvFdYKBKUONbOxNRp17u/uORwO7OdZw42DDEoYQZYzZ/XGGARn75Z1pZZVQfvBteVdw3JMnjG02Zxcqh2GFF61Swkw73YCzzbLGQ4cjM5Q6J1AMGQfK1VV13VdNYy5LD34UqP9TJ9Fa0WXsckSPMZgWVd679xcX1++t83GHIOGT+UX6YwCLtLzFPTMzXlW+8sYF3UTm8ogJWdV9czk6NkmwOn+nhylErgAQ1E5RGlKEJUPgQV/BzZPfqOUlaura/zRlKcfWR47TqD6YtWHBvTtLiznMzcPBOLGJCvybvLQVgdlFWkkwK03XziHxtdpmskeOJxixmK/3H+9VX9StFz1VmlNqqPj/emi7kk5wuiXTCTZGobUWf9/xZHBFqCcPeCcYEwpu4JJg7UwR4XbBs83GK6aaK0rHN0VedHUwhODzptNbVZHp49As+HLQ/WMPKnv6FIydNzmUJV7ZE6w1HVlLfqdraeK5ci6NHJU7kepAo70eHdGVCVwKwpNTm4TwKBZhXuFzKaAVL4pELOW8TFMrVwEQnZryxzIfUfYGeXjM7u3rgiWlVHUDdA9S28YRUuQgVmFaDx6sPLJDz7lt7/9E9586zWuHnRSnampUNasMGsbZA8iPrXO8tPPePyoMb/+Lj1c8/gbX+PmD77JH7xQ5mLIs+73acfT0x1Pf3LLWw/3XD+eBJgNcyWbrK09wmQCutrwGvAmAMdQtpKsxiYWfQy3xA9GM2XTIMtIH8mtuNt5jRp2YrqAxGpKcoJq6O/7aA5BD+KIjLb6RF+xodyu2iqlduWpDd2Pg+h3WXSiMV3KAfQ9bN+PQAm9rJuCkwtRN9jUZzr/aqmkoXG6DtcPmHIEB2qLc1aPKUdyRK1bbficqkavFJIyb3J2VYqyYFuXnbA01LxM19mtZHxfiHVHCJ6XjQ3cWu55NDkmqZNR5lHOiWmaqKWyLIuiLULyXK8hl0GS/U/lLjqrRn/Jxnv0EKVJ/RstkmPWvB8SI7haFOWFSBmMVHkpCiSJgexgpJTH0JHSoNkgD7101VVDUpb6F26Kq4gMYhCoaiP4kqfMvtYa61ocwPJm6NJZlk63SDORlzp/dIGOrsVTYcrKrorZl/vR/OwRkWdIbVP70LzdNCv3IfVdCsoaVa5hIrnVcq2Nsg5vUNVDOLo2X/O7ZmwNPOazSFeW1XkpUtJ6g+JoXdlRMcm+58B0duIkhCCwywHMFANbS+7oyiKyaBfSY/izHjFaXTUbkrAgwqa07vk85iolgavbn2AOVsWk+7LWpmerKV/KhuctiTVk9O6qpOSfnEi54PNAJ/jfe6bocLIjBMd63ALX9T2EoNY3gWnQeqUjMqcOqZ229q/WVMIiZSLgmZIK99bR7PUJCo7PE2yB/75rdjOSz8PBguahoTs/E5mCN9qOQG2NlNSufl5X6FD6Zr8LNDrTpHOstaasqa2p0sPxGeJYWysokScItC1d55p1z+3SLNj956o9slZjrbAWv0/rRGuRpZ2J23uJhpdpzmAzgYwNo1YvZOiykDdU9DNWONugtZVn5zNrrdorqlG6sSyD83kB6+yvJ64fXemcq4OyGte7zFe//Drf+MYbvPaVR/z09BH/9l/8a775v/3PPP2t32A8+QGjHWnsSa++x+u/+Df4U3/rb/Orv/Yf8itffJMvxsB8vsPKSkN22GRSrW7h+yEngZSm9tUwVHxA0O84ponmMRBSaDbqEIk1RtWz0qWSG9F3cZ87zUPZhis4YVwUZpiRgmFxeDyNrKXGSwA4Oemu1jgHNC1Ar9iAv/t3/j0GlP7hP/rHf8+y5PNrXXj26RM+/tGP+Ml3/pAffu97PPnkCVjk8Vuv8dq77/DGm2/w8MGVmtowcp5JeacK+N2OvNsRcoasLIkhfZ0Ol969YlPhtwq9dLVQEMuwnk88ffYZH3/0MT/50Yd8+ukzUpp5593P8YUvvcdrb7zOlHcaOErFQveMn4ZFI2UtcMEbaPQZOlqZEtOkljTzDKLz6U6BuuuZJ8+ecnf3gtPxxNXVgQcPHnFzc0PIqoaMWZdw60KikzPNsnoNRzsTqwf6TjkLCFnPPPvsKU+ffMLd3d0lDDnOmZj1fYakusoRAp1ISJLR1uYZH466M7TMpKxaTy2uRpp14erAbS7jMx94cEahklPkcNizP+wkZ3VmTjLwLk93r4QwOOwSc9b300bajFcXqfpxESuec2De75h3yhnYkVVVmsT0lbVQvaEvTzq4J+RxHiY2+cE+8ubDiTceTVzvovIAeiMN435ZeP70GS+efcb+5op33nqLw26HIfniFqTYavNL2MDBzN7gVBfq8cT9i0/o5yMWO3OCmwxfeAy/8qcmfvEXEtePK50Foi5jtS5Idh2AESpxn3QgTJHcjBQHPQ0xM2iQaK1J+twTT1+c+dHH9xwOr3H9xg2ntXG8T9wug0ePDjy4yj4A47XAnTJwGaVUNGuVZWOK5nbHHV3ECHmS8ux0HhxXKMp5o2yquK6aXrVaBWKKTLvEbo5c72d6XVlrYV26g5bbkq0FYTcfFGqJLKLTnLxhMfqc6ks0CjhfW6e14UG+gV6bDm3E/DpsrGcOAcm9bSBH5f58hBzZHw7sZgEA4QIOmSufpGqspdBq5+50Imf51/e7/SXAzoICn1XJrq8jcETr2ggwWqesK8+ffca82zGCMc0T05SZdzvMW0QsBPmYh8uGQccAACAASURBVNQYvTYqsv4c5pnp5oBFY3YQLASxhzaUPbZWMeutFv8z4HQ+8tabb9K2YMi2YqAWoOS2NRtS2W32ri4w6Xg8knNmnmcPpNUwFUxS8RhcDbAtSXiFcuuUUpVhltLFegVaWHPSGWMOWut56J7TJilx8H92q0ndauLNB0nYFED9klswRqcVARZx0nKyMeoCIRrJ3OJkRnDgfLOllaWwm3bMhz3Z2cuxPUoYpZTLZxnjyzawDQBlDGKelenh4Aa8tPhdwBEcNMKNtQZ1Wdnvd2CS3teuP5cwIOmcVQMVYkN9J1hLodXK/rBjYCSvC94UUgxfVNy+GIaWz+ah0M2BypwT5md9Sh7EbeHCGm9g4pwn8qThZFkW9vuDbNCejTa6hykPE7s8OgNZRxgKiyUkjstC8OdvylKrijHXcGm8XABsoOHZl2yBN5WU1Rql8EqF32LmR53+uT66dzjo8zT/3Wz3WjAYUcxtTgItOt4iNJSPgSnTCG86CwyxsF2Lxzaw9bEt4x2KmuXKKkiv9uE11GocynlToMhalaMRUmAENR9ZSJeFwqJUeMu5ECwR99HVI6q37j7xaxEIqhEnYdYgZnY3M8fbZ4Q6yDcHbES3xWQBEBRGv8M4YuMMo2HtSJgWHubGN3/zj3j+2eDdzz9gdxUIA/IE0CiViw2lGzy7b4yntzx+e2J38yYjvsYX3nvE+du/w/eOC20Mqjdl5Tjz0+dHbn965t1XJ64eZM1NSJllnr+IRZIOd6Yo64TUZQFrsob2TWHg6jVZu7rbv/zs8d9JsEGOEzENwQmmEGYzKVm6W8iag8ljqIGsjUU2PFffabn05zV0tTKNTs4QLIvB/2Nn3EDnznbGYh6QSnf76nDFxXBFg8AUqRy5EJdjdJqHtkdXHTpuRrfh77kWjclDjGt18BzP/zEpq6PpR8jBKEOqkDgCdD3najjc7lWd0abjWguJyV6VcybFCaw4Iy4QIfhCoxyZ7bwq1HJWoPOQbWcMI08TaiJWvtMGqoUY/TywC6jczcPca6OVhnVUxY4UFdHGpZW5D9nOW1NJRPIcEWVB6eGQ/VkAa2lbxpEDWsMYDuRHc5WrW5ZByoIA/p91bofkgNXojNJpTbaV7nNMDH4HeBW5mc71wcBaU7W6q54iBtZ8vhhSmVqQ4qeLOLemnLkU4ktAHaS6rM3vOD8/g6tFe/fMXlc9uDpOzXXt8i7YQAre3imrsriitwp3V7Yqk03gxRhDLXvDPOxdZ90w81Byt6qbfocxRM0xfnZ3z+jaWqqDg6A5TS5KcMWG17ArYkJAWs5uravavWqpbudS3Tt9EHonBM0h06SGue6WZ0ORIWoUjRcVrCHV9whcfh5pC3Q2KxOsuU1W4BnRuAQxB2WqWVRG7+iDGBLBmitOBdjoc/M2265tSKUzARt2UfKGARYyh/2OfcxSdw7PB9NTSBtSu7deL8ILKVeCZ/VACJmcIrtZRTo0f+/1QLiSDAeXNrWf1EA2wLZQfYw6Kg0pOc3vzd4dtO3mRUmZU0mcWqH3M6desa7IDEag1MFSjNYyd6czay0s5czx2DieCrfHhbtj5+545MWpcX+/ciwL98vKuVSOS+P+vPDstHBeC8u5cjxVzveF02mlVxU2LHQ+e/oZpxeVxMoXXjvwta+/xjvvXfPi/JTf/61v8q3/6x/y0Td/g/MH32W5/4xSB+Hhuzz+hV/l6//xf8Zf+ZU/zy+/8yrv7ScOvTBb8xzTVUKL0YkmpZvRvdVYOIX5/GpmTEnW1WFGDJMEJF25gh3l17Va6FXWaY3heg+G53R1l2ob3t7ZN8t/8JwzXRBSpm9PSCAmPVPJyc7NM/6zVCiln9UftP11aoV2+4JPnzzlxYtnvHh+y7oW5hi5eviQN155xPWDG/YxU6sapQy1c+DNJ1tAyJR3hEkZDKf7W2LY8nz0e9rsAOaH1TBodFpbub99zovnL7h9cc/93YkQIg8e3fDu669yfXVN9mG8lXIZ/qVa0ItTR1YjUlkVsD1rTTK2D1ADSfXKwFNZWUvlePec5XjGgpQNr771BjdXjzALnEsXUz76hf0spV0G3qUWmbCGBo8YMufFG3oaPHv+lPv7I/fHe2qrXO32zFcH2IJ2g9D73gfDl20L+r2u6+KHl07M4cNwCL7I2zbz2kWGPVrHQsaGEg9qWcUwtUYMkcPVgSlncg7exFTlge/dTyBlt8QpEXJQHsZI5KAlupXO0lZGa5RzYYSoC2HIo15iw1rHRqTQ3XsrK4NNkTyysm9MVrIUBlczPJgjj/aJw2yEULUMtMZyPHGqR+7OZx5eXfPOO2/5D65FoIFCzfpgqyndpNG9dsa6cjovnE8vsLKSpkjYNQKdt6/h629Hvva5wPV84v6HK+dVQbGlVMoKra6eHxVpvVI5UnqCOtN6wcYEobI2PG+osw6FMz69b3x2d+RHH1euHz0mXM188uJEbDMjBK4fyx63LFp+GsgGMCJL0/vUR1crlGnx7qbLZp9hBNkYlwrrWih10HpQ1kf3SwfJ4Ls/QylJBRaiwgHXtbAUKENAwBiy0CjQMHPzYM+UJ188nWmO22LpF5jbEbbFuA1ZrVLUchNzkj3HB+vWm4O8Yvs7knqX3ohtsN/t2O13bO0x25A//O971zuuuhr0DqZASlmZMXELtHNGy0PypJZB6XhmLmU3eq3c3d+zv74CC8zzRJoiU94Rk0BUWseaFEk0NUVWB4jm3czucAWmjJ6BD7jGJXy7t35hc9VSA/e3tzx69BhClP2zN5pFkityoocmDpq+dhNS2HrneH+EPjwrziijE10iy2azCOZDlsAcc5CjtKaQ5qyspjC2AcUVPU2X65bp00aTHbBWEISr3JqxqXT0NTdJbrSNRZW/f2zWnaFK5WmaiFltnRdVzgCLUmVtz1G0CF25DEuvtN6Yrw+udBOAiz9HUitwIQ0uo2QQmNCGZORLLZ5Z1F35gavUdFMAbhmB5o0+dV3VsEL3M7dfLIQ2IsHPHw32zf97PSu1NlKaiWFCjBVstO/G+mpZ1TgR5GRQcH1v9FG5u3tOjCaAIkZG1/kt4rCr1aiDNS3zEamEVaEuiT+WpSxDn5lihiKDCkHPlQUj9OCg6ATWLwxxCAosT1vovjNxrenzcZhGC1H0z8f/JdfAywwh/cz+63ZwwTDKUNZI9xpvr5bQs1grxYxgykwqdXjwfyeETjSVBlgczCFxrsYa9GDFES4DXB/Qi845SxN1rH62LvQQmBKUc6VPMyEZa2kcbxcyiV2EFDM9ovwYryOmQWQmzCvraWW6yQIOwtB75zXfMQQsDgfVAsoYSFDh8ObM+eMn5FeuSFePgQhjQSB9gLFlO1Y9t70QiLz11c/x13715/mf/tff5Y1vPeCX/sIjUg4cYiCRCaFx+0LvsIVAOgz+6MOnPP5Xv8mX/8YbpOs/Tf/8n+fX//ZH3P6P/5g/OEc+LGrnIgZ2D1/lD1/c80/+1XP+Voq8/s6moIKUoY8d7dwYk5FDI3WpKZPBigb1tVYYapONOTJHzSzWFTA6KvQcORfliPXW2cdBiE33WVOOiAXZvFJUBkhOmpFCGPTQ6cNofXG7kFR1ZlHqjC5rUu2VUANThhg1o+k9kz3cgtLepLBovjQPQMH3ILBJQLpUnJuq2PwIUUuxEyVVgO2IaoiLJpLVYgBv/y2uKhzSoWqVMIGxPahCfJomyJFlWRllYNmwUBXg2rb3REqI6AUcShjTglJXtRqF2JijSnJ61AITo8mSt1asNoKpfIFa6aMSwkTKBxjNCQEF0OJqWQNlVzX9jN1EHI8mC2yh0vqkgOmgpr0piHGvTef+5O1c9EYvQ+HZ0chJ9qeKxtNaGnV04tDuYCE4caSfN41O8lMGc4KRDUgKmv97k/15mmA11r7qfSaACRRSPm5w5Yc5MA6h6TNtvRHaoOVGwJjMoOGWRwEfAcOmCWud2tRGPdmgZ9lvgxmd4kHY+nmlopSVZvTq//bf69gUOFIrxSD1ZRtQGTRFYUFQi9hwu5+5QrKP4C1y3QkE9C4zqL0IMIjKd+lEt+cGv0McPDc/6Z30EMnl6sNYXBHsuXrIwgpa5McwKUeHSknoAqF62Bb45jZZ5V8O07RxKdvoes57d/VdiBc7saFmPXOwSBZcu/zzOMCt2AEYZNba9NkiwnA0WZuoAvT2O2NEY7lv9BGdAnWADQkIShd5El28IFWmQuINnf37mCh1JY+gzKsLC6YsqNqBXkWgJNk0d1G/02EDi52cjXLqLz/3NrzQSp9R8LtNirlOnrgQViGYwCiizjLTzxeGMpIwZe51n8tbVCppq4G9RZ5b5CbtOI9GrjDNs3oNDSnglE4tG1hQHnELld0w7mJndCPHyv0SyPlMNrVzZye5chykIKHDLp2ZMuz3gav9zO6hlFytGM8/vSVa5yuff8SXvvyY06nywcfP+Le/8/fpv/kPeHTzGu995es8+vqf5Y3P/TwP3/0c7/4X/z1f+M8Lf+uj7/LRt36T7/ze+3zn/W/z/Y9+wo+fnfj0eM99HSyu6ErEy5xgoaukAAlfZkuaMaas578U/30PelU5QwheQIKBSb2XHeyLIft7qOwk/Cmo7q7azqkxPAqga76z4GB40zn7/ynL+Rn89TMHlL7zrd/j+OI5x2UlxsD+6oo33n2XRzc35KzEeouG1YYNsdwhRCGyMUPoJEf+yxhEZ3zaUmisjswp0T46atcQ63s8n7m7veP2xTPu7m4ZNnG4vuadL73K4eqGXZLNQEyS8we9i2FJYje2qsjo8rIpSkrZa3OWu0vea4GlrNy+eMb98UhrXVXk+wOvv/YaMU+klCEitUYvknS25oeAswTRxCq4KkmqiU6lc3s+cjqdOZ8XTscjx+O9Dok0Me20ECgoUZ7ZDRkPLkccnlUiEEwe9OHLmcIO8wVxxpmH7aCzLpa5tQp90DyQPEQ1Yh0OV1oU0LIzRr9Y5wQAaJnKFjmykQ0mYOi8ciwVRVg0sd6TBs/Wui+vTYGzQ8xZ6ZWdTcwx0IKRgy58E1HNLg0eXmV2u0QKDaNxrkLq11Pj9v4FfW0cHt7whTdeYcrb5wrDnE3qntHibFMfWvyXulJPZ+x0z9rOzFkob28nXtsFvvRW5k9/bsfbjyJ9FEqJCiUNg2aGpQGtUs5GlSZXgEo8qJr1In0umOkSqK6+m9LET+/u+dFHlefFuHrwGBuNz16sl8bAZp1SMqs1ytqpLdFIl2dqA4MUUO+BjkGKgbw1MlhgrYHTqnyoigaateqfTyk44DrcZ23MMTFnhX2eloXWoVsU6j46jeYWlYlp2inPK0dCSC5z7u4lD3rmyzaQCGQhiMkMSOadXH3X0HKFD0cYrK1TR1PI9PHMGJ3dNDPvZpcOeyOGs4961irrumi5Rb+TUho3VwceXN/QEJPtaM4F7dewqGV9dBy4Ncq5sCxnDrs9BAUVW4zM006LgauhNkCodYUs1yFLZU6Zq8OV1CKi2DCDdRvY3M6zMbdqyYTj6cw8TeymmdqHBzyK0VO9chTbRid0z2/wc2hdF9ZS2B/2WkzCSzuf4WBUcEsQaq6jdVcMyYM9Zz0HJp3+BVgJf9yyW4uzhjpLW6tiBV3lZp7fQdhYQAE6BAO3IWwNSm0o4JMx5PuK6J2y4bOVQG3rw/885UBtnvRaCjFFRpA1E2d6LChfow/PSYoJyxl6k9Q7GnEE5THl7EvhS2JDQbzjYqHb2PvqKsdgUtgF86yvaFLcKs5An2vTcLypfcbYrA6Vup7Z3dzILjka1S10W3V5CMlVDsrF0qzZkEjMlaWl6nxHIGU2VdoKiBFIsQ3dtRZKLa6QkmIhhqShP2SBkybyo8dBH9E/e2ey9ZowZQcGXJr/x5tlt4Y6/w+XOulggT6aZgO3Xge3xzG2hkJ9r6svycECzdyas1liR7zYjjZFQDARICkpmBvLGpaTlAPdn0DrWhpSGNSqWUErpYoaomWqwQiNOStThi41kZQDmfPtQhgOAA21uZ3qgHWQp0asesaLdQcnNkbcONaF+CKzmzM9ugWkuVImyRbcSqePSo6BNIxuZ3K+ol09Z/ngM/gihLgjpAksYWF2UL3AKAjIN2y6YX4Mf/bX3uPb3/oR/+I3f8zjVya++uUbVX7nwBVZ+XQvlBsXzOj7xu/+7kdcvfHPeOsvXJPCVzj8wq/xX4UD/+5f/gb/w7/5Mct0oAJxzixt4g8/PPFLnzbeeW9mXbXk1t615JVKLassIzEwWyAgVXIZUGPwQHQuSouYZ6Yp0HuhlE7vkRZlAV1rYT9Fgmm5hsFSu+rag9tMzbBcsTDpbAhe2WwGlhndiKPTCozhChprNALnondsnrUstN7Y8mowlX0Y1e+LRB3org+RLcBfKIpALCkT7GKPjTEyipq1Sm/U7qpMf28dnpJ9NrtisVc105l+7gjUoQa0EIcs2GkihsHZpDTXOS2lhgXdkzbAsqtwmgLLW+vEuWNn2dirqdXYhqrdo0VlQ5pyQ0I3RsxUqrITG4xYqWctUJMD/wwRXvgsqplF57VaeKUY0Q7daIuACHPCL256DUfiQpBFae0F6iDNE3OIWI7E1qHofpm7ZpVhwZcst7a5XbJ1nQajadkbAdbeiUQsRcKirzlaZxCxPOmM74KBYjbmSTlKy6r8S4uRECdZOFPn2AvNYB7Gpi8YwTwHSZdD70ZIRsiBnHfs5wPBdB7VMjidmpMC8ULQxZigiXiwFBUH4c2z3XNUQpQijaBZoXcNf9GVe5vlurauzzfISrPWdvm+cNBgeNZeHZVojTIaoXPJRhTJlARmD73vwaY/1hI46ATSpIysuhRXUhjRlVZ0B3paoy8NG2qgrnTlqy2DtM8ivIKsY2U4MW1SaPXWXVWorLLe1CqqO8gu5wpDs3Kle2aNbIDdyYraxmVmyebWsZSVidUcHg2BFAR8iVzlYt8bbNK47bwZImsZFwVXiEbqGvT6WjiZ8tH6lmc1lNUowKcJ6G6yR0kk4UqwNki7iEW5DEJWC7LyNwd9hIs9MtDBtvk7wSgisUwGNxuBVn3P9AD8RveiEO1uw1tQQ9TMEG1PtyY73N3CnIwYZw4MoChKNqjsRu+P8utggQSnWIlOrOwtcRcrKVdsrOxSYor6rGKGOQeu4sxxUiTGoQZuzytznJh3xnWYubpJhCZHQDl3kg2++Mae99684n6Fpy/u+N4P/znlD/9vrndv8PrbX+TBl7/BW5/7Kq9+6Uu89Vf/G979mzN/+ekP+ez9b/PBH3yX7373d/mj77/P9z74iB89f8FthxJ1jwW3LvbWPQqm0lHBCSgLzR9AJyn13jXllYBV5GFQoY6FgaUJY3jZjWaqTmeMKgKVJCBR8nG972Z617adZpP0/oz++pkDSrfPnjHNM++89hoPHj1kPhxIux1pAEXKFOuDUs8s5xOdwH7ey3fb/cZI8vvFqDp1amfU6kNa8FBZrT3n04lnz5/x/MkzyvkseeF+zytvvsujx4+YZoEmypNwKb69/CUG9xuabgXWgrIeYiAELr7j0QdTTqx15Xh/x93dHefzGTO4urri+vqG/eGaGPGgW1Q5uwqEGZ7rM6ie0TAuAcUbyANwPJ85n0+czwv3x3sFOfdOaY3D1RXd25rihdVJWlyDL0wOOMpKMi47cE7RwwZ9CAsmhsEPzs62nG/NBkMMT0cBiSZlyLQ/ME2yKHVXJ/SBLncTqh6jgLKBAtowLTrrurKulXZe9YBnBZ7rEHc5K7LT1VVAmMVAnBMp7chRC0lmMAdVuB5yICfYpSQbQysspXLuYtKWpegynicevn7N1fWeMAaldP+6mzJmSEKPs9Oj0epCOy+U8x11PTHnxNUugxVu6Lz92sTX3jS+/NYgpDPHF1BOjbVXtyN1/by1MFpgaYPSC6NHSm3YMJY2WKwSqz7/NqJ/jo3zUjitlfsKjx7tuRmZc1Fl+tX1TK0qVF5HYFTj3IPURCi0TUPa8BmtOxCEhr44NGij4Me1DdbWKEMMXumqTh4EJlefWFAw+ZwiU9blUYYaYJpEXnQKwiwa8zwxz3tlebCFJOISYx943CC1NOjocq99ME8zaXs+MKHpSHmhodJZXDwkf8jLvZxPWKsCPKdZnm1zkMTCBWyQFL/QSrksqp3BowcP2O9nhfui7zUM2ZXw88ccmOijX/77WgqndWGKWaGHQUGMqkqeNEj05iBSc/uuALBaKjFNHK72l6GZLd8MV/3gF4ZfPCF0Rg+clzOMwWF34JL7xvBhU3W61oPHqLy0itVSaE1NizlnSXQdRDe3tMSxsWeN5udT6z44NoFCKQRykq1lDOio7laJgMqao41LK51+KrsAwXmnkGflWelrbNEO/gDrM9vOpq5Q01YUZBiSlgrbpL4D/W6HS/2HgggVvLmxxp3pShlew0wqhBjwyGiWsnhrnLO96WWj0eiD0pvURM1zjjZwzbSERB8GY5TVAjRI5JRciZWkAkPNmHljrxEbvxEMHbG2tRVaU52xMkeKlEjO3DoFIGVnbRd5tblKVKylwmb9mqNH88vfh/kRoUk9uzGeWpwjw+uFY9K9YyFdyItxGX79e8A/D/ClrJOygEjz93cDBgfNF2i3RW6fj3v9BwptVwXzYES9oxajsoeS7rlh/jk642tunQsIMOjDc3bM70ULsrcPY10r+0NkWRbqkEWhR7G/Fjs2yTJhMVMbrLax6wYhkcNgDoFpEujSqyxMtRUsdsJNoi9deTwYPUaWZuRV92zsDULFSIRdYBezL3cTcSqc7k/sD7PKPhKk1omxYSnp/RwKuw3dyGEQwsSgMj284v6j59z99iekw0SadsRZ7ZghBTZXSMCwnGhU+nEh1cFXv/463/zB9/nn/+bHPLr5Od54XfksUzKu9p1WE+PYOa0C525j47d/43vsH/5THn/jgE3vcvgzf51fzmf+xW9+l9/uM6MbY46EGDjVwAdPFr7wU4hWGMUEtFQpeetyJu5WpmlPNjHlV2acRsRKx5JORnpX/8pQ9l9LmZyU12MRYoUaOjlUdhM+Pw5WjNIaS1P2UjfPX7LoS3nDIk7INJpNhGHsgKUZdSj7bgzNcWuVSjoFI7iqRO11sv4Hk1VpWBOj74oTwrZC625Vc5XuKxFaal8NUQqRacrEHimlKKNKvnkHWbUsxBCoZiylQO9uI68QM8qtCYymfJQNZC5VFuoM5GmzQbmFa3j5gGlBT2kQSiUdMqUVzzKphD7oKXjNNhcVcDfzGVP5Q61VxirSWOp4gQ2t+bPoBGfarH1+B1hOIjS7wtzV/gg2lHG2zbUpJm+bdHDJNC8s6+pqZydea78Qqx2BZyEMKXBcdSFrYfCzSX9cG2rdWlsjm9QDfahNa7Tus76AwTlGXnm8YzcHSu08v1t4dr8KxLHB1W6m1aKdwwaBKMLIrY8qVAhuweveOhqYdxP768zoK8ta6MeV0gS8RWv+LOMzl5773g1ljEZCVItnbSs2NJtvvyuzSEgCKRsi2AkC961KvRN2iRQ6tfrZjQhJcyAiuIo49g5dqu66rgwz5gyhQkhSRwyFMkkpswGK/jy0rsydzSJqvgBf9hP//7eh1uHgM04t6x+LNdDPnlKmDoEVytMalxy+1ooIC2SH7WNgI9BbkVLOttnCCedhBByI7CJEgqtLrHcB1U5cDv//nM7d4yvwgHNe5hD53LTNoYaeo9BNyivPrV3KwmKeJDU2rG14aY2PA0FqUu1xkEiclyOWdDeGlFh7xVKWLGi4Urp79qIrpoPJMtrrcFtfI0TB1xbUYNfRvFlrc7VSV6uzn3lSmns7riUgkUxkee0zNRj9DGay3i9lEDzSIAUjB53BoRjWBlMcdKqal62Rit7ZpQ4mzy9KU2e3Qk2N2CN5bRzPantOoZCmzhxuibeJqxSZJjWQt9gpiyyYichrNzOvPpqptXJ7esKHH3/M93/4TX5/HLh67Q1effcbvP3ez/POz32Jh3/yP+LVX/ybfOPuU+4/+B4//v3f57u/9+/4zu9/i+/86Mf84MU9n/WZGqNaBN1lVXshhEQOgbZZ2waMEAWebbzbGFQEwCo43qgsTP3gkHvS7yMkfZYbB87QnTNgsCnMdJ5t58JLau9n89fPHFD64le/wmG3I3jDQ/cfDISeNVzO332wpVJbUS3jNBOygpC3hY2qdgSL5jwz1LLy4sULnn32Gbcvbine/nT14BFXDx8ofydn99viJJAY2+hs6DD323f/RoYrJzDyTk1X5/MZG4FpN7GcC08+e8LxeGJdz+SUub6+4XC157Dfk3JS88bYLtBxkTc7KUVp9aV8f5P5uyVlWRbu7l5wd39kLQu1DXbTjpgirRemPCnXqGuphUBICrCs3Rcvw0EhXcyYEO4QkwJ4lcIpn/qWRTC2F5/L06VlsUBrTPOemNSkECyRZm/i6ZuqZ2OFIEYtHMGzDPq6Kr+nVM7rmT4KvTbHB7K4u17pSBGmumq1xeWkNoE4yXcaBh5ECnk0rnLi4WFmytCqhsh1HZSycHt3y3Je2U/X7Pc79lczuMKmluooLfqBmxY+cOWDXyjrcuJ09xyGkPHrKzX27Ufg8w8jP/+FwZsPAwcbrPf3LEWsW106pyLLWKmVViTZrU2MxGKFUIxChZ45bblKFYzGUs/U1jmtZ86nrlr53TVTM1qZ2e8CaYKlJkiDunZ63EkdNPR0RWe6qismor0MJMzZJJEcGmzX0pAIrfsSGxSK2DoEZf9M0fmUYExTYjdlRusspQqY66rpLkOASSeQ4kROO1QNq8tyqwmXJdJzU3pnLfL8L+sCA66ub5hz8oF2aEizAN42goMRZkg50xu1Nc7nBQP2h50AL88tGH4Jt66shdY7tXlQri/hdQxvlZz8/dBQGDc5aX8ZvLzp+ETeDZbzSq+FPCkDIWblUOV50rA79Fxv0v2t7WX0sCsXKwAAIABJREFUTlsqMQR2+x1hBEbV4owvGrRNUrzljIwLWNKqwJX9bn+R628qaEPnkGYwX3SGg1luqaqlEiIC3XUoEkyfczOdXFJNqmK79+Lgg9tau+qXNzB8MFw1KivUIHiIoD734K9cd2A/50z2Nj9cGqwVa1t2tQDVIOB/XFQ3xdm3eMlpGCHI094Hzc/fzZpsmBSDKWK9E8KJw2H/chD0O2oDtGKIbmnAA30DeA5K7ZIupwHmZxYhXFgogSmyfoQg6bMu8cYWOI3Jgmvj8mFJVu/DQOtd1u3eGb16WUPzEM1EX4uHfm9DgQZehVDXDbJTHpFbxjRHDIVi+2cSLV4G7+HLY2n98rMPB3lal11tSrOKHlLyD9MzFwiX90q/TF0kwwH7EGEsyhWMnr02kEVAYdze2On5MQpH75dsDdlSi3KUgLTdoa4qyxtBZFzylUKS1TCGTlkX+joYUfkd3cGtUsX+11oIoaHXqWAbYzgGob1UNRIESlsS2dSH6nujV4xjnRCbW1JMtccJDldJysyoWuAp6hwOMZLGoJlCwvMEW1RPmhN7m2hjpZ8LdZ4JrWNB76AtQyrgHLEgu21LUo7RKmMY6Qae/OgZZcB8deDqZmJ/E8lzJE0zcZo8Z3HCemTUBVrnjbdf4efee8b3Prjjt779KX/xzz/m6uqgwOzRud5XapfK9FgqKQY+PJ/5f/7ht/grr7xN+uLrYDvS136F/+Qv/hYf/MYPeBImSu3kPLOOwG/83pF6f+KX/tyBxw8yicoYgd2I1ALnZaX1MyGITMIiKUROa1PraPd8kNEBhRhPlthjzNNway3EMbGbE9eHzMiD6zY4F+NctMAUjEQio0BdGFhXxmBtnaU2QiiYRQXoBiM2I1jyqvFBtcG5DIIp1yZ6W10Zmv9cGsFABSKXF93fkUAnRTSPoTt7O8O7Kyu2XLCt1fh8PkOIdKSs2KqqYxjkGDgPWfJsyxRtyuUZMeneoCMJYVRNe9fMF+ugjHGx5FmX+onRsJgIozPl5MUOnT4idM0HvQ1abR4Qu83dm9rUWyTRrNBbh9AcSAtO9ELodrn3zXOkuugEIomwZbTlSK/euBukaErZsNZ0ZznADeZnnzEQkUetqtiORp4yS+kXBb3Zy4Vvy6oyE0kRzKDoDC9rlUoDqaPpIrY2wNwYHA6Jq13CUKzFlBPTrN/NlAPXh5nbF4VpA92cRmlDpIeywQYhJfI8iWxrjVIrx7OaDFs1twpBqVUzchpqWeya+aPPSs3vmBCTgMoeWIuCx3vtustxxVJy67Z/DsFk0RMppWwy8+tM92SgDkVP5JCoQ/lxAkxFEluI9LIyuvnzoIbM0ANrbw52tpfxGXBRofaue2aMdgF2LIpIagSCq4VGQ2qNCKNX6lqJcVKGaa2MoCZEG3JttF4vpMjockNsFtc/dj2/3BcYAo7FVl2UwM1VTFKCaO6sXaUMmv9112yggcDC7vuoz+neyLipWaPPG613KfCCmiy332n3vW1tUhdvwJxWXAfeApLeRmPtQ8o8An7Zifx3IbhyQJXLNVqHroKCEdRyba6UScEcYDXkixRoZFuWpF4HfFSXPbKnC8GVkOIwBmN1obmtnUgjWiPFQU6BBdkyMybgH+0JJXQmKn0o97GhmJAcjbRAMeOczoTVSDaRkpryckjscsTSQsyJQ5hIqbCziZwGMc7EVBksWAluD29cpYkH7+5UQlMHz5bv8fEfvs+PfuefEPIDHrz2ZT7/cz/Hl//Mn+X6q3+Sr/+JX+arv/rr/KUf/hEf/eAP+eA7v8Pvf+tb/MF3vs8Pnt/zhEqNO4Z/X62vDsw2QpiIHdkv9ahQQ9OsFTIpea4Vg9rOWGvUrnepBhH93TZBYN9OQF05uHDEgXojuD33Z/fXzxxQurq50ZDaxuUy0cXjVhXTi769TDnt2F8/UNhUCB4MNyCoent7MqNFzscTT55+wtNPP2U9Fmzecbh5zCvX1xwOswdVxgtotDVojKHFJKAGqW0Y3WAu7RtbDaQu7uYtSMt55cmTJ5xOZ/nxr6549cENu91MyhPR2bLeq0uNA1segpgeydZqd8l6kPWl1EapK8uycLw/cTwJSLooGAaYrZj7aYNX1+dp1sNngC9sYwjtDi5zNNvQ+Q22FlMUQ3IGxi4qiE122ZuW3uHKpJwiaU7M844YA8ltHGVV64mUXShENHqVpAUt/72zritl7RzLAkWLf7LOFphXOwrMM8kxW6l0G6QpC0wyDerZcACgkHPgEI1dNh5cz9iotHWVPW4MXjy/4/b2jpQzD24ecLi6ZpoiEbg0D3qbUa3FQ0FB+SeDAtT1yHL3QrLYGHThYbBW3toVfvEbE+8+Nq5nI4xA7Z2JK8LUqIeFVgtpyWpkWwf1XCkDln6mrp2JSZ/FMJZWSd0oa2TUxkpjqY0XL1Z6iMyHG7pFTndqBbraC+U/sVLpLFU/Tx+mhiO8KagtLH07TrZgRNmPJlcJnetgXQpr7wS3g9TeWFqnjEBMO3IyLT9by5Y3Ux3XsxRk1XOMaoEQKaWRpwPzbiKHQI6zsxPDQyej22D0e2+1XpjcZVkIFjlceZOb110Hv7wcXnfWUstccctRq5VzWUnBZK1z++dmPYqYMiwcTKELzBlwCXbe3dzo6+LnxdDvSw1eUoyEDTk1c1uSmuFaKaQpS7kSpejIIWExyTpaCza24WP4wORAXMzkm2stnDgTGJP+N2Svqb2SLICDKikaAVhOlTnlS6NY8O99mKKdYtfibeiiNw+2Zgik77WSp3QBuKNB99/3FKOsU0kKHDOUl0CgW2X1fCPTASuwGrss+cMH9IpkynRnTfx/tzi86VFfkz5o2yVaO8kEACk/RoxgcwvvWgt5zt44IgXXBlxdbJA6Hi8BhGZSZd4+f65ShCE7hnmuRLNB9yYMDXFidsLFZ7HSYqS5hD84SBVM7GJy6bsG0EBMfhf1jTyIXiihkE2tV/qj6+iEyiUwtbV+YfmVp6dBuo+ur9lfBtCa/zmbPTHndGGegr8sZoNaV7XITLPk0B5AemmCHOMyxOhycJCwKyPusJthY1zrGfKsn8WVr7ABUJpcWiuucvDFwqu1FC4sJjYGbyAJviggkGX0zMCfVYarW6tnhilgGIsEt6fhoO1G25rLuFPS2T9aYWneJBeHyAUHhMZQ4G1yVUYe8aKU6KQLIdZdId2IlGoiXMeW3agw1DCi42wRmwwrxuiLgNc0mKdMtkBMkJKUfBaku8wxgQ1slgIyUwiWSQdld4Sh5sAYZDsJXXdmcEuSWae3QEgDY0ewwbS/4sE7D/noj54ypsb/y9yb9FqWptd5z/t1e59z7o2IjMimUqy+ZVFFsSBSRRISLVOyTMktYMOCZMGeCxBgwL+A/gEGPDFgGR7YgmTDAzcwYVmULatnUaRJio1FkRSpYhWLWRkZkZFx495z9t5f58H69g2NDBioge+oKqvyNuec/TXrXetZfiuE7PGCzmDTjB2PmJ8gF2JsHFPn3TXzg1/9OLeX9/jlX3/G8cr42lci0+wGL9FxyHJq0Byv7go+OH73+R2/9tNf56t/4TNw+iHMX/GFf+PP8+88/8/5a//0wu12oaaETRPPzpWv/86F6zdWfvCrgcPsgKD9MMgNeHe3Qa9E19Tsao3JRyEENrk0GZHk7hx4o1uk5AxdQuGa4TDPHIIqn3MPBJ8JqeNWw2362LTeSRi5g9VxLLagc8lg09Sm81zAxFkyRcM1/OyKQlU4RoH7Syv3z2bzbkR8kGgxzp5DqpfDKQxnU4e+R5Wpw0Tg7rlhzjtSivdA4V3Qv18MPIQUaVvWMuj2VlPtScG64ugmuLxHg45SJE61nNUh6Ia7hN3hW3XG8I4I0L1EWvOUWkY5hYaMfagYgg1rwNRMgnPvq+K2UReatm1ywZhJoLI+hLYx1LEg95appQpzROfI4+zWStH737RX+zE09d7fD3Pv2T/NaBQ5Y5zO/QlYVjl+sXzPZNujuH18Psw0xO27s4UOVedXjycGrUXBBkh5rKfBqRRmWzO0Skqqoi95o7dO9FB4PYh1Un1wTmtgbwULjil6vBk5NxYEYadoOB6Dp+M1XK2VZhu59HvxRbwcxSTbaKb1IRIYZ//axM9qow3WbESrbXDbOmYSHbeS5e4pcqQCw/mjPQszovcCUPvKFBOhl3tn2d5G1lzDtUq0hDeJTiofeD1w3+PY4ojp/XADrzGmkxijAXTs8yF6nR9bl1GgA31/UvWB0NAn3AttWgSMrRedd7vOTq/n5XLP70OnNuJfe6KDDr1UKjqT6U4lEc1Fj3W5SM3LibVzf220VO7cG8cQn73Gls45iUKl3vMR99+r9Xov7DjT0Ch4R/RpiIligoYYx/7oqCWTdfkbr/kYkjrHXmQV8PQeqHXDTO4XrVZjMNjGgKrbaF3fxQpGYYo+By4FSs36e5vid220FJqNtIExnJYaJGqgDWs3sEK0JiHMO+Y+TsTj7uua4RGPVsK0UczYnCLKIdt9GiOGjguV3CKJSOxBzZFuYxstkJEVFzLON5VnhEB0QWzUC+Aqk5t54xixR4lU4a59xPnFL/DLf+9n+cW/81M8evPTfO9Xvp/P/OEf5I0vfoVHX/kan799wdfe/32e/95v8/yf/Sq/+Us/x2/8xjf5lQ+/zXe2SouzQN2I6+hGw2btgsOnqDba1iqG2v9CGHcXdP4INOhFTfNe+xgEjHTPJu1deJ0wzCa1Fnrbo3bfna/vuqDkg9ouQlQMwjEyo35AJ3OB7rB0ZD4+UCzES8RxGs+qUlc3C7aSeXU+8/LpU26ev6TmyvH6mre+522m6xOnw0GT7CYQ535YrbUxT2kcDCuuCoqmae1gNtSug3U0qddFiqi1xvlyy/Onz7i5uxC8cTpd8cbbj5mmWQvJsArmrOo9tbnMbCVjzuQc6UWOIjqHaeJuWbhsK71WtqJq8vPdnWpuW2Pb9GFK80EXrVpwdFKcCGmWZGAOHxOlFNn22eNlWmiU3X9t2+xjM7mn89d2P/lxpkNXWTbB6MaEN8TIYZ6Y06R2uFaUcwZ975GnSiniQxpuKE1vt3Ujr5n1cqcmNi9rcB87uwEtr4oQ9EpdC710YopMSa6SgI1Fp2O1MI3GrdPBMXm1fJX1Qu9q5bs93/H82QuSTzx+6wnHw0wMe6XuLqtE1cVr0KzDyxAVWm/0unJ+eUNbz6pqT3oIrcCbrvCHvjfy2See01zwrXN5tdHzaHjauhovXCOvEgVzkbV8o9Jcp+XOmrUZ5sH6CXNgXQvzwVMvHbPG771/YTpcMU+R26WxlUqKB/CO3KoOmm2iUVmBYDPLpoOJ2100QLeoKZwzUjCcFxQ450Ztw1LcO+U+zmWsWyNOE4cg54inE4LjMEtoWRvU3CgZWpGgWOlUC2zLxuFw5Hh1LVecSSz0AwiqJqnXFuDeoBZBgO/Od0DneJw0ScorfmfCmA2o3BAbxr8v94JYAABXpytd0oMXv2AI1ME7+tiMbecqbBu1VLaS8d6Yjkdt9HsDYkq0kqnmKEWONrm3tBD3rrUqb5nz5YyPkXVZsSiQt0fD37Itsp/XrM2y1AFnlWjszBFPqm2nQnbjYFMLCVP8bVzQXdda03sjN0X16ODSxJhfyDHo9mfU6fVwsO5/V5UtOHcxNixGiTpjquq6oh+1yfqr173RyxDuuhtuOk1JfZruOUlad4D9eznZ97u34dxU/LdvG61U0mHWRYsmvkHrYjj1MfQKNrCymg5va1a04LJCb/hpbJR+d5Dpc+8Z73kXV+j+UtF1Udpy5sHxSDA0+TKw6O/ZBR2HhTGVbDsIGXr35GHRD8Nxt8exei+YaUJPAxcH2HIcQMd8BFojzBGcx/cRDcuqoZXrdBzIx8QQRoNR6uSc2Zs293GT4oxDTNkjA33PyusiuUcD8prpFVJQY2HzpmhveH0ECD6MMgKxGLppuhoGRJaiOJ4b/J7dFQU7bHgXsPT+t6YYiLbK0SoXIz44NELW9BvAxoUHG21sKLJNb/TY2Va1ELkwxu2m/UQX1GGnGpft2OU2cdaHnV7xHB89zgnarR/ix8/RfugR5HgvBqeLfxVdI7nO1gO9O9ZxkQ+mNayakVselzePhSqoce+UxbGVTqp+xPEknBlGsE6wrqGRNVwIGPrcdmvki6DGBCiXDXeYxd72Wi96cVgO+Mkwq1Cr/tlsuK7m2qu3r7k+X7h5f2WNEBfHNHmoFdYL5gI9bLjwCJiI6cAbj+ALX4TnLwt/6x9+k5/9x9/h8THxpc8cmecJCzAlT83QDrBkWC+KtP3Cb3yHz//W/82Dr34vuJn45FP8kX/vL/DBX/4v+amnmVwa7nSEaebZXeMf/MrK44eeL34uiYNkHYsVc41UJvKy4l3BemB1EJsJ2ux3CH2gV4eZmvu0ZnoNPJJcyXMKeDf2Cg+uqMDjENWmtBZFi0LXEbz1SusJF3VyaGvW+xKQAwa7HzKoQEJrj43187I15ikwJ8e26f1uJoeMd3IOqvFRTieJEA7IeKchqgt+4Av8/eVZd2Y57wiRxqaGNJeG+KPonPeBFPUZK6WOc5hE0hgiKkrOahb2gdBVGhDTTC+VUhetp1VujjAJalzrEDXR5VBCkQSWWgW/3yPTpTdKE2/P3IjH+PG5M8MHSMmxnSvOvFyY5u9ZOWZ7RN7LUXU/kDXuo7imC2WmK85U92aFfaDstFaNc6uEeYeFqLKUrVBrIcZIqwUfxDRRCmA4OZuN6CI4r/POvuc4Opdtw5lSAqGa2GoDnVA6nNdKCo5ggxfVGxE9z7dslNYlJlmH5MEbcbhrvY3GXzOx/oZgEp3TWRajOaObhzqKO/xM3cRyzK0JVWFBgovzitUF7Qu1S8Axr8FhWTOu53vQe2+d7jyOTmB/5rSf91FiIgC0WKrOOcVwBy7Ah4AFnV2iCzRfKVuVa78JgN3N2Fqmd7GRVGE/YnudwdPbXUOO1vb9cgwvfNDgPkvI2pkwKbhRuOTltqkqm+h1vLb3XBuHG4UHgoTZOD+V4aR2Y6BlEu0b92cLmZvlKut0ShluvjZag+uArIekPWeIOubGoBTovYxBzHD41a4G0JrlLBrP2loztTISLkOsbGBd9z3njDieOxkcFD8z5/BdOBTXAAsSw2oh0+WK79q/rY14Wh9JG9w+fycmp7geRecDFyQm9Z2da/fMxFEFCl3iResFc7q/tMFLCyGIlzSeaz8+2xj0IhaeuYlCxtWGi41ewXuxh7rzxDHwaxi4zpkqQa17AmIw01eSh0sJJBdZ/UpYEyECbuPgHYu76K5kw/UeILrK7I0lFCE+gieYx2yj9EBeLvSayNXx8IHn3Scnzm7lxctf5et/75f5+3/jv+fttz/NH/zBH+aTP/qjPPzM9/Ho83+Qj3/tT/Dln3jG3Yfv8fyf/zy/8w9/jq//0q/wT5+/4FmHdT4QUoQeoEiobOjOrhtXvx+gtd6xEIn7oLqJOdar2Iq1rzg23CgxMhdIMY1B3RAEu+O7+fXdF5S8H44kPYy+qxkqD7hPDKP1wxwW5URopZB84FIy1TqhFe4+uOXm5UtePH/B7bZxPCQevvkWDx48kNshBkJKpFE3q0acjuuVyTzucKA41ApWoVonBo+P7n5SP80HwpRYLhc5Hujkmxuef/ickjvxOPPOx76H00mA7d46uWRi9GPi0SWoYGx5kwXXgaNBkBPI0ail8OGHdyx5o+NY88r57syyqnlNcZrO8erqPhJH7xzmg9q4ACyQ0sS2rqyjsS0E5bVbrwKS3dPeB0vC9LDt0HLn47D06sC/lcy6qDr4kBJpSngvPlIIskrnrLqH1gXCDQOsHGO6n0h771nXzLaeWRZBjo1G8k4TRweBytoKEYkb27Zwu24c0szhNBNjuJ/Aefo4UHROyTFPamGJiEmwlYJznnVdePr+++TaePzmmzx6+FiRjL73GwtMKctuopWFYzLWUnTR2QrdNc6XV2wvbzAaMSXiEOhiq3zlE4k/8vkDjx9kAY2zY6uO5OQ88hZxdsGbp1Sj94PcGK6Jk+SAimJ7V+CsEZZO4cKaF3wJXGrh99+7ZfUwPXhIc57nZ8XZjqcZaPdA4VYqrTqW0lhqx2N6XT266JAw7/HBkUIgOvBe0cJcM7V52qbN07VK6J4PL2KZzfGgTch2Joqe5zVXllUNIK1vkNvwveycCcPFiTCphaOXsVEHu+fcgO58fVTLduRueHV7y7ZmYkoSKtYFnC5prWcqTbbhNtx3KK62dbW+zPOReUqyQzvDNx0o8oDfNXQ4CqZJnF4DWfPbVgizIJpWG8EFsa/2tqnOYK7sk+NxaTWJTzkX4pQk8jpjPh7opUBIisuyu1bkJsh1gB+rHDAW92mUYjZqVXFoK5eV23fNbXKpLKWxrgtbXjmmmThN7OBniUnjEr+7lYwBdo/3jqpeIbeGmxNX8wS4Ee0b69k4jNPbPU+ne8XpVgTPLVtn9oHJB1m/0aTL4zQpdcNR2TQNjebIZVMEdsuk0xXxNKsQzEYrpVU1WozJVm8C59acSebJLtKKpqNzkoXd72KSyYFmyL2xu3XkRJToXlql1crkA2ma8L2Nqb8NAKoOisHL4ar4bVYF97islVyZpoNAnbUq3mHD7dL03535+/Ybc3JjBSdxZ8sXHXjdLt71IbTauMj2AYkerrzh5nEW6L0RQsRGtXrFVFgwfk6re9vha04ZDHcEpgIEZ7sGo4uFV0TPjem9/r1Oo+nS0Do2IMR9uEHkYBIryvw+od5jHkMQHZ9gHZZH9LCrmc2Z1yF/DCVqraSU9HPveUq7y6yPyZqGHbU31ZwP3gWm77s3cZofAG7n1cY2DusOoxeBV4M3rIkNge2NTo7JB12iirHlwXuywY5yRgyZvHYNB+D+d+29UbLDu5ll7cTJkUZz2xQjgU7eVtalkmZPSForvEkQqQbeKvQIVc9RqJlCw7eZ5ivVGS1XOGeSJeo49PeeNYyKAde8nDytjMiBuF8xTjx59xHlxfusr1bW6lgQE0d/ZMDZDDFDmHDxSDgZb711x/d96QkfPL3lZ//pU/6vX3/O8TDxibcbbkbR6WTEZpxmtYtSG5eD5+/+9N/nJ+IF+8qfI8Qr5k9+hT/+Z/81nv5XP8XXL556OcPpBMfE795e+Pv/6JYn1494+11Pcg1rYr34qw3vJtblQpqOuFJoLeAMgjfyYCUpKKLykGQBvOPijKVrmOOi+ENrM1pdNPC5bKwdWgty2A3zQnByE23VQS1aD7un5ZXp4InOsxToRGpohOGIaRi5MfaWxrJljtFxnQKvyoZvo6rZxHRzPYzBn+Jnet41RQ6+0nuhmMNIDH+SWkCnWS673kh4qqk9cGeq7S4cQ24ynNHWwrZV5oOcmX44Dcz7+4iWIs2DD+MDnkpeMyEGXAhyOeVAXjLh4LisHT+aYbuzsRYL3lyrIjnRtCIYjdZWrASi1980y0rNZgZBjgfrQzyqYh11TWPvHR3DUjmOdtoX5fBRFK9kOW/kqFChjIpkPDbgtG1A/y0YVj25QV8baguTw9YP9svu5Hfey0llleiFxbBa2WpV4UTT0KGWQreuAGbw9K1RykZwEJzYbyrBNGrPg3fZKb0y2aSzkUP7p3N077Hhnu9o36bXEQUP9CbHSeueMCJzzoy2O5z7Rssbxdp9mxfDVey9G597/Y3ePO7gcczkZSVXxSV396lECzeGaR5LaioNGL0ZVprE2uDkeveKFBbb4zpKSPSouHPbCq4beasoTqrIW84Z3GhV6xIMLWon031ZAlAtZTRABqz3e6B8sSr2T25Kg3St47tt2/ZhWhsD6z1eajqLTTEO543uDrvzu5ney1a13907ycZnhS5OpOtGKX3sn4Ldb7lySPNweWuhKWUMNowR+654b9SyD7CMQpUrpTXuq7iHjmc24uwjalmy9m16pc3aX+h6nlsFHxPyiwsgvjN3DX/vIr/HA/QGToPEhsObl+MsqV1wfwa24u7FdPGYbDiz2hjkKdauD7Si+s1B71XCduk6y3RorRADo3hmNI876JbwSc7Eu+2O0GUySN7wXVwl7/1roY9K8sOliCOmTi66P9/pZoDZxuSPHGJn8Rsu6mdOyRNoBAdXznHxhRQjeapcTQeSL+RJovxVmAk+cRWc2khbo6yVJ29MfOLtmVwdTz/4Jn/z//gn8D/9N3zs7U/xA3/kR/nsj/3LXH/+D3L9yS/w6Ms/yGf/2L/Pj774Ni9//R/xW1//u/zcL/wqv/rBC37fJ7IXXzR0R2kbtXmxtTz0Mj6XQ7iMXufg7uIYV3WsbzoPlHXEdwOXsigqOPSB3dz63fryP/mTP/ld/YZ//X/76Z907HyD4UgZMQyDMZWUwubGRuaHO6CtGx989Jzf/+1v8Hu/821evbolXl3x7ic+zcc+9jYPrx9yOl6T5iNhingablwYukmIccETXIQqIDLDdeOGOm+IDxGnaTxUhcvtC56+/5Tn33mfV+db3nzyJk/efZsnj95gnsVv8SOL7oOX5b5BiFEHiCbOC14ZV8W0xb0oA8xcamHZMi9fvuDli5djMhLGVCQQJ/GS3BBoYpwGmyGKm9EdJWdBZndHwL3wsjMcGFwHxQhwjuWyjAapSYIS2hS25cJ6PjNPE9fX10xzuncb2IhPl5I1rXHgYyTGiRCjLg8m5kltnctl4XI+s6wXaO2+icrtk7k+NkUTlDGfN4ozTscTUzpgPo3Jszg+gcZVMh5fRR5fT3jX6fWO2rT5tdp4//fe4/33n3F89Ii33nmbeZoV6fJ+8Fv2xV6HwIix1or3gtJ1q7Sy8erDD+B8i80Bi54pOoIFPnGCH/0cfPVTlZNbqHcb693C7d2Z5VzZzmdut0rfBPfc7la2IsGkFYH+llxk7S2aTExx1BbHTi+dHJT9/vaHC9kljg+vuFsqz2828lbyLsglAAAgAElEQVRVh0vD106txuXchqvIQ9Rh5O4ui/3f0HvsAiFEKerB4WNnoXKbG8vmKVWjlaVuZCRmUY3r04kYNO05HZTV9RapJgixalM11QlT4HC8ppXKeckcj9c0M+YpEsOkzHqIxJjkOjHUzFMbtQ5GVc68ePGCkuV6aCMWVAFMomHZ4dElk7d834q2rAvbunI6nZhCovsR9xyX6x2871wfEbfGVgvrtrIuC1ve2LYsscs80YtPhnfEw0HulxAgaMKZ64Bpd3EoWhcfK0xJzCQfSHNi9gE3RepwTDjnyWullco24N82AM4xBubDzGGeCVOS4BgUlYgx6XdA7/9W84jJqW1xniamwxE/ReLgsnin+FdKUZsjI7MeDWuqvs3bRt42equcTicijmSKs/Yma7sziXbeBf2+NHyKGhB7z92rO5L3XF1dCZwexqR4MClwDIFGa38wNZo1Q9DobhwfXStKhizPzdS06X0YAgJ4Z9RRf1taG0BNXRBOhyNhxOUATW/C/vty7/jpY4ihZrPOensmxAhe0zDbxVPbmQia9NE04WtVfC7BUKFslel41ISojWY4D/Daou+DohY+hGE1lijogPPtRT+3Nk3uhwNIUTPRo0IQF4oRQdwrI27vbjkdZ07Ha72Ww7nWTKKnDfGjlEJpldy0VrThOMvLwpQ8KXpiEpPGnBPDaoBknbkBT5dwqqYQHT7dcGI4r9ctuMDeBiUT1IhXDgdfa1V/1+CZrMuFlCZiDJjFcQjU++OdRJa+R+dMBnoNRfQ5ulwWXYZHtXEMk2IzLgxf2WvWk+mjNZwdIjeu24YFOSq8eQllIzoeSEO40wFLiRPF1zxGCPrnpSiKKCOdIzjHIckhbMGYUuQwGVMwUtCAJMaodfq8cHezsa6Z80UcoIqa8cpwcVSr9CpXSTcx+yw0LK646GhbxSVNkZ1P944+51e8TQJtd0V/rG04Auajqob9xvLRyvHBgdNVIh4DFjsWE94n8IFeL1qr/YxHTlwfAs9fFH7rm8/w3njzDc8c9feq7aeRafhmEmi648Wy8P4//n2+7/sa9epz+GDMb7zLm/ED/tmvf4OXPWhtiBFziac3GVsrn/jkxHGKkIbLLzXcFDDfKKWOCbEfBQMd2bTUStTxtCKWTMSIPdF7YDlXDsfIlBQvrKXgcIRpkiOt6/2MXk6PXMoYDAkq3Eojsw2e2XDNovj2lDyHFJiSG0Uabpxp672wM02BKRmu+Ndro8mRZ+NRM1N8peMVu0JFDbrY2msepnNjwKE1we7dPHKTHOeZ6L34Rx3caO7qXY63bV0IPhLi+JxXiaq17TEV8GFUVfuABQnVrWRarQRvKgjoap91vg/B2g2t53VTUR88R3FJB0zfFAXWLEjOvbaL5zDWA7lDatF727o4L7pE68wj15LwCXsLm/ejfU/+jPvXS+K01qfXVfJiVZkbsSf0tzUlK/WejLvKHsTRC6q/tw7xzprDu3AfIdE/q5Quh8qcPIc5cDyoaGXJeXACUYkJen5bMZrfmWqGQ+43IbpsuHI6wwoyINQarMFwDVMI1kjm6TgxEIfgsEfaXzsV5JQPTmflvVO2tOECHVw7uUnG3tRU6IG1wYNT5Mi1AVAfd4atqIRo339bV6lB8k7MpyY4dR9Oot53v6bW6t7VyIcFwaB3B+CInuuMqqRBrw0/XszS1EJK1evS62jUHdE0bxpY1lbknHdy/6LRDPetpENQrVWiRxjPnDApVa1cNliOjNdE2xjJi11I036pUpndxahkRhlFR24ohxJyu4Y9znDeSIeAi446Bsa1dzUz9zFIabrDtlolWpmclbtztzKieePzM6BlchoNkTLEEefqGv+EEAhhEk+0yGmoqPowfXUjhCZ3NshlNYqaXg/wxrnBawizC3LBR2pR5NAjPEAwz5Y7sCeKNIRqI46HE693PnqmmNh6ZttQi2c3conULrdoHpy33h1UDbsaRoEx1FQ02Uxu/e4qS66sW2etmS1XRtcLDcN3uZVCdKSg6Ju5BjHgWqcTB25lksvPAj42YmiU1bj7aKWsG288SHzusyfe+fSRS3nJL/3CL/D3/of/hQ/+1t9lvvs2j999i/jOxzk8+QTHz/4An/3hf5Uf+omf4Me//4t8XyjMz9/j8uEN51IgeFJyBOtKcRV7/ZlB+05wciJOUYmkENQmaU6g/dr3ohPB5mtRoc9f+kv/8X/y/yrq/H/4+q47lEDiQxstE81kk7Um0FpvEpccWnS2cuZ8c8vT95/z7L3n5FJ4cDjw1mc/zZM3HzKnyOH6DXzbBMTzmjbX0eDlgiNFj+8dX2VB31wZFtXRZmbKG/pjJMTA3XLH5e7Cdl558ew5y7Jwdf2QN77nk1xPSYdWc1Q3dpasyIv1fj/pxyBvWV4CpxNsrZV1LQQztq3y0asPKeumJozeWbcNatWkeUyVaYMvY4IbhqBDrndSXUupQxgZAFSTmuu8hAGz/cAxLOBmbCWzrSuyFidSmMaho3JZFmoRSPPx48cc5gN5u9CLxJbdeQWGi0lCGnuV6g79NepWxYYaTo2SM70LHheTMry+a9E5m6B75dWCxcDVgxMWodSA4Wi2UUoj9M5VSjw8Bk6zIwajtJVty6Qws7XO8/ee8tHzj7h6+y2+8JnPYGUTa8vkxFH9pzYrb46UkmDoJUOTQ6eWjY++8x3y7UuuH13hriZaueCc49QT3/+xxh/+cuA6NTIreI9lWDCKL5AX1k1QzzVn1rrgNrgrmhD01jnXNmpTE9003Y+t8eoSwVbOOG5uN148W+D6mvl64u6yYpZ499ERs8bpGDnOiaXA3R2cLLJ0COZ5fj5z86rSvQRZcQMiLpjipojFcr7tLM3kGDKDVuguUvCspZJS5J3HDziGQHTi/1TfKGWG6iimavWaq77HmDy8enkmN+N4/Yhugbevj/hJjBFr+wblRyxNbTDBRcw77u5Wbm9e0W1UhKfEFCbth17uCUauOedtWDSNXspop4Hj8UoTL3PEkeNPYdLPGwdaGuKgrZmtFJZ1kROlNkIMhBhIPhGCDr0GUBstt8FHaGIk1fr6gGqdsq5M81Hi6+CLxWkimBdTo6x479lqo3kJCCkmWq8sWyaYHD+9VKpXK0oYB9sWHFaNvCzUssgpNWCabXCL5jSJXWZDBLCdfTBhPtB7AY/W3NzIJd/DVZfzxvHqSj6SERlzCt+Ty6aDx8jz7wCBtWwkJ6eadUHA90v21pumnl2XJRq4Ycl1zrHHcD1wW88cr68k2rA7CAUk1gx5HAqiu58sNjrNaeJ0vrkwRfEJ9lY/zAi44Zqp9/ycPhxH+1rdWmOjcTVHaHLeuXGb7INd5AfHBgZPrxas7he7TkoTDj9g914W927DUTdEiAG6drtI1N2INwqwafd/V4MmJ16vVQewPiaQBsEFQUVbVcSiK2Jcx99oXdDfahqiUPvgaw33rDFiIOC8UfJGcF6CA/rsVBThsNaGQ0o3Kk+4v7y2ojY0FzzbsuJ7IbQoBpJefmDEQfYyjSoRTqXpDNOSOA8700otpP4exF3rAMB3Twj2+nLauReJqsARI5LYx+vIEJ0kaoZxYaL2+8tAAbmZ6PeDGDkdithJTTGO2atMxLwN1pjex1ILdEXZe3PUbPRgbBTYKtFPhG5iHAYB7X0Y1b1d6/A2mjBzm4jeyDkzV7iKlSlAMk91EguYPHUrnC8rywvFch/MfYBwO5zgcBT8v1Votwf6caW3RPYZsyAnhOv40OjRc3p4zeW6YcdIOxS2VgklwrZhYcK3M45Z4u4EbCdOD17y8bev+dJnH/GtD+74xV9/xpMniT80B07diE6fC79EYuocykLeJDB8kzM/81f+IX/0L71LvfoR/HzNJ3/k3+Lf/b2n/Ndff5+XA5brQqScHvCPfueGj7258MM/lDgcoPUVNv1++VJZlwb5gjue9Dn2csNtuaMuFEWTrQ5mWmhYF+DVeibYpFYrl3AUrHWiGclvrFZYu8flmW6O8i84Pr1vzF4xriVnyrni0lEuoQqdRh3r8uSgNE/3kSWvnLfGedt4fHBi1dUKLQ0z1BiAOkNpphFpcNCZCSFyudxh3lFbxofp/rzXpFzcx71xje4a3Sqla+Lfd8wAXWURDS61cHt7y5Wpqdd52EobQqpcXL13SstyGDhjipG2bmzrBv2ChUjOBdcWOpV5PlGGKOZsJBRao1W5LdxoecqbgNG0WUDmpmeJLhe3M5hSoBXo3li3TNmy4NsMYX1wZWou4rGWglXD4nD1Ool2wfsR4ynjNRjrVN8vm4P3o1M7MQw3B6YBlw0H8bio7d/AdVM5Rh2Act3ZBzx5OJnME0qWkOgDvhvbpdIdTDHpzjCG6W64oXwX98W6HPit7mJJh5AIFigt03IZgzejli7+TILWOlPwBKfiIlcqAUc2IySHlfxatB8RpOqgNLEPXYfoA8n07NZRXDOFKHpYrfeMwhCdzol0iI2YwgDHS4SptVHXhTQlueO6GJ2tqvm6bJnax53Jix2qe80Q/8xY1pXuPFa7HKU2nNCDt+l8x8eoRFCTeFJrYaXRu8TFySWJu6bPaMttFFIoqji6ghUb3IcILiiRiVc0fAwVuhsM3qZ7WCmCjwPjGdRe40yX9hAcrosZ5p27Z7zSg84JfR8CaVrvgwZZwTm1d0fwIdHqQt+MmVGUs8pdv0ffzSDGKIf22P9bbUNMkNu+t4pl/f9AznydT8YgwwzvZUSgvWaWSlDU4KRbkzszOLbLNlpsVTzRmu4eYVIEzgXF2ErtSrcM97ceQDmaXPfkvLeBe51Pzci5YnhajOJ5Fn0uXIQpRqUS7IADObG6Z9k0dM21Yc0UW6MTm1GdGveyQfSV3qti781TLFCazA7eHL1G7jaJ0dU1lgqhXJhj4eCDnFBpxbnEZB9xcAcsvuIQArdT5uiNGD3XR8/0aNK5de0sH1Vo8PEnB774hRMXN/PeN77NT/2v/wX8lb/KJz75cb72r/wp/sCP/yl4+zOEh3+I+Ae+zB//8T/Hj734Bi9/5R/wT/7O3+Znfu7X+JUPb/iW6/QpEsMVfWsaEHsHFnCuE0zn94Cnm1xlFU+rSZzopiIEaLTmKfse8l36+q47lP7m//63frKOKQpNEYlaZEe2cQFzDi7lwtMPnvI7v/nbfPu3v8W6bDz62Ft8/FOf4J1Pvst0fUUyz2QBmw7k9Y7tskhl651t2fDekYIDy5RtPFCmeMFpmu6V+bKuLDnrw7utvHrxkmff+YBnLz4iHq/4A5/4Hh698ZDTlLA0LPddE5xexwSsVVlm0UOG0zTMHGy58OLFS5bLQq1yI7x6+ZEeSOtc1sxyXhR/CIGQJnETfCLEieAnfBgxMpNy3boNUUych932j5O63sdUxjmp4qUUlmUjb1q4p/mID4F5OtBRxGw532G9c7o63UPMW85M08SU4nA5jYVk8CzEW1J0I6/KaJaiy2IrlXVZWJfL/eFI2d5Kp7J541JWtlyouRAPkXDQAy1+xThQjCjC2w8Sj0+B4BvWM60WautMIfHBBx/wz7/5u5if+NwXv8h8CPdMmBCdXpOibHMITvBvv+euM5e7Be86H718ys03fldskjdOpOhwbcPHxOceO/701ya+8nmPrxfWu4XlwwuvPrzlow8vnF+cuX1x4fKsc/tq5ebmluVSuckrr7YNgLXJoda6IN/4zhwd1UOLnjR5Tm9N/M5vPOO2eZ68/QTnJpa7Ar4zxZngIm89OHE1J14umbvVcG4mu8xlabz34S3ferES/JEpOJIP9FCJk8eFSG2OdTACmlzjsrHmRkie27zSuvHw+prHpyuuUuCYgkTe4Af8XRf3XAHGc2tGrhsfvVwwS8zzBNZ5+PAaC2LLhB6Y5kTwOgDsETJDENHbyx03Ny91uEEL4XSYFJ8Y7VIihRp0bY651SFcZhzGcT4wR7WxTXFG4WodbKrrhK4JXKNSto1127hcVmoeufYUiVPkMB3oYViWg8eNZrk9/kRDvIIYCUGOoW1dCTExp0mOGi/xGWeK4uVKQodNA0rP9FbZWuZuudB7J81pAHb9AGB6AcaHQ7CXlVwEM1RbkXhPuWSuT1f04BRDC+LSdGeyx9tr1wc01lZwo87YvOf86hXhMOOnhI3JlMPLUZcl1ukgoSmrmVpmSu9MIXB394o5HTA/JlJtiApdFuuALrku2OsDTC3c3t3y6tUNYZ6Y5llzLFnR5IwBXdZDgCFMMLL/MBg5m+z7lhJhODtHKBOGYK002V5MAHvExPvA5XLBvGcar/vOTxKo2ZPCaMrQw0stmv7JBtVofSOMPaUNRsG9xaCJCRHG+7H/DvuE3Jtnuei9txgopphGGEOAyYfhMrWxZ4iF0MzAqRnmcrlwPF1hpliiHhEJUC0PYG3fs/EjZmbj8OzhcnNLiEHtp9HfRwNl3df71Kzfg8GdM3rdqCVLEEPQ1L0t0vaXHl0C2tjfu+2CFWMa1si5ULes9tRpHg6kjg9at/f3CXTh8yNyLLeTPs2lZrZ1w3vPPEDyXl3fihiPgYKSfkZ1DIi8YjDbutBLY4pH+lDCJEnKxWqmynTnhHkZ2Tn6cIla1zNRmqNUR2sOFxKYF28u7eKCiSNYnYo3tk4xYzqesGbUPFyOZCYHiUaMcgm44MGP9651trxxyRs5S5hzvuKSJ54O+EmTUx8dPWqwVnvBuQkh7DVNttbU8OU6OS88/c1n3H4E5Ww0a1jZ8G0ZDreMjw+BSu2ZnjfaIs7Ly5eNb31wy8uXFz72ZuD6KspdQqOvY92xyt2qM48Pjt/64CXv3j7j8fe/A/0d/OHEozffon3z1/itFyox8VOiO9jM+Mbv3vCpq8T1Q8XpQK4yZwnvJrrLWGn3DrbeFd+nag12vWNOQOlidURBjHA0nEvjWZVzu/csUapBq27sRTrnuN7xXU5sF7rcm+ZwXsL+lsXHWbfMtlRyfS1Iu4EocOZ1GfKeV2vmEI00G3XTM9aqJu36sVrD6LqQty53n7lIzgspjHjniE83k+C5F6Hs7qIpRryXs2EfCurIKLl+X5PP5zPD2i4Wj5PrsIwmy+iDLrtmOIvEOdB6oRWnUhYnl1DBsWWte4rSjaILG0+WE3fGGqSUOMwH1m2Pr7X7dQOaBiGm2BYdzIKSC7xey6W3D5Ga/RkejBFr92fjfaBoYx3uYx8pRf+5j+9gTXFkXZDHz/KDjWfQTCK3db2Gbm8VHWebPSpoyNWCQ0K160Qvt0kucqrj9D1SkNDhwzhXW8TPYq8R5OYx61CrLtWts2WxrizowuvMCBaYU8LRuL6acUFO/HXLgx0jdxFOqIzDPBH8+N0ZTrCuwHIKnsmrecuN/13yu+JgzotD54G6bTpnUXWO8B5rxuVy4XX7bRkuOMHKzXm2LJfh7rYz8/fNUwInCzxcRoFJrhlPHS5tw/bt1rTH5bwJum1+fB4VO5UbqENVSY3zkRhn8raq0dKrEMSc7ou1ljGkr/RmLEVrgjmtonj9/etaqKWzDZxX74xz7cATlMyWi1zkY6jpxp5mXWcjCyM94MJwBrvhbGuoJ64zpSRxHLichaRYto3WhCFJKdIp+DEExfYypobRmaaoJ77JoBC9pzmZDHasQW2FVhRV1DsmQctHYyuvC2hSmFRWEBMGrMuGdThdR1qHbWOwKyXWqOtDRUZyYcp93nqjlD4GjEM89x7zQSxQ2ogdSmTiX3hZLmvBu8C6OUreiCmJP+uB4Gg90pALu/dA7UbB2Ma6Xiss4w5z3hp9Eb902WDtmW0tErGzWqtrydQi1yZ9FBJYYKHSS8MVuXPng3GIMxaFG3HeaEHJpVoEez88Cjx8+4rjWwewwssPF14+fcGbT97kyz/0mC/8wMd43p7x9b/zc/zMX/ur3Hz96zzIr3jjnUeEh+9g1+9y+NwP8Zkf/zf5sX/7T/NnvvoFfqCthKfP+PDDF9xwweZEiga14lolNyjdMC8xdhTbol4lnTF8Gvuc1774F//if/T/X4dSbYMNUeqwp46pStDh4/zqJR++/5QP3n/O5bxxevQGH/++L/Hw4RUxRkJVsw/WSbtjZr3j/OIGzHOwIBdGEt29tI7vAe86pTlCisynIwYcnBsug4hbzjx9/z3uXr7Cu8TDx2/wzoOTXuChVNbCiF8bgpxqIuHG4blkWSsbcvvkXFjOF1nvkxwWr25f8fLlR4qXlELLhTDNHB8+IKUEHbYtA8oxeh/wIWk60vepk/gXvcsR8C82Ajh7vSC32tnyhVqkdIeYNLEPY7Gis+aV3hreOqfTgXk+DNp+UUuEOfA24Mq6zDXEk3F+NI10tXGZ1+/VeuX21R2X892Iwuh36gDmyG04lkoTLG4S+FwDpB3u56BVjr7z4DBznDtTMHoVfBcnlsnty5f8s2//HtfHE9/7xc8T5yN3d3fQO2HSNGyPW0AhF3DhgHNBlYqsXNZMPp/56PY52+WGhw8fcnjwNt5uWNY7rszxIx83fuj7jwTL43KlDcBdOVx3HC6dLasNp6c7yubhEhQHa0BznPtKLUZvkTwYR7k0aAusDhK8+nBhbZmH77zDdYTnH515dTEeHK/GobdxdTK6bzxfKufeaMlo9cz53PnmB41Ld7x5ugJvzCHRSidNnkxl2zK1QK760LZW6RSCc3QPl9w4zEdO19ecYiS5ziGBa5G1F5beaS7R1krpOlQxnBbLtnA5C8IYoudwmAhTwrpcOtZVk+3ooxZYm3EdEbe7u1vWVZBxs85pmgXhvvcHOVVhJ08pK80bdanDfSHQbToc8Skpwho8pa/6TK4SmFtrjBLVAVbsA24KaYqDQeF0EWuCTboQ9T1qG3D/TuxG7opaSWjRQTyGiTRN4/Ao0bl5sFLVFuVsTGQza9NFOnvHsm6EBsfDNKaJHhcPWFKluNlwKfRGqWoIsx5Ytgtblpj28OFDueW6wJ+uoan3aLXr1mkIfGil0MfkZq2ZdtaaE32AXIflXG1DzRp91MFyf0hx9+yo5AMf3d4yxcO47NiIgPRhtUb8GqeGKk9QzLMDWTyq1jvHmIjjolMYvI4+svteEQ1yHzwI6K5hNRN652XOxEcPB9w2ULsu+n5SbCWVHbgvca/TX8M0uxotHjx4gDNNJfM48Dnr90K6Wce7QKkXMTkwnNX7iXJtml525CiquYvj4B2x6+e0cRhzZveTyOrh7rLoENUqKSjnXvtgW+iv1cVk3IfcWP+pjKjlcPcMuMA+OMeJFbbkTRNC9ki0InDJBbauaXaadPii7SwlsZMwwHQY8qZLp7eOT1pH6QhA3XWJZ1ykWumagOvGNURCxSJUbazPpHkoLVPyPuke0Wp9FJBoOAzz4/2wIdb1ER2NcSJ4wUD7iLc0BFLeT6CKh8De+DbKeuRw8Ilt3VjqQvJJEFoivXu8Tip6XYLhotG2NqbKOlgG9VBr7+rgo+GCY0pjD2LEabaGzXG0yOlAn0YVs0VHaUaIkHzUUMY6pXWiM0LtmqiWSi0aGHk8W+2UnGnB09c6snyKCgQ85iZaN4JM/tDV7lJLExR3moku8canJrZz59XNheYCth1xV5BrpG1qugv1AvEa7y/Ew4kHTxofvzS+9KkL791c8+33bvjFX73l8eGKx486GaPGC6U6rBmTNeYQuL1Urt+44m98/Zv8B5/621z/2BOM7+HwyS/zw//6n+Bb/+1f5+efdfLdRrg+4prxUSj8zz/zAX/+0bt8+tOJFAak2xr+AHOeWbfC5QyJE9GpzWexNqCyAl/bALU6VHFe8EzAaujypwVL0/s5YEvRebVLKNEdVc6JhmPyDu8jB6Akz81SWHPleG3Ulii7KNVHiUOA7Izgk75nN15tnatQORwK53OnWdSZqo+YrxkF8ef87rq0zjxlLDft51GXNlrFh4NEHIPO4P9UCarBReqo896fIW3jxul0JMYogdo70hSpbTgEu/ZMwzOFiYNJpCy1kNLM4jL+4qhbpcUV6x6ixAnDWNdGcwP8HxwMJ/56WbQOmnE4JRWxtD4E4LEIjDW6D5eM1hC5ahqdrQrwHZ2Bi9IFu9YLRVujnI9uOPlbx5wGKdu6jKKqSifi2igA8Pp317IDqsM464vd55oXc7BDsYJvVYKEmRpc2dcOvc4OCZsxRHpZKXWwGmnkrdJ6ZcWrNMJ05vG789KpAXgOEBOsl8ol7zgN3U9Cd8R4pPaKs8p8TOTmWG8WVueZg2MjUFzHNc/khnDnGn6K9FzJuY9LeGXLZ2zSAHJplRAda95wMY19vJGzI7fGOlwkIU4SvZAbpkePBYdNk2JvZcPFidZGeU8r+KDSGjks5QuK0ahWITqianhgXL1aqxxs4FKaxLXuhpA4GFrWg55Op5KIWgq9Fw7OszbDBbmADylxd7mRE4chMtleIiLkwS4M1SZgunNyp3Zf8S6xlRXznYiGOcErEVOrxKvSOrgoUQbHatp7am0055hGtL42bUjOIdcrYhW1EQ1P1rk7n7Uv+opz0FshToFKxXW1TKZpJtciN2CX6Ndaw3lF7iXqNbBC7kJXpEmv8e4i3vpoOq4Ns4p34IlE30k+Qe/k1phDlIPPCqVEnOuULZM3BptohPKN+5ih89qd5+RJXciD7BoFFQcdwkTOEuJ13e1jzdbfNzlwYUSHS+Pl7YVaI9hMXRS777WSfBjQb2jN0y0pTVEz9+kdK6QIdS0cvCc7sT29d4QQCX5FoPorfNvw3gYuplOGAHfOjWP3bFPlXDPznbG2RkwrRxfxVjnEA4FVDN+wkc6Jmxswt422bJimQGbi/fc+5Bu/6Thd3/Cxj13zpT/7hNrhd3/zW/yP/91/Rv/L/ynf+6Uf5Kt/5k/y+Ef+JXj0SdYn30v6E1/mj/74f8gfu/nn3PzsT/OLP/03+T9//pf5tWcv+ZZNlCRUR0DnwNo7tfp7B6q5NpyYAaNQuwwO382v72ZbfcUAACAASURBVLqg1LcNglGcgNy1K3Jx9+EN77/3bV599Ap65MHjJ3zPFx8zT4lpmjAXCaO5I5jpANoFgm4lk+YDLioDDJ2ApkHdKq4Xlk3W/+18pjq4fvAA3zsfvv8B73/nAy63t0xXJ5587F0ePnzANE0sy0LeMi7Ecfh1dBPctNaGdUeuG2W4H7Zch3NoTJJaI51O5Jz58KOPuLl5ybpo+jPNM6eD2ESyeq5cLgsxJeX3LY5s+44/1pc5Gw1Wmr1AH2qi7Jet22DOqHkNc8R5Yp/KeK9ca0eX+LytHA6nkQdNYn8Ez3Q4jCkZbFkZYXMenxIphKHYN2pXE4bD2JZF07GS2baNkNS01Eela0eAuIZhMTEdoqZwXoDFZLC2jo9G7JkHp8j1SR/uMKZpzWRtPr+65dkHH1J64eOf+RzzcWK5nNluXgkGDNQ1K2+NgIl0h3MT0c+s23o/8bh9+vvc3T3jcPWYt956lzeuI5e+4W8yf/STD/jhrx2ZOXP3/MJ62VjyHetd0WSpaXZwKYpwrsVTrZGbx5fOYg3Y6C2wdujVyPnC1iAblAa0yLI1bm6f8+DBI96+foPbc+fpy4WFzPXVFUvPzNHz5EGidePmrtAt4Gok18J3bjLv3xRSnLh2ATc1jkHUoZ5g6XBeHL37+7piZDKnoLxyrpUHV1ccToGj77rWd0V3trZpcpihtk154hFn6s64rJmbpTIfDlwfjhwOh+EEGZ/dpsyxM2V0Sy2Uranidt1YloWSy2CowOFwIAW1FaqBUDXfZbjZalXURBwbRVOOV9diDAVFk/bpVuuVNCVKzQJqVjkuSmvcrQvbmgkhcnX9AAtRE01VZMCIKNEbvfTBrqjcravYSbkQ50Sjc5iPTNMMGD6JHdSaqA17db1zjvOWaWXEQf2I7ZXCaT7incfFpLYrL3edc0YIaTi6xEXwHmpR3K61wul0Uqa9j1rfIf70sZmr+tZorZLLqrV3OJusw5o3rh89pLnBO2K0nDTZt11HglCTZ6iPaDFOUbJeKi3pktXrfllhNBXJSYMTS8SK2HW9KQrWWuf6cMJbYKsQohFHLLM3fU999tpgb4w1cUTncs34FEhRgHrHsEwPYaYPUUoW++Gecooblda4u9xyOl1pvWoSt9wQ6bvb9xREYd8b6XYHEI4QAyVnNZK2wdvAiVvhZCNOYRwo/c6lGLGyWtW40do4ANpwAKGfM6JfdEW0rQ9H1v/D2pv22rZmd32/8TRzzrX23qe55zZ1q6GqbMBNbLAxdix6AhhhBEpQGpIPkIhIkfIR4APkTV5HeRNFiogSKQIEKAJEwGDTmMaxcYztomzXdVXd9pyz91pzzqcZefF/5j5WJF4kqS0dHd179917rbnmfMYY//FvTJsxcPZtVxLRcUaiHbJiupVQKklDUNjAaLLy8f1FKTkpZCzFsdXXRvYwvfbeh+RP3geSkBgeXN48bRvvT8BWCErQGjtmMaHCwDpcElv5akQSWU14isCR9sho+MJIjIK+i3183Yq28IeU14wc82M9DE2gcxjDRZgU7mGM4QxJFHxs6OmSEJTLRi3OKStpL4GkTzGIMdsbZesky/QymDAufyN3YzKBpGUkI3oreDGKOXVvTDZjbeMUFYgQ0oQNKUK9XlWTHJ4+P3POkNNEGvT0kCFZo1b5n4gpkTmdmsyVHVIOkJz6cKFGiC1iORKSJLk+3er8C04wvW6A4IZbJp0Sz99/wvpyZV13ptOFJdwSQyW0QiwZy4ro5vZ90vo1OJ148pbzlS884cvfLHz8ycrP/ZtXvPfixI/97rc5pUjLkXJ11iKPKyLM2am+sz9b+Kv/67/gz33uBdN3/yksvsXnf+D388f/8G/y4d/4p/zqutKvBqcTZ7/lV9bCX/0/PuM/Pb3F888lTkEpZtYLLUeWMBG8spedakofnHYIG6yzgydy0cbZJ5hz58witlaY6Dc7ocDaEmtzvHRankZEttKAu0d6aOxdLK84QeyF0vIAeTK0B/ZN0lTDqCbJWZyc4p3tUgkuVkhYJlrfebgat9PEzSlw3RuYTG5rFfARzWV0P5g1OU/4YbbbV6iSFlkwaAXGcBRSwtoOUcNpa5JXip0ZH89qwmASmjHPE9u2s6+VeVnIKRFiZq8ym66+c46RyBGgkYjeyXeZ7ViWtso5JMnCuxOCnpu1NWKElCSvClE9Sd2uj5LtXitbuRJzxJjwDnPWeWfZqVWpWc11PkayIsh7G8xCxiLAmIPOgubHtZOxcQcsJPJy1rmOGMatN7ol6PIkMXywQxXgQ4ykeNIp27vAE69aFNJIAc6m5DsbVhDNK97hlA1ix1qmjv609471Riu7GFI9MuWTen+TN6Axw5Ixc3JwfJnZ+gatUke9spDAO0EnBla7mLZDxrvtm85dgJYoQcDKkhbJekIfA6SxXYq8X7r6PYsC5EII1LozpzzMmwVQLnnWZ7jvtAZxylgFaiMHLaTDWEDGPEEdhtc6utj3XX0GNoC84bObBqs0qH7EHJg9gkuadV1XugVKUV2OXSDzkbZ3ms60spNjYLq5oW3O1IQCTjlR6pXWN7DMkTQaxsKi9kLIadwzM9RCtMjeqnzIzKh1lednd0554pSivKC8E5iUqtYiXju1djZXWngRRZfgjc0LuH7nzc1Mo7L7xrxkehsLz5ggJ9q2iaGKbFD2WuWNE6KkoUE+iclMOlFRAckhU+vOtl7lvZSS3uug+JYWFMRAJKdILeujH5uYf5G2FkIQy7t5I6cTORt4o7dECA0PzrbNFO9Mi/p1BkSxl0JzCCUOqW4nxUywwM0cqW1nWSYu1zFrIBZNCPId1YQrv7CEziILATn7i+ndEQMnAr4bZjs5JFLoWBoG/H3WbNyLWJNV9XF3p1CZouO+0ZpRTCy/Pb5SOMju5Ljjm6TvFjJL3Im+k3JkyYn7KMA6vXKWurOcgVSZw8RkKzl3JS9aIk6d7I2TZywI4FxeJJ69d6JV59v3H/Lhz55JHvj8V97me/+zL/CwF375F3+Z//G//2mW//a/4fu//4f4wZ/8M9z+2B8inF+w3f12pj/xPfzRP/lf8kde/wr7P/sp/uXf+tv8nX/w0/zMB5/xmxj7KRMSRJcvo5MofdQDQ4u00MaE+J37+o5L3v63v/k3/+Lh6bE/3POtb/0GX/uVX+LjDz6CMPHs/c/xzhfe5enTW5Kpwcw5jw9rIkd5ebgx+O6KUTwvJyw4m1f2Uh6jrN3FHJqnidPdzUCm4f7jT/mlX/gF7j97BeeZL3zpSzx/6wXTlKE32r5pcAqKA2ze2IMo/YolV9tevbJ3uNbO2jrrvlOatLpbLXz62ad8/NFH3L++p9TCfDpx++QpHA9Y69RSNQhPM2ZR3goWjp30oPyLQilDUxXMEGU2e8SdX/eNba+U2th2bQxCTG/8olKku/NweaCWXYbbt3csy8yUp8fDFDtAK10/G2itxTgMh8uwEhHduOz7kA6pGJeyi+nAMQBqMCqtDtp0xFKGELA4EesAityZgvPkJvP+8zuenCfM6/Dp0OZgqzsffPBNrq+uvHj3Xd597301T9eNFgLLlLXFwJlPs2iu6MCIJBmht0apjcv9p1w//RYendtnz7idE7fnTFmd9+zCn/9j7/Gjf+KGPO0ykC2FFhunJwvL3Zl8eyLeBNIcWZY78hLoNmPtKnS/R7ZS2auipMteWdfGtcJ17VwujYe98s1vfcJpmnnx1gt6DnzyaeP1QyfOiSlnQp95/izy7G5ivxovr04hsBXj44vzqx/vvLzCkjNLzKRsnLLYJVsJ9DBxWTt4HvG7ksRgQSla7pAiz5494zxl7uaJOSfmaWItnQ3piffi7M1puqKP9+j9ZeW6FfK0cHu+YU6ZGMLwH3HS0RR4p+yFddvZ9sLDw8rlsrJtmwbxJL+vacqSiTlqYEZ8sTcVp96d67bSWqH2TsoTtzd3zNNMTtOg5cdHv5jz+YR1Z0raF9ZWMND92OQLk2b5z3htMKRzMSkfvjcBN94GiForhMDeBYB1BPiclhMpJvIko103G3IZAcCNwSSoGoxXl1zIt8LN+UyeMqfTSSb8IZJTZooTeaSRmA9CvyGqbTDJr1pjWeaxWRsJUQPMG6OCmv7xNEgTLpYIMdD2nZvbG0IKZIvDwG9IM+IwKLWEhUgOGQ9q+PrwLLh/Kalbb8NwETUdR8yrRbHFZIodRtqWtm6lVEqvxJyGeXYkuYb51qqMA1OS7MPR/1OrjDjNBe7dXxRPPSQpTiChRCZzqHWnqisbvlY6T3vXYuB6uY4kQLHnsCGVDfYoI/F+gByNYIGKvIAYoNA8n2RU6840ZMgpHD9Pn0UY6SQ+gJ5BxmLbNlqpaliCQJI+pNtHUl0c10zFXp+quc7eNoahZTlpSLTD3LSNZ1wMTW3DXXLBePh/KOL88vo186TY2ClnDsNymW8mgglYO/5b65JYXh6u9FYwGu5iBx9SFZWSQ7YyZAPjvnl8D6OO79sqU+5FyYQ2Qi4kF1X96AeYCTIPDhpwemvs64VtlQdfTkmDS4r02iBokSHmrYtVOe5RBsBoUZ9DCFGyTBuSsPH5BlPtq8h3atwmanJNZr2BTT48adQgb6SRUHXKs7RytYil6gKSa1Hcs0cx0a5b5Xq/s66Ny2WjtEL1QkZgQh/SRYsQayCGPMDuQqKRkra2aVL8N73iFehRRtaxyLdCGhsCTUl4sRFo5PMMvXF9udNM/hz57obQK+SMJX9kX5hflJJWG9U36uZ8dOl8++MH1mvncy8WXjzJeIVXDR6ulTyA5ZQFPDefeO2d69c+5qs/eIvPX8KnG95+8ZT06Tf42rc+Zd3FDFwpnOLMt1/tTNfOF36bkW06VC1iB3qTh1ZXEEXMYrrFMRQdJu5pMkmv1kacEjdzooVGNsiGglaOwcC6kvZaxTDmMYilgfwKXJ6gi7VeNi0aSul4DHhw9qagh3XfKLXjTUCpWGxG2wOt2QD+d85zgOHx00ZoQiA8mtM2V5prtCxWTOhDHjLCFhj4t8nEvZRdJv7DsuBYSvauZ2s8jRrk/EhGKqNGlpH6pXP/kOAFCzAWrZuXsSRAQqQ6gILrpu13GvK2sdzr3fCmnwnqD0Z+L70aIXRu7ib2vbPVXQuo1rEgICAmyWdDUCJhHMB2jIlalMp6yIrCIftDS4xgsLcqYKxV8khqFAvM3wQh6I5RgIQFrEM1ONjS45LR8SHPsmGroc+bVkkpsZf9EbMzKj2IMXcwYY7ErdoHGzcEugdad6VvWsJSwiwxz4mQuorXwTJwSYp6EwsqDCP1UrViKF2s3OCu5KxxhjKuSev1UcotcD0wxcCS45BAOVvdiTkIxJ+O9a4AoYINjyGHCMWcbSv02nQWY6x1l4FxjPKF6naMNfQ2pOMuLlttHZqzTJk5Bra2K6U1KCDFRDdl2wp5OtFHTwEd6+VRAhmi0oQJkWVaOHz0lpw5TYFlVm+Tp4laKr12LR2qFo+HGbkhFu60TCOhLBCz5NIpZfYGBCcGMU1A/UIzE8MG17UxhQL1IU/NSQqBYAj4P0XchtQ3HsscxvuNtLEUs9EXr8Ms+liO5STVhr5/vM6YCJb1O4LCTEIKjzX50QUegbzulTBe59GHWBgcOzcxfGon2KLAhdoHceGYBwOl1cffkdD8uLdGH5L3oxc5LB1q11L4dsk8vbuBJAkexjD5NkKOjz2PM6xyjgZqNBJhnO3imUZZzlim94y8jB1HtXzKiZzUL8tFQx6HlgK7N6onLruzFtiaU9x5qIWNzrUZaw1spVN6Y12drQVe7TsPl8blunH/qnNZnctWeHW952FvPKzOw1ooe6C0MO77jYpSD3vPlADrNbBdrqx7I4VMuIFiOx/+5mu+8bXP8Ffwhc8/5Qd+7H3e/t6nfHj/AT/zN/53fvGv/C/4v/4Fni6F+fkt7hPb8g7+lR/my3/kP+D3/cd/ln//x/8dfuzJwjsPr2kvX3G/XWlBy+bI0Gr2Th3WCZXAX/jP/6u/xHfo6zsOKP3lv/w//cWPX77kg6//Or/x9V/j4f7K02dv8f5Xvsjb777gNLZ7aVpYTifmKSkdKQSoI7mg+6OERsUoCsBwWGYNYN3H0Fkb5yc3OJ3L9cq3f/2bfOPXfoOH1xeevP0Wn/v8+zx5fkca8Z50bSR67cPMaiiGTYkF+17E7mnOZXNeb437rXF/3WkDha6lcf/6nvvX91weLhiBPE0spzPuzr4XvbfTmd5cyVdpGukJUSz68b6cQ+c9tOUhjs2Stg4WZG64l0rZ65AoRPI0y9flSNMKgbJrg7OcTpzON5xOCzlLHuTujwMdQeks8mHKOsy6Ir6PhCzvGo63y4VaN8q2AybDvmhDq378sRFAoQZgWhZAcr7QO9mdxMbbc+Dzbz/lxe0J8+1xY2O94r3z0cef8K1vf8h8vuGdd9/TMPbwQM5GmobO3HWwp6ANUfPhb9XUWDtOuV549eEHeLtwevKE082ZU57JyXjWNv7Uj8z82T/9jPPNyvpr9+yfNtb7jXbteHG2h537hwfW+5VybawPjYf7lYeHSuuN2gwj0ULF5+GZM5K2XFMIMQe2daPeF959+wXLkxMPtXH/4DQC881EtInTKfP0fMNNWnhYYWtCka9r4IOXhd+43+hh5pyzikBO5CQ6qVkn2sK67RyJESkquQsTy8Idlmnm6d0T7paJ21m+Y2FIJkpvNGv0stOdRwJ3CEapjdfXjdYj83Lm5jTLQ2CwBEsppByUQuKd+4cL13Xnuq5s1zI2mTshGFPWMz7P03heMnlK1KJo1VKlG2+9s+4brVfoxrQsPHv2VEbvB5AyzGBDTEzzRK+VjnyAaiv0Iv+hOkDKJUvShum+TSmTJgE0rVXEnnZqb/rTKuu+y9zcjBQjp9Mij5wpP55J5jLOV2XT9WitjYYFijcoldPpzDJPnKaZlBJTysx5IU95mEuqcG17YxvePa1s1OvG5XJhXhZizJiLxXVIDA5Dbj86fVe0Le7juhrbujIts4DL0eDmcR74YCg9itZR0gsDII4xsF9XFeVW5dEx2GSEobsPMhiPA1zCTM/iAGP29UoH0jSJheXHRkqU7RTk3eUD+LTgpBBHD9QoW2VdN6Y8KT0ySKbmBiHNkihYJ5uSOBmNlUy7nevlSrROyIpWDt6VBJqCPLtGU4e/SSTzPs7dPuLJSyGdzmDxcQPcB/ATLNBc3l8xjSFsNJkH6LdvG2ZvvCKC2eNr7UPKdmzsBOL18XraALo686ylwHhzQ9aWxgBo8kBpVektOckMdNwj1Sttu3K+mYdnkfw8xILSPfX4d4BadrZtlRdQrY/msbVUGT1aVNAAGuB+a9MnQKyDt1HXGr3JEF/N/Yx87frj9elj4JVZqAACMyXUHYNfsMC2XQnD2D8EAcKlFHKI1MFaaL2JsWW/1QxUku99vVLaTp4FpvbW5R3infuqAUH1sKNo76ZlTRhMBIy27zSDzTvB0uPZ76GRYlSyjyVIUYboGCEk0mQsp8C0GA+XVb5SVab5wQ2S4oiXHEhTYmTeDE8tnY/365WHh4rvMC3yPczRiCkTJx/x0xq+QpwI5kCmxqb73jKkSJob67dfs1+URhaTkRbDWoMUBZ4sb8H0DPOAbff4OtGLcX+Fl9fKhy/vSR5458XC+WRcL8527ZA7UxAC1JF3plvgm/evuHv9knd/59vE8DZ28y7v3iXWb3yd3/jswtrkUWZAiM6vfbjxTgs8e2diXiCmBtGJNmPI7Hlosskh0D0SvRM9QpS5q5mzXndOy0S6cbLLW8qjk6PuMQZoHUzLButOSE4OYtjMMULWPR+jgRUCCkWZQsBDY5lOTGkhhUnpmETFhA+z7ND74/NVWqR0x2icJg2GhASeJYkZPWF3eSmZV/mCcqRcNh6ZMyEOWabOCDHQbXh96iw7QDiHN/56zmC6DoahCezI43wPQTIV9yoGjen/TSEMtvpgBxFhJLQaI4HLRuDA8RUEphgadk/LRG87vYoNtMxHYtUwEO4KQPAQCKZhGdMgLiJxeFzg9O7y1hlntY2lTusyrx6jNxhMOY2Ie8hB0nIOk/sgEM5iHLLfwdBkAEDIqkHdpQayYzHhTR5RBCMe/kxjMYLDkhOnReoLw6DbCDPoxCw2zAG0WI7E0JkQyFM7Mv8mEKUeo9bCvitwpw3bjGbj2QZZVAzA0Xuj1h0PgYbYCCGKdQlQisIiCloG+5H8liJv0sv0t6RiuqbZ5AUbxuAfoxg60cJI0+tsLtsMLb0cXAmbxxLbA4+s7uayEeHwJwqBvfbHwAaGt44NYG6cqnSHNCWBG61jVb6PKUXW66ql6qiLB+gYPI7nR89A706wKHNxd8zkk5tSJEYZ1095Ik3yHzzCoGprkrz1IWtvAttykCw95qRrCZIrToHNBpDVZW3i2PB1SgPYci1Impao5gN865rXQnB6L7omfQRsuA9bFPUfjFqd0vCAC4HSdxipoXkK5BSZ3FmymGV1XNMjITyGWe/PO3JGa+SoPn+rBQ9awpop2TTEyNb6mDekMDl8yba9sLt+1lZWnV8WKKUoc93kqaz9k1FqpzQ9cwfbWXYEWuAo3fHoscCDKfDCobVEbYnaXUFMrY/nUGzv7mjx2KEW1QIdEMMz07XcLnUw6AjyxGpVsuDY8ZAewUMtPEeflSZZEwxQMFhk9chD6VyuxuuL87Je+fRaeKg7bXdKCdTXG+su5vX5NnLzPNPzzuuPL3zyayv7Q+G9L97xPT/yRc7fNfPBB1/jZ/76X+Hbf+2vsf3Kv+BZvhJvn+DdqOkF/sUf4kt/6E/zo3/mJ/mJf/cH+X1vPeVz143tes9W5G1MCqQB9jav/IX/4r/+jgFK33HJ29d+8f/iWjq356e898Uvc35yZk4HOh2Jc+R2yYQUhq75SA4byFk70tSa/CVMh2ZvnVY6YVqYz1nxfWVnazuffetbvPr0FddSSOcT73/1K9zd3upnoEIz8HbSAJHytEAIlOEx1NGmZ+/OZatsFfkYtI4PA7e9drZ9o+wbbdBvoyn5gN5pe2FeJnywekLo5JTJaWIvKhwxJXmWeBveC2rGNUjJvb9boI2Iy23TdqF30cmnedJwaUqEM+zxe3NOzMui4TFID+69aRuXhj9LlbG2tplJRttjgws6/Lzr99WyU/aNFFW0DSNMGQuMhgOxTOLwfIkqIH3EpkZL5ABP5sBbd0+4u81QG+v2enyf2Bf3r+55+fKe5XTDl7/0VYxO7WPjtqhI7bWRZ2mehy2u4mdbp9mQqWz3bA+v8b1wvrkjnSeSOcELzxy++vzCD31X5P33rnzrFwreNqVdbCttMG1KbTy83Cm1gXVJEeZID5mH1w/U6jJW7Y3LBmsT/d4b7B1tW3H2647ZxDvvvk0NzmWVFOXdJyeq6f5NUyDNioO+uvxBskWue+GzS2XdOu/MC3mK8pwZLNc5z8ypUZoO++dPlNhUeuByrbSiQt8tcDqfuD1lTgmmZCTiI5BUu0GTmfneB+iom5G9NNbipPlG0bg5koNJ2nNIpUJgXVfdLyOefC+VWuX503t79HPpHXkLdIEa+76zboUUMlQBI7U2rmUfBr/G6WbhfPtEkd6BwR7UQZ5GMmJvSmTZN5lFrmVjilFsja4hSwV2gBQGIcdxj44hft8oRc8aXYXr5nTWQBpMDUWQebYGPMkB+wAyhwWCmpqxHd5rY8kT5/ffxivyTUn5MVmtY6TRkDJ+VmcwQ8ZAX64bN3d3GhIH8MA4K0XbHl44ziO7JcSI906eJ/Z1U3rLaYHaVeRNCWAumh9mSUN/b49sEg0AkboVStEWNuURgd5HROs4ufJYBhzyXaV4qMnaSsExTlMe62PR1EmBiPw1GoE+KPs6pwO4/A48BO73C/MyianSEVsimHT+teps9j78jSo2sLVaK6V29vXK3e2NQK+YxHSIAlPcArUNz6mxtbbOI7DoNrwrUqKHODxaFAPM8E7baxXIM4CRQ6J1DG+6F5TsN02ZbscwxjCgHnHXY6g7nkEfK3f5xetwrq2QklKi1AzorI5BTDumWTdDO/x/JCnw4sMsVH8cI4XR+wzKf0ySSbdesChTZaWuaDSVPK0P8CsM7Cg8StZ8pM88srM4Bj8e/f/2bRUb0Dspq8bBoPM7MhSm6fsxhmJLfUOKzMuJdatMU5a0a0hM5SUkBuwh2zgwLrHHwFvDcmJ72DhXbevcEmsPBDKL+UjFa5KQJAguA3KPw2Q4JmKexajMeYByQFVtr15HOEAgBV27PEXwSugaOFMPnE+L+oVe6T2wN7jZEy0H7GYmBfn5FGRwjFXyknC7Yb1fuZhzc6lMkyazc3Ji0obeB0bhtuOWsTSkBEHPefCJ+fyUZ5+/5/Krn7LuK/mzRDplbqaOlYgvO5TPCMu72Ax+d8eT/TPe3WZ+56uFj17ecH9/4Wd/5WOePzd+7/e8IJRCnhoWF4I7c3DahJgsQf5SP/tzH/D0/b/Ll/7gcwhf4eZ3/ij/3h/+Tb7x+u/xcx+trJeddHPGG2xL5K///IUXzzLzD06cJjEfiJXDH6Mhx1V3yFMihCypW5W8wcMAVFLDqpJuDwFYjE4k4/FKi2Bh5hR27PVK7YE9BWi65xcSK04LRooLZhOxdWqU11opK94TiaCfGzruO8E6NNiKghXcE9kS1TO1Ba59Y5q0GCkhsLch5nLHUEBEoxHHQH4+n9nrxr638bx2ko14cZPRLy4WfYgZs6Tz2o7FqQb2gCLq3Y3THGlNCcTr9cI0/AmnKBDVQyD2wTwacjNHEqQYRv/SlYZqiEHUqs7knGSmHEJgniYNvTFQyo53AV3X62Au58y2r+ytk8MsWWsacmzL1D7jXoeRuhLptlK0+HQpBtwlzxf4Kxl6PPzkxiJ5Sola5b9Sh0eLAHkBSCnLw8wOeg2D/WNg3Yl+xDJUPEQEBTJfLgAAIABJREFUXUZSN4GoHqGOeG6DWjt5hMOkkJnOC/TG3lbSnCSvwrXUQhLtFlxn9j56d8t6GaEMCbwW2+47xcWUtWmiRVPSVe9YynhvTGFS2mtXwJDqmlgnMQgMyKaF8JyjrKG3FfcwPOn68BkcXlmWdI+aMc2T2CStKYHP0U3WnGimoIwcMMukwWRNMSqdz5wWFOOeYhIT28W8LG0XkOIBTIvT3kYyXlKaXO1idLbrBtGIwQQEpolWneaBWhuhy+soDBZSsyaFCOpRukOtV1rPECQfx03zUus4lSmp7+ujJ/EQqEWySvlDiQnuDpt1ArImaI4CS9Ikf6aQZCTuNvo4XSuj6724ns1iNsBtLe/2thG6s+/yWIxRLDRDIKI81HSwHUBqGgu22ivzNNGqFoBq/gaTO1TSZHBVf87oI1qTT1FrDQsNo1FbovWq2bYlppRISQDVtnfVcJBfWCtkEwjWTUs3esfTzGVtBF/1+SEAyxFTqZtzmvNgxxcaApUChtc+1H2qZbXt8t9skTRkea077o+DLD04U5ZMuXYTqNZ9eE1GvG8DBJWxtnsiuM64vRll9HARJ5SCFYFMMepZXKaGb8IpuN+JKRGsEIKRQxLwGuTLRehD7rvAVPmYxmk5cztPhL5zU2a2y8I8F06nwO1tZnoiEPDVhxe+/bWXnJaFr/6OW77nh5/z6v7KB7/yz/jn/93f4q36Bb78gz/AF378x5m+63eznT+Hnd4h/dB/yPf+yJ/jey/f5M//q5/mV//e3+ef/9y/4B99/Zt84+HCx/3K5PO/Hcz5//D1HQeUXnz+q5xuz9qS2vCUsEOGMOjy3mnVCV0FpptjrdFaFTrpYN7J06RUl2Wht0KLOiT29cLlcs/rV6+4f/mSxsSTp0/40pNbpmnCQ6TXyhTD0ASLcgdvHrh93+T/4ZK3baVxf9m4eqDJOAcsUlujlsK6PsibpXd6KwRzpnkih+FofySLBWk9U15kXlslwUo5ydNkv47rIHPVMGLftUFy2r5re9mbthYhMk1pyEJ4RJ1jVApGrTvQWZaZ0+msphLJDywKLbcxOB1NdojylyjbPrbhGi70H02MjypqZs7adIpKfaDynRAkxbMhSbCuRsoMctLm4HaKPDtNnMUtp1w3bdmi5IDbZeP1Z68wcz7/xfdZloXtctGNOWc1900DibYQ7ZGZsm6XxwGv9p319WvadmWeZ27efiJJlDcWOt/13PmDv+cpbz2fqa9WLhfwvnO5rlCc7XqVPKnAuna21jRYlcguW296ybS2c6k3wuzDxlqOoc+47iuv90JtgbuUOd3dEpYT+965PDTMMst0xsyZp8BkzuaB+3s1M94T1934+NJ4+VoeCE9OmZwB60weKCT2Ci/LzketslgixE5fnb0JtG0NNjQQ3pxm5pzIsRNo0OXd0KJyX0qRbGutdTDkIh6NvXZqj+SzTLPjYI2EwUw6wNS9ijHXm7PXfSS67aJDd8Wcy+tHaVpiL4iFtJcNrGMj6am1Rtl2qjdyjtw+uWPJJ0VLD0mRu42NoX5mH9vCPqSiFhNzVOT2vm0afl0DfO9qkIOZkoLQJrSNuNHU46MPxjQvYi26E9Ikc+cs4/zHuPc+tNmuWPVeZZDaxrYqp4mn776rRiJrqIyj2Y2mRK/mjvWq7UirWFGy0rquPGwrbz19qu1fd0Xe+huZqo+zrAtN0jPeh2ShqyCv28rd0ydqEMa5FxD1X4+6sVWZQwYTyJhcgF3tnet2ZTmfCGN77eM8b334rQ3JXXcNEm4myQ8aXErZ5b0xpF5mRg+SDXDIkWAAARr8H5krdPZtk89PniR9TIFokgYo1UUMiH68CB/eAqatd103UtA2lYOhORgjYhq+id5Woo0GJwbYHQL0UmG+kdyOymSqF8fgNyWBHW7jZ6vMCfx0V90xI055NMyTtpkHQDgkd7VouxXsSDgbyFiOlK0wzXqWWheVHBifhYCJ5BHaIROUIbkHqNbHdjMRSRhpgC9ighg8ekqIoTVkMQwy1EiMqsPk3ULTEsEOE1Ub70UhEQdw6L0NNgVK3LHI9XrhepH0TbaRHRsMLMbnKU+S+Mh+AyXxdJRQ0q+76peNuO4BqgaGf1/T8N0RGBA8MMw5WE63vH59lWdIumEKmUSjmeKvA0q4TJboo8mnVkIPw6w3aPNcd22HMYo3whhgiBqirMk7LCdnLwLVvUU6gVoj3hPNK7c3M3MwyTGnhC1dyXrIny3lpA7NI/SJZRILhVpoySl9ZbIb9ga+dtKkgTiS8B4FzlnFbNL5GYfvG5Hbzz/j6ScXXn525fW0kl8a8a3IUir1ek+aOrQL7o24nIi3D9w9vfLus8SXnp345O07vv7tT/knv/CS5ZR5a8ks50zyKuJQN+Yw06adqTnJM3s0/vFP/WuevvdPufu+Ozy8y9s//sf4yY+/xau/84t87XWlbiuWZ1p1PvbEX/2Zl/wnz2/5wpcWLGkYDKGBN1KCnir7uhPiQp6zJBceoETVxmDMRIymVEKPkgGGjrmxTBNYo5RGyieCG+u6Ezqsw4jHBogs3z0E3BuQA6lnybXWSrATHiCFCGSKV1Lisc4QBiPwSMHtkbpFpiliVocAh0eQVGx2bQxinAjRBR7EznrdCWmw58ZzmKeEeVESYW1M04yFPliPw2Ovyhw7mp6t3gWcpCnRSmNfV7FBkwFRDLPuRFftbBEoMnAO3SGFwSpqrPuGswOSmLXaRxst77h5zjQvLKfM6g13LSlK2TGD02lRylRv7Fuj7oEQBCLZAN4N+cNE14KmyOyR3uVdZV1nWUiSb00hj3slUotkNlpOOHgiRec8L5hVIk7MifW64UfSspkSQN0pXfLVeADNOFtr1DDA9NZl8RADNljPe9HsERCrKU1Z15yJHo7KI6ZGhHEWakFhIYiJZlGMlRiJOdJa5XrdyDHTvRHTBDRCMmKY2IqY5lS9xmmKw9uz0tpYvoSg2jY8GU8xcZ5OtKBAndIa171hxclTZM5xeK5WMcaA0hUiMKdAsUrozmrywKl1sJo8ygMOG/2PQQL3SvUjYW0sYmKgFS1otNhUMT2WE3jVmZ6MNKTMMSRidKZsBAIP247vG3mZpSQwI5mDNy3yOYDCwYbyYVfgjVq06Hd3ZjuRshHICofqfdRjnTGl7Rz0t5SCztXmeNuovSux0CHHSDWjVmOOid6LQBEc7E26GS4GotdOMCW0BTPOKdFSwr1gIeoz9EIac6cjFq+5PybM6sQC6/2xN8UCvekzuFyvbGkwtUzG+DZSxfEu9vEI6/DBzsFWYhrhTd5pLUCKrNcqC5gmv7MYA0vIuq7H0lFavGH6PyxdTJJkJYIjCXqKo5+ARtb9BniFzZzgSqK01vEe6MGwdvjCRdyK0tY84F3L9la70g1BfY91wjzT2wD1TMFRxwDsIEmuXgYtGJubUhup9AJxBLC0kvDGSDQU+z0OFmU0Z86FbEoUTsGIIdH6hm2GJzH+KIWYAv3keNJsVq8itCxz4DxnpjmQz5nL5YFv/PqVtgfONzOf+8otX/n+r3LZP+WbX/8n/PL/8Pc5xWf8tt/+A7z7Q7+H+cu/m+np57CbZ6Qf/nN834/8Wb53/Tb/0dd/ng/+4T/k//z5n+Xnv/7r/08I5//X13dc8vZ3f+of/MVlbJSXaSFPs7Seg6Y2ZLgqgsMQNCBQJRJGylGT5CJEbm5OpBRopXB9uOfVxx/x0Ucf8urTl9CN26fPuXvxFnd3N8QYyQgpjiYdOgdN2I/GFVHiBhvqslZeXVYue+datOlo+06vzr5duVxesr38jLYXcG1MYpKsQDRWhvRkmCUKvn9Dt0NNiUzelNiQUnyjFnOnlJ1SCvu2qnEfD3MaPhh5GL5KGzoNE1enN8lapmkRXXlsiGNMAnwY7vvu4/W88c3otT3SDBkjemsqJn0MAkp6GxKXPiJUR1GIh/Sj7thw3F/mzHkOPD0l3rqdeH4KTEGIcBP/n1IL18sDn37yGZfLlWfPn/LinbeJ0ajbKiqedCySkcU4ZC2QTMG0vhZq2ynrA9v1gfvXr0jm3Dy9ZTmfiNbJtvP2cuEHXhR+13dXUn/N6w/v2R92tgr7Wqi1KNYydeI0EybDsrZuYRJtNQwZSx/yEKIkZPOkAtbc2VfnvhSBpJ64vbslTDOX4lyb00Kmx4y7DYpyZd0S1+asRHoPfPja+OizyscPO81lfttNqUDNI6Untmbs6IA7ivbe4LJ3qkV2TfaczhNPb8+cc2DJ8hsyHzThUXRqc3pXsiCDmguB++tO6UY+nQnBWFIkRd0bbQCdmA0/AxWl3obcqxf2sumezZMO2WGYGWIYvikapI8kvxS0cZIkRtvUZ0/fIqc8qPQHmNQfN6BHIW9NoNZeCq13tm3jcr2yX3dyjHiEmJXoEkbDEhSLM2RH6sab+2PiRVqyhtAQmJdFwFieCTkLdGjakFofzIf+BpQovbLtOwG4vb2hesVaw/zNBikMb4qAWB171zVtTQDVw+XC9eGB880N5/MZGKyeMbj7YPmklIepJwNhUiKdzpvOfr3y5OkTgeZhJJOk9Disexf4pUHeh+xX3xdi4LrK7DAQB8PEBiMpE1MmRFG6Y4jD0DU8NmOl7Dxc7rFgLMsiT6UBZAWTB5UNs+8clNSljZ6GHu8yPr1cHsZrHgB60t+Wk+TD3Tl6AT/8owbw2Vvjcrnn5vbMPE1vpGAmML0OcM4IQ0Z3mHAPOYVDik4tneXJM4IJIIqm9+FhNMhBTM+DmXSkmtoY3vd9Z6+VZV50bo8zGecN4wxR7N/4DtkAeYZ5aDvich3C4Y8xfA9koIcFnY1tMAd9sHxikPTWemeakxgIY1iJY4sp8GZgcq5Icu9tALWi0ueopjlOeQBIebC7R/SwiynYj6XLuL5geNM/r+vK+Xwj3yyTZ2AOCnXg8VyQBFOPuIDGQxLe+xuD8pTjAKcZn6M25d1dS4gYxsintjaaEmAvlxVMjIlo8m6wIAagBTW0Pu6r6CaPCGMYdDdSdHq5DN+qRDXHXHLKGLS9tBEBHVxnao5B/lWTfI1a7zzcr1wfdiXLpk4dG9C9dKo3ycYMyX5TIGb5tobgI7a8kRzyMkzgLekYaO1x8YSZ/IeiYuM1aY80qhix7Hzy6y/pUQNzihrwvHRi3fCoe5sIIU0ka8weSQbdI2s1vvnxS7758YXTeeLd25k5B/npuFJ6QkiENnqMELhuO9tHn/C5L9ySnzzH0zPe/vzbnD/+Ol//6BUvryvBsoblWni5wqsPV774jnF7N9hxDI833+V/0w1vYysW1DsZWpZs1858l5jTNNJlBbb2sd0w2ljwZVrVmT5nI+Qh2RlMk94r1g0Y7MXRf3kRWxGv1LqOMzSN2hLYy4q5JKIW5F0XQiAQZf7tgBdSaPIJGtOuEuf0PFowybLQUgQLWEhahtjRK4kxEkQToNc2/MXCOCv6eI4kka6DGXOwFvEj1lssFkMDe+sjjSoyJDGyoshjkdiHtCukhA0PT0lYB4Ri8jWxIXHCwbuMjW0sEVLIj4z3MBYOtShq3IHempYuaKmky6GkVJ0PQ3blkguZ2zCTluxRy4E0POb0bNTex+fg3J1mljQYw8gXNIgcAyaQNmWxomt3Ddo4BckOI/J4evTSC1pGHJ+lPh9JtGrpAnxczCYBh5KPhZhYUmQK8nraSpMhdzg+80BM0/A4E9ATUqDHgJfhaxcVWHL4CQ1nMc0+XfMNPuRliJF7eDKFZSLkUce6D2VEU9067kUbwQ2j3phJlqV7tWFp+PMM8+je+6MMzr1pfrJR9fxgVDeqD3l3h1YkkXLG5zBeO46kcUECxLF5kfwwRjzIf1dMpqNn9Mfaqi5H91wcvkQ2ninVrAbhYNdNMpQf3k9uWuqFAfIdya9HSGrvYrf21h69keJ4Lt3kexhNjLnedaa0MY+24W1TSx3XYQBdQLKkhWZUz2WHP94gDrgND7DxvBr+2IcEOwJKFrDCNGXKvj36ZtbWpLjoIx21q1oGU60xbMgW1XvVWsRkQjM7wxahqnyLBed9zBJa4KUYiOG3SPpEix8gHlr+uc5t9R2jZ+jjHkbPXZh0ZlscTPtgWjbiwwON3wLUGSFqeRrtTY9SR6+0D0uBGHWuWkCJkxb1LIYwAol0DQJ1JPgyLB+GLcy43s2d1gOlNTZZtNKbY83p1VmbK2m5ucA3OyTFgW2V3PTaAvdbkT/TWnm9bby+FB4eCi8vOw8PhYkAk9QOl33j1YeVT37zE6zC2y+e8bnvfkJ+Fz757Bt88C//MR//859m/+CX6Oun+HrVIn1+Cu99Hy9++A/zO/74n+D3/4E/QHjyxb/0bwV0/l9+fccZSjkEWlA0Zm+IctjVjJkf1PFBXw4ahHoT9V09kKKvDZhPE/t+4ZOPXnN5uHLdrjSHPJ94/vwF8yRPjuYN631EYWs4lIfKIeOw4Qnn7AWuuzxS6jDF86hHYGs7Xpy6XehFLB2ozPNJ/h9Bj4Qf4MIYKKXx1kMe4qhEPvyKxsHoYwvfrbPXQu+DrdU73nyYamd0ttjYsACDypyXRXK43kYSlTTLOc+knMlZdOc+WAqM39lq1YAxaMGtNQ1AMQ1vFHnG1KptxfHGLIgB4WP7pCI94lZdPiuhw5wnpmlinjJzNqbYWLKTvOBNJ1NKkct6Yd1WXr16AJybuzvO5xuiyavJxn2h4j9Mg13X18ag49bHwHphvf+Muu30GLi9u+F8ngjdmb3zZC588Xblu19Uns9G+7TwyW70vrGXxlY6Vp21rGyIotybUbyytQY9sbs2+91lMFmrydsmGIRGjI2+B8pWqaWx5IWnTzIhT5SaeP1gSuvJgeSRaQrMcabXzmU33MVS2fbKRxdkxN2bno0UCdEHcy1QW2CvjTI2Et0FaHS3Yf4pH5BpStzczNwsmURgNgjRHn38JS2FWp21yW8kEQgR1t65bA1CJs+L/r055o3eDp+TN3TefYBL3gblGaeWXUVmGs2dHwO0Bp7DH6aUghtM88x+kWRuILHc3Z7xXqi7rp8n1PwDcTSndBkmHq9BBpWNcrnSgGle9P3DlM+GlNRMRaabaL2tVbEaqryX5vNJw/80EZKA4JtpUbPUFASgDdrBAhxNzmgyJfcr3NzcYN4IxQh5AASmbZV8thKtS2rqIwXK0bnwsF453d5wPkn6Ic7IGKoHoBCGx5AaABXwvYpijTv1euXp3Z2aPucRWLYBHtnY7oUBNkd7Y6QdLbJtV460tRSSIn+DJEY+0i1jiIMFY0ri7Erz3LdV3mG1c3c667Pvoh9rCBCVvnV583gQ8O82Elya7oNWJOUKU9axlATSmEWdk4f+/WBlMdLJTM2VJMAyZ0xJcdy1S/5TWtMGd6SF6ORmeLKpJhmIrj4vhDxB6YNdpQZFZtH1EewTrqfPwyw+Lkz21gdTIIz7bwyFWkc/NuxHA/U4g4wzmCEBFLg0UMnR3PQmRk71PtSbPmqRfszhbdWaZDNm2oo17/ITGQAlLmaj+nbdZ72roTXdJOPZNVplNMVqHmuVZEHDggD2ftDoGKCSGRYTvWk5YmYjMa/T3fSLESDl6H4iIJDMdZ+3WjUgjoa5lU4P43W6U00b2t4O9uHQ9B2vJyrd5nxz4nJ/pZ+dZorGNhQlHw0Nc2aP5r6OBmkG4OToXK6lEBdJNmsIw6heINI8z+p5rD0atzffsWbMKeJno+6BT152oGGvGjl1PE2EZNzsmfQsKe64NWo5fL3aYAlXmhvX3ggvDXuWyEk9hfcuP6aQSNagxyFxHZJSBwbLbLk7MefK6092ljlx/9rwWjk/NUqBtO767NIN8XTHYoG3+ZhwcvIcxhJo4ze++Qn/6usXXtze8KV3nDkGag+0FpmANoHtgeoBmzP/5oOPef5T/4Dv/4ln5Oe/i/7kt/OjP/ETfOuT/5m/9ksvebVeiGf1Oy0lfv7Dztv/aOdP/pHMkxeHGX9k/HSxzC+N7dU9IZ3I8wS54T2wxMDNNBFSwZuYGgOB1rky6lwInZid6hB7Ilphs6ukG93EimIDAoks43cdIeSayMFYQ2VrFUc+hdG1dKktMHuiNKM3Y2+6xyIOdRtymk5OnRQapcvouI1nx7sY3iHEwUQIArEy7NuV7kH9KRq0UpqIJw2Pl20jT1leOe23gDIhqldEzNnuknpr4WJc9yqmzbHQ6cY0QBn3TgyBOpZ8o9sUeEhg912g2/AWMrMheQmPYJZM1BscOXJRZ39vWmzM85FAqsO5mwvUNUlbY0x4c5a0sIVCrZUpZ7pp8dUr1Aj0gHlg3ffHfodRi+uwiThq3bFYmC2NIVGg8nGz9C5ZVRkMFHN5KymoQM/5AYrIWkAeRQwfKjctlvuYc9wNghaKZk7zqoZnLCUYDJPqCgWwAQhCJE0zUw60Vtga1HXFk7FWZ45GTmPpMbyjmkvCqUFe4SceA5ZnBRy4fBKVACamVx7WGm5REqUutDJEXRNzBZ/EEHRdo8IS0gC+S42jNondp8/8ABSMEKfxuSqVuIUOpUO3R7ZLq1XSJhd40od8U97Yh5WJ0S0JUEPfV6v6qpACW9l59F6y/tgjwOjdNLkRTUtcC1X9STT2TUmuxEicM6Vu1Lor6bULzOl0zAogH75e1bNpB1GJSalnjN7AB6iEhzc+X83JYSJ6H/tBMWfK8BINIQmk7YYFAZCSqPMGgDInHYjyb1mQ9MFoyjnR+0xg+Hu6DSTomJN57DPrUAO0UcfFetL1A4aBv35ObbI3CWMZtYc6+u0x0+HDJmIsm2AEU43aymgBXCCbPh/NyzEIuMsWsNgHi7jRMYF91ccyrA3/cflaGepTzOT9dMjxSxUG0bpTmqv+mhhuOYWxoIx4jEAdy4I4rCsTu3W8OnM2CmUwCwWKdZQw7d5wg53AbojdqS6AU4qspVDiCV87kyV6CLReyNFZQyXHxFyNKXYusTKlwBIm2tZIS+ccA/N54uZ24hQnWu745cJ6EYv/rXdO+OfvKGvj25/9M37zb/9TTvkZT9/+Ejdf/X7u3vs+4vtfgOfv0t/7vUS+c1/fcUCpj8jk3puazWNDYgGLYt3EpBQN90bdG606+Sar2Xbp7WsrfPTtb3O9XCilMZ3OnJ48Z5pnsUYY8g3UPPlx+FIpXRQ63GmMoaU7a9m53wrrJhaU9dFgGex157q+hl1R6jln4ulETE4iDD8N3bBwPGJKYQkh6f2FOI4H0Y/Gjx7fL7+g6lVmcy5ENIaoA3oMfKKtpjGoONNykneLK51ARdaY8yyT4Dw9AkWMPr4f4FWXsV2vGtiFcseRMqFErlbqeF99DBwC11o7AIQEjIHzeO+mCMrzzYnTnAneSMHICU45MYWOEYbspXL/6p7LesWicb59wvn2pAJd66Oho+YhezwE69iOhUEvrHR8X1kfHmjXV1gz0jmTzzfMQRTYu9T48k3jK882np8VhXx5vdF3WAd1/Fo39r1qGKvOq6bNiKQjisz1JrZR6dCaCoa3xFr6+HcFzKmbIp/P5xNPzieIgXWFHhLTIvO2GLRNiyFwXQseJA3aWuNycT5dCw/rJFnoAYBEU2y7BVrVBshHEa5DLqoIchXhGBKn+cxpiZxnDUY5KIa4OcOcV4d9bU4lgrWhXzbWbeOyN3qcldQRXP4HjIQ4xsAeZNbYWmO9bjRX4mDZizDGEEh5kgTSsoDM8ax47+Cy/O5D6nR5uMfr8IGJifl0AlRwkympysMAa4/hrveR/iZjRBrstQjMwpnyhCGJXRp+RTaiMsHZqyRmZSuPn3nCpJNHUfQhZ5nYTkqzI9goYv74QPfBmjCXPKy49l/zLA8zi0F/THp2SxFPY9MYDeuR7vIA6tUpRcmN0zxxuj3jtcNgPahJAqIYZj6A7WBOBKpwLTKSmeVlhpQUbWuDkcQbhqI2LCryNuRXoZt8AIpYinOQ/FFNsbaEHbEIdYEzYcr0Btb78KBa2ctGqZWb5Vbmngzi82BmGUGAAZ2YJxmaeh+sIN2n0QLXeiWfFppFFuIApEzFeywM1KLpvgvGI6BE75TWmPJMjvmwLNDQc7yiEKBJkmZj69RHo1n7AN9qZ7o963x0Xb9mWpIw/P8OdszxnHgQI+VxO9j9Md1N/P7h+1OrGJ9J0kF9VmH4pNmb+31XdG4IUWaeostQzKHp90UbDKMmLyGZMRzBDpJIeK94e7NsMDqELCPPx/2hPKh0tuhMqk31qrZyFDK9T3f1rcAw7cG7DSANGDIx78KVg03qzWD4qo0FSlBLbWPx5Mdg1pAJP7r2rbZHplCtFfPh/RR4lB+GGOmlDgZvf9MM+zB/bY1pmfnww1c8vZN0o3dTfY//N3Pv8mvbnt13fcbvMedaa+9zzj33UVV2yo5sKiQ4JjIJjygJiUIQKIoiGiQdFAn+JNogoE0DRAMJARKYRJCQYCcWcZynnIodx+Wq+zjn7L3XmvP3GDS+Y65T6VeD27Drdc/de605f78xvk/d0TkZMxveFP4+hgXwIDKoz47VCtuVnAaLV53TTLohhXTYpJKZmF435lAjVymJaomHx8LTVUrUFCqiZlCTs+3Odm3UWqAa+3Nje+700VFWhJ7X/Zwwdkq5kdLCWheyOe26kd0YNQVLL6b/CDiNA4yUMp///s/Z/tET24dN89mUDSi/dUbbsQLJKqxvSOtb6qsbb8bkZ747ud4GL7fPeb5u/M4Pnvknnz3w6nTiO2/P2DpgzwxLpJmw1WBM0kzcpvEbv/5bvP3ib/HdP/kFdvoufPff4N/78/+CL9/9L/zVf+Fst4aVxEjOllb+xm/tfPKrH/gTf/w1r18vyIWUSGWS0oj3tdD6puzFnKFouTUmucS9E6pDqUm07Iof65AHpUK/DeXmZGffB8M7xpD9LJY5NQTXaOSbVHNKZDhdR6M3oyyFYlJDVIe+TPZbqDAYWAoLsWe6V6w+etrxAAAgAElEQVR31up4nrI9di1tisYNi2kK0KgaySdG5XYbdxtJypXEZKbJRJbOGSCXhRrAZxfo7fHeh3qXrgXbALOiZ31qHlfWyNBaFKoUd6ntJ074YrCUKeuJPpx97yhpQeDYrU9qOkANLcMlcQdhJDALJRZqcTzUmiPItENJdeSvQNwJYW/PNc5PZPMbkhHjcM/Fma4MFdxCnRPnxJxqBnTYm4jbktJ9Kd4H+FFm4EkB5kEiT3dyEgHX52AdsBYRfdsItUUx8iI1nQ+de1KGzFCSHSpXF4Hlg+FGijwtm1qGlWXlTNOMM31C7lJg5CEwa7iAB5PC0LdJm2GZN837DOhIdam4L2ebg7EP+kw6uF1n7EGG2wSmKXgZ5ZlKpSHius8pBbFN8lKZTSClj12L9vRQB4aFcvhdIVqsMIrUWblPWbhjrgL+JWX3AVT6dAbgrcHsqLVUChDQ2Tu6CDASd+XmAaxOUuxKQ2QXauCDxH4L0m9qTrpxk708FeWzDYEF02D0rDs37mhZoMBNgHebMXNMC4IvlIekA9/W3Wth+7euG9k7scrKXmX6rO7KJD9IMH2xww8BAKSS2cemtynLLo4T+3co1JJAKMUnSCE+4nlNsbPmaEA95jiL92k49K1FTtqIuSBsfEFiNv+okNP8nOKZFThMPJMc6kUQiIPIEY84GDM14ykjLVMsfVQRMtl7zMXusWto/7Ws71Mj1X0QlDIsRB24Gt369CCFPMoJdD5NDQcSO0ROm6zCUmFOP/LDOtk0Y06Txd1CaYZbvCm6t4zENmFaY45F5wdHnujHjE8Rh8bukxuTPBPmg3FF9vi1cU5n7FLIBeXI7o35LBDx1ZsTfAb7uPLVh1/jR3/z/+W8vOX1F9/l4Tv/Kucvvsf6x/8CP6m/fuKAkthdI4cN081l2SpV8tfR6Ner2pBctdLny4WcE7frC88fPnB9unFrCvlb1hOvXi1cHi6S+wcAkYI58LBnSWKu+r9hkdM0nOuY9NkYE15ak6phhBR+dObtytx32miQtFAuy1mAjh6NYFE/MuFarpMu5ZSjvU1Pt8fOOQLMsVDV9NZlR8i6IAgbh2GM3kMuXxT2abrE1CgFfY9MJSNCEyt1lYxwhLVuuAeI4xwescN6cP/Z0PLLHFrA3e8HmwlCjrBhDZsHy56tqq61K7/idD6Tk7NkWCsUN2rUutacGb0rdPnlyst1Y07n/HDm7ds3JDf62Jlz6KKKimY/6D6TamoE+JDKQrttXJ+/Zlxf2L1zOp25rK+YZaM/P7NeKj/3yYmf/6zz+153TtnYNmOM+P4mCtn2RGsw9sGtQ+udvSmcsY1BG6oCni0zPOomh1rQvB9qgMFz0yH8+nLik09eUcoaQdSyzF1q4VRXLCtr57nB3pRt1Pvkae988wwvm9PRIp+SUavp0CQxgD7Cr0zkofQBUwxt6x620sx5XahlYVnCihYIXXMtxwNdin1o4EtjUFLmuneetivT1ApUc47mrbi97JB26tU+lrLb1rlteyiVbiQEJMkP3xW0HX8vBj4HjS5FXalSXG8bozcNgSlTFzUS2mHNQpLteSyccdDPLjWdAIXE1ja27SbZeVV9aglQTmHFAnk91EAjauwnYRkNKfOyrMxSlGWCs6YzaVmw5Hgfkc2jQYrpWOtRGzsjQBJqXViLfn4NnSPeL6nILGvomD3ALCQ3HsNp+4bhXM6Xe5BpzRZ5R7KaKlvA7kCWm2yXcyobom2bDvW6RK6QGs3MAD6qqu7tWi51JC5/OgbX21XghaQlegcjD+CwDFsSwDzj8jZCAZoT7eZiyE8KuUxIOZRrvQOUliZLUuPLDHvQ4blPKdH3JiZSDw+prJHloxDNmbhLwkMhHQC8hrOX7Ua/bqxvXt3BTEPHS0SGiNBA9pccGR8Klz+UOXr/qsG4bQwmNo+crJDN3z9bIuRUQ7KyI1B2XpaNUCo5WUDGnDSXzemUT9wzI5DlIx0D3hjcbjcOW4tUBASg5pgnpgcgNrVYeNi0IHI05ozGvck8shEQ2FRX3TXuEb56yPlDSWe2sncVM1jc1XaAkx6KJ1cosFnkfQQIKjWpRfaUchJH3D/nrEWx/Ji6SxalsFGrmFykC2Ix7wCopXgmYyg/Prjj2Yo/wwJAOWyEjgopSq3x3Q7G0kkj061TyrFYm5TBAVyOqL/W0jtxMimtWO0CzvNCdhR0O6HhYT0JFVs/bOIe1n8pa9IZHh6uvDw5IzuMwSzGqa6kou/MeyatiVQKqU7cC70fweeT55fBUhPp3RWrDs0pVe9pGhvlrEIB0mD4JnCZGvfsIKXKm+9+Bzt/ye/++peMl0p/3Hl6D1bPnN4McnO8rNA/YOUN+eEtJzc+c+d7Q/fZy7Xxt//+b/OP/9nXvHr1lsdL4nKunGrmmieMgvWBJ/DusBaeXzq//jd/g4cvPuXtL/wpyN/h8of/LH/+P/wRP/zvfoVfeycVWi2JLTtfW+GX//6NN+eNX/q3Cg8PWWSNi1bECpYulA+NHSmq82ikqVjr2g3mRpomcNxld5s+2bsr78fUeteZuitnYS2wbYPEwkyi0Q/VjIjEACPGgNG4GNBh32/0rZDzCVCTlg+pgZYk0GLMTA/rRndwr/gYlCybus9+VyJKoSY1fDIBY8krnuM7R0CKUSB1DGV/ndeFbR9cb7tA/ZTCKmYKS7fCMC17KV4mEaVSG7ody6oz0PmYS9V9nLQUllyYNn5MbWAsQZBuU++8u1r21C586JFVuOIHaZW1gGWTeqqPrn+Gm8ou5h7AzHK3J82pnLSKxfKovCxHRNXoMyysASSEEmMO1Yu3PuJ80X82DwKE+E5GADnzGFUnFk2r2eS0+HF7zIw5+6U1TjGK+3Qp2phqpPTYaA3y8ZnFuTxGj89Dz3BxU1ajXGr6vV2A57Z31di77r8lg6Up1Zpl0nBqcXKxAHL0j1XWTpbFqincuLWGjQXbUUurRWxGgqUqh3DbdxEE03WRukAYn8rPSYiEmQURLznr58elRhpRAHTYl3sLUAWyFYotcuynfleVHzZ6fUbORxfF8XuHwap3AYUhYAAprscQEYVPzThu2kOTh6NFc5FFUUpCYFDbo2wFvQcpDa7XRrLMelKBxdHa2pnUmRS+nEVkeDbGpmywEUpI0xBNRjOhLpYYc7IHmHu0dB52Rddz7o2UysedLev/55mkUmKEAtWEzE6JOsYMm904sqkyvescUz+VMods6jmR6k7zkjiwQzGln9WHAFRlWmYOOfS8K4E1T8lLIFXsIEnp54qLScgWapiA77C7TkKF73DYNucMZZMLTFFzaSInJ1dZ3Jx0B5+nT+wovIpyEs0NOrclcowZIgfB4lKOKcxdRO3IB5FrJKtYcqpt4AlD72gfRYT9jEKtmERECrpC6Qkb3gT3zBbP0j5u5CQCqZMCdJ3kZux5Z9/zHdBailOXwT7gvKz0PFmWxrV13u+d5aWxWqKmQq6mJjozbr7hT1c9H9nIFS5vCs3e8aNv3vP1j36NNX/GZ/9/BpQMfWnLstC28KBOp+1X2pxqemkNIytDYjjv37/j937wO+y3PSTblcv5wvJw4bysOgxQsKEGdh0CIxDsj+65SffJPiZ96+wzsc0ONhlTFYCzNcbW2NpG94a5vPK5XlQVaUl2AA5Jnsl6YloYLDzwB5jEsfgEbwUagHtrEfS2CZxJsmrMWG4MtdwkS9S6UGvFsj6TWioT2LarEGVLrKdzsDU6BHobYUPw+wE7htQX5EPWLK899nEwaPuun9dMNrn4+46B+UD9tRgoIT9l1cleLq+07LTGqSbO1VhTp4TU0pPx/PLM7fnK3jayZR7ffMLptFASZOQXNReKi1nIf4kAVydFsGtJCWbj9u4rPrz/hsxgPT3ycFqo6wqtkYbz+z5d+YXvZX72bePVglimrdOzM3PidL5oYBob3gpeoVXDN8BvlG2heZalrBU2GptJml7Q0DU9Y9mYfefD1zszn/jWt97w+lJxzzxvG7UslHXltMCSMtlgG7Dtma0Pbj54ac7tCk97ovVELiPq1i1Ye71DB4vjM1RJ4dmW/Dyx9U5eFh7XwpqKnps8WUrFUebSmFHHqteP1mTzyQjd//By4/m2YVVV4oaxZOXGSPYeS74kCGFp6ux7k/W0D+aUba1kTbQpVHElr0yP6mOIhXeGpWjS96gIdliXhVpXLBf5tUsOi2awUBCMnaS1rXd59udk3xsDAdbrulAs02a0kpWCWb6DwXhks/nB8il3QblKSZLmpIwdBYVHXfGULQ4jvisxxvpjPUIuO7VWllI5LVUgRakUnFwrHMUEliNPYEQ7nSpJn68vpNGjtjkzk9QynqTWEbQax4x7nIF6btQ0mdn2nb0PLtEiwwG6HGhg+pe/0yOo1Q4w1zL79Upjhqo0cuAOJil+31qlcnTjx2p9j3wPo6b8L4VNW9HnWimyiwbjjWXm6BEcqefaXCq2bd+hFLxNNS9GKPOcg8UjQyuATsOD5e2AsTs8vX9PqUUhzvG7Eio4NT8BMWgdWu95qHhiYM+eGLXghwwqBjnZoJxS1dim9zVk/Hz067tPMdylhuomgJWQiHef2JIDTP7IZB1KQinxunKHzufIuyIso12gpR/2zzifPN0Z2kQw2Tlr+Kti9bMZpBo5Lx9zm+7PisX7koIQ0kZLLQkJM48MkwOs8fvNr7wIdI7bkVOj/4m5gMh5PDMQ91N8ModwhhA7+IwcKO5tN7jA3+lTyo+sn0FZT9HGF4PuAZoayvY66M+cFIL8cr2xrgXrTZaVEVlxrvpg4bdSFO0cXXeRi+KJtS5s+w0vq86SwOpGcrw7xsRssm/6fXOZLKsUnrJ+OA/nwtM3z2w5s9gknypWC8t56Ew1qeHWmikPZ8rSaXtD4XAw9kaaCS+D6zcbPDRyW8PK3rj4AmvHukWA88CLgAkR9lKFP372is9+/8Y3v33Dz7DPydM3znp5iEwRSHPDvWH1NfnRuKTMt5DF8KV19n7jH/yTb/gHv/mB75xP/OxPJ6mWzekm8iiTaKbvdXnI/Na7dzz88l/nj7555PLdP4nlT/j2v/MX+Y9/9EO++Z++z28OV2PeYnhzftQX/ve/d+PhrfELv/iapQjUUHxCWCy8MD5ElgmO7868deYrV1uWdXJxNbiFzbPPTh+yoU/XHeEDfBfwejqfuLWOzQJzCARPI2x3cZZZYiDbi3cRic8fGnWBXAv7bHong+lmzvjZZRnLofabLuKoJKeaFtNbF2jSRw8AItRGM4MVkqllVTl0TXftJNR/haXKrn/b1Ta3LkuA1un+zstkEmDPHMwmFfaxDPU5YsH/SKrmkj4qDFOCJjjmyDw7SLLZE6MpryXjypNCGZXTB/Q4g+SREZhqjuWsJsShxaxkBWvfrs9YqVLs+qDmJe7DOEuzgIa0CxycTEbv3KK0QCrYHPYrpEg5rApBvukI1GLmszG61C8ewHnORarDUM6mjJbfCTZFCF53NUYRhJgxaU0gWkqV3VsQqQo/l0MgPvJxHJzAUIvwcCm9Sj5UXiNUx4WcIRfd2d2luJEl+UbJ2k3clDtlc9KZYBML27BiCzYMsS7JJl4G0wc+C7hiTHp8Zu5ylvih8iAIIRdhe2/bS3GWu2G5ysZnasc29yDd9YuPrpmkmJS3HnZks0NhfoxyIpZKURbXCHVciu/URqj57Mjn+zgDamaKmfKYjeL+ciQEcIwRivu7WthmWBZdDoEU30PS55UtEQGwYSsf5BqgbALzqV3YFFUisfKMizD2wTnx2SOgPOMjrJ3mUnemTArFmGW9754UXUBsxUc+qpTaKvDIpnsHnDZG/P7zIxjnHJ90zIJhz0Nnqgg/5UB1l3J4uvIVLWU1983jdzyy3zzuYJF8h7MGpNgP860+3yKSpOsH0ecQe/0xYSRLIj+jkGPvCvPOkfGJawPPBlZFco3458+Y0y3Awo8NjgHsHqBa/O5uM+YQQWvZCsmijdAdnxWQYtvDbTSlq2MmF/k8PeZrqdrLTMw02PLUjqWjjiWjnDoTEV6SU0ridtN3V0om54btg3OGhzIgd06nSo33OSUnl0EdC6k4w5XDRh5kg2IqDZkkTmVjSQu1GudLI6Vv+En+9RMHlNwib+UwDZse/poKeQzGbpJB58y23Xj+8IGn2ws1Z+p64nI+s64nypIFhoRf4QjlPVQ441isAuH26Vxb49oabZ9sXQ+YFEsDm53temVcX/DRoChTIeeTEFWTDFD7faa7kYaTh9NzYa01Qgs1GOtPT/dchQlSIfWGh9xW1gr9/nMMZu+y1IQkMiejLgulStFRl1Ws9HaTFadUiihHWXfM6KPdJYfxCsWhHIthoO6WIJWk5rxN6geF6R4KEOhNwdTCdmIANyG/S7TK4RZNY5BNNZyX1bicoMydc8ksJXHdbnx4unG97iz1xCdv3up7NMNMeuY+RzTnHIF2Ye+Kl12zjeE2aNcPvHzzHsbg4fJAWSrLuijjYrvxKg3+2C8av/DzK28ukJouuLY51o1aBqwu4nCF5aXyMgoxS1LyZIxKrivDbxTTEDYtQxqULsve5tEe8fSC58KnX3zO48OF88kki55Dg43BWkJV4vDcOk8dtpHZW+F5bLx/2hl7xhapiU6rgjnVgHBcsAqPG2iQH+1QbkjJMpks5zMP58KaprKOaqVmKar60FDxMVPF6UOMvCWDMXj3fGXbJ+V0IlnRd5RgrZW6HJbHYzAMsHLOyB0SAHA8y+Yop+s+1OdYftUumAIEI8nL3PeNPtW6cjo9kmuJ8Mjw+4eKJxWBL2NEi1vvtNYFKs3JaI2l6pnIVYCFoVD0nHMwVSEhj/NhzK5sh1CTLMuiC9Yyw5215LiYMozBaBp29tH1tjv4FCAwxmAfO2OXNSWXHFWqlZlNQdVkLfc5RQiC5O6SKhvE5zF6o9QSAIUsttMSjVCsdbCsmuiD2bnbNEdXgObLjdPDWTWtPukTllTiIs/3S/5jxtCPsXkpcR0N3xtp0dByyOJH73c1knKWBGjDYReODDt3xtZYSglbrVGxqGcWZyxZr/7sPVhvGz0AM9kh2nbFINQmwITGIJnHUDy0dZnAJ3OXugMtrFvbabedh88uUsq4AkEx1bd6KK/EhukcmkOD8xyN3poGS3fS6RSDTSIF+CYFaNQIj3E/10rOQXII6L9nGSSdDVI2dVqfkY+Q4h7RHXkEo3pk5Mwpm9fosqbOMSMjaHwMFzfoJBEIhHw9zoEDgJljUspCqUMhlAfDnvNHAgGBO8cQeM/7G4Nt22C0qKE+1Oih8pi6c8yD6LAU3MZxO2lwVE6UMgrG6GExAUKJZKLvIsMkBZOu88OAwxMwuv73bd8plvCun3mEclZFE67fMUzx6WB7LYBEN87nM9f372j9QmIn5TM2iuwx3ciRiTZDxaZfR8uKa7an5sr1+p4xCqd1oXuHWUkVZeeEtcxKwRmQMx146U1tMzg1L3z6qfPVlx/glLGt8649YeNMOm0kO3GKxigbCm32FJL+BGXVcmg14S+DzvnOuqaacav6rLtyHmxJTI5Wm8K0gvlOnhdef/dT+vVHvLw06snYd2d738mfGuX2jFdDTWkrZq/IqXLG+Nbs/KHbpN0aY5/84+9/yW98/z2v3sLnlxPJJkvJkFQ7TUq4aRmZj5V/+Ftf8clf/b/5g3/hc9a3/zqzvuHn/9xf4i/94L/kv/qVd3w1GnPPLKWy984//eD88q8+8/Zh4bv/ygnPsq6lWPhYjOWx0p82TmXhfLlSqqrby5JpFfZe1PDY1L6VZ77ne6SUWRT+KYBwOjXvlCVxe4Fmsu1kLwqzxQEp90iFgWaLglFfZ/ax4zVzHjDnwpgJr50ld7o7NlIoQAOMOd6xKfLTLFOL3oMRxFKfkHPVPJykOvY27iHKepcqh72nFBcokDK3fWOMRk4LJUlJe885igpvd2g52keZwerHP39KbZ8STAola3aUJCUFqTRibon7zKRwaaOHqkA2NUtGI+MzPoOiIgNs4jFHp1xkEbdD+ZjwvnPbNtSdkTDPYemclFwjM2rKmuzgSUDy1l0OBTdGctZ15ciMyREkooybAMDRte1egyhw9hlitNlVYd8HrIXiUvQPE+DHcf6CQKwxST6YOarqZ1hxuu6QnJY4vzM1Tfase/Vo1ZpzMlFEQWvOoebvCdw7tSSpMrSgEB1e+i4SdyBspCiT8I+EVXaHyCjsfQ+1qhqqPYGuAD3jI4jgnBIjKTg9eQEUw44P+i61mSfBAQeYIMW48jZLMjqDsSmcWLlOImFyTvf7P9a7O8nokkgpH7Pod+xBiKcD2AgbJRb32oj8u1C9mMX8FSBTaJSkeg9bKNzhRd1lZpEpJoFBn5M+9jjfYesdtySLZNKnQWQjDle2TXJlQB2gssfepbzCCH0fjVI0T/ZQ4eu7a5E5KNVN8mB87KNqXNdmvhczKMBcKvRpstn7lEraEtgcYAIqjzQqBcALqHef1Phzuw9sZgpqCdQuLCCn95glOcg7CRhSijnraM4AZh9Y0aybZWngSANYkprbVN4buY13wDuIu6SzWvNA/HskLkk5yC6T3a9G7lQfAq3HjMko/n6SrKv6XWOmDYUzx/41lfGZ06T1fOjMRIJZ+6iyjrvCceaIBucY7w71lsXzNo/srH0ysnOjUZek8oqw8BUmJcXMZw2zxrLAxZv219RYV+OUwglQBoudKKUHYagctaUYS4JqmVOR6ndLsO8dboVt3fhJ/vUTB5QSqHr8urOUhbwkTg9nfAyuT+9gNK7Pz9xeNnxM0pJ5fP2Gh/Mj9aJ62+RiS3IoWITOR50ieglzfFHtpiyV57bTgL7JatLJAnX6xu32zH7dsDlYl0o6n6mlBot/vGD6oi0XumfaGGQm62nRoZtTZFxEroxlQOyvlEEtGHu/KzIPqwkeNr263AGwlEsEaufYKVK0UAh0WepCyWq6ak0hhzmLmRqhIJIE3w9FMinLn3ow2RCId8pY8jgQYbR2zyHBiZ9JL2MpRcttF2P/6uERS06ywanqAT2lRKbzcFkwc57ev+fr9x+Ylnl8eM3r128AYnHy0AqLEVQ7nBqd7gsDWqhIxthe2D98SbvdsPOZ9HgmW+b0oPpy3574U98z/tDPrLx5mCy+038P9n3QaYymTJ/Wd/Y+FcjXK2NrPI8r3jQUkDrFE7sShVSlWwq5T3rYTlJSyPyP3t84nS588ukjJZ0YA15edh4fTpxPhTz1Go1p9K6B73kOnjrc9smH22TbJmNWSk3UJbEuorSSVa6t0T3UKCMEEdPv2TiZxBbKs1fnlbXUCGy3aPCBPqBZHJ7H4T3i+TMBEq3tXJ8aMxfWiyxmKZ6VZSmspxKNDImexWQcleFqdDNuN4WIrutZ1/CRdXRssZY5ArAVkijQovcuJVwoYM6XB3nRTXlRlyK1nIVkds6JDacAzRU8vE8xcn3fyClxWhasaFCeJrDilKMZDQ0sNWUNHBZtiTkrX2Qo1NuRiqbmjM2hwQ4x/L0faoXJPlpcueBjsg0F+y8pcaoL9bRSPFoJk1FcGUQHgKPXcTDbhD4VZtgbbd9YF2UulaONzqXKsAx9TIane/Mc5nfLk6ypxvXlhXpeSYukvHSoqcIdeJ5EgRrHxnCorY99+fn5mUtdKW73/85xrAp8WEJG68ETTFfoocfAsF9vzN6xUIel6cp3m86YO55VOECC2ZUfxRwkv3+ozD7YrjszVxgK5dymhtRTXdXMiTb6jImdQ0DsxNmT87JfKWtlrYsUAQnoTio1hgANdO6xgAZAqjlDIcuWxIDlKaVrJuqSXYRJJjOaWOvhMwYTQuos4JQqVtCCNRdg1MU2Zi1TRw7gDGDLf8xyPI6Wph8bpjxk1blkNdzlxEyZNFssYha/s0Cl0Set3bAZEm13yhE4z0fGUGqaj/eGE82Nm+yk7oNlrVCqLKiuDIExnJkUuq6g+BTDZEjqLZGL31nwz754C65CiaM+2MagVmWbKKthxN0KB3SZk/KFWqTUp7AnLFVBrAKl9Xyfzqtqgu2wH4ZFLDIcJs7rN6/Ynt+xD4HShwKR0fCZ6UXExjRHbWoTH8Ywo9nUMJ4KA+f53Tsu3/6WTuk5KSg7L8UfaUV2RDNVBxPWOJsaINdzYs1Q18LjKeq4N2ecC7ddNdnLKc6FdBAEnXbrES6feNUrb8+Teh3MU6HmUIsSq7sVPI0AY3VWS6kBmOro68i8+ulHrn/3K/birGVye3JS2VnPRk2JPFf8DOQzlh/I587p7c53fl4/T2+Z7Tr4zX/+gc9eFx7+YOJhLSyJCFBPLCPpXc8KF306n/hbv/Z9Pv32X+Xbf+YN9fQ9/PFn+CN/+a/wH331X/Df/pPOc3MGygp8Gc7f+9L55P/5hv/g8glffKdQApBOCdnUTrI5j1tjqc76WFiGAzukilUF8PZRFBNTZb1uHVoocXCYkX+V98ysRi1XtutGHoXsk0RnWJBQBmaRpbnq/LI06XPyfmu0+PfTOtWgZajDaSh011EDpqUkAhTFVfd9V219mCd6H2EN7QTcgIjFUOrNjnsKe1wUrTi4FXKdXNLKfmv47KS6au45sufC6sKhGrAdBQcLuMoIbN73Xe9UtLvm5cgzSwFGZHI1/awzAN5EzDyhvsnHHVJhCTIxq2lNSv4CY0oRkaUKtpSx0Um1sGJqRm6HBWyGYjHm7sMOZ4TSOVN8YnZidOWRjZlCBbDE/DZUGqDplThSBX5aIvlgnbAlhVEP9M9OQxXoRJV7Lok2NDvpnx9n7RBpoLY4fTaW1aYsoGaB5JTsrIvcEtsmYC3nTJq6f2vJMBOt69KZrmgFkrEPwfRLMhg7TKc3WeRkVRahXyzyX4GcpRaR0nVSQmmuLMsg6pIW72OnKaWSskgKOe51X7cAIcdwxr6LaDHNgYZHu5/2kYKImd610/VQ5nEK7zMAACAASURBVDpS9RH7zUGGHaCFgcLUM2xbo82BD6hEVmio+Dzmoxpo4fSDeNF8bwZ7/6ioc9dbpSDnGQ3EatLuPRwqJmVSG7CNic+dlI2tS6m+lCgesYJH8pnnUBXGZzCTog4sub6f2TEPO2w5Wq0nqSognfiZCXVgHwIlDWfMTZ9XUtGSH025KEvVCQtaWOHWVe17beiMSQnmPKygjg/NnXgEnBMRC4bAe7Ftcb9mZt+l+E+HdVMZZVIXxg0UQiyJ7uRSwaEfWWjH94HQQAtgmomyRAkOMcti5giIn0nh8iUI6RFuSEP3twgqATu5VPZdlkWp8TR3zdGltPS7vwjnaPSUGEK2wELvnShOBF9IqZDSVPvqdFI+jLyVOfbIFVMu00wZxmSMxJ1Im0q5s6RIFBtSxiaEgejH2iH+jNLgne9A4pJP1OeNtGxxRhfW9ZlL3aGeSaVSbHLKM0K9C3sppNyouVHJLBejeoDfP6G/fvIZSn1wvrxitPf0NHj95i3t+sLXP/ohX371JS/Pz0xPrOuZV5+8IZ8qp6oDtSQdIiM5eaR7EOdoXRagpBBan1G1d2tc985Ah4hCiyU53vYb/faBl5eNmhPlXKn5pFCzROSPHBkYOTKXWkhdnVNdcRtYUpcIoHpHkuw8fdKj7nuMJkVQFtOkYS5yWxA4UMpyB8Rqrfr3cdAd/u4x+l0GOXGutyuzDS6Pj1qyQ7KrcLAj0wmpmEyHslikkPKNca9Gl4IqpLuBlirbSo+AeSDwBvvtxuwbbz99y7IkknXOCZZFS/7jsgKZ27bx9Vdfsu8758sjj68/4bRewIzmuy6bsLQAwQQMqAkC95ixRLW2sT890Z6/IdXM8vhKmRcTXr1+gH3wc68b//afuPCz33ZKyzA6/abguumDMXb23dhvOnSv7Znbnsk09j5pN8mA964l9MqVl6txswF7oo8b3eVVnZ6gJWYvfPLpFzxcFvp0nrbBbHA5n2AabdMC1ZrTor3lOtSi9tKd55fJtQsWmjmRVjHvcxiWKluf7DMzklgP7JD+6mdoIV8/XU5czhVFvU3SSHguzFShSznULIJgU1gJ/RjaMs/PV55vLzxcXpPLokDPYNHXdWWpCvqEAj2Iy0TIuwXwvH9+YkTGg/tkKaeQAUcmReTRlKyLWMCWANExxUqXWrmcz9RU7z77w2ZZsxbEbpPUZ4BSIw5iSXS7q+FhSYXWd7U07QY1yyYV4Fd3qQQbQ01wQ0DjDGtU77r0lnWhJDEqE+d8Wui90ZuaR9wHrYeVAamVRu+0fWddF16dHzitC2U9qTmmNY7cpFJkscpW8KE8h+7Ks/HZadeb5M9F7ShWMtUzjWiumINZkO0ExHjOj++R+6RtO6kqD8cOi9CSqSQN4od0Pt7xj81eLkCzFp6fnjC0LFdgKbo8a8q0CC3P8f0ODrBaZ9QYk227sV1vrOsqj3zS4LQzsTZZqgJeRb8Y0xUQrXw62f+KGfveIoh5RJvOILkCk/euxpzp4w7eeJ80Cz5YNTjM1rg8PEqFaeCm9yVbJZPuP3/NEVqeDtvUjAaZxAhbsDexu2YiDTyk4GnIsnkMv3TC5mJx3jqtbWpWOVfScGUkxIKSSfGsT5Zlie/1YBUtSAvY90Y9LSwPJ6najgzBku+KogfL5LEqDBVlHrQ54/NWSH17eq/v/wB7fSosN5iPQx6vR0JDfe8CXGdUpA+XfbMuAupSUrBwMkLmnu8h9B5gVYlwbBB4ejqtXJ/2WIKPu1fs4JhOdgRMHbkkAXQZarE6bpF9b9SlYkl2nuOzmK4swhTKRPdQDJgGbHOph5Zy4lRPsE/mGbIf+RmJ3gd5KpdhRCMTOdGThR0jSdHpk8vjJ7z/5gd0T5xtoXNlugJgOx5KpAAKJh/vwelxFjRycfJSGJtj50mmUFcjL4ntpVNJUh9k8Fa1xHunpcStdUaH9tSxz8HtypvbG+YjGmBNkne3jo/EIJMWSDMxLWMkcibyOE5cHgpvvv3MV7/7TDrpuRxdVhnagPoBa0nvcS5YrZTHN7y2nZ/91zr1XCAN/s9fafz6P/3Am88Kf/D3vWUx8GrQnC3IMMsTz5N1nXzt8Nf+t3/AX/ipz+AXPiOXz0mf/CJ/+j/9y3z9n/83/M9fXXi57fipUrJzHYlf+53BZ3/nHX/6j7/m8c0SYBsB4ifyKQb0tLOuJxgv3F46eQVjkFIhVwRGJak/BxO/TYwiy40PfGZGAeakrAuPw7heG51J9olZoR2sWFYWjHvT80YlcaMAm8HsDVKSYsGhT5F406YUROYCKEzfn/dJKoW+T9ZzF3CF4Z7UUGTtvhgZMxYrp8+IjgjPiBSHYd9JcD5lWtto7UpZTrgHEKMNUlkuQS4e6s3DvuIY5Ip3tXQylaOV7+G5sqHBpGYjzShaSDMsc4nbmOyja2YO0jgXvSPTpD5ZTyK72hDIl3D62MhLlQU27GWVRh+3AOUKFWPusoyrlcqAQUrOec10V+i9df39vTVwo2TV3StPSWeBAntnfBYLY2pBzEOg3owMyN7VWkvOLLlgqISl0yhJWZB9HmxK2LzIFJcdahDNy8mpOVGXwTZcKsQsFbvydbQ8n1fNKG00ajkJTDxynoLxmUEW5Kw4hzmHMqbC0kUuEAt8DqCi5KJZGs0s+4h/nbXwKyNQdJ0HqVBSURNvCp/GyJiJWC/JWIoUQm7xu1VjjgjSDr1HSgLWUpJCiOmkGuBj2+/2Te1OCiK3pOc622DmQylooag+nnsoJ5XM+BxsTQSNRM0eUQ9ItJDCOmemrMScBRjK3425IgvAuXapdCZQSuxXhmaILMI/0fCSMU9QktSQWfutcmkVSn+okzRv63fMYVEk7nSGZs8xhnZkIv/J9XMKcNPvbKiIJ6NM2zIEt5tDTYVkUItRlyoF9IBI19LLb7L0zSQLZc6yg6vt2SF5RKVIrZWzsmiPOWL2w0YmUqXPwbB03/WSBQGYTKVYcX557L2WlId0KINlh3QOKNGbdpzenSNQv++NlIRQOyZFXvzZKR3OCViWEDCkqs9pSBUmpfVBvvpd0a8yB+ht0KNcwJ177MFwp+1FRDSJPBMlcp0mGY//vAc4t6QFsiIK3FQg1vsArzjb/d1KLsC3hp2W6SjvzanVGWXg3liSs8yF3ndqGvQ9se8J1gY0kjk1KVPzbJlUoawrZxucTitPvXCanZ/kXz/5DCUrlJLIq6rsv/znv82PfvBDnq430lo5v/mcy8OFZa0hN0ss0+nAHLuYmiG6UUei5GvmCp192QfbUGNBHyEX7B2yMW3y9HxlPD3Rr43lZDy+OinHxCwyAwK5NbE2HECSQS6LUO6sam9Pk5Qdn1mLjoctoc/74H0g5/cMiDmihUkS4Tk6tZ6ARKmVXD4Gbx+osSPb0N4UYD3HgJRYTyceX19g6tLCDuZVKG4tMcC77DxjyM5jyWQDSNFawIzsBQFOpSSFdcaw8VFlouDIxOBb3/mCU0nxUK4sabIUw61zfX7Ph5cr2+3K+fKaL958i2VVy1mPHBSLA9ZA6o5gz2W1+JhfMNqV69M3ApKm8fj2U9oY7C8fePvmxPJw4tO88YvfG/zSHziRt6+5vSvUuTNaZ7upKna2RB+JaRs9NVp3cl44r0bbnY3BXMFGZqmNPgqPLFzqZNuNrxj0rZKtMOaNd18/89njJ3zrZz4TI9Er755le7NTZSbnUjOlZtpm5ORcp/G+d64DPjxnnl6aDqZUoCzkOsmpRuOP03pn6ykAmaxcBwefClR/ie/8zeXCecnY0ACQcsKtkeyEN9lzuk1SSHtvY4S1SM/h+3c3nm+NfL7EkORAIhctO7Xogp7DwXZBVmPQ2lSIdd95fnkSkBmqlJwVsr/vG7kWxpxkMq1/RPenT0bf6b1DLiynlYeHR2otskKFgsYdAZv3PLAAiKeybY6LqE/Z3lLOakyKARtgyYVkiY4GtjFkk7qNztjUAtdmj1MFVdAnKeZSLrF0QttvtNnZ5sSGslqU+xXAbzC0S6lcTmcptwwNLD7xfed0OmnQGloIWlOz5OwbbezMMdifnzGrLKcTNlRvO1vnOocCCA0pCpoUNZIbGGnCYQmYAYicHh4VpOxiLx2UgSH4/c4aj/kx4BKDtNawiN0UGD7Fns1ddag1FzVPBKuUEOs0mwbNPqda88bkVAt5ke1vosHAUebExDm06D6mjFDzsBQJAN9aY4zGcnrEExQzGlJ1zAiGNNfClv1gIh0bQ99jhtE2LlWZXLtPSjwdbkkKloOVwslTjOOMgF6xtx3zye3lhfXhQSC7FTXM2fmuv58RJlpXZfXMPlhM0vcU39tsuqhHF6h/PI9rVk7Y7JOlLrL9RqgrHNCfBhZ3Z02F5JKHH6obO+zXHgrpKpuWGhh3khsVPd/ddbcWy6ylBCMnO7kfA5unkPuHSiHQZOWYRKykO8mmGuxQzkA9iX0sp8KyLtTlRJuDfdsiXFMW3YQGo1JzqBjU/HNX8HIM03Yfio//ezSWHssnpPgznFr1fN+tnB52AsRWe1jpCIBOn65+j+V85umbbzi/OZN8BCF1sKyJFsRCyk5xZzHVkNthu8A5LSvnpbBfG48PsrSNIevHzI4NY1k0ZA9P4InqUnukRY2bPjIPby/8zm//COqJ3CfrWRlleTpbbpwQGLqeBZiwZ+wDWK60DN07774xTifj5fpEefUIdaoAIQBXraPOmAoANY78xbDgWsHmzqufecu7H3zD5fGBV5+fKWeD0wpWmNlI3rC5wdzUvFUzdX3k9Vuw/kTfJi9b46//ne/z9//hBz5/PPP42cq6SMHhQ+oEKFhW/sTrU+KHW+dv/A+/yp/51ndJn/9ZcnHqT/8J/uJ/8n3+2X/91/jbs9C3nbTKFvHlLPxf/2jw+Zsrv/THEudV1gdmZwyDtpMGJHbabpS00q3T33WWy4qFJaNk8GGaXZZMnUWlAD7vz+ScUX3dCvVc2cYHbPNoIJUazCILqbvA6+k677NLybkW2JuAFK8Ck0fK0Xyou40ZrWnRFpSLM2ch1Z2SO3NeSawKgs1SROMFvCngtThHW6ZGBX3OJRvmCloeniB11nXhtj0zbzfy6UxKUgd+NABxb95qU4sOHmUtmWieEtOuK8k51PJ6ccMmXQQq9yGCQsSn+sH2vpPKpFiib1sQMJmeMmX4PSrDPGNManX2ltiHMWikWkhzUjMiDLdBsxdOa9y/6LMHw1OCUJybJC5st42ZjH3fmbUGySrlxd0qT2T40MlkOqqTz5bIlPsekMywoTnc8gxlcw41jLKyWtSJp2xq7907acksOVFdtiZLmbqscCOUkLuW+Slru++d62yQjbJk8ME+O9MSGSNZAJKu82EmKEgB2rrKO0qu9ADpLKmKvmN4a6zrImCkdYElE7be8OmcV5Wm9CEVnKdCSRlPkzY7jrGUlemdkYYAqqYEutmVO0ZRLoxNBAQVzZp9Rp5oStQl0yDys0QWF1vizhu0MfEuccGaKmU6s2rnoSqKpE8XaMMIwrXjKUWUArJhhSV6ROU8KcCByAQtQZDMObUwYuw27+HoORuWRBsUgHy0bQ92n7gvXHImNcNcIMKS1Zqzh13eqrGg58lcGbctFFsTgxzJRtPhUP2YkdzjGY8WagvAZsApsgTHGLS5k+P9AVnyH1+dgcm2JW77IGfBKUfBgYVVbaKoDHcnpxWzQXa9/HufUCNns4T9LpTKxP7gBvnIXmpDxMmcRCEcKX20ghkWuVtqVC6I3PNDOGHHQy0CvywpFE+HwkbSpDZGKKikDuv+sXhGFjtwEyHlU+9mCqB7xrgw5pASyQRcl1KkLm1SebvB4EryMympFb57o09ZFnPETpRUD7EnwxsbIlIjeSDkVKHSItF7ZE5ZFDjh4B0bSA2WBqkZpcHuN0pJ+NwFjLqT06CawUsDm8rhy7DmwkvaSDax9MJlrTy833n3kHksBxvyk/nrJ5+hdKq8e/+B3/u932F7eYFpLI+PfPvzz/SC5kyKD3rGNnkzGGOjhpVsmqSvnrKsS7Nxa412VSOHJOMWMnZjZ7I/P3N79zXJM3m98PD2TCm6IA2x98mFVDe3QNivspqUMyTEFqaCD7WwVTvfVUZ9DFVmz6klQJNvPBORcI8Yhx6DaS6ZWlbW8wM5BZCUZQXS0hvVpmPEQ5xYT5f4jFLYezq9N4Xhpo+LAHBn92efkjrG4jVb/Cw+2W43jgkh58SyriSc0XsAYdLwiVlNPF4euJwrry6F/fbCmldeP1wwGzw/vef5+Znr8xOpFN58+gWvHz+hlJWt7eGVloVuTrEHPbJaSikkJi97Jw0tj+3lhaenL9lvNx5ff8Z6eWC/XuF25fGTR+p64vfXZ/7dP5r57NVgf3oKj27l3d6Z185tf6LfJnQtuNfuamgZWgpGd17mzrY1Ullwb9z6zmM50Xhiro+kVDl7huF8eLoxb4k/8N3v8PbxNVeHd8+d59vOtJU1Z3LKPDyuLHln3wcvabKNzPuWeNqd68vk6ebMXFhKxUqW1JSmAznJFjd3WM3wVLhNqRPa2Glj0rouq4eHlbLEcOhiF0pJjCG2aBtNTBwZsjNt3BkNs8T11tgwzm9e3QNwj4aJZCXaiLSwZiu8bBt9dK63G23bmaMHA3dcFmJ0FdXQSamAJf1MkY1y6xuFRO8bwzvuCipfk4KY9znpc8PMaD7DnoaCYpMyCvqQTU5NS3pHJk6uqjPPSblHJRtLKdRc2AMQHaF86G2w3a7sTXTkaV0YU4HIOYs5bHMwd1mjynBG3rW0zYlbohksdeWoax4fnsTyLFWNQaaLiDEYwzlfHpi5yN6eKu5Oi2KAGeGe1w8v5AQPnzyS60pKLjXESCynBUtiZbGM9SbfeSxfrLrw3BJj38jrimPkPrCSaT4V1msKzzdX6OwSCoxhAntzUvZae7lKpVUr4JRSWepKsQJrxYbsXmPqrKJ3Ulpo+yDNPUKeTedK5ERJcJlgODnUZ6q3F1gKKRrH9M5uozFbYz2vkFFwKPFuIC5sjGghC5VVn1IslZpjBXJGh1Qrxexes43JpgvGPhXWO+dkFrG8dxZaoxQerGSmxPkYqr9jkDUC8BNrmSM82l35FL01sXbbjbGurHOyo9aaIx/syJSQ7S0IgHE0cOpZtSN8MxRf3bsAslTV/DI6uZaP6hyk9Eldtct6v6VykCIqU7JaEI0sSX5kKEyknKuhZi15YQ5lWeEKjp+t3OsjZwrp+1Ro6HpaSdrMqTYZWc2HA91LM4BhDeAHaKN3p/VOyYHV+QwmWjkME0LVFcxgrsouwdn3xrKc47+bkR+cVE6ZpGjMkXnI8WejJaF65nxe+PJ3d2aHlgdlLKQ0WVKmjanQcloA3sHQR0aJm4Jvsxvl7FzfvyO/PVFbptqkpC4ABlcQcUrKD+FQwelflzKgdeqycjkZ171xWRJ9Gk/XwasMmRM5WWQpGKflREmT6TesGZeS+Wa+8OGpcf5mI3+eWL66qPiiruSTi8V2qWDck9jskK9qAT5REImVqbz+ue/ww3/0Q7bbK86XIrD4dRUJeJI9g+U1yRcsnRgn5fA9ls5PtY0//PSK3/3ygb/3D5/4O7/xQy7/5hf81OWBkpzTOrG9MlOoL92wOXjzOvF3f/CB7/z3/yu/+J99ysx/jIKT/shf5q/8+7/Fl//j9/nNPuhDSuqB8zsN/o+/2/n0sxs/972T8kyG4yZQ29nwuYLdME8snri5iLu8nLUwLI7bYOwiv0qGkSZzQI7sLgDvhmfoDU6nR/bbN1IJ1cpHv7fyTsYwJLnQ8rK6mrTsJODEPNMsgEkTcLKkHOrEWPIHeKqs1pm5AJUxPggMyR6tlxFXMAOESk2Qx67n04dUmj2Cj2uWbYtQ36VUeNk6aVw5XRZStKwJzk6h4Mhx1ups6LjUQCnCcOdg7k2gfU4sSwm7rZrsPMt6u+QF4wiM3kkpU0KV37vyjPpQhLZ1LdC1JNmqJP0CTixLU+Zhz+Sq96q1xsl2Ecw4bb9JjWcJz1V5U+aUU7Qqz4bTqTWacxnsbeKjMmaiZLXgyjKTce9QZKNMm2sRnbKOeZnkfaO5U61T0qIAdXftCQqrUWZUtkh/EBNgVQTLtE316J5hijg8la4mq1zxoQr64brzrvugVJHYpViAeI6H8ndGE9Z0J80UGbFG6lJG976xlkXnvOm7lionYUNzZz5V5u0mux6Z3VV2U5Lf7wAfG551PudDDTKhnlYYnXmE0ro+Mwm9HbMmlDvyqiQeUJxIrcqMrSa1ldVC6QIprk35saessg3NecovNBJlyUwKySd5DsaEW5fSda2Z2YeU+RFuPnuX58R01yYrDExg6UQWpyRaKh1V99Nj9jVGc5KPe7mF1HAZL1Gy0Ru4imysrlQgLxU3o5SVMl0Eo0nTkkqhUrHh3NpOEyLKGq1pzPiMTfEs7tyBokNn1HySYobQjhjvszVpigY8P1+lwBoiG4VbKWvQJd9CikcpL9yc5B1sZfogMaE6RmLJlaPh1ZPmsuh1U7GBN+V6rpUj5/GIHkjJtIuOcWBFuqyns7uKNnIxZpt3Usty0jkLMUP9f6y9W69tW3bf9Wut9z7GnOuy9z77nDp1cdnlimxUSYhsARbIAiMhEnG1nyzEI3nmA/DMh+AJ8sALD4BACAULYhCGEEVxSCSHKJCUHTsu23U5l73Xmpcx+qXx8O9z7foAZ0u2ynV8zllrzjF6b+1/1W+v7MqQmEH/jb4Xk0q49saSs5RLObhcLvNc18/DxAR6jFm4ICWVVJMLL/ZVYyowTQHYDcwbzH2leSN7ImHUMaA7i8mWr6b1LhXgTdYaoWiVRST5mg2NZf2Dqj8UZG8zEqVOtWL0YMmFvjcOuRObVKojBjnzot7eh96VZSkc0kK4c7bBoQ+exoGv8s9XDij90T/6B1wvlfL4wOPHn7CUAyRllPiQTG30qoN1NGoPihlHKzRXDaVHsMdg3zbOtbLtMHrSpT7GDHjt9LqxXU5cnp813B6PpMPCutwRo0KInZkAJSk5173SutqllmWhpDyRSsSgoaR0otPCqLvq4BMKzIukwye6mG6b9iIminyrJi5lJeWinJo02QqT3POG+poL2bUkxZAloay3TA+bGuSUFwUgu9+KCrQY16oGjCnpE5IOJSuM83I5T8Wmhhv3RLRGPiykfKS2Hfk5g8fjkeNh4XAsrMnp+zOfvn4FKbGdLvz4sx9zfn5PJ/PNb3zKw/2jlFEYdbuK0XIgbguRGNicVzzJAnLdOq1vtLZx+fJPiPMJe3zF629+WwdwvWB24e7Na752D7/yzTPf/nSjnDpfPi3Ec+PU3jPqmVM/YS3BvnOOQYzCxa5CiIcCZ7fo5HxgdOcaKxZXSj2SSub92Dm0T9guG8/bBSL47Mtnih/5xZ//lHI88u4MP3l3pk2m4LAkXUy1M+rOU62ktjBGZ9/gdAl+8r7xdHqGASllWkocF+fyfmPvmXcMXucDmzdGJPYxAzOTlEbdjH0uIQ8PTs5aXCzU9lPrxj4KdQTDKynEDqkxrKoljUStjct1A5yUCvvlIuAzK+cnu4Yhhc0m6qYg4G3baF1s33XbuNUJ6xKePvYezGAsACIWMYlpSKIM7H3HgWKF9eGOw929ltysITDjhBu5VTFlgYIcI/DUuZ5PYjFI1FbVtpMWxlQYunWWsrCmg+rq58UEzCapYPRdUvExOBxX1qXQAzwLnM1LoYcWepvVzD7VUFtWVs7dYWUbnUbn/PTMfjlzOB4ZZvSiAOuSM2N01vs7LdilaOEkse8XLJzoG30M2nlnxODh9UccDvekfGs7c1jEhGOmprRhdNezEb1BLljSGVovF0rOaspBl3G0hpkpQDNPabQZeVkmANWm1VfKma1VRkgdIrWOntlUsto0dNK+qGZGlS2q9U7tO7eWsWQf5MthM4dkdIpncpmqxSG20Ke6RHe4FCn0QVl1HouZ+imWHOgYvsoDb2asKU/m6BaE3YihJkPP+UXtwwvLPP/XcDwkyW69cpPH6UcIbAT1uolsS4NBI9mCD+Vx3ZbwTHCYSy23N8GkqfGsAOgx9EyNpMY4ZUUZbX5HCSdax0ueSrypmBoC/nyWJNyIBQZ06xPc+iCP7/2mOrOXJrU81G4UJqVjuJHKqmdjKMCY1vDJTN7sFL1OFhM1Oo6uyTo5tH6lOCQPKZomgCVAx2h7f2ldu4XhRw96rRpCUyKXlZwPAlmK1ladH1Kp2bSAx02NN7NhFCKt7+pmgx+9ypIUN1XYDBZmzPvWpnJwTMn4fIaZaomkbJD9eiUdsmqeu9NnMHCb8nnVA0udICvi0Hlsyli6/+gNT6cvuPTK6iKUhrtsTnWwpExkU827afknxCoP79TRWHd4fP2WP/vTL7lbdI7vwCmMw6jsW9EymT8sqIf1SEqN3jYOx4XLpfL5lxu2gtUD6f4VKXWOYxV4sKBg11MQy8pyZ2AdetLn6AkrB6J/yeuPjpw+Kvzg959587UDx7Vwj5MeE5aDiIrbCSvBIGPlgYhM6Y3XXxv83LcHv/L+27x79//x/X+28/WvX3m1Jt4+HvEE3eGwjaluUfvaYR+8+cT57b//x3z623+dT/6dt1j6OYjEN/7KX+U/+OP/lP/s78EXW2dnAmzAPz4Zv/O7Gw93iU+/oXBlz4b7QixOeTpxd8h4ktV+LIXt0klNoHuJhI0sBU8PzBpXAnqlkcF2zBZSEti2pyu0yv0r5+lpEDgZp8aVPjLGSrHEXgctZm5KIJWbd3oOrvuZbPc4Tg3DbJGV19X+Reh8qvtGHfp9sGnFiwZW1OrlmTaqAKaYFo482wrbiyZNyqGhUhi1jclSva4r3ZxWK/u2sawiPMMFOFsICF5yYTAVobON1zKyN2GEifRpbaf1prw619urcouQYmVJtKfGmpLmFz4ENl+uV5Z1pWQBa91UxOHNJbyh7gAAIABJREFUWPOq/KRp1e1D3y9jWkmWLAJxVNqYRqppq1I8hNrM9stluh2kOvNcWMqgXjcYshhHC1oy+oykyMmkdHOp2Mp6mIqbHas7JSDyIkDWVFrRYt4MHd0REzBvY0zbIi8W8jY6rTlWpGxsaPYal400EmXmU7YZwm2uQoDWpsLQG4vLEl6bYj9KueUW6QZtc1FfcmbMJrXRBAKaB6MHnla22slZcQwlZ+6Pd7S2c9032eV7ULuaS80gUsKLz7ZtyFPdet13kUgvwts0HSTKHTK0kHW7Kc/196050W22vuIc1wMbV27FEWlaha9tkJQGj/sN+FG2n0gtnza9rvyoGOy7Zqp+w18mgXTLcZUiUURW2KDOanibyt0xlFh2iZs5et4vhIqSGJNw1W/sphbEGGApTwKmse2yzifmHTIJJS95tjsmBopeSTOcurab9W7mZvYgYqOZwEIBIszPYOgdsKJ30fUeu8uiCUZrmWvb9C4UJ5krCxjZ1Eqe+cDSeuEYYYoESSnTI82WvtuHKYLWzLH+wcbniyt78Ab2TMDQPWEj0VxKeEtOsaRZc3R8yLaux0SN4CpIGKQQcDb5dTluTCrqmxoRF4l50y41YuZGBjnNIpMb2Bt8yFqzmAr4NOeK23co54eZQPLaOqWIos1ZilubcSOjLS8K7gjNMrt3SnQSUjstOdOSdtbeZStvrVKjkkae7+3yooZ2y4xxU5E3nePObHTbGWFss21Rdk+j0hg92HvHTXdC3sDHiSUlsnVWDx4ebtP9V/PnKweUhh/4xne/w1KKMnQQYih5ux6UaMwkeqcUZ0HS0jEcRuXpeqE246l2tq7DJLc6cy6Cujcuz+/YT89YNg7395SyMG2k2Bgv6LeuYT38Y5OP9XhYFMQ3LSOWlRPQxoDcSSPRr4O9nakWLOkApgPR+8AbVB9TvSQ5/egKzb5/fGRdDi+MqqfJQoyZF3LLqojg1vaTy6Ia6DkUxwwsBfmab86emyKp1U7tFUK2CZgscpfP9XrdaXuVasBm2LQnZesQs3HuTErOmhNvXh15OK54NOp+IS2ZV3f3pATvvviMn3z2GbV1Pv3Gt7i/f5S1qHW1OMzKw1v4o0XMsO9BzitRd2rrbNuZy+XE9vSe6/VLDkvh9affJd+tbLVR3Ik18zo/8hffNv7cmxOHcmL7IqjWqNXZKoyU2OuZ3QxPg+0Q7FsQcdVS2zPv9y5QhkL0zu6dsQWXsZF6cNk3he4xqL7RhrJjvvXJp3zyySMx4M/eV378+c5aFpbiHA6ZWo19GzzeFero1Lry7hJc9s6XV+NHp8E2Bnd3r7grmbw6USDjLPFIpESkjcd14XR2rl1qqqAzOly3yrV3Hu8XHl/fSSHRjWK3Gushm8NQLSnd2OfiZxOgKV7Y98bn755Ylzsd2DOHI5jMGzZBsAvLstC7QvuSJXIp7P3CpZ4mT5n1rNqUTjct2pBwz5Nl3Nn2E540DL/kdHlivX/gePcwWTKButl1idQqS2CMIQbQnRzwVDdd2inYWyWSFuYWUJas1p5cKHnFciEhqeuSk7IZJgC2dSN65f7+yHpYuNaGl4WeMmlRO0IKRSW2WgWO5IJn524G+9baMIK6Xbi+P0mOngpLKiRLrOtKdvC7O3yydOFJTVGj02rjerkICNx3rtuZx9dvOKz3jN5giCUb8zvRKZm51f7eWmgULKqFuu665G9s8JhgRibj2VhywUdQ6cpQqE25RY784zkR+8Z+2ZXTkDM2K0rDElsfjF5ZLRF9/gwmabICN2fT5Nzm07JIWWLKqLmx1e5OjduQW+htJ2J8sGPObKjUA1wWxz5DENMcvMUMzXyDEEBUe8Oz8jA0MjutymaVU1a9K+I9DSg5c9k3KcZcn/DoAmcEahmqFpGyZcnLPHdnvpKNF4nyDQC8hVoyL/3QP1YNNa0Jq3KpcZnAEDdr1g3xmuDaqPVleDJkzyvHZVrwlPOhpVL/o/xVU93YZOumSEufhieFqzPv2Wk/q23MyuEZQIIYyZwX6F3veagtqnVlbRiJvIjZ97JISTjbclLSItCnpXkMI2UBW4M+VbELFgrlTa7Bb/RKZCllYla255vSbwbCjqEMCJiWbHdabdTrLkDc9HPcSgkwte+Epfn3qumody3UZVb+WgQkZ/HC3as79suF++UB642Ul5mjKOVOSombHHjMhe6WhzZs5oKUlce7zPlp4/7NvbIVJ05qttKG0RscYkAemlFsYNFYTHaRMaAcNLB+8UXlcGesaTCWlXLulNJZzVhw1sVJxak2aB22XQdAvi9cL43zEyx2Zf2yUPI9e9opKehXx7zT+0ofynzMKUPqpN7oE6yyOMAYfPKdRz7/w895f7mCBcdzYj8ObEg9bc0IX/ABNk70shD9QHoYfPrz8ItjcK4/x+/8X/+Yf/j9xDffZF7fFdaUYKmcOlM94ZRo9NxZo7B84vz3/8P/y1/9zm/B936dvPwMY/2Yv/ib/xG/8cO/xn/9A+d5q3gy6oDNg7/zZ4OP/+7Gv/avO6+PC5717OboMBZGlmrxmA3vDS/G+VpJaZmh2g18kOlUM8pi+Mi8r1fyOAg4j6kucyOWROpH1sed07uL3nvP0/489OxPwDVImK0EdRKiAmX2cSGllbWInxmmdMQwFWxYmkUMGUDKQj+s1FumTKiFVDXwwFSuny6XaTUrUolP2/MtKF9ZbPNZxliTyKvrtXO+DI7Hgv3UMmQzz0x2zoHq1hs+mBYNprLN5iKv/397UX2G7Fok6lan0i5mluFcgk2E2b5t2K7zS5/l1AgOsDjgi9E6RHRycq7XneKFASz5SIxCbHV+V1LVGkaMqvQ+N0ablibvpJyp+05KhZwHh9XZ9k6bVv+C0+gvWZIeDkXKiOV4INxoV6m3GSruACNazOgJIUleTPmInqF3shdqlvUnZZmL0nDiqgzVej849Z1Tg2QFz4kcGZsWHZvLtxSQG9mdkpzRTLaoQKSuJZ3HzNKUHiQvynTqjW2/kjsvQLlyD2ZI+Ni5DNlz8lJEUs2cyTr6BDR9tsIhYCM7NpSx0yYIcsvju93GNnexW9X76ArnxgYtBssk0JzE3ipG0pzQlKc48Jm3lCaDrc/BXef04obfLfS9ipzZVaySkhFD+Uox9KzGVL67K0bCzBXWziSxpgggl8JAAOdit7vNKJ4oJodM3GySxpzZBDDlw4rtld4qzQTM9NZf7kR85lDVeMmospQ5LonT01WgSWtSdGEcykKyqgzIJoAtkLrIbwQSNkEhkTWdbWaCSgWn91pRMbXprszFKWlluP6eMRRcjasRfM0KcI/ZKlfjVgglwru/vMuOe9bcNhusS1mIkdjbpu9rKNNsWcrcc5URlCwzUhNxjUjKNrqIq64MrjoEzJCnymnOOZ0xCWhesgq7zf8b5X+ZK9OJcL2Lc/Tz2RAgNfWc5fTlvKieRrgsiAYprYDTmkqnHBXqhAUxibKBlG6jwSCz1UR0tdPuBYovYFfCnHJIyj7rPsfMAT40W1vWPjX6JPV9fo+Z/Tpw3+TWWmVrHOOqmWgwyfOZ6dxN8T3uDDMsVroP9vqCsH4lf75yQOlbP/9z8kqDFuV666HQgpFKQjmzldoG2GCPwVb7XPQb1w6VRJ+1wNF2und6PfP+6R3bdSN5Yn11JC2FYZlmzkrCIhNWFczbO2FGbZVsqgkv5i9tOT053dWYo+C3QrsMLvVMjkHJB4Wb3Xj6kDWmjduSBb1VUsocjnes6/pyUN6sRa22KRucJPmYMlt3SjlQShETygwrG7M5I68ANFcWA0211oFR96taH5KahHrrLyh967psy/HAsizTI337dmSXSqlgo/Hm1QOPd4lijbY9UXLi1dtH+r7z7v2XXJ7fUdY7vvb2U5bjPT6reyM+BOSKKJ/NAjPHyUw2lXp9oge8f35P1Avb5z/CKLz52jdZ7x9IEcReuVsWSg8+9cr33n7B24cn2gmer53L9kxriWsHbKOOFRvw3jtRtbS0+cJEg971c4yhZbakSvTMZXRad9wqLWeOCawNelu4v4Of+cbXWPPK50+VnzwPrq3z9s0dS3IYK+f2TEmZh9crWx1cnzKn0ThtwY8ule08uF6vlDUpHHwkos3WltS5hpoJPO28H1rgLo2X5X2vlT4cPHM4rmzn9zhGNnvJLehh9CaAJxeIHUYWDh9dF3KPYK+Bl0VqoeT0OmjJXwK03UzDDoH7md47KS2AJOhbvSpEdz0qlN5kjewRWM6YrWJkZlh37QvJltm6sqMKl87dm9fk46MupTR930nDUG8Vd6N3ONzdEwb7dqX2TrSK22BrCtDGEsNnaHgxUloVap91cbWQEiJ6p1uQU2E777JsroVyKJzbIC8HiqkNI03QaQRY1wV0XA+Qlf2Q52dhyYjWuby/SCG0rpSlsJZCXgophdSDvbOsB3m2h5Q7l8tG3S4zkLtxfn6irCvrYWX0KySnDyP7IkU/srK1ac0yOgzVtZortLO1gVUBnT5VRYLj0wQtpF7UGXS7kAVkZBeA0nrjdDmBiaW25JTDKgBo72JIRKzKRjgZxUBsWavTgjgGeV1JpmskBmrIwm74slrApoLrBqyMWWUYXfkGFqFsublcTBHRBDvyVNYEPQ/GaFO1IzXQGAPPieu5YSULmEdAQikF7DYA3zKkNPgsClXSsjSaPvvopFw4HO7IeREwlGZoZiALRddN3Sb9mufyY0wSEeOyB9kLqRTc4oMkHtmg9X2kF6BOhRCSaN8+n1a3CZYJ+HHLL4ol1YH7i4J1IvqzFU5gk2VXvsH8LPpsf+xtkPN4+ZlHQNuuYp0nKhWjEV1h7JZWNXNG0Kq+kxHzvQxj6xduIbQ5G8Qy/31SfEUMcrL5zxVz33Y4HlZaV2OJu5R5ZhKB6dfzqeYSVnlbWpZlpZQsde682BICiZJpyLNFz8UGc0lSO6TyDmf1b4fXjw/8yR/9kMeHRyyr1luqNp1ToMVeuUzKQEquZk1mWUDbOr4Urqcz718deMgZH520+AwQVr4XEw/EB8MgK22fpczvzjuPbw78yQ/OpFKwIZZ0s+Bd2VgbvHo84JpYqUPnZ6ROvwaHSNSHwZdb8NCdp9OZ5RE8H15ATPeElwHV2S5BPzTyVMLZyNhsnyEHqbzm69+r/P4/+oLlW8HpUsjvM9kqdn8QOJc7cbiD7VnLdnqNlR17vfD1bx35pfoJ+37id/7Wn/F7/3Tho7cHvvnGSSVzVw2f5+TmmZ6AXvnoYeGPr8F/91/8LX7zP/kW9dM7ir8iffLP82u/+Wv84X/+v/J/dmXJpZJnNsvC3/yDykePwV/6lzbepHU2BReMJxIPYFlgdcqU1EgpiHom5QNNxywNtOzGoK2ZEotaOWMG6lP1nvSF5jtrTYx143pps+XojFEYc6xeMPZQGLr6KS+T2JFl+LLvas/MU2U4tNhkT2RfsOSctkokJ2eotZLdaTNLMS9Z1dmhfKBcVqDho+o8m6ZNpagJzMoOPrToq5SgkEfnuMD1urNfjLJmUtJ21kcXIWWyFqv9Si+kQqLVljwmudpemilNIKwby3FVIULdZt6L3vmI8QLajiEVQ2sdtzEdUVKVGEHbr0TT/bPmAnYrC9ECug0FzN8dj2zbld4aWrGC2qpahYWmU7KTl4LZh4Y3rIJ1lkUgxXXXPrKuapElXGR27NgAjztSvsfud8bo5H4g10qPIEqw1w2fJJFIGWPkTDGn3B3gWqnRWVxFQpixFqPkTqZS2iC3xEbDfEzbXp5AkuxFEcg648rOMz9M0ieRcqLP8HK/BaIjm3ZtO5YLHsFWqwie0cEqLQUkNSrePi/GYFkPmttqeyFGRgv0YUxbpRf9u8b864MPgMHMEUxJG5UW+7jh9QIJzKhV5Gpap30rqQnYEvR9pxyTcpCi0y4VD7XltYBlWSUOaCLmtmsVoe/KgDQy1pSfiE0i7bYZpcQ+ZHGGCQox1br7hUCNwwUjFYFSI0zzniNQf1rTJKbVZ1g3EZLrokKdvQfeh0ADE+Aac3fDbJa2iJg63t8RYVxOZwX5u8nyvcza+TFVwMjt4CFA16Iz6qY4AoJlPbDcJ754f6IGMyBfAfKLKW7Be9D7JpuhS+nVZs20u1FHk4jBoQ6RgjmrTMuYgKLNqJOZo6Th1PQ9W+CeSTlm6U2l1wpeSCXRo+l7d2Od+3lLymAagVS+Y7DmIqA4SRnHLFW5NbC33l6aiof7y15dLFGRaybZ4KdxFHe1mGYvgoJsNu32GVZfivIOp0ooQnMKFixrYbSYBVQq8epjquwSyssaavVzDsod3RoRlZIK7p2cVOThUScvKwW+HEAds8RyMEBq0t4F6rcWrPmIxU7sUv13d1qHQ3KKTz7MnR7BuSpyYGuKoynN+eLc+Sr/fOWAknuiOdCq2PSuMLmUDfei4Ku5MNVoRDeudedpq9TQl2Z9QDRaF8sflzPP754Ezhzg/vVrMZ8uubGR6FSFAVvDSqHu1zkkDQ6Ho4blyfCmKZfOqA7SBrp0qhj3Q3FaKMzaQgxwG1UyNosPh5BnDuuRZV11AIdL9TQXoCE6hSkvesl1WFYBDfbiLxYQkIsuAsHUMavNO2O2sy1LkZKgFFLWi7RfN+peSa6WnePxACFPZnLYLxujD+4f72m9sy6Zw5I5Ho4cisF+pRTj8UH2m+268f79O56fn7i/u+f+7p7Hh484bbuyB8rMYdD1hNusuO7yvC8p4xH0tnHunXfvfkw8f0nvjfLRx7x5/ZEWmd7IB8N95SNr/PLPXfhLvwjLeMW2PcJWOV872+mRvQftHOznxo+vZ+p5w56NZlD3xjY6hNrTenRGUxjtxs4IHbDJ4RoC/5YRXJpxOl/4zs++4e1Hj/QKP/jizBenSi4Lr+6P3GdJUb98d6GUhXVdOD013l8bz/vO8yV4d+m834NC4+uvHnmuUngp5DLLu++LWpLyQkuOjTvqSDPrRlLeNILzVhkGPTvFZe1qBOYZTzGtamlaJ6CXoTaTSFJM1IrRMesc5rOSspY9wtlbIy/phT2JLhVAyvYCfEoVt3K8fy1bhad5USIAE8nq02TsPSmHqO2V1lQXezq95+H1I7msuJdpzxkKxPSpKBnKlUlLYQzjfD3jc/HzXGi1sha94z2LAV1cdi1Pakx0jL3ujNZoTZa94U69njif3nE8HLi7XznvA3LGLbOUPPNabk0wGnhKzuyj4/Mgr03229Z23j0/0SI4HO+UReMTHLeYCisBcnXfMDfOm9456s7elVd2vpxxd968fYsX+c5Hn+HEPtnelNjrdVpvdWvFZL8HnRqyLbgbHGZL3hg3ATYv4ddoEa57kxIELeURhtFo207fGo93RzE3SZB5C/Al01unmBoGp7RUWRJLwlpMtY4AmWR6vnwqUEouNJN0egwoZWUMqTf3vc/w9glMjMHeKs2NtZSXYFNLUosmk0WMonc7mVNtWvOyAh5tBHXf6NvO4U5+8DHGrMrVolKWRY0miD1SeKmO5damaiVU8T3Qf1+r3k0muMUMF9fwJLDGkgoSbtZnH135Om0np0JGWSieb21DU5ZsCrPUM+SMJIZZxQyNVnfGECt1d7zX7yI7PtEbB19mG9F8TmC2+enHTUm28Y5yIkAqLcnHb8/BzAcxNc2lJOZr32ceEZJL11opOGvOBD5zZTRM996ptbEsChXtbX5g3fS72xyUTKDciE5n4Fn3qc6Tm3VWQ5JAMi04Ar5vt63YxVIWLBtj3xW2xgROeyOZ4DebdppiAsHVwOSMumPD6Enhmcv9HeFiPa02rKzkmZmihTcxTPlSEbCmpDpuC5qJtYwaHJcjpy/e83zpLEcjt0H1IOWdFFIeZ1eLVO3K9hiWp01m/vZj8PjmjuPnV3obdIcSlb0FdtowS4yeGS0prLZ2tr1iPdPaprv/ULBtcD4NcilcPh8c7rpAKBK9Z2WTdOXaWZflJSykVOiwJANf8Hblzbcf+PhPTzx9trHkZ4FpS+K4VtJS8N6JtoMfwNTwxvoxOYLjp8E3WuFfaJ3TZ8/8/T/Y+IOPT3y0rDzcO1G6MpICMp0Fx/ZE8+DTTw/8/h+f+N3/8rf5lf/4gXH8Ndydh1/4t/i3//IP+JP/8R/zh5dG7MhiOownX/iffu+Jx4cjv/DnxwzpDrwu9LG/KB3xgBVSOLXLop38QGAzX6VDhzQGaySu0V8q2TtOVMN9toUGrKmw5+C6VwW706VWIOmkCZXP5HRH+MLzeI/nwToCemJcgzh0xR3otZtzoRT8y3pQNkq7UlJW2HCqXK/7BCqNzk6E2O2cD2yXToyO+a6GNlONOSEb9Jh2WAsF5AuoLhzWhfNl53KulLWT84qFPrNOE4gxgmjK6lCduqyYt/O49iq1Y3c1MaK8Qy3QK8wldRgzKmIqM10ByQmB9nudtp8JFpu5LE+j06oUFjmXF5VJcmXC7dHxIiVcH1U5OSPYWufgjtvQPT0MVqZtVu1ibivJOtk7hyWxT9vhaD6LdYJ9V/ZiiZ1WO14WRVKURvMFG5pFipJ4CUzh6a2y104tmeVZ8/kBWdm8O14SNQXlmDiWzn4J6FfCE4MFG8rvA6Aja1eVYj2igiWFUlvoux7OIOG31rEZeDxCKuw+pK4opTBqm0DUBBcmYWOz5fJ2Z7ndgKpZ4OCNHo06BiMMmyTEGBMo8lDpybiZjyZQcyNSTGSeuwvYChUjRTTqdcNLnqc7L9/RS1xZBCk59KE2s0VlUOfzGYpT9xsIZ/jQPTSafq7e9Q7ss/Je+Uu6QwqOub1Y0pJP0Ge0qdCZOTsmxb8hcGFxg97xVBhtZ7R4AY18Bi/HzM5bioLL9y4VHQCLlLQ+P2tzkUVmwd260KoD2+Rq52c4fGZCVr0/y/Iyr4UF+CyTqkEbjfu7I0/nK2s5ylo3OoNKtsRe60sDsSLzRbzGFA2k5FhaGdbJHtTa2fcqK79Pu5rNNjf5+26i9RdBQyk6f3Jy3ERI1qpoipznPDI0d+Q8FV8zEqBvm6izmWV6s8qKTLWZbSnST5+bcg8/NBsPPBnlsChjakrKxwQ/+1QX3hoEU3KSxySzhs6DOtSu3udMCOz7rru5zXm9T2XgfD6SB6urbTbQoWc90fZOIKV7ba58y7zQW5HX0W6/a8gB0qR7SqmQyFgM8qKZr1Z72X8ZO56DfajZ1W6AfTCJadNzKciOJX94N7+KP185oASdcd3lyeydxQphXZkqo2G1Y3nlGoPTVtl24zrE+PoY7FvHA3x02UzevRNSva6srx5Zsk8W06eYl/nCZoUSj0a9qkbwsC4adJkosgnxjDkw197Z2mDUTvIFL1BsJsPPnASLTrtlI/SQxDsl8rKQi3zWN++tz4yj1hXSXfdN2iNP9N7I5Qg+5Yn+4Yv0jB78ecjFaC8NcWYJd1gOh3mwBRE7163PRS0JRGLWLw69GPu2wwjKknl89YjReLxfOBxUEb+6kxg8fvyKbIPr6cyPP/sx756euDse+fnvfBdPmeveOTdl6RwOq1L0o1GKmiNa3RSCW2asbQT1eubp6Sds50F7/45yWDh+/KkybOqFY7kj3x1Yx5Vv333Jr37vyMO68+4P3jOaGPu2dc610ZMqVj0ce+18/bjw7riTGlzPzl4P3Bt4KOB1GwIL24D7trDT2IcxauPohfN5Y3/OvHqT+e5f+DbZOu/fD96dds6jc3f3iuOysnhQVtnD3r69x7N+99GD+7xy+nzjXRucgLtj4nD3Cl8yb8qrmR0ktL12+eSP5UDtF65jpfaj2oBSkq95BHXvLA9SA5QsKe1N5ZaK2OyYVfGtaulmLuDXy4XmCm00jOPdoxrQZisUKIQzl1V1o0lLtWUBU603qYC62qtePT6QsoDJlNIMrs9iK0yyz8HNsx0ccmELGOz86Ec/5JOvf43D/VEHXBf7lFKZAeCzxdCgV9VfbpuynpaysNvGdt6o+0bKhbwaC1piCZ/2LJGyz9eLFgKMca1UKn0YdXSWtVDuFs7nRlplyUpZg1vyJOvorgFMgIgk2wkxQp4kua7bTt2r8pHcWHIizwbL1fNUCJkGhjGoHaw39rbTm9SV1/1C9MGrtx9TDgcMozXToOzKzroFdNqt/lXTC86i956Gt2A0ONzfz+8gZtuMTY3gTa4L++hikGJMJdTQ0DE6+/Uyl3tpIxlDVt6sAa14ojaBjrKld6J1rn1n305SBUSQ15XDcX1R5ixLmdk6QUXKLVx/bXQNrY69KHK2beNad5aHO8xv9jrwSVs2bu1dH0D8BTW1mBnDBUxv+yagKM+KXBfI42by/E/bHjPM3Yhp77oBGVLftKpsBjM1joyQWiBqo6ehM9/shf3WNSL2lzGkiEX5Q+EJjwmiMhktv1XkKrci5/zSnKhiBhELY1qeS1lkGx5i0fIM6DazuVzcrARaMHpokAtkERQ41ZTN0ars1Uuew6occymVOQAq93ZMlSOmMMib/as2LZgg9VAiyL5Oy+ytaW+idDNwXYvDtFNMsNOT7OHCjcYMT7/lH81nBV4WIJvtdjaJoBujjRvbvrOuR1nRp33Rhtozc1ZI/41hjZhy77AJmLlsle48X3c+fvMgkHCRTTyGLAliL5XfaBE0k4pFXlORVDkVDsfE9nyml3tZjppztEE3LdfKgRqQjdaY77TmEAMYGbfEm9cr799txDC21kml4yPRhtOr0ZOWGsgKcbVGPx7mEO68eev0qwDV0+VM/jyTPz6y+sCt0psp16XCmc7BilporFPotLwClVQWrAaPP3/H0+9t7M/Q86A+XVmS0X0T6OdO5DvZEyNDSrTlNdkXlo9+yEfPR375V77Dj9//Id///jNv39zz3UNiyYLBc3N6D0oELTsZqY8+/fo9v/NPPudn/uf/g2/+u9/B83eJdeHnfvU3+PU/+Wv8V3/7c364DYaL7IjW+ZEXfutvX/iN9cDPfusXyX5WAAAgAElEQVRIvjvRTApjMwEUnkIlDmXhws71dKVHeyEbuxciQdTOlQqR2IZC5vMwLHV8GDHyzPQJSjmwR6G2oX8fYEPh6rcGSYtERGbJi9SW7BSMfVd2mXXZZJnB8y2KxHUWeBiJ8jIPjrGxLMvMbtEcp7apxqDjZeX0fCYvssLrsFAMxJitcDaVz1jQp22oj8Cz0bbOfg1GqcqiCf8pRbMTRUBtScbICVCpzLCbGnVWj18bJS9E20lF51NZMm2rWLIXlSZhaoXCwKHkBUPKyn2vL6QH8yz1medo1kTujI7NBrXkt+Brn0HixlJUOrFtFxhSJ0e6pUA66bAQM0hbai/Dh2xFAhKDGsp2kbtisI+mpXFs9FHIaWXxqdRPtxlJBQK9qXlNiERj3xvZjnRTw2+yPBvLEseUWGxgXtmAXvUs9qSs1JSydgJzUoG+V+KWz9ravOcqlhblBc7F56YWMlP2YEpG3ytp6LMaaK70PBh9B69YSXqnzQWqCz2YZKlUIckXhmuHuu4byUUyxZwdxwRobGZTMlUsOrPjxSIG8PqjN3z5xRfa/8zoW2VMMDGmKib5VAmHVPY6C2X93s4bFrDvG6MbI+n+NruRnzM82kQIymGids+2X6dKSCBri1uZAZo/3GeG7SDnorBrOWF1L7RKWVZaay/EL+iuKEmqQhUKmYK5w1jSQmuDWncpiE3/vD5EaBrBsmRiKmZ8yVJCRtCqBApjEvsxoDYVg5R53+2jYbmQXXdU264US9Oi5Vxbp4fsjXFT7iIl2+iNkkQYpywbf8pFwI8rd7eFwR7cyh0kSJpZQ12KmVLyVGTHy456a4o2VyZt6zutV6LpPLMkIsyzpL3RgrQujCa1n9pdREYwCWCbd7ZuVlOERO0vxGL3WT4EgIoUblmevasJLqY9naRZ2tPNeZbl/MnaeWNMkgphCeMG2KKZPVzgkvlUNI1AR0nCUqKOjbJmzJy6G2NUxgR9etsFgKYk4GgMkh0107cu4mygbLcEjBVPOvl9TvSjGZYEmhLx4g7Bdtb5/cQMrx83VP8r+vOVA0q9SU1zk+WOmwVk/uc+VGt6HXDeG9tmU77WSG0Q9cr1euFyPmPDyYcDD+s6q24nCDPzRJhf6s1mclsA1gJuCzA9iUmI8wgFcrVpERMLlMjLqnyaoYMzJylfIBE+Gf4h5UZeD9iSJwusF1eNc0GLRm9tWvlc4b8zzf4lWJt5kTO5oqFFNAjazBgZc1BLDkuel1ptClmLGVzsutwdU8DeDB4N0+JsFixL4vHVA8UBEg/FWRdINrhbCqMN3n/+E9598cVkmhd+9pvf5nC441ob0Trmyp4oxWntqkvagV4xmpQ0GNah7jvvn95xeT7R+5k14M2nX8PWA9v1Su9w//jAAeP1uPJLv3jmz3+zsF0+43oCP66wGbEPemz0NtieGud9Y2uJ0U8w5LNdfKVt8knv4VzHWZarHhyylvA24FIrvQ4e74+c3105vW987597y9vHt5z6hS9PmR9/AeV44NXjzb7TufRO3TXsby2z1wvvts67ffDu/YVaZaE8LIX8kLBUwINCobhhXqdlSHWqEY0RBzxWIKhtg3bLwRiUDMmc46JsHnexI4S9BCYPEqRMQ1XtW1XAPKahMq0rhyI7wi3MNk3Lo9gWp9Mna5mgG7VKbjtGE/j4+KhGIktziLMPaL/ZvEhng9I8i7a6c73s/OjHP+Lrn3yNw/GoIEIzwhXMnU22vYjBdPYRo9Jan4ubqjXfn07Up5MavxzlByVRHZGMuCHudTbQxWDbG/12KXVYloX1cE/bg7wWUsrkpbCuRfkAbVp6XMBcYg4LoYM5LwUmq/n+dOL+eKf3alH2krvTY0jZgOGe2XqQYtBqpQ2BVQHUKkDq/tUrlrt7InSK5RQ0UzhpspiNIDZ9Uwa1CSpwyVRHD7bThfuHuymx1msoRkvg+k0tU6d6pXfJ0/XwNKoPqMF2bRzvZYXxJGY47GYBU0A0M9g4ptW2hfKgWtdgmXPmeFj178Ww2byy9U5KGU9M1n0iADfm7QaKT8JhjEFJSSBjSK01pgXgNmxK7aT8u5TEQEWXypWucgKBrkzljWNlDoPwkgeQYdJY+uzGDGEXgCOwVuGzDVAlcp+LelpnucIIedDl6xVbOd8H8zRtZ4NuQYuu5Wfa2VSPPF4AsVoruSRJ9CcAM0JMtCcxo9iUpy+rarKTw6yXjmEaDsb8+xATN0JgV4/BVndyUj6Wcxv+ut5HV6BoSmq47KbAy7AJlt0YtZjLGRPs1OQEpvpoc+UPBA42B+NAgZbRUEIYtDaIZlPVVvTkzIEwJZ1ByhDQMy12lxew6abmBYFate7Ku5kqphH672+D3a2Zymw+U+juVHlX0MJZ7lfa9Ur0e2J0mjeKf2D01QLYGSZrymgxwTCbAdxq3Ll79Zrnz5+pqM3S7ZYrk+bQabQuUDeb02unzwylbBPUbIP7+zue3ldwx5MWj0zC52yyj6acsCULah6Z472AAfcMPnSmWyO1lefPn1leHZSTgRFT+dJ90HZjjwZZgHZOQWUjpYXwBgRv335C/Ubnct7xR+DO6EuTIrwFcT1hq5TdYYtUeuVeA/mrtzx+3fiZMfiXf6Xyv//NH/D7//RL3h5f8+nblYMncoHUKmcGaXFyrzR3HsK4/szCX/8b/4T/8Nt/g+Mv/zqev4l/9LN876/8+/yrP/5v+a3vP/E8OqkUumm4//3d+e2/e+XfO8CrXAiuWJqKiTSgDdlVrGNZy8m4SC1nlqUKE6pN2p2GVKdjG1wxlkgK2zbH8lXPRa2UksDK7CkIAcM2BC4iy3brDU8Hhqt9MxXn6LpHthqED2Ls+h7DaEPnRI8+WXa1suZ1URhtWrlerzQJqMAT2QRkHw4H9rbJ3mKdvVWB01NZ3KftR2+L7MYpt1lKkdnqTtvl17SlyC5XiiyzSQw8FuzVXt7T1rU0Zl+IPF7iHYzGZascDgda3zB3Sipcep2NmRN86FJTtikB8HmO9N6lVApknQtZVkZooS5TiRJ9YClEyhjYzXY8pPo8lpUYxuFY8BRs7QqhXEgRvJNstsCLwrvdCxGdvTXllCIirZnsJWvLxKhc6TdxiEAEc0ZKNABbZDEcg9FkMTtfr+Sk5qtcMiMSxkI0ZbklBsdknEYTOV+nWmKqYMpUvd/swJJ7iXQLlFtkM9vpRpDYtBqaJanXV8OalDXDMil39i6lt3WpXHwSbvPQVQTA/C48KScsmTNKYENzUwyp2BUGFgz8BUgwmKpTm/8Z6Mo4evfuieiDPhoxyShZ5WfLoOuZE4LMi9o9+qBuyhnqXU3A2ODuuGK9kpNL6YnI5kjorhuacxJ52rPQ3e9OtJjKRJ+g1AQRTI6YQshhM8UJAk5u9m7Ye6Uk57jIFpZskaoWqfqGQRtB6yi+YebbRnTtwmmZoMft2azYWASsJQXee5q8Rprtt0j0sLeuZtGcNSObiSjMC9HbzPZR/lqPjlnGo88MQ2UBiQhTY1yvCU+Zy3bBG8roFMRNTx8sYG7ag/vMpwSRBcx3IyZZpr6YmGHgMxw+rUAXaLQLgPWmYcNne6fsHLLAFmZxxlRsaaYWQRRzhv1pVfgtqJupcHLPKrrRSIOZ0255SU3faRo+WxT7bEEcIveS1JhxE6sEyuWKD/EIw4LoPrMhgxKDylVknKt1vm4/pXgfRgypoyMkIBh9DjWxYybCLidXIcLt94+rSIQ0SMg9JKOmyDxP9gJy5ZcRzrHRIKUXZftX9eerVyiNToGJakPrlcbgusvnyZppdWPbG1vrelDqxn7ZuJyfqfsVz6oiTkvGrSABfRKJJEh4XrhIokzDrHCc8jj3gnlXmKpLJaH1zNTy1jrZjeRZLwFDGTzRJbccOmTCgsZGSfccDwepCG4s+xgM/MXrOKb0ttdKXu+UNZPSHConATavb5hLTFcDTsyDA5PNI+UZLBtdB8I2mWi3uTBMpZR9uMwtib1InihrIqfB/f2RFHC8KxyWTInxcrm+e/5yWhZ2Ull5fHzL4XCHpSyL0PyZU5qV3fNyMevE0JIgYCHRauN0uvD07h37diUBrx4/Jh0cb9DPO48Pj9w9LCzxjm/njV949Rn358Ef/T9V4YZ7Z1MHI27OxpXaVC9ck9HaBqtPJVLmXd9JEZzGFR8LYyw0jGxBq4Xr2OlVtsttG4Q17u8e+KVf+JiFwufvdn7yHNQOdw9HjndFCo9oCj+0lW2DSxuc9o0vLvD5U+V0GjzcL9w/GIzEclhYc2LJCZIaxYyGuzzU6ygUM4Yl9j7Y+2DbruwN6DqUHh8VLL3kBbOguPRI8iVPdtCgzobAYk536DlJCUNwt5SpGlNOiJ7Fjhd9kVq05LvOs6VJSj89U4fDgVevHmftti7vZP7yjIGGO0LeZA13xrbtPJ+eOD09862vfzq3NyRztpt0VP5mgSZT7o4UBbkspFGI0ThfTlyeTywlsc8lXHIkY1lWARVoId5rY9s2ATatzSBw4/FYeLy/o3fj8HCvwzZnlrSwmEIxY3SG63Ni2KyJ7VQGO4NRG9TB559/xuH+yHDJ3FcvarObC7cxh8sIUqAGF2tTni0FxeV65e7uyOHx9VTohFRDDtEH2cV+YB+YDprCOUtaaQxSNLbzRiq6THpv87uZQ/D8edJknTX8TttDBGnMvxZ6hh4fX2FZgA3Te04ADRyBiBGV7bwREWRzwqFedvZdFonj3aKcHqZn3tDCjMt6FFJYOlJzBDEHvjHPv8FoTdbbvHCrrzW7PTcKPyY5kRwr8/QMU0bUfCxbDEYMDmWd7V4+AVKpU24K1hsL6iYmfhgvIPyg0+P2vWVmzxqZRHUxg2m23NxKGORW1j3kU9vt5rI4jiCPDlUZTGQF0fYBZV1egIoYN0JhEjCjT1WQ5NDKIWlkN9z1eTGB4FsAJrONBvRAWthcXDoMDW2HtXA4rCRLM2Bfw2sPBTO3Pu0EhhabYuQcuEuxmFIol2FW8ibzFxWTuXLr8syA0GIjwiOmqlD5gTfrmeE2Zh6YGMm4/cxDy6qZqm8/vGUCYVsftLrrV53Aspu+rfFTz4TZXIb8BrjOw8vEjKZJvBDO48Mdn51/pH9PKNw/3f4h48M7ArdcGOUtppTn56LfMy+w2uC6bRwf7mFaAJIFNfRMbKYKbj3Gsk4khtjoocyKlOF4X7heB4c1S9GZnL0G52tTuYYpqyybC7jdFXJbt42dqda4NPK09FyfN+4eD1qQ4zaBIEXlJRHHzsGMlgqpqhXQkDWGGHz05x64/N8/4fM/OlHfLuzryvEYHN9kSus4AlEpR3q+12fthZIWeFN41Vd+sb3l+XTl7/2Dn/D9P4ZD+ZjXrxJ5GSyhrJEFF5jRpDL5ZC385DX8L//N7/KXP3rN3Xf+Dbx8wqtv/wV+9d/8AX/67n/j7/ywse0hZeGUZ/7DLxOvf/fKv/ivOPeXxuuuFKNuCm6nDdre6fugXxQLEFlZHjkZh0hcTeoNS86+C/ypl6D1BLmTi4giT4kSUvPl1GBrdHO6BaD8HVkcp0pEEyFrFsPfDVIbZGvso5Py3VSv7ZpjQwx/DwW99qamzpQz0Y2ywvW8UXDGcLQ7GcdlEWC8K/fETTl8usqdGFIcG0m5MzHVOkUkQylHnq+VvbYJcBe8j5ktJlDVDLX2DS2MxW2SVwPLurvbXqlNapJWGzknyswNW7zor0XA0BKsAoHb+6kspS55DebB8ExMkFn7Yab3W7uXlticfD7DPttRpZJpwxVIb8bpfKI2MBe4kpMUgkRIhWpM9YPA8OxSg28jqIyXn1U5okbKMMJw0+c64lZyMM9mn6B8dNro5K68lVp3RjJWlGl1BU4WtKnKSqity/ZJcDqYd0UomEoOHJ/WNCmUb4BNdFmEp8xGocFjUMdOLtpPLE0rjUsptyajhRQe11318SUpJiB6w7OKgKQclsVJX98gZ6M2nZ+t7rIvTuBGCp+bOnQSG1NRf6us72PgJZPGJLZCSnrZkgKivdgkb/+8GLfSBjRTJdnTkhUOZSEvU5FMewHeXuzqU5nem0K1A7UfprDZuH0Dz2Shtu5KmTPFiVjX5zOHYd3nwUwd0HfVep3kjopvSprK3zG1RVOlLtWw5r5s/v+z9ma9lmVbftdvzGatvc850WRz8+atxlVuqbJskIyQOwxYYFvIRuIT8Nl45AHxgATID5aMMUI2mCoMRgW4kaquq26XNzIiztl7rzWbwcN/rB3JMxkP1dybEXli77XmHOPfksSsSEU7Jpbtruz1oXmUOdTmG88ohxKbsFmOyPFxvadHZIAA24ylybrkyEYMABcnFadmtebuY9K8U6eyeWwMvCuvNR1Ek3HfEcTgieCaswusM93l5jlU5KGCQrt8QRllaKVi5hwuHQ8wZ2BZd24kijOMKC5AGZUcpJHApZxS/H6QYluk1egjdrTYn+M+TAFWaq6bTKWTa/eNfzambI0SZmHdKzHnWig8YTRVkR3zqSdj9iiKyMbwJtLAEjUcF63pzoQcZ4cIQ/eB+RKzb5f1MrkcHyXRGrJS9k63EVlOiRCI6e8adtHhRsuTWhVsPvthffv+fn3/LW+daKGCrXV8m1y9cxvh3euNtu+0sbNvG2PfGJcXPAK5Hl6/1jJhEVRNoH3xfx/hFx4PRSkVTMzMwEPNNuJygNn0kbXWArWDUtTudCy3B2OZkmFTrOC0nbKuPK0nqCe9/GbYEINsrgyaORUK57jyeZaFelKmwIyqVg6E/t5gI0Z6zk/5EWaJUktkXOjL1qFDIKBT2Qoh5z9Ap5RU8VlicV+WSl2MbIOncwnmPLHYYO4bl8sLt8jucTdOpyfO5ydIRYqKocUql3jQXF5ruaMCkZ/jMNfw/PLCh28/st02fOqyWZdKqok+d7IV3j4VvnxtvK2/4E+8vvKmXrleXrjdTrQmCfB139iaMq3cJtuYtLHSfQNMdjMHn5tQ2JkwG1y8490YrspRUCDa3mFuEzyT15WvvviK169X3l8u/OJl8PEyWM9nvnwUm2FpMoZyRAbQR+a2D573ybfPk2+3xu02+eGbE68fF/ayYmUREJQ6axmQnG0KGPAB3RSMOUi0Drd9sG+dfXeW7KRF1fVRyKDwuBSBnknMj6cU7YWZ5B2bQyyIQb9q6Xx8eAB0eNaiw9PSwSKaLhyTte2wUh1oujN5OD+wrCujhy3qAEwsgqs5FCO6wFMMStfReffte3rv/ODrr0iWOK0nSdPDXnRIi2dI0n10VWSOw8es4eLl40eutxfWUtQWUqQQWbPCAwVaGK13+r4z9p227Yze0AKbONXC+fGJzY2Hzz4jmVGHKss55Kejwzy86pHvkkP+6qF82RrPHz9yfjiTaqWUwmMoRDC7AzCeogUCvZ/dpPhqbYcx+fjykVoXHj97cx9M51RtrHePUPCuYMnj855aAj05wztmk9um9/V0PgfgF8ttkJLl+JyZd+k0LgAJxMalXGitU59OYqE6Ar/syNVxhAQmgRl7j3YRATreFAKc1xLVsiX887rIVYTmoYhTFs6crkwL/ZhhERCQ1oYWqNdPj3rm4mI7su7m6DGQawhNQ99Xi8Bxor3sGChTkeAXAow9ntu4OTQafgLeBkN5a2jInmOI4U81RF0TspOmmjYmQFTIHoGdEEvV3R6mM5tjaXUpxGqEeysQ+ljE9POKCXVJ4gMIPJAwXVF678aU3YWud/uefeIIdIsgSFyS+TkFGDM6JS/KHcsZm0eMpthEpjINTC4CWWzitewJvIbtcUpmb5YhZXwEA+mTUpbI3Ii8iQO8cdeCmVRnPEPdcBvOvvcY2COP46ho1UHIoWSbdtjF4ntO6Q5K2pTt+yBUUigpZbETq+5IDn+A4weDqKzZwen8xOg/UcBl1X3qyWOZ1ZCdsjHM0GjpsexEDs3MQTJN8jK4vFx4fDxxSkc2lyQEA31PUsNr8OyjhwVJ3HnJhlN4evXIbfvAtkWeXFJOzTYS5w41rIXTnFlUHtD3zrUNblvDuxQvC8bTq8zLh8ZDXTiTsaqcCvOETQUNuy+06bHMGzY65FUNgamwLCuvfv3MT/6vF3a78XDqPG4TTw88vWkiYbxhwe6bnZlJ93Oeg9PTA59/1fmtP/MDfvmLK3/wk43Xpxvrmjg/JPJiLJ5gz+xWGLNRst7bLx4qf/Duwv/6X/4j/uJ/9kT94V/D6ht++Nt/ib/+l37KN3//n/Evvh30aaR1ZW6d4ZN//EfO+CdX/uxXnS8mCkkvA4+6+bo02MFLws7O7aVj3rGcqeaMlrFFttBhjcVOlDlpTe9ursSzoGevNwG1NRnsHRtDAFaOds2upq6dCTOTfCGzB8ApkFM9SjIvHPkluEgvj2av4Vp68jQxzrmyLiJmj3NWYKyxpJWRDR9NTcrzxiCr5QwtZjMJZEyWpISdhqUFd+e0GgPZvkfWe12KRxj2MStEQEooluSwO5onB1TTYiRCHCdKZ7IA/Tyk1JCtFS3oOohwks7WJEuPcldvQJH9FxfBnNL9/pIqW1ZI3QSLzq+8ci7G3m70/Yr5IoCiDTw7bUzWrJljut9B6RlzsqUCNsh9BFkTxIglFnLkGuVQdCcpqXY1nZnH0u8eJJTuzNve4mePUJYiK8tiiWpgRa23Yzo9qTTAXZ9lnze8yr682qLPM0b23hUE7ZbY266ogazvxNxIQ/fUTLIsHuBczoWxjzsoX1zEQfdJIcEUuTxTVJm7lnqbg5qLGt6KqtRbk2tBjc/x/YU69Ihi8FBvHq1o8wiejl0w10I/7sQ0qaH2JRdKkBX3mz0IHkswZ8ZT5tZ2Uli1eg9AIBmqMtOzIv2Uk6zSbTBmIw3DI8M2hz1rHGAn4LYzyKQjt8b0bB5tyIfDVIp3V+6Zx2QS9u/piZk+2cRzMnwoUzauGXqXkmjMiXvTmQ2cloWoiQqgIwmiySVyzrqsTFPBeO7QZ8HHptkXcFS+MtseJVNyMOQsd4sPDXcNPc/Dh8g4h+YCteYYFJPF06KMxSahaJuUrF2o+6Bo8aAN5QFiakdLrh7KaR1POlOOfNYZymeSf5qtJozZKaEIyxbTnfk9MynH7OmMODvCun80QB8EZwBEh8Xdw/l0lJ0cc7aI0D0A+9gTDNjl7qjx91V5ie6Gu4VtSAXvZHwm9jEpRU20htNdCrpctPf61NyhGQoE0ehzv4fsZ+XJVQf3BbJibswyfYaF7xCbhODF3SWiQe90jrDvcQ9m+35+fe+A0m1r3KZJMjsUeN2t0GcnzRu97dy2jXmLBiSDVCrrw6pBazFsCtxQ3EuiuYOpHtGQzJ8cqgs7vvTwiydl1oxh0TAwI6xXC3eyGDynfp+kyR6uGnmrrRTWWhSsWkugqWIjcjKFUPeudhCzO8CTj6YcF+vsh5pK+KmscLEIHDa3ZKD0+8IcaokYXXK9XCqtabEbQwP4EuHQytcomKsuvSRjqYVSjFoTT0+P0K4xyO88P7/Qb/r8PS08PDxyOj2wLEVhtKPfLzuIh3oEMuyS9dEbg0TJmbbtfLw8c7ncFC6dLPz2G4VOceehPvHF48pvvpn8yc++5bM3O0uD2w1KfqQ1Y7/VAKhSBDVOfCYWiT1gZHzXC7y7Y16Z1rSs9sllygc9GLS5QzdalyKulMJXX5z4wQ8+h5n46Tc3Pj6fIMPrzyoP6wPb6KpsTWoLc09sQ0n4t5vxzcfBh+tGWQtf/eDMuZ7plimlUK1gvlPSUY86acNJLAwybU7adPbZgMLLpTFHZynwcFpo2SlWyT6DbcvUqLTFEvuQTaS707osXaMPxjRurVEMHh+fIgRRdiFIwV4cbEmwU8GUGVLIqPI38fj4qKZBV7OR6ke1xKkZJFQriH08JL6X241vf/lLTsvC68/ekEqRjDSWJp8CkI7GMUwZTz0k1QDbdiO5cbtdebldqFXqkKWUYMEk2y1FYXJ9dEZv7NvObbuqJSJ+racTr88PdHfqeoZp1FIpRc/V4ZYl5wgJRRY6EECZHeti9q/Pz6SaOa0rqRROi/53ClbrUJjkksNOFjax3uAICd92Tqny5rPPOCxp2R0rFUUAjPsQhSlXylPSIGJSG84hhmTfG29fv1ZLGaqCzlkDSTqy3kzL+4jhr5sAkoQul70NyAIHvItRIRZxi88D5w7SeFLzm9rjKj1n8pKpLy+UHC0UycmkezbC8RG7m9QZbqHG8liMWig6Jm3bWU8nLTKhUAFVwwa0xRFOmZKGjmGyY8y9xWfnXPYI70w5cJhJGzPO+Qg+rwIUD3ZL2Sdd4EfkFfS9UZZTgBf6eww/aqdnLDh6jwyppHR2a0j0obrwEW12h3XRzCIPQeqx0ZqyAYLRswD/xozsJRfTm8iRDRgqNKUq0mYPi2K+t4eBgCVlMM1gCJ1tdFrr0Rr36V0Rgynw6DZU5a32J7GBx3O37dv9XKg5a3AMtaFFyHdOyv84AjKlIPQYnD8xfz4nKSfmUHbhyR1Dg19OJRaeEfe5FIwz/i73RTEnoOD0wBQHt9vG06sHfdYBvpkfn1pgqx65GSYg/VA4O7KFL+uDlJGfPwEuO3CAxtqRk8CgAOPnmCFRh0TW9+Lw9Oo1zz99T7t1Hs4L4q97ZI8YPkNJcCxQQ5PFsdB5qDNKzZzPlZeXmyzlrVCS0ffJxTaSOXXJ7A7VNRA31yFX1xNX29h7Z79NnJ1imctFIc62JFUuTyNn6KbzXM0yiVmM6TfSVD29gGDjzdev2N47795/ZC9GieyypZ84lczcp1Q7c5LyivcNTxWrj+QKtU8+/6Hz23/mS959/CN+/yfPvHpd+Xqp1JxYSwTP98GpZDbfWceCrZMffH7mn/70Pa//7j/iz/+nb+HNv0159SW/9Vf+A/7m85X/5nd/wu+/BHFXBQhcZuZ3/wh++bONr37txq/9sbOsfSZCRPFZC9mkCks5s39QmlBOasgxmx1NzLEAACAASURBVKyhyNmm7vVWlKdzNFmJ1VRGTG8Cw73C3if4DjbiFV0pi8DFthc9B7lSuEmJMAUW97aTkiyHPjqJEz4b7lUzEhEwHIs5Efw6gyA67toDyyxV5Q19v1HyoQaS4n9yKEYChLIUYNLEvLNYYkyd9VvveHPZxJOrvnoq14zIbJFF6VAqSFXlc4rksiJSsA3K/b0cCuo1orkohcoALGnhmlM5b2T92SPCkdUUOnRSRGuVRE0KW/fsGCMUQyJcU+4kEpkTJS9yRuw3qSlcVuYZWShHlXiO73iYky0yAU0NlK07I5ZdC2I5y0VFtsxaK21GgUOQ1oGqETiLltmBHBUUAUyWyEsmpYgDMJ0xKQdoEu4M746lSUkDKzkyizRTmkWb9OgBwEMqcQ26zs459BnrG8uMNMmnqvbkIIeKDSBFmyBkL4xQ4HiEFqtZbOJp8lgrJSVejtY3b7Sh+WYeUSAKXcQio9FmEI4jwNYogeF4FuIs1v0GaQzZK3vYNtOnfCYrmTQGlpQbmpNx3TbGnFKDmLLP5hyyhptII1Ko4ZC6LWN0m3fr6uiflGpHw9tBNszYG9xEZAhYGJRSZcvGWEtSLmVWYdAI4EI4aOSXhTvDXbOylMRoXtCjjs+GeWTuTKlusinQ+rh7RfTIWnde1TQuu/0geRIhPZ0ejGTGIoZCxN4YIgamGcU0pHSXOtpcBDXhUuhBnptFnmdSSYvW3sQ21bQ3J2TzEFjIEjdMpU6K1vgESLkJqCzxZ3Tvn7Iw41mQpVPkquzlurNTEE+Eo4Y4Jz3pc5RWqt3vf+3qBOgUhNRU7lE6ihIOK+CMnEbTeTddwFvgX5rDQk2uHTrmN4+zLCV6hz7VKjd8yPrWZxDw+ncKs9KMpv1Eh/m0ipNkZSZFc5xUjyo/MqApgiDugjk1CamsSoBZssRaBH7dSbzv6df3Dih9eNl5mfpQlYwvS0fbLvTrhbbtasHxRFlOUmhY1SU45aduCUgFG3rgjZ3pkyUpJ8COIEYLWWTkd7hDb1pgh6tOVPYh/Skz5D/u+nLTFNgz48FcalHodwmWGlDPhEMsc1t35rbjo0HK1OVMjnBuC5kuMQzPyB05LHGSfHqEc32yIYEJFJkK8nJUw/lyfcECvc6RH3JaFi2yLunhea08rPrZay2UKiXG3G7k2emt0frOy8sz9MHp/Mj68EStygRpfQeiJjmYGWL4T2bY7BGWtjBdMsjn/YXr8429XTDLrGsh0Rj7BRvPvC4LX39+5qs3lT/9a52vTzfSuHF53niZ+o5ag9EvzDQpS+JcHphZignrzkyZlAelZTagDGOkG5TOuRjWCjeHsk0u22SfNzDYdpjd+MFnT3z+xRPnXPj4/srzrVBPC68fKnWFXBTgbq5ML4aS+m8DPjZ4f7lx2+VTff30oFC4UmlpYTEoFp5UK2o5i/yAjgalMZxrn7SmlqDR9gjGTqRlDYZbl3NC4XSnUlRTOmEfMbCMaPvrIT/typo5Lyt1tciWSYzumNV49kYwfrHYhU1jMvXPobC8h/NjLHIBiuajvSyFelwqinlHkrT4fvj4nuvHF87LwtObV5K3fyfk8AjJvf8+E/A6AkAZQ8CSj8nH243WGktd4t+doypWjWFrrVhK7KNxizav275FTa3YkHU9UcqCLZW1apGryyLWR3I/DuJTv+IsCNtJCUZ1bzu3yxXPiVyr1Iy5SAESB8IdUEoCCiayF7VdTUJ9dq77zuyNz7/4QqHHLnZZIeZJjQ+mzAxzE/vgakNpMfiMIUn4dr1xPj/EsK8Q46Nd7FMbiMXNo8/bXA11PgWw4E7bds6PTxoW3SHa/2Q54s7SjBk1ogF4KHZJCos5B8UD9IlzLIVyLBJ8tLAEE2doIB9zqPEmasI1jO+8fvuK6ZFsGb9/G1NZL3E5V4uzPZncXn1KuUUMmKOznp4CWDvwlcOaNL/T8nEolfRLA5mW+tZGMHQHQmP3P79YjmY6tbBJ8aIFTJc5kY/R7/lPn5pa1MiZLB/C+Bj403fCuTuTeVewHXjHGF0lE9GY5DE4S0mlv4N71mCbBEjM+Qk4dgSIgc6P1rsAX2RRHGEVdCbNZ6hnNLiYaWnUDyTwJC+FupyU94HpOzqeESKXaIRu1Wd83sfbFvPwHUDVQlNimbw3//gBROlzPVRu884e6p8dfrTOaLGLHfrT/7wDkUH1xn81DTyWqOnKi8rA+emRy7t3KqggS/2aUmBKyuJTkBfgRuJggqVwSxlokJJa4F4uO4/ryjQTYISWsonF+wCYlmdPaDFHdpxs4N14OFUu16vUk7EopOnsu9NyoxYx02OmYFWVszO73wmzbpnn287jw+Cy3VjPidxLtHYqdPxY7hmdUWfMMLGrO/holAK1Lnzxm6+4/rMb12tnqaG2vXXWtTKtMPsk9Ybni77X9ADnBdqF8tB5uG786Edv+RO/sfN7//wbfvyHH3lYn3j76hSFB1F/3WHmopnNJ6cFzl8Ufvf3/pC3/+P/xB/762+Y59+ifP2n+Df/6l/k57/4u7z7vZ/zzctgpEJeFvZt4yVnfufdC5//g8nf/ltf8eWPFizPeAaKFmxgIUutdXLGNrDSZUV21Vlncy1h7pAnNpzZRUamAFFnNiZSrdekd/5yu+g8SIZbB0/KpKkVulaOmYJtFi4TNp6hoG5DgGAxxOboBEsxZ95BEM/xzhzZZyJgEpM8O5YLXlcFy2awaIWaEVE7RrTMuWxMRxkNHo2ulkh7Ytt3veOmbBw3i8KDY/HRzzbu7+JxJrvyB0l47zBTqFy0pCk0X8CbEyHKfqjNPzHouVQYOe6YuO9MEbxjdHyAM0hWAZ1hbi3OnUTNAUAsBWuTpWRygetV6vo29si8glpCNYXhbmG/0tmNERmQHYbmyC0NNS7mqYa3ZOSSyCk+yxFkqTn+HdUELlLocCt0N65euc4ZcRg93m/9dUcsp8k+hVO32WB25QjGuSiAL8GQKhZTdmyyEXellDdzDtm5LWyDKZHSvO8lRCg7U0ohM2f2XTlVOZowc6bmREr6OcdxNyZ9ZpaNMYy+ezgvBCKY3x8T2c+yMmuP713ZeooYmCOKlSIr1+IpiyWNVFTYMkzEtlnCdzUJlwKji0i1qRwj3TUCbDCkdCN2M1Mu4GmuOv971xxFADxBxhwE3AzVejkml6T/TCCXbIXJZMsNxxsLIt18zhArEDojv2ewHTrohEmVFcLCHPfn0dp65KF5gCkKg4ayLKQyqSmUZW7sYxdwaVKM45qrcknkHHd0fIclQtW7DzL5PtuMmDCsFH0vc8KwEAM4JRWeTovCvC+Dbvr7CYwJgixmBJFwjlUppIicrWRERvFkoUpskEIhHk10YzY01UmYYWFRz6YZZ8kldukec0F8mkGGeeQsHfEId+2Hy/EgTMZiXiTITovZS4RCH1Oq4xzPKyIsS+SHplC1Sx0df8dpd8B0+iF8MZZpWICj+gzskwPAA10iiYBz/flj6ilJUwCwz6w21qgcUD61x7PhMDU3TJe6PB2Mwvf063sHlK7TaQzqFPK3bc9sl5CZTrVRrKczOcnakhwyhZEkkcuWIwAzdDKHNC6nuJgzCv+0CGVTNkUfThqd2ZoWWya5rLKm6SnRIGkeQ7tei6VWyAUWWHINGaQgR0cKE9UbblJceWJxI52OkNRVtwtIpeCyEbWjxjwWtGSSsx6+zUkMxyH3FUNjEU47IxNm8PjwBFNyw/NZDTTLoqFwrYW1JmrqPK7RfhWy87ZtbNcrzx+/JdfK69MDpVTW0xmvJ6kd/GAiHPMWQFIJRYGaDsa2UWuhXy+8tJ3bpeMMvDUey4L7YN8+0ueNt+vk13/0xB//+pGv3xif1/c8lEZ/Tmz7hdu1M71zu9ywmbmOG+4FRmLrneets29iezZ3hhuVzLDBaB4Bh5M+E2ue9IYUX/PG2Ae33TifHvjii4XXrx7Yd+Nnz40eKPjpvHLKidPibE11jMMzg8LYjcs+eW6DD9vkdnNKLqxrJtWK58pS6z18bsmdYoNrG+x9MlEg5Bb2lb0Ntn2yd9nSshunddUhmwy8srhIxlNKnGsORY/RB9y6K7yvS3Z/28WWlJo4rVKeWCr47BhZ1s+70kOg1oydUIi9LCeGsZ7PrOvK0VxhlhQ8bOkewGiGwqWP5dCU3/Dum2/ZtgsP5zMP57MaL8JumZAqxXMOaame/T4mHS3DY2+01hhzcLvdBFKUQi2FdRHImbM+87WECWB0qX56p92VdIanTD2fSKaK01wWSJm1LKxZQ+UMBkLWOLQsHarGJgC3J6fdGu/ffcs+BmnRIprDtjMi70D5OWK0xhQo1nun3za2fWN0ZxsbozW++PxLci3KfHBJ4wem0MkA+hwNnNWD4fOJRSuFzUG/vnBeTyy1MGa/ZxXp+zzChxHb5Q4zmFD3ABE1fbx8+IinRG+NYobmCV1i2SSYtliwZ1w6eX5q47tdNymebjdOtdyBBMzuAJtABItMIv39BmooGnuL5VRLyvV2YzlHda0e1viuNB7MGJhJWQNiADR97+x7i0D1xN7VIpRz/gQomLIVcI9mmcycYUc4sgb8YOZ1mY+uau0U7LGATYGNuogNkFrGAhglPucetisTi6Hwy6xQ+xTMYc6ZQ/jkZvLUz4mPwegtWDd9Z4lofWtD8vKuoThnsW7TubebOjpANAMdYM4BqNidxcR0r4xQaCXXMpgjMDUlSbBL0l1pSctyzjksH9zro4ePUOao8OIYvI6H8TgrjtyqIydqhiIXswgw1vKRa7n/zJ9Gm1jCZwCJSXe/FMuFNaxv6+nEyyUylaZHXgdxn4biAmJoFLCsAdzjfjfmcE6PKx+/6WGjtzhHHWzel57j7yNlyGHRGGERSBEs7zw8LDxvG9t8xcK4n7mppHhfju+HUFUMctczWdZQTrYhECNlNUWekoKXJzQm1x1KcdZVjGvJRs0rg8mSBADnh8SHvbO9wOU6eHgUSN2HoC0t4kkAVuS3ZNdQTgycWZsoo2tYPT+d+PxXX/OTf/WBsRv9Bv02aadOOSV8Jnx/xuqK2wox7HtasdqojydefeH85p96w4fLjZ/87CM//gVYcZ7WE2aZxYDiLK6ZcBmT7Auv1s5LG/yTf/yvePWD/5nP/sIbvPwGj7/5b/FX/71vePf+v+cf/v4z73dlXNblxNZubG784389ePqHH/ibf+Mtj28j5waPNimgJopPzmh53bedtAyWfobxnVw1E3GUMPbpjBa14aFeK5ZIaWF23U8nc27PNzApZtL9vR2RuZIwpCbJAWQUn0xzLq3T3LFlxabufQvloZsfyLnmSnS4lPs5jNjnUHf6nOR6xmyHvmHWwLWdWoAvx9kdp2i0I0uzYTZY10SKrLvbtqsgoZpURcHE63467L9OyQJAPOmeS6XgtcLwyEKb1CSgJWeFH5fIR54D5tBiTpAUIlc1I5kwDt1jZjqep2yGJCO5GjRzOpbXzLRCsokXfWY+jLwseJyzvbewykwYTrGs3JaI1CDyUPTTJNZa8TyYPhXC3ME801wAY0HZTMdMdSzIHlktycAiFFcRqpMUVmUn6zk12WNznLfC+QaOzp4ZCuQc4PmcXTNZODDyEVQcT94cIk/MMkK5jvPbmFa1o+T45+MMmCPsP1M/qE8VEKW0kPpUEP9EeTx9qNQl7FmyJgHZ2MxoTOWYuSsg+gB/cHKVdd8QudbHLtXmPFQnRANsEN/4kd5wBzUxkQ0ewdDrskCToidboe2NgUeoskCYGaTacY+1mLUc4owoek6nSkTUMKhGRA6Q4q6GkZrWgNkbJcliNFLRc2VGsURdBPpsTYCSB4gzpxS2x56Yc4LhPK6FpdhdGTvN8DQiF0u5oilIkOkzinU0D6WqDNnTsmIXV6B9gPXmyoxKR85WChKwDwqJm1oGpKAx5bhZ5MAJ6JIN/l7m4lBrgq6fp6Qc4ec6m/IRBJ2SCgwczAZ0WbildNJ8QHy3KWtGLcK/lE/nk+QhLDlIJ9dMlIGaBimnUDAFKASUuHeZBxgfQJP7fX46gHBld3FXPd8psvisBPDroekHONX7HbjS/Tkib04lHW5AVl4iJhcLZhLDDO0WM55tEybLoXIS8mGKGPCB22C2kMsk/XOySQcoG4B4yi7iyAnV1Azdi0vl/j3++t4BJfdJ6hvj+iw2rW8allIhr+W+ECWOGnKhi5QEPST7nqVUMPlbc10YUX+ZPA4BRz5Pl0Ws+1RDQjDjyYzsrgMXiyE3WgByYSmFXBIlq4ltJn0BYwYDFA/pZbvgzUnxgNZaqbkqYyhFPWEcskcOi9raNK2kOODS8WCmIJtGIN+OXsgpV+wcslKUklmWynqqzKaq27Vmas0sVf9dTbAU41RPLFkWtev2wsfnC7M3qhVePb7h9HjmcV2lQHABKccDe2QzFYMliwnv8cL3puD0by8v3D5uWK5hxRisi+H9mbk982Z1Pn+d+Y2v3/DHf/WRL9ZG3t9Tbje2y8LztcHY6B0acN0lbb+1SZ+NNibXq9Q8AmE9mIPEHI3r1DJ0G7rI3DIfxo3btULvvFyvXFvi7edf8vbNK2aefPthsPeKlUdOJ72IaWbqUpmzMYcynq4OW5O97OU2+XAddAdDPmxyJuVVyrUpVjohxcal35ipwBRyPdzY++TWZX/rfZDcWctCzRbtgLrIVxJLzQyDmjQIvHTYhjNa59oHLaTSramSsy6FZU2UunzHLmVayJICupNlDp92OvKQXM9arYXT+sCyLsH+iBY9liJ5pQ9r6Ccrj56JzrffvKPvG49Pj+SlhjKpBpLueJ+QioAYZjQdSJHkOG3f6bsu9+vLFfejHUsKqbIswZTI+jddjS+jd5iKMx1oIU9u2HnlICsPcCVnga2JaFqLvwNTQI6Z3sURGS61KOvs/bfvmW0wE7LMhJ/oyJlJJRQLU77nEVlQo3fa3u4qpdYab778jOV8EmNNABslcySm4XD48CyFZJURecaS72+XF061sp6kZuM7FkQC/PluOHgfCvfPCAgU+O5sl429NZbTgjM0NB55FQFM+bxvzWIjk2xoJZhOv1x42V5YLFPXhRy5Oyk85+5ETk78MKFM68jnPbrYNBsKdr7dNr5880ZIaUr3z0SfiIaGXIoyqhBYkDG8dRhSFR4FCKfzWRai+Dz0EU4tUoz7QDGjKSlbVKwGyNBbo4/BsiwxxEXOhUX210FEOPHuovY20Xn3BSH5wRqKLb2zcfGAJgwC9DjYRebUmRLgj5s+xz5kjy6l0FvTs72otdSCVUyhJLFs97vnAIOOdyJBSLD1TklJxn2QtvieNXjozE8M5XwFIWSkaIvr5L7zMB91N6KlMcX7q8ucUBR4sOefcgL1M4kFPaqEj3a2OxNrkXvifn+hj+HcDsY32/3fV6ryutxlYcop33+meaeevzub6O9o5lhxqRYHnNaFXBZ665xOJ0BMbRb6c1dleIyPh9ZNCotoY3RIVlmXyseXC7fWWE/pDtCIBT7eV7032cKCFMslpnrhOY3eM+fzysvLxqH4mz4ZTC49k3sinQR8kiBROS1OzwpDXQyW4fQkldLrLdGizSydMqWaMiDjnBgM5jWR1xP51LEAClJ1oEd4bOHNV2+5vmu8XG601ekt0VqmjIpnIw1n7jdsSZhpmbTyAEnnzrl9ww/7mT/98hnPL40f/+TK+VSon2XdkSRSMU5An41kheHGYpAeFr79duN3/sH/yV/58gvOf/wV5C/44s//Nf6j97/gF//d7/K7P93Zth1qYVkqV09sy2v+/r+48ObpHX/53/2c86M+77sqwzNko1SnTkR27ZPltENbELM8mQW8JRhBSDZjb5PiQ+1iKVNIeDHaNllqxh8yt2vX0mQbS9R296xtwYZhaK5SptsEBvU06G3gXfNO8smh4wwkV7aMmKH1Ds0DZ9Lzbh4V9lWDvi80H1xvnVLU/paSFFVjTjzmBQH7UrrrXtDilk35PZ5QpICrjlyKEOKsm3cCICfoltl9BMheaMllM5xqqQ1pBmtVnuERHN8jIyeXrPtjWuwOcYCZVBVj6HMyS5SkXJU51VA4pzNmkuKZzh45c8lNL/5MTFeMRM7GnpI+8+POslDh5k9xGSOAaLJhHmTAFPFpYzLC4d/7zpxF1fW5BNEB1VYOi8qMxtTuItDpyvLb5lBOjSUsLxhSymId7Dv7w5yoAjzF8q1Fm8hhIVuQlwKyskspuo9Bmp3kM87SY4aaKkqwqKWIYGrirljWVSrtNhQN5+GqQLl6KofNeNf8V5JHCLXRW6eaaZlmxr4z4zuIttd1OXAH7vXyY4a63gMsEpjhQcDpXBcx0E1KuzakCj3Vhb03PNRBNhO5LKHCDqX2mByhesOl7k5HJiEWz50UuRMUBu3CR1Im1KCaCaYL3LdS8L1LuegimKWK/ETizZiJqh3kqFTL9p0oFqINPMWdPvqhUNPn4ByfXQBmnkkucEnga2J6pZiAvZSN07pQGmx9MEw2/elhqUcEbA5bYp+deajwk7Ikk0mBE+PMnbyygxCbAjx1hxk2BU7Fi0up6b67KAbABTC5350Vbk0uhyAck4vsTibLeC7RTjeCzDTXWTpFFnmo+7tPWRJNKkhmzBg5KYPzUDDPjC1ZkRce6myICBG9z3JBDYE2U+BRyllzDpEPmrj/hjEctfCawMYUGmXXrJBTwVInhQ0eJz7XpDMk3uUScnRpsjxyFqPgpRb6VH5wCscFAWByxANpIBc4ReSNWaEPKfVCf/C9/freAaXLL3/Gvu1UnJkTta4aclO9f6h4DsZHH67jzKbK5pIkWbPDU2mSEZakwcxd1cutz1iqoEhgKfbDEylS7MccWNGBN11Wjcf1gZSr/jzT4qC5szDD9zj64HrbtcjisuVVef2zadHxYCz7jIU58g886qePZR24V6xi8rV6ZFR4hLxN+v3PqEVJ+MtSZJm7XTmdFh4fTpTsPJ1XsMFaFAZWkwCJj+9/yfOHj5IjT3hYTjw8vuLp6RVuRtu3e4bEoSIQ0q+Gh2piB677EGo+nQ/XZ+bs7GOnmHFeCsWc2+VCGzce887Xb+A3f/TEH/vVt7x6yOT9I3m7UmyDmrltXWRYWhR4xySdCn2fzJHYW6M32NugI5WD70JpOztzDC590PbE5js+K8xJY8r+dOmU5ZGvfvhEOa1cdmfvYldKzVK9JKe1DZsb22Z82DeMhX1WGonna+Pj7rgXpkkmmWulridlUiUxPUtp9F2h4Ftr9KGwz5kKe3NubbDPyd70fZacWU4K3S5Fz9ka1pIlhXXJxfq3aQKR+lQ71JhhMbyRk3E+nXThhsXIzIGqQ23qME6paMAIF1EqCrBre2eplfPjAzkveq9KyHRz2E7gnm10tMoMF/vW98bz8zOjD86PT8xFiqi6LGJXU4oGCsmOMb9nJwmgEYiTSsbGYH950WEZoI0VBer7GMpgirYVD5WWj3kPu56R83I6rwwzLEk5dj6d7zaXnJwxNyCCEpNjuUh+TWTiQMjRJz//2c8FqqbEqYhJzalQIluq1hJzldjL3jt7ZCVNl83NXeGVr958xvnpNTXJfugoIPSwqHWOUPAALMag+SCF/54J18sFm7A+vWb2XaBbeOvNpRZImmMFJMTwM0yDvdQjGoI/fnymnk+hfJoBsMt65xFqeQ8rjitHzI1htTKaLnfrsD6excooPEgAhaOBIligcRQOoJ+ruwbPORS4eXm+cHo4fWIYQ8IuhduxiASzEmBoMoXy9wBiDsWLpULKyq2zGBrugJ2Qeil1DntB/N116DqzD/ZNZ4yF3D/nfGf6kpue2YmsBEEe6OcScaEshillbbCeMz6PHBL+A7A55OTH84d7qKkEHo1YDGZvpFwC5LV4303viqXIKXGSS7ZifgBfh31Ei2qesvF5kky9WsIie0pLZxbIMafY4RigjwDLI3B+zIk3Zbn5HHc7WG8TWW+CRbQjW+CYBvyuDjpALuUUJPa9B6gt25p+aXAOBfgdjHOmfq4YAA/Rwul0wv393fYuTEzAZsmf2EuC1Jl34NTDeq7vqtrC+njmct05PUauYZyDssYNchfoHdOKMg+7BrIRkgp3J5dCzbBfrvT1gWzK3ciu8y0djHwKG3JLFCUmgxcYuywNJM6Pla112hhalrtjOdMNttk5DWOxDJ7DQjRxZFFve2c2WTRvPnj3srNUGbRyqiGbj0ySOKv2qBrPq2z2Yt0Tua53IP78kHn79YnLv7xyuw1KnayPg3nr2BLA6NixkfX3WT7TZ5OuwFvqq8Hj3vn6R4Nf+aMXfucnP+UP/7Dy+rHw5vEk4iQl0mLcJrRdDVrLmCQyT0/OH/z8Hf/3P/hd/vzb38S++Axb3vKrf/Fv8rd//nN++Q9/zP/z4UpvCSuJfU626djywN/7px/5wdsLv/0XXrGUjGUpQhTWYWSHWsG8MMbOtu+Uc2HpyhM5TWNPhX2fVHfmOtScg9j8PEOhmQepwN4TSz1hPrnceryrjWoe6vxE9yL1WU64dWa7krxQ08QKbLdJy0YaiWzKVjQTMDDucLcUlyXp7A+pOm6Jvcs2lSzLkpJWrIJ7x8Z3VLuizjXb+kHChvqVA6QOx0AG5mTbO1QRv5ZEljpO8nR3D3hYKg61dO9N4bMMSsmM5szmZOtqLDSBijmluzUTZNVXkK2FWiIIkZQFzIzIJAVmFMu4SYlwWGlTGjqTYxFNNumeZGssicUKOXVG67q3prPF3JxrYZruccdlW4+z5jBKT6YasLoWz30Oem7UWslFTWkpKbBbO2sGOiPuqzF32jTygL13uiSaSO1TZX1MUkNQgsBDuVJ9fCIRR+8iHeJMJO7UFFabHAA13aAPWLJUJThbH0G451C/2P1eJgnA8Kx7xYBt7tp5ujHjP/PYm7wp14z4d9YstdOIvxZTz4t2J1OI9/S7mtyPzC/0bHE8mwfp7t3EcwAAIABJREFUk+xuiZ7meJtRmpRZiyx++9Bc50EkiZ2IZ2fGucuEPEmuM8aGMnXVWhuz6JxhSc3UEneI6W6ao8efp79L33cpTTxURyDlmF4hhryZAsxiD/P4M6zo90lEGuBRioauPmk+WCQrZUQjc0k1VMOmU2FqrztcL6VoV923jZpKiBzUIDdmlJdMNZJZgjZHBFvrjBF4KoC5BMA25tRsj+4FBqEmjp03J/rsbL3TZqemRc94l/1b55FH5pKIRnnpQqHnUopNs6BltZNaXM5HO17CVMZkUjilJIvhCIBrDpFSfSifUdbVovMKzXjD4nMu5R4TYN+d01AkjeYV/f8pXEmOQMUZ/88BsOGfZnNlQql8QbbkGdlUytQKjRHHtJNM4oTppqKZaIK/E1oGWFaxkbmUa24RYRAA1Djyng5VvkBQTNZ7S1kKLvtutub//1/fO6DU20atq3JJalRzu7y22SZmClCVGse1XCU9WCUlMTFZw/hR71wsMbrAmDa2YHEUrqvnd1Cs0Lzfg1RhYLlgqLmhrpW8xGI2dSkWCNTTsWlc56BdJtuuVounpUJKLCct8dmMmRJzBOo6h6wEY8TQL+tKidDVVCtz6HAffXzKkBB5G0yqfn9KJtCqqv52365kM16/eeLp8UE2JxO7s6RCMqfaZPbGT37+c7bLhWzGw9MTj4+veVhP5LrQ+47C3rSEKP19BBBgMBPFxHg8f7zQBvRufLhc4/NxHlPi/JBh+8j7D9/ydJ784E3lR1888md/9Uu+flvw/pHt8pH9+kLfd263C++3yYcLbFMgn3XlX7zMic3JtXW2vlOmBtqehtB8NxiJWyCGo4st3WbFosZxH4mXj4PPP3/L48PKdkts+2SbG3VdWJdMqc7gRruJqSmp8K7tbB362Gh75do23vfMsmRmhO2VmqlrjufScBsaAsagpAduTc0tySq31tlG43KbynTpqgmttbKuRaHQKYWVJbKbRsdy1QEyJ7tn2pjMNtSAFuHe++wsdWVdBWaWHINijAV6r6aYDJ/a+nFVR6bMHn7188MjdSl3P3oKJVrKeueO3JUZS7iUYVJFbfvOx/fvSRgPjycsF5ZSSaUwcE4lkbPR9lAHrQt9u91ZiZwLMwfj0jvb7abD/VAaJA0nteQ7cFuyACqfA5+dPgf7aLrwHOoicLoknQFqxJn0Nnisa4RKjjuDBoF/uC5LBVvq6H3381/IS110NqzrqjyAdSHPqHnPWbbYYLQ8LsZD+XXdFcK9vnrD02efCYywzI7aJiUqOdhRBQQr80Z5HJguHUYwj9uNt59/xmRQlkWXSDIYM6TbMQT0uGjjKqopJPDTsWL84pt3eADUuWSqm4LIk8UJCsftPYeyvohsmFoSfe/cNtn5TusC9gn0sYMuNoG/oSnUihNqimopalMzo4n5a3vn1eevI+Dw/7ts5JAF55IVguoeFfWTvm9Rxa3/rLedclrFwiL2XJk1+hwJkGU/QlznpMZAIVA99G6uoayWqpaTlD4powKgKinJsjlj2Ih3JWHkJDviAQ5Kmh1Wh8gLIN7/wzIHBBMWNu4xWEtRXo4rTDvVhZx1H5DS/TtWZpU+MDcUBmxq9gin333gPr7XMYYCKQMEc9SCN0YnR2aJrJihdIsGN6zfmflEMHZGgNmaesVofwKBSs7KygoFk+48gGBgXeq2LZa8OVV164cNK5SR6QDiTMOsMjWAkIT7cJa1BtjYqcM0MB3Amin0Mj5sDtUyhqT5oXgqNWF98uqz1/zixz+nv33AcqEaDAviyAS23fMKcroPaJYTre0yAVjHUaD28+XK9vqBNU3S7FJcGGTPlCV2fnQWQMM9Y2XgVIbvIaFJPJ4rt+ukK7mW0hMLk7kbvUauCDMyFVSHbUPBxJt39tnIaeFyg+vWyHln7UkBnSkAYJuUtMCamL7jW2WsPXJ2TArBrO/TbfDwxSOPP7vx7pcXjI31lFnPO6ldqKdKmjVIOtfLaBlm0xm8njk/PfHmNvmNP9H48S/e869//MLrNwtPv3bmdFI4+6RQUqXEcrBIb8fjmrk9Or/3L3/Ol//H/86v/OUv8fIr2MOv8Gf+1n/M3/nmv+A//986P/u4sw9YTk9Yrgycb5dX/Le/c+HVq5Vf/62FGiC9lD6JYpVZdtmlToPhHbYNq7KdLSmD91DTF52la2c0ixwN2RLwSa6Jkgv9ulHLmfPDC5frZEyjpEmZO9iCfGFSd2h+zDAmJVc2r4waKh6kMFH+54RZwTvuUtVkI/I3DuurgIecSsQZDIV541heYEC73CApW01n2sRnqPLinRWRq2dvuDLh5r5TkhTTrUnNeD6tQWbEsjmQvTd+Fk+GewOTJSOnTHPVoZsnrrdGrcqYyebkkjhyR1IqCil3Acs57sucC6p974ykeUEB1Docp8uyfZRQ3J0HyCLq7Diymaecwgovmw6EygiYOd2zAtUUJQK2Wyx8KVHijHYa7oOx98MBTR836nGeJ2XQ5WQUc0aKYN0Ift73jeyJ7baz3YwS2ayOVBHFKjkHOZIE3tvIodSMqIyDqN9FTORSNC6aas6XmhlDuVMpT4Z1GINqCyVAodk7E6eozpBhYbecAFkW/iB78Enrjdl3TuuJ6UPKpJRpXRlNliMYGAgYQuHXUdQAkUdjRy7XlOLJjZIk4XRcCkt3stAoAR6RIaRMWKnhb72Fsi7f1eUi0iNjd35S4ifAppTsKSU6Am633lmymtoWyZGoGc5n3Znb6NpVpitwOwhxqTtjDgqlX00Jn3o3zEVIHO6CnIKYIM6PGVX1x50Vc8rdmTPD2sbQvXiQTlmEhrn+vBnzxd4U1GxTZ6llqflS0s92ADP4iAzXLpLKNXdm0/uQiZzU0elj3AtZDkVxTgrHTjjdYRtTqsCUGDZIROFU0m5v2XBTpX0+CKcZQKHHHOuO96FiLqIdGbC1BOlBAPNEPMHkCO42t3sz3xxSjlsQ+KdUIgMPFjuAGg9KlZi1iuINovHOTAISAT5hFyxh2Y84hbvq2iM3KSfGVLTNdKRsDVWwu2ZLfFAKOofMZY+ecXa4qF6bOkObayfvbRMA7ws2ewxmiVxMd/uxK7ozLXOvhLYE6Pv1JELp+/z1vQNK9fxImiF3to7FQ2glM/MKuBDsoeEnLzWWlJB7uTFNMmTLCs7eN9k2pMDNwdCH19YmDNjnhtmk5FX1iwxySawPDyyp0Am1hMnv7jZoc6qUbyQuW+O27eSROD1UHaZVMshmhehvozfXAtGHwhld9pIU2Se51kCeI6B46L/fIyBOuQ2Syc+24Tjr6czpvIJPNXuY8ebz19RS+PLz1/SoWS1JwNeSxUJ8fH7h+eN7xmh88fZzns4PkXsR4EgoZWo1DZ5x+NeoP59jMJOxtc7clSOCT9p2w5raf+pizHFhe3floXR+/bXxaz944Lf/5Je8fqicfKe//yOu24vUWped7eOVl9tOS4nLpTB9o/VJH8bWnNt4YXTYb0bP+jvhmd09Aq4bc1ZGh2m7FslR2GfGrDH2zKvHJ374oxOnU1Uw6Umy2lKTGvpKUf1oXUjL5KFkcjAjIzUe7IGfbheeW+PhVLh1x6qskLJDWgCcg1ISNSko83m/0SMEc9rktjuXPugD2pDMd82FNermHVitcKoZs67nsq4ky1ybQki32dibc3m54cA+FTT7dFpZiiTD2aouidEpdQngr6sBzRsE02HhQe9bYw7j6enpzqxLNSFAYC1ViD0CbVNcTH20uEwG+3bjw7v3pJQ5PZ1JuVBLxXJSHkEueC74HCzLSTlOCDAeLi/0vg/aaIy+8/zxI2PqPy8lU0vBbbJkAUkpVZILzGpt59aH5J/hXWdMWZOSfNxYweqqRdQVIKoRY8CYbLcrpZbILAoL29QA4jjv3j1z23asrqQKp/VEBpZlpZain3Opamsyw0dI6QN48ynpcNsaqRTevn0izaGh+xjCI+tAl42G0tb051gE/Rc/6jsnz88f+eyzzyim8L0ZNgBlWjilVJQRMwIcUXjrmLIHt32npMz1RTll6+OJuqwczZglat8x7XkDfa4C7jp5GL131vzA/vEjz9sVtsby9IClGd+TQESFE6GWj5ykPokhY5hsAzXQhrRWXt5/YDk/3gsADqtTjhymqRv2DrR2lw+/h9LChyTD+1RQ6VoybTQNNZHhxWG5ug+7cTElwsoKNWd6ygLzEbCaZHi/Az4aaCbFk2yXWc+l3iUL6bd/0jx5Y+87nnKEMoZFrua7v/9oGD0CwktKjNmlOnCt0cqNGKzrORSAHkYW5QgaYCb22EqOiugU4coaxsdUK+jWNykXEdJUImjbUPi7JOYWIJC+j+F+t1imKZVssvjPhrIBi5X4rKQwmq5/byJa/fR036HOQ2WVyVJGxCA7Q4a+LBUYlFziikqkGQCTm9R1x53qE0ZTRlJJpFzx5vQKg86apUZ2Dpm9fp+aVJzD2usH2xlB4o/nM98A29U5vykQ8vsDwJOyOooAMBgwcpBiKcPsMUwap/PK+48f2ftkWQttOkuWemybzmiwHM9rhq05NTsFj8VIQfA+QwlaWth2hobgpKWlNWcrnVOpzKTg1MWcljUWPy6VcZv6jJhcdufhodFmZYRqLg2B3PlE/Lsn+0tXMUPp5FqZQ2fREXhc1sbbX33g8u0mld+1Ma4rIzt1JniY2K3hjx2fG8wNk2YdK0/kh8b6eOOLLx74N379S372h3/AP/9XH3n1OvHDfGKdGVsmuFHN6cXJ3VjM2VPmwZ0P73b+6f/wT3h4nXn75/59LP+I/Pmf49/5T/5DfvbNf81/9S933rWd+vDI+fUrxvVCx/j9Vvh7/8t7/s7bt3z1I1md1OonRe86V2yZeJ2Uh8rzN8/4LZNOidRCEWMDL4a7qe3MOx75F4eKLsV5vJwX+nVjfXhgzMat78yxk4bIIE9a9nIE91telYnCjVpQjpIn2i4VMzZwL3ew21EuaCJFftjA6aGsCPVQLow06L2zpIpj7D4o5zPW9HswmPOolhfJZFPLDGE3KamjXFOjFBEANVVuu2yGiy9yBFgo/EzFENmUm+IG1SrmutdLecDrTrdGKjXY/PSdpPjIdLSJpQq7iYxR9YlmlgElL6QMYzRmmtEkNT8pG3yCZYyoqbeJW8HSQrEtFvVwOWRJZ/KS1arUj1zCgZkC37032dHGJJcsi08QCqWqIMWLYyMWySEVc6qyZXmqWM7/L3Pv0mvJmt55/Z73EhFr7b0zT55bVblctrvbXcaNkQGBe0JPGIAYMAGpJRjwCRpagi9QfA8miO4BQgiJMQIJo8a0sSUMhgbs7q6y617n5Mnce60VEe+Nwf+JldXzMyBVUpWq6mTuXCvifZ/nfyUGPx+blAuEyKhwqzt97VjzvKiISAQH/4PBaE2Ks1aUFxuCZz2GuypT+Hqj1U7sUVGvvmfFnDQTtaK/d29sZSfnhRRh60VqyHZUkivHb4RALwoi7qYWwV6rluRtZ982WoQ4VHbSh4pqLDS3LqK5jcAYUqlOeZbNuxVa29RS2/W8yFId5FyJgcU/770NApFeOiNUppDoXtZRD4XNXslZ9iNAZ6grdnCbuQQvroheMrRKjpGyddIkkDRVV1JZo1skJtmeYjDtkDmTogDoYa4TKsrfhUGy5GrCRkCN3Ieyd+9VMQNRd571I6lHM+ooA8zPHD0B7tJzlfvQTosJxA3eNBCTZigbcGuVFAf5yFU6WtYQyDIFt26ZCCjz2bO5dfBuI/cA6XbY2ce4E6UDFdgsMTlJHSn9Rk5Gj4oW6HtnnpOA6G33fMZBVziuCKcDoIL7mYG5MvxwqPXB2IsCp03qymNus6OZjeB7gs9eDsJigdoGt7ZrHvD4gJzUZlmHPnfzbwFT7tFIeDZecKKQe24VGjnvRFNzS2Dw30UGJc03ypKEWgrDEm3ou+i1E7rUzCEe/4xmy6O1rjvQWWsDtO/O86A0/T370PkQXZmk4hjZGYclPx+6PhMbtJpp/euFgL52QMniiYCQ0hYS0XTx7G3I5jTUIDbliI1KG1XMQRSC24dYgjagbzul7FrEQyDECTh8gI1oOqAa424poRXmtBDmWWCVHW1BBlGHjQZsySBva6Fe5Sc8L5k0LeToSHAKnEakBmPUo2YzMKr7b7PnIBAwt4yBAv5i1FA6mvJ0krN9akrQFnY6n5kXIfr0SgzGw8OZKWceHk/EYLR65WGaCdmgVlptvHv/FS/XG61WHh+f+PjNGw2ztdyZ4iHNPoSkw1d/fZakBq1trwoEG4gha5Xr5ZntujJb4rOnmciNUt4zTztTLHxygr/xW9/hO59NPKZOL++pl/fs159T3l15t2oYjinw8OaBNJ346NaoVvjiyytbSHyScJCp87xW9tJ5vhb2UtjLzlY6I+rlTCFQmpDcVx9lru9X1m3iW7/6hjevZ0aRimmtm+Twy6zK7RgpRfXxIRujeE5OaWy7EeLCl2uhxZmP37zm3eWFMWXIicRMsiGrgjXPwIhcto11bRATpVYpXVwtu++VWjs5GlNUuPQUEzEMUlLgtfLAjDEyWGRtgwLsdcd6YN82eoC96AB8OE/KFYgJTNarWhpYphRXAfhhG6L+94FkukcI8qtXD2L4DSwmQtYSo/YD87wkHdoH8t6LNC/X6zPP774ixMi8nIlRAJlltbUo1FGB0ikZIU2s65VoiW1bYXRudWVft3vOVRuuADkY9WDEJAtenCYdfE1S71Iaal6p4PlEMSW2XokxE6cs5aH7qUdWFfK+KwNg23c/lT/kj0ixITB33zb2rRCWE9mMeZ5IJv+7eS6WeUbD3Yk8PuQ5GYNSi0LXg/HpJ2/IITLlLLbEWSmpwXzIaF35agGpVcbwd7wRLfLu3VcskyrCj8a4o3FvtH5XDBxg0hHADgIEe9VFPBhslyuvn15hySDGe1NkCBqqjmYx/f+VLxWisV9Xpmni/cszt/XGervx+PBAyEn0UW9SS+GZTj74m2VVOkcpOWa3uPbRaL2R88zleuUb3/kOYzQPixUIElCey6F8OvKEWkfVwF3gTowKW6Y0H3COZgtXWdF0lwTgGAjQ0MIY91DzYca+Kzy97oXT49kHA/NcCrurW7ZaSW7BsxDckqXnILlkJ8ZIr4XSuzcUatjo1lRJrA9JeWkpErpnK3hxw+hDg1Gr0JVr0s3VMCP6AAAmyMGBYS1/IQS3PgxGr/ocqgDm1mTLaAxOMUGHFg1JHYChZylGBfcSNHxItp2IkwfK90Yp6x386mN4BbOLtc30fTqbJuWRM+reciKgS/kkUwykJqXtcJDNyPQAvRUfKB2osyOjSTL9FCKtSaGbUuLhvHC5XlgeFuLQnyWF8HCLZPtwBvpwZTgIO3TOE5T9Mc8zt8sz+ZzIeRJ72/GlVuxjtADdKEN2TppbH0NijOpgaWZZEmXdCacT5hXQhEEikLsRutpwRuy0NkMYnguh9qnWO610khlpimzXjSlpgbEYITRuLzAFVa9bUEZbDpE8NXLNsijPi1jxYLS9UzbYr9BiIE0KmlZ4ut7DEhKRStiNnhIBLQ2VnWSJ49o5f3LizTdu1K3z6psL8ycz6eGM2czIsm3aesFyZ4SFkWYIC+aD/fR049Vt5Tu/+ch33z7xP/+vv+D/+ceJ828nxmQsA/0ceVJDE6B2QZgjnB8bf/7zL8j/3R/zr716zfIbD4zxSPjO3+Lf/Ld/wI//i/+N/+WtsdVKv1yYlplyW+kE/q/3C6/+8Jl/42898vhq8m4mXD0RGC1A77TbzgjG9XJlmhfyEmGHaQazTAga8JsFNjZupZKQar7ZIDtIYaeJvlbmNNFKYR9BrZ7DA/KREnCg5zZOro6rlSVP3PaVFF0JGUwse4cpGFvzrCNXVrQuosJap+IAkFt5pzQJgLZAdnXvilH3TW2p0QHh4WCZ9iNle9Dv71Iyr/5mMFJgjEzrxrpXMgKFU4xuMZWqxYZb0eSX0xndir97Ug7UAXuprKWL2DvasbIs8Rak5B42FFI9pIAzV1D2ITWFQG5vOXKVxxjcc1tsdNq+6RxdFipVZ36pUkU3NekKfBYxtO+rZ64IWJncfjZGw1zhZVFRApY67A32yqA6wG1OaHTCGKx1Z5mzL4oeixEiliutdIF0BWKsxJEJMdHNdwcLalgDLCXmMlz96a19Q3Hqg3G3iHkih6zbwbxCvVF3D6lvUovsrdwLGHrtEIOXQLjtKwiMonWy24WSq9VDmlRBT+Oy75SmHJc8ZZI/U8VJHS3lshC2pnvLxmAMWdFGDq4sdmWdK51KL2yl0UxFNkYjxkGpalEuOuXprWo2MEEzMSXNWZjvjr4fdc8BRPmRIU2uTGssIUsdHQ5SLzN6ZVt3J7GkfG5VaqRoImoOh0odcs5Ek7tgVA+2duVudauebND69z7wbL3I8IDn1it4uYuA5H7P49R95oAZJgVPSByJa40mBc4wSi0Q5KSwqGdIb04jp0Stei1FhA/CYsRNSqXWmn8/TtYBICdFGkYOkSVOzJN2ka12Cq7sLzsziYfXyrXc+qZiGDOo2snNjpHN7Z1x0PsuF1xIIpprdZLuwydQm86FXnGlNfffa4xwd+L0frT4Dm+6FDAlcniwbrvPwr42/NLMgO/SZnZX/x8ZycNgVMWbKENWz9IYQ+pFP39SSo4TQE6BTV8sW+3MSQKQ4ERo3w/XlpeRCJ0nhST1oe8S1iPbtusz6YM+CsEyeQq4A5YjOqI6+A0eH9DVLJnzzNf562sHlBIoTyENQsyUVliLhha1JhwDmi4CzbbOiASoVdkMte5Y6EwRYvBsJDuCq3UWNDuYiIR1yCnTHxKWjNSDe0+Vr1D9ok0xU9ug3FbqWohAmlU93gJMeRKjHqIOJoM5ilnc206vjRwCFiaK6XJIDDH1qILazNj33dVLUaFtrUpajbEs890v3vYdRuPhvPD69QOPOWMeVLakAM045cDt+o4vvnzLet1orTFPC9/47JucH89gQyCCH1y6DGA5LdzK6va+46BtPL8oNDQFARb7trFenun7Sgqdcxrk+kKtv+BsO58tgX/+25/x6ecPnKbOY3xPvxX6fsPaRqSzLBNba+wVyjApTL5YeXftvNwGsQ/qeOEXI9CmQtkGo57YPSA8hkHIEwm0iJbGtleWUya0zs9/8I5PPn3Dr/zqEx14fnej7IEbnflxIVpiTsY8RYJNtDlyG53rvrFtnRJn9tWwpvpbyzM5zXzxfGFMCxazUvTN8xCAUguRQGoJmGiTKt4HmUBgs8Zlq9RqnKfEMmVOU2TO2SW6jckg0rCQ2baChchaKkQxRIbXNy8Tz+90sJ8WIc3d2XQOzPyI5PcDeM7uhe863kfrbPtGSoHz+UH2vRDcGhrAJBHvfWBxsLd6D7LtbgXDGut15d2XX5GmzMPjIykmJs8B0AKpVrY6KnvZyA8PbLeVbVvpW/H3oHDbN47WlJwnJssMc3unDgIPxIxE8CXaGzhQq5yNQatVbR050WvjlGdOyXN4hmTZKSRWHxL3bZcdKaoevbbmCoumYbJWLpedOM2EaEx5FusfI2YagkYMkqPncJfeyqqqZp+OgInQB08fvybkRJo0+BJhFOWRKPxYCpA2FGY5upZ/MYOS97Zth9Z5eHjw+2vclSVYYC8CqUdQaL7yenQZBtOQMUolz5m3v/gZDw8PWPTBPrq9ypniOwsUUGB4959pDKkSU+Ld84V125hS8mXdAcCQMNMCa8cgFtRSGcfQIG2wb0WDQmu0FLi+e8/j+YE86TwEyc2HZ/qEoMID3GIx2sBGVDbEkAWilUoz2LeVp1evxJ77mRrsOO+7W6Nka/L7lxSSLwCDrRRaa+zrSo5BocyaD+5KKQGATZL900lDqR2AhZim2o7ge31f2aJCcquaoTDH4FxjBB9AJNXHwlGLPfqg1yNsXeeyFhgtSbIpNrGp9+8cycmpriLSzz1cYt1KRRBkd7uenoEj7y+GSEyR6hdqCmIXe1Owbm+ykA86U87c1sK27Sx5cnk5DtRGP8MRgIua7caoUtAFVwaMpO/WrSIxT7IL9Eb0tqsQJk2EqnASQ+gqvCM/JnpE6vAa9H3dBPo1iYWwD4Nv9MbJewvM0HuTg2xsmEA1OiwPM1/8/C2v+fi+yDAqnei2u0APLqv3Z+xokNEUY658MPJsvFwu7K8emVwZjP8+HS0QI6McrDFR6pU5Z3qvnkmlnJXuC2gdhborBzIFgwlaCNz2ArfIk52JsdwH4tPDTCqVmo3QGpYH1EpNja2urHsgngIpDgKLWzSM5KrDrYKxE5hleeidbkWqgAaByJtfe80X/+hLtucr6VbITxv5BDZm7E0k80gYDYs3zB4ZvTJCgziIpzPLRxufbsZ3/0rnn/7gHf/4L9/z6evAb337Y0baYJ6JozClyMogFQ3lOTZSNuanzJ/+4Es+/Z/+mN959Zr86b9IYCH+7r/Hv/+jn/LT//b7/HnTvNi3Sp4mbvtO64E/+mHgG3+y8Td/L6ldzwHMxs4+GuMmi1bqkfSw0352I3wrkkKijsiUOz10kmdjRovEAaVASmgO8xaiPDrttDDWlYdXr2iXi9Q7Vao9ldBIRdwcLLIYyQFaaczzRPE2WeuRHjuxAyOI+aYQySSyL+aRPqoUADbJ6tP13oVJxINUGXo3pjgpyNhzRYf//xkf7M1HjpLFKECCQAwTex/kJZItcr3dWNebzvUpEaO3vtKpGNO8eBNUJLj9LaBG11qV8xTIlH1XCUCIBK/jDkH17wOjh0wv3S2onTyOBXAQY5ZqsEHv5W6zChjU4cu0tyOGiF2lKB7HHJaiKzF0nueUCWNwXTc1zbadPqRWDlMWYN+LK7496iJGUhIgtcSZvaqdtNtg9EIaytRsrSgryiIpGlM2ck6cH05s9Znb2yutFFKXwsdiJKbsNiGpjduQRXCEwN68gezKlFQiAAAgAElEQVQAUnp3xYmf001qkJAiocmqmJHlurnNOMYoG3W7abvuMyNFFbCYyHyGmrSaaTEnqJ0yZ5VnxG6U2Fm7V6o3lan0ImXYsAFR+yEDRq3UXqh0v6cDrW2a1fogoGWfPNGjafjqUkhZCCSM3fSd5+7qs27MfocG38cY0KPOr8YxN8h+FNwiVJ2Urwx6OQoRBj0Mz+HptE2RFlPQ3ll2AUfNLcQ2OvM0kdLCuhXtDKWRk89sA0pplD4IKXmcQr3bTGVx6nf1TKXdm3ytOTjWlW52zB8YDsp2Qo+UKlJqihBzVKNxFLnYNj1TrVV6nrgN6PWmHLFJIfuMwXUrJJvYR9F8hivjQ6DXxqEGx9BsFhM2Te4sqkSkkLLk1n3b9L6UJOVeDx754PNdFQRDMO3rQQRCCCI31IKsHOUPILEscfrkpHw/SK7eHWPIWcAwrm5qH0C4mCL7tt3zrPpo9N1Dz/3cUTSNZ3cNKKW4EkpzRfR8UsUveH6Tg0M20JzdPOScIatv62xd1tC9dSL9TlKFkQhB2VB9DFLS/FX8M68+N4bgqkovYgohy2bZlD0XjXv7Ywr6mUo9IiAEVClr9uv7Fb/3ve99rb/h3/sv/5vvdYvso7OVroE8JpY5O9gRnZOWlacZtJFIPXC7CkjAGjG7b9ZUX9rRodh9QB8IbV7SiTTPzOcFW5Z7BbnFBFEf2j7qPctpuxVuz7vYu2UinzPznNXEFmdmEsEvhzz0JV/XynrbFWQW0MPpw64RULeSfo2Bqq2R+qLVneGBYCFIwi52NdK7hqXPPvuEjz96ZA4DY2UCKSbCYMnw8u4tP/viS8rtynJ64OM3n/Lxp58zL5MDVQr7lM3LPapNXtgQAjnJWjFa5/ndM2N05nliTonL8zOX9++gNR4n49ViBHtPrl/xK683/ua/8C1+77c+49ufnXj90QLPb2lvf0FbN+oYUnWYEaYT+eGRMCdZEHonLhNrD1iCumyq67QO7ZEd2LZGaQqj3vqg7IflItD2gEXjq8uN6x75re/+Gp98duJ2g9s18HI1apqZHmZyiNiIxJB1uI7ApQ5eWuG2B+qYuFx3brdO3xshJr5ab1xqZH44cX5Y9H1RyElZR8HbdvYeeKlwbSvDBpe1s4/B3mFdC9TG0ylzPs88nhcelkzOOiBykDquErjVwdrg2geld/ZWuVyuEBLb3vjiy2emlHh6nEgpEtMsVsqX7+PyMJPqye4nlWT2fcC67QqoPp+xYco6yhlLSf9ug5iMHMVKdf99GbLvxBhZbxs/+clPmZeZh9evCDkxLwshuWUM2Qj3baeWleW0yLu+7QwGtRdu+04tym1gGPm0cJonFg9JPy8zlgQmOR1AH5I8awhq7LWovbHJxx6S2Mk8zyzzTMpJbRpBDQdlXTEL1FYl7fdcpe4qHPslZcm2VeKUOc0zy2khpkxOAXIkue0xpMSIQeF1KTDaoPQPIZOjdy4vLzw+PXF6ekJpfQpFbxUt/UFNeKNzryQ+LroUkkC+poH35f2LgKlgH8I7Q/TGNs/6MMnqGZ0cozdfmN7/BkyR2/Mzda8sj49MZFkx3KYTcGuTKUT6YGstGD1oyEoWZee1xPN65fPXHzPlTE6JaZq9PWnSz0nEkmx5dIEHilhw5Usw6rrzcH7gix//hMdvf46Vdm9LO0oJDr+5ZMtHwyMU98unaJ7VE9jLRhpGnCeIQS0YUe+DgIfgodHBQYgj2FusfCuV6oDStm5Yikzn5W67O+TW+lwFhKac7kqs0T4ou8wDYcXCN6lfo4DXlKKzwWKJKkNDuzn45aCKWtk6rRVltqDPLUfdl9CldkXTuxmeGYay74731z78/AqKH+zbTiuVacqkKWtw7Y3lYJRd/dNa9VBd76ExY3TZTlvv7LuKAUrZeXz1it66SiOqh5C2Sr5bvc0Bz0rdFXh+D089lEdJWV8hnXSOOXAeHAhK+ZdUZ0cG0/DnhAMwk+x79MH1Wnh4evB2SQfW7PhMDlDewajozYu/fGGjsyEk46tfvOXh6UEANq5mCkfjVSULdXRwXs8U1HvgpZaASgqJfd+JeSZn8cDZAjErXDimpKw7pFyCIKDGlCnSinmLbZUabXT2tXrQZiTPCVKnWGOZEhaOc05KRBsD5sSUgpq96s7YBnWttNKoGDlPLDERJ4EiVgE6fY7UnjGMOQnUpHfCmLDgFk0C0zlTW+Wnf3bjuRi3X6y8ffeCtchMxPKqRZRBTwvDMlYvWL3K4pEi0apsEfvKn/2TL/nx+8GbN4k3SxJ7muDkxFqNjdoCdTS3LsPaIz/+/ld889XK4+eP2PQJMLN893f5jZ/+AX/y08J1V86WxUx128RumS/ernw2Nz761AM1rRDjwEaCFLSgTIFpzmLF3xXiQyRZUsvlMHopvoxHLCax4q6IDEdOEBBaYJBo+43zlOitaHYaA0y23RRkSSeqtSrFRgjy6YvY1EKXzefm1hnB2JsWsfMSiENKes0EOn+OcH3XmTiwGuhkLETwdrnmDcM4aTLuy9m439PBFUbWfbFLAgVabTCaqxjxDLl4zygNJjIzBtnHjwKxw1IapywFICalRh+UrTAsKkcI7tIDCyJzbBzWnOZAmoho/T1dwzH6fbYJblHy6+VupxrIVphRG5usRPoOpUw+rL0iYTqVMQRJdDtUUPg54wrS4OeZmYNiHaosWTFJGdP7EBcYwEIm5cQcBeSXqlyUMbRDtSFSWjb34+gaUh/7t3tkpcr2pulO5R9OWh2BKQO3g/vdFSJhPtGHihf66KxNy20c/kWh+WCYZokxjHzkMx3ZgNFIKd8JgN4Vo9C7mk33Q/nV/bs8FNJteJacq+XHILv6tYWDZAlUg+6NabjCFBSYDCLHlqTMJ7Vo6cPtVXOfBeVkNQ5V7fH36g4MuJrcDgs4NIxkgWrtl98geoPJQ89rUQthHQIXLJhnewExeUSELHD3Uo4hsi8HYwrds/okgOh4LhIm5WHXGVLk79RMZEFEk99l3S2Cchv43GRu3DpmIqK3AzZKGxATdQwF9yOQPqICrF4r+77flcv6wHVuDDRzxqT5+Lhz+tBmvpadvVZSiJzmrPOl64za66B6jL15sLmaXP3nG7pbNCsfBJHLbXCV8P35BgvGNGWC5zyNoWfFnFCWxUz7N06CGZrRg+dyzcuMVJmRYFIb7h6s73GVUoqZ9tMDpFFoujsGTDPEcOJKpTR6z8wVSphmLDMIychRpUYCh1yxNfiQPafpQ+/tUP7Uce4zNPvoPD5EA/7P42dScFviUBzLATbLthzuKqz/6O/8J/8pX9Ovrx1Q+s/+8//qe3uvtGFqK8uzD7qClc1w2d4HD/i+rdxumz5ElxLeKzCHYVXhtTaGKxwyKU4spwemxwfSHAmT8hSmqEGQJuWSjv3EthVutytjNM5PE0+PJ5Z5JsQZYib5cnsZO5iQ6ue2qebcYMpiby1EoQ3eBjaAYWIC6q6F+MiR6L3R606eMnOemafE+XGR/zw0nh4XPv3kDckGfV+ZrHCaEjkYeVat6E9++EPeP79lmjPf/vxXeP30wOk0EdzfbCjsNkTzw7Z5RpLPAKGz7S/06q11MXuQ6I2Xl7e8PL9jTvDqbES7wPYlE8/8tU+N3/3ux3zyGHn91Li9feH29ktsbEy5sW47L+vOy9sL16823l8K79fObWvsvbKVxsu1sl1lzymbebvdTG1gfaPHwd4GwzK1S/GAQS+N1gr72vnWZ9/gn/tr36SunZ88X7neIq0EpqeFOAnPTySGJa/JDFxq5dqMWzVqnyhrY99U62o58K4O4vmRaVYDW22NZTTOGaYk2XKpRi3GdVewXhvGWiU53m+dtewsi/HqFHhaZuZT1iDvS7rmwkgdE1uD0gelKzi81cHmAMjzWnh5v/Hq8YnzIqZK6o/o9hpx31rKxHIf/CKEe9h72XeW8yKAJ6gqlxg0GIegnKPkC9AIbC5hBeSTH4Pry4W/+OFfcn448/j6FSkkNcvlrOVz8GFgYPD66VGX67bT9k5vhToaJmMzfQymRc10pRaFdTIodDWQ+KASuoLmwuj04OBUV/B19CGu9c5pObNMs3z7w0O5HZSJIRIn+flziNSuxVu+fQ8nroXbVonzxGmemFKmJw2U53n28H4xLAYcbXN997a5rgaPdVu5Xi9M88TycEL5AsqkmizDKERXUMWk4s9Wuy+LHfG7YgyHwfPLhfPDWc2CKcpTr01AGU7N2UkfrGOIfgkfjY2dkBJ9GF/84hc8ffSRzgegDDW7ESOtHRHeXgOI57FI/81kerbGaeLy/MJkkfygcPLhgEj0jJowFJBp4HUj8toGcPVLoPVGmjIv759pY/D46onoQ20t9b4kBP8OdOHKWlfaYVnAh2Gd5LfLC3GeiL8ceo0z1DG44q7fLYH3uvlgH8CgPljLxu164/T4IDBkHHfPsem4Aui4p/rQn3lYNo4/cwhM27ZNz2TynLGk7yvESC2H/N7uQJXyeMxtf3gIvv774aq03sUi2xAAFc2VfcGtnD5AAB4oKSat9Srb6uWCYZyfXpFcCXiEc6eUWfJEKdWl0I6tDFkbSt3prVKLAIjuKoDH169YJtVHj26uHPBnM6lJRwyr7u+jda53V2eNzpwT++VCmk46ArqyDUZous8cVGUMz0fQMhu9rSZ5JtBAionLuyvL6USIH5hFLQzhPpe4xsJVENGZXf05KQ1sKDPk+au3hLwwL5NmDYv3nA1GQNFt/s+3TkjBA2uVSaE2+K6lpGzUMjidk4JpkxGzkcytCWMoA6ZruK6tYmGijU5DKtTQAyHrs69Vz2AKGdBg20qjthszRmqzh+xKWTeuG23dqbdKuTRaGZThn2Ud5BywSXeLVS2/3TIQvO67E+Zj2NazlkKWrSdGrCVOnyxsX17Y24BFLXIhQTwHpjYRl4SFjJUN0kxIrxm1CBwlMvadujfKNvGTd5V/8oMXSsx89ibzmLK/QwoiDm41ZgR/viDkjed9591fPPNr38nMb75NSI8MHvj4d77DR3/6D/iT58jaFdRrwe/Mge7ma+VbryMPJwF81gMKWTbi5EG0YRCzUa0TNoMHCftTCFgyqf7qkUmiWNp7s2E4lsPupRKLmrRyoBbPSekCK9UGDIP44QwYeDuu1HLTrIyefQzSdBZ43AZzziyTBgYLkREaISpLcJkXBkFZZK5Gra0zTPmlKcOcIcXOaDuTSaVCHK6CdRTOAvSK9Q5xdjVdw1plCnrf5zTTG+xlA1ccH3EUyRdbAR9ozh5whKMEBKSbL/VhGJtb2AkfVCa1qQxHx193QAmOhuU2ZGmKMSjzLynncd835pRdtWP3Mhzl+kRGzNRSwYxG013sqh2ANEnhTRdAqebIRkKzXkCKLBuH69oXQ1eeJM/h22olxsnJl0lV6FEW/lOGQGPfTSoUV6OqjGTS5+fV4Snq/dckeACADhaZ+xX7Mcf4D3Is3P73GsFY8ox1Wbjz7KBUF2gx/PeNpqiEMHx3CyZSkEBB1upQpeTpvRO7kS36OTHuCtFMFBHSO4wuMswVrQwpyXQdBTXi4pkwQPXYESyocGlI1U4QHNFqvYcMmynovvmznqKIr4ZKkJLPC9WVeKO5LbC5UjOYzv8YdZ6jQPRRPbuyCyDtA3RAB3KSIrH3TrOosHszWt+JQB7Bbd/9vuvGMcjR9N63QcILdlwRc6hcehBAkj3vqHnrrZTOH7KGjmc6u0IuDDkSQky0Kjt1DBmSohm62w0jx3cicOe2N7YG9EDISQUefqcO7E7a6a52ACdFHh7OnB7OPD6+YvSqkHgq5CQVZIyywXsOkOBJKdzaqCLzowNGQsU4bFsKqHcHlLfVHRb9MQYhmUcDCAQ+cuaOXVjzLjCkMJc1EZRRO3kRmJ45879XCB/wNMzBZQv0qjNEdtbD3mZ3kEaKed2Z0TND1fo2HDyKqERBLpXoin8fg++/B+Bzv5SPIoX/WRJ2dBGIDIeSuluUfUoq7fjZ9F4Fk2CmD50jf/c//I///wso/b2//19/L2WIWfXd1iVnwzHIRqd22Qn2bWXdmiNnjirb8QAJWVb4mFc2WiLFzHRK5FMmzbPL9iVRNLRctiZU1Yax33b2mxjYx6cz56cH4jSRYyZaVuZAyLTeqFvF6KzbruA5jJiyqnnNHL3WYDr8QaJVuBb5gA0f1rWU0gfTNHE+n0g5kKIRRmWZA0+PC68fTqTYYRQez5mHZSaMQdk3fvSzn/Czn/6Y0+nMpx9/ysdvPiFN6c7i17orn2fKYjrqIJsx5XhfEjqDy+U9OekwaUUL1bZvbOuFvl548xB4czbGyy/I21f86seJf+VvfMK//Dvf5Nu//hG5bdxevmK93LhervSvXhh1o/XO++vG9dK4bfCyBS5b53nduW47zaQu2dvC8/VGaZExD4WjhUQ1Y9u7mLJuakdrQpCPS/Q3fv3bfPTqkXcvL1y7sa6RmCaYjJ4aoSXiiCzLQm/q7Fh3uBXjZe2UNbPves4asHZjs4mwqLWlVwENOQzSHFjb4LI11lLYW+NWpYhrLpWue+NyudFr4fWjmveWHORZdiQ7dpdmB+iWuTYoHUrpbJtLsDtA4OW6Qx988vHpXgmrBVjVqq0eJxkfFBcOAsQYBBi0Sm+Np6cn5vyh+WCYluvJgjKCJrWV7W2wD2VnWK/UurOXnXdfvuVHP/4hH3/6hjcfvSbFmXmeOM0LU0paqM3IMSqc2hfB0ip13dl7Z99Wtm0j0NgcRbcj8A+IWW1jU548g0XtOMOg7jsEuK6rFp99g2jKfSiN5XwWK5Mz+XRS2HrQEAkwTRPrvvpAqcN+21bBJ36J19KYljPL+cyyLExzltInO5sa1LCI2796la66d2WIaJmRna+1xsPDIzlNhEkS82SJWm6Qgi9dWcxS0SLdfajT16jD/LJewAbLsqhRsHn4oA8ZwS/v4GcLbnPTQ6EAwJBlG3j/8y+Iy6G4yhidyRJhiiTTwCqPt5odE10R5p4rZX0QQ2LfC+/ev+XVq0cMl3FHSZ7NjCknWtTyU0cR+4/YQ9kmBtU6/bpxOp34i+//BZ9/65uSv0/pAzssukiDUs5uTxLDH/xiHUF3RW+dOBQafz6dvLbYnDUP9/8MyhHrPhREv09KFciyFw1Q66ZA4cfHR53v4ECNhoAQAgwxSzEEoofYh+iqJN3RaiMczS0b+rNATBCe7xScUUvhQ+300cYXumwtR4MYTYzx8Jwzs8A0Rd0fyRnhwL0S+gCa73/yGBwta9ttI8ZImiZyFgMekD0njOSZV1FseNfix0DAW2++wCmwvQ+lU5xfvfL3+RjWdEbFKND6aI1TOGRwsFXs3BjDVYudfV0JSXlszdnhGLqreWU/EAl1DK8+qHlrSjAx5jllLi8XRogsp5nhAFRK0dk7p32cagxB/3v0IdWCVMfBIMTE5fZC78jmaU75Oqspu4LWtxiyrHsOrOncMTXCdKONjdEbL5ed0+lE4qhodgk9kVrEThJkKYmmzwCU3TcFzVCN7kN9J1pnmYyg3nEigbrLLj7liZAb3eyXrC4ClWs3ZYFkFYulMBi7KeODhCVXzzlwrSrnjJFIJwVy59jvqg4LAfmuOnkafPXDCyyFuHZGjMQwyK80uCrPMRNbgTAEdozuxvLOaFBo1FvjRz99x09/tvH0YLz+dDClmRi6g7d2zx5pzSiItFiWzI+/eGF5d+Obf/0Blm9pYY/f4Nf+ysL1f/8/+Ke3RBpgbbBkKX+Ldb66wFx3vvmNyOMp6R4m6F/+bHTUWBljYt1WYq+yqoxAJBM7lKCMJ8wopsywDgy36IwIk0UttF0LyTIttP6BWB3hAOyDilVskJJm1VTVqmYoLJgOwzIpycJxmhKP5wShM4aa21JMpOSLW3T13DBOp0zMWsymFIkMzHQ+jiCVr/mcoTMmsdfuFtGOd2y55Uhg6BHS00dnylKGlFIJTuwIUlMOE77ohKDGxtY0WwTzYpu7mlAZhNdV6t6cZA1S/IVpEQ5OSAypPvTt+aLnKqN0B5YDte5Sbvv9INBHYKDssFKshOCATh8cgdTmjbL0xkgOeK2bW2gEIgZXVvgNfQggNZcFpPbqUmjKStogJN2BKfCYRSSsuyrvCVlnPVDLTjTINshJM0GMJqu4ye4t0ERKiuH3z2iDXw4atmP57MqzbN0IcSKHQAqD85LYS2WMeM+ebK07KNRcfTGwDpurUg7QKaDzbNRGaU0WcFeICs/qEPT5OucAQbNRipO+gyBL06G6UEbWoWBG6EDVM1eLlEfRjJCMaUrgRODoTcBYjLIqx+DuE50jvTZXfgfZoE1EYk6R3VV4Bxh6rOiOX4m0asp8Ouby7s/LAKyrOXavq/7JoVs/BJ/putGbQvfXJhJGGgo9j3WIYDiIMDsepvFLyrqgHNQGTuAqxymNgZnb3uu4N+lNyUFwU7BzCkFqyxCZciJE2OrOuu8e/KysVkv6/EOIUnfhAgZXotWuZyLGzNYqt30lp0QpO9u6Qgjszc+9rl0qDAeRY/IIHG+m64cDQ2fJ6N1BlO6AaZeFb2hmmLPal0fod2W46Qu6K+W8tJEj2zHnCfC97l5z1p0c+4BBmEY4nc8O2AVcgWowhhOaw0gxKEcJV9i7qCoeswyuEMIcoUJ36AGI/RLYexBhTtfqjMBN2cN/tnGU2bjCMniBgc+lhwUYx1JsyEsl0NDzGi2Adf7u3/n6AKWvPUOJqJfwkBAqJKn6BWD00tQE0DaGdVI400NnWFcrl4ePtWM5cRvDnLIWpfOMJYVsYZFqatiII1FGYwpZoYVbUQ6TBR4/fmROk744Uy9PN/Pw1EGrG+12kac1Ds42YVOiq0CSYwk0b7MhOHO+Qb0Veq+ESZdODh8Wt3ha5A29XehAnjPLKXHOQXLmsRIqLFMi0rhdX6il8fbdC92Mj958wuunJ149nKhtp7bGId2f58lBDrFuKi4YQAXrrKuaYcKkF7s1CKWxrhu1rYx64SEPprbT3r7nr36y8Ju/8eu8fhV4/WC8/+kv+NH/+XNJe3tncnZ4K5WXFWqGWzV2ixQSl9J5WVe2Xtj2nXVTePFq7xh7p46J/ctIyBB7YWOFlqldQYDJw6zrXng6zXzjG29Y187L7cbWMl9dK+enTzAbDFZizDwuM9t6Yy2qtC0N1tLY9sA2GmN7TwiS05bSGdMj1TK0QQ7GOcESjZBhve5sTUMNIUr62yRv3gliUctGiJGHxzNTMs7zTK0Ni6baewucs5aFW9tZ98JejVo6valVL2Yh/O/f3WT/OkeGZ4GlmBU8WAZ1HKBoFxAZZYmQ/WFQWqGuCticHh5UzzkkNddE420FwxgWJQtunVYat1vhul4ABX3v28a6rXz+K9/i9dNrXdzq7xXgUPzijYF13xmmIaVsG+By5trY9hUzY207wxJzEBCVoqp4Y5D8N+WsAaU2sgUu+43YJTOtQDC9+8u8sK0by+NZP1OSFUG2reLWF2/lKDv7dpPKhXi38TRviBttEKeJeZmI3voYu8Khzc+C2juLNzHsTUN59CzqJc50G+zroD1XHs5StqiBcJDzRKlFmWlJ9rfeHPAbuxbd8WH5H6NSy85eCqdlcUuXhsfuuQClN6Y8UVvTkO+ZUL01cPDHgkE3Xp6fGQQ+ev1GwY7TRC03BVqGRIiB2BQkboiBLZ7PEjzotBqUurG+XDjPs194nWmeNVS7UkQh4uaDTL+HdupnUwvI2AukyE9+/jMt1KcZdmVGVAcBNTTq8qy1kTwEuDa132HGqI3gIMG2b6oxdqVXylJTmIP7Cs12Zs7ctuYgoIY4WVH3LvtBnvI9QPPYAgQHfWC+kv+evQ8I+vyOX+bsU2lVg4mDdT3EQ7ClOtx70LfUK30I2E9pUhNnVzbHMM/D4AMDhQ0sJy1gptphQmCUXaBk/HDXHlW7gPKZTJaQKUYyhtV2l1xXkyR7L/pzp6ilJprRo1FKg5GVs9A7eVIDUW9agPSz9buiq/TBqJ3elYpp5sxphz4axQNG9Vkn9t7INEKYlXESZGERS6ymSXOg72g2og+v7fa6bl8a42SsZeexn0nxWEJ8ifQGL6mjNWRK+KwhPQ63QDDRKHz08Ru+/MmXei9Qy50+S7VXHpbA1jcUnK8lwMyH9aFnBzNsypgpQ3J+UE+s9YHlTswGU3CG0khh0MpOSmJ6lSenzzo0E0CTjBgzp9cTOSQm8xrnrfO4TIQZCJnUBsEybUROU7szyq0rEDSHzukMt8sVSiaUBNOZtEAInUChsmDW2fZB3CtTGrQuO0mKqn633mljZ/p45qOPT/z05R3TQyRsg/XLxnJaiT3KYj0vChLu3FuBegrY+TXTGHxed/76b37Gj7+48T/+4V/wx//3hc9eLcy/shNOCykPyI3YB6kE9tiZxyCMxCU0Hj/P/MH/+zM+/4M/5K/+69+hP/w2gUb7zr/Fv/vv/IAf/f0/4o/eVVqPjC5LdO07a478w+9XPn668K/+3mseHpVhGcaGJGeZ04hc+gVLg/mcWN8qJ8jypCVS7kOSDerw3LIUZKtorqIYRssQayDlQe0BRiWeoF0zjBOt+dkXkBXZDFV3zNhJz9VISdbacGasm9Q6DLoFRlhIMbJdr/RQmNJJS4gpL7P1QcHYSmOaI9YqrfhiTqAPhd2ToO1VwEOtrrgPWJQybgzNBb3irXYKgcYbluoYKuogUWpn34srYRXoXPYK0W0uDlrRjBF079dRtRDT6WZMy8y+bYzbyjxHvcddyq42BBbPWda7WquW4e5gUfiQX5qiEcPEut501wTZcfDFdcRGCEmqlRCZ4kLMCvjuo3sYeiFOmTPKNElj0Eul1gKhkqf5vjgaylTBPAsGKcdtMkpr9LE7eJ7vSoe1VGIyYobYgp+fgTjNUhlX7RupdeY8a6bIAvXzNFH24qRYZ5RGj4E61NTGEKtntogAACAASURBVAgkZeQQMVgDI1TffTKVgI1ETov2nq7vt7RG6YU0DAtSW9ehpdjcDqj9WAqi7v+d2ipVLpBDZO+N0QZzDmSLavS2IzRcJ/FeGgvKFa3jw8yiR1PPoEWppGPTjDnCoAdjSROXWl2hAooV6yLqerwrtpTFJJVPHfr5LEvVtLcqJRRa6vfRySYwrEfc4hUZ48N80VuldrdWImC37CtmXXmBJkCytKLnI5oL/hzIGm7P6h6sH5Faqat0px+2rS5oUL9H8Jbyrvymw16OYc2w1lXEM6AcCjHfh251UN0yGDAHQhVj0A+VtIfwD1lKlA2YJvZd5VAh6rk+zvVSlJ/ae6NtX0qR2bryoEKitaJ3zeMzfFK/N7gOE7PTmoQY2Yz1dtO7D6Qs4rBsxecjIGdCMtKQemk44JeW7MpoV7dLLuoEXCVmc9BYEPRAWED0DGIRT/GAh3zeAOwghrkrAo8WZ7rA8GD6/iyEuxqyODA7QlDRUw53AQVVGV66J1yBN0xK83EorfX8jyOzLx7qKqmcOkNCb/85JXYJjIhn3g0HAgXujtbuTrGv89fXDiiFqL9IConenK0GgRp7VWWqh2J2i1Tzpbcr4Ky2lZTwtpxEsInllJkntzO41zB6sF4YshnRjdwUnH286K9fP7HESIudMgpjSJrcrdDbzqidQabsDYLJ3hObWEQ/RAJQmtaMOlQBXmuhlp2xd6YpY/MDREevXUrfmw6U7WXl6fGB8/nE48OsbJ3YSQGMTo6JlAKX68r1euNyuRDTwutXb3h8fMU0GdfbCzlPmNetty7GHoyco9sDxO6ut1XDTlWY8YJxu+2M1rUMlQvcLjzNjdfDeLMEfvO7v8rnH2eWU6ftN37+/V9webny/t0z2aM39tLppXOeZ0iBfWs8XwulGddVqf4D+fnLpou+NqOUTpwe2WujjJ2pn9lGYe9GLY3YJX3fSgfb+fa33/DmzSvCCGx15ydvCy1E0mmhjJ2AKnbnnFlbpaFg11stbHtirYFL7WytcAo7OQa2i7ek3ApbnLEIMZ24RdgGnPOkCmtnPUtreoa6monq0JK85AkiRK9ivV4H0BhNqo4cO+/fNdZiXnmvxbh2Bc2PMYg58Xy58XA+0/qN52ewIEl/HJLsNlNQNLUQo7E36HWVTL+KEepVKoSUM9vtdreiDcad0TJndXY/VEPvpBTYaqX1TrLIR0+v+apWvvmdbzPl/M/YhPSODWf9kBfdLTWhaDGuwNpWrBpTSNzWlRAX5VrFIQY0OqCRMylGec6Hlu21bEwhcW2bgI7Rqb2wnFRHPJ9PYipDIKWsEG9XZbQiMCmGyMv1Gdz/POfMjt5p9h0zo1Kk0jKDUT0cN2Bd10mMds8iqK4m6b2xr0WWK2cV18tVqsXzogwf02Ase08gZr9ofLlWo5vUWgzjSKJqrVG2jYdlubevBc+xIcje0hlcbzc1rYR4BzpEu+jCCRg02F6eefXmYzUN5pktDOZwwoYx50nPzFhJKWjIbUjyGo4cHQ16t3WjtMarxxMWg4InQxRIjs7r7HeQFKfKx7AQCNn8Auxs20Yk8O7tV3zrm9+ibwVSoBdlIald0O6S7hhkGWi96qMSqiKKqEuZZaOTnh5UsRoUgB4dSDqQoD486NKzM7T0e7MnIi6G19jm5eQ/h/8spmf8qLk3Aj2q0SaZQhKHeZhhHQLbx5EfMtyCKWtHSPGuGrKklklhIrLjjRDZtu2eJ9HHkXXiwaZD71y06NXBRkkC3URB6dyvAw/KFfA5EBBjQfvwsEqnSC1nh+xZaoHu1rloH4YK/XyuImjDGcXBEia2plDu06LcjBD03TXP5RKB6t5+peK6dceYpgnRdnpfz9OZ0QqqUj5sQYned2wcXHqXDcnpvtEVsI8rlQ5LwOuPnvjZFxcYyRn1IwtLA1Mf/nnRGb1owUluw/cgdRvK6VkWt8fUQXb3vABgV0sNo9emPItodCI5qJU2AiM0aikqILHIw7nStp22KGOqtU4okXQQU57tUtmZlol6uykfLpo3jSr8tlFJU2RfK9vesPmwdxrpIdGSLHSpZaBIiTYv2Dx4OEXO1hjDrVxUwlwgFraXTUP5fGVsE5x8we8rMc7U7Uq9TdjcMTZaQnmFZmCZhEEvvPmtj3j/Dwr73OHUsGrsz4XlqUKTAjkEsB4hPXywTlkhTQ+cniqff6Pz27/2TX7wl1/wpz+48Q//7JlpPvOdj3eYlU0Wrd4z33TmNB5rYJon2kfw+//99/n0G7/P07/0wJh/g1g3wu/9B/ztv/wxb/+HH/PnXxU1tPpS3Au8Sw/8/j+qvH5a+e3fMR7mBCRGMAaRMMM0BFiwDPjozPqsTM0UZ6o15hEYXYC/2DtjpEBdBd6M1rSYTYGxV53RZcXoLIux1Z3m7W+tK7srjEBvM2FUGkX5I7V6Q5CWsfW6U1Y10ratMmqlt8ptLZSpEG0mT4ZZ4xj3S5V6KsXo7xFYi+ShIP1uUAxGr06oVBLTXV1kZh4OLMC4tkBgMCWjj0YYYs1HGCKlaqN1z4jCA8tzplbNJVPMDsq6YjYI6O0mLZTZ4DQn6r6zFwhRGWUMBZkrcsJJr+G5QfEDKB9MyH7zQPBlWjAb7H0/pAdqgXJbYQrT3Z5+ABODAMHt6nnBWidNMALcDgVPKWxmmOeZBl/Wj2V50BlxUk5W1Yy8t4HVRpiP5dQjDKpCi1VgooZOqb0GrRWRlH0jWCL2fi+KMCceDGPEKNAh6DsXGX4Xa1KHYgZCr4xulNZVFkO72zfDMEaIRCevay2KIMmJIRYbq02CgJSwCqOrIl1N2p0QdXb33pnSpJm4NsaoWFCJ0v3XgPN0poXObaglNR9ranLVLx2zjpVC8MxBI3DrxnXrlC6lVp6lpo+e8dO6K9FaJY5BdbAvDj0jpem+7TSmkNhQ9MYcdOd2a5o38NBzk6pbX5zegTGMbfj5G0Rk9a6Si+QKxBaVHzx6J85SS1YHFEMSAARqGK3IOhvdOp5yYrSDLENAqM8u0bPWZH80d8lUNouc58zjlKQtjEYbC5ddbXbmqtuu+iAp5oJAuD5kxR0Dn2Gk9k9B4EY9FFluleuuoK+9u1sHN6fLvknrWA2EMNi7NxzmeFcPH0UAvQ1yTrI7m2aA7qpPUK6mwKLueIBaZw08L7i5UgemKTMG7Jvy/yDclW0WTLl5JuKwdpGsMQYn5cOdvAoYLYhcPJRzwnTGXa2ln0MzQ3DAtXZXd0Yp0wYDdlkn4/D5r7W78gxTKLlELxGLnpNqmkNCiNS6K0vTZzbiQDFfvkMMEY2KEug61yy6aqnLHsjO0aD7df36+hVKjuSOIOZ4rzuleMicfQiPOqqhwzjkXE3hsc4uhjyTl5k5qwZ0uIxNKR3yzzYPruutEXYNm2GZWM4zecr/H2vv9mPbtp13/Vq/jDHnrKq11t77nL2Pz7ES20lkOQkgEEbCCgJMIiESgXjgCcS/xTMPPPFCBAgkUGLicIkTLhaXmDh2Ejnx5Vz2Za1VNecY/dJ4+NqYtXnfyzrSlryqVtUcffTW2te+ixr/4Bv7nLTZcDN62zVozpDiRTz7kkS/bzhmk0mJBIQd66K3bxEbnnNivaxYrTHYWBTnEfHPk8fzwvq08tmnb8hogZN8wBzYTCzLivvgZz/7iuePV8pS+PyLH/BweRQV2jvbFpG/pm/wSgMkZEOSpIyhRiLXpGJvk9v7F/bwrhrbjX175s15cnkcfPGY+DM/eMP5KXE57fTnn/LTH3+k77ukL9HA/+TLjX3ruHlEyr7Qe4Kc2EdnG3DbxS7ZutE63LozvDMpMGCtGyXBnIWv/Jm273QKjcFDNfLMfP/dI7/082841cr1NvjyefCzDw2rJ2pZmG70rePWOS2VfZcZZmNlkNkabM25jsGtTTwVrhRediddTlIuNMm/tHFp7JvzuCx8GDs9Gos2ZlzuE++iZJacOV9WedoUUQulhzXGMHpTX/Iyj7BOXcqWdDHmlMRImZKyXR6fSNnINcfPY0BmqSu5aOCyQMp99khEmLy8XEnF6LdNzVPJdIeaEj20v2QxScY8qMn6iRIayvsIyq2JXfGyXXn3/c/IER+pizSL2TXBipD/OQ5gZTL7lO6/VGx06lAcqE95yKQoANWCfpqB2Fi11oO+KqQ/mUw6a6603ijTWc6P2iLWwlIyJVcNWOEb5Lg2TjlhJbNPo6yPZB+Kt59OZsebEg2utxvrWU2khko1VfeJzSwYIElbFhcYOxDw4H3wfL0yx6CuC5enN2QrSCzgkjcOJXetSQEC+xSbIwUbR2yLoQSVCfu2U61Qy0ou8cyicI3W735FJA0YB482uQwc+7EdscSHn33J6XKGpGbz2nfdRTnjXmhti4ZK9TSHOaQaD21OkhvbGPQu0+ZMgjGjUeJefAuvWvBDfptMsaUA5oO97QyD64ePLKeV9eEcDTQkK6++T0HbNuwuizhqyAhfLKYSRPAOSOolGrsGPoE8arpSNDUCaEy1aCqRRWkxGUYmj0GfzuP5rM8XxbnfKckBHEhWNUlJu9M5JWsZLrZNx1+NL3NimuJjrer9TSTa7NRoSEkC8sSf1ybKTZv+GTJUpuRwM3wUiikZzQjQ8WDtgAZcxACSL1BhHuq9OVlylhTcXs3BZTKaYXZqJIlls3vK3Qya/IglvzbzCQWpFHIqYlUlY7HyCra4fqpsKUBoGVWKHR7vqgkoxTpJRhrknOnNGW1QbETDHGax7kErPyTmr1vDNJ3hMipd7UQZ77ntG0tJ5JLurDYBgyMYH4i1YFPnwyNC2I9NXaHkB6wa2/OVy7qE5EGfRThN6ah7wqY2pjudKuRYd1o5xSZx55zOfHj/QuuT8xoee1Ng594Mr420LuRS6dPpS2a45AjcU+s08BYrbH3nZ3/4kfV0okRdNUusi5GH8fSmcV5X1ZbU8X3SbrtY1EmN580b85tJtY25Gx+uK3kFz07qJ3zRfTPnLoCtTbwmnK4jHBtVy2j0HIOlFj79xYU//kc3yjLptdHd6H2jtFX2B9zwvOsdqw8wNvAFq4l8eeDhYeOHP3fhV/7ij/jxV/+Ef/CP3/PF45m1PPLJ285lrgzPDDtiuyd5Jno2GIO3586fXAf/w1//bf7KZ0+cfuEdVj/D+omf+2v/Mf/+T/8T/tP/9T1//LLr3kk67711/tCNv/HbG+fHxC/9mcQpJ4YNsneclbwslHlTz7gYfWn0jw17lJFrrs7KFDsRxwNwzkXDoy0J6zJQ9sWZZWfNC+3WyHknZbFAOk6ZRp9KYJxpoTNhVC7JuCX58Ix5A5yygG2dwqSwQe7MJZGmGAE1Z2iFezrplDmz5cJglVwtGcyQCeltpS4r7RZed9XxsVMMMatSLK7MApCODj5SlbStIFh+YmP0fWdmyRt1J9RXr7Epr5oxB4Pw9ollfRBDVeuSGMm3vUt+SQTRdA1+hzxN+Ph8VTAHIw5TIptqQiJTaPuOjPcXRm8yUZ4bc05S0ngkVqMFy1RL0DlhboOCcSqF5lpctd7CsDzYKpbintc7lXCwSS4GvbKUyUC+f+7t2J1gnjEiScsEah3LhDmSFrTDqYW7b+u4M3/FIPUsSWiyrPuku5ZpIaEZo+FDvYoNA7YAL6vA6iGzdkfPoOSKWYnzN2GXpNrqIuuCYM8IoHDyIYc7/M5yFnEMI6Neq7dOb5NlWfB+w3JiNKPkhYxAkeHxrFMAtj6ZJtuF83mJNDjDtoanAj4oSUvXJcsbNzn0tslvxp1hkuKVFGzJAbtPjE7Nlb13LRNyvddYO1glbpI9hTcNwYTO0Uc6EQzhmRIySIoCiI7ljYeeqkafMtPEh2qDI8PxHqya6YIlK1qqDcQIrikdx4MFpRK7W5wlARbdoWZBhB2xseXpqFTBYWGZMubd1Fs+i4lcDJuJ2aXUMXcuGbrveE4Uk9KHFEy8OUhTzzdQFS27pnxVx1DYC54CpE7h33h4bIVZv8OwiQ2YyQWqjASIaWfGPeBkxPK/NXkJWxJQXlIR+IkHwzgKuAnok6WA7ieP/npaAJW8hpvofTIsyTuUgQDFZJQCY2uvVgEQOAfqLSzfWfdY5oDD5pwk6YVDttgjNMijT0lhXVL1d/G7ZPlI/iOV+4I5mcGQfO0A0HXHqhcT1BmywaxFSvLDnqLyXf75zgGlFsPrrXWsdbbZdTnmFFtMDZva1r4qeytJfiQ1K3WtZMlu0JbIHW2HCdr9UCPQh4wHa07USyWvi4pKIIFy1vegBWsYtoh1nsVkWuySbcyhiysN0c7H7CETeqF3Yx/Okgt1zZRlRaNWJseAJErpYF0yp/XM28cT55owGmtVE0/vgUB2vvzyI7dtp9SFz773OXVdKAbbtosyF3pKDy+I49MogSrut40WOtsE2HRu12dt30mc08T7C71fWVPn84fOu0vnl7545EefFVb/SPcX9q+fSfNG7ZOcjLxkXp6HPrcJbVT2/UYniZJdMvs+aH3SWufWje4wqHSgG+xeaMNpeye1LW6qoPomGG3C7JyenvjRD9/yyduVD3vjq+fG18+VvRXS+UFR1N2ZU5Hn58cT7i7QyjS09H2y98E3zdmtkJdCIeKbLcVgI5lBzcZj1plrNui7WBezyzTzoLD2Mam1cqpFg1eJxmDCnJI3Tpx6Wmlh1p1cngTTjTYiLLd3ttsAKyzVqWv4UpRKqRrm5jTW5UxdMpg+4xFeEYrZnWzXK33vet7RrJAUJ59WMW2E6Bex5+ZR2tDFTopCo0vtAHYfnx5JRcP8siyUuoglNffQxMsUdPi8G4ALjIro0DGwEQbNS6KmMwTYk8KcJJvOb58amA3CEDwrOaHLk2i0Tq2F63ZlqRWrBbngSoaYjsSM2XXBJhlRJ8QeHGOwTsVy9tFkgHm9kmuW3hg1ERpuD2rr8bk4I+kT2/cdy0nS3NbYbhu3NqinyuXxkcUWXdZxlzEHORXqUvF0NFCT2RtWpXGvOLOLej96p/vgFOl5lpQCdk+TykbxcvdwGYI1QgJBbClEhb6+XLk5nFNh7APPk8qRPjM1MPjExyaAZKhw+RBNew4BkX0MrrcXxRjXSAD02CbHAoDQoOMzgP1XE2RFq4pCLqAfPrx/z6dffC7NPGi4NxVBi20yLuNyLIoxGiImqLka8vrY9sH5Ik+ntNSguZsMmqcARie8CsK3KIz5tOnJzk4DCh+uV8xkou9zhlTOj0knPNw8Fh8hMRszTJNDNx8m2AdLpuQSz1JDRDEV8BR0bomVuZ+5Q/oo8HqQE+EdElG1+RUcS4eRrXP/nnb8bDhlyeSa2T/IM2xGhZ3he5ZIMBN5qfg40noSnQC7QYwPD6p0bPyO2Ine/E7dXk+rfJISeA+/r3kk7oCngxVQcDo+e7xfx7nr7BOGjzsIJdcPbexLLuogZmgGIRpROHwBQgxGcmPvO7lWnMFoGzOtpEi5iqtPcH3WoD9iE3jcobEg1J0wIZM5nR/ZXj4w3j1oOFQXKRsQ1/cVzVx/EpFm5T2kcQQDB5h6TtvWOK9VIO6U5LCPqc96bdDDaDSvtH3j8PlwpsyMu7aZ65r58PLC/qKU2rUszLHTu3GqiZctC2QIjw9cd831urHddpo35pCU5VThcoaPH7/h9PQOb5maO6k4KyuTIQPdklTUl6o+Z6awRDHIJ6BiW+Px+29487MXvv7p5PHTxO1jZzntZJ7x1MFXMdv8+W6S6jhmhbSeOX964XsvjV9++R4f/7zzt/+33+G3f+8bHh4TVp8olx3LYoR1Jm757rdYs2rBp59mfu9P3vP5f/W/86v/0Q9Jn/4aXpyU/jR/4d/9D/i3v/zP+C9+d/DN7swqOd4t2NX/8Lnym7914/KY+eHPFQ1sPhHjq1HXqn6wwnpa6fsz46VgJ9WTkhOrzwBntFjFJTcZTQa5KWuJ1WObfJtw3RvZCgUtO8cmtk2bg7wYMMl20nIwDeqxAZ+TSzX2tVBqYq2VvjdKnqTVeGnGoEFWMlBJK6eM6lySn6cfsrOsd1L760kfSfV3OG2flKz7HyB5ja23Nt7JjkVwJVATRgqWRO96HyvMsXG9dUo+Ua3fpbp3E/4UoRBD/bqZSdYc/j2EKW+NPp50eLTps7QS98kMUivHXGvBiImkTWDfJ3VdWE4n6GKlK8jEiVQgWWZEwqzbwMPc+phgatKSIWcxkXrv6k2Y9KF+KZXKtE5OskQg+g535IXlAVwEpXTMQR5K3tQFc1QOdEFPFCBUnDLlx5mC+eFxn/iiobPMox4Wpk2xTrxQigDGaZNcEy+3K9lW1T/AhwJUSrCG53jtiVWPxFaeSUnStJ1UKqPHPU2OAn5YSMjTx12egcR/E+9XssR2u1FTyNJLZngLIF0DNncWdQQ7Zb37DVOi7whfuNGDQaO+Xr59WhKnXFBu27f8pOIO94Kk8HPS203LJwsJ3xBbP03NsDhYCnaci4mev0X0OJjJ0wfXSEM7khMzNYCqAI4CaEhDcvWZ7ist1aqsHqx1kSHMA0QyybLyERzjAcD44ckT9hi9S462T7oMnCQlnQJ6M2IbRtxB+O+LFTj78RIdCazEQlhgvCxY7L5Ycew1eAT9/TEVBlFLDauGIabfDH+iYK6leJfvPeUMo2oETPsQm60N1bV6FHYz2Rag312+uJ2c9NkZSXYEJgB5zBHAW7AP7TUgIEXPq975AGZiEeUIBEoZsxlLVIXOeDStxyJMd4Tu/76LBWQ5666IXpIkJvd0zUqzjyDjHz5b6U5SkSpY8rgJAaiqhz6uBlx3kWW7LxpJx9eEQfkUGG0lrCaC0fVd/vnOAaXt2pmtC4FlktISEoYeBSkRgXwqGJZlHrhUljXfYxEThRFbxnkcHhdAdNs73iMOtGbqeaHkgplkcEK1jwtZIAZz6LDFJl2sAIsHBO6DHlIMsxTD+6TtGz4TJSXWFS6XkwoOMVio56YkWEvidLpwWSqnNVGTs7LFweyKNN8719vO9bqRcuHx4Q2n85lShR5P5j2ZawxtNdtoZJP/gptJsz2afC4C5BhtMFoTc8Mn7hs2rlj/hk+r8clT4kefrHz22crb3DjZV+zXjWSdyzpJE1o2sY22TvbE4+OZujyy74nr3nl/7Vy3hienYGx9skznhPG8Dz5ch5LucHweCRlivMxsVDdm1nZnKZlPHx/44efvyDXzx+93tuaMrTItc1mUgrEUw6jgnfUkv40ZuOtshZdmPI/OhzYxKyypUJKxZhWyMhUVu5thefLmkkkBIt1u4SfSBnMKhT9ShR4eVpaalXyVAsBBZ2O4muliioA/9NQWGvIZ/kftdvgHFJblJIPcIg8hsyzz4awbocRQ3UePZAoBJL01RtsZe6M1+eikJWLHTUadbjIjrHVh9nE/47rU/L45kgwk6J2WqQ8XdpxlTDFPTEbfh6pqeqRMEd4fDimJVdXGYNs3ehe6/nh5gjjDofjlKNcFsQjH1P/SUDFq48qtNY3AU0mKrTvldI50SEKTLHZSMhWWo7HA26unjWXafhN44LCPxt47S86c1hM5TJ8Pz6Qcn/ve9rt3TOud2dRUtyZpzHa9cdt2rC5cHh6wUmgmbb0j0CNHupRZoreN/dbwmcI8sOtdngLR+9R7WhaBimqmLZJhkmKm7dVMeprA9ukCgQ6miQ5LZ/v4zLKeAjzJ8qNMcY8Ga8LQOQW7b4L0r2kbbUyd/wBR7+aXCPTp8XwkD9A9bMa9EdBddXx/nb3ry5XT+cxyOmnrUooAkWOplyMZhBSUam1iDtbaYbp6NH9GJtVDsggk/fw+Ucx6nE/VAT2bdLwEkWqXRDGifbxST6veH0t3iYAJcRQIFBrzFFvH7l33gInNlY40udHZZqTs3WG2I+4+2Gvm92VKPu54D9NN1MgMHwcJ7f9nuFiC1mzJxMSK30zm1UEP31sk7cXXctwfTlklWUy5ME1A1Ta7nr4eYpSwoMub6OiOkzyALARg7vvOtt84lxOGtmhi/nadKdfW9A5qeTS4xxYwgEdJNTV06BOTPG5Mw1IJRoDfmQYeA5eH9Ngt/IoQcOJJQ2xvO0steCrMeUTxejSrSlMp4QXYA0glqQnOSWdmdDifzlw/fIxmPNicIWFM6LmWCnhioBEl5SGgBZi0O9Na5pcygW9jjXcrPBDQ4mDuTqlK1sqRLGQ+wSo+m8xBkbx0OS2cH1Y+ftjZdwFGS+yqWJw2JW0/jHqxwpJhX0702+Ta5CeXzOn7pJ4zaet8/c3gi88brRceJngdFJzRTYubUViqAIRxmN06JC94sISyXfjkz37Ch9/6GdtzeAB92fBWuLwzOBn5YngeMK5ieaWMs5FwyrLy9K7w8z9/Yh/v+OOffc7v/N7P+L//0cp6WVjLytNp6oyVRORyM8mkNCl5cJrOu09P/J3f/SPe/Xd/m1/+9z7BLv8CyQrL5/8cf+nf+Tf48X/+3/Mb/3TnQyRHLoccqhZ++0vj/Fvf8Fd+7YHPPjurdkW2++yDkhf63Mm1UM8r24eus7VGEhiJmRIziTEyLOM50fad2RIpD+oC1SsjT2zJVFZau+n4ZIE9c6KlaAMrYuf0PAVij4MdKmcMrEl6ZDKGHe4CnmphbC1kHQs+dyU8oWCJmQozhfluGIEPh0kYqQ8jlZU8jNZ2ctFGv/l+T/E0k4eOfg793JhJ5uSdJcmAPM2VgbPddva+SzaSM0aDnCUJSSH3Kcfq1O4myL2r18UtUs6UZNi6CsoBSr0OxQESm4BsecwN8oh7I7zvwEi2UKpY5wyZmuf7dJk4osMsCzS0KW89XAnAOcEprYxstN0lrRpBxfIuvxyUjDaZZNSHzLAXwAOYcMM9cxub+gRM5v8INE0pM9GCJIecyaaY78xJ752c9MzJRxIsEGm4yXRPJyTrr2UhJad0ye1Hn2STDMmQHDFbuS9nUlYfMWIZglkwaKHvjVzkKVaLAh9IiRzGbKFSLgAAIABJREFUwMdQfrBEO/M+1PpBs3HwqUU2WXceE1JZwn5C6gylfR4POgm8w5kps+07S1aasXyNNG1iBwv96IP1c8Tahj50T5MziqHWmqO4WD9WY4nifIsF5K+AQ5IcyueU1Ak/1JT6fOaQPypD5/z4nP2QTaGF4vF5BVA2iVo15XGZUpwfEHMo6ola+2BMJ3FvuksK2UIupQRYJOV18DYgFqB3CVcqYakSvj7B5oLDBkOycqWcvQJqR2qg/CFVe6vnY+Tn8NpMIc30bK9LRQL4Qx5mY45Y6E1yMK1mgGjl/jW6I/BIebQ7wgQuGf7kCN4QaN361AxxBzv1M4jgIf+ue39qAa4eC/Cj7wWqhTLBjpQ3op4LCBar2e8L0/ti0bW4MDNMOtT7PC+Z37jPa9Fwq80/1AixSByBGHmRhH2OiXXiXRJzW++93TEXyzr/Ypvr32UalrTE/a7+fPcMpR5IbKCUxIejNCcT9Tao+yVl8mkRmJQzyTLdwljU5fJ/pOHMGTrl4eQpb5a6viYgOHHh8S26Xx93ppIGqoTlHJsQwvhTX61+eDB7gxEskR4JUudFg21VVLNe16mNMp2atR18vKyc18xSRbMvBsk1xHx8vnHdBnPvYJnLw1senp5Ea55dP8/BKBgux/gxud5eOC31vl3BsyKBmeQl4dO4vuz0vWMMqWDHDbOPrPOZH3zq/OiTB374xZnVBnm5YR/f056/1hapFsUWjyieKUGepGFYz5IO5owtzvIIz9cbt9Z5vg6ySx9tGKeUqcuktcLz88azA8m4LGeSG903xj4Z28LDk/HZwyPnhzO3CftH2GehT6V61WzMrFjjWpRuU3NleMM90b3yshnXPnjZBt2VUlGSmCDVDZuD3aEHWyHb5N1DZQynJWffZX7XwtyxCwPiVDNL+DWkqUvnSAngoBCaqctzR6aZkdzkB6XReX6+sTfpgGX+G6kV9+QKlAZoKS6PSe/6eosVW993euvse6P3QSqZWg7eABDgaV407OyjfQv9Pt6DKP6xWXMz8lJZzpdocPx+OWJC9xPa/iiJxO5JCLUIsO298fHlmb13TnXh6eEhJFFKSTukQ/ciZSrCmuu1LRpDAOscN4HKy8JwZymVUhdSrZG6ERvQFO9xD2+WMUTJ7h0rBXMlXEzX9uXldmOplbRUFRS0pUxpBqCmwiiSREQSx7ZkIrnC7XZlb9pSPj6eWdYVN/nDlSTK7JiwnFa2rcPs7K3p/ktqaJ0SAKQYGFsTbXfNy91M8mChuMtTjfi9x1ByBaOrKTc9P0N36ccPHyEnLueFtGQ8pWg1siixvb/i3iGbZAr2cKC7CtgIYGlZVmqt+DE8xz0p8KMp4cZdm6MAne7D+bEVCUDo+uEjn3zxOWUmJeKEB8CxMRbbNKKkTb9PcoE0eQRokuTxgEOtC26mJiVZLEDtvlVNATBE7xjjiN8BHh9d7MgxmS8vnH/ucwxnJoGDHA1vwHVHxEcKE/Hj900maZvAGwsvO0kPxarRZpoSe0ZHTaeLQehhaE6AFNEJyvh16n3NAYAoEe74TYivs/D10M9nrn8bRK3v0XQrqW2ynE6s64lSyl2i51nSm5RzJN2o/s0A3EYfUeOSBgqU4DbHoG87nUTJizZgh6n9cS/qdYr36nhGxwbT75+hpUIfmxh9B2A6B3Sl5h0An37N47wZEW5HsqSEI5M847SskRqq36PEGdbdHIMLBxgbCVYBlEkGFAEcc8gMdji3bWddKpYqlsQYVKK1Pq8R9PglGr004mx7CqxKvg613Hi+brxsDU5KmEqurWEfxtyNYU63RsmOWeW2D2rSBrlPVxz9BEvOm8cL7SZvSqcprIGFdlMCVq+ZWRvUVe1XcVZPPD6ulL2EHEuM3eLO+ji5vf/I7ekN5TJoLZEK2FT8/AxgbN8Mo0CxO2BqUw17sYXeJg9Pb/jen9r5o3/0nnxyvHdsXJkpcxkb68gsjzdBjrYo0dDF5E3Ia+vNQ+d77x74c7/wA3785TN/9JOv+Z0/qLxdtXy8lEQtzhwFI4aYYGAovMG4flL4W3/7H/P287/Bz/3rn+Lll0i58vjLv86/9W9+xU/+6/+Zv/vTyd5hWRLZMm3rjFr5O/9k8mbZ+Vd+NfPJKUleNiZzNGpZyFaYebIsmXGa9H3TNjwX1ZrszOykUfEyqdPpZWGb8kh8GBXm0P2WIdWCz5Xewy9vWTBPjGn0kENJNhrmwpbvnnrVJ4moaUkpRW7Gbk4dQybYfTJdPmrd2yvTzxOtyYT3YN2kuDGTO2T1EZfzmb1l2t5k/1AKZpLNGVpoHouxFIxVSUeyWDA5PGfGZCmVNpzeG0s6aszUz2ix5LCM5ZAJH929KRUrJ5M8uBRSFau1tcYaVgRHaImlANdCXppCBquh1zGTFLHWld4F3FiEB/S+08euvzNmgGRFvblJHq1LP2muHZB9coQVPN9uOIitNI00Q2GR9a64KT79CBsYBJCF413AcprBIgmPO0nnMmGUcvfcU40zpZbOqRBNXFKb6Dlz+DM6JS7moXSvUsKLRZLwaWIZaymj4VlCKVmKm8ERp24enzPBLvPG3DfJrr1pIHd5alkAP1iwUWMwVxiKAMdyDP4mOVNrOqdLMFsOKY9FyqklLfHPJeMjsbuWPrlmllQCDJSRusWC5JX1KpTyABQsjI/NB3YHuY0K2BwMm0y6wrYCPJVMesZ7EEQGQuKJrE/koROyfU/sY5Kzgw/o+lnSvXfQjzaPfnlOluiRpmlhNnNI2ob6CU/QY/ZQpeO+FBoHQHLIvYCtNVKubNtGD8uCpQikOkJFUg5zcFdSLtFzJNNdMKNXK0UeozqBMWvc3aqNkgrZnNaRHDzAKKYA6xQyTrHuQj0QPeIcIi1swaTyFHYyB/McLfQFxAVTO4Amgzu7247ejy73hpzAk6RtxPezo1ZzZ7OJ2/86ZeWUxKw6etUAgi0WqZLh62SJLRWAUvhIOcibM75nJgXInQMcCl86P55ksIrQc29jRIJbLBIO9v1Unyq1RwCbHCCX3RcPZgIfHRhu+Ii7PnlYDn13f75zQMlzyNJ8CP1DDAI1nZJplFJZ68JSK3mpeqDRyuekDYvkBmIitDbCf8NYamat62sBi+Gkc3guAC7N9oE6piwDU4tBJHFsksM0dCrBYPYBbXJY6a21Koklv7rS+zRR210Rvo+nxNNlYV0FGhQ7HtJkutDzl+vGh+dnzAoP50cu5wu5LDHsDSz7fXDWNhg1tgkgs2+3SPkyxtx1lrpMAPveGHsjM/F+ZY4XTqnx/XeTHz1WfuEHZz59XDiVG9cPL2xffmDxHWzS2+R23bg20fZvs7Bb4jYG+zbYRmLbB/ue2NrGNid7m2wj06a2Rq0NtnbokvUi51JYq/Oyd5acwGHNRnlYeHw48/QmQ8tcr4PNKwkBirUYlMmSVSzG1L895gDLjFToo/B+c95vzm00fBpLKZRMxC6rKRk+2WfnFI2FkWi3wfveaVPNcu+d4Ynug5ITD+vCeVn1UruApBSFldgo4BpwAidUgz3n/YxvrfNybTSH9eHMaVmopYR0SCyWnHJse9QI2jEMczQJ2j7t2y3izhPL+UQtYjX5FAKfkgwTzT1MKWOL4xomRwyyx8XoDst5ZblcOLwGTsuqbU4wFQ6w4bi8RkjncimYO/1243a70fad0/nMw3qKWPXC8KNoF8LpFnDaCO8lP0ZKXcY2kd9HSdy2Tiongas3Ud59WeN5xmYomEmOhx4/GBzHsA/M0Xm+ftDGpGrYBDWelmLDmY6tINRogInBWtvQzrZtbLeNZInTw4XT6QFLlVQDYE1J7KRUmVaYaYKHsd4Ui2L44e9zFAdtreu6xnItBnlccpuItR1TzRGxxZkBJKW4v0iJ7XqjtcbpfFYx7KK2dHOZQXaZ8Po0ukki7C7WijEDwHD9/7s8VmqpwbSKuzgfeavHhsXvxoEHYHD3p0DbmKUWvvryA8v5zFoqbko4Of6OYRGvGvcp+h4HsCmDa/lE+dSW97Y31scnPbMi1k+8LGJzJRPl2AQSfKsa6dyg7e3A+fDygVQzZSnYkGzKOWRakn94LD843st5FGYTUy+MPeacbHsLY+UA85KFYWc0OM59QeLB8nK4N7RaTUKxRRtVF0A9HDGi3Dmii4+GJsdAOREjJWV5gwgInUE1l1nnEXdNNKfywbJ7vSm10LoG3RRb9wNkPbw5JqJ7jxGg0nRKtbtxdD4ac2lfiIeq36/ofjzYRTBiGxuNo2sr6SErsCRGSCyy7wy4u7tVMjHe9JFqgB3Ow+XC3q7Ia0qJQ2qujOSvDL0DmMKU2Ordo5kkNuix1KgLzx9vLJ+d7j3F4WF4yAJKLsyppDY3mRQzIc8DkBcwulRJU/fbznmpYlNNRZ5nlERJm1jWsq13Y87CnI1T1RKjpGBRjcFaK6c183GfEcGsoWlMLSNaFxjd4t5OyTmdjHXJETPt5JlkuOyDXAdz/8D7bzYBkBPYYWQNTsUieY4iVnRSkz2DMXlIjnKWD8ibH73h/Z+80K+T9UnOxd4dNoHYlq6ksWNlIfmCkfGieyW/fcNjWvne9iW/+MO3/LOvPuf//L/+gN//Z9/w6VPm4fxEffAA7C3SibRpB6MUeaK9IfP1xfiN/+b/4a9+/ps8/cVHjB9gpwtf/Opf5q/87Cd8/Rv/L7/7Xj1MqRFO0DptOfG//H7jYb3yF/9C5VLF50y56qwmJ8SLSoNlMG9Nxsq5sprRloQP07PugyVDL5Vtj1TJopSq6UZOhVJUa23mCMeAzZ3dXZKU8PmSdDNDglKMljo1DKAxfZ+UGmby6dhSp9RM3zvJSxiBxZ0JND/GWp3HRIo7UcbiKcyGbRZYBvsNUu94rgEoh6/nARIcgEPKJJSCmrLe9VQSPXUyWWe0S+oblrUByAX03DuWsmpQ3J1HWMMxdFlWT1LRorr3kGje/f00pMq/MGqNgcklQt1OLqzlADs6yyik3dhvWxjtih0bcXFEo4dnvQMlFjZjhpqnJNZ1krvpPQ7g4EgKPW4Fxa3Zva4kM9WU0SMZVnI2NwGtHsuOHL45uO6+HomvAvHllSPm7mA08PCvPGTTuvoS0wXETpLOtHfZCQzdCT4Ou4REMi0pLSXJvoLxznSxhUYXwOIw59AcE7PAOBYq0eAeg/Jrw2YBdoW8qKQA1PQFYwgQyCnfWeVJk7HuvUz0lpA8U01pmCRZl0x32hFeMgVain7AvbZr/tRiKZukbzNmAIAWSyJBnLJhcHutJaqbOlMzpVCGVsnY4onnnDQXhhetT6X0TkKmd9Sl+Fzx8CE+ZuNS2KeYLN3FdmLqGY2wobBg27YDIwig+DizbTpizJVgq4XX7ZSvaE0J70ePHdKvmG0OP6H7/MPU+4lFrZU87pDGn04r5EHZG6MZe3OBcVnG8j4n3Pua+PzDwP9Y1LYpPyL5IQamE7Svg0EkI+4IFkDfN7Bd9acB9d07Qn+9o6Z7LK/S/T0cc+pcm0J4AnGMu2fGaxuhAwGgeZj3J4u79P6Rq59JMa+nALEOnEL9S7rL8w/WvT7me1eNlr/HzSF1EKazO8frGda/qc/mkNUeyz7Q8tLwezKmFAN3tsR38uc7B5QWT+DtbvDFATKkhJVCXU/UUtUMGEEdjehen/oFXZvWbd/i0irkXKi1knOk0gRFvQejIIWreRs6ELNr4LZM6KK/hVm6KJLmKmqj7extwy1RU4WcWVaZC5NhelH8oQuzrwke1sSbc+bxslKLIoFxF3ruzt4GH18+cH25kteVh6d3PFweWOuqf9MPui0h8VB8d0a0033Mu156Hxs24qLokzFCBtVuzH7Fxk72Gysbbx+dX/j8ws99lnksk08uTk1X9vdfkYJSP9qkz8TmxrVN+m0ypvOyN7Y5aXOw74Nbh+26MYeG420M2sjcdrh1AX5zzABcoA247to+Y/CyNd77lUu68O7tO5azjtvLFulpLJCKtn7JpE8uFl4yAvG36XiqzG5snrju8OFlZ4SkKFUops9Mpo0HJXCwEJIW12W6dfUEe7x/PhRNW3Lisq6stQa4E5sdgzZ3oesmw9k+jXGn6ApgzJaZyfn48sLzTaj9elo4nVeWXKVFP1go8Brx7VFuZiDaqCDPAb03tm2TYfWRTjZD109SE25o0+lEJCcCluQay5EEITNm+RGUsoAWYqw1Y27qk0w695qTfJEsBcKuYrK1nb7t7NcrjvN0eWA5AJ+SQ46DzPMJFoJPMRsO7ySXxHVGlKWiX+G2b5BCi5w8PAm464FnfI/j4p5xYapb0ra/d905t5cXHFjXlZQzNeU7jfWIqT+YLTWFEWmkdI1gdfVdvkl9DN68eSupW0jaEsgLAW1HcNi3pkE+/FmOxlfzubxP+pi07UZeis7tsbFJGnjzUeSC8XJQs5OrCUsBsLrpd70+v7DUlWVZNeij9EOlF2VGn1g6i3GZJJebYdqpcya25xhKbzmthVxE6XcEWhxnDgJoMUi5AokxxMQ6/GgEQmqD/vLxI0+ffiKAJQdTxI8AVpmwS+4Zjb5PbByFNv6XAhxpnY6zWJIEh1dtPXcZ3gG2HOU3ZFYuZuucXRILJreXF94+vdG5yRbyNYsC7NEYHqkjWZ53x4eGngVmwQQazC7jXYtG3e8RsmoKjNcNqM7hvTDei/30EQOFzkANM1elI77eHdpkpW8xgUwpPTnTe0hS52vzYTg2prZTiftwZB6Ai8lLbegwY0ETt94VWTuVyuouQP9g7skwMn4Vn+FBYHfg62iY7xu/uI/mfI2WdosUOU930CsngfhzhC9FSvFzxmY2XuToQXWOo+9Y1xVLt2im5EV3PPsxtDn8tszkaLiI3mRM3R+WjDQL58cHXj68YEnsx2RidwnRC9lsqniSTNhsaiBjINelGFR8UhfVlrYP5jQtS1xS1lRh2gRTAq28+0V3d8uMlEkzWGQEnd2Mda1c9yuQ5cdhYhLNJPB02zOsg9P9ucQ21iVv9d4YLe6TzWGB24cb109OPK5nsZNiGYQ7pUgmd9vg9gJ+MZZ0gAiDZDqHcyhV53u/+MAf/84H1j+98HipLJcAQzyYvB2SNbzFmUtnMpNUH1neFT7Zrvzw+41f+dOf8M379/z93/+S3/0n3/D5w8JlSVzCo8+QPGl2mZZ6MmqWfOjNY+LH7zf+x7/+d/nLn3xG+dGvk+yB+uZz/tyv/Tq//pOvef4//oQ/uMrXrubKSIPWd74phd/8h1fG2Pnnf+XM+ck4lxrDS9N5tExOlZwSL/vG7IN6mRQTuzbVxNaN7mLar9kYSbU/ZwHQ02YouQyzC913GDsly0Q4zUGeBlalYDSDXIMFV5g5UdNgyUYtSX6GSff4zLBg7HOIXRyAiAfL2RALDqvMuIdTeIpYTvQJZh4JRFDSwjmZ0nK3QVnCczQdKoHj/Qw5ihEyOai5sLsMbPucAcrMMM5NYYatePF83LNzxLsf3y5nqQ7Q++0OOVfchpIER6PfZDicU6LTSTlFQrJk5xsaFpNDOXqWqYG+j0Zx9XklZ/UUMUCazTDJl9wlhxF8TRkrmVtT6uX0Qa2VYplGp9EF3ASLIrnewRSKg5LTnd2dcidnp4Xv2nCO9Z5qv09yqcEkkVTMpgJUSllI1kJ6rmfh4RVj0TeUtNw9DzMK8Ei5UIoCfnrveErMsRPiGzhAteQBaKY7m9VTjj44KnvK4WM1VNNwfIohat+KW896fCFJ0nBOAIlHfS05DKT7sSAVoy6lWMwcgGgfeDByPOpYLgF21Eq7NfYxKSmCaVzfR9jaK0gCTjHJF/X9YlnmFv171LJ+SJHk7Xn0DQc49W27gKUsNEWXk2b0hun13zvagWOjoU5L8+PhQxTBfEjuZa/9LwfgNgRGHZ5AHtYpwW6bITlzD+aOpbs1AEnM8z6CCRRnn/gcid7fTKqDHKzBo8tKhCVA9BE52R1RUC0vnB8L1/e7/MWiJqckr94+j99YwMrBeg0U7c4g621AJE7ng4lzYJJJNfxIYU25gMn7Vzul6JWImU2xune/uBz3HRzLfPUXWACfBsfyGTyISno7Sqnhm/T6DFOyu4+VqYnUbJfsblavuU13IPGcjl8oHQtNffyY6d2c97PlgXcEOBszJEPg/hj9W71iHG4V6VDR6S7HAySbr+f1u/jz3ae8hTGlz13NMIW0rCxLEvqcahSggwGhDwUL+ZEP2tbj806c18PsNkUUYYRFHyhqUNS8xVAYD9Nzug+mRweq8zTvG/G+N1pr5AmZQjmtMThmAUnRPybX619sclkyj48Lj+fMkj3iHKOtjSb9+eXGN9+8x3LhdHnDw9MT67qIztm6hmZ4vdSm6HDJp2i6fVBQklPfBonCvsmrI/fOdv1A267YvJLZeKyTH7zL/OB7T3zxxYnvPxXO/gzXjetPP/AyGiUNtjZoA9pu3FqiJWgzM5Jza87NPYypk9ISUqOcF3kMjUrNk94Ts2nIKsm0uOldhd6NU4a9N6Yl3jxeuJwKuT6QvTIG7A2aZfJSyWUhZXklSXvtFFcM7ZiSQuzd6UnGzR+2wXWTH8spJ2oW4p9I9y3HtE5Nosa76gfb6IxpbNPBRW3tPkmp8rQmlpriZ5FeXAuOuMzzoks2mo+DGXfoXUvJdJ+8//hC2walLJRqrLWyBhvvAAtwo65VQ5lVRtfL7h4x8q3T9kYfg5eXjwE+Kfq0d9jGIKFB19JkdouGf74CVC4fh+POdUxGpnVhWSop67I3D3rxmFjJSmxDW/ucgqKsW4s5Bvsmll1JicfHR2oukfQTg8f0YCaqCR1zxLZAQGxO+W7kqVQXg+7crhsekebJEXiW5OGQ5hTzcAysDYYPBgJ+QMXvSIcxYHvegMT5vEJKFNJ9EEuWozbEoH0YhbcG09kjmfG6b+zbhvfB6XTm8vhELRWS5IYWJqJKvNMmsfWQgek7M1xgyOHxM5hs1w2zxGlZScizSYbIIQMzMUBGFH4csQ2wSBQZkVgJ2/VGSZnL40Uxr9GAZDM1MCh+OrVBG3v4Ivm9OfepjVvrg73JZ6qUCiUrtcNF+S2WcCLqNkAFS0VNDIeUkQBuRFv/6puvqctyT3QpRjyv0M0brxujo5+Impeww0ohPLKcvTXOT28opVJ9MKzExlayMw/QlCnmnmRkUQsCXDXX/9rY8X1QPluxMSFpCyWo6micpGQ4GsQ5RtzTYq06KvqvMdVah/UYEg9vKAtw11KSvAk0mOccCSXpDrTKcJIAQwTSlUB8BI17POMAYjmkqmIU2NRPN0YwiowA5QfbfmOpmZynjDEDOMqlcmxal1KDjdTv4LlwhDAjjX8zWQkJXNSvoPUMZgx4hwxcoP7we98XYI6A6pzEsLSUYzNb9OYE0FxSlgfSsQW2g3mc8JkxG3E/xwWPjNWzVoRq3GNrZ3ZI5e9LPA1wwQwlADAFYABDUt/T5cI3X78wQMbAGfwwEA5PKoClrFjrsWQQCJ+yKdnGDpp+kSz2ZaNPOCfJ1zCwMskjmt4UKVK14MN1lo1INgzphSlKezlnysukjcREDCJLib47LU9uy2R5KAwzii9a8k2n753bdZf5c8Soz9nJp0YGPv6k8fbhTJmyCyjrAkk+PNiQTKaZANMpyYVNJxUh6MkSc+88fPLEw9sbX/3Tb/DPTiwfMuW0kpOxrol6SpRi4fMm5p/Sdq5QM8vDyvd/tPJnOXHrP+T9c+dP/ugDv/sHK++eKj+smVzE6D6lQk2FbSpyngnnfMbm4OmTwu/+9D3f+y//Fv/yf/h9xpt/iZwqlx/8Cv/iX/rX+PGX/y0ffv+Zr3ad/1wzt97JY/KTVPmffm/wcGr8uV/JPKTEXAzrxkTpQgIkO7Z09peBj4ZfLqSSFMhghWUMrFfMBvYgiQ6O2Cc5zPgPVrYVrtddhrzmWNvAKwSbTSyIjJVKnwdzbyebUYuG/zkLiUqqSsPLw8K/ZNK3SRpOymJBGQKPIgUm7mMNnslngGGZvMIS/jDbqdC3xtg3bFEaFGjh4sHYMpfH47E0mHYs0OL98xmL1IW27aov4Wxs2YJVqcWiBzsLIFnlSLHyGfdTAGQkY3QBOHYHAsCnLCLEXCrB0BEoMMfG6D1qhOqRoaXfmCW8H5skjQfLNCmliljKlFJYc9bZC+A7B1AycGYTMDSmGCECRiZH8i0Byq2LQmNG7xoy52R2p6cWM0mmz0byhJnmqMzEs4x+vfB6945B8ixvtqjV05uCh5Lu25QLJgGS6lj0IFCZs+tO9imvsrgr5zT1QFm1Z/YhhsUEMEbTcqsU+Qb13iFYUMeAO2cAa2YwNGhL/iYpjmokIfWT0mP6xEcnR/ooOUuaP0J0FQP1Uo+zA24u36uUxbQ5wLGwlDg8cA6GXsqJ7mKyF4L5k4/loDHDsmL0rv7DURp3LIqnC8xd88LeO5GNJmVNSLCHJ9KUsfOYctQi7BzMPXyljuWm/u1OzK5JEnSfRnb9HpLfC9RzRLDwgCEtEqbxEX2SOoc1l7vHVzL1op4C8AtZG/7al8rGglc/pFjgjR6Ab9TzkvRZ47LrWFMFyzTvkLSAMzJzJtxGLC1zeDUNvetmrwBL3BECo4OJq91L+CDFhJNiAaMfXGc7mIlqEWQlYwGQ5QD11TrL08mSPt9DhnKw1g8Qh6SlVgrigwCwEQtXeapNhGLl4zyjOxSmFunRBx7WAhNxXZTm7Xc1g3w749xFtzzirLprNvUUBBl/ZUoRwDu84lXEJ6J5wqNHSqFgCdD4O/zz3UveLIdpXJU30nKK2O/YxGnsF6Mogl7chuj+N5mbWnbO5wX3RE4LM8nrQhICpR4dFMkxutIUqCQTBTMnk8FnHE6PgaaFh8jsPRhAU3Thg05ZcjxMxfllHB8N3Hl7Krw9r5zOmaVoWxnEN71jKXF9eeGrL79k2waPb97y9tM3LFneHyO2xMlE154tjgVHAAAgAElEQVSur0tBqSMedm8Tz4U1ZfbR+fD+Q6DxzvX6wrh+JM2NPG68PTmfvy384NMTP/9F4bQ0zqcNnt9z++obTquGq+3a2bxz64OeM7fdeH52hjnNZITbhnPdpxLJYqgaBJXXMp5hpoWajDel6uV1Z29TQ7lP2kSAj0E9nUjLGpIjgS5jJk6XyqleqOb0nKAnRuhpS7GYBSe1QqeT08pth29uG2M4a1koS464ZKR9n3rxxhQ1N5QbjJnp3oPhsjC94ynTdjidMo+nlZzlU5PI9y15sdBHJ7FYtGAPzW5sUkrI17a28+VXLwx3al1Z15W6yksh5xqXpgd9uzC8h7RR2mh3pRVu+87Wlbp1fX5BRyrfLzggTLHV8XSXz9Xh73IkAmFqKHJcIqlkyrqy5BUr4VtTFp03U1ORco7CMylVVGiB3lHY0CZkMePp7RvyUjE3aqny4ZoeMkDXJu+45Cb3RgGD7IoxPZD0l5dnSlnvg1deq/5uyZFwBoQxeYoBLC4ZDdZJkbLkxO3DM8OhnCrrsgiMC7lMis2aEdKxSC7bt/0OejElre3bzuxKgHnz7lMohZkkrcu5kBB7YoxJ6zu979Ry4nhKc3ScSUmJPjvYlESwNzGdDr2WBRAdjKkxQjYQWwufYn70scfWQhuutjfa1nl6eogmWD8POdHnq3Fmooq2norkY2hLOcZkb+NbW6kppllQb8eUGSQ5GpBkQcWF6SHTvP+f2CTyCJq0Pni5Xnl6+/a+YdONH7JJUkjTJKEbPuVxd7BZ3ENyZpHwNqQ0qoU8OgYsWWeeJKBt4gGCAbxKAw6ISjmvBsl4+bhxqovkYsH+8tDtH0BXQBvacn1ryCH+/sG00oati07fkzZAaZKGmn/LmRym1nawgbK8FcwIsEpDzt47M8c+ohyJkpHQZorBPaJrPWd61DYmWI5N4owmCA1SvQQLYA6wEU15gY6YoPi9iTkWL6lkWhPwaJYpOdFHbNQC1Dq8A7pPkquzMz+GvaD+Z4OkqN9jiFR4QQnQu5NMzJ/ZdpRmLCaz++t/37e9sRK1kJZh6c4mshHeAFN32egdX2q8YlksRw4WZ2yJhzNs0kanjCx/u+JkK4gitVGXBZKx3W6c3zyFBaju8uMHSgFiLcXYZ1Z08dEM2yHRS0BhOZ3I28bWdh7PhZLjDivouYb0IycV36VmLDm0dmewjKlkoT4lc7qcC19/0xmLkdHzmqOxjQa3zHoerKko4jmvuO+kniVxyfKPut0GfRr+fvLwbuH5652vvhyUT51cDaPhpeiZkrAlsRQtOhJ79G+G20pCjXlKlZmdz/7sJ3z8e3/MH368cnqqXNbG+bzAu0XvQkvxvauGiFrgtkmisy5cPi388PbI/ux8/PM/4Dffv/B7f/gN33934enyxNuHfGc95QDyJ3qEB1Pp0hO8nfy9f/ATPv2bf5M/81cvzPznSfXEu1/+Vf7VX/sj/ujDb/H3/mTyYUzq0PJj75Phg58tC7/x9z+SL87pFwqnyp2RmAxSnqRcOZUTqXa25522bSxWsZJYUiMtBctTkpquobkPl/ejC8xJwMgDK8ayXLhevxFTJlXamJjv+vyp5GkCh+IdkZGvTG89IauFGVKKpHsrEyw/G3jfVK8th6FzD+mFMTiGtUIySTwktdzFyiuFmhyjMEpmu+34bOQsP02fFjUn3ucBM0dDNmPY90mJHni6U9cCM/OyN2bvrOtCsSSWV/Rf3R1D97Fbll+Lw10kktN9UaTg58m+K2FLAQRaUJc08GAtClRXQI+MmCGFaX8ms5DY7Ygmn+G7pjoxW1M97krKkyJDIHUaQNKzrJbJadfXj0mfkpq3dqPaSq6r6gCOU8UeWU7UJgBIJM8RbARYluBvzaFnFMu4nBNtbJKg+pAXrTt902KfYB67dWqWWbOu1kRaC21vwcI32gQXoqKfdTjZICXNbof+sBMLpRF9XvgjzemxYCHkcWIsZUuxpNKWPrvfWdeeBNgll9QqeabrG5PTvId39NkYiCk0CcYuYnwxJOFOwHXver9KYfGJx7wppophAQgpbS4AF9Mz9jHxAPAsgfdOTuqZzePrEYg3ghWUcqbPwZoSrW/MqJupZEqteG8cjCb1QQPPwb47aqSJVODTRFKNGldMS51hDlGDLJL3CDClJAUDzRmSZtNdMNLQZwOHylKsWJdcMiX5EjIsGHbAlAdx1sAqIMgEik70rEtKSouM3j6FZPkI0zDPbFsnVw8PRMlYCdar3kqkiAB21xnwKYAxW45eTuxb+RGLScyIJaI7vSsZ2o7e8WAGoXvWo6/zPpjJGKaAhFrK6zIpZhW+ZU+Rj+8VYJ8fKZDSoQoUNoHnycJHNJjARqQiR1iIwieMMjXv39rAcgl5qWtZlfReE8u8QwYr77iDLJACJBrBNtIiz+6rztcFnv7rMBIKUMw0dyREAjhIEd/ln+8cUDrlwlwypyoQiXRsPC2orMEy0qfGrW8aVh3yUqjLSqmBarrd6XqaTHT4dGn1++CVDTVfYag2TVGLM77wSCYYc9D3Gz7htJxI60IqoZ30SQmPhMUyrXcSjVNJvH1z4c15JYffkWy3FOnuKbGPnY8//poP31w5P73hiz/1VhThXDjiItdVhqwpoMn6/7H2bjuWrVl+1298hznXioiMzNyn2lXV1VWYbhvZavnKVyAZBMIIbngOkDG8Qfs1EA/AQQgJCQmJCzC+gAsLNwcJsCx3t910V/XeO/fOzIhYa87vMLj4j7myHmBH3VRlZayMmIdvjPEf/0NOelnCX8JI2sAavFwaL/OqTdrpxMv2nuvLR9ifqf2FuzT4+rMTP3td+PrLyuePRrX3GBd4meQBp1dZUb9uTEu8PDvPl8m7S1NwpmWaD/Yuw+femwbGISPDNgY+dxwZtlk26nKHlareYOrwsWTUJfNycd6/dFKpLOcT5/MdG4mty0trWOH1wwPn+4GnzOKTmTOjyStAR3Si2Qjq48LwzPue+P6yU/JCqZPVYclhVGk1Bi1RX1PKrEUvYJ8CEJtD8kJDfkneOm/vTzL8Pi3kkEJ6Fio8fNwOlJpkSLsFQj1dGvVqYud8//GF7z8+y1Q6FdZlpYY06jCrHUC2Qq1Z0Z/uWDEu2wV349I2+i6GW993nl9eSITRrtmnpSFOXpTYVGplbzvjuscGTpvDXMTsEvvSyWWhrivLsiidIatBy6mSGNT43wdl/TCslAG+IjDbFMDlfXD3+EguVaXAPoFNJcyJPXYj3SWDPHTXc3Y1hAGgzOm8fHwi10p3Z0nSXM9sNwZQNjH1dJgSTbPHRiTizqcatOu24WOwnF9RinxTigXFdEaSnjuH948aRBWghPx8Bq7zJOlneHx8rcM3ZDzuPfyHdFT3ppTFUmTcKWNNJxeLd1nyr9Eb7bpzf3cmZx3tOYUJJJ/AADvAJNN1Gz5xVxMxwkPDfHJ5ecGKMUxN1VF4cspYKYob9iT6ehZbzUfXfW1DW0MX8Dp2sZMMgXhmSWbGdrBDEkaJhuLwVkKHsakFDlyZbMYP7z+wVhl7i/0jxulB20czRdjsOP34+VNCPVY0YZYpJJ7ahbKesAnN1RDkiJTuTZIo/Rtq8rJFd+vapAZKFL4Ag5eXC68eXqkBOryTEGXbjmcsKVEpB7B3gKolKXUzQVDOoW1XAUQBMFgkyljJjNgaBWGCWvLtnZo+1VxNpw+BmspSnIqE9mj8juck6P/uiEETjKlwHqHPnZGIONwsyv7Rz0xj7tpk7vSb6buTIB8ShjA1zlCmEiPHFECcuzM2AQqpZKjxfQGIp1QwHwLpLMXmTPHQM/mN5p1RyooASX0fQNt37u4WUbXriU9XzW9btpRKSDXAbNwGPDMxRNVoZUot7NvG6XyOs1P1L+ccDNCpi2IHBU2eYxa5Oc6ijW+qlCqp8f6yY69icLJDyqZ7XXLiOrsGzZxIXZ5ph9xghFQoxTCakzH2xjam2AHulJHJNdFj2Zmt6vVKiTm7/JnQ9xccH5k+nOaD9e6e5XJhv3YsT5bwlRhpMlvi8tLkL3MWWlkTLKfE7sDLZDSnzcEcqvvbs3O6y3z8zQfuH1+T2oZbJ/vCSAUXJUhnU1NqbyrO1LaJMJHAUiFlpz5sfP17n/Onf/RrtrOx5BO9w94HS0/kTeljdu9q1Nezdmv7xE4rdb3j/o3z06fMH/xu4dt33/NHf/QN/8+ffsubN5nT6Z6HteIMLO9Un4olmQKql5Tx7MxaaI/O//S//BPefP6az//V1+C/wM5v+Z2/9a/zb3z7Hd//wz/m/33f2XoXsBWeVJfW+PPyyP/8Rx95c9f5ye9UHqoYBnlNYlhYxzixsINDe9oYWzzndiLbZC1wHQnLYeg/I0J9QJi5UdCQBlDqHft2ZTmd8f3CdSPq0yD7HgurldR3fB7yUVegCYPhhbEbyfR33WV0m04FD28js04OttT0DR9Fm3SSwLkAh52J98TwMGCm6c9zoXjicrmQh5aAog9E+htJYMH06AXEHDmSGW0aFoA2ExYyzy8XLt4odYWqha9YC5FEhYDs1jPTjT4mtYjNlIIZLHBHoF3rO7UW1mBgz9H0nqVyq0uyc5Gc7vCAgRjmDx/BGfHmOaRZUylpc4p5VE9V/QoasoV7i32SU9SG1BGNSXPGnDtyVEiUFEmtyRkBTJdcxMRKCkaZc7LvWrwqbXLTMEoJQK2Q3GM5qnrVWqO3hvdMsgrZaKMJkJNrtP5+MCjAsGKUWTA63YrsBlzm35YT0429SUZusRDLqcD08MHT72HAskq2NoYYKLspPCUBHgCbpWAqhRzLEsw8WFOmIKDmzdsH+q4aTnKuW6ONRjssFlzA8r5b9NmV3idlkeqg9xYsE3mXeUi7VJ8mHhYkSnS0UAFokZdzUd83xWpJBICWArg4ajPG7GHQFQBen+B0gb2uediSlnMHK/9gzugTjNaHmLElR7c5ZaYMOnOx23KnBpCkb5dtRcm6BilZ9Av1yESjmquOmBZxM9jSOckSwad6nxpg8xyNw1+S+DPzQV0KORv7mMGOl4+qGGPhFxbnUq3rDezShYzlXFZd6qMHCKX/+/AuOqT9Wqxrjq/LQmuNZAG6YfSua5cNzD6lFPpspJKjv452ME0YWowmRGA4qDxmFu83sbiKZLQkCwg1k2IefZLfR+JbNLhjiB2V/LcWpTmeKSzOVL1TJeudmTcPLM00B6AEn2SRJUsiOGanWrn5cY6puTfQhJi7Qr0VAKiZ5NBaUmctRHFmhnkz3Ppxvn50QOn8eGKWQrVCG11mjmMEowVmihdwTEab5Fy4P51YU6KnFPIDDakDGKMHFKXzr7emwRS5rudUg/EBIyWyQR/OCEpDm4M+urTVPqlpId9X+R8glNGJVLWQ58yx8ZDgzZsz96dCWSo+uwaWo1n0SffO+3fv+f7dR+7XV/zsr/wu9/d3air2K3Ps4Inz3crWriwHnc+0FXJUAHHDLXEZGrKetk0mhv2Z5BsvT++ofuE+bfzkTeFnbyq/+mLh81eG+YVsV5JfKe60fdBeJh867LvxtO+hWy/sBtd9cN2HjP+SWAWj78wxaUMjlgz6slK45sQH5KWy7zvNB71PciqSLdjkug+2niAvPDw+UtczT9vgZddmoNZCPd0zsnEdmbk11vtMQZT7kit9dl7GpI3CtMI+Mh+fG1vr1OphhSfd8kCeKsON7tp2lDu4S4nWjA15nOyuvwOdvU9OJ+P1+Z40M8uidBNqILxTW/NklWxQi8CGOZxqU5G6Qwa8jckP376wtc5az5g75/MptsqJcAwlp6JBP8FsGzkltt5p03Ayl+uVPobAr+sVuoYUHayf5B5HUoYHDXYLuqrDLRqUSHUSAJJgydTT3c0Q3E3MhVwkKVuSoqnNnOmdnDOtdUqRWbG5c+0bl5cLYzgPb9+Qi0z45JvleJqMLsCYPPVuoEF4tB5eQh4AYTDXDJ4+PjGGGHJ1rdE4OaTEuS7B3Bj08IU6+Cai3B7Dvmj128uFvTfO93dkBsH75vBcOfyqalZSouiuIaGZB+0Y5oB2vTL3wasv3kIurLWIXZIsgGElqc2p9wefkuAkvwGFjqRwHo3pfrlyKlW0/GD7ECwGD8DbQhtPAEkQjLuhRLBU5HtwuVzYXzYeXz9oo3rz14kGcgpMGUMsEA8GSfPG9ILlhWJOTfr53RJryDzlY3IUdKBrWDz8aHKWZAN0bQlQ+TAtHHOyt43HN2/kB2GHJ9GnRsnid1EzoM2amrjwiJliLhGNW9s651ePN5npIcswzyH9Ekf0UxRwbG7JNzBhjkFr8pZIA8rdKUBGNWtH4hpHkxmMpCMpbcwh0KF/AhNBBX/0HsblIZcbAsNLygJfotFMKUnGkJLSa5BMeHZtbjnk2z6xcmw9jxCAGaabEdk75SE15rzFyXY07OAhP0PJIDdT+Gi+6tHPmVJpPBdyqWQfajAiFTCFn8ZoTTUxJUotrKtMuRVEqmeNomuvWuBRc0PqGqAcfLq37h6+UJmyHu2Hrm0tRSazsdnFBSrNyY2lN8JfCAtQ2ePdM5li98uI3ZweTTGJ1ATmKS8SS2J95ZRoUwNOeBVzsB18d5aauXx8oo83ArSYt50fpmFWlBgj18zem9grOUtakg9uPhjyxdq3na0NAbljkD2LAUxnH5DyoKRFEoAp2VD2TMbBZjCu5KOxlMJnjye++2Hn4a4obc6PgWRwvR4RxmLJfPLeysyRuW4arudwPFf6Nrn/qtCvGx8/NNacgcIyG62KUWDZYERdPRiphwSMRqKCzWCWLNx9Nfns6xPffOj002CORN+gn4xaE3MflDXjayW3id99gb98KzD0dM/p7eRxa/xknPibv/81774d/Mmffcc//eMPfH6/cv6iUqukTWNxKkjy5Z3dkAnsHTxs8H50/sf/4X/n3/vsNXf/yt/B7AvS61/w1/+1v813v/meD//nN/zzFxh9Cpwcnbl3su38i37iH/xvL/zbD2eW12dOp0U1yAS2Wu0wCue7CdbYn3fSPsXUR0beJyPeu8QoHZuJZpPmV+oUiJ5Topwms4mt0sfG6bziabJ3DWvuRp6TZI2ZoZY4g4dYUDUnJWaWxBjBUsor+75TFshloTtcto1s8tQyGWqAVXKRLJ9YVLQeo40fI44Gt+LgNXOyM9eXCzm0OZPBpJPyIOeFpSSSFUZIgPBBSWdGOgJoJp6n3omceH650LcrV5+0kG3hIdtLCbdFdWKI7dpmALZFfkI5kutmdpg6j85ZxtOjC9jI8VbO41waOrcnOvdvYROx3GImqSFGj/MIWrsyLcuKwyBNv/mh6eebWujkghUjz0TfCTPyRG9NqdV55TQl0cc6pVasabFisfT1McITLpg2q/peHzJ8x8Sud+pN6pWDvdomqvdMTrZqvm0dapaH1tSSoyQB23YsVZIx26CUSsrqFXvrtH3Hh0lRwMFA7QpoSOptu2temjYpRXV2umRwM+T7RtKCCYtnS1+HIuDx7h4zgU6jaQHzcHdHH42xH140HvYDuqYv247VAxAsxIWM1OyQqccS+mAm9zDckWeR1Ae9N8qy3HzxZrB0Dha52O5w2EwY2lU076Qu0KCFhclEQTyyZkwcXkvxKfpMD8VKrOxwLXUtw7UNStI7RCzcLYV36ZG2NyWzHEiCttqiZ2c2SiZUC+A5M1MmJ6f7rh4nwI6UEqkoxVlG7od8zqmWaYdEfw6aTe7PK6sl2uh6B8ZQMuUYNybX2AY1x4xdi2py1qLOJ2z7Lt9c15LPYtF13B/IYdBv5LxCTtRq9GuXJYZPiFoeHaDuR7DvZ5vhp2TQXQMIYiyJiR6hPCDj7KLlpixBdB4Q91gJ7a6Uyz7ItcKQeX7S4KMzdIbPUSgkBi7/1yyQuE6wU5VVTCMUi/F3pkeCnogmJWUOwW8tCUaipkwbceYUU3p21s+fA0DDLOZBC5uKQw4dWzqTwmQeLPAf6Sv/4R/+4Y/6gf/5f/vf/eGpRI5MKkLsDupW1Czf1ZTWU+F0XoSw1UU3PRnFoCfwMYKaORmtaei2QMVzhio2EsDwoCfikAO93Hf2ttOvm5LAzpV6XpQCkDMzWQBd83aaLQZfPpz5yVeveFhEByzmlOQMH6j1dD4+vefP/+wvuDxPfufnv+Lr3/0pSy2c0oEVelAMnTl3llI5zIA96Hz4jO2R0drg5bLz8XKNmz7p+3vm0zvu6xM/uZv8y19W/urPHvjV797xpmyc2ntq6ZSlULPQ6tHgcj0+a+fSna0lLg08F073lWUJinkylrWwLoVlXTiti8CfJGmBJUWLZqu0MWi7YdkouZIsc7kOni6NvRt3dw+8ev2W3ZU+s3fnfD6Tl4WlrmL7ZOOUzjw+VLoPrgOaT7aeaOMkWZoVni6N7z/utJkoGTUkyZgJ7k6r5FapkBOcTpVTUed4vQSjYBjNoxDR2Xvn8W7lzatF4EJasATLuspQG22CkwmQrDVHYyRArFvG5865roy98Wf/37fMZKR1JdfC3VnXLeUUgEGm5MxplffG6DuKiO60Nhnd2a8Xxu70bWN7uQQQI98vi6HkkFR4bII05MYWGhVlJ4ymY1viQFoq6+ksECBJH18joSYlDRbLEoZysdXuvQkoaZItPb985OXjE7MPXj2+VjEgtPmAGCoGLn38GDr055j0kKHifhtKFS3vXJ5fxKKqShTDJCtMJUMuYhbhogSPcTs7Ru/6/WP7V1Li+eWFOQZ3Dw9YzqxRVA5/slIyKcvYPqVCKlWAtoeBYVIDSwB1Ty8vvP7irYaA9YxHQzzdKUgqoi1NvxWRhIZSAQfaSI7RqVZ5fhYLbVkWgT85NvjB9FHtCd+ybLQxwufNb4ChNNva5v3w7Xcs55W1LBrMU0h6k1gzPUyOLbZIHJRlc1KRnMcsxcAwBbAXAeYpmQx/49qBjD5jdhZ4OCc+5Tch0CfEbAYf3r8np8q6Lkr/ytpCGpJIpZwpJYwb54wwhdjb6DDUM4Dw2OfLhWVZuLt/iI0gLKUcVg3MIdBb5VbX65bARciqgD4libpsG94G58d7JaQE+6/kfNumCX9wGVmP4/wI946pDa3j9KEG8/npo1h9YwSQBW4pNn75lt5xNI97a4Cz7fsNCAmrJElOhpqUZVlwSze5oGKcLfqAFD5TMxY0U8PlFAsoIfbu8/OFbbtwd1cVIZ0yqRYsV4HmWVKsI34c1OzfGHkhOexTqUPrSb5TuWRKXugcEsZgAzQxh7rPGBs/NSrmn/wYUkqUGiblQx6Gy7remjkBc50DcJ0BSKUUxtLpMGYd3IzUCVbf6Dw/XTifzgJJY6vp8Z+ctUCSIX5mWQo1WRgTdzJTlPo4e7Zt5/0PHzjdrSx1oRbd2xQ08+HQprbHvTWCuy6W5hyhZA8j7ZDp7ntjYtyF7C25hsKg+2JDzXQ6pCEhg4DBNF2XMZTaSIPTfWZNmfXtPW/uF8q6UE/qO8iS/Z7WFYjlWwQhJAqlrJxqCVN0pzyunObksy9f8fG7Z86nezKSaJOT5EMuBsqYh69SCWPpYJD4cpNPZ5NcqT7A+19vzNIjuTaG1lwk+cPgVMneoJ5I+QFzhT+knDQUmnqz2Y3v3n3km++vnE+FN68LazaqG3lIsiu0IDE8U0MelWRWxHfPO+03T/zyr32O331F8oX06mt+cnrm46//nD//2Hhq+vdKXfAppgsl835PpI+dn35dWE9GiuHEMnjquI24z3o//TIoScxgSwpNGJY1cMQmvSOGl4+I2jCoZZGUzpw0C3PsPKz38sebkWhllTEGu08uL2GAe6qS/+Ss7WuRD9CYGbMCpeCW2aZx7cY2M96nWE2taRESPWqyrCF/pmDURh0I5mcyLUIVuANrKcy9ccicUxj42m8zrdMB4yjYxGMJksOlOYfnUY7zZ46uM3C4rClMJ3AbjUxi9CM0ZGoe8Bmeb4RUhTBuT/Q+6T1kzFFP+pBsTUls6mlkK/BJduJzxlLLj91ILEqG2IMxbLp3zAfedS6JjOVUE0t3To/hMAJeQtazzQmlkMtKXTPZJTfaemg6JswxIKTm2Iw+LFjfJqnWiOVMzhUtOLSoKalgrvNqOgzvDB+03tRn2WSYegwlDsbCO7ZLyRK1JErU7TmngHQ7fE4FBuVQd3j40625kpcEFv6wwagQcHKc5VlspQQUk4+nG9Ss2ckHk8lyWm6hHYfXqCPWzJiTtoux0lqDYnR3KQ98YEUwA/Hvu0uyKmLTb6csJwURDIEJS5aexo66fzQeqR6IGzcvPgS2k8Tcja0Nh39nsUTrLZjJEVKRUngiJQ6/sKSVpYDXEssNDMslmDGSMJobpZbbwk7WFWKtWygOLFQftS76PRAL33OiTWefG55QamfU8INVSzDjPd7ZWpZPaiBdhWAo6d4dvWzvM9QthMWJ3o0+ZV1AvGulyFvWMWYKr8sRLKLoV8cQ0Gigv2thPzP1Z4OBxcyVj5kh5v+b0CsdFg2uBDuLlHdLLLnK2zJJ+jePJV4k2c4h8HQGiEwAYDomNJP1od4s5ZDFGozmca+OZTowtNzEVbcPM3PLwUIzxzPUJRQ3aCGWYzH7KcCJ25LZXc9IjpTbI1CGg4xw9F6mnvDWjZnOk1TkK2Y583f/g//o7/Mjff3ogNJ/+d/89384hgwk3SU/mSnR++C67czprOvC6W4NKmHCa1a8aLz7l94IWTjEprSNQYq0t3TIMtAAPoNFYJYxT4zeGB/3kBgkHu4Wcl2BirNwMwGNYpR9knzy5vUdP397z6s7w+cmSczhyhbUvmvrfPMX7/jw7sJnX/6UX/yVf4mHhzPeG3k6LYpOMpg2ORcldOUiyVMuBUdvoWWj98HWGh8+PLPv0qKbb1ye35Ha99zzws8e4Mu18dd/9ZrPXy/c18Ypdcq8sl2eeX7/xPX9lY/fXnn3w4VrH4qv33Z2l1ykjcnWdi57F5bXW+sAACAASURBVBOlGsspcVqN+yVzdyosYQpYSpYuNSWWkrg/GXfrolSwnEmeuTSYJJbTwuPjI/evXnOZiY/XjpXC+f6MW6KWwmkt1NVI7DycV3xOni8JswUwRs90zzTgw7Xx8SLTs6WaDIPzSrLEOWdm7xiJ0+Lc3ylprjVosyo+eyghr5uS3WZ33j6euLtb6dM45TusOqnEZiTBmlay6ftzNXI+ItONVNdoeIz3zx/4s998oJ7vqeuJ81kRvzkKi6MDdimJpS7MYfRro6TEvk8BXUOmz/u2sbcr1+vGUqo23j6ZhG/BTaohZs8MNo2jDQFHsTpYC5boe+N8OgsoK5mTqbicT6uG0pJZc+Hu/kTbrjpcpgpcb2JKtH3j+eWZ/bqR3Hj9+Wec1oXFxOA7UtwM8GSUKv8gCy8uj8KnuGG7+b/UlLlGQtyEYDvBulS9Z1XDbZliSrS9yezQndmHDncjhhh5m+xzsD7cUUwAc0IsGMtJYJ732+daTmGQKTbekcSwt52P1xdenl44PZ45nV8F+CEATt4FYmjI8yQG/QDiMMkTzTKGNiYejDPvk1d3d6RsSp2L6ybMWybh6j3CF8id2fotBEANsYywP/zwgTEG94/nCCfwT94jSe9i72rSlqWy5IIVsY/UHAe8kxLdYey7GIJxPT2lkEMRErQzqVT9FMEM8qMweaJHC8uceJs8/fCB83llKSu1SqKk5Ye8YUrK8bsI/FSzIS1++q36UVAxvX54Jr+6EzgxJz1JXifD4xmMLF2HEh4+pR4Dyyf69hiK2n3/4SOndWWpa8gQwtRwukCBqOIpml4INYqZUpbgJgMkAL59a9RFyTmlVpZSybXGRjciY/mt70XAbSklho5EXmUInkzPxbqeBPK4zKAVOCDmiRo3Z0ZzP3oAm1oRB/ClRuby8YXZGnf3J+ppJadCyZmS4p7mpGEDp7ddPgtTZqMTNVJzKLZ3tkExo+2SA6WiZ/lgQyYLDzDTdlSxwun2fAdZ/wYoGWKgjd7wPlhDogb+W4BgukneSg7w1rT99MNc1dRgydfJWJeFy/OVuqyRxhS1OEU0exWDYY4R0gwNz33Ip6iYzonk8uNpo/PDD+8ptfD68TVLXbgxR0lgYlOPSfQJYqbO4O633sW4Ut+vKOK50/tkWRcFG9jkZTc6eu5mNrI1McfQ57YAH5kBBoUP1LYNlpNRc2ffjLScWHKl1sT9+cz5vHB/uifVwvGAlRXWWik1k9fMeYFcjVNeWEwyxuWcWbqz+eT+VFlOelZyruTkpCXBXHAreIbRS6DQk1IO41sT7TNnMVnyxvW7ht1pcePDYIoBk4pjRUA34wrLCuk1yXcob6lpYGnHZqaMyXPbePf+mcsOb9/e8fqcSUOJaTkWYQ7MtIFr8TRxbBQ8Jb759plX7Zkvf+8LSJ+DZZavfsFPL3/GX3zzge+eOmMIuM13J8mHu0CNb54S62i8/RzWLOmbEUsOg8miwdkqM3Xm5aJzOuWQlYrJNcPTZYYnxwH85yxQNZnSkEpx8pR333qe9Gsmp5VJx21l88zHy6TmwuksSVn3Y6CbpLRyePykHMbUJKwYRqOUSh+bAlY45EtacqZUDsuQkP8gv0DNw5CDQRyI/8Zgj/7MYzjMOd/efx8C7i0nCgK9xLwIFu6UDD3XTElG3xt9Vz086uRgsKTKHE0+dsE4Ectj3kDuQPUEJCcjl5CBB51EvqpxPhxhEcmih1EwyTHMySeOYFamGEyikJsFYKt7YHEmiqE5Y84Ib56ke3te6g3kSZYha/DPxUK2alo8BnsqlRrMcgT2TEmn9QvGMI1qGlH7DumZx/JtOZ1YTqdgTwr8l/ynkb3QmySIYw6BvHkRwI2WZrND7xqiDcmsBDip5h4JsgfgDuEJFqot9yzLiZskSbV3ILlnmgf7DvoYSjk0J1fZftytKykZH5+esEia68FkXtZVkkBVFuJyCLwb6ldaPMinACdmnNs+oaRyey7ylOTKo275mMw9PJUwrJS4LqEk8HGTtZeUww5CM+mRkNaZZEdAzZCX1JFmdiwaJOBRPbKiOlktk60w+mAPGxJ5HqUARkMuap/kTm5BZkiHzCoxLUFGsswmUKZaCuarzNI9FrfJLUCa6N9TBAFMB7SctgznU8WRF3IK9lnrPbwMwwjdLNREYj2PMePzC1trAupcwLklPTf+W++cWEeJQTCncxUjFMlc53CFAgHjWHQey6ukMzQffpRV9T4bkXg8b+Cp/F9nAOXBfA/5pmOMDqMfPpt+I5+oHwtz85C1uR1/L84YdzD5Zba963t7WPaY3wD3nNONGJADbJzxTB6/4wFyE7NWzZUZNgIH6+g4lvBPs0a0VDeQSwv74/rC3/0PfzxA6UeXvE3UOB1IvW+d1nZSNu5PJ1ItMkYmUU03eDrSrrvRppG8sHvHhjbiE6jLSk6OTzULOQfarTOFxqDNnXHZ8KtMNtdzUBanUU2o6zShkWVq+3lX4O39icfXd6w2GfMq/b1lxjwMD6GkyV/++ls+fP/M3eMbfvf3fsXdqzvm2DWM98nMRWwUk6Z0rRW6syw10pbOIcUZjH1w3Tc6k+161UZqXnj59gewJz4/Jd6+6vzi9YlffFb4+dcPLGunP79g24b1jcTg9Lhy/dDYXhrbdJ73wfU62MakT+c6dy5Pz+RyImUlJjAHbcLWtk8I9dHX1MwcS4Azg6eXK9ddhdA5sdzVm17fSaS80Cm8++HCPo3lfGI9nQJQgCXB7oW0dZZl5WV8xPpCyqIwt1kYGE+b8+4ymOacTordtUBjscmS9ZLXtXB/l6kO7z9eucwaG7uNORPNnY3J3gE3Pnt95pw1gK3mwEaeWWkENlnzWfT91NRzm8R1cvzvzNnwWfn2+w98//GZu1f3gJhTNjM1FW1n85G6EWDisUksxmVvTGAfcL12rF/F3HN4+/hakpYkeUOfjbF1pZe5GFc5mbxVdqXrmYWkCRkoD5QOdnd/z7KsN3N5sRsq2QqzFnLJrJaZbVcENkAuPF+uShhrjdZ2+iZ53tsvP6OGBG13vc9iV6thSLVqazU6MG/mvTkiPkvSs4Y7z09PKuIO02DsjYeHh5sBK67BeBuSix0SvAnMLg+g5DCbZJhtdDHgyJQUssWUo8AeW8tCSfU2TPfeaBbpdnOwXa88PT3Rto37Vw883r2CmklpwUjUKlPRtGjjbLi2oofUxZXAkZOrwW+D7BNG5+n6wt3jK7oNTstZcjR+iy6NzKZ9Ot6aUscQSOexbVvWhTEH7brzw/ff88VPPpPfCWoSj/h1czXR2RI1q9mfLnBzuJOpdAYdRX9fXi7YvpNKaPCDScOU75sHAG7BbHJ2NcmD8IAYkj66Y1b4ePmBnBPLchaLSH2RJDYBMFiSX9cx8JRkVM3fShsKHfw04/n5iWFKHzsMnyshcZiqE8kFVRxLATOYfcdQ8yNd/WTbNjVwe2N9/ZqaEz0d3mbE8KcdTo7WcCJmRzai+ZxhaqtmHZOk85A+ebCtOpI9SLV3NDfGYVaZUrqZoc6pZ7xPtdezB8gJt+ZGDFY938V0HqScaa5NYS0Fs8zuTWDGGAL64nMwpaIxoSzhk2GuZBG6pL/BnB1DDEUlQOqfzynFhlySxoEYh6dl4vVTMl4LyV6N52iOGQ018nJAvhUp/v90MImB1sRS8vBLtI7uaxIImpOH1GDS+5EYGLYEaIkkySRhxCzvtboQw+zRhEkKKgA2iyW6XxUggprPPTsMbZQPgKqsC5fLxjYkUcpx1qQAQtdUKe5cNnlQaRsMRiZnmMn1vsRzvJwXth82xi7wqGXHyyCT6UiWeM1VA1ZNAZIvip2egAs8twrZJ9s18fiwcnnZSDww2042SUysKjnskOvntYhVMYRCriWDnbBlp107H1vHbOHyYXB+TFx+uDI+WzDO+Oz4uOJloYQB63VTXLsNp2UoXhk28KXd5DKGk2ri869f0X4YvLxM5n1nJuO6b9hTp54e8L0z7EKqZ+zyA/74K6wlOJ3IfM4yLrx6zPzs5zt/8/oVP3x/5Z/98w/88R/f8/beeLwrLC7AFN/I+RWLJZonciRlredGy86lJ/7RP/5nfPnLf8Tnf+srzL7G0yu++jf/ff6dX/+n/Objxj95t3MdEzZ4uD/TPv7Ah8skP5z4X/9p5/70wh/8gfPqVGOoVx9TkhjoiYEtiRerMBp2SgKGHCyX8AmEUlb6fnhWStqVboYfSuGyJfG8NRZ36nkwLxuetFhKblSXVD7ZrnfQMm0YYxjMjZLD76VNajEFCbg8Qt0y2GAfk5xXhTb0K57EYLZU6SOxpLPkZXQoshaYFGqujLFRirEg8+Drpcs7LBnJlPJ1+IQKNEjyc5KuBRhKpIohvU2lXi7LwtwkV943WVZYLuwEs8i1sGq9QQ4GgWVqlWSE8BdRYEQn5QUfjX3fqLVS8+GFgoZ7k4wL0m0pkvady+VFTIc5MYreQZAFgoWvUa1aQKRYQFvIG6fjM5YmkerbgSEKNd52LcaZssjIWUzW6PtUS9XT5Fw17FpWn3b8+wNKGUwEJCUTE7KU8J5L6pfmlEHzqVY2gvlQTDKtnBg2xF4O2bmJrqOTugr8qkULHaYYX8MJ4Et9mk3DLXyHkgKIPHM7exOV6UNkjTFo+05KzqkujHCnrW7MIaHP88vG3OB8ymytMayKPdxlht+HWHGlVnJ4fzbvjDGoycUAHGLFJKQE6Unn9CElH3O/LZAHnzy/Wu/cgrzmYM0V2OQllpNsI9D19aiP5eh7zFjM1DfHbDzGiKWSyBGje4QdBHjlwTx01fClLgLX5mSZiZkP1ktIRd1VX2OZGnjUrVfVDBCJ4UDfB5YK5rG8jlSsYqJYjDFvtgdBOxOXYu9B2HAtJ8y5bpsWxUuh9cm1NcnPgnF2yNG0tNH1KSmTa2ZrQ6+CCawcLuCueSdX/Xzy1+rcktbMGLZTk2Sao4ld3qN3XNIiGPCw/UjBQHSTnUUAOClAVgPGYRKePvUKY8wAetPNB9OP3nUOFPChhM9SBMCn/MnDt1hlzJAlcvhe6g6f8iIJv44b+tZZ1uB8JRMD3OIZDJA+8CjKqrBFn0eanIUdwMHe1iI9xX3sYbidzG4gXTt6J4PFE62Hf9mP+PWjA0q7NyCx752yd8wKy929tNvGbdsN0FEhS46kLglSC33t7LoZpqIxk4NLBpTMgw4rltFwJUG1XdHN5SGR1kxuWUlYyegTpncG8mBKDF49nPnis3vul4zNDvFyQsLbIFUgOd9/+z3f/OYdpZz43d//aywneXPMtoU/TYLikCf9eWc9nUmnFbN522g4RqmJfXe2lyvXvjPd2beN3i6k/YLvH7hbd96uzu/cTX7ns8pP397x6rXh1/ds37wnrYsKxL6zDef7dztb2xnN2bqxueFF12nuXUX3fFaS2Obsu4bztje6GzmFSXBJjAnbLorz9Tp5ujTwypdvtfEdFL77uPP0dMXTykyJ61NjPSdyWXhYziG1MrBBTZlicErG2IUw0+HaYNsqwzubGc8t8bINUs48rmv4RTjTKrMIwS4pU6s2PWM0np+HDPR80ofYTX12RXK78VArD/crNRvrAskrnZ1lOUGDXDVIW83Yvss+gJAamD6r+2TbB99++45rd+4fXsNMrGuh1ETOmZoXHdKmgzwni4PcgMneZDg3W+flutN64/p04bSceLi/k9cJTs0VC1rlelqFovdOYopOeuhyMQaTaQnLAh5KUaKimZg+YqEMclnwWmRmTAkq9Yb1EQfS5Hq96ABzp/fGdrliZrz58nMZYvZ+050TWxXcWWpl611bjFKYfRfVOElmZS4U3oCXy4Vra1jJkVxjnO7XGLBFIe69gQ9amBUTzMPeFM9b8qdzY7/u8jUbruhphOqnnPGkgVDG/FWHbUoyo55dgESAA/v1Su+d08M9r14/4iVRl5Ujjrj1AQmqR5zvPuhd/jS36PRpdPx2wLsLsFlOJ0gljKNH0MF1zh0btOHaYBwGgQdN3925u7sTK60Y737za+7fPpBKYY5g14RxnBgiMtTMWalwWGEOF6OvNTy2nR3D+05/fuL+/o5cJGklJW070AYt5RpmjIShuQrbGF2RxQiESa5zuF13yrJAdjbTprEcG7gk4IxgZTqwj0YNiemckuphUqrsbWe0Tr4/yQ9ldEZEFIM85vIh6eiDQZJ8K7bIYtwJtBhNtWW/Xjkt6281/YfRuhrO5HpmlEYSUo9DipSQ75MjujpqZJqLrmwBH5QUMcYppLOHmWu8Z8ksQOYDWFHhZ04NGnBjkTnhBxKf7sOZSb4u06AMNQ/uknAkBDL5aHjbaMGuWWqlrkoS0qY6h1fKIFGoVV5JrXfdq9hH+xyfzpygw3tsxu5OJ1Hzs3x9RNaxYCUdMp4piaiZpK1B0Tlal1ISrU9yrcwJZVnZr5vuXdaw5h6CPydAxfAsImje0yPSWR4jYiwfHmbjBl4d0sLbdg/HZ5zR7nFtE+4CpkjGkWNYF8nAL8/PXPeNdV1u1Pgcss4+O0stZCtce5fvQc06l3OG2bWwMIGNS644L7y0Rl4Sdznkh565K8aeOmUOekqsE8wKK4XuiWERfz0aJQ1sMRgCE3Pfef+b37DWhbo6qxeBzfedak49r0wSbWbydBhD0cfH9nxOSne29sT7qfttPfHyAqf7Jjm9D7zLAywVKEtidCDL4zAlxWhn17OghYPjabCkO776/cRf/l/f0fuEKnlu25z90qjrzhgn/HGStp3kv8Eevsaef02viXy64/zwwut+z686fP/0wvc/PPEnv37Hl19Vfv/nD5yS05JTbKWkXUbwWfKyOqD3E0vZyHfw8v3gH//D/4O//fPfofzsjKV7xunn/I1/9+/wb33zX/HuCt9fJ20fzGqMfIf75OW6YQ9n/sH//Z67e+Ov/VXnXJSkl2fBcyOd9B6U6x3n1539h0kuAQxMw7phZChixpcaktgBw5uODdElIZv+zjlzfUncnzMvY2fpFVLn5Jk1T85pUs1ZZ8FtYqb0wpESw2AMmKUweiPlQe3hFeMdy1ISOCOSdp1uWhr00Ul5DSNn9TfGpIQ92HBIdWVO51Qyg05JjcvlyujBSLIkZijxXBFb9Vg+mSVGjyQ001k+YtgpVeyZ3nbwBSuNVCujd1KaLPlESonWJNHZ905DfjfTDSJV18yY3sLcX2baexssVXUlJUWMwxTrPOvP13Uhl8z15cLs4c+SwzA/F1rr2GxYmqR6oiCvmRTSM70TaBkafUnrjSVkMqflLM8mEnXJYgjlimXV1oMt64kAnjI7kBfwLplRJQmQHZO8LEyTb8oMjy8xgVVX9tFpvTGmgA1rBLNJda6PjqUssNNM/z2nCCCK87hk+r6TlsToYUkQ8kFPqvvdJ7Zr2bWUBa+yonA32tCz1h1qVTrkNibDdxYv8rSr5beYcc7LrvCgmPEl7XfjVE/y2iT6q1xYvDJnZ/YdvMkT8Ejqs0yaWiaXYzILJrx2FJIiWVPSX5sNXPW4mINFCrJ7sPXVN5Q5GH0ICJgENAbVxIwPMpvCn5JYWMlScKEOcDiAgSF+eg8JeUkwU6whh1OWmO9ckj2RwOSFpGUb4XHbsKz24mC7zS6fVCfOaL1udB+4ZWpK5Gn0NNWX9aEF9ui6v9HjiiEveWEKZo27zrHZhQHYcMkXk9j9PpzdAwCM8ABtoaveH5N/GRiUymiCGK0QTMOKmdMMbC2kIZPxHt6tFfnTHdfF0oIBS4XWd4wUZugAHglv89M7ZseyXH2BsHnDpggJlg2fR3Ktzo9kAupTzjFD6nqlLEn3HH7zTPNj2WjQprPkzH7dlZqd8w0s9HgXzdItHMaxQGuM0SKVkPBUdFOYQ8jszfVOcvSPhkB8wNDZuhssWcqxH/PrR5e8/Wf/xX/9h/5xp5TCenfmdP6U+kPVAGMksWd6J6dEraJuXUJnaoxAtwslS76jQqaDaHpYhXlntM71ZScn4/5UKeuCJaPOLJlEFmo9GJh36nTers5P3t7z9vWZc06kMIUlSbs75oRqPD8/8y/+5E+5PjW+/tUv+MVf/SV3ayFDaGwFLOVkUIpQ4qVQ7xbGaOS84KUwe6Omhe0qMGG/vjAvF/anj/T2RPUrdf/AQ7nyqzcLf+P3H/n9n7/h9375hofi7N+9IyVjWRfadePlZefj0+TDpfHSJ1c3dpc2vnGk7ST8oN+n2L6smVzkZF9KpZ4iOnE6e3Na10b9sjvb1lnrwuPrlYnx7fsLf/ndhedtsvXC7pmH+we++slbyrqQ8sr9wwM1YmVPNjVwuAY2UqXNzvTEbpOyVsgL76+Tj5fBuRTOtdyisg1jZMg5cca4PzspOy+t88OzMWflMpyLG91HGP5pBHt9v/LqfiGlSa5Q8qLPmok1STY5TH9uQ1TlWjLrInkirgHp0hp/9s17uiWWuztIhfOpULNMinOt5KKiDUj3nZIOJVN6gTv0Nnl+eWGMzvXa8GSs0VBoA6WBZ9s2aiqRviBAaUSEJ2hbNQ1IGubHdNZcqaXq0D5okwbrunJeVk51xUpVMt2cbKPLvK812r5TqoznemtcXp7B4fPPP4doJg9D7RSeTgn7BLqiLWsyacxlRIxAkqYkkf26cblcYitbOdXKslZyKSzrqne6T2pKbAGyLlnDnTZEMos0M2Yynq8XgYAl32i1onIngtZAn4NaFtHpU9j8zyMRTQPrtslfrZTC46tHqEq/I4oic1A8yV8FRZL3kOM2g5TERBCVXcUyOVwuzxjw+OpBgExJZI+mLTTz5aCEtxHRnWo0Us43DyUPc753379n3zceX79RO5mOuPIk76OcA6TXfSqlaiPUGz0bs3Uuc2cbE8zZX66sixKx5J1ikZroAg1Skt6cwyNi4GFIejQTSpdQ4Xu5Xhit83B/r4TDENWnAPjMCrUuAhdCMuhWboCLhcfE4UXRZ2d7uXB3dxcqnU+ac/ngxA7EJYGTz4UM0gMuUJPkYtOYJV6eX1jPJ2ypHGaJlYNt4tFs5ZvJ+egjkt2yInuDLixWkbbq18uzQMyU5dNRQiZ5NJDx+x5UY/WCU8+pekg1X7MrQW4O3BLldFITkQTUVkvU+sngXwClJH/awh8+H0qqGd3xYUqLLHB/vhOwVMQatCp2xAzj1CPGWkmB6SYl1DZVaXH7vlOSAEUviXKSXL1GfLp8QXRd9Hmi9R+Cv0PikEO+CR7eh0MsllJCgqJwDN3HiSvEnGQpZILhO5GzBspIqKtVtbfWyt46vU/WddXzpYcs5DLE72mk4rE4iCCBnEkH080PdqWz7Z2PHy6cTwtLrjEYHOl7km1O4xOAGE1cRdBgCulMztrUpiIz3t4H66mGtx2YT6YZ1cClI+PwR3OTmEPMs2B5ALODzWChVWgvg2GwWuJ4GzpOScbsjlklpxVbEktRatxoO9et0d3la9PFfuw2WApsLzvnN69ZcnhzmEsmURIMnYmjQ60aOMoxWGSwJGNpgolYFjEFL+8bZQ1maUqS2Jw8Ysszdl5g7JhlfD3hfZM0Lrlkf7Wz2on2nPjzb9/Tcb54vGO502fW6KJTGqQpkMPmwqRT/PDg7Hzz/TNre+bLX/4UW76SdPTxl/zy/J5v/8Vf8puPF16m0hwf7s4aUKcxKPS0cv1+5+dvFu7PJYy3J5S4PilpkWNGKwP/MEi1S2afC+GepAGHwwNR79twDXmH1Ms8PG6S056upLXK1iE1WoPr3rk/ZR6KmpCO9ps+9QE1BtxmMLORIkzBS3gQWRKj3GT+mzmYQzPeS9X7OXdAsrKU1G/NkUJCKlbLdA1PicK+yxA3E4DEcUK74y7gvU/1OMlCojWH+r+sPrCksCBIibZv6o0CaJ1TUhdnkFPRxj0LaM5Hgm3Ue/McHkLtJslqbQ8Zs4UvngsQIZKaAMLsuEQy0wRSEjMUPIAxhSwkn+HTIo9Y4TTymLScZfbvAtGoaAg0jz9bOdUqsGEmuhdmBDuQsmYTwoOuCMxPIfPrvWFJDNY5Z4QxWLBVApQx6EmSwhT3SmfSUdvCmBkxndyULHtYHeclfbonOd3AmNEk+VJse7ktDRIWfqZO65LJwS3SACCY5U6P69Rdz3wqUpRoNRVJgchk2WNpWtbwB426sdSqAI7RxbiigIvx7MibTobuoZxJfjMkdrQEJc7qXcVZig0isStpeTPgmNDVKybVKfdJiX7EQko1jqUaIeUL1UJX9FssFOEw5xlO3B/kUWaQPHyZcjyTqUSKsmkJdjQXQcrIlm4sG6MwpoVsXnJGgkXLiIXowXZB/evpqLOzc7+uWE60SCTzUE3UVGDCWhc9s7moV0Jy8XT02abApYSTpzH7J7ZW67ueLJeczA0Ycqw8ACpLOUJA9PtNxIYutmJzhDwz4TnOi6QZIFedI+Yp6s/AswCkFL/1IQ8Foq8y9Qm40NsACg9PptkFsI8Rr2QsdY9ze/qIn/kAJxNzHM1f3GabzOzkJfomNy1zOFhxRN+oHogRUlsOQ/sZnmayLchVi9XsmjEOe4XDm5lYUDME7AbpScFPZpIMWuI//nv/yd/nR/r60RlKfoXzq1d64bMOkMV0oO1zCPWckF0b9DEG13al7w3PGgCz5ZAh6IGzISRuuAYEM7EprpeN4XC+WxR/7MjnhawGKQyMa3HSHNzXytv7yutXJ0p2zHs8PAaBls4El5cL3/7pN2yt8/nXX/Ozn33NWpebWajldGOPpFLjFxcoUIDcxcYZc6BkpMSHl2f26852veJjo86dU76Q5kaZV754hJ9/ec/nD4mvHo21P7H98XusFE7nwnUbvH//wrXtbMl5fu5cnxsjT7xqCzLGpE2gO60LfNtGD7lAo49IghqC0c0SfRilnKRZjgd6612pZWuhDfju3YWPm5OSs54qp7Ryvr/HrbB3GaDn5dBcO9UOSYpegpEynhOXtjGm6GELbQAAIABJREFUzLefd3h/vdDn4NV54f4wE8xqybuLiplSxptYCU+XC20mbfum0oBmk4yvT4FSj+eFsqrZz4TRXklsvfFqOQfTpnNfz7QxmBZSyOl0l6nmtMS7H575i3cfKKVwfz5RlpOG2SkqcS1r+NOI0VVLwQfhLSPjwo5xuXS26xNj7lxfGtkTd4sSs8wm0+SnMkLf39qmZ8k1HGtozvFshV+JOZc5WUuirIv8NsIM2YZRl0o5VUm3rFLTBJcs5Hy6Y3g0CC1TrbC/PAdjbfLZ288U0T6VpIfZzQ8JQ5TupDQLUAS0JRV99mBcjPAM6J3LZQsvIrDkWIFTXW+yk2J6Bbexk4bGzzZ20WynCvlug+JOv4qpdF7EuEgpRarBJHti5qmidaoMQz5gDntXnPN0lzynD66jM4DH+5OeExaOqNESoCJVqVm2O9dtMNKkBmPJhzTZ3cOwr+9Yl0Hk5198jiE/DCV2xZjp/Na5NlUIpxLAUi2SCs0Z8cfG1jb2pwtffPVTecelxAyTXDUpSvlIB7szQS6myaEUvA2uDK7NqOa0NnDrrMuD5HH1RA5Ke0kCWQ/de84rjgpRZ9eQYfK/McSo6nPim6R5y7rIlwej4dhS8SY/huu+s5SC5ZXepmJrvTOnABBJ9iZjdPbrlXpabowe3AR4emIlqxnLCbKJyj26ouqdYMEI7BqmFDT9b2c9nSSdTtLFd+anJmc6VgUY9anf70hG7B4DckQsAzhKT6GspNapp2AoToGCS4pWLdgx8goIA9UANi203pmknz8pTcWGWDrF/3/m3q3Xtmy77/q13vsYY8651tq7qk7VuTjOsQGbxE5AAQkQInmKEFK4y/A1eMgngO/BIxLiIRIPPCABIkJEYBKISXBighKSOLGdc6u9d6215hxj9N4aD/825ireC4lt+Zw6VbvWnnNcemvt3/4XOLitRyJdJMAmdpW/JQIWqB5sUi/T2XWfbGK4atbaB/M8y8OhCoCJPRlkNb+acZe2CZwdEB0zQTuihcvXoe9KERzDk0WRA5RpCHCHYkp6dCTTGhjhhjGI4ZSMxR5pvu+945PMnNMmSh8qzZ1bVYqNYczzCXfnNLdM3zTMg3muXG+r5IG5lZW0saeEtjBPk9giJNPANBTHlH2HOyMqVOdybkwtGNsGCOAGnd1zyAi1DKO2B4Fvru1zTdmjMWiW54AptGBagu3DCzHeY02A2bBdz83QtroT1OJpJC4Gle2Dlk19pAdZd2fynYfpwv442Db5JbVqUMBvnd0mvG7U0SCqZIXV8Foxm2kNrtsq74smT76Jmd4DG51Pf/CB6cdniJllEaPRI9N4izFqZ7s1bDbKE5QIOoNpVKgTZXSGNazC0y8/8M3zK7eXnXg0anPaMLgZXFQ7mztjOcH2gVi+pLSGjQKn97QnuPjG9/8Y/Mk//QU//fCBn/yTV/7+Z888XT6nPdh9KF0jGbt9UGLQUG2POphL4bUbf+tv/AO++mN/hR/9y5/B/GNsdKZ/8T/gt37/7/HT187f+smV54D19ZXLufG6BqwbzzHxf42JL373lT93OfPV54XW5MMVDWqfmErjVgYPZeZl2xjPGzw0SulQKzODMgU7CXjM8oPsu1QSw2ZgpUXN861hpwtjfeZ0nmGH0QRKYWfaxfD1Cr5BaOAMv5Bhn1TvFKYcSmf2sRLc9CzT2E3JxaUWWkzsAaVlrLXf8tksDAqlHeb4hpVJ0puAI5F5XipRKq8vN/acwszhtExYSfZFVx/XWmVLlmirswCiSFPulF1b1Xl+u3bapE18aRPy83Pcr5oNomnZQMhTz+WBQspmahrYlmK0NmtpFVpUTJNl8EcoKbHInqIla7EtM2OV71u1BMenXAhGYb0NWr9S58qwTgkxKtLpG5ItVqxgA4o1gTfRCdvVuxejVmeJym1EziaRDLKiPg4tv9tyYfcbUyhpa2Sd8j2SwSyWyAhZR8zWcoaqlMUY3mmlsm4je/VBjQRSeuAFykmzlSGzdPnKDPqkma6eNXuwFrEnycHc/Y3ZbkPJwSYGr5YQAnsojVMaIy/Fcpk2uO46j8QOTlPsDO0Yt02yb9MCrqNELCuFxkwNSb/bXLHdJJVjMKeSXEEH9SjnidyaDPRdErPDL3KaG/VcWTepH8IDXIzYEU4flnL+QqEn8aFqlqqFcMmN1GE2rkP+wI6M1ntkxlopzLVpWZRsbGuW5uSWJttaESzJTuo9F0u4auwwjtCqTlBwybmK2HlTM4qr5oYdz1WBKDRLIKsE+yYwv7hhA+aSYTfuWJn0GdOf04O0vBDIQj6zfcjgP/adORlVYfEGcFnVggpP+xMtibVcHXflA21WH9ilChi7knJjNspw3F/Tn071CIsEGQ/WVFBKYzZ57I2uO7vtg8O903PWKrkIVBel3iNy6W9TY8eoxbNfSYZ4ygTldDEOOzy1qK2w7TqfSzFwAYBjzQVRkf1Pd5fXVPbiNaXDViydNQT8tCbl1DAt7CKCqS1SgpRKhJL2LNlI+m5p5p296NS0ADPEojosfb6rX985Q+m//K//8n881arGBA3Gh6eFd4ghRNjdGX2jjy0RehXgsJIPXONu7GkZU4zoovu+Q89Um2XWJt1liIXpIOthVBsstfM4Nb737pEvv7hwuSgJQ7254fa2+bvdbvz0D3/G1z9/4d2XX/Grf+Kf4YvHR0mRhuf2LXI41I3I5UGeo5VWmjZ87myjs207/XZlvV5ZX59hf2X2Z+r+NWX9yGO58uPPC7/2g4Vf/h58dR6060fqWLksQqRfrhvPn3bWNXi+Bj//uHLbgt2M173zcr1yvd64Xm+8vOy8PN94vna+eb2xriu9b2hNWLIhrQwvrLsKYR/OdRvctmAbYj5s0fjwvPPhuXPdBlMtzMsZ5jOn0wOny4PSg+r9ywNo81m05bc6UcrEHoWvb4XNJtZb8HE3Pq6DpVU+Oy8srSpBZpKedbjoysPF/Hg6n7heN8xm4o5ZFLbe8xlzllp4fzkl00AbQgt56HR3HpYn5trAjWlqbF0UT0MbIDPYCDYPfvbhhZ9/kJlmnYpoz5n6sCxTbp1bsnYspQMZXzqOZmnndlvp+y4W3XVlmqfU5mvDtZxkvDr6zugyYgXuQKhkHKgA3odZHWLnaWG6vNMQP81UD5ZE56c23ZP6Ci4vmO7afo6dvq1KkxiD27qy7St923m8PJAqYck6SEDJcrOUh9YRcan1gjO2XcOgD3zfqVaJYjzfrjBLk9+mxmme5Qkzy6uhFn3HI/Lcx2Aqhdu6Ym0SS6g1Skga5RHMswzaWz7L09Sgigk0Qubx1YylNgaFdd+IjFA3Fyvo+Xql33YeLyem5STKKWKORCh5olTTQBgq3oHEz2/xytkUhDPGTjN4/vgNj++faDmYHuyuemyAU4ZDfueIXEfj8gzLc8UtmKbGz3/2Ne+e3jGdTxx8j1qUnuMpQRLbQ9umaukptKsgDwdL+VIUY73eeDovuqZNm05L9qLbsb1MEVed702VrCbz+mRq1ojBtq1s+8b5fKJN7X5fjs1uQSb5tcLclBTJ8RSHUsQCT0r1oI+dvu8spxNza7pnZPJMSR8lk5xppOn28ctdRdMt5RFDzda2ifV2ergk8FbUfIW9bT5NwLC8iw4PHJ31R3NhZooyB8a+Ke7Wyp011GqjZpMFZN07fMXEjCk1G7NyxN3r51LAXVvm0pS4J1mf3r2aP1OATZ417in3FhNhHz0bKQFo19ebjPlPJ/lBFW27jybLMpFSx3YS70P/v+89AW49o9smSYH3TpnOYpxhmVBCbtRMje9dOtjuJrViH+jZrBXJy0Mlab9e9ZdtSpBYaYqHqbtZvUszLY2vixU1b0m39/SDsNJoxXh9Xe9MuThuBrmtTzlihBJe4KCHh9JkfOS993vC0zefXunDefd0YZ5nSqvyVzCYp5OMU3PRtO67ZHylgLmaS0sPwoBAPi0vL6+UOnNalkxtIesobAhonk6N6BknbbB5Z48h8CyvVRB4hUHnPMNYG5Hn6ty05W+TvC5kGF+0yAjTu1z1vyUVV33Z15skBQHzuTJuK6f5wtTEDJFJfJfIwqBM8jH0lE/VMlH2htWAFoQdILlT6gzDeX1+1fAD2pbXoE1iFDOfwTKsAYex6h0nU7xMJvaXZaJ58JOffOTrjzsPDxc+fyrawNbCnAsuyUD0fSIKFhpMW4Wvb5395x/5/g9PzJ/9AGtnGBPnX/81fvCP/yp/52vn05rXnZnWKmsf6QnW+PjizH3ne+/l32WW0dh+JN/Jh2S2Jln3cKLpLBXzsjJqlyQhARnJjTRIN9e7NdiSrVaS9TNRa+O2b1yvhTYtPJ1hrsHYg9EFQkYJKDKBLlYZDBkw19AAGukdl8leMbJu1BB4MbSwMZvxY4CNoJTpvviyehgxuzzPSF+8KibsGDc8dkqp6VHjCqippnsVWXcsGUImhgDkkJob/DZN1AY9GdsH8yJKME0Zrx0Cc4/vG+nD2qqAzuM46OG6V1mnx65UUDuSGk2pY2JS6lwLG5SimgHIgPho/rNX2oWSMbV2vz7He323eo5MIy0CJTx7K4oxo3dlz8AFqwZF7JFGMlhKETCD2OIjP2NkoIlRFAjgWy4d4u7pctTSsGQphOdZ68noNQ5jcTvUAsm4x8CSTUwcaW1aKgSFktIcAY3HYJ8cDyspmcpequizz/OUTN+i3nQMTWdjsPnQz/B4M43GNGelP1Qp8rpzU8+KCbiYI+9rDKUmm/wP+8Gwy0FbgJc+3zF8lyq/0ePaELLBOK7Xva4cXIQDh4hIIJiUUL4tkyR9j4yl1/lUSj4Xod52RFCzH8QEmEggGrmIjGTRHKCMGDV+vC0R9/tTTWqPZkb3XbYIJOerNqhpr5DvY0EMp7lKcujAtu+sSOJ81EotEwTouumTdN9x08JrDH3GI3X5clpYplkMm+GMBJAiCRxlFEnKSkmWVVGqnRnGlM+Ky+sRy1ArsUbrlObfwb2PPfrrmgFex/sSiUWQKdeGSVap7a5qMG+y/CNhVmRxPatHkA6W3yHSty0fiEh7Es2oUpCIzSaAyfJ+t9aEZ+Q/Pn6VPAvDXYs6HRrZt5ikrZFG/aXSlgnvnagh37P8/i3yXTtYdHn21GJJeCzJ1NHP/ov/0V/8T/iOfn3nDKV7CtPoaXpWiDSZGwCl4tFFkw2YmKCmITGDCSGXXvnWCznupsGR23zaRN2dhtgsVpBzgw+aBUsNlqnwvacLj08XphCK7b3L0LBwH4y3bfDy8Ruenzcevvclv/qbP+JyWRg3+RsZQLho4/XQQlZa3hgZjmkY3d3pRHqBbPi4sb3eGPsV61fK2Gm88lBf+epS+ePfO/PVFzOXJZj7M3yzST8dzvOLc+2VjzdtlvYOV4drh+utSw/tXd4Sru3rtgdjFP35oQ2sRxB9hyamyTQveChKOuKIG284lW0E47bTO7zeNto0scyVh8cnrEo+tcwz01R5ve3y8GiVZdaBpWQ9w2qjW2P3ynUNSneu68LHfWNEZ6lwKqJ06jDtxBDV2sNwNyjO43ni0+2VPoo2ZKZmG8SEKBjvLyeWc2WeKhXFZLoLIS4NHtqZPjrrHswtEf0is92lnriOldu2c93g9XVj60E7z7SpclmmHACV5FQMIjRZWhFdkgQbRh8qrgmO4BqSX29X5pR9qkgpZWcfnX1dZSA4TTL3TWO2o2gfuIF7h9Qwl9ZYHs4yrpwEqJYo1NagKPng1gdzk0eUj0FP7XzvMtDer6vMZvdOrY3T5cLhKxMuNsDB1xyh57+irfghUYJk32RBtPA7HfO2bUzTwj60mccKO0rZwKBMlTGC6B2GUhzH6FxvIX+oNFIcoWZq3aU19hJ5oMtxdmQZ8H2XJMWkXR5A33d8uDYPxdj6zrZu+No5nWbaKQHIZFBG13rBrGbqmoAYLA0LI3D0/ERJuDv09z8+P7M8nLA0rI2RRbo0DsmpQTI2EshwpabUKs8Bxpuc7etPH5XEcZlVwK0muAg1ChPGsE5Pur+qTsE87l47RFBjYl4Kw1eWuXFeTvLhmVrWHzFw1EALCJus0k0JgmPvyVKR0EYsKfkfXPcdr4VSleBRq8lcNvHlYtJpt9o4RgS3NKp2bbcKKdkCYox7Etw25M9F0ogrKAUpwcWjMa3tGBT1rB6JWL4PrFa2b145PZzVzNvRFasLNI+UqdbcBI37thEKFmITEZIAUgVI+OpKhkEa91q0eTLPlLKUUVg+V2LvpF/CsdlCvy+yGRpjUFue11S8FMmZ7DDhTFAipU9jKBK6RlK/NZlDDEmosjmybFhL+L3JPJIa5flW8T7uz6S7ZxqTGGNH7C73c0HAWctmpxV5XUTqAq0oVSZyWXk0ecWK2AF9yJsK+aaUYmzboJ2qaulADVIcjVQQgmvURpsa2jC/y3tLMdwF7FEnrMB6W6kPZ8mFTdHmrShwoRxScCSTUzrMSH+144zLJm6aeHg48fzywtY7p9Mb0L8PZ4pBnZqe5ZQp7vumgS3S96m4Gu7cMlMrp4eF6/WV29OTztZ6DDZGycCFGGBlsNGZclnlfdfSjJAtQBXo1vvK3IxiG9uuoWUZxmmpBM6WHivWh1giJgaemQb/h+XC61gFmMZEf3b2ApTOaWl88/GV6ekC0amewHikFKfCcipsN2O9Dup5h/RnkrS0YjHB2AjrXL73yMPLlX0N5piYqcRtxucp5YMbdjnYazobWlkwX8E67bRwZlBa8KfHD7l+uvG//O4/4vd//6e8f/89fukHF87e2KdgCqNP8gKzyfAuw9fJKjYZT0+Df/jTr/n+//jb/Mb777N8/1/A2iM7v8Sv//v/IX/h5/8Z/8U28fF159UHtUzMc6NvnXUbfJhm/vrfX3k83/jnfqPwNOl61DLpfayVUzW6r+zzzHjVWWzlIl5BKZyjwESykQNiYnOHlsaqPZhMwwNAOU30qyaNaS40k7nrPmRiX5pjY9dwHIaPXQswW7AC+9QyldHxBsVLsigqlcLruhFDhu4jdhhGjBut1XxmjE5XSIMO9ZSSygNI55zqdm2F8njhen2VAbNPKS1OcKEEZgLng4nhApZqHtfHeyhmjDPNhWm+cH29McYGyCfFGXfgXRL9uFsOUKr8YVpNH6VB+C6Tez+kqhu7D2wMSpkpZaJ7Zx+dSmVucKRtSmJTGeOWn6/eB71lWRj7xr5uinbPGstQDYdy92mRmXLQ+0ZET5CxsO9r+jEWiOlesyTfghjOsGBeFthu1AJTq9ws8FHx7qlsshz+0yOquO5lhUMg01ouIwpMixIKA7BWGd7Ze6jG6iJrWI6D+SJm8VQamyspdRs7NXJBZibbDZdXWLhlQlsuYYdsDSIC67lgM4EKK8ZUG913+YHawBMIVqKmSARgbMmqq60kG2uCPmhhWJMUzg1GzSclEqQMmdq/9Q85SMYxe6pHLcniOGq6DLX7vbapJqOkTh337MkCGuQy2INpFvC4ZYiE1DHqkyLnhh4D60adjZGssxZiDx2/WX5EDmhhoXAWASLFtMTr+8bUjGlW7dOipKWUUb4+x5L6MHJXcpxIDGNsCVQKfCxR8Fj1zHB4OiGfJksAZXguiKX8Ce0+8z00+ib2X+9bJuHqc/cMyCppoi7MrnKkgxhVSgHTrFhb0Ewm7PLB9ExSzHelhNKWY2TvonewZGquR2B7R0luhZjFyvUuNvGxqIKc9UCLAHJ5O08ChT2f47QMsOwv1dsfbOzAbOQ5IdaUp98YrndtmuTxRbKO4S38IyKILrml54Kq+5DHZlrUFFPv1Ed60KV5u0gVAnQ1dunn5OYu34Hgu/z1/0HKm5rS3rvuo0tb7y4ENvqqLQyFIwJPXxl2YDs2DN2zWYa+yai1tMrUZhUrZO55bOvEVNmYp8qlFt4/nnn/dKY2x8cuqQHakIaLFnrdVp4/vbB+szM/PPDLv/4jvvzivcyLv/mYDXzJgixEWfQ1clsvE2K3Rh87o6/40Asz9ldsX9m2b2i9U33H+ytPk/O+Db58OvHLny18dTbmxXFXStTpvLDH4Pp85XZdeb4NepnoEfQO100HdzQ1/VbQEO8TPkRRDjcWn9PErrD1nX7bue2iDa9bAIt8lgxRDieZ8q7bYNsL5vBwPivitU5Qz1zOZ6JU5lZYd3lHnQ6UF8jRg80NqHQv3Hbj1p3Xbny8vjLXwsMkiqWbgCSLjGtlxygpv9GB/HLdBCaWCl2shb6lLKQWHi9nLqeFUgfFnGLyfKmpq211Yrs5NOnqt71zqgvbtjGK87q+ct03tr1zfR3UtvD0cGJaJqwF5kpYwtRMtVqIGKnR11a2IKlI96G46b2zbiu3bWW7bSyT0HVAjC4frLcuA8Qx7tssH+MOvB4G3NXEdgtUaE+nmTkNhil2Zx+UjCIvCYBcLifJyYazuejjkX4pY8hLZ1s36rJwvjywJ1W0tspMoVZFqWoodjANirUURpfXiBVJhjw9rM7LIhNkH5wfHhlDqUXaBmUT0pSCsveOY0y58RuhGGybqijlddZ2zSXXmZaTNk25LZyrGDEjtyulSlcvlkjFd223BBgJeNJWr8hQ/TQptt0qo6iJHebaurkkWZIM+r1hkBSm55Suppre2a8CnefziSii+7akr7uhQpWxyINgdw3VMTzBDJM5YIIZ19uVl0/PfPWDH6pfD89N7dFhSxIhIDuZTda00LB+Z720qbDjzNPM7eXK08MDVkwGuvctpHyoqiUCUPKQJOi9az9mLhBHkWp3JtrYN+bTciwv9atASxZDFG2qamvsm+rACPkIHHGr9/8LbXQsU+YsUaljq2NBMi+kjwfuPkLl2AIT2AiKG2FFKZrunJcpfUH0FsraSJ/aShWrAsM8we1xbKX0+937fZNkwPWqdLAjLjc8r5sdYJXlxlVeGgPubJ9yrIU845ON+3tZQw17LrSzGTh+JijNLDdpZpKaYccSjFqqvD62XQBMetRANhj35uEAvLTxGunjFcbdLJcgv4Nq+TTb27YvnA1japVWD9aipXl3HI+PhuMcQpSWF1AkmwExIJWms3GKYwg/EoH0SVslgaYEUIrOxJJRz2pw1bjLNBiqhRJeuOS1y8/HtxJR8hqqUdU1UUOuh7jUBMypPL27cH19Zdu0OSyl3BlUo++4DUqZKFaZm2GhQdFz43rEB5c4NuIT5/Mjt0+fGLvDkh58AUGnuZrksa/MpxmQ11P51lA51YUSjlfD+g3c2LtxPg+uv9gp8yMQnJY5nx2x78KD4dBmAee6DjqjFN2+U08T/XVjN+f1pVNrShc+dj7/3kJ4vftWaCjq1FD9YZ8Zi4DVQkA3bMpwDZp8X85nvvjBF9w+vjI9Vk6nieUyUR8eseVMqYtA+f6q9zWm5Akmg9CMOs+cwvjse/Drv/Elf/CLD/z+P/7A3/u7lYdT4/RZo01GDKO5009G7bIQGYaAZIOHpeDvJv6P3/sjPvul3+bHf/aH1MuvMFHwL/8l/ty/+wf85D//b/hv/3Fl267su2LKraqGWZv4J9vEX/s7K48Pg3/2VweXR/WK3TVcjdW4hcMuaW18MjhvYiTr5aC1DlbZ7ViYBH3LPqBNhAdLm7ERrBFMl8J2VQLWNFXJ7ZZCX2ue6br2lI7XgdlOwWne0osxhzVXGldLYN8anJlYt0EPo7W0ARhBR8MrMdOKkpW9O9NUOUxgD3P742wDo9rC42XiG39RWE8NQAa5kUlXbwwMnWUl2beWw3ipWY/S9XiZJ9ats66v1NqoU2WYQJtqVaAzjhX1CcIEVMeHOeYBtck81yteGhYuZidd92ocgHbISNreBrU+ZPAtU9uMGD/AFhOD1kanpJyqWIGeqWnuuViXREXnU5dcfHSZKMtQR+zOrDECetL3sIjlPLUGXSzIOhfW3vGi2pyQg5Kwi9IvhwXmkndRNaxPwFxmrtuu57b3BP47o1Sur3mNaz5XRLJOBUYMYKGxR2cxSdQtcilq3/KaSX8qXB6bh40CteYSSsDXyMAATPHwia5lql0QNCzPgSgGqWboVvDdGWVkmmLBOkylMcyoXlRDAUnudR56VXNRc2Fj9lZzOfoFlydUSUaytax7B4skAg1gCViY5FJm6T01l1yecWfIBPKEUo9zsPAzea7LgqLuwV4bNdnRlv2fgJZ8ZyJ7mfS9ym0i+76zzDN1UiJn74Ol1vuC6s5yyr7AMV73PfGXXMJEoxeddaeTzqERRfW45SL5YBQalAZlyFtt92DKa3HNZLdDVtYDGDtRJYUuyW72ZJ8ej0s+9YyuZ602lICa74X4bMnq8ZFnUALaVrO/SnR6OJSitMiWITpdFh3VjMPf0RLJPrxt1Q6lVUGRpUKr8jeUFL9K+sbx/oOVyD8353RkJRE6Lu7vhcfRG45kgenMPBiFYnbrudhdS0FnUGpnjDfGljO0SPY3/zd3PTQ9358wgVdjG9ghr/3/O6AUI1NjeDOgO+h89010agMrkoQQ8fZyIJNl23ehiCiOuE5FDJtasTwqHfkuYDBbYZ4Ln7278HA58TDnNq8PagxSUcoYzu164/nlhdttY1ku/ODH3+fdZ49MrbLdbuz7qgOpTUJ30yRLFOy4D9pWZPTZxybn9O0G3on1G/z6AXaw2glzWjUeJ+Orx8oPLzNfPTXen4I6blw/vbCvO6ep8LztXLeN4Z21D677zkrn5XWj1YWtkx43HSueiWg6UEYivR5q5Etur4sZp2VimoJtGM83S+khGSXu+G3wvIKbWDlLmqM6xtPjmTpd5OpfjH1ogyyzWDXoe6RMjcIo2pbdtuC2d65dKXuPp5lagtkqhA5bD8/NfqamlSYQ0cnE+fRqoNDD6X0QFU6L8XBemIuMcDGllpiJOtQmAVZbd/nT2K6faYX9dmPf5XG0bjvr3rmtO6f5zPl8SlmavLqsVkrS7yONDCP0v9XgDJySmZwvAAAgAElEQVTCrStpr3clp63rChZMrabPwMEwSCS/5iBfSQaKnu0xxpvnjqUBZRah87RweXwUlXyeiOEsh3dVDr+ByTDcJKMZYwj0Se+WUgrbunHbO6fThWmZZDjXZBrZquRyOhwjQauajWTk9kGgQgzPeM/BNC14wLqttFkpKrXU+4EYqhr6bt0VDVsQ6ypmphosjzM9gli0DRrryrqvTNPCMp90/VJmZFUyMrOJQVDnljT3wtj0vWWPlttAD91zD+ppSsNjsUx8UwMcRQRjS/BhDMd3ydrkX6BDXgvYwWFm3t15fHrCStOzHNpMW1Jta5PsQWxAv6e7lfwu4drE10meQB++/pqHpycZ36JB8vizzeSb4mTalYnWXDLKuJuYNd6DbR3aJH9zBXeW0yR2mcY0/Xd8i5ZtxwYRNcOkp44rbaMnS2v0zrhtWFjGRqtBjprb5KZCKS+cmoanMiC3ZPRFekGoUXb2vjGGMy2zrkvNISA3RrVIX9+T3VOyrpSUJ2gT5mkWnpbOe6dNE22e86zhDjhIonMUraQ2Z0EXRZ87ACjzU7WA4UrIbIu0/YcEJBJMP/q9SENFODZDbw3K8fe9d4rnFm0gya9eM7H3zClj0EZ6EA2xYHRWqAqWkok4mbYVIfqzhrKUoiTdx517k+sR2lrG/R/npYgEn1WbR/dsvEueeRu1F6w0wqtYggcrIdC7M1LWZ/LEO3jgbtn8VYG2hNFOE7YeoKA2ljKgtjtDIfLcKWVK2AdqNUbXOVTzjDoap9oK19uN7gdbK6neJpDv8CM4CGuR8tOSMjWBLAkiY8zLhbnNKAVO1ypwqmZHJS1Ng+h6F/3ww3LnSL8R/V3vRIygtjPT9Mr1+szp8l6mqwZW8rtTWMeuxVo5NpYpwHSIUtKvT+u4Ugpj6zL6bje8O93UHy3TjDdJLiKGlnxosAicqYmo0Vynwskqe2u8rDtuM+WDc3kafPrFyuO7E3Pp2N6wOSjs2Gh4C+ap0tlzq9+YWoYcRMNM3i2SYXeWxxnfNqhOLIG3kma0iocuo4E7pRvMQbBqMG5n/XW7YC04j8r3f/SOX/vV93z4eOP3//Aj53nm/M8vPDWjTIXFjdZha+oauyH2lwcLRjlXfjEGf/O3/zaf/ehL3v/JJ8ryQ8oA+41/h7/w53/CT/+r3+F/+ieVncHeV2iV6M667tRl5h89z/zVv71ybvDjX5mYT4H1Al0AvrVZ7MruxNLw1x27FAEEyTjFihi4Vf6Qw43SWw58Cs+oZizWGDhtOVFvQYyrhr826Yy8duoUOLtYd4GYWZY/p8xaDAmhwBmqWYBZVWjEVBjbKoC7OhaV6pJ8jdAZ2xiy4wy/Mxw1HZJeOJA6XYpVLuczpdwgshZU9Srqc8RQyJfrHvwxyN6EnqmU6rEAhaiAJLmWRrTV7nHfdvTtpjAG/X1J0EcVA+Juqm9GWKUtZ8a+sW2dWgUyWEkflFQnhCdQUBJwioPBnNWjlrvsJcJpDEmMss7ot2lJSAL4ZShooKbX4bbn3LlL4t2SRWt06iS2cljAGDKDdqjLiXaCdb8Se2HdOgwBPCM0TFvIMgF3YhhzqwSFqJW2GH0ovQ3XQO5dSwzVgJZAD4kfqCZWM0ayM3tTsFF1iKIEyuH6vb4PPHaODZTVhtVGm2YxbiLYfAgIOhbdGNEHu6sP85TqFMvv4wkqeWBFPjs6IkPeaQn4FIOO2E2h5vZOGDBQzcttk6HePLJHcLO0XEkGXM6xVmpuckgAbceSZDCU8Y48jZIFbIdcjfsyRL1F/hgrd2Z5z884htPplK4kzVbu2xqRqUouBrPTUG8koN+jcutdXqg5T+w+ZEMQ9Q5gWHY9b79UeKeqWlWsMBaBr71n8Ic7TCUl51r2WBFzqYRp6Uxh6572BOqDai6ghqt42hjpFSTw35B3VLZlut+HVUToPogRrqVL5D0dPZ+B7GuCxNVqPqUJBBN5PUO1ejRJfP2QmOU4HeT8g+W91T+WFYYrydHzqh+gIIAJn9AiL9GjcgDa3/LQPGZAH3TPXv740pE/E9TLH+zmIst8PIjd2QzqEAmgpKyeyj0NN/KMOPw69SoYpSogq2Q/+13++s4BpTEKhMzFCOh9z4Jo+SpZvkB+b64DIY3Vg9voRO+0DqVV6jQLCQ+/32k17kn5rcbjZeGzxwuXJdFgQhIzE/BhYYzobNeNb56vvFxX2jTz1Vc/4un9A/NcNCBK25MHpUAgy22DtLQkKk5usgc+pL8e+87++hHrK+Y3ySWmKod+d06l8sffT3zv0fh8KSysbM+vYjW5Ii9v4dxe9wTknJsPdoK1d3q/KdGiNEoJbAz6vrP3jPLkSGo6tJT6LrUacwOisPZg8ZkyNdZNw1nfd15vK7feaW3h4ZxeG9U4z5O8rZYJq0bvrs1/17XBjL53Sq3sYXSQb00PAWG7sTtYWXisRitBlEqtpBmvvCgMvdyTKTp3CxmEH3RBqGyj092Y58bDqbFUS9N39HvMBVoglJwqgCt5zSo8EexjZ9s3jMYWwbo66+Ys85llWTIuVsCPACoNwKVUrDV5UPWegHew7dJp3/aNsTvrJj8k1Rl5XNRa7nrvbaigtpIx1WjD4iFjvUP20ExNSh+dZordPT9cqJMkh6UWbFZRqMk0u+9UPPCuiHL3oKZR3+7O6Dvb7crcFsos82or0r8f8euEyfw2qa5qjhIE8EENRYOOoca3pWH0y8sLrVT6ulOmgCIKtwZA/XcMAXACZ1WkJXEcRDMYwbCgeuDbTi1VckGDMrfcZBp1bimXNOY6UbBkQg4Oamcpk9ht3tnWVdvRaWY5LUo5rBPbtouVZKEUyoxWNyRXtHBlLqMUJmEXToydAvS9c3p4pBYBcdqAlWxMjmWEEjZ6SiIdvyfQBYd8RWyzn/3sZ1ST9hwfjPSOIO9TJPjajq4Mu/+VI1NnI+9/39lHh9vK+elyb6BHAoIlPxuliaGTDfJw+X4djJUokVJOMRn2bWfddubTSVuuUmRAmZ8mIiOHkQxyuDZntUjPD8n6CYEV7oPbtmorVitLmziiaY/z3seAWnQrqu5RiW9thULFUQlpkuJcxwun0/wtDyJL8CjvTNYHvnUVI89NRQzb/Z3yEDvmdn1J9kVKA/K9G8f2yY5G+01+cUgALWuBcNqiAWqM+1byWML4/bvHvUE+NqYR8VZPcxN1+AmRG9e+i6U2zzqv1MTUlLW8JfFAvDGH80JYNrTH99CtTUkHZDz0hXma75KzuDO1JP3WTbM8RY8zIO5NfB8h43urLPOZtSg96s6+CktA2gSsyQRMMuVQAqw+u66HGs1jswzzaYHnK5ANeBwCD9WA3jtmmVp5AIJx3HcEuoxs/s0obWKaK9v2yt5PNNN2GRO70LPxdetQD7kpCaDpz0mViXrjfAamU+Plm2eenh5kdt1Uxw+kK1xsUCbV71IMpkrs4/7+1jg8JzIKPBbO743nTxutLey9KzmvCCQnWcG4jNk961irhbXret3CGZkG1NFS6NSDvReeP66cf6Dknti6kjMiCGuUFtSpySQ5WgKuQfdNBErzRMQMmyfqpfHy0xeuHzam0+B0XqnLN1gTsNxqo50WohrVGlEabwbHC2VaqAzevZ74E3/q+/zipzv/9y++4e/90c/5/Isz//SvPrG0Ti05CONElSdJGPiQ/KYB758KP/n5yu/+9/8rf+azH3D55X8Nq+8JNx7/7G/xb/7053z9l/8uf/3DYO8p/50qfR9s2wZz4/d+Bue/+cppeeSHPwrmpagmtM55rexWKEWGt8MCX9OsOjfFqhuV1QVK1GrsJbAuKU0t6tlqstRKhWk5Uab0g7SgzobFiX7bmJfCvjs+BL4Oc8wc90Jlyt44lyQ0oijJ03NwWubK2FRTWoFRFE1u48bwSJmrYdYppanfavXea0W+n4ckp7WZSy3s287ryyvVNNhoXZ5RDybpvlWxR2McA4/Sj1obDC93dcA8TdRW3+aM0RnJmCha/xMMDtm9R/oChWV4iIb4QOzZaroHI1UW3NMbM+3WMl3TxMw4gAeFSByegMgrJxS20qNncqql11uCArl8IPRd3Qf7vmei6rHAKIzSkiUeGSkvD6FD2u2FBMNTIlkKURpTkUX6SPnVweRQ6psCAm5Z+0oCZpWWC6muz5aeexHcwwCsIPuJ6BQzdrm351DrmdYoZt0YJmYWYlmQrAlAS78RyeCW9LiGpIDWZrGHvOv89cpt36CoZomEkGyMiDsrSlY8BwNX9dizTwgTo0hJZGnanOXqKFkW8XZvrECm3GrOENoQuUA6GCQyaM6f39M0/WClkaAIqo+OvXnq3Stk9hkmX2BMgSOKgRAD171riRA7ESmz9+wOysGkFtCW3twCV3phTzDCCvR1gBVu+y5PPFSTa4KDHiHGWEgyWqzIf4xMpQ7jMJo/am/k9ZX0WmzikpYi236PRaM2AZrFjj/N0Fr/27LDvEccs77dwbfeHcvwqFoEXEb2xS29ANVziUUEoec0ZxlL+vfhXTXizRaAKuBoJFgtyZvlMkvXaQzNetmaMbem2Q3/1sx9MH8zmIj0eDoaWZI8UZLxZsdi/Dg/jmdX1zUSILFS8RJ34HVk0EHPPsurEoETOsyFoSuBGt4AJxPWMLV6D2j5Ln999wylROsj9Z36EgfocbyG2RibZWFPiVxXgStTw86KBQ+MbmkAh7Z+YRpYHh8X3j+e+eLhzFyd3ff7BvZ4cEbvPK8bz5+e2a4bZZr54ssveffuiSW3FJZAUXJLmVp6fpSiVCjjPnwdDffond47va/47RW7XZncMevpwDXjY2WKnc/Og195Kvyxz1UQzG/0seJ9y4LrjD643QbbUOHyPtgR80cEgIl17YnKigVhhiiAURhdbJZ9qGkQa0dIsI/cyFuhJ/CzO+wedBcIdTpNLFMa3VnhsjTmqTHNM+5innjA2FVI6yl1pLUy3NjD2ALW3lm3YB2Bo3s4VaVwmTklihI0UkPiIa+EVo0+jEEnrFIQKOkx2Lq2ME+Xyuk0MxVJ8jwbMMwoUfWCI3ClJ91Qac0aXLc+2LsOwXXvvG4b+wbLaWFeFMmuX4Uj9lLbsyySJQ/PUuh9Y91WelciyK13tm3NYeUw3FMjXIqamFKqEg9TO1xcg/HY5ZlxyGYMhLLn1rzNM9OypByIOxugtWRnoMO8ThWLTu+Dvsl3LBmY9N55vd7oe2deFqpVekEAbMjwuByHSynUMukzuUCkcTCTDlbSLhbd+XzGSuF61QB3JFaQqH6YDrPDl0UFUJ/H+05xY4/BFgN6bqZCvl42zSzzxHSX89UEQPL+kAkO80nm+mPcfXk0kHV877yuV7ZtYzlfWC4nWl2oRaEBNeN8C0WAFYWxK372nrhmkrBYyYXrcAawvl6VcFZlxB/Z4ASVSNDhkG69Dex29xcwSz8mtKF4eb2yvq58/uXn+Xyo4TgiTbWJUlGMZJ7oz/OMpPU7ALGNIcD09cZpatQqbysnvQoQUBg5OBqS//kYHMbb7gnkaF2jzVl6cWEwTTKQLrlRIrdteORSKZLpglKlRkr9EujUdkRSpdGd6aRtdfgBwhxSWL0vRLz5duSm6gCUpHWPe/GMpPo+nhalxNyBotwcf6vAHxHrb9GtkQ1oNgkp6TQK19dXFXv4f4G4ng3ukTDikekf9+bUjr6VY5LQgJIbtdTqtwy0OKSs1Q6Z3gE2kckiJdlFR2Mn8O9YdBhi7RwxxrWlT1ReV72rpATRk2J9SP2SoZg+Sge7cvSdssh3KccjcL834XeczqB7zxExly+htjmVZJl6pqCLuUhGXKqYfAczCTJufAxsanc5nrkWVZbLk0gmgOQS8vw4zIvVjOUEc9znkOx3pGyFfF4c1dLA70PAYaS7nE+8fPrEvnZOFW1V78BfMq6sQjn+jZRTpkTneA4ke9S5PM8Tv1ifeX1dmVsVCFuTaVmkhCs5SOvsEBCtQV0AHJbm6OFEFNyM86VxvXau28Y0VyJWliNm20gZ464hzgu448m8kkdcvge14PuuMI3VWd4bLx9Wnt6duTxMWG7QSyDPr5QjVpOB69Z3lrLgZWMaM1EyhpDAojCfF9Zl4+NPb8Rt5/SyMS0nTnOF7/Vk3a7yD6lTDjqq8VgjTP4w82nii6/e86d+s3P73zf+7vXK7/3eH/L4dOKXvl+oUSnFE8RU5Pnmxs30vQ3nRPDufeP//INPvPvv/gp/8t97z/TZn6GUC2Gf8eM//1v8W7/4T/n5X/sFf//ToI+qQaAWbn1n3wY+T/zOH3VOv3PjX10aP/zBhVa1Ea6xaSk3TZQJ+jToV2fbdmxKc/SYaIP78O9FXpJbsm9qFEnYWtC62PHWJAuaqtFMzLC21DwnCo1gHxsY7N6pMTNsI8LZAT34RSCH6azjGKpdP3MQjK1TFwVlOOBxw2zSGc1+Z9XpEqecxMTuiPQHKfLwx6aJvkhWFy77CtlYqFkJl/+kQBMY3TnCGyAkt/MhsANXX3b4N93ZI/lnJWgTSgC5n22Gvw1dhBi2nozPOukscdkSeJdpfFiIdZeH/iFBLnmmlgTt3V1/7er5AmfdNp2b2ftUGkf4wOabfF2PmhNAOKVIQqXh3RPgfwtYqGF5D02MA1NdHLvjnbvXoAG+DxlUWzBZw6hKoXUkFSpSghTT94sm2eDBSI4R+BDDsYQYOIeXTg/dw+PcC0uvRVNvSTPC91SmSGlQAyJSXlUqPhTmgimJcaqmviwlWpjT4mCqStocOB47Y+jBUuKy/GTcvjWvoVp5yK2O1debr6HAowiBruqOVNzDxICy9G6UDP1NFiU/Palq9BgJ7PQELfNPyt6MZF1nrbEE9kxyqIL+rEO10axCFfC5J0tVaoa3/qMkoHl8Js3TUqUc8fMWmjOWU+O2yxhbi4VV4Ecks4lMxk6AbqA+rlhlyjmPsrMbFJdXk8fBxlF/N4bq3EHYKZlQfTAVJw6z6ARhPPtaE/Px6L3uTB3s7tNkpp69RKP7yO9mmNudYRn3emlZx7XEOJaXZgggzHNK/XXRe0w2ASbwsJRkqeljSanh+dmR323kPa7pz1U4eHvZ74vKx31xXKtsKqSj1Jx6D6v5dljLMYve/1HO9DqyDzYWSFodLhBakm7NHTXnBDctKI7xdhCpxmhHQ/qd/fruGUp9TZOq/KymAYt8iCO0odZQIb8RNm1GWpthqpRJQJJIY37M2eDO3OByXnj/cObxYUmwYlckNoqxDR+4KbXtmw8f+eZ5pU4zn33xBU/vnpiX+Y6PCmHOopCHSKnl3gBbxN3HA8RI2HxjWzf69orfXqi+MbfCfJnouwZl3+Apdn70pfNPfQafPwSncF62G1vf8DSc9BDQsW2d2yq/m+5B3wY9r2lphlsTUJWRy31w11Xvu7NvvPmc4LxsOxFdMo9ZsrGtO32sjJh4fhVTojbji6eHbDzV/CxTZWmFvTvDNVj31GtOTSBRLUbvOgw2zwatB9d1cNs8JT+Wy6dIcEtDlJvrgDYlLliV51F3v0sjY0jWs47B1Iyn88z7paaPTqE0Y3MNg61OnGqRlAWNxxFCqu/3LpkZfQTXq0DG2hptrlBdTWtRAZsyHcDyED88UMZIAM6dfVvZt85tveKhZy0iDnyL+2RVjiQPWGxiniYGjhsstaXRZmruj+E5D5VaipJ5llm+Dflj3f0uJbXs0uqsqG0b2jzte0/mhsxvX16fCQ8eLg/YtBAuerXMNNOHhwMwSxp07BpUXBGn7s627tiQJ9P8cGZ3x5KRNRDAWYvhjG+xffI5TmPNg388HCV7DaWR1JiwuWBU5sfLt5LDBPaWbNrsSIBCzQeT4T0H8+Kive8adLd9Zb3dWE4XTucHrFVqnVREIyTPKjL9q62CG+u43aV9AVARAJpaZyLY1hUvRUDf0blmEy1sUEaiY8ijZuQ5UrLBPVgyxzu8hfPhFx95+uw9bZoTFHf5PKiz4fDAOajzJZuPIIvxkEn1ds2BYV9p4bRMLNF5w7for0g37pbKQH3GfZccgYxHHa6t1hhdbK9t53y5UNrR3BZALJaKUat8v5od7BCZTY7ewQ/G0tG4Ic+sBD1kimgpL0p4TH0HDRSZOjSiH6mbngbq+QTjwPXlpud6PhKo9Gf4sZrwQ7ashscO6XWoKTmagAO0sx6Yd9Z1ZT6d1ZyHKCdxbFbt+PcOD6D7+iT/U2BQiaOrFFB2l8BmA11SDis2XkbzHo06hxzk+MwlgQuH0gTa5WcmwSqCNDbNZpvs52LgY0/Tfi1iqtV8rjTEeDZ+pTT2sRF9FxATLoD7OKvyuaREgiZ6nu4vv3Hf7B4gqFb7BadTGdQ6ZZSwvH3gYEYGVoOS3g+eZ1Gt2poeBpruQ15JLm+Sfe8s86JG8WjQiiQxkefauu1Ms97hEcGUP+tgTuv7D+Zl5pnC1iP9swQgt7Bky1WcQfGmIbwfDDex9PCBu6TchRBIViCK883LlfPlxFxmvFbMZWpdp0bsPUHtyCGz4nN9o/eHASOlkDq/Rw8eLpWPnzaeXzu9NNwK86zrEmbyGWlG0MRKGV1+fZGU/ZD3SLSQvwVGqYPrOvj49Y3z6QRFQwRWqGPQ3ShL+qAwcK/p11IYRf55pTi4TO7NGuenM9cPOxtOm05i9Uxij5ZlhuJYn/E2U8qMp+zxYKqW+R3xBBdr/MqfCMbLxkOZ+Rv/4A/4O7/7R3z+8BX1cabVoHkjqs6XOtKUGYhiTBjLXFjfOf/b3/p9nr78H/jxv/5AWX4TSsPe/xq/+W/82/yFX/wl/tLvfcMfroNhxtQaEc7aN1opPNcT//M/vHK+dP6VeeHzd2KraEBRqqu1DWem+qDuga8ODfk/FtNwEs6wlDig/sVp1OoJ3FXoxloHkw0uDS753bwE49zYXoOxV6yZGC8J9HrItFb+OhMjdkpIPu0ucFIMUvUBXtJ3aCclYOrb5Z8yIfmk2PNa1otpRBFw4DaIUYjsaC0Gp0Vnx/W2cnjbRb4vEYcs3JO9DPigVGPbt7t3naPgnzGkVvA4fCi7ZOam3qgkWiyT3mQZm1LVihnRNwEl6SdoVTnQk03Evmvx2wc9VvroGkA9n/Oe8l5G9pxCsbWMeVsgDHd232QTUZskUMVkN+Ge4JPYwIdX07qtTHNQa+MIDzn23lqnSR5GLjxJBoZShLUY97w+sXd5KCWrKdjuvoyW7OvbpoQ4L4Wp2F3tUGu5syPunnG1sFthoqRfjFMmpXJNIYneMAF3Zp09pUtmQRlaCmjWDzw6gZgrxQx8hzJRpwmzmnHsB1hdqFXKC7PG3qUKONLaCCjphyV8dIClZYPJv/MIWqG8sZwjnDqCgX5vz2fquM6Q53YuOo6ULhtBlPQMywYwON6BnEUjg3qKwI9x1D4OuZolq/pNDWOm31O9MCpModro5Dmf0kuvx3VVjT3CZPwQqqQB+Ail9aqtG7nIUq9y+Aoe3ZMYtQKjerj6fXTWFSGQkLJ5MYsSMMlrPtJvTQsMfdbi6oH2etg/eII0b0xuK55elQKOjyWbHf5/DAiZy1eTR2cEYu0cigBtlGkJaEImGRYtYDc/7qtT3GQbahkehmvWPm5PLoGqJchnCbx7T38k9a8jFysHYy6SCXxs2MJyKTwSuCxFCZFWEActF53JsLL7nxd3SwKB1FqglvKtfiahqxKSynrTHC8mWPb0OpHE1vb8njUZT3mNv6tf370pdxw3J79worgayOHwU+hd2wl5jkCblKolh3LeVgsunyAjeDjNvH+68HRZmPMwjr6zk819NvF97/z86088f3phWU68e/85T58/cp6XlHX4/cdriNJm+J7QFSoGoxitqOCOLs+Ubb1xXV8Zt1fmuHIqldPjA21ZGLcX+vbCZ1H40Rfw/Xnn6fGVp2khXjtXM/a9s+8b3bQl3ffOPpx9wE5h82A7khWKZGZCkyX5KEfx5UgFk6lha3rPRW+F+TzYe9M1bo1xWyEkNfv0eqNEYWrG+8dHnh4f8t6JCfV4Xhg+WPsr+66GcZ4XgsJyPkME+y5ztuGSuL1sznULUfCKEs0OpNjDiVIpLfAOtQanqdI7oqBHbtYBj8o+4j4oXKaF88kkZ7Smpr8aESpOFZiaNsQjnGGSIpAsIQtjHfJPum6Dj883sV/alEyA41BravhqI4pTS9MhcNClw9j7YN2VmDZuufXrzrZdCedNFklAvgPDOza1HF4h3Nl805/Zs9jft2QCHEY4tRamNmPLzLTMTGVSMZ3SeLo2kkYnZMAFEPZ1Y7utSisBRt+4vjzjw3l8emSaZ4FFpWGutKpSYc8D/vBXcd9w3yguEK6PUPJDX4kBTw+PrF0pakp6kknvwXBrk4zCD4Rfw7refYaGv0Pbv3VtG0rrtHrm8v4zjlQzI+6gbwQMdI1qbmNaafjeiXGlp0wrhsMY3K4r622nzScuj+9SonOg8jr03YMomZy17QyUuHYwEo9t0bE18EiJqwfz5aShs0jPTXCXGBWafm94MkYS8ChHsSJZBqKlfvjZz5lPC5fLCasTzRpBxzP9qWTjEZbnYXp6FZBU18Ai7kBiD4d957QsKkDH+ZtQOhEpA8miHNzP6GFB6YOWRt/DtV/pfSj62gp1WrSdqwJpcBJA9AQttNmOvucZ8BYB7Mm+GyEJ7XBnmibmdgBp5W2zWAyXO+qdTVPJP/cAPNCr4Dmoexi3lyvzwwRocLKaTEaMMQS+t5bbMxeT82hoD7k2x4CTgISPjdF3KI+4d2oWZMcSPCj3f+8AUCz/GUFKz2Df95SNbrQqALhmHL3Vt2bkztbJb3FcExD4nlAjhxytlKJtsuu52sZO29/o/fKFK2kkq6ZqX1f2NHAtdbpv0oRTyIOP6GIstmQIjrf7Jrzo+M9sUBJwKemFEZHM4jwb5UVHLgYq3aCOkcOgp++a3rdIOrl+TvoaJSvrLRo3Elj0O49d0SoAACAASURBVBgn7y4XA7PkM59MPI+uDjsbbfYucDJlwe2+2T6YYU5bFBnft53eUwJvCbaYwNtRwLpkR0TXEsOhmt+vASH/BY/OvnfCBp8+fODdZ08slj41PnR9uwzorWuAIgMMisn09P9h7t16LV2zu77feA7vO+c6Ve29+4w3PhCZYBSCYgFGOMRCSBFIRPkAuchFriIln8H5LLlGIoLESRQUxYaQA5FBssBJmgSMG7t7n6pqrTXnfN/nMHLxH3OWue+LlNTq3tW1V6015zufZ4z/seSiuyYZFpXmZk7rzlKMmnbaVsgVzucdKPG51701Lz0W1CwbRoC0h0VWomTGyAtr2AWWZdB75/mbM28ej6wPGR+JXFCAL5OeEiVsaYlE7xvmGRYB8baCoYICspGPleNnK3zTOb5N3B1XyvGOclyw9Y5UK4wCyxHqW5I3MbTuYEdsMcp6Jt+9Uu5/n186HPjen3zi4e9V/pff/pf8s9878Gd+8UGAiIOhzC3PaoBrY9LDclVJ3B+cd4+T//V//iFvv/dbvP13HjF+FktQf+bP8ef/+tf85N3f4Tf+0Pl678xpLHVV+cXpwjwceFmO/L3ffc/93cKf+7N3PCwHUpZ9M41Ea4MlZ8aqBX6/dPq+YzbxokYnG5klDQXbhvWzRxmIXUk4ptqx0rydxcake+dIJi+FMQd1rBzMePVJG7uCdrsa0CwrdPt23iXZij1MMBmRrzlPLDrR3Tu1GHtzCBWNQBpZTXwSljXdM5mrslp3aTaBEGtNpFQ1rySByDkIXZIUYCmsfD61oKac1D41lPEyUo+cSM1RJKOHqpoAtYY3WU7jnFhSxnNmuEJ4pY68gk4CnjxlUiqsa2KUxH7Zsd4YbSgXDlcQdHeBs/bxTLJUuNJo/5p61kWq4iZsg8n0eC+nRcZb45qD6mhfSCTIV5O15vTZmmyvqeBRdJJsDduMogJ8qEQm5Rn3SdipZ6hLxX6opbJLJXtVmbrqFqVOxZSXSYAy5gLkssi9mstthjBQ9o6HLUn/Np1Q7RP74JTK5brs3lS2LpC+T80vZiOW97BMRalN713PhssmP1yRAhQpNvVJMCyIV5KFIlp3s+VQ/Ez9cx5EDo5TcmbvnbZv4vSiNbcQpEmc67iRmbQswOP6elpEb0TyJn1oZjKPMqKwc9v1TjC75R5mM9LULiRVPrjrHsi1hCpGL/YMokG2Vdf8NeR2YcqxgBmj73jKbJt+/mKZgZrYrs/oDCVNivnDXaH8PieeK+Oys9Swc2aFc9/U8qH2EzCsoWVE26+woRnATLrtemYJAqgKFFqf1ys0F3OdR2vtmGFV80GycsvjNHQ/OxEwLlOufgY8MnAFotxefwTujB6q3qRoFcdv8wPXuSYFAJX1eymr/a+3eXu+/QrAg4gfk21fYI+UhQKM9TP0UP3PsDar5VeqaIs5/mot9RsxqdfRUe6cmwmkQE6wsGZEH+6VqPZooNDr2op2VEsqUri0jVL/f255k+xVPvXmg5wcG9HyFpYHa+hFz7CsagkQw6ZvaQ4hhaM3wLk7VD55uuPpfhWINHcFg92Gaw1vngZff3jhq598oByPfPKdb/PJmydaO+vf8ziE0CEGGsq0BF49hymqvGtUme8KbOuTrZ/pz8/M/kqpxnJ3z93dW1J29pdvKK9f8UsPk5//vvN4l0lj4CxYU3vd3mQX2fbB3oMpmk4bk313LruWsL0L1W7XTKckSRsj7APD6AI2hb6DAs0SeAmvbM/kBcY+6WNy3jp9JE4X5To8rImnpwfyclA2klu0h60Ml698olDyVAqeC607573jJF2mw7i0wXkfXIbRp0STdanKv0pZ3tar3JDMw5JYj+Hf7pXdZoSpKjS9jcE+nLUuPKwrZYFjqdQ6MCq4y0ObM8lRAx3yDSfLpGD05WlPXMIn+vr8yrvnVyiF9bAq6NoVSpiXRMk5ArevjLeqNa+2m9YbY3ZO5zOz6//zOXg9n2Q9u9pL4j9XgFsVnxpQzu2Mmdi9NmV/HM4NXVczzCTnwlJXcqkCk9aV47qKPbcFSqYg5sIw1UUXZ7ucsenUKnZob43TduF0OVPLwnnb2UINMkzL7rQO5vQ5Oawr7kb3joePf7+yUn0oRBjn7uFB2WF9spQKDkvNrMuCJ1WpJ5MSpLV2y3wYc0ZdKXS/BlB2slWSOWPuPN7d69JCijBzVeSa0vGxmTiUUBctCw60/cKc7QYotK0x953z5UKuB+4fH8gpUZIueV0CH33lpagVzqYy3CyYB5MIP1RJ82ad7HtjPawapJIObEOsECRKraQpbeUYTaHhYbuaNxVMDHapKE9iGG8+e4wmC7XILJZoON0VyGjuzLC92ZUJjaBsQn7bk5ptelNQazrUGzsDQWwkXfzXk1ADAfhAQD+6n5opP2OY4xEy2S+dw70AaHfjI7tMgAmoMcr0WVIgt+TTHoyWUtEC5HKxpjnOGM81AIAShQIaPGeYrJZYXOCqyEw3ywQkUpHawn1Q6lFWi5gPpodW1pwRg4dsiTHkagS5XcDKCtB7W7Lx/LrjV3XQVdw8J4Ql81Yj7B5f42qtM3ZkDcoTLqFC9e56hvBba1gyKXOv+UQlWQDbocoIwuPa/JjCcjEDsPE5Y6HSZ8HRW1+vHhCUNdF2qQV6a7S9kcsiwNSG8ogIK1TkpGFOPazkWqmLGiRl81NWScof1RQGtwXzaiVPjj4rQHKpAUc0PboZe++qO59+k/W3tsfSlGmtBYmgYO2rteX631dAiaZw91KltFDLTgAz6GxaAiTC4p6bU4GtGFbCPuFd6jtgTi23x+PK6+nEy6lSkpMts8/EXFxMfV7w2SjTYDqZQfdEu1JAoWa6krAzZdZ6oO07z68vHAw1bJphAa5Nkyk2pyylDIVMigyUQSqJfSZWHO2VAjncE3d3idfnxPJ4ZLFJrQXiebKU9LmzTC7GuhTMB3k6h3RgeKfORD0YVsCbkesg18bzVxvfvHvm0/Igq3rvpCiXSCflUuU1VBxZ5/5VmTlHAJJdi5eZs75daefBbIP0ppAPyiskNay8Ya53qPJ+xSlxtlxZ+YKlFfI9uawc7z7jO9/5kl9JmQ/vNn73h1/z9njk+58fOOSMJacWZNObUvS4hzWAQU3wdMw8741/8F//U/7qdx4pnz+Q0qdYKjz8yV/l1/7qj/jx3/k/+Htfw9YamFGXle20cWkv2NM9X7Hyd3/7mTdvjF/6Myt3CQXo1oItk7EbZcKSdf9sL0mZPQFe+5RiZrHEoAEp4hxKkKdaYpPpZBzB2Gcgz2Dls1NXw16NnJyHDC9zkPd7elnUEji6wMvw76bpcGXs3cCy7mbCro4FqT445IV9akG2PDFaKDbRLRuKpZwrM02SFyZdSiR3llooeWjBnV2f8dgdEh8XZUz2MLOEaaunxHJWc6G1pnsPFQpU0xyl/ChVjINTlxWSh6rMYCZ2n1CqlCzuYTmN+S1iE5IZy7qIrBw9dgeBKymL/NMdFLEcoTadcQbPabh1KQIs1J+9KXzYMyktlGXFfAcrlBKh/jbBB3vfST4pqcKceO+ah0BWqZx1P5oAektZ2XwEaW9OWWUZ7XuXjW0q7NeAlItm56s1WH4ySrQTT59c4s974rbL2Ziyseb4zKe4Y1KUhJSi79UzudQA+cCK7urZZ5ChHy3ffYqssMi2SgH+gEnBXCo2C613thG1BNlIXqnxhI7WRGbHvUkSUaqGtFB3u/5uu9nj0k2N20IVW3OlMeihjB0pxbkedwUflciasQgSipit41nNRY4XuwIME7N6Azhd30CArxYNjHov0pRyJal7ULvqGGr6DiJ0XgPhc6j4Q93KlL0tWeSgojuvlEJNVZ8BZNeTi8Lp8X4MpNhVQJeyPL0F8JoE7l6tzcqZ6kyuz4hRkwLzu8sxENkFApTzR4XftZGYeC0nH4GylDRbaMyUK8N7j4YyqdwIdR2u99FLupGZEDlWCa6ZlHpzdL4x520XcBRRgOm9vjp/r8r9K5GXUgerrHmhbUF2JUjkW8TBTSBwndlMM6clWfjnGDfQ0azQWyOlFI3XSPF8BdfM40OQVPRCglBy55hNPclCfiuJ8+s8LiI8+bypzpmKyhmz30jqn+avn36G0pQ8nVggVI2e1cgyplQRWfaGVEzV7m5AVTUuA2iMnjgumcenyrceH1kT9H2njYZd3/TIkeht8O79V3z48EqyA5/94Ae8+eyJu1LwvSmRfcBEdXkegc4pfNUzDhp9z5Dd2PfGnI3eNsbeeHn9Em+vrG1yvHtgvX+k3j/q/PzwNd/mK/7kz2Y+eduoNkjjwmhwunSqTV66461zHoO9T7Zt0LtAoxYZR62hnJ85GKOz74MxL7hX8IbPqCmdsrD1rhykFkzrxBnJOBwKc0LNib51WeyaBvVcVj57OlCtcDge2Ybkeut64Hh3x5hwjuaz+7ujJLIG24gGt6GhftvVGHdpmXOH5vnmCS9Ke2NZBDaUmdjYqQ6HRSzUa4d9Ti6+gyf6VK7T3p3lkHg8VpZsqsF21d1uU9WJBcl6O6bg5GTUpOWfIdVKx2kue8KX37zj5UU1vTklkg1SXcXAlUotsuyI4ZblZ6a4wOPrnC8n5tjprdM9sbeNdrmw1HIDoOpSZNuLZgRzh67DcfeOR3CkFoSi4S0raHTJhd4U3liXA6XKHpeWhXVZA1nOskCVSrXMkhVobI6UZF5IJTNHZ/glFFVSH+xz0C5ncqqYJZZDIWVltHSfLLXelISg738fXUBdTsGkwP3Do0CCMSlLYfPJui4sptrsMWGG7W9Gy4auLV1QObIJzA3v4idK0uetHI7s28bik2FGbx+tHGOoKnzJhiUnpYVMYYwzPlugOdfga32OpiXePN5TSw4Lt1GzrCnuWtxyXShLpVtTS+PoiOcYYY0Kf/NU4PHYdg1QSxGXYmFjs0yJmUL+exNIeh0yQ5pkoWEViW80d7bnF+6fHiUntiSpu2WmK78mlVBiRJZcgttdcwVBuktu3Zrj48J4vbAelwjLtvDuW+QCSc2SYuG/Pr8zgrelHXMKBWaXimRqufeipSi6iIPdEg85TOxTtkRG+XXXRf96weFJOb5RgNFbAzdqKrKNDbA5iAINWtswFNLZXUtzH1MAegxvHkrEq2rtfDmTSibloot7CqDQnyEYwvRHlDD2R5RjGjBKTpAF2MwBmc72eiaVhZqTVrz4/KSqjIGrmkgXocP4CEh7AGdiZh2SS6UarNMt9+9qF7kOOi4lq8UgLOxw3jJ80nVBucqr4ZZ7MfbKJe2qlt53ygKQaPvGHFJbejS6+WyMNCLHgJuaQ0qGKVZtGo9vV1JJssj41D1620MKlnI8oa7h0jRMXsMmW+9iBacsCyUpVP/D8yuzG+kKHqP3wtDnPSdj2wYl2c3y1vddz1DX91xrZdhkv+icLTHQp6slwInvWTXTWA7bmCwqpMkkh7pqEQiVYrjzwbIeeHk96dlUsA+enZSlrMupsB6VRaeXsUvnYTrjs0/ZDGeNbAcVGwxLXF5eGfd3Yi3LAiYFXfawQiaBt5pXhgKbh5Gyy6ox4dq0Y7Mw+iAf7iinsy7FrAWo5PjcZ91Pbi6pfVYwP54EJtVCOoUacDRmKdRp2F3lcm68/+bEUir3j5nkApAYg2aTcUksWc9A0m9TukKP1WoUoIkblMKSDtx9B/af7PinQ+e5T3ze49sJO1Q8JRiZmf2j2p8/MhAbWLmHVFnTgU9+/sSv/Hs7X/+t9/yjf/IjSv1jfO97hQMVLwlSYkmuIN1pdBIWbPhS4JPHxD//5j3/+L/6bX75P/4W4+nXwoL+hu/88l/j3/+Dn/Djv/+v+OEHZWmm9UC5O3J5/4HX1xPL3ZHfGwf+9m9+w5sH52d+7sDd+hCAQzDlw5klkYvsCJcNetccs7tKalbBNEw9bYzIc0tXdWtUdEuV6rE/K/A/m3GwxHgonM9nsiUOJTOnAtwXFkYtDB+kEZ/TUNvsQwqXa7ArZOItxSq0rWO+s6aFS/PbHZAwhh31v91lO0N5bsmmZsgJZAHhKncZ5KElbm8d0mBJAytSZEshGtbqKTWW8g1VwiEiUPdLCcF2XDj0oZDrGstkWRbalAqF2Ukpk1j0WfSmTLAgJ0bYTnKKO2s5su9n9rHpvENE2gyr2YxzOXlYDNHsJBH5hKrsT6IleXYtw0eTPSeb7sHeld3kDsoKm7TeBNiWIkXY9Zy67p1Z6h29BxWhfk1LvutnWkOtvO/7LWcv5YU5usgEz6H6mUFw6L7KyVhX2cjaGAJxxiRNEVxXe6EXx5LTGdSSua3VHmqlIqVPuhIdWfufewZXG/GVfCxB3FzJg1yyng3Pygyrmcuc+Izw8LAE9RHKm6R8tFJCkR7vf0IzrhvY1Jwzx9Va5BF2HURZTiJxIxd4DH2mVGQ4bvNZtky2HESMSGSSaYa75vYIqcGJ1sXIAFI+VDwXuADOyItZSpVYIhnJSpQxSAihslypBeNBwUdnhlVxjH5l7hhut4B6cmiAPN/AXyOJpJhDQGQwHnZVxfnVZqXPGZMI5J8ktyicyLI1clU9xSEdO0XKVzUxNxozpoKA5kJ555rPSKZ7ScyUHA9ueC4ivdoIoFuztUjN68/j4f6UvVCKOOXZ3sK63al1xVHguS4QnRsen2eP50YKo/hvd1IaeEqUWuKlD8wjlFQ5ewgoAlRKV4JaijO7WnGT8oPzohB06wLirw4CUMyByG8oy3WuGApKz8rKy8TzFO/P1e3CSPH86Y4zTwwLcMn0+e/X/ean9Cv/+q//+k/1C/6Xf/Nv//o1+NX3iUXNZwlfbqkFO2RmyFlTqhSUYSIAbedQjU/fHPnet5+4P1bS6Ix2kqwsEHdLkz4az88v/MEffsH51Pnsuz/Dz/zsH+ezT+4oDi2CiedsZEONEJFRkXOJQ1OyW8Pkmx1D1dSj0y5nLh/e8cWP/yVlbtSZuX984vj2LfX4SB47n40/5BcevuDnv3PhqWykMeiXxnYxTqed8z457WdeLjvbjgJ/e2drCExq86Y4Gi7/6d71+1JEKPOhN2Puhk+pg4zMnEKthzlWlIe0t87LRQzP66nT9p3zpuF6Pd7x5v5IXqoyMcIfv6yF42FhDOeySRVWaqaUJB//cHZPeF64DNi7cWnOqTmXgSxuZSHlSq2VHGHRdkW9phpRjgcjL53Lnri0jHuipERxi4BweLxb+eSp8nhXOR4hlczjYcVItJTwkViXHDWsYlfWpeBhGh6WaQanMTm3xo+//IatKdR1rQcBXlmB4+tyIFctnTOUQfi1gavE6954fT0xe2fbLgC8vJ5ovbOuVV7jGxv/sbLxmp8x56CNxs2YO6cYOovKeAxKZrRGroV1WVlqpa4rqS4sy0KuhVwXgUE5QZEXNmdINjmdXxltSDnlToucjO31RDufJT83QRGWEpahpsy6rMw5WZdDSN3FJCtXIMCAPvB9x2fneHdgNIWki8lXq09KhRKhz7mWqDIN2Wos2T0UecMm+76zb53eBktZOO9nOC6QMoe6yv8dF6DU+EL3F0usS7ldVj4Hre2SMrvjvdN65/JyorWdp08/YVmPFCvkrFBz4hCGccuhoncufXBpPS5VDevZxDaI6Zv0rcFw1sORnLJaFQJoS0ny+ZzLrTHPx0eg+jZYBJhkrhyLr/7wS1ItHNcjiQwJnZHxPllZb7XoZCmqPkYiX5kYIi9LC/N2PlMTPD7c3+TBa6mMqe9vCeuA7L+EopT4WmE3KFIQXW177p2x7dTlEE2IUjrkGBjMZZGzK4BYir7H+J4Iq8OMz8YcYtb30aBGW48h60AIdzvaI4plpkHbT4A+k9dGkIgKUlB63+k09svGsqystSoMPBjG27kfQ6vaVgxPEdZqmel6UVIOAGSGZYPJu6+/JB+P2IzMgZvyQn+HFoERRQhd2UT7HhJ0FRRPgzZkYxgt1EBu1LreAlf/aKaBGXAd5qaGv5QqJa8ol9ZpMvXJXjFU6DB6FyBRpTrcLjvr4UCphaVUSqmsd0dKrcrDcViWhaVWliIbrAfwXfJCssLL+1cen95wd7wTMIyUZUQeFRavsaWPwZNoTlP+mGuAuSJQU/eUD9WvL4ejmLqyRjOZCIXD4ciyHljXe/KiszGXSi4KmsYyHrbsZbnTspPj+UhV6tMkC85HPi6pwSla4NxDDWbBtE9Hef1/BNxKzuV8xnJhXQTA5xJgT3KWUqhpCsyMnEGdDVrUruqBZFk1xZEl1d3pp42yLtytVWUhKamNstYY942UCzlVgTwpYbaQSNQiCC+h73mMHM/NwPbB5TxYjis1wlW19FzVkjPUj4OSk5TQ7hxKldo3AsRz5NCoYKFzevcK2VmPBZAliySSzIbA5Fyc2SvujVtZgyXVgZe4ixyMKuZ3m4xTp7wBzwvFhthvP4nd5UyaO+YvJG8wG/gZfMNsYiYbrpvOlIenydGNH/7f/4ofv7vw9pN7HkqFAjWFtSxdQf6JzRSsvPCIvCT+xY9e+Oxl47M/9SnTPhORUR54+NYj6xf/F7/3vvG6S1m33q1Qyu3+X+7veb8nfvLDD/zcdw8cDiOsnqG+GQKNs2sWhqt92bGCgpsN/XPk3ZDyLaTaDc6b8/oyWe4Kdc1S/wUp60zZIpLu6LmPKJyZjOaMjm4Rk2VSi24KC1yw4q5FzCzHoqKFuZYqNckY5GJsPVToQlv1Zz3dgJ0bIM51sZdqsYRCIQXBO80ZvX1UjU6/KWNSnDFXNawCtMUEJAt1Vqi858xB5FzJ2nZTNQiQ3qWMmcpdSskYJuUTnqSMtVAyx1LNVFYlWcR5iebAUmQN61dVA5F1Z9fPaYolUouvWcHJ/9rvlWOmlmuWa9L7EBX3k2t5g99evxngh4AssKz2SmbkAsXjMlA+nxZlWXpS0gIrslPuB/fBHBbEJRBK+pnisbPA83xIaRvn5fVZJubGEbNTSjlIrgARUropVGd8xq4WPkzRJynJumdZAFQpibUUWRmDSJmYpoOcqJGF2cd1CiIUPqE8ETohlWu+ZtvoXrnaG6cRqnqdRcNnEIJZIF/JchaZ7gaQQm0iJRpXgMpR4HJWvl0p5ZYRNOMOuAbQC0gSsW4BdN3q5CNHqURBztU2H2MkJadoGxZJomiUdMWg4uWWImkMffb1Eiuwv8dcn+IPezKuH/cZ8QtuEXMwlKGbwq41bUZ0QVyYdjWSh9IKbirqnBWOreckQKbrnwti+TrrXN0CI1RqWHzvAfJcAR59DQV/p5JuFld9PsWwpht4o7np+v2kJKvwldjSSOqkkiP83aIA5epeMMwFxHjMe5rhY2aM4gxHqq05ZV/GPyrV+SPkWLYIdY/zM+ccYHj83BEKfiUKnXh/XCBTIoBKM3JNoXb7GBmU81WxK7VcDgYth2jGPFwB0Zrpcb4a8J/9p//5f8FP6ddPXaGU3GhRae+bGhiWdbkNZzMWL5LsPsPRcj4a1MInn93xdP/IoRqjXZjNwXetKRafjwmnlwtffvWey6Xx9luf8e3vfJf1cCD5xtgRo2qTskBd38gWZHarSFblpirvuw/aLrDKfdBn5/X9e/rlmdO7r0lLZq1Hnt5+i/p4R0mZB3/Hzxy/4PPHjUOeeK942ziPydbUHtbHTt8ml2Hs/UJKVWzTNtmHs+9SPfRgGH06W1RAy4JxPbDiAS96WHPOnPdg/NGFc2pdSqNaOZYiptM60zOHAp++fYKyRlheotaC58zWdrw7pUxSgvWYaV3MrMK1Q8kyKx9Ond0T523QZ2Kiynqy2NmaxWKpgU4M0sNRuUTDOnPA88l4eWnUUhneZa+bqoJ8ejzwuC7c1UqJ9wifPO8vZDuSRyLfL6TRaT5Z60IbnfMmu88kbIPmbNvOh+cTy3JkXXMAXA4mFU/JNVQJYhXqkul9pyYtna1NhsO+NbwNLm0Dd16en8VELyslX0eHSW9Dy1cMQT5HBGDGMB0ZT2aqRW9TlcxzdMwT63q4ta/lZSWVomDSfAWTlmgoEXI9bUpddjozWxP5UGO588b7d+84n84K8A3ZtiVJj0uVDLePzt3hqGa6pAamBJHDI6Z6qC6Euq5sXUG3lhLMwXE9UMpCLovyfKLFZHRZmQpaulvrGhiBGZLrOTp1rbxuZ8oqtdjDusTurAO0ZAWFWgxBJbz6NelA3Xtn6wNGpwQgvW9net95fHzgeHfUAFEWLFVdombM7PhQiF0xY/fBpmkawq4FWcuFOXk6I3IZ6t1B6ko0fFhKWtwTzPBNX+jUYYyQ7yszRu0mhpayifPh/QcmjfuHIyMP1uWI0TErJDLTGiUGyZSjQjldA0ldbQ5hAVnIdJTttJ9eKY/3vG4nclJwpWyX6WYzSlkZOMQQI0wmWjpMYF01Y78O3bORrahJccyQFmt4uUq/leuhnKeUshZ7MzUYBTjRR6e57HBjO3F+fabUlW0btJSZCbUt5qrXc8qCakM2v22MW52tJeV9lVLi4oR92zg9n7j/9FM6akZac8IX5ccMNByXsKn11rGqIEN3WYk0/4xgv5zWLix3hTydTx7eyK5WIXXlFshmxw2Uvja9BG2O10yNnWRjcqyrVCdzME4bxQY17AWaGQKgmUAqTCzyqXRezWkKsU6JPnY05qp1hCkG6v7uyPHhQRk0OKfnF3of3N094GNQD7IM96VSHLa4D5jK+ug9yxqCALOtD5bjncDiLNa3pCx2l9g20GA8LOHB2Iod1+d4zKGhWzCKFqMZz0fOpFwFDGTAE6VcCSCRPwDuRYNYgKHDE6k616ICM6csK94mvZ1o+wvHYwFf4t8XaHoLz0/RsmP5NpApALvFEh078YRcjuSy0PadUQTseCrMPqk1apWTQYelqCxitB1CWQdwzXWRl0GhxceU2Sm8vJ759tM9KRl5qRogc9dzOqB6PBsp433Ixk+04Fqn5I8s6BgDvwxq6Rq7yAAAIABJREFUTZz2ja0dOAZLrHxfNa+mVEimOQ0fUfltzCZAcndY0KKYspHpPN4fOD3unE8726Wzrk5y54KKFSadep5YuuewalFtc8jG5hq+U05YyXgvArTSA/MHxuX3Tpy/aDx9+8JcIBXHmuHX9yfVWPZ2qQdThnzQ2Z1zAFf35DLgLfzir+x88cU3/Hd///f53f/nG+5+afKm3DGKbFiWdB5bnHtL1vcKiUN2xifG//i//ZBvf/5b3P/lT2F8ji/G+v0/xb/9V36VP/ji7/I/bI2v2mQOeHi84/mdk/qktcbD2zt+58sz6Td+wn/0N77Lt78Hy0GMuZusxtOG4kyKYWXoDkoro2RIg5ISfQ/LxwyF6Mgk1/2QaKS5YDNTUwaaFtTpYBVDSpp0v/L6+kq3jVoWZipS9+3gTMa4EhWTkTR3qtVtkW0xB4s/Iyi7LPSx433nkJ02LG6EgfsB9xzKee0F+cpggKQIRLtUqHFzqqyLZqq+tbC/Okt2rHWGN6YnEZdJs0C7thUmw7ueYYlSBPKa5MP47GyXC16V1+ddaqVsKiHpQ0D3DAXjbDPIFikguqt1MKdMZSEt+gy2UJ1LNedM1Co4Y3G73Y0eC7AeOIERQWBjMJspD6xkTu0iECkpd0eS7wRFcyYMSo04gTyhZNoW1r7U2UdXaHUJsHyqAVuKkkmxxGFZ6CVxOV/imrKISnCdLUVqp2smC9Np+64MphTAopsyLMfQPTpCUdsVfjxzIpuCwUuRlX3EbjOYAfhcVbJIaZwS3RvsXVbyUgIkV/B4703k8dDXqWUhlYV9O5NSYm5NCuIx8CwF+JjKx6y53pZyzKSQClAnxazJSLcDv5SshjHUdpfNsFLpc7DPq7pGe+ySjELYf1PSe1OzhNzz2iacGU1ni8hMAcMgQHUOEUEpq7Fwn1NkyIQeqifi7/EpC+nwEWrZjwBwj2xDs7C9h0JlGipXcrUL5zyUk5oKNWWWlKIt2COHCjo5SI9OngGKVPDZSUM2d5Ek6QZ+peQB0Or5uGanllrxMclTaiKcCNRW1mxOAaBedwkLggPtxlfTbUoJn0YqJUo8hkK6Y06/2g81f4o87zM+jyGZvYJMyvFULmmKXbdftgDB9QnW3DBu84oxBIChXCZlNapFzeKOVamRyoFwgcYqHjIp2wgFXgqlbja45T+hvz9ZlEJpdp9dWZmjS6lWS0GJaZPq1+xI/f85Z0V5TI8ZX+dTdqmWRht61G9q8J/Or59+KHdzzqeLgp/Cy5mr2Pbb5ULGWyO7Y72z2OTbbx64f7OwHiu+T/p2ITHIVj5eQl7Ytp1v3r3j+f0rj09v+cWf+z6H+xXGRt/f680shVIW1pyE6KYUCfkaIMM+i5vR2x5yOy1+l8srl5dv6JdnrG0cV2dPxuHN93i4N9Z+5vvpxOefvOPtKuXKPhLeJqN39vOOWSZNYwNSmtB1UO67s+2Z7spNGvtgTtXOa5dVu0AfTsquLBgsmD2Fb3efvDvpYlqygUvaamXysBbWJDDk1C6MuXBcDjw+LAwyo2fSosH9ZZ9YnhwPC28eKtmMy9Y5Rb1pyWpUu3TndOqcW+d1H8xU2LsUAykeWPnd1T4ntnqyLom1JtbkNO+wNS5t4LNyt1Rab7QBm2uA//Txjqe7A8elcFggW+Z4t/Djr1+oudI9sZYDfT7Te8LzgfOuxqE+JeXr7phn9nPjvJ15enyilCKm1RI21SiWUqWjQ35ZZLl0N3I9kCMTQoCcDsdSE2kY7142SiqshwWfnTEFJJS6aoiJA9VtRh5CqCd8hgwb6lLF3Jh+P1mWcuCw6uJZCykrF6kuhVwPoX4hFikt2bPv2OiMdtHBXSXlbu3C6d072uUiKSWJhcxSEnmVLbFEvW1dBLIkPOwzcGu/ch2euLEcDvoZupPzkeyduiystVIOB6k4UmHMRh3QQo21zyFGwyLQMCi80RqPxyOn04sW6VRY11XSXiJbyrgpSuwK/tlH0FWX71BQKJOtN06XjcvpzHJ3z/LwCYUjM+g1953uMMMqVSxT16pzYD+R9x6WRwQCILa3xQW7bWdmm1ArvZ91qYe0tEa9u/ga57TvrLUyTXLqNJVZMHzEZSDV5nm78PaTNyx1lU0m2kRySJOvypwU2+jVquJJ71EeUF0X22ZQ6pHTu2/Y26CeLzTLJBplXdhmDwWegA1zLTHJIfURIfwK9E4pMXAufVNbXlcY+ZtPvyWJbTCyxeTD19Afz2Uytb1MZ3icXSNjSTkJ1RJj7gwbyirIyuSRN99YilqcSpHSbYYk1z1hTTXvxRUiWhZZh3KtIfkvfHi9xGumYObkqoS3LhDM0DA/I/RfWRczPOuiod2RjriLiTyslblvzJmo6wEbO7Ym0i4ANR5CUqgd1UDy0d5IydSJrATTGItA05XE+/3CenzgsB6lMAmGkMgwGtPxLCY1cWV7Q5KdJmlk2X7j/h2uz/K45lNFZg0Or88vHA4H6lJxd5ZlJbXtBiinqGoe2nKlxEJrEslpdC6j002c2fQY8uwj25xz1vuWQqHn6WZ9IBlSl2s4J5syxlysqRW1pZml68GpM9QEcplJnZjLwuh7DK8fWU2tqFBrxlKl75m2d3p30uKy2U4xjeQMOEvSc9cJ1UyodoIaxdzVGJMhJeewFD58845xd8RMTWg2J9VW3DruRWoeBHzKLZduQG32+TGzaRjuhVoSh2Pl9XzhtU/qksg+GdvA7kQIONHQNaIFKKdg5zctRC5A29A5PkOtUA6Vu73TT51+rFSgeATE1sp0tZXtQ1BATk4yWYWyJWxPbDQwp1KlgKjOw9PCVz96x/NzIpdo5OzKafHueDG27cxheYo8K6dtnXSsypZxqOb4EkUiE8qs5G8t7H9w4fwwqP5IZpKsYlvH7g4Qdh67ln/YAqxAxmYCaxiFUe7I+cjxO5Nf/pUTv/8v3vFP//kHPvv2yr/xgwMPWcBiwlimckyczk6i5BXmDnWCr7SHyd/9b/4J/8Hn38F/7hHjLbkc+exP/Hn+0q/+iB/9t7/DP/ra+HA5c/GVxzf3nL56T+/Oy2tj+ew7/MPf/wM+/c0/5G/89c94k+5Z4nlO88pCTzIK2p9bYpaNnBWmuyZZbzaDs086ky1NvDlmg5IGiw3SmMxs1KSvrZyHxuxFgd4TllyCQDyQmnNKQ7bHaWHb0fOfZsepeDH67AGMhMIv6ZzIZNLR6LtDc5ZqdDzcGgPLDXMREGOY/o5SIpfERFqNwVJK5L0JKL5fFk4OvW9q/dw70/S5zuYM00KHT5UaRM6alaIq82FBbE66gVsnFUieOG9nWttZlkVtjYg0xU33GZGfMqeA5RRNklmkpAdIl8yYBaxfSw6khMpZ6ixHjdc5a+aaEPENIwYZzXMl6TU7YNj0aIBGoH0sxMnt9plJtTJGY993lnrUGbzvpLRgKTLvUOg+o+lZRjEeuICpgZTfKeau1gatD1objH3jsKwCDixsOAl6TnippDHUhuuyw/Z47XOcOebIlucmIGQ2cqn03rjli06P5ixQhh5YuhLImv8cp7WdMXbaGKz1IOUPmjf6GORSaH1QSuHh/onXyyu9JHLMsH5TG8VZ2XepyW5K6atFEGyOj0HyA3IubFNnqJmRa6E3FSQku+bdRFOXwWidSddM0geYM9pkRtNtm5FNaUlk2rwSl2FXncoGykUB9uNWJS+ARYB+ZoxGKUVk9pzxNUyZdEN32xJ27ZmS/t545kablCqVUk4WRSRS43qezGsMQgqV7pDrJaUjs3X6bPpMjMwYckcEL4Mnv0UnePfIJLzCMbKBjj0CxVPCm9oSu0/ScOX0SsKvP59SqHKiSdbiXJkiJ1OpjLHf1EKTiJHAFJxPYqTJzFO7/4REidlCM7XHzp9LwWenBwGa4p8nRq4W4d1XZZl8hHMOPEDNa3yER5acR6yPu9RvrUU8+1SmmxkBkoadzQL8KiL/LPIeRSS1+L1QFqGz17IsoOmqTirxWk/NOaPpvZPqLVqTXaQx0+XAcW6KpZ/Wr586oPRyeoflQi4l2NpryKVrKfDJnI0yG4XB05t7Pn165P7+jtnO9G2j9Y1kK2r16jAz0xsf3v2E9+/P1OWOz3/+F3j72RuWbPRtp5815Nd64HhQqKQD7TYgyqeLaTgffcbD4cGTOM8vX9Ne3mN9J/fBUh9Y1iNeEk9Phc/zmX/z58/84L7jF+j7Sjtl/PnC676xn5yzTxg7L2Mjzwd2d5rvdJyezuyJeMCyFB97V9vbGAraRqoG6zutA3Ta0Pe+D9WZplRJNnm+bLTR8OQ8Pq7UvHA+DV7OZ7zBt771wP3dA3Vdab1zOjf2BjYna83c3y0sq1j6l8tGG5PlcKTmzKXB82Xn0pVvc2lSwGyXEWyy8kjqKgk1OGl20nSWmllwijl7fI2XJgBnIFazlCMbOhw/e3Pk7WFlWQrHqmX3ebvwxfMHIMuXWla+3r/G0sJdyTR6fCAzZMm3W3NezmfGbCy1KrMn8hrGvmFpYqViTJ4OB0qBzVVReiiLMl8M6rpSa1LwNpN3L6988+4ddT1qKQeoBXOxpjOW51IrMJS7FaCKE2yIQ12rJIlOWFIKy+FIKStGJa+FNVdKrRGAK2VOcslxqWLg5kVZPy+XnWpATgGCTb768kva3knLgnch7z0PKT1ODcsL0zukQt4aKbzcrbewYqnpqHmkvk/ZkrJllrJQqrGWO0aWXNDboGbY9o3D3T2t90DZr/k8shO2KbXT1hpLKbzuF7Z9siTD6MrH2J1WE611KDq0bVFW0gJis1CIoOqxpe7aesdzYj/tHOvCm299QqlSUWUrymgbCa9FLVopQo/3wXnfGNuFmldG1lkxvbPPDt7A9ExsW5NkuHU8ZzwnllQi00BL0ZoP5ENhvL4qRHR2copQWgybk1RhpgS98XB3FHM3TcNbFsgx52BZCt2VC7NYjRpuSbl7QkyoepWYcyhclcLl5ZU3b9+yHKTIKLlQlghyt0TyFNWy0Vg3uxjxmajHg1rchoL8T0kXdo/MsV6UzeGuPDXhLjOyWyKPCClBW1O72/ComkbDg1sM+9PJ7hzr+hFMLDlUerIxyCKVgwkKi4oZs3dqBlB1fIqxsJhY37u7Ow2OYXsaQI3lrQ8tJ0upXNou21ZKMXhK6o0lZoMQCVNS5ZsvfoytlfPYWDwxdif50BJuBeiCA8MqVnMR0xuA1YSwXInJmmGNnW0wHhIzy8as8PLIW5jK9qlVljMzhTJa9J4aE8uDMjTAekqUtdK8kV0DU5Ikjlor5/OZD88f+Na3v63n0mDOFvEkeg1SDGbTuTXNGKZw2dZhb3jrWF255mPNBCWW89kHVg3CSuJT6hczsdEwY0iUesldA9m2X3i4Pisp3RRHKZ4rmExvkMvt/5tTzGDv/QYmeeBQfVeQ8cSYbvQ+1NByldkDKRtzNHKGacomqqWEZaRgpFgQpY5zdx4e73n/7hvObedhqWJqyTcZP1MV6jOD1UpyKR893SRVGoRjGSll0fO+GNuPXrg8n7HDgZHVbFiH2FZFVoSCJCb1bJpvaFqs8xQRM+gQy8TrRcvw8/tX8kMJ60qlTllSzFzfb3I8ZYqJqU7xms0ymVu83q1jJTGb83i3cno4cvngbKvBISkfyToLen+ZcDm9cLi/i89qBm9hqRgMChknj1BLUjkeJt8cNtJPjPVzERqzIhByRH4FUX08lbPjuQJVdeYYI2mohkQ5fJenP3Xh1/7dF378t36HH/7uN3x6d8/yaaEULQTTjJnsBhrSnFkrtcMsG0/Hwu+9PPO//81/wF/4T97gT38Z0gN+910+/7N/kb/y+z/iy3/4Bf/stbBvzixQ3j4xn1/wZIyz8faP/YD/6Z/9v3zyW6/82q+tpMeFer0jp2O2gg1K2hnJmWep5d2dliBVWRqWZuyjMzuMma/6BpbDynHRvOgUso2we2QsL5ifBSqNjnWgXchLoe6DNFeIcpQ5BWBglX1KyVZN4dUWxGyeUFhIyWk+8aI8TJDV1L2KyPHCnBuwSvc0MlLXqF1X33uWoqJUQKG7zmBZBe7srbHkxJI9FsdojnXdhVdQkAC4LVfMlYdEUiPTYomRdBYdYhe57BuLZdYi4CnlEmBMgav1RI+fvv5VTUEKdsywDkuotLa26dnrO2U5iCTG1dqYZK0plql5gSnr7yyJ0UXgdDaqq5Vtbw0jY7nq55wD834DQmSDjYiOhP4sHwF4jV+yuc3R9ITEzzIh1GEBwKdCSYN9Ngy9B71Plmgs9qLz04dHRupCwigmwkJtxcphS9mYvSkH9aqodmXHpiVHA5aazBTkLgWxMrA6Fs2DxeQa0XGpu5Q48/sI25g7s3dyzuyhEqs5lOOjwTCVvXg03rqUNGMo1DxbpufI0nKpuUaPPSZlvE2yOzOjLEkmaU2316Jk6KF+suzgpia8IR1N94Fq4hXAbBHdk02Zeh73SQ4QYSK1ZO+dYQJgFEiquQhvtClV7+hSHKUk+7IKGxKbRzsojo/OshRKdzaqvmd30myaCcKaOqeTq/63guqlyMMTlEQlKevUEp4Wko8ArUqo7zs+dsylzEsWuZIxH05dX9SZMR+MJBBSz5f07WP0uIvkorCPIh3l55pmHoXBK7Sd3jQnjKb9PWzqoK+BEz2VIQqM51Qg88Rcak8wRqw6fs1kQgH3srip5Kg1fb40z8uBkpIU3HM2KZiXHGCwJtJsCUVVJbpD2lc963RuzY+zR/ZZYrSOJSnMnWtjpLIqcQFUGm6i0dJ02o/Wqb4CQ8rT2TS3hBoQBJB67A8DhepjahD9af76qQNK61KgyuO55pXmepGEBir064Dz9LDy+HTPw2GlGLTtQ/icTRXFs+tJcHg+fcNXX34DvvK973+fTz77JGxYk953Rt9JS+F4OCrTwSyaHcQ0Jne6SdLahyTFPl3D3VQ95OXlC/b9hTSCTbUDT9//LocBbw/wx+uXfP69r7nbnXebWEeY9GHMg1OWwlKdPBO0wrwktjaZzWnbADrnOWnN6Q1Ol42+NQ2K8fBlZVjTHc6XRNvPdBOYpGa1wSSTUmcfusDfPt1RlsJln3zx1Q4MHo73vPnsgVwPtAGn0866ZB7ePoh9AR5q4ngo7H1jbzuW4BgBxafz5PkyOO3OPmHMwjCjTSH1WCYvlZKrAI1Ijs8ls2aTOqM3tvPOpQ3aqGyuClybCyUnvnw9s9TM/YMUSn1esB3Gblz65LS5BhLTg//V83sOh3vy6HzYG6TM1mTH6q2ztcFlcw5HqbJKydSqxgww1iI7lQ8BOSS47J1lrdRadJmkjHlmtJ1JY2+dDx8+8PW7D6zrnYKzk7Jvyq4loM3J4rILbntThX2fcdD4za89Qj7eRmNOLb3r4Y675QhrVlaOVVJN1ONRjSRZYX1mBq1RhrHvO300Ltuu0PNYLW04X33zgWELbz59E4xL0gImaJ80dVC1PjiWhX0OiCyN5XBkTlX+HlNiReqieWmMaDUrhwOpHsKWM3QJpELfd4GN5xct92F3KmY0lJFCV3j4YVlprbEudzw9fiL1YqgBlvs7tgmPEGySlsdhej29SRKap9RSnidtdGqVsmC5qzy+fcOSMznUMQr0DsbPDe+qB20IsGijQy4xOGqIb0MXXfLEsh45X868+fTTUNLIjiYAQpYxN7Ht5GjpWw9hU6tx8cHMGqKSS8mU3IEmK4xd8w0KcygoVLL1RWGp0UqEmeTmYzL3XXLW6WyXCwbs40RiUpYqV00ppEU5Qnk6peiztiYt4a0psFTAg5GHKsunT/beya1ynjujDT57On60hSVYglV3nyymBXS6KzvJMzkpV6mas7VOCxWFBsHBmI2tNdbDQQRDXlk8Udpk5ivMLzbqkGRzmsHUppjr+ww5vumi37vyIuphjXdIB2pNwYBOCY8oC6cAvESKRW9LTlSrylKwSA13mItxef9CffMk+2NxDlbpNlD0qKTwJULKzdAwGIHy2eA8B0dT+2JKAt66x1IwZ4S9RzuQ38zO1JLJGGU4OS9SvQXoW5csgCclfDSBxmNSp7MP/bzFEqkasxS8LtAbz998jflkPR6Un2ZJdtesSgzLWZ8pWrQUTjCpHUffcQZbuygDwV0qsDhjlJsV1eEezUuWIkhcf6ImLYfJnW3AuhxYlqoluSStdCHRdr/mhDlmNZg62XKugJZyUhoqr/AAWKMOfYrNtlIoSQoc5VaFzTEsy3OKQR9TDXDLNdsgrIvDRZDkYqQ86NuFkY2xO1719y2pUlKm2yTNleSF4mpqswzZphSzdoTW2MvOWoyx75RpWF14OZ952e45Liu5DdFLxZEyJ+z6IyvMtjjmi1jM0SkJmkHJC1akdrGZIJ3wNDm/dFYyZQ5snQGAgVkFEr1LOn+1gtme8Ao9LJ3msCxSO7h3jp/e8fIv3vP1u2c+eTpyWI9wMbgzrK5YcsYstH1Sj8qoySNBKpEJVGTfKjtsWsbMC4dPBvu/OvF6OXNfK2nK+nINHSUWG2ziPrDZ4x4Ue5zTiqeDBuqaWe5/ge/++Wf+0o+/5jd+8/f5nR/+mId/64/xyUOFnCiemFVqgh45LYeW2BnUlGiHnR+ke/7xj9/xrf/+H/Mn/sNPmPmXSWkhfe9P86d/9Qv+0le/wbv/85kvp/F62rh7eIvVlb694g2OGIfvf87f/u0f8fbpyF/4i4V6lOKGCGlVFltmqege2pxqmeJOL5EfY3DYFxbLvKQdTvEcFOXj7VPZdCmyeWqxsD0cmXbikI5kg8u+YaNzyHBh4l7J7lRrdNvBEtUWPM7C7FJ5TApuiX00KRp3tffmkujtAj0KD6bTfSNZYSSpcklSzpgPkTKuTBhckQ+YRT6fgPW0dil42q6cu2K32vRC0hmSlZMyIztqOFpWU5bqw2QVuWXHjMzom7JJ+8awVbayMalF6VOyIGqH8Xld/K4qy0memYpyYGcd+KZlettfqKlK/YqUjVeA2zrMrPiDFA1b7okeIFCZsq62fVdYO1CK7jW72oyj1MhyDRsZynlMKjpoffD/sfamvZJl2Xnes9be+5y4Q2YN3exuTiJFimgCkiBAEmHThgz/Bv9YA7YBD5ANC7IEGtRISLQmsjk02VWVmfdGnLOH5Q/vipv0NwHubDQaVZ2VFTfixN5rvWNN6zF118x3fw1oSbcQ8aBcHgGv1zrYny/MaVhXTs4YwX65EBPcZ8Yz6LVjwWRgVC7VOdfBtjf66phXbCSx4Hm/cmMehvkmcNN1t91VybOHCNVWOcdJDT33ukanCMQxpaYwp9jKuVFg+CStQWNhzallU9tv71D8rfUPT3v2ku02EsysXijLKXRmVFYWFU0XMDJMYes2VgJCAjtaLv49nFl0L1dEVoY1jterbEl+UvJcrt5SrS7lEUjVu2bqeOtGzE5fN/bW6GtwnosSp9wNU7X3gUL9TS0j2XTGWxbVVi8ca7DXXTOu5Z8flVr8TTFWW9FMkSCDI3v9jPFZha9JTyHZviBEBkQgACgJ73MstWaDbHZ64ighkm1aElRh3GKxF9csV6tmjKX9LIqC0VfOvF3LlGDjamDx9vP6nbwY2vZnAlDK81Ie4Lor4Cwo+R/mkrBEo+T9ywHzBGo2vAaEPqvapBQmCv3siiL4K5lmtRmh7gvNJZaRFMIy9XNeck6SPUqfVwKRQoZlwzDQzh8izLBsAk6QmDmoJlXnDEucQ1PSWF17bkTGLkzqXY2lN0z3Qikicd4yIn8+v37ugJJlGGcpVYej6fCwAXUuLg+Nr94/8sXzheqLMa+cudRIR1SygWByOw7+/Kd/we0KX375fX70Kz/i6fFCrJkVepItlu1C3RQOabmcYRnWBUw3Zq/4HMlYAqszxyu36wvnx4/MeWPeOjPg6fGRd7/wBV+eix++/8iPf+GFL/bJnIXb9eTjx+9QpE4eDJH16ild67Mz6cz+QI/BGUH0jcWQRcQaWznxFmmjltXtbrEOnLbv1G3jnPlFLZ7ZNpPzuLEV5+FxY98rwwrHXFw243F/5vLwHrPCbcC+FfYqGxUO1z748vmZ3YPr7chWBIhwjul8+zro07lO4zqRvQ3DirI8WpVssJlkrhWxo29f3FK4noM5Jn1BDziTla5UbjX4i7/8TpfTu8r1w4n54vRgxMzLdCpcexVGnJgF7g98ur4yxlReRQBRWGMhjLDz/ov3bNuWajg9B72fmZeSYXFN7XbX6yHQxtSQtpZxniPbHBZnv/F6vXKeJ5eHRzDDW+VSBZ8/bA/Uhwd53cvG3qqAy9E5e1dA7xBYOdLzGhG0DlvbeXh4Yn98YL8oUNa3DXApUrxKQjvltWZ0KY3OjvzChS+enllzcRsHn14/8OHbK14q77+44EOLsJRC90rye0hs4ak6xRsPGYKXx75Ys9UZo7Ox0/uN6/WEJnn4OA58LmUZFWdvW/q1xXQoHFJB1WZayO4tHSv0OtZYXOpGe7rIImW5QO4b1dSYFS+vtFo45shcJ8ldR6QlaAU9GZuRuR/rdvL119/DtgbeiFDjnBUNuIGQf6vIAlOLrD7KwWbOgY+ZzJi9BTnOPph9UjdJhVueyCvEENVauL28MGNiD1UBkZMcJruUaF5wCmsMVm2SxJoTW3uT0lt6wGvZchBLOf626flhKoz7nGlnWTjOdUyuQ8qK49OrbIwoNNVTduvcZbm6PObIkPg5iZ4e9aJaXKuNGAOKwrj9dgpM3GrmjKzPy90KmleqafmyVigmZc0Zk7VyKDHLUF81iAQClWqtKZ/XIDFMjWa17vrsDA30pX3O1or1xrAUv7daoMFjXHFbb2GqdQ4wqaksVJ2NVY5pLNtp1bB5yFLlKyXTAqVWn2mxXGzhvJwn33/3lHOHAUHzolDEzAZRLoGnvUAh5I4xvPDgRXaM6JS0l5zHJ/rLK+PdI0TXcoCk7dRN2QTLYA2Wp1cL0KFQAAAgAElEQVS/1remp9lPhdqy3lQ6a036OOjjpKyWQI4yiB5aSxvA5Hy9crudeNvwLEdY6zOj5V7wMgmrSPmvgaUfJ70fYtpD1d0jmWpLmZBBgkr6/gtEyc/E7LOcP2QnNlf21Mzvspody9vAbQaEls3lnsOl7rPP55zyOUo2qqlf/CRmx+ZgY8ugSp2/Y0QuZZXzPHnYds5xLwooueCKCDAUbmmo+XNrT3y8HvDuCw3qswjsdLF/bgpeLwMo2XqXdiTpQQNvxmXK/m7euBTn+fk9t9uNaz/ZV6U05QEWVCSicHd0XyQ72zKvao3CuU5KvWRm205M5TdZa+xPjevLjfZQiH7yGJXqldZa2lz1zB4MNnIQpWDd8OrMdcNpcnduRi+N7WHy+Nz42cfO47tJi0N5eueAZ6OMSVQjTmcWKPtiTBgMyl5Y82ANsFbxdsIYTJvs+0Z//5GPPznYfvUjbXR8r4woNHaCSfiOzY5ZI2Jwt7rJNjwxnsFO4BFq4fn7f4O//bt/yZ/+0ZV/8oc/5d9/8YmH3/qad82lvJzQYmAjl7XS2c04T2NzONtif7/4R//0D/jBr33J0+/8kLBfBnYefvy7/O7v/jl//vrP+b2/MF7QQlW//xUffhrQTz6NxdPlPc9/7Tf4n//Zn/H+eee3/lbl/aV8LudYQS2yYTwWzUrHPASkcrfoQHEF1rZVBPC5sRlsrgyx8zyhZgspK1spF3up9Fj4JajeePl0UuvOvgXn6Ix0EWAbFrLLicluUqJaI7BcUF0qoFawQwRMqTBvB5TAPevRgTphUggOtq28ne0lQSUyq8zS1uJFRJwvZ68brRVGH1yProWxKBNwhUgDK43mjTkL1Uh3gs7lu10pgNGzarvuzHVgLK7XVx4fH4FJnwtMy6JTRQrlMkxIJauisYlRsCYLS9lkX7Z4SOAq7dSE1CQmUNlnMD2U2+4K2W9UYqmJt2bO5iLVr31ltooyyiIDjD1MwJXJIscc1KoClxUjpUh3tbN2FFKlYZ4L/wqFchdj8/3tDJ8+mcdJrMX5epP6uMgVUaxISYTmyOKN4rLAnuukxCNRlD3Uj85ap56nSBVxjFSlCvALE8HjtWYOqMAd7YJT+UN6p5muHB/PAoZbV7ZcrVLKXG+vmnOm3hsrhW0r2SK72GploMIMK0ZYZUbgS/f8eapgQg3NcS/U1NxVjBiRSjjDqqyacpLpLC5WmNb1mq0QNiiXLaNdRFgRWRBist2XzCwkSFXu1KwfqORmiYx2gxHKUfNyr2QxgR1dAEyp2X6X9+EYAmOnQwvjHJOaDccLEcljTd0toaIFCFY6EgzH2kbBOZiK+kjCaDapr+QOFHhyN8f32ZlKdcdS2SX9k70BxwK7ZxLsAjk8yT0iozbyr2XXEqhrtdAP7XMFAy+yv2a+Yg1oS5+NQKTsm11SJ4bfYZeTkmdpc4H5i2ykz+9OxahVWIbappVXqWe+EUyqNykTPXSPlaAvZWhh96IXI4rCz0kC1Lwx5qk5KxVycwT3yIs543OQeYoSPPGmlapE/X2nmlNagbU4x9SfEwKUPCNExtnf5uy3Vt6ArVWO8/zPQHX+83/93AElWrYELKcKqSDWZN+D9/vOu3dPqttbpxpx5iAyhNSRimPcTr795js+3TrPX37NL/7KVzxdLpjBcXullc8tOJhlnkq8qVH0S8uGGIqu9pt7ANjsHC8fOD5+YPYXYg767eTlunj//pkvvnjHrzx+4u/84JV3jws7BtdPg7U6t9tCOVtG78YxBufsnKPj0fh0PRlj8RKT1k7WEstx3G7KTpmdHq/QnTH10ER+OQQ65F+bcU6jVaMV43p2sUYe7M8PvHvccOBnHzsf+6BW5927dzzvDwSF221wedhp1dl2x5pxjsHTY8FscPaJFThPLSdjGdexeDkWg8q5CrdpWQtaM/gQwqusbq1gq+MxEk0NAWss+lBp6bLCSYaUuQJUX1+uPL97z1fPlcetCuwpS8qBKJw5wI/b5BhBbU+SWodzRkHSx55fqkXMbCsxxB6b2DIvWkxaa9S6MefIFqCNMTqXy4V7iG4fg9vtKvUaYi+utyvn+dn3rcpVaLWwbw+UfSfMeWhSxI3etTT1yexD7U5n1kKvbEeIYCuV9nih7Tv75RGL862tqGTl9uydMB2k0U+ykVl1t9Xw5hSCmLCOzss3L3h1Hp42OIeWFDMZClYm/LtUB94eqBXm0PEVKVUP5OtmKhfkOE+uLy+piJAvuu367GkKoo4abNO4rUkJY3vYZZEb8vbGXERXu1sU5xidNSbvn7+SFcqbWgBbxc0TdOk6H8yoMyuCQ81V1UyLWaoTqumMOa4HX3/9FVTJ5EsIQJslwD19413KxcuF0hcv11cpjFZaYqeyKXosDQVzMIspk+nySFjTgGFaFhQyKrn1dXYe9x2bgQ9dgiVZU7GaRriGn74UCG61vrXtxcrMIHKg90ofBw+Pm8JxUc7CGAdMvcZ7YP2MSW3OOA9mKKhvEW+Ld60VW7JM1Frp/WRlBtUaAuZrq7Kx1sroHcFfhRMNY4+XB9ZcNJM5eK2Jt5KV6AatvinCYi36PJljiMnMcNi5ZKWKpSr12xHUtif7osbLFYtWJ/M8lYuE8rvGUuCt6JVIewzK5lhT7C2D4+UVN6fUhpvCDEsOFfr3CO3YSuWcsqNVb6lR0XniiH2N0Ou+7I1+/cRyp9VGdFkYtP/dwdrMYcqqlXsWBCa7QCXoY+BmHGfHamOOk9sh8LKG1Dxx18VPnaVejGjBMU5aawmgDMygFb3napuRp36trHReIdayd8jBtbnu5WXO3i487w/6XlUhquc5cBDzrlch5VJJNjYD5fupYH6novDdwLYqRWTayWYsAbOkQtP083kC3BYKHW21yZ4FsmFtG15rMsCTe3OmpNvZlkRAqhririaONABGKNy3pNJhK9joSfAEkTbjOZRRAMJVa90ELsfnmQHujT/ZWEN6dMx5/uJLvv30EwGjC7Za8K2yvGBty8YpzSIlINKiqkgW5Ri2mEQZ1AmjKCfhnV/gZ4NxBNFh1VzGCkQdeC6wAjVrNowavsNrTyvA20RRwI3aYLnxsDfGy8H5etIeN14j2GonitOKMlGkqtS51XxjbrA+TUY/aZssBfNU/klZhVqMd19tfPvx5LsPB5cvL7SLc0Swvdxg36l90U1L7raKlCkz6Oei7Ap+WEvhphRlo+HG/v4Lvvnj7/jwkyvvf9Wp1wF9Y14cj0XsXQPylPzD6obFRvh+RyATVHQiTqJUnn/pe/zt//JH/Ic/+cC//sOf8v6rxq//4D17kz2iVKfEYHbZUiaLfSvYyKVoq3xok3/8v/wL/ttf/iH2i19omfF3/PDv/wP+629f+cvf/3P+46sCqtuctK+/5i9/8sdsBjVO/P0zH9ov8D/+/ke2B+PHP75wuTiUrsW0a/nsDDwqW5et2Xkk1klD3/WyJsOVOVZ9EB5SQmDJSGtGqzM44qb72E0hv5ZV6w87n24HxSolF9GFbMkrNI/7hL7OtwbcwNjKRo/B4gFn4DWDlYdBuXCcavjTkRUKxLVCC6mWaZ1qqGFsWn7/pQwMpKJ1Zp6H+hjDGqsHc1w5DyAEMsr+tFiurktdtyKX5RpSOLqhx8JNy1grVaCSGS8vL8qxtKb20RJZi57kdAIJhOzceGHMQZyBb1UgVVrGah1qI42Fl8a21STbVv4RhbN39n0TiWRTjddkqQo640e2XMUcIgRaVXvTX2k9K0jlMdl5qw03WAnM50ZFq1ku4CKWSilYn0wLZTqhTsCtGpet0Wrj29dP3NZgC8Nn0FenuJPxSFL1mMjc1nZ8VMI63Q9WKPB89Tt5IHszkYqNyIYyXZdyXhSjsUkl44aHgr5DqM6bLX2SREDANDW+mhm47FnHlCqtohZCb7vycWLBcpoLVFEJjeaS+/0y5+ScCdi1pkBuN7jb7FwShZE2upI75grN4pje33CpUDxUJkAYMwaLSTUVAq1UjJS76tJkwYZI65xcKeD0fmi2SFAmvEh2nXM9SWTXop/DvbBtlU4+J8XYH595PQ7deWlflZJlve3LmpOSjCcYa3FDpO5Yk+GalVtpAknirtWP/Jz0eS3WW/yB6jcGzVUYtJVNIOd95nK0N+U9XotIr5XqY5bu/0JmRuWuEJkLpCwwzZ1j6d9bN8Wd9FBje0sSN2KyootE6Zmr5NoxSpVtUCHdwYghxRH8FftYxazh5YBQy+ueakGPbITL0Q/QfJ1/4Z45T5aFQ16o7gKxASvQp4gyqb0yL9eD4sGqen89ib+SykNzk/2uFOWLzaX55l6Skr9n9ZG2QAWe43I9tNb4ef76uQNKrTZGP7R0Ndhi8fiw8fS0c9kaxmSNQ0ypWfoNRSrezoNP333k08uN/fKOX/z1X+Xh3c6GMnCKiy1LzVPWiIo9dA+2JmRwZtDUymV5JWNxrpNxvfL68WeM2wtlDCwOzAuPl8IPv9r4jV92fnw5+er9B/z4yPUnkznh1dRewIpURsA4nGN2Rodrr5zxyrVPbCw+rBv2YphXjiF7BX3mpdsIFn10zp4PXHG26hlUuBQSaoXrsdhq0DOEdN8LpRifbovj9QB3vv/+SVksZaOPIBg8Pqkh5+GhsnwxxhUP57LtzLm4XQ+OCWXfOAZcBxyzcJhzLqevwnIBPhRJA1tpbO4UBmUNLAbVdI1HqWDOOZQn1Feh55A4bHHrnXEePD880orz7sFpFnlIFzXWrMkeReIJD8ruQGWVTQNAf1XwGQpKG0OWneIbb/LKlsFypi9LLTujLy4Pm5oLHDEofVBK4zxP+qmWtEXQz4Pr64sUK66L73K528+CfX+QrNdKDtkTD4FA5+icx6kWoDlzwVlYyigutbE9PvL49A6rjVIEgFB3wrPtb55Ahu1ZwU0h1G7lbWFrpVEWTDv49ptvoFWen8SOFSvUqqHHitoQbMl2U2iYBbMHPbWYxv0QjGzkWvSj8/Hb7zI8UwBf3cQo0WrWiitYD3NqACUXuilr27kG5zg5ZqeWgncxbpd3jywPqut5iQj25ycupUnNJWc2667YSwZkebx5qHtXi00QvL688r2vvqLUplaRUvAMVB8El9ZYqcJzCv04uL28Umrl6PJxrKUwy3NqqbYFrVW+e/lIuzyooj0DnEUMyWk9Mydm35qUCvBWE+q1MI9J2x4YeXFHcaKfysjatpSzS+mzIqjtIuZ3Tuq2S623FJYoRlDBn5vGbcm456CitpbyfGG77FKQYWA1ATkpQ8YY9NuhVpaZPm53KTbnkiJlTG7Xg27GuJ3Uyw61UahMCykUXRXScwWtaBEQRyS7Y1uLagINxl8JvxZYBXMNxlpsTck7oTR4LaxDtsbpagg5jhvT74o7NGjl5zVup1oqfDGGztOnhwfdE8X1Z+awYkuWm9Y2mJMtWWBHlpCZrx/Q99Utg+qNj999oF4ub/YFN8tsIjWR3CcIfY80oAQZEmlk+0gCgUCXH4w5OqUqpBOU+aC6m7SsFA1clgY4ixwCSuVcUkzGGFKktJKV3cFpjTk6axMwQ8iaaC6ps7tDMdqqZOcfy1eGaooh1NIgyynh7AF72cF1boLaRt9sfSVb93I+lUpJoda2LNUICiJdq8vSM8QWgwJgR+9YFaBV6ufGOb0uLSf3auW7esnJcNFsCGJJ4VFbw1zg03meUhe2xucKYeNz7GmCgDmc3tvaJETTtB+mrB2W8Xh5oMxJvx1YaxCTB8Up5/OkPBFzWP5matHIbqLl1cBl0E/GcdJjKQibRb++MniUsmu5FqCAhEYJZEtlFWqttBIijdbGZTOO185Shzp9KUx7a8Z6hNczmJuyE0SOSxd+bxCc4YSrirquxbDO9dNkbYW2Gb1JaREuUuPh6Ymvf2Hx05+88M3Td2zzHft+wVaDc8quXE7stdFx2kVg3joW3TrEoG4Fa41KJXDmccPM+OLrCx//5IXydPD+/QWPwUiQ02zA9qQvWOJHAtRKIhAzAcKJ+Q7tHeXdr/HX/hb8zh994n/63/49f/iHf8EXT4Xvf72/fY+LOc+l8HFKvUNfjCI7XivO5Qn+6OM3/Mv/8R/zN/+7r+Hd39MZ/vRr/Oqv/wq/9Pt/yB/92Uc+3Ba37thjsFrh5cNH5hi06yvbw86fvQ7+z9/7hu99v/LLv3RhK7LDEjp/ooHF4Hhw+iu4nWxN28o6u5QuyzCb2Aoad5uQ7pmzyyqzikg2s0kZ0CNt4/IBM+vG9TxopbB5oa/AoxBemNHZtmxlnHq6m2VNfThbZn+oV+6KmzJSlgWjn9h0rJoWo3GAOcfQIdpZLG5Y2fB83oIikgzAZK+ac9DnKRTDGzEmm0/okzluDKvUtmcGzfaWtyalQ56rdwW9/rbm1SRHLtuF3s9Uskg15XkPTGnz0+JvQoZRPk1MgRIxJj36myKgWMH2R+Y4iJhv9ekrlU5BUXh2KPh8LeXnrGIJQEipVV07TiRobEvFMYvPQNecd+W3XnfvXQBSk7olbKVN5k5A6S48u9QoJe8pwtisUc2UN2WDtu+MTrZr8QYURGQ2TqhlWHe+cmecmnmKgc2VGT+6g/tSEUxZCzORHbZtb3ajWMF1nrQsIhE4U3WPWFodAWKx1qDH1B2ZBSGWgOmWs0kfJ14SIPQqq1R+t9Y4UMuosbXtzuFwzy601lizU10zVmRMwXxT22RotQ5jlO8fjOkcLP3slnl3ZgzmW8SP4gQOvW/5DAoPq2BVjgdXK92aaZXORsFYMwEq1M7IPfdQwNWCt+zDXUnnCm3GcHMeto3bEkC0CEoo5ytG5N3srMxeBJVAsPT+u+ke95ZOoNC5qznTWWOkXU6aJDPPXM+7KjkzJiNnbDFWKn9K6POeq+ihYHt3Bauz9Nl7vu6V5IcswjND+KW+gyUgsFSaSaEdJqtcpbJWpx+L6pWt6fsgclUFGqX4GyaxsixrLanyFOcwKXXD7A4gObWaCM+utrmF9sb7vZQfvJoKS+GcK0PoRZ6IxDK2kjlWIJGN3umcSfW/K/OTemThjzvmoZbxosKD2gQ6CchUo5vn/KgMUkULLcDavX725/Pr5w4ojVN103sNHnfn3X5h2yteg5hqyrE7IgmwoPfOd9995Lh1vG788Ff+Gl++e6Jk7gggWXTWdiqoSgd9yQ8f1zCimk/l6oAkdmtNbi8feHn5lnl9JfpJHs1sXvjqcuFH7zt//evCb/wWPM5P3GYhxjP21FnXK2UY8zY4Z1BOOM7FbZz0c3LtJ6+3yREvjCl2n6NCDF7XSVA4k4UbK1hd+RyzT2YXcjrmYg4I1+KIV2q22tzW5Ompsbmq6L95WdTS+OL5CbzwcgTeJ/suH3hthcddKe49Dm63k8Lk4eHCnIPzlEye4ny4Lm7LOKfL4jbFYtMkS10YxfTnbhWaq+rYYqKKZ7HhfcERcE5jeeUI49aDcTtUCVk2np4aD63w+LCDdTGs93E7JMvuqWYQmLXTrDKZ9NXZm3Gek9Kc26dTyHVKF2tz6iYVSW1q+asuq9ulVi6bKysp7Vi1PnBmDeqMxTkHr7dXrq83yXATwCklg92KsW+bslLqBhFsrRH95HY9GOeNl/OmWvY+k4HIoSSCfbtweXri+fk91Rv7vkl+uV2oCCX2qqV/zhNbQ5ljaeExk5qllIYTfDxv/Nkf/xG48/z8yLVPKVKaU3yjbpuk1ssorupVfVEEJJVQZoaGAe1Nbs643nj97jv91lAgb2uyJu1tUxvZguv1ldqKXid5+IasTOeaajYbOshYajW7PD5QS6WsHNLcuXz5nkvbGMeNMaaArwXFs2WDoEw1I8mOOOlLDOu4Hrx/embbNik9Uhc6/X6JF2UNxcr2PHi93gi3BFR0uTLeeqg0bLtx3k62utHaLjCHeGsCm2kRgsm2aZiRL152wFKKwslryaymhRenHwpVrNXULlX1z0mZpAXT/PMirUGuZliuBm2PzKSKYNxONeKdJ45x2XfK3tjaJtm86bMqc2LhYi4zY45sHYFgjkGpheO104esZ6tPnSmPj1jZNOybmL6WLVGGApdLMoS4KT9sTabr0i+ebNI5KKZhc5xH5u+gc3hp+bYmdu1e5jATjMqZRQN0An/RZ9oSxZLNPnCv1H1XVk5RmD8m+5ScYeLLiqPFKJSHpoSAtCW5DDPBwkOKwG+/+8jD03vmnOxJ0araN4iq743KAeMNdFJWgMCYhQBGj4p7Z8wMfzZJ8dcalLYTXlhTwZ1eqiwGpHQ6GTqBX6b2mFpYPYGJFRnird9T7nWwpiHFzLF7Y01VRXLs0JbAWykQ9EyYZTB3Liza1vWsqIpXrOsZi420P5oRaRPT+VqlCl53C6Ke2TsfWuu98aimNVXn0aZ/DYTYey0l+fqz8WVlBoF+3myfuqtzikB4LaSw1VNZe7beWF591wSyrUW+VyI3Vr7GEqF8CO544SQYzDBKbeyPF47rwWW/MHqn++cl9OIK//cR0O5GCVXEhy0N3bGUjRNq9DnmlM3IK2vdOG6Dy6Upi2ImgGkZ9JlmpkDLfQlnqxvz7BQvXJpqklvdmGvgS3fH87vg+rNXjtuSnD+gnx3fXO93TJjGnHel90l93HjwnXWcRGY59rmYZuymxerdlxvf/elHvvvpwVN5xP1gKw7L1U44IUpndNOd6ZV1TAauBjcU+u6bAqrPdcI09i/fcZ5XPvzkqvnjHbR5ELXiS5aJ/OLp9Zf3CaJr9oKOWSCQ6ZGyf8nDD42/+d984k///Ft+719+w7/7cuPp8WueH3fZS6sz3NRGOQbRKmUWHpbyNx+X0x8X/+zf/Qlf/6P/i1/8B19iD7+FufPuN36T3/3tf8qfv9z42R/f1PR6m2oyfXRejisP7JhN/OGZf/3Nd/zS73/i6aHx5ZcVr1A2MJ9wLtimsoKWcZ438EK55zXeFtSGMxhrCmwtagza3HEaxzqZK8Pis8HqOSZnN7qdbMsYtdJn5xwnVhp7NfrcGJNUF6YN7e4BMjDrUJoCaE1THBSGR1ozCuGbZjVOWlsCm8hcn3ahnwMonOdJKTNBak8kWuDzWgOYVAOrQe2Ly7snrp+urOZvSoYxBpNFJe+3kkuvJ9gf+tm96KxWA+Wk2c4ad9WA7O2x1KxZctdYcb+/pYgpbm/kRFBhTopvdAbhIhf1HqnkpfeO+2dQ/C0822SLtbT8E4h8SeB4pS0lzUC4pxXOXCTMzDvAEgxww0tjnINjdWXS5awn7Y6UWbESCDNnJllhq7CtBB4ceqtULzxVtUAeZ7b8uc4gv2dcSTAs9VssSAC8YawW9OowUXDzcJYbhHJ0i4msWHkve1UeVmRY953UwaBQcV/0bK68Ex/kuzmXbMbX2Wme5605fQyqO9Yn0ZWhE/JRYVHe7unlSF1uzppqGK9F2ZthTslmZLLAZqHvhED+O9CB/hmcsorAN3TORqqzS9HcNIfmWs+MqXvOorueK80sDRuTc3aFe9/P+8xcVJDzSuugQMcRQSJAHO6KXwnYABn+sgHUVIgSYVikoiqPUX3Fi+YfXbPcmbE1J/062B4uAqQWeOZS3Zv/lPE3Mi9TxR9nvm8AHlOmZDPlgUn69Wb11F0ubVaA9nyX/VTXu+xdGaWorDPudvf859XeovnNq1reTJ9b84pViU36SPIvbW4xIhWn8fZaSBDLTOTijGDNU6qltKAuZGmzVt4addVyLPCeCM0lLiFDvt1SZaI2NhFmkSS/J+CjucsDbOgfWmtk/qAUSirqCWKpVAT//CwFunuxz5bqmbtGDZjVsP5XabX//79+7oDS+4uG5Od956EZpQReUPhogN8tNLG4HYPr7cb1VQvGVz/4Rb76+h2lCOGGeGtZEX2YmwVOTam25QM/l8JMmZPeTxznPA6O28H1+pFxe8H6FeYhWbAXnvaNH71f/N3feuSvf+/KhaC/Dq79YF0Xtyk7zTmGLEemxrWJsUqBfWHb4GHutH1yRJVEbhnXvhRGiV7TbXbGzZW15JNYCgJertwed8e3wq1PzjN4aItzdrbMC5oj+G50xjLePz6wty3tdE5rkmvXWmmt4MU5h/KW+prsm/Ow7YzpvN4WYxXWcK7L+Hgb3CacAdO2tI94MgSLFsFWgsdqeIzM9Oh51y3GEFhwzGC4M63Rh/FyDMbSg/14eeD94xOXpkaHLVna6ilDXDBmcM7JiCpFRDGq5WFB5VKDsTau1w9vNijPgbbUxrZv6fUuqmG3okEONUFtGcpcigKjr+chJVgsjt65vlx5PV7FuJVUZpney1oL2+OuYO9SWaE5tp83xu3k9Tw5jxvzPHPpW3cjB14qDw8PXB4f2C+71BMsbreX9HJv1CIQL94gbdL/m/YVU1vRjGAeB8ftlT/9i7/Am/G8Xbjdzqy/lFy+1kL1wkJ2Ly+FZZJy+lAuh5E2qzV0oSOv7c++/UAryluaSDlXW0tbVHqKhxpU1hxvOTEz1LomWbNsY57+35kV73VrySTId/74uKvVaQ18LopXIgbhxjnOZGF0yK6pmvljZKvZ0bk8XLg8P0gdVRQyWTOrBrMM5pOqAQTozLQvrJThz9lxC/pQTXYxsUMzFuXpQcOlRS7ZKwEhKd3mmFqGMSLb+AQmdYVHG9kcI0myqjxdEuzlzEPVo7FUm3ocB62lpcw860uVTSbGVSB0iczMWao8HV2B5hsC69aKv1Jdb292gjGkuptrZdVxSnFDduAZQV9aFs/zxr5v7PtOFAFfWwa9lrzEm6uFK0x+boC+xKAsuXX036GBdJkAsdfbDfMLx3Eox8DvpICx7fru2rznBICn5N0IbnPAGGKJszXGDBULJJhxV9zdJehu6KJ2Le8DBbeuUJilhcCfQGHSYSYFSdr3+jF4/4Mn/ayphBlLjBBpc1srpcb62icIFqoHdhPwlxkSpklAgFSeE6wJGZ54D5OP/PnXHalBzOeMaxMAACAASURBVJWWx8yHcOU7WNhbEO9cSxbHLVtW7yogPC0RA7dGKxVj6TMrd1ZLeYeWTKCmbuUPlFaYpxpNcC1AEcqSwj/ndJlZZva5zoD8edcdaPO0arkpS88y+zCVhZ7gzJqhJbtW5UkgtcFMZhw0pFdv3KEqS6JJdt5cOZZq0bHPtvJSFLrpfrfP63UWE8tXTM+j4dyVnB7SiYfBw/M7vvvmG2RbkMqvZX4cMVk+WCab111Jba7P2xbUEAA3WHgtNPTM2YMsWrfXG5d9o1VXhsjS86SvWaSrS+euO7gXjnnl9hq4ScEU07EKMwong1oL+1a4nZPZ9byMWqlL9iRWkyrAYJ5BvRQKlYfHSdTKWPndMuXijQQ/d298/aN3/Ol/+sR331whHnl+FrBWt4Y3E+FzB/3mACqrO7FBuO4mRiVsMo6DLZ4pz877779nvv6M1+8O/GKUVfHyyvJHfJxQHnQAAMZBWLaFvX2mC+wOMDzjl8VXv/Rr/L3f/Y6f/ORf8G/+w0e+/PqB3/yVnb1lUPRyLqsxbXJj4nXQWfhRKb54tzkvA/7vf/Jv2b73Bd/72xXffol49wv85n/xN/ivPn3g0zH5139yckMLZNmlajuPwQpj+GArz/yjP/jIV+8+8Xf+zjPvvqh69qvAOItCtaVhoznn6BjGXhvxDGMONnfe18bjXmgl87tY7Bus7kzLOIh81qMudt9gKcx2B1ZseT90trKDi7ghG51kXNNJ5RmIa2vg3nRXeaGGTJ5DKzW+jOtmnP2AM6gOtQgAZt4ovrNQ3k3EovhKdl5KGEgAIPJeyGWdgPKwE7OrFS0DlL1otsSVQyeLrHo61TSrcFoBN8qX8aH8t/QtsYqUpLFOKSgyAwVSgeCya26bgNAeC6aIpVIM1QTmOVZ3zCv9lBsjllrGIhfYSAu0Qn2bQBLX6/AkOwSI6bwaS9/5Why3itWCr0YfXcop17Iu6/yi95usqa45liQluZ+USeo7ajcMc6IkeRFXWtVMXlFD2dmVuxihXLlIhYrAmwZhXLaNWZvO3tcOQ6UHnoScGhULZiJrNDeqLOk+Q5ouMAEaxTW7LqldvRQNAyuwO5nAZ7VWaQqKnix2K/kcoNn3TuyRUQQRAuZCZ/3K3CSvmgEj7tZiWH1wWJJb9zkGf1PLeD5n5lDmwqvLumtSsdcoTJe6xJg5m8fbfaUspvyzELA2igiVanJG9DGlwl9SKnk+D1KbTJVMmMBcQi29ETOVhjodRWikGpUEIdG9r3FJM4lA+FTjpZPIMaIUStU/z1qctmirUF0/h+X8kf8CBspG1rPvSbB/nseZirJwr29K57tS+H4n665ThMlMx5HQUQE1bgk+pspf4AypFM8Zz5NwiqlyCTOsZstczm4xnWLKV8XGGyF3VwAG2ntKgoBzjiwE0CxsJZv6uM+uAq/1PJLPHxh3u2fe3aXw1oSb4OO9ACDQLBp6IakEbyJ+bNHaPW+60GPgVpWZrsGeyDMfzz83VWhzTnDtJvdc1Z/Xr587oPTD94+UWnGb3DPHVnobZZOYnH1wvHZut47vG1//4Id88fyEoyV1Dr1ZnuDR/QGV+1AoulLXdfASIRQcfdCxgpeXT/TbR/pxZfUrnhWM1SqXVvj+886vfB381tcnP3z8SBzwKWBGZ+Jcy2Lzhs0rpQV1bNhUbsMakzk7Y51aCM+KjwVdCpvr0bjayTyVqN/LUODw5tTe6Og9qWb0IqsTQETh8WlXsNYKzkN+ZGJxPRd7qzw+XqhWOboqLJcZ22Wj7ZXqws/nOul9sLXCu4cdr4XVF7fDWOG8HME54cOtc1uLiQsxzoBiZ1FcwcIXNxqqmyUlum6qeY1Qa8dcJhtfVMaAW5fnfts3WjXebRceLjW/ZMbuYgrc5aGfKxgYy7dUExSMypJBlopxHgffvlz1XnlQa6MWASeyEMmK43YvsNbws9XKZ0JDweavtyvnnMwxOY6TTx9fiNHflA01c3fwJmXO5UItd/BKeTzG4nY7GGfndr3Re1eW17wrP5xta7x7fEfZqoDRmaHjXpT8H2DrYG3BLApJrXmIQ+SwQ5aJLW7HJ14/vvByHOAKXj7HkBXP8+f3woxJpOQ3DT80M/qc9LhLYHVorSiETc7rybfffYs5Cv5z09BVCt4aVuVdnkty73JnXCCBMKjpVW5snFP5BDMtYfvlIQ/gbN8rYnyKV27Xq977EMA/l3Ko3oCBBDzWGNhazKPTivPw+ChlDGrLqrWJ6Q4BVj2BIRA4OU7J2meG/EVIbRczxECR6rgILk+PDNfSd2eXhGl7DnwrVRBa+skleMwuZkK3Afd36OxSF9qsCu+d/U1REpa14yZa584GrqkshDKDNWUTMgT8zFhYE8NrpWT+QlDDNLgUKQ7ul/ScKwObz3xvIxlBSYLHlK99BIxTwMd+uaT6RMDVnVkVQyKgU1lfeu1zyOYYQ0vyvQEjEAjlBvOcjAF1N3oycPfvVXFP65TypiLiDXCamUEmC4IAVjyzg6Ykvw8Pm4K6XTkHd1n1yqVfgaY6e2Z8ltBbLvOTZORQK9FuhX6TMqBddj37RWocQ8oslSkkEDfn/W3R+58KqxUC0laIgT7HULD2nKk+knqoaIcTMJYDhnI2kuVMcEzM7r0Vi8/AGwZLz6y3xtbUOlYgQyA3dlewauCMoTNoDtWvL8DSShYmMFl131BczyV2BxBFyoBYwrsOJyAb7u72rMgf6N7ad7/FZd8EZIvDWPPE7nZSfThin+fibov2bFfBxD4an8+I+68I5UWZGbVUzCQPV+uJfn8pM4ErDc4uz8Qb0OV/ZQiN+3Nhej+C4PndM9/9xV/Sx4ISlFVkWx6yu5EqsbFS7Bsap4PMx8rBz6pTZqW63mdbE6+F43rjdlxomcmkvCZZTlag7AcfrFCgtFfD24XjdrI1ow9lfDTXLMYqTA+2BzUpnSPyjPfMEUFqhxQnxQypqwKabdAmPoJYp+7sDK9dDNrWeP/9C58+nnz8eFD3QmsbdYO6Cu6TujtusqZa0bkxx1ArHFXkUVosHr54R4yNiBPqzuMv7Nz+dDE+nbTnAscAXnW++quWSgObu5QHqVDRlu0QjfAgokJ5oDy+5xd/+1f5nb//gf/hf/23/MG/+cBXj4/88AeFli2LqwaxnBKaG5dXZom0VBmXB+Ob76788//99/i72+T51/8GtGcGk1/90ff4ndc/4dOt8e++7fQI4ryxXx4Yt4MxOn4YURt/7o/8w3/5ysOT89s/fuDpob7NKk5llcCaauSJBWfgHgl+Ba3AVmGvzm4CjMXAOzsmK/CEc64sNBBDXpYqy9s6GeE8xANHnPSlzM7V4Ez1DutODoxUO1bMRvK7lgrEqvcms0Kogx2AB87emWuyxQ2zyppG24xFY2GqpM/vh1lJAgMBovm9NwOl4inI/2Hf6adRbTJP3Yme9/mKKdDFM+w7/M1CNpcIRnCFh0cAhXsjEmaMOenjRgk1AJvd16SQYtBE0BkuO/ZKRWsubqqCz/NngzU0M62cLbwqCkPf6tAH1hoxbnlPq5zC/R4JoR0nJQnQlGnkJUFobdgCZR2Uw6ifaU5YKI+lZElHZG6LsqYEQnqTXXkBT/uurMbVCYzSgJiMsVhTGZ2Rc+Jl2yi1Yu1Ce3qC68FxfcWKU6K+ZTQhOFAWvBY652OljU8EV00FiFrSVKSxZghwagZr4Tlfr0TmDX0PPBU0FmmLSrTrDsytkTESkRmcSYCQalHNEiJyW4INcy7WKeU9lmAIIlrX3U4fes/CQ2UcqbDZioCclUqce8FHhHZgc0/wLvJjvW8NkZbpJpClGWsaW1qUvRhriJR2M2YWVElGKNAmRXKaC9YiXLtioBiBdVd+5zPtBhECdsPmG6DJcqiLe0j6XCuLQ8CKYVMmQB2JWXYVqBjDF7Gacizz55z5MwYBRZ8B877glLd5TZBnNhHmfB1Aae1zVuV9ruCenziTfOPONaW6Wn+prNjPSuY7uKoZrUASvcSdyBSoJuBRc6JM7amoT2Lv/i/QXKpn7k6IuZVUBUqt5AStJFm21Jq3+hSwaSsBJ83+d0DpPttNPhOsd9JyRRYHjVQ1xf39zbnQ7srjeAOnSMW4rJaeu+rP79fPHVDat6wpz3CvJGsZa3GcJ+dNYaRulfdffY8vvv6CfS/EPIk+1EBkBWPD/b6UeKooyBlBKOFa4zODEgZn53b9xHFemZ9e5JMduaC1yh7Gcyn88tfGb/7g5PsPNzYbXD/KqtGX/K1nX6zluE3O0WG4Gkmqw1rc5mJEYa0MlWxLFoUNvCdRsYJllc3JoVJNWTMgBkxzStUVWTOrJ9YdaIk39rpUZysXyqYv/RjO0FbHZd/Y9pa5QULVV0xqEYv18Kjaz3MaxwEvhwIzX66Ll3Nxw7C68ZYFgmfomvGQSH3zRZlTfl5bb4thuFTZ4Q3Vb1YGTu+TWMHjpXJ5aOzN2YpjnBiFaoUVUwPAXMwZ9FC9/DKnmOeX5b48TK63gw9XNda4F7aLmNRWBfTc0/hZn0O5962wNbGtbgr9PY+T26lA8nOcvHz8xO16yApUihqaaqWUSmv3i1JZR7L3FHxNKovX1xdergezL0Y/6Wu+nWaGlB9bU5C5hRQqbkb3InY6eBtUxloQXYMGYlXHUpC359J2vd349OkTx3HDSslgex0OpbjAlMwTK5l9VfamPStUN+sB9+aDZQJGWYvb7cbHDx/fZNPkslhcHnWqQDp9B42yb6wVAoVmiJXz+zcdxnEyDfoYlFbZLpc3FYocTGIPCDjH+VZXPs+uxWms9HOLPbQZjK6gyjUmmxWe3j3jNXOiwqi6fhgrqGhosmRxJsFxduhn5imkJTEvkJRO6JIci/p4IarClkvzZDnvmFEyfRGfQ3xXNmYUqbEACDU6zWR4Vih/qNwziDJQuOQSoGIwFQaAQpyLS3LuIy2yuczO0ZNdkSKkPWxiLjOoj2IMFnXlIDRUfjDmYM3PDZkgcO3og7kSZJmTdR5cLhfKZYNianFcM4GKexZMEEU11ncJ78ocJA+IsSjuUmh5ydBI43q9ohAUAYdvV6dl8GZxgRt2Z1ruQN260wlvSpxSCl6balwt2PZNINcCDdgiNDEp2N6YzE02LZ+5IAr9050SZOZZUPbCx7/8hG8tX2teyvnuCevXMhNIHXln2O4MsHCRYHhQoopdbBqwsKDVwt0nP5YWjDDgTcWTpIprYLQIBsFcI0Pp9ese5WSpHrsrAT/bVAS09bneQiZLsrzkT6QcWpNDyDwHTd7OGQjcdT6WWjIngjdb29T2krkOvA0rYaSyq9xnnpRzy7Li6P9bcXBmxpilwtDR52Ymq527yb4bCRbk8hVxb2as+YwIiCy1UFz24bWWziyUrXK3U8ZSZlqEM8c9APw+tOaQl8sDKIvgsl0oVrndOvWpcoYKIrC7IEzKN8+lKZx8bvUfSn5OALVL9UZhna9pvZC6+vlxZ9WMo72TZ3NJZdr08d6Xr1Yv2K7Pa0sApxUjppQOHoXLduEsiyMtLpvn4DzA6sRNVqZaK0VypDy7BD4vK1IZrAHTGCZZfSk7P/jBMx+++YbrS2dvjYdNoFHcHHc1Fa61KG3Dy2L54jz5/7wf7k0gxbYSBDT2y5fE+49cvz2xcrDbrnws7zBvUocahG0Ep55df/f2eQVD1g5zoOHtPY9f/4gf/71v+U//8af83h/8jH/z/2w8PP4CX365oXg/o6xQMcRU/sbVJ1YnaxQ1mj0H//GnH9j+4b/ix+cLly+/4PxgXL7Y+Fu//YTdXvjv/9Xkjz5KJbRssl0u9OPK7LI/+7bxH247/8c/v/LwZPzGr164tExGKYZnK6Sl1XyWxT2SUzmyg8KkeuBlJU7ijJiMgmy2dRGnwzKVTiBlrc5JxQZsOUPN40zl8WKvzuj6PgyLv7JkjXwOBXR9zq4yNdBFZ1gkE69Q6DHUslbrSnvrK2EVsx2LXIqscG84FbMlkJdQtbzIF4HykeGyqwZjCKbuozOn49VYDC3rVnLmuJ9yel2uUV75qxb0qewWpmbcOUMqhPsPYVIx4K4iGyX6EizZ0pdly3GG5aJ7Rapxo+dZG/k9vCsbYqm8opairMZTBTHCkLQoGrzdh+cYlCWLsjAE//x7czZfCzV8hsCpe1hyTJ04c8y3+8fJbMiqVivsrjIdlG1TTqIHpQS3wzmOk1jKHLVSqdsO4YzryV9+/ASRtiIT6GEWTJcqy0MLZ9giSlCWrOozrXnhli1pnipchVdnT2ZmWGqgD7PMN8rP0rRzzVgUg8fq9DUVxp0g1f0Z0IxNqkmVtdlaw9Z4U0Nh4LVqRr0dqYQBK4rnwOxNeeKpkBQBpj2koBysc6n1bC05dVjkgr8SoLmrKXWJR55YdxWJVZcFfq18bcaqzhrnG1hmCS7kEKa/dx9QkkiblvM/U1nDea8upMy9g49+v+8QaFjDU1Wne3rNnGryWQ6/A0UJiHm29pqBV97qKabAWGVgTT2ncQ8lj7fv9B0w+AyC6M8uXt9UUPfXEvchdt3J0UT3lnJX8chswFSyAT1S3ZvNcCUJJzNjulPW/c5QFAARUidGwB005t5snedAGLUIkDWhklgq3sz1+ZGq77uaVsHlzgwpnWLCiC7COomuHN3SXqoDQLlacmOYSSUu9XSqu4p9fv+WXn/C1voz8n2PdZ86f76/fu6AkgQBd9Q8lTZ98OnTK8c5qW3n/Zdf8PT4wL5vWlZGR2bbHAJLURhZE9uqmsm8oDJUVBYDKWbCg3Ec9JdvuF5fGWuyjUOXXQ7ZD83461/Ab/zA+NHDycVP7FSt57mGlFNTUsXbXETvhAVHLKwrpb+hmvTrbXLORZ+6mGcMzpTNnWPCctZwTrvyuoSch09KtLff39HBacUSzBHqeY7J6+1kK8a7pwvPz0/UtnEueHkdkj6WytPlwsNeKdUoZQECckqp7I8bBTiHWtyu3bi9Gh8HvHQY0xmWUnyXVS6fQvZauNRCsc8fqBspPTUpAmLSV9rbloK4j7E4p17D89MjD5fGZS/sNZQRYoEC+jSkzsxdGqtoQcoFw0qCF6Ycmtfrlespr7nC1xv7dkngZ1Owr98PdKilKLMrB6Cx9N7czkgwqTPG4Pryyu2q4EQvRSHZXnCv1KY691KbWPWUE90rWq/XV25n5+hSY8wMjVPWh5ajUusbGq7DSZeRDrZFabJ/3W0VnqDPyuyA+8Ay1+Q4rrx+elHy/2XTgUwugfBWT+nV9frrlipB5/9l7d1+bduys75f65cx57rsfS5VtquMcVlAuEgBIuJASKIoiVDwQ0Qe8icmbygPyVsQIpFRJIIiErBsQGBuxpeyXafOOXuvteYYvffW8vC1MXfl/WzJqiqfvfeZa44+emvta99lMnXhW4IIcXpGDQpwe3nl48sLYcYltfNW2l26Usv5Mwlxt4z4LZ4/SQHiHoZ9jyyfU1rfk+UC57ALoL/XfdGqmudjTYbL0N6DpCWLhj+PlVT0Ra2Fp6cn2uUEnE2XuK7V1Le73rOkTTMnMT09bRLQCn3+lUDg1hpvt52H6wM1advULj+0SHN1O4uT/hNUGGLFp39mMuo7K7qFMY5DTYGVOyvIEgFwSGadNN9+DLGN8i6cx00doom2P8Oz0S3MY2RaXKV03YthxjoGjXKPUfGU6olOq++RUhhzMab825TiOjGfWDgPlwdJAFvLwqpa2NJHqtaS8s9PW6dIwDGq3RmpkIBTMdZ+4+3lRtkuOZzqTIGAtVa7mj/EEiilZHpYyfjmU/6l77qlXElJL3zyzOBTo3curNb6VFzxEyjgfjazbJ0jB72o59hfb7SHq8DJUhKkPOnUcX/vSwIG518fJtDE7nRy/buWmYDCMQQEnOZmRXet3rVPWz9RpE3/PQEv8ueU3wYpYRCwQDFaM/rWaK0qgch0L5D1MEhD7bm0iKmqQ3WiSyrfi3vEsclz49zKWj05oCfIlHU27wkBgTWbmvQH0zJY0re8A8r5nEoRo80hQkuXZgLFzrtdd3+CDnfALj0ISrkzmsRaUfN01qvAmfMg4pqSLhl4VmuS1RQNWnMMDYjRdO9bMhdDtdlTuhIhL5Xnzx755uUV3n2pcAiqNoYsLH0brAvI8LzzjJoXt5rrymmeC1aNUfV7Si+M42Bfk9o3sWTy/WtF0cLmAgdXOL00mjulNcY8lHiqJ6533U7imAA5vw2xU0MPbM4pX42i77M0+VvNpeGthACg8EwHcm3OvaBUL2s8Pl354nsX/virncfnyTTYirMfGgpKO7e4KVevGtDnhDIzoactPQNk3lqsE9W4fn5hvw1uPwmujw3uiVgOfhDRwd8w65h/AB4wmwmaTMzkhSfTs0rZNr74xe/xV/7aj/jDrw5++99+y/v3V/7c5T2PD/LZKJM7uytyYXAfssK59M7tcvCvfu+nlH/2nl/4UedC47P3wWc/+gt89v4rbm+/zd/5V/Djb3del26afrlw3Hb8GEwrWN/4lz+F9//4hacGv/QnrvSt3A2dxUrQ3SBgZ8DI+yWXqWFKA4oa2QdCz54jQmGq6jFbVq3FQnewualnb8ZG5fY2sOXJ7tNWHhNjfUwxh0nj3JNBE3fAKdmLiN1XAkpkwqhX5lz0evZmUzJ3DxTrIG9HSpPMm3Kvk5KMyI7BYrDMsq8RGzNGIGsAiBlpp6BaFJF7rxOswqh1aaiqGUpxaMgacXIjdLTWmMkYkaSoWJNEKfwTQ6h4Mn9S9pLDmpXzvjRar8whqWlMJ+pKIM7EIGpacHg1+uWBdQyOueuuqSW9QhPAWs4KJXhasig48W+Th0qqksFgptTHkaxn+dL7nH9Hqxu4FtHLJ6N3mjUurWJzZd0xegiwX75oXUla++1g7JIIli5AcBHJgrf7IqGcPVOQw69qYm0CE1esZMwqYVDY3lT9C/WtAhcQ6NULncDnFAiIfHkohUtrPFaZi8+AEbBy4I5iMp13T48bfWetFGYAOaCT/anfmWcJwJjTfmYUPyXTApMkfXO0sC1+MrCyN/EloNTQd+MrlypZ2Ktq4+kLCMABmwYHgYeu8xSufpCzxuaZVU85kWxNdbtYxZmEFXps+bmVJOZOSiP1Pnsu5eV1lH2qK2hiRtzTZM8m50yvbikhXzFyxkk5YdZvCnQETJsLuG3Z51kuq08QRt6Aya4nwUh9OhzJtKKIK1xQr7DcNUO6Epgh8Mq9j5T/VeH0Mw2ftNpyHlB9x9MLKp+ncVpSoB6gIP9jU021YiJXBcQUkzVsEdU5U+vLvWmL7L3yPUi5ISEm/szlGnayjTzvswTiSBCpnL2T3YHSYqaFRZxzSZybJk6p3Vkr72fZLEki3y2s9N0DSqnN9Aj5F73cOPaB1c67z7/k3fsnrlvVixuJTOeQYFa49I6MWeWP5Jw+B+X+4E90d87FGoPbvDE+fmDeviFoeGZFVQqlO+8250ef3fjTnw++eCz0GBxjffINCVGtw9M3Ji7sfoAdhAW9y9DZ3NhfQz5IMzfm6p6pvogJPjTQ+jKGLcYslFUYZVE9mAtmhApXDiQVHda5YC3jsl14eqg8bBeWNT7ujlvHa+X6JMPi60XJLRGT8Ml1M1oCIGMauxv7CF5uxsvbZB/GWxRuiTi3VpHlTlBNB0FS/WCzlcSNkNwCGaOtWIxoYJ1BE/PpUFrPdMAaj48Xvvz8md6DVoNLdfaRBQVtjsaSHn5hkrqhDXOpabheRNV+fd0ZMzINDVpVOlarndY3JdsVXbQl08161dUzkn0zlwCVcShC8jZuvH58ZR2KUWwJ/rQmc9C6NXrr0qjnRVSR98oag9eUt83cSPua8DN0w9K7AKkmD6dSFeNurWCt3ROS2nYhgK3qsmDpsjtplGaSEu1vb7x+/AgYl+sFijFDZqw9h71SjNpb+h1t9HYRG27NNPHLyTMkt4gpFsy3Lx95e3nRIN803Pba8XIynpQgYLnlWa53Voty+1TgQ5fWfuwcYyeOA8K5Xh+U8JaytLMO19yqndTL8CVjzTnSJFMX41iDuZSO5XNg4Vwf31ETTDoLpopCUllDFFLrTVvGKWZOwUT99ZlFR1KPc5syfArMzOeFdRlsY7klk9nvyb4sJtNDGQyqiMq7UKkjvkQzP46DmFMAYtN1K+NfFwslh/FTPlRzO9FqgzWI4VBN9HNfHGPoM/niOIa8CO4pOaIy12StFUMeC3ZuluwOKAQp15oTlqRlsFhzcnm4cumXPP9ZcFPacI+Bz0bvTKvyocbi3CydW7sVQTOnFeObt9c7yyTSWyhQUdamVNvus9E+44DNzq21aOVBoSaDMELPuNyb8wRZkYGxPqyAtbOYa9N97n716wSDT8DqDr4u5/HpSQy4UugJtFqxe+N3bn6yAGKun5sTcEowz5PFFxHsY+jM5t/X7uwd/YwWGaVe7h/w/w9gGbCclfed5WbLasV6o15kzN+tJTiV9/gJoIVTuyLWS2hjeLdpD/W+Ywa1nPITPd+1JuO40fomNqP+tpTuSXIrbyudnUD3j4XSVtec+fOq5sknDy6t85rMKU7ZXSn5HXNv2pOzlHK5gpkTjE+/J50MLHIYT9+L4zhSzpqswLA7ACkwUaemFu7nWI/rEwOgYMw8QysWz58/8dNvv9WmGZIdGUxzsEV18NU14EVAWUm4E6Mhw7zlc7JUDWmGLdh6F/v1tst8fUGtQTTyhKuhr6XhMXNb63RTf7G8ZCCE5Ou12f0ZXi6V234Qa0F0Aa4eyVwcbNuW3o6FYyHGwTxlgKl/KvJCOQFEHxNa5f3PbXz7zSsfP+48XTv9s43SCmMKiO+t0GIRUahR03ut4PtibZIzyGQ4sNrF1nKD6wOXL4P9Jx8Z+6I8dygdnbCDwjXfYXUyHh9SqlDBRtbokoDeFeo76vvv8yf/4uSvfz34O3/3X/Jb/+Ir3j3DL//yZ+ojmgzr2QAAIABJREFUSqdRGQ3KrNSYhDe2uhhhVJcP54c5+P3f/QqK88PvvaP+8HO2L/4M/fvv+G9uhdfjX/D3/vVi7krRDOu065Xx8gaH7vO3rfEbfzD4/Lde2Z4Kv/C9C73LALnWwrBdII7BFouwBfukxGTDsDmxJYBkCSPmstIPpsK1wzE1vApDlpmvUygNypKcequNuAT72yBCnn8qGgmAFks/s5rguc71KcuN5CeWYrSmIc8JSjSiBWMFcy35RroLYE6wFCSFunuspKfSXTp9UuNB/578O5Rmq6EuYqKQG6M2XcZhTe93MnbEvLSUI2tR0FolXOmpmLjAeVEKWIhkQbDSskiSZgHb5x2lBWBY4y6VyQu1WJESMyL7nQW1EtHoNLFc3e93vEgwsmgoSIVwDqQO8p7xNHYu+Z2D5inPCp91Tz45zmAxCVjpVWQVX5MyK4Z6LYGWety4eqTeKrVeaDi1CsRwX8xjZ45DnlRWiF1efKN79hMpYa+S9wn0SmCHuC/naiuScawiZr4fycCKezhHWC7ILBk1Wb+tNiiq6WZKXGtF1lYljKZdGcs1E04XwGl5LjGUXHt/hnpGnuBgLLFao5z117X4zOfdQn2DEsxU0+ysmSd1KgG/XjYWSu3UmUjrCZeXHlPn8/xZrGuBchSx8XotnOES3Rq+CjH1LFbI6kX3pRYw6s8/LQPXWqw6KGknchJaPNL751xsAh6V4gWKU9BdHyWybslf6+T9hC9J+4pYyloWC+45E4HvoIhZvkdGpzGWvAY/gTiRZt363vSkyEVUMvx6Jk4HCXgb1Fx6kMbgCdKdfk/C1wQQkiFIPwu6ngxz4TQJNLYErpbYhZLLVqXIhcvCArvP8VbVP5yspSDyLlZoy4KUKfq9p7UE68h/Vs4PdjZipJdaLoft7D9cihkxvJxSA/Nkfhf71L/ce4VkK6LPVs3u/d53+es7B5TM4DgOPnz4wNvLDY/KZ198wRdffMa2KdnG+HSIyC9cfjkrfRtIZqNeiqw1OXzK32OMwdwPjrcPHMcbPg5qSEalRqfwfA1+7vHGLz6+8eU2KG+Tr18CH8FeDjVeq7K7Yz5wT++GKNymY3Hg1rhUsDYw7+y3wdsxlAJRK6tPrt14qlfWHrQjOMriiQc+vE0+zo3nujF5ZY2Cr8IcxsfD2JfSmUoYx5wQhafHq6IsS+EtGTVWVFBaVwJSbxULZ4zJdStctosuptIYE27LmEfwzeviZXeOaIyovAFe5FWyCvRitOJc8sCb52Z1Lax0FbxSGI4Aj9JZ1plRGBi3MRlLF8fluvH4+MjD1tm2QmXQ8pKAxfTGwDCvHGvi1kThNF0ZPYd5zHi77dz2mQZq2rSXWtj6Jo+j1iQfuvvaqIGqGJxa9eXMdcgbZmkL8vHthf12Y86DWjqUSm+NLZk9p4FxLVVsJYPLpqFm7ZOPtzf2PQcTP1k5xmnEvW0bfdvol+3uweER1C7Wk6FNXTUZlAoplzeO4mPjXtQNZ3974+OHDwJYe5c3zBxJ/bRkOInRh0HfNkrfcIrkF56Dv+mSjmTo1Fr48PXX7Leb5HFdz9lKYXelNIaHooVTarGmQJ+CEgbDlHpjZgJW5mTfD2YabF8eH7hcrz8jW9XguG2dWqtiYC1YI5NakjmW0MJdPuMr7tu/y8NV33GteFXSo/y2dPGuNehm0Ap1q/jrnk1m0k/jvOwXtpY2YMm8aP1yH5BFp5WMrlpNBoMozOssWvbJcLAYKelqWcyUQrfW5Nh3LpeOdT0rT6q+TC2TX1Kq/tlaCaYJfF7zhqFEuhmuiPhsrvZ917bXCt4Wcxq9FEqY/K7Sw8fIaFZL1tAYkuKdzatlHDDJMCqFx3fPWJPGP8JlvG6WRvWfAL97jPt590MWyWQHZaH0cPzYeXm90a+PmbKT0bpp2NiaYqhLDiYUbWS0NFyaYRMo1Du/UUph32+As10f9Hkhae8pUUoQ8GfBIz2D8kljnwO/wSdvG4NjP/A8szKflqywUrSyKKRENxurfL9y3BHtO9LEs0iGYglOyDPLZICfQLplo32+K+emnDzhK0Atre4dcpgXUKbNOOczsJRWJchidm6u1HCuswnyRW0FH2qOtE3lfhetlQOQy5li3Q5iDNrlmrQuS5mi6O134K9UZkiC6p4R2ZM8Z2Ih1toxOwFB/Qzuixp6NmutT+aYrjNaI1lVkWAV2rKqzjiWw1wQSoVt+n7HTeEXkYNOuLNM0QnTlUbpTkrvlr5s0hciWQ3nAimxQi79wuP2wP42eH7Y1JTirCn2pxv42pJRlqtMczJ6RTHxQOtdiTO1yqeI9Hyxg7fbjcfrRkFMJMMpZbuzwbBMqplOIbIQGisKRuc2Dpo5tasOA/TLxtOTsx9pRJ+NuaVsYIZTPWXMBaIF06AV1RwfcaflOxmc4gfHXDw8XvjiFx75+scHt9fg/WPQnxslZNgvkDWb/ZYnu8BaFVtga4rdYslgrOeBrDw9P8Ea3H76SukLHifNu6xvPOCSzNCsh8ETYZ1SNohN5DsWuBYolcnD9wZ/9j9+5as//Ja/+3/9W/7xPys8P218/8srpXQ6G2Ezz0C5M6vCd6LpZ7k+GF99+w0v//yV57/8A36+f5apPz/P57/6N/ibb1/z+vbH/PrvvfDNTQyCSslo9hvHnLRa+dAe+Qf/+iOPjze2v9T44rNGNGi5rQ5zShVTqjaoR8A8NKRtDujeO2W/pch/sgbYhqTQw3ibn1KM5JspJmKLxjLoGERnHJMVwdY0uC5H/XhVMpjq8kxvl4ZbTbApgC5qapM823zpWYa81MYY8vw0sdJHBIWWy+gJmJY46YMUZvjUkjiia8te9P2vkYmu0uyyhqQtzSe9aTC2is7JHUoo+T35/R6T3CvyfV2fmB4eBJPwcwGU0hxHkeqVZIEEZmmOHPKLrMIxNbTPPNvhHOPGnAJ7SRaJUWlNTBtfUwz5Fdz2QXPnkoEV90yCWJLd63hQM5AkklHmQCLkApEizYSxu0zWjFyMTXKnlUOr+rZtk3+mx5SNR6C705fYEb2pJyGXUksLvYWlIlnPTEwKydkFsuhs2XIB62cqaamsKMxx6FnFkowsvfNKVS8SIeaylM+VsoyylNRX7DwzmnPmEDvlBAY1U2pw8Dyt45jqBz27yUi5VJ75WqvumIBZsgdM315DfcCyrG/a4GDW8PQaO4k65PcGrrOGYeU0l866NrQEXEvL7EB98JEWGBb6PEWvEx76s8uXQK3zvan67CU9ekslAdeCr2S8JINvegbqGCIZoKQ6SegMi0LnBJALtiVDO33BPN+jc5mv2lTFfs+ehFTjRAjnX0huS85PZN1OwuQdLDFyTsx5avkgQvOKWNTpHVfOdVPW6Zmm26myoWmu0XxbWK7v+VROBHYHlzxBqWJa6hlkEIEYWr78DtxY4hQKl9A9e2+3zNJRIxl7FnczbyKDEs7rJ2cpj7PHJheJnqzLiuWf90HKIs8F2ydLkbuMMeX25/se2T9Czign0PId/vrOAaWffPUVbx92zBpPX37B8/MDD9eLzA7XkAzFNAgGGX9oxoXC4UKkS9Kx7qZXqKFc7rhP5n5jjRvHPlnzDVsHZU5o2vA/Xgq/8mT88vfh+4832prMFYxbppKtxRxi1awphs0xE8V2ONKAzI7JLQZzfcB94EO0yIVLB+yWRSRNYAeKFq0bJXYmGlyPHtS2MHN620Sb7tAfH8EHx9tOicbD9QptY/ciSiNG7QlcOTQLHi4qeo1CqxtbBTMZ5h3T+XjAywH7bfGyB5PKjYKVJsT81Kmfmuuz2Hle7JatczH2IDWblVI6TuX1ELo8AvahYfB67VyvG9drU08XkxUyKPfp7FMFY01Jvabp3y/JR7KMqhIG3l5u3PaD2jYlYoXLxLkLpLle5K/RWhbDZBSsn9EAu+czXmKxzeF8vO28vL4oPQ6BRv3xmv8dGSlaIdDQaBhbK4w1eH29MfbJGFOmhCtjN8laPRf9cmG7XCnbxj1GHCCHmpNh17cmGQyKQe1JIxeJKO4AyjF3vv32I7U0+rZpo5iXOSga2M24NIFf7SLGFtbEkOATDdaKJZtKMrpvvv6Gl9c3aruw1ZqDjqnhKglo1E7EkMRjZixxDvUETB94SCpxAkpjDswKj+/fiZHTmyjMAIiKXYv9jHeO3UGZOWcCGOQKTo0OaxFz0i+dh8dHGfOVZBeZTNh9TaJMGpVaZXq/xmIehza07ukNMrXBWysvbfkR2dbFEpARBwBhMgK37AaKOVYaNefCCTKKXgtmJl3VTP6Y2k7e3na27QHrhXbp+MxhNk7IQcBOqfr5P+1NYM2DOSVtHEvbNXO/g237cVBLEyDtSzT7aNpklaYG2ipmg+M48Lk4Dbilf19Z4PR8zuXFw9MTl37J0INPunBDTTOxxF5L+dEJ/K+1sJW+NL0kSJDFbE0+fvhA1MYsAji3y4VWSj6bkszDlFMVy/daLJczBdMJ7Nrls5BbmmMO3V+t3CngauZkSn4WdUW8qpbcwbU4RXn5IutE6s2phbcPH2lbP/8QEZEgag7x+Y6Jtg5EbsJI9l2CVGfy2PSzlskjK38jSqJM9ppzZxuV+/0rQOP0RgjOQUCU+XMbFctZGQ5Qzp+vSHaZfzC3YUGh061SMiFEEsHQYOSSfpXTtwc1jL5ORpbAeA+lDlmrbNcLZzoJaJit+R4TFcZShHDWGjsTDOcSg7AJgFxrcb1e7yyh89dcSgqctlMsI8aJBKFPuGdpsYLYY5LPN8V/L23SFaiQcrxYnMaUHjlkJuvsnljDJ5DwPCOn6WWvhc8eN775cGM9bDSD1i6ED0EtsTCb5NoSX2JUqUad50OwWHWFKfTWeBtvkjk1GeTvu3O9VPByHx5Pb4w5F6UVjiWD5mDdjVuJUMoPavYLNbfRwXat7G9TLO+mc9gywSdsqYb4EphqAiLCgnKBaE6sme4YSwuLVnnblQb75feujG/h5XhjjMqDBZfHR9oxwGf+AB08GXgmsKKMDTZ5aOaLo7uyiB1aMLbHC6/fvPHx929cv5xcHir9cpWvU7nlkB0CldqR/fLD/fyfCXBRDKuLeoF3P5z8xb/6wr/7vR/z//z2t3zxXPnLf/kHfP5wI8qVVgXAbmYcY+LUBJYFTVyicLvChw+Df/9vvuaHf+pzti9/TNt+kbj+gJ/7z/4Wv/byv/Dt/7H4Bz9+47YWY0zV9d7xfRAGiwt/FBd+/Z+88f6x8R/+hc7T45URi7X0b3MsTfBLyhplut+rZMHMCV11cOqFp3Q9/x7gjUwHk3fP/b4qJbfqS8NkSw/AYxLr4NoLR94Dy1cydz89oxXqOM7BxUpFLKbxM0yg0+tEm//hi24yl68pFtLbK0ZRqedDk9S+tdC5KxulwFoHHpXeKh7yHAQBqr4fkoXOmey+TqlOlJb1pdzvWZJxGMnkY6W0tshU90y0ne7YmnfbDVXzXCiS6Geciz4No2KslDsL1EohfKkne7sRsYiqh9D7BWLmYjUyRRPiGOz7TrgCTu7yH/f7wjDI/p7I73vpbjm9bhLosPRE2+ei95psbaVt1Wul9soMSWVVdgprKkDCdVDy/jOiFerqXB8q+/6mwZ3Te0avMaZADWuGVc13bduINVhrYCzReczElKPQXL0LM/vhIvQuEGCoc+ewBGwvTsCiYFGViOf63MfZD3hO55GBJkV3abXCWieApDRNtdk6U3Zf5vjdqqCWkyUni4pYqpuWzJs7+23pHYNIBmzafjifZNuhLr3nzKFn1QFnjklHy7cwJ4buaSXr1gQy1H81OlYt7QvE+jtl9z4HWKPXSgPmOAjE/OqcSb1Z80pkvdAZLSE7lBPvEw5bqZhmqxCLOdZisXI+sfvC3ZINroTfSmkVTKzLgr7TEk3JfuG4iWkTKIG3WlXQVvZctSAGnql+czJ+Sv4nYqYZArCiBLFC3nFThuGSCidQbHn8kIQtgrtfmdjPWph5CepSzW1FCe0KdvF7X+lr6XssyRYkErOAXlt6ROWSMI1HTwb1CU55qoPOpe3pJXtXFGOwlhZOgZ75VK8s8mbcGU5mZ9uSjMC8v0uCW2utJA18d7++c0Dp9ePB47v3fPG9L7k+COkvEbAOLGRntbLeC/WV8a2hpKogN9KREpsEl/Zjx6eDT+y4Md5e5Y9jYg7Uy0YtjR88B3/2/Ss/+IXBu1ADNUymqqVOSv/kZWDLoU0eZ6PG4s2DayzaaowlKmQP59gvjDl448A8o0rN0xw1GL6r8KzKmpW1gC751Ticn3z4wEFkk7YTLjZCM+fnf+6R733xOdY21jK+eR1MTylPkSfQGJNrbTxeKg9NJ0vmy2pHjynTx5dj8nEY396CfUDQmen1YYhubkD1RS9gsSR5Of1hkLQNM6I2brdJVA0O7iNj7jv7PHh5u3HZOk8PV54fO9um9rKYNhXL5asks1Qh5nXrHCvwuLBVMdNOTfucwbHfWHMqnahvYDojtTRqu3C5Vlq1jGnWRV2KjGpPfw9HAFwQeFR8Lb7+5pt7WlQF+uVCqxu1NgbOdr2w1e0TU2QOWnXGPHh53XnbD+7FoOj789yyrnAeHh7FStq6aI+ooNTe8vtUY8Fy9tcbj5crYx5QYB9K3SqlcoSzz8Eci3m7afPSdHl5hb5dtOUqNYGiKn3+9QpUphvV1OSeZnbnpcaUkebXX39NLYWnzz6n94ukJ0siUXd5edStp1xIDdDICPATkPD0RVlTLB1HMlBq5fokD6K2dRnehRFTzVTvqb820pNLxtkxJpe+CYScB2uG/MnWYK3J1hvP79/Rev6dGFG00VNiBtSoydSS6eTaXzGbvK7BRk25i98BA8JVAFxym2aBSmJhs06wsJCMINYSiGVO0/oum0hd+KuCtZL3lhgUL7cbdbsQrcsPrmyEHfRWtME7t1tFpoCSFsl81+eejWIWEwObYoqUWrndjvtmhRJ4CbZMIaRU6NLAz5CMcI4DPFOVzm3J2cDrQ4il1RrXh4f7e7mm2FC11pQCqgErVd4zJ0sult9lSucqruZnx3WP72Nw3R5Yy2kVtiYD/qDc44EjJUqlnrIKdFZKE6vNp7bQZnpHwjnG0N1SqhI77FPSCXAHA9RIn1zi3CT+zHLmlFR5Ft1ajLfXG61tki8m+8wClowoUrKnlDiPuJuTY5apdJJFt7rdC7mYSUqduW6bmsutQZwm0S6gsHzaoJfQ+9cSpBJlOn0VINltEx+LeQzJyiLraz5bFdYE5rIJjZC775qDujXWCCqZVOnch6O1JMvZWmOfC+0lKiXiLoVsrg05wV3uQKxMycpEE9Nz96XvbS3PG0oCdTPnZz3KxFJCbM98jvIUERNA/lva9kY+9HMLd/o3KbRAoN8YO7MLzFDdMGTgnQBgngcNy56sJQdzghzucmOKAct4fvfMh2//mOWRxsbn/ZD/t0LGxsUwW/hdQif2VUyNLGsr2K0QFS6XjbHv1BLs4+B1H2wPXf5l2SDa2fSid5kaLA59+nahJli1PKihoAaBjDuwaO1Crztzd8ZDxRlcoqrGrUp0KCsoSwDSigrWGFO+d1DEMACYITNmX9jbRnvYePc9+J1/80f89GHj4XmjPxxpvN0oJYiqNN1qAvxKNW7Hol4q9WERpdAiz3h6dUwU8tDfb7z+0UfKzdgeOtQN6kYUJ2lPyGfowMqBzME6UbZ8+QMrHYsn2ILO5Pv/wSt/9a/9KX73x7/JP/nnX/P81Plzf/5z3tfK6NCsEgOsGWU3DhpuTi0CGJ4Ss/q9P3jh3/6Tr3n35Y8plw/YthHPf55f+m8Lf+un/yM/+UfBv/ijV16XZJj18YpFaGkw4LFd+HFs/L1/9C2fPb7nl36l83jt1DoFgvlGWGFsb7T1QG0Dazu1S04/5oTDibJrEKLSIqUXVUNHBLym9KjRwMS4sATFp64UtgplqzidtQ62lPJMHwm2JnixFj4KZpLzRxGI0AwqnZ1gFYXPrCV56iqSQs1jT+P8HBBTZhMmeZ4AwXKXq5YqW4iC3oGeDOjpIfzKja1dKBSFg8TK+18Lj+k7zZoCceYUI2YpVAcPoiiMx0M9A7k89HKhpCR8jJGyJEkorUnQEqH3USlqVfdJWPbXBVpjJDtto8GmlN41xWh2cfgFUtQEhy6NrRilGvvtjTEOtktP38+TjXmym5MhCjQapZLs5mTRFvVAjrxYfDlbF8N728SwPPYpZltt+BzcQrKvkxlr5+WXtannuVq9sfsiaHdW1zHn3dzf18qbXjHxpW+0S2O8vVBL10w0B8WnFqRRoBkUVxCYncxGLX2UtqvVCOjeHUugYCT5IKzKG87ka5dXOW4nwA5RTt8gA5ftxqe+FqLWTFMNqWoQ+6NayqFctcd9Ehhb23Je0vkskWqGmixV0jjdPiWUn54/GPo+i3ykatvk05qb69YaLVldXtKLsGgpdHp0Xnpjne8zEHOKAepOWQZrynMs/cfGnPTa7gsK+SVyB9Im6SNoxvRx9x8S+7cn4ymgddwTYo80zF9atFnV3+XuMAvYFOutiGhQqVgJxDZeTBcj/VQWlNJUj9P3FFOIk3laR4DARU5T//RFK0Zxk5fL6R85taBbSwQN7dfkg5bIpHqGohm8tKL5yQ16UETRUxDU1GLIEkTETeb+KzS7NzGKbKV/K5J0ivWl5znGSDN89WRGly8tkWC9elFMc64+q97n2ioznNYqIwHfllZBayZhI2X9QDLgcrkIWhqf/+M7+vWdA0o/+jN/ikJhawa+cyxd2vKEWbnV7KmtRUwTjKBC+p2QdGpw5qGt4tjfwHfmuBHHnoJEacQvVa7+v/T+hV/+4iu+uDxg+yuv3hm3G2NoC3u4mlhzZ47K9MEysQzeVskYa4MFRyyOmNRRmLwScaV1Hf4IONixMK7xAOORxeK2dipdTBYDohI+mBglDkrpbBHc5uChXfjhz7/nei28vB2pra0sr2LAtNwmuPNw6bx/uHCpUNypm9G3gq/gZV+8zcXHN+fbV+d1GMMai84MoatqE0U77gU2czyTkXqDlq7/pXamGzMqY8AgjYSLthZrBsTBmAdPjxc+e/fMtWlzZIZ8XZZ0yqKWpmlgRWalFtRm2KqUIm+qYsa+HxzHotaN9vQoad9Jj8XS8E3yCLNPgKOM2mWot5WSRsx6jh7BGJOvv/6GfU62XulVseKXras4mfH8+E7I9OllY9q6H3Pn5eMrr68Ha2WUpk/WWtJUp8nbdr3Q25bG5rmQL6ZLOjW5JFXWXKj37faige7wpOwWjjmUuPXyyn4cWDEuXebqttSQxHS61ftQXwDbHtLwTybFvpbSAiJ14KFL2tz59sO3zOX0h8ekO6qB6iU9RaKyGWn2qE3ATPr0ZpXSO7tPxjGYa0ijXipvQ9LNh+uV3s5hTT+3UgiQn5QFUcudfRhrJUVZxSyWs47FbT9wtDWsBs+PT2ylJgBxsg9AlKr8blFax/BdfinjIKouY0uGuk7TGZlp7NPpjw/5zKBYk1xM3IwEUYxiTVu8MThwpi8Z0J/b0xqSl6nWUOck5uTy7hm3lHKh71k9UZrj5eVuZdOl74feoQjMnErJs5cDb1Gyiy9FE2+tccnY3pKbT6bkk6VrW2XZ+HpBqXgrOIY2S9OX0jDCKXPw9PSkzR25HUk5pYw1tT1bSM6tLajfwdzlLllegK1IyZDO2P76hrvRrFNNTZ+vxRg7tTV62e73TClnjHn6Jek15XZ7pYaGMA81Ol5gHIOH6wNGMngsPXJS9nX+Gmuq8Y/UmcMn0DTvAvcl2U3Kft7GwfPjI9c0qT8lcmIW1nvThapXbrbS1yI3nQKtcutHNlUeOfDr/VmY/KDO7a7p63PQ/9/051orWG5VlXqnO+lMbTuOQ6EDKWfEwUomiSEqufvEWufj2yvP7YFBJXq/y7nKaRCKAOtTLrnWft+aYc6+72ylJvtx6MyWwlY7LRseSG+eZKOWrWHHaY4v8LZls5sWlvj0u5TyjDYWm4hsyHWHyoA+G+D49Hs8N4Jm55+BnvIAc93jZHNXaqW1zgynIImKkongdrvRyyZpbugJO6Kdu2sJM3C2hwfKFfw2sKcmmn1tkvrRmOpiqSsB4KqxipYLgJRtVILDgpiLSmEUAc+FNEJeDr2yXJ+/ViWmtuJ4HAmwbflOSh691o1aOgWB54Wa21W94+2h8vVP39ieFe4xTad0Q4swt8BjshVPJnRjjUyqDd2/xRZziFFQO7zswYNNHp6N68MDH78Kxi/Aejuojw1WvUu2JT00wpaWXQV8wdqNdk1goSRbZcnsthanvw/q7cJ8DeJ7DboR44b5jei5Ba5XsFvWi4mV71FouN9y4K0C99igPXB5fsef/ou/xF//d9/wv/793+X//a1veHz/wK/8CJ79SoTTemBUjrprKJ1VNdcmqxaeL843s/Kb//QP+fkfXvnBu39Dq4+U9kg8/Xn+9N/67/kfPv5t/qfjwm//ZGe4UffFtm3sHvjhHLHYHq78zjD+93/wxt98Z/yJX7jSLoa5zNKnD7rBaoutH/Tm1EtHqX6FcZsatM9hBDiZseZB6/BIYy6SEinQcU6ZrlcTA8AxWrnwuAW3G3gsrl1MRbdB9ZpAgVr2FQfQkDgmxKazjWLOpUpicr10xn5DiXznezAp1cWC97xnw6B0zoRHK4U5BMKegDO1sYZ+xlqbGDVLda20xqUoRcz8NCHX4sZOs/CU6eX1mMw/Y2qWoxcjmi6RcegdtNoYPuRhlJIiGyHmxdTCJ4uQAGXLLwcZ5m/W6JeKz4NWKpNdHmM+7klknkue2lT3rSR44sHb6xtrTa7XgtX0m7Kin/msLa1qmG6FCxtlTMYSC1UAyqKWyhgKAbq0qsCZMFrtMvV/rDjygYuhmexk4KgPEyvW08NVPqwJhmEpZdfdvO5+uZLkuwXFLgC0bcNvRzJnDdDNg6KtAAAgAElEQVTdKQNvMUSsWN5flp5rOh9e1EsmFiGrBgphDUw+bJv1VJE0akCMledB9UTmxk6ErBbmmeYaKxlfqG9wp1b1CJWUTIfY1SDm1eHOvh/01iCfmVnNuhvp5VxxO6XXAj/OAxiRIQ0JBhnG1jfGkhesTzFtMJfqoWpGdsDinoVHKQIbli8ZVk/9rF50loNg+GLsO5fWiNIkpz3BB1c6aqxgIHBqLYXsKB2s5pzhubRS6mytWmAUK+BS19zlzdkOlsR/wsSYr1ZYJT2cfoYlVeiUEsy13wGqtRZnSEczY5Vc/iyHBL1Ass4gaPZJdbBiKcWxGtY6YxxAyWfqn5jbRUub5VrKr/sCJ7IXbVgzFiMXqpXh6V2aPfP0JRA0E3VrkwSTqd649q45IOWAa2l2O896MwFVRLK2fVIyjVW9mOt8Jw7pGKUq9fn0dRODHiAZ7oGYp57eTn56rH1asn4Xv75zQKl3p3ohxs6MkTRR7nHTZiTyLMlWscpcO3N9JPZMe8lI7WO/sfyAuZj7K8zBXAfhO80q3eF9cX5wCX7x3cEX246/TV4+fssck33uHMuxpTSjD/6miwgVjUJheGBLB87r4EZQ52LOgq3CLXIQ9Z25JjHH3RtixqKslzT8qhBXbrzhHeoSUmwPj2y3QcuLLV4Ofvj5M5998Y5xm7zeJLO77VNFqRZaCdbYqQHPT1feP124dFGsa9uIWLy9TV5vB6+H82EXkHSsykHlGCYpYXqKVFNxhMAygvzSLNP01JgPh/2Q+fd+TEYYT9cnPCVZtmAdkuFcL43nxyvX1uitSCJhAgWPTL7D9LwjFs0uuKtAmVVa18blWHDsSq7rl0pvlxyOM/mnantE0hEBXl4+0utFA2/K3gqKn9+n4yag7TgOvvnqK/Bgu154vHR676czGmXTlqe3pqSR9FqpBvMY7DdnP6biOf3cAomhc7iG3W3bBOwko+NMArFSWEUbfZw0pIO6KUnIQnRJCvSitK41Xnl5OxRD3TqXuuXGDPn5FMuNTDIA3GnXB21OQe9Wa9Q5UifshCsuPsJ5+eYD+3HDeufj6wvPl439OLhcLrxVgQ6tXolasJiMqWKpNJCFp+9PHEoBa+RQ4DIOf/fZF0nB13aguAuNLyqKpegiPAs2cym+1vgZJuLi7aaz5C723PPzO+y6sVLiJ/PEUBFKk1XDJdtZkiUyXTGpFIobc2kz1kQAoUbh5eUjl8tFcaStMJGnjdmixOJSJAXUtqBo0xPBGDv7GESaIZ+eMGoAgALfvH7k6f0zZk4vpthR30V5TYYIFFqTD1CJxZqHLnqVFYEyGXBwboO3y4Vvvv1G92xr1N7UbCaAV5Ph0nuX35IHx1KCpa/UZ6cM1JF8N3yJodIL23WTX1mrKo5b03amBFHEXGm5GYRIHXoySVDBDau4DQ0kQ3HWcx20x0f2NSWZWWDDmfmcKE4PfVdWKmWJzTOT9bS/3eQrkCywmY3cOgabw9P1grWqd+p8EslU6V0+Mk6I8UCkwvOTgXcgnwdKZVbdUT4mPTeOP/v3WZEviUAfv0s/LFQoTjCOhBtl3q2UwRMcI5uYIkKdpMbpDUgNrHr61YQWerVqCTIzPKK03LZqy7jSNy6QH9ApTQAo4Xd2Zrg2xqVXWm1MK/TSKa3DvCXpRoNas5WsT6UxeTUGopVH6QIA0vC7pvfV6XeibVtucWsoPSeCFgbm3EwpUkdMSvqxnUbXfgRjXmlN8VSGwMeSAJP7Uj2wmk2WNswUKCXum2GPEBU8/TIiJBPd5mBr1ztoFhFce4IWRUud4Q5tk/SjtuxHMoHHyEhigSHDBpfHKx+/fsPePUAZRBWo3msHs/R7yWY/ATBCqU+lg1OoNRTocFsc3qlVy4a+wRhvTH+k19OjKj2xwtldMvqSJsm7L5qlzHEVtk1GwU4wkYTghNUvlycers58Pbi8e+Rwvd9KCVvJtjDKAa1nIiaSvZYIJukzcQ58Bqsu3m6V9hR8/oON3/vtb/j4bWf78sJ1N0oLzCtEwUsmYvkGFVoLmhlzQWXiXGkJcEw7odvCpT3gXzgf/+Bb9q8X24MjKpUaa+YLIP8SiyesvoP4KcQzJTrEG7BzMlc8FlYvPHz5zF/6T3+F3/nxT/n13/gp//dv/ITvX3+Z7fsHVh+wprp1aRUbzipi5hYKDXDbeH+dfD2Df/j3f5e/8fP/lKc/+xnNOtRO/f6v8pf+uz/k1779u/zt8cAfvOxKNPRFu2zcbgeHT2IPHp4f+I3bzhf/8JX/+r9afOGPXC/GaIVmYAesWli9YA22KrlnM8MuxjqUchQu1ibhDBO4HDaVIBcXjkVKiha15Zmbkf5eSvSaZVGfrvC6Y7dX3j9U3kYwoxLNsZWgnZPSLy0xzTJ9UWgIJdBdUCtlHkyrSvkaxhqhdKSSO6KwZCcmeLDkoeSu8BkzeQeVVgWcW4dk89ZWKMtZ2YP62CE/YyVNgSMZPS4m1fREkUx3o58KCex+p6gOy/vGw1kzEy6L2KkWsqqoXX2DUZhrpk9Sw4/4lALZCnWlR+OUqbbHpMQlJW0aVjXITlhGXBqUzjyU/mauRehcnh50J9Jb1SNW/SzXsvGQPfJcaVruQd2MOFBPWuSNOedBuzyAk3etgPMCFC/UKESt8sOh4K4l1dWMdnFW+lrur3vKiP2TzIb0qlmhVD7X56xR2ErHSxDHSF8vWK5QpHMBSCiFLpI9YqgPEEskjazPRekSEFRqgaY62GlEl4zT0My3mPc+dKrIn02BnoMV5gp6yfO11GctM86oITUHThe/l+O40brsJ2Yyqg2BSxKepPccKpYL+USdiX2R4ElPcKMUeerNtUQ6mMHcxfQuVV6nUSVWNZq8PP3QErVqntqo6bckZjzVsZo+n4enxUGDZP4ud5rJrH24anlJZYysBAobWmJGFIo1tir5oRLPAo+BRXC42MmViod8i3DDmrMoEFVgj94urFZaYh1WOqdks/fKPgepzsWAeb6DjoDBAqdcXcC37AsspIQ6Dc9LUT88p+aJ1uodVHI9LHVw6eeWHWIyg8WWvNRNS+GedhanmsB10g3JLvXyRDKWWsoBNXuXJXbuGKftQMkWNmVzpj6LpuAby9X4CgXqOOqn21YyfVKpkRbIS8xOpVfN8BvN4eR9UfIUfle/vnNAqbix5k06Vav01pMirYG7kdrMYswxMYZ0g9MyCtAVr5k+H4zJ/vI1YwyIRUNoeK3GLz7Cf/Rngh8+LexYzBfj45zchuJ1nR0HjjUJOtWvREzWhBGLMW8cIxv1VThW4/AJ9WBN44w+XkCdXWyjIg04yd6bLIoX7VfnwSyN4/WgxMHhhVo/4BbUWdis8Cd++XMu18JPv30BK/RL4e2D4a2xPUquUyO49spTKXz/557pqXdcc/L2Jr+d6cbrDj99C15XYdHZ3VhWKZuox1RFwRsyPVa8Y+PSjS234FHEZJgBqzVdKl542i40a6yAD/uNcTitFj77/JnP3j3hVc2CAM5ybwCW109GrIU0NcvtQrX7C3kMeHtTYbxcLkpaqIXWZdArf4hJqRtrgc8Dw+n9qgugGGsapRfe9oO3YzFQczNvNz58+DoLjLHlBbOWXuRL6RSrlL4lCwN5I8zJy37If8mXfk/GTvuatF7Z0zS7PV5ZDhWh4JYxxhcTXVjDttLETobYOmQCHUXb8gjjNg7GvvP28ZXDI71kFO17xhSXWmhFHglWK/2yYa1qOAiHaVC0HVoxuQvB18J88fLxhdt+w7YuRhKZ+NQqXqBHMu8MDfEj40hNLK9W9T3cxp4NqqWJOPzkm295/Pxdet9o4CmYhv5S5O1wDr25rVtjSoaVm6aIEHNmP/AY1NpZAx4vzzw+vdfqsGx3f5dqgS1JIHyBtcY8hmiz0zVYWGPEIJC/xMXszlw49pvYLFtXY1c6Zp1mAlunGS0ideJTaQhrUfxTShUJIEycGopY7/3C7e0juBrMGDvYhYgjN2spjWqnJ5FxeiVoM6nGsLoYXT7TDHY6pXd8OWMs6rZRy0YrkrL09NCqtdCqto2+31gzuB0yO99Ku3thRbImWPJGiBU8PlwFNhS7myZLqmR0jOJqhOSTkw0v8upaOF61QYeVsSrBtRfG2AmvPFyNMUWTpqTvAIWtybeh9GQoIap7AI2URRY1h3NOfA5R2XFu+01NT9mwcEqCKtYF2tWWwFBRbHpYRfKoRY9sKnKTT9HiQ8lT8OHlJ9wMnrOupQXCvUnxMdla54xdX0teOXFKET3NcCescppF5s4ogoiJldBCw4JuYk6VqMRSSIWjTVxMNaWYvA5iuvgyhv49Rc1wJFh2qY1r6xr09aYLfC1NIIk7tUPvT/JfKM4aAl7P7ycw+dL4oFC4WKNaEx197lhXellJDb6bmEOQfnYBh3uGDKDmZ8lLYpqAiOZVm1HQwFkqa+g7UlMoQKnm64ZLKpBYWbIZoDT5hcxDA/VK3zRKE3DROmaF8XYQTybGrPUcEA2i3Gn5JRTgoGVnGvongy1dLtRbuJo5vPF4feA1XjnCuUwll7WSBvJNdP3wYLpxzIYZbCUoVQHbM2REXJthW+eyCg9hvAWi7OzBmMFDyPRbyq4cjFcBU5PoMYljE2henGmDsQ/atTIp6Rch1uJCg9FnX155+enBMZx2ga12DWelsSywuDFdAtlSBXytUJMcU03vGaU8Dy1kfBnHDK7XZz57t/jDf/81l3ffBwaP24ZnAl5JOUtbh5gjpUoCPPUMqjleD8mbczNOiHW7XTvX543xUcEH/SEos+B8ALtgyNw9NjHkmUWSuHKFGFjsRBxETIhDbJztHd/7k6/8l//Fj/jd3//Ib/7OT/nBu0f+2q9+wePloIXYd1GHPFECqhequWLHm3MpG4/vFn/wx6/81q//e/7Kz/8m9fMr9vAI8UD7lV/jP/+1P+aP/+d/zP/2+5Vvbs5YlW6Vy3blbb9RfDFfJ0/vH/k/f+crPv+HH/hPfrVitlG3HJBKobXFtRhujW4bl+KsOrFamCyOsWhcmBhWnL46URbbuuLhzDpgyX+n0YmAjur7Xt/EiHJo0QQIXxov3hhrp28Nr5N6FHkAJjNiLcPT7HaZ7htJwdJDSZiNZE/Liaj0XpmTZP0oKj4cSnTCUYBLWempCfNYaQrs+Nxp9ULenpLWhrLlQL48VjZ8n9TpHOvAP062S+faBtOciK5acTImOI2Tde+KTSzj4pLA8wrJx4/bQdsu3Obk0rukrOVC8V2sTAyGEVXLweIOteWdXik2mBGUlMDvfiQoZ5jLx6m1jWZBn4Ve4Whwe31hP6D0SeuN1i5y0yqqySUn8rkLtOylKbm1tnxO8jn1UqBcmPtOBDw8PzPnTBZXLp9CbJBSChT5wFGNoAHylHEm0TtrOt2M7dJ5eXvVzNEaYwlI7iZfG3CqQ43QEqNXpcU9XLAxqLXk4G1YPs9z8UCUHNwT5DP5elE7VXReTisNj2AN1ZHFVNDQVtMLTHdV1Jopl3p3jPQUgpRNB9OH5tsu1mkJKakczVzk58CgFdXJEU5LGZpqWtpFZF1L9ItSlGLtS/eqEmWrluG1pESvEq1omVsvrJGyPC8wyCAUBw5mNXrVmaEkuGYGOF5kXdDCOC5FHqJnL+pxBzvNg7BFqxcRBtZkFYOU9tVziWNinIEA3ooxS9bLVfEib17h/QJDZsj3sE71v1ZU52qyutQmpT9UFVCiBcYUo3kGXhzGKdE7vajEIPKl+YDuUkct1TN3ElyC1hqrKOAoQKBsiFV4sr5KUVoyNT1jPdHuKQbbXkKqhpVLwctGsWDzVJykB5cwERjVc2md5xgZ8K+QLcJMT9bT0sXN5ZfX/j/W3q3XsnS97/o972GMOedaVdXdu/fJOzuwbcshjrERBAVHQAxICHHBBV8DZL6C81H4DAEplghXSCEHjO3Yigmyccj2cbt3d1WtteYc4z08XPyfMVdz30vqrm5V1VpzjjnG+z7v/0gU7Ai0UgZcpoUAIlci0qHfZxpHFtCcdT4YQQ4eN6Ky34YImG/wK//Gb/zGN/oNf/M3/+FvTJ+kXFlqUe6LRYWmAUWH7dljITGl0E939r2xbU/sz0+8//AB2k57fk/zjWqDzKDkwrvTwr/z2eCXvrPzWemM7cZ4Np6uG9vQTTGn0UzZMFYesAqLncirkapxypk1L1LZ1AUriVM9hZ1DktAjLd02Z3aj9croykXYe+fWJnuDthl7c67eeOk7G53r0BDZRiPvmc/fvOVHP3rHrb3w4Xkwe+bjdWffnFoW6lKlorBBTc67xxPfenuitwGumlFlkTgv2+QnHxpPN7jOzOYLbVbc9E/KQqlzMlqXPPpSM5e1suSCxQK6ddg6pLSQ68rLNni5ddZ6prhsDl++/5KSJeN/+/YNy+kCKcUQLDbCLLO3SevO4PXgMyNAr5ZVh8KjfnM4Tx+fIuS1xIAauTxDhw135S1sW+OoVTTEhrvPABwT1+uVfW/M4Yxt53Z74Xp91sZXE+v5wvm86vvlyukSwdnLCtk410pqnTk7bd91D15v7NcbrW3so0VmgEIq6+XCqSwCBXKmkFhqsOk5keL+trA3OWq3SEui1MKpFpiyenkf3PbG3jq33qinFVsqTO7tT7nmOIRnSFnDw7ogTgt8NJZamSjA3EfDiLDbaF673W54UVOchiPntCwa9EJZlWth7zPaETp9TFrbKckoizbI0cZ9TdqH8/HpicvjG5aicFEfM15Hj9cXwZQBwNwDvrf9vqAeDRH7tgnsqIV53RV4++6NQuOK2lXEsw/lQ42BeWK4MXeph8TcSYbrcyi4HqMcbNOc9DHYbjdqACiXqtyrI6gOn1jNuGvj6V1Dp2o6I8B3akoulkLCOyNjZ/D+p1/x9s0juYTFsoQVK0mlYHXBLFHLok/Qo4p97NQcbGMSYC12Qu1Iy1L5+PSEkVlqhezKnU2ZslQ1H1YpitydPsUI771F9saM/ATZ1EZswsoiMB4fHtXUVZUjJkupxeFYeVXZZNsrB2t7kLru98+TroBPS5Cz0257DIDKpVkjGyhZplpiXVceTheWqpbHXGqoESV37m1ne3lR0H7v7LNhqXAbjbHtnC9n6nm929FKUVujJ6IGPdaNpVKmRjkfAh5wi5riCPw8WKlkvHz8QM6Vx8sDbtwtrZhUhTXqjM2jkdDsnt8EYb+KY00IiRAkZ/RYZ5bzRVuiCxS1GJRzjgDkyAI4rq0lC9bXIUfjTvjsS1gtfEyWWjlfzgJh4idjwTgnqYmKZVLSXtCnx3U4mtCOe3y+/l13rvuNl6cnPv30nZ7tnONwYAG6q2LY4d741Mak7Tv4pJDY6FIpTu2tKRFMvML6ry9XfablsCMKdE7xDJWaqFWHolp0kLSoIJA7V/eWrvkh/XauT8/K8TqfZb9NRi1GrTUORKqWd8R6Zo72lLAwxs0u9cQ8jgTM0alL5unjM15qWKH1ygVKOdXEV8pNr/ssJyNbudvy0vHZAzXLAChiQ2SGOdR6uq8NOYkomiWDraRD7ZOcMXZlP5hx3Zr2PpfKQjeoFBbZBku0/LR9YumMsyn4FFfY/9A9nIaOj/lQAExjukByH1Lyjja1biWHBjk5+aHz8QvZQC4PZ1kwS8Y9h/V0Skl0NKvWIsVZnvT9JhuQg+W4F9PQny2rgvPfP8OYlLWQmbBLka6yD6k15GPtMJqICc9Mf8bmBGTHsTmAF7DB8rbysMEf/vEX/Olf7jy8q3zrk0yZKdYChf56guFdjVaIJNjT4GyJUit/9OOPvL01vvUjI6VPoV5IVOrnP8/3/F/x0x9v/OTauU2pLkutVFejajLlxNnbd/zBv37mO8C33hVKDeY6a9/8+NxoT4U3336kVn9l/9Pr+mTu+n/rQBHg4zkaKkPFRIQt4xxBwYksy0XQBpYUFTAjN6WY2oWPEFsd+ucry47FvZrE5tvErGOemTakbkHqkWQl3AqySmXXIb0H698G4MqaI2ktM3OWclK+pyu6wYVABRCkA+y9oRRdW8uhNvWkvMFYWw3lFNqhUHDuAcwSDSTu7U9JTopaCtu+ofO/38Oej71kBrdn7pScaPuOB6EXTCmWXK2q6OA80CGzxxniAHXco/wCp1SpdUbbBabY1Oxifif8BL4Qn/Gk9Y02Nsa+se+bABRTztKRR9e6VFx91zrQ54xWOQeLGSIhMCxNmMoxdFcxy4wlRo18mvXb0GHcJ/dZ/lCCDCITZkyWXO42dKYiGzQL2OtWlBLdZxSV6KPus4dqxO9NgpYz02TtGu6YKb8mu9ay8EkHuGl3B0TO+Z616O7UUl+bXO3IQBSI4jlaHz1yswJ0mwxqlXoXi+IajN11X+QAkuTsDFt/gD4HGVtS1hmlzdhLEm3s5Kp9Pnm6ZzYOPK5/0zyAyOyJ1LctuWxP07TXxQtTPk+iZs2kY8ZTPFoooaUEtHBnqJAmsc8pJ4pPBpqNzUX2xKuNPU4ATM5qxpxuuGUBvy6gTg+H5qLZO8lFlsk65iJUTKpAS0V7WcpSbHUBPyMiMIwUsSJOWQpE1h9Etlvv3Bv+0DMh5bZ+NYLUzJGL5s7RKm8HixUzb8qFqVo/qSSTslYThOJV8xHJFbqfdG/q9p73fdhCjdRHBPW73DupRgxJfrW8HpZG4vpqT49NPWZEnZ31v9P13Pg8sio1Y1lW+cZSFbj+6//dr/99vqGvb1yhdLRB1aiYxlVx6KbNaowZTLGTI+/l2iZ+06YFN7aX91i/0nYFW61AwnhcTvxbb51f+O4L3/u0k6bq8/oOjSurVa7tGXNj7y+MYdg2+dif2Mdk7pPNJ9ML0680d2wqY6CbaiCbJWY5kQacmORZ6OedNDN9VDxL6jp9Mmdj9krfFVi2DalO9pnJPtmGczmd+Bs/+y1Syvz0Jx8ZM5NsxS3z177zKTkPqmfmzNxci9+bFc5LgrGL/Z6wjcm+D542+OnL4LklYGHzRPMk2Xyt9wyUyWQpxqlWSoJqTolE+OvelCWVK6kUbn2w3RSSeTmdeTgt7NuVl+sHIa515fLmLblU+pg8bxu5yO7F6LR5DHnR0pUiQAyjWpEXO6lB4dYa+8uz5HcGMzUYidGNelJ49+hEtpAqu8uSaPtgxsakBzHz/HyN4X5yuzVut2swRIlSF06XM25OrYV9Duq60Mw41cQphqXryweeN9kqW2vse2P0QW9HC8pUNXsqnB7eUmplieHDkrzE66KGtYHCpHEPtq2wLpkclqq+N1qwdWNOmqudz905PzxqwA5Zqax/YLmQclWzlhmpKjzSUHtCLoUWOWVHK1RravVqrbHdbvq76FRbc6FexNgvkUpcUpGnNqmqmynGdSD703SFKtac2FtneOd6vbG+eWANy5+PFpXDRYHclgOwiLDjGU0hTczexKW8wWjbzkAqi/70jFni7btP48AqUabNRnbZ4/roAh5N9pfeO3hjLZUx+6tn+84CoCpTnO3WsPMj9byy5Boy4cSCDv4pJfaXjeV0pu2bDnMDRVhPDZM5ScUyXLY+BRZXvvjiS9Z1VZB1qQyXomqYcgeyJalWcmzqwaam8J3v0cSWTL7rjjO3wZoLszVma5SywFQbVEmJ5VRZl0X1vWYC59PX1mJUA92yLJNEwLiyljSEXM4XbTLJpL7oU2pBEjkO5x52CjEfkREX9pgZAxs+7qGfaWqt+fhyJaWKdYE3e9IV9ympMrG2F9NhoQ8xZq012t5ot02Nccnw2TjVhRbtd+6T9XRSHoal4JW0iyTRZxBqqzpDnWFJbYjaaUOdJKn10VJDUkvgejkpuHQRWHqENE8jLBNS1HrUrc/IjRB4FgN9NvI8wr6dUjOj75TTSsnK5qqxlo7IhOMoFTABjjrDx1AdQx8YtSa221A1NsTnJcVV77vu1bA1By4jtWYM1T4aZSmMAF4mkQEwhkB+V61vMVNAfYoMkqL8lTKGVIEeUxaZHR1iFIAvW0AyhdDvdH1uU2vYnI2p24ZSEuti1ErkK0YOm4XK1VyqBpNVFLMY/ruu0xTT6eiwZ/dubdnWlnXh6XpjBFBTinL5WmukmpXBUhMSmh25FHbIKxRE75oRci5SQXQpqWcySl3pt51cMtc+7p9zqgU7rZzqWdfR4r1FcGfvg1oTe58CkkoMhlNgeSoVy1Jtt22jZKlMpw/wTMIVdJySGm2m46kxx6qfVQr73qj3Mk+BKB5z2NaMvDba0416qfiQarXMIIWQTH4ghre7VLb08ao2WRPeYI7EtEIqERI8B8tp4c3nnQ9fNh4/31naQjMo3lSikLIUHCRGyvi+kyjQjXY7ka1SzlvYJRxG0T2XB8ujsT4Onr/csOr444W8Gnk3fHnG7RNS2rA28bTKsuZd95y/weiYTXw2yDflW1jilCc//Pd+yH/4x+/5R7/7Y/75vyh88nbwo29/TzNrMfKSyddJnpWcjM0G2ODkhVEnZ58snyf+2T//Mz79wZnv/gdvSKnA8jOk5Q3f+tX/lv/yL/5H/uqf7vz+l7A7eL9R1oVOo/nAu5O3Bp99zv/8u3/Om0+Mf3s98+4kINGS1IaWN1h3OEgmnDQ6eTH6bVNo+dxJthKaTAaNzS3WTlW1k45IAEhULEmdbLvThjFbp+MsttLawAn7SrRKTpvkogONzbAtmprU5pQ1kGhIS5FZM/ZGKsrNSaGsmL2TTNlIiuNrIiCKAJpJurP8czo5n5hz0rpcESnF2jx7RCwOwCgl0UdlH405R6igJkup5BIK5qTK+zkFzg108M01UciMnNi2jdlT2LUTpWR6n7IeuQAU7SPHQRDmhO3addAdXfEKMdt7TqSufbMY0GUyEzknxQI1gsgjx4ieuJzfcktXXrYn5rbhebBtk2U5xfs/xB5JyogsWc8U7Rt2ISmueu9EZxwvt6vyoUg4at1OrpneMgpAHirIMJLAuljzlXuXoEhBmwrfDykAACAASURBVEsJYPxrSuzZ6dHInFH5R46SFtn3FTSckjLhpjuejzkyIIsp1etgkkNRUzIU97t9MSXNatmK5lN39r6HdXp+7aDtAaRO2hAwUiXYYQbYdtjpfKjRUG8k2suysaZMj9D2bGq0Fimu97TvVywv1LpqHUgTEGBoboTpBQYsh2KpdSnBXM/sqVQi4QmWAjOTx2COA1QMZZ/MewwyL7tIhr0PNRxOgXTZ5OIZYzCz4bkwTHljw1EOojdKh5wUFO0zhfPAdL53lRNNc9yiqc5hj3zZNjUTZJO1uGTj1hXBseQksCjmakzA3vDOmImC5rZcFp11hvLdkgmkmXOS1yJSY4hqlsI/3m9Ta3SaoRpHpFRvTQ4RBZNqFg0HlRz5r6/FPTKjouLusJl2JimcEAORtqelMqfTPEFScRAehKYFUGcdHx6gV4SHx31Uk86jOSsqRwXFDkMA2ER7O6FaJM179IT+rICmw86nmCWPue9A/MPi1o98s1cg6pv6+sYBJZBMsi4RQhbBYc6R9TA1ECQN5W0XQ+TFwXfswxNl33SDlgzzxqUYP/P2wi99Z/Az322cqtG3yqThaTCT4bmyLY21KnBrzW/Yxo2yJN7Mydj1UJW50xv0doKONoWmDWT0XY6NbTI8MWikvikg051mL9i+Sn43DzuBR4sTqDoNLg51ZH74buV73zvx4avJh/cNyoVrsEOfvXvLUmaEMYdccHE+u1gETE/abaO5MSzx1ODpufH+BtusNF/pFKbnABwkZcSEoPvoJBKnmmJbEMBw2xuWsq4TiX0EwDSdh/MD67rw1Yev2F6unM8L796+kS2ontiaGk3WtGClCkSyhFEiS8XujPpd0nkMBqPx8nLjdm2UKuZIFg+opQZaGot7kpz/dKqYSU4/bFCXwrZLsfTyIoXTnJN9v7E3dXStRUGr63ISELAkZnPWZQUrrGaslhlz53Z7ZmsKW2xzsLfG6E1KmUCRc6707pwuj7JGBQjz6bt3uKtLwVJijMncdzJQctEmm5KyT267GgHHVGjkvuM26a3pMH1apPKYxxBiASoJ8Cu1YOjX7i2USVoQPRDqI6dlRMvTtu/s+0Yp+b7Yl5SptbDWiommC3BGYZLZ5Cu3rENlRrlHI1ra+lR0/Mt1I9dMSco9SCZWuSD5ZU5FDSpwD0oeXWzWQZKnoU3o2vaQZmYNv0we3r4Vuo8sKDaD/SPUJm5srdGmNm8vAkO2trOUqkN/HAQtSxGmuXfIUnKqOvS4DnFYVWhzMjGdS2X3RvOu3LIBk8HRPJaKLC8+lftTa+Xl+sK+71weTliRJdVs3kEqVQibghxHF1BjgzSGQAkXlVmTMk4cGHvjett583Dh/VcfxGImCxYlsZ5WLuczta4c20LPjt3UyrWNoTypkskBaOwBqjSf9NkoZmobQ8ySz0kKa2rySXZZPoephbAiwNP8yKt5VZ+pHUy/D3Db5K+3oqD8Umqwx1O5bOdKXldGKKjUMhwAZo8GwABuSqlSVR6h1Xsnx7MxI2RTM4LdQXWJZ3TNzIGSSFRZQ9GgL0IzLKAYKTlj3xl7p7wVQ9enwBE7DkYpoea5Yx2LIepre3NOasE6mhG7sCUyTm+T05sHTudT2PyiVSSGGKnTZ2jqY9gJdlOtRQYzK8zxOFjpGKmhKNZgZWAo/+EYVqfJSkuKDAYb0DvuTYMuI5h32a8n3J8ndzXSmBWp+ZJsKrI/aIAnsgXNyx2QmSD7Bs6GAGsxjpoNcgz4aoWMprYpUC7nRMpLMHWRORLms6Nhxy0HONnjSI1swSY1677fIKfY4we+ICtvKliCRmexKra960NMmEDrLGVDGGAUtkkMw/NoShk8Xh744v1HZhHIk3KO0FYnuewUJS93NlwKQFnIcl4w1yG6pAqzk6uzVPB9sCzGtjW21lj9JLZ9QMHJw0mu4g/LNUDRE2Yj2o1Ms0qWIk/2PT3rfUDKOk4ZRnuG8i5UiynedRKYPHqnW2J1RWDuWQ2n7s5qlZQqpBmZh4bPTs+Fsk0eHjLbVzvvv3hm+dbg7CfZTJAlRKrjBj2R4npOM7BM9x0bq8oF2GIeWPFhWF64fOcdzz/5gp/++MpnP3DOdsFsYtcMt6/gUkhlYeYGfoKZseUTzCr3Lmx7gHzDc8VyY/FP+fZnk1/+1Z/hT/7qyv/5b174nd+ZPP6dK58/Zmw3UlHuSB/OMsE80wJIti4Q9NPF+embyv/+v/wx/9njhTe/eCanwszfpbz76/zsf/Ff8Z9/+Q94/y9f+PHHnW2ApcFaT9yeNrZl0LcbFzvx54+f85v/5D3/zWMif79wWTU/jay1Kc2MlYniMYyOUSwzV6O9f4FF1sjEIjt4kTU+I6KgTbChWU5cgZQDJGfxgjFoc6eQmEOgYb/tpNxDMSSL2pwea7Dy1mqoXT3DsIRxIg2FcKsZc94PO7ixmTGTQQQKZwSQ11wZc6cbZDtpUvQZinbdQ5DCslI4gvcP8N1DWbTUE+6FQQMXwL3vyslUxgnQPeYGhCpE45qha7iUlTE7PavwpJasz390fGr+03qm1taSk2zh7vS+q7AF2ZWGsH5qoBXTkkC4maQG/JpatSQBS1hhtJ3WodjKBdj3G7131nWNnJiIH0hIsYOe/5wXBh1DGTo+BriAwBkgfFlXtu0a87tIcg+FMX3qs0vKzWka2jXHluW+P/Y8RVT6VCbj7FgPFYeBjY6PwY6pYXSoXa4CuZZQAmWKFfbehFwHyCAVlkjC2Xb6rnXTU2K/xzXEnp4SJJ0/rZhAFyfUvrFZB1E5g3xyBI6t6ypiuAg0lajkCCO3V1V2AI8Gyk01e1WcdH2vUkU09rYx2iYSNkAqcLVdmuzYEBbSIGfiX2SkWgOdW5MZuRaWGq2yfYZqfwCDMgTgpORUU8NizWvM5RYEdVX5C1MKxOk4OhOMMfEls+9biGIOG7riNfRKtRsfsR7JFMPgoPfjEXcSRNd5yYwuq+0cBnnIqnfcZ47WmuFMEmPvocqdyoYKZdNaV4YPetN8MbzTPZogMZZUBNiIChFBh0C0Iy+3HoHarjHLEq/AzdG+OlxkmqZTRoC+bhNKojhk017vY8SWUuOnHWo8UwFZZHjNOZlDnydh2/QUjp7RmCnFCUCkq4pBBPeS0l2cc5SWjKGcp+NOOTI8j36A1/VPILn+O8Ve/c1+feOWt3/4P/2D36hrveckST4/Xj8oQbv0trM3sV3JB377wHx6Ybt9RSkncu5gne8/nvi1X3rg7/1C5a99N3NOBesTZmPeJn0bzFvBt8a+g+8KShw3Hfqero3bnukTtr3Tu6TWnSkZWpKdq2Y1DXlNlMU4lZW1LixV3uSUnMojeSxi34NB8tFow7m1zrh2+mY81sIv/OgtD+uJr34yeGlOz8517+ALl7rAPthunR15f988LHz73YmK0bvTwnpw65P3z4O//Ljz3BPPs7CzstuqBpRSlD1QUuTBQM3OeamsS4YpYGH0nTYnuRRmyrQxubbOrTXW08L5svKy3Xh6/qgH8nTi8vBAKoVaFgYpVEgLZZXnHEv3m11LXkjqUhwEUiIlZ983qYnGICcn5UqqRd8rLyxLIZdAWU0DTclZlp5S5Jl3DShjDG67/N5zaCNtTZa0bKo3T3VhmpEXw1JhXVZKPZNLgpoY28YcO1tX2GHfBca03ujR4CMZZNY1vjwI1Al2+nQ5KTMmG3lA3/ZQDWkRLTmUAmNIKTQUCDtmp43GaAJ8HON8WpXLMOXhXUpVc9yyUupCXuR7r1VRfrMNBWZnSTTdp8JsJ4yhIWnbNq63m2pGc1HQdqDXR3uSTbVVEQCFwKWmA/CI7x9eXo9GtjkHt+2F0aXaKCljpYZkWrX1Fgujmlckad/2HQi/NU6LLKIRLW85Z7ZtY+uNd59+ymVZSbWIYbAUklrZf7rLQrP1hifnXBcxPHOwrAu9zwhEPJh+FBwYA8FyuXAqlTXnaJ5TiPtI2jIUwpzx1kI6PqMGXSqFlO98wSsAZPDFF19yeXwkVyOnRfa4ETa5kLHiYuRyWOvcuxQ0cW18qgkGNOC8vDxzPq08Pz1z3Z1S1VyzrIVlXXl4fEOpAlqOe2G/bQIxR2dvaiisWQ1i274LTEKtT77trKWyns9qJqw1DhMpbGMSByvuoYTCQoclj/td1e4jprAIT84aJJ6fn6hJuRLmqlUvKd9beE6nsyTcOd0HkEOqf9Sl9rYrg6F3hVK60915eXri4XShrguEQCYfNtNg9CDAy5TIKSvI8x56qCwpMUUKCSYsWNvLM/vWuZwvzKyWPuDeaARilS0LSCdANf0y7z943hshUY6ebiI+fngSoLQsWKqBwuZYb9IdPCIGtWP4AzGisgGpZU5hxWol9GRs+40cIOHxrOdYjxJCm3LWPVsjaH9vkdWVBB4acNjeem/M0elz8ny9sT/fuLy5yEZyhESnHEoAp3uXcsV0ECLyjMYcUrIG36bQ3gBo0ZBuGO+/emY9y9qlQ0bUUB8AmYf9xl7DtyWpyLon0wGmqZSgD7XE9t54+fjEcrlwuTyoJTXuMULJ5RYmrCFrrCNVl0L39V4UcK+wUTGZCQVMw/XlRYBv1T5U9cowV/FDKgWqbIYQgcU5K2sheQCq6f6zZiieh3FXeCx1IT4+WVJjjcJNIIkuKO5duVAWhyg7tCl6TxysrSVyLpQ8eLl+IJ9PWtNSKBrjfrCkrMGcJd13r3gPRfGUxWN6p3jGhrHkxH6VfWYm5V+8fLVR10pdZHtLJd1Vb6UCXuONiWwwE9M+bWK2yw7LCSGj8XScF5JPPv7FExQoa5RXRIlC+JlEOoQlSVxRk/3AjWRVwLOZnqu8wXxhdRgM/uzPnvijv/ySsyXefStzqStpSgWOZc0tblpDTAoaR1l82ZyfPO+8/MnOD/5ap7w5k9IbLK/kh2/z2eON+ac/5s8/DJ73IzeyMpdE3zeWIDvO9cL7Ufj4p1/y6bcTp1X3/dNXg/1D5u3nF4WxH8oKVy6hm6tQ43lG+chkpk4dC5CUBzdlqWIexxhdO4u8SLcOGdpITJfVP+WCJzX6Jguja7gTBlLQzTlwH1oTU4D9nrDsApxZWNMS9ozXGfLA00efd8uphN9S2ZtrHcAHOS2kPHXt0XNwrJ362R7gRKiapsjKMZUxcmTC+FR2XNbJGQ+15zEbpZQkqLBELikI3AjRRXmwqeQ7kVYiO7KEPbqY+OZDETBddewtLLLJNL/PUHHOMTT3pHgNKMM0Ybw6X4IkDDtf7x2QAjdlzTbZctyTxDWR0jbFGqRcMql79VaU6Zey5ldCaSogPJQrU+psn2HHyUcmpJSeJSknzsNGl2qmWKVGGy3za2DOlOWf9Fpoc6iKj/r3I6bBQ4WiVtkRGTclCBh0vsxS7c8psNr7EMEUf4YkSCRFnAAeuYtBzPQZzW/JRPiazos5CneGv6qaDhYvmUBEraf6b51jghjOJdRQEZMQc4lOwykUuBYzUAoAU+B0iSyv48+MsDHmAK8PqETLvPYDRSzo56uYScCsGsJ2SMbsI0AsWY0FNjvZHE9qkVV0RijPppRZhtaYQro7EO6E3fQA61KQ8q8z/4xrXgwwkZYpZwG3morjGXSB2hbR9Kbf1RlTZ4XjftC9EeeaFHPkHFIZHQS9i571AKCdCZFx2qfKhaZN8tevXxBWum/0/0cT7UBglM+gfbOKf2rsHxzPeIBphB3QzBRDYwKqcylSoQbJaKHst7j3suk2mIcDQJv6fb6cWrr0DKdApe0V5ExfA6U4yL5jfZ0CAd0ESv36f/8//H2+oa9vXKFUao4qwWCuiUq+eGCmT3l3ZwSR7lfa9SNteyZHMFceGyUnvn9J/Ohbg5953NgXpe13VBPbc2GsGfPKQqdfz1zGDdszj/aA74M2Fr4NrG6wDZ72Qbvd+HAdvHS1jM2RuM3OratyeZjBjFBUU53lsITZgmUnJ9UBXywkmkMMdqMz2853v/UZn37qfPH8EX96xCzThrN33fC16AA0KpRaeVwW3p4qJRsfn2+y/kxn35zb8+Slw9MVbl7ZKDRfGLaSohJRGShOcrVVZHNqMrLvWHeut5dYZCZzaHHa+rwHp+rAM/nyq/e0IXasLGfevPsk6g/F/symik8HJdej6sHA5eg+wzqRwY3eB33sMCfPL1eMFN5hSf4nCg7MIbk9QovNoFblP5WiQwWWaePG7XbjtrX7YWe/7UJuw/+aawmrmMCCWjJlXVlswZeVlAfWO+W08vFJQaS3fSMPqYdm2L30PQWG1pR1yG07Sy2UZHgPm0EwFYOQH8hzITXS1D3e+84+j+sdB6umytjTquyX1nYup7PCYGshp6xGnzhoEraSGa1FtcoO4d7vjIGYj8a+b2zbRlkrKRWFcFuK1hHVlEsNJzubo9pKm85SakiCa/AtGiizZXwYt9tOn4n1cqKaNq3RRjR+BOhQ8usi6OpGSoe8czitB/PhztYk0++jsW0bn3/yKefTOQ48sakOIK7xdGefPQYQOJ/O0NRgsKaK7c5aFw0NE6pVhg+2UFicTg+UvFCzwFEBD2JprDWpDZaF3gcprVhveI/hNZU7OzXcGaG8KCXz1ZdfUcuFlIxlfaDWheutcV7VPjaRd9/HiEYdMGbI9wP0wPAa1kS4h6G36Txdr9TzRS1sVeHbqh412tAgWUJCPcbAR6e7NOVLXcQmt0FJmT0G/dE7WOJ0vkgWngXkqrHwaOxydmQ1qh42gJzu6q9jE4uLos94ToG/+86SC2MQG3LHkkDC06Ka+qUu1FLopmHwYFYOhGjf9nuIqLemQ8kQ0+Z9sJ5PgIWFQrk3RyZBJhi4yOdxdyrQTQo/zYOGW2L61zZfS4zWNFBHXolyHuzVR28BQBzASYRvqojC7gOPhQrTQoadphR/Myl7Q1X1rhR2AlAfOo7anZ3X2DntqOQt90ufreDBNg+U9+VxCBlzSi1AgBEWAZZaSmgDqjslVWqK15kT++w6XFqGJJn6dIv1y9nHoN020nRO60lsa3YdMjmY7C6gxqJhLNbobCIc1Pgz4ymIO954ZfFbp6QcwH5njsj0Mr3PWpdYyxT4etzzo+/so2lPgyA7gsEL2Xfb9ri9jgwLuPuvcdKcEawOe2sanKfaalOKw6qnO4kSokVOy8rlHM2ZqcoKHs91Kk5Kk5Qm1XQYsGKSzWMMQi3lyC6bq+rM944ntRN6WhgYWx/kYhHKrgNGCpUqfihJG5ZWOjqAYx7lAvrK0ezlkTFCH8rqS0UZaGWSKTjB/MfZaU4F4xIKppI1ekPG90nyhTk7S9VAXtZE61Bz5XSB919+yVc/vfL4eJIqcwpANXe13STVsQ8zyJXZF6wMvCfGUOBuTp1UdJBS0Ixz+s6JyxcPXD9OTm9kh621MBhwTWChvkt61tyfMC4cmT+CH+IZSA3Vpq2c3xR+/uc+4Vf+n4/8r7935Z/8wU84PRR++W8WHm2BpNyfgiy5FWfzTGayJYHotRgPb1f+75++8Ok/+nN++b/+V9TvP5DtR1h+y7uf+4/5u//JF/zk9nvc/mTwvmlmWJdKXU5c90ZeKm175vRw4Q+eHzj9087f/TuVb78d9NmxpMOWz4onx+JnkyepSzncquPbDStZ9paC2jTnQjGpCJpB88hgGVFJP3UgLxOWMikl0TZnt4HXC8kaz9uL7tMSOTFziISNYGVmoo2JFekuzEV8mikEOBUpdPr+mmM2A+i1oRD5nAf7nKRelTmEVKLuN8yzorIwKdtcq6lUSx5oipRQVgRYLZbJ9cy4bTRvmvMC2JKsZ8ScOWW9D9zaASKcfpmFlkQ+Le70OV4zPodypjxClJZSaAESpaTyjB6RFsqR3ildbYnTDXN9bszG9BYNt1qmzINoiMDokRKnkzLztn1n7Dt1cWXxEdYdn2HfUo6NIRKgm5RKR0SAVKqOjUReK1vbtfbNEcC/Pr8xnWENY5AJ8g/NDh3XWnKALvO1yKPmAkmNcwM1Jfp0UuvYSIzstKS/n75G0KRwAeRUsDQjrFmqMzAVtEzobcOijXZrnZoLexuknBSIPg+i0+9EiAXYY1lZpEzpjUox9tZ0XhnK1sTs9WzrWt9nH7SkSS4nEdSWc8wzdldfeUx62GsWojKhCBACARAzRcGKFDkWGZTugyXAMg8C0pmHDEXxYiWRp+bHZinAFbVfD5dqtU0VFhBkqc0RkRrKhZt9U2HETBQKuzeMRDHNaHtvjJx1D6LXJ+IiLLehvtX+jVQ2caJwnJwL3SMGJfZmka4llE+TbItymeZrI1lOakL0qdmim0Gs325xFi6F0YeskAEuj/u4OiEb1gNwN/29o+fscJzILRC7QpE9/z6LBQjVp9PR6DaZWA18gzu/CJ4xIi8yVXob5My9rVh53/rsBGRGDIRHm9uMY2VYGQUI97ivIjw+nm2R6v0+o/o8Wg9N128G2TAHOYei7XjB3+DXNw4oaSE50Fd9SDYn297wkNsnUyVkv17Z92f62FgwsnceDD69TP79v/4J3/nOB+po8NUzT38+uW4b1y5rlY+NORJbCrbDYO9OGoXx8ESeTq1nlkewh5WSO5daWf1zvtU3ZhOw1YbRtivvn6+83Jznm7PdBu1mPHsWENQTfe7K0HOHmfB4QOcAhvHmlPnsO5+QlsIXHzYaJ1pStk+tZx5qYmYo6aALlNCeyuDaJvNWmDa4NXjZVF3/fIXnZuwzMSzTUeaAmBOBQ8UmtRjmU4cqU6J+b42JrAvTZU3w2PQUZib/Jwa3bcNq4u0nb1jrGXxl98pA1q3mU+yJawFhinUS66OFLcegOaIl57bv3K43bVJVeS9mCTMpj86nk5RVrgUnpRLZNFL4LDWrZr6rce3ldlMr3ITRG23vuCvA1owIsJYFZilrAJsKXIUJc8MHtLZx3RrXvbH1HW+d277rINRbsLJijwUgqdrWayGVGsOF/MqjTwVGB6ijB/8A2yatNcZUK58PLUb77UZNmdP5rOajLMufWWI5L+ScKSVTo7p2+sBbVFb7kGQepyTu+Uv0we36zBiTbdvVEObKjEl6O1TTpp/zwhFaXHKitx5MiGSsyWR3Oyo0jw3iuqm58XS5iK2LxaNktRphQtVHV3C2KoNfWYLeGz3ypQxj72rRu91ujDG4XC6cHx+ksjepe2ZsyNxZDmU71dM5GIgJpVCybCLKJyliQIpaMmafOqCuC7nIz62CCn0eM1V8KICy1pWX61UZR0N/192hSPGWOBZi+d5LLjw/P7PdBg+Xlbos1NMZS4VzriRU21lw5uh4SIHvwy05lEv6/Zrz/bndW+NxXfnpl++xWnk4nzivC6VmaiphH5M8OadEQarGHA1ywyClQUkCCcSeaVBlOGkixr8UgVyxqRPP9KFKmGMEOPAqBzZmZOTJWnuwKgYKp+wK6HQ3qe8sntNFr7mY3ncK4AOzCHXUBjj6UI4PshP0rsws3JQz13oE+C4B1oTaIuf/X+jioUrS2VMHtVRLXHsLtdO8h0O6ifFqW2c5n6SwSZNMVZ5BMtkOjwMGfmc4h8sCmHIwSePw80c+xZikvOCjU7NCe2dYftq234cQAzALafYRZq7HoGTZlMbwuHZdNb5zksbAt412u5HXyvCwH+QAMFOK66J16gjJ1ICRoA/sYOhTDCAe+pRcsDnIJHI2LpeVEkGeZanCnkIBkOPneEB0x+diU6HdZh5gnzDjMSSaF7NZyaUwRtguOU46iDnH7vfm6J0Za+UA8Bly83wHQzWfewTynliWwmhd7/kIHC0l3nMAqTbJNWO93Q8NlpXBMcPOmUrm6Pjx6exzsCR4PJ9oN6lnzee9fcYDXLc5sNlFpuTMSDEstqo8Q9O+6iM43ZwZtkNOWGr0bccynNYHHZY97Jym5rXRiCppsdJjl2IrlRLh27Kk+ujKysnKYehARiTM7eOVWt7iQerZkQMhBJPZQvWWEq1KMZhTUg34iMFvwja6DqrJdUCaiYeHC9eXKy/PbzmfKmnV90k5ha0u8t2SMbxhLcwUZTLNpChJCUfKJsegOSWvvP3Bmdv/9cLTT3b8Oycs2s7yUfs8G9Mq1rdYIwbGCUuLft9fgI7vV6bfZAWrKw+XR37+V77HH//0md//4y/5rX/5Ey6PhZ/7vvGQPe5nvZ5uExsTz7KFru7ccmNZMm/eGv/HH/8Fl39c+Ru/diF/fsLrgl0+47u/8mv82hdPvL/+Eb/9V42XmWl7py5FbaZbo54Lt+cX1oc3/PZf/pT1917423+zcLteyXMJMKRz1AIUq3QzUm5kL/jJuc5GbrvAs9QEbCJCaB6f80whAMv3w15CNseSp9R0JUf21wJUTnbm9gIgwCIM29pDMRzZSugC7HxCQ3OUYVK+ZsNrwkKJlEzFEXsKm8/s1JRJLjXLGE2Auunw70fQOIXhKbiOjFnsL0lKbp+NRBY47EZZVrbrzjRZasaczLFBLpREND8ReyMQWWIpE+rgQSlT7dX9oCXCWht/sKO5202g+0SK3u6hZvNEdYVvy8Uh8MFjI7eUScXwMRkpyR6NVAdSx0EqK3U13Aq32wu9bxiaN3S4nQEYSfUz51SkggkczykHeBP5n6ZDrpWEDQu1pB+SS0T2DRKZDgLiyyTNKMUYxN7o90Uhoz1+uIsQm52xSaXdI7cxTZFZo4aKFcJqHkHo7srfMmeksKKjEGRvatzex5TtOkmNndD8fZB1I1RhGUJhrjnEQxHimTsYVKNqfvrEmr7DzIc9XrPNdGRrNp19iqXYaQUuWC5hgZOK7gj2xo05VJSSLWOufJ6C4lkyFrN8rHVZxrKcioiZmNBTDA/zALlMCpjsxt4F+u0BfnUHK5k2GhSnlqSmvU5Y1CMH0qU6zDkJgLHXzMs8/T4XzqkLWUgoT4l7fqIllNmkDVHq+CarWLaF5JHLeRA7QTL14Qzf4nlDz2wyPMq7Uqif9UgGRUpKoAAAIABJREFUyBmKLeXPyIamnLR5z3UmZxjRnBukMFOVA3rONPtYAL4e70dB55ByomKRV8VdlQ3KVZYwImJQ4jHxGOqUq2b0vlNKZikp9h3uZOX0EcHoIbhIr68zBTZLKM10jpLaStdukEu5q7yOnLAjn0qqZ7sr9MzCZeWvqvtv4uubz1DSRCy0z53eBt6lpKg1k2wwbi+Mp2f62Jmzkccgm/PZufLDz5xf/L7x2cMNK4OeJp1MX4zSFh6mDr63Phjdqcnxpg2j3hz6RvaC0bhuxvWrnS9d3mZGwqZx9cGYxu67bipLvOi2YrqRPNN9aOBbMjkbvWUsN2r4xEtR1Xq7Nd6+W/ns7YmrN56uWhLa7lx3h3LmtK7Uh8niletN37dY5lQL2Sd9GHuHrTvXq9PmpO+Jjze4hszWig6SuRSpZ2bXIbgYJZtsPXi0TlkASUZZMmPCPp3eNOipbjlhVVLvN+8eKadVwYxUcr5Q6wOtCy3u/UpBrRIpgfm4D61OBCdOsUpjTOX39KE622x3X3IuUi8tdZXnOgKd7QCq3NValROjd9oQEPl8faa1LmuVJ7b9FofYjJXj+0iNY6UoCHUR+CMiwmA22j65vrxIJdSHwhG7QKrpknlPxPqWUtXkVpOUK5GJUmuRHhvDql7/Eof43iNVy5WPtMehZE6n3/b74a2uK3tk51TLWvzjn5RlGzssVRyHkZTIlLAEyZI3vd/DxG8vmw7uNYeyN8X6YZQSqsGigF6bOlyoyntEpaThvUdLmEUWR6hx2mD0SVrK0adEjpwrm84YkKKq3SVJYfqgtbAdxFqmQ6Fym0opASZ1lnXl3du3gDZISe0lL00p1EnRoGBJDIvYOUinytwntVah9UeelUsV1mcHg7UsoebLFMKmkBMlLYyxYWvlJbKtQMGa5gOrheZEledhZvA7DXG73ljOJ2aZUpH4pCQ10KlVS7kLKRb26TGoOWJgXZ9RLcqdMkvst2fWlGhdeVgPb99wWitLtPSlYEvmfB34j2wU72rd2Pdd6ow41ouh0DibXUPI6XQSABUAtecjC8AYSD6l5r7BRMGa6Z7RFhJd99hYLaTEhtnR+FXvLPVaSgDQxCEybGR2DGfBIbksdKPr/hnZ2a9bzBb6c+3phcdP3pJrwWI4S7FJHoDGPczTA8IbOuAfWvtDZVVMd51k46rRHbNT8wVIMKay9BIBUujam4llSoRNj/hZkRNWwpckW1VCtjSYszOmc3u5UsKKpzRYvV41mBQdHGriYJglQvHAIj0sJc7IqgvWgbzRths5O9Mvd5BKs7HA/FKyBs6Q6JtBLkZvU+G6gKVMd9UkHwxXShHgmxN5XSmpYkEUgN/tDyJaiCHXggU7gEjiviUk4zNIBg06KVtkEomt1M8ngJ6wMsW1h8hlC1UeM8is/GrZ9cMukNSUeXl84OPTlT523BdlpqR0R/LcxGImjFoVfDmbcqQGM0BstTDlJPuJx2ucrqYxkIJvCdvYXaKPrGsWCop6gJrDIFW2OahJ62Z13es5xcF3BqjlnW3v3NqgBInkM2OZIAAaPnM8Wz2y0JIUZHOAd7wcmTtaW8txADDdb/vWeX65cVlNNoc6SC4V6KTQ3ChzhsJExya3BImwqBt7tIHOobnA3BkFyiXxfO188ZOPPD6cWM9A1v2ix1L2QYuDEymafvYutUUuuj87kDxUxMptOr154LMfOF/8v89QG3ksLJfOXBJ+u5H7ZJ7OZJ9gCZ87ZhvUi+6T8UKa437YFxBqvH1T+f7nb/mVX/ohX3xo/MkXT/zW735BscTPf+eRsrpAC+IZgSD2kG3GCl4cWxu3afz+v/hLHj+98MO//Uj69AHK98if/Sw/9x/9p/y9j0989Vt/xh9+CVd32t45Lwu3sUvVnBPtxTg/vOV3fvyEsfPZxfnMZXGekcf2KqTLDJtUF6l2fpjcnqSWq8lgGotFs2sKANn8TghpSTZwtdD5NJhSlNWkQ2lmUrJalfoe79tEAMyp+Uu95ZFx5A1zlWeYhRUJ7dE5R1MfM8qdjBkkwZxTCEzp2BG27Q1HP0P5hmHRp4etNOCduMdlwRVcM8KOnopzWs9SLsbcYmbKltOnSnYpnwRERvC3SVW/roXeTLmKty418JCr4SBx1ZgZh9qUtf4NNVaP3qWsXWJtZN7tYEdbnlkoc2J+mVN5VDPed0qy6OaSqV4xzty2q5qDS44GOiI2wnGXWrHmoF4c5CCQm0KEWsctkYIUmu603l8JiFgDO1K6HTMXqVNMr/VQX1jsI4MewJzJAp8LlMm2i6xkTIFFWaBBD4udijRENMzIw1TWo57VkqSSmRh04yEZzTutD/Y2WafWTgIIx/XaS8mKcnApHsdQVo6Z7F2tNQE6w7Esa3FQMipGUG0NcBSBqFBiBnl8ECxj9DtxCALP1Ywb+ZBhcz9yS8lJz0GSeh80M874sAQEW6jqRG7q12M+FSGl2Jkp4LLH/hWEnQDexphJ+XpzvAIzM5S1JJpLXdX3nRLqPW9qXovMZ4GJSUSOQrNFemUSJYuUjJWbvFT6HMwe+ZuWSCnUWhg2pQqffpBNOmXq2qsVdcwJa7rvx51QEZJ0xij6vZzCRVSkdBxJZ5/pghnzoVDjaxlDQ8/4pIXKSvt8CtXzUfrUxyBliRA0CxJuDAFShzLx+JJbA81HQwVFR/6nkQM0Oii/A6jyOyl7kFfzrloPoDxmIkWgaA6P8ej4yREF8PoeD5dEtkNy+c19feOAUhy1tTl1tUCUpcJs9PbC7frM3BqMRvKNkw8+vRR+8OB897HzncdG9cnHDx3fJtdhQpz7jTESYzhtNkZI367mpPHCjlPsQpk7lB2f0HOhFhhFsrbkxvRd32ObPL10btvArLK1LiZ5ljujPVx19H06e9JhrM5Ga07Jlc/enfj+99/ybqk898FoC9t+43k34IItOnjuPTNu0CdkL6xr5pQzuTjbdG4Nrpvz0hYFZLfBtSX2BnVZIBc10ZhC9qY7qUCJIS4CROLgblK8xMNuWQ1pt5542hrNYMmVUlfWdaGcV9Ky6JBrmVrOGFXAQhzol1rJ7rLMGUBlJmdv8q4rDDYzMfYpS12bE0fBzfJWp8iskRqp5MxSaoTIyuMuq6Sztxv7vrO3wW1rytpyZ2tNCfmu3CtyihwmWa0sZ/KykEvVwcsHJNiujdYbz9eblBPTBabMeV+09KVWm7IurEn5QzXnYEVhyTnyQQ6gKkUOijNbD+WdAkzn3FUBOyZt22n7zvnyILbeVD1uVshF11fqIf1DiXBJn2ETjEPL4M40td4Zs9G2xrY3tt45P15eQ4P1FOq6piJ2o2SBux4NZT5oeyeXGiCVBqA2Qg46dbhvbVCWRYfJIt+1zplJLETcd2NIETOn0/amQEYICkeQfp/z7k9vvVHXhbcHmOSTRMGKcoeKhdIgFnGC+UlKHlWz2TxsWhlLAsdmV3ZVD/XZ5XKRsmdJGgB0pmOpaxyyT/QRNbVx4EuRjWPuLGgzYBwtIwrwfP74kZqLmltMw7SNrt93YxxSZVrg7BpC7syLHUBEsB5JrTxza+TTwscv35PXyrnWYLC0IYykzSYf9oCp17e3js9O601s5hT4O+GuBlLWlpQty6qsp3yAmO7UFID1cXjPsmWNPu6DIZZic/Vgho7cHSlQ9+sGFDF+cg+Qcw1FoWTJRybBa2ZFgKeE/e/YkJNhJbNYYRuN5GIYHx4fKWZR+vD1vTtYnen6+a5w0Ixr6EeArBRbAUxEBk0yo+03rUklU2R4wmlMT3fwW0DCa4bPwRi9MoTa2g/ZNAfwloxtHwKt9h3PJVqz4rCSEuvRghRDvJrpxM5JcRVK0xEDwTRySdzaYG9DQF4cLAkwSvkUr4CduTNMoY3K/JAlDzOSm4BN1Lxmocpt9AiLzAxSNF1GExlOiwHx68+ppSzrlk3MGzZHDKvHwUCAx/156McQNaWGDRl7yXEdTevDwcC5HyhQv9sSsLABIHVNluSRmuH8eOHD+2e2bbCvQ/aAHoPZ6GrjNFdYfVE18c2b1oN4dmcoFJkprDF6npJBqpX1srD1Ts6LVGYpSc4Q944eHCkXcjqGVF3jQdLZu2Zm0+xUUxUwXSpLabyMxtN1Y62FNYN5h5nugGlGWVIHeJ9zwmYH9e/BNA5FYcpOmlKMleTYSVbnl4+dXqIowjrZGjmfGAxswtac6uluk519kkyq1pphXmU17LFe9TlZzFiycXlz4cP7G199+cz5AaxMhmfKeFWU2W3GuiQFsDdloXQG2cCTUUixRxnEfvTw3Ue2W+PDF4283IAzk0HxiW+NPB2v0X63pLCHVbAzxoKzczDplgrpXFjGmU8/nfz8Dz/np3+r849/61/zh3/+gfNj5c2p8PknJ9Z8ZE6lyORwElJbnSzh7HhJPF6crz40fuef/Rmntyvf/ndPlIeK529Tf/CL/K1f/St+8uF/4+X33/Pjp8YmaTnntfC875GzmNkZjPWB3/4373lMN370xvn8K6ifegTug2Wjetbn/f+x9iZLlm3Jed7nq9n7nIjI5t5q0bJYEBsRpIwDGkVpIMqMpDTRQO+gl9GzaKyBZJrINJGRFClRIEVAAAwEAagKVXWbzIw45+y9Gtfg930iOb8Jg9WtW5mREWevvdz9978pAnSSQT6v3PYXsmcsVRomdo1ltgB/PGvzfZiuW+xP5DfmkCG5DJTN5dBiGDeyEgWTajZFm8Y5XdLClOX9YTuJkxY0BsmKeiXTUqZkZ5iGw3XIh6rnQt9BARta3MmnJZHYeeUKSKJrU8w9yeIAz7jtULIsIrJA8OHGuorFv3VIppCgihj/npN8ogKAd8JfzTVyA+SSGKOQSiyKDm1c1sCr9LMMruAfS0qWbd5pLtVCCoaozHlbMKOypPkEK9WmGMX3mtnFrG9T/ZCJ3Z9c/f/1dmPfJ6VYSGfi+kkC41MkbuXwgUylhOcNePReM2RVno1kJWYk3a85WMkpLAbo4MUY5mBDP0NU5RE+unKnCtATqGGg1nqPZWVk8rXGrFWy3aihYPefHeH9AiuJRPEc9c6Hzrcl9n0Pe4pDyiS2JHF3aJkavoRWw/9rj7AXjccpC9g/Uuxk9aH6L/llPHO1iHfmklhenWmumhhAjYAkpQkeTFpLejBzuJYYNgm1lfoMZBAtjyXD72ASd/kcBu4ht7dYrBiUtDBz193qI97FeAAmcoUlLf7kvyTvJx+CyVLcJxaDiCelNDLAwuCa6DMNLcUOJlyfhx9t+L0Si5Q7jydKu8Xdb9xj7Yke8zDUj5Oo3xNz0Ay2dm89WPlJdTfOy4xeMh0p2D7B832RO10AqRZD6W57MmJ5mPzoZ6Lfyfr7Syo651ML3uHQxqS45s4jWVerRH0NklhfKawhxhDAJJYVWF7kRRfpd4YIIlqEBkuwRRKilfCUPHrwfu+NLHncecfyU337sR+Yc+jOcX0+3+Wv7x5Qcg3rCYfeSbUyfafdPtHbldl2bEgf/O6h8OMFfuOHid96b6wmucQ2OnM4t9nZ5qD38AAYhT46re3sw9knXMdkjCu2GTffqe6MmdnajqdPOrZJxWG4NJiH3OswDpvWsZnwyG7sqTNSmIvOTC6iydnU1u6hJr54t/DD7z2yrIlrG3zY4FfPnefbQkqKQE45It5NutbHx4WFyWKZgXPZJ7c9c9lk6v1xn1z7ZDRtIuppIdfY2AUbBCYpSfJk922GpD5LqUyXN5SplnO77Gx9sjfoRUkD6fwgo+psESmfFJ2ai4bePijmsBxMlcGhjxtoy9HaxEM7DbBvncu2a4sRBVSGsDLfXBYZkx7SIsWEqgnNychrkvlrH3cwae/67200Zhfgl1OmmORsSibTZ5Nrlj9VKlG0lCAy9snWdi7XnW27CSmeTduoiGY8Nq0kMUVyFmuolBoDkoCelLN8YaYYWiVs9M1VJPvsijsfuwzEp7PvOsvns8CkXOrdMyqXTMkysLecBZCkKMJ+eGMcUiPANYj1qc+kXzf2+MzW8ymGWXkmYa9pYBabGR8uiu0Mc+OhIcNmsC3MxQoZaAgcQRcthSW8qXLK5FjL5ypDbjy2N+7hz3OYOXI3WSb+M7kzW+O270zg3fsvdLlXnb8lVSUvFLSt9tjOFQFVcwz9e+L5zclSCqM3JWS4JB2zdfZtYz2tLDVrGxlV/ijwuVYZu/cBo6kYxvc5pgwRR5cu2RQ1J1lTkWHqmJNlPWNMgaHD1bQeqYdW9B5ZbCFGR9RvnblDPjddW4TunXm7sSwLH55fcEs8nM8CTSzkWdidJTVj05qiU8wBaDKn3pcZ23hzbVWT6TehJLsUSYQkuwMj8v6xO3BCmImbHRp4JOkISRSoiONh/OeT1kRfF7NLXyenwvBBDTP345eOUtCe8diWigmYLViAJplv69A+vJBzoa5rfIXXzcsgZJAIMCW21uDyzgjw+jDg1GsmIOv47/veIqQhk0vSHTIOUNfubBrj8J+LvzvYZsfPNOOfZCZKgGOJ677jKROJ0/etoyOAKAUYI4AqfJBCUmopxZIm/pYkICCJQiM28CSYLWICWWyxUmw1LRpoH4MOeB/UOE+JLNbb6MGgO7AegTyEga+PAblEbLOHJDKew3yNjnZMYPwUm805tqsZT37fdh/ywzGkmerBmizBTlBraOA5Om99L+4DJ87wQYOfQ55w1qO7j3QUEsuiGOp932jjTBmSxNiUJNdsvZ8lsQpMfnI+SZaxKZnOmJ0+jg9ID725UdxYzwvXT1f6VGNnwyPxVudRn7/qrGVJcMFo+wzAVYOwZAdGKWLeKh66st86t+uN21opa72nck6hpxo+W4/3UhvLFPddd22VM4rFVu8DWGY0pe+mnLHU6duknI3WCG8LpVZpITMxz1FvwpC3GLMjk/iaoQ/oRexPd9qQmfHTw5l2eeabr154/8VKrpHy9hm47g6W1ENmHFsFqLY5aRuURZIGT8T5cg3IJfHm1x5pl0/sHzdOp0GdhncxzHw3+QVlDW2pJt376YTbimUjeWJSoE5yOoF33o7Ovif++u0dv/r2R/yrf/MX/L///hPvHk/8J79T+PIpsxQCVDJKVu3yAbk4fQgc6KWzPjl/+fHK//3P/j1/783CFz99Ij2c8PSet7/zn/Kf/YMPfPz0L7j8yeQX16khpZo8obbGvu3MmahWGPbAL37xNR++vfHjH904rw+UCksK49/iVM/4lAHvniVLqjkzr2DLZBaHZoort0ROzo5xKzr/l6ZhpqBzqfdWNcjMg20hllotMvlvTVKWkpzNnd3VkCa63tv7ksVjIZnv93/KGnRk2KvlUJ6S4BhKTx2zAcHMdEVxSwri5Ki1xL07XQOdqclAnN0AYshhcbCzroXNBn3X3zWaU7OTvUXctxj/jliNLYfhdSwZc0p4OeRJjRJf+4i5X0sFlwedpPy6vweZGhKjMSQHPIb96R7phhkbU9HtIZ1KAZhMn4cXPDXrHZcsW8mYt9sWYS0TyxayqUjlOu7bKdaaxX3hR9c5xWKXWXG6M4kPhsUshZoFHOSc6D4oMduUSMG+X0RhKH4wmlVPFdqTcmZJSn1UwI58Wp1QF2SdsRQJuCK/HkN+gFVRX1NSXUhTTI1aq0Awn6QZCWg21Nem4PMk9Sfu2o6atPexzBVjzoKRJjwnGL3AzPpe9ERDmWMarLsPyfiB7LrnD9Y/aBF7eH5ZLNMsBzPHh7w8LWEhy0sHCDLV8yWPumgpvk6wsu0ACYzumoMmCosYw8JjjTvYIAvMYPm64y7Tei2aAhvNOm/DXQvoIXm21CXBepry40oJ9R8xZ5vFwhS7z06ObBkOoJCDhc1rn3kYtEuc6DFLiEWZjzRW475NPBbgFkzEXIycBbJNV792BMiYSX6vOXlGoxMm3CEjm8OZNoOtGH2LqQef0VN5LWLWmcEwmgvsyof0MZj3WvAE6EewAGNpmjy6LOd1Fj0+mpgV7t6r999zMIz87lF9KIHM4QhAO36vWFivPXbiUFx8t7++c0AppcxaM77duPSOtSuj3bBxI00Ns6eS+NET/OQH8Ntv4aFeNSDuiX0Mxky0OdlTpkmMi3mkJpRMTivFnTI7ZcA+H9mtsQ7ow0izsBbCUDvihQNBnwNGdzYfNHemJwZBQfNMnzc8VRqdjDY8NYMPMVse3zzwG9974uFJheX51vjmxflwS1ybPCVqSSyLwShkm7jBm6czj6fC6ButOZ/a5NMG29V5aYPrrs3fTJm0yNyvxgWWkr4GQTOfc9yb71JrmCtr2zJdEbC3rbFvgzaViuRUyvnEw/khYpqHDH6Dlp9rkbZ6NIGB87NmlEl3STbaQFpv1BS3rhS36+2mKHCTJ4I2TwJF1pzF7rEcaH8Y1sVGu1aZjfUx2Frjtu20Nhij033S9w0cbQLjYvfQnaaSSctCWispEkOyCWxrrdP3zm2/su8CpWSGLETX4hIZ3akhkfOSgilUFHeaCzktgZwbmAx1c4DOPps0+1MytzEGbUh2NDZt/x8elRLXp4vhk0ThzTWT86qBJQdMMARcpCgUg3lnixGF/JDT7dvGXa4Ul6ouGQs2m76GEPYj6l6botla0CVnxG92skHbmu5wj4JeM3mplKVQorp4PLcjOvRQjczPQK+72WGg/dqeOHvveOtkS7z94h2Pp7OahVoVDdwD2ElFQ+yMCzXEW2o6BUiIRj1ft2jd7wy0tu+cl4V1XVnKIgp80savJhmSp1rYt4uii+Oz0PWvDU4Pdggg0IzwCwFu205eagAM8rUi2IE5J/agAWeLxsyDWn1sFY5tSQzjrXXaLt8SscI6y3riXFZtNuK9qrnEhi4ovx7m3lOfVWu79PqYIpvjWS11pfukujNz5rSeORJaUhSmQ2opGm742mRTlHFO2Ahd9xCQfcSWCpPRlmXf9bnMXKgmiXPNHmkekvEcz+7Yfs8jvvRoPMxksrjUO0vKEUC/P194eHoUwM5nRTb+efixwbFoPsKjIDTldwbR8Vg/A5NA8s5alxistUTQ5Mp94IfwAAoQYwZ7K3QFKu7wH4BDoNb0dr2SlkXfd1Ia4pFKdnw/c0ZzfDQi6fisg5kTssMjvc133Tvde9SJFABh+GGlFN+XGiJtAgNIw+j+mnqjK1HA0oiklzvjiwPUla+Jz66fM9hmPgeHdNmCGaB7QV4GPkNuMv1usp/j8zoanpQyreucWXDfZZ1zPLAZg0bWRtx7DG5+B6a43xQBGEbze3zNfbvRemOdmdHFkFBNnRGdrT+XUyanGlJEA+txFmQmKo+4OK8T2j5Uj/2CNw2tKVv4GuT7Z2fFmSi5VGcqU6SVClmzQCLvM7yu4mdOhSUVrqNzeWksMQhpyV+iwfdgf7nYnpEAKt+nkBsGyGghvc2p0NpGNtX4fE5sHwb1VPB9kNZCZTBGJtj3AtRsyoMlObPrzPbeyLkwpvGqDp+02CQnoJ6Mlw83Pn6zs5wr62kyiwC0o2H26YwyqbEM9JTxtnO9Fc5mlHTEURNnLsOEZT3z/rcav/i3Ny4fmnrRkJZ6kj+d5bOAiD4xdkg3bZRTwq0KjPSFlMTIsnPmiy/gt6/v+Pg7G199feWP/vwv+b0/+obHpVB/knj/UAVmWKaaka0wrOE5k+nUgRj22eBh8me/vPD4T/+cv3t+5PE3z3DKeH3DD/72f8E//PYbvrn+Af/8zxvf7p3hmZoqaUncXi4akCz67PXMzz595J//8YWHh8zffDixFMNLeHrMwpwJ8mAdK/hGGStbVypsWiDlSnMtKnEZx88kUGf3wd6i76t6L3PJpD5wE1DSwuNxJPBSME/0fiMzqExGUkKvEtUkhZalLUw0WM37s9QgWRBAOpK83nL0oyP6YB8NTKlPYxx/cMT5JqTIRF3O915TtiMBdlswDgPYqFUMlhFM5OlacKsjcPpUT+UWYTxxNmeK9K4kmZC5ZLEk2WUYiezQ+s6aEy3S9KZPCpk1QyJjUz2H2PUecvEZUhh1Jhb3aGOIyR01+fC+xI7ACCe7s65O3+Ud6mMKhEgBYhwsv1hcbJtSoAXOhWVCjiWCH9oTv/fXs3emi7XOdHJJ+JTkjalh/JCI3xcawg6Cren3+jSjdqgeytezdyhkWkjGUjaOJK50yA6z7rMZsmqsh+xKwUBitzpz6ueZfdAP+McPE+ToFQIQ8WDOpjFj5kI134/lld29EtWDjZBQaV6y6GVmMJk8xb1q0GaA/R7z1TE4H8CIK2kWK7SuHn30Lrlv9DAH1UxPQ56gB7c7JzRDEHmtB3aZ9HnNLDDBh2wj5pQ3JLEUVxvjAknSweY/+rP4YiZQjgQ0Mast2FU2B54GnnX+tVOSJ+kBc43odT4HM457/2DSJB1U9TLhC2Q2uRtPO5/V0FhWk45NHjOCNnKAoGmqh7DsAazEbBT9inAWzTMzZg5hdMGYw4GQtzl4HvcF+xxiZdnQ9yLRUMCpx33kmqNnDylthiOwhWCSuUsye3xOGpG1DFMfmClVIVozJIoQ5vvJBIgeicvRw2h2ki3NsdzMqcTPmAi37+/s13cOKJ0eTox+Zbu+0G9XkkveBpNTMr54zPz6Q+dH7zpfPgyW2ekXMS3mJnnbPl3DIdpu2Oj0fvhiqMC00dnH5NZv4DUINA4FKglPQQlLmZqNMTM+nD7U2PVpMKF1sTC2lpgTGtCG8eQL1zG4jEHfnceS+f4Xb/jelwtP58KtO99cOt9etcE2MuuaqWvW9mjuMp9OiXxKPJ5kzPYyjUubXG7GZXcuvfOya+uzVqV05KoGKB0Icgq0Py6zqLoCg0pBkclynt92Z+vO1iYthoA+ndPDmbyucbich1o41wphlO5TQMVQpeMw2z5UG7dmTJJ+VtMm6nbd2PeN3vd4OUSPVBHVCwRDbCIkeXM7qMqTZS3UVHAG27az753bLonbHIPWNjXTcVmYm27leMdSLtTcQpodAAAgAElEQVS6UkplKYsuShd1eA4BLvLp+dwnST9fyjm0xYOH9UStC14Mz5JakQyrlZoLShGxQLxD4ztkbunDab3R+05rMuC26Yx9YDlzenhQopMlSkhZkintIpdMNyhBTRxNNGELediMgU23p9hFHv/frhvkTLHQQLsYNYlDOx3+IFnGtqL7Rt2ak+MJpVRwUwS4j6GhwpW2U08reV1Y60JJMg1UVHK6021Fx43EowBL9C2LrTDiDLnDDENcc3j/5g31/CBgx8TQat4FUlkSZd49ADXuDKcDv9dFa8HiEtK/B1C13S7kknk8P8hzrORoGjOlLGIm+WTedhnl2uvXPoChjEvVYjkKFjoTlmjXG6RMKVVDUGy6cq13U+xSFwHW00khq/QwJvYw9ZvJKBRt+0YLLXri+XKllEKple7adHAABQQZNs4DLlmUUiIII2ljzQstgDLJQzPenbY1+bHVGpLOcn8+rxIkU4OYD019U3NvAeb1Q9n+ep6O595aY314w7QcjcakmtFcBp7pYPkcaMPxzxzHRveGGfpc2qDNBhOubXC9Xvner31fRTi2vsleqfVHI3A8S6XqWLDq9HvGjKIbANohXxuj09vg9LiG75GImZbklGDxHh2MpBzyVczwPu/bYz86ghSNjonZCdBuOw/BrtIWrN+ld7HLkpdCNDkCsnWnpByb5WgkhQmJ5dnC9P5o1dTgasjJKYyULdFGfCc+WajsphOlbzeGhpyj0RgBgriUBUeD3FsYSh/mqjPAm0lHcqRsHPSr+FrxDnh4WdkhV9RZTikrejllxrzdN8jm+r6G67ucSQ1SnrrBLGrhHPJpnAGAqUGcd5PLMWR4WWpmv16Y/b2kscUOwpDuval7Ug4g0SjGO27xgCTPOYYsDWiSGgboUyptj1qTkDxfAiE9x6k7vLu2r2baujImMymMImfYtpsa39YU8jAFCGV39n3nssHjuSrdNQWTa+pzT9nu7EMXTiCAoYO70U1yl2JQTMPrcJ2rpS7cxoV9UyKTdSWyehvkKgasBiTHY3s7UshZR3qtM4hNOkySvG0ManGBX6nz9VcXHr9YyEULD63FtDwwlwH4zE6yIY+wObleO5blK5GCnAZDyxZ3cllY3zzy+L2NT3/xwvXpDU914slJM8EudpuVSKUC5nzBOGGcMRtKRK0rjESyFdw5584PyfzN7R1ffbzx9eWZX3595V/9ybc8PhWWH585p6reJxmpDCoCJwqZmY0lHkRenIsN/ujPvuHpX/4Jf+P0wPqjM1YX/PFH/Prf/yf8ow8f+HD7Ob//y8bzlFlvSom6rOz7Bq2xM9hmo43Jn3yzc/qDC49vjL/225lz0TIgIcP1iYbKPHZuq1GTM24eS7bwKBOGAyTJ1hI8ZeOanNumxN/RE6kejAU9L8zwNiXXjJ4isdL7jVQmy4RBCvaJQZJXkFnEyzPvw6zYgLKXCNGHpHcij5B7FyBwlyu3AISDhRYsWQHKsWSIxDqNzIYHq073/mtvlCzJVygZ3gfuPZiu4DTJd6d6swOE6HMyM0rkjSuSJB9WJxZGTvRYKTxijNsUiz7b0OeVkwDgoXM++ojFjpaf3rvkb2ngHoO6y6zaXD4yxyR5LDGUJlewqjo2WtM9GXcBx3uccvSEMCOJakQ/T457L+7+FH2S5yQSYgStlFIklx6TFD6eNsADpHRTX31I6gzu4Nhr+mgM8kiO24Zmq5RyDOadFGdV/djB9AwQwqaebRBOZhiy17SE5+jhk9jFlJH+RwvNIB4oGVDA4DTVvoNSpV7w1SLjYJ9kN/2dQ+mw02TObSaQnOl09P4cA/zBRtaQH4U+gA+LGa2EpFjfpixeBMDlqHNHn3EApFEjP6NKZ8SaUkvnZE93+amlCNFxnefj7OjN0rOZw8U49Xj+UdLNYCaBqQJPjvf3UEFArloGHrUfxLa699Ku+UALvvRZByTQixygXPSjFkzhYy4g1Bw20edmYb9wnNHAg3Oa0SNOctVP6NNFdD4WmzE7albShx52X/dZWNh0GIPPqG8zFn3IEqUNhbwkJI2c0+VTOBGTeB7UdC05exMJo5sLzOzcPwOm32dB3bPR26RX2wUFgAc7yedd1XL01gdx49VPVL2rW7AF753zd/PrOweUnn/1Fb1/ZLRB6Q1SJxfnqRR++j3nr/4YvjjBaRpzjxjcbRXV0BPernh3bDtihHe23pnDmN1CUpXZGOxDHkiiYO40M2YaLPYUSo0Nt0csN21EplK43FwpDVZIdWEpMj+8GqxJl8L78+TrX37kw18O3r955Ne+eMfjE/Tk/OJ548Nl8twT+BKpPZmZgamo5LpWFjeeHgqWJ3sfPN/g2w1uLXG7wcs22JoK2GkpUdRHbDbqazTw8Ni6BO5siVIqpejya32wdbF79pHow+gYovjCulTOD2voeidPpxOPS72/0HP4XU7kgWo7QpJnsAa6hwm3ZVobbPuN3rtiOlNQD81jEJbcrdaF01K1tSshZQoJU60JvLN3SaRu151t01DUe2MMgQ+YxyViShNIArSWWliXipVESWoOQQP77I3b7YXr9XrfPHNsbhF40oZYVuvpQQbcKeMxeJUkv6FSlvtlfbCSZu90Ey2UpiFytqB/mhq4FoyL9fFBgBTa9mmL7NS8gAk1xge40cNsUA1WsBSIAdlFkzWDfU4ut5uYJzkzkuSjKdLWEukzQ1qLM6WCK2lKZXawRfJRM6O3XeaBXSbWfTQZyZ8XSf+SDDXJJVKlumQvU8i9JC2Au1Ju4D6YHWDMIW+cY3I6nanrGlRtF9ssou7NDFokLwRYoiE4TLiPwuOSiuWaBJS0Rs6J50uk6D0s2BJeGKUE0CDdubcdGMwe3/cMkAfu0e8WzZMMStXAKOpXhu5lKaIIl0wpCS+JNRcSYWjtQ1tVH8EwU9qcSEmxcaFI6tEn3mXgfX254WRO6yLzS3tVOQvIGDJOdcnz5sFg8ymPmyRDRyUETvksjcmlSS7Rrlee3r2l5By+ATpHR4Ibpo2jzYktJdJqNOYtJfxZjib5uCgQ62fb2r0QZxMjLpnAvEyAUQF+HQDekWTx+jOq8fMpyrfNSds3KJWXjx+oNVPW5V5QD4NKjHuzo5lIIE8Jmnw72GfjFfwiNs4HMjb2PRrx/MpMQ42j4Xe6f+9iItw3rn6A6en+zuo/1aR43Nupd6x31pAQ+QiLe2k3mTkzplJvUtwBuYSfgAWgjL/6OI1gvvVdyV2xQLwbQbu2bTManjHl3cDo5LKEDdBhvhsOF2bhPaR/7sGjtnjGYw41t1YZDKW9+XHO1cDKYk6G/ObylSEXOjKrx3XWU0pKgTHiM9d53K4X9usNn2qqMb8zHX1oU1xzAJOmd3vMhnm/G++OKaNipdvJ0HLMSV0qnz58GwDTZImzguks5qoEq1Jy2NXFYHU8Z0chEBX61AZZPhmReopSO29bk8wjiWlck957Ue1THEFt+3sMi/TJNIFgcxhbC3bXiBAGiwa+yN9muGFJgKB7j2G3SKZnJguFFNIIQ/4w5kSMkULZos4Uy4RJn+r1U+bysnF+c2J3gQ5luKwAUsI9S96WHRtEDVa9HmNSspjSSjmc9F0/R1+1TDmdCtdt5+OHndN5oSRjZA33YrwmfHTSZtjq6shD8r9vlX5y8kjBIhT46aj3ypZ591uV519Obs+dNz9YsXQKo/cAfXPRciojw/LkHI4SNgtWzrhdoJ5I9Uvy4zNv1q/5dRv87vXGz37xgW++vfCnv/zIF3+68uah8KNsnEw9hKFgD5+NnJwyJzNP8pB3mU/j0gd/8Adf8fj23/OT83vqF2/xXLH3v8Nf/y//a/7xt/8Dn/rgz341+OTqAfNSMWTY7XMw9g6W6XnhD/9y492/Mb54k/m104nFJVMrWcuROcXAWl0Stjkn/gJb28hWFSVesmqGO9uESWKxSSLThnFrHe+ZlJ0jbzuD5B0tIBuHdMpYr+xtkrzF+6GauQ/dnzgCPk330ByOxxdN4YkzY4iT4ly1qvf+WjsjjKakxGjyNvK4zw8Wgt8Z2lOsCQ92WwBWWDCvLIC7aYxkzJ4YHSZ79AHcJcWYFikdyFa0VAswQnL6fLcWUJ1LlOwkL+xbg6HaOJPRc+FUEimdsOFYH6TUXxkxsbDzqX+Xc/j5WWZaF6hySI2zvBINAU6WAYwlZVrOtNuLlhAj/OWmQwTbHEzZ4eEgk1RfBwpIOeThdq+y4Tvo8tk8z1V9ZT9YJC45omtu0DUb5s0IGPGZ9PNWw4fAotYaywloHt6WnXSwnlyUj1Qks8ol7oAEJS+0fWCxYLR7SqXRXIyknBDbGn0tAZIwPZOsiA1r+c4YVk1K9zogNpW/Jn1Fvc/mtKnzOsYQW/dgRk7JBu9JitqCcCSA3WVO8Xcc1hA+9Q5YMZaptFjX49SfDzDXeAUTHCW8HT6J02V07jPYtFngjMc7l8sixtvowfQX40W+Z7EAGiA/vRTeQMGtMtUiD/bgsaRWCVZd8amZwuPuPpaUZkevkO71cN63gvL2Oxa1Hvixe8Z8kO0VaPLwYiyh0olNZJw91Z+wGfwM1NJnJj9T42DjWfhPpazv24i73FBlmAdrj/usbBZLPPmEUMMiwu/zm/qL6fP+jvbhSmOdSJb/mddazp8B6/66MPMAGiEA8HtPGnLhEeqMO5Z4P5z3GfLoHQ3CSuG1f/+ufn3ngNLl0884RwyxMznnzG88On/l3cZvvJ88LGp899nwSBtr68C8kJKxrA+cc2ffnZpgcOZkmcGg0mUC2jL73un7ZN9uXC+T7da47Bu3W+UyBnPAJTn7vCoi0TRszzQYNjAK0xsp7TCV6sTUYM+YfJUmpwo//vGZN+cnluo8b4Pny+DaM41CSas8TpJMTJmTgvH4uDKssaSMe2JrzssVPm07n7oLTNrF9smlsiywUEJbXjgiEC2M10hCXUHb5pwKWKHPRJ/yLNla57oNmicsy3jSTUlObx5O2ibnyTkMpxmD1kUBnwTNL1ncN4nuRjt2CSnrsm4erJ9dIE0AyzmKVsqZWovi02tlqSsZXt32gaXofx+jMUIHu+0ylm5Nl1rvHbnpZ6VAhRa1BKV0rZVlWZTClmT6mpKrce2dy+XKdr3Su+ilIzYRuJGWEmbixsNDwdDXEBvFlDIXaWtHZ1KKpIG9t1ftcZaZ8cggDyExUa7XjX3fqeeV5AiBxu5skrRWNS1EBCoexf145qKHH3TIOSLNqWt4fLk8i46eKiQBN4eBbwlA4SiCFgNOjg2xPHek6z5YWq3JsHA0+T9te+N0PrMuCyVXNR1wL6aWczQ2Ts6Ztu/3s6+xebJ1/VyHn83BzJm9s6wLT0+PeMSvT3fyFMurxHZeD21y3a7sU1uJJeLeCWDJA+gfvYtpMJVsNnrn/PggyWipeKCdyY9tdlCUkzYGNmbQ4MOA8i4vERBzBxZMAMbteqExSDOLsVZSDMcHAVlAYXKxT9wHBFAndpZLXpBFjVfSnqLEex+M1ijncwym0bhGM2c9/BOC+XIkmRnaJHlv2HTa2GEIfOumc3drO9fLhXNdOa9ngUnpzucOIEw09YK2zCXJfD8vNbyCjsY2GtZ7C6FGaNt0L/h+Y0FgdPed9VxDJ57vMsI5JSs8ACQNcjrP++ikaCRb70Ci1Mq+77x9egrZXPzNQcsm3ks9qtjKoUHHHVIt9DjrYj0SIHMULoNtV9JPTfkOMmUTz1J/p861BfigjZEaY9xDenz80YOjqW8u5cJsO8lgqZLyZUeSbNe5sznu0lc1PXZvWo8m0MekBCtoegAt4Xn02qDFUtWIBlyhAfbK35efQJoCtxFL161oYRFMCp8djkEqNoLHAqLEvYBr21lE8ZHpffz5RI4tLq+AIWK4zagtAliOzWuiloJ3Z7tt+v1laFBKjpskIj5cm+ssFoDPkPxGuuCRHpXjXpyBiCkZSLKsPg9XJ+QHZsFXMd11c/I6hCrLXPKAOcPfJSPe2fwMtFetOq8nLpcrpVaWUllCvj6TtrpmAnokB1H9OM7LwcTsXcackt7Yq08CTl0SvsO0fJfF0NUA56xT17oFWOhMMtkLGJTi7M0FmmDIB0B3Y0tTTbN3Tu8K7XJl9BO1aCs7clJAgfmrebtp0UJ4KrnJ+D4DZcnydJkD0qBPY3anJGNZKu1y5eMvr7x5V6llssaQMofSXmc+k72JkTGm6tFJ8ifMQpIJtRSsLErDmZ3ZjVLf8P6vdj79xQu3Z9X69LhoGkhVdTfNWEQ5zJ1ZV0hP6gnKl6T+lU7uupBGIpvzxo2ffHzmP/7xA3/yp8affr3zB3/xLV+8yZzqW/KbxFITRiH0Rdr4W8cLSssdYsKc18HLZeMP//XPePrizI9+9y3p8YSl99gP/w5/95/8nI/P/zP/Y3P6t4NnxDhf60pzGNcrY1cftj4+sV+u/J9/+sz3vzSe3lS+fF+wopj6IAqwY2R3LGcWWxhTPlmzKw2JCZ6dGYu7PJ06xXCoJVFTpXXXWWmFNO9wB2ZOVclim2IyO+oX1lS4+a6BfYRPVrx7KZKgzGS7IJ/8YxsvEDZN+TRd2pEoZhAA6Yy7MOVE3weTkMZhYt+bGA0HwJ9zEcjhHp4uiTmP4AywPHGRYqV0ILzp3ClVdduRuW5OJeTHVTdayuQ0wQUmD8SMS4eROOBL/G/bYLppFole+uBRqckxGJM+mrzSAqj02XRX+4x+3V+Zv8dUfpcwS96f5wx/tkm/bVp0zBFsbb1PyZI+L8ROPtgzOYZ+xcKHJ54P+eT4DAacyzYhqVefrctzNpnuyBGgQQKY5LIIcJnyt6kkRlagCRFJ70jSSDpkvBaLxBSm1VFVphhF2Y2cKt3UE+aUJa8esreYFnOOEVLJjhPgfJfcLockPOccbhHyzUshbYKjj3wVbFmwPdzEKJfMObANHMxZU2akrLCiAIpU4ILvlAhZmEdvLQXK3ejB9E5YSoy2B6h5hD1E/xT4gBbbKd4d+fcOn3dPIgvbBkx9sSeoOXqK1kKCOu+9nQAknZ05Xut1SmBZs1NWoyoZePQvE7GwVDN1Todrqe9j4rEM+lx2pbYsQJOhwnSYTFsWucCIeQn9/cm5S1TjKKufdS3rpun3yNha7F/LxzJQf6vGwwAOg9EVf5z4EeIeP0D6HI8vWLUzWE4zPrejnwjW5Jx6DvjBGpMXrsc7FI6l3O0Xhr/2tfePZ8ZiiLh/gg0bS4wUIFXvYojdv1YwkQTo6v9GfFbz+D3f0a/vHFAqvjN3IbPvH52fvnd++qPGl9VITEZrjH3Q+sZtl5Ho2DuXObBWMDo7k77rYUzPzFwoayHXSc0nlgXq4yPrF8ZDeeDtMM7+wHU+Y23yqb8wn51fbZ1Lc8bLjeueeNkmHzcxAI6YyzwMm52ZBrfembtzfjjz5ffeADsjL1iafLxMXl6MLZ3IZWUpiVoLliI+cU4ea+Htg4YvS1XnoTtf3W7sL4VLh4975nnXZmY9ZbJF4pdPRR57wrwgzzeDIqDCfKdkHYZcMp4yrU/FhPdJ21/TnHpvlJx5eDhzXjOPp4Vsk6UmbQKbPC1Mzsca/OOlHTMuhZJJ6aQX24zWJrfLhdE6c+936qLoyfJyOp0fKElm1su6Bn0U6lIZXcBdtsK+aXvd9satdXrb6b3RumQJZlCSEuFq0lBSshrIuhRmWvFcg7mEDJjnpO2N7XbldruJ3RBDhE0PKVvl+eXG+eGBmjNpJnJxpu3y5Soy4i2HUSxiZSzZBGguwVbKJzXUNklzctufcR9cLhe2W2NZFpaUZKJudjfwTjmiVIcK8uFZM2ILcJcexTZFYPuMoRpePn6i5ADAii6/U13UFMVlkTByLYGEhxxhwOgwZr8P8GVZZJ5vKmSzD26XK6eHM+tpZS0LJWnzNsNjy6cz2yaKb84y8ju2GWh7L1aJiY2QxZ7zAJssJU6nE1bEjsndGVkmslJ89GBpZXaXtlu03wBWXLpwbbHF5tiHElH66Izrztt3T+RVyX9MkfRSgJ1KQEiQMmnIo4up1JYZXiiqBZI+YksYMzrJnI8fP3LbN9bTSY0NsPWG0XhMC44xc4pERG2+RheDsrcjhl01YjjQd9zFUJjJaPvOclpZqozhtW5KArxwrCRGkoGiTTXW8k+f0OYdsDqkOhPJc7be2buip9++f0dkD0TT5q+JjoT0EQ3NczSKOy1o7QcritjmqBofPlkC9FLO9L1TijGT/N5aM1arzNFC7sR9e/J5PXN3gXhT30tDnlWGAFHbB48/eJQuPrbOidgqf771c+5MvYmTiiS3xzbGDk1abLrCQoDWB4eOJsW2KucseVUS6DDaYF1XgbDEndkHMyQpd+Bkvi5/UpL87Pl6Iy0VIkGlpAI+mck5wv/M/b51lMSSkO3JUDSVomae2Gx6CoZaRAHbZ8PYwZDbGzNBySvDJ0tOdI94Zx/4PBhNMokfHl2mKW5crsaNNUzK5xgy54RIglHS0QwgyY7ONrohDY8BoMDxTQpU9DB7DrakZaMDt9awWmJb+dkiJc/4fHR2RttJuaqpyoXZD/q9gL7kQwOTv25xcdha09Bpajxba3jqmFVtP70HmMurx5fLBHiLZD6xXwWEW5zrAZzOlYdtCX9ASdJHPpgSMUTHvDhzwWwoycoibtkyPU2WqmH8blyM7kb6xEZj3zr7OFGSBhgtR7v8htxpu5LacoaW4p1IRk5H/ddnOwxu3smWNTw3hWg8vcm0/Up5PAnIzhqU3Qk1Y8a7IVXYpNsRM65NfS6JhcSciTEL2Ka0thlD58n49vKRNx8rp5OWUSyISe6Q5s7Mhu8jQIvEw4PhmwzAKTBnpg/5NVnNGBnfdyaJx/cn+rXzzR8/k3/rTH2zYenMYcbKcGYO9oMlkndIK6S3zPJ9jf/jAkyKV7w8UJ4G73/zC/7W39n5s68+8e3v/ZJvP2z83h8/8/a0csqF/JBJeZBRIMk1ts1nL3SDWQbJxBqZJ+Nn3z7z8C//nMf3b3j7kydYT2APrH/lH/Of/6MPfPr0v/M/9cHt28EsAJO8VnrfaL2RXUb26fGRDx82/un/c+PXv9w5/+2Vulik8W1kc6pXug1sTBYyPDglTbbboLUdmzvmFbOFEwNq9BWmIUSLgcFlQHa9G0o10nutZKQeMlX1F2U5sW9XHs5JzL1ypvdj6TLvTA1dgtrG92Gvd8XQXTfZKFXsuGQ5Uh2BYlIwmFPWQu/a0B8yF710YsonaxgjTIKHgMVmr4Ix1z1SysSzizXTF9wm7o3eXYENczJzGDfbxE2eJmN2JaXOzLQIh0jyN209CgMJs0IqTupOJsu3r+14hemNmow+NKTmiUygk848wTjJMbTnnOWLEou1UgT+kGRRoITTCBayEzdLtH27L6Dk5SgFQc4Vn0MyTf/cK1GLm5TF2iZ88A6PlkpiaJrF3SNtLmxHMGYYsmecxbOkd5aUxBrSNI/gn6WemDTqsmjhE5LqEUQBMyd1MbJzLhAJz/vYWVIRzH8AZDGUH0bW2CExEzgxJrQ2sFyUnDaagnJM9WsM+dliB+NJ7LlaJGcdsWgDLTByeG32QxqFztatO5ZivWSSSh49u7uTeoAgvd/nJg/AB0fgX8l6njEHTlO/hNoA5kQWIkPLvBRYOZ8BLCPqWDLJ9Pwo1TppUKJO3tm5OUAiYjE6KEcPkuXJeKAvBhFxfxAhgLuawTi2dwe7vFm7m30T/47wyHKSFi1T7GWZqWfIETxTpLA5mESHXcOxfJWM/ljsxTuH7k7H8ZHDYFyzyGgjFlHHDB7P3zXPHN3MGCPe90Jx9Z6HgmOOwxcubq5jKTheGV2DeFY+CLcyzQlTKXzZ5csk9t5gdr+znA4T/qBrcfiaeZeSqRaBgilVeQYfC/24XwU0amlQqrzrUnkFRr+LX985oLR243tPKz94t/OTLzvfs40l9XhxG9ZEFd867F00x+eppAEz2KzBblgpPO87vDjPGCkAg+6R2VISaRSZcdtKm5mUG2UYo4hBZD65pg3vWQjwMllmSAiyUN9anFM9M1rn4y83Hn/wBes5TO684iPzzYvT+gpLxXIRMFxzaCQnS8o8nVce18bTw+D5ZVLSicvlxrde+PpW+HhLbLvRXMDCWpw1jTByO6BIpZaVuoALbJtt8rAknvIDmGQg3eOzGM5tV5rTDFNAq5mHsrLkxNObR9ZloZaF7E3DbQC/TsJTeAW5zM6EWsqjSjirUcrK7Xrj8nKN9K4AkXLBijTwOZlYLacTSxaYVOtCKZm+b2yjsbfGyYxtDnyIyt/6AJeEQqhqJL6ljOeEI/Pqsq4sESVpRT4buWY6kzyA5rS+cblc2febtgMOfQ66D23hffKybZTzKi8nFwg23ClloZTC+bTE9l9Fp5ZEyWA2ZRJZssZuk3a/N2e/Xtn3zvPLhbbvnE4rh9lxqVWNasg7imUVzdjGzz5kEgcqCuZiQQUQNRGDxXE+fvjIWk8sy8osiTQ18JSU/4PUrFQLHpuLEo1mCznMjD+Tc4IxaXNQJkwzLvvO+nRmXU8CkpLRbIJl1rKSU5YnAnB4JvUwENdkd6Q0GVqOvHr8JDNmH5zOZ8qy3hH9gQBXXXjBuplQwg9EUfOTnEIrHA1MSYVDG5w86fuczrv3byEAwZTFH6josh8B5LkPXcpT3jrDJ7t3llzElgoDaDc0cKWCz8G23fh03ViWgo0pNhjgA+oS8hhz0lSiiJ6ain2fGkDHnEH1VrGcbkp2AfZtMDBOq4Dow7DThzNTIqXCICRCPml9yHw7zA63Ocjx53ScJC8SA3HSrjfermdOyyLpYEn3jV8KsO7wBxPoJiDDpmRGwwd96hwlV6M2EvTRyWZcn5/lIVQkK2lTSSgl5zD7ncGECA+EAEvAQlrEXSap6tdZSmK0iZfC9flFzIWHk74GWumKx5HDjH7gIX0pyTDPzEh99H0LZoHg0uwAACAASURBVJvfPY5kRqpJvA99pqdl5fDlGnNSLce2rgTNOpofrR/pQw10ssPbIW7OJLmYm1gpic6nlw/UvAIR1ZyVrH1rsXlLBUoNsEhNwyAWHkgG7Qf1KJ7bKED8fXo5dX9q4BpYyjTXz+HBcunAEv2ZENyggbuk5YaCKlIwfWYCUhIw7SCPG7VpBwu0KFrkvnHHi5Jnot/sonUxR4+vEd4CzmdSgKTo6jv4qzZTEpzYSE61o2P0MMxWQzZnl0w855BMqZnEstiSriGohlzt8vzC+6cnum2kZUKv2LJIghENqF5EbcZnl+TMDu8LHSCMGk110jkZnVuCciQo1kX3T/QtFsMOZmQ30jw2ldo4j7mTT5WUOmkkilXI4W3HoMxC75NaMnsb9L2znCvuclEpLiZFj/epjUnzSbZOsoOxoSWUVtopTF0Tiw362HjeBkvPrOuJ7fqBdC1KccPoU95F60mDdU9il6S+UX3FcE7rKtDLYvhKcFqDzZKGhowM5/OJa3/h+asrXz490B4E4Bbd9GIaeMXuEppOShM/Jfqs5F5Iq4fsz4CifmYtsO3gifP3ErefrXz7/IHTyzvK06J351guUMEynh+DWPdCtgrjKx3cvGJ0RnGsV6ysnB8e+PWfvuMffPop3z7D//EHP+f/+9VHfv/frXzxtFBLJq9QEJM8Lxv5pppSU2GMXUsXSzwsYuT8u599zZf/1x/zN96+Yf3BW7z+JikVHn73v+W/+vrnfP2//Bn/237hm82ZecIwbFkiEarTr1ceHgv5zVv+7NMn/td/9pF3j/DTv3bm4amwWqZb0TnoJbwKd4onbK24Z2bvbG1ndC28pju3GTLrltlHh5751K+0m4MLgJyziUxjmTQyczb67OyzSzLmiW3XXfv4fiFvO1YSfZt4yiGVDeZbXdVOEGweN/ogWJhGoVOS0dPOSM6hYBZPyrheXthu8ifTFj/eZSoy+wZizJ/H8AiSRFmRhykms22tVvCo0zZaSDkLy7KAN3l9udGbU7KYYH2o5meTfcLBFFhKZt/lzaQhdVI8kj2nwDdzZ5qxtRmsejEkS030Odj70BrFQioeTKRcQnY3nbZ5LD207NhaeIiF9CblWEpPl2wXY+xXLAukzFnP+vhsSFqoiYhrjEiYy/QgUryCf9HN0vaG54G7ar2ak8n0TirQU8ZaVr122XqkpMVCyYk9GO34YFoKMFDA1BzAzNEvd2xkLPxNNwTkksLMPReMiiXo3tWjdrDZ6MBIpiHeJec2Kn02sivptftGmwo4UHmdYtCpiIU3DcikQRYDxeSFNKOSEOAGPRYRjuT/sZAzFLQxfEIxuk/yPIJvoleJ7ca9f0RqioHOeo/lcO/6+efsdxNzBWAIDMkp420wg62kZl1/v5apOu+W1fdmM1ZLYTUT7FrXMmLMpnnREsWUeugmIKw3eWbO7rE5iR5lDlosL6ehz9YylgKAGsjcGsR2HfJczUmAiJuLQenqudMI24eQ0RtK4fOCanJXTySfIQGrE/CuhT5j3hdGPrtms6ylY/IgFrjf37c5xUYkbGhKSoyxB4kkyf6FYPcN1WSBsrIrmQFUpZTohCdV4OnZVIszMG1g5fWMGV3bqpQ4pKnVZG/DzOQxGSWFx/Akr5k0XMDvREB5MBw7nUGX9NS+WwjoOweU/tYPK7/+w8GvvZ8UNsy7/HBuibY7rSvidfTObUza1bjOK5e9gn9kGLivNJ7JwxhoiOkUsIqnySiZbhmSTAmf/YrvonVPnE+fOtkr9CH5VhpKizPu0fRTYqwoUhtfvDnz2z/5Abd9QyKlzLbDp5cE6wqPC9YOlN9ou7aFb07Gm0fnYVEjvjcNBh9a55u+8u2nxqeW+XBrlHqiJFiTjC1jf4t8kQzFIssQuE+42uA3Hk+8OydsON/eOt129iHz0zYnbcC0wnJaNOsk5+m8cl6qgJ6SFbNoiVQzt10bTLNIbzoa4aSGzy2RZjTQffDycpGUpU9a07C2lFWI6LKy1MqyyEA4p0Sp8lDKoY2f7vRb42Fd2UdnyQlbDLMF5sJtu7BtzyrYVikmqmmpmXU9gydqrtRIs5twH2ayW/gtDfbrjdvtegcdRFOeAgr6YG+Nt2/e0NHLWJaKJ2OtC9kyy/nEsizUXO5xqoZAkT4GtWZ8TDWbLmnebdsw69y2K9d953E9i7VW4kK2oqEop0h3ywHFxPBsh2b6kPz4Z7RKk58UzodPn3CMdanaNA+ZV5dS2RissZVYliUGmwB5klE8M4DuTi0L9hmjoViiMXj59OkuUbQsacZyyC2R9rrPwZHkNYjkiZDRHXTTMQc1Z+j97peEGbe+syyV9XyS18LkvtHXvjMGnCkPrjalyx4u9osHIJTNFAebCZhEUbj9tvPm7Rsgs5aqpIsiuYlZZpiT+4FVZG3QrUt2ObQhdAPSCZ87hIljzoPed5IZHz88U8nUw9AzixVV6yoWVQCAKRveBKLlpJ9lEo3cwVcN5ZFMNcVO7PtVvlLuDAujTItoepxc1K6B31k93lsMQQKE9jizacLMsE35Us3eGXsjf/9LsW8sRRGLuHbCN6hWLJgQUYOYBcauqHBCpjaSGDmgLYyM6bs+k7mTIivXHTxnLpcLp1wp6wKlyL8G9Q+Jo2ASiRxJCWIlhkN37FR5/tnPefjyHadlubevuJqNQ/KpH0qsy27a6pnLA+KwYZ3uatiCAZYR2LtvW1CzQyef9GfCVe4+FBxGnAmj+4hEFb2zByCOW6Q9yicjTbXcrTXWujDdqAGQp5RYUg7asphCFl5MB23+AJfEu9ZdLQmzsV1GbEl1V5UkcC0lg1qYJt+gYzNln1G0h6M7Lb36iTjOdDXHbtCzAh9yhWqDVDL7mHcvk1QyqSgkA5SolWLzbMkpqWCW6LOFgSsxOAXb1pIA+9iCF8uSMOUYtCC2oiETDCbV7I6H7NeHcyQVHoDSnAbxzJUaZOS8kvPg8eHM7baREKCSbYkXUkyyOfzOpfIkI3xPyAPh2CoPsWzTQTUyPyyIGM2ZlhitcQ72EAco5mLMSXZgcU9IzpOqvDgUjFAYZqRTZp0NvCsllBPXMZnWsbbR+4oP1fOxO61UUtF7Men0Li+MnozFXICcFbF7sjxMRpdcc/fBPoxuG70NajlRcuN5a7x7eGKOjWlQqyQnDZMJaR/kMRi+sZRM33ZIme3SSThpDApOTztWE+aVUhJWjJqMy1cf+cuvCz/kRNofWPIOGGVCz1d6SPcSUA5wa6oO1afEshZKcUpymIlUkyi5N7HUHn/txv6rjdvjA+fHjZQf8W3Tu1BXrKwwb1hZ9Mb3C/Jaqsz0Pax9S7IB6VHP/m3h7Zz8Rz8d/L1f/IBffrjwhz974Y9+/i1fflF5eAtrPWEMlmQs6DN76WA+WHNhc71rI0/OXrj0we//21/w/ss/5Df+/nvs3QPTvkdKC0//8L/jv/n6v+cXrfF7P++89GCm+qQsJ8Z24aVt2LXy8PTA47s3/OtffcX3/wW8fV/4zVzp50axhWYDKx3PK3V/wOxGz5CrYQ8LJNMyoBcSg4cGvWcaTk+JTOK0nngsWWEJOTPaGwabwJ3pdE/kmSleMe/AyrYN+pR88ZQTe+t4MW69kZj0KbuGNDzY6VUeRbNTcnh8+SGpEdjdfFCS7oecFzEXcqXbLnA+OUuWvJBcgiknC4NjkZBSpu1DLJ6kwTn0IlpgerCvY1hus5N8MG43aj1rMZn4/6l7l1/bsiy96zfmY629zzn33ojIyHRluYwLGxuQjUsgjEG2LINMB8lI7lgyHXr8OTRoQ5+XRA9ZIBo8/BIugwx+YIyr7HJVuTIjMzLu45y91pxzDBrf2OeW+9mAK6UypIh7HnuvPed4fN/vw+NkTjRArPeltYbS4SNVfRqSZ+RSNu3kfS91E0v3ezU13Ji9qmIMV42bf/+OO9D30hLcXXfo+VHBJBGuZb277I/ahsro6aHarLXk2em2U6paBcsUrVESa6FFk5ZRqouLC/Yd90WRxeti5RyZp2aGeaUWKFZzIK4hg4fs1iuXibVWFoIgC/mg97eUVC+Hy/Ici9JbKpsmLQxWxVpkn6BFCaYlu5nCIkpdsjQuqT99LaxOAZ/TtlswWoHbeZMQYZ5EcTX7tXAHH3t4Wo600G1sRDgjAi6V4istnZ2KwpK0B5VtSipXg3DVPNm73GtJP9drYp/eW93/UJhr0EgWUdRcCiZ7NvV2ocIF4TUslS+FshdKqsHuSaU1ER8+hp6brAvAWclQEoNUtaAQCOQAyVkm1809HbhWfY1WG+HO8EnDlFaXqmbdzRqIKckwqKXlIFSKvFrF9hMb0aBUSEW6hl+wzCEahaJaNyvEkgrce5DQDNUbnOL0tZ42bdfgSu9NDvjuj7vV11pgrcW+f8aEaBlqtNrTqeGpZM9hb82vH7JsbjUX27msLFmhQLJJMVhLaZpZ7ZfkexgaMM74vDQea+nfu1AV+jvqMQw+O5ASvC6Ok2oWqbdVQ/88//zcB0r/6h+cbPuNdtMk81gCUscazNFkcWNw2uJgcLQgTsHlqhU+nkaxF45x8mJBOYOyNDxZY7FK0FrK6hxWdJwLNZzBC8U7W3vCJ3h/xlBIqbm8sVGaGp/bZIzJ07bzS7/4Ndde+Hg7cNc29ePzJ+Z8A/sFr409gtWq+Ci34NLhze68u+jDej4r4n4ZfByF7z5deH8cPL90bj5p20YxY6+6UAVqk7RSD8imYUsZRFlcqvG2GU9XOI6T9wtehqB+N6YSEABvJatd43K98HDtbE2gZiUV6RG+nUO8KlehGdagm+DUpqnqXJ7bqc8y/3MsxnnPkCjktEcPpVlyUDItpGkYcx4Hq2ireLvdlC50LqJWnMlxeyECznPw8eNHFfd1l6TTclMRxjgXpRU62lBFzdjxWugBz8/PPB835ji0zSgF2RLuPmSxm461eHr3VhLHUnm6XDVMap0guOwXam3EXJzLWUUXeHHH7xJnM9YYvMQND7GDWgnG6bw8HzxdH8Vgah3LwVdvOsBbVcLd/aCZayRbKqG3qFEt1Ffbktg6zsunF6lgLlvGh2oDvbWNCXRrUAv7tuXeLdjKXYIhBQ6BknmW4z5UiTM55+Db99/xsO08PjzSrTAslHhnii1XTGYCCIum7euu7ODu+RYAt5bCimAiaWwvajpbazy8fUNUgfMKmYSVSgXsblWSEnEtDaZiTXGQVlB7pqaEMcaCVP98+vCRr9691UDT0kq3dbwm28YK1QOvQWSqGWYMDz7NF2qpdNMlv2JmBw8wGPOkW+PTpw+Mc7I9PuK+qFtD4ReN2vWaXWoTSHGFWGhjcluTOcer3LrlQGndVUQu5cGncVD2jWvbxNgAaq/stb+q29RkCk46p+OnktdmZNR5gGeqjxlMDzaXnfH28cbj0xMPlwdtkppUbZ5FW9wLVyQDbqWwzoBWWPPAXZbEu/y6RqqLXA3+ObWhiSzQaZCOAknzayVqzWQomGG0uF96uigtnDAlXG5lk8zeAtsKowbn8wtf//AXVWSnoq3V9srsUbKIWAeBUnLMxLugJsAVNGR1FeFrfgY/zjEggr1vqU5dVNRARcsHH71OUZK1RwqWPLAskrRRX69y49IKaw1Ad87bNwoAaFXF+T3VrmQh9cpjQMsGbbClaAGk6KviENxuJ+daHOdUSAJ59hkJVtX7Zctfh4jLXZa7UrVlLSZofWhL7/kapQ6IavoMueUnt3S25NZZgTHug6SWUngSuqptZ2mNcAOkAmTCuV7ypNKmXRDpyMSkmkWkIu2taPCQuE/ZYlGTt5Zeh1ceF4rE1ThUr6nuVhX8VqHvV65PD7x884FB0GJRYlHLzpontmnY47mNvEMvrUYOmSt928U988mxJsUL4bcswFOeXxoMPQdb64Sr2XKCWCcgRtms4nyNIDkqXUrJsjHWieHUSNKhL1nkWoc5qTG4HS/Ui7Eh5s1wpwwtHIzCuU5ZPJczswGXVUEm1yGXCtdaWPPkWE4wGOeN87kRfnCOjcenoIeGOTYHKwrOVG0QxtYKF9MS56yLvXV6KeJ/Xxrn+8HHcxHrZKs7L1PDttKMZcY3v/Yd9Ti59IPrBmE7ewuia2BZLbj14GJBNRXrxSv2KeA0pU71RfWKP4D1oF43armyv73iv+x8+n8O6jeT/av3cDPCBtUqpW5a7Ljnsu0GbERsOsSqoSQLJ+KGlU5/+wO+/CX4o39s8KP3B999+if81o8/8vf/wU/5fV9Wvv59D9gVrAx63TnC2T04cHbfqNX5lMuYS3PiGnz74eRv/43f5M3Xj7z7l95SHq5QvsDiC3745/4j/vw3/zHvzwv/+Ccf+G6GlPFv3rIuOzELt+LUMXi8PuBfGH/113/C93915/FPL75sj6zrpK2KrZ1mC9+CVjbGnJw22UvVgiYgrOLRGMsYt8Ea0Fc+d8soG8y46vO8OcRFjWXAMSPVcSdGp7HztKveu83B4QfXxwYfJ9iFY50acq5FmJbA+iyJqea+iCqbyDqm2DggW/dc9KhaeOH0Dd7alZfbom5Ga4Y1I6LJRpZDot66OGXF6Ze019TCHlKQio0S+TmSRcl8cZyDl+ehBtBv1JYJS3SsbXlqL6o1wgeOiVPkSwoZdywtvpF1e0+Fx/I71U2NpJrdz6y3WitP1wfGGJznSWtSZEYTkNruSp4Q39OKMe+LkKUQo7vq2ELDhKetZUKs5YBKS+1XTmKTqmvOgVsRXxCDXqhpD96sUnDOOaXoXs7Wdmp1xhj6Hbtq7N6MrWnxjxl1LY7jUKhChbY1Si/sppCi4zixc+TdrYHxYuFuufxICHYxShG3j9AIoPUOURn5HvaS8fFW8bJUgxSw3phnaowMSOv3tm0c48RTieI+SZq1apcMXcBktfUcurQQ8oCs/e9Ksr0qoGBl4Ei+0ao3LS2aIVXJ632fe5G7NdSsMWNR2q7lTP79hWHrzufREsXug0mW7uzaksOFhrK9UZZSvwDdNUWJqBSpxmikTbqpXuKz4s6yviACj8lwp3p9/Z0snTe+oJYOfE4uzBKOajA814srZDuvjX3bOT35ibmFuitzSimfe4ccqFpJfEETzmY5mEvFFfDKkozpabWFc3piRhbhQUdfy1PVaA5E4h+qgVXZgvO9wSxVdcJZyKoowYwnd07waz2PxT5b8crr+yRhwd0VQdWyb4RTw6QsREvvmRBxul6TbdtYObR1C4Ipq63rxTXQ4A0opem5TvHKQja5mP8fHyg9NikHlgVrdpiFMgrDbxzj5FxBRCN8g9rpXeDPEhc8nHebLCPX0mnTuTVtpsYaUDZY8DwHZ7zAafiqzNUYpg2c2zN1DGadLArEjVjGMMWctqpCf++FH3xx4fHLa8KIA2fj4/Pger3wC9/7gqh6ED6+OIcvejG2UuiPja3B24fOeTrvX05m7LxM43bAsYz35wsfDj2g+7XJv06RemAtrMBi4qZiaM9c65jG49PG1oKX03n/YtyOwm043gtjHKwJz2jDe+mNh31nq42H64V9M1iTcbsxw7g8PohNtEJqiTAojelwjFPNBTBPpXbp8FLneLsdHMfJPaazbTvbtmFmYiQ1+bfLfXKfsDdBRdNmtQ5WGOcKDZteDuZ5kK2LuEhtS+icZVPiKZVNW05BzabJ3vB8e5EC4OUmhVJ69WVp0uCQ0jiXhjLXh0c1wla57BfMihQCZpTemUVy2RpwzlPnVxU4rdRC24ouFneGD85x8tA2Pn76jm8/njztD9TexElKZUVPZlIpJZPeVBBFRA5aBpYx4K9NX9HhOtfC1+Llkwar14cnQKkb51q86Y/cfKb1E65NgPI5py6+0ME1phOWX3cMbU/uLJ/pfPzwnv2y8/T0JJVHLWx3i57JWibQXW7WI5u4sZKR4K92Oilp0ufuShA5Y7Fwvnj7Jd0aLZS4pmY7U4s8YATrnGyPO8fQduxlnPRWmfOklvZqG5MQRYqocwzePT7x+OYxX98C5R6lW2lPuwbLOG7app15+M816FSsBuc46KXf5SCwTllbQjDpb3/6ie3xCUxnQLOMde1d6hE3RvKf3NMG6PKW3i8fXQHaPNSE/xHGPE5x3HrHDWZRkSBfuZRQQRb5WWCucKXQOFTXkEoF533w5MTUwFxyYOfNV1/SMcUA59YkTAVVNVlLxRYJNQa1UtzhXOxVg/SRwNU7Iqfkxvg2dY61jJsPl6qj7Y37KGAgXz7nFDxaog7ubpW19JqtfI9lyYFli+cPzxQz3j5cmak6jOWKuS96zQXyl/RZAQAFNl3adQ2WBeb2OsA3q2mtcmJNztsNy9fHXc13rbKPxnI9V5H2zZWozBwaiVXBK68NUxpRZiPmgCpTO5rOnY2K90aMk9aapPlFRV0ht5SGZPmQ8nN9u3Fqq3xPQhQwv7PmSPulorQj5eSsO5g6h50p4TZUe495Uuump7MWxTnnWRU5jHLTcGDG5Ha+cBxXettfz8nWtlQc6XldQA29lhFK/pqRgN1eNHh1fe2Vr8E98GCZU+d9C6mNpBIIVfC6r8+JMwQC0OYe0e57P6kCf3daTymF5YPHx0d+9s13zJhMr1yicp4v9LZjJTiOZyWSmikx524/XIcG2vPIu+vgzBS2NUeC0ZLD4It5O7m+fWBYYDPyXNUZFa7PjC1j2qbmaE6ZDcPppUt5yoDQa7PVtFvWYNSgNuPjT3/M+LTT9o0aqTyOyV47y1JtVS0bzkaJITtdNcq6qy/geTqtOFuCNfZ24fDFORrjdvL8MvniqavINQ3Ox5qyr5vxfAygM05oFyN8Ed3pRe9ZqcFxc86bU9sLtcBZGr1N1l65jYNZr2zf23i47lAabXMaLaGxsBu0vabad0m1EUaxTt1WWhUq2Ebpu/5d3yjrEb8+Uv653+T22y+0DWrrEBvME/dnor8Bn5gPaBc9c6Vi/lEAZHvAxk/yvT2ItrO9e8sv/NIn/o0/8kN+9tOD2+3Gb3145v/4tWe++urG77tsUK4Yi90qRzc2F0sGK+wW2FQCVd+NNzT+0YcPfPnX/gl/7Hv/N/svfYHVCuWJsv0L/It/4S/y5//T/4L/cj7y8ZtnTsTN6A9X5jnx48bxIiVLf3ziuL3jL/3Nn/H1u+/zr/3xg6fyhroFk4P7yJotG+MqVmRekixCIPcSlLpxGweNxVpXNmCWGxaLZdDizuxrVDTwmZFKwZiUtJdbd0pt1BYcx+Dd28bPPn3AujhYoQtFjY9pKRpLQ0cVk0bbL7DkcKh59rmZVMlLSv7eHC7wchwQGpyX4kTZ0gkAsZbgvKWylhp9X4tWNRSopWJMGmqw74ua624UL9xugxkTvMkQXUIqCTMl3dapFObIZNkCtvQZnmOy77sYPGuyTPV5LQrZiRL5sxSpl2pnjVN33HKaFdq2i23oWjrU+4IGzyG7hlq9yEAaxehAq8IgaKgEZi3td0ZZp15nLK03SlKLdByUWLin8mEGVrt4Pi0VLLszEu4+xwlubNvGGJN5DNpVgzste8FMjogVlUj+UwylVfqmZcK2i015HxqtOahbT9A0wkbkQMVDdS2u8Jw1JvvDVWy5kPWngGyaCE5d0npoHak3vKCAAS02S0LX70OU5U5iscSLDChLSxrZAhu+Br32tPBLXZQ7PyhaapuXHOprmNByGHFX7o7jxnbpuINTadUy2IW881W7gXojy+V3KYUoQdwt1oFWQxaCna8MlShZh6fCNrjjHfwVJq+R7sq6FqzaqzoJPTHS8qTHPDyfLcTaLLlIsd4gVUrVNOjzuV4X/3dIuIVBiBPk86alQe3JdHR6DpDF1MqFKLB3hYkoIElDr0JaVmNhORTDYQ2TZTgsHSe8ukIitCIXg/IO/leCbEkLfG33wJYcauV7AVqeoh9VAxw9MaoxIwc4oSVVtUKgz9NcWs7ZPY3PSBYXmXanJfSdrTWXUirPGNwFj8Td/jep26Y+PhWHFMsFa3KyfL2Gqvid//Bz+vNzHyj96Hd+m3Ps2iKNyq3f5Ic9TRYMnxDOMmdEodcLdTbMJ7NMjgrNNoyN63XyNPQGnaMzV2F5ZaydGTfWWXg+D2YmnqyzMpemdWvshBdu8YGV6SKHL0pxvn7c+T2/5y2XSyVeKmNVbn7y6fmFN1+84+uvr8xh9GaccfIYG30+4uXki0tnb41irgcyFKX+fgbvj+AY8O2nF1q78NicqIXGYstmlyaveqldr5EF9MK+QR032kOFdeNlGjV2fvYyWDTa1nkeJ5+GMV3KoMteebx2HvqmyHKRjfFw9stGWOWcS6lbtWkKGtquD9dG1OfknnoUnoDg5SyfHLeDFc7T9SltIiLub1uTBaLrd7f7AWfkxFXbEfKAOI+hKfRYCTVLK1mqV8QcapTSKGFsvdP3TR+8ool3L4b7ZIxgq42XWGwPFy5+YayT23HTh3xNaq+8HCcAj09PUjGUyrbvUjbsu4rmPXlKtTBC0Pit7jq05nyVVd6OgRgcBR+L2is/+/SBl4/PPF4f6VWbtL0ruSIKaQHsisy0f9Y2M0OR7AB1Sd2z3FOaqAbsPE4mi8vbJ2rpWKl0Ks1PMKfNjEw3mGMokrx95nrFum86dJlYTvLvyUcfb89s1wsPj4+yqERk8pDOywq0VhkzrVnMHBat143ZbZy6wNZnSwoBM1BkqTvvvviC67Zlw5f2LbNX772FUqq23lPN0jnHwGqV7aJ2fUbyMPZsRFcM9mq8++Kt7HymC51s+LmIr+IroeBj5SRkKvp86ZKZU83snLpcY0k1VAu00vjmxz9m2y9srREmRlCUwlabFICBiv5837ZSeRkHK5bSOKxk2qNA6Jp7im805uI2lNrVMga9lUptqWarxtZ6ViLJq0kpfrNC7JsgxH7ngSTg3ICxaL3y6dsPPL17w9a6LJeRsMJQKs5dcVPztbp7vq00fCSk2eDMC7FC8qzUL/wZfwAAIABJREFUJK55YvOk90ppna10sdNwztz0VitspgCCVsorL+8uBrMskgI9F2NNqkOJoOzw/NNvub55oyTG7Mc8gmnls/8dWdUCPUOy893jnXX+Sd77+WJeS6kyc8y0b3V9LSN/jvU5ojkBkIEG34JRew7QVASEh/gW9c7Y0ftWSqXPxbGCh6dHijWsNg34ti0LirT6NsUjk2dFuW+x7sORUHNWLYfevdM3peb4FKsJLIsTxdl7wJoj7WlNDUmpRGusfD3W1Aurz2l83p6t0BD9vHEOAYAjZE1trb0qQWUp1DD/fh8I6qpnbs4T3UAOGcvsPsXHAI61ONfi+TiJqYKp5NZWTrLIRonXQlTpOy23hJmKFsklyOHu5/82ofUoMr354tNPviMersyXF9WHqbiLNVlT1viazL5SqpKwCBLXAATHulFKZS5FUh/Hjd4ry41L24kzP4+ppDM8bWda3FgJotwwmpQKRfwSfZ6n6ows4D0E7yxFSixn8fLywhHwwy++R9vFdinDlezUtYSIali/YlGoPsTw6dpol6WkSjcNyGrR4L4i1UdZ8E9++zt+9u2N/dJ5YLIXmAS1dWbxtLXtjFNMjM0HdpEyzV+M7VJ42i58aE6gxpiapC7X77J157uPz3z9VcNXpbHoq2MmpZXVzm4aSjdXEANVgGYN48BW0d3IYk3YmiwiYUE9P1K+/338u9/g5dvg+sNKtUz5Gjdq2XUg+TNBpfgFq6lYdcOsQ30Erphlqu/jEw8/qPzyv9z5U4fz/sPJX//7v8Pf+sff8cPvd754+yVfdgPrRJv0UijTON3poQGywjVclqAG87rx93/9Z/zgV/8v/rnLlfpVgy4FX/nyT/HH//w/5if/+f/Ih6PzT797ZlWdqfvDA8/rxOfJGg1ug/a9t3z7o0/8V3/tJ3z59mv+8B8ZlHCsdgzZcYmFuWwzqxZsG4BzHItSdA95rWwGtzOYZfDhNN4a3Bwi1ECPVJhanlFuhVZcoL0AmuOlwvnMZka7GMc5efvwyPNt0c3oLKlHAkaVYqfWtF9jhDdsBmadmn2sp33EkUVnAiOgbJW97BzHoQXQEtPE7rYrXzo/rWLW2Frh5ZDacgGTSa2phrNKtbtJe6NdNso6WMcNKIwl7lEZk60lR2Y5a0zapu+xQpddrGDru1S94VSL5Kh5DjtCVpvQmayrQKqmEoVepUoQDkBN4hjOWifbtqUyQl5pNZABVlkrz3ZftNpYtqRaJ2DqLO6tsZacFgrqKbTt8qoCqVUrMQ+j1KJFbiprIwsHMw3JeroDgORIwXm84Csb2k2s0b11LIy9NY5xgzDZd+4JYMC2bTngmcxirwqatsB64ZxDdrgiq/ccJ5femQTPLy/sFNXbrabVKKDcAcaqASyZb5FLtUIogXUpCTVssYo4m5az2JVJd5FLjxbAGuI1uZYr1QpDEBs8YUAVpem5O9MHniyre50htVxlDNeCOlzBVH1nnSfKxFOhsny9KnCsZBJpqZh12bfy2YkIWuRA7Q6zryVrlmQ9hixUGiTlgNJky3SmVGA1WVLJNhIL1F/7G4NXRfSYqejKe3ffd9Z5aHldpEAuaNDpqb6/A85fOYXm9E2qM5+eSASl8Vp8FiBQ9H3vBWqpYNPAC8wgmu7Qvhlr6hl0V4JwJEg9JT363SNeh8gjv64Ve1VC1VLwkQtFUsFetMyRMGvlYjE/HJZzqLQuluyPwoT8KHfDWiuv/RGZdCy6qj7/FrLq+Zh4lNc6q1mRK4BgnbKgxp0jl+ITVKHl8t3TCvqZv/vz+PNzHyidqxLrhedhRExuHw/W7Hxai+eYOu1nvkTmvB8HIqAfTHeabZQSLCpU50rjkxVadGp1nJMolV7esLdCe+wMFj4mK96w20dOl0KZceF5Fny9MF+c0ze+/PrKu7eKS/10wlmcTy8nz0fj2r7kNgu/9U9PtvbEqi8q8MPZ28m7q+JmR9GDfU7jkwffvhgfzsLzDZ5Pp/cLe5PE1vwOv5Kzdcai7hp8WMgvvg5dNHXTmzsIwjsfb4tFYS/Gx9snDmQPKOE87Z0v3nQurckqh9QeGtjIMuZpQQKBAj0nsMUqrWgDPNeATMKRzH+yYvHycqNnWtmKqa1gLbzGfK8pFdqItBGVV9mmkto08XXXJNjPwTnlPR05ne6bwIGtNxKMQ6uN636RT7sYl8uubbEHL+OkUPl03F5VCQUwlxJmujZJt1QbPF0ftO3tDZog7Y+Xqxrjbce7NkBrTErb9futTPcpDUPfAy+MtRjzxgznfH7BAr731ZfJV5LNrXQpDagtlVtGWbrUS7JmAAF90UBF96tpCIcSlm7HwYjg8viO0pvSAEyfp1KMNZx22bE81KcvyR+XDidL9VC5q1H0dKRP27g93+i9C5LtUJplU+TQGrEC26qiRs0SPKyibfiUNHsttnzPbNtwjDGHrG8hyeabL75g3y+Sp5t4Gb5WSurvm3wYMcTxiY6vEzeXfDcbfOcO+DbukEcfwdObNwINpszVmi6V2jddtrebDkwDa+iCm7IulNo12Cg1bWoCWApmrWHT+0/fca7J9fGCBfS+68IxYy/iSrgFLV8fzHg5Bltt3Mak7VsOTMTqaKUyI1JWLCg6JYHVVuikmq0Wam/sKVFupXKOA5kJdUkoNhaiBTYXK62CpVXO8yRQAt0iePjirdhYrqJyxl32LpVOCaVVpJaD6FVn9zxTBhwppSa3nVXARHdut5Pl0C+dy35hf3ggHNqa4qrgsgZmxPc9Hhl0wc5wYi2lGcaizLQ9Ysx5sF93jg8v/MIf+ENY7VCdGbnJs3hVq0lDnXG5BMPvXB5ntZ7KrYOiCVNuiZScMfwg3HncdjaTn55IrlxIRVlxqbde7f8antbSWMXxkkVjBJa/a0kbDbXw7aePbL0z3Sgx2YpYET6nBixLRcWYKrTWfaO1ZsId7ZVbpK36mQoA0yZwKXWlV1mg5xKTYuv5DG06n/qWPDrT4FLNluExCFRgTR/MqUSukc92M5MSYTnjuPH8/JHWBj4/xwirIJW9t1IRBDYVZwnpNau5FfVkkG36zLtzDnH6zttJJP/jnmQi1hzJsNLvFCYNmAHV2utdt5bnsNBeC9RXdSNiml0eHtmuO/t1U6x3daiVbd8EiE1lnZWW9YmK/C1t3eoPlfwUBiSc/dP7D1gmX5oHHz89c+VKN9l4rHVeoeKtsByEsh4KfShVKrd76Ve6QKKHlLMWfr9qpQK8bKwpu+CbvbH3xrSp9yuVJ60K3mpFQ0mfhp8T0iqDT7GrpuLLvYDZZA9nMvjBm8Zv/eiFcZ7YpWOtUTJyu3clNk2X6s/N8+9nbGlv+ozH4N0Xna3B+/diA5pLxYfBdg1ePt746ft3/HA7WCiltD11Yp2UEswqDopjRPFMYMyUsFBDYJAKWcO9Um8veC/YHrRV6T94y8uv/YjxCepVX6ucJ2Yf9fq3N6+DZ+YnPas5Ci0J7raiwUmsRXn6iqff+4k/tL7gT373i/zOdwd/5ze/4a//vZ/wSz944ukXO72rqfbiSkf1yapOXYXdNWyyKVvp08PimxX8jf/9J+xf/QO+/69Uti8vUH8R4oQ/+Bf403/mx3z33/5d/vtx4cfPqhV6NR6e3vL84WMCkWGvlXdf/SI//p0f8V//Tz/mP7jC7//9T1zeDA0H0mLl1dKoFRCmc2FVht+obYOjsi7Bg1VOFs2V6BcMvC1iKXnQVypdCLwotYg8j9ZyjMGWyogXdE+PMXhzvXC7nZRMaGskbqBWJk02n3lQWyMl/krZRQ2azuaa3DanqfCkVqiXxvPtoIQSfIOUiqzFK8S9qCG97BrWjDGkPpmy8fcm9XWuE6jmPD3sjN74+PE78WeGs5iM2JLjJlbZPO2VebIs2LfOXJNt69xejs8NeKsc5+31rKpFau6VlpRA5/xMy02582AsbaNrMadSs6SsqXgMuAeb1JpsOzFTFT7i1AnWOnKmBVvbaQTnebA8OONFWAWDc0Yu20ragow1My06OX6vNuQQLVS0hAwDiGCOU+rFgN43Bgq4GNOhdP39KMQcsu/WLtWs6b5XOEAhRrzymlqtnCOX1uH6+YcsZ1UAKsbtwHYt1VrZiKJaWdZEw1uV6qrMvN+lvild6jBMvUkp6gW8SAGywumpiH5NvsboqS6LkE1wjEFVOaKzv8rdQdH5S752lZJDwc9WuPDy+iy+QpwNsKwlw6khlW7k77vWQhboCU0pu2MsnZthnHOAy7J317apN0nxzdQCp6B6+1J3xpqZ7ikIfEwtl1lCXNh9wYpYY5TAmlAU7i57VbEMEsh+yExDybRizRB8X/B31cfljkExhUzU2pQmSGH4ieOU0PcuEw3QdHXCWhRrnOuk1EIMo5aAFCrcuUfFdfb5ysGfhz4rqRgknB7qM2rVQKcU2XEVxBz5aikdsbziDO62tnvNe2fRZrAQ5dUdI4W7rhxPy79wBPHq+ulWiFOqJQPwyCRq1UbqYSxfQ399vyh3UcFdjabXy7Nm+nn9+bkPlF4+TI5luJ9MX3x0p2XqQTFZNVZrRDi3NTEaxxyMOSnlyowbz9Mo9cbKQ0OSrppxxZZDERVUxQK8q/Arn9jqzqo3qQ3smboZ1StPj5XH7RG7NG7DGbNxnMGnG6zyhu3SoUvWb+2Bw42H7YmC88VDwa0y52JReT6Dcw3WbLzcjA+n82F4xtcGl3I/QJX0MXO/muRf5goutSqaFOfLfeOyB5+OyTkasRpB5XIpHMfkw8sLwzaGF3oLvnq6svVKM8RZicEcakAwAT5HGOepLQMFzDVUuAO+CiXZKC655BDAcy1ZiXQhivNTq6W6QvDeMG1jCU856D0aXt/biopBn5PjOBlpB5g4jJPaNmptv2vL7dS60bdNsLSiyNXe0n7lU0BXn3z38ok1nHGemoiv3E5VMSRezhN647pfAWNv+6tqqPdNEuHLJjlxWLJ/Ks2cdU7a/WytMIcsgjNmMlomt0P2kOvDRelJ+06rndorW9VzeJ83Wxa5gRK+/hluDcnDGVNNqyzEPD8fxFjs+6Yp+stkFI23q1V9jhpKEyO05Q7jOCVXbqWo4caYOVjQwaFm4vZ8owQ8Pb3BEWei5NDgUorS+PaLYLkRirOcU5doWn1G2ouI4Hq5ptzSseXstfEyD969fcvWd5rrtQ+TtLNGKtpQw/08XqSEmc7B4Ol60WDDBQuMVAfgSp6ZEYzj5OnpAbvbFpFtVP1Xo+8PitythRLBPE/wRQ1XbDOCSuKZFGXI8x6ViCHrYhjPn565PjyyQtbSy7bhtePmHC67ByM4/NDAMJUqN9c2p6EBWmlq4GWdUeO/7hdGCUqt1Cj0LJzuR8U0xBiYg5iLNdTAr4Sdhwm2fvdj22shoUuV2+Dx7VtxD1zFIECh4kUqE0GgtYUn/y1L7UWvhSjGGCp8S62So6fnba3JGKckQ2OBTW7zvQrU46TsKgbHEijxUjsxB3cJiaWlakw9y5XkIqDEk97k218B1zePzDhVqI2QB9wjWRa6iB3w9NoH4EP2KcrEomIR+rzXqoEJUmqdLweFwn65vH5etiIFWnjQ04pQ0Psm2KmKoZXVXVlQ0uK1XJaNaioEeoXzkOrkvB30WnjOv19LSdizYqXzp5KMP4J1nLLn9sac+ozbkvS+1nvih5Qv157pTZGRwbVgtVKzEG6bzlvDGCH2z3Kwusni0BoRizWSSZS+RMuGKEzPw/PzM5fnR6qNPMcrrWmAvu07vW1svYuJF8Z0F4triP9VCrx5fKMF0nYBX8w1xfiYwXFT7eArXtN7yPNC6pyNAFmdWqbvcd8W6rUr5R5HDBH3OG2BeWMLLm8e6PuVhzeP2FAUMktqQ9vT1pV2Baxkcl7T0CSGPm8RzKXRU+sXpjkrrdFrCCh8nge1Q+sX2UtwJoAVYg2FfISJL2dIsVVkf7izF3pT0IJYdVLHtbJRCR6uD/zTf/oNx/ML50OnKzyQ6UFJVYLFojcNdpYrMMJ9Ueei1JWIAp1FPqX08JWqPy9sG2yt8PH9ydNWKT4odrdmFlmSi4babTMmWlDhOoObadmx9UZ94/TtynFzliuFq1XETOyT99898/btA1sveBTah0Hdg7hNrvtOKVqPlGWvXx9bUpJ4KELehtS2ZegZmg3vG/N2Ui6V65cPnN89M4uSaGMEq59YKJTA3Fjlp1i8pXg2fQTLtlT1pBG1nlAaff+Cd18d/OE/cPAr/+gDP/rwkR/97IW/8n9+y7s3hV/4Ch5CQ1bVOzAmnAa0yebGwKVys8q7h8V3H174W3/5N/iTX7+hvT0p5QXKW+oaPP2J/5B/+6f/Cb/9l3+LX/2NxotnSlbvXN48cn56z7yBcdCuhadf+D383d/8Tf7S//wtf+6h8nvbI9cnNVr3GOqo/qokKCxKdcparNukbFAOY7WTbg7dmaexzSunHYDR0/Y0vbBaqLEohZHqOilLHQtjWqXHklIvOmtNrs1o7oxqrFTwmbkUxQRsnTHEFpuWEGUWK6YGuGPlECCtHKZm16ywbxeej8E64bJ1qLm1d9lnS3qJ1xSfbe9qCmsqMFdMpTGXxlqWKWBw3RrtzZWPzydKt7wPwTX8vnN0rKQVLm1ItTUIqZoiFhNnoypEBJfSwAT8LcU0HDd7VSrVVog5tVDxyGGnkqxXrOTIyaKtlMryaqMGQ9SPIKxSNiWJ7X3HXQvlrRql73x6fqb4YLiU6KXUXDYkzycKpW+p7ExbruXZgjFKUUps3IMewGpjrkXcBr6gNy3BeuuqNc21fF+pwgzhOFqr+r2WJ+syQcMotW6zxu08CVNCHFUpx+6TmRaucg6iOdEhgzmZ0bSkX4Owk7oawzI9jsATTTGnBh2CLms555Z96HKS8EmgmnOVwK2qh8o+ybn3Fnkv5f9KBl+0VK2U2l7ZO7Lvuyxnd7ZPcgJ018Md8RhWkiGgwdtwVwDEEkqAtNOdU4udNQPb9JOUkKqZrDskVC4MnJbTkPYaqBKvdrlYIRWvFynvcxhSqziL4cHyA0xJuqVWqBr+hmftaQqhGWvql0FD1a11qXOspPBBKI47DkA1ifoiS0yEnnAt9CiqVVVn7LK/bVrSech5UaxQajInI3uJ8FTq5+QubZrHHDChbFoYzXlSqwQUrSW7CC2jtezL+rRYOjnkBMLi8yAnnJ69ttIEP6fKVYscENbXpa6Z/vlwoSOEz1j0ftHQst3V90M/R1r970u/IFiumrqm1fDn+efnP1CaN6arYD1WsGZh+jPDg+qV4zw5YjLDdC+HVArNNmzCy3KiNMaR3saiqeFyZ8zgnLJlWEhWTgTVT5znbP5PZnG8GG/Nedh2vnj3wPVxJ9w4XowjAddrbdTrTrcCXrFN0lYnuOyNS3PeXBoRBrMwW+V2G9zOxvNsvEzn47G4HQO3ybY90a3QOaUIMaglJ/Vxt4EFLaVwrVYe98KlwMszHLfKMEkhnROovD9OFo0TeLo2vvfU6cWBSistveM1AXwAhTANNTzTMMzkZW8FiGBMFesR8sTOoUJzLec8J5bNVa0ZwV7sddOtftdoXRan8Dss7s6w0Ict3DjGZK1T4OCQzeXy8Ib9ctWWvBhkQVlqp9augiCCVvUa3Y4bhYqFM8egl8J+bUTrrDkZcxAm9cpxyray7RdNi0tRU9Qbe24Net9YVUkWXuDSugY/a5BDW3mB51DjvgCfzHVyzMn+8KS4Tgu2/kgr0C87ZkoQiRWUFpxzKLrctBWzUgTi0wpDhcfQ9qlv2jwdhzgMj9cHgs9b7oX8w5OZF/kmLzU5td420j6c/lr9f9wVGLGY5yB8UXAe3j4pke/SBfu+Q3uPyeV6pRc1MDOcsVYetpJnHkMHlS9o26aoy6Wvf3+2rg9P4j7FeoUKKompsopsk7AypVCviXvw+PbpVWUSVdsYNT+oiTNZrB72nX3rma+pgZ2XSmmyqZVkC0QJjjEyOckzPjV0oSG5MiGbUq+N0190cJfgp9/+SMq2ZOJ4CWjZpHpwNwc6au6t3KPO1eTXvIS9qOgwQrYi4PTB8fLCPE/9PQttr9NiQG4T21qceTmP5XiUV4igh9JbtBlJe1A1jiG+ThTjOA++fvsW6SoLZ0QWL/KOzzWpeamPOV/l78V0dizPLSgq3MIFwSQvyuO8sUYqxObi4/iQ0OKN6UEb0KK9prfdlVMtIfex1ITCZ5ikEakxCrZL5yfffKsmbBys20Gpxhjz1cpESNWnTZf+JqVSoxJFg7FWJB2WrFuchsjPjrvz/PxM1II3edUla1ZRUmtN5pJg2/eLGXI/wOfCQUNnz0F8WvBCm6rzdvLw7g2Xh6s+q0VKLPE69CzdlXH3zTMgTsrWKVvDx5TaZw5F1xKv1qu+bRwvBx8/jYTm8+q91yWfA0XX4oBaOMeLFDNto193fA3WcSpuVgchLYzwLHwLuAe9KhFza7KyXq9XbSotBIrtjb5d2frG8kVdk2XiQUXcaLXQesW8sl2uxHJ6LLoP5rm4XK98eP9BilnUfS9ksb5bCt1RYlEWYLWqySJqDpRyKptb4rsvQwWX+GfFnVZrJhBVPFamyGnbyL0wTevwvQUQf8ohtOXHXRtAM6kZvDDxVGil4tHuCXr62e4WZDXYqSR1x2JhprvunvCzTABwNf8a8pcKpRcudcM249tPn3h4946nS6M1fV1hp4LVgZDNfZ5iyOk5CkZbWjiNmUDTSVlgQxt2RZQHT+863/108ukWtGuyJExNVcXYijHqpPVM3lnQasFTlRmxdF+0xrtLZTwMjiOIWTScapW9P/HdtwcfPnS++t7OcS7mGFysUFblKCcPWyOi4lk7kGdfWC67XGyRWKH7wVTjsCbYwF4a7alyfOu8vD+4vr3QewCytBk1B8QNdvGY1CZ2ggX2AOWan+srFgdcHulfNX7xDzj/5s9Ovvn2I3/17/wOf/sf/oRf/vqRL3+lsT82tgJsTiegBDGkYJ5mRCuyEnuwbYOnN5V/+NMP/OB/+TX+6Pf/V/pXf0LpdfUJsye+/+/8Rf69n/1nfLp9x9/75uAWwRhLjKLtyvFyYkNLhn690r//Pf7Kb/yYH/7qC1/+mcJ23SmtUVBIiC+pyT3IKGoB+NdajJvLku1id3kUusEog+oKwOhRaC1YwFjBYfFaV2gIb69WRnMjfOPGgC0Hej4RFSK4M1ksDFva+seEzSKT4tDrF+hnHCuH92qgdD+DlSXbcis81Y3jWbb91qBV0/fDIKZcKZFNfHxWUFjao6V0Ntrm1JkMOJzSd64PGx9e3osxtGTjJxeZpu0YUe7Dbcezxm+tMYcYlGeGA7SSIHvsVfFRc+EVkEpNDXC2y6Y71XVDRwhGPJEN+d5AliL2XSz9DLWUVJEsJNaQGkRL+V2Kl924lkrcbhznLbl1WW0ULdwKkSoSfebm1Pm5bRvESkGAbPLu93tdFtvwEBNoCYhcVhXnTQc2Znp9Z6Z9yaqmu7f3hhd/XUbldlK1PHDDmAS46gpP9WiUgi29H/f3tSa0uVqh1guTkYoP06IKqVPqJh7QYGiAV0zW+6UzaCwX78YKJD8nvwWlNua80eqG+yCWPmdaNqtuuCNDdLeIPKkFvhwJBWMNMV1L8pY0nFDAjDiaWq5lec1WK6WKKeruWNcAs1bLhZdhsdJJIpt5SKWRSmBxTgcJiPbPnw8rGoqK/ZPJYSZel9RrUvyQ9rq429GIHOJWSkv1DonvaIJFiz0qVVwx2TBVvOUgECcimVOunx3LEJZC/r/u72IKVVpxH9RUCnfoP4kRgNYz9MiByJ6Z+1JJr8typdGd48gkynyu7Q7ml9sDs1xY63kvdleUaTH1CryvadV/VVGrllTCs2etUFTjZBlCqvJK7awxSPpUYnRkgcR1jtqr2CMFLbW8MjEJY53iRP48//zcB0qzIlr70vZ2cn/YnYmksmM6Shne6FtPK1Dg4yS8qhj6olFeBrxk8ZXWCVJlE9OYFpwsDtPDv5ZeUPPKXp13bx756qtH2rVye1msVTkWrCjs+4bVnRcvFFNx7iDlTw32mHzv4ZIyu8LZFs8jeF4bH2fh023ycqgh7lZordDN6WUB2i60qmFLSWiuW2ErxqUHD5uiZOdyPk04Xf9NmOL9Pq3FOWHpE8v3HxvvHqp8tHNoIFDu0Op8cFAsaJg4JQJuK17aQ8A0JUko3nlNZ6wsAM6RF38X6LE3SlWBXCz0AcwDr1Zt2Ty5MZ4e4ZqKhzUX4zxYc7IWxNQE9/LU6f2RS98x7nGgsh6VQNGmm9hVrVjKRPWIlm489XcZ960N8HkeHOPGcR48Pw9636VqMH1YKZWydS61UcPY2sYqRTbbnOS2O2zXLe1+zpxKJlhT6QWB/vnp8pa+dRSApaKq9kZYU4E9pw4A94zDvj9VYr28+mZdG49wgWr9PHj58Mz754988fgmB6ag5kWX4nDZ2KoJChslJblZHOggET9E94zlcCPVZ2Nh7jw+iOFS+wPUnHpHw4F+vdCK1FQ+9DyodlMRMceZPKBQMVorY47XodeKoLfG9XplzZmMHqQKKyUv0BywRTCOF0VrtuDxcpVU1QOvKiJLbnWmizGFO70Vtktnq0rWoJVs+iZzFWIocjpKw+eSH9mW2G0u6yDB520ECKA5lpQlrfLNtz/jfB5sD5cEPwd+Gp/mRyVEkANBD7xkY+ZLg4Khz2/TioIgGGUm0FyF5bkm61y0Uukt1UO1ZVNu9FAayTJLu9t6vVwc+erVHwesmbLdyjgVJdt74/m7b3nz9EApxvlyUxHaKjZOScwNKePuMHXX0FfdoDZxd/h3zQ0fFjQn5beLeTu0ybWWm46iZ/1eTxBp+aopW+dVnaaCyBHVVywVNRTaMXtItfDhJx/44gff40xG2j0lpPQGYTSTdF1gKBWCYq+V14GK5aCqWU1oN7hP2miMeeY2WnfAXer5/bRYAAAgAElEQVQseLlkg9EkwW6l5PB65eBLz6ueMQ1h3SwHCZ8VYe4wh/Pm8YmtqOhhgbWuRqYk+6cWVKYb9wTNjUbraorLfYjEnQtEqt5UJNRa2TYxx0oOwEpdjHkStWHnTQUXRUrBVBBsTMyl0GE5yxPcT2BFQ6/mYGlzcp9slye68QpzB6mCWpHEv5XPSkQLAZRbLdi25WAyz67fxaWqpeB1UTcN7KWdCeIetutF9+FKmGfVttoILWwsG7FUMhFakoDORTc9ZFbE/xnPJ8UbVjXYrzmQtHIvspI9UO6y/PK5/kheSEHDoxga8vVtZ86T3hrdBdpeczD71AIIU5Qydwu8PicVye7PMLaeapFiqZITZLZkUVxKoWyNOhccOw994+XDB8514nPDe/7s6QSdtWqI7849Xc+tsKjJz9HzNn3kENQpvWJjirWE8fCw8+FD8N1tcb3KpKeGRNDvveg93ClMMzU1+tSBaZA+XE2OmbNdOrWGnEcuGHKvledPN37842ce3115ujj2ovuoWGCns0qnZYBJiWwuTJB2z1pJSY8CGNsmFk85TqJW4ND58PaB8yfPxFOBesFsw2wHU21DfZACtXUsZg7yG4Vngj2fqSB4gHLBrhvb7w3+kDt/5nbjJz+78Td//Rv+yt/7MV9+XfiV39/TLqTFSKvt80CckLCgprLHK6UH86vG//brv0P/H/4mf+TfvcLX/5ZkFWWnPPwy//yf/ff5sx//G25r8evfTWzpteqXC0HhOG4YNz6VRd8fse99yX/3dz7xw6+NX/nXK+/eCLZsVZDj2hy3VNiY4NItOucxmCdYdepqUrL1VFF60z3hxqo6s+pabC610OkVb3r/vchl4EXK8jZdoOCmRerwAaHPrxnMlYNcn1Jn52ImqNiQQtPHpNfCQQ4cXKlWE6QQScVeeHB53Hn5dFBn4KWnvanIsoe4pph9vp98ZRKm6ulSmpTYocbvnpi1X4xlD4xPQwPhWPg4XmHnZbXX8xGPz/cDcEal2KJGJi+5BoszFTjm6D0KWZNCB6HUDq6f4c4qivvgOuBu9YUcJpgacE9lpRUpL5W8pZrsPpDAKsULzcD3XYrH2yG1TjaqC3sNLbKlurmJfk2Emvtt67mwFhsr4v7+3YfqWnwSzhhOVKeWymmL6ksJoSU/4+5MB6tSM1HaK54rQsnItRtzQY/GUsQsZ0C9P0bhtCWqTJjqGov7cihhzDR6CUoVOLrm7zdNIu7qUg8FQUf4kBXOSlfCmJOyJZNyJkagyFo51wBKqjrTJhVQTMFGVnSf+tRg8c4piqxbSi7rPRa1dVm4AiKHCLqP8hWuMIvzSgP/XUsPM3tNG5ReXcl5K3+eWEo49apaMLL3W/gr6whTzXEfegLqLdOSXSz7uyosRpQli3qkKtA9XQUaeN5ZepaL3zD1tuEadPd1V343zjGz3EunDWSfHVnbyzFjaX8bvgT4RncPrRAzcvAj91sgRIhbDhIzVS9Sjd+KUdCiVtkYuS001ZL3Ps/yuVYCYNNrs5bEHVU/pxppgLTvuQZzQehZLck+StWVbGz5V0JJhIWmh9qkvp6R/UbVMMvs82wgN6mYi0Y5V55F/P/A8han8XyeTIczL8w5RhLqK2PxaluLtTgWTB/ZbC4NQqIxf+r673STi6aPCrsIJ7ZIrsNd0fP/svZuTbZtW17Xr/XLGHNm5rrss0/duRWgAVglKKCIQhQPBN/G0G9Qfgi/hk9qhBqhPEAIFAjFXbC0CKw6cC5773XJnHOM0XtvPvxbH7l4dmfViThn77UyZ47RL6392/9SoqHrLCXx7v0Tl3Ulp8L90+A2EvuWaSnz8HShrEmGw12XYErwuGYeF2PNimbHnOfNuPfM511+Sc87vOx3jk2bfS2JJUcBa8hE1UJplgqeI83LRVdbS+fpqghLd8MP6WtVBA9ag63BTuLIxlITX19W3l0zJVfFCWZjyULIu2lC3x08ZwbazdOwb/SD1uQrMdxOA0GGsTVnP7oSLtzIZQkz6RRIuBrwlFIg12G2Ojqv7vDBvCL8Mnpn2ze27SbpXKD5biY9ed847psu55ypVZMa+UuIbrhtnc3Flupd7BWfSEkZeDfyMLb9hePYud8PrKy6BJJRFslVZEw66b+KfsVCKlmyUP9NDJxjdIbLNDxZZnTpsD2Q6nq5wFI0KTf5d3hOlFJP5plNg80cyHKwKLJpmn60gdGQAtDpfed+NLaPn7ndblweriEV1H6wNG1sNSWxYDwJiNPl0t1ZS0wlhov+TRTYQ2kh913r6/pwFfOnyhSvepZBYAKv0/MqdLwY2aPQyDBaoxYVCJOh0Ubn3g5SHycobGtlP3Z6ShENr8lUI1IA+6Yiujf6cQiNT0VMnilhYuAhc2xD31vSwM71zVOkAuY4NNPpDVZSZm+7gDaLoXQWCEOPNASD5Jo0QMWtM3rj6GIr3LaN5w8fyeuqhJMsardIHemUldqcSAzEeHJdporpTMFqghifBR1awE1vjZwLueoCnUBsrYosnxKfNjrDXcl8rkIsum8A+QMgursz2IemT58/faTtB2/ff6V/34aAzySArqRMbG7mhF/G5ypI2640jhG/TzJjb9LIC78YLGZstzgChgwxHYcUfy+MqYe7pH9NZvZjTM8j/TmxhOLFoCnYGHomz5+eqSXx9NV7ioOHd0tak+jd0QgL0Eghw9WLmYyQ/GXj5kNMKBtBSxeINUZjXZ5en62JMTQsGCUBeuy9nVNfd8TGMDsZmqkI2AfOwi2b/A/EPEsB+mal+YUcYU7BBMJFkRHDgiRaaUgq1UhYFOaTOeUIlErBSBQFEoii1lvDKpRcFZubgAyDVxA0RerO0GVxFnRJUwQOPxRNGwBjzvn0m5uFWS45wDGBUpJYh3eRJXKJoIKQHY4AJy22yfzdcg4wK5ou7R3HvUUcsM4j42DE3mnNQpYB2Ax9OJjG3KAhQzKnH6Lm79ud1iQvHgHkpaH7lZC8aQEApmetOO8ws0W/lyFT62z6/mIHJHwY3Yz7sVN6x6Y/0qGgBiXXSX47eE3F6iORyqrnZ5lOwdIuRCakCcnEXNvvO09Pb3n+8DPuzy/clgsPS5ZBdVf4SelGScEwq4v2/BAzY4xGtqEJZ81kq3p+4c+RLJICEzw9VD6+3NlboqRCsYzRSXFuPATr4+J6HprgBwOKTN91z2CJUgtWOpb9bF69Dn741YXf+72PPH/bePylzEgL2+cb43rQydSrgCyfiwYjjfDaK2Ga7rG/EVO6JHl8eMh+E5nLV4+Mu4AQ0lxUYlAaBU8LIIkNqYIfUeB2SDJo9gDQMcPSSr7+kKdf3Pi1X2/89Md3fvx54//95jP/+2//lHdr5o/80hveWKWmSk9Qqhh4+YiezLMkfZ5IqXMtB/428w//8U/56qt/zC//5Sfy9dcg/0Cm/r/wp/n1v/KBb1/+Z57/xTM/epY/oTms60objaPtpCPB2FjePLK58d/9rQ9YzfzpXzfevlnFFCiqCZOZDLoZVLvSrLPYoN0CxKiZ6omxdHo2fI+hoielrmX5zfjQPilDjbiPuYsHVJT6aiuH3dj79IuTv5TY0NpDaQ4pognLKekML2JJW67Y6JT4zKRovlyR6TYqPrrARpzrw8J+NOjydHST15yu0q47MM44/XTHrbMjqVYxgX5iiYT0eXQudaE8Zu43sXl627GRZflkjTSKkmTDmmGgoeJw8CavMnO9r1zXAF10JgXcrNpbl5vApa6ggcizOgc9KScIKV8OgFRnSbCNR9RqKUnJcMaftWCbOG2fRsuQi+FLph8D92D7xN6aA0OLQZuZmNZzyEFKWFVdqbN4NsbaOslnAnFhG05KPRCgV+8pC1CCPlSrtkaOIW62hdYP9VJDzNGUUKgHWUx952T+zGTUEsyUngTYSCalz5iXhbH3uSjwDHkyTofq+slgDgJaMNI97nh510iCNSF8O2vVQY9zXAAC6B6U1Y6fsi6RJEJ+NgR0Kqk0ElNjr6sGELOnRd+XYqDJ8DP4YtaPY8yB1DhlT3qfUa2G9cJMAnZXUIqlWA9fWHdA+GmZYd40CCn6gznLO02deRYrzfvp8eqeAsyJXmU4uYTkO37uHDT10aAW0hBJpcc66qOdjDsPZptFvzeCpAHBeBsjhkIGOe53++IuT7Na1+cvrt6PIeuT7urvZ5p5d9UGKfo/TeQEnMqXVSC3Z6WrOSLaEICP7n99HA1m9VkVvBF1Qfgx4UZyvXtDAF1i9uMaumEIAI/+wOe+TFEnzyszThU9swk8fz9f3zugdN9f6AccLmBCbLX2xaIRJTCZDKTk0aJi+mCw98xoTovoUr3bWaDo76thdowMrmL4khNrrayPK9eHQqrG7dD38SPzae94qazLgnvhZQ9MsTprMR6WxLUmUs3y+2nGp8+Dnw1j3517d563wW3foDuXBKWogC0ZobzeWTKaWJqSyVKqdGvUDJe1cy0e01Y1KPdopro7L63x3Ix9yJfizbVwXRNPubIWY1jmwqDmilskVxgCW5gG3DqE5qLs/QjWzWBYZniSFK01jl2MJTDquoQPxkSNJTmzZLHoZDA7JPBWcaycXs1xkw7v+/3Gvt05dvmilJAXGYl+KL3Js1FLItd6moaKFihPo3Y0WngvbU2U4N4kuzpckadLLuz7xnE06noB5CezDMP2DjUoi63jqZAN9tzp+6BaZp/A0nCsi7o7nf6TSZt8HDKAX5blNNyzFLGXKYrqHJdmHEqTWRT/j2JRESBnopO7y6T8vh/c9zswuD49sBTFhPYwMhQqnklBcU5ZjVtpQp4HOzPpASRN7P7qvWFBxczIcDLnxFIXCrpwlrIAkKvkT3q/AnZSiglU07NIuYgllEyeW72zDXmf9dvGm4dH1ndvpG32mESTlGxjurAsaaJoQPOFx6fMw/rAPgasmdQHaXRu/WC0JtPTXfG8Izm5TJ+tdK57lUgZlqLJbypqgIckHJPyCUngkWtKV9Irbd260lwGzseffcP68EDJmXURnd9dkriUdD64RVEbJvB4CvlWlzY8YuYt2Efzch5HYrgmFTXS2wwZAQOsyxra+RmJarRtEyUaD3NbTYxsaI8THi/HvnPsB807fbvz/qv3WFJijgWw2uN7TizYooDQNrYANYLl9uXkYvh5IXk0bFOulnJ59dqJ/4MArTBKqWABdjjnz+ijnyy9+aNsqAEdUSl9/viZxx+8E/AbU68e9YA+9+sExpisFK3NV9PBkC198dlHb8AQrbgLrCtF68YBdSoJ5sQVFWGtdwEhOgE1EQ6JlIoFFRACzOxkm4qxkil1CZlWTLebilsLaY7APRX/YijlEwzTZ9f5ZMF0nBM8hT7IjLX3Qa3EOcYJAM/fe2rsh6m59iQJmccdVkrGvUSKUKwD02dIQfu2Iq8m701Mp6FJ5YiExPk7L3WNqblgZXcV5YmQkTPCXLyAt3h3jWJih/XuMW3Xs7Eo6BgzOY1zbylyWL/vmVrpKpXPw3i4irQhOvl+bLy83Lg+vFWzQ8gishguJej8PRhRMtTUup5kPpnfjjB4D7A5imd5s0h6cnSnVguwzaJ+SeSQ0ii8QmC3d3lVaVt0FcnBjpt+ViU2sRXn8lB58/bC7cNnXt6+ZXF5NM6kGJoMiFMpUbzq2c/BALNoHpAXZNhPjgm6JC0ZePNY+PwMt1vnoSqdScW1psopG4xBz5mCUgb7ELMsxfp2L/K16BqKgBqYYshyIF15ej749t98w/uvfoG8dPodtpeDbJV2GP0STjkDPMvAnx7PP1XcDwVMGPjujDpN23v4cTppNS7vF9qt026HGLdpx72T7BoguQMbeNHz04KLpqQQ9Iko0jOWHuDhB7z5lc/8mT//8/zrH3/mf/mt3+X/+v3v+Nv/fGG5Gr/6w3fUqnTDhLOkEhInvdfFC2TJkQqJxyXzfGn83b/9u/zlrxe++g8fSOsK6Q05X3j81f+U/+QvfsOHz3+Hv/6vb/xsk29IRgOkz587x0unrAfcMvXhyk+eG//93/3MZc38iT+VefOQ1AQSa7pAHmI+VkrUZk47IG8dvwQg4aqBc89YaTLe7gLyewyQcoqWzk2+Ms1JTczrYYeGZE3gcTHDSmE7InmLeby/NsA+JGtvGaqBiMfyFs1ukZjp8k6MgmykrM/qYhSX5ULfGqMpYKfMu6fE+eFZdcUcHA3I1jX0RPtHw4pIV/KEk8kLLGPhaDpLNAg/AsgR+8vc8NaxvIhp5PLBdEsMD4bWIdNn/3caRs57Rg2y7r/ULUB7MbHlsyMAJ5vgeI+hgK60qOnntp9ARxer3iM1jB6MqRgqZVPd3lqws3xK1Cdy7HG2OLRDMvUu1u30abRhr7XMiLsPyRSPofqeQ2vPswlGizrNoq7THSIQ182UipUqYygVOGdJ3HISYAMxnIj+zGP/j/BOzSnOreQoHUwetylpqKx1mkkdNe1wngOq7/Wr5/kILMcZgmpPspQXPhmNI96fBWtLv5OjvmsOQObZrGFJCyAjB1NdXo7nnzN9iJkGajFYMiaYK7BI8s4vPrQFT9bC3ylx1m8tEm6VpBr/fC6alKLeiOEgGpqboTClqAESCYr2lpQQzpFcgPUXjKkJJpkpICTaSvVnYQdACkZk9GjaXvrvHuCVITBFKby6V+bQrUcgFGOyfGWlk0LxIpxBa2Cqisxdvpgm8DGT8OTsok2RLHNvjTWZ/p3QOtVNiSAAxMA2anrVqDprxThWrelmIqPg599TjTGiftKJaC5f4x6g4PSr6nF4m6tPUGKgCuUeNVGKM9Wmr5IP+hdl/vfx9b0DSl9fHtiTcU+ZROPozs2NMVb6gHt3Ofp3MVp6GpFqBr0XICmBYqmMIQnHGKKOdXcdnN3Oxi2lQsFYr5Wv3j6CrYy0sd0Gx0hsB7hXyvKGeilarFRqSuTcWKuT6Syp4iPxsg+ObbD3wktL3L3xaT/4dDtozzeSd11kudCzQU7cTUZ3KRl7sYg63ahpofUkOuJFjJTnu36H1p37cbDtHUbhee8cZGy9sK6Vrx5X3l2FxJaUaCbg6mlZGePgZTgt6fCb0GqJ4rp30fJ7bwEAKaHgeWtsrdGG/EPctaFSypSaYzJj88wAiE0y9b2xqGPRa2quIsTje+7bzrYdSixImR6H9FzMboO6XuWjkpPivAmDwj5oR2O/bWqORwvAscMYtDCcJSGWTzPqelHaSymKXw/JRZaRhA6bWihJ5sDEhrQil/9j27EES16wkvEkY+N+HFgulFxZ6iKAsFRyMfKlQnNKGL/OWG88DhSz0Jv7eQi4C7zrfTDaTjsOjm0D4OHpLbkUlqVqjTc1EK/It1GiEfQmiqPYE8s5VcjxwvpkpoWsZAC1Vq7rqkY4idZ5qQVqJHxFzL2m1vJK8oDIJDZ9pUYOl7+HxhaDdttwdx5+8B5yojqQMjXXc9JhUVxpSil5Ty6ZUit4Yi1av5YFAhR02W3eT9M+S4n1eiXVCilRkkGKpCcvupx7w8JkO1uO318AaMoaLHtMLdoIwCqKqFITP/7RT8gYdXlNRGEopjNFGyHKuprkZpLUJAYegGRvXQwPjDxEOR5JHgXJ1XCtdcEivSEn+XoRUyWzkILhSj871Dz3Ef5b4T3XCalEUsPY7gd4YxwHS60sDxftFfSs5wWcz6lnFB9xYacoQFob0ZgHuJqzgLNTbia5xvPtHutJAJfurmhyU1ZaXdDqLYsOngPE9eHMXl+eVNorIwoUS4n92LnfN776uR/QPAzt3TEU3TsBaMyieJznFVoX/sqmZEJKUXDlAPAn+JST0rtUUAsuErBOHHoqVHIVCJhNaM1M2pjNQ55sIU8n0GRJ765UfX+lMEIO0b2bv56NxPOItT0/+ZSUwevvrEIjfATCqLi1FqycRXvpfC4KFOgDsisdUEV+OcHw3nYZvgbbbhxHzL0RpR6PgY78DAVWh/QsiVkmk+Vp7Bv/zlLIcSVboEzD6fB5G/PPxTTaCD+G+UDCx2oMAWkOFma1akZyPLf8BQia4vuk8DiI4tqn0EyMGrPBdnuh53SCw1I59nN9jTh/5/eeBf/83/JrKOHhMkICoEbOzIIlYPRt50iZVMTQsPAm9EhfocUQwSSh9SJZwpKyVofHe6drCj2UkscAb87j+5Uf/+gj+yHpky9iKgwEajqAjUiQy/H9EmZFrMQ0Tr+jNWdo4Ch9UOtrsCyZh2vldu/sT05KgyVYCtqDAtO6w0jh08YIxpUYlb0N8lLOZEvCs/JIxhLJnu9/8MiPPvyEb/7tMz/8A4/kxTjujfttI5eB5cK6CNCygRgQnkiehf0kAaZpyE+r9xGME8V/j9HIR6Y8VMbhjHvHHwHL8hTptwAsn/BcYRxYfsKZUebBN7U4cdzAIqGvPrC8+5pf+sOf+Ut/9g/w459+4m/8yx/z27/zHU8PmXeXKz98+0DKTnJJsoqFae6R6MlZmBu/kDo8PhZ++unO3//r/4r/7M0Tj3/sEVt+FeyRtL7n6//gN/gLnz7x3f6P+Hv/5uBTd+hOTYXL4xPHhxf6vdHzDdx5eHrD730y/qff+sDDFX71jz/wYCmIjaqvSkmnT02Khj4l+TFaP1Q7JIPa9a5HgKApUZLjbYaGzAEBek6eJUcaTSztkeKa6nEfqNY5xiAn3d7YvHsHg0TyecZYMCIBxHwo0cyOIa+qhGuoTQopjfhO9SrvpeNo5FXsm5k0pVQlMetIBXOjMtlLGXexxCHWWc4y9E6JelkoHe7ImyoxAelx+kTVIoAp+QQdxKL20cEzBwcJARopZUhx3iLZk7vuHDWosed6pD2FDMqGzjp5icY003XA+XzPPpkNOm/d9HzG8BiGxPnmYs3ULGpr7w4t6t1pjm3zM+q87K0LiPOsuhp9f0suNvuYEiPHE2RysFac3g9syA+tpwFpaL+c7FsLIKFHLaC0WkOfdSB5VLZyMoBaV/9gqAhxd0YWSJZdLJhcEs2cWqvquBznS854GzEuex3mzFFVDtm5Egd5vbc95PjRtmQDMaiiuRJ9JO54CwKZE5krAo8sUbLMsOd4xAD6HPyNE+yZg/0pMxtjQE6kEfe4BxttslI64RMmNGyOMEgylxc4KJaS5QAeh4JNUsoarkeUCu4yQlchL7BoKEhH71fA4+IhQUa2DSOexytIp5rbJ9AVg4cSRuVWF1JvAZ7OAWAAUriGY3hg/R7Wh660weRnPzyr1RGqlbOSc9UZoZHnbHy7WE6v9WAKk3iFAQThDcsCW+feHNnOAZfx+ugJkMlGi6UQIFIAZJNFNkkOunFUf/dIju892N0evCv3k5lfgsHfxgjAcn6vyX47K0q+z6/vHVCiXhjLYMnOaHDpRuGKD51Bi0sC5z1hhzwc9m4cvbO2g6XrIWyjsfqiSWU0o2MkfCSWnri3xmaDZS28fbrw+LAwSuI4jHZ3+ljYMFJduBTF0OccB4dlLksmpYj364BntgYffLDt0vbfd3jpnU/3jXa7c6FTs/SUtTilqhgfwLpkliKZ1ZoVcVjMZD4OkIzWVsaQgds+Grs7uyeOYdwTrMuF948rl8uFh8tCtcmAUJHtDG774N4PDooujQG4xeRb+tQ2Bkes3D5g9EEpmZf7nb1BXS5YrtSk5oekBqAkFYanHhUV72ryMpMPIlMvAhUP8MGd/djV0LhjKStms2ayahRylT+TEuOSpD6mQ/M4Dva2s287+30LWmcXKBbj4IJ8NVrTAbNeV8kJa2VdVkot8qXJixg83imWxJJKTqVC6yx1VRE7OnjFHBkZA1swpHoYMualkJYM8XnzkgVoW8JTpqHmcB7AgVPzJVvDRxcNustP49h27vednIyH66NAvZwZ0dyVV/ROtMmkGNrWm6LVc2K0KMiHJgmzcZ3HwxhDSVulsC6rgItkWKmkRQlMnhJtE+MrRZOU0fse8T366KdEKblMt3swlG73G6M13r1/L5CpwVKqCiUMPJ3ab+K6ymkWKEiTnzKLFbECTYVSxmVJb8YRF+NlXVnXRbIaBBiRKj1lGS0eB85BN0lCLPYC8XvJYN0noqGDe8CwTiqJzx8+ctzuPL5/y+gOS6aNiLw3ebfZvExcz6Xjcb/ERRyvrdQaBYDr3WMkV3GXcxYTKcCGXDLTYw0LE8loWo9DEgxdMD2mOKJRR4aNMMzWTzbGGIP18Z0uSwQqYqYmFM7P6yeoEODSbODnB2HS+jlZXWP0MwXxtt1DQkT4pegSPnpnzdNTiddENCTPnFM/fd9X4FL/icldMj59/ERdKktdBSAirxoLgNZOpgDB1BlnQ3KCOcwCbHqXDcleXefmCKbV5XKVP9+IiWmy1yno3MvBfprgbQ8QKEXDnkIi1sZQYQ6n9O/Yd/JS4u/HJxqRTmnlLCbVIL1Oj8VKUoT5WXTGWsspCxBgvoCYWE65csqSQ/g40xBznOEpl6BgI+jHVeS3eP6WJlNqFloCTo+meOPR+9lLqxuUyWVrjd46JVdSqhoWmGFjmq97TFYHuaRgr4yz+JpA4/QnmQXQZEmNiULGun89Y1/Pl1hZKmRnfTwn5L0HizeeZU7c788cfScPmamfWtYhJpFkHCFdiAnjTEsaozPTUMfIZ2Gq4cX8+Yphv+8v2LFRvGriL7EhkF8bK9e7gwDrhslra7yeL6QiGWOP9U5ia41SMzkdPH/8THvzNaUF4JkHeAmHWEWp0+Ux4ykMXocYWZKMNsyKJtsJvCVsMv6Ah2vh9u3Btg0uReehhXRo+vYVJE/MdcH9IBunTM0SgOSzLbh+Ps9UN3KBh4fK+19+4Ge//5GH9xce14yXg2Pv7LcYPjxBxygjkYeYV161tmzIj4OU8bFjaHiU0iKpQG+QlJxY3lX6dxt960ozy4UxGoxG8k3FeK7gu0DLKZmQE6PeoanRVvfZSOUN16++4o/+yc5//u3P8eNvd/7J7/+Mvx4rX2QAACAASURBVPd/fsMP3lz4c38S3pcLUDCcJavx6QM2Os0HS3xvK2K1Pr7J/Ojbz/zD//Vf8GfWC9c/tEL9Q7hdsHe/yK/82b/Cf/HtRz5u/zf/5NvOvQuwXXKFN0+0zx/Z7weLFXpOrI9v+J3Pjf/tt56p18of/AOF9WpYLhqQyGAPUmdYprq8ND0ljrvJYT8VPadg9etQMCWPpkTuCrhgOIduP8hiBAvYWRhp1286ihg69Ii4j3jxoAiVLHZ966qttW6SmteCBiA+4q3IWsN7f/U0cXmPMCT39NIpS2Gli5FSCyXYPPImjIY0zTpr3qfjC0mSFvQELNVn6oxfLgtjs2BtDiVLBdOj9Y73xKvYRGxn7/LsJHUKBTMxOS1YyR41RDKljk72g+eEuzEUOq8zNDyWhk2p1kDef2LUY/kE2iXTD1AiZ/oIqbdFLRLnJZ5YcuVAabtz+BIHavwZlUi9B8O6NVKc40GrEkA2JhwTZ2yC1AVedIx9ND0DF9A3JfRtTL5Ri/sRPE1QSY1/KRkbemcneNPCdPocBlj0lfL0giIAIaueknm7UvfcwKpYp3k4Pe4iASnxBFKKocrrWx1A73ICzElD5vmMYA4neDXIJgYd2TBzmdfHUIaid5Tj/vJCPJsvgRCxtvp8dx5sKkYkHgs01meffxOmZDFgSsbgHJ6qBhry3RlDrPAB50DScqSPWfjYBWjRYQoBJUFXUmHJCnswPWgBnBafyYJgYAJPksM01/bJ3Lekn5k1mJ5sHKUrQm8DseUDD8JC4plpTXecmL5iGgvISufZZVlJtzqg7DxXxP4hfC4JObXMylOYaOvFRK8cPSuTrRT9Rgqf2DYtTFL+wij7pCDASVQI/DTq2cnq1cAs1lH0UzlqhBJP3hOy5ACmtG32hx7r1M9/8v18fe+A0o++u3FYYxvOMhCVuyCjT0/ktIAV2tCE4fBBT43mQxpJkywqd03teh7UostlGYUUl0p7MVgTb99euFzEIHnZGseeaG3FayVfMqWYQIVqlLqwmrHWIcPsUdias41MH4nbsfMyjJe7it3PR+M4Ohfg/VcXFpFpKHUhF+SXgCbwtRqlOKWs1JHkZ5ISg0xjMHritje2Bt0yUJTy5Z11hWstXOvC02rBNtH01YIWKMaOc3ejUyS7ieJ3AqedIePtYC2JeqvJ2c8+3vCRWOuFXBIlZXJI0WRiO0hpGsmGrDA2TUoyNEsmKZ9HZXg2wZa4bfJG8uZiJ8SkKccUfVkCXCorZVmY5nHJCJ+fO9smZpKAjBGpSdp8NRnHMTS5Wh+UilISlqqmZzl+p5xlfjcUN50QbT+nTHenLAvuznbsogJONoXBse/s9zvDjVwXcsoqOpYq5N9KSL50+HkADB6maxYTutlsqRbqbPtOb2KL3baN+3ZnqQvreqXWck67vEleMCVN2cTAGWZK9OoyouzTC+o4JA8xTbP7CHS8DbZ9x5JRg9HjWWBnqgXLBeud1ncVWb3h3ii5RCOlovbUvRN02a6m/OiN475xHAdPb59Ya2Uchxg9pUoqknSb5ZGjGAjTzGi4SCnYGFkgF5neD2ra2CnUrFSy7fMz12Xhcl1PMOm1wHLGsZMtcbQNGLSsC877Ad7PxCvGBMzAPTxt3GQIehx8/O4Dy9Mje1PiUCHec5UHQQrPIQ8fGRvBVBnOMUJf3kMbbWJTpjjULclkez8atq4nw0MsNF1s4OFloAnjTCBznKMr0Q3EVtTLDzo2KPGoJPrWWdeV63plVqsWLI3exynzs2Th9/JaBE4gJWftSzfIpdCOXc1Ol7dFrpXb/a4o1sirlbfSTMfxk6KrglcX3gTGlNYyE+8mAVwbZgwV5m04tw+fefq5H2hN+iAZSqszZw68DTXdYxYA43X6J3q3CldMHk4+XMxJsyhQtH+X9RppL5OKLpB9TnotpDxmdrJAMQQomE6y/AVjp/sINq0aw/v9zuPb93yB0uhsS6Z1RgD0k/IeQL+AnqbPGWdND3YKc++o2sBRAVmWSqlTUmbkKhCzmFGXVeVKJLQwPHy+1KSM3pnSEotibPpuTHQmzc81ZuBEPllNs8kyVPRZLmeRPOJ5wgQAX+EfUd31s1vr57/bDrGqRKKLygrHUySgzGnnCYBFEZYGEFRx0yQVE9+qdxnxMmBZFp5fnmnbi4pCCGmymjcVtha1ZfoCPH4FpYTXRmMbsGhCZ4OildMJ6LVY8/IzKjR0zqQxTcfj3DSt89ZbyNAHDDENvWugsHdC8iHJnFF5fLvy+dNHXtoPKTW8XkLmProo+5Zc8jKTv1IukLyTm4ZKYlSIhm+pMRinJAc6y1KoZfBy67x9qJCCkQu4WwBiUcAOqKWQLJo8JNMf3tXcxKPs6DwdGU22vfDu7Vs+ffsTPv74zvWPPvJgC/e7sw/H+sB2Z6lK1JO8Qb/vGCWSp5PY6DlP2Fnn1JKwseoMT1DqCs+N/mknrQdcLsjYI4M3krfzTPaxQ171vQyw1zPDLONj1TorN/LjD3n3S41f/9M/5NufOt8+f+JH373wt//xz/jB28qf+MOFp3Xeg1CLqi55H6J3Q8KLU4Zx9UR7cn7n33zL49/45/ypv/pE/vkVyi8Dlfr1H+Hf+4t/ib/4+QPf/fY3/M7RsADM81owe2T/+IF9Pxg5cy0JHt/x2z/7yPW3vuWvVPjlX7pyWXQOeSpkQk6IywjfYDWwS+bYu6RbIWk3jzgBLxhHGCHL36/lhLUBLQCO8E8bLrnvOAh2tJ9mzymJyTSHH80VLpMHDAR6tdHi7uza830KwmYrm3SmlukhOu9EremRlaRoPth2DZZyQl6DrjXsHazAyBbnz2RsyxQ+JYEL03PO3BlJ632JVLBBw5OHn8+sH1vITdRUJEs0FPedfSZpfcHU9HSem9MvSQE5SokFx492MujkXxMeTZ0YoujyyUX2AOQpZ0xnPY57+OP1AJo0qDzxwqFzrywxBGz9ZDz0Mf0DI2QizvfWWnzOkACljBy/R8CzSebcUSMk04D86AP6UOokGiKbBeCb55UU4E4aISEbYXugD9yjTsolGOIeATLDQ943SIh53HsjWaKb1tVkaWfEZrKkoVOKml9Pej7bPosScNjDN1HPVoCA985IVQmgJsZSCobdTIeFVwaJBUg1b8qcs9Qas64aYg0HSi84NFhEIk3mE2ixnCQ3zfm1rmHe8SOwo5lW9rqPZloY4UHkPeEuP9UZ+qNc8HQChKr/pog3hu9xVs4AmR7Da/cgLNgESyYD7As5JSHj/aJ+8kEML6adgp81BGMOKFQDSM6mIXl3malLWTD3Tj/fm/sEWYx5hOiuEmjpo+MpwNQTnNQz6yjpD+/nMBaXF2r26NUnfmMCwXNVXzHCKyTPAZ9PhrXqFoszVhK3ABqzRT0/f9QkfxAqk8DKxqzFJ9N6xDpLr8Pw7+nreweUttud2xjsvfHikiUdgexXr+cD3uOy84gP75aEVvqORRKbj0QrTs16WDVrjHPbC+Pyhq/erVxWY0nOy8vBdpOembRSHzMlJ9bkVIO1GnVRobeUDB3uHV6OwdYSW4eXHfZmbL2ytUan8/UDPK4Xlmy4daUoRdR3rZmHWjgiVr0Uo+aFYtJ09yJGR+4LL8fBcxfCvruYcq2JtXNdM9dSqblC6jI/BlI1enP2TZtjULBc8d7l3TM3rYcUqTttxMbpOZ7nwfPLhrGSC5SygikZJ+dCySX8H5SkwtT0CrqOO7SKaZJLsHMkV8T0319uNz6/PGtyXQhgRxDqMEhpIa0L1UxG6bUwxqD1g96Nbdu57zv7cdCOQ2DWbCKGs5bEvt3oo7A+PYlaXBJ5WTESS1bscypVTX4fLLWSS1BRkSeHtwbZOVyFW0kCjgzox8H9dtc6u15ZlivXy0oNH6mGmC+6zIKTygjDIzUWM/p8DD8BjP042I87bXS2+8H9fuPycGFdlUjXYpLjX3yf3ptkEknvo7tANzwSRoaMpLPJJFzA1evU5Xa7iSZaZI7I0ARuauhFNZfsxIbyHUoR86q5gLwetOEU3jqTKru1g+No3LeNd2/fcr1etP4CHOw+aG6U4Ur9KK8yIElUYEp6ooQWYJghxRSp5ATN+eblGcuJ9SJZo+YJU+KSONqOGUoojCa8YBzHHhOCcUYxyxTZkbmhLkVLYgd9+PYbrEgC6AEojeGU8mpC3YbFFDImU0leU0oIDPlZAGbHlL6gpi+ZsR+d7RiUlQBjSlzIcYHHBKLtB+bOtm2M4Wyjn1OqaZDdhgAEXRCiFLchc/2v3r9lGBSK5KbzEnFCXgo1ilDJulIAu7rpSgnT91xiqhnADEp3TCnz8vmFbPmUK6kpijjWrMKnhITMhlNz0jPpkuVqf8yGH637AA4sGbfnG603Ht8+crTGmgU45CnjCgaQYtZR3xDrDzgZQ3287imPd2FZDX5qBMAwWJ+WL4qf8BOINaPGWBNzywn6OOtGhQV4FAcxEe6DU7KI07rYKsuqZMvpRWVYePXYOTFUoxC8G1Nx0oZk3cIxJqVZa+K02rTp4zRYliu1rudZoKSh8PwyxSm30VhRSh5Z6XeEV8L0b5sFJgE0WfgmCFzUxF2szI5T4/ed615PM38BwMy4XMK7QCq6eDdRmJ2MyH6QkgDz3poAPZ+Gmq/ApCEpt5vFFFisrUGLNRKFrgVI3g6OvekO9SEvvPYR2h3PC8O0L3JR83MW+d6ZEfTTG2Iy5MaYPgz+CjRGIz3XgOljCbBrRs8dDsdSmLxHNLZTAiTr8j0rmTYadXqv9BTAZjTlvaMw08rWDh6v7/nw4SP3l43HywMp2Ky9NzU1lk+QUHdjIyE2udugmOTv3gupEpT6gbt8JnLSYO7NW/j0aWM7OpdKDFZi8wX4ruMkgTV8aM/KCsBPY3WLJtaAI+QFZTdSkRfeu1945NPv3tjvD1yvK50Nf2lsOVKasljnKRqpKc8Z08Oud2oq8R4H43jByoKlBayfcoj8NtF/ttGPG1YV7YwfklOToX8msTJM8dVGBWvgl1emCmLjiS34Fmqivj34+V/5hj/3Hxd+/5uf8j/+rY1//bPP/J1/+jPevV351Z+D5QyYcKiCSmpXA1RMoEp1I6dBu8iP8Z/9zjfU6z/h3/+NB9LXD1j6AVjh8su/xn/0F37Ctx/+Ji//8ht+9Ak2d+w4uCwLPL1l+/yJfRMIVHPhuD7xD37vE49//4XfWK58/fMHtQqoFhCrQcOgY10WBrUUzBMbd8YBlML0Q6kukKARZ0uHngvVYKcx0pANRUrQdjIZS4fCViwj/zoHG6RqAhCOdvqAlKz7SaAbWICTHmOvaSRMyJFTH1SbGqLEEf58EwSbA9s6Em0bsMQ/y4ne1LAlukDFuG+xYJOeXnYpwFT5zwkacpYKUNhxNY9RL8qLpUUNreG0Bh1gxQSq9x6A6MpElaQSmLz3uK+SQHUjUUpIowI4MQt5mrsAhBh2+CHW6pTQgUJ2clbfMYbq4+5+EovAT29DIoE3Vch5cByyuDiBpd6QVUL8ZRezbQZVSFaZVXN25+iNYnB4p0+GqAUTuCMz+ENnODWYl/N7xxlMyAlf3UwR+/2a467SPdSHS6LZNZhxkKfdUErdaA5ZdahUCrBaiuAVw1uP8AnCm+hVluQ2AjQPgAIiCCTWLRrIduRP1ZOkSZmKSHG66+PTq7asheNQHd6PYJvxOlTrwcbxAM9SoKatNdWYrn0hQE7sOAvGjIUXmAaMOrsZwXYbX6IfAn+XXOKZGMObeio02Jp9aI76LtpD1YAdhi0a8iZU+0WQjMfWzMlioDVBZJeHa/Qfhx/qqSzsBM7h4fQ7CoCkdYbFHrCZpiimd7Z0ht4xxNpPxWLAOJhBAu5QApQRs3mqdkokckp6O1y9rg3tC6Wdh3l+1Ak9HquaLf1eecSdadFfx4KfyWs92OtMkG/2TfF9uoW8NRaBTWAuasEUNZKGxAEVB9lgDkDiU8WA7fv7yr/5m7/5vX7Df/Q//Le/SYFLlVlaKppiFRPLhUCAp4GoC0dC8xCgS5WJGwOlL7UbfN6Nz0dn9wvL9S3v3j/w5lpZUg0w5SDnhbVeKA+VpWYutXLNC08PC09rJRenRgdy74nbMDY3bs15vjsvW+JlyN9oBX7waDwtYZyYnCVlLpcsr5hSeLgIOFpSCYp1osYBsfvg077TGjy/dD7dnUYRgHJ0XrZOXSqPS+XNZWFZNZVMubAUgWHH3mk9sY8SWvMUk3SwrPQyw2g+OFxO9GNK1HCe7xvHXVTtUvUzcBlUL7VQ68pSc0z0JKxwU2tMMJVSKmdSUsqL6J7YKYn69PmZT8+f4/LRNLyWAkUyrrosWM2Kkq4LuVbJeo5GO3b2fed2f6H3Q81YE2vKQ36SS+G23TFzLo9vyFlmk3URg2gthaVUlqrLUFTVolhxooGz0G1neUJkVCStyxIKh8HLp2eGJfKDnslluVCXMI8PCUzqMUWuin2WV046I8qnj5SmH2q2BP4Mbi8vtH2jLCuX9YFLLXHBayKE+3kJyaxVE1xH0gof4c3TlAKXIAoMHUBqsDu3253mSnkp8bnzRWBlqatSUfpg84PhQs6TAZZx02RlFhWSimQZnLqzhZF42248Pjzw9u2baHAJlkoUY+OLJl4d46ntFf0zySh2HBzHFr4VjbbLQN574/PHZ+63O4+PD6HX1uXhc/ZhRhuajRzCuuTRE43m6I1uarqTv5oPaiKhiz3VwnfffMP9duPh4UFR30mxtCkKOHlC5HN6k3OmJgELeExKXL8zaC0FR0OFXJjjffz8GVsqtZaTGWQpnSbGfSgZxF3JZ92HZI3xVWfSicf7Np2bx944joO2bzw+LDw9PukZlXxOGM3ExFIdl8KOJRh+MRnycTrm6CyYxVZzliJvj5qK2FyfJUezYB6RUsipgpFQigILzMLkOd6Zu5r73gSQEuCEI8muiQL86eNHLpcH3r55E3RenT85SXYxi5fpX2YBbE82lKFir1tsq5hy11wocypj0NvBvh9cH9+QkzH9wnTpno9CRYTpwp4miQxnGj6aW0gCpwRSp2kyw1vj2BuP797GzlalpW0xKDkaWHtl8LxKv8Z5huWUggEV01XUuyYzeYrYYH85uDw+UZc1GDVzasg50R5NDK2cC3jHlirY5QQ9Qt4YwQ4Ckhujw9EHH779hpQTj28eaEcX2GuJ3nf68GCkCOAXu0xnWMpVU8YC3o9T5unO2ZRpPTS2vbHvB07n4XoNandMAl1+ZRLRyEw9pXw+Iz9B9wD2TM3h6IO2HwKbY2JJSbx895HLu6cIKJjm0X4Cf8R6mIWbwD4NE+aaTgFATFBWoNLgaLuK/wS97Yyjn8OY2aTl2MjJHUs1mtLBlOyOo510+BR/T0Ce/uOtMRr0/WBZC/Qbo2ee3rwlTRAITYlzTJWHyb+pomRTyzq1CglKwg4jjguxfM1JNkKKAWUx+j7oHZYlgEaLVLgBliWNHcljb4J1AfRTJTacSTg79/9wV/GejGzOtVRe9gM/nMcfLKwWXnDReGQrpGXKiYlnGHfODBpQ908cDpLfJA1ZNBDadZ836C9N+4BdXl9NgFrPTe8phaxNPy3O8UWAOnq2/054QSqUsrHWnTej8uEnn/i972789LlxXSq/8tXKejFydZnbk6a6imzOgWOj6nMm6C4T4XszPvzkmbd58OaXLlC/Dqb2yvruF/gh33L79qf820+DW9xPCeOyrLIR2Hcxzky+kC1nPnxz5yE5P/xhYVlcVmdJHmBzCOR5vO4HT1g3emsB5hS9ByE12s+OGh0b4bPn53sf7qTukX4cZ78V1fKCo3QmF/2nNdkQkPRn3Ap49AwIHBw24UmdFSnOBJni6udkmoChIWBV03yDove6H9sJEKhJldwd18CKIaYfc50htqG8CaOhS/UcPOUshQSTdWHBfAkWVEqF62WV0e5xaGWlL5gDAVQwPRRt1kFahZaSQPcA71WrWwx5vliLTqQPm36dASlY6CnAFphlqO6oJGpTAPMuBjZz0NLjM5ii7oeCbXyI6T5iQIq/BqXIizjWU9zZZgJdvjhpYZgSJC2Ao1MaNksgf00iA4XVBOs9BbAoL6HJiEpneEgqAolTSqe00ryHJYv8Sb23GChM8DHUCMYXMjo735HDaSI9Ylio9achW29NYNxZ13sM8WONaCKmoWvsy+EOKWwXLHH0Q9LosFJ4TeANdvFEcDwMwFOC0VkDuOnkcy8SvLC5Nph/1exkPQdB93wvOQZBfQ6/PORlILDeY3gSoBJoz81B0LwbB0NJeFGnTQ9Pi7UwWXKSfI/Xs8JVS/lQHWghOxztYHodickdKzmb7qsAU84aIT6HBTh6/nxPUrYFu2kCqSUAGW3hMR2jTl/HHP+8JNU9emiGDRln71owuodGgKOzhncLEgKSNoen67wYU9KAd5rxi1Fv0XeEzNM4hxqTqQST8RQST/RnUvRiOK/Sf+C//i//q/+G7+nr+5e8fdjpKRZ9GFUe7lSu2JIYqcNwlmpYy3QzjuG0DnU4XqP4uS8MfyYNo1Fom5HrIw8PTzwumUri2DLP7aDkQl2/olpSxC5GTYWnBa7LQsud7gfJMy2Muj+OLtZAy9w249OR+NwajwWuS+ftQ2EhFlU21nXlUhcsD7ZA4B1RM53OGEZqCc+FjY3n54Ynob0+OrmoYRzN8AMeL4nHa+ZpWalFRd5wAXHeOy+HUNA+E8hMPhVb2xWb7kp/ORrsUR/1Q84ejvPh44Zj5HoFM5YlM/ygXAbVlVBmWQXTkCbovLTsRFlTNLBKjJOkRwv63jr352e2+02XdlCfcwBJVgqXWsP/R9PxEZfp87HR9p3edo5j1/Q4JFuqNoUm55x4fnkh58LD9RFqEZBUZcybU2Ip9aTTVstYkiwHptdTRDeWFI4F2kRrrRxD8ZvffviO7s5aVlIX0n/3TQdnDsnE2CkE0Nf9FZjKSZfJcUieYnbGvfemNL3PHz/j+8HysJCXhevlwth3yPk8MMwspm+aDIwU83if8F1nuAzKU1bCnvdxHog+XLLDJk+YnJXYZCWHQa8u8N5bTPVgznJyljdE641aCvfb/byojuMQA6d12t447gdvnt7w8HAFCBkHlDWMpe1VhoJxHuTAqxfUaIpi95Dz9M5t23WpHDKr//DpI48PV5n8IcmXBYrfW8dzNCtZaUIZvWtwWjzP6QvVCfqoiXac3Kl1Ydt3np9fuKwXUXhjnZjpmeRl4QjaM0mMtnReSCkK56Aex00mQs8rM2gtlW8+fMRMRugJzv1iZnQfHCPi209AQaDe9BjJluLS0vSkZhUeW2tqUvtgIfP24Q3FBHY6Ki6zpQDg0gliSS9vQQdX0Te1/zOJa5jLeL6ImbUMyVY/fPcdZMXeu/ocJvqSTeBqdkiInXjMwofCSA1vTkd6ekfFXo/CtkRaxeiDr7/+ChyWpeLDxapyMTWAeCZ+MhkFZqYwz9QzHpG8R4AAcrOK6FoUK29Fzhl+tBM00PtRAexupD4YYR7c2qAmGYjmpCSsHFyhOTnLJnA/YWytkSzYaEMeHeeU2QPAkejni33yWixPoXzr7XWtpVfwxa2ebkiOiijMmdK1EUk7KhxNBc3cg6bnVQuUy0LbD5I3eboVMVMk/dB0dZramuls84EA7pnol6fB6JRfj1lf6ROmHEwZTQxjXHlK5iDsyU0SXtlieTQm2k89TDo1RT8Y6yC7UnImQOU+wtQyPCZ6fAhTTHZyTfTMMiUv7LeGXSevIp0/K7qXABg9nqu+15wmyoyWkxGhd0IETHTMjbKKCXy0O4NMDqZoGpGmU5NYHnSGy9ukRxBFzQqKGF0JRoaSczW51/+uJPake+vND5/49ONnXo7GsoR8M8ee80zxyowsTpZJo8HQ2bbdlLjnHAxPAuiDtmYurzrPunfXB/j2mzvL8sTbR901jR1IjG6q8eMOG8nY6Fgwqy3p3DPP5DH9Jwbene5NRqZFoQ5vfuHCx9/dOX7JWa9AKtjujNHY951lT4x4dkbCczQpR8PLQucgS6/yOv0f4RPkWYOBvpOfjP7jne3jnaUO0vtBSav8BdOVzouaS1/wLIaT+x6L+0GAVbCULAmkdT/Il1/k6ReMP/5rN/7qN3+Qnz7v/NMfvfB//POf8gtvFv7M8o73aWEUAYuZxIWD3WVDQG44K+YbKcEzmXLtfLp1/v5v/y5vvv6a97/+Fax/DGyF5R1f//m/xm98+Anf7P8P/+BfNT45HF0m09e3T1j/yHE/aHTMYL0UvvEn/uY/e+HN28Sv/8krD4+DWjKZlV462TqpG8fYqd1kLp90Vt3vOvOokoSQwu+jT8lPoniXxLdmsYat0SMhcTQjp4ojry4FbhnKFhTweb0U9peDo+9MEmROQ2dTr2IlmADB3g08yyfFnGSNbI1kkueYZV5CTp7owUroYnFT2bdG6Z0lGzn3AK2S/HX6rKM0uGwBqLXeSEulT2ZISgwrKPDDwCr3Hdwbdanse6MPkz2AGbksjLVxbDJOJ4l1SSRpRtGBezsBh5wT235XAEpKmHUUgoBMhOO8JYjGNhkNBlIvRFgDAcYigKuH5+ocPAl8TVipYtgMgRbD+wmiliVBzxzHiAGnnWd8844NI1ukqiWx7rE5DErh3yZfKc8a3E7PuhyAVTvAXP3LYGA1x90S7GmXpNfHlDJxft6cFdYyhlPzABN41FyM0uGdZC7vLZdXkmDiyr1HDVMq8kmc8sEJwwn0wOUTJjZ1jecmr12xyCSMWpIY8COkSKfUPcBySqFalrrF7GQZJ6AFOyunpCTjAMyqCSQYSUOjMC6gjaYzPNgpKXpWDO1VC/UBAicnOLaU6V08GS4z4c4ZIWG0qL1Eculnzd9b1MwBJLVg68z1JLaeCAyy1dB6n7XdDPKJ+YH8T7OAtiUVtm0TM7eqR5Ff6ThrIPJ8KSht0F1su6n3xQAAIABJREFUpJlcOnd03OGqJcVq1nBQgEye7zUFiGngJMiJNg7yRQw7o9Bm3YgsSXpU4WaSZB8GaYgFPv2M3J195CAvRd8XVgITH8SdWrX+ZyDT9IQU8BY9ub32P46FQiMGV194eo6oz6bc7d816P7///W9A0p5JGrb2FrDx85xJJo799DzDvOYtiU2Om6ZRkZJbo5lp4+D2uA+4GODwwalrLzLBdrObdy43xdyeSBdL5L2kKXB751cr/zcozbUsR+id+aV5s7LBrc2+HjA0eF2HNxa5fnlmR+sxlNq1FpYs1hOBV2CtRSWBLsHlXQ0Mpk8RKPL2fBu5GqUUbDHRMuVbX+Gy8rnTwefPnVqNd6/X1hWeckoFUCo8FoSx9E5+uC27eR0UYE3D0eiaYocge0YHM3Yexy+Ztz2nefnjZyrvJiSySh5HNRco3FbGNaDyjcYIyYjcVG5DXwEip0KOU1DVHAyt+3Gh+eP+BispZ5mYNRgQtWqqXsySs5Y0vSxlkzfGt53ARQH4GrmxiBMsgdr1eXw+dNnTcDXlbwsQv4jMWJNhaVWZiJQjUn1RPCnee0YMvRro8vPqUjycrTGbdv4dLuTUqWUTM0q6lIppKXQTN9nGToQSx4c3cGbfi8zLDv7vTPjVpU8IS+r0Q5uzy/sR+Ph8YHl4UJdFs22zeQxEpfy1EenUhlxOIgdYAIAgnmTcgkAyGJyLB37y8sL3p03bx7JS5XeOAAecwQMoUa7hG9A70F9djXZyTLbdgfAaqbvMtndj4Nt32j7xuV65frwqPayq4AhtL4ppmVrqZSUY1/qS+daADoJosvDHFG8HbZ+I/fMt999ZLlU8lJVOA3iQkpM02ZQc9faQbKQanXn8KbEmeGMagT7XNMMjSCYuvYP332gLJV6vQj4ypVU9L1rTIqsQCJTVoGUbfSY3iS8HzEBMP1OHj5ASHqxLpVtP9g2PbeaMsuivSHWlQUA8cokOraN0Z29HafswIKNEC6DSBwlg+lm+h6XZcXKwj4cip0+ZinkaB6gWLZ8TqZm4sVwSfaKxSRFvTOOs9ZEP0JOhJh29eGqiyjZ6V8DyJekFHIpJ2sox6V9P3alq40Zxepn/KnYE9LVb7c7l/XKelkYFo27CWDDCNYBk44WHkfasyMK8ekXlXEsTRlAnF+mIjUl42gbKS2SYkVxN5BcJrnjLfxhXHH2liQrICQGxLv3OSWKAjKWAjkn2nFQ1/WsPCd4MouK4QLQ0/RwmtPKicTMAjHQkuiltM7MQj1aKDnp3DWtl8Tr3593xwQQDfnN3D1R0Ts8PKLc43MKPArZiAV/OBnEsGDvO9YEKIdiTowCy+TKCdz5iLCHjJoXU+DFcRzyd4vKqRSx30CF7UB+KnPfToBnTgZTCr+3tqtoZICLYzYncu7pXOPT2F7vQR4jbk6+XmgvB/aLCXYwcnhnTGkiITeT7M1sep6lKNYQLtYtGksxU7OpQD72nZO1mIumpiH9sjgDOjCSWJGMNkdVMiJORj4T1+SFNzyA3CQHENZMZaH3wbvrAx/Hj9lfPpOWt/SDkPW4/EgUW0RzRbtbLrTeqRHSMA41A61JcpA8YFiHdQ5PcEqtZN95vu2s10TuhbqsHM1ZXJKRNt8ZOgd6kyTSM+SO2NQJpfa5vCY9QerO/8fc2/Ralmb5Xb+1nufZ+5xz743IyMqqandjLGMjy2ozAPFiiYmRQWLCV+AjGANfoJEYMPScmfkEMELAAAYtBBa2ZVvGRqIp01XdXa7KjMiIe+85ez9vDP5rn5s9LyRHqTKVmRH3vOy9n7XWf/1f6txIa2E9r/il8u3PP3H5y093eXutwJi0WyU9gAX4yT7wxeipkXs8zymRemPkkEj0DvkUMi2Ym8Co/NWF2y+u7I+Z7AP/MDFOWH0ReyY50xbuwKOtOih1BeF4smxifmHOL5B/jD0Z7377lb/ybzh/7budX335v/nld1f+t//zIx/enVhK5nIuWIqzwxSgMansJgb5bUychcWusHTKTHy5vfAP/s4/5t/56h3Ln/+A5a/BFzj/mD/z1/4j/oNP/w3fv/yKf/rPJ8Mk87Q2yR+emN99otfJ9EYlc15XfrU1fv8fvPD0mPgL/8pZiytvAnZcz6bgRmO2RfdSyZxa59Yb8uDMsHeaDTzHELZPiEXpqcHukyXD1Y29GnMWRtswCxZbPSRAWi7UoXu1lBNed6Z13MR4xCs2IfsCIRdVddYias4RTDml26YkX8BkxjCnDyWqOUXAQy7YTLTbRiMMlZMWyY0pubQbJSl4Q2EPjZSKwheOOhRgNAhcxYu8i9jovZLLSqsN80FZCr02lrKAycuTvZJdw3gfkhtxDJ1oyDxkLXEa6NzuR1CABXPEsVni3tRZKhbOYAyxEuXVFx6cS3gVuRJf0/2c0zJs+sSnWMaLHbPIJGXH0yLJbg1wZNRgBOn8ba3RzbHhrMuixUCP0BcTO7kY9OEMU1qlTTE8Dnbk4S8zphYFJYtBpsVMpGIGa0Sg3yI/r66ertEZ2bB+MMki1Ws02n7VvW6J6Z06WgA3XQFCI0Dyo692p1OxYeSlYEx6b5SQYPY4B4cLsMS09hCzpUCcWQe756i7NhqNWCAyyRPNBHFnJ2RNYQRIMMRWPthBlgTajmOZ2JQwWJJqfY+lFxyLnrf0SotnrkePpP8ugOXooVJyLeMsks4M7qbYNvXvtIlhEsu5OXmzbOj3BecRgCKT6LcF52G/ciwDR/z51trbketaALoHQ2oSC6m4/5NATDfDhv6AMRk1Es79WAi3+3d7zLkHUDbnDySC9gPAbV3oNeTcycnRh9ZQj8gTbdLGpE4FLWnprJ9/sPSm9btUbkwxVe8LxRlWJYZm8GzMWRmj3Zcjc8aS0Zpki9G3jLtGjrsv1uHBeCwk///49RsHlB5/u7CWM6nJQJneuW2irmUPo9rW2Xbjtk1an1z3nVobrzvUvfLddXI6Jb7cOnZy3i0Ll3Xlkos8gsYZLys8LJTV6NMwk6azrPD+4UrzwqePjVQK2St9T1z3whhKbrvdBi9bpjFI88rvnBtGhyWTc2f2V8grOWfWw2Q6wZolNWs9kbyweKKOjeuYjHPh895oDfpYqbdGnyf++ecbLze4XIzHx4VLypHHgKJmTUPS3ju1RgKLZeqIlIxAVJna5LTeubVOa6Ih1t6Y3nm93rjuncvpASIONGXU7Tvgk8USw0JuErIND8YDM4FLLuQRP+qJOxq/j8br6zP15cqSnJlT+NMklnUhr5K72IzNqEXjPAWEjdrYW+VWa9D7oO6dGv4vjsVwYHx+vXJ6eMKStOnnsxgxdXSWlFhT+EGMQHxtBGXzSKrjLpvbNsnp1odHDZxzsO0bn798wXMwazRxy8Q2JzBp3VOv9CT8+/XaKUmMn9k2SJnWOlQdSDUAhtEabatstyt133l4fCSdZPw7usHUe7U5WYpMwkc0K2qHdLD3oQJF1yHqliBZ+A9PFndubefLyzO0zlfvvxKYVETDd9PgPuYkpxSMrkztklSlsgCDvYpRVesNppGXhb3Jv2Qfk2sASg954XLOYqwlvxcJTNImTCh9zgL/cg6q80FvtcMrKuqBHWa8wcAg8eX5s7a0p9Pds8scciqQsnTVtgss7U0bpyxAa3TdGz1pG3T44dzZSUPDYc6Jbz9+Sx2N88OZsi7M4XheosEMzbGHIXnK4b1icWhq29JskPygscvXypFEMWWBhN//+lt5CpVMKSXAFv0cgTem4uBGb1UpYQhAw0SNJej6M6QEyRJ72/G6U+Zk+uTpcpIk0gY+EkuetNCb994julfMldY7yY0cIMaYkxL+DMmiKR1qPNtw+mg8nC9899239Dk5xXYjxT1lrtQxS1nyItMWMgdDobcu+6o5KGWVXHfKz6BYZkbqpRn0rXJ+ONNd/jhurnHcXP5F7vdB380YR0pemCRGTRUTDzUch0dPH4NiyBNoUVT05emkozUkDDn8hjrC74RG6rtY4myS/0djeoqFwOEHNd/Ynib2Saud9fEc6ya9oxHMncEkTUVujxlJWjZjeyzKeK1d0svZYl+vxvqI2s0phfmmZG+zVRnCuwe4IfjQ0VZYxvvazpUJmQ59Q/46MuPXNc14QimLPhhjIRfnfD4z20a9bmSTP41SBsUgK3kGaBmyAO3G1BTZCClYe3sGYihxky/evuv8m6PTqhhhyWXMLvZRxz1jlhij3r9vySIDFBxvUtF5+DQNgWwe0caWndt24/Swcn3ede0D/Jx0SZa7ttY5vQ1Fx5A651vTN0OG2faddtSAMWhd0v6xT/CpZB6PZavB4Wk03e6yyuPeBvlIqn6OQ7EFExnkmu6ZbmDZSXti0hkz83A2nn/9LV8uC0t54OTydTGLTsJHbKyNnI2xJ1oDWzJtG6SlQGsCepKkWxZ+l550zpclkS/w/LJz2Z3lIhZTMydPgcvQ7wy/nKPJTWJgHdL8MeURlImlXLDKxiG7GLD8+Mynf/aRr16Mr56cMuSNpftKg2Qy9VMDyDORZw55hhjrI4BexdZLwmC+MMnyPrlV8ldnyocr7RXm0hhXw95NrJ3VY/RgsHJs928YMejPfp/qpiWMBfevmPMV7D3+4c/w9Z+/8m/91Z/w819/4X/4u3/CH/zRR/7OP7nweMn82Z84y0XSFUsZ8xvJEssO1/5KMaPajjfVBi+dTubnv/rIj//eP+Evf/NjeL8yrQhHfvqL/KW//u/z73333/H9befnX65Uy8ymBDF/956Xb79nvz6TUsfahWVd+KcfNz78vRvvLyd+6892LKV7FLgCKdDicPZgAif2DO6TsVd8zVAcmp43yb0y9J3FXf41yVnHYMxCn4N9dGqbtAk2CiPARaOzzSGbiPBXPK2ZT5/BfBNYMQ8AdAte7gEuNj37JqmPT9XtaoPzemKpO7c5MFvodUbRULiL5wHrQt8r0wcyGc+xpINxKBL8MMVW71fyKcKHmgbwYPr7aErCSkbOC9fXSqdDkg/YaGG0W+GUClZgA0bT4pIphkhKzvR5X9KAgPjR32wGDiNoLSxcCk1tYu4+dj4H3WtUk2CvDC2NetfCZdSBx1JauyxJXw9gXowigeY9hm6GUdZCSo3temPgIWe28MA8zj0Fx5CTbDzKwhiN7EUWWovpPIq6MKbmA6KH7EPWGHk6s2+4maw1DPZ2eJ/p8BhzB3O64EDZcADEZxXtcrIzIZ3pvWtp3OSb9bpvLKVAG8wscGbEwC8Zm3oOZixUUkin5mFKLVVGJkXqd5XeoDdJAecElxIlm2EuyXa3OPw8sYef2j41tzUkLfNgSDMPqZnY3tmS2HSx8Eqpxz8HQ9oOXx5X4ALazyXPzDnwrLOYWDSPYNynJNbUJFjSM0zPfcYy1aJnFkjLwTyNBdwMWaRnpW4eqy5AKopYOM87mBZ+pMnxPsmWqdS376xNJk1+gITRdrwvgvnVe2Mc8siD4Z50HvTRmE0M6WOe0dJOs6/CsYINHn25Nm6TWQ1Piz5jH6SiNe+hlDjS7hxIY0RCXvCH4vuSYsDoQwl8PrWQkm+tft9eK4cc0NByRtethUVGMI2PrzIIhQepUa8zSUN+cDbBDo/B+/rtN/frNw4offz5Rs3PLLPTZma0Irr1gujmXlhYtMk4SX5TTgVvnZJ2vv2j71nSE3nJ/OhcWNbMJSvmfd8721g4Le9ZTs5aDGgsPrCScYefnLRF+/Sl8S4/8jJ39rbQq3Mdg+sYvNzkaeRj8C4bp8WDinsipYIXOK+Zh4xuPnPSEdRthdoaHukMH7crt93Z2uC2vbBPY+uTyk5nYb/u7KPy9dMT7xanOFjWTWRWwpRt8LrfuFY1445Th7FekGyqG2tesankm+d902Hd4yKeEt9//szWBsvpwrDYaAxiqDMsq3hlM/baYIi6Lp+dHDGmQZ9cdFsofUyHUm2N59dXbZZTYhaxMvJa1MwXba5773eZhk8VjpLgtlfR9rqSM3pTylgbEzyTUsXd2Vunvu48PT5RSsGyTJnrUJzseVnlzxG0YgupQTLDsweTI3xZRmd0ocSn85mWkhqc65Uv33+G88o0Z02Z7FnG60VeCD4F1GGONTWq56L7kFYx11ZpjHkfyjuKem97ZXu90rad8niipbcox46SmNpokBLbaBTtfvSdMfX9jE4flT72iF4VCyOFMa68ICav1426Tz58+AY/qSFa1jD6TDIkZHRGRCf31iRTcw9fgihSrbEHk2bbN3m/jM5tq4ytcfbC5XLGzGPAMnCBCj3olckT67pgngSEjCMp5E2uMpj0PUyFJ9y2TayD3pWCuHcen05kz5xTElPKDk18ofYap6VMx+8Dbdd7GNFAORrGfcg4MBRqLLlw3W48v76S1wUzpXCtvjJmiwQkdO3JjGBWaBgVxXofSvFyM8ltYtBU8yQGSs6Zz99/YU4o68p5WZWyFwCcgBGLoVJG3a1qU26mgtqZlOEw+/3nDgSqbrXRXemPp3XVQjRYQ0y49Yn7oI4aRUdnxRQmeR9aR/giuJvSw+JZ6hzbP5ccw+H58wvnx0dtUOL5ViPz5kmQPIDkMehItopp85tCamV5YbSgNLeqZyofvguTh8dTeCIcBpdG7zvFF9VMC8NpD018gBPycg0adzSycwzeEl0blhZSmtRamU1nXyjt1biY/HasHJ5VE5KTLQcgOt8AvjkBi41pPL85wTQx51zb6nL4xs2D6RlFXKhYGM6qufakvx9l/p4W4h5yVWIzOelm9zTCNiq3bWfmgs2mbRThnZF1PY9ntfiZ2SXdG3PIJwuT/99J17ZHlO3MSqVp01iGsaZMvV3BnPXhTF4XSk6YFdpshJ5L8oakYT25VqjzMIiNFKSyLLTamEOJpNpYinn69HDh+WXnHpscm0ii2TsMXnUW+L1BGxM8TLdTXKPDV81yQVymoa2yn6g+6S+v9L1HEpkG0hZGrinuB2Ljf1y7w0fmGBjmaOFdqDHtqIGWnOKZnIw9HUbXpgcRpanaVMqRm4up44NjFZq8MLzCaAEayvPj7l8Rg3jvTQ3preKPKy+/+J6t/xmWtDNHYSSXtYBLJjFSQmbzLWrmJK9GfW24r5Kr0u4A7pxZ4JIFOXA65/OJL99/4XotPJxP2LA7KFlbJ5u2Ad0TJcu/xAAb4VXmE7pipPtsnGbUQ3fSzOSB7sll0p6MX//sE5ff/UDvHlHVhFmu06eRPF5/b1DEQEoY5EEH2uwsXV6Q1puiwAHzSUsDf9nJP3rP+Pw9fWuUZYO5wPoemy0S3sRyJQWjcNYAWwxjwcgBUk3MFrCG88AoP+H0TeVf+nNX/uq//jv84ttX/v4ffOQf/exbfvIh8XAe/NgupLNh3khzYbROK4PsC3UfepYKrH0qTMQH1To/+4M/4pt/9A/48b/5iC2Zmd7refjtf5e/+td/xrff/+/899vkl3uDObDunLLh7x94+fSFfqs0a6zpAb84/8cvPvLNP3T+7ad3/NY3zqRFXHbDrAQr/wG4QmqUYtSbBn/bqpaLc7LTwDvWJmUa3hNtMZhKu7qUHdIUk7Cu3OqV1/bKnKbF8VTfJWlnYuBK+T0lrp8r6yrJfMkrbmLUuCF2BRrse8iTxFwQAJOG2FN0hV6QJUsZEbyDQ5pZvnH7BoiF6ZYV0MHAwrv1oKOaTVq9kZaV3sW+9YNdTA5TXHmyrGcx+eq105uTipFGp7ukVyUbKZ3Y90bdr7F6Dh+dAIE8Rw0Cgap3H6IDUP/TdWYiVgvIA/bozeQXJfBLxuKyRSBYJkYUnKgleA7Pv2DBzsmtbnqlqLdrybgVblfJBWcMvlo0pFBBcF9wzS75eY/50NwpVqQ4OWRdST2FFpRGH+oJlmAdXtsuxiv6iG7yqqQHywQtHo/ZwDyRo46PPiiLkYZzvQ0W6whjFHBKH8zkzLqRchFgFKqNdCyBDOpQctixALEkRrtN8EjEJfx/+h7s2lA64NDonFLWEmjEn21a/MpD55Ap6ZorSj5CIpKJwJEyE+6hFQRw51NLhGOZhRkzyffsCBQ5kmlzTlqUz8OTzI69GnfvIYJBFCihJKoejKmQQ8Z/K6Uw+xDYHtec0QTe5D+9CEpZMlGBZGKoj0hlPpzD7ml0Uwua3t8S8uaQFYzszsQCZhq1ivGfk4xPeu/39LNDZpaSgjBGyB3nHBGScTxbUnWkSMqbUzxq7RfDrL84Pg7fWViAkSVb77WpBpkkbCnAR1IArDMA6oO9Hmegk4NNZaEyakp3/UEyoqFnT6PYG0h0WHHoujkJLR8Pb6v8G2Yr/cYBpee+szcN+UqpuArhvg58SOv+aTZmBbcG3Xi9GdfXyVwrjw9f86MfLdilsM6Cz0xtldY72c+cLo+SOmUH75zzhWmDwuBxLVgavGzapH1sV0aCbcDeJ/tW+LIb15bJs/P14+BcwGah+SOeJsm0NV/TZKORWqalQWZRoWuGjcLNGi+jszd5dbSW6dPp9aaEpLqw152HsvCj85nHxTiVJSisxpIVb1v3xvevjWsHT2s8XIPzxXm57ZIOJWfMdpcOYofuNTHS5PPzF4yF85ppqGiuBdLUgDtMfiq9q8i7ZawECOOuSNUxtImMIoVpg9jn4Hrbef7ygruz5pCihH/McQM7BEglUMPCe8bNeb7dOCivQmI7s23sbcSBNcie2Gqn9s7juycZJOfMsoQOfWormYuMS1PIltrQwKcz+KCBBlV6l7neuq7MpWCW+fL6zPfPn1guJ3wYuRRIhWGJmsJQbhgp251CeCSF1bYJbGiTZenUaUCVGXetjK0ye2W7Xmm1cjqdWbKMsJ3J3ne9l9FZTUTr3XVw9j4Yrk06TYd8a5XWKhNJA7IbxIbJgevLzu268fj1V6RzImUNY6NDyQuejT3SzAqOj65rsGRGG+GBo2Gs33alzt02fRYzRQP3CjQup0cO2dkxpK3ros1aSGkWxZqQPSlueEQCBhpYWmvB4tIWrW+b0u9qZfbOy8vOVx8eQjM/2Ptk8ZBGub7/o3AR9GPRzglPlUxJ0rD3w1UwaLuzVQ2k0/jy6ZPuH/eQ2VhsaRtpVaqKKbtdG8C9CZyrLVIZUsSAjruOfTQxJ+R1lOht8nK9Uk5LNDoWw5gkaBZJSL03xdKOhjnyq4rNkLlrCJuutC8TaNNapH6gTdJSErZEOoW9+fPIfNqCeZPD08Tu0iLgToFWgdXn7UMpi90mc688Pp15vl7pc7KE5LR4fjOfTGL1uSc10sPC2wu6Gc113zSZIMSAEHRjU3T9nPKAKymRzCQHiCbChgB1YTGDfSKwORqRA8Ca0aQcSR7OAfCg5iWAnxw+YeQsn7sRnmKzQ0bNerAya2z+ACXAhByuu2NjEBmSvJlKV2YfJMshaddCQmyww9j7bcMoIBZd65CfHgllIPBAjBgNCclF+87hYeDorOq7jLTniO8sGi43hQnkos1dygs9wBibHUMyi+krVow8O3Wr1Nm07WpDW8PW6aPJE+u0crlceHx4x7oorVJNYqQQTbG4xiSAxJA6daONyml9uLOstDXWBvFIplnLSlk35uvG3jrK8jxA96NZGhxU+DlD2hggosrXG4tu9PCoGDoTRhPra29VW12XhIMSqYvRsMt41kIep+8shcl87zB5S+XJYfDau8xDB3FNh9jZ3SEvYD2RljMlmZ57WzFkQusWrz8str8DS03GoNJGMEMKPQY6i22y4LQls9WOMzg/vedcXvn87TOX3/nA3gfZVGe9QfZOMajTaS0FM0gShnVNzJBH7zYpyBORJP8Wn2J60uFUCsta+PICH945p2D/doxsAlqPDJkyjAUkU02T4sbYJF3Zp86z1zEgydC4WcfGTi6Zta88fvUVf/IHHzn/8eD9B7Ggki33wIXWDGsycO77zrDBeUm4xVKqFPq+01IjZ6ePhPUrngpmZw0220ZeIf/0xP7zF/hzRqudkhrTsyRec2WQYUiOrLS3HWaASjPr3rHBTAXjLPKSvzDyE5ff+jG/+5c2fvnr3+HXH2/87OMrf///+pYfPZ05/YXK+wXcFqZt5DWRNuN1gi2DtMm4u6+D3hI5Q03w8vnGP/m7f8D5wxMP/+pZywd/FMHhd/9j/sNf/jG/rD/j938xuI7EPmDrArqXy4n9+sLwlc1eOZ8W2vLI//KPX3h4v7D8lcHX79dY2oX9gjspV0iddpPpdFsrzgO3rVFcTPOEQetYdqoDPijdSTnDvDFa4pyd/NDZrFHSBd929prIfqSbDlKeVJv0NskzQZ/kxzO3fReANBozlhcT0fBaxLh7ikTI4TALs1koaZxTKSTbpJIYk5k6bQDD8GAQjVq43Ro176xjUMpCtszeq8JU0OIyl0JtsuvISX1QDwAkJ9XM6VrslAmkzg0BxG2OYMxNFi9Mg1ttWpi1XXXHCO+4sKfoMeibBlv196oTx8BNnK0Bf0fvphqaQ0nQovZ6CVNg16LaCIlyeMoICAng3pNA2Wzyjjp8Mw1aFfvKU+a0FLa6y1fOobtHjdZ3lmbMCgmKn7RsDsbNEaow48xQmEX4JhK2BW5c9009kCdqrTrnZmJYjV5NwFBnUvcWEnpjOZYSGF5W5g7MnXPKVA+ApMN1VB12xzXqwVALMMXifwKmdT+03vEEZChTjKje5dekuiwWIjbZeyNPgQudyd5aGEc7KUznt9pYmKSSJSkj0aP2+4g6OqBkJcrqERAAVUokE4dssNYAQHpldMlFD+8k0LJu76rDdKSOsDfJmqHEz5JyLKRbnDeRPnu/f9Qfmzm3elOdnAG02kEyks1HylnM/CkrEDxxeIdb7wqLCApO0o8FEzHB/JBsdrBEnz3qGbGcg0knF1dwzjxSWrXQHKNHzZ3BvjL9eULhYCNseCIowAyfChRzApBC7C6LBZGsIHQv2JhYb7LHsIIS9NTv1DbelECuHvLwvpohZTRzzAUs2YTEUjU5AAAgAElEQVQaViEMAVuy8dD3iUlSKLazwFMLwFhs3Xl/vtS3J7HxfoO/fuMpb//tf/1f/h47+G3wet1pN7Ectm3n+dZ4vik++2WIybN3mdI+LA989c0DD4+PnE4OlqAlRYaas5y+4vT0wGV1SsoMBmVVGMdTLnx1MsjGy96pdfJp01D2ZZ9cbwufXuH7lwm9s9rO46lyOcOCEOKSK+syOZWFtYjGfkor01HKG/LyWHJmq4gl1E2a9OwMKr0PHr868+vnndc2ef/4wLvLynlJ5LxQowiUvOJArY3nrXHrkIoOeEwxxKLzJVJewMTc2buYEbVXUhIt9OW6k/Ii+iRqnEoaJEObAs9Y0RY/uczdcANT6kEfAXQmpT6BWD+thzfP9cbzy7MkUyWappRIZJbTSlmKGpOysIRHRLYo7BNubdeA3CQHAnmXbPsVYlBOxdhqo3a4PL1jLSunkjmdVkAFIZVCKqtkccHEGGNQkszAzYh0QPSAddHgl3UVzXU41+sr333+XjLI5JzSgucFT5JbzADA1qXovc2B24pZB3p4QXVOJbHtk2QN9s7r7UqvnX278fL6wrbvLOcTy7rSzegmg7clJwEhMQiMZGGGKJ39RHIj64PtemW/brQqb6Z1PcGQDlzD6+T1+ZnzV++4XB4osfGnd9Z1lUFkbfjokjM5WHiHuCf2fVPk9hjUVhWnTqDiwLV1Rt0ZTZHny1own9rQzBGRzSl8bpyclAaY0htGPaYApdY7e2sBDMvQsW6btiKm5JeXL8+8//qDtOVD5u4jOdOhlIVpOejEAiFLyrQ+uNWNUZuen2FUBkfCyjRtIW3CcIEhL5+/sN1El89hyHw6rfiEUuRP1YNi6inRB5xC9sqxBZlDTLKDocIM00UNq+up8Pz6ShuD9aTErbIUcpEhLqbvS/KOGQkiAmJ++J2aG2suIQUNjxD3YA4a1jqZxLKKWclhqhhbvJyUKnIY4RJUbBBzIkdB6kMadE/pHsk8mGGcPsinhX/+i19Kw21GKpm8nsjrSioyyfcka+pTLvcN2J0FNya3bYsmpZNsYmPQa9X9PZAM+vMz61pY1pP8Ozhox4SvDfJpAtquRkeMrxjEkTzRPKkp0TuhTm28ZFAspsmX7z5ByizrGk2yh9Gkoc2s2CfxUIQcLcyGhzbnltRIegB1x2aJKdP+WiutNd6/e7oX8cNvyWZI6uK1sfBiCv8gM5e0tjf93BlsC/r9GUth6k9K1L2x3xrlvETCSVayY8qULGnJfauHGGltTJZIX2um7ywZzNHprQqgD7+Nuu3srfL995/IBum0aqNXBGILEMtipDmSNrno3x7SgD4UY588sSxrDEH9Bw2vxzMmr+Rt09lX0pvM737/BnDqKePxc9ApLYl2MMHGUNy0JGgyhh4zkkyBPitfvnzm/PDI+XQKOZ0HEzPrmfWMIQDP0sGIcnIu9/eUy4IRQGvyu9GobtqQY0Zj52WhrCcFSpTwaszoNYjNvQmUPzybxpgaVM1pBulUSIsYeqWslLMWFAetv9ugfqk8fviKhDa/js7DQpJ5bUTSK07aGJbuUdMKTFgo8VwXAqSfwaz0gbvCNL77/MqyZJbVcZ8yRT1k7+E5Mo7CHLHT7oneFYEsxq1p22tdLLJY5uSQ0JYM1/3Gd3+8sT4mpd72kP31Se2TWqFfM7fXyX7VMDwx1mTkE1Bk/J1wrMRwFECvjx36oL1Wyocntucbs20sD6vuz1L0wLrH2XIY55eYEmPRYQNmZdKweQlpSAPLuHemTfL6zLu0UveNn//RC7/6fgObfP1+4fFB1/Xt5y+YNXLXEtUcPCimTjxbCT4/X5kvL/zopwvp4RvMzuBZrJi/8K/xZ7/9X/njT5WP10qnhBEz+GnlNiZb25lxrc7nldc2+dWffOGb94kPD05eJWt2DsPYLm+eLIlKsbfN+NiazNEtIrttfxtshs6B1HXdbE72sUdfCSk7y2qcFuNS4CFN1tJxH5SSSGNwKQvrsuHZuL12Sjkz5gjg+hjuowmJhcBh4JzMaXZM9nresisMxeIaBkykezkTgTFaQMmrlGC36CwVI1v1X8wFgfcHS6MdwQsx3BqASz6EGctyxk3AMbHkWtxxAoiPpR9xbg9mRN4HM2mEJ8xx5iJgwA4AZqqH1qIsnjeT1M2OZcyckuPPFEA/kSh9SNsFSB+fcQwlGNODDUbI8tBC1i2zy6XtbWk1opb1HotA3QOtdWpTP+iesRkyH9dyXYswsYcNnSsewGZ8qdQ5Yzkqpo8JSdDy3DzY5ASTJc6bCc1M0mKH6UqA029wCIuWFvJ5ol+Ndk1lzky1LunZjBtAzJn2p8GYkovmMCysDEQWEzsoZFIuRuu0KSAl4KoeQIAYNV29WfQAnXj2xps0qgTTRh6NMkhvpl5zMEKSbMEcsgCE1GPZockG5qgxOyS9rjk5FYGX+H1uYIa3Ve9vgIUlzRZud9sUsao8erMZC1J9v+4/WBDxg8vgKYArtJDExHieehZ6NH/j7hEpzyeL1xMESUhiRYboo6kmRn2d92fizc9KS89576nvabv6Yhiu7/9ushT3ptLkBOi00dRbe4pFfsMINpmZ6iRawmnmcLqQMvlRpjcfyCP5zg7/qZze+iGXimPGwfd2TX4wp8TvTSbp59473Yz/7G/8J/8Fv6Ffv3FA6e//T3/r906PicenhfzOeXqX+epy4endifcPiafVWQbU686X18maL/z46weevj6zLKIJtyFvoL1nbLmQL4+UpWjItCTa5dI4J8jJOZ8NkihlX6px3Qt9nPhSnduWeX6tfN4HiY3HPHh/TjwsnexO9oWHh4XHh8l5KQwUd5xNw/4ptgubNZm4MdgxLuXMuhiXi1GWya0NKmf+5OOk1cE37x5Zl8nT6szZaOY0R3RWnzxfd573yjahhSdAcg+dczy4xRkDrjVMzYnksOHsG9y2SlmWSP0ySnGWMlkd1pSDYi6zrzGMxQDEJBhj0rqGW0syUzXLzKlkpNo6Xz5/oV13lqKtm4xjoSwn8lpYUyFbCh8PFe2SsyQzPQb7Mbntm4CAZPTbK9vtig2BKqUk6jZgGI/vnvBUWJcTpZS7x5Q8jZzpiVIKJRUV6qninE0Heps6XBRla3jRQNAYvH7+zMfbM+v5zDkKr7mYA14KzRPZFtYsE/IZ1NBJD3TaAgWetH3Q6dQ2tA3tjf165XbbGKNzvpxY15PM8bL8nk5ZgMhYF4pllqKNek6JlIokDHMwauN6vdGCRZLdBXgQ+lkkF/z46Xsev/pAWS4hXUzQZRpc1rNowXXDGSH9GzLHdee27SpEvakIaMqUFxfyM9pur7ReyXmRXMuk/2eowGuQ1XVeloWUBJrYvRQEGDAHvfWQpfWQJR3kVQ0cn19eePfuK87nVcCRKZGnJMdyFkjUj6FwBPtA17/2zlKyHBfmZPFEa7tKcRTgaYrg3G4bn7//guHRlEeanhsnL2EMHYfzHbhTcQYx3w4wbwY76vAoIg57ycQmL69X8rLiS+KynkjrQi6FaekusxpBzz0S3sbU2SGa65TRo08siQ00PeGWGCMiW8dgOa/ygJoDHxOsKZlwKp3yOFOI15hRtET1jtSIAFGY+rl9KHWs10penEHiu19/h18Khcx6OrHkhbKcgokUKSs5pJCGmGHBpBPzJIXHFEp2DB+1A7iYIXV9eLzQTc1NwSVbYoaviGjzBDBuk3ss9F3Xr0eUGPvDBD6ASBMbyZh8/vgdj+/eqzAHEN0Js3zEPlHxBpJYnPUY1tHnqkMb5gP8E7DYtH1Nb8zP9WENDwL5ujB4a96iqZDnlj6L3xsSGaBiBKtJPhcG+r4tGhgm2/Uq+ePlFPLGA4QRCK5BQANIyZnedjWaBNjRRNvuXd5Bo+tzMPQcba2qJrw+M3ujxDm2LjlAFd0zOWkoMpcxf8LE2gpT0uLc/cxSsAkPGZvHBk9G9871JkZbKQJG38Ckt+1yylq6eNIz1aJRu0ui4D68zBmNnyklU4mRlb1WEoXHd+/0vbqGR4GZM4a1aO7DH8o9C1CSSaFCAMZQMzgP9orfpSieCkZm3yWXzvlCSZlyLHpMIFpDN+5Muq4HEHfnrJlqtc7HQjbJNZYBlcmoNaQD8PzdZ07vHjhf1li8GDaVvNqLYVk/MwcA1Jv8Uw6D8QWd1SfPd4+nGUZOkponLsvC9nzl8zYpp8QFwDLDmmRfEMA05Jx0T1giu+OmwW90DVeHlHaaQMlpjs3EzJLjlMeFz59ecArny0k+H5qOSWkRUD21aFwvhfN65nSeeIKSihhnddBruwO6yQ3Lxww0YNuwZizfONc/2pnnnbwkbCxiMY095OQH6HMceapokGNolw8ZdmLSYitvmHVS2smnG6U7z592/vBXL3x63nlXMj95V3iI4IZhjpVJGadI19P9nzHMitI0Z4ktPHz+dWOxytNPT/j6IQCzDOPC5S/+JX78z36fP7xlvrzonKtTgTLrmuC2Matqa8cplxOfX298/vXGT79ZeTgnygLT9by6N8gzktyM6QIqBDV1Wt2xHBLopDPGa6ORSNOYLQmeaDs2oc2jB+6EHSNGMAOnwDNjspTEGI1lOClNlmTUuotVGoCHedwX91/xzzYC9JoC3afqS5+dZId6rd1tGyxYA/I52iRN9qipSUkERiw0hnpsjvt9HJ54fj9PmI7+pvOtdwXVrKtA2xGyJCfB0NJ4DD3vBDg1on4dNTqMITnCQQ4PJSCGW8nMOCB0IwCGKS9BPyTOAneShZwnhmosRc91fJPzDmiaCdAchxx3Dojzb47DPS9SqYTIEPwLhkF2Jbj2seNTTC6ddWJdeHhWetQ8AVkBC8QiSbtl+a3Jf1LM8sNndFrU6Qgz0If4QbKYkIiQ1eVgnAqAUdKrQgDmnOFdJBm00nLl0dODRZziM6SU6a2T88roIVtuAzFaAxxzAZeS8TmGSAQ+JrJ/P15PPnf3uhZYaI/rM477nUgDDtBlxOLVAig61BbJU4CRAaIQMjGPXmuOey9zLAV0sun7mag/xMTctenBfo2a7G9gkP6dPLJmH/c+K8TapKRrd9xqcwT4EbXdLZLrTGntYqwFKBT1Z96BEgH9xz16sOl8CEwdQ3VfDDc9F5KIiX3mYdVwGIjPWEKhaieVVXj9zSHwVvif/2C20YfrAUpJuaNFT0cp2osLADyA3xnnmrlm5TaRf+V8ew6Tq584kuyIXm6Gz+BRuw62vlkwIuO7ikoV31mAfS4fwwb85/8iA0r/49/+r35vtkRrE28y3e6mTWlaYRRt0VZPfPjwjp/+1iMPF2152ii0Dq0uwMJ6eqIsK546qQTF3wenDO+WwrHQnBRer/A6Mrc9cR3wfO18d9143iWdeUqDry9wuXROi7GUC2U9cbkUcoFshTZknJZnDCkeN7Hrwek4o6sZ7TbAnQ3j+9fOt983Pn7eOJ0K799nLhnWdLpHFKfFKNloTR5O19bpU54JJUkmpKKgmzqZ0Q2ue6XOQasbNgetTV5ed5l3ldgqp8SpOOfinEthzWrqfciIVSatem2S/BosCqO2+dHABVthv1VeXp6pbYel3M3Jsi8s5xWzRPHJWhJrKQEo5DtKrTNB4Mf2eoXeRRNtlV43hgkASyWzXXeGO4+PDyw5cS6FXDSYZBcbrZs2JMdrmButVjWl9+F4MNtQYtiYSn2LAvXy/ExrsJ4vWHGZ/5XEMmCUFF4sLioy2qDYXdKnE3zMDqPRqvxEGIO672x1p9WN7bbBhOV8Yj1d8FRwL5QkkG26M5IYZDLbrdrqo2Q/bUGMWRtt30Pu4Lr/c1ZjnhQV//3nzzy9/4rlfGHORi5B4w3EWtGeW+iJNShIJw3btt+T2+4a4imq8l4rvQ22Vhm1wTQxa1ISC4Ew+D6tIdky1tOZlDJrVjT2mFNAWmzpW6swelA4o5R4HPbubK875/XC+d0jCT0H7ih9zh3LKjhK0Rr3FL8xY+BlQGwZUgrTvfnmu3IMn7N1Xr58lgn9qkFwICPeJWWKF+oUvVYDvXTP2fSe2phgKgYHZzdJwA1MUaRtkEvm9eXKcFhPGkLSYqx5IQfwFn599FElZZmTOjq9dYEmSfJFbRwjRjzknLUOeoe97mCTpQjAnUPlRqAfWDJ6bJxzypFO43dPK5UWFfAe5w5D4E/UfUbtvPvwyKdvv2NHWvg7eMmkWJIXg/pm/fyO5B5TTU2tjdk7ve20tqtZGWIJtC5vEzNj33YmndPlcgdpAjkJ6QCk6ViOQhzngIU5f7o308H0GTK3HESM8ZzBWqzU/cb+unN+fCRKtsgHFtKqGCbG6AJfhgxeBQKOSC+0kE2muJ8HFk2TRcjB7fqqwf98UZpVDEfywpL5dUlJDJiDOXro5wMsM+F8+v/Qn1Esr57b4WpCt/ZKa4NlWdXYI9r+GGLk6NnT+81Z/h/mhenGZiOGAiWFeICBeo50pte9Ukfl9v2VNCfrmpXouJ60RPAUwEhsLT3SDDl+1sCTzvzRmmSXFtKtGBTU22ur23rntl3RtnW5/17uPkJxvyWnnE+RZEJMohoscsp3ZlMK9pSZWApuhAWS0243Rq+8+/BB23A/wLcJpqCJ6YmUVpILvBKz5WB1NpyQFlgwI83um0DCTyrlLEq8GadSmDaV5pMM80htskQb4CRsCgiX3E2tYMpJkcnWcaqu8RRLoO6bnqkJ2TOjXtk24/L0wDIHqYSZn8npJ82AQUYn+aRNo89EXhaY8uVKFgNeACKANvdm8v6zSaPz/adXymWwpIT5rv4D3bjDxVTN0xTFHqDpMQhpQIyh1WLTb5OUFEKSugxNl+QUnJfnyuXdhVImaYqBu2b5iaXUKe6sX03O55Xy2EkHI21qoOhD0lBDILwA6YEdwF3f8csDzk792WQ+djFSvOqsJ6TPU8xl+SfNGNwBU02wYDxMqxgrk47H9rkYlN7otfLLX73yx79+5bV3nh4L7x8WTqv6FL8buRusnTJkOTAZZCOYBWJOvrJx/e7Kh8fE+etvsPIIFPAB+Wt+9Oe+5uH/+Yf8v1fjNfxtDFgsa3FTd2YwAcwy58uFX37c4GPlJ98Yl7PYkXcQ3pJYV6q0erZcg/ocRmtd5+rIOJl+Z7gMRtJzahFSsbqTs7Fk3RHJEmU6Gdf9hNgraTQN/jbJPrmkE1amgNq0iBGHx7UwLORvsw28Q/KFORo+PBaTiqDHJb0C+aOO8F70ZDjtLgnrdRMTsINlLXyOWPRkwcE39RWGKekpWNkmhbOYFdPoLXrzdSHbvEtyNURHPYjaejBdjDcWcnLJvvqx1Ih6dAA4d2A8EcyUAyY6ZMIzgOwZQ3fHrDNp9NHorTGalkB9yF5iuuT6B1tI06xAET0UKapV5whX8FjaHTIc7VKcjlIdD6myMWC2qHVdSocY0rEUC71joFbDIkBJ4EBOwdAc8p3V+Z7kK9RngFc6/5NJKqnFWxi3uxjxuSite0wnz8KBFR/sZSJQQGyXkG2TkUuCiSlSpApwjusWucZzxHVDbOsAliZTz7MpmW3E9m9G1mAJT1xd+8N/8wBbBXCN8NnxkHylqes+ezx50QP5wSyy+BxH33Qw1UFS7dEF4BKhTlHT5jiAoMOPygNUPwicIY01AXWyD9CZkSIdcQ4xuObBoorPcywtLAnsHnNSAk2shwl8ALIe0pRk4Z8XTLDDbmH+oHeyiUgCUyd4judJ6c4eAGbU8HhdJbUY0yQ97HNCEoAncFkKD3eFtRyLsaBD3Re1I8Ax9ZfpnjruJkhsgkKhxuBY8B29+Z1hNA+QbQY4K98zSdFneJUStRSO5ZOZ3s59WcPEchIjDl3W//Rv/M1/cQGl//lv/63f08Hl3OpgDGfv2pzV18b23LG58O6rJx4fH6Gv1G5szWh7orcVS08sl4QXGMPJZcFnpqTMwwpPEuNjU9vz2za5jsR1d760yecNXis83xo+Kj+9ZL55mjw+ZJZcyLlwOhXOq7OWBXnOmjZiY9IIc9ShOMzeJ6/7YB/O1oxbg9c6+f7a+NXzxqcvjTmd909nTutJQ7FpKJghJZvAbdu57YOtz3gtY8lOyUH1I8mxfk72Addt5/l6YyDWSB1TW1tPLCeZU69L4rIYJclMLQWDovVGZd4Htt5jQz+1ZdW2Ng4BoLbG67Zzu+1st5sealdzlyzHd7boNbO+nyMenGhoPA6m3gQg7Ncr+75Fat1kbDuQ2GlYymzXSimJx4ezCnAuUGK48/uaCvfCkhPLnzo0YoMxwOeEOahdFPyUnFzEBnh+faH2ztPTI8kRNR+jJFdyyqixsHLMVQiVERHR7YBNpQ312PD3IVPUXnf6vvN6vdHmEHPjtAa9NYcUz+7DVs5ZRrgB6B0HV2/S3da2czvAJDdyyWKpqMOj9c715ZXycGFdV9KUP5QnyQ7nUFrIaI1Wdw7WzIziUHeBSWNOyXaShvN+T3TrYpNtlTmG7rGsdDJPSpTIpxPTNcCv60mvfTrpkGw9EhMy+y7t/AjQYE79ZYSGGmDbN7a9snz1eG/AUloIYgCWBKosRUbfMkkP1kXvSgYJ5oBPw0ZILg4QKceWbg5eXl/Za5VEM4fxY5Ln0lvMLqS1BBXdFX1sTnewnLmHi9oPDudoaNwNXxbarfLadk4PF9a8Sg4aTXgKH4JsJv+aoTSpvfX7xixFMp5eyrAx5J/kiVZl8F9HZbTGGvfHRFICkl5D/jo6R87LSfdP0hl0sFoYwRw7TBonMp8cQbNvjfO6si6JX337ifV8hmGsiwDlZVmxnGNwNLKroZYX24SuVLIZW0I7wBr8zvjoQcHuwLbdSNkp6ypZVEr3ZmzCW0rM/VrZD7Y8AtMOZs+MBr5PPbM9gMgD/Lq+3BgkTpeHe7PPAfi4PkvgmMEm0/uZcS6kg2of78NC/iA5xwh5j/F6vZFXSYGXkFJJAjg4wgRyzvKVSwYeZpOI3TBDckg0PxzbvB8AU3QBa9frldo65XRSkxd3qAZbo5REWfLboEViWlPAwhhUh24ekoVx37ITZ1Stlb3Dy+dPzLqzXuT98/TuHUc4wtFcWpx1oocf3kUh0xidfdfnMkR3by2kEDRGUMTrvrNdNxmflnyvUxbMgxTMQHkdpOg47Aeg6VASUUhgjwFkhmno8Z3OMel9cH298qNvfqymLRYo2vQ5YzpjajBxV11JEdvd2s7ho2BGyNYPYMHv5+EhR5mjMWpjPS13WY7xxua0aNSPBl+bHh2IyVW3kou9NmskI/YuwK/JR8tzUWOf4fnzlfXxiWXJCuAIEwotdaNBr5HwNKH1QUmJOvcAIw/jXl2DhAe4Iu+vQ3b+8vnKYHB+kEH2yWWKLcgoGnYzsB5KwBmb8DDojqbYkzbCKckM3ZORcrACkmOL8/zlyutVIBitMVAdSG7owR14F2jTaSQrHKmqo1Z6nbTadHJ4x+iIna2FxERmtf7jB9rHj9TnTnnnd6HGYJCG2ArH59LTJnCJ6LmwjNkekdWNaRvGVVtx7yy2sXZjvw1+8atn/uTjM3MaP3laeTpl1nNSGMzUUgM3rOseSzjdK2MokTZPybCerzv7pxtffe0s734K6YTZAqPD47/Mb3/YGX/0B/zhtbPXwR4sj5y17d/3XQu1SPSzx0f+8NtX0mvnm28Sl2XFFwPXdt8sIbRcYKphUYeyJISt3WEMgOEDemaa+q4WqJb8L3swRJUkFg+U7tUYvsZ0sK5I9NkUL58GqXfaHkBe1Jhhx3I2gWWFe5iGWXcl9A4d/LoLg7nB9B/Ebjexo4YCUVoXPpdSJIFOSZkOObo6I10rDdUCkGwGYOrhlddV10F9iCcxlXsL2Zcdf0bPyIwBst1V1QKBCBaSBvLEaIODh6AwAn2+aX/6XvVoslRHBWnkcqRp6nr1w0h5zjuQcwyrh5qXYEwT123+8Owa3EEyonZ7LB3nAZYjhhOu2mpJLFWf/c1z0iW1L+kHtT+kxwLYLM5z4rOKqWNM5mixZFQvZwHCWdwbR4/sOszUs2MwxEziMEk3LdIkFdZwN8Ifz9zjWgdLL7yfRj3AuPCCCraxzhACOND7yHbIqWJZ1E33uHl8xyPYYwcsGNwTC/9YZkiV5QPkLu9XMy0UB9wXYFEJwaTw0b0Q4JwfptS6Vq038HKvZ/LL6lILRR83ok9QLxSgnsEc+v2yfwxLiLiuh+wetFA97ksmYfp+1ActcplBfoj+LofMLMV1v/dH977neM0fLFCnlltjHuxzC3Au2MBm+vnmzB8sRCqDNjoliA0TBdaMYx5Juvd9qp9lcl9MQbC+wmd4HNdvaiHg2fASyw0LS5r4dZfOcW/77r2J+jKiV5h30FPV1kM+mu4y3uPnHclwB5gGk7/5GwSUfuOm3DcbccA5I5DuYYnZjTky68OJx8cH5jS2DtuY1DbZamasZ4rrsBgug1n5+nTOS+KxuBIlOuwjsffBNiav3and2W+T12G87Erferc4Xz8sfDhBSWtQp6UBjfRbPdRxD5YJIztnM8o09iXH9q+RF8JAuHOrUJuAoVt3TjnxuBZ8TooLXJokkiuGurXG1ht7081qNrRtD9nNVvdoPohUMhnPtiGU9HbdlHrRB54LKReBFsk4ZWcNra+FBrVHXLSUl3pg5J6vNKE+RhzUgMFeO9tWud1CajWPn+cky3jJnNeL4kGj2Tu8JoR+6pCnd1rr3LaNtm+0vcpwEBi74jKHT9JIbHvl8eEsadghPYv0sEQKZsVCKa6iH5GZR+O9lKKGF31fYyhGMS2J7JnWOy/PL3Tg4fEBS85iKYAENRwK3hVDKSPXf20HosGNRocx74Nx7zIw3ttg3zfq6xXDOJ/OnC5nHcYpfFBiQzTjOjCMfdb70FsPyrRPWt1ja68Hv6TMsmjjJvln5/r8wul0IpcVPMsLKmdGXNNc/E7jVA0d9/ffQrs7gH2XAfesUyDcFGVz3FwjfIYAACAASURBVDbmrkNyeThTIpkrubyfSpaMZTisZYmo+BSNYQ8dudH2DUW9Ng7K2jwMKgGGNPTPr69c3j2R0MCf00KblSMmWxv0EzMtzNqRq0DE2TcZ1jM99NyTnFaSN9LUcJ+GkP7aKtfrjXSXh0KewdBDyW9jgKVCtsIsSTHDB91uSuJ4B2OPQz68QI4El9EH19uVy+WsIbIsOlgCgGi9y9S+SZYyRiTf9RENtNP2Xc1KEmhGNJOMwdYE0LVWKQbrukiqWmRkfUSKghh6bwWIGKLvpfbepOJhajjHPVFtzkFncHn3wKePn9ScWeJ0XijLGU+hHXcVYgtWjRo9GWDiKcxE7Q4wpoMmbNo+CSIY2oT2wXo6h3xMz+nREA1+2KzMOwAYGCVH8slActB5sNgQoHXQYHqrLMvCdt3w9Xz/WYesLnOkgMQgghhJqgEH+P4mbon+A218CYaRMfsMZtS8b+D7IS3UvEIbnbVECEMM1nMGgOU5gAzJnHVd7e5vdu8fzJDzbgwQaIuW9JbeGvlp+Mx36d/xfkB6fVHiBXRP032NzTvdvTHZp7bJ5MKsN0qRZEQb8fSDrdr/x9q79Wq2bedZT+u9jzG+b85ZVWutvbxxnATLSIkTmZhDDBGnEAkhJAQXueBnQPgJ5l8gcYe44AbBHSJCoERATAJ2LEAbG+XkeHt7771OVTXndxj90Lh4Wx+zkutVW1urqtZcc45vjD56b+1t70G3e7RGD3NLxsBsYKjBHH0+u8FkNvRedT1D52fvNXw64ow+iPICgnrINQfOGBVGkhn0TMRBa6Q1vS+TLTl6E32d+dy0Ru+3yr7fWLdNTLOkCHePFDnLkKZbLYNaB8RVDVdbk/NCH+14F1T8Rwc4pmQ24+1GrTuFhVTUkO17I5VXXxUxCHQOeshzolIV+EmCrrSjMaCOFgCOUVxr6WE78ZyfaZcr/nSSpAWdaTqjFCDgZuFh07COhhFZDb6nhX04lsexHvrIlDRZRfJ3e/PuxLff3GjvEssm2cj0CkwWaYQpJr949BFOKiHHiHDY0RN139XwJCB3liyWTU7G46nw9G7hj3/8QlnOlKcCO1xtYGdn8cJY1PRc642znfFTolhmjDskPX/vepd61ju70CArMpuhhjH1leWXn7j+7gvthxVbN0qvB5tMzCSxZOe+OplK0T5o/4mABRGXMtiC5YXl7SM//OUX/sXnL/jDrz/yN3535/f+4Jkfvv2G0zvjV94UTmmhmENS9HxfEil3vEMeizbAJs+sNScenxJ//PV3PP3t/5c/8/YLtl84xVT9AUaDP/tX+bf+yld8/T/8Nv/rjwf9qga5DcjbSayp6519H3hq5Lxibz/nb/29b3h6Kvzrf3Hns7JyWsWiA7DsWDcGC5YGixmUxnIq+K2z352RAlZqpmS4KhNiKw1vRi6DcduDLZspadCQ0W5ypzRJ2ksymf4OMVnqrjfsVBZq3bntkFbDySyKBtP6Tko4qj6OppkYuohJNhg2YvAH1joVsf26pWBmdU4PJ24XDf0ykkfuXecdRkiqYyWYmrkSgwKB4dNsV2lLA44muY4RQ81xSNFHVy2u9yaRy0LdVcfXmYYV+00phMcbx9/5mEbDmZT88JqbAxn5jI3471wyTSoKwIm01ImCmAABG0aL+2YBmln4/0ybAW3bFuwNjp/ZXUBl8OjVaKf4/u6MXoloBz279BqIQNQXknEHDcSM1uP9i2FDC6NlcJZgg0gBoo1/mCntFgG1NerJGFmR8kn3uxg5b7S9YkvGRmP1lWyDkQZ7bfQmZnnKWWm48eaXVJieW/rsUpKMISuLhB1Mdw3YBOY3Zmx8kkF170eQC0PAfxvzGRLBSQHWBZgxgsmccya5cXOPXi3q8ABwkusEk0Q0R12h03PKzwztleCk1LFUWBZZo1iS1DVhjCa5Py4ftJxSSPY4Bhd27JkCE92C5R9vzKzjxGgWqFSKyA9T8q9rjcCNYAr18CczF3Aajz7qnUh5DeApl1egqPf42tk/z+vLmaSiV7YKkdSnoeEcHEohM6LgMVD8aRu4i1ku1rV66HDB0n3xEb2L+sqS5BPoeVY4E7gVG0yg1wRmow4ekkCP6D1ciCyA+vSoU0h2BBl1l1wZm8nHwWz6Hn9974BSyYOUHW+ZOpBBH1C2E4/vHinLRh9O7cbeB7fmDN8o24JviWlcaa4kgnMqrGnw5iyw5nkf3Gqm9Uz1xN2da1Ws/e3uvOwyff3sPPjh08ZSqqbxpkWt4lsPukYjOsgsCZZ1sFjGR6FWpyPfjH0knmtjr4Pr3XhuHcgUG7xbJfvaFkkjsEExodspq1G+N6XBOdrUUnr1LWjupLIe6Oxw+bqM+y0mhpJZyThcniXFZDS5bZlTLiH30Msgt/xoHF201nywYnSA5pyiE0u02tn3nf1+p9c91qwSztwirWPbGObse+Ph4UTPAf4cGz3YkAnty/XG/X6H8O0ZRU2y9MIzvQHevn2jtL68hKGwNpqJouecWYqm52N0SiFYU9ooRFtXgSqPKLAillPrg8vlhcFg3U4ME8LsGLk7Ly7TQyKdSsCFH88gSl5FzrpooIZSqGqtMq297+z3G8mM03oKKaAkWiklxTomzTRTTImGC8jD/aAfe3e81/Bikv48h8G2GAiwt8715cqybizriVzEwEpLUbMRU+LWutIbotAo4UciUDciMAOJd3dokjPc953RBqM3zJ314cx22kQ7L8vRkC8hvSvB+hlDfmD0rsNuVaEt75URJYMzdf4lZxLQPPHxw0fSslDcKB1GavQw35OJeMHyRkoLvbWI8Y41VDs5onhlyqfJSveB90ymYZ7wURkDnj9ccCwm9xZeNAL7ppm4lUiqyJlski9ZyIXaaEzjPExpi0SDfXg8GLx890HmrahQGb1Twsi6Rgz7vd7x1kO+2sUmi3eleYDGGK1G7DnQMEaDtveYhMByWsP4WOXXiIN7TvqHax8iJj82YhRs4Zcw5YKTLTPNO0um7Xe2dcVy4sN3HzidTuTeyWvQw5mRsnGCBXrRA5AIZOOYEI3aGHulrBZ+U0oS6TFlafdG9hSJS69U+ukJAWKhaEuTuXIMUaPJndOviDIOcMldUyOln40AIpT28vBmPQ7gOfUcAVSUSN7oQw3h9IMgZMIcn1qbRYrnJCTaVLz2ruZk0d5GnucOYllGAQPBFIxpVLL0miBjahC8KbrY3KMYj+rGtLeUko5UOmIdCHjyAPvz0djbomGPWaK5BhieDA8D0RlHLGZYlzQoQG7VJ7NwkSm1R0GlBsHVvEYxOhhR5KtMHWMoqankaFTGAdIRLD7Q86lVIRc+HOvRvGSxCyYwmrL8oYKDHwzZ12ZqdK1Ld4Ho7i3Abz3nZGKbyNi5cb1U1k1DAehB/xdzw0YCKmZZaTHKET+AJ0lmVMCP1vAASs1U9BHFOzGVrbVKDjsIiSh4jeI85M4WZ/CUgaUskGVMJlPOMET3n2zNZD3WwkLKiae3j9yfX2i/8LlA5/heHqCUpwSLUb1q6py0L5VikFZSWeh1NnkBisXQpZkaGcbg3bsz7983Xp47n68LbdQwU5+MCI79wmPv8MCMZN596IFIlhmuz5UYtAhWMB+kBZ7ebpSfXfn47Z2HLXFyGLcbqRq8PVGQDMlboq6NXgdKaoLe5WVBG0pU6optX2slbcZGVlDEqORnyOcNe3rh8nXnzdPA15WcNeQQiLDgLBiLhoI47jewR8wewNqkI+DpEeeOecPzGdueePjizp/+5Tv/6j//i/z06yv/zz/8ht/9+x95+4OVL09vyF8Yp1WBK54SK4kaXkoeUUjDnVESNgZbAn+Ef/iP/4jH3/4d/tRfOrF8/he0VtKCdePhN/4j/t3vPvDyN/8//s5PnQ/3EaCDcTqdeOmNvd3xCg83Yzmf2d8+8Td+9J7TNviNf/lL0ttMlG2v4Jo5gxQshAEmNUBtV/Z6YzGxb3PRnnAms45BX2QK35aFpVZqb+H5IgPtkp2O3qlCYXTVzYMm1kZXQ/+wGKUM7t6YgM7QKwJ9CMAaaoIVfKAIbg1QgxExwJNr4OxGG1nyHBu4DZbs2Jb5eLtpOGkFd7GYUhF4EtuYBk+zSUb2E/J0id7QYwyQ4jxztJfl2WQHWys2vZyjBlkF+ursD5PzFACVa8hlwcKU/EdyvQPMjVpcu7hA38OHxiSbH2GUnEOpwayP1bkDAn8wDRzHGIe0jQD2SU73pv0sbkxKUgaUpCHW3nbtIQToEQzp0X1WyAejdzLDUzC9sXZ8TU4WyZsCiiwGfXvrEt9lZ4mhVB+Q5KgcXmghcx4Dd/lXKXEzk0isYe/QPdFqJRWDDgsZWpyhDqN5rJFMbZLTTWb1gWJYOurHmPcIGBoCzEuw6+guw29TTYwl1vn5o+bBxyH1Hj6CQCDPJYZUMJ2QX7p6ujstMAU/2FAJO4ZqEL1fMP0P2ZcP+uAwmk+pICuLGJwvwUCO/0z+VbHGJoA7zd7mOXB4mnHUb5NNRNT6KYIVVC91LCuxtk1vzGQsnsKHU983ByvKnfBPzQHsqZY7jNIns2zKv5JYsI6HgtNkk+BGMUl2s8t3iCGjcc96diXN9yRkZsfv/WBFWeyVMrEHwmPQA9x+rXuj3oK4PwFRx9/1WOhz3c73+mDaxRk7hh/WESo1tZ9o0KOzY9bR39ev7x1QejyfNLUJlC+7sT49sW0bNoy9OreRuO/Q0oKnhbIUrGgamDyTvXPaVtIKm8FDLiQ6H3a41czohdYV6Xwbxr7DbVeaXEmNX3xz5rMnUbK7K3EgRRynJGBCBzFt8tOUGu/4KNwGmmR049tr4/nWuI+Ej8S+V9wyT2fjcTkdG1zJkSJR0LTXneGZ51oZXVOwki0M7VLQ72JGH5Ckd8VG3upO8871LjAh5Ry+JUZZMqc1s2ZYc2Zd5CvUeqe2JlnW1MyihdVbJaHpgCUwL3Sg7ju325X7/cYIrXNOS6CiqAGP6MXaqvwvMFbSEbs+vDNqZ687t9ud231n+uV072omQ5tbW2VZzzy8eSTlREoLOWfWmSpgBDvBsJxCspBRoowmfkRzM9zDRFqT9LwsWCli8lwv0Eck5zlDWbDBLBHDpo6hxR8yujGk63cXE0Vl82yVZVA8hryO6l7ZbxfA2M4P5HWBoiZtgokWDA5JVjSBSjkrJj105Amj9V2H91AiSso5zJv1w1tr3K5X0pJZN5mr5lxY4uDeLEHEt/oYZJKa6JjgTckQhGY8GDrdNQ3bW6e1wagV743Hx0d5TRmsy8qyaIuY6VOjS0qi9SED+z6GdNMDAZdxz2YMJohSn7M8RD5++57q8GY7hWxSjUdll78VmSz0glZ3aa1NBYakm4TmWKfXkWySVLANEjmMiF8uH7nvd8nyTJKwqbl3k9XnPppoq67oUH1iZ1KYk81J0xANvOv5HfGc6RWkW0OyZsNJ4fw6mtaUlGAyIe2t03ul953exzHBIQBS93F4UdW90nbH2mBYZ10Xlk2So9Yb1vROtJC8paGzWwYcAR5+shYk9RkC4IRiqwBNiv0G4/HhzPtvPyhR0jbquOO7pHVlkacW0dxLqjWbQYFG5iPkRPLrGkMMqGkAP4bkqW04tTXOkfqlA1ZT5RgSzRr4dWLmHmyeYCwR9dp8V9EhO8Eg/WxNlOTVBGUtx/Ua8l2aP1OSUNfzqZoUywQ7RUF68FtirTMvUAc22p80JdSBLvPLETZJStQBPWtNdT/xiDCBxBbT5APhDobICFAR45XCHICl2TQOR+Aj5ZAHj5jO42pCPQXQEcUGB/0biAZuJqlYTBbJiXvt5CTwr/dI8skp7DHEBhjTx4MoFAPM691ZtxxFVlDg4wmm2O8dTX49WLkjmAkyCeVVVgTQUVz0Oq/fX4ccGuEi7CXhrtCAMSqdaHSy9iYricvlhS++fPc6cWR8AnCq6dNwOK6XYONZEjiU1dxain3QQu4X0kUxAURzr3tlPZ/1jsQizxYgZXptBAX7RH3AxCYC9MuaXFqcf8kS+bSIDZzkA/jw9pFvL89cr3fS0wkLjyq1cOkIJWi7vENSludeby6vKBOwk2OP9sk4djUQaWi9P2wL775YeP/thfPbjaV0cvjUSEajN7Tj1Hh/yyywgzncu1hWec14xJ6ag3VX4EaslIfTyhdfPvKzn3zkuw933qxiVdyulce9s5wWlnUoNatlWOQnl4vk+NeXO96dfndGb+TNOD8tnE/LEROdwnQ573D+cuP68yu3ny+UX1zxJmN1xo4oig3PS2y6gFfwHUeR2uQVfIe0Yf5FsDIaY9lZniqf/8KdP/srjb/482e+ff/MH3575Xd/9MKfOD3z5/MD6bPEsk52uIY1NRspDQaJ1FXrZjMaBifnPnZ+73f/MUtZ+KV/7Ux6+jUNHPICvOMH/+Zf5d/58F/x8rd/yv/9VaV36EMgzPbwgF+eabWxpzsd43x+4AXjf/q773nz8Myv/dojb99kvPQYWoRHEJLT25BkuVsjr5ncCr0bZYsaOA8oUPoiH6EhYK/Uhb2LSVJDXlbTUOOfHRuZzZ3imVt3hjmVJc7LQu5AG1xaC5xZbM/EZJlnXUdSUzVM77RkUxllhHWt9xwsM3kTSAbnmSU727axt453oyw6BdJw6oTWHSyPV8g82AweoHcbQ4B7nBnTW6fVYNABr1U8EH502qwVQFDrPewD0lG/EwOUOew1j0S0+BlqVvNrg5lS7FUBZHwiXZ51jmS4n3zPozlXbTsCLO/Auq70JtN3yfgK1nswYziUD57Cr8cTdW9Rtyp+XQAlApiiXrAJvkU9kJL6KQ2NLGRa+qeS0DRMGUN7Vm3qLbL7oczornouSC86Uzw8nbLqthxm+B7DGdYSAF465N2jD2oPj79k1N4OZUJuMnxnDDGO4lZO4MUCcAzUUecbQJFP16cMrx4H0IQYRgzs5lnoAd4ztKacGHq6wCqPNTb5lNNEX3+c8jCdK6OP2K8NeRJqQJqSyBQCbJPeC47HcqyHwWTXaR3HaoszFTzgrx4y4xyg3QwOwQSmzJRMmWg7dN3DNNddgIQ2iGHW6zszz9LZXye3WOshbzaBXE4ETvm8J6+sPzex2VJKAiGBEmDfGE3Xk+KBOoeVwehTiqehklIKDdf8Re99km/Z9FRLSWBPChDZZ/0bT3zW7zOV0Tx8paMf1vISMG5ux7rhAAsnaUI/x0zplt/nr+8dUHq5GyWMkdOy8PD2TEortUGvzq3C3RfIhbKK6XI4vafBWpxzypzWhC2xkXS43BKX4bShuOM24FbhpcLHXX4kT+vgzSnx9kl6W8wZfaWUFUsN4Z/SOA9Cw2hJCwvjXjPmiUvbAXiuO5db4jYMH2LzDDOeHlbePgStrxkg066yrLjJBPZedXj0rgmxpaFkLJdfyggamsB557Y3Sfj2yv12Z+8DWbnIfyeXxLpm1pIo2ShTz+rarGvv8lExASFDMCmZpEI75Cm4KWK3d67XK/vtig/R7XMk5YgOu2AlUX2wIK8Pgh2khhz9rDa43u4ye+4NaaLFzGoxhaTrnqznEw+Pb4JtkEIOIqQ65yKZQtJLIvNldO0WpsQmc0o1iq8Ga6kIwLnfdm73u5hAS3hXlHjpYrM/Eq3iRXQf0p1PWmZMKEH7xJiNYDJal/dCrTtY+MmEJMxiw5CZsoC3CQ7gkq0Ml+QDJOeS15HMpX3M9DTpWsdQYXC7XsFgXeUjVZZPTDFToqwLbd9JSGpXqxqG/Ali7qDnhczLswnZ3+tdhuCt0nvl7cMjp8eTGhNLSuXJWdNNU8qclzjEkpKmnEgcUb+nA8nsOKwmjVRIJjy/f2G/7jyeTizLKzNoxhGnvFBQ43e73xVtLCiLGhI2S9EoJgFCKd6R4Q6pY03MhVYbz88v2BomgXRGd4F9BPgwlLKQTetV4FYOTX14Po0ATuH4elAzRBzW15cLedPINudCyQKVM68FmnnorN3xVmlt18SEaIDjn1P7vKyrvCiGkb3SEHX78eEUiWoIgM+hLw9/lTFGpBVOyz8Og/oJxs5iZjjR9AoUTO6UbWNZM1//4dfYskpOM5wURu85n7CeDpDBdJIzfddSHOCzMJA8yQNwUDE4pVBeG4xG2SK1CTXTul9E86ziwP0VADmmwPMPHiyYAB5nYSb/KfnV5aXw/NW3lG0LaWCwY2aRamrKJu8KDy+CEkzD6ZUUoJsAkxR17jSc1WSudRn3Jnv1Xjka5KNIDBBuDCZCNGKPTgyIRB8Hhv1TDErX3j6IaOgxKGWbPCEme8qjYMgRhCBPDQeT35r1WKPhG6CJqhq37o4LoWXJRc1jStTRJYXxeM4mwGr6STEZmiZ5snkOfy1/bW402dC67H6ADjlPmXDHvSty26dkzo41oJQ/ya4m0DgOFp7295xksprS9EXSosi5MzxFqpnqj+W0st/vMUkN7xGC+Rd72kxVEdG3h0eEmAPDA5xISk+ZkswcXiytBxfaMttp5fJy17o2pzVYlhzUe4LWb8Fa0Pee1y9gyo49WMSCRLIFWtPzi/3a3NmWQl6c28ebBgWjq1pJkNaM5znV1VQ1LDsCbHUUXR4srblCXRKHkbSfzeL13ecbl49XLh86pyVRfJCy9oARTaIawDhbR7A7k0zvSSmGb4NpBt8b5KIzpuTM6FqLn3/xwOXjzu2lY145bWDduF8bvS/YQKEEdSc9rBrmuWFWZDqenHVN1MsdS8a6rizbQlqz2Cqr2MsshdN5wfiOy4+vLA+J7V0Jr7sCdodxD8DoUSA+jo2Cjxc8veEw5GaBciYuDqPCaJzf3fjhL9359T/3JT/76gPf/M6P+Xs/ec/felw5Pzb+ubLw9q2qVg8fmZSMPOR50xFDAw8Ggyfebs439cKPfvcPOH32f/KDX38Dp18R+Inh53+WX/7L/yF/5fm/4fJ3v+L33nc+DJOHUS5s5yful4/s9zvFYSR4eDjxfnzG//h3vmNbC7/65wpPT1nrxGQKnHAYmRzvdC6AFXwz9ttdA5usWmLkHMl1g3VAb4laILfMaJCqk2OAda+iGnUX8Ik7JzMai+rNGgzlYBFYb/Q+yBmyLaogjj1E+1KiH3v0HLIcTn+WxWSK0IPS0yTdQk4sLqPkPbyo1mxg+2sKqYtp3FPMvdTxq4E1giGsfSsfzd9k6ThtSBaUdGDEmRdDOhtKLmRVml6cwoc8be6BoO419iCbeOcntAR3MaFxDvBGg3bVMVNeLFhs7o3HT4mfIz+sWuX/5N2PZlxnaDq8ZXy8gguOsS6r6vk+vZv8k2vV9ZQkwMwshfRIZ6Rm8/JL6n3Qk9isTibcRFhsSn7089sYAaZPZiRR2+bonfpRG007BYwYqkQ4UAwSZjc50iBZo1axzEGf00GG6XHOu73WNu46r1LcwskQS0hlopJZA24TbBxgwuszsgCt0kSojoeq9ZVMI6+OB+vNWUw9HcFKx+e5GYBDyL8IUOlTICIf6ylASPw451Tui8faY2CQk1iTc/+f127zzkWNJuuH8cr+dg2/iWCfkoqGruH/1KNmbiFN7zYl7kwV6yeeYQpUMjWvuieT/TY0ebUUvpshJTtAGTNG0X1QrTMHmcb0ttTZrmedZtUQoDHG0atZXN9IYkVbV78WVKhjaMTgYJ2Bh2zyn2QtvbLkdT2YvfZ6eimP5zm/zuLstRjMqbbx4zN8X7++d0Dp+lL57OlM3hJw5o5x3zvXZvSR8LzIBygvIasS/3rNznlbSOysKfOwqlDfu3HtnUvLXO6dvRu7G/vIXG6KA16SgKSnbeGUwSwmN0l+AqSQkWn1Cq1MkbCDJpwVeQq0uvNcG70azz7oI9ObYQy2JbGcEo8nJY5UNzzn2VIxbHDf5e3gpdCb2owcDX4fXVTxru00ZwFL9ypW0r01rrdKrT08khbcEttWWIuxFQFlJRemofNe+0EnzMGAkZt8gTTYloWmwC561cK/7IN6v1N3TevzIoNvm4CLJ9KyHAdMNsVhljAXlTTDqf3Oc8RV9ypjVR+dUeWd5DnRayMPZ103Tmd5pCxlUdWaZwMxX1KX2do0TctFUxxyTJ1DB+qv21xelJB0u9/Z73fRN8Mrp6SM5xSpbVHUhjeKT0O4oY2+5DC9PDZYNWXmkm7UMfQzrleBVcsJYjOLwQPzJY2eB/GhJPPqPkL5NZtipcSNMK100/N7BdOM2+1Gx1nXk/yL1i3OEsNKIZ9WyUf3KspvoOEjzpfRe0j9/Cg4siVIJl+vHfnytMrTaeP8cCZseY/nTejbtV3BErEzI5k2x6qI8ZQQK6HLr2kwtHHPCYzDy+XKy+XGsq1sW5H5chjJJ8S46w4k3RvdxKIQ1T6k5XZHXkaJSYoGVLCMQR33iEY1vnn/UZRXxGzI6OMktJGWJH19ztH8HtTTWfBFkdX7wbYZsfIycyoc9xnjlAtlWfTE3YL5qMNZxvjijYze6UNSDtGNlXhCNI7yGpLcsA9Epe+dlAvbIuPa2fTmkklF8sdJC1/8dWrhPhTyYzJyVbSuDuRkaapMFKNcMlYbD49nri8C/k5vHqD2g5ZLNIQeY1QdvK8TPDeHjhhLRU2A0jsEKPZ4r7IlusngPufEWiTdHXEQKwEDmGyro7SJpvQT9tvweeBqLaQAHEdMhHoUuKkkLi/PvPnyF473/mAEmaZOk2Gs97FEMo8fjb2A/DiMQz4RlbL2vygoWw9PMdeELvwbj6Jgfg6CSTf940Z3rEQBHkVN6/0oAEvSHjg/c55FFMHUC5ZBOorvdEjr5jPvASr3oOrDK1tkjE4JsHg4mFcSsC0L0rCLoZfMw0A/1l96fW4pC4w+mIBASh6swQD8YupnTF8Ji2eXAiA13ML/qHVYw6jTXunq2aYBaBRJn6wTgi2V0qI9cVQ1TyVTikDjHSjRNJ2fztwvlXurSnZcQkY41ORpqmevxaLLq45oT7xr0DXDBZjDMcRIKwAAIABJREFUEYKVZmr0F8twTtxf7kp1XCMlML7vZDQJtNSwS8k3doCVQWpnxprr/A+PHpvFIwfouzwUri8Xnto7XZ8NyEhyMCKkgcToKfbJANa64VlAUGviRWQzhotBZpZJSeCPufOQV959fuabn+9c3p1Yl6idssA00OcYGN26/BnNca/BkBBzvHsjswpsQwV+4A60qkZy2xY+++LMH//4I7s7D+vK9mZhK4ihtBl5GDYEYJQHyehT4bgHMqBXQ7ucFpaTaqYU/ifmd8aygHW2z5/oz++5f3ulPD3CqJEOVdX0ecOyg29aisnwPtfCFoyzjLNCfhfvXYOlkR8Hb39p8Cv3xl96/pP8/OsX/s7f+44f/cF7vnhTeNpW8umBBy07vCRN2dOIAYT2reZ6XgkxeN48wfPLCz/63/8B/9LTW86/eiLlPwUo5GL5wa/x5//ye54//nc8//6V+0fnGizKZSnY6YHr8wv73sj5zpqM9fTIjy87f/3/+JrH8o5f+TMnTqeCFTGeDROIWLRuimuNuBtumf3WaVcnnSWl72nRwCh1rAxSQ15tKZPzwK0zmtIN++iMzKQJQi6sFEbfaW6MagwTo+S0GqUO7j0SB1NSs+PgSX6FEIOHDMPDb8XlNSRsQ9L6bmInl5GoPkEo3fOyytOpV12rpJ06n9JQs9pS7OU+pWWqoxouthbz+wUwaChhNk9fO2MOipOJuT/6AE/kZWPUfjBddA6KHTuHHx5U31cRmR+1rifHe9S6MYzCpmF2gP5MhiW8Umu0xnuwT3UOi91og1Cc6PzBTD6Lsc8wz/Coy3pSeu6Y+3dYJEwmJe7ygpoDqhFDv2SR8hyqBmLY59r7J1FgBk8MIlinA2OwJLFMW8iSsxUsiXXVOrgFM94NCzuGY+BhjuVI2nNJj8w0BBpjRAS8zqk2/AhbMs+zoCFmvAcneA7NBECZbCpI5Khh52nzyTRN/oopHf3FZLykUEf0ga691TDy92OoyDwyZ03iqrNl3mzHcNC7/KNSjoTZeebOTxEAhaVCFM/as8eQfxgayA8mhqPPZ1P+Gd9qHEiKkTzJlyk50KLfhdw82NYc4K3WVqyv6PMm8KrBmx1rvg/VebIhEdFhwjPgr7839YjyakpxfUPpjohR5PHeTu+rbIfJB0dinXP82YfTWljPJP8nB7umfsGJemPEPhiHeWIy7yZ+IRBV6YwCO53pzxaHZXRtmdfaRbWYBQNtQqvf36/vHVD6/PM3rGumuXGtcO+Jfc+0UWAt2JrjgXZwJZ+clsznG6wlU72zlAWns4/BrSdemnFtxsdqXKpRh9F7JY3O42I8nRIPi8z0UjJOWSya7k0TUIMaerecM6e1sGTYe6VVp/rA0i5wZ5/+TtDTyvNtp5jx5rzyuGW8JDpw2WNjtq44XqDtkttMUqBoIbEZZumCBykaBT30271x653r3tjvjdZcjbwNSnLWdeG8Bn0yiUWkRRYJPIFoGrxSKU0T3hKIrjOorVObJE6X6xWa2Aq5LGKJOMefc7AdCBPdbSm4zZQy0ezrvXK/39jrXclGQ0yb1ir4kEHpPmR0uxbKtpLywrYsMlozI5eVYgbJce86hBOBGpeg37oaVuIc84jfNOe0rlQbXK4X7remw3bqz12U5YncyggtbCTjxRTIGCa/E4RxFfMjNh7HaLVzfXnhermwlphwBqBhIQnzKa30HOh7EEhNaSODpmJ9yDSw75U+OtWczSCXVaBDpEDd71VMgFWmy2VbyUVI+rIspKWAGy8vL2RB+iFRNhVeXV4zw4fAs0CnLSWubed+i5SvVjk/nJUWlxLLomj7kmfSyNwUtdjkE6Dnstcqn6bR2XtMuprYcnV0eSuZ5CZ763x4eSaVlWWL1KNgJ7o75CIgalRY5EVh7vQWqVkBjuDB9ogFP42aR6ss8U5YMT589xFvnWVZMSvkw3JRJ9P0osnR/LbWjwSH6aWTAtycRVYJOqoH11EMtMHL7c5yOrOu2zGlKIsK0ZES2SX7mYwmD4BqTi2ESkkKkOPeWs7srdK6/FbutztrUvKGil1neKSjNMe8U1IJICLRAmSYZ0uH8BWIxg41qrM4SbYw6IwE65b44x+/J5UcbKqhBBhewYtBADB5Ah+E5t8FLHowfawL7JrArUUiHa/fZ1s0+ZvMoKSRFh4yGAFs/gogJv2c2YTbfN89aN6E2X0UaK01Ss6S3nWnnE9RfKQoPAMISXq6CTumXFEqBQAEe++Hn8ykm3sUDpNRBYZ1KNui3dc9/HhCahHFeQruvWjds6BWQWAJvKtDyCTR3aPRyCMFEy6o50MNW8rRdHiAR0lpRA7h8yB5FITF1ZhpSQ5e9ZelsD2cApuJiZypgOou8+w2uszzbY3hRYAsITPIKUcijTGZXcm0p6acVQCanrSSRjoz9Wf668jvxxi9hal2pGbGIMCHQ9YabuHDsYbvXE5ZkiaXT9Kc9jLEGBqucA7ViYmcjfN24v7xA23fKacNGJQi7zL9PE0wRf55pajvvZLHGvfUJSmLlS3JhR8DLA8Oe8qFvEjOu5xOMkyHYBBmyQB9FoYxoOjBKprv9XxPDO3LHsa6ZodfZEdm66fzmeuHZ24vV07vHtUEZeTlEdMmm6bCHkOOZlR3cu3heeXs3sl0pgXj6B1bgDDnrt55+3bl/VfPfPxYefv5wn242EE42ZG3XQBL5iE/ib+j96iRpkSxYikm/cNIbTBypu5OWeHtm5Vvt8T758ayoNTMYox+xXyTXHuTxw0ew6XxGsqhzy1PS4bjNOjOGEYqev+837FlQIP1n9m4/sGd55++5+0vOn0LtkMaOC1ApRVLT7GXNcw7I5+wccYyaigNSCvGF3hpuC0sny/8oMOv1c533974ydc3/v43F37772e+eDIeHzPpC+dkSzQFHe87eD4CEtKI98f0mU6e8MfGV8/f8aPf+hH/wtOZ9CfPeP4SbIWycfrTv8Ff+Le/5puXv8nLP2r85FKJNpV1k9/p7XLB73AzMSK3hyf+0Uvnr//tj/z7j86f+tMnHrISsATQaH/PGMkH3SpbsKcyZ+6XnX6XFK63Nv2ssSQwp40BJsmoudZNGZKnaUssmN9ktJ6NNIyyxCCtSy2wdVhIFAZ7q6SykSyYnhFJ7sPi9Wl4DFO7BywRDAclhKWooh0szI1N0lySs1qm9iGmZWryWyslaibVmx7nlEXDOJkEcVyEx6hq8GLpYJS2kORgn8paZE7dPM6rkmgNhu9RFwFjpsWqoTd/ZeTqtwHYJIFkx+CHAJeN1/M4GDW9h2fOAWhYnFcphlnQRyUh2T322ldMfz7VV3FMhjHxUhI5WFljTJNtnX1S4nvs22FCPM8b0oFGDCZzz0PGFvIpHBsC3ASCCYxzNylABqQccHfSPtt9el92+SXF0z9qYZ/hQPEZh9oly43Uq+Rve8dGEwubjIQJAysJjQ/jc0Sd4eF3OaKOPpjrQDJ5qMkbSc+kdSkaZvBOMoei/W0O3IYPMUFb15ofYuZamkhSfLs0a6jEQXt1F7vXFJCVTJ5JZSlMTy/HZ1bSXHR6Bv4Jc8k00BNAmI/zCwsZtIsVJeAxxdeqvTW3w7JApFkPA/J8SDxHbweoeIQQ8U/VhTnuU/iCyYN3Cv+kctDgtR8yTnOngPa0FGEmzFo3RbhHyLft1fg66PS61rjNMsnuejYIQEo5sddOifdQSFhI7KKGV+1I7B16J92i3ouBmQcAR/Qkw3sMoOIdCylq4rW+7SmeUQRSfJ+/vn9T7lJ46bB3uN+dvWVg00Gbp/u4NtbzklnXxLYkHooYPiP0z7cGt93Yx8JLT+wDbsN5qUKqH8vg9ABvN3gshZSE5qacJc+ygXPSARHFw1IS5y2TDF5qp1aZd43YCPfmWFrpPfO8N25DiRUP54UtZ/pQMWOW2XJizZog9u7s02uCSUfW4VVmgRgN5JISlqH2zvO+c9kjvnWXkXDOmqAuGdZtMrn0wpUiZpCot5rG+JwqwHHgKCkJcKPT6aNx2xu1du73G7XJlDon0fUFGCRSWfDwCikpif1jFpHjxlYKo1VutXK/d/aqHX80pbu1USVfs8J+b5SSWYvkjTkvnLaVkjOLBZMq7pdP2VjX8QcREzxE5xwmxL9aYyHTfPCwiMb88vHCbb9HikUirWq6zXKg35JC5Yj+nNRmxyVDcMd7p449NkMZPrq52D+1cXl5oV4Va54fTtqEh7NlsXVgvpdFFNeUWILpMkJ+UShxqCki3B4Sp17gelHDhtNqxyNGe3QBZmUV+6RkJa2VZQk6aqftDR8yoDySe4bL4NtngyJmjBLNjL1WeXQ1h1Y5LwuPJ5m9r9tGXlfKtmLDQzmiXTGFh9AYHU8h6QkjwNbb63QrNOyMSWE27ved55cLaSk8nTbWYPJosKBGrbbGaO3wepkHUnyRqJ+gabAh7qhNucmAqoJzWVY+Pl+4vFzZFsXa5yV8ZGw2uDkkC2E66WpMS1mCNv7KUhtBZx1I1qNEt1kYGtfbTi6FdRFLYwwxiWbi0uCVwmrJ8BbeQkPeDEmagGi67ZCdjABC9trZr1d6b6znk1gfwcZwtD5TSmSXVDOXEm/QLBCl9bac8fAAE7CoQ8p6j+vUe/zweOJ+u3G93Cib1qzlRFkUc55KEfMngFiiADfLAeBqneizNiybipApUR2aGLWYJK0pcdpWgZ4WptcuDtXeZ8QsQUm2Y3+bOvKUDkHZAYLEb5gJbcMHZd14/vhB7MWUgjUoEEMpKrqfw16Ba6IglfY9kUjUABoVbDCX4SzcXwuC7s5WJvg/00wmIBZyrbjvEyQhFWYypPDbAOhiMCGfCBHj1dR/0qhMEwi1m0cx52gPbG1EOl/cu4DExgSj7HVi5sjjp4eXyeEFFACs23wh9A7kAFqZnyMmnY6pWE2SmbhFJHCs99YlFzVLwQoYUehZpPnoa2ttASpE8mYf4I2cijx/Qr7Wk5PzCB+2ycOLJi0nPK7XNBbXRBlIKbMtK7hxfbmybQu9EXJpCwlbju6GABdjLzclniace93pBksOaZrH7YgzQN9Lz6OcNm7PN5TAF/c+Gi+GHWfCHKUckfaxl4CaC6WH9XjyAtpyVsFrKUWDeialF64vFx7fPFIwyVKS1piFaankDolBiYJ8qGEiM/1mIFiQJcu3y2M/NMno15x5elv46bc36rs3JHZGSA2Gg+VFkosmuVMqFs1jeOu0innBE2Iw0XG6zmNCiuiG98G6Fd7+wonnf/TMy63FGVqouzFaIr11TinTinO97ZxywHAJLBW6V7Hu3BTkMBseu9OHwOA+GskzjFhvn+3cfnZj3wrbl1kJxiO8ksaAvjO2VSAfg5E+4uOGJYd+5phcgUAl/1xP0zLbZ5Uvf/nCr3+88ZOfP/PN//IP+Ol3F37r91fePRb+3PmtBksN7DRINdF4ZZourjO7hpcIOJut8Oj84599xeP//H/x5/+DN/jnv0HKb8BWbH3k3a/+G/wr77/mu9vv8L/9xPj2zsFy3x4eJfe+7LRUSQlWg9PTE7//8ZmH33rPv7ckfviLJ8kOLVqb5FhB6X0IbCrL3GcL9TagQlocry77Ax+kJKnlIGwBTL6Llow8OltGthcJNe5h55DGwNZBqQACjEYwQwznpV7wYmRbovHL4INuMQIanTEy3WrsVX6AGuZiHzRTXZhd50F3I/m0u8jyR+l31pKgN4bNJjD85CK9VMCUBpfZ9e65EBi9x8On5//BWCJArB5ojNimA8sD5d+Wgy1ektF6haQ0NQt58TwdBKwL7FFzqjHK7MzmuERm/+OfAMWV3MsB2LgPyBpiupvqnyWpLs1iR01ZsUCIuIpgcExZfJoDki4Auu4t7r8a9gkS6F0hagQld6Y0lRn5qA+mVO+oIbXwNPxIOXpCYhAOVpwcoJvOr528hDQt1ogGcPn1e5lhWZ6sOGyspF5JtdHSwG/XYHDJMqF2J43GUlKci2G9EEmpbfQY4oudmyzF/mOEwV7cP8hFXk6kuIfuUYFEOq6QuBj2D5aSOXQXs0SK2bv27xgeOqSouYuFBMzDiziAa9rAm0yxx5SWzerDp6wqWqOc0GVmeSqJ+kYcn+r/PJQMxFDMXSEm4cWprzF5eiWj96a105tq3Vk+mYb6s17Kn/QMqv0dj2eB6XNpkGla/z5h407qeu70IYZiCRn5ZC1pShX9LjGujvcCaKMJ3GFK3ggmZpKSxBdKAGQ5B3I6ghU1QeM49493IICqV3YYAZC9hnHNIeDk68kcnSNde0wLArK8ACPs5vv6lX/zN3/ze/2G//1//Z//5r0610uijhVfF85vFt6dM4+bcVqMbck8bguPW2Ipmmrse+dD33m+ZT7cM/dWuPTM84Dnm/N8S9zqYPHGu9Pg3cl5ezJOJbNkyGkhp4U1r3jWdG240eIhnFh581AYo3Gtjb374elgWTKw+4C0Lbz/cOf51nnYTjyeFpYFcKMOgRlrXnjYTMyLPrg3497VtHrSAVYxOoabvmbGOpolrrvS0K6tcbnttBrmsFmg15uHlcfzRskJxlA6VtJBgxt7nxNSTVlbb2EIF94vCFjq4clUm3O73Nj3K4NBWU6S5sTkIeVCXhdyyWylsG0y485Zf+c427rS951Lq1x2Rdy3SN+qo8k/KWQWba9iM22L/GTWlVwWttMDJQw4KQmmKRnBlMIO8GCi74cRLwGYBbBVW+fj5aKmMxklL/oeuVDKSskLhoyAU4biHOV5SmEAaK9pTr1JPjlap/VOq5X9euf6cuF2v7EsC8vpTC5Ct9dFn010NMOS0r08JdIS+uDY5D1kZ5jhq0AOErT7ndGqWHS1stemxL3bXQyaHMVZMKXASKWIcXe7HvIT751SNIG43+90F+BjLtbIlJ31LuDvvjdS30nJOZ82pVHlTCoL2/ksUDMrMW/kKNhCtjXyBDBDaxzTtJwF5qal0CwAtaUwhnO93LCUeXh4ZF0XrWvUHJ2KDMjvo0cRy/HfmUfEZ0pBmY2DJtaElULyYEIBo2Rab3zz828EMGZt8EuAPTNKPJcoCsIrqfYeOv3BWsqxactEWgCC0jdGsG4s7mfj2hvLsrGULRIp0qs2GsmUUk4BXOkZ1FaZ3j/aF+I4ns8qGszLfud+vyllKRuPDw8qSplfLvAhmZLFMMk5KFkabSMkLWEI7yPSnWAyvpT2oYMUjDePD/zkxz+lNtG7lYaX2U4nJS+u6yfAgAYIlkqYT6eQJjax/IQnKPEEJjP6oC8T/g3n7RSHc8xwx7w3MZWNImQ2yFM2YBYy0Vmh+CdFeTQULdLsTueVr3/+LevpzPl8giFGWk75AIW1iPygfDoj1mSOyTgxUSOm1H48C+b0OOu6W+0s5y2ktNqT06T/x4ZmJhboIQ8rBcuFNPxI+7OQxGHzZ0tmIEP5+feD5+cX1lU/L5kFuGNx5sx76ixLCVo8AmJ600S8FNrwMKKNQmSuEYO9N/ZWue13rt995Bd++APWpbCUhSWAlxysQ0v5MHG2Sc2O/0leKi+6OflWIkoAkfbKCm29c7/veEqHXDpnAYTdR8i0y+ETlZKRlyljmyCbzZuEPJv051lom8mfzt25Xm8MN56e3hxr38NjYU7lY3UhBpK8ACW37cE8DG8JYos5VmS8s8gTJKfMy4eXSA3T9z6CMT7ZDyaL0EBnQpfJ6wGixplofYQ0Zf5sw8jhOdipdedy3dkezyy5hNwkM1LGQ+JFMAByWQXgpSz2ss3ylOMsyTkH4FolwZ3PrRl56Xz10xfK4yMPZzDvpJFpM6trJNqweM085AdKLB0pQQoQwZP+n+bZICPW7NNHErYtsb/cuVwH65IOL73ujVKU/GTN6SYD8bxMYDQkVM2RRVwkbY0pIRxioVgJpq3jdZAf1MjUD85yNsiOjzspwG33LopgDmnLuEYl2AMQrK9rYTaoAZphjZTvLHQei/Px44U/+KML3+7OfU98+VR4+87ZtrOA3eH4yBEBTTC64/oJHm1SY9JL5Wc//cjjpfL2VxbIX0ZzXEjlxOO7d7zZf8L7n7/n23uiBhiaDNa1MHpl3PdXFnQp2OkNX317ZTzf+eGXmVORYF7yrblXx/vifjR1yQbkHN6PibRmAWCuAJXZEDcG1V9Zu57HARRXjGKLAOic1fy6mHcToD/evWh6e5sDvemhmtWCpzl0HsEk7vQhIDnFGrXj7Iw9wOJ5joElgb0lvFT3AcuySLLD4EjJsBi8oGFGizCNtA6yD6a/p6W5x/jBypkyJnyoZiwCEdXDTGRAe1X3FoCLap4S73ZMSQ7ICAhvIoEZc+AGKDTHJqvIX2uf2P98TCPvrn3QXEydSPJ1wnQ7vXrIzGvUAI+QAI6owcPfMfqBFL/XnjP32kn4Us82fMrqCKZ6BBQEO+c4HuNdO+pLm/6POqPGJ0E8qUSyNca8bcP9kIBNWEw+TiMAiFg7AeJEoUCeOF587UB1Uwo0xWPtpWQaMqXJsorBXJzhOWd6j+bfXUBlvFPHIGJ8+nMtUDeTZ7SJGa21lecVSyp7SBJVAWothfoiBsLHfpXyEcCjAjh66FIOdnUiCA1Rp/uIYAuLIRdEr2B6mhZ4X0qv12KOmaS38/zrQ0b5siqYwxDt5cmD1TefyyQOMI7LFwNX9V41D5mizkhsyg4nm/wVvJMETUBPjuFKzolsUHCRP0qaPuXHO6wAF52dh38gHDVt6x62VgLfCQb1HHbO8AuL5zvQ4CDZ7O9tLk49T1c/lmKNjsA9pt+nwNJx1JKZYICT+Gv/8V/7z/iefn3vgNJ/+1/+F795uRipnMinxPl84u0583QebMV5KIXTWliXTMrG7s7H6+ClJl564u7GzRPPzbkNuN7gepU87TF3PnscPD0Y52wUc5Yiev2aC5RFRYsl9g5QcO+sKfN0ziSH2ovAjaVQNrEOajU+7sZ3V+erjxUbhaeHEw9bYjXjvK5K4HJjXQsP54VcEvduXJrYWGtSoskYRq+DfTi3NmhjNkpa2x8uVz5edm73yv26414oaWFZCttp4eF0Zl3UQGc31qWwFsnl2gDPmTaEQpacQiY0gtmkOE1pZju9Odd758PzFR8VcMpy0iEe63GCSaMYS4n7aAap0BEDhJzYW6PXJmPFWum90UajtnqY9o3W8TZYlpV12wTqpIWH84nzaWVdNjwt5CLQJ3vSy0j4SXXJ1pxI1DDCX0aHWnHTtfbOd89X7ntXus6ipMCSdf2RqktvjWzGFs300YARJrNDHi4zkn46PTQf7LVSdxmNl2VlPW0CVVCEpFs6tM8kJbt5MpZspCjomncl7rQmZgOw3670287+8qKmHaHQvTnX/c7H24vuZW+0Wun3ikVE5nY+UcxodT+a6hbgxBg9notLJnQ038HsiCax7VWyjgTb+cSSCzktlGVhDXCJIaaLLZK3DRd7xWLT1VBJseGYWEH76FHMDMn+Ykp+vwiQe3g68XQ6Sc8e1Oe1rLTW4j5kfc5SxLpDAOosirtrWhzHvoySfUaZhhfRYnz71Td42/Xvs4AOM03iDn+ipIOrLGsYd8Y0IMDb6a2z77t046Mf5oweIJ4Z3O53trwKbCyF5iEjTfKfmoeRDi7HxmDfb4qttikPmjIr5uALzLjVO7VV2n1n9M67N29Zt+3wbxDLKrOkxLIUSkrRzEdxMA4usoq8KO6PZwgBQpueVWts5wfqvvPNV9+wnB40iVn0vk6pqiUL2a3u4wSBJsunR0M9utgSKX5Q64pW7UNNQYr9IudMWbYo+l5lXzlAJHyIXeKvFH2IvSv8aiyevwqmKFydYN/E+siDr3/6DU9ffB6W707JrxJiM0JKN8GiTw41s+PP2bTGl5RjkhQ/c9LQ3Kj3Smud88NZIF88WMsC3EC/lz9CGFhjeDBylFTSmJ3iQeN2iVF0zowoolSYPT9f2B4eIn1Tz7vkLB8+dA/AKMtC8/EpbhZrkNhndd9UpEhuMAbca6N253q/cvvwzGdfvmNdFpZlkTdxDgZmysHOIxQJeq+maWbOqiBfn2dM6IOVKJkYIdvt3Pa7JCwPZ9a5jo2DaVSClZmDmZwSlLJFYMBrQQmDPtoxCZ2AmZmi0scY1Lqz3xuff/6OXFyJQwFEWZzhAk7G67tkSXI+7zrv4rr6EakcoGhMULOZPMniLPCcWTdda9TOwWqMpLEk+npKkpxPEHkCXOuSPmGuqWAtNo3gDdJg0PBeuVxupFw4n1eWKWnO6WBQODPhKJHXEtegc9VDdoBP75OZ+ql1X+KzpV3M7fpy5X6tnL5YyCjBsJkHI6uoGQ6wMgf61sPn5F6HlHjetUcNha5IsC5WYVlkGJ4K9DR4/+1NksDS9VWt0iyxGhpMxPtmsYdZGgHQxXlmKZJ51Ci3vccdHFgftGryghqF8qZQv70yaqac4n1NIVWY/FA7YSHlV+O6xfopr0C0daDhLmmcJTUmy5Y4LcbTCX724w/85KsLH1pn9cRnb97weB4slvGUNcSIm2gB9niAMIZFIuvgwTLVGn/04yu/tDnbL73B7AfR4y/Y9panN4+cP/4hP//2wvubGIEppFC2JG5NXnBOpljUAOuJP/r6ma0n/sTnhbwaaZnv54j3xcGzACwPQIVBzom2x55eiGRUeWmZR2qs7RgzakDSpuSJkQp77Ct5DDwtr3tD7NPaaPW+z4Rlyd+ipsElwSbYbx5rLiKjZlqkVpQavTISKUs+Q1oYaULlagyHyTtnbwNLUJt8E2cDmOYwqnVqdXlI5kFyyT1nKuiIQYKlCah8sraSxdB1Dq7UkJZSDmlLay32Cb1bczB5cEkMzCUjVg07v+888iLaPFCkGdQyh7ATyJnfzEfXUIQRVgE6ACaTW+AC0VVz/Meqyy3qiPmM58zVPhkg6bCyOTAPMETvlr6lGCrhyVkWnW8u1QH+6gvohI9OfPgR+7mAlYCMzCinVf6P2Pp6AAAgAElEQVSFiNGxpMwwebjq3LQoNUJeZzHANWHK8iEVEz+VTHKdE8PF+MHtACBwgSrZLAzKIaVyfL7J5GpjyhMD7J8M/py1Pw47ALpjIOHjGJSlGPKolnWWlF9N4UPamVwG2CMZueh8WcuC96Y6yxQ+NJfeBAjnopjSSIC8qN9mOMsiSfqshzFiYPk60JtsXgFj6oP9daExWYMe1KScC81Vs7Xo8eZZLSBGIFoHyJkeAI7YSYkW70LEv2utI8ucYZL5ixw1SCZpebZprWA6nxkKAXMnucgCHv+f5t461KV+2XtnDdxCyZiT2fTqbXXcl08YRCmuz+K8ngMxDZxmDRWf3zgIJ2bai9T0S24uZrf+/J/+J98foPS9S95GM/LjCV+VkNC8cbkmvCceT0ZJKlAHg3sffKwdHwt761TfqF3/rnbjUhPXe6Xg/GCDH75x1m2l9oGNRt4WctkiKlwFdx1O63DKic2MXDZGkYfSCFezYZW9ZfaRue6V273z1Xd3Xppz2jLvHhcosblYog/98/FcZK5mzu1uVBc76lw6ySvXvTLI7Bq20t1wOmsRTf/9rXKvXVHtvZPzQsqFtRSeViMXobdLCfQ7BThUlTDlybjfGzkbOUONJKGyroFCG62FVKsZl33ner3H5DNx3h4kt7Eug9dlwVYZq2YgD6PboOQTJWQxyeB+27ned9p+575fMVLIwWq8RM5omjRuJwFUIIpkOW2k7UzeTtqvRsc90eqdkhYceVjkMUhD04KRCB0iXEeNg65gi1Fr5/LxI3ttpG074rxLMshOHVUTivoK4s1NVb4cJTS0neY9UrvicBlxwLUBYXR4Ov3/zL1Lq23Ztuf1a/0xxpxzrb1jR5x7zrk3H6CQpIKKlVQR/AIWrWVNEElISDP9CNevIQpqRUFQJK2IpGBqRQsmSJIKeRPv1cyb595zImK/1ppzjv5oFv6tzxVaPoW7IIgde8dea44x+ui9tX/7P06wFwpZtMIJJQzjCYZBzjI+yyZ5Hx7NSzsEuHUZnx7zLWEtu1NM6T633qWV787z5R0pZyoWtNjEVir70xkSvN6u7JboHgAc4GPquacwYQRNqGbEhU6ZBB+3O703zDtbOWl95yLT6Br35dD9a9OxpvQdoeVC71tvjKNhpUg/bdDuB8mMhnMfjXQ0MnC0xuvXV06XnfN+0oZp63BPSsSYULYL5ERpB8foXPLO601mmiuRxVxAHv52UCST5xpmlH3j4w+/4Thu1C1jVT4+GUiRqPCQlEThMkZn9kndFH+ec46EDRPIiEz05lSR5H0+GI0ySs6krZJOG2Cc0olcs4xDSyY3pWoMIS2MpmKg5MqaE+ZoxL2PKCIS13bItLt1fE62urHtJ71TcwGELs8RM+iwEkQKRlvSwyJaf16pdmuKjqJtxd6UT4VNp54Kv/p/fs3MxjEOtm1DkqsRbCbtCQIO4tCK+6lyV8BvLQUfat7X+lz+YIvyfLSm+xrAm9LQeGjGiUY8b5ve72jq5xRg3YOVZtGwrEhVna+aUJbw+8Lgdr0yxmQvVSwC+8k6ijUV31DXGIXsinu2KETdojBtYbodIOpK//PpCgcIDww8dP8WAFp839kHlCgaBmJmOA8ZMp7pU7JSkJF7jgnVDJBN0jtnDB5gqZIyQ6u/pp5Lhmoyjh4zmrzkMBKkJPByhtdGSsHymfK1YHKMHr5Ji20lGdTwwWbyACKaEJvOtKE9eYgF58iHq/cboEZ7cdWXkbkYfDNSTZXQWUqhH/LnG+akXFXU5hRVZdzb2TErGBseMndJwJbU0mUkDSFXXM2dnpEKOAcXi7PWnRgkC6pcrLgl54z/Umpdh7jvAnsF6i8QL0WBm4Nh0KeYj6Ukjtsrfjnp+ucqiKPAdhnIapKszwZIvhgF54hGJP6CaO0m5uDR9BksV3I9Ufcbx/XOGEZjYjVkRT5DMiK26WiNWk7sZQsPqzfmWEqLMatiOW2SvvUABG07IA3e/YUL//cf/MjT6xPnS5Yfhavhe+wUCeaU0at5x6qkk3nA9QDPHSNTKgEidrFbTVIaL2JIvPvmwvvznU/Xxr7ByIaVRL9PbnlSUvjx2IV+j+se8oLKFXIV29yHPH3m6Lhn2jGpkQw226RbUkLZTGw/P3H86ZX2XWIrGe4pAJ4Dnw3LL1CeMDZw1UNuU2vFC+GKDsHkUZ8ksGJ7Snz75xv/Qs/8m58O/vF/+ff5k9udv/eHH/nlu8qlXLBvE5dvNESdaDBhQ2vEk1g8JTnHFHv1tnUuOJ/ajf/tf/4D/vWfPVH/8gcs/XmcgVll/91/mX/+X/ue7z/9d3z6P1741TVxT8YxG6UWnt8/c325akB2T0y/YaeNcv7A//oHX/idb4x/6V88U8sGNYAAH6QpIF3yf4dSKcNoeZBOjX4blNOG1Q5NzVmjkemceqEnIFfs0Po5cqPYwEcYD+cKyGT5jV1gVCvQUgCqg8pkL4nb/QrprOZ1diUsdtlHMGpIvKJrjf0Bizp3NpJ7gCua+B+WyXUyO9ScIatmntPUiLP2Gw2mpmcNJJPuy5Z3Zr/i3hhzPtaEh41BKdr/+4CUapwBYtTnnEl1i8GyGKY5VfKQx2LC6f0ecrsanlDh+WNdISgIHJ8+SKXSp/xXl72BO8EODH5YMnIqjNFCOmcB6uvfcwQ4Ggyat+FPbNbrvE/5MfgBgskhm4DiYrGMsWxSllohzuSQ/ol5I7bp4/slx2YoEMJDMMXZglrAqPfEaCtWaf1gYg8T85wy/ZjUvMfOmsKTTuth1WxYMJkwPDkpi+SQctyfauRcubcbyZzcFYzSXWwadwVTCIvW/XobBmtQMueMYVWcDbb2elRzuHEcqlfNFBhVKQKfgmU6Wo8JktjKeckC23hIK+WrZ0yrqptnp8egeM4JObwcUfDSZoaVGNZHfbL2shmAUEbyeYGcwYJzSbRyXsE6b9JuAVS6x82HzvSoi4EI+glWjztjNg1EMAE9YbDuIfUSS46HrDulIu80k5dnqYU5BqmEdYfGMGL5SbSMR1TjMY0SXpDbXiATibeSoqZcxcxfgGf0izYDEA4iUybTpnr6gvad5pIamll4XtljD/BYczPUOx7SP5ZFhzuE3HPpGMXugknGKVprIdmfODUXzs8Xar3w2/z6rQNKPO+iobtTZmwqu/Sj7ahYtZBiJb5240gVH5JH3o9JI/F6TF4bjH7wvCWenxIfnp2nUjDvmsDmE1WALC0ZG5UDuA7n5+fKpTjNROu/vd5phAeST66txcQ1c/fJl+vBHNoIzvuFrTzh6U5Lg9FFm34679gmJsmtDfrMTDqWnOYwu9NI4J1jdswz1RL7BkcffP36wq11jiZEvm67gINauGyFwGAC+JBM4uiDNu6MCW4JH4rjTSXR7pJKKZdV599xH6LSTufrywu9ezRt0rAqvlubYD2fVODGtCMTqV7F2EsYGG+J2/XKvMsUWPH2Ai1G6zLZxCQfZPB0fqLWTftCSpyezrG5ijkV7YY2mTlpo7Hvu9DeaABISeaac6jAInGfky1Bb4OPn79oWlurDJWrmGElGR2BkdMlZczR8B7jTtqqmnYEhDlxb4gzzpT41XvnOO6M2clFm3GyTOudlIzTfmL2ycx6SYdNNtsZCfbTLjlGyNDG0HRzzkELNogmAC6ju5y4jjvZC/frC6fThXyqbPuJ5Mvjw8lVjdVxHAyfHH3EZMwf05uUE3TJVyZxSKeoWQOc6K0zZqfWBGi6eS4ylL0ES2RmgVX4IMchBioI0tB0pRkCM/pg9EOTRTJtdO59UKua6ZeXFy7PF87PT2o+ShEjwcUsaPdJOp9I9USp+u+TV8zhtBWufQSdPPFg3+ag6w7j8A7AuW68vrxw/3pIzpGytjbvtK7EGklYwiw9ib2kAkyTcVajFDTRsbyFxgw/rS7aLbGm2sDqrnXoQafdq8Ats5hU6ADPqOFyj4mkkBjRYtEGL2DjJ1M6DzPwCefnkw6EYElZFBRzToFT/hOqK0q/mEnF2LZtPIabwQJ406xrCjhbZ9s30py8fn4hP52YvWFMeh88X95JumXBliimpi4mgDWL8uwOp7yjpinMQm+HClsrD9ryiALdE/IIS/IU0nJTGl3NhRwAzlD3GowKe4BJKrbemFhKu3ibZkp+AudSef36kf18EjM5afokOpTo7CkGY3EcywsJrYMSRdwkhX+P0kssrn8V2qPL6+feDrbThWUELfp43HvplUjkN5+mOSXrZAF0SpRZ/hOToam8OynlMHmM77NVxq1TS4lGP4VXjZrqgctwNilVaUZRnU0JmkqvWdPMRE5b+K2Fb5JLnrGKs9Y1pWxzUtskn8SezUtiF3ex5BoSP8e9K4VyHFqj7o8my0NiMtckPCVaU7LbHI5o/iMAUnuYtIuVK/+xJS3WEo2pfLw/a6qnYWLIduOer/e9d4GfpRSgxZ+tyaDuhfkCNVRm9gHuXf5ABU1/S+wty6vJYqRhSRKu9VGSEshO+879y+c4hyzMWCWPn3iwDMSyzmGYqrRJj33ZaPTwcxAlP4oI+cltG3k6bQ7KtrOfd75+vXE9GvmyUT3pLBqObZKughrX19vBXi8CesLvxd3ZFpCcU0h+Ep4GPu+6h9mYFJ5Oxulc+fTrGx/+mUJiRZ9HKpw2uQD/dA9HgIylQB3OQFJ/I+MzMbjHeihiag/JbWpJfPeLC1/+0VdwpQcDeJocczDnxhzG3F9hFHpLIXM0KLuucZO3pg3Dj0SuYkL7VDLSdun4Pd6pa6e+S4znwvFpUL41fB4Uz4wJ3A+xk6xSUqeng+w7sANbrK1BjDtw296kMrER1feDb3/vzr/yV/4Cf/pHr/xn/+M/4uOXg7/7Dz+xPR2U85nz8zeUrCZbvjwaKmzFaF2SoXNybnOwY8x05t37yZ98+cjf+zt/n3/123fYLy54/jYGEjvnv/xv8Fc+/TGfvv49/u4fHvzq1khm9GNwyhtpn3z58oV+AJZpOZFL5dfpwt/53195umz8pb80eBeJwD4dymR2gSAP4+cN7OhsuTBPkv+n54JZYbSVmFQZ1sAz2SF55jY7dWasO/UM7V4ErgyTtQSymVheKDkhLxTE2tirM1wA+rY9MSIQINuuBjZ3tqSUL2mzQ1qGpEZWEv3w8FOEghhvo4Uhdta7UVLleHWKg23G0Sd9Sh4z+6DFe3Y6nXRfHBTqoqNaoHZV3YNpcIlYEn32x0CkT38kdGIEC9Yoddc9nw3SZEx/DCKARzR9TlUgjUnZqX5B6dIxpo91GoyhlB8gkzu6z1P+WGLAqNdYUnMjJNhzsYp4mCjjYCnCb7oHWzUG2R6ypZDUuSf6GAEw6VzNKePofJLEOmlgSiab2LxeIrHMwTwp9QwPZqsAw1yMUi60PvEmWWdfAccm5hdJIU8eYJmvgdZ6bqnEc+hkClbKwm+YZbJZYs5KiyGLBi2qDZorDMBMAKRARZ3HY06my6NNrLWiIV8AYiwwJqReA7gPyDYEsM5Bj1NhKVlWXYuZABiXBGq60l4TTrdJzhvFB+0Y8tFNhvmksPrJto4b9aIBDnqAfobYUqWUAHNC/h4AYxRp4fcXe/YU+cLivJ6u+p1gFHoCb+qvzQOwQftm5yf1setdKAE2+RhxBg3lWalQfoCZSsgGy1Fvusn/zVLYj0mGN5pDybxcG+4WYO/yH1StZRNSB2YEzQSzzTyArwTep76fK5wj1y1q2PkYnKZ49X0RESzu72LeG8FgTg/pqo4PDTlnNLcDSO44jbJtfPez3+PDu5/hdcfsxG/z67cuefvb/8V//PvaEnfwwfO+s6VKsUQxo3njem+83I37qMyR6KNzv8F1dl7uhddbp6bJL5+NX3yAd7uRkxq6hPxdcpE/kmEMEscBYyZ+5/3Gc9kY80qPZt7Kmdcx+HozPl2HfnZ3Pt8bX14GxeFn58o3z2cu5zM5y4zbOuw1cS6FbdPGdW/GrYsql0rlaHDty9zPoEUhuWXebRsv1xc+fnnldmjyaVl+JKdaeT5tvD9vnLalZzT2apxq4XZ0jpD85FzVeDnIPE1TXEtR7PtCvSdtOh+/vHC0GwxNYXMWe0mGwZmaN/a9ivbpjuUsP5pto25bTD+c++uNfjto4y421FwSrqEEnaQIapLz9O5ZL0Wks9XTRtlq6GkzbfojJjhv2vjPeSMH3XQEw2X2lYwAy7zwfFLayPXTFyWzbWICnVMlFcglM12bfEnyjcixIaWUH822jNxiqp3kHyI6thgD7Wjcj7uMB83lk2TpYQjsuUjnWiKuMmVOZSOVnW3bUVJSp3WZa7cRSQQuemROege2nElVO2gi8fnHz6Rth1LYzjslLamKBwW+0u4H2SwmRyE/IA60SBBcNOWjy7QupyTgrsuMvR939qed836m5MLpdKKUIildLQ8D6n2XFK4UpYb5g7ERzeB02hCwO8I3pI/w0XLJ5a7XK+bw9P4d1QKsdMNGeBdMo2PUWmWYXgr9fsgAcIo9ZFlGpx6gwYyC2c1DRmOSQiTj8/ff0+K5Wg7acJiRL48XLGjiKeEmMKKU/KDouhMNnT2Q/9mX4e1bFPxwJ+fCftrJtcCckp2VNxnUAjUWgNZHTBpC320eBtSmacJsep/uo9NG53a7YV2FxxYMhhJy0HXglADIfEoeU5JM8NuM9Zbzg9btCNBYElmBVZKnMSbfvH/iy8ePvL7e4nBztlzIZmx1ewABDzptWcyO/Ii8T9EQ3++3mLRl+lCD3pOJKRNgQD9uZHO2ugPh8ZMipSzOisXYsmxqNqNwlhQnPQ5biIlhFOMe0b3yRBPY8qf/9E/Zni7szxciGVhsI0sMe5ukuqnYFsVZ66mHP8QqilMSypWLjNBFHok1NAftOKjnC3vIZEEMmRyIwiqWCAA9l/BcszVTCCDZsgogf5vg5uXj4AImSIl+3Hh9vfP07n0wwFJ4VPDmZWThIZHCaDOlYLpJciQWlf2keAs/kSEDzpwUjX0/Gp9+8z2/84vfeUiy637CEtRSI8FMMtAcEsd2xOQvSe6arDwKuQXo3O/HQ6qhNRr78fVg9MHptFFLMD0ChII34Ka1HpT6ESya/ABe1CxJZpYWWy8lsmlPSklAUG+N68uNup/Zz4WS3qamKxp7NTD6bRXPy09sxP5p8Ws9njXVnVSgEFN8m5S6cVyvUGr4I6wqajEgJBmZPmN9Si5A+KmYOcxJKTXWDA+5rmRysGikus+TfjTqXtj2XSKeh4WY/KhS7H2ZpCj4WLMpFpRjpBHPIFKuYGA+YGoYZiSKFeoGP/zJC9u+s++CiiW3mALdo0gmDckJ4p0rmwzUfQYDzOWrk8NXz5ZBKvNhCF/PmevHxq0n9i1pkn2GOjN7qqQTlGR4Nmwk8gnZGJgkADjBjIuwEhvUbRMwnjopFzGXRsOrsaWMPVXGpztenbxrH/cM3u/McZC3LXwvW8gfMsYp7ukEwlvEAMsCYx2SnfBSyduk5M6HDxc+/+oT/+Cf3Lj1Trk/8zvvKu8vha1WNTOWyQsIj1kGCCSbHqENabAn8Jz48dNn7OPk5/9sgvrnBBqYYenE/stf8vTyR/z48Qu/+Tpps5DctdflxJGMfu9hG5LwPMmnjddjcPt05/e+2zhfNkqV1HD5Yo00tO/OG54k9zev1FRwm/gBVIsBn9gGIKB8moANN4eRKVmN1F4I3xPth8kzZllsWoL9GACTlYLlkEpO49oOLIyXfbbwQUkPdqOGPnqPLIdMakSKaXFi5AF+KNDDTZ5W6J5PN/o8yDnA6iFJzJKzHF2N837KSiJbdUOAy9qXFKqB63yZQJ8R5jHtoVvet9PbECyaTrFr5e22fIMIoE17Z4QSxa5TSwm/uxzyMTXllkOqkGCl37lPhXPEmh29Y0nrzYM95Ks5jn1L6aUL9DOmyV9WQAcBcEQ6YNIek3P8Gg3/5mJ9hJyOkBVJHsfboCVqxWQCj8RKFTw2lkcarmTOmBYkswAKV30kFk37ySA+eQwZJwGYCIjpvT8AFKZzn05Fw7OSa/QySd5TKQYhU0oGhVto3/fZA3jnUUOCP+Rl823nCA81MVKnafkW7CE/s2CjLwY3JhmeMR4A1AwgTueEQC6LelV2DzPObR713piRoJqM5vOReus+6WsCHeyt/79Vgfyg5vq/Hszf0XVV6/fWvbVVG64hqPFgaXnSmT70oVXrICuDlZz78BqKzweuOj3A0sSbFYQtiZnL5zCtszgnRtJ5/zDF9ym58RCBQDkhAgtTvLuY6f1JmZxqMKd0laqbg4WWpHgpJT96gvWZH1/2xuR7/HoNIeBR7wWHjzdI3WJQrfr/ZBsln7k6zHIm2ca/81f/rf+A39LXbx1Q+m/+8//k94vDeZ98eK7s1SHLuK4y8Qa3VjgoXH1yuPNyGF+G8Tnc48918MvnyrfvZPRXrWDAlnfOW+W8J7GgSExP3G+TtCd+/qHyXETpb+7MYfSUuN4mt7v009c+uI7J59dGOybPFd4/75zOJ3nxmBIKSnJsE6V7TriPye2euU2HLD+RNgZHVzpbHzMmuUty4Hx9ufL53nh5udJ9Uk9PlO3EVhPvz5Wn7c0gLVtmLxUDrrcbt+lMlydETfL6uB4NzWLnY8HlAElah9adr1++PtDYlKeugxRmapWSN/b9RLFC2XZqVVz8dipse8Wmrul+v3O93mhNBT3D8Xvj1sNU0hL3+x1Lme1ywcqOIamCGoqNfavk0AFnd/mrDM0tpok9EMNVbXoTdFSogC05U/ed6+3K7dNnbjin/cJIlT08uMwqzAQhAyiW8NG1kSR7xMNrk9XG1kZnDh2qmEzEZTTemQNqyZxOG56cW0wxaq2a/mWtkZSKQJuthk66wZj01nQojEEx45hijeVkbC5wL8XaKXnjyw+f8FqhnLicd05ZdOg+7phP6lY5joNlwkdX5GiOlB2KEPQF/iw/Kwx6a9yPzv120NqNy/POdjpBytQShrpVjKjVyJ1OZ6abfCSnJkI+JuvHDxQdLtNJgS59OLep+M6adHB/ffnK+28/UIsOkIam3BZqwdadW2u4S9bTRn+ALvd+D8bLEMPC5UuQLY6cHkbnc7LvJz5++sjr7fVB/U8rpjpXUlGceF6HYtJB1buosMzwN8kZhii5fS5gUwWpoYnh8EHJhTGcbdvYThsZFYd1kyl7TikOi0X/DXlR/NqSQIysbo8xxRx7mMHPwfX1ldEO7sed58vO+fKkxjkAFrEK8+PgTEk+SjnJDwIMS4XTVqMYkzH2HMt0VHTiOcX82Led06nyq3/6a/pekEBFSYJWtPckjFK0r+2lkEmPKWldjCif9KAcb7lw+NT77pN7V0EsY/jO/bixFWOvJwYmA2/Lcf8SizpohiQ4OVM8mvbpPEw6wwxTDcWaes03CUA01z/++gfefftNmJdHQRtAKVOebcnskdYBscW6CoQR0z0cKvZIdhEwHSmeAUj2u8yPyy7mQV6MdVeTtPwv5AGRmFlFmadlGjrj3et4b/LFCDAL3oCFgSjbx/3K7d7YLpdHgVKTUVN+SJTW1A5tg9o7sZhcyThzTcXGGLE1uoAytQ0MH7xeD+5fv/L+u/cY8PT8TLJCrRkvG/vThVrkMZjDoyYhWbbnDKk+mht50vlDUrooPK23AAWd1uQNd75sbHsVIzKAxZSK5IfhWZei6MOWF0sAyCx/ppi0B1DkP/FRWmyl++1K2SqX8xkPzzbcAvCLFMZgFnpQ6LEKPpiuoc2cnbVhTpekMkccssXU1U3m4a8vX2kY59MCGvSOC2SwaMjeZGYLdUopnmEbsY9JGkmAuiAgck5njIPZhHaM2w0HzpcnfatgOS/2gIc/IA61bNFED7wfsYeutDyBMSqS9bMfjKysc+H0tPF6feV+z1y+qewpJs8hf7GQn5dqVAtvQrT2HDU/8t5SulhK+qyewhvD5DmSKZRasGz8+OtX2mnix2TD8TTYUqHmhLGpGYm9P5RSpLJkAhHvjOHNsE3yuGQF36IR7GAEE3WveHfGyyCfYs9PanzThHR+1u2wjZQ0ILIwcpesUYwc3TUZZMs0t2JpU22VBzsH3z1d+Md/8If88afJVx9sPvj2XeLyZHq34t7L0LqzTgK3iuUGYRrtycUsz4lf/emV79Lk6c+/w9K3EMEOnp/58PN3nH/zR3z/+YUfXyTLWOBA3jfKOBhD+5lZoljmVDe+/3wnXw9+99uNug9yXvvPIQBjTLCNfIh1kvKg+QGWxQzoWZ4rvhi7BZuEAfdgJg0TatN+eIyDLZInfTqeGmYDm5KJBaykdYfqi80yG5nDnRl1S8kFOa1YvAtiXRvxTD1LZhmYzxyDSsW80zGxHLPAiklW7Hmw5u9tkpNTTT6KQ7woboczJpyKsZUZoMSS5vvbkCEJjC9Zviti7ASDCYH+C0gCyWtq0aArE0wgJw6AAKNi+AhvgStjNLa6PYAKQqqOy9fO41BMcW5hFdCALiWYw6M+Uj2X0RBOLJim4ciE3nVWytcHDZlDpl3LLiZtgFFiHWkQD5LzraGCzsDxGATiAoiSm+SVKhDeAImo7VbzvWqzTEivXB5/NSkpuo2D3kNqN8Is3kKqNsUrV0CEBqqzH9gctOmUaahSX7KuhJM0UBgD0tTg0wRCuEdd40rXWwCX7suUBD2LpVST6rE3QqqzAmdwkQeyJXoT2KQh7XgMlbLZ4zlNUY+VCjcnKylczHcdya2Px9m0+s6ULL6nfO0W2GHRc62hrPvbn0EwcFZN4tGoYCxu+AryEGQWjJ6SBR6GdctiIde6ZMNvxu8aemstrEpOEkLINcX5iDSfLPP3SdmrBs0+SMwAHMEsh32BvKbyAi1jh9UepfPYfcRnV48heZ0AOg/bE4H/Kh6PQbApi/wafTGs7IEhLJB1BIApNqGJtZyWQE9WF2t4vI5hVt3GGr6IqdTaneP1TrIJI/HX/oOvLN8AACAASURBVO2/+mcXUPof/uv/8PffbSfenzdy6njPEJu2kP9K88xtTr4249qNLzdNhC84H07Ot+83fn4xtprYqqBXJaBpMtEsce2V+yj0Du+eKu+fOtuAY3Z8KDXufp98OYz7nBzeOKbxeiSu144zeT4nnk9n6qnIfHAWTd6n0NmcMveZOXpi9JjcVeGxo0/J15xoNpKoicl5vb7y9esr9+a0e8Nypj5d2K3ytO18+3xiM0k0CD1rykYbjdZl6O0udLGWzKlkPn7+yraHvMWcVIvuKYl7c25H4/UaMZVJTVDNMkFzdMCcTxcsC/2sm5JclOC1Jqwd88lxNF6ORrsfTAY+Ovejce2iBfY5aXfp6s/Pz5R6Yc+JWgplO5H3nbqJ2m2mRvtU6wPVTXSSS28+TQCTT9F5cdE9S5gAv16v3G83+qlQ6gly4lQ0wS2lhJWGgU1yEdxmED4XoecOoGLMqQMuGACMSZuT++wwll5bXh/aZ7OKjxKNe0ESwwR4xopooAWlxPU+6G0o8cVEwfQ5QtcubX3JFkbQlU8//EjLidO+83w5UXPIHgh/pGR4HNKiDf9kMxtKodGhL6346A1NxyRtmV3pPu04eD5feP/8jpoyZQ8T7k2eYO6D+/H6YBH1KaPvzpSBNDEJmZIDhoMG47gJCOoyHC9oKvLph4+8/+YbTufTYzqVZ7AlUNHVfXIqhQ54CPlbyFxA6Upr2uMxoXmQ+4fud8qJ6/3Kp9/8oCZlOOfLmeTS1tcsaWSpimPPUZCBPDNSkelf0dhcgIhPxu0OLvZdnyIM9zE4baJY57JzvpzYtrfvtSl+SrTvlPAiY0gLGZsoqWG2V1Z88Hzo5ocZsyZe7zfKVDpZ9snz87uH2aY9Pnt+sFMwUbJr2VRUGvpZCayKUSeW1YzEh7jf421S+Py883J/5eP3X9guZzH0wgNhT5VCwmqGnCWdSusw1v21WkIbL8bdnGJQehcY0HyGf43jvXFrjdkaT5cL08TgeETysgofAT+SwwWYOYNEX7T3uUsG+PAAiOmkR0Ja90MT9Xbl48fPPH33gXMAwctA01DR+lOdPhDFlMU0yoNpokIlxURpBrDxMCwOwKAN2C8XpQtODQvaDPaeqSCqSZKdWtVELvNFM39o5mW0qMJleRlYFEeayjp7LdxeXulHZ7vsSEynAt/TmtrGRaX0kFnmlDltSkibJjmqm1LmMIFnnpacTJ/53p3P1yv90yfe/+wD2Y3LeafsYsqtBM8+x8OseYY8IyenVFVGCwCy2MNn/P8WbNJcKskEavbRuR0NKxt73Vf9rPfdVjnlsU/Zo8HNpayaKgpQyavW+4NNDA0halJd0eekHTfmTJyeJAl/mKY+Jvzrs8fUdUby3GjkWt8aOzOIwY9j0RhqjYxgsqo4ndyvjf1yDlaCPnRGRexYNH7Wg1QjJ3lZiuK/BGPvrRlmQkFU+MMnPU1m7rRx53Z38n5mq1V1DmhKnuLnFqCNMJ3NjFRIRw8PB30+T8GCMGdaJ5tj03DLZJfEvSRIdfDjr79wfvfMeVsgol4WC1+ajECOnCQ1dHf5b5mkMRayqpRzGMfLGBcX2KMJVGc7G58+feH2NVG2iY+iBOAidqcVJ6fwphxGykWeXFls7+lN044xcDLWC2mb9Ka9Ip1KgAvj0SxQB/dXefFZVuGerMb2aQFWbSR6sJQ2zCpuJ0jlcZa6RfNuinqXEfzBTIW9Xjntg4s5/+Af/MAPbXA047lmPrwrXJ4kOzZ0/6ZVSVSy6TpTYqSJ9WASZIM0OPzg6z85+Nk3Rv3Zt5g9gUmKa6ff5efvD+qv/phfvdz5chdo33Rn6JcCTYx1i+TEVAqtbPz44yvPyfnu20zZYk3PXX3AiGY/vEHMjWy7GG4MeZckJeX60JokFXmSbYb3jlVjWgfkq9kPwmB9kvwAXNebDYaAyuWlwpQHopfOKdcIBmlYmnSvUYvGGufNP9B9kBytmTnEvo3GM6eJ1SxG8wIQFpvPO4ZzDO2padO+f+uS3lkpGpDR2cpOb0ewa9GAzcPoVyejQHKAlOkj+CdGBH3w2OMcl+dnVp0wo86w8Dt6NPWoLjYPwD1k4zOkZUFsEYOSxekI+SoaHmHE2euPGiMFS/iNdmlR5wW6FWdYX9JkxBhcqVaSb4UPo0W6lQVRKsksecafzSmGyPKTk3G0fFIFCoi1m5MYtdpL0TsWA7cxnOX7ZMGi0VnecUYkqxKDKg0ugvcS5zaSY0EAr5OULWR5GiLP2enhCVuSQD0skc2ZbTD7pC9QEyVVrkS4FNLNUhT8MDwkc8GCwQOCWQck6k1GDMSSZTGrPIv8EPvOw3bBRgw/osaeLWrOSAlM66wNHyAzJR+b6pt1HqboX3ztbEnybZ/qR3xG0lhJGoKYBpUrzU2BBVHwWYQpRB1C0lupc9kxLwKb0tAQ2QmkUISTxdSOik6fwSc2BYCbQc4aBpFWOmt+AFlvZZOJAW/LViGHqTes0KNlIYG9/T0NnAwPOXcxwldR4HdJ6plqFZC/Eo0HevfXWvYZvKN4GeVVxmOdWPSFybWfroHbo/abb6bptpjnPhXg1O/8jb/27/7ZBZT+l7/9n/5+3gynMdukjUS3weu4cjjce+K1wUs3XkbluE6Yneea+PCU+O6bnctJNzunAsnD60Et65hGH04bjtvgcoJTgdEGrRvNJrcB/Zgcc+K2k4BjJD69Nr7eGnvuPJ0K+1a4bHuge4kAKdm3TabNFF5uzjGl9a5lo7tzPRrX1uiM0P3HuzGV8DNcKQ/yssjs5zNbqVzOhfMmt38f0WgX0THHlFFbiXQCiiYSKcnHaNt2GQvG78+Y1o8O13vndo0YeZM/RrZAPNHBse/nWIyZbd+oNVFSwXImG5rgTef1duPWGgnnlHN47wzmbI8pWJ+T7XTicjmznfZgRygyvpRMKSkQ0vSI5Z6+tLKZ7o0tyfl/En5JrkPBUpG/Ac7r1xdebzds02QxBauKXNhS0MmzMaY23mpGjSQgTULfpmpiNigZafQeLIdoIsaQcXYctMMitYpMMXny5LKRygXLk0Qm10QpGynMan00bUzREB+9c703PeNgE2QZRVBK4sunzyQkcdtPO7VKHoIRkzUezBPJHMJYOumQr5YecpiUE/fjju64GppjDHpr9NEpufD+3TvqVvX8Sw2Zhhr5+62JsZQ3UiRfiU39VvQRxY0H2DCPpgnHmFx7U8rSaefTDz+wPV342Yfn8CaSfMmCak9Koed3tk0JYhlJVtwEPNnqBH9yWMtYnUAVpg4Sh68fP6lgxqnnM6kECBeMnXWtKecHC2J5dS0JkjxhJNk77vcoFTyMikekD8ofBEucLk9xeCYsV4GVLmlhtgX4JHkvDRng64ycMn1tLfwAPHTWTgFe7zdwaNc7vR2cTiexk2IfkB5b0r9SNzGHUmLfNzXi2y6JXVDlS0yE9dn6GxDSO6PLUL8m43I58f2f/EiTThRLRq4q0Lda1GAG8LyaeNF69d6XojSqNXVyF6BzHAcgj6Z4lNznkJcDkEtldE3mFovGTMzERdmeMXnMOUfzLEmrJmDhSyP6j5IAfT78XmZ4SP346+8xyzy9f/dIEkolfkYYOOeQphHrz+Map/lb8t+Mz5HVDIvAtKjFampaFLr1+azmQ+Wahg4pMdD7ugYJZdtk5hsSPI/CXkbOKVic9rgfvkCpMLROJXH7+sowC4nO0Gcb/niD1jC45AIE/T0pyKAPD8p8YvbEqW7BgFUTPvSwweE+O/31yteXL/zi599QSmXfn8i5anIc71P2NWWLCSwCylI0y+7KVbK47703SiTGpRzPBp2N7ei8vlypW2Gr28MrA9b+LnDMVhMeHLNSda0/PQcWiPVTQGithUU/f71d6W1wejoL1HiU0cR12BuYxAJBJTtPhoY8M+SsRMJbFHHYmrumSOXR/v7l9Qt520PCqr/ncz68rxKSYuRSH95UMtnl4f+W6/YwGXWXr5IYHHcl/kwxCLpP7reDmrfwEVILXCxkLdFQ5WT01oEh49CYdmoL8QhJMIorQrmmGtLbYFKFx8zpnPn4443r3Hg+C6zEiXdVIJ+Z4SkxZsijlh/WloNFNrA0qKsJJOQsYZZkSZ5mW07YZvzmV6/k85lqjVpg23fmMck14V0Tb29Osikrha4mm54xGwwSlAE505uTyg3/kihPG7kWmSMXwLuGnXNyXAcMgXBJFGtyclqsC2fAHGJ/WcasQHjvGei/bYFoBIh7VstQjDoPtuK014N/+H99Eru/T765JD5cTuxVQFFGP3eYAxlPA73E9jjT88wkm5SU+HzcuP36lV/+3kZ+/hnYGUyyV779S/zu9sdcv/+n/JOvB68tGj+fFHT2zHHQD/2VzGTbNq4YP/zwlW8355unwpYzpbSw8VtDjZCvTQ1AHGeYhnj9PuIdzoS9m6RBh1gqszft212ovpHpfsfSkgaDeyZ7ZZqaZxkuEyBRwqxyd/kLmcsXtZjSDNdCN5wcn3dEwzcn9Gn0NUyoAmxsqufJpmGiWFu6X7WqVW399rYvDDjG4LSfqBVebi/kFL4/wx8SI7NJyRoQzWi4FwUhGeHpWEi5cBwtJEVvzLAc6YZx5TjrHV3mzxrGLAmxfAM99vOVGpUe+53AtTjO0xtYzwIWggklFlXUb0kqihTnl/buAL9Zci+wJPB41d+rdtHxLoaKuWqmtSevwU+cLI86Q4lX4bHoYput1Fc3e5yr658cibFY+OvF989FMmxcLHUHXYsJZFjAgzDVYE1PJyWx22d8jhG2Fz4Si+WDT/KSjKVMdyUK6rx2OokG9JDEpWBBD12EcHSCgbPQNtMgSSz2FfChkIgaVgYzQB2P+zSGJJUCHLLeowSdxLQpA3kzcqoKCkEesGQLxnewR9OCOIh1pjq4mmqtXMOyIRi1Y+q6Ro+0LFOglEH4IQp4HjHUXvK3GbVPzukB6GjNvZl8L4n4W9LvAvuinjInpUo7ZET/tufa2oYljw3PSy0GDTg8uc5bn3G1ehnEQ0M+Zig1t3sAPu5Sk7BkourNZ0JBKFGHjHgvi8nsfDBDIhsyvVWmhnxvyiOCJdF1X3YQP7FHWPhpFLaL+eem9/lv/vW//mcXUPqf/tv/6PeZTj+SpDAtcR3QPTPmiaNtvBzw5WZc741TGny4GN99k3k6V07V2HNlLFMyg0KFmR/9ZB9CjLcMpxSpRqZ0rZoqY3YOd3LVVP91dH78Ci/3G99cdj5cTuHxUDCDrULd5PiPqUhzK7w2aKgpyTlJMtc6bUUCTwESvXd8dI52SM7UZMhc6onL+cTzufLuXCjmpJh0lJKDgsci5Sg5KxbcmJoWYlCLMNO8gKSJQLXmvL7c+Pr1K6AEqpzLG6ocL8/T0xOeMzXkWeRCqpUckcBb1ZT4ertzb2JJmcH19ZXbIYnBdG2yr32wn05s+0apamAFxlVSlWlhQptmMqWGtS4z1oTiUYWYyxdlTDWUixKaU6GmxHE/uN0OKBsdJWMp3l0TeGE3E6X7OGXTpjUX+yiufY4wN0Mbb2stmHKKxR1d5tLHcUg2VgTa5Bxxl6WS6y7fhpjOWqrUulGA0e9qAkZTVPHoHAFQyQspJDboHMklcX250fsgP1047Tt5i4Y8phn4UORoLQ/QQ/GyYuEwV/R6UkJAV9qb1pKa19bFHKo5BZi06V0qRV4jgGV7AJ+plgBwNfEVjVqTqXYcMitvTSSctJpkp8nwiFIL169XzCc//52fBbaphsOIaTAZT0S6Rg5GmNZKH7EBzvDWcAFHD33IiqE3sCLT1K+fP3O83vCUSFthL4U0Ij0iCVwsASitJKS3RjdOGZyjBXA05yOh5H60oKDL1Pa87XKGO2nvKBE3Ly8BHXd9DPluPQqnRbfXn92uN0br6qlcEbBjrgZr0I9Ov985mqKkn94/s28nHVmrCEEHVg5/qZxEgU+lhGmhfIgsGEJLyqg9ajJa42iHDlRgO53w2fn+N5+xXPXeJIFANYudRzS2WmABaKDJWKqxLsOLpk8Zck/8AYwuTwo1FPJb2Ep+sF/WNa3DWXji2u/mA8TSNEyU6mWsPPraT95khDMmUR7T0+//9Afq5cR+3h+gENMjtnWth/Vuv02nPCaNKgUT5k7dK7d2yHcu0BoBwSoctGbgdD4LiIqiXckcMVUN9KjkBCU/Clwld4XXmDs2ezRbunHJjJ+m2SUSdU+8fPmKm4yGVwKfbqT8d8ZDrqA/GqoqAgzTRJIJadvIwXQENMhBxX9y8Db5cvvK7esLv/i9X7KVPdLYxB7JQRnP2ShF05kFMuYASzwGC5reJUoRiwYS27ZT6yaKeBSN1+uVL19fqKfK+XKKe7CkU/LIWFNMfQXrsMinYgFOeoU8WA/EDQlJ2ZTx/oy98+Xrjef337DHuZ9zelDtV0O1WPxi0gmM8dAXuC2fFJjhTUEUgMmiUDY1jebOy5cvOIl6Osu83wQercJvtQ45x+BmFehhjp8SSv1DBWMiYa4wg+kmLz8TwDxn4359EQvrvJNMUhzG1P7PhEYwaybtPmRUWkyMj4SYirZ8QDqWCjanzg7vwTaQD1FKieM4+Pz5xvn9iVNRLHx3AqKKgU8ACjmMnCVLSQHWr5BmAdpidimhLhHytQxuzulsXD87fhSevtGk+8OHEz4PTXs3AWJlE6hhpTDNI3xh6PNbwXqibFVrMxWog8RG3iqTQ7DlVjDPbJdKvx7cPzqWN/JeSLZBEejvKZHSiZROQMa9YX5gHNF8/QS4NBO4xGKcPeFmpO2VbRycN+M3f/wDf/RD494cZuHplHg+b9Rd71tZw44xFayROmlqPXWGQjfkcg3J+Pz5jr3c+fC7Fzh9wFPFTOEY+c/9c/zu9Q/4/MNXfrh2rkx21ztYc2YmNYRKOUqYTfa68XIkvn668e175/k5U5KGnKRKWmApLt9DxCv3FUrhndkIVoTCDpiFOQ7VjA//EmiuzS0yNpeKCg92iy8/GBJlSTMnjN7U9B9OtcJondkGlsPXxv2xjaoEiYCDsLbQcs9YH+zZUPu9zjCBLOlxnqxBjIYsKRulRrBBObFvmUuG43qPBjmmC+a4NyRPywE26tczUgpnN1KSdD5ne0iWjqMhoDsGlCG1Vmy9VpxqlPGoVeJqH6D2T3D0OJu0n5JUO76lWKo385AamxmtN3LUDsCD7ek+H/9P4MOP8zblTJ8eQ0z/yRBNe2AJlsw6xywArZVaZmtAFOfpmEopDgRDUIOFlIi3a17BNjKMJ+q2ACli708mVcpiosizcQZQ4Q8fKrAgjuuqaipRusUgIlYqWRJ3scR1vpd1Tk1n2vo88uuZHgFCCLzxuPZHdIQOlpD6LZaXLvPoYSSuj/FQaCyPK937onNmdgULpBhMLFAw0s1qidrFYhMOgCLlvB4IWI57luPc48HigZWw91YPxN3Rm7P2rrCa0M8OJl2ksEmCnh5A04wB5lqzGuInIghO9yXWTLaV9pb0DqcU4FIMFeKn2mLIRu8wpgdQtN6fNZQqYHFmkUJJoTpvLAuXOOsS6mOy6TxfZuU5BYCfxfoqlh4pb2QL/FR9YUpGby3YsEkJv7b2SuLZ+7pxj3/lvPaOGMhFejY++Ft/49/7swso/ff/1X/0+31uHG7cu9F8Y7DR5saXnvh8GF+umlA+75Nv3218867wrshUVu78YookD3mDqdGeQ3SwiVDdWrRxL+2ogE/n9jppOUHZ+fFl8OtPQl8/vDvzfMmU9Pbg9pqoW9LBOHOoVozXw7l3ybqSC4hoAWSN2cOYLdDTOR8ytNYFeG175fnpxDfnwtMGZRJNj1Or3nQ1PmvDWwVrRHCWTAlkO5n05gMlqvUBt3vj5eXOcb9jphfEgl0ijxa4XC5s+/7/QeCXrCCZprLLqPp2P7iHzC0Bt9dXjnYwV4qMC2i5XE7sdeNp36llo+wnUhXFOkXTYAF+ZaAfN4o5WxKlVTHwaW3vZJNmuaYsx3ybXF9fud4OZs3M5JxLZk+K552sSYc2nGxGCbqxw4NmugzlQLpdB1p4K80p02wfigi+328kq5SUKUkvuqQXG1YW5T68oMJMLU0VoWPGcxyd1u7AG7U3lRSbmJEdSnKuL3euc1Cenng6R8GJYZ7k04TMEXMqDyDMsg60GWlE2jnU0D98YixkklPyqt6VHPL8/MT5fFbFHQ2emBBOPw4cY9tOmtrG5rsOU2JtLCPnBcak6YzeBCi1g61ujDm5vrzw4Wc/I5PDQFvxqVZrULSDbRI02JxTeGtNjXjClbhkpFlf8KqBPxoy0YeP1yuffvwYIAJspcqnB03Hck6cIrlOl2U/uXfAUKFqrgj7gZILZ9DER7DLHAEQOReGm9Z7gAmrECmlxD4Ve5DFM3NFgDIHt9uNfjSBa8EOW/Tf6c7ROrfXq1KJ2sHzk56bjOz1TOKpqFlHDJpaCjOYdtNl2LmQm+VToOJxBnA3go6dyanwdDnz6eMnrk3AuU0gOXnCtotxWNNGOe8kMnvZSUX3d6uVVH4CrI1onkGg0pjkWmQSX4rO++mM1qPhj74+hY8DYg+UUkJnzqP4NZN33Jzr8NfPW1TpOdeEZsY0UwBPG40ff/0973/+HZtlGTtLI/dgVS1qt9aHPejCa49JOUuWFxOw8pj8hIcM/mCR9NaYCU6Xkw7xrMS25ZNQStHPnjK49JLASxTZMcFyf8hm3WGZZ69yZ/kkLVnsxx9/ZNtkWr08ehaCLc+CoI1PD889GZzPqRjsHJR5Swlz0dJ9FWb2Vqgdo/N6O/Avr3zz8++oZWPbdk0vc2aYYalQ0k7ZqhI4UxErLMA+vIf/WZjMTvEHcBMLNBmWVEC33vj65QsvL6+cTmdOp/3xvhNMCaVBRe3kkoGJJZtDHrDAoLfr0Jeay5V4qGJS+9LterCfL5zOJ52ZQen/Cdypn2eryVKxiyVGeEbpWmUMnzw4Aq7nOYbew5Uud71duR+Tp/fP6rA8QgSYmJUHGD4fRuQgyZ6+n7vAl2SJ0eJ5Rqpcimu2JCCepPNwHJPtfBE4n35yfQ/JQZyzM6mxKNG8DN2DRMaGwDFjRqM2Yn+buHfIE4aRauH1yyuJyvPTRk2E8bWFVDXWeEmkqSaKJLPalDOjT2af+jfBDkharxiS22FUJA9Kl8Gn31x5ej6TR+ZkG6eT0Q5nP2WyFYoVrAoIzlumopROTyGVNMdqljfibUg+xo00dZ/mvb9JN+uGFeP6wx3PhfpcqPWs3w85q56Z9n3zJonbglLCi8ai6fRomDCl3iXf8FIp9ZVTNi7b4A//0Q/8ycvBy6F7+e1l42nfxN7MWZLEaCycqmc7lueHQBUsEocm/PjDC2ebvPvFO3J9pybJEvjG+S/+RX7+m/+TX3+88unqUAs16zPvpUItej4ejOSc2c4nPl8hfYVvvknsdVLL1LpNAswSBU+SCqpZziTPTEu4DYG/wULIblgpVPdgYJSAb1K8BynIb8YcJShF8h/LeEjkMsM6NZpbsVeCWVSNww/amJSy2LYL6jOSD7ILwPUUsuQ+AHkrpaQhbp9T+4KrCfW0mEKw7RvmidY19BqeKDmxFSMVAVj33gQuhJx1SZIePaU3DWYtmDLZGPMgtnAM1YQ55dgboj9SxaE9LoZYKl8mbxsoYd2xGMMWP/Mnwyxb7OC5Vmz8+VrPsS9nASny/tTevPq0FayhelV7WooG3gO4sGDFyDdtgeUegLYFYLd+PpH8mh51gll6hJIYPFLNpi9JWezHOD4tpJchJYsbvliZArHTY/C0PIHSAmd8AW4Ce+YMxnOUQha+cJaclNe1htfQGkhEYpsRXrzuWHi9jrj2uRhRySDLVyitexpHk7s/pPjLRkBA4gxmq8C1hRku7ygxmoe+t4ciIM0YHsLshz4v/pNaaV1jJPeuei76E4foHdefebwLAlBG1ERA+HbFWnv8E9/HF3Cl+/UIOnEXCcQXGG2Ed4GeXJxpfbrwEwdmhFhEPZdSWMg8euS4ipAjEmBWihtWS7ChY52vdSlQh6i7Y+hny4XNHxYN6/t5Wjught8erLhVj+AE0KjhDDEoetS/Qx6SKcV9QNe2wMyffpm9Ddh034zVGM0x+ff/5t/6rQFK5bf1jdaX+5ne4OaDNjNjJDrGfcCtT/poFBu8q4l3Tzvnk7FvUUfNLp2wiapnUsPRiY05GVuQG81lALxlwzLcjs5MWWlWqXI9Ej9+vtNu8u85nSu1oEMiScsf3T7TEr3LqBagHwlS4rxneoduyzBDi8cIy0ObUVDKIPx2k8Rj3wrvLhvnqkOh9x5so2ChPDZUkwt7UnIbXZuBpURZDbgpxt3cadE03m6d2/XO0e9KOQlzS5APUM2ZehJ7aMT3MJeZoiVNT3002oB7H/Sj0XvjWKDZGGqye6MUeWKk/cTT6YwZ1H2LCbQF4guavJkap6SCtOSC12X+BxZoveUEpunZYjaklOg+aLc7t3bgpWDFgmmVmFnJMXuGNifDBqdtpyZjDpmV50CmcX/QUy02Oze4hQfUbJ3ZDmmamxqBnMLYMRrxnHMw1mZoi+Vz5cmhO23o5Ryue8aQKavSCtR0pkCdVx/z8nKlTed8eSZvGS8C6pIb27bhs1OLir+Fxmtfd/pojCnWk08BArd2xKQ/1lSY6rWjQR+cTjt1E03VXJKvXLUWeqQw7PtJzyU5W94Y7mKZzDA7jHjUOeeDLdWOG8OhtaZGKSVefvjIN999S45I9sSb0aKiDYxld4EhI+flITQ7E3tMGdx1aGiCkh7PxMcIXwTny8dPuk/uYf47SD7FJkPvUBsdD8p3isQ37VHyhDKc3g6YYQTrzl437r0LDEC0+lor9/ud7XJRgWM80h5ylnR0urNFwzBcQBt9xBBAUjqPaU6PCceKuR9j0m5HAHedYkY+bYoKt/A4SCZflLQKrWhmq96PFcOLB4Wd5xbcwgAAIABJREFUyZwCqhXvKrB24mLNISNxZ3K7HiQhvtHAqJCvSebx26lyrjuzpDATFiPCXfsN8YxVTKZo9DO2b7SQJxZLHHPQVhqH6e+uSbX2Ze3P3gd125XAMlWIjGCCYY6FaTRRNC2za5szps/S608zXm+vpFp0rVOygbxAo8fULkCCFGsuRTJNPCsF0MhkM4dRQkprQhtgZRRLHsOAamvaOB6AypL3mKmxVxK80sZSXvNHw8Kzo/sQ7BHFT4sETAFaKgoTasJXITiHiicsfu1hhO/aP3vr2g/Q5zIbSrHzzOYdXDGzOTaticCtPgYHAqKO2ZnDyfuaj/IohCbBGG4q3MnEfkDsI+1hhv34N2KT9d6Dta/J2egH9/tdwG/c55XwYqx7ysNjS+wkArBSl+quYtVWYhuwpAhMscsErKmwjKuhHUew0uMHxO9rnYR0KD7Lqv4sS5LQ+kGpOVg60SR1wmvO4hVxGIPDJmU/8eXjC8fRQrKtC3LCiyOGICmkIw8z9wCoEh7nxRtQnZMYjFYnxRPeJXer9cTlMhm3F/rR2PeKk6JJQxKiAuPoGrDUTLtNUklYVqFMc2YezCnm7GoIbRb5fsR0vIfU6vz/svYuTbpt2XnWM+Zlre/LzL33qVOlKutStgvbijAqjNUwESZC4CsNHBB04GcQ8A/Ez6CPA1rQoOsgJBEG4QhjC4xdqHQtlapct3POvuR3WWvOOWi8Y67ccpeTEadKdbQz95drzcsY73gvp8RXv3LmZ+9u3NojrwuieCWU5hjFeEGM45pQ3DqOdajZuDd0bjZI1pWUipMZ0GHYYEPnztPpzPKw8ZMfvuOTr574ybu3PLShOu/zxunBGTlTQoZjA/KpKGWuZsbthudMaRvenXHTu7K8wJPSCIcl+tUpaWD9Tn2onL9yZt8d3zucHc8Lw3dSuwIVLzcsnYAOtjJSIRH+QbZrLYcfJF5Qeb6p+WgFTl/j9Tfe8Su/+i3+9h9f+B9/67u8fb7yuz8ofO3VmadTIX/9gVTFgvcU+6Rnepk+QE7aDaPQfCenzHoy3o0bf/Avf4+H12e+8u0zdv6LWk8Gvv4Sv/T3/zP+o8v/wPie8Sfv4EM+U1yR5+vufCjveX5+i7uxo8n9+pVP+M77G+vv3ikpk4DHdWUsO6nqzKqupLHpFUaG0gRMjx2Zo5dMsi7msi0s/SpGVCn0W0iG+mDsmTIyxTo3q2z7INEZQ95z3Z3sYveUrPNBgM0iWdM5cdsUIJECNHrZ+Xov1SyATcl+ynBuPliFTWmv0qLWf5GD6TCC9VTxDPfNaQPOVf5twzUYfbKVtkUdkDQcJhJNhdCYiigf0XcEWkw0rBOMHOMlnRhCJpRj+JwDzB6yxyiOj0bONUjhAdQH0DQN+/VPAARxdk+cZ96pYn8UydNyJXWQrDACNeLOnCC/7o2Q2UUfrDpQ50vKMehMCTdJIDXskCcSrZHToPfwsk0Bdgf2BEW/zyyPopl+gQo1a53DlzSbefS/Sy66l7JYIyVlmguY2ppAmuGdbAPFmYzwwJqMEf3epUAfO3mot0xxh1kpjJHZW1PasUn+23qnb3oG3gZug5oKo3TaDql3eeQFCIY7bjF0DUAuRFWQxrH/WrCVpmH2EUcfGENvLZ55I3fVsrksDARK+S7G6mSLebLj/p1sctU94eGDgBUz5A0cx1syEQgO1lcoFSRp62Ecby/1lQ7H477tPWrtHvLKYUqhNN0FuGGIOJHTpGjrfmhhMt7HHmBLsJYMNIjRPtK8YLLiegSZIBmsJzxlWtuQrbvCvNwQaJ8QGST25zjS+xI+A3siQVAeUbPmjD1mxiFHihPIsZAZOyBTdc1U4pnb7Cn0/ce7cHsxVjd7eY6e+DfBp/+/X186oHS/w607e6pcHXpP3Hugq6PzqnbenDKPtVDDsM/IBJOOEZO27ECGNAo9FmYpxqnAkrIWeNKxsPXG3Tv3Jorjh815+/6K1crrp0hwsBzoslgqacpufBz0tDRTfDJ4Fio5rDHIuEmek8eC206t2kj77tz3oJymzMOp8LhKfjO6DJ9TyezDGX0nTndAMiByZEsEWNURuj/6gCTwart3mWWPiG6+XjEbMix3TWmI4pVIGZk0+egxdbiquiZboaed+/PG9XY/NmsbO9sWAEl4frR9cDqfWZ+eWOvKknVQpVTY4yen5ODtI0Rei3S4pFBiusRAJ0E3HczJXyQct/3OddvY7jsjZaVLmTwBINE9Emb2jTGcZc0x8BN44ymQXoHAFGJCMgbe23E5btud/X5nbJJ15CJZCknNup7jC0tAIZvh62KDtsnM1SxhYzCa4207DL8ZdlAQCfNkG4PL5ca2D+rpxJqNNRc6MzWrHk2j967nH2/VQayV0cEHbXRImev1Kr1tNJEDMYm2+53RGqd15fSwBnNeIEQhQJnwClgWsbJ8rp24hIvJI2CEbM5beFyZfDV8DLY+sD4o68Lbd+94eHxkXU+x2AyS9tI0i53+UKJvz4m76K9jyMfAcwn8LSi589KKKVaOCNv3b9+pAMw69B8WFYQFAVVHWpfpvXlcZKGiiWmHBeDaKUVU6ylDGb1RcqLvjWVRXDT4kaSmDWuHmX1KWqu97TKeN9j6To9n5bs806wYME2Jmf0p97Zx37bwGRuU08qaioyKrcdn1FE9U9AmU0u+AwJzxxgCCRJ4H9qOwdjJSe8gpTlHlEHl5cOFvQ/qumitFF32p1woZcHaTmamrngA/zILHkcB+NFZE0BoN535jEHBlKyIChZQ0TDTLFIUE4b+PB9RoedXspf4YUfvSB2t4rYFZggonACU5czt+R5ME2Kt+5+Rqx2sMqJWsRfq9WTl9S5wimhyi9m0gpnfBER8sA9OeRHo4WBd4OPcFpO+PZJkTZ4mTXruSy2M/vKJtFcCSPIxgZUwLM9J6SMlx+cWQ0FMRJl6y8xv0HyLYkR3XcpVa9l1Fs/UlujvDwPXHveBQDrFCI+YnqYDNEbhBzQ6jvUwv04uI193sos5qeIz2FNR6E1wcpjSdHpv9L7Tdska3QNgT9Myk0jaQf8u3tcB+pg2u03pSIBGvetnCZQSW2sMyXaspqgN4Hp5prVX2mMjpt6Bhss0espoo3mIGmVZEtdLZ7KMak7s7vQwSNYx43jvwSIwzqfK5/vOvjWWx6pmUDdRrIFopqPRsSHJvMBPAWTTJ0kA9Y4HK4ooQj1PkCZhy4nLcmW/3bGnxxhgjKMIbfG+W+tQi2SQe49hQUP25wWzSd+f0/JEz+OFlTEU1jAcXr1e+eLDhcvzncc39fid5H8XXz29MCJM+6W3naUUNnf599Usz6PQvXmc2d51PlTEUvvq11a++68/sKULbx5WfECug5E6yXfSG8d3WAya7xoeUah03DI24vcqMB4a7KoxRu9iaC4Z2A42Rxrw8HOF64/3YEQ7KSRt9E6fXlHIJy+NhtlZrEpz8D2ac9UgzqYhASmawootr1m/8g2+QeFv/Qd/ic8//8A/+p2f8pPPr/zL733Bm6dMfUwsNZFriabP2B3MNLIZ1snV8V0DL+9OKpmHc+X5w40/+p3fZ3n1xNO/dYb6C3g6CZn69K/zy3/vZ1z/t9/mf/3Dnd//rLGR8GBfnpbMfjfa/S4Zmw/KeMDrid/54wsP3infzpRPNmpascWgdPIcEKdO2mUcruJfbKqdDveh9x4rbSmFvUtmvSwC808Dehq0LnZQLXDLiWtPtGLQK9122n5ntxIYcGJkDexGKWRPrMumYVmfQ5xxrG1zMcDXYeTs3IbYqDaMZkWeYvGzexqYDbKHHCzu3OGDuhYl2m2d0Q0WvRtSIi8Kt7k833Xulhd5DQ6DdEiGIFhh04sr2Jp+SKXjb7Upw5IE1k091Iy6HzN4ZB+kPAF0qTWI332E19px3h01fgz0InyhFDW6hhha078J4/B3mvfXZImlJJ+i6RtVSmWegLLDEPNRCOl8khnMSbmr5kMeWc1lYzHVHqXoPLFcY00FWO8vzK2jFAtqUjtk9haEqKgF4hmWIsWIhzRS9YyGtDLhVl07peKgu60Tcr+onXIqYGIF1Wz0LpbymgXo7ay6C++bitfe5d1FI6XKFn6tJZKsR9zzeqdK+raSZYZ9MJ/0eSbLyj8CLyzkgKMH8JHizhy7PCJ9J1mVB6cllGgZsrDJUDcxXoXbefDWVLcVBOqaxSA4JVINH02P92To55n6RzuqEd1dI6SdoCGR0ml1vuHE+g7mmTemx9cY6jrkZSUgKlclY7cwWPI0ZYVqFjIWLbO+x1LgO56OzxrIDDMoQrZwYlsNRIYx5K3nyaAL/NStLhC0ODF0lE/SeFmRTL9InUPaSylqxt4FCs+69SjEPvq+lzpavYf2dvS383L+Er++dEDp0oybZ1qHy+7sTaaOj4vxcKqsa2IpicVeNLUqhOWBZJ4ifScFMi42SzKjRFLMNqQL3fvgtsHt3njenGtvtLsK6WUtrGuhGKTUaCG1IqmIcUvcuuGmg8mTIjZV7Eux33zQ4nwdUaBi84DVZ9i2Ru/Ouiw8nAunmiimAnWLhTjjui18YAZ+SB+SyeMgeu1j4j6Ho/I0UuzmbROTwZI8ZMwTPjp9dJJJdpNrDhq5gJ9cZXBdqxJFaskkBtfrxuV2oYVnjPchts5wmQgDGCznE/V00pQ4F3ZzsEzbN3ouajZpSl0LiulElicdsPWm5rJLuiNtrQqB3nb2tnPdtgCc5MmSkJ9IzCqoiMlidM7LgiWj9YbPOPiPJt4WABboYG+7pG24M+4btne8D/JpOSZJIxPsrXw0Z7o+IdVVzLIhJoUOjAZdqTnDexhEDowc/hnyg3IfXC53WpPEoJ4WrBZJwlqHrFQ1GSY7re3B2Agt+GRBoKmdjFY7O0oNGbGmtrZzvV5IvXM+nXh6etRnjj2USgnttA6xtBRIKZr0WbDooU3z6Bb+UtLgh1dCgEsCrU48Xy6spfLw6lVQa+OgdZUBOb2YIU6GQQ9ZlhhQKmprUrHlH1G1BQIKN8Bl0nm9Xrk8PwvQcZQGY9o3pS7gTq1Vaz/NQmMcxYKK+uj+EtR80iWy7YwsFkiJwkx+U5nnywfq6VHAR4CmkotqEtP2Xc1UyExGa3jvkbTXDkBrxu2aTe8lO4CDkV3AQFYaYx8W67gHINfDtHeiOPaRN0xMTMYAhrxcXCBk2/cDcLEhwE1eAuA2eP7wjOVMSZXNWzQhKaZU8ooY3RltE9DNnGAWab3NjqJkRNy7D2dkMQPbvtO2JvDZlWYic8h++L0ZdgA8FufHBJqnp4SYGZAGKpaDMZfMRIBzg6QLfDCChWLcLzdef/oGSpEUM00K88udpXt47vj4d33Qwktoeh5pBTFdEPRc57+MZkMR1/kFKJmSWIMaf8/ojd4GpSoe26MAIQA1xdXrXcYRKtbHEFo+PShSthfquqWQm6SjqG24GpYoymUWP5ubkNdZDjZL+CnFpvNgi03DZDH6YC3yFTJvOI3mg5TLi6/A0P4aqbEPIzePdxfRyJ5ofQOISe6ghoVAb/LDG0nPuI+Xs6ndZSRf8nK8K/dpzDmL0Y/rhmDcHOaoHoXgi6SCuMeHK+B5nkt1qdyeN02N5z776N4/gL4Ab0cwRifQVWrRXgVSLpRhJFMSYGsjmj2xlUV6H2Lh3K48PDzEehJzlzGBxRcPijEaw9UkOpIygxgVevcqbocT93EYwatuJvfEqWQ+XG5ctw23GEyAGMndKT4Ylik9QdUgq3d/qVu7PGK8iy2czWjsqqV6pOeYATobS628eVh4fv/M08MrHnKKYRHxmSfbKtF8ULpTywLWaWPQUcpcdpk5tyF2UNAXyHFWtdzJnnh6qLz56omffn7lq58WlrxTS9UQBSIa3LQGkuoFr4l976QKjMwwDfdyTjR2JbktTupgi2EPC367Y96VpnZaWF4l9uvOfrqxpoRXMahJA7xinkMGt6oepekfn6lPx20fNZjY70aB+nVSeuAhPfCtf7fwH+933n745/z2d9/z/R8nvvNQefO6cj4VXkX9QXKsDHITwL6P8NjLkNvCNLPPJTEeNn78+Wc8/LPv8K2n15z+3BnSp2Bn1ea/9Hf49t+4cP3sH/PD73/B24uxd2Pru55BsCnu/ULfC77tnE6P3Cn89u+9Zy2V5d8xPjUjVcITU41VShZDPQ/AzegZzDP37PFeCqM6uRVKFVuvlszo8tTMDFIe7DOxK8IJtpHZ9iRgwDNp7zRrgAzvBZJucdZX1lrp/R7JX8G2xmhpAIltKBZ+McW4K3VM/1hWYlomx10IM6nTiVdOJmdXutc0YR67QJg4v5Y1cb/faXsnh5TPUZ/S/UWKr3MhHez0CSBbqtgYB+PW57DXUhge65/WBKhPmeuRVuVqwMV49Ri0WPjEpaOZtnlvJZsXETORjdGOuosAw2eqp3qW+Pe64ARyDAX1WDbVgnFoyRNx7gs77moz1bGpKjma3uKZNw2xA2wTOJHCPuVl8JBCNjuHz4bSMQUIaSg9FQA+epiiv9iHjLgXBSoN7ttNZ18MVKdlyZTabd5JQ+u9pf3wHpL/mJOsYMOwNGTq3wekpN6sx+Ag6feRx6PewRESMf14oq8uGGaV4U2fJVmwcaP/Gk19pFYSORVmIqB31QQMDZFSeB1m88OTyA99/UtC9eGbFLWUBfUsJyN7isRa9dTmRlkWDcp30LA+FAAf3Xsa7EU9NFSFjTHCj1XejZK+xgUVQIt+3kf13qyncomPPYIEkOXJi/pAxqwnVJN2l4xOQF1YUAQrP1sKmwDdw91HiDKiPkR+qZkc70YfpO+q7YeJBe+jh/VHAJ8qA9SD2ovJfVSMYROh2mzM3zf+o/cAwaIOEovsJbnxkPx+yV9fPqB0N644266mu2TjvCaeHjKnItp9MiC/PACzRLbKCM04JkPdWgzvna1rM/Zm3PbOh33j+SpD4W1A98TzTeBVXgqnc5bcyozNoQ6jZP3MPhRVvw+X+XSKeOqjUjJIOlCaD/pIGA1QElr3wejO7T647UodWNfMw5o41RdjTCem6jEdSKSYMhqdfvgNuY+Qe8SUPibxMxJ73zYuNzU2911NYjJn7PF9k96XtGqkSzYodviLTKlPXSredp6vFy7PG1tX0pO3TYldQZeV0aaRlwVSlpFgrVxt57ScGHSxE1zTPcOxtWriE4W+4REdrcNJ9D/R+TODaoV9iDWx3fdgiBU1OBiVDIHYrkm0cEuDNa9MM7xskufIbT8dl2F3P/yGWmuSNbTG3hs9/rethZQzNWUZ5JlSkFSEqUl2A6tVkZ+tw1ARPbrT9nuwa5qYVtPwMSdykcG7e+d2uXHfBL7U00oKTy4l3mnPbPudksvsI3QQNT/054q8V8N4axujNWqazY0mD/f7XcaqOVOXEx7sL3llRTx4HGbJ5BNlEJMnGc6XYIr0SAHrIeXTREPeN7gMv3POPF+uGInXr55ibb/IfpJpOiJ2VDR8s3iIPSQPo9B6o4KvdYTRh1EesY9SGDRfPnzQ+7OQxSZoo7GEUXbOSjxxVAS18CnLsTYt2JKg9ZuDQSU/2S1OxQzbznJa2bY763IiL6u+ZcTejbZck5k9gDCXLCnAMA8Ghge1/pi0zP2NH9OZtS6YxfQuUt2iVyJOJRWeqvY08QjJHAGQWfz3CNaXB9OALNnjlHHhTlkKt/uN+9YpDw+4G9USNWfJhSyxR/GSloWRNWGkxfTOXorIyfoYe2O0rjSdYOVsYYJvKclDyuy4CEuAVpZmESp5I1lNT5teBRDU6hcaNQFkTaDqsNI2AYiejH3f8WGspzM19qaUYbNY0UOdR78F6Dm9HfrWjmS7BAegN5vfeJnMiafOFj0zj0JM4NYsBEySYPQeZjSxwKLYG6ZJ1cG6cgMfYjNZ7IvYY5g+59Ya60yGS8HyiOevGsc0qMmJXKAPC1mkQ9xDI4AbD6TVgW5qd7Jp6rbmwi2ahd5h3xvVwwfBplRBAI73Tr8PyCUSxzRUmT5bFlNfp5Nyjd7DXtiKATQTZ9R9b9zbnbrUoygSQyhFDWHHu5nnldmMdn6ZNOKTITjm3EPA/OjH+1jWlftFTNalJMQA0DQ+UKqDaZSOhkn71keYIgeQZZN12R3Co+qobS1M30djOVf22+3Yx7O5MUx34wTEEaDaG5Al+zBLYpupklZCUwyz+thibTvTTw0XK2X0C9frjSA7yIjb/bgvFBICjhiW/d4pi9aZPClkpp1Ih/eMTIuhxvS4xzTXcc6PlXeXnXeXzulNORgVeEgr0drEJJcrrQdVbnA+Fa40fVDXAMzjwvSs7x8MdiTvW3Lm53/+xNv3d/Y7rF974KHC+ljJrvO1FCVZwaB5YjQoNXFOhXQq8vEZTqqZujrbGLAbLJIopFJgkQxkDEibUd4sbJcbl589YzZIY4l47ysg9gwZqOB0rF9xKgo9qGARfoCYvJaWQCHkhUl6jTE4f2PhL//1nb//gy/44U//FX/wxZXv/jDzyavKq4fK8vOJNbm8H03154hWKLv8lYpCZykD9gTnRQysP/mTn7D+3/8P33x4Tf3kV0JytZLcKH/p7/DtX/0BP/yT/4Pf3BOf7QKwRwuvyFOibTe2fTvOveW08LY+8o+/+wGriV/5qwtfq4m0VqzIx3C4HQMkJeVFI5QGPTncgc2xRUARQzWI+4j0Jd0Neeh38yHD/tUM9gxZ63TJhZ4TbRi+L5h3Bfj4GiwZGdOfS+G6bXqvSWx0hTgkCk7vklbh+rxbz6p9eQFrcuxgyePtYNAfv2d2lA9RUNbrPPPRuVmd7XY7mLK62z2G2waEOb5B7xpS5VJ1jmWlZLZd7IwjnS3+bh1l+QCXWtsDVNJnaLTjnPIxB/vhTeOT+ZSCSeIH4GXY4RdTSoAcQwOjETYDswYacfc7IT2d9/q8X80RmSC8QkPyKway+P0WteVwP+qDWpLOqyHABAzrSlvzw09v1qrjqPctPsNMAx5tXvJgPR13uWoukRyIcJQeQ459iG1bkst3LTzAdOfnaDEj9j38q5JpoCiwz5Q65mKcli4vsZbF2LWe6N5Dsm2QU7C5Xkysh7145uqOtQDH2rwd4+70AEkG06/NcEmbAwideXfZRPrwl1XBlAWOsN3IsR5Uckzz83m+j2PdHBYdaAgyTHss1SCYzHfL9KjUWmX0F3DUALJk3DZ9jSK9bl4qUc/hL16Sx0A2atRE+Hgl1zq12b8aNu/wwAfGBBeH6k0GYY8QZ0SsQ/X68zaezLDJYg6Tbpv7QB94SlO9qcbzuO21zyb8Gf/pfvSOUlGJZTnlo6Ae+HjXpNkiMIdxsx/pE2n+kr6+dEDp/eZ0G9B3TtZZa6WuFgePkMDiohFm67qYTRM8TAhpSc6aYNC10INq5u5s3bhvndtmNM80G9xbY+twypnzUihF9G73RC6VpWgiZ2NwR+bWI9gYetB+HNjuQkf3MUGe/XgZe+vc987tJvZGLpnzWjmt5aWgN13aE7hVQgzMCbabaSppKRDdjyZl4e0whsCkNga3+5297XgnLgo550/pQwrWymQx9N4pyyrK+ujk1KUD7mK/3K8XtvuVqMLYW6OPPabemb3LQDfX2UgZeSmkWih1TrTGISHcI0ls9M6e9Cx9KIK1B61f02uZZKdhmA1NhXvnet1oXeabJAFyJRcZdAooDrmE4iw9JkGg9ZBt+lQcOxjvMn0dXUyGtu1sbVM0fTQzaanYEF10SviSKGJ4NFkpizFio9O94RGtue+SBuK67NrYmGbXIgroILg839j2RllP1HWllERBE72cM3ZSKlkKSQYWEeXRDDACoQ4ArfVGG52KkpEaUMZQ0llrFNQMWZgIT7rzZKQoxUdTIotiXA2LJGU9GBX7vouJNHog9SjpbQxwHer3rqnhz336STTduujK3AOlIL7Wy6WRcdFvHTXWvctPi/Ak635QsydyMFTRgcHz+2cBZ4T0JQfgWIsMeEnUddEEIi4C7x4pCvGzxnip+HBGTDsc7a/sMngslth6I+XCejrFZRoHedZFPpkemsp0DpPWqVVkUngTM+Z9mhcCtD7kl9CU6mZZyUJE9PackICeiacpS9JaDzWPpAuh/x8BSkyJDzGp3bb74SuQIxXr/fsrLAvreo7pSNHPEE+b1jvn8zmAqCwgLz5XmkbFw8UAHDv7fheo5Ep/E8Cizz5cn6GUgqfY49GfizatYATSXLPz9xY1uoUP0VFwArszg4rCiHIEyJoo2bi8v8jjqlSyB83aUkyUPQwjoyAOIH9W3fJ2U7KW5FR+FEtjfs8BXug89hYU7ZBZzinXNByfQGMui9ipVQkhZhnLfoBkCTVM1iVxbK4YcBmmRipPFNLX5+3wQ1NZCSmKiJIkEzkA1Dk4iTUx5W1jylFdsh6d8RYNhmRL0YFoTbmYn3v47y0OLPKV0XPT4MBGAP+1YMjDzVKjUHGM3gVmpJyh9SjmBIbO5FRJdUJuF/50k7E2v2Yc9QTkcDVxgY/H1C78TCJxyQMIy7HeRp4gYZK5eYLnDxdKlihHoQwp6PYB6PGR+Wcq9JHAcphEz+l8NDzDYXR8bDJGp0s6ktToP33yis/+9VvadmdZFia7DZug64CkQtQ96Z37kNw8F1IptH0TiObTtF0iIVWt/XgeA8NKJS+V7X5jPOh95GgYUl7wIm+aYSMKZ6cFy4XJCov9YK7BUA75fffOPnbJZ4bqvpEGdkqs58zlcuf6aqWEJGQQMvh4VqB9us8QhwJLTQwKbQsmZzAnceEzPTxv5HEmz8DHp4Wvf+PM5z+6cVqN/FTI5wS54E3PtFQ1n+4wmmPLoqGQDQaVvm+QCrlC7oN+afR1YKmRdjvSkRxkktwT9ZPCh+89k6rz8KpBqXg2vEUQeDe8X7HlCcYD7pIkkoHxpDMhZcwqWMHsEeyBxMDHhqdX2JJ4+voz3/4b3+TX/vQtP/uw2A5wAAAgAElEQVStP+HHX1z5zvc+8OnTytO58LXXhbQ6ljpWjBG+ZjIuDkl9abAXNSWeeaqVd/vgj77zfZ4++Rd8+tceKY+/DFYlBeSJN7/6n/Afvv/A5be+wz/5sfHTm9EDTLScWPID2+VK2zuXdAUz6nnhR/cHfuNfXFirU//tBz7xRD1ZnDVqwjpNtVwyrdnRqclJS6J5o+9A0f5lz+TS8CGmUcsCeVIw7BcTcG41mnWHNqBnWWwc57iD9agFTcyhdNLFcrnvQKVnD/mSJLlT/5KicTZamOdKtgRiJE6uhkqOOOMdxs4hB8IQ+1y0BtVeJoA3heG5WojwjACxR0YTDJW1GUU4CMCtG2TdPb334+6Zd/GsLwlgSICDs/dGtqgncgYPJcmhPIjPHE1pykYTxqtG32c/9VInSKYGaaTDc9HifmljD9+Z2by/2HRM2AwTwDiBhDkYSHHnu4+wRYiaCLBcBGKMHmlgaIO52OXZgsll0ytKgJnuKa2/yebZh0zOxapKR7+Y4rwSg3nKofTsBlGLeBXrO8zOs2kYKSPmABitK5GxFGbSc0k5ehFjT528q9YtZtACBBkB6mSxM7MJsH4ZPRjdDGxaIQRglF4Sdh3DTUC97nkNmN3Cr48E3nHv9C6/oR7+S2PWIQdDh8OSwIMNhaVj4K9y66hoSTaiFw8fNLO4VFRHaGDb6SbgZ6oCSKZPO9dLgHLT+sX8RYY+PRrlBWlRT/Wjt51r1mOYNENgSJMlr+8+klVN5wxN9ZOGfDHcRQCPSFKDOWg0BEQdg88YWhIqhWRIKeXB8o5n8nLJpuMkOfZOgFDM8yOIIAL5Au4L+ryA6kEKO4H5/mNrfalfXzqgtA+nGJyLcVoqeSlRKKKHw4hoeDAftB087+ylU21BsYXOBRWatSQWkpqvXY3xTmbD2VwyHHpiXZ3FjKXmSEZSzPzjetIkpg82Ensybq3TuyYL5roEZ306XOkdPgyPAVnzTuuD2z7Yn2WeuK6Vp1PhvFRJtOLQVTOkhK1iiYambr31ONxHNL9qim1OZtAGbE0R6r3B++ud+7aH1EqLJkViiBmRtpQPmZyHl8ZSFCXeg46bzLnvd4EC+35snL139l0yAzdkqFkKS1kZST4RtSxKp4jmSu+3klKY4AXiWtyDzTKxVBOcMGYihSjRI8m3artv3G439jYkxzIdICUncg05hyvxDJLMEMnsbbz4V1gAEK4CqdMlNdp32hATqe+Nvu/sbYOQ8qx5pZkIz+7E5ZGCNjilIJFe1Z3hc6MqHa5t8iky071NoPnJlATnDs/PO/dmLKdHpWVVNblt2ymlcDqdaEk+FZqQT8+b2QRpcmNoGntrO4MXo2sxsjrXy4W+NfDO8vhIqZUpNTQtaProaqzzlBik8OeZ104UaC6GzR4sgXlh7a1rMubjAO7228br129ChwxYMImSLubWdlofmC9C9Xto+qOxdwcr9aOpTyJ1gXK64GMChJ7F5X7l/YcPgnBy1j8pkS1T66o9lRKp6O8yMi2miipU/QD9cg6/GdOlrmFRNOrDWVKmm/bH09Mrci7UXAS4eSAYs+g1TS/1vXpuc4o2n+2cathHRRfxzEdvAiKyHYlpWlJDRc6YqIsfBcysuOaFeSDhUVxFGxtyGfC2h2xR0cclZ4UQNOP0+ChgA01Yxz7wLKZNiWTDtu0RuSwWoZUciR9G7/IM2ffGtu1465S8MnYZ++dSGN5l1OzSreudBkgzI9lzFP+xfwwxY0oEDoiuHXTuFNPOAF/mJS6wS+ul5ML9fmN9OCvo4NCG6R1M4+3Z7I/5viwKsqTUxRTphy1FqtZw2pwYR/M7WX5K4CjksihsAdX2JaVokGQsmhel4w2ffn4BIB5FVUyhTXTmHEy9+Z9dXTopwX270MaugQ1ASAMtFkjCsBzNS8rHeddxarAHe7ArUzQAoxSt1W1nH4MUd2Mf0ZjENKz3nd43ejLcV0J7iNIHF6bvlTAsrRdql8eH6x2eH878m2lCw5WA1loT6BVDCR+SaNQayIjwoePLo5ifKZIjaSo/UxVJhlEEklmKBk17Luq9KFAzuSS2+4VtXygFlhh2WNw5oDUkPwQBzN0d8xZStB7PqMWZIAlszlPqL9TZEnhLnBexFG6XZ8qykIlzpWiqMHyI3cLc94kxtGctxb3HgOYUE6Q4TM1AwdRLDYcmdo0hlur2fKdtT5zOC26ZUuP8mdMcizOsCOCZMgMfMXxB4N7oRsuFnFv4PSbyaGI39IGnzmKJN6fCzz6/8OF64/TJAxUdU8K+Eil1jBpsI1jIamgsURc1OUHj1cARDQ/UyEfjYUrdW0rhG19/4vnzz/n+Dz4wfu4Nr/ad80kyy+rGOdWoyTvVnOwa0EnaLdleao6vhbzO+38CkQ3SAqViozF8p11vpGLUp8T1s0Y6wTklWBZ8a2KCJ0i7kXPF0grjrnS5MScE53j2A6whs8jCIBhV6bXOltMnfPUv/gJ/89ee+eMfPfNb//ynfO9n73j1h8YnrzTkfASWnMkFjEGyTieTXUBmtkYvQ4mkblhx1pPzfLnwe//0D/j2m0de/eVX+PJNjBVY8PXrfPXf/y/4u/t/z/abf8Bv/7TzxQ499k5KiXx29ssF35172rGbsSxnPh/Ob/yf7yml8Mt/xXjNA0sVa8+TgRet+wALmHUkU+IvEJuykLzhm5OqqRHuYhMaLvmli5NV9WPll3I3coHMyj4auWtYNbhJquYyxk1VwSAlF7bN2UCJdGMC8Y1q+p13N8gdO+SY8sBJ5LjCx8HGEHBmGCHZ9kFxw72HOMPIRVJ3y8ZyWpWgd7/qTPfB9Gfz3iRH3ptsFiBA+oyRGU17NIdP6yHPMrFJRzA4j0TVsFwgTaaHDsWBZHyTATTr06PJdceYfqFxRcd5SUiX3ARkKC1NQ/ExmrweP7LYGGF7ognRiES/dJzxh3egw6HO8KShLBN4s6hHZfExa4XRw7+vBStpJLFKTWtsJEh0GCm8P4cGCAn2fTtAsDiF4+yFTIpBobyEJtgyhjNMYU+LGTFSjVowx52qpOhsGUvO5Bu1trEsq4CFBCkkwgp1GAfjWxLBET3MHEIYzRJmoewZ6kenT6sep8UdGL5JHr9RvMseg/dixshFYMXotL4rpMlyDEkFnjgx+E1RiyX97JwEurf9LsA2BroenkeTsRMVK5PllsNbs7kYlfP+ngCJAM0qYkiAeTlq0mFi56mnGbEuX1g9ZjHcQYBi5JcGCONRd0WvE6vcrZMDyLb4+TLFVl1niDEmsNBjYOYByOrZt6hvcvzUyRHDLdboZIlHLTRe1vsEmOwo/8Wum1Ypwg9emH3m6c/0PLOXGObya/oIp/gyv750QOlhgTVlziVDVROgtCxJnaT6HQyyvHoMzCruxjbUOHQzzCvZO3WoaLvtcG9wGcbnz3C9bCQyS3Eooo5KOlHJpin/uspPqLVOG/L2u3VJMGpSHHd3RYXPoq3FlHmms+zBxHh/uXFvzmqJ9Vx5PFdOOUdh4WLUBEDRXNrVlBL3aTpsosnPYs4MaUETdO8HNbM1uG+dy+1O3/bDYG5YJCull8NaHjEyBCYJeSylUIPO+Hh6pI/G5XZlu96I5UvbNvb9TuuOpSLvAR+c1jOlKsHNM2FCXMi1ylfGQWk5gdCbs9TCkjMlq+DUIrcwou0Mm0CTkWslUWj9zvOHZ4ZlbFGaSc1Z6UWlzIR7MIsCvDJ80PddB06uSp3xoYnKBFCGvH88tONt39m3nRYXSV0rVjKqNXTBT9aCDgo1ykRkq8W0vNssJDf2+zZvVEDyN4tCPwXGcN82AVaPJ3mOlEyuYoNRdcDu+0ZjBN17osV2aGExXfDGkCGq22GxYBYGhJcb2/1OH/BwXsUkC3mcpXTQbWfsND6opYaUSNOr1pX8wpjGgjJ6620PQGdGYhrW1eTeLzfePD6yLkWMBEOR1D2mNsCUPbbeySP2vYk2nDB6njr8OCGDTeO+HzRzgqK6t8a79x/YR5eBOXZE16+5HABTTTmGbnb4i3k08zWp4+5pYkHBMkh+NLI55yNl8fb+Aw9PT9Jap0SLlzKNZD38ckCffZpC0uVt0HalRJWi7++px/ow5sAsJU1Euw2e1pPeUzC2ZCUR68L5M9HeqaSYTvAyHYnLL5sMLolLDGDbJCvIWY0lOXF5f6EPpywL5HJMiYqJTdDHTkkTpbAAXWApAaYFnXwaITvRkCAzx31vB+g3hnyDlqK0NWIymESXirQzCwAkHQl/S5IXzdYHta6MFkydAsk7xsvkVZ9xD/q0AIjtvvHm00eKvfiscUyHiCILFRcucGv+sRKFZrak9M+jkib8MTs1iXU551i976S6kusCfVeBawK/cymQFd2aiwoqG/p97XjXSpMceMgitd/1ZywaeE0+J5DW9/1gCLo3uoO5WL7uM8kl4tmzAHkzCyZhYGJoXeaQmezIvDp1AWXM2OMuFnGLJuFFSqGpWMlFwFFKkDO5FIqLdaS+QEXm7vLrE3tsMoZepto2z48koMeMuMM95LTaay8pQS//TLZSsjlJt+N3tJAn4jPGV+CKZJbB/A2AdlkWru+vAoc9DDBxkpfjz8g0WXdLduL39JCL6b7vc6AyxwBZQJvsf8Qq3DClIeXC5fnC0ydvVCMm+wgkjeLxYEXJsHk4kQLklKLn1dtg9mHuiPlg6VijowmAStGgXy5Xzg8rnSH/r5j2jwAdypQDJARcJZMswkOqNqfQY5CLDtimrclgV8pcMCZOD5nTs7M979yfuoByz1r3A3IxzIvGQ2NjdxllpwZWLAYGMJIKeEdSq2GuusdQ7LxLlnd6zPziN1/xr/7fz3n74YbZGboz1g5NMfXlJBnTwNkuDVs7S3lk+EYaha3trDVYSg+Ffun4fYelYK2TFjVVxNCTK5zeLLTnO8+fN8ob1W6MO+MOzECRIYBZMXU3nQDpHsbBA7cdrKoeSCd0GIdNgxc8Veqrr/Dn/8rX+bV/7xf4wQ/f87s/uvJ7P7rw+EdfUM+Jb9rgaV1ZiEFkhhyyQp9375yPJASUFOf0AD99/zl/8L//Pn/19SP1Gw/Y8g3ks5ix8y/y5/7mf87f+vy/5e0/+5z/62fODRnQD2/kmhmnlXHZ6TZotlESnM4P/PiD8xv/9AuW5VP+wrd2XiUnyJpH7QNGGYWhB4X1nWTQSsa2wbjt5Fq5eSO1XTUbMsOeYRGmGwLDKL1DKlh1thapckWsfGs3Ss6SSAlN1ZGXoFYBJ9u2417AFbxRUw3QIB/7U6wEsVyGcAlIkKsFi88Y4TFHcnJySoaalfKVmNyfyZ6JPUfCemFr97iTB/sArMoaIQlUVYMcg0+X86ikQhpAKMMmwDvirAQsmOcpWDEtEnEtGBrJBNgQ30ewiFooEHIWw210xwP0aEN19Yh1plJSTa+YMpnWLRJlndH246z2rvGwUKGElZAWD476K+ZTqvWSSOMigTop67OlqJdqUb2W4r5WCJNYRGkMUql4Uv9gWeoJGwvmg1I1sHz3bpNkbci76IUkob88BViUrLD1LVLr0kGw2LeGm9QcEESGCJVyh5E1zE2TKdsHY2tYUm/bUqKUE0H5ZvcuJl6LwcUY8f/Kh+zdrMimIhMKlACVPkoDVR2aDmBB6Wcj/IGCBcSLFcMYslFQ31SOoe/wruFsSrr7hp7FCBsO3VXqB+YsVgvKVXN7sHdSMP4sauyUyEPrKaFBmyEQMoffkLnqotZGDI/Uaxy+SyPSiKc1jBNAUNQMliI0yJjHz2S7v/TaJsY1ftRrJYs57+bqM/jYlygGyXgMrkSQEEMspN6gXlVUu+hDXXe8f6yaiupBH3kWbOqxw+Re9cgL2Do8xTnw8i02SSZ4sKM5fucv6+tLB5TenI0S9VnPRkKMkpIS1RCKZoPRJw0sMTxxbyquGoPNDO4XmnewwbVXpcW5s+1wve0UN9YKS8l4SaRUKbmzLrqs66JJ5K3tMrh1Zwv/lBQTf7VBURx70+JPBR+KFOze+XC5cLvKT2mtlce1cD5VSixmudXLmtoCmJoX2RiwNxkHSi6SKLXgFvpRhJYrpWWw787leud2uwcoElGahzZEBWaOVCl97vg7syQFHagF1lzBB9t25367M7rkcL139vD/KWmlhRfB6XxiqauAsaWylkJJwRxKSroyk5m6pQYpseYc/15021nCv2iXI4bSLA6szt4az9cLngrLugAyUc4hA7QcWnwzPKI++xC7qKRMQ9RQ0Tj1aHoASB7JQ/LqEADVwvB8PZ8Ao++Nkldqgdac87JEU2yQK6SYWFuPwtro98a23djazmiKU84BDAgEAqyTi3PfO60bjw8nSs0HCDgaMkVeV/btjmmEQjGtFW3yWJOBWAuwigvOZuaPcW+N2/VGu9/ZWuPp/MTptFKXhZQzuVQ11tEHpzJTQF6a6ZSEsENM1BzavkfxIRCqI1COziHn2q7PrOcz9bRADbppLrTRWXJRUohJs5wtCXQIQCsNHaC1VMW7ew9Ap8vbKLKOLZmM/OLnvH/3lvv1whJGeqnI68cMpQG6ns19k2zMZtRrSqQypUzx+yY18T50qZgLwe+hYV/TwhdvP1cjn4KinVXEJdOfUfM0C6UpaZIZ8+5D32PGui4qfgj6rmZJjCyWVnJjXSstJ2yRybVbYvqfkBIFyEW+UHqIFl5R+ZCAvUwtUsiEDJrotO5KmqwTdA0Q5fLhmXJadZ8Mj4ajqKlI8q/KeYIGmoIVJjCJgMe4qpJHglpd8KIPk2tE7Lamc/2+8fT4SmfMNAiOSXSPwiylEsl1xtgbpKopS6yfBlhVJHEN0Ag45H3uBl3nxy1S8+qqhDdKxrrHtKcfZ6fAaLFJVfSrsNaZorPE+6CUWYbNC17yWw9PIBVUjVwecPe4WJPe0wQ9UwoZaVzyHh1Hd4EHKYzpJ8AMKt5dz6CPTkMMGZ3fRm9bMBtdUsMA9nx2Zu7B3pKMetYQ0yeqWEgkjEhts3g3u363KPbMDC9am2MM9qZz+JCaEV4C6L2OMVO8lGSmX8iAQtslnyplIQVIO/1QhO3k489PSUhvOqOn5O7wa3M/kiIdKIiROKuolLOYYwGyO12ygJTADR9i5eLQ2y0aJrFw5nMaMfU1JGtiDEqVuWxOHsOLOymPoxlWwyMJXAqp82g7iU5O0GJ62YOJNHCWU+bybsPbDmnRHgxJpDCGw4FEzUs2nArWqIvOQG+SdYMmkRxFpYry+1DiD9lIIU19//49p1dPpLOMfNNoGFVgYgwbpgx5b52Su6Ri4YEol1mlvI6mJj35jSk3aCHV6DQsdU6Pic++2LhddpYneQa5GbnIlHYapQ4EPuJdwyZLVCRPnB4RbbiaLnSmaBqldT1Gog548xXjK18/8eFzp73ZGCPjrbDnRNk7S7Vo/rvqmA9Gfb1Rc40BR9VeGRUriVw6+9bxpAIkpxPT/4toIPo2qF8rvPujK89955ygpmBHWCGfEt53fH9PKiuMCnkDP+N+wVMDO+t+9Q7eQ82Zcbtj3jB2cso8fuUrfPuv/Xl+8Kfv+elv/CE/vW5850+vPDxcSBi/9NVBskdYnNJCBpU6SdRNfJjWZEbgXnYWc/yV8b0f/5in3/4O3/p7P4eXnwv2SoacSa//At/8u/8pf/v9f8eHnvju253WJTu0kaAY7dTp98YtFSxtWCnUT17z/S8a/8s/ecc/WBLlF41lXfFlxPBZbP8Rjhc5NbEpukHfabXS706/b5RTZlwDXMhCgTJGSTKIGlkgai6xz+bZuCMWelI0/BiFkTfoDbxJttudFnXAkjKXW6NUha707ngBdqe4gRX6MhjNSD32RdyVZmgg6AHydq1pNf4aGFsWm3T6LQlc0W4vVSwjvxTaJqaE9QE0co4+wuuRWDu8hYfNju86P3XOAgyaD7GPhgcIBrjR+i5PyZHDrLspMj7MsC3uCQi2c4Dz5uMYMoAHs8Pmj50YfoAazmQ2paRBYOuNnItsJAaS1Ia3UTLDRjyraOwD09LetyxpVk7ykQn2cEHDjgHkIbbGVDSMEXKnWTf1pvS5FDL8GNx0H2QK7brLaHsAWfe09yAxBErrXWym3gQ2Nhpbb5SeuPldbOCseyFZpSQgao0UAz3HGX1jKVV3aLtT10prnSWfaCHZLl41vM0KvpkprPK065Sse2qkpnU3SjB2XAOPY/Ci/V/iWfQ450vOOq+TrGESagvaITPXWpp1VErp6KmZybJRl5GHDKJdEu8cdTuhdtBgxUNhov4nu/7e7kOkiZTIe0jqourMUXMnpk+UwMzDb8ynB6uAnSz0T+COzwFcj6GLwj886qjp4+ROpNIlSqrqR4DkMYxvPYY8WvrCoWN9egyMDDwVAbrByuq9izUeZ4QNlyT5KB/8BXHzGNyafm6O31cMt2A5k6K5egGK8flsZPA9EOlPuyjRs1RF841+WV/513/917/UH/ib/9M//PW8DKzog9csGdOpFmoWO0MeCzmQNEV0yih7w4de1PM+GL1wazBG4nIbPN87t3ujFjivlWXJ5JpZl8qpVpZTYq1iu9hQwtDz85VtdHpKlKSEOTOC/t/Do0YHzFpE8dx647rtfHi+s907w511qbw6VR7OK2suZMSeqUWskNZHONPr3Gnd2d2oi1FLJpPCKG1QMoHi96DyG20bfHj/gcv1Gg7t8WVxoRVN63MOI8Awiy3FKEXNWE6JdSmc18K+77x7fs/tfud+26IwVnLRGJ1S1mA2JE6nM8siw+iyVPKqpItplBtiEUBT7pITrjxOHfZR4DILqgDDRheYSHdFvW53vrh8wPLCclLqUilVlGXT4VxSfkHTGcemyybaohfHhEaIZRSJT30IHd6HwL9932XKa5BPC3VZ8DZYSsFzxtNgqZWZSlcUO0Iukjd5JCr0vbHtO7f7De+DGiyDPl6ms8OGDM+72GXnx0eWZaWUrKKqNx0Ws7EaI5pqTW6KiT7L/B2jSRtdABwm35hhOvQv1ytjVyz9w8OZp8cnHp/OAnrWNcAHsQ1KLUE/jcvXoVYV8du+ic3RB/dtk+fNPpPBJL2cANQw477dsVR4fHqkZEVXT3YEPqUGeieiDMPUxRPNWU7TyFJyUAz5pyCWBMkptQQ117jdbrx/+05T/Sz2VVn03oyXSQQBMEgWleQ/ANCD1tnHi5beR6wZpY340NTEgbZvPH/xjvrqUUBOiajb7mD5YA1MBkXNOX5XAVdLqez7Rg4QL6ccCR6yx5vllBMsSG8yPMxKIOPjfVYLSyp6X/EOSy4qanM+Jh2p5CNNb4QcaoTJ/rbfGWM/TBpP64nr/cbzhxvL0xvSIlp+zZmyzrjenRSGnSkXzIyKzvFJaU4hRZoSOxmpZtSDhh8A2iP7Ls+5159+Et4BSn5sseZzFgtS0zWYaV3JiujgFVrfSAVSrpJpTZPjkKhpGhMTJDOeP3zgvm+8evWaJaugOrymArAwTOzQ8NOzmGAN02W/96YJn8lfg2DbtB6svz4lhiOkY1AfHjmvD+ShdZYnQB3PZU4kYSZZjpC3RdEeDQg2Dm+jg8Gj0kFr1hu5JK7PatwfXz3q7Bg9vPkitfO4R+w4xZMZ+95j6hVrcsojXT5n5hq2TCnoLL6vbePzn/yU88OJ9VRY11US9rrEX2MRDBADg0jEmewKmf0rMKEG4D4ZSB4+Ywbct519VxF6u+60vfPw9MBpXSj5o7RDCABX7zOXCUZpr8yQi1L1WXAB6xZS2NF3rdImQ3kf8X8P537bqKdVvmaoRgAZ2LpLZqwSciAPNJ25AubSASjlHFII+DNArZJmjNG6Js658/z2mfr0SKlnSrIwNA/Qev63iQUCLvaDqdCsKQWjwSWfcnQvx6SzueEjPLvCw2N04/ndM6lklqrfcKmL2BiRTif2qkC90VV75LLgLrAwZQHXeTiMPXxAwn+vay2WXHFz0oAlJ67XxvDC+bGy1AD5A3rHOhlJjHs0LyUm1ilP/ykxZVRO5zi/MymLHd67y4+nOyUvpPPg+e1gfcp88unK+WGlnuOeqWpQrRs5L7TWFEV+0npKa2Pc1YCXqL9iUB9T/1h3048lQ78N8mNh3wf3zwb1tf6MVWJYsZKKwT7CL2meAfEH2OOEArgJCGWoYbMO3LGxQdsxE0i5lsRnP37P93904b4bvRvnmnlzOnFaMjVHQEsemBUUD4OAmGAPu4nBlNWe0avx9nsf+PpXCusvfAuzBWzRGkuQz1/j9aeQfvB7/OhSuO2NHfnq5GSsdZHk+b7jVjEGT6cnloczP/nZW979rPH1ry4sZ6dahqSfa57i7BPImCKhshYFt1ATFOh3sDWYhlF3eBhSWTA7zeY60aDKiDqkmJKrRlNQDsaLl47Si+cgb0la43vbda6kRE8bhJxfCZkTnAnmEwWzTHOXfUaKOjdl2oDbHU7n8tIcp2AfIoZyVDjxsyfjIdF6oxaBdtNLpo3wRmTKpsQKzSZPPPkEOiXrZ40AE8yQDB8CtAlA2AQqgcl2Yg457IUVqn0Q6VoQ0rmQoBMeO0l/X6Bex/BBd00/QPvWO6lkUpLXbJnS+FkTDQ+QPzqRYB2blWj8p11FIWXdle4ahOZgLkKK50EAfbI6GRajvpywPu0t4j4csbaCcXR4WMbu1N0ZvjfR93QTq1/EAmdaEYiZFsOoeN4ewGGKwBAAGy+m2p0mf6puqj2zfq7xwuZxU2BU1jSH3pwRIT8CAu0AWlJOkoS7hx/vZBDHuxpOMdeALDwaEmL8C1jUzpqEhukzlMI2ZKaH6cYX2aG3JuyDF5DUot4RGDfZ2PFzP7rHVK9I3VFK1RDOjeG7uHA24s4PAdkcMoZ1zUy/m3UJ6N6biXH6W8Zc3h+VSjbRnVh+I9a21s4YQ754eCgBVC/J3mKiqMFM9tjJ/gKw6mxT7ZNi2N/xkM0baUziiwXgxuFdZfPnxs88AHptqhYAACAASURBVLRp68D8C0IvYkTavdZbnuvSRLT5r//L/+q/4Uv6+tIBpX/0P//DXy9Zk/9KYlmKDr9suDoUiM3egW3sotIFosdWeL523BOeCufTwq0Nrlvj3iSxOhddjmaJWvVn1ixYsHfY7o3NO+/evaPtAyxzOp1Ya420rIicd3AX6j2ZQ1vfudxufHi+CoHMifOp8Pq88uq0UMNs2IKur151hEGk6Ky9j2iWE7XGJorDZhrqtq7EI4Zxvd15/3yR+bbPdjPhVY1mDlZCmih9HPBqrgu5LpRagxFj3Lcbz5cbt9vGtt8lQWsjUo88EqscUuHh4ZFaKtRMWU7UUllrPhazEltyIOxKA8pJbDIXRSc2m6YrezQL46MdWkvhcrtxud0o5zPUTELSupSMYpmCiQ6a50ZLMAS2YKYJZArJj+kS733In2oMhisFwZtMuO/3O6lk1tOJkrKYRTEJMtNkNrsFFbZIiuCJXAszIWs0GQ1fLxd5odQXY745And3Hk5K1rhug4fXT5weBMa5oan0kBa5psKgsdSTimcLn5W4YkY02mq4O9u+he5bYFLKmdvtztYbfr/x+PTIq1evKKVScg2j6DBsD/Amx2FVciUlTR8SxnXbdJhhtL3RNnmDtTAyTyaPFNxwS2x90Bs8PJyotWBZBVuOJL5aTvLDGj20u4lBsBQsaRoaT01pHTFxjcvKk5GrUktE3TRa2/nsZ5/RWw+jXHmIralgObGWyloXcl2hFE3oPvo9HackyfI6IySAHmy9JqCvdRid/Xonwf/H3Lv0WpJleV6/tfbeZufc6+4RkZn16KpqQICARoBUQmoxQIIPwEcBqlv9Beq7AAMmCEa8BBISLSaIBqTu5t3dlZWZnZUR4eHu93GO2d57Mfgvsxs1z0F5DiLDw/2eh5nttdZ//R98+eGTfLYerhQr1Kw7tSlB7owDR4VgORLlyGZriuJrRQ2k0nVQU2jaHPV5MCr0Xmp6C+hnpOFtAiO1vDVnxSTFMUuGxSFrdNjzPtm3nbEroc9mMMaGoTPQUxL73cePYiWujYZRTGeBJVumILBmbYUZuVUi8nkttAReD+bQiLeELE/qrmRrwR6Tue84sD5eGbuMREk/luoFjespnYySTbXYKkkkUQPklYKeEcvhKPJzqylQ0lophadPnyheuD486M9ppXbegzqjJn+5yfETXJljQv5sqwISR5cs+WB/zPmmgxcd3FgertRloR6F34GpweRsjjP/xz1k+k1KGktS0WNqA53b3zEkYRwh4NcIqutM+fzxI96M68Pj6QkVIXBfDYg2iT9urI5mbu+77tw08hwxz+1XrU1NsKeUCmP2yb3vfP7uI+/eP3C5XLlcLlyWB9bLBeBkSC5tkfQzkz4lBRv0/cY+dpUfP4C2YNsyjScZU/f7xpwd5qDvnX3beffwSF0qtVb8/C7zV9Zy84LXSJA4P7OLtRgzN7czN5U2iankyjl1n445JZ1ksPedUoy2VD2fWmefKYqlFF1bTNKWWiHq2Ve4N9z0vFgm7Mj7QE1l38XqiaJ78NKMl89fqO2Rh3ePZLHThrUcMhg9g8WrfBIyCY8Q2Hp4mxxnUnhhR3JErOp9WaHkcsKqM7ad/Xbnq/ffqJl1MZ4lcyDvnWDsklaYq7EePWWJboxdPY6ASLGy+5jygkovi2piEQhgC56fB20pLE29Yp48J7jUmSl1yEAQF0AmwFeMRAEGGpKSd4D5yCVvo0xj2E6pK/tt4/O3O+VRo6ADNhzvoYS7UfGyQwgQK77iFcpSYdcGuTQxAQ/GtRYqgdeaSyKBxsMm5WXl+g3cP+54K6zvjbJcKc3VB7cE6QtYXcFbDsnJmM4zUf93QeBCx0LXPrgR4wnmTqmTh8XxmPzqz7/j+6c7t1B8/eXB+LpeqBfJi8pYmDUUkEKRb1QIwA/0ehMIq7hNXmywfdr5/T9q+PUPwSRVtFBNbu9/n6/WH9h++ef88sXZ7vAGhhl2WYj+Kn+3WcG7rtXDhV98+4l4GvzOz0yBOsXF4J8pk7KDWSIgL6zgYdAb0wozduYOZW3YyLSm1lM2CNOOhYGsCXyKhVtjYWcD1/29j8C8aekXjkVK8kN2AyWQ3YNPtq4U5JkMGZXNlHIdhseRcl1HPZSbwDITK7X3wRyFWjhTmN2QgTOqd+F+9k9KPCbZ0JGBN/bW5zQVyurCuT3B7YhTTC3wgcjr/KPBM3uyE6RPpjx5x4Hk8segfdRLLcwyEGFK/iZP2KkbKAdd/fHj5yUzPN/bPjqlNsnEmQqVcU+rD6PvI//q8ZrHQC4wAuxcrosZdcD+AibdjzRVSSePRFIrFcylSMma6TOTP0+msOXrjewdO4mMqC7PIf+fZKwnfK+6TfqJZp0qBrMf1+IAUOSNI9Y0OG/pvmdCqckxxBL5K/kJzS1tVnQNSkLAOSkx5qbFUHXcjl4qvXWzD5KMW4D4+JEP3Wk0fVy70FKmFDGAlISiGa26QLqDWX30GarHen6PXdaxXLYEcnrOzJYM4rAEXKb6QMsFbvQda0WL7jxj9f4GZrJsmT++l+2tZh09gPub/5FAHD+/3+Ctlzj7iiAld/rzY2jGtxlJDDCo6ik8n+eSCgrydTgWvuVYfnOarZdUHEwTZnD0bidQ5wfgZkrETpAzIp/VHwG0x+/7+R2XXMDPPCPsvK88jK6pS/2pwd/5qwwo/df/xX/0pz03OcUnbVGMbkVGjjO9imayA4TMBtZXPCqDoFyM1ozrCs/b4PsvndHhWitLlfGu10Ktk6VeWReT6V4f+KzIeFND4Hp94OHhymWRR8II2Pb0P5lTr4czAm775L7D5y+v7Pedy3WlrcbDQ+OyLixL4UixKfU4POOMMd8juPcgupomRTOPlAFpiGDK7DdMLc3L653npyf27c7etSkvuY05hkAvlVYbpbbcZoll0pZGXS6U0vLBHoz9zsvLndvrptSRAtt2S2+hwEsjZtDawvXyqCaoFLw2SpWUZvFymnCSh9cRpRk4c9/eEPccII8mVlpn4aClOG2pPL0883y/sT5+YHUNm96MtSwspkPUy49Ra1EEvUR6ScBrPx5MDZRzaLs26TLgHoP77Nz3jX3faeuV9XKhub7LiorvMGhJMW0uiVt1NTE6vDpj3xSznobeosFySoxGsiEgNwPFeb5PHj+8oyxC8puJveFeuF5X2tKYYxMLJXT0ex4MXoQax1AhF8DTJUWrYqiUWrnfNsZ9Z4ydZS28/8k3mAXvru8EonihDzEoMLFLJCWoUJyexUsG2XCkZWz3G73vKR0ZWCn0UFzpluDg6DvXy8K7y1XXbRHwuA+4XN4pnrpCrRdtUcyyMOrQohzFD1WaZKI4hSjZ3KjnyqJvfH76wuvLK60uCVypoTrMMs2dVsU82DOSPpw0oy9KRQP2ZCaJkfA2EPYxmAT311diBtv2ShTjd376O9S6sBT9jFLlveWZ5BiQSS+k/jm3KqgBmV0/t3d5ZPXcdo37rn9mM3L78oLPYBYBQ0vKXyzT6yJkWK+tockkOplbRzoV+bwFAlPoPRs8Dc0xtX32Uim1MMfOx+++Z7k+JLPJMQ+WpVLCGGxMKmWpVDNWZGxRimOt4G4stcrhwMDjzTMNS6nPlN/NtnV2C16/vHBdLtqw9bzHxzxZVwdwYmnc6chYeHCkAx6MjgVsMu+b2Bim9mwODQ0CaaWH//z9D7x798D6sJ5t1iCyYQlF0qcHgYq9nWO4mNspVKzlrUk6evAciqsfpsh2fqbL46NkByPT0dxEVQ99poor3cpE2fda3zZLQTYV5GAaTBsCmfM9FvcTjLTifPzuM9fHB5blmgkvakgkueoasFFTQTZatRZ5vdjhf3P46cB0PxcOEZNWSP8MNSSv+53n7z/y4etvuFwuPD68Y2mrWF+aFmil8nC5ULzoMx5LlBw8xkDpmRyMnZLPyFuzKaBEz9rrJqaxXysP12v6dujekVQui0Q2izLP1OBUktmDaQkzxxCIzBTbIUhjWEkce0zJCMdk38TUW9cH1fK5i8GU38Xhr+Ahyfg5YE2dMwoKMMw6MXeFG/R5ys9n+hlQjnqn3mgfjQ8/+UDxZO2Rcs63G/BkeSt1R3T/gxWq+8WIWtkP9sTRpNqxOUb+NO4Mc56fPsPiPD40vBiMYOTipOQ93sdg2qD4FJvJAZ/5+dK4l4EPTrbonHvCw4OYAr/VbxivrzsT4/FysHI0bDsONrkPBZo4Sl0rFhqcDGbXuds82WYpb7ah2uKHGWrVc1zdsbLzm483Xj8b+CBug2CwjWy8G8wo1CZgvDpkTkKeTTqPFbBRdX1KED7E5PIERKdRq1jTXo3yEMSTsXxYBOqsV7w1bL0QdcV9BbuCr3As0+xygg/BosFM3ACclgCDnmFLP9CyVN5fV+x58ouf/8DnUXjdJh+ssj4UHtbg2u5QC+lMxSxD8jQPpU1ZEHSB7aZntxb4/OmV+O6Vb372g6SR5UFNkTXMGpcPv8fX28/54Tff85vNuA2Qx1VmmZXKfr9zn5Npk0JhvSy064V/9KvvWO8LP/uZFActB+4xyXlBPYGILkNefXPSY8e9MtihB6UVRoeaw6i8WVQn9nx+um0JbgMtmMNoZkQJYpspL9zPIAd5ksxknMC6qBZvffBQPsAcMreOoKeMzAKsWtYkEkiyk2Fj3rj3nddbcH24UOoiZpEHZkO9aGhhdRgDHwlW2Fuy1UwpX48iWd/iWVcjLSjSf8q0oD4ZD7lY8PQBau1YZGSNKZE+jSVlr8ci8McMIUGGx4ICjv79+H2xR+x8qpNBVZIxQ0ryT6BLdXfftHyafbDdN507vXMypPx473ae92aZPpknZHX1uxZxyp3dkgmSSWEenGBDcae5GO0CkdSDRBg+32TVZpMxjJKfHbf0GtIVOmCJakZYgleePMoi2WOEAAL3NAvPdNceBxN4UmuhtmQPIf81jzh9evXz4WDnpxOj+ltCCvpkrjEOg/s3f1TP3t+ynz2+W4GYI+cC6Aw8mpYaacVQihY0TCXKHTI1TL12mCfzKVlhYyaj+A2ijARlDvwSM/kQ5abl8HwcmVpm7qT/uv67ezJs9bnqIorpiPHGlM/7TbiOnWw7EQLyUUqATTV9UFI+WfBk6FcOVvmRMvjm86ZZq6D++/BkFc6pJbIV1dwxOp52F5G9nxh0erCOxazbPNVAB/FkRHCYS3heazvu3+PP5TMXU/NRoloISMsuynTNI966iDsDH8Hf+Vt/+68uoPTf/2f/yZ+6BdYEEhQaG8eHTJPPkQdIcaql5nlZMWvpuA+fX4NfP8F3XwCCpTlLM0qD6rDWwmVZuVwKDy1NV32lW6V7UJtRbaG1C16DPmHvQolBvjEjOBv0e995uW18+fREwfjm4cK6Ft49XlhrodlKdCRXs2MIkRnpGDp81OBWDbwOypYiN9+DEZJKiVJbePpy58vTkw5MLMEiz82taOmlOPWysHjBaqWbtuGtJg04jOpBrYPb7YUvX25sty2L8GAfd+brFH3RLL0rKsvSGBilrCeVviK6b8SE4Sfq6T8CCMiH9pA5mdm5rZeBaeTDKhrk8+cn9j24rBcu1bmbsbgMzaupcJVaz2asHcM0Gvos3mJJFZubm4qZ9OChVMA+BnOTgbW3hfaw0tpyelBQFhlimydzZ8FsYSY7rWicl1ljHsT3fWfbRTVvLp+gY/Cbc7DWSmuVj19uLB+ukmNQWFLm4QlqDod905BiU41PS+6kWCFwv98ZsYslsE32GSxNUj1D3k/b/Z6eLoNvvv6GOguXywMjD/OeTqheHK9Nh7kqv6j/ib73vglg98LrdmNPiQc5JMXs9G2wp8557J3LZeHx8RFvegBbW4gY8k9CTKz1cskUFAEBLYfuQ57mxc8o29PQGkmGCmBjZtINfH5+4emHz0r9yyGtpp7aMib7YO8ICAtKlYH3clkFWHfFjtOVgmIpi9yip49A0O+vEDJav43Jz/7aX6PWwnVphCvZMGdVadst6IwTZC1eE1CR/8zcO3sfkuuMySwyx1Pa4OA+Olvv7K8bY7uxrpVaCq0t3Hd5ILRaGaGtREkJqK5pbh4s2UmuZmjEYHQlfuw9m9gZp8+RJc19WVe++/iJOYyHD49i+ZjkpDKhjgT/xBqqRbJgjmY+ZUQEkHRfMTpCjJo50vxwYiHp5H1Mxn1y+dCIXTRqS3C3cFBxj0ZPUoMIZ8xdctrc9Nz2oKxXZghMIpRYMRF4dtCBmzl9bHz64QcuX30lxhpHUdfGaCQYbJYMIrOTyWdZgDUf2tugatoAH75Ahxmlm2GeEkPg+u49rRSm6SyJOUmfYr0mTrifzVdtYh5E/pmSm8hj4aKFqgt4NyfG5FoWXQKMT99/z3J4mh1ecgfL1cRkcTuYwc6yrEo7OrZ1xc9tlTbkyf6ZosErGFLDRo9gu+98+uEL7bJyvVbWdtW5vSh6vpr8kJal6ixjitnKTKDMOBfMDG2n68rYZ3rHSgIauXQhZGj69PzCw/WB61pZmxYrM3StAjHZiivW2Ei5FlpKkKwDQkMbRUuJWg/gVe3JDNW+MWVc3fdJOFyvF2rJKOepMa1UEyvYVYcvl0ItjXsy9WyOBNb1LKSvdQ5RmRQ0B7WJFdGHvE0sOvfnjevX31CLZY9hHPKuOdNQk5IggFHbYWwuqdf93qlVTIY5xUgaeW3IGmRFDXMplWKT2+sLMZ3LcpEvoQVLFLxPog8O3zB8UrrRHJZVzXTfYOydJZPq6IOlkUyxbHyRTG/awDNFb943+gbtYaEt9QTrphs9mccHK0KDqUMZNBbJyRH4Y0U8iuZFUylNpvdRmUV+iGBcy4Xudz59d0/igBY7mICo5cHxu+HNqMuCxZCs62BktpbNeaUs+v6pBfMKo8jT8Rj4rYnV/Trxnzrz87FYGeCrkovqooARWk7dC3BRV+AXJnkmeiWNFAhbMHaBAl4p2rIk2NxZl+Cba+Pp0yd+/k8/c5vByzAul42fXd5JjtpMvh6u5EAtJiTjtXD5kFGxqc9bA0Yb/NmffaL//Dt+7w8HXN9j5UOC+CssDzx+eMf14//LX3y88WnXvTkxLAZLk7+j3+5sEy514fpu4f3jhZ3Cn/3yB75aKr/z1UKzRZYZrn6TZJ+qvhixy/rAUxGABTYGXV8to6ccqEQyDeQXMyNYwzBfwHfqsfAKsCm5d89FqSMWluSAQ/dTMj2aSzL22m/UZRXIAGLizaAVF4vKxOifUwa/M2RaGzHom/Oy7WKz+lBgUeknsz2OwAuHCGf2H7EYEFtrzMCjUZaF6ArRGENMGklkNWuojuUhie77gp/Pl+aW5VySkiCSlp6aA0YG7mQR40BPDg+ZwwPPrYANZuzyMzvApeybj9fXBFQgRp7gyXA2+bJiWmTPLubT8YIz69vht3e+kUg2Uh8y4Y5C9RViPz+TWCFaWg1B7KrNHD+vsGVoU4S8hSxJRiW9hyK9d0cozOYY5w8T8YIzM7iielXPaUpZtlrOBcHsaUMSWtg4CYJzACXOmRydqWGRs6alR45NsYNKUzLlMY9FcYaJkS+cLZ1zqjFMn8GPtAtLhlkGb5D+RTOCVi4KakBAynCpFexQixEQCmmgFDH/3AQ85a1mdiwNs/dJ39YYXcmTU0zh4/Y42fzqSsR4FZqSv5Ps1KZ+2HK+62k/IGxrqo8rlZIM6GlBUFhay3NVFhEnI4ySvqopt5vz9AG2BEHdjx7R6bOfMkjJCSdageY572fFwkOA00z20VvwiBZDph1Igkz5PcjVhSAVVBY09AXpz6Q/UwRbzGThg4z087pivCXxvYGGORBSIihu/O0/+SsMKP13//l//KfFgqU1bbJDA7kXGWhfPGhVjJ9LLWzh7FG5942n++Bl7Pzmy873n3du22BtwaWV9GuotHLhsly5XIy2HtRtGNPZhhFk6ljNiEpTytEc2hh0tPWQr8xg3zv3vfPleeP1tVPdePcgP6ZlabTSqDmIlqrC69WzKecsQGCMUHErVbd+9ariQkiTPNSUjRl8/vLEy+vLCcAc6G2tutFrXTQ015JDtRrmgqVEq9Ba5dIUYXp7vfHp6ZnXTQeoWXAfnXHb8LpQl4XXfhdIsV5wbxRXOkOpGjxoRT4liSIfYEBJJk2EjMeDOAewmR5GM5+E6gVvol9+/PiJ6Y16WSUVdGdpV5mUR+BtEW3QBK54SepkboBjDpl+4/JOwU8Ka1hqS3sXq2gb3O93sKBeGpe66L1ONSSg9z+Q5rWURlTL5koGoJJFaRCxrntj9EFpikaupUKXDKO4sa4Xfnh+4eHxPdfLg5DjpPMbk6hiPbjpJjXgsq753Ykt0eeb3xNTMojetQmdLlrn7J193xm9M3vn4f0DxeV3NacKzH30s7i12qR7N87CYSFWwBjpF1ON/bbx+nTXBi23R6LmzlPCNMbOUozrwwOtNtyrPLt0YmPWmPeJLYWlVSXuOGq624ovC74sWQRlVj0naUYPEGlaPhQrGpN7DJ6//QHMlRoUAjdsKUT6+HjKgwjpjusiI0OPSTs8o4g0CFYRm72nA3Q2JnuX7CSUSvTu/Xsu64Nkgck8O5vZZDGO3K6sbTk19ZLNSWo5xsiiSVK31RiOMVVsRxD75H6/4cDlcqGtKxFwuVyVrGiuZ74IbI0p7y88WQbu5yY0Zsjodcooe4S03WMObtuuoTO3caU0vv/1t1weV67LoqSvZBYJGJ4Uk4Hhkr5NO5KQyfg8n/mYpzngnJPRBSRZhDyHIni+3wX6bB0bk8tl1SmZAMb4Sz5LR+HUBj67AsKl9h59l1yPTh167YMJeaZ7ZbNaauHzD5/p287jVx9Og0lCMuSSAGs13UNlZIpNnpkcEoNsHEoRE+T4zKUUbaKy3o05NBwPeTg8Pj5qyMv3pjNSVOnq8tMYrk1i9UItC92cYmLcTYZMVQ9dlCWdOaWWM8RK6DHxUvn83Xes15V1XXRmHrRAtATwHIYhza4z3exgBx+/Tg+XHBb6VNy9m3xI5lAy2Lbv/PDDRwE7S+N6XXGT98WxCWutvm3+Qmb/s8tYVdtCNZBjFyNiXQr37a6Nvmkze1Do5xw83V55fnnl/fWB6/WSngmWYOfbZ17ayrF/M+1GcJefXHD8OTFAYpLyFPKsQF5f45CLaoDqo7Ne1pRj6t4oVeyQpTXcTEmTZvQ5BVnOQUfMxsPz0N0zClmb0/A4E9Hk0zJ53TeKG18+P3O5vKe1VYlm880AP1JWRi4k9P7PVa9o+Yh1GMkyiUzyPL5PEjCNfP71LE32+5226F5vGB6DaqEEpDSjxSpzOHMEtWkZ0O8jv1dJY2b+XS0O4qyLYcHhduE1MAYvzzutVWp+l/MYsjy5SlXMW8/6DMawTD/ylIq6Zv9atMiJaWlK3/FccFgYwwbLOrm9dPaYXC8ZE+/G7CFPztWIUeAhI6E7+vwxKUsjZsFDpu3uLZ/LIOZdJ9mESLDflgo+sAE8brx+O/AHqLdBLD2voxZYNjf9M03JD284AWwlJSBOUAlaArILYggpIs0Ab8Gy7ry/wG/+/CO//H7nKQQgtzZ4d21caqU+pBQiCiDTV3mS5MDh4o7sKSaJMEbb+fmf37DPGz/7A7D1Kyjv0ChU4d1XvH/X4Tf/hF9/6bxuxmbGCN0v3io7g+W+Mb3z4bryzcMjHx4eeOmDv/jVF75+cD58rVmhHQNxFGo4PVQ/u41kpSZDFLFy+xzEPtTbxaTSVPc9sCGFQg/yOzeGBzMyMTJcJt3KTNC95pJpLr7gCPiXVEaM4m0bStmshs3Df8jOa0c+m2Mey0Oo6Frdx53bBm1prC2IsaeHEblocSpVYBjx5rnpOSQaULX8e6BTi7PdO5e6CIxQ16zzyJVGNbXF13s668ThNfTm23p44RwePUexm2OkrC9lXwaHhOiQAMtPKL0NTf1Jye9Ekl19MQN51crfaqaEtDHmlBF46AxflpqKgGTQkDUfOJK6qjfNDsn8KZ5OUiNTYBOeADGFjrPSk+nkh6eQqUfGHBu6XiMmA7WN2xzIvDl7EEDJYTkbOVLf5HfbDqn9ARIlaceKMQsQeYXmyP5B7yvMTjn9Ef5E8axlMwGFOPAf3CbTXeESObt5KwK0DNmxmO7AI+Chp5E3yTC37IcwkKy6sg+B9F4UaDMD3tJRj9fOfx+57O8CVcGl8JhT/VTaiwiUE2OV2d8+iyhkubhT/yRWmzyRe4JFRw131HNh6qW8yG7CmQKaQwEScwT7fJs1xqb+9EyGnWl7cMwKB1vrQE0PvFLYGTOvocAo9TjkJXIsAeSRS6q3nzGOOoS+0yPkyIxDFXmCopbgm53eX3b2reYC+B07JYLNhG3U7PvmAZKnd9nZS3LUS+EXYno5f+s/+JO/uoDS//hf/ad/uvjKwip3ciZLWcQS8SK0PXQ4vdwKn14HT6+D59fB0175eNt57YoHfFgr7y8Ll4t8mFqprLXyuFTWtlKiMkejB+yhFeDRuFUKMT0p3/o+J4f85LiZVFA+f37hft94WCsfHhfWZUl5k3MfuSVujVKdYoFFoU9t0XTjxKltdlc0qHtRE5ao/wyZwe4dPn36zP1gm3Be66TqGbU2lmWhlMplWZn7xL2xm0n7W53rslKLMbY7r6/PvLy8ct9SyoQ2Cvu+U5re19Otc12vXNK02Zszkx3UaqG2lYtVNRhepBk23oa+sQOHc74+TyQrwBPc8ZTM9d55enrRBm1tMrZshcUWlpqSoSLATvrf9IKZaVqLfG1qKdLJJ+LrXtm2myqZQ+xKXetj434T06atC601fpyWNAy6Vo3gVb5TJhrmkv4VsnkIWimwD56evjBGx1ph9qlBMGUowaRdL3z69Mz6+I62LMiaS0PZRMUlMhmPPLxbDnZnFHUM+n3n5fmZ+xwphRKDqRbRcGcE27axp5nt2hYeL1dKk0wikmH3S3iAkQAAIABJREFUsCzMmNTaZJRb9RwckpByNgE6sG77jfvrPT2aJp4afOZg23axP/J6PDw8sq7yhlkWyUhIdkN0V5rFpVHSH8ijSO4QEHvQX+9stxtj2+mb2FCn/AgVoMMcOJrz+fvvGX1ia1WqRrHTNyUISi1n7Ll+6Tvbx86yKJY7Rjbs0v7kc5rA0hTos293RtJMa1346uuvz3j1A8jXZqJw+HrJ16iqUYtgpvwyxpSs9HwC8zmc+u+gIj4SQOx9o11XrtdrypAaAGtrZ4VpGanuh+9bbgCPrTrlkDjma8xkEYQCCU7jvWlcrlden1/48uUT73/ytZhPoIEyG8cSMuDUphpA8bDuYja4O31Pj7RkQI2ezLmhQXXbd3pM7kP33LbdqWsVpdzsmIM5NjUzG1f5FDnj9JkgQdBjWwXMwZ7eY8eZSQgoefsshS+fPlGWxros8vsC9uiS9Fqmkdnbxlc0ZOMwHJ16UN58ohLcfou3t7fXNgH9o09mKSyPj8m0SRPRbCg8QaGR8qpmurY9YNgqpkKyQ3vf0+zUsDE4hGyJsmeqy2DrGx+//cjl3ZVWGqNHmoZyem+Uk72QTFBD7LbQZzxTH7NhOcAVy0Gb9FcQmL0TEz59/CzZTy20dSGmCRxBm+62tvS00fve75uSRTOtas6eQ4gYRLUVbEyiB9F1tsyhdKYxBaY/f3mhNjFZDg8OUGNVaqEU+QiOkd5WB68dyy28NuFi7pKJp+pD7vcXJZN2vd4BULkrXKO1Nb+7OBlshHwQlmU52WUyzz0GcqUmFm+S96WvZPzIn+SUxMRIYDqoD2KvvL4O1nePCZQqbtstqfcIKNK9tMsHCtj2HUswWh/asCn/rZrDnMWxyZWv1dEwL61yv79wH2KT1OJUXwnAvEq+l0NxlKDvYhm0Wund5NtStXzqY6OZzg3P+n3wPo49s5uxLpXbtnPvAiFLqfQhCZ5zMOwEMY/eIXZJu/xgVqYnXi660tqDSM+KsIl3g5r7blNq0LRgezYe3q2sDaprCGFMlsshAzZ5SU4YsVP8cloRjAispJeIpUxpdg1VtSSzo6n3WgzfKyyG73D/3Il2x+4KdjGvWZ8kHRSWredcOhm9N4F5D5hXrDxg3sAbUT5ADo6WBvGlBtelcPXBz//v7/juroTjfm9crheuj8ZDOGU92A8Ki7Gsj4f8f+TSVe4QkqdPh+9+vXHpgw+/v+PLV1CuSCa0sHz1Ez7wkdt33/Ht0+A2jT0mzZKxva4wBw918LheWRenXRpeVz4+df7i2xd++qHw7lGAV3EjvCuBToQWDbDuOTClkTvpA7erHroJGTKXQ99kTzZSP8+9MIECMcRc7bHTaxwtQ8qkHEPeiXHKv5zZ5f/1uu3J8ir02MFykSd6YgpdxChU7PxksjMG7N15vBYuBZY6xdM2DZNpvsfMGjxDizQNosbwSngjfOV2F5DdKtzHxrSKTNyTkekCz4+5h6N/mHH6EwZHr6PUMEnrD6DFT6nZHCmXzXs2zp5qJsvdzj7z+Jkj6zIcIL/OZc/ziAzFmMkusgglLic4syzy6jK3A8bJuvzmVeSms91KZe+dUhp9znPotpNpe6gc3qR6Z9qWKXX5iJGPXFbOrImO2Han500unY7z/OjToOgsOmps3gHOJEzspmJvrDnL/nQcdTji9DqdeVYf80mtYtCIpJDBLnb005bed2B9pATZziXycQFmgiuGmNVjiuE/0l/wvves1RDbTs8lxuyq0SV0FcS6S/uPozYdvVVKXUsutL1WLRwziMrSwuBI6E1XAC0DcskZ2QTO3sVGCvW8LVnyxl++D095O/JnLi7suBCMuTGSuRdpWXLUInmfHn3dAeslQy6BxhhQq87Z494QwULf5ZE6Cnl0z4NdlbU2f7IfjC3UDx6+TsdrHuDUuRQ8+763ZzSS0uReqCGLBC1Fs8KapRRP1yLePhFmBUdkm8M240/+/f/wtwYo1d/WDzp+RRnsFjA63WWuve8pj4jOsGBMp++T123wfO/s4ex7sI07XiutBg8XaUfXJdHqWlncWKqo/2NMeog1cJ96iBY3fOgAuNddh7kV9r0TFEkd7E0Te7/vPL2I4vjVu4skdZWkg6oxv+B4q7oY4QKveqS/x+Gn5PS+6wZ2T0qdhpCRqGPM4OX1zqcfPuf70aGde/+Ur2ibXGrNWGIl9cxEZ5c0JC5NHkD768be7zI0Nfn5bLserjkG13Zhn3e2DtfHC4s3rC7UZRXSXqF5xYvc82cahp1+JiDqX/qTLK3Jl8l0+B2x8yNZMjOC2+3GdnvFlsraDoppMpwMxVq6vtNyHgyTvmXjkpRSd+gxkjFUsHC2fj9r4djuRB/0vnG73djHoF0vlKUJQLSgmrHgLCZENrthDG0BirlS4faQP4PDvN+4vz6nkVk9/a4KZEQ4LOuF1y+vXK5XRcNL3KKmI6Mk+5ip01Zz6LVALWz7TsXoEfSbBi2qY+ntU3LD4m7E3hnbztZ3mIN1aaztwjYGSy2c+UlFRmslGT3Dpgw3LU3hXFRT6cAlT4u7QK3atF3c+6Cgrds0bZxjTq7rlevDI6XJV2dPJpF7JTx42Z5Ylwu27Wwm4E0Stsm2b6d3V852aqpCxeyQDYW6NGqtfHp+Ytw26mVVcQ/oBLOY/LAitDXBEkwQGNl7z8MW7vtGSyrq/PHhn681pmK+NQAb+33y4ZsP2GXBj42K5TsLFfLw9L0qLl2yO3sCKdu2C7BL2vEh22XMjEWFzfJZ2Tuj7yyl8n59YEnvsmOrNQ6QA8k45tD2BbTZKHBueWzmRjylpgfQ0nsn0jBSXm2d8Ml3330ndiIu35WkKNfDfyA3amEq8LMPCggESEA1Rsc5jP302jOTCPc5iapzwHeZs28B14dG9KAtS36mNInO7YtlYt2Mmc+5GuS1NZmlmieQq+eQGW9DaklvOjOimLzP5qBd5Oszp5iFS4ghOWYaW5oK7DQ1pUczcI4mKTGMoWYqEuQiAbZULmOkVJBIwKpwRCMfSyrDzw1S753WGoFkV9rgQY/GDBObJFOr9nFP/9tg+jgb8Wm61cZ2p/dOl0L33BgeXnRvrKO3rXIgCjZwJr+QDfMB9Iq14ukLcHjjQJhTKiyutsG9su8dqjNGBZKVNAZRJE+dM6i1EsjPKQ4WTyBqvAmwpzjTkrbtqGaURnRFgduEbW4ME+OLwgn++TH9EdSq+qyNo+Xm/DC6l0ziZErtSjyVZHbPYe1gbU1FxA8xN5dl0fbzwBKnsOqDzShweRLWxCLUFoThShJaqkMRqFJsEH1n7pN9qIbNXU+Uvw7WB+f12yde91feL5czBccTJzqMVdWIykh55qZ5DKVQqbAKaCoJIFpEesMIYLNQAu3uxiyFh3eP/PD5hfuU9Lw0DQ+Y0XvQvKU5OLz2wX0AoxA22GMnRoKMS2fumYhz1P4hxkQcEoQhZtpPv6p8/E5M0a0s4HGGoVQXG3SQUlxTMugaArhnTeP5IT+WMSZ1OHVteAyZGjv0PWiuwXMJ+NnDA0/1C9uXjfWnkovUizMH9Hvg7wa+7VAqsxkxGnPubD3xgrEw7kZZpzyUcshkailjVb1EFMnoeQz8dVJ+sjH+n50v03j3Tglha3uGZcXaFaLhY5DCKCJugADhSSf8SsGJ+QomiavOGnJ17lAqfrlw/XrhX/7Xfod/+5ff8qv/5lfcb1/zix/ufPjFF95dHll+r/DTNlnWd+d9qeWDAFOPoNlk1mBMecrA5N0jfBxP/IO//wsev1n53T9+wD88EsUJGtSf8dN/49/lb378ls8vf8b913IpneFsAXVCe/yK2D/Tx8btFbwY76+F/pNv+MU/feZ/+Hvfc9se+IOfOteL01aw3ug25Dm4q1ccMxl4XQEDIwQ8bredy6VR1mCZUF3S1GmDGQuDmRv+yTIrvYwTMLOdZO2iREM7gJaJQhkrPjsLCzE7794vPH8eDNMCgbExp5hekebtzQRCDaaWF6WwvwoIHe7sZEhJORj/YMXAoYyCz8I+Zf3gVk7g2s2YPpl14XUMqgfrurLtOqsta8/MgdlNPpTFckYplguaiXtljD1TXT2ZjGQPqb+bUHr2WgIb1UM1vR83xrhTS01rj5Lnb6OPjYMpaGipM/qkR1d/E8EYd5gCw0aer7MHo+xKFAYOeadkWROmEX3Dp9QWsYmh3WOHor9PLnTku+PJ2n5jOpVStPQFhYhk+jdznNXAc9g391MmHXOwMTgW3N5nLlIF5u1jYj0YdlTeBAES1DkcpI5Zyzzo0WFoAbaUheVc3mYS9Miz25U+PJHhf0HkichrVkphBMzeuVwubH1H/lBKwj3ArMLRP8pTKbLPnCk1nQlUgXpLM5iu+7u4Q9Sjg1ePVPW5cnXOcPChMxIHH2LgjTHZ+12WJy7JoGRcEoTPZNcoy1MLuwOgmwZRhRSWEQmSHUCpvs+aiNPM5VPzFWMSw/L9H31PWkeUqjqltdPJJqqt6WdX1bKYJmlisgn7PtV7CM1Uv2SSFs6Q5Ui2DCdLiuzhldKuc8RdHoV+9rpHR3r8nWQ9zWTnu2bIXXC3OnJ9ZRwsyXnMXPj5esf/8Hj7/7/FX791QKnsFauTVo05CyPSiwcNZrcZfNk7t27MffDS4cu+s1rlemm0pbD6ZM0Y1lpE3/ZS8Ey62KYuSJ8yrHIvrC7zvI1xbstPSQYwZyZWofSol9ebhvvaeH8Ro6PlVi8q4AWfR4S5mE23ngddOKU5i+vh3feBIkKPhg+yfQWb3O7By+2Fz5+fmTOR7FP/rZ/Rqis627UV3/ou/wvAWmUsCgN9XBpjdO4pgToO91qMsW94oqWlVLa+yQD14ZHVK+tSoTYua9VoVmaa11lutefJpvCSmSmRaTku4+NSqoakSOPcONKztIm+3e74Igq7NvSOeRNAhjx3whulKRXIZmi7HyEAMIcdbTh08FkyG+oMSFZW9MG+72y3G7NPMZOWRitVNNuRdNbiSZdXomCrq1hspuFm7CMNeOXiv2+d0WcOYiqSOnSDDiyXCy/Pr/jDlceHqyY5ky/UGLpPg9wk4Cf7BkMgxoTXLp8dG4O+DXqygYrJyLQUpdjdEkyyCFpddPhUo4Sx98AvlSgaqKJPlnURAt410Nl5VkSi8kOskpSgHE3Avu06fJEXFa7tSWsL7z68zyQxY58qnluflCL0vbWiLdrsTJJl5kHvm+5NMmHBVT5H7+nLJc31GKGChnO7bTx/+nyCqSN9esjDW7KGt4O/lEJpNZljJs8KDLzQpz6rDN81gFhI1nLb06A+nLENlsd3XB7fcSQyHc+lnmGBnK0s8oA5trc9PZJCTcYBBDlIQhnzTB+xZA7dxs4ImfG2hwdsbVhxxuhJR38Du2spaqhmyiDQfUYR8Dz1H99YeOnfcNB4Szhrq4wxKWvj9XXj+emJn/7uz5j7noiEMVs9f0YkC6rgMqqbbz9TDAMNhUdmtpfC1jW01lZhdA2sm86Ve0apV5lhsMdgBxl5YxSq7oWA6AL8WlbF6S4gccKlNWLuTDjlt2TRVC8nmWVz436/aZPXmu6ZGWTuIJAU7ursyfQZx/7GPQ3hIzenOfjOKS8bdYVv0a3HljuE5tz7TrtcGJbSr2T+xAHQwBuAagIAQIawvU9G5Hc35LnDIfkCgf92JDBGBkIUxoRihev1MRufydj72wY/wSVRsvJ156RUpWgdptJj7kpgPRrvUrXRjpTyhHytqJXJBiWfizTuH+z0Ibp9rZ05Kn0GpSQLoFYqjYieG0k4zMHdq5rwmal7hnwjaqQvWQ4CJubvnGJxvqVApen+nESp2lQfklMzjrQX0dANL/Nk2Y2xZe1s7LHhPnOQ8nPQaAm4ByU30ggIq2mObkYUQZ3mheiRQ5hkqubOtm90yvlZkgeCUhEn0eHl5U7sd15j8OGrhTFujNeNUZZzg3k0o0fCmUCjkf9MY+rcfFuehbYUSi5+SjH2Gbh0WQksyU8lqNTrQnu+0cZB+U/5QdhpmhpjyGenKMBkbhoGZspVR5jY4bVLMlQqcwp0tWn0ebTsWuQslwt1eWbbdupV17O6A1U+VMeWONI/BNhs0Ko8TkopjOHgKVMKw0YwKlQLbBnMTZ/HXXwRf6h885OFj79+5fYyaQ8LlEpdclAvjkdj32Rz0NyJbTCL7qtmwZgJvngjYslnrusMwZhWZPBsBkzKtcLtSvudjds/7tyvHd9f8ftCo4BvYLuS80bDykog6Q3lna53+QQU5nzW90MnzMUcGk+wf2LuN8b9mfj8Qtkr//wf/YR/9Q8+8r/+8pXPtvN//lnn0ibXdeFSHoAXschFfzsNfBk67VuCFrsbxRSy8Ph44cvnZ/7+//wLrt888v5f+ga7/g3wB4gV3v0L/LN//O/wb33/3/Jx/zX/8DeTpxkUJn0WrgUe331FtZ0Zg6eXV2xUeYi9/4b/4y++5en5C3/8h84/95OF60NQPWhc2MudsW2MfqGUG/fZwDdi95RRGWyVuRjrT8Gq7qHhhRkVKx2fQJ5H06D6Qq8bBbiEscWkWmVLMDNO/xwx9kcPrE5qL9QyeXzvPD3duO8QIa/NGVoETyoR8iKcPgmvGb6y09yI/X7WFUMA6iEfmsDWjZgKNxhxRNMb+9CCwfvBPjGe73ce18g6pj5ooppSkqkgNkNQrLAPedpKwTHE7M9kUxK0KukF85bQpbTp3gf7Lil/8TglVGZiD2rpUjiSv5TSp77KiwJ/xAyS74yYm4P73N4G+hCvY3TVwsOC4Dj7j5+r43Gk0kEG/HNIFj7M5Lc35wn8viV5HQlZWgbNMShTPWaPyT67+poE7zyBCyuZ7D2BBKA8XMutmAnxa5lnQVowaI5yV18SPokyT3VHn0Hvey6EdDbf9xsTSVpL9PQO0mdlJsPGU4pYNXz64GSzNJylLtxHT+Biqi81Y4Yz+yG7Rd8rYkwq4TKN36uSoueckvCGPO5Ky54636vYSlq8jQjqlAVATWPskUwoK1qelrpqwRGaqUtNr64pz0WBVVqSRL6OJJdFDOcitnwtaYSfAJJ6Ocs5MqhGpuQa++iYtRNCOdlJHJjQ4d50tG/Zu1U90wJCxXqrJiZdXQoxxX4NNR1ZlpMBFslsy4WX2Nklb78D1PRcGkkujvMjsEe/P3IhRMjL8tjQ1wQ+S/GUsaYE0I6lqT4pCYwf4R7GG9ngt/nrtw4oLUUH0Jgq+OH6gPs09mG89mCfigx83eFlG1xK5WGtvHu3UttkoeLWGKG5plRDVP/OpLKnPEjdQcHGnVGEHEZ0yd+GtngjukwtY2dO5953tm1jTljXC4/XkpIJyVysGvsu35CZ27TblgZdZpSMJQclRLzdgAf7KR3liw7hbdt4enrm9XVoq1gitwfSdB8+HSUTnEShRKlM2fBHMRYrLMvCNjqMrjj7rWOzU1CDvedDG5HMBpfHRS9FW0sv+OWiQ8gAMzUz5M1quYmPTjHpmSV7yMMhZQ2gprgUJ7r+fds3Xu83fG0CkxIMwyrTC+FpmjkNj5Q0ADE7xQaOgB3OG9x/hOgO8EFsW24iO9u28/r6SvTBslxoi3wuRmpaT/ZtBOGiJi6lirmEwd65ZRKTTbjNTr/veg92bDN0oEQ6SNeHK6+3jfXhysPDAz1GFjmnj0zGOA41IsEVFcWYQ0DPCLbtnhRk3T2RPhZWlF44+6BvO3109tFZqlhpsQgcW9pCWZq2WEOAHl5k9puyNzexA07JVfqWyM8n0wTN6LtM2vHg/rpxxksSfPX+g8CA8Hy21PDMELg2b13bhdHTvFAa4jIFah5Mn+Of2qBkUz+10YghMLHVwrfffqsLlwlOPk3Gh0WsRMst8/GcHPTWyGtda2P0IfAuZlKkeaN2jw4EbtoUzqkt9uXdQ25ujGGe8glt8cSoyOGhqPgo9U6UYM+CK7lbgqAmdpuYcNlH9Sn/h22jmuS7TCXNqaHSPbYPNUREYHOy1pYFRBtow7PpI4fiTh89f46dRa0UBRWUUimt8f2vf8HlcuGhLSp45MYLGcabu8w9szBbeqN5SibdlGxECUbfqCOfTTNKSzDClUBys4AS7M8b13WhDKObBq1q8u/BNVi+UY51fg5GeqOImVoMer7T42gYCaqV/Y127iaQ5/nLflK/j05njC4zeThZbAvOa/T0wcpENbTtemOpkHTyBOzix1ujQ8Zz0OE9wewJ8/DgeSvqXsROLC6QOSC9eJKGPFPgkFLNGZM59BxK2RHHwZKAlmOzyBi6Nd2XpHGqG3N23JuGE9OQsfdBawtMyW6Vhih2XzOhaHOmlMiMwxC3h+qZUWgpLWsPa3rFyNtLJuRZHRLMGrnplzm2vIQmg327Uy+FsiiuvNQjjXLKL8umGHDm0itP3dNjl+Tp8BdTI5ix0IRkR0XnnKgw5JZeYBRoqzxGytpCbMQRYhrJckN+WiM5+LV4LqPGeb5bJkwaTp+DOuT1VTLNZpymuPIJMte9AJ6mrglMovoqb5FClApb8HqTIfDL0wvv3r3X4IOl/C3lu6SUD89gETE842SsdKhpJJpt5Tyivd0Z1pNhoIVSRLDUhbVV7q9PXB4Xhk3FaptY1vp3Va1W4L4piGNaWtOZ/MGqVUaf6bsmRsCIiXtybybsAbc9eOfOdak83Tv72CksFIKdNFKdx3NoGZ+t59+yFjWXXGvuE1sMpr4Ln87sk725+iO6zpMwqg0u7wv2qfDpaeBl4ja5PBTKmsPJZWXuG200ykXJqbYJaOqWfe0d6oBSU9LgRZYEc2I1l1IBEbuGwtp4+ObC9v0T929v1J9cse1OrBNfv8h/Efl7eRGDxnHmumAD5rwTJs9MojLpWFn0fTBhupjJXabg795f+Rv/4l+n/Hsrf/S/fOTv/oNf8csfvud/+4c7l2o8lKAsVy42xXIoAsKYk2ld9+50CoPFnJu5ljblhYevVr794TP/19/7M/71r7/i8gdfQ/sjbelxyh/8m/wrf/M3fHr5n3i6/8A/+dR5DZmIzzHpo0ArvPbO/fMTzxv4urAsC7z7Cb/68pGfboU//OmV3/2qcrl0bLmCvRODY9thf0+3jZ0HrCs1a5+56e9iFrbWwDrVJFEc5szdMJ9pp9gp1biYc6cT1TEfjEyk3kfKm1gEVNrIBY9SZRevuE8erivj6ca0DUphDhcIHXpu4sjDMgHC1Sbb8EylGpQEKTzATX0iR0U3MYSO3rLPndrA+kYpyXAKMY5713NWjvkCT8aRABtDC7Kce08J6Wlb4Zph3mQ5nmfHm9z7sFGIbG7GCGppDOsU05lTvWClvQ3s2at59nKld8JGMlzgSLWKGPJoQ56gAp3K6UN5sHRl0h50NKC3BCTcNZRPP3wetRxqRYN/clc5CAcCpOW1dKToak4T0HjU3KOOeCb10ZX6ZuGnHG3EwJuef9XPCebEGApyiZnsfs/3yTnUL650uH0cvkICNOacFDUHOhsik7os/0SkjcAUOKXleVCbpOh9u6kuTdW0WholFFI13DMwIhdOoT60uL73pTW2qaAThcSQizyBPMz+xoTJ8JgeUqCIRn1IRLWEbd4UQJU+iV40e5HsXoGEYknNVAiNMahekySh5bVHsgdLRUER+v7LUR89lRCnd5l87po1Xdvs32qV4sJ/5Gmk2z6vT+jfZ08mtxnNKtFMzOnsXQ3duzMvued7lZogFRLJEjzu9WMhOYb6hmPBdABF+Uk0B6A6aimXTJUd9Oyr/Jil08MwQoCWu6xtchY9vqfTXzZm+rv99n791gElT53rtNTLz8GIYJtw63DfB/cJLxtsfXCpzvvHxrtlEcW6CAUtFGrlR4ZginwfoQtSZqSxVCYNmWRGMYW592PbOROSmMZt29j2TnGlslxWedXElAlpqYVcg0MOg7cxYMq0uRZt82NIEjQCSA2pNMYZPYkYDM8vX3h5umeq0OFn4YTNvIFkHl5rOdkM/OjGmhk1+dAaYc597NQxGPud7f4q+ibBPjq9y5uiz4HbwvJ45doWRRuGU2qjXhdtGxNRtZgpQZOEKMfWk/qoZvdAe3O4dpOWljhTxba9c986y3rBlxzcZgIkXiRxKyZciInPmU2WKNuHabKYKPpeNEwILIsZSs0KmGOj98H9vjH7YF1XfX+HZAbSm0AD3nATLbYUGZqVwr7vb0al7EJ2T68dPeyHdnmmRMPWhZf7jcUb63Klh9I2DPT8F22zfO8CmRJ9hinfroyu7/sQoh4z71tRrd3EqmBoU7HtOz2T5NbLBVucxRWPScagBrpXy4/iLw+Zz7RIGiZZqFWQJTmVITK7pAXhx4Cpg3OOweP7d1ALHU7TwQOGwJ399ab4c3KzWdQoOTKgIwHIozBG34mx01H6hR9FKSngXz5/ZrvdKOuajYsKYLgGyNrqmfIWx3ee7DfGxtraCSbq3NGhbnGknaHN4RgZdV+4jaBcFiUpdgEy3QUi6nbVWaZr2YF6Pifmji+5ZZjH6ffmRwQH4ADMybZ3xrbpPrvId0XNQrKYXIwHT8Cg751WBfZ6eZOIHjpoIpRil89sSwCl52YmTFKXdWl8ud14+fLE1z/5Wmbvc2a9zybVxMRcFvkOVNPAVjD9Xh86+wAZUuo86n0Tk/GQlpno4AeJiW5c3q9i41V5hvS9n0bAno2avGnsfP9uoRSkmAwXCGWiswlUDE6PoeIyZp1TfhMvr68pgzvHaAG70wXi5vNAZHE1kyF90oIPZqKWA2lMn5vXmG8x9WOM9Hx786KptcIYyQYUdBpxGMhrYChtBdTIeilsQ+fLPEGjUE2Zio+ekRvnoxE2PXPHd261irE0BI6UPH+PRmbQdd64pUxqYFU1TylsIUktU5tdYPQ9N83BsQuLfE/VKpVMgrJ6btgOJqIVsXcPWSCmBouZSUeQAQCqCdHH2/dtMsaNA+4Mxbqf90efpyQ4Qk0qCADDI+8PP/3nYLnhAAAgAElEQVQYDiBn2pTPkPnpsXSacYbrO0mZh/nRQMKMTHYL5MviSrd8iyZWbTyWDz6PpnJypMXMbBi9VI7NZ5nBUlomuyVLYim4PeIP0Gziy8b9dSeipzx0nkabGpwOODYXF+h5Gkgu7qd8pojinzKOmF01vqgP6D1TyaZYS8vS+Pz6RVLG0pJRaNnUwhmgUZ11cfoQeB7JGp/TmKUzRmH6ZBvqq/zY6BZnMDKNJtgsWD9cef7NM/t9ZzbJFIJgt0m3qR4g2a+jiy1bZ7D3YG0abHrvOlMikPRypJ+fUYqS7eZu6WWls+3yaLz8ZvL02mkGlzJpa2XsRlsH0TyTV1doMgdWGZ8KpgjdWyUlu1gur1wSmiiODQirMtWuTpsPPP71wes/ulFaoz0W+YvUouCR2ohSUwasGufLA3CB8UWv0xoeqzgFpSJ2/Eh5M1i80vorbXvicd+5/DNf8fXvfQ/Xxn/5d/8xv/zhM//7//fAV98stEvlm3e6Mf9/5t5s17YsOc/7YjRzrbVPk5nFKhbNRrYo2hLABrJk2YIgwBQM+QV872fym+gBDN9YvpJpSCBBGSQtQqwiq2Exm3PObtaac4wIX/wx1k7Cl04D3kAhMytz77PXnKOJ+ONv7BxQtHaZKevNO7DEQYtKmON2YmtBvAt+9JOf8+4PzvzmP7/Qv9+h/QpKquts/8Xv8w8/fc3Hpz/k+c9v/Oxxclhnn5PnQ1KgFpWPT48cLuaqmdEvbxhz8Bc/feI3fmnyw3cP1HbmvFWsOcODrYsxX6LRRsG6EXMTYOw1GcSAH8RWsRG04lhpeBPrpY3CDvi8UbzRCW5T9WcpTu/a2z4bPiGKgAHtv0bkRefmnCrEu43bfgjkmwkmzWRzItZomHEMpw6op+B0LmxlstGxshEc+DSYuncI5WxNtpTbZL3vN/qpE0weqEw/6OOEDzhmDgG8AMfdiDpcw0czpZSaL6BqDaLATOyjldoW9zo2WUc5+Kq1cj6dsu9Iz6V6Uqx8glStbnmfkt5Jr8PAbXZJviM9C9fv5/r+ZlJHrHp8DCX8jWPcA1PECDeKpZ9Qk2zcQ59Hw6aWNZWMq2U+blK95CCrNoXVvMqCxGZvJgBnRnA9JPWnFrYc9C/w44jjzmI7hkA1kl15j51PRukYN0pafRTT3epLClmMFpXDQ3YJOSQZhJQrFvhY7KzsPRJIDOQjN3PEFQZjCLQJjFaXRFqhC1sJRuuMQyCFVCpxr1rNpGooaICvpq58C6REPdV61q5zsauc0znljlcN9VoV8GRUmlWxiH0IBGmNGeNe9xRd6mm6bSkl1yC3tJJWMovdpfq3UNPvKEN/CCyZgZbJgZpZii1WcrB5B1ot6/e0CQGx8yKHr9MjqfSrj83wiVRT2CDrONMdkE9S9ZHn8OpVDbDsBl731Kv1QsSyYnglq4QXRtZJJQJzDec0B3SteYMRaYkQklNGGpff319aPLBCnP72jPT/9df/Bx5KBY+BFecYhduE5xk83w5uN+fx5lyngVUu5zOfPZw4b41zLYRNZhRt5CIQRmBPwROhN6ZMwVp9pXlFvo5qYk44Kc1wDoLbsbNfdzyCy9Y5bY1eEqX3YAYJAuj5VhM4MRyqNR3yZvLziEgvg/TIgbt2cSbN8nY9eL6+8HK9ElN0Pitr3pBNqgncaLVlulEu3mJZDBpnU9KXmxGHKLljP7iOQyDbnCnry9SLKZbE+e05aZ+aSMhQUAlDG2pS7g2ZiTa5mADVVsy7Fm81UQxLTcVviDYZaSJx23eu+0E7nSitY2kmGIU87BNBF7ydhWFObVkFsBFpZFctkXkEds2xkNRMDLod3PYbw53tfKKuNKqcvtYEeKuJ7osnWl2b3plLelNzUzmTI9O/Xg13VaT7TJ122/BjsJXGm/OFHacXJYjI9CzpjYl+C8vRz5sjE4umc8Si7jZ8mUeuaNWa1GMf7MehdLVWuTw8ULoaEqHURjQlBjar2DJR1k+R/1deiLrQBICuSbJwoYWE68IZeZn2vnHbd04PD5zOD+nJ8m2KsAkIM7icz5DF/h0QRHtJOnNbOGSu+wJW6VlYxP3SmRzXK58ePyo6uuRlhlyEShXoW5DnFfm8FWuqy0qsD7I5Tc1/nqJjTiUxRvrMhIood6j9xNv379m2jc30+4WBW5rbuyiz7kqf8hBg5lMmupJGqchU2mN6LmRDGwsMnZPbkIG81ar46eAOkLX6agJZi6Q1UWYmI+VUDwFwE7EXwwy3gpuLfRNinCluWHs6DKxXvv6rj1SDfhZgVBN86mvaRtA2FX89GTRHCETKsRX79SVlWnqfwyfHsWdjvejrSU/2id92erJX5KIRKRGcd2AdcjKZq3FNiUAMACLSrDpPzgJRZDA906sMAssEsmMezGOynSWnrUXedqUoVVLG4poc7em5Zbx6zPh6Z6ZzMYkxWvdo3+h31Nm3jLoJ6FZZptoqhPPnus6SSHCdAkfKYGea89/jYxeglsDBDHlYaSIlJp9ipQW0zpjUKqB1xStbQ1K0odP2LsuLuDPfcGerLaUDdn8HhBrvqKKms95J6BkTk6iv/+3WFMtb7us+k/6GzGlr698qqFRBlzsgIpNYq7rvKkYrxusKWGC15G4LgNad1zGTZHUVfyUEUGldzXsz4pHBCEZOlwu+L2+1QvgBJgYK4YyUV6xnbY0EMgbRTgJUco+Sd5XGk5Ltuqn4rE2g4zGd0jaWUbiaC60NeudIeWt0NagPpxPmk1O98Iunr3h6fOR0VqP2baNzMebyrkUTcRsh0+I1JIjFpDzkERKruNR+muPA03PyGCrm97Fzdec8BjWSTUrD5itzwYpBNXpTcbvYaYoWF4DlEbiVlNiJrbWA1sjG1cM5ZnDZCrVPvv7yE/3yILsK6WYYJWgmpsxkQMDc5C1SgdGht5lDm0L1AXUDu1FsULZN9+y4u1XKqPwED71wXMRQOEbleQ/sZeJxo5WgXQTa+KG5f40HeZzUHL3VZDeVBlFJ3i4WGjv4AdHszmbDnSgbl+2C/Vql2pn6hRJ3rReqbVi7EK0haYYMxKlvsPI9KjeIG24FuXs2YE38nzUgM/G7rEysfIXVR968P/j1X3f+q38U/OLLJ/63P/oZP/v0wp/81Vs+f7imYbuaxNpNtAEVZ4TNewKseRCz0gjMDmyDl1H4sz//ax7e/jn/yT+5UD/rWPsB2Ab2nne/+y/5rz888tX1/+Lf/Aj+5ubpmRJcbw4VSmvMlytxGHs52E6N7d07PnwY/MGfXPml7cxv/b1GbcapaqzjNfB2IjxHPAFBxc2oNYHhQ8yakR6fy8tG8iaBsgXD56Yzx8RcsmQZiM2qPRPmzDT2tmy6K03nQwXbC1vrYtjEgIK8p4pRzGWRHfIO6plCV4ocYmqRr0ypApz29JyiGM217xqq3wjVO2NujHnkIHFw7icGB0cJOpXrPrjd0o5ipsefyXHNXbVoZmURpHVF1mSvARWLgbFYPcmKdA0vTpvO7Jd93pOXS1pOEFDLqyx5ya81qCh4CYoXyeXSk4gCYZUjjhwaaHhDSDpb0vdFcrPX8zRcvRc4YU2XdqyzMt9x3lkkYLCGJJ7MaBAAr2RKU7ogJpKuxbckR/JoslbujXqrPYcWkuNFXfK4pFSa0SxBzuxuzNEgdq07t/TyqdRmHNPFUste7QjJFK2oHiJc9TCocOGV8QproJLPPsEFTImLaw23YkRraa0wsx4QIyxCdiDFWtZPaXxdMjDBEViEmPqW3qgaXqUOIfsPbNUwsa4f3Zk59PRMzk51pdhpLubs/cPkrsPnmuNkbbM6j3wMeSevAYigtrj3SBiYf4uBt8CW/Oew9T3cvSQ9NGBi6FlaqQKmWetQ5xEhOfmS6Bl6x3cqWv5e+pIXZElG8TIEV1gM9/0H65kpLTGy/4EcBCXpQTYdlr+D6n93neMlFiMxJXhpfG7pL/Vdfn3ngJKoaoV9Tl4O5+OL8WmfPO+Dl5s23LkX3lw2Hh4uPGydreph3WZqtrNhnO5YNGYoKrYt9NiU+qRGBqGYEUlZN7B2l7gc14PjdqVU4+HUOW9nxXe7GkArJrZKeg4sGciISLRbE15NJBCKG4tKGfcFLAChyOj76ZHbvot50mDNeVajLPlOoWUq2h3CJ6ApYe1UG5tV9inDyrnvuE/mkPRvziMbEkuWTxBR6aeu5zIGlK6ivhil62Wvkr2gRrXXnh4VZLznau50wenAzYbXXZRFD0ZM9uuVYzr1fKL2LRHobDBIwKCUewpOQbGFKwLS9YeuvUaghspCnlXTM1GgVnwMrred4+lK4LTthLU0cp2ezXk21VaE1EdOVUq5i1gUNS050XSxh+ackHHLkn3MnHTp8BjzYOudbTtJMleKGqkody8NqwVGenAkU0ZoM8TUVE0Te2Mc6dyyKKEmfbztE993GZ8Xo526JpdFTWNtmViS0/6Sl38ry5ROl+idJZJyn5UUNj0/eyKgYqtMem0cNXh+euHcN84PDzrgit0PurzvCYx+OeuQ2/c8vMq3LpymZ2z6jmIothT5E/WqhneaLoNxDD58+ChD8Vo0dU3grFlNzysBr4vFokQGgRLHPASmDc//P+6R574+L6nhTpZVTTT//efvef/ZZ4Dd0XwjlCwYkkZK85zTqDxnYs5kfxm3BAaPZCLUvLUKxjEGM72wfFcs9Ha+UMryjtFku5Qmw9He5T9SNH1gLsnUK+iiizNyCpeaa4Ju2XAOrYLpknN9eHzi8etPvPulz+jbWZHEtd6bdMtVI7NX7b3F+DmYlN247jfGccs9LFaH+6EzoUoSqvSagvvQ915vnB8ulBn0FVUbKiJbT8Nm4y4JFUgtL6S6PmeyQnXrFbws9pQODDeIeeCHghWO2/UO2FbT3hJwIXbEohmPCA4fpCMURKRkB9ZpnRUnANX0vLEEnTyLjTxVtPXEQCGBQXlgZIrQvWitcIz0pdAZ6h5Ud2DLiaXm2S5dWv7sfFahn3/3LTi05kDreRWNkc7L6y67F9EmE/ZIqXWnypSV3ONFjOKSR9PMabTAlbw1AvrDidI3yibfOgNJ30xF0hhOaZNaz7o/5mus/DLGLqgoTmKoJroE5LQ5qqX8eyGjxj4Hx76z18rGMo6tOXGEYp7suDSURWB+ydQvXNIrsZSCcew4U0mCS1qFfB00sRXLITE4rcEpNrQwKt2LnndHVIip4k2/WyRzp6cspCRj0lm9gKGQAbaLANuiSAPDiRL84me/4P37t2ynTmlFcu0QoOhThaNZECZz3IJ86mprYg8GzOPGcQwsgUvJ2gOfB2M4PnbMg2fXsObp06D3B948vNFZlkanoj4FlJyw4/pbD2YpjPUMTV5bziugahWGjTxfVsk+GSM4qlG3xuPjJ+qtsDV42MSWKk0srpY13UyGOV0DRseYKCDCTf5j04zaG21WTpcCURk3NTpqrjr9VDm/CS4Pk8cPV/bb5GUU7CacrpSdS9vYWuEYAsdLO6hFn0XrN0FOhhrp0J6lNMWC54qSvF1sWcWId7b3lflh4k+D+rZgs+A2qFwp9iA5EA5VYGRjx+t7zD5S5o7ZIWApktFu77IZKmCZSGlNlgjbhcsXN37j19/yj//hr/DTv3niP341+MufPvLDh87DJl85K8EJeZjI9V7SFYugtGRzuMyjazSmGe1kfH298Sf/5485v6t873fP1LcbVr7QgXP6VX7wT/57/tvnR56vP+Xf/nTnq2MpAHKIup0pI5j75MaBUzjXB07vPuMX38D/+scfaNuZv/ufPdCpWG8Yam4t/c/CC1bVEAvPaMnwcB3aO1jrTNtpZUi6GZL4WtG8M0JgFc3xuZKiVavMfI/hQ6yemHhRqqtNDb7OGNa6zJjX7l4Aanb4JWvdUkNpuMnq0BmbvU2NHFBpjRErmXQyQsPyVguE1A5WOxEFa5Myg+MYtFJyT76ytiNKspYSYDGn5sVSssAQyxEBMqswzwZ+MSpWI1+KQYOTndhvCieZpF1IONf9SmuN1nKv+uKe6pwtOUBQHxz3BrqlPFq1m8GS+4XTtoYN+WOKSZX38iEpotshnx6E+64k2UC1Vi2q89yDFhqYj7znW6kaxlpKxzx9qszg1NPnRs9jhobves3a1zWH5zVVLyXtIVSTcweuIu8iES80hKjWspZQj1irMbK3iRATsgy9vmg1kZBXVkslhwVWXr0+cVaqmOfwpRaxkkdKnVo1DjOxZ6bjPjTMVOqFeqHwO5ARkUogK3Rref5oH62hsUzj52svSdZN+b8Sr2xrMQBVHwwj/VQlEtKAVIDnSjab60y1XCOQwBV35rInuiRJZdwtNGRELRlYzJS62beGoXkGrJrQI49BW5WczLaV3KbeFRaDT8qBUrXWwpcBhiWotH7ZuD+H5bW4io/1mRa5JJtEFmRWV/3Jqu+kOlmhNZZ14N0XDEsfsqxhsu8cAY2q9L7/vwNK+z6JAp+OwtPz4MMTPGWajVXjs3Pn4dx4ez5z2todrxN45DILy5XiSeuKLCjDilJGTMXMMXXAOlUNQuQk2xrHvvNyfWHfg/N547RVaaqL4FKPhQjDybI4SLRzuFDaXoyC47YkVbHwwtfXnAWSe3C73WT2vR86CIvlRFkHS7NKT8ontUJt6UORPhzWcJOnRK3G7XZw7Ica03Ek4iipy5iS2VGK6OkY/dTT00Va/tpO1FplEG2kH05IitabDB1t+f5ESj/IQ3OZ+6X8KP/8FRm+ktW204m2dbHKclNZBK0ZkQt+xTxG+kqFvfojSS2ScpQ8wDy0yTV5CnwfXK9XrrcrhiY0JStyn0LaMTVoikVULdRyMr0m7zOmNrwrGek4dk0W5qQlO2X6YEwZuFtpTJcnUd9OLB1ttYK5aL/hnv5UlsbUeRDllJsISQZczdxIw8VFPbZM8RpDv0eknHA7nyldgGCrjd7EZBvZeG2nfp+66fWJbTQjzbYpKdtbdOYEwUplWPpojEPgWK18/PgNAA8Pb3QQWSRbRwd7NSX9gFMSNLCkqFOM4kZvnRziyLelytfAPGjJTLIEkmop7LeDx48fiDlFVyanMKFn204bW22wqNKWzYjr0p7DU2qVGxFjTKU7rsKn5KVcwpUMlIBcf9i4vL3Qti1lDEeeC/mz1n9rpvVblxH2yAlZpARiEOOgWpEgzuXfRJ4jxzzw6y55YSsZ+1rovalwz+LEEnFdyQy1NBURpKn460dUQ+mimvvYKUgPjxfmbQdDxdZW+frnv6CfCu8+f0e1Lv+ZleYISVeXdxf5LtlnFqHLo+kQMFnWyEvnnbsuqHmf9qTc0p2R7LIYAyuiOHs2K2KSJPicII/ZYjNKxjZdWTwLRisL0lxNSHq7+ZzMY+DAft3znpfvlafs1l0Ts9OSCt517etyXzNnFrRyp80bOTnO6eJ0Ma0KJmV0CMCM0vTyIiWQeZ84hiXgFoBbhj94wBivLGrXeV4W8yWBb7I4Kwn46UmrwDiuos+PeUCy1+7SOdO5c5dfzgQ+iumvVu/vH5/MEhD1zq4cua5L6EzpCeQefoj23ytrcr0S4UQ319ChDbHGPFZq4kwz7Zlgn560z1DU9xg6w+4VjmUNpnu69IY/X7ndrvS+Uksku9NdUVDs+mpGjJmgTYtkFsbBPmYCvbuMW+egn3KwYmCRBrIJToc7x+5YyYCPkauyNmpLFtDUtFjY3/pcAgYjihgxayiVZ0fNvbS8GreQd8fE1aCg/fv4s19w6pXewUdFGYVr7Q/Ci7w/bHlBauLrY9Dqia1vHKVAHdlg3xc5flSoU+EH7pRRiD34dH2mfv3IF5+9pdc3aXmxGIKZ355rTamY8t0oh90luz4C76p/jhmca6XQNFxKc21H62O/GlE2MZsIpcm2QhSZnhotJczZ+FulNEmhI2upFgKpih3QJm1rVBFFaKdGrUPvgnEH1a1Ae+iYw9fXJ45jMreUTMzCbR8QRqkTdqMVp5UNm0dKvI0RlTmcfpp5Ti8j7mSPeU/zbsNrSAKXkkl/MxkfrtStUM6qKMMr+JFDvv5aA/knKCdgI2wAtzwX0qahXAgryY4yYGLlDdE+x/oL/fTC57/0wm/+5vf4vd/+hk//5hd8+fETf/Zj+Ox94XJq2gMYfZOBOSUEkAaUqGy1MHAsqqTjXhjb5C3B46cn/uwP/4p/8O4tn//WO8rljFnVGf7+t/jVf/Yv+Rcf/xVPx5f8u59PbrMmSF4oDq2fGfNFlgBlx66F7XKmffYZ/+HLn3P5w0d6d/pvnHgXZ2xLWWkotenAKV7lMRWa/M8ckFYzgY0zsK1qEFsnPmWibKhpLKZ930pNtwC9RzOxHHyGwMts6iaSBJlXrMjX6tSCUiY2IoG9ylggsznuSvnainFYo7BY1WApsncr1BrgCVLfbSEM6jLwhtYr7mJEHrF4C8FSF7RuzGHJ3tGRO6Y6ZkP+RWLkJlgclsnNlsO4PIoTmInV+NYEm0L3SaWynXQmHMeNZaAtoMiZczX8q8Yfrx41RnrYSJKsoYr87Kz6/f4ia1p84k27S32QghtabRxD0jPLtK1YsjB8XSn35j9YIFDHRg4kkH+RtUwStXXXegLaIjlMT4ZyPhfWaE8FjRrXlAlH1pGsuzLvcVjEogQnbC4yk2wD89kI4RNPdAFxngQIvVNBCSOBrob6k1JUB5Ri+Ufoc9e8pwe6h0rwyuD6lhIhECa1AIp8gvehOJ4qF8v6aZ2/ySJbUslXvyC95znn32JmR35o+bPqz1jqgoWpRMx7bbV+XtJBXnvXbzHey0JjNMHKuzxrCRdbsFb5uSm8RD/bM9F3Mdnui7/UTOMVsKyhqmNTw5ZgDQxRr4KAIk9/Kz27uUr3BGbTYD+SvhRZd6IHb/nZ3F/NvlWTzlc2U9F5v2So6w9YElZJAD3fh2peQ8CdBakc+G6/vnNA6XF3bsP58AzPt8F1gltw2SpvH86ce6G3ylY7heBwpYYE8l5xE4Ni5LQOgIxBX7ItmQ8HI9HSmT+jYhwhs+bbywtmweXhwsPDRifuD3VNRddk1ooWk1jkFTOBFCcrxIDDPC8pXg8Hj9xEenG328Hj44umszk1JtFJuy+iSsvJoVNUmJnRbKH1xpZTzNvtYL8dzP12N/x1VxG5TJWhcBx6Xv3UsNZopVGt4bXQL42tNDyMSh6QrYq5REuUOKelsVoVy8Mq7g0BsdgbOsRfbjr8T2/O92lWUO7JcBYq9jwmEQk0FYF2w2UqZqtRQCaCRjZ6HtmsSjoyxiD2g/35Jo193SjdkloYYmCpIgBLxpJl8Uv+7maC9ufkFhBj4GMy58Fy7Z9EyhwzDajIs6FapZ9O94NsHWK6NwQgRTWZZqYx8MRFb3XPhCu9fxmxLs2zisy7sfQYyWQItk0pS2Zi5rTe7z4stTRRfYvYG6uZ5z6JMWglL3o9eyWaJdvKna2dmAkWWDGenp6Y1yvvPvscWtanVu4H/DrYKHnYZyMMCxBQEUC+hlH97jakOGtU+CWaX4qMA58eH5nHwbadVAi1ekfUSyvyNEt2lYqBfG4mlpOkO+XOCFvv0nidpDFdOv+QX5duthXXCbfbFTwB4jmZyCi7msC63lQATvKiyU0frj0xj6FpRzVq15VgJgNkJ9hvO2Mo3e3SOhSTp0it+pnZZDueTDqxL0VJD0ZpgAz6k/7EMn6ONOgHRcbepjP3bEbceXy68vTNB95+/zPidhBNMmS6ziCs3J+V2AcqLErNiVkCvI0CJf1yUvgvhlNNBkbWnlXyF59O285iURwqTHViOdEK1HIvCBbop+PS8qwE3PMsK9jcBUbZigyW/Ct8KrEwZY37Tf/dDHmnlCHN/ciC4ohBmfUVMFyX7fRXEL0kGzNBPPME+6Z8sKoVncHI576bsR8H/dKzyo0s5rQ/ItmYOpPyPArHhynBKQcIi3UIkZOUnHDlmRK+fudVu+SdFYPr80sy5rLxuIN17f7nKTI6GEfJibnAzwNnHAeUbLIdGBmbnB5dTjCKEcMZPvDrDbZOzMG4BfV0YlHaBZQ5xz4pdZeZd0ocLQs/KwLmSlUDc7vtyTgeOVzJeZuZwPTa2XrnVuSLd9o2sEl4YTttzCGGaC1dINEafrjMNVe0ejVj22Sc/TxW0akz7HI5Z7Ox3sdU8TV2juNZgSA+ZfYeTsxBVL2XqNmkxbeGkas2d019NTEtlFboIa6wW9C63Qvy6iFAPA7MKufLQybhGeeHN5J0r7qihnwhqPRtu/swekA7n2RE2xrb6czZZt4BZNQ0BFPx6+7Y3BnunA6nn658dZ18/PjMp9tVcrtIJmVocLDWXyUTMQu0gK3IN6a2hps8K7wVpk2B+lR5u9jCrtWMxhSr8HzpfHy88dlnJ3oTABjeuZzOMA68GHsX2zFmQE9WWsigtUQBKzQOyZGKSZbqk14KwzWxrekFEpkEez43Tm86L8+TmIZNY4RRYrDvle2hC/Q/CqUmg9KHzsS8EqzC1luu3FVOpWSCQYmKNBOWkgunnit+HRwfD07bmdI2SC+QGki6l5dqsGNxJbJuU+PzDOXMghFWDUdIkgKFqG+x7R11e+Hh4YUffu8dv/ebv8xP/uIjX/7FlR99+ci7vzzz+bsTp67VVYpJOlvzvHc1Zt10N7kI3dyKfptTr9jZ+OuvPnL+dz/i7795y5vfuED/VbB3mBXq936Pv/f7j/x3z/+Kp9vBn305eDHFp0fRuVBPJ+b1ytgnsFNKsJ0fOH3xff79139N+aNntg1+44eVN1FgG7jrnXRC+8aBaGKk4hoyp7TkOJxeqmS74VjZKWXL9EAB+DUHFYsB4iFmT28wMsR8TofqkqM5eC2YVyaSfPViYJ4SfJ35TnZxpDRseprBd+RRNbOGVRPYywIhNLBZJs6rYRux/EAHJVkWJWug2ipzaIhHg0HRwJKJW+RalFW9p6eO0g11fjjxOvjLuqcHDiIAACAASURBVPJVSvUKyKwlVzOx16zL6mQfjMM5nU/cpT+R55xHDhfSa7IYFvNeO94b7lbvA/S7p2k27tV09rgV9v2m+zjZLnM6Frv+3udd6iR3hWSOFd0LxErVylonNCyIKkhAvV2qQEggrRTMF0NqiCVnpJwafLGYUM3c0gO4JPAjMDDv8ztgFXdvYFtgfw5BItm1PtM4IGQfoOVi8oTjtQ+dfqAYgvx5FFpV7RrOPTijWsVspueP6i9zsJm9X6jHjaKCLJcjPpTUrbstQS/svj651+ird1/rJmssIoeYdgeetDXs9XHkAarU11xrnvV7/q4lGXyr/1gA0vIjDVvrOCHFUL8ltYxq1EHc/xulCpoAr2TuWE2mlafcF4FbwZSnVYQug8VANyOm3euKxRjKCejr+cx6NAmk3VdB3IG8VT+UtClY/17G7Pm54tWOJPLf+r2ZiW/t17W39F9FSuSWZ+h3+fWdA0rfPMlw78PLYLpS3x5653zunFqVrjYLz8P8jgQ7cKSOF5SwIOWwGj0QZVm0c03Ix0z/oFzFEcbj0xO3A06njYeHxrll2hJgyEi7rEj1sDS+KymxAkpw3joj02AWZZSaSQmJrGe7wTEGt+uN234oJj3RcasLnYycPCuRpwgKzyZcNLZqStiwahSXDOjYd459x8eez6gkS0gggFPZh5LTttqgd6x1zrVpc25Gz6SpVtWouZniLde04b7ZtVzXQnYXW+aIqUMK0eeWfKe0Ls+V/FLql1M9DU5L059VGifb9HNcdHQz6YeryVslOfuS8S1epE9sTnwObrcrvh84oRSljMfEQxdLTZ+GuzFmeQUipdvQ4VQDH871cNo+mX7g84BS5VO1DNpcxamFaRJ/EgiwDH3/1v4zTYvmGPTIRj/SIFgdnZ4PWgdhlkV1Xo6ODrU5CZccwNK8LnzSouEjAbi8uGsxynZSLLpVTfaRdM9nqAGpopHOMUgZtr7WZVfBb1fM0wPr+Ym3797Tatd0rmSj4IoYNaC2Td+X07ZlOjNyHVleQLqwgfCcdpEFlWfyWwUrPD9+5Hp7USOApT+AZcFgnFp656TJI3khlASEygIgsjC4H/bZ0Mwpn6zpU01Ufh8JFnjAfgx5ijEpU8bG1zhk+riYJBECGU3AwwLZ4JXh4nnJHZ4Gw9Lb6t3tikZuVhS7XjJeHAGn+gECxUtrKkgQ262EwaYojBCXWutpHPoc2ck44Me4f86ZwMOHD09i6QD7yw4lxKbzTjGBsa2f0hsjJ7QRHCXYkkFSSiVqUGZhxmSONIsemrhMf724Ew/Fp9MfLkrmMO5xpnplaXCIAIxi9Z6csgqDKOB70IRkUkJgs9JzXt+nIY8sRckP5rETAbsZVp2rT061sHuw1cYKpgvUWJe6poWWoItkX2HGNJn7l1U8p2RyghguZWWH6HZpraTvU254g+kZv+tJY6fd7wTPtfTagI5sCkyeF/46nTVUvPmUn0lEsB8HxxzU0u9T5VqqCsZCMp2KZFC5xmRMmudkOPvciVZksh76k9ZnKJ7rMJ/ZSE1g3zbdDceh5jJ0VsQCJqd+6zEmdUxqFvnlPgWXVG3MwVabvItSMrLAYCLuMsFaa/pKVFqtnM4n3rx7IKYYpg8PG/s+M83JOY7IovAmdkrbWBLmiKBtXcOX22sxx/IKiaBuAnAiOmYFRwXmuO2cL2eaQWnZ+LkAA4FjnkGaKmgtkoUUi41T8GQ/1a5J/JyANTw07JgMAfneJD96OHN+OLOPSe0ntroYFQKjahG40kqhl0qtm2jsOL2ppmhNz7w2rVvLBii84nYwDkVV12nplXHw7s0bfvY3H3l+vHG8C1qQUdiSNUayzooZs6ohM4+UzR6UONPboTpI/HqBuiyjZx0UxTQEHDaxWfn8zYUPX38SC2zrxJzst0Nek5vYV71p/aQ6Rt6OeZ9a013AVJPuJSS/88V1NCIqw9bAg/u+f/9+49ivzBEM09mjAY2z7YGd437OLON3MTQcIxkRQ1Jmr8kSCb3LsJ3hz5LLeXqzTaB02ptgfNg5nm/0dx27G8hriKqr9plZweKExYmIT1kf3yAmlA3zZEYlkh3W8yIGK28o57e02xNvvxj82q9+zm//5gM//vk3/PRp8qOfPPLrX5x4ewlaPXGujZmBKRUNAIYF5ulr1hSWYMMoUekUYptY7PzVT37O+z8+8Z++e6B/r8sz0C5gnfpr/w3/4Pe/4vHxf+Z6FH78YXI1uJoaw6014nRmf7ky9p3dNNA7Xc7EZ7/MH//lT3jfBqd/dOX7v3zirYN13VO9qClX0IlMhM1C0eyYAAdgxk6hKzV3DPpm+C4/1DHlPyl2idjBNcpdShgl64g8txuqqS0KVgV6GGC+BsrOGGLrH2G5/lUzWUBl0NhQQpbWuZJNU/qSjSRFyYVTfFe29OeJeeTIcOjPT+ZjYLQNDSVG5NDS2Idksfod/d6HLIbKGrzoTJw5wIlkoSzjYtVopWgwv1LgzKAW49Q7BeM4Jrfbwem8yRQ85c0CkF5BlyWB0xPWmTxFZ1HPtgaDCJBahYQVBTf106Y+bWS9BMRxhTwbSyu8co/1LNYwu1rBUe1REDOoWjAIyaNCjKRlzu1TQEg1E1MzXpk4JUHRUl6bBEtQbBmIzwha5oIsdv16BsECevRuVylBpnV1/a2Y6ZHsk5b1S/hrTzvTsxXVzK/Mo2Q0ud/ZMSU/e5rMCGjrheEje16j8C2zcrO04ktgKFU+6xy19Ph79aLV10oPnHPelQYLRFlfq6Uwq4ihC8tEfvXbFiXT4Kq8TYf+zFe2UvqnVr0DsXyy9kF1l4JjdOdLvvZacxSDqFVJkCGTc0GLK3GQu+dR+KA0hSiZfQvAy33rkSlwlNzL96dxfz7xLduEBRqtv1oh6zRYKqH81wKVXF50Us2EWFQzJbixamm0Duz1+6QcFDu0BhyL3fQdfX3ngNKHp+BlBLsbD73y9qFybk2JRSbJDqYXU6xSMyK4ujOQjEfysIWqJ2MmaVxkzLgmbXr4JRTb/fiyEx68f3umnjpbF532mOuSlQSi5tvZx8xhdTBixTmCwJWUZtWcoifqOLPod1TUX687t31nmbtZukKLdqoGrXfJeSKZAx6BlaYFkWk/1YT+3sbgOCbHvhPpgj/jEIg207jMxEiI0qlbp/VK1E4tnb5lFHXrSo+xqlQVRA8OnDKnnmtqnSMR2ftCJ00/zQTyWeHj0zM2g9PlpEQt8lAKFR3LVyKK0HpNebMRdHKjTEozFdTpQRMUUWKdbJInHpPhB8f1yn67seSDJGtlutgctomp1muhNjVQxeQRsfyFhitZ6/DBcewQkggGSs/xCMrUQa2I7cZ0AUnbSU0FSVMtxahVdMlI6mugyZ37zCkESZ81Wu13gG5JJfYFjvUOEdx2yYmKGPKSRcz0pnFnzJF/dU6nE4b8Iw4PPG4UatIe9dzm4Yw9TWSnQBxNAbX2amsc48b1+RmrxtPTM+3hwul0FgBZu+SBSIKj+HVkkL7LmYCamJElNdeTGZTF7Jx2N3v1bx/syQLZbwdPj08JVqXxdEgyFTHZtrOKqwQZYvrduH7aagxI1lYWH3PepXCkx5GHmBKi7UqGAaLeWgQ+RjKPgtuc0twnVdgKd98DRwyvu+mi5X7JlDpJK0v+c7mDRft+U7MEnC8Xau0ESgeK4VlYfYuJOTT1ntk0ClzLtWmKo11fMqvMCUMIrFzFwzgOaJ3r4yceLhdqoISIqYsw7zpaMz0T2+/noqWW/XB5FJk7w4LicU9SWh5oSx6ltE2dkzVpzZfalALX2r0YaWYJ/OrsWAy9JSWFbNAhpUBBC797f8kgNYvRvGgjNECXV5ia60qTLKZr7TXT76hkRq2bkmb+M6YYYwkELV8no9yllEc4JaaMi81ovcE+KTi1Gtt2ohc1KKJu6/2XBdCgYnO4CqBGYfohVkjfUBqc9msUSVi0leR3wJJ2RNCbDDLnAbfrjXfv38Cp0ak0a9SW90xKnXs7gcMcNzDHvWSk7aTWk/yvijGOnQ2x8orpfPZ8ID6UDEaF2jQZPm477969S9Zt15Q6uINgKpySEcyS/LnMu9WyiH0ayTQb4/9RjCriFjAxlSz3cVJs0ssEYu73SONl3zaOXc895RA+Dm7HTp8brW8pMc6p3tS5XCLka2hiFIzD2a8H+74TCPzaTU2jzu8MOjjSvyjXi9jLkrhHejCa1bvxamlJSWexO6GUmdIUE0g3BPC+eTjz/LQ8EVedr1TQUtJLz5a8YlJKUJe/kEfe7YVWjemGp2G0rabDggixFWpMzlb4/O3Gzws8fnhk//7nnFolyvLW8ZSS6tDWDS6G45xKZ5zXF0qr8nICwOQRaMmgjdW46m4yE8B77hvbVvn4uLOdTzQv7AH+cnBxefC1LcNbZiSgWqlRsOLUqiZD+1oBAz4Gh3lKMj19hQrejB621HuctsbbS+HpcWcewXFWKIqRPjSHU0/O2Ddqb1DFAtLUXPt6zIOgJrNW+4jYsQPCJuEmlm8p8kvEaP1MPEzGh2esVeppCT4c2s6sWStJs0m0z7DYIV7UWJRl8JsS2Ri5OU5EeaOGqDaifYFdrpzHwfd/0Pk7//kv83f/7BO/eHnkm+dn/uTHjffvGm/PJ3YmbUaGfiD2UDFipKk6hrXKxZ2bJYsDp4Xxclz5D3/6Ex4+v/Arv9Op7yvwQ4HJbGx/71/yD//F3/Dp+Q/4X2bhrz453SSjDIPSNxnv3wb7LaDs1FK5PFz4+Pn3+d//4ku2Bv/0H1faF5NmG2UrlMVG7NwZVJE1iGqTpjUcjbnrkGiXxn4NgUqjyXNlWiYo5WCyps8bsUi8qnNGDhgR8DLZaa4repqay1IrNZ/NFvIr0viPZKsWthpQDmJMaih4ZWTNhlmmNRl70XpTqeBi3I1Jt4Aq8/jJq3eTo2HlLKpdaoMy1FO1pn1s4dRyJmLcAxvuMileLUC+PXi2ZLrqDs5zJwdKK2lNIRcHtzHZbze2U1etEVMhRUVqE5avTAIAhJ5b5Ge8A1iQNUI200LBpISY6g+NoRoA7a8xD9WiRyCCgtYxGQJBGFY3ARnpgeT+KrYyU2KaBmWR4LEl8yVZ8wsAm4PImnn1HQR3f9xVr5Q4WMCHBhF+r+NUJ4sBVVxgSjspvAdLj0/TWT+PyUGoxqnllaUyIaxyuO5OMUDVp5QCvW1rFp/DMARmksoMglLFoF0Dt0VBn2mx0JqSw82TxZSeR4TA5prJd559431w9617vSYIuVLZJKdeAL9qNUsQEReZYUnhSxSYiPWqxZmfKSG5+2CSVN6QNZfdlQAL8C1Itmr5fhMOzmAo1VuyCXBWiudiQM2Z/aInYGvG3Y0yfy9MfWvO9mAkAz7DRWrJpN6sfde+0vDxdX9Y9hR6Bou0oAEN+UnI4dZaa5Z711dvqgehQYrlvvbXWuy7+vrOAaWPtx1mYbtU3r9vPLRCLfIOUUtdFS0IEELUfBpONssYvRXmPO7+GqVryjqcO7ujpqRnhqZY+3WnbY1tq9qIATUK88gLsCw6od0Nnz0EnMxcjGbiL0+Mw5u8Y4r0ozMitdCSDd32G7frznFkkxmvL+eu56yFLTTJ7jWjKRO1LMgcmIAxD0kJhlJhxlSsvWFMz0OIUDEfpmfYglo3Wr/QNjWDrXQtWIMoSo8YETTZ/jHnThI6tCiTapqnqn5/T0+XogOnOnx8eiSmc7lc6LWKjURLE7sEq9LfylaMOEm/C1mMYoVZ07w6fbLuiRgjp4w+FCXqk/3Yud1ueqLVqLXBuXPszqmtCHMZ6dXy2gQmRKxideyYHxxHRm9i1H0w4O5nUYrhY96L3BHOqTdaJkWFxatrf14QK6HJfXDaOg3Y8zgaOb1dPfIYk8OVslbNUjom6V9k9PhiNNSmCXCtjdr7ndGmyZO+Z4yhpI4Et+ZMfXdKZNydYz8ki0wJ4YzgMOmrcef5duUYzv5847ydOF3eYlWmp1EzDcSaVIKuBCU/DuYI6mlTXDKR4F9wPY6UYiz5UmGfQ62GKUlkTe/cJy/XZ7GfqujzS9dfnTQhT+lCpkt4NUknQlPShhE1AZQ5qckSK7UulEOphce8X4THHK8F0L5z80kNpUCywKoihuC0yHStkK+Ia6Lo6W+10LR93xVNnQDnahxniC00xqGCqmyUril+s2AZmazpEiFQSuBByvWOwRpnLblrye9Zl8Wa9FyPQ4wonwIEthMvzzcePn/gi3efUbvhRWHvhsts1NITLgJnCJSOBGPNmMUpDnaqnE0G5fI1MipiCZVMDCFUALRTmue3mo1vMslqTUB5nZOLJp/fn2C2u9gfRZuBPTStd1KKkGB6EXKhdEJD09nplNY4n88yeTXoxejT8JpAkVVqFnHtfMFNe6o1FRGeXgU1zwbJIqAeA8OxQxHvWxj7uGKmJrYkKKYiMc/4PCcgmaFZJJUqgHD99xGaVo5sQmqCdAtsV3lWMu3JsoE3XvaDsZItQ8220aDK94scjtjyCJgNFlWbBL03mCYZU6NTrDDMNbmrhnmhJ5svEsUJC3mGtbMK1qq0VUkIIsu0V5ADR6xa5YDJ8H7KTHX55AXcU1axnEySIDMCCc+98SGC/XqI/WQdY2j6m8wZsTUbtRVOXawrsX8LHpUyyj1hsGSBCCVZX2oUpjvnBM2swmlTGMPLVSb0YrTCiMkWApGnGWfvBAJrB2ClSvYakttYuCSKpRBUDjI23fScw5RGFyP0c0IU/DdvH7g9P7G/3OjFdH8WhVBQxXgbcxmdOx2j9c5+HIxDf/7l/EA4tCKWXoyZPoaWdgNTfkhW6H3j8mCc377lw4dPXJ+fOLdNUutM3QiUCBsUDeciGUfF6Bi3667EMpPnwxykkfMaLCAZfkp8PIKDg1IKn7+v/OhnL1zevOFNL3gxjoB227HmeC0qYPaZ8vlO7Zt+zi6GOJlcRJH0PBZjaDEuQqap8iduFJuUabx9OHO9Xhm70Xc4unHaGj5dsfajMKuMxHtpYuwyKa4aZQXpeZtUiztzK0Jx4KNoeh6mc85jp1qjvzkT+414eiGspTx14qFAlSiqf2084e1MKZccmmTCGwNCvh2SD01w+fNM65K+WqNub4jTRy5fnPk7v/oDfvd3PvDTrz7x46fJX375xPsfbfzw/cbbi7GVBkOHc7TAqpgBHOjuDmN0Y3MXuBa6N6MHn27P/Okf/UfO7wqf/9aJ+uYMXqCcMR54+J3/gX/65d/w9b/+Ec9H8PU+GS5mwLSgbScxt4/J2Ae3slMNHt6/55Mf/Os//4p+Nv7Zf3ni87fQo9BaELGGf4ZN57CJH8kPNw0QZxi1wdwn/Y1xOlX2F6c0o4+Kx8DqkB9TBC19fLSHdUcbpoGLq0E8AjE7hpo2G/IrqxQo6h18wlYaEQdM1XC4YSU4G8wmSXmpgc2JBm2x8BT9PAuBklbYgNb7Pa35gJT5D8ydw52tCbwZA0atEJPn62DMSOai5HJhcIwdSs/5lOTmM1lFSfxhmQiXolqh5EWyfBPvNAozem9YrVxvN/ZdHq864wNoultNp38MyfRigTC4wnmS8VFMHliLlrjYyZhRWqOkD+htN/VRWYeBhlE1wXUj5WtBStuhdbvbjVjJgUUIJKmtp4QyNPSeGqgt9lCtlr1j4ciho89JrwJ6jnFkX1VYsnMpnwQs19LuahBVeQodWEoFjmDrJ8bY5dGXfVvduoKqQmvrZEsIXShUAeo+iHCOkpBfGC+3q/pCM+rdTG8NgGy1gZCf3ecQWxunt87hGnGVlI3N6a8gYPayvpJvXQxtjBwEZne83mu+2zBelQ3JkPP1WxVZd/iYue4EuHkGzixmvuTu6m1YgGQsIDHBztATLghA9AQDJZktmfidg4dc6yI3aRg2iTsQ41NKCNUX6ZdYCvdJLdrHSlpVxWwLY0gsYm3sV69X/X/DFsC0BqaRydeqr5astbX0BvUE4Iz8jHwLpEKeuyYgbgB7/g5kH9Pju3VR+s4BpbDg7fsLnz903j94ml3W1wPEFsoPhxt7Ome6IR+FO7ijiXS1RgxlhsjXwOhVEpkxJy+PT8wRlEvlcipsvTMOTaf2YydCpLIVST3dE5QRQjxi0EvRhcEqdnSYHnOyjFJlmBn4cXC9XdmPHT/WhO1VY6y6OLWaGGVrYnUYWYjqEmqlpInyns3qwe22K8Iefe+YB6/RzuCm9LKtNmppMovuJWPVobQgmuUikfHZEUoLMTR5UcM278j7mgCvc8VTd9x7Z+4Hn55f8DE5vX1gmrGvbhbnFkErdqcNzhlif5CNctLvD5chacFgWiZqiLE0hswd3dWAj2Pgxy6DvUjn/lppW2fu96NG2zHZUEz5IVhrYGpSJGm7pZxnTbaHJAxGUhlRQpSPnFDo3fTaiGOyMyHR7Zb0VatVxoPZDLlPXtKU1bOhItld+xgcx0Fk8oG8dPyuyfVj53D5vZwuim2nnqitUqsi6/Fs5VL3eupd5i0tZWIkiJVTrWNIGUzIHNdTEnSMQa+NHRhzZxzO2HdGqdTbDlWTTbuZWCkkA8BdiSNmWDjH3u/gRaBYaqUFVPkToGnLgdgHPeye1jANbnMw9p1WKmNNXlNfbAW2vikWuGgKWiMbPrP0yEAHbDXK0O88hkDIltOJxYzbjxuigMKpNl5enrGSRr6H87TvmiK2CsNEny8yc9/3NHxMWdRKOBF+oubX90EU55iuqWcxeX8comD3vuF1crqcUwtNFpgpd0oKeKsCyybGqeZkohR6y7RK0ztRaEXcGZrFDEt5KLEmUmInftif+P73f8D79++1H+xEMckCeu/UKIxIsJPQ9N9S4uQCRUdKRagmev++UzPhjbLTMv44phwZtg6PLy/UnryEyCl9kXHgKvxqPouSdOC7H11ouovDzafYA8nK8iAnq9xHT0v65jkt2tLA3vJ8xYNbEQthM2OsBjgv6La8YSyUbhZq2GOxUE1FeMGI9BywCIH9pqnamkLOmv5/eZxqYoWmw1kMij2lJENMEo8RsPvU1NtkJG0lAxEy706A0LwDrLJEGDDE3KvtlFI9JRtZTk8tPKenSOIQMMvQFDzN0snC0y2YlpbPsabILnmjiWVkIP+I40a9dJ3EoXPbGjmFFUt04X9zjGSe7sIVS0lmkpH4ucINckIYZkrsWrK/BAxLkRzRq1FPTU381LrqrdC3jb5VxuHM0pnzxJwz/ZuaTG67pMKBWKan03YH7Fs3fVYEwPc00KdsPLy5cNs1OLLSaL3RFzvKsuGJSIBxoxLsx6T3NYFMSqepzvEpUGIcg+jpw0LIo0t8fN3X1ijnN5T2zMvLVfIRK7hNLnWTx4OTFPug9i4ZglUZ8tqhSBcKhx+StHq+lzk5Ruje1KgFauHUgwcvfP+Hn/PjP/6GD9985O37C+4nIoqAKEPFTEaqk2w+L0FpUA8Nz9q5Evug1I5K7ZlEGxXHMwt9s0IvG9Mnn71/y/bVjccPj2xfnLAitqQ1MTvrCAryz5vH5ChiC5QhP8lSXfWhpxS+nbjtLzQRgqkmxlJzoMn0OlJeWk+Vy0Ph+jgZeyH6ZDZJkHzCC3CJSbSe+ym9XSzkPVLT1+7WwCqjOJQjIfwN81veM1VM4HGDObHtQn0P4xt5k9lZ3m/UBUps8lLzjnkl+okoGzYf0WR7QtywciLsQdeMdWBSQmCTNnXQ64WxXfn8h53f+Z1f47ob//ZPv+I//uKZP//JN/zg/Znzm84Pf0kpw+H+t/x9NHDqTD8w0ngWY9qkx0a0gVvw118+8x/+j5/x998+8O7X3lIuZyZGrReML/jsn/+P/Iuv/ye+Oh75w58ZX0+BNuFBbYVeTxzc8HFw3eXV9GDG995/jy9H8K///Te8P3f+0W8HrRq1dKjrvhITZVqh+pA350DSc0ySxi2Iq2GbUx+gXAMr/Q52HoQYg1GpJgaRRWML45rs2rJYGuHEMCklYqjBiXKXzJxI/0gLti424NcelFPB0rend2P6nt5CRk02qawTJiUZCbO8gioVg1qVRoyeQUirzTSd/YWg9wkOl6I763oAc9Bb5zYPWtYgR/6cln44VnRfCpxYkx+4G4RbYYVN6J9Vp4IAkWrO+SxJ8n4b9C1TrWOFTxiWB5IfknMr0VFD5whoyXTUfay7sJqGIiuJebrOkG3b8EM10hiH1AT2eofemSC+mKFOzF3Dai/387n3jTGldqn1W15OKRmKZO2oxnkV1LkXwqee7aY6JLti2VAMz8RjPa9UXiGVlwJ7CurZ7JicTif2fadYiFmazDLJyxS+NOZkHAr8sZqMRQu2tGg5QkmlXuRJu7CWWSBcKorwwTKFEQHG71I22aRUjoisCdU7jnGkosfw+W0b7eztXOnTpYnAEVkQWvaYvbT0S85aKa1JlOicg7lQsAi2LBEmhtNNYQzmQWldzDdewddF7PAEtCiNOERCkam29o5Xgb8LdLFUNSyVjmwhYIyiwVj2+dNkfzBC0mhtyZH1fcm6qBCe1iEWFJtkcJ7qpCUV5ZWlFckk05ke+ZlyCJ6fxYXQJYNde64kNuA+8ldYjDCdjVnSp0TVsG/lRoxXLd538vWdA0q/9r0T786VU4XeTynHUZHm1XOyOJlISzyi4KVjBSY7eOX5eBHDqECNiVOZkfI2cyIK+zF4enwiwnnzcFYMZ6mMCVhwjOTOJJNBh4wOwhnypQElbUUITW05JfApRB2EJk+Xl9J+c24vV/axqxH6dkGJCnamfvESUibPYyrK0lTwW1PSibfG036j4TRzrreD2z7zQhNzZvhMvWeRmS0lZVQqorZWkn6NkOlaRWkrBQ8lFpxRkxzu0AvW5OHTphJCIsOdlja8tAR+Ivibb75hvOzU7cz18RNGZcew2oTSJ70zcjoNOcVIX4LK0h03eQtEmgACY7wwR+jwNenTxxiKNzajt0qvG2G6emHdqwAAIABJREFUnMdNjY28MjRN2JBJ6SyV0lpKAgRmzTlEwUdNXQf22wEkRTE9SaY7VAEn8xiUVnl5eWJJASoNq41RB15SspfeRZt1uB4cyTpZRmlEan5RYxTzKsAsL58RU/TnGZgNTg+nRLLl2QBwsg2InATLsLX2Ci3jHkei/qURcyq1YQro0WdzXvYjUXYxv2qBuSuW93p9odbKPHb2R+PFF9uiiLG1IlFLIdJw0CKYLZQ+pldHsSYTcQrXlw/01gRGIe8fIlkptbA/P/H8chXzqnUikhZuBR9imNQilkXpDZrovzWlo164s+rM5bOmQ3bqd4gieZIZ+5wc7q/sSHfefP4Z24NkAGbG7kNypWjcCDh2LCatFY70vzGCMsXQkV5bIMkcanZPtYhVt9+wvom5NoK+NfnC9KqksWOw9ZYMQQFsBdJjQkBQKdk4T0lv1ET5nUItO8Clh8q15Eo2IQRUldo4Xm5cavDw+WdgnVI2gXElqEWGn+FBcegpOVzFFJGphUCvG7aShGLQ21mF8SjMKGL52cTKoJnjMTlu/zdr79ZrWZbld/3GmHOutc8lIjMru/riMjJtg7uREcaWLISFJUDIfuAViU9hHvgEzVdBCH8AHnjiwX5BNlLbNGrTwm3RXe5u170yI+Kcs/eal8HDf6wdxXseKVWZUREnzl5rXsb4j/9lUp6embPTWlKLE+SLPLeOOXmsTUBFsncIXeBbiNVnA9wbYw5NlEyT2xVGi6WghDWxObAxs7l3Vilib5ixXGwTs5LeXwKIlzV2E6BWzLMh194VkLM+M8HWos+RhtViSvVYMpsOyQbWMFrT95nktCkiASRRoRPPuasWLdftPNM640wRnfKa436kUiLYvUriIyqJQIiRlIh5ZDOZIBcwYqiASymZpKJiN5mFTE/HoswQ87IUqn2msmsgbPef1UYW0S3w0uR9M4bM2+ci+srrb7KqAHZBYmmWG2lyfdzoxxXfg6090c3Sm0bU7FPGaPkcI8GttimcYIzBsRZtBr3nWZBT8tpkmGvL7jHuKyZjCvjvdJjQ/KKmaXX5ma2Jr42JZFRXErD29M4Yg3HcmOMBKFQkverJiFGNGFBqxk6fxuOSXZyNiZtJst/1PS0iPUJM6zxOb68CVcywvWxsF+f1+sJ2NN61JyqVY0FZnoBhphXRZNbtYFRaONfxxnHccKu4LzCxs/uCNbua4QS6axGbu1bn3btHeKz84mef+PrXvmJ/PPe6hi7BgFVyT4NjNNMeLI83+of0a6gth0vB8GCLkr5DubZWwJrUCt6drTT+8l964l//8Qe2B/heueDWiGMw2iBmERBZta+mkfHeMIpTj6DtCyFGGRcSG8dxUJpTllHLgtl1hmz17m/hGPsTjGtwOw6swvvYWJcE6g+4PUo657MoTIVsbiw00GtK93SvMBXP7TYJbkRTU9uyC7CyE7PDmJTLxmqD9dah6JlFqSzbkv3rRFEi2Fodb1+q6Z9X3QTRP3uQsBD7/6xjBU6G7cS2US8bD7cnfvMH8LeXEY/w6f8I/vTHH/hXP/zArz9feN6N7T1421XrpU9hMWOhlK4WStSV9wjMttiOgtfF2A/+9M9+xpf/Yufh8ZlmG/b4V9TKlYbxm3z/H/y3/P1v/kdej4P/6xedg4uARtJH6HLheAtiDuahTDUuG89ff82nv3jhf/vDDzw8Bv/+vzf4tXmhXiY01cslgr1GehcJVFh9Mu2U+jaMg3EbtP2Rtd8Y44o3Y95yspEDLA0/isC/WdhLYQbQTHJXQuysBA5OwEIPLDSAwlg21c+0SW1OG4vamnjDMdk3gaK3CMleTYyziAFWmaZvupYYCupVjFUXdJjr0Dotxl4LxxGApJYCqQpRxbi4DQ3kt2b0Q6b4raS8yaT82DXH+Ew8Os+rHMZGgsGRrN8zfescwluCamaWNh6dqGDNcJdf2Aky1K3c/T5HGjRryC8AZc7zPFbKMQkQtfpZehYz2LxwlMnuTQOFlAGN0SV1N/usICC9jGbXuVUrBZjHNYeYkna3orNtOdxjeLNOONeGJGmqS5Y5/RB7RKm+Clg5Q30kz0+GuondUk196wj1k+4wjg4eRCls7vQlsNKicCaalyAZ+IGvIpeVDJEqLr/SVgrHTPuYPOtinuSK3L8xPwODBTg7EVsazqU3onwFDasBXVqVJFRLYpprtBQNANb4zEQTkcclh14LXENSN5MfVMrBTlA3QqqcUgsxJq3s3PrttMbn9Akxuy/GZH7nAOz0NppnWE+uY+LOqN69CGyJrEW9ZO0Xue4Xpeizj7GYoTVYQgNC2ZysrFn0ZyPvfEu7C6uW9h2q3WsVnjHXlLfnnFipGlCszwl+M8FWywHmhOyHat4xkrYPS2KHlXv9Rg7jhHeo/hDXbLEchWGsiaXf3Hf19Z0DSu+emui+LXiJK5PKRCi+T4dxMEdwTOfoizUL+27ym43Jy+3g7TrxJhpbC0STrqKKjem8HUP6fDcuTxvYoMUja3jOa4LeuwzbYlBKE4MgLLXJn2OOzwkDXjiy2I8EB9aagMCQl9cXPnzzLbe3673IXRF3NsGdwWBJ+vdMKhiDctnEWKiSibk5bxH0MXCMaimNSpYJLOaMe5pbrc7D9qCpegH3QmsbpW6EnX93uXv4LCbL5evQvHD0rulgEdJZkqEVNhmpuPJsrOrSLPHDt1dmB1qlM9naheaNt/FKXVqwzsGwIIrTrMKIu0fWMKiWxl90TeHnwkqjRAXvQr6PGysBr9vtqrj4thGk8agAXpYtnh52ZpoBF6+aWBNYbXkxrXtRPtN7SGDi5LgdupAsaYApNzuZI+aFx8cdvMojyQSq1KKWUNGmxkNrHGvy+PSet+Mm1sWCPS+LsKamMtm9hWAdVwrQsQT+nGNdiZcPtPIMcyoqtm6EB60lMyUJWZLb6SA+DkWk10z0iy5V/hpdEqAQ/fjajzT7luyrJjNgzOA2rlweN8wzYSQnOTE0odovm95JqNAoWwN0+EboIqJJFiK2XWGOg+kPuDd2Jj5gmAwJS8BtHnx8e8Wt0mpLkErspc0qN5+UbSOyuW1FhvJmKuoGJx1Zcr+5tA5OmYN75fV2TXmlcbxexTYj96k57776nmSFIZZAtY1aGwxjC8UI721T0VKLWB9zcspyZqaEDJNcsyWl1ldA089+vGlPPG0Xrm9X6hnp50nHN7GtVu7VQuRnNLw0ALwstr3lBEjJST1lmQFpUpiU56WiSBfepNXG6+sLz18+a7K+gvDJlr4Cnv5rBJr+xCmxAtCFZO2UswSRXmhjVqYPHtP7bRaTVl8tKLEG15uam+gDc3nk1FJIz+j7M3SMHqFnnHLCOAFDROMurcp7LjRZ82Q5GcERkj72EfQhX56F0kfMTNJbkyT6BN4spznDFpd9U9E7P/tEKF0sPdx+lb5PTtzy+6gIi8+ToZgs1+RVAF0+UzR1vMsFkKQvohPoflFio2SlYukAaA+rYr1bNtLX0CDAxHC6rYk1+anZWvLfKsEYlnR65DUwwf30L1IqZEwDG1hLGdydoeqEZYJefH4GawxipDkRhjfP6F+jd8l+5+zJXFH6UKxgji7TfZd8IyK43q6Mvnh4SHYX0HuHBNLPO7mUymqS1TYr9OlsWyH6G+N60xAoGQTYYowrvIUi3LciBlcsmakPSVCP2TOe/ZXr62v6iWzsDxduKGlursXtNnCXqXUfkxHp63eIqRAPp2wwlFoWxho38C33k6c5ruxBlL4TUEjq++c1YZzmurrjTrl2zAUx8Qget8pxlZRF0/bAfIKXZLyJmWMe+f7y3M11EKG7bKWP1UoZhxi1lrLuyW0ZNQMZnraNL758xzc/+hnffvzEZW/YNEq09FtZ97qjpczXUm5U6oVVb8SxUgo28BKUKTneSjlPLD2/Uh2sp5/dwddfbfz8y51PH1753sM7lg+6g9lkX7pDlUQJzZXu5mVja43gE9jBXjeiT9q+sWzydpO0sFtQwnCakuLWkhxtBEc98HahPrxye13cbsGH6DzZpBeDPnjkwnoK5s2x5dAMn8GMLvC+aWDZ141WdP5EyAPPYmHrxuxTDVfZMmCmi6ny3uk/64xesTmoy2HXfeJlEa1jB+A7lB2sYl5hfUDMBcdsx6IAV4ID7AnzSy64QpgCGR74VkDGbPzuXPz058bPfnnl3/z8I3/05xfef125XJynSxNbYZ5eW1OpUCXuiVZWwJcYO90mHJW9bXw4Jn/wRz/l8n7jt/52o5RHrF2UZloK5d3f4t/9Bz/m7738L3ycjT/5+eDNK8W5D4vK3hivSg17KQe1T57KM+9+/Qf89Ec/4R///pV3rbL/1YPHQ+zyRjCZFCrUSvVg9M6olWN+ImJg0RheielwDOrjrj03pwbCLGYUFl2AlBlbMV7Sl+mxOtcu1tKcYt6VJS8a7QM4TE3hmWS8XDd+6UasQQ0BFZRJA3w5T26YXRmWnme+YBZiySZjIbnwnAMyYCE0Rc+BBDAzpAZS7qhwgYEYm62KQXI91AtcinMsgSq9rDThVyCS2LwpM8XuwOKvmi6f57Z7/oxpEC8SkoaGjc/ATimO2WCO3Afe7qBEjl3wTHg9vRaLlbwXM6QkVgJlwSmSslQdVU/T4tbyboHLZZdaABhzJBvGE/wX0yaGJOHhAsoxKG2jz67zvCdrhEjWSTJB8khfiJUDzrgdRBjXDq0Vmn+2wah11xBlimElQoMAzFIEGLpVxjowq/TZCeI+/KIk2ygEqEUoyGnMDsuTYVwTPHUOv2X/su7AUaQcU/W8n2QXfbbBfS05hleBj7U0WmhYFV5gd2J2bOS601RTw7zi1AbrJmDj7rOJGO1xv3+4g3wBn/2WVGlwNzXPXk/1R2WNA+bKtUQO14X+irkupwWRByZmSaSoG6sfnLalK4IZM9dA2ltkDXIqQ07wqbWmNWAaHB1TbLB735+15OlbqCPX72mAXnO2krYnlsM0TIDyNHlUxgr1coihdZrVn7WgEiRzCpRg2lhL9gi5Hs1zqJWM9mlaLyVK2pEMndvpe/tdfX3ngNJPfnJNff5kWnAbi0nFZlHaDJ3F5JjBPIY24bZRmowm3z51VNgOsWXC2Gvo4QC9V7a28/RuY9+KwBsKVDhuRzbzrkN0Sjs6u6hgMTVZPs18T+DIqCoMXea+mshL87vW4uX1lW8/fOB2fZM5JmpTDB1EtYqlszUBRn1N9m1LyuOFORf71uQjUCWfKxPqvuOxWGjT+SlB80Kfi7ePB1RFBrfWaHgixA1kt6akMytpLhlgBWeKeRCLssTiKaXcwbZYkmFZrESsRYluTZLDTx8+cVuT7/3aF+CVyeDBG6/zYIsvqK6iMqZkYSVTsaKrOMY1Ie5dZnVeC9fXN2JOytMTAK1Urm9v7E0m2R9fP6lAbo1aK62eiTJJ6a4bvR+0uunQIQdApeVmlv9FH5JwCI81mPLScTspGAaz3xFtebwZl4fHlC1m4l5GlEu2VyUnKYUOhC+OEKIeWWhMl+SrNNEr55AR2qBjD5umn0gS8hZBOQoXb/Sl92e14bXy0OzOoDobKytqvsSwE5hkxem3myYjEboM1+RYnTkWx+2aU29dIGMVmMFtdlppXPYneprE7XsTxbRqEmleqJ7pQelXBTnrTMAHb+wXmTwScL1NLu2JOW90L9hm7AmGOYsP337AlrM/PFHrJkqua5o1LXgoG+1hg/BkbIjBuAEWLskVkqGuZelJEgKWi+K9VwStGC+3G7hEjV6M23Wwf/GFQDlvjIWmyun3NZn4VYWkvKGWQD3gtoaMlXN8JoNhcv3AmhIDLTdYmk4/XC5Ub/TxwnaR8WM3NYI7lpeEur17SlSVBxko/azWTMBaSv6QTGwIfE72jAzRyfhvpcS9vL4QffDFF1/QIjTVWmK6HcdBXWIgBoj1mGw/w3VOLplxn9ReUVuCVhplDKZD8R3zldK+FEO5DN5bSd+fnEZZeuastdgvF2LIwwwzsZDMwU0XH8YxJCGUp1Octgm5F/S9wnSma8olg+tl4FWR0KccUMWqC9Qq0LJA3c/ERjTRX1mJyv8o8b9c9CPZSCukZfc8S2cW5zEkly3JiJHkU00ky+5pliqgTn81yyJCBVJJIOaUqkIyyNSPqrAvYuvNs4AVspjeWKYiYw4wJ8LVKIXJVLc45JHXvBKRPnIIJFo5sQszpZYgOdNCDYFVx+L0NWxsrpQQQ88c01Rcn0GfST1FUMrJwNKEzouzu8qOGSNZefke0pPtjLBu+w6rYwP2ObhcKi/f3Li93iRzKY01OzOmpG5zspWNtZx9vzBuB9OUvhrL8GisoSQbM8dsSr5pO6VsMCetVPqhusGsYEX3orskakojbRyDnAZqStpDxrABYhGjyadSGBVYIdYrGXNuCe4MRnptrMg9Nc+z3xQtXnKfz8KaprXgniEKwbCuhjUn2DKKnSnz11epRqya5/iCCmsV1UQYaw5K1Z4JM7YFX375FT/9tz/n9eMb66svtcZQM1KqYSEGzGADhzWH7soOdZtcDzHoauT5aa4BnyeDw7LxmQpAaVYYTBqV7//GI7/816+89iuP1dmLs1YVCDMkhw1Xaq9CpBbFlqRgS6xS0qPENqdOyUEpwTI1cjYCa8FRBVyW08j2sRHHlT4azM5GozxXluus7nNh0QhbRCHltYbHIKKlSygEDSsdTw9LpSNpf3JraZ4uCQK3TtkaaxuMt8nlq0doO1EHNl9lNk/F/Qo2iXHFypMa/HgQCGkulqJltRF7nnHvCbsQ9oKZ1oCMCX7JowU/6F/zH//O4Gc//gV/8Mff8q/+4oVf+/rC9583nuoi9pJx24tgA+uSX3N6kpnOT5/ENIYvmnceL5MPL8G//P2/4PnrR774nS/BnzD7jWzYg/aD/5K/+Z//kJ//r7/Pp1vjJx9DNVZoULDXnbEb8fLKfJU9wW7OZdv56vtf8f/86E/4J39g/Ff7xl/6wXulGW4CUA1oS/Zxbo0yJtjG6EFYF9uzwnE4djtol41xFWBTamVUKSjqkAfboPNswevy+5l9nCqLaXleV4GlpCRtfrYmqCx6mFgO1tOfplHojEwJW2tw2SpHh2WFOXXvdM4GXyC8TIEHYaqlD4O1KnOpRrAoYDMHLmIdBgEx2XyxZet3vR481srmqh0f7YGB331ULXKom2eXfAdzBSVIfcp3tOalFFkJgKjMKWpozei903tnRVCb6vi5xMq0mcbnVWlhY0iOVizTuf30ChLX1qslSKL1Eha0shNz3H2dzqHFWkoC7aNnn8RnMkGC/BGWXotVLJBMUBZoE1A22Z8w1YinL9IdQIsczJtTL/LQux0CN/paKY+yu89QSXZ6ROJ1SEbVWrKraiUIqj8y46obe3aKVZlfZ7LXHUBAzJoxMviqmoC7FSzERjVXuIV8+kijd4FgeGRQjiWza0JRuua7Kl+zkUnK4owYg6YAoZA/5GlDMOYVp1FKpU/VPeQgdGXvDOMuCxxr5M+hd1oSkBQLT6qLnpIwMWs8+0PUaxUnot8VCRo4qX6NZKQ5xrhdKb6nR5ckpX7Wmsi2IgvOHObrZyAB0WhiDo/rEDnENXAr6VF2V4aGgEFLtZH8ckXyUJhV+qGWz8+FHJKD3X/dNFeUkXgOm042tlKtwQklTKf1DTnDVjp13OsvMwFLUlOncus8nL6jr+8cUPrzn33DMqNQlGRjehnVCjXkiTMzWcY8NeJrcTsWZou2GaUEYwQWV7zuWK2s6KxZNZnanK1sbKmPxSbX2w1QoVVcdLuZjI0xBqVu1JP5cQreTiQyUcjej5yuLqAxeuf19ZWPL59wJo8PD8QlsKJGH3Nq28WqMaftW1JCgSLz1mtXfHkMFXujhCaNx1TKTL5s95IpSlrcboPn9xfKtlNLwygyDS5N3km1aOpXaqL3KvXG6LRSxehCaPJCm8OzUXQv9B4ClbKZqFaIOXn59MZtBpenL5VAx9ImOIy9PoFNNirX2ZGfVRNdcwjlpciXgmW4B1GMt9cbW9koTxt7LczaeH37SL/eGKPz+vbKmtJbb9sOLgaHdM86OLbq7KWk+bHdAaeVWvY5puiWIUCg9wObn7WpAZre5uEU6OAea3G5XFREuCQ6ub1VbJvoiWZJofS87LIZMpMEcBPXWpeLfkSUvOECD0xNhTmU6xvruMqjJ5y4PFGbU5cuNVLK4aWyWGylUmuh95FT9MHoAybJ4EqvFBZxLMbthsWiZmMha9SkkWI8fvletHMTu0AJTa6pWdmwcNHLzimOJ/CQzXEBNaIjHWjn5HkXgFhqodFY2XAT8PLxGz69vPH0/I6npydau7BiyOsiTdVb1UTM8r9v/WCve/qmJR03QYUxNK1faco8CaX7LJmjzy7Dc9+aPGm2yuX5iRPRr9VziqufvS5YrYolmcaAM6VOmj7ZHdQI4568p2mgpg3YRn+7slUlBN4+vXHZdmwrrDG5pL+PTP+UcElx+YhYmr9mYeNll1f3CmZVgdJXRzWsLogIgZaj62eZS15kx+sbX7z7grLtzKGmc8wBq9M8CEaC5U3FLsBSVO2KmZRfxZrHgLlueu/lJp+KsRjJelrzgPTKsjkpIbDxlLGFSbY7R67bOe7PMFZK7VDzXkxMuTGSsRDBGp0zgUXTzcHd8DFjjKubCg1zWm33M+O8JiNCnx8Q/bvmRCsL36nLXhteengVZ1nsWdYYKxhmRO86b7IjDmSOCmKXjKVptS0VAtPyNJEh1N3QUgVb/pArwEVrFmtC3hWSiZW7R8/MCeg0+Z/NCDwW00kRAppgTg0pToA8ZmSyabCYxFgsm1i9JDNJJZ64mJJOfuZk6X+XcU/o08/f9N/VOWJRZhHzI6d1g6TThxLqThlISZARqxQ/J8jpsVWM2Vc2yXqDkhzDLBu1VK63zhywVacWGDet21KRh4i5mBhwT+7xulGZrKsYetu+07aNt7c31pxc9otqkdIyFCClwxRa0Zp5vFzoIUZcvy1mWThTU0kPVppwn2QvyVmTRZJnr6oOFf1eJsSkmuNb4xiTdUzG7XY/X7ZNbMoxB9hIVpiaD3cXoJMsUa0OU4MzZRjrbpQqc2w703dOE0+HVgsj2XfRCltOQ9veaMV5/+6Ry9MDv/z5C7/26wf73hhdEteVshSzkFQyglieIR055abiRWwRNSyeybOGIV+XkUzhWhthEx9qOX7j6wc+/NvKt5/e2L94xEwT8rCbLBRwzHXWDFP95eisGHMR15ukP75RmlF3oE+sFEY3bKQnyNvk4eI4VQX7MsrqHG4Kodgks3iKytO+qQHtjXUJfLlAqT2g2H2Q6iVDHFaRZ5eDU4n4AMkKZioh0GrRmTwNnxX/wpg/elMC5GWj+HtW66zxIjZSaWLCkeu8pENPHNrBK2kQ9pxywwblAWOTR1wEUT5CfaTsncd9sN53/p3feMd/9Dt/mb/4xY0f/fwTf/zDnR989Y6nh8mTTeBCK0G0Gz5hRdV7d/neTIKyGjkeBS94mzxdJj96feUP/+n/y9/6cmf/rV2Jz/El2IUoi/13/xv+0599y8/e/oT/fUx+es19j0IDHi8PHGtyfftEXRv9dnApjcd3D3xv/hZ/8OMfc/m/v+DvP1+p2yOXrQpwDjHhRKxc1GqMkOeKfIcEDltbjCNgBf5YiDd12u5G7QJ/RpligDnUQwyZvhllVWpBw2uKal5LBsvSQG0y6L6UuGSAjzsLdYYQr2LB7htXe8VYPG7B2+yYS35WXfWB5DnynVMSs05oFuw0hqUf4wwFK1g21ifbf8GMLc+0FxaFb99uXC4bT/sDn45Dck1yqDLlfzpJxrzZnX0Z6Skz8n4/71tdtWKUuNX/H5uplMLtdqMnCOCuZ23IOw8k+T9N1KUyyJr8pPigAdDKRt8SMFAtsvI9+N2ceK0lnz8zmUsna+mU6J0p18WdNQ9qAkMxh3z/pkCzsaBuWQtO1RNimAjk8pQtqTQIEQxKlVrAQswnPMF/sa7l0XR68NbsIkxBOxYcs0MMzvCEagUOoehhcgRSfT4oObQRiHYqbBa1iBU6YqSxeAiUsgJlfa4bcmim03myN4EfM4LXWFKckKx/hmSepiGqRUrwEUhRrQnYYkoWz9Kzsc8sr5KhErFSVnfChUUSN7WtOXmAe7CVFTQELAkmWVpIFN1JKYTXMVjk+0QqNPba9FzyShJgtFJOCad/lJ+GR16YqQ7A7Z7G3lqT72VeyDPXmoeJwYl8cvU8kkGHEpjdKj2DSe5S0fQli+w1PD93lqoJBp/yulSJ5H6zJDWcfmQkl6lauX+/khJAi0l4Bg0sY9bvFgL6zgGlsm1KcImCR2Vj3uOyWUPTuXqhWqMVUT8DZ+QiFoV50Lwws5l1M3zVnNgVtr1S2kpqrDO7ganpdlchfqoWxuiUttGqZAmn6bWnJGLEYpkmheUEdUrhdlz59PrK9fVGu+x4mmtakQzKveBV/0grW2nu9PyLaxjX0RkzGHHgERyHXuScA1tKjVtJwT4j6A8EeDRz9m2XX1GtgLO3XUafFsmiqTmoFqtqjmCukabdTh+DailrOFN1QlPVIsG9QA6TPOH1dhDVefjikZIxq7Vu9JWsozE46sRCz2B5+nEs8G0DLyxW0kMHxeD6dqVVgyo0d5gTry8c377Qx5Xr2xVbi8fLTmktPZk8hb06EE6Q7paa361UTpciLGmLs2e7dOpZlZC3RsdKFidDjcIiaPuFYy4eLg+0WvIQkCFiZHqVu55nM+l4Rz6/wRDd0gsNXSKOpGhLOI9MxQ22uol+7RXcOW43bi83+cGYsW97RnFn0sVa9FhaY4C3qn/M7+a1ounLi6lPXUwTFRErWRsl5BEEYCazyTkHX77/Hg/bhbkGlhPp09dnWcFrw8KzMMopMDqiikErLeV4OZ2PQ9MQ35ll5EWcJnfVWbcrLy+fuDxdeP5wZ3bmAAAgAElEQVTeO3l+rWCvFzBToe3GEZMasBmspQlhbE4cechnI8TKyV8CxiMvwIjg0SqvIy+L4thmHJ/eePziK0oaHnL6tJi8sbAg1vG5UAE1pWmcjYnxUnGZ+M00aXYxQKZBc+e6OrYJ9LQq1szDu2dGP3jYdqKI1lvtTFGTdKiSBpHJDsFItosaRJbYMC1BLsZKunTn1jt93Fi94wWONTh65+nL92KvRLDiyCJfpoElSlLFYWAQakjnUtLInJ3ado4pv5SIay5oZ1bjSM+OmFDWZMVBq5V+fVORRMYKo6KsuOcFJm+BFdm4k0aMVd5qIAlTrLy8yTWQoL8KNs/fN/E7IBMp+dPaIBZUV2raDLbW8jkuli8l8VR5Bc0gTSwlO7NiVAKjMBIcsz5gaco4esagLzECS2mMIWaV2K5xN6M+pW6nDBmMM7gBzsJb/53tsVgW55qcp0dAfi19bxXvhbqgbU2MmhjUJfCh5lQ57JRG6k5c8/RfWUK1o6QPWR6j9TSirAJ01rx/hmIaQsz0W7K2iW7fWk7xVAgWL5q6lvTLWzLanqc/lW+0TXJm98Ic5W7QTU7exuiMme/DUqJdCvvlmcvjM8RPMTso5Ql8Y/GGu5Kx6pax1XlOmoeYOSGQ+LEaXjceLg+S/oVxfX1j2y70TJXd9o213uSXMM8CWe8vcRJutxutOXurqWQ1ci7GPDqlBPvjrueZ/kIeOvf0OQd4Z82gWpXfiznUSk/29Ewaux3y6SmmtSkmmbyigM/+P0VJlWdzE5HMr7O4zWHSmith0MiBEWLhmlGWivlSCmt0Hlvj3ftHfvGjn/J6vPKFPej7TjE+lqfgZKqYx1P65ItPBCNBkroZjENs1BkcpgEWvqA2mW0XZ8zAG9zm5BHnN37wyE//6Bveni582RzP90E4wz57znk2COGDWirjqNzCcQbeJ1Y38DRHX8koavLw6L3jA9ouhqFFo5bG/hAcn5zLc+MSD9Q68Lpl43UQbCwfrHDdJXa6Qimpz1xNQCwBX2EHxIVFF1hcJpHJduZNoGQs6laJL5z49mA+L9wWlIr5BUOMlKBS4k0msr5j5YFYDXzXPzTMHggaVIHdFksgnldiPYId+Hbgj53teuXLrx747d9+4D/82Rd8eD34Nz/5lj/84cbT8zv+yvef2VtnYFjLejHm3fclEvxW8qqGiSWCS4G2B2ve+JO/GHz1z/6Cv/5ffMEsG2X768gqYof9K97/nf+a/+zn/4iPt2/4Fz+Fb6cRttgIRjh2qbS5Z0BPp6yD/WiUd89cj4N//qcf+eo9/N3nRtkuCgO6uIZuI1hckyFQ8VhcM0nReQGXB+u6vmkY1sS2d08QdG7UWESIoUhtbHmWxiaG+1wwmEpCTGngYBJFoHOdMMxgTZ2xTZq4i11ocWSzDeFV0qwiv74YKTWMU96VHn0uppukLgohkn+oYzPSk3alb77qck+QzrYEs/vGpRmFTh9Xhlcum6RdJdmEPbnhHjo/xurEEphJ5AAwZT3nMEF32tkO5/nkfh96b7vumOtx4AUuTfeoFQU6nA20myXrwu92A2KSqN8jJmZnsha624MEbFYOfE/v1qVEzjnvRtvxK015H51VjDobs9wIDra6EyHAGhZbzVotzrQx/d0RdiITGCJKtNPz0IxHv9DXYK2sX8aUZcqKBJX8V2oC1TARlob3Oif130ts+QR0SvbGuuezZtDD5hhCvcqUNYDaJQ0cCHJ1qoexE1hZSkFUMofUB6UU5ho8FPn2TINSxGJeQ/YFl9roPf150jB8WmBR5Od4Ao6uvz9QDeKELBZytUyyJzWpB2afeHrmzjGYMe994QpJ871UeSYNMfHNXbM9oVHYXPd+oSBmlUXgtWpYHRruxkIWIBap6sgQjvTEPT2vFmImWfqrmRm3ZNw1txwkTH2+lERGqhnO3TBDz43I+3Otew11+k3dR6ImYDeVhBBFnpRnHamFo3WY7FSWfnNAgrqqEwah3m66kk8d7qae39FX+b3f+73v9Bv+z//TP/o9XbCNWjZqaZlI5pSiGN59a1xaYauhqXnID4RwwkORnDjHkKzBMba68XjZ2PeNmua92n7BjMFet/QnUsE20zV/WsXLjnnQZ1LOk1onyXS+8JARKSt4ebvx8fXK9Xbj6eERq9B8U0JRa1QXoLJvmzx2PJHE1Mm2+2S+p4IhDTpTP2lJp4tEx88UqZMW19xpXrBtwy87dWtsrUovmvInHa5wR2JNLBr3yKlqy83itJSBnAtYR73R10ymw+D6dtCtsL17oITn5NXxqJmeImM4t6DWRm1K8mkmyUNJzaib2A59KuEMN3xrAgZL4Xo7+PTxE2sM+vUqdHrbsIsmqcX8fhEVz5QGl4nfKk4tGwtNOsIChnyCUjCSce1DEc1nrLjp8J9p6Nfaxlyw7bsAneKs2rCTvn2XYegZ1HrBTF5ap2bXfWNrkjPVNKqb2RTJiDvlLbVocr4WYxyM109UlJASpeFN02A3Y6zgbdxScla1zlvDStFFmAfOmGmeuxbHGsQ8fU+CY3Smid0hmoslwLV4eHikPW3o8AFczEHPrqSWyhnl7gnqSZyVUh8rSRPdGbMTKcGbiFFWiyLMZcSrd/Hh219y/fTC89M7HmrDU94luqpRpoYkvuSho+m5Y7Uq3l4n7qmS1/RqaJ8cZ6zpCcZO+fhYwGWrrGsnSmV/fsopvc6ZZSXZX0HMg0pq8s3vFOjZ+z2d7vRb05RqEIT25znRyVSK1QdPT8+8fny56/JxJ7yw1yZWSnooiU7+eUIxT1owOd1LWjkhSnisxTip3LEYa0jyKGUV4XC8HTw8XPjqe18lNqVkibE6HrBZzVhyTebWTAPhciYUNlH9V6fRpeVeRh9HsuwOYoyUGk7muOImw+i31zemo8hck0zPE4wrbtQEGWYE3sodPDtvxjMi+YyQPdmjY52m5On3siSFjGQduQfH7QAKdd8T7PcsgDMeXsctxZUCmo4TnDp3X/N+wUs6kvsjgn67aV8dR05sp/Yfn3306sOjWEwz09nslKadU6UERe0EX/Rlpkb6NEZ2u4sR8TzfR/4cZ/qIJ3Dz6eNH+pg8f/ketzOzMr9/Fi+W8jol0Yh1pWHZQvLipGljQotDgN5KZqLnWXxOnYs73ozXj68sC959+SXbfsmkxJpnfA4DloobTSHTL61U8Hp/6drawRpx9xYYcRqFppHuEtOxFnkB/vJHP+Ph+Yl93ynVwByrSuHcLxc8mUZzLsa4ccraI2RGDUYtG6000ecZuOd5lX4NY07GcU7Q06NiKqlou2yUajSWRgjZAyhdM6Vqtdyn6YlJk6ICjM9mncXVKM3EQuVVdtY8kawbEyoVYDjb9pD+Iud7PR9nNhbmMtXPz3zuI/dk35nStDwEWplrvxQcSzr/KbmeIWuCn/3sGy5b5f37LwQaulPKhlsDt/Qu1tqdq1O94lWMrvBCqdzBtBIAC9W9ahIVef+58JXPY2F72Pn4yzduq7BdCrUApql2cWgmANXdlVaXjYiZajJ8YcsZE4WzhGqtWrNR9bPot/TbSKPSZKpZueFjp36vsrn8DUtJaWhXM2NVCVmtGJYGu5/ZfYUIAZUUuzfLUMGGzoNoAvoCVnQx/d43jl++sI6JXwqsNxgdGx3mQXCDedWvOSwv4A9Y+RLzLzF/1D67a2OVjnSaQ6soPSBl2LYWvgaFxnLj4zcHP/7FJ14+XXnadt59sfH46GTuCYOazbqzEpSO5XeGuLy6BssOvYvaGFH58U9e+V7pPP+6Uco7KA/av9bw+p7n7xW2X/wpP/+4+Hg9mSl5h+a6Xn1lw77oMvmk7s/0W/Cjn77xNY2vvzLqpnUnicyCInC95AzdQnWqx57yPcmW+rVjLQfZOnw5WzNLEFprzVK6Im9MTGw/zuFC/qkZxvQAjxxXDkZ0Xt90dl0enVYnrQa9dKpo0tlkIilxyGNoxSnFJdeO3l8syxpt6XOUZJSf+ARa50qaO2U4Sp6yJranL+j6mAkQdbFAXIMmTACIuRhKpFxaP9hZs4RYPvmz6x76laEI2cTmv6+lwezybKYT+Lf8Hro3zzWsz7yy2bezeb6fqqdcXOfWKcNb6+wB1POcoFexrNlOpnkyPzwvTxlm37+l/GcNcjzw+RPF/QAWCHFnjXH/+WSU7/TeNZQhJGk3z3udHEikubnn84xf/bsW9bRvmTKFTn0e6pZVqwt0ADGwJUOerrRBASozmWUJLiaDb5G9scsKZcaSzDDZ38eYKYeLrOtWgubiN1NkLeAm+bRFUIt6frPgTAQ9GV1i1ArkkZ3DGUeUssBYqk9ysQu71t4K194qZtgM1Rr5MuJO0rF8vrmDky1kqYwi11Ct5f7r2KngSc8uyJP8BA9zKMNZFySo5TWVVvEr7z7XRLIE7Q42Zk8TWi/n7y0lY0iz14AT28hUv7xfs8wkIplYdg77ZdNzJtTZr/xDmJ7LykFHDjumiVX73//D/+5/4Dv6+s4ZSrjMqVoJ0awwsS/c2XzjshmlidkSOKOLcRC3zhHBugKhBBYvKoJKLdSiJr+a/BtmCF00L+ztQVS0pVd0PWbSbo2tythVqYRyn4+lQlVrWzswYtIDrrfBx5cbfQTPjw846/6Cz0Qq9yxcEAjVTKlQ4SEPhBPNzHQZ6a2zeVxnI2X4gjGzsBOOochMVKSRTWyrla1WNTR+ejOcizbN2lIOp2ko9Nx4MO/SoLJ0KRHBsSaTJcr50EJ+3Hesq90kZXyRk0WLSXt85F3buK4gjvRHKjr05lq5SYb8bA7FXIefTALn5fXK7fWV43blekiWdNl29svlzkSLWEzi7tXjWcDezfPuDCYdTtVQ9HnIqGwOfd879ZYEHMbIgrCIafDwyHa56BDzwNbICyCBqZUXXNmhbjIKTrO1RmOWjP9Oby/PmNOFJArmJuCEmc13h+NKic6MwVqGZ+LffSI9RGlV0V7uDI/TxE3MAU1aRixuQ7poXE3Q6opPjzUYq2ORh+oURfPh6YG91iw9EADL/bqm1k0HaDKezkYopph1fWkfmU9JftzxZBZZ7rEVyURhcby98fHbT9TaODzg6OxWBB6VSQ1nFJh9yIS5Kha5NHJCMlmjc/RBa5+lSqUWrrdOrZIEzikTx2Mc2mseHL2z+uDy9ZdqhDFORqgaF3lORRd1lwLruIne3QVWjPR8KeaYBavrYtaUOEE0L9prK3h8fuaYwfX1xsO7Bx36qXu+RSbOIRo3a2kd5yUtoEiTnABuo7O1B2LeIJYA0pFnXixF0C5JmVqprBKsfuXya18R2bgZzjjEIDuLDPMg+dr5izoPixsspYgVMurdFnXI7O8sMu+x9cgzQ6mNyXoUJYKInil5jUAGg/sp2dwaFYeazDdTUXGmXpxrnjgbAZOXVql4cWafkEbzJQ/NBVhtkruw5DUXZ3OaxoTpISezyUzlOcFCsacVUBAqQk8ptkBDzyRCyVzV3Bt9DPqc7Ami+1m4RNwngoJrVCT5r0jxzjJWzX7Jgsf43LjokC8JjPVY+fdrLY4hzXy+1jt4hKXUIAsWT4+EMLEtT08qjxtliin0NmWUWeIzUL1IUDkBKlGuT5Aj7+TW2LZNQQnJhhlTgQclgYqZwQC1OGudlO6VHhdT/kFZLpmbJHKeAwqTZKIUp1Tn4ekif4lkmjqNtiUgUCXBk9tagHXOWGk1aFPPj8UcL7AE8I6uz6titBMx7wBYnM1YrZLLIyYBgSTZkZKVqmK9noUwE1sjgRrdndl15XsFOWIWKEPn/xTD1YpTcvoZIZkMblg1er8R0TErup+s3JuknpN3gDEOScjQ4qi13c9O3YufY6fhBBGzqM5moDTjsna+99WXPL174vXDK8dtiN1qhcHpP3l6RwywRm17snAKW2vc+oC1q75akqXXWGmMHSkp1XRdjY/qluN2sLfGb/3WhT/+Nx95eXym2SMbhkIcdeauEZIcmQJelgLy9F5o8spYldshJqnbwZieqZrBnp5Rayp4ozBVFJuxPWx8+tG3jO092/sHSVjDclhyYx6LsD3NzwtG0/lq2rvm8tYZdlCrfKbcG2vd1EjOADsQ7Ud+U5MD7zvbrz/w8q8/ER5s7xyLnrVNoewbtIbViZXAONm2B9CSOfz556AYEWo49ENseDwTMbB6oz5euIw3vp6V371+yTd/44Uff/uJP//Jwf/5Jx/56osHvn7c2b/Q0t3KhNnSZB7dFRRqiO1CypSrKaW3Ejw9wGsc/OE//xGPXz3y/j94otaL6hNzvDxSf/Pv8Dt/95d8eP2nvIxXfvgJDhyPYAeiFMqlyot1BJ+OG2UYPDxSv3rk219c+Sd/9MLl0fjd31nU2LCLfFaXO2XTQLTXoN0qM5xuN3wFbQXXFUwP1qeD+iTmg5Fn+Tr79woMxjSCkgPkRa9T5uzZBKrO1h8K87x7pkAya7CuWCR7dE3Gyh5nysegLzG9a3O8CNWImU31yXRM5kOrkrUtQ+/AlnzYcGYpYs3PoSAUH5QQ53xZ1ZlfDH9uxGvn5QZ1LsomZgpLLJNTomdRmTGTxS2QbJmCQbgDLlld5JlyehWtkDzJXcz4y75zHAe3W6eUwlYLEUP3hdd7De/ZBxHyJDwTqdVDkqqEkBJhaqg1T5a8WQ4EufsriqEetFYoyxlTQQWxgu6yQHBXCipM2rZroad5OJ4hCwlAsFJpE559ZeQ7B48lz9O5qM2ZfWWvtO5Adp+D6OcZApYp0sWVjGakJ2zK5MJy4LhCw1izHJafAChUchhXdF5F+t+pJwXfVhI5VvaeWePOnvevksvDTksB1Sag4coJxjjGsbQ+AvAmYgdTbPc5854wSxZbFbbkfgdLPINrpJTIoYyf5tySd90H3FPrriZjzz3v6Til3JJHMkkWTqa2h2rTPlbirZZMNZ1psZaShBN4NFHRssc9AaZ5X91zneCo51EbORiI+wBLCKjd7wKLHBgbOcSyew04x2B5Apo5aCbS0+pktufeP+Wc5T5Eyu9juY6Dzz/DCci7eIpusgixUJhE/CoL/jv4+s4BJYvBXhoPbXExvdxoMqP2ZZSaht3dGEtJb8eQzGd2Oc5rAzmX5mxbE1ujiX46mUlVFKqnJlTIe5+TI6OlvdZszlZG3ZzmgWp+z5VkiY7OBS/XzqfXQ419lV6zpo+Bu31OEaoltdCaMvacWK8ub4E+NH2KtRhxsKLcp79A/vvKhgY0ZtJCB/BEeyNlTs0r1UQjnCaGR40iSYrFiU1nP6LCVVTDBFZiocMgpwyBCuu56NdOLY3L8yOWkadedx3GS41CcyXx1Sbddu9XYqhJOFFnyc4EzK2uonwVF3Yewdvby90weEwZIvre8K0ybKnRTjDHXL4V98MTvaNLXl5idg1syjOKOZOls+5NYB6HTJBuGDUnfcH+cGF/uKg5I1Hoygnd5q/IRC9cTJuTjQIqEEbvmEEtKngODnk3TM0UFEutiOi5ghg3PCbXISNTL5Xw4MEqfcnnixW0y4XSCrVkExOnnEHrpt8O1hL7a3RF3MdaxNFTw6wYVCkxLEFT5/H5kX1rujhKSdNhHYJzmny6crI71xLrVV2N9kkWRfKkSh+fNZjTdFBqCKPGaMH1uPLNT39M9E592LA0xp0emFUd4MUp43PREDMoWx6IMXETgHepFSzfgwmgrltTYTMXWylcbzdanp8UF1vn6Yl925Ndo2avesPCMgFvUEteSAkWRk5QirneYTaOMSTHYUk6N9I/wEy09Irj+86Hn39D23fF1LaNZnrWc0zcgyEsNBvtoLZMnYslWWRpMqWulRU3GW/GYnQxfXRW6H1s20ZBSXAfj1da23h4fGSsRXPS/FNnSy3yqFqWaRGhwiVCXiEwKWWdQ5b03IFeIiNGB1ihutPHZK0hhmJrjDUVRVrTfHjAr+q9q+sZyEeqCRgK6fHFuk14pQgUxyyjfE/Q0u4NNib541wCRBV97rRNa8TICU8O4zU8U6HnRQmMLEljz0jhcxLleV+tOXCTxKEU55gy2Dc7pYE6o3vGvbplPxiR61v75kyaC/tc6J1F8nnKnOMktzO50HK/ZbGHCqdfNapclndM+hOdAwgPAUOWRtlkIR/ukrii8yocYhpzHOdxB6E1qQPj1PXHnaXkaP+4Ofu20Y8Ba9B7sFllzdCETLcMEZ7FYTL+AKJksSwPC/mBBXOcFHTdySUL9bDz+WgwU93wFtz6jTF3gg0Lxb6LxXYanS8xEBIcm2sxR4jdOAXC1zZZwDGu+DRsORGS5HsR89RCU/QzFrsfQzT8XY2yrAqr/BJLJWbgJSAKxTeBRnlmnmkuXhoRBa0MrdkyrwSLVeQdM+agz9NUVqHnxQvHOOhzSJZpioTWfX5OWk+QWOdwq+1zcW7neY+89Cwgp8wW8uXyLOo9FsPg0pznhwvf/83v85M/+TNePr7w/PzADCV3nvvFTX++3mvTQjPwWpkDjulsrWoIZcimYCLZfYJKyy2ZsoGTibTXxVdff8Hzj994fYXnXWdzLenFkcB+5H4MgGUye2+V2wgx1nxhNAWHnJQDmwJil4DtNU2Jm0WgQC0OpbHqK+ubNz48Ok+RAPGKbNKDsMly4zDJ13yeDF81YJLaGH4EvjlRJmuJCeUziHLVRN8ko5groB/4pVHfT779s294+s1CK0Vmw3OyHQ9s79+n6ueQhDeMWK86iDDMBhEbFhfVfpFnggfLGla+JFAkvV+CLTSL/3oYf6N/n5/95BMfv/kJf/6TF/7lD7/li6+Mv9be8fwOfGtqiJdBE2i9zck0Y63KKAOf2SgmIL1q5+FS+MnLld//Z3/Gf/K08/zbO/GwsPaXdAbW9zz99t/jb/6dj3z79s+5/unkx1cxl3uy+FtrlFV4Ow5ux40SFbOr/DfffcUPv/k5//gPv6Ht7/hrfxXe0diapENhWifbqKwCjx68sTH2gVmweUBfrCNYr5OyC/w2A29BtcURAkSPxd1LspTFPo3uKakyT2DUE4wJgsLNHFsVH5MaBari35UqBtXEHsn5oZhPc1HrPGFyjqQ3RKjxPZ/vCeRUK8wVVCuSfYdRgWlVgM6SLFIeRQtWQzYAk/25YXXx+jJguGSsofcb5yB/dTH5c1AipA1y6qDdXzSwLH5KuVTT2yntifz/DOq2gU2l8JkkWAX1OiyoVeFCYnKv+zDnZM4K2NF5utJHVINUPZtqfr9vzPSzmVsCK5YDrKxz/fTPTaNw13nax3H35cWa7ttYeuamRp5zVHQCCmmtYbEY/eTeRCocFnOoztaA1BPsTw++lSBVgCFfyzWDbZNUjwXDpMog4zXEvCk60wlqqdgqjIAHVNf1rG0JYxyyCTjTMoV/iAkz03TeiTtDWkxG0oIkNPSYwSrSMCzLhPIzDNbtXp/oHj7rMAFv2DlQVe3r2J3tFRbJOgq9wypWT2Q68TmEFbCi/XACh4o1zd57nqzwcvcnTSq5hr1TMmg/WaUrn8kdoDG8VZFASuDWFJRzfptcU2Kkn6Fe+j/O72n5e+Az2KQS9Oyr7F57+tmjp91G5Hpa2dvffw0+k0hYySY+7gop8k7EipjexvmCVaMECgEAiMF3+fWdA0q1bTkIKdRNwNAJRAxz+ko2xYLRF9exGD0y2eQzyLJdHnhsheqhVJPcPvfJrTeaF6qJ0XLtiqFUAokYPXOdBYgS1s4mzlBkc4YqcUx4fe18/PTGmEHdakqe8g0WMWSISDopbG53GrX758NtTB1+QnhzAyz5l5yeGJFO+Cs3jGjteQB6ScNyTZ2KyZspK36xRYrkX8Wcmoiu2E9a3AsVi2sMsWiysZkIPT+bhaMPrDS2d89KVggZnod5yvBckZdbJsRNgRazT1rJyNKlBbrGhKmo5nB9VjFiJ9fXV/r1oN8E1vmS8W4tW7aUpibv1OO7s5J54FazGLZkvpgmJyys65koeSfuh5P8b9JDJk3gSmlqQred9vQgw0QtKNF/lwy/PQFHFcrK7TE7TdAypHkFEYNam4DFJZlmmOdUK2GqGMmyyQS2eWgVF/kqgPPWl6I3Y7Fv8vqS6XrNA0jpN/NkIA2t/+iLZmK83I4rR4KYsx+cJqwrL939+aIpS9ItHUf6cz3TWZZUFbGIVQTCIRr0OmmYASsPsVgyvuZs5Dx/z5InyHUdvH74wO3tysPToyZEWpLZ54qVKNmFQIlaUmONpi1kKqRVg/nZ68VdRt4tgug3vDjHvLGGDMUv+87tOKAWnr74Qp+jpukv6fHiRelwedjaPNOLAmIm7VW+JWc615GySsvmHyJp3tpn++XCuHaidy6PO2NBq5sMaMtJZ1YxcK6Q7PHUwJeCb6ePh5iKEfKk6CQQYEWmwWOwJ5XfliJax8vg8rhRc00Uzzh5BEzPvMROX4J1TqvRHq0GtqSz3lwMhJGTjknS2GOpCMtLrhYVncch88Vl5NS16Bwg3/VWcy3mZw+SIZC+CpY0Xa+4p7m9y87egK2UO7OymnOE0ZDEJIYSMyRBhDPiWBf5uQ/1tAcm348sLoLJaaI584g95ccCErVPIsQgLHkdSC8PMVS8sk7fts9sKwsZNErDrttrRpo//n+svduTbVl21vcbY8659s7Mc6qqu9WtloQRYBtbYIEMNiYIfHngP/abn3AQYSJsHEgosCwkJNCl6XvVuWXuvdacc/jhG3PlkZ/rKBQt1enK3Htd5hjjG99l+d+k5Ik8N3iFk9JYMoGAESrU2eAOEyBWqiLABVIVen7nkmefreYxGYa2QARTjYlamMeguAYFjziBNtWvhXdFDpAZiY2S+PohcKN7elh1LeRq+vnMRe+PbDZnpxQ1zmPIdzCmzPX32ZOZZpLOMAUY5IWdx6DvB4Fx7GIevdx2Sh08tGvWvJ3FAVO5rck+2pGPYDBnMDqYDWYUim30sWPzSL8GDTGzazMZSBraeyayDaWabq073BkAACAASURBVK0opWhMqlcxan0mwOW5OcyXfDWPC/wj1zsBHvVsprXoQT5pQ8ytOXRvtSEV8/IxPmPW5bO1tqUCE/S7Y87cBEsapGvjeU9WOpM8JH2BmwSUIiYtApW+ePMlPy8/490vv+Gr772hNgFK1j0lOjI/x4KwA+uT4Y1agodm3MaROGWBqWWNTcOr2IDqg2YuvuTfV2ZwzJ2rPfCd71z58593DlSzrLjeNFtLm6BOSerDHEout6ar1iKZ3z6mpGlocTWT+u9oINiPSUu5+8zh6vL2wv3rnQ8/f+G4OrXIGL9MeRju3WAXc6miBaC7EWVC9Bx6Lhx79omWA/gUM0XDlJYN59BwAOVg++rC/PF7vv7LzuMXRo1gNiPmgV1vtItsDRh3wifYBYsM5yDyxLNzWAz0PjiypJjlCz0LXjCrbMDbw/j1ffD3f/uH/PRnd373j3/JH//FO777tvF2K1yuD3gzmjm9DKwXwrqA9ZLKgjwHZ9eh6j7YQum5bx4qf/mLD/zhv/wxv3VtPPxGoXAh2g8wNuzhB3z1W/8j//D9L/nm/h/4V3/Z+eVRqFNeL5jTS7B74TaNsr8kwBpc24Xx9kv+9Ouv+Zf/5plLdX7zr0N9KHirRNNCstgGvjMuTr2pfzlaUDy4GHQmxzE4+grwyB49Cm6SqFYvHHR8CrTADB+qq6PDXAb1JpahU7gAh4nTiztuTb8Th5JJYZZ1LbVhI5cbdS1hSmgZgICAkfUtIiPvbeo1YuI+mUO99GI7gKfa3Kgmj59hBqVCB/OBPxif9ruAYHc6uQz37FmS9ZmjPBEJBpuWMVZKHiWr7uhscis55uQUnt+71Y27I+8oU4+xPMki2SwzAj9ZvEEwUr3hJyNMSopMJU5GjVwHUj49jmQjl0ya1edb6WsjzZsj55Y5s89L/yKZHncCyc6D9HbKf8cCsclCrEumEcuBNBnM2gNUukemn61ZPyWxCS6YnMHzjBO4g4tJRCEDfLKezcgUvLV0siRQyKbE5q77P9EC8RhZ113nUNYLYTMJlhUtIsaUf2gxtGweI2EPO+c2YknuJAvs2fdYEVOplgyygbPnm3Mq4CWgVgOXnjaYqfbIYSEVO+7ZVy2ZpYxSdY1IIkC8Ii7uWpbK00kzXsTEZwJW67PMTpjq0mIfhZpRgTknsJjPq88E7ZyYnvYdOlPnVDKy5Tweq2XLOd8sXrsTK/nM6DuJvacZ7HPbAvm8KbF+eqRfVl6aucKWcq4a6kct+0QtXGZOrX4CcuZOiay53/Kfb9+UO1/g1pzrZXIx4xjQh7H34DaHzCaHwqz2oajcPQ6qX6hlagvRhEwa5OCmoQVLQ2yTnvbegz5ljugtvQWqbq65pFjmgWX6zky/Cm33jHvvvPv4wvPzCzMmbUu/J5cnjFcdHMtwdA1Ra4Ovd0rD4liGv3Mw0q9CQ1HqeBG1ek49GD0WuyggX8niMv4urdEuG8WNPRLpDB3jJf8fj3g1q8tDu5g0rFociLJZQkZoknMkpfw2mKXx+PYtW82HzQvMokba4zTBPbrSmZjJCKoNebBkwtMpIZzZ5OoF7XOwH4OX+848dvr9YMagtcrlshHpDRFjqqiZiX5bUy5hQbi2sTEn+ziSMjkVXzkm1lVMFjtp5gZnNfIFI8qmoXKrXB6faKn46TETlJPOeeZnnkj2ZQmqUHilQhqEBdsmzydGsCNjzmKc1z9ymzKOQ34vEYp7L071ylZlrDr6DoRkjW1jaw1q+kOlTGrMzt4PbXFQclttDUNxm72rWPWQj0dRVrj8qS4XLpfLiZhjix6bg2ifydLLdBbLzdsCO1NzHkvSmM9QyS1Pcf1epprIILjfnvn0/pnt4UE+U+YETl2mvZbU1PRhaNcLjmkgIJSuxqSmZ5MVHZ5Wki0RE3qn2CWL2cFl2/CtUZvz8dPB01ffIUpNa5jAvSkcIHXroaqvb2rat4UtGWXJ66TLcByH0gHjVQ5IaMOkiNYgNuPTL9/pGozJVtWgz88YpasY5PhNLWL0SNZpOWDq2mhTFWo885yx0oiSwQCj6mpPeNlvxP1g+94bYgSzriQ6gZruRbRnrQqz0KbMzQzmkT8rAY+1CUxga+RnXyDtkggVq3gouUJyJTubyMhhb8mFtbVMFtDSmq/7kEXX1scJSUMKSjHLVuX8mZih+XVy2/eUkqzBUc3Xem7HHGKUxpIitASbYDF4kqyt+5jyhgV0xFzbovQGKdm7APt+pO9MnODqYlliMMlr4Aua4fSX+BxwWBux1XwES/LGCT5EDi1BnEB42SqrxV5/R0zGolljucNY2vrFLsx/qRjsuYzIAQUrWauQtCS/kfr/XJa4AjRGgB3JiqyV4gI6itkprRspQ28JRq+k1T4OQNK1o4vtZk2fVWbVWkgAjN7Z9519l7/cHCa5jC4oRqf6pnvgzpp8ak1z+ykvJ4DS5OXkpdJKofaK2cY4DnDn+ti4tAvz5ZDhZ/aqj48XPn3cVFtNjM5anNKW54MG81gb2Ri5uZevhOUzUfJ/x+wJ0GpzW11mugdk2tG6z5IsFA+KD8b9hdmfoExmOBSjOukVMfPckA/QRDU7TMypAGyxxtCyQr3QxEthHNqQY8EYGixKNb54+8DjF098fP+1mJ/bg1JM6xRYVaqa6DQDlpefQk6qwwWd8+Ewu/qPmQwEGY7qM45AYCghrxsL7v3G01cFfrFzu8FRg0u+gXOuCPWg+1DCTkhKzTSqK5iDsjEDqk3WmwElZQowPQTMD0lCdD/ByqTVyv2rGx9//Mynp40vHxuPl3J6aBx7l7w0cnOfS5t5jFyWBcwXhhX2O2xAMbHoJ8mI6F3AV5r+WIANo7TC2+87P/vTOx+s8ubSaBRKNeatE9vA6pCfkn3Esu6LtbDpLLY7umITcV4iT6Irbo8keZdpCsPZ3t75at/5z3/z+3z6nZ3ndx/5k69f+KP/8J7vPBW+fFP5qmzUi/zGwjtxpD2AQ1SjJkOwh2mxWdYZ4mwWvKHwJ3/xMy7/qvG3tyv2/TcUuxD1S7CGffWb/Nrv/E/84w+f+PDyE37355NP+S5Nc7BCuRba7MznG3OXzcSYzrZdeXn8kj/42Xse/uAm761fN57qFNPWJlHWAVihDnwqU67Hnt8hIAr9OBgksNyzfvkQG7XMBDhk/t7sKoDUOjebsAscH3kOohlfTIQQS9xCSYs15FEK+2t9iSB1y4S81KlNvlKDXDpNVz2fIVkjIVYYQUcSymowVu3IM4KsLCOlxWYpY7eJVZS2SeW2R/oi6XwbFp8t2ULvm8mLRd0fwIBMvAsPXk2TliPW6kP13BVRFpXaHMExdnqCX/qJ6jXEOMqfl734WpAlRK6ztEhmba73PPLaKn25nEsWXP0Mnkskd7YqtvZMIF5A+aAU3cAxhv49F19s+V8aNRfhyU5KVrlm1JPHlUyZBJYSYDhyUbe82ZbcWl47asJka7Hk9K/YyfrJZkrOHNHpYbnU0gWWjNCyNupnTjNWEMa55My5BrqA4YXM5BRpoRnRi8NUbqfmPPVW6r1cnxPDs09bS6Fa9T6R5At3qWEiJjG0yPKcr2wxpCO0FE0pd2ufJ/S9zjOErv1i6y4bAS25yVEmgbK8FoIk9ZcyM0/291yeiznz2ZKf6a06QaF8JmurWsgNAbk+eyaO24kN2Gd98GLjC5iVjkbhN2u1kb1XXqez//LVjyfg5ZozlEzYcaunl+wizCU8djLfTpApQatx3uNv78+3DygBby7OV282qr/Qj8Gn3XjeJ/sQk0NpWcYx0gsiD5CtSte4XZy2NRbZfmmF3eNkDmkYl+5R1K5FAeWUr4zcDM6xDtHJ2k4fx8Ht3nl+vnG7KTa6lkqrlZZmYqW4oiBNA1/xlO7lw6GHYG09gxj5u4HZuxhRrhQtMdOW6aj+HSGNIUPMUuTXUhpWG+XalPIQSiayWlR8TgDEmF1oOeXkb+nrRZxMLEJEupG00Tnh5a4IzcvTVQ9uBivZ1HBsUSlt+cb03Crml0j0c73sS6p1mughkGXMyX4c9PtOv9+575LvbJcGrSjqOpKoawKR8EIk4KJaVDjNck2HspOa46n773NyTKHftnTECwAxQwYLQCtcL5to7e4M0/AOzsxCM/oCBGcmULVkW2gArJYgeDacJQELG50Wr6kFILBhHB1P7bjo1hWrJWVOlulQIYlbkwcI6ROVFYBAmuWZcq9XcEHeQ/txiBkXI4crDVU9DZfbtkleR2ShNw6kvxVYm7TsKcCxZFEjwYdpYOduO0Ex8voyT1mJNt1GPzpf//QXGMbl4UFKOK+5geHcnhsaZratUZrMonXdeGWWANLyCOSIGIqsz6JqhkxR/YLFlVbgw/t31OsDDw+XZBmlCZ6XBFOyiCZF11h+G/m42IpylQRkmeRKSy3AS7RXfY5+dK7XC2PfGcdOWXLRtaUbM1ly5MbhFajDBXp7S4FhCDippdGH2BCekjlqFdDoBSV/aOM2ovPx/Sequ5gVc6AkiIENUa9LK9kk5f2f2oaWZBgKUNQ/8yJPJMniBOKoQK9rpzQPeZpVZh+i0VZJP+UfwHk+llqzWVajmoo9FutlJJMJdzZbKZ2vRXvd6GXI2NP7LfqU79UxKJdLbnnWIJ6f3+z8ZzOHnCUhW8DWHD194FCDmb5Ug8nIaOIUKhNFjJCZZ9D9fufh4VFLi2zwNJAvf4KUJmWBD5aELEGk0HugV/qzZz6fj7mug+X5GwpsuHedu4/FTtBlxjyZnJaNblY8src5a0LkDSojh/nVl+UmdzFYbDXvkY0hYhoPJjF3xfFa+gOYnRLQkdd8+WVwNkYGvsCdPeugLo5nAx/5Xn2ejjKngiNmaFCIMamXIj/FsdNnsOngS8W3PlMeNHpvc9Bq24XWNtrW8hlTfO8Yg/t+5DKrUW5i85Y0b66t0rbGOPTP3UsajqdJaT8S1MlGMKWRVk0b0HWmf7YcEsNAz1ipVT4oQ1WumGSaK93J3LmWytG7JJgzaFNNbLCGSifsQKw6U8om8rZTMg95zpXPgMi1gc/Beep/86NixbhsxtMXb/jmF7/g/ftPvHnzBXMgllsCuwL3kqWLlmX7lCdSKZNaghGFo8uXbtpMJl8Cy7rpTLQxPkIsjjmC6+XCm4c7Hz/ufPH4hsfQfSFDf6yoTjkawFQnJziMQ2wRzxS1TohkHrpuyytQ9+l1yTT6pE5J+q71ievlA+8/3rill+dT3TBXkIYleGa7lpHVxY7qB9SQJIUymLMyO/LkNsDyjIY8c8WkImZiQpXrV42Hr258ejfov9q4VoOqejjud7g4Xm9arhl4/TIH0yvhSsKClnd+ns/ARKmP+AajakCvj5SHL7h+cfDdI/jbv/UrvH/3zMu/+hE/ff/C7//Jxpsvnd+qF7YiNn2rjXlMYopNqdQv8PSgPPJJiyKWQ7XJFefT4+CP//1PeXxq/LX//sLFLxrU/QuMRv3Bb/Ob/+CX/KMP/5z3x9f88Tvj+ZhSCGA0A7tceTmCsb+wmA21OO3hgXvv/N5ffOLtA1yvD/j3Kw9elKJnMxcgyPj30PJFnnSSmArTLeyHekIFMghcKaViw7K+JHBBx63Q3Oll0kXvpi8pUBpFewlKz/vMYJoYENW2PP0n2MB9ikUzPcHOoGzG1iY7kI2ZBmi0MJtMZvqhmgmgNkvPFNDLMozFHp6jJsCsGuR6pbBpbK0wo3O/d4ZNWi3JfFUYhcfIUaqcfUswWQsrTHHyJRtWMZgSRQrV42WUDGLD2LZhA273nX3fudR2AmGY6z2f41zu6t+UesRzGS1GygIP8rxDAEQtOR+G5lQtnGTcPzM51moAlf24sYJYVi1V7yIZm5l6Z8nmSta9JR+aeBQiE1MiQaRpyR3M+lyqn8TMkYlxxQT5iVW1AKNXUGoFGWgRpjpp2SMV81ziJBjnmaSLUavRp6D6bav0o2d9mTkXZB/iArvNSdWHashMfHMxr1ddjmRWswCemedpLotfazy0ttFn5wRBSeBkBqRVzZrfX/vNNfstEC5Bp1xQWi7PSFP9ddNj3XmTzK7WmliknbLBWBvj7M0s/5P0cVx/1qwOC8gLsEFY4X6XIqQWLarnHDm/2ekrDK9M/Nf7t3qsbHPz2Nd/mxP2FXBmCWDlP8s+lZS4VX8N+skhPD9rcC5sg7Mvz9uU5zLf6p9vHVB6e608PYD74HYMbvfJ827cuqh5K67x3oeADKC0ylYqtRWurXK9FAgnJkzXA9280vJA6D0yCtGEmIaKV8/D3SMwHyfYo4YpmRbAfhw8P994fr4LlPAEc2qRaWwePioAikEWFdrk5RRpgpcMhT5kwB25fVYUsq5HhDT5HvL96POETJWw5Tlw15qJYAXbmh4OSz0+uTk3YfG1VWamw5hb0rrJQjHzd3bJKdLLhAiOo/NyBLM2np6uGPLRWH4MxT1BM/3cY3SEV+mBXs2yxzwT8Zjre+te6HdLS96Pnfv9JRlTIcbV1hie8qdkSFiysty1gSq8boZPwCkGfR0GgHV9p5EvqjS1GrZHiNrsxbAp+WB5vFDDTqRW2OMaLAcHkQZlepYKlmwaadKb1xyijRhDxQQ0IE01IWISqKkdQ1K3BcxoO99kulqbklUSwJyuiHSv8jBa3/sEboa2yVY0ANd8xsY4GPtBR3IUD+Qp5tomXB6ubJkacsZM+7k35TSNzUIkdoedbKa5UJuUEHp6K6moqvkOAo7jHIDf/eLn9P3g8Ys3YCUPf8vocZJ+KsDKvFCrImMxmXCP2WGZhQ81VytiXe/vPBkVLHljvif3D584+uDLH3yPmmzCEWL94Rlnvz6zWhENdin9WP44wjqS35cvspU04x56No4cclsCwc8fnsXGcnmH6cdMPHV+ayhcuvCViFWrZGzrjjsyrDwSULKS71fSpu2Ulk0lju139k+fePPmUcW8SCc9pqRgqYJ5LYh574rXEwCJz1gUix01+8gCZhoY7ZWlVLLJsmLsR89GQn8vI8j8Lu6nuWIfg1r0bhomqSgLNHDcG1ZavpdQZjI+J3S3U07L1EZpyZFnaMs7MzVu9TeB3hFDrAdPGUBBQQhix0Xe64DZea3unL48Y0nR4rPmJwH7OSallnwO1fSUBH0jP0vYatZEf7cTbOOkup+pHjOH69U4QJ5txkrsGquZGBNv5bXZfe3NzwYkCHw6nisrSaAKkdspOwZ7brfOLjvOpyQHEz2V7pGyrzTmnwt4kjywIdr3mAojyFc2nys/v/fsYrWc8kuc6qQfX9bRBCbXs6AzMc7PGMdQ897lXbiPg4ctZe3TXoeYXOaMOZhd7FmSnbma9DEG7pVSK1WEXqIoSXAeA/dGTLT8QumPY+qexpKMZVyzElNzm55M4DFlslus5lE6YcnZV2jDOnaSFVvdiZKmtFMMuo7TLhf8PqDrLPY0X55dw90C70oe27bgStOZoAN41cuizSWLAalQimMMXRMTYycsuFbjy7cP/HS78OHDc7J4m94Bt/RC0jA65mTL2rsGEouZHuQVXOzdBQAXh0qhZy84kGeLvIpIhoHx3S833v/HD7zcNvZL46Flk10Nar5jbpRiWCmcqYilCtwrzqTIJ46Ry6ciOVJSBUs49EN+Su6MexAXxwt88VXj/rMbt2cBAzaCbQuqBSNM8vA+6XsX87SI7bSSA/Ur7sxhhBcZ19qh4Tvv/8yhhmpi2B8FuPLwGzu3D8/c3l+5PnbJ9QfEfmN+cniSR6TxAWyDckGG0Zc8d9agaymlWiwmsSLMHjBeMN+w7Uvq087TGPxaf8vf/Xu/zi+/eeFf/N5P+JMffc31rfPF5YGH9sgb39guhbHJk2UN2JYLj1Kgm1NH8vBtyLi+BNtl8jJv/MEf/ITLY+WH/+2FUh5TdvoI/sDlr/8j/s4//Jr3H/9vnv/omT/rcMsey6YpYfjxgZdxI/rOHmKutsvG5emRTx8H/9ef3HhzLbT2wPe+6jzZBb8Y0GAIuJml4nNSQyycWSqTQY0K07SwzNnDhyZry/OLksmFQz23nrLKcHkA2tmfrmFUg76YDhXP5U/UiZeLjLhVvRQ0VIKo6q0iBpdWqAb3A70zkYzTWEBHJiYiYEUg/Gt/IWaDJVCN/MYy3t08zppnQA1JZe77ZBxGS6+fwavkdo4F7qjgqQfOf2IGJmZYkY2sLAumJPPTOAdtDfTK4Wu1cvRJPw5qFC25MthAjBHNRkBaeMRZRxebZFmOLODpBKHOmmRKzVUzhKMFLRbUulGiMkZk0IFnr7Jmc/Uh5iQjcSZAQDKLxApfXr/LY1ZAg1hy6kvyzPYig/hd9h2zTy2rSzmXa9Vfmf2rFBp5puZcNlEf4rHAtsEcXZU5l2tl9Z5NbKWRcn1Jq0V1tZAn20rItbzci81kpnPj9EjMejPX58qFnGXQgeaY7Ae8IAuRfgJrq76fgRXYOT8DWqaXImP59byXPDfXwirBJMt5Zi3NZMuSaqFkqsWJrLwyxsk+A8j7k4y+WIDVK0Azbd33OAGqvmaLeO0tPIHQfPDP2fV8Hu2znzsDKzPrcpzXGVuzfWQowGpydYfP/wm9P+vhsJxvz+fW7ASa1u8nZPXybf751gGlx0vFfPDh5ca9w74b+4AjfZNOWdGcmQSjiM+tqsHaqkwe+ziIkKnU5iTVUuzgYwwCsYZWSOtZHFN4o0SFNViJ6TFGcPTOp+cXXl5uCWrowCotJW2m7WBxoffXy4bXxpaDQ8+Gq/chY+QxOemDi9bpwTIF9fy99yHPFoeU7BnVk+LshrdGKdqwSO3ueLiMOs3PGOrtotj3aYE1gQee1PU59pPN0mfX/DV0IMWYfLw9M0rl2q4klC32gKmYWDb27iTTIbfM+c72Pk8a95wjqYJpCGry3GBqeLz1O8exy9k/4NIKtAauAcJRDGwYafSmIVVmcEoXYArk0c5WFL8FSMqwVFpkR95H1Zd524SqrYN5xbaNMpUWFynXKKFBM5J+XkIa/WngteFVXkI+pp4JL0TJqNhkDsUYHMunIIuwkekG9zvWjxP82NpG3ZqoyVONbimWQI69+gjlwTQTMFmHkKzqhfpEh34MRu/n55A8oeGl0mdwfXpUtLbLFF0MHzEcJO+2ky2BiXVXS0kAckHaAiRF28zTKLXhTqgBS8nljMm7d+949/U7rk9PbE3PkYbz3JjxCpSZGVtpie3p+e5HZ8w7rT2ml1pIEhh6t+ea9EdGgIdMc7XUHbz75hve/sYP2NpGQ/5D5q/04oD0vHrVKWtwCslEDL1LUwVFrLssVq4hcd0LmRQHtTVebjtH77TtkuC1npvpMlYuVk6a/QKMaq0ynk8wicitVHE6Yu7YkJxXl/zO7IMi/rFkIV54/viRQGDtSuiiJoANbE1gQdgrgBaWCYIgoDrPKjNtYo30z3F9F5yUk1gOaZbeLZJ9jZBEaUwxMGsY9bNGTrr7NNxfwLQvoFKNy1Zq+hFBhLPvOyMOvXd96tpn41ByydAzoc9rRkF/9jtTeHcW9mUkX0jz/pMoH/k7xb5ceLMStvTIK3FM5+scAkSPseMZZ38yY08AjhNQ0b3KxjaCs6dY4Cg5gK0OagFE588S42s9m2MmUdnSSB/9zPDXJsXObYaa3xPI9JQ+6K+4Z+rbtGQsxmsiS16W/F0BsepAAmYR+NoIhUADbcrTaN3hXKnNJUnOreYcuKXk6qyZ6/N+hozl9zRb8oOgtsLzxxufPj3jPeUYc7AVBXGEtXOrSf6uOTr77U5thZd55Hkpk/l9v7O1Skv/pNEHfkzu92eOY8fsEbPGyLp/P3b20SVZOwRwjfQIOlPlXHKq6JIGeAI5EfJY8eoyfHbDy6bExuxVzEyb+dzOjhAbafROa/KM6KMzYv6V5k19jmjvNVN0saAP+fWNlHep6Z14MjcXI7dk0qBA0/RhmQOzQivGmzcbT18+8fzhHbf7jevlkv2NQEVycUGeO3Utf0x4jkJMBtQ0mC/++pwW0RYFsOpMdyvYkM3BOILHh8q1wqd3H/jqzZdsYaqXpv6nODIwNwH1cwiQKi7fNMXCuxhYWavHFJPGp6THswQ+xNguW9Br0A+4bM7l6ZEvb8H7X96ZV+eYh87KGulboWGtH05v0C5gZeq8iGzscxiJmPhWgEqUPCzCc2Ou74EHMQ4I49oeePjhnQ9/fPD8nUptAg3nmHC/Syr3UCFuTH8H5UuIZ2xWsKu+e+heruHIWGzEAv6os2Z+gGZ4fIct4CmCv3b/gt/++z/gJz//mv/z3z/zp3/2gV992nh6Cv76pdHaZGueC13D8vuGAUVMIg8l5N7LZJsuUDgM2wbvX174g3/zYy5vHvje33kkrEL9IcYDXr/izX/5T/mdDz/nm9sf8fInOz++F7o1JpoJaEZ/eOT+8kIfO3GXX0rbLtSnJ37+rvN//OEzb68Xyt8plBpcaqGVi86tcVDb5JiORcXY89h2rEjiU0JeOb4JQC5MouVW1EumzJZkbDoNZxTJbbOQMlhMDLBplFkkX2clsu5A+s/WNPcdq07k+zwhOmzFtVCO9NXSCaCjNgdOD06JePGAaMwQ485StiT51f/vmXCDBcq3EEOawv0+6QPKttjp8nUzVzpqhBZzNlXvgnL2f57bLHdLC1oBppG1eo2+8qN1trbh1jn2naMfVNLPp8uHTHKmNUjnR866fJ6F/rokizyDR1JByqqnnqEZgSp0Ag77kTYUrdG7GChirWdPEXGCZktCNBczBy3rihdGsl8FHopV6BGv35XsN03Pm7fK0Q9i7tnudLZMOoiSYAn679dcyi5m75zjTE9bPevIhUTE5Mjk0MGkVse9qmkIKWlYoFgexD5z6UukOfsQ4OJZM8yyJyhpI5PsZ+OV+bQAmQRlpvTdWk6XcuJAc7z247KPSYZ1gkSLqGGu3zXHKyg4E1yRL9DqsT5jaM/Fh7c04XasujzBxeAFxgAAIABJREFU0nzoNSglH9SskWdy7gILbTHx1KMG6mNOO5EF3JiWq7LgUq0peRmkzJjnZ1sg6GmpcvY8nPXUS0lwOFJJEq/fPxeQPhOYy75TLZz9FZDOU5EQ2eQuuei3+edbB5RGHPQ9uN2c2zE5cmu9j0E/hujUDrU2qjtblRntVsU0YsqEVklULp8DF8J575K8CAQJiMEcq5lZUKqG3OnrJddBEnNyu+98+vTC/a50G6tCgaWDDGrNnV5pGVVcaPVCqSpe932kb8rk6CmFyRs2crNq8CpXsEmkm/8hEoY2U56yolopVSCL5G7GEmUUcygl3fqDZoOLFw3ZQmE4JVAzDbhnP9lA0RVlHQT3/aCPTnu48NAarQQwxYqJHBYw3DTgLFM8RU6/vphzbUAS1LFQGkrx1G/mYfxye+Hl5UVyuQgBHS7tLqiguHv6U5Emm9oUeg5hYtxYNpnOfWZk+hQraSuFvYIPbSa3NFhe3iS2C+jxlJIVL9K6RuRuTsOtpDR55EwN3bU1MD/Nv72004x9xDgHxsX2IUJ68RHMXRI/etdh5k4titcWBXXFmdYEgQruSiRcHkTLwFhymzwwQ827JRtuCFdJCmUWm9q4HVMpdtergNFMgdtI2VnKj2ytFBZNMovhTIO4PrWxdvz0CNNBGvrsI6m2MbDqvLzc+cUvf0mrhct1S1DW5RPmhhWZMpK/ztNgem0clj7cykXPZsm9UG42+tgl8cxDuodSOmbvtGI8v/+G+vSG9vBIy43b4NXocMArNbhkupLLVHeiIuhF7IB9vIJUlnp6ASOvbKOYkqZBcHvZ5c9EUKqAy2oCL3sItPVW0z8B3fO62CVqNCOZNyfjoGtztBKmIiZ938WcQIylWiv35xcBh2mOW/IE6REUTVKp/bfcIHMCCjM08FmMdYXSD2iZ0WeBiklHRtGWLER3pb3tx3E2B6vlWQDjAoHJ5k21Oen+iVaIBSpD9kgvvECpPkrCOCdNnT2mgcvC+XjfxYbyNNJcBTwGjJTx+ALHBCzNMfK5Gul9YmdzZ/N8SLIZSlgjBKj2KXlfKcZx31MqqHdmgVlzNccmGVzJltbyh2mYzmbKxZ6xBH3P0zGvE9kYWbw2yzLyPhIMdTHC8PxdC8FdCSM6z4SfrWY7chMdpzcBESljeG2IhPflMxjzvBaKf+5p3i20YCUohaW/X96vsy6OBPA98L6aN30XEnSIKVaLTzs3ccErZZypzfqlVPp+8Pz+Ew+1ccyOu3F7eaFuVyghZpqBLUZYNoh9iq7f/RCQawli90MAb6taVk353h33G/PaknEXVHeeIzj6oRSgfXJULVCYgmEtG7YZSIYEzMU2Yp6+bGZGH8HmjRE3sv3L3qgwTcOFZIfzfL5LVYiDpKgdo+ZElWwrE3u6tHOvjij3I435D2JOEmd+vRcsNkOCihNGNtAexttL41e+estffPOeT+8/8vbNG8KLhvrQonCmLYBNlPAWPSU9Ot+dTg2FoIwFXNrqmdRsE86w7fw7yTgmrTlfffeJn/zkAx8/Dh63Dat66yrBxbWQ9OJQnIrkg2KSZZOfdbVn/yAQL+UhmYIYpQjYCac8wfgkO4NSjeubyv3jocVGJTf02cwPmC6GQe8VbykJRimDPsS6H55nCYeYfAvEnpHPncGoRM3rYUaZG1987w33X9wZv4T5Vu/0sIPoht3BtxeZL4+JjYqYECVlEXYOFyej0dRDRgIP+BWbKX9rkvlvY/LV9wZ/62/8gL/3O9/wo5//Of/p4yd+/z9sfPHFxtvrC1srbA/qlec+KTYZrrh5MfArRwzVowxssBlgHZPBFj/5+IE//L0f8dtvrnzxmwV7KFC/D3bFrr/O9/7+P+Mfv/vAp5cf8enPJu9maFE4A2Py5uEJp3B7/oj1g+MuKWZrD9ibL/nJ+6/5F//2G+rlLf5fwa/YA3bdiYtR98ocg7HZyTDAXB6ideQUWNVXH0OA25E1Ipe5vdRcsrnetRpsIcuK0cWO7aTHpet8GDHl6RU9lzsG6dEyomNp/r1k+usAjhmMPthaDr9TssI+A2xL4DrE9p1iPJjaHhKv1PlagL5qvP5iLZ8rKWVF4KW7+q6X+2D2UKLlRAvplElHLhaaS1Ivtl1j+bSlKDaB90hZpp21xcyoVhkzPXxmUEplHofMukuVZ9eI9BeN0+tvzteeXH2dQPfWGqd0GuM8RO21v3YXOFdcvkOllKwfWgxdto3jEPhQcrl9ynOzdpnV86S1WCUt2SZTtgWzzGxQ0q8nQealpgDOOdAwRp9njXACLwLu3KuAPFOPtZZm5uVkA+GZ1ByV0+9UFyZ9b89DX/9Rkpn0WYjG8hXF0g+vOJUMK8nPv5hpS3J4ym7TjPusLQkOeQIgXmXBUZKNE6E5a4Ee2RarVyuFrRaOrut2hsqMmUtS0j8sPZeyd1sg1/r9y4/oZHmZmGR/hdnGAvhySDm7upzL4tVSJOaktvLZ8wXhr8u2dX2zw3+9XvbKJJI4XKQMPZ+vTC1zS5VOLmwQoy08ASjPe4aLIWyr804c5ASTdH6IrOB0RtrB5Gf0z5qAb+HPtw4o7cdk74PbDXbSM6mL1j0S4NlaY6vO5oVtKyo26EEp5oqRN0uvIA3O9+UInykac6oZ9yYNrTag0lEeUzT+kgDD0TvH3vn4fOfltuvhLkYrxlYzlSYRUC8FqnGYSc5g0sDe951974wwSdrO/+G1mfRswoeGzwh997l8FkhZkbQ/epHrYgWVHLT18s+MM7feuTanlSpmxghm9FNLHgNFZ6cRnC0gYnaIwb7vSnJ7fKLVisfMhC15e5QSpw/EnCF0mnXW6EG/p7eQA4zjRG1bU9Kb/hi3+8HHj594ub8wDiVI1FLOYZd0wCcLVkHNjJVX6dU0OxkixY0jJmVOpQAhqnlJpNzXv5+JBgK8gpgaeC6XhzPlBWDPaXqaCrx5EYU5m/Y+wDJeXWltGrpmzcYuIr0X8vpMfYZpMlf14+B+u+lsLDLWbqXy+CCmkORTzqXVHHiElhtKy9GGU79XJufJGMkN/xEjzd8yChtNLh7QrlcBrlZ43C75jfOwc8OtJiNJBayVqkFoyXh4ZS6AQDw183nQJQMFK5Qw7tEpkekjGF9//Uvi6Dx+9zt4SQmTkcWw6r0tS87nlLpx6razeNgYbNsTY+6AIsolOUpQAaVBer6T437gEz49v3DfBz/4/vd48kIwuIeYHx5drCFSZ2zy61reQGN0+jwoVT4c9/Sqmrl1kurc/0ogwhqu63Zhv93YvNC2Rq7Es6HTxmTmO+ClnBuBtVUac5wDdj96GuPKu2lONZ+Wfz/7YPSBkkY0gI1Mp9su13NT517USJZIK461IUlelUUWK1sLIG1B1nsZ6HzRZArxGeV2TloWq+nO7eV2eiqoPuncJget1cSVTCxMdEbUbPvcbFxMLrGX8s/a3LunQa82fX3KK2wy2Y9Oe7jm9J4U/MghAFh+DhEQI+jJzqvFEjRMrXx6xnTmCfysJYStdz0Bnxl6vecYtO2q7VEuC9a5EComSj1kNTsz2Y1V37UUxuQ0IvbV1KwGxTzZp/pOHvnvZhMqGefaL8mbaS7fCBk6rX4xG0OxY+YYYg0YNGv0WpjjODel61lQs57ICAZz5u8IjtnpAw6cy7k8qekV0nMQFutqosav5DAU2TBHKOGqj4FTKWWjbcaIu4DFlNStwADV0uU0M8GD68NVwwaBt426bbl0FIASCKQqrVIDPfcRJ0NwhsDMmF1+MJukyDg8XR6YQ8mb5hKhvHl84v5pZ+xdqStFyV7Lx2Rd7TEnxdXM1/U8DfAyz7rBkB+Y14K3ZEal/KHUSkNAuxUlyYwuIctluzKPAf1OlAszwQ5poARGwWSOTqubEl6mfPwkgZ8pP90QcJ++WKMnK0Y9gAF4JRDTuXrhiy+eaJdHPrz7xHe+f1cNiUkrVb5aViiZjBTjIMjf6eCmaHL5WGjqigo9z6PVDptvKJ0MZgai+Ox4a3znB42vv+l886Hz5aNRHwM8stzmomyTVxxR2XumRoUYxuMAq1CoHASlhrycSOZzoDPXnSMqF4zWJuN55yhwoXJ5KuxHZ7tUqotlu6VUHdP2+NgnXoK2aSET0fOabkTJoJAJ9JIScAjL7xyTeUyxicqUR0iFGhe+85uTb/79zssHlyrMBmE7xJCk8HGXHI4P0KreNduAB8wuBC8QJQfgA3DMagJ5iKkUaCqwgcfONne+t09+62//Ku9+8sI//92f8Z9+8Y5/+8eN778tPD46X9U3lCoAZgHWAnM17tasmXXAsCE2V6lsJp+6qw1+9LP3XP/1X/BfPziPv3rBHzasNMwK/ua/4Nf/h/+Ff/L+f+X97Wt+98edjwPcag54he1yBeD+/JG5y6el0ChbY7594k/ff0P7/Y88PTxQ/ia8seCpFPCGRaVGYC0wNrpNpSmHwCFMjLvjMDgMq0BXb+B1UmfhMJLtsmuwHC3BHIUkuMnEOGxS6JgNLBp4AyZmFbdM/bPCMKOsEAS0GhiGsPXslR5KxafxPAKrSm0ullbWMc6lg/q6kNwzOsSyIFhnamcWZ0bJxFSSuSzAopbB9aJKeL8P9ugCBaZ6nGJSFswho28pJqbke6UlKy/r0GcDuBggix2tn7+1jX0/5JGWdf84jgwGEiN4DPUA4ZYKilzQIzJBLTXJsXF+h7lsA2xJ0FTf4jPLjloFJi2vq74faX9Sz4RwUlVgKeXPLvuciaYJjOmh9M+xvKZsseTFDrPsu6ctx8oABqUJ7Chu9EM+UxHB0dPHs0rW6ZGzYqij8pTErX5MGkPHes9kQ+eYgZVKDyims96sUJlpxK45I0bPPqgTqVWMqR5acm+FAmXzyPLhWgxtuQdUncMz8CIpdVgy24ek904RG3VrqhdzaSOyBlmwFSe6ljmR/e7MND7digWQpxfnucsSoFLK6gG1qDfj9EZdAV7MFeyks/+UK0acP5/P5H0jCRd6VmBJMEdiOWYioJQlu9Onzvu1JNZ6l8f4jBGe78HqJOaay1JeSfZkpWiRGLmoKZFLXDQEiNgS6+4ohRLXvJcLhQjy5yyH0G/nz7cOKH3adUjtU8yke+9qhiKo1Wmt0qpzqZWaXimGBnxpmMnGKsAn9+PG2qRsXk8avhdX0Q2Z0xLaNg0M33IjNyv3++B+TD58eKH3Q+BRFUBzqQ2vooSbO761pExL3lYIRtw47pPjOLBwJYoMIapzJuNqjeKxfDsKow8ZziYNzbMvH2gDYNnUXly3YKyWynRA345BYXC5NMmUcvgYkRyWNYjOSUTPRlCNbe9iKt2PTnhhuz6cksGSflFaha60JPkfra30ostCMPsBkZrk6HpQR9DqhpciH52AT/udj8+fuN9fdBBjbNsmxLmUEyQKh+JNOvMxqZuGvOHONDGwJI9uHIGK3lS6n7YQYlHtBGXocxfzU187+oABD9crtunwxJZsLhimjVCd/ioHNL1U1VIXTBCm50LN/yCKPL1KqdzudyG+Y7JnAlzcJ7f9JZsFmWSXTaaVpUoLfWmbBv5FXzw3Jzrw+7EDkmDNNPke42AwYAyOYzB2beQbojd7cy7XC/2A3u9cHwpu6fyJJ70/ZWvJ9a21SN9sTZKQGHkgTrxp0CohZsGcBws991AD8LI/YzFlHt2Mdz/7mo9ff+DNF29zUPGTollalZ8Eiq8sVgS2FHAUXzJR8W7XB7wCvVBrZYwuFsfR5RWVsqWwYN47474zivPh+c53vvervL1egZk+PvrMPYygQzZSUVLzngN3cIg+PAdecpQZHcbg9WhP8CbNa2+HNN0Hg2ME7Xphq0bUejKhttqUVheu5mLqueVzVluyGSKZQozAQibzDqcEAhLsSJAqYlAuG7eXnbo1rg8bzZYHl5r6ac4lgfM+xOocY+r8cQUNLBZHtnfrCKNPaC4QsTj0KTlMZUrf31w+ar2zlaIz04Cpn+YkmFIlaR357iPcR2ED2YBZsmtk5q1MzDRR4aQB1wQ2IsTEPLpAqWliuSHQlbX1W5uhlZ5xruSCg5kbREtgizTzFFtRXhioAXTFo48xOObQsxTa7vQOD9cNNVTlvIcjmxydK+u8Xo2XGppWXF4mwfksaIMHJNtK8qeVGGfZsClBiWTqWW3MOai1ZfqKAJzc9alxJgfsXEqtEIg7ChkQpb3kPVgb+ldQbc7XVNE5BpdsToonxcVA7ujqVfoYVF/m5fOUQRAjmWwC/kZuH+cYlFq1bDDJ7mKOlFsORtfyZc7ORABBM+Px4Q2Pb77gfr8nc2fjcr3q3A6BTr3vzNEpbdISWFQ2tu5Payb/omgMm1xc6aruG/FYiVq4Pl3P9+k6RP/ve5e5KNC2B+oGfR8a1D1OVqMSE9c10qJJDfuuVJ/ZOfpgs6alzgZjdDEn68b18qAExVKYVZ5n7VrYxwtjRHplKI2yxYaz434hvGtYnUap8qocvTMnbK0lYD2pVb5yuBYYHo6zCQhKKbfhDBsUh6fHK49vHvn47pfcbi9ctyttOFELxeR7Mook4nN2SqmMmamRCYK7y8B5HDmcFS0Gm5GAjB6nsKDJHpnuAfPgy4fGd7/3yI9/+ol3t05rzubGTOlYsXoyEymB1YIfkk5DZxymd9UNGw5WsRocXeAMnl2Ya0nSDzGwj+r0PPNbrdw+7rx8Cp6eCntKCwssU5vXxd402hV564yC110nQ3qMrUFTQAKENeCgz0kbudw0h9mhbFzeOG9+OPn0n3Zu/9kD1yZZVRyOfRq0MpgPAcdHCi2B7QalCUmbleDI51/9gagoGrQVJ/ZA2NCQepFf19N37vzar32Hv/vfHPzsQ+d//90f8yc/+prvv7nw3bfGpRnXN1f1T0Xn+DQjhlOQ9D3cTn+ysEOLja5kLYvGx7LzH//857z9/Y2/eX2k1avAFvsSY6N87x/wt/7pL/ifP/1vPO+T/+frzpFb/8DYikNrzO2B/b7Tj8H0O4/ubA9vuPfJ//uz9zz9HvyzrdH+utMC6lUeQzUO9UzNFfRiN0ZZYPEhNlR1breBxcEsV0pX7yJZ3M40Z1IR3qTk4sNIz6fCq5TGmGPDvNBjsPuOeWPL3kj+pLo1Ans1yC5xWvfCbd85WlCaU+ZUvffJPifF9LlKFFhKjZQwrb6eyMXSBvdD/rY29bnNjOhHziWSrxnBpVViqv+hD2qBETtGZauN+yFmEsmgzmolqV2kJMwcvMiyIcReLGlLMMYAq3h15qGERYVXTHpXTZzhuZCTl9kKJOop/FuyHvXR6aOGfoai2VW/LGXslqDDHJM+uvp6VyKsGMR6L1qt6sH7PP0013vjuVAGsWsTb2TMTqvtNcQlwRdD7NhpUFhhIgZzZOpeYZiWJj2CfahPqAkk1Fzs6AsnQDBTqWApfytaPuFGM/3frUhdI9s2T4WBZk+A0iytLQpjJKt6Bm4CPQVYvAZ3GJa9Uvaw58Ldss4L6FpAyQj1gdWcPmEWUgInJcdpwjRVq4ortXy3foZVWJFcLQLY2snCIT2SKVJwMF4DCAR4DfVcnn35CbTmnyV6CnknAgk6LlP0mf2LWM8R0MNpKffvM5+tJT3jVbq3gK6TTZao06vkbYFi6OdDLiI0609kF1StnM+93oA4Q5QM9V6LWYdaNgQ3mqx5SC/RlPLd6RQ+25R/C3++dUDpORMTxpzsvZ/GcVurXFpTUlnTtn5RwyWNCPxir47lAbe9p9ZfsrRl47Ie4MgJZaIDoLrMnMcMXm43JoVPH+/s+6GblxI3eRUliBTpH1OrtoMmap+bsRncj4PjmCnX04E8xxI2lJQ7aGsw0r9IsfFqWscUMtmq0PZSmoA0TwPuTBfRi5tDzphc0d+3Urn3IyNua77WKeuaoeSFqSFqz5hrxfYOrDbatrGZhmRLpoS5syRz1YuAJNM1ib6z/Ef6UJxzya1AhKi1rVaiehqRwf125/n9B46XF23AS2HLIUemyx1I2t1ih6ADw0tNgoCGtZkm2NWClsM/TrKUhqKAe8cvVb4QKCZ0Rif2zjEG9XqhN6fMYPPCDtQJ0+Fian71Mr16wQSD3aFlEtWYhzZMrTJ6p5px33exgwAbHUtW2dwPybFGx9wYI6i16VnL7+smppYlWl+W9jmL/MeX51N3vYbgkVJGm5N93Jk9DWZD98a8cGkb1Ssfbx+51I1r2zTEIY8uS8r0yA11qYVjyX7QwNpKYSuFw43wikVhHsfpaWO25kYZtbccNeacHM+dn/7sp1wer7THCxTJDCMPNwIBU6XQ0X31NHfEHG/OcTvSsNswOq2geOkpw9s9PYokMdT717sO8Pv9TiuNN1++xcoUM0+VIP2xYHLo100N7T0PajfD0pMm8ZzXGdk4i/aYgyMGk0yZI7heNz693AgEANfLlk2IsZWNrRT8fhdYmIkdAsPQ85xSBND3HuavaYs5hMuUU1uEBZIEyNy9Vnp/5nKpMljEF4oiGWqy4fZ9UlrLLZzi2z8vInPq3VwsAbwkO07sBUKgwP1+Y6vO/b7T2oWjD176rm1gslQigaVqhhVjmROqUupZUDNYNHw4ehZCJv/TB8Oq3qWQXKsP+SaMKcmfvECCOCBQKqb6sWQTBZkmVz6j+nKyeVZSjVWHJRlVlVfdYlHZxebpCQ7tyL+qtpb+clAvD4C+msdi35HpbiQjTddGrCQnXKbgpQpNktvUTBry2lNOpguGqultAxr6mxeZHod8zNz8ZKVa1lNLoGq9oxpotIUrJo+uOsnkrWWuD7VmMz5Vy8acaobL2gbqXGqlci+HbqtecDFlIw03s3VykqWHanL0yWWT4a3ZYqIK7CgFgQ/ZXM8p0/MxluF/btJyk13LRm0Fo4nl5Mt7RqDV8ujALLe3uYqyyjE6dXRaAob7uBPjQt/33ArKz+Khqv7aFIDpaSZ9e36mH28orVGB6Y5f1LOMofSsWivkfTVeE1pOJhgJPEwjUmIdsVO3jeM48FozobMoBtoOiEkrzkgA6BDNJdNSN9guWJFcrGCEd3waTMmN5xwwQuEm0bV1zjNrzDSb1kXTYOID21HCJJ2HVvnqqyfe/fIXvH/3kcent7RpWC/ggpItCq/R9VB9w2xSihrlngOZjZFyWM9GPpLdaOCDfQ4mO80SzPYCMfjquxs/+eUn3j9/5Is3T1ySpTKn2E70A7tYvs8mMG5MSsiFcK6BzIt2DGPgZVKGBmSK692cgfeKtcmlObYPRhh23fDrzsvHSW1Biw59UquG1hJOWOPwG/FyA3/gwSvD9DumPehZtI1Jp0xn+sylJkQUyPPXp2EtoBterngU3vzQuH/zC15+cqP++qZ+OTqzO/3lEEjYKnPcML7UIM2nHGINonH6lqG+b/EC1gAGTwLjy4CHgy1ufPmrz/yNDz/gv/v0wl/+9BN/+KNnfu/PfsrDm++zXRq/Vip+VW9/9JQzsRYHOp+pAxt6z8E5ivq9MjvbFZ4/7fy7P/oZj282fvjblfpVxTaH8l1iVspv/DN+65/8OV9/+ne82wd/9txhtjMa3FulxQP7mOzHTuv6z8022tMj+97513/2kaftkf/5eqf8yoUHH9Qt++F6UI7gqF31osvY2XsTO9MPtgv0faMMiBqMPonDOUplHo7RiRhK+Zodt2Ca0iBjFgbBwU6pe9ooVDqVS8Aw+VLi6rVsGGWEllJT88ccCqmw6uz7wfXywMND0O+TqAYdPAZtOj129dZz5jyS0miLPLu1bLuUCzELk457Y99fcJOVwZyqJO6TiEGrxqBwvw+KVyXrEYxMjvYQYCKB0pL6JMiYaxydw7LPGJBMlXGeO8xcfCdbRJ9Zvf1xHMxZVKtygSyPI7Hd7/e7kjpLPf1OVf5zWaXTItnZuerJwdLcia5AoZLeiDNBgTEOajFZTvRsin2h5JrL3CslgofrhllwuHP79Cy2WfpPVqvMBAqtoOuVy0VZYgjsKAa+GZ6kktkX+wmpRDBasoc+TyRbbO19HgyDzcVYlUei+ojjmLr+y1vRpErRZRAjVkxvR7Yyd0oiLqOPXBgclFq1OJ5LavZa21zDL9SSEs4CybYawl0EFM6geNUiP2uEzYp1SZb3vadFSS4KulROJYzjpWeKcPqroubHSp5muhTqwYuWXnPm7GXG3A+xbBl5jkYy9Dl7B9Jiohaxziw0R1aTakB9R0Fpflp2D+YrcEQ+Z/k5dL3mCWQFwjL031fvgis9VEvIVB0w89wmGUjZO8QK/1heFvH6e20BrHmkhAgkQzS2BLm+3T/fOqDUDyHU+z4ZybIobeO6NS5bFT3YkpCVFLiFQlsJ+tzxaOzkXd0ahUQ0k1bg54VlwSsUb0l/Dvbb4L4H7z+8ow8NM7WpyasrzS09XtydZgKSZFp84pr0KVZIJP3OXMNCOeMr1bzvR/oWCQvSn5naWEMG254ShlIoZTvNt/uYmTgkyddWhcr2e6deau6bkf410m/AljxN39+84LOzFSOs8PH2idI2rCku9j53Ll54qKJBt1JFF/UiFk76jByJssqDRAyt1rRN4BgpN4TmVX4MwN4Pnl9eOPaDiCEZ4+Uq5oBmRWmZE2jACi42d6LjCSAy8USbVUQysjviTMoqxeldKHkZ2kAeSQudMySzu1zkeRR5ENvkQqHnFtEppwwIg09zUFDKj1IEJ33cKbaJuuhK87nv+1mAFsi24qz7OLB+sHlRJLsng65VRllMhEgWRmTcNFh+r9FngnxgIcDMpmQIfT9OloRZYRwd89eEnMvlgXffvKO0C+2yUVvLQuzJdoiTAkl6wIQ5VjeI4LrVUws/+tJRZ7OfF3FRekcmy1k+27UY7378c2JO3j49nc93xOuzf2n1TOSrJk+0Gej92zaOOWjIRPNUTwqmk/n9vmcS05JXBtGz4S7O+NT56oc/xGphj0HvneKX3NBCIMlbJLAbCaDgOUwkiyuEIKnAmr9qAAAgAElEQVS4x2dx9ujay99IUoWahu1xu7O5Ua2Jdfj/sfY2vZZlW3rWM8acc619TkTkzbxVrqprbEOBQViWRQcbmw/36NGiyY+wgF9Q/hvIFgghevToABKyhIRBILlhY2yXXWW5qlzU/czMiDhn77XmnIPGO+Y6cfs3pFTem5lnn73Xnh9jvOP9cGfuO1vdFEWecpD4Qi+nqYsmnzX3HWE0C0YNGJ5eXlpo1Yx5ntovSWf1faN3vce63ZbCiZWaiJmicCOySZn0IVCjNcOG/Mgi/52TP4PRj0dO83SGLRmvm9H7iSUocd4f1Gm0liD1mAIW3N5MrKfMfg3Lc1PTqrrp/3sClrieVQxbSimaOd2CzWt6WcnvoHdd/q8vn7FaaOvf54b2WkRdJ/BpCawZJ5JsnfNNlpgwnz57vBkjFxYYIdZeS/ln26pkqElr9/QdWgahmn5CmhGxvKiYk80aV8eWBc1gUK2q2UMT23Vu1Vwjq9idsZJHtDc99Gsuz7jcNSt1RIAp6Ukgr4+Jzo0zBCxOQ58jVKBZSCI5FsDGW1GkkIfASsOxyxTfjFxjcXk4rXCFDe279TqWE10Bp4tJovCEGUUJ5wkueD6/MbqAivUameJ59i6wKzT19ZjMM+/M0DMnh1VYoVWBJ2OeCtY4T3m8JOh53k+ZC08XQ1rIJDOgTyWkjtExJmc/OY/JbWv0CKrtzJCR65oetppU+zVB/GISWUwwotI1I/3YnBIVGAkuFKZXqhUkH9KgRf1CnsVnAkZb5eGD7Zh4OZkMSrulrCB9+woC8zMyHVJWi6aWKqiz5Uu2neMoZVMAcQvnw1c36q3y8fvP/NqvP+he8DiItlHKYhxqsKL9pYm7/AqdOTJhMBtCZgLoNtZRoOHiSCmCVzHMqjMmPG8bv/n1yc+//czL6+D9U8Mi6MegN7HXyhlp0p1MKAQwlgj6OJmlUoeAlFHEGGeCW8F9JMvU6ZHMIef6DAVjf94574P7J4dnYx7a/1udBDLVjfkswO/RqU85NI0FOAB2JLtd4HnFL7KQGog8m23DbvLooRnV3/P1v3Hw47/3mddvnfc/dOZqYh4Hc5M3JfPEzs+w7zC/B3bMb180WsuLwxAlbFz3nVnB2MSYqu+Jdufpw5/imz/3M/6t80f8h989+P7v/BP+v+8f/OPf/44/86duPL+78evbRm0CaaeFjIRnEBXmE5T7qmcjK7HCPrpS1qJzuwWfPj/4vX/0Y/avGz90xz40bC9Y+YqYjfpv/2f8lZ//LV7vv8f/8s+DP37AWP6VQNmcJ9vxj3AcgyNNtsvtCfvmG/r3xv/+uz/n/XPw7/+7wXDnaTa2zSmlck4BwlsYk5OHDShBlC7G7nCg0eOB+aA+Gcf3xpbrpffJAYR1yZmmAychUyyMwZg6A6lQaFg8mCYwto9BGGyUBPWkigjLYB4P7cnZqVY4D9kWfHi38fKx4yLSUEIsoTPewjBW0E5NEEA5hxX3Sp8HpSH5/24wCjMkBx5DfoPmRvGNWxUg/XocNG9s+y6mUoJWIMsN98bZj/Qw07polgb46fVU1h0xQfI33eNlWQdYpiO7Y0O1W59xeQPFGkwk86pmQEfk5xXr400NUNxY17SYGmLellKYp4C3UgRm7Qnu6+eNow+xrvNckKG50uioG4uZ/Plxp9ZKDwE/tVURY+eySUnmlFfJv2KmH1wQw6+a0/ArYdt2E6mhh2SYKOnckxAg+zSx6udEIEMEx9Qzh/z9IYn0mItVY9jIABJf4SbyAh1nsvQdZnRKyMdqBnhtjBWItJ6x6ftyk9TXinEMQYYGtFopgWowAkZnK7uGtKG+1vJssrR86SNZ/Fk8yRbAxRDOHmyF5yxLi8UE/9KYu9iq82EFHU1XXWgB4xxKbTWx3hkyUE/kVUb66L2JyW2qOXowigzy/WKw67NwDYxV89lATCtTf7gsWpRUnyPASK/W65wk2V9KkttrU6qsaZA9Un2zvC8XaKcy09PnWSvTXOzLsbz27FdtyQ3ld37nd36lL/jf/O3/6nd6H8zZqQX2rXLbKrddgJLbSv/wLFo6tUF1UgqUhEnXhK54kWwpEr2LSANs/T5NqTUBOHuX8fbLC58/3kV9KyZDxdbYr2h2gTulFKwVbE0Cjcs7J5CZ9UIsvZQsjnTAEwKXRlezOa+J2xvqN01FzZYu7dZW9HyhtHrFyZpJ1763jW1rlCrApzZJArYiQ2Vz1zMyCKa09Z4eHnlofP70qo3/vIuGPQe3IrZMmLGXhteN1lLqV6o2M0FDLHR5PkFtmuaqyNchtdgvHeN+HLy+vPC435ldaPH2/ExpmyKQi2QztdU0JXaaF5pn0R6apNaU32ALfc0Cd8gsOMmWMJZeWmllRx/wkDRrzFPgY9t/STfu2bAIiVuGxSOjjy29FwqBUrmOqQu3hMwRI9QcLfPRdUhEBOf5ECPmOHDXtGqEUavWV7XKZo6PoNWWoJFAhGtqHxmpXmVsLmnCEEtgZprZOuCHZv9zKlL2w7sPfHz5zDTj9u49W2vUos9uRYfFW+JCemPls+kofczdmea8doEIrVZI2YnW8tpoU95hoQLcW+Hbb7/lpz/9KV998zW3uiXrTkCt0HvXwYzp+68lJZcype5MXu6vAnZt2dGHgKRkxJFgRqnlMrk+7g9arRzHwXbbef+nfk064SmjbCtKu5tL5zMnzTRNucyhx7yMkNf0I/piGMq/aq3H6OlZlWfB/vTE+Tg4Xx7QNijOI2Pt1/5+HHf8zGJMQmu2pHAbedbpmCdIMBe7vvdV5JzjZB5doA7JJrvt3F8PCLilP1epTd9vrMljNoyLRmwg6bDLsNOl6U8/v4tdsfbNUB0hFumQJ8syqyyl8PrySuQZIVbOkElieuSsZVNcRXJNcFuFIoSVbI6ly++j00oTMyvPXy9i+5UIFY1TFN/RBy+vr2xPT5pOrQvU+GLSlJ8k1LBOW6UcF4MD7PINml0MviVBszzzNddMmWJrUBv0O/MMnt49y8x6nc0zyIFumqMjxowDHumV93YeOV/Qk5fqJEGfVQCPUBiCmsxBK5XXlzuvxwtPX39NdRMNvpRsWkPS1vUnz9VSSu77oDSliJG0+JkSt8Vu0iQvrklaxKS0yjg7rRbO8+Dzx4PnD89iLs2QjDnBqzW1rcnCWyp9NygyeeFxnJpi5gVr2BU1r9QZrvNrgWXnqX35+eMrT+8/sN0avd/1bPKeqXXX3ZuF5mooej/zLNQaKl657Xsyb+0aFmFGK0rpIQuxs8sYtp+d++PO/X7w/v1X3J6eqSVN/tPjbRWxpZTrf2t9lOsLWTWL5dCsdz1DsbZGslPTnDZG+mWVLJj1PfeHZHOQQ6F+v545iIY/Sw6szKhF0dFakintTkAur6XLg2ux3ZqF7o2ako0Qg/X7Tw8+fXrl3bt3tCbD8XD56dW6XZJ6McZDY8uis+XRC4/pKactkMas85K/KI2hJ2havOFNm2rDae7MGnz78U7gbE2pXjHsajAbTcln6Z836FqDMZgjaFUsTpXiJ9W05q12aiWB6C3f8x2o7LNwPA68VEmVePD4fKh2TDB8msGcGsy4wMd5qKiq3nA3aoNooYM1Qa3LiFbGKNoX5rjdskaT7NdM9zrv3rP5wcufBO0HIxPzMgnJBrY1ogq8UpOY8maTJHydafrQYpSpH9F6yA4K4o4i75ruivrAY/K+PtEfB3/0Rx/59ui4b/zG14Xbc6Xseu2YeZuHanTzU7XUqEwX488s77zQeaPaxvj25WQekx985dxu4OWZWW6YN3xutD/zIz589w/5/HLw4188OOamux1nhNjQB8kg6D2ByeBd3YlWOY9X/vBPDp6b8xu/Bo0d967v1kySWU8WffhCFJk+xUwYAh3HMWm7zrtxvuCtXInMJEPpkr2kjDAm3I/g48eg7M67245zUofOMIVhiHlYTffHuhcAlN6YfnZZL82p4d7zVuiHwDp53iTrh8UWI+WnWqudmX1UntBRsHJjjEipNglqFNwzPa+Y4u7NCTbF0s/BXjx7EdmG1Kq0t+pxJcQSyI9oBuc4162gd7iab3tzFLrudV//BPlfhlIvV+oWeUctMMn9LUmLdd8n42h5HymFTlYqzBxoxRrAZF1gM/d73u+mgZZ7DrC7BrSWhscxRzKPlLRcUDiK0iCXX1PPYYUY6cWd2vwCIWoqWby8Jb/Wmk6MqWqIU2zQ6f7Ghoms7UNj8xWo0+MU4Bx6Dvttz/P27a5aErVYly4Qc6CPJfl4wOUR5J4ewYg9Xl1DsTk92VUmT6RIplmSRiaDMYeGpAHNapamS1ydgGSAeaSsa3GP7JIyrme1fDmNPMqmABm71gxXLWAXdBJpCykgMi/rywJjScaWp9Lil0QEBxMfSyBo4CntjYnrENN7XTLE9d3nWoysEdZ7E7PL8+7Xh1h9vH7FvGwbRpCTOy6pnNapkn9XrbJ+L5aKiDW4XSfIAu24HiX/5d/4z/8mv6I/v3JA6b/+23/rd0QZL9z2nVvZuG1bUhJ1qCxEdd8KtfjbgRlGH1C3G9XlBB9zibwmjFPJIV9QFFckbz8692Pw+eXg8+OQYVxRwte+S2ZWWr1Ahdpk2Fdro7aNUl3FLipiRQDSAl7NbARpTCxA5+jnZRBHHu6r+MVlxiuDOMe3iu9bAgsq8Fp1ylaptfBUN0V8F+McZ0oWNOEpRbRvHbKKi2cGDHkozTS//PzpRSbG+8aeCP9elSC25d/Nk6FUd6zIvNndkQpJ3Dh3WZ+e/YBpHEfnHJO6Nf03Ebzc79w/3TmPO/088FK4PT/j+8Y1AnAZqJdWcd4iffUnCyQAl7fJIDfWmJxnp9jER3A/Q0Zvc8ojCSHsL49XAYnRKbedfd+yf1rMM+dAKHq9yqhI49VMJpqTUdamE0BX8mKfc+CzK7Ui0yFIQMBnSm+OB9UcT6ppuVVutbKXLaVdecGZ4bWqOZ8z/Zvs0jHPPtK3h7ciK6amUrXgERxDFxYxef/+PedDAOq7Dx8Ehvo6bB0PJ/qp78tIdku++tYExpQdssl9HJ22NdzEjBox3w7AfE7kQRVF8r+f/MmP2Z5uvNufUtedVOzz0AGdncp1SSdwtG3tSqSJMbH0mJL2eCH0kc9mXnv9nIPH4yH/WQsVnb/1mzy3J63jNMez0liG36sQEZCgBst4A1IiT9aF5DsqGNVII8SfoKeUsdRKL87n7z9qn6oTYyW/V4z7cYej63VMk6ExVzplgp05jpeO3hJ46fp3acAtI3pLc1mgGE+3J6YZr59fedo2am35XGXGvZpi+jJdtYvZVEpJzzj0vax0kjSJJLJ0SBDCE+U9j2zG3di3Spjz+fWVtm+0WmnZLDsryUPPvJSi5KdNYMNM1oh5xedUEYCeca0bUSw9dDqYwhJ06PWEZ4JOcJx3Pn1+5fb8LGPFeAt16JFsv9BlTV68fl3uRvSkVocMqGcaJI8EGUfMPEXUdp1d0yt5dnTKDBiDensn0DK/0OKFFd2qVMaSzUVOkxBoseQgZxYtgUBuTdnegI2VsHnBQwnsfPz+E2MGtw/vqaFp7kjvC0y/3xNLHfkKiVvJozDeWBAjzyJ5SH0pe3n748vzbQZbKxzHg9dPD56/epcggM6QutVENDU5LcVTQqhzPX+jirPjpDT5+cnEX2C2z/z8eRec50nv8nibyUT9/PET29ON5+dnTVFdJuVbe1L4wRS7kQQm3zy05B9XS2VrDTNj258UDx3B7faUwJtBLZfMbnYxH3tMjvPO43Gy78+8e38TSFb1DN6m2fF25uWa11GSa8PV4BSX70Eg0L+HpPJ650mxt5Itg6+bDbfgeDzE9HVP2XrBKMQGcZ7AoFCYkYk/Jr8OrT3wqBezUfXvOiffapkwu1JlCAG9ZmIlf/uzj7Ri7FuTpN/lB7kVAYMz3497SVlVoQ/j5T7oUTGXJ5TkrF3F8xVBrUU/AN8Ak49HKcFAyWL90fn4etD2Kq+l6XiVDGQyiHEI0MGV0mRG2WvKPmDfneqdOgVcWzHZAtRVaymlaXbRrPsmxsvjmJStU73y+iK5obV5sThiyktqjorVxfSGenOqG3jFyoSpmHk1CgskmHg05AdSk0H6AJxSdDZLQlnYPsD5+cF5r2zP+udR1pk2sduG+S5gyGrOb4v+Py2R47dpfsK3130rU5GCxQkusKnOQd1hj8n+Hr79+Sf+4E8OXs7B03vn19/vPNeSA1AxCKwUfML0SjNjlsD6Bn4wcUa16/wpVjHv3Mfg87edWym8/0Gj7E5pzwQNSsXs13j/r9x495N/wHePyk++P+moZnPTKbOXSpmT83zoPCoFPHjabvS28fnjR37605PffL/z4YdQu8CW6Qum0X33xp6XH9QsSl48yOHuqe8WA++GF9imE0XDlZZrPCxJk+Y8+sHHT5pNPN1gs0K7JQNu5P3v+j6mDZbfDy62pJiwdjX0XpzHcVIrbDfn7IE1UiokaYsGiUo9tRBoZgmaTdOrNTfmPBMAkIzVTCyfksAj4TnA1v/16jweg2mSobnJUoA0wncZ5VCsCHz3lAWFwEYNmCSnu6i2F3z29kcG3joXFwA1c+gJqnmvdDZb/35e5zBEAv+ruClZywuA032V6WlJeAgsn9tMFk5qh/JELp42JSMB2Ow1PGvJBUoARO/qYbOeLtJlCdh3vgDUlt+UJfHBEugQacIMztAd5UyBNzOu2l8gmN6zmLtGDQFErZZfqukvc+i8lzRwGXlP5vOc5P2iWnGFi+Ce6XB23U5uGlKuFDFvGdU8h4YflmbgUyxZsdJMDCgLLahLxVHyeb2BjUR6EzEIrxcIbSz/rTdATP+5416vZxP518zi/ksGUyTI1CP9VbOHvXrSfOnDxJBn4e6INe6+GHV+3V06Ve2X1vICk67vOL9vrlt3se1MbMQsHpbdz/IjjfweVt+0+lctb33eZTkRaTuw+tfIfmUxlX+VgNKvXPI2dWfSWlOzUYxWM646P3yrGZCevhI9TJ4pHlhTosqR/kCRPgQjm8Czn/Q+39gQKaN4vb/y6fMpajp63bo1tqakhUjU2UwAR6st2RSF3dNo24RezqmDzkoQNjNJpiSYoaJrmXMtZ3wgvzwtKnenFM8mrlK2hqXUrrk8hmqpHDEu1kh6R6pIQcyA0irHmDk9TE3dGDJMzcU+Rufz6wle0z9E0/KtbvimCRVNzVUrlbrtmCm5oFjKC2Yek6HEmTkHowePx6EL3+B+v2NT38fry51+6pBsXiS1spKIqA41eSm8mXxbdTV0pp1tDBkPJphYQsj+PE58DvkEhWlYNjtn6MI+jzuEmE3nHEQx9lYp03iEDIWrGUcMLfBQIo/N4Lwo/1pPrcnrAv0THfRE/pwmF6VsFxX2cvYfk9kPSfksTTu3RksQbRYhxD502Hek51d5Ij+snodKn0H1JWvLgyFp9k+l0kfnPk6IQfQT3xvHVFPx/OE9uLGVKhlF1esu7y5MUwIddCm1GcatPWFeJWm832UIac4Yd+TnNb84dPWeSibRjZj8/Kc/Y/TO7euv1OyhQ3h2CVQsDXinhdh2aXDuRQeniu9gLzWbjlVGBIQkWSONb8GUljgGPoLpxjhP3n/zgXe325v5cNvEQERTHOaAWH4RaWRoOfmaS5/slz9YzEkPhQmUjFSfIU+YnH1RauW4PyjnZC8ykS8WtDBoouA2AsZkblWNZh+0bQO4GEvLC4oiU10Ve854HBwpLSOMl+OOGdzKhreK1cLjcWifpfdKQRfxmDr3FBaQXiWi3IgaDRRm+iNtxIicAKkhmn0xFha75o1BU2rjPB/UWvn8OJnmkEzKHkuKo2mJm8B0tSFim2KSvJi5no8Z3QWQr/OSSOP/xfqxBG5bZZ49z4lODPk4lSLG55wnZ0xaCCwvpqu557QQE+uAyAIkG+QlfU3r6wTup/wXvphSifFj+Bjc3Hg5T04zNlNc/FhNaeRUCl3kPdNIRhYwben5cqWXqc/YE7Bd0gRNgPV+LUFNa47Nqj01e2K79gbYxhtwUlggokBUTQntAllkCBoUxgXGkRPpHukhdRXFk63pfb+y2CsqaF6PE7edOU82E5PYs0iv6DP10RlDd0Sknh+H0nRHaXK8jqYQqNh58xnIaWb1ApyYzVzLC6AcGDfcJFvW83n7PufkmkSqgHZKc7bnGx4VL86+OfFZU31fkvwcHM058a1ipxMPrWUL+QYex4FFEzCUe3vdEWNOtvQu87W+83ybs0uCVStmkgJLFgoxBXqNcWYizkg/MBXlcwGmxdIgVqyJlt4RNlfRPDAfzFOJt3MEYQo7KCZpc3rQX3/M1qQ0EkjPu/o85KuXMP1XXz2x3wrff/qeDz94omzBzpbneIFouttnTw+XZJ6nbHVOFdHT0ITXQ1YBYbT44j41ZwwDE9COw15uzB788Kudj587x8PpOxAn7ZhEKXg1ziEujtmRALM+bNkq0QdxDLxBFBV85vASnXIaNzMsOqN2pT3dYXfjeWt8f3/h9XWjtE7bK4/Xjm+FEs4xguYnweT17NTHRtyMcxj16DJQji4W53xjv0cXy2wxdHEZ2vvIBi9Oztmw9oSfD6Y98Hbj6UcvfPoXB68vxr4pMTRqI44Dv094FvBt9gpzB3sQsanZSLmODMQXgNvAYaXSYTvU9zIbr09Eu7E9vfL8W+/5c/1H/LW//Mof/+z3+Bc/f+H//d0bf/rdwbv2jP9wyLtupkuPgzMZTeBGtBPvTZ6R84HVyhbpQ1kH+3Pw6fPgn/6zH/P8lfNnN8fLjj1XmEpTHe//Gr/9H/0hf/27v8v93vkHP5+EO7NPdpJVsVfO3jjPE14elAmvIRD5+ObX+eOf/ZT/+f/+Bdu+8a/968YP7jpXoho+XbKxCMIqRx3Y2WgjuNfJbTpn3HnMQv0U1H1nmGFxx7ZBHYvx52wBhQ33zmNMbt257cGH7Zlb61SC57IxWnB/PHQHTe0lwy7Ax90pTRYJhNKOnciGsXF/PdhrY9snj1NjVPnx6TzATEHY2Q/RV20oU+nhDt4lTaNy9E5Eu4apEefVwzGDm1X6OPBn5+PHO5u/VyKjS56KaRAz+qBWecE547rXihVmVx+lmizlvnlDroHWlwMBSakEtMzQgFGsHv0XK6XtSzDpYosmiBIXHSW7Nn9j4+ou8mRmy6tmRgaMjPRkCs8aUf6HdEmgNEjq8sLywjE6zSRRssUIJyXA6/fb8mmKq/9sbWdOKQLcXMBCBNQNH4NSptLUh+5Qn+KihdsV4OTJZrHol1Lm6Kfk1p7KGDQwOG0qpAdnJX2PAe6b1l8MAYERCUZmGTHFTD3PSbUte6ihvpmJdePeO61sHI9B2wQwxuySxyXINJNFv+woVsI1OQSdIUJBsAZtBUbnS87v1jaFVunUV1Wb/qiSqqm/C96ApD4Geyp8cOM+R9oY2KqKZcZfNOg4GGJjRXpMOdk3qPYO9xxQqt9dSh9Blul3dIFHeg9XbaDp9VuNag5UzISLVEdKKDNJwtOM3lJ5MtIMPHkNxJzUSK/W5gkq6rVPJrulXPBLBO5X8OdXDii1faNY5ak1qqs4OM5sErLZFnVtMs0YZ6SkLem/4fQu+uI5xCbRFFU+IHMdoEPAR9DpPXg5xNYwK9Rtw13+HmDUpljtag5VTKXqok+XqgId4HiswrMwpiiqFoabtLSlSL7R+2CcYu0saugcWnzyGdKmtVbFkmqbPIumU6unIbOAKcsCeJppGjB02A5T4sg4ui6mlEosutqxoicfndfXO1Ybda9srbIlG2TRCGUeJJq/3Z6YbcP6SYwzG/dEjYcS4o5+QnQ+3R/MkKH4MQbn68nz3ngcD0lcUJO/bTut3QCBdrkVxK4BRpi0dCPTH/wNQLOcSK7mRbKWgYwm5R1W5uAxB2YTG471oLtM49wrt/1ZE711yeakweNNwnOOTitVgEdR0zWT9dVz6jeHJsUNybE6wVZUSI9Avhu1Mk+Zc9cpyY8IDZq8dJ1OtIAYK6UpD5DVnLsmBQqvmhQL+VQlSE/Y1SAeY3AcB4/HQ+sqzVq/fX3h6d0N3Ni9Kr66ukxFp9aQPBmS5ptIqZWqpsN1sB7J+GqbjEMvQhPOTGRzxU6vw/Pl4yc+f/zED77+wUV3hckoQtWj6/ufM2hexV4CyQ9NEh3L51pbFWDQO9HnZeA+z35N+wM4emecpxheKat7/9WHjM8sNCqjlbcCeR7INcayvByCDyZXU7/0/jpTIoGlnNCuCRPpKTMntTmtOMfHEy+W0r2NVl0sKwqliqIcXWbYk0kMNfUzWSxL27xYjCWcmDOTxLqm2l4VqY2nbj0vjjAeH+9sZtSi9bPWHxb4zOlfNSzkkrAkX0uC6kzmOLPoS3lZAheEPIImkl6MU1G8I/2mzArnyydq+MXeMjM8ad7NnGEh4/eqYtRKRiOHgJARaeToXD4/uLT2boV+dmiVFkEUGXZ25H/CnPr3viO5DDlUD47ec8qZl637lYyjAZQ2mCXzafbOGWKYXnLQKQmBLepJJLgyBjFOsI1zTqw2MXDmSrNLMCQZayuifhJUr1STr4WWX6R/UVDDaDPSQyM5rvYm2Suk/Kx3fJIsx5GAp0rgN8+htXQXpd1158XyXPPLO8uLU4EzUmIZIz0yTPHXU8k5SmnR+VWS9VcSFLFkPJIFvM24pmBn5pbiJjAvC+hSmuTwXi423AXrzSUbW2brARz5knFNVL3CcTwS+NIdUZvqh5g9QdEcGpil74WeQfVNwEsyGc0Qu3Z/4p4pmzrn1lmQ92jS9hcL7XG/08+RwRH+NjF/+xJSujyTvaik0kveFLpre++0Jonu8h0njFY2zvPQ8yNHHkEyrJ1933j99ODcOhuDSSV6KDWrD6ZNHkMNrUk7pn1aUw6X4I5eM++GQGxF8jufQJOp8PJRq8C7W+XDh2d+/tNf0BSUrpEAACAASURBVM+TOZ/S18uvzw4mT7BZwRRZrZ7ImEfKwqqCQFp9YpwnhtPnHWom5M3O6J6mq2p63YES3J4LrcG9D0YUtuKMqNd/D40+Z6aIDc6hsUIBtlqImRPykuzROalzY947oxbdzWVSrXGC0m7LpG3Oy3HCNGoJDjuY8Z6y7AFMgQMEHA+4tWRO3gt3C7YY1CMyNTcNclOKjVmmk05miGVvc9JfwZ8nW3yGqMx5MPuDvW7c350cHwvbV074YFiHYsTn7yj1oLZvgI7ZhpUbjkN0lMCVd2V6p6TZgIBdEpm0D5gp0jtuHzCM7euf8xs9+Ev/5m/xkz954X/63/6Qf/mTT/z93/+Wb74q7Ld31PcmRtLUWpxWKRNJ8Wxgs+IMtum4nRwehBfKdJ7dsW3y3ecHv/8Pv+X9hyd+UG/cyjtsfyL8HWUM4k//J/yF/+An/OLxT/l4Dn7/F53he95Jha3uxDvg04sk2+dJrcbm8P79E+f4hj/49k/4u3/vW97fvqL+6cnzWdm8Xd+PWGIySe71QRRje8Dpk+I6HUaZWMhPKR7OOUzppz046mDEoYCYCmaVe51sdlCLs7OxlUHZ4ak0zBvz0YnZJKvymawNT5Cv47J4SXbrAJGRGdH4/DjZ9sKTiSX1sEnpYm/PqXU2h957MdXcYUq4jUDM/RxIKcVtEj1Zr6H6bsyJnBFUz5Q5eXreuN8PzGFrO3Oc1NAd1ZaUsOo+sC6J0DqbVYdmcmkE29Y4M5VqMUdYg3rL82o4+7ZjlgxqE9jjyRSttV6A0ptESOdHJDq9JGRriDbyhFjSSUe13LIm2LadkYnibUvwhcF2k7/RucjKAefZc4gje4Z1t2m4Jkbysv1QKqkS5s6uoWa4YdtOjFP+k15gJues7BQ6tzbTD9BgDHn+hOHNuNg9VR6TY74NCsXISUCsFOp0IkGS5asYCBiRBazuLG9VJujZuw5RrqmlyPvY/LqjI+CME/Ogx4N937KWz75xamAeV7dh62sGE0AYPZhdNYXZpNYczs1QCmkO04IMK7LF/pnJGtNAZuQ+xl1qw2qMrmG21AWqXzYrGSiiJVas5MBBz+4WCqlZWqTNxGKO4pf3WU/Z+KU+UTlHEAKclwyNxR7KIUsECttWobTClMhnb1OpuGUaPUehskJw5Gef0tYVruHJgEsASyEP6mWaiznf8Csd8Vf151cuefvv/7v/9nf2YmIepFngKm7fuA4iD4yLjryQPoRKkgVYyBvHzinaLPoya0oj+uw8Hg9eXu88jvT3aIWtFp62RvHAvOAuXa/nIVPcabVmSoyKq3GGImfnZCRN6OjaNDMZQiNT1GaaAsu4V9M+YTYqONsmEGnbdiUspa9BSaR4RmBVWnyLeUkA5+yXZ4ZF8Dq62ATq6rUxsrmLmNAH9/uBV8kKt6JN4EUCr9aaZAq1UEoT/dgb8wxFIw5J29bEIGLyOPUsz5dDMYTu8vXpM6PHlaY2zgNsSM7mjbCKVTVYZsY0FyA45qUrN4duy7RNm6zn75cWPBSJnWZ2hcI5T3ocNJMnwjg1Ve+ghmB/ptadYqT0Qa9tMS+2xBiiQE9krjtDSXwt2W0W64hIk92cWLpnelamF7g5o5+c8yROeS+M2bHQxeNmtECTXBNLagFaraiwtiLwYYRMBQ2tr0DU5UiGwJyd3gfHeaqxCMmfnp9uPO4PMVP2PddcpdQinyIXOFFdxfqagBCBFQEZpSmmurrx6JIaeCkyqZahR9JCxWro/Vy9K/fz4Gc//gmlNdrzja3uYJIneSky7FYkVHpuWab5yRR/r01pggHTxd7zMSVDmnE1TpFN7kjZX8/91syZx8nzN1+xPT8xkF8N1dnLJhbjecJlfppwQtjVMK8CoyTwMJC0NDtnfZ70UAlQwtyAsjX6Mbi/3i9Ajuq0rVC9sG83LBMsud3wKvP9rW3UvYnBtm+qamZkgab/PYZMf4/HPeU7G5MBM75IiCw8Ruf++c7+/sa2VcW3J4hrbpyIdq1CrumzuitiPvfeAhhGplu0ZI64WUonFY9tOdXo2Sjf0mvu48fPtH2HKqlIFF1mpdSLgltaxUqlbbd8ptrfksRpqnSmjK7U9IExx9K8qflbsTHy9/uUT9394yfa83tut11gkFl6jaRH0QwxdHIaN8ZguhE2BZYAIJPxcXYYQ+vP1PwR5PucV0F69jPNPwePTwfPz+8ITxnXiqyV+F4yPFtmzIIzq2ciaJ4jOhVWsWRfGLfHL/09IRudD3m/vX7/Cmbc3r9nS9AmsRn9lNk1iSyUNEVFQwWD4fqux0KPU81a8rOTLFR9hpwQm8yda5Vx++fPL3z1zQ/Yq4rSknurlnqFDohFqiKulBxyXM2BQJ2SgyY1SzpkrvMwWT1jnpJMjuBxPnh9fRBhvPvwjkjWXMkEV1heYOt5WhZfmmy2HPh4phNa6HyKmFwZyEydeZbNZDENrqb++fF40Mfk3Vcf8CIPopIFsbNA3qSux6p5VCSal2tqPoa8p7CqXZt+KZZ0dveq95/TZv+CfeV07q+fwSqtblen5CEgz6YzQoatiylSixjS1XXuhedUcw6KK21vecu5FfkAuWVzp3Q0SUwLxxH89Gff0nbn3ftn9v2J2y4jccviFjvEDqgmdCrXmOUk3oor6IqU+LtjLv++YovRZSjrWIxnNyhTzPLj7Hz6dLLvhXe3xv6UMkuDWEmCDNwFwlILNRxZUglE0f5dnnFag2NGsrVNwQClMefBzTfsKZinztxSNQgaw9huSnhiQhT5g5xThupPTcy54CRM503xBiUlHilyLDUbpAFkOnKEACDOidnGtLsYI+chA9/aGR8PTce3ZNZNrWufUDbVuLC8kH6A2wBW8lcOV0yG8LovKwuM1V8FMwWFTMv1USu1wm6V777/yB/85Hs+3we33fnhVzv7rVxpUYOh17cuO4VozAJ1uh6Wvi0ilr9eh6JJwcfvD/xe+errQn1KVm75irAbZlB/7bf5mn/E8d1nfvEp+HSqIQb93Tw9K89JDBgj6MVos1Ge39HD+INffIe9TH7tK+fdU6UUdK9BriHTUBQwxLz2OjWMNodyKOkRydfOvBN8rcPQIEYHweD1HHz+PvBt8C7tPbzKGxTXkEEkmqzb8menwt41JM4+YSCwQd/ipFTVK9VcHmBjsX0FoCxHnBxFcBL0PtL3RgCnUQlToIRHvZ5DIT0GbUlnxYyZBq3oRns9Zez9XCrYvMzZy5LlhO6Dxe5Yd12kDFgp1KgWyOGEhgGwgo3e2Ev5PuZMmwRLIOlNSiTQwZLx8fYctO0jmeqrK+Ua5BpSK0Qs1ib5+7JZtyWrU01Tq+qUmPrZNRCaLuaNu86RMeUJS/YGdp2JkgZiquPFrqyUulOqWHkzKuIVD8lJ0XnMFPubeGP2LtLCcLReSxHYFEvW/hYWYVaRTYip71meQua5BpPdawGZlIwtQFO1NWEXUBW8eTQZJn+5kUbrCAuY6OdLqVfFU8oCQbhqcNkWgOT+y1LACMpVuxTjqisSLdT9XsQ+WkNiS0DNyvLR0j67vvsEgWbMy3MTIhmuEMUl2QPt+1zP8mjS+1gJ9TU1rrbW4hefGdJr9IsB4HrPb2vtS7REz9/dM73VOYeSQUfMN0ZVRD4z+6WfjvSh7MwcsGq9OKqR/4u/8Tf+Jr+iP79yhtLzvmuCmfG5up48/RwmY+hLsZwQC/8sMjMNLeCYkwjn0Qdnpmd5FrfD4BjBcXRej5P70bHw3JSVp1ppeYCFFWZOFCkywlTSlFE8iNHTEHZcDbChJq/3Q7F8Y4CLKXCOTozBsQy4cyvMmJRlSldldF3rRthyzYe20Ekv1GQmkIX62kXLJX5FcG+52nucyTARW2DRIY8+wRvtdsOLUR2qNywkxTnOU1I7RMXr/UyTbTXTa0puEcwhueAckpiRXhOPx0EN6eDvry8qfoY2VS16bRXjB8fQgRQlk/u6yZ/IZ5rYFyopSUk03JN+qg0+s/E0fAZHv+dzcYYNhtJcGZbSg+3G1mTIKJ8Iz+Yhkioo80HFdctjxiwg1AQNJj0me6vs3nj0EzqSg5SkLwKdIeZcSOY2x0Po8IpjNvlf7GlAByqKZ+gQw/Wz+66JiqQ79e39THnmnLkOZlIj55wcxyG0HOf2tHM8Omc32t6ow7ntAmhwe5PMBSxTH2E7uphlQl7wGlhUjlNJemVzARpHF7AZmgw5Wh+SPjmPcfLzn/2UPjofPnytdEQS7LGSJq9GDSUq2HqOLqaEuzFsFapFDJQpg8v1masX7o9X5mUGH9lTaNr/GJPt+Znb7R2E00wsBfOWB3SafbpioeUtogtlItC2hC7zkcywqbHHxfRYkpeYkmvWMySdmsbj9RMRpzyq1pQw1/B0ya6iltTra7rvKOrXLZlAYfQsGpcBdeSeDgS8jdHpXVOfiK5jwjZeP90ZDnXbqWm2TwT9TD+nLOCzAk0WwtSEvdbL2NdQtLH49EbL1MlA6VTTAptGR1Mmwylb4fVxiE1TnUqhJhtQzLCh/W5iyjWvecnCGbks/a0YdlT4jNFhdChK9GxWtWcJOIf2aky8w9kfhFfarabfg4GvyG3dK0rNSC1/qSxvrAjP5Ek1U2doRFHQ2UzKlKfNq+BgTPohqv9k0A95n6ghEjNJsgOgx2UsvdYRlu1ZvCXOuCueWHeWJIoLeFj7V0VLMBHw3LCctE1inswmH5Q5svnPgmKlimFcSTryKlCx2a9qMKOCZ55HXyTTzYuhsJpaMajWuTBNLBAFWOjekVfBpsK/CMCZCdCGRco8B26V8MIMJ+apO3qcKjTxDLjIPV+cWhvl3DSdrkHzTZl4XefBGZN9DJ3lQwOEGXFJphYjOiLZwxl17NYSgJv0c9LH5Jx3VuJeBGLh5d70CSWMrTRq3TnOg3Ge+M3FRPV1znKVc+6eDU/K2hYLBU8vPYUI9DGUzOVrVpsx2umLBl1yngT++nEKcDgnJyf9aVBnw6fWrujwnn/XS1TX7+xIhhl5z84cUpWoBBvDDjTMNcmLxklDUe/DNSyBwVcfGs+3xsvHO/ZDaAGjn2ylgG9JAq3MOHEyjMRCrJSqQlb1/2D0mcEYqtkKPcGuSo0ppnIzIgMrosqX8vl5h58/+PwafPVBe2n4xHuINecQ07A6lEC3AOxu0A7O0GTeHHAxpUsEMbLxmEE8TmaTqfa9T7a28/w8OE6wfeMcB5++7ZxHZ29KofVT7CYjOI+T1+K0W6PeC90n3gpn7zRv0Aq22KNTtYAbzBLMLo453pjzpJ93eV26g28wJ/vtxvzaOF9TRjrUQMzDBBzfD+z5hj9ecP+OcfsGY9f03gLLqTshNhwslmSDOHVrlndgT4RJWso0on3L02888a/++R/y17/7s3z/3Z3/51/e+cf//CO/+fWN52enbWBUydSLafAYXeoBl7FyJOCzRSGqmPqlF0oE2z55ncE/++Of8fxPjN9+bnh9opRvoBYBH+XX+frf+U/5K9/9D/zi/gs+/WHn23uwbHiLFZ5uN2wOXu9pMv4aPG6Bt2e2D++gn/xff/jCbd8oe+VPb01m0u6ScJrh3hkjQeCa55t1tj3ox04z4+zQ62Czxj0ODVGjUGyqpqXJWyweFIaM4bdXvSduUmpQCE9wO4cAkh+vs00gqbkLHI1DZ+yQhHrZR5xj0FrFSvA6VA/TQ4NIN5jJGOpnNvUy/fetKiXA8gnGkv5qZUQy1cX28Mu/rwTsBdgLj6PzOl7Z9z0B9jfgZKTcOjRVSsm7BpGew5cI1Sgxu/hCrl4F3vz4dL4KnPfinGfneBwc58m2ggJCNahZvdqs0fVmcpULFEocotbGiEErCWJxfXxWAuaKfV++TO6ypPAQiWL4pAeMhz6fZU03YvKYcdWFUtHrPljhPDk3YPSB+6Y7eE6KN7o3KAKi41AN40hxUG+q5ftxJPEhwcVibBSGl3zOWViYhh9jJjjcDAW2CHQyg4bYOaOn7G+KFae3XXLwdlBqw0YwR2cls8bQM1ZtI2pArYZNhcuMGbrvVquSzKHlE5wknaw1kOTbBAaLeW5UTyAxsYKcxCSYN7WGk9kPqrlnn3itcGpdRZBMeUMejYsVl0bn+QbDk3FOcCLLhg3hGVZrSh7jIkqM0PBJzCKIYjkk4VJoMEvWBXq/y0Yg3mjKCxu71rsuKIM+2KsGpVn50ZJddaTaqrLAQgM8vTtJjvliJiqk5Vf551cOKNVI5QRgNpP+O1OCpclvcdEUjznlf6MSBkv5mgUycgwuaryZX4vqeAxeXk8eaYJZq1NbY0sgw0vDPL/glJis4k6yBy0uUf2XSTLg2fR28R6WlnOMDjjHSKPdmb5JoWbba4Fa8VLToyAjmvsB+6YeKqVHWymZYLbmBCSqKirptYrmoLoJ9R5CFfscnD2j6iMo+8a+b5RWWG8nAGzI88cbrWy45SZZUxbTyeBoE4/ROU6xfyL1vlttvPZT0oM+xRTqYlBtkYyc3JSrWVmH/NKq0sTYCncsPYN2CyUqoYb+S/CFlGpZIu2aHM7reS+jtInTtp2ybSmVWW78cXlfWE7pDYFJxZHxddkgHskOK9js9Eiz8KhMgoYmvF0Lkb2qGI/jJM4D6ydjdM5tY3mUlBA4puevhIW1VZXe0Ahz+hQbYnYRbOf5oJ8nY0xFWPYpM29gntKz48a23YhwjvPBvt3wsrEtEBO+ODyQL1Wi0hctNCTJk5mbXewf1kW9zKqnGHNjHWITmHAw+Pj9J46Xk9v799cEAIoAsTjBG7Wqma8YXpWgV4rnNNSTcp/TN89Y2mRABcZ5vys1MCcDMQXmzQkzBIi9f/9Ea0o5GUNr1c01xB6KQFcsppG2egRDMeNzyLC4qBEcvatJGm8a+sIyBhbbYRrsu0yzj/7ISYPkp41kMFWTbG8EnIU4zkwS04t6dawUel5SxrySZProjAQV3dIgnEjpVF4CpdJjcp4Hz09P7OXNa0BrXs3hXBMok0wkJjJAD6ipvTYTK86KNu8CxqoXlmeU5/5U2pXA/FYb3337kVIlR/G8MAcITJxqytptJVK9ARKSIUqzIuxFcqrz7BAjafH6HCNCMqkpSS2tMIcmOMf9weFwKzII1eG6PvMXk6qcykqS1phzXOmBi/rdalOxQDLWlhQ3p4ceYilVk8+Zlnqec1R9jx6MVRTbOl9T+mu8vV4uhci/VlrNF8PRq+h1R0DRnBkJLiq+maRvx3HQnp6k7/c8a/Mzl7wnBdjZNUkUoJaFfCh5bpiKlrIKp7k4+1MTtRCLkZC/ghRNud6W1NWDUrZkOLxJ/ubMvZM+UaOnSeiazs55NdCrsFvKuBU/bHlublsWZ9543DvUyvn6yAll4TgHHA+Cwq1tyfAUzWMFfIKKOYyL+SSfwA5kumZIdu5k7DwpAxmRHkQhf8itMj+/8Hg8eP9uJ3dzeproHJv5GWpR0MZKlsWRzDu/G2wSNunjkBdaKXk+m/wKIwhv+RsORui8iSH3s+iSD+CmKGUMK1AmOgPrSomy9PICC5dx7szP5FUMF29Klj0ks6gJWFoRk2XJiS2Cfdt49+EdP//Zt7y83tne7cR4xoZ+bp1Lcw6aOcXWdFmMrjYjfdtOAZMFxinWh2TUoaY2dKGNrjXci2M28TLZb4Xnp42Xx8njOLnV4NYkXYmYMqzHknkmkLFtldND/kRMugd1ynB5uIAc+bt0zApzVnoMZnVKVMYI6h6U2DnLyfPzM8f3n+mvB1t7llFvDxlkm5JBX3vgXcbos0+BR0NMJG86W7W1cuC6CXyIeupeCr1eWBBTATezOm7ynLl9Izmx1x3bOrzqd8i/quPzIOKZeHzCyo+Z22/lc90FWrox40xofeVfoiZznVr+pDVQwdiITCF7/1vGn/+LP+Lf+8VHvvv+j/iXP/3EP/jnOx9+cKNtlacnp0yFfeh3bUyDOo2oCeCZMeIUq8Y0vLJQrT6fBp8+n/zu7/6Ep+edP7PduJUP+HOB8g1GIZ7/PL/xl/9j/uqn/5HPj5/x9/+48v1QSIgnKLw935gM7i8HvXdKr8zjLtDj61/j9acH/+fvf8vt/aS2r/jR1872FJKwB5Cerb12+jmxqdooEEBIn5JgHmrcSyvM42Aslo2p9miLuZJn5UCySjFiqhQKLQUxQyDGOEcOlvInXfuxWGCzSYKNAKISTi0p3z9VTzSXj5dYErL5III+glY2GEWNZaZK6k4q6QsjUDZSHzIXkJLKiRhidzsZaW5QfOPzeWecQWkrToPLJiMml0xfIRn9l+oQ3aeTtkkGXAz97rienEqJosRt98LmGqLc749L8gYamOTEUWADM6/KZJpEgkYmS5FSaw5mPc+qlL2Hwo9ihu7yyPPQVKPNORkz2UbzpBZF3luynGL1NHSBuSEiRSzoYtVLOcgc48j6QVWpmCV6/7VKvhjJTMEFwBVrzCHSwZn3ggywZTXiXqF4ysL12iJ5yGs2iWEagKe9ynZzoGYQyZR6ZeSQKz0Lx4RpX9hNAOaWKhIwH/QwmkZ3ChjI+i8SXJt5163aCwTclaIB3hrEC2MNwCneOGINTxejKJ9T6G5cQ5xYQ+TexcZNr6+avdYKApJkr1ysoS/Za8ygLhAs//2MkR6bRUARGabib+/DLvJJSXMQIcCbN06kBtntbZ+QtZrAvTXgFhgcLCJHyuLGSnxUpxMmJuAg5JsUXINNddsLp9aZVL+kaP0K/vzKAaUEr4WQuiIMf4lSb2sTpDTJcloFjCwgRkCZk1qSUjpmJm3BcU5eHwKTMGPbmtLSMmVABZUc+8NE09aGRbrdkC7zigzMJjsSrOip9TcQ9TmmUmaYSWmceYC+fR5dNlXynyr6/4QLgbai5DAZfesLVIKXGBBLT2lwyZOcNAs2o4+pONTZeZyd0Sfb0439aaeVcvkqmRdmXiC4yZTbRJnuczDDaa0K6hgzfQkGx9llZn52SgIQr71zjEk/TxgyyD5nV5pZVbKLITBN5l4hoCz/+W5G92Q8UClWCeti/ZhMOMNIeYWm6LNPmF0FfOh3rqSjMK6Nu5UN85osITV18DZpcMBjXSCSAPZQdPk449Ldmhc2c4YV+jRtVI8sFLTpjUmcU+j/eYfojPHArKpRSxTvSnLL4tCLopFlzp7RyEPPWMmAeaGdb1HsZkUsl1Lp/UAvDG2XBOnjxxdsq9hW2GuVoXgemJBNPSQOFBeopfsvC5Ei81l5yYilEGMSo3MJ/8yopD7YjTPg9fWVz999orUqCZe5plVlIR46oFYD7bXKKN3V9C//NFtNtqd1XoIQ8tAIXo5XRh+ZCnamrDS9ckIpZ/t202RpdDyLXslcjN4fkm+lr4u2uFIRPS/2cIFRvZ86sOebEXdEcM48J0DJXsWJAo/Xh6LlF324FE0C8jPejwet55VQk2tgApLERUJrJHkIRMp7EjiVBEiyxLlAjlqzHtp4vb9I6729JW6o2X1Lhiiu/bjozH0KDPALYO0JOkn+tSY6Zv52XpFsl3y/rSqlZczguJ+UpyeqiY1ICCDmC+34KgRW0543AzE7K63EE14csWKsLX9WRYCn7MUKeVek9GAYt9uT/O8sm6ZYBYMKAhmea++sMIYZMJDhsWk8J+C4FHm9WJ7XWsB6LjNTVJJa3JrMmFt1KAnerUsfFTpm6+wXYJPl7PVcNBGdKTmLlDaJpbMunp5eRDNZqe6mwr4LIOhzsrsYlKQv0rwmsrzRuBNYSgjrKio8ZOKYWBxXKZZDhiUFtTxHlocppmnwnF13ktAJsS22ehVBazRnQIyR92SmyaU8svfjKnZWwa2qQYDDL0sVbhdAcN5Otr1x//zKSL/B8zyo3aG+BRu8gZnzAtJihuSVecfNIQ+jmKcKWpNsuc9Oq5qqziE5RU9Dc3ejVDFTH48jGU9ZgCYLyQrXBPryRCha8WIzqsktCSgZ8llbYF1EYTLlDzcnpe7psbWaD1d67fud188pk09QZoYk3qW4JFVYquESHHajT7Uoqai7imdPNoQXgbnYFKtiDkk6sg7CjVKNr37wjp/++Od8/PSJ9z98pyTYHL4tiZuXSj+DtmUikgwN8DKxCUdMvJa0IjjxmHR3quXziam0uq4zKhiMqdJ7c+er543PP3vh0+cuFjhrSm05GVCN4DcFRhxjQpFszkLNnZUqu4OuDdBKgn6hJslRamr1ypgPnEbZJNEqdePd+5OXjyfHPSRdctVgpQZ+BDNOZi+MbVLmoNPAZbrtZT33xaMNGIVSJNEM69qLyTQd5ykmZS3Z9ELdNviqMI6gvW/ErnvbN1kH2IDYnJkDNFU3YphofyxrVjEgjdU0L9loAQsxEPkAJbDtG+CgPr/nmx/d+Yt/6c/y4z85+Dt/70/4vT/6yA+/3nn3VPjRb5gsUQLKKMxyUqNKml0EgHB2oroSzoCZSoUynK04T0+dj587//Qf/pTn5xs/bIVbqdhtx/wGtlG/+Uv89l/+nr/6+X/l5XjhH/08eO1i77rJPqE8vaeMF/rjleN4obEzcfa90b/+hu9/8RP+j3/8kQ9tY/8Lgx+yc3vWPjGXn1WMDRCoNKfW+fCONSkuqhV6V33YWoNjMDxZpJZMo2i4KQTIbDHJK+5TYG+fNE+gY9bskQS8k3dNJNAvKZq2+jmVvTNDd6ZN1RXuKcfJOyCrIjGGlCshqXsMiGyCs0bSgEmvpxpMdx4WDM9kq+W/BFTPc9CeuB8ns6+ADg2uPaVxRApzLK4kVOaRYItIB713at2YoZplMTivVLNVWaSqo5bK7Qbn0SX7S1lr7/r5VRNh9nbmmV3PZSUbL/bRzLPELevmnkz3mecgXwyvi3OioVUrlcEJBGeXN+Ri4CjBNXuQEBim2nltt5R6z3U5T0ay3VZoCFO2H5FSqyAHwfl+Rkjhop5Zcmb3uHpwgVy6Jx0NyQZrgKtaxVmsoCn2+uUpqLUw/BJsLAAAIABJREFUYw3QBfBbkitmfgYDiJH+iQKpe4aAAHkXZW+uJfNLNcBiHc30siql4PP/Z+7NdizbsvO8b8xm7R1NnqaKrJJFiXSjjgLlUgPZgG34wi9k+w3ohxEMAwb8Br4z4EaCINqmSEuixLbIqlN1mszIiL3WnGP44h9z7aSvz4WTrFPkycyIHWvNZox//I3Of8zToDr99WYCtotRcQ7RY6E/LLaRqcn+pO5I9nTRzxpZz0UWRKql1A9UuzPXhIfaqaxIj5RTgXBOB2OVYrpbZ/bJp/IF0holWIWjlSVa41yrqiOzHkQFmeWeXPXf6n8XaKT6DAxhFhHObiTjfZ0B/z8HlGpdRae0mO6cGkTFiOsHr02O72aK6ptJsZduVy/DAJtJIZzObZ/cbgfHEHun9y0BJSO8SPqQRa+l0VWpOtBa12eY07OJ8/OA1hUKPlOmZCqEBQLMRGH9ZM2sS6qUqqSW2thao/VN+v1axAYojaNqMW+1nhPwGX6mG6yGLuKTAy0QuwBYCQDzdnAMFfLbduXh4SIK/3rulsbATaaQXiX/ElMlVAwWMRbm9JOZpMl9yEskd9yY6d0zHY6hKbIPeii9jzRzW5t0Fa3Wq+RuFMTSMTx9fGCCHxwuIEHNveiePrVRfA7pPSPZWuiyoBRRrYF63SitQ9Q0TuPUU+N3RFcNUDIYjCxCC9hgGbvX3lUwRmiiW4ITJU6wCybHcbDf3ighbyNRaKt8CnLjl7x4SFDJTmacGnkHjjlPvS2gn7cmqyApwNgJ69CsQYd2adxebhQavV+wVjUVM8tDJbL5zdVglsVKotieiRdN3hPM1UTGfU0nOGAlRVifNOnHsfPh62/ADy6Pz9m0h5JXSkmWB/SqyOu+yStJ3kn6jPeLc4EYSnGLcCKpsOEHfuxAMvwi2WuQIJF+fgeZt+dkKLJ55ZAPkwhKObVbl4ru8QTtFFUdZBLeSWHWr3UZjUNSnFYrfkyOt13AWOrwa6n0ZD7OKTaNJ5g1x5CXTGqoV3LI0m3rnovze/oUeNF7Z769qRHKqdlKlhofdy6XTq/l/vcWi2G9dksTP9O50jIR5fQNgJxOJ0qwmnrE4Fi+QVEMj0FDDqClVz68/8DEufQq36FQsRZjShoJ8qShywcmp7HACaKAdPyyyPDzMpduP1LykT4sxZIFGXTTGdxL5eH6cOrP85DAz2t0+cxYgsKrUYNaxKrE54LS7vfMKjAS6I1P3s3aS61tvPqr5LMJ1sYCDnDWaMCS1k8WsWt/5u0ucMwjP/rda8DOvZ8AgC1ZUGgSnOfESspcz2a9f7IBOF9tFv6Qf0Z6VoGWJqmhSsr7mam7J79G5JmQz2qB++ueCk/zyzJhHER6HlQutFI5iiZmUUhmL2JvRDATQNEEOZuCTCpRGs6d/n0m8wRcLhvbdcMt2H1SajAnPETeMaSEkE9+7jPMYoph1uKMmPYIhYYApXhKK3RXWNEdM3ykXDZOOSM4YxcgUWuD4mfzISPXdZamz0UWilrbAlKzKNIAaoYsdaYGDh4JJBIEIxkR6dEROmOenq7M26uerQW9GWNo3QkQ1LO19IPTACQlBeTwiuW1JUZjoTBLAnsGEfXcA0U2hoDRDb747JHrw5Xvvn3PD9++4GF7og4nSvo4FU3UrYgpWLMmWN5ApRp9K9RWsDppVsEl8RWjXAMpSa5XwpL2mY6WweNToX03+fCyc90KWw2uWxU7YKrmizDC1XgPH4xDTU7BqDPw6inBS2CnQpRG7IWWrv4lANLGwXVm2YDhhe1xY39zPr68cXnuNDOaV0oJ2Cq+T6Lo6RIVPw6iNsnfDoFQ2CdMsmEC/Koa2epO1MDigEMmrFaSNWhiR7anDcbOfHPKg5g5tW7QN63j9gjlGdpF+2LFFZSKLTYzh/Y1JRu/hOfMIYaavFjM64qVC6W80h+u/OjXnvmt//hH/OnPvuP//sNXfu8PP/DDzxvPT4UvPitie/aJZcy4lfQ+rEZ4pR8JQhYNb9SwLnBLZrx/8f6F3//dn/J3nwt9e6TbZ8T1R2ANygOXv/qP+Zv/6Fvev/wfvO43/u13gyM0SAhTU3p9vPAaE45X5jGZ3IDJU9t4++wLfv7dN/wvv/8tl8vn/ObfbHxRB1sxtpZDpALuRcMzk8yypITLQ5YcgxzE1kptCnvREysczaENmg2qbTQvtOrUJlmah4zZYxoa/RZmKtOdSQtjuvqoiC6AqAtQTl0aJfy0Klh1Za0akBdGNq7tPJvDBQ7oTj4o1nKYGMzF7IiUCYfM9iUNK9CmgEBXMupWKzOSsY2CMuZQoW4EMRMoyZ8VjLbgTPdlapYsbSNFfAK+059o1WdLZhRwNuG1VnpvvL3dEoS+f+0RGnQtMOrusxQ5VCrEVBKau5/DWp8arpSSQ568H5Z1x5rM1GJ4VI6BesOqvzdnEC5QNljnrwCe6SNtMvQswlFaadHfs7TxWGSIauBF71J35EIRcjib4UWR5+wyic5CCUjj7OxTVJfll0gbArHHSgJOmcQXkhs6eneW96Q8gFVTLO8hT1SjmGMh6wmrAm6Ge4KVkzJc51uGOaw2riS4JzURrNTfSEZ1YFkT6PdEetbZnZ/wrK8Wuyfs5IKx3mCwWGOqFUoOfyJlf+vveyz1gtYKsc5FEjiLBH4sWfqfqAQWa8tWpaWvWSKQ9irB+3WnffrZU81BxH0wOsXIKkU9UsneRF/Bznq0nu88ATu44xxu7Ogdft8A0PfPUJKJQgIkmsSFIbt4UJENiXIuw+6kQoeS2DxjEo85OQKO4dyOyf6WsZW10HoViJMeHiYnPU0SMm2n09h6pzWDmIyZnimnVlKo/Uwa5EpndO4yjYX4HQl0WOgllkQkozWZHNeGF3kVWE7UHeMaZJJJMinGzKnXWtz3xn5m0STE+X6IcTi3mxLXtu2B6/VCq/JmWWjlWkyRxvV4WubNtYx0qPoxdPmNNIdDf7aVZACE6P/z2MWicTUPxTLmuDRNyGrLZjbN1JrJp8qE0k5EwzSMnhRDmYoPJVQZKd/Tu7CYMn30PBDyQJGvVDbC20bfNmm2TeCESGIJgCwwhzxgig4SSQFUlOhSuHtYOTKOLZiolVlErU09fHLc3k502Zb+PKOrS+Tfb8kOS5ZJJHhzFvUJaJDvfbpYY7VUNTGpCfYhI/aYyhu4tM7xtmtqdb2ytY5VySpLNpzrv9VE5Ppb7IhQi1pqSdO3Kj8daVJoyaZbFxg5KRjzEMAzJ2/ffWB/vXF9uJ4RrFELZZOJsqGkq2XDUks9TbrXul9JGTMlMBbzZGBEfp7bbec4nNrUFFoezEpcLDxcNvqmFBpNmjINSov4nKDIlyolTD7Pg3SBf4SkQ5pskaklYpwtM8OREqnFlLi9volt0cq9+a6WchBkZju0o4qV+3MipTylLOgi/ReC8CmgIJL12GpGu+c5mkCPtcrbfrDvB48PT/r6Zuc5dVKF8/mXZFqFGxStz0DR5suEdhUVC0A606f0JM848elBDV3T799/SKlWNry5X2cs8DfSyNJzwqZ1PRd7yUy08VimjSTDY9U8a5qce2Qm/X46fhzMfdcErQgkXXfmAj9KFmzrQbirSV/TptrS9Dvs1OmvSdPaK0AWWmgv5PcRNBCM4Vyfnk6QOEiwdp2yps9e4j7d9LnWZZ4D6cOwmn49qsWsiPPzEgt4tFT3ySvi8OChVA53tirwfhVGd3AxPaggWVD3s2IBfYudl5ZL1ARPBJCtr6X/qZlOo8crmUKEEk9rBWsCO0pr5/ct1U7gbuTemNLh5JpVEVVysrlYNMecn6zRstAxzGCr8NAvev5jz+JtAfecd2bEfa+f+7WAFRH91yTSTImuNT1+xKxT45wPMv9u3memwIO+VSW9DufhKmmbkczU9EZQCVqIkh4eC+DPO0Z7rlMqEEpO8nLgcegszftYdN4AP4ixy0uoBrU1eSn4VFF9qXfJQTaI1ipYxg9DepAsLozdm5nQ3FVTzviEdVrSoFipREpBlATn8XLhiy+e+eM//jNeXm589jgYVd54onXEsuVRUV85GVslOkTQLkarhWq7CuiSUmzPaXGep7rb1/vIO6QY14vx/FnjF18NXo/gs4dK6wLyPYKeBqzHoejrGogp1xphXefvUE0p77BkHplRWoLSprij01cszw4rwAFhlfbUiNdXxlujP4k9WKZhl5JAFrRpeCnMXTKU2pXANELA1Zq9BUO1RnQ1psXw+ga+YaZURtyzpi7gBeud+i54++oV3OgXEQCMSbQrlA3qE2LEHPpZikN6zOjsGDmQqfr9FQUeKahIxrZqzQ24yuZhazy9u/Ab/8Hn/MO/9yt89eFP+PNffsfv/pvO548P9HaR2XWMXFOOXOGMaBpaKPCmrM6HKJI3Vpt0Mx4uAYfxJz97z8Pv/IzLU+WLdoG2Yb1hXKG94/k/+s/4rQ8f+PD6f/I2dn76sTBDoEULw7dGcGV8DPbbwQ40k8XFdnlmPDl/+v49/+v/857LI/zNFrwrNQeXel/FglKCUibhVUASlnIjGFMSTT8GtoyE3fGie2Gd+y20P9wAk+SwoGFOhGFlsm65FeChVOAqT4KWzXsUGV8jqbEhf6w5Ub03J2FOb/pcsToPd4G4pvvC58j1l6xiF2OqJZ9YdZxqS7Fr02c0LOv+CQydpRjXLb1c98kcCkIiFgNlZlNfgFUryd9VAxOXIfiUB9Eq3SQxOs0ElD6bTNZSFrsquF4uHKbQpt5bnnsm3666erT1a90RCcwkC9fDUjqX+/7TexOhMJHvELsbYXtJZlKCNbWqt0iY4T6sSmlJQBYigi0spXBmJBCSzKoiBrcG7HxyNwjUoaoHaqXkAF3ndvh9gBJRaDVZUOs+ijtzKEg7jExprS2VBR5YSV6L30QuwjBP5nXRnVOCDI9IllEE2EFMY86WNZWabc+h55Lnl6y1Z5DNeNZSpTAih0TJolL/nkDPYlYVux/OCbSt2lhXnIYRAo3Wn5dE8N5T5KtJgHJ5uKJWJesL1VvDPdlFqtWKHmCecfqMZL2VbyJ7y3nWm/Ki1I87zqFmllrGJ/XguTzOz6m9n8AnIe9jVv+r/ztfqmr683eXQXfJwd739+t7B5Smk5IlNfPLhCy3Euv9eE5Mfaogr1MTrZFNnBJVnH04+7Eo50brSmerrd4pjGhj9FahVEZM6takCK9V0plx6GCb60BNhDIRZiGwWWj5MmRTU7nYSdXuSQSlVKw36rYJTGIVnZxMFQu4NCU2AdymqPV9ff/yyQTayOIO/V3d8Rxz8u3bG6MVervQ+iULvNxwRdRnaXn1PMdizpwNNohqi+oPnyyqqha1mpLpzjwGY9ySbRHSaBb54dTa1YDmBVlJTfUyXk5WmJsxDJopqnBNGGNqIwwiKaCuZjXS80IialaaX24TPKBvG/ROuAp7HagyLl2AU+K/YNKmL6ab0t56Hrwp/TEgEzjCg8NyLegI0wb0wXy7MceRwJ0u1loFXNaMYm69Ya0xXXIoqwKYahGDbMzJPo6TDXQkQ6zkwbZYZD4nx35gcxIFeq/MMdiPSb9eaZdNnkkni0hXRjX5m/hq/1YDnyCBFTLVpqroIb1M8nIkpw9a/AI6fB5KUXx95eXDd/RauLQm3TPa1x5BmUEvy3zeuG5dHmY5nVu+Vw2x0UjWU4R8pPAEjvedsS/zWb3/mVLK4cH1svH4JF8GknVTqHjUNKJMTzRzTaPXz5VnDbaYgMFxHMQcYNpfJxsmSSQz0oOAECMvpM1fbDcITqNdxLCbQ00wJQ90IRVqyNoC0/OeS/7h8mHzjGLFsvk3UzKkiamIGR9fXpQY17o09imb8WRi5f1+Tt88P0uQZ2ruUTXamTjhfjKHLtbORg0zYtzZW7XLKP3t7Y3HLz7Dx0iwzgW8LT8FD6Ina4pk3ISmbuuCp8ggMBZ4tyrDvBcKKkp8zlynwdxvjDF4/fjCqLoMu0uNrgJyVQF3hqKnLLlkUy6jaL9f/HZnAqZiVgb+rNeovekLdKIwj8k4hsDZhTeEJmyxmEDn17TzQrRPPtf5HCA/e5WUAjF3uT+O06vhZCEWW/M3nTP5NRZLbY3M8hQ8C5K1HpQgJV8MK0WfrUROBiOLQHntrTsJ7GQqaTq2jC5TMueSZetzclL7F/i0WJKYJCPk+jPzszBfwwPuK1kNWJRTpuorsTOGQE3kLdJ6TU8FSXIEji7gJKDe/RBO+XR+LrFgMiUwC8yakfKLiaGPXiVHKYG5hlm9Vz58vLHfbsTTM6eZty3gQQwnrGG1k2NUyKKcWOCz9k2pnVpga0VJoa7wD3IgYkxiHuz7DZ9O82BUget+7BmI0Lj0khKAZAjlMiw55Z2ZHiZwV6bDrRix5O0kWGvJ1soi9wRHF0uoGo3GFz/8jD/905/yzXfv+eGvfMkltvSPCnrefyrs8241MetOM98iYXaJfG6oQZ5T93s1U1JSQVHb2cyLhWeU0vj8+ZlvfvmBjx+D47HKy2Qr+CGD0igaIJgVSZKyrqKkb0X6M3meC9tsmA15pnneC2Eci8URkhJRDGuBHcblWnh8aLx/O7g+qnGac1I9aNdOvGl4UKrhrTAGYjAlG8XrMvKHWj6ZslsnapUXCVewG8TBHDlIXc3UmNTLRt3eeP/zV/pz4eGxKySibtS6Y/aW+7AT9i0WDeoFJSY9IG+kI89VAPlIaT1bnm8TrEN5xNrEecMC2uPgi1+Z/O3f/DF//stXvvvnP+Pf/ul3fP545d1D4/LjJxoOrUm+k2AtBKW5vJmGgk4olsJIgMJw6BbENXiZzh/80S95eKhc2mdc2hdUuxC1ErZRHv4KX/7mf87ff/8N373+AS9/5oxda30CNSpP/cL+YOzHB+a4YVRmVK7FuFyfeJvOv/rqPU+/+4GnrfHrVQnNfQNC4QJNXhVMm5SiujUMJURjKT2dFHPattifsuAwa0w7xM6wRtQbla5Wt3kOZDOJb0j+5Mm2txwclMI53HRpOGlmHMM/8StEITORXpQVSaaPIbkndrLsPXsRsjkG0p501ZO5D0N7Tk25hrTCDQLanXlSSNCm6945jrg38RkEkqNbJN0jWc2GJYRlFrgfOALkVy0Z7vdBkJ233Xn/E0GrBfpKKZ58egdLen7/WS0laIRpuCVUTkBcreeQet3bYrrroq21qa70mbWV6pqo8n3UHp5k6F3e8QvsyKvgrIGW7Cz9zCLfIWKc6a6uJwO7mNQBE5LsoPMU9xO4h6xns7f1IT+j1tbv2gkyrP7BXf+RF/CktcYIiDzPlUinOmEiVp5lY6+QA9Np6qb9EGDUlFQuQKlgZd6T3UxAylxr6fxk8jml5J0Wq1cnrRUykTJll+FrQLKsFtavZBYLecp1FOegDfvkv5MsiS9v3sIphcy6EcQaGgGF7MED+ZVmHb0k92t5+oIwRcRMaz8RaQbJ0P4Ez8gqMEFe9cwVaE09UkmAE8jztJxD0QVqgd2JI0CILqb3+Inv1Pf163sHlAyBSTJ91LPsRcX85F5owieFTf5gq/kLV9N9jMnt5qcnR9kKW8+dkCZWy4RbBmG68C6tK4ozNcvjkJnYSu65SwSAcOKMaNUL8tz4I8GkEtLnVjMxo6pYIqTEDDSh7KVwxFATZoVtu7C1RPbHlFkw90nD8o8hBFThCWoVsGrMEXz8qKSnS5EZY7U0WMuJ3RmRaZZ+URpeqNgXoDA90zoi5W7ZvZ30zSoAZp+TfT8YY3Kk5E+MmJITWAFIa6lby4hCMwEd67lmkRgmo7oxZb4oVpGe9fDcLCVSPjPPKbvq2HtD17qAtKW5LTkJaEXrbcTywNL6qiYJoDZyaot90vLA1QWQpuUUDhKwtPPBqVneb7Dv6XXByboptaQvyD0iHFdjq4mw3QGCfOaniXtqoPFk34QMmXvR1J+QWeiKV94P6cgvXXHcKqLVpFvNS4c782AlXS1AEwNrJdV7TpByR7g3qmjyUbBMWRocczB98P79d8w5uTw+aPoek2oCa/epNdWKAMTeKlvvWM/kuWrn4CXW+zbPKbfnOx8pv5TstbeNeez5s2h/NKs8v3snhlSmRGFFBcg6ZFxADb5orAicSsQfpCefyVIsRiZEBL2UBJGzqU5PpVKMy9Z5ef+iwqvJGJlVUIRYXTNZLAVyauyU0tPHRKy9+wTok4vmEzCgtSapsCkFY4ED3SrH24231488fvas/WN2Xv6FPAM+OVPXr2Vy7KH91yzltlkMLs11IGNFmny8Tu8ZU+FfWuPl618qWKBCpC9AJChMfs1iiuQ+aebrozhn0UJoHdbaE7RJ4DdQwZzU/VVk+Ti43W5MnNf9Rn94lg4935UR1LD0JrATNNAkSQlGhaTGJ5C+wHNbz80WUKOi9f7n1sRoUqtxjKFzseoMUV2seeJpyM/6+fNuC2dNugzSGyzZSUWSiekyQa4JsFjeS8tPz3KtiLEhILqv89bv77zk+fpJLZlMWTEE9cK1Tww1AstPyiLN1de5lcehPNf0PMq6c4saNA+T9KakQXqsI04pi1N4Tsqsapp6C5w5a6FPiqLIwY2PkWatMsSfoeLe0FBm+qEmZAZ1MxjjLAZXMVZKTT+ucrJsxWCuyRxNCXWBS7swjz0bgvXugkUpbVUG7Bos6T23WjjGzsfXj3w2fiCmZ3CyrnUHVWgdL/18J3fvBv2LSLacYxyhIr63yhiTphjU7A01uZ1zZtLrpO1TwObQ4OsYQash689SGAQ1nGBoEFNrXqGWcj6xA0Dv2XcNNsDOBmmmftKW71k2E1ECovL58yOfff7Ix28+8Pr2yrvtMTf8YoDrHUfVjFRgf3rklOUX4n9J+r5kBZ9oN/MzWVL/18WmocLjBT5/avzyuxvvXzcul8I1m989PVunSEZE4fSpm2NIXhKdOQTeV8X5Maeaf/fBQTZXcwjcCZSOVVQb2VRq0MNnjY9vH3l7bfTWAWPuTt0G7aHALg8kDQtNzU9LoAA1tDGTzVsDtykJomswp3u/Y3XibzBip3Qx42I/KHalvqvEzyYffnkjwrhGocUr7H9Baa9wqZTtqvduhtV3ROmU8g7aF4RdIIZqoFA9clKrowA9m5DnlDFJZl4vNx4+c378a1/yk99646ufv/Iv/s13/N4ffc0P3jX6o/FjrnSFGRI+ksUmhkxtpAQqsn4qGJMalV6C4KA3eHyEb94Pfu8PfsnD9af8xkOj1A2uFbPPCLtSP/v3+fFP/gv+0fuPfPv2U37n58GHefe2M69Yu/L4aOwfD7GLYzD7gbUL/fGJtzn53T975fnhA9v1Hb9WxPJrtRAkY6k6b3NiZdKrGEhbhd0L0bMuCQUT1NboM6VKJVn6TTLsXo3WM0yEoRPbUnWAMTwHFjPvpKHaWjLgFQAjQL9VAb6WYImXVIRE+q0UuPbKnuFHM0J1mg8lY2c9F2Fig8x5giySXFU9xwLmJVkPAoyno6/VdIcLRAi2JvBgHvIH9BOwXN5Ofg7E1EjLL84Xe8XqybS3Yif7cN2xCySST1LuJROL57JdOcbOvu/qU5I5TtZ7CySYnnLW6QmixmllsMyjz7s9wbA1hNU5V9D/6q7utTHQWTUdiil1b04//T7Pc+2Tpt4izqCIxbgiUhYbnzClEnxigUjnVRpnT3Defc1gLg8srZsxJyW/B8lSXRWqoR7Kw+EwbjGzDthPyXahMMYUmGSSzZI1TsQd7DNr8v/NDr9Y6lmT6WiECpZVjGZ3WVb+8WK/ez5790QKUroXui9WfXXKIfP7z5mhO5FYwdmDrrrJ7rWVFYFpltJwwEhpYxGZYEYwYuTz17oUaUa9yOpv19fTA1kECf1ToRFi1Lt/whxan4eFjXCugVXf1wxzWX6cuh9m/hh3bzFnYTEJFFqcIUFOJOP+k0Lxe/r1/UvedFuI5hXg88BLT3QRQJTOOeNkuqy55Jj1ZATth3PsLrpqa2yXTVr/aifa2mqltUpvXRe+66C9XHXJKqFtcmQ8unrBdTkKvFqpSMt7Qv2+mrwleVkGl7UWtt659C09SdKcrNZTQpXQOX3rXLoWyZgzmVhVRUqkCe8aSZuK0cWSMnduB7y8HkBVQZv+Ie0TpH01HwJ35GukaV9uOIP9E/NTz0WH5zR8eRo47GNw22+ZvCKQb2uFvnUMmfIGulTc1CRHlZdKNTV0hp5hX0ypfNo9dOAEKtSS0KnY7oCYkRPpgQz5dKgERtkeKb0n1lPPSGvH6NZYSPSahGLyAHBTdLsfO9UF3LjJkG5RvY9sOBaDJds8IiYxdtjfRF3vMvbuved0BqzospFeQZu31YomeGkGOCcxnWPftbkR+KCa3hg4+1BBNmb6kSR1s5TK220QZjz1TYy49OtpBtElJbPQoTUzkXCBbeSaLgYxVLDXovZy+pSG10gmnphoZpXh42xwP374yP7xTSbIXdP/BWLElMG6FT1rihFbZVYZslcTy9Bz34vhFWJjeIKI8+BY9P0IrJ5q+hPgnQ5P7x7ZHh6wshFWsVqJMBmIetCohE1maYm6L38Ul1eSrwS7wI9E9k2ytlYrrVRuPrPQdWyCzeDhsnGbg5e3V6UzcgdgahZbw5LWlIBjmCJue0vQdwUFBOfkJpakcfkOFV01MQWOetLqw4NaO+8/vlBqYdu6ztS8kCOln+UvNamRDCBV7usSrRSKFYYP1rWlBrGJeLUuLXeKT8rymKrBHvDx/SvtcslEEJUCOjuNXrtow2WZr9dzGh8uwO4YA6s6v2LJQvMsWsxOGTvmuZQSnGNKWlVzvz00pU7OspgtKcOxxUjK3ZiIrlHzMpUHxohDLM2Qi0hJNqKvMzEEPBJCWOY8tF5rPeW5FGNIP6u1app6LU7lkjSs6a8Kvzhp5lFWwZqFcibPOSFJ9fn574VGMTUM821QqClpvc/xF6NITJI7VuMJQIrdo+ZAgJ0YYEyxy8yM4kkac56vAAAgAElEQVSvL5JQLGZKOqkmwlToJsedGYNmkuWoiM+Zc67HGkHxOEEFyPCBrBN8yrtGCXYLmNJpHqRUNCY+XH5+OQkuU+tszkmpV8a+6xpwh0y9XP4QsTwNks38/5V3lq3ivuHIrLJScPw0TK8ZOlBb5xJKq/NkI0Q4t5ed3W8yeUYyCncxlWzrWOsySC4lW4dVJMdZP7ZamcehMIDauSymb/75mmElngCoz8m0yb47D5fGjAObB/iFWY2aABIm7xOhjD3XRjo3hCcIP5m1UupG6RfmvmvV+ZJiAq4hh7eSPn01791g640f/OoP+OVXf8zL+4+Mdz+gjMFWG7h8tcK0xvCZsvw0iE6NQEAOIFP6WxGgstj8TMIqJf0oZ7KdClDC6WZ88cXGL7678d3bG++Ojd5aslRr7gHJfaxAu+gumilFXUMy4f+GtbQF8EhpdhqFn2csRO0wg57AtWHwHDy/Vm7fHNwexUy1ERy3Sb9WJhPfwa2ybbr/6ZKgqGsPpVlazSQkSUHVSFWiAiZ5ideB70GNkdLSgsdOuVQef7Dx+kfOh5ehOu51cmwF217ZNmN7eiAuF8yNcn3Dts/0Pkuj1M8JHsFuQAaDpCbZaIQd2CmFawI/2k65OM2N5y+dX/8PB//gFx/56tsbf/iLD/zOv6s8fGk8lc7nrdG3tbYHJRrmxigHdQs4Gj5Tnob8vJajQglFmT89GK8f4Xf/5Z+zPVX++k8eaGWDS1d9UDr9h7/Fb/z9b/hPP/zPfNg/8PtfD9yrfOQwNivU6wWbT7y9vuLhjLdBvajG5/kd77+b/PM/euXpsXLZGj8y53qt1NpVZ5qlHFFyrdZLnvWFipKzjgAfAj9aLXjID63WnVYf6a1xMcldK4UxqvyMbOLF6JFFGjUBfwW3CHwHcRtC3kopN3PP/DBzrAVjyMNsINZ9pXDpnX0cCiHyYCuSO/dimFdiqr4So1zTBUlqgsgo+rPdAaw0bBzYmmhE4OkPFExqU800X2WjkLgMx5INeWCl4V4pMaitpz9fORv/xcZWzbT+PelxVKhyRBbD2TJhrlgSy43bGIxwsfbsRBXWRatzJtL8OiPqcecw3QNBeughUMuKPC6DxL5tfZ77WaKhStN57EGvhoWSPBU4k0PR1RtnneDZr9T0BZrDlJRp9+Gx/p/0QEswbeIaNLtqm2lVQwULpQwf+kzhipxvOVAo5V47LZ9jI4gqQLtmHR/Ia7e0JpacizltVvSDZ90ugE23KYW75G/123MCTb1I3o9BnGBouBQEsT6THjCB1o58roRHk/Xbgkgw1CNM19DkrI+1B4ot0PqT520CWorxSTpz1nI58Aw4fQA9E5KPHCIVOOvwv2SdYOtsdxr5d6aG3rKVTUBLJ6rA+1V3reVpELYAzkiSSHoKFpR26KlKyc8g37tP0wGzF1yoQYCX+/L/vn5974BS741xOD09HFa4NcCilclgVE3EOjDGMMY82I+Zmlun9UavlcvWU2uohdOsUUujbg3r8i1aSRy1mRJJ8tDyoWmLrWmX5wWJClR9tpLNq4oMByVIVTVhpYkZUkun1E20b3ddwmZ4qewZQd7MuV4uXGpTFPFwxdFmAUpRdGGEmtdFtT5yCl0imPvO63SoVx6unVbhGAf9otS2CmCJ8RYBJ2Zp+pt6Znc4lsdEAMgsL2achfdKGnobB/tt53i7CQRxVxrS1oleMZdcaYbYUREocS1crJUEr1YTNHxkXK8arX1XjGYAjIFHwVE6TbgON12QcTaaUQq2bdTedMAvTW+pUMbZ/M6ZkyDLFBvuCPGYkk0qBaPhpEdUKFXDMHYCL6LAh0Nxh7HDcdPF0QXkbH2j1iaqPFqDW2sCJewO9hBJlTXLKajMmlvVmtzTHySmMywYY6d5o6CJaTFJB8c+cDLRKlli8veA2jueRsi1yABaWyllDmcDpWc7DidMUzVJHz0BUYEPYroVRY2apkQ+brx8+55SGm3r2qdouitqN+ezroFMuCmKoTTNGMjD9gTCQ0yoMY80OAdichtK89t6Y+7HeelM18/68O4drXYE4KpJXR5KrVXJzTyAinO/uKYvk1HP97ImXnrfAlQKR1KujyGkfz8OWq3U3vj4/jsBTblXFkCDFaV4hdGEFmGtitGTMpvl5bYuhbXXF4D2qZeQWFoHe0boZsnOkUDv07tnaqnnhOlkpqRHyPLOihCwIlPDniDzurC1H3sW1WJoia1ABHMcAOmhpj3bro2Xtxfe9p2Hx6tot3n5z5h3kP5smmXU3cJUVRnEVEHmxTShLHZ6mywWMO5p7AiHSPwYK9xBqYcW9SxWLd8HWQDa8onKJBZSjqoppNgHi4/hyVgJqyktyOo2J6LTVbDjdzadW+X2duNhu4p5AicwHrbmT5z/DOeUNK/1rLGUPleMAa0ImDUVPWvi6XGnKA/ud2lZwFwX22cZN7urWLx/P921y4xx1UcrgZOp6GEyejiKwIOV9sO6M2IVXfevkRVtFulqnnQul0+eY2IYwJJQiXmb08dS7wyxRHZKa7SMaO6t6lmYJAg2VazLSyOldTXYjxvP9TP5NllkcZnNhi+vRO4DmKLh0BoKaApckmXCCepRJM9bE0LJ57QfSbnfooJ9fHnJvQytaQ/UU1oa8gDxlGCbHoGifnUMWASziPXKmBz7xErgUSQzCA1bSn7/u3G7Vl/kuXwcTrseDL+AGWUemhyXBjOIGDLuLQnyU/BoWEzworVjq1lLtshiKZp+HslIxQKfU950hcqXn3/G1ivf/OJbfvSjH9MvD9o/pWuPJ+ux5PR5Aac+glKcbvq63gzzxmTX9zIxQFstWBT5ZLpOeWFRmqpXgqfHyrsn4+sPNz5/vHAtcHkqVCpvPmi1cuwHc+x4Fdu3VtUyx5y0KlkVdfn3GeMY9KJp7jEGtW3EnMx5Z4AxFxYUbHSefvDM/vrKx5dJ+7zQvbC/FLbhRNdeM/kB6Bq4qTmJukzpg+ITD91Nvu7TaESMPF02aoM4htJZW5fU0h3bK9tnDzw9Hbz/5o2jNqJOYhiXW2HWxjx2ro/PjDKpY6d/5kQPGF8BDepnAqtjzbET/AvOc44EkCkPRP1c51PsbPPgi19x/tbfHfzsFy9888/+jJ9+9YHf+/0HvrxUyuMTX7YnvK4AjQSxTYBVLXdvwC2MUQw1+pVZjGbGZZu473zzMvm/fufPeXzX+eHf0mDD2l9Xc1uvXH/9H/O3/sFXfPPyT3l/7Pzh+2CYaldPts/2+MgI47i9MX2HQ8OK1gqXpye++e49//u/+sDjddL+9jNflgsPvbF1Y5hSI4MQ2NLyoOyTgoyVmxeGifFPDWorhFeYnWad1kKy22HYVk9Z8goECJaZ75LBoNrZCm6T8IOgMXxBPZF1uAa/rg0DqDZhOh6TrYB1OPYbVjYsGs1aDnlzUBPzLuEJW8c3CtgJAdFe8KFeyavkNd2aQHQC5pGG/0oujK1yvIndfmklgwh0Zq9BWaGy571YQIFNqmLUtlmkv20OPYrO2loLh6iGYlBaAj+90U1s8WPfGdPTGygDHGJmXyOEbMY45edm4AkqL0bMjGDkZ655kMvDMZnPWR9GnqUGuMubKEIWI2LV+MmS8qzh1s/kyQgLM2rtCaLrHrKWBv4JKokJk58hUjFSLb2BFlIU6YWUA0kTU3rGxHI4ZbZMt+W5yoSoJtlkWqAUk3XCMdVD9KJgDZ9ZyMUClWbWFOrLFvttMfLFzM7wB0w+omZnLbdYcUtNY6avrWFrJaoMvWGtgWR45p4BMmk7664oGXax1Cn6M+fzJofjnCWMyjUjE/TEA3SzrBf8XB+r+qulJSt6ATVL+pZ8ITvLpyyosn5dNeOactmClxYQ5snuFjN+3FEmltS2mtQNJ3NpeZlCsvaliiqhPToMkSXOwu77+fW9A0pLnrbScoiUWYSAG8vOankmCMSRj8pt37m9KQr88nCl9zRyS1QQWw1qmhBund6NhyoaZkRBSWY5SQpNMtfm04ROi8JrgeHUkyAhsGp8kgxQipJIZPhZzog99xDjyEyx6cC8HfQq3xuKfFo8ApKJ1U3F6hhDUrq1IENNg2KsC7dMeakPjzw8Xri0lsZfD5SqAs1zY1SrMgFPcE4giwiBY470KgrwYHgadCdw1gowJ/sYjD0Nbw/JAntdptVGDC1gNY662lqvWMsDIkQ97HUxvqAhg8vF4rm0KhPktVFSS0uk1Cz0EkoejhHSxlpvSkrIQ26G9OXmahClT05qoK1yFa2PbAScoPZOL52xT9wGq5mu1qQpLhPjSD8Lx+YuT5jasdKoLdFmxHhpKUA2ZCJfaknpI6e8QiScRY3UZx+hRnkMMbEsgmvrjNeZzJG8yJE2tz880vsG6Q2mwk4slpPlFHmwZkO+kqCWcZxYFTJOX5K4rSqRw8fOQt6l44Vjqrh//9179jF4fH5kJYSd/hcLXGotkfY1ubZE/itj6n3LNyovtZgwB9Uggz94O5Kq3C65n5zhYpaZVa7v3nF9fFLKESRFF1a6QxiMlF2tpqvWyjh2oTcnayuSMW4sM7+izknTSXc11vvgsMn18YHbLg+t0pbOe00xFNvMktKUdpcPBjkpWmBPsoQQUGeh72Nk7HvOavc5sTFVnFjhZew8XjY+7gdu8Hh9EFjInQZbz4mMLs5WyynZ23pN6u5ImWZjuPyuLGnZNWU6xfyUHYfB4UeGCzi1dd6+/QWtNVqTjCiKgDRn4TtaRMZflquS578v8MOM29jp28Zpeuhrf5fM6AIBMvNM6gszXt52rCqZpt+dtrX2bV3sOSHiXlh53klWLD0JVACWKrPUPDAyyQRqZLPNuq9nntPB7XbQro9glmy1pNhHYZZ7YaEfp+BpPAolgStR4tezGS5fu9p63pP7uc8sn6cn2BgYdQ5iDFqXnIaahX42GqdHkKsIWftUTDfJLcLASuUgm5SyjDLTKDLfgevquqeFWIrnrGRkdWDpX2eryFoFnQfW7uBSLlrFw6NicZ1P57mSflpitzWd3yVBnW60AnMcarRr4dobMSdazQWsooCFmj+F7ozwBNpNQOiSigdGrRtzHqdHhpItnVLaHYQyNVJLGmx2n+i21hhzcBw3WlH64n6o7rGoeR+6PBYrtCqZk+R3edcx8QHb9UrkWpVRc94dISYEuQZKKbTWFj4PDr1P5u2V+dlGRabWw51rVMpUSiu0lHN0NbvJfDBzYr4x3CDrijnEdJgYpSRj7gTB87Mn6BY4j48bn//wHV//7AMv71943BrWrmytSd2d55OaJ91flk0q7moOSigWOj3wxOAmfdQSeFySqAVi5n1ppUA1Pv/iwtfvX/jw5jz3IJrzeAErzjFv0Kqkb67Bo3BFSyNlNd7XgpBVguZGsU7ELYE0w+0gpmTYbia/zpKFehjXS+fx8xvHV5M5NnptBAf7EdAb2MCiYlPff8ROPdKY3QS6RZF3jneHmTYDMfBRKe0AU9zzbOAj2Y81JYZzQC88/tUrH3/3lbf38PBZSUlrgTI43gqt7cRmlP2V+fERe+eYDcJfsPJAxCDiDeMxu2INhiwu+e/XwXCFmmls7aBug4fnwY/+yjt+8vf+Gl/99I1/+q9/yb/545/zw2vwfG28+/ET9UEsWnOdPyVcDCwqbSgVD0sm4Khgnky/yYVKXII53vjFt87v/bM/4ScPlaftyvb8BPVXCZNJ99Pf+S/5B998zbcv/47XP9z5i1dyhCCmTpSN9qhgiXl7I2JyxI127aq9np752ftv+N9+/8bj5YHf/Bs34uJ4bepNCN2LEdQxxb5DHMt+pJF8aXAEZcK8TC7V2WdhHDf8Uoij6e6I7ItK5OM2phmUSQmx5oap/uhTQOigJakhVEaX7EczHEBNadZHISjWw7ntB9sWPGzwdltnVtYnNpUkVw0bOVyBsw4kjOICBGzCVqrOKzPKbCdbp7QMGQryLGm0ZlzaxuEHxxQTC9P+K2WDODiiZUPvZ9+dPbfAx0AJbnU1PVlz5GfzvAvVxyfo0iqb6Wd8u93wMektSQ35vUqpmUyu9byGp2eSbqxrJeVRePZS6eO6pIYmdlatjTF077etQVSOkQzQArUrQXfmrMV9ZB+6ahMNHH1/o7RFGICSYNaqd8jaZ0kkV01L9kVBpge7i2zhCRCtvx8Djym/ULOs6RW+NA+x/Zmcd85prZFqCqWYuhh065h2AcFgjKEaVOBWwV2BTwuD8kRv5AOctfpI1lYVg9eTcLDsBFhgS9aLq+ayUrQ2MObc9dmKpMQrWIM1dMxfM/uBxY6qlNNse4EySxp6+slZwz3ZTAswyjUi1lM9gS3y/vL0ZRXYI3JH7eXs25feaAFP7vME18MLA4WHBOuZr547zoTvxdpbpJ3F7tOj1GBL9aszTYyt7/PX9w4o0Toci8KnicBZk+Y/TmoYWiT7Ebzug9d9ctku9N7YcpznYdk0SGNsGUXcamWrRZrhUii0lBjl9wmhvse8cczJTEPokhpaFdNVvioxmUE64XM2p820STv11PMyDrFRkoVwTCeOGz2Ma+9caxdghIrhaALSMMnKYroK4yI6tMzGxXS6TSdmoT0/8/Tumd4LrXRwk6dSCHwxqzSrtKoEhohQUp12JnNMrAY2IMZMSrXMyvWzCUnf58F42xm3g2Me6VqviW0AxbW5RmjZOc72+ICTEfWmQy3PepQsowM8Z8Nsdk/z68BhS1q2gIyZB4VuQo9J6xe26xWvmoCaFTzBwoWAhEs+toyxQXaSWmIBczDfVJSXS0vWcDZcJb1v4tDGH1Osg5BBso9DzI6uCYoVIe3rQOtNDLkxBr02+TzVhk/PpkySJsGgeuZjMWNiGQrKqNp3gUk9n1PpVYk0rYt9kyyuLWFvCxPrCVL6UdJ0uLF8YGpO3cOnYjqrLvmAk2kkY8Y0n66FNlxJJQQfXz/y8bv3XK8Xrl0R4GpES2qJJTU9kpYqSahWgRMcY2cgoKm4JJhLWmS5bzrG4YiV0Du1hKbzEYyhFKHWKo/vnj4BCrWVZOas9TLDU1JxB/DcZ7JL8gAO5H8Tk2YCD/TBC2OfMA+86qwJd7au5/Xxw4cEJpRcSEQargtoxoxKE1SwpkylZBpgYcUKB2LDRL57z58lUsazQI/wiaWXFB64VV5e3/P07p0KDDvrKgj5uq3LwkpKfCKbvaq9uOSGEUOgVrJ6ZIq4oqrRhCj8vJxqrbQqv6zXl53+/MBKRumlEQE9YF3pngbIRqbKdePwyUPbeNnfqK2zPPN6bbRSdV6v6ZBJ7y6jZMTgqQIdeqscH29cnp8/oV5rAmUJqOuH0P6WBYtxJD14FadzTbPyzFjnJZFyXeIEZTQpBoqKBDdj98nT9SrAySL37KJ8k7LBbHDTlEhL1u9nXhb+sbzwqt79nFNnbdLuhb/mtGNR2Gthhnxz1pDDLKinyemSBSR4qUnKCTgtLy/5VgWR00ZSFlpKYYxDzcgCp5LKXkJAbSuNqrgLSIDFcqiySMCqLwWGFdBZmtM0qt+TGYcK6JrGp6cXWEoEFyOvFOVml2559xiXbeOb9x8YeXccx5FNsKj42pKW90M+r5xoeji9bxzHwH0y58EYI9MlwWzXeRqOp8mnVUPbbfmTyKdpHM7tdafGCz407KnWFGAxVOf0flGYQOn0/B4z8iJyV9R4BKV17JAMxaW913AulnG1/Bp6snesat9tvfL29gbHF7RiHDGx4VhbQFiCtmgAQ1meUoJOy5yMNRAY0FtnIu8QyDAPNM1fkgczpRfJVK3zo1/9Vf7iT77lZ7/4mi+/fIdPZ+4uECVvQrdMBFyfI8FQW81fpBGxFyTamViRd9mltdUuab82TewjQS2L4IvHB1r9yLcvr3zxdKHPStDw8ZbvUXeV44xhdEtZcFVDULFsEirhh1hl1DR2V+R1EcUUvOE1mVYTeSENsLHz5fPG/u233N5f2H6ouuiYAfvkUo09CrEfbKVDhX2XJ1jbxPA1jOFQ/EjwbkqaXAbum8CQ2mC7ENwYMdkS+HR07vSnxvNfvfKLf/2Bdtm4XgOvUK2BD8Y4KL0TFfy4YfsbdukUfwXfCZnlYZmAtgayatw3SH6aqttHqMmC2z5S5hsPz4/8tV//AT/5yb/HH/38Pf/um1f+xR98x+MPLjy9u/J5Ny7zgWiHmPYrFKK6gFM3Yir8oJYAawmUKAOvzcJ2KXyIwR/+/IXP/8XP+BsPT9S/9kx5epQpkzVs+zW+/If/Ff/JN/8T79/+gtuf7vziJgsORx5j1SoPD5/x6gVur7hN3ButQLtc8fHIv/36Pf1ffkPfHvk7v1GJVyiPktQMy+FzmnNXg1tJKbcH2KR18N04difqxHowD2e+HZTrBlHxod+r0YmUsi3wobie9JxL6nJgDo3OyPS9zRozhgCXSB+aHFxTWrLenIbjXvGb07bKpRbG4RhNrOuivgcPDjVN2dz6IkXoNvOSKcHaS+EOVUC/bQKwzHSONLa0Q4Gtw1NUXnfnNuDSc0BDHlElMkp++SSSt3PVPR05uvG84/KumvMT42QXQfpYk0vArFErXK4X9rFzzDxXTMzmamIR1SpZ8G3f2bYtuwp5vJUcZpXEEZYHMEu5kSDC1i4cx6CYJMnDPQHp+98vtRE2mMdKHZU363Ec8qpKcKInA3cNAAmWo/M5gF5DqN7qGS0vsGHqc4VCZKiGmViqx3GcxI/Acb+doMxt6mdvvtQ+KVlMgu6CStSIlAz1nHjI/w/zu7eltq0Cc9Bd3Gx5DqLnmkDKYNAz7XJGYF45dhmDx2JT2QLf7oANZz33SWJcz1XlCJgKJRF6q9RaT18tgqxmdLcQkaxzX4UEtebv1SKSCLn23SmtpSolP0uCaLawBtPd+akdyanEyX45cUiBhO4aBifjf86ViCgmeXNLP1t5VXe7D/zvlP97DTSy5Pesraqpt2/A/j0DSvW3f/u3v9cv+D/+D//9bxeT6VftnVESQ7RF2VTjNn1w2wf7Pnl5fWM/JGp6vF5ovXLtXQW3STtcU6IVC3Eu2ZhUecmMmRHWcyh+fFczPabMpg0heZGF61pnxxjst4NjFbdNTdO2SV7W+0VFU2kqwKuMPSmKQPcRmAfXS2V72Dhc4JTB+XkrcPhkDE0LW620QHTVEBC0j6Fp17XStyvNNjULeRjoQNcUtVunFSU7+JJmDKHq7jmRnC7KSaK9PnPiU40RwW0O9mNnHAfHHCnlQl45l02TsixGWykcPukPD3iFXgtk1CdIhlYivUiSeaZrBm10gALTAp9DxbQFftzS34ZzY0dr2HZlLqCoNHBNrifJ/nEXpaaCNaWceHwCJIIKTZ+wFSzjSsFlKhdx0lcXfRdzjuPGvL2paUrfJly05jEVM/90ebhPbHMtqRb2c5Lhc9IWqyc8Ab7CHC5wcwzKjDTAlhdJ4FwuV5lGU2iXC301hcWStap1UBHYOsdIvbUJNFqoS1HhQTYgVmui6FCqMY+DpU8U0ye4tMYRwf7xxrdf/ZwocH14oKeMcKHshSIQCDXBD9cLrQnMar2rEfdI9gSUqQN+MZTWpXsc6rZvY7JlQsMYSmPEJ26Fx8/f8XC9yjeFZBrVJrp3pMPI9GR9qEieczl3hSYTrknNMkI8kl24QMjhLqNVgznUrD9uF3xOXj++0i/9PpmrhWaFXhtWtCZarcz0sjHE2hLluOXkvBAjmzNLQz7LAsmVQNiCUx5L0STDemUck33f+fKLLyCCrTWBA6FGv+XUxxHYAJKqaM0gKNwqxe5R7kGIMJYJfDIvlAeO2G1kIz249o3XY/Dd1x95/PKZGsZmNdP69EjWXmul0reNqGL5jEjPLtewqvd+XqAtzfw9pWX3iPuUDE2lTUbVFPd2u/H68Y3rF59xrRfdv7ZM0pMmnedFSTaE1X56PEUhmZk6e2PJnoMTSPLglG2tiWzJgkFsmcLbhxe2pwdqa2ylnV97ASklz7oZ6PNkCUwsKrnWDy6p0kqbFF1eYInBCSgJ/9C/rbXiNnl5eSGs0R8fM5qeXHsL0LSzQNHZu5hn+WdFSRN4l75gZKMwUnIbJ1CYjX+yetoql33w4f1Hrs/PFJPHobVldq0/U6rYszIlSAZlVqI1C61VqFpKdy0bMzetCbXW90nsYgYbwRgHLx9fuDw+Yu40U3PU6pXF2F2U/9MHkUiA6S57m3OcQOb0EEgi5DXPd9UskefvGJNjH2JVj4Pb7ZWHpyuX3gUAJbV/Ra1bVqq1SGIhaXQlqNTWVXwHlOtFjQaTcRxq+CNp+3AmlgqAy4hsNGzodPbbTi0Xeq8cOWHXsK1yEGA1fUAMZ6YHl969BVi9kNAzx3HTvRhL4iZWnec9WcjtU/L+QE3gL37+S/Z98OUPn9i2q+r41oFl6B5ZzPqZbAjas9WMyWQMnYvNEJDjir2uRZ6Op3wDS+Z7+iklc23c4KtfvPDwDO+und4rpRrjNWhWZV/gjiXau54IyZyrGaISNol0rWlFdcWcbxokJGtoSfCKhVKTrFBHwXrlqM7rL9+IZ/l9THf8MKwjedsMMZta5CAgsFVDoXpnzJS8RaGUwMqDah+76XPUlsC11h1dTD1FzDfaY+Xj1zsfxxtPzxexGadhZYMysSppFRRKHFjvCRA6Vp61d0pHc+eU3BCY9Sy2EiEwy3pislLojEEL3Yfjwyt//Off8fXrGx/fF37lB43Hdz1TY9Xok+tD8ptGmTqHS4TAO4vkHSZTLN60fop8zb5+f+NqlS+/7NSnK1beiY0Qhm2/yvMX8PDNH/H+JfjqbeCrboqgsykMoxr4gSPZvTw3O7VfOOLg228G8TZ599i5PhY6xqyTZno+h0GhMsLAJpGmixYVrDJrYc7Oz9+/cLxWnt89ctGsmetFjZ/7jptlravLISYco3CEEchfJ9DQSAmXR9bgVZbeBjMHTL4a84AWpkFC0RoYjpjcaQ9XxgMAACAASURBVIgeKA7+mEquS+yAJR0Xq95yvwicHDEQ2Kw6oDYj0tPLqDls0WcaTLzIgqRglArHobM0itiJREvwQgVGaeX8838JFM8lF2jgo+ttndmWDBHVfpG1yFK5lKr+0bNmtxyEqblXTXiyZvNXKRnEc964pBdfDl5ilYg5gCCHOjUHfuekJQd+Wcvrnit5v02xnIz7f2ddcd9j6/uWs5+O3Jkl1R2gvnZ9NrFN47SpaCmPVfp10ztdYFjoTNdwSUzVcjJ70zPMJ5H94hJg6/nojqvIR7dmnyzP6LRMMUvZZ6xJn3zrslbBtI4s7TtO8kfW62ZFg+N1Ro7BkuavF1EyBRrIAbzMwI953PvMHP6vmq22fAdxt/MoFqdHaW3lfP4zB/tryO5zap0nu33Vp2f4Tt7bQUoWjXO9reTpk11mq5NYazvZTqvljfMLJKvpTtA5+7/zP1qUI5ZXZeRwaP2OCCP/zX/93/53fE+/vn9A6Z/8k98+UvM38geIEC1QTBMZCB9j8nabvL0d3G47ZvB0vbLVxqV15hAaXGulr+K7NaJXSpMUzkyo8Tgmb7ed/TYV45sSr2PsHDGkMVwHSqCp4Jzc5mAcIxtssQpKsTPJq9R2HnStNpkCmimYoggdrgZbgYfLRSbFcV+kZAN+hEvmZCn/cOcYojoGjs8heVwt4Pk9CoDRlhbZ7Dw4S5NfhKUHk4I41Lgovty5jckc80ygAnIqI/R03gbH7cbttjNSLvVYN0rrmhR/itpSaH2jNx1YHU2QdZCYqPJzpqwkzmYkrSq5HUKCYzhjihkTQ4X8MkWDgtVG6Vdqv56HmAAtGXyW0LMYh5hFyaOXsVzo4g00tQ13eiuMqiJL28m5hctHCsmuiP+XuXeLte667vt+Y17W2nufc747KYqixItkUbRIyrIsSo5kR3bsxrYUIC7sGGhRBChq9yEFGtdIX6u+FUUfi/YxfXERt8hb0zZ5yEvqooljx7ElUaJESZQokfzu5773WnPO0Ycx5tqH6ENRVA8+BEF+H/nts85ac805xn/8L1Ys67yjTRNDHm2qGmxiGWK0tdhgiB757Gh410A3dfNW3Ut7+gZaW2NS92GZZgP6HEwqDiaKKmmdIArTrhEP1oQsi1eQCUWsSbODdA/SNqxBN8mKp1jQDyQ7WJvLCqNFN9jzitLdhlBtzDQmrZycnrA7O+Nws2adxwXQEm9Ooti0vmhjGEej8gYh5YFxHJ094gw2FQP0xY3pm8l8aqloLZzvJoZoB13ZTezmrTXQDSStOLp5E6p7FqEQLIUsp0QQscJHILSCONOgFxwCZtidkrHRiptu114U275UivlVCNbkpJxJQ+bs8Ynd45zcfNN9c1IiJDMTFPXfFyUppJwM7KbvT84q88O+XhkGaKme5iHGQmnNZv+1MZWJw4NDHp2cst6MrFYjgssrJfgmYBHntg7sMDcZrYMl2N6zFEVq+6niUyOXsIgfWnZ/G3OdIChNGgerAx4/eMQ8NcbDAanN9wA77ER7sIASUrSkmhDNQBmXhaix0lKIBpppc8moLF5Bxprqd8a89FoQS5MT5eL8nGmqHF6/afth6EDOvujo4QoG7elCCcf3JBEz1TXZk92f5gVM1d7cWtPcnK3Tqr3f0SnX56dnXLt506ZrCARjLIQoCwNQ/SL2BqKdsSQQkhe6gSYm6zNvpw6o2fV0jzxUfb0HMy/NwunjM8gj63HlnjyyX0cOpPR9yJ67S2FdXiTYn7FG2e5NaWbQHYLJCZbkSt9jeq3WDU5LnTh+eEwcbV3mnIk5MZfZvZV0Kci7FMFS12ZbxylZg+2AUk8q7VLO5oCMFZJWYNZq+1cpJvVsrXD8+Jg8mqwohsBms6bHKi8R0+reF/T7icvG8pWCzhoCCftpeGvdF8G9uFqltkopM7tpS9PCPDemXWW1OuDawQb85xYJpJyIKZA9zdC2Q6fsi3sf5mzDjrov+KTO1Dp7IW8sIGEvu+jfw6pHMRl7aDTd0hqMm8GAmaDOYuv7pLF9mwrd5B6JbuYZQBNEY+3amYQtJPXaRM3nMDo7m6pLWl5TpVK4nHbcfe8x12/d4nCzsUFIl0N7kd2lJBbyYc8oiJr8TIVWu/dDQ8T88qyItudvE217d6LXc326DbbP3Hu0A1WuHY1scqIGYwUSzfxdxOSfwdeCBHvOUcU5EA1J3vhJQJKD/GoDwpYKHl1ooLYvIInNpGytMg6RR+fnXF4Km81oMz6FgYFVSv7/4WboCaozEmgecGC3v+qENB/GxnOTBhJt+w4zgeQsGAOREPMv0VqMDTjA+Y8rdaWMq+w+Wg4Qi3mbtFC81uiys8kGEvEQZIQwYOljdn29CYZqoM0yNHTBg072GQqRTEiF+3dPufdo4vS8EFjzxK1rrA8riUwPVrH0VkArNQRUzSzXEgV9OYoiMtv6bLZmgwgXc+D0bMvttXBwcw3DdSSMKM5sO/ow18aHpId3eXwq3LsshDhYsx/VmKjB/d16aiR2/gwxMuQ1l9MFDx9vWdO4eSisVhHqSIuV2CLRmzpbj874E/PbimqMZQS2j7ZMl5WDgxWrtRKmjIyVlIdF2l8xXzfzSGl+XgkaZm8iIciIhh0pZ3vmPdXUa8ZIQKua0kIVCcY4agSfLxZEM6XOrDZrVCdqmclxRW0FJLlHVIeQxGTjPuhvtTlLtlrAS8PsGVolkBdGaj+HcJCsTf6+BtvLq1rCpbgnZRMbfjdxdrDv293WoSkL+zsQ9rWD7BM5WWpkluHxPuagOUASmOdCKZUe064o0eu7PiDp0mxgYbzLAqZ7/SOQUuR9X7I/v/o+F4MpB4KDCuZjLS6zdjCqD5L9TO/DwtAZ783BFweT9tJzRXoK2wLGGMMSP8uCy/gkuV2K4h68LD9rc2sU+/bq93WfdBdcjbAHe9RDXm19pM4cD5nJlRDiUi3V5qFXkGOi+lNp/v2W+vXqsCzsja5LKX52s9wjwYZTZq+B7/EKKia6iwY8dcCsqfk/uYid7p0V3CKnLyhVpYq9f63ta6o+yN1Lyrx2xAHeXjLJvnYwJrjtY90LV0RMWqgLdLt8X/MX9RoMG4bgtgD+Q1DF1qMNznvNFeksrsW6hz6WsyutzQZoU1Mawh/8VQaU/qf/8Q+/utMKTZbpVExmrFzVvIV2U2G7nbm4OGeedwx5ZDUOrPJglOSmhCExZgc3EJKkZeo5iJADIAbU7Go1jx46E6dR52rTkdpAo+sHcYlZN0wu1mj2IjMPdtiGQEyJlDNyxVk/BpvypRRYDYNLzhqrcWAOmLyvb3xiEzTchHlFWJoeamN209BaLJY2p8EkUEnJMTOGyCa6uVprtjjBASaj0oqy+Ag1US8OjZHVmhlqmsY3sMA8zaOHp5l5LktBPQ4DecgegSjL/48Ikg1giz79btWM0Zrflx7fvmhaLarEY5axNLbSWUHQtDI3ew5mtRGpIsgwkPOKPhkVuu+ET2qbmYHGkC29BsA3BB/8U8U2jBzNrDxgxWvwJjgGWweqQlQMaZ8LdbdjCIGYB+JoBrE2tXZzvNqMZRFgrmYijTdj0Td0Xc4AZyp4Q9oAqco8mbRkplEolmBlD5UhZ6a5EoYVOSei9sI7eIyrPwtvomnG5A2dFRD2TaClHyVCzDZVbm1/YHgqX7Bl46BjZdLKbrfj4d37bNYrxvV68WABA3VSCBaHLNYUroaBLqYIQzIjxWQpK7jRKgo2hLeCobrp+3Y275JhNUKrzMUjij3e9satm6Rx8HSyuEjtlpQdVX8HFJMgmJ9K5zVY0WUHWK2zreamtHk2/bE4i9Ipz13uNK7XTNPM+ckpw3ptwGaKpquOzjhyfxgDeMTp7uINtzOYkhXaPULd1oWz1mo1Bk6zSHsR2FVL69nNE3kcmBtsL7bcuHG0b849TajiUxg/uZapiz+tEJwhJU7blT3ToamYpEPFab3Q8RythVYLsTUSAjFy7927iLM1pXYhfWd7spi455SM9WEn6fIOKOyb8lIotZHGgUW+giy09tQLMH8eWoyBsL3YIes1q7U37ZiMsDPHQgi2FnydhmhBCqp7EB5nDS4gAp3S3Pc5u9jOmNzr8yHkxPH5GXFWDo+uWTGUbEDRzcFFWEAbfM8VDCSZ3ddO/ZwprSy0dHF2Rms+dVvuiu9tfmGd6HN5fEkcR/IwWKMgpo3vckLHpHziZV9Nm6UpdlltiL4vGvNpbhXzNrCfPToQYbijTYcT1mynJMzzxMP7j1hv1oQopJSN2XsVuHHZgOAFlBdZSxEmJmWi/54ZgTh7rUvmbd+yJCJrtGurlo5ZKycn57SQSGkgjwYqpeSgv9q96QBSBx1BLKCh6QLCqho7skzFC/Fggw/pMdNQit2PWmdaKSahbRMXF1tCzFy7frgYioJ5KQ55sGtapry+O3khHASi6MJCAaW1mabWnCzMSPe+6u+4ScYMeDVSY4VRmS6UvFmRcibWaJ4oLmtFMc+R4HK5AFMzwFKnYrJ2MZC71IU7RMDqgeZeZxocOHF/G0SJ0ZiGIcGju49Iw4qbt64zpExwVrd6/aL0s8CK6RiCAXkO3pgMFlSK131xWR9m8ApBPXpbGo3ZQQYzHc4r4fE88ejRlvFwwzDAajCJhWi1eqg3XMlIPtQuQ3Z/C99jbM1a0xty8t8zwMZzQ8m9wS3G4EMipQl1gNiE7clEXAViNHlCbI2Y+/DBGhYDUnv8fLCHU5UQkkvdAiE1csgIdrYau9Ob4BAWYCcQCLWxmy8JcyCtIzLNnD1WDq6vzTsquGw2KkImDiPqQxlJkRCyMYPCCmRFT5OUfl86WA2odEtZQAarlymgOyiFQCXkRFbh7R+dcX+75fx84sZR5M76kGFofnY6aGARKnZWBS+qXCJsqUTd+iEAiVQrmUIIyvlFIZxXbl0PpOsR0iEi2T5TI+GJD3Njfgt9fMrdrXBezLdHW0U0kEIkkZgRNzyvvn9EhiEgeWC32/GjhzOHeeDwqHKYAhlLU0NcUug7sAU/2PsL1d5FzRxfnnF2CZvDxOHBQBjMi2udQKNCaSQNaCxIUMYo5GBrLcZAGK3+TLEhIRO1ksX3EHEPTW/exY16SxA/q632y9FYsgUPSKjF6sqUneGYnZEUfVjtZ0tQ93ixkKLaqiXDBa8txIEkNVmVw2sOtJvrY8MA3oinR7dig+9dZRzj0kt4pYcIVkfFLrX2Yb9adW3zGkHcG84sPtSZSvsCZ2G89P3XWTWz16T0esR7tg7K2FDSeSuGEDlTEAdLTEoriHnRiaduoSyBKdg9NLZl8IFJWE76/dyv+XMLy5lufZsuqohlVrS8hrJcm7GUzQsqBKvzLG1ObQ9VXXwrpddKXicbY8qemX2DtgxWaqvvY/70urGoncmdUYVY7dH9lESvnPl0obwRCEwc4aye3qM224Pt2DP5fz9nhCvpwLAf/PWaRsTr6V70eY2mFjJl/Yx4+If/EF6DgXpIja1NFxISgg8cxbwjg4A00CimKOiAkuoCDHXp/sIwQt63Zy4ApQ/Q/GQ1RnztQ6eOqdl1dGl8ddA6ikltLd24y/1YiATL91n6g27sLdbHABlj2v7Bf/r3/+oCSn/4j/7wqzFknwyDePLJVIoZWJbC5XbH5W5LrSaxGganY4dIyImD9cg4DKhPtI29YzrGDtKVanRvrc3+7hegylx2iCjztAWEyRv5VkxvWGpj2wqtmSl3cAlIiJGUsrGREKMDAiIZGcw7JYbAalxBEDO6tlGBMRSwJj+nYTEvi/afUQnGTiqFMu+gmgSutEZKAykPDGNikwdyTqTBUkiCF2Ldt2UxCl2ayGYFTi20Yo2qqC2aqpVxGBzFtI2stMblbkfZ7ijzjCCsVyN5HDwlqGPfAWikYfAiq11hDVmiAxjq2l/A/s5IMBaaiFgUuutLm4jJkmbfgJIY5VoCabUiZtcru/68um8Raql/rdgmXdQ21xj74Wn/lGTFTsamijWYCbFi3kVRFW0TpVocPSh1noziLxCyGasOvvFPrdBKIWMHefN9obQGPrmJXvBK9+oQFtZS96mYS2E7TQu4mKL9XqCBRDtEPYktr6whirgUwA+9lHv8dD/Yg5mb+vqzQyKYvA4DNzR5YaoWxTzT9ky9ELwoN1Bg1srpuw8IKqwO1r5RG1gQg3uW5QyrTIrBWYPWqOU8GEMlRLIkKrMztQK1dSaO7bdzKYsBdIqJUJWLaWeHWTN2wsHBAZvrB4goMXkjqH0qsD8AcR+t5pK4HuFaHKhTtXSeMluxNLdqG3A311eftgRjSKX1wJASjx4e2xRkjEjtzbw9h86Oij7ZDi5H7Nr92IEc3+z36VfBvZIqdZ7dWN8KHWNNicV/C5Az221hIDBuVmak7Swkk5V6k4wDZyF4UW/XY6a9AcjGhPEirPmUKMZkiX9U905SZxk2KOZjFVNiKoWTR8ccXDvCDDi8+cGuWVtbZGUp2jTTUiT2E6Uc9jmf0zyzHgaGPCz+RV4K+Tr2/09nO8Srza/OT85IR0es12vbHryAtCbQeUDuf2UAlhsiCjZRFVjklsHeqVJ7CICBSKhPcvpUJ3iRgTG7dpc7QhPGwyP7/MDicRHUaPlmhi8elGAMSpuGmVwtekEurS6eEUtxGXzyqSxlpiVFKmbcYgXbyfEFeb1iWK/s2flfixmj7mnQSyPeXNKjLluI0UIXMG83rZ0rYnsiYmBjFXsfO+AXQ2AYErvdlrPjC8aDNSkGVqu1nU/SwWufMDroqs0kd6VZqEFO2c5pPwfwAiqI+fdEiXa20vdSS+KhMx1p0Aq74zMAVgcrhnFgyJbe1ao3EGLTaGOPhuXMCOzBmtrP4VJpxSeJ6nI59mkwXY5gjFUzY1UC28uZ1go3n7ixFI5RlHHIDCk72HF14uyQoRfighKCoq0wBKG1rb0XEqjFwG9t5tUoPmUP0SwDtBYzx61CXmWmy0tkPGSMGXGAKhMsch1jlgpizAevScBkdlrMf05x+bIooVpD0cLkEmNAbEgTmoGOYgRgag1oilycnHNycc7tDzzJKg92YMbgLDl/13EAqQPtCNpcOh4qUS3Biu4NJsZGV+33oFpR3wAf5vT6UUjUWLj33hZC5OjayMZ9vroE1xiM1urGYNYJfR+1ppx9Y+RpvzE2cjIZfdNIqEY5CilgKfLeVAeY2pZQYLguTJc7Ls4b4zqRMGAojJE8emPVfNDgtUWIgSEZGyAFk1qkQcij+d/YO1Et2r0JWhLSgk/Hlws3mVUNSMyEm8r2wcRUhPFgNPlcFFpIII2QB2TwObYIpIToDBT28ra2MBxb5xXI4M8HzCjdvT5UoV4SuETrbOydA4Ft4b33zjieJvQy8cSNFYergTAUQsvLfQgOBgczCTNLBxqikTbbJhlLZ6kWhjgSYkGq8uB8JraZ2zcgbzZIPLL1EwTamvFDH+T6yRtcnG15cD6zm3BmlAO7Ukk+DJ2L1RMEby8HS9ut54WHxzuu5cDRgTAmY4dFZzkZ6NhTyoJ7PgpBzZT3+KxwcTZx7cbIYYqMKTIOI+dTcUBRqa2wChkRYwtLBA3miyYEBnFfPbFhShL8+Slz8D01dDaquNzYgZrg8fLuwypUSi00IjEY+Ncwb03xhSmYbM+U4laH9YZ+bmZqHoLaPqt2dmgHb9Xvg9gZ0aTuB1k6+bUFWovGck22v0jDB8vGWmq9yxZodUZbQdtMw8MEWl1QjKugi+Dy+gW88XpJTIEQU3SLjMbgARm2FyphwU/NvN+2TKvNuQKWtFatvl6k9P4eOAu7Xfl3+zwHjsXeqC6N2svBDSRJKV1hG3ewZQ/Q9NrK/t+4//nEwDXBpXXBFAN9zCQuvxcMuOmDlz3zp99D78HwM0OVnmBtQwA7axPBh/bGgMpBaJFFumbDNKu/Wgf3unyrVx59Iq+A7Ifg6kNm+tDMn90i6YthAVIWcKzaPe6Ao6X54Z63dRmm7seeV59l/7UDU2r3OWL3ULFEd/FBkfjzsb5LFzBTED+v8H1S/GwRB8mCy737e8qVvt6uqwONRtzYs40WBY32IeReameoQFtwRnWbg4AwBKuTTeZq3la//1eZofSP/+gffRUNpDi4HNtkaXVWyqxsLwvT1hKYhiExZANUhmGwSd/BIWkMtDpbrGBVckwMw2CNqzTQap/pptZFJ9vcenMgPeo3mFdLEHqse1NdjI7NfNbQbgOSIjlnoy8630GjsF5lp8kPxDQwOeLbN/Iu7RLRKxuJtXG2iHpyAExlpszV9bvGRloNK4YxGQMkJsY8kIbsL2MmpK5FjiRxo9HWQMuiAw7NFmKPQdZgLw/OarAJubCdJ8rlbolQHMYVw2plZuo4GyN4ssiYkGgb7JAjIWamUmkpefpPl9jsX4YmDapL8brsowHSLNWizGho5JgtDS4E4jia/04UYpLlEOs0/SSyj/tumIm0R50LDvBgG5JWZXZwRSS65MtSDErbUSu0YCiilgnmAm1nQIsCTRfUXYptqmmw1IVetOVoBpFmFKdLc9/UKLtm7lmNUVVm5u3WJAJipn+1qsm0QmJcraGa19dwsF4axJyyaYtD2Etm8K2vqSVdBdwjR+y6SzE6owNcIEirSyy4NF0+q9ZC9fdlroXHDx8xX1xyeHRAGgw0itHWhHkBQRqys5vawlYzeahNddX9TUJ3DlRPQ1TbMCu6UGmHFMkhMlcrBJsDGYTAjdu3GIfR6OfVWRw5ICkgHtNr+uGZqAW8+OvG1EHcBFBNVpPE7unslOkKbKeZEO2ZRvebunF4xKPtBfXsnLRek2M0fyVHsSVHxpQX0MFAGTXvi8DSjEqKDCkvCYApZmatNC3u89bcXNnWaG3VDPMlkrOxsi4en7C5tiHFREoO1vjUKrr0sE8gjHmi5kuSrImrwUBxxJg4UaF0Y+4kru2vy2TDwNVqjVGEcbPi7NElZ2Umry11D7V11xzIA/N4U3B5jx/g2qNg8X0oMpUZCWIJZSJLSqadf/152nNopRFqgzaju8K8baxuXscsVMRM4n1/71Jfa++dspwjLagbLEcrYl32I2LrMHf6Ct7gapcV2d7QvJDSpoQhc/ro1MD59UhryiBmxq9igK16MlTonyvQ03VoaixN22GX4jW6tNaKHaVi7MHOS+ry6e5jgDTOj8+Jmw0JA8qjv+dNWKjxi4+SA4O12s/hyhgbVjhYJV51LITPXsx4AdfBLVurmNyJmZPHjxlWG2tAhsRqGB3YAu0N1BVGTtVKbTPd46rVxrybzbcmiu91EIP53ZXZgOLWnF2I2M+BAXMtKMcnF6S0Yn1tZb6CaXDjUpMT42Bn9HSW5uejMaYzIaixHUSobTKjT4ScxGUvnT3hkkR//1opJt9u1eRvBW5cu0FOgzEHkjf1EszPphecolf+hkaj1C4xZHmXazUz6KY20LAzvgDmvdOTNUsxmfc87zgcIm27o8VAXo+EMFqDlYIzMhUkEiTa2axqNYM/4FaNLalBLFZblTSMKJPdB4y5ImrPr4qiwUC+/rNFSWxL4d4PH3Ht9jUOD1aIJrJXxYo1I7G5b0b037OnRMMZEUGuyOEbgiWDihaQ0K15DayjR1kLQSJZCqqZx2eXPD7dcjgcsN4kQjLvSU3GZlERrwGtoWxcGVrgqbgSELIrnwqRRgyDsXn8PorqIoEwbzoQDcxzY5SBvIHHD7YwmO9aGiI5BnLOpGjSd2nZ5IZiMuKQrO5rqrTQGNJAGipNPOlVKwYhQcwZkrEXRRow4+WNARBNyGvIEjn+0RnhMJJHHzpJcIZ4JuQAeWVNDsZ6ol3a7hjWiAxoPQEmAxZkXK4BByts0yi2ZqRgPIVKaI3UAmFVOb/3iB+ebDm5mBhC5s6tyLi2WlAcsKAnDGvcf34zD01xYNP4SVa/m4l0REJhro2z48YqNQ5uQhpHJK6A7ADmDVYfvMGNe9/hZFd5fDazVZY9G5wBbtQEWuk+XYGoibQaqSFy/PiUx+cz1wYY140k2WA2tXe0qifHFaE0pVRj3+20cXxyBqfCsBJ/1o0YK1Ky1XAYeGIKAguQsbmqgf+iFibQ02lLK+xqQhtcykTUQC3GjphaNZRTWdJlxX/dpLFrSmvmJ2UqeKFFE2LTCo3sjCIzzHdBBE2t5qg1WqJtmw3IDytowdax+y261T6EwFwqpdgQvDNVjfxk9ci2FEoxD6UQLZURcdYsyb1/ZowBpgtjozXrj9RrrAUQEZa6yRQdzZUcwmLu7ZtgqTbwUN+rRGRJaTPvR1vitdU9U2dhnvhgp5mPryV59e9h1gvFw2Cas43Uh0Q9zEUI3rdCV46UYsE3odlgoTYPI1jAKfv3qp4Q531YKfNiGt0HSSg2/DJNub3bDgJFsaGjMYv6f+/1ioFStdr3il7n0sESbHhanTnqnYf9dweogpgszZiROHDTb50sPpR2BKp7ItvZ0Lo9g+wlZj1hGq+DO1ij4mQT3GbE70/w+xvUwJZO+MAH9GD9gmsR6TiTgTTOQkMX1nXOzkC8AkZ1D8/m6zKo0kNnvIShF2Fdxll92Idd3TL07ESJzlQzX2YDa8U/R3zYhAjayRWyKOuWz0S6jsR/LMHJOFaj/P5PkKH0E095axK8ILeGoTaYS2OeC7tpxzzN/oIZOj4MZl6bU2Yc1+bJ0mwq1KZiLIbU9Yq2WRf3H6q1uvkwgC4LJLBPELrqmVGDMxp0v+Go68hVEjUaKycHjEEggTRmaojkZCbZFuFrmvMu6VFfeeaZ0rXC/nt45KEXoPNsBtitNvI4GD09O/PB6Ydk25A1BHZSGEIyjkGw5KZ52qHVFmrpqydY86RgtHmcuaPukVEbdZ7Znp8zTcYAGIaBMGQKAWrxZDCfFOfkdjuVmCLb2pBWPeJaF/8dAbTZvbZJbH93TCbRDSfrbkLa7FpyZ52IGMU6JaPj4xuGH1r4FKShaC0I8Qob80qif9qHRAAAIABJREFUgxiyj6p5rzg9Pmtj3u1Mp00h4lrzuSK6Q+cJ6mwUUQ3E7D4GvuFaDW5gXtHu9bRH1Od5XqYdfQdq2D2bS6HNzrTwjWVWXbwYmsIqZ2orzLuZ1cGG2IQqFhgjYlKbHgfZv4V48VNac8NC+3U3A+9SwwSWGOZsA6G5nNE+qIogpbGrje3FJdvjM9brkWE1LM1g026ga02ftkZRZZ0TItEYIsv3UmoQ5u6r48CR2B8GVRIBdzkCAmfzhJRqTMKcaHNlc+sWw3pjWvVmcdIpBjcoN9NJ9cKNpjZx9newVjvEmmBNws4MuiUG2mwMKJKh+jEIqSoazWNkM6zYiiJnE0MelsN9zNlM/aMlK1Y/0EI0GaWgEAO5/zoIIZv3m4E1wdYO6l753kJJT8ix9zilaCBlCByfnBFzIKziIjHsBod7IZP9jAt4HSMhRaZqBzYOIqcA4uycgBWdUm1qQ2cFKMaeC9bk5ihQGycnj1mvRzMVFyHmRFWlx+r2L/PZMpp3qcUlVeIMTdlHfwcD2Jqz1Lzs2E/vvBBvVVkMMktFRpMZa7PDvlYrsuyMsfuG33u8iGooookozeUBaZHpRTVJU4xhmf6ZcbP5kcxal/M/BTMJb9OMHBwQVMkhsPM0ndjUqP3BCdbePDcv+gRba0GsyGiiPqVzEK035IoXdc7IZb9ObCxsZ9euFpN7R3GJfS+qvciUK0WuM0W7r1s/J7RUNLmMRTvh2phl3VsCL7UVxbt525PEDJ3DIoe1varWyiJBQIh+Zim6xNg3VaIzbIoWQuxT0S4LwH05vKiudoqkZOdAUZMK1lpdVq6UNlPmZv4nmHSoOZCtyMJK8W7CYuNDRXK15rXh12umtwLMc3Vbs7JMjGm6NBFN3L8gJYZx4PLsjLlOjDLQWiVhe4U284IRhOCs1yBqUuim5nlDo5bke7kXpV3K2UElu5hFCgreSNDZmMq2FWSTmXYGPqnu3O/M6qKUok9FDdDGAR1RoWLnb5krIQhrf9dMhpUMwHGmnHjlb94QPqoSj84OlSduXeOtAe69e487t6+zisG2ljQs9VENELR6NLoxlNXPp4aZrEYxhrVNp9XYKC0izWSaAdtLmxisoeqsKpR1LnzgyQ3H377L/YcX3D5SxjQSAoySbc/XRlVrgiu2fkTsuccg3sBVkzKFyE5BS2AIgEaqeoCdN1EpZp9gKykZazGosl4fcONw5uRhYfXkQBbIg6VcIoGUPUVpsQaolNhIg6V46WVjCs2k+AkQix03c3RjxRjCCk13xuL2tUlStMzIRWS40zi8Cxd3J1b5CMmNSEUlmbfZPJJCQ6LVqkGUFjJSH6ElEtNT9gzmh4R4DWKwN93rtN5Q23h1JIZrkAttmIjjxHqTePrWDV7+mWd458EP+N6jM/78rbtcuy68ehi4c6Tk2QDlEGckJILONLc0kapkrUySgIKE4u98QUpCQkVzZAjK6fHEd75xn81h5AMvb8jXNqhHR4kEOPokH/7Su/zC7p9zvpv55r3KRcugQpFGbWLg9BouqzLVQtOJhhLDQFgd8PDilPv3z/nxu4lPPJN54vbAOJrkO3WWgA8KFvadKruqHD+65OJMOXhnZB0s2Tdn2ydqmwxAoqLN3kORYHs8zY2rHdSpySLgqZRmAJgKzD0BS7tfqKCdnaQmM9IQFkuGWg30LqpoMUAzBphq8zCxtNSwVlcEQussTZam3QYKJ0hvvDU4k9daW6piGX2e1tXslKl1BgmUamf3dm7uGVMd5+sBQCyAy9I0++/XJr6XOHgg7vPVlTJOMlBsyGNlsPso+ldrzZL36rzI4a4W37KwlfZMGfV6KEh0gJvle3dpk9Uye++x6tYBnZXUWd7yvu+mixdgq37ddFAlLKBHEPcdE69YnPVkKbU99CL4cKYnlFrt5FWKXZfXpcXrgVoc8GvOpvH+pgdeiFjSbei9t1cMgDPRxM0gw3Kv+pfZXqgDbvv6qzPMhd6jy5W/WeqEGAOf/exL/Nt/+xcMMfHCxz7Kt9/8DpeXBoCzx8Pwx7wM58CGYk07brA8fPuHugSt91raDJgPYveCPcNt+eNeg3c6W2fP986tf15rxn4sfpaLDzWC/7k+dul7BfC+76OqlrAbdAHTeu+nnQXduqW41+VXQD/7TVcU9Wei7/uv/7+/fvIeSv/zP/6q9ClhbUxzZZoq0zyz2822YIJNhYYhE2MmxYEhrTyO3YqL1tSK0tiZJmFBf6dposxleZnxaUvfBKTTPD3hSp2K3EpxRJDFkZ4YzGsn2Z/LTumOOZmXTs4QE4NHG1sj0EjNp7fSU0FswQh9A/EH1izmvUwz8zSzmyfT8edEHkaGPFjaRTLgK0UTm3l2yeKVYqwL802Y3SDUKHDuURBdUoelNNTZi/imzNPEbpo5Oz2jTBN1LoxDJo8jISVrTPrmoc0ZLeJtoL0YgWiFdPCUF99keoGJWnMc/BkZCl+90agekW4gXkiB1oSY7B5EMQNBY/e4JKtZkdTZN+aybx1A1+suaUqeqBSSydIkGB3f5jzqIIBQZ0P3A9DmiTLtjP6NpwCJLFMF3zmMsSVmgCzS5TQsL7P9ORagxqQvbjzdevOwZyBoM4mmgUXCNDfiMPg02NatTS+dKt28WfSnkXwdxpSWQ7y2ugBsrQNfImZq6AW/Iku6njWAjak0ttPE47v3SCGwOjxYwKTQ6Zw4Dd0boxwiEkwWEcVMmM28DnoSRBCMAdMbalxygS4IfdWGzMYKSClRVRhXa27cusEwrEwuVw2tz8Ngh3swMDJi+4v2JhEQ3+zFUfqplkUXbxMWa6qiM2yaqpmhOi17XA+cTZdM5zvieiDFSBzMXynFwJDTYv6LsxxM5pUZxoFxXEFKkLJr/XEwIPre0Gy99ncW2e9TwUARxcDAi9MzNtePGNYrk9qFPVChahPxhfpqi5FO8w7JIpFFIkFNWmWP0Jo5FQMZtJblfTT2oE08EYuenXYzjx8fsz7c0KobGjqNonpqZv/Kgyfh+b6XQ1oO5p6MUtWYPj0O3a968YZZihX/TDMOTmwvzojjmvVqY6Ws7GVqvcGnF2RePAli71hw5otLZ1VsFkltZtCLOHvD9k28+TYdfXNQ3qTN56enHF478prNG35/Dvb9nfEqfXpn1xj8Zwr+37uvjZ9aLol04Aibau1p6XtKOxhQcHpywXB0aB5xQE9vi4tppl45k7zg8LUmISDRXSj8eTXMZ0/dh6Bv50n28j+R/bWEEJEIpw8viMNIzsmZpdbkN/dAyNb90oLtoz25riN10s+M0A1EwyLnVV/LXZ6xmHurUutMacVCNbY7tlNhNYyEYPuHdJmedg8Ea2/6uhJwz6fkfks2ma+lUudKKdUp9OogY1xAL7B7UuaZaTdZsEKrnJ1dcnC4YXNwAK0uUdQd+BeXifb1aebWxmoJPgTqcnI7gwyoluAsS610001Zhhpq6aylGqApShqEtisM44gGIcbMEloX+mDB3mERA6BbM2+FfmYgwionrFPwAjz42vYzsE/WF1NUX/KlzAQiD88uOX5wyhNP3WI1Gpu3S2WthrJPDrJvNvrZamvFfYlq8SmtoGqMF9HuQaKLDK8z6mIAgq3/HCMnZ4WTsy3XDzKrIZIyhKjGkIqBqo1dKUgILlNVn1ib0CZ4LdHBTm3VwVVbu8n9DLqpt/r3zwnUyL2kQZABysOZOijjJjJmIasZy8bYKC0gGu3zmoU3xGTMOquvuj+YAskGfxoJ4nugKiLFm/aKVnuO4rVJnRpREmEt7B5UJmaGlTXgKQmSXRrnwyuTBxVCSOCR9BIyhAHRCWEHkv02dAN88caqAjOIJ5FJxQy9K61OSEts50vu3ps4vwxcXgRurFfcPNqQYwfZZZ8Opr57qi4+MkEsqKWGmUgktG5S3v0BKydnlbotHB1VxsORkNcQVoisERocfYRbm8fkhw94vJ14cCHUYO9eFgNa1Z9pq8Uk4RiYnIfI2ckxVDjfzYQ5sF7DuBLW+YBxvWaeLWgoxMQwHoC6TEga24sdbVLyRoiSTH4ZlRDqlSbbpPPSWa6+eZkcUBAGq8V9UBCC7bVjWHNwdJ3d7sxDhDw9TaDH7CgwiycvqtlyxJg4unmTXZkpHrCzWo8cHl5nu5t8FmEHpauclmEWbgEONsw7un6DlAfmuvNnh8MX4inQ9u92Zpuq0ewjrH4j2GDbBhzRQSUbFHulsABBIQSuXb9FT/heBhRLOw8EcWZHP4nZ1wtX/z34rzt4pY1xGLl58ybnF2d+HQb8L6CFirORvBRpfq3/j0Y97JEBPxuW2s2r48PDI3IeKKVydHSN1WrNtPNAo0Vd4OCDD1hZngPcuH7DBsEekrS/Fw52Lft/eN+lXDUdX/Zj9mfCniywB4aawHq15uaNm2y3Oz8H+r3w56T7Wklw9qEPPw1Q8nNB+2DLVmeA5Vpv3bwFqpS691scx5H/5r/6r/nW69/k+edf4D/7/T/gu2++yb279zg4OOTGjeugjVIr69Wap554kubS9kZnQ8ly3oU+4LtyPqaYuHH9Oq2ZCiqlzJ1bt7m43DGkyJ07d7jcbq+8A7bO1qs1m82G3Tw5COsgtkvgbHl3JqzQPU4N/Nnf+816zVMf+AC3bt7i6OiIFAJlnpdhYydT2PvgK1r3z9EuZ1/D9XvX1zrLmwD/+T/4B/8lP6Gvnzig9Ed/9EdfrbWwmybmubGbG7vd5KZmbjScovkEpUBMIxoiOQ7EZBPb2SdlfWJnQFtzQMkXhk88W63WIBpubnSz1ojJ5DmlVaZSmOrstG4DLUSc+h6Cm233TSWhcYDBImez2sEcxBqNqoU+FJJOP5NOHez7hBVErVaT5JXZzMjLRBUl5sRmvXY/kbQwHDqbyibe7nUSAqFZ4T+XGVy6gDidDSvip1rco8IkZ1oNGJqnmToXLi7OafOMVmVcrRjc96Yf1B25jsF01N3oy4BZMyUzfYszPLwj6E1TFIFSLMmp9c+EqoXSygJ4pGyGqCknUl7RPZQWDE6BDo7AotWtOGLcX6ZgnlK+I1oj1tP5pCPw/eQTtOKpgVDmQtleLCh6Bwn0SnMYYkBytLSeaJvCmAe6Jr4n0Fl0sL6vYTLz2OaAZwc2zJAaNVlMzpntbscQR8bVaFKEIKxzYhwGUkpXNtalRwW/hyyNtSPQqozj6JsiS9MmyAJWCCbTLFWZa+Vy2nH24CFl2nFweEhMef++iUklAlbckXwi0RsscPBTvMn2BDpVN3C3X4foR7s36yhm+KmNeZ7IeaRia/nw+jVW48p/JtlPT1y6qT7lt7+MKaG10BV2VT0dxx6C33cDdKvunxXFaDwG4NhhIVk4e3QCMZFzMvlegBQSY8zkPDqLMBrYnBMEW8N5HNGQIGQ0pkWSYV4vHnG9tLRW1FmCiYBLPTSYueDl+TlzUw5vXWclVqR1Tzd/rAs7oTN+FJs6hmBG9D2rKCYr5Eo1iaK670r1dDzpVNhmXjqIGSyPqzX3Hx4z0Qy4LI0hJaInBgbdT+jAUi+SvxO9ATOJrSXTdWP7rjdfaLr+qPTqftH6k59tont5Sd4cMWbzUekMPQPtw/4d9z2oT8kQl2OKS8qaOosIl0jIAtRW7WxPT4HpBUI1CdBu2rE7v+Tw2nU3W3d2aq8BlCsALK7PN2YOantJU6yBDy4ldU+Y5hKuwL6Zor/Xfh3mgQC1zJyfXXJw7YgkBi53AGwpjr3Jx/+9XQGYgrGfF080k3Psgac9gCS2J4vQqfXixW+QRIrC8cNjhvWalBLDkJciyRIv/QzxtBcNe1BtATOCeRkh6t4+Cpjx51Kce9qPFaXme1XKjlLMw+Vyu6VMxvSNIZBTJOe4DAz7B0nfo+wnsL01dDDLgPlSZlSr+bEFWe6jSd2NHdghFq2VsrM0NlU4Oz0jxpFrN64xiBlylz5hVQfylvrViroOKHfAy86/KwWioUp0uj3ONkb7FNUCRmozJvMgmTEn6m5HjBtn/oalhUzJQhrkyk4Sohk+45Je1UYrldTTbVtbzFh7Upv6u9bBrQ6Qd5mEVtg25f7bDzg82nB4bW1sHHod5SANex+6/u7GYOyHirP45snf00bT2fZLMbC5s51s6zcPvYSDVBoZJXGOcvfxGTkPbAaAQsRNf8WaH5q6TDG7DIJlb+1sO2seKxEovo4z3tDF5GeigClYDchOgRCyn8uZpju2xxXxYQUiVApIdAtqA5EkgRnpJlIOSBaTqsdGkDUSyvv2XsHuqX1jX+teE5hcM5kX3a4wHGRqLOzuKbpqjDm6j3MAiocyTGgpyNwl6BVha9LekJGwpunFMhEX6UEMnUUxY5xU7J8SsIRAS7jVEgk5sD0+58HxxKPdJVoy126OHB2YPBllD4A6i8UIN9GY5mqn6ODnavOa0IYNiobCtimn50qelGtHQj5cIXGDSrZrbhG5/RFu6nvIyUMebBuXO+f1u0eO+LthYMWM9cONIIGz0xNaAq3K+eWOVpXrhyte/fQXeOGln+PHP/wWtMatJ5/hYy//PGW65PT8Aa3B7qIwzbDeBB9SVUIc3Ozevre6VMyMlW3zDqF7IypoMNCfSA3iQF7mg888zy/+O3+b1//iTwyY7yei14Dda2b5y9/nDzz1IX773/+Peeft73F6fswQIq/8zGv8wi/+Gm+9+TWm3aUNXSQsKiEf75pvjNq+ThC+/JXf4plnP8Ibb7y+X5/CXpmgiiVxiQNLBkrWWkkhocyImMynqVuV2FvLIq30Pag15e/+3f+QBw/vc3x8TGd6LEnIXk2w31mXf+4lVEvJsJzj1c+9l19+hd/5nd/hj/+PP14GpH14tt+b7av5Z9h5zHIOI93v0T7fah+39e/gEvCbv/mbPPnkk7z99tt86Utf4oUXnufb3/6O/TmXQVnZIfs6wT9XgvCVL3+FlBL3792nOKDUHAzy4wTfJPrmwWLS429wP3u6hEv6nu9/oLVKE7P7+NSrr/KVL3+F119/ne1uu8fHrnzWwmwTZ3wqyxCO4IMs6ef//pmJA26/97v/EY+PH3P/4X27d6p8+tVXefXVT/H5z3+ez33ucwjw5pvf5fz8nF/7m3+TL3/5N3jw4D6np6f8+q//Gn/nt3+L3W7L93/wQyMZOOjXK4Llneg1KfDBpz/Ib//Wb/Ho8SMePHjIx3/q4/ze7/4u/+KP/5hbt2/xe7/7u/zrP/1Tdrud199KzpnXPvsaX/hrf43vff/7XG63CzbQP9hA2bZfGvA+tU2/rNc++1n+k7/39/jVX/kVvvjFL/Lcs8/x43d+zOOTE/PV9FpCvQ69sgz9Aej+McseROpf4crP+pMElML/+//y/+2rlNlYNLVxuZu5uNyabAFLKMvZCj/zLjIqY055McqtVS3eHLzAa57E0ov9fXxuJ1P6W2YTO58kVG1M88y02zHttmYMbJWCmW97lHWKiRCyTVVTImVBktGoxTezLN6UNyv+k0in7bx/YahJ0EozT5x5NqPsUmZml2mklDlcb1gPA9mToGKI7pUjzBpMgubNEO4D02YDp/qGrLWxc9bXxW7L5XbHbrdj2k3UYoXxtN2xu9xysbtkni0OOA/ZAAnfbJbJQQcCYmZwbX3ONtG25A4lImZiLrKP2o5YQVyLSetc2y0oWqv56Tj1EhGmqmiMxGFl0hgJy/PsYEHRRkGNcSWdmIm/cAYwhA5m9EbVi0NpesUwGNMM165lbTZZniZSFEIKJElIiG6q7aV2MAP2lJOxQYI1QMUb76oGZqYQkdqWrYkgPvE3qrGWZhMd3/nNs8sO3Wk3ITkxbtbmDRbFDW73wAU+mV9kKDFAMglVWaYKVxpKkUU62T2hwpUNXdQ9Z5qx1y7Oztidn7NZb0x2iG0+Qb3tkOAyCbv+JOZ7hO69E4w1UJdfSwdXVRdwkmBxOrEX3y41Sim5TKsgqxFJyUBRN9yH6EALi+Z4aboWrRYEtclfChCS7weqS7ofTd2bxsDXXhQFZ7qFIXO2NbP2IY9QXEoqRkkVT3ckmTQ35ZE4rMjjijgMaLJ9LEabBjYxuntvRgxItOKeZL5sDZs21RCYY2CuBrzOuy3j0Xrxaurmj501s8hrg3hcvdg6CdFN7buACWMpVjc0bpWqjbkUA5bE/RCwoswYoSZBVmB7sWMYxqW4CE7/NoDG9uAQfA9fihIHajAAIvTr9nelg4q9bECWWmopcnG9fmtCazOlBmI2zyUrqDzhSfv681JEG2WhSnuh5oDRwhhdkIrObmh91Rot3tmF/ToLxpCZ5tl8UuI+R7D289kL8l4xqL8T3cj66lSoYZ49DQeZ1f0Q/CTre5zSJ6pxuU8d0EgpEfx9qF1qfOWvzursBZl4sebkCZsAI1D9+4XOXNy/6+qFOtoldwYq27NrPvl05qmab5t6cS4d+JD9nhQQhmhn7SIhQ6nVgjpqrVekwQ1rpXQp+vok28g5geheNzllN+J3unqbbZjRz0hVrx+qyygdNGmVniATggFZEtz/yp9ENzjtfhy9uA4u0Q7OYkoiltB5cenAh/k/2B61j6fuwEnH++xc9bo6eCIPngwr+L8HlIzEEXHAo080m4rJYRrWUhdn3w4wz5fm71aLmTNjjGDUwUlpiBRQa9wsJRCT9QY1oAMFqd7cGtDS91WLUzX2rNCWnzPHRJTIrRsbVgcr7r1zj6nYYMv8iNSp/g63q7WJvpljVVejU6BjGtxg3dZs86lzcZsDk7v6uUZksZaPBRHl5vXIOo88OJ05vYTtVNlN1VNHA1kiq5iddSvO9jFWTAfrJdi12pQ5eS3BftjV7RN8zxPFPbCEENWAGGkcPnFIHguX5zPb0riYi1s3FIgYkBRw1rYl9KE2wJFkXqJlmqhF7P2QRGvRvdG8Hg6C5GiBIWq1UBRFcgCN1Em5/sSazfXE/EDYTpUyCfN5ZT7ZMZ3sKBeVNjXqbqKcX6C7HW2e0O1DmB+iJCTc9nNmZ89Gr/JV+6bIwgRIeUNarVmvMpsbAx958g4vv/oUzz2xIaB8/94DvvGde7z7aMfO2dY6KUwOI4jJsUNUUrJQkxgtXGMQT1WKBlRFAoMEDlZQKHz/B4/58TffYXf/+7TpHdBjmhZbY3rI+md+lVdffoaf+2DgyXWzd8ElU1Ejo2TWqzVhXNvgoSi1NEKdSQRSHtmFxNsPKvceZT7xmb/B8y9+lieeeBZtwq0PPMsLH/8MBwc3jMcjxubJoQPrZicwSEU0+l5h6YM5mIdYiN1KoplBt3oAgjRaKETtiWaNo9tHfPyTn3Gwo5ubO+s8GIhsPK49sB1EOLp1h8/83Bf58t/+9zjajDz1oY/wlX/3P+CnXnqZ27fvmL9rEDpJpsfAd56FkdQaKQQ+/bOf4ZWf+bSxCxc5g+0Vi6+s2oCw+6QGIMZMVQiYpUJyoLM6O8VRMb9uA6VCUH72Zz/NC88/R4oswIRcWYfBTxK8TnhfgEWvJ3ttIPb/xGi1+mufe43Pf/7zyzteW3V/t7YMLrqth4EDtgnY/laXz/TKwK5nAWtsnfXr/OIXv8grr7xCSonT01Pu3b9HU9vLbPjx/nbdqhv3C1Ll0ePHbDtrxs8uwYb6aLNaKdhGFQJXBkh2HZ0JLMv3kqWuXWTY3lcMMfGxj36UV199lZs3b9ozEVdUtP29Ufc/MhP1/ZmML4urJtte6KAYSxUJ/OKXvsTTTz9tRAu1wejv//3fZ3Ow4V/+q3/JG2+8QfIh/CdefJHf+PVfB+Di4pJP/vQn+Z2/8zscPz7m/PxiXytpZ0R539nXw3JN8Pxzz/KlL/0iT9y5jYjys5/+FL/0y18ipcBuu+W9996zUKsr179arXjppZd49dVPsdlsroA8+r6/O7O+2x0sDKkr9ekzzzzD7du3+drXv85ffv1rfOGLX+BXf/VXWa3WV3GnXvX5810q6wWP2C8/3f/cXoMrLAz3n9TXT9xDaVdmSqlsdzPTVJaitsfOG4U8LWBST06yJBbf6KsnqPmEv6fdiLKwk+zLmypAVJdoRG0G5szzTHW5RsSipHs8bfRpPpKcGlwtJUwyEaMf52gTdiqLobAISKt0J3grtnxRBrzBtiKr+z3MtZimMifyMJh3Ukw+nZTl5Z1KM/8X8dQBsQlhq2bOF4O4oW9D5+JNFlYcu1NJrc3YWKWwK90EuEBR4mgGqh3ZbKX5pIkFNAkRZ3z5ASBh0Up3cESBzqI1Qz5jiukV6ZVR0quBSvTvCTVmNuPaJHU+uY0hmAxF2KPZdPmE7Jlg4JRza2pTMxCss4t833Z5gL0wFWMZaKuUeYZpYgwBomnmk2TIRqttaokaMUTEYyaT35/e8C2IejB5HQDVG9iq4ABTCOYfJuLxqqEg1cCJ7bQlhszq8JBVGu0+UBlyNumiH4hGxTdt8dxaX2zLBqEO3tRaLbmqFCsqxTzMdNEJC9LM/6K1xlQq24sLLo6PGceBYczLQWL1oacbBZb12ZvjQiN1ZpxeUQqLGEsJjDnksoKOvXYAU4C5KMGn1lMx6eowZPvxqm+CDtjGFA3wA7rBnXrxXLpXTnDwosnCMpFgHibF/X+CJ6QBRv/1w25YWSLjdH5pht21oDhdeC5Ijt6ENpgtGrsD20Hck8qbHkWJrRJ1n6zR004kgNneGhPI5EVWIJW5EufGNO1oDTabA9KiUVcWth6d6twPDCvaVcXXm1nbIl1XjWvc97/uzXdtZtTdJCweO0Z9D5yfnVNnkwporcbG8glT83vf5RES9yxJK1TiMvWkN5DN1nLtDpvsmZ37aaJPC0MwxmFIbC8mJNvzr80GDYs/kniqiOMjxkbyX/s4zvblXlj179VBT/d2087O1Ctnvk2hq7eouptJ42A+b4o1AtQlhhYU7ZP0XqaIFWrdhHr/vlj0PL7HtmbM2r5nLDCX9bYOBNueN5dCiNlBHwcj+rO+QlvXBcASrX0uAAAgAElEQVTqXhF7aQQiPkjwc0T7tXVTcx+euOdT6IAYHQi0BCIJimo11ottnv5s/SYKSyom/v5bmlldpB+1zbRWUSJoYK723kpnA/teypXmKIq4b04j5eR7oQFwxuKty3XY/mdrau91IahWb2giPbghxTWkxm7Xz3krpFuzdz8mZ9kE2Zup+9POOVJ2M9Nui+REwPyjUjAQusctiy2eRcIa3XQ2iA14/GHRlve1Dzn6S2T3ArUnkkKiBQfHCDTNpLxhupyNkasggy5nMdX2vNY9Bxvux1CN7RxsWFOqkqU4iGIvWY+PFpfkGEvIagQrVg3UiaIcjQO3n7rO3e+/w8nJBevVASnu34MORlcg+vAJjShxMfCugOQBnSfUWWOtF8PNzsjUk2axoVNFiY72NKlcGxMfuLPmR+9tebxrrNcQa2UlgpRKjHa+1NbXBnT5VvV6S4IuEjIlmCwJdYNsq6+CmkFrLSZBC2om+XZ9EZ0jqyxce/KAh29PXK4i68GaZkGQwZlqao1UyFi6aHVJbUoGXLmcrTUhxOr7vIPPviYkQIy2H9TSQAIhJ3RdqdtAHAMHH4b5jS3nZ4V0wzxEbWoelhqXGFAttNk8AalbWjlB0gMk3vHXfMYiAx1W8LOmT1qVAZGChhUyHBEOdlwris6BF+oHODlWHv+rwt3zLW+8dcLhZsMqXycfQdLqvi4RgiItIKGRibSI2wjY80maKNETR2MjaWBAWY/K2UXh29++z+og8sFhxXA7I3mEcGDnSn6GG5/5JX729H/hbHuf3TuN+zsDc71yYgiZ9bhhWxtlnpiL2VZoaJCFFDdMF5e08TZ3nnqeVi545oVP8uMffoseHqHOTH3qIy/wwktP0ppw/PgdHvzgm/zUyz8PQfneG/+Gp575KAeH1/nu63/GnQ99lFt3PoykyOmj+zx890fc+uBHODi8BVp5dP8u3/7mn7E5OOC5F19lODziqaeeR0QZhhUf+NCzPP3MC6g23n37hzx48B4ffu7jXL9+h9Im3nzzG7zzox8grSLB6vZXP/MFPv/6n/OBDz7H8899gh98/9vkNPLCxz7OUx/6KE2Vt958g7ff/hEf/MizPPWhZzjYHHJyfMy3v/N1bt95ghu373AwXeOXf+XX+Na3vsZuN/HxFz/JsFrz7rvv8N3vfIsXnv8Yc5347ptv8NyzH+P69ev8yZ/8X3z0pRf5yDMfIcSB737vu3zrja/z8ic/zcnpKd9/601efPElpu2ON954veMw/aDsZSiqwm/8xm+Q0kgHRUop/OAHb/HNb36TO3fu8NJLL7HZbHj77bf51re+xWaz4cUXX+T27TtcbC/44Q9/yLvvvsuLH3+RcVzxlb/1t/je97/HW99/i59+6ad54oknOD4+5hvf+Aa3bt3i9u3b/OVf/iU3btzg05/+NP/7P/3fuH7tBq+99hqr1Yp33nuP119/nReee571Zs2f/Zs/4/nnnuPa0TW+/o1vcHp6upzfIsLl5SWqykc/+jFe+sRL/JN/8r9y584dPvvZz/Knf/qnrNdrXn75ZWJOvP3DH/H669/k/PyM3W7LwcEBP/fSSzz19AfZXl7yJ3/2r9ld7vjlX/ob/Iv/84+5uDjj05/6FJfbnX2PF16g1sobb7zB2dkZL33iJQ4ONkzzzJtvfoevfe3rPP3007zyyitsNhtqLTx+/PjKUM/2G0E4PDjg1Vc/xVNPP02I8M/+6T9jyJnXXnuNg4Mj7t69y1/+xZ+z3mz4whd/gQ4Stta4e/ceX//aN7h//8HiR2XPL9JJDSKBT3ziE/y3//1/x//wD/8hzzzzDF/9L77KK6+8wm63Y7PecO/ufW5cv8nnf/7zrFcb3nvvLhcXl4w589rnPsdTd55groXXv/lN3nrrB/z1L/11jg6PKLXwzjvv8L3vfY9nn32WG9ev84u/8AscHB4YQLSsN+Xxo0ekGPnIhz/Mq6+8wmq14vzyEvm/WXvTIE2u8s73d5bMfN+3qrqrN7VWJDWiJSQEEqCNTcKSWcRigz0YxjfMMGE77DsYL3F9HXM/3OBG3Ajf8cw4xgF22BjMNmDAYhGLsIzEJkAS3epWb1K3eq+u7q5eaq96l8w859wPz5NZDV9HFdE06qX6zcyT5zzP//kvwJVXXsE73v4gMzMz7N2/n1NTp7j1Fbdy/UuvI/cZJ0+eZMeOHbz+9W/g8ssvJ6XE2ZkZfvbEz+Qk0xr1hcOH+fwX/icz58+zYf0kk5OT9HpdXvPq27jyiivaquzx73+fu+68kyNHj3Jyaoqbb76ZTp6zuLDALbe8og1rATh79iw7duxgOBqx1lS/eF8vOqC0OhgRKmGqWEUgnZNIQ2OT0KybGFcFk2RyGUlRmreAmhc3TUEwbXHYSN3kS5FeNDISZIJAoiormaQrQu+dA9sUj/IzSslHqZpyCEYyY+h6SeNIAYKJij5Lg55CakENYSVFKb7FiEOMEVMk1BVlLSlbPvf4LCfvdiS16ZI4bblGNRi3AophJOY9pihMGGvEONckhlUlviahMRmXwjaGWuQ9tQBKIGBDNIlenuHytWakZXwkaQKbJCmA2hhI6vPSNH9yaVL3CmVE9vEQWzmjNEVK1w1N4pg0VXVKWO/oFgXeGCqTxAgz0cwb2uawmTBbtDhTkMmIoyAyhm9IownTNgqo5EaKGhPEHwKURVPV5N5gM0tKHpOMTJu9pw7i79XId4xzbfqOV8+TOq1JRAwCHjVfMcozrEOtzYLFGk8M8jI7DGQ55ajCGUs2NobPvCDviLSqkXRVQQrozEvCRp2kCWjYRQ0IKNI69aPRRtE0BQziW2OaKr6S6xuVFYPBkIXZi5Aind7Y2nQW1CNFDcrl7tJQpVt+Rqv/1cLfeZKmvbWnvEnK8lOjTW0GU0JYa14mrqNRRWdsjNw5sBGMNPMJ2gQ5jFkzaraIX5I1a/5zViSNyYCpI6p0IwadfGuKT0gNuGiJocZbT5blrK4OqEc1ncwRYwUm4Y3Do6wjInVdiozUCZMgGTU+bXyQFJRsGHey7o2YxBOpYoJUi9NAQhL2ABNrshgxzlKVI3yW0807CojK542gjcoai64BCqRfFt+3lGTaiXFQV2Ci9p+SWhXrioZ1kkIiWmmWU4xqpCgT0tWlVaKz4GSW6awYgxusTNSNTgJ1qiU+b2s+CQ2g45wnpoB3EgNv9D1upl2N5E6aRcFLrREZg/eyvl2m12abSdIayyOloOvRqAeKAO6gBs0KojQgnEPT0IzBBhVm6F4ouLgyr3SvTyGSfKKqRoz1xjTlQ9dm0qZJZhGXTNgUNDBrDYnIdZMkfiHXlTknskoFb8wlwF4D3NDse1g9b4CmOdFmtDG0aIcsVsDjZo8wKSkV3yrGF3XyK88h6DnbaPytglfJtLQUuU5lLCXdU10jGTNOgdVm3xWQWWClKGwPbfyaiWiMIlcNCiaDLFlMIEUPVkBWmvNEJ2rGSLpnZSM2yh4bjSHUkZQLs9EaWW8NvNfAXHJLNa1N1wdR9hrnLbbWz6rXapv1rAwnp/tQUrC4MbhNRlJAB6sj+mVJkXlilD9vlIVtrVe8SNhd6DmFSsbWKtU1OVoyArqhcjhRpErCZQNSmhyqACbI/h0w5JmjXB6JlNdkghNorSJScpSZKJJxm6RQ98ZQ1VH3jpKQjMqvVHbcgui2va8CJ1lMM26xUdIek2PL5euYnTrL3IV5Nm3aROHljPTNsMit3WtcIw+3ZA6SsSKzdx6TO1ItdZhJDaAVqaNKsBTMDUYNXZPBOgFHvLVcvrnD4sKApZWSyfExvAOLBKTU3lFkuQDMIRKNerNY+Z4yBVB2SEoEm2StaySJNV4YQrXeK2SPStaJvKthZyQgGNav7zKYrVhdXKXYPE7CE0LE1xabr0lOEwnrBFoOus6NTrVSCMRa/Z5IAkKFtMZascLwMh5iBSbU2KzAdGQwFYeRYrxg/KrA0vnAaCSG4jZzax4ySYFdm2j9JJ2H0IfRHKkwGDsunzUNtRLI9Vq97kkqVU36ebIJzFhFNhjRG4MNG9fxshsjF+ZLVveeZnF5yL7j5xnvJfLrNrK+Z/Am6YDOtHuhKOkjCUnvNSbDWvApUiXlx9qEj4ZulqComVvpc/D5C/huh8u8p5jMSNnlJHpYPEy8nCvumOe1/cdZKVfZeyGxULX/JER5r1KnA6GmrsUM3yQBYL035OMZt995DyvLQ06fOsbmK27AZz01yo4YB5ObLueON76XUCbyfAybWx753H/jhltfx1XXb8c+Ynn1G97FYHWFhdkZ3vCW9+NsIRCzcRw/uIsbX3kPS4sLGGvo9iZYXp7nype8jLvvezdnTx9jbGwjkFi3fpJffee/Z2zdBqrRgOWFBY4c2ssdb3iA0WDA5MbLGHvye8xePEs1kF4tmMTJwwd5+6/9DsbBzMw0ySQ2bN7K7Xe8gS1brgQLp06e4Pv/9h3e+vZf58prr2c46EOCR74je26306PIPC996TYuzJ5n27btvO719zIcDqiqmq9/7cvcfffr2Lh5C5/6xMf4tff8O/I844UXnuND//EP8N5SlTX33vcAn/zk3/HgO36Nfn+Fh776Fd773t/i0MHnOHTwOdrJGmtsq4Swh//Thz/M9KkzAuJdfjnPPXeAshzxpS99iVe/+jXceeedpJTo9/t88pOf5M477+T+++9naWkJ5xzPPf88D3/jG2zZvAXvM27c/nL6/QEb1k/y/vd/QN5b7/nudx9hYmKCe++9l7/6q7/i7rvv5n3vex+PPfYYH/jAB7jnnns4d+4cE+vX8fDD3+LGl23n2muvZWFxibe/7S10O12OnzjByvIybboI8O53v5ssy3jiiZ/wkY/8MfsPHGD7y7bze7/3e5w/f567776b229/Nf1+HzB8+p8+za+9+9fYvfsZVlcHvPvd72Y0GnHZZZexfftNfO97j/JHH/kwR44f5fz5C7zv372fufk5IHHzzTczGo04cOAAU1NTvO2tb+PM6dNsveJyBoM+//k//1+8733v45577uHokSNce+1LKMuSb33rO1p7aM9G4tZX3MoHf+eDlGXJ/MI8P3j8+7znPe/hrW95GzMz59iwYZKvPvQQCwvz/O9/8Ic8++yz3HzzzaysrHBx9iIPP/wtHn30UapQXyoAYk2CtwaCrP3/RK/XY2Jigl6vx7Zt13N6+hRbNm3GWcNLb3gpU6dOkucZf/Ynf8zxY8cZn5jgTW96Ex//+N/yx3/0R5w7d47VlVWss3zj4YeZXL+eouhw3XXXs7C0pP6iUjNdc801/MVf/AX79z/Hb/7mb7J9+8s4euwo586dI9SB9RPreOWtt/Lme+/lumuv48c/eYLf/dCHxFbEWTp5wZ//xf/Jv//AB7hh20s5fvw44xPjHNj3HItLCzQVYLfbZevWrfTGx9i4cQOnpqfZvn07f/RHH+HczFky57nrrrs4fuwYf/qnf8pnPvMZ5ubmeNc738nmjZs4/MILPPDAA9ShZnJyA7Ozs8QY+cvFv+TAgQOXqFxevK8XXfJWDUrqUnyGvLXk3msEuRW6pZUG3vkMn+ciK/IqqTCXSCeMoxkwJp0gBf0R9b+FOVCL4XdVMyhLyrpiqDI7i1EmkhMqscvk8FTJm1CdkQkIYpjqYqTrDZkF0zJvogA0SucL6L8fhIUkDB2V6gSRm4WqpiwFBcx8RuFzxoouHZe1zY9MV3XqZgzGeznUU2p9kIwRKZR3yirSz1RFaVIbGcWorijrSg2xBeAKUWIac5+14EXQ4lzkuCofEyqWptdoO2O1WKcZ2qvmV5ljKcm1GjXblsSrNQlUXes9tVYi0b3DdbqQBFwyCjA4a7QgXfMvafS3GGUGJaDxhyIJDTTqBFr/Lvo9Y4rCUgtJQIYocjyqkSjGVFoFQv/N8kKYQE5iz5u0LDHzldUYtblHGQFYNLVIGUDaqIXYOjfJhM9ZlUYa8V9yhkjN2NgYnaIgd5lgmc608rak0h55Po00J7WgqLONL4ymiICy3VwrO7DGiDzNZdLYsCYlHJZDVpYWqYcl3bFe+04mBRqNkwYrKdjqrBzTrvWnEu8xowaYzjkxOLZOU6oUmE0i/QgpETAkn0ukvXMYL2BlWUZ81mFsbB02K1T2gbIXFdxqZA3tdxYdd6gr+e+mYAfaJAtdK3VK2MxRG6gUADHa0CVj8HkGzjBa7WO8gIgJyJzIvlCZY4gCxqRYE0JFrEtSVRGqUkEaYX9lTUOYjLIfmwZRQM8Ua2RR1qRYkaoRsRrhbSCmmhCgGO/J3hCFAScG+UlBKtNecwtgJIs1GdbL+jJY2bdiErsBBSYiss9427A09a9ra4g1uDwnhES/X9ItipYU0bB3WmkqDUBh5RlZATmEKq00aeu0GFeKc9D0irUHSVsIqpdMYxzt2hQO8cJDP0MDOMualHLD6d9rAGnb0LONnjVom25UTpTWgGD5dmvU5/ZpJdlbnAJUdYwY9X4ThgQtQ8pF3UxjopGwNbScptxpZJfQJFOllmFkUNr7Jc/DGolVb+6lMUaYklEKmktlY81e2TCVZO+XZrThFjXS4KT7acP2kH1eAXJl7VnEZ6d5p2DNJyLUcsaFoHJJ25jPI8mCDmV4NCCdeuup/6HszUaBEQvJKgB4SZGInPdNPDIGNelW4AsBaXLr1GQ/UVUliZpQK0Cqa6E9HnTfFunIJX59CtgI2A2Wxq8jtSBuDIGotYRFzLurUv0YjZN9xDsxeB6NqAmaMKt+YK3XjES+Jy2+G4DOGpFR6GSFpPfMAs4kic/Waa1AqypntgJ2F4XIso13NEEmJCNMS6v7TGpYzmtSBHm+gRRrTAqEUFJXpdwPpwCWAmzxEm+xkELbaTc1BE7OD2PB5XKWbljXY8OWSZYuLjDq93Wtrz1neQFk8IMmhtZB2O1oYABAlnXxLpfasJVligwvRJE7Jj3/5bzU7SpJIs5Et2Dr5oKqXzHfByEpR4ajQL9fMigrfR8FYG6keM15H5WdnWKiJuoAsvFEkfMiJBEJRmOoayGsijQ+tDtLFSwOz8TWHFcmqrLG5urFGAW4sc4IsJokwCEigxKCso69vls1mErPPEU1Y7AkPV7W2Dv6DtTCprRdue+mjHS3dBgf95TLkdFQzp6EDig1hak5qwlgXI5xOYQRploixZECRwHSkJQkvVkK6hxjOhhTgOth3ATYHs5P4MZ65F3LWLfDZRvHuOnGLVxz2RixLpmZW2T/4Vmmz/RZHTb8yqj7tQCsSebCYjKurEfn0FCbiDOOzGRkzpC7RLeI5EVgZn6FI/tnWJo6Tlw9QgpzkJYR/x6Pv+w1vOSO27jt2ozrJy1d3wRPrMmBijyn6PSkToi0csMYEr3eGHfceRe7dj/Ldx/9AePrt7DxsuvaPcgCm7Zcw5bLXsK508c5dmgvW6/exvrNV7Dv6X/FZTmvf+C32TB5JQd2Ps5lW7fR661n10+/yaFnfwpEJjZsIstydv3sER5/5DOs33AZ19/4KrbfchfDquT73/w8z+74PpDodntcc+3LODN1lIvnz7L5siu48prryPKCp37yGP/68Bc4cfggdVULIICA1d/+xucoOl0WFxbY/fMfkwxsvuxKrrjyGp7+2ffY8fSP2HbDTVx2xeVccdVVTG7YxJHDz/HoI1/n9PQJ9u/by/nzZzk9PcXXvvpFZi9c4BWveCUnThzlm1//CrEu2X7Tyzl77ixXXHEVr7ztNbz0Zds5cuQQW7ds5cYbb+UrX/w8X/zcP3LD9pdx4/YbOX3qONdddx2vesWtbNm8hdnZC+1Z1mBKsj/JQCMlyHzB7t272L9/D0tLS3z7O9/i6quv4Y477uCWW17Brl27eeihh5iYmGDbtm1ceeVVbNq0mfn5eb71rW/y5M9+ysXZC+zdu4fBoM9nP/sZDuzfz223385oVPKpT/0j09OnuO2227l48SLdbo9XveqV3Hffmzl06BApRR588B0cOHCAT/3TJ/HOcfttt3H+/DkmJ9fzhte/nuuuu56ZmRkWF+b1Otba8TwvWLduHXv37sUYy/33P8C9997LzMwMy8vLvPzlL2d+foHnn3+ejRs3cvkVl7fA9223vYrFxQU+8Y//wP4DB3jHg29nYnyCRpbnrKEocnrdLuPj4+zZs4dPffrT7Ny9ixAC83NzfOGfv8g3v/lNbrn5Zq6+6mre+pa3sn//fv7hH/6B/fsPsH795C+e2UnOrhtuuIGVlWU+//nP8Xd/97fMz8/zzne8k4PPP8/ffvxjnD9/jrvvuZssL5ibm+NLX/4SZ8+cYf/+fSwuLnDjTS9jfLyH0RqpqSV+IQ1OGcSNnUICzpw9y67duzhz9iwPffUhHvnud/j5jp9z/OQJPvOZz/LEEz/hpptuYnx8gl3P7ubUqVPcfvurufLKK/FZxuOPP86XvvJlrHNcddVVHDp0iNm5Wb75nW/x5X/5CisrKzowNnS7XRIwuWGS+958Hzt37uTjH/843/72dzAGjp84zmc/+1l27nyGW25+Oa9/3eu44YYbeOHQQXbu3Mm2bdu4+667yLOMqVNT/O3f/S0/fuIJOVul4iIBt9x8M3/w+7/Pn//pn3H11S/hwIHn2Hb99Vxz9VX83d//PQ99/WtyRhYFE2PjbY+QZxndToder8ehFw6xe/duzp45wxe/+M/0uj3uvPNOvPc6FLvkTH4Rvl50hhJJCn7vxOi6SUlxar5sXCZyIu/x1tNEPK4tDil+QxB2UVQ9ZgwCFEQtmhv6eEqJsq5IwYg/heo0pei2KqdzWJ9hjSYnWE2lSdJONBHlMUUxGNUocRAJTTs+14lwTKJjbgeyKeGNTC0iUFeVpAw5j/UZWZ634JkkAYmZagNQoQ1eUrlHa4RqpKiIRhoXkQQFpUNLwdNMlolNoljUoZhEgxvnybxS6o2YH4vBpiCuxuu4WVsrKTR1mmwl0Ul01vLrTSvmdOrZvASN4iFFiZwUM2W5TutzXFbIRM/IvW9kQwaZ0htlobRTeZV6pZYnH8E6YhI/pqAGts1EPVqjkhddI0kz3qoa6gpHJCs6JCvMgMxZskIj2QNqTGsVdNB7IZckDXHbUK8BnA0LofH5CojngbMilwla5OZevHXKqqK7bh1F0ZGJYu6EuaAMBAFhQiu1swmwVv1n+AWUXHtkGhPBdhZvjUoTER8GTYJJxlIOBwz6fQYrK2Jk6zM1fUwtG81bQ+G9eqag69O0qXPOiBW88N8iJokeP9N2oblmgpi5ihTJStJhlGK3DoFY1rjkGN+4kbzbER8OxG/D2QxJhcjkGaqpsjwLSbAgyJ+nnY4YrMZxCyOnar04GkAEkzBBRireOVw3Y1iOcMbQHesRSHRdISwv5N1wzoB6s4ECRUgznRkrTKbW68qqubWY8qYknzuFoECEAI4t00OvxTvLoN8ny3I6Y10ikaoBLxuWiBGA09jmSenidF4YYm1DatVXBoK+W83atQr82WajNiKXxYivnc88SwuLlKGmKLrCJEtC7TeIh0mKGsvb7KFO35kkhUpMgWgRUDI2Ue4KSGfuEhALaYSawgCUqSPeGPUI6pDoZbmcKbpHO6ffVyKdBIZOjdwCck0QCRi8Apu6UerWJmdMVCPGBiwX6VXSsAFNozGJURCgwmQ5MUZylWrGFHFYSa/UkpYGuNFmtPn1Rqapj0hYajHgMyepYlZifdH96xeBLWnSLGJKbbVxNwpq0XjupDWZbzvZa86RFvWW669CaM8taWRlPSRljcpebvXz6gACiVePVZCJe0wqNRaWkgCDrQtO+0xMSjgg1kHluJJeFYORtKoQ9axu5JxGwIKqxmQZ3tu2sbcpqYmwwUQBH72RM6oOFXnyCpbI3hVi44ske6dNl4JwOqDR4tR68Xhz3sv+hPomoexIfXfrOlDXGgii+2+eZVgvwzRjjTCYAySbmtesfZ4NKL42jE40JvrQRC6L9L0F9VJUdpyyPvS6BezrYlNJTBIwUMUADqqyptspVNamIFkUBm7zrRNJ9lZdN5IIG3BO99ygLDhxJ2uvwVunylRho5kGPE4BC3hvGTc5l1+1mYN7p1leXGTdunVSA6IS90bS0PyPyo2jrnHIICkD1meQagjCDjVR9nqpCTSQxRrxCxIrY3nWUSRwmzb2OHdxlsHygLLTFf8dsfugHNV4K7Hta++bgt/W4DJLDDJUsto0ibefJJs2KZEpJaLu0amsSbkj1VE9BFWaXkY6vYLu5CrDlZo4HsicZqAmSEZqtjZt16skOag9gDfKym7AFqs1l+4XQWRhyCXoLp/EX0vrklQIGJrHgrS1ZHg0Ua1G8jyRHGAiMVhsnTBFA1wHqSX8hLALYwVhGewkBk9KJZJK5mmLj2QgOYGzbYY1kZRKbHcdPpbkoxUm1hVcdfkEN23fysWlVWZWR0yd6zOez5MXnmsvL+g1iYMxCgssav1aBGKVSHWFsSIxDVZ8Nx2OZKR2LJzDZgJQnzy7wMT+jO54Ticfw+dXQ9YlmQLjxiiuuYvtty+xuPIcK1XN1CIMgyHJTi/PptNlhDDv61jhawN5xg0v3cb1111LXmRMblhPd2wzmy/fTn/5AinJYMIXYq9x021voCorUl1TlcvMzp7m9NRBbnr565g6uo/TJw9x8233UZZD5s+dIruy0K1chn791SUunDpKijW9iQnyTodquMrc3AybV65DJ4N0e+Nsv+lVWO9ZXl6irCpSiqyszHHowB5CSBJwkCBWCRMNRw7t43Of+R8Mh302rt/CzQnyPCcB09NTZFmGs1AOV/nGQ5/jre/4DV59+110uhMcfH4PZX+Fqi4pq5KlhQUu29ojLwpmZy9w7MQR5ubnmVg3zr6f7uJ1r3sT73jw1xkfm2DH0z9hvDsGBvY9+/OWfVJkGc/t280Db3kHb3nLgwwGQ05OTcmJ1tYOUa/Z6s4u6wB9/VoAACAASURBVLU/6BNjoq5LZmZOY61j3br15Lnn9OlTHD16hOFwwLp1E3z7298ixsCrXnUbKUUefvhhqqqi3+8TY2R+fo5Nmzaxfv0k8/Pz7NmzhzvuuJPt27czNTXFmTNnefDBd7Bt20v5r//1q9R1Ta83xpkzZzh65Cgry6tk3nHixHGWl5f4lTe/mRAip0+f0ZS0Zm9phkiyp5w5c5oDBw7wK2++n7GxHl/7mnzv8fEJrr32eq6++mq8d4xGg7Y/6XY7TE1NceiFQ5w+M023122PElIr0m+HBCsrqzz51NNYa7j3jW+kDoH5+XmOHj1KjInx8TEmN0xy5swZzs7MiNm0mDBJ39L0Tghr/9yFc5yaPsW58+dIKbF+3TrOnDnN4cMvcPzYMV52441gDFWomZubo6orlpaXqOuaPM/J8ozWq7Opoi4BkX7Rd0l+rqqSfl+8gufn5llZXaU/WKUcjZidnWV5eQXvM/I8553vfBe9TpfhYEBVlsQYWVhcZHp6mtXVVYqikOFQXbOwOM/cwmzbQ7T3EWktut0O5y+c58KFC4yvW0dKidFoxNmZGWbOneMVt9zC+Pg4zjnued3rqKqKqq44f+ECJBhVJfsPHOD41BTLS4ta50sFeObMWaanp3nDG97Int3P8uyePdx//69gMZw4cYJer7dWO/9SjYH+2nA0ot8fUJYlLxx+gf6gz8aNG9t712ANL9bXiw4oWWU1OOe1P7drjZDNJLI3V0NsrPgAJJXupEioS0ItE/aQ1AA5NOWfFEDtwY9Ecca6kZREjHWSPqWfwWeZpMw4LxGjJklilTOk1BTCUlwU3pF7bUhqaU7rlHBJGlerBVEz0cagxYIWnFEKbkmKsfgsxxW5vCRZ1v79BhSDpJHnAiqhjScKxJESTj+byING1GVNXZVqIu3aFy7qBM0aKd69l4PQ+1wSTBrjOGOliUDi36UZUEAnCkNJ0jUiRNNOs10ztgQ53OMa2BeUTZBIxFoSiYw3IrkyHud7YKz4rGgqVePvE41p5Qcpyn2VIl7ZJtpMNc1TTKldV1IIywzeWi8ld5QpckrKZClLMgNZJ2sbO2sQ4BCVCSYpDI1zimeZtUZD5Vd1CuphY1qpSrQyJRVmjHymiBhhpqqGSsC4FA2DqsJ2eri8I2ljCdDCx4pxlfhCNIeJAm7eCGATYmw3DaPFYdRJuPT9IptqfYISQGNAK/KSsj9gZWEB6y1Fr9PGY8ufF1lm1iTItQ1nUnmmTlKd+O9EI/4TBGnCZf2reaKlNQYXoFZM5YM27lVVsjIY0JtYT547IOKSZPVY54hGwN4YxCdC5K9yP0KopYhMylBEPl9Vl5JSYwUMjnUte5AxmKApgAp2pmAourm0SsslnV4XW3iyBLl3xFrN762wBaJ4GpKUJWiAzDb+b5mY6zth3jUAsI3KmmvekaiFdkytD5x4iSD3rQr0NB7UYampscmugQPykrZ+VjYZZXtIc1bHGotRQC+QrDwL2y4aiCpPs2jDkZKuv4YVlFhZWcEVOVhLFSoKBRZqI0wA33itWYvPnHqj2NbjrtkWG/AkOieBCGskHF1vzc7V7KY6IDAJb8QPzKo0OEUx3M6a9YQkTRpt1Jr91zkr73SMCmhFBap0+hfrVsYJijU2XniXnGHGGFwS3+FyVAKy1q0xIsWhkW+m5tb+IhVbS7ZfvFZ59msGqZY61iJ9Sijw1oBdlwAPLRNE3nNrbeuFE4wyGmLSe9HIw9YYRsbAmtwNfSclOZAYG8Vc+4eNOH6rLErXGIaYajlrYpKUJS+sY9eEGhjxznLGqo+hdrWmeepJgUDdX0mXsBCRoY/WCSlWhBRwqYkXTi1LBpWOhQQOOVfLUU1dRWLReAnqOWXWWCuSKMcaaKV7ubGGUClj1sv+0yREOidndgg1ZV1jrFvzmnIOQtUCeVnmKQel+v01jLkkrEajIAqyGJ1VeUZMbX3UDLvKqsJlmcTah1rejwTRJpKx4mmGeDtGpJYxMRFiIpSJUAWRdIdKpo8asBCNpcYoE0uL8pQIxgDyDjsXqUzExYQxTWqnADwhrZ3NGPT3U1sANz6Ick2e3GZs3LSesbEZLpxf4LKtWzG+wCFyKnkpg+yrKnlv9i4fapyNoAChwZHZjrD7EDm49F5SHzS1komGaMUPqvleAL7jGJvMWbg4YLChIM8kKj3GRD2KlCaIiTnyHlm0Moti0C1JeI5aBxYywBGIzRlhyVhlW0UfSVXABvXCJICRIVgdDK72jG/sUk0NGawO6Ux28QqSEpG6Tt9B4zwmk4FXDLq/aiJiiBEXBAyOtjHmNm3NJs/KkowAL8HX8n7lIJTdCl94xjfVDOYMsbbEHLya1MdQYkYJq/6KsVzB2ISxOSmUEPuyc/tJBHAaQMpJxiOspQpMjUCCOZic5AtMNonvJjpjNam2TEwGtl27kTOz8ywduEC/LDl8ep6JrqfXXcdlGzsUxuGj1K3OOFJWYnF446jVskJqODHVLpH61ltDFWvyzDBB4mKseeHEAhPrPNeMe+zGHOPGwK4Deth8K+tedg+3Liyy3D9Gv6yZWYUqNeCdsAWLbgeXeUIZ1D8xcs+dr2VlZZnv/eAJMicMwYmN17C81BdwOxjxv8Lw5A8e5typacYmDPNzZ9m4cStXXb2dOtSs27SVa65/OaEe4l1O1u1hM0teFArIKlO9MW03cna4zhjWCBUqqSx1ZXWJn/7oEU5NHWXQX2XL5svZftOrMMYS6po6JAH9NDlNAm0sz+74Kc577rz7VzBYCfTB0OutI88LYpSheVlWfPfbD3HrK+/ijQ+8g9MnD/PYd78te0IzopRpBOPrJtiwaSOTGzcwe/Qi01MnOXPmFHff8yaOvfACF86do3fdNsBwzUuu59zsBQzQ7/c5f/4cc7MXuH7bS3n0e49w4uSxtk43OviRIU7juRfafZn2dJczoSwFvNmwYSObN2+h2+1RliVVVfKzn/2UAwee43d/9z8SY2Tv3r3tQKqRDa+urLJlyxauuOJKxsbGWVnps7S0xIED+3nf+97Hysoqzz77rPQ6JDqdDmAoig4Ay8vLnDx5kle84pUcOXKE+fkFnPOXGI//ImiSiPzoRz/gT/7kz1heXuYnP/kJIOFXO3bs4JFHHqGqSk6cPMb999/f1hvXXPMSLI4i7zIajugP+lhrmZyc5MKFC2vFAYaUDHVVr9UqTb1CA+RYRoMhnaLAWUun6OCMlWsztMz55mtifJ0khSY5J4bDEb3eOGC57rrrpBSKkgqS2h/yOZphqZXCpX1ujQS96f27HbmfYqfjJeSItVqs8ZWTa1kbhgz6A/76r/8aUmI4HLG4tLh23TS12yVfSeqExv8yXXJvmmfU63R1zV/611LbL49GAlp94QtfYGpqihACzz//PL/9278NSG+wuChgUuN1KYDSGf7lq18ly3NufvnNbNgw2fYCzhh63S7GGDZt2MDiwgIbJje0Q7D28eoq+uUfjU+lNb90vf+LXy86oOS8w5nGZFTT3IxQvr33ZM6RqyE1SMEijag0WmVZEQJq8qqsjNZHQFdflOMyKIiDhECI5MYYvMvw3mE1WSrRTLRTG1UbjBR2mfVELWkaI1LqmhQidaglXjlIIpV8XmU/YWkkVykk6ghVKcJray1Zr4vPM5xeN40cJEncb1IwyjinzbuwJkyKLehiEgzLmk4mCGxZDamjTkZjwnkD1ghDSw+EkJJEeDsp8rOsQO6OJPKATN5wrp2eKSrUmjyDHkopYWPCBtAQNY0c1yS7GNYQzhQJ6tNjvUP3U7K8gxiGGkwTIU+EqNHtyawZThuDyAKiSmBkAi4dV2rNaa3zUrzK3VewQ+npAYgio4t1CSlivW8LfFtHfJ5R1kKrN8oGagypG6DK2bWktKgsBLm/ojd3DZCGrBNrPbUWc3VZQ6xISXx6RmUQKZrNJPkNj/MWUiAZMaA3tUi1ovrpyF5oMbUU0TEp0OfFkDYaKWmledfD85IGl6iSM4HZGA0rluYXoY7k68cxmTY1BpWbeoz3ko4YIk79RqwxZFZAiGbDS4h5s7GGXEEbSTgSHzDTAFWazliXFTEEaoRlUI9GOOcpxrukVAs7JFiS9aQUiEY8j5oEI6u7aIjiS4bKLkIMGPXnqauKMta4aNtUNWuMFENBQLvQ+qHkmMIz6I+oQ6ToZhjdl0CazpjS2jO2Dpc3EbeQqeeY9VYls1b9dwCfY2uVVsVIQIDXZg4QGyAsCcujyHPKssRa1x7QxERu7ZqkKEn/1aRwiFF9c1ZGUhzhrQKfQcMM2qbaUiFsz2Z/1GGLfg6R++SZZ1CW9AcD8vWT5NoMGS9AsDOWigC5gPTeCMME5xTEEfA9hiQpnt7JRNSJbMPoZw5JpUMhANJoOU3Jawz5BXCvSbk0nVgJVZDP7lqQwGmx53Utyv1NmiKIeKHUwiSsgvhXOYykRLUTGrmRTkEXSTJLrdSlLiuReUoXrY24nBgN4PPLYFST9rV2+OvkVNkMLYunKbj1PSOJt1ZEnmtTWDijctQkE/hmUaQUscmpWbEODDFtMZZoCkL5dsSE9bInmwTJBvX0khSwRhIYiepXI+yi5rN77zG+xncsyav0rmmEtZKQVgKVy5r2npjURBibNuQhgRjjpjX5WMJQawiFsG5AEsqUARnkrKrKSjzQvMUMIdWmTfdM6o2U7Bro1xjjN952wqAWJjXJUpZlm+zjFPC3Rgy0Qy1AtMsEyGxYmI2pvjGGLPOE0UD/XEE06usXI9igQzEtFpuodSP3wVqvnkny6yLlAomdD1qbRFJcA6tiaiTwkvRkrMNFqSWywjAaDKjCEOMKkgKJMSWCEW+KpNJAIY4bBQcgS45UysCqjrWeU8jzSTLYawd8CuY2e1ZqZNgWSJ6J8YLNl2/g9PQSy6tDNhYZ0Vti0Pc1RUyoCbWAIcY5CaWoLdFUJGqM9YQExjusyaD2WNMwyJxIApNpGeY+qaQZR50Q2Zep2bRhnMXZORaXB4x1CjreUiUZQJUBYhUprEFUZRpGYoQJLoCSMCHqEMTLzkr9mIikpN6B0WCsMGpCgOjl/XY1kEcinhQqik4Xu65ksFDSHc+xHVnfVJrK5VMrsTTJEmwiRCSzJgUykzSlqIlSd5gk70+t+40zkmCYsARqUnCkrMBnlfj31QETDcXmMTU+j2vJywryh1qsCrA5DCtsvYQteuqtVBHTrDLZe2AqSH0w41pvJhKVbDwmITK4LsYHTMjw4wW+DIyXjsu3THDTdVs5c27A1LkVlocDnjs+S2/M0Sk8GyccQqJ0SDGK3C+fyKSMar0jax+xdSWgu7FY76hTReYc411Lf5A4cHCWiQnP5ldNkGXr23fKmA5u/Bo23/o6bltaZLE6TxkcF4eRykh97bwjjwmXZVgdIPs6cMedr+Hnz+zm24/+G87B3Pws73rL/ZRTxylruPHWN/H8nh8x6K9w533vpBoMcbnl3/7lY7zmdQ9S5BN858v/jTc9+B945Wvfxs+f+BpFb4wH3/enOJ/RG1/H+MQGik5P1mKGAr6OFw7u4E1vez9/8OcfJ+uM4QzU1TJL87Pc88a3cftgyIXzZzg/c1rXlQAxXgONmmG5pDEGqGsZGMkogfn5WVaXl3jf//b7GGM4M3WSGALv/o3fZtPGLeKB2ckYDfpaKypYQGC1v8KxI4e57/5f5ZWveC0hVPzg8X9lZWWJvft2ceurbmPX7p9TVYGjx08wHK3wZ3/xf1OVkVCW7H52J4PhKgcO7GbzZVs4eewI9WiAUaKB+L42dgDS37XNU0xgVA6rDcnZmTM473jve9/DYDDEWsfJk1O87W1v47bbbsNaz8TEBKurq1IL6iAgpcTyyhIHDz7Pm998H//lv/wXxsbGeeihh5ibm+Opp57mwQffweHDh1lYWCDGyJNP/oy3v/3t3HHHHWzZspVvf/ubzM3Nc+zYcYR9dIarr76aBx54gJ/85MdMT5/irrvuYteuZ1rvQEj88Ic/5A//8D8xNTXFyZMn2bhxE1NT07z2ta/l2muvpapKPvu5T7cAx+7du/ngB/8Dn/jE37Np02Xs2PE0Rw+/wMXz5/jjj3yE4WDIho0b2LtvHw1LqflZ00QUmJAax1nLzp07edc738Xdd93N1q1b8d7zhnvuYdu2bbz97W/j1KkpxscmWF5a5qXbXsp//+9/zdLyMn/5//0lu3c/y1vf+lZuv/02rr76Kv7hHz/Rgh3yc9N0roFZDagm91/rNf29p55+mvf++nt4/etfT56LB96hF15g86ZNTRUm77QwWVqA5dChQ4yNj/PhD38YYwwXL17kC1/4vKyfZuDzy19J9pqjR49RhZqPfvSjPPTQQy3AuGvXLn7rt36LN917LwcPHWR2dlbWjVmrDQ8+/xxvfMPr+cBvvZ/BaAjA3/zN36zVi4Cw6zSZvP01w/LKCl/9+td5+U038asPPMDOnTupyop/+tSn6fV6WGv54O98kBdeeIH3/sZ7ue/N97F1y2Uqu2zq2fZGt/citZ6XL+6X++hHP/qifsPPf+4LH0067ctcJswc5zWu3uF91voByfRVpAbDqoYAVaXNczORJAprJzXyFtPKi0KSiVGDSjbm39Z7bJ61DY/zHpN58AbnhdZu/RpLKil7IMNAqDX5B2GN2ETm80u8P0z7cyJRx5JhWUrzZMDlGd1ul7zbIcsczmc6fV1rYKL+aDxHUNiEEMFJPHtTtMaYKEcjhqMBo7qSjTqq+VxKjKqSuqqp6poYBOzI8pzCd8i8mHAHhH3k1RvGOANevIJItBKvpug1xkqYWlKmEtJYmyRyjZCCyAuDSg+JxCCifuNF2hgVTBJfGul2BIS4BA02ijgTaYxQ14o0bS4xAkgZlPVm9M+q0a4arTeyNABDoKoGpLrUuG+3BojkXryfk/jqNIa9Qt2XQrFhJpGMJsAEgpEyCafMGdQ0PagkU7s/8ZYSsMpbS1WJDLLT7ZGsJTNW1oQBnxuZHiogYrSubKIcjVJJTIPWG2nEjXXC0tCpacMyc7p5hhAp61oYVQlCXbO8vMzywiJFt0PWKdY8Q4QyINI0XYNNsl+MkcyLcT4NoKENVzJGPbAEyCjrUpo2Y9TAusaEyGhUSiy4spNGdc3qYEBv/To6RU+SBq3F4LSBlabLqsyvSY+IUeUZoSbVEjeeRCFKqIU+Lq9sgrLWoglSkDl1sGKGbJKh08mpjWFleZU88+SZx1kvxtoIwNYkgDXX1CQvWCDPMrIi1/tmFY+N4hUVpSnwRCqNRE8NGwlIClY399nlBcOBAGwTY2Py/XQKaayYRxvbrEd5J61xRGOokkqBlP5TJ/EuSqGCGMit+LZINDfkLsPrviNgsfJ1nMHlnpWlFVZWB3TGxoi1pkDou+CMxLS7rMBmuTJtxD+JprFNSSb6Clo55NB1SVkJxhGtER+aWlLwGjBJ/imVoqXEoD/E5jm5zwQcqEVCXIcgZsesUcO9ICnCZgGRENsG/BZJVCLhadg/RkBAbaJk3ag8UH+ulGXaX1jGWSt0ZlKb/OWMaU3Gm6h3DC1NWz6GbZkgre+RceKF4jKaBMtmuioAy1ph07BpZC9IDFYGmKLA5U6uTWnnjXyv9eWzVospI/u1GtuahHp7iddOilFAFmOJUdiZ1hoBnpIyGlpPLINJkSLP6RSW5bkBvtsVr7Y8kzPVyJna+AY5L2y2ZNBETFmrwnpR4Y4+Ay+ZzyLdrktCXatXkDBTTQveV4SqooyVMBCqFQajCmsdReGVCSz7oFWgt3kW1op3Hibi1HPMq/x6VOrZmiSZNaq0M6Qovj4mtcOxxr+nrqu2sKzrmnIwordunG6vi3VoU6ZScyP/dkLqlHaV6N5hjBPDe5LuIQLiW+u1f06A1XUn9zPqIKWRoxuAUOGdJYwq8cfLCllH0LJYGomaAZLTtMRmOGEsBDkXo0rAnRWmoNPBgtW1buVWyp6pgGeKNTYJY8piic5xbuoCfqzDurGORLsbXSMJ8aELlSgo9J0mehKVMD+NbYE25xwpBZKphVWRRN5Pw/JLIkHGilccCqTnxpB5z8ogsLQ0Yny8oFeIAbiJCoHqu+9S3QbGeGT/DDbiklPQ01IHARPFPqBh1sm9U+iD2oAx0uDWxqgMqxZfy2SoXc3y4gBjPEWRKWNNpXtOfO5sA0CnREy23ePqWvyYrNXzbVTrHmIhSiy9ae6x1/2lDhibpDbG07DDnHPYLMIAsjFP3s0xmQGnKXfOY3yBcQUm1RgrEnqsvsdEYfmYLmK2ZBDwCGWpilhT9iY1QKeS/SiuYKvE0AjjtqxHLM326Y8Cq1XJcFgx2euycZ3D5RZrZbHJck9Y/SwxWT03mlcqElPzjtW6YBOFNxhqFvpQLZZsGfMUk4nkJsA5DTLo4brrGZuAYukCy0sjFstIlQQUJ4lAdXFhQSwh9GzvdDo8/M3vsLS4RKhqVlZWOXX6NHt272XhwgyDlRnOnzrIscN7qcqSweIKq/2LTB/ehcm7HN77Q04f38fs2ZOMRkNOHH6GCzNHKUdDZs+f5Pih3Zw8tp+zp45w6uhzVKMKS+KFvU9z5IVnmTt/lhAjc+dP8ezPH2Pq6EFOHX2Bsq5YWVni3PkzHD64h4sz05yZOsHqytLakArDsBoQQsXh5/ZofVDTX12kCiW7f/4EJ448z+rKEkcPP88PHv0Gp6ePc2b6JP2FRY4dPcR3Hv4yz+99lqquGQ77TE8f49SpKaq6ZGrqKKenT7KyssRjj32HfXueIVWJuQsiifrhjx5jeXWZqi55dufPGfQHnJ05w+c/8wlmzp4CLNe+5Dq2XLaVHz3+KBcvntc+Qs5b73P279/L8vKieMIZi3eeHz/xY2ZnL3DxwkUOHDjAwsI8u3c/w+5nn2FudpaZmRm+8pUvc+jQIQ4ePMj8/DwLC/N89atf5bHHHmM4HLK4uMjS0iL79u8lxsjM2RmOHDlCv9/n0Ucf5Qc/+AGrq6ssLi4QQuCHP/whMzNniTGy+9lnWF5eYTAY8JWvfJk9e/YwNzfL5OR6brnlZn72s59y9uxZvPccO3acp556mhgDu3fvZnFxiX379jF18hTD4ZCFhUWefPKnnDx5krIsOXr0GHNzcwwGfU6fnua5557ntttuZ2Zmhscff5x9+/bhvOH7jz/O//zC51heXmb3rt30V1dZWlpm7569fO+xxzhx4gTT06c5NX0KY2QYe3FunmPHj3Pu3AV6vS4//skTPPHTnzA3P0d/0OfJJ59k565n2Lt/Lzt37WT69DQXLlxgZXWFp596iunTpxmWI06fOc2TTz7JU08+xcmTAqJ97nOf40c//hGrq6usrq6wf/9+lpaXeOaZnZw9e5bp09McP35cB46yPnc9u5vl1WUZJhnDjp07KMuSlZUVjhw5wte+9jV27NxBInHm7BkOHDjAcDgkxsjc3BxHjh5hNCo5f/48zz33HHmeMzMzw8zMWXbu3MGFCxfYt28fc3NzLC8vc/jwYQ4dOsTi4iKHDx9hcWlJfm9lhRMnTrB3714y73n44YfZsWMHo3LE0tISBw8eZM+ePSwsLHDgueeoq4qpqSl27d7FU089BQbm5+eZmZnhhz/8If1+n2eeeYYTJ082jWt7LlprODtzliNHxUT9/PnznDh5kv379/Pkz56k1xvj1Klp/vlLX2T24iyf+qdPMT8/z8rKCnv27uWR736XYyeOc+bsWZ555hmmp6c5cvQoo+GIJ59+mnMzM+3Q88//jz//f3iRvsylFK4X4+tX7ntLMt6qkbQki/nMq8bdaKFiaFxqQggMh6VMuMtSm2lBl5NOYcU40lIHASDqRgqnEzOnzTXO0Ms6YgCd5dIEOnBGQC1jLN4kkgkEY8W8D0Ooy9b/w2gD0uo1kWSnZvYq5qWBsqyp68BoNKSuRnp452RjPZ3Qi70pxmshJo1BlYL4+5S1sqWkUNMRssiokEYjVDV1rCU1ryzba0ZlNBU6eo5RponGkGe5+kGI/0RZV8IKiKZtakwmjB1HAvVCEIkPNNIFtMgUrmESOV4IlwBAGs+coI4VKdRYnwstP9F6ZQkS6lqfjMYbSaYKfq2IJmGjeDyRpMkQaZVV7w0pqAFpxvV+Gm+otVAWlVEklENCNcAbQ5F1SMZhMylsOs5TIfIqhxZNZk2G0oA3qaFx6Hq0DRCINBix5WoKSGCcUw8vaWC8tYS6pCxr8m6PvOiSjKXQybhTY+oqBsrhSIpnqxImnXrbhu3XxFfX0kSa3AvwpAl7RllmmYIwdYyM6hKXDHUdWOqvMHv+PC5FeuNjFK6QIjMi/llGC0cja8IYI/4RSidtzIHFyI2WrWe1OWoMab11xFiL7FEn+SHJOxyriioGqlGFKTLWTW7E2wIx34s4kxNNFGaMc+RZ0b6H6D6RQk2oR9T1SFIVNf1mNBjgkpjWDoZD8X9yFp8QWaAXWkcsJQGqGOuw2h9R90e4rqdwjqLTkcbXybPPoiHWNVWMGCcpYiLBNHTygsx7kS5qM5OsoSwDLutgY6AMQ3wQ1mWtPlQpBEJV0ZhWu8wTUmJxYYWxyXV0OmqIbD2F9SSCgswaKx0N1nqs8wQDte59BsQc34pUjFjiUxQ/mCiNXk2QJktZmCYEkvpC2cxiMsfF6XMMq0B33TqIYoIsjbj6bFmLy8V7y8vpgUHWYF0FdOeWgzEJMJ50wpQUMKqi+NxJ8pdVFoiRP6NJcKGqWFpcIe+NUxQF6q7f0sjFl0/M4BPCHm2Am6RMx2QM1DLBjzqNyZIYbAvoJPO3EMOaTFToMMLkUPr8xbPn8eNdLt+ylRAFUTdRfGS89eJHZC+hqP/yeaoJeHlj5Gqkyc7ynDAcir8JsZ3pR50UNkbaIACztzBzZobOuklcxwtD1bq15t2veRFalUYIO04bR93HjJFEQmu9yDJNjSEnpCb1TVvjTgAAFiFJREFUzpBSwKQg0jZj2ukuKeGKjGIMzj4/TTa5nm6W4TJPp9uTqHSjbj9GwgK8c+KbFpVVkQwxilQsxCDniJWUS5maO8qypBwOcVo/kJKC9CJtH41GDIYlncwxHC5zdmaBTneC8YmcyfWTwmBFfWhSQJJdszX5PZFOtyDPMkmzjInhoBRwKFSsrq5qo+KJ0dDvD3Aeup2iZRgPhiPKctSCT6PRkLnzy1x57VVs3ryRPMvwmcEbD1ZDE5xTELORJaGAr8H7jGZeGIPssb45AwnEWGIj4rtGUwckYSzHCmeE1VfXpYBeowpjHPnkevF6s5bGS6vxxZEzTwY2WAOFxVQwqgDjyHNPCqWwtoxD2KL6HiYBolNoEu/U3yuJZNHYSFVHahPZ+eQhbNHhplfexFgvJ3eFgPaxFlZXLCmyTFjB3hPwhFSTZRkhOQxeBx9D6mqIjcJu9CliEQ86mzQkxSo7FQF6U0x4oHY1Z+cqpk8ts36y4OrNXcY78o6VNQqiRjJvcB6yokNmnAwJvdeSVByhq1BhCGTWUniLcwHXgM3WQBQpuo2RInNEE8hixHnH0EZsXUIMLF9cZTQyjF8xzlieyxmWWbJCmONOU+WMScQAyTcSaYu30MkTVvffvLAYVxBMjnXCTnLW4XKt1coRqQ7YwmI7BRZHqEfY2hGzRLlYUWQZ2ZYMYzJAwjCwgM+wvkuKI0xdacSjgrNkmGIzJt8k76nJwU4ogJRIyUKqFEQKmDQk1HOYcokwmGOwdJHVizXzF1Y5OnWRJ3ecZM/RWaoAmbW84iWbufu1G9h25TidrKvr3wKSUoh36kUUJPwlOuqQJLQmGEywBILs3QnK2rA8MCz3A7dcuYHb772K4iXbMcU2ke/ZdUCBqZfpH/4B+378c350eMjBBcsgKUs21Jw8ephEYFRVlKEixzJKpexjDZuOSLm8Si+LXLe1y+UbHJ0isrIc6DrHxOYOLgXy3GFcRgwjWTfOUZVDJIkxl1otiK1CSFCXA2ICnxUysIuB5HJyA6Mkg+V6pNJuZ0nRUcZIrMT7KdaJkEpCIwWKMkx0maccVtqZ1TpELBiq8sC5jDqK/QahwmWWotOhqiPVSPqXQMLbjIClrGpcEuS5CVoZVSNiQ6I2CeszyiBhJ8LEloThzDmqQYnPPa9+zd289zffz8XZWf76r/5fBv1lBRGFbex8R6xQqKWmMY5Op8ugHGKtIbMFZTmS+xpKqWFdLv9da0oyhjzvCKOtquWMignnRPI5Kgfa7xh8JjVRVVUMRyNiLT6ARVHIwEPDIYxNjI2NkaKh1kTTq6++mg996ENs3ryZj33sY8wvLGCd4+LFWfUQ8lRlpWEkkbIsMcZJUEwKVFo/GmPJsgxIXH75Fdxzz9285z2/wWc/+xn+7Xv/Sjkq8ZkjRqiqkfwda8nzjlSMRqSMzokvXVkrEKd1f1VXxJjodQoGgwEgXlpW6+CkvU6C1u6lqdObfi+lRFmWpBQoslykaXXVDmucExa7856orDhrjA5wpPYsikKCUeo1q5s6Roosw3uvAVB1+z2t1sCX/hvNPQMB0LMs0/4+MBqNyPNc+oukARsxinIhy+R76RC2KArp4auKblHQHw6p65puUWCtpQpBGMpWlBEN66nWa8vyXA54YxgOh2RZJtdTixWDNc2wUogxkHR9GrwXlntV1zhjW2ZWCAFvLcNSztCG2VbqOyuelFGY1jGSqUdkVdftAPLCzLmm9Phf/nrxPZQ6kspjvTKTskxlM6ZlyDTMolDXVJUkotE0pzGq1CkoQJCkoa6VRBtqBRCUveCsNr8Wm3mic9g8JxiBrLpqhG2NJQBlFNkEJuJcTRUFOLHI4ktBgnCbtsBYT2P21kyIqrJmMBhRlkP1VjB4bxjXBDHL/9/eGa1qsh11/Fdrre7v23tmzswxHg3BIEhQ1HhhLrzyCYxXQt7De8HnCHkFwShE8hJCVARRc5AkhuA5MeeczOzZu3utVeVFVfee5G6TgCj1g7kYZmbP1/11r1XrX1X/gmblbGPwdiXPBC/iL8FeXJQopszuWfkZWaPdjDIKahumFR2DVhtjv49DU0zpialWQyeLFK7Liqw+yW4AfR5jmS2ykt6XP0IoO2wQ/Frdu8V/tmcZW2S1W2s8zMcX+jiYzDD088xajS4NO6f4zfieavR0HxOS3HwXbE4KPloc6+4VIm6k2qc/8E0O7wnXdsY7/bClFgZHuSYgPjXouF/X5UIti2dhCyx14b7v/j1gZ9WTG2uWU0Q8qpnmaWp7tC3F/wXsc3gFxjyminUqR7YYD/Z3D9qlCS3K9AsSvja+yWwoS21+ncVNnQ//IZEI6MxbWpZlRY9naniLWWsNUzfN1jis732iUa3StfPmp2+gTy63Nyxlie9bolLB/SaKJ6a9os/8HbjExLhY3UHDC0T9nXSjfej77hveHGybH3xcOI5JeFPdq0q9aurZ7Q1rtNf57dIQsipDCjfLGiJDQfGKOHRi2r0V6jy0G9rH+Zk2nWgtXJeFCC+wGpUKIbyt60IVoW+bt9qosivMtrFKi6lTsKuxHOtP8UMnM9YihK7GgtLK4tPYxoyDrIs3S6luYFzEq0FiM7ASPkjVhcH7z95i7Uq7uVCKsNL8ml269IMobqiLCCwN2opglKjAISplxJSCtxCqHLWDFt5f9bT+nXPGfTWWaPkcW+f+7T3Ley9Yrys6uldDiK/Jx6TOWnD/qqg+KmJne3IUkbphsCk9DplajLU2r3grlVkOg0W8+zWEBc9qz9MU+dIWVAclrkGqIHpU7PhaU8vRHhpVrYaLK+CVSnNSC5gOiJa/Q/A6Ki2OKkP36gnRKtYcMNbr1dcdEffiikqnfU5qKzFBi7OSTIggotWzrdTbF82DuFKg756sKF41N+Y4F4+jSFsiOHA9X0/RG/PKEJNwkCvus+QVjce0qsgDGDC99bKUyEhbTOwUvNph4cxWuTk+p1BpFGbxta+YsAjUKYy5U2eHy+JVAvLYYllafXxexY2gTdSTREMRfONxbx+vspPqX8aYLri0Vr3gIto3FW+vdgFnAO6jVJo/k9YUH0DglUiqk9IKo89zzzoGSSiGjckxU0VVvEK0FD+wakzj6z0O9B7o9T48iMVoraLDfYMoQm0FWVYeQsjBog27+mFFSpj5SzkruA5DzVIqNs2HRAD9GBayrr6uqO8Lk8fDRDH1VnH1qXMWwjasMHcPcO8fWOczZFkOPdC/hxB+qhGt55MmCzKgKz4xbkzGPlkWOS0JfJuMRCDqSZ4mMDytpyEwI3q2TwjCr/36+3z/Bx9xd/ea2+vnoMQktbGjvdMWHyxwtEhiXmVTqazibaBTFO1GU0+4gTAQmjWvIg0POCIh5gM/PEFSIiH0/vMLP3m+cfdGuX9Zub2pXBZF6czugdDEfWS0D6/SqQWzAert9yKdpRllNsSUaSOEFM5hDm5s5s+/zMpSvZrmXh+46IXdFpTJ+t6Vu4/uufvkgfp+5RLPSGndFyYrvv5VT9qJGnL16jdPtrqoXqSgNQSWaL3uXRlirAjSBOoKu2IPE5WJrO5HNKPtr95Uxl2hjlvasyvgfprFJiKLC0UCKjtig6ILlBWTCXYH8wbqitDBBlJegFzDL2tHZkyGY0HkGVYfsOWWy7NX2P6afTc+//n3+d3ffstPPn3D9z++Z0f5t//8lN94deH95ysf/MriVUlTsPIAcvFdXhpNFrDGLMOvaxo1qoqKekJS6SxFeHHtzFH5lx/+lBd/f8OXbn7I+qtGvfymP89theUlt7/1R/zOT/+bT7Z/5k4H33tT2MbR6u0xxVIrU4T9/t73hYJXfx0V363w+n7jez9Smq68+qAw9zvmunolXsSspW5YA7ph+w7Ryqf7zqDj3vnik/xMmFOY8w5rCzIHjMEwrzz2eC724KHRwhzTIm34/lHcZ8rjcQUr2O7nMJGBmccKfeynf42OjWqxZtcVHcbDfWet7tU1LHzDpleTF3FPRE8S+QAff3Pd1kPNxY7DJeeIbfvWGeLBxLPrM/7kT/+M5y9e8Td/+1ds+93p2eP7J+zbnVdEN19vzCZ3d298HZvKPjbfO0ZUi4vQR0dCRKlxLu19hyGPVcLi4oG/yu71eQgAFp6C7ttYsUiq2jEUIM6wb9++BfOK6efPXvDVr36Vr3zlK3zzm3/Nv3/3X31vidhDpIYA47YQrT222+1jOw5qEae4aEKBL//Bl/na177Ghx9+yD/+03diujhhwk5U6np8dH//luOsTcRwEG35NtGJD0eIGPvh4SGuP+wjjrO3TR6TE0e7nJ1JukNA87/r3oD7OxW9GvYThrH3PXz3o1UdX4tVYdv6+RkBbyWvsI2dLb6b+KqYqnQNK5O4tnf9qMBj30e/Kk+Sbtt2ij97n+f+vL/z8w+z7dp8/73fNg77m/30RPU9dsTALA3RBvza7jd/Ftx2o/Lw8HAWMdRIIB5xQe/dB5DECWkfj59FMR627fz7vjvD/bad9+qoWPc3C/qRSO3dtVxxH0v05xKgvyC/fEEp2rtaW2jrhbYU1ur1ie6hgAshNrkfO7NrVKwQAaELH0QmbJoi04P+oSNMnP1G18UDsLZ6ifBlvfqBz46R8JUWhwK1TpcWY1YHVynUGHnfSmQMoyJFi7eZ1MhsD3waggfzk+3hPhziB7I0Wruy3lxYFleRmzRQY8env2mIMn10aqkxEjmMSSHEJq9KehgDG56lLxXMBtf1Qh8Pvnh2v1c6Q4QyZS0+aYbmmeepnvH3eykuzkkccnERp4mbWM8S80LMhTXV07XIjR/V/SqmjTAwHacQpmbYtNNPZw5D2kJpFw4DxUNkUU+Ocph3m+G+KBpl6xKtceaVYDVaaexs53AjsVXcn6kfPhzRKoJ44Dv75qaltdHWxTNT4j449+oCzxLq+YKclR0c9wFXdA+j0Y5Sj7L+yMBg6q1k6l4+pp3SqgcA0wPtMTtTJ+1yQxGvAKjVq/SmuQAx7KjIER5UWSUOH9HWgBztKuVcMO2YyGd+Ih7q1UD77odk9w8aLKXS5+DN6zdsr9+4n9elYdVHLvvBzxfAo/98be474S+VtwAWfIM1OWooHpX0o31JRLBjsxHDGi5dzDBYDr8s+qStN1yeP8cQFvWHX+VCr4VLWzFrWF0Y5u1mjxPiYrJUtCSttdJEGOIVi4rQbUIV9gKrFRZAiwdGu/kY4GUpjN7DPN4No2VZmWOyh0hxrGFdB0tdvWqsuMlpbd7r7BUq0VIjh1m2b67VogVMvC1FzOJg6Pfb3x9vV923jXb7Xhi7wqbD1w+8em4yuUTLh1Wv+LHw9qoCUwfHNDnBKzmkih80rCHa0ci8UPzwXEr1dp1SsFqQpXH/5jUDo62NJkD1h6NJZQLbviFreL8ck4QiCJTiZsEmwuhKae4x5x4xGgKTi05q0GKT9D8NM37zwOPInJV2tLcIwxvL/XhYvZVK7WjRefxZcgTK5pVbPSo+XWcpPBxTqMJwWPXI0R5964+m22LCHu/wpVT3rYt/q+Zr64g309tFH4OWAnHA5QxuPAPmlTtM9TXeos3VHt/p85oUN8I2Xxs7/p6rKsuMazY722OLv3ogJdqEYy21aE0xb091mwz/bgYTqwsqK0r3NkaMgh8oVApFXIwUcbHFNAJvnWxjUoZy2wpX9T3TJv5gYue+fsxqMQTE23o0DLrn8KVhmk/eFCn+DMe/V+Sc6kgESXN4i+wxAW9dr1BWLuszWls5AnphRoWU7zdjuBCFRFVKEWy4+I4s3to84omI+6biz5lOr16c81FAXdcLcw4E8eTFsvF2272oMEQai4pbsyNQ9adVQqh/3MPKKTqpeLJp18MjRxBplKKxH0yvphvuTzd0Zx+DJivTYDVDdaePnWVXbprvXSbV11GDirEX5SKFWXwv9sQfjO5rrdQ47IrHBoTHg4i3lxXz9XDaRPugRQg19DDELYhOXr56wfqDj/j449e8d/uSeuP/VzGj2oRh0BYXippgNuixB1ZZaLUw4vPPWSBG2ZsUBvMUSFUUGYMiLQ5SC93eekFNEW5X44OXCx+/3Zi7Mkdz36hS0Dq9Si/8ZNYhbKJcxRNAtQhFhscKcYjyacO+bpXiwk1Y+yC1sits06u61iKUfkXFWBYYE1qD6yrcvd6oNxW7Ni5SqX31akrMM9AINEW0spty20DWqLplRrsguCfdBIvskBi6VaRCKYotHR0rZdtRBlJWFxu6V1hM2RmfvYXLjCEs4r/KA8bubeXDKzKnfUa9PEPKLcyKyluPFwxMPvV9ojZ8dNwKsrjQSIdaEbvSVmUyWF9uvOyd0a988Qsf8KUv3vPjT7/P6115aw/8w3/8mPc+d+HZdeX20mKvvPE1YiyeZKhGKxrVLx530CYDn8hcy8CsUW0wivBshTGU73z3I64vlS/+YUHeXxFpUC5QXsH1C7z6vT/m9z/7CZ++/hF39/BfekzvdYHheBy5rNg2XJAQQAazLrT1ik7l9b7zw086c6ksrKz4vS3LoJWLR9ym6OK9A8UqVE841FmAeRrjlwkLRleBLtS6oDMM9QuUKZgVhEEVqAygMYqEYOxWFoKB9BBEYJQZooUnAh4FgUPJKExXThHxQSd9GE0aZS2UbmHHYdRinsw41v8CooU5xdezECEiUsAK9ClYmYiuIH7O+OyzT/jLv/hzF/HG8NhKjrgVmhgsha0PfIbLgmsDXsXm7ZYgYpiW8JIDQ86KlmMYxiEqSJwD4RCU/buB4kkOe6ycr9XtB3R4POHXFkmvEP+J88vd2zd8/etf5xvf+AZTPfEnEi6wkTj3xHz3ylGLAQAmkTOUU3A4vHdUlW9961t8+9t/5x52MXX7jGlEPFnHI34vvJLzjJ8Oaw0vZ/bpqXYcieXn4iQjbjI6/Jl818aEY5/T8DM8qvvjz89kyikMRswj3mUi8fw9Dq86Pvejz+a5f5p5rBRFCt6y/8512eNnO34vYj/z837GS8izmm4xQQ3d4lGY8vNdfL+ha2CcnRoWZxpMf+bnKsS7dXgw+zRKj6PtfGaQ4/rlsUUdop/Gi0e8QCa+k7i+QyR61/PruO4Rz9FxqDzuqZ/l3n0yfnF+6S1vSZIkSZIkSZIkSZIkyf9vyv/2B0iSJEmSJEmSJEmSJEn+b5GCUpIkSZIkSZIkSZIkSfIkUlBKkiRJkiRJkiRJkiRJnkQKSkmSJEmSJEmSJEmSJMmTSEEpSZIkSZIkSZIkSZIkeRIpKCVJkiRJkiRJkiRJkiRPIgWlJEmSJEmSJEmSJEmS5EmkoJQkSZIkSZIkSZIkSZI8iRSUkiRJkiRJkiRJkiRJkieRglKSJEmSJEmSJEmSJEnyJFJQSpIkSZIkSZIkSZIkSZ5ECkpJkiRJkiRJkiRJkiTJk0hBKUmSJEmSJEmSJEmSJHkSKSglSZIkSZIkSZIkSZIkTyIFpSRJkiRJkiRJkiRJkuRJpKCUJEmSJEmSJEmSJEmSPIkUlJIkSZIkSZIkSZIkSZInkYJSkiRJkiRJkiRJkiRJ8iRSUEqSJEmSJEmSJEmSJEmexP8AlsvZjP5pxXgAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ }
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "metadata": {
+ "id": "Ug9vfkBHqxzZ"
+ },
+ "source": [
+ ""
+ ],
+ "execution_count": null,
+ "outputs": []
+ }
+ ]
+}
\ No newline at end of file
diff --git a/conda_env.yml b/conda_env.yml
new file mode 100644
index 00000000..818f5405
--- /dev/null
+++ b/conda_env.yml
@@ -0,0 +1,165 @@
+name: lama
+channels:
+ - defaults
+ - conda-forge
+dependencies:
+ - _libgcc_mutex=0.1=main
+ - _openmp_mutex=4.5=1_gnu
+ - absl-py=0.13.0=py36h06a4308_0
+ - aiohttp=3.7.4.post0=py36h7f8727e_2
+ - antlr-python-runtime=4.8=py36h9f0ad1d_2
+ - async-timeout=3.0.1=py36h06a4308_0
+ - attrs=21.2.0=pyhd3eb1b0_0
+ - blas=1.0=mkl
+ - blinker=1.4=py36h06a4308_0
+ - brotlipy=0.7.0=py36h27cfd23_1003
+ - bzip2=1.0.8=h7b6447c_0
+ - c-ares=1.17.1=h27cfd23_0
+ - ca-certificates=2021.7.5=h06a4308_1
+ - cachetools=4.2.2=pyhd3eb1b0_0
+ - certifi=2021.5.30=py36h06a4308_0
+ - cffi=1.14.6=py36h400218f_0
+ - chardet=4.0.0=py36h06a4308_1003
+ - charset-normalizer=2.0.4=pyhd3eb1b0_0
+ - click=8.0.1=pyhd3eb1b0_0
+ - cloudpickle=2.0.0=pyhd3eb1b0_0
+ - coverage=5.5=py36h27cfd23_2
+ - cryptography=3.4.7=py36hd23ed53_0
+ - cudatoolkit=10.2.89=hfd86e86_1
+ - cycler=0.10.0=py36_0
+ - cython=0.29.24=py36h295c915_0
+ - cytoolz=0.11.0=py36h7b6447c_0
+ - dask-core=1.1.4=py36_1
+ - dataclasses=0.8=pyh4f3eec9_6
+ - dbus=1.13.18=hb2f20db_0
+ - decorator=5.0.9=pyhd3eb1b0_0
+ - easydict=1.9=py_0
+ - expat=2.4.1=h2531618_2
+ - ffmpeg=4.2.2=h20bf706_0
+ - fontconfig=2.13.1=h6c09931_0
+ - freetype=2.10.4=h5ab3b9f_0
+ - fsspec=2021.8.1=pyhd3eb1b0_0
+ - future=0.18.2=py36_1
+ - glib=2.69.1=h5202010_0
+ - gmp=6.2.1=h2531618_2
+ - gnutls=3.6.15=he1e5248_0
+ - google-auth=1.33.0=pyhd3eb1b0_0
+ - google-auth-oauthlib=0.4.4=pyhd3eb1b0_0
+ - grpcio=1.36.1=py36h2157cd5_1
+ - gst-plugins-base=1.14.0=h8213a91_2
+ - gstreamer=1.14.0=h28cd5cc_2
+ - hydra-core=1.1.0=pyhd8ed1ab_0
+ - icu=58.2=he6710b0_3
+ - idna=3.2=pyhd3eb1b0_0
+ - idna_ssl=1.1.0=py36h06a4308_0
+ - imageio=2.9.0=pyhd3eb1b0_0
+ - importlib-metadata=4.8.1=py36h06a4308_0
+ - importlib_resources=5.2.0=pyhd3eb1b0_1
+ - intel-openmp=2021.3.0=h06a4308_3350
+ - joblib=1.0.1=pyhd3eb1b0_0
+ - jpeg=9b=h024ee3a_2
+ - kiwisolver=1.3.1=py36h2531618_0
+ - lame=3.100=h7b6447c_0
+ - lcms2=2.12=h3be6417_0
+ - ld_impl_linux-64=2.35.1=h7274673_9
+ - libblas=3.9.0=11_linux64_mkl
+ - libcblas=3.9.0=11_linux64_mkl
+ - libffi=3.3=he6710b0_2
+ - libgcc-ng=9.3.0=h5101ec6_17
+ - libgfortran-ng=9.3.0=ha5ec8a7_17
+ - libgfortran5=9.3.0=ha5ec8a7_17
+ - libgomp=9.3.0=h5101ec6_17
+ - libidn2=2.3.2=h7f8727e_0
+ - liblapack=3.9.0=11_linux64_mkl
+ - libopus=1.3.1=h7b6447c_0
+ - libpng=1.6.37=hbc83047_0
+ - libprotobuf=3.17.2=h4ff587b_1
+ - libstdcxx-ng=9.3.0=hd4cf53a_17
+ - libtasn1=4.16.0=h27cfd23_0
+ - libtiff=4.2.0=h85742a9_0
+ - libunistring=0.9.10=h27cfd23_0
+ - libuuid=1.0.3=h1bed415_2
+ - libuv=1.40.0=h7b6447c_0
+ - libvpx=1.7.0=h439df22_0
+ - libwebp-base=1.2.0=h27cfd23_0
+ - libxcb=1.14=h7b6447c_0
+ - libxml2=2.9.12=h03d6c58_0
+ - lz4-c=1.9.3=h295c915_1
+ - markdown=3.3.4=py36h06a4308_0
+ - matplotlib=3.3.4=py36h06a4308_0
+ - matplotlib-base=3.3.4=py36h62a2d02_0
+ - mkl=2021.3.0=h06a4308_520
+ - multidict=5.1.0=py36h27cfd23_2
+ - ncurses=6.2=he6710b0_1
+ - nettle=3.7.3=hbbd107a_1
+ - networkx=2.2=py36_1
+ - ninja=1.10.2=hff7bd54_1
+ - numpy=1.19.5=py36hfc0c790_2
+ - oauthlib=3.1.1=pyhd3eb1b0_0
+ - olefile=0.46=py36_0
+ - omegaconf=2.1.1=py36h5fab9bb_0
+ - openh264=2.1.0=hd408876_0
+ - openjpeg=2.4.0=h3ad879b_0
+ - openssl=1.1.1l=h7f8727e_0
+ - packaging=21.0=pyhd3eb1b0_0
+ - pandas=1.1.5=py36h284efc9_0
+ - pcre=8.45=h295c915_0
+ - pillow=8.3.1=py36h2c7a002_0
+ - pip=21.0.1=py36h06a4308_0
+ - protobuf=3.17.2=py36h295c915_0
+ - pyasn1=0.4.8=pyhd3eb1b0_0
+ - pyasn1-modules=0.2.8=py_0
+ - pycparser=2.20=py_2
+ - pyjwt=2.1.0=py36h06a4308_0
+ - pyopenssl=20.0.1=pyhd3eb1b0_1
+ - pyparsing=2.4.7=pyhd3eb1b0_0
+ - pyqt=5.9.2=py36h05f1152_2
+ - pysocks=1.7.1=py36h06a4308_0
+ - python=3.6.13=h12debd9_1
+ - python-dateutil=2.8.2=pyhd3eb1b0_0
+ - python_abi=3.6=2_cp36m
+ - pytz=2021.1=pyhd3eb1b0_0
+ - pywavelets=1.1.1=py36h7b6447c_2
+ - pyyaml=5.4.1=py36h27cfd23_1
+ - qt=5.9.7=h5867ecd_1
+ - readline=8.1=h27cfd23_0
+ - requests=2.26.0=pyhd3eb1b0_0
+ - requests-oauthlib=1.3.0=py_0
+ - rsa=4.7.2=pyhd3eb1b0_1
+ - scikit-image=0.17.2=py36h284efc9_4
+ - scikit-learn=0.24.2=py36ha9443f7_0
+ - scipy=1.5.3=py36h9e8f40b_0
+ - setuptools=58.0.4=py36h06a4308_0
+ - sip=4.19.8=py36hf484d3e_0
+ - six=1.16.0=pyhd3eb1b0_0
+ - sqlite=3.36.0=hc218d9a_0
+ - tabulate=0.8.9=py36h06a4308_0
+ - tensorboard=2.4.0=pyhc547734_0
+ - tensorboard-plugin-wit=1.6.0=py_0
+ - threadpoolctl=2.2.0=pyh0d69192_0
+ - tifffile=2020.10.1=py36hdd07704_2
+ - tk=8.6.11=h1ccaba5_0
+ - toolz=0.11.1=pyhd3eb1b0_0
+ - tqdm=4.62.2=pyhd3eb1b0_1
+ - typing-extensions=3.10.0.2=hd3eb1b0_0
+ - typing_extensions=3.10.0.2=pyh06a4308_0
+ - urllib3=1.26.6=pyhd3eb1b0_1
+ - werkzeug=2.0.1=pyhd3eb1b0_0
+ - wheel=0.37.0=pyhd3eb1b0_1
+ - x264=1!157.20191217=h7b6447c_0
+ - xz=5.2.5=h7b6447c_0
+ - yaml=0.2.5=h7b6447c_0
+ - yarl=1.6.3=py36h27cfd23_0
+ - zipp=3.5.0=pyhd3eb1b0_0
+ - zlib=1.2.11=h7b6447c_3
+ - zstd=1.4.9=haebb681_0
+ - pip:
+ - albumentations==0.5.2
+ - braceexpand==0.1.7
+ - imgaug==0.4.0
+ - kornia==0.5.0
+ - opencv-python==4.5.3.56
+ - opencv-python-headless==4.5.3.56
+ - shapely==1.7.1
+ - webdataset==0.1.76
+ - wldhx-yadisk-direct==0.0.6
diff --git a/configs/analyze_mask_errors.yaml b/configs/analyze_mask_errors.yaml
new file mode 100644
index 00000000..3ed39242
--- /dev/null
+++ b/configs/analyze_mask_errors.yaml
@@ -0,0 +1,7 @@
+dataset_kwargs:
+ img_suffix: .jpg
+ inpainted_suffix: .jpg
+
+take_global_top: 30
+take_worst_best_top: 30
+take_overlapping_top: 30
\ No newline at end of file
diff --git a/configs/data_gen/gen_segm_dataset1.yaml b/configs/data_gen/gen_segm_dataset1.yaml
new file mode 100644
index 00000000..1157b833
--- /dev/null
+++ b/configs/data_gen/gen_segm_dataset1.yaml
@@ -0,0 +1,25 @@
+generator_kind: segmentation
+
+mask_generator_kwargs:
+ confidence_threshold: 0.5
+ max_object_area: 0.5
+ min_mask_area: 0.02
+ downsample_levels: 6
+ num_variants_per_mask: 5
+ rigidness_mode: 1
+ max_foreground_coverage: 0.3
+ max_foreground_intersection: 0.7
+ max_mask_intersection: 0.1
+ max_hidden_area: 0.1
+ max_scale_change: 0.25
+ horizontal_flip: True
+ max_vertical_shift: 0.2
+ position_shuffle: True
+
+max_masks_per_image: 5
+
+cropping:
+ out_min_size: 512
+ handle_small_mode: drop
+ out_square_crop: True
+ crop_min_overlap: 0.5
diff --git a/configs/data_gen/gen_segm_dataset3.yaml b/configs/data_gen/gen_segm_dataset3.yaml
new file mode 100644
index 00000000..8302b810
--- /dev/null
+++ b/configs/data_gen/gen_segm_dataset3.yaml
@@ -0,0 +1,25 @@
+generator_kind: segmentation
+
+mask_generator_kwargs:
+ confidence_threshold: 0.5
+ max_object_area: 0.5
+ min_mask_area: 0.07
+ downsample_levels: 6
+ num_variants_per_mask: 3
+ rigidness_mode: 1
+ max_foreground_coverage: 0.4
+ max_foreground_intersection: 0.8
+ max_mask_intersection: 0.2
+ max_hidden_area: 0.1
+ max_scale_change: 0.25
+ horizontal_flip: True
+ max_vertical_shift: 0.3
+ position_shuffle: True
+
+max_masks_per_image: 3
+
+cropping:
+ out_min_size: 512
+ handle_small_mode: drop
+ out_square_crop: True
+ crop_min_overlap: 0.5
diff --git a/configs/data_gen/random_medium_256.yaml b/configs/data_gen/random_medium_256.yaml
new file mode 100644
index 00000000..34c7f9e7
--- /dev/null
+++ b/configs/data_gen/random_medium_256.yaml
@@ -0,0 +1,33 @@
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 4
+ max_times: 5
+ max_width: 50
+ max_angle: 4
+ max_len: 100
+
+ box_proba: 0.3
+ box_kwargs:
+ margin: 0
+ bbox_min_size: 10
+ bbox_max_size: 50
+ max_times: 5
+ min_times: 1
+
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 256
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
diff --git a/configs/data_gen/random_medium_512.yaml b/configs/data_gen/random_medium_512.yaml
new file mode 100644
index 00000000..2ea33832
--- /dev/null
+++ b/configs/data_gen/random_medium_512.yaml
@@ -0,0 +1,33 @@
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 4
+ max_times: 10
+ max_width: 100
+ max_angle: 4
+ max_len: 200
+
+ box_proba: 0.3
+ box_kwargs:
+ margin: 0
+ bbox_min_size: 30
+ bbox_max_size: 150
+ max_times: 5
+ min_times: 1
+
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 512
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
diff --git a/configs/data_gen/random_thick_256.yaml b/configs/data_gen/random_thick_256.yaml
new file mode 100644
index 00000000..9ade0cfc
--- /dev/null
+++ b/configs/data_gen/random_thick_256.yaml
@@ -0,0 +1,33 @@
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 1
+ max_times: 5
+ max_width: 100
+ max_angle: 4
+ max_len: 200
+
+ box_proba: 0.3
+ box_kwargs:
+ margin: 10
+ bbox_min_size: 30
+ bbox_max_size: 150
+ max_times: 3
+ min_times: 1
+
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 256
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
diff --git a/configs/data_gen/random_thick_512.yaml b/configs/data_gen/random_thick_512.yaml
new file mode 100644
index 00000000..17b7a768
--- /dev/null
+++ b/configs/data_gen/random_thick_512.yaml
@@ -0,0 +1,33 @@
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 1
+ max_times: 5
+ max_width: 250
+ max_angle: 4
+ max_len: 450
+
+ box_proba: 0.3
+ box_kwargs:
+ margin: 10
+ bbox_min_size: 30
+ bbox_max_size: 300
+ max_times: 4
+ min_times: 1
+
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 512
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
diff --git a/configs/data_gen/random_thin_256.yaml b/configs/data_gen/random_thin_256.yaml
new file mode 100644
index 00000000..0bc05cc7
--- /dev/null
+++ b/configs/data_gen/random_thin_256.yaml
@@ -0,0 +1,25 @@
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 4
+ max_times: 50
+ max_width: 10
+ max_angle: 4
+ max_len: 40
+ box_proba: 0
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 256
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
diff --git a/configs/data_gen/random_thin_512.yaml b/configs/data_gen/random_thin_512.yaml
new file mode 100644
index 00000000..159fb64b
--- /dev/null
+++ b/configs/data_gen/random_thin_512.yaml
@@ -0,0 +1,25 @@
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 4
+ max_times: 70
+ max_width: 20
+ max_angle: 4
+ max_len: 100
+ box_proba: 0
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 512
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
diff --git a/configs/data_gen/segm_256.yaml b/configs/data_gen/segm_256.yaml
new file mode 100644
index 00000000..2e9f3bb6
--- /dev/null
+++ b/configs/data_gen/segm_256.yaml
@@ -0,0 +1,27 @@
+generator_kind: segmentation
+
+mask_generator_kwargs:
+ confidence_threshold: 0.5
+ max_object_area: 0.5
+ min_mask_area: 0.05
+ downsample_levels: 6
+ num_variants_per_mask: 3
+ rigidness_mode: 1
+ max_foreground_coverage: 1 # turn off filtering by overlap
+ max_foreground_intersection: 1 # turn off filtering by overlap
+ max_mask_intersection: 0.2 # the lower this value the higher diversity
+ max_hidden_area: 0.5
+ max_scale_change: 0.25
+ horizontal_flip: True
+ max_vertical_shift: 0.3
+ position_shuffle: True
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 256
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
\ No newline at end of file
diff --git a/configs/data_gen/segm_512.yaml b/configs/data_gen/segm_512.yaml
new file mode 100644
index 00000000..60397bcc
--- /dev/null
+++ b/configs/data_gen/segm_512.yaml
@@ -0,0 +1,27 @@
+generator_kind: segmentation
+
+mask_generator_kwargs:
+ confidence_threshold: 0.5
+ max_object_area: 0.5
+ min_mask_area: 0.05
+ downsample_levels: 6
+ num_variants_per_mask: 3
+ rigidness_mode: 1
+ max_foreground_coverage: 1 # turn off filtering by overlap
+ max_foreground_intersection: 1 # turn off filtering by overlap
+ max_mask_intersection: 0.2 # the lower this value the higher diversity
+ max_hidden_area: 0.5
+ max_scale_change: 0.25
+ horizontal_flip: True
+ max_vertical_shift: 0.3
+ position_shuffle: True
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 512
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
\ No newline at end of file
diff --git a/configs/data_gen/sr_256.yaml b/configs/data_gen/sr_256.yaml
new file mode 100644
index 00000000..f2ede84e
--- /dev/null
+++ b/configs/data_gen/sr_256.yaml
@@ -0,0 +1,25 @@
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 0
+ box_proba: 0
+ segm_proba: 0
+ squares_proba: 0
+ superres_proba: 1
+ superres_kwargs:
+ min_step: 2
+ max_step: 4
+ min_width: 1
+ max_width: 3
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 256
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 1
diff --git a/configs/data_gen/whydra/location/mml-ws01-celeba-hq.yaml b/configs/data_gen/whydra/location/mml-ws01-celeba-hq.yaml
new file mode 100644
index 00000000..fa5613d3
--- /dev/null
+++ b/configs/data_gen/whydra/location/mml-ws01-celeba-hq.yaml
@@ -0,0 +1,5 @@
+# @package _group_
+
+root_dir: /media/inpainting/CelebA-HQ
+out_dir: /media/inpainting/paper_data/CelebA-HQ_val_test
+extension: jpg
diff --git a/configs/data_gen/whydra/location/mml-ws01-ffhq.yaml b/configs/data_gen/whydra/location/mml-ws01-ffhq.yaml
new file mode 100644
index 00000000..9ab06488
--- /dev/null
+++ b/configs/data_gen/whydra/location/mml-ws01-ffhq.yaml
@@ -0,0 +1,5 @@
+# @package _group_
+
+root_dir: /media/inpainting/FFHQ/
+out_dir: /media/inpainting/paper_data/FFHQ_val
+extension: png
diff --git a/configs/data_gen/whydra/location/mml-ws01-paris.yaml b/configs/data_gen/whydra/location/mml-ws01-paris.yaml
new file mode 100644
index 00000000..1a560fc8
--- /dev/null
+++ b/configs/data_gen/whydra/location/mml-ws01-paris.yaml
@@ -0,0 +1,5 @@
+# @package _group_
+
+root_dir: /media/inpainting/Paris_StreetView_Dataset
+out_dir: /media/inpainting/paper_data/Paris_StreetView_Dataset_val
+extension: png
diff --git a/configs/data_gen/whydra/location/mml7-places.yaml b/configs/data_gen/whydra/location/mml7-places.yaml
new file mode 100644
index 00000000..e0b558d0
--- /dev/null
+++ b/configs/data_gen/whydra/location/mml7-places.yaml
@@ -0,0 +1,5 @@
+# @package _group_
+
+root_dir: /data/inpainting/Places365
+out_dir: /data/inpainting/paper_data/Places365_val_test
+extension: jpg
diff --git a/configs/data_gen/whydra/random_medium_256.yaml b/configs/data_gen/whydra/random_medium_256.yaml
new file mode 100644
index 00000000..451e1458
--- /dev/null
+++ b/configs/data_gen/whydra/random_medium_256.yaml
@@ -0,0 +1,42 @@
+datadir: val_large
+indir: ${location.root_dir}/${datadir}
+outdir: ${location.out_dir}/${datadir}/random_medium_256
+
+n_jobs: 8
+
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 4
+ max_times: 5
+ max_width: 50
+ max_angle: 4
+ max_len: 100
+
+ box_proba: 0.3
+ box_kwargs:
+ margin: 0
+ bbox_min_size: 10
+ bbox_max_size: 50
+ max_times: 5
+ min_times: 1
+
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 256
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
+
+defaults:
+ - location: mml7-places
diff --git a/configs/data_gen/whydra/random_medium_512.yaml b/configs/data_gen/whydra/random_medium_512.yaml
new file mode 100644
index 00000000..120c29a4
--- /dev/null
+++ b/configs/data_gen/whydra/random_medium_512.yaml
@@ -0,0 +1,42 @@
+datadir: val_large
+indir: ${location.root_dir}/${datadir}
+outdir: ${location.out_dir}/${datadir}/random_medium_512
+
+n_jobs: 8
+
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 4
+ max_times: 10
+ max_width: 100
+ max_angle: 4
+ max_len: 200
+
+ box_proba: 0.3
+ box_kwargs:
+ margin: 0
+ bbox_min_size: 30
+ bbox_max_size: 150
+ max_times: 5
+ min_times: 1
+
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 512
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
+
+defaults:
+ - location: mml7-places
diff --git a/configs/data_gen/whydra/random_thick_256.yaml b/configs/data_gen/whydra/random_thick_256.yaml
new file mode 100644
index 00000000..fc222f9f
--- /dev/null
+++ b/configs/data_gen/whydra/random_thick_256.yaml
@@ -0,0 +1,42 @@
+datadir: val_large
+indir: ${location.root_dir}/${datadir}
+outdir: ${location.out_dir}/${datadir}/random_thick_256
+
+n_jobs: 8
+
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 1
+ max_times: 5
+ max_width: 100
+ max_angle: 4
+ max_len: 200
+
+ box_proba: 0.3
+ box_kwargs:
+ margin: 10
+ bbox_min_size: 30
+ bbox_max_size: 150
+ max_times: 3
+ min_times: 1
+
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 256
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
+
+defaults:
+ - location: mml7-places
diff --git a/configs/data_gen/whydra/random_thick_512.yaml b/configs/data_gen/whydra/random_thick_512.yaml
new file mode 100644
index 00000000..f2872c75
--- /dev/null
+++ b/configs/data_gen/whydra/random_thick_512.yaml
@@ -0,0 +1,42 @@
+datadir: val_large
+indir: ${location.root_dir}/${datadir}
+outdir: ${location.out_dir}/${datadir}/random_thick_512
+
+n_jobs: 8
+
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 1
+ max_times: 5
+ max_width: 250
+ max_angle: 4
+ max_len: 450
+
+ box_proba: 0.3
+ box_kwargs:
+ margin: 10
+ bbox_min_size: 30
+ bbox_max_size: 300
+ max_times: 4
+ min_times: 1
+
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 512
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
+
+defaults:
+ - location: mml7-places
diff --git a/configs/data_gen/whydra/random_thin_256.yaml b/configs/data_gen/whydra/random_thin_256.yaml
new file mode 100644
index 00000000..b8e11cda
--- /dev/null
+++ b/configs/data_gen/whydra/random_thin_256.yaml
@@ -0,0 +1,34 @@
+datadir: val_large
+indir: ${location.root_dir}/${datadir}
+outdir: ${location.out_dir}/${datadir}/random_thin_256
+
+n_jobs: 8
+
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 4
+ max_times: 50
+ max_width: 10
+ max_angle: 4
+ max_len: 40
+ box_proba: 0
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 256
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
+
+defaults:
+ - location: mml7-places
diff --git a/configs/data_gen/whydra/random_thin_512.yaml b/configs/data_gen/whydra/random_thin_512.yaml
new file mode 100644
index 00000000..45631286
--- /dev/null
+++ b/configs/data_gen/whydra/random_thin_512.yaml
@@ -0,0 +1,34 @@
+datadir: val_large
+indir: ${location.root_dir}/${datadir}
+outdir: ${location.out_dir}/${datadir}/random_thin_512
+
+n_jobs: 8
+
+generator_kind: random
+
+mask_generator_kwargs:
+ irregular_proba: 1
+ irregular_kwargs:
+ min_times: 4
+ max_times: 70
+ max_width: 20
+ max_angle: 4
+ max_len: 100
+ box_proba: 0
+ segm_proba: 0
+ squares_proba: 0
+
+ variants_n: 5
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 512
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
+
+defaults:
+ - location: mml7-places
diff --git a/configs/data_gen/whydra/segm_256.yaml b/configs/data_gen/whydra/segm_256.yaml
new file mode 100644
index 00000000..a4abe20e
--- /dev/null
+++ b/configs/data_gen/whydra/segm_256.yaml
@@ -0,0 +1,36 @@
+datadir: val_large
+indir: ${location.root_dir}/${datadir}
+outdir: ${location.out_dir}/${datadir}/segm_256
+
+n_jobs: 2
+
+generator_kind: segmentation
+
+mask_generator_kwargs:
+ confidence_threshold: 0.5
+ max_object_area: 0.5
+ min_mask_area: 0.05
+ downsample_levels: 6
+ num_variants_per_mask: 3
+ rigidness_mode: 1
+ max_foreground_coverage: 1 # turn off filtering by overlap
+ max_foreground_intersection: 1 # turn off filtering by overlap
+ max_mask_intersection: 0.2 # the lower this value the higher diversity
+ max_hidden_area: 0.5
+ max_scale_change: 0.25
+ horizontal_flip: True
+ max_vertical_shift: 0.3
+ position_shuffle: True
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 256
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
+
+defaults:
+ - location: mml7-places
diff --git a/configs/data_gen/whydra/segm_512.yaml b/configs/data_gen/whydra/segm_512.yaml
new file mode 100644
index 00000000..73cc8b13
--- /dev/null
+++ b/configs/data_gen/whydra/segm_512.yaml
@@ -0,0 +1,36 @@
+datadir: val_large
+indir: ${location.root_dir}/${datadir}
+outdir: ${location.out_dir}/${datadir}/segm_512
+
+n_jobs: 2
+
+generator_kind: segmentation
+
+mask_generator_kwargs:
+ confidence_threshold: 0.5
+ max_object_area: 0.5
+ min_mask_area: 0.05
+ downsample_levels: 6
+ num_variants_per_mask: 3
+ rigidness_mode: 1
+ max_foreground_coverage: 1 # turn off filtering by overlap
+ max_foreground_intersection: 1 # turn off filtering by overlap
+ max_mask_intersection: 0.2 # the lower this value the higher diversity
+ max_hidden_area: 0.5
+ max_scale_change: 0.25
+ horizontal_flip: True
+ max_vertical_shift: 0.3
+ position_shuffle: True
+
+max_masks_per_image: 1
+
+cropping:
+ out_min_size: 512
+ handle_small_mode: upscale
+ out_square_crop: True
+ crop_min_overlap: 1
+
+max_tamper_area: 0.5
+
+defaults:
+ - location: mml7-places
diff --git a/configs/debug_mask_gen.yaml b/configs/debug_mask_gen.yaml
new file mode 100644
index 00000000..c4258157
--- /dev/null
+++ b/configs/debug_mask_gen.yaml
@@ -0,0 +1,5 @@
+img_ext: .jpg
+
+gen_kwargs:
+ mask_size: 200
+ step: 0.5
diff --git a/configs/eval1.yaml b/configs/eval1.yaml
new file mode 100644
index 00000000..9ebe4e05
--- /dev/null
+++ b/configs/eval1.yaml
@@ -0,0 +1,6 @@
+evaluator_kwargs:
+ batch_size: 8
+
+dataset_kwargs:
+ img_suffix: .png
+ inpainted_suffix: .jpg
\ No newline at end of file
diff --git a/configs/eval2.yaml b/configs/eval2.yaml
new file mode 100644
index 00000000..6dfb35fa
--- /dev/null
+++ b/configs/eval2.yaml
@@ -0,0 +1,7 @@
+evaluator_kwargs:
+ batch_size: 8
+ device: cuda
+
+dataset_kwargs:
+ img_suffix: .png
+ inpainted_suffix: .png
\ No newline at end of file
diff --git a/configs/eval2_cpu.yaml b/configs/eval2_cpu.yaml
new file mode 100644
index 00000000..ba152eb7
--- /dev/null
+++ b/configs/eval2_cpu.yaml
@@ -0,0 +1,7 @@
+evaluator_kwargs:
+ batch_size: 8
+ device: cpu
+
+dataset_kwargs:
+ img_suffix: .png
+ inpainted_suffix: .png
\ No newline at end of file
diff --git a/configs/eval2_gpu.yaml b/configs/eval2_gpu.yaml
new file mode 100644
index 00000000..6ffab909
--- /dev/null
+++ b/configs/eval2_gpu.yaml
@@ -0,0 +1,6 @@
+evaluator_kwargs:
+ batch_size: 8
+
+dataset_kwargs:
+ img_suffix: .png
+ inpainted_suffix: .png
\ No newline at end of file
diff --git a/configs/eval2_jpg.yaml b/configs/eval2_jpg.yaml
new file mode 100644
index 00000000..9ebe4e05
--- /dev/null
+++ b/configs/eval2_jpg.yaml
@@ -0,0 +1,6 @@
+evaluator_kwargs:
+ batch_size: 8
+
+dataset_kwargs:
+ img_suffix: .png
+ inpainted_suffix: .jpg
\ No newline at end of file
diff --git a/configs/eval2_segm.yaml b/configs/eval2_segm.yaml
new file mode 100644
index 00000000..a01e7b0f
--- /dev/null
+++ b/configs/eval2_segm.yaml
@@ -0,0 +1,10 @@
+evaluator_kwargs:
+ batch_size: 8
+
+dataset_kwargs:
+ img_suffix: .png
+ inpainted_suffix: .png
+
+segmentation:
+ enable: True
+ weights_path: ${TORCH_HOME}
diff --git a/configs/eval2_segm_test.yaml b/configs/eval2_segm_test.yaml
new file mode 100644
index 00000000..11ac85cb
--- /dev/null
+++ b/configs/eval2_segm_test.yaml
@@ -0,0 +1,11 @@
+evaluator_kwargs:
+ batch_size: 1
+
+dataset_kwargs:
+ img_suffix: _input.png
+ inpainted_suffix: .png
+ pad_out_to_modulo: 8
+
+segmentation:
+ enable: True
+ weights_path: ${TORCH_HOME}
diff --git a/configs/eval2_test.yaml b/configs/eval2_test.yaml
new file mode 100644
index 00000000..970e35c8
--- /dev/null
+++ b/configs/eval2_test.yaml
@@ -0,0 +1,7 @@
+evaluator_kwargs:
+ batch_size: 1
+
+dataset_kwargs:
+ img_suffix: _input.png
+ inpainted_suffix: .png
+ pad_out_to_modulo: 8
diff --git a/configs/places2-categories_157.txt b/configs/places2-categories_157.txt
new file mode 100644
index 00000000..b7176819
--- /dev/null
+++ b/configs/places2-categories_157.txt
@@ -0,0 +1,157 @@
+/a/airplane_cabin 1
+/a/airport_terminal 2
+/a/alcove 3
+/a/alley 4
+/a/amphitheater 5
+/a/amusement_park 7
+/a/apartment_building/outdoor 8
+/a/aqueduct 10
+/a/arcade 11
+/a/arch 12
+/a/archive 14
+/a/art_gallery 19
+/a/artists_loft 22
+/a/assembly_line 23
+/a/atrium/public 25
+/a/attic 26
+/a/auditorium 27
+/b/bakery/shop 31
+/b/balcony/exterior 32
+/b/balcony/interior 33
+/b/ballroom 35
+/b/banquet_hall 38
+/b/barndoor 41
+/b/basement 43
+/b/basketball_court/indoor 44
+/b/bathroom 45
+/b/bazaar/indoor 46
+/b/bazaar/outdoor 47
+/b/beach_house 49
+/b/bedchamber 51
+/b/bedroom 52
+/b/berth 55
+/b/boardwalk 57
+/b/boathouse 59
+/b/bookstore 60
+/b/booth/indoor 61
+/b/bow_window/indoor 63
+/b/bowling_alley 64
+/b/bridge 66
+/b/building_facade 67
+/b/bus_interior 70
+/b/bus_station/indoor 71
+/c/cabin/outdoor 74
+/c/campus 77
+/c/canal/urban 79
+/c/candy_store 80
+/c/carrousel 83
+/c/castle 84
+/c/chalet 87
+/c/childs_room 89
+/c/church/indoor 90
+/c/church/outdoor 91
+/c/closet 95
+/c/conference_center 101
+/c/conference_room 102
+/c/construction_site 103
+/c/corridor 106
+/c/cottage 107
+/c/courthouse 108
+/c/courtyard 109
+/d/delicatessen 114
+/d/department_store 115
+/d/diner/outdoor 119
+/d/dining_hall 120
+/d/dining_room 121
+/d/doorway/outdoor 123
+/d/dorm_room 124
+/d/downtown 125
+/d/driveway 127
+/e/elevator/door 129
+/e/elevator_lobby 130
+/e/elevator_shaft 131
+/e/embassy 132
+/e/entrance_hall 134
+/e/escalator/indoor 135
+/f/fastfood_restaurant 139
+/f/fire_escape 143
+/f/fire_station 144
+/f/food_court 148
+/g/galley 155
+/g/garage/outdoor 157
+/g/gas_station 158
+/g/gazebo/exterior 159
+/g/general_store/indoor 160
+/g/general_store/outdoor 161
+/g/greenhouse/outdoor 166
+/g/gymnasium/indoor 168
+/h/hangar/outdoor 170
+/h/hardware_store 172
+/h/home_office 176
+/h/home_theater 177
+/h/hospital 178
+/h/hotel/outdoor 181
+/h/hotel_room 182
+/h/house 183
+/h/hunting_lodge/outdoor 184
+/i/industrial_area 192
+/i/inn/outdoor 193
+/j/jacuzzi/indoor 195
+/j/jail_cell 196
+/k/kasbah 200
+/k/kitchen 203
+/l/laundromat 208
+/l/library/indoor 212
+/l/library/outdoor 213
+/l/lighthouse 214
+/l/living_room 215
+/l/loading_dock 216
+/l/lobby 217
+/l/lock_chamber 218
+/m/mansion 220
+/m/manufactured_home 221
+/m/mausoleum 226
+/m/medina 227
+/m/mezzanine 228
+/m/mosque/outdoor 230
+/m/movie_theater/indoor 235
+/m/museum/outdoor 237
+/n/nursery 240
+/o/oast_house 242
+/o/office 244
+/o/office_building 245
+/o/office_cubicles 246
+/p/pagoda 251
+/p/palace 252
+/p/pantry 253
+/p/parking_garage/indoor 255
+/p/parking_garage/outdoor 256
+/p/pavilion 260
+/p/pet_shop 261
+/p/porch 272
+/r/reception 280
+/r/recreation_room 281
+/r/restaurant_patio 286
+/r/rope_bridge 291
+/r/ruin 292
+/s/sauna 295
+/s/schoolhouse 296
+/s/server_room 298
+/s/shed 299
+/s/shopfront 301
+/s/shopping_mall/indoor 302
+/s/shower 303
+/s/skyscraper 307
+/s/staircase 317
+/s/storage_room 318
+/s/subway_station/platform 320
+/s/synagogue/outdoor 327
+/t/television_room 328
+/t/temple/asia 330
+/t/throne_room 331
+/t/tower 334
+/t/train_station/platform 337
+/u/utility_room 343
+/w/waiting_room 352
+/w/wet_bar 358
+/y/youth_hostel 363
\ No newline at end of file
diff --git a/configs/prediction/default.yaml b/configs/prediction/default.yaml
new file mode 100644
index 00000000..3c512293
--- /dev/null
+++ b/configs/prediction/default.yaml
@@ -0,0 +1,14 @@
+indir: no # to be overriden in CLI
+outdir: no # to be overriden in CLI
+
+model:
+ path: no # to be overriden in CLI
+ checkpoint: best.ckpt
+
+dataset:
+ kind: default
+ img_suffix: .png
+ pad_out_to_modulo: 8
+
+device: cuda
+out_key: inpainted
diff --git a/configs/test_large_30k.lst b/configs/test_large_30k.lst
new file mode 100644
index 00000000..55f3612e
--- /dev/null
+++ b/configs/test_large_30k.lst
@@ -0,0 +1,30000 @@
+Places365_test_00000001.jpg
+Places365_test_00000009.jpg
+Places365_test_00000016.jpg
+Places365_test_00000022.jpg
+Places365_test_00000035.jpg
+Places365_test_00000037.jpg
+Places365_test_00000040.jpg
+Places365_test_00000045.jpg
+Places365_test_00000052.jpg
+Places365_test_00000062.jpg
+Places365_test_00000069.jpg
+Places365_test_00000077.jpg
+Places365_test_00000098.jpg
+Places365_test_00000105.jpg
+Places365_test_00000131.jpg
+Places365_test_00000172.jpg
+Places365_test_00000187.jpg
+Places365_test_00000200.jpg
+Places365_test_00000262.jpg
+Places365_test_00000291.jpg
+Places365_test_00000294.jpg
+Places365_test_00000322.jpg
+Places365_test_00000328.jpg
+Places365_test_00000332.jpg
+Places365_test_00000358.jpg
+Places365_test_00000365.jpg
+Places365_test_00000371.jpg
+Places365_test_00000381.jpg
+Places365_test_00000431.jpg
+Places365_test_00000435.jpg
+Places365_test_00000456.jpg
+Places365_test_00000459.jpg
+Places365_test_00000469.jpg
+Places365_test_00000484.jpg
+Places365_test_00000490.jpg
+Places365_test_00000517.jpg
+Places365_test_00000545.jpg
+Places365_test_00000546.jpg
+Places365_test_00000555.jpg
+Places365_test_00000557.jpg
+Places365_test_00000569.jpg
+Places365_test_00000574.jpg
+Places365_test_00000607.jpg
+Places365_test_00000611.jpg
+Places365_test_00000614.jpg
+Places365_test_00000620.jpg
+Places365_test_00000629.jpg
+Places365_test_00000643.jpg
+Places365_test_00000650.jpg
+Places365_test_00000661.jpg
+Places365_test_00000670.jpg
+Places365_test_00000671.jpg
+Places365_test_00000676.jpg
+Places365_test_00000687.jpg
+Places365_test_00000694.jpg
+Places365_test_00000726.jpg
+Places365_test_00000730.jpg
+Places365_test_00000734.jpg
+Places365_test_00000739.jpg
+Places365_test_00000770.jpg
+Places365_test_00000775.jpg
+Places365_test_00000812.jpg
+Places365_test_00000844.jpg
+Places365_test_00000853.jpg
+Places365_test_00000855.jpg
+Places365_test_00000859.jpg
+Places365_test_00000870.jpg
+Places365_test_00000879.jpg
+Places365_test_00000885.jpg
+Places365_test_00000889.jpg
+Places365_test_00000891.jpg
+Places365_test_00000931.jpg
+Places365_test_00000940.jpg
+Places365_test_00000952.jpg
+Places365_test_00000990.jpg
+Places365_test_00000994.jpg
+Places365_test_00000996.jpg
+Places365_test_00000997.jpg
+Places365_test_00001000.jpg
+Places365_test_00001035.jpg
+Places365_test_00001040.jpg
+Places365_test_00001044.jpg
+Places365_test_00001045.jpg
+Places365_test_00001062.jpg
+Places365_test_00001077.jpg
+Places365_test_00001083.jpg
+Places365_test_00001091.jpg
+Places365_test_00001096.jpg
+Places365_test_00001100.jpg
+Places365_test_00001114.jpg
+Places365_test_00001149.jpg
+Places365_test_00001151.jpg
+Places365_test_00001158.jpg
+Places365_test_00001181.jpg
+Places365_test_00001182.jpg
+Places365_test_00001191.jpg
+Places365_test_00001194.jpg
+Places365_test_00001197.jpg
+Places365_test_00001200.jpg
+Places365_test_00001205.jpg
+Places365_test_00001211.jpg
+Places365_test_00001216.jpg
+Places365_test_00001222.jpg
+Places365_test_00001224.jpg
+Places365_test_00001233.jpg
+Places365_test_00001245.jpg
+Places365_test_00001264.jpg
+Places365_test_00001268.jpg
+Places365_test_00001273.jpg
+Places365_test_00001283.jpg
+Places365_test_00001287.jpg
+Places365_test_00001306.jpg
+Places365_test_00001323.jpg
+Places365_test_00001327.jpg
+Places365_test_00001339.jpg
+Places365_test_00001345.jpg
+Places365_test_00001354.jpg
+Places365_test_00001371.jpg
+Places365_test_00001380.jpg
+Places365_test_00001393.jpg
+Places365_test_00001420.jpg
+Places365_test_00001443.jpg
+Places365_test_00001449.jpg
+Places365_test_00001452.jpg
+Places365_test_00001453.jpg
+Places365_test_00001463.jpg
+Places365_test_00001468.jpg
+Places365_test_00001503.jpg
+Places365_test_00001533.jpg
+Places365_test_00001540.jpg
+Places365_test_00001548.jpg
+Places365_test_00001566.jpg
+Places365_test_00001568.jpg
+Places365_test_00001579.jpg
+Places365_test_00001580.jpg
+Places365_test_00001589.jpg
+Places365_test_00001594.jpg
+Places365_test_00001602.jpg
+Places365_test_00001613.jpg
+Places365_test_00001622.jpg
+Places365_test_00001672.jpg
+Places365_test_00001679.jpg
+Places365_test_00001682.jpg
+Places365_test_00001690.jpg
+Places365_test_00001708.jpg
+Places365_test_00001716.jpg
+Places365_test_00001722.jpg
+Places365_test_00001728.jpg
+Places365_test_00001754.jpg
+Places365_test_00001774.jpg
+Places365_test_00001789.jpg
+Places365_test_00001795.jpg
+Places365_test_00001798.jpg
+Places365_test_00001859.jpg
+Places365_test_00001868.jpg
+Places365_test_00001879.jpg
+Places365_test_00001883.jpg
+Places365_test_00001886.jpg
+Places365_test_00001890.jpg
+Places365_test_00001892.jpg
+Places365_test_00001901.jpg
+Places365_test_00001910.jpg
+Places365_test_00001929.jpg
+Places365_test_00001942.jpg
+Places365_test_00001947.jpg
+Places365_test_00001965.jpg
+Places365_test_00001981.jpg
+Places365_test_00001991.jpg
+Places365_test_00002011.jpg
+Places365_test_00002017.jpg
+Places365_test_00002026.jpg
+Places365_test_00002036.jpg
+Places365_test_00002041.jpg
+Places365_test_00002057.jpg
+Places365_test_00002059.jpg
+Places365_test_00002065.jpg
+Places365_test_00002073.jpg
+Places365_test_00002079.jpg
+Places365_test_00002082.jpg
+Places365_test_00002089.jpg
+Places365_test_00002094.jpg
+Places365_test_00002095.jpg
+Places365_test_00002138.jpg
+Places365_test_00002170.jpg
+Places365_test_00002172.jpg
+Places365_test_00002178.jpg
+Places365_test_00002185.jpg
+Places365_test_00002187.jpg
+Places365_test_00002192.jpg
+Places365_test_00002195.jpg
+Places365_test_00002198.jpg
+Places365_test_00002203.jpg
+Places365_test_00002222.jpg
+Places365_test_00002232.jpg
+Places365_test_00002243.jpg
+Places365_test_00002252.jpg
+Places365_test_00002294.jpg
+Places365_test_00002301.jpg
+Places365_test_00002310.jpg
+Places365_test_00002322.jpg
+Places365_test_00002333.jpg
+Places365_test_00002339.jpg
+Places365_test_00002356.jpg
+Places365_test_00002364.jpg
+Places365_test_00002369.jpg
+Places365_test_00002372.jpg
+Places365_test_00002374.jpg
+Places365_test_00002379.jpg
+Places365_test_00002380.jpg
+Places365_test_00002381.jpg
+Places365_test_00002382.jpg
+Places365_test_00002408.jpg
+Places365_test_00002412.jpg
+Places365_test_00002422.jpg
+Places365_test_00002437.jpg
+Places365_test_00002459.jpg
+Places365_test_00002466.jpg
+Places365_test_00002473.jpg
+Places365_test_00002494.jpg
+Places365_test_00002500.jpg
+Places365_test_00002526.jpg
+Places365_test_00002537.jpg
+Places365_test_00002541.jpg
+Places365_test_00002550.jpg
+Places365_test_00002557.jpg
+Places365_test_00002566.jpg
+Places365_test_00002571.jpg
+Places365_test_00002592.jpg
+Places365_test_00002595.jpg
+Places365_test_00002632.jpg
+Places365_test_00002659.jpg
+Places365_test_00002661.jpg
+Places365_test_00002688.jpg
+Places365_test_00002691.jpg
+Places365_test_00002699.jpg
+Places365_test_00002743.jpg
+Places365_test_00002786.jpg
+Places365_test_00002805.jpg
+Places365_test_00002806.jpg
+Places365_test_00002814.jpg
+Places365_test_00002817.jpg
+Places365_test_00002842.jpg
+Places365_test_00002848.jpg
+Places365_test_00002872.jpg
+Places365_test_00002887.jpg
+Places365_test_00002898.jpg
+Places365_test_00002904.jpg
+Places365_test_00002925.jpg
+Places365_test_00002932.jpg
+Places365_test_00002942.jpg
+Places365_test_00002990.jpg
+Places365_test_00002992.jpg
+Places365_test_00003000.jpg
+Places365_test_00003005.jpg
+Places365_test_00003016.jpg
+Places365_test_00003017.jpg
+Places365_test_00003018.jpg
+Places365_test_00003026.jpg
+Places365_test_00003027.jpg
+Places365_test_00003032.jpg
+Places365_test_00003038.jpg
+Places365_test_00003050.jpg
+Places365_test_00003063.jpg
+Places365_test_00003076.jpg
+Places365_test_00003084.jpg
+Places365_test_00003088.jpg
+Places365_test_00003091.jpg
+Places365_test_00003105.jpg
+Places365_test_00003113.jpg
+Places365_test_00003125.jpg
+Places365_test_00003126.jpg
+Places365_test_00003144.jpg
+Places365_test_00003156.jpg
+Places365_test_00003161.jpg
+Places365_test_00003164.jpg
+Places365_test_00003166.jpg
+Places365_test_00003167.jpg
+Places365_test_00003181.jpg
+Places365_test_00003211.jpg
+Places365_test_00003216.jpg
+Places365_test_00003221.jpg
+Places365_test_00003233.jpg
+Places365_test_00003236.jpg
+Places365_test_00003237.jpg
+Places365_test_00003246.jpg
+Places365_test_00003248.jpg
+Places365_test_00003251.jpg
+Places365_test_00003257.jpg
+Places365_test_00003272.jpg
+Places365_test_00003287.jpg
+Places365_test_00003316.jpg
+Places365_test_00003337.jpg
+Places365_test_00003338.jpg
+Places365_test_00003350.jpg
+Places365_test_00003373.jpg
+Places365_test_00003393.jpg
+Places365_test_00003406.jpg
+Places365_test_00003411.jpg
+Places365_test_00003412.jpg
+Places365_test_00003416.jpg
+Places365_test_00003426.jpg
+Places365_test_00003427.jpg
+Places365_test_00003453.jpg
+Places365_test_00003484.jpg
+Places365_test_00003487.jpg
+Places365_test_00003491.jpg
+Places365_test_00003545.jpg
+Places365_test_00003555.jpg
+Places365_test_00003567.jpg
+Places365_test_00003575.jpg
+Places365_test_00003582.jpg
+Places365_test_00003595.jpg
+Places365_test_00003609.jpg
+Places365_test_00003613.jpg
+Places365_test_00003620.jpg
+Places365_test_00003635.jpg
+Places365_test_00003647.jpg
+Places365_test_00003650.jpg
+Places365_test_00003665.jpg
+Places365_test_00003672.jpg
+Places365_test_00003686.jpg
+Places365_test_00003720.jpg
+Places365_test_00003722.jpg
+Places365_test_00003731.jpg
+Places365_test_00003732.jpg
+Places365_test_00003748.jpg
+Places365_test_00003770.jpg
+Places365_test_00003773.jpg
+Places365_test_00003778.jpg
+Places365_test_00003786.jpg
+Places365_test_00003796.jpg
+Places365_test_00003804.jpg
+Places365_test_00003823.jpg
+Places365_test_00003842.jpg
+Places365_test_00003857.jpg
+Places365_test_00003860.jpg
+Places365_test_00003901.jpg
+Places365_test_00003941.jpg
+Places365_test_00003942.jpg
+Places365_test_00003967.jpg
+Places365_test_00003968.jpg
+Places365_test_00003991.jpg
+Places365_test_00004012.jpg
+Places365_test_00004036.jpg
+Places365_test_00004047.jpg
+Places365_test_00004056.jpg
+Places365_test_00004073.jpg
+Places365_test_00004081.jpg
+Places365_test_00004116.jpg
+Places365_test_00004119.jpg
+Places365_test_00004142.jpg
+Places365_test_00004146.jpg
+Places365_test_00004151.jpg
+Places365_test_00004160.jpg
+Places365_test_00004163.jpg
+Places365_test_00004166.jpg
+Places365_test_00004173.jpg
+Places365_test_00004176.jpg
+Places365_test_00004194.jpg
+Places365_test_00004220.jpg
+Places365_test_00004221.jpg
+Places365_test_00004225.jpg
+Places365_test_00004226.jpg
+Places365_test_00004249.jpg
+Places365_test_00004256.jpg
+Places365_test_00004268.jpg
+Places365_test_00004284.jpg
+Places365_test_00004286.jpg
+Places365_test_00004292.jpg
+Places365_test_00004293.jpg
+Places365_test_00004314.jpg
+Places365_test_00004318.jpg
+Places365_test_00004342.jpg
+Places365_test_00004358.jpg
+Places365_test_00004367.jpg
+Places365_test_00004381.jpg
+Places365_test_00004385.jpg
+Places365_test_00004392.jpg
+Places365_test_00004395.jpg
+Places365_test_00004410.jpg
+Places365_test_00004474.jpg
+Places365_test_00004508.jpg
+Places365_test_00004514.jpg
+Places365_test_00004552.jpg
+Places365_test_00004557.jpg
+Places365_test_00004559.jpg
+Places365_test_00004570.jpg
+Places365_test_00004589.jpg
+Places365_test_00004601.jpg
+Places365_test_00004617.jpg
+Places365_test_00004619.jpg
+Places365_test_00004626.jpg
+Places365_test_00004637.jpg
+Places365_test_00004647.jpg
+Places365_test_00004648.jpg
+Places365_test_00004674.jpg
+Places365_test_00004680.jpg
+Places365_test_00004697.jpg
+Places365_test_00004702.jpg
+Places365_test_00004719.jpg
+Places365_test_00004726.jpg
+Places365_test_00004732.jpg
+Places365_test_00004742.jpg
+Places365_test_00004751.jpg
+Places365_test_00004753.jpg
+Places365_test_00004755.jpg
+Places365_test_00004762.jpg
+Places365_test_00004766.jpg
+Places365_test_00004774.jpg
+Places365_test_00004780.jpg
+Places365_test_00004807.jpg
+Places365_test_00004808.jpg
+Places365_test_00004811.jpg
+Places365_test_00004812.jpg
+Places365_test_00004817.jpg
+Places365_test_00004824.jpg
+Places365_test_00004841.jpg
+Places365_test_00004856.jpg
+Places365_test_00004858.jpg
+Places365_test_00004863.jpg
+Places365_test_00004874.jpg
+Places365_test_00004879.jpg
+Places365_test_00004880.jpg
+Places365_test_00004899.jpg
+Places365_test_00004900.jpg
+Places365_test_00004903.jpg
+Places365_test_00004933.jpg
+Places365_test_00004935.jpg
+Places365_test_00004944.jpg
+Places365_test_00004957.jpg
+Places365_test_00004969.jpg
+Places365_test_00004983.jpg
+Places365_test_00004991.jpg
+Places365_test_00005011.jpg
+Places365_test_00005012.jpg
+Places365_test_00005015.jpg
+Places365_test_00005032.jpg
+Places365_test_00005065.jpg
+Places365_test_00005067.jpg
+Places365_test_00005085.jpg
+Places365_test_00005100.jpg
+Places365_test_00005106.jpg
+Places365_test_00005121.jpg
+Places365_test_00005158.jpg
+Places365_test_00005162.jpg
+Places365_test_00005166.jpg
+Places365_test_00005170.jpg
+Places365_test_00005194.jpg
+Places365_test_00005195.jpg
+Places365_test_00005206.jpg
+Places365_test_00005208.jpg
+Places365_test_00005218.jpg
+Places365_test_00005220.jpg
+Places365_test_00005238.jpg
+Places365_test_00005260.jpg
+Places365_test_00005289.jpg
+Places365_test_00005296.jpg
+Places365_test_00005298.jpg
+Places365_test_00005310.jpg
+Places365_test_00005325.jpg
+Places365_test_00005343.jpg
+Places365_test_00005361.jpg
+Places365_test_00005375.jpg
+Places365_test_00005419.jpg
+Places365_test_00005427.jpg
+Places365_test_00005439.jpg
+Places365_test_00005449.jpg
+Places365_test_00005467.jpg
+Places365_test_00005475.jpg
+Places365_test_00005489.jpg
+Places365_test_00005493.jpg
+Places365_test_00005507.jpg
+Places365_test_00005526.jpg
+Places365_test_00005538.jpg
+Places365_test_00005542.jpg
+Places365_test_00005547.jpg
+Places365_test_00005578.jpg
+Places365_test_00005586.jpg
+Places365_test_00005620.jpg
+Places365_test_00005629.jpg
+Places365_test_00005640.jpg
+Places365_test_00005643.jpg
+Places365_test_00005662.jpg
+Places365_test_00005669.jpg
+Places365_test_00005682.jpg
+Places365_test_00005723.jpg
+Places365_test_00005726.jpg
+Places365_test_00005732.jpg
+Places365_test_00005764.jpg
+Places365_test_00005775.jpg
+Places365_test_00005820.jpg
+Places365_test_00005827.jpg
+Places365_test_00005843.jpg
+Places365_test_00005844.jpg
+Places365_test_00005860.jpg
+Places365_test_00005868.jpg
+Places365_test_00005876.jpg
+Places365_test_00005895.jpg
+Places365_test_00005897.jpg
+Places365_test_00005918.jpg
+Places365_test_00005931.jpg
+Places365_test_00005934.jpg
+Places365_test_00005962.jpg
+Places365_test_00005971.jpg
+Places365_test_00006003.jpg
+Places365_test_00006049.jpg
+Places365_test_00006060.jpg
+Places365_test_00006068.jpg
+Places365_test_00006070.jpg
+Places365_test_00006078.jpg
+Places365_test_00006090.jpg
+Places365_test_00006106.jpg
+Places365_test_00006124.jpg
+Places365_test_00006141.jpg
+Places365_test_00006154.jpg
+Places365_test_00006160.jpg
+Places365_test_00006165.jpg
+Places365_test_00006172.jpg
+Places365_test_00006199.jpg
+Places365_test_00006260.jpg
+Places365_test_00006266.jpg
+Places365_test_00006271.jpg
+Places365_test_00006272.jpg
+Places365_test_00006284.jpg
+Places365_test_00006285.jpg
+Places365_test_00006291.jpg
+Places365_test_00006300.jpg
+Places365_test_00006305.jpg
+Places365_test_00006326.jpg
+Places365_test_00006353.jpg
+Places365_test_00006356.jpg
+Places365_test_00006359.jpg
+Places365_test_00006385.jpg
+Places365_test_00006387.jpg
+Places365_test_00006405.jpg
+Places365_test_00006409.jpg
+Places365_test_00006420.jpg
+Places365_test_00006425.jpg
+Places365_test_00006428.jpg
+Places365_test_00006434.jpg
+Places365_test_00006439.jpg
+Places365_test_00006452.jpg
+Places365_test_00006457.jpg
+Places365_test_00006460.jpg
+Places365_test_00006466.jpg
+Places365_test_00006503.jpg
+Places365_test_00006510.jpg
+Places365_test_00006519.jpg
+Places365_test_00006526.jpg
+Places365_test_00006531.jpg
+Places365_test_00006545.jpg
+Places365_test_00006550.jpg
+Places365_test_00006551.jpg
+Places365_test_00006558.jpg
+Places365_test_00006565.jpg
+Places365_test_00006575.jpg
+Places365_test_00006578.jpg
+Places365_test_00006579.jpg
+Places365_test_00006584.jpg
+Places365_test_00006599.jpg
+Places365_test_00006609.jpg
+Places365_test_00006616.jpg
+Places365_test_00006642.jpg
+Places365_test_00006691.jpg
+Places365_test_00006696.jpg
+Places365_test_00006698.jpg
+Places365_test_00006704.jpg
+Places365_test_00006717.jpg
+Places365_test_00006719.jpg
+Places365_test_00006727.jpg
+Places365_test_00006731.jpg
+Places365_test_00006741.jpg
+Places365_test_00006750.jpg
+Places365_test_00006751.jpg
+Places365_test_00006755.jpg
+Places365_test_00006759.jpg
+Places365_test_00006761.jpg
+Places365_test_00006778.jpg
+Places365_test_00006783.jpg
+Places365_test_00006813.jpg
+Places365_test_00006814.jpg
+Places365_test_00006844.jpg
+Places365_test_00006845.jpg
+Places365_test_00006847.jpg
+Places365_test_00006853.jpg
+Places365_test_00006854.jpg
+Places365_test_00006855.jpg
+Places365_test_00006866.jpg
+Places365_test_00006869.jpg
+Places365_test_00006886.jpg
+Places365_test_00006891.jpg
+Places365_test_00006893.jpg
+Places365_test_00006899.jpg
+Places365_test_00006907.jpg
+Places365_test_00006908.jpg
+Places365_test_00006921.jpg
+Places365_test_00006926.jpg
+Places365_test_00006935.jpg
+Places365_test_00006940.jpg
+Places365_test_00006946.jpg
+Places365_test_00006995.jpg
+Places365_test_00007014.jpg
+Places365_test_00007025.jpg
+Places365_test_00007030.jpg
+Places365_test_00007036.jpg
+Places365_test_00007040.jpg
+Places365_test_00007042.jpg
+Places365_test_00007053.jpg
+Places365_test_00007058.jpg
+Places365_test_00007072.jpg
+Places365_test_00007077.jpg
+Places365_test_00007099.jpg
+Places365_test_00007103.jpg
+Places365_test_00007104.jpg
+Places365_test_00007108.jpg
+Places365_test_00007110.jpg
+Places365_test_00007112.jpg
+Places365_test_00007117.jpg
+Places365_test_00007123.jpg
+Places365_test_00007129.jpg
+Places365_test_00007146.jpg
+Places365_test_00007149.jpg
+Places365_test_00007179.jpg
+Places365_test_00007213.jpg
+Places365_test_00007215.jpg
+Places365_test_00007220.jpg
+Places365_test_00007222.jpg
+Places365_test_00007255.jpg
+Places365_test_00007259.jpg
+Places365_test_00007262.jpg
+Places365_test_00007283.jpg
+Places365_test_00007291.jpg
+Places365_test_00007293.jpg
+Places365_test_00007309.jpg
+Places365_test_00007333.jpg
+Places365_test_00007343.jpg
+Places365_test_00007353.jpg
+Places365_test_00007373.jpg
+Places365_test_00007387.jpg
+Places365_test_00007389.jpg
+Places365_test_00007395.jpg
+Places365_test_00007396.jpg
+Places365_test_00007404.jpg
+Places365_test_00007405.jpg
+Places365_test_00007408.jpg
+Places365_test_00007427.jpg
+Places365_test_00007441.jpg
+Places365_test_00007463.jpg
+Places365_test_00007467.jpg
+Places365_test_00007477.jpg
+Places365_test_00007480.jpg
+Places365_test_00007513.jpg
+Places365_test_00007514.jpg
+Places365_test_00007533.jpg
+Places365_test_00007536.jpg
+Places365_test_00007556.jpg
+Places365_test_00007571.jpg
+Places365_test_00007572.jpg
+Places365_test_00007594.jpg
+Places365_test_00007608.jpg
+Places365_test_00007617.jpg
+Places365_test_00007619.jpg
+Places365_test_00007620.jpg
+Places365_test_00007623.jpg
+Places365_test_00007624.jpg
+Places365_test_00007625.jpg
+Places365_test_00007644.jpg
+Places365_test_00007646.jpg
+Places365_test_00007679.jpg
+Places365_test_00007688.jpg
+Places365_test_00007695.jpg
+Places365_test_00007710.jpg
+Places365_test_00007724.jpg
+Places365_test_00007730.jpg
+Places365_test_00007746.jpg
+Places365_test_00007753.jpg
+Places365_test_00007762.jpg
+Places365_test_00007782.jpg
+Places365_test_00007794.jpg
+Places365_test_00007802.jpg
+Places365_test_00007803.jpg
+Places365_test_00007809.jpg
+Places365_test_00007825.jpg
+Places365_test_00007831.jpg
+Places365_test_00007834.jpg
+Places365_test_00007842.jpg
+Places365_test_00007868.jpg
+Places365_test_00007871.jpg
+Places365_test_00007880.jpg
+Places365_test_00007896.jpg
+Places365_test_00007914.jpg
+Places365_test_00007915.jpg
+Places365_test_00007920.jpg
+Places365_test_00007931.jpg
+Places365_test_00007945.jpg
+Places365_test_00007949.jpg
+Places365_test_00007964.jpg
+Places365_test_00007976.jpg
+Places365_test_00007996.jpg
+Places365_test_00008005.jpg
+Places365_test_00008016.jpg
+Places365_test_00008019.jpg
+Places365_test_00008023.jpg
+Places365_test_00008066.jpg
+Places365_test_00008070.jpg
+Places365_test_00008101.jpg
+Places365_test_00008103.jpg
+Places365_test_00008107.jpg
+Places365_test_00008124.jpg
+Places365_test_00008130.jpg
+Places365_test_00008185.jpg
+Places365_test_00008209.jpg
+Places365_test_00008248.jpg
+Places365_test_00008256.jpg
+Places365_test_00008274.jpg
+Places365_test_00008291.jpg
+Places365_test_00008304.jpg
+Places365_test_00008306.jpg
+Places365_test_00008319.jpg
+Places365_test_00008322.jpg
+Places365_test_00008353.jpg
+Places365_test_00008359.jpg
+Places365_test_00008363.jpg
+Places365_test_00008374.jpg
+Places365_test_00008377.jpg
+Places365_test_00008384.jpg
+Places365_test_00008391.jpg
+Places365_test_00008405.jpg
+Places365_test_00008414.jpg
+Places365_test_00008419.jpg
+Places365_test_00008425.jpg
+Places365_test_00008431.jpg
+Places365_test_00008436.jpg
+Places365_test_00008461.jpg
+Places365_test_00008465.jpg
+Places365_test_00008479.jpg
+Places365_test_00008482.jpg
+Places365_test_00008487.jpg
+Places365_test_00008493.jpg
+Places365_test_00008497.jpg
+Places365_test_00008501.jpg
+Places365_test_00008504.jpg
+Places365_test_00008520.jpg
+Places365_test_00008522.jpg
+Places365_test_00008530.jpg
+Places365_test_00008553.jpg
+Places365_test_00008557.jpg
+Places365_test_00008569.jpg
+Places365_test_00008588.jpg
+Places365_test_00008589.jpg
+Places365_test_00008590.jpg
+Places365_test_00008610.jpg
+Places365_test_00008611.jpg
+Places365_test_00008617.jpg
+Places365_test_00008630.jpg
+Places365_test_00008639.jpg
+Places365_test_00008649.jpg
+Places365_test_00008654.jpg
+Places365_test_00008676.jpg
+Places365_test_00008685.jpg
+Places365_test_00008693.jpg
+Places365_test_00008716.jpg
+Places365_test_00008744.jpg
+Places365_test_00008750.jpg
+Places365_test_00008754.jpg
+Places365_test_00008761.jpg
+Places365_test_00008766.jpg
+Places365_test_00008776.jpg
+Places365_test_00008777.jpg
+Places365_test_00008790.jpg
+Places365_test_00008791.jpg
+Places365_test_00008800.jpg
+Places365_test_00008845.jpg
+Places365_test_00008852.jpg
+Places365_test_00008883.jpg
+Places365_test_00008887.jpg
+Places365_test_00008917.jpg
+Places365_test_00008934.jpg
+Places365_test_00008946.jpg
+Places365_test_00008960.jpg
+Places365_test_00008973.jpg
+Places365_test_00009005.jpg
+Places365_test_00009009.jpg
+Places365_test_00009034.jpg
+Places365_test_00009041.jpg
+Places365_test_00009050.jpg
+Places365_test_00009055.jpg
+Places365_test_00009063.jpg
+Places365_test_00009072.jpg
+Places365_test_00009073.jpg
+Places365_test_00009076.jpg
+Places365_test_00009103.jpg
+Places365_test_00009106.jpg
+Places365_test_00009133.jpg
+Places365_test_00009134.jpg
+Places365_test_00009145.jpg
+Places365_test_00009150.jpg
+Places365_test_00009163.jpg
+Places365_test_00009178.jpg
+Places365_test_00009185.jpg
+Places365_test_00009191.jpg
+Places365_test_00009209.jpg
+Places365_test_00009218.jpg
+Places365_test_00009219.jpg
+Places365_test_00009230.jpg
+Places365_test_00009235.jpg
+Places365_test_00009245.jpg
+Places365_test_00009256.jpg
+Places365_test_00009262.jpg
+Places365_test_00009285.jpg
+Places365_test_00009290.jpg
+Places365_test_00009296.jpg
+Places365_test_00009297.jpg
+Places365_test_00009304.jpg
+Places365_test_00009320.jpg
+Places365_test_00009357.jpg
+Places365_test_00009399.jpg
+Places365_test_00009400.jpg
+Places365_test_00009408.jpg
+Places365_test_00009412.jpg
+Places365_test_00009429.jpg
+Places365_test_00009436.jpg
+Places365_test_00009444.jpg
+Places365_test_00009450.jpg
+Places365_test_00009451.jpg
+Places365_test_00009472.jpg
+Places365_test_00009487.jpg
+Places365_test_00009494.jpg
+Places365_test_00009500.jpg
+Places365_test_00009502.jpg
+Places365_test_00009510.jpg
+Places365_test_00009536.jpg
+Places365_test_00009539.jpg
+Places365_test_00009545.jpg
+Places365_test_00009546.jpg
+Places365_test_00009551.jpg
+Places365_test_00009561.jpg
+Places365_test_00009562.jpg
+Places365_test_00009563.jpg
+Places365_test_00009577.jpg
+Places365_test_00009584.jpg
+Places365_test_00009602.jpg
+Places365_test_00009658.jpg
+Places365_test_00009660.jpg
+Places365_test_00009665.jpg
+Places365_test_00009684.jpg
+Places365_test_00009689.jpg
+Places365_test_00009700.jpg
+Places365_test_00009706.jpg
+Places365_test_00009707.jpg
+Places365_test_00009715.jpg
+Places365_test_00009743.jpg
+Places365_test_00009761.jpg
+Places365_test_00009775.jpg
+Places365_test_00009776.jpg
+Places365_test_00009791.jpg
+Places365_test_00009794.jpg
+Places365_test_00009811.jpg
+Places365_test_00009824.jpg
+Places365_test_00009835.jpg
+Places365_test_00009845.jpg
+Places365_test_00009846.jpg
+Places365_test_00009848.jpg
+Places365_test_00009861.jpg
+Places365_test_00009871.jpg
+Places365_test_00009874.jpg
+Places365_test_00009893.jpg
+Places365_test_00009896.jpg
+Places365_test_00009905.jpg
+Places365_test_00009906.jpg
+Places365_test_00009912.jpg
+Places365_test_00009915.jpg
+Places365_test_00009920.jpg
+Places365_test_00009927.jpg
+Places365_test_00009928.jpg
+Places365_test_00009930.jpg
+Places365_test_00009934.jpg
+Places365_test_00009941.jpg
+Places365_test_00009952.jpg
+Places365_test_00009956.jpg
+Places365_test_00009976.jpg
+Places365_test_00009979.jpg
+Places365_test_00009981.jpg
+Places365_test_00009994.jpg
+Places365_test_00009998.jpg
+Places365_test_00010002.jpg
+Places365_test_00010006.jpg
+Places365_test_00010007.jpg
+Places365_test_00010014.jpg
+Places365_test_00010053.jpg
+Places365_test_00010060.jpg
+Places365_test_00010062.jpg
+Places365_test_00010067.jpg
+Places365_test_00010081.jpg
+Places365_test_00010084.jpg
+Places365_test_00010099.jpg
+Places365_test_00010105.jpg
+Places365_test_00010110.jpg
+Places365_test_00010112.jpg
+Places365_test_00010151.jpg
+Places365_test_00010176.jpg
+Places365_test_00010181.jpg
+Places365_test_00010196.jpg
+Places365_test_00010203.jpg
+Places365_test_00010231.jpg
+Places365_test_00010236.jpg
+Places365_test_00010241.jpg
+Places365_test_00010250.jpg
+Places365_test_00010266.jpg
+Places365_test_00010280.jpg
+Places365_test_00010291.jpg
+Places365_test_00010293.jpg
+Places365_test_00010304.jpg
+Places365_test_00010319.jpg
+Places365_test_00010331.jpg
+Places365_test_00010342.jpg
+Places365_test_00010352.jpg
+Places365_test_00010363.jpg
+Places365_test_00010376.jpg
+Places365_test_00010381.jpg
+Places365_test_00010402.jpg
+Places365_test_00010404.jpg
+Places365_test_00010415.jpg
+Places365_test_00010434.jpg
+Places365_test_00010450.jpg
+Places365_test_00010455.jpg
+Places365_test_00010462.jpg
+Places365_test_00010489.jpg
+Places365_test_00010521.jpg
+Places365_test_00010556.jpg
+Places365_test_00010567.jpg
+Places365_test_00010578.jpg
+Places365_test_00010587.jpg
+Places365_test_00010598.jpg
+Places365_test_00010623.jpg
+Places365_test_00010624.jpg
+Places365_test_00010627.jpg
+Places365_test_00010634.jpg
+Places365_test_00010638.jpg
+Places365_test_00010640.jpg
+Places365_test_00010643.jpg
+Places365_test_00010678.jpg
+Places365_test_00010682.jpg
+Places365_test_00010689.jpg
+Places365_test_00010692.jpg
+Places365_test_00010707.jpg
+Places365_test_00010726.jpg
+Places365_test_00010750.jpg
+Places365_test_00010752.jpg
+Places365_test_00010774.jpg
+Places365_test_00010781.jpg
+Places365_test_00010802.jpg
+Places365_test_00010807.jpg
+Places365_test_00010816.jpg
+Places365_test_00010825.jpg
+Places365_test_00010830.jpg
+Places365_test_00010841.jpg
+Places365_test_00010867.jpg
+Places365_test_00010874.jpg
+Places365_test_00010876.jpg
+Places365_test_00010881.jpg
+Places365_test_00010888.jpg
+Places365_test_00010895.jpg
+Places365_test_00010911.jpg
+Places365_test_00010921.jpg
+Places365_test_00010959.jpg
+Places365_test_00010971.jpg
+Places365_test_00010989.jpg
+Places365_test_00011016.jpg
+Places365_test_00011017.jpg
+Places365_test_00011044.jpg
+Places365_test_00011076.jpg
+Places365_test_00011090.jpg
+Places365_test_00011101.jpg
+Places365_test_00011107.jpg
+Places365_test_00011128.jpg
+Places365_test_00011134.jpg
+Places365_test_00011146.jpg
+Places365_test_00011152.jpg
+Places365_test_00011170.jpg
+Places365_test_00011183.jpg
+Places365_test_00011202.jpg
+Places365_test_00011206.jpg
+Places365_test_00011211.jpg
+Places365_test_00011213.jpg
+Places365_test_00011214.jpg
+Places365_test_00011215.jpg
+Places365_test_00011240.jpg
+Places365_test_00011260.jpg
+Places365_test_00011262.jpg
+Places365_test_00011273.jpg
+Places365_test_00011277.jpg
+Places365_test_00011280.jpg
+Places365_test_00011282.jpg
+Places365_test_00011284.jpg
+Places365_test_00011295.jpg
+Places365_test_00011300.jpg
+Places365_test_00011310.jpg
+Places365_test_00011312.jpg
+Places365_test_00011313.jpg
+Places365_test_00011330.jpg
+Places365_test_00011332.jpg
+Places365_test_00011352.jpg
+Places365_test_00011358.jpg
+Places365_test_00011368.jpg
+Places365_test_00011377.jpg
+Places365_test_00011418.jpg
+Places365_test_00011456.jpg
+Places365_test_00011457.jpg
+Places365_test_00011477.jpg
+Places365_test_00011480.jpg
+Places365_test_00011495.jpg
+Places365_test_00011508.jpg
+Places365_test_00011515.jpg
+Places365_test_00011534.jpg
+Places365_test_00011545.jpg
+Places365_test_00011560.jpg
+Places365_test_00011584.jpg
+Places365_test_00011591.jpg
+Places365_test_00011619.jpg
+Places365_test_00011623.jpg
+Places365_test_00011626.jpg
+Places365_test_00011649.jpg
+Places365_test_00011669.jpg
+Places365_test_00011674.jpg
+Places365_test_00011686.jpg
+Places365_test_00011690.jpg
+Places365_test_00011707.jpg
+Places365_test_00011718.jpg
+Places365_test_00011719.jpg
+Places365_test_00011742.jpg
+Places365_test_00011747.jpg
+Places365_test_00011759.jpg
+Places365_test_00011774.jpg
+Places365_test_00011790.jpg
+Places365_test_00011801.jpg
+Places365_test_00011824.jpg
+Places365_test_00011826.jpg
+Places365_test_00011848.jpg
+Places365_test_00011862.jpg
+Places365_test_00011869.jpg
+Places365_test_00011870.jpg
+Places365_test_00011871.jpg
+Places365_test_00011873.jpg
+Places365_test_00011877.jpg
+Places365_test_00011887.jpg
+Places365_test_00011896.jpg
+Places365_test_00011899.jpg
+Places365_test_00011900.jpg
+Places365_test_00011903.jpg
+Places365_test_00011925.jpg
+Places365_test_00011939.jpg
+Places365_test_00011943.jpg
+Places365_test_00011954.jpg
+Places365_test_00011958.jpg
+Places365_test_00011960.jpg
+Places365_test_00011963.jpg
+Places365_test_00012001.jpg
+Places365_test_00012008.jpg
+Places365_test_00012010.jpg
+Places365_test_00012022.jpg
+Places365_test_00012046.jpg
+Places365_test_00012051.jpg
+Places365_test_00012075.jpg
+Places365_test_00012076.jpg
+Places365_test_00012084.jpg
+Places365_test_00012100.jpg
+Places365_test_00012127.jpg
+Places365_test_00012133.jpg
+Places365_test_00012135.jpg
+Places365_test_00012141.jpg
+Places365_test_00012186.jpg
+Places365_test_00012200.jpg
+Places365_test_00012218.jpg
+Places365_test_00012224.jpg
+Places365_test_00012230.jpg
+Places365_test_00012254.jpg
+Places365_test_00012265.jpg
+Places365_test_00012269.jpg
+Places365_test_00012270.jpg
+Places365_test_00012279.jpg
+Places365_test_00012317.jpg
+Places365_test_00012320.jpg
+Places365_test_00012338.jpg
+Places365_test_00012342.jpg
+Places365_test_00012364.jpg
+Places365_test_00012370.jpg
+Places365_test_00012384.jpg
+Places365_test_00012392.jpg
+Places365_test_00012397.jpg
+Places365_test_00012402.jpg
+Places365_test_00012415.jpg
+Places365_test_00012425.jpg
+Places365_test_00012440.jpg
+Places365_test_00012441.jpg
+Places365_test_00012452.jpg
+Places365_test_00012456.jpg
+Places365_test_00012470.jpg
+Places365_test_00012473.jpg
+Places365_test_00012475.jpg
+Places365_test_00012480.jpg
+Places365_test_00012487.jpg
+Places365_test_00012491.jpg
+Places365_test_00012501.jpg
+Places365_test_00012510.jpg
+Places365_test_00012519.jpg
+Places365_test_00012543.jpg
+Places365_test_00012552.jpg
+Places365_test_00012553.jpg
+Places365_test_00012557.jpg
+Places365_test_00012563.jpg
+Places365_test_00012564.jpg
+Places365_test_00012585.jpg
+Places365_test_00012587.jpg
+Places365_test_00012614.jpg
+Places365_test_00012615.jpg
+Places365_test_00012616.jpg
+Places365_test_00012622.jpg
+Places365_test_00012636.jpg
+Places365_test_00012640.jpg
+Places365_test_00012644.jpg
+Places365_test_00012672.jpg
+Places365_test_00012681.jpg
+Places365_test_00012723.jpg
+Places365_test_00012730.jpg
+Places365_test_00012745.jpg
+Places365_test_00012780.jpg
+Places365_test_00012791.jpg
+Places365_test_00012792.jpg
+Places365_test_00012799.jpg
+Places365_test_00012801.jpg
+Places365_test_00012832.jpg
+Places365_test_00012838.jpg
+Places365_test_00012842.jpg
+Places365_test_00012901.jpg
+Places365_test_00012905.jpg
+Places365_test_00012913.jpg
+Places365_test_00012922.jpg
+Places365_test_00012926.jpg
+Places365_test_00012927.jpg
+Places365_test_00012946.jpg
+Places365_test_00012981.jpg
+Places365_test_00012985.jpg
+Places365_test_00012989.jpg
+Places365_test_00013005.jpg
+Places365_test_00013007.jpg
+Places365_test_00013018.jpg
+Places365_test_00013035.jpg
+Places365_test_00013054.jpg
+Places365_test_00013070.jpg
+Places365_test_00013073.jpg
+Places365_test_00013104.jpg
+Places365_test_00013109.jpg
+Places365_test_00013115.jpg
+Places365_test_00013124.jpg
+Places365_test_00013128.jpg
+Places365_test_00013130.jpg
+Places365_test_00013144.jpg
+Places365_test_00013151.jpg
+Places365_test_00013157.jpg
+Places365_test_00013163.jpg
+Places365_test_00013189.jpg
+Places365_test_00013196.jpg
+Places365_test_00013209.jpg
+Places365_test_00013213.jpg
+Places365_test_00013218.jpg
+Places365_test_00013244.jpg
+Places365_test_00013245.jpg
+Places365_test_00013248.jpg
+Places365_test_00013250.jpg
+Places365_test_00013256.jpg
+Places365_test_00013264.jpg
+Places365_test_00013265.jpg
+Places365_test_00013269.jpg
+Places365_test_00013271.jpg
+Places365_test_00013280.jpg
+Places365_test_00013328.jpg
+Places365_test_00013359.jpg
+Places365_test_00013369.jpg
+Places365_test_00013376.jpg
+Places365_test_00013378.jpg
+Places365_test_00013389.jpg
+Places365_test_00013398.jpg
+Places365_test_00013403.jpg
+Places365_test_00013410.jpg
+Places365_test_00013417.jpg
+Places365_test_00013439.jpg
+Places365_test_00013440.jpg
+Places365_test_00013457.jpg
+Places365_test_00013467.jpg
+Places365_test_00013485.jpg
+Places365_test_00013491.jpg
+Places365_test_00013501.jpg
+Places365_test_00013524.jpg
+Places365_test_00013525.jpg
+Places365_test_00013557.jpg
+Places365_test_00013563.jpg
+Places365_test_00013574.jpg
+Places365_test_00013581.jpg
+Places365_test_00013594.jpg
+Places365_test_00013611.jpg
+Places365_test_00013619.jpg
+Places365_test_00013624.jpg
+Places365_test_00013648.jpg
+Places365_test_00013655.jpg
+Places365_test_00013658.jpg
+Places365_test_00013663.jpg
+Places365_test_00013666.jpg
+Places365_test_00013669.jpg
+Places365_test_00013674.jpg
+Places365_test_00013679.jpg
+Places365_test_00013692.jpg
+Places365_test_00013701.jpg
+Places365_test_00013726.jpg
+Places365_test_00013730.jpg
+Places365_test_00013748.jpg
+Places365_test_00013757.jpg
+Places365_test_00013782.jpg
+Places365_test_00013786.jpg
+Places365_test_00013795.jpg
+Places365_test_00013813.jpg
+Places365_test_00013825.jpg
+Places365_test_00013833.jpg
+Places365_test_00013837.jpg
+Places365_test_00013926.jpg
+Places365_test_00013934.jpg
+Places365_test_00013975.jpg
+Places365_test_00014012.jpg
+Places365_test_00014014.jpg
+Places365_test_00014021.jpg
+Places365_test_00014029.jpg
+Places365_test_00014039.jpg
+Places365_test_00014047.jpg
+Places365_test_00014048.jpg
+Places365_test_00014052.jpg
+Places365_test_00014053.jpg
+Places365_test_00014055.jpg
+Places365_test_00014060.jpg
+Places365_test_00014077.jpg
+Places365_test_00014081.jpg
+Places365_test_00014086.jpg
+Places365_test_00014087.jpg
+Places365_test_00014111.jpg
+Places365_test_00014114.jpg
+Places365_test_00014115.jpg
+Places365_test_00014118.jpg
+Places365_test_00014124.jpg
+Places365_test_00014162.jpg
+Places365_test_00014177.jpg
+Places365_test_00014195.jpg
+Places365_test_00014201.jpg
+Places365_test_00014203.jpg
+Places365_test_00014204.jpg
+Places365_test_00014206.jpg
+Places365_test_00014211.jpg
+Places365_test_00014215.jpg
+Places365_test_00014216.jpg
+Places365_test_00014271.jpg
+Places365_test_00014278.jpg
+Places365_test_00014291.jpg
+Places365_test_00014299.jpg
+Places365_test_00014300.jpg
+Places365_test_00014314.jpg
+Places365_test_00014318.jpg
+Places365_test_00014320.jpg
+Places365_test_00014332.jpg
+Places365_test_00014338.jpg
+Places365_test_00014350.jpg
+Places365_test_00014364.jpg
+Places365_test_00014380.jpg
+Places365_test_00014381.jpg
+Places365_test_00014387.jpg
+Places365_test_00014401.jpg
+Places365_test_00014407.jpg
+Places365_test_00014414.jpg
+Places365_test_00014437.jpg
+Places365_test_00014453.jpg
+Places365_test_00014458.jpg
+Places365_test_00014462.jpg
+Places365_test_00014471.jpg
+Places365_test_00014486.jpg
+Places365_test_00014488.jpg
+Places365_test_00014505.jpg
+Places365_test_00014510.jpg
+Places365_test_00014511.jpg
+Places365_test_00014526.jpg
+Places365_test_00014536.jpg
+Places365_test_00014542.jpg
+Places365_test_00014567.jpg
+Places365_test_00014568.jpg
+Places365_test_00014576.jpg
+Places365_test_00014607.jpg
+Places365_test_00014610.jpg
+Places365_test_00014615.jpg
+Places365_test_00014626.jpg
+Places365_test_00014632.jpg
+Places365_test_00014639.jpg
+Places365_test_00014643.jpg
+Places365_test_00014648.jpg
+Places365_test_00014652.jpg
+Places365_test_00014662.jpg
+Places365_test_00014685.jpg
+Places365_test_00014686.jpg
+Places365_test_00014705.jpg
+Places365_test_00014714.jpg
+Places365_test_00014715.jpg
+Places365_test_00014716.jpg
+Places365_test_00014749.jpg
+Places365_test_00014757.jpg
+Places365_test_00014764.jpg
+Places365_test_00014798.jpg
+Places365_test_00014825.jpg
+Places365_test_00014838.jpg
+Places365_test_00014842.jpg
+Places365_test_00014846.jpg
+Places365_test_00014853.jpg
+Places365_test_00014859.jpg
+Places365_test_00014861.jpg
+Places365_test_00014873.jpg
+Places365_test_00014879.jpg
+Places365_test_00014884.jpg
+Places365_test_00014906.jpg
+Places365_test_00014907.jpg
+Places365_test_00014916.jpg
+Places365_test_00014934.jpg
+Places365_test_00014961.jpg
+Places365_test_00014963.jpg
+Places365_test_00015007.jpg
+Places365_test_00015008.jpg
+Places365_test_00015013.jpg
+Places365_test_00015046.jpg
+Places365_test_00015087.jpg
+Places365_test_00015100.jpg
+Places365_test_00015107.jpg
+Places365_test_00015109.jpg
+Places365_test_00015111.jpg
+Places365_test_00015139.jpg
+Places365_test_00015148.jpg
+Places365_test_00015155.jpg
+Places365_test_00015173.jpg
+Places365_test_00015184.jpg
+Places365_test_00015187.jpg
+Places365_test_00015189.jpg
+Places365_test_00015193.jpg
+Places365_test_00015201.jpg
+Places365_test_00015214.jpg
+Places365_test_00015226.jpg
+Places365_test_00015243.jpg
+Places365_test_00015291.jpg
+Places365_test_00015302.jpg
+Places365_test_00015335.jpg
+Places365_test_00015339.jpg
+Places365_test_00015340.jpg
+Places365_test_00015362.jpg
+Places365_test_00015371.jpg
+Places365_test_00015373.jpg
+Places365_test_00015374.jpg
+Places365_test_00015415.jpg
+Places365_test_00015418.jpg
+Places365_test_00015425.jpg
+Places365_test_00015442.jpg
+Places365_test_00015450.jpg
+Places365_test_00015465.jpg
+Places365_test_00015476.jpg
+Places365_test_00015497.jpg
+Places365_test_00015560.jpg
+Places365_test_00015565.jpg
+Places365_test_00015574.jpg
+Places365_test_00015577.jpg
+Places365_test_00015578.jpg
+Places365_test_00015586.jpg
+Places365_test_00015588.jpg
+Places365_test_00015595.jpg
+Places365_test_00015633.jpg
+Places365_test_00015640.jpg
+Places365_test_00015650.jpg
+Places365_test_00015651.jpg
+Places365_test_00015691.jpg
+Places365_test_00015700.jpg
+Places365_test_00015704.jpg
+Places365_test_00015712.jpg
+Places365_test_00015723.jpg
+Places365_test_00015740.jpg
+Places365_test_00015772.jpg
+Places365_test_00015780.jpg
+Places365_test_00015792.jpg
+Places365_test_00015802.jpg
+Places365_test_00015803.jpg
+Places365_test_00015812.jpg
+Places365_test_00015813.jpg
+Places365_test_00015826.jpg
+Places365_test_00015836.jpg
+Places365_test_00015839.jpg
+Places365_test_00015842.jpg
+Places365_test_00015847.jpg
+Places365_test_00015854.jpg
+Places365_test_00015858.jpg
+Places365_test_00015869.jpg
+Places365_test_00015872.jpg
+Places365_test_00015874.jpg
+Places365_test_00015877.jpg
+Places365_test_00015878.jpg
+Places365_test_00015883.jpg
+Places365_test_00015895.jpg
+Places365_test_00015909.jpg
+Places365_test_00015916.jpg
+Places365_test_00015918.jpg
+Places365_test_00015954.jpg
+Places365_test_00016000.jpg
+Places365_test_00016009.jpg
+Places365_test_00016013.jpg
+Places365_test_00016036.jpg
+Places365_test_00016039.jpg
+Places365_test_00016040.jpg
+Places365_test_00016053.jpg
+Places365_test_00016059.jpg
+Places365_test_00016074.jpg
+Places365_test_00016077.jpg
+Places365_test_00016085.jpg
+Places365_test_00016086.jpg
+Places365_test_00016091.jpg
+Places365_test_00016096.jpg
+Places365_test_00016097.jpg
+Places365_test_00016130.jpg
+Places365_test_00016147.jpg
+Places365_test_00016152.jpg
+Places365_test_00016168.jpg
+Places365_test_00016176.jpg
+Places365_test_00016200.jpg
+Places365_test_00016232.jpg
+Places365_test_00016237.jpg
+Places365_test_00016255.jpg
+Places365_test_00016267.jpg
+Places365_test_00016271.jpg
+Places365_test_00016280.jpg
+Places365_test_00016300.jpg
+Places365_test_00016307.jpg
+Places365_test_00016326.jpg
+Places365_test_00016342.jpg
+Places365_test_00016343.jpg
+Places365_test_00016352.jpg
+Places365_test_00016356.jpg
+Places365_test_00016386.jpg
+Places365_test_00016387.jpg
+Places365_test_00016393.jpg
+Places365_test_00016394.jpg
+Places365_test_00016401.jpg
+Places365_test_00016407.jpg
+Places365_test_00016411.jpg
+Places365_test_00016423.jpg
+Places365_test_00016431.jpg
+Places365_test_00016435.jpg
+Places365_test_00016478.jpg
+Places365_test_00016520.jpg
+Places365_test_00016541.jpg
+Places365_test_00016550.jpg
+Places365_test_00016558.jpg
+Places365_test_00016595.jpg
+Places365_test_00016627.jpg
+Places365_test_00016639.jpg
+Places365_test_00016665.jpg
+Places365_test_00016670.jpg
+Places365_test_00016671.jpg
+Places365_test_00016698.jpg
+Places365_test_00016702.jpg
+Places365_test_00016705.jpg
+Places365_test_00016707.jpg
+Places365_test_00016714.jpg
+Places365_test_00016725.jpg
+Places365_test_00016734.jpg
+Places365_test_00016748.jpg
+Places365_test_00016766.jpg
+Places365_test_00016778.jpg
+Places365_test_00016787.jpg
+Places365_test_00016812.jpg
+Places365_test_00016820.jpg
+Places365_test_00016838.jpg
+Places365_test_00016843.jpg
+Places365_test_00016857.jpg
+Places365_test_00016864.jpg
+Places365_test_00016866.jpg
+Places365_test_00016880.jpg
+Places365_test_00016883.jpg
+Places365_test_00016905.jpg
+Places365_test_00016906.jpg
+Places365_test_00016913.jpg
+Places365_test_00016915.jpg
+Places365_test_00016933.jpg
+Places365_test_00016954.jpg
+Places365_test_00016955.jpg
+Places365_test_00016957.jpg
+Places365_test_00016963.jpg
+Places365_test_00016969.jpg
+Places365_test_00016987.jpg
+Places365_test_00016991.jpg
+Places365_test_00016993.jpg
+Places365_test_00017011.jpg
+Places365_test_00017072.jpg
+Places365_test_00017096.jpg
+Places365_test_00017111.jpg
+Places365_test_00017122.jpg
+Places365_test_00017134.jpg
+Places365_test_00017153.jpg
+Places365_test_00017179.jpg
+Places365_test_00017190.jpg
+Places365_test_00017220.jpg
+Places365_test_00017226.jpg
+Places365_test_00017235.jpg
+Places365_test_00017239.jpg
+Places365_test_00017254.jpg
+Places365_test_00017256.jpg
+Places365_test_00017265.jpg
+Places365_test_00017288.jpg
+Places365_test_00017293.jpg
+Places365_test_00017295.jpg
+Places365_test_00017301.jpg
+Places365_test_00017313.jpg
+Places365_test_00017314.jpg
+Places365_test_00017334.jpg
+Places365_test_00017336.jpg
+Places365_test_00017343.jpg
+Places365_test_00017368.jpg
+Places365_test_00017385.jpg
+Places365_test_00017406.jpg
+Places365_test_00017411.jpg
+Places365_test_00017415.jpg
+Places365_test_00017429.jpg
+Places365_test_00017438.jpg
+Places365_test_00017444.jpg
+Places365_test_00017458.jpg
+Places365_test_00017460.jpg
+Places365_test_00017470.jpg
+Places365_test_00017474.jpg
+Places365_test_00017510.jpg
+Places365_test_00017537.jpg
+Places365_test_00017584.jpg
+Places365_test_00017590.jpg
+Places365_test_00017602.jpg
+Places365_test_00017610.jpg
+Places365_test_00017631.jpg
+Places365_test_00017645.jpg
+Places365_test_00017646.jpg
+Places365_test_00017658.jpg
+Places365_test_00017679.jpg
+Places365_test_00017692.jpg
+Places365_test_00017709.jpg
+Places365_test_00017711.jpg
+Places365_test_00017724.jpg
+Places365_test_00017732.jpg
+Places365_test_00017750.jpg
+Places365_test_00017763.jpg
+Places365_test_00017764.jpg
+Places365_test_00017775.jpg
+Places365_test_00017803.jpg
+Places365_test_00017821.jpg
+Places365_test_00017830.jpg
+Places365_test_00017835.jpg
+Places365_test_00017838.jpg
+Places365_test_00017852.jpg
+Places365_test_00017855.jpg
+Places365_test_00017858.jpg
+Places365_test_00017860.jpg
+Places365_test_00017863.jpg
+Places365_test_00017866.jpg
+Places365_test_00017874.jpg
+Places365_test_00017910.jpg
+Places365_test_00017913.jpg
+Places365_test_00017916.jpg
+Places365_test_00017975.jpg
+Places365_test_00017986.jpg
+Places365_test_00018001.jpg
+Places365_test_00018009.jpg
+Places365_test_00018012.jpg
+Places365_test_00018015.jpg
+Places365_test_00018024.jpg
+Places365_test_00018033.jpg
+Places365_test_00018042.jpg
+Places365_test_00018045.jpg
+Places365_test_00018061.jpg
+Places365_test_00018062.jpg
+Places365_test_00018072.jpg
+Places365_test_00018080.jpg
+Places365_test_00018083.jpg
+Places365_test_00018094.jpg
+Places365_test_00018099.jpg
+Places365_test_00018104.jpg
+Places365_test_00018112.jpg
+Places365_test_00018120.jpg
+Places365_test_00018135.jpg
+Places365_test_00018140.jpg
+Places365_test_00018153.jpg
+Places365_test_00018164.jpg
+Places365_test_00018184.jpg
+Places365_test_00018208.jpg
+Places365_test_00018209.jpg
+Places365_test_00018214.jpg
+Places365_test_00018218.jpg
+Places365_test_00018238.jpg
+Places365_test_00018241.jpg
+Places365_test_00018249.jpg
+Places365_test_00018262.jpg
+Places365_test_00018265.jpg
+Places365_test_00018268.jpg
+Places365_test_00018280.jpg
+Places365_test_00018286.jpg
+Places365_test_00018293.jpg
+Places365_test_00018324.jpg
+Places365_test_00018326.jpg
+Places365_test_00018330.jpg
+Places365_test_00018339.jpg
+Places365_test_00018340.jpg
+Places365_test_00018343.jpg
+Places365_test_00018345.jpg
+Places365_test_00018356.jpg
+Places365_test_00018426.jpg
+Places365_test_00018432.jpg
+Places365_test_00018441.jpg
+Places365_test_00018443.jpg
+Places365_test_00018444.jpg
+Places365_test_00018446.jpg
+Places365_test_00018452.jpg
+Places365_test_00018459.jpg
+Places365_test_00018465.jpg
+Places365_test_00018495.jpg
+Places365_test_00018501.jpg
+Places365_test_00018504.jpg
+Places365_test_00018520.jpg
+Places365_test_00018537.jpg
+Places365_test_00018541.jpg
+Places365_test_00018555.jpg
+Places365_test_00018563.jpg
+Places365_test_00018566.jpg
+Places365_test_00018569.jpg
+Places365_test_00018576.jpg
+Places365_test_00018577.jpg
+Places365_test_00018596.jpg
+Places365_test_00018609.jpg
+Places365_test_00018622.jpg
+Places365_test_00018626.jpg
+Places365_test_00018629.jpg
+Places365_test_00018650.jpg
+Places365_test_00018671.jpg
+Places365_test_00018690.jpg
+Places365_test_00018703.jpg
+Places365_test_00018707.jpg
+Places365_test_00018714.jpg
+Places365_test_00018716.jpg
+Places365_test_00018718.jpg
+Places365_test_00018719.jpg
+Places365_test_00018733.jpg
+Places365_test_00018747.jpg
+Places365_test_00018756.jpg
+Places365_test_00018771.jpg
+Places365_test_00018775.jpg
+Places365_test_00018809.jpg
+Places365_test_00018853.jpg
+Places365_test_00018887.jpg
+Places365_test_00018890.jpg
+Places365_test_00018916.jpg
+Places365_test_00018926.jpg
+Places365_test_00018944.jpg
+Places365_test_00018948.jpg
+Places365_test_00018983.jpg
+Places365_test_00018984.jpg
+Places365_test_00018992.jpg
+Places365_test_00018997.jpg
+Places365_test_00018999.jpg
+Places365_test_00019018.jpg
+Places365_test_00019039.jpg
+Places365_test_00019064.jpg
+Places365_test_00019069.jpg
+Places365_test_00019073.jpg
+Places365_test_00019098.jpg
+Places365_test_00019124.jpg
+Places365_test_00019132.jpg
+Places365_test_00019137.jpg
+Places365_test_00019152.jpg
+Places365_test_00019162.jpg
+Places365_test_00019163.jpg
+Places365_test_00019165.jpg
+Places365_test_00019168.jpg
+Places365_test_00019173.jpg
+Places365_test_00019181.jpg
+Places365_test_00019183.jpg
+Places365_test_00019197.jpg
+Places365_test_00019223.jpg
+Places365_test_00019227.jpg
+Places365_test_00019248.jpg
+Places365_test_00019250.jpg
+Places365_test_00019258.jpg
+Places365_test_00019265.jpg
+Places365_test_00019270.jpg
+Places365_test_00019272.jpg
+Places365_test_00019278.jpg
+Places365_test_00019282.jpg
+Places365_test_00019301.jpg
+Places365_test_00019302.jpg
+Places365_test_00019313.jpg
+Places365_test_00019318.jpg
+Places365_test_00019333.jpg
+Places365_test_00019351.jpg
+Places365_test_00019354.jpg
+Places365_test_00019358.jpg
+Places365_test_00019380.jpg
+Places365_test_00019405.jpg
+Places365_test_00019435.jpg
+Places365_test_00019439.jpg
+Places365_test_00019451.jpg
+Places365_test_00019475.jpg
+Places365_test_00019493.jpg
+Places365_test_00019505.jpg
+Places365_test_00019514.jpg
+Places365_test_00019521.jpg
+Places365_test_00019527.jpg
+Places365_test_00019539.jpg
+Places365_test_00019542.jpg
+Places365_test_00019555.jpg
+Places365_test_00019562.jpg
+Places365_test_00019568.jpg
+Places365_test_00019592.jpg
+Places365_test_00019594.jpg
+Places365_test_00019600.jpg
+Places365_test_00019678.jpg
+Places365_test_00019686.jpg
+Places365_test_00019709.jpg
+Places365_test_00019730.jpg
+Places365_test_00019743.jpg
+Places365_test_00019756.jpg
+Places365_test_00019780.jpg
+Places365_test_00019784.jpg
+Places365_test_00019787.jpg
+Places365_test_00019790.jpg
+Places365_test_00019800.jpg
+Places365_test_00019807.jpg
+Places365_test_00019809.jpg
+Places365_test_00019811.jpg
+Places365_test_00019818.jpg
+Places365_test_00019819.jpg
+Places365_test_00019821.jpg
+Places365_test_00019827.jpg
+Places365_test_00019833.jpg
+Places365_test_00019837.jpg
+Places365_test_00019838.jpg
+Places365_test_00019867.jpg
+Places365_test_00019870.jpg
+Places365_test_00019899.jpg
+Places365_test_00019902.jpg
+Places365_test_00019904.jpg
+Places365_test_00019933.jpg
+Places365_test_00019946.jpg
+Places365_test_00019955.jpg
+Places365_test_00019958.jpg
+Places365_test_00019960.jpg
+Places365_test_00019992.jpg
+Places365_test_00019996.jpg
+Places365_test_00020017.jpg
+Places365_test_00020039.jpg
+Places365_test_00020048.jpg
+Places365_test_00020062.jpg
+Places365_test_00020081.jpg
+Places365_test_00020084.jpg
+Places365_test_00020088.jpg
+Places365_test_00020100.jpg
+Places365_test_00020112.jpg
+Places365_test_00020116.jpg
+Places365_test_00020123.jpg
+Places365_test_00020131.jpg
+Places365_test_00020137.jpg
+Places365_test_00020152.jpg
+Places365_test_00020154.jpg
+Places365_test_00020158.jpg
+Places365_test_00020163.jpg
+Places365_test_00020179.jpg
+Places365_test_00020183.jpg
+Places365_test_00020200.jpg
+Places365_test_00020201.jpg
+Places365_test_00020208.jpg
+Places365_test_00020212.jpg
+Places365_test_00020218.jpg
+Places365_test_00020233.jpg
+Places365_test_00020248.jpg
+Places365_test_00020299.jpg
+Places365_test_00020324.jpg
+Places365_test_00020330.jpg
+Places365_test_00020338.jpg
+Places365_test_00020345.jpg
+Places365_test_00020351.jpg
+Places365_test_00020366.jpg
+Places365_test_00020367.jpg
+Places365_test_00020368.jpg
+Places365_test_00020370.jpg
+Places365_test_00020391.jpg
+Places365_test_00020414.jpg
+Places365_test_00020418.jpg
+Places365_test_00020425.jpg
+Places365_test_00020490.jpg
+Places365_test_00020492.jpg
+Places365_test_00020499.jpg
+Places365_test_00020502.jpg
+Places365_test_00020512.jpg
+Places365_test_00020517.jpg
+Places365_test_00020522.jpg
+Places365_test_00020525.jpg
+Places365_test_00020528.jpg
+Places365_test_00020537.jpg
+Places365_test_00020543.jpg
+Places365_test_00020546.jpg
+Places365_test_00020548.jpg
+Places365_test_00020553.jpg
+Places365_test_00020558.jpg
+Places365_test_00020563.jpg
+Places365_test_00020565.jpg
+Places365_test_00020567.jpg
+Places365_test_00020572.jpg
+Places365_test_00020587.jpg
+Places365_test_00020596.jpg
+Places365_test_00020618.jpg
+Places365_test_00020637.jpg
+Places365_test_00020640.jpg
+Places365_test_00020644.jpg
+Places365_test_00020645.jpg
+Places365_test_00020656.jpg
+Places365_test_00020667.jpg
+Places365_test_00020670.jpg
+Places365_test_00020684.jpg
+Places365_test_00020688.jpg
+Places365_test_00020696.jpg
+Places365_test_00020697.jpg
+Places365_test_00020702.jpg
+Places365_test_00020726.jpg
+Places365_test_00020733.jpg
+Places365_test_00020744.jpg
+Places365_test_00020758.jpg
+Places365_test_00020813.jpg
+Places365_test_00020814.jpg
+Places365_test_00020826.jpg
+Places365_test_00020832.jpg
+Places365_test_00020843.jpg
+Places365_test_00020862.jpg
+Places365_test_00020863.jpg
+Places365_test_00020869.jpg
+Places365_test_00020895.jpg
+Places365_test_00020912.jpg
+Places365_test_00020913.jpg
+Places365_test_00020942.jpg
+Places365_test_00020977.jpg
+Places365_test_00020980.jpg
+Places365_test_00020990.jpg
+Places365_test_00021010.jpg
+Places365_test_00021035.jpg
+Places365_test_00021046.jpg
+Places365_test_00021049.jpg
+Places365_test_00021053.jpg
+Places365_test_00021078.jpg
+Places365_test_00021086.jpg
+Places365_test_00021104.jpg
+Places365_test_00021110.jpg
+Places365_test_00021127.jpg
+Places365_test_00021155.jpg
+Places365_test_00021187.jpg
+Places365_test_00021207.jpg
+Places365_test_00021209.jpg
+Places365_test_00021211.jpg
+Places365_test_00021213.jpg
+Places365_test_00021217.jpg
+Places365_test_00021228.jpg
+Places365_test_00021229.jpg
+Places365_test_00021240.jpg
+Places365_test_00021276.jpg
+Places365_test_00021319.jpg
+Places365_test_00021322.jpg
+Places365_test_00021329.jpg
+Places365_test_00021335.jpg
+Places365_test_00021349.jpg
+Places365_test_00021358.jpg
+Places365_test_00021360.jpg
+Places365_test_00021362.jpg
+Places365_test_00021366.jpg
+Places365_test_00021375.jpg
+Places365_test_00021398.jpg
+Places365_test_00021400.jpg
+Places365_test_00021405.jpg
+Places365_test_00021418.jpg
+Places365_test_00021446.jpg
+Places365_test_00021450.jpg
+Places365_test_00021469.jpg
+Places365_test_00021486.jpg
+Places365_test_00021488.jpg
+Places365_test_00021490.jpg
+Places365_test_00021503.jpg
+Places365_test_00021508.jpg
+Places365_test_00021529.jpg
+Places365_test_00021530.jpg
+Places365_test_00021567.jpg
+Places365_test_00021573.jpg
+Places365_test_00021587.jpg
+Places365_test_00021632.jpg
+Places365_test_00021640.jpg
+Places365_test_00021651.jpg
+Places365_test_00021655.jpg
+Places365_test_00021675.jpg
+Places365_test_00021678.jpg
+Places365_test_00021697.jpg
+Places365_test_00021713.jpg
+Places365_test_00021724.jpg
+Places365_test_00021732.jpg
+Places365_test_00021749.jpg
+Places365_test_00021755.jpg
+Places365_test_00021776.jpg
+Places365_test_00021782.jpg
+Places365_test_00021818.jpg
+Places365_test_00021826.jpg
+Places365_test_00021843.jpg
+Places365_test_00021858.jpg
+Places365_test_00021871.jpg
+Places365_test_00021872.jpg
+Places365_test_00021888.jpg
+Places365_test_00021898.jpg
+Places365_test_00021906.jpg
+Places365_test_00021908.jpg
+Places365_test_00021929.jpg
+Places365_test_00021939.jpg
+Places365_test_00021943.jpg
+Places365_test_00021953.jpg
+Places365_test_00021963.jpg
+Places365_test_00021979.jpg
+Places365_test_00021980.jpg
+Places365_test_00021984.jpg
+Places365_test_00022006.jpg
+Places365_test_00022034.jpg
+Places365_test_00022038.jpg
+Places365_test_00022047.jpg
+Places365_test_00022048.jpg
+Places365_test_00022071.jpg
+Places365_test_00022074.jpg
+Places365_test_00022086.jpg
+Places365_test_00022098.jpg
+Places365_test_00022101.jpg
+Places365_test_00022114.jpg
+Places365_test_00022121.jpg
+Places365_test_00022140.jpg
+Places365_test_00022142.jpg
+Places365_test_00022145.jpg
+Places365_test_00022155.jpg
+Places365_test_00022169.jpg
+Places365_test_00022172.jpg
+Places365_test_00022183.jpg
+Places365_test_00022191.jpg
+Places365_test_00022192.jpg
+Places365_test_00022196.jpg
+Places365_test_00022203.jpg
+Places365_test_00022207.jpg
+Places365_test_00022215.jpg
+Places365_test_00022218.jpg
+Places365_test_00022225.jpg
+Places365_test_00022236.jpg
+Places365_test_00022257.jpg
+Places365_test_00022262.jpg
+Places365_test_00022263.jpg
+Places365_test_00022269.jpg
+Places365_test_00022272.jpg
+Places365_test_00022275.jpg
+Places365_test_00022276.jpg
+Places365_test_00022284.jpg
+Places365_test_00022289.jpg
+Places365_test_00022290.jpg
+Places365_test_00022300.jpg
+Places365_test_00022301.jpg
+Places365_test_00022312.jpg
+Places365_test_00022333.jpg
+Places365_test_00022349.jpg
+Places365_test_00022357.jpg
+Places365_test_00022359.jpg
+Places365_test_00022380.jpg
+Places365_test_00022391.jpg
+Places365_test_00022396.jpg
+Places365_test_00022408.jpg
+Places365_test_00022416.jpg
+Places365_test_00022421.jpg
+Places365_test_00022453.jpg
+Places365_test_00022474.jpg
+Places365_test_00022502.jpg
+Places365_test_00022517.jpg
+Places365_test_00022526.jpg
+Places365_test_00022532.jpg
+Places365_test_00022544.jpg
+Places365_test_00022566.jpg
+Places365_test_00022581.jpg
+Places365_test_00022588.jpg
+Places365_test_00022616.jpg
+Places365_test_00022633.jpg
+Places365_test_00022634.jpg
+Places365_test_00022637.jpg
+Places365_test_00022644.jpg
+Places365_test_00022670.jpg
+Places365_test_00022675.jpg
+Places365_test_00022684.jpg
+Places365_test_00022685.jpg
+Places365_test_00022699.jpg
+Places365_test_00022721.jpg
+Places365_test_00022728.jpg
+Places365_test_00022748.jpg
+Places365_test_00022760.jpg
+Places365_test_00022764.jpg
+Places365_test_00022766.jpg
+Places365_test_00022779.jpg
+Places365_test_00022793.jpg
+Places365_test_00022800.jpg
+Places365_test_00022804.jpg
+Places365_test_00022812.jpg
+Places365_test_00022827.jpg
+Places365_test_00022853.jpg
+Places365_test_00022855.jpg
+Places365_test_00022857.jpg
+Places365_test_00022866.jpg
+Places365_test_00022873.jpg
+Places365_test_00022877.jpg
+Places365_test_00022884.jpg
+Places365_test_00022904.jpg
+Places365_test_00022905.jpg
+Places365_test_00022915.jpg
+Places365_test_00022943.jpg
+Places365_test_00022947.jpg
+Places365_test_00022958.jpg
+Places365_test_00023016.jpg
+Places365_test_00023040.jpg
+Places365_test_00023086.jpg
+Places365_test_00023092.jpg
+Places365_test_00023097.jpg
+Places365_test_00023110.jpg
+Places365_test_00023126.jpg
+Places365_test_00023129.jpg
+Places365_test_00023134.jpg
+Places365_test_00023140.jpg
+Places365_test_00023147.jpg
+Places365_test_00023149.jpg
+Places365_test_00023201.jpg
+Places365_test_00023206.jpg
+Places365_test_00023213.jpg
+Places365_test_00023215.jpg
+Places365_test_00023224.jpg
+Places365_test_00023256.jpg
+Places365_test_00023257.jpg
+Places365_test_00023262.jpg
+Places365_test_00023286.jpg
+Places365_test_00023308.jpg
+Places365_test_00023314.jpg
+Places365_test_00023316.jpg
+Places365_test_00023325.jpg
+Places365_test_00023333.jpg
+Places365_test_00023355.jpg
+Places365_test_00023383.jpg
+Places365_test_00023389.jpg
+Places365_test_00023402.jpg
+Places365_test_00023414.jpg
+Places365_test_00023442.jpg
+Places365_test_00023456.jpg
+Places365_test_00023457.jpg
+Places365_test_00023461.jpg
+Places365_test_00023489.jpg
+Places365_test_00023491.jpg
+Places365_test_00023496.jpg
+Places365_test_00023507.jpg
+Places365_test_00023515.jpg
+Places365_test_00023520.jpg
+Places365_test_00023522.jpg
+Places365_test_00023524.jpg
+Places365_test_00023533.jpg
+Places365_test_00023538.jpg
+Places365_test_00023555.jpg
+Places365_test_00023564.jpg
+Places365_test_00023576.jpg
+Places365_test_00023584.jpg
+Places365_test_00023588.jpg
+Places365_test_00023602.jpg
+Places365_test_00023605.jpg
+Places365_test_00023617.jpg
+Places365_test_00023633.jpg
+Places365_test_00023650.jpg
+Places365_test_00023659.jpg
+Places365_test_00023662.jpg
+Places365_test_00023663.jpg
+Places365_test_00023679.jpg
+Places365_test_00023694.jpg
+Places365_test_00023715.jpg
+Places365_test_00023717.jpg
+Places365_test_00023718.jpg
+Places365_test_00023723.jpg
+Places365_test_00023725.jpg
+Places365_test_00023728.jpg
+Places365_test_00023732.jpg
+Places365_test_00023737.jpg
+Places365_test_00023757.jpg
+Places365_test_00023760.jpg
+Places365_test_00023762.jpg
+Places365_test_00023765.jpg
+Places365_test_00023770.jpg
+Places365_test_00023772.jpg
+Places365_test_00023792.jpg
+Places365_test_00023824.jpg
+Places365_test_00023833.jpg
+Places365_test_00023839.jpg
+Places365_test_00023855.jpg
+Places365_test_00023858.jpg
+Places365_test_00023896.jpg
+Places365_test_00023916.jpg
+Places365_test_00023925.jpg
+Places365_test_00023930.jpg
+Places365_test_00023940.jpg
+Places365_test_00023950.jpg
+Places365_test_00023960.jpg
+Places365_test_00023974.jpg
+Places365_test_00023984.jpg
+Places365_test_00023986.jpg
+Places365_test_00023987.jpg
+Places365_test_00023989.jpg
+Places365_test_00023994.jpg
+Places365_test_00023995.jpg
+Places365_test_00024006.jpg
+Places365_test_00024017.jpg
+Places365_test_00024032.jpg
+Places365_test_00024034.jpg
+Places365_test_00024057.jpg
+Places365_test_00024089.jpg
+Places365_test_00024091.jpg
+Places365_test_00024101.jpg
+Places365_test_00024106.jpg
+Places365_test_00024121.jpg
+Places365_test_00024152.jpg
+Places365_test_00024159.jpg
+Places365_test_00024173.jpg
+Places365_test_00024189.jpg
+Places365_test_00024197.jpg
+Places365_test_00024198.jpg
+Places365_test_00024225.jpg
+Places365_test_00024233.jpg
+Places365_test_00024236.jpg
+Places365_test_00024237.jpg
+Places365_test_00024238.jpg
+Places365_test_00024255.jpg
+Places365_test_00024260.jpg
+Places365_test_00024262.jpg
+Places365_test_00024282.jpg
+Places365_test_00024291.jpg
+Places365_test_00024299.jpg
+Places365_test_00024302.jpg
+Places365_test_00024307.jpg
+Places365_test_00024317.jpg
+Places365_test_00024335.jpg
+Places365_test_00024336.jpg
+Places365_test_00024338.jpg
+Places365_test_00024343.jpg
+Places365_test_00024351.jpg
+Places365_test_00024368.jpg
+Places365_test_00024386.jpg
+Places365_test_00024398.jpg
+Places365_test_00024399.jpg
+Places365_test_00024403.jpg
+Places365_test_00024408.jpg
+Places365_test_00024421.jpg
+Places365_test_00024425.jpg
+Places365_test_00024438.jpg
+Places365_test_00024445.jpg
+Places365_test_00024448.jpg
+Places365_test_00024449.jpg
+Places365_test_00024474.jpg
+Places365_test_00024491.jpg
+Places365_test_00024508.jpg
+Places365_test_00024512.jpg
+Places365_test_00024531.jpg
+Places365_test_00024543.jpg
+Places365_test_00024547.jpg
+Places365_test_00024560.jpg
+Places365_test_00024570.jpg
+Places365_test_00024585.jpg
+Places365_test_00024593.jpg
+Places365_test_00024600.jpg
+Places365_test_00024601.jpg
+Places365_test_00024613.jpg
+Places365_test_00024616.jpg
+Places365_test_00024630.jpg
+Places365_test_00024654.jpg
+Places365_test_00024667.jpg
+Places365_test_00024675.jpg
+Places365_test_00024677.jpg
+Places365_test_00024709.jpg
+Places365_test_00024714.jpg
+Places365_test_00024718.jpg
+Places365_test_00024721.jpg
+Places365_test_00024726.jpg
+Places365_test_00024731.jpg
+Places365_test_00024734.jpg
+Places365_test_00024741.jpg
+Places365_test_00024758.jpg
+Places365_test_00024778.jpg
+Places365_test_00024779.jpg
+Places365_test_00024789.jpg
+Places365_test_00024804.jpg
+Places365_test_00024813.jpg
+Places365_test_00024824.jpg
+Places365_test_00024853.jpg
+Places365_test_00024858.jpg
+Places365_test_00024887.jpg
+Places365_test_00024893.jpg
+Places365_test_00024897.jpg
+Places365_test_00024905.jpg
+Places365_test_00024919.jpg
+Places365_test_00024922.jpg
+Places365_test_00024923.jpg
+Places365_test_00024930.jpg
+Places365_test_00024939.jpg
+Places365_test_00024940.jpg
+Places365_test_00024959.jpg
+Places365_test_00024960.jpg
+Places365_test_00024961.jpg
+Places365_test_00024967.jpg
+Places365_test_00024980.jpg
+Places365_test_00024997.jpg
+Places365_test_00025001.jpg
+Places365_test_00025028.jpg
+Places365_test_00025041.jpg
+Places365_test_00025042.jpg
+Places365_test_00025069.jpg
+Places365_test_00025081.jpg
+Places365_test_00025083.jpg
+Places365_test_00025084.jpg
+Places365_test_00025091.jpg
+Places365_test_00025106.jpg
+Places365_test_00025110.jpg
+Places365_test_00025119.jpg
+Places365_test_00025130.jpg
+Places365_test_00025137.jpg
+Places365_test_00025153.jpg
+Places365_test_00025164.jpg
+Places365_test_00025167.jpg
+Places365_test_00025168.jpg
+Places365_test_00025185.jpg
+Places365_test_00025197.jpg
+Places365_test_00025206.jpg
+Places365_test_00025227.jpg
+Places365_test_00025243.jpg
+Places365_test_00025250.jpg
+Places365_test_00025268.jpg
+Places365_test_00025275.jpg
+Places365_test_00025289.jpg
+Places365_test_00025325.jpg
+Places365_test_00025343.jpg
+Places365_test_00025349.jpg
+Places365_test_00025350.jpg
+Places365_test_00025357.jpg
+Places365_test_00025380.jpg
+Places365_test_00025436.jpg
+Places365_test_00025437.jpg
+Places365_test_00025439.jpg
+Places365_test_00025444.jpg
+Places365_test_00025451.jpg
+Places365_test_00025467.jpg
+Places365_test_00025470.jpg
+Places365_test_00025473.jpg
+Places365_test_00025491.jpg
+Places365_test_00025513.jpg
+Places365_test_00025539.jpg
+Places365_test_00025550.jpg
+Places365_test_00025553.jpg
+Places365_test_00025560.jpg
+Places365_test_00025572.jpg
+Places365_test_00025575.jpg
+Places365_test_00025577.jpg
+Places365_test_00025578.jpg
+Places365_test_00025580.jpg
+Places365_test_00025631.jpg
+Places365_test_00025643.jpg
+Places365_test_00025647.jpg
+Places365_test_00025652.jpg
+Places365_test_00025655.jpg
+Places365_test_00025660.jpg
+Places365_test_00025666.jpg
+Places365_test_00025668.jpg
+Places365_test_00025682.jpg
+Places365_test_00025686.jpg
+Places365_test_00025690.jpg
+Places365_test_00025736.jpg
+Places365_test_00025760.jpg
+Places365_test_00025761.jpg
+Places365_test_00025768.jpg
+Places365_test_00025769.jpg
+Places365_test_00025771.jpg
+Places365_test_00025773.jpg
+Places365_test_00025774.jpg
+Places365_test_00025780.jpg
+Places365_test_00025781.jpg
+Places365_test_00025782.jpg
+Places365_test_00025788.jpg
+Places365_test_00025801.jpg
+Places365_test_00025826.jpg
+Places365_test_00025840.jpg
+Places365_test_00025841.jpg
+Places365_test_00025850.jpg
+Places365_test_00025859.jpg
+Places365_test_00025861.jpg
+Places365_test_00025863.jpg
+Places365_test_00025881.jpg
+Places365_test_00025894.jpg
+Places365_test_00025895.jpg
+Places365_test_00025898.jpg
+Places365_test_00025931.jpg
+Places365_test_00025937.jpg
+Places365_test_00025952.jpg
+Places365_test_00025966.jpg
+Places365_test_00025970.jpg
+Places365_test_00025985.jpg
+Places365_test_00025991.jpg
+Places365_test_00025992.jpg
+Places365_test_00025997.jpg
+Places365_test_00026001.jpg
+Places365_test_00026002.jpg
+Places365_test_00026004.jpg
+Places365_test_00026026.jpg
+Places365_test_00026052.jpg
+Places365_test_00026053.jpg
+Places365_test_00026057.jpg
+Places365_test_00026066.jpg
+Places365_test_00026109.jpg
+Places365_test_00026110.jpg
+Places365_test_00026126.jpg
+Places365_test_00026141.jpg
+Places365_test_00026152.jpg
+Places365_test_00026154.jpg
+Places365_test_00026157.jpg
+Places365_test_00026159.jpg
+Places365_test_00026164.jpg
+Places365_test_00026165.jpg
+Places365_test_00026170.jpg
+Places365_test_00026174.jpg
+Places365_test_00026200.jpg
+Places365_test_00026208.jpg
+Places365_test_00026220.jpg
+Places365_test_00026235.jpg
+Places365_test_00026236.jpg
+Places365_test_00026248.jpg
+Places365_test_00026302.jpg
+Places365_test_00026303.jpg
+Places365_test_00026314.jpg
+Places365_test_00026316.jpg
+Places365_test_00026317.jpg
+Places365_test_00026339.jpg
+Places365_test_00026340.jpg
+Places365_test_00026359.jpg
+Places365_test_00026375.jpg
+Places365_test_00026445.jpg
+Places365_test_00026480.jpg
+Places365_test_00026487.jpg
+Places365_test_00026496.jpg
+Places365_test_00026505.jpg
+Places365_test_00026523.jpg
+Places365_test_00026525.jpg
+Places365_test_00026554.jpg
+Places365_test_00026562.jpg
+Places365_test_00026567.jpg
+Places365_test_00026569.jpg
+Places365_test_00026570.jpg
+Places365_test_00026576.jpg
+Places365_test_00026617.jpg
+Places365_test_00026620.jpg
+Places365_test_00026646.jpg
+Places365_test_00026647.jpg
+Places365_test_00026671.jpg
+Places365_test_00026689.jpg
+Places365_test_00026711.jpg
+Places365_test_00026713.jpg
+Places365_test_00026729.jpg
+Places365_test_00026735.jpg
+Places365_test_00026739.jpg
+Places365_test_00026753.jpg
+Places365_test_00026756.jpg
+Places365_test_00026788.jpg
+Places365_test_00026796.jpg
+Places365_test_00026797.jpg
+Places365_test_00026798.jpg
+Places365_test_00026800.jpg
+Places365_test_00026801.jpg
+Places365_test_00026803.jpg
+Places365_test_00026807.jpg
+Places365_test_00026837.jpg
+Places365_test_00026851.jpg
+Places365_test_00026855.jpg
+Places365_test_00026877.jpg
+Places365_test_00026878.jpg
+Places365_test_00026888.jpg
+Places365_test_00026905.jpg
+Places365_test_00026907.jpg
+Places365_test_00026908.jpg
+Places365_test_00026917.jpg
+Places365_test_00026926.jpg
+Places365_test_00026927.jpg
+Places365_test_00026939.jpg
+Places365_test_00026951.jpg
+Places365_test_00026953.jpg
+Places365_test_00026955.jpg
+Places365_test_00026958.jpg
+Places365_test_00026966.jpg
+Places365_test_00026971.jpg
+Places365_test_00026979.jpg
+Places365_test_00026980.jpg
+Places365_test_00026990.jpg
+Places365_test_00026992.jpg
+Places365_test_00026995.jpg
+Places365_test_00027000.jpg
+Places365_test_00027002.jpg
+Places365_test_00027003.jpg
+Places365_test_00027009.jpg
+Places365_test_00027021.jpg
+Places365_test_00027026.jpg
+Places365_test_00027043.jpg
+Places365_test_00027048.jpg
+Places365_test_00027050.jpg
+Places365_test_00027057.jpg
+Places365_test_00027060.jpg
+Places365_test_00027062.jpg
+Places365_test_00027077.jpg
+Places365_test_00027116.jpg
+Places365_test_00027118.jpg
+Places365_test_00027122.jpg
+Places365_test_00027126.jpg
+Places365_test_00027133.jpg
+Places365_test_00027147.jpg
+Places365_test_00027173.jpg
+Places365_test_00027201.jpg
+Places365_test_00027203.jpg
+Places365_test_00027205.jpg
+Places365_test_00027217.jpg
+Places365_test_00027223.jpg
+Places365_test_00027226.jpg
+Places365_test_00027248.jpg
+Places365_test_00027249.jpg
+Places365_test_00027254.jpg
+Places365_test_00027289.jpg
+Places365_test_00027294.jpg
+Places365_test_00027300.jpg
+Places365_test_00027309.jpg
+Places365_test_00027328.jpg
+Places365_test_00027338.jpg
+Places365_test_00027340.jpg
+Places365_test_00027344.jpg
+Places365_test_00027349.jpg
+Places365_test_00027355.jpg
+Places365_test_00027376.jpg
+Places365_test_00027417.jpg
+Places365_test_00027421.jpg
+Places365_test_00027429.jpg
+Places365_test_00027432.jpg
+Places365_test_00027458.jpg
+Places365_test_00027471.jpg
+Places365_test_00027475.jpg
+Places365_test_00027487.jpg
+Places365_test_00027489.jpg
+Places365_test_00027497.jpg
+Places365_test_00027506.jpg
+Places365_test_00027530.jpg
+Places365_test_00027540.jpg
+Places365_test_00027542.jpg
+Places365_test_00027552.jpg
+Places365_test_00027579.jpg
+Places365_test_00027590.jpg
+Places365_test_00027610.jpg
+Places365_test_00027635.jpg
+Places365_test_00027639.jpg
+Places365_test_00027643.jpg
+Places365_test_00027647.jpg
+Places365_test_00027649.jpg
+Places365_test_00027651.jpg
+Places365_test_00027666.jpg
+Places365_test_00027667.jpg
+Places365_test_00027687.jpg
+Places365_test_00027692.jpg
+Places365_test_00027693.jpg
+Places365_test_00027694.jpg
+Places365_test_00027703.jpg
+Places365_test_00027729.jpg
+Places365_test_00027752.jpg
+Places365_test_00027754.jpg
+Places365_test_00027756.jpg
+Places365_test_00027764.jpg
+Places365_test_00027766.jpg
+Places365_test_00027771.jpg
+Places365_test_00027803.jpg
+Places365_test_00027811.jpg
+Places365_test_00027812.jpg
+Places365_test_00027852.jpg
+Places365_test_00027869.jpg
+Places365_test_00027883.jpg
+Places365_test_00027887.jpg
+Places365_test_00027892.jpg
+Places365_test_00027933.jpg
+Places365_test_00027941.jpg
+Places365_test_00027942.jpg
+Places365_test_00027951.jpg
+Places365_test_00027958.jpg
+Places365_test_00027963.jpg
+Places365_test_00028013.jpg
+Places365_test_00028021.jpg
+Places365_test_00028024.jpg
+Places365_test_00028045.jpg
+Places365_test_00028049.jpg
+Places365_test_00028097.jpg
+Places365_test_00028102.jpg
+Places365_test_00028110.jpg
+Places365_test_00028115.jpg
+Places365_test_00028122.jpg
+Places365_test_00028123.jpg
+Places365_test_00028127.jpg
+Places365_test_00028130.jpg
+Places365_test_00028138.jpg
+Places365_test_00028155.jpg
+Places365_test_00028161.jpg
+Places365_test_00028168.jpg
+Places365_test_00028173.jpg
+Places365_test_00028174.jpg
+Places365_test_00028206.jpg
+Places365_test_00028226.jpg
+Places365_test_00028228.jpg
+Places365_test_00028252.jpg
+Places365_test_00028258.jpg
+Places365_test_00028262.jpg
+Places365_test_00028264.jpg
+Places365_test_00028277.jpg
+Places365_test_00028313.jpg
+Places365_test_00028318.jpg
+Places365_test_00028326.jpg
+Places365_test_00028331.jpg
+Places365_test_00028337.jpg
+Places365_test_00028366.jpg
+Places365_test_00028370.jpg
+Places365_test_00028375.jpg
+Places365_test_00028391.jpg
+Places365_test_00028428.jpg
+Places365_test_00028432.jpg
+Places365_test_00028449.jpg
+Places365_test_00028451.jpg
+Places365_test_00028462.jpg
+Places365_test_00028463.jpg
+Places365_test_00028464.jpg
+Places365_test_00028476.jpg
+Places365_test_00028478.jpg
+Places365_test_00028490.jpg
+Places365_test_00028491.jpg
+Places365_test_00028494.jpg
+Places365_test_00028496.jpg
+Places365_test_00028501.jpg
+Places365_test_00028502.jpg
+Places365_test_00028521.jpg
+Places365_test_00028535.jpg
+Places365_test_00028539.jpg
+Places365_test_00028541.jpg
+Places365_test_00028550.jpg
+Places365_test_00028552.jpg
+Places365_test_00028553.jpg
+Places365_test_00028559.jpg
+Places365_test_00028569.jpg
+Places365_test_00028576.jpg
+Places365_test_00028583.jpg
+Places365_test_00028595.jpg
+Places365_test_00028600.jpg
+Places365_test_00028609.jpg
+Places365_test_00028623.jpg
+Places365_test_00028633.jpg
+Places365_test_00028642.jpg
+Places365_test_00028644.jpg
+Places365_test_00028657.jpg
+Places365_test_00028680.jpg
+Places365_test_00028712.jpg
+Places365_test_00028714.jpg
+Places365_test_00028728.jpg
+Places365_test_00028750.jpg
+Places365_test_00028753.jpg
+Places365_test_00028756.jpg
+Places365_test_00028761.jpg
+Places365_test_00028762.jpg
+Places365_test_00028773.jpg
+Places365_test_00028802.jpg
+Places365_test_00028853.jpg
+Places365_test_00028855.jpg
+Places365_test_00028857.jpg
+Places365_test_00028870.jpg
+Places365_test_00028877.jpg
+Places365_test_00028884.jpg
+Places365_test_00028887.jpg
+Places365_test_00028888.jpg
+Places365_test_00028900.jpg
+Places365_test_00028903.jpg
+Places365_test_00028908.jpg
+Places365_test_00028920.jpg
+Places365_test_00028943.jpg
+Places365_test_00028950.jpg
+Places365_test_00028954.jpg
+Places365_test_00028979.jpg
+Places365_test_00028999.jpg
+Places365_test_00029003.jpg
+Places365_test_00029005.jpg
+Places365_test_00029007.jpg
+Places365_test_00029015.jpg
+Places365_test_00029038.jpg
+Places365_test_00029048.jpg
+Places365_test_00029081.jpg
+Places365_test_00029096.jpg
+Places365_test_00029105.jpg
+Places365_test_00029133.jpg
+Places365_test_00029135.jpg
+Places365_test_00029150.jpg
+Places365_test_00029152.jpg
+Places365_test_00029154.jpg
+Places365_test_00029182.jpg
+Places365_test_00029199.jpg
+Places365_test_00029202.jpg
+Places365_test_00029204.jpg
+Places365_test_00029209.jpg
+Places365_test_00029222.jpg
+Places365_test_00029247.jpg
+Places365_test_00029267.jpg
+Places365_test_00029296.jpg
+Places365_test_00029302.jpg
+Places365_test_00029309.jpg
+Places365_test_00029316.jpg
+Places365_test_00029322.jpg
+Places365_test_00029323.jpg
+Places365_test_00029331.jpg
+Places365_test_00029333.jpg
+Places365_test_00029350.jpg
+Places365_test_00029363.jpg
+Places365_test_00029370.jpg
+Places365_test_00029384.jpg
+Places365_test_00029389.jpg
+Places365_test_00029400.jpg
+Places365_test_00029408.jpg
+Places365_test_00029439.jpg
+Places365_test_00029455.jpg
+Places365_test_00029460.jpg
+Places365_test_00029463.jpg
+Places365_test_00029487.jpg
+Places365_test_00029503.jpg
+Places365_test_00029507.jpg
+Places365_test_00029519.jpg
+Places365_test_00029524.jpg
+Places365_test_00029526.jpg
+Places365_test_00029528.jpg
+Places365_test_00029552.jpg
+Places365_test_00029565.jpg
+Places365_test_00029610.jpg
+Places365_test_00029631.jpg
+Places365_test_00029632.jpg
+Places365_test_00029634.jpg
+Places365_test_00029644.jpg
+Places365_test_00029656.jpg
+Places365_test_00029665.jpg
+Places365_test_00029670.jpg
+Places365_test_00029672.jpg
+Places365_test_00029695.jpg
+Places365_test_00029702.jpg
+Places365_test_00029707.jpg
+Places365_test_00029711.jpg
+Places365_test_00029716.jpg
+Places365_test_00029746.jpg
+Places365_test_00029753.jpg
+Places365_test_00029761.jpg
+Places365_test_00029772.jpg
+Places365_test_00029776.jpg
+Places365_test_00029790.jpg
+Places365_test_00029818.jpg
+Places365_test_00029819.jpg
+Places365_test_00029827.jpg
+Places365_test_00029832.jpg
+Places365_test_00029838.jpg
+Places365_test_00029873.jpg
+Places365_test_00029879.jpg
+Places365_test_00029922.jpg
+Places365_test_00029943.jpg
+Places365_test_00029952.jpg
+Places365_test_00029962.jpg
+Places365_test_00029963.jpg
+Places365_test_00029982.jpg
+Places365_test_00029989.jpg
+Places365_test_00029991.jpg
+Places365_test_00030005.jpg
+Places365_test_00030008.jpg
+Places365_test_00030018.jpg
+Places365_test_00030024.jpg
+Places365_test_00030049.jpg
+Places365_test_00030055.jpg
+Places365_test_00030056.jpg
+Places365_test_00030057.jpg
+Places365_test_00030070.jpg
+Places365_test_00030082.jpg
+Places365_test_00030099.jpg
+Places365_test_00030100.jpg
+Places365_test_00030103.jpg
+Places365_test_00030107.jpg
+Places365_test_00030114.jpg
+Places365_test_00030115.jpg
+Places365_test_00030116.jpg
+Places365_test_00030125.jpg
+Places365_test_00030129.jpg
+Places365_test_00030134.jpg
+Places365_test_00030143.jpg
+Places365_test_00030147.jpg
+Places365_test_00030158.jpg
+Places365_test_00030161.jpg
+Places365_test_00030178.jpg
+Places365_test_00030185.jpg
+Places365_test_00030198.jpg
+Places365_test_00030201.jpg
+Places365_test_00030217.jpg
+Places365_test_00030233.jpg
+Places365_test_00030235.jpg
+Places365_test_00030259.jpg
+Places365_test_00030261.jpg
+Places365_test_00030268.jpg
+Places365_test_00030272.jpg
+Places365_test_00030282.jpg
+Places365_test_00030287.jpg
+Places365_test_00030290.jpg
+Places365_test_00030297.jpg
+Places365_test_00030301.jpg
+Places365_test_00030308.jpg
+Places365_test_00030313.jpg
+Places365_test_00030319.jpg
+Places365_test_00030322.jpg
+Places365_test_00030328.jpg
+Places365_test_00030337.jpg
+Places365_test_00030351.jpg
+Places365_test_00030352.jpg
+Places365_test_00030373.jpg
+Places365_test_00030377.jpg
+Places365_test_00030380.jpg
+Places365_test_00030408.jpg
+Places365_test_00030410.jpg
+Places365_test_00030421.jpg
+Places365_test_00030435.jpg
+Places365_test_00030440.jpg
+Places365_test_00030445.jpg
+Places365_test_00030446.jpg
+Places365_test_00030449.jpg
+Places365_test_00030457.jpg
+Places365_test_00030465.jpg
+Places365_test_00030468.jpg
+Places365_test_00030469.jpg
+Places365_test_00030494.jpg
+Places365_test_00030500.jpg
+Places365_test_00030510.jpg
+Places365_test_00030513.jpg
+Places365_test_00030515.jpg
+Places365_test_00030524.jpg
+Places365_test_00030525.jpg
+Places365_test_00030530.jpg
+Places365_test_00030549.jpg
+Places365_test_00030553.jpg
+Places365_test_00030567.jpg
+Places365_test_00030580.jpg
+Places365_test_00030585.jpg
+Places365_test_00030588.jpg
+Places365_test_00030590.jpg
+Places365_test_00030592.jpg
+Places365_test_00030595.jpg
+Places365_test_00030602.jpg
+Places365_test_00030609.jpg
+Places365_test_00030616.jpg
+Places365_test_00030626.jpg
+Places365_test_00030632.jpg
+Places365_test_00030633.jpg
+Places365_test_00030641.jpg
+Places365_test_00030643.jpg
+Places365_test_00030664.jpg
+Places365_test_00030669.jpg
+Places365_test_00030675.jpg
+Places365_test_00030682.jpg
+Places365_test_00030702.jpg
+Places365_test_00030712.jpg
+Places365_test_00030719.jpg
+Places365_test_00030807.jpg
+Places365_test_00030814.jpg
+Places365_test_00030816.jpg
+Places365_test_00030821.jpg
+Places365_test_00030834.jpg
+Places365_test_00030839.jpg
+Places365_test_00030857.jpg
+Places365_test_00030887.jpg
+Places365_test_00030900.jpg
+Places365_test_00030915.jpg
+Places365_test_00030918.jpg
+Places365_test_00030952.jpg
+Places365_test_00030970.jpg
+Places365_test_00030973.jpg
+Places365_test_00030984.jpg
+Places365_test_00030985.jpg
+Places365_test_00030989.jpg
+Places365_test_00030991.jpg
+Places365_test_00031012.jpg
+Places365_test_00031020.jpg
+Places365_test_00031026.jpg
+Places365_test_00031039.jpg
+Places365_test_00031041.jpg
+Places365_test_00031043.jpg
+Places365_test_00031044.jpg
+Places365_test_00031046.jpg
+Places365_test_00031057.jpg
+Places365_test_00031064.jpg
+Places365_test_00031075.jpg
+Places365_test_00031077.jpg
+Places365_test_00031095.jpg
+Places365_test_00031107.jpg
+Places365_test_00031109.jpg
+Places365_test_00031117.jpg
+Places365_test_00031121.jpg
+Places365_test_00031122.jpg
+Places365_test_00031124.jpg
+Places365_test_00031144.jpg
+Places365_test_00031149.jpg
+Places365_test_00031156.jpg
+Places365_test_00031183.jpg
+Places365_test_00031210.jpg
+Places365_test_00031246.jpg
+Places365_test_00031258.jpg
+Places365_test_00031261.jpg
+Places365_test_00031266.jpg
+Places365_test_00031268.jpg
+Places365_test_00031281.jpg
+Places365_test_00031283.jpg
+Places365_test_00031288.jpg
+Places365_test_00031289.jpg
+Places365_test_00031300.jpg
+Places365_test_00031302.jpg
+Places365_test_00031306.jpg
+Places365_test_00031307.jpg
+Places365_test_00031330.jpg
+Places365_test_00031339.jpg
+Places365_test_00031357.jpg
+Places365_test_00031374.jpg
+Places365_test_00031375.jpg
+Places365_test_00031377.jpg
+Places365_test_00031380.jpg
+Places365_test_00031396.jpg
+Places365_test_00031413.jpg
+Places365_test_00031415.jpg
+Places365_test_00031421.jpg
+Places365_test_00031450.jpg
+Places365_test_00031452.jpg
+Places365_test_00031486.jpg
+Places365_test_00031508.jpg
+Places365_test_00031516.jpg
+Places365_test_00031528.jpg
+Places365_test_00031541.jpg
+Places365_test_00031571.jpg
+Places365_test_00031582.jpg
+Places365_test_00031584.jpg
+Places365_test_00031607.jpg
+Places365_test_00031623.jpg
+Places365_test_00031638.jpg
+Places365_test_00031692.jpg
+Places365_test_00031703.jpg
+Places365_test_00031705.jpg
+Places365_test_00031707.jpg
+Places365_test_00031720.jpg
+Places365_test_00031723.jpg
+Places365_test_00031732.jpg
+Places365_test_00031744.jpg
+Places365_test_00031751.jpg
+Places365_test_00031769.jpg
+Places365_test_00031772.jpg
+Places365_test_00031782.jpg
+Places365_test_00031790.jpg
+Places365_test_00031823.jpg
+Places365_test_00031833.jpg
+Places365_test_00031875.jpg
+Places365_test_00031884.jpg
+Places365_test_00031902.jpg
+Places365_test_00031921.jpg
+Places365_test_00031927.jpg
+Places365_test_00031931.jpg
+Places365_test_00031960.jpg
+Places365_test_00031966.jpg
+Places365_test_00031990.jpg
+Places365_test_00032001.jpg
+Places365_test_00032014.jpg
+Places365_test_00032021.jpg
+Places365_test_00032030.jpg
+Places365_test_00032054.jpg
+Places365_test_00032068.jpg
+Places365_test_00032097.jpg
+Places365_test_00032112.jpg
+Places365_test_00032120.jpg
+Places365_test_00032151.jpg
+Places365_test_00032152.jpg
+Places365_test_00032153.jpg
+Places365_test_00032154.jpg
+Places365_test_00032159.jpg
+Places365_test_00032162.jpg
+Places365_test_00032187.jpg
+Places365_test_00032193.jpg
+Places365_test_00032206.jpg
+Places365_test_00032209.jpg
+Places365_test_00032262.jpg
+Places365_test_00032269.jpg
+Places365_test_00032290.jpg
+Places365_test_00032303.jpg
+Places365_test_00032306.jpg
+Places365_test_00032320.jpg
+Places365_test_00032329.jpg
+Places365_test_00032340.jpg
+Places365_test_00032352.jpg
+Places365_test_00032355.jpg
+Places365_test_00032361.jpg
+Places365_test_00032365.jpg
+Places365_test_00032373.jpg
+Places365_test_00032382.jpg
+Places365_test_00032386.jpg
+Places365_test_00032411.jpg
+Places365_test_00032434.jpg
+Places365_test_00032435.jpg
+Places365_test_00032467.jpg
+Places365_test_00032468.jpg
+Places365_test_00032483.jpg
+Places365_test_00032484.jpg
+Places365_test_00032498.jpg
+Places365_test_00032499.jpg
+Places365_test_00032502.jpg
+Places365_test_00032529.jpg
+Places365_test_00032575.jpg
+Places365_test_00032591.jpg
+Places365_test_00032598.jpg
+Places365_test_00032601.jpg
+Places365_test_00032608.jpg
+Places365_test_00032626.jpg
+Places365_test_00032650.jpg
+Places365_test_00032655.jpg
+Places365_test_00032661.jpg
+Places365_test_00032676.jpg
+Places365_test_00032682.jpg
+Places365_test_00032708.jpg
+Places365_test_00032735.jpg
+Places365_test_00032742.jpg
+Places365_test_00032764.jpg
+Places365_test_00032776.jpg
+Places365_test_00032777.jpg
+Places365_test_00032795.jpg
+Places365_test_00032796.jpg
+Places365_test_00032808.jpg
+Places365_test_00032818.jpg
+Places365_test_00032819.jpg
+Places365_test_00032832.jpg
+Places365_test_00032850.jpg
+Places365_test_00032851.jpg
+Places365_test_00032852.jpg
+Places365_test_00032877.jpg
+Places365_test_00032880.jpg
+Places365_test_00032903.jpg
+Places365_test_00032920.jpg
+Places365_test_00032930.jpg
+Places365_test_00032949.jpg
+Places365_test_00032953.jpg
+Places365_test_00032957.jpg
+Places365_test_00032975.jpg
+Places365_test_00032981.jpg
+Places365_test_00033001.jpg
+Places365_test_00033003.jpg
+Places365_test_00033007.jpg
+Places365_test_00033022.jpg
+Places365_test_00033024.jpg
+Places365_test_00033038.jpg
+Places365_test_00033050.jpg
+Places365_test_00033059.jpg
+Places365_test_00033064.jpg
+Places365_test_00033077.jpg
+Places365_test_00033079.jpg
+Places365_test_00033084.jpg
+Places365_test_00033090.jpg
+Places365_test_00033102.jpg
+Places365_test_00033105.jpg
+Places365_test_00033110.jpg
+Places365_test_00033125.jpg
+Places365_test_00033126.jpg
+Places365_test_00033136.jpg
+Places365_test_00033138.jpg
+Places365_test_00033140.jpg
+Places365_test_00033143.jpg
+Places365_test_00033144.jpg
+Places365_test_00033150.jpg
+Places365_test_00033155.jpg
+Places365_test_00033173.jpg
+Places365_test_00033180.jpg
+Places365_test_00033184.jpg
+Places365_test_00033215.jpg
+Places365_test_00033216.jpg
+Places365_test_00033229.jpg
+Places365_test_00033232.jpg
+Places365_test_00033270.jpg
+Places365_test_00033273.jpg
+Places365_test_00033276.jpg
+Places365_test_00033279.jpg
+Places365_test_00033283.jpg
+Places365_test_00033294.jpg
+Places365_test_00033301.jpg
+Places365_test_00033307.jpg
+Places365_test_00033311.jpg
+Places365_test_00033324.jpg
+Places365_test_00033328.jpg
+Places365_test_00033332.jpg
+Places365_test_00033345.jpg
+Places365_test_00033348.jpg
+Places365_test_00033358.jpg
+Places365_test_00033360.jpg
+Places365_test_00033376.jpg
+Places365_test_00033407.jpg
+Places365_test_00033408.jpg
+Places365_test_00033418.jpg
+Places365_test_00033421.jpg
+Places365_test_00033427.jpg
+Places365_test_00033428.jpg
+Places365_test_00033434.jpg
+Places365_test_00033475.jpg
+Places365_test_00033492.jpg
+Places365_test_00033503.jpg
+Places365_test_00033528.jpg
+Places365_test_00033547.jpg
+Places365_test_00033556.jpg
+Places365_test_00033562.jpg
+Places365_test_00033572.jpg
+Places365_test_00033579.jpg
+Places365_test_00033588.jpg
+Places365_test_00033626.jpg
+Places365_test_00033643.jpg
+Places365_test_00033660.jpg
+Places365_test_00033668.jpg
+Places365_test_00033669.jpg
+Places365_test_00033671.jpg
+Places365_test_00033682.jpg
+Places365_test_00033683.jpg
+Places365_test_00033696.jpg
+Places365_test_00033705.jpg
+Places365_test_00033708.jpg
+Places365_test_00033710.jpg
+Places365_test_00033711.jpg
+Places365_test_00033712.jpg
+Places365_test_00033744.jpg
+Places365_test_00033772.jpg
+Places365_test_00033778.jpg
+Places365_test_00033779.jpg
+Places365_test_00033790.jpg
+Places365_test_00033811.jpg
+Places365_test_00033821.jpg
+Places365_test_00033839.jpg
+Places365_test_00033842.jpg
+Places365_test_00033853.jpg
+Places365_test_00033862.jpg
+Places365_test_00033865.jpg
+Places365_test_00033895.jpg
+Places365_test_00033919.jpg
+Places365_test_00033929.jpg
+Places365_test_00033947.jpg
+Places365_test_00033961.jpg
+Places365_test_00033970.jpg
+Places365_test_00033981.jpg
+Places365_test_00034030.jpg
+Places365_test_00034033.jpg
+Places365_test_00034053.jpg
+Places365_test_00034060.jpg
+Places365_test_00034066.jpg
+Places365_test_00034128.jpg
+Places365_test_00034131.jpg
+Places365_test_00034137.jpg
+Places365_test_00034150.jpg
+Places365_test_00034152.jpg
+Places365_test_00034153.jpg
+Places365_test_00034192.jpg
+Places365_test_00034212.jpg
+Places365_test_00034223.jpg
+Places365_test_00034228.jpg
+Places365_test_00034238.jpg
+Places365_test_00034246.jpg
+Places365_test_00034247.jpg
+Places365_test_00034259.jpg
+Places365_test_00034290.jpg
+Places365_test_00034317.jpg
+Places365_test_00034342.jpg
+Places365_test_00034344.jpg
+Places365_test_00034347.jpg
+Places365_test_00034353.jpg
+Places365_test_00034363.jpg
+Places365_test_00034371.jpg
+Places365_test_00034374.jpg
+Places365_test_00034379.jpg
+Places365_test_00034395.jpg
+Places365_test_00034406.jpg
+Places365_test_00034410.jpg
+Places365_test_00034436.jpg
+Places365_test_00034446.jpg
+Places365_test_00034460.jpg
+Places365_test_00034461.jpg
+Places365_test_00034466.jpg
+Places365_test_00034468.jpg
+Places365_test_00034483.jpg
+Places365_test_00034486.jpg
+Places365_test_00034500.jpg
+Places365_test_00034504.jpg
+Places365_test_00034508.jpg
+Places365_test_00034522.jpg
+Places365_test_00034535.jpg
+Places365_test_00034542.jpg
+Places365_test_00034548.jpg
+Places365_test_00034553.jpg
+Places365_test_00034568.jpg
+Places365_test_00034573.jpg
+Places365_test_00034574.jpg
+Places365_test_00034595.jpg
+Places365_test_00034599.jpg
+Places365_test_00034606.jpg
+Places365_test_00034627.jpg
+Places365_test_00034639.jpg
+Places365_test_00034649.jpg
+Places365_test_00034662.jpg
+Places365_test_00034671.jpg
+Places365_test_00034695.jpg
+Places365_test_00034697.jpg
+Places365_test_00034711.jpg
+Places365_test_00034713.jpg
+Places365_test_00034726.jpg
+Places365_test_00034763.jpg
+Places365_test_00034765.jpg
+Places365_test_00034800.jpg
+Places365_test_00034823.jpg
+Places365_test_00034827.jpg
+Places365_test_00034850.jpg
+Places365_test_00034862.jpg
+Places365_test_00034881.jpg
+Places365_test_00034886.jpg
+Places365_test_00034908.jpg
+Places365_test_00034919.jpg
+Places365_test_00034935.jpg
+Places365_test_00034944.jpg
+Places365_test_00034952.jpg
+Places365_test_00034958.jpg
+Places365_test_00034963.jpg
+Places365_test_00034966.jpg
+Places365_test_00034967.jpg
+Places365_test_00034991.jpg
+Places365_test_00034994.jpg
+Places365_test_00034995.jpg
+Places365_test_00035025.jpg
+Places365_test_00035028.jpg
+Places365_test_00035038.jpg
+Places365_test_00035056.jpg
+Places365_test_00035060.jpg
+Places365_test_00035077.jpg
+Places365_test_00035092.jpg
+Places365_test_00035096.jpg
+Places365_test_00035108.jpg
+Places365_test_00035111.jpg
+Places365_test_00035112.jpg
+Places365_test_00035147.jpg
+Places365_test_00035150.jpg
+Places365_test_00035171.jpg
+Places365_test_00035191.jpg
+Places365_test_00035206.jpg
+Places365_test_00035208.jpg
+Places365_test_00035221.jpg
+Places365_test_00035225.jpg
+Places365_test_00035236.jpg
+Places365_test_00035256.jpg
+Places365_test_00035266.jpg
+Places365_test_00035267.jpg
+Places365_test_00035279.jpg
+Places365_test_00035295.jpg
+Places365_test_00035303.jpg
+Places365_test_00035326.jpg
+Places365_test_00035345.jpg
+Places365_test_00035350.jpg
+Places365_test_00035351.jpg
+Places365_test_00035365.jpg
+Places365_test_00035370.jpg
+Places365_test_00035383.jpg
+Places365_test_00035386.jpg
+Places365_test_00035394.jpg
+Places365_test_00035396.jpg
+Places365_test_00035397.jpg
+Places365_test_00035414.jpg
+Places365_test_00035427.jpg
+Places365_test_00035471.jpg
+Places365_test_00035484.jpg
+Places365_test_00035507.jpg
+Places365_test_00035522.jpg
+Places365_test_00035525.jpg
+Places365_test_00035526.jpg
+Places365_test_00035537.jpg
+Places365_test_00035541.jpg
+Places365_test_00035542.jpg
+Places365_test_00035554.jpg
+Places365_test_00035560.jpg
+Places365_test_00035566.jpg
+Places365_test_00035575.jpg
+Places365_test_00035586.jpg
+Places365_test_00035621.jpg
+Places365_test_00035638.jpg
+Places365_test_00035646.jpg
+Places365_test_00035670.jpg
+Places365_test_00035690.jpg
+Places365_test_00035695.jpg
+Places365_test_00035698.jpg
+Places365_test_00035722.jpg
+Places365_test_00035730.jpg
+Places365_test_00035736.jpg
+Places365_test_00035737.jpg
+Places365_test_00035751.jpg
+Places365_test_00035756.jpg
+Places365_test_00035779.jpg
+Places365_test_00035782.jpg
+Places365_test_00035786.jpg
+Places365_test_00035812.jpg
+Places365_test_00035823.jpg
+Places365_test_00035828.jpg
+Places365_test_00035829.jpg
+Places365_test_00035858.jpg
+Places365_test_00035872.jpg
+Places365_test_00035877.jpg
+Places365_test_00035895.jpg
+Places365_test_00035903.jpg
+Places365_test_00035906.jpg
+Places365_test_00035956.jpg
+Places365_test_00035979.jpg
+Places365_test_00035992.jpg
+Places365_test_00036005.jpg
+Places365_test_00036008.jpg
+Places365_test_00036029.jpg
+Places365_test_00036049.jpg
+Places365_test_00036055.jpg
+Places365_test_00036065.jpg
+Places365_test_00036082.jpg
+Places365_test_00036085.jpg
+Places365_test_00036111.jpg
+Places365_test_00036113.jpg
+Places365_test_00036114.jpg
+Places365_test_00036118.jpg
+Places365_test_00036144.jpg
+Places365_test_00036146.jpg
+Places365_test_00036153.jpg
+Places365_test_00036167.jpg
+Places365_test_00036177.jpg
+Places365_test_00036179.jpg
+Places365_test_00036190.jpg
+Places365_test_00036195.jpg
+Places365_test_00036199.jpg
+Places365_test_00036204.jpg
+Places365_test_00036216.jpg
+Places365_test_00036225.jpg
+Places365_test_00036244.jpg
+Places365_test_00036249.jpg
+Places365_test_00036253.jpg
+Places365_test_00036258.jpg
+Places365_test_00036270.jpg
+Places365_test_00036272.jpg
+Places365_test_00036282.jpg
+Places365_test_00036285.jpg
+Places365_test_00036291.jpg
+Places365_test_00036292.jpg
+Places365_test_00036309.jpg
+Places365_test_00036320.jpg
+Places365_test_00036330.jpg
+Places365_test_00036333.jpg
+Places365_test_00036349.jpg
+Places365_test_00036350.jpg
+Places365_test_00036373.jpg
+Places365_test_00036396.jpg
+Places365_test_00036427.jpg
+Places365_test_00036442.jpg
+Places365_test_00036487.jpg
+Places365_test_00036488.jpg
+Places365_test_00036493.jpg
+Places365_test_00036495.jpg
+Places365_test_00036501.jpg
+Places365_test_00036518.jpg
+Places365_test_00036543.jpg
+Places365_test_00036544.jpg
+Places365_test_00036551.jpg
+Places365_test_00036559.jpg
+Places365_test_00036602.jpg
+Places365_test_00036605.jpg
+Places365_test_00036606.jpg
+Places365_test_00036630.jpg
+Places365_test_00036642.jpg
+Places365_test_00036645.jpg
+Places365_test_00036651.jpg
+Places365_test_00036694.jpg
+Places365_test_00036696.jpg
+Places365_test_00036699.jpg
+Places365_test_00036710.jpg
+Places365_test_00036718.jpg
+Places365_test_00036719.jpg
+Places365_test_00036735.jpg
+Places365_test_00036738.jpg
+Places365_test_00036762.jpg
+Places365_test_00036790.jpg
+Places365_test_00036811.jpg
+Places365_test_00036812.jpg
+Places365_test_00036814.jpg
+Places365_test_00036818.jpg
+Places365_test_00036821.jpg
+Places365_test_00036850.jpg
+Places365_test_00036868.jpg
+Places365_test_00036888.jpg
+Places365_test_00036901.jpg
+Places365_test_00036908.jpg
+Places365_test_00036915.jpg
+Places365_test_00036921.jpg
+Places365_test_00036932.jpg
+Places365_test_00036938.jpg
+Places365_test_00036944.jpg
+Places365_test_00036946.jpg
+Places365_test_00036947.jpg
+Places365_test_00036960.jpg
+Places365_test_00036969.jpg
+Places365_test_00036974.jpg
+Places365_test_00036977.jpg
+Places365_test_00036984.jpg
+Places365_test_00036989.jpg
+Places365_test_00036992.jpg
+Places365_test_00036993.jpg
+Places365_test_00037014.jpg
+Places365_test_00037039.jpg
+Places365_test_00037045.jpg
+Places365_test_00037069.jpg
+Places365_test_00037078.jpg
+Places365_test_00037087.jpg
+Places365_test_00037095.jpg
+Places365_test_00037097.jpg
+Places365_test_00037098.jpg
+Places365_test_00037106.jpg
+Places365_test_00037109.jpg
+Places365_test_00037112.jpg
+Places365_test_00037117.jpg
+Places365_test_00037129.jpg
+Places365_test_00037162.jpg
+Places365_test_00037193.jpg
+Places365_test_00037232.jpg
+Places365_test_00037245.jpg
+Places365_test_00037249.jpg
+Places365_test_00037288.jpg
+Places365_test_00037302.jpg
+Places365_test_00037308.jpg
+Places365_test_00037309.jpg
+Places365_test_00037310.jpg
+Places365_test_00037317.jpg
+Places365_test_00037332.jpg
+Places365_test_00037347.jpg
+Places365_test_00037352.jpg
+Places365_test_00037371.jpg
+Places365_test_00037402.jpg
+Places365_test_00037420.jpg
+Places365_test_00037421.jpg
+Places365_test_00037424.jpg
+Places365_test_00037444.jpg
+Places365_test_00037446.jpg
+Places365_test_00037464.jpg
+Places365_test_00037468.jpg
+Places365_test_00037472.jpg
+Places365_test_00037482.jpg
+Places365_test_00037483.jpg
+Places365_test_00037509.jpg
+Places365_test_00037515.jpg
+Places365_test_00037532.jpg
+Places365_test_00037534.jpg
+Places365_test_00037538.jpg
+Places365_test_00037539.jpg
+Places365_test_00037561.jpg
+Places365_test_00037576.jpg
+Places365_test_00037591.jpg
+Places365_test_00037599.jpg
+Places365_test_00037620.jpg
+Places365_test_00037626.jpg
+Places365_test_00037633.jpg
+Places365_test_00037646.jpg
+Places365_test_00037649.jpg
+Places365_test_00037667.jpg
+Places365_test_00037672.jpg
+Places365_test_00037674.jpg
+Places365_test_00037679.jpg
+Places365_test_00037680.jpg
+Places365_test_00037698.jpg
+Places365_test_00037763.jpg
+Places365_test_00037764.jpg
+Places365_test_00037778.jpg
+Places365_test_00037783.jpg
+Places365_test_00037786.jpg
+Places365_test_00037794.jpg
+Places365_test_00037808.jpg
+Places365_test_00037809.jpg
+Places365_test_00037826.jpg
+Places365_test_00037838.jpg
+Places365_test_00037848.jpg
+Places365_test_00037860.jpg
+Places365_test_00037868.jpg
+Places365_test_00037876.jpg
+Places365_test_00037881.jpg
+Places365_test_00037883.jpg
+Places365_test_00037932.jpg
+Places365_test_00037944.jpg
+Places365_test_00037951.jpg
+Places365_test_00037964.jpg
+Places365_test_00037974.jpg
+Places365_test_00037976.jpg
+Places365_test_00037980.jpg
+Places365_test_00037997.jpg
+Places365_test_00038001.jpg
+Places365_test_00038005.jpg
+Places365_test_00038032.jpg
+Places365_test_00038063.jpg
+Places365_test_00038077.jpg
+Places365_test_00038093.jpg
+Places365_test_00038100.jpg
+Places365_test_00038104.jpg
+Places365_test_00038119.jpg
+Places365_test_00038134.jpg
+Places365_test_00038139.jpg
+Places365_test_00038140.jpg
+Places365_test_00038153.jpg
+Places365_test_00038170.jpg
+Places365_test_00038172.jpg
+Places365_test_00038175.jpg
+Places365_test_00038178.jpg
+Places365_test_00038181.jpg
+Places365_test_00038188.jpg
+Places365_test_00038190.jpg
+Places365_test_00038195.jpg
+Places365_test_00038202.jpg
+Places365_test_00038203.jpg
+Places365_test_00038207.jpg
+Places365_test_00038215.jpg
+Places365_test_00038225.jpg
+Places365_test_00038249.jpg
+Places365_test_00038263.jpg
+Places365_test_00038264.jpg
+Places365_test_00038278.jpg
+Places365_test_00038287.jpg
+Places365_test_00038306.jpg
+Places365_test_00038318.jpg
+Places365_test_00038346.jpg
+Places365_test_00038370.jpg
+Places365_test_00038373.jpg
+Places365_test_00038376.jpg
+Places365_test_00038384.jpg
+Places365_test_00038389.jpg
+Places365_test_00038398.jpg
+Places365_test_00038412.jpg
+Places365_test_00038431.jpg
+Places365_test_00038433.jpg
+Places365_test_00038434.jpg
+Places365_test_00038445.jpg
+Places365_test_00038492.jpg
+Places365_test_00038502.jpg
+Places365_test_00038503.jpg
+Places365_test_00038512.jpg
+Places365_test_00038513.jpg
+Places365_test_00038517.jpg
+Places365_test_00038527.jpg
+Places365_test_00038528.jpg
+Places365_test_00038537.jpg
+Places365_test_00038550.jpg
+Places365_test_00038574.jpg
+Places365_test_00038584.jpg
+Places365_test_00038610.jpg
+Places365_test_00038622.jpg
+Places365_test_00038634.jpg
+Places365_test_00038675.jpg
+Places365_test_00038685.jpg
+Places365_test_00038688.jpg
+Places365_test_00038730.jpg
+Places365_test_00038736.jpg
+Places365_test_00038741.jpg
+Places365_test_00038752.jpg
+Places365_test_00038781.jpg
+Places365_test_00038786.jpg
+Places365_test_00038793.jpg
+Places365_test_00038816.jpg
+Places365_test_00038817.jpg
+Places365_test_00038818.jpg
+Places365_test_00038845.jpg
+Places365_test_00038865.jpg
+Places365_test_00038885.jpg
+Places365_test_00038887.jpg
+Places365_test_00038905.jpg
+Places365_test_00038910.jpg
+Places365_test_00038914.jpg
+Places365_test_00038918.jpg
+Places365_test_00038954.jpg
+Places365_test_00038965.jpg
+Places365_test_00038970.jpg
+Places365_test_00038977.jpg
+Places365_test_00038981.jpg
+Places365_test_00039005.jpg
+Places365_test_00039009.jpg
+Places365_test_00039012.jpg
+Places365_test_00039020.jpg
+Places365_test_00039023.jpg
+Places365_test_00039026.jpg
+Places365_test_00039028.jpg
+Places365_test_00039041.jpg
+Places365_test_00039045.jpg
+Places365_test_00039047.jpg
+Places365_test_00039064.jpg
+Places365_test_00039077.jpg
+Places365_test_00039080.jpg
+Places365_test_00039087.jpg
+Places365_test_00039089.jpg
+Places365_test_00039092.jpg
+Places365_test_00039099.jpg
+Places365_test_00039113.jpg
+Places365_test_00039116.jpg
+Places365_test_00039145.jpg
+Places365_test_00039153.jpg
+Places365_test_00039179.jpg
+Places365_test_00039191.jpg
+Places365_test_00039197.jpg
+Places365_test_00039204.jpg
+Places365_test_00039210.jpg
+Places365_test_00039213.jpg
+Places365_test_00039218.jpg
+Places365_test_00039234.jpg
+Places365_test_00039253.jpg
+Places365_test_00039268.jpg
+Places365_test_00039275.jpg
+Places365_test_00039285.jpg
+Places365_test_00039301.jpg
+Places365_test_00039310.jpg
+Places365_test_00039321.jpg
+Places365_test_00039323.jpg
+Places365_test_00039326.jpg
+Places365_test_00039339.jpg
+Places365_test_00039368.jpg
+Places365_test_00039370.jpg
+Places365_test_00039376.jpg
+Places365_test_00039379.jpg
+Places365_test_00039393.jpg
+Places365_test_00039410.jpg
+Places365_test_00039493.jpg
+Places365_test_00039498.jpg
+Places365_test_00039505.jpg
+Places365_test_00039571.jpg
+Places365_test_00039580.jpg
+Places365_test_00039592.jpg
+Places365_test_00039602.jpg
+Places365_test_00039634.jpg
+Places365_test_00039641.jpg
+Places365_test_00039646.jpg
+Places365_test_00039650.jpg
+Places365_test_00039669.jpg
+Places365_test_00039673.jpg
+Places365_test_00039676.jpg
+Places365_test_00039694.jpg
+Places365_test_00039697.jpg
+Places365_test_00039699.jpg
+Places365_test_00039704.jpg
+Places365_test_00039706.jpg
+Places365_test_00039711.jpg
+Places365_test_00039721.jpg
+Places365_test_00039739.jpg
+Places365_test_00039765.jpg
+Places365_test_00039766.jpg
+Places365_test_00039769.jpg
+Places365_test_00039772.jpg
+Places365_test_00039785.jpg
+Places365_test_00039787.jpg
+Places365_test_00039794.jpg
+Places365_test_00039805.jpg
+Places365_test_00039814.jpg
+Places365_test_00039815.jpg
+Places365_test_00039826.jpg
+Places365_test_00039842.jpg
+Places365_test_00039866.jpg
+Places365_test_00039879.jpg
+Places365_test_00039894.jpg
+Places365_test_00039901.jpg
+Places365_test_00039921.jpg
+Places365_test_00039933.jpg
+Places365_test_00039934.jpg
+Places365_test_00039937.jpg
+Places365_test_00039942.jpg
+Places365_test_00039953.jpg
+Places365_test_00039985.jpg
+Places365_test_00040030.jpg
+Places365_test_00040033.jpg
+Places365_test_00040038.jpg
+Places365_test_00040067.jpg
+Places365_test_00040073.jpg
+Places365_test_00040115.jpg
+Places365_test_00040122.jpg
+Places365_test_00040135.jpg
+Places365_test_00040140.jpg
+Places365_test_00040157.jpg
+Places365_test_00040160.jpg
+Places365_test_00040166.jpg
+Places365_test_00040176.jpg
+Places365_test_00040183.jpg
+Places365_test_00040187.jpg
+Places365_test_00040200.jpg
+Places365_test_00040203.jpg
+Places365_test_00040206.jpg
+Places365_test_00040216.jpg
+Places365_test_00040217.jpg
+Places365_test_00040218.jpg
+Places365_test_00040231.jpg
+Places365_test_00040240.jpg
+Places365_test_00040267.jpg
+Places365_test_00040272.jpg
+Places365_test_00040274.jpg
+Places365_test_00040277.jpg
+Places365_test_00040313.jpg
+Places365_test_00040314.jpg
+Places365_test_00040315.jpg
+Places365_test_00040328.jpg
+Places365_test_00040330.jpg
+Places365_test_00040344.jpg
+Places365_test_00040361.jpg
+Places365_test_00040366.jpg
+Places365_test_00040370.jpg
+Places365_test_00040375.jpg
+Places365_test_00040387.jpg
+Places365_test_00040394.jpg
+Places365_test_00040397.jpg
+Places365_test_00040401.jpg
+Places365_test_00040415.jpg
+Places365_test_00040433.jpg
+Places365_test_00040436.jpg
+Places365_test_00040446.jpg
+Places365_test_00040465.jpg
+Places365_test_00040471.jpg
+Places365_test_00040479.jpg
+Places365_test_00040487.jpg
+Places365_test_00040489.jpg
+Places365_test_00040492.jpg
+Places365_test_00040507.jpg
+Places365_test_00040523.jpg
+Places365_test_00040536.jpg
+Places365_test_00040547.jpg
+Places365_test_00040558.jpg
+Places365_test_00040560.jpg
+Places365_test_00040580.jpg
+Places365_test_00040584.jpg
+Places365_test_00040588.jpg
+Places365_test_00040590.jpg
+Places365_test_00040619.jpg
+Places365_test_00040624.jpg
+Places365_test_00040631.jpg
+Places365_test_00040644.jpg
+Places365_test_00040655.jpg
+Places365_test_00040670.jpg
+Places365_test_00040671.jpg
+Places365_test_00040672.jpg
+Places365_test_00040679.jpg
+Places365_test_00040689.jpg
+Places365_test_00040699.jpg
+Places365_test_00040700.jpg
+Places365_test_00040721.jpg
+Places365_test_00040723.jpg
+Places365_test_00040729.jpg
+Places365_test_00040737.jpg
+Places365_test_00040745.jpg
+Places365_test_00040755.jpg
+Places365_test_00040769.jpg
+Places365_test_00040776.jpg
+Places365_test_00040777.jpg
+Places365_test_00040781.jpg
+Places365_test_00040792.jpg
+Places365_test_00040797.jpg
+Places365_test_00040798.jpg
+Places365_test_00040801.jpg
+Places365_test_00040830.jpg
+Places365_test_00040856.jpg
+Places365_test_00040864.jpg
+Places365_test_00040868.jpg
+Places365_test_00040883.jpg
+Places365_test_00040896.jpg
+Places365_test_00040912.jpg
+Places365_test_00040924.jpg
+Places365_test_00040927.jpg
+Places365_test_00040946.jpg
+Places365_test_00040973.jpg
+Places365_test_00040982.jpg
+Places365_test_00040998.jpg
+Places365_test_00041000.jpg
+Places365_test_00041002.jpg
+Places365_test_00041006.jpg
+Places365_test_00041009.jpg
+Places365_test_00041014.jpg
+Places365_test_00041017.jpg
+Places365_test_00041022.jpg
+Places365_test_00041027.jpg
+Places365_test_00041037.jpg
+Places365_test_00041039.jpg
+Places365_test_00041051.jpg
+Places365_test_00041071.jpg
+Places365_test_00041084.jpg
+Places365_test_00041103.jpg
+Places365_test_00041105.jpg
+Places365_test_00041145.jpg
+Places365_test_00041152.jpg
+Places365_test_00041164.jpg
+Places365_test_00041180.jpg
+Places365_test_00041184.jpg
+Places365_test_00041204.jpg
+Places365_test_00041215.jpg
+Places365_test_00041218.jpg
+Places365_test_00041222.jpg
+Places365_test_00041224.jpg
+Places365_test_00041226.jpg
+Places365_test_00041232.jpg
+Places365_test_00041237.jpg
+Places365_test_00041243.jpg
+Places365_test_00041248.jpg
+Places365_test_00041249.jpg
+Places365_test_00041257.jpg
+Places365_test_00041271.jpg
+Places365_test_00041275.jpg
+Places365_test_00041280.jpg
+Places365_test_00041284.jpg
+Places365_test_00041289.jpg
+Places365_test_00041293.jpg
+Places365_test_00041303.jpg
+Places365_test_00041309.jpg
+Places365_test_00041314.jpg
+Places365_test_00041340.jpg
+Places365_test_00041348.jpg
+Places365_test_00041364.jpg
+Places365_test_00041421.jpg
+Places365_test_00041462.jpg
+Places365_test_00041468.jpg
+Places365_test_00041513.jpg
+Places365_test_00041522.jpg
+Places365_test_00041524.jpg
+Places365_test_00041542.jpg
+Places365_test_00041551.jpg
+Places365_test_00041555.jpg
+Places365_test_00041571.jpg
+Places365_test_00041578.jpg
+Places365_test_00041584.jpg
+Places365_test_00041594.jpg
+Places365_test_00041607.jpg
+Places365_test_00041614.jpg
+Places365_test_00041619.jpg
+Places365_test_00041625.jpg
+Places365_test_00041627.jpg
+Places365_test_00041628.jpg
+Places365_test_00041637.jpg
+Places365_test_00041640.jpg
+Places365_test_00041659.jpg
+Places365_test_00041665.jpg
+Places365_test_00041673.jpg
+Places365_test_00041678.jpg
+Places365_test_00041680.jpg
+Places365_test_00041683.jpg
+Places365_test_00041684.jpg
+Places365_test_00041691.jpg
+Places365_test_00041723.jpg
+Places365_test_00041735.jpg
+Places365_test_00041737.jpg
+Places365_test_00041758.jpg
+Places365_test_00041770.jpg
+Places365_test_00041819.jpg
+Places365_test_00041828.jpg
+Places365_test_00041829.jpg
+Places365_test_00041840.jpg
+Places365_test_00041846.jpg
+Places365_test_00041860.jpg
+Places365_test_00041878.jpg
+Places365_test_00041891.jpg
+Places365_test_00041905.jpg
+Places365_test_00041906.jpg
+Places365_test_00041910.jpg
+Places365_test_00041956.jpg
+Places365_test_00041957.jpg
+Places365_test_00041962.jpg
+Places365_test_00041966.jpg
+Places365_test_00042004.jpg
+Places365_test_00042013.jpg
+Places365_test_00042021.jpg
+Places365_test_00042033.jpg
+Places365_test_00042046.jpg
+Places365_test_00042067.jpg
+Places365_test_00042068.jpg
+Places365_test_00042079.jpg
+Places365_test_00042086.jpg
+Places365_test_00042091.jpg
+Places365_test_00042099.jpg
+Places365_test_00042106.jpg
+Places365_test_00042135.jpg
+Places365_test_00042136.jpg
+Places365_test_00042162.jpg
+Places365_test_00042163.jpg
+Places365_test_00042173.jpg
+Places365_test_00042174.jpg
+Places365_test_00042187.jpg
+Places365_test_00042193.jpg
+Places365_test_00042211.jpg
+Places365_test_00042228.jpg
+Places365_test_00042265.jpg
+Places365_test_00042266.jpg
+Places365_test_00042274.jpg
+Places365_test_00042278.jpg
+Places365_test_00042280.jpg
+Places365_test_00042300.jpg
+Places365_test_00042302.jpg
+Places365_test_00042304.jpg
+Places365_test_00042323.jpg
+Places365_test_00042329.jpg
+Places365_test_00042331.jpg
+Places365_test_00042337.jpg
+Places365_test_00042351.jpg
+Places365_test_00042362.jpg
+Places365_test_00042363.jpg
+Places365_test_00042366.jpg
+Places365_test_00042368.jpg
+Places365_test_00042379.jpg
+Places365_test_00042424.jpg
+Places365_test_00042459.jpg
+Places365_test_00042482.jpg
+Places365_test_00042484.jpg
+Places365_test_00042500.jpg
+Places365_test_00042502.jpg
+Places365_test_00042513.jpg
+Places365_test_00042515.jpg
+Places365_test_00042519.jpg
+Places365_test_00042524.jpg
+Places365_test_00042551.jpg
+Places365_test_00042557.jpg
+Places365_test_00042564.jpg
+Places365_test_00042567.jpg
+Places365_test_00042575.jpg
+Places365_test_00042580.jpg
+Places365_test_00042581.jpg
+Places365_test_00042585.jpg
+Places365_test_00042603.jpg
+Places365_test_00042604.jpg
+Places365_test_00042609.jpg
+Places365_test_00042612.jpg
+Places365_test_00042635.jpg
+Places365_test_00042638.jpg
+Places365_test_00042645.jpg
+Places365_test_00042651.jpg
+Places365_test_00042654.jpg
+Places365_test_00042666.jpg
+Places365_test_00042700.jpg
+Places365_test_00042704.jpg
+Places365_test_00042725.jpg
+Places365_test_00042727.jpg
+Places365_test_00042755.jpg
+Places365_test_00042769.jpg
+Places365_test_00042774.jpg
+Places365_test_00042779.jpg
+Places365_test_00042786.jpg
+Places365_test_00042787.jpg
+Places365_test_00042798.jpg
+Places365_test_00042806.jpg
+Places365_test_00042807.jpg
+Places365_test_00042816.jpg
+Places365_test_00042847.jpg
+Places365_test_00042853.jpg
+Places365_test_00042861.jpg
+Places365_test_00042866.jpg
+Places365_test_00042867.jpg
+Places365_test_00042868.jpg
+Places365_test_00042878.jpg
+Places365_test_00042889.jpg
+Places365_test_00042894.jpg
+Places365_test_00042895.jpg
+Places365_test_00042917.jpg
+Places365_test_00042924.jpg
+Places365_test_00042947.jpg
+Places365_test_00042948.jpg
+Places365_test_00042955.jpg
+Places365_test_00042970.jpg
+Places365_test_00042978.jpg
+Places365_test_00042981.jpg
+Places365_test_00042991.jpg
+Places365_test_00043003.jpg
+Places365_test_00043012.jpg
+Places365_test_00043015.jpg
+Places365_test_00043031.jpg
+Places365_test_00043032.jpg
+Places365_test_00043064.jpg
+Places365_test_00043068.jpg
+Places365_test_00043091.jpg
+Places365_test_00043096.jpg
+Places365_test_00043107.jpg
+Places365_test_00043125.jpg
+Places365_test_00043133.jpg
+Places365_test_00043138.jpg
+Places365_test_00043157.jpg
+Places365_test_00043167.jpg
+Places365_test_00043181.jpg
+Places365_test_00043194.jpg
+Places365_test_00043195.jpg
+Places365_test_00043196.jpg
+Places365_test_00043219.jpg
+Places365_test_00043221.jpg
+Places365_test_00043232.jpg
+Places365_test_00043239.jpg
+Places365_test_00043244.jpg
+Places365_test_00043253.jpg
+Places365_test_00043279.jpg
+Places365_test_00043287.jpg
+Places365_test_00043306.jpg
+Places365_test_00043311.jpg
+Places365_test_00043323.jpg
+Places365_test_00043331.jpg
+Places365_test_00043337.jpg
+Places365_test_00043348.jpg
+Places365_test_00043349.jpg
+Places365_test_00043359.jpg
+Places365_test_00043365.jpg
+Places365_test_00043366.jpg
+Places365_test_00043386.jpg
+Places365_test_00043390.jpg
+Places365_test_00043395.jpg
+Places365_test_00043402.jpg
+Places365_test_00043413.jpg
+Places365_test_00043423.jpg
+Places365_test_00043424.jpg
+Places365_test_00043425.jpg
+Places365_test_00043431.jpg
+Places365_test_00043475.jpg
+Places365_test_00043485.jpg
+Places365_test_00043490.jpg
+Places365_test_00043498.jpg
+Places365_test_00043507.jpg
+Places365_test_00043521.jpg
+Places365_test_00043549.jpg
+Places365_test_00043552.jpg
+Places365_test_00043556.jpg
+Places365_test_00043561.jpg
+Places365_test_00043562.jpg
+Places365_test_00043566.jpg
+Places365_test_00043574.jpg
+Places365_test_00043586.jpg
+Places365_test_00043599.jpg
+Places365_test_00043606.jpg
+Places365_test_00043614.jpg
+Places365_test_00043653.jpg
+Places365_test_00043656.jpg
+Places365_test_00043670.jpg
+Places365_test_00043671.jpg
+Places365_test_00043683.jpg
+Places365_test_00043684.jpg
+Places365_test_00043694.jpg
+Places365_test_00043695.jpg
+Places365_test_00043722.jpg
+Places365_test_00043725.jpg
+Places365_test_00043750.jpg
+Places365_test_00043774.jpg
+Places365_test_00043779.jpg
+Places365_test_00043802.jpg
+Places365_test_00043812.jpg
+Places365_test_00043814.jpg
+Places365_test_00043827.jpg
+Places365_test_00043831.jpg
+Places365_test_00043837.jpg
+Places365_test_00043848.jpg
+Places365_test_00043853.jpg
+Places365_test_00043859.jpg
+Places365_test_00043865.jpg
+Places365_test_00043866.jpg
+Places365_test_00043897.jpg
+Places365_test_00043903.jpg
+Places365_test_00043907.jpg
+Places365_test_00043909.jpg
+Places365_test_00043937.jpg
+Places365_test_00043941.jpg
+Places365_test_00043946.jpg
+Places365_test_00043952.jpg
+Places365_test_00043965.jpg
+Places365_test_00043971.jpg
+Places365_test_00043979.jpg
+Places365_test_00043991.jpg
+Places365_test_00043993.jpg
+Places365_test_00043994.jpg
+Places365_test_00043998.jpg
+Places365_test_00043999.jpg
+Places365_test_00044006.jpg
+Places365_test_00044010.jpg
+Places365_test_00044026.jpg
+Places365_test_00044031.jpg
+Places365_test_00044043.jpg
+Places365_test_00044056.jpg
+Places365_test_00044074.jpg
+Places365_test_00044105.jpg
+Places365_test_00044135.jpg
+Places365_test_00044138.jpg
+Places365_test_00044139.jpg
+Places365_test_00044152.jpg
+Places365_test_00044166.jpg
+Places365_test_00044170.jpg
+Places365_test_00044178.jpg
+Places365_test_00044191.jpg
+Places365_test_00044197.jpg
+Places365_test_00044208.jpg
+Places365_test_00044211.jpg
+Places365_test_00044231.jpg
+Places365_test_00044256.jpg
+Places365_test_00044262.jpg
+Places365_test_00044278.jpg
+Places365_test_00044287.jpg
+Places365_test_00044290.jpg
+Places365_test_00044291.jpg
+Places365_test_00044292.jpg
+Places365_test_00044294.jpg
+Places365_test_00044296.jpg
+Places365_test_00044300.jpg
+Places365_test_00044321.jpg
+Places365_test_00044322.jpg
+Places365_test_00044329.jpg
+Places365_test_00044356.jpg
+Places365_test_00044367.jpg
+Places365_test_00044405.jpg
+Places365_test_00044454.jpg
+Places365_test_00044458.jpg
+Places365_test_00044462.jpg
+Places365_test_00044480.jpg
+Places365_test_00044481.jpg
+Places365_test_00044488.jpg
+Places365_test_00044491.jpg
+Places365_test_00044512.jpg
+Places365_test_00044520.jpg
+Places365_test_00044521.jpg
+Places365_test_00044530.jpg
+Places365_test_00044551.jpg
+Places365_test_00044561.jpg
+Places365_test_00044584.jpg
+Places365_test_00044586.jpg
+Places365_test_00044606.jpg
+Places365_test_00044631.jpg
+Places365_test_00044634.jpg
+Places365_test_00044644.jpg
+Places365_test_00044649.jpg
+Places365_test_00044676.jpg
+Places365_test_00044705.jpg
+Places365_test_00044713.jpg
+Places365_test_00044724.jpg
+Places365_test_00044730.jpg
+Places365_test_00044748.jpg
+Places365_test_00044770.jpg
+Places365_test_00044772.jpg
+Places365_test_00044794.jpg
+Places365_test_00044803.jpg
+Places365_test_00044825.jpg
+Places365_test_00044838.jpg
+Places365_test_00044847.jpg
+Places365_test_00044870.jpg
+Places365_test_00044871.jpg
+Places365_test_00044894.jpg
+Places365_test_00044908.jpg
+Places365_test_00044925.jpg
+Places365_test_00044941.jpg
+Places365_test_00044942.jpg
+Places365_test_00044945.jpg
+Places365_test_00044964.jpg
+Places365_test_00044966.jpg
+Places365_test_00044971.jpg
+Places365_test_00045012.jpg
+Places365_test_00045020.jpg
+Places365_test_00045027.jpg
+Places365_test_00045029.jpg
+Places365_test_00045036.jpg
+Places365_test_00045039.jpg
+Places365_test_00045044.jpg
+Places365_test_00045084.jpg
+Places365_test_00045100.jpg
+Places365_test_00045116.jpg
+Places365_test_00045138.jpg
+Places365_test_00045144.jpg
+Places365_test_00045163.jpg
+Places365_test_00045165.jpg
+Places365_test_00045166.jpg
+Places365_test_00045190.jpg
+Places365_test_00045194.jpg
+Places365_test_00045197.jpg
+Places365_test_00045199.jpg
+Places365_test_00045203.jpg
+Places365_test_00045205.jpg
+Places365_test_00045221.jpg
+Places365_test_00045225.jpg
+Places365_test_00045227.jpg
+Places365_test_00045228.jpg
+Places365_test_00045233.jpg
+Places365_test_00045247.jpg
+Places365_test_00045248.jpg
+Places365_test_00045250.jpg
+Places365_test_00045281.jpg
+Places365_test_00045311.jpg
+Places365_test_00045312.jpg
+Places365_test_00045320.jpg
+Places365_test_00045322.jpg
+Places365_test_00045329.jpg
+Places365_test_00045346.jpg
+Places365_test_00045353.jpg
+Places365_test_00045361.jpg
+Places365_test_00045367.jpg
+Places365_test_00045368.jpg
+Places365_test_00045396.jpg
+Places365_test_00045400.jpg
+Places365_test_00045408.jpg
+Places365_test_00045426.jpg
+Places365_test_00045432.jpg
+Places365_test_00045476.jpg
+Places365_test_00045479.jpg
+Places365_test_00045490.jpg
+Places365_test_00045506.jpg
+Places365_test_00045513.jpg
+Places365_test_00045529.jpg
+Places365_test_00045544.jpg
+Places365_test_00045552.jpg
+Places365_test_00045569.jpg
+Places365_test_00045573.jpg
+Places365_test_00045587.jpg
+Places365_test_00045593.jpg
+Places365_test_00045596.jpg
+Places365_test_00045613.jpg
+Places365_test_00045634.jpg
+Places365_test_00045648.jpg
+Places365_test_00045673.jpg
+Places365_test_00045697.jpg
+Places365_test_00045700.jpg
+Places365_test_00045713.jpg
+Places365_test_00045724.jpg
+Places365_test_00045731.jpg
+Places365_test_00045741.jpg
+Places365_test_00045752.jpg
+Places365_test_00045786.jpg
+Places365_test_00045801.jpg
+Places365_test_00045809.jpg
+Places365_test_00045842.jpg
+Places365_test_00045849.jpg
+Places365_test_00045852.jpg
+Places365_test_00045862.jpg
+Places365_test_00045867.jpg
+Places365_test_00045876.jpg
+Places365_test_00045879.jpg
+Places365_test_00045904.jpg
+Places365_test_00045916.jpg
+Places365_test_00045929.jpg
+Places365_test_00045938.jpg
+Places365_test_00045950.jpg
+Places365_test_00045965.jpg
+Places365_test_00045969.jpg
+Places365_test_00045973.jpg
+Places365_test_00045984.jpg
+Places365_test_00045999.jpg
+Places365_test_00046020.jpg
+Places365_test_00046031.jpg
+Places365_test_00046041.jpg
+Places365_test_00046052.jpg
+Places365_test_00046072.jpg
+Places365_test_00046074.jpg
+Places365_test_00046087.jpg
+Places365_test_00046100.jpg
+Places365_test_00046111.jpg
+Places365_test_00046121.jpg
+Places365_test_00046143.jpg
+Places365_test_00046152.jpg
+Places365_test_00046155.jpg
+Places365_test_00046166.jpg
+Places365_test_00046175.jpg
+Places365_test_00046210.jpg
+Places365_test_00046213.jpg
+Places365_test_00046239.jpg
+Places365_test_00046297.jpg
+Places365_test_00046307.jpg
+Places365_test_00046330.jpg
+Places365_test_00046342.jpg
+Places365_test_00046343.jpg
+Places365_test_00046356.jpg
+Places365_test_00046371.jpg
+Places365_test_00046373.jpg
+Places365_test_00046386.jpg
+Places365_test_00046405.jpg
+Places365_test_00046440.jpg
+Places365_test_00046442.jpg
+Places365_test_00046484.jpg
+Places365_test_00046488.jpg
+Places365_test_00046493.jpg
+Places365_test_00046497.jpg
+Places365_test_00046501.jpg
+Places365_test_00046506.jpg
+Places365_test_00046517.jpg
+Places365_test_00046530.jpg
+Places365_test_00046544.jpg
+Places365_test_00046545.jpg
+Places365_test_00046550.jpg
+Places365_test_00046552.jpg
+Places365_test_00046579.jpg
+Places365_test_00046583.jpg
+Places365_test_00046610.jpg
+Places365_test_00046617.jpg
+Places365_test_00046622.jpg
+Places365_test_00046632.jpg
+Places365_test_00046637.jpg
+Places365_test_00046670.jpg
+Places365_test_00046709.jpg
+Places365_test_00046714.jpg
+Places365_test_00046722.jpg
+Places365_test_00046744.jpg
+Places365_test_00046760.jpg
+Places365_test_00046762.jpg
+Places365_test_00046765.jpg
+Places365_test_00046770.jpg
+Places365_test_00046793.jpg
+Places365_test_00046795.jpg
+Places365_test_00046798.jpg
+Places365_test_00046799.jpg
+Places365_test_00046807.jpg
+Places365_test_00046825.jpg
+Places365_test_00046827.jpg
+Places365_test_00046834.jpg
+Places365_test_00046861.jpg
+Places365_test_00046864.jpg
+Places365_test_00046870.jpg
+Places365_test_00046893.jpg
+Places365_test_00046896.jpg
+Places365_test_00046898.jpg
+Places365_test_00046908.jpg
+Places365_test_00046916.jpg
+Places365_test_00046917.jpg
+Places365_test_00046922.jpg
+Places365_test_00046926.jpg
+Places365_test_00046932.jpg
+Places365_test_00046936.jpg
+Places365_test_00046946.jpg
+Places365_test_00046969.jpg
+Places365_test_00046972.jpg
+Places365_test_00046979.jpg
+Places365_test_00047014.jpg
+Places365_test_00047050.jpg
+Places365_test_00047071.jpg
+Places365_test_00047097.jpg
+Places365_test_00047105.jpg
+Places365_test_00047110.jpg
+Places365_test_00047117.jpg
+Places365_test_00047123.jpg
+Places365_test_00047140.jpg
+Places365_test_00047150.jpg
+Places365_test_00047154.jpg
+Places365_test_00047178.jpg
+Places365_test_00047187.jpg
+Places365_test_00047188.jpg
+Places365_test_00047189.jpg
+Places365_test_00047201.jpg
+Places365_test_00047210.jpg
+Places365_test_00047216.jpg
+Places365_test_00047230.jpg
+Places365_test_00047240.jpg
+Places365_test_00047246.jpg
+Places365_test_00047251.jpg
+Places365_test_00047253.jpg
+Places365_test_00047261.jpg
+Places365_test_00047270.jpg
+Places365_test_00047273.jpg
+Places365_test_00047278.jpg
+Places365_test_00047288.jpg
+Places365_test_00047300.jpg
+Places365_test_00047422.jpg
+Places365_test_00047444.jpg
+Places365_test_00047450.jpg
+Places365_test_00047464.jpg
+Places365_test_00047471.jpg
+Places365_test_00047501.jpg
+Places365_test_00047509.jpg
+Places365_test_00047523.jpg
+Places365_test_00047524.jpg
+Places365_test_00047529.jpg
+Places365_test_00047530.jpg
+Places365_test_00047541.jpg
+Places365_test_00047556.jpg
+Places365_test_00047568.jpg
+Places365_test_00047575.jpg
+Places365_test_00047604.jpg
+Places365_test_00047626.jpg
+Places365_test_00047632.jpg
+Places365_test_00047645.jpg
+Places365_test_00047659.jpg
+Places365_test_00047694.jpg
+Places365_test_00047710.jpg
+Places365_test_00047712.jpg
+Places365_test_00047713.jpg
+Places365_test_00047740.jpg
+Places365_test_00047741.jpg
+Places365_test_00047748.jpg
+Places365_test_00047749.jpg
+Places365_test_00047764.jpg
+Places365_test_00047775.jpg
+Places365_test_00047776.jpg
+Places365_test_00047778.jpg
+Places365_test_00047781.jpg
+Places365_test_00047793.jpg
+Places365_test_00047794.jpg
+Places365_test_00047820.jpg
+Places365_test_00047832.jpg
+Places365_test_00047833.jpg
+Places365_test_00047838.jpg
+Places365_test_00047848.jpg
+Places365_test_00047854.jpg
+Places365_test_00047857.jpg
+Places365_test_00047859.jpg
+Places365_test_00047872.jpg
+Places365_test_00047881.jpg
+Places365_test_00047895.jpg
+Places365_test_00047904.jpg
+Places365_test_00047930.jpg
+Places365_test_00047935.jpg
+Places365_test_00047941.jpg
+Places365_test_00047980.jpg
+Places365_test_00047983.jpg
+Places365_test_00047994.jpg
+Places365_test_00047999.jpg
+Places365_test_00048022.jpg
+Places365_test_00048037.jpg
+Places365_test_00048055.jpg
+Places365_test_00048081.jpg
+Places365_test_00048088.jpg
+Places365_test_00048108.jpg
+Places365_test_00048112.jpg
+Places365_test_00048113.jpg
+Places365_test_00048120.jpg
+Places365_test_00048122.jpg
+Places365_test_00048146.jpg
+Places365_test_00048156.jpg
+Places365_test_00048169.jpg
+Places365_test_00048182.jpg
+Places365_test_00048190.jpg
+Places365_test_00048196.jpg
+Places365_test_00048203.jpg
+Places365_test_00048206.jpg
+Places365_test_00048211.jpg
+Places365_test_00048212.jpg
+Places365_test_00048216.jpg
+Places365_test_00048217.jpg
+Places365_test_00048218.jpg
+Places365_test_00048226.jpg
+Places365_test_00048231.jpg
+Places365_test_00048239.jpg
+Places365_test_00048254.jpg
+Places365_test_00048296.jpg
+Places365_test_00048303.jpg
+Places365_test_00048310.jpg
+Places365_test_00048311.jpg
+Places365_test_00048317.jpg
+Places365_test_00048332.jpg
+Places365_test_00048347.jpg
+Places365_test_00048351.jpg
+Places365_test_00048385.jpg
+Places365_test_00048402.jpg
+Places365_test_00048421.jpg
+Places365_test_00048436.jpg
+Places365_test_00048450.jpg
+Places365_test_00048475.jpg
+Places365_test_00048479.jpg
+Places365_test_00048482.jpg
+Places365_test_00048492.jpg
+Places365_test_00048498.jpg
+Places365_test_00048507.jpg
+Places365_test_00048512.jpg
+Places365_test_00048518.jpg
+Places365_test_00048532.jpg
+Places365_test_00048546.jpg
+Places365_test_00048551.jpg
+Places365_test_00048584.jpg
+Places365_test_00048593.jpg
+Places365_test_00048596.jpg
+Places365_test_00048609.jpg
+Places365_test_00048631.jpg
+Places365_test_00048646.jpg
+Places365_test_00048650.jpg
+Places365_test_00048651.jpg
+Places365_test_00048658.jpg
+Places365_test_00048677.jpg
+Places365_test_00048686.jpg
+Places365_test_00048695.jpg
+Places365_test_00048696.jpg
+Places365_test_00048705.jpg
+Places365_test_00048716.jpg
+Places365_test_00048748.jpg
+Places365_test_00048754.jpg
+Places365_test_00048757.jpg
+Places365_test_00048765.jpg
+Places365_test_00048769.jpg
+Places365_test_00048779.jpg
+Places365_test_00048781.jpg
+Places365_test_00048810.jpg
+Places365_test_00048817.jpg
+Places365_test_00048854.jpg
+Places365_test_00048859.jpg
+Places365_test_00048866.jpg
+Places365_test_00048893.jpg
+Places365_test_00048902.jpg
+Places365_test_00048915.jpg
+Places365_test_00048941.jpg
+Places365_test_00048948.jpg
+Places365_test_00048960.jpg
+Places365_test_00048968.jpg
+Places365_test_00048969.jpg
+Places365_test_00048983.jpg
+Places365_test_00048991.jpg
+Places365_test_00048995.jpg
+Places365_test_00049005.jpg
+Places365_test_00049008.jpg
+Places365_test_00049013.jpg
+Places365_test_00049061.jpg
+Places365_test_00049062.jpg
+Places365_test_00049072.jpg
+Places365_test_00049073.jpg
+Places365_test_00049097.jpg
+Places365_test_00049103.jpg
+Places365_test_00049116.jpg
+Places365_test_00049121.jpg
+Places365_test_00049124.jpg
+Places365_test_00049144.jpg
+Places365_test_00049171.jpg
+Places365_test_00049192.jpg
+Places365_test_00049193.jpg
+Places365_test_00049199.jpg
+Places365_test_00049232.jpg
+Places365_test_00049238.jpg
+Places365_test_00049270.jpg
+Places365_test_00049288.jpg
+Places365_test_00049297.jpg
+Places365_test_00049322.jpg
+Places365_test_00049343.jpg
+Places365_test_00049345.jpg
+Places365_test_00049375.jpg
+Places365_test_00049390.jpg
+Places365_test_00049391.jpg
+Places365_test_00049396.jpg
+Places365_test_00049397.jpg
+Places365_test_00049411.jpg
+Places365_test_00049431.jpg
+Places365_test_00049442.jpg
+Places365_test_00049447.jpg
+Places365_test_00049458.jpg
+Places365_test_00049461.jpg
+Places365_test_00049476.jpg
+Places365_test_00049503.jpg
+Places365_test_00049522.jpg
+Places365_test_00049544.jpg
+Places365_test_00049549.jpg
+Places365_test_00049556.jpg
+Places365_test_00049573.jpg
+Places365_test_00049576.jpg
+Places365_test_00049585.jpg
+Places365_test_00049599.jpg
+Places365_test_00049646.jpg
+Places365_test_00049662.jpg
+Places365_test_00049677.jpg
+Places365_test_00049689.jpg
+Places365_test_00049708.jpg
+Places365_test_00049710.jpg
+Places365_test_00049735.jpg
+Places365_test_00049749.jpg
+Places365_test_00049752.jpg
+Places365_test_00049789.jpg
+Places365_test_00049805.jpg
+Places365_test_00049822.jpg
+Places365_test_00049823.jpg
+Places365_test_00049828.jpg
+Places365_test_00049838.jpg
+Places365_test_00049839.jpg
+Places365_test_00049841.jpg
+Places365_test_00049843.jpg
+Places365_test_00049860.jpg
+Places365_test_00049886.jpg
+Places365_test_00049911.jpg
+Places365_test_00049926.jpg
+Places365_test_00049930.jpg
+Places365_test_00049960.jpg
+Places365_test_00050024.jpg
+Places365_test_00050030.jpg
+Places365_test_00050031.jpg
+Places365_test_00050044.jpg
+Places365_test_00050055.jpg
+Places365_test_00050064.jpg
+Places365_test_00050077.jpg
+Places365_test_00050081.jpg
+Places365_test_00050085.jpg
+Places365_test_00050093.jpg
+Places365_test_00050103.jpg
+Places365_test_00050119.jpg
+Places365_test_00050127.jpg
+Places365_test_00050131.jpg
+Places365_test_00050134.jpg
+Places365_test_00050151.jpg
+Places365_test_00050179.jpg
+Places365_test_00050191.jpg
+Places365_test_00050193.jpg
+Places365_test_00050228.jpg
+Places365_test_00050268.jpg
+Places365_test_00050270.jpg
+Places365_test_00050280.jpg
+Places365_test_00050285.jpg
+Places365_test_00050292.jpg
+Places365_test_00050297.jpg
+Places365_test_00050315.jpg
+Places365_test_00050325.jpg
+Places365_test_00050330.jpg
+Places365_test_00050353.jpg
+Places365_test_00050359.jpg
+Places365_test_00050389.jpg
+Places365_test_00050392.jpg
+Places365_test_00050401.jpg
+Places365_test_00050411.jpg
+Places365_test_00050429.jpg
+Places365_test_00050432.jpg
+Places365_test_00050434.jpg
+Places365_test_00050436.jpg
+Places365_test_00050475.jpg
+Places365_test_00050489.jpg
+Places365_test_00050498.jpg
+Places365_test_00050499.jpg
+Places365_test_00050508.jpg
+Places365_test_00050510.jpg
+Places365_test_00050522.jpg
+Places365_test_00050536.jpg
+Places365_test_00050549.jpg
+Places365_test_00050554.jpg
+Places365_test_00050569.jpg
+Places365_test_00050585.jpg
+Places365_test_00050602.jpg
+Places365_test_00050605.jpg
+Places365_test_00050606.jpg
+Places365_test_00050624.jpg
+Places365_test_00050633.jpg
+Places365_test_00050638.jpg
+Places365_test_00050639.jpg
+Places365_test_00050643.jpg
+Places365_test_00050674.jpg
+Places365_test_00050696.jpg
+Places365_test_00050717.jpg
+Places365_test_00050727.jpg
+Places365_test_00050751.jpg
+Places365_test_00050765.jpg
+Places365_test_00050769.jpg
+Places365_test_00050778.jpg
+Places365_test_00050788.jpg
+Places365_test_00050813.jpg
+Places365_test_00050816.jpg
+Places365_test_00050839.jpg
+Places365_test_00050860.jpg
+Places365_test_00050868.jpg
+Places365_test_00050875.jpg
+Places365_test_00050887.jpg
+Places365_test_00050891.jpg
+Places365_test_00050898.jpg
+Places365_test_00050904.jpg
+Places365_test_00050908.jpg
+Places365_test_00050915.jpg
+Places365_test_00050925.jpg
+Places365_test_00050934.jpg
+Places365_test_00050935.jpg
+Places365_test_00050953.jpg
+Places365_test_00050987.jpg
+Places365_test_00050995.jpg
+Places365_test_00050997.jpg
+Places365_test_00051001.jpg
+Places365_test_00051020.jpg
+Places365_test_00051032.jpg
+Places365_test_00051044.jpg
+Places365_test_00051048.jpg
+Places365_test_00051070.jpg
+Places365_test_00051074.jpg
+Places365_test_00051115.jpg
+Places365_test_00051119.jpg
+Places365_test_00051132.jpg
+Places365_test_00051133.jpg
+Places365_test_00051139.jpg
+Places365_test_00051158.jpg
+Places365_test_00051178.jpg
+Places365_test_00051181.jpg
+Places365_test_00051194.jpg
+Places365_test_00051196.jpg
+Places365_test_00051214.jpg
+Places365_test_00051225.jpg
+Places365_test_00051234.jpg
+Places365_test_00051251.jpg
+Places365_test_00051261.jpg
+Places365_test_00051262.jpg
+Places365_test_00051275.jpg
+Places365_test_00051277.jpg
+Places365_test_00051291.jpg
+Places365_test_00051297.jpg
+Places365_test_00051317.jpg
+Places365_test_00051325.jpg
+Places365_test_00051326.jpg
+Places365_test_00051334.jpg
+Places365_test_00051341.jpg
+Places365_test_00051354.jpg
+Places365_test_00051359.jpg
+Places365_test_00051370.jpg
+Places365_test_00051371.jpg
+Places365_test_00051389.jpg
+Places365_test_00051390.jpg
+Places365_test_00051401.jpg
+Places365_test_00051406.jpg
+Places365_test_00051427.jpg
+Places365_test_00051428.jpg
+Places365_test_00051450.jpg
+Places365_test_00051455.jpg
+Places365_test_00051456.jpg
+Places365_test_00051474.jpg
+Places365_test_00051502.jpg
+Places365_test_00051521.jpg
+Places365_test_00051526.jpg
+Places365_test_00051536.jpg
+Places365_test_00051556.jpg
+Places365_test_00051561.jpg
+Places365_test_00051573.jpg
+Places365_test_00051582.jpg
+Places365_test_00051594.jpg
+Places365_test_00051635.jpg
+Places365_test_00051638.jpg
+Places365_test_00051660.jpg
+Places365_test_00051695.jpg
+Places365_test_00051705.jpg
+Places365_test_00051725.jpg
+Places365_test_00051728.jpg
+Places365_test_00051742.jpg
+Places365_test_00051759.jpg
+Places365_test_00051784.jpg
+Places365_test_00051794.jpg
+Places365_test_00051804.jpg
+Places365_test_00051806.jpg
+Places365_test_00051838.jpg
+Places365_test_00051843.jpg
+Places365_test_00051872.jpg
+Places365_test_00051881.jpg
+Places365_test_00051905.jpg
+Places365_test_00051935.jpg
+Places365_test_00051958.jpg
+Places365_test_00051966.jpg
+Places365_test_00051975.jpg
+Places365_test_00051987.jpg
+Places365_test_00051994.jpg
+Places365_test_00051999.jpg
+Places365_test_00052004.jpg
+Places365_test_00052020.jpg
+Places365_test_00052029.jpg
+Places365_test_00052032.jpg
+Places365_test_00052033.jpg
+Places365_test_00052036.jpg
+Places365_test_00052044.jpg
+Places365_test_00052048.jpg
+Places365_test_00052050.jpg
+Places365_test_00052051.jpg
+Places365_test_00052057.jpg
+Places365_test_00052064.jpg
+Places365_test_00052107.jpg
+Places365_test_00052115.jpg
+Places365_test_00052117.jpg
+Places365_test_00052142.jpg
+Places365_test_00052143.jpg
+Places365_test_00052154.jpg
+Places365_test_00052158.jpg
+Places365_test_00052178.jpg
+Places365_test_00052179.jpg
+Places365_test_00052197.jpg
+Places365_test_00052203.jpg
+Places365_test_00052206.jpg
+Places365_test_00052214.jpg
+Places365_test_00052218.jpg
+Places365_test_00052223.jpg
+Places365_test_00052240.jpg
+Places365_test_00052244.jpg
+Places365_test_00052297.jpg
+Places365_test_00052305.jpg
+Places365_test_00052306.jpg
+Places365_test_00052314.jpg
+Places365_test_00052324.jpg
+Places365_test_00052332.jpg
+Places365_test_00052336.jpg
+Places365_test_00052340.jpg
+Places365_test_00052344.jpg
+Places365_test_00052347.jpg
+Places365_test_00052360.jpg
+Places365_test_00052388.jpg
+Places365_test_00052392.jpg
+Places365_test_00052393.jpg
+Places365_test_00052415.jpg
+Places365_test_00052431.jpg
+Places365_test_00052437.jpg
+Places365_test_00052438.jpg
+Places365_test_00052448.jpg
+Places365_test_00052461.jpg
+Places365_test_00052478.jpg
+Places365_test_00052480.jpg
+Places365_test_00052491.jpg
+Places365_test_00052498.jpg
+Places365_test_00052541.jpg
+Places365_test_00052546.jpg
+Places365_test_00052561.jpg
+Places365_test_00052562.jpg
+Places365_test_00052574.jpg
+Places365_test_00052583.jpg
+Places365_test_00052595.jpg
+Places365_test_00052599.jpg
+Places365_test_00052602.jpg
+Places365_test_00052624.jpg
+Places365_test_00052625.jpg
+Places365_test_00052627.jpg
+Places365_test_00052631.jpg
+Places365_test_00052643.jpg
+Places365_test_00052653.jpg
+Places365_test_00052664.jpg
+Places365_test_00052669.jpg
+Places365_test_00052672.jpg
+Places365_test_00052674.jpg
+Places365_test_00052677.jpg
+Places365_test_00052710.jpg
+Places365_test_00052714.jpg
+Places365_test_00052721.jpg
+Places365_test_00052731.jpg
+Places365_test_00052740.jpg
+Places365_test_00052752.jpg
+Places365_test_00052753.jpg
+Places365_test_00052770.jpg
+Places365_test_00052787.jpg
+Places365_test_00052833.jpg
+Places365_test_00052838.jpg
+Places365_test_00052845.jpg
+Places365_test_00052854.jpg
+Places365_test_00052878.jpg
+Places365_test_00052880.jpg
+Places365_test_00052892.jpg
+Places365_test_00052912.jpg
+Places365_test_00052923.jpg
+Places365_test_00052941.jpg
+Places365_test_00052945.jpg
+Places365_test_00052960.jpg
+Places365_test_00052961.jpg
+Places365_test_00053005.jpg
+Places365_test_00053015.jpg
+Places365_test_00053049.jpg
+Places365_test_00053054.jpg
+Places365_test_00053061.jpg
+Places365_test_00053070.jpg
+Places365_test_00053080.jpg
+Places365_test_00053093.jpg
+Places365_test_00053124.jpg
+Places365_test_00053131.jpg
+Places365_test_00053140.jpg
+Places365_test_00053141.jpg
+Places365_test_00053146.jpg
+Places365_test_00053158.jpg
+Places365_test_00053162.jpg
+Places365_test_00053168.jpg
+Places365_test_00053185.jpg
+Places365_test_00053197.jpg
+Places365_test_00053220.jpg
+Places365_test_00053221.jpg
+Places365_test_00053227.jpg
+Places365_test_00053229.jpg
+Places365_test_00053234.jpg
+Places365_test_00053245.jpg
+Places365_test_00053251.jpg
+Places365_test_00053298.jpg
+Places365_test_00053311.jpg
+Places365_test_00053313.jpg
+Places365_test_00053333.jpg
+Places365_test_00053336.jpg
+Places365_test_00053337.jpg
+Places365_test_00053355.jpg
+Places365_test_00053359.jpg
+Places365_test_00053365.jpg
+Places365_test_00053367.jpg
+Places365_test_00053380.jpg
+Places365_test_00053393.jpg
+Places365_test_00053436.jpg
+Places365_test_00053470.jpg
+Places365_test_00053476.jpg
+Places365_test_00053491.jpg
+Places365_test_00053514.jpg
+Places365_test_00053530.jpg
+Places365_test_00053544.jpg
+Places365_test_00053557.jpg
+Places365_test_00053569.jpg
+Places365_test_00053576.jpg
+Places365_test_00053596.jpg
+Places365_test_00053604.jpg
+Places365_test_00053606.jpg
+Places365_test_00053627.jpg
+Places365_test_00053633.jpg
+Places365_test_00053635.jpg
+Places365_test_00053644.jpg
+Places365_test_00053658.jpg
+Places365_test_00053661.jpg
+Places365_test_00053709.jpg
+Places365_test_00053713.jpg
+Places365_test_00053725.jpg
+Places365_test_00053728.jpg
+Places365_test_00053756.jpg
+Places365_test_00053774.jpg
+Places365_test_00053788.jpg
+Places365_test_00053805.jpg
+Places365_test_00053822.jpg
+Places365_test_00053852.jpg
+Places365_test_00053866.jpg
+Places365_test_00053875.jpg
+Places365_test_00053879.jpg
+Places365_test_00053882.jpg
+Places365_test_00053887.jpg
+Places365_test_00053894.jpg
+Places365_test_00053911.jpg
+Places365_test_00053933.jpg
+Places365_test_00053947.jpg
+Places365_test_00053949.jpg
+Places365_test_00053973.jpg
+Places365_test_00053978.jpg
+Places365_test_00053985.jpg
+Places365_test_00053993.jpg
+Places365_test_00054005.jpg
+Places365_test_00054014.jpg
+Places365_test_00054017.jpg
+Places365_test_00054036.jpg
+Places365_test_00054039.jpg
+Places365_test_00054053.jpg
+Places365_test_00054054.jpg
+Places365_test_00054070.jpg
+Places365_test_00054078.jpg
+Places365_test_00054086.jpg
+Places365_test_00054094.jpg
+Places365_test_00054107.jpg
+Places365_test_00054112.jpg
+Places365_test_00054130.jpg
+Places365_test_00054198.jpg
+Places365_test_00054217.jpg
+Places365_test_00054224.jpg
+Places365_test_00054241.jpg
+Places365_test_00054259.jpg
+Places365_test_00054268.jpg
+Places365_test_00054280.jpg
+Places365_test_00054290.jpg
+Places365_test_00054303.jpg
+Places365_test_00054314.jpg
+Places365_test_00054316.jpg
+Places365_test_00054324.jpg
+Places365_test_00054331.jpg
+Places365_test_00054334.jpg
+Places365_test_00054337.jpg
+Places365_test_00054340.jpg
+Places365_test_00054347.jpg
+Places365_test_00054356.jpg
+Places365_test_00054357.jpg
+Places365_test_00054360.jpg
+Places365_test_00054378.jpg
+Places365_test_00054383.jpg
+Places365_test_00054394.jpg
+Places365_test_00054402.jpg
+Places365_test_00054409.jpg
+Places365_test_00054414.jpg
+Places365_test_00054440.jpg
+Places365_test_00054445.jpg
+Places365_test_00054462.jpg
+Places365_test_00054463.jpg
+Places365_test_00054474.jpg
+Places365_test_00054476.jpg
+Places365_test_00054481.jpg
+Places365_test_00054485.jpg
+Places365_test_00054493.jpg
+Places365_test_00054501.jpg
+Places365_test_00054521.jpg
+Places365_test_00054542.jpg
+Places365_test_00054593.jpg
+Places365_test_00054602.jpg
+Places365_test_00054616.jpg
+Places365_test_00054634.jpg
+Places365_test_00054637.jpg
+Places365_test_00054660.jpg
+Places365_test_00054666.jpg
+Places365_test_00054684.jpg
+Places365_test_00054686.jpg
+Places365_test_00054693.jpg
+Places365_test_00054695.jpg
+Places365_test_00054713.jpg
+Places365_test_00054737.jpg
+Places365_test_00054739.jpg
+Places365_test_00054752.jpg
+Places365_test_00054755.jpg
+Places365_test_00054775.jpg
+Places365_test_00054779.jpg
+Places365_test_00054783.jpg
+Places365_test_00054793.jpg
+Places365_test_00054813.jpg
+Places365_test_00054816.jpg
+Places365_test_00054817.jpg
+Places365_test_00054818.jpg
+Places365_test_00054824.jpg
+Places365_test_00054843.jpg
+Places365_test_00054855.jpg
+Places365_test_00054857.jpg
+Places365_test_00054862.jpg
+Places365_test_00054867.jpg
+Places365_test_00054875.jpg
+Places365_test_00054879.jpg
+Places365_test_00054882.jpg
+Places365_test_00054894.jpg
+Places365_test_00054904.jpg
+Places365_test_00054916.jpg
+Places365_test_00054922.jpg
+Places365_test_00054930.jpg
+Places365_test_00054939.jpg
+Places365_test_00054944.jpg
+Places365_test_00054956.jpg
+Places365_test_00054960.jpg
+Places365_test_00054965.jpg
+Places365_test_00054969.jpg
+Places365_test_00054999.jpg
+Places365_test_00055000.jpg
+Places365_test_00055012.jpg
+Places365_test_00055017.jpg
+Places365_test_00055022.jpg
+Places365_test_00055043.jpg
+Places365_test_00055067.jpg
+Places365_test_00055081.jpg
+Places365_test_00055083.jpg
+Places365_test_00055093.jpg
+Places365_test_00055127.jpg
+Places365_test_00055141.jpg
+Places365_test_00055153.jpg
+Places365_test_00055161.jpg
+Places365_test_00055162.jpg
+Places365_test_00055174.jpg
+Places365_test_00055196.jpg
+Places365_test_00055202.jpg
+Places365_test_00055215.jpg
+Places365_test_00055226.jpg
+Places365_test_00055288.jpg
+Places365_test_00055298.jpg
+Places365_test_00055324.jpg
+Places365_test_00055333.jpg
+Places365_test_00055338.jpg
+Places365_test_00055340.jpg
+Places365_test_00055354.jpg
+Places365_test_00055356.jpg
+Places365_test_00055390.jpg
+Places365_test_00055397.jpg
+Places365_test_00055404.jpg
+Places365_test_00055409.jpg
+Places365_test_00055424.jpg
+Places365_test_00055429.jpg
+Places365_test_00055437.jpg
+Places365_test_00055440.jpg
+Places365_test_00055467.jpg
+Places365_test_00055473.jpg
+Places365_test_00055503.jpg
+Places365_test_00055504.jpg
+Places365_test_00055518.jpg
+Places365_test_00055563.jpg
+Places365_test_00055574.jpg
+Places365_test_00055583.jpg
+Places365_test_00055585.jpg
+Places365_test_00055599.jpg
+Places365_test_00055611.jpg
+Places365_test_00055675.jpg
+Places365_test_00055679.jpg
+Places365_test_00055688.jpg
+Places365_test_00055691.jpg
+Places365_test_00055697.jpg
+Places365_test_00055705.jpg
+Places365_test_00055719.jpg
+Places365_test_00055722.jpg
+Places365_test_00055724.jpg
+Places365_test_00055728.jpg
+Places365_test_00055738.jpg
+Places365_test_00055739.jpg
+Places365_test_00055748.jpg
+Places365_test_00055764.jpg
+Places365_test_00055765.jpg
+Places365_test_00055782.jpg
+Places365_test_00055799.jpg
+Places365_test_00055803.jpg
+Places365_test_00055811.jpg
+Places365_test_00055816.jpg
+Places365_test_00055819.jpg
+Places365_test_00055826.jpg
+Places365_test_00055838.jpg
+Places365_test_00055843.jpg
+Places365_test_00055856.jpg
+Places365_test_00055863.jpg
+Places365_test_00055884.jpg
+Places365_test_00055896.jpg
+Places365_test_00055911.jpg
+Places365_test_00055915.jpg
+Places365_test_00055935.jpg
+Places365_test_00055960.jpg
+Places365_test_00055965.jpg
+Places365_test_00055984.jpg
+Places365_test_00055993.jpg
+Places365_test_00055998.jpg
+Places365_test_00056001.jpg
+Places365_test_00056004.jpg
+Places365_test_00056010.jpg
+Places365_test_00056033.jpg
+Places365_test_00056050.jpg
+Places365_test_00056061.jpg
+Places365_test_00056062.jpg
+Places365_test_00056067.jpg
+Places365_test_00056071.jpg
+Places365_test_00056075.jpg
+Places365_test_00056076.jpg
+Places365_test_00056080.jpg
+Places365_test_00056082.jpg
+Places365_test_00056084.jpg
+Places365_test_00056093.jpg
+Places365_test_00056097.jpg
+Places365_test_00056116.jpg
+Places365_test_00056198.jpg
+Places365_test_00056207.jpg
+Places365_test_00056223.jpg
+Places365_test_00056236.jpg
+Places365_test_00056237.jpg
+Places365_test_00056243.jpg
+Places365_test_00056247.jpg
+Places365_test_00056263.jpg
+Places365_test_00056271.jpg
+Places365_test_00056289.jpg
+Places365_test_00056300.jpg
+Places365_test_00056301.jpg
+Places365_test_00056302.jpg
+Places365_test_00056319.jpg
+Places365_test_00056322.jpg
+Places365_test_00056328.jpg
+Places365_test_00056340.jpg
+Places365_test_00056360.jpg
+Places365_test_00056372.jpg
+Places365_test_00056375.jpg
+Places365_test_00056398.jpg
+Places365_test_00056403.jpg
+Places365_test_00056422.jpg
+Places365_test_00056424.jpg
+Places365_test_00056425.jpg
+Places365_test_00056427.jpg
+Places365_test_00056430.jpg
+Places365_test_00056437.jpg
+Places365_test_00056438.jpg
+Places365_test_00056439.jpg
+Places365_test_00056459.jpg
+Places365_test_00056480.jpg
+Places365_test_00056493.jpg
+Places365_test_00056495.jpg
+Places365_test_00056498.jpg
+Places365_test_00056528.jpg
+Places365_test_00056529.jpg
+Places365_test_00056532.jpg
+Places365_test_00056536.jpg
+Places365_test_00056541.jpg
+Places365_test_00056553.jpg
+Places365_test_00056564.jpg
+Places365_test_00056565.jpg
+Places365_test_00056573.jpg
+Places365_test_00056593.jpg
+Places365_test_00056597.jpg
+Places365_test_00056598.jpg
+Places365_test_00056609.jpg
+Places365_test_00056615.jpg
+Places365_test_00056623.jpg
+Places365_test_00056629.jpg
+Places365_test_00056631.jpg
+Places365_test_00056662.jpg
+Places365_test_00056671.jpg
+Places365_test_00056674.jpg
+Places365_test_00056677.jpg
+Places365_test_00056680.jpg
+Places365_test_00056731.jpg
+Places365_test_00056744.jpg
+Places365_test_00056778.jpg
+Places365_test_00056788.jpg
+Places365_test_00056790.jpg
+Places365_test_00056796.jpg
+Places365_test_00056816.jpg
+Places365_test_00056818.jpg
+Places365_test_00056836.jpg
+Places365_test_00056837.jpg
+Places365_test_00056853.jpg
+Places365_test_00056854.jpg
+Places365_test_00056861.jpg
+Places365_test_00056868.jpg
+Places365_test_00056884.jpg
+Places365_test_00056904.jpg
+Places365_test_00056912.jpg
+Places365_test_00056918.jpg
+Places365_test_00056932.jpg
+Places365_test_00056934.jpg
+Places365_test_00056955.jpg
+Places365_test_00056982.jpg
+Places365_test_00056986.jpg
+Places365_test_00056990.jpg
+Places365_test_00057000.jpg
+Places365_test_00057001.jpg
+Places365_test_00057008.jpg
+Places365_test_00057022.jpg
+Places365_test_00057027.jpg
+Places365_test_00057039.jpg
+Places365_test_00057043.jpg
+Places365_test_00057080.jpg
+Places365_test_00057101.jpg
+Places365_test_00057106.jpg
+Places365_test_00057113.jpg
+Places365_test_00057125.jpg
+Places365_test_00057130.jpg
+Places365_test_00057143.jpg
+Places365_test_00057144.jpg
+Places365_test_00057157.jpg
+Places365_test_00057160.jpg
+Places365_test_00057163.jpg
+Places365_test_00057173.jpg
+Places365_test_00057191.jpg
+Places365_test_00057238.jpg
+Places365_test_00057255.jpg
+Places365_test_00057262.jpg
+Places365_test_00057271.jpg
+Places365_test_00057292.jpg
+Places365_test_00057324.jpg
+Places365_test_00057332.jpg
+Places365_test_00057357.jpg
+Places365_test_00057361.jpg
+Places365_test_00057363.jpg
+Places365_test_00057386.jpg
+Places365_test_00057392.jpg
+Places365_test_00057428.jpg
+Places365_test_00057457.jpg
+Places365_test_00057471.jpg
+Places365_test_00057481.jpg
+Places365_test_00057498.jpg
+Places365_test_00057500.jpg
+Places365_test_00057522.jpg
+Places365_test_00057536.jpg
+Places365_test_00057541.jpg
+Places365_test_00057577.jpg
+Places365_test_00057579.jpg
+Places365_test_00057591.jpg
+Places365_test_00057596.jpg
+Places365_test_00057599.jpg
+Places365_test_00057601.jpg
+Places365_test_00057615.jpg
+Places365_test_00057636.jpg
+Places365_test_00057638.jpg
+Places365_test_00057664.jpg
+Places365_test_00057677.jpg
+Places365_test_00057682.jpg
+Places365_test_00057684.jpg
+Places365_test_00057690.jpg
+Places365_test_00057693.jpg
+Places365_test_00057739.jpg
+Places365_test_00057743.jpg
+Places365_test_00057744.jpg
+Places365_test_00057750.jpg
+Places365_test_00057751.jpg
+Places365_test_00057754.jpg
+Places365_test_00057755.jpg
+Places365_test_00057766.jpg
+Places365_test_00057780.jpg
+Places365_test_00057793.jpg
+Places365_test_00057796.jpg
+Places365_test_00057808.jpg
+Places365_test_00057813.jpg
+Places365_test_00057818.jpg
+Places365_test_00057831.jpg
+Places365_test_00057842.jpg
+Places365_test_00057847.jpg
+Places365_test_00057850.jpg
+Places365_test_00057858.jpg
+Places365_test_00057859.jpg
+Places365_test_00057861.jpg
+Places365_test_00057864.jpg
+Places365_test_00057882.jpg
+Places365_test_00057897.jpg
+Places365_test_00057903.jpg
+Places365_test_00057922.jpg
+Places365_test_00057938.jpg
+Places365_test_00057943.jpg
+Places365_test_00057958.jpg
+Places365_test_00057965.jpg
+Places365_test_00057977.jpg
+Places365_test_00057979.jpg
+Places365_test_00057995.jpg
+Places365_test_00058002.jpg
+Places365_test_00058062.jpg
+Places365_test_00058077.jpg
+Places365_test_00058108.jpg
+Places365_test_00058110.jpg
+Places365_test_00058111.jpg
+Places365_test_00058112.jpg
+Places365_test_00058118.jpg
+Places365_test_00058125.jpg
+Places365_test_00058139.jpg
+Places365_test_00058146.jpg
+Places365_test_00058151.jpg
+Places365_test_00058154.jpg
+Places365_test_00058183.jpg
+Places365_test_00058238.jpg
+Places365_test_00058250.jpg
+Places365_test_00058271.jpg
+Places365_test_00058276.jpg
+Places365_test_00058282.jpg
+Places365_test_00058286.jpg
+Places365_test_00058288.jpg
+Places365_test_00058290.jpg
+Places365_test_00058293.jpg
+Places365_test_00058298.jpg
+Places365_test_00058313.jpg
+Places365_test_00058330.jpg
+Places365_test_00058332.jpg
+Places365_test_00058355.jpg
+Places365_test_00058356.jpg
+Places365_test_00058370.jpg
+Places365_test_00058407.jpg
+Places365_test_00058413.jpg
+Places365_test_00058418.jpg
+Places365_test_00058430.jpg
+Places365_test_00058447.jpg
+Places365_test_00058452.jpg
+Places365_test_00058480.jpg
+Places365_test_00058484.jpg
+Places365_test_00058488.jpg
+Places365_test_00058507.jpg
+Places365_test_00058553.jpg
+Places365_test_00058567.jpg
+Places365_test_00058588.jpg
+Places365_test_00058589.jpg
+Places365_test_00058610.jpg
+Places365_test_00058620.jpg
+Places365_test_00058626.jpg
+Places365_test_00058642.jpg
+Places365_test_00058650.jpg
+Places365_test_00058667.jpg
+Places365_test_00058670.jpg
+Places365_test_00058680.jpg
+Places365_test_00058686.jpg
+Places365_test_00058699.jpg
+Places365_test_00058714.jpg
+Places365_test_00058728.jpg
+Places365_test_00058760.jpg
+Places365_test_00058787.jpg
+Places365_test_00058817.jpg
+Places365_test_00058824.jpg
+Places365_test_00058837.jpg
+Places365_test_00058841.jpg
+Places365_test_00058843.jpg
+Places365_test_00058868.jpg
+Places365_test_00058886.jpg
+Places365_test_00058902.jpg
+Places365_test_00058904.jpg
+Places365_test_00058919.jpg
+Places365_test_00058932.jpg
+Places365_test_00058948.jpg
+Places365_test_00058956.jpg
+Places365_test_00058981.jpg
+Places365_test_00059010.jpg
+Places365_test_00059036.jpg
+Places365_test_00059043.jpg
+Places365_test_00059053.jpg
+Places365_test_00059059.jpg
+Places365_test_00059066.jpg
+Places365_test_00059092.jpg
+Places365_test_00059120.jpg
+Places365_test_00059140.jpg
+Places365_test_00059143.jpg
+Places365_test_00059151.jpg
+Places365_test_00059165.jpg
+Places365_test_00059175.jpg
+Places365_test_00059185.jpg
+Places365_test_00059196.jpg
+Places365_test_00059208.jpg
+Places365_test_00059211.jpg
+Places365_test_00059218.jpg
+Places365_test_00059237.jpg
+Places365_test_00059247.jpg
+Places365_test_00059255.jpg
+Places365_test_00059261.jpg
+Places365_test_00059268.jpg
+Places365_test_00059295.jpg
+Places365_test_00059304.jpg
+Places365_test_00059309.jpg
+Places365_test_00059314.jpg
+Places365_test_00059338.jpg
+Places365_test_00059354.jpg
+Places365_test_00059361.jpg
+Places365_test_00059365.jpg
+Places365_test_00059369.jpg
+Places365_test_00059386.jpg
+Places365_test_00059403.jpg
+Places365_test_00059410.jpg
+Places365_test_00059422.jpg
+Places365_test_00059423.jpg
+Places365_test_00059424.jpg
+Places365_test_00059426.jpg
+Places365_test_00059430.jpg
+Places365_test_00059461.jpg
+Places365_test_00059463.jpg
+Places365_test_00059464.jpg
+Places365_test_00059465.jpg
+Places365_test_00059471.jpg
+Places365_test_00059474.jpg
+Places365_test_00059492.jpg
+Places365_test_00059494.jpg
+Places365_test_00059501.jpg
+Places365_test_00059517.jpg
+Places365_test_00059522.jpg
+Places365_test_00059549.jpg
+Places365_test_00059567.jpg
+Places365_test_00059597.jpg
+Places365_test_00059639.jpg
+Places365_test_00059644.jpg
+Places365_test_00059646.jpg
+Places365_test_00059669.jpg
+Places365_test_00059671.jpg
+Places365_test_00059680.jpg
+Places365_test_00059690.jpg
+Places365_test_00059704.jpg
+Places365_test_00059720.jpg
+Places365_test_00059742.jpg
+Places365_test_00059745.jpg
+Places365_test_00059746.jpg
+Places365_test_00059760.jpg
+Places365_test_00059762.jpg
+Places365_test_00059764.jpg
+Places365_test_00059766.jpg
+Places365_test_00059788.jpg
+Places365_test_00059810.jpg
+Places365_test_00059838.jpg
+Places365_test_00059847.jpg
+Places365_test_00059880.jpg
+Places365_test_00059904.jpg
+Places365_test_00059907.jpg
+Places365_test_00059933.jpg
+Places365_test_00059936.jpg
+Places365_test_00059947.jpg
+Places365_test_00059988.jpg
+Places365_test_00059991.jpg
+Places365_test_00060005.jpg
+Places365_test_00060021.jpg
+Places365_test_00060022.jpg
+Places365_test_00060023.jpg
+Places365_test_00060024.jpg
+Places365_test_00060033.jpg
+Places365_test_00060039.jpg
+Places365_test_00060099.jpg
+Places365_test_00060121.jpg
+Places365_test_00060132.jpg
+Places365_test_00060133.jpg
+Places365_test_00060139.jpg
+Places365_test_00060155.jpg
+Places365_test_00060179.jpg
+Places365_test_00060189.jpg
+Places365_test_00060193.jpg
+Places365_test_00060195.jpg
+Places365_test_00060200.jpg
+Places365_test_00060204.jpg
+Places365_test_00060209.jpg
+Places365_test_00060222.jpg
+Places365_test_00060247.jpg
+Places365_test_00060251.jpg
+Places365_test_00060273.jpg
+Places365_test_00060308.jpg
+Places365_test_00060317.jpg
+Places365_test_00060320.jpg
+Places365_test_00060333.jpg
+Places365_test_00060334.jpg
+Places365_test_00060342.jpg
+Places365_test_00060355.jpg
+Places365_test_00060368.jpg
+Places365_test_00060370.jpg
+Places365_test_00060373.jpg
+Places365_test_00060374.jpg
+Places365_test_00060380.jpg
+Places365_test_00060401.jpg
+Places365_test_00060411.jpg
+Places365_test_00060414.jpg
+Places365_test_00060419.jpg
+Places365_test_00060433.jpg
+Places365_test_00060443.jpg
+Places365_test_00060458.jpg
+Places365_test_00060474.jpg
+Places365_test_00060485.jpg
+Places365_test_00060510.jpg
+Places365_test_00060511.jpg
+Places365_test_00060514.jpg
+Places365_test_00060517.jpg
+Places365_test_00060519.jpg
+Places365_test_00060546.jpg
+Places365_test_00060568.jpg
+Places365_test_00060626.jpg
+Places365_test_00060650.jpg
+Places365_test_00060656.jpg
+Places365_test_00060661.jpg
+Places365_test_00060675.jpg
+Places365_test_00060680.jpg
+Places365_test_00060681.jpg
+Places365_test_00060688.jpg
+Places365_test_00060709.jpg
+Places365_test_00060713.jpg
+Places365_test_00060714.jpg
+Places365_test_00060723.jpg
+Places365_test_00060725.jpg
+Places365_test_00060726.jpg
+Places365_test_00060745.jpg
+Places365_test_00060746.jpg
+Places365_test_00060751.jpg
+Places365_test_00060754.jpg
+Places365_test_00060776.jpg
+Places365_test_00060786.jpg
+Places365_test_00060798.jpg
+Places365_test_00060801.jpg
+Places365_test_00060820.jpg
+Places365_test_00060835.jpg
+Places365_test_00060841.jpg
+Places365_test_00060846.jpg
+Places365_test_00060853.jpg
+Places365_test_00060858.jpg
+Places365_test_00060859.jpg
+Places365_test_00060880.jpg
+Places365_test_00060890.jpg
+Places365_test_00060896.jpg
+Places365_test_00060906.jpg
+Places365_test_00060907.jpg
+Places365_test_00060910.jpg
+Places365_test_00060914.jpg
+Places365_test_00060916.jpg
+Places365_test_00060943.jpg
+Places365_test_00060971.jpg
+Places365_test_00060985.jpg
+Places365_test_00060987.jpg
+Places365_test_00060991.jpg
+Places365_test_00060995.jpg
+Places365_test_00060996.jpg
+Places365_test_00060997.jpg
+Places365_test_00061013.jpg
+Places365_test_00061015.jpg
+Places365_test_00061024.jpg
+Places365_test_00061041.jpg
+Places365_test_00061044.jpg
+Places365_test_00061046.jpg
+Places365_test_00061056.jpg
+Places365_test_00061069.jpg
+Places365_test_00061079.jpg
+Places365_test_00061090.jpg
+Places365_test_00061110.jpg
+Places365_test_00061111.jpg
+Places365_test_00061121.jpg
+Places365_test_00061122.jpg
+Places365_test_00061153.jpg
+Places365_test_00061180.jpg
+Places365_test_00061184.jpg
+Places365_test_00061192.jpg
+Places365_test_00061204.jpg
+Places365_test_00061207.jpg
+Places365_test_00061230.jpg
+Places365_test_00061240.jpg
+Places365_test_00061245.jpg
+Places365_test_00061270.jpg
+Places365_test_00061275.jpg
+Places365_test_00061291.jpg
+Places365_test_00061299.jpg
+Places365_test_00061301.jpg
+Places365_test_00061318.jpg
+Places365_test_00061332.jpg
+Places365_test_00061369.jpg
+Places365_test_00061370.jpg
+Places365_test_00061406.jpg
+Places365_test_00061414.jpg
+Places365_test_00061415.jpg
+Places365_test_00061420.jpg
+Places365_test_00061448.jpg
+Places365_test_00061455.jpg
+Places365_test_00061478.jpg
+Places365_test_00061499.jpg
+Places365_test_00061510.jpg
+Places365_test_00061528.jpg
+Places365_test_00061529.jpg
+Places365_test_00061533.jpg
+Places365_test_00061547.jpg
+Places365_test_00061553.jpg
+Places365_test_00061563.jpg
+Places365_test_00061570.jpg
+Places365_test_00061606.jpg
+Places365_test_00061609.jpg
+Places365_test_00061619.jpg
+Places365_test_00061646.jpg
+Places365_test_00061658.jpg
+Places365_test_00061662.jpg
+Places365_test_00061665.jpg
+Places365_test_00061689.jpg
+Places365_test_00061698.jpg
+Places365_test_00061711.jpg
+Places365_test_00061714.jpg
+Places365_test_00061744.jpg
+Places365_test_00061747.jpg
+Places365_test_00061748.jpg
+Places365_test_00061769.jpg
+Places365_test_00061780.jpg
+Places365_test_00061786.jpg
+Places365_test_00061797.jpg
+Places365_test_00061812.jpg
+Places365_test_00061820.jpg
+Places365_test_00061837.jpg
+Places365_test_00061843.jpg
+Places365_test_00061858.jpg
+Places365_test_00061865.jpg
+Places365_test_00061866.jpg
+Places365_test_00061867.jpg
+Places365_test_00061869.jpg
+Places365_test_00061880.jpg
+Places365_test_00061900.jpg
+Places365_test_00061925.jpg
+Places365_test_00061935.jpg
+Places365_test_00061940.jpg
+Places365_test_00061949.jpg
+Places365_test_00061964.jpg
+Places365_test_00061966.jpg
+Places365_test_00061976.jpg
+Places365_test_00061985.jpg
+Places365_test_00061990.jpg
+Places365_test_00062020.jpg
+Places365_test_00062081.jpg
+Places365_test_00062109.jpg
+Places365_test_00062112.jpg
+Places365_test_00062125.jpg
+Places365_test_00062138.jpg
+Places365_test_00062151.jpg
+Places365_test_00062157.jpg
+Places365_test_00062160.jpg
+Places365_test_00062172.jpg
+Places365_test_00062183.jpg
+Places365_test_00062209.jpg
+Places365_test_00062215.jpg
+Places365_test_00062216.jpg
+Places365_test_00062218.jpg
+Places365_test_00062225.jpg
+Places365_test_00062231.jpg
+Places365_test_00062236.jpg
+Places365_test_00062242.jpg
+Places365_test_00062251.jpg
+Places365_test_00062252.jpg
+Places365_test_00062254.jpg
+Places365_test_00062276.jpg
+Places365_test_00062277.jpg
+Places365_test_00062313.jpg
+Places365_test_00062327.jpg
+Places365_test_00062335.jpg
+Places365_test_00062352.jpg
+Places365_test_00062358.jpg
+Places365_test_00062374.jpg
+Places365_test_00062376.jpg
+Places365_test_00062387.jpg
+Places365_test_00062393.jpg
+Places365_test_00062398.jpg
+Places365_test_00062400.jpg
+Places365_test_00062404.jpg
+Places365_test_00062426.jpg
+Places365_test_00062433.jpg
+Places365_test_00062443.jpg
+Places365_test_00062465.jpg
+Places365_test_00062467.jpg
+Places365_test_00062486.jpg
+Places365_test_00062497.jpg
+Places365_test_00062538.jpg
+Places365_test_00062552.jpg
+Places365_test_00062589.jpg
+Places365_test_00062615.jpg
+Places365_test_00062622.jpg
+Places365_test_00062648.jpg
+Places365_test_00062668.jpg
+Places365_test_00062691.jpg
+Places365_test_00062695.jpg
+Places365_test_00062708.jpg
+Places365_test_00062739.jpg
+Places365_test_00062745.jpg
+Places365_test_00062769.jpg
+Places365_test_00062773.jpg
+Places365_test_00062774.jpg
+Places365_test_00062787.jpg
+Places365_test_00062793.jpg
+Places365_test_00062800.jpg
+Places365_test_00062806.jpg
+Places365_test_00062810.jpg
+Places365_test_00062817.jpg
+Places365_test_00062823.jpg
+Places365_test_00062852.jpg
+Places365_test_00062865.jpg
+Places365_test_00062873.jpg
+Places365_test_00062875.jpg
+Places365_test_00062881.jpg
+Places365_test_00062886.jpg
+Places365_test_00062888.jpg
+Places365_test_00062890.jpg
+Places365_test_00062907.jpg
+Places365_test_00062912.jpg
+Places365_test_00062915.jpg
+Places365_test_00062917.jpg
+Places365_test_00062936.jpg
+Places365_test_00062963.jpg
+Places365_test_00062966.jpg
+Places365_test_00062988.jpg
+Places365_test_00062992.jpg
+Places365_test_00062994.jpg
+Places365_test_00063003.jpg
+Places365_test_00063012.jpg
+Places365_test_00063018.jpg
+Places365_test_00063021.jpg
+Places365_test_00063040.jpg
+Places365_test_00063056.jpg
+Places365_test_00063059.jpg
+Places365_test_00063076.jpg
+Places365_test_00063095.jpg
+Places365_test_00063117.jpg
+Places365_test_00063129.jpg
+Places365_test_00063132.jpg
+Places365_test_00063148.jpg
+Places365_test_00063150.jpg
+Places365_test_00063158.jpg
+Places365_test_00063181.jpg
+Places365_test_00063187.jpg
+Places365_test_00063194.jpg
+Places365_test_00063196.jpg
+Places365_test_00063215.jpg
+Places365_test_00063219.jpg
+Places365_test_00063232.jpg
+Places365_test_00063236.jpg
+Places365_test_00063239.jpg
+Places365_test_00063243.jpg
+Places365_test_00063244.jpg
+Places365_test_00063246.jpg
+Places365_test_00063257.jpg
+Places365_test_00063261.jpg
+Places365_test_00063264.jpg
+Places365_test_00063275.jpg
+Places365_test_00063279.jpg
+Places365_test_00063280.jpg
+Places365_test_00063310.jpg
+Places365_test_00063311.jpg
+Places365_test_00063325.jpg
+Places365_test_00063332.jpg
+Places365_test_00063340.jpg
+Places365_test_00063346.jpg
+Places365_test_00063353.jpg
+Places365_test_00063355.jpg
+Places365_test_00063369.jpg
+Places365_test_00063377.jpg
+Places365_test_00063394.jpg
+Places365_test_00063399.jpg
+Places365_test_00063407.jpg
+Places365_test_00063408.jpg
+Places365_test_00063409.jpg
+Places365_test_00063444.jpg
+Places365_test_00063449.jpg
+Places365_test_00063452.jpg
+Places365_test_00063465.jpg
+Places365_test_00063471.jpg
+Places365_test_00063483.jpg
+Places365_test_00063492.jpg
+Places365_test_00063497.jpg
+Places365_test_00063501.jpg
+Places365_test_00063516.jpg
+Places365_test_00063554.jpg
+Places365_test_00063565.jpg
+Places365_test_00063580.jpg
+Places365_test_00063581.jpg
+Places365_test_00063585.jpg
+Places365_test_00063588.jpg
+Places365_test_00063598.jpg
+Places365_test_00063606.jpg
+Places365_test_00063610.jpg
+Places365_test_00063615.jpg
+Places365_test_00063618.jpg
+Places365_test_00063637.jpg
+Places365_test_00063644.jpg
+Places365_test_00063661.jpg
+Places365_test_00063662.jpg
+Places365_test_00063681.jpg
+Places365_test_00063707.jpg
+Places365_test_00063724.jpg
+Places365_test_00063731.jpg
+Places365_test_00063734.jpg
+Places365_test_00063822.jpg
+Places365_test_00063841.jpg
+Places365_test_00063848.jpg
+Places365_test_00063861.jpg
+Places365_test_00063879.jpg
+Places365_test_00063886.jpg
+Places365_test_00063902.jpg
+Places365_test_00063908.jpg
+Places365_test_00063924.jpg
+Places365_test_00063926.jpg
+Places365_test_00063951.jpg
+Places365_test_00063959.jpg
+Places365_test_00063963.jpg
+Places365_test_00063969.jpg
+Places365_test_00063970.jpg
+Places365_test_00063976.jpg
+Places365_test_00063980.jpg
+Places365_test_00063986.jpg
+Places365_test_00063992.jpg
+Places365_test_00064001.jpg
+Places365_test_00064008.jpg
+Places365_test_00064015.jpg
+Places365_test_00064018.jpg
+Places365_test_00064022.jpg
+Places365_test_00064033.jpg
+Places365_test_00064034.jpg
+Places365_test_00064068.jpg
+Places365_test_00064080.jpg
+Places365_test_00064083.jpg
+Places365_test_00064100.jpg
+Places365_test_00064105.jpg
+Places365_test_00064108.jpg
+Places365_test_00064119.jpg
+Places365_test_00064130.jpg
+Places365_test_00064151.jpg
+Places365_test_00064158.jpg
+Places365_test_00064167.jpg
+Places365_test_00064177.jpg
+Places365_test_00064184.jpg
+Places365_test_00064192.jpg
+Places365_test_00064196.jpg
+Places365_test_00064199.jpg
+Places365_test_00064204.jpg
+Places365_test_00064209.jpg
+Places365_test_00064214.jpg
+Places365_test_00064219.jpg
+Places365_test_00064222.jpg
+Places365_test_00064231.jpg
+Places365_test_00064242.jpg
+Places365_test_00064245.jpg
+Places365_test_00064262.jpg
+Places365_test_00064266.jpg
+Places365_test_00064267.jpg
+Places365_test_00064271.jpg
+Places365_test_00064276.jpg
+Places365_test_00064277.jpg
+Places365_test_00064302.jpg
+Places365_test_00064303.jpg
+Places365_test_00064311.jpg
+Places365_test_00064322.jpg
+Places365_test_00064331.jpg
+Places365_test_00064339.jpg
+Places365_test_00064350.jpg
+Places365_test_00064351.jpg
+Places365_test_00064357.jpg
+Places365_test_00064369.jpg
+Places365_test_00064388.jpg
+Places365_test_00064395.jpg
+Places365_test_00064399.jpg
+Places365_test_00064439.jpg
+Places365_test_00064454.jpg
+Places365_test_00064480.jpg
+Places365_test_00064483.jpg
+Places365_test_00064494.jpg
+Places365_test_00064510.jpg
+Places365_test_00064519.jpg
+Places365_test_00064530.jpg
+Places365_test_00064533.jpg
+Places365_test_00064547.jpg
+Places365_test_00064577.jpg
+Places365_test_00064581.jpg
+Places365_test_00064590.jpg
+Places365_test_00064595.jpg
+Places365_test_00064605.jpg
+Places365_test_00064608.jpg
+Places365_test_00064615.jpg
+Places365_test_00064630.jpg
+Places365_test_00064631.jpg
+Places365_test_00064634.jpg
+Places365_test_00064644.jpg
+Places365_test_00064660.jpg
+Places365_test_00064672.jpg
+Places365_test_00064675.jpg
+Places365_test_00064681.jpg
+Places365_test_00064716.jpg
+Places365_test_00064722.jpg
+Places365_test_00064734.jpg
+Places365_test_00064742.jpg
+Places365_test_00064743.jpg
+Places365_test_00064748.jpg
+Places365_test_00064752.jpg
+Places365_test_00064755.jpg
+Places365_test_00064777.jpg
+Places365_test_00064786.jpg
+Places365_test_00064787.jpg
+Places365_test_00064789.jpg
+Places365_test_00064798.jpg
+Places365_test_00064804.jpg
+Places365_test_00064806.jpg
+Places365_test_00064815.jpg
+Places365_test_00064817.jpg
+Places365_test_00064826.jpg
+Places365_test_00064858.jpg
+Places365_test_00064897.jpg
+Places365_test_00064920.jpg
+Places365_test_00064921.jpg
+Places365_test_00064933.jpg
+Places365_test_00064935.jpg
+Places365_test_00064947.jpg
+Places365_test_00064972.jpg
+Places365_test_00064980.jpg
+Places365_test_00064992.jpg
+Places365_test_00064994.jpg
+Places365_test_00065006.jpg
+Places365_test_00065015.jpg
+Places365_test_00065020.jpg
+Places365_test_00065032.jpg
+Places365_test_00065039.jpg
+Places365_test_00065056.jpg
+Places365_test_00065106.jpg
+Places365_test_00065110.jpg
+Places365_test_00065123.jpg
+Places365_test_00065148.jpg
+Places365_test_00065149.jpg
+Places365_test_00065153.jpg
+Places365_test_00065156.jpg
+Places365_test_00065177.jpg
+Places365_test_00065187.jpg
+Places365_test_00065196.jpg
+Places365_test_00065208.jpg
+Places365_test_00065214.jpg
+Places365_test_00065216.jpg
+Places365_test_00065225.jpg
+Places365_test_00065237.jpg
+Places365_test_00065248.jpg
+Places365_test_00065253.jpg
+Places365_test_00065257.jpg
+Places365_test_00065262.jpg
+Places365_test_00065270.jpg
+Places365_test_00065289.jpg
+Places365_test_00065301.jpg
+Places365_test_00065302.jpg
+Places365_test_00065303.jpg
+Places365_test_00065335.jpg
+Places365_test_00065349.jpg
+Places365_test_00065380.jpg
+Places365_test_00065385.jpg
+Places365_test_00065393.jpg
+Places365_test_00065400.jpg
+Places365_test_00065402.jpg
+Places365_test_00065403.jpg
+Places365_test_00065419.jpg
+Places365_test_00065435.jpg
+Places365_test_00065436.jpg
+Places365_test_00065457.jpg
+Places365_test_00065474.jpg
+Places365_test_00065475.jpg
+Places365_test_00065482.jpg
+Places365_test_00065500.jpg
+Places365_test_00065507.jpg
+Places365_test_00065524.jpg
+Places365_test_00065529.jpg
+Places365_test_00065536.jpg
+Places365_test_00065543.jpg
+Places365_test_00065560.jpg
+Places365_test_00065566.jpg
+Places365_test_00065577.jpg
+Places365_test_00065580.jpg
+Places365_test_00065587.jpg
+Places365_test_00065596.jpg
+Places365_test_00065598.jpg
+Places365_test_00065615.jpg
+Places365_test_00065630.jpg
+Places365_test_00065638.jpg
+Places365_test_00065642.jpg
+Places365_test_00065656.jpg
+Places365_test_00065657.jpg
+Places365_test_00065688.jpg
+Places365_test_00065693.jpg
+Places365_test_00065694.jpg
+Places365_test_00065705.jpg
+Places365_test_00065721.jpg
+Places365_test_00065724.jpg
+Places365_test_00065725.jpg
+Places365_test_00065731.jpg
+Places365_test_00065755.jpg
+Places365_test_00065762.jpg
+Places365_test_00065771.jpg
+Places365_test_00065779.jpg
+Places365_test_00065785.jpg
+Places365_test_00065799.jpg
+Places365_test_00065803.jpg
+Places365_test_00065811.jpg
+Places365_test_00065813.jpg
+Places365_test_00065818.jpg
+Places365_test_00065822.jpg
+Places365_test_00065874.jpg
+Places365_test_00065887.jpg
+Places365_test_00065896.jpg
+Places365_test_00065931.jpg
+Places365_test_00065933.jpg
+Places365_test_00065960.jpg
+Places365_test_00065971.jpg
+Places365_test_00065990.jpg
+Places365_test_00065992.jpg
+Places365_test_00066010.jpg
+Places365_test_00066040.jpg
+Places365_test_00066041.jpg
+Places365_test_00066048.jpg
+Places365_test_00066060.jpg
+Places365_test_00066062.jpg
+Places365_test_00066070.jpg
+Places365_test_00066101.jpg
+Places365_test_00066120.jpg
+Places365_test_00066125.jpg
+Places365_test_00066129.jpg
+Places365_test_00066139.jpg
+Places365_test_00066145.jpg
+Places365_test_00066173.jpg
+Places365_test_00066183.jpg
+Places365_test_00066203.jpg
+Places365_test_00066213.jpg
+Places365_test_00066227.jpg
+Places365_test_00066238.jpg
+Places365_test_00066246.jpg
+Places365_test_00066250.jpg
+Places365_test_00066263.jpg
+Places365_test_00066269.jpg
+Places365_test_00066274.jpg
+Places365_test_00066277.jpg
+Places365_test_00066289.jpg
+Places365_test_00066290.jpg
+Places365_test_00066291.jpg
+Places365_test_00066299.jpg
+Places365_test_00066306.jpg
+Places365_test_00066307.jpg
+Places365_test_00066329.jpg
+Places365_test_00066330.jpg
+Places365_test_00066341.jpg
+Places365_test_00066346.jpg
+Places365_test_00066355.jpg
+Places365_test_00066366.jpg
+Places365_test_00066384.jpg
+Places365_test_00066396.jpg
+Places365_test_00066411.jpg
+Places365_test_00066414.jpg
+Places365_test_00066419.jpg
+Places365_test_00066423.jpg
+Places365_test_00066431.jpg
+Places365_test_00066433.jpg
+Places365_test_00066437.jpg
+Places365_test_00066447.jpg
+Places365_test_00066461.jpg
+Places365_test_00066463.jpg
+Places365_test_00066498.jpg
+Places365_test_00066502.jpg
+Places365_test_00066506.jpg
+Places365_test_00066512.jpg
+Places365_test_00066522.jpg
+Places365_test_00066523.jpg
+Places365_test_00066525.jpg
+Places365_test_00066536.jpg
+Places365_test_00066558.jpg
+Places365_test_00066571.jpg
+Places365_test_00066576.jpg
+Places365_test_00066588.jpg
+Places365_test_00066592.jpg
+Places365_test_00066617.jpg
+Places365_test_00066637.jpg
+Places365_test_00066639.jpg
+Places365_test_00066644.jpg
+Places365_test_00066681.jpg
+Places365_test_00066690.jpg
+Places365_test_00066713.jpg
+Places365_test_00066744.jpg
+Places365_test_00066764.jpg
+Places365_test_00066780.jpg
+Places365_test_00066806.jpg
+Places365_test_00066811.jpg
+Places365_test_00066814.jpg
+Places365_test_00066817.jpg
+Places365_test_00066820.jpg
+Places365_test_00066832.jpg
+Places365_test_00066844.jpg
+Places365_test_00066859.jpg
+Places365_test_00066867.jpg
+Places365_test_00066879.jpg
+Places365_test_00066890.jpg
+Places365_test_00066929.jpg
+Places365_test_00066931.jpg
+Places365_test_00066936.jpg
+Places365_test_00066941.jpg
+Places365_test_00066944.jpg
+Places365_test_00066954.jpg
+Places365_test_00066961.jpg
+Places365_test_00066968.jpg
+Places365_test_00066977.jpg
+Places365_test_00066989.jpg
+Places365_test_00067003.jpg
+Places365_test_00067016.jpg
+Places365_test_00067041.jpg
+Places365_test_00067044.jpg
+Places365_test_00067062.jpg
+Places365_test_00067091.jpg
+Places365_test_00067095.jpg
+Places365_test_00067102.jpg
+Places365_test_00067109.jpg
+Places365_test_00067111.jpg
+Places365_test_00067119.jpg
+Places365_test_00067129.jpg
+Places365_test_00067141.jpg
+Places365_test_00067146.jpg
+Places365_test_00067171.jpg
+Places365_test_00067177.jpg
+Places365_test_00067181.jpg
+Places365_test_00067191.jpg
+Places365_test_00067197.jpg
+Places365_test_00067242.jpg
+Places365_test_00067254.jpg
+Places365_test_00067296.jpg
+Places365_test_00067298.jpg
+Places365_test_00067311.jpg
+Places365_test_00067314.jpg
+Places365_test_00067321.jpg
+Places365_test_00067334.jpg
+Places365_test_00067361.jpg
+Places365_test_00067362.jpg
+Places365_test_00067372.jpg
+Places365_test_00067373.jpg
+Places365_test_00067386.jpg
+Places365_test_00067390.jpg
+Places365_test_00067407.jpg
+Places365_test_00067434.jpg
+Places365_test_00067439.jpg
+Places365_test_00067451.jpg
+Places365_test_00067463.jpg
+Places365_test_00067466.jpg
+Places365_test_00067476.jpg
+Places365_test_00067484.jpg
+Places365_test_00067517.jpg
+Places365_test_00067537.jpg
+Places365_test_00067552.jpg
+Places365_test_00067559.jpg
+Places365_test_00067561.jpg
+Places365_test_00067593.jpg
+Places365_test_00067630.jpg
+Places365_test_00067634.jpg
+Places365_test_00067637.jpg
+Places365_test_00067640.jpg
+Places365_test_00067653.jpg
+Places365_test_00067654.jpg
+Places365_test_00067665.jpg
+Places365_test_00067673.jpg
+Places365_test_00067674.jpg
+Places365_test_00067682.jpg
+Places365_test_00067704.jpg
+Places365_test_00067710.jpg
+Places365_test_00067712.jpg
+Places365_test_00067716.jpg
+Places365_test_00067727.jpg
+Places365_test_00067730.jpg
+Places365_test_00067749.jpg
+Places365_test_00067752.jpg
+Places365_test_00067775.jpg
+Places365_test_00067831.jpg
+Places365_test_00067856.jpg
+Places365_test_00067876.jpg
+Places365_test_00067890.jpg
+Places365_test_00067895.jpg
+Places365_test_00067909.jpg
+Places365_test_00067911.jpg
+Places365_test_00067920.jpg
+Places365_test_00067927.jpg
+Places365_test_00067930.jpg
+Places365_test_00067945.jpg
+Places365_test_00067951.jpg
+Places365_test_00067966.jpg
+Places365_test_00067967.jpg
+Places365_test_00067968.jpg
+Places365_test_00067973.jpg
+Places365_test_00067980.jpg
+Places365_test_00067996.jpg
+Places365_test_00068000.jpg
+Places365_test_00068023.jpg
+Places365_test_00068030.jpg
+Places365_test_00068031.jpg
+Places365_test_00068033.jpg
+Places365_test_00068043.jpg
+Places365_test_00068062.jpg
+Places365_test_00068073.jpg
+Places365_test_00068079.jpg
+Places365_test_00068091.jpg
+Places365_test_00068093.jpg
+Places365_test_00068099.jpg
+Places365_test_00068112.jpg
+Places365_test_00068113.jpg
+Places365_test_00068158.jpg
+Places365_test_00068161.jpg
+Places365_test_00068171.jpg
+Places365_test_00068176.jpg
+Places365_test_00068180.jpg
+Places365_test_00068182.jpg
+Places365_test_00068198.jpg
+Places365_test_00068207.jpg
+Places365_test_00068229.jpg
+Places365_test_00068247.jpg
+Places365_test_00068249.jpg
+Places365_test_00068277.jpg
+Places365_test_00068305.jpg
+Places365_test_00068327.jpg
+Places365_test_00068331.jpg
+Places365_test_00068333.jpg
+Places365_test_00068356.jpg
+Places365_test_00068358.jpg
+Places365_test_00068381.jpg
+Places365_test_00068413.jpg
+Places365_test_00068423.jpg
+Places365_test_00068429.jpg
+Places365_test_00068436.jpg
+Places365_test_00068483.jpg
+Places365_test_00068502.jpg
+Places365_test_00068515.jpg
+Places365_test_00068520.jpg
+Places365_test_00068521.jpg
+Places365_test_00068537.jpg
+Places365_test_00068538.jpg
+Places365_test_00068550.jpg
+Places365_test_00068552.jpg
+Places365_test_00068577.jpg
+Places365_test_00068610.jpg
+Places365_test_00068611.jpg
+Places365_test_00068612.jpg
+Places365_test_00068616.jpg
+Places365_test_00068640.jpg
+Places365_test_00068656.jpg
+Places365_test_00068666.jpg
+Places365_test_00068669.jpg
+Places365_test_00068684.jpg
+Places365_test_00068688.jpg
+Places365_test_00068697.jpg
+Places365_test_00068700.jpg
+Places365_test_00068709.jpg
+Places365_test_00068738.jpg
+Places365_test_00068771.jpg
+Places365_test_00068776.jpg
+Places365_test_00068777.jpg
+Places365_test_00068811.jpg
+Places365_test_00068823.jpg
+Places365_test_00068827.jpg
+Places365_test_00068830.jpg
+Places365_test_00068843.jpg
+Places365_test_00068849.jpg
+Places365_test_00068851.jpg
+Places365_test_00068856.jpg
+Places365_test_00068862.jpg
+Places365_test_00068868.jpg
+Places365_test_00068870.jpg
+Places365_test_00068877.jpg
+Places365_test_00068900.jpg
+Places365_test_00068924.jpg
+Places365_test_00068974.jpg
+Places365_test_00068976.jpg
+Places365_test_00068981.jpg
+Places365_test_00069012.jpg
+Places365_test_00069013.jpg
+Places365_test_00069036.jpg
+Places365_test_00069079.jpg
+Places365_test_00069082.jpg
+Places365_test_00069085.jpg
+Places365_test_00069090.jpg
+Places365_test_00069093.jpg
+Places365_test_00069106.jpg
+Places365_test_00069113.jpg
+Places365_test_00069115.jpg
+Places365_test_00069126.jpg
+Places365_test_00069132.jpg
+Places365_test_00069135.jpg
+Places365_test_00069140.jpg
+Places365_test_00069183.jpg
+Places365_test_00069253.jpg
+Places365_test_00069256.jpg
+Places365_test_00069267.jpg
+Places365_test_00069288.jpg
+Places365_test_00069289.jpg
+Places365_test_00069290.jpg
+Places365_test_00069305.jpg
+Places365_test_00069313.jpg
+Places365_test_00069328.jpg
+Places365_test_00069336.jpg
+Places365_test_00069376.jpg
+Places365_test_00069377.jpg
+Places365_test_00069388.jpg
+Places365_test_00069390.jpg
+Places365_test_00069394.jpg
+Places365_test_00069405.jpg
+Places365_test_00069408.jpg
+Places365_test_00069420.jpg
+Places365_test_00069434.jpg
+Places365_test_00069452.jpg
+Places365_test_00069472.jpg
+Places365_test_00069487.jpg
+Places365_test_00069497.jpg
+Places365_test_00069498.jpg
+Places365_test_00069502.jpg
+Places365_test_00069509.jpg
+Places365_test_00069527.jpg
+Places365_test_00069528.jpg
+Places365_test_00069536.jpg
+Places365_test_00069544.jpg
+Places365_test_00069546.jpg
+Places365_test_00069553.jpg
+Places365_test_00069564.jpg
+Places365_test_00069578.jpg
+Places365_test_00069585.jpg
+Places365_test_00069586.jpg
+Places365_test_00069587.jpg
+Places365_test_00069600.jpg
+Places365_test_00069603.jpg
+Places365_test_00069605.jpg
+Places365_test_00069613.jpg
+Places365_test_00069615.jpg
+Places365_test_00069626.jpg
+Places365_test_00069630.jpg
+Places365_test_00069644.jpg
+Places365_test_00069675.jpg
+Places365_test_00069680.jpg
+Places365_test_00069688.jpg
+Places365_test_00069694.jpg
+Places365_test_00069699.jpg
+Places365_test_00069706.jpg
+Places365_test_00069735.jpg
+Places365_test_00069768.jpg
+Places365_test_00069776.jpg
+Places365_test_00069796.jpg
+Places365_test_00069807.jpg
+Places365_test_00069812.jpg
+Places365_test_00069818.jpg
+Places365_test_00069831.jpg
+Places365_test_00069859.jpg
+Places365_test_00069866.jpg
+Places365_test_00069868.jpg
+Places365_test_00069893.jpg
+Places365_test_00069923.jpg
+Places365_test_00069925.jpg
+Places365_test_00069929.jpg
+Places365_test_00069941.jpg
+Places365_test_00069942.jpg
+Places365_test_00069945.jpg
+Places365_test_00069953.jpg
+Places365_test_00069975.jpg
+Places365_test_00069986.jpg
+Places365_test_00069992.jpg
+Places365_test_00070014.jpg
+Places365_test_00070016.jpg
+Places365_test_00070046.jpg
+Places365_test_00070053.jpg
+Places365_test_00070055.jpg
+Places365_test_00070056.jpg
+Places365_test_00070089.jpg
+Places365_test_00070093.jpg
+Places365_test_00070100.jpg
+Places365_test_00070106.jpg
+Places365_test_00070107.jpg
+Places365_test_00070113.jpg
+Places365_test_00070117.jpg
+Places365_test_00070137.jpg
+Places365_test_00070146.jpg
+Places365_test_00070149.jpg
+Places365_test_00070181.jpg
+Places365_test_00070199.jpg
+Places365_test_00070213.jpg
+Places365_test_00070216.jpg
+Places365_test_00070219.jpg
+Places365_test_00070254.jpg
+Places365_test_00070261.jpg
+Places365_test_00070284.jpg
+Places365_test_00070300.jpg
+Places365_test_00070307.jpg
+Places365_test_00070319.jpg
+Places365_test_00070325.jpg
+Places365_test_00070347.jpg
+Places365_test_00070366.jpg
+Places365_test_00070374.jpg
+Places365_test_00070397.jpg
+Places365_test_00070398.jpg
+Places365_test_00070409.jpg
+Places365_test_00070411.jpg
+Places365_test_00070412.jpg
+Places365_test_00070438.jpg
+Places365_test_00070445.jpg
+Places365_test_00070448.jpg
+Places365_test_00070456.jpg
+Places365_test_00070472.jpg
+Places365_test_00070473.jpg
+Places365_test_00070483.jpg
+Places365_test_00070532.jpg
+Places365_test_00070543.jpg
+Places365_test_00070554.jpg
+Places365_test_00070555.jpg
+Places365_test_00070562.jpg
+Places365_test_00070579.jpg
+Places365_test_00070584.jpg
+Places365_test_00070600.jpg
+Places365_test_00070616.jpg
+Places365_test_00070636.jpg
+Places365_test_00070669.jpg
+Places365_test_00070680.jpg
+Places365_test_00070681.jpg
+Places365_test_00070685.jpg
+Places365_test_00070712.jpg
+Places365_test_00070714.jpg
+Places365_test_00070715.jpg
+Places365_test_00070717.jpg
+Places365_test_00070732.jpg
+Places365_test_00070738.jpg
+Places365_test_00070748.jpg
+Places365_test_00070770.jpg
+Places365_test_00070777.jpg
+Places365_test_00070778.jpg
+Places365_test_00070779.jpg
+Places365_test_00070783.jpg
+Places365_test_00070803.jpg
+Places365_test_00070815.jpg
+Places365_test_00070818.jpg
+Places365_test_00070824.jpg
+Places365_test_00070839.jpg
+Places365_test_00070844.jpg
+Places365_test_00070864.jpg
+Places365_test_00070874.jpg
+Places365_test_00070875.jpg
+Places365_test_00070886.jpg
+Places365_test_00070949.jpg
+Places365_test_00070961.jpg
+Places365_test_00070967.jpg
+Places365_test_00070968.jpg
+Places365_test_00070972.jpg
+Places365_test_00070989.jpg
+Places365_test_00070990.jpg
+Places365_test_00070997.jpg
+Places365_test_00071013.jpg
+Places365_test_00071031.jpg
+Places365_test_00071032.jpg
+Places365_test_00071038.jpg
+Places365_test_00071040.jpg
+Places365_test_00071046.jpg
+Places365_test_00071051.jpg
+Places365_test_00071058.jpg
+Places365_test_00071089.jpg
+Places365_test_00071095.jpg
+Places365_test_00071097.jpg
+Places365_test_00071101.jpg
+Places365_test_00071113.jpg
+Places365_test_00071121.jpg
+Places365_test_00071126.jpg
+Places365_test_00071128.jpg
+Places365_test_00071140.jpg
+Places365_test_00071152.jpg
+Places365_test_00071155.jpg
+Places365_test_00071158.jpg
+Places365_test_00071172.jpg
+Places365_test_00071174.jpg
+Places365_test_00071180.jpg
+Places365_test_00071187.jpg
+Places365_test_00071190.jpg
+Places365_test_00071222.jpg
+Places365_test_00071226.jpg
+Places365_test_00071232.jpg
+Places365_test_00071234.jpg
+Places365_test_00071242.jpg
+Places365_test_00071249.jpg
+Places365_test_00071254.jpg
+Places365_test_00071266.jpg
+Places365_test_00071284.jpg
+Places365_test_00071299.jpg
+Places365_test_00071301.jpg
+Places365_test_00071303.jpg
+Places365_test_00071312.jpg
+Places365_test_00071324.jpg
+Places365_test_00071337.jpg
+Places365_test_00071338.jpg
+Places365_test_00071341.jpg
+Places365_test_00071344.jpg
+Places365_test_00071350.jpg
+Places365_test_00071356.jpg
+Places365_test_00071362.jpg
+Places365_test_00071370.jpg
+Places365_test_00071378.jpg
+Places365_test_00071403.jpg
+Places365_test_00071412.jpg
+Places365_test_00071418.jpg
+Places365_test_00071433.jpg
+Places365_test_00071437.jpg
+Places365_test_00071451.jpg
+Places365_test_00071481.jpg
+Places365_test_00071485.jpg
+Places365_test_00071496.jpg
+Places365_test_00071507.jpg
+Places365_test_00071523.jpg
+Places365_test_00071535.jpg
+Places365_test_00071538.jpg
+Places365_test_00071574.jpg
+Places365_test_00071575.jpg
+Places365_test_00071593.jpg
+Places365_test_00071595.jpg
+Places365_test_00071597.jpg
+Places365_test_00071598.jpg
+Places365_test_00071607.jpg
+Places365_test_00071625.jpg
+Places365_test_00071673.jpg
+Places365_test_00071682.jpg
+Places365_test_00071703.jpg
+Places365_test_00071705.jpg
+Places365_test_00071721.jpg
+Places365_test_00071725.jpg
+Places365_test_00071732.jpg
+Places365_test_00071748.jpg
+Places365_test_00071749.jpg
+Places365_test_00071751.jpg
+Places365_test_00071756.jpg
+Places365_test_00071765.jpg
+Places365_test_00071778.jpg
+Places365_test_00071789.jpg
+Places365_test_00071808.jpg
+Places365_test_00071812.jpg
+Places365_test_00071822.jpg
+Places365_test_00071830.jpg
+Places365_test_00071838.jpg
+Places365_test_00071840.jpg
+Places365_test_00071846.jpg
+Places365_test_00071851.jpg
+Places365_test_00071862.jpg
+Places365_test_00071872.jpg
+Places365_test_00071887.jpg
+Places365_test_00071889.jpg
+Places365_test_00071909.jpg
+Places365_test_00071918.jpg
+Places365_test_00071931.jpg
+Places365_test_00071961.jpg
+Places365_test_00071966.jpg
+Places365_test_00071982.jpg
+Places365_test_00071988.jpg
+Places365_test_00072003.jpg
+Places365_test_00072010.jpg
+Places365_test_00072014.jpg
+Places365_test_00072016.jpg
+Places365_test_00072026.jpg
+Places365_test_00072027.jpg
+Places365_test_00072041.jpg
+Places365_test_00072059.jpg
+Places365_test_00072064.jpg
+Places365_test_00072077.jpg
+Places365_test_00072081.jpg
+Places365_test_00072086.jpg
+Places365_test_00072093.jpg
+Places365_test_00072106.jpg
+Places365_test_00072108.jpg
+Places365_test_00072119.jpg
+Places365_test_00072122.jpg
+Places365_test_00072149.jpg
+Places365_test_00072172.jpg
+Places365_test_00072182.jpg
+Places365_test_00072185.jpg
+Places365_test_00072189.jpg
+Places365_test_00072191.jpg
+Places365_test_00072220.jpg
+Places365_test_00072231.jpg
+Places365_test_00072248.jpg
+Places365_test_00072285.jpg
+Places365_test_00072312.jpg
+Places365_test_00072323.jpg
+Places365_test_00072324.jpg
+Places365_test_00072326.jpg
+Places365_test_00072333.jpg
+Places365_test_00072357.jpg
+Places365_test_00072380.jpg
+Places365_test_00072394.jpg
+Places365_test_00072397.jpg
+Places365_test_00072411.jpg
+Places365_test_00072413.jpg
+Places365_test_00072418.jpg
+Places365_test_00072443.jpg
+Places365_test_00072465.jpg
+Places365_test_00072467.jpg
+Places365_test_00072498.jpg
+Places365_test_00072526.jpg
+Places365_test_00072538.jpg
+Places365_test_00072542.jpg
+Places365_test_00072562.jpg
+Places365_test_00072565.jpg
+Places365_test_00072576.jpg
+Places365_test_00072578.jpg
+Places365_test_00072585.jpg
+Places365_test_00072621.jpg
+Places365_test_00072624.jpg
+Places365_test_00072628.jpg
+Places365_test_00072647.jpg
+Places365_test_00072648.jpg
+Places365_test_00072656.jpg
+Places365_test_00072662.jpg
+Places365_test_00072675.jpg
+Places365_test_00072692.jpg
+Places365_test_00072700.jpg
+Places365_test_00072723.jpg
+Places365_test_00072732.jpg
+Places365_test_00072749.jpg
+Places365_test_00072758.jpg
+Places365_test_00072782.jpg
+Places365_test_00072783.jpg
+Places365_test_00072787.jpg
+Places365_test_00072793.jpg
+Places365_test_00072796.jpg
+Places365_test_00072797.jpg
+Places365_test_00072804.jpg
+Places365_test_00072807.jpg
+Places365_test_00072808.jpg
+Places365_test_00072823.jpg
+Places365_test_00072825.jpg
+Places365_test_00072847.jpg
+Places365_test_00072865.jpg
+Places365_test_00072866.jpg
+Places365_test_00072868.jpg
+Places365_test_00072874.jpg
+Places365_test_00072877.jpg
+Places365_test_00072879.jpg
+Places365_test_00072880.jpg
+Places365_test_00072887.jpg
+Places365_test_00072919.jpg
+Places365_test_00072955.jpg
+Places365_test_00072964.jpg
+Places365_test_00072968.jpg
+Places365_test_00072971.jpg
+Places365_test_00072976.jpg
+Places365_test_00073006.jpg
+Places365_test_00073026.jpg
+Places365_test_00073030.jpg
+Places365_test_00073040.jpg
+Places365_test_00073051.jpg
+Places365_test_00073057.jpg
+Places365_test_00073081.jpg
+Places365_test_00073098.jpg
+Places365_test_00073107.jpg
+Places365_test_00073118.jpg
+Places365_test_00073121.jpg
+Places365_test_00073133.jpg
+Places365_test_00073134.jpg
+Places365_test_00073135.jpg
+Places365_test_00073148.jpg
+Places365_test_00073151.jpg
+Places365_test_00073161.jpg
+Places365_test_00073175.jpg
+Places365_test_00073187.jpg
+Places365_test_00073213.jpg
+Places365_test_00073220.jpg
+Places365_test_00073223.jpg
+Places365_test_00073239.jpg
+Places365_test_00073259.jpg
+Places365_test_00073262.jpg
+Places365_test_00073290.jpg
+Places365_test_00073298.jpg
+Places365_test_00073299.jpg
+Places365_test_00073303.jpg
+Places365_test_00073320.jpg
+Places365_test_00073329.jpg
+Places365_test_00073334.jpg
+Places365_test_00073343.jpg
+Places365_test_00073354.jpg
+Places365_test_00073378.jpg
+Places365_test_00073388.jpg
+Places365_test_00073400.jpg
+Places365_test_00073401.jpg
+Places365_test_00073414.jpg
+Places365_test_00073420.jpg
+Places365_test_00073423.jpg
+Places365_test_00073435.jpg
+Places365_test_00073439.jpg
+Places365_test_00073440.jpg
+Places365_test_00073441.jpg
+Places365_test_00073456.jpg
+Places365_test_00073473.jpg
+Places365_test_00073481.jpg
+Places365_test_00073487.jpg
+Places365_test_00073496.jpg
+Places365_test_00073497.jpg
+Places365_test_00073519.jpg
+Places365_test_00073556.jpg
+Places365_test_00073571.jpg
+Places365_test_00073579.jpg
+Places365_test_00073581.jpg
+Places365_test_00073588.jpg
+Places365_test_00073595.jpg
+Places365_test_00073601.jpg
+Places365_test_00073626.jpg
+Places365_test_00073629.jpg
+Places365_test_00073644.jpg
+Places365_test_00073658.jpg
+Places365_test_00073674.jpg
+Places365_test_00073675.jpg
+Places365_test_00073681.jpg
+Places365_test_00073693.jpg
+Places365_test_00073694.jpg
+Places365_test_00073696.jpg
+Places365_test_00073721.jpg
+Places365_test_00073733.jpg
+Places365_test_00073789.jpg
+Places365_test_00073802.jpg
+Places365_test_00073803.jpg
+Places365_test_00073814.jpg
+Places365_test_00073831.jpg
+Places365_test_00073841.jpg
+Places365_test_00073842.jpg
+Places365_test_00073850.jpg
+Places365_test_00073853.jpg
+Places365_test_00073856.jpg
+Places365_test_00073861.jpg
+Places365_test_00073879.jpg
+Places365_test_00073892.jpg
+Places365_test_00073898.jpg
+Places365_test_00073910.jpg
+Places365_test_00073925.jpg
+Places365_test_00073927.jpg
+Places365_test_00073955.jpg
+Places365_test_00073958.jpg
+Places365_test_00073970.jpg
+Places365_test_00073972.jpg
+Places365_test_00073982.jpg
+Places365_test_00073993.jpg
+Places365_test_00073997.jpg
+Places365_test_00073999.jpg
+Places365_test_00074009.jpg
+Places365_test_00074010.jpg
+Places365_test_00074022.jpg
+Places365_test_00074030.jpg
+Places365_test_00074037.jpg
+Places365_test_00074053.jpg
+Places365_test_00074058.jpg
+Places365_test_00074140.jpg
+Places365_test_00074143.jpg
+Places365_test_00074144.jpg
+Places365_test_00074167.jpg
+Places365_test_00074176.jpg
+Places365_test_00074181.jpg
+Places365_test_00074186.jpg
+Places365_test_00074190.jpg
+Places365_test_00074191.jpg
+Places365_test_00074207.jpg
+Places365_test_00074216.jpg
+Places365_test_00074227.jpg
+Places365_test_00074231.jpg
+Places365_test_00074240.jpg
+Places365_test_00074245.jpg
+Places365_test_00074247.jpg
+Places365_test_00074262.jpg
+Places365_test_00074263.jpg
+Places365_test_00074278.jpg
+Places365_test_00074283.jpg
+Places365_test_00074286.jpg
+Places365_test_00074316.jpg
+Places365_test_00074337.jpg
+Places365_test_00074338.jpg
+Places365_test_00074357.jpg
+Places365_test_00074367.jpg
+Places365_test_00074369.jpg
+Places365_test_00074374.jpg
+Places365_test_00074392.jpg
+Places365_test_00074396.jpg
+Places365_test_00074421.jpg
+Places365_test_00074443.jpg
+Places365_test_00074444.jpg
+Places365_test_00074453.jpg
+Places365_test_00074458.jpg
+Places365_test_00074462.jpg
+Places365_test_00074479.jpg
+Places365_test_00074502.jpg
+Places365_test_00074538.jpg
+Places365_test_00074554.jpg
+Places365_test_00074567.jpg
+Places365_test_00074569.jpg
+Places365_test_00074572.jpg
+Places365_test_00074582.jpg
+Places365_test_00074584.jpg
+Places365_test_00074595.jpg
+Places365_test_00074597.jpg
+Places365_test_00074627.jpg
+Places365_test_00074650.jpg
+Places365_test_00074670.jpg
+Places365_test_00074680.jpg
+Places365_test_00074682.jpg
+Places365_test_00074692.jpg
+Places365_test_00074693.jpg
+Places365_test_00074699.jpg
+Places365_test_00074702.jpg
+Places365_test_00074703.jpg
+Places365_test_00074704.jpg
+Places365_test_00074709.jpg
+Places365_test_00074711.jpg
+Places365_test_00074723.jpg
+Places365_test_00074724.jpg
+Places365_test_00074744.jpg
+Places365_test_00074751.jpg
+Places365_test_00074754.jpg
+Places365_test_00074760.jpg
+Places365_test_00074765.jpg
+Places365_test_00074784.jpg
+Places365_test_00074789.jpg
+Places365_test_00074793.jpg
+Places365_test_00074803.jpg
+Places365_test_00074830.jpg
+Places365_test_00074858.jpg
+Places365_test_00074861.jpg
+Places365_test_00074866.jpg
+Places365_test_00074889.jpg
+Places365_test_00074893.jpg
+Places365_test_00074899.jpg
+Places365_test_00074927.jpg
+Places365_test_00074944.jpg
+Places365_test_00074946.jpg
+Places365_test_00074951.jpg
+Places365_test_00074963.jpg
+Places365_test_00074967.jpg
+Places365_test_00074969.jpg
+Places365_test_00075014.jpg
+Places365_test_00075028.jpg
+Places365_test_00075033.jpg
+Places365_test_00075034.jpg
+Places365_test_00075038.jpg
+Places365_test_00075051.jpg
+Places365_test_00075060.jpg
+Places365_test_00075069.jpg
+Places365_test_00075079.jpg
+Places365_test_00075089.jpg
+Places365_test_00075091.jpg
+Places365_test_00075105.jpg
+Places365_test_00075123.jpg
+Places365_test_00075125.jpg
+Places365_test_00075127.jpg
+Places365_test_00075132.jpg
+Places365_test_00075140.jpg
+Places365_test_00075154.jpg
+Places365_test_00075156.jpg
+Places365_test_00075158.jpg
+Places365_test_00075174.jpg
+Places365_test_00075188.jpg
+Places365_test_00075195.jpg
+Places365_test_00075196.jpg
+Places365_test_00075200.jpg
+Places365_test_00075212.jpg
+Places365_test_00075213.jpg
+Places365_test_00075227.jpg
+Places365_test_00075262.jpg
+Places365_test_00075263.jpg
+Places365_test_00075275.jpg
+Places365_test_00075292.jpg
+Places365_test_00075293.jpg
+Places365_test_00075300.jpg
+Places365_test_00075312.jpg
+Places365_test_00075317.jpg
+Places365_test_00075342.jpg
+Places365_test_00075349.jpg
+Places365_test_00075394.jpg
+Places365_test_00075398.jpg
+Places365_test_00075421.jpg
+Places365_test_00075424.jpg
+Places365_test_00075430.jpg
+Places365_test_00075433.jpg
+Places365_test_00075441.jpg
+Places365_test_00075460.jpg
+Places365_test_00075472.jpg
+Places365_test_00075475.jpg
+Places365_test_00075477.jpg
+Places365_test_00075478.jpg
+Places365_test_00075483.jpg
+Places365_test_00075490.jpg
+Places365_test_00075491.jpg
+Places365_test_00075493.jpg
+Places365_test_00075496.jpg
+Places365_test_00075509.jpg
+Places365_test_00075516.jpg
+Places365_test_00075520.jpg
+Places365_test_00075524.jpg
+Places365_test_00075531.jpg
+Places365_test_00075534.jpg
+Places365_test_00075594.jpg
+Places365_test_00075600.jpg
+Places365_test_00075603.jpg
+Places365_test_00075624.jpg
+Places365_test_00075649.jpg
+Places365_test_00075657.jpg
+Places365_test_00075677.jpg
+Places365_test_00075696.jpg
+Places365_test_00075732.jpg
+Places365_test_00075759.jpg
+Places365_test_00075771.jpg
+Places365_test_00075772.jpg
+Places365_test_00075800.jpg
+Places365_test_00075831.jpg
+Places365_test_00075835.jpg
+Places365_test_00075878.jpg
+Places365_test_00075888.jpg
+Places365_test_00075897.jpg
+Places365_test_00075910.jpg
+Places365_test_00075924.jpg
+Places365_test_00075930.jpg
+Places365_test_00075932.jpg
+Places365_test_00075949.jpg
+Places365_test_00075960.jpg
+Places365_test_00075961.jpg
+Places365_test_00075978.jpg
+Places365_test_00075979.jpg
+Places365_test_00075981.jpg
+Places365_test_00076016.jpg
+Places365_test_00076028.jpg
+Places365_test_00076034.jpg
+Places365_test_00076036.jpg
+Places365_test_00076073.jpg
+Places365_test_00076085.jpg
+Places365_test_00076113.jpg
+Places365_test_00076133.jpg
+Places365_test_00076134.jpg
+Places365_test_00076135.jpg
+Places365_test_00076150.jpg
+Places365_test_00076160.jpg
+Places365_test_00076168.jpg
+Places365_test_00076202.jpg
+Places365_test_00076205.jpg
+Places365_test_00076212.jpg
+Places365_test_00076217.jpg
+Places365_test_00076221.jpg
+Places365_test_00076226.jpg
+Places365_test_00076233.jpg
+Places365_test_00076234.jpg
+Places365_test_00076242.jpg
+Places365_test_00076284.jpg
+Places365_test_00076285.jpg
+Places365_test_00076287.jpg
+Places365_test_00076299.jpg
+Places365_test_00076305.jpg
+Places365_test_00076323.jpg
+Places365_test_00076328.jpg
+Places365_test_00076330.jpg
+Places365_test_00076332.jpg
+Places365_test_00076336.jpg
+Places365_test_00076371.jpg
+Places365_test_00076380.jpg
+Places365_test_00076385.jpg
+Places365_test_00076390.jpg
+Places365_test_00076392.jpg
+Places365_test_00076398.jpg
+Places365_test_00076407.jpg
+Places365_test_00076411.jpg
+Places365_test_00076415.jpg
+Places365_test_00076423.jpg
+Places365_test_00076440.jpg
+Places365_test_00076444.jpg
+Places365_test_00076456.jpg
+Places365_test_00076458.jpg
+Places365_test_00076482.jpg
+Places365_test_00076493.jpg
+Places365_test_00076494.jpg
+Places365_test_00076503.jpg
+Places365_test_00076505.jpg
+Places365_test_00076517.jpg
+Places365_test_00076537.jpg
+Places365_test_00076540.jpg
+Places365_test_00076548.jpg
+Places365_test_00076551.jpg
+Places365_test_00076565.jpg
+Places365_test_00076572.jpg
+Places365_test_00076587.jpg
+Places365_test_00076592.jpg
+Places365_test_00076618.jpg
+Places365_test_00076620.jpg
+Places365_test_00076638.jpg
+Places365_test_00076659.jpg
+Places365_test_00076664.jpg
+Places365_test_00076670.jpg
+Places365_test_00076701.jpg
+Places365_test_00076713.jpg
+Places365_test_00076717.jpg
+Places365_test_00076732.jpg
+Places365_test_00076733.jpg
+Places365_test_00076746.jpg
+Places365_test_00076748.jpg
+Places365_test_00076749.jpg
+Places365_test_00076761.jpg
+Places365_test_00076762.jpg
+Places365_test_00076768.jpg
+Places365_test_00076771.jpg
+Places365_test_00076786.jpg
+Places365_test_00076789.jpg
+Places365_test_00076790.jpg
+Places365_test_00076803.jpg
+Places365_test_00076809.jpg
+Places365_test_00076842.jpg
+Places365_test_00076857.jpg
+Places365_test_00076859.jpg
+Places365_test_00076866.jpg
+Places365_test_00076874.jpg
+Places365_test_00076880.jpg
+Places365_test_00076883.jpg
+Places365_test_00076884.jpg
+Places365_test_00076897.jpg
+Places365_test_00076912.jpg
+Places365_test_00076921.jpg
+Places365_test_00076930.jpg
+Places365_test_00076935.jpg
+Places365_test_00076944.jpg
+Places365_test_00076952.jpg
+Places365_test_00076955.jpg
+Places365_test_00076964.jpg
+Places365_test_00076976.jpg
+Places365_test_00076980.jpg
+Places365_test_00076984.jpg
+Places365_test_00077004.jpg
+Places365_test_00077057.jpg
+Places365_test_00077061.jpg
+Places365_test_00077062.jpg
+Places365_test_00077070.jpg
+Places365_test_00077077.jpg
+Places365_test_00077080.jpg
+Places365_test_00077085.jpg
+Places365_test_00077086.jpg
+Places365_test_00077087.jpg
+Places365_test_00077097.jpg
+Places365_test_00077103.jpg
+Places365_test_00077118.jpg
+Places365_test_00077119.jpg
+Places365_test_00077127.jpg
+Places365_test_00077152.jpg
+Places365_test_00077153.jpg
+Places365_test_00077154.jpg
+Places365_test_00077191.jpg
+Places365_test_00077201.jpg
+Places365_test_00077231.jpg
+Places365_test_00077242.jpg
+Places365_test_00077252.jpg
+Places365_test_00077254.jpg
+Places365_test_00077265.jpg
+Places365_test_00077270.jpg
+Places365_test_00077295.jpg
+Places365_test_00077297.jpg
+Places365_test_00077314.jpg
+Places365_test_00077318.jpg
+Places365_test_00077322.jpg
+Places365_test_00077324.jpg
+Places365_test_00077326.jpg
+Places365_test_00077331.jpg
+Places365_test_00077359.jpg
+Places365_test_00077370.jpg
+Places365_test_00077373.jpg
+Places365_test_00077386.jpg
+Places365_test_00077390.jpg
+Places365_test_00077403.jpg
+Places365_test_00077465.jpg
+Places365_test_00077472.jpg
+Places365_test_00077484.jpg
+Places365_test_00077507.jpg
+Places365_test_00077527.jpg
+Places365_test_00077552.jpg
+Places365_test_00077557.jpg
+Places365_test_00077566.jpg
+Places365_test_00077570.jpg
+Places365_test_00077571.jpg
+Places365_test_00077582.jpg
+Places365_test_00077607.jpg
+Places365_test_00077619.jpg
+Places365_test_00077623.jpg
+Places365_test_00077659.jpg
+Places365_test_00077670.jpg
+Places365_test_00077671.jpg
+Places365_test_00077683.jpg
+Places365_test_00077688.jpg
+Places365_test_00077698.jpg
+Places365_test_00077715.jpg
+Places365_test_00077730.jpg
+Places365_test_00077752.jpg
+Places365_test_00077769.jpg
+Places365_test_00077795.jpg
+Places365_test_00077807.jpg
+Places365_test_00077826.jpg
+Places365_test_00077830.jpg
+Places365_test_00077856.jpg
+Places365_test_00077861.jpg
+Places365_test_00077869.jpg
+Places365_test_00077884.jpg
+Places365_test_00077904.jpg
+Places365_test_00077911.jpg
+Places365_test_00077916.jpg
+Places365_test_00077938.jpg
+Places365_test_00077941.jpg
+Places365_test_00077972.jpg
+Places365_test_00077981.jpg
+Places365_test_00077996.jpg
+Places365_test_00077998.jpg
+Places365_test_00078000.jpg
+Places365_test_00078001.jpg
+Places365_test_00078014.jpg
+Places365_test_00078020.jpg
+Places365_test_00078030.jpg
+Places365_test_00078046.jpg
+Places365_test_00078073.jpg
+Places365_test_00078088.jpg
+Places365_test_00078098.jpg
+Places365_test_00078099.jpg
+Places365_test_00078141.jpg
+Places365_test_00078176.jpg
+Places365_test_00078198.jpg
+Places365_test_00078209.jpg
+Places365_test_00078220.jpg
+Places365_test_00078230.jpg
+Places365_test_00078260.jpg
+Places365_test_00078263.jpg
+Places365_test_00078266.jpg
+Places365_test_00078269.jpg
+Places365_test_00078281.jpg
+Places365_test_00078283.jpg
+Places365_test_00078319.jpg
+Places365_test_00078323.jpg
+Places365_test_00078329.jpg
+Places365_test_00078330.jpg
+Places365_test_00078342.jpg
+Places365_test_00078383.jpg
+Places365_test_00078412.jpg
+Places365_test_00078428.jpg
+Places365_test_00078437.jpg
+Places365_test_00078442.jpg
+Places365_test_00078448.jpg
+Places365_test_00078453.jpg
+Places365_test_00078470.jpg
+Places365_test_00078494.jpg
+Places365_test_00078501.jpg
+Places365_test_00078505.jpg
+Places365_test_00078535.jpg
+Places365_test_00078541.jpg
+Places365_test_00078572.jpg
+Places365_test_00078618.jpg
+Places365_test_00078635.jpg
+Places365_test_00078640.jpg
+Places365_test_00078669.jpg
+Places365_test_00078671.jpg
+Places365_test_00078675.jpg
+Places365_test_00078692.jpg
+Places365_test_00078703.jpg
+Places365_test_00078706.jpg
+Places365_test_00078708.jpg
+Places365_test_00078709.jpg
+Places365_test_00078712.jpg
+Places365_test_00078730.jpg
+Places365_test_00078735.jpg
+Places365_test_00078747.jpg
+Places365_test_00078759.jpg
+Places365_test_00078777.jpg
+Places365_test_00078798.jpg
+Places365_test_00078815.jpg
+Places365_test_00078823.jpg
+Places365_test_00078839.jpg
+Places365_test_00078840.jpg
+Places365_test_00078843.jpg
+Places365_test_00078905.jpg
+Places365_test_00078910.jpg
+Places365_test_00078919.jpg
+Places365_test_00078941.jpg
+Places365_test_00078946.jpg
+Places365_test_00078947.jpg
+Places365_test_00078977.jpg
+Places365_test_00078978.jpg
+Places365_test_00078983.jpg
+Places365_test_00078988.jpg
+Places365_test_00078996.jpg
+Places365_test_00079000.jpg
+Places365_test_00079015.jpg
+Places365_test_00079024.jpg
+Places365_test_00079037.jpg
+Places365_test_00079041.jpg
+Places365_test_00079044.jpg
+Places365_test_00079049.jpg
+Places365_test_00079054.jpg
+Places365_test_00079087.jpg
+Places365_test_00079116.jpg
+Places365_test_00079153.jpg
+Places365_test_00079156.jpg
+Places365_test_00079161.jpg
+Places365_test_00079171.jpg
+Places365_test_00079174.jpg
+Places365_test_00079179.jpg
+Places365_test_00079210.jpg
+Places365_test_00079222.jpg
+Places365_test_00079230.jpg
+Places365_test_00079235.jpg
+Places365_test_00079236.jpg
+Places365_test_00079237.jpg
+Places365_test_00079266.jpg
+Places365_test_00079270.jpg
+Places365_test_00079273.jpg
+Places365_test_00079280.jpg
+Places365_test_00079285.jpg
+Places365_test_00079299.jpg
+Places365_test_00079302.jpg
+Places365_test_00079307.jpg
+Places365_test_00079321.jpg
+Places365_test_00079323.jpg
+Places365_test_00079343.jpg
+Places365_test_00079344.jpg
+Places365_test_00079369.jpg
+Places365_test_00079376.jpg
+Places365_test_00079406.jpg
+Places365_test_00079420.jpg
+Places365_test_00079430.jpg
+Places365_test_00079440.jpg
+Places365_test_00079447.jpg
+Places365_test_00079450.jpg
+Places365_test_00079466.jpg
+Places365_test_00079473.jpg
+Places365_test_00079482.jpg
+Places365_test_00079505.jpg
+Places365_test_00079509.jpg
+Places365_test_00079513.jpg
+Places365_test_00079522.jpg
+Places365_test_00079527.jpg
+Places365_test_00079535.jpg
+Places365_test_00079573.jpg
+Places365_test_00079591.jpg
+Places365_test_00079597.jpg
+Places365_test_00079610.jpg
+Places365_test_00079611.jpg
+Places365_test_00079614.jpg
+Places365_test_00079615.jpg
+Places365_test_00079616.jpg
+Places365_test_00079619.jpg
+Places365_test_00079684.jpg
+Places365_test_00079689.jpg
+Places365_test_00079733.jpg
+Places365_test_00079737.jpg
+Places365_test_00079745.jpg
+Places365_test_00079761.jpg
+Places365_test_00079764.jpg
+Places365_test_00079770.jpg
+Places365_test_00079773.jpg
+Places365_test_00079815.jpg
+Places365_test_00079816.jpg
+Places365_test_00079850.jpg
+Places365_test_00079853.jpg
+Places365_test_00079855.jpg
+Places365_test_00079871.jpg
+Places365_test_00079880.jpg
+Places365_test_00079885.jpg
+Places365_test_00079887.jpg
+Places365_test_00079893.jpg
+Places365_test_00079897.jpg
+Places365_test_00079911.jpg
+Places365_test_00079923.jpg
+Places365_test_00079961.jpg
+Places365_test_00079987.jpg
+Places365_test_00080010.jpg
+Places365_test_00080011.jpg
+Places365_test_00080013.jpg
+Places365_test_00080014.jpg
+Places365_test_00080049.jpg
+Places365_test_00080079.jpg
+Places365_test_00080091.jpg
+Places365_test_00080096.jpg
+Places365_test_00080104.jpg
+Places365_test_00080122.jpg
+Places365_test_00080151.jpg
+Places365_test_00080165.jpg
+Places365_test_00080166.jpg
+Places365_test_00080167.jpg
+Places365_test_00080189.jpg
+Places365_test_00080206.jpg
+Places365_test_00080223.jpg
+Places365_test_00080227.jpg
+Places365_test_00080297.jpg
+Places365_test_00080310.jpg
+Places365_test_00080314.jpg
+Places365_test_00080315.jpg
+Places365_test_00080339.jpg
+Places365_test_00080340.jpg
+Places365_test_00080344.jpg
+Places365_test_00080349.jpg
+Places365_test_00080354.jpg
+Places365_test_00080358.jpg
+Places365_test_00080366.jpg
+Places365_test_00080438.jpg
+Places365_test_00080439.jpg
+Places365_test_00080447.jpg
+Places365_test_00080450.jpg
+Places365_test_00080480.jpg
+Places365_test_00080482.jpg
+Places365_test_00080499.jpg
+Places365_test_00080508.jpg
+Places365_test_00080509.jpg
+Places365_test_00080523.jpg
+Places365_test_00080534.jpg
+Places365_test_00080535.jpg
+Places365_test_00080548.jpg
+Places365_test_00080556.jpg
+Places365_test_00080577.jpg
+Places365_test_00080581.jpg
+Places365_test_00080600.jpg
+Places365_test_00080623.jpg
+Places365_test_00080627.jpg
+Places365_test_00080636.jpg
+Places365_test_00080649.jpg
+Places365_test_00080653.jpg
+Places365_test_00080681.jpg
+Places365_test_00080682.jpg
+Places365_test_00080683.jpg
+Places365_test_00080693.jpg
+Places365_test_00080698.jpg
+Places365_test_00080712.jpg
+Places365_test_00080719.jpg
+Places365_test_00080780.jpg
+Places365_test_00080786.jpg
+Places365_test_00080792.jpg
+Places365_test_00080794.jpg
+Places365_test_00080809.jpg
+Places365_test_00080813.jpg
+Places365_test_00080843.jpg
+Places365_test_00080850.jpg
+Places365_test_00080867.jpg
+Places365_test_00080874.jpg
+Places365_test_00080877.jpg
+Places365_test_00080889.jpg
+Places365_test_00080897.jpg
+Places365_test_00080927.jpg
+Places365_test_00080933.jpg
+Places365_test_00080939.jpg
+Places365_test_00080945.jpg
+Places365_test_00080958.jpg
+Places365_test_00080960.jpg
+Places365_test_00080965.jpg
+Places365_test_00080969.jpg
+Places365_test_00080978.jpg
+Places365_test_00080993.jpg
+Places365_test_00081012.jpg
+Places365_test_00081017.jpg
+Places365_test_00081018.jpg
+Places365_test_00081038.jpg
+Places365_test_00081041.jpg
+Places365_test_00081079.jpg
+Places365_test_00081084.jpg
+Places365_test_00081091.jpg
+Places365_test_00081106.jpg
+Places365_test_00081116.jpg
+Places365_test_00081123.jpg
+Places365_test_00081143.jpg
+Places365_test_00081144.jpg
+Places365_test_00081150.jpg
+Places365_test_00081174.jpg
+Places365_test_00081184.jpg
+Places365_test_00081188.jpg
+Places365_test_00081222.jpg
+Places365_test_00081229.jpg
+Places365_test_00081246.jpg
+Places365_test_00081267.jpg
+Places365_test_00081274.jpg
+Places365_test_00081283.jpg
+Places365_test_00081288.jpg
+Places365_test_00081295.jpg
+Places365_test_00081296.jpg
+Places365_test_00081298.jpg
+Places365_test_00081308.jpg
+Places365_test_00081331.jpg
+Places365_test_00081337.jpg
+Places365_test_00081370.jpg
+Places365_test_00081372.jpg
+Places365_test_00081373.jpg
+Places365_test_00081377.jpg
+Places365_test_00081380.jpg
+Places365_test_00081381.jpg
+Places365_test_00081389.jpg
+Places365_test_00081392.jpg
+Places365_test_00081405.jpg
+Places365_test_00081407.jpg
+Places365_test_00081408.jpg
+Places365_test_00081409.jpg
+Places365_test_00081410.jpg
+Places365_test_00081418.jpg
+Places365_test_00081425.jpg
+Places365_test_00081427.jpg
+Places365_test_00081428.jpg
+Places365_test_00081429.jpg
+Places365_test_00081452.jpg
+Places365_test_00081454.jpg
+Places365_test_00081457.jpg
+Places365_test_00081469.jpg
+Places365_test_00081470.jpg
+Places365_test_00081504.jpg
+Places365_test_00081545.jpg
+Places365_test_00081558.jpg
+Places365_test_00081575.jpg
+Places365_test_00081588.jpg
+Places365_test_00081593.jpg
+Places365_test_00081597.jpg
+Places365_test_00081598.jpg
+Places365_test_00081621.jpg
+Places365_test_00081623.jpg
+Places365_test_00081625.jpg
+Places365_test_00081628.jpg
+Places365_test_00081629.jpg
+Places365_test_00081632.jpg
+Places365_test_00081641.jpg
+Places365_test_00081654.jpg
+Places365_test_00081661.jpg
+Places365_test_00081662.jpg
+Places365_test_00081676.jpg
+Places365_test_00081678.jpg
+Places365_test_00081679.jpg
+Places365_test_00081698.jpg
+Places365_test_00081704.jpg
+Places365_test_00081728.jpg
+Places365_test_00081745.jpg
+Places365_test_00081752.jpg
+Places365_test_00081754.jpg
+Places365_test_00081765.jpg
+Places365_test_00081766.jpg
+Places365_test_00081789.jpg
+Places365_test_00081809.jpg
+Places365_test_00081837.jpg
+Places365_test_00081845.jpg
+Places365_test_00081852.jpg
+Places365_test_00081877.jpg
+Places365_test_00081909.jpg
+Places365_test_00081923.jpg
+Places365_test_00081933.jpg
+Places365_test_00081940.jpg
+Places365_test_00081946.jpg
+Places365_test_00081958.jpg
+Places365_test_00081962.jpg
+Places365_test_00081978.jpg
+Places365_test_00082015.jpg
+Places365_test_00082016.jpg
+Places365_test_00082019.jpg
+Places365_test_00082044.jpg
+Places365_test_00082052.jpg
+Places365_test_00082059.jpg
+Places365_test_00082061.jpg
+Places365_test_00082064.jpg
+Places365_test_00082085.jpg
+Places365_test_00082108.jpg
+Places365_test_00082112.jpg
+Places365_test_00082127.jpg
+Places365_test_00082145.jpg
+Places365_test_00082149.jpg
+Places365_test_00082150.jpg
+Places365_test_00082153.jpg
+Places365_test_00082192.jpg
+Places365_test_00082197.jpg
+Places365_test_00082207.jpg
+Places365_test_00082223.jpg
+Places365_test_00082228.jpg
+Places365_test_00082230.jpg
+Places365_test_00082241.jpg
+Places365_test_00082254.jpg
+Places365_test_00082263.jpg
+Places365_test_00082266.jpg
+Places365_test_00082299.jpg
+Places365_test_00082323.jpg
+Places365_test_00082325.jpg
+Places365_test_00082326.jpg
+Places365_test_00082329.jpg
+Places365_test_00082330.jpg
+Places365_test_00082355.jpg
+Places365_test_00082357.jpg
+Places365_test_00082370.jpg
+Places365_test_00082383.jpg
+Places365_test_00082431.jpg
+Places365_test_00082433.jpg
+Places365_test_00082441.jpg
+Places365_test_00082443.jpg
+Places365_test_00082465.jpg
+Places365_test_00082485.jpg
+Places365_test_00082497.jpg
+Places365_test_00082504.jpg
+Places365_test_00082515.jpg
+Places365_test_00082527.jpg
+Places365_test_00082547.jpg
+Places365_test_00082549.jpg
+Places365_test_00082569.jpg
+Places365_test_00082592.jpg
+Places365_test_00082635.jpg
+Places365_test_00082642.jpg
+Places365_test_00082658.jpg
+Places365_test_00082667.jpg
+Places365_test_00082670.jpg
+Places365_test_00082682.jpg
+Places365_test_00082695.jpg
+Places365_test_00082696.jpg
+Places365_test_00082707.jpg
+Places365_test_00082748.jpg
+Places365_test_00082758.jpg
+Places365_test_00082767.jpg
+Places365_test_00082779.jpg
+Places365_test_00082790.jpg
+Places365_test_00082794.jpg
+Places365_test_00082809.jpg
+Places365_test_00082810.jpg
+Places365_test_00082826.jpg
+Places365_test_00082842.jpg
+Places365_test_00082854.jpg
+Places365_test_00082875.jpg
+Places365_test_00082879.jpg
+Places365_test_00082904.jpg
+Places365_test_00082917.jpg
+Places365_test_00082919.jpg
+Places365_test_00082922.jpg
+Places365_test_00082948.jpg
+Places365_test_00082950.jpg
+Places365_test_00082955.jpg
+Places365_test_00082969.jpg
+Places365_test_00082983.jpg
+Places365_test_00082987.jpg
+Places365_test_00082988.jpg
+Places365_test_00083020.jpg
+Places365_test_00083033.jpg
+Places365_test_00083037.jpg
+Places365_test_00083042.jpg
+Places365_test_00083046.jpg
+Places365_test_00083052.jpg
+Places365_test_00083055.jpg
+Places365_test_00083062.jpg
+Places365_test_00083077.jpg
+Places365_test_00083085.jpg
+Places365_test_00083086.jpg
+Places365_test_00083096.jpg
+Places365_test_00083098.jpg
+Places365_test_00083103.jpg
+Places365_test_00083115.jpg
+Places365_test_00083118.jpg
+Places365_test_00083159.jpg
+Places365_test_00083163.jpg
+Places365_test_00083198.jpg
+Places365_test_00083202.jpg
+Places365_test_00083218.jpg
+Places365_test_00083234.jpg
+Places365_test_00083246.jpg
+Places365_test_00083259.jpg
+Places365_test_00083288.jpg
+Places365_test_00083305.jpg
+Places365_test_00083306.jpg
+Places365_test_00083327.jpg
+Places365_test_00083360.jpg
+Places365_test_00083365.jpg
+Places365_test_00083373.jpg
+Places365_test_00083391.jpg
+Places365_test_00083406.jpg
+Places365_test_00083414.jpg
+Places365_test_00083459.jpg
+Places365_test_00083472.jpg
+Places365_test_00083477.jpg
+Places365_test_00083480.jpg
+Places365_test_00083495.jpg
+Places365_test_00083501.jpg
+Places365_test_00083502.jpg
+Places365_test_00083508.jpg
+Places365_test_00083512.jpg
+Places365_test_00083514.jpg
+Places365_test_00083517.jpg
+Places365_test_00083519.jpg
+Places365_test_00083552.jpg
+Places365_test_00083555.jpg
+Places365_test_00083560.jpg
+Places365_test_00083587.jpg
+Places365_test_00083591.jpg
+Places365_test_00083612.jpg
+Places365_test_00083613.jpg
+Places365_test_00083629.jpg
+Places365_test_00083635.jpg
+Places365_test_00083639.jpg
+Places365_test_00083647.jpg
+Places365_test_00083650.jpg
+Places365_test_00083667.jpg
+Places365_test_00083678.jpg
+Places365_test_00083685.jpg
+Places365_test_00083697.jpg
+Places365_test_00083698.jpg
+Places365_test_00083703.jpg
+Places365_test_00083718.jpg
+Places365_test_00083726.jpg
+Places365_test_00083731.jpg
+Places365_test_00083735.jpg
+Places365_test_00083745.jpg
+Places365_test_00083751.jpg
+Places365_test_00083780.jpg
+Places365_test_00083807.jpg
+Places365_test_00083813.jpg
+Places365_test_00083814.jpg
+Places365_test_00083818.jpg
+Places365_test_00083819.jpg
+Places365_test_00083833.jpg
+Places365_test_00083834.jpg
+Places365_test_00083845.jpg
+Places365_test_00083850.jpg
+Places365_test_00083856.jpg
+Places365_test_00083885.jpg
+Places365_test_00083894.jpg
+Places365_test_00083902.jpg
+Places365_test_00083909.jpg
+Places365_test_00083934.jpg
+Places365_test_00083937.jpg
+Places365_test_00083942.jpg
+Places365_test_00083943.jpg
+Places365_test_00083967.jpg
+Places365_test_00083970.jpg
+Places365_test_00083976.jpg
+Places365_test_00083982.jpg
+Places365_test_00083987.jpg
+Places365_test_00083995.jpg
+Places365_test_00084002.jpg
+Places365_test_00084027.jpg
+Places365_test_00084043.jpg
+Places365_test_00084045.jpg
+Places365_test_00084056.jpg
+Places365_test_00084058.jpg
+Places365_test_00084068.jpg
+Places365_test_00084080.jpg
+Places365_test_00084081.jpg
+Places365_test_00084083.jpg
+Places365_test_00084095.jpg
+Places365_test_00084114.jpg
+Places365_test_00084125.jpg
+Places365_test_00084130.jpg
+Places365_test_00084147.jpg
+Places365_test_00084153.jpg
+Places365_test_00084154.jpg
+Places365_test_00084156.jpg
+Places365_test_00084164.jpg
+Places365_test_00084177.jpg
+Places365_test_00084183.jpg
+Places365_test_00084185.jpg
+Places365_test_00084186.jpg
+Places365_test_00084195.jpg
+Places365_test_00084208.jpg
+Places365_test_00084225.jpg
+Places365_test_00084228.jpg
+Places365_test_00084232.jpg
+Places365_test_00084239.jpg
+Places365_test_00084270.jpg
+Places365_test_00084273.jpg
+Places365_test_00084278.jpg
+Places365_test_00084283.jpg
+Places365_test_00084284.jpg
+Places365_test_00084291.jpg
+Places365_test_00084295.jpg
+Places365_test_00084299.jpg
+Places365_test_00084302.jpg
+Places365_test_00084310.jpg
+Places365_test_00084314.jpg
+Places365_test_00084344.jpg
+Places365_test_00084348.jpg
+Places365_test_00084363.jpg
+Places365_test_00084371.jpg
+Places365_test_00084392.jpg
+Places365_test_00084394.jpg
+Places365_test_00084403.jpg
+Places365_test_00084439.jpg
+Places365_test_00084448.jpg
+Places365_test_00084458.jpg
+Places365_test_00084464.jpg
+Places365_test_00084473.jpg
+Places365_test_00084484.jpg
+Places365_test_00084506.jpg
+Places365_test_00084507.jpg
+Places365_test_00084532.jpg
+Places365_test_00084533.jpg
+Places365_test_00084549.jpg
+Places365_test_00084556.jpg
+Places365_test_00084558.jpg
+Places365_test_00084560.jpg
+Places365_test_00084573.jpg
+Places365_test_00084580.jpg
+Places365_test_00084588.jpg
+Places365_test_00084590.jpg
+Places365_test_00084608.jpg
+Places365_test_00084614.jpg
+Places365_test_00084640.jpg
+Places365_test_00084651.jpg
+Places365_test_00084653.jpg
+Places365_test_00084656.jpg
+Places365_test_00084657.jpg
+Places365_test_00084661.jpg
+Places365_test_00084667.jpg
+Places365_test_00084670.jpg
+Places365_test_00084702.jpg
+Places365_test_00084740.jpg
+Places365_test_00084750.jpg
+Places365_test_00084772.jpg
+Places365_test_00084783.jpg
+Places365_test_00084788.jpg
+Places365_test_00084791.jpg
+Places365_test_00084796.jpg
+Places365_test_00084818.jpg
+Places365_test_00084851.jpg
+Places365_test_00084858.jpg
+Places365_test_00084861.jpg
+Places365_test_00084872.jpg
+Places365_test_00084887.jpg
+Places365_test_00084889.jpg
+Places365_test_00084892.jpg
+Places365_test_00084897.jpg
+Places365_test_00084906.jpg
+Places365_test_00084910.jpg
+Places365_test_00084917.jpg
+Places365_test_00084920.jpg
+Places365_test_00084928.jpg
+Places365_test_00084990.jpg
+Places365_test_00084997.jpg
+Places365_test_00085008.jpg
+Places365_test_00085020.jpg
+Places365_test_00085026.jpg
+Places365_test_00085053.jpg
+Places365_test_00085061.jpg
+Places365_test_00085072.jpg
+Places365_test_00085125.jpg
+Places365_test_00085130.jpg
+Places365_test_00085132.jpg
+Places365_test_00085133.jpg
+Places365_test_00085136.jpg
+Places365_test_00085146.jpg
+Places365_test_00085150.jpg
+Places365_test_00085180.jpg
+Places365_test_00085190.jpg
+Places365_test_00085201.jpg
+Places365_test_00085202.jpg
+Places365_test_00085212.jpg
+Places365_test_00085217.jpg
+Places365_test_00085240.jpg
+Places365_test_00085243.jpg
+Places365_test_00085253.jpg
+Places365_test_00085269.jpg
+Places365_test_00085285.jpg
+Places365_test_00085319.jpg
+Places365_test_00085325.jpg
+Places365_test_00085332.jpg
+Places365_test_00085365.jpg
+Places365_test_00085369.jpg
+Places365_test_00085376.jpg
+Places365_test_00085383.jpg
+Places365_test_00085393.jpg
+Places365_test_00085431.jpg
+Places365_test_00085460.jpg
+Places365_test_00085461.jpg
+Places365_test_00085462.jpg
+Places365_test_00085478.jpg
+Places365_test_00085482.jpg
+Places365_test_00085489.jpg
+Places365_test_00085510.jpg
+Places365_test_00085515.jpg
+Places365_test_00085534.jpg
+Places365_test_00085542.jpg
+Places365_test_00085548.jpg
+Places365_test_00085553.jpg
+Places365_test_00085566.jpg
+Places365_test_00085600.jpg
+Places365_test_00085602.jpg
+Places365_test_00085603.jpg
+Places365_test_00085612.jpg
+Places365_test_00085613.jpg
+Places365_test_00085614.jpg
+Places365_test_00085629.jpg
+Places365_test_00085636.jpg
+Places365_test_00085658.jpg
+Places365_test_00085669.jpg
+Places365_test_00085685.jpg
+Places365_test_00085695.jpg
+Places365_test_00085711.jpg
+Places365_test_00085713.jpg
+Places365_test_00085718.jpg
+Places365_test_00085730.jpg
+Places365_test_00085737.jpg
+Places365_test_00085742.jpg
+Places365_test_00085759.jpg
+Places365_test_00085773.jpg
+Places365_test_00085778.jpg
+Places365_test_00085781.jpg
+Places365_test_00085797.jpg
+Places365_test_00085803.jpg
+Places365_test_00085814.jpg
+Places365_test_00085825.jpg
+Places365_test_00085842.jpg
+Places365_test_00085845.jpg
+Places365_test_00085854.jpg
+Places365_test_00085855.jpg
+Places365_test_00085866.jpg
+Places365_test_00085880.jpg
+Places365_test_00085902.jpg
+Places365_test_00085905.jpg
+Places365_test_00085906.jpg
+Places365_test_00085924.jpg
+Places365_test_00085933.jpg
+Places365_test_00085941.jpg
+Places365_test_00085952.jpg
+Places365_test_00085968.jpg
+Places365_test_00085994.jpg
+Places365_test_00085996.jpg
+Places365_test_00086008.jpg
+Places365_test_00086044.jpg
+Places365_test_00086046.jpg
+Places365_test_00086053.jpg
+Places365_test_00086056.jpg
+Places365_test_00086058.jpg
+Places365_test_00086062.jpg
+Places365_test_00086068.jpg
+Places365_test_00086098.jpg
+Places365_test_00086105.jpg
+Places365_test_00086112.jpg
+Places365_test_00086116.jpg
+Places365_test_00086117.jpg
+Places365_test_00086118.jpg
+Places365_test_00086134.jpg
+Places365_test_00086143.jpg
+Places365_test_00086164.jpg
+Places365_test_00086165.jpg
+Places365_test_00086166.jpg
+Places365_test_00086173.jpg
+Places365_test_00086182.jpg
+Places365_test_00086194.jpg
+Places365_test_00086214.jpg
+Places365_test_00086222.jpg
+Places365_test_00086228.jpg
+Places365_test_00086229.jpg
+Places365_test_00086237.jpg
+Places365_test_00086243.jpg
+Places365_test_00086250.jpg
+Places365_test_00086253.jpg
+Places365_test_00086255.jpg
+Places365_test_00086291.jpg
+Places365_test_00086298.jpg
+Places365_test_00086311.jpg
+Places365_test_00086327.jpg
+Places365_test_00086340.jpg
+Places365_test_00086342.jpg
+Places365_test_00086352.jpg
+Places365_test_00086353.jpg
+Places365_test_00086375.jpg
+Places365_test_00086389.jpg
+Places365_test_00086400.jpg
+Places365_test_00086413.jpg
+Places365_test_00086414.jpg
+Places365_test_00086417.jpg
+Places365_test_00086419.jpg
+Places365_test_00086444.jpg
+Places365_test_00086484.jpg
+Places365_test_00086496.jpg
+Places365_test_00086519.jpg
+Places365_test_00086527.jpg
+Places365_test_00086567.jpg
+Places365_test_00086568.jpg
+Places365_test_00086575.jpg
+Places365_test_00086580.jpg
+Places365_test_00086605.jpg
+Places365_test_00086620.jpg
+Places365_test_00086624.jpg
+Places365_test_00086637.jpg
+Places365_test_00086643.jpg
+Places365_test_00086647.jpg
+Places365_test_00086648.jpg
+Places365_test_00086662.jpg
+Places365_test_00086676.jpg
+Places365_test_00086702.jpg
+Places365_test_00086703.jpg
+Places365_test_00086704.jpg
+Places365_test_00086706.jpg
+Places365_test_00086710.jpg
+Places365_test_00086725.jpg
+Places365_test_00086748.jpg
+Places365_test_00086769.jpg
+Places365_test_00086777.jpg
+Places365_test_00086782.jpg
+Places365_test_00086808.jpg
+Places365_test_00086819.jpg
+Places365_test_00086820.jpg
+Places365_test_00086827.jpg
+Places365_test_00086838.jpg
+Places365_test_00086848.jpg
+Places365_test_00086850.jpg
+Places365_test_00086877.jpg
+Places365_test_00086893.jpg
+Places365_test_00086895.jpg
+Places365_test_00086896.jpg
+Places365_test_00086917.jpg
+Places365_test_00086940.jpg
+Places365_test_00086942.jpg
+Places365_test_00086955.jpg
+Places365_test_00086965.jpg
+Places365_test_00086980.jpg
+Places365_test_00086994.jpg
+Places365_test_00087001.jpg
+Places365_test_00087024.jpg
+Places365_test_00087041.jpg
+Places365_test_00087046.jpg
+Places365_test_00087052.jpg
+Places365_test_00087096.jpg
+Places365_test_00087097.jpg
+Places365_test_00087099.jpg
+Places365_test_00087108.jpg
+Places365_test_00087120.jpg
+Places365_test_00087150.jpg
+Places365_test_00087162.jpg
+Places365_test_00087177.jpg
+Places365_test_00087182.jpg
+Places365_test_00087189.jpg
+Places365_test_00087190.jpg
+Places365_test_00087193.jpg
+Places365_test_00087219.jpg
+Places365_test_00087238.jpg
+Places365_test_00087263.jpg
+Places365_test_00087272.jpg
+Places365_test_00087276.jpg
+Places365_test_00087278.jpg
+Places365_test_00087292.jpg
+Places365_test_00087299.jpg
+Places365_test_00087305.jpg
+Places365_test_00087306.jpg
+Places365_test_00087322.jpg
+Places365_test_00087329.jpg
+Places365_test_00087335.jpg
+Places365_test_00087341.jpg
+Places365_test_00087351.jpg
+Places365_test_00087353.jpg
+Places365_test_00087367.jpg
+Places365_test_00087374.jpg
+Places365_test_00087425.jpg
+Places365_test_00087439.jpg
+Places365_test_00087442.jpg
+Places365_test_00087445.jpg
+Places365_test_00087449.jpg
+Places365_test_00087458.jpg
+Places365_test_00087470.jpg
+Places365_test_00087480.jpg
+Places365_test_00087501.jpg
+Places365_test_00087506.jpg
+Places365_test_00087510.jpg
+Places365_test_00087511.jpg
+Places365_test_00087512.jpg
+Places365_test_00087515.jpg
+Places365_test_00087518.jpg
+Places365_test_00087529.jpg
+Places365_test_00087534.jpg
+Places365_test_00087541.jpg
+Places365_test_00087542.jpg
+Places365_test_00087565.jpg
+Places365_test_00087576.jpg
+Places365_test_00087579.jpg
+Places365_test_00087598.jpg
+Places365_test_00087608.jpg
+Places365_test_00087622.jpg
+Places365_test_00087632.jpg
+Places365_test_00087643.jpg
+Places365_test_00087658.jpg
+Places365_test_00087661.jpg
+Places365_test_00087665.jpg
+Places365_test_00087694.jpg
+Places365_test_00087695.jpg
+Places365_test_00087712.jpg
+Places365_test_00087726.jpg
+Places365_test_00087774.jpg
+Places365_test_00087785.jpg
+Places365_test_00087789.jpg
+Places365_test_00087791.jpg
+Places365_test_00087804.jpg
+Places365_test_00087806.jpg
+Places365_test_00087809.jpg
+Places365_test_00087817.jpg
+Places365_test_00087827.jpg
+Places365_test_00087831.jpg
+Places365_test_00087842.jpg
+Places365_test_00087856.jpg
+Places365_test_00087858.jpg
+Places365_test_00087865.jpg
+Places365_test_00087869.jpg
+Places365_test_00087877.jpg
+Places365_test_00087880.jpg
+Places365_test_00087914.jpg
+Places365_test_00087919.jpg
+Places365_test_00087931.jpg
+Places365_test_00087945.jpg
+Places365_test_00087955.jpg
+Places365_test_00087964.jpg
+Places365_test_00087965.jpg
+Places365_test_00087973.jpg
+Places365_test_00088002.jpg
+Places365_test_00088022.jpg
+Places365_test_00088041.jpg
+Places365_test_00088051.jpg
+Places365_test_00088060.jpg
+Places365_test_00088065.jpg
+Places365_test_00088066.jpg
+Places365_test_00088071.jpg
+Places365_test_00088079.jpg
+Places365_test_00088097.jpg
+Places365_test_00088104.jpg
+Places365_test_00088117.jpg
+Places365_test_00088138.jpg
+Places365_test_00088149.jpg
+Places365_test_00088182.jpg
+Places365_test_00088191.jpg
+Places365_test_00088195.jpg
+Places365_test_00088218.jpg
+Places365_test_00088221.jpg
+Places365_test_00088239.jpg
+Places365_test_00088243.jpg
+Places365_test_00088269.jpg
+Places365_test_00088272.jpg
+Places365_test_00088277.jpg
+Places365_test_00088280.jpg
+Places365_test_00088285.jpg
+Places365_test_00088286.jpg
+Places365_test_00088289.jpg
+Places365_test_00088291.jpg
+Places365_test_00088295.jpg
+Places365_test_00088304.jpg
+Places365_test_00088308.jpg
+Places365_test_00088322.jpg
+Places365_test_00088338.jpg
+Places365_test_00088347.jpg
+Places365_test_00088348.jpg
+Places365_test_00088373.jpg
+Places365_test_00088409.jpg
+Places365_test_00088415.jpg
+Places365_test_00088419.jpg
+Places365_test_00088431.jpg
+Places365_test_00088442.jpg
+Places365_test_00088452.jpg
+Places365_test_00088465.jpg
+Places365_test_00088472.jpg
+Places365_test_00088486.jpg
+Places365_test_00088497.jpg
+Places365_test_00088500.jpg
+Places365_test_00088524.jpg
+Places365_test_00088529.jpg
+Places365_test_00088532.jpg
+Places365_test_00088538.jpg
+Places365_test_00088542.jpg
+Places365_test_00088559.jpg
+Places365_test_00088582.jpg
+Places365_test_00088586.jpg
+Places365_test_00088594.jpg
+Places365_test_00088603.jpg
+Places365_test_00088635.jpg
+Places365_test_00088645.jpg
+Places365_test_00088652.jpg
+Places365_test_00088667.jpg
+Places365_test_00088668.jpg
+Places365_test_00088695.jpg
+Places365_test_00088701.jpg
+Places365_test_00088723.jpg
+Places365_test_00088737.jpg
+Places365_test_00088741.jpg
+Places365_test_00088760.jpg
+Places365_test_00088795.jpg
+Places365_test_00088820.jpg
+Places365_test_00088828.jpg
+Places365_test_00088831.jpg
+Places365_test_00088838.jpg
+Places365_test_00088855.jpg
+Places365_test_00088881.jpg
+Places365_test_00088882.jpg
+Places365_test_00088884.jpg
+Places365_test_00088890.jpg
+Places365_test_00088893.jpg
+Places365_test_00088921.jpg
+Places365_test_00088925.jpg
+Places365_test_00088928.jpg
+Places365_test_00088929.jpg
+Places365_test_00088933.jpg
+Places365_test_00088936.jpg
+Places365_test_00088946.jpg
+Places365_test_00088954.jpg
+Places365_test_00088984.jpg
+Places365_test_00088987.jpg
+Places365_test_00088997.jpg
+Places365_test_00089013.jpg
+Places365_test_00089016.jpg
+Places365_test_00089048.jpg
+Places365_test_00089060.jpg
+Places365_test_00089071.jpg
+Places365_test_00089079.jpg
+Places365_test_00089084.jpg
+Places365_test_00089088.jpg
+Places365_test_00089089.jpg
+Places365_test_00089093.jpg
+Places365_test_00089110.jpg
+Places365_test_00089130.jpg
+Places365_test_00089132.jpg
+Places365_test_00089141.jpg
+Places365_test_00089142.jpg
+Places365_test_00089145.jpg
+Places365_test_00089152.jpg
+Places365_test_00089156.jpg
+Places365_test_00089169.jpg
+Places365_test_00089222.jpg
+Places365_test_00089231.jpg
+Places365_test_00089241.jpg
+Places365_test_00089261.jpg
+Places365_test_00089294.jpg
+Places365_test_00089305.jpg
+Places365_test_00089313.jpg
+Places365_test_00089339.jpg
+Places365_test_00089350.jpg
+Places365_test_00089372.jpg
+Places365_test_00089383.jpg
+Places365_test_00089385.jpg
+Places365_test_00089409.jpg
+Places365_test_00089411.jpg
+Places365_test_00089438.jpg
+Places365_test_00089440.jpg
+Places365_test_00089442.jpg
+Places365_test_00089450.jpg
+Places365_test_00089464.jpg
+Places365_test_00089477.jpg
+Places365_test_00089479.jpg
+Places365_test_00089517.jpg
+Places365_test_00089518.jpg
+Places365_test_00089520.jpg
+Places365_test_00089541.jpg
+Places365_test_00089572.jpg
+Places365_test_00089573.jpg
+Places365_test_00089574.jpg
+Places365_test_00089648.jpg
+Places365_test_00089654.jpg
+Places365_test_00089661.jpg
+Places365_test_00089662.jpg
+Places365_test_00089669.jpg
+Places365_test_00089687.jpg
+Places365_test_00089692.jpg
+Places365_test_00089698.jpg
+Places365_test_00089718.jpg
+Places365_test_00089725.jpg
+Places365_test_00089726.jpg
+Places365_test_00089736.jpg
+Places365_test_00089740.jpg
+Places365_test_00089775.jpg
+Places365_test_00089785.jpg
+Places365_test_00089798.jpg
+Places365_test_00089801.jpg
+Places365_test_00089828.jpg
+Places365_test_00089839.jpg
+Places365_test_00089849.jpg
+Places365_test_00089851.jpg
+Places365_test_00089858.jpg
+Places365_test_00089870.jpg
+Places365_test_00089878.jpg
+Places365_test_00089884.jpg
+Places365_test_00089885.jpg
+Places365_test_00089914.jpg
+Places365_test_00089929.jpg
+Places365_test_00089936.jpg
+Places365_test_00089959.jpg
+Places365_test_00089961.jpg
+Places365_test_00089994.jpg
+Places365_test_00090001.jpg
+Places365_test_00090010.jpg
+Places365_test_00090018.jpg
+Places365_test_00090020.jpg
+Places365_test_00090043.jpg
+Places365_test_00090074.jpg
+Places365_test_00090075.jpg
+Places365_test_00090081.jpg
+Places365_test_00090089.jpg
+Places365_test_00090094.jpg
+Places365_test_00090104.jpg
+Places365_test_00090110.jpg
+Places365_test_00090129.jpg
+Places365_test_00090149.jpg
+Places365_test_00090166.jpg
+Places365_test_00090173.jpg
+Places365_test_00090193.jpg
+Places365_test_00090200.jpg
+Places365_test_00090206.jpg
+Places365_test_00090240.jpg
+Places365_test_00090241.jpg
+Places365_test_00090244.jpg
+Places365_test_00090254.jpg
+Places365_test_00090256.jpg
+Places365_test_00090258.jpg
+Places365_test_00090263.jpg
+Places365_test_00090266.jpg
+Places365_test_00090285.jpg
+Places365_test_00090290.jpg
+Places365_test_00090298.jpg
+Places365_test_00090299.jpg
+Places365_test_00090307.jpg
+Places365_test_00090313.jpg
+Places365_test_00090316.jpg
+Places365_test_00090319.jpg
+Places365_test_00090381.jpg
+Places365_test_00090389.jpg
+Places365_test_00090391.jpg
+Places365_test_00090398.jpg
+Places365_test_00090400.jpg
+Places365_test_00090402.jpg
+Places365_test_00090405.jpg
+Places365_test_00090413.jpg
+Places365_test_00090414.jpg
+Places365_test_00090424.jpg
+Places365_test_00090449.jpg
+Places365_test_00090457.jpg
+Places365_test_00090465.jpg
+Places365_test_00090476.jpg
+Places365_test_00090482.jpg
+Places365_test_00090483.jpg
+Places365_test_00090489.jpg
+Places365_test_00090492.jpg
+Places365_test_00090506.jpg
+Places365_test_00090521.jpg
+Places365_test_00090543.jpg
+Places365_test_00090568.jpg
+Places365_test_00090640.jpg
+Places365_test_00090641.jpg
+Places365_test_00090653.jpg
+Places365_test_00090659.jpg
+Places365_test_00090663.jpg
+Places365_test_00090681.jpg
+Places365_test_00090694.jpg
+Places365_test_00090720.jpg
+Places365_test_00090731.jpg
+Places365_test_00090734.jpg
+Places365_test_00090736.jpg
+Places365_test_00090749.jpg
+Places365_test_00090750.jpg
+Places365_test_00090756.jpg
+Places365_test_00090780.jpg
+Places365_test_00090798.jpg
+Places365_test_00090808.jpg
+Places365_test_00090829.jpg
+Places365_test_00090836.jpg
+Places365_test_00090840.jpg
+Places365_test_00090865.jpg
+Places365_test_00090888.jpg
+Places365_test_00090892.jpg
+Places365_test_00090902.jpg
+Places365_test_00090911.jpg
+Places365_test_00090919.jpg
+Places365_test_00090937.jpg
+Places365_test_00090941.jpg
+Places365_test_00090943.jpg
+Places365_test_00090968.jpg
+Places365_test_00091009.jpg
+Places365_test_00091028.jpg
+Places365_test_00091046.jpg
+Places365_test_00091059.jpg
+Places365_test_00091078.jpg
+Places365_test_00091083.jpg
+Places365_test_00091090.jpg
+Places365_test_00091103.jpg
+Places365_test_00091111.jpg
+Places365_test_00091114.jpg
+Places365_test_00091127.jpg
+Places365_test_00091138.jpg
+Places365_test_00091156.jpg
+Places365_test_00091167.jpg
+Places365_test_00091186.jpg
+Places365_test_00091188.jpg
+Places365_test_00091195.jpg
+Places365_test_00091235.jpg
+Places365_test_00091250.jpg
+Places365_test_00091256.jpg
+Places365_test_00091264.jpg
+Places365_test_00091281.jpg
+Places365_test_00091283.jpg
+Places365_test_00091289.jpg
+Places365_test_00091303.jpg
+Places365_test_00091314.jpg
+Places365_test_00091331.jpg
+Places365_test_00091350.jpg
+Places365_test_00091372.jpg
+Places365_test_00091373.jpg
+Places365_test_00091377.jpg
+Places365_test_00091386.jpg
+Places365_test_00091402.jpg
+Places365_test_00091435.jpg
+Places365_test_00091444.jpg
+Places365_test_00091481.jpg
+Places365_test_00091496.jpg
+Places365_test_00091500.jpg
+Places365_test_00091507.jpg
+Places365_test_00091517.jpg
+Places365_test_00091549.jpg
+Places365_test_00091550.jpg
+Places365_test_00091558.jpg
+Places365_test_00091559.jpg
+Places365_test_00091567.jpg
+Places365_test_00091577.jpg
+Places365_test_00091578.jpg
+Places365_test_00091606.jpg
+Places365_test_00091634.jpg
+Places365_test_00091636.jpg
+Places365_test_00091641.jpg
+Places365_test_00091642.jpg
+Places365_test_00091645.jpg
+Places365_test_00091652.jpg
+Places365_test_00091662.jpg
+Places365_test_00091668.jpg
+Places365_test_00091675.jpg
+Places365_test_00091679.jpg
+Places365_test_00091688.jpg
+Places365_test_00091692.jpg
+Places365_test_00091698.jpg
+Places365_test_00091701.jpg
+Places365_test_00091702.jpg
+Places365_test_00091705.jpg
+Places365_test_00091707.jpg
+Places365_test_00091729.jpg
+Places365_test_00091731.jpg
+Places365_test_00091735.jpg
+Places365_test_00091740.jpg
+Places365_test_00091754.jpg
+Places365_test_00091761.jpg
+Places365_test_00091769.jpg
+Places365_test_00091776.jpg
+Places365_test_00091786.jpg
+Places365_test_00091794.jpg
+Places365_test_00091798.jpg
+Places365_test_00091801.jpg
+Places365_test_00091816.jpg
+Places365_test_00091817.jpg
+Places365_test_00091835.jpg
+Places365_test_00091840.jpg
+Places365_test_00091843.jpg
+Places365_test_00091845.jpg
+Places365_test_00091871.jpg
+Places365_test_00091890.jpg
+Places365_test_00091895.jpg
+Places365_test_00091900.jpg
+Places365_test_00091930.jpg
+Places365_test_00091933.jpg
+Places365_test_00091936.jpg
+Places365_test_00091940.jpg
+Places365_test_00091946.jpg
+Places365_test_00091977.jpg
+Places365_test_00091978.jpg
+Places365_test_00091981.jpg
+Places365_test_00091988.jpg
+Places365_test_00092003.jpg
+Places365_test_00092009.jpg
+Places365_test_00092034.jpg
+Places365_test_00092045.jpg
+Places365_test_00092046.jpg
+Places365_test_00092051.jpg
+Places365_test_00092059.jpg
+Places365_test_00092065.jpg
+Places365_test_00092116.jpg
+Places365_test_00092119.jpg
+Places365_test_00092133.jpg
+Places365_test_00092141.jpg
+Places365_test_00092143.jpg
+Places365_test_00092146.jpg
+Places365_test_00092151.jpg
+Places365_test_00092161.jpg
+Places365_test_00092193.jpg
+Places365_test_00092203.jpg
+Places365_test_00092207.jpg
+Places365_test_00092210.jpg
+Places365_test_00092212.jpg
+Places365_test_00092219.jpg
+Places365_test_00092222.jpg
+Places365_test_00092233.jpg
+Places365_test_00092236.jpg
+Places365_test_00092237.jpg
+Places365_test_00092240.jpg
+Places365_test_00092241.jpg
+Places365_test_00092250.jpg
+Places365_test_00092294.jpg
+Places365_test_00092297.jpg
+Places365_test_00092306.jpg
+Places365_test_00092309.jpg
+Places365_test_00092329.jpg
+Places365_test_00092334.jpg
+Places365_test_00092339.jpg
+Places365_test_00092342.jpg
+Places365_test_00092349.jpg
+Places365_test_00092354.jpg
+Places365_test_00092381.jpg
+Places365_test_00092384.jpg
+Places365_test_00092386.jpg
+Places365_test_00092398.jpg
+Places365_test_00092403.jpg
+Places365_test_00092405.jpg
+Places365_test_00092407.jpg
+Places365_test_00092412.jpg
+Places365_test_00092413.jpg
+Places365_test_00092414.jpg
+Places365_test_00092428.jpg
+Places365_test_00092429.jpg
+Places365_test_00092435.jpg
+Places365_test_00092438.jpg
+Places365_test_00092442.jpg
+Places365_test_00092514.jpg
+Places365_test_00092517.jpg
+Places365_test_00092523.jpg
+Places365_test_00092525.jpg
+Places365_test_00092530.jpg
+Places365_test_00092547.jpg
+Places365_test_00092552.jpg
+Places365_test_00092570.jpg
+Places365_test_00092573.jpg
+Places365_test_00092586.jpg
+Places365_test_00092590.jpg
+Places365_test_00092594.jpg
+Places365_test_00092597.jpg
+Places365_test_00092598.jpg
+Places365_test_00092635.jpg
+Places365_test_00092666.jpg
+Places365_test_00092670.jpg
+Places365_test_00092671.jpg
+Places365_test_00092693.jpg
+Places365_test_00092703.jpg
+Places365_test_00092706.jpg
+Places365_test_00092716.jpg
+Places365_test_00092745.jpg
+Places365_test_00092750.jpg
+Places365_test_00092757.jpg
+Places365_test_00092761.jpg
+Places365_test_00092769.jpg
+Places365_test_00092772.jpg
+Places365_test_00092774.jpg
+Places365_test_00092779.jpg
+Places365_test_00092809.jpg
+Places365_test_00092816.jpg
+Places365_test_00092822.jpg
+Places365_test_00092830.jpg
+Places365_test_00092838.jpg
+Places365_test_00092852.jpg
+Places365_test_00092859.jpg
+Places365_test_00092868.jpg
+Places365_test_00092880.jpg
+Places365_test_00092888.jpg
+Places365_test_00092903.jpg
+Places365_test_00092934.jpg
+Places365_test_00092947.jpg
+Places365_test_00092949.jpg
+Places365_test_00092973.jpg
+Places365_test_00092987.jpg
+Places365_test_00093011.jpg
+Places365_test_00093014.jpg
+Places365_test_00093032.jpg
+Places365_test_00093037.jpg
+Places365_test_00093039.jpg
+Places365_test_00093044.jpg
+Places365_test_00093050.jpg
+Places365_test_00093064.jpg
+Places365_test_00093083.jpg
+Places365_test_00093088.jpg
+Places365_test_00093091.jpg
+Places365_test_00093100.jpg
+Places365_test_00093141.jpg
+Places365_test_00093153.jpg
+Places365_test_00093159.jpg
+Places365_test_00093160.jpg
+Places365_test_00093166.jpg
+Places365_test_00093173.jpg
+Places365_test_00093174.jpg
+Places365_test_00093176.jpg
+Places365_test_00093202.jpg
+Places365_test_00093243.jpg
+Places365_test_00093253.jpg
+Places365_test_00093271.jpg
+Places365_test_00093277.jpg
+Places365_test_00093278.jpg
+Places365_test_00093282.jpg
+Places365_test_00093285.jpg
+Places365_test_00093296.jpg
+Places365_test_00093305.jpg
+Places365_test_00093310.jpg
+Places365_test_00093313.jpg
+Places365_test_00093323.jpg
+Places365_test_00093335.jpg
+Places365_test_00093350.jpg
+Places365_test_00093354.jpg
+Places365_test_00093366.jpg
+Places365_test_00093369.jpg
+Places365_test_00093387.jpg
+Places365_test_00093392.jpg
+Places365_test_00093396.jpg
+Places365_test_00093416.jpg
+Places365_test_00093437.jpg
+Places365_test_00093440.jpg
+Places365_test_00093451.jpg
+Places365_test_00093472.jpg
+Places365_test_00093483.jpg
+Places365_test_00093485.jpg
+Places365_test_00093497.jpg
+Places365_test_00093498.jpg
+Places365_test_00093502.jpg
+Places365_test_00093505.jpg
+Places365_test_00093513.jpg
+Places365_test_00093518.jpg
+Places365_test_00093527.jpg
+Places365_test_00093531.jpg
+Places365_test_00093548.jpg
+Places365_test_00093560.jpg
+Places365_test_00093570.jpg
+Places365_test_00093571.jpg
+Places365_test_00093577.jpg
+Places365_test_00093583.jpg
+Places365_test_00093599.jpg
+Places365_test_00093629.jpg
+Places365_test_00093644.jpg
+Places365_test_00093657.jpg
+Places365_test_00093661.jpg
+Places365_test_00093664.jpg
+Places365_test_00093667.jpg
+Places365_test_00093692.jpg
+Places365_test_00093693.jpg
+Places365_test_00093696.jpg
+Places365_test_00093751.jpg
+Places365_test_00093758.jpg
+Places365_test_00093762.jpg
+Places365_test_00093786.jpg
+Places365_test_00093792.jpg
+Places365_test_00093796.jpg
+Places365_test_00093799.jpg
+Places365_test_00093815.jpg
+Places365_test_00093853.jpg
+Places365_test_00093859.jpg
+Places365_test_00093875.jpg
+Places365_test_00093889.jpg
+Places365_test_00093900.jpg
+Places365_test_00093903.jpg
+Places365_test_00093927.jpg
+Places365_test_00093938.jpg
+Places365_test_00093957.jpg
+Places365_test_00093958.jpg
+Places365_test_00093969.jpg
+Places365_test_00093975.jpg
+Places365_test_00093980.jpg
+Places365_test_00093992.jpg
+Places365_test_00093993.jpg
+Places365_test_00094031.jpg
+Places365_test_00094040.jpg
+Places365_test_00094049.jpg
+Places365_test_00094052.jpg
+Places365_test_00094065.jpg
+Places365_test_00094066.jpg
+Places365_test_00094074.jpg
+Places365_test_00094080.jpg
+Places365_test_00094085.jpg
+Places365_test_00094090.jpg
+Places365_test_00094099.jpg
+Places365_test_00094110.jpg
+Places365_test_00094119.jpg
+Places365_test_00094127.jpg
+Places365_test_00094134.jpg
+Places365_test_00094153.jpg
+Places365_test_00094159.jpg
+Places365_test_00094161.jpg
+Places365_test_00094162.jpg
+Places365_test_00094180.jpg
+Places365_test_00094187.jpg
+Places365_test_00094193.jpg
+Places365_test_00094196.jpg
+Places365_test_00094206.jpg
+Places365_test_00094207.jpg
+Places365_test_00094218.jpg
+Places365_test_00094244.jpg
+Places365_test_00094295.jpg
+Places365_test_00094318.jpg
+Places365_test_00094319.jpg
+Places365_test_00094321.jpg
+Places365_test_00094336.jpg
+Places365_test_00094340.jpg
+Places365_test_00094341.jpg
+Places365_test_00094342.jpg
+Places365_test_00094350.jpg
+Places365_test_00094408.jpg
+Places365_test_00094419.jpg
+Places365_test_00094425.jpg
+Places365_test_00094426.jpg
+Places365_test_00094446.jpg
+Places365_test_00094448.jpg
+Places365_test_00094460.jpg
+Places365_test_00094462.jpg
+Places365_test_00094495.jpg
+Places365_test_00094496.jpg
+Places365_test_00094511.jpg
+Places365_test_00094521.jpg
+Places365_test_00094523.jpg
+Places365_test_00094532.jpg
+Places365_test_00094534.jpg
+Places365_test_00094548.jpg
+Places365_test_00094566.jpg
+Places365_test_00094573.jpg
+Places365_test_00094576.jpg
+Places365_test_00094589.jpg
+Places365_test_00094592.jpg
+Places365_test_00094593.jpg
+Places365_test_00094595.jpg
+Places365_test_00094597.jpg
+Places365_test_00094599.jpg
+Places365_test_00094602.jpg
+Places365_test_00094613.jpg
+Places365_test_00094616.jpg
+Places365_test_00094620.jpg
+Places365_test_00094630.jpg
+Places365_test_00094634.jpg
+Places365_test_00094636.jpg
+Places365_test_00094661.jpg
+Places365_test_00094675.jpg
+Places365_test_00094698.jpg
+Places365_test_00094700.jpg
+Places365_test_00094701.jpg
+Places365_test_00094714.jpg
+Places365_test_00094723.jpg
+Places365_test_00094746.jpg
+Places365_test_00094789.jpg
+Places365_test_00094791.jpg
+Places365_test_00094794.jpg
+Places365_test_00094799.jpg
+Places365_test_00094807.jpg
+Places365_test_00094814.jpg
+Places365_test_00094823.jpg
+Places365_test_00094830.jpg
+Places365_test_00094837.jpg
+Places365_test_00094847.jpg
+Places365_test_00094863.jpg
+Places365_test_00094869.jpg
+Places365_test_00094881.jpg
+Places365_test_00094892.jpg
+Places365_test_00094906.jpg
+Places365_test_00094951.jpg
+Places365_test_00094970.jpg
+Places365_test_00095015.jpg
+Places365_test_00095018.jpg
+Places365_test_00095022.jpg
+Places365_test_00095027.jpg
+Places365_test_00095056.jpg
+Places365_test_00095058.jpg
+Places365_test_00095059.jpg
+Places365_test_00095073.jpg
+Places365_test_00095077.jpg
+Places365_test_00095089.jpg
+Places365_test_00095112.jpg
+Places365_test_00095124.jpg
+Places365_test_00095137.jpg
+Places365_test_00095141.jpg
+Places365_test_00095142.jpg
+Places365_test_00095148.jpg
+Places365_test_00095149.jpg
+Places365_test_00095161.jpg
+Places365_test_00095162.jpg
+Places365_test_00095176.jpg
+Places365_test_00095192.jpg
+Places365_test_00095194.jpg
+Places365_test_00095210.jpg
+Places365_test_00095211.jpg
+Places365_test_00095213.jpg
+Places365_test_00095217.jpg
+Places365_test_00095233.jpg
+Places365_test_00095278.jpg
+Places365_test_00095289.jpg
+Places365_test_00095325.jpg
+Places365_test_00095326.jpg
+Places365_test_00095344.jpg
+Places365_test_00095358.jpg
+Places365_test_00095362.jpg
+Places365_test_00095391.jpg
+Places365_test_00095399.jpg
+Places365_test_00095428.jpg
+Places365_test_00095449.jpg
+Places365_test_00095450.jpg
+Places365_test_00095456.jpg
+Places365_test_00095466.jpg
+Places365_test_00095498.jpg
+Places365_test_00095558.jpg
+Places365_test_00095559.jpg
+Places365_test_00095561.jpg
+Places365_test_00095579.jpg
+Places365_test_00095584.jpg
+Places365_test_00095591.jpg
+Places365_test_00095597.jpg
+Places365_test_00095609.jpg
+Places365_test_00095651.jpg
+Places365_test_00095657.jpg
+Places365_test_00095691.jpg
+Places365_test_00095697.jpg
+Places365_test_00095716.jpg
+Places365_test_00095740.jpg
+Places365_test_00095742.jpg
+Places365_test_00095751.jpg
+Places365_test_00095756.jpg
+Places365_test_00095757.jpg
+Places365_test_00095758.jpg
+Places365_test_00095780.jpg
+Places365_test_00095788.jpg
+Places365_test_00095789.jpg
+Places365_test_00095791.jpg
+Places365_test_00095796.jpg
+Places365_test_00095823.jpg
+Places365_test_00095846.jpg
+Places365_test_00095858.jpg
+Places365_test_00095890.jpg
+Places365_test_00095891.jpg
+Places365_test_00095896.jpg
+Places365_test_00095903.jpg
+Places365_test_00095905.jpg
+Places365_test_00095911.jpg
+Places365_test_00095924.jpg
+Places365_test_00095942.jpg
+Places365_test_00095951.jpg
+Places365_test_00095953.jpg
+Places365_test_00095954.jpg
+Places365_test_00095980.jpg
+Places365_test_00095984.jpg
+Places365_test_00095989.jpg
+Places365_test_00096010.jpg
+Places365_test_00096013.jpg
+Places365_test_00096014.jpg
+Places365_test_00096021.jpg
+Places365_test_00096043.jpg
+Places365_test_00096052.jpg
+Places365_test_00096080.jpg
+Places365_test_00096085.jpg
+Places365_test_00096105.jpg
+Places365_test_00096106.jpg
+Places365_test_00096110.jpg
+Places365_test_00096116.jpg
+Places365_test_00096118.jpg
+Places365_test_00096124.jpg
+Places365_test_00096128.jpg
+Places365_test_00096129.jpg
+Places365_test_00096145.jpg
+Places365_test_00096154.jpg
+Places365_test_00096155.jpg
+Places365_test_00096167.jpg
+Places365_test_00096188.jpg
+Places365_test_00096213.jpg
+Places365_test_00096218.jpg
+Places365_test_00096225.jpg
+Places365_test_00096226.jpg
+Places365_test_00096227.jpg
+Places365_test_00096232.jpg
+Places365_test_00096242.jpg
+Places365_test_00096246.jpg
+Places365_test_00096251.jpg
+Places365_test_00096262.jpg
+Places365_test_00096280.jpg
+Places365_test_00096285.jpg
+Places365_test_00096286.jpg
+Places365_test_00096291.jpg
+Places365_test_00096298.jpg
+Places365_test_00096315.jpg
+Places365_test_00096333.jpg
+Places365_test_00096341.jpg
+Places365_test_00096344.jpg
+Places365_test_00096371.jpg
+Places365_test_00096372.jpg
+Places365_test_00096373.jpg
+Places365_test_00096382.jpg
+Places365_test_00096411.jpg
+Places365_test_00096421.jpg
+Places365_test_00096423.jpg
+Places365_test_00096432.jpg
+Places365_test_00096440.jpg
+Places365_test_00096452.jpg
+Places365_test_00096454.jpg
+Places365_test_00096476.jpg
+Places365_test_00096477.jpg
+Places365_test_00096488.jpg
+Places365_test_00096513.jpg
+Places365_test_00096544.jpg
+Places365_test_00096573.jpg
+Places365_test_00096578.jpg
+Places365_test_00096595.jpg
+Places365_test_00096607.jpg
+Places365_test_00096622.jpg
+Places365_test_00096623.jpg
+Places365_test_00096624.jpg
+Places365_test_00096633.jpg
+Places365_test_00096652.jpg
+Places365_test_00096659.jpg
+Places365_test_00096662.jpg
+Places365_test_00096664.jpg
+Places365_test_00096693.jpg
+Places365_test_00096708.jpg
+Places365_test_00096727.jpg
+Places365_test_00096735.jpg
+Places365_test_00096740.jpg
+Places365_test_00096763.jpg
+Places365_test_00096766.jpg
+Places365_test_00096793.jpg
+Places365_test_00096798.jpg
+Places365_test_00096801.jpg
+Places365_test_00096852.jpg
+Places365_test_00096855.jpg
+Places365_test_00096860.jpg
+Places365_test_00096862.jpg
+Places365_test_00096869.jpg
+Places365_test_00096877.jpg
+Places365_test_00096911.jpg
+Places365_test_00096922.jpg
+Places365_test_00096923.jpg
+Places365_test_00096925.jpg
+Places365_test_00096953.jpg
+Places365_test_00096963.jpg
+Places365_test_00096982.jpg
+Places365_test_00096985.jpg
+Places365_test_00096989.jpg
+Places365_test_00097009.jpg
+Places365_test_00097011.jpg
+Places365_test_00097019.jpg
+Places365_test_00097030.jpg
+Places365_test_00097063.jpg
+Places365_test_00097070.jpg
+Places365_test_00097074.jpg
+Places365_test_00097075.jpg
+Places365_test_00097093.jpg
+Places365_test_00097110.jpg
+Places365_test_00097121.jpg
+Places365_test_00097123.jpg
+Places365_test_00097159.jpg
+Places365_test_00097168.jpg
+Places365_test_00097170.jpg
+Places365_test_00097176.jpg
+Places365_test_00097179.jpg
+Places365_test_00097182.jpg
+Places365_test_00097193.jpg
+Places365_test_00097196.jpg
+Places365_test_00097220.jpg
+Places365_test_00097231.jpg
+Places365_test_00097233.jpg
+Places365_test_00097260.jpg
+Places365_test_00097273.jpg
+Places365_test_00097278.jpg
+Places365_test_00097287.jpg
+Places365_test_00097298.jpg
+Places365_test_00097316.jpg
+Places365_test_00097319.jpg
+Places365_test_00097336.jpg
+Places365_test_00097355.jpg
+Places365_test_00097365.jpg
+Places365_test_00097375.jpg
+Places365_test_00097402.jpg
+Places365_test_00097405.jpg
+Places365_test_00097414.jpg
+Places365_test_00097416.jpg
+Places365_test_00097422.jpg
+Places365_test_00097423.jpg
+Places365_test_00097426.jpg
+Places365_test_00097447.jpg
+Places365_test_00097451.jpg
+Places365_test_00097453.jpg
+Places365_test_00097460.jpg
+Places365_test_00097465.jpg
+Places365_test_00097469.jpg
+Places365_test_00097480.jpg
+Places365_test_00097483.jpg
+Places365_test_00097485.jpg
+Places365_test_00097492.jpg
+Places365_test_00097522.jpg
+Places365_test_00097532.jpg
+Places365_test_00097542.jpg
+Places365_test_00097543.jpg
+Places365_test_00097554.jpg
+Places365_test_00097561.jpg
+Places365_test_00097563.jpg
+Places365_test_00097570.jpg
+Places365_test_00097586.jpg
+Places365_test_00097633.jpg
+Places365_test_00097639.jpg
+Places365_test_00097649.jpg
+Places365_test_00097657.jpg
+Places365_test_00097660.jpg
+Places365_test_00097664.jpg
+Places365_test_00097667.jpg
+Places365_test_00097697.jpg
+Places365_test_00097710.jpg
+Places365_test_00097711.jpg
+Places365_test_00097715.jpg
+Places365_test_00097774.jpg
+Places365_test_00097780.jpg
+Places365_test_00097781.jpg
+Places365_test_00097800.jpg
+Places365_test_00097810.jpg
+Places365_test_00097812.jpg
+Places365_test_00097831.jpg
+Places365_test_00097835.jpg
+Places365_test_00097856.jpg
+Places365_test_00097859.jpg
+Places365_test_00097867.jpg
+Places365_test_00097868.jpg
+Places365_test_00097871.jpg
+Places365_test_00097875.jpg
+Places365_test_00097876.jpg
+Places365_test_00097891.jpg
+Places365_test_00097915.jpg
+Places365_test_00097923.jpg
+Places365_test_00097929.jpg
+Places365_test_00097944.jpg
+Places365_test_00097945.jpg
+Places365_test_00097958.jpg
+Places365_test_00097964.jpg
+Places365_test_00098062.jpg
+Places365_test_00098069.jpg
+Places365_test_00098078.jpg
+Places365_test_00098115.jpg
+Places365_test_00098138.jpg
+Places365_test_00098147.jpg
+Places365_test_00098156.jpg
+Places365_test_00098162.jpg
+Places365_test_00098163.jpg
+Places365_test_00098177.jpg
+Places365_test_00098183.jpg
+Places365_test_00098184.jpg
+Places365_test_00098205.jpg
+Places365_test_00098217.jpg
+Places365_test_00098221.jpg
+Places365_test_00098233.jpg
+Places365_test_00098234.jpg
+Places365_test_00098241.jpg
+Places365_test_00098244.jpg
+Places365_test_00098248.jpg
+Places365_test_00098256.jpg
+Places365_test_00098296.jpg
+Places365_test_00098302.jpg
+Places365_test_00098316.jpg
+Places365_test_00098337.jpg
+Places365_test_00098352.jpg
+Places365_test_00098353.jpg
+Places365_test_00098356.jpg
+Places365_test_00098360.jpg
+Places365_test_00098363.jpg
+Places365_test_00098392.jpg
+Places365_test_00098397.jpg
+Places365_test_00098415.jpg
+Places365_test_00098418.jpg
+Places365_test_00098433.jpg
+Places365_test_00098441.jpg
+Places365_test_00098443.jpg
+Places365_test_00098453.jpg
+Places365_test_00098472.jpg
+Places365_test_00098488.jpg
+Places365_test_00098504.jpg
+Places365_test_00098531.jpg
+Places365_test_00098534.jpg
+Places365_test_00098544.jpg
+Places365_test_00098555.jpg
+Places365_test_00098570.jpg
+Places365_test_00098581.jpg
+Places365_test_00098586.jpg
+Places365_test_00098590.jpg
+Places365_test_00098591.jpg
+Places365_test_00098605.jpg
+Places365_test_00098618.jpg
+Places365_test_00098620.jpg
+Places365_test_00098659.jpg
+Places365_test_00098667.jpg
+Places365_test_00098668.jpg
+Places365_test_00098679.jpg
+Places365_test_00098685.jpg
+Places365_test_00098688.jpg
+Places365_test_00098692.jpg
+Places365_test_00098720.jpg
+Places365_test_00098727.jpg
+Places365_test_00098770.jpg
+Places365_test_00098790.jpg
+Places365_test_00098806.jpg
+Places365_test_00098824.jpg
+Places365_test_00098832.jpg
+Places365_test_00098853.jpg
+Places365_test_00098878.jpg
+Places365_test_00098883.jpg
+Places365_test_00098885.jpg
+Places365_test_00098894.jpg
+Places365_test_00098899.jpg
+Places365_test_00098901.jpg
+Places365_test_00098905.jpg
+Places365_test_00098925.jpg
+Places365_test_00098935.jpg
+Places365_test_00098937.jpg
+Places365_test_00098943.jpg
+Places365_test_00098947.jpg
+Places365_test_00098948.jpg
+Places365_test_00098965.jpg
+Places365_test_00098978.jpg
+Places365_test_00098986.jpg
+Places365_test_00098998.jpg
+Places365_test_00099003.jpg
+Places365_test_00099004.jpg
+Places365_test_00099007.jpg
+Places365_test_00099016.jpg
+Places365_test_00099022.jpg
+Places365_test_00099025.jpg
+Places365_test_00099035.jpg
+Places365_test_00099038.jpg
+Places365_test_00099050.jpg
+Places365_test_00099053.jpg
+Places365_test_00099057.jpg
+Places365_test_00099062.jpg
+Places365_test_00099087.jpg
+Places365_test_00099094.jpg
+Places365_test_00099115.jpg
+Places365_test_00099116.jpg
+Places365_test_00099127.jpg
+Places365_test_00099138.jpg
+Places365_test_00099141.jpg
+Places365_test_00099154.jpg
+Places365_test_00099155.jpg
+Places365_test_00099157.jpg
+Places365_test_00099173.jpg
+Places365_test_00099178.jpg
+Places365_test_00099181.jpg
+Places365_test_00099184.jpg
+Places365_test_00099225.jpg
+Places365_test_00099247.jpg
+Places365_test_00099249.jpg
+Places365_test_00099269.jpg
+Places365_test_00099281.jpg
+Places365_test_00099297.jpg
+Places365_test_00099301.jpg
+Places365_test_00099313.jpg
+Places365_test_00099327.jpg
+Places365_test_00099329.jpg
+Places365_test_00099344.jpg
+Places365_test_00099353.jpg
+Places365_test_00099380.jpg
+Places365_test_00099384.jpg
+Places365_test_00099395.jpg
+Places365_test_00099415.jpg
+Places365_test_00099419.jpg
+Places365_test_00099425.jpg
+Places365_test_00099430.jpg
+Places365_test_00099443.jpg
+Places365_test_00099460.jpg
+Places365_test_00099464.jpg
+Places365_test_00099465.jpg
+Places365_test_00099468.jpg
+Places365_test_00099486.jpg
+Places365_test_00099492.jpg
+Places365_test_00099498.jpg
+Places365_test_00099499.jpg
+Places365_test_00099507.jpg
+Places365_test_00099520.jpg
+Places365_test_00099533.jpg
+Places365_test_00099560.jpg
+Places365_test_00099568.jpg
+Places365_test_00099574.jpg
+Places365_test_00099590.jpg
+Places365_test_00099593.jpg
+Places365_test_00099595.jpg
+Places365_test_00099614.jpg
+Places365_test_00099658.jpg
+Places365_test_00099662.jpg
+Places365_test_00099679.jpg
+Places365_test_00099683.jpg
+Places365_test_00099690.jpg
+Places365_test_00099725.jpg
+Places365_test_00099727.jpg
+Places365_test_00099732.jpg
+Places365_test_00099754.jpg
+Places365_test_00099766.jpg
+Places365_test_00099767.jpg
+Places365_test_00099768.jpg
+Places365_test_00099776.jpg
+Places365_test_00099789.jpg
+Places365_test_00099792.jpg
+Places365_test_00099799.jpg
+Places365_test_00099806.jpg
+Places365_test_00099810.jpg
+Places365_test_00099814.jpg
+Places365_test_00099830.jpg
+Places365_test_00099843.jpg
+Places365_test_00099844.jpg
+Places365_test_00099847.jpg
+Places365_test_00099864.jpg
+Places365_test_00099867.jpg
+Places365_test_00099871.jpg
+Places365_test_00099875.jpg
+Places365_test_00099876.jpg
+Places365_test_00099896.jpg
+Places365_test_00099901.jpg
+Places365_test_00099904.jpg
+Places365_test_00099910.jpg
+Places365_test_00099915.jpg
+Places365_test_00099933.jpg
+Places365_test_00099977.jpg
+Places365_test_00099983.jpg
+Places365_test_00100002.jpg
+Places365_test_00100017.jpg
+Places365_test_00100027.jpg
+Places365_test_00100034.jpg
+Places365_test_00100039.jpg
+Places365_test_00100047.jpg
+Places365_test_00100076.jpg
+Places365_test_00100097.jpg
+Places365_test_00100098.jpg
+Places365_test_00100119.jpg
+Places365_test_00100138.jpg
+Places365_test_00100154.jpg
+Places365_test_00100167.jpg
+Places365_test_00100188.jpg
+Places365_test_00100203.jpg
+Places365_test_00100234.jpg
+Places365_test_00100246.jpg
+Places365_test_00100253.jpg
+Places365_test_00100254.jpg
+Places365_test_00100279.jpg
+Places365_test_00100282.jpg
+Places365_test_00100290.jpg
+Places365_test_00100292.jpg
+Places365_test_00100311.jpg
+Places365_test_00100312.jpg
+Places365_test_00100334.jpg
+Places365_test_00100338.jpg
+Places365_test_00100364.jpg
+Places365_test_00100375.jpg
+Places365_test_00100386.jpg
+Places365_test_00100406.jpg
+Places365_test_00100421.jpg
+Places365_test_00100426.jpg
+Places365_test_00100428.jpg
+Places365_test_00100436.jpg
+Places365_test_00100443.jpg
+Places365_test_00100445.jpg
+Places365_test_00100447.jpg
+Places365_test_00100453.jpg
+Places365_test_00100455.jpg
+Places365_test_00100462.jpg
+Places365_test_00100471.jpg
+Places365_test_00100493.jpg
+Places365_test_00100498.jpg
+Places365_test_00100501.jpg
+Places365_test_00100508.jpg
+Places365_test_00100516.jpg
+Places365_test_00100517.jpg
+Places365_test_00100542.jpg
+Places365_test_00100544.jpg
+Places365_test_00100573.jpg
+Places365_test_00100586.jpg
+Places365_test_00100587.jpg
+Places365_test_00100599.jpg
+Places365_test_00100603.jpg
+Places365_test_00100609.jpg
+Places365_test_00100634.jpg
+Places365_test_00100646.jpg
+Places365_test_00100657.jpg
+Places365_test_00100666.jpg
+Places365_test_00100670.jpg
+Places365_test_00100678.jpg
+Places365_test_00100684.jpg
+Places365_test_00100687.jpg
+Places365_test_00100704.jpg
+Places365_test_00100713.jpg
+Places365_test_00100715.jpg
+Places365_test_00100718.jpg
+Places365_test_00100722.jpg
+Places365_test_00100758.jpg
+Places365_test_00100760.jpg
+Places365_test_00100763.jpg
+Places365_test_00100768.jpg
+Places365_test_00100777.jpg
+Places365_test_00100784.jpg
+Places365_test_00100787.jpg
+Places365_test_00100794.jpg
+Places365_test_00100798.jpg
+Places365_test_00100817.jpg
+Places365_test_00100819.jpg
+Places365_test_00100824.jpg
+Places365_test_00100825.jpg
+Places365_test_00100850.jpg
+Places365_test_00100853.jpg
+Places365_test_00100858.jpg
+Places365_test_00100860.jpg
+Places365_test_00100870.jpg
+Places365_test_00100882.jpg
+Places365_test_00100884.jpg
+Places365_test_00100893.jpg
+Places365_test_00100894.jpg
+Places365_test_00100907.jpg
+Places365_test_00100921.jpg
+Places365_test_00100932.jpg
+Places365_test_00100953.jpg
+Places365_test_00100961.jpg
+Places365_test_00100963.jpg
+Places365_test_00100975.jpg
+Places365_test_00100978.jpg
+Places365_test_00101026.jpg
+Places365_test_00101033.jpg
+Places365_test_00101045.jpg
+Places365_test_00101052.jpg
+Places365_test_00101072.jpg
+Places365_test_00101075.jpg
+Places365_test_00101079.jpg
+Places365_test_00101110.jpg
+Places365_test_00101115.jpg
+Places365_test_00101117.jpg
+Places365_test_00101124.jpg
+Places365_test_00101130.jpg
+Places365_test_00101143.jpg
+Places365_test_00101152.jpg
+Places365_test_00101170.jpg
+Places365_test_00101190.jpg
+Places365_test_00101205.jpg
+Places365_test_00101206.jpg
+Places365_test_00101219.jpg
+Places365_test_00101223.jpg
+Places365_test_00101224.jpg
+Places365_test_00101230.jpg
+Places365_test_00101239.jpg
+Places365_test_00101240.jpg
+Places365_test_00101247.jpg
+Places365_test_00101269.jpg
+Places365_test_00101274.jpg
+Places365_test_00101276.jpg
+Places365_test_00101277.jpg
+Places365_test_00101281.jpg
+Places365_test_00101284.jpg
+Places365_test_00101300.jpg
+Places365_test_00101313.jpg
+Places365_test_00101320.jpg
+Places365_test_00101322.jpg
+Places365_test_00101344.jpg
+Places365_test_00101355.jpg
+Places365_test_00101361.jpg
+Places365_test_00101401.jpg
+Places365_test_00101411.jpg
+Places365_test_00101413.jpg
+Places365_test_00101418.jpg
+Places365_test_00101423.jpg
+Places365_test_00101442.jpg
+Places365_test_00101444.jpg
+Places365_test_00101450.jpg
+Places365_test_00101453.jpg
+Places365_test_00101476.jpg
+Places365_test_00101480.jpg
+Places365_test_00101483.jpg
+Places365_test_00101497.jpg
+Places365_test_00101502.jpg
+Places365_test_00101506.jpg
+Places365_test_00101513.jpg
+Places365_test_00101534.jpg
+Places365_test_00101545.jpg
+Places365_test_00101561.jpg
+Places365_test_00101566.jpg
+Places365_test_00101601.jpg
+Places365_test_00101606.jpg
+Places365_test_00101628.jpg
+Places365_test_00101630.jpg
+Places365_test_00101637.jpg
+Places365_test_00101645.jpg
+Places365_test_00101659.jpg
+Places365_test_00101668.jpg
+Places365_test_00101673.jpg
+Places365_test_00101686.jpg
+Places365_test_00101721.jpg
+Places365_test_00101726.jpg
+Places365_test_00101729.jpg
+Places365_test_00101744.jpg
+Places365_test_00101765.jpg
+Places365_test_00101769.jpg
+Places365_test_00101781.jpg
+Places365_test_00101806.jpg
+Places365_test_00101808.jpg
+Places365_test_00101830.jpg
+Places365_test_00101834.jpg
+Places365_test_00101848.jpg
+Places365_test_00101868.jpg
+Places365_test_00101885.jpg
+Places365_test_00101893.jpg
+Places365_test_00101903.jpg
+Places365_test_00101910.jpg
+Places365_test_00101914.jpg
+Places365_test_00101919.jpg
+Places365_test_00101929.jpg
+Places365_test_00101944.jpg
+Places365_test_00101948.jpg
+Places365_test_00101955.jpg
+Places365_test_00101956.jpg
+Places365_test_00101964.jpg
+Places365_test_00101972.jpg
+Places365_test_00101993.jpg
+Places365_test_00101996.jpg
+Places365_test_00102012.jpg
+Places365_test_00102020.jpg
+Places365_test_00102031.jpg
+Places365_test_00102045.jpg
+Places365_test_00102057.jpg
+Places365_test_00102059.jpg
+Places365_test_00102061.jpg
+Places365_test_00102082.jpg
+Places365_test_00102091.jpg
+Places365_test_00102094.jpg
+Places365_test_00102103.jpg
+Places365_test_00102111.jpg
+Places365_test_00102118.jpg
+Places365_test_00102122.jpg
+Places365_test_00102133.jpg
+Places365_test_00102148.jpg
+Places365_test_00102153.jpg
+Places365_test_00102172.jpg
+Places365_test_00102179.jpg
+Places365_test_00102194.jpg
+Places365_test_00102211.jpg
+Places365_test_00102212.jpg
+Places365_test_00102217.jpg
+Places365_test_00102223.jpg
+Places365_test_00102244.jpg
+Places365_test_00102246.jpg
+Places365_test_00102254.jpg
+Places365_test_00102256.jpg
+Places365_test_00102260.jpg
+Places365_test_00102266.jpg
+Places365_test_00102276.jpg
+Places365_test_00102293.jpg
+Places365_test_00102295.jpg
+Places365_test_00102301.jpg
+Places365_test_00102303.jpg
+Places365_test_00102308.jpg
+Places365_test_00102321.jpg
+Places365_test_00102332.jpg
+Places365_test_00102354.jpg
+Places365_test_00102361.jpg
+Places365_test_00102396.jpg
+Places365_test_00102401.jpg
+Places365_test_00102409.jpg
+Places365_test_00102417.jpg
+Places365_test_00102426.jpg
+Places365_test_00102443.jpg
+Places365_test_00102451.jpg
+Places365_test_00102456.jpg
+Places365_test_00102457.jpg
+Places365_test_00102461.jpg
+Places365_test_00102490.jpg
+Places365_test_00102502.jpg
+Places365_test_00102503.jpg
+Places365_test_00102528.jpg
+Places365_test_00102567.jpg
+Places365_test_00102575.jpg
+Places365_test_00102589.jpg
+Places365_test_00102594.jpg
+Places365_test_00102595.jpg
+Places365_test_00102597.jpg
+Places365_test_00102599.jpg
+Places365_test_00102610.jpg
+Places365_test_00102618.jpg
+Places365_test_00102633.jpg
+Places365_test_00102656.jpg
+Places365_test_00102670.jpg
+Places365_test_00102673.jpg
+Places365_test_00102685.jpg
+Places365_test_00102693.jpg
+Places365_test_00102703.jpg
+Places365_test_00102707.jpg
+Places365_test_00102727.jpg
+Places365_test_00102733.jpg
+Places365_test_00102735.jpg
+Places365_test_00102739.jpg
+Places365_test_00102745.jpg
+Places365_test_00102762.jpg
+Places365_test_00102782.jpg
+Places365_test_00102785.jpg
+Places365_test_00102795.jpg
+Places365_test_00102796.jpg
+Places365_test_00102811.jpg
+Places365_test_00102864.jpg
+Places365_test_00102869.jpg
+Places365_test_00102881.jpg
+Places365_test_00102937.jpg
+Places365_test_00102943.jpg
+Places365_test_00102999.jpg
+Places365_test_00103002.jpg
+Places365_test_00103003.jpg
+Places365_test_00103008.jpg
+Places365_test_00103010.jpg
+Places365_test_00103023.jpg
+Places365_test_00103037.jpg
+Places365_test_00103057.jpg
+Places365_test_00103061.jpg
+Places365_test_00103069.jpg
+Places365_test_00103074.jpg
+Places365_test_00103077.jpg
+Places365_test_00103094.jpg
+Places365_test_00103099.jpg
+Places365_test_00103116.jpg
+Places365_test_00103122.jpg
+Places365_test_00103130.jpg
+Places365_test_00103136.jpg
+Places365_test_00103149.jpg
+Places365_test_00103153.jpg
+Places365_test_00103177.jpg
+Places365_test_00103200.jpg
+Places365_test_00103214.jpg
+Places365_test_00103224.jpg
+Places365_test_00103228.jpg
+Places365_test_00103231.jpg
+Places365_test_00103238.jpg
+Places365_test_00103242.jpg
+Places365_test_00103250.jpg
+Places365_test_00103281.jpg
+Places365_test_00103284.jpg
+Places365_test_00103287.jpg
+Places365_test_00103301.jpg
+Places365_test_00103305.jpg
+Places365_test_00103317.jpg
+Places365_test_00103323.jpg
+Places365_test_00103327.jpg
+Places365_test_00103350.jpg
+Places365_test_00103353.jpg
+Places365_test_00103369.jpg
+Places365_test_00103383.jpg
+Places365_test_00103386.jpg
+Places365_test_00103387.jpg
+Places365_test_00103408.jpg
+Places365_test_00103418.jpg
+Places365_test_00103434.jpg
+Places365_test_00103442.jpg
+Places365_test_00103459.jpg
+Places365_test_00103465.jpg
+Places365_test_00103513.jpg
+Places365_test_00103525.jpg
+Places365_test_00103528.jpg
+Places365_test_00103572.jpg
+Places365_test_00103575.jpg
+Places365_test_00103589.jpg
+Places365_test_00103598.jpg
+Places365_test_00103600.jpg
+Places365_test_00103615.jpg
+Places365_test_00103618.jpg
+Places365_test_00103634.jpg
+Places365_test_00103638.jpg
+Places365_test_00103659.jpg
+Places365_test_00103664.jpg
+Places365_test_00103667.jpg
+Places365_test_00103695.jpg
+Places365_test_00103698.jpg
+Places365_test_00103747.jpg
+Places365_test_00103780.jpg
+Places365_test_00103781.jpg
+Places365_test_00103785.jpg
+Places365_test_00103797.jpg
+Places365_test_00103801.jpg
+Places365_test_00103856.jpg
+Places365_test_00103876.jpg
+Places365_test_00103886.jpg
+Places365_test_00103891.jpg
+Places365_test_00103924.jpg
+Places365_test_00103937.jpg
+Places365_test_00103938.jpg
+Places365_test_00103953.jpg
+Places365_test_00103981.jpg
+Places365_test_00103991.jpg
+Places365_test_00103993.jpg
+Places365_test_00104061.jpg
+Places365_test_00104067.jpg
+Places365_test_00104080.jpg
+Places365_test_00104083.jpg
+Places365_test_00104086.jpg
+Places365_test_00104089.jpg
+Places365_test_00104113.jpg
+Places365_test_00104136.jpg
+Places365_test_00104142.jpg
+Places365_test_00104147.jpg
+Places365_test_00104151.jpg
+Places365_test_00104152.jpg
+Places365_test_00104155.jpg
+Places365_test_00104156.jpg
+Places365_test_00104157.jpg
+Places365_test_00104159.jpg
+Places365_test_00104162.jpg
+Places365_test_00104169.jpg
+Places365_test_00104175.jpg
+Places365_test_00104181.jpg
+Places365_test_00104186.jpg
+Places365_test_00104193.jpg
+Places365_test_00104195.jpg
+Places365_test_00104202.jpg
+Places365_test_00104212.jpg
+Places365_test_00104218.jpg
+Places365_test_00104225.jpg
+Places365_test_00104261.jpg
+Places365_test_00104265.jpg
+Places365_test_00104268.jpg
+Places365_test_00104274.jpg
+Places365_test_00104275.jpg
+Places365_test_00104313.jpg
+Places365_test_00104324.jpg
+Places365_test_00104326.jpg
+Places365_test_00104345.jpg
+Places365_test_00104349.jpg
+Places365_test_00104361.jpg
+Places365_test_00104366.jpg
+Places365_test_00104407.jpg
+Places365_test_00104426.jpg
+Places365_test_00104428.jpg
+Places365_test_00104454.jpg
+Places365_test_00104456.jpg
+Places365_test_00104468.jpg
+Places365_test_00104472.jpg
+Places365_test_00104481.jpg
+Places365_test_00104489.jpg
+Places365_test_00104512.jpg
+Places365_test_00104515.jpg
+Places365_test_00104523.jpg
+Places365_test_00104571.jpg
+Places365_test_00104582.jpg
+Places365_test_00104583.jpg
+Places365_test_00104594.jpg
+Places365_test_00104604.jpg
+Places365_test_00104610.jpg
+Places365_test_00104611.jpg
+Places365_test_00104638.jpg
+Places365_test_00104640.jpg
+Places365_test_00104641.jpg
+Places365_test_00104656.jpg
+Places365_test_00104677.jpg
+Places365_test_00104687.jpg
+Places365_test_00104693.jpg
+Places365_test_00104712.jpg
+Places365_test_00104727.jpg
+Places365_test_00104734.jpg
+Places365_test_00104737.jpg
+Places365_test_00104740.jpg
+Places365_test_00104744.jpg
+Places365_test_00104754.jpg
+Places365_test_00104757.jpg
+Places365_test_00104773.jpg
+Places365_test_00104791.jpg
+Places365_test_00104796.jpg
+Places365_test_00104837.jpg
+Places365_test_00104840.jpg
+Places365_test_00104846.jpg
+Places365_test_00104853.jpg
+Places365_test_00104862.jpg
+Places365_test_00104888.jpg
+Places365_test_00104895.jpg
+Places365_test_00104897.jpg
+Places365_test_00104931.jpg
+Places365_test_00104938.jpg
+Places365_test_00104942.jpg
+Places365_test_00104952.jpg
+Places365_test_00104956.jpg
+Places365_test_00104971.jpg
+Places365_test_00104978.jpg
+Places365_test_00104984.jpg
+Places365_test_00104988.jpg
+Places365_test_00104997.jpg
+Places365_test_00105022.jpg
+Places365_test_00105032.jpg
+Places365_test_00105040.jpg
+Places365_test_00105087.jpg
+Places365_test_00105089.jpg
+Places365_test_00105103.jpg
+Places365_test_00105105.jpg
+Places365_test_00105113.jpg
+Places365_test_00105127.jpg
+Places365_test_00105135.jpg
+Places365_test_00105150.jpg
+Places365_test_00105164.jpg
+Places365_test_00105183.jpg
+Places365_test_00105186.jpg
+Places365_test_00105189.jpg
+Places365_test_00105200.jpg
+Places365_test_00105226.jpg
+Places365_test_00105237.jpg
+Places365_test_00105238.jpg
+Places365_test_00105251.jpg
+Places365_test_00105262.jpg
+Places365_test_00105269.jpg
+Places365_test_00105270.jpg
+Places365_test_00105282.jpg
+Places365_test_00105283.jpg
+Places365_test_00105296.jpg
+Places365_test_00105297.jpg
+Places365_test_00105306.jpg
+Places365_test_00105316.jpg
+Places365_test_00105343.jpg
+Places365_test_00105357.jpg
+Places365_test_00105369.jpg
+Places365_test_00105380.jpg
+Places365_test_00105383.jpg
+Places365_test_00105413.jpg
+Places365_test_00105422.jpg
+Places365_test_00105436.jpg
+Places365_test_00105441.jpg
+Places365_test_00105444.jpg
+Places365_test_00105457.jpg
+Places365_test_00105458.jpg
+Places365_test_00105464.jpg
+Places365_test_00105467.jpg
+Places365_test_00105482.jpg
+Places365_test_00105483.jpg
+Places365_test_00105551.jpg
+Places365_test_00105558.jpg
+Places365_test_00105565.jpg
+Places365_test_00105569.jpg
+Places365_test_00105580.jpg
+Places365_test_00105583.jpg
+Places365_test_00105585.jpg
+Places365_test_00105594.jpg
+Places365_test_00105625.jpg
+Places365_test_00105628.jpg
+Places365_test_00105633.jpg
+Places365_test_00105647.jpg
+Places365_test_00105672.jpg
+Places365_test_00105710.jpg
+Places365_test_00105713.jpg
+Places365_test_00105717.jpg
+Places365_test_00105720.jpg
+Places365_test_00105724.jpg
+Places365_test_00105727.jpg
+Places365_test_00105728.jpg
+Places365_test_00105741.jpg
+Places365_test_00105749.jpg
+Places365_test_00105756.jpg
+Places365_test_00105760.jpg
+Places365_test_00105767.jpg
+Places365_test_00105772.jpg
+Places365_test_00105776.jpg
+Places365_test_00105788.jpg
+Places365_test_00105793.jpg
+Places365_test_00105817.jpg
+Places365_test_00105821.jpg
+Places365_test_00105824.jpg
+Places365_test_00105825.jpg
+Places365_test_00105828.jpg
+Places365_test_00105836.jpg
+Places365_test_00105851.jpg
+Places365_test_00105865.jpg
+Places365_test_00105886.jpg
+Places365_test_00105887.jpg
+Places365_test_00105903.jpg
+Places365_test_00105922.jpg
+Places365_test_00105931.jpg
+Places365_test_00105938.jpg
+Places365_test_00105954.jpg
+Places365_test_00105970.jpg
+Places365_test_00105985.jpg
+Places365_test_00105989.jpg
+Places365_test_00105991.jpg
+Places365_test_00105995.jpg
+Places365_test_00105996.jpg
+Places365_test_00105999.jpg
+Places365_test_00106001.jpg
+Places365_test_00106011.jpg
+Places365_test_00106018.jpg
+Places365_test_00106022.jpg
+Places365_test_00106047.jpg
+Places365_test_00106092.jpg
+Places365_test_00106111.jpg
+Places365_test_00106126.jpg
+Places365_test_00106135.jpg
+Places365_test_00106148.jpg
+Places365_test_00106152.jpg
+Places365_test_00106183.jpg
+Places365_test_00106185.jpg
+Places365_test_00106192.jpg
+Places365_test_00106208.jpg
+Places365_test_00106221.jpg
+Places365_test_00106231.jpg
+Places365_test_00106232.jpg
+Places365_test_00106274.jpg
+Places365_test_00106284.jpg
+Places365_test_00106286.jpg
+Places365_test_00106301.jpg
+Places365_test_00106313.jpg
+Places365_test_00106321.jpg
+Places365_test_00106331.jpg
+Places365_test_00106334.jpg
+Places365_test_00106348.jpg
+Places365_test_00106374.jpg
+Places365_test_00106376.jpg
+Places365_test_00106384.jpg
+Places365_test_00106401.jpg
+Places365_test_00106440.jpg
+Places365_test_00106442.jpg
+Places365_test_00106445.jpg
+Places365_test_00106465.jpg
+Places365_test_00106473.jpg
+Places365_test_00106476.jpg
+Places365_test_00106482.jpg
+Places365_test_00106483.jpg
+Places365_test_00106498.jpg
+Places365_test_00106514.jpg
+Places365_test_00106528.jpg
+Places365_test_00106530.jpg
+Places365_test_00106551.jpg
+Places365_test_00106553.jpg
+Places365_test_00106558.jpg
+Places365_test_00106559.jpg
+Places365_test_00106563.jpg
+Places365_test_00106593.jpg
+Places365_test_00106596.jpg
+Places365_test_00106603.jpg
+Places365_test_00106604.jpg
+Places365_test_00106609.jpg
+Places365_test_00106615.jpg
+Places365_test_00106620.jpg
+Places365_test_00106628.jpg
+Places365_test_00106630.jpg
+Places365_test_00106635.jpg
+Places365_test_00106661.jpg
+Places365_test_00106662.jpg
+Places365_test_00106688.jpg
+Places365_test_00106702.jpg
+Places365_test_00106720.jpg
+Places365_test_00106741.jpg
+Places365_test_00106765.jpg
+Places365_test_00106787.jpg
+Places365_test_00106799.jpg
+Places365_test_00106891.jpg
+Places365_test_00106896.jpg
+Places365_test_00106899.jpg
+Places365_test_00106905.jpg
+Places365_test_00106909.jpg
+Places365_test_00106912.jpg
+Places365_test_00106915.jpg
+Places365_test_00106953.jpg
+Places365_test_00106959.jpg
+Places365_test_00106971.jpg
+Places365_test_00106972.jpg
+Places365_test_00106977.jpg
+Places365_test_00106993.jpg
+Places365_test_00107002.jpg
+Places365_test_00107006.jpg
+Places365_test_00107008.jpg
+Places365_test_00107009.jpg
+Places365_test_00107039.jpg
+Places365_test_00107048.jpg
+Places365_test_00107056.jpg
+Places365_test_00107069.jpg
+Places365_test_00107078.jpg
+Places365_test_00107098.jpg
+Places365_test_00107117.jpg
+Places365_test_00107119.jpg
+Places365_test_00107122.jpg
+Places365_test_00107127.jpg
+Places365_test_00107128.jpg
+Places365_test_00107142.jpg
+Places365_test_00107144.jpg
+Places365_test_00107170.jpg
+Places365_test_00107177.jpg
+Places365_test_00107184.jpg
+Places365_test_00107190.jpg
+Places365_test_00107242.jpg
+Places365_test_00107250.jpg
+Places365_test_00107260.jpg
+Places365_test_00107267.jpg
+Places365_test_00107282.jpg
+Places365_test_00107285.jpg
+Places365_test_00107291.jpg
+Places365_test_00107339.jpg
+Places365_test_00107345.jpg
+Places365_test_00107353.jpg
+Places365_test_00107365.jpg
+Places365_test_00107366.jpg
+Places365_test_00107367.jpg
+Places365_test_00107369.jpg
+Places365_test_00107390.jpg
+Places365_test_00107409.jpg
+Places365_test_00107425.jpg
+Places365_test_00107437.jpg
+Places365_test_00107464.jpg
+Places365_test_00107486.jpg
+Places365_test_00107505.jpg
+Places365_test_00107521.jpg
+Places365_test_00107527.jpg
+Places365_test_00107537.jpg
+Places365_test_00107539.jpg
+Places365_test_00107546.jpg
+Places365_test_00107551.jpg
+Places365_test_00107552.jpg
+Places365_test_00107563.jpg
+Places365_test_00107566.jpg
+Places365_test_00107569.jpg
+Places365_test_00107574.jpg
+Places365_test_00107591.jpg
+Places365_test_00107596.jpg
+Places365_test_00107624.jpg
+Places365_test_00107634.jpg
+Places365_test_00107637.jpg
+Places365_test_00107639.jpg
+Places365_test_00107656.jpg
+Places365_test_00107677.jpg
+Places365_test_00107691.jpg
+Places365_test_00107698.jpg
+Places365_test_00107711.jpg
+Places365_test_00107723.jpg
+Places365_test_00107731.jpg
+Places365_test_00107744.jpg
+Places365_test_00107765.jpg
+Places365_test_00107766.jpg
+Places365_test_00107779.jpg
+Places365_test_00107781.jpg
+Places365_test_00107783.jpg
+Places365_test_00107804.jpg
+Places365_test_00107821.jpg
+Places365_test_00107826.jpg
+Places365_test_00107827.jpg
+Places365_test_00107833.jpg
+Places365_test_00107844.jpg
+Places365_test_00107845.jpg
+Places365_test_00107853.jpg
+Places365_test_00107855.jpg
+Places365_test_00107866.jpg
+Places365_test_00107870.jpg
+Places365_test_00107872.jpg
+Places365_test_00107884.jpg
+Places365_test_00107892.jpg
+Places365_test_00107925.jpg
+Places365_test_00107927.jpg
+Places365_test_00107928.jpg
+Places365_test_00107930.jpg
+Places365_test_00107954.jpg
+Places365_test_00107956.jpg
+Places365_test_00107980.jpg
+Places365_test_00107998.jpg
+Places365_test_00108002.jpg
+Places365_test_00108009.jpg
+Places365_test_00108015.jpg
+Places365_test_00108029.jpg
+Places365_test_00108047.jpg
+Places365_test_00108112.jpg
+Places365_test_00108121.jpg
+Places365_test_00108123.jpg
+Places365_test_00108128.jpg
+Places365_test_00108155.jpg
+Places365_test_00108170.jpg
+Places365_test_00108172.jpg
+Places365_test_00108180.jpg
+Places365_test_00108193.jpg
+Places365_test_00108198.jpg
+Places365_test_00108211.jpg
+Places365_test_00108221.jpg
+Places365_test_00108231.jpg
+Places365_test_00108232.jpg
+Places365_test_00108242.jpg
+Places365_test_00108245.jpg
+Places365_test_00108260.jpg
+Places365_test_00108263.jpg
+Places365_test_00108280.jpg
+Places365_test_00108283.jpg
+Places365_test_00108302.jpg
+Places365_test_00108308.jpg
+Places365_test_00108313.jpg
+Places365_test_00108325.jpg
+Places365_test_00108331.jpg
+Places365_test_00108348.jpg
+Places365_test_00108359.jpg
+Places365_test_00108363.jpg
+Places365_test_00108383.jpg
+Places365_test_00108393.jpg
+Places365_test_00108402.jpg
+Places365_test_00108403.jpg
+Places365_test_00108432.jpg
+Places365_test_00108434.jpg
+Places365_test_00108449.jpg
+Places365_test_00108472.jpg
+Places365_test_00108489.jpg
+Places365_test_00108497.jpg
+Places365_test_00108514.jpg
+Places365_test_00108549.jpg
+Places365_test_00108566.jpg
+Places365_test_00108571.jpg
+Places365_test_00108573.jpg
+Places365_test_00108595.jpg
+Places365_test_00108621.jpg
+Places365_test_00108632.jpg
+Places365_test_00108642.jpg
+Places365_test_00108654.jpg
+Places365_test_00108664.jpg
+Places365_test_00108674.jpg
+Places365_test_00108693.jpg
+Places365_test_00108715.jpg
+Places365_test_00108717.jpg
+Places365_test_00108728.jpg
+Places365_test_00108730.jpg
+Places365_test_00108736.jpg
+Places365_test_00108740.jpg
+Places365_test_00108767.jpg
+Places365_test_00108780.jpg
+Places365_test_00108782.jpg
+Places365_test_00108786.jpg
+Places365_test_00108792.jpg
+Places365_test_00108803.jpg
+Places365_test_00108820.jpg
+Places365_test_00108837.jpg
+Places365_test_00108844.jpg
+Places365_test_00108845.jpg
+Places365_test_00108850.jpg
+Places365_test_00108854.jpg
+Places365_test_00108856.jpg
+Places365_test_00108857.jpg
+Places365_test_00108862.jpg
+Places365_test_00108876.jpg
+Places365_test_00108879.jpg
+Places365_test_00108888.jpg
+Places365_test_00108897.jpg
+Places365_test_00108904.jpg
+Places365_test_00108917.jpg
+Places365_test_00108920.jpg
+Places365_test_00108956.jpg
+Places365_test_00108959.jpg
+Places365_test_00108965.jpg
+Places365_test_00108972.jpg
+Places365_test_00108987.jpg
+Places365_test_00108991.jpg
+Places365_test_00109012.jpg
+Places365_test_00109014.jpg
+Places365_test_00109017.jpg
+Places365_test_00109025.jpg
+Places365_test_00109033.jpg
+Places365_test_00109056.jpg
+Places365_test_00109065.jpg
+Places365_test_00109068.jpg
+Places365_test_00109075.jpg
+Places365_test_00109136.jpg
+Places365_test_00109153.jpg
+Places365_test_00109158.jpg
+Places365_test_00109160.jpg
+Places365_test_00109165.jpg
+Places365_test_00109195.jpg
+Places365_test_00109215.jpg
+Places365_test_00109217.jpg
+Places365_test_00109230.jpg
+Places365_test_00109236.jpg
+Places365_test_00109263.jpg
+Places365_test_00109268.jpg
+Places365_test_00109281.jpg
+Places365_test_00109284.jpg
+Places365_test_00109287.jpg
+Places365_test_00109292.jpg
+Places365_test_00109314.jpg
+Places365_test_00109317.jpg
+Places365_test_00109337.jpg
+Places365_test_00109342.jpg
+Places365_test_00109350.jpg
+Places365_test_00109370.jpg
+Places365_test_00109375.jpg
+Places365_test_00109397.jpg
+Places365_test_00109400.jpg
+Places365_test_00109403.jpg
+Places365_test_00109426.jpg
+Places365_test_00109439.jpg
+Places365_test_00109443.jpg
+Places365_test_00109462.jpg
+Places365_test_00109483.jpg
+Places365_test_00109486.jpg
+Places365_test_00109489.jpg
+Places365_test_00109498.jpg
+Places365_test_00109522.jpg
+Places365_test_00109523.jpg
+Places365_test_00109527.jpg
+Places365_test_00109534.jpg
+Places365_test_00109557.jpg
+Places365_test_00109563.jpg
+Places365_test_00109564.jpg
+Places365_test_00109565.jpg
+Places365_test_00109577.jpg
+Places365_test_00109614.jpg
+Places365_test_00109646.jpg
+Places365_test_00109648.jpg
+Places365_test_00109661.jpg
+Places365_test_00109664.jpg
+Places365_test_00109666.jpg
+Places365_test_00109674.jpg
+Places365_test_00109690.jpg
+Places365_test_00109704.jpg
+Places365_test_00109707.jpg
+Places365_test_00109710.jpg
+Places365_test_00109717.jpg
+Places365_test_00109726.jpg
+Places365_test_00109738.jpg
+Places365_test_00109749.jpg
+Places365_test_00109754.jpg
+Places365_test_00109756.jpg
+Places365_test_00109764.jpg
+Places365_test_00109773.jpg
+Places365_test_00109774.jpg
+Places365_test_00109787.jpg
+Places365_test_00109796.jpg
+Places365_test_00109798.jpg
+Places365_test_00109799.jpg
+Places365_test_00109808.jpg
+Places365_test_00109824.jpg
+Places365_test_00109829.jpg
+Places365_test_00109840.jpg
+Places365_test_00109842.jpg
+Places365_test_00109849.jpg
+Places365_test_00109852.jpg
+Places365_test_00109855.jpg
+Places365_test_00109859.jpg
+Places365_test_00109860.jpg
+Places365_test_00109868.jpg
+Places365_test_00109884.jpg
+Places365_test_00109899.jpg
+Places365_test_00109900.jpg
+Places365_test_00109930.jpg
+Places365_test_00109936.jpg
+Places365_test_00109949.jpg
+Places365_test_00109991.jpg
+Places365_test_00110000.jpg
+Places365_test_00110008.jpg
+Places365_test_00110013.jpg
+Places365_test_00110034.jpg
+Places365_test_00110056.jpg
+Places365_test_00110059.jpg
+Places365_test_00110060.jpg
+Places365_test_00110069.jpg
+Places365_test_00110082.jpg
+Places365_test_00110083.jpg
+Places365_test_00110095.jpg
+Places365_test_00110106.jpg
+Places365_test_00110112.jpg
+Places365_test_00110119.jpg
+Places365_test_00110130.jpg
+Places365_test_00110141.jpg
+Places365_test_00110148.jpg
+Places365_test_00110158.jpg
+Places365_test_00110178.jpg
+Places365_test_00110198.jpg
+Places365_test_00110203.jpg
+Places365_test_00110210.jpg
+Places365_test_00110221.jpg
+Places365_test_00110222.jpg
+Places365_test_00110223.jpg
+Places365_test_00110235.jpg
+Places365_test_00110236.jpg
+Places365_test_00110253.jpg
+Places365_test_00110260.jpg
+Places365_test_00110275.jpg
+Places365_test_00110289.jpg
+Places365_test_00110312.jpg
+Places365_test_00110322.jpg
+Places365_test_00110357.jpg
+Places365_test_00110374.jpg
+Places365_test_00110376.jpg
+Places365_test_00110379.jpg
+Places365_test_00110386.jpg
+Places365_test_00110391.jpg
+Places365_test_00110394.jpg
+Places365_test_00110407.jpg
+Places365_test_00110416.jpg
+Places365_test_00110433.jpg
+Places365_test_00110445.jpg
+Places365_test_00110450.jpg
+Places365_test_00110452.jpg
+Places365_test_00110459.jpg
+Places365_test_00110467.jpg
+Places365_test_00110479.jpg
+Places365_test_00110497.jpg
+Places365_test_00110503.jpg
+Places365_test_00110521.jpg
+Places365_test_00110528.jpg
+Places365_test_00110537.jpg
+Places365_test_00110540.jpg
+Places365_test_00110558.jpg
+Places365_test_00110571.jpg
+Places365_test_00110577.jpg
+Places365_test_00110592.jpg
+Places365_test_00110595.jpg
+Places365_test_00110599.jpg
+Places365_test_00110611.jpg
+Places365_test_00110621.jpg
+Places365_test_00110623.jpg
+Places365_test_00110626.jpg
+Places365_test_00110627.jpg
+Places365_test_00110631.jpg
+Places365_test_00110642.jpg
+Places365_test_00110653.jpg
+Places365_test_00110658.jpg
+Places365_test_00110660.jpg
+Places365_test_00110670.jpg
+Places365_test_00110714.jpg
+Places365_test_00110720.jpg
+Places365_test_00110723.jpg
+Places365_test_00110732.jpg
+Places365_test_00110738.jpg
+Places365_test_00110749.jpg
+Places365_test_00110812.jpg
+Places365_test_00110821.jpg
+Places365_test_00110849.jpg
+Places365_test_00110862.jpg
+Places365_test_00110871.jpg
+Places365_test_00110874.jpg
+Places365_test_00110875.jpg
+Places365_test_00110876.jpg
+Places365_test_00110881.jpg
+Places365_test_00110884.jpg
+Places365_test_00110899.jpg
+Places365_test_00110907.jpg
+Places365_test_00110932.jpg
+Places365_test_00110952.jpg
+Places365_test_00110956.jpg
+Places365_test_00110964.jpg
+Places365_test_00110975.jpg
+Places365_test_00110985.jpg
+Places365_test_00111003.jpg
+Places365_test_00111012.jpg
+Places365_test_00111070.jpg
+Places365_test_00111075.jpg
+Places365_test_00111078.jpg
+Places365_test_00111084.jpg
+Places365_test_00111105.jpg
+Places365_test_00111130.jpg
+Places365_test_00111132.jpg
+Places365_test_00111139.jpg
+Places365_test_00111166.jpg
+Places365_test_00111167.jpg
+Places365_test_00111171.jpg
+Places365_test_00111183.jpg
+Places365_test_00111184.jpg
+Places365_test_00111188.jpg
+Places365_test_00111189.jpg
+Places365_test_00111191.jpg
+Places365_test_00111202.jpg
+Places365_test_00111213.jpg
+Places365_test_00111220.jpg
+Places365_test_00111221.jpg
+Places365_test_00111226.jpg
+Places365_test_00111240.jpg
+Places365_test_00111245.jpg
+Places365_test_00111248.jpg
+Places365_test_00111260.jpg
+Places365_test_00111268.jpg
+Places365_test_00111276.jpg
+Places365_test_00111312.jpg
+Places365_test_00111335.jpg
+Places365_test_00111355.jpg
+Places365_test_00111363.jpg
+Places365_test_00111366.jpg
+Places365_test_00111369.jpg
+Places365_test_00111374.jpg
+Places365_test_00111386.jpg
+Places365_test_00111394.jpg
+Places365_test_00111406.jpg
+Places365_test_00111432.jpg
+Places365_test_00111445.jpg
+Places365_test_00111469.jpg
+Places365_test_00111471.jpg
+Places365_test_00111515.jpg
+Places365_test_00111529.jpg
+Places365_test_00111554.jpg
+Places365_test_00111562.jpg
+Places365_test_00111590.jpg
+Places365_test_00111596.jpg
+Places365_test_00111601.jpg
+Places365_test_00111605.jpg
+Places365_test_00111609.jpg
+Places365_test_00111629.jpg
+Places365_test_00111641.jpg
+Places365_test_00111654.jpg
+Places365_test_00111662.jpg
+Places365_test_00111678.jpg
+Places365_test_00111684.jpg
+Places365_test_00111691.jpg
+Places365_test_00111706.jpg
+Places365_test_00111715.jpg
+Places365_test_00111726.jpg
+Places365_test_00111728.jpg
+Places365_test_00111740.jpg
+Places365_test_00111750.jpg
+Places365_test_00111763.jpg
+Places365_test_00111767.jpg
+Places365_test_00111775.jpg
+Places365_test_00111780.jpg
+Places365_test_00111781.jpg
+Places365_test_00111788.jpg
+Places365_test_00111795.jpg
+Places365_test_00111814.jpg
+Places365_test_00111816.jpg
+Places365_test_00111829.jpg
+Places365_test_00111838.jpg
+Places365_test_00111855.jpg
+Places365_test_00111857.jpg
+Places365_test_00111875.jpg
+Places365_test_00111907.jpg
+Places365_test_00111911.jpg
+Places365_test_00111935.jpg
+Places365_test_00111942.jpg
+Places365_test_00111947.jpg
+Places365_test_00111958.jpg
+Places365_test_00111962.jpg
+Places365_test_00111964.jpg
+Places365_test_00111968.jpg
+Places365_test_00111971.jpg
+Places365_test_00111973.jpg
+Places365_test_00111979.jpg
+Places365_test_00111981.jpg
+Places365_test_00111994.jpg
+Places365_test_00112003.jpg
+Places365_test_00112010.jpg
+Places365_test_00112037.jpg
+Places365_test_00112060.jpg
+Places365_test_00112066.jpg
+Places365_test_00112069.jpg
+Places365_test_00112075.jpg
+Places365_test_00112106.jpg
+Places365_test_00112113.jpg
+Places365_test_00112118.jpg
+Places365_test_00112147.jpg
+Places365_test_00112151.jpg
+Places365_test_00112158.jpg
+Places365_test_00112174.jpg
+Places365_test_00112186.jpg
+Places365_test_00112193.jpg
+Places365_test_00112195.jpg
+Places365_test_00112198.jpg
+Places365_test_00112229.jpg
+Places365_test_00112240.jpg
+Places365_test_00112242.jpg
+Places365_test_00112255.jpg
+Places365_test_00112258.jpg
+Places365_test_00112262.jpg
+Places365_test_00112274.jpg
+Places365_test_00112278.jpg
+Places365_test_00112295.jpg
+Places365_test_00112325.jpg
+Places365_test_00112346.jpg
+Places365_test_00112348.jpg
+Places365_test_00112370.jpg
+Places365_test_00112375.jpg
+Places365_test_00112377.jpg
+Places365_test_00112378.jpg
+Places365_test_00112387.jpg
+Places365_test_00112390.jpg
+Places365_test_00112421.jpg
+Places365_test_00112427.jpg
+Places365_test_00112429.jpg
+Places365_test_00112446.jpg
+Places365_test_00112449.jpg
+Places365_test_00112480.jpg
+Places365_test_00112493.jpg
+Places365_test_00112529.jpg
+Places365_test_00112538.jpg
+Places365_test_00112554.jpg
+Places365_test_00112563.jpg
+Places365_test_00112574.jpg
+Places365_test_00112575.jpg
+Places365_test_00112577.jpg
+Places365_test_00112592.jpg
+Places365_test_00112595.jpg
+Places365_test_00112603.jpg
+Places365_test_00112628.jpg
+Places365_test_00112636.jpg
+Places365_test_00112641.jpg
+Places365_test_00112652.jpg
+Places365_test_00112657.jpg
+Places365_test_00112672.jpg
+Places365_test_00112693.jpg
+Places365_test_00112703.jpg
+Places365_test_00112709.jpg
+Places365_test_00112725.jpg
+Places365_test_00112726.jpg
+Places365_test_00112731.jpg
+Places365_test_00112741.jpg
+Places365_test_00112751.jpg
+Places365_test_00112761.jpg
+Places365_test_00112765.jpg
+Places365_test_00112767.jpg
+Places365_test_00112768.jpg
+Places365_test_00112775.jpg
+Places365_test_00112788.jpg
+Places365_test_00112798.jpg
+Places365_test_00112801.jpg
+Places365_test_00112808.jpg
+Places365_test_00112817.jpg
+Places365_test_00112830.jpg
+Places365_test_00112845.jpg
+Places365_test_00112860.jpg
+Places365_test_00112866.jpg
+Places365_test_00112867.jpg
+Places365_test_00112869.jpg
+Places365_test_00112894.jpg
+Places365_test_00112899.jpg
+Places365_test_00112912.jpg
+Places365_test_00112920.jpg
+Places365_test_00112929.jpg
+Places365_test_00112937.jpg
+Places365_test_00112944.jpg
+Places365_test_00112949.jpg
+Places365_test_00112964.jpg
+Places365_test_00112975.jpg
+Places365_test_00112981.jpg
+Places365_test_00112989.jpg
+Places365_test_00112990.jpg
+Places365_test_00113000.jpg
+Places365_test_00113009.jpg
+Places365_test_00113015.jpg
+Places365_test_00113018.jpg
+Places365_test_00113033.jpg
+Places365_test_00113034.jpg
+Places365_test_00113038.jpg
+Places365_test_00113053.jpg
+Places365_test_00113064.jpg
+Places365_test_00113075.jpg
+Places365_test_00113085.jpg
+Places365_test_00113111.jpg
+Places365_test_00113113.jpg
+Places365_test_00113122.jpg
+Places365_test_00113123.jpg
+Places365_test_00113153.jpg
+Places365_test_00113163.jpg
+Places365_test_00113171.jpg
+Places365_test_00113173.jpg
+Places365_test_00113188.jpg
+Places365_test_00113207.jpg
+Places365_test_00113214.jpg
+Places365_test_00113222.jpg
+Places365_test_00113230.jpg
+Places365_test_00113232.jpg
+Places365_test_00113243.jpg
+Places365_test_00113251.jpg
+Places365_test_00113266.jpg
+Places365_test_00113269.jpg
+Places365_test_00113305.jpg
+Places365_test_00113314.jpg
+Places365_test_00113335.jpg
+Places365_test_00113359.jpg
+Places365_test_00113374.jpg
+Places365_test_00113380.jpg
+Places365_test_00113394.jpg
+Places365_test_00113422.jpg
+Places365_test_00113423.jpg
+Places365_test_00113431.jpg
+Places365_test_00113441.jpg
+Places365_test_00113446.jpg
+Places365_test_00113469.jpg
+Places365_test_00113478.jpg
+Places365_test_00113480.jpg
+Places365_test_00113481.jpg
+Places365_test_00113521.jpg
+Places365_test_00113525.jpg
+Places365_test_00113529.jpg
+Places365_test_00113531.jpg
+Places365_test_00113544.jpg
+Places365_test_00113554.jpg
+Places365_test_00113575.jpg
+Places365_test_00113590.jpg
+Places365_test_00113612.jpg
+Places365_test_00113614.jpg
+Places365_test_00113629.jpg
+Places365_test_00113634.jpg
+Places365_test_00113636.jpg
+Places365_test_00113643.jpg
+Places365_test_00113667.jpg
+Places365_test_00113685.jpg
+Places365_test_00113693.jpg
+Places365_test_00113723.jpg
+Places365_test_00113734.jpg
+Places365_test_00113736.jpg
+Places365_test_00113781.jpg
+Places365_test_00113786.jpg
+Places365_test_00113806.jpg
+Places365_test_00113809.jpg
+Places365_test_00113813.jpg
+Places365_test_00113823.jpg
+Places365_test_00113833.jpg
+Places365_test_00113835.jpg
+Places365_test_00113844.jpg
+Places365_test_00113853.jpg
+Places365_test_00113859.jpg
+Places365_test_00113867.jpg
+Places365_test_00113869.jpg
+Places365_test_00113883.jpg
+Places365_test_00113884.jpg
+Places365_test_00113888.jpg
+Places365_test_00113890.jpg
+Places365_test_00113901.jpg
+Places365_test_00113906.jpg
+Places365_test_00113924.jpg
+Places365_test_00113930.jpg
+Places365_test_00113942.jpg
+Places365_test_00113957.jpg
+Places365_test_00113982.jpg
+Places365_test_00113988.jpg
+Places365_test_00113991.jpg
+Places365_test_00114002.jpg
+Places365_test_00114003.jpg
+Places365_test_00114031.jpg
+Places365_test_00114036.jpg
+Places365_test_00114047.jpg
+Places365_test_00114067.jpg
+Places365_test_00114070.jpg
+Places365_test_00114072.jpg
+Places365_test_00114121.jpg
+Places365_test_00114152.jpg
+Places365_test_00114169.jpg
+Places365_test_00114173.jpg
+Places365_test_00114183.jpg
+Places365_test_00114194.jpg
+Places365_test_00114226.jpg
+Places365_test_00114238.jpg
+Places365_test_00114240.jpg
+Places365_test_00114274.jpg
+Places365_test_00114280.jpg
+Places365_test_00114283.jpg
+Places365_test_00114288.jpg
+Places365_test_00114289.jpg
+Places365_test_00114305.jpg
+Places365_test_00114329.jpg
+Places365_test_00114343.jpg
+Places365_test_00114352.jpg
+Places365_test_00114353.jpg
+Places365_test_00114358.jpg
+Places365_test_00114360.jpg
+Places365_test_00114363.jpg
+Places365_test_00114364.jpg
+Places365_test_00114384.jpg
+Places365_test_00114399.jpg
+Places365_test_00114407.jpg
+Places365_test_00114408.jpg
+Places365_test_00114413.jpg
+Places365_test_00114419.jpg
+Places365_test_00114427.jpg
+Places365_test_00114431.jpg
+Places365_test_00114434.jpg
+Places365_test_00114454.jpg
+Places365_test_00114461.jpg
+Places365_test_00114465.jpg
+Places365_test_00114468.jpg
+Places365_test_00114470.jpg
+Places365_test_00114474.jpg
+Places365_test_00114475.jpg
+Places365_test_00114486.jpg
+Places365_test_00114489.jpg
+Places365_test_00114494.jpg
+Places365_test_00114504.jpg
+Places365_test_00114507.jpg
+Places365_test_00114514.jpg
+Places365_test_00114520.jpg
+Places365_test_00114534.jpg
+Places365_test_00114538.jpg
+Places365_test_00114551.jpg
+Places365_test_00114556.jpg
+Places365_test_00114558.jpg
+Places365_test_00114562.jpg
+Places365_test_00114566.jpg
+Places365_test_00114585.jpg
+Places365_test_00114594.jpg
+Places365_test_00114607.jpg
+Places365_test_00114609.jpg
+Places365_test_00114626.jpg
+Places365_test_00114637.jpg
+Places365_test_00114639.jpg
+Places365_test_00114643.jpg
+Places365_test_00114645.jpg
+Places365_test_00114647.jpg
+Places365_test_00114664.jpg
+Places365_test_00114684.jpg
+Places365_test_00114715.jpg
+Places365_test_00114723.jpg
+Places365_test_00114732.jpg
+Places365_test_00114755.jpg
+Places365_test_00114762.jpg
+Places365_test_00114767.jpg
+Places365_test_00114771.jpg
+Places365_test_00114792.jpg
+Places365_test_00114805.jpg
+Places365_test_00114833.jpg
+Places365_test_00114848.jpg
+Places365_test_00114856.jpg
+Places365_test_00114858.jpg
+Places365_test_00114867.jpg
+Places365_test_00114872.jpg
+Places365_test_00114876.jpg
+Places365_test_00114890.jpg
+Places365_test_00114891.jpg
+Places365_test_00114892.jpg
+Places365_test_00114903.jpg
+Places365_test_00114905.jpg
+Places365_test_00114913.jpg
+Places365_test_00114918.jpg
+Places365_test_00114928.jpg
+Places365_test_00114932.jpg
+Places365_test_00114939.jpg
+Places365_test_00114942.jpg
+Places365_test_00114944.jpg
+Places365_test_00114960.jpg
+Places365_test_00114973.jpg
+Places365_test_00114986.jpg
+Places365_test_00114997.jpg
+Places365_test_00114998.jpg
+Places365_test_00115018.jpg
+Places365_test_00115049.jpg
+Places365_test_00115058.jpg
+Places365_test_00115081.jpg
+Places365_test_00115115.jpg
+Places365_test_00115119.jpg
+Places365_test_00115130.jpg
+Places365_test_00115149.jpg
+Places365_test_00115178.jpg
+Places365_test_00115198.jpg
+Places365_test_00115217.jpg
+Places365_test_00115226.jpg
+Places365_test_00115235.jpg
+Places365_test_00115236.jpg
+Places365_test_00115241.jpg
+Places365_test_00115243.jpg
+Places365_test_00115263.jpg
+Places365_test_00115277.jpg
+Places365_test_00115292.jpg
+Places365_test_00115294.jpg
+Places365_test_00115300.jpg
+Places365_test_00115302.jpg
+Places365_test_00115315.jpg
+Places365_test_00115321.jpg
+Places365_test_00115335.jpg
+Places365_test_00115339.jpg
+Places365_test_00115354.jpg
+Places365_test_00115360.jpg
+Places365_test_00115364.jpg
+Places365_test_00115365.jpg
+Places365_test_00115366.jpg
+Places365_test_00115377.jpg
+Places365_test_00115388.jpg
+Places365_test_00115389.jpg
+Places365_test_00115392.jpg
+Places365_test_00115397.jpg
+Places365_test_00115406.jpg
+Places365_test_00115410.jpg
+Places365_test_00115437.jpg
+Places365_test_00115452.jpg
+Places365_test_00115458.jpg
+Places365_test_00115460.jpg
+Places365_test_00115480.jpg
+Places365_test_00115488.jpg
+Places365_test_00115491.jpg
+Places365_test_00115494.jpg
+Places365_test_00115495.jpg
+Places365_test_00115511.jpg
+Places365_test_00115512.jpg
+Places365_test_00115523.jpg
+Places365_test_00115524.jpg
+Places365_test_00115531.jpg
+Places365_test_00115564.jpg
+Places365_test_00115565.jpg
+Places365_test_00115583.jpg
+Places365_test_00115584.jpg
+Places365_test_00115587.jpg
+Places365_test_00115596.jpg
+Places365_test_00115601.jpg
+Places365_test_00115618.jpg
+Places365_test_00115637.jpg
+Places365_test_00115638.jpg
+Places365_test_00115640.jpg
+Places365_test_00115659.jpg
+Places365_test_00115664.jpg
+Places365_test_00115670.jpg
+Places365_test_00115682.jpg
+Places365_test_00115688.jpg
+Places365_test_00115696.jpg
+Places365_test_00115698.jpg
+Places365_test_00115721.jpg
+Places365_test_00115726.jpg
+Places365_test_00115745.jpg
+Places365_test_00115749.jpg
+Places365_test_00115756.jpg
+Places365_test_00115768.jpg
+Places365_test_00115779.jpg
+Places365_test_00115786.jpg
+Places365_test_00115787.jpg
+Places365_test_00115817.jpg
+Places365_test_00115829.jpg
+Places365_test_00115842.jpg
+Places365_test_00115848.jpg
+Places365_test_00115864.jpg
+Places365_test_00115868.jpg
+Places365_test_00115898.jpg
+Places365_test_00115915.jpg
+Places365_test_00115916.jpg
+Places365_test_00115952.jpg
+Places365_test_00115955.jpg
+Places365_test_00115960.jpg
+Places365_test_00115979.jpg
+Places365_test_00115981.jpg
+Places365_test_00115985.jpg
+Places365_test_00115993.jpg
+Places365_test_00116008.jpg
+Places365_test_00116011.jpg
+Places365_test_00116015.jpg
+Places365_test_00116025.jpg
+Places365_test_00116033.jpg
+Places365_test_00116069.jpg
+Places365_test_00116070.jpg
+Places365_test_00116081.jpg
+Places365_test_00116089.jpg
+Places365_test_00116090.jpg
+Places365_test_00116098.jpg
+Places365_test_00116102.jpg
+Places365_test_00116103.jpg
+Places365_test_00116107.jpg
+Places365_test_00116114.jpg
+Places365_test_00116121.jpg
+Places365_test_00116137.jpg
+Places365_test_00116164.jpg
+Places365_test_00116179.jpg
+Places365_test_00116200.jpg
+Places365_test_00116206.jpg
+Places365_test_00116214.jpg
+Places365_test_00116216.jpg
+Places365_test_00116223.jpg
+Places365_test_00116228.jpg
+Places365_test_00116242.jpg
+Places365_test_00116253.jpg
+Places365_test_00116258.jpg
+Places365_test_00116261.jpg
+Places365_test_00116269.jpg
+Places365_test_00116271.jpg
+Places365_test_00116283.jpg
+Places365_test_00116288.jpg
+Places365_test_00116293.jpg
+Places365_test_00116295.jpg
+Places365_test_00116302.jpg
+Places365_test_00116309.jpg
+Places365_test_00116329.jpg
+Places365_test_00116338.jpg
+Places365_test_00116339.jpg
+Places365_test_00116348.jpg
+Places365_test_00116382.jpg
+Places365_test_00116386.jpg
+Places365_test_00116414.jpg
+Places365_test_00116423.jpg
+Places365_test_00116449.jpg
+Places365_test_00116453.jpg
+Places365_test_00116456.jpg
+Places365_test_00116467.jpg
+Places365_test_00116491.jpg
+Places365_test_00116516.jpg
+Places365_test_00116523.jpg
+Places365_test_00116525.jpg
+Places365_test_00116534.jpg
+Places365_test_00116540.jpg
+Places365_test_00116552.jpg
+Places365_test_00116556.jpg
+Places365_test_00116567.jpg
+Places365_test_00116569.jpg
+Places365_test_00116577.jpg
+Places365_test_00116586.jpg
+Places365_test_00116601.jpg
+Places365_test_00116620.jpg
+Places365_test_00116625.jpg
+Places365_test_00116629.jpg
+Places365_test_00116642.jpg
+Places365_test_00116664.jpg
+Places365_test_00116679.jpg
+Places365_test_00116708.jpg
+Places365_test_00116728.jpg
+Places365_test_00116746.jpg
+Places365_test_00116753.jpg
+Places365_test_00116767.jpg
+Places365_test_00116781.jpg
+Places365_test_00116786.jpg
+Places365_test_00116822.jpg
+Places365_test_00116823.jpg
+Places365_test_00116828.jpg
+Places365_test_00116831.jpg
+Places365_test_00116846.jpg
+Places365_test_00116853.jpg
+Places365_test_00116863.jpg
+Places365_test_00116894.jpg
+Places365_test_00116897.jpg
+Places365_test_00116899.jpg
+Places365_test_00116916.jpg
+Places365_test_00116927.jpg
+Places365_test_00116929.jpg
+Places365_test_00116932.jpg
+Places365_test_00116943.jpg
+Places365_test_00116944.jpg
+Places365_test_00116960.jpg
+Places365_test_00116966.jpg
+Places365_test_00116978.jpg
+Places365_test_00116986.jpg
+Places365_test_00116996.jpg
+Places365_test_00117008.jpg
+Places365_test_00117034.jpg
+Places365_test_00117037.jpg
+Places365_test_00117071.jpg
+Places365_test_00117079.jpg
+Places365_test_00117084.jpg
+Places365_test_00117101.jpg
+Places365_test_00117102.jpg
+Places365_test_00117104.jpg
+Places365_test_00117108.jpg
+Places365_test_00117111.jpg
+Places365_test_00117135.jpg
+Places365_test_00117137.jpg
+Places365_test_00117141.jpg
+Places365_test_00117148.jpg
+Places365_test_00117163.jpg
+Places365_test_00117165.jpg
+Places365_test_00117187.jpg
+Places365_test_00117197.jpg
+Places365_test_00117204.jpg
+Places365_test_00117215.jpg
+Places365_test_00117222.jpg
+Places365_test_00117224.jpg
+Places365_test_00117231.jpg
+Places365_test_00117269.jpg
+Places365_test_00117287.jpg
+Places365_test_00117291.jpg
+Places365_test_00117302.jpg
+Places365_test_00117304.jpg
+Places365_test_00117314.jpg
+Places365_test_00117328.jpg
+Places365_test_00117334.jpg
+Places365_test_00117338.jpg
+Places365_test_00117350.jpg
+Places365_test_00117371.jpg
+Places365_test_00117378.jpg
+Places365_test_00117398.jpg
+Places365_test_00117427.jpg
+Places365_test_00117432.jpg
+Places365_test_00117455.jpg
+Places365_test_00117461.jpg
+Places365_test_00117463.jpg
+Places365_test_00117483.jpg
+Places365_test_00117494.jpg
+Places365_test_00117495.jpg
+Places365_test_00117500.jpg
+Places365_test_00117543.jpg
+Places365_test_00117554.jpg
+Places365_test_00117556.jpg
+Places365_test_00117563.jpg
+Places365_test_00117578.jpg
+Places365_test_00117581.jpg
+Places365_test_00117596.jpg
+Places365_test_00117618.jpg
+Places365_test_00117625.jpg
+Places365_test_00117628.jpg
+Places365_test_00117638.jpg
+Places365_test_00117687.jpg
+Places365_test_00117691.jpg
+Places365_test_00117703.jpg
+Places365_test_00117704.jpg
+Places365_test_00117713.jpg
+Places365_test_00117722.jpg
+Places365_test_00117732.jpg
+Places365_test_00117741.jpg
+Places365_test_00117760.jpg
+Places365_test_00117777.jpg
+Places365_test_00117782.jpg
+Places365_test_00117797.jpg
+Places365_test_00117819.jpg
+Places365_test_00117821.jpg
+Places365_test_00117822.jpg
+Places365_test_00117828.jpg
+Places365_test_00117847.jpg
+Places365_test_00117859.jpg
+Places365_test_00117868.jpg
+Places365_test_00117884.jpg
+Places365_test_00117893.jpg
+Places365_test_00117895.jpg
+Places365_test_00117900.jpg
+Places365_test_00117910.jpg
+Places365_test_00117931.jpg
+Places365_test_00117950.jpg
+Places365_test_00117955.jpg
+Places365_test_00117963.jpg
+Places365_test_00117975.jpg
+Places365_test_00117982.jpg
+Places365_test_00117993.jpg
+Places365_test_00118003.jpg
+Places365_test_00118008.jpg
+Places365_test_00118012.jpg
+Places365_test_00118021.jpg
+Places365_test_00118022.jpg
+Places365_test_00118034.jpg
+Places365_test_00118046.jpg
+Places365_test_00118077.jpg
+Places365_test_00118099.jpg
+Places365_test_00118119.jpg
+Places365_test_00118123.jpg
+Places365_test_00118129.jpg
+Places365_test_00118132.jpg
+Places365_test_00118136.jpg
+Places365_test_00118140.jpg
+Places365_test_00118148.jpg
+Places365_test_00118150.jpg
+Places365_test_00118170.jpg
+Places365_test_00118174.jpg
+Places365_test_00118183.jpg
+Places365_test_00118185.jpg
+Places365_test_00118191.jpg
+Places365_test_00118192.jpg
+Places365_test_00118194.jpg
+Places365_test_00118195.jpg
+Places365_test_00118203.jpg
+Places365_test_00118209.jpg
+Places365_test_00118220.jpg
+Places365_test_00118223.jpg
+Places365_test_00118248.jpg
+Places365_test_00118251.jpg
+Places365_test_00118261.jpg
+Places365_test_00118292.jpg
+Places365_test_00118293.jpg
+Places365_test_00118308.jpg
+Places365_test_00118313.jpg
+Places365_test_00118317.jpg
+Places365_test_00118326.jpg
+Places365_test_00118335.jpg
+Places365_test_00118363.jpg
+Places365_test_00118368.jpg
+Places365_test_00118372.jpg
+Places365_test_00118384.jpg
+Places365_test_00118388.jpg
+Places365_test_00118414.jpg
+Places365_test_00118437.jpg
+Places365_test_00118442.jpg
+Places365_test_00118448.jpg
+Places365_test_00118458.jpg
+Places365_test_00118481.jpg
+Places365_test_00118504.jpg
+Places365_test_00118506.jpg
+Places365_test_00118530.jpg
+Places365_test_00118555.jpg
+Places365_test_00118558.jpg
+Places365_test_00118571.jpg
+Places365_test_00118575.jpg
+Places365_test_00118586.jpg
+Places365_test_00118590.jpg
+Places365_test_00118601.jpg
+Places365_test_00118608.jpg
+Places365_test_00118645.jpg
+Places365_test_00118650.jpg
+Places365_test_00118656.jpg
+Places365_test_00118659.jpg
+Places365_test_00118661.jpg
+Places365_test_00118665.jpg
+Places365_test_00118670.jpg
+Places365_test_00118680.jpg
+Places365_test_00118684.jpg
+Places365_test_00118686.jpg
+Places365_test_00118688.jpg
+Places365_test_00118693.jpg
+Places365_test_00118695.jpg
+Places365_test_00118697.jpg
+Places365_test_00118701.jpg
+Places365_test_00118708.jpg
+Places365_test_00118717.jpg
+Places365_test_00118738.jpg
+Places365_test_00118745.jpg
+Places365_test_00118752.jpg
+Places365_test_00118762.jpg
+Places365_test_00118788.jpg
+Places365_test_00118817.jpg
+Places365_test_00118881.jpg
+Places365_test_00118884.jpg
+Places365_test_00118891.jpg
+Places365_test_00118902.jpg
+Places365_test_00118903.jpg
+Places365_test_00118923.jpg
+Places365_test_00118942.jpg
+Places365_test_00118955.jpg
+Places365_test_00118957.jpg
+Places365_test_00118958.jpg
+Places365_test_00118973.jpg
+Places365_test_00118976.jpg
+Places365_test_00118991.jpg
+Places365_test_00119011.jpg
+Places365_test_00119019.jpg
+Places365_test_00119020.jpg
+Places365_test_00119028.jpg
+Places365_test_00119045.jpg
+Places365_test_00119063.jpg
+Places365_test_00119073.jpg
+Places365_test_00119077.jpg
+Places365_test_00119089.jpg
+Places365_test_00119111.jpg
+Places365_test_00119117.jpg
+Places365_test_00119121.jpg
+Places365_test_00119136.jpg
+Places365_test_00119151.jpg
+Places365_test_00119171.jpg
+Places365_test_00119172.jpg
+Places365_test_00119188.jpg
+Places365_test_00119224.jpg
+Places365_test_00119234.jpg
+Places365_test_00119236.jpg
+Places365_test_00119260.jpg
+Places365_test_00119267.jpg
+Places365_test_00119275.jpg
+Places365_test_00119296.jpg
+Places365_test_00119312.jpg
+Places365_test_00119333.jpg
+Places365_test_00119350.jpg
+Places365_test_00119353.jpg
+Places365_test_00119368.jpg
+Places365_test_00119372.jpg
+Places365_test_00119410.jpg
+Places365_test_00119420.jpg
+Places365_test_00119433.jpg
+Places365_test_00119440.jpg
+Places365_test_00119459.jpg
+Places365_test_00119461.jpg
+Places365_test_00119463.jpg
+Places365_test_00119469.jpg
+Places365_test_00119470.jpg
+Places365_test_00119474.jpg
+Places365_test_00119492.jpg
+Places365_test_00119499.jpg
+Places365_test_00119528.jpg
+Places365_test_00119542.jpg
+Places365_test_00119551.jpg
+Places365_test_00119569.jpg
+Places365_test_00119573.jpg
+Places365_test_00119603.jpg
+Places365_test_00119611.jpg
+Places365_test_00119612.jpg
+Places365_test_00119621.jpg
+Places365_test_00119625.jpg
+Places365_test_00119632.jpg
+Places365_test_00119661.jpg
+Places365_test_00119663.jpg
+Places365_test_00119665.jpg
+Places365_test_00119703.jpg
+Places365_test_00119708.jpg
+Places365_test_00119719.jpg
+Places365_test_00119742.jpg
+Places365_test_00119746.jpg
+Places365_test_00119747.jpg
+Places365_test_00119751.jpg
+Places365_test_00119777.jpg
+Places365_test_00119778.jpg
+Places365_test_00119788.jpg
+Places365_test_00119795.jpg
+Places365_test_00119800.jpg
+Places365_test_00119807.jpg
+Places365_test_00119883.jpg
+Places365_test_00119889.jpg
+Places365_test_00119890.jpg
+Places365_test_00119921.jpg
+Places365_test_00119927.jpg
+Places365_test_00119931.jpg
+Places365_test_00119935.jpg
+Places365_test_00119940.jpg
+Places365_test_00119946.jpg
+Places365_test_00119950.jpg
+Places365_test_00119952.jpg
+Places365_test_00119982.jpg
+Places365_test_00119988.jpg
+Places365_test_00119991.jpg
+Places365_test_00119994.jpg
+Places365_test_00120006.jpg
+Places365_test_00120017.jpg
+Places365_test_00120056.jpg
+Places365_test_00120062.jpg
+Places365_test_00120069.jpg
+Places365_test_00120073.jpg
+Places365_test_00120102.jpg
+Places365_test_00120113.jpg
+Places365_test_00120133.jpg
+Places365_test_00120137.jpg
+Places365_test_00120146.jpg
+Places365_test_00120149.jpg
+Places365_test_00120199.jpg
+Places365_test_00120206.jpg
+Places365_test_00120210.jpg
+Places365_test_00120217.jpg
+Places365_test_00120219.jpg
+Places365_test_00120226.jpg
+Places365_test_00120229.jpg
+Places365_test_00120255.jpg
+Places365_test_00120261.jpg
+Places365_test_00120292.jpg
+Places365_test_00120293.jpg
+Places365_test_00120304.jpg
+Places365_test_00120307.jpg
+Places365_test_00120315.jpg
+Places365_test_00120319.jpg
+Places365_test_00120331.jpg
+Places365_test_00120354.jpg
+Places365_test_00120355.jpg
+Places365_test_00120363.jpg
+Places365_test_00120365.jpg
+Places365_test_00120370.jpg
+Places365_test_00120382.jpg
+Places365_test_00120389.jpg
+Places365_test_00120393.jpg
+Places365_test_00120405.jpg
+Places365_test_00120407.jpg
+Places365_test_00120413.jpg
+Places365_test_00120446.jpg
+Places365_test_00120453.jpg
+Places365_test_00120469.jpg
+Places365_test_00120470.jpg
+Places365_test_00120471.jpg
+Places365_test_00120484.jpg
+Places365_test_00120493.jpg
+Places365_test_00120513.jpg
+Places365_test_00120519.jpg
+Places365_test_00120527.jpg
+Places365_test_00120537.jpg
+Places365_test_00120552.jpg
+Places365_test_00120556.jpg
+Places365_test_00120559.jpg
+Places365_test_00120563.jpg
+Places365_test_00120573.jpg
+Places365_test_00120579.jpg
+Places365_test_00120582.jpg
+Places365_test_00120585.jpg
+Places365_test_00120586.jpg
+Places365_test_00120587.jpg
+Places365_test_00120609.jpg
+Places365_test_00120612.jpg
+Places365_test_00120614.jpg
+Places365_test_00120617.jpg
+Places365_test_00120630.jpg
+Places365_test_00120634.jpg
+Places365_test_00120650.jpg
+Places365_test_00120654.jpg
+Places365_test_00120660.jpg
+Places365_test_00120668.jpg
+Places365_test_00120677.jpg
+Places365_test_00120689.jpg
+Places365_test_00120692.jpg
+Places365_test_00120710.jpg
+Places365_test_00120718.jpg
+Places365_test_00120725.jpg
+Places365_test_00120740.jpg
+Places365_test_00120754.jpg
+Places365_test_00120759.jpg
+Places365_test_00120774.jpg
+Places365_test_00120778.jpg
+Places365_test_00120779.jpg
+Places365_test_00120791.jpg
+Places365_test_00120799.jpg
+Places365_test_00120814.jpg
+Places365_test_00120817.jpg
+Places365_test_00120839.jpg
+Places365_test_00120857.jpg
+Places365_test_00120878.jpg
+Places365_test_00120882.jpg
+Places365_test_00120887.jpg
+Places365_test_00120902.jpg
+Places365_test_00120909.jpg
+Places365_test_00120915.jpg
+Places365_test_00120925.jpg
+Places365_test_00120933.jpg
+Places365_test_00120963.jpg
+Places365_test_00120991.jpg
+Places365_test_00121007.jpg
+Places365_test_00121011.jpg
+Places365_test_00121019.jpg
+Places365_test_00121028.jpg
+Places365_test_00121047.jpg
+Places365_test_00121051.jpg
+Places365_test_00121090.jpg
+Places365_test_00121091.jpg
+Places365_test_00121095.jpg
+Places365_test_00121097.jpg
+Places365_test_00121130.jpg
+Places365_test_00121135.jpg
+Places365_test_00121139.jpg
+Places365_test_00121152.jpg
+Places365_test_00121161.jpg
+Places365_test_00121168.jpg
+Places365_test_00121172.jpg
+Places365_test_00121196.jpg
+Places365_test_00121197.jpg
+Places365_test_00121207.jpg
+Places365_test_00121209.jpg
+Places365_test_00121218.jpg
+Places365_test_00121241.jpg
+Places365_test_00121247.jpg
+Places365_test_00121255.jpg
+Places365_test_00121270.jpg
+Places365_test_00121275.jpg
+Places365_test_00121291.jpg
+Places365_test_00121311.jpg
+Places365_test_00121326.jpg
+Places365_test_00121332.jpg
+Places365_test_00121342.jpg
+Places365_test_00121356.jpg
+Places365_test_00121358.jpg
+Places365_test_00121379.jpg
+Places365_test_00121396.jpg
+Places365_test_00121442.jpg
+Places365_test_00121454.jpg
+Places365_test_00121472.jpg
+Places365_test_00121477.jpg
+Places365_test_00121487.jpg
+Places365_test_00121489.jpg
+Places365_test_00121494.jpg
+Places365_test_00121498.jpg
+Places365_test_00121506.jpg
+Places365_test_00121511.jpg
+Places365_test_00121531.jpg
+Places365_test_00121533.jpg
+Places365_test_00121550.jpg
+Places365_test_00121563.jpg
+Places365_test_00121583.jpg
+Places365_test_00121591.jpg
+Places365_test_00121602.jpg
+Places365_test_00121615.jpg
+Places365_test_00121618.jpg
+Places365_test_00121620.jpg
+Places365_test_00121623.jpg
+Places365_test_00121658.jpg
+Places365_test_00121664.jpg
+Places365_test_00121665.jpg
+Places365_test_00121667.jpg
+Places365_test_00121691.jpg
+Places365_test_00121695.jpg
+Places365_test_00121715.jpg
+Places365_test_00121718.jpg
+Places365_test_00121726.jpg
+Places365_test_00121762.jpg
+Places365_test_00121768.jpg
+Places365_test_00121776.jpg
+Places365_test_00121783.jpg
+Places365_test_00121811.jpg
+Places365_test_00121812.jpg
+Places365_test_00121818.jpg
+Places365_test_00121831.jpg
+Places365_test_00121832.jpg
+Places365_test_00121834.jpg
+Places365_test_00121889.jpg
+Places365_test_00121906.jpg
+Places365_test_00121917.jpg
+Places365_test_00121935.jpg
+Places365_test_00121937.jpg
+Places365_test_00121948.jpg
+Places365_test_00121952.jpg
+Places365_test_00121959.jpg
+Places365_test_00121973.jpg
+Places365_test_00122006.jpg
+Places365_test_00122015.jpg
+Places365_test_00122019.jpg
+Places365_test_00122035.jpg
+Places365_test_00122041.jpg
+Places365_test_00122045.jpg
+Places365_test_00122048.jpg
+Places365_test_00122051.jpg
+Places365_test_00122064.jpg
+Places365_test_00122095.jpg
+Places365_test_00122099.jpg
+Places365_test_00122108.jpg
+Places365_test_00122120.jpg
+Places365_test_00122131.jpg
+Places365_test_00122136.jpg
+Places365_test_00122141.jpg
+Places365_test_00122150.jpg
+Places365_test_00122154.jpg
+Places365_test_00122155.jpg
+Places365_test_00122161.jpg
+Places365_test_00122198.jpg
+Places365_test_00122212.jpg
+Places365_test_00122260.jpg
+Places365_test_00122265.jpg
+Places365_test_00122272.jpg
+Places365_test_00122274.jpg
+Places365_test_00122281.jpg
+Places365_test_00122287.jpg
+Places365_test_00122288.jpg
+Places365_test_00122299.jpg
+Places365_test_00122300.jpg
+Places365_test_00122318.jpg
+Places365_test_00122329.jpg
+Places365_test_00122333.jpg
+Places365_test_00122336.jpg
+Places365_test_00122342.jpg
+Places365_test_00122345.jpg
+Places365_test_00122348.jpg
+Places365_test_00122349.jpg
+Places365_test_00122354.jpg
+Places365_test_00122376.jpg
+Places365_test_00122384.jpg
+Places365_test_00122387.jpg
+Places365_test_00122393.jpg
+Places365_test_00122436.jpg
+Places365_test_00122463.jpg
+Places365_test_00122465.jpg
+Places365_test_00122475.jpg
+Places365_test_00122502.jpg
+Places365_test_00122503.jpg
+Places365_test_00122517.jpg
+Places365_test_00122544.jpg
+Places365_test_00122545.jpg
+Places365_test_00122556.jpg
+Places365_test_00122579.jpg
+Places365_test_00122588.jpg
+Places365_test_00122590.jpg
+Places365_test_00122595.jpg
+Places365_test_00122596.jpg
+Places365_test_00122652.jpg
+Places365_test_00122658.jpg
+Places365_test_00122662.jpg
+Places365_test_00122678.jpg
+Places365_test_00122681.jpg
+Places365_test_00122692.jpg
+Places365_test_00122696.jpg
+Places365_test_00122701.jpg
+Places365_test_00122717.jpg
+Places365_test_00122727.jpg
+Places365_test_00122747.jpg
+Places365_test_00122750.jpg
+Places365_test_00122754.jpg
+Places365_test_00122767.jpg
+Places365_test_00122778.jpg
+Places365_test_00122793.jpg
+Places365_test_00122798.jpg
+Places365_test_00122804.jpg
+Places365_test_00122823.jpg
+Places365_test_00122852.jpg
+Places365_test_00122896.jpg
+Places365_test_00122899.jpg
+Places365_test_00122902.jpg
+Places365_test_00122910.jpg
+Places365_test_00122923.jpg
+Places365_test_00122927.jpg
+Places365_test_00122936.jpg
+Places365_test_00122943.jpg
+Places365_test_00122954.jpg
+Places365_test_00122958.jpg
+Places365_test_00122974.jpg
+Places365_test_00122975.jpg
+Places365_test_00122981.jpg
+Places365_test_00123000.jpg
+Places365_test_00123001.jpg
+Places365_test_00123004.jpg
+Places365_test_00123024.jpg
+Places365_test_00123051.jpg
+Places365_test_00123055.jpg
+Places365_test_00123064.jpg
+Places365_test_00123071.jpg
+Places365_test_00123074.jpg
+Places365_test_00123078.jpg
+Places365_test_00123102.jpg
+Places365_test_00123107.jpg
+Places365_test_00123125.jpg
+Places365_test_00123126.jpg
+Places365_test_00123138.jpg
+Places365_test_00123150.jpg
+Places365_test_00123154.jpg
+Places365_test_00123161.jpg
+Places365_test_00123191.jpg
+Places365_test_00123199.jpg
+Places365_test_00123201.jpg
+Places365_test_00123210.jpg
+Places365_test_00123224.jpg
+Places365_test_00123258.jpg
+Places365_test_00123261.jpg
+Places365_test_00123263.jpg
+Places365_test_00123264.jpg
+Places365_test_00123276.jpg
+Places365_test_00123279.jpg
+Places365_test_00123291.jpg
+Places365_test_00123306.jpg
+Places365_test_00123326.jpg
+Places365_test_00123333.jpg
+Places365_test_00123335.jpg
+Places365_test_00123336.jpg
+Places365_test_00123341.jpg
+Places365_test_00123344.jpg
+Places365_test_00123363.jpg
+Places365_test_00123407.jpg
+Places365_test_00123418.jpg
+Places365_test_00123422.jpg
+Places365_test_00123442.jpg
+Places365_test_00123446.jpg
+Places365_test_00123458.jpg
+Places365_test_00123483.jpg
+Places365_test_00123492.jpg
+Places365_test_00123496.jpg
+Places365_test_00123511.jpg
+Places365_test_00123532.jpg
+Places365_test_00123555.jpg
+Places365_test_00123559.jpg
+Places365_test_00123582.jpg
+Places365_test_00123592.jpg
+Places365_test_00123605.jpg
+Places365_test_00123608.jpg
+Places365_test_00123617.jpg
+Places365_test_00123621.jpg
+Places365_test_00123628.jpg
+Places365_test_00123650.jpg
+Places365_test_00123660.jpg
+Places365_test_00123677.jpg
+Places365_test_00123691.jpg
+Places365_test_00123697.jpg
+Places365_test_00123698.jpg
+Places365_test_00123700.jpg
+Places365_test_00123709.jpg
+Places365_test_00123717.jpg
+Places365_test_00123718.jpg
+Places365_test_00123731.jpg
+Places365_test_00123738.jpg
+Places365_test_00123741.jpg
+Places365_test_00123763.jpg
+Places365_test_00123782.jpg
+Places365_test_00123809.jpg
+Places365_test_00123811.jpg
+Places365_test_00123820.jpg
+Places365_test_00123828.jpg
+Places365_test_00123866.jpg
+Places365_test_00123882.jpg
+Places365_test_00123883.jpg
+Places365_test_00123884.jpg
+Places365_test_00123930.jpg
+Places365_test_00123944.jpg
+Places365_test_00123950.jpg
+Places365_test_00123952.jpg
+Places365_test_00123975.jpg
+Places365_test_00123985.jpg
+Places365_test_00124000.jpg
+Places365_test_00124001.jpg
+Places365_test_00124012.jpg
+Places365_test_00124020.jpg
+Places365_test_00124048.jpg
+Places365_test_00124054.jpg
+Places365_test_00124058.jpg
+Places365_test_00124059.jpg
+Places365_test_00124068.jpg
+Places365_test_00124074.jpg
+Places365_test_00124078.jpg
+Places365_test_00124081.jpg
+Places365_test_00124093.jpg
+Places365_test_00124100.jpg
+Places365_test_00124106.jpg
+Places365_test_00124114.jpg
+Places365_test_00124116.jpg
+Places365_test_00124126.jpg
+Places365_test_00124148.jpg
+Places365_test_00124151.jpg
+Places365_test_00124153.jpg
+Places365_test_00124155.jpg
+Places365_test_00124182.jpg
+Places365_test_00124206.jpg
+Places365_test_00124250.jpg
+Places365_test_00124254.jpg
+Places365_test_00124257.jpg
+Places365_test_00124259.jpg
+Places365_test_00124260.jpg
+Places365_test_00124285.jpg
+Places365_test_00124290.jpg
+Places365_test_00124304.jpg
+Places365_test_00124305.jpg
+Places365_test_00124307.jpg
+Places365_test_00124313.jpg
+Places365_test_00124317.jpg
+Places365_test_00124326.jpg
+Places365_test_00124342.jpg
+Places365_test_00124354.jpg
+Places365_test_00124398.jpg
+Places365_test_00124428.jpg
+Places365_test_00124468.jpg
+Places365_test_00124489.jpg
+Places365_test_00124504.jpg
+Places365_test_00124511.jpg
+Places365_test_00124517.jpg
+Places365_test_00124523.jpg
+Places365_test_00124535.jpg
+Places365_test_00124550.jpg
+Places365_test_00124564.jpg
+Places365_test_00124570.jpg
+Places365_test_00124583.jpg
+Places365_test_00124585.jpg
+Places365_test_00124596.jpg
+Places365_test_00124602.jpg
+Places365_test_00124623.jpg
+Places365_test_00124627.jpg
+Places365_test_00124643.jpg
+Places365_test_00124651.jpg
+Places365_test_00124662.jpg
+Places365_test_00124665.jpg
+Places365_test_00124682.jpg
+Places365_test_00124698.jpg
+Places365_test_00124717.jpg
+Places365_test_00124723.jpg
+Places365_test_00124751.jpg
+Places365_test_00124753.jpg
+Places365_test_00124757.jpg
+Places365_test_00124763.jpg
+Places365_test_00124764.jpg
+Places365_test_00124779.jpg
+Places365_test_00124813.jpg
+Places365_test_00124815.jpg
+Places365_test_00124822.jpg
+Places365_test_00124838.jpg
+Places365_test_00124861.jpg
+Places365_test_00124862.jpg
+Places365_test_00124864.jpg
+Places365_test_00124877.jpg
+Places365_test_00124887.jpg
+Places365_test_00124893.jpg
+Places365_test_00124895.jpg
+Places365_test_00124909.jpg
+Places365_test_00124911.jpg
+Places365_test_00124935.jpg
+Places365_test_00124944.jpg
+Places365_test_00124959.jpg
+Places365_test_00124970.jpg
+Places365_test_00124989.jpg
+Places365_test_00125016.jpg
+Places365_test_00125037.jpg
+Places365_test_00125038.jpg
+Places365_test_00125054.jpg
+Places365_test_00125067.jpg
+Places365_test_00125086.jpg
+Places365_test_00125114.jpg
+Places365_test_00125120.jpg
+Places365_test_00125133.jpg
+Places365_test_00125171.jpg
+Places365_test_00125180.jpg
+Places365_test_00125181.jpg
+Places365_test_00125193.jpg
+Places365_test_00125196.jpg
+Places365_test_00125197.jpg
+Places365_test_00125205.jpg
+Places365_test_00125206.jpg
+Places365_test_00125208.jpg
+Places365_test_00125211.jpg
+Places365_test_00125222.jpg
+Places365_test_00125229.jpg
+Places365_test_00125243.jpg
+Places365_test_00125246.jpg
+Places365_test_00125257.jpg
+Places365_test_00125319.jpg
+Places365_test_00125320.jpg
+Places365_test_00125321.jpg
+Places365_test_00125330.jpg
+Places365_test_00125356.jpg
+Places365_test_00125364.jpg
+Places365_test_00125387.jpg
+Places365_test_00125391.jpg
+Places365_test_00125392.jpg
+Places365_test_00125396.jpg
+Places365_test_00125437.jpg
+Places365_test_00125439.jpg
+Places365_test_00125459.jpg
+Places365_test_00125468.jpg
+Places365_test_00125469.jpg
+Places365_test_00125481.jpg
+Places365_test_00125497.jpg
+Places365_test_00125536.jpg
+Places365_test_00125538.jpg
+Places365_test_00125547.jpg
+Places365_test_00125553.jpg
+Places365_test_00125594.jpg
+Places365_test_00125596.jpg
+Places365_test_00125597.jpg
+Places365_test_00125603.jpg
+Places365_test_00125619.jpg
+Places365_test_00125620.jpg
+Places365_test_00125623.jpg
+Places365_test_00125639.jpg
+Places365_test_00125653.jpg
+Places365_test_00125658.jpg
+Places365_test_00125668.jpg
+Places365_test_00125676.jpg
+Places365_test_00125678.jpg
+Places365_test_00125688.jpg
+Places365_test_00125700.jpg
+Places365_test_00125716.jpg
+Places365_test_00125725.jpg
+Places365_test_00125739.jpg
+Places365_test_00125745.jpg
+Places365_test_00125746.jpg
+Places365_test_00125758.jpg
+Places365_test_00125768.jpg
+Places365_test_00125771.jpg
+Places365_test_00125772.jpg
+Places365_test_00125788.jpg
+Places365_test_00125789.jpg
+Places365_test_00125833.jpg
+Places365_test_00125837.jpg
+Places365_test_00125849.jpg
+Places365_test_00125866.jpg
+Places365_test_00125879.jpg
+Places365_test_00125888.jpg
+Places365_test_00125897.jpg
+Places365_test_00125906.jpg
+Places365_test_00125912.jpg
+Places365_test_00125913.jpg
+Places365_test_00125926.jpg
+Places365_test_00125928.jpg
+Places365_test_00125929.jpg
+Places365_test_00125935.jpg
+Places365_test_00125940.jpg
+Places365_test_00125947.jpg
+Places365_test_00125954.jpg
+Places365_test_00125968.jpg
+Places365_test_00125969.jpg
+Places365_test_00125970.jpg
+Places365_test_00126007.jpg
+Places365_test_00126015.jpg
+Places365_test_00126020.jpg
+Places365_test_00126023.jpg
+Places365_test_00126044.jpg
+Places365_test_00126090.jpg
+Places365_test_00126115.jpg
+Places365_test_00126118.jpg
+Places365_test_00126128.jpg
+Places365_test_00126131.jpg
+Places365_test_00126144.jpg
+Places365_test_00126179.jpg
+Places365_test_00126194.jpg
+Places365_test_00126196.jpg
+Places365_test_00126210.jpg
+Places365_test_00126256.jpg
+Places365_test_00126269.jpg
+Places365_test_00126270.jpg
+Places365_test_00126271.jpg
+Places365_test_00126280.jpg
+Places365_test_00126305.jpg
+Places365_test_00126307.jpg
+Places365_test_00126308.jpg
+Places365_test_00126324.jpg
+Places365_test_00126352.jpg
+Places365_test_00126371.jpg
+Places365_test_00126372.jpg
+Places365_test_00126388.jpg
+Places365_test_00126391.jpg
+Places365_test_00126405.jpg
+Places365_test_00126411.jpg
+Places365_test_00126412.jpg
+Places365_test_00126438.jpg
+Places365_test_00126471.jpg
+Places365_test_00126487.jpg
+Places365_test_00126489.jpg
+Places365_test_00126490.jpg
+Places365_test_00126493.jpg
+Places365_test_00126501.jpg
+Places365_test_00126511.jpg
+Places365_test_00126518.jpg
+Places365_test_00126520.jpg
+Places365_test_00126536.jpg
+Places365_test_00126545.jpg
+Places365_test_00126555.jpg
+Places365_test_00126560.jpg
+Places365_test_00126571.jpg
+Places365_test_00126608.jpg
+Places365_test_00126610.jpg
+Places365_test_00126631.jpg
+Places365_test_00126652.jpg
+Places365_test_00126655.jpg
+Places365_test_00126664.jpg
+Places365_test_00126669.jpg
+Places365_test_00126682.jpg
+Places365_test_00126684.jpg
+Places365_test_00126698.jpg
+Places365_test_00126710.jpg
+Places365_test_00126716.jpg
+Places365_test_00126738.jpg
+Places365_test_00126751.jpg
+Places365_test_00126769.jpg
+Places365_test_00126772.jpg
+Places365_test_00126791.jpg
+Places365_test_00126811.jpg
+Places365_test_00126816.jpg
+Places365_test_00126817.jpg
+Places365_test_00126818.jpg
+Places365_test_00126826.jpg
+Places365_test_00126829.jpg
+Places365_test_00126836.jpg
+Places365_test_00126841.jpg
+Places365_test_00126842.jpg
+Places365_test_00126854.jpg
+Places365_test_00126873.jpg
+Places365_test_00126877.jpg
+Places365_test_00126912.jpg
+Places365_test_00126941.jpg
+Places365_test_00126942.jpg
+Places365_test_00126948.jpg
+Places365_test_00126969.jpg
+Places365_test_00126974.jpg
+Places365_test_00126990.jpg
+Places365_test_00126999.jpg
+Places365_test_00127019.jpg
+Places365_test_00127021.jpg
+Places365_test_00127034.jpg
+Places365_test_00127057.jpg
+Places365_test_00127081.jpg
+Places365_test_00127086.jpg
+Places365_test_00127090.jpg
+Places365_test_00127092.jpg
+Places365_test_00127113.jpg
+Places365_test_00127117.jpg
+Places365_test_00127119.jpg
+Places365_test_00127157.jpg
+Places365_test_00127166.jpg
+Places365_test_00127187.jpg
+Places365_test_00127199.jpg
+Places365_test_00127200.jpg
+Places365_test_00127202.jpg
+Places365_test_00127205.jpg
+Places365_test_00127233.jpg
+Places365_test_00127239.jpg
+Places365_test_00127243.jpg
+Places365_test_00127244.jpg
+Places365_test_00127264.jpg
+Places365_test_00127308.jpg
+Places365_test_00127321.jpg
+Places365_test_00127350.jpg
+Places365_test_00127358.jpg
+Places365_test_00127374.jpg
+Places365_test_00127382.jpg
+Places365_test_00127384.jpg
+Places365_test_00127389.jpg
+Places365_test_00127392.jpg
+Places365_test_00127415.jpg
+Places365_test_00127423.jpg
+Places365_test_00127433.jpg
+Places365_test_00127436.jpg
+Places365_test_00127450.jpg
+Places365_test_00127480.jpg
+Places365_test_00127511.jpg
+Places365_test_00127521.jpg
+Places365_test_00127525.jpg
+Places365_test_00127544.jpg
+Places365_test_00127546.jpg
+Places365_test_00127566.jpg
+Places365_test_00127580.jpg
+Places365_test_00127585.jpg
+Places365_test_00127619.jpg
+Places365_test_00127627.jpg
+Places365_test_00127633.jpg
+Places365_test_00127638.jpg
+Places365_test_00127652.jpg
+Places365_test_00127659.jpg
+Places365_test_00127685.jpg
+Places365_test_00127690.jpg
+Places365_test_00127698.jpg
+Places365_test_00127714.jpg
+Places365_test_00127717.jpg
+Places365_test_00127723.jpg
+Places365_test_00127729.jpg
+Places365_test_00127738.jpg
+Places365_test_00127744.jpg
+Places365_test_00127750.jpg
+Places365_test_00127753.jpg
+Places365_test_00127756.jpg
+Places365_test_00127761.jpg
+Places365_test_00127762.jpg
+Places365_test_00127806.jpg
+Places365_test_00127824.jpg
+Places365_test_00127826.jpg
+Places365_test_00127828.jpg
+Places365_test_00127843.jpg
+Places365_test_00127845.jpg
+Places365_test_00127847.jpg
+Places365_test_00127852.jpg
+Places365_test_00127858.jpg
+Places365_test_00127860.jpg
+Places365_test_00127865.jpg
+Places365_test_00127899.jpg
+Places365_test_00127902.jpg
+Places365_test_00127919.jpg
+Places365_test_00127923.jpg
+Places365_test_00127926.jpg
+Places365_test_00127935.jpg
+Places365_test_00127937.jpg
+Places365_test_00127947.jpg
+Places365_test_00127954.jpg
+Places365_test_00127960.jpg
+Places365_test_00127964.jpg
+Places365_test_00127973.jpg
+Places365_test_00127990.jpg
+Places365_test_00128004.jpg
+Places365_test_00128014.jpg
+Places365_test_00128018.jpg
+Places365_test_00128080.jpg
+Places365_test_00128081.jpg
+Places365_test_00128082.jpg
+Places365_test_00128104.jpg
+Places365_test_00128110.jpg
+Places365_test_00128115.jpg
+Places365_test_00128149.jpg
+Places365_test_00128159.jpg
+Places365_test_00128166.jpg
+Places365_test_00128171.jpg
+Places365_test_00128191.jpg
+Places365_test_00128207.jpg
+Places365_test_00128209.jpg
+Places365_test_00128215.jpg
+Places365_test_00128219.jpg
+Places365_test_00128230.jpg
+Places365_test_00128269.jpg
+Places365_test_00128277.jpg
+Places365_test_00128279.jpg
+Places365_test_00128281.jpg
+Places365_test_00128289.jpg
+Places365_test_00128295.jpg
+Places365_test_00128299.jpg
+Places365_test_00128300.jpg
+Places365_test_00128324.jpg
+Places365_test_00128326.jpg
+Places365_test_00128337.jpg
+Places365_test_00128362.jpg
+Places365_test_00128402.jpg
+Places365_test_00128415.jpg
+Places365_test_00128422.jpg
+Places365_test_00128449.jpg
+Places365_test_00128460.jpg
+Places365_test_00128463.jpg
+Places365_test_00128475.jpg
+Places365_test_00128476.jpg
+Places365_test_00128496.jpg
+Places365_test_00128505.jpg
+Places365_test_00128516.jpg
+Places365_test_00128523.jpg
+Places365_test_00128565.jpg
+Places365_test_00128581.jpg
+Places365_test_00128582.jpg
+Places365_test_00128594.jpg
+Places365_test_00128596.jpg
+Places365_test_00128603.jpg
+Places365_test_00128608.jpg
+Places365_test_00128617.jpg
+Places365_test_00128628.jpg
+Places365_test_00128637.jpg
+Places365_test_00128652.jpg
+Places365_test_00128655.jpg
+Places365_test_00128661.jpg
+Places365_test_00128678.jpg
+Places365_test_00128681.jpg
+Places365_test_00128683.jpg
+Places365_test_00128684.jpg
+Places365_test_00128699.jpg
+Places365_test_00128749.jpg
+Places365_test_00128756.jpg
+Places365_test_00128762.jpg
+Places365_test_00128776.jpg
+Places365_test_00128785.jpg
+Places365_test_00128802.jpg
+Places365_test_00128804.jpg
+Places365_test_00128815.jpg
+Places365_test_00128817.jpg
+Places365_test_00128836.jpg
+Places365_test_00128842.jpg
+Places365_test_00128865.jpg
+Places365_test_00128868.jpg
+Places365_test_00128881.jpg
+Places365_test_00128900.jpg
+Places365_test_00128913.jpg
+Places365_test_00128918.jpg
+Places365_test_00128921.jpg
+Places365_test_00128937.jpg
+Places365_test_00128939.jpg
+Places365_test_00128964.jpg
+Places365_test_00128971.jpg
+Places365_test_00128983.jpg
+Places365_test_00128988.jpg
+Places365_test_00128993.jpg
+Places365_test_00128998.jpg
+Places365_test_00128999.jpg
+Places365_test_00129013.jpg
+Places365_test_00129030.jpg
+Places365_test_00129036.jpg
+Places365_test_00129058.jpg
+Places365_test_00129063.jpg
+Places365_test_00129092.jpg
+Places365_test_00129095.jpg
+Places365_test_00129099.jpg
+Places365_test_00129142.jpg
+Places365_test_00129145.jpg
+Places365_test_00129167.jpg
+Places365_test_00129181.jpg
+Places365_test_00129218.jpg
+Places365_test_00129252.jpg
+Places365_test_00129254.jpg
+Places365_test_00129258.jpg
+Places365_test_00129259.jpg
+Places365_test_00129267.jpg
+Places365_test_00129279.jpg
+Places365_test_00129287.jpg
+Places365_test_00129293.jpg
+Places365_test_00129310.jpg
+Places365_test_00129347.jpg
+Places365_test_00129379.jpg
+Places365_test_00129388.jpg
+Places365_test_00129398.jpg
+Places365_test_00129405.jpg
+Places365_test_00129408.jpg
+Places365_test_00129420.jpg
+Places365_test_00129426.jpg
+Places365_test_00129456.jpg
+Places365_test_00129458.jpg
+Places365_test_00129471.jpg
+Places365_test_00129475.jpg
+Places365_test_00129476.jpg
+Places365_test_00129492.jpg
+Places365_test_00129509.jpg
+Places365_test_00129514.jpg
+Places365_test_00129525.jpg
+Places365_test_00129539.jpg
+Places365_test_00129543.jpg
+Places365_test_00129545.jpg
+Places365_test_00129556.jpg
+Places365_test_00129577.jpg
+Places365_test_00129589.jpg
+Places365_test_00129614.jpg
+Places365_test_00129619.jpg
+Places365_test_00129624.jpg
+Places365_test_00129626.jpg
+Places365_test_00129632.jpg
+Places365_test_00129665.jpg
+Places365_test_00129669.jpg
+Places365_test_00129672.jpg
+Places365_test_00129688.jpg
+Places365_test_00129692.jpg
+Places365_test_00129698.jpg
+Places365_test_00129715.jpg
+Places365_test_00129720.jpg
+Places365_test_00129729.jpg
+Places365_test_00129744.jpg
+Places365_test_00129760.jpg
+Places365_test_00129780.jpg
+Places365_test_00129782.jpg
+Places365_test_00129801.jpg
+Places365_test_00129804.jpg
+Places365_test_00129819.jpg
+Places365_test_00129843.jpg
+Places365_test_00129857.jpg
+Places365_test_00129868.jpg
+Places365_test_00129881.jpg
+Places365_test_00129907.jpg
+Places365_test_00129916.jpg
+Places365_test_00129917.jpg
+Places365_test_00129989.jpg
+Places365_test_00130002.jpg
+Places365_test_00130010.jpg
+Places365_test_00130011.jpg
+Places365_test_00130014.jpg
+Places365_test_00130027.jpg
+Places365_test_00130030.jpg
+Places365_test_00130042.jpg
+Places365_test_00130054.jpg
+Places365_test_00130079.jpg
+Places365_test_00130080.jpg
+Places365_test_00130092.jpg
+Places365_test_00130097.jpg
+Places365_test_00130106.jpg
+Places365_test_00130123.jpg
+Places365_test_00130124.jpg
+Places365_test_00130127.jpg
+Places365_test_00130138.jpg
+Places365_test_00130147.jpg
+Places365_test_00130158.jpg
+Places365_test_00130160.jpg
+Places365_test_00130187.jpg
+Places365_test_00130194.jpg
+Places365_test_00130202.jpg
+Places365_test_00130206.jpg
+Places365_test_00130227.jpg
+Places365_test_00130261.jpg
+Places365_test_00130262.jpg
+Places365_test_00130264.jpg
+Places365_test_00130271.jpg
+Places365_test_00130272.jpg
+Places365_test_00130276.jpg
+Places365_test_00130279.jpg
+Places365_test_00130288.jpg
+Places365_test_00130293.jpg
+Places365_test_00130299.jpg
+Places365_test_00130309.jpg
+Places365_test_00130311.jpg
+Places365_test_00130314.jpg
+Places365_test_00130318.jpg
+Places365_test_00130323.jpg
+Places365_test_00130334.jpg
+Places365_test_00130348.jpg
+Places365_test_00130353.jpg
+Places365_test_00130371.jpg
+Places365_test_00130385.jpg
+Places365_test_00130441.jpg
+Places365_test_00130456.jpg
+Places365_test_00130479.jpg
+Places365_test_00130497.jpg
+Places365_test_00130500.jpg
+Places365_test_00130501.jpg
+Places365_test_00130527.jpg
+Places365_test_00130531.jpg
+Places365_test_00130546.jpg
+Places365_test_00130561.jpg
+Places365_test_00130577.jpg
+Places365_test_00130579.jpg
+Places365_test_00130593.jpg
+Places365_test_00130598.jpg
+Places365_test_00130600.jpg
+Places365_test_00130605.jpg
+Places365_test_00130606.jpg
+Places365_test_00130616.jpg
+Places365_test_00130617.jpg
+Places365_test_00130634.jpg
+Places365_test_00130651.jpg
+Places365_test_00130655.jpg
+Places365_test_00130696.jpg
+Places365_test_00130699.jpg
+Places365_test_00130705.jpg
+Places365_test_00130715.jpg
+Places365_test_00130722.jpg
+Places365_test_00130724.jpg
+Places365_test_00130736.jpg
+Places365_test_00130747.jpg
+Places365_test_00130752.jpg
+Places365_test_00130775.jpg
+Places365_test_00130781.jpg
+Places365_test_00130797.jpg
+Places365_test_00130808.jpg
+Places365_test_00130815.jpg
+Places365_test_00130817.jpg
+Places365_test_00130827.jpg
+Places365_test_00130837.jpg
+Places365_test_00130845.jpg
+Places365_test_00130854.jpg
+Places365_test_00130870.jpg
+Places365_test_00130871.jpg
+Places365_test_00130889.jpg
+Places365_test_00130899.jpg
+Places365_test_00130907.jpg
+Places365_test_00130910.jpg
+Places365_test_00130919.jpg
+Places365_test_00130935.jpg
+Places365_test_00130941.jpg
+Places365_test_00130942.jpg
+Places365_test_00130966.jpg
+Places365_test_00130967.jpg
+Places365_test_00130973.jpg
+Places365_test_00130975.jpg
+Places365_test_00130980.jpg
+Places365_test_00130989.jpg
+Places365_test_00131026.jpg
+Places365_test_00131030.jpg
+Places365_test_00131032.jpg
+Places365_test_00131056.jpg
+Places365_test_00131078.jpg
+Places365_test_00131080.jpg
+Places365_test_00131085.jpg
+Places365_test_00131097.jpg
+Places365_test_00131100.jpg
+Places365_test_00131105.jpg
+Places365_test_00131108.jpg
+Places365_test_00131115.jpg
+Places365_test_00131126.jpg
+Places365_test_00131133.jpg
+Places365_test_00131135.jpg
+Places365_test_00131156.jpg
+Places365_test_00131161.jpg
+Places365_test_00131179.jpg
+Places365_test_00131189.jpg
+Places365_test_00131208.jpg
+Places365_test_00131212.jpg
+Places365_test_00131213.jpg
+Places365_test_00131241.jpg
+Places365_test_00131251.jpg
+Places365_test_00131263.jpg
+Places365_test_00131268.jpg
+Places365_test_00131269.jpg
+Places365_test_00131299.jpg
+Places365_test_00131300.jpg
+Places365_test_00131306.jpg
+Places365_test_00131327.jpg
+Places365_test_00131345.jpg
+Places365_test_00131346.jpg
+Places365_test_00131369.jpg
+Places365_test_00131383.jpg
+Places365_test_00131389.jpg
+Places365_test_00131391.jpg
+Places365_test_00131397.jpg
+Places365_test_00131399.jpg
+Places365_test_00131410.jpg
+Places365_test_00131421.jpg
+Places365_test_00131460.jpg
+Places365_test_00131513.jpg
+Places365_test_00131526.jpg
+Places365_test_00131531.jpg
+Places365_test_00131546.jpg
+Places365_test_00131555.jpg
+Places365_test_00131574.jpg
+Places365_test_00131613.jpg
+Places365_test_00131615.jpg
+Places365_test_00131632.jpg
+Places365_test_00131642.jpg
+Places365_test_00131644.jpg
+Places365_test_00131655.jpg
+Places365_test_00131661.jpg
+Places365_test_00131664.jpg
+Places365_test_00131665.jpg
+Places365_test_00131680.jpg
+Places365_test_00131701.jpg
+Places365_test_00131717.jpg
+Places365_test_00131720.jpg
+Places365_test_00131721.jpg
+Places365_test_00131798.jpg
+Places365_test_00131800.jpg
+Places365_test_00131820.jpg
+Places365_test_00131827.jpg
+Places365_test_00131828.jpg
+Places365_test_00131852.jpg
+Places365_test_00131870.jpg
+Places365_test_00131907.jpg
+Places365_test_00131918.jpg
+Places365_test_00131928.jpg
+Places365_test_00131933.jpg
+Places365_test_00131935.jpg
+Places365_test_00131936.jpg
+Places365_test_00131950.jpg
+Places365_test_00131958.jpg
+Places365_test_00132022.jpg
+Places365_test_00132025.jpg
+Places365_test_00132039.jpg
+Places365_test_00132064.jpg
+Places365_test_00132076.jpg
+Places365_test_00132091.jpg
+Places365_test_00132094.jpg
+Places365_test_00132103.jpg
+Places365_test_00132114.jpg
+Places365_test_00132140.jpg
+Places365_test_00132143.jpg
+Places365_test_00132160.jpg
+Places365_test_00132161.jpg
+Places365_test_00132165.jpg
+Places365_test_00132187.jpg
+Places365_test_00132188.jpg
+Places365_test_00132194.jpg
+Places365_test_00132197.jpg
+Places365_test_00132253.jpg
+Places365_test_00132254.jpg
+Places365_test_00132262.jpg
+Places365_test_00132286.jpg
+Places365_test_00132287.jpg
+Places365_test_00132324.jpg
+Places365_test_00132354.jpg
+Places365_test_00132375.jpg
+Places365_test_00132383.jpg
+Places365_test_00132390.jpg
+Places365_test_00132405.jpg
+Places365_test_00132421.jpg
+Places365_test_00132430.jpg
+Places365_test_00132442.jpg
+Places365_test_00132451.jpg
+Places365_test_00132484.jpg
+Places365_test_00132485.jpg
+Places365_test_00132510.jpg
+Places365_test_00132514.jpg
+Places365_test_00132522.jpg
+Places365_test_00132536.jpg
+Places365_test_00132541.jpg
+Places365_test_00132550.jpg
+Places365_test_00132579.jpg
+Places365_test_00132588.jpg
+Places365_test_00132595.jpg
+Places365_test_00132598.jpg
+Places365_test_00132624.jpg
+Places365_test_00132635.jpg
+Places365_test_00132640.jpg
+Places365_test_00132643.jpg
+Places365_test_00132656.jpg
+Places365_test_00132660.jpg
+Places365_test_00132669.jpg
+Places365_test_00132673.jpg
+Places365_test_00132677.jpg
+Places365_test_00132684.jpg
+Places365_test_00132685.jpg
+Places365_test_00132709.jpg
+Places365_test_00132728.jpg
+Places365_test_00132730.jpg
+Places365_test_00132731.jpg
+Places365_test_00132735.jpg
+Places365_test_00132754.jpg
+Places365_test_00132760.jpg
+Places365_test_00132768.jpg
+Places365_test_00132771.jpg
+Places365_test_00132785.jpg
+Places365_test_00132804.jpg
+Places365_test_00132829.jpg
+Places365_test_00132833.jpg
+Places365_test_00132834.jpg
+Places365_test_00132845.jpg
+Places365_test_00132847.jpg
+Places365_test_00132862.jpg
+Places365_test_00132874.jpg
+Places365_test_00132884.jpg
+Places365_test_00132908.jpg
+Places365_test_00132915.jpg
+Places365_test_00132917.jpg
+Places365_test_00132926.jpg
+Places365_test_00132932.jpg
+Places365_test_00132941.jpg
+Places365_test_00132952.jpg
+Places365_test_00132966.jpg
+Places365_test_00132969.jpg
+Places365_test_00132973.jpg
+Places365_test_00132986.jpg
+Places365_test_00133025.jpg
+Places365_test_00133034.jpg
+Places365_test_00133045.jpg
+Places365_test_00133053.jpg
+Places365_test_00133061.jpg
+Places365_test_00133067.jpg
+Places365_test_00133097.jpg
+Places365_test_00133123.jpg
+Places365_test_00133135.jpg
+Places365_test_00133141.jpg
+Places365_test_00133155.jpg
+Places365_test_00133165.jpg
+Places365_test_00133192.jpg
+Places365_test_00133208.jpg
+Places365_test_00133216.jpg
+Places365_test_00133219.jpg
+Places365_test_00133226.jpg
+Places365_test_00133231.jpg
+Places365_test_00133240.jpg
+Places365_test_00133255.jpg
+Places365_test_00133257.jpg
+Places365_test_00133261.jpg
+Places365_test_00133266.jpg
+Places365_test_00133272.jpg
+Places365_test_00133284.jpg
+Places365_test_00133317.jpg
+Places365_test_00133321.jpg
+Places365_test_00133325.jpg
+Places365_test_00133326.jpg
+Places365_test_00133341.jpg
+Places365_test_00133347.jpg
+Places365_test_00133353.jpg
+Places365_test_00133366.jpg
+Places365_test_00133369.jpg
+Places365_test_00133379.jpg
+Places365_test_00133380.jpg
+Places365_test_00133383.jpg
+Places365_test_00133395.jpg
+Places365_test_00133410.jpg
+Places365_test_00133439.jpg
+Places365_test_00133448.jpg
+Places365_test_00133483.jpg
+Places365_test_00133486.jpg
+Places365_test_00133487.jpg
+Places365_test_00133498.jpg
+Places365_test_00133509.jpg
+Places365_test_00133541.jpg
+Places365_test_00133544.jpg
+Places365_test_00133546.jpg
+Places365_test_00133550.jpg
+Places365_test_00133554.jpg
+Places365_test_00133565.jpg
+Places365_test_00133575.jpg
+Places365_test_00133578.jpg
+Places365_test_00133585.jpg
+Places365_test_00133589.jpg
+Places365_test_00133606.jpg
+Places365_test_00133616.jpg
+Places365_test_00133626.jpg
+Places365_test_00133634.jpg
+Places365_test_00133642.jpg
+Places365_test_00133645.jpg
+Places365_test_00133647.jpg
+Places365_test_00133654.jpg
+Places365_test_00133658.jpg
+Places365_test_00133680.jpg
+Places365_test_00133696.jpg
+Places365_test_00133699.jpg
+Places365_test_00133714.jpg
+Places365_test_00133720.jpg
+Places365_test_00133733.jpg
+Places365_test_00133738.jpg
+Places365_test_00133755.jpg
+Places365_test_00133764.jpg
+Places365_test_00133765.jpg
+Places365_test_00133766.jpg
+Places365_test_00133784.jpg
+Places365_test_00133788.jpg
+Places365_test_00133816.jpg
+Places365_test_00133824.jpg
+Places365_test_00133838.jpg
+Places365_test_00133843.jpg
+Places365_test_00133888.jpg
+Places365_test_00133890.jpg
+Places365_test_00133896.jpg
+Places365_test_00133902.jpg
+Places365_test_00133904.jpg
+Places365_test_00133920.jpg
+Places365_test_00133933.jpg
+Places365_test_00133944.jpg
+Places365_test_00133947.jpg
+Places365_test_00133974.jpg
+Places365_test_00134000.jpg
+Places365_test_00134008.jpg
+Places365_test_00134010.jpg
+Places365_test_00134019.jpg
+Places365_test_00134024.jpg
+Places365_test_00134035.jpg
+Places365_test_00134040.jpg
+Places365_test_00134056.jpg
+Places365_test_00134082.jpg
+Places365_test_00134087.jpg
+Places365_test_00134105.jpg
+Places365_test_00134114.jpg
+Places365_test_00134129.jpg
+Places365_test_00134147.jpg
+Places365_test_00134152.jpg
+Places365_test_00134163.jpg
+Places365_test_00134179.jpg
+Places365_test_00134187.jpg
+Places365_test_00134201.jpg
+Places365_test_00134208.jpg
+Places365_test_00134248.jpg
+Places365_test_00134258.jpg
+Places365_test_00134294.jpg
+Places365_test_00134296.jpg
+Places365_test_00134297.jpg
+Places365_test_00134302.jpg
+Places365_test_00134311.jpg
+Places365_test_00134316.jpg
+Places365_test_00134319.jpg
+Places365_test_00134322.jpg
+Places365_test_00134349.jpg
+Places365_test_00134376.jpg
+Places365_test_00134400.jpg
+Places365_test_00134401.jpg
+Places365_test_00134428.jpg
+Places365_test_00134429.jpg
+Places365_test_00134441.jpg
+Places365_test_00134474.jpg
+Places365_test_00134485.jpg
+Places365_test_00134488.jpg
+Places365_test_00134490.jpg
+Places365_test_00134508.jpg
+Places365_test_00134514.jpg
+Places365_test_00134529.jpg
+Places365_test_00134545.jpg
+Places365_test_00134546.jpg
+Places365_test_00134563.jpg
+Places365_test_00134564.jpg
+Places365_test_00134572.jpg
+Places365_test_00134590.jpg
+Places365_test_00134600.jpg
+Places365_test_00134605.jpg
+Places365_test_00134616.jpg
+Places365_test_00134620.jpg
+Places365_test_00134633.jpg
+Places365_test_00134640.jpg
+Places365_test_00134642.jpg
+Places365_test_00134644.jpg
+Places365_test_00134653.jpg
+Places365_test_00134654.jpg
+Places365_test_00134666.jpg
+Places365_test_00134678.jpg
+Places365_test_00134709.jpg
+Places365_test_00134721.jpg
+Places365_test_00134768.jpg
+Places365_test_00134787.jpg
+Places365_test_00134788.jpg
+Places365_test_00134794.jpg
+Places365_test_00134796.jpg
+Places365_test_00134799.jpg
+Places365_test_00134820.jpg
+Places365_test_00134826.jpg
+Places365_test_00134842.jpg
+Places365_test_00134852.jpg
+Places365_test_00134853.jpg
+Places365_test_00134868.jpg
+Places365_test_00134883.jpg
+Places365_test_00134889.jpg
+Places365_test_00134920.jpg
+Places365_test_00134923.jpg
+Places365_test_00134926.jpg
+Places365_test_00134946.jpg
+Places365_test_00134987.jpg
+Places365_test_00135018.jpg
+Places365_test_00135019.jpg
+Places365_test_00135020.jpg
+Places365_test_00135023.jpg
+Places365_test_00135027.jpg
+Places365_test_00135033.jpg
+Places365_test_00135047.jpg
+Places365_test_00135050.jpg
+Places365_test_00135058.jpg
+Places365_test_00135065.jpg
+Places365_test_00135066.jpg
+Places365_test_00135068.jpg
+Places365_test_00135094.jpg
+Places365_test_00135129.jpg
+Places365_test_00135130.jpg
+Places365_test_00135142.jpg
+Places365_test_00135149.jpg
+Places365_test_00135157.jpg
+Places365_test_00135168.jpg
+Places365_test_00135169.jpg
+Places365_test_00135183.jpg
+Places365_test_00135184.jpg
+Places365_test_00135209.jpg
+Places365_test_00135212.jpg
+Places365_test_00135223.jpg
+Places365_test_00135259.jpg
+Places365_test_00135261.jpg
+Places365_test_00135265.jpg
+Places365_test_00135293.jpg
+Places365_test_00135300.jpg
+Places365_test_00135304.jpg
+Places365_test_00135310.jpg
+Places365_test_00135314.jpg
+Places365_test_00135322.jpg
+Places365_test_00135327.jpg
+Places365_test_00135332.jpg
+Places365_test_00135359.jpg
+Places365_test_00135407.jpg
+Places365_test_00135410.jpg
+Places365_test_00135428.jpg
+Places365_test_00135440.jpg
+Places365_test_00135461.jpg
+Places365_test_00135477.jpg
+Places365_test_00135487.jpg
+Places365_test_00135488.jpg
+Places365_test_00135502.jpg
+Places365_test_00135505.jpg
+Places365_test_00135507.jpg
+Places365_test_00135521.jpg
+Places365_test_00135536.jpg
+Places365_test_00135549.jpg
+Places365_test_00135551.jpg
+Places365_test_00135557.jpg
+Places365_test_00135563.jpg
+Places365_test_00135565.jpg
+Places365_test_00135567.jpg
+Places365_test_00135568.jpg
+Places365_test_00135591.jpg
+Places365_test_00135593.jpg
+Places365_test_00135594.jpg
+Places365_test_00135617.jpg
+Places365_test_00135623.jpg
+Places365_test_00135651.jpg
+Places365_test_00135652.jpg
+Places365_test_00135660.jpg
+Places365_test_00135672.jpg
+Places365_test_00135682.jpg
+Places365_test_00135685.jpg
+Places365_test_00135688.jpg
+Places365_test_00135691.jpg
+Places365_test_00135701.jpg
+Places365_test_00135712.jpg
+Places365_test_00135728.jpg
+Places365_test_00135733.jpg
+Places365_test_00135748.jpg
+Places365_test_00135754.jpg
+Places365_test_00135756.jpg
+Places365_test_00135770.jpg
+Places365_test_00135778.jpg
+Places365_test_00135783.jpg
+Places365_test_00135786.jpg
+Places365_test_00135804.jpg
+Places365_test_00135840.jpg
+Places365_test_00135846.jpg
+Places365_test_00135857.jpg
+Places365_test_00135864.jpg
+Places365_test_00135893.jpg
+Places365_test_00135901.jpg
+Places365_test_00135908.jpg
+Places365_test_00135961.jpg
+Places365_test_00135971.jpg
+Places365_test_00135972.jpg
+Places365_test_00135989.jpg
+Places365_test_00135995.jpg
+Places365_test_00136012.jpg
+Places365_test_00136056.jpg
+Places365_test_00136069.jpg
+Places365_test_00136070.jpg
+Places365_test_00136095.jpg
+Places365_test_00136115.jpg
+Places365_test_00136123.jpg
+Places365_test_00136127.jpg
+Places365_test_00136157.jpg
+Places365_test_00136166.jpg
+Places365_test_00136176.jpg
+Places365_test_00136194.jpg
+Places365_test_00136200.jpg
+Places365_test_00136201.jpg
+Places365_test_00136202.jpg
+Places365_test_00136206.jpg
+Places365_test_00136214.jpg
+Places365_test_00136220.jpg
+Places365_test_00136223.jpg
+Places365_test_00136226.jpg
+Places365_test_00136239.jpg
+Places365_test_00136244.jpg
+Places365_test_00136250.jpg
+Places365_test_00136255.jpg
+Places365_test_00136259.jpg
+Places365_test_00136284.jpg
+Places365_test_00136287.jpg
+Places365_test_00136290.jpg
+Places365_test_00136297.jpg
+Places365_test_00136299.jpg
+Places365_test_00136318.jpg
+Places365_test_00136324.jpg
+Places365_test_00136330.jpg
+Places365_test_00136339.jpg
+Places365_test_00136348.jpg
+Places365_test_00136383.jpg
+Places365_test_00136385.jpg
+Places365_test_00136387.jpg
+Places365_test_00136392.jpg
+Places365_test_00136396.jpg
+Places365_test_00136406.jpg
+Places365_test_00136408.jpg
+Places365_test_00136418.jpg
+Places365_test_00136421.jpg
+Places365_test_00136428.jpg
+Places365_test_00136470.jpg
+Places365_test_00136472.jpg
+Places365_test_00136496.jpg
+Places365_test_00136504.jpg
+Places365_test_00136512.jpg
+Places365_test_00136518.jpg
+Places365_test_00136530.jpg
+Places365_test_00136546.jpg
+Places365_test_00136568.jpg
+Places365_test_00136575.jpg
+Places365_test_00136608.jpg
+Places365_test_00136612.jpg
+Places365_test_00136621.jpg
+Places365_test_00136628.jpg
+Places365_test_00136631.jpg
+Places365_test_00136643.jpg
+Places365_test_00136658.jpg
+Places365_test_00136668.jpg
+Places365_test_00136672.jpg
+Places365_test_00136686.jpg
+Places365_test_00136710.jpg
+Places365_test_00136715.jpg
+Places365_test_00136716.jpg
+Places365_test_00136749.jpg
+Places365_test_00136791.jpg
+Places365_test_00136796.jpg
+Places365_test_00136803.jpg
+Places365_test_00136809.jpg
+Places365_test_00136825.jpg
+Places365_test_00136841.jpg
+Places365_test_00136857.jpg
+Places365_test_00136865.jpg
+Places365_test_00136884.jpg
+Places365_test_00136922.jpg
+Places365_test_00136933.jpg
+Places365_test_00136937.jpg
+Places365_test_00136963.jpg
+Places365_test_00136970.jpg
+Places365_test_00136972.jpg
+Places365_test_00136977.jpg
+Places365_test_00136993.jpg
+Places365_test_00137002.jpg
+Places365_test_00137033.jpg
+Places365_test_00137076.jpg
+Places365_test_00137112.jpg
+Places365_test_00137116.jpg
+Places365_test_00137129.jpg
+Places365_test_00137134.jpg
+Places365_test_00137140.jpg
+Places365_test_00137186.jpg
+Places365_test_00137188.jpg
+Places365_test_00137199.jpg
+Places365_test_00137211.jpg
+Places365_test_00137225.jpg
+Places365_test_00137236.jpg
+Places365_test_00137285.jpg
+Places365_test_00137303.jpg
+Places365_test_00137317.jpg
+Places365_test_00137321.jpg
+Places365_test_00137349.jpg
+Places365_test_00137398.jpg
+Places365_test_00137412.jpg
+Places365_test_00137414.jpg
+Places365_test_00137421.jpg
+Places365_test_00137424.jpg
+Places365_test_00137425.jpg
+Places365_test_00137432.jpg
+Places365_test_00137468.jpg
+Places365_test_00137473.jpg
+Places365_test_00137491.jpg
+Places365_test_00137493.jpg
+Places365_test_00137497.jpg
+Places365_test_00137498.jpg
+Places365_test_00137519.jpg
+Places365_test_00137528.jpg
+Places365_test_00137544.jpg
+Places365_test_00137548.jpg
+Places365_test_00137555.jpg
+Places365_test_00137563.jpg
+Places365_test_00137606.jpg
+Places365_test_00137610.jpg
+Places365_test_00137618.jpg
+Places365_test_00137628.jpg
+Places365_test_00137657.jpg
+Places365_test_00137663.jpg
+Places365_test_00137667.jpg
+Places365_test_00137689.jpg
+Places365_test_00137706.jpg
+Places365_test_00137720.jpg
+Places365_test_00137735.jpg
+Places365_test_00137759.jpg
+Places365_test_00137784.jpg
+Places365_test_00137798.jpg
+Places365_test_00137811.jpg
+Places365_test_00137813.jpg
+Places365_test_00137823.jpg
+Places365_test_00137824.jpg
+Places365_test_00137828.jpg
+Places365_test_00137847.jpg
+Places365_test_00137849.jpg
+Places365_test_00137866.jpg
+Places365_test_00137885.jpg
+Places365_test_00137892.jpg
+Places365_test_00137896.jpg
+Places365_test_00137905.jpg
+Places365_test_00137962.jpg
+Places365_test_00138003.jpg
+Places365_test_00138004.jpg
+Places365_test_00138025.jpg
+Places365_test_00138034.jpg
+Places365_test_00138086.jpg
+Places365_test_00138105.jpg
+Places365_test_00138113.jpg
+Places365_test_00138116.jpg
+Places365_test_00138139.jpg
+Places365_test_00138142.jpg
+Places365_test_00138149.jpg
+Places365_test_00138154.jpg
+Places365_test_00138159.jpg
+Places365_test_00138168.jpg
+Places365_test_00138181.jpg
+Places365_test_00138207.jpg
+Places365_test_00138221.jpg
+Places365_test_00138229.jpg
+Places365_test_00138238.jpg
+Places365_test_00138244.jpg
+Places365_test_00138254.jpg
+Places365_test_00138265.jpg
+Places365_test_00138273.jpg
+Places365_test_00138274.jpg
+Places365_test_00138308.jpg
+Places365_test_00138318.jpg
+Places365_test_00138337.jpg
+Places365_test_00138346.jpg
+Places365_test_00138359.jpg
+Places365_test_00138380.jpg
+Places365_test_00138405.jpg
+Places365_test_00138416.jpg
+Places365_test_00138417.jpg
+Places365_test_00138418.jpg
+Places365_test_00138428.jpg
+Places365_test_00138489.jpg
+Places365_test_00138507.jpg
+Places365_test_00138515.jpg
+Places365_test_00138518.jpg
+Places365_test_00138530.jpg
+Places365_test_00138542.jpg
+Places365_test_00138558.jpg
+Places365_test_00138569.jpg
+Places365_test_00138570.jpg
+Places365_test_00138579.jpg
+Places365_test_00138606.jpg
+Places365_test_00138608.jpg
+Places365_test_00138620.jpg
+Places365_test_00138646.jpg
+Places365_test_00138653.jpg
+Places365_test_00138664.jpg
+Places365_test_00138668.jpg
+Places365_test_00138693.jpg
+Places365_test_00138717.jpg
+Places365_test_00138739.jpg
+Places365_test_00138740.jpg
+Places365_test_00138755.jpg
+Places365_test_00138774.jpg
+Places365_test_00138790.jpg
+Places365_test_00138793.jpg
+Places365_test_00138813.jpg
+Places365_test_00138831.jpg
+Places365_test_00138836.jpg
+Places365_test_00138839.jpg
+Places365_test_00138840.jpg
+Places365_test_00138869.jpg
+Places365_test_00138908.jpg
+Places365_test_00138925.jpg
+Places365_test_00138946.jpg
+Places365_test_00138948.jpg
+Places365_test_00138955.jpg
+Places365_test_00138963.jpg
+Places365_test_00138970.jpg
+Places365_test_00138979.jpg
+Places365_test_00139014.jpg
+Places365_test_00139017.jpg
+Places365_test_00139026.jpg
+Places365_test_00139030.jpg
+Places365_test_00139032.jpg
+Places365_test_00139037.jpg
+Places365_test_00139045.jpg
+Places365_test_00139075.jpg
+Places365_test_00139082.jpg
+Places365_test_00139088.jpg
+Places365_test_00139127.jpg
+Places365_test_00139131.jpg
+Places365_test_00139134.jpg
+Places365_test_00139150.jpg
+Places365_test_00139153.jpg
+Places365_test_00139163.jpg
+Places365_test_00139189.jpg
+Places365_test_00139190.jpg
+Places365_test_00139199.jpg
+Places365_test_00139205.jpg
+Places365_test_00139221.jpg
+Places365_test_00139237.jpg
+Places365_test_00139246.jpg
+Places365_test_00139259.jpg
+Places365_test_00139266.jpg
+Places365_test_00139282.jpg
+Places365_test_00139284.jpg
+Places365_test_00139287.jpg
+Places365_test_00139308.jpg
+Places365_test_00139322.jpg
+Places365_test_00139335.jpg
+Places365_test_00139350.jpg
+Places365_test_00139359.jpg
+Places365_test_00139374.jpg
+Places365_test_00139379.jpg
+Places365_test_00139380.jpg
+Places365_test_00139391.jpg
+Places365_test_00139411.jpg
+Places365_test_00139412.jpg
+Places365_test_00139421.jpg
+Places365_test_00139423.jpg
+Places365_test_00139437.jpg
+Places365_test_00139442.jpg
+Places365_test_00139454.jpg
+Places365_test_00139463.jpg
+Places365_test_00139465.jpg
+Places365_test_00139467.jpg
+Places365_test_00139477.jpg
+Places365_test_00139485.jpg
+Places365_test_00139498.jpg
+Places365_test_00139514.jpg
+Places365_test_00139532.jpg
+Places365_test_00139539.jpg
+Places365_test_00139541.jpg
+Places365_test_00139549.jpg
+Places365_test_00139560.jpg
+Places365_test_00139570.jpg
+Places365_test_00139577.jpg
+Places365_test_00139601.jpg
+Places365_test_00139640.jpg
+Places365_test_00139644.jpg
+Places365_test_00139649.jpg
+Places365_test_00139651.jpg
+Places365_test_00139684.jpg
+Places365_test_00139685.jpg
+Places365_test_00139690.jpg
+Places365_test_00139691.jpg
+Places365_test_00139727.jpg
+Places365_test_00139730.jpg
+Places365_test_00139731.jpg
+Places365_test_00139743.jpg
+Places365_test_00139747.jpg
+Places365_test_00139766.jpg
+Places365_test_00139805.jpg
+Places365_test_00139809.jpg
+Places365_test_00139813.jpg
+Places365_test_00139816.jpg
+Places365_test_00139833.jpg
+Places365_test_00139834.jpg
+Places365_test_00139839.jpg
+Places365_test_00139856.jpg
+Places365_test_00139859.jpg
+Places365_test_00139865.jpg
+Places365_test_00139873.jpg
+Places365_test_00139887.jpg
+Places365_test_00139898.jpg
+Places365_test_00139915.jpg
+Places365_test_00139917.jpg
+Places365_test_00139919.jpg
+Places365_test_00139923.jpg
+Places365_test_00139931.jpg
+Places365_test_00139933.jpg
+Places365_test_00139943.jpg
+Places365_test_00139960.jpg
+Places365_test_00139963.jpg
+Places365_test_00139975.jpg
+Places365_test_00140003.jpg
+Places365_test_00140010.jpg
+Places365_test_00140017.jpg
+Places365_test_00140024.jpg
+Places365_test_00140044.jpg
+Places365_test_00140051.jpg
+Places365_test_00140062.jpg
+Places365_test_00140072.jpg
+Places365_test_00140090.jpg
+Places365_test_00140093.jpg
+Places365_test_00140095.jpg
+Places365_test_00140104.jpg
+Places365_test_00140107.jpg
+Places365_test_00140114.jpg
+Places365_test_00140128.jpg
+Places365_test_00140160.jpg
+Places365_test_00140164.jpg
+Places365_test_00140171.jpg
+Places365_test_00140182.jpg
+Places365_test_00140204.jpg
+Places365_test_00140212.jpg
+Places365_test_00140223.jpg
+Places365_test_00140234.jpg
+Places365_test_00140250.jpg
+Places365_test_00140252.jpg
+Places365_test_00140266.jpg
+Places365_test_00140276.jpg
+Places365_test_00140300.jpg
+Places365_test_00140313.jpg
+Places365_test_00140314.jpg
+Places365_test_00140316.jpg
+Places365_test_00140345.jpg
+Places365_test_00140386.jpg
+Places365_test_00140392.jpg
+Places365_test_00140394.jpg
+Places365_test_00140410.jpg
+Places365_test_00140422.jpg
+Places365_test_00140441.jpg
+Places365_test_00140451.jpg
+Places365_test_00140458.jpg
+Places365_test_00140471.jpg
+Places365_test_00140476.jpg
+Places365_test_00140516.jpg
+Places365_test_00140534.jpg
+Places365_test_00140543.jpg
+Places365_test_00140545.jpg
+Places365_test_00140547.jpg
+Places365_test_00140554.jpg
+Places365_test_00140559.jpg
+Places365_test_00140564.jpg
+Places365_test_00140568.jpg
+Places365_test_00140569.jpg
+Places365_test_00140583.jpg
+Places365_test_00140589.jpg
+Places365_test_00140592.jpg
+Places365_test_00140595.jpg
+Places365_test_00140599.jpg
+Places365_test_00140606.jpg
+Places365_test_00140623.jpg
+Places365_test_00140639.jpg
+Places365_test_00140646.jpg
+Places365_test_00140647.jpg
+Places365_test_00140654.jpg
+Places365_test_00140655.jpg
+Places365_test_00140656.jpg
+Places365_test_00140659.jpg
+Places365_test_00140667.jpg
+Places365_test_00140670.jpg
+Places365_test_00140675.jpg
+Places365_test_00140685.jpg
+Places365_test_00140691.jpg
+Places365_test_00140695.jpg
+Places365_test_00140706.jpg
+Places365_test_00140709.jpg
+Places365_test_00140726.jpg
+Places365_test_00140734.jpg
+Places365_test_00140742.jpg
+Places365_test_00140745.jpg
+Places365_test_00140790.jpg
+Places365_test_00140810.jpg
+Places365_test_00140813.jpg
+Places365_test_00140820.jpg
+Places365_test_00140822.jpg
+Places365_test_00140830.jpg
+Places365_test_00140849.jpg
+Places365_test_00140860.jpg
+Places365_test_00140871.jpg
+Places365_test_00140875.jpg
+Places365_test_00140894.jpg
+Places365_test_00140909.jpg
+Places365_test_00140916.jpg
+Places365_test_00140929.jpg
+Places365_test_00140933.jpg
+Places365_test_00140954.jpg
+Places365_test_00140956.jpg
+Places365_test_00140960.jpg
+Places365_test_00140976.jpg
+Places365_test_00140988.jpg
+Places365_test_00140990.jpg
+Places365_test_00140991.jpg
+Places365_test_00140994.jpg
+Places365_test_00141002.jpg
+Places365_test_00141019.jpg
+Places365_test_00141024.jpg
+Places365_test_00141043.jpg
+Places365_test_00141046.jpg
+Places365_test_00141048.jpg
+Places365_test_00141053.jpg
+Places365_test_00141057.jpg
+Places365_test_00141058.jpg
+Places365_test_00141072.jpg
+Places365_test_00141083.jpg
+Places365_test_00141100.jpg
+Places365_test_00141126.jpg
+Places365_test_00141129.jpg
+Places365_test_00141147.jpg
+Places365_test_00141158.jpg
+Places365_test_00141183.jpg
+Places365_test_00141184.jpg
+Places365_test_00141228.jpg
+Places365_test_00141253.jpg
+Places365_test_00141270.jpg
+Places365_test_00141273.jpg
+Places365_test_00141275.jpg
+Places365_test_00141281.jpg
+Places365_test_00141296.jpg
+Places365_test_00141301.jpg
+Places365_test_00141302.jpg
+Places365_test_00141305.jpg
+Places365_test_00141340.jpg
+Places365_test_00141350.jpg
+Places365_test_00141353.jpg
+Places365_test_00141362.jpg
+Places365_test_00141364.jpg
+Places365_test_00141365.jpg
+Places365_test_00141370.jpg
+Places365_test_00141373.jpg
+Places365_test_00141379.jpg
+Places365_test_00141400.jpg
+Places365_test_00141402.jpg
+Places365_test_00141411.jpg
+Places365_test_00141414.jpg
+Places365_test_00141420.jpg
+Places365_test_00141421.jpg
+Places365_test_00141434.jpg
+Places365_test_00141445.jpg
+Places365_test_00141454.jpg
+Places365_test_00141458.jpg
+Places365_test_00141461.jpg
+Places365_test_00141463.jpg
+Places365_test_00141472.jpg
+Places365_test_00141492.jpg
+Places365_test_00141504.jpg
+Places365_test_00141511.jpg
+Places365_test_00141521.jpg
+Places365_test_00141524.jpg
+Places365_test_00141525.jpg
+Places365_test_00141537.jpg
+Places365_test_00141541.jpg
+Places365_test_00141551.jpg
+Places365_test_00141568.jpg
+Places365_test_00141571.jpg
+Places365_test_00141581.jpg
+Places365_test_00141583.jpg
+Places365_test_00141589.jpg
+Places365_test_00141611.jpg
+Places365_test_00141620.jpg
+Places365_test_00141631.jpg
+Places365_test_00141645.jpg
+Places365_test_00141657.jpg
+Places365_test_00141663.jpg
+Places365_test_00141678.jpg
+Places365_test_00141689.jpg
+Places365_test_00141694.jpg
+Places365_test_00141696.jpg
+Places365_test_00141700.jpg
+Places365_test_00141701.jpg
+Places365_test_00141704.jpg
+Places365_test_00141706.jpg
+Places365_test_00141712.jpg
+Places365_test_00141749.jpg
+Places365_test_00141758.jpg
+Places365_test_00141759.jpg
+Places365_test_00141800.jpg
+Places365_test_00141822.jpg
+Places365_test_00141833.jpg
+Places365_test_00141837.jpg
+Places365_test_00141841.jpg
+Places365_test_00141855.jpg
+Places365_test_00141859.jpg
+Places365_test_00141878.jpg
+Places365_test_00141880.jpg
+Places365_test_00141890.jpg
+Places365_test_00141896.jpg
+Places365_test_00141940.jpg
+Places365_test_00141942.jpg
+Places365_test_00141959.jpg
+Places365_test_00141972.jpg
+Places365_test_00141995.jpg
+Places365_test_00142021.jpg
+Places365_test_00142024.jpg
+Places365_test_00142069.jpg
+Places365_test_00142072.jpg
+Places365_test_00142095.jpg
+Places365_test_00142097.jpg
+Places365_test_00142108.jpg
+Places365_test_00142110.jpg
+Places365_test_00142111.jpg
+Places365_test_00142128.jpg
+Places365_test_00142156.jpg
+Places365_test_00142176.jpg
+Places365_test_00142179.jpg
+Places365_test_00142186.jpg
+Places365_test_00142189.jpg
+Places365_test_00142192.jpg
+Places365_test_00142193.jpg
+Places365_test_00142199.jpg
+Places365_test_00142205.jpg
+Places365_test_00142217.jpg
+Places365_test_00142224.jpg
+Places365_test_00142228.jpg
+Places365_test_00142237.jpg
+Places365_test_00142247.jpg
+Places365_test_00142255.jpg
+Places365_test_00142273.jpg
+Places365_test_00142276.jpg
+Places365_test_00142304.jpg
+Places365_test_00142315.jpg
+Places365_test_00142323.jpg
+Places365_test_00142330.jpg
+Places365_test_00142351.jpg
+Places365_test_00142353.jpg
+Places365_test_00142357.jpg
+Places365_test_00142360.jpg
+Places365_test_00142368.jpg
+Places365_test_00142378.jpg
+Places365_test_00142389.jpg
+Places365_test_00142392.jpg
+Places365_test_00142396.jpg
+Places365_test_00142407.jpg
+Places365_test_00142410.jpg
+Places365_test_00142426.jpg
+Places365_test_00142429.jpg
+Places365_test_00142431.jpg
+Places365_test_00142444.jpg
+Places365_test_00142457.jpg
+Places365_test_00142473.jpg
+Places365_test_00142486.jpg
+Places365_test_00142491.jpg
+Places365_test_00142493.jpg
+Places365_test_00142494.jpg
+Places365_test_00142509.jpg
+Places365_test_00142517.jpg
+Places365_test_00142520.jpg
+Places365_test_00142542.jpg
+Places365_test_00142543.jpg
+Places365_test_00142547.jpg
+Places365_test_00142557.jpg
+Places365_test_00142568.jpg
+Places365_test_00142570.jpg
+Places365_test_00142580.jpg
+Places365_test_00142586.jpg
+Places365_test_00142592.jpg
+Places365_test_00142595.jpg
+Places365_test_00142621.jpg
+Places365_test_00142644.jpg
+Places365_test_00142646.jpg
+Places365_test_00142648.jpg
+Places365_test_00142654.jpg
+Places365_test_00142667.jpg
+Places365_test_00142680.jpg
+Places365_test_00142681.jpg
+Places365_test_00142691.jpg
+Places365_test_00142694.jpg
+Places365_test_00142696.jpg
+Places365_test_00142700.jpg
+Places365_test_00142711.jpg
+Places365_test_00142722.jpg
+Places365_test_00142732.jpg
+Places365_test_00142737.jpg
+Places365_test_00142738.jpg
+Places365_test_00142741.jpg
+Places365_test_00142753.jpg
+Places365_test_00142770.jpg
+Places365_test_00142774.jpg
+Places365_test_00142780.jpg
+Places365_test_00142795.jpg
+Places365_test_00142806.jpg
+Places365_test_00142807.jpg
+Places365_test_00142823.jpg
+Places365_test_00142832.jpg
+Places365_test_00142841.jpg
+Places365_test_00142861.jpg
+Places365_test_00142878.jpg
+Places365_test_00142887.jpg
+Places365_test_00142888.jpg
+Places365_test_00142889.jpg
+Places365_test_00142895.jpg
+Places365_test_00142920.jpg
+Places365_test_00142929.jpg
+Places365_test_00142933.jpg
+Places365_test_00142946.jpg
+Places365_test_00142967.jpg
+Places365_test_00143012.jpg
+Places365_test_00143018.jpg
+Places365_test_00143020.jpg
+Places365_test_00143022.jpg
+Places365_test_00143023.jpg
+Places365_test_00143024.jpg
+Places365_test_00143032.jpg
+Places365_test_00143060.jpg
+Places365_test_00143081.jpg
+Places365_test_00143130.jpg
+Places365_test_00143151.jpg
+Places365_test_00143152.jpg
+Places365_test_00143175.jpg
+Places365_test_00143189.jpg
+Places365_test_00143194.jpg
+Places365_test_00143195.jpg
+Places365_test_00143202.jpg
+Places365_test_00143211.jpg
+Places365_test_00143214.jpg
+Places365_test_00143216.jpg
+Places365_test_00143217.jpg
+Places365_test_00143218.jpg
+Places365_test_00143258.jpg
+Places365_test_00143266.jpg
+Places365_test_00143278.jpg
+Places365_test_00143288.jpg
+Places365_test_00143292.jpg
+Places365_test_00143302.jpg
+Places365_test_00143303.jpg
+Places365_test_00143320.jpg
+Places365_test_00143327.jpg
+Places365_test_00143340.jpg
+Places365_test_00143359.jpg
+Places365_test_00143372.jpg
+Places365_test_00143384.jpg
+Places365_test_00143388.jpg
+Places365_test_00143398.jpg
+Places365_test_00143402.jpg
+Places365_test_00143406.jpg
+Places365_test_00143436.jpg
+Places365_test_00143440.jpg
+Places365_test_00143447.jpg
+Places365_test_00143468.jpg
+Places365_test_00143475.jpg
+Places365_test_00143497.jpg
+Places365_test_00143506.jpg
+Places365_test_00143508.jpg
+Places365_test_00143547.jpg
+Places365_test_00143552.jpg
+Places365_test_00143560.jpg
+Places365_test_00143562.jpg
+Places365_test_00143573.jpg
+Places365_test_00143604.jpg
+Places365_test_00143679.jpg
+Places365_test_00143715.jpg
+Places365_test_00143720.jpg
+Places365_test_00143734.jpg
+Places365_test_00143739.jpg
+Places365_test_00143753.jpg
+Places365_test_00143805.jpg
+Places365_test_00143816.jpg
+Places365_test_00143829.jpg
+Places365_test_00143839.jpg
+Places365_test_00143840.jpg
+Places365_test_00143845.jpg
+Places365_test_00143846.jpg
+Places365_test_00143859.jpg
+Places365_test_00143866.jpg
+Places365_test_00143868.jpg
+Places365_test_00143882.jpg
+Places365_test_00143892.jpg
+Places365_test_00143899.jpg
+Places365_test_00143916.jpg
+Places365_test_00143921.jpg
+Places365_test_00143922.jpg
+Places365_test_00143927.jpg
+Places365_test_00143947.jpg
+Places365_test_00143983.jpg
+Places365_test_00143986.jpg
+Places365_test_00143989.jpg
+Places365_test_00143993.jpg
+Places365_test_00144002.jpg
+Places365_test_00144012.jpg
+Places365_test_00144018.jpg
+Places365_test_00144057.jpg
+Places365_test_00144079.jpg
+Places365_test_00144100.jpg
+Places365_test_00144133.jpg
+Places365_test_00144138.jpg
+Places365_test_00144140.jpg
+Places365_test_00144143.jpg
+Places365_test_00144166.jpg
+Places365_test_00144179.jpg
+Places365_test_00144187.jpg
+Places365_test_00144200.jpg
+Places365_test_00144211.jpg
+Places365_test_00144216.jpg
+Places365_test_00144217.jpg
+Places365_test_00144221.jpg
+Places365_test_00144239.jpg
+Places365_test_00144245.jpg
+Places365_test_00144257.jpg
+Places365_test_00144261.jpg
+Places365_test_00144263.jpg
+Places365_test_00144273.jpg
+Places365_test_00144279.jpg
+Places365_test_00144295.jpg
+Places365_test_00144302.jpg
+Places365_test_00144325.jpg
+Places365_test_00144333.jpg
+Places365_test_00144339.jpg
+Places365_test_00144362.jpg
+Places365_test_00144368.jpg
+Places365_test_00144379.jpg
+Places365_test_00144389.jpg
+Places365_test_00144393.jpg
+Places365_test_00144415.jpg
+Places365_test_00144425.jpg
+Places365_test_00144432.jpg
+Places365_test_00144438.jpg
+Places365_test_00144440.jpg
+Places365_test_00144462.jpg
+Places365_test_00144477.jpg
+Places365_test_00144492.jpg
+Places365_test_00144495.jpg
+Places365_test_00144499.jpg
+Places365_test_00144503.jpg
+Places365_test_00144507.jpg
+Places365_test_00144520.jpg
+Places365_test_00144522.jpg
+Places365_test_00144536.jpg
+Places365_test_00144545.jpg
+Places365_test_00144547.jpg
+Places365_test_00144556.jpg
+Places365_test_00144560.jpg
+Places365_test_00144562.jpg
+Places365_test_00144563.jpg
+Places365_test_00144573.jpg
+Places365_test_00144580.jpg
+Places365_test_00144582.jpg
+Places365_test_00144595.jpg
+Places365_test_00144621.jpg
+Places365_test_00144641.jpg
+Places365_test_00144663.jpg
+Places365_test_00144670.jpg
+Places365_test_00144679.jpg
+Places365_test_00144681.jpg
+Places365_test_00144696.jpg
+Places365_test_00144701.jpg
+Places365_test_00144709.jpg
+Places365_test_00144714.jpg
+Places365_test_00144720.jpg
+Places365_test_00144726.jpg
+Places365_test_00144737.jpg
+Places365_test_00144744.jpg
+Places365_test_00144758.jpg
+Places365_test_00144762.jpg
+Places365_test_00144769.jpg
+Places365_test_00144771.jpg
+Places365_test_00144782.jpg
+Places365_test_00144788.jpg
+Places365_test_00144806.jpg
+Places365_test_00144811.jpg
+Places365_test_00144813.jpg
+Places365_test_00144834.jpg
+Places365_test_00144842.jpg
+Places365_test_00144867.jpg
+Places365_test_00144870.jpg
+Places365_test_00144871.jpg
+Places365_test_00144877.jpg
+Places365_test_00144901.jpg
+Places365_test_00144903.jpg
+Places365_test_00144915.jpg
+Places365_test_00144931.jpg
+Places365_test_00144957.jpg
+Places365_test_00144965.jpg
+Places365_test_00144983.jpg
+Places365_test_00144985.jpg
+Places365_test_00144988.jpg
+Places365_test_00144993.jpg
+Places365_test_00145047.jpg
+Places365_test_00145051.jpg
+Places365_test_00145052.jpg
+Places365_test_00145061.jpg
+Places365_test_00145071.jpg
+Places365_test_00145079.jpg
+Places365_test_00145082.jpg
+Places365_test_00145085.jpg
+Places365_test_00145087.jpg
+Places365_test_00145100.jpg
+Places365_test_00145102.jpg
+Places365_test_00145153.jpg
+Places365_test_00145162.jpg
+Places365_test_00145180.jpg
+Places365_test_00145186.jpg
+Places365_test_00145195.jpg
+Places365_test_00145200.jpg
+Places365_test_00145203.jpg
+Places365_test_00145222.jpg
+Places365_test_00145273.jpg
+Places365_test_00145299.jpg
+Places365_test_00145302.jpg
+Places365_test_00145319.jpg
+Places365_test_00145327.jpg
+Places365_test_00145338.jpg
+Places365_test_00145348.jpg
+Places365_test_00145349.jpg
+Places365_test_00145357.jpg
+Places365_test_00145360.jpg
+Places365_test_00145383.jpg
+Places365_test_00145403.jpg
+Places365_test_00145428.jpg
+Places365_test_00145430.jpg
+Places365_test_00145432.jpg
+Places365_test_00145445.jpg
+Places365_test_00145446.jpg
+Places365_test_00145447.jpg
+Places365_test_00145455.jpg
+Places365_test_00145458.jpg
+Places365_test_00145459.jpg
+Places365_test_00145475.jpg
+Places365_test_00145476.jpg
+Places365_test_00145493.jpg
+Places365_test_00145526.jpg
+Places365_test_00145547.jpg
+Places365_test_00145552.jpg
+Places365_test_00145558.jpg
+Places365_test_00145582.jpg
+Places365_test_00145594.jpg
+Places365_test_00145609.jpg
+Places365_test_00145610.jpg
+Places365_test_00145616.jpg
+Places365_test_00145646.jpg
+Places365_test_00145655.jpg
+Places365_test_00145683.jpg
+Places365_test_00145690.jpg
+Places365_test_00145703.jpg
+Places365_test_00145705.jpg
+Places365_test_00145720.jpg
+Places365_test_00145723.jpg
+Places365_test_00145770.jpg
+Places365_test_00145778.jpg
+Places365_test_00145792.jpg
+Places365_test_00145813.jpg
+Places365_test_00145826.jpg
+Places365_test_00145838.jpg
+Places365_test_00145849.jpg
+Places365_test_00145852.jpg
+Places365_test_00145858.jpg
+Places365_test_00145863.jpg
+Places365_test_00145874.jpg
+Places365_test_00145891.jpg
+Places365_test_00145894.jpg
+Places365_test_00145913.jpg
+Places365_test_00145921.jpg
+Places365_test_00145922.jpg
+Places365_test_00145935.jpg
+Places365_test_00145948.jpg
+Places365_test_00145984.jpg
+Places365_test_00145989.jpg
+Places365_test_00145995.jpg
+Places365_test_00146007.jpg
+Places365_test_00146025.jpg
+Places365_test_00146031.jpg
+Places365_test_00146038.jpg
+Places365_test_00146041.jpg
+Places365_test_00146050.jpg
+Places365_test_00146075.jpg
+Places365_test_00146085.jpg
+Places365_test_00146089.jpg
+Places365_test_00146090.jpg
+Places365_test_00146099.jpg
+Places365_test_00146104.jpg
+Places365_test_00146108.jpg
+Places365_test_00146110.jpg
+Places365_test_00146111.jpg
+Places365_test_00146128.jpg
+Places365_test_00146130.jpg
+Places365_test_00146150.jpg
+Places365_test_00146180.jpg
+Places365_test_00146184.jpg
+Places365_test_00146208.jpg
+Places365_test_00146223.jpg
+Places365_test_00146239.jpg
+Places365_test_00146248.jpg
+Places365_test_00146256.jpg
+Places365_test_00146259.jpg
+Places365_test_00146260.jpg
+Places365_test_00146268.jpg
+Places365_test_00146273.jpg
+Places365_test_00146303.jpg
+Places365_test_00146314.jpg
+Places365_test_00146325.jpg
+Places365_test_00146327.jpg
+Places365_test_00146334.jpg
+Places365_test_00146346.jpg
+Places365_test_00146352.jpg
+Places365_test_00146362.jpg
+Places365_test_00146380.jpg
+Places365_test_00146381.jpg
+Places365_test_00146383.jpg
+Places365_test_00146388.jpg
+Places365_test_00146390.jpg
+Places365_test_00146393.jpg
+Places365_test_00146400.jpg
+Places365_test_00146419.jpg
+Places365_test_00146438.jpg
+Places365_test_00146459.jpg
+Places365_test_00146460.jpg
+Places365_test_00146469.jpg
+Places365_test_00146488.jpg
+Places365_test_00146508.jpg
+Places365_test_00146542.jpg
+Places365_test_00146547.jpg
+Places365_test_00146548.jpg
+Places365_test_00146562.jpg
+Places365_test_00146566.jpg
+Places365_test_00146569.jpg
+Places365_test_00146578.jpg
+Places365_test_00146585.jpg
+Places365_test_00146591.jpg
+Places365_test_00146596.jpg
+Places365_test_00146608.jpg
+Places365_test_00146614.jpg
+Places365_test_00146620.jpg
+Places365_test_00146626.jpg
+Places365_test_00146645.jpg
+Places365_test_00146657.jpg
+Places365_test_00146669.jpg
+Places365_test_00146673.jpg
+Places365_test_00146675.jpg
+Places365_test_00146677.jpg
+Places365_test_00146681.jpg
+Places365_test_00146708.jpg
+Places365_test_00146720.jpg
+Places365_test_00146721.jpg
+Places365_test_00146723.jpg
+Places365_test_00146724.jpg
+Places365_test_00146727.jpg
+Places365_test_00146735.jpg
+Places365_test_00146772.jpg
+Places365_test_00146773.jpg
+Places365_test_00146782.jpg
+Places365_test_00146786.jpg
+Places365_test_00146794.jpg
+Places365_test_00146815.jpg
+Places365_test_00146824.jpg
+Places365_test_00146833.jpg
+Places365_test_00146835.jpg
+Places365_test_00146836.jpg
+Places365_test_00146846.jpg
+Places365_test_00146859.jpg
+Places365_test_00146867.jpg
+Places365_test_00146872.jpg
+Places365_test_00146880.jpg
+Places365_test_00146906.jpg
+Places365_test_00146927.jpg
+Places365_test_00146930.jpg
+Places365_test_00146935.jpg
+Places365_test_00146938.jpg
+Places365_test_00146948.jpg
+Places365_test_00146949.jpg
+Places365_test_00146955.jpg
+Places365_test_00146988.jpg
+Places365_test_00146994.jpg
+Places365_test_00147005.jpg
+Places365_test_00147035.jpg
+Places365_test_00147037.jpg
+Places365_test_00147039.jpg
+Places365_test_00147062.jpg
+Places365_test_00147076.jpg
+Places365_test_00147089.jpg
+Places365_test_00147091.jpg
+Places365_test_00147110.jpg
+Places365_test_00147111.jpg
+Places365_test_00147113.jpg
+Places365_test_00147131.jpg
+Places365_test_00147132.jpg
+Places365_test_00147142.jpg
+Places365_test_00147146.jpg
+Places365_test_00147152.jpg
+Places365_test_00147158.jpg
+Places365_test_00147159.jpg
+Places365_test_00147164.jpg
+Places365_test_00147167.jpg
+Places365_test_00147187.jpg
+Places365_test_00147194.jpg
+Places365_test_00147202.jpg
+Places365_test_00147206.jpg
+Places365_test_00147223.jpg
+Places365_test_00147250.jpg
+Places365_test_00147257.jpg
+Places365_test_00147258.jpg
+Places365_test_00147278.jpg
+Places365_test_00147283.jpg
+Places365_test_00147290.jpg
+Places365_test_00147291.jpg
+Places365_test_00147292.jpg
+Places365_test_00147300.jpg
+Places365_test_00147309.jpg
+Places365_test_00147324.jpg
+Places365_test_00147333.jpg
+Places365_test_00147337.jpg
+Places365_test_00147342.jpg
+Places365_test_00147354.jpg
+Places365_test_00147356.jpg
+Places365_test_00147382.jpg
+Places365_test_00147397.jpg
+Places365_test_00147400.jpg
+Places365_test_00147403.jpg
+Places365_test_00147406.jpg
+Places365_test_00147420.jpg
+Places365_test_00147423.jpg
+Places365_test_00147472.jpg
+Places365_test_00147475.jpg
+Places365_test_00147489.jpg
+Places365_test_00147491.jpg
+Places365_test_00147494.jpg
+Places365_test_00147530.jpg
+Places365_test_00147542.jpg
+Places365_test_00147544.jpg
+Places365_test_00147546.jpg
+Places365_test_00147551.jpg
+Places365_test_00147555.jpg
+Places365_test_00147569.jpg
+Places365_test_00147571.jpg
+Places365_test_00147575.jpg
+Places365_test_00147600.jpg
+Places365_test_00147602.jpg
+Places365_test_00147630.jpg
+Places365_test_00147634.jpg
+Places365_test_00147647.jpg
+Places365_test_00147655.jpg
+Places365_test_00147688.jpg
+Places365_test_00147693.jpg
+Places365_test_00147707.jpg
+Places365_test_00147714.jpg
+Places365_test_00147716.jpg
+Places365_test_00147732.jpg
+Places365_test_00147738.jpg
+Places365_test_00147745.jpg
+Places365_test_00147753.jpg
+Places365_test_00147758.jpg
+Places365_test_00147759.jpg
+Places365_test_00147768.jpg
+Places365_test_00147775.jpg
+Places365_test_00147794.jpg
+Places365_test_00147803.jpg
+Places365_test_00147809.jpg
+Places365_test_00147814.jpg
+Places365_test_00147848.jpg
+Places365_test_00147849.jpg
+Places365_test_00147857.jpg
+Places365_test_00147876.jpg
+Places365_test_00147878.jpg
+Places365_test_00147884.jpg
+Places365_test_00147914.jpg
+Places365_test_00147929.jpg
+Places365_test_00147938.jpg
+Places365_test_00147951.jpg
+Places365_test_00147971.jpg
+Places365_test_00147975.jpg
+Places365_test_00147977.jpg
+Places365_test_00148007.jpg
+Places365_test_00148011.jpg
+Places365_test_00148013.jpg
+Places365_test_00148037.jpg
+Places365_test_00148064.jpg
+Places365_test_00148071.jpg
+Places365_test_00148088.jpg
+Places365_test_00148100.jpg
+Places365_test_00148101.jpg
+Places365_test_00148106.jpg
+Places365_test_00148123.jpg
+Places365_test_00148128.jpg
+Places365_test_00148131.jpg
+Places365_test_00148147.jpg
+Places365_test_00148149.jpg
+Places365_test_00148157.jpg
+Places365_test_00148188.jpg
+Places365_test_00148199.jpg
+Places365_test_00148220.jpg
+Places365_test_00148225.jpg
+Places365_test_00148229.jpg
+Places365_test_00148248.jpg
+Places365_test_00148252.jpg
+Places365_test_00148263.jpg
+Places365_test_00148265.jpg
+Places365_test_00148269.jpg
+Places365_test_00148286.jpg
+Places365_test_00148287.jpg
+Places365_test_00148304.jpg
+Places365_test_00148306.jpg
+Places365_test_00148313.jpg
+Places365_test_00148322.jpg
+Places365_test_00148334.jpg
+Places365_test_00148343.jpg
+Places365_test_00148355.jpg
+Places365_test_00148356.jpg
+Places365_test_00148358.jpg
+Places365_test_00148360.jpg
+Places365_test_00148389.jpg
+Places365_test_00148418.jpg
+Places365_test_00148433.jpg
+Places365_test_00148439.jpg
+Places365_test_00148445.jpg
+Places365_test_00148446.jpg
+Places365_test_00148452.jpg
+Places365_test_00148473.jpg
+Places365_test_00148475.jpg
+Places365_test_00148478.jpg
+Places365_test_00148481.jpg
+Places365_test_00148482.jpg
+Places365_test_00148484.jpg
+Places365_test_00148507.jpg
+Places365_test_00148522.jpg
+Places365_test_00148523.jpg
+Places365_test_00148529.jpg
+Places365_test_00148531.jpg
+Places365_test_00148546.jpg
+Places365_test_00148570.jpg
+Places365_test_00148580.jpg
+Places365_test_00148582.jpg
+Places365_test_00148587.jpg
+Places365_test_00148589.jpg
+Places365_test_00148593.jpg
+Places365_test_00148596.jpg
+Places365_test_00148597.jpg
+Places365_test_00148598.jpg
+Places365_test_00148611.jpg
+Places365_test_00148616.jpg
+Places365_test_00148632.jpg
+Places365_test_00148642.jpg
+Places365_test_00148644.jpg
+Places365_test_00148680.jpg
+Places365_test_00148686.jpg
+Places365_test_00148703.jpg
+Places365_test_00148710.jpg
+Places365_test_00148719.jpg
+Places365_test_00148728.jpg
+Places365_test_00148738.jpg
+Places365_test_00148754.jpg
+Places365_test_00148760.jpg
+Places365_test_00148762.jpg
+Places365_test_00148772.jpg
+Places365_test_00148796.jpg
+Places365_test_00148819.jpg
+Places365_test_00148833.jpg
+Places365_test_00148834.jpg
+Places365_test_00148875.jpg
+Places365_test_00148884.jpg
+Places365_test_00148887.jpg
+Places365_test_00148949.jpg
+Places365_test_00148956.jpg
+Places365_test_00148971.jpg
+Places365_test_00148981.jpg
+Places365_test_00148985.jpg
+Places365_test_00149000.jpg
+Places365_test_00149026.jpg
+Places365_test_00149032.jpg
+Places365_test_00149033.jpg
+Places365_test_00149052.jpg
+Places365_test_00149058.jpg
+Places365_test_00149071.jpg
+Places365_test_00149077.jpg
+Places365_test_00149123.jpg
+Places365_test_00149134.jpg
+Places365_test_00149137.jpg
+Places365_test_00149155.jpg
+Places365_test_00149165.jpg
+Places365_test_00149183.jpg
+Places365_test_00149204.jpg
+Places365_test_00149207.jpg
+Places365_test_00149219.jpg
+Places365_test_00149230.jpg
+Places365_test_00149236.jpg
+Places365_test_00149237.jpg
+Places365_test_00149253.jpg
+Places365_test_00149273.jpg
+Places365_test_00149278.jpg
+Places365_test_00149285.jpg
+Places365_test_00149289.jpg
+Places365_test_00149290.jpg
+Places365_test_00149310.jpg
+Places365_test_00149314.jpg
+Places365_test_00149321.jpg
+Places365_test_00149325.jpg
+Places365_test_00149329.jpg
+Places365_test_00149343.jpg
+Places365_test_00149347.jpg
+Places365_test_00149361.jpg
+Places365_test_00149367.jpg
+Places365_test_00149383.jpg
+Places365_test_00149403.jpg
+Places365_test_00149413.jpg
+Places365_test_00149420.jpg
+Places365_test_00149424.jpg
+Places365_test_00149427.jpg
+Places365_test_00149436.jpg
+Places365_test_00149450.jpg
+Places365_test_00149458.jpg
+Places365_test_00149461.jpg
+Places365_test_00149470.jpg
+Places365_test_00149488.jpg
+Places365_test_00149494.jpg
+Places365_test_00149523.jpg
+Places365_test_00149528.jpg
+Places365_test_00149541.jpg
+Places365_test_00149557.jpg
+Places365_test_00149561.jpg
+Places365_test_00149576.jpg
+Places365_test_00149582.jpg
+Places365_test_00149587.jpg
+Places365_test_00149598.jpg
+Places365_test_00149602.jpg
+Places365_test_00149612.jpg
+Places365_test_00149642.jpg
+Places365_test_00149657.jpg
+Places365_test_00149662.jpg
+Places365_test_00149669.jpg
+Places365_test_00149672.jpg
+Places365_test_00149674.jpg
+Places365_test_00149686.jpg
+Places365_test_00149687.jpg
+Places365_test_00149690.jpg
+Places365_test_00149715.jpg
+Places365_test_00149723.jpg
+Places365_test_00149732.jpg
+Places365_test_00149744.jpg
+Places365_test_00149754.jpg
+Places365_test_00149763.jpg
+Places365_test_00149769.jpg
+Places365_test_00149774.jpg
+Places365_test_00149775.jpg
+Places365_test_00149787.jpg
+Places365_test_00149799.jpg
+Places365_test_00149802.jpg
+Places365_test_00149822.jpg
+Places365_test_00149833.jpg
+Places365_test_00149841.jpg
+Places365_test_00149845.jpg
+Places365_test_00149853.jpg
+Places365_test_00149882.jpg
+Places365_test_00149884.jpg
+Places365_test_00149887.jpg
+Places365_test_00149894.jpg
+Places365_test_00149896.jpg
+Places365_test_00149904.jpg
+Places365_test_00149913.jpg
+Places365_test_00149914.jpg
+Places365_test_00149937.jpg
+Places365_test_00149955.jpg
+Places365_test_00149975.jpg
+Places365_test_00149980.jpg
+Places365_test_00149991.jpg
+Places365_test_00149992.jpg
+Places365_test_00150003.jpg
+Places365_test_00150016.jpg
+Places365_test_00150022.jpg
+Places365_test_00150030.jpg
+Places365_test_00150033.jpg
+Places365_test_00150057.jpg
+Places365_test_00150060.jpg
+Places365_test_00150066.jpg
+Places365_test_00150101.jpg
+Places365_test_00150105.jpg
+Places365_test_00150116.jpg
+Places365_test_00150137.jpg
+Places365_test_00150147.jpg
+Places365_test_00150182.jpg
+Places365_test_00150207.jpg
+Places365_test_00150224.jpg
+Places365_test_00150240.jpg
+Places365_test_00150248.jpg
+Places365_test_00150270.jpg
+Places365_test_00150276.jpg
+Places365_test_00150293.jpg
+Places365_test_00150327.jpg
+Places365_test_00150333.jpg
+Places365_test_00150340.jpg
+Places365_test_00150355.jpg
+Places365_test_00150357.jpg
+Places365_test_00150362.jpg
+Places365_test_00150375.jpg
+Places365_test_00150384.jpg
+Places365_test_00150390.jpg
+Places365_test_00150396.jpg
+Places365_test_00150405.jpg
+Places365_test_00150420.jpg
+Places365_test_00150442.jpg
+Places365_test_00150443.jpg
+Places365_test_00150446.jpg
+Places365_test_00150449.jpg
+Places365_test_00150474.jpg
+Places365_test_00150475.jpg
+Places365_test_00150481.jpg
+Places365_test_00150491.jpg
+Places365_test_00150495.jpg
+Places365_test_00150501.jpg
+Places365_test_00150504.jpg
+Places365_test_00150523.jpg
+Places365_test_00150538.jpg
+Places365_test_00150547.jpg
+Places365_test_00150553.jpg
+Places365_test_00150560.jpg
+Places365_test_00150576.jpg
+Places365_test_00150605.jpg
+Places365_test_00150609.jpg
+Places365_test_00150653.jpg
+Places365_test_00150677.jpg
+Places365_test_00150696.jpg
+Places365_test_00150701.jpg
+Places365_test_00150702.jpg
+Places365_test_00150733.jpg
+Places365_test_00150735.jpg
+Places365_test_00150743.jpg
+Places365_test_00150745.jpg
+Places365_test_00150753.jpg
+Places365_test_00150761.jpg
+Places365_test_00150763.jpg
+Places365_test_00150769.jpg
+Places365_test_00150772.jpg
+Places365_test_00150779.jpg
+Places365_test_00150794.jpg
+Places365_test_00150818.jpg
+Places365_test_00150822.jpg
+Places365_test_00150826.jpg
+Places365_test_00150829.jpg
+Places365_test_00150845.jpg
+Places365_test_00150870.jpg
+Places365_test_00150881.jpg
+Places365_test_00150893.jpg
+Places365_test_00150903.jpg
+Places365_test_00150926.jpg
+Places365_test_00150927.jpg
+Places365_test_00150942.jpg
+Places365_test_00150947.jpg
+Places365_test_00150949.jpg
+Places365_test_00150954.jpg
+Places365_test_00150992.jpg
+Places365_test_00150996.jpg
+Places365_test_00151018.jpg
+Places365_test_00151026.jpg
+Places365_test_00151051.jpg
+Places365_test_00151108.jpg
+Places365_test_00151128.jpg
+Places365_test_00151130.jpg
+Places365_test_00151131.jpg
+Places365_test_00151136.jpg
+Places365_test_00151171.jpg
+Places365_test_00151179.jpg
+Places365_test_00151186.jpg
+Places365_test_00151191.jpg
+Places365_test_00151196.jpg
+Places365_test_00151214.jpg
+Places365_test_00151222.jpg
+Places365_test_00151227.jpg
+Places365_test_00151236.jpg
+Places365_test_00151238.jpg
+Places365_test_00151242.jpg
+Places365_test_00151248.jpg
+Places365_test_00151249.jpg
+Places365_test_00151257.jpg
+Places365_test_00151265.jpg
+Places365_test_00151272.jpg
+Places365_test_00151274.jpg
+Places365_test_00151275.jpg
+Places365_test_00151282.jpg
+Places365_test_00151322.jpg
+Places365_test_00151329.jpg
+Places365_test_00151342.jpg
+Places365_test_00151344.jpg
+Places365_test_00151352.jpg
+Places365_test_00151361.jpg
+Places365_test_00151364.jpg
+Places365_test_00151368.jpg
+Places365_test_00151384.jpg
+Places365_test_00151391.jpg
+Places365_test_00151428.jpg
+Places365_test_00151436.jpg
+Places365_test_00151438.jpg
+Places365_test_00151445.jpg
+Places365_test_00151448.jpg
+Places365_test_00151461.jpg
+Places365_test_00151469.jpg
+Places365_test_00151499.jpg
+Places365_test_00151503.jpg
+Places365_test_00151506.jpg
+Places365_test_00151515.jpg
+Places365_test_00151525.jpg
+Places365_test_00151545.jpg
+Places365_test_00151557.jpg
+Places365_test_00151563.jpg
+Places365_test_00151571.jpg
+Places365_test_00151572.jpg
+Places365_test_00151573.jpg
+Places365_test_00151581.jpg
+Places365_test_00151593.jpg
+Places365_test_00151608.jpg
+Places365_test_00151618.jpg
+Places365_test_00151624.jpg
+Places365_test_00151628.jpg
+Places365_test_00151641.jpg
+Places365_test_00151645.jpg
+Places365_test_00151661.jpg
+Places365_test_00151669.jpg
+Places365_test_00151672.jpg
+Places365_test_00151700.jpg
+Places365_test_00151701.jpg
+Places365_test_00151704.jpg
+Places365_test_00151705.jpg
+Places365_test_00151721.jpg
+Places365_test_00151733.jpg
+Places365_test_00151737.jpg
+Places365_test_00151746.jpg
+Places365_test_00151763.jpg
+Places365_test_00151772.jpg
+Places365_test_00151786.jpg
+Places365_test_00151788.jpg
+Places365_test_00151818.jpg
+Places365_test_00151868.jpg
+Places365_test_00151872.jpg
+Places365_test_00151892.jpg
+Places365_test_00151900.jpg
+Places365_test_00151902.jpg
+Places365_test_00151916.jpg
+Places365_test_00151922.jpg
+Places365_test_00151934.jpg
+Places365_test_00151937.jpg
+Places365_test_00151952.jpg
+Places365_test_00151964.jpg
+Places365_test_00151966.jpg
+Places365_test_00151975.jpg
+Places365_test_00151977.jpg
+Places365_test_00151986.jpg
+Places365_test_00151987.jpg
+Places365_test_00152011.jpg
+Places365_test_00152037.jpg
+Places365_test_00152043.jpg
+Places365_test_00152059.jpg
+Places365_test_00152067.jpg
+Places365_test_00152070.jpg
+Places365_test_00152075.jpg
+Places365_test_00152083.jpg
+Places365_test_00152094.jpg
+Places365_test_00152107.jpg
+Places365_test_00152119.jpg
+Places365_test_00152122.jpg
+Places365_test_00152148.jpg
+Places365_test_00152151.jpg
+Places365_test_00152203.jpg
+Places365_test_00152223.jpg
+Places365_test_00152225.jpg
+Places365_test_00152240.jpg
+Places365_test_00152243.jpg
+Places365_test_00152244.jpg
+Places365_test_00152262.jpg
+Places365_test_00152271.jpg
+Places365_test_00152273.jpg
+Places365_test_00152285.jpg
+Places365_test_00152286.jpg
+Places365_test_00152291.jpg
+Places365_test_00152292.jpg
+Places365_test_00152302.jpg
+Places365_test_00152308.jpg
+Places365_test_00152313.jpg
+Places365_test_00152314.jpg
+Places365_test_00152317.jpg
+Places365_test_00152323.jpg
+Places365_test_00152349.jpg
+Places365_test_00152352.jpg
+Places365_test_00152377.jpg
+Places365_test_00152382.jpg
+Places365_test_00152398.jpg
+Places365_test_00152405.jpg
+Places365_test_00152422.jpg
+Places365_test_00152448.jpg
+Places365_test_00152450.jpg
+Places365_test_00152455.jpg
+Places365_test_00152466.jpg
+Places365_test_00152468.jpg
+Places365_test_00152469.jpg
+Places365_test_00152472.jpg
+Places365_test_00152513.jpg
+Places365_test_00152524.jpg
+Places365_test_00152527.jpg
+Places365_test_00152546.jpg
+Places365_test_00152550.jpg
+Places365_test_00152552.jpg
+Places365_test_00152578.jpg
+Places365_test_00152581.jpg
+Places365_test_00152592.jpg
+Places365_test_00152600.jpg
+Places365_test_00152617.jpg
+Places365_test_00152641.jpg
+Places365_test_00152661.jpg
+Places365_test_00152677.jpg
+Places365_test_00152678.jpg
+Places365_test_00152679.jpg
+Places365_test_00152690.jpg
+Places365_test_00152698.jpg
+Places365_test_00152710.jpg
+Places365_test_00152721.jpg
+Places365_test_00152729.jpg
+Places365_test_00152731.jpg
+Places365_test_00152735.jpg
+Places365_test_00152741.jpg
+Places365_test_00152748.jpg
+Places365_test_00152791.jpg
+Places365_test_00152792.jpg
+Places365_test_00152807.jpg
+Places365_test_00152846.jpg
+Places365_test_00152850.jpg
+Places365_test_00152858.jpg
+Places365_test_00152859.jpg
+Places365_test_00152873.jpg
+Places365_test_00152895.jpg
+Places365_test_00152920.jpg
+Places365_test_00152928.jpg
+Places365_test_00152937.jpg
+Places365_test_00152945.jpg
+Places365_test_00152951.jpg
+Places365_test_00152966.jpg
+Places365_test_00152969.jpg
+Places365_test_00152976.jpg
+Places365_test_00152990.jpg
+Places365_test_00153007.jpg
+Places365_test_00153024.jpg
+Places365_test_00153032.jpg
+Places365_test_00153059.jpg
+Places365_test_00153066.jpg
+Places365_test_00153068.jpg
+Places365_test_00153069.jpg
+Places365_test_00153083.jpg
+Places365_test_00153092.jpg
+Places365_test_00153094.jpg
+Places365_test_00153099.jpg
+Places365_test_00153102.jpg
+Places365_test_00153103.jpg
+Places365_test_00153106.jpg
+Places365_test_00153124.jpg
+Places365_test_00153125.jpg
+Places365_test_00153134.jpg
+Places365_test_00153143.jpg
+Places365_test_00153149.jpg
+Places365_test_00153152.jpg
+Places365_test_00153158.jpg
+Places365_test_00153192.jpg
+Places365_test_00153196.jpg
+Places365_test_00153204.jpg
+Places365_test_00153210.jpg
+Places365_test_00153211.jpg
+Places365_test_00153225.jpg
+Places365_test_00153232.jpg
+Places365_test_00153241.jpg
+Places365_test_00153243.jpg
+Places365_test_00153244.jpg
+Places365_test_00153249.jpg
+Places365_test_00153266.jpg
+Places365_test_00153272.jpg
+Places365_test_00153296.jpg
+Places365_test_00153302.jpg
+Places365_test_00153324.jpg
+Places365_test_00153347.jpg
+Places365_test_00153362.jpg
+Places365_test_00153365.jpg
+Places365_test_00153368.jpg
+Places365_test_00153375.jpg
+Places365_test_00153379.jpg
+Places365_test_00153388.jpg
+Places365_test_00153395.jpg
+Places365_test_00153418.jpg
+Places365_test_00153433.jpg
+Places365_test_00153437.jpg
+Places365_test_00153438.jpg
+Places365_test_00153469.jpg
+Places365_test_00153480.jpg
+Places365_test_00153485.jpg
+Places365_test_00153493.jpg
+Places365_test_00153500.jpg
+Places365_test_00153502.jpg
+Places365_test_00153503.jpg
+Places365_test_00153508.jpg
+Places365_test_00153511.jpg
+Places365_test_00153520.jpg
+Places365_test_00153539.jpg
+Places365_test_00153549.jpg
+Places365_test_00153560.jpg
+Places365_test_00153572.jpg
+Places365_test_00153573.jpg
+Places365_test_00153583.jpg
+Places365_test_00153587.jpg
+Places365_test_00153589.jpg
+Places365_test_00153598.jpg
+Places365_test_00153610.jpg
+Places365_test_00153616.jpg
+Places365_test_00153621.jpg
+Places365_test_00153624.jpg
+Places365_test_00153645.jpg
+Places365_test_00153646.jpg
+Places365_test_00153677.jpg
+Places365_test_00153684.jpg
+Places365_test_00153686.jpg
+Places365_test_00153689.jpg
+Places365_test_00153697.jpg
+Places365_test_00153733.jpg
+Places365_test_00153738.jpg
+Places365_test_00153739.jpg
+Places365_test_00153740.jpg
+Places365_test_00153758.jpg
+Places365_test_00153759.jpg
+Places365_test_00153768.jpg
+Places365_test_00153770.jpg
+Places365_test_00153774.jpg
+Places365_test_00153779.jpg
+Places365_test_00153788.jpg
+Places365_test_00153793.jpg
+Places365_test_00153795.jpg
+Places365_test_00153803.jpg
+Places365_test_00153804.jpg
+Places365_test_00153813.jpg
+Places365_test_00153820.jpg
+Places365_test_00153834.jpg
+Places365_test_00153844.jpg
+Places365_test_00153863.jpg
+Places365_test_00153871.jpg
+Places365_test_00153873.jpg
+Places365_test_00153878.jpg
+Places365_test_00153899.jpg
+Places365_test_00153900.jpg
+Places365_test_00153903.jpg
+Places365_test_00153933.jpg
+Places365_test_00153934.jpg
+Places365_test_00153943.jpg
+Places365_test_00153947.jpg
+Places365_test_00153957.jpg
+Places365_test_00153971.jpg
+Places365_test_00153980.jpg
+Places365_test_00153981.jpg
+Places365_test_00153985.jpg
+Places365_test_00153991.jpg
+Places365_test_00154009.jpg
+Places365_test_00154021.jpg
+Places365_test_00154023.jpg
+Places365_test_00154024.jpg
+Places365_test_00154025.jpg
+Places365_test_00154027.jpg
+Places365_test_00154042.jpg
+Places365_test_00154046.jpg
+Places365_test_00154061.jpg
+Places365_test_00154063.jpg
+Places365_test_00154069.jpg
+Places365_test_00154076.jpg
+Places365_test_00154079.jpg
+Places365_test_00154098.jpg
+Places365_test_00154106.jpg
+Places365_test_00154115.jpg
+Places365_test_00154127.jpg
+Places365_test_00154153.jpg
+Places365_test_00154157.jpg
+Places365_test_00154163.jpg
+Places365_test_00154172.jpg
+Places365_test_00154238.jpg
+Places365_test_00154239.jpg
+Places365_test_00154241.jpg
+Places365_test_00154245.jpg
+Places365_test_00154247.jpg
+Places365_test_00154249.jpg
+Places365_test_00154270.jpg
+Places365_test_00154276.jpg
+Places365_test_00154278.jpg
+Places365_test_00154283.jpg
+Places365_test_00154288.jpg
+Places365_test_00154290.jpg
+Places365_test_00154297.jpg
+Places365_test_00154302.jpg
+Places365_test_00154307.jpg
+Places365_test_00154313.jpg
+Places365_test_00154343.jpg
+Places365_test_00154345.jpg
+Places365_test_00154346.jpg
+Places365_test_00154355.jpg
+Places365_test_00154356.jpg
+Places365_test_00154379.jpg
+Places365_test_00154456.jpg
+Places365_test_00154470.jpg
+Places365_test_00154488.jpg
+Places365_test_00154489.jpg
+Places365_test_00154491.jpg
+Places365_test_00154502.jpg
+Places365_test_00154530.jpg
+Places365_test_00154533.jpg
+Places365_test_00154564.jpg
+Places365_test_00154572.jpg
+Places365_test_00154600.jpg
+Places365_test_00154606.jpg
+Places365_test_00154618.jpg
+Places365_test_00154631.jpg
+Places365_test_00154642.jpg
+Places365_test_00154705.jpg
+Places365_test_00154711.jpg
+Places365_test_00154726.jpg
+Places365_test_00154736.jpg
+Places365_test_00154751.jpg
+Places365_test_00154782.jpg
+Places365_test_00154822.jpg
+Places365_test_00154823.jpg
+Places365_test_00154878.jpg
+Places365_test_00154897.jpg
+Places365_test_00154900.jpg
+Places365_test_00154906.jpg
+Places365_test_00154908.jpg
+Places365_test_00154913.jpg
+Places365_test_00154918.jpg
+Places365_test_00154925.jpg
+Places365_test_00154929.jpg
+Places365_test_00154941.jpg
+Places365_test_00154954.jpg
+Places365_test_00154961.jpg
+Places365_test_00154994.jpg
+Places365_test_00154999.jpg
+Places365_test_00155001.jpg
+Places365_test_00155003.jpg
+Places365_test_00155004.jpg
+Places365_test_00155005.jpg
+Places365_test_00155043.jpg
+Places365_test_00155049.jpg
+Places365_test_00155051.jpg
+Places365_test_00155060.jpg
+Places365_test_00155063.jpg
+Places365_test_00155076.jpg
+Places365_test_00155101.jpg
+Places365_test_00155109.jpg
+Places365_test_00155135.jpg
+Places365_test_00155141.jpg
+Places365_test_00155152.jpg
+Places365_test_00155153.jpg
+Places365_test_00155183.jpg
+Places365_test_00155212.jpg
+Places365_test_00155226.jpg
+Places365_test_00155236.jpg
+Places365_test_00155244.jpg
+Places365_test_00155248.jpg
+Places365_test_00155260.jpg
+Places365_test_00155278.jpg
+Places365_test_00155285.jpg
+Places365_test_00155297.jpg
+Places365_test_00155323.jpg
+Places365_test_00155324.jpg
+Places365_test_00155327.jpg
+Places365_test_00155329.jpg
+Places365_test_00155338.jpg
+Places365_test_00155340.jpg
+Places365_test_00155350.jpg
+Places365_test_00155389.jpg
+Places365_test_00155411.jpg
+Places365_test_00155430.jpg
+Places365_test_00155431.jpg
+Places365_test_00155434.jpg
+Places365_test_00155435.jpg
+Places365_test_00155447.jpg
+Places365_test_00155458.jpg
+Places365_test_00155464.jpg
+Places365_test_00155468.jpg
+Places365_test_00155469.jpg
+Places365_test_00155517.jpg
+Places365_test_00155530.jpg
+Places365_test_00155534.jpg
+Places365_test_00155569.jpg
+Places365_test_00155576.jpg
+Places365_test_00155589.jpg
+Places365_test_00155632.jpg
+Places365_test_00155643.jpg
+Places365_test_00155658.jpg
+Places365_test_00155684.jpg
+Places365_test_00155704.jpg
+Places365_test_00155720.jpg
+Places365_test_00155727.jpg
+Places365_test_00155733.jpg
+Places365_test_00155747.jpg
+Places365_test_00155772.jpg
+Places365_test_00155799.jpg
+Places365_test_00155803.jpg
+Places365_test_00155805.jpg
+Places365_test_00155809.jpg
+Places365_test_00155812.jpg
+Places365_test_00155815.jpg
+Places365_test_00155817.jpg
+Places365_test_00155823.jpg
+Places365_test_00155831.jpg
+Places365_test_00155833.jpg
+Places365_test_00155839.jpg
+Places365_test_00155853.jpg
+Places365_test_00155856.jpg
+Places365_test_00155864.jpg
+Places365_test_00155875.jpg
+Places365_test_00155888.jpg
+Places365_test_00155903.jpg
+Places365_test_00155906.jpg
+Places365_test_00155909.jpg
+Places365_test_00155921.jpg
+Places365_test_00155958.jpg
+Places365_test_00155965.jpg
+Places365_test_00155996.jpg
+Places365_test_00156029.jpg
+Places365_test_00156032.jpg
+Places365_test_00156039.jpg
+Places365_test_00156051.jpg
+Places365_test_00156062.jpg
+Places365_test_00156064.jpg
+Places365_test_00156083.jpg
+Places365_test_00156089.jpg
+Places365_test_00156094.jpg
+Places365_test_00156117.jpg
+Places365_test_00156118.jpg
+Places365_test_00156120.jpg
+Places365_test_00156121.jpg
+Places365_test_00156127.jpg
+Places365_test_00156133.jpg
+Places365_test_00156134.jpg
+Places365_test_00156140.jpg
+Places365_test_00156145.jpg
+Places365_test_00156146.jpg
+Places365_test_00156177.jpg
+Places365_test_00156181.jpg
+Places365_test_00156204.jpg
+Places365_test_00156215.jpg
+Places365_test_00156217.jpg
+Places365_test_00156234.jpg
+Places365_test_00156250.jpg
+Places365_test_00156262.jpg
+Places365_test_00156284.jpg
+Places365_test_00156296.jpg
+Places365_test_00156327.jpg
+Places365_test_00156355.jpg
+Places365_test_00156357.jpg
+Places365_test_00156359.jpg
+Places365_test_00156366.jpg
+Places365_test_00156383.jpg
+Places365_test_00156384.jpg
+Places365_test_00156385.jpg
+Places365_test_00156399.jpg
+Places365_test_00156400.jpg
+Places365_test_00156416.jpg
+Places365_test_00156427.jpg
+Places365_test_00156430.jpg
+Places365_test_00156440.jpg
+Places365_test_00156445.jpg
+Places365_test_00156455.jpg
+Places365_test_00156466.jpg
+Places365_test_00156478.jpg
+Places365_test_00156495.jpg
+Places365_test_00156512.jpg
+Places365_test_00156524.jpg
+Places365_test_00156529.jpg
+Places365_test_00156534.jpg
+Places365_test_00156554.jpg
+Places365_test_00156581.jpg
+Places365_test_00156615.jpg
+Places365_test_00156620.jpg
+Places365_test_00156623.jpg
+Places365_test_00156651.jpg
+Places365_test_00156660.jpg
+Places365_test_00156666.jpg
+Places365_test_00156695.jpg
+Places365_test_00156698.jpg
+Places365_test_00156713.jpg
+Places365_test_00156717.jpg
+Places365_test_00156721.jpg
+Places365_test_00156727.jpg
+Places365_test_00156730.jpg
+Places365_test_00156737.jpg
+Places365_test_00156750.jpg
+Places365_test_00156752.jpg
+Places365_test_00156767.jpg
+Places365_test_00156773.jpg
+Places365_test_00156789.jpg
+Places365_test_00156805.jpg
+Places365_test_00156810.jpg
+Places365_test_00156821.jpg
+Places365_test_00156830.jpg
+Places365_test_00156845.jpg
+Places365_test_00156853.jpg
+Places365_test_00156886.jpg
+Places365_test_00156890.jpg
+Places365_test_00156893.jpg
+Places365_test_00156895.jpg
+Places365_test_00156919.jpg
+Places365_test_00156948.jpg
+Places365_test_00156968.jpg
+Places365_test_00156985.jpg
+Places365_test_00156989.jpg
+Places365_test_00156993.jpg
+Places365_test_00157005.jpg
+Places365_test_00157015.jpg
+Places365_test_00157028.jpg
+Places365_test_00157044.jpg
+Places365_test_00157045.jpg
+Places365_test_00157057.jpg
+Places365_test_00157063.jpg
+Places365_test_00157064.jpg
+Places365_test_00157067.jpg
+Places365_test_00157081.jpg
+Places365_test_00157087.jpg
+Places365_test_00157136.jpg
+Places365_test_00157142.jpg
+Places365_test_00157146.jpg
+Places365_test_00157162.jpg
+Places365_test_00157170.jpg
+Places365_test_00157176.jpg
+Places365_test_00157187.jpg
+Places365_test_00157204.jpg
+Places365_test_00157210.jpg
+Places365_test_00157219.jpg
+Places365_test_00157239.jpg
+Places365_test_00157244.jpg
+Places365_test_00157248.jpg
+Places365_test_00157250.jpg
+Places365_test_00157256.jpg
+Places365_test_00157273.jpg
+Places365_test_00157284.jpg
+Places365_test_00157289.jpg
+Places365_test_00157312.jpg
+Places365_test_00157333.jpg
+Places365_test_00157336.jpg
+Places365_test_00157341.jpg
+Places365_test_00157348.jpg
+Places365_test_00157368.jpg
+Places365_test_00157372.jpg
+Places365_test_00157388.jpg
+Places365_test_00157396.jpg
+Places365_test_00157411.jpg
+Places365_test_00157423.jpg
+Places365_test_00157424.jpg
+Places365_test_00157428.jpg
+Places365_test_00157468.jpg
+Places365_test_00157470.jpg
+Places365_test_00157479.jpg
+Places365_test_00157481.jpg
+Places365_test_00157487.jpg
+Places365_test_00157493.jpg
+Places365_test_00157506.jpg
+Places365_test_00157510.jpg
+Places365_test_00157515.jpg
+Places365_test_00157525.jpg
+Places365_test_00157544.jpg
+Places365_test_00157552.jpg
+Places365_test_00157572.jpg
+Places365_test_00157578.jpg
+Places365_test_00157586.jpg
+Places365_test_00157592.jpg
+Places365_test_00157595.jpg
+Places365_test_00157600.jpg
+Places365_test_00157602.jpg
+Places365_test_00157613.jpg
+Places365_test_00157615.jpg
+Places365_test_00157620.jpg
+Places365_test_00157627.jpg
+Places365_test_00157629.jpg
+Places365_test_00157631.jpg
+Places365_test_00157635.jpg
+Places365_test_00157638.jpg
+Places365_test_00157646.jpg
+Places365_test_00157650.jpg
+Places365_test_00157651.jpg
+Places365_test_00157658.jpg
+Places365_test_00157661.jpg
+Places365_test_00157671.jpg
+Places365_test_00157689.jpg
+Places365_test_00157698.jpg
+Places365_test_00157700.jpg
+Places365_test_00157704.jpg
+Places365_test_00157712.jpg
+Places365_test_00157714.jpg
+Places365_test_00157718.jpg
+Places365_test_00157726.jpg
+Places365_test_00157728.jpg
+Places365_test_00157743.jpg
+Places365_test_00157747.jpg
+Places365_test_00157752.jpg
+Places365_test_00157760.jpg
+Places365_test_00157771.jpg
+Places365_test_00157793.jpg
+Places365_test_00157811.jpg
+Places365_test_00157813.jpg
+Places365_test_00157876.jpg
+Places365_test_00157880.jpg
+Places365_test_00157892.jpg
+Places365_test_00157900.jpg
+Places365_test_00157928.jpg
+Places365_test_00157943.jpg
+Places365_test_00157951.jpg
+Places365_test_00157974.jpg
+Places365_test_00158000.jpg
+Places365_test_00158027.jpg
+Places365_test_00158028.jpg
+Places365_test_00158029.jpg
+Places365_test_00158031.jpg
+Places365_test_00158046.jpg
+Places365_test_00158052.jpg
+Places365_test_00158056.jpg
+Places365_test_00158088.jpg
+Places365_test_00158091.jpg
+Places365_test_00158099.jpg
+Places365_test_00158113.jpg
+Places365_test_00158135.jpg
+Places365_test_00158159.jpg
+Places365_test_00158161.jpg
+Places365_test_00158162.jpg
+Places365_test_00158171.jpg
+Places365_test_00158182.jpg
+Places365_test_00158183.jpg
+Places365_test_00158191.jpg
+Places365_test_00158196.jpg
+Places365_test_00158205.jpg
+Places365_test_00158206.jpg
+Places365_test_00158213.jpg
+Places365_test_00158229.jpg
+Places365_test_00158241.jpg
+Places365_test_00158246.jpg
+Places365_test_00158253.jpg
+Places365_test_00158272.jpg
+Places365_test_00158278.jpg
+Places365_test_00158284.jpg
+Places365_test_00158288.jpg
+Places365_test_00158292.jpg
+Places365_test_00158296.jpg
+Places365_test_00158303.jpg
+Places365_test_00158312.jpg
+Places365_test_00158317.jpg
+Places365_test_00158325.jpg
+Places365_test_00158333.jpg
+Places365_test_00158351.jpg
+Places365_test_00158378.jpg
+Places365_test_00158390.jpg
+Places365_test_00158397.jpg
+Places365_test_00158400.jpg
+Places365_test_00158422.jpg
+Places365_test_00158428.jpg
+Places365_test_00158435.jpg
+Places365_test_00158442.jpg
+Places365_test_00158461.jpg
+Places365_test_00158466.jpg
+Places365_test_00158468.jpg
+Places365_test_00158472.jpg
+Places365_test_00158483.jpg
+Places365_test_00158486.jpg
+Places365_test_00158525.jpg
+Places365_test_00158540.jpg
+Places365_test_00158581.jpg
+Places365_test_00158586.jpg
+Places365_test_00158591.jpg
+Places365_test_00158600.jpg
+Places365_test_00158603.jpg
+Places365_test_00158638.jpg
+Places365_test_00158646.jpg
+Places365_test_00158648.jpg
+Places365_test_00158653.jpg
+Places365_test_00158659.jpg
+Places365_test_00158662.jpg
+Places365_test_00158666.jpg
+Places365_test_00158672.jpg
+Places365_test_00158678.jpg
+Places365_test_00158688.jpg
+Places365_test_00158696.jpg
+Places365_test_00158706.jpg
+Places365_test_00158729.jpg
+Places365_test_00158741.jpg
+Places365_test_00158753.jpg
+Places365_test_00158756.jpg
+Places365_test_00158757.jpg
+Places365_test_00158760.jpg
+Places365_test_00158768.jpg
+Places365_test_00158786.jpg
+Places365_test_00158788.jpg
+Places365_test_00158790.jpg
+Places365_test_00158798.jpg
+Places365_test_00158829.jpg
+Places365_test_00158832.jpg
+Places365_test_00158850.jpg
+Places365_test_00158852.jpg
+Places365_test_00158856.jpg
+Places365_test_00158869.jpg
+Places365_test_00158880.jpg
+Places365_test_00158901.jpg
+Places365_test_00158904.jpg
+Places365_test_00158943.jpg
+Places365_test_00158965.jpg
+Places365_test_00158982.jpg
+Places365_test_00158986.jpg
+Places365_test_00158989.jpg
+Places365_test_00158990.jpg
+Places365_test_00159008.jpg
+Places365_test_00159019.jpg
+Places365_test_00159044.jpg
+Places365_test_00159054.jpg
+Places365_test_00159070.jpg
+Places365_test_00159071.jpg
+Places365_test_00159074.jpg
+Places365_test_00159096.jpg
+Places365_test_00159098.jpg
+Places365_test_00159129.jpg
+Places365_test_00159131.jpg
+Places365_test_00159133.jpg
+Places365_test_00159141.jpg
+Places365_test_00159143.jpg
+Places365_test_00159147.jpg
+Places365_test_00159163.jpg
+Places365_test_00159169.jpg
+Places365_test_00159200.jpg
+Places365_test_00159209.jpg
+Places365_test_00159222.jpg
+Places365_test_00159240.jpg
+Places365_test_00159241.jpg
+Places365_test_00159256.jpg
+Places365_test_00159260.jpg
+Places365_test_00159262.jpg
+Places365_test_00159272.jpg
+Places365_test_00159285.jpg
+Places365_test_00159286.jpg
+Places365_test_00159314.jpg
+Places365_test_00159333.jpg
+Places365_test_00159339.jpg
+Places365_test_00159342.jpg
+Places365_test_00159378.jpg
+Places365_test_00159380.jpg
+Places365_test_00159387.jpg
+Places365_test_00159401.jpg
+Places365_test_00159405.jpg
+Places365_test_00159411.jpg
+Places365_test_00159429.jpg
+Places365_test_00159461.jpg
+Places365_test_00159466.jpg
+Places365_test_00159483.jpg
+Places365_test_00159509.jpg
+Places365_test_00159516.jpg
+Places365_test_00159527.jpg
+Places365_test_00159528.jpg
+Places365_test_00159530.jpg
+Places365_test_00159550.jpg
+Places365_test_00159566.jpg
+Places365_test_00159595.jpg
+Places365_test_00159599.jpg
+Places365_test_00159610.jpg
+Places365_test_00159641.jpg
+Places365_test_00159646.jpg
+Places365_test_00159653.jpg
+Places365_test_00159655.jpg
+Places365_test_00159666.jpg
+Places365_test_00159671.jpg
+Places365_test_00159677.jpg
+Places365_test_00159696.jpg
+Places365_test_00159703.jpg
+Places365_test_00159719.jpg
+Places365_test_00159723.jpg
+Places365_test_00159759.jpg
+Places365_test_00159770.jpg
+Places365_test_00159778.jpg
+Places365_test_00159793.jpg
+Places365_test_00159817.jpg
+Places365_test_00159829.jpg
+Places365_test_00159830.jpg
+Places365_test_00159833.jpg
+Places365_test_00159838.jpg
+Places365_test_00159842.jpg
+Places365_test_00159870.jpg
+Places365_test_00159872.jpg
+Places365_test_00159881.jpg
+Places365_test_00159888.jpg
+Places365_test_00159892.jpg
+Places365_test_00159908.jpg
+Places365_test_00159910.jpg
+Places365_test_00159913.jpg
+Places365_test_00159947.jpg
+Places365_test_00159956.jpg
+Places365_test_00159957.jpg
+Places365_test_00159998.jpg
+Places365_test_00160014.jpg
+Places365_test_00160035.jpg
+Places365_test_00160048.jpg
+Places365_test_00160050.jpg
+Places365_test_00160051.jpg
+Places365_test_00160054.jpg
+Places365_test_00160056.jpg
+Places365_test_00160064.jpg
+Places365_test_00160080.jpg
+Places365_test_00160117.jpg
+Places365_test_00160121.jpg
+Places365_test_00160129.jpg
+Places365_test_00160132.jpg
+Places365_test_00160133.jpg
+Places365_test_00160149.jpg
+Places365_test_00160180.jpg
+Places365_test_00160184.jpg
+Places365_test_00160193.jpg
+Places365_test_00160202.jpg
+Places365_test_00160205.jpg
+Places365_test_00160216.jpg
+Places365_test_00160227.jpg
+Places365_test_00160231.jpg
+Places365_test_00160232.jpg
+Places365_test_00160242.jpg
+Places365_test_00160243.jpg
+Places365_test_00160248.jpg
+Places365_test_00160258.jpg
+Places365_test_00160264.jpg
+Places365_test_00160266.jpg
+Places365_test_00160273.jpg
+Places365_test_00160279.jpg
+Places365_test_00160288.jpg
+Places365_test_00160289.jpg
+Places365_test_00160292.jpg
+Places365_test_00160317.jpg
+Places365_test_00160338.jpg
+Places365_test_00160371.jpg
+Places365_test_00160373.jpg
+Places365_test_00160378.jpg
+Places365_test_00160380.jpg
+Places365_test_00160392.jpg
+Places365_test_00160399.jpg
+Places365_test_00160406.jpg
+Places365_test_00160447.jpg
+Places365_test_00160469.jpg
+Places365_test_00160481.jpg
+Places365_test_00160491.jpg
+Places365_test_00160500.jpg
+Places365_test_00160513.jpg
+Places365_test_00160514.jpg
+Places365_test_00160528.jpg
+Places365_test_00160531.jpg
+Places365_test_00160535.jpg
+Places365_test_00160545.jpg
+Places365_test_00160551.jpg
+Places365_test_00160553.jpg
+Places365_test_00160574.jpg
+Places365_test_00160583.jpg
+Places365_test_00160584.jpg
+Places365_test_00160586.jpg
+Places365_test_00160618.jpg
+Places365_test_00160674.jpg
+Places365_test_00160676.jpg
+Places365_test_00160687.jpg
+Places365_test_00160703.jpg
+Places365_test_00160709.jpg
+Places365_test_00160745.jpg
+Places365_test_00160748.jpg
+Places365_test_00160752.jpg
+Places365_test_00160753.jpg
+Places365_test_00160760.jpg
+Places365_test_00160762.jpg
+Places365_test_00160764.jpg
+Places365_test_00160768.jpg
+Places365_test_00160772.jpg
+Places365_test_00160773.jpg
+Places365_test_00160777.jpg
+Places365_test_00160788.jpg
+Places365_test_00160793.jpg
+Places365_test_00160794.jpg
+Places365_test_00160815.jpg
+Places365_test_00160816.jpg
+Places365_test_00160819.jpg
+Places365_test_00160823.jpg
+Places365_test_00160827.jpg
+Places365_test_00160833.jpg
+Places365_test_00160837.jpg
+Places365_test_00160839.jpg
+Places365_test_00160843.jpg
+Places365_test_00160858.jpg
+Places365_test_00160859.jpg
+Places365_test_00160861.jpg
+Places365_test_00160862.jpg
+Places365_test_00160869.jpg
+Places365_test_00160878.jpg
+Places365_test_00160883.jpg
+Places365_test_00160886.jpg
+Places365_test_00160892.jpg
+Places365_test_00160899.jpg
+Places365_test_00160901.jpg
+Places365_test_00160908.jpg
+Places365_test_00160919.jpg
+Places365_test_00160933.jpg
+Places365_test_00160943.jpg
+Places365_test_00160952.jpg
+Places365_test_00160969.jpg
+Places365_test_00160970.jpg
+Places365_test_00161005.jpg
+Places365_test_00161027.jpg
+Places365_test_00161035.jpg
+Places365_test_00161041.jpg
+Places365_test_00161047.jpg
+Places365_test_00161053.jpg
+Places365_test_00161060.jpg
+Places365_test_00161066.jpg
+Places365_test_00161106.jpg
+Places365_test_00161114.jpg
+Places365_test_00161120.jpg
+Places365_test_00161131.jpg
+Places365_test_00161147.jpg
+Places365_test_00161171.jpg
+Places365_test_00161172.jpg
+Places365_test_00161238.jpg
+Places365_test_00161252.jpg
+Places365_test_00161262.jpg
+Places365_test_00161272.jpg
+Places365_test_00161275.jpg
+Places365_test_00161281.jpg
+Places365_test_00161298.jpg
+Places365_test_00161300.jpg
+Places365_test_00161303.jpg
+Places365_test_00161304.jpg
+Places365_test_00161307.jpg
+Places365_test_00161313.jpg
+Places365_test_00161322.jpg
+Places365_test_00161337.jpg
+Places365_test_00161377.jpg
+Places365_test_00161390.jpg
+Places365_test_00161399.jpg
+Places365_test_00161411.jpg
+Places365_test_00161414.jpg
+Places365_test_00161423.jpg
+Places365_test_00161425.jpg
+Places365_test_00161433.jpg
+Places365_test_00161434.jpg
+Places365_test_00161462.jpg
+Places365_test_00161469.jpg
+Places365_test_00161505.jpg
+Places365_test_00161559.jpg
+Places365_test_00161575.jpg
+Places365_test_00161588.jpg
+Places365_test_00161608.jpg
+Places365_test_00161628.jpg
+Places365_test_00161635.jpg
+Places365_test_00161636.jpg
+Places365_test_00161644.jpg
+Places365_test_00161646.jpg
+Places365_test_00161647.jpg
+Places365_test_00161655.jpg
+Places365_test_00161659.jpg
+Places365_test_00161681.jpg
+Places365_test_00161691.jpg
+Places365_test_00161708.jpg
+Places365_test_00161714.jpg
+Places365_test_00161717.jpg
+Places365_test_00161723.jpg
+Places365_test_00161739.jpg
+Places365_test_00161761.jpg
+Places365_test_00161762.jpg
+Places365_test_00161764.jpg
+Places365_test_00161809.jpg
+Places365_test_00161821.jpg
+Places365_test_00161832.jpg
+Places365_test_00161837.jpg
+Places365_test_00161843.jpg
+Places365_test_00161851.jpg
+Places365_test_00161855.jpg
+Places365_test_00161863.jpg
+Places365_test_00161866.jpg
+Places365_test_00161921.jpg
+Places365_test_00161922.jpg
+Places365_test_00161936.jpg
+Places365_test_00161946.jpg
+Places365_test_00161956.jpg
+Places365_test_00161958.jpg
+Places365_test_00162014.jpg
+Places365_test_00162015.jpg
+Places365_test_00162022.jpg
+Places365_test_00162024.jpg
+Places365_test_00162031.jpg
+Places365_test_00162043.jpg
+Places365_test_00162068.jpg
+Places365_test_00162080.jpg
+Places365_test_00162099.jpg
+Places365_test_00162108.jpg
+Places365_test_00162127.jpg
+Places365_test_00162141.jpg
+Places365_test_00162164.jpg
+Places365_test_00162166.jpg
+Places365_test_00162177.jpg
+Places365_test_00162179.jpg
+Places365_test_00162195.jpg
+Places365_test_00162210.jpg
+Places365_test_00162215.jpg
+Places365_test_00162216.jpg
+Places365_test_00162225.jpg
+Places365_test_00162271.jpg
+Places365_test_00162281.jpg
+Places365_test_00162310.jpg
+Places365_test_00162313.jpg
+Places365_test_00162334.jpg
+Places365_test_00162358.jpg
+Places365_test_00162364.jpg
+Places365_test_00162369.jpg
+Places365_test_00162371.jpg
+Places365_test_00162374.jpg
+Places365_test_00162380.jpg
+Places365_test_00162405.jpg
+Places365_test_00162413.jpg
+Places365_test_00162420.jpg
+Places365_test_00162423.jpg
+Places365_test_00162429.jpg
+Places365_test_00162437.jpg
+Places365_test_00162473.jpg
+Places365_test_00162474.jpg
+Places365_test_00162491.jpg
+Places365_test_00162506.jpg
+Places365_test_00162512.jpg
+Places365_test_00162516.jpg
+Places365_test_00162522.jpg
+Places365_test_00162534.jpg
+Places365_test_00162536.jpg
+Places365_test_00162537.jpg
+Places365_test_00162552.jpg
+Places365_test_00162566.jpg
+Places365_test_00162569.jpg
+Places365_test_00162572.jpg
+Places365_test_00162581.jpg
+Places365_test_00162608.jpg
+Places365_test_00162618.jpg
+Places365_test_00162621.jpg
+Places365_test_00162652.jpg
+Places365_test_00162654.jpg
+Places365_test_00162684.jpg
+Places365_test_00162689.jpg
+Places365_test_00162698.jpg
+Places365_test_00162704.jpg
+Places365_test_00162715.jpg
+Places365_test_00162725.jpg
+Places365_test_00162730.jpg
+Places365_test_00162735.jpg
+Places365_test_00162756.jpg
+Places365_test_00162764.jpg
+Places365_test_00162769.jpg
+Places365_test_00162787.jpg
+Places365_test_00162792.jpg
+Places365_test_00162843.jpg
+Places365_test_00162847.jpg
+Places365_test_00162885.jpg
+Places365_test_00162903.jpg
+Places365_test_00162909.jpg
+Places365_test_00162913.jpg
+Places365_test_00162924.jpg
+Places365_test_00162930.jpg
+Places365_test_00162936.jpg
+Places365_test_00162942.jpg
+Places365_test_00162971.jpg
+Places365_test_00162976.jpg
+Places365_test_00162991.jpg
+Places365_test_00163006.jpg
+Places365_test_00163012.jpg
+Places365_test_00163033.jpg
+Places365_test_00163036.jpg
+Places365_test_00163052.jpg
+Places365_test_00163059.jpg
+Places365_test_00163064.jpg
+Places365_test_00163065.jpg
+Places365_test_00163067.jpg
+Places365_test_00163116.jpg
+Places365_test_00163126.jpg
+Places365_test_00163143.jpg
+Places365_test_00163147.jpg
+Places365_test_00163149.jpg
+Places365_test_00163156.jpg
+Places365_test_00163166.jpg
+Places365_test_00163167.jpg
+Places365_test_00163179.jpg
+Places365_test_00163182.jpg
+Places365_test_00163189.jpg
+Places365_test_00163208.jpg
+Places365_test_00163222.jpg
+Places365_test_00163226.jpg
+Places365_test_00163249.jpg
+Places365_test_00163251.jpg
+Places365_test_00163267.jpg
+Places365_test_00163282.jpg
+Places365_test_00163285.jpg
+Places365_test_00163291.jpg
+Places365_test_00163306.jpg
+Places365_test_00163316.jpg
+Places365_test_00163325.jpg
+Places365_test_00163332.jpg
+Places365_test_00163357.jpg
+Places365_test_00163362.jpg
+Places365_test_00163382.jpg
+Places365_test_00163384.jpg
+Places365_test_00163407.jpg
+Places365_test_00163421.jpg
+Places365_test_00163424.jpg
+Places365_test_00163426.jpg
+Places365_test_00163427.jpg
+Places365_test_00163440.jpg
+Places365_test_00163452.jpg
+Places365_test_00163453.jpg
+Places365_test_00163495.jpg
+Places365_test_00163501.jpg
+Places365_test_00163502.jpg
+Places365_test_00163510.jpg
+Places365_test_00163523.jpg
+Places365_test_00163528.jpg
+Places365_test_00163536.jpg
+Places365_test_00163546.jpg
+Places365_test_00163547.jpg
+Places365_test_00163573.jpg
+Places365_test_00163594.jpg
+Places365_test_00163603.jpg
+Places365_test_00163605.jpg
+Places365_test_00163613.jpg
+Places365_test_00163616.jpg
+Places365_test_00163626.jpg
+Places365_test_00163627.jpg
+Places365_test_00163628.jpg
+Places365_test_00163629.jpg
+Places365_test_00163656.jpg
+Places365_test_00163658.jpg
+Places365_test_00163659.jpg
+Places365_test_00163663.jpg
+Places365_test_00163664.jpg
+Places365_test_00163669.jpg
+Places365_test_00163679.jpg
+Places365_test_00163689.jpg
+Places365_test_00163691.jpg
+Places365_test_00163692.jpg
+Places365_test_00163698.jpg
+Places365_test_00163701.jpg
+Places365_test_00163706.jpg
+Places365_test_00163717.jpg
+Places365_test_00163727.jpg
+Places365_test_00163740.jpg
+Places365_test_00163750.jpg
+Places365_test_00163752.jpg
+Places365_test_00163762.jpg
+Places365_test_00163766.jpg
+Places365_test_00163774.jpg
+Places365_test_00163779.jpg
+Places365_test_00163791.jpg
+Places365_test_00163793.jpg
+Places365_test_00163800.jpg
+Places365_test_00163828.jpg
+Places365_test_00163830.jpg
+Places365_test_00163853.jpg
+Places365_test_00163855.jpg
+Places365_test_00163857.jpg
+Places365_test_00163870.jpg
+Places365_test_00163877.jpg
+Places365_test_00163902.jpg
+Places365_test_00163904.jpg
+Places365_test_00163910.jpg
+Places365_test_00163916.jpg
+Places365_test_00163948.jpg
+Places365_test_00163959.jpg
+Places365_test_00163976.jpg
+Places365_test_00163980.jpg
+Places365_test_00163999.jpg
+Places365_test_00164057.jpg
+Places365_test_00164058.jpg
+Places365_test_00164059.jpg
+Places365_test_00164075.jpg
+Places365_test_00164078.jpg
+Places365_test_00164085.jpg
+Places365_test_00164089.jpg
+Places365_test_00164090.jpg
+Places365_test_00164105.jpg
+Places365_test_00164109.jpg
+Places365_test_00164116.jpg
+Places365_test_00164125.jpg
+Places365_test_00164153.jpg
+Places365_test_00164154.jpg
+Places365_test_00164165.jpg
+Places365_test_00164182.jpg
+Places365_test_00164188.jpg
+Places365_test_00164193.jpg
+Places365_test_00164250.jpg
+Places365_test_00164251.jpg
+Places365_test_00164265.jpg
+Places365_test_00164285.jpg
+Places365_test_00164303.jpg
+Places365_test_00164305.jpg
+Places365_test_00164309.jpg
+Places365_test_00164361.jpg
+Places365_test_00164363.jpg
+Places365_test_00164379.jpg
+Places365_test_00164388.jpg
+Places365_test_00164394.jpg
+Places365_test_00164412.jpg
+Places365_test_00164427.jpg
+Places365_test_00164441.jpg
+Places365_test_00164449.jpg
+Places365_test_00164463.jpg
+Places365_test_00164470.jpg
+Places365_test_00164485.jpg
+Places365_test_00164507.jpg
+Places365_test_00164512.jpg
+Places365_test_00164535.jpg
+Places365_test_00164540.jpg
+Places365_test_00164541.jpg
+Places365_test_00164543.jpg
+Places365_test_00164563.jpg
+Places365_test_00164569.jpg
+Places365_test_00164570.jpg
+Places365_test_00164574.jpg
+Places365_test_00164596.jpg
+Places365_test_00164598.jpg
+Places365_test_00164604.jpg
+Places365_test_00164605.jpg
+Places365_test_00164611.jpg
+Places365_test_00164619.jpg
+Places365_test_00164629.jpg
+Places365_test_00164659.jpg
+Places365_test_00164671.jpg
+Places365_test_00164673.jpg
+Places365_test_00164691.jpg
+Places365_test_00164694.jpg
+Places365_test_00164697.jpg
+Places365_test_00164709.jpg
+Places365_test_00164715.jpg
+Places365_test_00164716.jpg
+Places365_test_00164720.jpg
+Places365_test_00164736.jpg
+Places365_test_00164748.jpg
+Places365_test_00164749.jpg
+Places365_test_00164760.jpg
+Places365_test_00164769.jpg
+Places365_test_00164791.jpg
+Places365_test_00164828.jpg
+Places365_test_00164831.jpg
+Places365_test_00164851.jpg
+Places365_test_00164862.jpg
+Places365_test_00164892.jpg
+Places365_test_00164940.jpg
+Places365_test_00164943.jpg
+Places365_test_00164965.jpg
+Places365_test_00164984.jpg
+Places365_test_00164987.jpg
+Places365_test_00164988.jpg
+Places365_test_00164993.jpg
+Places365_test_00165001.jpg
+Places365_test_00165014.jpg
+Places365_test_00165016.jpg
+Places365_test_00165024.jpg
+Places365_test_00165049.jpg
+Places365_test_00165060.jpg
+Places365_test_00165061.jpg
+Places365_test_00165074.jpg
+Places365_test_00165080.jpg
+Places365_test_00165085.jpg
+Places365_test_00165091.jpg
+Places365_test_00165093.jpg
+Places365_test_00165104.jpg
+Places365_test_00165113.jpg
+Places365_test_00165119.jpg
+Places365_test_00165123.jpg
+Places365_test_00165131.jpg
+Places365_test_00165147.jpg
+Places365_test_00165158.jpg
+Places365_test_00165159.jpg
+Places365_test_00165190.jpg
+Places365_test_00165197.jpg
+Places365_test_00165201.jpg
+Places365_test_00165209.jpg
+Places365_test_00165212.jpg
+Places365_test_00165213.jpg
+Places365_test_00165218.jpg
+Places365_test_00165220.jpg
+Places365_test_00165257.jpg
+Places365_test_00165268.jpg
+Places365_test_00165277.jpg
+Places365_test_00165282.jpg
+Places365_test_00165286.jpg
+Places365_test_00165288.jpg
+Places365_test_00165298.jpg
+Places365_test_00165300.jpg
+Places365_test_00165301.jpg
+Places365_test_00165326.jpg
+Places365_test_00165335.jpg
+Places365_test_00165349.jpg
+Places365_test_00165357.jpg
+Places365_test_00165374.jpg
+Places365_test_00165377.jpg
+Places365_test_00165378.jpg
+Places365_test_00165386.jpg
+Places365_test_00165427.jpg
+Places365_test_00165430.jpg
+Places365_test_00165441.jpg
+Places365_test_00165459.jpg
+Places365_test_00165462.jpg
+Places365_test_00165469.jpg
+Places365_test_00165511.jpg
+Places365_test_00165528.jpg
+Places365_test_00165532.jpg
+Places365_test_00165541.jpg
+Places365_test_00165549.jpg
+Places365_test_00165560.jpg
+Places365_test_00165565.jpg
+Places365_test_00165574.jpg
+Places365_test_00165581.jpg
+Places365_test_00165582.jpg
+Places365_test_00165593.jpg
+Places365_test_00165599.jpg
+Places365_test_00165602.jpg
+Places365_test_00165610.jpg
+Places365_test_00165622.jpg
+Places365_test_00165627.jpg
+Places365_test_00165630.jpg
+Places365_test_00165641.jpg
+Places365_test_00165667.jpg
+Places365_test_00165670.jpg
+Places365_test_00165700.jpg
+Places365_test_00165725.jpg
+Places365_test_00165732.jpg
+Places365_test_00165753.jpg
+Places365_test_00165759.jpg
+Places365_test_00165763.jpg
+Places365_test_00165772.jpg
+Places365_test_00165787.jpg
+Places365_test_00165789.jpg
+Places365_test_00165799.jpg
+Places365_test_00165807.jpg
+Places365_test_00165813.jpg
+Places365_test_00165849.jpg
+Places365_test_00165863.jpg
+Places365_test_00165869.jpg
+Places365_test_00165874.jpg
+Places365_test_00165882.jpg
+Places365_test_00165887.jpg
+Places365_test_00165898.jpg
+Places365_test_00165939.jpg
+Places365_test_00165954.jpg
+Places365_test_00165974.jpg
+Places365_test_00165976.jpg
+Places365_test_00165982.jpg
+Places365_test_00165988.jpg
+Places365_test_00165993.jpg
+Places365_test_00166027.jpg
+Places365_test_00166040.jpg
+Places365_test_00166042.jpg
+Places365_test_00166066.jpg
+Places365_test_00166101.jpg
+Places365_test_00166102.jpg
+Places365_test_00166114.jpg
+Places365_test_00166115.jpg
+Places365_test_00166121.jpg
+Places365_test_00166125.jpg
+Places365_test_00166126.jpg
+Places365_test_00166141.jpg
+Places365_test_00166166.jpg
+Places365_test_00166178.jpg
+Places365_test_00166179.jpg
+Places365_test_00166192.jpg
+Places365_test_00166211.jpg
+Places365_test_00166212.jpg
+Places365_test_00166221.jpg
+Places365_test_00166225.jpg
+Places365_test_00166249.jpg
+Places365_test_00166250.jpg
+Places365_test_00166254.jpg
+Places365_test_00166258.jpg
+Places365_test_00166299.jpg
+Places365_test_00166311.jpg
+Places365_test_00166322.jpg
+Places365_test_00166345.jpg
+Places365_test_00166347.jpg
+Places365_test_00166348.jpg
+Places365_test_00166350.jpg
+Places365_test_00166355.jpg
+Places365_test_00166363.jpg
+Places365_test_00166365.jpg
+Places365_test_00166367.jpg
+Places365_test_00166368.jpg
+Places365_test_00166374.jpg
+Places365_test_00166379.jpg
+Places365_test_00166395.jpg
+Places365_test_00166412.jpg
+Places365_test_00166432.jpg
+Places365_test_00166450.jpg
+Places365_test_00166457.jpg
+Places365_test_00166461.jpg
+Places365_test_00166479.jpg
+Places365_test_00166497.jpg
+Places365_test_00166505.jpg
+Places365_test_00166527.jpg
+Places365_test_00166538.jpg
+Places365_test_00166561.jpg
+Places365_test_00166579.jpg
+Places365_test_00166595.jpg
+Places365_test_00166600.jpg
+Places365_test_00166606.jpg
+Places365_test_00166614.jpg
+Places365_test_00166619.jpg
+Places365_test_00166620.jpg
+Places365_test_00166633.jpg
+Places365_test_00166649.jpg
+Places365_test_00166653.jpg
+Places365_test_00166659.jpg
+Places365_test_00166665.jpg
+Places365_test_00166670.jpg
+Places365_test_00166687.jpg
+Places365_test_00166703.jpg
+Places365_test_00166723.jpg
+Places365_test_00166730.jpg
+Places365_test_00166734.jpg
+Places365_test_00166742.jpg
+Places365_test_00166744.jpg
+Places365_test_00166757.jpg
+Places365_test_00166762.jpg
+Places365_test_00166772.jpg
+Places365_test_00166773.jpg
+Places365_test_00166781.jpg
+Places365_test_00166787.jpg
+Places365_test_00166795.jpg
+Places365_test_00166804.jpg
+Places365_test_00166825.jpg
+Places365_test_00166844.jpg
+Places365_test_00166846.jpg
+Places365_test_00166866.jpg
+Places365_test_00166871.jpg
+Places365_test_00166887.jpg
+Places365_test_00166900.jpg
+Places365_test_00166902.jpg
+Places365_test_00166915.jpg
+Places365_test_00166924.jpg
+Places365_test_00166955.jpg
+Places365_test_00166957.jpg
+Places365_test_00167001.jpg
+Places365_test_00167011.jpg
+Places365_test_00167018.jpg
+Places365_test_00167034.jpg
+Places365_test_00167072.jpg
+Places365_test_00167075.jpg
+Places365_test_00167079.jpg
+Places365_test_00167082.jpg
+Places365_test_00167083.jpg
+Places365_test_00167091.jpg
+Places365_test_00167106.jpg
+Places365_test_00167110.jpg
+Places365_test_00167122.jpg
+Places365_test_00167130.jpg
+Places365_test_00167160.jpg
+Places365_test_00167170.jpg
+Places365_test_00167183.jpg
+Places365_test_00167191.jpg
+Places365_test_00167217.jpg
+Places365_test_00167239.jpg
+Places365_test_00167253.jpg
+Places365_test_00167262.jpg
+Places365_test_00167281.jpg
+Places365_test_00167297.jpg
+Places365_test_00167309.jpg
+Places365_test_00167316.jpg
+Places365_test_00167340.jpg
+Places365_test_00167349.jpg
+Places365_test_00167350.jpg
+Places365_test_00167357.jpg
+Places365_test_00167359.jpg
+Places365_test_00167374.jpg
+Places365_test_00167412.jpg
+Places365_test_00167427.jpg
+Places365_test_00167429.jpg
+Places365_test_00167435.jpg
+Places365_test_00167442.jpg
+Places365_test_00167451.jpg
+Places365_test_00167457.jpg
+Places365_test_00167465.jpg
+Places365_test_00167473.jpg
+Places365_test_00167519.jpg
+Places365_test_00167540.jpg
+Places365_test_00167543.jpg
+Places365_test_00167547.jpg
+Places365_test_00167551.jpg
+Places365_test_00167553.jpg
+Places365_test_00167557.jpg
+Places365_test_00167568.jpg
+Places365_test_00167585.jpg
+Places365_test_00167588.jpg
+Places365_test_00167597.jpg
+Places365_test_00167606.jpg
+Places365_test_00167636.jpg
+Places365_test_00167637.jpg
+Places365_test_00167658.jpg
+Places365_test_00167660.jpg
+Places365_test_00167681.jpg
+Places365_test_00167688.jpg
+Places365_test_00167690.jpg
+Places365_test_00167698.jpg
+Places365_test_00167705.jpg
+Places365_test_00167712.jpg
+Places365_test_00167727.jpg
+Places365_test_00167762.jpg
+Places365_test_00167772.jpg
+Places365_test_00167780.jpg
+Places365_test_00167784.jpg
+Places365_test_00167785.jpg
+Places365_test_00167788.jpg
+Places365_test_00167791.jpg
+Places365_test_00167833.jpg
+Places365_test_00167843.jpg
+Places365_test_00167864.jpg
+Places365_test_00167898.jpg
+Places365_test_00167906.jpg
+Places365_test_00167914.jpg
+Places365_test_00167918.jpg
+Places365_test_00167929.jpg
+Places365_test_00167939.jpg
+Places365_test_00167966.jpg
+Places365_test_00167967.jpg
+Places365_test_00167985.jpg
+Places365_test_00168012.jpg
+Places365_test_00168015.jpg
+Places365_test_00168018.jpg
+Places365_test_00168040.jpg
+Places365_test_00168042.jpg
+Places365_test_00168049.jpg
+Places365_test_00168052.jpg
+Places365_test_00168057.jpg
+Places365_test_00168081.jpg
+Places365_test_00168091.jpg
+Places365_test_00168092.jpg
+Places365_test_00168094.jpg
+Places365_test_00168111.jpg
+Places365_test_00168112.jpg
+Places365_test_00168143.jpg
+Places365_test_00168151.jpg
+Places365_test_00168156.jpg
+Places365_test_00168165.jpg
+Places365_test_00168188.jpg
+Places365_test_00168189.jpg
+Places365_test_00168214.jpg
+Places365_test_00168222.jpg
+Places365_test_00168225.jpg
+Places365_test_00168230.jpg
+Places365_test_00168234.jpg
+Places365_test_00168243.jpg
+Places365_test_00168251.jpg
+Places365_test_00168257.jpg
+Places365_test_00168264.jpg
+Places365_test_00168267.jpg
+Places365_test_00168268.jpg
+Places365_test_00168269.jpg
+Places365_test_00168276.jpg
+Places365_test_00168310.jpg
+Places365_test_00168327.jpg
+Places365_test_00168330.jpg
+Places365_test_00168336.jpg
+Places365_test_00168340.jpg
+Places365_test_00168346.jpg
+Places365_test_00168350.jpg
+Places365_test_00168353.jpg
+Places365_test_00168359.jpg
+Places365_test_00168369.jpg
+Places365_test_00168388.jpg
+Places365_test_00168394.jpg
+Places365_test_00168395.jpg
+Places365_test_00168406.jpg
+Places365_test_00168416.jpg
+Places365_test_00168425.jpg
+Places365_test_00168440.jpg
+Places365_test_00168445.jpg
+Places365_test_00168478.jpg
+Places365_test_00168479.jpg
+Places365_test_00168486.jpg
+Places365_test_00168503.jpg
+Places365_test_00168530.jpg
+Places365_test_00168531.jpg
+Places365_test_00168535.jpg
+Places365_test_00168555.jpg
+Places365_test_00168560.jpg
+Places365_test_00168567.jpg
+Places365_test_00168573.jpg
+Places365_test_00168589.jpg
+Places365_test_00168605.jpg
+Places365_test_00168616.jpg
+Places365_test_00168637.jpg
+Places365_test_00168638.jpg
+Places365_test_00168656.jpg
+Places365_test_00168660.jpg
+Places365_test_00168663.jpg
+Places365_test_00168666.jpg
+Places365_test_00168671.jpg
+Places365_test_00168695.jpg
+Places365_test_00168704.jpg
+Places365_test_00168709.jpg
+Places365_test_00168724.jpg
+Places365_test_00168740.jpg
+Places365_test_00168751.jpg
+Places365_test_00168756.jpg
+Places365_test_00168762.jpg
+Places365_test_00168764.jpg
+Places365_test_00168772.jpg
+Places365_test_00168775.jpg
+Places365_test_00168789.jpg
+Places365_test_00168803.jpg
+Places365_test_00168815.jpg
+Places365_test_00168846.jpg
+Places365_test_00168849.jpg
+Places365_test_00168851.jpg
+Places365_test_00168853.jpg
+Places365_test_00168881.jpg
+Places365_test_00168891.jpg
+Places365_test_00168910.jpg
+Places365_test_00168912.jpg
+Places365_test_00168926.jpg
+Places365_test_00168940.jpg
+Places365_test_00168944.jpg
+Places365_test_00168946.jpg
+Places365_test_00168963.jpg
+Places365_test_00168975.jpg
+Places365_test_00168989.jpg
+Places365_test_00168998.jpg
+Places365_test_00169005.jpg
+Places365_test_00169006.jpg
+Places365_test_00169029.jpg
+Places365_test_00169040.jpg
+Places365_test_00169046.jpg
+Places365_test_00169062.jpg
+Places365_test_00169088.jpg
+Places365_test_00169113.jpg
+Places365_test_00169120.jpg
+Places365_test_00169138.jpg
+Places365_test_00169142.jpg
+Places365_test_00169147.jpg
+Places365_test_00169160.jpg
+Places365_test_00169172.jpg
+Places365_test_00169199.jpg
+Places365_test_00169224.jpg
+Places365_test_00169243.jpg
+Places365_test_00169257.jpg
+Places365_test_00169261.jpg
+Places365_test_00169300.jpg
+Places365_test_00169302.jpg
+Places365_test_00169306.jpg
+Places365_test_00169309.jpg
+Places365_test_00169320.jpg
+Places365_test_00169322.jpg
+Places365_test_00169331.jpg
+Places365_test_00169344.jpg
+Places365_test_00169358.jpg
+Places365_test_00169405.jpg
+Places365_test_00169425.jpg
+Places365_test_00169436.jpg
+Places365_test_00169441.jpg
+Places365_test_00169451.jpg
+Places365_test_00169466.jpg
+Places365_test_00169469.jpg
+Places365_test_00169472.jpg
+Places365_test_00169502.jpg
+Places365_test_00169503.jpg
+Places365_test_00169515.jpg
+Places365_test_00169517.jpg
+Places365_test_00169533.jpg
+Places365_test_00169537.jpg
+Places365_test_00169543.jpg
+Places365_test_00169553.jpg
+Places365_test_00169575.jpg
+Places365_test_00169588.jpg
+Places365_test_00169595.jpg
+Places365_test_00169608.jpg
+Places365_test_00169629.jpg
+Places365_test_00169644.jpg
+Places365_test_00169647.jpg
+Places365_test_00169667.jpg
+Places365_test_00169671.jpg
+Places365_test_00169674.jpg
+Places365_test_00169680.jpg
+Places365_test_00169688.jpg
+Places365_test_00169696.jpg
+Places365_test_00169712.jpg
+Places365_test_00169727.jpg
+Places365_test_00169734.jpg
+Places365_test_00169748.jpg
+Places365_test_00169750.jpg
+Places365_test_00169759.jpg
+Places365_test_00169783.jpg
+Places365_test_00169809.jpg
+Places365_test_00169812.jpg
+Places365_test_00169815.jpg
+Places365_test_00169828.jpg
+Places365_test_00169832.jpg
+Places365_test_00169846.jpg
+Places365_test_00169854.jpg
+Places365_test_00169873.jpg
+Places365_test_00169892.jpg
+Places365_test_00169922.jpg
+Places365_test_00169926.jpg
+Places365_test_00169929.jpg
+Places365_test_00169942.jpg
+Places365_test_00169946.jpg
+Places365_test_00169956.jpg
+Places365_test_00169980.jpg
+Places365_test_00169981.jpg
+Places365_test_00169997.jpg
+Places365_test_00170003.jpg
+Places365_test_00170017.jpg
+Places365_test_00170039.jpg
+Places365_test_00170045.jpg
+Places365_test_00170048.jpg
+Places365_test_00170062.jpg
+Places365_test_00170063.jpg
+Places365_test_00170065.jpg
+Places365_test_00170072.jpg
+Places365_test_00170073.jpg
+Places365_test_00170092.jpg
+Places365_test_00170098.jpg
+Places365_test_00170109.jpg
+Places365_test_00170122.jpg
+Places365_test_00170123.jpg
+Places365_test_00170143.jpg
+Places365_test_00170150.jpg
+Places365_test_00170169.jpg
+Places365_test_00170194.jpg
+Places365_test_00170206.jpg
+Places365_test_00170216.jpg
+Places365_test_00170224.jpg
+Places365_test_00170238.jpg
+Places365_test_00170272.jpg
+Places365_test_00170278.jpg
+Places365_test_00170280.jpg
+Places365_test_00170284.jpg
+Places365_test_00170310.jpg
+Places365_test_00170313.jpg
+Places365_test_00170336.jpg
+Places365_test_00170351.jpg
+Places365_test_00170364.jpg
+Places365_test_00170387.jpg
+Places365_test_00170405.jpg
+Places365_test_00170410.jpg
+Places365_test_00170431.jpg
+Places365_test_00170434.jpg
+Places365_test_00170455.jpg
+Places365_test_00170463.jpg
+Places365_test_00170468.jpg
+Places365_test_00170476.jpg
+Places365_test_00170478.jpg
+Places365_test_00170479.jpg
+Places365_test_00170486.jpg
+Places365_test_00170492.jpg
+Places365_test_00170498.jpg
+Places365_test_00170511.jpg
+Places365_test_00170524.jpg
+Places365_test_00170541.jpg
+Places365_test_00170556.jpg
+Places365_test_00170563.jpg
+Places365_test_00170567.jpg
+Places365_test_00170575.jpg
+Places365_test_00170585.jpg
+Places365_test_00170590.jpg
+Places365_test_00170598.jpg
+Places365_test_00170619.jpg
+Places365_test_00170636.jpg
+Places365_test_00170637.jpg
+Places365_test_00170659.jpg
+Places365_test_00170669.jpg
+Places365_test_00170671.jpg
+Places365_test_00170678.jpg
+Places365_test_00170694.jpg
+Places365_test_00170706.jpg
+Places365_test_00170707.jpg
+Places365_test_00170735.jpg
+Places365_test_00170761.jpg
+Places365_test_00170768.jpg
+Places365_test_00170769.jpg
+Places365_test_00170780.jpg
+Places365_test_00170787.jpg
+Places365_test_00170791.jpg
+Places365_test_00170793.jpg
+Places365_test_00170798.jpg
+Places365_test_00170803.jpg
+Places365_test_00170807.jpg
+Places365_test_00170809.jpg
+Places365_test_00170812.jpg
+Places365_test_00170813.jpg
+Places365_test_00170814.jpg
+Places365_test_00170815.jpg
+Places365_test_00170816.jpg
+Places365_test_00170843.jpg
+Places365_test_00170855.jpg
+Places365_test_00170861.jpg
+Places365_test_00170869.jpg
+Places365_test_00170875.jpg
+Places365_test_00170884.jpg
+Places365_test_00170908.jpg
+Places365_test_00170909.jpg
+Places365_test_00170930.jpg
+Places365_test_00170950.jpg
+Places365_test_00170966.jpg
+Places365_test_00170995.jpg
+Places365_test_00171004.jpg
+Places365_test_00171010.jpg
+Places365_test_00171011.jpg
+Places365_test_00171036.jpg
+Places365_test_00171040.jpg
+Places365_test_00171042.jpg
+Places365_test_00171061.jpg
+Places365_test_00171071.jpg
+Places365_test_00171073.jpg
+Places365_test_00171099.jpg
+Places365_test_00171103.jpg
+Places365_test_00171111.jpg
+Places365_test_00171134.jpg
+Places365_test_00171156.jpg
+Places365_test_00171166.jpg
+Places365_test_00171170.jpg
+Places365_test_00171181.jpg
+Places365_test_00171189.jpg
+Places365_test_00171192.jpg
+Places365_test_00171197.jpg
+Places365_test_00171200.jpg
+Places365_test_00171201.jpg
+Places365_test_00171210.jpg
+Places365_test_00171211.jpg
+Places365_test_00171222.jpg
+Places365_test_00171236.jpg
+Places365_test_00171262.jpg
+Places365_test_00171286.jpg
+Places365_test_00171315.jpg
+Places365_test_00171368.jpg
+Places365_test_00171372.jpg
+Places365_test_00171388.jpg
+Places365_test_00171389.jpg
+Places365_test_00171416.jpg
+Places365_test_00171431.jpg
+Places365_test_00171445.jpg
+Places365_test_00171471.jpg
+Places365_test_00171473.jpg
+Places365_test_00171494.jpg
+Places365_test_00171498.jpg
+Places365_test_00171500.jpg
+Places365_test_00171509.jpg
+Places365_test_00171523.jpg
+Places365_test_00171536.jpg
+Places365_test_00171541.jpg
+Places365_test_00171559.jpg
+Places365_test_00171567.jpg
+Places365_test_00171581.jpg
+Places365_test_00171583.jpg
+Places365_test_00171600.jpg
+Places365_test_00171608.jpg
+Places365_test_00171611.jpg
+Places365_test_00171614.jpg
+Places365_test_00171620.jpg
+Places365_test_00171621.jpg
+Places365_test_00171631.jpg
+Places365_test_00171651.jpg
+Places365_test_00171670.jpg
+Places365_test_00171683.jpg
+Places365_test_00171687.jpg
+Places365_test_00171688.jpg
+Places365_test_00171697.jpg
+Places365_test_00171707.jpg
+Places365_test_00171721.jpg
+Places365_test_00171725.jpg
+Places365_test_00171731.jpg
+Places365_test_00171737.jpg
+Places365_test_00171749.jpg
+Places365_test_00171752.jpg
+Places365_test_00171759.jpg
+Places365_test_00171766.jpg
+Places365_test_00171788.jpg
+Places365_test_00171791.jpg
+Places365_test_00171798.jpg
+Places365_test_00171813.jpg
+Places365_test_00171814.jpg
+Places365_test_00171815.jpg
+Places365_test_00171817.jpg
+Places365_test_00171823.jpg
+Places365_test_00171836.jpg
+Places365_test_00171863.jpg
+Places365_test_00171875.jpg
+Places365_test_00171885.jpg
+Places365_test_00171888.jpg
+Places365_test_00171893.jpg
+Places365_test_00171897.jpg
+Places365_test_00171920.jpg
+Places365_test_00171925.jpg
+Places365_test_00171931.jpg
+Places365_test_00171941.jpg
+Places365_test_00171951.jpg
+Places365_test_00171960.jpg
+Places365_test_00171971.jpg
+Places365_test_00171983.jpg
+Places365_test_00171988.jpg
+Places365_test_00172011.jpg
+Places365_test_00172019.jpg
+Places365_test_00172031.jpg
+Places365_test_00172047.jpg
+Places365_test_00172051.jpg
+Places365_test_00172058.jpg
+Places365_test_00172066.jpg
+Places365_test_00172086.jpg
+Places365_test_00172087.jpg
+Places365_test_00172122.jpg
+Places365_test_00172132.jpg
+Places365_test_00172153.jpg
+Places365_test_00172163.jpg
+Places365_test_00172165.jpg
+Places365_test_00172167.jpg
+Places365_test_00172182.jpg
+Places365_test_00172188.jpg
+Places365_test_00172214.jpg
+Places365_test_00172221.jpg
+Places365_test_00172231.jpg
+Places365_test_00172234.jpg
+Places365_test_00172235.jpg
+Places365_test_00172246.jpg
+Places365_test_00172257.jpg
+Places365_test_00172266.jpg
+Places365_test_00172281.jpg
+Places365_test_00172288.jpg
+Places365_test_00172292.jpg
+Places365_test_00172331.jpg
+Places365_test_00172334.jpg
+Places365_test_00172341.jpg
+Places365_test_00172354.jpg
+Places365_test_00172359.jpg
+Places365_test_00172367.jpg
+Places365_test_00172371.jpg
+Places365_test_00172372.jpg
+Places365_test_00172383.jpg
+Places365_test_00172393.jpg
+Places365_test_00172398.jpg
+Places365_test_00172409.jpg
+Places365_test_00172416.jpg
+Places365_test_00172417.jpg
+Places365_test_00172418.jpg
+Places365_test_00172432.jpg
+Places365_test_00172440.jpg
+Places365_test_00172451.jpg
+Places365_test_00172456.jpg
+Places365_test_00172495.jpg
+Places365_test_00172514.jpg
+Places365_test_00172529.jpg
+Places365_test_00172562.jpg
+Places365_test_00172567.jpg
+Places365_test_00172573.jpg
+Places365_test_00172575.jpg
+Places365_test_00172588.jpg
+Places365_test_00172599.jpg
+Places365_test_00172609.jpg
+Places365_test_00172611.jpg
+Places365_test_00172623.jpg
+Places365_test_00172626.jpg
+Places365_test_00172637.jpg
+Places365_test_00172666.jpg
+Places365_test_00172667.jpg
+Places365_test_00172678.jpg
+Places365_test_00172721.jpg
+Places365_test_00172731.jpg
+Places365_test_00172735.jpg
+Places365_test_00172744.jpg
+Places365_test_00172755.jpg
+Places365_test_00172781.jpg
+Places365_test_00172784.jpg
+Places365_test_00172790.jpg
+Places365_test_00172814.jpg
+Places365_test_00172818.jpg
+Places365_test_00172820.jpg
+Places365_test_00172825.jpg
+Places365_test_00172831.jpg
+Places365_test_00172841.jpg
+Places365_test_00172852.jpg
+Places365_test_00172862.jpg
+Places365_test_00172876.jpg
+Places365_test_00172891.jpg
+Places365_test_00172900.jpg
+Places365_test_00172902.jpg
+Places365_test_00172922.jpg
+Places365_test_00172935.jpg
+Places365_test_00172941.jpg
+Places365_test_00172948.jpg
+Places365_test_00172956.jpg
+Places365_test_00172960.jpg
+Places365_test_00172961.jpg
+Places365_test_00172967.jpg
+Places365_test_00172982.jpg
+Places365_test_00173007.jpg
+Places365_test_00173012.jpg
+Places365_test_00173016.jpg
+Places365_test_00173025.jpg
+Places365_test_00173049.jpg
+Places365_test_00173053.jpg
+Places365_test_00173054.jpg
+Places365_test_00173071.jpg
+Places365_test_00173074.jpg
+Places365_test_00173078.jpg
+Places365_test_00173085.jpg
+Places365_test_00173093.jpg
+Places365_test_00173094.jpg
+Places365_test_00173096.jpg
+Places365_test_00173114.jpg
+Places365_test_00173125.jpg
+Places365_test_00173133.jpg
+Places365_test_00173139.jpg
+Places365_test_00173160.jpg
+Places365_test_00173163.jpg
+Places365_test_00173169.jpg
+Places365_test_00173187.jpg
+Places365_test_00173192.jpg
+Places365_test_00173203.jpg
+Places365_test_00173208.jpg
+Places365_test_00173213.jpg
+Places365_test_00173216.jpg
+Places365_test_00173218.jpg
+Places365_test_00173230.jpg
+Places365_test_00173237.jpg
+Places365_test_00173242.jpg
+Places365_test_00173249.jpg
+Places365_test_00173254.jpg
+Places365_test_00173269.jpg
+Places365_test_00173277.jpg
+Places365_test_00173318.jpg
+Places365_test_00173323.jpg
+Places365_test_00173333.jpg
+Places365_test_00173336.jpg
+Places365_test_00173351.jpg
+Places365_test_00173378.jpg
+Places365_test_00173394.jpg
+Places365_test_00173397.jpg
+Places365_test_00173406.jpg
+Places365_test_00173413.jpg
+Places365_test_00173418.jpg
+Places365_test_00173447.jpg
+Places365_test_00173459.jpg
+Places365_test_00173477.jpg
+Places365_test_00173478.jpg
+Places365_test_00173480.jpg
+Places365_test_00173488.jpg
+Places365_test_00173489.jpg
+Places365_test_00173492.jpg
+Places365_test_00173494.jpg
+Places365_test_00173502.jpg
+Places365_test_00173506.jpg
+Places365_test_00173522.jpg
+Places365_test_00173523.jpg
+Places365_test_00173541.jpg
+Places365_test_00173548.jpg
+Places365_test_00173582.jpg
+Places365_test_00173587.jpg
+Places365_test_00173588.jpg
+Places365_test_00173607.jpg
+Places365_test_00173611.jpg
+Places365_test_00173617.jpg
+Places365_test_00173650.jpg
+Places365_test_00173653.jpg
+Places365_test_00173672.jpg
+Places365_test_00173675.jpg
+Places365_test_00173714.jpg
+Places365_test_00173717.jpg
+Places365_test_00173720.jpg
+Places365_test_00173732.jpg
+Places365_test_00173752.jpg
+Places365_test_00173773.jpg
+Places365_test_00173794.jpg
+Places365_test_00173801.jpg
+Places365_test_00173815.jpg
+Places365_test_00173828.jpg
+Places365_test_00173835.jpg
+Places365_test_00173848.jpg
+Places365_test_00173872.jpg
+Places365_test_00173895.jpg
+Places365_test_00173925.jpg
+Places365_test_00173945.jpg
+Places365_test_00173950.jpg
+Places365_test_00173951.jpg
+Places365_test_00173960.jpg
+Places365_test_00173974.jpg
+Places365_test_00173991.jpg
+Places365_test_00173993.jpg
+Places365_test_00174033.jpg
+Places365_test_00174058.jpg
+Places365_test_00174075.jpg
+Places365_test_00174078.jpg
+Places365_test_00174103.jpg
+Places365_test_00174107.jpg
+Places365_test_00174122.jpg
+Places365_test_00174131.jpg
+Places365_test_00174133.jpg
+Places365_test_00174140.jpg
+Places365_test_00174144.jpg
+Places365_test_00174158.jpg
+Places365_test_00174159.jpg
+Places365_test_00174166.jpg
+Places365_test_00174169.jpg
+Places365_test_00174170.jpg
+Places365_test_00174183.jpg
+Places365_test_00174191.jpg
+Places365_test_00174195.jpg
+Places365_test_00174202.jpg
+Places365_test_00174217.jpg
+Places365_test_00174221.jpg
+Places365_test_00174253.jpg
+Places365_test_00174255.jpg
+Places365_test_00174262.jpg
+Places365_test_00174272.jpg
+Places365_test_00174284.jpg
+Places365_test_00174290.jpg
+Places365_test_00174291.jpg
+Places365_test_00174316.jpg
+Places365_test_00174321.jpg
+Places365_test_00174324.jpg
+Places365_test_00174334.jpg
+Places365_test_00174354.jpg
+Places365_test_00174363.jpg
+Places365_test_00174373.jpg
+Places365_test_00174398.jpg
+Places365_test_00174418.jpg
+Places365_test_00174426.jpg
+Places365_test_00174435.jpg
+Places365_test_00174439.jpg
+Places365_test_00174449.jpg
+Places365_test_00174450.jpg
+Places365_test_00174470.jpg
+Places365_test_00174512.jpg
+Places365_test_00174516.jpg
+Places365_test_00174538.jpg
+Places365_test_00174578.jpg
+Places365_test_00174593.jpg
+Places365_test_00174610.jpg
+Places365_test_00174646.jpg
+Places365_test_00174657.jpg
+Places365_test_00174663.jpg
+Places365_test_00174664.jpg
+Places365_test_00174700.jpg
+Places365_test_00174719.jpg
+Places365_test_00174744.jpg
+Places365_test_00174745.jpg
+Places365_test_00174751.jpg
+Places365_test_00174765.jpg
+Places365_test_00174766.jpg
+Places365_test_00174772.jpg
+Places365_test_00174791.jpg
+Places365_test_00174793.jpg
+Places365_test_00174806.jpg
+Places365_test_00174814.jpg
+Places365_test_00174825.jpg
+Places365_test_00174829.jpg
+Places365_test_00174838.jpg
+Places365_test_00174845.jpg
+Places365_test_00174846.jpg
+Places365_test_00174893.jpg
+Places365_test_00174895.jpg
+Places365_test_00174909.jpg
+Places365_test_00174919.jpg
+Places365_test_00174922.jpg
+Places365_test_00174925.jpg
+Places365_test_00174939.jpg
+Places365_test_00174946.jpg
+Places365_test_00174973.jpg
+Places365_test_00175011.jpg
+Places365_test_00175020.jpg
+Places365_test_00175021.jpg
+Places365_test_00175030.jpg
+Places365_test_00175031.jpg
+Places365_test_00175041.jpg
+Places365_test_00175045.jpg
+Places365_test_00175055.jpg
+Places365_test_00175061.jpg
+Places365_test_00175065.jpg
+Places365_test_00175067.jpg
+Places365_test_00175073.jpg
+Places365_test_00175093.jpg
+Places365_test_00175096.jpg
+Places365_test_00175159.jpg
+Places365_test_00175162.jpg
+Places365_test_00175164.jpg
+Places365_test_00175171.jpg
+Places365_test_00175175.jpg
+Places365_test_00175208.jpg
+Places365_test_00175219.jpg
+Places365_test_00175221.jpg
+Places365_test_00175222.jpg
+Places365_test_00175234.jpg
+Places365_test_00175238.jpg
+Places365_test_00175241.jpg
+Places365_test_00175246.jpg
+Places365_test_00175258.jpg
+Places365_test_00175275.jpg
+Places365_test_00175282.jpg
+Places365_test_00175285.jpg
+Places365_test_00175286.jpg
+Places365_test_00175295.jpg
+Places365_test_00175302.jpg
+Places365_test_00175310.jpg
+Places365_test_00175319.jpg
+Places365_test_00175335.jpg
+Places365_test_00175350.jpg
+Places365_test_00175387.jpg
+Places365_test_00175395.jpg
+Places365_test_00175397.jpg
+Places365_test_00175404.jpg
+Places365_test_00175411.jpg
+Places365_test_00175417.jpg
+Places365_test_00175422.jpg
+Places365_test_00175427.jpg
+Places365_test_00175429.jpg
+Places365_test_00175441.jpg
+Places365_test_00175487.jpg
+Places365_test_00175506.jpg
+Places365_test_00175519.jpg
+Places365_test_00175553.jpg
+Places365_test_00175558.jpg
+Places365_test_00175576.jpg
+Places365_test_00175579.jpg
+Places365_test_00175585.jpg
+Places365_test_00175606.jpg
+Places365_test_00175610.jpg
+Places365_test_00175622.jpg
+Places365_test_00175626.jpg
+Places365_test_00175627.jpg
+Places365_test_00175636.jpg
+Places365_test_00175657.jpg
+Places365_test_00175679.jpg
+Places365_test_00175690.jpg
+Places365_test_00175700.jpg
+Places365_test_00175742.jpg
+Places365_test_00175744.jpg
+Places365_test_00175769.jpg
+Places365_test_00175772.jpg
+Places365_test_00175801.jpg
+Places365_test_00175803.jpg
+Places365_test_00175806.jpg
+Places365_test_00175809.jpg
+Places365_test_00175812.jpg
+Places365_test_00175819.jpg
+Places365_test_00175828.jpg
+Places365_test_00175847.jpg
+Places365_test_00175862.jpg
+Places365_test_00175872.jpg
+Places365_test_00175884.jpg
+Places365_test_00175886.jpg
+Places365_test_00175901.jpg
+Places365_test_00175908.jpg
+Places365_test_00175910.jpg
+Places365_test_00175927.jpg
+Places365_test_00175928.jpg
+Places365_test_00175938.jpg
+Places365_test_00175944.jpg
+Places365_test_00175973.jpg
+Places365_test_00175982.jpg
+Places365_test_00175984.jpg
+Places365_test_00175989.jpg
+Places365_test_00176003.jpg
+Places365_test_00176005.jpg
+Places365_test_00176007.jpg
+Places365_test_00176011.jpg
+Places365_test_00176034.jpg
+Places365_test_00176038.jpg
+Places365_test_00176043.jpg
+Places365_test_00176049.jpg
+Places365_test_00176068.jpg
+Places365_test_00176071.jpg
+Places365_test_00176074.jpg
+Places365_test_00176084.jpg
+Places365_test_00176086.jpg
+Places365_test_00176088.jpg
+Places365_test_00176091.jpg
+Places365_test_00176097.jpg
+Places365_test_00176113.jpg
+Places365_test_00176122.jpg
+Places365_test_00176127.jpg
+Places365_test_00176133.jpg
+Places365_test_00176135.jpg
+Places365_test_00176147.jpg
+Places365_test_00176154.jpg
+Places365_test_00176156.jpg
+Places365_test_00176160.jpg
+Places365_test_00176164.jpg
+Places365_test_00176168.jpg
+Places365_test_00176169.jpg
+Places365_test_00176182.jpg
+Places365_test_00176230.jpg
+Places365_test_00176241.jpg
+Places365_test_00176264.jpg
+Places365_test_00176268.jpg
+Places365_test_00176276.jpg
+Places365_test_00176278.jpg
+Places365_test_00176292.jpg
+Places365_test_00176305.jpg
+Places365_test_00176324.jpg
+Places365_test_00176331.jpg
+Places365_test_00176381.jpg
+Places365_test_00176386.jpg
+Places365_test_00176412.jpg
+Places365_test_00176420.jpg
+Places365_test_00176425.jpg
+Places365_test_00176428.jpg
+Places365_test_00176432.jpg
+Places365_test_00176433.jpg
+Places365_test_00176452.jpg
+Places365_test_00176478.jpg
+Places365_test_00176482.jpg
+Places365_test_00176502.jpg
+Places365_test_00176510.jpg
+Places365_test_00176524.jpg
+Places365_test_00176529.jpg
+Places365_test_00176530.jpg
+Places365_test_00176535.jpg
+Places365_test_00176537.jpg
+Places365_test_00176555.jpg
+Places365_test_00176573.jpg
+Places365_test_00176588.jpg
+Places365_test_00176618.jpg
+Places365_test_00176632.jpg
+Places365_test_00176636.jpg
+Places365_test_00176643.jpg
+Places365_test_00176649.jpg
+Places365_test_00176654.jpg
+Places365_test_00176689.jpg
+Places365_test_00176696.jpg
+Places365_test_00176716.jpg
+Places365_test_00176717.jpg
+Places365_test_00176747.jpg
+Places365_test_00176764.jpg
+Places365_test_00176769.jpg
+Places365_test_00176776.jpg
+Places365_test_00176805.jpg
+Places365_test_00176812.jpg
+Places365_test_00176815.jpg
+Places365_test_00176824.jpg
+Places365_test_00176827.jpg
+Places365_test_00176832.jpg
+Places365_test_00176837.jpg
+Places365_test_00176841.jpg
+Places365_test_00176842.jpg
+Places365_test_00176846.jpg
+Places365_test_00176858.jpg
+Places365_test_00176870.jpg
+Places365_test_00176872.jpg
+Places365_test_00176873.jpg
+Places365_test_00176879.jpg
+Places365_test_00176893.jpg
+Places365_test_00176901.jpg
+Places365_test_00176904.jpg
+Places365_test_00176915.jpg
+Places365_test_00176930.jpg
+Places365_test_00176942.jpg
+Places365_test_00176962.jpg
+Places365_test_00176963.jpg
+Places365_test_00176965.jpg
+Places365_test_00176966.jpg
+Places365_test_00176976.jpg
+Places365_test_00176978.jpg
+Places365_test_00176996.jpg
+Places365_test_00176999.jpg
+Places365_test_00177004.jpg
+Places365_test_00177006.jpg
+Places365_test_00177018.jpg
+Places365_test_00177033.jpg
+Places365_test_00177048.jpg
+Places365_test_00177055.jpg
+Places365_test_00177056.jpg
+Places365_test_00177063.jpg
+Places365_test_00177064.jpg
+Places365_test_00177065.jpg
+Places365_test_00177070.jpg
+Places365_test_00177072.jpg
+Places365_test_00177078.jpg
+Places365_test_00177085.jpg
+Places365_test_00177088.jpg
+Places365_test_00177122.jpg
+Places365_test_00177155.jpg
+Places365_test_00177165.jpg
+Places365_test_00177169.jpg
+Places365_test_00177173.jpg
+Places365_test_00177184.jpg
+Places365_test_00177206.jpg
+Places365_test_00177209.jpg
+Places365_test_00177224.jpg
+Places365_test_00177271.jpg
+Places365_test_00177292.jpg
+Places365_test_00177303.jpg
+Places365_test_00177331.jpg
+Places365_test_00177334.jpg
+Places365_test_00177336.jpg
+Places365_test_00177342.jpg
+Places365_test_00177352.jpg
+Places365_test_00177366.jpg
+Places365_test_00177388.jpg
+Places365_test_00177392.jpg
+Places365_test_00177394.jpg
+Places365_test_00177397.jpg
+Places365_test_00177409.jpg
+Places365_test_00177427.jpg
+Places365_test_00177429.jpg
+Places365_test_00177442.jpg
+Places365_test_00177443.jpg
+Places365_test_00177452.jpg
+Places365_test_00177454.jpg
+Places365_test_00177463.jpg
+Places365_test_00177465.jpg
+Places365_test_00177470.jpg
+Places365_test_00177481.jpg
+Places365_test_00177489.jpg
+Places365_test_00177494.jpg
+Places365_test_00177518.jpg
+Places365_test_00177522.jpg
+Places365_test_00177532.jpg
+Places365_test_00177539.jpg
+Places365_test_00177558.jpg
+Places365_test_00177584.jpg
+Places365_test_00177587.jpg
+Places365_test_00177625.jpg
+Places365_test_00177635.jpg
+Places365_test_00177643.jpg
+Places365_test_00177666.jpg
+Places365_test_00177671.jpg
+Places365_test_00177675.jpg
+Places365_test_00177688.jpg
+Places365_test_00177694.jpg
+Places365_test_00177711.jpg
+Places365_test_00177726.jpg
+Places365_test_00177733.jpg
+Places365_test_00177738.jpg
+Places365_test_00177746.jpg
+Places365_test_00177764.jpg
+Places365_test_00177779.jpg
+Places365_test_00177797.jpg
+Places365_test_00177808.jpg
+Places365_test_00177821.jpg
+Places365_test_00177824.jpg
+Places365_test_00177836.jpg
+Places365_test_00177867.jpg
+Places365_test_00177877.jpg
+Places365_test_00177887.jpg
+Places365_test_00177905.jpg
+Places365_test_00177921.jpg
+Places365_test_00177929.jpg
+Places365_test_00177949.jpg
+Places365_test_00177959.jpg
+Places365_test_00177965.jpg
+Places365_test_00177977.jpg
+Places365_test_00177984.jpg
+Places365_test_00177999.jpg
+Places365_test_00178007.jpg
+Places365_test_00178011.jpg
+Places365_test_00178028.jpg
+Places365_test_00178050.jpg
+Places365_test_00178054.jpg
+Places365_test_00178062.jpg
+Places365_test_00178072.jpg
+Places365_test_00178081.jpg
+Places365_test_00178085.jpg
+Places365_test_00178087.jpg
+Places365_test_00178090.jpg
+Places365_test_00178097.jpg
+Places365_test_00178100.jpg
+Places365_test_00178109.jpg
+Places365_test_00178116.jpg
+Places365_test_00178123.jpg
+Places365_test_00178128.jpg
+Places365_test_00178149.jpg
+Places365_test_00178160.jpg
+Places365_test_00178162.jpg
+Places365_test_00178169.jpg
+Places365_test_00178202.jpg
+Places365_test_00178207.jpg
+Places365_test_00178227.jpg
+Places365_test_00178229.jpg
+Places365_test_00178252.jpg
+Places365_test_00178253.jpg
+Places365_test_00178279.jpg
+Places365_test_00178295.jpg
+Places365_test_00178303.jpg
+Places365_test_00178306.jpg
+Places365_test_00178311.jpg
+Places365_test_00178312.jpg
+Places365_test_00178327.jpg
+Places365_test_00178341.jpg
+Places365_test_00178347.jpg
+Places365_test_00178355.jpg
+Places365_test_00178358.jpg
+Places365_test_00178362.jpg
+Places365_test_00178366.jpg
+Places365_test_00178384.jpg
+Places365_test_00178398.jpg
+Places365_test_00178404.jpg
+Places365_test_00178416.jpg
+Places365_test_00178417.jpg
+Places365_test_00178423.jpg
+Places365_test_00178435.jpg
+Places365_test_00178437.jpg
+Places365_test_00178453.jpg
+Places365_test_00178475.jpg
+Places365_test_00178484.jpg
+Places365_test_00178487.jpg
+Places365_test_00178507.jpg
+Places365_test_00178510.jpg
+Places365_test_00178518.jpg
+Places365_test_00178526.jpg
+Places365_test_00178546.jpg
+Places365_test_00178550.jpg
+Places365_test_00178551.jpg
+Places365_test_00178556.jpg
+Places365_test_00178558.jpg
+Places365_test_00178574.jpg
+Places365_test_00178592.jpg
+Places365_test_00178632.jpg
+Places365_test_00178645.jpg
+Places365_test_00178651.jpg
+Places365_test_00178669.jpg
+Places365_test_00178674.jpg
+Places365_test_00178675.jpg
+Places365_test_00178677.jpg
+Places365_test_00178680.jpg
+Places365_test_00178684.jpg
+Places365_test_00178696.jpg
+Places365_test_00178721.jpg
+Places365_test_00178725.jpg
+Places365_test_00178727.jpg
+Places365_test_00178742.jpg
+Places365_test_00178753.jpg
+Places365_test_00178756.jpg
+Places365_test_00178774.jpg
+Places365_test_00178780.jpg
+Places365_test_00178790.jpg
+Places365_test_00178828.jpg
+Places365_test_00178839.jpg
+Places365_test_00178852.jpg
+Places365_test_00178856.jpg
+Places365_test_00178902.jpg
+Places365_test_00178912.jpg
+Places365_test_00178932.jpg
+Places365_test_00178938.jpg
+Places365_test_00178953.jpg
+Places365_test_00178955.jpg
+Places365_test_00178969.jpg
+Places365_test_00178971.jpg
+Places365_test_00178987.jpg
+Places365_test_00178992.jpg
+Places365_test_00178993.jpg
+Places365_test_00179006.jpg
+Places365_test_00179008.jpg
+Places365_test_00179041.jpg
+Places365_test_00179080.jpg
+Places365_test_00179084.jpg
+Places365_test_00179103.jpg
+Places365_test_00179127.jpg
+Places365_test_00179128.jpg
+Places365_test_00179164.jpg
+Places365_test_00179184.jpg
+Places365_test_00179189.jpg
+Places365_test_00179200.jpg
+Places365_test_00179201.jpg
+Places365_test_00179226.jpg
+Places365_test_00179248.jpg
+Places365_test_00179250.jpg
+Places365_test_00179266.jpg
+Places365_test_00179272.jpg
+Places365_test_00179299.jpg
+Places365_test_00179302.jpg
+Places365_test_00179317.jpg
+Places365_test_00179321.jpg
+Places365_test_00179334.jpg
+Places365_test_00179349.jpg
+Places365_test_00179365.jpg
+Places365_test_00179376.jpg
+Places365_test_00179379.jpg
+Places365_test_00179386.jpg
+Places365_test_00179428.jpg
+Places365_test_00179447.jpg
+Places365_test_00179463.jpg
+Places365_test_00179476.jpg
+Places365_test_00179504.jpg
+Places365_test_00179553.jpg
+Places365_test_00179580.jpg
+Places365_test_00179585.jpg
+Places365_test_00179591.jpg
+Places365_test_00179599.jpg
+Places365_test_00179608.jpg
+Places365_test_00179611.jpg
+Places365_test_00179625.jpg
+Places365_test_00179651.jpg
+Places365_test_00179655.jpg
+Places365_test_00179660.jpg
+Places365_test_00179670.jpg
+Places365_test_00179672.jpg
+Places365_test_00179674.jpg
+Places365_test_00179677.jpg
+Places365_test_00179689.jpg
+Places365_test_00179694.jpg
+Places365_test_00179711.jpg
+Places365_test_00179725.jpg
+Places365_test_00179727.jpg
+Places365_test_00179756.jpg
+Places365_test_00179759.jpg
+Places365_test_00179782.jpg
+Places365_test_00179793.jpg
+Places365_test_00179803.jpg
+Places365_test_00179809.jpg
+Places365_test_00179825.jpg
+Places365_test_00179837.jpg
+Places365_test_00179858.jpg
+Places365_test_00179907.jpg
+Places365_test_00179912.jpg
+Places365_test_00179923.jpg
+Places365_test_00179933.jpg
+Places365_test_00179939.jpg
+Places365_test_00179982.jpg
+Places365_test_00179990.jpg
+Places365_test_00180005.jpg
+Places365_test_00180017.jpg
+Places365_test_00180047.jpg
+Places365_test_00180059.jpg
+Places365_test_00180065.jpg
+Places365_test_00180077.jpg
+Places365_test_00180096.jpg
+Places365_test_00180111.jpg
+Places365_test_00180112.jpg
+Places365_test_00180126.jpg
+Places365_test_00180144.jpg
+Places365_test_00180149.jpg
+Places365_test_00180154.jpg
+Places365_test_00180162.jpg
+Places365_test_00180176.jpg
+Places365_test_00180183.jpg
+Places365_test_00180201.jpg
+Places365_test_00180208.jpg
+Places365_test_00180210.jpg
+Places365_test_00180226.jpg
+Places365_test_00180249.jpg
+Places365_test_00180252.jpg
+Places365_test_00180255.jpg
+Places365_test_00180257.jpg
+Places365_test_00180261.jpg
+Places365_test_00180276.jpg
+Places365_test_00180299.jpg
+Places365_test_00180305.jpg
+Places365_test_00180312.jpg
+Places365_test_00180318.jpg
+Places365_test_00180320.jpg
+Places365_test_00180341.jpg
+Places365_test_00180353.jpg
+Places365_test_00180373.jpg
+Places365_test_00180382.jpg
+Places365_test_00180384.jpg
+Places365_test_00180387.jpg
+Places365_test_00180396.jpg
+Places365_test_00180408.jpg
+Places365_test_00180426.jpg
+Places365_test_00180430.jpg
+Places365_test_00180453.jpg
+Places365_test_00180461.jpg
+Places365_test_00180495.jpg
+Places365_test_00180497.jpg
+Places365_test_00180501.jpg
+Places365_test_00180506.jpg
+Places365_test_00180511.jpg
+Places365_test_00180532.jpg
+Places365_test_00180546.jpg
+Places365_test_00180565.jpg
+Places365_test_00180566.jpg
+Places365_test_00180568.jpg
+Places365_test_00180583.jpg
+Places365_test_00180591.jpg
+Places365_test_00180600.jpg
+Places365_test_00180610.jpg
+Places365_test_00180614.jpg
+Places365_test_00180617.jpg
+Places365_test_00180618.jpg
+Places365_test_00180625.jpg
+Places365_test_00180632.jpg
+Places365_test_00180671.jpg
+Places365_test_00180682.jpg
+Places365_test_00180690.jpg
+Places365_test_00180692.jpg
+Places365_test_00180713.jpg
+Places365_test_00180718.jpg
+Places365_test_00180738.jpg
+Places365_test_00180767.jpg
+Places365_test_00180774.jpg
+Places365_test_00180782.jpg
+Places365_test_00180790.jpg
+Places365_test_00180795.jpg
+Places365_test_00180811.jpg
+Places365_test_00180826.jpg
+Places365_test_00180838.jpg
+Places365_test_00180859.jpg
+Places365_test_00180873.jpg
+Places365_test_00180881.jpg
+Places365_test_00180882.jpg
+Places365_test_00180884.jpg
+Places365_test_00180886.jpg
+Places365_test_00180887.jpg
+Places365_test_00180902.jpg
+Places365_test_00180905.jpg
+Places365_test_00180908.jpg
+Places365_test_00180911.jpg
+Places365_test_00180915.jpg
+Places365_test_00180927.jpg
+Places365_test_00180951.jpg
+Places365_test_00180961.jpg
+Places365_test_00180985.jpg
+Places365_test_00181001.jpg
+Places365_test_00181004.jpg
+Places365_test_00181014.jpg
+Places365_test_00181033.jpg
+Places365_test_00181041.jpg
+Places365_test_00181047.jpg
+Places365_test_00181053.jpg
+Places365_test_00181059.jpg
+Places365_test_00181083.jpg
+Places365_test_00181109.jpg
+Places365_test_00181121.jpg
+Places365_test_00181128.jpg
+Places365_test_00181142.jpg
+Places365_test_00181156.jpg
+Places365_test_00181158.jpg
+Places365_test_00181159.jpg
+Places365_test_00181163.jpg
+Places365_test_00181165.jpg
+Places365_test_00181170.jpg
+Places365_test_00181174.jpg
+Places365_test_00181200.jpg
+Places365_test_00181201.jpg
+Places365_test_00181204.jpg
+Places365_test_00181208.jpg
+Places365_test_00181212.jpg
+Places365_test_00181213.jpg
+Places365_test_00181245.jpg
+Places365_test_00181258.jpg
+Places365_test_00181260.jpg
+Places365_test_00181264.jpg
+Places365_test_00181268.jpg
+Places365_test_00181269.jpg
+Places365_test_00181272.jpg
+Places365_test_00181280.jpg
+Places365_test_00181291.jpg
+Places365_test_00181299.jpg
+Places365_test_00181312.jpg
+Places365_test_00181328.jpg
+Places365_test_00181330.jpg
+Places365_test_00181338.jpg
+Places365_test_00181350.jpg
+Places365_test_00181358.jpg
+Places365_test_00181361.jpg
+Places365_test_00181363.jpg
+Places365_test_00181370.jpg
+Places365_test_00181384.jpg
+Places365_test_00181415.jpg
+Places365_test_00181427.jpg
+Places365_test_00181442.jpg
+Places365_test_00181451.jpg
+Places365_test_00181456.jpg
+Places365_test_00181464.jpg
+Places365_test_00181471.jpg
+Places365_test_00181480.jpg
+Places365_test_00181484.jpg
+Places365_test_00181490.jpg
+Places365_test_00181493.jpg
+Places365_test_00181519.jpg
+Places365_test_00181524.jpg
+Places365_test_00181526.jpg
+Places365_test_00181529.jpg
+Places365_test_00181535.jpg
+Places365_test_00181544.jpg
+Places365_test_00181547.jpg
+Places365_test_00181548.jpg
+Places365_test_00181552.jpg
+Places365_test_00181555.jpg
+Places365_test_00181565.jpg
+Places365_test_00181570.jpg
+Places365_test_00181577.jpg
+Places365_test_00181597.jpg
+Places365_test_00181611.jpg
+Places365_test_00181617.jpg
+Places365_test_00181628.jpg
+Places365_test_00181630.jpg
+Places365_test_00181668.jpg
+Places365_test_00181670.jpg
+Places365_test_00181687.jpg
+Places365_test_00181690.jpg
+Places365_test_00181701.jpg
+Places365_test_00181706.jpg
+Places365_test_00181751.jpg
+Places365_test_00181752.jpg
+Places365_test_00181774.jpg
+Places365_test_00181775.jpg
+Places365_test_00181801.jpg
+Places365_test_00181807.jpg
+Places365_test_00181809.jpg
+Places365_test_00181817.jpg
+Places365_test_00181818.jpg
+Places365_test_00181823.jpg
+Places365_test_00181831.jpg
+Places365_test_00181842.jpg
+Places365_test_00181843.jpg
+Places365_test_00181850.jpg
+Places365_test_00181852.jpg
+Places365_test_00181866.jpg
+Places365_test_00181869.jpg
+Places365_test_00181872.jpg
+Places365_test_00181881.jpg
+Places365_test_00181895.jpg
+Places365_test_00181904.jpg
+Places365_test_00181911.jpg
+Places365_test_00181921.jpg
+Places365_test_00181923.jpg
+Places365_test_00181926.jpg
+Places365_test_00181929.jpg
+Places365_test_00181938.jpg
+Places365_test_00181980.jpg
+Places365_test_00181996.jpg
+Places365_test_00182010.jpg
+Places365_test_00182034.jpg
+Places365_test_00182040.jpg
+Places365_test_00182047.jpg
+Places365_test_00182054.jpg
+Places365_test_00182067.jpg
+Places365_test_00182083.jpg
+Places365_test_00182085.jpg
+Places365_test_00182088.jpg
+Places365_test_00182094.jpg
+Places365_test_00182096.jpg
+Places365_test_00182107.jpg
+Places365_test_00182113.jpg
+Places365_test_00182114.jpg
+Places365_test_00182120.jpg
+Places365_test_00182134.jpg
+Places365_test_00182139.jpg
+Places365_test_00182147.jpg
+Places365_test_00182178.jpg
+Places365_test_00182213.jpg
+Places365_test_00182241.jpg
+Places365_test_00182259.jpg
+Places365_test_00182277.jpg
+Places365_test_00182282.jpg
+Places365_test_00182300.jpg
+Places365_test_00182316.jpg
+Places365_test_00182318.jpg
+Places365_test_00182345.jpg
+Places365_test_00182349.jpg
+Places365_test_00182361.jpg
+Places365_test_00182364.jpg
+Places365_test_00182379.jpg
+Places365_test_00182396.jpg
+Places365_test_00182397.jpg
+Places365_test_00182405.jpg
+Places365_test_00182423.jpg
+Places365_test_00182458.jpg
+Places365_test_00182466.jpg
+Places365_test_00182469.jpg
+Places365_test_00182488.jpg
+Places365_test_00182501.jpg
+Places365_test_00182505.jpg
+Places365_test_00182518.jpg
+Places365_test_00182520.jpg
+Places365_test_00182533.jpg
+Places365_test_00182535.jpg
+Places365_test_00182538.jpg
+Places365_test_00182544.jpg
+Places365_test_00182551.jpg
+Places365_test_00182563.jpg
+Places365_test_00182568.jpg
+Places365_test_00182586.jpg
+Places365_test_00182607.jpg
+Places365_test_00182616.jpg
+Places365_test_00182620.jpg
+Places365_test_00182623.jpg
+Places365_test_00182642.jpg
+Places365_test_00182656.jpg
+Places365_test_00182672.jpg
+Places365_test_00182690.jpg
+Places365_test_00182706.jpg
+Places365_test_00182710.jpg
+Places365_test_00182711.jpg
+Places365_test_00182721.jpg
+Places365_test_00182722.jpg
+Places365_test_00182737.jpg
+Places365_test_00182761.jpg
+Places365_test_00182772.jpg
+Places365_test_00182831.jpg
+Places365_test_00182835.jpg
+Places365_test_00182850.jpg
+Places365_test_00182868.jpg
+Places365_test_00182895.jpg
+Places365_test_00182915.jpg
+Places365_test_00182916.jpg
+Places365_test_00182932.jpg
+Places365_test_00182985.jpg
+Places365_test_00182986.jpg
+Places365_test_00182992.jpg
+Places365_test_00183014.jpg
+Places365_test_00183018.jpg
+Places365_test_00183027.jpg
+Places365_test_00183043.jpg
+Places365_test_00183053.jpg
+Places365_test_00183058.jpg
+Places365_test_00183079.jpg
+Places365_test_00183095.jpg
+Places365_test_00183103.jpg
+Places365_test_00183116.jpg
+Places365_test_00183129.jpg
+Places365_test_00183161.jpg
+Places365_test_00183174.jpg
+Places365_test_00183176.jpg
+Places365_test_00183199.jpg
+Places365_test_00183229.jpg
+Places365_test_00183249.jpg
+Places365_test_00183271.jpg
+Places365_test_00183281.jpg
+Places365_test_00183292.jpg
+Places365_test_00183293.jpg
+Places365_test_00183311.jpg
+Places365_test_00183315.jpg
+Places365_test_00183339.jpg
+Places365_test_00183347.jpg
+Places365_test_00183350.jpg
+Places365_test_00183355.jpg
+Places365_test_00183361.jpg
+Places365_test_00183363.jpg
+Places365_test_00183365.jpg
+Places365_test_00183373.jpg
+Places365_test_00183374.jpg
+Places365_test_00183383.jpg
+Places365_test_00183386.jpg
+Places365_test_00183418.jpg
+Places365_test_00183419.jpg
+Places365_test_00183428.jpg
+Places365_test_00183481.jpg
+Places365_test_00183484.jpg
+Places365_test_00183485.jpg
+Places365_test_00183489.jpg
+Places365_test_00183514.jpg
+Places365_test_00183516.jpg
+Places365_test_00183551.jpg
+Places365_test_00183558.jpg
+Places365_test_00183561.jpg
+Places365_test_00183562.jpg
+Places365_test_00183565.jpg
+Places365_test_00183583.jpg
+Places365_test_00183587.jpg
+Places365_test_00183592.jpg
+Places365_test_00183601.jpg
+Places365_test_00183625.jpg
+Places365_test_00183638.jpg
+Places365_test_00183641.jpg
+Places365_test_00183651.jpg
+Places365_test_00183664.jpg
+Places365_test_00183668.jpg
+Places365_test_00183682.jpg
+Places365_test_00183685.jpg
+Places365_test_00183688.jpg
+Places365_test_00183690.jpg
+Places365_test_00183694.jpg
+Places365_test_00183696.jpg
+Places365_test_00183706.jpg
+Places365_test_00183719.jpg
+Places365_test_00183720.jpg
+Places365_test_00183741.jpg
+Places365_test_00183757.jpg
+Places365_test_00183772.jpg
+Places365_test_00183774.jpg
+Places365_test_00183775.jpg
+Places365_test_00183781.jpg
+Places365_test_00183782.jpg
+Places365_test_00183791.jpg
+Places365_test_00183808.jpg
+Places365_test_00183810.jpg
+Places365_test_00183825.jpg
+Places365_test_00183826.jpg
+Places365_test_00183828.jpg
+Places365_test_00183851.jpg
+Places365_test_00183857.jpg
+Places365_test_00183874.jpg
+Places365_test_00183892.jpg
+Places365_test_00183922.jpg
+Places365_test_00183923.jpg
+Places365_test_00183941.jpg
+Places365_test_00183943.jpg
+Places365_test_00183947.jpg
+Places365_test_00183956.jpg
+Places365_test_00183969.jpg
+Places365_test_00183981.jpg
+Places365_test_00183984.jpg
+Places365_test_00184014.jpg
+Places365_test_00184024.jpg
+Places365_test_00184025.jpg
+Places365_test_00184035.jpg
+Places365_test_00184043.jpg
+Places365_test_00184062.jpg
+Places365_test_00184067.jpg
+Places365_test_00184073.jpg
+Places365_test_00184079.jpg
+Places365_test_00184080.jpg
+Places365_test_00184081.jpg
+Places365_test_00184097.jpg
+Places365_test_00184130.jpg
+Places365_test_00184176.jpg
+Places365_test_00184177.jpg
+Places365_test_00184182.jpg
+Places365_test_00184197.jpg
+Places365_test_00184200.jpg
+Places365_test_00184215.jpg
+Places365_test_00184220.jpg
+Places365_test_00184245.jpg
+Places365_test_00184247.jpg
+Places365_test_00184259.jpg
+Places365_test_00184269.jpg
+Places365_test_00184282.jpg
+Places365_test_00184288.jpg
+Places365_test_00184298.jpg
+Places365_test_00184299.jpg
+Places365_test_00184300.jpg
+Places365_test_00184308.jpg
+Places365_test_00184312.jpg
+Places365_test_00184319.jpg
+Places365_test_00184326.jpg
+Places365_test_00184327.jpg
+Places365_test_00184330.jpg
+Places365_test_00184332.jpg
+Places365_test_00184351.jpg
+Places365_test_00184372.jpg
+Places365_test_00184376.jpg
+Places365_test_00184385.jpg
+Places365_test_00184389.jpg
+Places365_test_00184407.jpg
+Places365_test_00184480.jpg
+Places365_test_00184481.jpg
+Places365_test_00184511.jpg
+Places365_test_00184514.jpg
+Places365_test_00184523.jpg
+Places365_test_00184548.jpg
+Places365_test_00184553.jpg
+Places365_test_00184590.jpg
+Places365_test_00184640.jpg
+Places365_test_00184643.jpg
+Places365_test_00184654.jpg
+Places365_test_00184675.jpg
+Places365_test_00184676.jpg
+Places365_test_00184679.jpg
+Places365_test_00184684.jpg
+Places365_test_00184707.jpg
+Places365_test_00184710.jpg
+Places365_test_00184758.jpg
+Places365_test_00184762.jpg
+Places365_test_00184775.jpg
+Places365_test_00184776.jpg
+Places365_test_00184777.jpg
+Places365_test_00184780.jpg
+Places365_test_00184783.jpg
+Places365_test_00184793.jpg
+Places365_test_00184809.jpg
+Places365_test_00184813.jpg
+Places365_test_00184814.jpg
+Places365_test_00184851.jpg
+Places365_test_00184852.jpg
+Places365_test_00184865.jpg
+Places365_test_00184866.jpg
+Places365_test_00184873.jpg
+Places365_test_00184883.jpg
+Places365_test_00184907.jpg
+Places365_test_00184912.jpg
+Places365_test_00184949.jpg
+Places365_test_00184974.jpg
+Places365_test_00184978.jpg
+Places365_test_00184989.jpg
+Places365_test_00185025.jpg
+Places365_test_00185036.jpg
+Places365_test_00185043.jpg
+Places365_test_00185052.jpg
+Places365_test_00185054.jpg
+Places365_test_00185062.jpg
+Places365_test_00185066.jpg
+Places365_test_00185070.jpg
+Places365_test_00185071.jpg
+Places365_test_00185073.jpg
+Places365_test_00185084.jpg
+Places365_test_00185087.jpg
+Places365_test_00185094.jpg
+Places365_test_00185099.jpg
+Places365_test_00185102.jpg
+Places365_test_00185108.jpg
+Places365_test_00185119.jpg
+Places365_test_00185131.jpg
+Places365_test_00185134.jpg
+Places365_test_00185169.jpg
+Places365_test_00185203.jpg
+Places365_test_00185247.jpg
+Places365_test_00185249.jpg
+Places365_test_00185263.jpg
+Places365_test_00185273.jpg
+Places365_test_00185283.jpg
+Places365_test_00185288.jpg
+Places365_test_00185294.jpg
+Places365_test_00185338.jpg
+Places365_test_00185342.jpg
+Places365_test_00185347.jpg
+Places365_test_00185362.jpg
+Places365_test_00185366.jpg
+Places365_test_00185370.jpg
+Places365_test_00185378.jpg
+Places365_test_00185386.jpg
+Places365_test_00185395.jpg
+Places365_test_00185435.jpg
+Places365_test_00185441.jpg
+Places365_test_00185460.jpg
+Places365_test_00185469.jpg
+Places365_test_00185486.jpg
+Places365_test_00185492.jpg
+Places365_test_00185494.jpg
+Places365_test_00185498.jpg
+Places365_test_00185512.jpg
+Places365_test_00185524.jpg
+Places365_test_00185537.jpg
+Places365_test_00185538.jpg
+Places365_test_00185546.jpg
+Places365_test_00185548.jpg
+Places365_test_00185553.jpg
+Places365_test_00185589.jpg
+Places365_test_00185596.jpg
+Places365_test_00185615.jpg
+Places365_test_00185629.jpg
+Places365_test_00185638.jpg
+Places365_test_00185643.jpg
+Places365_test_00185653.jpg
+Places365_test_00185654.jpg
+Places365_test_00185659.jpg
+Places365_test_00185670.jpg
+Places365_test_00185673.jpg
+Places365_test_00185674.jpg
+Places365_test_00185679.jpg
+Places365_test_00185723.jpg
+Places365_test_00185753.jpg
+Places365_test_00185777.jpg
+Places365_test_00185780.jpg
+Places365_test_00185790.jpg
+Places365_test_00185800.jpg
+Places365_test_00185802.jpg
+Places365_test_00185816.jpg
+Places365_test_00185843.jpg
+Places365_test_00185848.jpg
+Places365_test_00185849.jpg
+Places365_test_00185853.jpg
+Places365_test_00185870.jpg
+Places365_test_00185875.jpg
+Places365_test_00185891.jpg
+Places365_test_00185897.jpg
+Places365_test_00185906.jpg
+Places365_test_00185919.jpg
+Places365_test_00185923.jpg
+Places365_test_00185949.jpg
+Places365_test_00185985.jpg
+Places365_test_00186011.jpg
+Places365_test_00186024.jpg
+Places365_test_00186045.jpg
+Places365_test_00186047.jpg
+Places365_test_00186066.jpg
+Places365_test_00186084.jpg
+Places365_test_00186085.jpg
+Places365_test_00186091.jpg
+Places365_test_00186096.jpg
+Places365_test_00186103.jpg
+Places365_test_00186105.jpg
+Places365_test_00186116.jpg
+Places365_test_00186150.jpg
+Places365_test_00186155.jpg
+Places365_test_00186156.jpg
+Places365_test_00186162.jpg
+Places365_test_00186164.jpg
+Places365_test_00186165.jpg
+Places365_test_00186176.jpg
+Places365_test_00186185.jpg
+Places365_test_00186193.jpg
+Places365_test_00186198.jpg
+Places365_test_00186199.jpg
+Places365_test_00186202.jpg
+Places365_test_00186229.jpg
+Places365_test_00186232.jpg
+Places365_test_00186235.jpg
+Places365_test_00186245.jpg
+Places365_test_00186271.jpg
+Places365_test_00186273.jpg
+Places365_test_00186293.jpg
+Places365_test_00186313.jpg
+Places365_test_00186331.jpg
+Places365_test_00186339.jpg
+Places365_test_00186357.jpg
+Places365_test_00186363.jpg
+Places365_test_00186376.jpg
+Places365_test_00186388.jpg
+Places365_test_00186422.jpg
+Places365_test_00186430.jpg
+Places365_test_00186433.jpg
+Places365_test_00186447.jpg
+Places365_test_00186452.jpg
+Places365_test_00186466.jpg
+Places365_test_00186505.jpg
+Places365_test_00186525.jpg
+Places365_test_00186540.jpg
+Places365_test_00186559.jpg
+Places365_test_00186569.jpg
+Places365_test_00186575.jpg
+Places365_test_00186588.jpg
+Places365_test_00186602.jpg
+Places365_test_00186613.jpg
+Places365_test_00186629.jpg
+Places365_test_00186635.jpg
+Places365_test_00186637.jpg
+Places365_test_00186652.jpg
+Places365_test_00186658.jpg
+Places365_test_00186686.jpg
+Places365_test_00186714.jpg
+Places365_test_00186733.jpg
+Places365_test_00186742.jpg
+Places365_test_00186753.jpg
+Places365_test_00186770.jpg
+Places365_test_00186774.jpg
+Places365_test_00186776.jpg
+Places365_test_00186790.jpg
+Places365_test_00186794.jpg
+Places365_test_00186798.jpg
+Places365_test_00186825.jpg
+Places365_test_00186835.jpg
+Places365_test_00186837.jpg
+Places365_test_00186844.jpg
+Places365_test_00186851.jpg
+Places365_test_00186859.jpg
+Places365_test_00186860.jpg
+Places365_test_00186867.jpg
+Places365_test_00186875.jpg
+Places365_test_00186881.jpg
+Places365_test_00186901.jpg
+Places365_test_00186902.jpg
+Places365_test_00186911.jpg
+Places365_test_00186921.jpg
+Places365_test_00186934.jpg
+Places365_test_00186946.jpg
+Places365_test_00186959.jpg
+Places365_test_00186980.jpg
+Places365_test_00186990.jpg
+Places365_test_00187006.jpg
+Places365_test_00187027.jpg
+Places365_test_00187034.jpg
+Places365_test_00187059.jpg
+Places365_test_00187061.jpg
+Places365_test_00187065.jpg
+Places365_test_00187077.jpg
+Places365_test_00187079.jpg
+Places365_test_00187105.jpg
+Places365_test_00187107.jpg
+Places365_test_00187108.jpg
+Places365_test_00187138.jpg
+Places365_test_00187140.jpg
+Places365_test_00187161.jpg
+Places365_test_00187164.jpg
+Places365_test_00187183.jpg
+Places365_test_00187187.jpg
+Places365_test_00187208.jpg
+Places365_test_00187213.jpg
+Places365_test_00187214.jpg
+Places365_test_00187222.jpg
+Places365_test_00187225.jpg
+Places365_test_00187226.jpg
+Places365_test_00187237.jpg
+Places365_test_00187250.jpg
+Places365_test_00187263.jpg
+Places365_test_00187276.jpg
+Places365_test_00187296.jpg
+Places365_test_00187310.jpg
+Places365_test_00187318.jpg
+Places365_test_00187327.jpg
+Places365_test_00187346.jpg
+Places365_test_00187354.jpg
+Places365_test_00187355.jpg
+Places365_test_00187364.jpg
+Places365_test_00187369.jpg
+Places365_test_00187386.jpg
+Places365_test_00187394.jpg
+Places365_test_00187408.jpg
+Places365_test_00187410.jpg
+Places365_test_00187414.jpg
+Places365_test_00187432.jpg
+Places365_test_00187445.jpg
+Places365_test_00187489.jpg
+Places365_test_00187490.jpg
+Places365_test_00187492.jpg
+Places365_test_00187499.jpg
+Places365_test_00187515.jpg
+Places365_test_00187526.jpg
+Places365_test_00187532.jpg
+Places365_test_00187537.jpg
+Places365_test_00187547.jpg
+Places365_test_00187556.jpg
+Places365_test_00187557.jpg
+Places365_test_00187568.jpg
+Places365_test_00187606.jpg
+Places365_test_00187621.jpg
+Places365_test_00187628.jpg
+Places365_test_00187666.jpg
+Places365_test_00187672.jpg
+Places365_test_00187675.jpg
+Places365_test_00187689.jpg
+Places365_test_00187706.jpg
+Places365_test_00187707.jpg
+Places365_test_00187718.jpg
+Places365_test_00187725.jpg
+Places365_test_00187729.jpg
+Places365_test_00187737.jpg
+Places365_test_00187765.jpg
+Places365_test_00187766.jpg
+Places365_test_00187767.jpg
+Places365_test_00187769.jpg
+Places365_test_00187770.jpg
+Places365_test_00187786.jpg
+Places365_test_00187792.jpg
+Places365_test_00187801.jpg
+Places365_test_00187807.jpg
+Places365_test_00187817.jpg
+Places365_test_00187821.jpg
+Places365_test_00187844.jpg
+Places365_test_00187859.jpg
+Places365_test_00187873.jpg
+Places365_test_00187875.jpg
+Places365_test_00187895.jpg
+Places365_test_00187907.jpg
+Places365_test_00187917.jpg
+Places365_test_00187920.jpg
+Places365_test_00187925.jpg
+Places365_test_00187931.jpg
+Places365_test_00187936.jpg
+Places365_test_00187947.jpg
+Places365_test_00187958.jpg
+Places365_test_00187981.jpg
+Places365_test_00187984.jpg
+Places365_test_00187985.jpg
+Places365_test_00187997.jpg
+Places365_test_00187999.jpg
+Places365_test_00188003.jpg
+Places365_test_00188006.jpg
+Places365_test_00188027.jpg
+Places365_test_00188037.jpg
+Places365_test_00188038.jpg
+Places365_test_00188039.jpg
+Places365_test_00188056.jpg
+Places365_test_00188063.jpg
+Places365_test_00188065.jpg
+Places365_test_00188068.jpg
+Places365_test_00188097.jpg
+Places365_test_00188109.jpg
+Places365_test_00188110.jpg
+Places365_test_00188112.jpg
+Places365_test_00188136.jpg
+Places365_test_00188142.jpg
+Places365_test_00188173.jpg
+Places365_test_00188175.jpg
+Places365_test_00188178.jpg
+Places365_test_00188183.jpg
+Places365_test_00188198.jpg
+Places365_test_00188202.jpg
+Places365_test_00188208.jpg
+Places365_test_00188227.jpg
+Places365_test_00188234.jpg
+Places365_test_00188235.jpg
+Places365_test_00188250.jpg
+Places365_test_00188269.jpg
+Places365_test_00188271.jpg
+Places365_test_00188285.jpg
+Places365_test_00188335.jpg
+Places365_test_00188339.jpg
+Places365_test_00188363.jpg
+Places365_test_00188371.jpg
+Places365_test_00188373.jpg
+Places365_test_00188374.jpg
+Places365_test_00188377.jpg
+Places365_test_00188386.jpg
+Places365_test_00188399.jpg
+Places365_test_00188404.jpg
+Places365_test_00188416.jpg
+Places365_test_00188420.jpg
+Places365_test_00188468.jpg
+Places365_test_00188471.jpg
+Places365_test_00188483.jpg
+Places365_test_00188493.jpg
+Places365_test_00188496.jpg
+Places365_test_00188504.jpg
+Places365_test_00188517.jpg
+Places365_test_00188520.jpg
+Places365_test_00188528.jpg
+Places365_test_00188532.jpg
+Places365_test_00188555.jpg
+Places365_test_00188558.jpg
+Places365_test_00188559.jpg
+Places365_test_00188573.jpg
+Places365_test_00188579.jpg
+Places365_test_00188586.jpg
+Places365_test_00188591.jpg
+Places365_test_00188603.jpg
+Places365_test_00188613.jpg
+Places365_test_00188629.jpg
+Places365_test_00188653.jpg
+Places365_test_00188654.jpg
+Places365_test_00188667.jpg
+Places365_test_00188669.jpg
+Places365_test_00188670.jpg
+Places365_test_00188675.jpg
+Places365_test_00188680.jpg
+Places365_test_00188690.jpg
+Places365_test_00188704.jpg
+Places365_test_00188724.jpg
+Places365_test_00188734.jpg
+Places365_test_00188737.jpg
+Places365_test_00188743.jpg
+Places365_test_00188756.jpg
+Places365_test_00188768.jpg
+Places365_test_00188773.jpg
+Places365_test_00188781.jpg
+Places365_test_00188792.jpg
+Places365_test_00188799.jpg
+Places365_test_00188802.jpg
+Places365_test_00188826.jpg
+Places365_test_00188832.jpg
+Places365_test_00188834.jpg
+Places365_test_00188843.jpg
+Places365_test_00188847.jpg
+Places365_test_00188848.jpg
+Places365_test_00188859.jpg
+Places365_test_00188880.jpg
+Places365_test_00188888.jpg
+Places365_test_00188909.jpg
+Places365_test_00188929.jpg
+Places365_test_00188932.jpg
+Places365_test_00188946.jpg
+Places365_test_00188964.jpg
+Places365_test_00188966.jpg
+Places365_test_00188978.jpg
+Places365_test_00188980.jpg
+Places365_test_00188997.jpg
+Places365_test_00188999.jpg
+Places365_test_00189001.jpg
+Places365_test_00189007.jpg
+Places365_test_00189022.jpg
+Places365_test_00189028.jpg
+Places365_test_00189048.jpg
+Places365_test_00189058.jpg
+Places365_test_00189062.jpg
+Places365_test_00189071.jpg
+Places365_test_00189084.jpg
+Places365_test_00189101.jpg
+Places365_test_00189113.jpg
+Places365_test_00189118.jpg
+Places365_test_00189129.jpg
+Places365_test_00189143.jpg
+Places365_test_00189147.jpg
+Places365_test_00189150.jpg
+Places365_test_00189152.jpg
+Places365_test_00189154.jpg
+Places365_test_00189157.jpg
+Places365_test_00189172.jpg
+Places365_test_00189173.jpg
+Places365_test_00189177.jpg
+Places365_test_00189181.jpg
+Places365_test_00189183.jpg
+Places365_test_00189187.jpg
+Places365_test_00189189.jpg
+Places365_test_00189198.jpg
+Places365_test_00189200.jpg
+Places365_test_00189212.jpg
+Places365_test_00189226.jpg
+Places365_test_00189246.jpg
+Places365_test_00189247.jpg
+Places365_test_00189273.jpg
+Places365_test_00189315.jpg
+Places365_test_00189318.jpg
+Places365_test_00189355.jpg
+Places365_test_00189370.jpg
+Places365_test_00189375.jpg
+Places365_test_00189379.jpg
+Places365_test_00189380.jpg
+Places365_test_00189382.jpg
+Places365_test_00189392.jpg
+Places365_test_00189411.jpg
+Places365_test_00189414.jpg
+Places365_test_00189423.jpg
+Places365_test_00189424.jpg
+Places365_test_00189431.jpg
+Places365_test_00189432.jpg
+Places365_test_00189435.jpg
+Places365_test_00189437.jpg
+Places365_test_00189469.jpg
+Places365_test_00189472.jpg
+Places365_test_00189487.jpg
+Places365_test_00189492.jpg
+Places365_test_00189512.jpg
+Places365_test_00189517.jpg
+Places365_test_00189566.jpg
+Places365_test_00189582.jpg
+Places365_test_00189608.jpg
+Places365_test_00189609.jpg
+Places365_test_00189610.jpg
+Places365_test_00189614.jpg
+Places365_test_00189625.jpg
+Places365_test_00189632.jpg
+Places365_test_00189643.jpg
+Places365_test_00189661.jpg
+Places365_test_00189673.jpg
+Places365_test_00189676.jpg
+Places365_test_00189679.jpg
+Places365_test_00189686.jpg
+Places365_test_00189689.jpg
+Places365_test_00189699.jpg
+Places365_test_00189703.jpg
+Places365_test_00189711.jpg
+Places365_test_00189729.jpg
+Places365_test_00189735.jpg
+Places365_test_00189751.jpg
+Places365_test_00189772.jpg
+Places365_test_00189791.jpg
+Places365_test_00189792.jpg
+Places365_test_00189804.jpg
+Places365_test_00189805.jpg
+Places365_test_00189809.jpg
+Places365_test_00189820.jpg
+Places365_test_00189827.jpg
+Places365_test_00189829.jpg
+Places365_test_00189845.jpg
+Places365_test_00189878.jpg
+Places365_test_00189883.jpg
+Places365_test_00189888.jpg
+Places365_test_00189889.jpg
+Places365_test_00189920.jpg
+Places365_test_00189923.jpg
+Places365_test_00189932.jpg
+Places365_test_00189944.jpg
+Places365_test_00189954.jpg
+Places365_test_00189978.jpg
+Places365_test_00189993.jpg
+Places365_test_00190030.jpg
+Places365_test_00190034.jpg
+Places365_test_00190040.jpg
+Places365_test_00190045.jpg
+Places365_test_00190050.jpg
+Places365_test_00190064.jpg
+Places365_test_00190071.jpg
+Places365_test_00190091.jpg
+Places365_test_00190097.jpg
+Places365_test_00190100.jpg
+Places365_test_00190112.jpg
+Places365_test_00190119.jpg
+Places365_test_00190123.jpg
+Places365_test_00190128.jpg
+Places365_test_00190150.jpg
+Places365_test_00190152.jpg
+Places365_test_00190160.jpg
+Places365_test_00190161.jpg
+Places365_test_00190165.jpg
+Places365_test_00190167.jpg
+Places365_test_00190173.jpg
+Places365_test_00190177.jpg
+Places365_test_00190191.jpg
+Places365_test_00190200.jpg
+Places365_test_00190209.jpg
+Places365_test_00190211.jpg
+Places365_test_00190229.jpg
+Places365_test_00190234.jpg
+Places365_test_00190241.jpg
+Places365_test_00190248.jpg
+Places365_test_00190252.jpg
+Places365_test_00190257.jpg
+Places365_test_00190284.jpg
+Places365_test_00190301.jpg
+Places365_test_00190334.jpg
+Places365_test_00190352.jpg
+Places365_test_00190375.jpg
+Places365_test_00190380.jpg
+Places365_test_00190386.jpg
+Places365_test_00190387.jpg
+Places365_test_00190408.jpg
+Places365_test_00190410.jpg
+Places365_test_00190413.jpg
+Places365_test_00190422.jpg
+Places365_test_00190463.jpg
+Places365_test_00190468.jpg
+Places365_test_00190479.jpg
+Places365_test_00190489.jpg
+Places365_test_00190496.jpg
+Places365_test_00190500.jpg
+Places365_test_00190508.jpg
+Places365_test_00190509.jpg
+Places365_test_00190524.jpg
+Places365_test_00190527.jpg
+Places365_test_00190530.jpg
+Places365_test_00190536.jpg
+Places365_test_00190545.jpg
+Places365_test_00190580.jpg
+Places365_test_00190584.jpg
+Places365_test_00190588.jpg
+Places365_test_00190595.jpg
+Places365_test_00190598.jpg
+Places365_test_00190604.jpg
+Places365_test_00190606.jpg
+Places365_test_00190625.jpg
+Places365_test_00190633.jpg
+Places365_test_00190635.jpg
+Places365_test_00190636.jpg
+Places365_test_00190637.jpg
+Places365_test_00190662.jpg
+Places365_test_00190671.jpg
+Places365_test_00190676.jpg
+Places365_test_00190695.jpg
+Places365_test_00190697.jpg
+Places365_test_00190704.jpg
+Places365_test_00190711.jpg
+Places365_test_00190745.jpg
+Places365_test_00190749.jpg
+Places365_test_00190762.jpg
+Places365_test_00190763.jpg
+Places365_test_00190769.jpg
+Places365_test_00190776.jpg
+Places365_test_00190777.jpg
+Places365_test_00190781.jpg
+Places365_test_00190793.jpg
+Places365_test_00190808.jpg
+Places365_test_00190813.jpg
+Places365_test_00190818.jpg
+Places365_test_00190819.jpg
+Places365_test_00190820.jpg
+Places365_test_00190821.jpg
+Places365_test_00190840.jpg
+Places365_test_00190844.jpg
+Places365_test_00190846.jpg
+Places365_test_00190851.jpg
+Places365_test_00190855.jpg
+Places365_test_00190856.jpg
+Places365_test_00190869.jpg
+Places365_test_00190881.jpg
+Places365_test_00190885.jpg
+Places365_test_00190900.jpg
+Places365_test_00190903.jpg
+Places365_test_00190917.jpg
+Places365_test_00190919.jpg
+Places365_test_00190923.jpg
+Places365_test_00190927.jpg
+Places365_test_00190935.jpg
+Places365_test_00190956.jpg
+Places365_test_00190959.jpg
+Places365_test_00190965.jpg
+Places365_test_00190968.jpg
+Places365_test_00190972.jpg
+Places365_test_00190983.jpg
+Places365_test_00190988.jpg
+Places365_test_00190990.jpg
+Places365_test_00190997.jpg
+Places365_test_00191004.jpg
+Places365_test_00191007.jpg
+Places365_test_00191013.jpg
+Places365_test_00191020.jpg
+Places365_test_00191031.jpg
+Places365_test_00191043.jpg
+Places365_test_00191059.jpg
+Places365_test_00191062.jpg
+Places365_test_00191073.jpg
+Places365_test_00191077.jpg
+Places365_test_00191091.jpg
+Places365_test_00191098.jpg
+Places365_test_00191110.jpg
+Places365_test_00191112.jpg
+Places365_test_00191128.jpg
+Places365_test_00191133.jpg
+Places365_test_00191146.jpg
+Places365_test_00191155.jpg
+Places365_test_00191191.jpg
+Places365_test_00191193.jpg
+Places365_test_00191206.jpg
+Places365_test_00191231.jpg
+Places365_test_00191233.jpg
+Places365_test_00191241.jpg
+Places365_test_00191246.jpg
+Places365_test_00191247.jpg
+Places365_test_00191267.jpg
+Places365_test_00191273.jpg
+Places365_test_00191274.jpg
+Places365_test_00191284.jpg
+Places365_test_00191294.jpg
+Places365_test_00191299.jpg
+Places365_test_00191306.jpg
+Places365_test_00191323.jpg
+Places365_test_00191350.jpg
+Places365_test_00191363.jpg
+Places365_test_00191365.jpg
+Places365_test_00191399.jpg
+Places365_test_00191408.jpg
+Places365_test_00191410.jpg
+Places365_test_00191426.jpg
+Places365_test_00191441.jpg
+Places365_test_00191467.jpg
+Places365_test_00191469.jpg
+Places365_test_00191476.jpg
+Places365_test_00191482.jpg
+Places365_test_00191488.jpg
+Places365_test_00191495.jpg
+Places365_test_00191508.jpg
+Places365_test_00191516.jpg
+Places365_test_00191525.jpg
+Places365_test_00191536.jpg
+Places365_test_00191542.jpg
+Places365_test_00191555.jpg
+Places365_test_00191557.jpg
+Places365_test_00191581.jpg
+Places365_test_00191590.jpg
+Places365_test_00191595.jpg
+Places365_test_00191602.jpg
+Places365_test_00191611.jpg
+Places365_test_00191626.jpg
+Places365_test_00191630.jpg
+Places365_test_00191645.jpg
+Places365_test_00191667.jpg
+Places365_test_00191675.jpg
+Places365_test_00191688.jpg
+Places365_test_00191693.jpg
+Places365_test_00191702.jpg
+Places365_test_00191703.jpg
+Places365_test_00191707.jpg
+Places365_test_00191710.jpg
+Places365_test_00191734.jpg
+Places365_test_00191735.jpg
+Places365_test_00191741.jpg
+Places365_test_00191747.jpg
+Places365_test_00191752.jpg
+Places365_test_00191753.jpg
+Places365_test_00191760.jpg
+Places365_test_00191766.jpg
+Places365_test_00191770.jpg
+Places365_test_00191789.jpg
+Places365_test_00191814.jpg
+Places365_test_00191817.jpg
+Places365_test_00191819.jpg
+Places365_test_00191836.jpg
+Places365_test_00191855.jpg
+Places365_test_00191859.jpg
+Places365_test_00191863.jpg
+Places365_test_00191877.jpg
+Places365_test_00191878.jpg
+Places365_test_00191879.jpg
+Places365_test_00191887.jpg
+Places365_test_00191896.jpg
+Places365_test_00191899.jpg
+Places365_test_00191900.jpg
+Places365_test_00191916.jpg
+Places365_test_00191920.jpg
+Places365_test_00191943.jpg
+Places365_test_00191946.jpg
+Places365_test_00191956.jpg
+Places365_test_00191968.jpg
+Places365_test_00191993.jpg
+Places365_test_00192009.jpg
+Places365_test_00192048.jpg
+Places365_test_00192059.jpg
+Places365_test_00192064.jpg
+Places365_test_00192065.jpg
+Places365_test_00192067.jpg
+Places365_test_00192070.jpg
+Places365_test_00192085.jpg
+Places365_test_00192089.jpg
+Places365_test_00192096.jpg
+Places365_test_00192101.jpg
+Places365_test_00192133.jpg
+Places365_test_00192139.jpg
+Places365_test_00192141.jpg
+Places365_test_00192142.jpg
+Places365_test_00192152.jpg
+Places365_test_00192175.jpg
+Places365_test_00192192.jpg
+Places365_test_00192224.jpg
+Places365_test_00192235.jpg
+Places365_test_00192238.jpg
+Places365_test_00192253.jpg
+Places365_test_00192257.jpg
+Places365_test_00192259.jpg
+Places365_test_00192270.jpg
+Places365_test_00192273.jpg
+Places365_test_00192274.jpg
+Places365_test_00192276.jpg
+Places365_test_00192292.jpg
+Places365_test_00192307.jpg
+Places365_test_00192325.jpg
+Places365_test_00192327.jpg
+Places365_test_00192336.jpg
+Places365_test_00192350.jpg
+Places365_test_00192352.jpg
+Places365_test_00192361.jpg
+Places365_test_00192382.jpg
+Places365_test_00192412.jpg
+Places365_test_00192413.jpg
+Places365_test_00192418.jpg
+Places365_test_00192423.jpg
+Places365_test_00192425.jpg
+Places365_test_00192434.jpg
+Places365_test_00192442.jpg
+Places365_test_00192453.jpg
+Places365_test_00192457.jpg
+Places365_test_00192464.jpg
+Places365_test_00192543.jpg
+Places365_test_00192583.jpg
+Places365_test_00192603.jpg
+Places365_test_00192614.jpg
+Places365_test_00192617.jpg
+Places365_test_00192618.jpg
+Places365_test_00192619.jpg
+Places365_test_00192633.jpg
+Places365_test_00192659.jpg
+Places365_test_00192677.jpg
+Places365_test_00192697.jpg
+Places365_test_00192714.jpg
+Places365_test_00192717.jpg
+Places365_test_00192732.jpg
+Places365_test_00192739.jpg
+Places365_test_00192743.jpg
+Places365_test_00192744.jpg
+Places365_test_00192751.jpg
+Places365_test_00192752.jpg
+Places365_test_00192801.jpg
+Places365_test_00192835.jpg
+Places365_test_00192869.jpg
+Places365_test_00192876.jpg
+Places365_test_00192880.jpg
+Places365_test_00192897.jpg
+Places365_test_00192899.jpg
+Places365_test_00192900.jpg
+Places365_test_00192907.jpg
+Places365_test_00192908.jpg
+Places365_test_00192910.jpg
+Places365_test_00192928.jpg
+Places365_test_00192936.jpg
+Places365_test_00192943.jpg
+Places365_test_00192967.jpg
+Places365_test_00192980.jpg
+Places365_test_00192991.jpg
+Places365_test_00192992.jpg
+Places365_test_00192994.jpg
+Places365_test_00193014.jpg
+Places365_test_00193023.jpg
+Places365_test_00193031.jpg
+Places365_test_00193052.jpg
+Places365_test_00193066.jpg
+Places365_test_00193077.jpg
+Places365_test_00193097.jpg
+Places365_test_00193103.jpg
+Places365_test_00193122.jpg
+Places365_test_00193123.jpg
+Places365_test_00193141.jpg
+Places365_test_00193153.jpg
+Places365_test_00193156.jpg
+Places365_test_00193164.jpg
+Places365_test_00193169.jpg
+Places365_test_00193172.jpg
+Places365_test_00193180.jpg
+Places365_test_00193185.jpg
+Places365_test_00193205.jpg
+Places365_test_00193231.jpg
+Places365_test_00193260.jpg
+Places365_test_00193275.jpg
+Places365_test_00193276.jpg
+Places365_test_00193280.jpg
+Places365_test_00193290.jpg
+Places365_test_00193291.jpg
+Places365_test_00193307.jpg
+Places365_test_00193309.jpg
+Places365_test_00193337.jpg
+Places365_test_00193344.jpg
+Places365_test_00193348.jpg
+Places365_test_00193365.jpg
+Places365_test_00193367.jpg
+Places365_test_00193368.jpg
+Places365_test_00193369.jpg
+Places365_test_00193393.jpg
+Places365_test_00193425.jpg
+Places365_test_00193445.jpg
+Places365_test_00193463.jpg
+Places365_test_00193481.jpg
+Places365_test_00193486.jpg
+Places365_test_00193512.jpg
+Places365_test_00193542.jpg
+Places365_test_00193557.jpg
+Places365_test_00193559.jpg
+Places365_test_00193563.jpg
+Places365_test_00193583.jpg
+Places365_test_00193590.jpg
+Places365_test_00193603.jpg
+Places365_test_00193618.jpg
+Places365_test_00193626.jpg
+Places365_test_00193636.jpg
+Places365_test_00193666.jpg
+Places365_test_00193668.jpg
+Places365_test_00193671.jpg
+Places365_test_00193702.jpg
+Places365_test_00193703.jpg
+Places365_test_00193715.jpg
+Places365_test_00193716.jpg
+Places365_test_00193724.jpg
+Places365_test_00193730.jpg
+Places365_test_00193737.jpg
+Places365_test_00193752.jpg
+Places365_test_00193768.jpg
+Places365_test_00193769.jpg
+Places365_test_00193774.jpg
+Places365_test_00193794.jpg
+Places365_test_00193820.jpg
+Places365_test_00193832.jpg
+Places365_test_00193833.jpg
+Places365_test_00193847.jpg
+Places365_test_00193863.jpg
+Places365_test_00193867.jpg
+Places365_test_00193877.jpg
+Places365_test_00193895.jpg
+Places365_test_00193903.jpg
+Places365_test_00193921.jpg
+Places365_test_00193924.jpg
+Places365_test_00193948.jpg
+Places365_test_00193955.jpg
+Places365_test_00193966.jpg
+Places365_test_00193982.jpg
+Places365_test_00193997.jpg
+Places365_test_00194020.jpg
+Places365_test_00194071.jpg
+Places365_test_00194073.jpg
+Places365_test_00194075.jpg
+Places365_test_00194109.jpg
+Places365_test_00194123.jpg
+Places365_test_00194135.jpg
+Places365_test_00194137.jpg
+Places365_test_00194164.jpg
+Places365_test_00194167.jpg
+Places365_test_00194173.jpg
+Places365_test_00194175.jpg
+Places365_test_00194184.jpg
+Places365_test_00194189.jpg
+Places365_test_00194197.jpg
+Places365_test_00194205.jpg
+Places365_test_00194226.jpg
+Places365_test_00194231.jpg
+Places365_test_00194240.jpg
+Places365_test_00194244.jpg
+Places365_test_00194248.jpg
+Places365_test_00194250.jpg
+Places365_test_00194260.jpg
+Places365_test_00194271.jpg
+Places365_test_00194272.jpg
+Places365_test_00194273.jpg
+Places365_test_00194277.jpg
+Places365_test_00194284.jpg
+Places365_test_00194296.jpg
+Places365_test_00194318.jpg
+Places365_test_00194326.jpg
+Places365_test_00194332.jpg
+Places365_test_00194338.jpg
+Places365_test_00194345.jpg
+Places365_test_00194351.jpg
+Places365_test_00194355.jpg
+Places365_test_00194393.jpg
+Places365_test_00194403.jpg
+Places365_test_00194422.jpg
+Places365_test_00194424.jpg
+Places365_test_00194439.jpg
+Places365_test_00194441.jpg
+Places365_test_00194452.jpg
+Places365_test_00194455.jpg
+Places365_test_00194463.jpg
+Places365_test_00194485.jpg
+Places365_test_00194493.jpg
+Places365_test_00194508.jpg
+Places365_test_00194528.jpg
+Places365_test_00194530.jpg
+Places365_test_00194533.jpg
+Places365_test_00194538.jpg
+Places365_test_00194574.jpg
+Places365_test_00194580.jpg
+Places365_test_00194588.jpg
+Places365_test_00194591.jpg
+Places365_test_00194601.jpg
+Places365_test_00194630.jpg
+Places365_test_00194636.jpg
+Places365_test_00194668.jpg
+Places365_test_00194687.jpg
+Places365_test_00194731.jpg
+Places365_test_00194738.jpg
+Places365_test_00194740.jpg
+Places365_test_00194751.jpg
+Places365_test_00194756.jpg
+Places365_test_00194766.jpg
+Places365_test_00194826.jpg
+Places365_test_00194830.jpg
+Places365_test_00194837.jpg
+Places365_test_00194860.jpg
+Places365_test_00194888.jpg
+Places365_test_00194895.jpg
+Places365_test_00194914.jpg
+Places365_test_00194922.jpg
+Places365_test_00194942.jpg
+Places365_test_00194962.jpg
+Places365_test_00194964.jpg
+Places365_test_00194979.jpg
+Places365_test_00194982.jpg
+Places365_test_00194991.jpg
+Places365_test_00195010.jpg
+Places365_test_00195026.jpg
+Places365_test_00195027.jpg
+Places365_test_00195038.jpg
+Places365_test_00195047.jpg
+Places365_test_00195053.jpg
+Places365_test_00195057.jpg
+Places365_test_00195059.jpg
+Places365_test_00195098.jpg
+Places365_test_00195101.jpg
+Places365_test_00195107.jpg
+Places365_test_00195192.jpg
+Places365_test_00195211.jpg
+Places365_test_00195224.jpg
+Places365_test_00195226.jpg
+Places365_test_00195232.jpg
+Places365_test_00195236.jpg
+Places365_test_00195247.jpg
+Places365_test_00195259.jpg
+Places365_test_00195267.jpg
+Places365_test_00195287.jpg
+Places365_test_00195291.jpg
+Places365_test_00195309.jpg
+Places365_test_00195322.jpg
+Places365_test_00195328.jpg
+Places365_test_00195338.jpg
+Places365_test_00195341.jpg
+Places365_test_00195379.jpg
+Places365_test_00195383.jpg
+Places365_test_00195390.jpg
+Places365_test_00195394.jpg
+Places365_test_00195430.jpg
+Places365_test_00195450.jpg
+Places365_test_00195453.jpg
+Places365_test_00195457.jpg
+Places365_test_00195460.jpg
+Places365_test_00195475.jpg
+Places365_test_00195476.jpg
+Places365_test_00195480.jpg
+Places365_test_00195481.jpg
+Places365_test_00195494.jpg
+Places365_test_00195503.jpg
+Places365_test_00195507.jpg
+Places365_test_00195561.jpg
+Places365_test_00195575.jpg
+Places365_test_00195584.jpg
+Places365_test_00195604.jpg
+Places365_test_00195613.jpg
+Places365_test_00195630.jpg
+Places365_test_00195634.jpg
+Places365_test_00195641.jpg
+Places365_test_00195658.jpg
+Places365_test_00195679.jpg
+Places365_test_00195687.jpg
+Places365_test_00195700.jpg
+Places365_test_00195703.jpg
+Places365_test_00195707.jpg
+Places365_test_00195709.jpg
+Places365_test_00195710.jpg
+Places365_test_00195715.jpg
+Places365_test_00195717.jpg
+Places365_test_00195720.jpg
+Places365_test_00195759.jpg
+Places365_test_00195767.jpg
+Places365_test_00195781.jpg
+Places365_test_00195817.jpg
+Places365_test_00195823.jpg
+Places365_test_00195830.jpg
+Places365_test_00195838.jpg
+Places365_test_00195852.jpg
+Places365_test_00195859.jpg
+Places365_test_00195864.jpg
+Places365_test_00195871.jpg
+Places365_test_00195890.jpg
+Places365_test_00195904.jpg
+Places365_test_00195912.jpg
+Places365_test_00195936.jpg
+Places365_test_00195953.jpg
+Places365_test_00195959.jpg
+Places365_test_00195964.jpg
+Places365_test_00195981.jpg
+Places365_test_00195985.jpg
+Places365_test_00196017.jpg
+Places365_test_00196019.jpg
+Places365_test_00196024.jpg
+Places365_test_00196032.jpg
+Places365_test_00196048.jpg
+Places365_test_00196051.jpg
+Places365_test_00196063.jpg
+Places365_test_00196066.jpg
+Places365_test_00196083.jpg
+Places365_test_00196109.jpg
+Places365_test_00196151.jpg
+Places365_test_00196159.jpg
+Places365_test_00196161.jpg
+Places365_test_00196164.jpg
+Places365_test_00196166.jpg
+Places365_test_00196167.jpg
+Places365_test_00196172.jpg
+Places365_test_00196180.jpg
+Places365_test_00196182.jpg
+Places365_test_00196198.jpg
+Places365_test_00196199.jpg
+Places365_test_00196200.jpg
+Places365_test_00196224.jpg
+Places365_test_00196226.jpg
+Places365_test_00196227.jpg
+Places365_test_00196229.jpg
+Places365_test_00196231.jpg
+Places365_test_00196232.jpg
+Places365_test_00196239.jpg
+Places365_test_00196242.jpg
+Places365_test_00196248.jpg
+Places365_test_00196268.jpg
+Places365_test_00196280.jpg
+Places365_test_00196284.jpg
+Places365_test_00196303.jpg
+Places365_test_00196335.jpg
+Places365_test_00196343.jpg
+Places365_test_00196350.jpg
+Places365_test_00196361.jpg
+Places365_test_00196409.jpg
+Places365_test_00196415.jpg
+Places365_test_00196423.jpg
+Places365_test_00196424.jpg
+Places365_test_00196427.jpg
+Places365_test_00196434.jpg
+Places365_test_00196438.jpg
+Places365_test_00196448.jpg
+Places365_test_00196457.jpg
+Places365_test_00196465.jpg
+Places365_test_00196469.jpg
+Places365_test_00196492.jpg
+Places365_test_00196510.jpg
+Places365_test_00196531.jpg
+Places365_test_00196535.jpg
+Places365_test_00196549.jpg
+Places365_test_00196555.jpg
+Places365_test_00196569.jpg
+Places365_test_00196574.jpg
+Places365_test_00196598.jpg
+Places365_test_00196612.jpg
+Places365_test_00196616.jpg
+Places365_test_00196619.jpg
+Places365_test_00196627.jpg
+Places365_test_00196632.jpg
+Places365_test_00196684.jpg
+Places365_test_00196691.jpg
+Places365_test_00196694.jpg
+Places365_test_00196703.jpg
+Places365_test_00196744.jpg
+Places365_test_00196774.jpg
+Places365_test_00196787.jpg
+Places365_test_00196807.jpg
+Places365_test_00196841.jpg
+Places365_test_00196856.jpg
+Places365_test_00196863.jpg
+Places365_test_00196865.jpg
+Places365_test_00196888.jpg
+Places365_test_00196894.jpg
+Places365_test_00196896.jpg
+Places365_test_00196900.jpg
+Places365_test_00196908.jpg
+Places365_test_00196912.jpg
+Places365_test_00196926.jpg
+Places365_test_00196929.jpg
+Places365_test_00196936.jpg
+Places365_test_00196939.jpg
+Places365_test_00196945.jpg
+Places365_test_00196953.jpg
+Places365_test_00196967.jpg
+Places365_test_00196986.jpg
+Places365_test_00197002.jpg
+Places365_test_00197006.jpg
+Places365_test_00197009.jpg
+Places365_test_00197011.jpg
+Places365_test_00197015.jpg
+Places365_test_00197016.jpg
+Places365_test_00197017.jpg
+Places365_test_00197019.jpg
+Places365_test_00197020.jpg
+Places365_test_00197021.jpg
+Places365_test_00197038.jpg
+Places365_test_00197079.jpg
+Places365_test_00197110.jpg
+Places365_test_00197115.jpg
+Places365_test_00197135.jpg
+Places365_test_00197141.jpg
+Places365_test_00197144.jpg
+Places365_test_00197171.jpg
+Places365_test_00197183.jpg
+Places365_test_00197184.jpg
+Places365_test_00197191.jpg
+Places365_test_00197216.jpg
+Places365_test_00197221.jpg
+Places365_test_00197223.jpg
+Places365_test_00197238.jpg
+Places365_test_00197283.jpg
+Places365_test_00197287.jpg
+Places365_test_00197288.jpg
+Places365_test_00197297.jpg
+Places365_test_00197298.jpg
+Places365_test_00197318.jpg
+Places365_test_00197324.jpg
+Places365_test_00197340.jpg
+Places365_test_00197342.jpg
+Places365_test_00197349.jpg
+Places365_test_00197378.jpg
+Places365_test_00197390.jpg
+Places365_test_00197412.jpg
+Places365_test_00197416.jpg
+Places365_test_00197429.jpg
+Places365_test_00197481.jpg
+Places365_test_00197482.jpg
+Places365_test_00197486.jpg
+Places365_test_00197488.jpg
+Places365_test_00197490.jpg
+Places365_test_00197492.jpg
+Places365_test_00197502.jpg
+Places365_test_00197511.jpg
+Places365_test_00197521.jpg
+Places365_test_00197523.jpg
+Places365_test_00197529.jpg
+Places365_test_00197531.jpg
+Places365_test_00197551.jpg
+Places365_test_00197585.jpg
+Places365_test_00197594.jpg
+Places365_test_00197611.jpg
+Places365_test_00197632.jpg
+Places365_test_00197639.jpg
+Places365_test_00197640.jpg
+Places365_test_00197644.jpg
+Places365_test_00197647.jpg
+Places365_test_00197651.jpg
+Places365_test_00197664.jpg
+Places365_test_00197668.jpg
+Places365_test_00197671.jpg
+Places365_test_00197673.jpg
+Places365_test_00197674.jpg
+Places365_test_00197697.jpg
+Places365_test_00197714.jpg
+Places365_test_00197720.jpg
+Places365_test_00197729.jpg
+Places365_test_00197741.jpg
+Places365_test_00197747.jpg
+Places365_test_00197755.jpg
+Places365_test_00197762.jpg
+Places365_test_00197770.jpg
+Places365_test_00197785.jpg
+Places365_test_00197790.jpg
+Places365_test_00197850.jpg
+Places365_test_00197871.jpg
+Places365_test_00197880.jpg
+Places365_test_00197884.jpg
+Places365_test_00197885.jpg
+Places365_test_00197890.jpg
+Places365_test_00197892.jpg
+Places365_test_00197898.jpg
+Places365_test_00197926.jpg
+Places365_test_00197954.jpg
+Places365_test_00197957.jpg
+Places365_test_00197958.jpg
+Places365_test_00197965.jpg
+Places365_test_00197970.jpg
+Places365_test_00197973.jpg
+Places365_test_00198009.jpg
+Places365_test_00198021.jpg
+Places365_test_00198034.jpg
+Places365_test_00198049.jpg
+Places365_test_00198050.jpg
+Places365_test_00198065.jpg
+Places365_test_00198082.jpg
+Places365_test_00198104.jpg
+Places365_test_00198107.jpg
+Places365_test_00198123.jpg
+Places365_test_00198140.jpg
+Places365_test_00198144.jpg
+Places365_test_00198149.jpg
+Places365_test_00198152.jpg
+Places365_test_00198173.jpg
+Places365_test_00198180.jpg
+Places365_test_00198185.jpg
+Places365_test_00198190.jpg
+Places365_test_00198205.jpg
+Places365_test_00198209.jpg
+Places365_test_00198222.jpg
+Places365_test_00198232.jpg
+Places365_test_00198243.jpg
+Places365_test_00198252.jpg
+Places365_test_00198278.jpg
+Places365_test_00198282.jpg
+Places365_test_00198290.jpg
+Places365_test_00198298.jpg
+Places365_test_00198321.jpg
+Places365_test_00198323.jpg
+Places365_test_00198326.jpg
+Places365_test_00198334.jpg
+Places365_test_00198340.jpg
+Places365_test_00198367.jpg
+Places365_test_00198371.jpg
+Places365_test_00198397.jpg
+Places365_test_00198398.jpg
+Places365_test_00198415.jpg
+Places365_test_00198430.jpg
+Places365_test_00198436.jpg
+Places365_test_00198438.jpg
+Places365_test_00198439.jpg
+Places365_test_00198444.jpg
+Places365_test_00198452.jpg
+Places365_test_00198454.jpg
+Places365_test_00198462.jpg
+Places365_test_00198484.jpg
+Places365_test_00198491.jpg
+Places365_test_00198495.jpg
+Places365_test_00198506.jpg
+Places365_test_00198542.jpg
+Places365_test_00198545.jpg
+Places365_test_00198556.jpg
+Places365_test_00198560.jpg
+Places365_test_00198565.jpg
+Places365_test_00198570.jpg
+Places365_test_00198571.jpg
+Places365_test_00198585.jpg
+Places365_test_00198590.jpg
+Places365_test_00198591.jpg
+Places365_test_00198602.jpg
+Places365_test_00198608.jpg
+Places365_test_00198646.jpg
+Places365_test_00198657.jpg
+Places365_test_00198672.jpg
+Places365_test_00198677.jpg
+Places365_test_00198678.jpg
+Places365_test_00198681.jpg
+Places365_test_00198684.jpg
+Places365_test_00198701.jpg
+Places365_test_00198703.jpg
+Places365_test_00198705.jpg
+Places365_test_00198759.jpg
+Places365_test_00198760.jpg
+Places365_test_00198787.jpg
+Places365_test_00198790.jpg
+Places365_test_00198805.jpg
+Places365_test_00198809.jpg
+Places365_test_00198817.jpg
+Places365_test_00198878.jpg
+Places365_test_00198880.jpg
+Places365_test_00198899.jpg
+Places365_test_00198900.jpg
+Places365_test_00198913.jpg
+Places365_test_00198922.jpg
+Places365_test_00198929.jpg
+Places365_test_00198985.jpg
+Places365_test_00199023.jpg
+Places365_test_00199027.jpg
+Places365_test_00199032.jpg
+Places365_test_00199046.jpg
+Places365_test_00199053.jpg
+Places365_test_00199055.jpg
+Places365_test_00199079.jpg
+Places365_test_00199085.jpg
+Places365_test_00199092.jpg
+Places365_test_00199099.jpg
+Places365_test_00199100.jpg
+Places365_test_00199114.jpg
+Places365_test_00199115.jpg
+Places365_test_00199123.jpg
+Places365_test_00199149.jpg
+Places365_test_00199152.jpg
+Places365_test_00199161.jpg
+Places365_test_00199162.jpg
+Places365_test_00199169.jpg
+Places365_test_00199181.jpg
+Places365_test_00199190.jpg
+Places365_test_00199199.jpg
+Places365_test_00199217.jpg
+Places365_test_00199225.jpg
+Places365_test_00199237.jpg
+Places365_test_00199239.jpg
+Places365_test_00199243.jpg
+Places365_test_00199250.jpg
+Places365_test_00199253.jpg
+Places365_test_00199258.jpg
+Places365_test_00199260.jpg
+Places365_test_00199288.jpg
+Places365_test_00199291.jpg
+Places365_test_00199304.jpg
+Places365_test_00199332.jpg
+Places365_test_00199337.jpg
+Places365_test_00199338.jpg
+Places365_test_00199344.jpg
+Places365_test_00199349.jpg
+Places365_test_00199366.jpg
+Places365_test_00199397.jpg
+Places365_test_00199433.jpg
+Places365_test_00199449.jpg
+Places365_test_00199450.jpg
+Places365_test_00199494.jpg
+Places365_test_00199498.jpg
+Places365_test_00199504.jpg
+Places365_test_00199543.jpg
+Places365_test_00199561.jpg
+Places365_test_00199570.jpg
+Places365_test_00199575.jpg
+Places365_test_00199577.jpg
+Places365_test_00199580.jpg
+Places365_test_00199582.jpg
+Places365_test_00199588.jpg
+Places365_test_00199590.jpg
+Places365_test_00199604.jpg
+Places365_test_00199616.jpg
+Places365_test_00199629.jpg
+Places365_test_00199645.jpg
+Places365_test_00199650.jpg
+Places365_test_00199652.jpg
+Places365_test_00199663.jpg
+Places365_test_00199702.jpg
+Places365_test_00199720.jpg
+Places365_test_00199730.jpg
+Places365_test_00199733.jpg
+Places365_test_00199746.jpg
+Places365_test_00199749.jpg
+Places365_test_00199754.jpg
+Places365_test_00199772.jpg
+Places365_test_00199779.jpg
+Places365_test_00199789.jpg
+Places365_test_00199802.jpg
+Places365_test_00199827.jpg
+Places365_test_00199831.jpg
+Places365_test_00199834.jpg
+Places365_test_00199837.jpg
+Places365_test_00199839.jpg
+Places365_test_00199879.jpg
+Places365_test_00199893.jpg
+Places365_test_00199896.jpg
+Places365_test_00199897.jpg
+Places365_test_00199903.jpg
+Places365_test_00199915.jpg
+Places365_test_00199921.jpg
+Places365_test_00199930.jpg
+Places365_test_00199937.jpg
+Places365_test_00199955.jpg
+Places365_test_00199956.jpg
+Places365_test_00199957.jpg
+Places365_test_00199989.jpg
+Places365_test_00200001.jpg
+Places365_test_00200011.jpg
+Places365_test_00200013.jpg
+Places365_test_00200023.jpg
+Places365_test_00200037.jpg
+Places365_test_00200044.jpg
+Places365_test_00200047.jpg
+Places365_test_00200063.jpg
+Places365_test_00200069.jpg
+Places365_test_00200074.jpg
+Places365_test_00200086.jpg
+Places365_test_00200092.jpg
+Places365_test_00200108.jpg
+Places365_test_00200115.jpg
+Places365_test_00200119.jpg
+Places365_test_00200122.jpg
+Places365_test_00200130.jpg
+Places365_test_00200176.jpg
+Places365_test_00200187.jpg
+Places365_test_00200197.jpg
+Places365_test_00200208.jpg
+Places365_test_00200220.jpg
+Places365_test_00200237.jpg
+Places365_test_00200239.jpg
+Places365_test_00200240.jpg
+Places365_test_00200268.jpg
+Places365_test_00200270.jpg
+Places365_test_00200275.jpg
+Places365_test_00200280.jpg
+Places365_test_00200285.jpg
+Places365_test_00200292.jpg
+Places365_test_00200299.jpg
+Places365_test_00200342.jpg
+Places365_test_00200350.jpg
+Places365_test_00200351.jpg
+Places365_test_00200355.jpg
+Places365_test_00200360.jpg
+Places365_test_00200376.jpg
+Places365_test_00200378.jpg
+Places365_test_00200383.jpg
+Places365_test_00200392.jpg
+Places365_test_00200398.jpg
+Places365_test_00200402.jpg
+Places365_test_00200414.jpg
+Places365_test_00200420.jpg
+Places365_test_00200432.jpg
+Places365_test_00200440.jpg
+Places365_test_00200444.jpg
+Places365_test_00200448.jpg
+Places365_test_00200456.jpg
+Places365_test_00200457.jpg
+Places365_test_00200463.jpg
+Places365_test_00200465.jpg
+Places365_test_00200469.jpg
+Places365_test_00200477.jpg
+Places365_test_00200481.jpg
+Places365_test_00200484.jpg
+Places365_test_00200496.jpg
+Places365_test_00200517.jpg
+Places365_test_00200518.jpg
+Places365_test_00200525.jpg
+Places365_test_00200549.jpg
+Places365_test_00200552.jpg
+Places365_test_00200569.jpg
+Places365_test_00200578.jpg
+Places365_test_00200580.jpg
+Places365_test_00200582.jpg
+Places365_test_00200588.jpg
+Places365_test_00200589.jpg
+Places365_test_00200597.jpg
+Places365_test_00200604.jpg
+Places365_test_00200608.jpg
+Places365_test_00200609.jpg
+Places365_test_00200610.jpg
+Places365_test_00200624.jpg
+Places365_test_00200628.jpg
+Places365_test_00200673.jpg
+Places365_test_00200678.jpg
+Places365_test_00200710.jpg
+Places365_test_00200726.jpg
+Places365_test_00200736.jpg
+Places365_test_00200743.jpg
+Places365_test_00200756.jpg
+Places365_test_00200757.jpg
+Places365_test_00200764.jpg
+Places365_test_00200770.jpg
+Places365_test_00200778.jpg
+Places365_test_00200782.jpg
+Places365_test_00200790.jpg
+Places365_test_00200793.jpg
+Places365_test_00200818.jpg
+Places365_test_00200837.jpg
+Places365_test_00200859.jpg
+Places365_test_00200871.jpg
+Places365_test_00200892.jpg
+Places365_test_00200893.jpg
+Places365_test_00200902.jpg
+Places365_test_00200967.jpg
+Places365_test_00200969.jpg
+Places365_test_00200975.jpg
+Places365_test_00200985.jpg
+Places365_test_00200989.jpg
+Places365_test_00200998.jpg
+Places365_test_00201004.jpg
+Places365_test_00201022.jpg
+Places365_test_00201036.jpg
+Places365_test_00201048.jpg
+Places365_test_00201055.jpg
+Places365_test_00201061.jpg
+Places365_test_00201071.jpg
+Places365_test_00201084.jpg
+Places365_test_00201120.jpg
+Places365_test_00201142.jpg
+Places365_test_00201148.jpg
+Places365_test_00201149.jpg
+Places365_test_00201179.jpg
+Places365_test_00201180.jpg
+Places365_test_00201189.jpg
+Places365_test_00201201.jpg
+Places365_test_00201235.jpg
+Places365_test_00201244.jpg
+Places365_test_00201249.jpg
+Places365_test_00201290.jpg
+Places365_test_00201297.jpg
+Places365_test_00201303.jpg
+Places365_test_00201323.jpg
+Places365_test_00201325.jpg
+Places365_test_00201327.jpg
+Places365_test_00201361.jpg
+Places365_test_00201371.jpg
+Places365_test_00201375.jpg
+Places365_test_00201381.jpg
+Places365_test_00201391.jpg
+Places365_test_00201393.jpg
+Places365_test_00201399.jpg
+Places365_test_00201407.jpg
+Places365_test_00201421.jpg
+Places365_test_00201422.jpg
+Places365_test_00201435.jpg
+Places365_test_00201447.jpg
+Places365_test_00201451.jpg
+Places365_test_00201456.jpg
+Places365_test_00201460.jpg
+Places365_test_00201467.jpg
+Places365_test_00201469.jpg
+Places365_test_00201476.jpg
+Places365_test_00201482.jpg
+Places365_test_00201486.jpg
+Places365_test_00201494.jpg
+Places365_test_00201497.jpg
+Places365_test_00201505.jpg
+Places365_test_00201513.jpg
+Places365_test_00201514.jpg
+Places365_test_00201537.jpg
+Places365_test_00201540.jpg
+Places365_test_00201554.jpg
+Places365_test_00201557.jpg
+Places365_test_00201582.jpg
+Places365_test_00201597.jpg
+Places365_test_00201611.jpg
+Places365_test_00201633.jpg
+Places365_test_00201640.jpg
+Places365_test_00201659.jpg
+Places365_test_00201672.jpg
+Places365_test_00201674.jpg
+Places365_test_00201680.jpg
+Places365_test_00201693.jpg
+Places365_test_00201698.jpg
+Places365_test_00201726.jpg
+Places365_test_00201727.jpg
+Places365_test_00201734.jpg
+Places365_test_00201738.jpg
+Places365_test_00201760.jpg
+Places365_test_00201776.jpg
+Places365_test_00201820.jpg
+Places365_test_00201825.jpg
+Places365_test_00201828.jpg
+Places365_test_00201837.jpg
+Places365_test_00201852.jpg
+Places365_test_00201860.jpg
+Places365_test_00201872.jpg
+Places365_test_00201876.jpg
+Places365_test_00201879.jpg
+Places365_test_00201894.jpg
+Places365_test_00201915.jpg
+Places365_test_00201922.jpg
+Places365_test_00201933.jpg
+Places365_test_00201957.jpg
+Places365_test_00201964.jpg
+Places365_test_00201966.jpg
+Places365_test_00201970.jpg
+Places365_test_00201979.jpg
+Places365_test_00201982.jpg
+Places365_test_00201989.jpg
+Places365_test_00201997.jpg
+Places365_test_00201999.jpg
+Places365_test_00202016.jpg
+Places365_test_00202025.jpg
+Places365_test_00202053.jpg
+Places365_test_00202059.jpg
+Places365_test_00202077.jpg
+Places365_test_00202111.jpg
+Places365_test_00202125.jpg
+Places365_test_00202134.jpg
+Places365_test_00202139.jpg
+Places365_test_00202149.jpg
+Places365_test_00202160.jpg
+Places365_test_00202168.jpg
+Places365_test_00202175.jpg
+Places365_test_00202180.jpg
+Places365_test_00202186.jpg
+Places365_test_00202201.jpg
+Places365_test_00202204.jpg
+Places365_test_00202214.jpg
+Places365_test_00202251.jpg
+Places365_test_00202262.jpg
+Places365_test_00202269.jpg
+Places365_test_00202279.jpg
+Places365_test_00202280.jpg
+Places365_test_00202294.jpg
+Places365_test_00202297.jpg
+Places365_test_00202302.jpg
+Places365_test_00202303.jpg
+Places365_test_00202312.jpg
+Places365_test_00202316.jpg
+Places365_test_00202322.jpg
+Places365_test_00202333.jpg
+Places365_test_00202345.jpg
+Places365_test_00202348.jpg
+Places365_test_00202352.jpg
+Places365_test_00202369.jpg
+Places365_test_00202396.jpg
+Places365_test_00202404.jpg
+Places365_test_00202413.jpg
+Places365_test_00202440.jpg
+Places365_test_00202468.jpg
+Places365_test_00202469.jpg
+Places365_test_00202476.jpg
+Places365_test_00202479.jpg
+Places365_test_00202495.jpg
+Places365_test_00202512.jpg
+Places365_test_00202516.jpg
+Places365_test_00202519.jpg
+Places365_test_00202521.jpg
+Places365_test_00202528.jpg
+Places365_test_00202536.jpg
+Places365_test_00202551.jpg
+Places365_test_00202558.jpg
+Places365_test_00202600.jpg
+Places365_test_00202627.jpg
+Places365_test_00202629.jpg
+Places365_test_00202642.jpg
+Places365_test_00202659.jpg
+Places365_test_00202676.jpg
+Places365_test_00202680.jpg
+Places365_test_00202682.jpg
+Places365_test_00202684.jpg
+Places365_test_00202694.jpg
+Places365_test_00202715.jpg
+Places365_test_00202738.jpg
+Places365_test_00202744.jpg
+Places365_test_00202745.jpg
+Places365_test_00202765.jpg
+Places365_test_00202771.jpg
+Places365_test_00202791.jpg
+Places365_test_00202806.jpg
+Places365_test_00202823.jpg
+Places365_test_00202825.jpg
+Places365_test_00202832.jpg
+Places365_test_00202853.jpg
+Places365_test_00202861.jpg
+Places365_test_00202915.jpg
+Places365_test_00202949.jpg
+Places365_test_00202967.jpg
+Places365_test_00202973.jpg
+Places365_test_00202991.jpg
+Places365_test_00202993.jpg
+Places365_test_00202998.jpg
+Places365_test_00203014.jpg
+Places365_test_00203023.jpg
+Places365_test_00203025.jpg
+Places365_test_00203026.jpg
+Places365_test_00203028.jpg
+Places365_test_00203055.jpg
+Places365_test_00203078.jpg
+Places365_test_00203086.jpg
+Places365_test_00203090.jpg
+Places365_test_00203098.jpg
+Places365_test_00203101.jpg
+Places365_test_00203104.jpg
+Places365_test_00203125.jpg
+Places365_test_00203126.jpg
+Places365_test_00203129.jpg
+Places365_test_00203132.jpg
+Places365_test_00203144.jpg
+Places365_test_00203147.jpg
+Places365_test_00203158.jpg
+Places365_test_00203177.jpg
+Places365_test_00203190.jpg
+Places365_test_00203199.jpg
+Places365_test_00203215.jpg
+Places365_test_00203219.jpg
+Places365_test_00203221.jpg
+Places365_test_00203235.jpg
+Places365_test_00203248.jpg
+Places365_test_00203260.jpg
+Places365_test_00203275.jpg
+Places365_test_00203276.jpg
+Places365_test_00203278.jpg
+Places365_test_00203301.jpg
+Places365_test_00203302.jpg
+Places365_test_00203326.jpg
+Places365_test_00203328.jpg
+Places365_test_00203331.jpg
+Places365_test_00203359.jpg
+Places365_test_00203376.jpg
+Places365_test_00203380.jpg
+Places365_test_00203381.jpg
+Places365_test_00203383.jpg
+Places365_test_00203389.jpg
+Places365_test_00203390.jpg
+Places365_test_00203407.jpg
+Places365_test_00203415.jpg
+Places365_test_00203458.jpg
+Places365_test_00203497.jpg
+Places365_test_00203524.jpg
+Places365_test_00203538.jpg
+Places365_test_00203542.jpg
+Places365_test_00203543.jpg
+Places365_test_00203545.jpg
+Places365_test_00203555.jpg
+Places365_test_00203557.jpg
+Places365_test_00203565.jpg
+Places365_test_00203578.jpg
+Places365_test_00203591.jpg
+Places365_test_00203594.jpg
+Places365_test_00203605.jpg
+Places365_test_00203651.jpg
+Places365_test_00203667.jpg
+Places365_test_00203668.jpg
+Places365_test_00203673.jpg
+Places365_test_00203675.jpg
+Places365_test_00203682.jpg
+Places365_test_00203688.jpg
+Places365_test_00203695.jpg
+Places365_test_00203719.jpg
+Places365_test_00203734.jpg
+Places365_test_00203740.jpg
+Places365_test_00203747.jpg
+Places365_test_00203751.jpg
+Places365_test_00203757.jpg
+Places365_test_00203780.jpg
+Places365_test_00203790.jpg
+Places365_test_00203795.jpg
+Places365_test_00203801.jpg
+Places365_test_00203833.jpg
+Places365_test_00203846.jpg
+Places365_test_00203865.jpg
+Places365_test_00203884.jpg
+Places365_test_00203896.jpg
+Places365_test_00203901.jpg
+Places365_test_00203902.jpg
+Places365_test_00203914.jpg
+Places365_test_00203941.jpg
+Places365_test_00203951.jpg
+Places365_test_00203972.jpg
+Places365_test_00203979.jpg
+Places365_test_00203980.jpg
+Places365_test_00203987.jpg
+Places365_test_00204010.jpg
+Places365_test_00204016.jpg
+Places365_test_00204017.jpg
+Places365_test_00204021.jpg
+Places365_test_00204030.jpg
+Places365_test_00204046.jpg
+Places365_test_00204068.jpg
+Places365_test_00204079.jpg
+Places365_test_00204089.jpg
+Places365_test_00204095.jpg
+Places365_test_00204107.jpg
+Places365_test_00204114.jpg
+Places365_test_00204115.jpg
+Places365_test_00204139.jpg
+Places365_test_00204151.jpg
+Places365_test_00204153.jpg
+Places365_test_00204160.jpg
+Places365_test_00204177.jpg
+Places365_test_00204185.jpg
+Places365_test_00204193.jpg
+Places365_test_00204203.jpg
+Places365_test_00204211.jpg
+Places365_test_00204219.jpg
+Places365_test_00204222.jpg
+Places365_test_00204230.jpg
+Places365_test_00204234.jpg
+Places365_test_00204236.jpg
+Places365_test_00204237.jpg
+Places365_test_00204241.jpg
+Places365_test_00204246.jpg
+Places365_test_00204257.jpg
+Places365_test_00204260.jpg
+Places365_test_00204273.jpg
+Places365_test_00204278.jpg
+Places365_test_00204294.jpg
+Places365_test_00204299.jpg
+Places365_test_00204303.jpg
+Places365_test_00204310.jpg
+Places365_test_00204322.jpg
+Places365_test_00204353.jpg
+Places365_test_00204364.jpg
+Places365_test_00204372.jpg
+Places365_test_00204379.jpg
+Places365_test_00204390.jpg
+Places365_test_00204398.jpg
+Places365_test_00204400.jpg
+Places365_test_00204401.jpg
+Places365_test_00204408.jpg
+Places365_test_00204440.jpg
+Places365_test_00204448.jpg
+Places365_test_00204467.jpg
+Places365_test_00204470.jpg
+Places365_test_00204478.jpg
+Places365_test_00204489.jpg
+Places365_test_00204494.jpg
+Places365_test_00204496.jpg
+Places365_test_00204497.jpg
+Places365_test_00204505.jpg
+Places365_test_00204533.jpg
+Places365_test_00204539.jpg
+Places365_test_00204553.jpg
+Places365_test_00204563.jpg
+Places365_test_00204574.jpg
+Places365_test_00204583.jpg
+Places365_test_00204584.jpg
+Places365_test_00204601.jpg
+Places365_test_00204606.jpg
+Places365_test_00204627.jpg
+Places365_test_00204634.jpg
+Places365_test_00204637.jpg
+Places365_test_00204662.jpg
+Places365_test_00204672.jpg
+Places365_test_00204684.jpg
+Places365_test_00204704.jpg
+Places365_test_00204711.jpg
+Places365_test_00204737.jpg
+Places365_test_00204745.jpg
+Places365_test_00204759.jpg
+Places365_test_00204760.jpg
+Places365_test_00204763.jpg
+Places365_test_00204771.jpg
+Places365_test_00204782.jpg
+Places365_test_00204787.jpg
+Places365_test_00204796.jpg
+Places365_test_00204799.jpg
+Places365_test_00204809.jpg
+Places365_test_00204812.jpg
+Places365_test_00204826.jpg
+Places365_test_00204831.jpg
+Places365_test_00204843.jpg
+Places365_test_00204857.jpg
+Places365_test_00204885.jpg
+Places365_test_00204945.jpg
+Places365_test_00204953.jpg
+Places365_test_00204954.jpg
+Places365_test_00204962.jpg
+Places365_test_00204976.jpg
+Places365_test_00204978.jpg
+Places365_test_00204991.jpg
+Places365_test_00204997.jpg
+Places365_test_00205000.jpg
+Places365_test_00205002.jpg
+Places365_test_00205006.jpg
+Places365_test_00205009.jpg
+Places365_test_00205013.jpg
+Places365_test_00205030.jpg
+Places365_test_00205038.jpg
+Places365_test_00205042.jpg
+Places365_test_00205043.jpg
+Places365_test_00205066.jpg
+Places365_test_00205082.jpg
+Places365_test_00205084.jpg
+Places365_test_00205089.jpg
+Places365_test_00205091.jpg
+Places365_test_00205106.jpg
+Places365_test_00205133.jpg
+Places365_test_00205155.jpg
+Places365_test_00205170.jpg
+Places365_test_00205175.jpg
+Places365_test_00205185.jpg
+Places365_test_00205204.jpg
+Places365_test_00205206.jpg
+Places365_test_00205241.jpg
+Places365_test_00205243.jpg
+Places365_test_00205245.jpg
+Places365_test_00205254.jpg
+Places365_test_00205263.jpg
+Places365_test_00205269.jpg
+Places365_test_00205276.jpg
+Places365_test_00205293.jpg
+Places365_test_00205304.jpg
+Places365_test_00205335.jpg
+Places365_test_00205343.jpg
+Places365_test_00205355.jpg
+Places365_test_00205358.jpg
+Places365_test_00205360.jpg
+Places365_test_00205364.jpg
+Places365_test_00205369.jpg
+Places365_test_00205382.jpg
+Places365_test_00205387.jpg
+Places365_test_00205458.jpg
+Places365_test_00205495.jpg
+Places365_test_00205527.jpg
+Places365_test_00205538.jpg
+Places365_test_00205545.jpg
+Places365_test_00205557.jpg
+Places365_test_00205561.jpg
+Places365_test_00205573.jpg
+Places365_test_00205607.jpg
+Places365_test_00205633.jpg
+Places365_test_00205641.jpg
+Places365_test_00205644.jpg
+Places365_test_00205651.jpg
+Places365_test_00205659.jpg
+Places365_test_00205701.jpg
+Places365_test_00205705.jpg
+Places365_test_00205707.jpg
+Places365_test_00205709.jpg
+Places365_test_00205724.jpg
+Places365_test_00205742.jpg
+Places365_test_00205745.jpg
+Places365_test_00205750.jpg
+Places365_test_00205758.jpg
+Places365_test_00205759.jpg
+Places365_test_00205770.jpg
+Places365_test_00205788.jpg
+Places365_test_00205792.jpg
+Places365_test_00205801.jpg
+Places365_test_00205804.jpg
+Places365_test_00205821.jpg
+Places365_test_00205836.jpg
+Places365_test_00205846.jpg
+Places365_test_00205848.jpg
+Places365_test_00205850.jpg
+Places365_test_00205854.jpg
+Places365_test_00205859.jpg
+Places365_test_00205868.jpg
+Places365_test_00205870.jpg
+Places365_test_00205873.jpg
+Places365_test_00205874.jpg
+Places365_test_00205876.jpg
+Places365_test_00205882.jpg
+Places365_test_00205895.jpg
+Places365_test_00205899.jpg
+Places365_test_00205901.jpg
+Places365_test_00205915.jpg
+Places365_test_00205932.jpg
+Places365_test_00205937.jpg
+Places365_test_00205965.jpg
+Places365_test_00205970.jpg
+Places365_test_00205975.jpg
+Places365_test_00205978.jpg
+Places365_test_00205980.jpg
+Places365_test_00205998.jpg
+Places365_test_00206004.jpg
+Places365_test_00206010.jpg
+Places365_test_00206031.jpg
+Places365_test_00206049.jpg
+Places365_test_00206077.jpg
+Places365_test_00206083.jpg
+Places365_test_00206086.jpg
+Places365_test_00206087.jpg
+Places365_test_00206090.jpg
+Places365_test_00206093.jpg
+Places365_test_00206100.jpg
+Places365_test_00206109.jpg
+Places365_test_00206111.jpg
+Places365_test_00206114.jpg
+Places365_test_00206123.jpg
+Places365_test_00206128.jpg
+Places365_test_00206146.jpg
+Places365_test_00206154.jpg
+Places365_test_00206160.jpg
+Places365_test_00206167.jpg
+Places365_test_00206170.jpg
+Places365_test_00206182.jpg
+Places365_test_00206189.jpg
+Places365_test_00206190.jpg
+Places365_test_00206206.jpg
+Places365_test_00206222.jpg
+Places365_test_00206226.jpg
+Places365_test_00206232.jpg
+Places365_test_00206252.jpg
+Places365_test_00206263.jpg
+Places365_test_00206277.jpg
+Places365_test_00206279.jpg
+Places365_test_00206292.jpg
+Places365_test_00206298.jpg
+Places365_test_00206300.jpg
+Places365_test_00206312.jpg
+Places365_test_00206318.jpg
+Places365_test_00206332.jpg
+Places365_test_00206342.jpg
+Places365_test_00206345.jpg
+Places365_test_00206346.jpg
+Places365_test_00206375.jpg
+Places365_test_00206394.jpg
+Places365_test_00206421.jpg
+Places365_test_00206427.jpg
+Places365_test_00206441.jpg
+Places365_test_00206447.jpg
+Places365_test_00206448.jpg
+Places365_test_00206451.jpg
+Places365_test_00206455.jpg
+Places365_test_00206458.jpg
+Places365_test_00206463.jpg
+Places365_test_00206469.jpg
+Places365_test_00206484.jpg
+Places365_test_00206490.jpg
+Places365_test_00206497.jpg
+Places365_test_00206505.jpg
+Places365_test_00206509.jpg
+Places365_test_00206524.jpg
+Places365_test_00206545.jpg
+Places365_test_00206548.jpg
+Places365_test_00206566.jpg
+Places365_test_00206576.jpg
+Places365_test_00206582.jpg
+Places365_test_00206608.jpg
+Places365_test_00206610.jpg
+Places365_test_00206630.jpg
+Places365_test_00206668.jpg
+Places365_test_00206685.jpg
+Places365_test_00206687.jpg
+Places365_test_00206689.jpg
+Places365_test_00206695.jpg
+Places365_test_00206708.jpg
+Places365_test_00206725.jpg
+Places365_test_00206767.jpg
+Places365_test_00206776.jpg
+Places365_test_00206799.jpg
+Places365_test_00206801.jpg
+Places365_test_00206814.jpg
+Places365_test_00206820.jpg
+Places365_test_00206824.jpg
+Places365_test_00206832.jpg
+Places365_test_00206835.jpg
+Places365_test_00206840.jpg
+Places365_test_00206873.jpg
+Places365_test_00206881.jpg
+Places365_test_00206896.jpg
+Places365_test_00206907.jpg
+Places365_test_00206908.jpg
+Places365_test_00206912.jpg
+Places365_test_00206920.jpg
+Places365_test_00206927.jpg
+Places365_test_00206942.jpg
+Places365_test_00206944.jpg
+Places365_test_00206956.jpg
+Places365_test_00206958.jpg
+Places365_test_00206961.jpg
+Places365_test_00206973.jpg
+Places365_test_00206982.jpg
+Places365_test_00207013.jpg
+Places365_test_00207027.jpg
+Places365_test_00207041.jpg
+Places365_test_00207043.jpg
+Places365_test_00207044.jpg
+Places365_test_00207052.jpg
+Places365_test_00207062.jpg
+Places365_test_00207084.jpg
+Places365_test_00207092.jpg
+Places365_test_00207101.jpg
+Places365_test_00207118.jpg
+Places365_test_00207141.jpg
+Places365_test_00207143.jpg
+Places365_test_00207145.jpg
+Places365_test_00207147.jpg
+Places365_test_00207153.jpg
+Places365_test_00207167.jpg
+Places365_test_00207193.jpg
+Places365_test_00207194.jpg
+Places365_test_00207212.jpg
+Places365_test_00207213.jpg
+Places365_test_00207216.jpg
+Places365_test_00207220.jpg
+Places365_test_00207224.jpg
+Places365_test_00207225.jpg
+Places365_test_00207250.jpg
+Places365_test_00207257.jpg
+Places365_test_00207259.jpg
+Places365_test_00207266.jpg
+Places365_test_00207284.jpg
+Places365_test_00207285.jpg
+Places365_test_00207295.jpg
+Places365_test_00207321.jpg
+Places365_test_00207349.jpg
+Places365_test_00207355.jpg
+Places365_test_00207389.jpg
+Places365_test_00207405.jpg
+Places365_test_00207425.jpg
+Places365_test_00207439.jpg
+Places365_test_00207445.jpg
+Places365_test_00207446.jpg
+Places365_test_00207464.jpg
+Places365_test_00207502.jpg
+Places365_test_00207503.jpg
+Places365_test_00207533.jpg
+Places365_test_00207557.jpg
+Places365_test_00207577.jpg
+Places365_test_00207581.jpg
+Places365_test_00207600.jpg
+Places365_test_00207601.jpg
+Places365_test_00207608.jpg
+Places365_test_00207613.jpg
+Places365_test_00207621.jpg
+Places365_test_00207630.jpg
+Places365_test_00207639.jpg
+Places365_test_00207644.jpg
+Places365_test_00207663.jpg
+Places365_test_00207674.jpg
+Places365_test_00207680.jpg
+Places365_test_00207683.jpg
+Places365_test_00207685.jpg
+Places365_test_00207690.jpg
+Places365_test_00207707.jpg
+Places365_test_00207712.jpg
+Places365_test_00207719.jpg
+Places365_test_00207724.jpg
+Places365_test_00207725.jpg
+Places365_test_00207729.jpg
+Places365_test_00207734.jpg
+Places365_test_00207740.jpg
+Places365_test_00207747.jpg
+Places365_test_00207757.jpg
+Places365_test_00207761.jpg
+Places365_test_00207768.jpg
+Places365_test_00207770.jpg
+Places365_test_00207775.jpg
+Places365_test_00207787.jpg
+Places365_test_00207788.jpg
+Places365_test_00207801.jpg
+Places365_test_00207802.jpg
+Places365_test_00207841.jpg
+Places365_test_00207852.jpg
+Places365_test_00207857.jpg
+Places365_test_00207871.jpg
+Places365_test_00207873.jpg
+Places365_test_00207892.jpg
+Places365_test_00207896.jpg
+Places365_test_00207897.jpg
+Places365_test_00207905.jpg
+Places365_test_00207906.jpg
+Places365_test_00207940.jpg
+Places365_test_00207957.jpg
+Places365_test_00207960.jpg
+Places365_test_00207961.jpg
+Places365_test_00207967.jpg
+Places365_test_00207986.jpg
+Places365_test_00207996.jpg
+Places365_test_00208011.jpg
+Places365_test_00208013.jpg
+Places365_test_00208038.jpg
+Places365_test_00208059.jpg
+Places365_test_00208085.jpg
+Places365_test_00208094.jpg
+Places365_test_00208104.jpg
+Places365_test_00208107.jpg
+Places365_test_00208126.jpg
+Places365_test_00208130.jpg
+Places365_test_00208131.jpg
+Places365_test_00208140.jpg
+Places365_test_00208142.jpg
+Places365_test_00208147.jpg
+Places365_test_00208153.jpg
+Places365_test_00208172.jpg
+Places365_test_00208182.jpg
+Places365_test_00208193.jpg
+Places365_test_00208208.jpg
+Places365_test_00208227.jpg
+Places365_test_00208228.jpg
+Places365_test_00208239.jpg
+Places365_test_00208245.jpg
+Places365_test_00208286.jpg
+Places365_test_00208306.jpg
+Places365_test_00208316.jpg
+Places365_test_00208324.jpg
+Places365_test_00208344.jpg
+Places365_test_00208358.jpg
+Places365_test_00208390.jpg
+Places365_test_00208395.jpg
+Places365_test_00208396.jpg
+Places365_test_00208398.jpg
+Places365_test_00208421.jpg
+Places365_test_00208424.jpg
+Places365_test_00208434.jpg
+Places365_test_00208441.jpg
+Places365_test_00208447.jpg
+Places365_test_00208464.jpg
+Places365_test_00208476.jpg
+Places365_test_00208500.jpg
+Places365_test_00208516.jpg
+Places365_test_00208524.jpg
+Places365_test_00208529.jpg
+Places365_test_00208535.jpg
+Places365_test_00208537.jpg
+Places365_test_00208544.jpg
+Places365_test_00208550.jpg
+Places365_test_00208557.jpg
+Places365_test_00208562.jpg
+Places365_test_00208563.jpg
+Places365_test_00208590.jpg
+Places365_test_00208593.jpg
+Places365_test_00208597.jpg
+Places365_test_00208613.jpg
+Places365_test_00208624.jpg
+Places365_test_00208630.jpg
+Places365_test_00208632.jpg
+Places365_test_00208644.jpg
+Places365_test_00208660.jpg
+Places365_test_00208683.jpg
+Places365_test_00208719.jpg
+Places365_test_00208724.jpg
+Places365_test_00208756.jpg
+Places365_test_00208767.jpg
+Places365_test_00208803.jpg
+Places365_test_00208812.jpg
+Places365_test_00208845.jpg
+Places365_test_00208851.jpg
+Places365_test_00208857.jpg
+Places365_test_00208858.jpg
+Places365_test_00208890.jpg
+Places365_test_00208902.jpg
+Places365_test_00208903.jpg
+Places365_test_00208915.jpg
+Places365_test_00208917.jpg
+Places365_test_00208925.jpg
+Places365_test_00208926.jpg
+Places365_test_00208930.jpg
+Places365_test_00208936.jpg
+Places365_test_00208940.jpg
+Places365_test_00208950.jpg
+Places365_test_00208958.jpg
+Places365_test_00208959.jpg
+Places365_test_00208996.jpg
+Places365_test_00209018.jpg
+Places365_test_00209024.jpg
+Places365_test_00209034.jpg
+Places365_test_00209039.jpg
+Places365_test_00209058.jpg
+Places365_test_00209107.jpg
+Places365_test_00209121.jpg
+Places365_test_00209153.jpg
+Places365_test_00209205.jpg
+Places365_test_00209217.jpg
+Places365_test_00209242.jpg
+Places365_test_00209261.jpg
+Places365_test_00209289.jpg
+Places365_test_00209295.jpg
+Places365_test_00209298.jpg
+Places365_test_00209299.jpg
+Places365_test_00209310.jpg
+Places365_test_00209311.jpg
+Places365_test_00209317.jpg
+Places365_test_00209325.jpg
+Places365_test_00209352.jpg
+Places365_test_00209379.jpg
+Places365_test_00209384.jpg
+Places365_test_00209405.jpg
+Places365_test_00209417.jpg
+Places365_test_00209433.jpg
+Places365_test_00209450.jpg
+Places365_test_00209453.jpg
+Places365_test_00209457.jpg
+Places365_test_00209462.jpg
+Places365_test_00209487.jpg
+Places365_test_00209494.jpg
+Places365_test_00209513.jpg
+Places365_test_00209526.jpg
+Places365_test_00209538.jpg
+Places365_test_00209551.jpg
+Places365_test_00209555.jpg
+Places365_test_00209580.jpg
+Places365_test_00209584.jpg
+Places365_test_00209610.jpg
+Places365_test_00209614.jpg
+Places365_test_00209634.jpg
+Places365_test_00209641.jpg
+Places365_test_00209643.jpg
+Places365_test_00209654.jpg
+Places365_test_00209657.jpg
+Places365_test_00209688.jpg
+Places365_test_00209692.jpg
+Places365_test_00209720.jpg
+Places365_test_00209726.jpg
+Places365_test_00209735.jpg
+Places365_test_00209738.jpg
+Places365_test_00209767.jpg
+Places365_test_00209769.jpg
+Places365_test_00209775.jpg
+Places365_test_00209785.jpg
+Places365_test_00209808.jpg
+Places365_test_00209827.jpg
+Places365_test_00209830.jpg
+Places365_test_00209841.jpg
+Places365_test_00209844.jpg
+Places365_test_00209858.jpg
+Places365_test_00209868.jpg
+Places365_test_00209877.jpg
+Places365_test_00209887.jpg
+Places365_test_00209890.jpg
+Places365_test_00209895.jpg
+Places365_test_00209925.jpg
+Places365_test_00209935.jpg
+Places365_test_00209938.jpg
+Places365_test_00209939.jpg
+Places365_test_00209951.jpg
+Places365_test_00209952.jpg
+Places365_test_00209980.jpg
+Places365_test_00209997.jpg
+Places365_test_00210004.jpg
+Places365_test_00210008.jpg
+Places365_test_00210019.jpg
+Places365_test_00210020.jpg
+Places365_test_00210053.jpg
+Places365_test_00210054.jpg
+Places365_test_00210086.jpg
+Places365_test_00210108.jpg
+Places365_test_00210110.jpg
+Places365_test_00210141.jpg
+Places365_test_00210169.jpg
+Places365_test_00210236.jpg
+Places365_test_00210245.jpg
+Places365_test_00210258.jpg
+Places365_test_00210278.jpg
+Places365_test_00210302.jpg
+Places365_test_00210327.jpg
+Places365_test_00210334.jpg
+Places365_test_00210335.jpg
+Places365_test_00210346.jpg
+Places365_test_00210357.jpg
+Places365_test_00210393.jpg
+Places365_test_00210412.jpg
+Places365_test_00210415.jpg
+Places365_test_00210420.jpg
+Places365_test_00210422.jpg
+Places365_test_00210439.jpg
+Places365_test_00210462.jpg
+Places365_test_00210470.jpg
+Places365_test_00210483.jpg
+Places365_test_00210503.jpg
+Places365_test_00210508.jpg
+Places365_test_00210514.jpg
+Places365_test_00210515.jpg
+Places365_test_00210519.jpg
+Places365_test_00210520.jpg
+Places365_test_00210533.jpg
+Places365_test_00210570.jpg
+Places365_test_00210586.jpg
+Places365_test_00210606.jpg
+Places365_test_00210613.jpg
+Places365_test_00210637.jpg
+Places365_test_00210648.jpg
+Places365_test_00210658.jpg
+Places365_test_00210661.jpg
+Places365_test_00210666.jpg
+Places365_test_00210682.jpg
+Places365_test_00210683.jpg
+Places365_test_00210698.jpg
+Places365_test_00210712.jpg
+Places365_test_00210733.jpg
+Places365_test_00210744.jpg
+Places365_test_00210766.jpg
+Places365_test_00210767.jpg
+Places365_test_00210773.jpg
+Places365_test_00210787.jpg
+Places365_test_00210813.jpg
+Places365_test_00210842.jpg
+Places365_test_00210865.jpg
+Places365_test_00210880.jpg
+Places365_test_00210896.jpg
+Places365_test_00210905.jpg
+Places365_test_00210912.jpg
+Places365_test_00210922.jpg
+Places365_test_00210923.jpg
+Places365_test_00210924.jpg
+Places365_test_00210932.jpg
+Places365_test_00210947.jpg
+Places365_test_00210950.jpg
+Places365_test_00210961.jpg
+Places365_test_00210975.jpg
+Places365_test_00211003.jpg
+Places365_test_00211007.jpg
+Places365_test_00211009.jpg
+Places365_test_00211013.jpg
+Places365_test_00211038.jpg
+Places365_test_00211039.jpg
+Places365_test_00211045.jpg
+Places365_test_00211050.jpg
+Places365_test_00211053.jpg
+Places365_test_00211056.jpg
+Places365_test_00211067.jpg
+Places365_test_00211068.jpg
+Places365_test_00211071.jpg
+Places365_test_00211077.jpg
+Places365_test_00211098.jpg
+Places365_test_00211103.jpg
+Places365_test_00211113.jpg
+Places365_test_00211115.jpg
+Places365_test_00211116.jpg
+Places365_test_00211118.jpg
+Places365_test_00211120.jpg
+Places365_test_00211148.jpg
+Places365_test_00211171.jpg
+Places365_test_00211182.jpg
+Places365_test_00211243.jpg
+Places365_test_00211244.jpg
+Places365_test_00211254.jpg
+Places365_test_00211267.jpg
+Places365_test_00211271.jpg
+Places365_test_00211289.jpg
+Places365_test_00211306.jpg
+Places365_test_00211312.jpg
+Places365_test_00211317.jpg
+Places365_test_00211318.jpg
+Places365_test_00211348.jpg
+Places365_test_00211368.jpg
+Places365_test_00211383.jpg
+Places365_test_00211392.jpg
+Places365_test_00211414.jpg
+Places365_test_00211418.jpg
+Places365_test_00211422.jpg
+Places365_test_00211427.jpg
+Places365_test_00211433.jpg
+Places365_test_00211447.jpg
+Places365_test_00211456.jpg
+Places365_test_00211464.jpg
+Places365_test_00211477.jpg
+Places365_test_00211485.jpg
+Places365_test_00211488.jpg
+Places365_test_00211498.jpg
+Places365_test_00211499.jpg
+Places365_test_00211504.jpg
+Places365_test_00211544.jpg
+Places365_test_00211554.jpg
+Places365_test_00211569.jpg
+Places365_test_00211571.jpg
+Places365_test_00211574.jpg
+Places365_test_00211575.jpg
+Places365_test_00211576.jpg
+Places365_test_00211579.jpg
+Places365_test_00211587.jpg
+Places365_test_00211606.jpg
+Places365_test_00211615.jpg
+Places365_test_00211621.jpg
+Places365_test_00211632.jpg
+Places365_test_00211636.jpg
+Places365_test_00211643.jpg
+Places365_test_00211652.jpg
+Places365_test_00211653.jpg
+Places365_test_00211655.jpg
+Places365_test_00211679.jpg
+Places365_test_00211689.jpg
+Places365_test_00211691.jpg
+Places365_test_00211693.jpg
+Places365_test_00211706.jpg
+Places365_test_00211709.jpg
+Places365_test_00211757.jpg
+Places365_test_00211764.jpg
+Places365_test_00211769.jpg
+Places365_test_00211791.jpg
+Places365_test_00211794.jpg
+Places365_test_00211809.jpg
+Places365_test_00211812.jpg
+Places365_test_00211840.jpg
+Places365_test_00211848.jpg
+Places365_test_00211856.jpg
+Places365_test_00211865.jpg
+Places365_test_00211869.jpg
+Places365_test_00211877.jpg
+Places365_test_00211882.jpg
+Places365_test_00211883.jpg
+Places365_test_00211892.jpg
+Places365_test_00211895.jpg
+Places365_test_00211915.jpg
+Places365_test_00211918.jpg
+Places365_test_00211924.jpg
+Places365_test_00211927.jpg
+Places365_test_00211931.jpg
+Places365_test_00211934.jpg
+Places365_test_00211947.jpg
+Places365_test_00211969.jpg
+Places365_test_00211975.jpg
+Places365_test_00211997.jpg
+Places365_test_00212004.jpg
+Places365_test_00212010.jpg
+Places365_test_00212017.jpg
+Places365_test_00212024.jpg
+Places365_test_00212025.jpg
+Places365_test_00212036.jpg
+Places365_test_00212043.jpg
+Places365_test_00212044.jpg
+Places365_test_00212048.jpg
+Places365_test_00212083.jpg
+Places365_test_00212085.jpg
+Places365_test_00212105.jpg
+Places365_test_00212120.jpg
+Places365_test_00212156.jpg
+Places365_test_00212196.jpg
+Places365_test_00212205.jpg
+Places365_test_00212224.jpg
+Places365_test_00212229.jpg
+Places365_test_00212230.jpg
+Places365_test_00212247.jpg
+Places365_test_00212284.jpg
+Places365_test_00212304.jpg
+Places365_test_00212305.jpg
+Places365_test_00212318.jpg
+Places365_test_00212328.jpg
+Places365_test_00212335.jpg
+Places365_test_00212370.jpg
+Places365_test_00212376.jpg
+Places365_test_00212378.jpg
+Places365_test_00212392.jpg
+Places365_test_00212430.jpg
+Places365_test_00212432.jpg
+Places365_test_00212444.jpg
+Places365_test_00212452.jpg
+Places365_test_00212456.jpg
+Places365_test_00212459.jpg
+Places365_test_00212470.jpg
+Places365_test_00212477.jpg
+Places365_test_00212504.jpg
+Places365_test_00212523.jpg
+Places365_test_00212541.jpg
+Places365_test_00212549.jpg
+Places365_test_00212562.jpg
+Places365_test_00212587.jpg
+Places365_test_00212591.jpg
+Places365_test_00212592.jpg
+Places365_test_00212599.jpg
+Places365_test_00212631.jpg
+Places365_test_00212638.jpg
+Places365_test_00212647.jpg
+Places365_test_00212665.jpg
+Places365_test_00212668.jpg
+Places365_test_00212708.jpg
+Places365_test_00212716.jpg
+Places365_test_00212721.jpg
+Places365_test_00212723.jpg
+Places365_test_00212748.jpg
+Places365_test_00212781.jpg
+Places365_test_00212818.jpg
+Places365_test_00212821.jpg
+Places365_test_00212833.jpg
+Places365_test_00212836.jpg
+Places365_test_00212844.jpg
+Places365_test_00212847.jpg
+Places365_test_00212849.jpg
+Places365_test_00212852.jpg
+Places365_test_00212863.jpg
+Places365_test_00212869.jpg
+Places365_test_00212876.jpg
+Places365_test_00212879.jpg
+Places365_test_00212886.jpg
+Places365_test_00212893.jpg
+Places365_test_00212913.jpg
+Places365_test_00212922.jpg
+Places365_test_00212927.jpg
+Places365_test_00212955.jpg
+Places365_test_00212956.jpg
+Places365_test_00212959.jpg
+Places365_test_00212977.jpg
+Places365_test_00212982.jpg
+Places365_test_00212998.jpg
+Places365_test_00213018.jpg
+Places365_test_00213049.jpg
+Places365_test_00213052.jpg
+Places365_test_00213057.jpg
+Places365_test_00213080.jpg
+Places365_test_00213085.jpg
+Places365_test_00213098.jpg
+Places365_test_00213109.jpg
+Places365_test_00213115.jpg
+Places365_test_00213122.jpg
+Places365_test_00213134.jpg
+Places365_test_00213150.jpg
+Places365_test_00213154.jpg
+Places365_test_00213157.jpg
+Places365_test_00213165.jpg
+Places365_test_00213179.jpg
+Places365_test_00213185.jpg
+Places365_test_00213186.jpg
+Places365_test_00213193.jpg
+Places365_test_00213204.jpg
+Places365_test_00213215.jpg
+Places365_test_00213223.jpg
+Places365_test_00213224.jpg
+Places365_test_00213229.jpg
+Places365_test_00213253.jpg
+Places365_test_00213266.jpg
+Places365_test_00213269.jpg
+Places365_test_00213282.jpg
+Places365_test_00213283.jpg
+Places365_test_00213305.jpg
+Places365_test_00213380.jpg
+Places365_test_00213384.jpg
+Places365_test_00213393.jpg
+Places365_test_00213394.jpg
+Places365_test_00213408.jpg
+Places365_test_00213409.jpg
+Places365_test_00213416.jpg
+Places365_test_00213420.jpg
+Places365_test_00213425.jpg
+Places365_test_00213433.jpg
+Places365_test_00213451.jpg
+Places365_test_00213478.jpg
+Places365_test_00213490.jpg
+Places365_test_00213509.jpg
+Places365_test_00213517.jpg
+Places365_test_00213534.jpg
+Places365_test_00213545.jpg
+Places365_test_00213558.jpg
+Places365_test_00213562.jpg
+Places365_test_00213580.jpg
+Places365_test_00213591.jpg
+Places365_test_00213596.jpg
+Places365_test_00213600.jpg
+Places365_test_00213613.jpg
+Places365_test_00213614.jpg
+Places365_test_00213615.jpg
+Places365_test_00213626.jpg
+Places365_test_00213664.jpg
+Places365_test_00213666.jpg
+Places365_test_00213678.jpg
+Places365_test_00213685.jpg
+Places365_test_00213694.jpg
+Places365_test_00213715.jpg
+Places365_test_00213721.jpg
+Places365_test_00213727.jpg
+Places365_test_00213741.jpg
+Places365_test_00213746.jpg
+Places365_test_00213748.jpg
+Places365_test_00213752.jpg
+Places365_test_00213757.jpg
+Places365_test_00213770.jpg
+Places365_test_00213792.jpg
+Places365_test_00213832.jpg
+Places365_test_00213859.jpg
+Places365_test_00213863.jpg
+Places365_test_00213868.jpg
+Places365_test_00213877.jpg
+Places365_test_00213883.jpg
+Places365_test_00213888.jpg
+Places365_test_00213892.jpg
+Places365_test_00213899.jpg
+Places365_test_00213918.jpg
+Places365_test_00213955.jpg
+Places365_test_00213968.jpg
+Places365_test_00213980.jpg
+Places365_test_00213990.jpg
+Places365_test_00214026.jpg
+Places365_test_00214054.jpg
+Places365_test_00214058.jpg
+Places365_test_00214060.jpg
+Places365_test_00214069.jpg
+Places365_test_00214072.jpg
+Places365_test_00214111.jpg
+Places365_test_00214121.jpg
+Places365_test_00214123.jpg
+Places365_test_00214127.jpg
+Places365_test_00214134.jpg
+Places365_test_00214153.jpg
+Places365_test_00214156.jpg
+Places365_test_00214182.jpg
+Places365_test_00214192.jpg
+Places365_test_00214196.jpg
+Places365_test_00214205.jpg
+Places365_test_00214206.jpg
+Places365_test_00214211.jpg
+Places365_test_00214222.jpg
+Places365_test_00214224.jpg
+Places365_test_00214225.jpg
+Places365_test_00214229.jpg
+Places365_test_00214236.jpg
+Places365_test_00214245.jpg
+Places365_test_00214267.jpg
+Places365_test_00214282.jpg
+Places365_test_00214289.jpg
+Places365_test_00214294.jpg
+Places365_test_00214319.jpg
+Places365_test_00214325.jpg
+Places365_test_00214327.jpg
+Places365_test_00214328.jpg
+Places365_test_00214329.jpg
+Places365_test_00214335.jpg
+Places365_test_00214345.jpg
+Places365_test_00214367.jpg
+Places365_test_00214370.jpg
+Places365_test_00214371.jpg
+Places365_test_00214372.jpg
+Places365_test_00214379.jpg
+Places365_test_00214399.jpg
+Places365_test_00214404.jpg
+Places365_test_00214412.jpg
+Places365_test_00214426.jpg
+Places365_test_00214438.jpg
+Places365_test_00214459.jpg
+Places365_test_00214468.jpg
+Places365_test_00214474.jpg
+Places365_test_00214476.jpg
+Places365_test_00214485.jpg
+Places365_test_00214500.jpg
+Places365_test_00214505.jpg
+Places365_test_00214507.jpg
+Places365_test_00214516.jpg
+Places365_test_00214534.jpg
+Places365_test_00214539.jpg
+Places365_test_00214543.jpg
+Places365_test_00214563.jpg
+Places365_test_00214564.jpg
+Places365_test_00214574.jpg
+Places365_test_00214582.jpg
+Places365_test_00214595.jpg
+Places365_test_00214616.jpg
+Places365_test_00214617.jpg
+Places365_test_00214618.jpg
+Places365_test_00214619.jpg
+Places365_test_00214625.jpg
+Places365_test_00214640.jpg
+Places365_test_00214688.jpg
+Places365_test_00214712.jpg
+Places365_test_00214720.jpg
+Places365_test_00214724.jpg
+Places365_test_00214726.jpg
+Places365_test_00214747.jpg
+Places365_test_00214774.jpg
+Places365_test_00214800.jpg
+Places365_test_00214801.jpg
+Places365_test_00214835.jpg
+Places365_test_00214857.jpg
+Places365_test_00214869.jpg
+Places365_test_00214876.jpg
+Places365_test_00214879.jpg
+Places365_test_00214889.jpg
+Places365_test_00214951.jpg
+Places365_test_00214968.jpg
+Places365_test_00214972.jpg
+Places365_test_00214977.jpg
+Places365_test_00214990.jpg
+Places365_test_00215000.jpg
+Places365_test_00215011.jpg
+Places365_test_00215013.jpg
+Places365_test_00215014.jpg
+Places365_test_00215037.jpg
+Places365_test_00215042.jpg
+Places365_test_00215050.jpg
+Places365_test_00215105.jpg
+Places365_test_00215109.jpg
+Places365_test_00215126.jpg
+Places365_test_00215132.jpg
+Places365_test_00215141.jpg
+Places365_test_00215142.jpg
+Places365_test_00215143.jpg
+Places365_test_00215161.jpg
+Places365_test_00215183.jpg
+Places365_test_00215191.jpg
+Places365_test_00215201.jpg
+Places365_test_00215221.jpg
+Places365_test_00215225.jpg
+Places365_test_00215227.jpg
+Places365_test_00215235.jpg
+Places365_test_00215258.jpg
+Places365_test_00215268.jpg
+Places365_test_00215269.jpg
+Places365_test_00215289.jpg
+Places365_test_00215291.jpg
+Places365_test_00215305.jpg
+Places365_test_00215312.jpg
+Places365_test_00215331.jpg
+Places365_test_00215339.jpg
+Places365_test_00215341.jpg
+Places365_test_00215343.jpg
+Places365_test_00215347.jpg
+Places365_test_00215367.jpg
+Places365_test_00215371.jpg
+Places365_test_00215379.jpg
+Places365_test_00215398.jpg
+Places365_test_00215400.jpg
+Places365_test_00215401.jpg
+Places365_test_00215404.jpg
+Places365_test_00215416.jpg
+Places365_test_00215455.jpg
+Places365_test_00215456.jpg
+Places365_test_00215469.jpg
+Places365_test_00215481.jpg
+Places365_test_00215482.jpg
+Places365_test_00215501.jpg
+Places365_test_00215514.jpg
+Places365_test_00215526.jpg
+Places365_test_00215528.jpg
+Places365_test_00215539.jpg
+Places365_test_00215547.jpg
+Places365_test_00215559.jpg
+Places365_test_00215560.jpg
+Places365_test_00215581.jpg
+Places365_test_00215586.jpg
+Places365_test_00215606.jpg
+Places365_test_00215615.jpg
+Places365_test_00215617.jpg
+Places365_test_00215623.jpg
+Places365_test_00215638.jpg
+Places365_test_00215659.jpg
+Places365_test_00215672.jpg
+Places365_test_00215677.jpg
+Places365_test_00215701.jpg
+Places365_test_00215722.jpg
+Places365_test_00215724.jpg
+Places365_test_00215741.jpg
+Places365_test_00215754.jpg
+Places365_test_00215767.jpg
+Places365_test_00215772.jpg
+Places365_test_00215798.jpg
+Places365_test_00215801.jpg
+Places365_test_00215822.jpg
+Places365_test_00215825.jpg
+Places365_test_00215844.jpg
+Places365_test_00215851.jpg
+Places365_test_00215852.jpg
+Places365_test_00215858.jpg
+Places365_test_00215860.jpg
+Places365_test_00215872.jpg
+Places365_test_00215873.jpg
+Places365_test_00215878.jpg
+Places365_test_00215879.jpg
+Places365_test_00215885.jpg
+Places365_test_00215895.jpg
+Places365_test_00215901.jpg
+Places365_test_00215926.jpg
+Places365_test_00215928.jpg
+Places365_test_00215962.jpg
+Places365_test_00215965.jpg
+Places365_test_00215969.jpg
+Places365_test_00215978.jpg
+Places365_test_00215994.jpg
+Places365_test_00215997.jpg
+Places365_test_00215998.jpg
+Places365_test_00215999.jpg
+Places365_test_00216012.jpg
+Places365_test_00216017.jpg
+Places365_test_00216024.jpg
+Places365_test_00216031.jpg
+Places365_test_00216059.jpg
+Places365_test_00216080.jpg
+Places365_test_00216100.jpg
+Places365_test_00216148.jpg
+Places365_test_00216151.jpg
+Places365_test_00216153.jpg
+Places365_test_00216158.jpg
+Places365_test_00216165.jpg
+Places365_test_00216167.jpg
+Places365_test_00216168.jpg
+Places365_test_00216181.jpg
+Places365_test_00216193.jpg
+Places365_test_00216194.jpg
+Places365_test_00216215.jpg
+Places365_test_00216250.jpg
+Places365_test_00216260.jpg
+Places365_test_00216262.jpg
+Places365_test_00216265.jpg
+Places365_test_00216272.jpg
+Places365_test_00216276.jpg
+Places365_test_00216279.jpg
+Places365_test_00216293.jpg
+Places365_test_00216294.jpg
+Places365_test_00216302.jpg
+Places365_test_00216327.jpg
+Places365_test_00216331.jpg
+Places365_test_00216338.jpg
+Places365_test_00216340.jpg
+Places365_test_00216341.jpg
+Places365_test_00216344.jpg
+Places365_test_00216351.jpg
+Places365_test_00216371.jpg
+Places365_test_00216377.jpg
+Places365_test_00216392.jpg
+Places365_test_00216395.jpg
+Places365_test_00216399.jpg
+Places365_test_00216409.jpg
+Places365_test_00216412.jpg
+Places365_test_00216426.jpg
+Places365_test_00216442.jpg
+Places365_test_00216446.jpg
+Places365_test_00216484.jpg
+Places365_test_00216497.jpg
+Places365_test_00216500.jpg
+Places365_test_00216523.jpg
+Places365_test_00216535.jpg
+Places365_test_00216538.jpg
+Places365_test_00216546.jpg
+Places365_test_00216547.jpg
+Places365_test_00216558.jpg
+Places365_test_00216567.jpg
+Places365_test_00216600.jpg
+Places365_test_00216611.jpg
+Places365_test_00216625.jpg
+Places365_test_00216626.jpg
+Places365_test_00216637.jpg
+Places365_test_00216693.jpg
+Places365_test_00216714.jpg
+Places365_test_00216727.jpg
+Places365_test_00216733.jpg
+Places365_test_00216740.jpg
+Places365_test_00216744.jpg
+Places365_test_00216754.jpg
+Places365_test_00216755.jpg
+Places365_test_00216757.jpg
+Places365_test_00216764.jpg
+Places365_test_00216772.jpg
+Places365_test_00216784.jpg
+Places365_test_00216791.jpg
+Places365_test_00216803.jpg
+Places365_test_00216807.jpg
+Places365_test_00216820.jpg
+Places365_test_00216861.jpg
+Places365_test_00216863.jpg
+Places365_test_00216864.jpg
+Places365_test_00216876.jpg
+Places365_test_00216897.jpg
+Places365_test_00216913.jpg
+Places365_test_00216915.jpg
+Places365_test_00216919.jpg
+Places365_test_00216921.jpg
+Places365_test_00216929.jpg
+Places365_test_00216945.jpg
+Places365_test_00216953.jpg
+Places365_test_00216954.jpg
+Places365_test_00216969.jpg
+Places365_test_00216974.jpg
+Places365_test_00216977.jpg
+Places365_test_00216978.jpg
+Places365_test_00216992.jpg
+Places365_test_00216998.jpg
+Places365_test_00217032.jpg
+Places365_test_00217069.jpg
+Places365_test_00217087.jpg
+Places365_test_00217092.jpg
+Places365_test_00217095.jpg
+Places365_test_00217098.jpg
+Places365_test_00217166.jpg
+Places365_test_00217184.jpg
+Places365_test_00217190.jpg
+Places365_test_00217191.jpg
+Places365_test_00217196.jpg
+Places365_test_00217207.jpg
+Places365_test_00217208.jpg
+Places365_test_00217220.jpg
+Places365_test_00217223.jpg
+Places365_test_00217259.jpg
+Places365_test_00217265.jpg
+Places365_test_00217267.jpg
+Places365_test_00217275.jpg
+Places365_test_00217277.jpg
+Places365_test_00217281.jpg
+Places365_test_00217309.jpg
+Places365_test_00217326.jpg
+Places365_test_00217336.jpg
+Places365_test_00217360.jpg
+Places365_test_00217380.jpg
+Places365_test_00217388.jpg
+Places365_test_00217391.jpg
+Places365_test_00217392.jpg
+Places365_test_00217416.jpg
+Places365_test_00217422.jpg
+Places365_test_00217445.jpg
+Places365_test_00217452.jpg
+Places365_test_00217457.jpg
+Places365_test_00217460.jpg
+Places365_test_00217464.jpg
+Places365_test_00217465.jpg
+Places365_test_00217471.jpg
+Places365_test_00217517.jpg
+Places365_test_00217533.jpg
+Places365_test_00217539.jpg
+Places365_test_00217552.jpg
+Places365_test_00217558.jpg
+Places365_test_00217590.jpg
+Places365_test_00217593.jpg
+Places365_test_00217611.jpg
+Places365_test_00217614.jpg
+Places365_test_00217630.jpg
+Places365_test_00217631.jpg
+Places365_test_00217633.jpg
+Places365_test_00217653.jpg
+Places365_test_00217658.jpg
+Places365_test_00217661.jpg
+Places365_test_00217668.jpg
+Places365_test_00217681.jpg
+Places365_test_00217686.jpg
+Places365_test_00217692.jpg
+Places365_test_00217700.jpg
+Places365_test_00217703.jpg
+Places365_test_00217705.jpg
+Places365_test_00217720.jpg
+Places365_test_00217747.jpg
+Places365_test_00217759.jpg
+Places365_test_00217760.jpg
+Places365_test_00217788.jpg
+Places365_test_00217811.jpg
+Places365_test_00217819.jpg
+Places365_test_00217828.jpg
+Places365_test_00217835.jpg
+Places365_test_00217842.jpg
+Places365_test_00217847.jpg
+Places365_test_00217858.jpg
+Places365_test_00217867.jpg
+Places365_test_00217873.jpg
+Places365_test_00217888.jpg
+Places365_test_00217909.jpg
+Places365_test_00217910.jpg
+Places365_test_00217933.jpg
+Places365_test_00217988.jpg
+Places365_test_00218004.jpg
+Places365_test_00218018.jpg
+Places365_test_00218029.jpg
+Places365_test_00218076.jpg
+Places365_test_00218084.jpg
+Places365_test_00218086.jpg
+Places365_test_00218102.jpg
+Places365_test_00218105.jpg
+Places365_test_00218126.jpg
+Places365_test_00218129.jpg
+Places365_test_00218130.jpg
+Places365_test_00218152.jpg
+Places365_test_00218189.jpg
+Places365_test_00218201.jpg
+Places365_test_00218241.jpg
+Places365_test_00218250.jpg
+Places365_test_00218261.jpg
+Places365_test_00218271.jpg
+Places365_test_00218275.jpg
+Places365_test_00218287.jpg
+Places365_test_00218292.jpg
+Places365_test_00218310.jpg
+Places365_test_00218351.jpg
+Places365_test_00218356.jpg
+Places365_test_00218380.jpg
+Places365_test_00218387.jpg
+Places365_test_00218392.jpg
+Places365_test_00218402.jpg
+Places365_test_00218412.jpg
+Places365_test_00218413.jpg
+Places365_test_00218433.jpg
+Places365_test_00218436.jpg
+Places365_test_00218438.jpg
+Places365_test_00218442.jpg
+Places365_test_00218447.jpg
+Places365_test_00218457.jpg
+Places365_test_00218460.jpg
+Places365_test_00218461.jpg
+Places365_test_00218465.jpg
+Places365_test_00218482.jpg
+Places365_test_00218500.jpg
+Places365_test_00218510.jpg
+Places365_test_00218515.jpg
+Places365_test_00218526.jpg
+Places365_test_00218544.jpg
+Places365_test_00218548.jpg
+Places365_test_00218560.jpg
+Places365_test_00218564.jpg
+Places365_test_00218584.jpg
+Places365_test_00218596.jpg
+Places365_test_00218606.jpg
+Places365_test_00218607.jpg
+Places365_test_00218610.jpg
+Places365_test_00218616.jpg
+Places365_test_00218620.jpg
+Places365_test_00218625.jpg
+Places365_test_00218626.jpg
+Places365_test_00218631.jpg
+Places365_test_00218632.jpg
+Places365_test_00218637.jpg
+Places365_test_00218662.jpg
+Places365_test_00218672.jpg
+Places365_test_00218676.jpg
+Places365_test_00218677.jpg
+Places365_test_00218683.jpg
+Places365_test_00218703.jpg
+Places365_test_00218714.jpg
+Places365_test_00218733.jpg
+Places365_test_00218756.jpg
+Places365_test_00218774.jpg
+Places365_test_00218779.jpg
+Places365_test_00218781.jpg
+Places365_test_00218787.jpg
+Places365_test_00218799.jpg
+Places365_test_00218808.jpg
+Places365_test_00218809.jpg
+Places365_test_00218810.jpg
+Places365_test_00218815.jpg
+Places365_test_00218820.jpg
+Places365_test_00218825.jpg
+Places365_test_00218826.jpg
+Places365_test_00218829.jpg
+Places365_test_00218830.jpg
+Places365_test_00218842.jpg
+Places365_test_00218851.jpg
+Places365_test_00218855.jpg
+Places365_test_00218857.jpg
+Places365_test_00218859.jpg
+Places365_test_00218887.jpg
+Places365_test_00218897.jpg
+Places365_test_00218909.jpg
+Places365_test_00218943.jpg
+Places365_test_00218947.jpg
+Places365_test_00218970.jpg
+Places365_test_00218972.jpg
+Places365_test_00218980.jpg
+Places365_test_00218984.jpg
+Places365_test_00218997.jpg
+Places365_test_00219001.jpg
+Places365_test_00219004.jpg
+Places365_test_00219014.jpg
+Places365_test_00219020.jpg
+Places365_test_00219044.jpg
+Places365_test_00219073.jpg
+Places365_test_00219111.jpg
+Places365_test_00219112.jpg
+Places365_test_00219115.jpg
+Places365_test_00219116.jpg
+Places365_test_00219122.jpg
+Places365_test_00219139.jpg
+Places365_test_00219142.jpg
+Places365_test_00219152.jpg
+Places365_test_00219163.jpg
+Places365_test_00219164.jpg
+Places365_test_00219170.jpg
+Places365_test_00219185.jpg
+Places365_test_00219219.jpg
+Places365_test_00219225.jpg
+Places365_test_00219231.jpg
+Places365_test_00219236.jpg
+Places365_test_00219237.jpg
+Places365_test_00219243.jpg
+Places365_test_00219244.jpg
+Places365_test_00219247.jpg
+Places365_test_00219266.jpg
+Places365_test_00219275.jpg
+Places365_test_00219292.jpg
+Places365_test_00219295.jpg
+Places365_test_00219296.jpg
+Places365_test_00219359.jpg
+Places365_test_00219378.jpg
+Places365_test_00219380.jpg
+Places365_test_00219396.jpg
+Places365_test_00219405.jpg
+Places365_test_00219420.jpg
+Places365_test_00219426.jpg
+Places365_test_00219432.jpg
+Places365_test_00219461.jpg
+Places365_test_00219489.jpg
+Places365_test_00219495.jpg
+Places365_test_00219505.jpg
+Places365_test_00219511.jpg
+Places365_test_00219521.jpg
+Places365_test_00219527.jpg
+Places365_test_00219539.jpg
+Places365_test_00219551.jpg
+Places365_test_00219561.jpg
+Places365_test_00219574.jpg
+Places365_test_00219615.jpg
+Places365_test_00219638.jpg
+Places365_test_00219678.jpg
+Places365_test_00219679.jpg
+Places365_test_00219680.jpg
+Places365_test_00219688.jpg
+Places365_test_00219694.jpg
+Places365_test_00219699.jpg
+Places365_test_00219701.jpg
+Places365_test_00219703.jpg
+Places365_test_00219704.jpg
+Places365_test_00219709.jpg
+Places365_test_00219726.jpg
+Places365_test_00219740.jpg
+Places365_test_00219752.jpg
+Places365_test_00219756.jpg
+Places365_test_00219762.jpg
+Places365_test_00219774.jpg
+Places365_test_00219776.jpg
+Places365_test_00219779.jpg
+Places365_test_00219796.jpg
+Places365_test_00219807.jpg
+Places365_test_00219809.jpg
+Places365_test_00219825.jpg
+Places365_test_00219837.jpg
+Places365_test_00219850.jpg
+Places365_test_00219861.jpg
+Places365_test_00219866.jpg
+Places365_test_00219889.jpg
+Places365_test_00219890.jpg
+Places365_test_00219891.jpg
+Places365_test_00219895.jpg
+Places365_test_00219901.jpg
+Places365_test_00219904.jpg
+Places365_test_00219937.jpg
+Places365_test_00219962.jpg
+Places365_test_00219964.jpg
+Places365_test_00219965.jpg
+Places365_test_00219969.jpg
+Places365_test_00219971.jpg
+Places365_test_00219986.jpg
+Places365_test_00219990.jpg
+Places365_test_00220004.jpg
+Places365_test_00220006.jpg
+Places365_test_00220010.jpg
+Places365_test_00220011.jpg
+Places365_test_00220025.jpg
+Places365_test_00220030.jpg
+Places365_test_00220042.jpg
+Places365_test_00220046.jpg
+Places365_test_00220049.jpg
+Places365_test_00220053.jpg
+Places365_test_00220058.jpg
+Places365_test_00220108.jpg
+Places365_test_00220111.jpg
+Places365_test_00220116.jpg
+Places365_test_00220126.jpg
+Places365_test_00220142.jpg
+Places365_test_00220146.jpg
+Places365_test_00220152.jpg
+Places365_test_00220160.jpg
+Places365_test_00220184.jpg
+Places365_test_00220194.jpg
+Places365_test_00220200.jpg
+Places365_test_00220211.jpg
+Places365_test_00220234.jpg
+Places365_test_00220245.jpg
+Places365_test_00220247.jpg
+Places365_test_00220279.jpg
+Places365_test_00220295.jpg
+Places365_test_00220299.jpg
+Places365_test_00220303.jpg
+Places365_test_00220313.jpg
+Places365_test_00220315.jpg
+Places365_test_00220317.jpg
+Places365_test_00220318.jpg
+Places365_test_00220319.jpg
+Places365_test_00220336.jpg
+Places365_test_00220339.jpg
+Places365_test_00220347.jpg
+Places365_test_00220358.jpg
+Places365_test_00220378.jpg
+Places365_test_00220380.jpg
+Places365_test_00220382.jpg
+Places365_test_00220384.jpg
+Places365_test_00220406.jpg
+Places365_test_00220409.jpg
+Places365_test_00220411.jpg
+Places365_test_00220418.jpg
+Places365_test_00220424.jpg
+Places365_test_00220438.jpg
+Places365_test_00220452.jpg
+Places365_test_00220484.jpg
+Places365_test_00220486.jpg
+Places365_test_00220490.jpg
+Places365_test_00220500.jpg
+Places365_test_00220502.jpg
+Places365_test_00220508.jpg
+Places365_test_00220512.jpg
+Places365_test_00220516.jpg
+Places365_test_00220527.jpg
+Places365_test_00220569.jpg
+Places365_test_00220573.jpg
+Places365_test_00220574.jpg
+Places365_test_00220591.jpg
+Places365_test_00220594.jpg
+Places365_test_00220595.jpg
+Places365_test_00220604.jpg
+Places365_test_00220625.jpg
+Places365_test_00220643.jpg
+Places365_test_00220644.jpg
+Places365_test_00220658.jpg
+Places365_test_00220683.jpg
+Places365_test_00220687.jpg
+Places365_test_00220697.jpg
+Places365_test_00220699.jpg
+Places365_test_00220733.jpg
+Places365_test_00220741.jpg
+Places365_test_00220745.jpg
+Places365_test_00220773.jpg
+Places365_test_00220781.jpg
+Places365_test_00220788.jpg
+Places365_test_00220791.jpg
+Places365_test_00220795.jpg
+Places365_test_00220796.jpg
+Places365_test_00220800.jpg
+Places365_test_00220801.jpg
+Places365_test_00220812.jpg
+Places365_test_00220821.jpg
+Places365_test_00220824.jpg
+Places365_test_00220825.jpg
+Places365_test_00220827.jpg
+Places365_test_00220846.jpg
+Places365_test_00220855.jpg
+Places365_test_00220857.jpg
+Places365_test_00220864.jpg
+Places365_test_00220879.jpg
+Places365_test_00220890.jpg
+Places365_test_00220907.jpg
+Places365_test_00220921.jpg
+Places365_test_00220930.jpg
+Places365_test_00220949.jpg
+Places365_test_00220970.jpg
+Places365_test_00220977.jpg
+Places365_test_00220992.jpg
+Places365_test_00221015.jpg
+Places365_test_00221016.jpg
+Places365_test_00221019.jpg
+Places365_test_00221021.jpg
+Places365_test_00221030.jpg
+Places365_test_00221046.jpg
+Places365_test_00221065.jpg
+Places365_test_00221091.jpg
+Places365_test_00221099.jpg
+Places365_test_00221107.jpg
+Places365_test_00221117.jpg
+Places365_test_00221126.jpg
+Places365_test_00221131.jpg
+Places365_test_00221148.jpg
+Places365_test_00221151.jpg
+Places365_test_00221163.jpg
+Places365_test_00221176.jpg
+Places365_test_00221181.jpg
+Places365_test_00221204.jpg
+Places365_test_00221214.jpg
+Places365_test_00221230.jpg
+Places365_test_00221236.jpg
+Places365_test_00221239.jpg
+Places365_test_00221252.jpg
+Places365_test_00221259.jpg
+Places365_test_00221265.jpg
+Places365_test_00221273.jpg
+Places365_test_00221278.jpg
+Places365_test_00221279.jpg
+Places365_test_00221296.jpg
+Places365_test_00221310.jpg
+Places365_test_00221324.jpg
+Places365_test_00221347.jpg
+Places365_test_00221348.jpg
+Places365_test_00221353.jpg
+Places365_test_00221364.jpg
+Places365_test_00221367.jpg
+Places365_test_00221370.jpg
+Places365_test_00221397.jpg
+Places365_test_00221404.jpg
+Places365_test_00221411.jpg
+Places365_test_00221412.jpg
+Places365_test_00221435.jpg
+Places365_test_00221460.jpg
+Places365_test_00221468.jpg
+Places365_test_00221470.jpg
+Places365_test_00221484.jpg
+Places365_test_00221509.jpg
+Places365_test_00221510.jpg
+Places365_test_00221520.jpg
+Places365_test_00221532.jpg
+Places365_test_00221544.jpg
+Places365_test_00221551.jpg
+Places365_test_00221552.jpg
+Places365_test_00221568.jpg
+Places365_test_00221571.jpg
+Places365_test_00221575.jpg
+Places365_test_00221586.jpg
+Places365_test_00221594.jpg
+Places365_test_00221610.jpg
+Places365_test_00221620.jpg
+Places365_test_00221627.jpg
+Places365_test_00221648.jpg
+Places365_test_00221652.jpg
+Places365_test_00221663.jpg
+Places365_test_00221725.jpg
+Places365_test_00221738.jpg
+Places365_test_00221757.jpg
+Places365_test_00221780.jpg
+Places365_test_00221785.jpg
+Places365_test_00221787.jpg
+Places365_test_00221805.jpg
+Places365_test_00221812.jpg
+Places365_test_00221839.jpg
+Places365_test_00221842.jpg
+Places365_test_00221860.jpg
+Places365_test_00221868.jpg
+Places365_test_00221875.jpg
+Places365_test_00221876.jpg
+Places365_test_00221894.jpg
+Places365_test_00221897.jpg
+Places365_test_00221905.jpg
+Places365_test_00221912.jpg
+Places365_test_00221938.jpg
+Places365_test_00221957.jpg
+Places365_test_00221960.jpg
+Places365_test_00221968.jpg
+Places365_test_00221971.jpg
+Places365_test_00221982.jpg
+Places365_test_00221994.jpg
+Places365_test_00221995.jpg
+Places365_test_00222008.jpg
+Places365_test_00222016.jpg
+Places365_test_00222018.jpg
+Places365_test_00222036.jpg
+Places365_test_00222049.jpg
+Places365_test_00222060.jpg
+Places365_test_00222061.jpg
+Places365_test_00222083.jpg
+Places365_test_00222094.jpg
+Places365_test_00222099.jpg
+Places365_test_00222108.jpg
+Places365_test_00222110.jpg
+Places365_test_00222120.jpg
+Places365_test_00222136.jpg
+Places365_test_00222140.jpg
+Places365_test_00222151.jpg
+Places365_test_00222155.jpg
+Places365_test_00222183.jpg
+Places365_test_00222194.jpg
+Places365_test_00222197.jpg
+Places365_test_00222206.jpg
+Places365_test_00222209.jpg
+Places365_test_00222212.jpg
+Places365_test_00222214.jpg
+Places365_test_00222239.jpg
+Places365_test_00222261.jpg
+Places365_test_00222265.jpg
+Places365_test_00222267.jpg
+Places365_test_00222269.jpg
+Places365_test_00222271.jpg
+Places365_test_00222275.jpg
+Places365_test_00222284.jpg
+Places365_test_00222298.jpg
+Places365_test_00222312.jpg
+Places365_test_00222330.jpg
+Places365_test_00222351.jpg
+Places365_test_00222376.jpg
+Places365_test_00222415.jpg
+Places365_test_00222417.jpg
+Places365_test_00222419.jpg
+Places365_test_00222428.jpg
+Places365_test_00222439.jpg
+Places365_test_00222444.jpg
+Places365_test_00222448.jpg
+Places365_test_00222463.jpg
+Places365_test_00222470.jpg
+Places365_test_00222472.jpg
+Places365_test_00222475.jpg
+Places365_test_00222479.jpg
+Places365_test_00222485.jpg
+Places365_test_00222499.jpg
+Places365_test_00222500.jpg
+Places365_test_00222510.jpg
+Places365_test_00222512.jpg
+Places365_test_00222513.jpg
+Places365_test_00222529.jpg
+Places365_test_00222531.jpg
+Places365_test_00222538.jpg
+Places365_test_00222552.jpg
+Places365_test_00222554.jpg
+Places365_test_00222562.jpg
+Places365_test_00222568.jpg
+Places365_test_00222572.jpg
+Places365_test_00222598.jpg
+Places365_test_00222608.jpg
+Places365_test_00222613.jpg
+Places365_test_00222623.jpg
+Places365_test_00222638.jpg
+Places365_test_00222646.jpg
+Places365_test_00222669.jpg
+Places365_test_00222698.jpg
+Places365_test_00222716.jpg
+Places365_test_00222724.jpg
+Places365_test_00222748.jpg
+Places365_test_00222770.jpg
+Places365_test_00222780.jpg
+Places365_test_00222803.jpg
+Places365_test_00222811.jpg
+Places365_test_00222819.jpg
+Places365_test_00222820.jpg
+Places365_test_00222839.jpg
+Places365_test_00222844.jpg
+Places365_test_00222847.jpg
+Places365_test_00222849.jpg
+Places365_test_00222853.jpg
+Places365_test_00222854.jpg
+Places365_test_00222868.jpg
+Places365_test_00222878.jpg
+Places365_test_00222884.jpg
+Places365_test_00222904.jpg
+Places365_test_00222952.jpg
+Places365_test_00222961.jpg
+Places365_test_00222962.jpg
+Places365_test_00222969.jpg
+Places365_test_00222982.jpg
+Places365_test_00222988.jpg
+Places365_test_00222997.jpg
+Places365_test_00223007.jpg
+Places365_test_00223012.jpg
+Places365_test_00223014.jpg
+Places365_test_00223019.jpg
+Places365_test_00223021.jpg
+Places365_test_00223029.jpg
+Places365_test_00223032.jpg
+Places365_test_00223035.jpg
+Places365_test_00223037.jpg
+Places365_test_00223048.jpg
+Places365_test_00223051.jpg
+Places365_test_00223052.jpg
+Places365_test_00223054.jpg
+Places365_test_00223065.jpg
+Places365_test_00223066.jpg
+Places365_test_00223072.jpg
+Places365_test_00223073.jpg
+Places365_test_00223080.jpg
+Places365_test_00223090.jpg
+Places365_test_00223110.jpg
+Places365_test_00223123.jpg
+Places365_test_00223126.jpg
+Places365_test_00223140.jpg
+Places365_test_00223153.jpg
+Places365_test_00223160.jpg
+Places365_test_00223176.jpg
+Places365_test_00223190.jpg
+Places365_test_00223195.jpg
+Places365_test_00223199.jpg
+Places365_test_00223205.jpg
+Places365_test_00223206.jpg
+Places365_test_00223208.jpg
+Places365_test_00223210.jpg
+Places365_test_00223213.jpg
+Places365_test_00223220.jpg
+Places365_test_00223250.jpg
+Places365_test_00223283.jpg
+Places365_test_00223299.jpg
+Places365_test_00223308.jpg
+Places365_test_00223309.jpg
+Places365_test_00223326.jpg
+Places365_test_00223328.jpg
+Places365_test_00223331.jpg
+Places365_test_00223336.jpg
+Places365_test_00223338.jpg
+Places365_test_00223344.jpg
+Places365_test_00223362.jpg
+Places365_test_00223364.jpg
+Places365_test_00223369.jpg
+Places365_test_00223370.jpg
+Places365_test_00223416.jpg
+Places365_test_00223422.jpg
+Places365_test_00223438.jpg
+Places365_test_00223445.jpg
+Places365_test_00223450.jpg
+Places365_test_00223458.jpg
+Places365_test_00223460.jpg
+Places365_test_00223480.jpg
+Places365_test_00223506.jpg
+Places365_test_00223507.jpg
+Places365_test_00223509.jpg
+Places365_test_00223511.jpg
+Places365_test_00223518.jpg
+Places365_test_00223525.jpg
+Places365_test_00223543.jpg
+Places365_test_00223549.jpg
+Places365_test_00223560.jpg
+Places365_test_00223585.jpg
+Places365_test_00223596.jpg
+Places365_test_00223597.jpg
+Places365_test_00223625.jpg
+Places365_test_00223636.jpg
+Places365_test_00223663.jpg
+Places365_test_00223666.jpg
+Places365_test_00223684.jpg
+Places365_test_00223693.jpg
+Places365_test_00223697.jpg
+Places365_test_00223700.jpg
+Places365_test_00223709.jpg
+Places365_test_00223711.jpg
+Places365_test_00223715.jpg
+Places365_test_00223719.jpg
+Places365_test_00223734.jpg
+Places365_test_00223745.jpg
+Places365_test_00223747.jpg
+Places365_test_00223754.jpg
+Places365_test_00223758.jpg
+Places365_test_00223759.jpg
+Places365_test_00223762.jpg
+Places365_test_00223768.jpg
+Places365_test_00223772.jpg
+Places365_test_00223782.jpg
+Places365_test_00223808.jpg
+Places365_test_00223822.jpg
+Places365_test_00223829.jpg
+Places365_test_00223849.jpg
+Places365_test_00223850.jpg
+Places365_test_00223854.jpg
+Places365_test_00223860.jpg
+Places365_test_00223864.jpg
+Places365_test_00223872.jpg
+Places365_test_00223891.jpg
+Places365_test_00223914.jpg
+Places365_test_00223928.jpg
+Places365_test_00223940.jpg
+Places365_test_00223945.jpg
+Places365_test_00223972.jpg
+Places365_test_00223980.jpg
+Places365_test_00223983.jpg
+Places365_test_00223989.jpg
+Places365_test_00224005.jpg
+Places365_test_00224021.jpg
+Places365_test_00224031.jpg
+Places365_test_00224033.jpg
+Places365_test_00224047.jpg
+Places365_test_00224048.jpg
+Places365_test_00224054.jpg
+Places365_test_00224057.jpg
+Places365_test_00224060.jpg
+Places365_test_00224065.jpg
+Places365_test_00224071.jpg
+Places365_test_00224074.jpg
+Places365_test_00224078.jpg
+Places365_test_00224095.jpg
+Places365_test_00224104.jpg
+Places365_test_00224105.jpg
+Places365_test_00224118.jpg
+Places365_test_00224122.jpg
+Places365_test_00224127.jpg
+Places365_test_00224129.jpg
+Places365_test_00224134.jpg
+Places365_test_00224150.jpg
+Places365_test_00224156.jpg
+Places365_test_00224158.jpg
+Places365_test_00224167.jpg
+Places365_test_00224191.jpg
+Places365_test_00224195.jpg
+Places365_test_00224201.jpg
+Places365_test_00224209.jpg
+Places365_test_00224281.jpg
+Places365_test_00224292.jpg
+Places365_test_00224293.jpg
+Places365_test_00224295.jpg
+Places365_test_00224297.jpg
+Places365_test_00224308.jpg
+Places365_test_00224313.jpg
+Places365_test_00224321.jpg
+Places365_test_00224338.jpg
+Places365_test_00224339.jpg
+Places365_test_00224365.jpg
+Places365_test_00224389.jpg
+Places365_test_00224418.jpg
+Places365_test_00224430.jpg
+Places365_test_00224433.jpg
+Places365_test_00224443.jpg
+Places365_test_00224444.jpg
+Places365_test_00224447.jpg
+Places365_test_00224448.jpg
+Places365_test_00224464.jpg
+Places365_test_00224501.jpg
+Places365_test_00224505.jpg
+Places365_test_00224516.jpg
+Places365_test_00224527.jpg
+Places365_test_00224534.jpg
+Places365_test_00224539.jpg
+Places365_test_00224548.jpg
+Places365_test_00224573.jpg
+Places365_test_00224585.jpg
+Places365_test_00224600.jpg
+Places365_test_00224605.jpg
+Places365_test_00224626.jpg
+Places365_test_00224650.jpg
+Places365_test_00224652.jpg
+Places365_test_00224656.jpg
+Places365_test_00224677.jpg
+Places365_test_00224690.jpg
+Places365_test_00224700.jpg
+Places365_test_00224722.jpg
+Places365_test_00224736.jpg
+Places365_test_00224753.jpg
+Places365_test_00224758.jpg
+Places365_test_00224762.jpg
+Places365_test_00224774.jpg
+Places365_test_00224784.jpg
+Places365_test_00224796.jpg
+Places365_test_00224813.jpg
+Places365_test_00224823.jpg
+Places365_test_00224837.jpg
+Places365_test_00224842.jpg
+Places365_test_00224847.jpg
+Places365_test_00224856.jpg
+Places365_test_00224858.jpg
+Places365_test_00224866.jpg
+Places365_test_00224899.jpg
+Places365_test_00224911.jpg
+Places365_test_00224913.jpg
+Places365_test_00224918.jpg
+Places365_test_00224935.jpg
+Places365_test_00224943.jpg
+Places365_test_00224946.jpg
+Places365_test_00224978.jpg
+Places365_test_00224987.jpg
+Places365_test_00225006.jpg
+Places365_test_00225008.jpg
+Places365_test_00225009.jpg
+Places365_test_00225049.jpg
+Places365_test_00225085.jpg
+Places365_test_00225086.jpg
+Places365_test_00225091.jpg
+Places365_test_00225103.jpg
+Places365_test_00225107.jpg
+Places365_test_00225110.jpg
+Places365_test_00225115.jpg
+Places365_test_00225124.jpg
+Places365_test_00225147.jpg
+Places365_test_00225179.jpg
+Places365_test_00225184.jpg
+Places365_test_00225190.jpg
+Places365_test_00225200.jpg
+Places365_test_00225204.jpg
+Places365_test_00225214.jpg
+Places365_test_00225219.jpg
+Places365_test_00225252.jpg
+Places365_test_00225270.jpg
+Places365_test_00225277.jpg
+Places365_test_00225280.jpg
+Places365_test_00225309.jpg
+Places365_test_00225340.jpg
+Places365_test_00225343.jpg
+Places365_test_00225351.jpg
+Places365_test_00225357.jpg
+Places365_test_00225361.jpg
+Places365_test_00225366.jpg
+Places365_test_00225369.jpg
+Places365_test_00225371.jpg
+Places365_test_00225375.jpg
+Places365_test_00225376.jpg
+Places365_test_00225378.jpg
+Places365_test_00225379.jpg
+Places365_test_00225381.jpg
+Places365_test_00225417.jpg
+Places365_test_00225422.jpg
+Places365_test_00225441.jpg
+Places365_test_00225452.jpg
+Places365_test_00225465.jpg
+Places365_test_00225470.jpg
+Places365_test_00225471.jpg
+Places365_test_00225473.jpg
+Places365_test_00225476.jpg
+Places365_test_00225482.jpg
+Places365_test_00225486.jpg
+Places365_test_00225488.jpg
+Places365_test_00225496.jpg
+Places365_test_00225513.jpg
+Places365_test_00225516.jpg
+Places365_test_00225525.jpg
+Places365_test_00225528.jpg
+Places365_test_00225540.jpg
+Places365_test_00225550.jpg
+Places365_test_00225557.jpg
+Places365_test_00225561.jpg
+Places365_test_00225577.jpg
+Places365_test_00225581.jpg
+Places365_test_00225583.jpg
+Places365_test_00225586.jpg
+Places365_test_00225595.jpg
+Places365_test_00225614.jpg
+Places365_test_00225650.jpg
+Places365_test_00225653.jpg
+Places365_test_00225656.jpg
+Places365_test_00225659.jpg
+Places365_test_00225676.jpg
+Places365_test_00225678.jpg
+Places365_test_00225695.jpg
+Places365_test_00225696.jpg
+Places365_test_00225697.jpg
+Places365_test_00225711.jpg
+Places365_test_00225714.jpg
+Places365_test_00225719.jpg
+Places365_test_00225739.jpg
+Places365_test_00225761.jpg
+Places365_test_00225767.jpg
+Places365_test_00225775.jpg
+Places365_test_00225778.jpg
+Places365_test_00225790.jpg
+Places365_test_00225807.jpg
+Places365_test_00225813.jpg
+Places365_test_00225824.jpg
+Places365_test_00225825.jpg
+Places365_test_00225826.jpg
+Places365_test_00225832.jpg
+Places365_test_00225866.jpg
+Places365_test_00225887.jpg
+Places365_test_00225898.jpg
+Places365_test_00225905.jpg
+Places365_test_00225910.jpg
+Places365_test_00225913.jpg
+Places365_test_00225914.jpg
+Places365_test_00225917.jpg
+Places365_test_00225932.jpg
+Places365_test_00225970.jpg
+Places365_test_00225998.jpg
+Places365_test_00226008.jpg
+Places365_test_00226010.jpg
+Places365_test_00226016.jpg
+Places365_test_00226065.jpg
+Places365_test_00226071.jpg
+Places365_test_00226083.jpg
+Places365_test_00226094.jpg
+Places365_test_00226117.jpg
+Places365_test_00226125.jpg
+Places365_test_00226144.jpg
+Places365_test_00226215.jpg
+Places365_test_00226218.jpg
+Places365_test_00226239.jpg
+Places365_test_00226240.jpg
+Places365_test_00226258.jpg
+Places365_test_00226268.jpg
+Places365_test_00226271.jpg
+Places365_test_00226279.jpg
+Places365_test_00226288.jpg
+Places365_test_00226295.jpg
+Places365_test_00226317.jpg
+Places365_test_00226319.jpg
+Places365_test_00226325.jpg
+Places365_test_00226330.jpg
+Places365_test_00226335.jpg
+Places365_test_00226343.jpg
+Places365_test_00226345.jpg
+Places365_test_00226352.jpg
+Places365_test_00226371.jpg
+Places365_test_00226378.jpg
+Places365_test_00226389.jpg
+Places365_test_00226392.jpg
+Places365_test_00226394.jpg
+Places365_test_00226408.jpg
+Places365_test_00226419.jpg
+Places365_test_00226424.jpg
+Places365_test_00226430.jpg
+Places365_test_00226432.jpg
+Places365_test_00226443.jpg
+Places365_test_00226460.jpg
+Places365_test_00226461.jpg
+Places365_test_00226464.jpg
+Places365_test_00226470.jpg
+Places365_test_00226516.jpg
+Places365_test_00226528.jpg
+Places365_test_00226542.jpg
+Places365_test_00226547.jpg
+Places365_test_00226563.jpg
+Places365_test_00226582.jpg
+Places365_test_00226594.jpg
+Places365_test_00226598.jpg
+Places365_test_00226602.jpg
+Places365_test_00226604.jpg
+Places365_test_00226619.jpg
+Places365_test_00226620.jpg
+Places365_test_00226621.jpg
+Places365_test_00226622.jpg
+Places365_test_00226623.jpg
+Places365_test_00226624.jpg
+Places365_test_00226628.jpg
+Places365_test_00226646.jpg
+Places365_test_00226650.jpg
+Places365_test_00226677.jpg
+Places365_test_00226682.jpg
+Places365_test_00226698.jpg
+Places365_test_00226718.jpg
+Places365_test_00226722.jpg
+Places365_test_00226725.jpg
+Places365_test_00226726.jpg
+Places365_test_00226728.jpg
+Places365_test_00226748.jpg
+Places365_test_00226769.jpg
+Places365_test_00226796.jpg
+Places365_test_00226805.jpg
+Places365_test_00226812.jpg
+Places365_test_00226820.jpg
+Places365_test_00226830.jpg
+Places365_test_00226832.jpg
+Places365_test_00226841.jpg
+Places365_test_00226860.jpg
+Places365_test_00226865.jpg
+Places365_test_00226872.jpg
+Places365_test_00226879.jpg
+Places365_test_00226880.jpg
+Places365_test_00226885.jpg
+Places365_test_00226894.jpg
+Places365_test_00226923.jpg
+Places365_test_00226952.jpg
+Places365_test_00226963.jpg
+Places365_test_00226976.jpg
+Places365_test_00226986.jpg
+Places365_test_00226987.jpg
+Places365_test_00226999.jpg
+Places365_test_00227003.jpg
+Places365_test_00227008.jpg
+Places365_test_00227011.jpg
+Places365_test_00227039.jpg
+Places365_test_00227054.jpg
+Places365_test_00227086.jpg
+Places365_test_00227095.jpg
+Places365_test_00227101.jpg
+Places365_test_00227119.jpg
+Places365_test_00227127.jpg
+Places365_test_00227137.jpg
+Places365_test_00227153.jpg
+Places365_test_00227155.jpg
+Places365_test_00227165.jpg
+Places365_test_00227168.jpg
+Places365_test_00227175.jpg
+Places365_test_00227195.jpg
+Places365_test_00227197.jpg
+Places365_test_00227199.jpg
+Places365_test_00227206.jpg
+Places365_test_00227212.jpg
+Places365_test_00227216.jpg
+Places365_test_00227233.jpg
+Places365_test_00227253.jpg
+Places365_test_00227265.jpg
+Places365_test_00227298.jpg
+Places365_test_00227313.jpg
+Places365_test_00227317.jpg
+Places365_test_00227318.jpg
+Places365_test_00227323.jpg
+Places365_test_00227325.jpg
+Places365_test_00227333.jpg
+Places365_test_00227349.jpg
+Places365_test_00227354.jpg
+Places365_test_00227362.jpg
+Places365_test_00227363.jpg
+Places365_test_00227364.jpg
+Places365_test_00227368.jpg
+Places365_test_00227393.jpg
+Places365_test_00227395.jpg
+Places365_test_00227406.jpg
+Places365_test_00227416.jpg
+Places365_test_00227436.jpg
+Places365_test_00227438.jpg
+Places365_test_00227439.jpg
+Places365_test_00227453.jpg
+Places365_test_00227455.jpg
+Places365_test_00227490.jpg
+Places365_test_00227491.jpg
+Places365_test_00227500.jpg
+Places365_test_00227549.jpg
+Places365_test_00227558.jpg
+Places365_test_00227569.jpg
+Places365_test_00227590.jpg
+Places365_test_00227604.jpg
+Places365_test_00227607.jpg
+Places365_test_00227608.jpg
+Places365_test_00227636.jpg
+Places365_test_00227638.jpg
+Places365_test_00227642.jpg
+Places365_test_00227645.jpg
+Places365_test_00227650.jpg
+Places365_test_00227656.jpg
+Places365_test_00227661.jpg
+Places365_test_00227695.jpg
+Places365_test_00227696.jpg
+Places365_test_00227700.jpg
+Places365_test_00227702.jpg
+Places365_test_00227709.jpg
+Places365_test_00227711.jpg
+Places365_test_00227716.jpg
+Places365_test_00227718.jpg
+Places365_test_00227727.jpg
+Places365_test_00227735.jpg
+Places365_test_00227747.jpg
+Places365_test_00227761.jpg
+Places365_test_00227772.jpg
+Places365_test_00227777.jpg
+Places365_test_00227779.jpg
+Places365_test_00227783.jpg
+Places365_test_00227793.jpg
+Places365_test_00227810.jpg
+Places365_test_00227812.jpg
+Places365_test_00227819.jpg
+Places365_test_00227823.jpg
+Places365_test_00227836.jpg
+Places365_test_00227839.jpg
+Places365_test_00227840.jpg
+Places365_test_00227854.jpg
+Places365_test_00227891.jpg
+Places365_test_00227904.jpg
+Places365_test_00227907.jpg
+Places365_test_00227924.jpg
+Places365_test_00227927.jpg
+Places365_test_00227935.jpg
+Places365_test_00227938.jpg
+Places365_test_00227953.jpg
+Places365_test_00227961.jpg
+Places365_test_00227985.jpg
+Places365_test_00228001.jpg
+Places365_test_00228012.jpg
+Places365_test_00228013.jpg
+Places365_test_00228027.jpg
+Places365_test_00228029.jpg
+Places365_test_00228039.jpg
+Places365_test_00228041.jpg
+Places365_test_00228054.jpg
+Places365_test_00228060.jpg
+Places365_test_00228063.jpg
+Places365_test_00228081.jpg
+Places365_test_00228094.jpg
+Places365_test_00228106.jpg
+Places365_test_00228108.jpg
+Places365_test_00228111.jpg
+Places365_test_00228156.jpg
+Places365_test_00228172.jpg
+Places365_test_00228175.jpg
+Places365_test_00228176.jpg
+Places365_test_00228193.jpg
+Places365_test_00228200.jpg
+Places365_test_00228204.jpg
+Places365_test_00228210.jpg
+Places365_test_00228215.jpg
+Places365_test_00228226.jpg
+Places365_test_00228233.jpg
+Places365_test_00228234.jpg
+Places365_test_00228241.jpg
+Places365_test_00228246.jpg
+Places365_test_00228248.jpg
+Places365_test_00228253.jpg
+Places365_test_00228256.jpg
+Places365_test_00228257.jpg
+Places365_test_00228286.jpg
+Places365_test_00228299.jpg
+Places365_test_00228301.jpg
+Places365_test_00228306.jpg
+Places365_test_00228310.jpg
+Places365_test_00228314.jpg
+Places365_test_00228316.jpg
+Places365_test_00228318.jpg
+Places365_test_00228322.jpg
+Places365_test_00228334.jpg
+Places365_test_00228340.jpg
+Places365_test_00228346.jpg
+Places365_test_00228356.jpg
+Places365_test_00228363.jpg
+Places365_test_00228364.jpg
+Places365_test_00228378.jpg
+Places365_test_00228386.jpg
+Places365_test_00228401.jpg
+Places365_test_00228414.jpg
+Places365_test_00228429.jpg
+Places365_test_00228444.jpg
+Places365_test_00228452.jpg
+Places365_test_00228467.jpg
+Places365_test_00228492.jpg
+Places365_test_00228506.jpg
+Places365_test_00228508.jpg
+Places365_test_00228548.jpg
+Places365_test_00228557.jpg
+Places365_test_00228564.jpg
+Places365_test_00228569.jpg
+Places365_test_00228578.jpg
+Places365_test_00228582.jpg
+Places365_test_00228583.jpg
+Places365_test_00228596.jpg
+Places365_test_00228623.jpg
+Places365_test_00228647.jpg
+Places365_test_00228670.jpg
+Places365_test_00228711.jpg
+Places365_test_00228722.jpg
+Places365_test_00228723.jpg
+Places365_test_00228730.jpg
+Places365_test_00228733.jpg
+Places365_test_00228734.jpg
+Places365_test_00228749.jpg
+Places365_test_00228765.jpg
+Places365_test_00228766.jpg
+Places365_test_00228778.jpg
+Places365_test_00228790.jpg
+Places365_test_00228827.jpg
+Places365_test_00228843.jpg
+Places365_test_00228855.jpg
+Places365_test_00228901.jpg
+Places365_test_00228923.jpg
+Places365_test_00228927.jpg
+Places365_test_00228936.jpg
+Places365_test_00228940.jpg
+Places365_test_00228942.jpg
+Places365_test_00228953.jpg
+Places365_test_00228965.jpg
+Places365_test_00228967.jpg
+Places365_test_00228979.jpg
+Places365_test_00228986.jpg
+Places365_test_00228991.jpg
+Places365_test_00228996.jpg
+Places365_test_00229006.jpg
+Places365_test_00229010.jpg
+Places365_test_00229013.jpg
+Places365_test_00229019.jpg
+Places365_test_00229027.jpg
+Places365_test_00229042.jpg
+Places365_test_00229062.jpg
+Places365_test_00229083.jpg
+Places365_test_00229095.jpg
+Places365_test_00229107.jpg
+Places365_test_00229125.jpg
+Places365_test_00229126.jpg
+Places365_test_00229127.jpg
+Places365_test_00229134.jpg
+Places365_test_00229142.jpg
+Places365_test_00229148.jpg
+Places365_test_00229156.jpg
+Places365_test_00229162.jpg
+Places365_test_00229176.jpg
+Places365_test_00229180.jpg
+Places365_test_00229181.jpg
+Places365_test_00229186.jpg
+Places365_test_00229194.jpg
+Places365_test_00229196.jpg
+Places365_test_00229217.jpg
+Places365_test_00229219.jpg
+Places365_test_00229243.jpg
+Places365_test_00229251.jpg
+Places365_test_00229276.jpg
+Places365_test_00229282.jpg
+Places365_test_00229292.jpg
+Places365_test_00229305.jpg
+Places365_test_00229307.jpg
+Places365_test_00229309.jpg
+Places365_test_00229313.jpg
+Places365_test_00229320.jpg
+Places365_test_00229323.jpg
+Places365_test_00229336.jpg
+Places365_test_00229338.jpg
+Places365_test_00229352.jpg
+Places365_test_00229357.jpg
+Places365_test_00229367.jpg
+Places365_test_00229375.jpg
+Places365_test_00229384.jpg
+Places365_test_00229389.jpg
+Places365_test_00229394.jpg
+Places365_test_00229395.jpg
+Places365_test_00229396.jpg
+Places365_test_00229416.jpg
+Places365_test_00229450.jpg
+Places365_test_00229452.jpg
+Places365_test_00229458.jpg
+Places365_test_00229463.jpg
+Places365_test_00229479.jpg
+Places365_test_00229488.jpg
+Places365_test_00229514.jpg
+Places365_test_00229528.jpg
+Places365_test_00229529.jpg
+Places365_test_00229534.jpg
+Places365_test_00229558.jpg
+Places365_test_00229603.jpg
+Places365_test_00229612.jpg
+Places365_test_00229630.jpg
+Places365_test_00229635.jpg
+Places365_test_00229655.jpg
+Places365_test_00229663.jpg
+Places365_test_00229676.jpg
+Places365_test_00229695.jpg
+Places365_test_00229700.jpg
+Places365_test_00229707.jpg
+Places365_test_00229732.jpg
+Places365_test_00229739.jpg
+Places365_test_00229744.jpg
+Places365_test_00229747.jpg
+Places365_test_00229763.jpg
+Places365_test_00229773.jpg
+Places365_test_00229774.jpg
+Places365_test_00229775.jpg
+Places365_test_00229777.jpg
+Places365_test_00229789.jpg
+Places365_test_00229798.jpg
+Places365_test_00229808.jpg
+Places365_test_00229818.jpg
+Places365_test_00229825.jpg
+Places365_test_00229833.jpg
+Places365_test_00229847.jpg
+Places365_test_00229852.jpg
+Places365_test_00229856.jpg
+Places365_test_00229862.jpg
+Places365_test_00229872.jpg
+Places365_test_00229901.jpg
+Places365_test_00229911.jpg
+Places365_test_00229949.jpg
+Places365_test_00229952.jpg
+Places365_test_00229954.jpg
+Places365_test_00229963.jpg
+Places365_test_00229969.jpg
+Places365_test_00229974.jpg
+Places365_test_00229994.jpg
+Places365_test_00230001.jpg
+Places365_test_00230009.jpg
+Places365_test_00230022.jpg
+Places365_test_00230074.jpg
+Places365_test_00230094.jpg
+Places365_test_00230110.jpg
+Places365_test_00230115.jpg
+Places365_test_00230133.jpg
+Places365_test_00230138.jpg
+Places365_test_00230140.jpg
+Places365_test_00230145.jpg
+Places365_test_00230149.jpg
+Places365_test_00230172.jpg
+Places365_test_00230180.jpg
+Places365_test_00230186.jpg
+Places365_test_00230190.jpg
+Places365_test_00230200.jpg
+Places365_test_00230212.jpg
+Places365_test_00230220.jpg
+Places365_test_00230243.jpg
+Places365_test_00230251.jpg
+Places365_test_00230263.jpg
+Places365_test_00230280.jpg
+Places365_test_00230284.jpg
+Places365_test_00230295.jpg
+Places365_test_00230302.jpg
+Places365_test_00230305.jpg
+Places365_test_00230314.jpg
+Places365_test_00230328.jpg
+Places365_test_00230338.jpg
+Places365_test_00230390.jpg
+Places365_test_00230399.jpg
+Places365_test_00230404.jpg
+Places365_test_00230409.jpg
+Places365_test_00230420.jpg
+Places365_test_00230428.jpg
+Places365_test_00230453.jpg
+Places365_test_00230460.jpg
+Places365_test_00230465.jpg
+Places365_test_00230469.jpg
+Places365_test_00230476.jpg
+Places365_test_00230509.jpg
+Places365_test_00230513.jpg
+Places365_test_00230561.jpg
+Places365_test_00230584.jpg
+Places365_test_00230590.jpg
+Places365_test_00230594.jpg
+Places365_test_00230600.jpg
+Places365_test_00230640.jpg
+Places365_test_00230646.jpg
+Places365_test_00230649.jpg
+Places365_test_00230681.jpg
+Places365_test_00230684.jpg
+Places365_test_00230720.jpg
+Places365_test_00230732.jpg
+Places365_test_00230748.jpg
+Places365_test_00230753.jpg
+Places365_test_00230757.jpg
+Places365_test_00230760.jpg
+Places365_test_00230763.jpg
+Places365_test_00230768.jpg
+Places365_test_00230769.jpg
+Places365_test_00230772.jpg
+Places365_test_00230777.jpg
+Places365_test_00230786.jpg
+Places365_test_00230788.jpg
+Places365_test_00230790.jpg
+Places365_test_00230801.jpg
+Places365_test_00230807.jpg
+Places365_test_00230820.jpg
+Places365_test_00230866.jpg
+Places365_test_00230886.jpg
+Places365_test_00230890.jpg
+Places365_test_00230911.jpg
+Places365_test_00230922.jpg
+Places365_test_00230923.jpg
+Places365_test_00230931.jpg
+Places365_test_00230936.jpg
+Places365_test_00230945.jpg
+Places365_test_00230954.jpg
+Places365_test_00230969.jpg
+Places365_test_00230972.jpg
+Places365_test_00230976.jpg
+Places365_test_00230978.jpg
+Places365_test_00230987.jpg
+Places365_test_00230988.jpg
+Places365_test_00230994.jpg
+Places365_test_00231005.jpg
+Places365_test_00231013.jpg
+Places365_test_00231029.jpg
+Places365_test_00231033.jpg
+Places365_test_00231035.jpg
+Places365_test_00231039.jpg
+Places365_test_00231062.jpg
+Places365_test_00231069.jpg
+Places365_test_00231097.jpg
+Places365_test_00231115.jpg
+Places365_test_00231130.jpg
+Places365_test_00231136.jpg
+Places365_test_00231142.jpg
+Places365_test_00231144.jpg
+Places365_test_00231153.jpg
+Places365_test_00231169.jpg
+Places365_test_00231188.jpg
+Places365_test_00231216.jpg
+Places365_test_00231233.jpg
+Places365_test_00231250.jpg
+Places365_test_00231269.jpg
+Places365_test_00231346.jpg
+Places365_test_00231367.jpg
+Places365_test_00231379.jpg
+Places365_test_00231395.jpg
+Places365_test_00231401.jpg
+Places365_test_00231411.jpg
+Places365_test_00231413.jpg
+Places365_test_00231431.jpg
+Places365_test_00231436.jpg
+Places365_test_00231441.jpg
+Places365_test_00231442.jpg
+Places365_test_00231449.jpg
+Places365_test_00231455.jpg
+Places365_test_00231473.jpg
+Places365_test_00231477.jpg
+Places365_test_00231494.jpg
+Places365_test_00231495.jpg
+Places365_test_00231513.jpg
+Places365_test_00231520.jpg
+Places365_test_00231550.jpg
+Places365_test_00231561.jpg
+Places365_test_00231578.jpg
+Places365_test_00231582.jpg
+Places365_test_00231589.jpg
+Places365_test_00231597.jpg
+Places365_test_00231600.jpg
+Places365_test_00231606.jpg
+Places365_test_00231624.jpg
+Places365_test_00231647.jpg
+Places365_test_00231660.jpg
+Places365_test_00231665.jpg
+Places365_test_00231677.jpg
+Places365_test_00231688.jpg
+Places365_test_00231698.jpg
+Places365_test_00231708.jpg
+Places365_test_00231709.jpg
+Places365_test_00231712.jpg
+Places365_test_00231713.jpg
+Places365_test_00231718.jpg
+Places365_test_00231729.jpg
+Places365_test_00231730.jpg
+Places365_test_00231750.jpg
+Places365_test_00231754.jpg
+Places365_test_00231757.jpg
+Places365_test_00231763.jpg
+Places365_test_00231765.jpg
+Places365_test_00231771.jpg
+Places365_test_00231780.jpg
+Places365_test_00231781.jpg
+Places365_test_00231791.jpg
+Places365_test_00231793.jpg
+Places365_test_00231804.jpg
+Places365_test_00231809.jpg
+Places365_test_00231825.jpg
+Places365_test_00231830.jpg
+Places365_test_00231835.jpg
+Places365_test_00231838.jpg
+Places365_test_00231847.jpg
+Places365_test_00231848.jpg
+Places365_test_00231852.jpg
+Places365_test_00231853.jpg
+Places365_test_00231858.jpg
+Places365_test_00231879.jpg
+Places365_test_00231889.jpg
+Places365_test_00231927.jpg
+Places365_test_00231930.jpg
+Places365_test_00231937.jpg
+Places365_test_00231943.jpg
+Places365_test_00231947.jpg
+Places365_test_00231990.jpg
+Places365_test_00231998.jpg
+Places365_test_00232001.jpg
+Places365_test_00232004.jpg
+Places365_test_00232008.jpg
+Places365_test_00232009.jpg
+Places365_test_00232037.jpg
+Places365_test_00232048.jpg
+Places365_test_00232088.jpg
+Places365_test_00232096.jpg
+Places365_test_00232104.jpg
+Places365_test_00232111.jpg
+Places365_test_00232119.jpg
+Places365_test_00232122.jpg
+Places365_test_00232124.jpg
+Places365_test_00232126.jpg
+Places365_test_00232138.jpg
+Places365_test_00232144.jpg
+Places365_test_00232147.jpg
+Places365_test_00232162.jpg
+Places365_test_00232179.jpg
+Places365_test_00232180.jpg
+Places365_test_00232188.jpg
+Places365_test_00232190.jpg
+Places365_test_00232200.jpg
+Places365_test_00232206.jpg
+Places365_test_00232209.jpg
+Places365_test_00232211.jpg
+Places365_test_00232212.jpg
+Places365_test_00232233.jpg
+Places365_test_00232276.jpg
+Places365_test_00232290.jpg
+Places365_test_00232300.jpg
+Places365_test_00232320.jpg
+Places365_test_00232330.jpg
+Places365_test_00232343.jpg
+Places365_test_00232356.jpg
+Places365_test_00232361.jpg
+Places365_test_00232374.jpg
+Places365_test_00232375.jpg
+Places365_test_00232392.jpg
+Places365_test_00232406.jpg
+Places365_test_00232417.jpg
+Places365_test_00232423.jpg
+Places365_test_00232440.jpg
+Places365_test_00232443.jpg
+Places365_test_00232449.jpg
+Places365_test_00232452.jpg
+Places365_test_00232459.jpg
+Places365_test_00232469.jpg
+Places365_test_00232487.jpg
+Places365_test_00232537.jpg
+Places365_test_00232545.jpg
+Places365_test_00232560.jpg
+Places365_test_00232570.jpg
+Places365_test_00232611.jpg
+Places365_test_00232626.jpg
+Places365_test_00232630.jpg
+Places365_test_00232634.jpg
+Places365_test_00232636.jpg
+Places365_test_00232648.jpg
+Places365_test_00232653.jpg
+Places365_test_00232654.jpg
+Places365_test_00232672.jpg
+Places365_test_00232675.jpg
+Places365_test_00232676.jpg
+Places365_test_00232689.jpg
+Places365_test_00232699.jpg
+Places365_test_00232711.jpg
+Places365_test_00232718.jpg
+Places365_test_00232725.jpg
+Places365_test_00232727.jpg
+Places365_test_00232739.jpg
+Places365_test_00232757.jpg
+Places365_test_00232764.jpg
+Places365_test_00232789.jpg
+Places365_test_00232790.jpg
+Places365_test_00232795.jpg
+Places365_test_00232800.jpg
+Places365_test_00232812.jpg
+Places365_test_00232813.jpg
+Places365_test_00232819.jpg
+Places365_test_00232840.jpg
+Places365_test_00232846.jpg
+Places365_test_00232855.jpg
+Places365_test_00232872.jpg
+Places365_test_00232904.jpg
+Places365_test_00232905.jpg
+Places365_test_00232917.jpg
+Places365_test_00232924.jpg
+Places365_test_00232926.jpg
+Places365_test_00232937.jpg
+Places365_test_00232947.jpg
+Places365_test_00232955.jpg
+Places365_test_00232965.jpg
+Places365_test_00232975.jpg
+Places365_test_00232979.jpg
+Places365_test_00232986.jpg
+Places365_test_00232998.jpg
+Places365_test_00233023.jpg
+Places365_test_00233029.jpg
+Places365_test_00233033.jpg
+Places365_test_00233035.jpg
+Places365_test_00233041.jpg
+Places365_test_00233059.jpg
+Places365_test_00233065.jpg
+Places365_test_00233068.jpg
+Places365_test_00233085.jpg
+Places365_test_00233092.jpg
+Places365_test_00233096.jpg
+Places365_test_00233100.jpg
+Places365_test_00233114.jpg
+Places365_test_00233118.jpg
+Places365_test_00233120.jpg
+Places365_test_00233156.jpg
+Places365_test_00233157.jpg
+Places365_test_00233163.jpg
+Places365_test_00233167.jpg
+Places365_test_00233173.jpg
+Places365_test_00233185.jpg
+Places365_test_00233194.jpg
+Places365_test_00233200.jpg
+Places365_test_00233205.jpg
+Places365_test_00233239.jpg
+Places365_test_00233241.jpg
+Places365_test_00233265.jpg
+Places365_test_00233281.jpg
+Places365_test_00233287.jpg
+Places365_test_00233296.jpg
+Places365_test_00233299.jpg
+Places365_test_00233315.jpg
+Places365_test_00233322.jpg
+Places365_test_00233327.jpg
+Places365_test_00233331.jpg
+Places365_test_00233346.jpg
+Places365_test_00233350.jpg
+Places365_test_00233353.jpg
+Places365_test_00233359.jpg
+Places365_test_00233362.jpg
+Places365_test_00233371.jpg
+Places365_test_00233372.jpg
+Places365_test_00233385.jpg
+Places365_test_00233396.jpg
+Places365_test_00233405.jpg
+Places365_test_00233406.jpg
+Places365_test_00233408.jpg
+Places365_test_00233411.jpg
+Places365_test_00233423.jpg
+Places365_test_00233432.jpg
+Places365_test_00233453.jpg
+Places365_test_00233468.jpg
+Places365_test_00233471.jpg
+Places365_test_00233489.jpg
+Places365_test_00233512.jpg
+Places365_test_00233516.jpg
+Places365_test_00233523.jpg
+Places365_test_00233537.jpg
+Places365_test_00233540.jpg
+Places365_test_00233548.jpg
+Places365_test_00233559.jpg
+Places365_test_00233567.jpg
+Places365_test_00233572.jpg
+Places365_test_00233573.jpg
+Places365_test_00233580.jpg
+Places365_test_00233582.jpg
+Places365_test_00233597.jpg
+Places365_test_00233598.jpg
+Places365_test_00233604.jpg
+Places365_test_00233608.jpg
+Places365_test_00233611.jpg
+Places365_test_00233618.jpg
+Places365_test_00233620.jpg
+Places365_test_00233635.jpg
+Places365_test_00233637.jpg
+Places365_test_00233638.jpg
+Places365_test_00233639.jpg
+Places365_test_00233640.jpg
+Places365_test_00233642.jpg
+Places365_test_00233644.jpg
+Places365_test_00233687.jpg
+Places365_test_00233689.jpg
+Places365_test_00233697.jpg
+Places365_test_00233698.jpg
+Places365_test_00233705.jpg
+Places365_test_00233709.jpg
+Places365_test_00233732.jpg
+Places365_test_00233733.jpg
+Places365_test_00233758.jpg
+Places365_test_00233767.jpg
+Places365_test_00233770.jpg
+Places365_test_00233778.jpg
+Places365_test_00233780.jpg
+Places365_test_00233783.jpg
+Places365_test_00233796.jpg
+Places365_test_00233798.jpg
+Places365_test_00233806.jpg
+Places365_test_00233818.jpg
+Places365_test_00233819.jpg
+Places365_test_00233823.jpg
+Places365_test_00233831.jpg
+Places365_test_00233832.jpg
+Places365_test_00233869.jpg
+Places365_test_00233873.jpg
+Places365_test_00233882.jpg
+Places365_test_00233913.jpg
+Places365_test_00233956.jpg
+Places365_test_00233965.jpg
+Places365_test_00233967.jpg
+Places365_test_00233972.jpg
+Places365_test_00233983.jpg
+Places365_test_00233991.jpg
+Places365_test_00234010.jpg
+Places365_test_00234040.jpg
+Places365_test_00234049.jpg
+Places365_test_00234060.jpg
+Places365_test_00234090.jpg
+Places365_test_00234097.jpg
+Places365_test_00234105.jpg
+Places365_test_00234123.jpg
+Places365_test_00234129.jpg
+Places365_test_00234142.jpg
+Places365_test_00234143.jpg
+Places365_test_00234148.jpg
+Places365_test_00234154.jpg
+Places365_test_00234171.jpg
+Places365_test_00234179.jpg
+Places365_test_00234188.jpg
+Places365_test_00234193.jpg
+Places365_test_00234217.jpg
+Places365_test_00234225.jpg
+Places365_test_00234233.jpg
+Places365_test_00234235.jpg
+Places365_test_00234246.jpg
+Places365_test_00234247.jpg
+Places365_test_00234279.jpg
+Places365_test_00234286.jpg
+Places365_test_00234291.jpg
+Places365_test_00234299.jpg
+Places365_test_00234300.jpg
+Places365_test_00234303.jpg
+Places365_test_00234304.jpg
+Places365_test_00234305.jpg
+Places365_test_00234318.jpg
+Places365_test_00234332.jpg
+Places365_test_00234342.jpg
+Places365_test_00234349.jpg
+Places365_test_00234357.jpg
+Places365_test_00234364.jpg
+Places365_test_00234378.jpg
+Places365_test_00234382.jpg
+Places365_test_00234398.jpg
+Places365_test_00234441.jpg
+Places365_test_00234451.jpg
+Places365_test_00234457.jpg
+Places365_test_00234470.jpg
+Places365_test_00234476.jpg
+Places365_test_00234496.jpg
+Places365_test_00234506.jpg
+Places365_test_00234507.jpg
+Places365_test_00234519.jpg
+Places365_test_00234542.jpg
+Places365_test_00234544.jpg
+Places365_test_00234556.jpg
+Places365_test_00234582.jpg
+Places365_test_00234583.jpg
+Places365_test_00234593.jpg
+Places365_test_00234621.jpg
+Places365_test_00234626.jpg
+Places365_test_00234634.jpg
+Places365_test_00234639.jpg
+Places365_test_00234647.jpg
+Places365_test_00234661.jpg
+Places365_test_00234662.jpg
+Places365_test_00234677.jpg
+Places365_test_00234702.jpg
+Places365_test_00234704.jpg
+Places365_test_00234714.jpg
+Places365_test_00234717.jpg
+Places365_test_00234724.jpg
+Places365_test_00234736.jpg
+Places365_test_00234741.jpg
+Places365_test_00234749.jpg
+Places365_test_00234773.jpg
+Places365_test_00234791.jpg
+Places365_test_00234820.jpg
+Places365_test_00234831.jpg
+Places365_test_00234836.jpg
+Places365_test_00234837.jpg
+Places365_test_00234850.jpg
+Places365_test_00234854.jpg
+Places365_test_00234883.jpg
+Places365_test_00234892.jpg
+Places365_test_00234902.jpg
+Places365_test_00234913.jpg
+Places365_test_00234914.jpg
+Places365_test_00234915.jpg
+Places365_test_00234930.jpg
+Places365_test_00234939.jpg
+Places365_test_00234942.jpg
+Places365_test_00234948.jpg
+Places365_test_00234951.jpg
+Places365_test_00234954.jpg
+Places365_test_00234980.jpg
+Places365_test_00235006.jpg
+Places365_test_00235016.jpg
+Places365_test_00235019.jpg
+Places365_test_00235030.jpg
+Places365_test_00235037.jpg
+Places365_test_00235038.jpg
+Places365_test_00235053.jpg
+Places365_test_00235068.jpg
+Places365_test_00235073.jpg
+Places365_test_00235075.jpg
+Places365_test_00235077.jpg
+Places365_test_00235137.jpg
+Places365_test_00235159.jpg
+Places365_test_00235189.jpg
+Places365_test_00235208.jpg
+Places365_test_00235219.jpg
+Places365_test_00235232.jpg
+Places365_test_00235234.jpg
+Places365_test_00235239.jpg
+Places365_test_00235250.jpg
+Places365_test_00235257.jpg
+Places365_test_00235268.jpg
+Places365_test_00235288.jpg
+Places365_test_00235290.jpg
+Places365_test_00235309.jpg
+Places365_test_00235340.jpg
+Places365_test_00235356.jpg
+Places365_test_00235370.jpg
+Places365_test_00235397.jpg
+Places365_test_00235400.jpg
+Places365_test_00235404.jpg
+Places365_test_00235406.jpg
+Places365_test_00235429.jpg
+Places365_test_00235434.jpg
+Places365_test_00235439.jpg
+Places365_test_00235446.jpg
+Places365_test_00235453.jpg
+Places365_test_00235464.jpg
+Places365_test_00235470.jpg
+Places365_test_00235473.jpg
+Places365_test_00235475.jpg
+Places365_test_00235485.jpg
+Places365_test_00235486.jpg
+Places365_test_00235494.jpg
+Places365_test_00235499.jpg
+Places365_test_00235504.jpg
+Places365_test_00235524.jpg
+Places365_test_00235531.jpg
+Places365_test_00235554.jpg
+Places365_test_00235569.jpg
+Places365_test_00235571.jpg
+Places365_test_00235576.jpg
+Places365_test_00235585.jpg
+Places365_test_00235606.jpg
+Places365_test_00235623.jpg
+Places365_test_00235625.jpg
+Places365_test_00235626.jpg
+Places365_test_00235634.jpg
+Places365_test_00235659.jpg
+Places365_test_00235664.jpg
+Places365_test_00235685.jpg
+Places365_test_00235686.jpg
+Places365_test_00235688.jpg
+Places365_test_00235718.jpg
+Places365_test_00235720.jpg
+Places365_test_00235748.jpg
+Places365_test_00235764.jpg
+Places365_test_00235769.jpg
+Places365_test_00235777.jpg
+Places365_test_00235779.jpg
+Places365_test_00235782.jpg
+Places365_test_00235784.jpg
+Places365_test_00235798.jpg
+Places365_test_00235802.jpg
+Places365_test_00235817.jpg
+Places365_test_00235831.jpg
+Places365_test_00235837.jpg
+Places365_test_00235857.jpg
+Places365_test_00235871.jpg
+Places365_test_00235875.jpg
+Places365_test_00235917.jpg
+Places365_test_00235932.jpg
+Places365_test_00235970.jpg
+Places365_test_00236010.jpg
+Places365_test_00236011.jpg
+Places365_test_00236014.jpg
+Places365_test_00236020.jpg
+Places365_test_00236024.jpg
+Places365_test_00236050.jpg
+Places365_test_00236052.jpg
+Places365_test_00236057.jpg
+Places365_test_00236058.jpg
+Places365_test_00236072.jpg
+Places365_test_00236093.jpg
+Places365_test_00236098.jpg
+Places365_test_00236105.jpg
+Places365_test_00236114.jpg
+Places365_test_00236120.jpg
+Places365_test_00236124.jpg
+Places365_test_00236133.jpg
+Places365_test_00236150.jpg
+Places365_test_00236151.jpg
+Places365_test_00236152.jpg
+Places365_test_00236161.jpg
+Places365_test_00236169.jpg
+Places365_test_00236170.jpg
+Places365_test_00236209.jpg
+Places365_test_00236212.jpg
+Places365_test_00236230.jpg
+Places365_test_00236253.jpg
+Places365_test_00236265.jpg
+Places365_test_00236267.jpg
+Places365_test_00236272.jpg
+Places365_test_00236279.jpg
+Places365_test_00236284.jpg
+Places365_test_00236285.jpg
+Places365_test_00236297.jpg
+Places365_test_00236305.jpg
+Places365_test_00236318.jpg
+Places365_test_00236339.jpg
+Places365_test_00236343.jpg
+Places365_test_00236350.jpg
+Places365_test_00236353.jpg
+Places365_test_00236357.jpg
+Places365_test_00236368.jpg
+Places365_test_00236372.jpg
+Places365_test_00236374.jpg
+Places365_test_00236375.jpg
+Places365_test_00236382.jpg
+Places365_test_00236420.jpg
+Places365_test_00236429.jpg
+Places365_test_00236432.jpg
+Places365_test_00236433.jpg
+Places365_test_00236456.jpg
+Places365_test_00236458.jpg
+Places365_test_00236459.jpg
+Places365_test_00236474.jpg
+Places365_test_00236477.jpg
+Places365_test_00236480.jpg
+Places365_test_00236506.jpg
+Places365_test_00236529.jpg
+Places365_test_00236532.jpg
+Places365_test_00236552.jpg
+Places365_test_00236554.jpg
+Places365_test_00236565.jpg
+Places365_test_00236567.jpg
+Places365_test_00236583.jpg
+Places365_test_00236584.jpg
+Places365_test_00236594.jpg
+Places365_test_00236596.jpg
+Places365_test_00236609.jpg
+Places365_test_00236632.jpg
+Places365_test_00236648.jpg
+Places365_test_00236650.jpg
+Places365_test_00236695.jpg
+Places365_test_00236731.jpg
+Places365_test_00236738.jpg
+Places365_test_00236753.jpg
+Places365_test_00236763.jpg
+Places365_test_00236769.jpg
+Places365_test_00236773.jpg
+Places365_test_00236777.jpg
+Places365_test_00236785.jpg
+Places365_test_00236799.jpg
+Places365_test_00236806.jpg
+Places365_test_00236810.jpg
+Places365_test_00236814.jpg
+Places365_test_00236823.jpg
+Places365_test_00236845.jpg
+Places365_test_00236846.jpg
+Places365_test_00236848.jpg
+Places365_test_00236873.jpg
+Places365_test_00236888.jpg
+Places365_test_00236909.jpg
+Places365_test_00236917.jpg
+Places365_test_00236926.jpg
+Places365_test_00236949.jpg
+Places365_test_00236957.jpg
+Places365_test_00236971.jpg
+Places365_test_00236985.jpg
+Places365_test_00236987.jpg
+Places365_test_00236991.jpg
+Places365_test_00237000.jpg
+Places365_test_00237016.jpg
+Places365_test_00237022.jpg
+Places365_test_00237025.jpg
+Places365_test_00237027.jpg
+Places365_test_00237045.jpg
+Places365_test_00237058.jpg
+Places365_test_00237075.jpg
+Places365_test_00237088.jpg
+Places365_test_00237108.jpg
+Places365_test_00237123.jpg
+Places365_test_00237129.jpg
+Places365_test_00237135.jpg
+Places365_test_00237179.jpg
+Places365_test_00237182.jpg
+Places365_test_00237188.jpg
+Places365_test_00237191.jpg
+Places365_test_00237206.jpg
+Places365_test_00237222.jpg
+Places365_test_00237232.jpg
+Places365_test_00237253.jpg
+Places365_test_00237254.jpg
+Places365_test_00237266.jpg
+Places365_test_00237273.jpg
+Places365_test_00237287.jpg
+Places365_test_00237291.jpg
+Places365_test_00237296.jpg
+Places365_test_00237297.jpg
+Places365_test_00237300.jpg
+Places365_test_00237302.jpg
+Places365_test_00237314.jpg
+Places365_test_00237316.jpg
+Places365_test_00237328.jpg
+Places365_test_00237351.jpg
+Places365_test_00237365.jpg
+Places365_test_00237370.jpg
+Places365_test_00237373.jpg
+Places365_test_00237390.jpg
+Places365_test_00237393.jpg
+Places365_test_00237397.jpg
+Places365_test_00237405.jpg
+Places365_test_00237436.jpg
+Places365_test_00237437.jpg
+Places365_test_00237440.jpg
+Places365_test_00237450.jpg
+Places365_test_00237458.jpg
+Places365_test_00237464.jpg
+Places365_test_00237468.jpg
+Places365_test_00237472.jpg
+Places365_test_00237494.jpg
+Places365_test_00237499.jpg
+Places365_test_00237501.jpg
+Places365_test_00237508.jpg
+Places365_test_00237521.jpg
+Places365_test_00237526.jpg
+Places365_test_00237561.jpg
+Places365_test_00237566.jpg
+Places365_test_00237575.jpg
+Places365_test_00237578.jpg
+Places365_test_00237584.jpg
+Places365_test_00237607.jpg
+Places365_test_00237616.jpg
+Places365_test_00237623.jpg
+Places365_test_00237637.jpg
+Places365_test_00237665.jpg
+Places365_test_00237671.jpg
+Places365_test_00237680.jpg
+Places365_test_00237696.jpg
+Places365_test_00237701.jpg
+Places365_test_00237702.jpg
+Places365_test_00237713.jpg
+Places365_test_00237725.jpg
+Places365_test_00237732.jpg
+Places365_test_00237739.jpg
+Places365_test_00237749.jpg
+Places365_test_00237759.jpg
+Places365_test_00237760.jpg
+Places365_test_00237769.jpg
+Places365_test_00237776.jpg
+Places365_test_00237796.jpg
+Places365_test_00237798.jpg
+Places365_test_00237802.jpg
+Places365_test_00237825.jpg
+Places365_test_00237856.jpg
+Places365_test_00237887.jpg
+Places365_test_00237904.jpg
+Places365_test_00237921.jpg
+Places365_test_00237946.jpg
+Places365_test_00237958.jpg
+Places365_test_00237966.jpg
+Places365_test_00237973.jpg
+Places365_test_00237988.jpg
+Places365_test_00238002.jpg
+Places365_test_00238008.jpg
+Places365_test_00238014.jpg
+Places365_test_00238037.jpg
+Places365_test_00238070.jpg
+Places365_test_00238073.jpg
+Places365_test_00238076.jpg
+Places365_test_00238077.jpg
+Places365_test_00238078.jpg
+Places365_test_00238099.jpg
+Places365_test_00238101.jpg
+Places365_test_00238109.jpg
+Places365_test_00238111.jpg
+Places365_test_00238133.jpg
+Places365_test_00238147.jpg
+Places365_test_00238148.jpg
+Places365_test_00238168.jpg
+Places365_test_00238178.jpg
+Places365_test_00238188.jpg
+Places365_test_00238189.jpg
+Places365_test_00238194.jpg
+Places365_test_00238250.jpg
+Places365_test_00238259.jpg
+Places365_test_00238268.jpg
+Places365_test_00238273.jpg
+Places365_test_00238313.jpg
+Places365_test_00238325.jpg
+Places365_test_00238349.jpg
+Places365_test_00238350.jpg
+Places365_test_00238355.jpg
+Places365_test_00238360.jpg
+Places365_test_00238381.jpg
+Places365_test_00238393.jpg
+Places365_test_00238397.jpg
+Places365_test_00238404.jpg
+Places365_test_00238407.jpg
+Places365_test_00238408.jpg
+Places365_test_00238441.jpg
+Places365_test_00238442.jpg
+Places365_test_00238487.jpg
+Places365_test_00238498.jpg
+Places365_test_00238519.jpg
+Places365_test_00238548.jpg
+Places365_test_00238550.jpg
+Places365_test_00238555.jpg
+Places365_test_00238583.jpg
+Places365_test_00238591.jpg
+Places365_test_00238592.jpg
+Places365_test_00238593.jpg
+Places365_test_00238602.jpg
+Places365_test_00238608.jpg
+Places365_test_00238611.jpg
+Places365_test_00238629.jpg
+Places365_test_00238637.jpg
+Places365_test_00238640.jpg
+Places365_test_00238652.jpg
+Places365_test_00238678.jpg
+Places365_test_00238683.jpg
+Places365_test_00238696.jpg
+Places365_test_00238712.jpg
+Places365_test_00238720.jpg
+Places365_test_00238726.jpg
+Places365_test_00238727.jpg
+Places365_test_00238731.jpg
+Places365_test_00238742.jpg
+Places365_test_00238750.jpg
+Places365_test_00238751.jpg
+Places365_test_00238752.jpg
+Places365_test_00238757.jpg
+Places365_test_00238767.jpg
+Places365_test_00238782.jpg
+Places365_test_00238806.jpg
+Places365_test_00238812.jpg
+Places365_test_00238814.jpg
+Places365_test_00238821.jpg
+Places365_test_00238830.jpg
+Places365_test_00238847.jpg
+Places365_test_00238863.jpg
+Places365_test_00238879.jpg
+Places365_test_00238910.jpg
+Places365_test_00238917.jpg
+Places365_test_00238922.jpg
+Places365_test_00238927.jpg
+Places365_test_00238929.jpg
+Places365_test_00238939.jpg
+Places365_test_00238951.jpg
+Places365_test_00238956.jpg
+Places365_test_00238973.jpg
+Places365_test_00238974.jpg
+Places365_test_00238983.jpg
+Places365_test_00238996.jpg
+Places365_test_00239008.jpg
+Places365_test_00239011.jpg
+Places365_test_00239018.jpg
+Places365_test_00239033.jpg
+Places365_test_00239074.jpg
+Places365_test_00239079.jpg
+Places365_test_00239080.jpg
+Places365_test_00239093.jpg
+Places365_test_00239094.jpg
+Places365_test_00239120.jpg
+Places365_test_00239132.jpg
+Places365_test_00239136.jpg
+Places365_test_00239147.jpg
+Places365_test_00239152.jpg
+Places365_test_00239155.jpg
+Places365_test_00239163.jpg
+Places365_test_00239168.jpg
+Places365_test_00239170.jpg
+Places365_test_00239174.jpg
+Places365_test_00239194.jpg
+Places365_test_00239199.jpg
+Places365_test_00239214.jpg
+Places365_test_00239237.jpg
+Places365_test_00239246.jpg
+Places365_test_00239255.jpg
+Places365_test_00239274.jpg
+Places365_test_00239280.jpg
+Places365_test_00239285.jpg
+Places365_test_00239290.jpg
+Places365_test_00239310.jpg
+Places365_test_00239315.jpg
+Places365_test_00239318.jpg
+Places365_test_00239340.jpg
+Places365_test_00239349.jpg
+Places365_test_00239360.jpg
+Places365_test_00239364.jpg
+Places365_test_00239366.jpg
+Places365_test_00239380.jpg
+Places365_test_00239391.jpg
+Places365_test_00239406.jpg
+Places365_test_00239413.jpg
+Places365_test_00239425.jpg
+Places365_test_00239427.jpg
+Places365_test_00239430.jpg
+Places365_test_00239440.jpg
+Places365_test_00239461.jpg
+Places365_test_00239473.jpg
+Places365_test_00239502.jpg
+Places365_test_00239534.jpg
+Places365_test_00239557.jpg
+Places365_test_00239564.jpg
+Places365_test_00239608.jpg
+Places365_test_00239635.jpg
+Places365_test_00239636.jpg
+Places365_test_00239643.jpg
+Places365_test_00239668.jpg
+Places365_test_00239680.jpg
+Places365_test_00239719.jpg
+Places365_test_00239731.jpg
+Places365_test_00239742.jpg
+Places365_test_00239753.jpg
+Places365_test_00239761.jpg
+Places365_test_00239774.jpg
+Places365_test_00239786.jpg
+Places365_test_00239805.jpg
+Places365_test_00239814.jpg
+Places365_test_00239820.jpg
+Places365_test_00239850.jpg
+Places365_test_00239876.jpg
+Places365_test_00239878.jpg
+Places365_test_00239881.jpg
+Places365_test_00239886.jpg
+Places365_test_00239887.jpg
+Places365_test_00239902.jpg
+Places365_test_00239914.jpg
+Places365_test_00239928.jpg
+Places365_test_00239941.jpg
+Places365_test_00239943.jpg
+Places365_test_00239951.jpg
+Places365_test_00239954.jpg
+Places365_test_00239963.jpg
+Places365_test_00239991.jpg
+Places365_test_00239995.jpg
+Places365_test_00240030.jpg
+Places365_test_00240035.jpg
+Places365_test_00240038.jpg
+Places365_test_00240051.jpg
+Places365_test_00240056.jpg
+Places365_test_00240060.jpg
+Places365_test_00240090.jpg
+Places365_test_00240102.jpg
+Places365_test_00240112.jpg
+Places365_test_00240114.jpg
+Places365_test_00240132.jpg
+Places365_test_00240135.jpg
+Places365_test_00240138.jpg
+Places365_test_00240141.jpg
+Places365_test_00240161.jpg
+Places365_test_00240170.jpg
+Places365_test_00240178.jpg
+Places365_test_00240179.jpg
+Places365_test_00240188.jpg
+Places365_test_00240202.jpg
+Places365_test_00240214.jpg
+Places365_test_00240230.jpg
+Places365_test_00240237.jpg
+Places365_test_00240255.jpg
+Places365_test_00240290.jpg
+Places365_test_00240312.jpg
+Places365_test_00240320.jpg
+Places365_test_00240327.jpg
+Places365_test_00240331.jpg
+Places365_test_00240356.jpg
+Places365_test_00240357.jpg
+Places365_test_00240359.jpg
+Places365_test_00240373.jpg
+Places365_test_00240374.jpg
+Places365_test_00240378.jpg
+Places365_test_00240385.jpg
+Places365_test_00240404.jpg
+Places365_test_00240410.jpg
+Places365_test_00240433.jpg
+Places365_test_00240438.jpg
+Places365_test_00240448.jpg
+Places365_test_00240469.jpg
+Places365_test_00240472.jpg
+Places365_test_00240479.jpg
+Places365_test_00240493.jpg
+Places365_test_00240494.jpg
+Places365_test_00240495.jpg
+Places365_test_00240513.jpg
+Places365_test_00240515.jpg
+Places365_test_00240517.jpg
+Places365_test_00240524.jpg
+Places365_test_00240528.jpg
+Places365_test_00240537.jpg
+Places365_test_00240540.jpg
+Places365_test_00240551.jpg
+Places365_test_00240552.jpg
+Places365_test_00240554.jpg
+Places365_test_00240578.jpg
+Places365_test_00240613.jpg
+Places365_test_00240616.jpg
+Places365_test_00240672.jpg
+Places365_test_00240677.jpg
+Places365_test_00240678.jpg
+Places365_test_00240688.jpg
+Places365_test_00240695.jpg
+Places365_test_00240707.jpg
+Places365_test_00240708.jpg
+Places365_test_00240727.jpg
+Places365_test_00240732.jpg
+Places365_test_00240738.jpg
+Places365_test_00240755.jpg
+Places365_test_00240758.jpg
+Places365_test_00240762.jpg
+Places365_test_00240822.jpg
+Places365_test_00240828.jpg
+Places365_test_00240838.jpg
+Places365_test_00240839.jpg
+Places365_test_00240847.jpg
+Places365_test_00240849.jpg
+Places365_test_00240873.jpg
+Places365_test_00240886.jpg
+Places365_test_00240895.jpg
+Places365_test_00240900.jpg
+Places365_test_00240902.jpg
+Places365_test_00240910.jpg
+Places365_test_00240922.jpg
+Places365_test_00240933.jpg
+Places365_test_00240934.jpg
+Places365_test_00240944.jpg
+Places365_test_00240949.jpg
+Places365_test_00240950.jpg
+Places365_test_00240953.jpg
+Places365_test_00240958.jpg
+Places365_test_00240960.jpg
+Places365_test_00240961.jpg
+Places365_test_00240971.jpg
+Places365_test_00240985.jpg
+Places365_test_00240987.jpg
+Places365_test_00240988.jpg
+Places365_test_00240992.jpg
+Places365_test_00241022.jpg
+Places365_test_00241028.jpg
+Places365_test_00241039.jpg
+Places365_test_00241048.jpg
+Places365_test_00241087.jpg
+Places365_test_00241095.jpg
+Places365_test_00241096.jpg
+Places365_test_00241102.jpg
+Places365_test_00241104.jpg
+Places365_test_00241105.jpg
+Places365_test_00241113.jpg
+Places365_test_00241135.jpg
+Places365_test_00241138.jpg
+Places365_test_00241164.jpg
+Places365_test_00241168.jpg
+Places365_test_00241176.jpg
+Places365_test_00241187.jpg
+Places365_test_00241200.jpg
+Places365_test_00241213.jpg
+Places365_test_00241219.jpg
+Places365_test_00241221.jpg
+Places365_test_00241232.jpg
+Places365_test_00241241.jpg
+Places365_test_00241244.jpg
+Places365_test_00241246.jpg
+Places365_test_00241248.jpg
+Places365_test_00241260.jpg
+Places365_test_00241276.jpg
+Places365_test_00241284.jpg
+Places365_test_00241286.jpg
+Places365_test_00241289.jpg
+Places365_test_00241318.jpg
+Places365_test_00241346.jpg
+Places365_test_00241348.jpg
+Places365_test_00241350.jpg
+Places365_test_00241353.jpg
+Places365_test_00241394.jpg
+Places365_test_00241395.jpg
+Places365_test_00241405.jpg
+Places365_test_00241437.jpg
+Places365_test_00241438.jpg
+Places365_test_00241454.jpg
+Places365_test_00241455.jpg
+Places365_test_00241471.jpg
+Places365_test_00241476.jpg
+Places365_test_00241506.jpg
+Places365_test_00241520.jpg
+Places365_test_00241532.jpg
+Places365_test_00241534.jpg
+Places365_test_00241561.jpg
+Places365_test_00241562.jpg
+Places365_test_00241578.jpg
+Places365_test_00241580.jpg
+Places365_test_00241598.jpg
+Places365_test_00241599.jpg
+Places365_test_00241613.jpg
+Places365_test_00241620.jpg
+Places365_test_00241634.jpg
+Places365_test_00241683.jpg
+Places365_test_00241713.jpg
+Places365_test_00241721.jpg
+Places365_test_00241737.jpg
+Places365_test_00241741.jpg
+Places365_test_00241761.jpg
+Places365_test_00241766.jpg
+Places365_test_00241769.jpg
+Places365_test_00241771.jpg
+Places365_test_00241778.jpg
+Places365_test_00241783.jpg
+Places365_test_00241794.jpg
+Places365_test_00241799.jpg
+Places365_test_00241808.jpg
+Places365_test_00241810.jpg
+Places365_test_00241827.jpg
+Places365_test_00241845.jpg
+Places365_test_00241851.jpg
+Places365_test_00241852.jpg
+Places365_test_00241882.jpg
+Places365_test_00241896.jpg
+Places365_test_00241907.jpg
+Places365_test_00241920.jpg
+Places365_test_00241921.jpg
+Places365_test_00241940.jpg
+Places365_test_00241959.jpg
+Places365_test_00241960.jpg
+Places365_test_00241974.jpg
+Places365_test_00241996.jpg
+Places365_test_00242006.jpg
+Places365_test_00242013.jpg
+Places365_test_00242018.jpg
+Places365_test_00242030.jpg
+Places365_test_00242033.jpg
+Places365_test_00242051.jpg
+Places365_test_00242054.jpg
+Places365_test_00242061.jpg
+Places365_test_00242067.jpg
+Places365_test_00242068.jpg
+Places365_test_00242079.jpg
+Places365_test_00242106.jpg
+Places365_test_00242109.jpg
+Places365_test_00242134.jpg
+Places365_test_00242157.jpg
+Places365_test_00242162.jpg
+Places365_test_00242169.jpg
+Places365_test_00242170.jpg
+Places365_test_00242176.jpg
+Places365_test_00242185.jpg
+Places365_test_00242188.jpg
+Places365_test_00242191.jpg
+Places365_test_00242199.jpg
+Places365_test_00242202.jpg
+Places365_test_00242221.jpg
+Places365_test_00242227.jpg
+Places365_test_00242235.jpg
+Places365_test_00242247.jpg
+Places365_test_00242256.jpg
+Places365_test_00242276.jpg
+Places365_test_00242281.jpg
+Places365_test_00242293.jpg
+Places365_test_00242295.jpg
+Places365_test_00242301.jpg
+Places365_test_00242307.jpg
+Places365_test_00242320.jpg
+Places365_test_00242329.jpg
+Places365_test_00242333.jpg
+Places365_test_00242335.jpg
+Places365_test_00242336.jpg
+Places365_test_00242345.jpg
+Places365_test_00242361.jpg
+Places365_test_00242362.jpg
+Places365_test_00242370.jpg
+Places365_test_00242376.jpg
+Places365_test_00242381.jpg
+Places365_test_00242388.jpg
+Places365_test_00242404.jpg
+Places365_test_00242410.jpg
+Places365_test_00242414.jpg
+Places365_test_00242433.jpg
+Places365_test_00242453.jpg
+Places365_test_00242459.jpg
+Places365_test_00242472.jpg
+Places365_test_00242487.jpg
+Places365_test_00242488.jpg
+Places365_test_00242495.jpg
+Places365_test_00242506.jpg
+Places365_test_00242512.jpg
+Places365_test_00242513.jpg
+Places365_test_00242514.jpg
+Places365_test_00242524.jpg
+Places365_test_00242528.jpg
+Places365_test_00242533.jpg
+Places365_test_00242536.jpg
+Places365_test_00242539.jpg
+Places365_test_00242545.jpg
+Places365_test_00242562.jpg
+Places365_test_00242593.jpg
+Places365_test_00242605.jpg
+Places365_test_00242622.jpg
+Places365_test_00242630.jpg
+Places365_test_00242645.jpg
+Places365_test_00242656.jpg
+Places365_test_00242660.jpg
+Places365_test_00242678.jpg
+Places365_test_00242682.jpg
+Places365_test_00242690.jpg
+Places365_test_00242699.jpg
+Places365_test_00242705.jpg
+Places365_test_00242729.jpg
+Places365_test_00242745.jpg
+Places365_test_00242750.jpg
+Places365_test_00242765.jpg
+Places365_test_00242780.jpg
+Places365_test_00242787.jpg
+Places365_test_00242804.jpg
+Places365_test_00242805.jpg
+Places365_test_00242815.jpg
+Places365_test_00242820.jpg
+Places365_test_00242836.jpg
+Places365_test_00242854.jpg
+Places365_test_00242869.jpg
+Places365_test_00242875.jpg
+Places365_test_00242927.jpg
+Places365_test_00242944.jpg
+Places365_test_00242952.jpg
+Places365_test_00242953.jpg
+Places365_test_00242957.jpg
+Places365_test_00242962.jpg
+Places365_test_00242972.jpg
+Places365_test_00242991.jpg
+Places365_test_00243005.jpg
+Places365_test_00243035.jpg
+Places365_test_00243037.jpg
+Places365_test_00243039.jpg
+Places365_test_00243052.jpg
+Places365_test_00243076.jpg
+Places365_test_00243080.jpg
+Places365_test_00243081.jpg
+Places365_test_00243088.jpg
+Places365_test_00243089.jpg
+Places365_test_00243092.jpg
+Places365_test_00243102.jpg
+Places365_test_00243106.jpg
+Places365_test_00243108.jpg
+Places365_test_00243135.jpg
+Places365_test_00243141.jpg
+Places365_test_00243191.jpg
+Places365_test_00243199.jpg
+Places365_test_00243202.jpg
+Places365_test_00243204.jpg
+Places365_test_00243219.jpg
+Places365_test_00243224.jpg
+Places365_test_00243232.jpg
+Places365_test_00243234.jpg
+Places365_test_00243248.jpg
+Places365_test_00243257.jpg
+Places365_test_00243263.jpg
+Places365_test_00243307.jpg
+Places365_test_00243311.jpg
+Places365_test_00243324.jpg
+Places365_test_00243349.jpg
+Places365_test_00243353.jpg
+Places365_test_00243375.jpg
+Places365_test_00243413.jpg
+Places365_test_00243419.jpg
+Places365_test_00243423.jpg
+Places365_test_00243427.jpg
+Places365_test_00243437.jpg
+Places365_test_00243456.jpg
+Places365_test_00243457.jpg
+Places365_test_00243459.jpg
+Places365_test_00243485.jpg
+Places365_test_00243493.jpg
+Places365_test_00243501.jpg
+Places365_test_00243512.jpg
+Places365_test_00243523.jpg
+Places365_test_00243528.jpg
+Places365_test_00243569.jpg
+Places365_test_00243574.jpg
+Places365_test_00243576.jpg
+Places365_test_00243593.jpg
+Places365_test_00243596.jpg
+Places365_test_00243608.jpg
+Places365_test_00243611.jpg
+Places365_test_00243612.jpg
+Places365_test_00243620.jpg
+Places365_test_00243626.jpg
+Places365_test_00243632.jpg
+Places365_test_00243643.jpg
+Places365_test_00243644.jpg
+Places365_test_00243663.jpg
+Places365_test_00243669.jpg
+Places365_test_00243670.jpg
+Places365_test_00243673.jpg
+Places365_test_00243678.jpg
+Places365_test_00243692.jpg
+Places365_test_00243693.jpg
+Places365_test_00243697.jpg
+Places365_test_00243702.jpg
+Places365_test_00243710.jpg
+Places365_test_00243717.jpg
+Places365_test_00243732.jpg
+Places365_test_00243744.jpg
+Places365_test_00243769.jpg
+Places365_test_00243796.jpg
+Places365_test_00243800.jpg
+Places365_test_00243811.jpg
+Places365_test_00243819.jpg
+Places365_test_00243825.jpg
+Places365_test_00243830.jpg
+Places365_test_00243832.jpg
+Places365_test_00243849.jpg
+Places365_test_00243851.jpg
+Places365_test_00243855.jpg
+Places365_test_00243857.jpg
+Places365_test_00243861.jpg
+Places365_test_00243875.jpg
+Places365_test_00243884.jpg
+Places365_test_00243918.jpg
+Places365_test_00243956.jpg
+Places365_test_00243973.jpg
+Places365_test_00243988.jpg
+Places365_test_00243997.jpg
+Places365_test_00244011.jpg
+Places365_test_00244022.jpg
+Places365_test_00244042.jpg
+Places365_test_00244050.jpg
+Places365_test_00244059.jpg
+Places365_test_00244064.jpg
+Places365_test_00244085.jpg
+Places365_test_00244122.jpg
+Places365_test_00244143.jpg
+Places365_test_00244151.jpg
+Places365_test_00244181.jpg
+Places365_test_00244187.jpg
+Places365_test_00244190.jpg
+Places365_test_00244194.jpg
+Places365_test_00244199.jpg
+Places365_test_00244202.jpg
+Places365_test_00244207.jpg
+Places365_test_00244210.jpg
+Places365_test_00244223.jpg
+Places365_test_00244227.jpg
+Places365_test_00244228.jpg
+Places365_test_00244231.jpg
+Places365_test_00244234.jpg
+Places365_test_00244266.jpg
+Places365_test_00244272.jpg
+Places365_test_00244278.jpg
+Places365_test_00244281.jpg
+Places365_test_00244284.jpg
+Places365_test_00244300.jpg
+Places365_test_00244316.jpg
+Places365_test_00244318.jpg
+Places365_test_00244337.jpg
+Places365_test_00244338.jpg
+Places365_test_00244340.jpg
+Places365_test_00244341.jpg
+Places365_test_00244347.jpg
+Places365_test_00244360.jpg
+Places365_test_00244361.jpg
+Places365_test_00244395.jpg
+Places365_test_00244411.jpg
+Places365_test_00244462.jpg
+Places365_test_00244467.jpg
+Places365_test_00244497.jpg
+Places365_test_00244514.jpg
+Places365_test_00244517.jpg
+Places365_test_00244527.jpg
+Places365_test_00244536.jpg
+Places365_test_00244538.jpg
+Places365_test_00244555.jpg
+Places365_test_00244560.jpg
+Places365_test_00244564.jpg
+Places365_test_00244569.jpg
+Places365_test_00244579.jpg
+Places365_test_00244586.jpg
+Places365_test_00244606.jpg
+Places365_test_00244618.jpg
+Places365_test_00244645.jpg
+Places365_test_00244649.jpg
+Places365_test_00244651.jpg
+Places365_test_00244657.jpg
+Places365_test_00244660.jpg
+Places365_test_00244663.jpg
+Places365_test_00244671.jpg
+Places365_test_00244696.jpg
+Places365_test_00244702.jpg
+Places365_test_00244710.jpg
+Places365_test_00244711.jpg
+Places365_test_00244712.jpg
+Places365_test_00244717.jpg
+Places365_test_00244718.jpg
+Places365_test_00244768.jpg
+Places365_test_00244773.jpg
+Places365_test_00244782.jpg
+Places365_test_00244791.jpg
+Places365_test_00244808.jpg
+Places365_test_00244821.jpg
+Places365_test_00244822.jpg
+Places365_test_00244854.jpg
+Places365_test_00244867.jpg
+Places365_test_00244876.jpg
+Places365_test_00244878.jpg
+Places365_test_00244903.jpg
+Places365_test_00244914.jpg
+Places365_test_00244949.jpg
+Places365_test_00244951.jpg
+Places365_test_00244952.jpg
+Places365_test_00244956.jpg
+Places365_test_00244958.jpg
+Places365_test_00244976.jpg
+Places365_test_00244977.jpg
+Places365_test_00244985.jpg
+Places365_test_00244993.jpg
+Places365_test_00245017.jpg
+Places365_test_00245027.jpg
+Places365_test_00245033.jpg
+Places365_test_00245071.jpg
+Places365_test_00245077.jpg
+Places365_test_00245082.jpg
+Places365_test_00245097.jpg
+Places365_test_00245098.jpg
+Places365_test_00245112.jpg
+Places365_test_00245117.jpg
+Places365_test_00245118.jpg
+Places365_test_00245145.jpg
+Places365_test_00245150.jpg
+Places365_test_00245152.jpg
+Places365_test_00245189.jpg
+Places365_test_00245197.jpg
+Places365_test_00245220.jpg
+Places365_test_00245240.jpg
+Places365_test_00245242.jpg
+Places365_test_00245264.jpg
+Places365_test_00245267.jpg
+Places365_test_00245283.jpg
+Places365_test_00245308.jpg
+Places365_test_00245313.jpg
+Places365_test_00245316.jpg
+Places365_test_00245346.jpg
+Places365_test_00245353.jpg
+Places365_test_00245354.jpg
+Places365_test_00245378.jpg
+Places365_test_00245404.jpg
+Places365_test_00245414.jpg
+Places365_test_00245415.jpg
+Places365_test_00245424.jpg
+Places365_test_00245433.jpg
+Places365_test_00245439.jpg
+Places365_test_00245460.jpg
+Places365_test_00245481.jpg
+Places365_test_00245513.jpg
+Places365_test_00245530.jpg
+Places365_test_00245533.jpg
+Places365_test_00245534.jpg
+Places365_test_00245548.jpg
+Places365_test_00245555.jpg
+Places365_test_00245560.jpg
+Places365_test_00245568.jpg
+Places365_test_00245576.jpg
+Places365_test_00245583.jpg
+Places365_test_00245599.jpg
+Places365_test_00245610.jpg
+Places365_test_00245614.jpg
+Places365_test_00245646.jpg
+Places365_test_00245654.jpg
+Places365_test_00245660.jpg
+Places365_test_00245677.jpg
+Places365_test_00245687.jpg
+Places365_test_00245691.jpg
+Places365_test_00245705.jpg
+Places365_test_00245708.jpg
+Places365_test_00245730.jpg
+Places365_test_00245757.jpg
+Places365_test_00245766.jpg
+Places365_test_00245805.jpg
+Places365_test_00245809.jpg
+Places365_test_00245828.jpg
+Places365_test_00245834.jpg
+Places365_test_00245840.jpg
+Places365_test_00245846.jpg
+Places365_test_00245856.jpg
+Places365_test_00245857.jpg
+Places365_test_00245859.jpg
+Places365_test_00245860.jpg
+Places365_test_00245871.jpg
+Places365_test_00245902.jpg
+Places365_test_00245907.jpg
+Places365_test_00245918.jpg
+Places365_test_00245934.jpg
+Places365_test_00245949.jpg
+Places365_test_00245950.jpg
+Places365_test_00245953.jpg
+Places365_test_00245963.jpg
+Places365_test_00245984.jpg
+Places365_test_00245985.jpg
+Places365_test_00245992.jpg
+Places365_test_00245994.jpg
+Places365_test_00246025.jpg
+Places365_test_00246034.jpg
+Places365_test_00246039.jpg
+Places365_test_00246060.jpg
+Places365_test_00246089.jpg
+Places365_test_00246093.jpg
+Places365_test_00246112.jpg
+Places365_test_00246114.jpg
+Places365_test_00246131.jpg
+Places365_test_00246136.jpg
+Places365_test_00246182.jpg
+Places365_test_00246183.jpg
+Places365_test_00246185.jpg
+Places365_test_00246188.jpg
+Places365_test_00246209.jpg
+Places365_test_00246223.jpg
+Places365_test_00246224.jpg
+Places365_test_00246227.jpg
+Places365_test_00246239.jpg
+Places365_test_00246263.jpg
+Places365_test_00246277.jpg
+Places365_test_00246302.jpg
+Places365_test_00246304.jpg
+Places365_test_00246320.jpg
+Places365_test_00246321.jpg
+Places365_test_00246325.jpg
+Places365_test_00246328.jpg
+Places365_test_00246329.jpg
+Places365_test_00246336.jpg
+Places365_test_00246342.jpg
+Places365_test_00246345.jpg
+Places365_test_00246358.jpg
+Places365_test_00246362.jpg
+Places365_test_00246365.jpg
+Places365_test_00246373.jpg
+Places365_test_00246386.jpg
+Places365_test_00246390.jpg
+Places365_test_00246394.jpg
+Places365_test_00246421.jpg
+Places365_test_00246430.jpg
+Places365_test_00246431.jpg
+Places365_test_00246446.jpg
+Places365_test_00246458.jpg
+Places365_test_00246462.jpg
+Places365_test_00246467.jpg
+Places365_test_00246468.jpg
+Places365_test_00246470.jpg
+Places365_test_00246494.jpg
+Places365_test_00246500.jpg
+Places365_test_00246510.jpg
+Places365_test_00246515.jpg
+Places365_test_00246518.jpg
+Places365_test_00246520.jpg
+Places365_test_00246521.jpg
+Places365_test_00246544.jpg
+Places365_test_00246561.jpg
+Places365_test_00246575.jpg
+Places365_test_00246579.jpg
+Places365_test_00246590.jpg
+Places365_test_00246597.jpg
+Places365_test_00246607.jpg
+Places365_test_00246609.jpg
+Places365_test_00246611.jpg
+Places365_test_00246620.jpg
+Places365_test_00246623.jpg
+Places365_test_00246634.jpg
+Places365_test_00246650.jpg
+Places365_test_00246659.jpg
+Places365_test_00246662.jpg
+Places365_test_00246674.jpg
+Places365_test_00246677.jpg
+Places365_test_00246722.jpg
+Places365_test_00246725.jpg
+Places365_test_00246729.jpg
+Places365_test_00246742.jpg
+Places365_test_00246761.jpg
+Places365_test_00246781.jpg
+Places365_test_00246803.jpg
+Places365_test_00246811.jpg
+Places365_test_00246823.jpg
+Places365_test_00246836.jpg
+Places365_test_00246843.jpg
+Places365_test_00246849.jpg
+Places365_test_00246864.jpg
+Places365_test_00246873.jpg
+Places365_test_00246875.jpg
+Places365_test_00246876.jpg
+Places365_test_00246889.jpg
+Places365_test_00246901.jpg
+Places365_test_00246916.jpg
+Places365_test_00246920.jpg
+Places365_test_00246925.jpg
+Places365_test_00246939.jpg
+Places365_test_00246944.jpg
+Places365_test_00246945.jpg
+Places365_test_00246958.jpg
+Places365_test_00246963.jpg
+Places365_test_00246965.jpg
+Places365_test_00246980.jpg
+Places365_test_00247013.jpg
+Places365_test_00247033.jpg
+Places365_test_00247047.jpg
+Places365_test_00247048.jpg
+Places365_test_00247056.jpg
+Places365_test_00247063.jpg
+Places365_test_00247072.jpg
+Places365_test_00247080.jpg
+Places365_test_00247090.jpg
+Places365_test_00247102.jpg
+Places365_test_00247103.jpg
+Places365_test_00247108.jpg
+Places365_test_00247115.jpg
+Places365_test_00247139.jpg
+Places365_test_00247158.jpg
+Places365_test_00247169.jpg
+Places365_test_00247170.jpg
+Places365_test_00247175.jpg
+Places365_test_00247179.jpg
+Places365_test_00247183.jpg
+Places365_test_00247206.jpg
+Places365_test_00247210.jpg
+Places365_test_00247211.jpg
+Places365_test_00247214.jpg
+Places365_test_00247220.jpg
+Places365_test_00247227.jpg
+Places365_test_00247233.jpg
+Places365_test_00247239.jpg
+Places365_test_00247241.jpg
+Places365_test_00247247.jpg
+Places365_test_00247269.jpg
+Places365_test_00247288.jpg
+Places365_test_00247308.jpg
+Places365_test_00247328.jpg
+Places365_test_00247342.jpg
+Places365_test_00247344.jpg
+Places365_test_00247347.jpg
+Places365_test_00247350.jpg
+Places365_test_00247352.jpg
+Places365_test_00247360.jpg
+Places365_test_00247365.jpg
+Places365_test_00247367.jpg
+Places365_test_00247374.jpg
+Places365_test_00247379.jpg
+Places365_test_00247391.jpg
+Places365_test_00247404.jpg
+Places365_test_00247417.jpg
+Places365_test_00247419.jpg
+Places365_test_00247420.jpg
+Places365_test_00247422.jpg
+Places365_test_00247423.jpg
+Places365_test_00247426.jpg
+Places365_test_00247436.jpg
+Places365_test_00247465.jpg
+Places365_test_00247471.jpg
+Places365_test_00247487.jpg
+Places365_test_00247495.jpg
+Places365_test_00247500.jpg
+Places365_test_00247516.jpg
+Places365_test_00247521.jpg
+Places365_test_00247549.jpg
+Places365_test_00247557.jpg
+Places365_test_00247558.jpg
+Places365_test_00247564.jpg
+Places365_test_00247569.jpg
+Places365_test_00247577.jpg
+Places365_test_00247580.jpg
+Places365_test_00247612.jpg
+Places365_test_00247618.jpg
+Places365_test_00247621.jpg
+Places365_test_00247634.jpg
+Places365_test_00247642.jpg
+Places365_test_00247651.jpg
+Places365_test_00247655.jpg
+Places365_test_00247661.jpg
+Places365_test_00247667.jpg
+Places365_test_00247671.jpg
+Places365_test_00247679.jpg
+Places365_test_00247685.jpg
+Places365_test_00247691.jpg
+Places365_test_00247692.jpg
+Places365_test_00247695.jpg
+Places365_test_00247696.jpg
+Places365_test_00247726.jpg
+Places365_test_00247731.jpg
+Places365_test_00247739.jpg
+Places365_test_00247743.jpg
+Places365_test_00247750.jpg
+Places365_test_00247753.jpg
+Places365_test_00247777.jpg
+Places365_test_00247783.jpg
+Places365_test_00247786.jpg
+Places365_test_00247811.jpg
+Places365_test_00247825.jpg
+Places365_test_00247827.jpg
+Places365_test_00247834.jpg
+Places365_test_00247836.jpg
+Places365_test_00247847.jpg
+Places365_test_00247849.jpg
+Places365_test_00247857.jpg
+Places365_test_00247864.jpg
+Places365_test_00247882.jpg
+Places365_test_00247887.jpg
+Places365_test_00247888.jpg
+Places365_test_00247889.jpg
+Places365_test_00247904.jpg
+Places365_test_00247911.jpg
+Places365_test_00247925.jpg
+Places365_test_00247957.jpg
+Places365_test_00247963.jpg
+Places365_test_00247973.jpg
+Places365_test_00247976.jpg
+Places365_test_00247977.jpg
+Places365_test_00247986.jpg
+Places365_test_00248001.jpg
+Places365_test_00248013.jpg
+Places365_test_00248014.jpg
+Places365_test_00248015.jpg
+Places365_test_00248023.jpg
+Places365_test_00248038.jpg
+Places365_test_00248043.jpg
+Places365_test_00248047.jpg
+Places365_test_00248067.jpg
+Places365_test_00248081.jpg
+Places365_test_00248113.jpg
+Places365_test_00248159.jpg
+Places365_test_00248163.jpg
+Places365_test_00248166.jpg
+Places365_test_00248177.jpg
+Places365_test_00248193.jpg
+Places365_test_00248220.jpg
+Places365_test_00248243.jpg
+Places365_test_00248244.jpg
+Places365_test_00248246.jpg
+Places365_test_00248247.jpg
+Places365_test_00248249.jpg
+Places365_test_00248260.jpg
+Places365_test_00248278.jpg
+Places365_test_00248300.jpg
+Places365_test_00248316.jpg
+Places365_test_00248333.jpg
+Places365_test_00248343.jpg
+Places365_test_00248355.jpg
+Places365_test_00248370.jpg
+Places365_test_00248408.jpg
+Places365_test_00248415.jpg
+Places365_test_00248418.jpg
+Places365_test_00248427.jpg
+Places365_test_00248428.jpg
+Places365_test_00248431.jpg
+Places365_test_00248447.jpg
+Places365_test_00248458.jpg
+Places365_test_00248464.jpg
+Places365_test_00248465.jpg
+Places365_test_00248467.jpg
+Places365_test_00248482.jpg
+Places365_test_00248491.jpg
+Places365_test_00248494.jpg
+Places365_test_00248527.jpg
+Places365_test_00248539.jpg
+Places365_test_00248543.jpg
+Places365_test_00248573.jpg
+Places365_test_00248607.jpg
+Places365_test_00248624.jpg
+Places365_test_00248626.jpg
+Places365_test_00248628.jpg
+Places365_test_00248629.jpg
+Places365_test_00248648.jpg
+Places365_test_00248655.jpg
+Places365_test_00248673.jpg
+Places365_test_00248679.jpg
+Places365_test_00248680.jpg
+Places365_test_00248698.jpg
+Places365_test_00248703.jpg
+Places365_test_00248717.jpg
+Places365_test_00248731.jpg
+Places365_test_00248767.jpg
+Places365_test_00248792.jpg
+Places365_test_00248796.jpg
+Places365_test_00248806.jpg
+Places365_test_00248831.jpg
+Places365_test_00248835.jpg
+Places365_test_00248841.jpg
+Places365_test_00248855.jpg
+Places365_test_00248862.jpg
+Places365_test_00248868.jpg
+Places365_test_00248879.jpg
+Places365_test_00248886.jpg
+Places365_test_00248898.jpg
+Places365_test_00248899.jpg
+Places365_test_00248902.jpg
+Places365_test_00248904.jpg
+Places365_test_00248919.jpg
+Places365_test_00248941.jpg
+Places365_test_00248944.jpg
+Places365_test_00248956.jpg
+Places365_test_00248960.jpg
+Places365_test_00248966.jpg
+Places365_test_00248983.jpg
+Places365_test_00248985.jpg
+Places365_test_00248988.jpg
+Places365_test_00248999.jpg
+Places365_test_00249001.jpg
+Places365_test_00249004.jpg
+Places365_test_00249014.jpg
+Places365_test_00249037.jpg
+Places365_test_00249043.jpg
+Places365_test_00249051.jpg
+Places365_test_00249059.jpg
+Places365_test_00249067.jpg
+Places365_test_00249084.jpg
+Places365_test_00249102.jpg
+Places365_test_00249107.jpg
+Places365_test_00249120.jpg
+Places365_test_00249160.jpg
+Places365_test_00249185.jpg
+Places365_test_00249208.jpg
+Places365_test_00249215.jpg
+Places365_test_00249223.jpg
+Places365_test_00249224.jpg
+Places365_test_00249225.jpg
+Places365_test_00249227.jpg
+Places365_test_00249244.jpg
+Places365_test_00249255.jpg
+Places365_test_00249256.jpg
+Places365_test_00249265.jpg
+Places365_test_00249288.jpg
+Places365_test_00249296.jpg
+Places365_test_00249317.jpg
+Places365_test_00249323.jpg
+Places365_test_00249333.jpg
+Places365_test_00249338.jpg
+Places365_test_00249358.jpg
+Places365_test_00249372.jpg
+Places365_test_00249408.jpg
+Places365_test_00249411.jpg
+Places365_test_00249420.jpg
+Places365_test_00249421.jpg
+Places365_test_00249425.jpg
+Places365_test_00249435.jpg
+Places365_test_00249447.jpg
+Places365_test_00249456.jpg
+Places365_test_00249463.jpg
+Places365_test_00249472.jpg
+Places365_test_00249473.jpg
+Places365_test_00249496.jpg
+Places365_test_00249507.jpg
+Places365_test_00249514.jpg
+Places365_test_00249516.jpg
+Places365_test_00249519.jpg
+Places365_test_00249523.jpg
+Places365_test_00249527.jpg
+Places365_test_00249539.jpg
+Places365_test_00249541.jpg
+Places365_test_00249560.jpg
+Places365_test_00249567.jpg
+Places365_test_00249569.jpg
+Places365_test_00249578.jpg
+Places365_test_00249628.jpg
+Places365_test_00249641.jpg
+Places365_test_00249654.jpg
+Places365_test_00249680.jpg
+Places365_test_00249685.jpg
+Places365_test_00249688.jpg
+Places365_test_00249692.jpg
+Places365_test_00249695.jpg
+Places365_test_00249716.jpg
+Places365_test_00249724.jpg
+Places365_test_00249735.jpg
+Places365_test_00249737.jpg
+Places365_test_00249753.jpg
+Places365_test_00249807.jpg
+Places365_test_00249824.jpg
+Places365_test_00249851.jpg
+Places365_test_00249878.jpg
+Places365_test_00249882.jpg
+Places365_test_00249892.jpg
+Places365_test_00249896.jpg
+Places365_test_00249900.jpg
+Places365_test_00249904.jpg
+Places365_test_00249914.jpg
+Places365_test_00249918.jpg
+Places365_test_00249927.jpg
+Places365_test_00249937.jpg
+Places365_test_00249952.jpg
+Places365_test_00249978.jpg
+Places365_test_00249981.jpg
+Places365_test_00249984.jpg
+Places365_test_00249992.jpg
+Places365_test_00249996.jpg
+Places365_test_00250022.jpg
+Places365_test_00250027.jpg
+Places365_test_00250035.jpg
+Places365_test_00250037.jpg
+Places365_test_00250053.jpg
+Places365_test_00250070.jpg
+Places365_test_00250106.jpg
+Places365_test_00250118.jpg
+Places365_test_00250119.jpg
+Places365_test_00250128.jpg
+Places365_test_00250138.jpg
+Places365_test_00250141.jpg
+Places365_test_00250155.jpg
+Places365_test_00250189.jpg
+Places365_test_00250202.jpg
+Places365_test_00250204.jpg
+Places365_test_00250231.jpg
+Places365_test_00250241.jpg
+Places365_test_00250246.jpg
+Places365_test_00250249.jpg
+Places365_test_00250256.jpg
+Places365_test_00250258.jpg
+Places365_test_00250265.jpg
+Places365_test_00250280.jpg
+Places365_test_00250282.jpg
+Places365_test_00250289.jpg
+Places365_test_00250293.jpg
+Places365_test_00250305.jpg
+Places365_test_00250382.jpg
+Places365_test_00250385.jpg
+Places365_test_00250393.jpg
+Places365_test_00250394.jpg
+Places365_test_00250402.jpg
+Places365_test_00250414.jpg
+Places365_test_00250415.jpg
+Places365_test_00250420.jpg
+Places365_test_00250440.jpg
+Places365_test_00250463.jpg
+Places365_test_00250477.jpg
+Places365_test_00250478.jpg
+Places365_test_00250480.jpg
+Places365_test_00250491.jpg
+Places365_test_00250493.jpg
+Places365_test_00250512.jpg
+Places365_test_00250514.jpg
+Places365_test_00250516.jpg
+Places365_test_00250517.jpg
+Places365_test_00250520.jpg
+Places365_test_00250549.jpg
+Places365_test_00250561.jpg
+Places365_test_00250567.jpg
+Places365_test_00250568.jpg
+Places365_test_00250589.jpg
+Places365_test_00250609.jpg
+Places365_test_00250614.jpg
+Places365_test_00250617.jpg
+Places365_test_00250627.jpg
+Places365_test_00250632.jpg
+Places365_test_00250642.jpg
+Places365_test_00250670.jpg
+Places365_test_00250675.jpg
+Places365_test_00250700.jpg
+Places365_test_00250702.jpg
+Places365_test_00250703.jpg
+Places365_test_00250707.jpg
+Places365_test_00250709.jpg
+Places365_test_00250713.jpg
+Places365_test_00250718.jpg
+Places365_test_00250720.jpg
+Places365_test_00250735.jpg
+Places365_test_00250745.jpg
+Places365_test_00250774.jpg
+Places365_test_00250779.jpg
+Places365_test_00250790.jpg
+Places365_test_00250808.jpg
+Places365_test_00250810.jpg
+Places365_test_00250821.jpg
+Places365_test_00250827.jpg
+Places365_test_00250843.jpg
+Places365_test_00250845.jpg
+Places365_test_00250852.jpg
+Places365_test_00250871.jpg
+Places365_test_00250873.jpg
+Places365_test_00250877.jpg
+Places365_test_00250881.jpg
+Places365_test_00250886.jpg
+Places365_test_00250887.jpg
+Places365_test_00250920.jpg
+Places365_test_00250939.jpg
+Places365_test_00250940.jpg
+Places365_test_00250954.jpg
+Places365_test_00250957.jpg
+Places365_test_00250959.jpg
+Places365_test_00250979.jpg
+Places365_test_00250983.jpg
+Places365_test_00250991.jpg
+Places365_test_00250993.jpg
+Places365_test_00250997.jpg
+Places365_test_00251013.jpg
+Places365_test_00251020.jpg
+Places365_test_00251029.jpg
+Places365_test_00251033.jpg
+Places365_test_00251041.jpg
+Places365_test_00251043.jpg
+Places365_test_00251064.jpg
+Places365_test_00251077.jpg
+Places365_test_00251080.jpg
+Places365_test_00251091.jpg
+Places365_test_00251096.jpg
+Places365_test_00251109.jpg
+Places365_test_00251150.jpg
+Places365_test_00251151.jpg
+Places365_test_00251159.jpg
+Places365_test_00251172.jpg
+Places365_test_00251176.jpg
+Places365_test_00251183.jpg
+Places365_test_00251194.jpg
+Places365_test_00251248.jpg
+Places365_test_00251249.jpg
+Places365_test_00251289.jpg
+Places365_test_00251290.jpg
+Places365_test_00251291.jpg
+Places365_test_00251301.jpg
+Places365_test_00251304.jpg
+Places365_test_00251308.jpg
+Places365_test_00251318.jpg
+Places365_test_00251323.jpg
+Places365_test_00251327.jpg
+Places365_test_00251340.jpg
+Places365_test_00251349.jpg
+Places365_test_00251360.jpg
+Places365_test_00251368.jpg
+Places365_test_00251373.jpg
+Places365_test_00251379.jpg
+Places365_test_00251388.jpg
+Places365_test_00251392.jpg
+Places365_test_00251403.jpg
+Places365_test_00251404.jpg
+Places365_test_00251408.jpg
+Places365_test_00251423.jpg
+Places365_test_00251438.jpg
+Places365_test_00251439.jpg
+Places365_test_00251447.jpg
+Places365_test_00251452.jpg
+Places365_test_00251469.jpg
+Places365_test_00251470.jpg
+Places365_test_00251472.jpg
+Places365_test_00251475.jpg
+Places365_test_00251487.jpg
+Places365_test_00251501.jpg
+Places365_test_00251505.jpg
+Places365_test_00251507.jpg
+Places365_test_00251512.jpg
+Places365_test_00251521.jpg
+Places365_test_00251529.jpg
+Places365_test_00251546.jpg
+Places365_test_00251569.jpg
+Places365_test_00251571.jpg
+Places365_test_00251573.jpg
+Places365_test_00251582.jpg
+Places365_test_00251595.jpg
+Places365_test_00251614.jpg
+Places365_test_00251644.jpg
+Places365_test_00251646.jpg
+Places365_test_00251652.jpg
+Places365_test_00251671.jpg
+Places365_test_00251677.jpg
+Places365_test_00251690.jpg
+Places365_test_00251705.jpg
+Places365_test_00251714.jpg
+Places365_test_00251746.jpg
+Places365_test_00251758.jpg
+Places365_test_00251781.jpg
+Places365_test_00251819.jpg
+Places365_test_00251824.jpg
+Places365_test_00251836.jpg
+Places365_test_00251838.jpg
+Places365_test_00251849.jpg
+Places365_test_00251851.jpg
+Places365_test_00251910.jpg
+Places365_test_00251931.jpg
+Places365_test_00251951.jpg
+Places365_test_00251956.jpg
+Places365_test_00251961.jpg
+Places365_test_00251963.jpg
+Places365_test_00251964.jpg
+Places365_test_00251974.jpg
+Places365_test_00251981.jpg
+Places365_test_00251984.jpg
+Places365_test_00251990.jpg
+Places365_test_00251996.jpg
+Places365_test_00252007.jpg
+Places365_test_00252012.jpg
+Places365_test_00252013.jpg
+Places365_test_00252020.jpg
+Places365_test_00252043.jpg
+Places365_test_00252047.jpg
+Places365_test_00252104.jpg
+Places365_test_00252129.jpg
+Places365_test_00252143.jpg
+Places365_test_00252181.jpg
+Places365_test_00252191.jpg
+Places365_test_00252192.jpg
+Places365_test_00252197.jpg
+Places365_test_00252200.jpg
+Places365_test_00252210.jpg
+Places365_test_00252215.jpg
+Places365_test_00252234.jpg
+Places365_test_00252241.jpg
+Places365_test_00252262.jpg
+Places365_test_00252288.jpg
+Places365_test_00252293.jpg
+Places365_test_00252294.jpg
+Places365_test_00252309.jpg
+Places365_test_00252312.jpg
+Places365_test_00252324.jpg
+Places365_test_00252329.jpg
+Places365_test_00252339.jpg
+Places365_test_00252347.jpg
+Places365_test_00252366.jpg
+Places365_test_00252369.jpg
+Places365_test_00252370.jpg
+Places365_test_00252389.jpg
+Places365_test_00252401.jpg
+Places365_test_00252409.jpg
+Places365_test_00252411.jpg
+Places365_test_00252416.jpg
+Places365_test_00252424.jpg
+Places365_test_00252430.jpg
+Places365_test_00252442.jpg
+Places365_test_00252458.jpg
+Places365_test_00252462.jpg
+Places365_test_00252484.jpg
+Places365_test_00252492.jpg
+Places365_test_00252494.jpg
+Places365_test_00252496.jpg
+Places365_test_00252497.jpg
+Places365_test_00252508.jpg
+Places365_test_00252509.jpg
+Places365_test_00252512.jpg
+Places365_test_00252534.jpg
+Places365_test_00252537.jpg
+Places365_test_00252539.jpg
+Places365_test_00252546.jpg
+Places365_test_00252547.jpg
+Places365_test_00252553.jpg
+Places365_test_00252560.jpg
+Places365_test_00252574.jpg
+Places365_test_00252586.jpg
+Places365_test_00252612.jpg
+Places365_test_00252622.jpg
+Places365_test_00252640.jpg
+Places365_test_00252645.jpg
+Places365_test_00252658.jpg
+Places365_test_00252665.jpg
+Places365_test_00252673.jpg
+Places365_test_00252680.jpg
+Places365_test_00252697.jpg
+Places365_test_00252704.jpg
+Places365_test_00252709.jpg
+Places365_test_00252712.jpg
+Places365_test_00252714.jpg
+Places365_test_00252726.jpg
+Places365_test_00252739.jpg
+Places365_test_00252757.jpg
+Places365_test_00252762.jpg
+Places365_test_00252763.jpg
+Places365_test_00252765.jpg
+Places365_test_00252771.jpg
+Places365_test_00252773.jpg
+Places365_test_00252777.jpg
+Places365_test_00252791.jpg
+Places365_test_00252812.jpg
+Places365_test_00252833.jpg
+Places365_test_00252870.jpg
+Places365_test_00252883.jpg
+Places365_test_00252886.jpg
+Places365_test_00252903.jpg
+Places365_test_00252926.jpg
+Places365_test_00252927.jpg
+Places365_test_00252937.jpg
+Places365_test_00252950.jpg
+Places365_test_00252961.jpg
+Places365_test_00252962.jpg
+Places365_test_00252963.jpg
+Places365_test_00252971.jpg
+Places365_test_00252979.jpg
+Places365_test_00252981.jpg
+Places365_test_00252989.jpg
+Places365_test_00252999.jpg
+Places365_test_00253001.jpg
+Places365_test_00253004.jpg
+Places365_test_00253015.jpg
+Places365_test_00253016.jpg
+Places365_test_00253018.jpg
+Places365_test_00253028.jpg
+Places365_test_00253031.jpg
+Places365_test_00253033.jpg
+Places365_test_00253036.jpg
+Places365_test_00253056.jpg
+Places365_test_00253059.jpg
+Places365_test_00253084.jpg
+Places365_test_00253089.jpg
+Places365_test_00253112.jpg
+Places365_test_00253114.jpg
+Places365_test_00253127.jpg
+Places365_test_00253130.jpg
+Places365_test_00253131.jpg
+Places365_test_00253136.jpg
+Places365_test_00253138.jpg
+Places365_test_00253144.jpg
+Places365_test_00253177.jpg
+Places365_test_00253178.jpg
+Places365_test_00253187.jpg
+Places365_test_00253208.jpg
+Places365_test_00253248.jpg
+Places365_test_00253250.jpg
+Places365_test_00253265.jpg
+Places365_test_00253284.jpg
+Places365_test_00253285.jpg
+Places365_test_00253286.jpg
+Places365_test_00253287.jpg
+Places365_test_00253300.jpg
+Places365_test_00253323.jpg
+Places365_test_00253336.jpg
+Places365_test_00253340.jpg
+Places365_test_00253345.jpg
+Places365_test_00253351.jpg
+Places365_test_00253361.jpg
+Places365_test_00253410.jpg
+Places365_test_00253414.jpg
+Places365_test_00253417.jpg
+Places365_test_00253418.jpg
+Places365_test_00253429.jpg
+Places365_test_00253433.jpg
+Places365_test_00253436.jpg
+Places365_test_00253458.jpg
+Places365_test_00253459.jpg
+Places365_test_00253465.jpg
+Places365_test_00253467.jpg
+Places365_test_00253469.jpg
+Places365_test_00253489.jpg
+Places365_test_00253494.jpg
+Places365_test_00253514.jpg
+Places365_test_00253518.jpg
+Places365_test_00253522.jpg
+Places365_test_00253528.jpg
+Places365_test_00253537.jpg
+Places365_test_00253556.jpg
+Places365_test_00253559.jpg
+Places365_test_00253581.jpg
+Places365_test_00253606.jpg
+Places365_test_00253614.jpg
+Places365_test_00253619.jpg
+Places365_test_00253621.jpg
+Places365_test_00253638.jpg
+Places365_test_00253655.jpg
+Places365_test_00253675.jpg
+Places365_test_00253681.jpg
+Places365_test_00253693.jpg
+Places365_test_00253695.jpg
+Places365_test_00253725.jpg
+Places365_test_00253726.jpg
+Places365_test_00253738.jpg
+Places365_test_00253749.jpg
+Places365_test_00253752.jpg
+Places365_test_00253767.jpg
+Places365_test_00253769.jpg
+Places365_test_00253773.jpg
+Places365_test_00253775.jpg
+Places365_test_00253792.jpg
+Places365_test_00253807.jpg
+Places365_test_00253808.jpg
+Places365_test_00253809.jpg
+Places365_test_00253816.jpg
+Places365_test_00253849.jpg
+Places365_test_00253859.jpg
+Places365_test_00253867.jpg
+Places365_test_00253874.jpg
+Places365_test_00253892.jpg
+Places365_test_00253901.jpg
+Places365_test_00253904.jpg
+Places365_test_00253928.jpg
+Places365_test_00253933.jpg
+Places365_test_00253948.jpg
+Places365_test_00253956.jpg
+Places365_test_00253967.jpg
+Places365_test_00253974.jpg
+Places365_test_00253979.jpg
+Places365_test_00254017.jpg
+Places365_test_00254024.jpg
+Places365_test_00254035.jpg
+Places365_test_00254050.jpg
+Places365_test_00254053.jpg
+Places365_test_00254057.jpg
+Places365_test_00254066.jpg
+Places365_test_00254069.jpg
+Places365_test_00254079.jpg
+Places365_test_00254094.jpg
+Places365_test_00254106.jpg
+Places365_test_00254136.jpg
+Places365_test_00254141.jpg
+Places365_test_00254172.jpg
+Places365_test_00254175.jpg
+Places365_test_00254177.jpg
+Places365_test_00254202.jpg
+Places365_test_00254216.jpg
+Places365_test_00254221.jpg
+Places365_test_00254230.jpg
+Places365_test_00254233.jpg
+Places365_test_00254243.jpg
+Places365_test_00254264.jpg
+Places365_test_00254277.jpg
+Places365_test_00254287.jpg
+Places365_test_00254290.jpg
+Places365_test_00254301.jpg
+Places365_test_00254326.jpg
+Places365_test_00254333.jpg
+Places365_test_00254338.jpg
+Places365_test_00254367.jpg
+Places365_test_00254374.jpg
+Places365_test_00254377.jpg
+Places365_test_00254378.jpg
+Places365_test_00254391.jpg
+Places365_test_00254393.jpg
+Places365_test_00254416.jpg
+Places365_test_00254429.jpg
+Places365_test_00254442.jpg
+Places365_test_00254445.jpg
+Places365_test_00254454.jpg
+Places365_test_00254461.jpg
+Places365_test_00254464.jpg
+Places365_test_00254466.jpg
+Places365_test_00254504.jpg
+Places365_test_00254515.jpg
+Places365_test_00254517.jpg
+Places365_test_00254564.jpg
+Places365_test_00254576.jpg
+Places365_test_00254619.jpg
+Places365_test_00254645.jpg
+Places365_test_00254675.jpg
+Places365_test_00254688.jpg
+Places365_test_00254697.jpg
+Places365_test_00254704.jpg
+Places365_test_00254706.jpg
+Places365_test_00254719.jpg
+Places365_test_00254734.jpg
+Places365_test_00254745.jpg
+Places365_test_00254749.jpg
+Places365_test_00254758.jpg
+Places365_test_00254765.jpg
+Places365_test_00254782.jpg
+Places365_test_00254797.jpg
+Places365_test_00254803.jpg
+Places365_test_00254808.jpg
+Places365_test_00254825.jpg
+Places365_test_00254843.jpg
+Places365_test_00254850.jpg
+Places365_test_00254854.jpg
+Places365_test_00254855.jpg
+Places365_test_00254858.jpg
+Places365_test_00254870.jpg
+Places365_test_00254873.jpg
+Places365_test_00254895.jpg
+Places365_test_00254904.jpg
+Places365_test_00254923.jpg
+Places365_test_00254937.jpg
+Places365_test_00254951.jpg
+Places365_test_00254957.jpg
+Places365_test_00254967.jpg
+Places365_test_00254987.jpg
+Places365_test_00254999.jpg
+Places365_test_00255000.jpg
+Places365_test_00255002.jpg
+Places365_test_00255014.jpg
+Places365_test_00255023.jpg
+Places365_test_00255072.jpg
+Places365_test_00255088.jpg
+Places365_test_00255098.jpg
+Places365_test_00255103.jpg
+Places365_test_00255111.jpg
+Places365_test_00255115.jpg
+Places365_test_00255128.jpg
+Places365_test_00255129.jpg
+Places365_test_00255132.jpg
+Places365_test_00255135.jpg
+Places365_test_00255142.jpg
+Places365_test_00255143.jpg
+Places365_test_00255144.jpg
+Places365_test_00255168.jpg
+Places365_test_00255178.jpg
+Places365_test_00255222.jpg
+Places365_test_00255247.jpg
+Places365_test_00255248.jpg
+Places365_test_00255250.jpg
+Places365_test_00255260.jpg
+Places365_test_00255264.jpg
+Places365_test_00255268.jpg
+Places365_test_00255279.jpg
+Places365_test_00255303.jpg
+Places365_test_00255313.jpg
+Places365_test_00255318.jpg
+Places365_test_00255320.jpg
+Places365_test_00255337.jpg
+Places365_test_00255342.jpg
+Places365_test_00255351.jpg
+Places365_test_00255359.jpg
+Places365_test_00255377.jpg
+Places365_test_00255378.jpg
+Places365_test_00255394.jpg
+Places365_test_00255403.jpg
+Places365_test_00255433.jpg
+Places365_test_00255445.jpg
+Places365_test_00255462.jpg
+Places365_test_00255475.jpg
+Places365_test_00255482.jpg
+Places365_test_00255487.jpg
+Places365_test_00255492.jpg
+Places365_test_00255495.jpg
+Places365_test_00255499.jpg
+Places365_test_00255510.jpg
+Places365_test_00255511.jpg
+Places365_test_00255520.jpg
+Places365_test_00255523.jpg
+Places365_test_00255524.jpg
+Places365_test_00255531.jpg
+Places365_test_00255538.jpg
+Places365_test_00255555.jpg
+Places365_test_00255579.jpg
+Places365_test_00255592.jpg
+Places365_test_00255613.jpg
+Places365_test_00255637.jpg
+Places365_test_00255667.jpg
+Places365_test_00255674.jpg
+Places365_test_00255686.jpg
+Places365_test_00255692.jpg
+Places365_test_00255696.jpg
+Places365_test_00255698.jpg
+Places365_test_00255699.jpg
+Places365_test_00255712.jpg
+Places365_test_00255722.jpg
+Places365_test_00255726.jpg
+Places365_test_00255741.jpg
+Places365_test_00255756.jpg
+Places365_test_00255775.jpg
+Places365_test_00255780.jpg
+Places365_test_00255783.jpg
+Places365_test_00255789.jpg
+Places365_test_00255792.jpg
+Places365_test_00255795.jpg
+Places365_test_00255803.jpg
+Places365_test_00255811.jpg
+Places365_test_00255818.jpg
+Places365_test_00255832.jpg
+Places365_test_00255837.jpg
+Places365_test_00255857.jpg
+Places365_test_00255876.jpg
+Places365_test_00255878.jpg
+Places365_test_00255897.jpg
+Places365_test_00255902.jpg
+Places365_test_00255930.jpg
+Places365_test_00255937.jpg
+Places365_test_00255947.jpg
+Places365_test_00255955.jpg
+Places365_test_00255982.jpg
+Places365_test_00255994.jpg
+Places365_test_00256017.jpg
+Places365_test_00256029.jpg
+Places365_test_00256048.jpg
+Places365_test_00256051.jpg
+Places365_test_00256055.jpg
+Places365_test_00256061.jpg
+Places365_test_00256063.jpg
+Places365_test_00256069.jpg
+Places365_test_00256077.jpg
+Places365_test_00256091.jpg
+Places365_test_00256092.jpg
+Places365_test_00256102.jpg
+Places365_test_00256105.jpg
+Places365_test_00256106.jpg
+Places365_test_00256123.jpg
+Places365_test_00256124.jpg
+Places365_test_00256130.jpg
+Places365_test_00256156.jpg
+Places365_test_00256162.jpg
+Places365_test_00256172.jpg
+Places365_test_00256173.jpg
+Places365_test_00256189.jpg
+Places365_test_00256191.jpg
+Places365_test_00256198.jpg
+Places365_test_00256203.jpg
+Places365_test_00256205.jpg
+Places365_test_00256218.jpg
+Places365_test_00256229.jpg
+Places365_test_00256232.jpg
+Places365_test_00256235.jpg
+Places365_test_00256245.jpg
+Places365_test_00256258.jpg
+Places365_test_00256271.jpg
+Places365_test_00256277.jpg
+Places365_test_00256281.jpg
+Places365_test_00256288.jpg
+Places365_test_00256299.jpg
+Places365_test_00256301.jpg
+Places365_test_00256323.jpg
+Places365_test_00256326.jpg
+Places365_test_00256343.jpg
+Places365_test_00256344.jpg
+Places365_test_00256424.jpg
+Places365_test_00256454.jpg
+Places365_test_00256474.jpg
+Places365_test_00256476.jpg
+Places365_test_00256506.jpg
+Places365_test_00256509.jpg
+Places365_test_00256531.jpg
+Places365_test_00256546.jpg
+Places365_test_00256558.jpg
+Places365_test_00256565.jpg
+Places365_test_00256572.jpg
+Places365_test_00256573.jpg
+Places365_test_00256584.jpg
+Places365_test_00256590.jpg
+Places365_test_00256592.jpg
+Places365_test_00256604.jpg
+Places365_test_00256611.jpg
+Places365_test_00256615.jpg
+Places365_test_00256621.jpg
+Places365_test_00256636.jpg
+Places365_test_00256637.jpg
+Places365_test_00256652.jpg
+Places365_test_00256656.jpg
+Places365_test_00256670.jpg
+Places365_test_00256687.jpg
+Places365_test_00256699.jpg
+Places365_test_00256701.jpg
+Places365_test_00256706.jpg
+Places365_test_00256714.jpg
+Places365_test_00256722.jpg
+Places365_test_00256737.jpg
+Places365_test_00256745.jpg
+Places365_test_00256762.jpg
+Places365_test_00256766.jpg
+Places365_test_00256770.jpg
+Places365_test_00256782.jpg
+Places365_test_00256799.jpg
+Places365_test_00256800.jpg
+Places365_test_00256807.jpg
+Places365_test_00256815.jpg
+Places365_test_00256838.jpg
+Places365_test_00256849.jpg
+Places365_test_00256850.jpg
+Places365_test_00256853.jpg
+Places365_test_00256866.jpg
+Places365_test_00256880.jpg
+Places365_test_00256889.jpg
+Places365_test_00256898.jpg
+Places365_test_00256901.jpg
+Places365_test_00256905.jpg
+Places365_test_00256936.jpg
+Places365_test_00256949.jpg
+Places365_test_00256955.jpg
+Places365_test_00256957.jpg
+Places365_test_00256960.jpg
+Places365_test_00256962.jpg
+Places365_test_00256968.jpg
+Places365_test_00257006.jpg
+Places365_test_00257018.jpg
+Places365_test_00257019.jpg
+Places365_test_00257025.jpg
+Places365_test_00257027.jpg
+Places365_test_00257043.jpg
+Places365_test_00257045.jpg
+Places365_test_00257048.jpg
+Places365_test_00257050.jpg
+Places365_test_00257060.jpg
+Places365_test_00257082.jpg
+Places365_test_00257090.jpg
+Places365_test_00257116.jpg
+Places365_test_00257125.jpg
+Places365_test_00257131.jpg
+Places365_test_00257133.jpg
+Places365_test_00257137.jpg
+Places365_test_00257164.jpg
+Places365_test_00257176.jpg
+Places365_test_00257186.jpg
+Places365_test_00257206.jpg
+Places365_test_00257211.jpg
+Places365_test_00257242.jpg
+Places365_test_00257250.jpg
+Places365_test_00257254.jpg
+Places365_test_00257258.jpg
+Places365_test_00257275.jpg
+Places365_test_00257282.jpg
+Places365_test_00257303.jpg
+Places365_test_00257312.jpg
+Places365_test_00257319.jpg
+Places365_test_00257330.jpg
+Places365_test_00257342.jpg
+Places365_test_00257348.jpg
+Places365_test_00257354.jpg
+Places365_test_00257374.jpg
+Places365_test_00257386.jpg
+Places365_test_00257394.jpg
+Places365_test_00257395.jpg
+Places365_test_00257405.jpg
+Places365_test_00257406.jpg
+Places365_test_00257417.jpg
+Places365_test_00257426.jpg
+Places365_test_00257442.jpg
+Places365_test_00257449.jpg
+Places365_test_00257468.jpg
+Places365_test_00257477.jpg
+Places365_test_00257478.jpg
+Places365_test_00257492.jpg
+Places365_test_00257499.jpg
+Places365_test_00257520.jpg
+Places365_test_00257525.jpg
+Places365_test_00257544.jpg
+Places365_test_00257554.jpg
+Places365_test_00257556.jpg
+Places365_test_00257557.jpg
+Places365_test_00257600.jpg
+Places365_test_00257625.jpg
+Places365_test_00257651.jpg
+Places365_test_00257653.jpg
+Places365_test_00257685.jpg
+Places365_test_00257688.jpg
+Places365_test_00257697.jpg
+Places365_test_00257717.jpg
+Places365_test_00257732.jpg
+Places365_test_00257763.jpg
+Places365_test_00257786.jpg
+Places365_test_00257811.jpg
+Places365_test_00257832.jpg
+Places365_test_00257834.jpg
+Places365_test_00257862.jpg
+Places365_test_00257867.jpg
+Places365_test_00257877.jpg
+Places365_test_00257888.jpg
+Places365_test_00257916.jpg
+Places365_test_00257920.jpg
+Places365_test_00257925.jpg
+Places365_test_00257929.jpg
+Places365_test_00257932.jpg
+Places365_test_00257935.jpg
+Places365_test_00257945.jpg
+Places365_test_00257952.jpg
+Places365_test_00257955.jpg
+Places365_test_00257956.jpg
+Places365_test_00257971.jpg
+Places365_test_00257973.jpg
+Places365_test_00257986.jpg
+Places365_test_00257993.jpg
+Places365_test_00258002.jpg
+Places365_test_00258005.jpg
+Places365_test_00258011.jpg
+Places365_test_00258012.jpg
+Places365_test_00258030.jpg
+Places365_test_00258036.jpg
+Places365_test_00258038.jpg
+Places365_test_00258049.jpg
+Places365_test_00258053.jpg
+Places365_test_00258058.jpg
+Places365_test_00258066.jpg
+Places365_test_00258070.jpg
+Places365_test_00258073.jpg
+Places365_test_00258079.jpg
+Places365_test_00258094.jpg
+Places365_test_00258101.jpg
+Places365_test_00258110.jpg
+Places365_test_00258116.jpg
+Places365_test_00258123.jpg
+Places365_test_00258127.jpg
+Places365_test_00258134.jpg
+Places365_test_00258139.jpg
+Places365_test_00258155.jpg
+Places365_test_00258158.jpg
+Places365_test_00258173.jpg
+Places365_test_00258174.jpg
+Places365_test_00258176.jpg
+Places365_test_00258180.jpg
+Places365_test_00258184.jpg
+Places365_test_00258190.jpg
+Places365_test_00258210.jpg
+Places365_test_00258222.jpg
+Places365_test_00258234.jpg
+Places365_test_00258238.jpg
+Places365_test_00258244.jpg
+Places365_test_00258256.jpg
+Places365_test_00258273.jpg
+Places365_test_00258280.jpg
+Places365_test_00258284.jpg
+Places365_test_00258287.jpg
+Places365_test_00258298.jpg
+Places365_test_00258303.jpg
+Places365_test_00258333.jpg
+Places365_test_00258345.jpg
+Places365_test_00258351.jpg
+Places365_test_00258356.jpg
+Places365_test_00258361.jpg
+Places365_test_00258376.jpg
+Places365_test_00258395.jpg
+Places365_test_00258404.jpg
+Places365_test_00258410.jpg
+Places365_test_00258411.jpg
+Places365_test_00258421.jpg
+Places365_test_00258437.jpg
+Places365_test_00258450.jpg
+Places365_test_00258454.jpg
+Places365_test_00258469.jpg
+Places365_test_00258483.jpg
+Places365_test_00258487.jpg
+Places365_test_00258488.jpg
+Places365_test_00258489.jpg
+Places365_test_00258506.jpg
+Places365_test_00258515.jpg
+Places365_test_00258559.jpg
+Places365_test_00258587.jpg
+Places365_test_00258601.jpg
+Places365_test_00258603.jpg
+Places365_test_00258626.jpg
+Places365_test_00258630.jpg
+Places365_test_00258632.jpg
+Places365_test_00258646.jpg
+Places365_test_00258666.jpg
+Places365_test_00258667.jpg
+Places365_test_00258670.jpg
+Places365_test_00258697.jpg
+Places365_test_00258707.jpg
+Places365_test_00258744.jpg
+Places365_test_00258772.jpg
+Places365_test_00258776.jpg
+Places365_test_00258778.jpg
+Places365_test_00258804.jpg
+Places365_test_00258813.jpg
+Places365_test_00258820.jpg
+Places365_test_00258827.jpg
+Places365_test_00258841.jpg
+Places365_test_00258843.jpg
+Places365_test_00258862.jpg
+Places365_test_00258865.jpg
+Places365_test_00258868.jpg
+Places365_test_00258882.jpg
+Places365_test_00258897.jpg
+Places365_test_00258911.jpg
+Places365_test_00258918.jpg
+Places365_test_00258936.jpg
+Places365_test_00258938.jpg
+Places365_test_00259012.jpg
+Places365_test_00259016.jpg
+Places365_test_00259048.jpg
+Places365_test_00259057.jpg
+Places365_test_00259067.jpg
+Places365_test_00259069.jpg
+Places365_test_00259076.jpg
+Places365_test_00259086.jpg
+Places365_test_00259094.jpg
+Places365_test_00259113.jpg
+Places365_test_00259114.jpg
+Places365_test_00259117.jpg
+Places365_test_00259130.jpg
+Places365_test_00259140.jpg
+Places365_test_00259146.jpg
+Places365_test_00259152.jpg
+Places365_test_00259153.jpg
+Places365_test_00259161.jpg
+Places365_test_00259172.jpg
+Places365_test_00259174.jpg
+Places365_test_00259175.jpg
+Places365_test_00259194.jpg
+Places365_test_00259195.jpg
+Places365_test_00259202.jpg
+Places365_test_00259232.jpg
+Places365_test_00259243.jpg
+Places365_test_00259253.jpg
+Places365_test_00259260.jpg
+Places365_test_00259262.jpg
+Places365_test_00259278.jpg
+Places365_test_00259295.jpg
+Places365_test_00259306.jpg
+Places365_test_00259330.jpg
+Places365_test_00259332.jpg
+Places365_test_00259336.jpg
+Places365_test_00259340.jpg
+Places365_test_00259348.jpg
+Places365_test_00259364.jpg
+Places365_test_00259366.jpg
+Places365_test_00259391.jpg
+Places365_test_00259418.jpg
+Places365_test_00259429.jpg
+Places365_test_00259439.jpg
+Places365_test_00259443.jpg
+Places365_test_00259444.jpg
+Places365_test_00259461.jpg
+Places365_test_00259464.jpg
+Places365_test_00259472.jpg
+Places365_test_00259479.jpg
+Places365_test_00259493.jpg
+Places365_test_00259499.jpg
+Places365_test_00259526.jpg
+Places365_test_00259530.jpg
+Places365_test_00259534.jpg
+Places365_test_00259535.jpg
+Places365_test_00259542.jpg
+Places365_test_00259549.jpg
+Places365_test_00259582.jpg
+Places365_test_00259611.jpg
+Places365_test_00259617.jpg
+Places365_test_00259632.jpg
+Places365_test_00259656.jpg
+Places365_test_00259660.jpg
+Places365_test_00259661.jpg
+Places365_test_00259664.jpg
+Places365_test_00259669.jpg
+Places365_test_00259687.jpg
+Places365_test_00259696.jpg
+Places365_test_00259701.jpg
+Places365_test_00259733.jpg
+Places365_test_00259738.jpg
+Places365_test_00259741.jpg
+Places365_test_00259753.jpg
+Places365_test_00259759.jpg
+Places365_test_00259770.jpg
+Places365_test_00259772.jpg
+Places365_test_00259779.jpg
+Places365_test_00259782.jpg
+Places365_test_00259808.jpg
+Places365_test_00259822.jpg
+Places365_test_00259830.jpg
+Places365_test_00259856.jpg
+Places365_test_00259861.jpg
+Places365_test_00259870.jpg
+Places365_test_00259881.jpg
+Places365_test_00259883.jpg
+Places365_test_00259885.jpg
+Places365_test_00259890.jpg
+Places365_test_00259898.jpg
+Places365_test_00259909.jpg
+Places365_test_00259918.jpg
+Places365_test_00259939.jpg
+Places365_test_00259968.jpg
+Places365_test_00259979.jpg
+Places365_test_00259983.jpg
+Places365_test_00259988.jpg
+Places365_test_00260000.jpg
+Places365_test_00260004.jpg
+Places365_test_00260006.jpg
+Places365_test_00260012.jpg
+Places365_test_00260018.jpg
+Places365_test_00260024.jpg
+Places365_test_00260028.jpg
+Places365_test_00260030.jpg
+Places365_test_00260052.jpg
+Places365_test_00260059.jpg
+Places365_test_00260067.jpg
+Places365_test_00260084.jpg
+Places365_test_00260086.jpg
+Places365_test_00260106.jpg
+Places365_test_00260114.jpg
+Places365_test_00260123.jpg
+Places365_test_00260124.jpg
+Places365_test_00260142.jpg
+Places365_test_00260145.jpg
+Places365_test_00260156.jpg
+Places365_test_00260167.jpg
+Places365_test_00260172.jpg
+Places365_test_00260187.jpg
+Places365_test_00260191.jpg
+Places365_test_00260216.jpg
+Places365_test_00260218.jpg
+Places365_test_00260231.jpg
+Places365_test_00260241.jpg
+Places365_test_00260264.jpg
+Places365_test_00260265.jpg
+Places365_test_00260269.jpg
+Places365_test_00260291.jpg
+Places365_test_00260305.jpg
+Places365_test_00260345.jpg
+Places365_test_00260347.jpg
+Places365_test_00260352.jpg
+Places365_test_00260368.jpg
+Places365_test_00260380.jpg
+Places365_test_00260405.jpg
+Places365_test_00260406.jpg
+Places365_test_00260415.jpg
+Places365_test_00260421.jpg
+Places365_test_00260425.jpg
+Places365_test_00260429.jpg
+Places365_test_00260435.jpg
+Places365_test_00260462.jpg
+Places365_test_00260472.jpg
+Places365_test_00260485.jpg
+Places365_test_00260488.jpg
+Places365_test_00260507.jpg
+Places365_test_00260525.jpg
+Places365_test_00260526.jpg
+Places365_test_00260532.jpg
+Places365_test_00260553.jpg
+Places365_test_00260571.jpg
+Places365_test_00260593.jpg
+Places365_test_00260597.jpg
+Places365_test_00260598.jpg
+Places365_test_00260600.jpg
+Places365_test_00260603.jpg
+Places365_test_00260617.jpg
+Places365_test_00260622.jpg
+Places365_test_00260623.jpg
+Places365_test_00260624.jpg
+Places365_test_00260640.jpg
+Places365_test_00260643.jpg
+Places365_test_00260646.jpg
+Places365_test_00260657.jpg
+Places365_test_00260670.jpg
+Places365_test_00260674.jpg
+Places365_test_00260676.jpg
+Places365_test_00260684.jpg
+Places365_test_00260686.jpg
+Places365_test_00260696.jpg
+Places365_test_00260709.jpg
+Places365_test_00260714.jpg
+Places365_test_00260725.jpg
+Places365_test_00260729.jpg
+Places365_test_00260735.jpg
+Places365_test_00260743.jpg
+Places365_test_00260753.jpg
+Places365_test_00260756.jpg
+Places365_test_00260758.jpg
+Places365_test_00260762.jpg
+Places365_test_00260772.jpg
+Places365_test_00260783.jpg
+Places365_test_00260791.jpg
+Places365_test_00260809.jpg
+Places365_test_00260820.jpg
+Places365_test_00260842.jpg
+Places365_test_00260845.jpg
+Places365_test_00260846.jpg
+Places365_test_00260847.jpg
+Places365_test_00260855.jpg
+Places365_test_00260863.jpg
+Places365_test_00260875.jpg
+Places365_test_00260891.jpg
+Places365_test_00260896.jpg
+Places365_test_00260934.jpg
+Places365_test_00260940.jpg
+Places365_test_00260957.jpg
+Places365_test_00260973.jpg
+Places365_test_00260974.jpg
+Places365_test_00260994.jpg
+Places365_test_00260999.jpg
+Places365_test_00261000.jpg
+Places365_test_00261001.jpg
+Places365_test_00261011.jpg
+Places365_test_00261023.jpg
+Places365_test_00261035.jpg
+Places365_test_00261041.jpg
+Places365_test_00261043.jpg
+Places365_test_00261056.jpg
+Places365_test_00261062.jpg
+Places365_test_00261073.jpg
+Places365_test_00261082.jpg
+Places365_test_00261087.jpg
+Places365_test_00261097.jpg
+Places365_test_00261107.jpg
+Places365_test_00261119.jpg
+Places365_test_00261144.jpg
+Places365_test_00261157.jpg
+Places365_test_00261187.jpg
+Places365_test_00261188.jpg
+Places365_test_00261190.jpg
+Places365_test_00261193.jpg
+Places365_test_00261201.jpg
+Places365_test_00261212.jpg
+Places365_test_00261252.jpg
+Places365_test_00261255.jpg
+Places365_test_00261258.jpg
+Places365_test_00261265.jpg
+Places365_test_00261294.jpg
+Places365_test_00261310.jpg
+Places365_test_00261314.jpg
+Places365_test_00261341.jpg
+Places365_test_00261342.jpg
+Places365_test_00261345.jpg
+Places365_test_00261352.jpg
+Places365_test_00261355.jpg
+Places365_test_00261404.jpg
+Places365_test_00261405.jpg
+Places365_test_00261418.jpg
+Places365_test_00261423.jpg
+Places365_test_00261450.jpg
+Places365_test_00261462.jpg
+Places365_test_00261483.jpg
+Places365_test_00261486.jpg
+Places365_test_00261507.jpg
+Places365_test_00261512.jpg
+Places365_test_00261519.jpg
+Places365_test_00261520.jpg
+Places365_test_00261526.jpg
+Places365_test_00261530.jpg
+Places365_test_00261534.jpg
+Places365_test_00261540.jpg
+Places365_test_00261546.jpg
+Places365_test_00261548.jpg
+Places365_test_00261559.jpg
+Places365_test_00261570.jpg
+Places365_test_00261603.jpg
+Places365_test_00261604.jpg
+Places365_test_00261612.jpg
+Places365_test_00261621.jpg
+Places365_test_00261626.jpg
+Places365_test_00261661.jpg
+Places365_test_00261663.jpg
+Places365_test_00261668.jpg
+Places365_test_00261675.jpg
+Places365_test_00261676.jpg
+Places365_test_00261683.jpg
+Places365_test_00261686.jpg
+Places365_test_00261701.jpg
+Places365_test_00261705.jpg
+Places365_test_00261719.jpg
+Places365_test_00261733.jpg
+Places365_test_00261742.jpg
+Places365_test_00261745.jpg
+Places365_test_00261746.jpg
+Places365_test_00261766.jpg
+Places365_test_00261788.jpg
+Places365_test_00261793.jpg
+Places365_test_00261816.jpg
+Places365_test_00261883.jpg
+Places365_test_00261897.jpg
+Places365_test_00261921.jpg
+Places365_test_00261928.jpg
+Places365_test_00261966.jpg
+Places365_test_00261968.jpg
+Places365_test_00261970.jpg
+Places365_test_00261973.jpg
+Places365_test_00261976.jpg
+Places365_test_00261990.jpg
+Places365_test_00262003.jpg
+Places365_test_00262014.jpg
+Places365_test_00262021.jpg
+Places365_test_00262027.jpg
+Places365_test_00262028.jpg
+Places365_test_00262061.jpg
+Places365_test_00262068.jpg
+Places365_test_00262092.jpg
+Places365_test_00262101.jpg
+Places365_test_00262115.jpg
+Places365_test_00262124.jpg
+Places365_test_00262125.jpg
+Places365_test_00262151.jpg
+Places365_test_00262165.jpg
+Places365_test_00262170.jpg
+Places365_test_00262175.jpg
+Places365_test_00262198.jpg
+Places365_test_00262208.jpg
+Places365_test_00262213.jpg
+Places365_test_00262215.jpg
+Places365_test_00262233.jpg
+Places365_test_00262237.jpg
+Places365_test_00262250.jpg
+Places365_test_00262263.jpg
+Places365_test_00262276.jpg
+Places365_test_00262280.jpg
+Places365_test_00262284.jpg
+Places365_test_00262297.jpg
+Places365_test_00262299.jpg
+Places365_test_00262311.jpg
+Places365_test_00262334.jpg
+Places365_test_00262338.jpg
+Places365_test_00262356.jpg
+Places365_test_00262358.jpg
+Places365_test_00262360.jpg
+Places365_test_00262361.jpg
+Places365_test_00262364.jpg
+Places365_test_00262374.jpg
+Places365_test_00262383.jpg
+Places365_test_00262396.jpg
+Places365_test_00262409.jpg
+Places365_test_00262410.jpg
+Places365_test_00262414.jpg
+Places365_test_00262416.jpg
+Places365_test_00262418.jpg
+Places365_test_00262423.jpg
+Places365_test_00262437.jpg
+Places365_test_00262455.jpg
+Places365_test_00262468.jpg
+Places365_test_00262472.jpg
+Places365_test_00262488.jpg
+Places365_test_00262503.jpg
+Places365_test_00262509.jpg
+Places365_test_00262510.jpg
+Places365_test_00262537.jpg
+Places365_test_00262542.jpg
+Places365_test_00262549.jpg
+Places365_test_00262567.jpg
+Places365_test_00262574.jpg
+Places365_test_00262595.jpg
+Places365_test_00262596.jpg
+Places365_test_00262610.jpg
+Places365_test_00262615.jpg
+Places365_test_00262640.jpg
+Places365_test_00262644.jpg
+Places365_test_00262645.jpg
+Places365_test_00262646.jpg
+Places365_test_00262648.jpg
+Places365_test_00262654.jpg
+Places365_test_00262659.jpg
+Places365_test_00262660.jpg
+Places365_test_00262663.jpg
+Places365_test_00262668.jpg
+Places365_test_00262674.jpg
+Places365_test_00262676.jpg
+Places365_test_00262690.jpg
+Places365_test_00262709.jpg
+Places365_test_00262721.jpg
+Places365_test_00262722.jpg
+Places365_test_00262730.jpg
+Places365_test_00262732.jpg
+Places365_test_00262753.jpg
+Places365_test_00262762.jpg
+Places365_test_00262766.jpg
+Places365_test_00262800.jpg
+Places365_test_00262811.jpg
+Places365_test_00262821.jpg
+Places365_test_00262838.jpg
+Places365_test_00262840.jpg
+Places365_test_00262849.jpg
+Places365_test_00262851.jpg
+Places365_test_00262852.jpg
+Places365_test_00262855.jpg
+Places365_test_00262856.jpg
+Places365_test_00262879.jpg
+Places365_test_00262891.jpg
+Places365_test_00262898.jpg
+Places365_test_00262906.jpg
+Places365_test_00262908.jpg
+Places365_test_00262909.jpg
+Places365_test_00262912.jpg
+Places365_test_00262925.jpg
+Places365_test_00262927.jpg
+Places365_test_00262929.jpg
+Places365_test_00262934.jpg
+Places365_test_00262937.jpg
+Places365_test_00262979.jpg
+Places365_test_00262984.jpg
+Places365_test_00262992.jpg
+Places365_test_00262995.jpg
+Places365_test_00263021.jpg
+Places365_test_00263022.jpg
+Places365_test_00263031.jpg
+Places365_test_00263035.jpg
+Places365_test_00263036.jpg
+Places365_test_00263040.jpg
+Places365_test_00263046.jpg
+Places365_test_00263050.jpg
+Places365_test_00263054.jpg
+Places365_test_00263067.jpg
+Places365_test_00263079.jpg
+Places365_test_00263099.jpg
+Places365_test_00263103.jpg
+Places365_test_00263112.jpg
+Places365_test_00263129.jpg
+Places365_test_00263134.jpg
+Places365_test_00263140.jpg
+Places365_test_00263166.jpg
+Places365_test_00263173.jpg
+Places365_test_00263203.jpg
+Places365_test_00263211.jpg
+Places365_test_00263216.jpg
+Places365_test_00263250.jpg
+Places365_test_00263260.jpg
+Places365_test_00263264.jpg
+Places365_test_00263276.jpg
+Places365_test_00263287.jpg
+Places365_test_00263294.jpg
+Places365_test_00263312.jpg
+Places365_test_00263333.jpg
+Places365_test_00263343.jpg
+Places365_test_00263350.jpg
+Places365_test_00263361.jpg
+Places365_test_00263366.jpg
+Places365_test_00263376.jpg
+Places365_test_00263380.jpg
+Places365_test_00263388.jpg
+Places365_test_00263389.jpg
+Places365_test_00263390.jpg
+Places365_test_00263393.jpg
+Places365_test_00263400.jpg
+Places365_test_00263406.jpg
+Places365_test_00263420.jpg
+Places365_test_00263445.jpg
+Places365_test_00263452.jpg
+Places365_test_00263455.jpg
+Places365_test_00263458.jpg
+Places365_test_00263469.jpg
+Places365_test_00263480.jpg
+Places365_test_00263486.jpg
+Places365_test_00263507.jpg
+Places365_test_00263513.jpg
+Places365_test_00263525.jpg
+Places365_test_00263540.jpg
+Places365_test_00263550.jpg
+Places365_test_00263578.jpg
+Places365_test_00263592.jpg
+Places365_test_00263603.jpg
+Places365_test_00263605.jpg
+Places365_test_00263608.jpg
+Places365_test_00263609.jpg
+Places365_test_00263620.jpg
+Places365_test_00263634.jpg
+Places365_test_00263643.jpg
+Places365_test_00263663.jpg
+Places365_test_00263667.jpg
+Places365_test_00263674.jpg
+Places365_test_00263703.jpg
+Places365_test_00263710.jpg
+Places365_test_00263713.jpg
+Places365_test_00263740.jpg
+Places365_test_00263766.jpg
+Places365_test_00263770.jpg
+Places365_test_00263778.jpg
+Places365_test_00263779.jpg
+Places365_test_00263785.jpg
+Places365_test_00263797.jpg
+Places365_test_00263807.jpg
+Places365_test_00263820.jpg
+Places365_test_00263826.jpg
+Places365_test_00263832.jpg
+Places365_test_00263834.jpg
+Places365_test_00263836.jpg
+Places365_test_00263845.jpg
+Places365_test_00263846.jpg
+Places365_test_00263857.jpg
+Places365_test_00263870.jpg
+Places365_test_00263886.jpg
+Places365_test_00263905.jpg
+Places365_test_00263916.jpg
+Places365_test_00263921.jpg
+Places365_test_00263934.jpg
+Places365_test_00263951.jpg
+Places365_test_00263954.jpg
+Places365_test_00263973.jpg
+Places365_test_00263988.jpg
+Places365_test_00263995.jpg
+Places365_test_00264008.jpg
+Places365_test_00264019.jpg
+Places365_test_00264023.jpg
+Places365_test_00264024.jpg
+Places365_test_00264035.jpg
+Places365_test_00264043.jpg
+Places365_test_00264049.jpg
+Places365_test_00264069.jpg
+Places365_test_00264070.jpg
+Places365_test_00264074.jpg
+Places365_test_00264095.jpg
+Places365_test_00264106.jpg
+Places365_test_00264115.jpg
+Places365_test_00264147.jpg
+Places365_test_00264169.jpg
+Places365_test_00264179.jpg
+Places365_test_00264182.jpg
+Places365_test_00264199.jpg
+Places365_test_00264210.jpg
+Places365_test_00264221.jpg
+Places365_test_00264223.jpg
+Places365_test_00264231.jpg
+Places365_test_00264235.jpg
+Places365_test_00264246.jpg
+Places365_test_00264254.jpg
+Places365_test_00264257.jpg
+Places365_test_00264264.jpg
+Places365_test_00264267.jpg
+Places365_test_00264270.jpg
+Places365_test_00264271.jpg
+Places365_test_00264283.jpg
+Places365_test_00264305.jpg
+Places365_test_00264330.jpg
+Places365_test_00264349.jpg
+Places365_test_00264353.jpg
+Places365_test_00264359.jpg
+Places365_test_00264360.jpg
+Places365_test_00264361.jpg
+Places365_test_00264369.jpg
+Places365_test_00264379.jpg
+Places365_test_00264392.jpg
+Places365_test_00264397.jpg
+Places365_test_00264400.jpg
+Places365_test_00264403.jpg
+Places365_test_00264411.jpg
+Places365_test_00264414.jpg
+Places365_test_00264415.jpg
+Places365_test_00264419.jpg
+Places365_test_00264436.jpg
+Places365_test_00264445.jpg
+Places365_test_00264446.jpg
+Places365_test_00264459.jpg
+Places365_test_00264462.jpg
+Places365_test_00264464.jpg
+Places365_test_00264467.jpg
+Places365_test_00264488.jpg
+Places365_test_00264504.jpg
+Places365_test_00264512.jpg
+Places365_test_00264513.jpg
+Places365_test_00264523.jpg
+Places365_test_00264550.jpg
+Places365_test_00264553.jpg
+Places365_test_00264566.jpg
+Places365_test_00264580.jpg
+Places365_test_00264585.jpg
+Places365_test_00264589.jpg
+Places365_test_00264602.jpg
+Places365_test_00264621.jpg
+Places365_test_00264631.jpg
+Places365_test_00264636.jpg
+Places365_test_00264640.jpg
+Places365_test_00264641.jpg
+Places365_test_00264642.jpg
+Places365_test_00264648.jpg
+Places365_test_00264652.jpg
+Places365_test_00264653.jpg
+Places365_test_00264676.jpg
+Places365_test_00264682.jpg
+Places365_test_00264718.jpg
+Places365_test_00264747.jpg
+Places365_test_00264754.jpg
+Places365_test_00264755.jpg
+Places365_test_00264767.jpg
+Places365_test_00264769.jpg
+Places365_test_00264783.jpg
+Places365_test_00264788.jpg
+Places365_test_00264794.jpg
+Places365_test_00264798.jpg
+Places365_test_00264807.jpg
+Places365_test_00264811.jpg
+Places365_test_00264813.jpg
+Places365_test_00264815.jpg
+Places365_test_00264845.jpg
+Places365_test_00264854.jpg
+Places365_test_00264859.jpg
+Places365_test_00264887.jpg
+Places365_test_00264899.jpg
+Places365_test_00264907.jpg
+Places365_test_00264921.jpg
+Places365_test_00264925.jpg
+Places365_test_00264926.jpg
+Places365_test_00264939.jpg
+Places365_test_00264952.jpg
+Places365_test_00264977.jpg
+Places365_test_00264985.jpg
+Places365_test_00264990.jpg
+Places365_test_00264992.jpg
+Places365_test_00265001.jpg
+Places365_test_00265023.jpg
+Places365_test_00265029.jpg
+Places365_test_00265032.jpg
+Places365_test_00265040.jpg
+Places365_test_00265042.jpg
+Places365_test_00265056.jpg
+Places365_test_00265057.jpg
+Places365_test_00265066.jpg
+Places365_test_00265091.jpg
+Places365_test_00265105.jpg
+Places365_test_00265109.jpg
+Places365_test_00265116.jpg
+Places365_test_00265129.jpg
+Places365_test_00265154.jpg
+Places365_test_00265183.jpg
+Places365_test_00265189.jpg
+Places365_test_00265217.jpg
+Places365_test_00265242.jpg
+Places365_test_00265244.jpg
+Places365_test_00265250.jpg
+Places365_test_00265259.jpg
+Places365_test_00265263.jpg
+Places365_test_00265281.jpg
+Places365_test_00265285.jpg
+Places365_test_00265303.jpg
+Places365_test_00265304.jpg
+Places365_test_00265309.jpg
+Places365_test_00265333.jpg
+Places365_test_00265337.jpg
+Places365_test_00265356.jpg
+Places365_test_00265362.jpg
+Places365_test_00265392.jpg
+Places365_test_00265395.jpg
+Places365_test_00265397.jpg
+Places365_test_00265406.jpg
+Places365_test_00265412.jpg
+Places365_test_00265436.jpg
+Places365_test_00265447.jpg
+Places365_test_00265477.jpg
+Places365_test_00265493.jpg
+Places365_test_00265497.jpg
+Places365_test_00265512.jpg
+Places365_test_00265516.jpg
+Places365_test_00265517.jpg
+Places365_test_00265519.jpg
+Places365_test_00265537.jpg
+Places365_test_00265542.jpg
+Places365_test_00265567.jpg
+Places365_test_00265573.jpg
+Places365_test_00265578.jpg
+Places365_test_00265593.jpg
+Places365_test_00265595.jpg
+Places365_test_00265605.jpg
+Places365_test_00265609.jpg
+Places365_test_00265617.jpg
+Places365_test_00265622.jpg
+Places365_test_00265635.jpg
+Places365_test_00265662.jpg
+Places365_test_00265667.jpg
+Places365_test_00265686.jpg
+Places365_test_00265703.jpg
+Places365_test_00265708.jpg
+Places365_test_00265710.jpg
+Places365_test_00265714.jpg
+Places365_test_00265716.jpg
+Places365_test_00265722.jpg
+Places365_test_00265723.jpg
+Places365_test_00265731.jpg
+Places365_test_00265734.jpg
+Places365_test_00265737.jpg
+Places365_test_00265740.jpg
+Places365_test_00265741.jpg
+Places365_test_00265761.jpg
+Places365_test_00265776.jpg
+Places365_test_00265779.jpg
+Places365_test_00265781.jpg
+Places365_test_00265786.jpg
+Places365_test_00265790.jpg
+Places365_test_00265802.jpg
+Places365_test_00265822.jpg
+Places365_test_00265840.jpg
+Places365_test_00265856.jpg
+Places365_test_00265873.jpg
+Places365_test_00265888.jpg
+Places365_test_00265890.jpg
+Places365_test_00265918.jpg
+Places365_test_00265919.jpg
+Places365_test_00265928.jpg
+Places365_test_00265942.jpg
+Places365_test_00265961.jpg
+Places365_test_00265967.jpg
+Places365_test_00265968.jpg
+Places365_test_00265971.jpg
+Places365_test_00265976.jpg
+Places365_test_00266000.jpg
+Places365_test_00266019.jpg
+Places365_test_00266024.jpg
+Places365_test_00266042.jpg
+Places365_test_00266048.jpg
+Places365_test_00266074.jpg
+Places365_test_00266082.jpg
+Places365_test_00266100.jpg
+Places365_test_00266114.jpg
+Places365_test_00266125.jpg
+Places365_test_00266126.jpg
+Places365_test_00266144.jpg
+Places365_test_00266156.jpg
+Places365_test_00266160.jpg
+Places365_test_00266161.jpg
+Places365_test_00266175.jpg
+Places365_test_00266183.jpg
+Places365_test_00266199.jpg
+Places365_test_00266218.jpg
+Places365_test_00266226.jpg
+Places365_test_00266228.jpg
+Places365_test_00266237.jpg
+Places365_test_00266238.jpg
+Places365_test_00266240.jpg
+Places365_test_00266243.jpg
+Places365_test_00266255.jpg
+Places365_test_00266258.jpg
+Places365_test_00266263.jpg
+Places365_test_00266266.jpg
+Places365_test_00266273.jpg
+Places365_test_00266279.jpg
+Places365_test_00266298.jpg
+Places365_test_00266299.jpg
+Places365_test_00266304.jpg
+Places365_test_00266306.jpg
+Places365_test_00266333.jpg
+Places365_test_00266341.jpg
+Places365_test_00266344.jpg
+Places365_test_00266346.jpg
+Places365_test_00266351.jpg
+Places365_test_00266359.jpg
+Places365_test_00266361.jpg
+Places365_test_00266367.jpg
+Places365_test_00266370.jpg
+Places365_test_00266377.jpg
+Places365_test_00266389.jpg
+Places365_test_00266401.jpg
+Places365_test_00266403.jpg
+Places365_test_00266404.jpg
+Places365_test_00266408.jpg
+Places365_test_00266417.jpg
+Places365_test_00266427.jpg
+Places365_test_00266428.jpg
+Places365_test_00266430.jpg
+Places365_test_00266448.jpg
+Places365_test_00266458.jpg
+Places365_test_00266459.jpg
+Places365_test_00266478.jpg
+Places365_test_00266479.jpg
+Places365_test_00266486.jpg
+Places365_test_00266492.jpg
+Places365_test_00266497.jpg
+Places365_test_00266500.jpg
+Places365_test_00266539.jpg
+Places365_test_00266542.jpg
+Places365_test_00266550.jpg
+Places365_test_00266569.jpg
+Places365_test_00266572.jpg
+Places365_test_00266595.jpg
+Places365_test_00266596.jpg
+Places365_test_00266601.jpg
+Places365_test_00266619.jpg
+Places365_test_00266625.jpg
+Places365_test_00266628.jpg
+Places365_test_00266672.jpg
+Places365_test_00266680.jpg
+Places365_test_00266690.jpg
+Places365_test_00266704.jpg
+Places365_test_00266707.jpg
+Places365_test_00266715.jpg
+Places365_test_00266734.jpg
+Places365_test_00266735.jpg
+Places365_test_00266736.jpg
+Places365_test_00266754.jpg
+Places365_test_00266764.jpg
+Places365_test_00266780.jpg
+Places365_test_00266783.jpg
+Places365_test_00266785.jpg
+Places365_test_00266806.jpg
+Places365_test_00266858.jpg
+Places365_test_00266860.jpg
+Places365_test_00266865.jpg
+Places365_test_00266872.jpg
+Places365_test_00266876.jpg
+Places365_test_00266882.jpg
+Places365_test_00266884.jpg
+Places365_test_00266894.jpg
+Places365_test_00266909.jpg
+Places365_test_00266917.jpg
+Places365_test_00266920.jpg
+Places365_test_00266959.jpg
+Places365_test_00266968.jpg
+Places365_test_00266975.jpg
+Places365_test_00266981.jpg
+Places365_test_00266995.jpg
+Places365_test_00267009.jpg
+Places365_test_00267010.jpg
+Places365_test_00267030.jpg
+Places365_test_00267051.jpg
+Places365_test_00267066.jpg
+Places365_test_00267075.jpg
+Places365_test_00267079.jpg
+Places365_test_00267082.jpg
+Places365_test_00267084.jpg
+Places365_test_00267086.jpg
+Places365_test_00267088.jpg
+Places365_test_00267093.jpg
+Places365_test_00267096.jpg
+Places365_test_00267099.jpg
+Places365_test_00267100.jpg
+Places365_test_00267103.jpg
+Places365_test_00267114.jpg
+Places365_test_00267126.jpg
+Places365_test_00267133.jpg
+Places365_test_00267138.jpg
+Places365_test_00267146.jpg
+Places365_test_00267162.jpg
+Places365_test_00267178.jpg
+Places365_test_00267181.jpg
+Places365_test_00267183.jpg
+Places365_test_00267194.jpg
+Places365_test_00267209.jpg
+Places365_test_00267226.jpg
+Places365_test_00267242.jpg
+Places365_test_00267255.jpg
+Places365_test_00267267.jpg
+Places365_test_00267272.jpg
+Places365_test_00267274.jpg
+Places365_test_00267279.jpg
+Places365_test_00267313.jpg
+Places365_test_00267314.jpg
+Places365_test_00267323.jpg
+Places365_test_00267337.jpg
+Places365_test_00267371.jpg
+Places365_test_00267377.jpg
+Places365_test_00267384.jpg
+Places365_test_00267390.jpg
+Places365_test_00267414.jpg
+Places365_test_00267428.jpg
+Places365_test_00267434.jpg
+Places365_test_00267453.jpg
+Places365_test_00267458.jpg
+Places365_test_00267461.jpg
+Places365_test_00267470.jpg
+Places365_test_00267473.jpg
+Places365_test_00267487.jpg
+Places365_test_00267499.jpg
+Places365_test_00267505.jpg
+Places365_test_00267525.jpg
+Places365_test_00267543.jpg
+Places365_test_00267554.jpg
+Places365_test_00267558.jpg
+Places365_test_00267559.jpg
+Places365_test_00267572.jpg
+Places365_test_00267575.jpg
+Places365_test_00267582.jpg
+Places365_test_00267583.jpg
+Places365_test_00267590.jpg
+Places365_test_00267596.jpg
+Places365_test_00267606.jpg
+Places365_test_00267612.jpg
+Places365_test_00267639.jpg
+Places365_test_00267650.jpg
+Places365_test_00267651.jpg
+Places365_test_00267660.jpg
+Places365_test_00267662.jpg
+Places365_test_00267666.jpg
+Places365_test_00267678.jpg
+Places365_test_00267693.jpg
+Places365_test_00267707.jpg
+Places365_test_00267718.jpg
+Places365_test_00267725.jpg
+Places365_test_00267744.jpg
+Places365_test_00267746.jpg
+Places365_test_00267762.jpg
+Places365_test_00267776.jpg
+Places365_test_00267784.jpg
+Places365_test_00267789.jpg
+Places365_test_00267812.jpg
+Places365_test_00267833.jpg
+Places365_test_00267840.jpg
+Places365_test_00267855.jpg
+Places365_test_00267868.jpg
+Places365_test_00267872.jpg
+Places365_test_00267875.jpg
+Places365_test_00267890.jpg
+Places365_test_00267901.jpg
+Places365_test_00267917.jpg
+Places365_test_00267927.jpg
+Places365_test_00267936.jpg
+Places365_test_00267945.jpg
+Places365_test_00267949.jpg
+Places365_test_00267970.jpg
+Places365_test_00267973.jpg
+Places365_test_00267996.jpg
+Places365_test_00268012.jpg
+Places365_test_00268034.jpg
+Places365_test_00268042.jpg
+Places365_test_00268049.jpg
+Places365_test_00268079.jpg
+Places365_test_00268091.jpg
+Places365_test_00268094.jpg
+Places365_test_00268117.jpg
+Places365_test_00268125.jpg
+Places365_test_00268160.jpg
+Places365_test_00268168.jpg
+Places365_test_00268169.jpg
+Places365_test_00268178.jpg
+Places365_test_00268190.jpg
+Places365_test_00268198.jpg
+Places365_test_00268202.jpg
+Places365_test_00268220.jpg
+Places365_test_00268225.jpg
+Places365_test_00268231.jpg
+Places365_test_00268240.jpg
+Places365_test_00268261.jpg
+Places365_test_00268282.jpg
+Places365_test_00268311.jpg
+Places365_test_00268322.jpg
+Places365_test_00268323.jpg
+Places365_test_00268340.jpg
+Places365_test_00268350.jpg
+Places365_test_00268354.jpg
+Places365_test_00268391.jpg
+Places365_test_00268393.jpg
+Places365_test_00268469.jpg
+Places365_test_00268529.jpg
+Places365_test_00268538.jpg
+Places365_test_00268595.jpg
+Places365_test_00268608.jpg
+Places365_test_00268629.jpg
+Places365_test_00268638.jpg
+Places365_test_00268643.jpg
+Places365_test_00268646.jpg
+Places365_test_00268656.jpg
+Places365_test_00268661.jpg
+Places365_test_00268665.jpg
+Places365_test_00268695.jpg
+Places365_test_00268696.jpg
+Places365_test_00268699.jpg
+Places365_test_00268708.jpg
+Places365_test_00268709.jpg
+Places365_test_00268726.jpg
+Places365_test_00268733.jpg
+Places365_test_00268768.jpg
+Places365_test_00268773.jpg
+Places365_test_00268776.jpg
+Places365_test_00268779.jpg
+Places365_test_00268784.jpg
+Places365_test_00268794.jpg
+Places365_test_00268795.jpg
+Places365_test_00268796.jpg
+Places365_test_00268820.jpg
+Places365_test_00268822.jpg
+Places365_test_00268842.jpg
+Places365_test_00268868.jpg
+Places365_test_00268882.jpg
+Places365_test_00268897.jpg
+Places365_test_00268903.jpg
+Places365_test_00268904.jpg
+Places365_test_00268921.jpg
+Places365_test_00268929.jpg
+Places365_test_00268945.jpg
+Places365_test_00268947.jpg
+Places365_test_00268950.jpg
+Places365_test_00268980.jpg
+Places365_test_00268985.jpg
+Places365_test_00269003.jpg
+Places365_test_00269058.jpg
+Places365_test_00269067.jpg
+Places365_test_00269075.jpg
+Places365_test_00269078.jpg
+Places365_test_00269092.jpg
+Places365_test_00269118.jpg
+Places365_test_00269119.jpg
+Places365_test_00269124.jpg
+Places365_test_00269127.jpg
+Places365_test_00269140.jpg
+Places365_test_00269171.jpg
+Places365_test_00269181.jpg
+Places365_test_00269200.jpg
+Places365_test_00269205.jpg
+Places365_test_00269209.jpg
+Places365_test_00269223.jpg
+Places365_test_00269230.jpg
+Places365_test_00269239.jpg
+Places365_test_00269253.jpg
+Places365_test_00269275.jpg
+Places365_test_00269278.jpg
+Places365_test_00269279.jpg
+Places365_test_00269286.jpg
+Places365_test_00269309.jpg
+Places365_test_00269317.jpg
+Places365_test_00269327.jpg
+Places365_test_00269343.jpg
+Places365_test_00269344.jpg
+Places365_test_00269352.jpg
+Places365_test_00269358.jpg
+Places365_test_00269371.jpg
+Places365_test_00269432.jpg
+Places365_test_00269441.jpg
+Places365_test_00269456.jpg
+Places365_test_00269480.jpg
+Places365_test_00269486.jpg
+Places365_test_00269496.jpg
+Places365_test_00269500.jpg
+Places365_test_00269502.jpg
+Places365_test_00269505.jpg
+Places365_test_00269512.jpg
+Places365_test_00269519.jpg
+Places365_test_00269531.jpg
+Places365_test_00269536.jpg
+Places365_test_00269539.jpg
+Places365_test_00269546.jpg
+Places365_test_00269552.jpg
+Places365_test_00269555.jpg
+Places365_test_00269566.jpg
+Places365_test_00269586.jpg
+Places365_test_00269606.jpg
+Places365_test_00269621.jpg
+Places365_test_00269639.jpg
+Places365_test_00269653.jpg
+Places365_test_00269654.jpg
+Places365_test_00269656.jpg
+Places365_test_00269660.jpg
+Places365_test_00269662.jpg
+Places365_test_00269678.jpg
+Places365_test_00269679.jpg
+Places365_test_00269699.jpg
+Places365_test_00269703.jpg
+Places365_test_00269706.jpg
+Places365_test_00269723.jpg
+Places365_test_00269757.jpg
+Places365_test_00269763.jpg
+Places365_test_00269774.jpg
+Places365_test_00269796.jpg
+Places365_test_00269800.jpg
+Places365_test_00269812.jpg
+Places365_test_00269815.jpg
+Places365_test_00269839.jpg
+Places365_test_00269840.jpg
+Places365_test_00269844.jpg
+Places365_test_00269850.jpg
+Places365_test_00269871.jpg
+Places365_test_00269876.jpg
+Places365_test_00269882.jpg
+Places365_test_00269888.jpg
+Places365_test_00269895.jpg
+Places365_test_00269901.jpg
+Places365_test_00269904.jpg
+Places365_test_00269942.jpg
+Places365_test_00269956.jpg
+Places365_test_00269957.jpg
+Places365_test_00269968.jpg
+Places365_test_00269973.jpg
+Places365_test_00269997.jpg
+Places365_test_00270005.jpg
+Places365_test_00270009.jpg
+Places365_test_00270012.jpg
+Places365_test_00270018.jpg
+Places365_test_00270063.jpg
+Places365_test_00270069.jpg
+Places365_test_00270072.jpg
+Places365_test_00270082.jpg
+Places365_test_00270089.jpg
+Places365_test_00270091.jpg
+Places365_test_00270095.jpg
+Places365_test_00270102.jpg
+Places365_test_00270109.jpg
+Places365_test_00270119.jpg
+Places365_test_00270128.jpg
+Places365_test_00270161.jpg
+Places365_test_00270169.jpg
+Places365_test_00270185.jpg
+Places365_test_00270193.jpg
+Places365_test_00270218.jpg
+Places365_test_00270232.jpg
+Places365_test_00270233.jpg
+Places365_test_00270259.jpg
+Places365_test_00270265.jpg
+Places365_test_00270271.jpg
+Places365_test_00270279.jpg
+Places365_test_00270280.jpg
+Places365_test_00270286.jpg
+Places365_test_00270290.jpg
+Places365_test_00270294.jpg
+Places365_test_00270305.jpg
+Places365_test_00270319.jpg
+Places365_test_00270322.jpg
+Places365_test_00270346.jpg
+Places365_test_00270354.jpg
+Places365_test_00270364.jpg
+Places365_test_00270374.jpg
+Places365_test_00270380.jpg
+Places365_test_00270389.jpg
+Places365_test_00270391.jpg
+Places365_test_00270393.jpg
+Places365_test_00270399.jpg
+Places365_test_00270431.jpg
+Places365_test_00270436.jpg
+Places365_test_00270438.jpg
+Places365_test_00270470.jpg
+Places365_test_00270474.jpg
+Places365_test_00270476.jpg
+Places365_test_00270492.jpg
+Places365_test_00270494.jpg
+Places365_test_00270502.jpg
+Places365_test_00270514.jpg
+Places365_test_00270521.jpg
+Places365_test_00270543.jpg
+Places365_test_00270554.jpg
+Places365_test_00270566.jpg
+Places365_test_00270580.jpg
+Places365_test_00270582.jpg
+Places365_test_00270584.jpg
+Places365_test_00270609.jpg
+Places365_test_00270621.jpg
+Places365_test_00270624.jpg
+Places365_test_00270645.jpg
+Places365_test_00270647.jpg
+Places365_test_00270659.jpg
+Places365_test_00270660.jpg
+Places365_test_00270664.jpg
+Places365_test_00270679.jpg
+Places365_test_00270689.jpg
+Places365_test_00270693.jpg
+Places365_test_00270696.jpg
+Places365_test_00270702.jpg
+Places365_test_00270712.jpg
+Places365_test_00270719.jpg
+Places365_test_00270736.jpg
+Places365_test_00270741.jpg
+Places365_test_00270754.jpg
+Places365_test_00270768.jpg
+Places365_test_00270776.jpg
+Places365_test_00270778.jpg
+Places365_test_00270782.jpg
+Places365_test_00270787.jpg
+Places365_test_00270790.jpg
+Places365_test_00270791.jpg
+Places365_test_00270799.jpg
+Places365_test_00270802.jpg
+Places365_test_00270815.jpg
+Places365_test_00270820.jpg
+Places365_test_00270823.jpg
+Places365_test_00270834.jpg
+Places365_test_00270835.jpg
+Places365_test_00270838.jpg
+Places365_test_00270840.jpg
+Places365_test_00270850.jpg
+Places365_test_00270856.jpg
+Places365_test_00270879.jpg
+Places365_test_00270888.jpg
+Places365_test_00270890.jpg
+Places365_test_00270891.jpg
+Places365_test_00270908.jpg
+Places365_test_00270909.jpg
+Places365_test_00270910.jpg
+Places365_test_00270916.jpg
+Places365_test_00270921.jpg
+Places365_test_00270926.jpg
+Places365_test_00270935.jpg
+Places365_test_00270937.jpg
+Places365_test_00270948.jpg
+Places365_test_00270958.jpg
+Places365_test_00270965.jpg
+Places365_test_00270968.jpg
+Places365_test_00270971.jpg
+Places365_test_00270978.jpg
+Places365_test_00270981.jpg
+Places365_test_00270995.jpg
+Places365_test_00271011.jpg
+Places365_test_00271013.jpg
+Places365_test_00271026.jpg
+Places365_test_00271039.jpg
+Places365_test_00271054.jpg
+Places365_test_00271070.jpg
+Places365_test_00271091.jpg
+Places365_test_00271098.jpg
+Places365_test_00271128.jpg
+Places365_test_00271131.jpg
+Places365_test_00271159.jpg
+Places365_test_00271188.jpg
+Places365_test_00271219.jpg
+Places365_test_00271222.jpg
+Places365_test_00271223.jpg
+Places365_test_00271228.jpg
+Places365_test_00271240.jpg
+Places365_test_00271249.jpg
+Places365_test_00271265.jpg
+Places365_test_00271273.jpg
+Places365_test_00271274.jpg
+Places365_test_00271276.jpg
+Places365_test_00271282.jpg
+Places365_test_00271288.jpg
+Places365_test_00271322.jpg
+Places365_test_00271332.jpg
+Places365_test_00271352.jpg
+Places365_test_00271370.jpg
+Places365_test_00271372.jpg
+Places365_test_00271388.jpg
+Places365_test_00271469.jpg
+Places365_test_00271472.jpg
+Places365_test_00271474.jpg
+Places365_test_00271481.jpg
+Places365_test_00271489.jpg
+Places365_test_00271496.jpg
+Places365_test_00271509.jpg
+Places365_test_00271511.jpg
+Places365_test_00271522.jpg
+Places365_test_00271524.jpg
+Places365_test_00271528.jpg
+Places365_test_00271539.jpg
+Places365_test_00271552.jpg
+Places365_test_00271558.jpg
+Places365_test_00271565.jpg
+Places365_test_00271570.jpg
+Places365_test_00271573.jpg
+Places365_test_00271576.jpg
+Places365_test_00271591.jpg
+Places365_test_00271611.jpg
+Places365_test_00271622.jpg
+Places365_test_00271630.jpg
+Places365_test_00271643.jpg
+Places365_test_00271655.jpg
+Places365_test_00271657.jpg
+Places365_test_00271664.jpg
+Places365_test_00271672.jpg
+Places365_test_00271681.jpg
+Places365_test_00271715.jpg
+Places365_test_00271723.jpg
+Places365_test_00271731.jpg
+Places365_test_00271747.jpg
+Places365_test_00271758.jpg
+Places365_test_00271762.jpg
+Places365_test_00271784.jpg
+Places365_test_00271785.jpg
+Places365_test_00271800.jpg
+Places365_test_00271805.jpg
+Places365_test_00271808.jpg
+Places365_test_00271815.jpg
+Places365_test_00271823.jpg
+Places365_test_00271828.jpg
+Places365_test_00271874.jpg
+Places365_test_00271889.jpg
+Places365_test_00271900.jpg
+Places365_test_00271905.jpg
+Places365_test_00271941.jpg
+Places365_test_00271955.jpg
+Places365_test_00271972.jpg
+Places365_test_00271985.jpg
+Places365_test_00271993.jpg
+Places365_test_00272006.jpg
+Places365_test_00272019.jpg
+Places365_test_00272033.jpg
+Places365_test_00272055.jpg
+Places365_test_00272059.jpg
+Places365_test_00272063.jpg
+Places365_test_00272066.jpg
+Places365_test_00272088.jpg
+Places365_test_00272094.jpg
+Places365_test_00272099.jpg
+Places365_test_00272104.jpg
+Places365_test_00272120.jpg
+Places365_test_00272136.jpg
+Places365_test_00272151.jpg
+Places365_test_00272153.jpg
+Places365_test_00272171.jpg
+Places365_test_00272177.jpg
+Places365_test_00272181.jpg
+Places365_test_00272185.jpg
+Places365_test_00272188.jpg
+Places365_test_00272196.jpg
+Places365_test_00272199.jpg
+Places365_test_00272231.jpg
+Places365_test_00272232.jpg
+Places365_test_00272263.jpg
+Places365_test_00272264.jpg
+Places365_test_00272266.jpg
+Places365_test_00272267.jpg
+Places365_test_00272280.jpg
+Places365_test_00272316.jpg
+Places365_test_00272319.jpg
+Places365_test_00272325.jpg
+Places365_test_00272331.jpg
+Places365_test_00272346.jpg
+Places365_test_00272353.jpg
+Places365_test_00272397.jpg
+Places365_test_00272403.jpg
+Places365_test_00272440.jpg
+Places365_test_00272466.jpg
+Places365_test_00272469.jpg
+Places365_test_00272471.jpg
+Places365_test_00272478.jpg
+Places365_test_00272493.jpg
+Places365_test_00272495.jpg
+Places365_test_00272505.jpg
+Places365_test_00272526.jpg
+Places365_test_00272528.jpg
+Places365_test_00272529.jpg
+Places365_test_00272553.jpg
+Places365_test_00272579.jpg
+Places365_test_00272597.jpg
+Places365_test_00272604.jpg
+Places365_test_00272620.jpg
+Places365_test_00272648.jpg
+Places365_test_00272654.jpg
+Places365_test_00272678.jpg
+Places365_test_00272712.jpg
+Places365_test_00272722.jpg
+Places365_test_00272724.jpg
+Places365_test_00272743.jpg
+Places365_test_00272744.jpg
+Places365_test_00272753.jpg
+Places365_test_00272767.jpg
+Places365_test_00272787.jpg
+Places365_test_00272797.jpg
+Places365_test_00272798.jpg
+Places365_test_00272801.jpg
+Places365_test_00272807.jpg
+Places365_test_00272819.jpg
+Places365_test_00272823.jpg
+Places365_test_00272828.jpg
+Places365_test_00272854.jpg
+Places365_test_00272857.jpg
+Places365_test_00272861.jpg
+Places365_test_00272867.jpg
+Places365_test_00272871.jpg
+Places365_test_00272877.jpg
+Places365_test_00272878.jpg
+Places365_test_00272882.jpg
+Places365_test_00272883.jpg
+Places365_test_00272887.jpg
+Places365_test_00272889.jpg
+Places365_test_00272899.jpg
+Places365_test_00272929.jpg
+Places365_test_00272939.jpg
+Places365_test_00272943.jpg
+Places365_test_00272945.jpg
+Places365_test_00272954.jpg
+Places365_test_00272970.jpg
+Places365_test_00272972.jpg
+Places365_test_00272986.jpg
+Places365_test_00273046.jpg
+Places365_test_00273056.jpg
+Places365_test_00273059.jpg
+Places365_test_00273090.jpg
+Places365_test_00273092.jpg
+Places365_test_00273094.jpg
+Places365_test_00273111.jpg
+Places365_test_00273112.jpg
+Places365_test_00273126.jpg
+Places365_test_00273134.jpg
+Places365_test_00273142.jpg
+Places365_test_00273154.jpg
+Places365_test_00273171.jpg
+Places365_test_00273177.jpg
+Places365_test_00273209.jpg
+Places365_test_00273220.jpg
+Places365_test_00273232.jpg
+Places365_test_00273268.jpg
+Places365_test_00273307.jpg
+Places365_test_00273311.jpg
+Places365_test_00273320.jpg
+Places365_test_00273348.jpg
+Places365_test_00273349.jpg
+Places365_test_00273354.jpg
+Places365_test_00273360.jpg
+Places365_test_00273383.jpg
+Places365_test_00273401.jpg
+Places365_test_00273407.jpg
+Places365_test_00273429.jpg
+Places365_test_00273434.jpg
+Places365_test_00273439.jpg
+Places365_test_00273442.jpg
+Places365_test_00273445.jpg
+Places365_test_00273453.jpg
+Places365_test_00273455.jpg
+Places365_test_00273476.jpg
+Places365_test_00273485.jpg
+Places365_test_00273487.jpg
+Places365_test_00273497.jpg
+Places365_test_00273510.jpg
+Places365_test_00273524.jpg
+Places365_test_00273531.jpg
+Places365_test_00273552.jpg
+Places365_test_00273555.jpg
+Places365_test_00273604.jpg
+Places365_test_00273614.jpg
+Places365_test_00273626.jpg
+Places365_test_00273642.jpg
+Places365_test_00273647.jpg
+Places365_test_00273677.jpg
+Places365_test_00273679.jpg
+Places365_test_00273696.jpg
+Places365_test_00273709.jpg
+Places365_test_00273718.jpg
+Places365_test_00273725.jpg
+Places365_test_00273737.jpg
+Places365_test_00273739.jpg
+Places365_test_00273752.jpg
+Places365_test_00273754.jpg
+Places365_test_00273757.jpg
+Places365_test_00273770.jpg
+Places365_test_00273800.jpg
+Places365_test_00273802.jpg
+Places365_test_00273804.jpg
+Places365_test_00273809.jpg
+Places365_test_00273820.jpg
+Places365_test_00273832.jpg
+Places365_test_00273836.jpg
+Places365_test_00273855.jpg
+Places365_test_00273860.jpg
+Places365_test_00273864.jpg
+Places365_test_00273865.jpg
+Places365_test_00273870.jpg
+Places365_test_00273918.jpg
+Places365_test_00273927.jpg
+Places365_test_00273933.jpg
+Places365_test_00273949.jpg
+Places365_test_00273980.jpg
+Places365_test_00273981.jpg
+Places365_test_00273993.jpg
+Places365_test_00273994.jpg
+Places365_test_00274000.jpg
+Places365_test_00274030.jpg
+Places365_test_00274031.jpg
+Places365_test_00274057.jpg
+Places365_test_00274060.jpg
+Places365_test_00274074.jpg
+Places365_test_00274079.jpg
+Places365_test_00274089.jpg
+Places365_test_00274092.jpg
+Places365_test_00274106.jpg
+Places365_test_00274158.jpg
+Places365_test_00274165.jpg
+Places365_test_00274193.jpg
+Places365_test_00274196.jpg
+Places365_test_00274206.jpg
+Places365_test_00274236.jpg
+Places365_test_00274240.jpg
+Places365_test_00274248.jpg
+Places365_test_00274250.jpg
+Places365_test_00274261.jpg
+Places365_test_00274275.jpg
+Places365_test_00274276.jpg
+Places365_test_00274294.jpg
+Places365_test_00274341.jpg
+Places365_test_00274371.jpg
+Places365_test_00274379.jpg
+Places365_test_00274385.jpg
+Places365_test_00274387.jpg
+Places365_test_00274397.jpg
+Places365_test_00274427.jpg
+Places365_test_00274428.jpg
+Places365_test_00274432.jpg
+Places365_test_00274436.jpg
+Places365_test_00274442.jpg
+Places365_test_00274457.jpg
+Places365_test_00274474.jpg
+Places365_test_00274477.jpg
+Places365_test_00274479.jpg
+Places365_test_00274483.jpg
+Places365_test_00274490.jpg
+Places365_test_00274508.jpg
+Places365_test_00274511.jpg
+Places365_test_00274530.jpg
+Places365_test_00274547.jpg
+Places365_test_00274550.jpg
+Places365_test_00274560.jpg
+Places365_test_00274561.jpg
+Places365_test_00274594.jpg
+Places365_test_00274607.jpg
+Places365_test_00274615.jpg
+Places365_test_00274619.jpg
+Places365_test_00274631.jpg
+Places365_test_00274637.jpg
+Places365_test_00274660.jpg
+Places365_test_00274682.jpg
+Places365_test_00274683.jpg
+Places365_test_00274688.jpg
+Places365_test_00274700.jpg
+Places365_test_00274712.jpg
+Places365_test_00274732.jpg
+Places365_test_00274734.jpg
+Places365_test_00274740.jpg
+Places365_test_00274781.jpg
+Places365_test_00274791.jpg
+Places365_test_00274814.jpg
+Places365_test_00274837.jpg
+Places365_test_00274840.jpg
+Places365_test_00274846.jpg
+Places365_test_00274868.jpg
+Places365_test_00274869.jpg
+Places365_test_00274870.jpg
+Places365_test_00274875.jpg
+Places365_test_00274890.jpg
+Places365_test_00274899.jpg
+Places365_test_00274920.jpg
+Places365_test_00274928.jpg
+Places365_test_00274942.jpg
+Places365_test_00274966.jpg
+Places365_test_00275001.jpg
+Places365_test_00275002.jpg
+Places365_test_00275004.jpg
+Places365_test_00275009.jpg
+Places365_test_00275012.jpg
+Places365_test_00275018.jpg
+Places365_test_00275024.jpg
+Places365_test_00275034.jpg
+Places365_test_00275041.jpg
+Places365_test_00275044.jpg
+Places365_test_00275070.jpg
+Places365_test_00275074.jpg
+Places365_test_00275093.jpg
+Places365_test_00275097.jpg
+Places365_test_00275120.jpg
+Places365_test_00275121.jpg
+Places365_test_00275124.jpg
+Places365_test_00275130.jpg
+Places365_test_00275131.jpg
+Places365_test_00275140.jpg
+Places365_test_00275144.jpg
+Places365_test_00275163.jpg
+Places365_test_00275165.jpg
+Places365_test_00275194.jpg
+Places365_test_00275206.jpg
+Places365_test_00275219.jpg
+Places365_test_00275223.jpg
+Places365_test_00275231.jpg
+Places365_test_00275232.jpg
+Places365_test_00275244.jpg
+Places365_test_00275259.jpg
+Places365_test_00275287.jpg
+Places365_test_00275293.jpg
+Places365_test_00275299.jpg
+Places365_test_00275329.jpg
+Places365_test_00275331.jpg
+Places365_test_00275335.jpg
+Places365_test_00275338.jpg
+Places365_test_00275347.jpg
+Places365_test_00275348.jpg
+Places365_test_00275354.jpg
+Places365_test_00275357.jpg
+Places365_test_00275421.jpg
+Places365_test_00275437.jpg
+Places365_test_00275440.jpg
+Places365_test_00275446.jpg
+Places365_test_00275450.jpg
+Places365_test_00275451.jpg
+Places365_test_00275454.jpg
+Places365_test_00275480.jpg
+Places365_test_00275483.jpg
+Places365_test_00275511.jpg
+Places365_test_00275540.jpg
+Places365_test_00275545.jpg
+Places365_test_00275554.jpg
+Places365_test_00275564.jpg
+Places365_test_00275566.jpg
+Places365_test_00275581.jpg
+Places365_test_00275619.jpg
+Places365_test_00275632.jpg
+Places365_test_00275633.jpg
+Places365_test_00275635.jpg
+Places365_test_00275636.jpg
+Places365_test_00275646.jpg
+Places365_test_00275661.jpg
+Places365_test_00275667.jpg
+Places365_test_00275681.jpg
+Places365_test_00275682.jpg
+Places365_test_00275687.jpg
+Places365_test_00275688.jpg
+Places365_test_00275695.jpg
+Places365_test_00275697.jpg
+Places365_test_00275702.jpg
+Places365_test_00275720.jpg
+Places365_test_00275731.jpg
+Places365_test_00275749.jpg
+Places365_test_00275756.jpg
+Places365_test_00275772.jpg
+Places365_test_00275782.jpg
+Places365_test_00275783.jpg
+Places365_test_00275795.jpg
+Places365_test_00275800.jpg
+Places365_test_00275843.jpg
+Places365_test_00275846.jpg
+Places365_test_00275856.jpg
+Places365_test_00275859.jpg
+Places365_test_00275873.jpg
+Places365_test_00275886.jpg
+Places365_test_00275899.jpg
+Places365_test_00275900.jpg
+Places365_test_00275908.jpg
+Places365_test_00275918.jpg
+Places365_test_00275923.jpg
+Places365_test_00275933.jpg
+Places365_test_00275965.jpg
+Places365_test_00275971.jpg
+Places365_test_00275980.jpg
+Places365_test_00275990.jpg
+Places365_test_00276003.jpg
+Places365_test_00276006.jpg
+Places365_test_00276014.jpg
+Places365_test_00276023.jpg
+Places365_test_00276051.jpg
+Places365_test_00276053.jpg
+Places365_test_00276059.jpg
+Places365_test_00276060.jpg
+Places365_test_00276069.jpg
+Places365_test_00276076.jpg
+Places365_test_00276087.jpg
+Places365_test_00276098.jpg
+Places365_test_00276099.jpg
+Places365_test_00276106.jpg
+Places365_test_00276121.jpg
+Places365_test_00276176.jpg
+Places365_test_00276185.jpg
+Places365_test_00276193.jpg
+Places365_test_00276200.jpg
+Places365_test_00276216.jpg
+Places365_test_00276217.jpg
+Places365_test_00276227.jpg
+Places365_test_00276237.jpg
+Places365_test_00276243.jpg
+Places365_test_00276264.jpg
+Places365_test_00276267.jpg
+Places365_test_00276280.jpg
+Places365_test_00276287.jpg
+Places365_test_00276296.jpg
+Places365_test_00276301.jpg
+Places365_test_00276303.jpg
+Places365_test_00276337.jpg
+Places365_test_00276353.jpg
+Places365_test_00276364.jpg
+Places365_test_00276374.jpg
+Places365_test_00276380.jpg
+Places365_test_00276383.jpg
+Places365_test_00276384.jpg
+Places365_test_00276390.jpg
+Places365_test_00276395.jpg
+Places365_test_00276396.jpg
+Places365_test_00276400.jpg
+Places365_test_00276419.jpg
+Places365_test_00276422.jpg
+Places365_test_00276430.jpg
+Places365_test_00276431.jpg
+Places365_test_00276439.jpg
+Places365_test_00276447.jpg
+Places365_test_00276478.jpg
+Places365_test_00276482.jpg
+Places365_test_00276486.jpg
+Places365_test_00276495.jpg
+Places365_test_00276499.jpg
+Places365_test_00276500.jpg
+Places365_test_00276516.jpg
+Places365_test_00276524.jpg
+Places365_test_00276528.jpg
+Places365_test_00276530.jpg
+Places365_test_00276545.jpg
+Places365_test_00276546.jpg
+Places365_test_00276559.jpg
+Places365_test_00276560.jpg
+Places365_test_00276564.jpg
+Places365_test_00276575.jpg
+Places365_test_00276583.jpg
+Places365_test_00276596.jpg
+Places365_test_00276621.jpg
+Places365_test_00276633.jpg
+Places365_test_00276638.jpg
+Places365_test_00276648.jpg
+Places365_test_00276649.jpg
+Places365_test_00276650.jpg
+Places365_test_00276652.jpg
+Places365_test_00276658.jpg
+Places365_test_00276662.jpg
+Places365_test_00276665.jpg
+Places365_test_00276667.jpg
+Places365_test_00276674.jpg
+Places365_test_00276675.jpg
+Places365_test_00276697.jpg
+Places365_test_00276716.jpg
+Places365_test_00276720.jpg
+Places365_test_00276721.jpg
+Places365_test_00276735.jpg
+Places365_test_00276736.jpg
+Places365_test_00276748.jpg
+Places365_test_00276757.jpg
+Places365_test_00276767.jpg
+Places365_test_00276775.jpg
+Places365_test_00276777.jpg
+Places365_test_00276780.jpg
+Places365_test_00276792.jpg
+Places365_test_00276797.jpg
+Places365_test_00276799.jpg
+Places365_test_00276812.jpg
+Places365_test_00276815.jpg
+Places365_test_00276819.jpg
+Places365_test_00276826.jpg
+Places365_test_00276841.jpg
+Places365_test_00276848.jpg
+Places365_test_00276885.jpg
+Places365_test_00276890.jpg
+Places365_test_00276910.jpg
+Places365_test_00276924.jpg
+Places365_test_00276925.jpg
+Places365_test_00276933.jpg
+Places365_test_00276939.jpg
+Places365_test_00276944.jpg
+Places365_test_00276960.jpg
+Places365_test_00276971.jpg
+Places365_test_00276995.jpg
+Places365_test_00277006.jpg
+Places365_test_00277008.jpg
+Places365_test_00277022.jpg
+Places365_test_00277032.jpg
+Places365_test_00277058.jpg
+Places365_test_00277063.jpg
+Places365_test_00277065.jpg
+Places365_test_00277079.jpg
+Places365_test_00277087.jpg
+Places365_test_00277100.jpg
+Places365_test_00277105.jpg
+Places365_test_00277108.jpg
+Places365_test_00277111.jpg
+Places365_test_00277112.jpg
+Places365_test_00277118.jpg
+Places365_test_00277125.jpg
+Places365_test_00277128.jpg
+Places365_test_00277146.jpg
+Places365_test_00277175.jpg
+Places365_test_00277185.jpg
+Places365_test_00277192.jpg
+Places365_test_00277195.jpg
+Places365_test_00277213.jpg
+Places365_test_00277216.jpg
+Places365_test_00277218.jpg
+Places365_test_00277224.jpg
+Places365_test_00277226.jpg
+Places365_test_00277227.jpg
+Places365_test_00277228.jpg
+Places365_test_00277231.jpg
+Places365_test_00277238.jpg
+Places365_test_00277246.jpg
+Places365_test_00277247.jpg
+Places365_test_00277254.jpg
+Places365_test_00277259.jpg
+Places365_test_00277283.jpg
+Places365_test_00277291.jpg
+Places365_test_00277292.jpg
+Places365_test_00277301.jpg
+Places365_test_00277306.jpg
+Places365_test_00277337.jpg
+Places365_test_00277342.jpg
+Places365_test_00277344.jpg
+Places365_test_00277358.jpg
+Places365_test_00277417.jpg
+Places365_test_00277466.jpg
+Places365_test_00277470.jpg
+Places365_test_00277472.jpg
+Places365_test_00277473.jpg
+Places365_test_00277485.jpg
+Places365_test_00277498.jpg
+Places365_test_00277518.jpg
+Places365_test_00277527.jpg
+Places365_test_00277536.jpg
+Places365_test_00277545.jpg
+Places365_test_00277549.jpg
+Places365_test_00277568.jpg
+Places365_test_00277578.jpg
+Places365_test_00277584.jpg
+Places365_test_00277616.jpg
+Places365_test_00277635.jpg
+Places365_test_00277637.jpg
+Places365_test_00277667.jpg
+Places365_test_00277676.jpg
+Places365_test_00277682.jpg
+Places365_test_00277683.jpg
+Places365_test_00277713.jpg
+Places365_test_00277738.jpg
+Places365_test_00277745.jpg
+Places365_test_00277754.jpg
+Places365_test_00277778.jpg
+Places365_test_00277782.jpg
+Places365_test_00277792.jpg
+Places365_test_00277797.jpg
+Places365_test_00277798.jpg
+Places365_test_00277805.jpg
+Places365_test_00277806.jpg
+Places365_test_00277808.jpg
+Places365_test_00277809.jpg
+Places365_test_00277818.jpg
+Places365_test_00277844.jpg
+Places365_test_00277850.jpg
+Places365_test_00277871.jpg
+Places365_test_00277873.jpg
+Places365_test_00277889.jpg
+Places365_test_00277892.jpg
+Places365_test_00277902.jpg
+Places365_test_00277903.jpg
+Places365_test_00277906.jpg
+Places365_test_00277918.jpg
+Places365_test_00277929.jpg
+Places365_test_00277966.jpg
+Places365_test_00277982.jpg
+Places365_test_00277984.jpg
+Places365_test_00277991.jpg
+Places365_test_00278002.jpg
+Places365_test_00278010.jpg
+Places365_test_00278029.jpg
+Places365_test_00278044.jpg
+Places365_test_00278070.jpg
+Places365_test_00278091.jpg
+Places365_test_00278113.jpg
+Places365_test_00278117.jpg
+Places365_test_00278121.jpg
+Places365_test_00278134.jpg
+Places365_test_00278144.jpg
+Places365_test_00278151.jpg
+Places365_test_00278153.jpg
+Places365_test_00278161.jpg
+Places365_test_00278172.jpg
+Places365_test_00278187.jpg
+Places365_test_00278204.jpg
+Places365_test_00278208.jpg
+Places365_test_00278211.jpg
+Places365_test_00278217.jpg
+Places365_test_00278218.jpg
+Places365_test_00278220.jpg
+Places365_test_00278226.jpg
+Places365_test_00278228.jpg
+Places365_test_00278235.jpg
+Places365_test_00278260.jpg
+Places365_test_00278264.jpg
+Places365_test_00278276.jpg
+Places365_test_00278280.jpg
+Places365_test_00278281.jpg
+Places365_test_00278317.jpg
+Places365_test_00278325.jpg
+Places365_test_00278343.jpg
+Places365_test_00278356.jpg
+Places365_test_00278366.jpg
+Places365_test_00278370.jpg
+Places365_test_00278389.jpg
+Places365_test_00278391.jpg
+Places365_test_00278406.jpg
+Places365_test_00278412.jpg
+Places365_test_00278413.jpg
+Places365_test_00278431.jpg
+Places365_test_00278432.jpg
+Places365_test_00278437.jpg
+Places365_test_00278440.jpg
+Places365_test_00278456.jpg
+Places365_test_00278472.jpg
+Places365_test_00278483.jpg
+Places365_test_00278490.jpg
+Places365_test_00278500.jpg
+Places365_test_00278509.jpg
+Places365_test_00278529.jpg
+Places365_test_00278535.jpg
+Places365_test_00278562.jpg
+Places365_test_00278566.jpg
+Places365_test_00278579.jpg
+Places365_test_00278581.jpg
+Places365_test_00278585.jpg
+Places365_test_00278596.jpg
+Places365_test_00278600.jpg
+Places365_test_00278603.jpg
+Places365_test_00278614.jpg
+Places365_test_00278625.jpg
+Places365_test_00278633.jpg
+Places365_test_00278638.jpg
+Places365_test_00278646.jpg
+Places365_test_00278654.jpg
+Places365_test_00278667.jpg
+Places365_test_00278673.jpg
+Places365_test_00278683.jpg
+Places365_test_00278702.jpg
+Places365_test_00278708.jpg
+Places365_test_00278712.jpg
+Places365_test_00278731.jpg
+Places365_test_00278740.jpg
+Places365_test_00278767.jpg
+Places365_test_00278789.jpg
+Places365_test_00278797.jpg
+Places365_test_00278816.jpg
+Places365_test_00278817.jpg
+Places365_test_00278829.jpg
+Places365_test_00278836.jpg
+Places365_test_00278842.jpg
+Places365_test_00278850.jpg
+Places365_test_00278854.jpg
+Places365_test_00278856.jpg
+Places365_test_00278858.jpg
+Places365_test_00278862.jpg
+Places365_test_00278875.jpg
+Places365_test_00278879.jpg
+Places365_test_00278890.jpg
+Places365_test_00278892.jpg
+Places365_test_00278909.jpg
+Places365_test_00278962.jpg
+Places365_test_00278964.jpg
+Places365_test_00278966.jpg
+Places365_test_00278987.jpg
+Places365_test_00279012.jpg
+Places365_test_00279018.jpg
+Places365_test_00279029.jpg
+Places365_test_00279038.jpg
+Places365_test_00279045.jpg
+Places365_test_00279049.jpg
+Places365_test_00279057.jpg
+Places365_test_00279071.jpg
+Places365_test_00279080.jpg
+Places365_test_00279086.jpg
+Places365_test_00279090.jpg
+Places365_test_00279091.jpg
+Places365_test_00279092.jpg
+Places365_test_00279094.jpg
+Places365_test_00279099.jpg
+Places365_test_00279104.jpg
+Places365_test_00279114.jpg
+Places365_test_00279122.jpg
+Places365_test_00279124.jpg
+Places365_test_00279128.jpg
+Places365_test_00279129.jpg
+Places365_test_00279133.jpg
+Places365_test_00279152.jpg
+Places365_test_00279154.jpg
+Places365_test_00279160.jpg
+Places365_test_00279161.jpg
+Places365_test_00279164.jpg
+Places365_test_00279168.jpg
+Places365_test_00279170.jpg
+Places365_test_00279178.jpg
+Places365_test_00279180.jpg
+Places365_test_00279188.jpg
+Places365_test_00279191.jpg
+Places365_test_00279196.jpg
+Places365_test_00279199.jpg
+Places365_test_00279219.jpg
+Places365_test_00279220.jpg
+Places365_test_00279222.jpg
+Places365_test_00279225.jpg
+Places365_test_00279233.jpg
+Places365_test_00279257.jpg
+Places365_test_00279261.jpg
+Places365_test_00279264.jpg
+Places365_test_00279267.jpg
+Places365_test_00279287.jpg
+Places365_test_00279292.jpg
+Places365_test_00279307.jpg
+Places365_test_00279308.jpg
+Places365_test_00279318.jpg
+Places365_test_00279334.jpg
+Places365_test_00279340.jpg
+Places365_test_00279343.jpg
+Places365_test_00279362.jpg
+Places365_test_00279389.jpg
+Places365_test_00279392.jpg
+Places365_test_00279395.jpg
+Places365_test_00279405.jpg
+Places365_test_00279407.jpg
+Places365_test_00279414.jpg
+Places365_test_00279417.jpg
+Places365_test_00279429.jpg
+Places365_test_00279433.jpg
+Places365_test_00279437.jpg
+Places365_test_00279458.jpg
+Places365_test_00279459.jpg
+Places365_test_00279460.jpg
+Places365_test_00279472.jpg
+Places365_test_00279490.jpg
+Places365_test_00279522.jpg
+Places365_test_00279527.jpg
+Places365_test_00279558.jpg
+Places365_test_00279570.jpg
+Places365_test_00279573.jpg
+Places365_test_00279600.jpg
+Places365_test_00279608.jpg
+Places365_test_00279628.jpg
+Places365_test_00279634.jpg
+Places365_test_00279639.jpg
+Places365_test_00279669.jpg
+Places365_test_00279675.jpg
+Places365_test_00279689.jpg
+Places365_test_00279696.jpg
+Places365_test_00279720.jpg
+Places365_test_00279729.jpg
+Places365_test_00279731.jpg
+Places365_test_00279735.jpg
+Places365_test_00279738.jpg
+Places365_test_00279761.jpg
+Places365_test_00279762.jpg
+Places365_test_00279766.jpg
+Places365_test_00279777.jpg
+Places365_test_00279783.jpg
+Places365_test_00279787.jpg
+Places365_test_00279788.jpg
+Places365_test_00279812.jpg
+Places365_test_00279820.jpg
+Places365_test_00279830.jpg
+Places365_test_00279848.jpg
+Places365_test_00279851.jpg
+Places365_test_00279859.jpg
+Places365_test_00279877.jpg
+Places365_test_00279878.jpg
+Places365_test_00279888.jpg
+Places365_test_00279889.jpg
+Places365_test_00279890.jpg
+Places365_test_00279895.jpg
+Places365_test_00279905.jpg
+Places365_test_00279909.jpg
+Places365_test_00279918.jpg
+Places365_test_00279930.jpg
+Places365_test_00279939.jpg
+Places365_test_00279945.jpg
+Places365_test_00279991.jpg
+Places365_test_00279995.jpg
+Places365_test_00280006.jpg
+Places365_test_00280022.jpg
+Places365_test_00280023.jpg
+Places365_test_00280030.jpg
+Places365_test_00280045.jpg
+Places365_test_00280056.jpg
+Places365_test_00280068.jpg
+Places365_test_00280087.jpg
+Places365_test_00280102.jpg
+Places365_test_00280116.jpg
+Places365_test_00280118.jpg
+Places365_test_00280123.jpg
+Places365_test_00280131.jpg
+Places365_test_00280134.jpg
+Places365_test_00280154.jpg
+Places365_test_00280155.jpg
+Places365_test_00280176.jpg
+Places365_test_00280208.jpg
+Places365_test_00280217.jpg
+Places365_test_00280219.jpg
+Places365_test_00280226.jpg
+Places365_test_00280238.jpg
+Places365_test_00280241.jpg
+Places365_test_00280253.jpg
+Places365_test_00280264.jpg
+Places365_test_00280284.jpg
+Places365_test_00280300.jpg
+Places365_test_00280331.jpg
+Places365_test_00280339.jpg
+Places365_test_00280356.jpg
+Places365_test_00280362.jpg
+Places365_test_00280384.jpg
+Places365_test_00280401.jpg
+Places365_test_00280409.jpg
+Places365_test_00280441.jpg
+Places365_test_00280443.jpg
+Places365_test_00280451.jpg
+Places365_test_00280460.jpg
+Places365_test_00280462.jpg
+Places365_test_00280472.jpg
+Places365_test_00280481.jpg
+Places365_test_00280499.jpg
+Places365_test_00280506.jpg
+Places365_test_00280508.jpg
+Places365_test_00280528.jpg
+Places365_test_00280558.jpg
+Places365_test_00280562.jpg
+Places365_test_00280567.jpg
+Places365_test_00280584.jpg
+Places365_test_00280586.jpg
+Places365_test_00280600.jpg
+Places365_test_00280616.jpg
+Places365_test_00280627.jpg
+Places365_test_00280637.jpg
+Places365_test_00280638.jpg
+Places365_test_00280644.jpg
+Places365_test_00280663.jpg
+Places365_test_00280683.jpg
+Places365_test_00280684.jpg
+Places365_test_00280687.jpg
+Places365_test_00280703.jpg
+Places365_test_00280704.jpg
+Places365_test_00280707.jpg
+Places365_test_00280708.jpg
+Places365_test_00280745.jpg
+Places365_test_00280752.jpg
+Places365_test_00280754.jpg
+Places365_test_00280757.jpg
+Places365_test_00280758.jpg
+Places365_test_00280763.jpg
+Places365_test_00280764.jpg
+Places365_test_00280769.jpg
+Places365_test_00280770.jpg
+Places365_test_00280812.jpg
+Places365_test_00280813.jpg
+Places365_test_00280815.jpg
+Places365_test_00280819.jpg
+Places365_test_00280859.jpg
+Places365_test_00280862.jpg
+Places365_test_00280918.jpg
+Places365_test_00280922.jpg
+Places365_test_00280931.jpg
+Places365_test_00280941.jpg
+Places365_test_00280944.jpg
+Places365_test_00280945.jpg
+Places365_test_00280967.jpg
+Places365_test_00280979.jpg
+Places365_test_00281004.jpg
+Places365_test_00281057.jpg
+Places365_test_00281061.jpg
+Places365_test_00281070.jpg
+Places365_test_00281079.jpg
+Places365_test_00281105.jpg
+Places365_test_00281116.jpg
+Places365_test_00281138.jpg
+Places365_test_00281139.jpg
+Places365_test_00281155.jpg
+Places365_test_00281162.jpg
+Places365_test_00281182.jpg
+Places365_test_00281200.jpg
+Places365_test_00281212.jpg
+Places365_test_00281224.jpg
+Places365_test_00281227.jpg
+Places365_test_00281233.jpg
+Places365_test_00281244.jpg
+Places365_test_00281261.jpg
+Places365_test_00281265.jpg
+Places365_test_00281269.jpg
+Places365_test_00281271.jpg
+Places365_test_00281313.jpg
+Places365_test_00281314.jpg
+Places365_test_00281324.jpg
+Places365_test_00281326.jpg
+Places365_test_00281328.jpg
+Places365_test_00281355.jpg
+Places365_test_00281357.jpg
+Places365_test_00281368.jpg
+Places365_test_00281377.jpg
+Places365_test_00281384.jpg
+Places365_test_00281418.jpg
+Places365_test_00281423.jpg
+Places365_test_00281433.jpg
+Places365_test_00281441.jpg
+Places365_test_00281446.jpg
+Places365_test_00281450.jpg
+Places365_test_00281466.jpg
+Places365_test_00281474.jpg
+Places365_test_00281479.jpg
+Places365_test_00281493.jpg
+Places365_test_00281516.jpg
+Places365_test_00281526.jpg
+Places365_test_00281558.jpg
+Places365_test_00281567.jpg
+Places365_test_00281568.jpg
+Places365_test_00281570.jpg
+Places365_test_00281594.jpg
+Places365_test_00281604.jpg
+Places365_test_00281606.jpg
+Places365_test_00281608.jpg
+Places365_test_00281633.jpg
+Places365_test_00281639.jpg
+Places365_test_00281647.jpg
+Places365_test_00281648.jpg
+Places365_test_00281657.jpg
+Places365_test_00281665.jpg
+Places365_test_00281669.jpg
+Places365_test_00281688.jpg
+Places365_test_00281701.jpg
+Places365_test_00281717.jpg
+Places365_test_00281729.jpg
+Places365_test_00281741.jpg
+Places365_test_00281748.jpg
+Places365_test_00281749.jpg
+Places365_test_00281777.jpg
+Places365_test_00281797.jpg
+Places365_test_00281819.jpg
+Places365_test_00281827.jpg
+Places365_test_00281831.jpg
+Places365_test_00281849.jpg
+Places365_test_00281852.jpg
+Places365_test_00281875.jpg
+Places365_test_00281878.jpg
+Places365_test_00281885.jpg
+Places365_test_00281894.jpg
+Places365_test_00281917.jpg
+Places365_test_00281922.jpg
+Places365_test_00281928.jpg
+Places365_test_00281934.jpg
+Places365_test_00281953.jpg
+Places365_test_00281969.jpg
+Places365_test_00281987.jpg
+Places365_test_00282003.jpg
+Places365_test_00282007.jpg
+Places365_test_00282012.jpg
+Places365_test_00282014.jpg
+Places365_test_00282021.jpg
+Places365_test_00282030.jpg
+Places365_test_00282032.jpg
+Places365_test_00282045.jpg
+Places365_test_00282049.jpg
+Places365_test_00282065.jpg
+Places365_test_00282082.jpg
+Places365_test_00282088.jpg
+Places365_test_00282089.jpg
+Places365_test_00282091.jpg
+Places365_test_00282093.jpg
+Places365_test_00282103.jpg
+Places365_test_00282105.jpg
+Places365_test_00282113.jpg
+Places365_test_00282123.jpg
+Places365_test_00282130.jpg
+Places365_test_00282149.jpg
+Places365_test_00282195.jpg
+Places365_test_00282199.jpg
+Places365_test_00282214.jpg
+Places365_test_00282223.jpg
+Places365_test_00282234.jpg
+Places365_test_00282250.jpg
+Places365_test_00282252.jpg
+Places365_test_00282257.jpg
+Places365_test_00282266.jpg
+Places365_test_00282269.jpg
+Places365_test_00282287.jpg
+Places365_test_00282300.jpg
+Places365_test_00282303.jpg
+Places365_test_00282304.jpg
+Places365_test_00282308.jpg
+Places365_test_00282326.jpg
+Places365_test_00282331.jpg
+Places365_test_00282341.jpg
+Places365_test_00282360.jpg
+Places365_test_00282371.jpg
+Places365_test_00282374.jpg
+Places365_test_00282375.jpg
+Places365_test_00282376.jpg
+Places365_test_00282414.jpg
+Places365_test_00282483.jpg
+Places365_test_00282492.jpg
+Places365_test_00282494.jpg
+Places365_test_00282503.jpg
+Places365_test_00282552.jpg
+Places365_test_00282563.jpg
+Places365_test_00282564.jpg
+Places365_test_00282577.jpg
+Places365_test_00282588.jpg
+Places365_test_00282591.jpg
+Places365_test_00282624.jpg
+Places365_test_00282626.jpg
+Places365_test_00282627.jpg
+Places365_test_00282637.jpg
+Places365_test_00282648.jpg
+Places365_test_00282660.jpg
+Places365_test_00282662.jpg
+Places365_test_00282668.jpg
+Places365_test_00282673.jpg
+Places365_test_00282676.jpg
+Places365_test_00282686.jpg
+Places365_test_00282693.jpg
+Places365_test_00282712.jpg
+Places365_test_00282755.jpg
+Places365_test_00282758.jpg
+Places365_test_00282775.jpg
+Places365_test_00282777.jpg
+Places365_test_00282783.jpg
+Places365_test_00282795.jpg
+Places365_test_00282818.jpg
+Places365_test_00282822.jpg
+Places365_test_00282830.jpg
+Places365_test_00282831.jpg
+Places365_test_00282848.jpg
+Places365_test_00282862.jpg
+Places365_test_00282864.jpg
+Places365_test_00282865.jpg
+Places365_test_00282867.jpg
+Places365_test_00282879.jpg
+Places365_test_00282886.jpg
+Places365_test_00282892.jpg
+Places365_test_00282893.jpg
+Places365_test_00282897.jpg
+Places365_test_00282901.jpg
+Places365_test_00282905.jpg
+Places365_test_00282916.jpg
+Places365_test_00282924.jpg
+Places365_test_00282933.jpg
+Places365_test_00282940.jpg
+Places365_test_00282942.jpg
+Places365_test_00282946.jpg
+Places365_test_00282947.jpg
+Places365_test_00282972.jpg
+Places365_test_00282980.jpg
+Places365_test_00282986.jpg
+Places365_test_00282992.jpg
+Places365_test_00282994.jpg
+Places365_test_00283018.jpg
+Places365_test_00283020.jpg
+Places365_test_00283040.jpg
+Places365_test_00283058.jpg
+Places365_test_00283073.jpg
+Places365_test_00283085.jpg
+Places365_test_00283087.jpg
+Places365_test_00283117.jpg
+Places365_test_00283124.jpg
+Places365_test_00283161.jpg
+Places365_test_00283189.jpg
+Places365_test_00283195.jpg
+Places365_test_00283204.jpg
+Places365_test_00283245.jpg
+Places365_test_00283249.jpg
+Places365_test_00283261.jpg
+Places365_test_00283264.jpg
+Places365_test_00283279.jpg
+Places365_test_00283318.jpg
+Places365_test_00283319.jpg
+Places365_test_00283334.jpg
+Places365_test_00283339.jpg
+Places365_test_00283343.jpg
+Places365_test_00283352.jpg
+Places365_test_00283353.jpg
+Places365_test_00283354.jpg
+Places365_test_00283423.jpg
+Places365_test_00283428.jpg
+Places365_test_00283431.jpg
+Places365_test_00283435.jpg
+Places365_test_00283447.jpg
+Places365_test_00283475.jpg
+Places365_test_00283484.jpg
+Places365_test_00283488.jpg
+Places365_test_00283523.jpg
+Places365_test_00283549.jpg
+Places365_test_00283558.jpg
+Places365_test_00283573.jpg
+Places365_test_00283576.jpg
+Places365_test_00283592.jpg
+Places365_test_00283595.jpg
+Places365_test_00283603.jpg
+Places365_test_00283606.jpg
+Places365_test_00283627.jpg
+Places365_test_00283629.jpg
+Places365_test_00283640.jpg
+Places365_test_00283670.jpg
+Places365_test_00283671.jpg
+Places365_test_00283679.jpg
+Places365_test_00283691.jpg
+Places365_test_00283730.jpg
+Places365_test_00283733.jpg
+Places365_test_00283747.jpg
+Places365_test_00283754.jpg
+Places365_test_00283796.jpg
+Places365_test_00283804.jpg
+Places365_test_00283829.jpg
+Places365_test_00283864.jpg
+Places365_test_00283867.jpg
+Places365_test_00283876.jpg
+Places365_test_00283891.jpg
+Places365_test_00283932.jpg
+Places365_test_00283946.jpg
+Places365_test_00283949.jpg
+Places365_test_00283950.jpg
+Places365_test_00283961.jpg
+Places365_test_00283978.jpg
+Places365_test_00283998.jpg
+Places365_test_00284020.jpg
+Places365_test_00284027.jpg
+Places365_test_00284039.jpg
+Places365_test_00284048.jpg
+Places365_test_00284059.jpg
+Places365_test_00284060.jpg
+Places365_test_00284066.jpg
+Places365_test_00284077.jpg
+Places365_test_00284086.jpg
+Places365_test_00284113.jpg
+Places365_test_00284115.jpg
+Places365_test_00284131.jpg
+Places365_test_00284136.jpg
+Places365_test_00284147.jpg
+Places365_test_00284161.jpg
+Places365_test_00284170.jpg
+Places365_test_00284172.jpg
+Places365_test_00284195.jpg
+Places365_test_00284210.jpg
+Places365_test_00284244.jpg
+Places365_test_00284251.jpg
+Places365_test_00284274.jpg
+Places365_test_00284283.jpg
+Places365_test_00284292.jpg
+Places365_test_00284323.jpg
+Places365_test_00284330.jpg
+Places365_test_00284338.jpg
+Places365_test_00284340.jpg
+Places365_test_00284341.jpg
+Places365_test_00284346.jpg
+Places365_test_00284360.jpg
+Places365_test_00284371.jpg
+Places365_test_00284374.jpg
+Places365_test_00284377.jpg
+Places365_test_00284387.jpg
+Places365_test_00284394.jpg
+Places365_test_00284403.jpg
+Places365_test_00284405.jpg
+Places365_test_00284417.jpg
+Places365_test_00284418.jpg
+Places365_test_00284427.jpg
+Places365_test_00284438.jpg
+Places365_test_00284440.jpg
+Places365_test_00284444.jpg
+Places365_test_00284445.jpg
+Places365_test_00284453.jpg
+Places365_test_00284455.jpg
+Places365_test_00284457.jpg
+Places365_test_00284459.jpg
+Places365_test_00284462.jpg
+Places365_test_00284469.jpg
+Places365_test_00284499.jpg
+Places365_test_00284503.jpg
+Places365_test_00284519.jpg
+Places365_test_00284531.jpg
+Places365_test_00284534.jpg
+Places365_test_00284554.jpg
+Places365_test_00284563.jpg
+Places365_test_00284565.jpg
+Places365_test_00284578.jpg
+Places365_test_00284583.jpg
+Places365_test_00284587.jpg
+Places365_test_00284599.jpg
+Places365_test_00284600.jpg
+Places365_test_00284614.jpg
+Places365_test_00284624.jpg
+Places365_test_00284633.jpg
+Places365_test_00284640.jpg
+Places365_test_00284654.jpg
+Places365_test_00284655.jpg
+Places365_test_00284668.jpg
+Places365_test_00284682.jpg
+Places365_test_00284711.jpg
+Places365_test_00284720.jpg
+Places365_test_00284725.jpg
+Places365_test_00284726.jpg
+Places365_test_00284753.jpg
+Places365_test_00284767.jpg
+Places365_test_00284808.jpg
+Places365_test_00284833.jpg
+Places365_test_00284858.jpg
+Places365_test_00284881.jpg
+Places365_test_00284884.jpg
+Places365_test_00284889.jpg
+Places365_test_00284913.jpg
+Places365_test_00284914.jpg
+Places365_test_00284925.jpg
+Places365_test_00284939.jpg
+Places365_test_00284942.jpg
+Places365_test_00284948.jpg
+Places365_test_00284959.jpg
+Places365_test_00284964.jpg
+Places365_test_00284966.jpg
+Places365_test_00284986.jpg
+Places365_test_00284991.jpg
+Places365_test_00285009.jpg
+Places365_test_00285014.jpg
+Places365_test_00285030.jpg
+Places365_test_00285052.jpg
+Places365_test_00285059.jpg
+Places365_test_00285076.jpg
+Places365_test_00285078.jpg
+Places365_test_00285084.jpg
+Places365_test_00285088.jpg
+Places365_test_00285089.jpg
+Places365_test_00285102.jpg
+Places365_test_00285110.jpg
+Places365_test_00285116.jpg
+Places365_test_00285121.jpg
+Places365_test_00285136.jpg
+Places365_test_00285163.jpg
+Places365_test_00285198.jpg
+Places365_test_00285205.jpg
+Places365_test_00285220.jpg
+Places365_test_00285230.jpg
+Places365_test_00285236.jpg
+Places365_test_00285237.jpg
+Places365_test_00285244.jpg
+Places365_test_00285251.jpg
+Places365_test_00285252.jpg
+Places365_test_00285274.jpg
+Places365_test_00285275.jpg
+Places365_test_00285281.jpg
+Places365_test_00285304.jpg
+Places365_test_00285305.jpg
+Places365_test_00285307.jpg
+Places365_test_00285314.jpg
+Places365_test_00285330.jpg
+Places365_test_00285332.jpg
+Places365_test_00285333.jpg
+Places365_test_00285340.jpg
+Places365_test_00285359.jpg
+Places365_test_00285360.jpg
+Places365_test_00285371.jpg
+Places365_test_00285372.jpg
+Places365_test_00285373.jpg
+Places365_test_00285392.jpg
+Places365_test_00285441.jpg
+Places365_test_00285449.jpg
+Places365_test_00285452.jpg
+Places365_test_00285456.jpg
+Places365_test_00285466.jpg
+Places365_test_00285473.jpg
+Places365_test_00285475.jpg
+Places365_test_00285477.jpg
+Places365_test_00285523.jpg
+Places365_test_00285535.jpg
+Places365_test_00285542.jpg
+Places365_test_00285600.jpg
+Places365_test_00285613.jpg
+Places365_test_00285632.jpg
+Places365_test_00285638.jpg
+Places365_test_00285640.jpg
+Places365_test_00285645.jpg
+Places365_test_00285646.jpg
+Places365_test_00285675.jpg
+Places365_test_00285698.jpg
+Places365_test_00285703.jpg
+Places365_test_00285712.jpg
+Places365_test_00285720.jpg
+Places365_test_00285727.jpg
+Places365_test_00285732.jpg
+Places365_test_00285744.jpg
+Places365_test_00285747.jpg
+Places365_test_00285748.jpg
+Places365_test_00285767.jpg
+Places365_test_00285770.jpg
+Places365_test_00285800.jpg
+Places365_test_00285817.jpg
+Places365_test_00285821.jpg
+Places365_test_00285835.jpg
+Places365_test_00285847.jpg
+Places365_test_00285884.jpg
+Places365_test_00285891.jpg
+Places365_test_00285904.jpg
+Places365_test_00285908.jpg
+Places365_test_00285910.jpg
+Places365_test_00285911.jpg
+Places365_test_00285928.jpg
+Places365_test_00285935.jpg
+Places365_test_00285937.jpg
+Places365_test_00285946.jpg
+Places365_test_00285972.jpg
+Places365_test_00285991.jpg
+Places365_test_00285998.jpg
+Places365_test_00286009.jpg
+Places365_test_00286013.jpg
+Places365_test_00286015.jpg
+Places365_test_00286026.jpg
+Places365_test_00286030.jpg
+Places365_test_00286032.jpg
+Places365_test_00286043.jpg
+Places365_test_00286051.jpg
+Places365_test_00286065.jpg
+Places365_test_00286086.jpg
+Places365_test_00286089.jpg
+Places365_test_00286113.jpg
+Places365_test_00286115.jpg
+Places365_test_00286119.jpg
+Places365_test_00286125.jpg
+Places365_test_00286131.jpg
+Places365_test_00286148.jpg
+Places365_test_00286149.jpg
+Places365_test_00286153.jpg
+Places365_test_00286155.jpg
+Places365_test_00286158.jpg
+Places365_test_00286159.jpg
+Places365_test_00286197.jpg
+Places365_test_00286205.jpg
+Places365_test_00286214.jpg
+Places365_test_00286220.jpg
+Places365_test_00286221.jpg
+Places365_test_00286245.jpg
+Places365_test_00286263.jpg
+Places365_test_00286268.jpg
+Places365_test_00286279.jpg
+Places365_test_00286309.jpg
+Places365_test_00286310.jpg
+Places365_test_00286320.jpg
+Places365_test_00286348.jpg
+Places365_test_00286362.jpg
+Places365_test_00286363.jpg
+Places365_test_00286365.jpg
+Places365_test_00286373.jpg
+Places365_test_00286404.jpg
+Places365_test_00286414.jpg
+Places365_test_00286426.jpg
+Places365_test_00286427.jpg
+Places365_test_00286435.jpg
+Places365_test_00286437.jpg
+Places365_test_00286439.jpg
+Places365_test_00286441.jpg
+Places365_test_00286448.jpg
+Places365_test_00286453.jpg
+Places365_test_00286456.jpg
+Places365_test_00286465.jpg
+Places365_test_00286477.jpg
+Places365_test_00286485.jpg
+Places365_test_00286497.jpg
+Places365_test_00286499.jpg
+Places365_test_00286503.jpg
+Places365_test_00286506.jpg
+Places365_test_00286514.jpg
+Places365_test_00286526.jpg
+Places365_test_00286527.jpg
+Places365_test_00286558.jpg
+Places365_test_00286565.jpg
+Places365_test_00286573.jpg
+Places365_test_00286574.jpg
+Places365_test_00286586.jpg
+Places365_test_00286592.jpg
+Places365_test_00286593.jpg
+Places365_test_00286594.jpg
+Places365_test_00286620.jpg
+Places365_test_00286642.jpg
+Places365_test_00286658.jpg
+Places365_test_00286662.jpg
+Places365_test_00286663.jpg
+Places365_test_00286665.jpg
+Places365_test_00286670.jpg
+Places365_test_00286685.jpg
+Places365_test_00286687.jpg
+Places365_test_00286700.jpg
+Places365_test_00286711.jpg
+Places365_test_00286728.jpg
+Places365_test_00286729.jpg
+Places365_test_00286744.jpg
+Places365_test_00286749.jpg
+Places365_test_00286769.jpg
+Places365_test_00286773.jpg
+Places365_test_00286774.jpg
+Places365_test_00286782.jpg
+Places365_test_00286794.jpg
+Places365_test_00286822.jpg
+Places365_test_00286831.jpg
+Places365_test_00286835.jpg
+Places365_test_00286839.jpg
+Places365_test_00286843.jpg
+Places365_test_00286845.jpg
+Places365_test_00286850.jpg
+Places365_test_00286862.jpg
+Places365_test_00286866.jpg
+Places365_test_00286905.jpg
+Places365_test_00286908.jpg
+Places365_test_00286909.jpg
+Places365_test_00286919.jpg
+Places365_test_00286924.jpg
+Places365_test_00286934.jpg
+Places365_test_00286971.jpg
+Places365_test_00286979.jpg
+Places365_test_00286995.jpg
+Places365_test_00286999.jpg
+Places365_test_00287010.jpg
+Places365_test_00287015.jpg
+Places365_test_00287017.jpg
+Places365_test_00287031.jpg
+Places365_test_00287035.jpg
+Places365_test_00287044.jpg
+Places365_test_00287049.jpg
+Places365_test_00287061.jpg
+Places365_test_00287073.jpg
+Places365_test_00287094.jpg
+Places365_test_00287110.jpg
+Places365_test_00287112.jpg
+Places365_test_00287136.jpg
+Places365_test_00287144.jpg
+Places365_test_00287156.jpg
+Places365_test_00287166.jpg
+Places365_test_00287168.jpg
+Places365_test_00287187.jpg
+Places365_test_00287198.jpg
+Places365_test_00287207.jpg
+Places365_test_00287212.jpg
+Places365_test_00287215.jpg
+Places365_test_00287235.jpg
+Places365_test_00287237.jpg
+Places365_test_00287255.jpg
+Places365_test_00287258.jpg
+Places365_test_00287267.jpg
+Places365_test_00287283.jpg
+Places365_test_00287287.jpg
+Places365_test_00287327.jpg
+Places365_test_00287331.jpg
+Places365_test_00287333.jpg
+Places365_test_00287346.jpg
+Places365_test_00287351.jpg
+Places365_test_00287354.jpg
+Places365_test_00287358.jpg
+Places365_test_00287361.jpg
+Places365_test_00287370.jpg
+Places365_test_00287378.jpg
+Places365_test_00287384.jpg
+Places365_test_00287389.jpg
+Places365_test_00287394.jpg
+Places365_test_00287398.jpg
+Places365_test_00287402.jpg
+Places365_test_00287415.jpg
+Places365_test_00287418.jpg
+Places365_test_00287423.jpg
+Places365_test_00287437.jpg
+Places365_test_00287441.jpg
+Places365_test_00287465.jpg
+Places365_test_00287467.jpg
+Places365_test_00287479.jpg
+Places365_test_00287503.jpg
+Places365_test_00287505.jpg
+Places365_test_00287506.jpg
+Places365_test_00287508.jpg
+Places365_test_00287513.jpg
+Places365_test_00287558.jpg
+Places365_test_00287560.jpg
+Places365_test_00287608.jpg
+Places365_test_00287615.jpg
+Places365_test_00287616.jpg
+Places365_test_00287639.jpg
+Places365_test_00287644.jpg
+Places365_test_00287646.jpg
+Places365_test_00287696.jpg
+Places365_test_00287698.jpg
+Places365_test_00287708.jpg
+Places365_test_00287709.jpg
+Places365_test_00287713.jpg
+Places365_test_00287727.jpg
+Places365_test_00287730.jpg
+Places365_test_00287739.jpg
+Places365_test_00287741.jpg
+Places365_test_00287757.jpg
+Places365_test_00287759.jpg
+Places365_test_00287766.jpg
+Places365_test_00287769.jpg
+Places365_test_00287776.jpg
+Places365_test_00287795.jpg
+Places365_test_00287797.jpg
+Places365_test_00287807.jpg
+Places365_test_00287825.jpg
+Places365_test_00287830.jpg
+Places365_test_00287836.jpg
+Places365_test_00287858.jpg
+Places365_test_00287866.jpg
+Places365_test_00287874.jpg
+Places365_test_00287879.jpg
+Places365_test_00287881.jpg
+Places365_test_00287894.jpg
+Places365_test_00287900.jpg
+Places365_test_00287909.jpg
+Places365_test_00287915.jpg
+Places365_test_00287936.jpg
+Places365_test_00287939.jpg
+Places365_test_00287949.jpg
+Places365_test_00287964.jpg
+Places365_test_00287965.jpg
+Places365_test_00287969.jpg
+Places365_test_00287977.jpg
+Places365_test_00287987.jpg
+Places365_test_00288007.jpg
+Places365_test_00288012.jpg
+Places365_test_00288016.jpg
+Places365_test_00288033.jpg
+Places365_test_00288051.jpg
+Places365_test_00288053.jpg
+Places365_test_00288058.jpg
+Places365_test_00288086.jpg
+Places365_test_00288089.jpg
+Places365_test_00288101.jpg
+Places365_test_00288103.jpg
+Places365_test_00288117.jpg
+Places365_test_00288135.jpg
+Places365_test_00288139.jpg
+Places365_test_00288144.jpg
+Places365_test_00288148.jpg
+Places365_test_00288152.jpg
+Places365_test_00288161.jpg
+Places365_test_00288180.jpg
+Places365_test_00288185.jpg
+Places365_test_00288187.jpg
+Places365_test_00288197.jpg
+Places365_test_00288198.jpg
+Places365_test_00288199.jpg
+Places365_test_00288200.jpg
+Places365_test_00288217.jpg
+Places365_test_00288225.jpg
+Places365_test_00288246.jpg
+Places365_test_00288249.jpg
+Places365_test_00288260.jpg
+Places365_test_00288268.jpg
+Places365_test_00288283.jpg
+Places365_test_00288286.jpg
+Places365_test_00288303.jpg
+Places365_test_00288305.jpg
+Places365_test_00288319.jpg
+Places365_test_00288327.jpg
+Places365_test_00288328.jpg
+Places365_test_00288329.jpg
+Places365_test_00288343.jpg
+Places365_test_00288351.jpg
+Places365_test_00288360.jpg
+Places365_test_00288369.jpg
+Places365_test_00288414.jpg
+Places365_test_00288417.jpg
+Places365_test_00288436.jpg
+Places365_test_00288443.jpg
+Places365_test_00288452.jpg
+Places365_test_00288461.jpg
+Places365_test_00288477.jpg
+Places365_test_00288516.jpg
+Places365_test_00288529.jpg
+Places365_test_00288530.jpg
+Places365_test_00288536.jpg
+Places365_test_00288545.jpg
+Places365_test_00288549.jpg
+Places365_test_00288557.jpg
+Places365_test_00288559.jpg
+Places365_test_00288564.jpg
+Places365_test_00288568.jpg
+Places365_test_00288575.jpg
+Places365_test_00288601.jpg
+Places365_test_00288612.jpg
+Places365_test_00288617.jpg
+Places365_test_00288620.jpg
+Places365_test_00288629.jpg
+Places365_test_00288630.jpg
+Places365_test_00288652.jpg
+Places365_test_00288655.jpg
+Places365_test_00288665.jpg
+Places365_test_00288666.jpg
+Places365_test_00288671.jpg
+Places365_test_00288674.jpg
+Places365_test_00288697.jpg
+Places365_test_00288701.jpg
+Places365_test_00288707.jpg
+Places365_test_00288713.jpg
+Places365_test_00288715.jpg
+Places365_test_00288731.jpg
+Places365_test_00288734.jpg
+Places365_test_00288756.jpg
+Places365_test_00288766.jpg
+Places365_test_00288778.jpg
+Places365_test_00288780.jpg
+Places365_test_00288784.jpg
+Places365_test_00288794.jpg
+Places365_test_00288797.jpg
+Places365_test_00288798.jpg
+Places365_test_00288814.jpg
+Places365_test_00288844.jpg
+Places365_test_00288849.jpg
+Places365_test_00288859.jpg
+Places365_test_00288865.jpg
+Places365_test_00288869.jpg
+Places365_test_00288893.jpg
+Places365_test_00288902.jpg
+Places365_test_00288904.jpg
+Places365_test_00288912.jpg
+Places365_test_00288915.jpg
+Places365_test_00288924.jpg
+Places365_test_00288945.jpg
+Places365_test_00288946.jpg
+Places365_test_00288962.jpg
+Places365_test_00288965.jpg
+Places365_test_00288979.jpg
+Places365_test_00289011.jpg
+Places365_test_00289015.jpg
+Places365_test_00289018.jpg
+Places365_test_00289032.jpg
+Places365_test_00289055.jpg
+Places365_test_00289081.jpg
+Places365_test_00289110.jpg
+Places365_test_00289119.jpg
+Places365_test_00289122.jpg
+Places365_test_00289162.jpg
+Places365_test_00289166.jpg
+Places365_test_00289201.jpg
+Places365_test_00289205.jpg
+Places365_test_00289210.jpg
+Places365_test_00289212.jpg
+Places365_test_00289245.jpg
+Places365_test_00289259.jpg
+Places365_test_00289271.jpg
+Places365_test_00289275.jpg
+Places365_test_00289288.jpg
+Places365_test_00289298.jpg
+Places365_test_00289321.jpg
+Places365_test_00289344.jpg
+Places365_test_00289345.jpg
+Places365_test_00289350.jpg
+Places365_test_00289384.jpg
+Places365_test_00289401.jpg
+Places365_test_00289425.jpg
+Places365_test_00289427.jpg
+Places365_test_00289435.jpg
+Places365_test_00289442.jpg
+Places365_test_00289451.jpg
+Places365_test_00289489.jpg
+Places365_test_00289503.jpg
+Places365_test_00289511.jpg
+Places365_test_00289538.jpg
+Places365_test_00289539.jpg
+Places365_test_00289555.jpg
+Places365_test_00289566.jpg
+Places365_test_00289578.jpg
+Places365_test_00289597.jpg
+Places365_test_00289607.jpg
+Places365_test_00289610.jpg
+Places365_test_00289615.jpg
+Places365_test_00289620.jpg
+Places365_test_00289633.jpg
+Places365_test_00289640.jpg
+Places365_test_00289641.jpg
+Places365_test_00289658.jpg
+Places365_test_00289677.jpg
+Places365_test_00289685.jpg
+Places365_test_00289689.jpg
+Places365_test_00289699.jpg
+Places365_test_00289701.jpg
+Places365_test_00289704.jpg
+Places365_test_00289714.jpg
+Places365_test_00289718.jpg
+Places365_test_00289734.jpg
+Places365_test_00289737.jpg
+Places365_test_00289739.jpg
+Places365_test_00289761.jpg
+Places365_test_00289766.jpg
+Places365_test_00289782.jpg
+Places365_test_00289793.jpg
+Places365_test_00289808.jpg
+Places365_test_00289814.jpg
+Places365_test_00289817.jpg
+Places365_test_00289842.jpg
+Places365_test_00289857.jpg
+Places365_test_00289866.jpg
+Places365_test_00289868.jpg
+Places365_test_00289884.jpg
+Places365_test_00289899.jpg
+Places365_test_00289900.jpg
+Places365_test_00289920.jpg
+Places365_test_00289926.jpg
+Places365_test_00289928.jpg
+Places365_test_00289937.jpg
+Places365_test_00289947.jpg
+Places365_test_00289966.jpg
+Places365_test_00289971.jpg
+Places365_test_00289986.jpg
+Places365_test_00289989.jpg
+Places365_test_00290026.jpg
+Places365_test_00290028.jpg
+Places365_test_00290054.jpg
+Places365_test_00290057.jpg
+Places365_test_00290060.jpg
+Places365_test_00290073.jpg
+Places365_test_00290082.jpg
+Places365_test_00290091.jpg
+Places365_test_00290101.jpg
+Places365_test_00290115.jpg
+Places365_test_00290120.jpg
+Places365_test_00290129.jpg
+Places365_test_00290133.jpg
+Places365_test_00290135.jpg
+Places365_test_00290149.jpg
+Places365_test_00290166.jpg
+Places365_test_00290171.jpg
+Places365_test_00290173.jpg
+Places365_test_00290194.jpg
+Places365_test_00290203.jpg
+Places365_test_00290215.jpg
+Places365_test_00290227.jpg
+Places365_test_00290230.jpg
+Places365_test_00290232.jpg
+Places365_test_00290236.jpg
+Places365_test_00290241.jpg
+Places365_test_00290253.jpg
+Places365_test_00290259.jpg
+Places365_test_00290300.jpg
+Places365_test_00290318.jpg
+Places365_test_00290321.jpg
+Places365_test_00290336.jpg
+Places365_test_00290347.jpg
+Places365_test_00290348.jpg
+Places365_test_00290349.jpg
+Places365_test_00290386.jpg
+Places365_test_00290388.jpg
+Places365_test_00290389.jpg
+Places365_test_00290393.jpg
+Places365_test_00290394.jpg
+Places365_test_00290396.jpg
+Places365_test_00290416.jpg
+Places365_test_00290427.jpg
+Places365_test_00290441.jpg
+Places365_test_00290449.jpg
+Places365_test_00290450.jpg
+Places365_test_00290458.jpg
+Places365_test_00290464.jpg
+Places365_test_00290483.jpg
+Places365_test_00290506.jpg
+Places365_test_00290507.jpg
+Places365_test_00290519.jpg
+Places365_test_00290522.jpg
+Places365_test_00290527.jpg
+Places365_test_00290535.jpg
+Places365_test_00290540.jpg
+Places365_test_00290556.jpg
+Places365_test_00290564.jpg
+Places365_test_00290579.jpg
+Places365_test_00290585.jpg
+Places365_test_00290587.jpg
+Places365_test_00290590.jpg
+Places365_test_00290591.jpg
+Places365_test_00290604.jpg
+Places365_test_00290605.jpg
+Places365_test_00290608.jpg
+Places365_test_00290620.jpg
+Places365_test_00290639.jpg
+Places365_test_00290651.jpg
+Places365_test_00290652.jpg
+Places365_test_00290659.jpg
+Places365_test_00290672.jpg
+Places365_test_00290674.jpg
+Places365_test_00290679.jpg
+Places365_test_00290688.jpg
+Places365_test_00290690.jpg
+Places365_test_00290696.jpg
+Places365_test_00290716.jpg
+Places365_test_00290759.jpg
+Places365_test_00290772.jpg
+Places365_test_00290778.jpg
+Places365_test_00290801.jpg
+Places365_test_00290805.jpg
+Places365_test_00290819.jpg
+Places365_test_00290830.jpg
+Places365_test_00290836.jpg
+Places365_test_00290839.jpg
+Places365_test_00290858.jpg
+Places365_test_00290874.jpg
+Places365_test_00290884.jpg
+Places365_test_00290919.jpg
+Places365_test_00290924.jpg
+Places365_test_00290937.jpg
+Places365_test_00290951.jpg
+Places365_test_00290953.jpg
+Places365_test_00290963.jpg
+Places365_test_00291002.jpg
+Places365_test_00291004.jpg
+Places365_test_00291020.jpg
+Places365_test_00291021.jpg
+Places365_test_00291035.jpg
+Places365_test_00291042.jpg
+Places365_test_00291050.jpg
+Places365_test_00291054.jpg
+Places365_test_00291067.jpg
+Places365_test_00291078.jpg
+Places365_test_00291095.jpg
+Places365_test_00291111.jpg
+Places365_test_00291126.jpg
+Places365_test_00291139.jpg
+Places365_test_00291141.jpg
+Places365_test_00291163.jpg
+Places365_test_00291167.jpg
+Places365_test_00291175.jpg
+Places365_test_00291181.jpg
+Places365_test_00291215.jpg
+Places365_test_00291257.jpg
+Places365_test_00291260.jpg
+Places365_test_00291263.jpg
+Places365_test_00291265.jpg
+Places365_test_00291278.jpg
+Places365_test_00291288.jpg
+Places365_test_00291292.jpg
+Places365_test_00291300.jpg
+Places365_test_00291308.jpg
+Places365_test_00291314.jpg
+Places365_test_00291319.jpg
+Places365_test_00291331.jpg
+Places365_test_00291341.jpg
+Places365_test_00291367.jpg
+Places365_test_00291380.jpg
+Places365_test_00291399.jpg
+Places365_test_00291403.jpg
+Places365_test_00291423.jpg
+Places365_test_00291429.jpg
+Places365_test_00291440.jpg
+Places365_test_00291455.jpg
+Places365_test_00291458.jpg
+Places365_test_00291469.jpg
+Places365_test_00291488.jpg
+Places365_test_00291490.jpg
+Places365_test_00291512.jpg
+Places365_test_00291517.jpg
+Places365_test_00291530.jpg
+Places365_test_00291532.jpg
+Places365_test_00291534.jpg
+Places365_test_00291538.jpg
+Places365_test_00291550.jpg
+Places365_test_00291556.jpg
+Places365_test_00291557.jpg
+Places365_test_00291559.jpg
+Places365_test_00291560.jpg
+Places365_test_00291568.jpg
+Places365_test_00291574.jpg
+Places365_test_00291592.jpg
+Places365_test_00291594.jpg
+Places365_test_00291616.jpg
+Places365_test_00291620.jpg
+Places365_test_00291656.jpg
+Places365_test_00291680.jpg
+Places365_test_00291703.jpg
+Places365_test_00291713.jpg
+Places365_test_00291718.jpg
+Places365_test_00291723.jpg
+Places365_test_00291759.jpg
+Places365_test_00291761.jpg
+Places365_test_00291777.jpg
+Places365_test_00291793.jpg
+Places365_test_00291794.jpg
+Places365_test_00291803.jpg
+Places365_test_00291806.jpg
+Places365_test_00291828.jpg
+Places365_test_00291831.jpg
+Places365_test_00291832.jpg
+Places365_test_00291844.jpg
+Places365_test_00291850.jpg
+Places365_test_00291854.jpg
+Places365_test_00291877.jpg
+Places365_test_00291882.jpg
+Places365_test_00291894.jpg
+Places365_test_00291920.jpg
+Places365_test_00291921.jpg
+Places365_test_00291932.jpg
+Places365_test_00291948.jpg
+Places365_test_00291961.jpg
+Places365_test_00291996.jpg
+Places365_test_00291998.jpg
+Places365_test_00292013.jpg
+Places365_test_00292015.jpg
+Places365_test_00292021.jpg
+Places365_test_00292024.jpg
+Places365_test_00292035.jpg
+Places365_test_00292036.jpg
+Places365_test_00292052.jpg
+Places365_test_00292064.jpg
+Places365_test_00292066.jpg
+Places365_test_00292077.jpg
+Places365_test_00292078.jpg
+Places365_test_00292095.jpg
+Places365_test_00292104.jpg
+Places365_test_00292132.jpg
+Places365_test_00292135.jpg
+Places365_test_00292144.jpg
+Places365_test_00292146.jpg
+Places365_test_00292151.jpg
+Places365_test_00292173.jpg
+Places365_test_00292187.jpg
+Places365_test_00292227.jpg
+Places365_test_00292238.jpg
+Places365_test_00292245.jpg
+Places365_test_00292246.jpg
+Places365_test_00292258.jpg
+Places365_test_00292261.jpg
+Places365_test_00292275.jpg
+Places365_test_00292288.jpg
+Places365_test_00292293.jpg
+Places365_test_00292297.jpg
+Places365_test_00292298.jpg
+Places365_test_00292299.jpg
+Places365_test_00292311.jpg
+Places365_test_00292325.jpg
+Places365_test_00292337.jpg
+Places365_test_00292339.jpg
+Places365_test_00292340.jpg
+Places365_test_00292351.jpg
+Places365_test_00292361.jpg
+Places365_test_00292369.jpg
+Places365_test_00292382.jpg
+Places365_test_00292400.jpg
+Places365_test_00292418.jpg
+Places365_test_00292425.jpg
+Places365_test_00292429.jpg
+Places365_test_00292446.jpg
+Places365_test_00292453.jpg
+Places365_test_00292469.jpg
+Places365_test_00292485.jpg
+Places365_test_00292493.jpg
+Places365_test_00292557.jpg
+Places365_test_00292566.jpg
+Places365_test_00292574.jpg
+Places365_test_00292577.jpg
+Places365_test_00292582.jpg
+Places365_test_00292592.jpg
+Places365_test_00292622.jpg
+Places365_test_00292641.jpg
+Places365_test_00292655.jpg
+Places365_test_00292660.jpg
+Places365_test_00292712.jpg
+Places365_test_00292716.jpg
+Places365_test_00292717.jpg
+Places365_test_00292720.jpg
+Places365_test_00292731.jpg
+Places365_test_00292743.jpg
+Places365_test_00292748.jpg
+Places365_test_00292772.jpg
+Places365_test_00292800.jpg
+Places365_test_00292809.jpg
+Places365_test_00292812.jpg
+Places365_test_00292813.jpg
+Places365_test_00292843.jpg
+Places365_test_00292853.jpg
+Places365_test_00292891.jpg
+Places365_test_00292895.jpg
+Places365_test_00292899.jpg
+Places365_test_00292901.jpg
+Places365_test_00292912.jpg
+Places365_test_00292930.jpg
+Places365_test_00292939.jpg
+Places365_test_00292942.jpg
+Places365_test_00292944.jpg
+Places365_test_00292967.jpg
+Places365_test_00292975.jpg
+Places365_test_00292985.jpg
+Places365_test_00292992.jpg
+Places365_test_00292999.jpg
+Places365_test_00293009.jpg
+Places365_test_00293023.jpg
+Places365_test_00293033.jpg
+Places365_test_00293038.jpg
+Places365_test_00293039.jpg
+Places365_test_00293041.jpg
+Places365_test_00293056.jpg
+Places365_test_00293082.jpg
+Places365_test_00293138.jpg
+Places365_test_00293141.jpg
+Places365_test_00293142.jpg
+Places365_test_00293166.jpg
+Places365_test_00293173.jpg
+Places365_test_00293182.jpg
+Places365_test_00293192.jpg
+Places365_test_00293198.jpg
+Places365_test_00293200.jpg
+Places365_test_00293215.jpg
+Places365_test_00293247.jpg
+Places365_test_00293251.jpg
+Places365_test_00293258.jpg
+Places365_test_00293274.jpg
+Places365_test_00293275.jpg
+Places365_test_00293290.jpg
+Places365_test_00293308.jpg
+Places365_test_00293313.jpg
+Places365_test_00293317.jpg
+Places365_test_00293325.jpg
+Places365_test_00293327.jpg
+Places365_test_00293343.jpg
+Places365_test_00293352.jpg
+Places365_test_00293386.jpg
+Places365_test_00293392.jpg
+Places365_test_00293404.jpg
+Places365_test_00293405.jpg
+Places365_test_00293414.jpg
+Places365_test_00293419.jpg
+Places365_test_00293423.jpg
+Places365_test_00293435.jpg
+Places365_test_00293436.jpg
+Places365_test_00293438.jpg
+Places365_test_00293465.jpg
+Places365_test_00293480.jpg
+Places365_test_00293485.jpg
+Places365_test_00293488.jpg
+Places365_test_00293498.jpg
+Places365_test_00293506.jpg
+Places365_test_00293510.jpg
+Places365_test_00293526.jpg
+Places365_test_00293527.jpg
+Places365_test_00293532.jpg
+Places365_test_00293534.jpg
+Places365_test_00293553.jpg
+Places365_test_00293562.jpg
+Places365_test_00293575.jpg
+Places365_test_00293580.jpg
+Places365_test_00293584.jpg
+Places365_test_00293596.jpg
+Places365_test_00293604.jpg
+Places365_test_00293608.jpg
+Places365_test_00293614.jpg
+Places365_test_00293616.jpg
+Places365_test_00293621.jpg
+Places365_test_00293624.jpg
+Places365_test_00293627.jpg
+Places365_test_00293640.jpg
+Places365_test_00293645.jpg
+Places365_test_00293650.jpg
+Places365_test_00293655.jpg
+Places365_test_00293678.jpg
+Places365_test_00293693.jpg
+Places365_test_00293706.jpg
+Places365_test_00293707.jpg
+Places365_test_00293718.jpg
+Places365_test_00293719.jpg
+Places365_test_00293722.jpg
+Places365_test_00293730.jpg
+Places365_test_00293731.jpg
+Places365_test_00293745.jpg
+Places365_test_00293749.jpg
+Places365_test_00293759.jpg
+Places365_test_00293763.jpg
+Places365_test_00293769.jpg
+Places365_test_00293789.jpg
+Places365_test_00293802.jpg
+Places365_test_00293829.jpg
+Places365_test_00293830.jpg
+Places365_test_00293840.jpg
+Places365_test_00293841.jpg
+Places365_test_00293896.jpg
+Places365_test_00293902.jpg
+Places365_test_00293932.jpg
+Places365_test_00293935.jpg
+Places365_test_00293942.jpg
+Places365_test_00293949.jpg
+Places365_test_00293951.jpg
+Places365_test_00293960.jpg
+Places365_test_00293965.jpg
+Places365_test_00293967.jpg
+Places365_test_00294006.jpg
+Places365_test_00294036.jpg
+Places365_test_00294078.jpg
+Places365_test_00294106.jpg
+Places365_test_00294120.jpg
+Places365_test_00294123.jpg
+Places365_test_00294132.jpg
+Places365_test_00294140.jpg
+Places365_test_00294141.jpg
+Places365_test_00294151.jpg
+Places365_test_00294154.jpg
+Places365_test_00294157.jpg
+Places365_test_00294159.jpg
+Places365_test_00294161.jpg
+Places365_test_00294178.jpg
+Places365_test_00294193.jpg
+Places365_test_00294199.jpg
+Places365_test_00294207.jpg
+Places365_test_00294208.jpg
+Places365_test_00294211.jpg
+Places365_test_00294218.jpg
+Places365_test_00294223.jpg
+Places365_test_00294224.jpg
+Places365_test_00294234.jpg
+Places365_test_00294247.jpg
+Places365_test_00294252.jpg
+Places365_test_00294264.jpg
+Places365_test_00294267.jpg
+Places365_test_00294291.jpg
+Places365_test_00294312.jpg
+Places365_test_00294320.jpg
+Places365_test_00294338.jpg
+Places365_test_00294349.jpg
+Places365_test_00294350.jpg
+Places365_test_00294351.jpg
+Places365_test_00294360.jpg
+Places365_test_00294421.jpg
+Places365_test_00294432.jpg
+Places365_test_00294439.jpg
+Places365_test_00294446.jpg
+Places365_test_00294460.jpg
+Places365_test_00294476.jpg
+Places365_test_00294501.jpg
+Places365_test_00294539.jpg
+Places365_test_00294546.jpg
+Places365_test_00294553.jpg
+Places365_test_00294560.jpg
+Places365_test_00294582.jpg
+Places365_test_00294592.jpg
+Places365_test_00294593.jpg
+Places365_test_00294623.jpg
+Places365_test_00294625.jpg
+Places365_test_00294640.jpg
+Places365_test_00294643.jpg
+Places365_test_00294651.jpg
+Places365_test_00294675.jpg
+Places365_test_00294686.jpg
+Places365_test_00294701.jpg
+Places365_test_00294714.jpg
+Places365_test_00294715.jpg
+Places365_test_00294720.jpg
+Places365_test_00294737.jpg
+Places365_test_00294783.jpg
+Places365_test_00294830.jpg
+Places365_test_00294831.jpg
+Places365_test_00294832.jpg
+Places365_test_00294834.jpg
+Places365_test_00294843.jpg
+Places365_test_00294851.jpg
+Places365_test_00294867.jpg
+Places365_test_00294877.jpg
+Places365_test_00294898.jpg
+Places365_test_00294905.jpg
+Places365_test_00294920.jpg
+Places365_test_00294942.jpg
+Places365_test_00294968.jpg
+Places365_test_00294974.jpg
+Places365_test_00294976.jpg
+Places365_test_00294986.jpg
+Places365_test_00294999.jpg
+Places365_test_00295028.jpg
+Places365_test_00295049.jpg
+Places365_test_00295052.jpg
+Places365_test_00295056.jpg
+Places365_test_00295068.jpg
+Places365_test_00295080.jpg
+Places365_test_00295101.jpg
+Places365_test_00295108.jpg
+Places365_test_00295128.jpg
+Places365_test_00295147.jpg
+Places365_test_00295157.jpg
+Places365_test_00295172.jpg
+Places365_test_00295185.jpg
+Places365_test_00295195.jpg
+Places365_test_00295204.jpg
+Places365_test_00295205.jpg
+Places365_test_00295206.jpg
+Places365_test_00295211.jpg
+Places365_test_00295228.jpg
+Places365_test_00295237.jpg
+Places365_test_00295245.jpg
+Places365_test_00295247.jpg
+Places365_test_00295250.jpg
+Places365_test_00295262.jpg
+Places365_test_00295301.jpg
+Places365_test_00295307.jpg
+Places365_test_00295335.jpg
+Places365_test_00295336.jpg
+Places365_test_00295353.jpg
+Places365_test_00295359.jpg
+Places365_test_00295372.jpg
+Places365_test_00295393.jpg
+Places365_test_00295399.jpg
+Places365_test_00295402.jpg
+Places365_test_00295425.jpg
+Places365_test_00295442.jpg
+Places365_test_00295463.jpg
+Places365_test_00295481.jpg
+Places365_test_00295490.jpg
+Places365_test_00295495.jpg
+Places365_test_00295497.jpg
+Places365_test_00295499.jpg
+Places365_test_00295503.jpg
+Places365_test_00295507.jpg
+Places365_test_00295514.jpg
+Places365_test_00295521.jpg
+Places365_test_00295522.jpg
+Places365_test_00295527.jpg
+Places365_test_00295531.jpg
+Places365_test_00295536.jpg
+Places365_test_00295565.jpg
+Places365_test_00295570.jpg
+Places365_test_00295573.jpg
+Places365_test_00295583.jpg
+Places365_test_00295598.jpg
+Places365_test_00295615.jpg
+Places365_test_00295618.jpg
+Places365_test_00295622.jpg
+Places365_test_00295627.jpg
+Places365_test_00295630.jpg
+Places365_test_00295639.jpg
+Places365_test_00295648.jpg
+Places365_test_00295658.jpg
+Places365_test_00295687.jpg
+Places365_test_00295692.jpg
+Places365_test_00295696.jpg
+Places365_test_00295717.jpg
+Places365_test_00295722.jpg
+Places365_test_00295729.jpg
+Places365_test_00295749.jpg
+Places365_test_00295758.jpg
+Places365_test_00295761.jpg
+Places365_test_00295767.jpg
+Places365_test_00295771.jpg
+Places365_test_00295781.jpg
+Places365_test_00295803.jpg
+Places365_test_00295841.jpg
+Places365_test_00295865.jpg
+Places365_test_00295882.jpg
+Places365_test_00295887.jpg
+Places365_test_00295906.jpg
+Places365_test_00295924.jpg
+Places365_test_00295936.jpg
+Places365_test_00295940.jpg
+Places365_test_00295944.jpg
+Places365_test_00295947.jpg
+Places365_test_00295986.jpg
+Places365_test_00295995.jpg
+Places365_test_00295997.jpg
+Places365_test_00296007.jpg
+Places365_test_00296011.jpg
+Places365_test_00296019.jpg
+Places365_test_00296021.jpg
+Places365_test_00296034.jpg
+Places365_test_00296039.jpg
+Places365_test_00296049.jpg
+Places365_test_00296066.jpg
+Places365_test_00296068.jpg
+Places365_test_00296076.jpg
+Places365_test_00296081.jpg
+Places365_test_00296107.jpg
+Places365_test_00296108.jpg
+Places365_test_00296119.jpg
+Places365_test_00296126.jpg
+Places365_test_00296131.jpg
+Places365_test_00296137.jpg
+Places365_test_00296152.jpg
+Places365_test_00296198.jpg
+Places365_test_00296207.jpg
+Places365_test_00296234.jpg
+Places365_test_00296250.jpg
+Places365_test_00296257.jpg
+Places365_test_00296276.jpg
+Places365_test_00296302.jpg
+Places365_test_00296309.jpg
+Places365_test_00296342.jpg
+Places365_test_00296344.jpg
+Places365_test_00296361.jpg
+Places365_test_00296363.jpg
+Places365_test_00296367.jpg
+Places365_test_00296422.jpg
+Places365_test_00296425.jpg
+Places365_test_00296448.jpg
+Places365_test_00296449.jpg
+Places365_test_00296472.jpg
+Places365_test_00296473.jpg
+Places365_test_00296478.jpg
+Places365_test_00296507.jpg
+Places365_test_00296536.jpg
+Places365_test_00296569.jpg
+Places365_test_00296592.jpg
+Places365_test_00296616.jpg
+Places365_test_00296632.jpg
+Places365_test_00296657.jpg
+Places365_test_00296667.jpg
+Places365_test_00296677.jpg
+Places365_test_00296688.jpg
+Places365_test_00296699.jpg
+Places365_test_00296718.jpg
+Places365_test_00296732.jpg
+Places365_test_00296735.jpg
+Places365_test_00296743.jpg
+Places365_test_00296800.jpg
+Places365_test_00296815.jpg
+Places365_test_00296826.jpg
+Places365_test_00296828.jpg
+Places365_test_00296833.jpg
+Places365_test_00296846.jpg
+Places365_test_00296848.jpg
+Places365_test_00296850.jpg
+Places365_test_00296856.jpg
+Places365_test_00296867.jpg
+Places365_test_00296878.jpg
+Places365_test_00296892.jpg
+Places365_test_00296906.jpg
+Places365_test_00296928.jpg
+Places365_test_00296938.jpg
+Places365_test_00296944.jpg
+Places365_test_00296957.jpg
+Places365_test_00296965.jpg
+Places365_test_00296970.jpg
+Places365_test_00296971.jpg
+Places365_test_00296984.jpg
+Places365_test_00296987.jpg
+Places365_test_00296992.jpg
+Places365_test_00297000.jpg
+Places365_test_00297003.jpg
+Places365_test_00297005.jpg
+Places365_test_00297011.jpg
+Places365_test_00297012.jpg
+Places365_test_00297056.jpg
+Places365_test_00297058.jpg
+Places365_test_00297064.jpg
+Places365_test_00297065.jpg
+Places365_test_00297070.jpg
+Places365_test_00297075.jpg
+Places365_test_00297078.jpg
+Places365_test_00297082.jpg
+Places365_test_00297094.jpg
+Places365_test_00297102.jpg
+Places365_test_00297106.jpg
+Places365_test_00297112.jpg
+Places365_test_00297121.jpg
+Places365_test_00297141.jpg
+Places365_test_00297155.jpg
+Places365_test_00297161.jpg
+Places365_test_00297163.jpg
+Places365_test_00297174.jpg
+Places365_test_00297181.jpg
+Places365_test_00297231.jpg
+Places365_test_00297238.jpg
+Places365_test_00297240.jpg
+Places365_test_00297262.jpg
+Places365_test_00297265.jpg
+Places365_test_00297277.jpg
+Places365_test_00297280.jpg
+Places365_test_00297293.jpg
+Places365_test_00297299.jpg
+Places365_test_00297314.jpg
+Places365_test_00297321.jpg
+Places365_test_00297371.jpg
+Places365_test_00297377.jpg
+Places365_test_00297392.jpg
+Places365_test_00297401.jpg
+Places365_test_00297402.jpg
+Places365_test_00297403.jpg
+Places365_test_00297410.jpg
+Places365_test_00297423.jpg
+Places365_test_00297450.jpg
+Places365_test_00297455.jpg
+Places365_test_00297486.jpg
+Places365_test_00297490.jpg
+Places365_test_00297503.jpg
+Places365_test_00297506.jpg
+Places365_test_00297507.jpg
+Places365_test_00297509.jpg
+Places365_test_00297530.jpg
+Places365_test_00297531.jpg
+Places365_test_00297547.jpg
+Places365_test_00297552.jpg
+Places365_test_00297554.jpg
+Places365_test_00297555.jpg
+Places365_test_00297626.jpg
+Places365_test_00297654.jpg
+Places365_test_00297664.jpg
+Places365_test_00297667.jpg
+Places365_test_00297685.jpg
+Places365_test_00297694.jpg
+Places365_test_00297697.jpg
+Places365_test_00297713.jpg
+Places365_test_00297716.jpg
+Places365_test_00297726.jpg
+Places365_test_00297738.jpg
+Places365_test_00297739.jpg
+Places365_test_00297740.jpg
+Places365_test_00297768.jpg
+Places365_test_00297784.jpg
+Places365_test_00297798.jpg
+Places365_test_00297800.jpg
+Places365_test_00297803.jpg
+Places365_test_00297835.jpg
+Places365_test_00297852.jpg
+Places365_test_00297862.jpg
+Places365_test_00297869.jpg
+Places365_test_00297870.jpg
+Places365_test_00297880.jpg
+Places365_test_00297899.jpg
+Places365_test_00297909.jpg
+Places365_test_00297917.jpg
+Places365_test_00297919.jpg
+Places365_test_00297923.jpg
+Places365_test_00297936.jpg
+Places365_test_00297941.jpg
+Places365_test_00297942.jpg
+Places365_test_00297953.jpg
+Places365_test_00297993.jpg
+Places365_test_00297995.jpg
+Places365_test_00297997.jpg
+Places365_test_00297998.jpg
+Places365_test_00298000.jpg
+Places365_test_00298025.jpg
+Places365_test_00298038.jpg
+Places365_test_00298055.jpg
+Places365_test_00298071.jpg
+Places365_test_00298074.jpg
+Places365_test_00298078.jpg
+Places365_test_00298090.jpg
+Places365_test_00298094.jpg
+Places365_test_00298128.jpg
+Places365_test_00298130.jpg
+Places365_test_00298145.jpg
+Places365_test_00298156.jpg
+Places365_test_00298159.jpg
+Places365_test_00298163.jpg
+Places365_test_00298177.jpg
+Places365_test_00298194.jpg
+Places365_test_00298195.jpg
+Places365_test_00298200.jpg
+Places365_test_00298221.jpg
+Places365_test_00298222.jpg
+Places365_test_00298242.jpg
+Places365_test_00298252.jpg
+Places365_test_00298278.jpg
+Places365_test_00298288.jpg
+Places365_test_00298292.jpg
+Places365_test_00298301.jpg
+Places365_test_00298302.jpg
+Places365_test_00298313.jpg
+Places365_test_00298314.jpg
+Places365_test_00298325.jpg
+Places365_test_00298331.jpg
+Places365_test_00298339.jpg
+Places365_test_00298358.jpg
+Places365_test_00298366.jpg
+Places365_test_00298384.jpg
+Places365_test_00298388.jpg
+Places365_test_00298391.jpg
+Places365_test_00298392.jpg
+Places365_test_00298395.jpg
+Places365_test_00298411.jpg
+Places365_test_00298444.jpg
+Places365_test_00298462.jpg
+Places365_test_00298474.jpg
+Places365_test_00298478.jpg
+Places365_test_00298484.jpg
+Places365_test_00298486.jpg
+Places365_test_00298501.jpg
+Places365_test_00298504.jpg
+Places365_test_00298506.jpg
+Places365_test_00298517.jpg
+Places365_test_00298539.jpg
+Places365_test_00298548.jpg
+Places365_test_00298564.jpg
+Places365_test_00298572.jpg
+Places365_test_00298573.jpg
+Places365_test_00298579.jpg
+Places365_test_00298621.jpg
+Places365_test_00298661.jpg
+Places365_test_00298669.jpg
+Places365_test_00298671.jpg
+Places365_test_00298685.jpg
+Places365_test_00298693.jpg
+Places365_test_00298728.jpg
+Places365_test_00298746.jpg
+Places365_test_00298750.jpg
+Places365_test_00298752.jpg
+Places365_test_00298753.jpg
+Places365_test_00298754.jpg
+Places365_test_00298759.jpg
+Places365_test_00298773.jpg
+Places365_test_00298777.jpg
+Places365_test_00298779.jpg
+Places365_test_00298782.jpg
+Places365_test_00298784.jpg
+Places365_test_00298795.jpg
+Places365_test_00298799.jpg
+Places365_test_00298807.jpg
+Places365_test_00298813.jpg
+Places365_test_00298814.jpg
+Places365_test_00298815.jpg
+Places365_test_00298821.jpg
+Places365_test_00298830.jpg
+Places365_test_00298845.jpg
+Places365_test_00298869.jpg
+Places365_test_00298879.jpg
+Places365_test_00298894.jpg
+Places365_test_00298969.jpg
+Places365_test_00298981.jpg
+Places365_test_00298992.jpg
+Places365_test_00298993.jpg
+Places365_test_00298994.jpg
+Places365_test_00298999.jpg
+Places365_test_00299027.jpg
+Places365_test_00299028.jpg
+Places365_test_00299057.jpg
+Places365_test_00299060.jpg
+Places365_test_00299064.jpg
+Places365_test_00299067.jpg
+Places365_test_00299091.jpg
+Places365_test_00299092.jpg
+Places365_test_00299106.jpg
+Places365_test_00299118.jpg
+Places365_test_00299121.jpg
+Places365_test_00299133.jpg
+Places365_test_00299136.jpg
+Places365_test_00299142.jpg
+Places365_test_00299149.jpg
+Places365_test_00299158.jpg
+Places365_test_00299160.jpg
+Places365_test_00299173.jpg
+Places365_test_00299182.jpg
+Places365_test_00299186.jpg
+Places365_test_00299207.jpg
+Places365_test_00299219.jpg
+Places365_test_00299220.jpg
+Places365_test_00299221.jpg
+Places365_test_00299224.jpg
+Places365_test_00299237.jpg
+Places365_test_00299238.jpg
+Places365_test_00299289.jpg
+Places365_test_00299304.jpg
+Places365_test_00299320.jpg
+Places365_test_00299321.jpg
+Places365_test_00299325.jpg
+Places365_test_00299333.jpg
+Places365_test_00299338.jpg
+Places365_test_00299350.jpg
+Places365_test_00299399.jpg
+Places365_test_00299403.jpg
+Places365_test_00299407.jpg
+Places365_test_00299440.jpg
+Places365_test_00299459.jpg
+Places365_test_00299472.jpg
+Places365_test_00299491.jpg
+Places365_test_00299493.jpg
+Places365_test_00299507.jpg
+Places365_test_00299523.jpg
+Places365_test_00299533.jpg
+Places365_test_00299535.jpg
+Places365_test_00299540.jpg
+Places365_test_00299562.jpg
+Places365_test_00299570.jpg
+Places365_test_00299581.jpg
+Places365_test_00299613.jpg
+Places365_test_00299626.jpg
+Places365_test_00299635.jpg
+Places365_test_00299648.jpg
+Places365_test_00299649.jpg
+Places365_test_00299651.jpg
+Places365_test_00299653.jpg
+Places365_test_00299654.jpg
+Places365_test_00299656.jpg
+Places365_test_00299666.jpg
+Places365_test_00299677.jpg
+Places365_test_00299681.jpg
+Places365_test_00299686.jpg
+Places365_test_00299692.jpg
+Places365_test_00299696.jpg
+Places365_test_00299698.jpg
+Places365_test_00299716.jpg
+Places365_test_00299722.jpg
+Places365_test_00299725.jpg
+Places365_test_00299737.jpg
+Places365_test_00299753.jpg
+Places365_test_00299764.jpg
+Places365_test_00299766.jpg
+Places365_test_00299767.jpg
+Places365_test_00299794.jpg
+Places365_test_00299828.jpg
+Places365_test_00299838.jpg
+Places365_test_00299894.jpg
+Places365_test_00299897.jpg
+Places365_test_00299908.jpg
+Places365_test_00299910.jpg
+Places365_test_00299914.jpg
+Places365_test_00299917.jpg
+Places365_test_00299936.jpg
+Places365_test_00299949.jpg
+Places365_test_00299962.jpg
+Places365_test_00299963.jpg
+Places365_test_00299980.jpg
+Places365_test_00299984.jpg
+Places365_test_00299986.jpg
+Places365_test_00299989.jpg
+Places365_test_00299995.jpg
+Places365_test_00300001.jpg
+Places365_test_00300005.jpg
+Places365_test_00300049.jpg
+Places365_test_00300062.jpg
+Places365_test_00300071.jpg
+Places365_test_00300091.jpg
+Places365_test_00300100.jpg
+Places365_test_00300136.jpg
+Places365_test_00300164.jpg
+Places365_test_00300191.jpg
+Places365_test_00300194.jpg
+Places365_test_00300213.jpg
+Places365_test_00300227.jpg
+Places365_test_00300236.jpg
+Places365_test_00300245.jpg
+Places365_test_00300269.jpg
+Places365_test_00300276.jpg
+Places365_test_00300305.jpg
+Places365_test_00300307.jpg
+Places365_test_00300311.jpg
+Places365_test_00300316.jpg
+Places365_test_00300337.jpg
+Places365_test_00300359.jpg
+Places365_test_00300360.jpg
+Places365_test_00300366.jpg
+Places365_test_00300381.jpg
+Places365_test_00300391.jpg
+Places365_test_00300411.jpg
+Places365_test_00300416.jpg
+Places365_test_00300420.jpg
+Places365_test_00300422.jpg
+Places365_test_00300433.jpg
+Places365_test_00300457.jpg
+Places365_test_00300461.jpg
+Places365_test_00300481.jpg
+Places365_test_00300493.jpg
+Places365_test_00300507.jpg
+Places365_test_00300508.jpg
+Places365_test_00300509.jpg
+Places365_test_00300540.jpg
+Places365_test_00300547.jpg
+Places365_test_00300552.jpg
+Places365_test_00300567.jpg
+Places365_test_00300583.jpg
+Places365_test_00300617.jpg
+Places365_test_00300630.jpg
+Places365_test_00300678.jpg
+Places365_test_00300683.jpg
+Places365_test_00300695.jpg
+Places365_test_00300707.jpg
+Places365_test_00300713.jpg
+Places365_test_00300732.jpg
+Places365_test_00300753.jpg
+Places365_test_00300754.jpg
+Places365_test_00300755.jpg
+Places365_test_00300763.jpg
+Places365_test_00300764.jpg
+Places365_test_00300769.jpg
+Places365_test_00300772.jpg
+Places365_test_00300782.jpg
+Places365_test_00300799.jpg
+Places365_test_00300805.jpg
+Places365_test_00300817.jpg
+Places365_test_00300818.jpg
+Places365_test_00300821.jpg
+Places365_test_00300822.jpg
+Places365_test_00300823.jpg
+Places365_test_00300844.jpg
+Places365_test_00300905.jpg
+Places365_test_00300912.jpg
+Places365_test_00300928.jpg
+Places365_test_00300930.jpg
+Places365_test_00301016.jpg
+Places365_test_00301044.jpg
+Places365_test_00301053.jpg
+Places365_test_00301054.jpg
+Places365_test_00301060.jpg
+Places365_test_00301063.jpg
+Places365_test_00301075.jpg
+Places365_test_00301084.jpg
+Places365_test_00301099.jpg
+Places365_test_00301102.jpg
+Places365_test_00301110.jpg
+Places365_test_00301132.jpg
+Places365_test_00301136.jpg
+Places365_test_00301150.jpg
+Places365_test_00301156.jpg
+Places365_test_00301166.jpg
+Places365_test_00301167.jpg
+Places365_test_00301173.jpg
+Places365_test_00301177.jpg
+Places365_test_00301187.jpg
+Places365_test_00301206.jpg
+Places365_test_00301216.jpg
+Places365_test_00301241.jpg
+Places365_test_00301250.jpg
+Places365_test_00301252.jpg
+Places365_test_00301266.jpg
+Places365_test_00301269.jpg
+Places365_test_00301282.jpg
+Places365_test_00301304.jpg
+Places365_test_00301306.jpg
+Places365_test_00301313.jpg
+Places365_test_00301323.jpg
+Places365_test_00301329.jpg
+Places365_test_00301337.jpg
+Places365_test_00301341.jpg
+Places365_test_00301357.jpg
+Places365_test_00301374.jpg
+Places365_test_00301379.jpg
+Places365_test_00301394.jpg
+Places365_test_00301398.jpg
+Places365_test_00301402.jpg
+Places365_test_00301410.jpg
+Places365_test_00301416.jpg
+Places365_test_00301428.jpg
+Places365_test_00301432.jpg
+Places365_test_00301439.jpg
+Places365_test_00301440.jpg
+Places365_test_00301463.jpg
+Places365_test_00301473.jpg
+Places365_test_00301523.jpg
+Places365_test_00301546.jpg
+Places365_test_00301547.jpg
+Places365_test_00301550.jpg
+Places365_test_00301591.jpg
+Places365_test_00301592.jpg
+Places365_test_00301599.jpg
+Places365_test_00301616.jpg
+Places365_test_00301630.jpg
+Places365_test_00301635.jpg
+Places365_test_00301637.jpg
+Places365_test_00301647.jpg
+Places365_test_00301648.jpg
+Places365_test_00301649.jpg
+Places365_test_00301678.jpg
+Places365_test_00301686.jpg
+Places365_test_00301710.jpg
+Places365_test_00301711.jpg
+Places365_test_00301712.jpg
+Places365_test_00301731.jpg
+Places365_test_00301733.jpg
+Places365_test_00301751.jpg
+Places365_test_00301798.jpg
+Places365_test_00301801.jpg
+Places365_test_00301803.jpg
+Places365_test_00301824.jpg
+Places365_test_00301830.jpg
+Places365_test_00301833.jpg
+Places365_test_00301835.jpg
+Places365_test_00301836.jpg
+Places365_test_00301846.jpg
+Places365_test_00301852.jpg
+Places365_test_00301858.jpg
+Places365_test_00301864.jpg
+Places365_test_00301868.jpg
+Places365_test_00301874.jpg
+Places365_test_00301946.jpg
+Places365_test_00301956.jpg
+Places365_test_00301958.jpg
+Places365_test_00301972.jpg
+Places365_test_00301987.jpg
+Places365_test_00301995.jpg
+Places365_test_00302005.jpg
+Places365_test_00302053.jpg
+Places365_test_00302054.jpg
+Places365_test_00302066.jpg
+Places365_test_00302072.jpg
+Places365_test_00302082.jpg
+Places365_test_00302089.jpg
+Places365_test_00302093.jpg
+Places365_test_00302094.jpg
+Places365_test_00302098.jpg
+Places365_test_00302101.jpg
+Places365_test_00302110.jpg
+Places365_test_00302122.jpg
+Places365_test_00302130.jpg
+Places365_test_00302167.jpg
+Places365_test_00302198.jpg
+Places365_test_00302210.jpg
+Places365_test_00302211.jpg
+Places365_test_00302213.jpg
+Places365_test_00302240.jpg
+Places365_test_00302256.jpg
+Places365_test_00302294.jpg
+Places365_test_00302308.jpg
+Places365_test_00302311.jpg
+Places365_test_00302324.jpg
+Places365_test_00302336.jpg
+Places365_test_00302347.jpg
+Places365_test_00302357.jpg
+Places365_test_00302365.jpg
+Places365_test_00302404.jpg
+Places365_test_00302410.jpg
+Places365_test_00302416.jpg
+Places365_test_00302424.jpg
+Places365_test_00302470.jpg
+Places365_test_00302474.jpg
+Places365_test_00302477.jpg
+Places365_test_00302479.jpg
+Places365_test_00302480.jpg
+Places365_test_00302499.jpg
+Places365_test_00302500.jpg
+Places365_test_00302506.jpg
+Places365_test_00302514.jpg
+Places365_test_00302519.jpg
+Places365_test_00302534.jpg
+Places365_test_00302553.jpg
+Places365_test_00302571.jpg
+Places365_test_00302577.jpg
+Places365_test_00302578.jpg
+Places365_test_00302585.jpg
+Places365_test_00302609.jpg
+Places365_test_00302665.jpg
+Places365_test_00302689.jpg
+Places365_test_00302741.jpg
+Places365_test_00302746.jpg
+Places365_test_00302747.jpg
+Places365_test_00302750.jpg
+Places365_test_00302761.jpg
+Places365_test_00302773.jpg
+Places365_test_00302780.jpg
+Places365_test_00302784.jpg
+Places365_test_00302787.jpg
+Places365_test_00302799.jpg
+Places365_test_00302809.jpg
+Places365_test_00302823.jpg
+Places365_test_00302844.jpg
+Places365_test_00302845.jpg
+Places365_test_00302854.jpg
+Places365_test_00302866.jpg
+Places365_test_00302895.jpg
+Places365_test_00302912.jpg
+Places365_test_00302922.jpg
+Places365_test_00302967.jpg
+Places365_test_00302975.jpg
+Places365_test_00302993.jpg
+Places365_test_00303009.jpg
+Places365_test_00303027.jpg
+Places365_test_00303035.jpg
+Places365_test_00303043.jpg
+Places365_test_00303054.jpg
+Places365_test_00303058.jpg
+Places365_test_00303059.jpg
+Places365_test_00303061.jpg
+Places365_test_00303070.jpg
+Places365_test_00303082.jpg
+Places365_test_00303091.jpg
+Places365_test_00303095.jpg
+Places365_test_00303104.jpg
+Places365_test_00303105.jpg
+Places365_test_00303119.jpg
+Places365_test_00303122.jpg
+Places365_test_00303135.jpg
+Places365_test_00303167.jpg
+Places365_test_00303171.jpg
+Places365_test_00303172.jpg
+Places365_test_00303180.jpg
+Places365_test_00303188.jpg
+Places365_test_00303191.jpg
+Places365_test_00303195.jpg
+Places365_test_00303200.jpg
+Places365_test_00303223.jpg
+Places365_test_00303224.jpg
+Places365_test_00303243.jpg
+Places365_test_00303256.jpg
+Places365_test_00303260.jpg
+Places365_test_00303265.jpg
+Places365_test_00303299.jpg
+Places365_test_00303313.jpg
+Places365_test_00303315.jpg
+Places365_test_00303328.jpg
+Places365_test_00303342.jpg
+Places365_test_00303368.jpg
+Places365_test_00303369.jpg
+Places365_test_00303375.jpg
+Places365_test_00303376.jpg
+Places365_test_00303378.jpg
+Places365_test_00303380.jpg
+Places365_test_00303383.jpg
+Places365_test_00303401.jpg
+Places365_test_00303409.jpg
+Places365_test_00303417.jpg
+Places365_test_00303418.jpg
+Places365_test_00303420.jpg
+Places365_test_00303433.jpg
+Places365_test_00303450.jpg
+Places365_test_00303453.jpg
+Places365_test_00303482.jpg
+Places365_test_00303493.jpg
+Places365_test_00303501.jpg
+Places365_test_00303506.jpg
+Places365_test_00303514.jpg
+Places365_test_00303516.jpg
+Places365_test_00303519.jpg
+Places365_test_00303533.jpg
+Places365_test_00303550.jpg
+Places365_test_00303555.jpg
+Places365_test_00303585.jpg
+Places365_test_00303590.jpg
+Places365_test_00303600.jpg
+Places365_test_00303603.jpg
+Places365_test_00303614.jpg
+Places365_test_00303616.jpg
+Places365_test_00303656.jpg
+Places365_test_00303657.jpg
+Places365_test_00303661.jpg
+Places365_test_00303664.jpg
+Places365_test_00303695.jpg
+Places365_test_00303704.jpg
+Places365_test_00303706.jpg
+Places365_test_00303710.jpg
+Places365_test_00303723.jpg
+Places365_test_00303725.jpg
+Places365_test_00303731.jpg
+Places365_test_00303734.jpg
+Places365_test_00303735.jpg
+Places365_test_00303749.jpg
+Places365_test_00303779.jpg
+Places365_test_00303813.jpg
+Places365_test_00303817.jpg
+Places365_test_00303832.jpg
+Places365_test_00303847.jpg
+Places365_test_00303850.jpg
+Places365_test_00303853.jpg
+Places365_test_00303857.jpg
+Places365_test_00303864.jpg
+Places365_test_00303866.jpg
+Places365_test_00303869.jpg
+Places365_test_00303870.jpg
+Places365_test_00303877.jpg
+Places365_test_00303884.jpg
+Places365_test_00303906.jpg
+Places365_test_00303916.jpg
+Places365_test_00303938.jpg
+Places365_test_00303969.jpg
+Places365_test_00303986.jpg
+Places365_test_00303987.jpg
+Places365_test_00304002.jpg
+Places365_test_00304010.jpg
+Places365_test_00304012.jpg
+Places365_test_00304017.jpg
+Places365_test_00304028.jpg
+Places365_test_00304038.jpg
+Places365_test_00304045.jpg
+Places365_test_00304053.jpg
+Places365_test_00304056.jpg
+Places365_test_00304058.jpg
+Places365_test_00304062.jpg
+Places365_test_00304064.jpg
+Places365_test_00304071.jpg
+Places365_test_00304086.jpg
+Places365_test_00304089.jpg
+Places365_test_00304142.jpg
+Places365_test_00304146.jpg
+Places365_test_00304157.jpg
+Places365_test_00304164.jpg
+Places365_test_00304191.jpg
+Places365_test_00304216.jpg
+Places365_test_00304218.jpg
+Places365_test_00304227.jpg
+Places365_test_00304245.jpg
+Places365_test_00304248.jpg
+Places365_test_00304262.jpg
+Places365_test_00304273.jpg
+Places365_test_00304310.jpg
+Places365_test_00304318.jpg
+Places365_test_00304319.jpg
+Places365_test_00304334.jpg
+Places365_test_00304364.jpg
+Places365_test_00304384.jpg
+Places365_test_00304413.jpg
+Places365_test_00304419.jpg
+Places365_test_00304434.jpg
+Places365_test_00304435.jpg
+Places365_test_00304448.jpg
+Places365_test_00304472.jpg
+Places365_test_00304477.jpg
+Places365_test_00304485.jpg
+Places365_test_00304502.jpg
+Places365_test_00304557.jpg
+Places365_test_00304573.jpg
+Places365_test_00304589.jpg
+Places365_test_00304598.jpg
+Places365_test_00304612.jpg
+Places365_test_00304624.jpg
+Places365_test_00304628.jpg
+Places365_test_00304637.jpg
+Places365_test_00304644.jpg
+Places365_test_00304656.jpg
+Places365_test_00304660.jpg
+Places365_test_00304662.jpg
+Places365_test_00304666.jpg
+Places365_test_00304677.jpg
+Places365_test_00304710.jpg
+Places365_test_00304723.jpg
+Places365_test_00304741.jpg
+Places365_test_00304742.jpg
+Places365_test_00304746.jpg
+Places365_test_00304756.jpg
+Places365_test_00304772.jpg
+Places365_test_00304777.jpg
+Places365_test_00304783.jpg
+Places365_test_00304794.jpg
+Places365_test_00304798.jpg
+Places365_test_00304799.jpg
+Places365_test_00304802.jpg
+Places365_test_00304804.jpg
+Places365_test_00304812.jpg
+Places365_test_00304818.jpg
+Places365_test_00304868.jpg
+Places365_test_00304871.jpg
+Places365_test_00304882.jpg
+Places365_test_00304885.jpg
+Places365_test_00304901.jpg
+Places365_test_00304904.jpg
+Places365_test_00304905.jpg
+Places365_test_00304927.jpg
+Places365_test_00304934.jpg
+Places365_test_00304946.jpg
+Places365_test_00304949.jpg
+Places365_test_00304955.jpg
+Places365_test_00304978.jpg
+Places365_test_00304983.jpg
+Places365_test_00304984.jpg
+Places365_test_00304994.jpg
+Places365_test_00304995.jpg
+Places365_test_00304997.jpg
+Places365_test_00305001.jpg
+Places365_test_00305004.jpg
+Places365_test_00305020.jpg
+Places365_test_00305021.jpg
+Places365_test_00305034.jpg
+Places365_test_00305045.jpg
+Places365_test_00305058.jpg
+Places365_test_00305075.jpg
+Places365_test_00305085.jpg
+Places365_test_00305090.jpg
+Places365_test_00305094.jpg
+Places365_test_00305103.jpg
+Places365_test_00305118.jpg
+Places365_test_00305119.jpg
+Places365_test_00305121.jpg
+Places365_test_00305139.jpg
+Places365_test_00305150.jpg
+Places365_test_00305176.jpg
+Places365_test_00305188.jpg
+Places365_test_00305198.jpg
+Places365_test_00305208.jpg
+Places365_test_00305210.jpg
+Places365_test_00305217.jpg
+Places365_test_00305232.jpg
+Places365_test_00305266.jpg
+Places365_test_00305271.jpg
+Places365_test_00305280.jpg
+Places365_test_00305294.jpg
+Places365_test_00305323.jpg
+Places365_test_00305328.jpg
+Places365_test_00305331.jpg
+Places365_test_00305342.jpg
+Places365_test_00305344.jpg
+Places365_test_00305356.jpg
+Places365_test_00305362.jpg
+Places365_test_00305364.jpg
+Places365_test_00305382.jpg
+Places365_test_00305402.jpg
+Places365_test_00305409.jpg
+Places365_test_00305411.jpg
+Places365_test_00305429.jpg
+Places365_test_00305453.jpg
+Places365_test_00305471.jpg
+Places365_test_00305472.jpg
+Places365_test_00305497.jpg
+Places365_test_00305507.jpg
+Places365_test_00305516.jpg
+Places365_test_00305523.jpg
+Places365_test_00305532.jpg
+Places365_test_00305541.jpg
+Places365_test_00305584.jpg
+Places365_test_00305592.jpg
+Places365_test_00305594.jpg
+Places365_test_00305621.jpg
+Places365_test_00305682.jpg
+Places365_test_00305684.jpg
+Places365_test_00305685.jpg
+Places365_test_00305689.jpg
+Places365_test_00305697.jpg
+Places365_test_00305709.jpg
+Places365_test_00305713.jpg
+Places365_test_00305730.jpg
+Places365_test_00305733.jpg
+Places365_test_00305743.jpg
+Places365_test_00305782.jpg
+Places365_test_00305796.jpg
+Places365_test_00305842.jpg
+Places365_test_00305843.jpg
+Places365_test_00305868.jpg
+Places365_test_00305870.jpg
+Places365_test_00305895.jpg
+Places365_test_00305899.jpg
+Places365_test_00305900.jpg
+Places365_test_00305923.jpg
+Places365_test_00305924.jpg
+Places365_test_00305931.jpg
+Places365_test_00305933.jpg
+Places365_test_00305937.jpg
+Places365_test_00305946.jpg
+Places365_test_00305951.jpg
+Places365_test_00305955.jpg
+Places365_test_00305961.jpg
+Places365_test_00305983.jpg
+Places365_test_00305984.jpg
+Places365_test_00305994.jpg
+Places365_test_00305996.jpg
+Places365_test_00306001.jpg
+Places365_test_00306005.jpg
+Places365_test_00306008.jpg
+Places365_test_00306010.jpg
+Places365_test_00306016.jpg
+Places365_test_00306026.jpg
+Places365_test_00306031.jpg
+Places365_test_00306033.jpg
+Places365_test_00306040.jpg
+Places365_test_00306052.jpg
+Places365_test_00306053.jpg
+Places365_test_00306057.jpg
+Places365_test_00306061.jpg
+Places365_test_00306079.jpg
+Places365_test_00306112.jpg
+Places365_test_00306139.jpg
+Places365_test_00306143.jpg
+Places365_test_00306147.jpg
+Places365_test_00306177.jpg
+Places365_test_00306179.jpg
+Places365_test_00306196.jpg
+Places365_test_00306203.jpg
+Places365_test_00306211.jpg
+Places365_test_00306216.jpg
+Places365_test_00306225.jpg
+Places365_test_00306227.jpg
+Places365_test_00306233.jpg
+Places365_test_00306236.jpg
+Places365_test_00306251.jpg
+Places365_test_00306266.jpg
+Places365_test_00306277.jpg
+Places365_test_00306301.jpg
+Places365_test_00306327.jpg
+Places365_test_00306328.jpg
+Places365_test_00306336.jpg
+Places365_test_00306343.jpg
+Places365_test_00306344.jpg
+Places365_test_00306359.jpg
+Places365_test_00306369.jpg
+Places365_test_00306385.jpg
+Places365_test_00306389.jpg
+Places365_test_00306418.jpg
+Places365_test_00306430.jpg
+Places365_test_00306433.jpg
+Places365_test_00306449.jpg
+Places365_test_00306452.jpg
+Places365_test_00306462.jpg
+Places365_test_00306463.jpg
+Places365_test_00306470.jpg
+Places365_test_00306473.jpg
+Places365_test_00306476.jpg
+Places365_test_00306482.jpg
+Places365_test_00306501.jpg
+Places365_test_00306502.jpg
+Places365_test_00306503.jpg
+Places365_test_00306512.jpg
+Places365_test_00306519.jpg
+Places365_test_00306524.jpg
+Places365_test_00306530.jpg
+Places365_test_00306535.jpg
+Places365_test_00306536.jpg
+Places365_test_00306538.jpg
+Places365_test_00306545.jpg
+Places365_test_00306558.jpg
+Places365_test_00306561.jpg
+Places365_test_00306572.jpg
+Places365_test_00306587.jpg
+Places365_test_00306643.jpg
+Places365_test_00306645.jpg
+Places365_test_00306646.jpg
+Places365_test_00306648.jpg
+Places365_test_00306657.jpg
+Places365_test_00306662.jpg
+Places365_test_00306675.jpg
+Places365_test_00306680.jpg
+Places365_test_00306690.jpg
+Places365_test_00306728.jpg
+Places365_test_00306740.jpg
+Places365_test_00306754.jpg
+Places365_test_00306757.jpg
+Places365_test_00306769.jpg
+Places365_test_00306789.jpg
+Places365_test_00306791.jpg
+Places365_test_00306803.jpg
+Places365_test_00306804.jpg
+Places365_test_00306815.jpg
+Places365_test_00306824.jpg
+Places365_test_00306855.jpg
+Places365_test_00306869.jpg
+Places365_test_00306879.jpg
+Places365_test_00306897.jpg
+Places365_test_00306902.jpg
+Places365_test_00306903.jpg
+Places365_test_00306904.jpg
+Places365_test_00306908.jpg
+Places365_test_00306937.jpg
+Places365_test_00306946.jpg
+Places365_test_00306948.jpg
+Places365_test_00306960.jpg
+Places365_test_00306977.jpg
+Places365_test_00306984.jpg
+Places365_test_00307004.jpg
+Places365_test_00307059.jpg
+Places365_test_00307065.jpg
+Places365_test_00307075.jpg
+Places365_test_00307083.jpg
+Places365_test_00307095.jpg
+Places365_test_00307096.jpg
+Places365_test_00307103.jpg
+Places365_test_00307111.jpg
+Places365_test_00307113.jpg
+Places365_test_00307119.jpg
+Places365_test_00307121.jpg
+Places365_test_00307127.jpg
+Places365_test_00307160.jpg
+Places365_test_00307164.jpg
+Places365_test_00307165.jpg
+Places365_test_00307168.jpg
+Places365_test_00307188.jpg
+Places365_test_00307190.jpg
+Places365_test_00307192.jpg
+Places365_test_00307194.jpg
+Places365_test_00307206.jpg
+Places365_test_00307215.jpg
+Places365_test_00307231.jpg
+Places365_test_00307237.jpg
+Places365_test_00307238.jpg
+Places365_test_00307243.jpg
+Places365_test_00307249.jpg
+Places365_test_00307256.jpg
+Places365_test_00307310.jpg
+Places365_test_00307312.jpg
+Places365_test_00307315.jpg
+Places365_test_00307324.jpg
+Places365_test_00307332.jpg
+Places365_test_00307342.jpg
+Places365_test_00307343.jpg
+Places365_test_00307346.jpg
+Places365_test_00307376.jpg
+Places365_test_00307377.jpg
+Places365_test_00307393.jpg
+Places365_test_00307412.jpg
+Places365_test_00307431.jpg
+Places365_test_00307442.jpg
+Places365_test_00307443.jpg
+Places365_test_00307475.jpg
+Places365_test_00307482.jpg
+Places365_test_00307484.jpg
+Places365_test_00307502.jpg
+Places365_test_00307509.jpg
+Places365_test_00307515.jpg
+Places365_test_00307524.jpg
+Places365_test_00307547.jpg
+Places365_test_00307559.jpg
+Places365_test_00307561.jpg
+Places365_test_00307580.jpg
+Places365_test_00307584.jpg
+Places365_test_00307586.jpg
+Places365_test_00307591.jpg
+Places365_test_00307652.jpg
+Places365_test_00307656.jpg
+Places365_test_00307662.jpg
+Places365_test_00307705.jpg
+Places365_test_00307707.jpg
+Places365_test_00307710.jpg
+Places365_test_00307719.jpg
+Places365_test_00307722.jpg
+Places365_test_00307728.jpg
+Places365_test_00307733.jpg
+Places365_test_00307739.jpg
+Places365_test_00307744.jpg
+Places365_test_00307773.jpg
+Places365_test_00307795.jpg
+Places365_test_00307801.jpg
+Places365_test_00307809.jpg
+Places365_test_00307814.jpg
+Places365_test_00307827.jpg
+Places365_test_00307832.jpg
+Places365_test_00307836.jpg
+Places365_test_00307844.jpg
+Places365_test_00307853.jpg
+Places365_test_00307857.jpg
+Places365_test_00307874.jpg
+Places365_test_00307900.jpg
+Places365_test_00307908.jpg
+Places365_test_00307919.jpg
+Places365_test_00307923.jpg
+Places365_test_00307928.jpg
+Places365_test_00307929.jpg
+Places365_test_00307942.jpg
+Places365_test_00307952.jpg
+Places365_test_00307953.jpg
+Places365_test_00307961.jpg
+Places365_test_00307962.jpg
+Places365_test_00307965.jpg
+Places365_test_00307967.jpg
+Places365_test_00307970.jpg
+Places365_test_00307971.jpg
+Places365_test_00307980.jpg
+Places365_test_00307990.jpg
+Places365_test_00307995.jpg
+Places365_test_00308001.jpg
+Places365_test_00308019.jpg
+Places365_test_00308021.jpg
+Places365_test_00308022.jpg
+Places365_test_00308033.jpg
+Places365_test_00308062.jpg
+Places365_test_00308065.jpg
+Places365_test_00308078.jpg
+Places365_test_00308083.jpg
+Places365_test_00308098.jpg
+Places365_test_00308102.jpg
+Places365_test_00308107.jpg
+Places365_test_00308113.jpg
+Places365_test_00308123.jpg
+Places365_test_00308124.jpg
+Places365_test_00308137.jpg
+Places365_test_00308189.jpg
+Places365_test_00308191.jpg
+Places365_test_00308212.jpg
+Places365_test_00308223.jpg
+Places365_test_00308232.jpg
+Places365_test_00308246.jpg
+Places365_test_00308258.jpg
+Places365_test_00308301.jpg
+Places365_test_00308302.jpg
+Places365_test_00308327.jpg
+Places365_test_00308333.jpg
+Places365_test_00308337.jpg
+Places365_test_00308381.jpg
+Places365_test_00308393.jpg
+Places365_test_00308400.jpg
+Places365_test_00308433.jpg
+Places365_test_00308442.jpg
+Places365_test_00308450.jpg
+Places365_test_00308458.jpg
+Places365_test_00308484.jpg
+Places365_test_00308498.jpg
+Places365_test_00308519.jpg
+Places365_test_00308544.jpg
+Places365_test_00308556.jpg
+Places365_test_00308558.jpg
+Places365_test_00308565.jpg
+Places365_test_00308567.jpg
+Places365_test_00308578.jpg
+Places365_test_00308606.jpg
+Places365_test_00308614.jpg
+Places365_test_00308617.jpg
+Places365_test_00308620.jpg
+Places365_test_00308629.jpg
+Places365_test_00308640.jpg
+Places365_test_00308653.jpg
+Places365_test_00308657.jpg
+Places365_test_00308665.jpg
+Places365_test_00308675.jpg
+Places365_test_00308691.jpg
+Places365_test_00308698.jpg
+Places365_test_00308704.jpg
+Places365_test_00308711.jpg
+Places365_test_00308712.jpg
+Places365_test_00308721.jpg
+Places365_test_00308724.jpg
+Places365_test_00308730.jpg
+Places365_test_00308734.jpg
+Places365_test_00308755.jpg
+Places365_test_00308756.jpg
+Places365_test_00308759.jpg
+Places365_test_00308765.jpg
+Places365_test_00308769.jpg
+Places365_test_00308792.jpg
+Places365_test_00308816.jpg
+Places365_test_00308836.jpg
+Places365_test_00308851.jpg
+Places365_test_00308854.jpg
+Places365_test_00308884.jpg
+Places365_test_00308892.jpg
+Places365_test_00308896.jpg
+Places365_test_00308909.jpg
+Places365_test_00308929.jpg
+Places365_test_00308939.jpg
+Places365_test_00308947.jpg
+Places365_test_00308951.jpg
+Places365_test_00308958.jpg
+Places365_test_00308960.jpg
+Places365_test_00309032.jpg
+Places365_test_00309045.jpg
+Places365_test_00309056.jpg
+Places365_test_00309064.jpg
+Places365_test_00309083.jpg
+Places365_test_00309102.jpg
+Places365_test_00309111.jpg
+Places365_test_00309129.jpg
+Places365_test_00309152.jpg
+Places365_test_00309154.jpg
+Places365_test_00309155.jpg
+Places365_test_00309167.jpg
+Places365_test_00309169.jpg
+Places365_test_00309180.jpg
+Places365_test_00309206.jpg
+Places365_test_00309207.jpg
+Places365_test_00309225.jpg
+Places365_test_00309236.jpg
+Places365_test_00309242.jpg
+Places365_test_00309259.jpg
+Places365_test_00309268.jpg
+Places365_test_00309285.jpg
+Places365_test_00309287.jpg
+Places365_test_00309311.jpg
+Places365_test_00309314.jpg
+Places365_test_00309318.jpg
+Places365_test_00309344.jpg
+Places365_test_00309355.jpg
+Places365_test_00309362.jpg
+Places365_test_00309365.jpg
+Places365_test_00309371.jpg
+Places365_test_00309398.jpg
+Places365_test_00309417.jpg
+Places365_test_00309456.jpg
+Places365_test_00309464.jpg
+Places365_test_00309466.jpg
+Places365_test_00309474.jpg
+Places365_test_00309503.jpg
+Places365_test_00309529.jpg
+Places365_test_00309538.jpg
+Places365_test_00309543.jpg
+Places365_test_00309546.jpg
+Places365_test_00309550.jpg
+Places365_test_00309558.jpg
+Places365_test_00309565.jpg
+Places365_test_00309572.jpg
+Places365_test_00309590.jpg
+Places365_test_00309613.jpg
+Places365_test_00309616.jpg
+Places365_test_00309617.jpg
+Places365_test_00309620.jpg
+Places365_test_00309623.jpg
+Places365_test_00309631.jpg
+Places365_test_00309634.jpg
+Places365_test_00309647.jpg
+Places365_test_00309655.jpg
+Places365_test_00309673.jpg
+Places365_test_00309676.jpg
+Places365_test_00309692.jpg
+Places365_test_00309694.jpg
+Places365_test_00309702.jpg
+Places365_test_00309743.jpg
+Places365_test_00309744.jpg
+Places365_test_00309761.jpg
+Places365_test_00309772.jpg
+Places365_test_00309789.jpg
+Places365_test_00309817.jpg
+Places365_test_00309839.jpg
+Places365_test_00309840.jpg
+Places365_test_00309875.jpg
+Places365_test_00309879.jpg
+Places365_test_00309883.jpg
+Places365_test_00309889.jpg
+Places365_test_00309896.jpg
+Places365_test_00309914.jpg
+Places365_test_00309917.jpg
+Places365_test_00309935.jpg
+Places365_test_00309942.jpg
+Places365_test_00309945.jpg
+Places365_test_00309947.jpg
+Places365_test_00309959.jpg
+Places365_test_00309972.jpg
+Places365_test_00309998.jpg
+Places365_test_00309999.jpg
+Places365_test_00310014.jpg
+Places365_test_00310031.jpg
+Places365_test_00310041.jpg
+Places365_test_00310052.jpg
+Places365_test_00310054.jpg
+Places365_test_00310056.jpg
+Places365_test_00310061.jpg
+Places365_test_00310064.jpg
+Places365_test_00310069.jpg
+Places365_test_00310070.jpg
+Places365_test_00310074.jpg
+Places365_test_00310108.jpg
+Places365_test_00310112.jpg
+Places365_test_00310122.jpg
+Places365_test_00310127.jpg
+Places365_test_00310137.jpg
+Places365_test_00310146.jpg
+Places365_test_00310166.jpg
+Places365_test_00310212.jpg
+Places365_test_00310217.jpg
+Places365_test_00310229.jpg
+Places365_test_00310234.jpg
+Places365_test_00310240.jpg
+Places365_test_00310241.jpg
+Places365_test_00310250.jpg
+Places365_test_00310259.jpg
+Places365_test_00310260.jpg
+Places365_test_00310264.jpg
+Places365_test_00310266.jpg
+Places365_test_00310281.jpg
+Places365_test_00310282.jpg
+Places365_test_00310307.jpg
+Places365_test_00310330.jpg
+Places365_test_00310366.jpg
+Places365_test_00310372.jpg
+Places365_test_00310373.jpg
+Places365_test_00310399.jpg
+Places365_test_00310400.jpg
+Places365_test_00310421.jpg
+Places365_test_00310481.jpg
+Places365_test_00310498.jpg
+Places365_test_00310507.jpg
+Places365_test_00310513.jpg
+Places365_test_00310525.jpg
+Places365_test_00310555.jpg
+Places365_test_00310564.jpg
+Places365_test_00310572.jpg
+Places365_test_00310614.jpg
+Places365_test_00310620.jpg
+Places365_test_00310624.jpg
+Places365_test_00310631.jpg
+Places365_test_00310639.jpg
+Places365_test_00310642.jpg
+Places365_test_00310648.jpg
+Places365_test_00310655.jpg
+Places365_test_00310662.jpg
+Places365_test_00310681.jpg
+Places365_test_00310696.jpg
+Places365_test_00310727.jpg
+Places365_test_00310731.jpg
+Places365_test_00310734.jpg
+Places365_test_00310740.jpg
+Places365_test_00310747.jpg
+Places365_test_00310752.jpg
+Places365_test_00310753.jpg
+Places365_test_00310764.jpg
+Places365_test_00310784.jpg
+Places365_test_00310785.jpg
+Places365_test_00310830.jpg
+Places365_test_00310843.jpg
+Places365_test_00310847.jpg
+Places365_test_00310867.jpg
+Places365_test_00310904.jpg
+Places365_test_00310905.jpg
+Places365_test_00310933.jpg
+Places365_test_00310935.jpg
+Places365_test_00310941.jpg
+Places365_test_00310946.jpg
+Places365_test_00310986.jpg
+Places365_test_00310990.jpg
+Places365_test_00310998.jpg
+Places365_test_00311039.jpg
+Places365_test_00311055.jpg
+Places365_test_00311056.jpg
+Places365_test_00311061.jpg
+Places365_test_00311101.jpg
+Places365_test_00311108.jpg
+Places365_test_00311144.jpg
+Places365_test_00311167.jpg
+Places365_test_00311171.jpg
+Places365_test_00311182.jpg
+Places365_test_00311188.jpg
+Places365_test_00311212.jpg
+Places365_test_00311227.jpg
+Places365_test_00311232.jpg
+Places365_test_00311243.jpg
+Places365_test_00311250.jpg
+Places365_test_00311258.jpg
+Places365_test_00311298.jpg
+Places365_test_00311299.jpg
+Places365_test_00311302.jpg
+Places365_test_00311343.jpg
+Places365_test_00311354.jpg
+Places365_test_00311356.jpg
+Places365_test_00311375.jpg
+Places365_test_00311379.jpg
+Places365_test_00311387.jpg
+Places365_test_00311392.jpg
+Places365_test_00311425.jpg
+Places365_test_00311427.jpg
+Places365_test_00311431.jpg
+Places365_test_00311453.jpg
+Places365_test_00311472.jpg
+Places365_test_00311495.jpg
+Places365_test_00311504.jpg
+Places365_test_00311510.jpg
+Places365_test_00311545.jpg
+Places365_test_00311569.jpg
+Places365_test_00311603.jpg
+Places365_test_00311626.jpg
+Places365_test_00311638.jpg
+Places365_test_00311641.jpg
+Places365_test_00311650.jpg
+Places365_test_00311657.jpg
+Places365_test_00311660.jpg
+Places365_test_00311664.jpg
+Places365_test_00311665.jpg
+Places365_test_00311675.jpg
+Places365_test_00311689.jpg
+Places365_test_00311693.jpg
+Places365_test_00311699.jpg
+Places365_test_00311700.jpg
+Places365_test_00311717.jpg
+Places365_test_00311722.jpg
+Places365_test_00311727.jpg
+Places365_test_00311731.jpg
+Places365_test_00311738.jpg
+Places365_test_00311749.jpg
+Places365_test_00311751.jpg
+Places365_test_00311772.jpg
+Places365_test_00311786.jpg
+Places365_test_00311790.jpg
+Places365_test_00311791.jpg
+Places365_test_00311792.jpg
+Places365_test_00311805.jpg
+Places365_test_00311825.jpg
+Places365_test_00311840.jpg
+Places365_test_00311879.jpg
+Places365_test_00311912.jpg
+Places365_test_00311914.jpg
+Places365_test_00311915.jpg
+Places365_test_00311930.jpg
+Places365_test_00311951.jpg
+Places365_test_00311955.jpg
+Places365_test_00311992.jpg
+Places365_test_00312007.jpg
+Places365_test_00312032.jpg
+Places365_test_00312044.jpg
+Places365_test_00312054.jpg
+Places365_test_00312056.jpg
+Places365_test_00312057.jpg
+Places365_test_00312061.jpg
+Places365_test_00312073.jpg
+Places365_test_00312078.jpg
+Places365_test_00312098.jpg
+Places365_test_00312112.jpg
+Places365_test_00312113.jpg
+Places365_test_00312114.jpg
+Places365_test_00312124.jpg
+Places365_test_00312136.jpg
+Places365_test_00312140.jpg
+Places365_test_00312145.jpg
+Places365_test_00312205.jpg
+Places365_test_00312209.jpg
+Places365_test_00312212.jpg
+Places365_test_00312218.jpg
+Places365_test_00312231.jpg
+Places365_test_00312241.jpg
+Places365_test_00312250.jpg
+Places365_test_00312252.jpg
+Places365_test_00312254.jpg
+Places365_test_00312269.jpg
+Places365_test_00312273.jpg
+Places365_test_00312293.jpg
+Places365_test_00312300.jpg
+Places365_test_00312302.jpg
+Places365_test_00312307.jpg
+Places365_test_00312314.jpg
+Places365_test_00312316.jpg
+Places365_test_00312318.jpg
+Places365_test_00312322.jpg
+Places365_test_00312323.jpg
+Places365_test_00312352.jpg
+Places365_test_00312353.jpg
+Places365_test_00312354.jpg
+Places365_test_00312355.jpg
+Places365_test_00312381.jpg
+Places365_test_00312388.jpg
+Places365_test_00312430.jpg
+Places365_test_00312435.jpg
+Places365_test_00312440.jpg
+Places365_test_00312463.jpg
+Places365_test_00312492.jpg
+Places365_test_00312498.jpg
+Places365_test_00312508.jpg
+Places365_test_00312533.jpg
+Places365_test_00312583.jpg
+Places365_test_00312627.jpg
+Places365_test_00312641.jpg
+Places365_test_00312642.jpg
+Places365_test_00312654.jpg
+Places365_test_00312661.jpg
+Places365_test_00312681.jpg
+Places365_test_00312695.jpg
+Places365_test_00312700.jpg
+Places365_test_00312701.jpg
+Places365_test_00312704.jpg
+Places365_test_00312727.jpg
+Places365_test_00312734.jpg
+Places365_test_00312740.jpg
+Places365_test_00312749.jpg
+Places365_test_00312752.jpg
+Places365_test_00312756.jpg
+Places365_test_00312763.jpg
+Places365_test_00312765.jpg
+Places365_test_00312771.jpg
+Places365_test_00312777.jpg
+Places365_test_00312781.jpg
+Places365_test_00312803.jpg
+Places365_test_00312808.jpg
+Places365_test_00312816.jpg
+Places365_test_00312825.jpg
+Places365_test_00312833.jpg
+Places365_test_00312834.jpg
+Places365_test_00312835.jpg
+Places365_test_00312852.jpg
+Places365_test_00312859.jpg
+Places365_test_00312869.jpg
+Places365_test_00312895.jpg
+Places365_test_00312913.jpg
+Places365_test_00312926.jpg
+Places365_test_00312934.jpg
+Places365_test_00312961.jpg
+Places365_test_00312969.jpg
+Places365_test_00312973.jpg
+Places365_test_00312982.jpg
+Places365_test_00312987.jpg
+Places365_test_00312993.jpg
+Places365_test_00313005.jpg
+Places365_test_00313032.jpg
+Places365_test_00313035.jpg
+Places365_test_00313040.jpg
+Places365_test_00313043.jpg
+Places365_test_00313048.jpg
+Places365_test_00313062.jpg
+Places365_test_00313064.jpg
+Places365_test_00313079.jpg
+Places365_test_00313080.jpg
+Places365_test_00313099.jpg
+Places365_test_00313102.jpg
+Places365_test_00313115.jpg
+Places365_test_00313116.jpg
+Places365_test_00313127.jpg
+Places365_test_00313129.jpg
+Places365_test_00313138.jpg
+Places365_test_00313140.jpg
+Places365_test_00313150.jpg
+Places365_test_00313155.jpg
+Places365_test_00313161.jpg
+Places365_test_00313168.jpg
+Places365_test_00313179.jpg
+Places365_test_00313185.jpg
+Places365_test_00313189.jpg
+Places365_test_00313199.jpg
+Places365_test_00313206.jpg
+Places365_test_00313207.jpg
+Places365_test_00313218.jpg
+Places365_test_00313226.jpg
+Places365_test_00313233.jpg
+Places365_test_00313244.jpg
+Places365_test_00313278.jpg
+Places365_test_00313287.jpg
+Places365_test_00313288.jpg
+Places365_test_00313291.jpg
+Places365_test_00313292.jpg
+Places365_test_00313293.jpg
+Places365_test_00313304.jpg
+Places365_test_00313316.jpg
+Places365_test_00313321.jpg
+Places365_test_00313333.jpg
+Places365_test_00313350.jpg
+Places365_test_00313362.jpg
+Places365_test_00313381.jpg
+Places365_test_00313383.jpg
+Places365_test_00313399.jpg
+Places365_test_00313400.jpg
+Places365_test_00313418.jpg
+Places365_test_00313420.jpg
+Places365_test_00313421.jpg
+Places365_test_00313442.jpg
+Places365_test_00313447.jpg
+Places365_test_00313449.jpg
+Places365_test_00313461.jpg
+Places365_test_00313462.jpg
+Places365_test_00313471.jpg
+Places365_test_00313479.jpg
+Places365_test_00313486.jpg
+Places365_test_00313492.jpg
+Places365_test_00313498.jpg
+Places365_test_00313512.jpg
+Places365_test_00313515.jpg
+Places365_test_00313520.jpg
+Places365_test_00313528.jpg
+Places365_test_00313541.jpg
+Places365_test_00313550.jpg
+Places365_test_00313595.jpg
+Places365_test_00313618.jpg
+Places365_test_00313619.jpg
+Places365_test_00313642.jpg
+Places365_test_00313676.jpg
+Places365_test_00313682.jpg
+Places365_test_00313686.jpg
+Places365_test_00313704.jpg
+Places365_test_00313746.jpg
+Places365_test_00313749.jpg
+Places365_test_00313786.jpg
+Places365_test_00313787.jpg
+Places365_test_00313814.jpg
+Places365_test_00313822.jpg
+Places365_test_00313848.jpg
+Places365_test_00313860.jpg
+Places365_test_00313861.jpg
+Places365_test_00313873.jpg
+Places365_test_00313883.jpg
+Places365_test_00313912.jpg
+Places365_test_00313956.jpg
+Places365_test_00313958.jpg
+Places365_test_00313997.jpg
+Places365_test_00314003.jpg
+Places365_test_00314024.jpg
+Places365_test_00314039.jpg
+Places365_test_00314041.jpg
+Places365_test_00314063.jpg
+Places365_test_00314068.jpg
+Places365_test_00314072.jpg
+Places365_test_00314075.jpg
+Places365_test_00314084.jpg
+Places365_test_00314116.jpg
+Places365_test_00314142.jpg
+Places365_test_00314168.jpg
+Places365_test_00314177.jpg
+Places365_test_00314178.jpg
+Places365_test_00314179.jpg
+Places365_test_00314184.jpg
+Places365_test_00314189.jpg
+Places365_test_00314215.jpg
+Places365_test_00314236.jpg
+Places365_test_00314246.jpg
+Places365_test_00314248.jpg
+Places365_test_00314258.jpg
+Places365_test_00314264.jpg
+Places365_test_00314270.jpg
+Places365_test_00314288.jpg
+Places365_test_00314294.jpg
+Places365_test_00314296.jpg
+Places365_test_00314307.jpg
+Places365_test_00314312.jpg
+Places365_test_00314325.jpg
+Places365_test_00314328.jpg
+Places365_test_00314344.jpg
+Places365_test_00314349.jpg
+Places365_test_00314381.jpg
+Places365_test_00314430.jpg
+Places365_test_00314454.jpg
+Places365_test_00314460.jpg
+Places365_test_00314473.jpg
+Places365_test_00314486.jpg
+Places365_test_00314514.jpg
+Places365_test_00314515.jpg
+Places365_test_00314516.jpg
+Places365_test_00314517.jpg
+Places365_test_00314518.jpg
+Places365_test_00314524.jpg
+Places365_test_00314544.jpg
+Places365_test_00314554.jpg
+Places365_test_00314562.jpg
+Places365_test_00314566.jpg
+Places365_test_00314569.jpg
+Places365_test_00314596.jpg
+Places365_test_00314606.jpg
+Places365_test_00314621.jpg
+Places365_test_00314627.jpg
+Places365_test_00314641.jpg
+Places365_test_00314656.jpg
+Places365_test_00314657.jpg
+Places365_test_00314690.jpg
+Places365_test_00314696.jpg
+Places365_test_00314723.jpg
+Places365_test_00314726.jpg
+Places365_test_00314742.jpg
+Places365_test_00314754.jpg
+Places365_test_00314759.jpg
+Places365_test_00314762.jpg
+Places365_test_00314778.jpg
+Places365_test_00314819.jpg
+Places365_test_00314827.jpg
+Places365_test_00314832.jpg
+Places365_test_00314835.jpg
+Places365_test_00314847.jpg
+Places365_test_00314852.jpg
+Places365_test_00314890.jpg
+Places365_test_00314892.jpg
+Places365_test_00314913.jpg
+Places365_test_00314915.jpg
+Places365_test_00314922.jpg
+Places365_test_00314928.jpg
+Places365_test_00314936.jpg
+Places365_test_00314949.jpg
+Places365_test_00314958.jpg
+Places365_test_00314965.jpg
+Places365_test_00314974.jpg
+Places365_test_00315003.jpg
+Places365_test_00315006.jpg
+Places365_test_00315012.jpg
+Places365_test_00315020.jpg
+Places365_test_00315024.jpg
+Places365_test_00315032.jpg
+Places365_test_00315034.jpg
+Places365_test_00315039.jpg
+Places365_test_00315044.jpg
+Places365_test_00315077.jpg
+Places365_test_00315086.jpg
+Places365_test_00315089.jpg
+Places365_test_00315090.jpg
+Places365_test_00315103.jpg
+Places365_test_00315106.jpg
+Places365_test_00315117.jpg
+Places365_test_00315124.jpg
+Places365_test_00315134.jpg
+Places365_test_00315138.jpg
+Places365_test_00315141.jpg
+Places365_test_00315150.jpg
+Places365_test_00315154.jpg
+Places365_test_00315157.jpg
+Places365_test_00315170.jpg
+Places365_test_00315192.jpg
+Places365_test_00315239.jpg
+Places365_test_00315241.jpg
+Places365_test_00315250.jpg
+Places365_test_00315251.jpg
+Places365_test_00315254.jpg
+Places365_test_00315262.jpg
+Places365_test_00315264.jpg
+Places365_test_00315270.jpg
+Places365_test_00315274.jpg
+Places365_test_00315277.jpg
+Places365_test_00315282.jpg
+Places365_test_00315301.jpg
+Places365_test_00315307.jpg
+Places365_test_00315333.jpg
+Places365_test_00315334.jpg
+Places365_test_00315340.jpg
+Places365_test_00315341.jpg
+Places365_test_00315350.jpg
+Places365_test_00315361.jpg
+Places365_test_00315372.jpg
+Places365_test_00315421.jpg
+Places365_test_00315430.jpg
+Places365_test_00315441.jpg
+Places365_test_00315446.jpg
+Places365_test_00315453.jpg
+Places365_test_00315454.jpg
+Places365_test_00315457.jpg
+Places365_test_00315458.jpg
+Places365_test_00315462.jpg
+Places365_test_00315464.jpg
+Places365_test_00315467.jpg
+Places365_test_00315478.jpg
+Places365_test_00315490.jpg
+Places365_test_00315493.jpg
+Places365_test_00315495.jpg
+Places365_test_00315503.jpg
+Places365_test_00315529.jpg
+Places365_test_00315552.jpg
+Places365_test_00315566.jpg
+Places365_test_00315602.jpg
+Places365_test_00315604.jpg
+Places365_test_00315609.jpg
+Places365_test_00315612.jpg
+Places365_test_00315619.jpg
+Places365_test_00315632.jpg
+Places365_test_00315644.jpg
+Places365_test_00315653.jpg
+Places365_test_00315662.jpg
+Places365_test_00315670.jpg
+Places365_test_00315672.jpg
+Places365_test_00315692.jpg
+Places365_test_00315731.jpg
+Places365_test_00315740.jpg
+Places365_test_00315741.jpg
+Places365_test_00315765.jpg
+Places365_test_00315782.jpg
+Places365_test_00315801.jpg
+Places365_test_00315816.jpg
+Places365_test_00315829.jpg
+Places365_test_00315845.jpg
+Places365_test_00315897.jpg
+Places365_test_00315904.jpg
+Places365_test_00315907.jpg
+Places365_test_00315908.jpg
+Places365_test_00315909.jpg
+Places365_test_00315927.jpg
+Places365_test_00315958.jpg
+Places365_test_00315959.jpg
+Places365_test_00315961.jpg
+Places365_test_00315971.jpg
+Places365_test_00315976.jpg
+Places365_test_00315988.jpg
+Places365_test_00315993.jpg
+Places365_test_00315994.jpg
+Places365_test_00316001.jpg
+Places365_test_00316002.jpg
+Places365_test_00316003.jpg
+Places365_test_00316028.jpg
+Places365_test_00316030.jpg
+Places365_test_00316035.jpg
+Places365_test_00316036.jpg
+Places365_test_00316037.jpg
+Places365_test_00316073.jpg
+Places365_test_00316096.jpg
+Places365_test_00316104.jpg
+Places365_test_00316108.jpg
+Places365_test_00316134.jpg
+Places365_test_00316168.jpg
+Places365_test_00316171.jpg
+Places365_test_00316189.jpg
+Places365_test_00316198.jpg
+Places365_test_00316206.jpg
+Places365_test_00316216.jpg
+Places365_test_00316217.jpg
+Places365_test_00316218.jpg
+Places365_test_00316221.jpg
+Places365_test_00316225.jpg
+Places365_test_00316232.jpg
+Places365_test_00316233.jpg
+Places365_test_00316236.jpg
+Places365_test_00316242.jpg
+Places365_test_00316243.jpg
+Places365_test_00316244.jpg
+Places365_test_00316254.jpg
+Places365_test_00316264.jpg
+Places365_test_00316269.jpg
+Places365_test_00316271.jpg
+Places365_test_00316273.jpg
+Places365_test_00316275.jpg
+Places365_test_00316283.jpg
+Places365_test_00316287.jpg
+Places365_test_00316288.jpg
+Places365_test_00316296.jpg
+Places365_test_00316298.jpg
+Places365_test_00316300.jpg
+Places365_test_00316307.jpg
+Places365_test_00316314.jpg
+Places365_test_00316315.jpg
+Places365_test_00316332.jpg
+Places365_test_00316337.jpg
+Places365_test_00316355.jpg
+Places365_test_00316361.jpg
+Places365_test_00316367.jpg
+Places365_test_00316404.jpg
+Places365_test_00316435.jpg
+Places365_test_00316438.jpg
+Places365_test_00316470.jpg
+Places365_test_00316475.jpg
+Places365_test_00316480.jpg
+Places365_test_00316536.jpg
+Places365_test_00316541.jpg
+Places365_test_00316561.jpg
+Places365_test_00316593.jpg
+Places365_test_00316631.jpg
+Places365_test_00316634.jpg
+Places365_test_00316644.jpg
+Places365_test_00316665.jpg
+Places365_test_00316671.jpg
+Places365_test_00316695.jpg
+Places365_test_00316698.jpg
+Places365_test_00316703.jpg
+Places365_test_00316709.jpg
+Places365_test_00316727.jpg
+Places365_test_00316728.jpg
+Places365_test_00316732.jpg
+Places365_test_00316757.jpg
+Places365_test_00316770.jpg
+Places365_test_00316792.jpg
+Places365_test_00316817.jpg
+Places365_test_00316821.jpg
+Places365_test_00316823.jpg
+Places365_test_00316835.jpg
+Places365_test_00316855.jpg
+Places365_test_00316862.jpg
+Places365_test_00316926.jpg
+Places365_test_00316931.jpg
+Places365_test_00316935.jpg
+Places365_test_00316936.jpg
+Places365_test_00316940.jpg
+Places365_test_00316942.jpg
+Places365_test_00316956.jpg
+Places365_test_00316960.jpg
+Places365_test_00316964.jpg
+Places365_test_00316973.jpg
+Places365_test_00316974.jpg
+Places365_test_00316986.jpg
+Places365_test_00317001.jpg
+Places365_test_00317006.jpg
+Places365_test_00317012.jpg
+Places365_test_00317020.jpg
+Places365_test_00317030.jpg
+Places365_test_00317056.jpg
+Places365_test_00317060.jpg
+Places365_test_00317062.jpg
+Places365_test_00317071.jpg
+Places365_test_00317079.jpg
+Places365_test_00317081.jpg
+Places365_test_00317085.jpg
+Places365_test_00317116.jpg
+Places365_test_00317155.jpg
+Places365_test_00317182.jpg
+Places365_test_00317190.jpg
+Places365_test_00317196.jpg
+Places365_test_00317219.jpg
+Places365_test_00317220.jpg
+Places365_test_00317224.jpg
+Places365_test_00317242.jpg
+Places365_test_00317260.jpg
+Places365_test_00317299.jpg
+Places365_test_00317342.jpg
+Places365_test_00317356.jpg
+Places365_test_00317366.jpg
+Places365_test_00317374.jpg
+Places365_test_00317375.jpg
+Places365_test_00317377.jpg
+Places365_test_00317390.jpg
+Places365_test_00317410.jpg
+Places365_test_00317412.jpg
+Places365_test_00317431.jpg
+Places365_test_00317443.jpg
+Places365_test_00317448.jpg
+Places365_test_00317451.jpg
+Places365_test_00317453.jpg
+Places365_test_00317472.jpg
+Places365_test_00317479.jpg
+Places365_test_00317480.jpg
+Places365_test_00317492.jpg
+Places365_test_00317528.jpg
+Places365_test_00317531.jpg
+Places365_test_00317534.jpg
+Places365_test_00317539.jpg
+Places365_test_00317566.jpg
+Places365_test_00317596.jpg
+Places365_test_00317598.jpg
+Places365_test_00317603.jpg
+Places365_test_00317647.jpg
+Places365_test_00317650.jpg
+Places365_test_00317652.jpg
+Places365_test_00317657.jpg
+Places365_test_00317680.jpg
+Places365_test_00317682.jpg
+Places365_test_00317695.jpg
+Places365_test_00317718.jpg
+Places365_test_00317733.jpg
+Places365_test_00317735.jpg
+Places365_test_00317744.jpg
+Places365_test_00317758.jpg
+Places365_test_00317775.jpg
+Places365_test_00317781.jpg
+Places365_test_00317785.jpg
+Places365_test_00317786.jpg
+Places365_test_00317792.jpg
+Places365_test_00317833.jpg
+Places365_test_00317834.jpg
+Places365_test_00317843.jpg
+Places365_test_00317858.jpg
+Places365_test_00317864.jpg
+Places365_test_00317876.jpg
+Places365_test_00317880.jpg
+Places365_test_00317881.jpg
+Places365_test_00317889.jpg
+Places365_test_00317892.jpg
+Places365_test_00317913.jpg
+Places365_test_00317919.jpg
+Places365_test_00317922.jpg
+Places365_test_00317926.jpg
+Places365_test_00317948.jpg
+Places365_test_00317953.jpg
+Places365_test_00317958.jpg
+Places365_test_00317961.jpg
+Places365_test_00317965.jpg
+Places365_test_00317967.jpg
+Places365_test_00317986.jpg
+Places365_test_00318003.jpg
+Places365_test_00318005.jpg
+Places365_test_00318008.jpg
+Places365_test_00318095.jpg
+Places365_test_00318097.jpg
+Places365_test_00318099.jpg
+Places365_test_00318109.jpg
+Places365_test_00318114.jpg
+Places365_test_00318115.jpg
+Places365_test_00318121.jpg
+Places365_test_00318122.jpg
+Places365_test_00318130.jpg
+Places365_test_00318143.jpg
+Places365_test_00318155.jpg
+Places365_test_00318158.jpg
+Places365_test_00318162.jpg
+Places365_test_00318191.jpg
+Places365_test_00318200.jpg
+Places365_test_00318204.jpg
+Places365_test_00318221.jpg
+Places365_test_00318222.jpg
+Places365_test_00318242.jpg
+Places365_test_00318243.jpg
+Places365_test_00318247.jpg
+Places365_test_00318248.jpg
+Places365_test_00318265.jpg
+Places365_test_00318284.jpg
+Places365_test_00318289.jpg
+Places365_test_00318302.jpg
+Places365_test_00318338.jpg
+Places365_test_00318340.jpg
+Places365_test_00318341.jpg
+Places365_test_00318361.jpg
+Places365_test_00318367.jpg
+Places365_test_00318390.jpg
+Places365_test_00318414.jpg
+Places365_test_00318434.jpg
+Places365_test_00318448.jpg
+Places365_test_00318451.jpg
+Places365_test_00318458.jpg
+Places365_test_00318459.jpg
+Places365_test_00318467.jpg
+Places365_test_00318468.jpg
+Places365_test_00318471.jpg
+Places365_test_00318473.jpg
+Places365_test_00318481.jpg
+Places365_test_00318492.jpg
+Places365_test_00318513.jpg
+Places365_test_00318518.jpg
+Places365_test_00318542.jpg
+Places365_test_00318553.jpg
+Places365_test_00318557.jpg
+Places365_test_00318558.jpg
+Places365_test_00318560.jpg
+Places365_test_00318586.jpg
+Places365_test_00318588.jpg
+Places365_test_00318596.jpg
+Places365_test_00318599.jpg
+Places365_test_00318602.jpg
+Places365_test_00318603.jpg
+Places365_test_00318605.jpg
+Places365_test_00318615.jpg
+Places365_test_00318644.jpg
+Places365_test_00318651.jpg
+Places365_test_00318655.jpg
+Places365_test_00318670.jpg
+Places365_test_00318673.jpg
+Places365_test_00318675.jpg
+Places365_test_00318676.jpg
+Places365_test_00318701.jpg
+Places365_test_00318714.jpg
+Places365_test_00318719.jpg
+Places365_test_00318732.jpg
+Places365_test_00318739.jpg
+Places365_test_00318763.jpg
+Places365_test_00318769.jpg
+Places365_test_00318775.jpg
+Places365_test_00318796.jpg
+Places365_test_00318798.jpg
+Places365_test_00318817.jpg
+Places365_test_00318819.jpg
+Places365_test_00318829.jpg
+Places365_test_00318837.jpg
+Places365_test_00318839.jpg
+Places365_test_00318851.jpg
+Places365_test_00318871.jpg
+Places365_test_00318896.jpg
+Places365_test_00318898.jpg
+Places365_test_00318912.jpg
+Places365_test_00318920.jpg
+Places365_test_00318930.jpg
+Places365_test_00318935.jpg
+Places365_test_00318954.jpg
+Places365_test_00318964.jpg
+Places365_test_00318975.jpg
+Places365_test_00318989.jpg
+Places365_test_00319035.jpg
+Places365_test_00319048.jpg
+Places365_test_00319053.jpg
+Places365_test_00319057.jpg
+Places365_test_00319058.jpg
+Places365_test_00319075.jpg
+Places365_test_00319081.jpg
+Places365_test_00319090.jpg
+Places365_test_00319096.jpg
+Places365_test_00319109.jpg
+Places365_test_00319115.jpg
+Places365_test_00319116.jpg
+Places365_test_00319121.jpg
+Places365_test_00319122.jpg
+Places365_test_00319137.jpg
+Places365_test_00319144.jpg
+Places365_test_00319159.jpg
+Places365_test_00319169.jpg
+Places365_test_00319184.jpg
+Places365_test_00319210.jpg
+Places365_test_00319214.jpg
+Places365_test_00319244.jpg
+Places365_test_00319252.jpg
+Places365_test_00319259.jpg
+Places365_test_00319268.jpg
+Places365_test_00319274.jpg
+Places365_test_00319277.jpg
+Places365_test_00319297.jpg
+Places365_test_00319306.jpg
+Places365_test_00319317.jpg
+Places365_test_00319331.jpg
+Places365_test_00319335.jpg
+Places365_test_00319355.jpg
+Places365_test_00319361.jpg
+Places365_test_00319402.jpg
+Places365_test_00319407.jpg
+Places365_test_00319414.jpg
+Places365_test_00319425.jpg
+Places365_test_00319443.jpg
+Places365_test_00319451.jpg
+Places365_test_00319462.jpg
+Places365_test_00319472.jpg
+Places365_test_00319481.jpg
+Places365_test_00319485.jpg
+Places365_test_00319495.jpg
+Places365_test_00319499.jpg
+Places365_test_00319502.jpg
+Places365_test_00319528.jpg
+Places365_test_00319533.jpg
+Places365_test_00319534.jpg
+Places365_test_00319537.jpg
+Places365_test_00319552.jpg
+Places365_test_00319570.jpg
+Places365_test_00319591.jpg
+Places365_test_00319630.jpg
+Places365_test_00319644.jpg
+Places365_test_00319650.jpg
+Places365_test_00319657.jpg
+Places365_test_00319659.jpg
+Places365_test_00319662.jpg
+Places365_test_00319667.jpg
+Places365_test_00319719.jpg
+Places365_test_00319731.jpg
+Places365_test_00319749.jpg
+Places365_test_00319751.jpg
+Places365_test_00319765.jpg
+Places365_test_00319766.jpg
+Places365_test_00319778.jpg
+Places365_test_00319796.jpg
+Places365_test_00319804.jpg
+Places365_test_00319811.jpg
+Places365_test_00319818.jpg
+Places365_test_00319825.jpg
+Places365_test_00319850.jpg
+Places365_test_00319860.jpg
+Places365_test_00319863.jpg
+Places365_test_00319865.jpg
+Places365_test_00319869.jpg
+Places365_test_00319892.jpg
+Places365_test_00319894.jpg
+Places365_test_00319915.jpg
+Places365_test_00319919.jpg
+Places365_test_00319921.jpg
+Places365_test_00319933.jpg
+Places365_test_00319959.jpg
+Places365_test_00319983.jpg
+Places365_test_00320005.jpg
+Places365_test_00320012.jpg
+Places365_test_00320013.jpg
+Places365_test_00320022.jpg
+Places365_test_00320028.jpg
+Places365_test_00320029.jpg
+Places365_test_00320058.jpg
+Places365_test_00320061.jpg
+Places365_test_00320063.jpg
+Places365_test_00320079.jpg
+Places365_test_00320094.jpg
+Places365_test_00320099.jpg
+Places365_test_00320115.jpg
+Places365_test_00320124.jpg
+Places365_test_00320129.jpg
+Places365_test_00320142.jpg
+Places365_test_00320143.jpg
+Places365_test_00320159.jpg
+Places365_test_00320164.jpg
+Places365_test_00320171.jpg
+Places365_test_00320174.jpg
+Places365_test_00320187.jpg
+Places365_test_00320190.jpg
+Places365_test_00320192.jpg
+Places365_test_00320193.jpg
+Places365_test_00320199.jpg
+Places365_test_00320218.jpg
+Places365_test_00320232.jpg
+Places365_test_00320235.jpg
+Places365_test_00320241.jpg
+Places365_test_00320250.jpg
+Places365_test_00320259.jpg
+Places365_test_00320264.jpg
+Places365_test_00320271.jpg
+Places365_test_00320273.jpg
+Places365_test_00320290.jpg
+Places365_test_00320291.jpg
+Places365_test_00320300.jpg
+Places365_test_00320306.jpg
+Places365_test_00320308.jpg
+Places365_test_00320338.jpg
+Places365_test_00320345.jpg
+Places365_test_00320348.jpg
+Places365_test_00320378.jpg
+Places365_test_00320383.jpg
+Places365_test_00320389.jpg
+Places365_test_00320402.jpg
+Places365_test_00320451.jpg
+Places365_test_00320466.jpg
+Places365_test_00320473.jpg
+Places365_test_00320476.jpg
+Places365_test_00320478.jpg
+Places365_test_00320482.jpg
+Places365_test_00320490.jpg
+Places365_test_00320503.jpg
+Places365_test_00320505.jpg
+Places365_test_00320507.jpg
+Places365_test_00320518.jpg
+Places365_test_00320519.jpg
+Places365_test_00320524.jpg
+Places365_test_00320525.jpg
+Places365_test_00320526.jpg
+Places365_test_00320545.jpg
+Places365_test_00320574.jpg
+Places365_test_00320576.jpg
+Places365_test_00320586.jpg
+Places365_test_00320587.jpg
+Places365_test_00320596.jpg
+Places365_test_00320603.jpg
+Places365_test_00320607.jpg
+Places365_test_00320642.jpg
+Places365_test_00320647.jpg
+Places365_test_00320684.jpg
+Places365_test_00320687.jpg
+Places365_test_00320690.jpg
+Places365_test_00320692.jpg
+Places365_test_00320696.jpg
+Places365_test_00320702.jpg
+Places365_test_00320715.jpg
+Places365_test_00320751.jpg
+Places365_test_00320753.jpg
+Places365_test_00320755.jpg
+Places365_test_00320760.jpg
+Places365_test_00320763.jpg
+Places365_test_00320775.jpg
+Places365_test_00320780.jpg
+Places365_test_00320829.jpg
+Places365_test_00320832.jpg
+Places365_test_00320845.jpg
+Places365_test_00320850.jpg
+Places365_test_00320856.jpg
+Places365_test_00320864.jpg
+Places365_test_00320868.jpg
+Places365_test_00320877.jpg
+Places365_test_00320893.jpg
+Places365_test_00320900.jpg
+Places365_test_00320908.jpg
+Places365_test_00320921.jpg
+Places365_test_00320927.jpg
+Places365_test_00320930.jpg
+Places365_test_00320935.jpg
+Places365_test_00320954.jpg
+Places365_test_00320966.jpg
+Places365_test_00320978.jpg
+Places365_test_00320983.jpg
+Places365_test_00320986.jpg
+Places365_test_00320989.jpg
+Places365_test_00320992.jpg
+Places365_test_00320994.jpg
+Places365_test_00320996.jpg
+Places365_test_00320999.jpg
+Places365_test_00321017.jpg
+Places365_test_00321035.jpg
+Places365_test_00321042.jpg
+Places365_test_00321052.jpg
+Places365_test_00321054.jpg
+Places365_test_00321059.jpg
+Places365_test_00321063.jpg
+Places365_test_00321096.jpg
+Places365_test_00321140.jpg
+Places365_test_00321169.jpg
+Places365_test_00321174.jpg
+Places365_test_00321182.jpg
+Places365_test_00321197.jpg
+Places365_test_00321209.jpg
+Places365_test_00321214.jpg
+Places365_test_00321231.jpg
+Places365_test_00321233.jpg
+Places365_test_00321236.jpg
+Places365_test_00321243.jpg
+Places365_test_00321248.jpg
+Places365_test_00321250.jpg
+Places365_test_00321270.jpg
+Places365_test_00321273.jpg
+Places365_test_00321292.jpg
+Places365_test_00321300.jpg
+Places365_test_00321302.jpg
+Places365_test_00321304.jpg
+Places365_test_00321306.jpg
+Places365_test_00321312.jpg
+Places365_test_00321327.jpg
+Places365_test_00321334.jpg
+Places365_test_00321335.jpg
+Places365_test_00321367.jpg
+Places365_test_00321374.jpg
+Places365_test_00321379.jpg
+Places365_test_00321381.jpg
+Places365_test_00321397.jpg
+Places365_test_00321417.jpg
+Places365_test_00321426.jpg
+Places365_test_00321430.jpg
+Places365_test_00321441.jpg
+Places365_test_00321462.jpg
+Places365_test_00321468.jpg
+Places365_test_00321469.jpg
+Places365_test_00321471.jpg
+Places365_test_00321477.jpg
+Places365_test_00321501.jpg
+Places365_test_00321503.jpg
+Places365_test_00321519.jpg
+Places365_test_00321544.jpg
+Places365_test_00321546.jpg
+Places365_test_00321556.jpg
+Places365_test_00321573.jpg
+Places365_test_00321593.jpg
+Places365_test_00321599.jpg
+Places365_test_00321624.jpg
+Places365_test_00321632.jpg
+Places365_test_00321655.jpg
+Places365_test_00321665.jpg
+Places365_test_00321669.jpg
+Places365_test_00321672.jpg
+Places365_test_00321675.jpg
+Places365_test_00321677.jpg
+Places365_test_00321686.jpg
+Places365_test_00321698.jpg
+Places365_test_00321700.jpg
+Places365_test_00321707.jpg
+Places365_test_00321716.jpg
+Places365_test_00321719.jpg
+Places365_test_00321731.jpg
+Places365_test_00321748.jpg
+Places365_test_00321762.jpg
+Places365_test_00321766.jpg
+Places365_test_00321770.jpg
+Places365_test_00321771.jpg
+Places365_test_00321801.jpg
+Places365_test_00321861.jpg
+Places365_test_00321883.jpg
+Places365_test_00321886.jpg
+Places365_test_00321900.jpg
+Places365_test_00321902.jpg
+Places365_test_00321916.jpg
+Places365_test_00321918.jpg
+Places365_test_00321932.jpg
+Places365_test_00321937.jpg
+Places365_test_00321957.jpg
+Places365_test_00321960.jpg
+Places365_test_00321962.jpg
+Places365_test_00321963.jpg
+Places365_test_00321980.jpg
+Places365_test_00321984.jpg
+Places365_test_00321997.jpg
+Places365_test_00322036.jpg
+Places365_test_00322047.jpg
+Places365_test_00322059.jpg
+Places365_test_00322068.jpg
+Places365_test_00322070.jpg
+Places365_test_00322073.jpg
+Places365_test_00322111.jpg
+Places365_test_00322118.jpg
+Places365_test_00322158.jpg
+Places365_test_00322159.jpg
+Places365_test_00322165.jpg
+Places365_test_00322177.jpg
+Places365_test_00322182.jpg
+Places365_test_00322190.jpg
+Places365_test_00322196.jpg
+Places365_test_00322215.jpg
+Places365_test_00322221.jpg
+Places365_test_00322253.jpg
+Places365_test_00322263.jpg
+Places365_test_00322267.jpg
+Places365_test_00322289.jpg
+Places365_test_00322312.jpg
+Places365_test_00322316.jpg
+Places365_test_00322323.jpg
+Places365_test_00322335.jpg
+Places365_test_00322362.jpg
+Places365_test_00322376.jpg
+Places365_test_00322401.jpg
+Places365_test_00322419.jpg
+Places365_test_00322462.jpg
+Places365_test_00322483.jpg
+Places365_test_00322500.jpg
+Places365_test_00322513.jpg
+Places365_test_00322524.jpg
+Places365_test_00322541.jpg
+Places365_test_00322550.jpg
+Places365_test_00322567.jpg
+Places365_test_00322572.jpg
+Places365_test_00322581.jpg
+Places365_test_00322588.jpg
+Places365_test_00322606.jpg
+Places365_test_00322609.jpg
+Places365_test_00322610.jpg
+Places365_test_00322623.jpg
+Places365_test_00322627.jpg
+Places365_test_00322636.jpg
+Places365_test_00322640.jpg
+Places365_test_00322642.jpg
+Places365_test_00322648.jpg
+Places365_test_00322662.jpg
+Places365_test_00322684.jpg
+Places365_test_00322692.jpg
+Places365_test_00322695.jpg
+Places365_test_00322737.jpg
+Places365_test_00322763.jpg
+Places365_test_00322775.jpg
+Places365_test_00322796.jpg
+Places365_test_00322816.jpg
+Places365_test_00322825.jpg
+Places365_test_00322864.jpg
+Places365_test_00322868.jpg
+Places365_test_00322872.jpg
+Places365_test_00322878.jpg
+Places365_test_00322885.jpg
+Places365_test_00322892.jpg
+Places365_test_00322902.jpg
+Places365_test_00322918.jpg
+Places365_test_00322919.jpg
+Places365_test_00322921.jpg
+Places365_test_00322933.jpg
+Places365_test_00322934.jpg
+Places365_test_00322936.jpg
+Places365_test_00322938.jpg
+Places365_test_00322943.jpg
+Places365_test_00322953.jpg
+Places365_test_00322965.jpg
+Places365_test_00322993.jpg
+Places365_test_00322996.jpg
+Places365_test_00323000.jpg
+Places365_test_00323009.jpg
+Places365_test_00323012.jpg
+Places365_test_00323041.jpg
+Places365_test_00323049.jpg
+Places365_test_00323065.jpg
+Places365_test_00323070.jpg
+Places365_test_00323081.jpg
+Places365_test_00323083.jpg
+Places365_test_00323088.jpg
+Places365_test_00323094.jpg
+Places365_test_00323114.jpg
+Places365_test_00323123.jpg
+Places365_test_00323152.jpg
+Places365_test_00323175.jpg
+Places365_test_00323189.jpg
+Places365_test_00323207.jpg
+Places365_test_00323215.jpg
+Places365_test_00323226.jpg
+Places365_test_00323236.jpg
+Places365_test_00323255.jpg
+Places365_test_00323256.jpg
+Places365_test_00323258.jpg
+Places365_test_00323260.jpg
+Places365_test_00323285.jpg
+Places365_test_00323294.jpg
+Places365_test_00323296.jpg
+Places365_test_00323298.jpg
+Places365_test_00323315.jpg
+Places365_test_00323323.jpg
+Places365_test_00323333.jpg
+Places365_test_00323346.jpg
+Places365_test_00323358.jpg
+Places365_test_00323366.jpg
+Places365_test_00323376.jpg
+Places365_test_00323377.jpg
+Places365_test_00323381.jpg
+Places365_test_00323389.jpg
+Places365_test_00323392.jpg
+Places365_test_00323403.jpg
+Places365_test_00323404.jpg
+Places365_test_00323405.jpg
+Places365_test_00323415.jpg
+Places365_test_00323423.jpg
+Places365_test_00323461.jpg
+Places365_test_00323473.jpg
+Places365_test_00323495.jpg
+Places365_test_00323496.jpg
+Places365_test_00323539.jpg
+Places365_test_00323554.jpg
+Places365_test_00323565.jpg
+Places365_test_00323593.jpg
+Places365_test_00323594.jpg
+Places365_test_00323601.jpg
+Places365_test_00323606.jpg
+Places365_test_00323608.jpg
+Places365_test_00323623.jpg
+Places365_test_00323629.jpg
+Places365_test_00323639.jpg
+Places365_test_00323644.jpg
+Places365_test_00323659.jpg
+Places365_test_00323660.jpg
+Places365_test_00323675.jpg
+Places365_test_00323699.jpg
+Places365_test_00323704.jpg
+Places365_test_00323709.jpg
+Places365_test_00323717.jpg
+Places365_test_00323755.jpg
+Places365_test_00323762.jpg
+Places365_test_00323783.jpg
+Places365_test_00323788.jpg
+Places365_test_00323804.jpg
+Places365_test_00323826.jpg
+Places365_test_00323827.jpg
+Places365_test_00323836.jpg
+Places365_test_00323837.jpg
+Places365_test_00323848.jpg
+Places365_test_00323883.jpg
+Places365_test_00323884.jpg
+Places365_test_00323893.jpg
+Places365_test_00323900.jpg
+Places365_test_00323920.jpg
+Places365_test_00323923.jpg
+Places365_test_00323924.jpg
+Places365_test_00323933.jpg
+Places365_test_00323937.jpg
+Places365_test_00323966.jpg
+Places365_test_00324013.jpg
+Places365_test_00324043.jpg
+Places365_test_00324063.jpg
+Places365_test_00324070.jpg
+Places365_test_00324073.jpg
+Places365_test_00324080.jpg
+Places365_test_00324106.jpg
+Places365_test_00324123.jpg
+Places365_test_00324138.jpg
+Places365_test_00324140.jpg
+Places365_test_00324146.jpg
+Places365_test_00324148.jpg
+Places365_test_00324151.jpg
+Places365_test_00324158.jpg
+Places365_test_00324168.jpg
+Places365_test_00324181.jpg
+Places365_test_00324194.jpg
+Places365_test_00324227.jpg
+Places365_test_00324238.jpg
+Places365_test_00324259.jpg
+Places365_test_00324272.jpg
+Places365_test_00324274.jpg
+Places365_test_00324293.jpg
+Places365_test_00324294.jpg
+Places365_test_00324300.jpg
+Places365_test_00324307.jpg
+Places365_test_00324308.jpg
+Places365_test_00324310.jpg
+Places365_test_00324315.jpg
+Places365_test_00324318.jpg
+Places365_test_00324330.jpg
+Places365_test_00324331.jpg
+Places365_test_00324336.jpg
+Places365_test_00324345.jpg
+Places365_test_00324363.jpg
+Places365_test_00324367.jpg
+Places365_test_00324373.jpg
+Places365_test_00324389.jpg
+Places365_test_00324394.jpg
+Places365_test_00324406.jpg
+Places365_test_00324419.jpg
+Places365_test_00324420.jpg
+Places365_test_00324448.jpg
+Places365_test_00324489.jpg
+Places365_test_00324491.jpg
+Places365_test_00324543.jpg
+Places365_test_00324546.jpg
+Places365_test_00324551.jpg
+Places365_test_00324554.jpg
+Places365_test_00324560.jpg
+Places365_test_00324585.jpg
+Places365_test_00324587.jpg
+Places365_test_00324600.jpg
+Places365_test_00324622.jpg
+Places365_test_00324623.jpg
+Places365_test_00324642.jpg
+Places365_test_00324654.jpg
+Places365_test_00324664.jpg
+Places365_test_00324702.jpg
+Places365_test_00324712.jpg
+Places365_test_00324724.jpg
+Places365_test_00324728.jpg
+Places365_test_00324749.jpg
+Places365_test_00324779.jpg
+Places365_test_00324781.jpg
+Places365_test_00324785.jpg
+Places365_test_00324798.jpg
+Places365_test_00324836.jpg
+Places365_test_00324840.jpg
+Places365_test_00324862.jpg
+Places365_test_00324863.jpg
+Places365_test_00324869.jpg
+Places365_test_00324908.jpg
+Places365_test_00324921.jpg
+Places365_test_00324948.jpg
+Places365_test_00324950.jpg
+Places365_test_00324970.jpg
+Places365_test_00324973.jpg
+Places365_test_00324995.jpg
+Places365_test_00324996.jpg
+Places365_test_00325018.jpg
+Places365_test_00325019.jpg
+Places365_test_00325025.jpg
+Places365_test_00325053.jpg
+Places365_test_00325072.jpg
+Places365_test_00325080.jpg
+Places365_test_00325084.jpg
+Places365_test_00325087.jpg
+Places365_test_00325089.jpg
+Places365_test_00325090.jpg
+Places365_test_00325100.jpg
+Places365_test_00325108.jpg
+Places365_test_00325109.jpg
+Places365_test_00325140.jpg
+Places365_test_00325175.jpg
+Places365_test_00325188.jpg
+Places365_test_00325190.jpg
+Places365_test_00325199.jpg
+Places365_test_00325206.jpg
+Places365_test_00325222.jpg
+Places365_test_00325236.jpg
+Places365_test_00325246.jpg
+Places365_test_00325265.jpg
+Places365_test_00325275.jpg
+Places365_test_00325277.jpg
+Places365_test_00325285.jpg
+Places365_test_00325300.jpg
+Places365_test_00325316.jpg
+Places365_test_00325320.jpg
+Places365_test_00325325.jpg
+Places365_test_00325350.jpg
+Places365_test_00325353.jpg
+Places365_test_00325354.jpg
+Places365_test_00325359.jpg
+Places365_test_00325362.jpg
+Places365_test_00325372.jpg
+Places365_test_00325382.jpg
+Places365_test_00325392.jpg
+Places365_test_00325396.jpg
+Places365_test_00325399.jpg
+Places365_test_00325418.jpg
+Places365_test_00325429.jpg
+Places365_test_00325436.jpg
+Places365_test_00325466.jpg
+Places365_test_00325473.jpg
+Places365_test_00325478.jpg
+Places365_test_00325494.jpg
+Places365_test_00325499.jpg
+Places365_test_00325500.jpg
+Places365_test_00325502.jpg
+Places365_test_00325523.jpg
+Places365_test_00325556.jpg
+Places365_test_00325570.jpg
+Places365_test_00325576.jpg
+Places365_test_00325599.jpg
+Places365_test_00325604.jpg
+Places365_test_00325635.jpg
+Places365_test_00325648.jpg
+Places365_test_00325652.jpg
+Places365_test_00325656.jpg
+Places365_test_00325662.jpg
+Places365_test_00325683.jpg
+Places365_test_00325693.jpg
+Places365_test_00325695.jpg
+Places365_test_00325713.jpg
+Places365_test_00325725.jpg
+Places365_test_00325741.jpg
+Places365_test_00325743.jpg
+Places365_test_00325763.jpg
+Places365_test_00325775.jpg
+Places365_test_00325794.jpg
+Places365_test_00325802.jpg
+Places365_test_00325807.jpg
+Places365_test_00325808.jpg
+Places365_test_00325813.jpg
+Places365_test_00325824.jpg
+Places365_test_00325827.jpg
+Places365_test_00325832.jpg
+Places365_test_00325834.jpg
+Places365_test_00325839.jpg
+Places365_test_00325841.jpg
+Places365_test_00325864.jpg
+Places365_test_00325873.jpg
+Places365_test_00325893.jpg
+Places365_test_00325903.jpg
+Places365_test_00325912.jpg
+Places365_test_00325916.jpg
+Places365_test_00325924.jpg
+Places365_test_00325925.jpg
+Places365_test_00325929.jpg
+Places365_test_00325962.jpg
+Places365_test_00325963.jpg
+Places365_test_00325964.jpg
+Places365_test_00325973.jpg
+Places365_test_00325982.jpg
+Places365_test_00325985.jpg
+Places365_test_00326009.jpg
+Places365_test_00326013.jpg
+Places365_test_00326019.jpg
+Places365_test_00326026.jpg
+Places365_test_00326027.jpg
+Places365_test_00326028.jpg
+Places365_test_00326031.jpg
+Places365_test_00326035.jpg
+Places365_test_00326043.jpg
+Places365_test_00326051.jpg
+Places365_test_00326070.jpg
+Places365_test_00326073.jpg
+Places365_test_00326091.jpg
+Places365_test_00326099.jpg
+Places365_test_00326102.jpg
+Places365_test_00326116.jpg
+Places365_test_00326121.jpg
+Places365_test_00326152.jpg
+Places365_test_00326154.jpg
+Places365_test_00326171.jpg
+Places365_test_00326193.jpg
+Places365_test_00326197.jpg
+Places365_test_00326200.jpg
+Places365_test_00326210.jpg
+Places365_test_00326225.jpg
+Places365_test_00326230.jpg
+Places365_test_00326238.jpg
+Places365_test_00326242.jpg
+Places365_test_00326253.jpg
+Places365_test_00326257.jpg
+Places365_test_00326266.jpg
+Places365_test_00326268.jpg
+Places365_test_00326271.jpg
+Places365_test_00326312.jpg
+Places365_test_00326313.jpg
+Places365_test_00326323.jpg
+Places365_test_00326332.jpg
+Places365_test_00326339.jpg
+Places365_test_00326341.jpg
+Places365_test_00326342.jpg
+Places365_test_00326343.jpg
+Places365_test_00326352.jpg
+Places365_test_00326358.jpg
+Places365_test_00326361.jpg
+Places365_test_00326371.jpg
+Places365_test_00326385.jpg
+Places365_test_00326399.jpg
+Places365_test_00326412.jpg
+Places365_test_00326413.jpg
+Places365_test_00326440.jpg
+Places365_test_00326441.jpg
+Places365_test_00326451.jpg
+Places365_test_00326464.jpg
+Places365_test_00326484.jpg
+Places365_test_00326493.jpg
+Places365_test_00326501.jpg
+Places365_test_00326511.jpg
+Places365_test_00326514.jpg
+Places365_test_00326518.jpg
+Places365_test_00326522.jpg
+Places365_test_00326525.jpg
+Places365_test_00326539.jpg
+Places365_test_00326543.jpg
+Places365_test_00326566.jpg
+Places365_test_00326573.jpg
+Places365_test_00326583.jpg
+Places365_test_00326585.jpg
+Places365_test_00326597.jpg
+Places365_test_00326598.jpg
+Places365_test_00326621.jpg
+Places365_test_00326625.jpg
+Places365_test_00326636.jpg
+Places365_test_00326640.jpg
+Places365_test_00326654.jpg
+Places365_test_00326659.jpg
+Places365_test_00326686.jpg
+Places365_test_00326687.jpg
+Places365_test_00326691.jpg
+Places365_test_00326698.jpg
+Places365_test_00326704.jpg
+Places365_test_00326709.jpg
+Places365_test_00326725.jpg
+Places365_test_00326737.jpg
+Places365_test_00326738.jpg
+Places365_test_00326742.jpg
+Places365_test_00326771.jpg
+Places365_test_00326772.jpg
+Places365_test_00326778.jpg
+Places365_test_00326791.jpg
+Places365_test_00326800.jpg
+Places365_test_00326802.jpg
+Places365_test_00326804.jpg
+Places365_test_00326813.jpg
+Places365_test_00326827.jpg
+Places365_test_00326837.jpg
+Places365_test_00326841.jpg
+Places365_test_00326882.jpg
+Places365_test_00326892.jpg
+Places365_test_00326920.jpg
+Places365_test_00326944.jpg
+Places365_test_00326948.jpg
+Places365_test_00326950.jpg
+Places365_test_00326955.jpg
+Places365_test_00326968.jpg
+Places365_test_00326994.jpg
+Places365_test_00326996.jpg
+Places365_test_00327037.jpg
+Places365_test_00327077.jpg
+Places365_test_00327110.jpg
+Places365_test_00327121.jpg
+Places365_test_00327132.jpg
+Places365_test_00327142.jpg
+Places365_test_00327143.jpg
+Places365_test_00327155.jpg
+Places365_test_00327157.jpg
+Places365_test_00327165.jpg
+Places365_test_00327195.jpg
+Places365_test_00327203.jpg
+Places365_test_00327211.jpg
+Places365_test_00327220.jpg
+Places365_test_00327224.jpg
+Places365_test_00327231.jpg
+Places365_test_00327244.jpg
+Places365_test_00327254.jpg
+Places365_test_00327265.jpg
+Places365_test_00327275.jpg
+Places365_test_00327281.jpg
+Places365_test_00327285.jpg
+Places365_test_00327291.jpg
+Places365_test_00327292.jpg
+Places365_test_00327293.jpg
+Places365_test_00327361.jpg
+Places365_test_00327368.jpg
+Places365_test_00327371.jpg
+Places365_test_00327392.jpg
+Places365_test_00327396.jpg
+Places365_test_00327412.jpg
+Places365_test_00327414.jpg
+Places365_test_00327421.jpg
+Places365_test_00327422.jpg
+Places365_test_00327434.jpg
+Places365_test_00327465.jpg
+Places365_test_00327468.jpg
+Places365_test_00327470.jpg
+Places365_test_00327472.jpg
+Places365_test_00327493.jpg
+Places365_test_00327499.jpg
+Places365_test_00327500.jpg
+Places365_test_00327509.jpg
+Places365_test_00327515.jpg
+Places365_test_00327538.jpg
+Places365_test_00327548.jpg
+Places365_test_00327549.jpg
+Places365_test_00327557.jpg
+Places365_test_00327566.jpg
+Places365_test_00327586.jpg
+Places365_test_00327620.jpg
+Places365_test_00327636.jpg
+Places365_test_00327675.jpg
+Places365_test_00327685.jpg
+Places365_test_00327686.jpg
+Places365_test_00327708.jpg
+Places365_test_00327721.jpg
+Places365_test_00327722.jpg
+Places365_test_00327728.jpg
+Places365_test_00327744.jpg
+Places365_test_00327746.jpg
+Places365_test_00327770.jpg
+Places365_test_00327781.jpg
+Places365_test_00327792.jpg
+Places365_test_00327795.jpg
+Places365_test_00327799.jpg
+Places365_test_00327814.jpg
+Places365_test_00327821.jpg
+Places365_test_00327828.jpg
+Places365_test_00327848.jpg
+Places365_test_00327853.jpg
+Places365_test_00327860.jpg
+Places365_test_00327877.jpg
+Places365_test_00327890.jpg
+Places365_test_00327894.jpg
+Places365_test_00327920.jpg
+Places365_test_00327928.jpg
+Places365_test_00327932.jpg
+Places365_test_00327938.jpg
+Places365_test_00327950.jpg
+Places365_test_00327952.jpg
+Places365_test_00327955.jpg
+Places365_test_00327957.jpg
+Places365_test_00327958.jpg
+Places365_test_00327965.jpg
+Places365_test_00327969.jpg
+Places365_test_00327976.jpg
+Places365_test_00328002.jpg
+Places365_test_00328012.jpg
+Places365_test_00328014.jpg
+Places365_test_00328041.jpg
+Places365_test_00328065.jpg
+Places365_test_00328076.jpg
+Places365_test_00328104.jpg
+Places365_test_00328106.jpg
+Places365_test_00328122.jpg
+Places365_test_00328131.jpg
+Places365_test_00328152.jpg
+Places365_test_00328157.jpg
+Places365_test_00328161.jpg
+Places365_test_00328221.jpg
+Places365_test_00328230.jpg
+Places365_test_00328238.jpg
+Places365_test_00328241.jpg
+Places365_test_00328243.jpg
+Places365_test_00328256.jpg
+Places365_test_00328263.jpg
+Places365_test_00328295.jpg
+Places365_test_00328308.jpg
+Places365_test_00328316.jpg
+Places365_test_00328325.jpg
+Places365_test_00328326.jpg
+Places365_test_00328328.jpg
+Places365_test_00328334.jpg
+Places365_test_00328339.jpg
+Places365_test_00328342.jpg
+Places365_test_00328343.jpg
+Places365_test_00328344.jpg
+Places365_test_00328352.jpg
+Places365_test_00328354.jpg
+Places365_test_00328360.jpg
+Places365_test_00328369.jpg
+Places365_test_00328373.jpg
+Places365_test_00328389.jpg
+Places365_test_00328404.jpg
+Places365_test_00328424.jpg
+Places365_test_00328425.jpg
+Places365_test_00328466.jpg
+Places365_test_00328477.jpg
+Places365_test_00328482.jpg
+Places365_test_00328485.jpg
+Places365_test_00328486.jpg
+Places365_test_00328489.jpg
+Places365_test_00328499.jpg
diff --git a/configs/training/ablv2_work.yaml b/configs/training/ablv2_work.yaml
new file mode 100644
index 00000000..c2a2657a
--- /dev/null
+++ b/configs/training/ablv2_work.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: True
+ store_discr_outputs_for_vis: True
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: True
+ allow_scale_mask: True
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_ffc075.yaml b/configs/training/ablv2_work_ffc075.yaml
new file mode 100644
index 00000000..8bea26c5
--- /dev/null
+++ b/configs/training/ablv2_work_ffc075.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: True
+ store_discr_outputs_for_vis: True
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: True
+ allow_scale_mask: True
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - generator: ffc_resnet_075
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_md.yaml b/configs/training/ablv2_work_md.yaml
new file mode 100644
index 00000000..b8b86f09
--- /dev/null
+++ b/configs/training/ablv2_work_md.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: True
+ store_discr_outputs_for_vis: True
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: True
+ allow_scale_mask: True
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - generator: pix2pixhd_multidilated_catin_4dil_9b
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final_benchmark
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_no_fm.yaml b/configs/training/ablv2_work_no_fm.yaml
new file mode 100644
index 00000000..aac1c0cf
--- /dev/null
+++ b/configs/training/ablv2_work_no_fm.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: True
+ store_discr_outputs_for_vis: True
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: True
+ allow_scale_mask: True
+ feature_matching:
+ weight: 0
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: mlp-mow-final
+ - data: abl-04-256-mh-dist
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_no_segmpl.yaml b/configs/training/ablv2_work_no_segmpl.yaml
new file mode 100644
index 00000000..18b73e7f
--- /dev/null
+++ b/configs/training/ablv2_work_no_segmpl.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: True
+ store_discr_outputs_for_vis: True
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: True
+ allow_scale_mask: True
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 0
+# weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_no_segmpl_csdilirpl.yaml b/configs/training/ablv2_work_no_segmpl_csdilirpl.yaml
new file mode 100644
index 00000000..cb8075cf
--- /dev/null
+++ b/configs/training/ablv2_work_no_segmpl_csdilirpl.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: True
+ store_discr_outputs_for_vis: True
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: True
+ allow_scale_mask: True
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 1
+ segmentation: false
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final_benchmark
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_no_segmpl_csdilirpl_celeba_csdilirpl1_new.yaml b/configs/training/ablv2_work_no_segmpl_csdilirpl_celeba_csdilirpl1_new.yaml
new file mode 100644
index 00000000..26c6cac7
--- /dev/null
+++ b/configs/training/ablv2_work_no_segmpl_csdilirpl_celeba_csdilirpl1_new.yaml
@@ -0,0 +1,35 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ segm_pl:
+ weight: 1
+ imagenet_weights: true
+
+defaults:
+ - location: celeba
+ - data: abl-04-256-mh-dist-celeba
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final_celeba
+ - hydra: overrides
\ No newline at end of file
diff --git a/configs/training/ablv2_work_no_segmpl_csirpl.yaml b/configs/training/ablv2_work_no_segmpl_csirpl.yaml
new file mode 100644
index 00000000..da15b179
--- /dev/null
+++ b/configs/training/ablv2_work_no_segmpl_csirpl.yaml
@@ -0,0 +1,37 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: True
+ store_discr_outputs_for_vis: True
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: True
+ allow_scale_mask: True
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 0.3
+ arch_encoder: 'resnet50'
+ segmentation: false
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_no_segmpl_csirpl_celeba_csirpl03_new.yaml b/configs/training/ablv2_work_no_segmpl_csirpl_celeba_csirpl03_new.yaml
new file mode 100644
index 00000000..9061907c
--- /dev/null
+++ b/configs/training/ablv2_work_no_segmpl_csirpl_celeba_csirpl03_new.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ segm_pl:
+ weight: 0.3
+ arch_encoder: resnet50
+ imagenet_weights: true
+
+defaults:
+ - location: celeba
+ - data: abl-04-256-mh-dist-celeba
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final_celeba
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_no_segmpl_vgg.yaml b/configs/training/ablv2_work_no_segmpl_vgg.yaml
new file mode 100644
index 00000000..2019ce11
--- /dev/null
+++ b/configs/training/ablv2_work_no_segmpl_vgg.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: True
+ store_discr_outputs_for_vis: True
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0.03
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: True
+ allow_scale_mask: True
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 0
+# weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_no_segmpl_vgg_celeba_l2_vgg003_new.yaml b/configs/training/ablv2_work_no_segmpl_vgg_celeba_l2_vgg003_new.yaml
new file mode 100644
index 00000000..8ef6b5f8
--- /dev/null
+++ b/configs/training/ablv2_work_no_segmpl_vgg_celeba_l2_vgg003_new.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0.03
+ kwargs:
+ metric: l2
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ segm_pl:
+ weight: 0
+
+defaults:
+ - location: celeba
+ - data: abl-04-256-mh-dist-celeba
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final_celeba
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_nodil_segmpl.yaml b/configs/training/ablv2_work_nodil_segmpl.yaml
new file mode 100644
index 00000000..481e7bce
--- /dev/null
+++ b/configs/training/ablv2_work_nodil_segmpl.yaml
@@ -0,0 +1,37 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: True
+ store_discr_outputs_for_vis: True
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: True
+ allow_scale_mask: True
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ arch_encoder: resnet50
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
diff --git a/configs/training/ablv2_work_small_holes.yaml b/configs/training/ablv2_work_small_holes.yaml
new file mode 100644
index 00000000..8aa138bf
--- /dev/null
+++ b/configs/training/ablv2_work_small_holes.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: True
+ store_discr_outputs_for_vis: True
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: True
+ allow_scale_mask: True
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-02-thin-bb
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
diff --git a/configs/training/big-lama-celeba.yaml b/configs/training/big-lama-celeba.yaml
new file mode 100644
index 00000000..08320feb
--- /dev/null
+++ b/configs/training/big-lama-celeba.yaml
@@ -0,0 +1,55 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+generator:
+ kind: ffc_resnet
+ input_nc: 4
+ output_nc: 3
+ ngf: 64
+ n_downsampling: 3
+ n_blocks: 18
+ add_out_act: sigmoid
+ init_conv_kwargs:
+ ratio_gin: 0
+ ratio_gout: 0
+ enable_lfu: false
+ downsample_conv_kwargs:
+ ratio_gin: ${generator.init_conv_kwargs.ratio_gout}
+ ratio_gout: ${generator.downsample_conv_kwargs.ratio_gin}
+ enable_lfu: false
+ resnet_conv_kwargs:
+ ratio_gin: 0.75
+ ratio_gout: ${generator.resnet_conv_kwargs.ratio_gin}
+ enable_lfu: false
+
+defaults:
+ - location: celeba
+ - data: abl-04-256-mh-dist-celeba
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final_celeba
+ - hydra: overrides
diff --git a/configs/training/big-lama-regular-celeba.yaml b/configs/training/big-lama-regular-celeba.yaml
new file mode 100644
index 00000000..8f6c6de0
--- /dev/null
+++ b/configs/training/big-lama-regular-celeba.yaml
@@ -0,0 +1,45 @@
+run_title: ''
+
+generator:
+ kind: pix2pixhd_global
+ input_nc: 4
+ output_nc: 3
+ ngf: 64
+ n_downsampling: 3
+ n_blocks: 15
+ conv_kind: default
+ add_out_act: sigmoid
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: celeba
+ - data: abl-04-256-mh-dist-celeba
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final_celeba
+ - hydra: overrides
\ No newline at end of file
diff --git a/configs/training/big-lama-regular.yaml b/configs/training/big-lama-regular.yaml
new file mode 100644
index 00000000..d23c280f
--- /dev/null
+++ b/configs/training/big-lama-regular.yaml
@@ -0,0 +1,45 @@
+run_title: ''
+
+generator:
+ kind: pix2pixhd_global
+ input_nc: 4
+ output_nc: 3
+ ngf: 64
+ n_downsampling: 3
+ n_blocks: 15
+ conv_kind: default
+ add_out_act: sigmoid
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
\ No newline at end of file
diff --git a/configs/training/big-lama.yaml b/configs/training/big-lama.yaml
new file mode 100644
index 00000000..b04f809b
--- /dev/null
+++ b/configs/training/big-lama.yaml
@@ -0,0 +1,55 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+generator:
+ kind: ffc_resnet
+ input_nc: 4
+ output_nc: 3
+ ngf: 64
+ n_downsampling: 3
+ n_blocks: 18
+ add_out_act: sigmoid
+ init_conv_kwargs:
+ ratio_gin: 0
+ ratio_gout: 0
+ enable_lfu: false
+ downsample_conv_kwargs:
+ ratio_gin: ${generator.init_conv_kwargs.ratio_gout}
+ ratio_gout: ${generator.downsample_conv_kwargs.ratio_gin}
+ enable_lfu: false
+ resnet_conv_kwargs:
+ ratio_gin: 0.75
+ ratio_gout: ${generator.resnet_conv_kwargs.ratio_gin}
+ enable_lfu: false
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
diff --git a/configs/training/data/abl-02-thin-bb.yaml b/configs/training/data/abl-02-thin-bb.yaml
new file mode 100644
index 00000000..4506f7bf
--- /dev/null
+++ b/configs/training/data/abl-02-thin-bb.yaml
@@ -0,0 +1,115 @@
+# @package _group_
+
+# try to resemble mask generation of DeepFill v2
+# official tf version: https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py#L168
+# pytorch version: https://github.com/zhaoyuzhi/deepfillv2/blob/62dad2c601400e14d79f4d1e090c2effcb9bf3eb/deepfillv2/dataset.py#L40
+# another unofficial pytorch version: https://github.com/avalonstrel/GatedConvolution/blob/master/config/inpaint.yml
+# they are a bit different, official version has slightly larger masks
+
+batch_size: 10
+val_batch_size: 2
+num_workers: 3
+
+train:
+ indir: ${location.data_root_dir}/train
+ out_size: 256
+
+ mask_gen_kwargs: # probabilities do not need to sum to 1, they are re-normalized in mask generator
+ irregular_proba: 1
+ irregular_kwargs:
+ max_angle: 4
+ max_len: 80 # math.sqrt(H*H+W*W) / 8 + math.sqrt(H*H+W*W) / 16 https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py#L189
+ max_width: 40
+ max_times: 12
+ min_times: 4
+
+ box_proba: 1
+ box_kwargs:
+ margin: 0
+ bbox_min_size: 30
+ bbox_max_size: 128
+ max_times: 1
+ min_times: 1
+
+ segm_proba: 0 # not working yet due to RuntimeError: Cannot re-initialize CUDA in forked subprocess. To use CUDA with multiprocessing, you must use the 'spawn' start method
+
+ transform_variant: default
+ dataloader_kwargs:
+ batch_size: ${data.batch_size}
+ shuffle: True
+ num_workers: ${data.num_workers}
+
+val:
+ indir: ${location.data_root_dir}/val
+ img_suffix: .png
+ dataloader_kwargs:
+ batch_size: ${data.val_batch_size}
+ shuffle: False
+ num_workers: ${data.num_workers}
+
+#extra_val:
+# random_thin_256:
+# indir: ${location.data_root_dir}/extra_val/random_thin_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_medium_256:
+# indir: ${location.data_root_dir}/extra_val/random_medium_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_thick_256:
+# indir: ${location.data_root_dir}/extra_val/random_thick_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_thin_512:
+# indir: ${location.data_root_dir}/extra_val/random_thin_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_medium_512:
+# indir: ${location.data_root_dir}/extra_val/random_medium_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_thick_512:
+# indir: ${location.data_root_dir}/extra_val/random_thick_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# segm_256:
+# indir: ${location.data_root_dir}/extra_val/segm_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# segm_512:
+# indir: ${location.data_root_dir}/extra_val/segm_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+
+visual_test:
+ indir: ${location.data_root_dir}/visual_test
+ img_suffix: _input.png
+ pad_out_to_modulo: 32
+ dataloader_kwargs:
+ batch_size: 1
+ shuffle: False
+ num_workers: ${data.num_workers}
diff --git a/configs/training/data/abl-04-256-mh-dist-celeba.yaml b/configs/training/data/abl-04-256-mh-dist-celeba.yaml
new file mode 100644
index 00000000..d19cc76b
--- /dev/null
+++ b/configs/training/data/abl-04-256-mh-dist-celeba.yaml
@@ -0,0 +1,43 @@
+# @package _group_
+
+batch_size: 5
+val_batch_size: 3
+num_workers: 3
+
+train:
+ indir: ${location.data_root_dir}/train_256
+ out_size: 256
+ mask_gen_kwargs: # probabilities do not need to sum to 1, they are re-normalized in mask generator
+ irregular_proba: 1
+ irregular_kwargs:
+ max_angle: 4
+ max_len: 200
+ max_width: 100
+ max_times: 5
+ min_times: 1
+
+ box_proba: 1
+ box_kwargs:
+ margin: 10
+ bbox_min_size: 30
+ bbox_max_size: 150
+ max_times: 4
+ min_times: 1
+
+ segm_proba: 0
+
+ transform_variant: no_augs
+ dataloader_kwargs:
+ batch_size: ${data.batch_size}
+ shuffle: True
+ num_workers: ${data.num_workers}
+
+val:
+ indir: ${location.data_root_dir}/val_256
+ img_suffix: .png
+ dataloader_kwargs:
+ batch_size: ${data.val_batch_size}
+ shuffle: False
+ num_workers: ${data.num_workers}
+
+visual_test: null
diff --git a/configs/training/data/abl-04-256-mh-dist-web.yaml b/configs/training/data/abl-04-256-mh-dist-web.yaml
new file mode 100644
index 00000000..e8e29b3e
--- /dev/null
+++ b/configs/training/data/abl-04-256-mh-dist-web.yaml
@@ -0,0 +1,110 @@
+# @package _group_
+
+batch_size: 10
+val_batch_size: 2
+num_workers: 3
+
+train:
+ kind: default_web
+ shuffle_buffer: 200
+ indir: ${location.data_root_dir}/train_standard/part{00000..00039}.tar
+ out_size: 256
+ mask_gen_kwargs: # probabilities do not need to sum to 1, they are re-normalized in mask generator
+ irregular_proba: 1
+ irregular_kwargs:
+ max_angle: 4
+ max_len: 200
+ max_width: 100
+ max_times: 5
+ min_times: 1
+
+ box_proba: 1
+ box_kwargs:
+ margin: 10
+ bbox_min_size: 30
+ bbox_max_size: 150
+ max_times: 4
+ min_times: 1
+
+ segm_proba: 0
+
+ transform_variant: distortions
+ dataloader_kwargs:
+ batch_size: ${data.batch_size}
+ shuffle: True
+ num_workers: ${data.num_workers}
+
+val:
+ indir: ${location.data_root_dir}/val
+ img_suffix: .png
+ dataloader_kwargs:
+ batch_size: ${data.val_batch_size}
+ shuffle: False
+ num_workers: ${data.num_workers}
+
+#extra_val:
+# random_thin_256:
+# indir: ${location.data_root_dir}/final_extra_val/random_thin_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_medium_256:
+# indir: ${location.data_root_dir}/final_extra_val/random_medium_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_thick_256:
+# indir: ${location.data_root_dir}/final_extra_val/random_thick_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_thin_512:
+# indir: ${location.data_root_dir}/final_extra_val/random_thin_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_medium_512:
+# indir: ${location.data_root_dir}/final_extra_val/random_medium_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_thick_512:
+# indir: ${location.data_root_dir}/final_extra_val/random_thick_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# segm_256:
+# indir: ${location.data_root_dir}/final_extra_val/segm_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# segm_512:
+# indir: ${location.data_root_dir}/final_extra_val/segm_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+
+visual_test:
+ indir: ${location.data_root_dir}/visual_test
+ img_suffix: _input.png
+ pad_out_to_modulo: 32
+ dataloader_kwargs:
+ batch_size: 1
+ shuffle: False
+ num_workers: ${data.num_workers}
diff --git a/configs/training/data/abl-04-256-mh-dist.yaml b/configs/training/data/abl-04-256-mh-dist.yaml
new file mode 100644
index 00000000..203e6aa0
--- /dev/null
+++ b/configs/training/data/abl-04-256-mh-dist.yaml
@@ -0,0 +1,108 @@
+# @package _group_
+
+batch_size: 10
+val_batch_size: 2
+num_workers: 3
+
+train:
+ indir: ${location.data_root_dir}/train
+ out_size: 256
+ mask_gen_kwargs: # probabilities do not need to sum to 1, they are re-normalized in mask generator
+ irregular_proba: 1
+ irregular_kwargs:
+ max_angle: 4
+ max_len: 200
+ max_width: 100
+ max_times: 5
+ min_times: 1
+
+ box_proba: 1
+ box_kwargs:
+ margin: 10
+ bbox_min_size: 30
+ bbox_max_size: 150
+ max_times: 4
+ min_times: 1
+
+ segm_proba: 0
+
+ transform_variant: distortions
+ dataloader_kwargs:
+ batch_size: ${data.batch_size}
+ shuffle: True
+ num_workers: ${data.num_workers}
+
+val:
+ indir: ${location.data_root_dir}/val
+ img_suffix: .png
+ dataloader_kwargs:
+ batch_size: ${data.val_batch_size}
+ shuffle: False
+ num_workers: ${data.num_workers}
+
+#extra_val:
+# random_thin_256:
+# indir: ${location.data_root_dir}/extra_val/random_thin_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_medium_256:
+# indir: ${location.data_root_dir}/extra_val/random_medium_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_thick_256:
+# indir: ${location.data_root_dir}/extra_val/random_thick_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_thin_512:
+# indir: ${location.data_root_dir}/extra_val/random_thin_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_medium_512:
+# indir: ${location.data_root_dir}/extra_val/random_medium_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# random_thick_512:
+# indir: ${location.data_root_dir}/extra_val/random_thick_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# segm_256:
+# indir: ${location.data_root_dir}/extra_val/segm_256
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+# segm_512:
+# indir: ${location.data_root_dir}/extra_val/segm_512
+# img_suffix: .png
+# dataloader_kwargs:
+# batch_size: ${data.val_batch_size}
+# shuffle: False
+# num_workers: ${data.num_workers}
+
+visual_test:
+ indir: ${location.data_root_dir}/visual_test
+ img_suffix: .png
+ pad_out_to_modulo: 32
+ dataloader_kwargs:
+ batch_size: 1
+ shuffle: False
+ num_workers: ${data.num_workers}
diff --git a/configs/training/discriminator/pix2pixhd_nlayer.yaml b/configs/training/discriminator/pix2pixhd_nlayer.yaml
new file mode 100644
index 00000000..df20421c
--- /dev/null
+++ b/configs/training/discriminator/pix2pixhd_nlayer.yaml
@@ -0,0 +1,5 @@
+# @package _group_
+kind: pix2pixhd_nlayer
+input_nc: 3
+ndf: 64
+n_layers: 4
diff --git a/configs/training/evaluator/default_inpainted.yaml b/configs/training/evaluator/default_inpainted.yaml
new file mode 100644
index 00000000..33bede1b
--- /dev/null
+++ b/configs/training/evaluator/default_inpainted.yaml
@@ -0,0 +1,4 @@
+# @package _group_
+kind: default
+inpainted_key: inpainted # if you want to evaluate before blending with original image by mask, set predicted_image
+integral_kind: ssim_fid100_f1
diff --git a/configs/training/generator/ffc_resnet_075.yaml b/configs/training/generator/ffc_resnet_075.yaml
new file mode 100644
index 00000000..0bac88f9
--- /dev/null
+++ b/configs/training/generator/ffc_resnet_075.yaml
@@ -0,0 +1,23 @@
+# @package _group_
+kind: ffc_resnet
+input_nc: 4
+output_nc: 3
+ngf: 64
+n_downsampling: 3
+n_blocks: 9
+add_out_act: sigmoid
+
+init_conv_kwargs:
+ ratio_gin: 0
+ ratio_gout: 0
+ enable_lfu: False
+
+downsample_conv_kwargs:
+ ratio_gin: ${generator.init_conv_kwargs.ratio_gout}
+ ratio_gout: ${generator.downsample_conv_kwargs.ratio_gin}
+ enable_lfu: False
+
+resnet_conv_kwargs:
+ ratio_gin: 0.75
+ ratio_gout: ${generator.resnet_conv_kwargs.ratio_gin}
+ enable_lfu: False
diff --git a/configs/training/generator/pix2pixhd_global.yaml b/configs/training/generator/pix2pixhd_global.yaml
new file mode 100644
index 00000000..fc3deb98
--- /dev/null
+++ b/configs/training/generator/pix2pixhd_global.yaml
@@ -0,0 +1,8 @@
+# @package _group_
+kind: pix2pixhd_global
+input_nc: 4
+output_nc: 3
+ngf: 64
+n_downsampling: 3
+n_blocks: 9
+conv_kind: default
\ No newline at end of file
diff --git a/configs/training/generator/pix2pixhd_global_sigmoid.yaml b/configs/training/generator/pix2pixhd_global_sigmoid.yaml
new file mode 100644
index 00000000..5a4f007e
--- /dev/null
+++ b/configs/training/generator/pix2pixhd_global_sigmoid.yaml
@@ -0,0 +1,9 @@
+# @package _group_
+kind: pix2pixhd_global
+input_nc: 4
+output_nc: 3
+ngf: 64
+n_downsampling: 3
+n_blocks: 9
+conv_kind: default
+add_out_act: sigmoid
diff --git a/configs/training/generator/pix2pixhd_multidilated_catin_4dil_9b.yaml b/configs/training/generator/pix2pixhd_multidilated_catin_4dil_9b.yaml
new file mode 100644
index 00000000..28d10a56
--- /dev/null
+++ b/configs/training/generator/pix2pixhd_multidilated_catin_4dil_9b.yaml
@@ -0,0 +1,12 @@
+# @package _group_
+kind: pix2pixhd_multidilated
+input_nc: 4
+output_nc: 3
+ngf: 64
+n_downsampling: 3
+n_blocks: 9
+conv_kind: default
+add_out_act: sigmoid
+multidilation_kwargs:
+ comb_mode: cat_in
+ dilation_num: 4
diff --git a/configs/training/hydra/no_time.yaml b/configs/training/hydra/no_time.yaml
new file mode 100644
index 00000000..37ed30d3
--- /dev/null
+++ b/configs/training/hydra/no_time.yaml
@@ -0,0 +1,6 @@
+# @package _group_
+run:
+ dir: ${location.out_root_dir}/${env:USER}_${hydra:job.name}_${hydra:job.config_name}_${run_title}
+sweep:
+ dir: ${hydra:run.dir}_sweep
+ subdir: ${hydra.job.num}
diff --git a/configs/training/hydra/overrides.yaml b/configs/training/hydra/overrides.yaml
new file mode 100644
index 00000000..3e9e53f2
--- /dev/null
+++ b/configs/training/hydra/overrides.yaml
@@ -0,0 +1,6 @@
+# @package _group_
+run:
+ dir: ${location.out_root_dir}/${env:USER}_${now:%Y-%m-%d_%H-%M-%S}_${hydra:job.name}_${hydra:job.config_name}_${run_title}
+sweep:
+ dir: ${hydra:run.dir}_sweep
+ subdir: ${hydra.job.num}
diff --git a/configs/training/lama-fourier-celeba.yaml b/configs/training/lama-fourier-celeba.yaml
new file mode 100644
index 00000000..63e56248
--- /dev/null
+++ b/configs/training/lama-fourier-celeba.yaml
@@ -0,0 +1,35 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: celeba
+ - data: abl-04-256-mh-dist-celeba
+ - generator: ffc_resnet_075
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final_celeba
+ - hydra: overrides
\ No newline at end of file
diff --git a/configs/training/lama-fourier.yaml b/configs/training/lama-fourier.yaml
new file mode 100644
index 00000000..0c8d3a92
--- /dev/null
+++ b/configs/training/lama-fourier.yaml
@@ -0,0 +1,35 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - generator: ffc_resnet_075
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
\ No newline at end of file
diff --git a/configs/training/lama-regular-celeba.yaml b/configs/training/lama-regular-celeba.yaml
new file mode 100644
index 00000000..dd13ecc9
--- /dev/null
+++ b/configs/training/lama-regular-celeba.yaml
@@ -0,0 +1,35 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: celeba
+ - data: abl-04-256-mh-dist-celeba
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final_celeba
+ - hydra: overrides
diff --git a/configs/training/lama-regular.yaml b/configs/training/lama-regular.yaml
new file mode 100644
index 00000000..0412c4aa
--- /dev/null
+++ b/configs/training/lama-regular.yaml
@@ -0,0 +1,35 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-04-256-mh-dist
+ - generator: pix2pixhd_global_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
diff --git a/configs/training/lama_small_train_masks.yaml b/configs/training/lama_small_train_masks.yaml
new file mode 100644
index 00000000..bf15faa5
--- /dev/null
+++ b/configs/training/lama_small_train_masks.yaml
@@ -0,0 +1,36 @@
+run_title: ''
+
+training_model:
+ kind: default
+ visualize_each_iters: 1000
+ concat_mask: true
+ store_discr_outputs_for_vis: true
+
+losses:
+ l1:
+ weight_missing: 0
+ weight_known: 10
+ perceptual:
+ weight: 0
+ adversarial:
+ kind: r1
+ weight: 10
+ gp_coef: 0.001
+ mask_as_fake_target: true
+ allow_scale_mask: true
+ feature_matching:
+ weight: 100
+ resnet_pl:
+ weight: 30
+ weights_path: ${env:TORCH_HOME}
+
+defaults:
+ - location: docker
+ - data: abl-02-thin-bb
+ - generator: pix2pixhd_sigmoid
+ - discriminator: pix2pixhd_nlayer
+ - optimizers: default_optimizers
+ - visualizer: directory
+ - evaluator: default_inpainted
+ - trainer: any_gpu_large_ssim_ddp_final
+ - hydra: overrides
\ No newline at end of file
diff --git a/configs/training/location/celeba_example.yaml b/configs/training/location/celeba_example.yaml
new file mode 100644
index 00000000..117fe8a9
--- /dev/null
+++ b/configs/training/location/celeba_example.yaml
@@ -0,0 +1,5 @@
+# @package _group_
+data_root_dir: /home/user/lama/celeba-hq-dataset/
+out_root_dir: /home/user/lama/experiments/
+tb_dir: /home/user/lama/tb_logs/
+pretrained_models: /home/user/lama/
diff --git a/configs/training/location/docker.yaml b/configs/training/location/docker.yaml
new file mode 100644
index 00000000..5da6a4a4
--- /dev/null
+++ b/configs/training/location/docker.yaml
@@ -0,0 +1,5 @@
+# @package _group_
+data_root_dir: /data/data
+out_root_dir: /data/experiments
+tb_dir: /data/tb_logs
+pretrained_models: /some_path
diff --git a/configs/training/location/places_example.yaml b/configs/training/location/places_example.yaml
new file mode 100644
index 00000000..97a9f9b5
--- /dev/null
+++ b/configs/training/location/places_example.yaml
@@ -0,0 +1,5 @@
+# @package _group_
+data_root_dir: /home/user/inpainting-lama/places_standard_dataset/
+out_root_dir: /home/user/inpainting-lama/experiments
+tb_dir: /home/user/inpainting-lama/tb_logs
+pretrained_models: /home/user/inpainting-lama/
diff --git a/configs/training/optimizers/default_optimizers.yaml b/configs/training/optimizers/default_optimizers.yaml
new file mode 100644
index 00000000..29827fd4
--- /dev/null
+++ b/configs/training/optimizers/default_optimizers.yaml
@@ -0,0 +1,7 @@
+optimizers:
+ generator:
+ kind: adam
+ lr: 0.001
+ discriminator:
+ kind: adam
+ lr: 0.0001
diff --git a/configs/training/trainer/any_gpu_large_ssim_ddp_final.yaml b/configs/training/trainer/any_gpu_large_ssim_ddp_final.yaml
new file mode 100644
index 00000000..5da9ed3f
--- /dev/null
+++ b/configs/training/trainer/any_gpu_large_ssim_ddp_final.yaml
@@ -0,0 +1,31 @@
+# @package _group_
+kwargs:
+ gpus: -1
+ accelerator: ddp
+ max_epochs: 40
+ gradient_clip_val: 1
+ log_gpu_memory: None # set to min_max or all for debug
+ limit_train_batches: 25000
+ val_check_interval: ${trainer.kwargs.limit_train_batches}
+ # fast_dev_run: True # uncomment for faster debug
+ # track_grad_norm: 2 # uncomment to track L2 gradients norm
+ log_every_n_steps: 250
+ precision: 32
+# precision: 16
+# amp_backend: native
+# amp_level: O1
+ # resume_from_checkpoint: path # override via command line trainer.resume_from_checkpoint=path_to_checkpoint
+ terminate_on_nan: False
+ # auto_scale_batch_size: True # uncomment to find largest batch size
+ check_val_every_n_epoch: 1
+ num_sanity_val_steps: 8
+# limit_val_batches: 1000000
+ replace_sampler_ddp: False
+
+checkpoint_kwargs:
+ verbose: True
+ save_top_k: 5
+ save_last: True
+ period: 1
+ monitor: val_ssim_fid100_f1_total_mean
+ mode: max
\ No newline at end of file
diff --git a/configs/training/trainer/any_gpu_large_ssim_ddp_final_benchmark.yaml b/configs/training/trainer/any_gpu_large_ssim_ddp_final_benchmark.yaml
new file mode 100644
index 00000000..cd72e41f
--- /dev/null
+++ b/configs/training/trainer/any_gpu_large_ssim_ddp_final_benchmark.yaml
@@ -0,0 +1,32 @@
+# @package _group_
+kwargs:
+ gpus: -1
+ accelerator: ddp
+ max_epochs: 40
+ gradient_clip_val: 1
+ log_gpu_memory: None # set to min_max or all for debug
+ limit_train_batches: 25000
+ val_check_interval: ${trainer.kwargs.limit_train_batches}
+ # fast_dev_run: True # uncomment for faster debug
+ # track_grad_norm: 2 # uncomment to track L2 gradients norm
+ log_every_n_steps: 250
+ precision: 32
+# precision: 16
+# amp_backend: native
+# amp_level: O1
+ # resume_from_checkpoint: path # override via command line trainer.resume_from_checkpoint=path_to_checkpoint
+ terminate_on_nan: False
+ # auto_scale_batch_size: True # uncomment to find largest batch size
+ check_val_every_n_epoch: 1
+ num_sanity_val_steps: 8
+# limit_val_batches: 1000000
+ replace_sampler_ddp: False
+ benchmark: True
+
+checkpoint_kwargs:
+ verbose: True
+ save_top_k: 5
+ save_last: True
+ period: 1
+ monitor: val_ssim_fid100_f1_total_mean
+ mode: max
diff --git a/configs/training/trainer/any_gpu_large_ssim_ddp_final_celeba.yaml b/configs/training/trainer/any_gpu_large_ssim_ddp_final_celeba.yaml
new file mode 100644
index 00000000..c175d006
--- /dev/null
+++ b/configs/training/trainer/any_gpu_large_ssim_ddp_final_celeba.yaml
@@ -0,0 +1,22 @@
+# @package _group_
+kwargs:
+ gpus: -1
+ accelerator: ddp
+ max_epochs: 40
+ gradient_clip_val: 1
+ log_gpu_memory: None
+ limit_train_batches: 25000
+ val_check_interval: 2600
+ log_every_n_steps: 250
+ precision: 32
+ terminate_on_nan: False
+ check_val_every_n_epoch: 1
+ num_sanity_val_steps: 8
+ replace_sampler_ddp: False
+checkpoint_kwargs:
+ verbose: True
+ save_top_k: 5
+ save_last: True
+ period: 1
+ monitor: val_ssim_fid100_f1_total_mean
+ mode: max
\ No newline at end of file
diff --git a/configs/training/visualizer/directory.yaml b/configs/training/visualizer/directory.yaml
new file mode 100644
index 00000000..ff1880d4
--- /dev/null
+++ b/configs/training/visualizer/directory.yaml
@@ -0,0 +1,12 @@
+# @package _group_
+kind: directory
+outdir: samples
+key_order:
+ - image
+ - predicted_image
+ - discr_output_fake
+ - discr_output_real
+ - inpainted
+rescale_keys:
+ - discr_output_fake
+ - discr_output_real
diff --git a/docker/1_generate_masks_from_raw_images.sh b/docker/1_generate_masks_from_raw_images.sh
new file mode 100755
index 00000000..04b780e6
--- /dev/null
+++ b/docker/1_generate_masks_from_raw_images.sh
@@ -0,0 +1,31 @@
+#!/usr/bin/env bash
+
+
+if (( $# < 3 ))
+then
+ echo "Usage: $0 config_name input_images_dir image_mask_dataset_out_dir [other args to gen_mask_dataset.py]"
+ exit 1
+fi
+
+CURDIR="$(dirname $0)"
+SRCDIR="$CURDIR/.."
+SRCDIR="$(realpath $SRCDIR)"
+
+CONFIG_LOCAL_PATH="$(realpath $1)"
+INPUT_LOCAL_DIR="$(realpath $2)"
+OUTPUT_LOCAL_DIR="$(realpath $3)"
+shift 3
+
+mkdir -p "$OUTPUT_LOCAL_DIR"
+
+docker run \
+ -v "$SRCDIR":/home/user/project \
+ -v "$CONFIG_LOCAL_PATH":/data/config.yaml \
+ -v "$INPUT_LOCAL_DIR":/data/input \
+ -v "$OUTPUT_LOCAL_DIR":/data/output \
+ -u $(id -u):$(id -g) \
+ --name="lama-mask-gen" \
+ --rm \
+ windj007/lama \
+ /home/user/project/bin/gen_mask_dataset.py \
+ /data/config.yaml /data/input /data/output $@
diff --git a/docker/2_predict.sh b/docker/2_predict.sh
new file mode 100755
index 00000000..8af4ac04
--- /dev/null
+++ b/docker/2_predict.sh
@@ -0,0 +1,35 @@
+#!/usr/bin/env bash
+
+
+if (( $# < 3 ))
+then
+ echo "Usage: $0 model_dir input_dir output_dir [other arguments to predict.py]"
+ exit 1
+fi
+
+CURDIR="$(dirname $0)"
+SRCDIR="$CURDIR/.."
+SRCDIR="$(realpath $SRCDIR)"
+
+MODEL_LOCAL_DIR="$(realpath $1)"
+INPUT_LOCAL_DIR="$(realpath $2)"
+OUTPUT_LOCAL_DIR="$(realpath $3)"
+shift 3
+
+mkdir -p "$OUTPUT_LOCAL_DIR"
+
+docker run \
+ -v "$SRCDIR":/home/user/project \
+ -v "$MODEL_LOCAL_DIR":/data/checkpoint \
+ -v "$INPUT_LOCAL_DIR":/data/input \
+ -v "$OUTPUT_LOCAL_DIR":/data/output \
+ -u $(id -u):$(id -g) \
+ --name="lama-predict" \
+ --rm \
+ windj007/lama \
+ /home/user/project/bin/predict.py \
+ model.path=/data/checkpoint \
+ indir=/data/input \
+ outdir=/data/output \
+ dataset.img_suffix=.png \
+ $@
diff --git a/docker/3_evaluate.sh b/docker/3_evaluate.sh
new file mode 100755
index 00000000..d01e0a39
--- /dev/null
+++ b/docker/3_evaluate.sh
@@ -0,0 +1,35 @@
+#!/usr/bin/env bash
+
+
+if (( $# < 3 ))
+then
+ echo "Usage: $0 original_dataset_dir predictions_dir output_dir [other arguments to evaluate_predicts.py]"
+ exit 1
+fi
+
+CURDIR="$(dirname $0)"
+SRCDIR="$CURDIR/.."
+SRCDIR="$(realpath $SRCDIR)"
+
+ORIG_DATASET_LOCAL_DIR="$(realpath $1)"
+PREDICTIONS_LOCAL_DIR="$(realpath $2)"
+OUTPUT_LOCAL_DIR="$(realpath $3)"
+shift 3
+
+mkdir -p "$OUTPUT_LOCAL_DIR"
+
+docker run \
+ -v "$SRCDIR":/home/user/project \
+ -v "$ORIG_DATASET_LOCAL_DIR":/data/orig_dataset \
+ -v "$PREDICTIONS_LOCAL_DIR":/data/predictions \
+ -v "$OUTPUT_LOCAL_DIR":/data/output \
+ -u $(id -u):$(id -g) \
+ --name="lama-eval" \
+ --rm \
+ windj007/lama \
+ /home/user/project/bin/evaluate_predicts.py \
+ /home/user/project/configs/eval2_cpu.yaml \
+ /data/orig_dataset \
+ /data/predictions \
+ /data/output/metrics.yaml \
+ $@
diff --git a/docker/Dockerfile b/docker/Dockerfile
new file mode 100644
index 00000000..bc8d0238
--- /dev/null
+++ b/docker/Dockerfile
@@ -0,0 +1,38 @@
+FROM nvidia/cuda:10.2-runtime-ubuntu18.04
+
+RUN apt-get update && \
+ apt-get upgrade -y && \
+ apt-get install -y wget mc tmux nano build-essential rsync
+
+ARG USERNAME=user
+RUN apt-get install -y sudo && \
+ addgroup --gid 1000 $USERNAME && \
+ adduser --uid 1000 --gid 1000 --disabled-password --gecos '' $USERNAME && \
+ adduser $USERNAME sudo && \
+ echo '%sudo ALL=(ALL) NOPASSWD:ALL' >> /etc/sudoers && \
+ USER=$USERNAME && \
+ GROUP=$USERNAME
+
+USER $USERNAME:$USERNAME
+WORKDIR "/home/$USERNAME"
+ENV PATH="/home/$USERNAME/miniconda3/bin:/home/$USERNAME/.local/bin:${PATH}"
+ENV PYTHONPATH="/home/$USERNAME/project"
+
+RUN wget -O /tmp/miniconda.sh https://repo.anaconda.com/miniconda/Miniconda3-py39_4.9.2-Linux-x86_64.sh && \
+ echo "536817d1b14cb1ada88900f5be51ce0a5e042bae178b5550e62f61e223deae7c /tmp/miniconda.sh" > /tmp/miniconda.sh.sha256 && \
+ sha256sum --check --status < /tmp/miniconda.sh.sha256 && \
+ bash /tmp/miniconda.sh -bt -p "/home/$USERNAME/miniconda3" && \
+ rm /tmp/miniconda.sh && \
+ conda build purge && \
+ conda init
+
+RUN pip install -U pip
+RUN pip install numpy scipy torch==1.8.1 torchvision opencv-python tensorflow joblib matplotlib pandas \
+ albumentations==0.5.2 pytorch-lightning==1.2.9 tabulate easydict==1.9.0 kornia==0.5.0 webdataset \
+ packaging gpustat tqdm pyyaml hydra-core==1.1.0.dev6 scikit-learn==0.24.2 tabulate
+RUN pip install scikit-image==0.17.2
+
+ENV TORCH_HOME="/home/$USERNAME/.torch"
+
+ADD entrypoint.sh /home/$USERNAME/.local/bin/entrypoint.sh
+ENTRYPOINT [ "entrypoint.sh" ]
diff --git a/docker/build.sh b/docker/build.sh
new file mode 100755
index 00000000..12435a49
--- /dev/null
+++ b/docker/build.sh
@@ -0,0 +1,3 @@
+#!/bin/bash
+
+docker build -t windj007/lama .
diff --git a/docker/entrypoint.sh b/docker/entrypoint.sh
new file mode 100755
index 00000000..1b565af1
--- /dev/null
+++ b/docker/entrypoint.sh
@@ -0,0 +1,3 @@
+#!/bin/bash
+
+exec $@
diff --git a/fetch_data/celebahq_dataset_prepare.sh b/fetch_data/celebahq_dataset_prepare.sh
new file mode 100644
index 00000000..6d2ba9a6
--- /dev/null
+++ b/fetch_data/celebahq_dataset_prepare.sh
@@ -0,0 +1,37 @@
+mkdir celeba-hq-dataset
+
+unzip data256x256.zip -d celeba-hq-dataset/
+
+# Reindex
+for i in `echo {00001..30000}`
+do
+ mv 'celeba-hq-dataset/data256x256/'$i'.jpg' 'celeba-hq-dataset/data256x256/'$[10#$i - 1]'.jpg'
+done
+
+
+# Split: split train -> train & val
+cat fetch_data/train_shuffled.flist | shuf > celeba-hq-dataset/temp_train_shuffled.flist
+cat celeba-hq-dataset/temp_train_shuffled.flist | head -n 2000 > celeba-hq-dataset/val_shuffled.flist
+cat celeba-hq-dataset/temp_train_shuffled.flist | tail -n +2001 > celeba-hq-dataset/train_shuffled.flist
+cat fetch_data/val_shuffled.flist > celeba-hq-dataset/visual_test_shuffled.flist
+
+mkdir celeba-hq-dataset/train_256/
+mkdir celeba-hq-dataset/val_source_256/
+mkdir celeba-hq-dataset/visual_test_source_256/
+
+cat celeba-hq-dataset/train_shuffled.flist | xargs -I {} mv celeba-hq-dataset/data256x256/{} celeba-hq-dataset/train_256/
+cat celeba-hq-dataset/val_shuffled.flist | xargs -I {} mv celeba-hq-dataset/data256x256/{} celeba-hq-dataset/val_source_256/
+cat celeba-hq-dataset/visual_test_shuffled.flist | xargs -I {} mv celeba-hq-dataset/data256x256/{} celeba-hq-dataset/visual_test_source_256/
+
+
+# create location config celeba.yaml
+PWD=$(pwd)
+DATASET=${PWD}/celeba-hq-dataset
+CELEBA=${PWD}/configs/training/location/celeba.yaml
+
+touch $CELEBA
+echo "# @package _group_" >> $CELEBA
+echo "data_root_dir: ${DATASET}/" >> $CELEBA
+echo "out_root_dir: ${PWD}/experiments/" >> $CELEBA
+echo "tb_dir: ${PWD}/tb_logs/" >> $CELEBA
+echo "pretrained_models: ${PWD}/" >> $CELEBA
diff --git a/fetch_data/celebahq_gen_masks.sh b/fetch_data/celebahq_gen_masks.sh
new file mode 100644
index 00000000..190ccfd5
--- /dev/null
+++ b/fetch_data/celebahq_gen_masks.sh
@@ -0,0 +1,29 @@
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_thick_256.yaml \
+celeba-hq-dataset/val_source_256/ \
+celeba-hq-dataset/val_256/random_thick_256/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_thin_256.yaml \
+celeba-hq-dataset/val_source_256/ \
+celeba-hq-dataset/val_256/random_thin_256/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_medium_256.yaml \
+celeba-hq-dataset/val_source_256/ \
+celeba-hq-dataset/val_256/random_medium_256/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_thick_256.yaml \
+celeba-hq-dataset/visual_test_source_256/ \
+celeba-hq-dataset/visual_test_256/random_thick_256/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_thin_256.yaml \
+celeba-hq-dataset/visual_test_source_256/ \
+celeba-hq-dataset/visual_test_256/random_thin_256/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_medium_256.yaml \
+celeba-hq-dataset/visual_test_source_256/ \
+celeba-hq-dataset/visual_test_256/random_medium_256/
diff --git a/fetch_data/eval_sampler.py b/fetch_data/eval_sampler.py
new file mode 100644
index 00000000..bf2d70d8
--- /dev/null
+++ b/fetch_data/eval_sampler.py
@@ -0,0 +1,21 @@
+import os
+import random
+
+
+val_files_path = os.path.abspath('.') + '/places_standard_dataset/original/val/'
+val_files = [val_files_path + image for image in os.listdir(val_files_path)]
+
+print(f'found {len(val_files)} images in {val_files_path}')
+
+random.shuffle(val_files)
+val_files_random = val_files[0:2000]
+
+list_of_random_val_files = os.path.abspath('.') \
++ '/places_standard_dataset/original/eval_random_files.txt'
+
+print(f'copying 2000 random images to {list_of_random_val_files}')
+with open(list_of_random_val_files, 'w') as fw:
+ for filename in val_files_random:
+ fw.write(filename+'\n')
+print('...done')
+
diff --git a/fetch_data/places_challenge_train_download.sh b/fetch_data/places_challenge_train_download.sh
new file mode 100755
index 00000000..f5317b44
--- /dev/null
+++ b/fetch_data/places_challenge_train_download.sh
@@ -0,0 +1,14 @@
+mkdir places_challenge_dataset
+
+
+declare -a TARPARTS
+for i in {a..z}
+do
+ TARPARTS[${#TARPARTS[@]}]="http://data.csail.mit.edu/places/places365/train_large_split/${i}.tar"
+done
+ls
+printf "%s\n" "${TARPARTS[@]}" > places_challenge_dataset/places365_train.txt
+
+cd places_challenge_dataset/
+xargs -a places365_train.txt -n 1 -P 8 wget [...]
+ls *.tar | xargs -i tar xvf {}
diff --git a/fetch_data/places_standard_evaluation_prepare_data.sh b/fetch_data/places_standard_evaluation_prepare_data.sh
new file mode 100755
index 00000000..15d753cc
--- /dev/null
+++ b/fetch_data/places_standard_evaluation_prepare_data.sh
@@ -0,0 +1,52 @@
+# 0. folder preparation
+mkdir -p places_standard_dataset/evaluation/hires/
+mkdir -p places_standard_dataset/evaluation/random_thick_512/
+mkdir -p places_standard_dataset/evaluation/random_thin_512/
+mkdir -p places_standard_dataset/evaluation/random_medium_512/
+mkdir -p places_standard_dataset/evaluation/random_thick_256/
+mkdir -p places_standard_dataset/evaluation/random_thin_256/
+mkdir -p places_standard_dataset/evaluation/random_medium_256/
+
+# 1. sample 2000 new images
+OUT=$(python3 fetch_data/eval_sampler.py)
+echo ${OUT}
+
+FILELIST=$(cat places_standard_dataset/original/eval_random_files.txt)
+for i in $FILELIST
+do
+ $(cp ${i} places_standard_dataset/evaluation/hires/)
+done
+
+
+# 2. generate all kinds of masks
+
+# all 512
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_thick_512.yaml \
+places_standard_dataset/evaluation/hires \
+places_standard_dataset/evaluation/random_thick_512/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_thin_512.yaml \
+places_standard_dataset/evaluation/hires \
+places_standard_dataset/evaluation/random_thin_512/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_medium_512.yaml \
+places_standard_dataset/evaluation/hires \
+places_standard_dataset/evaluation/random_medium_512/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_thick_256.yaml \
+places_standard_dataset/evaluation/hires \
+places_standard_dataset/evaluation/random_thick_256/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_thin_256.yaml \
+places_standard_dataset/evaluation/hires \
+places_standard_dataset/evaluation/random_thin_256/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_medium_256.yaml \
+places_standard_dataset/evaluation/hires \
+places_standard_dataset/evaluation/random_medium_256/
diff --git a/fetch_data/places_standard_test_val_gen_masks.sh b/fetch_data/places_standard_test_val_gen_masks.sh
new file mode 100755
index 00000000..46547797
--- /dev/null
+++ b/fetch_data/places_standard_test_val_gen_masks.sh
@@ -0,0 +1,13 @@
+mkdir -p places_standard_dataset/val/
+mkdir -p places_standard_dataset/visual_test/
+
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_thick_512.yaml \
+places_standard_dataset/val_hires/ \
+places_standard_dataset/val/
+
+python3 bin/gen_mask_dataset.py \
+$(pwd)/configs/data_gen/random_thick_512.yaml \
+places_standard_dataset/visual_test_hires/ \
+places_standard_dataset/visual_test/
\ No newline at end of file
diff --git a/fetch_data/places_standard_test_val_prepare.sh b/fetch_data/places_standard_test_val_prepare.sh
new file mode 100755
index 00000000..c0aa1500
--- /dev/null
+++ b/fetch_data/places_standard_test_val_prepare.sh
@@ -0,0 +1,5 @@
+mkdir -p places_standard_dataset/original/test/
+tar -xvf test_large.tar -C places_standard_dataset/original/test/
+
+mkdir -p places_standard_dataset/original/val/
+tar -xvf val_large.tar -C places_standard_dataset/original/val/
diff --git a/fetch_data/places_standard_test_val_sample.sh b/fetch_data/places_standard_test_val_sample.sh
new file mode 100755
index 00000000..7b581f45
--- /dev/null
+++ b/fetch_data/places_standard_test_val_sample.sh
@@ -0,0 +1,22 @@
+mkdir -p places_standard_dataset/val_hires/
+mkdir -p places_standard_dataset/visual_test_hires/
+
+
+# randomly sample images for test and vis
+OUT=$(python3 fetch_data/sampler.py)
+echo ${OUT}
+
+FILELIST=$(cat places_standard_dataset/original/test_random_files.txt)
+
+for i in $FILELIST
+do
+ $(cp ${i} places_standard_dataset/val_hires/)
+done
+
+FILELIST=$(cat places_standard_dataset/original/val_random_files.txt)
+
+for i in $FILELIST
+do
+ $(cp ${i} places_standard_dataset/visual_test_hires/)
+done
+
diff --git a/fetch_data/places_standard_train_prepare.sh b/fetch_data/places_standard_train_prepare.sh
new file mode 100644
index 00000000..aaf42924
--- /dev/null
+++ b/fetch_data/places_standard_train_prepare.sh
@@ -0,0 +1,16 @@
+mkdir -p places_standard_dataset/train
+
+# untar without folder structure
+tar -xvf train_large_places365standard.tar -C places_standard_dataset/train
+
+# create location config places.yaml
+PWD=$(pwd)
+DATASET=${PWD}/places_standard_dataset
+PLACES=${PWD}/configs/training/location/places_standard.yaml
+
+touch $PLACES
+echo "# @package _group_" >> $PLACES
+echo "data_root_dir: ${DATASET}/" >> $PLACES
+echo "out_root_dir: ${PWD}/experiments/" >> $PLACES
+echo "tb_dir: ${PWD}/tb_logs/" >> $PLACES
+echo "pretrained_models: ${PWD}/" >> $PLACES
diff --git a/fetch_data/sampler.py b/fetch_data/sampler.py
new file mode 100644
index 00000000..19a4973a
--- /dev/null
+++ b/fetch_data/sampler.py
@@ -0,0 +1,39 @@
+import os
+import random
+
+test_files_path = os.path.abspath('.') + '/places_standard_dataset/original/test/'
+test_files = [test_files_path + image for image in os.listdir(test_files_path)]
+print(f'found {len(test_files)} images in {test_files_path}')
+
+random.shuffle(test_files)
+test_files_random = test_files[0:2000]
+#print(test_files_random[0:10])
+
+list_of_random_test_files = os.path.abspath('.') \
++ '/places_standard_dataset/original/test_random_files.txt'
+
+print(f'copying 100 random images to {list_of_random_test_files}')
+with open(list_of_random_test_files, 'w') as fw:
+ for filename in test_files_random:
+ fw.write(filename+'\n')
+print('...done')
+
+# ----------------------------------------------------------------------------------
+
+
+val_files_path = os.path.abspath('.') + '/places_standard_dataset/original/val/val_large/'
+val_files = [val_files_path + image for image in os.listdir(val_files_path)]
+print(f'found {len(val_files)} images in {val_files_path}')
+
+random.shuffle(val_files)
+val_files_random = val_files[0:100]
+
+list_of_random_val_files = os.path.abspath('.') \
++ '/places_standard_dataset/original/val_random_files.txt'
+
+print(f'copying 100 random images to {list_of_random_val_files}')
+with open(list_of_random_val_files, 'w') as fw:
+ for filename in val_files_random:
+ fw.write(filename+'\n')
+print('...done')
+
diff --git a/fetch_data/train_shuffled.flist b/fetch_data/train_shuffled.flist
new file mode 100644
index 00000000..240211cb
--- /dev/null
+++ b/fetch_data/train_shuffled.flist
@@ -0,0 +1,28000 @@
+27049.jpg
+17547.jpg
+23248.jpg
+29613.jpg
+7055.jpg
+21404.jpg
+8928.jpg
+3579.jpg
+10811.jpg
+14556.jpg
+15131.jpg
+15634.jpg
+15805.jpg
+1043.jpg
+22433.jpg
+14652.jpg
+15942.jpg
+16587.jpg
+7641.jpg
+4943.jpg
+26975.jpg
+15746.jpg
+5382.jpg
+23459.jpg
+24104.jpg
+6964.jpg
+12555.jpg
+11762.jpg
+11977.jpg
+14251.jpg
+29810.jpg
+28323.jpg
+849.jpg
+20543.jpg
+44.jpg
+9347.jpg
+28557.jpg
+28344.jpg
+8645.jpg
+25718.jpg
+7276.jpg
+12631.jpg
+6590.jpg
+16221.jpg
+27425.jpg
+11434.jpg
+4346.jpg
+5436.jpg
+6978.jpg
+24833.jpg
+16268.jpg
+16593.jpg
+3219.jpg
+20812.jpg
+12628.jpg
+14987.jpg
+5583.jpg
+23479.jpg
+17235.jpg
+24650.jpg
+23115.jpg
+2773.jpg
+3116.jpg
+8759.jpg
+22297.jpg
+3471.jpg
+27254.jpg
+28922.jpg
+29154.jpg
+13172.jpg
+11186.jpg
+28396.jpg
+9016.jpg
+568.jpg
+1777.jpg
+10695.jpg
+10164.jpg
+10571.jpg
+5349.jpg
+13215.jpg
+13390.jpg
+4166.jpg
+29336.jpg
+2024.jpg
+20913.jpg
+27210.jpg
+4701.jpg
+4854.jpg
+1485.jpg
+17527.jpg
+14392.jpg
+26456.jpg
+28991.jpg
+13485.jpg
+18078.jpg
+13364.jpg
+24403.jpg
+6121.jpg
+4906.jpg
+14398.jpg
+16473.jpg
+22690.jpg
+5158.jpg
+15334.jpg
+16997.jpg
+21671.jpg
+6889.jpg
+7961.jpg
+26533.jpg
+15912.jpg
+1192.jpg
+24039.jpg
+19974.jpg
+21681.jpg
+28138.jpg
+3931.jpg
+28422.jpg
+21992.jpg
+24027.jpg
+13693.jpg
+15981.jpg
+10526.jpg
+22912.jpg
+4532.jpg
+9729.jpg
+25346.jpg
+28048.jpg
+14376.jpg
+8079.jpg
+5498.jpg
+11225.jpg
+22147.jpg
+22730.jpg
+19218.jpg
+11602.jpg
+14810.jpg
+10555.jpg
+6838.jpg
+13727.jpg
+5077.jpg
+21958.jpg
+10682.jpg
+28509.jpg
+26434.jpg
+2965.jpg
+28477.jpg
+4452.jpg
+18846.jpg
+25066.jpg
+20679.jpg
+13310.jpg
+9574.jpg
+28880.jpg
+9806.jpg
+3154.jpg
+13916.jpg
+18807.jpg
+26890.jpg
+21990.jpg
+6871.jpg
+27561.jpg
+19997.jpg
+15729.jpg
+26522.jpg
+23355.jpg
+9875.jpg
+16077.jpg
+28500.jpg
+29541.jpg
+27219.jpg
+22021.jpg
+798.jpg
+9482.jpg
+4149.jpg
+5193.jpg
+27739.jpg
+12289.jpg
+19934.jpg
+27730.jpg
+10847.jpg
+16216.jpg
+22142.jpg
+24384.jpg
+26164.jpg
+22856.jpg
+5679.jpg
+18605.jpg
+4219.jpg
+12398.jpg
+13897.jpg
+7450.jpg
+5532.jpg
+19161.jpg
+9769.jpg
+24700.jpg
+21189.jpg
+5246.jpg
+14242.jpg
+4333.jpg
+8442.jpg
+3877.jpg
+5348.jpg
+11820.jpg
+23529.jpg
+7087.jpg
+10542.jpg
+13921.jpg
+8089.jpg
+3086.jpg
+15355.jpg
+7047.jpg
+16284.jpg
+17638.jpg
+4727.jpg
+77.jpg
+19419.jpg
+27346.jpg
+23417.jpg
+19936.jpg
+7111.jpg
+5.jpg
+21222.jpg
+23065.jpg
+1482.jpg
+3296.jpg
+4945.jpg
+28734.jpg
+25672.jpg
+7134.jpg
+275.jpg
+27232.jpg
+11637.jpg
+29706.jpg
+3167.jpg
+18233.jpg
+11780.jpg
+17834.jpg
+5954.jpg
+27869.jpg
+2989.jpg
+21593.jpg
+28322.jpg
+18978.jpg
+3697.jpg
+28931.jpg
+5379.jpg
+21834.jpg
+29686.jpg
+22143.jpg
+2941.jpg
+20233.jpg
+2987.jpg
+766.jpg
+14382.jpg
+7095.jpg
+9981.jpg
+11016.jpg
+15635.jpg
+8418.jpg
+27449.jpg
+8106.jpg
+10169.jpg
+11712.jpg
+14029.jpg
+20635.jpg
+1435.jpg
+18321.jpg
+5908.jpg
+28779.jpg
+759.jpg
+9429.jpg
+28992.jpg
+18955.jpg
+21156.jpg
+13630.jpg
+11548.jpg
+10136.jpg
+14775.jpg
+1406.jpg
+16323.jpg
+26621.jpg
+15224.jpg
+3947.jpg
+6952.jpg
+29137.jpg
+442.jpg
+15407.jpg
+3241.jpg
+23156.jpg
+12934.jpg
+860.jpg
+24174.jpg
+5176.jpg
+2924.jpg
+16922.jpg
+5563.jpg
+17647.jpg
+8865.jpg
+8176.jpg
+27.jpg
+23579.jpg
+26290.jpg
+18216.jpg
+28403.jpg
+29196.jpg
+7817.jpg
+5890.jpg
+27444.jpg
+2731.jpg
+16568.jpg
+25754.jpg
+22331.jpg
+5304.jpg
+3140.jpg
+5902.jpg
+129.jpg
+20485.jpg
+7639.jpg
+21202.jpg
+8021.jpg
+22624.jpg
+29946.jpg
+28458.jpg
+333.jpg
+3897.jpg
+9903.jpg
+14203.jpg
+25550.jpg
+28412.jpg
+8789.jpg
+18858.jpg
+27505.jpg
+18773.jpg
+1446.jpg
+2110.jpg
+25796.jpg
+6169.jpg
+23585.jpg
+3459.jpg
+26554.jpg
+22174.jpg
+22326.jpg
+24526.jpg
+24895.jpg
+13351.jpg
+15032.jpg
+1859.jpg
+6928.jpg
+29027.jpg
+17388.jpg
+29497.jpg
+5889.jpg
+15954.jpg
+24872.jpg
+18327.jpg
+22322.jpg
+15641.jpg
+6439.jpg
+6691.jpg
+22688.jpg
+4179.jpg
+18356.jpg
+3852.jpg
+6751.jpg
+1187.jpg
+17583.jpg
+23226.jpg
+22402.jpg
+24936.jpg
+21839.jpg
+5115.jpg
+13907.jpg
+5730.jpg
+16493.jpg
+22437.jpg
+29733.jpg
+15134.jpg
+279.jpg
+2296.jpg
+15691.jpg
+16007.jpg
+23792.jpg
+5866.jpg
+5769.jpg
+3264.jpg
+10859.jpg
+14840.jpg
+8201.jpg
+29321.jpg
+12305.jpg
+24327.jpg
+3299.jpg
+27937.jpg
+25534.jpg
+26470.jpg
+11062.jpg
+12158.jpg
+19675.jpg
+7950.jpg
+1902.jpg
+19809.jpg
+21874.jpg
+3304.jpg
+28166.jpg
+14471.jpg
+9687.jpg
+29033.jpg
+25973.jpg
+3552.jpg
+27777.jpg
+27584.jpg
+12170.jpg
+10957.jpg
+4354.jpg
+26379.jpg
+8997.jpg
+20711.jpg
+21169.jpg
+19663.jpg
+1434.jpg
+28563.jpg
+5154.jpg
+22409.jpg
+24664.jpg
+3770.jpg
+12184.jpg
+10460.jpg
+18418.jpg
+25597.jpg
+7449.jpg
+20335.jpg
+24587.jpg
+23102.jpg
+3511.jpg
+8946.jpg
+16062.jpg
+26359.jpg
+24059.jpg
+15079.jpg
+18213.jpg
+6932.jpg
+24194.jpg
+28728.jpg
+22969.jpg
+14698.jpg
+25690.jpg
+9656.jpg
+2295.jpg
+27963.jpg
+16704.jpg
+5276.jpg
+28862.jpg
+15197.jpg
+814.jpg
+26779.jpg
+12051.jpg
+8781.jpg
+17606.jpg
+2085.jpg
+27804.jpg
+12038.jpg
+29233.jpg
+29091.jpg
+21502.jpg
+29590.jpg
+21296.jpg
+26267.jpg
+14959.jpg
+25164.jpg
+13134.jpg
+4865.jpg
+6878.jpg
+14143.jpg
+23872.jpg
+11671.jpg
+16254.jpg
+19159.jpg
+1854.jpg
+3017.jpg
+22937.jpg
+14574.jpg
+29642.jpg
+13140.jpg
+22186.jpg
+23652.jpg
+7240.jpg
+23073.jpg
+20070.jpg
+2485.jpg
+18125.jpg
+11058.jpg
+2193.jpg
+1246.jpg
+11681.jpg
+11278.jpg
+25688.jpg
+27325.jpg
+164.jpg
+7930.jpg
+18776.jpg
+27264.jpg
+19110.jpg
+16383.jpg
+8604.jpg
+4541.jpg
+5408.jpg
+16008.jpg
+18766.jpg
+6001.jpg
+16599.jpg
+29370.jpg
+22965.jpg
+9578.jpg
+28144.jpg
+20752.jpg
+3891.jpg
+26486.jpg
+367.jpg
+5689.jpg
+5694.jpg
+784.jpg
+18359.jpg
+8101.jpg
+21638.jpg
+22908.jpg
+29515.jpg
+24238.jpg
+27690.jpg
+2008.jpg
+27885.jpg
+6827.jpg
+7380.jpg
+506.jpg
+24603.jpg
+24943.jpg
+11822.jpg
+22813.jpg
+11334.jpg
+27340.jpg
+25012.jpg
+18608.jpg
+11633.jpg
+27705.jpg
+9845.jpg
+21692.jpg
+25246.jpg
+29402.jpg
+20906.jpg
+9446.jpg
+19310.jpg
+12160.jpg
+18521.jpg
+18513.jpg
+9593.jpg
+26271.jpg
+4839.jpg
+16620.jpg
+16489.jpg
+1550.jpg
+5645.jpg
+3856.jpg
+16331.jpg
+3441.jpg
+24132.jpg
+28156.jpg
+22002.jpg
+14803.jpg
+18511.jpg
+1483.jpg
+28598.jpg
+29796.jpg
+11926.jpg
+10986.jpg
+17691.jpg
+28093.jpg
+10352.jpg
+20304.jpg
+12539.jpg
+16703.jpg
+19548.jpg
+1333.jpg
+9372.jpg
+25906.jpg
+24583.jpg
+24792.jpg
+21568.jpg
+6646.jpg
+29070.jpg
+17035.jpg
+732.jpg
+19407.jpg
+17404.jpg
+28920.jpg
+4946.jpg
+23558.jpg
+12925.jpg
+3668.jpg
+12612.jpg
+12259.jpg
+17711.jpg
+21894.jpg
+19457.jpg
+23680.jpg
+21334.jpg
+22347.jpg
+14486.jpg
+23974.jpg
+10369.jpg
+28831.jpg
+10815.jpg
+12755.jpg
+9557.jpg
+5120.jpg
+2124.jpg
+25779.jpg
+439.jpg
+10077.jpg
+4520.jpg
+21108.jpg
+17287.jpg
+18086.jpg
+9122.jpg
+23519.jpg
+9391.jpg
+8028.jpg
+3077.jpg
+12944.jpg
+29105.jpg
+27077.jpg
+23425.jpg
+26990.jpg
+14199.jpg
+1772.jpg
+23146.jpg
+4609.jpg
+8599.jpg
+536.jpg
+5978.jpg
+2817.jpg
+24969.jpg
+11499.jpg
+10855.jpg
+12313.jpg
+4365.jpg
+18254.jpg
+26585.jpg
+16809.jpg
+8861.jpg
+29454.jpg
+5224.jpg
+7909.jpg
+15921.jpg
+1986.jpg
+19112.jpg
+25915.jpg
+19739.jpg
+23795.jpg
+28642.jpg
+8881.jpg
+22476.jpg
+7754.jpg
+300.jpg
+2493.jpg
+8336.jpg
+4356.jpg
+12301.jpg
+11660.jpg
+3427.jpg
+24722.jpg
+16218.jpg
+5047.jpg
+2894.jpg
+15292.jpg
+1832.jpg
+27946.jpg
+1844.jpg
+21792.jpg
+8025.jpg
+2217.jpg
+21101.jpg
+14774.jpg
+12025.jpg
+8061.jpg
+7492.jpg
+1127.jpg
+9540.jpg
+6854.jpg
+11900.jpg
+16441.jpg
+5111.jpg
+27835.jpg
+24480.jpg
+16853.jpg
+7362.jpg
+17517.jpg
+2497.jpg
+14055.jpg
+22353.jpg
+29478.jpg
+15793.jpg
+4336.jpg
+14296.jpg
+7857.jpg
+13198.jpg
+22672.jpg
+7674.jpg
+15861.jpg
+18483.jpg
+21137.jpg
+6620.jpg
+7783.jpg
+28658.jpg
+24623.jpg
+24129.jpg
+17182.jpg
+4169.jpg
+7388.jpg
+26268.jpg
+1372.jpg
+27429.jpg
+19137.jpg
+12241.jpg
+23017.jpg
+16150.jpg
+25946.jpg
+10353.jpg
+6634.jpg
+13184.jpg
+2536.jpg
+26111.jpg
+1629.jpg
+22873.jpg
+20244.jpg
+8287.jpg
+25240.jpg
+18375.jpg
+892.jpg
+10998.jpg
+21029.jpg
+9701.jpg
+531.jpg
+17939.jpg
+28953.jpg
+6223.jpg
+5820.jpg
+28911.jpg
+1295.jpg
+7092.jpg
+15161.jpg
+22513.jpg
+15720.jpg
+19642.jpg
+10823.jpg
+27161.jpg
+27895.jpg
+21616.jpg
+26021.jpg
+4456.jpg
+23886.jpg
+18328.jpg
+22604.jpg
+6898.jpg
+28193.jpg
+13555.jpg
+22754.jpg
+12942.jpg
+4029.jpg
+21658.jpg
+24270.jpg
+7136.jpg
+4974.jpg
+17167.jpg
+1894.jpg
+15864.jpg
+23092.jpg
+4153.jpg
+7755.jpg
+2663.jpg
+21474.jpg
+19243.jpg
+19546.jpg
+28848.jpg
+2648.jpg
+29696.jpg
+11833.jpg
+28517.jpg
+8122.jpg
+1525.jpg
+7204.jpg
+13739.jpg
+26786.jpg
+29615.jpg
+19309.jpg
+28137.jpg
+23722.jpg
+8009.jpg
+24284.jpg
+25869.jpg
+22164.jpg
+17919.jpg
+15340.jpg
+28501.jpg
+14740.jpg
+25045.jpg
+14526.jpg
+12437.jpg
+18331.jpg
+11210.jpg
+2007.jpg
+29190.jpg
+864.jpg
+9420.jpg
+15362.jpg
+22771.jpg
+1659.jpg
+3190.jpg
+8824.jpg
+8325.jpg
+19953.jpg
+25520.jpg
+27591.jpg
+18775.jpg
+16488.jpg
+13281.jpg
+9257.jpg
+13188.jpg
+27859.jpg
+61.jpg
+27653.jpg
+29533.jpg
+13950.jpg
+8528.jpg
+8045.jpg
+5473.jpg
+29872.jpg
+25943.jpg
+22172.jpg
+28343.jpg
+9225.jpg
+10687.jpg
+27947.jpg
+19712.jpg
+10929.jpg
+16110.jpg
+24100.jpg
+11089.jpg
+15931.jpg
+7840.jpg
+24882.jpg
+16270.jpg
+28293.jpg
+23116.jpg
+12669.jpg
+25810.jpg
+1514.jpg
+23678.jpg
+24937.jpg
+1149.jpg
+10007.jpg
+20571.jpg
+24200.jpg
+10118.jpg
+13127.jpg
+14658.jpg
+18624.jpg
+25086.jpg
+24734.jpg
+26403.jpg
+19955.jpg
+12349.jpg
+13391.jpg
+6005.jpg
+9727.jpg
+10583.jpg
+10446.jpg
+12729.jpg
+5271.jpg
+25863.jpg
+25982.jpg
+13083.jpg
+4902.jpg
+15823.jpg
+20877.jpg
+19880.jpg
+14258.jpg
+10592.jpg
+26835.jpg
+7365.jpg
+7606.jpg
+494.jpg
+29554.jpg
+6.jpg
+8494.jpg
+4057.jpg
+13116.jpg
+4596.jpg
+17262.jpg
+19708.jpg
+19210.jpg
+29841.jpg
+11993.jpg
+9006.jpg
+10087.jpg
+2820.jpg
+25106.jpg
+25354.jpg
+26623.jpg
+19937.jpg
+22549.jpg
+26700.jpg
+26305.jpg
+2272.jpg
+7530.jpg
+16307.jpg
+28689.jpg
+26204.jpg
+19278.jpg
+16532.jpg
+15400.jpg
+11581.jpg
+28104.jpg
+6338.jpg
+9156.jpg
+9877.jpg
+7013.jpg
+13261.jpg
+5928.jpg
+12764.jpg
+544.jpg
+20567.jpg
+24198.jpg
+16212.jpg
+6608.jpg
+25619.jpg
+17732.jpg
+4257.jpg
+25885.jpg
+25000.jpg
+920.jpg
+22399.jpg
+14468.jpg
+4207.jpg
+28758.jpg
+15985.jpg
+14207.jpg
+10004.jpg
+4308.jpg
+22471.jpg
+7093.jpg
+13929.jpg
+13806.jpg
+24293.jpg
+27111.jpg
+1025.jpg
+11527.jpg
+2506.jpg
+29530.jpg
+8692.jpg
+26642.jpg
+22415.jpg
+29466.jpg
+13249.jpg
+19123.jpg
+790.jpg
+7890.jpg
+21162.jpg
+27285.jpg
+7537.jpg
+19286.jpg
+29461.jpg
+13893.jpg
+9736.jpg
+3676.jpg
+21040.jpg
+6847.jpg
+29031.jpg
+21749.jpg
+23186.jpg
+4246.jpg
+4386.jpg
+3084.jpg
+14147.jpg
+4547.jpg
+19376.jpg
+4362.jpg
+22815.jpg
+27789.jpg
+24547.jpg
+17364.jpg
+8427.jpg
+4239.jpg
+1822.jpg
+1643.jpg
+7044.jpg
+649.jpg
+17559.jpg
+21473.jpg
+28907.jpg
+10691.jpg
+2287.jpg
+21838.jpg
+28024.jpg
+2997.jpg
+152.jpg
+20585.jpg
+25489.jpg
+18583.jpg
+26490.jpg
+20276.jpg
+28781.jpg
+4841.jpg
+27396.jpg
+9880.jpg
+22899.jpg
+12358.jpg
+5533.jpg
+14370.jpg
+26801.jpg
+19593.jpg
+4553.jpg
+6176.jpg
+28661.jpg
+27130.jpg
+15537.jpg
+16576.jpg
+28485.jpg
+16680.jpg
+14101.jpg
+23925.jpg
+3930.jpg
+18741.jpg
+6366.jpg
+20597.jpg
+1234.jpg
+18191.jpg
+19566.jpg
+23622.jpg
+28909.jpg
+13601.jpg
+16804.jpg
+778.jpg
+17565.jpg
+22749.jpg
+23530.jpg
+29888.jpg
+17279.jpg
+3536.jpg
+15737.jpg
+8409.jpg
+14256.jpg
+5713.jpg
+27882.jpg
+22477.jpg
+14048.jpg
+12948.jpg
+16971.jpg
+21425.jpg
+25206.jpg
+23483.jpg
+11118.jpg
+19691.jpg
+576.jpg
+24793.jpg
+5215.jpg
+25416.jpg
+17183.jpg
+16047.jpg
+1203.jpg
+8856.jpg
+14088.jpg
+5229.jpg
+27464.jpg
+9036.jpg
+5558.jpg
+12842.jpg
+8066.jpg
+13097.jpg
+3800.jpg
+24707.jpg
+7937.jpg
+1324.jpg
+24498.jpg
+7284.jpg
+13653.jpg
+1683.jpg
+10242.jpg
+28785.jpg
+23171.jpg
+24856.jpg
+20218.jpg
+6927.jpg
+5943.jpg
+22303.jpg
+9542.jpg
+9867.jpg
+14113.jpg
+17246.jpg
+22466.jpg
+13237.jpg
+18031.jpg
+28235.jpg
+24135.jpg
+28674.jpg
+29947.jpg
+6345.jpg
+5996.jpg
+16865.jpg
+7173.jpg
+8531.jpg
+8071.jpg
+10268.jpg
+6470.jpg
+23523.jpg
+8339.jpg
+5037.jpg
+20670.jpg
+7706.jpg
+8313.jpg
+14599.jpg
+20886.jpg
+3397.jpg
+11752.jpg
+8056.jpg
+19942.jpg
+6692.jpg
+11875.jpg
+4205.jpg
+6109.jpg
+18745.jpg
+16433.jpg
+28453.jpg
+2964.jpg
+19347.jpg
+9825.jpg
+5012.jpg
+4496.jpg
+16748.jpg
+6452.jpg
+5451.jpg
+5803.jpg
+17232.jpg
+13153.jpg
+6805.jpg
+13684.jpg
+15938.jpg
+128.jpg
+4303.jpg
+28106.jpg
+2410.jpg
+24020.jpg
+14584.jpg
+18923.jpg
+27398.jpg
+11924.jpg
+24192.jpg
+10309.jpg
+6096.jpg
+10616.jpg
+10191.jpg
+16639.jpg
+10019.jpg
+1396.jpg
+26491.jpg
+20078.jpg
+24440.jpg
+6217.jpg
+3171.jpg
+10539.jpg
+25228.jpg
+3392.jpg
+19228.jpg
+20357.jpg
+6348.jpg
+15591.jpg
+12508.jpg
+27785.jpg
+12735.jpg
+21233.jpg
+5594.jpg
+14214.jpg
+11228.jpg
+24216.jpg
+12386.jpg
+26672.jpg
+29732.jpg
+11185.jpg
+17087.jpg
+23512.jpg
+18917.jpg
+4156.jpg
+2441.jpg
+14944.jpg
+22381.jpg
+29766.jpg
+15504.jpg
+29697.jpg
+23505.jpg
+15053.jpg
+9061.jpg
+15667.jpg
+16537.jpg
+13551.jpg
+17873.jpg
+22371.jpg
+29103.jpg
+27385.jpg
+26753.jpg
+3760.jpg
+21727.jpg
+2107.jpg
+16995.jpg
+15163.jpg
+15626.jpg
+9746.jpg
+93.jpg
+28595.jpg
+23328.jpg
+20914.jpg
+20383.jpg
+17947.jpg
+15600.jpg
+9690.jpg
+22615.jpg
+14394.jpg
+6471.jpg
+17200.jpg
+13769.jpg
+2718.jpg
+12996.jpg
+27712.jpg
+10842.jpg
+27984.jpg
+620.jpg
+28120.jpg
+4748.jpg
+22490.jpg
+12036.jpg
+2346.jpg
+3863.jpg
+1197.jpg
+1066.jpg
+17429.jpg
+7188.jpg
+21076.jpg
+19894.jpg
+22769.jpg
+11418.jpg
+14670.jpg
+26844.jpg
+20275.jpg
+12377.jpg
+18915.jpg
+3899.jpg
+20673.jpg
+15274.jpg
+23199.jpg
+17726.jpg
+25445.jpg
+21713.jpg
+22037.jpg
+1096.jpg
+16548.jpg
+23890.jpg
+792.jpg
+10221.jpg
+18564.jpg
+17111.jpg
+24694.jpg
+17553.jpg
+17677.jpg
+23863.jpg
+2391.jpg
+24490.jpg
+5103.jpg
+5758.jpg
+29145.jpg
+4426.jpg
+27165.jpg
+18008.jpg
+7522.jpg
+19966.jpg
+9627.jpg
+9228.jpg
+18033.jpg
+3902.jpg
+19834.jpg
+17163.jpg
+3288.jpg
+4321.jpg
+23779.jpg
+10276.jpg
+3842.jpg
+18778.jpg
+27782.jpg
+7174.jpg
+19957.jpg
+11567.jpg
+20666.jpg
+28789.jpg
+24217.jpg
+1175.jpg
+9723.jpg
+23761.jpg
+10538.jpg
+9139.jpg
+19679.jpg
+20453.jpg
+10488.jpg
+19581.jpg
+11881.jpg
+19163.jpg
+27420.jpg
+23541.jpg
+18585.jpg
+5780.jpg
+9011.jpg
+3757.jpg
+697.jpg
+23057.jpg
+27585.jpg
+21260.jpg
+3948.jpg
+8135.jpg
+18648.jpg
+668.jpg
+23843.jpg
+13371.jpg
+29673.jpg
+27030.jpg
+6414.jpg
+23973.jpg
+2224.jpg
+7644.jpg
+2250.jpg
+25516.jpg
+23877.jpg
+5466.jpg
+16051.jpg
+1264.jpg
+22926.jpg
+13.jpg
+6903.jpg
+29785.jpg
+9589.jpg
+22440.jpg
+12580.jpg
+20977.jpg
+21454.jpg
+22712.jpg
+19771.jpg
+27024.jpg
+1421.jpg
+547.jpg
+11698.jpg
+24069.jpg
+16906.jpg
+3566.jpg
+11020.jpg
+12563.jpg
+9449.jpg
+29234.jpg
+20662.jpg
+16028.jpg
+6977.jpg
+22118.jpg
+17038.jpg
+7825.jpg
+25361.jpg
+21153.jpg
+11543.jpg
+18904.jpg
+27204.jpg
+25167.jpg
+7600.jpg
+11644.jpg
+10798.jpg
+29474.jpg
+19185.jpg
+5892.jpg
+4230.jpg
+22838.jpg
+8445.jpg
+21282.jpg
+23217.jpg
+25329.jpg
+21333.jpg
+19535.jpg
+29503.jpg
+24204.jpg
+564.jpg
+18575.jpg
+4044.jpg
+4542.jpg
+1639.jpg
+27051.jpg
+17079.jpg
+28287.jpg
+18215.jpg
+2734.jpg
+14075.jpg
+19794.jpg
+14818.jpg
+27867.jpg
+27614.jpg
+5062.jpg
+28730.jpg
+9451.jpg
+1863.jpg
+19740.jpg
+27287.jpg
+18169.jpg
+16841.jpg
+17658.jpg
+2809.jpg
+9268.jpg
+1195.jpg
+3265.jpg
+29152.jpg
+12871.jpg
+6741.jpg
+10664.jpg
+24934.jpg
+20705.jpg
+25666.jpg
+13221.jpg
+17261.jpg
+20623.jpg
+8594.jpg
+22886.jpg
+7315.jpg
+4643.jpg
+13803.jpg
+11734.jpg
+4753.jpg
+4549.jpg
+19253.jpg
+19578.jpg
+21678.jpg
+1585.jpg
+21336.jpg
+10706.jpg
+7394.jpg
+1738.jpg
+29750.jpg
+14167.jpg
+3364.jpg
+22184.jpg
+3263.jpg
+7437.jpg
+22607.jpg
+6084.jpg
+19592.jpg
+19837.jpg
+10981.jpg
+1400.jpg
+11921.jpg
+24483.jpg
+1804.jpg
+1107.jpg
+28551.jpg
+19866.jpg
+575.jpg
+24008.jpg
+20168.jpg
+29815.jpg
+10635.jpg
+21684.jpg
+6194.jpg
+15438.jpg
+27757.jpg
+23562.jpg
+24108.jpg
+19485.jpg
+15311.jpg
+14160.jpg
+26472.jpg
+15088.jpg
+29654.jpg
+16676.jpg
+21073.jpg
+15533.jpg
+29195.jpg
+13490.jpg
+5521.jpg
+2666.jpg
+3970.jpg
+27794.jpg
+20028.jpg
+4355.jpg
+26361.jpg
+24305.jpg
+21293.jpg
+2244.jpg
+12728.jpg
+91.jpg
+28444.jpg
+2785.jpg
+17218.jpg
+5935.jpg
+14058.jpg
+6995.jpg
+4287.jpg
+16829.jpg
+11475.jpg
+15223.jpg
+9822.jpg
+10603.jpg
+17894.jpg
+27504.jpg
+11441.jpg
+15773.jpg
+28298.jpg
+29140.jpg
+6908.jpg
+21027.jpg
+21654.jpg
+17613.jpg
+29501.jpg
+6891.jpg
+1472.jpg
+20864.jpg
+28971.jpg
+2701.jpg
+29890.jpg
+13019.jpg
+16877.jpg
+21644.jpg
+20387.jpg
+18202.jpg
+12028.jpg
+9625.jpg
+13814.jpg
+16944.jpg
+16907.jpg
+21811.jpg
+11229.jpg
+7885.jpg
+24836.jpg
+18567.jpg
+17148.jpg
+26444.jpg
+15969.jpg
+9949.jpg
+19742.jpg
+7150.jpg
+12703.jpg
+21447.jpg
+6883.jpg
+24620.jpg
+14648.jpg
+15219.jpg
+13628.jpg
+7372.jpg
+19214.jpg
+16313.jpg
+14628.jpg
+8146.jpg
+11514.jpg
+28252.jpg
+27427.jpg
+8044.jpg
+23600.jpg
+15072.jpg
+13848.jpg
+21256.jpg
+56.jpg
+1388.jpg
+26407.jpg
+15686.jpg
+23913.jpg
+15064.jpg
+10659.jpg
+26279.jpg
+23303.jpg
+1716.jpg
+21864.jpg
+7497.jpg
+3439.jpg
+10560.jpg
+5766.jpg
+4441.jpg
+27880.jpg
+28877.jpg
+25668.jpg
+13378.jpg
+28890.jpg
+21482.jpg
+28010.jpg
+11653.jpg
+23388.jpg
+20172.jpg
+14676.jpg
+513.jpg
+18214.jpg
+954.jpg
+11094.jpg
+16686.jpg
+1870.jpg
+18056.jpg
+7892.jpg
+9776.jpg
+20404.jpg
+229.jpg
+13656.jpg
+3410.jpg
+6754.jpg
+23155.jpg
+17924.jpg
+5076.jpg
+14425.jpg
+3982.jpg
+10602.jpg
+28955.jpg
+21138.jpg
+12270.jpg
+9179.jpg
+14261.jpg
+7116.jpg
+23613.jpg
+26451.jpg
+9305.jpg
+5110.jpg
+13865.jpg
+17966.jpg
+21299.jpg
+20626.jpg
+17482.jpg
+16598.jpg
+14054.jpg
+17128.jpg
+28446.jpg
+23334.jpg
+335.jpg
+28234.jpg
+15511.jpg
+13399.jpg
+14864.jpg
+2526.jpg
+9537.jpg
+19248.jpg
+13758.jpg
+10069.jpg
+18943.jpg
+1486.jpg
+28019.jpg
+22072.jpg
+20912.jpg
+10024.jpg
+15804.jpg
+24875.jpg
+5882.jpg
+8354.jpg
+21955.jpg
+29098.jpg
+3451.jpg
+251.jpg
+26879.jpg
+26465.jpg
+628.jpg
+15100.jpg
+13792.jpg
+29616.jpg
+27428.jpg
+15846.jpg
+14695.jpg
+22698.jpg
+18582.jpg
+23321.jpg
+21141.jpg
+20436.jpg
+20314.jpg
+3281.jpg
+26163.jpg
+17443.jpg
+1438.jpg
+22552.jpg
+12402.jpg
+28361.jpg
+29701.jpg
+17934.jpg
+20613.jpg
+25731.jpg
+7367.jpg
+24303.jpg
+24032.jpg
+27566.jpg
+19036.jpg
+11043.jpg
+15774.jpg
+25469.jpg
+28961.jpg
+17377.jpg
+22526.jpg
+11428.jpg
+12205.jpg
+25963.jpg
+1378.jpg
+2784.jpg
+1593.jpg
+20891.jpg
+21026.jpg
+25317.jpg
+11247.jpg
+8529.jpg
+15235.jpg
+25348.jpg
+23784.jpg
+3347.jpg
+937.jpg
+16943.jpg
+22170.jpg
+14389.jpg
+21396.jpg
+7228.jpg
+2949.jpg
+24581.jpg
+2835.jpg
+14885.jpg
+5452.jpg
+29611.jpg
+5658.jpg
+3148.jpg
+10147.jpg
+2822.jpg
+14793.jpg
+29908.jpg
+15065.jpg
+25179.jpg
+9468.jpg
+6740.jpg
+2670.jpg
+28174.jpg
+10680.jpg
+18244.jpg
+8615.jpg
+11144.jpg
+9680.jpg
+17534.jpg
+10797.jpg
+9502.jpg
+15405.jpg
+27917.jpg
+20079.jpg
+2422.jpg
+8036.jpg
+21693.jpg
+20225.jpg
+8744.jpg
+14908.jpg
+5989.jpg
+15570.jpg
+26048.jpg
+25189.jpg
+28660.jpg
+7687.jpg
+28226.jpg
+12584.jpg
+25231.jpg
+3905.jpg
+3719.jpg
+24316.jpg
+3050.jpg
+23846.jpg
+1051.jpg
+3853.jpg
+7535.jpg
+21529.jpg
+18180.jpg
+4806.jpg
+15900.jpg
+21561.jpg
+23515.jpg
+6819.jpg
+10272.jpg
+23276.jpg
+14747.jpg
+14809.jpg
+7941.jpg
+8443.jpg
+27031.jpg
+19256.jpg
+15736.jpg
+15547.jpg
+21124.jpg
+11560.jpg
+13795.jpg
+16980.jpg
+29655.jpg
+17597.jpg
+6747.jpg
+421.jpg
+24346.jpg
+13947.jpg
+5589.jpg
+23994.jpg
+27941.jpg
+20289.jpg
+17766.jpg
+19668.jpg
+8232.jpg
+25895.jpg
+29972.jpg
+7034.jpg
+20926.jpg
+5827.jpg
+6821.jpg
+18406.jpg
+24288.jpg
+14688.jpg
+29112.jpg
+5815.jpg
+24675.jpg
+11596.jpg
+22412.jpg
+9214.jpg
+25757.jpg
+5567.jpg
+5875.jpg
+29580.jpg
+20589.jpg
+496.jpg
+25448.jpg
+12022.jpg
+24676.jpg
+19127.jpg
+11008.jpg
+19611.jpg
+5648.jpg
+28127.jpg
+22266.jpg
+23963.jpg
+18898.jpg
+18650.jpg
+10619.jpg
+28804.jpg
+23901.jpg
+26571.jpg
+25529.jpg
+18851.jpg
+16322.jpg
+25016.jpg
+11500.jpg
+10256.jpg
+6281.jpg
+2870.jpg
+17632.jpg
+2256.jpg
+14926.jpg
+1285.jpg
+23185.jpg
+15502.jpg
+13350.jpg
+2202.jpg
+8841.jpg
+4660.jpg
+11102.jpg
+24016.jpg
+9545.jpg
+27199.jpg
+27907.jpg
+13109.jpg
+13055.jpg
+5303.jpg
+7959.jpg
+28033.jpg
+7969.jpg
+14744.jpg
+4985.jpg
+23815.jpg
+25514.jpg
+11828.jpg
+16053.jpg
+7001.jpg
+20633.jpg
+12087.jpg
+5886.jpg
+19498.jpg
+10264.jpg
+12531.jpg
+17007.jpg
+5581.jpg
+4148.jpg
+15829.jpg
+9764.jpg
+9757.jpg
+25085.jpg
+20195.jpg
+16130.jpg
+9476.jpg
+22806.jpg
+19956.jpg
+11207.jpg
+13037.jpg
+22744.jpg
+9598.jpg
+21734.jpg
+14288.jpg
+22102.jpg
+29685.jpg
+21510.jpg
+10553.jpg
+16637.jpg
+20422.jpg
+14943.jpg
+25806.jpg
+13161.jpg
+1257.jpg
+12991.jpg
+14287.jpg
+23003.jpg
+14675.jpg
+19249.jpg
+12880.jpg
+29546.jpg
+24067.jpg
+6737.jpg
+22276.jpg
+24610.jpg
+3812.jpg
+6989.jpg
+27139.jpg
+19212.jpg
+15521.jpg
+15717.jpg
+10422.jpg
+6172.jpg
+17436.jpg
+15496.jpg
+15661.jpg
+26908.jpg
+10474.jpg
+4377.jpg
+4975.jpg
+23835.jpg
+12581.jpg
+13639.jpg
+24745.jpg
+8702.jpg
+15763.jpg
+20873.jpg
+5606.jpg
+9403.jpg
+11244.jpg
+7094.jpg
+17177.jpg
+6485.jpg
+26027.jpg
+1047.jpg
+7557.jpg
+13832.jpg
+11317.jpg
+19288.jpg
+9809.jpg
+28351.jpg
+7433.jpg
+24400.jpg
+22065.jpg
+24750.jpg
+11884.jpg
+5522.jpg
+10335.jpg
+142.jpg
+17108.jpg
+19796.jpg
+24426.jpg
+19659.jpg
+3631.jpg
+29178.jpg
+2320.jpg
+11727.jpg
+3529.jpg
+21407.jpg
+9384.jpg
+20029.jpg
+10419.jpg
+16785.jpg
+25902.jpg
+11250.jpg
+28910.jpg
+10565.jpg
+9955.jpg
+10423.jpg
+435.jpg
+17782.jpg
+10247.jpg
+749.jpg
+14852.jpg
+6015.jpg
+13212.jpg
+14510.jpg
+28054.jpg
+5013.jpg
+2242.jpg
+11116.jpg
+6582.jpg
+21389.jpg
+4822.jpg
+3683.jpg
+15322.jpg
+2549.jpg
+27844.jpg
+17868.jpg
+20243.jpg
+17610.jpg
+12373.jpg
+22362.jpg
+19930.jpg
+29127.jpg
+20664.jpg
+28290.jpg
+1858.jpg
+24643.jpg
+22398.jpg
+5869.jpg
+14714.jpg
+16694.jpg
+16985.jpg
+5415.jpg
+16891.jpg
+16184.jpg
+24473.jpg
+1263.jpg
+10678.jpg
+12864.jpg
+13683.jpg
+740.jpg
+3901.jpg
+29090.jpg
+6893.jpg
+29809.jpg
+21095.jpg
+23791.jpg
+16491.jpg
+18117.jpg
+10343.jpg
+7721.jpg
+25656.jpg
+13759.jpg
+4878.jpg
+6343.jpg
+21453.jpg
+14216.jpg
+27131.jpg
+10029.jpg
+8191.jpg
+6105.jpg
+3933.jpg
+9246.jpg
+28904.jpg
+23596.jpg
+23871.jpg
+6534.jpg
+9716.jpg
+4340.jpg
+24634.jpg
+21686.jpg
+7299.jpg
+26213.jpg
+10168.jpg
+13813.jpg
+19711.jpg
+16450.jpg
+1134.jpg
+22848.jpg
+26109.jpg
+23077.jpg
+12485.jpg
+3129.jpg
+26281.jpg
+27890.jpg
+18198.jpg
+22784.jpg
+23950.jpg
+28165.jpg
+15380.jpg
+4245.jpg
+16962.jpg
+7075.jpg
+14043.jpg
+1305.jpg
+12675.jpg
+3268.jpg
+20405.jpg
+9037.jpg
+29349.jpg
+13057.jpg
+10922.jpg
+11199.jpg
+18698.jpg
+10017.jpg
+20305.jpg
+26569.jpg
+27181.jpg
+8876.jpg
+7988.jpg
+24766.jpg
+13917.jpg
+17054.jpg
+22004.jpg
+9279.jpg
+21276.jpg
+13311.jpg
+12332.jpg
+12037.jpg
+11897.jpg
+24444.jpg
+15507.jpg
+1956.jpg
+894.jpg
+19272.jpg
+6665.jpg
+27447.jpg
+8983.jpg
+4875.jpg
+3205.jpg
+10888.jpg
+24523.jpg
+5285.jpg
+16606.jpg
+15217.jpg
+17445.jpg
+20139.jpg
+15348.jpg
+22203.jpg
+12089.jpg
+7528.jpg
+3638.jpg
+3078.jpg
+22097.jpg
+23617.jpg
+11635.jpg
+15919.jpg
+14086.jpg
+24285.jpg
+3183.jpg
+12381.jpg
+11252.jpg
+7215.jpg
+20828.jpg
+21185.jpg
+20061.jpg
+29641.jpg
+23544.jpg
+20621.jpg
+26508.jpg
+12873.jpg
+21469.jpg
+462.jpg
+2700.jpg
+8417.jpg
+14765.jpg
+9494.jpg
+4855.jpg
+13128.jpg
+23209.jpg
+18535.jpg
+27517.jpg
+7998.jpg
+13610.jpg
+26664.jpg
+10697.jpg
+20901.jpg
+7454.jpg
+22396.jpg
+18516.jpg
+9392.jpg
+15069.jpg
+17142.jpg
+15346.jpg
+2863.jpg
+3875.jpg
+10689.jpg
+11739.jpg
+15123.jpg
+11751.jpg
+22829.jpg
+23113.jpg
+27731.jpg
+4241.jpg
+15047.jpg
+15795.jpg
+22655.jpg
+12330.jpg
+9455.jpg
+20272.jpg
+10283.jpg
+13125.jpg
+24616.jpg
+12403.jpg
+19440.jpg
+17475.jpg
+18970.jpg
+29581.jpg
+900.jpg
+14687.jpg
+4431.jpg
+13859.jpg
+15086.jpg
+24140.jpg
+26369.jpg
+16394.jpg
+2838.jpg
+4264.jpg
+10072.jpg
+3999.jpg
+28183.jpg
+8527.jpg
+8817.jpg
+23688.jpg
+6017.jpg
+11756.jpg
+3603.jpg
+3696.jpg
+29341.jpg
+23091.jpg
+368.jpg
+16238.jpg
+2527.jpg
+6632.jpg
+12167.jpg
+927.jpg
+1070.jpg
+8041.jpg
+25325.jpg
+3570.jpg
+21248.jpg
+10134.jpg
+8000.jpg
+16453.jpg
+678.jpg
+28408.jpg
+15029.jpg
+18677.jpg
+28211.jpg
+10455.jpg
+14507.jpg
+16132.jpg
+29492.jpg
+28213.jpg
+23966.jpg
+28188.jpg
+26186.jpg
+18367.jpg
+478.jpg
+1884.jpg
+1591.jpg
+9127.jpg
+23868.jpg
+8784.jpg
+4277.jpg
+4578.jpg
+6390.jpg
+22537.jpg
+14994.jpg
+13005.jpg
+17315.jpg
+11783.jpg
+21668.jpg
+22794.jpg
+17072.jpg
+17719.jpg
+29675.jpg
+2003.jpg
+24644.jpg
+1950.jpg
+5414.jpg
+413.jpg
+1019.jpg
+3351.jpg
+9801.jpg
+10774.jpg
+20997.jpg
+5392.jpg
+11845.jpg
+14235.jpg
+10775.jpg
+22094.jpg
+22643.jpg
+7157.jpg
+20111.jpg
+7030.jpg
+573.jpg
+28830.jpg
+3063.jpg
+18013.jpg
+24678.jpg
+22980.jpg
+9068.jpg
+20990.jpg
+1994.jpg
+2576.jpg
+9925.jpg
+24782.jpg
+27370.jpg
+22888.jpg
+24113.jpg
+25927.jpg
+14458.jpg
+21998.jpg
+4800.jpg
+24155.jpg
+5708.jpg
+11069.jpg
+4521.jpg
+20181.jpg
+11469.jpg
+14769.jpg
+20341.jpg
+12724.jpg
+25429.jpg
+29015.jpg
+3615.jpg
+21554.jpg
+27681.jpg
+7370.jpg
+6994.jpg
+14051.jpg
+22028.jpg
+2682.jpg
+19683.jpg
+7954.jpg
+15240.jpg
+947.jpg
+15744.jpg
+15304.jpg
+1574.jpg
+15013.jpg
+25043.jpg
+21968.jpg
+17344.jpg
+13348.jpg
+9168.jpg
+18782.jpg
+27293.jpg
+26386.jpg
+10030.jpg
+18325.jpg
+23951.jpg
+16460.jpg
+13179.jpg
+29532.jpg
+4019.jpg
+17036.jpg
+12933.jpg
+24606.jpg
+11980.jpg
+6445.jpg
+3444.jpg
+23290.jpg
+4691.jpg
+17763.jpg
+19833.jpg
+20713.jpg
+29121.jpg
+8858.jpg
+18162.jpg
+10084.jpg
+25738.jpg
+25707.jpg
+3498.jpg
+29773.jpg
+19877.jpg
+19766.jpg
+11985.jpg
+2451.jpg
+8563.jpg
+15196.jpg
+27656.jpg
+29639.jpg
+1606.jpg
+16766.jpg
+3335.jpg
+23967.jpg
+1449.jpg
+7350.jpg
+9576.jpg
+10466.jpg
+18901.jpg
+16174.jpg
+17775.jpg
+20290.jpg
+22000.jpg
+18764.jpg
+24121.jpg
+21680.jpg
+15276.jpg
+11922.jpg
+22089.jpg
+54.jpg
+13044.jpg
+25952.jpg
+4533.jpg
+28441.jpg
+8297.jpg
+25019.jpg
+15827.jpg
+5777.jpg
+10623.jpg
+21083.jpg
+11282.jpg
+19682.jpg
+11012.jpg
+3704.jpg
+1923.jpg
+22534.jpg
+21047.jpg
+12317.jpg
+21046.jpg
+26471.jpg
+5572.jpg
+14467.jpg
+22997.jpg
+16138.jpg
+4372.jpg
+6681.jpg
+19197.jpg
+13107.jpg
+26798.jpg
+3109.jpg
+28200.jpg
+9977.jpg
+14453.jpg
+11883.jpg
+29996.jpg
+5038.jpg
+20688.jpg
+22658.jpg
+22354.jpg
+4949.jpg
+14856.jpg
+16203.jpg
+27331.jpg
+2276.jpg
+20332.jpg
+14914.jpg
+16559.jpg
+19491.jpg
+26758.jpg
+8356.jpg
+24158.jpg
+7750.jpg
+25225.jpg
+20733.jpg
+13027.jpg
+23021.jpg
+13164.jpg
+27879.jpg
+5534.jpg
+24507.jpg
+25650.jpg
+21631.jpg
+22153.jpg
+10494.jpg
+25899.jpg
+22397.jpg
+26147.jpg
+27864.jpg
+11597.jpg
+2162.jpg
+27994.jpg
+11814.jpg
+1679.jpg
+20036.jpg
+13435.jpg
+23317.jpg
+20295.jpg
+12337.jpg
+7052.jpg
+11265.jpg
+23816.jpg
+4713.jpg
+8596.jpg
+11741.jpg
+5074.jpg
+9942.jpg
+1761.jpg
+19168.jpg
+3114.jpg
+18087.jpg
+3325.jpg
+9683.jpg
+21721.jpg
+12451.jpg
+14980.jpg
+1607.jpg
+26901.jpg
+24193.jpg
+16139.jpg
+6353.jpg
+27538.jpg
+21219.jpg
+14723.jpg
+17772.jpg
+7033.jpg
+10140.jpg
+20267.jpg
+889.jpg
+16187.jpg
+28329.jpg
+24126.jpg
+8285.jpg
+8305.jpg
+24263.jpg
+28790.jpg
+17968.jpg
+11674.jpg
+27276.jpg
+23482.jpg
+20165.jpg
+24347.jpg
+13432.jpg
+10857.jpg
+21995.jpg
+5511.jpg
+3429.jpg
+5091.jpg
+18543.jpg
+25710.jpg
+20963.jpg
+2185.jpg
+6291.jpg
+17881.jpg
+8515.jpg
+18011.jpg
+21789.jpg
+13958.jpg
+19444.jpg
+1297.jpg
+12207.jpg
+15748.jpg
+111.jpg
+6421.jpg
+9302.jpg
+26724.jpg
+10653.jpg
+27878.jpg
+3817.jpg
+22523.jpg
+24049.jpg
+15472.jpg
+18779.jpg
+15871.jpg
+893.jpg
+1733.jpg
+20992.jpg
+1365.jpg
+7432.jpg
+18040.jpg
+25535.jpg
+21494.jpg
+25518.jpg
+12945.jpg
+4832.jpg
+8617.jpg
+15314.jpg
+26059.jpg
+23621.jpg
+21821.jpg
+14950.jpg
+432.jpg
+13862.jpg
+4755.jpg
+5383.jpg
+28914.jpg
+9013.jpg
+10307.jpg
+21106.jpg
+7361.jpg
+14990.jpg
+12632.jpg
+29329.jpg
+16741.jpg
+3334.jpg
+14922.jpg
+6959.jpg
+26393.jpg
+13965.jpg
+13084.jpg
+18073.jpg
+6253.jpg
+28438.jpg
+24755.jpg
+21462.jpg
+4905.jpg
+20927.jpg
+18619.jpg
+4107.jpg
+17700.jpg
+29156.jpg
+27857.jpg
+2384.jpg
+4469.jpg
+21810.jpg
+26301.jpg
+22472.jpg
+20896.jpg
+7022.jpg
+25693.jpg
+9812.jpg
+25785.jpg
+26653.jpg
+18317.jpg
+29083.jpg
+18139.jpg
+7005.jpg
+26843.jpg
+23098.jpg
+19026.jpg
+3298.jpg
+647.jpg
+1510.jpg
+26045.jpg
+28003.jpg
+18719.jpg
+7396.jpg
+13021.jpg
+602.jpg
+12120.jpg
+26467.jpg
+8605.jpg
+18305.jpg
+599.jpg
+27979.jpg
+20096.jpg
+14311.jpg
+17648.jpg
+3581.jpg
+27415.jpg
+23867.jpg
+13825.jpg
+25265.jpg
+24926.jpg
+28102.jpg
+18628.jpg
+28835.jpg
+11431.jpg
+21501.jpg
+25890.jpg
+12597.jpg
+4385.jpg
+22753.jpg
+7926.jpg
+15520.jpg
+26651.jpg
+10265.jpg
+4693.jpg
+21732.jpg
+298.jpg
+6453.jpg
+20919.jpg
+10901.jpg
+23715.jpg
+19515.jpg
+17895.jpg
+7035.jpg
+5526.jpg
+1188.jpg
+13733.jpg
+26362.jpg
+23692.jpg
+20910.jpg
+26367.jpg
+19852.jpg
+6364.jpg
+2680.jpg
+25793.jpg
+29407.jpg
+16437.jpg
+29388.jpg
+18065.jpg
+26207.jpg
+15788.jpg
+10629.jpg
+11007.jpg
+27236.jpg
+15137.jpg
+3809.jpg
+29738.jpg
+17937.jpg
+14035.jpg
+28248.jpg
+2492.jpg
+28197.jpg
+20512.jpg
+2883.jpg
+294.jpg
+23750.jpg
+1010.jpg
+27632.jpg
+22713.jpg
+25781.jpg
+3958.jpg
+22618.jpg
+12762.jpg
+18708.jpg
+18675.jpg
+15178.jpg
+11547.jpg
+9389.jpg
+29221.jpg
+7711.jpg
+1350.jpg
+22855.jpg
+21953.jpg
+21171.jpg
+23725.jpg
+20712.jpg
+1627.jpg
+8364.jpg
+23853.jpg
+29794.jpg
+5002.jpg
+26886.jpg
+24212.jpg
+23499.jpg
+4008.jpg
+15750.jpg
+19617.jpg
+1746.jpg
+21805.jpg
+11211.jpg
+18472.jpg
+19884.jpg
+11566.jpg
+21400.jpg
+28807.jpg
+18774.jpg
+28616.jpg
+1971.jpg
+4519.jpg
+7664.jpg
+17253.jpg
+13393.jpg
+12819.jpg
+358.jpg
+16724.jpg
+18316.jpg
+25440.jpg
+9095.jpg
+2132.jpg
+28207.jpg
+28426.jpg
+7010.jpg
+27888.jpg
+13030.jpg
+8828.jpg
+16590.jpg
+12846.jpg
+5259.jpg
+9348.jpg
+7405.jpg
+548.jpg
+21184.jpg
+28716.jpg
+26253.jpg
+3613.jpg
+12715.jpg
+4056.jpg
+22933.jpg
+22254.jpg
+1518.jpg
+20789.jpg
+27015.jpg
+4813.jpg
+345.jpg
+14092.jpg
+26610.jpg
+17097.jpg
+6804.jpg
+3168.jpg
+28416.jpg
+28100.jpg
+26487.jpg
+5900.jpg
+14148.jpg
+25926.jpg
+17463.jpg
+11338.jpg
+15289.jpg
+11641.jpg
+27246.jpg
+7015.jpg
+29764.jpg
+7041.jpg
+20491.jpg
+3700.jpg
+22529.jpg
+25687.jpg
+1714.jpg
+15458.jpg
+15556.jpg
+28170.jpg
+10458.jpg
+23807.jpg
+27964.jpg
+10545.jpg
+15607.jpg
+20415.jpg
+22573.jpg
+3036.jpg
+11585.jpg
+2122.jpg
+18164.jpg
+7256.jpg
+22421.jpg
+18599.jpg
+16412.jpg
+11309.jpg
+29205.jpg
+202.jpg
+21243.jpg
+8385.jpg
+12849.jpg
+16176.jpg
+23823.jpg
+3731.jpg
+21564.jpg
+6864.jpg
+24996.jpg
+9151.jpg
+27310.jpg
+3067.jpg
+10761.jpg
+28217.jpg
+22901.jpg
+2237.jpg
+273.jpg
+27376.jpg
+10556.jpg
+29306.jpg
+19244.jpg
+13563.jpg
+29270.jpg
+18392.jpg
+7555.jpg
+23480.jpg
+5069.jpg
+26718.jpg
+16090.jpg
+16255.jpg
+1640.jpg
+12890.jpg
+3522.jpg
+8519.jpg
+24709.jpg
+6030.jpg
+28882.jpg
+8506.jpg
+19229.jpg
+28525.jpg
+17305.jpg
+18381.jpg
+13599.jpg
+19432.jpg
+19190.jpg
+16632.jpg
+779.jpg
+8027.jpg
+26606.jpg
+29053.jpg
+13822.jpg
+17850.jpg
+26641.jpg
+11235.jpg
+1275.jpg
+17541.jpg
+10354.jpg
+9197.jpg
+25959.jpg
+6042.jpg
+20259.jpg
+8590.jpg
+9103.jpg
+15930.jpg
+15004.jpg
+13280.jpg
+29481.jpg
+8813.jpg
+26730.jpg
+22337.jpg
+11169.jpg
+179.jpg
+13750.jpg
+24974.jpg
+6802.jpg
+29238.jpg
+624.jpg
+1256.jpg
+11523.jpg
+14381.jpg
+29518.jpg
+10992.jpg
+9733.jpg
+6739.jpg
+6490.jpg
+23839.jpg
+17836.jpg
+28244.jpg
+27231.jpg
+5057.jpg
+3754.jpg
+13625.jpg
+3260.jpg
+8632.jpg
+10182.jpg
+19898.jpg
+21158.jpg
+3488.jpg
+11465.jpg
+14168.jpg
+11190.jpg
+4651.jpg
+6380.jpg
+23989.jpg
+16656.jpg
+16349.jpg
+11471.jpg
+27609.jpg
+14355.jpg
+19855.jpg
+5242.jpg
+15320.jpg
+28364.jpg
+28756.jpg
+10639.jpg
+17589.jpg
+7515.jpg
+23802.jpg
+3044.jpg
+28859.jpg
+12607.jpg
+20859.jpg
+18105.jpg
+21704.jpg
+22583.jpg
+26978.jpg
+18239.jpg
+2298.jpg
+14245.jpg
+902.jpg
+28423.jpg
+5783.jpg
+22332.jpg
+19016.jpg
+21611.jpg
+21557.jpg
+5843.jpg
+19599.jpg
+15201.jpg
+14280.jpg
+5199.jpg
+24042.jpg
+29765.jpg
+4409.jpg
+4394.jpg
+22294.jpg
+1741.jpg
+2442.jpg
+28089.jpg
+5759.jpg
+12594.jpg
+5454.jpg
+10333.jpg
+10701.jpg
+9162.jpg
+6427.jpg
+28941.jpg
+28685.jpg
+13472.jpg
+9038.jpg
+19207.jpg
+4314.jpg
+12939.jpg
+20709.jpg
+909.jpg
+2395.jpg
+22536.jpg
+25988.jpg
+15184.jpg
+16531.jpg
+17790.jpg
+5385.jpg
+15662.jpg
+15359.jpg
+15958.jpg
+4604.jpg
+22999.jpg
+493.jpg
+26504.jpg
+21997.jpg
+19251.jpg
+27465.jpg
+11524.jpg
+12476.jpg
+8681.jpg
+1648.jpg
+15271.jpg
+15523.jpg
+6670.jpg
+2324.jpg
+11261.jpg
+12525.jpg
+22579.jpg
+20242.jpg
+27518.jpg
+27636.jpg
+7271.jpg
+24739.jpg
+24471.jpg
+29260.jpg
+6929.jpg
+29399.jpg
+4920.jpg
+3924.jpg
+19420.jpg
+26648.jpg
+27397.jpg
+15860.jpg
+27028.jpg
+2640.jpg
+1288.jpg
+23350.jpg
+29713.jpg
+7686.jpg
+26038.jpg
+20296.jpg
+9693.jpg
+24726.jpg
+23307.jpg
+3577.jpg
+8487.jpg
+3637.jpg
+21905.jpg
+15042.jpg
+27262.jpg
+15529.jpg
+23942.jpg
+14130.jpg
+25744.jpg
+831.jpg
+1395.jpg
+26062.jpg
+16428.jpg
+28182.jpg
+24549.jpg
+5723.jpg
+3625.jpg
+11083.jpg
+8334.jpg
+24602.jpg
+12975.jpg
+25655.jpg
+29291.jpg
+28821.jpg
+28515.jpg
+11754.jpg
+1528.jpg
+21798.jpg
+19233.jpg
+4525.jpg
+5025.jpg
+12172.jpg
+27928.jpg
+2748.jpg
+10381.jpg
+20439.jpg
+5180.jpg
+7419.jpg
+27669.jpg
+2038.jpg
+27704.jpg
+8921.jpg
+29506.jpg
+15959.jpg
+6791.jpg
+16550.jpg
+6193.jpg
+23781.jpg
+4916.jpg
+21576.jpg
+21527.jpg
+29009.jpg
+29557.jpg
+22061.jpg
+11386.jpg
+6136.jpg
+19481.jpg
+22225.jpg
+22659.jpg
+9172.jpg
+7053.jpg
+12102.jpg
+7785.jpg
+1181.jpg
+381.jpg
+1097.jpg
+6046.jpg
+23814.jpg
+7264.jpg
+13660.jpg
+26180.jpg
+22789.jpg
+17037.jpg
+16544.jpg
+21584.jpg
+1799.jpg
+24962.jpg
+2862.jpg
+944.jpg
+15629.jpg
+21634.jpg
+10975.jpg
+28097.jpg
+1225.jpg
+28483.jpg
+24209.jpg
+16104.jpg
+21698.jpg
+14596.jpg
+9844.jpg
+3554.jpg
+2909.jpg
+8616.jpg
+20844.jpg
+984.jpg
+20266.jpg
+2726.jpg
+4197.jpg
+13510.jpg
+21736.jpg
+7589.jpg
+13767.jpg
+19227.jpg
+15676.jpg
+5235.jpg
+27745.jpg
+29879.jpg
+3425.jpg
+16192.jpg
+23278.jpg
+27194.jpg
+21326.jpg
+5046.jpg
+27351.jpg
+25775.jpg
+21972.jpg
+8022.jpg
+23183.jpg
+14274.jpg
+11377.jpg
+5475.jpg
+20199.jpg
+29759.jpg
+6814.jpg
+6218.jpg
+13999.jpg
+18464.jpg
+4243.jpg
+28925.jpg
+16885.jpg
+24876.jpg
+12515.jpg
+11515.jpg
+24435.jpg
+14371.jpg
+26982.jpg
+199.jpg
+12216.jpg
+29807.jpg
+23495.jpg
+6331.jpg
+10600.jpg
+4763.jpg
+7063.jpg
+7564.jpg
+28588.jpg
+528.jpg
+25832.jpg
+21747.jpg
+21254.jpg
+28817.jpg
+1429.jpg
+12893.jpg
+9792.jpg
+11178.jpg
+5505.jpg
+28939.jpg
+3416.jpg
+665.jpg
+12042.jpg
+12825.jpg
+5891.jpg
+29244.jpg
+9219.jpg
+8254.jpg
+28257.jpg
+28481.jpg
+1329.jpg
+2239.jpg
+12300.jpg
+14892.jpg
+22408.jpg
+26251.jpg
+9897.jpg
+10675.jpg
+16626.jpg
+901.jpg
+29708.jpg
+8886.jpg
+9866.jpg
+18594.jpg
+1011.jpg
+7191.jpg
+28810.jpg
+21917.jpg
+18491.jpg
+20256.jpg
+13426.jpg
+22920.jpg
+14239.jpg
+21697.jpg
+1062.jpg
+22467.jpg
+3983.jpg
+1260.jpg
+21038.jpg
+20917.jpg
+25536.jpg
+22176.jpg
+22075.jpg
+11910.jpg
+14776.jpg
+23476.jpg
+23899.jpg
+703.jpg
+28131.jpg
+14369.jpg
+2519.jpg
+23191.jpg
+8787.jpg
+8479.jpg
+10439.jpg
+29741.jpg
+22111.jpg
+22601.jpg
+11111.jpg
+23937.jpg
+5518.jpg
+23070.jpg
+23150.jpg
+1861.jpg
+16574.jpg
+11468.jpg
+8927.jpg
+20781.jpg
+23490.jpg
+25742.jpg
+25049.jpg
+9553.jpg
+935.jpg
+28187.jpg
+23182.jpg
+222.jpg
+2368.jpg
+13539.jpg
+17143.jpg
+10737.jpg
+29871.jpg
+15012.jpg
+27630.jpg
+19532.jpg
+4345.jpg
+6266.jpg
+5093.jpg
+20687.jpg
+29184.jpg
+8090.jpg
+4751.jpg
+16442.jpg
+16119.jpg
+24869.jpg
+19191.jpg
+19250.jpg
+13165.jpg
+18462.jpg
+2775.jpg
+28655.jpg
+1424.jpg
+9526.jpg
+3525.jpg
+9566.jpg
+27177.jpg
+17464.jpg
+14290.jpg
+26996.jpg
+823.jpg
+11753.jpg
+8423.jpg
+23072.jpg
+23039.jpg
+27468.jpg
+10920.jpg
+14509.jpg
+25211.jpg
+24218.jpg
+363.jpg
+2571.jpg
+27215.jpg
+29175.jpg
+8777.jpg
+21688.jpg
+19274.jpg
+20802.jpg
+15822.jpg
+16411.jpg
+15256.jpg
+18390.jpg
+28696.jpg
+11700.jpg
+13898.jpg
+1233.jpg
+13626.jpg
+20013.jpg
+24789.jpg
+2052.jpg
+19406.jpg
+23638.jpg
+13304.jpg
+28317.jpg
+4749.jpg
+26296.jpg
+16625.jpg
+9724.jpg
+12131.jpg
+16369.jpg
+6848.jpg
+20031.jpg
+3470.jpg
+4575.jpg
+10745.jpg
+11776.jpg
+20699.jpg
+20794.jpg
+698.jpg
+18470.jpg
+191.jpg
+17592.jpg
+9496.jpg
+1857.jpg
+3252.jpg
+19811.jpg
+16892.jpg
+29278.jpg
+22107.jpg
+21332.jpg
+14335.jpg
+21574.jpg
+1146.jpg
+23896.jpg
+11356.jpg
+19005.jpg
+9374.jpg
+3670.jpg
+7195.jpg
+14297.jpg
+23927.jpg
+20580.jpg
+18380.jpg
+17121.jpg
+13535.jpg
+9519.jpg
+19846.jpg
+12336.jpg
+6016.jpg
+16706.jpg
+4938.jpg
+11867.jpg
+7107.jpg
+20858.jpg
+7153.jpg
+13135.jpg
+10232.jpg
+23366.jpg
+1760.jpg
+4319.jpg
+29803.jpg
+29280.jpg
+4090.jpg
+19296.jpg
+2343.jpg
+18550.jpg
+20609.jpg
+19743.jpg
+6237.jpg
+23742.jpg
+17951.jpg
+26525.jpg
+10486.jpg
+26315.jpg
+28222.jpg
+27374.jpg
+29624.jpg
+23011.jpg
+22942.jpg
+18319.jpg
+4981.jpg
+28597.jpg
+11342.jpg
+1147.jpg
+15299.jpg
+14513.jpg
+18612.jpg
+5560.jpg
+15453.jpg
+25844.jpg
+20505.jpg
+853.jpg
+2524.jpg
+11321.jpg
+26425.jpg
+17165.jpg
+3479.jpg
+7811.jpg
+4422.jpg
+15891.jpg
+21785.jpg
+25538.jpg
+1116.jpg
+28845.jpg
+9974.jpg
+6807.jpg
+15356.jpg
+18471.jpg
+16162.jpg
+25296.jpg
+28332.jpg
+23389.jpg
+1493.jpg
+15070.jpg
+15239.jpg
+3423.jpg
+26352.jpg
+24922.jpg
+13451.jpg
+22679.jpg
+1382.jpg
+14550.jpg
+29446.jpg
+15037.jpg
+364.jpg
+18046.jpg
+13616.jpg
+25021.jpg
+21383.jpg
+9556.jpg
+5092.jpg
+27694.jpg
+16290.jpg
+26611.jpg
+3120.jpg
+12141.jpg
+27954.jpg
+14038.jpg
+24376.jpg
+17066.jpg
+29102.jpg
+6985.jpg
+28579.jpg
+28805.jpg
+15539.jpg
+8220.jpg
+19489.jpg
+27366.jpg
+26424.jpg
+29800.jpg
+2635.jpg
+16857.jpg
+10105.jpg
+5400.jpg
+2590.jpg
+14183.jpg
+27914.jpg
+18002.jpg
+4015.jpg
+23094.jpg
+29650.jpg
+7231.jpg
+517.jpg
+16589.jpg
+9907.jpg
+6419.jpg
+3302.jpg
+18814.jpg
+25874.jpg
+8774.jpg
+24460.jpg
+23187.jpg
+14760.jpg
+17952.jpg
+27190.jpg
+1937.jpg
+18161.jpg
+25059.jpg
+7690.jpg
+27188.jpg
+27873.jpg
+3230.jpg
+24590.jpg
+15812.jpg
+17226.jpg
+1418.jpg
+22165.jpg
+23238.jpg
+17203.jpg
+603.jpg
+15166.jpg
+15948.jpg
+10299.jpg
+14413.jpg
+4721.jpg
+4550.jpg
+4337.jpg
+25939.jpg
+22723.jpg
+11791.jpg
+12471.jpg
+37.jpg
+20223.jpg
+22049.jpg
+17168.jpg
+5416.jpg
+12986.jpg
+27436.jpg
+5677.jpg
+7771.jpg
+26085.jpg
+17161.jpg
+20018.jpg
+4265.jpg
+192.jpg
+9089.jpg
+9386.jpg
+22404.jpg
+23329.jpg
+25047.jpg
+28546.jpg
+8103.jpg
+4470.jpg
+10759.jpg
+25884.jpg
+22465.jpg
+7494.jpg
+9895.jpg
+24772.jpg
+10954.jpg
+13543.jpg
+6583.jpg
+1457.jpg
+12951.jpg
+11037.jpg
+20469.jpg
+13900.jpg
+9640.jpg
+2803.jpg
+16075.jpg
+20309.jpg
+11366.jpg
+26119.jpg
+24064.jpg
+1375.jpg
+13990.jpg
+7895.jpg
+28690.jpg
+2335.jpg
+14597.jpg
+25951.jpg
+13392.jpg
+20201.jpg
+18746.jpg
+28389.jpg
+24242.jpg
+8234.jpg
+9008.jpg
+29338.jpg
+1880.jpg
+4221.jpg
+29110.jpg
+9287.jpg
+24888.jpg
+126.jpg
+21186.jpg
+27448.jpg
+2057.jpg
+20508.jpg
+23665.jpg
+3894.jpg
+15168.jpg
+6111.jpg
+20202.jpg
+3426.jpg
+23120.jpg
+24852.jpg
+17033.jpg
+20103.jpg
+23428.jpg
+14299.jpg
+18980.jpg
+28894.jpg
+762.jpg
+29225.jpg
+4752.jpg
+3125.jpg
+16332.jpg
+3394.jpg
+24988.jpg
+7101.jpg
+14560.jpg
+14773.jpg
+19795.jpg
+27729.jpg
+26953.jpg
+19263.jpg
+452.jpg
+3012.jpg
+1823.jpg
+4154.jpg
+23831.jpg
+27595.jpg
+18710.jpg
+17715.jpg
+16668.jpg
+9311.jpg
+22257.jpg
+26221.jpg
+12483.jpg
+21742.jpg
+29627.jpg
+24344.jpg
+9885.jpg
+26519.jpg
+22209.jpg
+7627.jpg
+6221.jpg
+8736.jpg
+11799.jpg
+25313.jpg
+2478.jpg
+6127.jpg
+24250.jpg
+16905.jpg
+6794.jpg
+3104.jpg
+8935.jpg
+3073.jpg
+13606.jpg
+20869.jpg
+19167.jpg
+973.jpg
+23918.jpg
+13324.jpg
+4904.jpg
+26994.jpg
+22096.jpg
+2169.jpg
+825.jpg
+6365.jpg
+19445.jpg
+5709.jpg
+16395.jpg
+25584.jpg
+4825.jpg
+14716.jpg
+7046.jpg
+1423.jpg
+20792.jpg
+17312.jpg
+20478.jpg
+10068.jpg
+8271.jpg
+168.jpg
+5294.jpg
+27272.jpg
+633.jpg
+4138.jpg
+15695.jpg
+23344.jpg
+5784.jpg
+1314.jpg
+1232.jpg
+16817.jpg
+29229.jpg
+28884.jpg
+19034.jpg
+9856.jpg
+24760.jpg
+17124.jpg
+9357.jpg
+18457.jpg
+27893.jpg
+14187.jpg
+2092.jpg
+19140.jpg
+3562.jpg
+27136.jpg
+15826.jpg
+6138.jpg
+14103.jpg
+4612.jpg
+9732.jpg
+6851.jpg
+10464.jpg
+21931.jpg
+16915.jpg
+19557.jpg
+22858.jpg
+15516.jpg
+4447.jpg
+2905.jpg
+7263.jpg
+16359.jpg
+14483.jpg
+8411.jpg
+13118.jpg
+26717.jpg
+2399.jpg
+11896.jpg
+16415.jpg
+17064.jpg
+17685.jpg
+19598.jpg
+3057.jpg
+18693.jpg
+2632.jpg
+21375.jpg
+21252.jpg
+3311.jpg
+26264.jpg
+21354.jpg
+1244.jpg
+29802.jpg
+11963.jpg
+24928.jpg
+3098.jpg
+5743.jpg
+7170.jpg
+4101.jpg
+8342.jpg
+21830.jpg
+29051.jpg
+1103.jpg
+1377.jpg
+27020.jpg
+24719.jpg
+17275.jpg
+19710.jpg
+20188.jpg
+6675.jpg
+8573.jpg
+9405.jpg
+4545.jpg
+7907.jpg
+11346.jpg
+12129.jpg
+9682.jpg
+981.jpg
+2133.jpg
+6558.jpg
+23977.jpg
+19627.jpg
+23143.jpg
+24028.jpg
+4444.jpg
+7729.jpg
+8524.jpg
+6116.jpg
+8800.jpg
+14190.jpg
+23724.jpg
+5895.jpg
+17264.jpg
+4894.jpg
+11508.jpg
+16812.jpg
+6507.jpg
+20280.jpg
+17997.jpg
+13447.jpg
+150.jpg
+3782.jpg
+453.jpg
+8029.jpg
+23045.jpg
+27606.jpg
+18372.jpg
+8575.jpg
+18222.jpg
+2301.jpg
+28400.jpg
+20411.jpg
+6274.jpg
+9328.jpg
+635.jpg
+26627.jpg
+12896.jpg
+16213.jpg
+29524.jpg
+26893.jpg
+1739.jpg
+6432.jpg
+7124.jpg
+14817.jpg
+22403.jpg
+3273.jpg
+8497.jpg
+25851.jpg
+27483.jpg
+12280.jpg
+18534.jpg
+8926.jpg
+9463.jpg
+842.jpg
+14935.jpg
+29448.jpg
+22263.jpg
+15528.jpg
+28254.jpg
+23442.jpg
+27022.jpg
+28641.jpg
+16702.jpg
+23905.jpg
+27442.jpg
+29189.jpg
+15914.jpg
+21677.jpg
+9361.jpg
+28196.jpg
+26518.jpg
+12441.jpg
+3839.jpg
+7997.jpg
+13433.jpg
+1562.jpg
+8322.jpg
+10224.jpg
+10414.jpg
+17916.jpg
+5601.jpg
+24697.jpg
+7411.jpg
+1258.jpg
+4309.jpg
+24748.jpg
+25405.jpg
+15171.jpg
+25194.jpg
+27092.jpg
+12760.jpg
+13483.jpg
+10715.jpg
+19614.jpg
+3132.jpg
+10854.jpg
+27992.jpg
+3556.jpg
+11091.jpg
+4585.jpg
+5829.jpg
+6457.jpg
+10951.jpg
+25667.jpg
+12034.jpg
+19077.jpg
+8136.jpg
+1473.jpg
+16288.jpg
+4009.jpg
+6950.jpg
+228.jpg
+11501.jpg
+27853.jpg
+18004.jpg
+18994.jpg
+10405.jpg
+24672.jpg
+19490.jpg
+12497.jpg
+22445.jpg
+22212.jpg
+19433.jpg
+4561.jpg
+23642.jpg
+15249.jpg
+20903.jpg
+4734.jpg
+14226.jpg
+19171.jpg
+8461.jpg
+807.jpg
+22565.jpg
+1600.jpg
+14955.jpg
+27350.jpg
+19246.jpg
+9459.jpg
+14428.jpg
+25379.jpg
+11945.jpg
+17265.jpg
+16072.jpg
+28863.jpg
+19381.jpg
+15275.jpg
+24512.jpg
+13102.jpg
+11693.jpg
+13525.jpg
+14947.jpg
+19826.jpg
+16831.jpg
+16903.jpg
+18048.jpg
+10212.jpg
+22847.jpg
+3516.jpg
+12254.jpg
+24955.jpg
+5412.jpg
+28559.jpg
+7982.jpg
+4478.jpg
+7273.jpg
+20674.jpg
+29432.jpg
+28513.jpg
+26371.jpg
+4440.jpg
+13263.jpg
+133.jpg
+8105.jpg
+23331.jpg
+6314.jpg
+24300.jpg
+10763.jpg
+14876.jpg
+18480.jpg
+2186.jpg
+17193.jpg
+11065.jpg
+23772.jpg
+11401.jpg
+11373.jpg
+27863.jpg
+1402.jpg
+9963.jpg
+2936.jpg
+2885.jpg
+15968.jpg
+14220.jpg
+27387.jpg
+19344.jpg
+3559.jpg
+19595.jpg
+17948.jpg
+10496.jpg
+2264.jpg
+13942.jpg
+26977.jpg
+4662.jpg
+24740.jpg
+16251.jpg
+4235.jpg
+11293.jpg
+12808.jpg
+12527.jpg
+21041.jpg
+7547.jpg
+23559.jpg
+12031.jpg
+18433.jpg
+915.jpg
+25458.jpg
+21539.jpg
+6166.jpg
+968.jpg
+27698.jpg
+16492.jpg
+489.jpg
+24871.jpg
+29256.jpg
+24785.jpg
+16199.jpg
+4185.jpg
+28382.jpg
+12065.jpg
+2856.jpg
+7429.jpg
+1589.jpg
+28795.jpg
+16679.jpg
+20397.jpg
+7239.jpg
+22864.jpg
+190.jpg
+6069.jpg
+1366.jpg
+6460.jpg
+10873.jpg
+12094.jpg
+16863.jpg
+16511.jpg
+12225.jpg
+10048.jpg
+26603.jpg
+29566.jpg
+13464.jpg
+15690.jpg
+7613.jpg
+25601.jpg
+16677.jpg
+23281.jpg
+29819.jpg
+24540.jpg
+8043.jpg
+14781.jpg
+22506.jpg
+20384.jpg
+14847.jpg
+6013.jpg
+24941.jpg
+3667.jpg
+9441.jpg
+21783.jpg
+24410.jpg
+10892.jpg
+20716.jpg
+8504.jpg
+6769.jpg
+22485.jpg
+13283.jpg
+3874.jpg
+28823.jpg
+16388.jpg
+12875.jpg
+7217.jpg
+9440.jpg
+1362.jpg
+17378.jpg
+13360.jpg
+705.jpg
+25302.jpg
+26295.jpg
+5842.jpg
+9506.jpg
+17636.jpg
+23456.jpg
+21717.jpg
+29298.jpg
+18821.jpg
+18790.jpg
+5530.jpg
+8808.jpg
+23936.jpg
+21338.jpg
+3040.jpg
+26880.jpg
+12560.jpg
+23833.jpg
+11763.jpg
+25044.jpg
+22714.jpg
+18320.jpg
+25705.jpg
+17745.jpg
+29369.jpg
+5716.jpg
+7643.jpg
+12432.jpg
+29911.jpg
+1586.jpg
+225.jpg
+8855.jpg
+29612.jpg
+26807.jpg
+8065.jpg
+997.jpg
+19758.jpg
+24043.jpg
+12379.jpg
+497.jpg
+3541.jpg
+7862.jpg
+8222.jpg
+5653.jpg
+16160.jpg
+8532.jpg
+19991.jpg
+458.jpg
+22932.jpg
+14487.jpg
+21533.jpg
+21351.jpg
+15343.jpg
+18547.jpg
+18490.jpg
+28394.jpg
+13434.jpg
+17507.jpg
+16054.jpg
+924.jpg
+10997.jpg
+10329.jpg
+22699.jpg
+7404.jpg
+25774.jpg
+3240.jpg
+2266.jpg
+8400.jpg
+29620.jpg
+7269.jpg
+12727.jpg
+25025.jpg
+12335.jpg
+24573.jpg
+18918.jpg
+25862.jpg
+28688.jpg
+21247.jpg
+29668.jpg
+28014.jpg
+23683.jpg
+23263.jpg
+1078.jpg
+13860.jpg
+23557.jpg
+18874.jpg
+9836.jpg
+17192.jpg
+2840.jpg
+1467.jpg
+20374.jpg
+5080.jpg
+11997.jpg
+10910.jpg
+19786.jpg
+18818.jpg
+27601.jpg
+12490.jpg
+15376.jpg
+23825.jpg
+23015.jpg
+19913.jpg
+23079.jpg
+20455.jpg
+18168.jpg
+11555.jpg
+29228.jpg
+21418.jpg
+3641.jpg
+14420.jpg
+16249.jpg
+12014.jpg
+9135.jpg
+17709.jpg
+6442.jpg
+554.jpg
+7172.jpg
+5340.jpg
+29441.jpg
+18686.jpg
+12350.jpg
+16719.jpg
+23726.jpg
+16123.jpg
+11219.jpg
+14044.jpg
+4406.jpg
+365.jpg
+11748.jpg
+7512.jpg
+16309.jpg
+17317.jpg
+5216.jpg
+17825.jpg
+28523.jpg
+2025.jpg
+18265.jpg
+5568.jpg
+11017.jpg
+9196.jpg
+23774.jpg
+1384.jpg
+12706.jpg
+13762.jpg
+13673.jpg
+18577.jpg
+12056.jpg
+27454.jpg
+29360.jpg
+10577.jpg
+10410.jpg
+29793.jpg
+2600.jpg
+21689.jpg
+23956.jpg
+12417.jpg
+7186.jpg
+18178.jpg
+14827.jpg
+26284.jpg
+155.jpg
+24783.jpg
+6064.jpg
+10748.jpg
+690.jpg
+20949.jpg
+13285.jpg
+10311.jpg
+8620.jpg
+15963.jpg
+2814.jpg
+8387.jpg
+5345.jpg
+19688.jpg
+9109.jpg
+5714.jpg
+23728.jpg
+17467.jpg
+15353.jpg
+26773.jpg
+1475.jpg
+11958.jpg
+996.jpg
+22093.jpg
+18999.jpg
+9814.jpg
+24439.jpg
+10177.jpg
+12426.jpg
+828.jpg
+9131.jpg
+28337.jpg
+29939.jpg
+28085.jpg
+19947.jpg
+8345.jpg
+6771.jpg
+22776.jpg
+4413.jpg
+23474.jpg
+46.jpg
+2741.jpg
+21263.jpg
+8367.jpg
+2450.jpg
+6877.jpg
+7962.jpg
+18155.jpg
+26638.jpg
+19091.jpg
+29300.jpg
+24796.jpg
+29101.jpg
+14448.jpg
+23587.jpg
+10809.jpg
+19690.jpg
+21179.jpg
+2160.jpg
+23055.jpg
+992.jpg
+15905.jpg
+1981.jpg
+19501.jpg
+9052.jpg
+12623.jpg
+302.jpg
+22746.jpg
+6247.jpg
+29930.jpg
+21199.jpg
+7098.jpg
+162.jpg
+10395.jpg
+26210.jpg
+3949.jpg
+11000.jpg
+14758.jpg
+20611.jpg
+6256.jpg
+2994.jpg
+9024.jpg
+13724.jpg
+9641.jpg
+23405.jpg
+26161.jpg
+5632.jpg
+4446.jpg
+8246.jpg
+25.jpg
+6760.jpg
+19539.jpg
+25461.jpg
+22905.jpg
+18018.jpg
+16801.jpg
+21884.jpg
+20665.jpg
+17728.jpg
+18735.jpg
+15060.jpg
+19153.jpg
+16360.jpg
+23240.jpg
+12792.jpg
+4408.jpg
+27048.jpg
+17491.jpg
+28581.jpg
+25974.jpg
+18421.jpg
+18614.jpg
+8878.jpg
+10399.jpg
+24237.jpg
+3153.jpg
+25141.jpg
+27999.jpg
+17529.jpg
+24717.jpg
+29028.jpg
+27600.jpg
+10955.jpg
+16839.jpg
+3207.jpg
+4201.jpg
+17430.jpg
+26804.jpg
+1763.jpg
+27776.jpg
+5332.jpg
+10670.jpg
+27652.jpg
+10912.jpg
+9767.jpg
+18702.jpg
+7634.jpg
+26853.jpg
+21218.jpg
+6293.jpg
+2896.jpg
+1007.jpg
+10651.jpg
+7691.jpg
+14466.jpg
+2014.jpg
+4305.jpg
+13461.jpg
+19814.jpg
+7987.jpg
+17115.jpg
+8429.jpg
+16424.jpg
+26688.jpg
+24964.jpg
+17208.jpg
+2767.jpg
+26696.jpg
+6074.jpg
+1808.jpg
+19512.jpg
+14408.jpg
+14310.jpg
+19366.jpg
+5540.jpg
+18626.jpg
+21374.jpg
+20269.jpg
+19865.jpg
+17062.jpg
+14923.jpg
+6232.jpg
+2721.jpg
+26226.jpg
+25029.jpg
+24050.jpg
+19741.jpg
+8869.jpg
+19553.jpg
+23556.jpg
+12772.jpg
+14320.jpg
+17839.jpg
+8521.jpg
+10031.jpg
+13259.jpg
+9241.jpg
+20563.jpg
+29660.jpg
+7888.jpg
+22202.jpg
+267.jpg
+13960.jpg
+14850.jpg
+13798.jpg
+29395.jpg
+7823.jpg
+22434.jpg
+22876.jpg
+9761.jpg
+25424.jpg
+12913.jpg
+25944.jpg
+26364.jpg
+19488.jpg
+15579.jpg
+21340.jpg
+20522.jpg
+26970.jpg
+8150.jpg
+25462.jpg
+25776.jpg
+10607.jpg
+19656.jpg
+29586.jpg
+6518.jpg
+23662.jpg
+21672.jpg
+13389.jpg
+14349.jpg
+28982.jpg
+18257.jpg
+8786.jpg
+19113.jpg
+20148.jpg
+25258.jpg
+2617.jpg
+18816.jpg
+12718.jpg
+22325.jpg
+22407.jpg
+18364.jpg
+25596.jpg
+14962.jpg
+23360.jpg
+28264.jpg
+325.jpg
+2657.jpg
+12238.jpg
+10840.jpg
+6778.jpg
+2628.jpg
+19748.jpg
+24511.jpg
+12004.jpg
+6187.jpg
+15371.jpg
+11388.jpg
+2599.jpg
+27900.jpg
+28180.jpg
+10640.jpg
+15918.jpg
+25493.jpg
+5491.jpg
+14264.jpg
+10492.jpg
+10190.jpg
+20895.jpg
+6110.jpg
+19152.jpg
+24539.jpg
+24045.jpg
+1352.jpg
+28334.jpg
+11358.jpg
+2189.jpg
+29832.jpg
+2661.jpg
+11552.jpg
+20850.jpg
+1672.jpg
+13177.jpg
+26987.jpg
+4670.jpg
+3191.jpg
+6066.jpg
+16367.jpg
+22120.jpg
+13088.jpg
+7344.jpg
+945.jpg
+25566.jpg
+16806.jpg
+16567.jpg
+16612.jpg
+19915.jpg
+27692.jpg
+24442.jpg
+11823.jpg
+278.jpg
+16145.jpg
+23461.jpg
+7363.jpg
+6357.jpg
+15706.jpg
+22796.jpg
+26208.jpg
+6235.jpg
+24728.jpg
+23749.jpg
+4895.jpg
+24870.jpg
+20476.jpg
+20627.jpg
+22079.jpg
+21301.jpg
+12774.jpg
+23212.jpg
+19285.jpg
+3927.jpg
+8846.jpg
+7471.jpg
+21118.jpg
+12066.jpg
+19762.jpg
+17953.jpg
+21154.jpg
+8503.jpg
+26799.jpg
+14824.jpg
+13674.jpg
+28985.jpg
+21251.jpg
+1340.jpg
+23177.jpg
+11983.jpg
+27501.jpg
+17295.jpg
+8338.jpg
+3811.jpg
+9535.jpg
+12421.jpg
+6407.jpg
+2255.jpg
+18456.jpg
+9130.jpg
+10503.jpg
+18663.jpg
+28572.jpg
+1444.jpg
+20153.jpg
+15937.jpg
+24681.jpg
+10015.jpg
+13593.jpg
+5745.jpg
+14593.jpg
+25182.jpg
+26438.jpg
+16210.jpg
+25993.jpg
+1610.jpg
+767.jpg
+21652.jpg
+15247.jpg
+29538.jpg
+26270.jpg
+14464.jpg
+28990.jpg
+29323.jpg
+17863.jpg
+22524.jpg
+318.jpg
+25396.jpg
+15947.jpg
+13963.jpg
+19449.jpg
+20656.jpg
+9973.jpg
+3013.jpg
+8803.jpg
+6843.jpg
+19404.jpg
+24560.jpg
+24420.jpg
+29552.jpg
+25284.jpg
+17756.jpg
+12473.jpg
+20228.jpg
+17260.jpg
+21856.jpg
+24720.jpg
+22970.jpg
+18983.jpg
+20606.jpg
+10665.jpg
+29958.jpg
+19340.jpg
+28073.jpg
+19003.jpg
+380.jpg
+5370.jpg
+17424.jpg
+701.jpg
+9859.jpg
+1101.jpg
+16414.jpg
+17872.jpg
+258.jpg
+7705.jpg
+7619.jpg
+17645.jpg
+22774.jpg
+71.jpg
+12852.jpg
+21984.jpg
+25036.jpg
+28640.jpg
+7089.jpg
+29173.jpg
+29435.jpg
+9918.jpg
+12914.jpg
+18147.jpg
+26874.jpg
+12831.jpg
+4587.jpg
+7603.jpg
+27256.jpg
+12453.jpg
+12053.jpg
+11350.jpg
+17242.jpg
+17175.jpg
+9863.jpg
+25095.jpg
+1800.jpg
+4214.jpg
+22741.jpg
+26005.jpg
+24867.jpg
+3727.jpg
+23522.jpg
+11445.jpg
+6122.jpg
+9040.jpg
+23175.jpg
+5894.jpg
+21915.jpg
+15854.jpg
+3604.jpg
+3322.jpg
+12708.jpg
+18314.jpg
+390.jpg
+16456.jpg
+102.jpg
+8684.jpg
+13536.jpg
+23926.jpg
+18927.jpg
+28932.jpg
+2712.jpg
+2689.jpg
+2565.jpg
+1353.jpg
+11492.jpg
+9926.jpg
+18400.jpg
+15771.jpg
+6521.jpg
+4069.jpg
+26498.jpg
+9560.jpg
+2642.jpg
+29406.jpg
+29096.jpg
+8610.jpg
+28691.jpg
+2934.jpg
+27953.jpg
+5059.jpg
+25969.jpg
+15227.jpg
+14121.jpg
+26346.jpg
+890.jpg
+14378.jpg
+27559.jpg
+18678.jpg
+19732.jpg
+17114.jpg
+3235.jpg
+2135.jpg
+3445.jpg
+57.jpg
+20394.jpg
+4509.jpg
+23928.jpg
+12886.jpg
+12469.jpg
+3788.jpg
+799.jpg
+25105.jpg
+3056.jpg
+17207.jpg
+20718.jpg
+19105.jpg
+6466.jpg
+21596.jpg
+3160.jpg
+18520.jpg
+25153.jpg
+29319.jpg
+22599.jpg
+12311.jpg
+13876.jpg
+1460.jpg
+20879.jpg
+904.jpg
+13962.jpg
+18307.jpg
+15559.jpg
+18458.jpg
+12517.jpg
+4919.jpg
+17171.jpg
+16030.jpg
+29396.jpg
+28152.jpg
+1361.jpg
+23371.jpg
+26076.jpg
+3130.jpg
+14863.jpg
+20006.jpg
+11932.jpg
+18900.jpg
+21441.jpg
+16895.jpg
+24145.jpg
+7738.jpg
+1628.jpg
+22875.jpg
+12023.jpg
+17494.jpg
+27311.jpg
+1653.jpg
+2069.jpg
+5251.jpg
+26342.jpg
+15842.jpg
+27943.jpg
+17994.jpg
+20279.jpg
+24545.jpg
+13276.jpg
+709.jpg
+25089.jpg
+29309.jpg
+161.jpg
+13575.jpg
+2521.jpg
+13905.jpg
+8537.jpg
+27922.jpg
+6717.jpg
+6502.jpg
+12182.jpg
+16317.jpg
+12475.jpg
+4281.jpg
+25093.jpg
+25103.jpg
+24131.jpg
+16720.jpg
+15387.jpg
+15810.jpg
+18600.jpg
+16020.jpg
+28041.jpg
+22171.jpg
+22369.jpg
+18948.jpg
+19136.jpg
+13080.jpg
+14388.jpg
+10145.jpg
+15619.jpg
+26681.jpg
+12549.jpg
+7615.jpg
+15719.jpg
+22175.jpg
+4192.jpg
+7908.jpg
+24613.jpg
+7616.jpg
+14202.jpg
+16237.jpg
+15421.jpg
+18879.jpg
+28096.jpg
+24248.jpg
+8406.jpg
+28420.jpg
+19311.jpg
+6724.jpg
+7074.jpg
+15397.jpg
+29693.jpg
+28044.jpg
+19147.jpg
+26765.jpg
+28908.jpg
+26723.jpg
+9754.jpg
+25569.jpg
+29964.jpg
+18339.jpg
+12284.jpg
+8050.jpg
+26516.jpg
+10688.jpg
+7556.jpg
+24307.jpg
+22053.jpg
+20534.jpg
+24704.jpg
+25875.jpg
+10902.jpg
+27993.jpg
+7478.jpg
+21331.jpg
+16996.jpg
+9971.jpg
+24282.jpg
+1728.jpg
+16350.jpg
+27433.jpg
+27717.jpg
+24571.jpg
+14419.jpg
+15122.jpg
+11075.jpg
+3348.jpg
+28593.jpg
+23658.jpg
+11223.jpg
+9467.jpg
+25500.jpg
+9266.jpg
+10871.jpg
+29574.jpg
+2482.jpg
+3686.jpg
+26545.jpg
+19132.jpg
+13945.jpg
+9211.jpg
+20830.jpg
+8112.jpg
+8675.jpg
+14862.jpg
+10924.jpg
+12277.jpg
+14068.jpg
+24197.jpg
+22982.jpg
+25713.jpg
+28797.jpg
+24597.jpg
+15568.jpg
+612.jpg
+6968.jpg
+6852.jpg
+26678.jpg
+12117.jpg
+4031.jpg
+14610.jpg
+18813.jpg
+8464.jpg
+18587.jpg
+22611.jpg
+22778.jpg
+19262.jpg
+24206.jpg
+18051.jpg
+7502.jpg
+24757.jpg
+12293.jpg
+19839.jpg
+12691.jpg
+23808.jpg
+21979.jpg
+20060.jpg
+1570.jpg
+16731.jpg
+5753.jpg
+9657.jpg
+21285.jpg
+9301.jpg
+7241.jpg
+2834.jpg
+29286.jpg
+24434.jpg
+22029.jpg
+12827.jpg
+16973.jpg
+19386.jpg
+15904.jpg
+23411.jpg
+6579.jpg
+21012.jpg
+636.jpg
+22671.jpg
+22348.jpg
+23660.jpg
+24085.jpg
+29984.jpg
+23693.jpg
+10346.jpg
+10404.jpg
+2984.jpg
+9805.jpg
+19316.jpg
+14262.jpg
+4798.jpg
+29923.jpg
+25395.jpg
+14925.jpg
+5443.jpg
+7894.jpg
+23095.jpg
+21231.jpg
+22787.jpg
+29936.jpg
+26072.jpg
+2488.jpg
+6393.jpg
+3418.jpg
+25913.jpg
+12467.jpg
+8496.jpg
+23488.jpg
+107.jpg
+19602.jpg
+23325.jpg
+12559.jpg
+9161.jpg
+15531.jpg
+9623.jpg
+8171.jpg
+19718.jpg
+8544.jpg
+22154.jpg
+6892.jpg
+21636.jpg
+3786.jpg
+10365.jpg
+21870.jpg
+19875.jpg
+28699.jpg
+21091.jpg
+26865.jpg
+22041.jpg
+3920.jpg
+15148.jpg
+23525.jpg
+24009.jpg
+25960.jpg
+785.jpg
+17858.jpg
+21600.jpg
+4829.jpg
+11607.jpg
+20113.jpg
+14910.jpg
+21755.jpg
+7313.jpg
+4804.jpg
+28139.jpg
+28124.jpg
+14461.jpg
+1753.jpg
+1875.jpg
+29665.jpg
+24187.jpg
+9465.jpg
+27320.jpg
+12309.jpg
+2733.jpg
+816.jpg
+8011.jpg
+23243.jpg
+16526.jpg
+27147.jpg
+15569.jpg
+3596.jpg
+19555.jpg
+297.jpg
+12761.jpg
+7122.jpg
+25201.jpg
+12759.jpg
+1930.jpg
+10104.jpg
+10447.jpg
+9899.jpg
+14552.jpg
+14625.jpg
+25723.jpg
+12586.jpg
+23467.jpg
+21828.jpg
+22700.jpg
+23822.jpg
+5944.jpg
+27086.jpg
+9375.jpg
+23748.jpg
+12399.jpg
+5084.jpg
+1161.jpg
+9159.jpg
+11539.jpg
+5212.jpg
+154.jpg
+20988.jpg
+18877.jpg
+9749.jpg
+9665.jpg
+10338.jpg
+9146.jpg
+12807.jpg
+16396.jpg
+17981.jpg
+6079.jpg
+8542.jpg
+13671.jpg
+2723.jpg
+457.jpg
+2027.jpg
+3975.jpg
+18963.jpg
+20897.jpg
+26211.jpg
+21000.jpg
+27624.jpg
+27216.jpg
+9406.jpg
+6296.jpg
+13757.jpg
+13144.jpg
+17047.jpg
+27621.jpg
+4872.jpg
+26920.jpg
+9980.jpg
+26543.jpg
+20451.jpg
+27412.jpg
+27522.jpg
+10547.jpg
+24450.jpg
+28600.jpg
+16735.jpg
+24747.jpg
+3618.jpg
+14421.jpg
+3261.jpg
+28397.jpg
+14255.jpg
+5070.jpg
+2414.jpg
+13689.jpg
+29843.jpg
+12667.jpg
+2686.jpg
+8835.jpg
+27073.jpg
+5845.jpg
+13742.jpg
+18515.jpg
+2127.jpg
+18196.jpg
+25994.jpg
+9204.jpg
+23112.jpg
+1864.jpg
+10079.jpg
+17931.jpg
+7051.jpg
+3652.jpg
+18652.jpg
+27682.jpg
+9274.jpg
+17414.jpg
+23054.jpg
+7121.jpg
+13337.jpg
+26480.jpg
+12877.jpg
+9318.jpg
+14572.jpg
+26114.jpg
+14027.jpg
+21035.jpg
+17004.jpg
+8546.jpg
+25501.jpg
+21899.jpg
+11194.jpg
+27957.jpg
+16507.jpg
+13784.jpg
+17599.jpg
+23654.jpg
+15173.jpg
+20964.jpg
+7078.jpg
+8649.jpg
+23567.jpg
+29749.jpg
+14957.jpg
+16056.jpg
+13800.jpg
+20575.jpg
+26984.jpg
+755.jpg
+2105.jpg
+12550.jpg
+22051.jpg
+8131.jpg
+1031.jpg
+20506.jpg
+14254.jpg
+221.jpg
+11556.jpg
+23225.jpg
+25512.jpg
+10194.jpg
+7238.jpg
+16937.jpg
+6284.jpg
+11682.jpg
+5691.jpg
+19473.jpg
+2772.jpg
+26042.jpg
+16989.jpg
+1273.jpg
+3365.jpg
+12830.jpg
+14976.jpg
+8679.jpg
+8253.jpg
+17093.jpg
+7587.jpg
+7847.jpg
+26105.jpg
+5391.jpg
+15203.jpg
+13512.jpg
+12329.jpg
+24624.jpg
+972.jpg
+4663.jpg
+12394.jpg
+23645.jpg
+25011.jpg
+23758.jpg
+14694.jpg
+22548.jpg
+28988.jpg
+11571.jpg
+24117.jpg
+13318.jpg
+29734.jpg
+11129.jpg
+5209.jpg
+13621.jpg
+13275.jpg
+17516.jpg
+8686.jpg
+12059.jpg
+5531.jpg
+22588.jpg
+23712.jpg
+18531.jpg
+25882.jpg
+5314.jpg
+2507.jpg
+7633.jpg
+25245.jpg
+18656.jpg
+22442.jpg
+20509.jpg
+5128.jpg
+14997.jpg
+20579.jpg
+2006.jpg
+6850.jpg
+2300.jpg
+6798.jpg
+16082.jpg
+955.jpg
+18026.jpg
+10219.jpg
+21706.jpg
+28284.jpg
+6312.jpg
+10261.jpg
+17393.jpg
+2709.jpg
+15450.jpg
+15479.jpg
+12316.jpg
+6301.jpg
+552.jpg
+5808.jpg
+9041.jpg
+21815.jpg
+28328.jpg
+19684.jpg
+10872.jpg
+9972.jpg
+26720.jpg
+6241.jpg
+17888.jpg
+21841.jpg
+7635.jpg
+9606.jpg
+29025.jpg
+19556.jpg
+7179.jpg
+38.jpg
+18021.jpg
+18205.jpg
+8674.jpg
+9193.jpg
+23085.jpg
+9662.jpg
+25070.jpg
+26351.jpg
+2374.jpg
+9726.jpg
+10220.jpg
+25835.jpg
+22140.jpg
+1039.jpg
+3900.jpg
+16505.jpg
+15056.jpg
+26373.jpg
+9320.jpg
+4760.jpg
+17813.jpg
+2380.jpg
+21357.jpg
+14182.jpg
+4907.jpg
+8115.jpg
+21763.jpg
+18420.jpg
+3253.jpg
+3771.jpg
+3409.jpg
+9173.jpg
+10900.jpg
+24925.jpg
+8205.jpg
+25128.jpg
+13835.jpg
+2802.jpg
+21077.jpg
+28404.jpg
+16861.jpg
+16882.jpg
+1889.jpg
+4301.jpg
+14753.jpg
+25356.jpg
+21255.jpg
+446.jpg
+7483.jpg
+19176.jpg
+11634.jpg
+5362.jpg
+13091.jpg
+12173.jpg
+16092.jpg
+1594.jpg
+22016.jpg
+8513.jpg
+18791.jpg
+24716.jpg
+26388.jpg
+3369.jpg
+22663.jpg
+12570.jpg
+13000.jpg
+21266.jpg
+13213.jpg
+28974.jpg
+9128.jpg
+25921.jpg
+2141.jpg
+26922.jpg
+20740.jpg
+13572.jpg
+23251.jpg
+10303.jpg
+4317.jpg
+22578.jpg
+3548.jpg
+29778.jpg
+6480.jpg
+2465.jpg
+16465.jpg
+17566.jpg
+7357.jpg
+4369.jpg
+10755.jpg
+28570.jpg
+14161.jpg
+9366.jpg
+25237.jpg
+18695.jpg
+19525.jpg
+21787.jpg
+11478.jpg
+22709.jpg
+7414.jpg
+17292.jpg
+29873.jpg
+8138.jpg
+13297.jpg
+6897.jpg
+2810.jpg
+1938.jpg
+23362.jpg
+22678.jpg
+14613.jpg
+5510.jpg
+5484.jpg
+16843.jpg
+21959.jpg
+23123.jpg
+9592.jpg
+21187.jpg
+16289.jpg
+9846.jpg
+13333.jpg
+2751.jpg
+10427.jpg
+28457.jpg
+14945.jpg
+21760.jpg
+299.jpg
+9045.jpg
+3139.jpg
+21246.jpg
+3360.jpg
+12062.jpg
+13854.jpg
+18357.jpg
+18341.jpg
+26945.jpg
+10960.jpg
+10686.jpg
+18190.jpg
+655.jpg
+11280.jpg
+2556.jpg
+24777.jpg
+1471.jpg
+18528.jpg
+25814.jpg
+17110.jpg
+9209.jpg
+23651.jpg
+19001.jpg
+22689.jpg
+28095.jpg
+6999.jpg
+3292.jpg
+613.jpg
+29311.jpg
+27014.jpg
+27547.jpg
+16182.jpg
+3316.jpg
+1325.jpg
+22070.jpg
+19728.jpg
+3990.jpg
+9791.jpg
+1788.jpg
+25563.jpg
+14116.jpg
+2578.jpg
+14390.jpg
+29990.jpg
+2099.jpg
+28461.jpg
+7523.jpg
+25721.jpg
+20544.jpg
+22283.jpg
+6815.jpg
+21833.jpg
+24781.jpg
+29408.jpg
+25367.jpg
+28808.jpg
+11387.jpg
+23096.jpg
+23573.jpg
+558.jpg
+11662.jpg
+8082.jpg
+7753.jpg
+16738.jpg
+7011.jpg
+20074.jpg
+7597.jpg
+21203.jpg
+15610.jpg
+9580.jpg
+29475.jpg
+1169.jpg
+24319.jpg
+10091.jpg
+14505.jpg
+20365.jpg
+5405.jpg
+25819.jpg
+27217.jpg
+14689.jpg
+26929.jpg
+14639.jpg
+16259.jpg
+27592.jpg
+20841.jpg
+28126.jpg
+264.jpg
+3481.jpg
+25990.jpg
+2104.jpg
+1919.jpg
+11829.jpg
+7725.jpg
+6461.jpg
+19980.jpg
+7445.jpg
+17462.jpg
+23894.jpg
+26566.jpg
+10153.jpg
+4718.jpg
+25767.jpg
+1428.jpg
+11011.jpg
+25904.jpg
+13181.jpg
+15809.jpg
+17826.jpg
+18750.jpg
+13073.jpg
+17882.jpg
+9336.jpg
+28312.jpg
+29621.jpg
+485.jpg
+5372.jpg
+26060.jpg
+6055.jpg
+7794.jpg
+17574.jpg
+15966.jpg
+27359.jpg
+24598.jpg
+16454.jpg
+7581.jpg
+8811.jpg
+4995.jpg
+18876.jpg
+27034.jpg
+19654.jpg
+19321.jpg
+20198.jpg
+15733.jpg
+25546.jpg
+7501.jpg
+24711.jpg
+23733.jpg
+10034.jpg
+11295.jpg
+15089.jpg
+12039.jpg
+7614.jpg
+17057.jpg
+26969.jpg
+16058.jpg
+18106.jpg
+25122.jpg
+19935.jpg
+29829.jpg
+29337.jpg
+11642.jpg
+160.jpg
+9383.jpg
+20376.jpg
+28176.jpg
+276.jpg
+14159.jpg
+5833.jpg
+7135.jpg
+15817.jpg
+15183.jpg
+8825.jpg
+138.jpg
+8893.jpg
+29905.jpg
+25820.jpg
+16474.jpg
+1750.jpg
+19459.jpg
+1272.jpg
+2671.jpg
+16827.jpg
+9695.jpg
+16897.jpg
+3872.jpg
+28082.jpg
+11717.jpg
+11341.jpg
+26527.jpg
+1193.jpg
+22395.jpg
+27345.jpg
+15535.jpg
+15584.jpg
+27754.jpg
+9615.jpg
+2268.jpg
+3213.jpg
+8250.jpg
+26951.jpg
+13567.jpg
+19613.jpg
+3681.jpg
+2016.jpg
+16952.jpg
+22758.jpg
+2490.jpg
+13807.jpg
+13227.jpg
+19148.jpg
+21431.jpg
+12458.jpg
+12530.jpg
+28952.jpg
+25790.jpg
+2322.jpg
+14766.jpg
+24025.jpg
+21080.jpg
+8920.jpg
+2551.jpg
+24839.jpg
+21844.jpg
+7144.jpg
+11672.jpg
+1185.jpg
+6177.jpg
+9707.jpg
+8320.jpg
+22836.jpg
+9950.jpg
+10364.jpg
+19818.jpg
+21486.jpg
+26912.jpg
+10518.jpg
+9002.jpg
+6953.jpg
+28154.jpg
+10717.jpg
+28575.jpg
+16064.jpg
+12512.jpg
+12243.jpg
+7715.jpg
+6080.jpg
+24625.jpg
+13163.jpg
+9547.jpg
+27099.jpg
+25949.jpg
+25137.jpg
+28584.jpg
+5131.jpg
+5317.jpg
+18800.jpg
+11359.jpg
+22897.jpg
+12995.jpg
+1294.jpg
+20634.jpg
+19707.jpg
+22333.jpg
+11775.jpg
+5418.jpg
+733.jpg
+19114.jpg
+24536.jpg
+8741.jpg
+8085.jpg
+14812.jpg
+20814.jpg
+28146.jpg
+26899.jpg
+29276.jpg
+27259.jpg
+7375.jpg
+28249.jpg
+29362.jpg
+19638.jpg
+21272.jpg
+2730.jpg
+718.jpg
+9839.jpg
+15154.jpg
+7927.jpg
+19694.jpg
+11399.jpg
+22835.jpg
+9626.jpg
+12861.jpg
+26692.jpg
+26793.jpg
+14717.jpg
+26172.jpg
+16753.jpg
+12298.jpg
+14620.jpg
+5735.jpg
+17721.jpg
+9432.jpg
+10378.jpg
+14020.jpg
+722.jpg
+22651.jpg
+6781.jpg
+23883.jpg
+4548.jpg
+17970.jpg
+5913.jpg
+4939.jpg
+19825.jpg
+5042.jpg
+18287.jpg
+13100.jpg
+305.jpg
+11423.jpg
+25907.jpg
+23353.jpg
+1917.jpg
+10166.jpg
+27886.jpg
+28175.jpg
+2310.jpg
+17762.jpg
+741.jpg
+7518.jpg
+10056.jpg
+18137.jpg
+17032.jpg
+24548.jpg
+25294.jpg
+1625.jpg
+4586.jpg
+18653.jpg
+39.jpg
+13206.jpg
+3549.jpg
+11410.jpg
+19254.jpg
+16291.jpg
+12737.jpg
+9735.jpg
+20931.jpg
+23031.jpg
+29171.jpg
+3137.jpg
+13903.jpg
+25068.jpg
+18654.jpg
+25003.jpg
+26679.jpg
+7680.jpg
+14395.jpg
+25373.jpg
+21621.jpg
+4971.jpg
+22062.jpg
+23754.jpg
+18606.jpg
+17156.jpg
+15862.jpg
+18058.jpg
+19361.jpg
+22770.jpg
+10251.jpg
+18085.jpg
+13511.jpg
+15018.jpg
+15174.jpg
+24642.jpg
+22949.jpg
+8500.jpg
+10386.jpg
+22948.jpg
+21434.jpg
+12809.jpg
+23228.jpg
+6262.jpg
+11565.jpg
+24012.jpg
+2589.jpg
+23856.jpg
+5699.jpg
+4712.jpg
+1793.jpg
+15920.jpg
+20461.jpg
+29076.jpg
+15486.jpg
+18838.jpg
+18044.jpg
+3420.jpg
+17698.jpg
+7881.jpg
+8032.jpg
+7102.jpg
+28017.jpg
+14176.jpg
+21056.jpg
+18633.jpg
+9887.jpg
+2892.jpg
+3546.jpg
+23548.jpg
+10097.jpg
+17461.jpg
+24451.jpg
+16586.jpg
+11849.jpg
+23162.jpg
+13640.jpg
+2667.jpg
+9154.jpg
+25371.jpg
+9027.jpg
+25841.jpg
+15330.jpg
+13883.jpg
+11039.jpg
+17137.jpg
+20285.jpg
+28255.jpg
+6657.jpg
+19173.jpg
+17166.jpg
+27828.jpg
+1476.jpg
+28724.jpg
+11561.jpg
+16894.jpg
+6966.jpg
+12503.jpg
+17557.jpg
+24698.jpg
+11201.jpg
+11421.jpg
+12171.jpg
+16628.jpg
+3659.jpg
+20842.jpg
+15221.jpg
+1698.jpg
+28776.jpg
+13347.jpg
+19409.jpg
+1071.jpg
+5427.jpg
+11375.jpg
+26489.jpg
+474.jpg
+10732.jpg
+25065.jpg
+11374.jpg
+27439.jpg
+21456.jpg
+25207.jpg
+11166.jpg
+20430.jpg
+10314.jpg
+11140.jpg
+800.jpg
+1780.jpg
+3398.jpg
+22024.jpg
+25239.jpg
+104.jpg
+23423.jpg
+3929.jpg
+12446.jpg
+1261.jpg
+12354.jpg
+6500.jpg
+15605.jpg
+13456.jpg
+11815.jpg
+29723.jpg
+4524.jpg
+9775.jpg
+17109.jpg
+24861.jpg
+15253.jpg
+11018.jpg
+22420.jpg
+11649.jpg
+11851.jpg
+2334.jpg
+23620.jpg
+3414.jpg
+27178.jpg
+994.jpg
+5469.jpg
+27562.jpg
+10989.jpg
+17854.jpg
+3499.jpg
+8144.jpg
+12700.jpg
+6633.jpg
+26034.jpg
+6806.jpg
+10083.jpg
+18217.jpg
+13663.jpg
+13386.jpg
+7716.jpg
+23969.jpg
+12673.jpg
+14582.jpg
+11988.jpg
+29077.jpg
+27301.jpg
+21491.jpg
+27551.jpg
+17003.jpg
+26082.jpg
+19979.jpg
+12610.jpg
+24718.jpg
+5397.jpg
+4218.jpg
+3147.jpg
+16127.jpg
+17437.jpg
+1557.jpg
+7887.jpg
+10931.jpg
+6347.jpg
+469.jpg
+205.jpg
+19769.jpg
+18469.jpg
+18389.jpg
+5857.jpg
+20642.jpg
+15447.jpg
+20184.jpg
+2717.jpg
+17042.jpg
+25321.jpg
+26822.jpg
+12501.jpg
+25450.jpg
+8143.jpg
+21089.jpg
+17840.jpg
+14562.jpg
+19441.jpg
+8147.jpg
+12636.jpg
+24594.jpg
+20602.jpg
+7146.jpg
+14531.jpg
+5603.jpg
+14459.jpg
+7588.jpg
+23527.jpg
+7912.jpg
+5149.jpg
+3266.jpg
+2382.jpg
+20205.jpg
+11467.jpg
+2703.jpg
+14904.jpg
+13873.jpg
+27955.jpg
+25741.jpg
+13659.jpg
+18808.jpg
+1145.jpg
+11593.jpg
+1965.jpg
+22715.jpg
+6920.jpg
+21157.jpg
+17708.jpg
+1018.jpg
+2351.jpg
+27913.jpg
+4508.jpg
+14270.jpg
+19411.jpg
+20212.jpg
+24191.jpg
+10743.jpg
+28542.jpg
+27733.jpg
+23432.jpg
+4950.jpg
+13052.jpg
+6062.jpg
+7162.jpg
+18450.jpg
+9084.jpg
+4702.jpg
+24958.jpg
+3177.jpg
+14663.jpg
+21700.jpg
+13089.jpg
+664.jpg
+877.jpg
+26409.jpg
+17804.jpg
+26757.jpg
+26736.jpg
+26329.jpg
+26789.jpg
+13841.jpg
+7149.jpg
+21517.jpg
+1060.jpg
+26713.jpg
+27335.jpg
+15107.jpg
+13725.jpg
+9362.jpg
+14617.jpg
+20943.jpg
+35.jpg
+1397.jpg
+26360.jpg
+4741.jpg
+11019.jpg
+27618.jpg
+25172.jpg
+14837.jpg
+4969.jpg
+9982.jpg
+20878.jpg
+17672.jpg
+18348.jpg
+10152.jpg
+1454.jpg
+17568.jpg
+17870.jpg
+8396.jpg
+3716.jpg
+10432.jpg
+20297.jpg
+16045.jpg
+27389.jpg
+18329.jpg
+19170.jpg
+28994.jpg
+20827.jpg
+16754.jpg
+4884.jpg
+22665.jpg
+8749.jpg
+22531.jpg
+5520.jpg
+19698.jpg
+6273.jpg
+11889.jpg
+11047.jpg
+25460.jpg
+15303.jpg
+6034.jpg
+18489.jpg
+12496.jpg
+399.jpg
+28086.jpg
+29019.jpg
+19857.jpg
+9669.jpg
+8742.jpg
+26632.jpg
+19687.jpg
+8794.jpg
+18478.jpg
+18014.jpg
+6708.jpg
+2291.jpg
+26309.jpg
+24564.jpg
+26601.jpg
+24337.jpg
+23122.jpg
+14829.jpg
+18574.jpg
+27498.jpg
+7096.jpg
+3672.jpg
+11835.jpg
+14164.jpg
+22725.jpg
+22220.jpg
+22707.jpg
+2899.jpg
+12556.jpg
+13796.jpg
+18338.jpg
+16912.jpg
+11761.jpg
+26419.jpg
+555.jpg
+7645.jpg
+21565.jpg
+3763.jpg
+28726.jpg
+21239.jpg
+4424.jpg
+27055.jpg
+14654.jpg
+18836.jpg
+28608.jpg
+26563.jpg
+1795.jpg
+28456.jpg
+11942.jpg
+20587.jpg
+22530.jpg
+6463.jpg
+5054.jpg
+25443.jpg
+28489.jpg
+11643.jpg
+6756.jpg
+903.jpg
+1442.jpg
+14163.jpg
+17112.jpg
+11298.jpg
+2550.jpg
+17248.jpg
+7689.jpg
+11340.jpg
+2477.jpg
+7814.jpg
+15470.jpg
+19401.jpg
+7700.jpg
+14281.jpg
+24574.jpg
+5930.jpg
+1162.jpg
+10677.jpg
+1054.jpg
+8915.jpg
+12224.jpg
+3206.jpg
+7016.jpg
+1168.jpg
+13245.jpg
+879.jpg
+18611.jpg
+26733.jpg
+17386.jpg
+21897.jpg
+16074.jpg
+12321.jpg
+28973.jpg
+16036.jpg
+7189.jpg
+25833.jpg
+21928.jpg
+12149.jpg
+22498.jpg
+5552.jpg
+14079.jpg
+28371.jpg
+26070.jpg
+10304.jpg
+8908.jpg
+22194.jpg
+26335.jpg
+20500.jpg
+4767.jpg
+3300.jpg
+7333.jpg
+25989.jpg
+24542.jpg
+14016.jpg
+9601.jpg
+21819.jpg
+19120.jpg
+21660.jpg
+14014.jpg
+15140.jpg
+29345.jpg
+4621.jpg
+5419.jpg
+14576.jpg
+910.jpg
+16329.jpg
+3150.jpg
+8343.jpg
+5339.jpg
+11432.jpg
+8436.jpg
+26677.jpg
+11473.jpg
+18997.jpg
+13168.jpg
+3747.jpg
+11810.jpg
+23741.jpg
+4382.jpg
+17266.jpg
+12361.jpg
+19225.jpg
+12050.jpg
+17176.jpg
+28414.jpg
+24309.jpg
+6164.jpg
+5557.jpg
+17622.jpg
+11146.jpg
+8189.jpg
+6473.jpg
+20868.jpg
+20391.jpg
+15143.jpg
+15192.jpg
+21966.jpg
+26128.jpg
+10115.jpg
+6685.jpg
+26618.jpg
+20129.jpg
+26212.jpg
+13631.jpg
+20731.jpg
+6149.jpg
+28799.jpg
+13995.jpg
+25629.jpg
+27407.jpg
+24686.jpg
+18682.jpg
+11557.jpg
+23151.jpg
+15574.jpg
+19211.jpg
+8944.jpg
+29183.jpg
+17889.jpg
+1887.jpg
+17343.jpg
+7253.jpg
+17707.jpg
+19664.jpg
+15897.jpg
+15731.jpg
+2839.jpg
+14668.jpg
+8713.jpg
+11631.jpg
+17123.jpg
+25438.jpg
+18484.jpg
+1252.jpg
+4135.jpg
+27620.jpg
+20560.jpg
+16157.jpg
+14946.jpg
+13983.jpg
+26682.jpg
+17569.jpg
+21581.jpg
+17649.jpg
+13065.jpg
+988.jpg
+27334.jpg
+11638.jpg
+15542.jpg
+26762.jpg
+12561.jpg
+22610.jpg
+7496.jpg
+23386.jpg
+6020.jpg
+12892.jpg
+6180.jpg
+5762.jpg
+10710.jpg
+3728.jpg
+10817.jpg
+26502.jpg
+2365.jpg
+7272.jpg
+385.jpg
+13187.jpg
+16909.jpg
+2371.jpg
+6094.jpg
+21590.jpg
+20837.jpg
+28445.jpg
+5968.jpg
+25630.jpg
+406.jpg
+29709.jpg
+2512.jpg
+23268.jpg
+8456.jpg
+25698.jpg
+19817.jpg
+24847.jpg
+11841.jpg
+3991.jpg
+19431.jpg
+12215.jpg
+9222.jpg
+16670.jpg
+24533.jpg
+19802.jpg
+21639.jpg
+25995.jpg
+17528.jpg
+20164.jpg
+17278.jpg
+16803.jpg
+6642.jpg
+19573.jpg
+4590.jpg
+19298.jpg
+25673.jpg
+19995.jpg
+25998.jpg
+4653.jpg
+29986.jpg
+8181.jpg
+15077.jpg
+1984.jpg
+13920.jpg
+19044.jpg
+1991.jpg
+6395.jpg
+27770.jpg
+274.jpg
+18029.jpg
+6629.jpg
+15951.jpg
+8035.jpg
+21387.jpg
+4787.jpg
+12990.jpg
+583.jpg
+17354.jpg
+14120.jpg
+14095.jpg
+13336.jpg
+17769.jpg
+6626.jpg
+24741.jpg
+26565.jpg
+16862.jpg
+6564.jpg
+29861.jpg
+7734.jpg
+13066.jpg
+1766.jpg
+7287.jpg
+3973.jpg
+12070.jpg
+27801.jpg
+25624.jpg
+25277.jpg
+10549.jpg
+163.jpg
+27221.jpg
+14558.jpg
+3088.jpg
+10040.jpg
+23528.jpg
+23142.jpg
+13546.jpg
+28596.jpg
+2469.jpg
+29326.jpg
+4436.jpg
+15714.jpg
+24151.jpg
+27808.jpg
+29342.jpg
+12733.jpg
+13745.jpg
+5321.jpg
+22849.jpg
+600.jpg
+5862.jpg
+28117.jpg
+28078.jpg
+1904.jpg
+11.jpg
+27451.jpg
+27025.jpg
+29746.jpg
+23.jpg
+4556.jpg
+26796.jpg
+688.jpg
+27035.jpg
+6967.jpg
+24823.jpg
+18043.jpg
+9616.jpg
+16416.jpg
+21618.jpg
+11871.jpg
+19841.jpg
+20806.jpg
+17577.jpg
+10172.jpg
+8251.jpg
+14050.jpg
+27039.jpg
+13471.jpg
+16494.jpg
+23992.jpg
+7298.jpg
+25129.jpg
+2149.jpg
+23013.jpg
+3792.jpg
+1376.jpg
+26101.jpg
+11890.jpg
+18143.jpg
+9941.jpg
+12800.jpg
+13584.jpg
+5244.jpg
+18107.jpg
+2359.jpg
+2683.jpg
+7651.jpg
+6858.jpg
+22074.jpg
+14000.jpg
+11393.jpg
+4750.jpg
+15874.jpg
+24484.jpg
+10417.jpg
+19871.jpg
+20022.jpg
+3555.jpg
+3025.jpg
+10297.jpg
+20572.jpg
+25533.jpg
+21935.jpg
+13138.jpg
+23108.jpg
+24381.jpg
+2906.jpg
+3797.jpg
+25283.jpg
+15118.jpg
+11559.jpg
+3289.jpg
+8868.jpg
+6389.jpg
+12310.jpg
+4915.jpg
+29891.jpg
+8093.jpg
+6251.jpg
+17573.jpg
+28772.jpg
+23485.jpg
+1383.jpg
+22496.jpg
+13294.jpg
+11189.jpg
+29391.jpg
+6923.jpg
+20614.jpg
+24579.jpg
+25999.jpg
+26343.jpg
+1072.jpg
+19752.jpg
+27565.jpg
+12134.jpg
+25436.jpg
+19187.jpg
+5673.jpg
+14174.jpg
+15338.jpg
+28391.jpg
+29065.jpg
+16837.jpg
+24591.jpg
+26616.jpg
+11014.jpg
+11104.jpg
+16021.jpg
+7692.jpg
+19087.jpg
+28571.jpg
+29817.jpg
+6011.jpg
+621.jpg
+20974.jpg
+25909.jpg
+2728.jpg
+3528.jpg
+20086.jpg
+3703.jpg
+1230.jpg
+3998.jpg
+26935.jpg
+5090.jpg
+12151.jpg
+21794.jpg
+20942.jpg
+3482.jpg
+8341.jpg
+10622.jpg
+24296.jpg
+25565.jpg
+7435.jpg
+5107.jpg
+21008.jpg
+1360.jpg
+2511.jpg
+6120.jpg
+6292.jpg
+22204.jpg
+17428.jpg
+26909.jpg
+17000.jpg
+3633.jpg
+999.jpg
+934.jpg
+3662.jpg
+2383.jpg
+20315.jpg
+20053.jpg
+24302.jpg
+10813.jpg
+18074.jpg
+2798.jpg
+23864.jpg
+4881.jpg
+29762.jpg
+8558.jpg
+3639.jpg
+15132.jpg
+9058.jpg
+10921.jpg
+23554.jpg
+15096.jpg
+29365.jpg
+27062.jpg
+13050.jpg
+4516.jpg
+3462.jpg
+2983.jpg
+25238.jpg
+6413.jpg
+23960.jpg
+4678.jpg
+7227.jpg
+13548.jpg
+27394.jpg
+22646.jpg
+1782.jpg
+9740.jpg
+26938.jpg
+21750.jpg
+12672.jpg
+7561.jpg
+25232.jpg
+22986.jpg
+11595.jpg
+19639.jpg
+9765.jpg
+16060.jpg
+17815.jpg
+13726.jpg
+18246.jpg
+18334.jpg
+26075.jpg
+323.jpg
+19528.jpg
+26828.jpg
+7474.jpg
+4127.jpg
+3393.jpg
+28508.jpg
+8256.jpg
+16975.jpg
+10626.jpg
+248.jpg
+706.jpg
+26749.jpg
+10672.jpg
+10692.jpg
+17187.jpg
+7493.jpg
+20822.jpg
+16387.jpg
+4640.jpg
+22608.jpg
+27206.jpg
+4454.jpg
+23701.jpg
+10476.jpg
+28549.jpg
+3544.jpg
+445.jpg
+8314.jpg
+9522.jpg
+25568.jpg
+26619.jpg
+27944.jpg
+2594.jpg
+16873.jpg
+10786.jpg
+26294.jpg
+18136.jpg
+9267.jpg
+2073.jpg
+662.jpg
+21111.jpg
+28493.jpg
+5738.jpg
+2401.jpg
+12308.jpg
+8455.jpg
+23985.jpg
+18631.jpg
+25513.jpg
+15759.jpg
+8118.jpg
+18251.jpg
+10295.jpg
+27275.jpg
+22380.jpg
+24404.jpg
+14037.jpg
+8806.jpg
+24286.jpg
+15395.jpg
+4396.jpg
+4483.jpg
+29542.jpg
+25977.jpg
+16842.jpg
+9499.jpg
+22907.jpg
+20588.jpg
+20221.jpg
+23231.jpg
+23915.jpg
+25917.jpg
+21049.jpg
+1242.jpg
+6890.jpg
+1296.jpg
+19938.jpg
+17890.jpg
+23962.jpg
+4815.jpg
+17116.jpg
+19672.jpg
+8977.jpg
+99.jpg
+19534.jpg
+15551.jpg
+19514.jpg
+22587.jpg
+28125.jpg
+22127.jpg
+26650.jpg
+2421.jpg
+22872.jpg
+17217.jpg
+26450.jpg
+23492.jpg
+28999.jpg
+21475.jpg
+20477.jpg
+14911.jpg
+19064.jpg
+11217.jpg
+3630.jpg
+26831.jpg
+21715.jpg
+27978.jpg
+10347.jpg
+21390.jpg
+17289.jpg
+20889.jpg
+6538.jpg
+15040.jpg
+8918.jpg
+14025.jpg
+21353.jpg
+20253.jpg
+13527.jpg
+23384.jpg
+29517.jpg
+23302.jpg
+23813.jpg
+25532.jpg
+26376.jpg
+29451.jpg
+17627.jpg
+8476.jpg
+15621.jpg
+1696.jpg
+2627.jpg
+16826.jpg
+15749.jpg
+3336.jpg
+7682.jpg
+1171.jpg
+7031.jpg
+12130.jpg
+19247.jpg
+24091.jpg
+12285.jpg
+3534.jpg
+29212.jpg
+17340.jpg
+11179.jpg
+20316.jpg
+21712.jpg
+1313.jpg
+6091.jpg
+3262.jpg
+8099.jpg
+18335.jpg
+28529.jpg
+11767.jpg
+17005.jpg
+905.jpg
+11679.jpg
+24910.jpg
+20044.jpg
+4465.jpg
+1878.jpg
+1479.jpg
+13886.jpg
+11850.jpg
+6662.jpg
+3827.jpg
+25671.jpg
+27094.jpg
+11306.jpg
+27218.jpg
+22975.jpg
+11786.jpg
+21696.jpg
+21524.jpg
+24083.jpg
+2369.jpg
+2198.jpg
+21225.jpg
+22832.jpg
+10449.jpg
+16675.jpg
+15099.jpg
+9177.jpg
+29219.jpg
+10110.jpg
+1499.jpg
+14555.jpg
+20115.jpg
+20702.jpg
+16838.jpg
+4694.jpg
+20750.jpg
+19010.jpg
+20005.jpg
+23769.jpg
+14137.jpg
+4785.jpg
+1216.jpg
+1307.jpg
+15339.jpg
+12276.jpg
+7790.jpg
+4258.jpg
+8457.jpg
+23230.jpg
+14061.jpg
+19383.jpg
+25270.jpg
+3725.jpg
+6095.jpg
+27332.jpg
+1918.jpg
+22098.jpg
+4474.jpg
+1978.jpg
+5182.jpg
+593.jpg
+19977.jpg
+13020.jpg
+9978.jpg
+8637.jpg
+3021.jpg
+686.jpg
+11305.jpg
+6832.jpg
+917.jpg
+11154.jpg
+27377.jpg
+651.jpg
+12006.jpg
+7622.jpg
+3707.jpg
+5417.jpg
+18968.jpg
+1773.jpg
+919.jpg
+8980.jpg
+27088.jpg
+15505.jpg
+7383.jpg
+9373.jpg
+15530.jpg
+1282.jpg
+26292.jpg
+23923.jpg
+29997.jpg
+3402.jpg
+11962.jpg
+8113.jpg
+12998.jpg
+28059.jpg
+7025.jpg
+13366.jpg
+23380.jpg
+24998.jpg
+11183.jpg
+5141.jpg
+18066.jpg
+12360.jpg
+22386.jpg
+25132.jpg
+7088.jpg
+480.jpg
+3186.jpg
+499.jpg
+8098.jpg
+23265.jpg
+3888.jpg
+18748.jpg
+16085.jpg
+19070.jpg
+24213.jpg
+15017.jpg
+12491.jpg
+29200.jpg
+9435.jpg
+7352.jpg
+14312.jpg
+7323.jpg
+18112.jpg
+10467.jpg
+8039.jpg
+14363.jpg
+8268.jpg
+16321.jpg
+1926.jpg
+12685.jpg
+4233.jpg
+2448.jpg
+29897.jpg
+28893.jpg
+1619.jpg
+26259.jpg
+20007.jpg
+25677.jpg
+8114.jpg
+21039.jpg
+13588.jpg
+21442.jpg
+23364.jpg
+26240.jpg
+15427.jpg
+4030.jpg
+10425.jpg
+27927.jpg
+20262.jpg
+28729.jpg
+8247.jpg
+12274.jpg
+28921.jpg
+16191.jpg
+15972.jpg
+1571.jpg
+5032.jpg
+25991.jpg
+9281.jpg
+7416.jpg
+976.jpg
+24258.jpg
+26748.jpg
+12804.jpg
+5376.jpg
+4045.jpg
+12093.jpg
+10507.jpg
+4266.jpg
+23666.jpg
+25216.jpg
+6544.jpg
+22818.jpg
+22941.jpg
+22426.jpg
+13282.jpg
+16177.jpg
+9286.jpg
+28986.jpg
+25894.jpg
+18584.jpg
+4297.jpg
+28346.jpg
+23149.jpg
+16243.jpg
+14248.jpg
+24732.jpg
+7510.jpg
+7829.jpg
+22419.jpg
+12237.jpg
+4203.jpg
+9273.jpg
+11612.jpg
+13011.jpg
+1178.jpg
+21613.jpg
+25013.jpg
+27915.jpg
+20257.jpg
+22819.jpg
+13288.jpg
+26326.jpg
+25468.jpg
+13857.jpg
+2269.jpg
+18571.jpg
+7671.jpg
+17590.jpg
+25683.jpg
+22391.jpg
+15800.jpg
+6571.jpg
+13334.jpg
+4714.jpg
+8665.jpg
+6523.jpg
+8796.jpg
+8948.jpg
+3039.jpg
+29418.jpg
+14651.jpg
+1789.jpg
+2884.jpg
+27344.jpg
+3362.jpg
+6916.jpg
+27038.jpg
+14180.jpg
+26846.jpg
+4181.jpg
+28627.jpg
+2743.jpg
+1392.jpg
+8843.jpg
+27026.jpg
+906.jpg
+2111.jpg
+9310.jpg
+20554.jpg
+12702.jpg
+5655.jpg
+2980.jpg
+24553.jpg
+25975.jpg
+28464.jpg
+11205.jpg
+9291.jpg
+3172.jpg
+25161.jpg
+15518.jpg
+12625.jpg
+28314.jpg
+27616.jpg
+29049.jpg
+19172.jpg
+645.jpg
+13694.jpg
+27486.jpg
+6784.jpg
+22452.jpg
+7200.jpg
+886.jpg
+5809.jpg
+182.jpg
+24703.jpg
+15209.jpg
+29084.jpg
+29468.jpg
+26689.jpg
+5277.jpg
+20003.jpg
+29052.jpg
+5163.jpg
+9256.jpg
+6140.jpg
+8819.jpg
+28141.jpg
+28684.jpg
+18844.jpg
+6424.jpg
+7198.jpg
+26662.jpg
+13504.jpg
+10613.jpg
+26054.jpg
+28738.jpg
+9353.jpg
+22486.jpg
+29899.jpg
+18167.jpg
+6907.jpg
+17152.jpg
+24776.jpg
+17525.jpg
+3609.jpg
+14478.jpg
+15449.jpg
+22726.jpg
+11056.jpg
+16480.jpg
+15363.jpg
+26599.jpg
+10751.jpg
+16189.jpg
+18055.jpg
+9995.jpg
+13731.jpg
+6547.jpg
+17694.jpg
+12414.jpg
+16146.jpg
+15127.jpg
+5461.jpg
+8579.jpg
+13794.jpg
+16982.jpg
+2204.jpg
+16305.jpg
+1730.jpg
+8990.jpg
+28439.jpg
+20603.jpg
+8158.jpg
+4338.jpg
+24828.jpg
+12114.jpg
+10132.jpg
+25219.jpg
+728.jpg
+13032.jpg
+923.jpg
+21965.jpg
+29004.jpg
+27897.jpg
+14637.jpg
+21512.jpg
+29806.jpg
+8851.jpg
+29652.jpg
+28088.jpg
+21733.jpg
+1035.jpg
+14062.jpg
+25139.jpg
+12221.jpg
+23203.jpg
+29776.jpg
+18282.jpg
+16385.jpg
+28308.jpg
+10519.jpg
+25204.jpg
+20492.jpg
+7897.jpg
+13242.jpg
+14681.jpg
+3284.jpg
+12540.jpg
+19905.jpg
+12449.jpg
+6139.jpg
+19095.jpg
+6636.jpg
+26751.jpg
+19050.jpg
+25315.jpg
+22964.jpg
+9939.jpg
+22314.jpg
+16205.jpg
+11153.jpg
+29689.jpg
+19291.jpg
+4555.jpg
+17498.jpg
+21609.jpg
+8625.jpg
+4952.jpg
+15599.jpg
+4503.jpg
+28045.jpg
+13607.jpg
+9960.jpg
+20902.jpg
+26416.jpg
+21043.jpg
+8853.jpg
+26200.jpg
+27414.jpg
+12895.jpg
+19049.jpg
+4292.jpg
+11911.jpg
+11100.jpg
+25177.jpg
+5682.jpg
+951.jpg
+12234.jpg
+12756.jpg
+16190.jpg
+24911.jpg
+4077.jpg
+22056.jpg
+8874.jpg
+8668.jpg
+7168.jpg
+28245.jpg
+10703.jpg
+12602.jpg
+27193.jpg
+3200.jpg
+10092.jpg
+17190.jpg
+17950.jpg
+16619.jpg
+24153.jpg
+27143.jpg
+8818.jpg
+15230.jpg
+6285.jpg
+29782.jpg
+597.jpg
+3518.jpg
+7420.jpg
+20960.jpg
+16183.jpg
+10969.jpg
+23862.jpg
+9865.jpg
+25220.jpg
+13415.jpg
+18519.jpg
+4716.jpg
+27124.jpg
+18250.jpg
+22453.jpg
+6430.jpg
+11916.jpg
+6773.jpg
+19372.jpg
+210.jpg
+18960.jpg
+15452.jpg
+887.jpg
+28929.jpg
+14942.jpg
+21547.jpg
+12246.jpg
+20321.jpg
+1229.jpg
+25605.jpg
+5204.jpg
+18343.jpg
+25421.jpg
+9934.jpg
+12253.jpg
+5058.jpg
+22586.jpg
+8321.jpg
+2951.jpg
+16256.jpg
+11801.jpg
+27574.jpg
+11138.jpg
+2761.jpg
+23463.jpg
+17561.jpg
+17012.jpg
+11730.jpg
+12413.jpg
+16571.jpg
+16390.jpg
+1538.jpg
+12898.jpg
+15385.jpg
+25383.jpg
+14622.jpg
+12801.jpg
+12145.jpg
+19644.jpg
+27005.jpg
+1959.jpg
+7495.jpg
+29207.jpg
+6118.jpg
+1455.jpg
+6308.jpg
+14141.jpg
+21264.jpg
+5811.jpg
+9614.jpg
+28092.jpg
+10890.jpg
+25868.jpg
+4347.jpg
+18988.jpg
+12484.jpg
+1503.jpg
+3486.jpg
+6162.jpg
+5543.jpg
+15836.jpg
+23242.jpg
+12565.jpg
+472.jpg
+3675.jpg
+3319.jpg
+9881.jpg
+26037.jpg
+25304.jpg
+18019.jpg
+11267.jpg
+9003.jpg
+11209.jpg
+25838.jpg
+3997.jpg
+5578.jpg
+8614.jpg
+1399.jpg
+22823.jpg
+8383.jpg
+28771.jpg
+1284.jpg
+22962.jpg
+24705.jpg
+3170.jpg
+2685.jpg
+13202.jpg
+4435.jpg
+7084.jpg
+4311.jpg
+10001.jpg
+11175.jpg
+26162.jpg
+6939.jpg
+19696.jpg
+5856.jpg
+25166.jpg
+23237.jpg
+20189.jpg
+20565.jpg
+29661.jpg
+3196.jpg
+18211.jpg
+5185.jpg
+2218.jpg
+19922.jpg
+22686.jpg
+29507.jpg
+14608.jpg
+9342.jpg
+2962.jpg
+20507.jpg
+12510.jpg
+26526.jpg
+10766.jpg
+26187.jpg
+25208.jpg
+8567.jpg
+3718.jpg
+18157.jpg
+6824.jpg
+15824.jpg
+24351.jpg
+29230.jpg
+20570.jpg
+16046.jpg
+8911.jpg
+3354.jpg
+3773.jpg
+15895.jpg
+11827.jpg
+7748.jpg
+17511.jpg
+5997.jpg
+12127.jpg
+59.jpg
+3203.jpg
+13383.jpg
+23625.jpg
+21330.jpg
+24291.jpg
+29412.jpg
+22470.jpg
+13462.jpg
+5116.jpg
+1300.jpg
+22446.jpg
+7629.jpg
+18514.jpg
+14642.jpg
+2349.jpg
+283.jpg
+17055.jpg
+29476.jpg
+5685.jpg
+24558.jpg
+11171.jpg
+18949.jpg
+28151.jpg
+26860.jpg
+20435.jpg
+19721.jpg
+23759.jpg
+16233.jpg
+22306.jpg
+27318.jpg
+16822.jpg
+18930.jpg
+27446.jpg
+27233.jpg
+20248.jpg
+13442.jpg
+17157.jpg
+19730.jpg
+20657.jpg
+2293.jpg
+28098.jpg
+596.jpg
+25505.jpg
+17133.jpg
+25664.jpg
+4196.jpg
+29789.jpg
+12105.jpg
+13476.jpg
+29037.jpg
+21711.jpg
+8552.jpg
+21876.jpg
+25879.jpg
+7562.jpg
+6044.jpg
+465.jpg
+17759.jpg
+15782.jpg
+6924.jpg
+2118.jpg
+1568.jpg
+21210.jpg
+29600.jpg
+3184.jpg
+2978.jpg
+27267.jpg
+16534.jpg
+11960.jpg
+27373.jpg
+805.jpg
+23399.jpg
+7625.jpg
+29302.jpg
+26635.jpg
+29066.jpg
+23799.jpg
+8656.jpg
+15896.jpg
+15284.jpg
+13251.jpg
+10103.jpg
+14431.jpg
+19000.jpg
+5138.jpg
+29032.jpg
+11238.jpg
+28203.jpg
+13326.jpg
+27456.jpg
+13686.jpg
+2306.jpg
+11449.jpg
+11457.jpg
+17230.jpg
+10020.jpg
+5041.jpg
+29424.jpg
+4860.jpg
+19427.jpg
+5958.jpg
+7718.jpg
+11691.jpg
+20133.jpg
+18497.jpg
+11575.jpg
+22511.jpg
+1638.jpg
+24788.jpg
+16655.jpg
+3494.jpg
+5960.jpg
+27271.jpg
+12165.jpg
+7533.jpg
+5545.jpg
+26106.jpg
+29722.jpg
+25058.jpg
+20424.jpg
+28497.jpg
+22084.jpg
+3520.jpg
+20330.jpg
+21468.jpg
+14361.jpg
+25377.jpg
+21743.jpg
+26206.jpg
+11109.jpg
+22940.jpg
+19180.jpg
+16605.jpg
+8179.jpg
+3928.jpg
+19775.jpg
+7815.jpg
+1985.jpg
+19219.jpg
+9223.jpg
+12356.jpg
+5033.jpg
+14565.jpg
+25370.jpg
+19765.jpg
+24035.jpg
+11176.jpg
+10348.jpg
+10780.jpg
+9192.jpg
+22966.jpg
+28822.jpg
+16280.jpg
+5961.jpg
+24007.jpg
+16005.jpg
+5377.jpg
+26816.jpg
+2602.jpg
+2462.jpg
+21657.jpg
+20516.jpg
+12397.jpg
+14789.jpg
+8854.jpg
+5635.jpg
+19524.jpg
+19759.jpg
+10721.jpg
+29971.jpg
+13267.jpg
+26429.jpg
+17954.jpg
+17084.jpg
+22810.jpg
+22344.jpg
+2134.jpg
+15855.jpg
+9649.jpg
+3187.jpg
+13489.jpg
+10111.jpg
+2606.jpg
+16094.jpg
+13078.jpg
+4288.jpg
+27458.jpg
+2985.jpg
+17469.jpg
+22896.jpg
+7026.jpg
+26832.jpg
+11315.jpg
+27830.jpg
+27244.jpg
+1740.jpg
+20160.jpg
+12989.jpg
+1356.jpg
+28430.jpg
+11308.jpg
+5456.jpg
+10808.jpg
+18990.jpg
+24232.jpg
+17996.jpg
+13782.jpg
+1154.jpg
+7637.jpg
+18921.jpg
+11287.jpg
+6277.jpg
+18596.jpg
+12137.jpg
+9060.jpg
+21386.jpg
+28816.jpg
+2631.jpg
+15319.jpg
+27798.jpg
+20229.jpg
+27488.jpg
+8270.jpg
+21366.jpg
+3726.jpg
+11285.jpg
+22168.jpg
+7728.jpg
+23131.jpg
+8235.jpg
+25954.jpg
+19451.jpg
+8906.jpg
+26198.jpg
+25150.jpg
+12213.jpg
+16780.jpg
+18309.jpg
+4096.jpg
+25811.jpg
+7176.jpg
+24902.jpg
+12226.jpg
+20962.jpg
+25736.jpg
+23311.jpg
+9053.jpg
+12057.jpg
+27594.jpg
+3526.jpg
+9943.jpg
+2577.jpg
+24768.jpg
+754.jpg
+10406.jpg
+3724.jpg
+26574.jpg
+17117.jpg
+24657.jpg
+7898.jpg
+11606.jpg
+5375.jpg
+3889.jpg
+28736.jpg
+25061.jpg
+26923.jpg
+2777.jpg
+21188.jpg
+2262.jpg
+17141.jpg
+3868.jpg
+24225.jpg
+867.jpg
+16248.jpg
+21496.jpg
+2097.jpg
+8372.jpg
+5500.jpg
+19646.jpg
+28695.jpg
+5772.jpg
+23121.jpg
+2641.jpg
+19888.jpg
+25617.jpg
+19968.jpg
+21822.jpg
+29085.jpg
+27647.jpg
+19204.jpg
+17374.jpg
+26613.jpg
+11044.jpg
+938.jpg
+6822.jpg
+20795.jpg
+25680.jpg
+12543.jpg
+26090.jpg
+5192.jpg
+7980.jpg
+27910.jpg
+22360.jpg
+6955.jpg
+20283.jpg
+28150.jpg
+20805.jpg
+8243.jpg
+9488.jpg
+13570.jpg
+8849.jpg
+27067.jpg
+10192.jpg
+24632.jpg
+28206.jpg
+19768.jpg
+6083.jpg
+12197.jpg
+22160.jpg
+28172.jpg
+6192.jpg
+20196.jpg
+16782.jpg
+5836.jpg
+5232.jpg
+3258.jpg
+25745.jpg
+23487.jpg
+22906.jpg
+8690.jpg
+4068.jpg
+15615.jpg
+495.jpg
+9368.jpg
+8738.jpg
+21437.jpg
+21417.jpg
+5366.jpg
+974.jpg
+4322.jpg
+25439.jpg
+17422.jpg
+22617.jpg
+6330.jpg
+9393.jpg
+5280.jpg
+23533.jpg
+18120.jpg
+10610.jpg
+11325.jpg
+29838.jpg
+19.jpg
+22256.jpg
+20650.jpg
+2757.jpg
+21827.jpg
+24667.jpg
+3932.jpg
+10514.jpg
+15066.jpg
+20924.jpg
+3582.jpg
+24633.jpg
+27211.jpg
+29047.jpg
+11976.jpg
+18804.jpg
+25696.jpg
+26771.jpg
+23036.jpg
+9015.jpg
+18377.jpg
+4655.jpg
+22015.jpg
+16761.jpg
+15150.jpg
+1729.jpg
+18.jpg
+16026.jpg
+29705.jpg
+26288.jpg
+19308.jpg
+4142.jpg
+10249.jpg
+4762.jpg
+15481.jpg
+5948.jpg
+24892.jpg
+23352.jpg
+19549.jpg
+1221.jpg
+22594.jpg
+11113.jpg
+24596.jpg
+20701.jpg
+2054.jpg
+3684.jpg
+4173.jpg
+21598.jpg
+9297.jpg
+29164.jpg
+21627.jpg
+23140.jpg
+28.jpg
+15758.jpg
+23099.jpg
+5493.jpg
+11281.jpg
+3833.jpg
+3042.jpg
+9591.jpg
+3314.jpg
+12999.jpg
+21059.jpg
+13924.jpg
+96.jpg
+28881.jpg
+6988.jpg
+2474.jpg
+15000.jpg
+21324.jpg
+5776.jpg
+20890.jpg
+16893.jpg
+4953.jpg
+25022.jpg
+26458.jpg
+27760.jpg
+15633.jpg
+18212.jpg
+6628.jpg
+18834.jpg
+13190.jpg
+16725.jpg
+10298.jpg
+27304.jpg
+4040.jpg
+10521.jpg
+26432.jpg
+25508.jpg
+3960.jpg
+80.jpg
+12901.jpg
+10138.jpg
+21887.jpg
+4046.jpg
+21624.jpg
+14019.jpg
+12147.jpg
+2990.jpg
+20813.jpg
+13633.jpg
+14633.jpg
+13923.jpg
+4723.jpg
+5088.jpg
+27996.jpg
+15439.jpg
+6880.jpg
+1630.jpg
+12850.jpg
+12688.jpg
+9460.jpg
+1657.jpg
+10943.jpg
+259.jpg
+15525.jpg
+18042.jpg
+11162.jpg
+9269.jpg
+3938.jpg
+22134.jpg
+1767.jpg
+5399.jpg
+10791.jpg
+27102.jpg
+5205.jpg
+25758.jpg
+14514.jpg
+25190.jpg
+311.jpg
+12876.jpg
+7321.jpg
+29416.jpg
+2261.jpg
+1577.jpg
+8896.jpg
+11545.jpg
+14711.jpg
+22284.jpg
+16143.jpg
+16406.jpg
+12303.jpg
+11390.jpg
+6265.jpg
+5874.jpg
+19056.jpg
+3476.jpg
+24365.jpg
+15264.jpg
+24508.jpg
+8357.jpg
+1367.jpg
+17644.jpg
+25180.jpg
+20948.jpg
+15117.jpg
+28589.jpg
+21259.jpg
+27057.jpg
+20239.jpg
+6367.jpg
+5528.jpg
+14739.jpg
+6160.jpg
+8760.jpg
+17214.jpg
+9421.jpg
+15466.jpg
+8263.jpg
+17743.jpg
+26615.jpg
+21110.jpg
+25305.jpg
+28938.jpg
+26056.jpg
+23229.jpg
+7438.jpg
+11616.jpg
+2100.jpg
+18725.jpg
+159.jpg
+20123.jpg
+9784.jpg
+28042.jpg
+6589.jpg
+19885.jpg
+16445.jpg
+9304.jpg
+11697.jpg
+28949.jpg
+23626.jpg
+25488.jpg
+11622.jpg
+1999.jpg
+1498.jpg
+3558.jpg
+2904.jpg
+11898.jpg
+6887.jpg
+9242.jpg
+16864.jpg
+12193.jpg
+24386.jpg
+20484.jpg
+16540.jpg
+22069.jpg
+2967.jpg
+8761.jpg
+24907.jpg
+14830.jpg
+14076.jpg
+18992.jpg
+8008.jpg
+24283.jpg
+3942.jpg
+25557.jpg
+19038.jpg
+5126.jpg
+14653.jpg
+10632.jpg
+26079.jpg
+6131.jpg
+27753.jpg
+27151.jpg
+8979.jpg
+24096.jpg
+15831.jpg
+9096.jpg
+14030.jpg
+962.jpg
+17002.jpg
+18229.jpg
+12376.jpg
+28755.jpg
+23975.jpg
+25840.jpg
+6980.jpg
+12773.jpg
+2668.jpg
+2850.jpg
+4978.jpg
+17749.jpg
+7461.jpg
+25554.jpg
+1119.jpg
+19670.jpg
+16954.jpg
+27431.jpg
+23296.jpg
+25504.jpg
+2177.jpg
+19126.jpg
+8459.jpg
+13355.jpg
+11573.jpg
+21345.jpg
+15843.jpg
+13204.jpg
+20174.jpg
+26961.jpg
+27327.jpg
+19725.jpg
+7676.jpg
+507.jpg
+27006.jpg
+17519.jpg
+29798.jpg
+17522.jpg
+18172.jpg
+702.jpg
+23632.jpg
+19878.jpg
+24318.jpg
+17650.jpg
+21949.jpg
+1408.jpg
+27603.jpg
+29279.jpg
+13712.jpg
+4557.jpg
+23169.jpg
+18447.jpg
+15596.jpg
+6315.jpg
+14185.jpg
+17288.jpg
+11327.jpg
+28401.jpg
+386.jpg
+684.jpg
+20051.jpg
+14267.jpg
+196.jpg
+18795.jpg
+22616.jpg
+1045.jpg
+26176.jpg
+11554.jpg
+13943.jpg
+19351.jpg
+7740.jpg
+3650.jpg
+23719.jpg
+17892.jpg
+21270.jpg
+14779.jpg
+25282.jpg
+14295.jpg
+22078.jpg
+18330.jpg
+24814.jpg
+27107.jpg
+7351.jpg
+16443.jpg
+918.jpg
+8153.jpg
+10773.jpg
+16293.jpg
+27555.jpg
+2341.jpg
+15104.jpg
+27678.jpg
+16296.jpg
+1836.jpg
+19275.jpg
+8260.jpg
+19388.jpg
+20851.jpg
+4967.jpg
+5972.jpg
+23173.jpg
+14087.jpg
+20420.jpg
+29434.jpg
+21916.jpg
+15482.jpg
+10707.jpg
+18699.jpg
+10296.jpg
+12786.jpg
+25940.jpg
+20380.jpg
+20885.jpg
+8680.jpg
+26578.jpg
+22040.jpg
+26752.jpg
+25226.jpg
+4250.jpg
+2165.jpg
+5749.jpg
+27977.jpg
+29985.jpg
+4360.jpg
+27403.jpg
+4688.jpg
+21102.jpg
+3464.jpg
+796.jpg
+6498.jpg
+3345.jpg
+29115.jpg
+13475.jpg
+1179.jpg
+26228.jpg
+29182.jpg
+5485.jpg
+18662.jpg
+25033.jpg
+18796.jpg
+12599.jpg
+22494.jpg
+24396.jpg
+3646.jpg
+14715.jpg
+18847.jpg
+25714.jpg
+15982.jpg
+921.jpg
+25679.jpg
+11480.jpg
+16726.jpg
+6254.jpg
+23010.jpg
+27773.jpg
+23655.jpg
+15102.jpg
+407.jpg
+16926.jpg
+25747.jpg
+1215.jpg
+8277.jpg
+8018.jpg
+11241.jpg
+10387.jpg
+10877.jpg
+20008.jpg
+2081.jpg
+9940.jpg
+24712.jpg
+2265.jpg
+19260.jpg
+16038.jpg
+26581.jpg
+22767.jpg
+5959.jpg
+3699.jpg
+3826.jpg
+2711.jpg
+12363.jpg
+14430.jpg
+5174.jpg
+14253.jpg
+21818.jpg
+7171.jpg
+5147.jpg
+6680.jpg
+20170.jpg
+24196.jpg
+14339.jpg
+23224.jpg
+13079.jpg
+2545.jpg
+3862.jpg
+11542.jpg
+9554.jpg
+6057.jpg
+12177.jpg
+28733.jpg
+17765.jpg
+29931.jpg
+9447.jpg
+20247.jpg
+19572.jpg
+19597.jpg
+24184.jpg
+17030.jpg
+25408.jpg
+8307.jpg
+25964.jpg
+14232.jpg
+9217.jpg
+27060.jpg
+3597.jpg
+4707.jpg
+6406.jpg
+2634.jpg
+7343.jpg
+10961.jpg
+21191.jpg
+10802.jpg
+9080.jpg
+8937.jpg
+29874.jpg
+17639.jpg
+28960.jpg
+6368.jpg
+12854.jpg
+1675.jpg
+29537.jpg
+8266.jpg
+13025.jpg
+27053.jpg
+2698.jpg
+20429.jpg
+16695.jpg
+21317.jpg
+24395.jpg
+22059.jpg
+8975.jpg
+14917.jpg
+16769.jpg
+4223.jpg
+3135.jpg
+17955.jpg
+6222.jpg
+9878.jpg
+15490.jpg
+4037.jpg
+15315.jpg
+6214.jpg
+27597.jpg
+13783.jpg
+18207.jpg
+18658.jpg
+17311.jpg
+2645.jpg
+306.jpg
+21325.jpg
+23359.jpg
+1515.jpg
+19281.jpg
+13855.jpg
+19358.jpg
+12630.jpg
+2190.jpg
+24733.jpg
+27047.jpg
+26175.jpg
+10620.jpg
+13988.jpg
+12671.jpg
+14822.jpg
+7327.jpg
+2811.jpg
+12866.jpg
+17221.jpg
+8717.jpg
+7329.jpg
+9850.jpg
+12795.jpg
+20683.jpg
+3736.jpg
+29340.jpg
+4942.jpg
+17884.jpg
+25316.jpg
+6252.jpg
+15739.jpg
+16539.jpg
+29455.jpg
+2948.jpg
+12652.jpg
+6840.jpg
+369.jpg
+1342.jpg
+13718.jpg
+7784.jpg
+27042.jpg
+22765.jpg
+29243.jpg
+10628.jpg
+15734.jpg
+9830.jpg
+5626.jpg
+22008.jpg
+18665.jpg
+19678.jpg
+9819.jpg
+26399.jpg
+28011.jpg
+5846.jpg
+27506.jpg
+4177.jpg
+4039.jpg
+10895.jpg
+6786.jpg
+25028.jpg
+25880.jpg
+26625.jpg
+8173.jpg
+21356.jpg
+840.jpg
+7431.jpg
+21439.jpg
+18259.jpg
+20049.jpg
+4820.jpg
+6752.jpg
+17088.jpg
+26746.jpg
+958.jpg
+3617.jpg
+11151.jpg
+27076.jpg
+11184.jpg
+25094.jpg
+11198.jpg
+18809.jpg
+13878.jpg
+19619.jpg
+25456.jpg
+20154.jpg
+13985.jpg
+18517.jpg
+7745.jpg
+16487.jpg
+13341.jpg
+19919.jpg
+5916.jpg
+5354.jpg
+14474.jpg
+23513.jpg
+11232.jpg
+23261.jpg
+25752.jpg
+28007.jpg
+5953.jpg
+23821.jpg
+12272.jpg
+19086.jpg
+20695.jpg
+27101.jpg
+3666.jpg
+28103.jpg
+6830.jpg
+3342.jpg
+14884.jpg
+23753.jpg
+25579.jpg
+5697.jpg
+3914.jpg
+9170.jpg
+22483.jpg
+3507.jpg
+1613.jpg
+6674.jpg
+28965.jpg
+23394.jpg
+14600.jpg
+9922.jpg
+15242.jpg
+8512.jpg
+29379.jpg
+16960.jpg
+25087.jpg
+14497.jpg
+2974.jpg
+16934.jpg
+24915.jpg
+4073.jpg
+13063.jpg
+12392.jpg
+25669.jpg
+14217.jpg
+29210.jpg
+28528.jpg
+29781.jpg
+7177.jpg
+19665.jpg
+17796.jpg
+10014.jpg
+20754.jpg
+16687.jpg
+19341.jpg
+21632.jpg
+3015.jpg
+15295.jpg
+25118.jpg
+12294.jpg
+7338.jpg
+18366.jpg
+347.jpg
+25956.jpg
+835.jpg
+14366.jpg
+25335.jpg
+15007.jpg
+17936.jpg
+20094.jpg
+24912.jpg
+17215.jpg
+15847.jpg
+17643.jpg
+1207.jpg
+14132.jpg
+13902.jpg
+9827.jpg
+22436.jpg
+4529.jpg
+1494.jpg
+14110.jpg
+6451.jpg
+23078.jpg
+18661.jpg
+3421.jpg
+3320.jpg
+7279.jpg
+24154.jpg
+11549.jpg
+3993.jpg
+18410.jpg
+24980.jpg
+13266.jpg
+682.jpg
+5356.jpg
+20067.jpg
+16683.jpg
+6506.jpg
+25018.jpg
+3539.jpg
+3254.jpg
+1712.jpg
+21034.jpg
+26057.jpg
+26916.jpg
+13737.jpg
+26457.jpg
+28900.jpg
+9904.jpg
+21004.jpg
+29442.jpg
+1099.jpg
+14612.jpg
+24806.jpg
+27791.jpg
+343.jpg
+26895.jpg
+14325.jpg
+2460.jpg
+17693.jpg
+14457.jpg
+7722.jpg
+22375.jpg
+17908.jpg
+22025.jpg
+9510.jpg
+17596.jpg
+13488.jpg
+13271.jpg
+2552.jpg
+27675.jpg
+9408.jpg
+10180.jpg
+1155.jpg
+2408.jpg
+21355.jpg
+11360.jpg
+21784.jpg
+23349.jpg
+21530.jpg
+26131.jpg
+15776.jpg
+1245.jpg
+16303.jpg
+2360.jpg
+21241.jpg
+29974.jpg
+27361.jpg
+21645.jpg
+24429.jpg
+24803.jpg
+16755.jpg
+4695.jpg
+14930.jpg
+23188.jpg
+28466.jpg
+25351.jpg
+16420.jpg
+5569.jpg
+29549.jpg
+2390.jpg
+16353.jpg
+7391.jpg
+1960.jpg
+14756.jpg
+24737.jpg
+11838.jpg
+758.jpg
+24477.jpg
+25537.jpg
+24427.jpg
+28934.jpg
+9198.jpg
+8816.jpg
+13353.jpg
+6152.jpg
+3356.jpg
+29975.jpg
+21209.jpg
+27765.jpg
+3294.jpg
+28162.jpg
+16551.jpg
+14418.jpg
+22987.jpg
+25123.jpg
+12758.jpg
+12677.jpg
+26313.jpg
+1336.jpg
+23215.jpg
+21777.jpg
+13986.jpg
+5678.jpg
+10852.jpg
+4720.jpg
+8395.jpg
+23280.jpg
+13115.jpg
+17630.jpg
+10312.jpg
+7270.jpg
+20087.jpg
+29790.jpg
+18556.jpg
+11070.jpg
+9240.jpg
+17949.jpg
+7893.jpg
+19729.jpg
+21757.jpg
+25784.jpg
+25870.jpg
+11904.jpg
+12816.jpg
+25134.jpg
+13316.jpg
+4016.jpg
+7762.jpg
+2522.jpg
+3169.jpg
+5620.jpg
+20293.jpg
+2945.jpg
+10208.jpg
+10996.jpg
+1664.jpg
+5305.jpg
+19709.jpg
+29761.jpg
+17269.jpg
+28105.jpg
+3457.jpg
+6488.jpg
+13120.jpg
+5468.jpg
+15952.jpg
+23995.jpg
+317.jpg
+3083.jpg
+24674.jpg
+5937.jpg
+1500.jpg
+8086.jpg
+1703.jpg
+6780.jpg
+16059.jpg
+23452.jpg
+17712.jpg
+22673.jpg
+26535.jpg
+12684.jpg
+12603.jpg
+10948.jpg
+29658.jpg
+11001.jpg
+13007.jpg
+6560.jpg
+8054.jpg
+14237.jpg
+19200.jpg
+14673.jpg
+15772.jpg
+22720.jpg
+1151.jpg
+12026.jpg
+21068.jpg
+6229.jpg
+9832.jpg
+9720.jpg
+19513.jpg
+28945.jpg
+9026.jpg
+20011.jpg
+21406.jpg
+21570.jpg
+11765.jpg
+27646.jpg
+1699.jpg
+2225.jpg
+5995.jpg
+14197.jpg
+7592.jpg
+27604.jpg
+14794.jpg
+2145.jpg
+8010.jpg
+29811.jpg
+10983.jpg
+24144.jpg
+25612.jpg
+9254.jpg
+15946.jpg
+19092.jpg
+29610.jpg
+2379.jpg
+22592.jpg
+16940.jpg
+1900.jpg
+24528.jpg
+13377.jpg
+16697.jpg
+5817.jpg
+2415.jpg
+13257.jpg
+3985.jpg
+13776.jpg
+21573.jpg
+4709.jpg
+3748.jpg
+9314.jpg
+25599.jpg
+29217.jpg
+2473.jpg
+2868.jpg
+8140.jpg
+17326.jpg
+8267.jpg
+20342.jpg
+17212.jpg
+10739.jpg
+24883.jpg
+27875.jpg
+2252.jpg
+20628.jpg
+24535.jpg
+9847.jpg
+24504.jpg
+29092.jpg
+14893.jpg
+7233.jpg
+23424.jpg
+24963.jpg
+5260.jpg
+9861.jpg
+22240.jpg
+25860.jpg
+3798.jpg
+2659.jpg
+6516.jpg
+224.jpg
+6170.jpg
+2102.jpg
+20421.jpg
+23299.jpg
+10994.jpg
+27660.jpg
+2136.jpg
+23633.jpg
+16015.jpg
+16689.jpg
+9992.jpg
+10367.jpg
+26989.jpg
+3969.jpg
+12654.jpg
+12936.jpg
+12638.jpg
+27523.jpg
+10939.jpg
+11968.jpg
+1219.jpg
+8077.jpg
+7229.jpg
+11733.jpg
+24654.jpg
+22117.jpg
+22963.jpg
+12645.jpg
+11946.jpg
+11494.jpg
+10053.jpg
+18694.jpg
+3188.jpg
+2819.jpg
+17257.jpg
+17601.jpg
+14348.jpg
+13191.jpg
+14003.jpg
+12.jpg
+26258.jpg
+8332.jpg
+12150.jpg
+13234.jpg
+9783.jpg
+18733.jpg
+15185.jpg
+9579.jpg
+22675.jpg
+9721.jpg
+13654.jpg
+987.jpg
+6587.jpg
+4306.jpg
+7304.jpg
+2501.jpg
+24244.jpg
+14679.jpg
+14978.jpg
+6101.jpg
+28673.jpg
+20690.jpg
+22449.jpg
+848.jpg
+6606.jpg
+3214.jpg
+23201.jpg
+12325.jpg
+26383.jpg
+22092.jpg
+8762.jpg
+21136.jpg
+22334.jpg
+9081.jpg
+2729.jpg
+24332.jpg
+1584.jpg
+12644.jpg
+20371.jpg
+4805.jpg
+15766.jpg
+19297.jpg
+13416.jpg
+1492.jpg
+17293.jpg
+25256.jpg
+13189.jpg
+1063.jpg
+29592.jpg
+3940.jpg
+16968.jpg
+9504.jpg
+5410.jpg
+2373.jpg
+18350.jpg
+235.jpg
+20681.jpg
+14690.jpg
+5071.jpg
+12465.jpg
+14768.jpg
+20530.jpg
+20499.jpg
+29274.jpg
+18848.jpg
+11507.jpg
+12306.jpg
+16883.jpg
+9888.jpg
+3575.jpg
+4433.jpg
+23047.jpg
+17551.jpg
+28315.jpg
+26552.jpg
+9277.jpg
+14512.jpg
+26947.jpg
+21230.jpg
+11013.jpg
+25593.jpg
+16671.jpg
+17150.jpg
+1621.jpg
+10065.jpg
+14114.jpg
+2787.jpg
+17682.jpg
+2012.jpg
+22126.jpg
+401.jpg
+23797.jpg
+1028.jpg
+20353.jpg
+3864.jpg
+720.jpg
+20339.jpg
+29377.jpg
+5672.jpg
+10850.jpg
+7844.jpg
+20756.jpg
+9483.jpg
+13880.jpg
+27906.jpg
+9916.jpg
+4145.jpg
+21768.jpg
+6099.jpg
+16836.jpg
+16701.jpg
+18509.jpg
+27638.jpg
+28969.jpg
+21459.jpg
+3007.jpg
+24607.jpg
+16711.jpg
+4879.jpg
+13650.jpg
+15205.jpg
+16057.jpg
+24463.jpg
+9461.jpg
+26781.jpg
+6019.jpg
+18448.jpg
+15280.jpg
+29470.jpg
+21010.jpg
+10277.jpg
+2059.jpg
+7012.jpg
+4.jpg
+20331.jpg
+3945.jpg
+562.jpg
+3657.jpg
+20069.jpg
+20210.jpg
+17957.jpg
+139.jpg
+6704.jpg
+20014.jpg
+24301.jpg
+6202.jpg
+12822.jpg
+4634.jpg
+28220.jpg
+1084.jpg
+11930.jpg
+21346.jpg
+25486.jpg
+510.jpg
+7400.jpg
+1581.jpg
+26396.jpg
+18965.jpg
+23909.jpg
+16730.jpg
+26220.jpg
+1186.jpg
+3026.jpg
+22722.jpg
+13279.jpg
+7869.jpg
+985.jpg
+21399.jpg
+22378.jpg
+11688.jpg
+20211.jpg
+24496.jpg
+19240.jpg
+11695.jpg
+27912.jpg
+17845.jpg
+13374.jpg
+9165.jpg
+8658.jpg
+17661.jpg
+18177.jpg
+20651.jpg
+1211.jpg
+28569.jpg
+28051.jpg
+9055.jpg
+4737.jpg
+12681.jpg
+3503.jpg
+24123.jpg
+25822.jpg
+25280.jpg
+5153.jpg
+13417.jpg
+22816.jpg
+16653.jpg
+19467.jpg
+10150.jpg
+26110.jpg
+15244.jpg
+9634.jpg
+12018.jpg
+8186.jpg
+24854.jpg
+23133.jpg
+1943.jpg
+379.jpg
+16896.jpg
+20454.jpg
+4560.jpg
+18819.jpg
+22373.jpg
+28564.jpg
+15044.jpg
+2174.jpg
+24815.jpg
+1623.jpg
+23163.jpg
+12606.jpg
+3276.jpg
+27833.jpg
+28130.jpg
+15212.jpg
+18925.jpg
+26921.jpg
+3766.jpg
+22968.jpg
+3249.jpg
+15692.jpg
+8151.jpg
+1907.jpg
+26282.jpg
+18911.jpg
+23526.jpg
+4781.jpg
+13376.jpg
+27575.jpg
+415.jpg
+1274.jpg
+9883.jpg
+2575.jpg
+21277.jpg
+27125.jpg
+16345.jpg
+15922.jpg
+27098.jpg
+396.jpg
+15493.jpg
+29596.jpg
+27803.jpg
+9144.jpg
+10245.jpg
+9789.jpg
+1090.jpg
+29422.jpg
+29002.jpg
+21610.jpg
+27503.jpg
+12333.jpg
+23398.jpg
+9997.jpg
+25898.jpg
+28070.jpg
+2077.jpg
+16875.jpg
+6495.jpg
+7524.jpg
+21159.jpg
+10334.jpg
+28763.jpg
+7672.jpg
+26950.jpg
+4062.jpg
+16633.jpg
+2530.jpg
+8202.jpg
+6035.jpg
+8831.jpg
+9019.jpg
+2126.jpg
+10805.jpg
+18787.jpg
+3371.jpg
+13919.jpg
+11536.jpg
+17975.jpg
+14968.jpg
+9648.jpg
+16627.jpg
+9772.jpg
+14921.jpg
+14219.jpg
+6935.jpg
+13262.jpg
+22677.jpg
+10223.jpg
+4324.jpg
+14538.jpg
+8154.jpg
+8807.jpg
+13474.jpg
+13260.jpg
+361.jpg
+13755.jpg
+22311.jpg
+1995.jpg
+16381.jpg
+11716.jpg
+19798.jpg
+11558.jpg
+26830.jpg
+10181.jpg
+23946.jpg
+17587.jpg
+16736.jpg
+8673.jpg
+5911.jpg
+12537.jpg
+26400.jpg
+12637.jpg
+23850.jpg
+11742.jpg
+13569.jpg
+25602.jpg
+1830.jpg
+6304.jpg
+932.jpg
+25777.jpg
+13278.jpg
+808.jpg
+29459.jpg
+24842.jpg
+2158.jpg
+28269.jpg
+10129.jpg
+1720.jpg
+17169.jpg
+8226.jpg
+8370.jpg
+8970.jpg
+9224.jpg
+15074.jpg
+4211.jpg
+12566.jpg
+15200.jpg
+2875.jpg
+17321.jpg
+11984.jpg
+4535.jpg
+27329.jpg
+6068.jpg
+21058.jpg
+2652.jpg
+12568.jpg
+12404.jpg
+12826.jpg
+10497.jpg
+4315.jpg
+25631.jpg
+22602.jpg
+23929.jpg
+3527.jpg
+8584.jpg
+9530.jpg
+23157.jpg
+11133.jpg
+26312.jpg
+29877.jpg
+20771.jpg
+28034.jpg
+7277.jpg
+8048.jpg
+18867.jpg
+18720.jpg
+2797.jpg
+29111.jpg
+25009.jpg
+25269.jpg
+19585.jpg
+26157.jpg
+9350.jpg
+14604.jpg
+28686.jpg
+2067.jpg
+18979.jpg
+23138.jpg
+29106.jpg
+15034.jpg
+15497.jpg
+5358.jpg
+11755.jpg
+15305.jpg
+10551.jpg
+15370.jpg
+1869.jpg
+3858.jpg
+15149.jpg
+1797.jpg
+3064.jpg
+3680.jpg
+26254.jpg
+8958.jpg
+9064.jpg
+5476.jpg
+8772.jpg
+8303.jpg
+10342.jpg
+1812.jpg
+27105.jpg
+12858.jpg
+1682.jpg
+26146.jpg
+12902.jpg
+13638.jpg
+2655.jpg
+1416.jpg
+17754.jpg
+11668.jpg
+7798.jpg
+26942.jpg
+1201.jpg
+6776.jpg
+20270.jpg
+2889.jpg
+19560.jpg
+24866.jpg
+19069.jpg
+21465.jpg
+6688.jpg
+9513.jpg
+19389.jpg
+560.jpg
+12608.jpg
+19439.jpg
+19810.jpg
+2179.jpg
+16984.jpg
+28429.jpg
+29608.jpg
+22480.jpg
+13935.jpg
+14898.jpg
+5504.jpg
+7202.jpg
+5705.jpg
+2903.jpg
+5536.jpg
+10186.jpg
+29577.jpg
+25903.jpg
+7934.jpg
+6409.jpg
+26914.jpg
+26721.jpg
+19089.jpg
+18591.jpg
+21369.jpg
+23931.jpg
+28002.jpg
+26708.jpg
+17593.jpg
+2518.jpg
+9028.jpg
+25310.jpg
+19118.jpg
+29859.jpg
+17641.jpg
+822.jpg
+18197.jpg
+20989.jpg
+7631.jpg
+5663.jpg
+15799.jpg
+21261.jpg
+24971.jpg
+23106.jpg
+13538.jpg
+21796.jpg
+17794.jpg
+18890.jpg
+13222.jpg
+5805.jpg
+13467.jpg
+21190.jpg
+2764.jpg
+8834.jpg
+22215.jpg
+27266.jpg
+10473.jpg
+24973.jpg
+29981.jpg
+4293.jpg
+25900.jpg
+15745.jpg
+10142.jpg
+18756.jpg
+18825.jpg
+5295.jpg
+19804.jpg
+25701.jpg
+17879.jpg
+19620.jpg
+19700.jpg
+23005.jpg
+29169.jpg
+27716.jpg
+20899.jpg
+28681.jpg
+20887.jpg
+2213.jpg
+4425.jpg
+27727.jpg
+14656.jpg
+24880.jpg
+6678.jpg
+11972.jpg
+22356.jpg
+28142.jpg
+22642.jpg
+16581.jpg
+27078.jpg
+28712.jpg
+22790.jpg
+1654.jpg
+6398.jpg
+19933.jpg
+9587.jpg
+10572.jpg
+12844.jpg
+26354.jpg
+10379.jpg
+29989.jpg
+3136.jpg
+21589.jpg
+2078.jpg
+15191.jpg
+9207.jpg
+27586.jpg
+14314.jpg
+16016.jpg
+12032.jpg
+2828.jpg
+21910.jpg
+10500.jpg
+2523.jpg
+692.jpg
+29464.jpg
+21520.jpg
+12188.jpg
+14356.jpg
+26304.jpg
+21211.jpg
+5365.jpg
+6351.jpg
+748.jpg
+29224.jpg
+23004.jpg
+28496.jpg
+19155.jpg
+24976.jpg
+26761.jpg
+28940.jpg
+22685.jpg
+28410.jpg
+28190.jpg
+5906.jpg
+28336.jpg
+18166.jpg
+913.jpg
+14211.jpg
+15093.jpg
+27336.jpg
+26322.jpg
+12328.jpg
+13339.jpg
+8840.jpg
+17722.jpg
+16641.jpg
+10046.jpg
+760.jpg
+194.jpg
+21435.jpg
+18017.jpg
+27872.jpg
+15467.jpg
+12220.jpg
+9824.jpg
+15095.jpg
+10588.jpg
+2483.jpg
+12016.jpg
+22173.jpg
+23535.jpg
+9338.jpg
+23636.jpg
+29622.jpg
+9882.jpg
+27903.jpg
+3245.jpg
+14887.jpg
+1440.jpg
+1642.jpg
+4042.jpg
+7390.jpg
+11029.jpg
+21988.jpg
+17357.jpg
+28281.jpg
+2240.jpg
+23667.jpg
+9734.jpg
+25010.jpg
+1697.jpg
+23811.jpg
+18724.jpg
+6286.jpg
+9166.jpg
+26001.jpg
+20462.jpg
+15519.jpg
+24608.jpg
+1756.jpg
+22090.jpg
+7068.jpg
+11446.jpg
+2992.jpg
+15296.jpg
+18503.jpg
+2801.jpg
+5858.jpg
+23993.jpg
+18430.jpg
+19331.jpg
+26169.jpg
+17736.jpg
+4614.jpg
+15052.jpg
+19994.jpg
+23586.jpg
+16859.jpg
+911.jpg
+5800.jpg
+5234.jpg
+13382.jpg
+26363.jpg
+23141.jpg
+11580.jpg
+24314.jpg
+3795.jpg
+22444.jpg
+183.jpg
+27582.jpg
+4808.jpg
+11736.jpg
+14667.jpg
+27911.jpg
+7209.jpg
+2931.jpg
+21362.jpg
+22879.jpg
+8725.jpg
+28722.jpg
+28844.jpg
+4883.jpg
+12534.jpg
+20360.jpg
+3944.jpg
+3052.jpg
+18440.jpg
+23606.jpg
+19151.jpg
+23107.jpg
+239.jpg
+20294.jpg
+4722.jpg
+1267.jpg
+28870.jpg
+21196.jpg
+20182.jpg
+4576.jpg
+28246.jpg
+6718.jpg
+8360.jpg
+29602.jpg
+10255.jpg
+29449.jpg
+13665.jpg
+2049.jpg
+15138.jpg
+14234.jpg
+29563.jpg
+13646.jpg
+5791.jpg
+29896.jpg
+20366.jpg
+22998.jpg
+153.jpg
+10380.jpg
+8950.jpg
+5775.jpg
+22460.jpg
+9890.jpg
+13379.jpg
+29284.jpg
+11330.jpg
+17384.jpg
+10066.jpg
+4644.jpg
+26973.jpg
+3185.jpg
+3181.jpg
+4296.jpg
+8311.jpg
+21464.jpg
+23436.jpg
+15614.jpg
+11600.jpg
+9817.jpg
+4896.jpg
+27435.jpg
+3166.jpg
+8945.jpg
+21268.jpg
+10837.jpg
+2051.jpg
+12863.jpg
+12209.jpg
+19397.jpg
+10036.jpg
+11488.jpg
+24408.jpg
+27599.jpg
+14465.jpg
+13868.jpg
+9390.jpg
+26593.jpg
+23471.jpg
+18982.jpg
+12157.jpg
+14902.jpg
+7337.jpg
+25578.jpg
+17842.jpg
+28491.jpg
+18412.jpg
+8262.jpg
+10562.jpg
+11683.jpg
+13092.jpg
+12650.jpg
+27294.jpg
+27876.jpg
+13295.jpg
+23860.jpg
+19882.jpg
+4992.jpg
+14210.jpg
+19889.jpg
+14641.jpg
+17812.jpg
+24019.jpg
+16964.jpg
+23119.jpg
+29313.jpg
+29669.jpg
+25595.jpg
+16274.jpg
+27071.jpg
+14188.jpg
+3142.jpg
+4427.jpg
+27763.jpg
+26726.jpg
+1831.jpg
+23940.jpg
+23869.jpg
+1341.jpg
+25965.jpg
+29073.jpg
+21170.jpg
+8206.jpg
+18299.jpg
+22073.jpg
+9771.jpg
+5938.jpg
+23180.jpg
+9807.jpg
+22553.jpg
+24517.jpg
+3934.jpg
+1016.jpg
+1853.jpg
+21602.jpg
+21305.jpg
+26030.jpg
+11785.jpg
+14301.jpg
+28603.jpg
+20766.jpg
+26122.jpg
+22272.jpg
+29398.jpg
+19680.jpg
+29702.jpg
+3008.jpg
+7848.jpg
+18285.jpg
+24759.jpg
+24778.jpg
+2644.jpg
+355.jpg
+24280.jpg
+24313.jpg
+17322.jpg
+13082.jpg
+3107.jpg
+17367.jpg
+23958.jpg
+28241.jpg
+29667.jpg
+13596.jpg
+15762.jpg
+13858.jpg
+5272.jpg
+3887.jpg
+3512.jpg
+4685.jpg
+609.jpg
+17880.jpg
+27643.jpg
+41.jpg
+10540.jpg
+13059.jpg
+28946.jpg
+25674.jpg
+11905.jpg
+11970.jpg
+14588.jpg
+8426.jpg
+16490.jpg
+23509.jpg
+11925.jpg
+29578.jpg
+6228.jpg
+2579.jpg
+17823.jpg
+24849.jpg
+2529.jpg
+19293.jpg
+27546.jpg
+21804.jpg
+28983.jpg
+6093.jpg
+4581.jpg
+9253.jpg
+11496.jpg
+11624.jpg
+26121.jpg
+1992.jpg
+25795.jpg
+13623.jpg
+14580.jpg
+23439.jpg
+28827.jpg
+2206.jpg
+26772.jpg
+9247.jpg
+19416.jpg
+25199.jpg
+28573.jpg
+12079.jpg
+711.jpg
+11380.jpg
+13319.jpg
+16956.jpg
+9113.jpg
+27208.jpg
+4351.jpg
+16180.jpg
+19847.jpg
+16990.jpg
+27725.jpg
+23130.jpg
+16942.jpg
+26235.jpg
+13519.jpg
+7584.jpg
+14602.jpg
+25517.jpg
+15859.jpg
+293.jpg
+4159.jpg
+15928.jpg
+4899.jpg
+23144.jpg
+11239.jpg
+17251.jpg
+94.jpg
+16140.jpg
+2620.jpg
+15434.jpg
+26311.jpg
+27693.jpg
+15803.jpg
+29822.jpg
+6227.jpg
+22187.jpg
+8437.jpg
+8635.jpg
+8570.jpg
+4279.jpg
+1319.jpg
+20369.jpg
+17379.jpg
+4423.jpg
+6844.jpg
+20460.jpg
+20547.jpg
+13699.jpg
+20502.jpg
+16870.jpg
+5952.jpg
+6250.jpg
+8682.jpg
+27513.jpg
+7915.jpg
+15116.jpg
+12080.jpg
+21791.jpg
+24956.jpg
+10323.jpg
+10260.jpg
+14024.jpg
+17077.jpg
+20287.jpg
+27535.jpg
+3743.jpg
+8629.jpg
+3995.jpg
+27145.jpg
+19586.jpg
+5838.jpg
+11159.jpg
+23270.jpg
+17898.jpg
+28927.jpg
+6834.jpg
+27526.jpg
+14434.jpg
+11541.jpg
+24961.jpg
+10042.jpg
+3517.jpg
+12304.jpg
+9212.jpg
+28486.jpg
+1469.jpg
+7519.jpg
+2159.jpg
+10657.jpg
+3368.jpg
+1774.jpg
+4893.jpg
+10022.jpg
+9512.jpg
+14722.jpg
+13413.jpg
+16135.jpg
+14026.jpg
+18123.jpg
+641.jpg
+1407.jpg
+14718.jpg
+3936.jpg
+521.jpg
+19844.jpg
+19499.jpg
+21756.jpg
+15124.jpg
+16692.jpg
+29423.jpg
+14965.jpg
+7428.jpg
+14963.jpg
+3313.jpg
+2861.jpg
+13274.jpg
+1075.jpg
+525.jpg
+3620.jpg
+19896.jpg
+13961.jpg
+24906.jpg
+25327.jpg
+9345.jpg
+3692.jpg
+18159.jpg
+15231.jpg
+4098.jpg
+9651.jpg
+15145.jpg
+13067.jpg
+1450.jpg
+13779.jpg
+25728.jpg
+28825.jpg
+6846.jpg
+13328.jpg
+27328.jpg
+27367.jpg
+6370.jpg
+11260.jpg
+21458.jpg
+12191.jpg
+17501.jpg
+307.jpg
+9945.jpg
+22195.jpg
+19565.jpg
+7314.jpg
+2849.jpg
+14189.jpg
+14598.jpg
+11114.jpg
+22884.jpg
+12867.jpg
+19292.jpg
+2060.jpg
+7077.jpg
+15110.jpg
+14664.jpg
+16608.jpg
+9681.jpg
+13619.jpg
+13547.jpg
+10758.jpg
+23288.jpg
+29079.jpg
+23019.jpg
+20823.jpg
+7110.jpg
+4676.jpg
+4799.jpg
+19486.jpg
+25541.jpg
+21925.jpg
+23826.jpg
+13872.jpg
+847.jpg
+22031.jpg
+475.jpg
+28473.jpg
+16976.jpg
+9115.jpg
+29949.jpg
+26597.jpg
+11381.jpg
+8224.jpg
+24486.jpg
+11888.jpg
+12248.jpg
+8501.jpg
+1487.jpg
+23972.jpg
+16272.jpg
+3634.jpg
+26008.jpg
+3373.jpg
+24024.jpg
+5146.jpg
+7056.jpg
+9426.jpg
+8608.jpg
+18871.jpg
+16181.jpg
+7387.jpg
+11414.jpg
+28135.jpg
+2851.jpg
+17912.jpg
+21507.jpg
+15431.jpg
+17830.jpg
+23990.jpg
+3255.jpg
+21944.jpg
+15282.jpg
+2142.jpg
+24566.jpg
+17460.jpg
+3283.jpg
+12647.jpg
+21628.jpg
+5124.jpg
+4210.jpg
+20677.jpg
+24829.jpg
+23347.jpg
+10746.jpg
+27738.jpg
+9946.jpg
+18765.jpg
+7925.jpg
+27173.jpg
+22226.jpg
+16767.jpg
+16106.jpg
+20108.jpg
+13183.jpg
+1717.jpg
+23379.jpg
+1678.jpg
+1911.jpg
+18618.jpg
+25626.jpg
+5274.jpg
+27126.jpg
+22302.jpg
+23755.jpg
+9800.jpg
+8064.jpg
+18924.jpg
+86.jpg
+10179.jpg
+14982.jpg
+5936.jpg
+2417.jpg
+11505.jpg
+21551.jpg
+7371.jpg
+20409.jpg
+27180.jpg
+12962.jpg
+175.jpg
+1892.jpg
+17204.jpg
+15767.jpg
+12921.jpg
+29089.jpg
+14028.jpg
+15935.jpg
+8327.jpg
+3789.jpg
+3551.jpg
+5965.jpg
+27368.jpg
+26092.jpg
+29902.jpg
+4880.jpg
+23153.jpg
+21335.jpg
+3624.jpg
+6894.jpg
+14873.jpg
+21378.jpg
+17118.jpg
+13700.jpg
+19111.jpg
+21625.jpg
+7385.jpg
+29508.jpg
+27438.jpg
+18731.jpg
+11266.jpg
+27904.jpg
+19442.jpg
+23375.jpg
+29269.jpg
+28294.jpg
+5647.jpg
+20349.jpg
+4711.jpg
+10064.jpg
+11152.jpg
+19390.jpg
+5575.jpg
+15708.jpg
+28227.jpg
+27579.jpg
+27091.jpg
+26948.jpg
+6048.jpg
+28963.jpg
+23246.jpg
+23800.jpg
+14271.jpg
+24116.jpg
+10749.jpg
+28076.jpg
+22179.jpg
+2592.jpg
+19028.jpg
+4054.jpg
+14502.jpg
+412.jpg
+789.jpg
+8203.jpg
+11164.jpg
+8448.jpg
+23232.jpg
+26668.jpg
+19023.jpg
+16732.jpg
+17188.jpg
+3468.jpg
+16660.jpg
+21614.jpg
+12061.jpg
+22247.jpg
+5017.jpg
+9751.jpg
+25084.jpg
+6236.jpg
+23549.jpg
+11964.jpg
+15582.jpg
+6008.jpg
+679.jpg
+23919.jpg
+21971.jpg
+15941.jpg
+17075.jpg
+1150.jpg
+3784.jpg
+19842.jpg
+16165.jpg
+13218.jpg
+10804.jpg
+6640.jpg
+24348.jpg
+16640.jpg
+11378.jpg
+19788.jpg
+6242.jpg
+5100.jpg
+27622.jpg
+21174.jpg
+13516.jpg
+6373.jpg
+17555.jpg
+20764.jpg
+22922.jpg
+27224.jpg
+23438.jpg
+20456.jpg
+20434.jpg
+17407.jpg
+23847.jpg
+25978.jpg
+18530.jpg
+2197.jpg
+24436.jpg
+20025.jpg
+23639.jpg
+26390.jpg
+27887.jpg
+12907.jpg
+24652.jpg
+5119.jpg
+8940.jpg
+5582.jpg
+23939.jpg
+21862.jpg
+29562.jpg
+9137.jpg
+757.jpg
+4232.jpg
+3128.jpg
+28537.jpg
+2091.jpg
+21683.jpg
+17893.jpg
+24453.jpg
+11489.jpg
+28273.jpg
+9346.jpg
+9722.jpg
+1144.jpg
+19923.jpg
+2760.jpg
+25477.jpg
+477.jpg
+7003.jpg
+8204.jpg
+13397.jpg
+29375.jpg
+5450.jpg
+288.jpg
+11903.jpg
+19792.jpg
+6742.jpg
+17135.jpg
+3584.jpg
+3492.jpg
+29281.jpg
+15813.jpg
+13338.jpg
+24738.jpg
+15710.jpg
+26592.jpg
+114.jpg
+17761.jpg
+13060.jpg
+8888.jpg
+18830.jpg
+23714.jpg
+13175.jpg
+4262.jpg
+4657.jpg
+6383.jpg
+22192.jpg
+16315.jpg
+13292.jpg
+19784.jpg
+14138.jpg
+3103.jpg
+25291.jpg
+10409.jpg
+23326.jpg
+8588.jpg
+6855.jpg
+11455.jpg
+23882.jpg
+29821.jpg
+21861.jpg
+15740.jpg
+18967.jpg
+10016.jpg
+22504.jpg
+1615.jpg
+13209.jpg
+2.jpg
+10537.jpg
+2180.jpg
+18119.jpg
+16161.jpg
+12642.jpg
+1321.jpg
+13675.jpg
+12438.jpg
+24531.jpg
+15624.jpg
+28792.jpg
+22103.jpg
+101.jpg
+14853.jpg
+2753.jpg
+25040.jpg
+20862.jpg
+9218.jpg
+13381.jpg
+6698.jpg
+21192.jpg
+29584.jpg
+1289.jpg
+1601.jpg
+12666.jpg
+15010.jpg
+16118.jpg
+11402.jpg
+3587.jpg
+538.jpg
+6146.jpg
+3908.jpg
+17397.jpg
+14228.jpg
+7595.jpg
+22620.jpg
+15769.jpg
+9602.jpg
+20638.jpg
+5690.jpg
+20987.jpg
+17209.jpg
+28462.jpg
+11710.jpg
+8095.jpg
+29851.jpg
+8449.jpg
+7949.jpg
+29721.jpg
+2119.jpg
+8526.jpg
+19362.jpg
+6875.jpg
+11779.jpg
+24945.jpg
+7113.jpg
+5922.jpg
+17481.jpg
+25475.jpg
+933.jpg
+11759.jpg
+9889.jpg
+9758.jpg
+24018.jpg
+1694.jpg
+3504.jpg
+15360.jpg
+25968.jpg
+28288.jpg
+1814.jpg
+21065.jpg
+312.jpg
+19799.jpg
+23287.jpg
+12783.jpg
+11443.jpg
+9105.jpg
+25039.jpg
+7032.jpg
+10210.jpg
+11510.jpg
+16034.jpg
+13891.jpg
+2273.jpg
+16816.jpg
+27118.jpg
+12185.jpg
+7407.jpg
+18887.jpg
+5288.jpg
+15924.jpg
+11703.jpg
+5336.jpg
+28861.jpg
+23301.jpg
+18413.jpg
+710.jpg
+696.jpg
+13622.jpg
+27153.jpg
+9869.jpg
+8583.jpg
+21666.jpg
+1809.jpg
+21780.jpg
+27710.jpg
+18057.jpg
+29003.jpg
+29223.jpg
+6785.jpg
+8671.jpg
+26430.jpg
+22953.jpg
+5221.jpg
+15658.jpg
+13412.jpg
+26573.jpg
+21541.jpg
+3850.jpg
+22248.jpg
+17701.jpg
+22052.jpg
+725.jpg
+10457.jpg
+17316.jpg
+20617.jpg
+2215.jpg
+14224.jpg
+12396.jpg
+1112.jpg
+26113.jpg
+17006.jpg
+18945.jpg
+19268.jpg
+7670.jpg
+11088.jpg
+26768.jpg
+6970.jpg
+9714.jpg
+9647.jpg
+22320.jpg
+26654.jpg
+17347.jpg
+23205.jpg
+25908.jpg
+17061.jpg
+19787.jpg
+7836.jpg
+6311.jpg
+6873.jpg
+2245.jpg
+11009.jpg
+25856.jpg
+23518.jpg
+17025.jpg
+5877.jpg
+21540.jpg
+15907.jpg
+19981.jpg
+3043.jpg
+12634.jpg
+17537.jpg
+14410.jpg
+24589.jpg
+21699.jpg
+21278.jpg
+24900.jpg
+20985.jpg
+23920.jpg
+1906.jpg
+3223.jpg
+13217.jpg
+24495.jpg
+14324.jpg
+26152.jpg
+9216.jpg
+8392.jpg
+26557.jpg
+9077.jpg
+11053.jpg
+13992.jpg
+19071.jpg
+16797.jpg
+4484.jpg
+10214.jpg
+23313.jpg
+14140.jpg
+2569.jpg
+29875.jpg
+2774.jpg
+27478.jpg
+9092.jpg
+19458.jpg
+13031.jpg
+22251.jpg
+15133.jpg
+4316.jpg
+15233.jpg
+9025.jpg
+27558.jpg
+18292.jpg
+14157.jpg
+13871.jpg
+10642.jpg
+5608.jpg
+16200.jpg
+17291.jpg
+14070.jpg
+6553.jpg
+15119.jpg
+4275.jpg
+21436.jpg
+29268.jpg
+26405.jpg
+29980.jpg
+19269.jpg
+15389.jpg
+11971.jpg
+7758.jpg
+11929.jpg
+3122.jpg
+9811.jpg
+2509.jpg
+15654.jpg
+2096.jpg
+15005.jpg
+14842.jpg
+19477.jpg
+26546.jpg
+12353.jpg
+24399.jpg
+9989.jpg
+9987.jpg
+4378.jpg
+18706.jpg
+170.jpg
+1688.jpg
+18789.jpg
+1491.jpg
+29659.jpg
+14595.jpg
+5296.jpg
+23571.jpg
+19158.jpg
+6600.jpg
+15033.jpg
+5496.jpg
+15844.jpg
+10781.jpg
+17572.jpg
+10788.jpg
+844.jpg
+18482.jpg
+12146.jpg
+19169.jpg
+8895.jpg
+29322.jpg
+16814.jpg
+15190.jpg
+12323.jpg
+28340.jpg
+4999.jpg
+8994.jpg
+17533.jpg
+8408.jpg
+11328.jpg
+7159.jpg
+14772.jpg
+8401.jpg
+15436.jpg
+23829.jpg
+26500.jpg
+12853.jpg
+29272.jpg
+12983.jpg
+17034.jpg
+26892.jpg
+5371.jpg
+5323.jpg
+10513.jpg
+5703.jpg
+6325.jpg
+20938.jpg
+10913.jpg
+25079.jpg
+21444.jpg
+19503.jpg
+27426.jpg
+21098.jpg
+16267.jpg
+29097.jpg
+10438.jpg
+22216.jpg
+29867.jpg
+13824.jpg
+12947.jpg
+19867.jpg
+23798.jpg
+27839.jpg
+10578.jpg
+7995.jpg
+4933.jpg
+7100.jpg
+11520.jpg
+11322.jpg
+19128.jpg
+11619.jpg
+9272.jpg
+4564.jpg
+4620.jpg
+4234.jpg
+3661.jpg
+14158.jpg
+22441.jpg
+23501.jpg
+25382.jpg
+17651.jpg
+17164.jpg
+14539.jpg
+14397.jpg
+27460.jpg
+11708.jpg
+1000.jpg
+27324.jpg
+22340.jpg
+21983.jpg
+17676.jpg
+19785.jpg
+29607.jpg
+4488.jpg
+4304.jpg
+19650.jpg
+11021.jpg
+6701.jpg
+11726.jpg
+23601.jpg
+28550.jpg
+24491.jpg
+29678.jpg
+24317.jpg
+10770.jpg
+6624.jpg
+27096.jpg
+28806.jpg
+2154.jpg
+20644.jpg
+387.jpg
+11112.jpg
+19893.jpg
+15572.jpg
+11066.jpg
+3328.jpg
+5887.jpg
+28531.jpg
+14105.jpg
+17234.jpg
+19125.jpg
+24072.jpg
+21926.jpg
+15757.jpg
+28768.jpg
+13708.jpg
+21854.jpg
+19881.jpg
+15087.jpg
+11213.jpg
+1580.jpg
+12887.jpg
+20945.jpg
+25163.jpg
+23320.jpg
+15636.jpg
+18268.jpg
+25658.jpg
+5871.jpg
+21484.jpg
+1886.jpg
+1820.jpg
+1794.jpg
+26249.jpg
+13632.jpg
+25615.jpg
+27825.jpg
+14056.jpg
+25322.jpg
+29760.jpg
+9334.jpg
+12686.jpg
+18485.jpg
+6609.jpg
+4793.jpg
+10162.jpg
+28068.jpg
+13595.jpg
+16438.jpg
+11891.jpg
+18304.jpg
+26118.jpg
+8306.jpg
+11272.jpg
+11623.jpg
+11770.jpg
+29626.jpg
+26838.jpg
+25292.jpg
+29498.jpg
+9706.jpg
+14059.jpg
+5434.jpg
+7694.jpg
+18826.jpg
+3981.jpg
+12778.jpg
+5650.jpg
+27756.jpg
+24629.jpg
+24391.jpg
+20062.jpg
+6043.jpg
+10839.jpg
+23510.jpg
+28701.jpg
+6054.jpg
+19537.jpg
+11570.jpg
+12943.jpg
+2315.jpg
+6823.jpg
+773.jpg
+1807.jpg
+29967.jpg
+18437.jpg
+16786.jpg
+2886.jpg
+15216.jpg
+8482.jpg
+28149.jpg
+5754.jpg
+26823.jpg
+13705.jpg
+21232.jpg
+20438.jpg
+17564.jpg
+26433.jpg
+20301.jpg
+13533.jpg
+18269.jpg
+10141.jpg
+26026.jpg
+7693.jpg
+3285.jpg
+7910.jpg
+26926.jpg
+25930.jpg
+6554.jpg
+8348.jpg
+11368.jpg
+11371.jpg
+21938.jpg
+18126.jpg
+11411.jpg
+5105.jpg
+1404.jpg
+17411.jpg
+2486.jpg
+26129.jpg
+7938.jpg
+6946.jpg
+7458.jpg
+11618.jpg
+28295.jpg
+22450.jpg
+15934.jpg
+20406.jpg
+8982.jpg
+6709.jpg
+1587.jpg
+16459.jpg
+27677.jpg
+3656.jpg
+1125.jpg
+11255.jpg
+16516.jpg
+17090.jpg
+11805.jpg
+2613.jpg
+24040.jpg
+24278.jpg
+28833.jpg
+14129.jpg
+10088.jpg
+17236.jpg
+29609.jpg
+5793.jpg
+28718.jpg
+17816.jpg
+14609.jpg
+29564.jpg
+12701.jpg
+11800.jpg
+28390.jpg
+26541.jpg
+27470.jpg
+20378.jpg
+24157.jpg
+19874.jpg
+19520.jpg
+13505.jpg
+1153.jpg
+11447.jpg
+6611.jpg
+24889.jpg
+9250.jpg
+29411.jpg
+9206.jpg
+10810.jpg
+14567.jpg
+15681.jpg
+12793.jpg
+14124.jpg
+5904.jpg
+5595.jpg
+29226.jpg
+9780.jpg
+6052.jpg
+23996.jpg
+2763.jpg
+11136.jpg
+3510.jpg
+1569.jpg
+27225.jpg
+15777.jpg
+11572.jpg
+750.jpg
+13648.jpg
+5596.jpg
+19222.jpg
+22687.jpg
+11796.jpg
+10440.jpg
+29344.jpg
+2660.jpg
+22995.jpg
+3509.jpg
+25368.jpg
+23455.jpg
+8622.jpg
+843.jpg
+8973.jpg
+23598.jpg
+4325.jpg
+8238.jpg
+8931.jpg
+20466.jpg
+5389.jpg
+5970.jpg
+28240.jpg
+21682.jpg
+23174.jpg
+3247.jpg
+15586.jpg
+25069.jpg
+5962.jpg
+28291.jpg
+16033.jpg
+352.jpg
+7237.jpg
+1687.jpg
+27657.jpg
+13452.jpg
+4725.jpg
+12888.jpg
+6727.jpg
+15652.jpg
+14152.jpg
+20616.jpg
+214.jpg
+14901.jpg
+15285.jpg
+21183.jpg
+1355.jpg
+14638.jpg
+29767.jpg
+27399.jpg
+5087.jpg
+2740.jpg
+24946.jpg
+459.jpg
+26461.jpg
+11172.jpg
+28492.jpg
+5619.jpg
+11015.jpg
+10674.jpg
+1976.jpg
+28459.jpg
+1599.jpg
+5868.jpg
+13507.jpg
+21067.jpg
+15978.jpg
+10420.jpg
+18984.jpg
+4543.jpg
+25260.jpg
+17351.jpg
+29034.jpg
+23776.jpg
+16410.jpg
+11291.jpg
+5537.jpg
+27858.jpg
+22181.jpg
+3977.jpg
+6746.jpg
+10696.jpg
+26791.jpg
+14518.jpg
+28339.jpg
+4987.jpg
+23400.jpg
+16065.jpg
+15785.jpg
+22514.jpg
+5863.jpg
+716.jpg
+23194.jpg
+22393.jpg
+18762.jpg
+13612.jpg
+2996.jpg
+17580.jpg
+26067.jpg
+24195.jpg
+11866.jpg
+20872.jpg
+24879.jpg
+3567.jpg
+3968.jpg
+7178.jpg
+19929.jpg
+7563.jpg
+7058.jpg
+18324.jpg
+15506.jpg
+17028.jpg
+1637.jpg
+15543.jpg
+6811.jpg
+29618.jpg
+26659.jpg
+18683.jpg
+26427.jpg
+20101.jpg
+29099.jpg
+13095.jpg
+27410.jpg
+20459.jpg
+27934.jpg
+19858.jpg
+26397.jpg
+29502.jpg
+1027.jpg
+11678.jpg
+3321.jpg
+15566.jpg
+5884.jpg
+26780.jpg
+8350.jpg
+15527.jpg
+18441.jpg
+29907.jpg
+25794.jpg
+21371.jpg
+11292.jpg
+27052.jpg
+8257.jpg
+7212.jpg
+16565.jpg
+16833.jpg
+27628.jpg
+14889.jpg
+27665.jpg
+15971.jpg
+23316.jpg
+20389.jpg
+26769.jpg
+16948.jpg
+23154.jpg
+10530.jpg
+26783.jpg
+17940.jpg
+110.jpg
+19326.jpg
+25733.jpg
+8422.jpg
+3155.jpg
+8560.jpg
+10351.jpg
+20348.jpg
+16151.jpg
+1920.jpg
+11855.jpg
+21710.jpg
+11370.jpg
+22704.jpg
+22455.jpg
+24753.jpg
+18635.jpg
+3702.jpg
+15441.jpg
+28753.jpg
+2693.jpg
+18130.jpg
+7378.jpg
+3134.jpg
+3159.jpg
+16999.jpg
+26870.jpg
+2423.jpg
+16476.jpg
+26620.jpg
+9306.jpg
+9050.jpg
+13773.jpg
+14524.jpg
+18870.jpg
+20474.jpg
+4689.jpg
+2032.jpg
+2783.jpg
+7567.jpg
+14828.jpg
+22469.jpg
+14145.jpg
+25739.jpg
+316.jpg
+4043.jpg
+793.jpg
+21778.jpg
+23700.jpg
+5814.jpg
+24479.jpg
+2048.jpg
+14259.jpg
+26320.jpg
+13455.jpg
+3379.jpg
+15616.jpg
+12378.jpg
+22751.jpg
+2475.jpg
+21244.jpg
+15156.jpg
+11231.jpg
+12930.jpg
+11254.jpg
+6719.jpg
+22902.jpg
+3102.jpg
+27824.jpg
+26117.jpg
+14011.jpg
+6010.jpg
+18176.jpg
+16645.jpg
+21451.jpg
+25352.jpg
+4119.jpg
+17.jpg
+19493.jpg
+4443.jpg
+19261.jpg
+7834.jpg
+24846.jpg
+2925.jpg
+28210.jpg
+8812.jpg
+20936.jpg
+5043.jpg
+29948.jpg
+20423.jpg
+17417.jpg
+24001.jpg
+15238.jpg
+28602.jpg
+12836.jpg
+28647.jpg
+29979.jpg
+19238.jpg
+2629.jpg
+11933.jpg
+12805.jpg
+12593.jpg
+23696.jpg
+7702.jpg
+22739.jpg
+27823.jpg
+25195.jpg
+16423.jpg
+12266.jpg
+20574.jpg
+26015.jpg
+8661.jpg
+1636.jpg
+557.jpg
+881.jpg
+4628.jpg
+12641.jpg
+4161.jpg
+9048.jpg
+16672.jpg
+15352.jpg
+8954.jpg
+9063.jpg
+22345.jpg
+17329.jpg
+22219.jpg
+4538.jpg
+1412.jpg
+11813.jpg
+4001.jpg
+10200.jpg
+25474.jpg
+21518.jpg
+2585.jpg
+25459.jpg
+2233.jpg
+14422.jpg
+29120.jpg
+10821.jpg
+19649.jpg
+130.jpg
+19582.jpg
+24830.jpg
+12899.jpg
+22539.jpg
+21466.jpg
+23378.jpg
+11068.jpg
+9140.jpg
+519.jpg
+16361.jpg
+9371.jpg
+22349.jpg
+9935.jpg
+1508.jpg
+14231.jpg
+1916.jpg
+5945.jpg
+11168.jpg
+4462.jpg
+8857.jpg
+7117.jpg
+24816.jpg
+19869.jpg
+25592.jpg
+4537.jpg
+24635.jpg
+17319.jpg
+4089.jpg
+25387.jpg
+10165.jpg
+1545.jpg
+12460.jpg
+8651.jpg
+28514.jpg
+22010.jpg
+6797.jpg
+23330.jpg
+4740.jpg
+16756.jpg
+10011.jpg
+10285.jpg
+4160.jpg
+23219.jpg
+4565.jpg
+12015.jpg
+20946.jpg
+29998.jpg
+17069.jpg
+19487.jpg
+12464.jpg
+29797.jpg
+23584.jpg
+20568.jpg
+29172.jpg
+11562.jpg
+8439.jpg
+3224.jpg
+15109.jpg
+29994.jpg
+18891.jpg
+11899.jpg
+19317.jpg
+2508.jpg
+6574.jpg
+4140.jpg
+2922.jpg
+6126.jpg
+10782.jpg
+9823.jpg
+29048.jpg
+8316.jpg
+24509.jpg
+382.jpg
+11080.jpg
+25119.jpg
+22279.jpg
+2181.jpg
+27045.jpg
+17642.jpg
+8152.jpg
+9551.jpg
+28752.jpg
+26575.jpg
+648.jpg
+12055.jpg
+16652.jpg
+16615.jpg
+4367.jpg
+2212.jpg
+24308.jpg
+3989.jpg
+12885.jpg
+22803.jpg
+14010.jpg
+8600.jpg
+8769.jpg
+6517.jpg
+18507.jpg
+10868.jpg
+3209.jpg
+21608.jpg
+26710.jpg
+27191.jpg
+16707.jpg
+5283.jpg
+27545.jpg
+14728.jpg
+13846.jpg
+5979.jpg
+4816.jpg
+19206.jpg
+18541.jpg
+26194.jpg
+16263.jpg
+18892.jpg
+10356.jpg
+24342.jpg
+28798.jpg
+5063.jpg
+15498.jpg
+2857.jpg
+7021.jpg
+9797.jpg
+9014.jpg
+25050.jpg
+20180.jpg
+15451.jpg
+9017.jpg
+23064.jpg
+17406.jpg
+9713.jpg
+28498.jpg
+19371.jpg
+1131.jpg
+24095.jpg
+7731.jpg
+17731.jpg
+632.jpg
+20364.jpg
+837.jpg
+14470.jpg
+8219.jpg
+15640.jpg
+26140.jpg
+2121.jpg
+3898.jpg
+2494.jpg
+11082.jpg
+26770.jpg
+8628.jpg
+8.jpg
+17805.jpg
+2971.jpg
+22959.jpg
+21175.jpg
+28875.jpg
+23618.jpg
+10331.jpg
+21526.jpg
+2582.jpg
+17387.jpg
+3753.jpg
+27466.jpg
+16011.jpg
+19032.jpg
+3698.jpg
+18256.jpg
+19166.jpg
+29305.jpg
+7708.jpg
+7324.jpg
+23165.jpg
+16186.jpg
+11587.jpg
+24413.jpg
+27423.jpg
+735.jpg
+24514.jpg
+28107.jpg
+20978.jpg
+13843.jpg
+19640.jpg
+28259.jpg
+24374.jpg
+20600.jpg
+26291.jpg
+7585.jpg
+7577.jpg
+27018.jpg
+498.jpg
+9142.jpg
+5467.jpg
+27487.jpg
+6053.jpg
+256.jpg
+12697.jpg
+23500.jpg
+30.jpg
+8379.jpg
+8648.jpg
+17729.jpg
+2114.jpg
+21131.jpg
+14353.jpg
+7061.jpg
+7751.jpg
+18405.jpg
+360.jpg
+16950.jpg
+22188.jpg
+11148.jpg
+2982.jpg
+9952.jpg
+2062.jpg
+19584.jpg
+8349.jpg
+14575.jpg
+20911.jpg
+4623.jpg
+17318.jpg
+29445.jpg
+20001.jpg
+24421.jpg
+25635.jpg
+29662.jpg
+3614.jpg
+3238.jpg
+17757.jpg
+25881.jpg
+27200.jpg
+24582.jpg
+6004.jpg
+13715.jpg
+25081.jpg
+804.jpg
+24114.jpg
+3845.jpg
+1465.jpg
+21372.jpg
+15372.jpg
+14021.jpg
+4719.jpg
+18640.jpg
+1420.jpg
+11369.jpg
+25447.jpg
+15351.jpg
+28186.jpg
+27990.jpg
+21320.jpg
+21951.jpg
+20071.jpg
+25288.jpg
+7838.jpg
+29264.jpg
+3065.jpg
+13299.jpg
+27881.jpg
+7793.jpg
+4530.jpg
+16301.jpg
+7822.jpg
+5130.jpg
+16584.jpg
+2437.jpg
+13176.jpg
+941.jpg
+27382.jpg
+4856.jpg
+16334.jpg
+23838.jpg
+27926.jpg
+28801.jpg
+16363.jpg
+13480.jpg
+570.jpg
+21973.jpg
+10779.jpg
+2254.jpg
+24231.jpg
+26551.jpg
+2146.jpg
+16650.jpg
+22510.jpg
+13075.jpg
+72.jpg
+20930.jpg
+17943.jpg
+13931.jpg
+25369.jpg
+22827.jpg
+8073.jpg
+8566.jpg
+26000.jpg
+26868.jpg
+18009.jpg
+26521.jpg
+20545.jpg
+6543.jpg
+8330.jpg
+1564.jpg
+24227.jpg
+19693.jpg
+3277.jpg
+26755.jpg
+21316.jpg
+24122.jpg
+12651.jpg
+12857.jpg
+22352.jpg
+10919.jpg
+11781.jpg
+9573.jpg
+12365.jpg
+15313.jpg
+26806.jpg
+16421.jpg
+7658.jpg
+3306.jpg
+6943.jpg
+12680.jpg
+55.jpg
+1862.jpg
+25594.jpg
+4595.jpg
+20340.jpg
+26033.jpg
+20548.jpg
+6158.jpg
+29373.jpg
+20557.jpg
+14426.jpg
+22625.jpg
+18361.jpg
+2779.jpg
+5964.jpg
+1895.jpg
+22064.jpg
+26229.jpg
+16439.jpg
+20437.jpg
+23812.jpg
+26790.jpg
+22508.jpg
+9635.jpg
+10671.jpg
+22359.jpg
+18121.jpg
+48.jpg
+28319.jpg
+8780.jpg
+22463.jpg
+25418.jpg
+25174.jpg
+16546.jpg
+24817.jpg
+8273.jpg
+10008.jpg
+631.jpg
+16733.jpg
+27230.jpg
+136.jpg
+21927.jpg
+12738.jpg
+1464.jpg
+17308.jpg
+10824.jpg
+8166.jpg
+8192.jpg
+4100.jpg
+25609.jpg
+24336.jpg
+6973.jpg
+18616.jpg
+17363.jpg
+14919.jpg
+1004.jpg
+29161.jpg
+8060.jpg
+4088.jpg
+28611.jpg
+2461.jpg
+22229.jpg
+4481.jpg
+6885.jpg
+25441.jpg
+5008.jpg
+25264.jpg
+21893.jpg
+13306.jpg
+16518.jpg
+25608.jpg
+18552.jpg
+15420.jpg
+23292.jpg
+6731.jpg
+372.jpg
+26915.jpg
+20840.jpg
+25816.jpg
+8968.jpg
+25454.jpg
+13402.jpg
+28540.jpg
+26314.jpg
+26997.jpg
+6282.jpg
+22162.jpg
+10704.jpg
+2278.jpg
+27783.jpg
+22474.jpg
+13009.jpg
+12492.jpg
+3964.jpg
+20748.jpg
+6475.jpg
+10128.jpg
+3759.jpg
+22577.jpg
+6735.jpg
+29961.jpg
+6082.jpg
+25695.jpg
+24710.jpg
+3590.jpg
+6565.jpg
+2547.jpg
+7303.jpg
+6816.jpg
+24222.jpg
+13344.jpg
+27152.jpg
+19601.jpg
+15402.jpg
+4540.jpg
+26547.jpg
+22488.jpg
+6545.jpg
+20128.jpg
+20333.jpg
+15991.jpg
+15152.jpg
+4562.jpg
+592.jpg
+1834.jpg
+23842.jpg
+4926.jpg
+19374.jpg
+25682.jpg
+12027.jpg
+7677.jpg
+26513.jpg
+23965.jpg
+3070.jpg
+20652.jpg
+6159.jpg
+25808.jpg
+2515.jpg
+1269.jpg
+10196.jpg
+2943.jpg
+1091.jpg
+17394.jpg
+18703.jpg
+28865.jpg
+12261.jpg
+24843.jpg
+5727.jpg
+4827.jpg
+19098.jpg
+19079.jpg
+321.jpg
+28006.jpg
+319.jpg
+16089.jpg
+5404.jpg
+14857.jpg
+11986.jpg
+8452.jpg
+2674.jpg
+10274.jpg
+27908.jpg
+7322.jpg
+13704.jpg
+29558.jpg
+8353.jpg
+26754.jpg
+18297.jpg
+4489.jpg
+25020.jpg
+25934.jpg
+20381.jpg
+285.jpg
+16481.jpg
+1182.jpg
+8416.jpg
+14525.jpg
+3339.jpg
+25574.jpg
+12799.jpg
+11886.jpg
+21663.jpg
+20206.jpg
+19506.jpg
+18697.jpg
+16527.jpg
+12660.jpg
+2348.jpg
+15041.jpg
+24312.jpg
+16562.jpg
+28874.jpg
+17720.jpg
+12529.jpg
+5253.jpg
+23610.jpg
+4826.jpg
+10445.jpg
+10479.jpg
+24362.jpg
+23875.jpg
+4183.jpg
+29664.jpg
+23376.jpg
+22695.jpg
+28479.jpg
+16533.jpg
+14811.jpg
+18340.jpg
+1963.jpg
+10082.jpg
+8557.jpg
+6467.jpg
+3903.jpg
+22218.jpg
+23590.jpg
+14045.jpg
+15590.jpg
+10727.jpg
+23752.jpg
+4022.jpg
+12450.jpg
+9550.jpg
+18122.jpg
+13801.jpg
+25598.jpg
+16343.jpg
+1299.jpg
+9034.jpg
+19234.jpg
+8130.jpg
+20299.jpg
+27269.jpg
+19085.jpg
+417.jpg
+23434.jpg
+14986.jpg
+9169.jpg
+21556.jpg
+8554.jpg
+19106.jpg
+27184.jpg
+23117.jpg
+18118.jpg
+2140.jpg
+322.jpg
+10991.jpg
+589.jpg
+14475.jpg
+4200.jpg
+420.jpg
+9.jpg
+12264.jpg
+20068.jpg
+17056.jpg
+2954.jpg
+26509.jpg
+873.jpg
+16604.jpg
+29529.jpg
+3790.jpg
+8951.jpg
+12315.jpg
+11535.jpg
+15664.jpg
+18095.jpg
+12709.jpg
+22290.jpg
+7008.jpg
+19314.jpg
+15603.jpg
+16696.jpg
+26316.jpg
+9514.jpg
+26276.jpg
+22427.jpg
+7265.jpg
+29486.jpg
+7473.jpg
+20782.jpg
+2080.jpg
+19600.jpg
+29109.jpg
+25187.jpg
+4237.jpg
+18763.jpg
+28355.jpg
+4259.jpg
+21579.jpg
+7764.jpg
+27530.jpg
+16142.jpg
+2044.jpg
+17127.jpg
+25055.jpg
+3778.jpg
+13317.jpg
+27278.jpg
+9398.jpg
+3385.jpg
+12279.jpg
+2601.jpg
+11072.jpg
+20922.jpg
+9773.jpg
+1885.jpg
+27375.jpg
+12339.jpg
+8107.jpg
+16869.jpg
+9884.jpg
+25107.jpg
+19239.jpg
+29559.jpg
+26255.jpg
+7578.jpg
+29830.jpg
+4399.jpg
+424.jpg
+14009.jpg
+4195.jpg
+29751.jpg
+15236.jpg
+27840.jpg
+16340.jpg
+16815.jpg
+20967.jpg
+17944.jpg
+2831.jpg
+1.jpg
+24261.jpg
+29072.jpg
+15228.jpg
+22867.jpg
+25358.jpg
+11493.jpg
+1734.jpg
+29265.jpg
+17687.jpg
+14123.jpg
+2271.jpg
+20523.jpg
+7120.jpg
+6455.jpg
+26795.jpg
+25834.jpg
+17173.jpg
+23227.jpg
+8428.jpg
+21779.jpg
+16115.jpg
+28225.jpg
+27421.jpg
+13049.jpg
+4020.jpg
+29865.jpg
+28503.jpg
+20441.jpg
+29095.jpg
+3543.jpg
+15715.jpg
+6151.jpg
+27780.jpg
+3589.jpg
+8359.jpg
+7612.jpg
+206.jpg
+15241.jpg
+25251.jpg
+6408.jpg
+19965.jpg
+26652.jpg
+22057.jpg
+22828.jpg
+24079.jpg
+18391.jpg
+25453.jpg
+25274.jpg
+16039.jpg
+3926.jpg
+10964.jpg
+11248.jpg
+3149.jpg
+14764.jpg
+12904.jpg
+3326.jpg
+20144.jpg
+13513.jpg
+14326.jpg
+3563.jpg
+29188.jpg
+18277.jpg
+42.jpg
+20395.jpg
+12136.jpg
+16588.jpg
+23271.jpg
+11470.jpg
+22564.jpg
+27868.jpg
+20105.jpg
+18935.jpg
+26025.jpg
+29287.jpg
+24014.jpg
+7620.jpg
+25168.jpg
+27512.jpg
+10411.jpg
+12848.jpg
+20689.jpg
+15424.jpg
+1448.jpg
+24179.jpg
+26774.jpg
+1129.jpg
+18853.jpg
+23319.jpg
+8165.jpg
+27095.jpg
+18875.jpg
+3094.jpg
+8092.jpg
+13369.jpg
+1915.jpg
+21309.jpg
+10591.jpg
+4757.jpg
+10317.jpg
+27122.jpg
+27302.jpg
+27661.jpg
+19616.jpg
+19985.jpg
+11731.jpg
+11453.jpg
+26214.jpg
+5488.jpg
+20551.jpg
+3195.jpg
+25247.jpg
+1386.jpg
+12906.jpg
+6021.jpg
+18864.jpg
+4618.jpg
+8091.jpg
+1909.jpg
+29143.jpg
+487.jpg
+3685.jpg
+18894.jpg
+25936.jpg
+17446.jpg
+3075.jpg
+1089.jpg
+28133.jpg
+15723.jpg
+28672.jpg
+4775.jpg
+21723.jpg
+7083.jpg
+17674.jpg
+16194.jpg
+28032.jpg
+26740.jpg
+15006.jpg
+141.jpg
+22319.jpg
+6089.jpg
+28231.jpg
+17125.jpg
+5839.jpg
+269.jpg
+2079.jpg
+17147.jpg
+3821.jpg
+10075.jpg
+16515.jpg
+14096.jpg
+23589.jpg
+14542.jpg
+11242.jpg
+18545.jpg
+20426.jpg
+6305.jpg
+1650.jpg
+29791.jpg
+8340.jpg
+16400.jpg
+19939.jpg
+23854.jpg
+12116.jpg
+28947.jpg
+2372.jpg
+28704.jpg
+26063.jpg
+26488.jpg
+13477.jpg
+22882.jpg
+21348.jpg
+1085.jpg
+10860.jpg
+10893.jpg
+10803.jpg
+11651.jpg
+13892.jpg
+19422.jpg
+8213.jpg
+21626.jpg
+12717.jpg
+23282.jpg
+17433.jpg
+7281.jpg
+14751.jpg
+11576.jpg
+1553.jpg
+23695.jpg
+4674.jpg
+25171.jpg
+6548.jpg
+3178.jpg
+10724.jpg
+15834.jpg
+27548.jpg
+2330.jpg
+22544.jpg
+674.jpg
+26170.jpg
+20345.jpg
+20009.jpg
+15321.jpg
+12780.jpg
+17418.jpg
+3911.jpg
+3161.jpg
+13901.jpg
+9073.jpg
+11092.jpg
+10270.jpg
+16091.jpg
+14520.jpg
+3744.jpg
+24501.jpg
+6503.jpg
+11655.jpg
+16582.jpg
+29511.jpg
+7364.jpg
+19335.jpg
+29801.jpg
+18416.jpg
+21960.jpg
+24896.jpg
+12233.jpg
+1603.jpg
+6369.jpg
+1172.jpg
+19009.jpg
+11233.jpg
+11675.jpg
+5615.jpg
+5828.jpg
+1631.jpg
+4299.jpg
+4125.jpg
+10709.jpg
+24088.jpg
+9079.jpg
+587.jpg
+12668.jpg
+23764.jpg
+29863.jpg
+17151.jpg
+21825.jpg
+5517.jpg
+8697.jpg
+5687.jpg
+3080.jpg
+17548.jpg
+29943.jpg
+21920.jpg
+13687.jpg
+14797.jpg
+6715.jpg
+6591.jpg
+5994.jpg
+20066.jpg
+22495.jpg
+10493.jpg
+14136.jpg
+11956.jpg
+15649.jpg
+1415.jpg
+11750.jpg
+4669.jpg
+27009.jpg
+3473.jpg
+337.jpg
+28275.jpg
+25730.jpg
+8802.jpg
+13315.jpg
+13979.jpg
+427.jpg
+2762.jpg
+13404.jpg
+22797.jpg
+15936.jpg
+29480.jpg
+19011.jpg
+20098.jpg
+7002.jpg
+198.jpg
+26866.jpg
+29756.jpg
+5357.jpg
+3055.jpg
+18345.jpg
+27580.jpg
+15309.jpg
+20675.jpg
+10647.jpg
+9583.jpg
+19993.jpg
+27473.jpg
+6318.jpg
+20055.jpg
+22928.jpg
+25324.jpg
+18555.jpg
+27719.jpg
+24380.jpg
+14318.jpg
+6279.jpg
+26818.jpg
+15581.jpg
+3621.jpg
+20493.jpg
+7278.jpg
+2972.jpg
+20532.jpg
+3729.jpg
+15432.jpg
+24208.jpg
+16397.jpg
+10769.jpg
+9991.jpg
+9509.jpg
+29007.jpg
+19177.jpg
+454.jpg
+26482.jpg
+12107.jpg
+6391.jpg
+2979.jpg
+15856.jpg
+21361.jpg
+11951.jpg
+21121.jpg
+24818.jpg
+10889.jpg
+13959.jpg
+28272.jpg
+29651.jpg
+9788.jpg
+7809.jpg
+25941.jpg
+724.jpg
+11297.jpg
+15976.jpg
+4329.jpg
+4395.jpg
+23855.jpg
+22230.jpg
+13226.jpg
+28258.jpg
+6097.jpg
+26123.jpg
+22136.jpg
+11657.jpg
+20549.jpg
+19018.jpg
+8346.jpg
+18132.jpg
+12969.jpg
+7106.jpg
+28555.jpg
+19594.jpg
+19143.jpg
+10799.jpg
+6694.jpg
+24375.jpg
+5049.jpg
+24565.jpg
+27576.jpg
+11076.jpg
+6106.jpg
+26962.jpg
+21061.jpg
+23653.jpg
+1689.jpg
+22559.jpg
+17478.jpg
+19568.jpg
+2946.jpg
+17680.jpg
+19201.jpg
+2152.jpg
+25783.jpg
+5837.jpg
+28433.jpg
+22502.jpg
+13248.jpg
+5854.jpg
+22909.jpg
+26297.jpg
+19845.jpg
+22030.jpg
+25140.jpg
+18913.jpg
+21605.jpg
+25417.jpg
+28123.jpg
+17664.jpg
+22956.jpg
+13247.jpg
+22499.jpg
+3816.jpg
+11948.jpg
+21508.jpg
+7993.jpg
+14250.jpg
+24938.jpg
+25760.jpg
+28136.jpg
+9312.jpg
+546.jpg
+13657.jpg
+15563.jpg
+20127.jpg
+13968.jpg
+20393.jpg
+10952.jpg
+26068.jpg
+25347.jpg
+4401.jpg
+11142.jpg
+23259.jpg
+9858.jpg
+14729.jpg
+3404.jpg
+16840.jpg
+29308.jpg
+22243.jpg
+4060.jpg
+12687.jpg
+6655.jpg
+25353.jpg
+10829.jpg
+6631.jpg
+20829.jpg
+28662.jpg
+27573.jpg
+3375.jpg
+26885.jpg
+9355.jpg
+27003.jpg
+10248.jpg
+16408.jpg
+694.jpg
+4189.jpg
+12524.jpg
+5353.jpg
+22130.jpg
+27406.jpg
+6449.jpg
+21236.jpg
+22042.jpg
+15307.jpg
+9000.jpg
+481.jpg
+26802.jpg
+9704.jpg
+4572.jpg
+26553.jpg
+28470.jpg
+23543.jpg
+26560.jpg
+615.jpg
+26415.jpg
+14784.jpg
+25404.jpg
+26098.jpg
+11647.jpg
+8882.jpg
+7487.jpg
+21724.jpg
+4619.jpg
+21923.jpg
+22589.jpg
+27778.jpg
+19048.jpg
+16116.jpg
+15398.jpg
+9931.jpg
+17146.jpg
+5494.jpg
+1964.jpg
+13501.jpg
+25716.jpg
+22358.jpg
+28671.jpg
+29359.jpg
+4252.jpg
+6487.jpg
+15440.jpg
+28480.jpg
+2130.jpg
+15818.jpg
+1315.jpg
+19301.jpg
+10884.jpg
+9902.jpg
+20490.jpg
+16156.jpg
+4147.jpg
+916.jpg
+5312.jpg
+26841.jpg
+25544.jpg
+17096.jpg
+15725.jpg
+23315.jpg
+3855.jpg
+693.jpg
+25027.jpg
+2489.jpg
+20692.jpg
+10627.jpg
+3540.jpg
+7611.jpg
+13577.jpg
+25233.jpg
+12765.jpg
+13730.jpg
+18529.jpg
+17009.jpg
+29064.jpg
+4228.jpg
+3225.jpg
+26711.jpg
+2098.jpg
+8084.jpg
+9114.jpg
+14964.jpg
+9619.jpg
+29380.jpg
+8196.jpg
+17570.jpg
+9377.jpg
+26138.jpg
+13394.jpg
+22752.jpg
+16425.jpg
+15657.jpg
+5622.jpg
+9920.jpg
+18454.jpg
+28942.jpg
+13587.jpg
+1775.jpg
+7974.jpg
+13349.jpg
+22454.jpg
+12192.jpg
+22839.jpg
+7485.jpg
+8293.jpg
+2647.jpg
+6757.jpg
+28325.jpg
+19720.jpg
+5000.jpg
+29919.jpg
+17725.jpg
+2679.jpg
+23184.jpg
+23206.jpg
+5525.jpg
+26366.jpg
+20132.jpg
+24355.jpg
+18424.jpg
+14146.jpg
+18465.jpg
+10966.jpg
+17806.jpg
+6007.jpg
+2236.jpg
+19075.jpg
+2429.jpg
+24267.jpg
+18234.jpg
+12258.jpg
+29587.jpg
+29922.jpg
+2290.jpg
+1338.jpg
+9343.jpg
+27846.jpg
+4357.jpg
+22939.jpg
+22236.jpg
+7413.jpg
+6586.jpg
+11302.jpg
+11996.jpg
+15495.jpg
+20738.jpg
+20624.jpg
+21812.jpg
+26151.jpg
+27064.jpg
+8109.jpg
+2758.jpg
+11462.jpg
+29818.jpg
+9637.jpg
+8561.jpg
+9668.jpg
+16623.jpg
+1228.jpg
+11182.jpg
+12624.jpg
+15202.jpg
+24851.jpg
+29536.jpg
+13486.jpg
+15939.jpg
+3399.jpg
+29227.jpg
+19667.jpg
+24224.jpg
+23103.jpg
+7883.jpg
+7570.jpg
+21623.jpg
+1509.jpg
+25248.jpg
+11512.jpg
+26437.jpg
+10760.jpg
+28460.jpg
+4364.jpg
+18632.jpg
+17901.jpg
+17301.jpg
+29966.jpg
+29959.jpg
+7498.jpg
+27557.jpg
+29987.jpg
+7132.jpg
+6306.jpg
+8586.jpg
+17962.jpg
+26881.jpg
+14438.jpg
+29400.jpg
+15548.jpg
+10293.jpg
+14440.jpg
+5824.jpg
+15383.jpg
+6334.jpg
+12643.jpg
+3717.jpg
+23983.jpg
+18146.jpg
+22710.jpg
+15491.jpg
+23472.jpg
+6859.jpg
+6335.jpg
+29484.jpg
+23503.jpg
+22983.jpg
+26100.jpg
+26956.jpg
+4774.jpg
+8019.jpg
+17376.jpg
+11949.jpg
+7520.jpg
+4928.jpg
+5628.jpg
+9035.jpg
+21853.jpg
+12493.jpg
+13914.jpg
+18700.jpg
+27265.jpg
+5007.jpg
+20939.jpg
+9872.jpg
+4065.jpg
+18097.jpg
+1944.jpg
+25662.jpg
+10315.jpg
+9611.jpg
+5346.jpg
+6072.jpg
+6703.jpg
+13850.jpg
+2363.jpg
+15408.jpg
+22555.jpg
+18905.jpg
+10394.jpg
+4276.jpg
+28873.jpg
+11040.jpg
+13497.jpg
+21548.jpg
+17130.jpg
+15801.jpg
+22148.jpg
+19115.jpg
+5424.jpg
+26344.jpg
+14541.jpg
+18283.jpg
+22060.jpg
+22104.jpg
+25319.jpg
+15911.jpg
+3175.jpg
+23608.jpg
+24659.jpg
+19399.jpg
+16451.jpg
+19455.jpg
+7696.jpg
+1522.jpg
+13024.jpg
+23049.jpg
+5515.jpg
+29531.jpg
+623.jpg
+28762.jpg
+1935.jpg
+3829.jpg
+5756.jpg
+11843.jpg
+13233.jpg
+11034.jpg
+12164.jpg
+10646.jpg
+21659.jpg
+14439.jpg
+19523.jpg
+21382.jpg
+26588.jpg
+10833.jpg
+22464.jpg
+24754.jpg
+18298.jpg
+4738.jpg
+12071.jpg
+21669.jpg
+13706.jpg
+23539.jpg
+23244.jpg
+21031.jpg
+5441.jpg
+13099.jpg
+25722.jpg
+262.jpg
+9067.jpg
+26809.jpg
+846.jpg
+28318.jpg
+20947.jpg
+1867.jpg
+13991.jpg
+27453.jpg
+19749.jpg
+1996.jpg
+25336.jpg
+6272.jpg
+29799.jpg
+26716.jpg
+518.jpg
+6879.jpg
+10376.jpg
+25330.jpg
+23494.jpg
+27899.jpg
+28348.jpg
+24026.jpg
+23634.jpg
+329.jpg
+25394.jpg
+2457.jpg
+22792.jpg
+6969.jpg
+2387.jpg
+995.jpg
+17928.jpg
+10389.jpg
+10258.jpg
+14284.jpg
+24447.jpg
+5695.jpg
+5584.jpg
+14757.jpg
+28787.jpg
+16577.jpg
+1748.jpg
+12743.jpg
+22242.jpg
+22591.jpg
+20641.jpg
+3835.jpg
+11165.jpg
+24773.jpg
+1806.jpg
+14495.jpg
+21423.jpg
+17852.jpg
+22020.jpg
+18786.jpg
+2818.jpg
+7812.jpg
+12244.jpg
+10390.jpg
+2263.jpg
+17910.jpg
+27226.jpg
+9679.jpg
+18395.jpg
+13322.jpg
+1605.jpg
+118.jpg
+27000.jpg
+9087.jpg
+20525.jpg
+7486.jpg
+295.jpg
+7772.jpg
+5980.jpg
+17201.jpg
+14763.jpg
+26857.jpg
+12919.jpg
+22800.jpg
+24841.jpg
+22569.jpg
+25858.jpg
+6197.jpg
+21443.jpg
+8518.jpg
+5086.jpg
+13829.jpg
+17669.jpg
+1312.jpg
+25309.jpg
+11048.jpg
+8986.jpg
+8031.jpg
+11531.jpg
+22772.jpg
+29327.jpg
+17070.jpg
+9753.jpg
+967.jpg
+6283.jpg
+17290.jpg
+17098.jpg
+11059.jpg
+10875.jpg
+26095.jpg
+3814.jpg
+5266.jpg
+24884.jpg
+19332.jpg
+1189.jpg
+26540.jpg
+7737.jpg
+28577.jpg
+19076.jpg
+21519.jpg
+11578.jpg
+28080.jpg
+8329.jpg
+1921.jpg
+7534.jpg
+24868.jpg
+18184.jpg
+14534.jpg
+12767.jpg
+11055.jpg
+8237.jpg
+6107.jpg
+3097.jpg
+27430.jpg
+23413.jpg
+5796.jpg
+482.jpg
+5181.jpg
+23508.jpg
+9091.jpg
+5429.jpg
+5072.jpg
+10528.jpg
+12558.jpg
+10051.jpg
+19495.jpg
+1980.jpg
+6672.jpg
+5338.jpg
+3694.jpg
+2420.jpg
+24930.jpg
+8002.jpg
+7187.jpg
+26435.jpg
+20876.jpg
+3841.jpg
+12074.jpg
+27800.jpg
+19141.jpg
+607.jpg
+19519.jpg
+330.jpg
+6183.jpg
+19192.jpg
+24394.jpg
+4930.jpg
+13491.jpg
+3818.jpg
+713.jpg
+2859.jpg
+7360.jpg
+20054.jpg
+19580.jpg
+27240.jpg
+10313.jpg
+19097.jpg
+27969.jpg
+19521.jpg
+16229.jpg
+19900.jpg
+22635.jpg
+18527.jpg
+18501.jpg
+12796.jpg
+1737.jpg
+25769.jpg
+3636.jpg
+25861.jpg
+12814.jpg
+29292.jpg
+14331.jpg
+14548.jpg
+26019.jpg
+12314.jpg
+10403.jpg
+4453.jpg
+17964.jpg
+18152.jpg
+2028.jpg
+15848.jpg
+1292.jpg
+20481.jpg
+23178.jpg
+17915.jpg
+1140.jpg
+3433.jpg
+11268.jpg
+13498.jpg
+24627.jpg
+6003.jpg
+574.jpg
+7065.jpg
+18991.jpg
+4874.jpg
+11173.jpg
+27539.jpg
+4934.jpg
+6572.jpg
+6204.jpg
+17703.jpg
+18053.jpg
+10776.jpg
+4099.jpg
+23289.jpg
+17616.jpg
+4858.jpg
+26999.jpg
+21288.jpg
+9871.jpg
+19059.jpg
+29129.jpg
+4194.jpg
+23848.jpg
+5208.jpg
+5514.jpg
+29440.jpg
+18353.jpg
+18103.jpg
+28129.jpg
+20388.jpg
+8507.jpg
+26022.jpg
+3401.jpg
+29847.jpg
+10550.jpg
+20788.jpg
+9584.jpg
+20480.jpg
+22213.jpg
+7749.jpg
+28338.jpg
+12461.jpg
+13155.jpg
+27087.jpg
+2419.jpg
+21242.jpg
+13746.jpg
+29020.jpg
+975.jpg
+3290.jpg
+9744.jpg
+2216.jpg
+29235.jpg
+26468.jpg
+19821.jpg
+18709.jpg
+18715.jpg
+13552.jpg
+10636.jpg
+5876.jpg
+24275.jpg
+26299.jpg
+12362.jpg
+29232.jpg
+14266.jpg
+26209.jpg
+27768.jpg
+6257.jpg
+13926.jpg
+18794.jpg
+11744.jpg
+9369.jpg
+6738.jpg
+18020.jpg
+5472.jpg
+18498.jpg
+26556.jpg
+26903.jpg
+10197.jpg
+13352.jpg
+25434.jpg
+23563.jpg
+27413.jpg
+25261.jpg
+17618.jpg
+989.jpg
+2736.jpg
+2543.jpg
+26785.jpg
+22201.jpg
+25726.jpg
+19660.jpg
+9436.jpg
+18570.jpg
+6450.jpg
+27781.jpg
+9766.jpg
+19904.jpg
+4323.jpg
+12433.jpg
+22960.jpg
+957.jpg
+4742.jpg
+19322.jpg
+29312.jpg
+10122.jpg
+12656.jpg
+29107.jpg
+21385.jpg
+13224.jpg
+3523.jpg
+21485.jpg
+670.jpg
+6300.jpg
+15877.jpg
+4500.jpg
+27577.jpg
+17523.jpg
+25825.jpg
+29376.jpg
+7666.jpg
+529.jpg
+15868.jpg
+178.jpg
+5411.jpg
+25712.jpg
+6641.jpg
+7684.jpg
+6462.jpg
+17614.jpg
+7504.jpg
+6581.jpg
+15428.jpg
+17398.jpg
+21402.jpg
+20179.jpg
+11086.jpg
+28643.jpg
+7104.jpg
+3626.jpg
+7964.jpg
+7355.jpg
+9608.jpg
+19964.jpg
+28793.jpg
+15027.jpg
+28832.jpg
+83.jpg
+14799.jpg
+7978.jpg
+3388.jpg
+18459.jpg
+3879.jpg
+27129.jpg
+18659.jpg
+17456.jpg
+17817.jpg
+28828.jpg
+23306.jpg
+10649.jpg
+22563.jpg
+14650.jpg
+13272.jpg
+6956.jpg
+6541.jpg
+1142.jpg
+7169.jpg
+6972.jpg
+14680.jpg
+23035.jpg
+13605.jpg
+14142.jpg
+5823.jpg
+26729.jpg
+28079.jpg
+24653.jpg
+28395.jpg
+3337.jpg
+745.jpg
+3950.jpg
+18477.jpg
+5946.jpg
+27852.jpg
+17609.jpg
+1626.jpg
+28443.jpg
+26670.jpg
+24820.jpg
+26937.jpg
+13147.jpg
+18323.jpg
+20526.jpg
+3972.jpg
+19701.jpg
+22374.jpg
+26572.jpg
+29013.jpg
+5850.jpg
+15752.jpg
+2376.jpg
+16336.jpg
+9741.jpg
+11704.jpg
+8296.jpg
+13720.jpg
+11620.jpg
+2769.jpg
+24265.jpg
+19755.jpg
+3344.jpg
+7156.jpg
+6601.jpg
+14173.jpg
+17540.jpg
+27369.jpg
+19400.jpg
+17615.jpg
+20524.jpg
+13006.jpg
+11101.jpg
+5544.jpg
+9248.jpg
+28306.jpg
+23213.jpg
+11357.jpg
+9970.jpg
+18936.jpg
+24683.jpg
+9051.jpg
+11636.jpg
+990.jpg
+20114.jpg
+14912.jpg
+15620.jpg
+8633.jpg
+17153.jpg
+26107.jpg
+24015.jpg
+27247.jpg
+29666.jpg
+23917.jpg
+26065.jpg
+19329.jpg
+1417.jpg
+23001.jpg
+6294.jpg
+29547.jpg
+16718.jpg
+6161.jpg
+4466.jpg
+20555.jpg
+17905.jpg
+15101.jpg
+1217.jpg
+20157.jpg
+27255.jpg
+14169.jpg
+26827.jpg
+21930.jpg
+9448.jpg
+6142.jpg
+27479.jpg
+9182.jpg
+1532.jpg
+8963.jpg
+9999.jpg
+26704.jpg
+29940.jpg
+0.jpg
+8523.jpg
+15577.jpg
+52.jpg
+21881.jpg
+10822.jpg
+23009.jpg
+3068.jpg
+28773.jpg
+20576.jpg
+11294.jpg
+8088.jpg
+29166.jpg
+19324.jpg
+16659.jpg
+12961.jpg
+751.jpg
+24903.jpg
+10544.jpg
+16729.jpg
+1077.jpg
+6866.jpg
+19313.jpg
+25272.jpg
+2046.jpg
+15302.jpg
+26411.jpg
+29632.jpg
+27469.jpg
+23443.jpg
+13522.jpg
+7341.jpg
+9443.jpg
+6002.jpg
+22372.jpg
+26656.jpg
+20982.jpg
+16860.jpg
+23568.jpg
+18072.jpg
+19131.jpg
+1158.jpg
+10605.jpg
+1102.jpg
+11035.jpg
+21128.jpg
+11990.jpg
+26007.jpg
+11413.jpg
+9112.jpg
+3092.jpg
+1947.jpg
+17149.jpg
+16365.jpg
+15821.jpg
+2035.jpg
+2970.jpg
+29159.jpg
+6270.jpg
+12611.jpg
+4283.jpg
+3041.jpg
+10062.jpg
+4783.jpg
+29141.jpg
+16834.jpg
+18054.jpg
+18062.jpg
+6529.jpg
+8880.jpg
+27967.jpg
+18506.jpg
+16876.jpg
+6415.jpg
+9020.jpg
+18036.jpg
+11220.jpg
+4070.jpg
+25925.jpg
+18475.jpg
+9548.jpg
+5407.jpg
+7963.jpg
+2907.jpg
+6622.jpg
+13957.jpg
+15792.jpg
+28864.jpg
+2544.jpg
+9495.jpg
+26959.jpg
+22406.jpg
+15611.jpg
+20513.jpg
+3165.jpg
+20798.jpg
+14859.jpg
+26825.jpg
+17713.jpg
+6230.jpg
+14594.jpg
+13015.jpg
+12001.jpg
+11503.jpg
+25490.jpg
+22557.jpg
+17277.jpg
+20586.jpg
+19902.jpg
+24990.jpg
+5616.jpg
+20612.jpg
+17271.jpg
+2123.jpg
+16341.jpg
+9742.jpg
+21084.jpg
+11279.jpg
+28997.jpg
+6663.jpg
+1925.jpg
+23771.jpg
+21235.jpg
+28624.jpg
+8280.jpg
+28586.jpg
+6226.jpg
+27186.jpg
+9666.jpg
+463.jpg
+7845.jpg
+24626.jpg
+27748.jpg
+16278.jpg
+22533.jpg
+10596.jpg
+6744.jpg
+10573.jpg
+20863.jpg
+21100.jpg
+9938.jpg
+10832.jpg
+17140.jpg
+3301.jpg
+27401.jpg
+10226.jpg
+13231.jpg
+18388.jpg
+6743.jpg
+27416.jpg
+24086.jpg
+7675.jpg
+14364.jpg
+29491.jpg
+27569.jpg
+9074.jpg
+13277.jpg
+17777.jpg
+4224.jpg
+3606.jpg
+1932.jpg
+1044.jpg
+14303.jpg
+15367.jpg
+16452.jpg
+2389.jpg
+23041.jpg
+16740.jpg
+15945.jpg
+6684.jpg
+11569.jpg
+10070.jpg
+20604.jpg
+7525.jpg
+26537.jpg
+16634.jpg
+20208.jpg
+29968.jpg
+12286.jpg
+15598.jpg
+14409.jpg
+18151.jpg
+12048.jpg
+26242.jpg
+3860.jpg
+2128.jpg
+5240.jpg
+26810.jpg
+15135.jpg
+2837.jpg
+21123.jpg
+27493.jpg
+20173.jpg
+28720.jpg
+10370.jpg
+13291.jpg
+3955.jpg
+23403.jpg
+9596.jpg
+10625.jpg
+15883.jpg
+25402.jpg
+5148.jpg
+28279.jpg
+6835.jpg
+18959.jpg
+23410.jpg
+18435.jpg
+27251.jpg
+8960.jpg
+21661.jpg
+28778.jpg
+27201.jpg
+16197.jpg
+11436.jpg
+24858.jpg
+23661.jpg
+21217.jpg
+22924.jpg
+7470.jpg
+27070.jpg
+14424.jpg
+25704.jpg
+11848.jpg
+22390.jpg
+22627.jpg
+17510.jpg
+23052.jpg
+3059.jpg
+21463.jpg
+18284.jpg
+492.jpg
+27936.jpg
+14360.jpg
+12187.jpg
+29889.jpg
+24835.jpg
+6910.jpg
+10950.jpg
+15524.jpg
+4984.jpg
+11135.jpg
+15642.jpg
+14166.jpg
+5273.jpg
+6918.jpg
+3600.jpg
+4584.jpg
+23851.jpg
+13940.jpg
+13738.jpg
+3994.jpg
+19312.jpg
+14309.jpg
+28067.jpg
+20039.jpg
+13613.jpg
+28005.jpg
+5413.jpg
+965.jpg
+926.jpg
+14488.jpg
+21952.jpg
+5934.jpg
+553.jpg
+9650.jpg
+11885.jpg
+1771.jpg
+1212.jpg
+4084.jpg
+14484.jpg
+24037.jpg
+19428.jpg
+17744.jpg
+19375.jpg
+3593.jpg
+20861.jpg
+14229.jpg
+18374.jpg
+27170.jpg
+1533.jpg
+29844.jpg
+24044.jpg
+16482.jpg
+931.jpg
+22033.jpg
+21286.jpg
+425.jpg
+8611.jpg
+24057.jpg
+18803.jpg
+17695.jpg
+4990.jpg
+28534.jpg
+10368.jpg
+6922.jpg
+1702.jpg
+591.jpg
+7440.jpg
+17634.jpg
+17793.jpg
+16168.jpg
+28237.jpg
+29643.jpg
+20857.jpg
+24080.jpg
+13781.jpg
+26624.jpg
+19906.jpg
+21740.jpg
+12509.jpg
+743.jpg
+7602.jpg
+7340.jpg
+7308.jpg
+14836.jpg
+6799.jpg
+28463.jpg
+5125.jpg
+3069.jpg
+25828.jpg
+17210.jpg
+27593.jpg
+15024.jpg
+8517.jpg
+24761.jpg
+14225.jpg
+16794.jpg
+13889.jpg
+25871.jpg
+5196.jpg
+29427.jpg
+5696.jpg
+964.jpg
+17497.jpg
+2316.jpg
+13529.jpg
+10744.jpg
+17502.jpg
+5458.jpg
+25702.jpg
+5422.jpg
+5173.jpg
+20884.jpg
+25451.jpg
+16607.jpg
+21314.jpg
+15075.jpg
+29727.jpg
+23884.jpg
+9570.jpg
+27300.jpg
+9810.jpg
+17575.jpg
+15893.jpg
+26520.jpg
+5431.jpg
+10175.jpg
+7194.jpg
+27326.jpg
+25075.jpg
+15840.jpg
+7966.jpg
+9588.jpg
+15206.jpg
+1707.jpg
+15903.jpg
+15258.jpg
+22733.jpg
+12911.jpg
+25159.jpg
+17144.jpg
+28788.jpg
+9454.jpg
+14193.jpg
+3745.jpg
+12562.jpg
+20737.jpg
+26930.jpg
+29644.jpg
+10532.jpg
+15688.jpg
+26244.jpg
+25212.jpg
+20271.jpg
+12364.jpg
+5656.jpg
+24701.jpg
+18113.jpg
+914.jpg
+28826.jpg
+3828.jpg
+4209.jpg
+25645.jpg
+26891.jpg
+29825.jpg
+16188.jpg
+11061.jpg
+16348.jpg
+25942.jpg
+14816.jpg
+6268.jpg
+4176.jpg
+27793.jpg
+20694.jpg
+4334.jpg
+2017.jpg
+11128.jpg
+4927.jpg
+6512.jpg
+870.jpg
+9759.jpg
+24219.jpg
+18590.jpg
+16207.jpg
+1184.jpg
+12252.jpg
+7797.jpg
+15950.jpg
+28437.jpg
+20479.jpg
+28177.jpg
+27752.jpg
+13703.jpg
+24397.jpg
+384.jpg
+16727.jpg
+29316.jpg
+21629.jpg
+28065.jpg
+18882.jpg
+23356.jpg
+12312.jpg
+20843.jpg
+27670.jpg
+18840.jpg
+9652.jpg
+1882.jpg
+26224.jpg
+8016.jpg
+9717.jpg
+9229.jpg
+7882.jpg
+8139.jpg
+18684.jpg
+2191.jpg
+28495.jpg
+9994.jpg
+2087.jpg
+272.jpg
+1026.jpg
+7590.jpg
+14635.jpg
+10669.jpg
+6123.jpg
+16955.jpg
+22783.jpg
+2913.jpg
+19030.jpg
+26976.jpg
+15575.jpg
+7580.jpg
+455.jpg
+16250.jpg
+20390.jpg
+20125.jpg
+13243.jpg
+25780.jpg
+25476.jpg
+26604.jpg
+15325.jpg
+20311.jpg
+11973.jpg
+1993.jpg
+22357.jpg
+21982.jpg
+5912.jpg
+23197.jpg
+25142.jpg
+26247.jpg
+6881.jpg
+12923.jpg
+21656.jpg
+24894.jpg
+16458.jpg
+22528.jpg
+17855.jpg
+14155.jpg
+2993.jpg
+29771.jpg
+22324.jpg
+7288.jpg
+13956.jpg
+20235.jpg
+29214.jpg
+11367.jpg
+124.jpg
+24723.jpg
+7768.jpg
+880.jpg
+15833.jpg
+7655.jpg
+22880.jpg
+11746.jpg
+7880.jpg
+19220.jpg
+769.jpg
+24972.jpg
+11195.jpg
+29133.jpg
+12993.jpg
+26024.jpg
+18342.jpg
+8198.jpg
+13481.jpg
+27836.jpg
+16169.jpg
+27812.jpg
+24874.jpg
+22750.jpg
+23502.jpg
+1237.jpg
+10570.jpg
+14678.jpg
+1660.jpg
+2203.jpg
+17191.jpg
+7630.jpg
+9263.jpg
+147.jpg
+10535.jpg
+19100.jpg
+7884.jpg
+27619.jpg
+22878.jpg
+8522.jpg
+11490.jpg
+12516.jpg
+9979.jpg
+28954.jpg
+25997.jpg
+20313.jpg
+7624.jpg
+14894.jpg
+27769.jpg
+15886.jpg
+12100.jpg
+19868.jpg
+18938.jpg
+12212.jpg
+18732.jpg
+23836.jpg
+23560.jpg
+3885.jpg
+19790.jpg
+20696.jpg
+10926.jpg
+11804.jpg
+5574.jpg
+27920.jpg
+4843.jpg
+1972.jpg
+9517.jpg
+978.jpg
+25638.jpg
+10095.jpg
+21432.jpg
+12162.jpg
+25426.jpg
+7861.jpg
+29783.jpg
+8964.jpg
+18721.jpg
+8947.jpg
+3387.jpg
+12430.jpg
+4097.jpg
+28238.jpg
+29657.jpg
+4795.jpg
+1934.jpg
+23564.jpg
+6960.jpg
+15413.jpg
+14869.jpg
+7732.jpg
+23042.jpg
+29779.jpg
+13342.jpg
+16910.jpg
+26966.jpg
+6482.jpg
+16080.jpg
+2559.jpg
+17450.jpg
+12843.jpg
+12075.jpg
+17690.jpg
+14134.jpg
+17244.jpg
+14351.jpg
+3832.jpg
+8398.jpg
+23796.jpg
+18434.jpg
+28362.jpg
+20447.jpg
+939.jpg
+2138.jpg
+5562.jpg
+3248.jpg
+16372.jpg
+27372.jpg
+22368.jpg
+17051.jpg
+20865.jpg
+14692.jpg
+25135.jpg
+27645.jpg
+4479.jpg
+24805.jpg
+22691.jpg
+991.jpg
+8929.jpg
+15940.jpg
+16173.jpg
+660.jpg
+21765.jpg
+10215.jpg
+12557.jpg
+10645.jpg
+18820.jpg
+14579.jpg
+7507.jpg
+10234.jpg
+12384.jpg
+27283.jpg
+24338.jpg
+22137.jpg
+5704.jpg
+3909.jpg
+18247.jpg
+11038.jpg
+9777.jpg
+27243.jpg
+28902.jpg
+25792.jpg
+22894.jpg
+12889.jpg
+2377.jpg
+18290.jpg
+27046.jpg
+18728.jpg
+253.jpg
+151.jpg
+2952.jpg
+28605.jpg
+11391.jpg
+20159.jpg
+6410.jpg
+1053.jpg
+25376.jpg
+11504.jpg
+19306.jpg
+16201.jpg
+13345.jpg
+19134.jpg
+9344.jpg
+11344.jpg
+3372.jpg
+1110.jpg
+12214.jpg
+7499.jpg
+8432.jpg
+3721.jpg
+11355.jpg
+5806.jpg
+16986.jpg
+10862.jpg
+27519.jpg
+26370.jpg
+21226.jpg
+22626.jpg
+29595.jpg
+22693.jpg
+9330.jpg
+24164.jpg
+9604.jpg
+14988.jpg
+10027.jpg
+6976.jpg
+26663.jpg
+28883.jpg
+9739.jpg
+23381.jpg
+25235.jpg
+616.jpg
+14800.jpg
+17401.jpg
+25056.jpg
+6810.jpg
+26591.jpg
+19669.jpg
+6102.jpg
+5642.jpg
+27500.jpg
+16283.jpg
+14998.jpg
+27123.jpg
+20538.jpg
+8454.jpg
+19831.jpg
+24423.jpg
+9675.jpg
+12346.jpg
+3688.jpg
+29307.jpg
+1253.jpg
+13169.jpg
+5974.jpg
+8842.jpg
+10108.jpg
+8301.jpg
+5501.jpg
+23465.jpg
+21909.jpg
+18504.jpg
+12600.jpg
+17675.jpg
+10174.jpg
+8446.jpg
+19002.jpg
+9046.jpg
+23647.jpg
+14433.jpg
+12009.jpg
+24786.jpg
+24687.jpg
+10937.jpg
+2168.jpg
+22156.jpg
+19174.jpg
+13754.jpg
+22917.jpg
+4900.jpg
+17268.jpg
+12582.jpg
+24029.jpg
+11938.jpg
+12900.jpg
+11487.jpg
+28299.jpg
+9661.jpg
+20038.jpg
+2109.jpg
+6576.jpg
+14706.jpg
+26712.jpg
+29913.jpg
+11339.jpg
+7441.jpg
+20622.jpg
+9100.jpg
+20354.jpg
+11802.jpg
+7942.jpg
+17629.jpg
+2902.jpg
+26876.jpg
+23159.jpg
+8371.jpg
+18084.jpg
+19522.jpg
+6174.jpg
+3058.jpg
+4437.jpg
+10131.jpg
+3772.jpg
+16773.jpg
+13579.jpg
+434.jpg
+29147.jpg
+6012.jpg
+14825.jpg
+6289.jpg
+25802.jpg
+3450.jpg
+28623.jpg
+20346.jpg
+9185.jpg
+29774.jpg
+29001.jpg
+12802.jpg
+26483.jpg
+13503.jpg
+2331.jpg
+739.jpg
+24372.jpg
+29695.jpg
+29976.jpg
+3953.jpg
+12505.jpg
+18023.jpg
+28747.jpg
+16499.jpg
+27347.jpg
+28782.jpg
+783.jpg
+24569.jpg
+18245.jpg
+4602.jpg
+1620.jpg
+26530.jpg
+8904.jpg
+1821.jpg
+18209.jpg
+5256.jpg
+3489.jpg
+22273.jpg
+15726.jpg
+17297.jpg
+15755.jpg
+4534.jpg
+18488.jpg
+8790.jpg
+19873.jpg
+1749.jpg
+7720.jpg
+6418.jpg
+4682.jpg
+13590.jpg
+6492.jpg
+15457.jpg
+6216.jpg
+2566.jpg
+14861.jpg
+19870.jpg
+2129.jpg
+19182.jpg
+17186.jpg
+21097.jpg
+6639.jpg
+4647.jpg
+24176.jpg
+18939.jpg
+12803.jpg
+3001.jpg
+5239.jpg
+25214.jpg
+23968.jpg
+18363.jpg
+19671.jpg
+17105.jpg
+15894.jpg
+28980.jpg
+21583.jpg
+24840.jpg
+27172.jpg
+21274.jpg
+7667.jpg
+1191.jpg
+29638.jpg
+27532.jpg
+18315.jpg
+11024.jpg
+16712.jpg
+2781.jpg
+20783.jpg
+17730.jpg
+16067.jpg
+4133.jpg
+12196.jpg
+13068.jpg
+7940.jpg
+5770.jpg
+21223.jpg
+19283.jpg
+7376.jpg
+12067.jpg
+18452.jpg
+28770.jpg
+8110.jpg
+10863.jpg
+18313.jpg
+17442.jpg
+7877.jpg
+12019.jpg
+15665.jpg
+3538.jpg
+3202.jpg
+16958.jpg
+10699.jpg
+17991.jpg
+4700.jpg
+10879.jpg
+21687.jpg
+287.jpg
+11216.jpg
+7701.jpg
+28591.jpg
+26745.jpg
+197.jpg
+16164.jpg
+24000.jpg
+8168.jpg
+6246.jpg
+22199.jpg
+29647.jpg
+10956.jpg
+4081.jpg
+15459.jpg
+17243.jpg
+24715.jpg
+17808.jpg
+9010.jpg
+15892.jpg
+28378.jpg
+13710.jpg
+26967.jpg
+29042.jpg
+23222.jpg
+563.jpg
+1556.jpg
+15867.jpg
+15567.jpg
+10371.jpg
+10609.jpg
+4370.jpg
+11999.jpg
+26983.jpg
+20163.jpg
+15257.jpg
+26928.jpg
+17875.jpg
+13466.jpg
+3096.jpg
+13812.jpg
+22316.jpg
+22636.jpg
+21240.jpg
+27227.jpg
+20467.jpg
+15790.jpg
+13894.jpg
+19429.jpg
+25699.jpg
+24970.jpg
+29266.jpg
+28574.jpg
+6061.jpg
+24148.jpg
+855.jpg
+27220.jpg
+17049.jpg
+20414.jpg
+21882.jpg
+24252.jpg
+15084.jpg
+16266.jpg
+2030.jpg
+6546.jpg
+10012.jpg
+7608.jpg
+8723.jpg
+10973.jpg
+15545.jpg
+23578.jpg
+16295.jpg
+6528.jpg
+15022.jpg
+16888.jpg
+19967.jpg
+21933.jpg
+12648.jpg
+5802.jpg
+18070.jpg
+3089.jpg
+4067.jpg
+17361.jpg
+8134.jpg
+10218.jpg
+25646.jpg
+13216.jpg
+5859.jpg
+23703.jpg
+16358.jpg
+24021.jpg
+4603.jpg
+12418.jpg
+28803.jpg
+28543.jpg
+16810.jpg
+17078.jpg
+29251.jpg
+9779.jpg
+28901.jpg
+25786.jpg
+23498.jpg
+5113.jpg
+21398.jpg
+26815.jpg
+13146.jpg
+26861.jpg
+25234.jpg
+143.jpg
+26927.jpg
+22497.jpg
+27149.jpg
+3794.jpg
+13688.jpg
+598.jpg
+25127.jpg
+20976.jpg
+653.jpg
+15500.jpg
+12143.jpg
+15562.jpg
+4673.jpg
+9155.jpg
+21562.jpg
+18685.jpg
+3531.jpg
+27758.jpg
+21509.jpg
+858.jpg
+10531.jpg
+10557.jpg
+3838.jpg
+6975.jpg
+22159.jpg
+3349.jpg
+19088.jpg
+13048.jpg
+12125.jpg
+23790.jpg
+1888.jpg
+18446.jpg
+13152.jpg
+9181.jpg
+12126.jpg
+9828.jpg
+9874.jpg
+29320.jpg
+29236.jpg
+19859.jpg
+28372.jpg
+16027.jpg
+13040.jpg
+11299.jpg
+14293.jpg
+18692.jpg
+27811.jpg
+15051.jpg
+9125.jpg
+26608.jpg
+4187.jpg
+19574.jpg
+13239.jpg
+4770.jpg
+13492.jpg
+473.jpg
+20636.jpg
+17274.jpg
+28476.jpg
+4951.jpg
+2164.jpg
+16354.jpg
+24515.jpg
+1970.jpg
+8743.jpg
+27952.jpg
+17624.jpg
+2431.jpg
+26066.jpg
+16714.jpg
+1961.jpg
+18899.jpg
+11639.jpg
+1152.jpg
+10512.jpg
+23743.jpg
+11424.jpg
+20954.jpg
+2400.jpg
+12115.jpg
+6532.jpg
+1309.jpg
+8049.jpg
+24567.jpg
+14379.jpg
+25911.jpg
+28421.jpg
+20966.jpg
+691.jpg
+8276.jpg
+5878.jpg
+13890.jpg
+6728.jpg
+11953.jpg
+14496.jpg
+8619.jpg
+27106.jpg
+11707.jpg
+13749.jpg
+5252.jpg
+17828.jpg
+20077.jpg
+11719.jpg
+16306.jpg
+14022.jpg
+9794.jpg
+28618.jpg
+4857.jpg
+169.jpg
+20258.jpg
+15557.jpg
+27016.jpg
+23486.jpg
+4868.jpg
+24691.jpg
+12202.jpg
+960.jpg
+21234.jpg
+23391.jpg
+18958.jpg
+11920.jpg
+27093.jpg
+6917.jpg
+16342.jpg
+9654.jpg
+2033.jpg
+19396.jpg
+10013.jpg
+1871.jpg
+20725.jpg
+5132.jpg
+3431.jpg
+8391.jpg
+29523.jpg
+19543.jpg
+14283.jpg
+17974.jpg
+14516.jpg
+21650.jpg
+9698.jpg
+9747.jpg
+26377.jpg
+10876.jpg
+5289.jpg
+13380.jpg
+22278.jpg
+10806.jpg
+22574.jpg
+25515.jpg
+24724.jpg
+19299.jpg
+7444.jpg
+10213.jpg
+27892.jpg
+15837.jpg
+19398.jpg
+15262.jpg
+13938.jpg
+29198.jpg
+5297.jpg
+15204.jpg
+4332.jpg
+27357.jpg
+14122.jpg
+17027.jpg
+25922.jpg
+6433.jpg
+10505.jpg
+19604.jpg
+16422.jpg
+20793.jpg
+4113.jpg
+29390.jpg
+26052.jpg
+28759.jpg
+28025.jpg
+13459.jpg
+17789.jpg
+3331.jpg
+28533.jpg
+23137.jpg
+27274.jpg
+9407.jpg
+5386.jpg
+10402.jpg
+26327.jpg
+12970.jpg
+21279.jpg
+29752.jpg
+27598.jpg
+23834.jpg
+24669.jpg
+16055.jpg
+16125.jpg
+25110.jpg
+15802.jpg
+6661.jpg
+28615.jpg
+14913.jpg
+24297.jpg
+1732.jpg
+12992.jpg
+18201.jpg
+26088.jpg
+5905.jpg
+9069.jpg
+2375.jpg
+19861.jpg
+12095.jpg
+10005.jpg
+4965.jpg
+26325.jpg
+9059.jpg
+12821.jpg
+12043.jpg
+19054.jpg
+681.jpg
+6271.jpg
+13182.jpg
+27309.jpg
+8810.jpg
+22761.jpg
+18015.jpg
+1463.jpg
+20092.jpg
+4876.jpg
+27499.jpg
+23111.jpg
+29720.jpg
+10130.jpg
+20156.jpg
+1159.jpg
+18812.jpg
+25801.jpg
+1516.jpg
+17334.jpg
+9624.jpg
+25386.jpg
+13649.jpg
+23698.jpg
+18625.jpg
+21934.jpg
+13156.jpg
+17857.jpg
+25158.jpg
+15587.jpg
+24959.jpg
+1736.jpg
+11840.jpg
+1055.jpg
+23895.jpg
+26441.jpg
+3461.jpg
+12073.jpg
+11836.jpg
+3830.jpg
+2558.jpg
+29075.jpg
+27819.jpg
+12405.jpg
+7081.jpg
+20240.jpg
+29928.jpg
+29414.jpg
+18944.jpg
+6872.jpg
+27296.jpg
+3333.jpg
+29646.jpg
+19747.jpg
+29916.jpg
+25092.jpg
+12979.jpg
+22866.jpg
+26091.jpg
+17971.jpg
+22656.jpg
+14230.jpg
+4467.jpg
+4571.jpg
+11705.jpg
+20871.jpg
+7417.jpg
+8666.jpg
+14001.jpg
+27090.jpg
+1379.jpg
+22914.jpg
+26931.jpg
+14469.jpg
+8244.jpg
+22017.jpg
+13580.jpg
+28064.jpg
+3475.jpg
+22868.jpg
+12981.jpg
+12123.jpg
+10980.jpg
+9457.jpg
+25300.jpg
+13253.jpg
+12008.jpg
+17820.jpg
+18523.jpg
+6323.jpg
+8729.jpg
+10480.jpg
+16405.jpg
+1381.jpg
+21857.jpg
+5486.jpg
+22871.jpg
+14918.jpg
+21166.jpg
+5258.jpg
+29419.jpg
+21030.jpg
+23845.jpg
+29866.jpg
+21865.jpg
+12278.jpg
+2537.jpg
+15685.jpg
+8972.jpg
+19509.jpg
+9617.jpg
+8183.jpg
+1032.jpg
+5860.jpg
+7379.jpg
+14006.jpg
+14386.jpg
+20880.jpg
+2299.jpg
+8180.jpg
+16378.jpg
+19013.jpg
+4254.jpg
+23787.jpg
+23069.jpg
+4007.jpg
+5440.jpg
+5001.jpg
+8900.jpg
+15999.jpg
+29465.jpg
+1224.jpg
+22235.jpg
+9378.jpg
+23547.jpg
+6991.jpg
+12466.jpg
+6818.jpg
+11797.jpg
+28928.jpg
+2039.jpg
+12845.jpg
+2458.jpg
+14077.jpg
+2086.jpg
+11132.jpg
+21987.jpg
+14162.jpg
+29392.jpg
+5748.jpg
+22339.jpg
+92.jpg
+29635.jpg
+14732.jpg
+23789.jpg
+23007.jpg
+6962.jpg
+15730.jpg
+19352.jpg
+21993.jpg
+21685.jpg
+25400.jpg
+13387.jpg
+28607.jpg
+27932.jpg
+25307.jpg
+25919.jpg
+12622.jpg
+17285.jpg
+4414.jpg
+5623.jpg
+10617.jpg
+25223.jpg
+16088.jpg
+16709.jpg
+25627.jpg
+17956.jpg
+16239.jpg
+1781.jpg
+23235.jpg
+14064.jpg
+22321.jpg
+3282.jpg
+1441.jpg
+4911.jpg
+13778.jpg
+14821.jpg
+18373.jpg
+24180.jpg
+4512.jpg
+12331.jpg
+22900.jpg
+13984.jpg
+3095.jpg
+17355.jpg
+24369.jpg
+16752.jpg
+29385.jpg
+3801.jpg
+19629.jpg
+131.jpg
+803.jpg
+2845.jpg
+12163.jpg
+12299.jpg
+25864.jpg
+23959.jpg
+5016.jpg
+28930.jpg
+12210.jpg
+2042.jpg
+6203.jpg
+13839.jpg
+28915.jpg
+12110.jpg
+10886.jpg
+25001.jpg
+7258.jpg
+3338.jpg
+10287.jpg
+27718.jpg
+26181.jpg
+2495.jpg
+3483.jpg
+22161.jpg
+26002.jpg
+255.jpg
+26078.jpg
+9450.jpg
+1462.jpg
+7999.jpg
+19195.jpg
+12245.jpg
+7023.jpg
+27649.jpg
+8055.jpg
+18857.jpg
+19279.jpg
+3610.jpg
+15625.jpg
+20777.jpg
+9437.jpg
+7992.jpg
+16226.jpg
+19666.jpg
+392.jpg
+16502.jpg
+14699.jpg
+13093.jpg
+27949.jpg
+23629.jpg
+10429.jpg
+9841.jpg
+14798.jpg
+29548.jpg
+9249.jpg
+25611.jpg
+29271.jpg
+16170.jpg
+23904.jpg
+9326.jpg
+9351.jpg
+24090.jpg
+17628.jpg
+12585.jpg
+12596.jpg
+20382.jpg
+26946.jpg
+21269.jpg
+9066.jpg
+11588.jpg
+18622.jpg
+24860.jpg
+15073.jpg
+24899.jpg
+9575.jpg
+14365.jpg
+9607.jpg
+15055.jpg
+14577.jpg
+1316.jpg
+17213.jpg
+29777.jpg
+16981.jpg
+21633.jpg
+24951.jpg
+29555.jpg
+25521.jpg
+15094.jpg
+24663.jpg
+17060.jpg
+20337.jpg
+3980.jpg
+22954.jpg
+3602.jpg
+26524.jpg
+29151.jpg
+8123.jpg
+20760.jpg
+1783.jpg
+21703.jpg
+14406.jpg
+28447.jpg
+17335.jpg
+23932.jpg
+25831.jpg
+24110.jpg
+21795.jpg
+28469.jpg
+19590.jpg
+29717.jpg
+4010.jpg
+25725.jpg
+185.jpg
+5114.jpg
+1403.jpg
+29176.jpg
+15617.jpg
+21063.jpg
+25403.jpg
+15993.jpg
+24210.jpg
+28321.jpg
+4817.jpg
+9062.jpg
+3705.jpg
+20790.jpg
+11002.jpg
+28147.jpg
+13578.jpg
+19969.jpg
+4199.jpg
+29719.jpg
+8240.jpg
+16172.jpg
+10896.jpg
+2516.jpg
+24798.jpg
+28402.jpg
+11145.jpg
+8397.jpg
+17747.jpg
+14416.jpg
+28996.jpg
+14490.jpg
+10000.jpg
+11831.jpg
+303.jpg
+13641.jpg
+11914.jpg
+15727.jpg
+9404.jpg
+1718.jpg
+28471.jpg
+20774.jpg
+28819.jpg
+24832.jpg
+7114.jpg
+28764.jpg
+14553.jpg
+19829.jpg
+13571.jpg
+1667.jpg
+4924.jpg
+13620.jpg
+27237.jpg
+24800.jpg
+27986.jpg
+16086.jpg
+1012.jpg
+2065.jpg
+8974.jpg
+14851.jpg
+8337.jpg
+6124.jpg
+12046.jpg
+11842.jpg
+17861.jpg
+9473.jpg
+11743.jpg
+23374.jpg
+16076.jpg
+17768.jpg
+9329.jpg
+9527.jpg
+27390.jpg
+5287.jpg
+26728.jpg
+7782.jpg
+6931.jpg
+24932.jpg
+18311.jpg
+14442.jpg
+1226.jpg
+21168.jpg
+10339.jpg
+12429.jpg
+8164.jpg
+16661.jpg
+1555.jpg
+18681.jpg
+18861.jpg
+19545.jpg
+315.jpg
+13911.jpg
+23943.jpg
+5320.jpg
+10905.jpg
+29573.jpg
+8647.jpg
+25380.jpg
+20251.jpg
+16380.jpg
+5662.jpg
+3390.jpg
+29404.jpg
+10740.jpg
+14783.jpg
+19803.jpg
+16923.jpg
+15076.jpg
+3090.jpg
+8033.jpg
+9303.jpg
+25878.jpg
+5106.jpg
+27277.jpg
+19338.jpg
+13121.jpg
+18947.jpg
+4471.jpg
+16698.jpg
+20598.jpg
+23619.jpg
+14179.jpg
+12589.jpg
+15808.jpg
+16285.jpg
+20249.jpg
+22951.jpg
+21212.jpg
+27214.jpg
+4986.jpg
+13842.jpg
+16651.jpg
+8724.jpg
+13685.jpg
+16669.jpg
+17081.jpg
+787.jpg
+11078.jpg
+20413.jpg
+15368.jpg
+19448.jpg
+4546.jpg
+15601.jpg
+8538.jpg
+25311.jpg
+1512.jpg
+2274.jpg
+28363.jpg
+7760.jpg
+6341.jpg
+6580.jpg
+2403.jpg
+8377.jpg
+21377.jpg
+2009.jpg
+20085.jpg
+13629.jpg
+19385.jpg
+23998.jpg
+10595.jpg
+17739.jpg
+18704.jpg
+29835.jpg
+839.jpg
+6669.jpg
+19793.jpg
+4606.jpg
+26150.jpg
+3287.jpg
+5172.jpg
+12518.jpg
+15091.jpg
+11598.jpg
+8440.jpg
+23034.jpg
+17979.jpg
+4761.jpg
+10589.jpg
+9796.jpg
+6561.jpg
+17866.jpg
+24321.jpg
+17635.jpg
+22183.jpg
+15172.jpg
+9951.jpg
+28467.jpg
+26476.jpg
+29640.jpg
+7663.jpg
+21036.jpg
+1546.jpg
+29378.jpg
+27714.jpg
+17223.jpg
+14017.jpg
+26567.jpg
+17983.jpg
+11188.jpg
+14590.jpg
+23395.jpg
+20739.jpg
+18439.jpg
+18726.jpg
+16471.jpg
+19099.jpg
+3740.jpg
+14960.jpg
+24890.jpg
+29792.jpg
+15732.jpg
+4286.jpg
+17162.jpg
+27384.jpg
+23745.jpg
+3448.jpg
+5556.jpg
+5082.jpg
+14082.jpg
+23083.jpg
+19781.jpg
+15541.jpg
+5145.jpg
+10267.jpg
+21055.jpg
+11774.jpg
+14033.jpg
+21445.jpg
+17104.jpg
+11919.jpg
+1847.jpg
+18687.jpg
+14307.jpg
+3060.jpg
+24233.jpg
+15054.jpg
+2004.jpg
+25985.jpg
+11528.jpg
+25766.jpg
+16356.jpg
+25729.jpg
+13069.jpg
+18461.jpg
+19989.jpg
+6957.jpg
+2935.jpg
+11830.jpg
+2854.jpg
+6524.jpg
+3270.jpg
+27258.jpg
+24002.jpg
+27802.jpg
+11498.jpg
+12010.jpg
+8013.jpg
+4025.jpg
+3751.jpg
+18856.jpg
+5064.jpg
+25867.jpg
+28635.jpg
+4599.jpg
+19699.jpg
+6552.jpg
+29729.jpg
+14745.jpg
+11354.jpg
+22131.jpg
+4307.jpg
+8228.jpg
+2153.jpg
+22125.jpg
+21069.jpg
+2226.jpg
+10330.jpg
+5638.jpg
+2425.jpg
+5286.jpg
+4208.jpg
+27567.jpg
+29870.jpg
+12908.jpg
+18007.jpg
+22661.jpg
+10325.jpg
+7566.jpg
+342.jpg
+7695.jpg
+12891.jpg
+2715.jpg
+17579.jpg
+7586.jpg
+15514.jpg
+3208.jpg
+8355.jpg
+14815.jpg
+11601.jpg
+9621.jpg
+21545.jpg
+15327.jpg
+20811.jpg
+24981.jpg
+11139.jpg
+20867.jpg
+13743.jpg
+9201.jpg
+13017.jpg
+19417.jpg
+9097.jpg
+21601.jpg
+20089.jpg
+11684.jpg
+23780.jpg
+672.jpg
+19583.jpg
+5855.jpg
+27662.jpg
+23542.jpg
+14841.jpg
+29249.jpg
+14181.jpg
+21875.jpg
+15105.jpg
+1989.jpg
+28202.jpg
+27671.jpg
+22648.jpg
+14304.jpg
+23765.jpg
+11394.jpg
+768.jpg
+16573.jpg
+23663.jpg
+4850.jpg
+22764.jpg
+12186.jpg
+254.jpg
+8733.jpg
+22743.jpg
+17474.jpg
+11790.jpg
+28440.jpg
+2392.jpg
+20605.jpg
+28568.jpg
+20403.jpg
+16461.jpg
+28933.jpg
+21229.jpg
+7127.jpg
+23537.jpg
+5710.jpg
+25295.jpg
+1298.jpg
+19978.jpg
+13772.jpg
+10205.jpg
+17619.jpg
+26230.jpg
+28301.jpg
+19928.jpg
+14557.jpg
+12564.jpg
+15357.jpg
+24402.jpg
+3580.jpg
+26523.jpg
+12084.jpg
+9821.jpg
+26136.jpg
+3690.jpg
+7267.jpg
+11337.jpg
+20527.jpg
+29384.jpg
+17179.jpg
+6029.jpg
+13987.jpg
+24521.jpg
+22946.jpg
+15901.jpg
+13273.jpg
+4226.jpg
+16524.jpg
+29447.jpg
+28008.jpg
+26854.jpg
+10836.jpg
+18114.jpg
+8278.jpg
+19633.jpg
+25857.jpg
+25115.jpg
+8860.jpg
+11901.jpg
+26035.jpg
+21115.jpg
+23024.jpg
+354.jpg
+24352.jpg
+24646.jpg
+10652.jpg
+21249.jpg
+1805.jpg
+17307.jpg
+14504.jpg
+27083.jpg
+4238.jpg
+29804.jpg
+16771.jpg
+29318.jpg
+8644.jpg
+16603.jpg
+29955.jpg
+18481.jpg
+16618.jpg
+16330.jpg
+11420.jpg
+2813.jpg
+21103.jpg
+5166.jpg
+19610.jpg
+20994.jpg
+20518.jpg
+2581.jpg
+12086.jpg
+15960.jpg
+3746.jpg
+15742.jpg
+23840.jpg
+14702.jpg
+659.jpg
+7593.jpg
+5910.jpg
+348.jpg
+4124.jpg
+1123.jpg
+27156.jpg
+12436.jpg
+10198.jpg
+15067.jpg
+27112.jpg
+103.jpg
+8279.jpg
+9136.jpg
+6557.jpg
+16095.jpg
+20820.jpg
+13560.jpg
+25471.jpg
+12103.jpg
+8815.jpg
+10374.jpg
+24991.jpg
+2927.jpg
+13373.jpg
+21665.jpg
+3133.jpg
+2517.jpg
+14085.jpg
+8030.jpg
+12391.jpg
+11758.jpg
+26863.jpg
+8318.jpg
+22702.jpg
+26968.jpg
+26097.jpg
+27629.jpg
+9086.jpg
+23310.jpg
+17155.jpg
+29204.jpg
+13264.jpg
+26936.jpg
+2148.jpg
+22623.jpg
+4966.jpg
+12980.jpg
+12054.jpg
+8551.jpg
+98.jpg
+20929.jpg
+7943.jpg
+7935.jpg
+15728.jpg
+9568.jpg
+22841.jpg
+24822.jpg
+24130.jpg
+8693.jpg
+8653.jpg
+23889.jpg
+781.jpg
+28062.jpg
+18417.jpg
+25589.jpg
+2144.jpg
+13495.jpg
+10093.jpg
+22779.jpg
+29295.jpg
+1113.jpg
+1380.jpg
+18643.jpg
+11439.jpg
+6045.jpg
+2326.jpg
+12698.jpg
+18916.jpg
+17403.jpg
+238.jpg
+15560.jpg
+13041.jpg
+25883.jpg
+16318.jpg
+6456.jpg
+2940.jpg
+8223.jpg
+5831.jpg
+8612.jpg
+2510.jpg
+16193.jpg
+5955.jpg
+15589.jpg
+7831.jpg
+17479.jpg
+20102.jpg
+18131.jpg
+18047.jpg
+1210.jpg
+20874.jpg
+25573.jpg
+14128.jpg
+5011.jpg
+13909.jpg
+4922.jpg
+27245.jpg
+14156.jpg
+2406.jpg
+6696.jpg
+14060.jpg
+12878.jpg
+10800.jpg
+14306.jpg
+19864.jpg
+25542.jpg
+2910.jpg
+9380.jpg
+25060.jpg
+1495.jpg
+4473.jpg
+23546.jpg
+4330.jpg
+1136.jpg
+10127.jpg
+9121.jpg
+10222.jpg
+6809.jpg
+20514.jpg
+8249.jpg
+6993.jpg
+24690.jpg
+20126.jpg
+9959.jpg
+8535.jpg
+14870.jpg
+2229.jpg
+28665.jpg
+6584.jpg
+21245.jpg
+10187.jpg
+10849.jpg
+3003.jpg
+8525.jpg
+17348.jpg
+22854.jpg
+23339.jpg
+18100.jpg
+5236.jpg
+10778.jpg
+1612.jpg
+22934.jpg
+6774.jpg
+22543.jpg
+26871.jpg
+10039.jpg
+3006.jpg
+21800.jpg
+16042.jpg
+5075.jpg
+5085.jpg
+16154.jpg
+27792.jpg
+16144.jpg
+16988.jpg
+982.jpg
+15650.jpg
+22245.jpg
+8508.jpg
+10660.jpg
+24948.jpg
+11027.jpg
+19536.jpg
+14691.jpg
+1451.jpg
+19037.jpg
+22874.jpg
+9382.jpg
+15462.jpg
+22289.jpg
+24041.jpg
+29317.jpg
+23262.jpg
+9283.jpg
+5010.jpg
+18673.jpg
+11240.jpg
+3979.jpg
+25567.jpg
+2805.jpg
+29168.jpg
+1855.jpg
+10112.jpg
+2696.jpg
+17764.jpg
+16310.jpg
+16483.jpg
+21250.jpg
+1608.jpg
+9927.jpg
+7816.jpg
+2472.jpg
+27185.jpg
+16496.jpg
+7979.jpg
+26481.jpg
+14373.jpg
+19832.jpg
+18276.jpg
+16141.jpg
+27282.jpg
+11816.jpg
+26347.jpg
+4392.jpg
+25314.jpg
+7778.jpg
+13287.jpg
+4828.jpg
+24563.jpg
+16949.jpg
+6562.jpg
+15009.jpg
+29945.jpg
+23734.jpg
+8884.jpg
+17485.jpg
+2350.jpg
+20909.jpg
+12705.jpg
+28876.jpg
+26031.jpg
+20162.jpg
+9712.jpg
+12208.jpg
+27241.jpg
+3435.jpg
+25449.jpg
+20268.jpg
+25763.jpg
+20932.jpg
+23646.jpg
+2282.jpg
+25410.jpg
+26331.jpg
+22799.jpg
+6750.jpg
+29763.jpg
+10289.jpg
+2356.jpg
+3859.jpg
+21855.jpg
+12005.jpg
+20020.jpg
+18271.jpg
+7210.jpg
+1611.jpg
+8478.jpg
+29876.jpg
+26454.jpg
+14276.jpg
+11882.jpg
+28856.jpg
+13300.jpg
+24488.jpg
+10393.jpg
+26904.jpg
+1530.jpg
+26261.jpg
+16386.jpg
+13912.jpg
+88.jpg
+4936.jpg
+2200.jpg
+12731.jpg
+29551.jpg
+21620.jpg
+12190.jpg
+8981.jpg
+3082.jpg
+20116.jpg
+26661.jpg
+26965.jpg
+6163.jpg
+19465.jpg
+20573.jpg
+5794.jpg
+8941.jpg
+6983.jpg
+1998.jpg
+14323.jpg
+3765.jpg
+25209.jpg
+537.jpg
+4438.jpg
+21300.jpg
+7648.jpg
+9586.jpg
+13053.jpg
+6360.jpg
+5924.jpg
+11589.jpg
+25342.jpg
+7137.jpg
+438.jpg
+2307.jpg
+15374.jpg
+14974.jpg
+5659.jpg
+15689.jpg
+21409.jpg
+24053.jpg
+3002.jpg
+13470.jpg
+7724.jpg
+23135.jpg
+26248.jpg
+4577.jpg
+16776.jpg
+15553.jpg
+9106.jpg
+18035.jpg
+8754.jpg
+17930.jpg
+4786.jpg
+7628.jpg
+8462.jpg
+24128.jpg
+21007.jpg
+16227.jpg
+3176.jpg
+19179.jpg
+18486.jpg
+10372.jpg
+27284.jpg
+3608.jpg
+1929.jpg
+20581.jpg
+226.jpg
+26694.jpg
+12227.jpg
+1456.jpg
+6899.jpg
+20852.jpg
+10305.jpg
+34.jpg
+11099.jpg
+6416.jpg
+898.jpg
+26447.jpg
+4527.jpg
+19576.jpg
+8650.jpg
+24142.jpg
+14646.jpg
+3443.jpg
+17662.jpg
+16596.jpg
+12869.jpg
+14446.jpg
+28746.jpg
+24985.jpg
+21758.jpg
+21866.jpg
+4962.jpg
+11203.jpg
+19816.jpg
+4526.jpg
+24765.jpg
+11158.jpg
+11301.jpg
+2151.jpg
+7090.jpg
+19895.jpg
+7863.jpg
+4583.jpg
+8778.jpg
+3951.jpg
+14455.jpg
+22674.jpg
+28871.jpg
+22146.jpg
+9508.jpg
+29862.jpg
+1076.jpg
+5539.jpg
+20398.jpg
+15606.jpg
+320.jpg
+16939.jpg
+12013.jpg
+2253.jpg
+24199.jpg
+25889.jpg
+20083.jpg
+29519.jpg
+2871.jpg
+17202.jpg
+17679.jpg
+19464.jpg
+13789.jpg
+12494.jpg
+4150.jpg
+2347.jpg
+827.jpg
+6411.jpg
+18985.jpg
+13425.jpg
+8290.jpg
+25876.jpg
+13321.jpg
+2654.jpg
+7636.jpg
+18649.jpg
+19674.jpg
+29883.jpg
+4650.jpg
+8907.jpg
+19443.jpg
+19384.jpg
+24769.jpg
+27674.jpg
+15164.jpg
+9837.jpg
+22135.jpg
+16497.jpg
+9107.jpg
+27163.jpg
+26695.jpg
+14336.jpg
+7610.jpg
+29978.jpg
+22068.jpg
+15243.jpg
+9221.jpg
+13785.jpg
+2609.jpg
+23866.jpg
+27663.jpg
+17399.jpg
+13714.jpg
+218.jpg
+5848.jpg
+5040.jpg
+26160.jpg
+13042.jpg
+26446.jpg
+19853.jpg
+4536.jpg
+2933.jpg
+5586.jpg
+9565.jpg
+8481.jpg
+11729.jpg
+9243.jpg
+28018.jpg
+13760.jpg
+9158.jpg
+3635.jpg
+7891.jpg
+3599.jpg
+20336.jpg
+25375.jpg
+14937.jpg
+23679.jpg
+21858.jpg
+3831.jpg
+9395.jpg
+3533.jpg
+23491.jpg
+6748.jpg
+281.jpg
+28937.jpg
+17571.jpg
+26023.jpg
+6679.jpg
+10155.jpg
+11036.jpg
+12434.jpg
+1083.jpg
+27113.jpg
+28578.jpg
+2677.jpg
+12959.jpg
+4048.jpg
+28587.jpg
+23740.jpg
+17405.jpg
+19860.jpg
+29795.jpg
+27883.jpg
+23412.jpg
+201.jpg
+17089.jpg
+10478.jpg
+10490.jpg
+11689.jpg
+6201.jpg
+16917.jpg
+16790.jpg
+15988.jpg
+29259.jpg
+9116.jpg
+21213.jpg
+13870.jpg
+24505.jpg
+28906.jpg
+18811.jpg
+26332.jpg
+22144.jpg
+15814.jpg
+22087.jpg
+11284.jpg
+2919.jpg
+6186.jpg
+11594.jpg
+3691.jpg
+14201.jpg
+13826.jpg
+21289.jpg
+8067.jpg
+9962.jpg
+28617.jpg
+15324.jpg
+2297.jpg
+28195.jpg
+12879.jpg
+6677.jpg
+2656.jpg
+11071.jpg
+25663.jpg
+24454.jpg
+10928.jpg
+9507.jpg
+15165.jpg
+4956.jpg
+3286.jpg
+1572.jpg
+13250.jpg
+19800.jpg
+11788.jpg
+29443.jpg
+20303.jpg
+20277.jpg
+14647.jpg
+8705.jpg
+26855.jpg
+28074.jpg
+13972.jpg
+22793.jpg
+11274.jpg
+26582.jpg
+28484.jpg
+16855.jpg
+4807.jpg
+5765.jpg
+14345.jpg
+11085.jpg
+27089.jpg
+17120.jpg
+483.jpg
+20494.jpg
+26701.jpg
+6382.jpg
+27263.jpg
+3210.jpg
+17129.jpg
+28841.jpg
+4151.jpg
+13407.jpg
+27485.jpg
+13791.jpg
+20220.jpg
+4104.jpg
+14805.jpg
+8435.jpg
+17751.jpg
+3508.jpg
+24913.jpg
+4000.jpg
+22458.jpg
+29261.jpg
+15806.jpg
+23803.jpg
+26501.jpg
+27492.jpg
+15170.jpg
+14165.jpg
+16813.jpg
+8591.jpg
+27945.jpg
+4937.jpg
+4405.jpg
+19150.jpg
+18754.jpg
+3131.jpg
+4846.jpg
+8797.jpg
+7207.jpg
+9255.jpg
+14752.jpg
+4403.jpg
+3848.jpg
+18426.jpg
+8755.jpg
+15011.jpg
+16148.jpg
+29275.jpg
+13565.jpg
+16543.jpg
+20187.jpg
+15480.jpg
+24407.jpg
+29114.jpg
+18592.jpg
+26345.jpg
+19336.jpg
+10702.jpg
+15234.jpg
+20040.jpg
+24133.jpg
+9123.jpg
+9298.jpg
+17988.jpg
+18639.jpg
+17160.jpg
+16535.jpg
+2690.jpg
+359.jpg
+23198.jpg
+18346.jpg
+350.jpg
+25357.jpg
+27164.jpg
+9470.jpg
+565.jpg
+23699.jpg
+9816.jpg
+9381.jpg
+15765.jpg
+7726.jpg
+19686.jpg
+5319.jpg
+20084.jpg
+21127.jpg
+10756.jpg
+8057.jpg
+26690.jpg
+2790.jpg
+23945.jpg
+863.jpg
+21603.jpg
+11663.jpg
+28262.jpg
+3805.jpg
+21344.jpg
+8913.jpg
+16370.jpg
+11437.jpg
+23323.jpg
+28482.jpg
+3383.jpg
+19236.jpg
+19402.jpg
+23129.jpg
+24134.jpg
+12812.jpg
+23084.jpg
+19835.jpg
+25323.jpg
+2959.jpg
+25530.jpg
+105.jpg
+17195.jpg
+14444.jpg
+18479.jpg
+6210.jpg
+9078.jpg
+16286.jpg
+19004.jpg
+12368.jpg
+17604.jpg
+15489.jpg
+24006.jpg
+16112.jpg
+17358.jpg
+15956.jpg
+27563.jpg
+6112.jpg
+6501.jpg
+9397.jpg
+3192.jpg
+11902.jpg
+12601.jpg
+14462.jpg
+7617.jpg
+13201.jpg
+17419.jpg
+14704.jpg
+19258.jpg
+8239.jpg
+8548.jpg
+9900.jpg
+21155.jpg
+20178.jpg
+4269.jpg
+10437.jpg
+18737.jpg
+19334.jpg
+21347.jpg
+6856.jpg
+6531.jpg
+21826.jpg
+12569.jpg
+12049.jpg
+7604.jpg
+16464.jpg
+17938.jpg
+20928.jpg
+27004.jpg
+16069.jpg
+11936.jpg
+21739.jpg
+21522.jpg
+13827.jpg
+18862.jpg
+1368.jpg
+21112.jpg
+10866.jpg
+28335.jpg
+21341.jpg
+6911.jpg
+26338.jpg
+26089.jpg
+402.jpg
+14429.jpg
+22244.jpg
+11687.jpg
+24066.jpg
+7140.jpg
+25823.jpg
+13081.jpg
+16793.jpg
+1505.jpg
+13853.jpg
+8102.jpg
+10471.jpg
+29350.jpg
+9752.jpg
+4574.jpg
+19337.jpg
+8419.jpg
+22157.jpg
+13051.jpg
+11584.jpg
+13440.jpg
+2562.jpg
+3912.jpg
+5083.jpg
+16979.jpg
+7250.jpg
+28766.jpg
+18236.jpg
+16308.jpg
+2860.jpg
+1308.jpg
+15756.jpg
+20088.jpg
+24392.jpg
+10025.jpg
+4417.jpg
+6479.jpg
+12435.jpg
+26339.jpg
+10818.jpg
+7105.jpg
+15471.jpg
+2998.jpg
+29495.jpg
+29882.jpg
+7246.jpg
+26944.jpg
+8076.jpg
+26013.jpg
+23066.jpg
+21438.jpg
+17063.jpg
+21302.jpg
+27862.jpg
+8879.jpg
+9694.jpg
+3032.jpg
+9376.jpg
+17299.jpg
+16585.jpg
+5290.jpg
+17554.jpg
+7681.jpg
+22132.jpg
+17508.jpg
+12198.jpg
+2961.jpg
+14127.jpg
+5550.jpg
+25681.jpg
+24537.jpg
+9337.jpg
+8873.jpg
+24181.jpg
+10278.jpg
+10708.jpg
+23337.jpg
+8294.jpg
+13856.jpg
+13933.jpg
+10676.jpg
+5269.jpg
+22327.jpg
+10418.jpg
+27807.jpg
+24550.jpg
+3578.jpg
+18194.jpg
+15153.jpg
+8326.jpg
+19897.jpg
+7399.jpg
+20052.jpg
+24713.jpg
+7211.jpg
+7765.jpg
+28868.jpg
+23954.jpg
+4129.jpg
+25543.jpg
+3478.jpg
+11120.jpg
+8324.jpg
+25131.jpg
+4511.jpg
+21257.jpg
+16462.jpg
+10971.jpg
+5751.jpg
+27187.jpg
+27884.jpg
+16538.jpg
+12924.jpg
+24494.jpg
+21888.jpg
+16478.jpg
+29598.jpg
+17819.jpg
+12455.jpg
+7699.jpg
+6428.jpg
+17505.jpg
+23372.jpg
+24556.jpg
+5849.jpg
+26041.jpg
+5394.jpg
+17258.jpg
+24253.jpg
+9098.jpg
+8006.jpg
+22401.jpg
+7985.jpg
+25887.jpg
+14735.jpg
+9292.jpg
+9167.jpg
+26233.jpg
+1632.jpg
+26586.jpg
+18560.jpg
+7057.jpg
+423.jpg
+11483.jpg
+19424.jpg
+5971.jpg
+2866.jpg
+7598.jpg
+4697.jpg
+27805.jpg
+25547.jpg
+10454.jpg
+9327.jpg
+11966.jpg
+20734.jpg
+20458.jpg
+3309.jpg
+16282.jpg
+9493.jpg
+28472.jpg
+1430.jpg
+22475.jpg
+21258.jpg
+25877.jpg
+27651.jpg
+3880.jpg
+24378.jpg
+10126.jpg
+2034.jpg
+6644.jpg
+12257.jpg
+12788.jpg
+14341.jpg
+20775.jpg
+24249.jpg
+28506.jpg
+23284.jpg
+6088.jpg
+19914.jpg
+29914.jpg
+6185.jpg
+4675.jpg
+23713.jpg
+25470.jpg
+14669.jpg
+15627.jpg
+4063.jpg
+15578.jpg
+4472.jpg
+2294.jpg
+22217.jpg
+16901.jpg
+25420.jpg
+22889.jpg
+4635.jpg
+7409.jpg
+6483.jpg
+618.jpg
+1331.jpg
+21132.jpg
+9108.jpg
+13012.jpg
+4163.jpg
+17515.jpg
+27330.jpg
+25842.jpg
+18909.jpg
+18225.jpg
+22430.jpg
+16198.jpg
+5896.jpg
+28000.jpg
+13214.jpg
+6906.jpg
+14257.jpg
+22811.jpg
+12985.jpg
+6759.jpg
+13564.jpg
+2986.jpg
+24022.jpg
+58.jpg
+25181.jpg
+21664.jpg
+20553.jpg
+25332.jpg
+28374.jpg
+14659.jpg
+15943.jpg
+7070.jpg
+8836.jpg
+4464.jpg
+1209.jpg
+25950.jpg
+25708.jpg
+17500.jpg
+1543.jpg
+23783.jpg
+1563.jpg
+14741.jpg
+24601.jpg
+8805.jpg
+12927.jpg
+1042.jpg
+8335.jpg
+14570.jpg
+16338.jpg
+25414.jpg
+5030.jpg
+16967.jpg
+4616.jpg
+23258.jpg
+7707.jpg
+21950.jpg
+8488.jpg
+6484.jpg
+6436.jpg
+27146.jpg
+27939.jpg
+27081.jpg
+27496.jpg
+18554.jpg
+8007.jpg
+23283.jpg
+9644.jpg
+10662.jpg
+17053.jpg
+22265.jpg
+27744.jpg
+5670.jpg
+18646.jpg
+16466.jpg
+4736.jpg
+22657.jpg
+12351.jpg
+22222.jpg
+23670.jpg
+8117.jpg
+15417.jpg
+511.jpg
+4387.jpg
+20539.jpg
+9424.jpg
+6340.jpg
+14321.jpg
+5852.jpg
+6768.jpg
+11300.jpg
+16418.jpg
+1411.jpg
+12357.jpg
+20306.jpg
+28292.jpg
+14705.jpg
+3922.jpg
+28411.jpg
+18396.jpg
+24357.jpg
+8889.jpg
+6933.jpg
+9260.jpg
+27297.jpg
+23234.jpg
+25406.jpg
+14726.jpg
+7152.jpg
+17103.jpg
+2041.jpg
+6213.jpg
+26356.jpg
+21831.jpg
+1337.jpg
+11669.jpg
+12229.jpg
+12096.jpg
+16434.jpg
+21144.jpg
+7679.jpg
+15807.jpg
+13043.jpg
+20856.jpg
+18393.jpg
+23720.jpg
+19290.jpg
+16475.jpg
+5031.jpg
+11599.jpg
+23609.jpg
+27774.jpg
+2249.jpg
+29452.jpg
+3415.jpg
+17085.jpg
+8706.jpg
+4812.jpg
+19065.jpg
+25826.jpg
+25306.jpg
+27338.jpg
+15646.jpg
+3682.jpg
+16107.jpg
+10794.jpg
+29241.jpg
+14561.jpg
+14436.jpg
+24978.jpg
+7531.jpg
+20392.jpg
+28304.jpg
+29628.jpg
+8626.jpg
+7071.jpg
+16105.jpg
+27056.jpg
+3242.jpg
+25996.jpg
+21555.jpg
+24010.jpg
+4863.jpg
+6839.jpg
+14882.jpg
+8685.jpg
+5228.jpg
+21542.jpg
+13148.jpg
+7467.jpg
+20762.jpg
+18860.jpg
+10301.jpg
+5790.jpg
+13286.jpg
+27404.jpg
+26784.jpg
+19516.jpg
+17723.jpg
+10764.jpg
+15544.jpg
+6826.jpg
+16153.jpg
+8215.jpg
+17545.jpg
+23777.jpg
+29927.jpg
+20958.jpg
+23433.jpg
+26479.jpg
+1801.jpg
+28198.jpg
+17897.jpg
+29117.jpg
+8771.jpg
+6377.jpg
+8984.jpg
+17594.jpg
+25482.jpg
+9671.jpg
+707.jpg
+29367.jpg
+8707.jpg
+3882.jpg
+12798.jpg
+16261.jpg
+29439.jpg
+15927.jpg
+1433.jpg
+6867.jpg
+5880.jpg
+13039.jpg
+3144.jpg
+7103.jpg
+400.jpg
+7348.jpg
+22336.jpg
+25203.jpg
+23955.jpg
+13541.jpg
+28380.jpg
+2418.jpg
+29078.jpg
+23997.jpg
+9322.jpg
+7746.jpg
+29167.jpg
+2605.jpg
+25491.jpg
+14407.jpg
+17598.jpg
+12255.jpg
+8376.jpg
+10718.jpg
+23300.jpg
+14222.jpg
+25425.jpg
+20370.jpg
+13896.jpg
+25430.jpg
+7542.jpg
+28512.jpg
+14332.jpg
+14806.jpg
+936.jpg
+8939.jpg
+10018.jpg
+26394.jpg
+5318.jpg
+28115.jpg
+24175.jpg
+29201.jpg
+13980.jpg
+28956.jpg
+2651.jpg
+5367.jpg
+11163.jpg
+12571.jpg
+4374.jpg
+26099.jpg
+1784.jpg
+29528.jpg
+25633.jpg
+4049.jpg
+29747.jpg
+726.jpg
+13162.jpg
+20510.jpg
+11521.jpg
+3035.jpg
+16508.jpg
+8298.jpg
+19463.jpg
+8333.jpg
+21476.jpg
+4831.jpg
+5108.jpg
+20971.jpg
+28860.jpg
+20238.jpg
+7358.jpg
+26237.jpg
+13818.jpg
+13446.jpg
+15232.jpg
+4998.jpg
+25197.jpg
+18742.jpg
+3406.jpg
+27655.jpg
+28009.jpg
+6961.jpg
+2742.jpg
+14787.jpg
+28998.jpg
+29991.jpg
+25983.jpg
+22438.jpg
+8195.jpg
+22647.jpg
+25561.jpg
+8003.jpg
+8431.jpg
+12122.jpg
+28622.jpg
+6269.jpg
+26906.jpg
+18495.jpg
+10869.jpg
+19058.jpg
+3227.jpg
+28964.jpg
+29174.jpg
+2428.jpg
+7302.jpg
+29462.jpg
+249.jpg
+8747.jpg
+10945.jpg
+6654.jpg
+27849.jpg
+10965.jpg
+11862.jpg
+24262.jpg
+1742.jpg
+10121.jpg
+6766.jpg
+16721.jpg
+5879.jpg
+4445.jpg
+27634.jpg
+26324.jpg
+11673.jpg
+20979.jpg
+23686.jpg
+5657.jpg
+112.jpg
+22292.jpg
+7554.jpg
+2872.jpg
+29918.jpg
+20351.jpg
+1979.jpg
+13561.jpg
+2580.jpg
+13752.jpg
+24169.jpg
+2340.jpg
+6392.jpg
+22978.jpg
+1839.jpg
+1597.jpg
+27196.jpg
+25755.jpg
+26858.jpg
+16389.jpg
+12664.jpg
+28357.jpg
+3906.jpg
+22808.jpg
+6729.jpg
+27708.jpg
+20973.jpg
+11343.jpg
+14966.jpg
+15277.jpg
+26589.jpg
+21655.jpg
+11289.jpg
+14265.jpg
+18669.jpg
+2214.jpg
+16868.jpg
+28879.jpg
+16120.jpg
+5813.jpg
+10936.jpg
+15487.jpg
+26293.jpg
+29543.jpg
+16913.jpg
+5184.jpg
+18572.jpg
+8832.jpg
+15623.jpg
+24373.jpg
+7248.jpg
+16970.jpg
+21846.jpg
+19988.jpg
+19607.jpg
+1094.jpg
+542.jpg
+25229.jpg
+19838.jpg
+17716.jpg
+2917.jpg
+21032.jpg
+1778.jpg
+23295.jpg
+6730.jpg
+22113.jpg
+6240.jpg
+29754.jpg
+15189.jpg
+16992.jpg
+5463.jpg
+19554.jpg
+14891.jpg
+21595.jpg
+8390.jpg
+15301.jpg
+569.jpg
+15269.jpg
+26058.jpg
+23775.jpg
+21859.jpg
+13729.jpg
+2211.jpg
+7402.jpg
+12903.jpg
+29038.jpg
+24885.jpg
+17963.jpg
+20849.jpg
+15770.jpg
+11096.jpg
+25724.jpg
+157.jpg
+18910.jpg
+10151.jpg
+27896.jpg
+9232.jpg
+5241.jpg
+15208.jpg
+4165.jpg
+25641.jpg
+6683.jpg
+1939.jpg
+5999.jpg
+14172.jpg
+8463.jpg
+19615.jpg
+24425.jpg
+10327.jpg
+18000.jpg
+9505.jpg
+7788.jpg
+6058.jpg
+17390.jpg
+29124.jpg
+16872.jpg
+6504.jpg
+11134.jpg
+23595.jpg
+29.jpg
+19315.jpg
+19983.jpg
+13443.jpg
+27174.jpg
+13323.jpg
+595.jpg
+21709.jpg
+17792.jpg
+22865.jpg
+29248.jpg
+2196.jpg
+3791.jpg
+26189.jpg
+11349.jpg
+12267.jpg
+2281.jpg
+15558.jpg
+23767.jpg
+8404.jpg
+26218.jpg
+9471.jpg
+7175.jpg
+26607.jpg
+7500.jpg
+9842.jpg
+23569.jpg
+5301.jpg
+21294.jpg
+17283.jpg
+26051.jpg
+2882.jpg
+21283.jpg
+11913.jpg
+4539.jpg
+16279.jpg
+13747.jpg
+8838.jpg
+772.jpg
+5982.jpg
+23308.jpg
+25897.jpg
+12883.jpg
+13692.jpg
+9088.jpg
+3438.jpg
+29692.jpg
+646.jpg
+29382.jpg
+731.jpg
+13930.jpg
+9497.jpg
+451.jpg
+8252.jpg
+533.jpg
+12976.jpg
+24636.jpg
+4580.jpg
+20433.jpg
+22852.jpg
+15902.jpg
+8785.jpg
+22558.jpg
+10897.jpg
+8585.jpg
+8319.jpg
+16807.jpg
+3355.jpg
+18845.jpg
+23879.jpg
+9043.jpg
+16355.jpg
+21460.jpg
+504.jpg
+21878.jpg
+9532.jpg
+14506.jpg
+1816.jpg
+21023.jpg
+18743.jpg
+24621.jpg
+23250.jpg
+404.jpg
+17620.jpg
+19109.jpg
+22167.jpg
+16904.jpg
+22264.jpg
+5479.jpg
+20653.jpg
+21975.jpg
+11923.jpg
+604.jpg
+1504.jpg
+29950.jpg
+6437.jpg
+17544.jpg
+11760.jpg
+11459.jpg
+18128.jpg
+11474.jpg
+5950.jpg
+6219.jpg
+16737.jpg
+10525.jpg
+25339.jpg
+14402.jpg
+10465.jpg
+5579.jpg
+3115.jpg
+16916.jpg
+16852.jpg
+26219.jpg
+1573.jpg
+8571.jpg
+19547.jpg
+26173.jpg
+2043.jpg
+25618.jpg
+1851.jpg
+16222.jpg
+959.jpg
+2776.jpg
+26782.jpg
+27408.jpg
+9110.jpg
+8623.jpg
+19300.jpg
+26702.jpg
+27581.jpg
+7832.jpg
+3896.jpg
+9778.jpg
+27809.jpg
+1990.jpg
+8829.jpg
+874.jpg
+6726.jpg
+16121.jpg
+4416.jpg
+777.jpg
+6720.jpg
+10887.jpg
+22705.jpg
+1542.jpg
+3233.jpg
+12044.jpg
+19567.jpg
+22633.jpg
+9710.jpg
+11174.jpg
+20730.jpg
+23318.jpg
+16951.jpg
+26852.jpg
+9352.jpg
+12395.jpg
+1715.jpg
+20401.jpg
+29383.jpg
+6762.jpg
+28943.jpg
+18253.jpg
+14065.jpg
+15987.jpg
+20112.jpg
+1967.jpg
+23970.jpg
+6049.jpg
+15791.jpg
+3274.jpg
+18691.jpg
+12679.jpg
+13682.jpg
+28366.jpg
+25398.jpg
+11262.jpg
+25839.jpg
+22667.jpg
+13108.jpg
+18115.jpg
+20119.jpg
+22009.jpg
+20373.jpg
+29426.jpg
+4032.jpg
+16762.jpg
+29853.jpg
+10594.jpg
+27072.jpg
+11296.jpg
+12412.jpg
+15595.jpg
+24813.jpg
+29993.jpg
+10.jpg
+21167.jpg
+10382.jpg
+14731.jpg
+9958.jpg
+27626.jpg
+28261.jpg
+29854.jpg
+29433.jpg
+29488.jpg
+4174.jpg
+14547.jpg
+12128.jpg
+14359.jpg
+4518.jpg
+4420.jpg
+3802.jpg
+24524.jpg
+7443.jpg
+7048.jpg
+15885.jpg
+18186.jpg
+19529.jpg
+4432.jpg
+21970.jpg
+23166.jpg
+22503.jpg
+12626.jpg
+19304.jpg
+3895.jpg
+19496.jpg
+23189.jpg
+19623.jpg
+13062.jpg
+14042.jpg
+11696.jpg
+6401.jpg
+6689.jpg
+26462.jpg
+1602.jpg
+349.jpg
+23056.jpg
+9188.jpg
+1259.jpg
+27743.jpg
+14533.jpg
+23257.jpg
+21.jpg
+21560.jpg
+4379.jpg
+351.jpg
+10643.jpg
+26626.jpg
+22451.jpg
+26715.jpg
+26167.jpg
+18460.jpg
+3278.jpg
+4889.jpg
+23431.jpg
+29242.jpg
+17101.jpg
+5223.jpg
+3884.jpg
+19655.jpg
+829.jpg
+12371.jpg
+11876.jpg
+3250.jpg
+1357.jpg
+20541.jpg
+6637.jpg
+6489.jpg
+20722.jpg
+7956.jpg
+3849.jpg
+22417.jpg
+19625.jpg
+22575.jpg
+6047.jpg
+1213.jpg
+21368.jpg
+14953.jpg
+12099.jpg
+11532.jpg
+16665.jpg
+18242.jpg
+13761.jpg
+21019.jpg
+22231.jpg
+10211.jpg
+19982.jpg
+10741.jpg
+6625.jpg
+23880.jpg
+19223.jpg
+21967.jpg
+4327.jpg
+1527.jpg
+16124.jpg
+15910.jpg
+15342.jpg
+16938.jpg
+8269.jpg
+14709.jpg
+7791.jpg
+15260.jpg
+21323.jpg
+3822.jpg
+8688.jpg
+7936.jpg
+1835.jpg
+25035.jpg
+24628.jpg
+27363.jpg
+21849.jpg
+377.jpg
+24502.jpg
+14537.jpg
+18092.jpg
+2071.jpg
+7713.jpg
+940.jpg
+26436.jpg
+4381.jpg
+4605.jpg
+25660.jpg
+16751.jpg
+23322.jpg
+21869.jpg
+19946.jpg
+6585.jpg
+27683.jpg
+24527.jpg
+3576.jpg
+28843.jpg
+29736.jpg
+20046.jpg
+4890.jpg
+7551.jpg
+6349.jpg
+10621.jpg
+1988.jpg
+2319.jpg
+9428.jpg
+1180.jpg
+18110.jpg
+9886.jpg
+8902.jpg
+9358.jpg
+9190.jpg
+22274.jpg
+5055.jpg
+27534.jpg
+14015.jpg
+10137.jpg
+6212.jpg
+24371.jpg
+19630.jpg
+11130.jpg
+2210.jpg
+12427.jpg
+24752.jpg
+26188.jpg
+24790.jpg
+2746.jpg
+502.jpg
+26993.jpg
+6039.jpg
+25120.jpg
+5681.jpg
+7846.jpg
+22921.jpg
+29163.jpg
+29273.jpg
+23597.jpg
+29479.jpg
+18280.jpg
+18951.jpg
+20724.jpg
+4729.jpg
+16994.jpg
+13229.jpg
+3501.jpg
+11865.jpg
+14967.jpg
+8642.jpg
+10054.jpg
+17298.jpg
+24586.jpg
+8788.jpg
+23768.jpg
+17245.jpg
+10300.jpg
+5081.jpg
+3674.jpg
+18885.jpg
+14677.jpg
+10569.jpg
+25178.jpg
+3815.jpg
+25697.jpg
+21430.jpg
+21267.jpg
+13002.jpg
+26250.jpg
+2891.jpg
+7594.jpg
+652.jpg
+16768.jpg
+9258.jpg
+22286.jpg
+4006.jpg
+5614.jpg
+18148.jpg
+4391.jpg
+28061.jpg
+7727.jpg
+12375.jpg
+12926.jpg
+4705.jpg
+4811.jpg
+28851.jpg
+26848.jpg
+18551.jpg
+19976.jpg
+1815.jpg
+17314.jpg
+5233.jpg
+2531.jpg
+15182.jpg
+541.jpg
+868.jpg
+3752.jpg
+28796.jpg
+25972.jpg
+19360.jpg
+10006.jpg
+19188.jpg
+20791.jpg
+23888.jpg
+18370.jpg
+7983.jpg
+26391.jpg
+11382.jpg
+18415.jpg
+13603.jpg
+13403.jpg
+1552.jpg
+14367.jpg
+10246.jpg
+2439.jpg
+23770.jpg
+20540.jpg
+21195.jpg
+11666.jpg
+6790.jpg
+18926.jpg
+2305.jpg
+1222.jpg
+7787.jpg
+29935.jpg
+24916.jpg
+8477.jpg
+12528.jpg
+871.jpg
+18408.jpg
+19735.jpg
+22576.jpg
+8624.jpg
+8719.jpg
+1690.jpg
+12752.jpg
+11661.jpg
+22091.jpg
+20385.jpg
+26380.jpg
+17139.jpg
+10510.jpg
+5646.jpg
+17349.jpg
+7309.jpg
+13197.jpg
+5009.jpg
+26402.jpg
+28267.jpg
+3823.jpg
+14686.jpg
+18279.jpg
+24445.jpg
+4026.jpg
+23687.jpg
+27816.jpg
+7859.jpg
+16018.jpg
+3876.jpg
+23746.jpg
+9700.jpg
+5577.jpg
+22840.jpg
+9770.jpg
+19764.jpg
+10584.jpg
+5899.jpg
+17773.jpg
+383.jpg
+13103.jpg
+19772.jpg
+23145.jpg
+7646.jpg
+25008.jpg
+6469.jpg
+6817.jpg
+24106.jpg
+11880.jpg
+26528.jpg
+24125.jpg
+1953.jpg
+16781.jpg
+26985.jpg
+7133.jpg
+6676.jpg
+22083.jpg
+8023.jpg
+15540.jpg
+6299.jpg
+21731.jpg
+23876.jpg
+813.jpg
+14888.jpg
+22253.jpg
+4582.jpg
+12782.jpg
+12296.jpg
+18761.jpg
+29653.jpg
+14080.jpg
+11918.jpg
+10909.jpg
+26239.jpg
+5983.jpg
+24947.jpg
+26550.jpg
+15078.jpg
+5152.jpg
+7860.jpg
+89.jpg
+18022.jpg
+16327.jpg
+16070.jpg
+3776.jpg
+20446.jpg
+28735.jpg
+26280.jpg
+24272.jpg
+25006.jpg
+8052.jpg
+27032.jpg
+28633.jpg
+21885.jpg
+15698.jpg
+19756.jpg
+10977.jpg
+22038.jpg
+10925.jpg
+9524.jpg
+9227.jpg
+25616.jpg
+14391.jpg
+28233.jpg
+10324.jpg
+6145.jpg
+15953.jpg
+23026.jpg
+11656.jpg
+29144.jpg
+3865.jpg
+3886.jpg
+14748.jpg
+17008.jpg
+13573.jpg
+26133.jpg
+9171.jpg
+2184.jpg
+14970.jpg
+7455.jpg
+18255.jpg
+2938.jpg
+23534.jpg
+27605.jpg
+6303.jpg
+6404.jpg
+5368.jpg
+21945.jpg
+6619.jpg
+24119.jpg
+18476.jpg
+14627.jpg
+28159.jpg
+21394.jpg
+7451.jpg
+10028.jpg
+9919.jpg
+14200.jpg
+28748.jpg
+13941.jpg
+7468.jpg
+13925.jpg
+20647.jpg
+12769.jpg
+5573.jpg
+20100.jpg
+22570.jpg
+15832.jpg
+20663.jpg
+20016.jpg
+3014.jpg
+6426.jpg
+19430.jpg
+19453.jpg
+29527.jpg
+29119.jpg
+29197.jpg
+20646.jpg
+3793.jpg
+9976.jpg
+15679.jpg
+25165.jpg
+14802.jpg
+2321.jpg
+24706.jpg
+699.jpg
+26165.jpg
+11398.jpg
+332.jpg
+28316.jpg
+5636.jpg
+26549.jpg
+556.jpg
+7854.jpg
+19124.jpg
+18872.jpg
+3318.jpg
+12833.jpg
+25628.jpg
+4558.jpg
+2944.jpg
+22721.jpg
+21814.jpg
+29886.jpg
+14932.jpg
+7109.jpg
+1723.jpg
+23422.jpg
+25581.jpg
+25401.jpg
+14883.jpg
+10990.jpg
+6578.jpg
+10316.jpg
+22904.jpg
+18792.jpg
+20625.jpg
+23711.jpg
+4887.jpg
+14223.jpg
+15613.jpg
+524.jpg
+25813.jpg
+2182.jpg
+12609.jpg
+23766.jpg
+29780.jpg
+27658.jpg
+9208.jpg
+23898.jpg
+26245.jpg
+11067.jpg
+27673.jpg
+17724.jpg
+14603.jpg
+15445.jpg
+26334.jpg
+16043.jpg
+11137.jpg
+21297.jpg
+18189.jpg
+9774.jpg
+2719.jpg
+27133.jpg
+16517.jpg
+9202.jpg
+10291.jpg
+13441.jpg
+7621.jpg
+23176.jpg
+23274.jpg
+22246.jpg
+22736.jpg
+12797.jpg
+9199.jpg
+6638.jpg
+22584.jpg
+7952.jpg
+12629.jpg
+26196.jpg
+644.jpg
+14649.jpg
+20700.jpg
+16037.jpg
+19726.jpg
+394.jpg
+27080.jpg
+4339.jpg
+24639.jpg
+2056.jpg
+9458.jpg
+22621.jpg
+1905.jpg
+9492.jpg
+6205.jpg
+27668.jpg
+25268.jpg
+15341.jpg
+1663.jpg
+24320.jpg
+11940.jpg
+15390.jpg
+20815.jpg
+9180.jpg
+608.jpg
+16572.jpg
+13821.jpg
+15396.jpg
+5588.jpg
+27837.jpg
+20846.jpg
+5139.jpg
+26080.jpg
+27471.jpg
+11304.jpg
+6706.jpg
+16114.jpg
+8414.jpg
+17412.jpg
+5186.jpg
+29493.jpg
+8421.jpg
+16265.jpg
+22817.jpg
+19970.jpg
+21694.jpg
+5844.jpg
+16292.jpg
+22149.jpg
+8368.jpg
+11237.jpg
+27234.jpg
+22795.jpg
+6664.jpg
+24530.jpg
+27965.jpg
+7739.jpg
+20875.jpg
+26737.jpg
+14672.jpg
+13993.jpg
+1174.jpg
+9021.jpg
+23538.jpg
+11336.jpg
+4027.jpg
+1262.jpg
+8323.jpg
+23921.jpg
+2405.jpg
+1166.jpg
+27666.jpg
+21786.jpg
+5213.jpg
+15787.jpg
+26285.jpg
+17432.jpg
+23363.jpg
+22197.jpg
+491.jpg
+122.jpg
+8562.jpg
+14586.jpg
+27365.jpg
+24966.jpg
+25183.jpg
+13869.jpg
+11892.jpg
+19886.jpg
+216.jpg
+29952.jpg
+6208.jpg
+2045.jpg
+17043.jpg
+18060.jpg
+27235.jpg
+21025.jpg
+28867.jpg
+6656.jpg
+26156.jpg
+2470.jpg
+26077.jpg
+11332.jpg
+2484.jpg
+7356.jpg
+29057.jpg
+25610.jpg
+2230.jpg
+24031.jpg
+12454.jpg
+12077.jpg
+16799.jpg
+21586.jpg
+18012.jpg
+11212.jpg
+24052.jpg
+8720.jpg
+2737.jpg
+7773.jpg
+16987.jpg
+14545.jpg
+2504.jpg
+2786.jpg
+11407.jpg
+11031.jpg
+29941.jpg
+28450.jpg
+4428.jpg
+14835.jpg
+5455.jpg
+27861.jpg
+28027.jpg
+10906.jpg
+22512.jpg
+2235.jpg
+23419.jpg
+22364.jpg
+7947.jpg
+23062.jpg
+11974.jpg
+25961.jpg
+8844.jpg
+21064.jpg
+12920.jpg
+25215.jpg
+824.jpg
+22979.jpg
+14178.jpg
+9251.jpg
+11724.jpg
+16230.jpg
+4086.jpg
+12040.jpg
+19883.jpg
+6536.jpg
+21359.jpg
+9132.jpg
+20800.jpg
+27983.jpg
+5308.jpg
+6425.jpg
+14198.jpg
+10385.jpg
+12431.jpg
+27001.jpg
+20452.jpg
+8581.jpg
+17987.jpg
+20010.jpg
+22114.jpg
+2966.jpg
+26017.jpg
+26389.jpg
+10730.jpg
+25149.jpg
+639.jpg
+15406.jpg
+1617.jpg
+9673.jpg
+24360.jpg
+17536.jpg
+14949.jpg
+15375.jpg
+7851.jpg
+20399.jpg
+21769.jpg
+15913.jpg
+7318.jpg
+20496.jpg
+10856.jpg
+9104.jpg
+18868.jpg
+28896.jpg
+24349.jpg
+24383.jpg
+12757.jpg
+7545.jpg
+10430.jpg
+4683.jpg
+18500.jpg
+23192.jpg
+29992.jpg
+2604.jpg
+9365.jpg
+13799.jpg
+22501.jpg
+26686.jpg
+19848.jpg
+2676.jpg
+12932.jpg
+21313.jpg
+26328.jpg
+24762.jpg
+11615.jpg
+15412.jpg
+27027.jpg
+353.jpg
+4724.jpg
+17563.jpg
+26992.jpg
+16178.jpg
+22903.jpg
+27189.jpg
+6476.jpg
+1301.jpg
+10235.jpg
+18182.jpg
+26590.jpg
+17107.jpg
+18467.jpg
+7255.jpg
+18312.jpg
+7653.jpg
+20717.jpg
+5551.jpg
+12572.jpg
+23820.jpg
+6617.jpg
+24898.jpg
+6287.jpg
+24908.jpg
+17532.jpg
+5804.jpg
+2317.jpg
+19782.jpg
+2662.jpg
+10477.jpg
+27749.jpg
+27648.jpg
+23181.jpg
+9643.jpg
+22696.jpg
+20918.jpg
+2570.jpg
+5067.jpg
+24101.jpg
+26116.jpg
+27239.jpg
+10796.jpg
+4132.jpg
+9620.jpg
+24005.jpg
+8718.jpg
+24992.jpg
+8722.jpg
+19146.jpg
+29579.jpg
+13210.jpg
+15724.jpg
+21011.jpg
+12690.jpg
+25037.jpg
+13223.jpg
+18474.jpg
+8565.jpg
+2468.jpg
+1724.jpg
+5421.jpg
+1983.jpg
+8438.jpg
+5156.jpg
+14285.jpg
+5433.jpg
+9956.jpg
+24568.jpg
+24416.jpg
+4552.jpg
+11003.jpg
+25428.jpg
+8652.jpg
+27889.jpg
+25577.jpg
+28811.jpg
+15473.jpg
+8639.jpg
+6063.jpg
+7213.jpg
+24475.jpg
+16845.jpg
+15112.jpg
+29386.jpg
+26108.jpg
+17512.jpg
+3108.jpg
+25480.jpg
+25639.jpg
+7933.jpg
+13643.jpg
+22066.jpg
+26824.jpg
+25200.jpg
+26743.jpg
+18623.jpg
+26223.jpg
+12683.jpg
+27931.jpg
+10400.jpg
+27461.jpg
+8792.jpg
+3432.jpg
+20431.jpg
+2844.jpg
+17673.jpg
+15653.jpg
+2456.jpg
+21358.jpg
+24060.jpg
+21216.jpg
+22640.jpg
+8909.jpg
+3840.jpg
+3163.jpg
+4732.jpg
+14995.jpg
+14492.jpg
+4494.jpg
+4051.jpg
+15594.jpg
+20171.jpg
+26869.jpg
+13562.jpg
+7924.jpg
+23067.jpg
+20047.jpg
+27250.jpg
+13313.jpg
+15443.jpg
+28683.jpg
+4568.jpg
+29450.jpg
+7752.jpg
+14623.jpg
+10485.jpg
+24271.jpg
+13797.jpg
+27386.jpg
+29080.jpg
+6556.jpg
+27715.jpg
+25487.jpg
+14727.jpg
+16941.jpg
+26029.jpg
+26805.jpg
+16224.jpg
+3204.jpg
+24048.jpg
+12024.jpg
+20640.jpg
+830.jpg
+10067.jpg
+20483.jpg
+5066.jpg
+23214.jpg
+11605.jpg
+8952.jpg
+850.jpg
+25496.jpg
+13518.jpg
+8242.jpg
+3996.jpg
+6000.jpg
+18977.jpg
+17867.jpg
+16426.jpg
+21691.jpg
+11458.jpg
+8373.jpg
+12251.jpg
+15160.jpg
+11275.jpg
+8068.jpg
+7020.jpg
+27700.jpg
+13026.jpg
+22612.jpg
+10043.jpg
+20407.jpg
+2800.jpg
+23023.jpg
+10942.jpg
+717.jpg
+12523.jpg
+952.jpg
+5098.jpg
+8753.jpg
+29544.jpg
+10469.jpg
+2452.jpg
+21591.jpg
+5931.jpg
+1156.jpg
+3467.jpg
+23454.jpg
+6496.jpg
+520.jpg
+1247.jpg
+2534.jpg
+6379.jpg
+656.jpg
+19226.jpg
+26174.jpg
+28035.jpg
+3971.jpg
+15210.jpg
+15483.jpg
+20090.jpg
+7703.jpg
+17044.jpg
+11073.jpg
+12194.jpg
+6996.jpg
+10793.jpg
+22158.jpg
+19971.jpg
+4310.jpg
+12017.jpg
+18723.jpg
+744.jpg
+8672.jpg
+3376.jpg
+15711.jpg
+17199.jpg
+21809.jpg
+4681.jpg
+22598.jpg
+28230.jpg
+22669.jpg
+5178.jpg
+11263.jpg
+5676.jpg
+6668.jpg
+14387.jpg
+11451.jpg
+1461.jpg
+7968.jpg
+17408.jpg
+14951.jpg
+16232.jpg
+29742.jpg
+18116.jpg
+9308.jpg
+11365.jpg
+17488.jpg
+10340.jpg
+22252.jpg
+19019.jpg
+11738.jpg
+26047.jpg
+28349.jpg
+5700.jpg
+29606.jpg
+12256.jpg
+19393.jpg
+16749.jpg
+23088.jpg
+6394.jpg
+18598.jpg
+12419.jpg
+12719.jpg
+29040.jpg
+28649.jpg
+8910.jpg
+14906.jpg
+4563.jpg
+9763.jpg
+29162.jpg
+19808.jpg
+29929.jpg
+622.jpg
+14277.jpg
+11574.jpg
+23241.jpg
+3992.jpg
+13119.jpg
+9964.jpg
+18127.jpg
+23075.jpg
+29858.jpg
+2799.jpg
+11227.jpg
+18156.jpg
+2699.jpg
+29921.jpg
+8468.jpg
+15915.jpg
+19213.jpg
+23580.jpg
+1427.jpg
+25478.jpg
+429.jpg
+10684.jpg
+7490.jpg
+25750.jpg
+16324.jpg
+9582.jpg
+19950.jpg
+20216.jpg
+11909.jpg
+10864.jpg
+20408.jpg
+21911.jpg
+25463.jpg
+24749.jpg
+19014.jpg
+16957.jpg
+5177.jpg
+24422.jpg
+2999.jpg
+9947.jpg
+6493.jpg
+25076.jpg
+16847.jpg
+1692.jpg
+28802.jpg
+15503.jpg
+19320.jpg
+5629.jpg
+17822.jpg
+11947.jpg
+1165.jpg
+6588.jpg
+5189.jpg
+5728.jpg
+23012.jpg
+25762.jpg
+20779.jpg
+15114.jpg
+9333.jpg
+13058.jpg
+21470.jpg
+8746.jpg
+18094.jpg
+13763.jpg
+19046.jpg
+20048.jpg
+25444.jpg
+22082.jpg
+27100.jpg
+27735.jpg
+12984.jpg
+19822.jpg
+26046.jpg
+26274.jpg
+21062.jpg
+29006.jpg
+176.jpg
+12997.jpg
+24492.jpg
+15120.jpg
+28631.jpg
+4551.jpg
+4885.jpg
+13647.jpg
+27074.jpg
+1646.jpg
+29970.jpg
+18971.jpg
+24328.jpg
+23148.jpg
+4903.jpg
+18777.jpg
+22805.jpg
+17552.jpg
+1645.jpg
+20744.jpg
+1351.jpg
+12462.jpg
+1387.jpg
+27041.jpg
+2873.jpg
+23450.jpg
+26398.jpg
+23044.jpg
+966.jpg
+21597.jpg
+25958.jpg
+2649.jpg
+28621.jpg
+27303.jpg
+18881.jpg
+27516.jpg
+7918.jpg
+8209.jpg
+5497.jpg
+8480.jpg
+15705.jpg
+7045.jpg
+21373.jpg
+17385.jpg
+12533.jpg
+17346.jpg
+21880.jpg
+9340.jpg
+29735.jpg
+18133.jpg
+7605.jpg
+13090.jpg
+17136.jpg
+26084.jpg
+19634.jpg
+12881.jpg
+16071.jpg
+4544.jpg
+18629.jpg
+4658.jpg
+13420.jpg
+9270.jpg
+13211.jpg
+17396.jpg
+26278.jpg
+14521.jpg
+26707.jpg
+5797.jpg
+14846.jpg
+26272.jpg
+6627.jpg
+20495.jpg
+10999.jpg
+12069.jpg
+2812.jpg
+6474.jpg
+5661.jpg
+3574.jpg
+21022.jpg
+17562.jpg
+10428.jpg
+24957.jpg
+19703.jpg
+3220.jpg
+17637.jpg
+2424.jpg
+7054.jpg
+23520.jpg
+22443.jpg
+5644.jpg
+12290.jpg
+13004.jpg
+2646.jpg
+29356.jpg
+11363.jpg
+23314.jpg
+15268.jpg
+17809.jpg
+12154.jpg
+1093.jpg
+24572.jpg
+23040.jpg
+6767.jpg
+21020.jpg
+16328.jpg
+17341.jpg
+7548.jpg
+8475.jpg
+19041.jpg
+3561.jpg
+16368.jpg
+7685.jpg
+8922.jpg
+22885.jpg
+6567.jpg
+21392.jpg
+9363.jpg
+16325.jpg
+15082.jpg
+23592.jpg
+29240.jpg
+2968.jpg
+9531.jpg
+8820.jpg
+771.jpg
+6577.jpg
+10360.jpg
+15879.jpg
+10522.jpg
+14952.jpg
+6006.jpg
+12915.jpg
+859.jpg
+26499.jpg
+13309.jpg
+21006.jpg
+19414.jpg
+15852.jpg
+13085.jpg
+11778.jpg
+12139.jpg
+22023.jpg
+10434.jpg
+17521.jpg
+7421.jpg
+1200.jpg
+25962.jpg
+23650.jpg
+12828.jpg
+16579.jpg
+10109.jpg
+16413.jpg
+26897.jpg
+9417.jpg
+27273.jpg
+28055.jpg
+19736.jpg
+28510.jpg
+13666.jpg
+15130.jpg
+14697.jpg
+15349.jpg
+23393.jpg
+17922.jpg
+18252.jpg
+29937.jpg
+1641.jpg
+24499.jpg
+29218.jpg
+21924.jpg
+26266.jpg
+17372.jpg
+20000.jpg
+13928.jpg
+17353.jpg
+25374.jpg
+5329.jpg
+13939.jpg
+25971.jpg
+18767.jpg
+11320.jpg
+11090.jpg
+20278.jpg
+14720.jpg
+9022.jpg
+22560.jpg
+16401.jpg
+6206.jpg
+19564.jpg
+23861.jpg
+26584.jpg
+12946.jpg
+27935.jpg
+18672.jpg
+2199.jpg
+13966.jpg
+21082.jpg
+8533.jpg
+19436.jpg
+11864.jpg
+15002.jpg
+8037.jpg
+21766.jpg
+29725.jpg
+8211.jpg
+25526.jpg
+29504.jpg
+18601.jpg
+27572.jpg
+9433.jpg
+27740.jpg
+13952.jpg
+13971.jpg
+23778.jpg
+68.jpg
+17197.jpg
+22418.jpg
+19119.jpg
+277.jpg
+5188.jpg
+24838.jpg
+7852.jpg
+21307.jpg
+1507.jpg
+4242.jpg
+10599.jpg
+26898.jpg
+10125.jpg
+946.jpg
+1578.jpg
+12366.jpg
+11221.jpg
+16610.jpg
+17640.jpg
+22133.jpg
+26087.jpg
+13844.jpg
+11030.jpg
+13145.jpg
+18995.jpg
+16035.jpg
+15555.jpg
+22206.jpg
+15741.jpg
+5161.jpg
+11967.jpg
+23449.jpg
+1686.jpg
+5718.jpg
+23536.jpg
+19462.jpg
+22456.jpg
+943.jpg
+25255.jpg
+25527.jpg
+7457.jpg
+4291.jpg
+4411.jpg
+20227.jpg
+29884.jpg
+27472.jpg
+9474.jpg
+28709.jpg
+15414.jpg
+22603.jpg
+3810.jpg
+5976.jpg
+8026.jpg
+9737.jpg
+12109.jpg
+13478.jpg
+17489.jpg
+10217.jpg
+11965.jpg
+28305.jpg
+26986.jpg
+18783.jpg
+8607.jpg
+27980.jpg
+25412.jpg
+1850.jpg
+6965.jpg
+11103.jpg
+11046.jpg
+10637.jpg
+6275.jpg
+534.jpg
+28886.jpg
+27898.jpg
+17848.jpg
+18274.jpg
+5170.jpg
+16681.jpg
+2981.jpg
+9612.jpg
+27827.jpg
+1874.jpg
+28530.jpg
+29185.jpg
+1005.jpg
+24541.jpg
+12222.jpg
+2353.jpg
+18473.jpg
+10903.jpg
+27686.jpg
+16918.jpg
+15678.jpg
+28239.jpg
+13327.jpg
+8917.jpg
+13101.jpg
+27702.jpg
+8283.jpg
+12002.jpg
+26448.jpg
+13076.jpg
+25130.jpg
+11126.jpg
+4298.jpg
+21467.jpg
+23387.jpg
+24093.jpg
+23903.jpg
+14275.jpg
+26583.jpg
+20535.jpg
+13241.jpg
+27141.jpg
+16921.jpg
+21587.jpg
+8553.jpg
+17913.jpg
+19078.jpg
+10685.jpg
+5316.jpg
+2584.jpg
+7553.jpg
+806.jpg
+27759.jpg
+22985.jpg
+8175.jpg
+6081.jpg
+29787.jpg
+12262.jpg
+15378.jpg
+3917.jpg
+15713.jpg
+25467.jpg
+15261.jpg
+20241.jpg
+15115.jpg
+11425.jpg
+13756.jpg
+5361.jpg
+4983.jpg
+16521.jpg
+10461.jpg
+9145.jpg
+28320.jpg
+3257.jpg
+16357.jpg
+9422.jpg
+31.jpg
+2260.jpg
+16344.jpg
+14515.jpg
+17185.jpg
+23648.jpg
+24661.jpg
+11395.jpg
+29614.jpg
+22938.jpg
+24411.jpg
+11372.jpg
+22540.jpg
+4021.jpg
+15552.jpg
+20368.jpg
+20996.jpg
+4350.jpg
+11150.jpg
+29324.jpg
+24364.jpg
+24844.jpg
+5435.jpg
+3907.jpg
+25188.jpg
+11941.jpg
+15019.jpg
+27349.jpg
+28268.jpg
+27491.jpg
+26431.jpg
+16819.jpg
+7975.jpg
+729.jpg
+6468.jpg
+20714.jpg
+671.jpg
+8782.jpg
+19369.jpg
+11516.jpg
+9715.jpg
+17154.jpg
+6599.jpg
+29094.jpg
+6828.jpg
+16844.jpg
+4636.jpg
+3079.jpg
+10881.jpg
+21304.jpg
+26225.jpg
+22893.jpg
+20442.jpg
+4797.jpg
+12409.jpg
+1957.jpg
+1271.jpg
+22121.jpg
+28809.jpg
+7155.jpg
+11348.jpg
+12912.jpg
+25281.jpg
+9646.jpg
+11982.jpg
+11667.jpg
+20359.jpg
+11694.jpg
+5792.jpg
+25824.jpg
+4118.jpg
+29788.jpg
+20968.jpg
+19774.jpg
+13884.jpg
+14400.jpg
+28582.jpg
+20517.jpg
+12268.jpg
+12239.jpg
+1059.jpg
+19912.jpg
+27321.jpg
+11847.jpg
+1190.jpg
+3749.jpg
+28173.jpg
+12076.jpg
+19677.jpg
+24510.jpg
+14780.jpg
+17452.jpg
+10870.jpg
+10357.jpg
+20721.jpg
+29487.jpg
+22006.jpg
+4256.jpg
+13874.jpg
+10383.jpg
+3091.jpg
+16631.jpg
+10055.jpg
+21057.jpg
+29046.jpg
+25859.jpg
+29458.jpg
+20999.jpg
+12047.jpg
+25222.jpg
+6509.jpg
+27157.jpg
+25112.jpg
+7476.jpg
+20344.jpg
+24554.jpg
+11777.jpg
+1436.jpg
+3623.jpg
+15917.jpg
+16435.jpg
+1848.jpg
+12082.jpg
+8687.jpg
+25706.jpg
+6220.jpg
+8539.jpg
+17659.jpg
+18318.jpg
+851.jpg
+8289.jpg
+25582.jpg
+17883.jpg
+22742.jpg
+27356.jpg
+27721.jpg
+25337.jpg
+8447.jpg
+7349.jpg
+20765.jpg
+21667.jpg
+12694.jpg
+5604.jpg
+1951.jpg
+2833.jpg
+15499.jpg
+23109.jpg
+6596.jpg
+18536.jpg
+4772.jpg
+13129.jpg
+11259.jpg
+8867.jpg
+14737.jpg
+21197.jpg
+21401.jpg
+10828.jpg
+8046.jpg
+28383.jpg
+2325.jpg
+3419.jpg
+6168.jpg
+15779.jpg
+535.jpg
+875.jpg
+3737.jpg
+17667.jpg
+8141.jpg
+10495.jpg
+8987.jpg
+29663.jpg
+9790.jpg
+22193.jpg
+26660.jpg
+6721.jpg
+1065.jpg
+4075.jpg
+15283.jpg
+28693.jpg
+14052.jpg
+24326.jpg
+14503.jpg
+16012.jpg
+16580.jpg
+11627.jpg
+167.jpg
+24645.jpg
+18369.jpg
+7430.jpg
+12338.jpg
+5785.jpg
+18573.jpg
+28723.jpg
+2795.jpg
+12463.jpg
+17920.jpg
+2280.jpg
+27736.jpg
+7767.jpg
+23167.jpg
+29430.jpg
+27079.jpg
+4871.jpg
+17459.jpg
+18863.jpg
+18382.jpg
+18010.jpg
+21017.jpg
+209.jpg
+29674.jpg
+6505.jpg
+29314.jpg
+7245.jpg
+4260.jpg
+27450.jpg
+18634.jpg
+20528.jpg
+28037.jpg
+21053.jpg
+15962.jpg
+25221.jpg
+26817.jpg
+1343.jpg
+24078.jpg
+24977.jpg
+7029.jpg
+14316.jpg
+24334.jpg
+23087.jpg
+19559.jpg
+21099.jpg
+21902.jpg
+9838.jpg
+2288.jpg
+28199.jpg
+8837.jpg
+25576.jpg
+27150.jpg
+27400.jpg
+11994.jpg
+29520.jpg
+5986.jpg
+14909.jpg
+3455.jpg
+27633.jpg
+15419.jpg
+2880.jpg
+15983.jpg
+20599.jpg
+12837.jpg
+5693.jpg
+26988.jpg
+15510.jpg
+10848.jpg
+24178.jpg
+6465.jpg
+17655.jpg
+6327.jpg
+2619.jpg
+29438.jpg
+12372.jpg
+2789.jpg
+514.jpg
+6225.jpg
+29824.jpg
+6645.jpg
+23744.jpg
+7796.jpg
+27923.jpg
+17791.jpg
+9521.jpg
+26850.jpg
+18243.jpg
+8236.jpg
+17280.jpg
+215.jpg
+9558.jpg
+8756.jpg
+1945.jpg
+25278.jpg
+13367.jpg
+18204.jpg
+1477.jpg
+26676.jpg
+21221.jpg
+16276.jpg
+2540.jpg
+20386.jpg
+21980.jpg
+9230.jpg
+1326.jpg
+15761.jpg
+20264.jpg
+27166.jpg
+14961.jpg
+11856.jpg
+22595.jpg
+2969.jpg
+17717.jpg
+13159.jpg
+5331.jpg
+11626.jpg
+20680.jpg
+25603.jpg
+3081.jpg
+9082.jpg
+12078.jpg
+27973.jpg
+25727.jpg
+20082.jpg
+25048.jpg
+27850.jpg
+29710.jpg
+17296.jpg
+12271.jpg
+1903.jpg
+22824.jpg
+7243.jpg
+21651.jpg
+4074.jpg
+5099.jpg
+4898.jpg
+15125.jpg
+6128.jpg
+7712.jpg
+1665.jpg
+20117.jpg
+18835.jpg
+28548.jpg
+8185.jpg
+26687.jpg
+9370.jpg
+14839.jpg
+16823.jpg
+3105.jpg
+24984.jpg
+19744.jpg
+20821.jpg
+26820.jpg
+26568.jpg
+22718.jpg
+10002.jpg
+5835.jpg
+5135.jpg
+13484.jpg
+16609.jpg
+14508.jpg
+634.jpg
+12832.jpg
+20131.jpg
+18989.jpg
+1277.jpg
+16802.jpg
+21370.jpg
+19561.jpg
+145.jpg
+17001.jpg
+22798.jpg
+17473.jpg
+29682.jpg
+26562.jpg
+15593.jpg
+25217.jpg
+270.jpg
+1474.jpg
+8556.jpg
+3400.jpg
+8712.jpg
+22233.jpg
+27818.jpg
+18713.jpg
+8493.jpg
+207.jpg
+5867.jpg
+18411.jpg
+17612.jpg
+6695.jpg
+27228.jpg
+27353.jpg
+25030.jpg
+25912.jpg
+1722.jpg
+27650.jpg
+25992.jpg
+29960.jpg
+7320.jpg
+20291.jpg
+16983.jpg
+60.jpg
+15522.jpg
+23669.jpg
+15085.jpg
+26902.jpg
+17911.jpg
+2824.jpg
+29222.jpg
+2314.jpg
+23599.jpg
+14703.jpg
+20797.jpg
+18869.jpg
+9572.jpg
+3446.jpg
+7208.jpg
+3030.jpg
+27497.jpg
+4274.jpg
+25827.jpg
+17798.jpg
+14563.jpg
+20224.jpg
+4989.jpg
+28707.jpg
+14954.jpg
+200.jpg
+16613.jpg
+22141.jpg
+19144.jpg
+26086.jpg
+24465.jpg
+314.jpg
+29969.jpg
+8822.jpg
+8883.jpg
+23068.jpg
+134.jpg
+19325.jpg
+4244.jpg
+14445.jpg
+17402.jpg
+8985.jpg
+23583.jpg
+11592.jpg
+6945.jpg
+15045.jpg
+23239.jpg
+4824.jpg
+26787.jpg
+115.jpg
+22315.jpg
+10397.jpg
+17238.jpg
+25242.jpg
+18397.jpg
+20758.jpg
+25343.jpg
+10185.jpg
+12183.jpg
+3244.jpg
+14477.jpg
+7017.jpg
+23641.jpg
+18716.jpg
+15648.jpg
+21365.jpg
+19972.jpg
+18005.jpg
+12633.jpg
+14067.jpg
+29753.jpg
+26564.jpg
+8728.jpg
+8100.jpg
+23264.jpg
+19940.jpg
+12956.jpg
+16134.jpg
+24873.jpg
+21381.jpg
+22637.jpg
+14897.jpg
+29881.jpg
+21505.jpg
+1220.jpg
+21016.jpg
+7508.jpg
+3020.jpg
+3317.jpg
+22169.jpg
+9394.jpg
+18193.jpg
+4626.jpg
+19266.jpg
+24255.jpg
+28289.jpg
+19466.jpg
+21622.jpg
+21281.jpg
+12058.jpg
+24274.jpg
+9913.jpg
+27925.jpg
+5612.jpg
+24171.jpg
+6526.jpg
+26357.jpg
+12292.jpg
+9410.jpg
+24166.jpg
+24544.jpg
+14788.jpg
+20147.jpg
+28359.jpg
+28601.jpg
+627.jpg
+13658.jpg
+21094.jpg
+12445.jpg
+18195.jpg
+13582.jpg
+10101.jpg
+5191.jpg
+12111.jpg
+6825.jpg
+23000.jpg
+15198.jpg
+13954.jpg
+17653.jpg
+17958.jpg
+16874.jpg
+4913.jpg
+29775.jpg
+10604.jpg
+18487.jpg
+5763.jpg
+25409.jpg
+22036.jpg
+25815.jpg
+5499.jpg
+13967.jpg
+2228.jpg
+3595.jpg
+17181.jpg
+13018.jpg
+8726.jpg
+11243.jpg
+20032.jpg
+20706.jpg
+23577.jpg
+19961.jpg
+18030.jpg
+25920.jpg
+13406.jpg
+16001.jpg
+18142.jpg
+27571.jpg
+16699.jpg
+11416.jpg
+3000.jpg
+15618.jpg
+23964.jpg
+16575.jpg
+27527.jpg
+268.jpg
+23631.jpg
+4231.jpg
+14777.jpg
+26622.jpg
+3295.jpg
+23938.jpg
+23574.jpg
+15141.jpg
+3315.jpg
+9917.jpg
+15477.jpg
+9295.jpg
+5420.jpg
+13174.jpg
+16245.jpg
+17338.jpg
+11249.jpg
+4517.jpg
+23168.jpg
+13611.jpg
+24304.jpg
+11908.jpg
+23902.jpg
+5482.jpg
+12977.jpg
+3231.jpg
+19035.jpg
+17869.jpg
+5222.jpg
+21919.jpg
+22716.jpg
+7813.jpg
+418.jpg
+26813.jpg
+9868.jpg
+6481.jpg
+3051.jpg
+26734.jpg
+6196.jpg
+2710.jpg
+27902.jpg
+15841.jpg
+9439.jpg
+14640.jpg
+21003.jpg
+6087.jpg
+22814.jpg
+21215.jpg
+29372.jpg
+23179.jpg
+8714.jpg
+1459.jpg
+23637.jpg
+969.jpg
+24819.jpg
+4656.jpg
+10667.jpg
+4116.jpg
+10176.jpg
+13331.jpg
+3297.jpg
+26064.jpg
+7143.jpg
+19193.jpg
+10021.jpg
+4451.jpg
+14532.jpg
+8530.jpg
+19492.jpg
+21481.jpg
+26826.jpg
+4917.jpg
+26766.jpg
+3156.jpg
+19484.jpg
+12106.jpg
+3519.jpg
+9415.jpg
+24054.jpg
+9349.jpg
+5949.jpg
+4912.jpg
+763.jpg
+28114.jpg
+19476.jpg
+22846.jpg
+584.jpg
+4130.jpg
+3890.jpg
+22509.jpg
+5306.jpg
+27831.jpg
+19879.jpg
+21695.jpg
+1371.jpg
+3197.jpg
+6615.jpg
+24989.jpg
+14823.jpg
+13396.jpg
+26667.jpg
+20980.jpg
+1824.jpg
+17758.jpg
+73.jpg
+10693.jpg
+12791.jpg
+25411.jpg
+18953.jpg
+22109.jpg
+6888.jpg
+761.jpg
+8938.jpg
+5263.jpg
+15364.jpg
+26449.jpg
+6137.jpg
+26413.jpg
+15682.jpg
+18839.jpg
+15990.jpg
+721.jpg
+8715.jpg
+5529.jpg
+408.jpg
+21504.jpg
+27160.jpg
+16013.jpg
+27894.jpg
+21380.jpg
+14362.jpg
+17369.jpg
+19778.jpg
+3126.jpg
+27290.jpg
+27531.jpg
+13419.jpg
+2338.jpg
+21497.jpg
+25829.jpg
+16871.jpg
+9539.jpg
+4182.jpg
+4921.jpg
+29823.jpg
+13207.jpg
+15644.jpg
+21912.jpg
+97.jpg
+12231.jpg
+9930.jpg
+85.jpg
+16417.jpg
+19807.jpg
+6519.jpg
+25847.jpg
+2830.jpg
+14002.jpg
+5921.jpg
+11472.jpg
+3664.jpg
+4746.jpg
+24682.jpg
+10614.jpg
+3883.jpg
+21647.jpg
+27043.jpg
+3530.jpg
+12653.jpg
+2430.jpg
+4696.jpg
+3465.jpg
+8801.jpg
+21515.jpg
+19328.jpg
+7024.jpg
+13867.jpg
+27509.jpg
+19856.jpg
+2285.jpg
+24714.jpg
+19380.jpg
+5015.jpg
+19454.jpg
+1339.jpg
+16175.jpg
+12367.jpg
+5559.jpg
+19270.jpg
+1669.jpg
+16649.jpg
+20956.jpg
+21552.jpg
+11625.jpg
+25372.jpg
+5671.jpg
+4910.jpg
+11307.jpg
+17240.jpg
+16364.jpg
+6926.jpg
+9563.jpg
+2638.jpg
+13357.jpg
+23786.jpg
+132.jpg
+22039.jpg
+22973.jpg
+8159.jpg
+27956.jpg
+25359.jpg
+19824.jpg
+12388.jpg
+13500.jpg
+12424.jpg
+15444.jpg
+11303.jpg
+10765.jpg
+17926.jpg
+22382.jpg
+4253.jpg
+4128.jpg
+29594.jpg
+4131.jpg
+25392.jpg
+22681.jpg
+9480.jpg
+13602.jpg
+11628.jpg
+18655.jpg
+3087.jpg
+12742.jpg
+9738.jpg
+1912.jpg
+1520.jpg
+25540.jpg
+1537.jpg
+17499.jpg
+24472.jpg
+26631.jpg
+3767.jpg
+19916.jpg
+5798.jpg
+27644.jpg
+22034.jpg
+16592.jpg
+3775.jpg
+5197.jpg
+3437.jpg
+20908.jpg
+21702.jpg
+4821.jpg
+19259.jpg
+2393.jpg
+6753.jpg
+5731.jpg
+27307.jpg
+21493.jpg
+16333.jpg
+22731.jpg
+7373.jpg
+12689.jpg
+6144.jpg
+24695.jpg
+19647.jpg
+7283.jpg
+8704.jpg
+1067.jpg
+12448.jpg
+19029.jpg
+23126.jpg
+8184.jpg
+10207.jpg
+6863.jpg
+1708.jpg
+28613.jpg
+28451.jpg
+28384.jpg
+7872.jpg
+22255.jpg
+18987.jpg
+5810.jpg
+6650.jpg
+5395.jpg
+26130.jpg
+11837.jpg
+11180.jpg
+2339.jpg
+2270.jpg
+10294.jpg
+15666.jpg
+3453.jpg
+815.jpg
+8148.jpg
+21615.jpg
+5542.jpg
+21771.jpg
+20073.jpg
+6322.jpg
+8434.jpg
+10116.jpg
+25157.jpg
+1526.jpg
+3506.jpg
+121.jpg
+14820.jpg
+265.jpg
+29895.jpg
+4972.jpg
+13493.jpg
+24940.jpg
+2588.jpg
+24986.jpg
+9195.jpg
+1058.jpg
+5352.jpg
+13597.jpg
+23881.jpg
+6245.jpg
+22088.jpg
+22050.jpg
+26378.jpg
+605.jpg
+27701.jpg
+18432.jpg
+29366.jpg
+22556.jpg
+3484.jpg
+8015.jpg
+6458.jpg
+23493.jpg
+23392.jpg
+1549.jpg
+13056.jpg
+8634.jpg
+8081.jpg
+1969.jpg
+11860.jpg
+26184.jpg
+7901.jpg
+7683.jpg
+13828.jpg
+17022.jpg
+17824.jpg
+9367.jpg
+18263.jpg
+5625.jpg
+15425.jpg
+19357.jpg
+2066.jpg
+28664.jpg
+15062.jpg
+20727.jpg
+27564.jpg
+11115.jpg
+6948.jpg
+15158.jpg
+28313.jpg
+12140.jpg
+2691.jpg
+21572.jpg
+22241.jpg
+18644.jpg
+10845.jpg
+1327.jpg
+29490.jpg
+22269.jpg
+11033.jpg
+17048.jpg
+26185.jpg
+17710.jpg
+15828.jpg
+14399.jpg
+26837.jpg
+22676.jpg
+13460.jpg
+21164.jpg
+22223.jpg
+29069.jpg
+8485.jpg
+25692.jpg
+15463.jpg
+181.jpg
+24543.jpg
+26851.jpg
+10976.jpg
+6320.jpg
+17458.jpg
+8259.jpg
+17229.jpg
+26321.jpg
+5870.jpg
+6154.jpg
+20.jpg
+27050.jpg
+11052.jpg
+17380.jpg
+18729.jpg
+7076.jpg
+14135.jpg
+20175.jpg
+14750.jpg
+29550.jpg
+26141.jpg
+24975.jpg
+8708.jpg
+15300.jpg
+1349.jpg
+23275.jpg
+7085.jpg
+5737.jpg
+22227.jpg
+22338.jpg
+25073.jpg
+2852.jpg
+2514.jpg
+14826.jpg
+27529.jpg
+12748.jpg
+895.jpg
+15403.jpg
+13655.jpg
+29358.jpg
+19927.jpg
+10867.jpg
+5028.jpg
+25600.jpg
+3500.jpg
+4055.jpg
+19265.jpg
+12522.jpg
+26747.jpg
+14792.jpg
+18524.jpg
+29631.jpg
+1241.jpg
+4487.jpg
+28700.jpg
+15246.jpg
+20757.jpg
+18727.jpg
+26477.jpg
+18289.jpg
+2916.jpg
+25632.jpg
+19531.jpg
+26939.jpg
+654.jpg
+897.jpg
+12872.jpg
+19446.jpg
+7312.jpg
+14046.jpg
+26286.jpg
+14473.jpg
+3607.jpg
+5637.jpg
+15290.jpg
+398.jpg
+6381.jpg
+486.jpg
+13534.jpg
+9728.jpg
+18463.jpg
+3612.jpg
+6594.jpg
+22719.jpg
+24771.jpg
+12712.jpg
+4014.jpg
+15944.jpg
+260.jpg
+28263.jpg
+19377.jpg
+5641.jpg
+1877.jpg
+523.jpg
+6026.jpg
+28342.jpg
+11187.jpg
+24655.jpg
+18736.jpg
+7761.jpg
+410.jpg
+3382.jpg
+1239.jpg
+13805.jpg
+313.jpg
+23348.jpg
+27612.jpg
+10038.jpg
+20141.jpg
+5470.jpg
+5298.jpg
+2988.jpg
+4559.jpg
+4840.jpg
+17699.jpg
+261.jpg
+12189.jpg
+26776.jpg
+13454.jpg
+29513.jpg
+156.jpg
+4463.jpg
+9815.jpg
+4932.jpg
+8193.jpg
+18544.jpg
+25715.jpg
+20591.jpg
+7268.jpg
+6925.jpg
+4106.jpg
+28853.jpg
+14589.jpg
+10564.jpg
+12142.jpg
+1776.jpg
+2505.jpg
+14244.jpg
+23723.jpg
+21478.jpg
+3693.jpg
+9423.jpg
+2147.jpg
+17255.jpg
+2467.jpg
+27008.jpg
+10049.jpg
+29191.jpg
+26246.jpg
+6018.jpg
+6511.jpg
+13748.jpg
+14813.jpg
+15673.jpg
+11613.jpg
+18751.jpg
+6060.jpg
+28824.jpg
+21836.jpg
+23101.jpg
+7395.jpg
+10917.jpg
+10184.jpg
+27556.jpg
+6775.jpg
+11107.jpg
+854.jpg
+16498.jpg
+17231.jpg
+15222.jpg
+10585.jpg
+23727.jpg
+27202.jpg
+6942.jpg
+24764.jpg
+21074.jpg
+27205.jpg
+4886.jpg
+26579.jpg
+7596.jpg
+4617.jpg
+28732.jpg
+69.jpg
+7154.jpg
+20564.jpg
+22043.jpg
+5516.jpg
+3113.jpg
+24917.jpg
+12203.jpg
+7469.jpg
+15534.jpg
+27866.jpg
+24234.jpg
+26637.jpg
+11773.jpg
+6630.jpg
+18920.jpg
+26580.jpg
+29160.jpg
+3019.jpg
+3513.jpg
+27856.jpg
+25748.jpg
+26308.jpg
+9672.jpg
+8732.jpg
+22545.jpg
+10655.jpg
+2705.jpg
+26287.jpg
+17837.jpg
+6958.jpg
+27392.jpg
+14636.jpg
+15909.jpg
+17704.jpg
+9528.jpg
+27010.jpg
+24433.jpg
+14528.jpg
+12917.jpg
+1810.jpg
+4285.jpg
+11482.jpg
+13302.jpg
+9581.jpg
+10916.jpg
+16936.jpg
+3072.jpg
+21847.jpg
+2513.jpg
+11713.jpg
+21537.jpg
+20759.jpg
+27762.jpg
+1206.jpg
+15326.jpg
+29496.jpg
+29634.jpg
+376.jpg
+27549.jpg
+27476.jpg
+6288.jpg
+4222.jpg
+10938.jpg
+8933.jpg
+10648.jpg
+22361.jpg
+15873.jpg
+237.jpg
+16206.jpg
+11530.jpg
+23195.jpg
+9259.jpg
+7944.jpg
+8388.jpg
+13719.jpg
+5988.jpg
+7996.jpg
+26139.jpg
+21088.jpg
+2853.jpg
+21310.jpg
+12072.jpg
+5502.jpg
+11004.jpg
+28846.jpg
+8971.jpg
+19996.jpg
+559.jpg
+4108.jpg
+19460.jpg
+26423.jpg
+25419.jpg
+14643.jpg
+17595.jpg
+12472.jpg
+28084.jpg
+25984.jpg
+24824.jpg
+22429.jpg
+22851.jpg
+21070.jpg
+10899.jpg
+3954.jpg
+6050.jpg
+11419.jpg
+15588.jpg
+10308.jpg
+10413.jpg
+5990.jpg
+12481.jpg
+13634.jpg
+14791.jpg
+28310.jpg
+1332.jpg
+21318.jpg
+19387.jpg
+10527.jpg
+16129.jpg
+29670.jpg
+14031.jpg
+13150.jpg
+8555.jpg
+4225.jpg
+28541.jpg
+17138.jpg
+3310.jpg
+18090.jpg
+24570.jpg
+12521.jpg
+25549.jpg
+19133.jpg
+17216.jpg
+12119.jpg
+14057.jpg
+25340.jpg
+14903.jpg
+2001.jpg
+20427.jpg
+6649.jpg
+24356.jpg
+12882.jpg
+26205.jpg
+24109.jpg
+11550.jpg
+20200.jpg
+4625.jpg
+7488.jpg
+6535.jpg
+22862.jpg
+28820.jpg
+25053.jpg
+2546.jpg
+13804.jpg
+19157.jpg
+17546.jpg
+10911.jpg
+29845.jpg
+6077.jpg
+27766.jpg
+7971.jpg
+3861.jpg
+18893.jpg
+9163.jpg
+16431.jpg
+26925.jpg
+26856.jpg
+23343.jpg
+18937.jpg
+21312.jpg
+13438.jpg
+8492.jpg
+3045.jpg
+5200.jpg
+4083.jpg
+9491.jpg
+15889.jpg
+18059.jpg
+18962.jpg
+18183.jpg
+7827.jpg
+3112.jpg
+2568.jpg
+22892.jpg
+29860.jpg
+21961.jpg
+6951.jpg
+28948.jpg
+15162.jpg
+7714.jpg
+189.jpg
+27252.jpg
+28967.jpg
+11196.jpg
+1819.jpg
+19773.jpg
+23286.jpg
+14186.jpg
+1798.jpg
+9523.jpg
+4801.jpg
+20561.jpg
+5489.jpg
+23346.jpg
+22694.jpg
+1177.jpg
+28566.jpg
+23941.jpg
+3100.jpg
+15474.jpg
+6795.jpg
+5506.jpg
+11042.jpg
+13976.jpg
+28066.jpg
+20925.jpg
+25213.jpg
+3005.jpg
+5237.jpg
+6915.jpg
+10946.jpg
+12745.jpg
+10923.jpg
+15906.jpg
+29193.jpg
+13887.jpg
+18707.jpg
+8795.jpg
+1901.jpg
+24503.jpg
+17741.jpg
+6710.jpg
+16713.jpg
+21044.jpg
+19776.jpg
+24092.jpg
+9498.jpg
+296.jpg
+16536.jpg
+21701.jpg
+17018.jpg
+21393.jpg
+3422.jpg
+10683.jpg
+9271.jpg
+17567.jpg
+24448.jpg
+7050.jpg
+4120.jpg
+23050.jpg
+20596.jpg
+25301.jpg
+27128.jpg
+7222.jpg
+10504.jpg
+17174.jpg
+4686.jpg
+7160.jpg
+1133.jpg
+6613.jpg
+20742.jpg
+13411.jpg
+20095.jpg
+15501.jpg
+25591.jpg
+27989.jpg
+28283.jpg
+3962.jpg
+20761.jpg
+19199.jpg
+4349.jpg
+29130.jpg
+21480.jpg
+26714.jpg
+16811.jpg
+13312.jpg
+16440.jpg
+16209.jpg
+4756.jpg
+11234.jpg
+22853.jpg
+11937.jpg
+25363.jpg
+17899.jpg
+28646.jpg
+14451.jpg
+10050.jpg
+17333.jpg
+2438.jpg
+3921.jpg
+17320.jpg
+7027.jpg
+4649.jpg
+21343.jpg
+5585.jpg
+24406.jpg
+18657.jpg
+1330.jpg
+16463.jpg
+1437.jpg
+26788.jpg
+18964.jpg
+26145.jpg
+22991.jpg
+28031.jpg
+24115.jpg
+3256.jpg
+18823.jpg
+28895.jpg
+12385.jpg
+4485.jpg
+20860.jpg
+14456.jpg
+14644.jpg
+9464.jpg
+7335.jpg
+15637.jpg
+7903.jpg
+21042.jpg
+29591.jpg
+29299.jpg
+21352.jpg
+4419.jpg
+419.jpg
+5593.jpg
+2178.jpg
+3935.jpg
+18402.jpg
+11155.jpg
+20787.jpg
+29516.jpg
+4003.jpg
+1484.jpg
+23200.jpg
+28590.jpg
+9419.jpg
+22310.jpg
+23025.jpg
+15704.jpg
+28784.jpg
+26234.jpg
+17440.jpg
+18425.jpg
+12695.jpg
+676.jpg
+8178.jpg
+9101.jpg
+17102.jpg
+17849.jpg
+18326.jpg
+6157.jpg
+24513.jpg
+12211.jpg
+23158.jpg
+18526.jpg
+8773.jpg
+18903.jpg
+22664.jpg
+9313.jpg
+24215.jpg
+12542.jpg
+28030.jpg
+11981.jpg
+29813.jpg
+29413.jpg
+19474.jpg
+13010.jpg
+13600.jpg
+15214.jpg
+20515.jpg
+8128.jpg
+8425.jpg
+9911.jpg
+980.jpg
+24152.jpg
+11604.jpg
+3502.jpg
+11218.jpg
+20252.jpg
+24168.jpg
+20975.jpg
+23397.jpg
+28697.jpg
+1021.jpg
+16523.jpg
+20347.jpg
+12929.jpg
+27659.jpg
+9577.jpg
+13335.jpg
+12958.jpg
+19733.jpg
+22207.jpg
+15036.jpg
+14684.jpg
+21165.jpg
+22971.jpg
+20590.jpg
+24431.jpg
+22330.jpg
+4982.jpg
+25872.jpg
+20334.jpg
+18306.jpg
+12646.jpg
+18185.jpg
+26004.jpg
+5265.jpg
+776.jpg
+16993.jpg
+23524.jpg
+19017.jpg
+1928.jpg
+19805.jpg
+4528.jpg
+28358.jpg
+23659.jpg
+5096.jpg
+26963.jpg
+6041.jpg
+5861.jpg
+19327.jpg
+2630.jpg
+4363.jpg
+3851.jpg
+10783.jpg
+26594.jpg
+16742.jpg
+7837.jpg
+25133.jpg
+16225.jpg
+5598.jpg
+10157.jpg
+20475.jpg
+12965.jpg
+1779.jpg
+13866.jpg
+21813.jpg
+2361.jpg
+26759.jpg
+6550.jpg
+6904.jpg
+8484.jpg
+12616.jpg
+22519.jpg
+23358.jpg
+2807.jpg
+17472.jpg
+3456.jpg
+16808.jpg
+8847.jpg
+22821.jpg
+4353.jpg
+8891.jpg
+8549.jpg
+6800.jpg
+20550.jpg
+11553.jpg
+6515.jpg
+11732.jpg
+20772.jpg
+4592.jpg
+5238.jpg
+7855.jpg
+15211.jpg
+11894.jpg
+19552.jpg
+6593.jpg
+2163.jpg
+29023.jpg
+29827.jpg
+1747.jpg
+13977.jpg
+1432.jpg
+8001.jpg
+13668.jpg
+29082.jpg
+8389.jpg
+26375.jpg
+5774.jpg
+14786.jpg
+5925.jpg
+8752.jpg
+18241.jpg
+17426.jpg
+449.jpg
+28419.jpg
+15155.jpg
+7914.jpg
+10754.jpg
+23277.jpg
+10271.jpg
+10284.jpg
+15550.jpg
+2120.jpg
+7733.jpg
+7560.jpg
+20183.jpg
+5795.jpg
+28815.jpg
+5740.jpg
+15775.jpg
+6454.jpg
+26960.jpg
+22355.jpg
+24102.jpg
+10250.jpg
+16374.jpg
+22525.jpg
+19067.jpg
+16.jpg
+19731.jpg
+26126.jpg
+23440.jpg
+29355.jpg
+28347.jpg
+4687.jpg
+27608.jpg
+11564.jpg
+5587.jpg
+1674.jpg
+7006.jpg
+18368.jpg
+25452.jpg
+28714.jpg
+18300.jpg
+24266.jpg
+23427.jpg
+28171.jpg
+14985.jpg
+1828.jpg
+27257.jpg
+1373.jpg
+12480.jpg
+3016.jpg
+16099.jpg
+6796.jpg
+5512.jpg
+19963.jpg
+8172.jpg
+22649.jpg
+6555.jpg
+25564.jpg
+2166.jpg
+9401.jpg
+1676.jpg
+18973.jpg
+17581.jpg
+21414.jpg
+16041.jpg
+18027.jpg
+14900.jpg
+1883.jpg
+658.jpg
+14454.jpg
+8798.jpg
+8511.jpg
+26872.jpg
+8291.jpg
+5570.jpg
+29263.jpg
+26836.jpg
+6597.jpg
+1426.jpg
+11757.jpg
+15293.jpg
+9933.jpg
+29131.jpg
+24268.jpg
+3658.jpg
+6346.jpg
+5350.jpg
+18261.jpg
+25804.jpg
+14989.jpg
+7865.jpg
+4703.jpg
+28898.jpg
+76.jpg
+3076.jpg
+23673.jpg
+26385.jpg
+27685.jpg
+28526.jpg
+25155.jpg
+10747.jpg
+20763.jpg
+884.jpg
+28775.jpg
+13479.jpg
+27467.jpg
+8631.jpg
+3585.jpg
+28638.jpg
+10280.jpg
+5527.jpg
+20037.jpg
+13768.jpg
+18096.jpg
+23603.jpg
+28725.jpg
+17050.jpg
+7736.jpg
+17797.jpg
+22108.jpg
+17100.jpg
+3591.jpg
+16798.jpg
+27637.jpg
+25735.jpg
+1843.jpg
+3956.jpg
+27116.jpg
+17313.jpg
+17917.jpg
+18140.jpg
+1098.jpg
+11435.jpg
+950.jpg
+29500.jpg
+14933.jpg
+26197.jpg
+8472.jpg
+730.jpg
+9153.jpg
+14958.jpg
+17059.jpg
+7742.jpg
+7482.jpg
+17454.jpg
+27355.jpg
+1658.jpg
+18436.jpg
+21534.jpg
+14696.jpg
+15651.jpg
+25854.jpg
+26842.jpg
+22119.jpg
+26834.jpg
+16375.jpg
+22370.jpg
+19255.jpg
+2238.jpg
+5078.jpg
+20136.jpg
+979.jpg
+11466.jpg
+20204.jpg
+24685.jpg
+22535.jpg
+747.jpg
+4236.jpg
+22732.jpg
+19343.jpg
+6350.jpg
+20035.jpg
+10541.jpg
+19518.jpg
+22342.jpg
+1958.jpg
+16908.jpg
+3537.jpg
+5688.jpg
+21550.jpg
+29277.jpg
+10375.jpg
+14498.jpg
+13430.jpg
+6150.jpg
+20440.jpg
+10483.jpg
+25162.jpg
+23948.jpg
+25423.jpg
+21306.jpg
+22277.jpg
+22392.jpg
+19862.jpg
+22384.jpg
+21311.jpg
+17196.jpg
+12447.jpg
+25144.jpg
+29026.jpg
+27440.jpg
+28118.jpg
+12839.jpg
+5782.jpg
+24062.jpg
+19632.jpg
+14069.jpg
+12452.jpg
+6755.jpg
+8699.jpg
+19482.jpg
+21907.jpg
+16467.jpg
+10401.jpg
+12468.jpg
+15337.jpg
+19526.jpg
+5155.jpg
+10391.jpg
+20193.jpg
+25397.jpg
+125.jpg
+137.jpg
+23204.jpg
+18757.jpg
+9835.jpg
+19508.jpg
+5409.jpg
+9083.jpg
+6779.jpg
+9359.jpg
+20952.jpg
+3866.jpg
+22155.jpg
+24390.jpg
+18187.jpg
+20546.jpg
+116.jpg
+4126.jpg
+10807.jpg
+7282.jpg
+18264.jpg
+2075.jpg
+11506.jpg
+18052.jpg
+4240.jpg
+10716.jpg
+11143.jpg
+3711.jpg
+26318.jpg
+212.jpg
+27570.jpg
+19277.jpg
+5079.jpg
+29471.jpg
+8120.jpg
+16277.jpg
+14564.jpg
+8358.jpg
+26381.jpg
+18220.jpg
+24497.jpg
+16569.jpg
+7446.jpg
+14073.jpg
+2068.jpg
+6290.jpg
+23396.jpg
+4666.jpg
+16258.jpg
+13927.jpg
+14527.jpg
+4862.jpg
+10366.jpg
+26646.jpg
+28741.jpg
+1719.jpg
+2116.jpg
+6302.jpg
+13815.jpg
+4668.jpg
+6261.jpg
+8799.jpg
+16747.jpg
+14125.jpg
+16828.jpg
+3215.jpg
+53.jpg
+28468.jpg
+1243.jpg
+13888.jpg
+23097.jpg
+742.jpg
+4615.jpg
+23514.jpg
+26303.jpg
+26382.jpg
+17453.jpg
+7873.jpg
+28110.jpg
+10536.jpg
+21206.jpg
+13453.jpg
+27848.jpg
+10970.jpg
+2842.jpg
+4110.jpg
+5102.jpg
+7285.jpg
+20661.jpg
+28989.jpg
+2614.jpg
+28029.jpg
+24097.jpg
+12722.jpg
+19840.jpg
+20749.jpg
+17392.jpg
+26722.jpg
+11502.jpg
+20751.jpg
+5378.jpg
+29403.jpg
+409.jpg
+28962.jpg
+24230.jpg
+17843.jpg
+4594.jpg
+956.jpg
+9261.jpg
+23694.jpg
+18384.jpg
+25057.jpg
+23342.jpg
+1770.jpg
+9711.jpg
+2061.jpg
+21832.jpg
+15278.jpg
+18797.jpg
+24468.jpg
+23029.jpg
+8821.jpg
+15237.jpg
+28576.jpg
+14721.jpg
+26536.jpg
+2713.jpg
+14063.jpg
+5053.jpg
+17856.jpg
+16287.jpg
+13716.jpg
+18738.jpg
+17714.jpg
+28745.jpg
+5939.jpg
+10081.jpg
+2192.jpg
+18637.jpg
+19237.jpg
+7235.jpg
+27138.jpg
+3532.jpg
+3307.jpg
+18075.jpg
+19910.jpg
+5733.jpg
+23457.jpg
+8126.jpg
+17678.jpg
+22489.jpg
+21648.jpg
+19715.jpg
+3913.jpg
+3332.jpg
+25184.jpg
+8923.jpg
+27405.jpg
+24967.jpg
+1020.jpg
+21571.jpg
+9969.jpg
+25866.jpg
+500.jpg
+25435.jpg
+9803.jpg
+29041.jpg
+26496.jpg
+22432.jpg
+21471.jpg
+21045.jpg
+7803.jpg
+28209.jpg
+25651.jpg
+24013.jpg
+373.jpg
+7374.jpg
+6129.jpg
+3271.jpg
+20658.jpg
+19517.jpg
+21607.jpg
+29509.jpg
+7911.jpg
+13113.jpg
+22831.jpg
+13409.jpg
+26503.jpg
+20470.jpg
+18403.jpg
+4779.jpg
+3497.jpg
+14867.jpg
+27541.jpg
+24149.jpg
+9009.jpg
+20819.jpg
+16052.jpg
+6699.jpg
+10515.jpg
+2704.jpg
+2583.jpg
+6378.jpg
+20542.jpg
+10114.jpg
+6435.jpg
+18889.jpg
+19944.jpg
+18722.jpg
+213.jpg
+28680.jpg
+26964.jpg
+4448.jpg
+25686.jpg
+3228.jpg
+7866.jpg
+6344.jpg
+1655.jpg
+19606.jpg
+14767.jpg
+18219.jpg
+7856.jpg
+20799.jpg
+25071.jpg
+18160.jpg
+13400.jpg
+4610.jpg
+17746.jpg
+11197.jpg
+18398.jpg
+2005.jpg
+21896.jpg
+17389.jpg
+19051.jpg
+7743.jpg
+19653.jpg
+23033.jpg
+3447.jpg
+19621.jpg
+26227.jpg
+22439.jpg
+24853.jpg
+11907.jpg
+12574.jpg
+7780.jpg
+5885.jpg
+17019.jpg
+21284.jpg
+19890.jpg
+10679.jpg
+18235.jpg
+9731.jpg
+11939.jpg
+13944.jpg
+1502.jpg
+21161.jpg
+22561.jpg
+28056.jpg
+10481.jpg
+23298.jpg
+3665.jpg
+11161.jpg
+11957.jpg
+15294.jpg
+12495.jpg
+12950.jpg
+24241.jpg
+11352.jpg
+19587.jpg
+22680.jpg
+3189.jpg
+7225.jpg
+4407.jpg
+29623.jpg
+25254.jpg
+15373.jpg
+23930.jpg
+19012.jpg
+1622.jpg
+29737.jpg
+12935.jpg
+15098.jpg
+21720.jpg
+18667.jpg
+5034.jpg
+4204.jpg
+18954.jpg
+7904.jpg
+5722.jpg
+12787.jpg
+6713.jpg
+3417.jpg
+20465.jpg
+14047.jpg
+5523.jpg
+19073.jpg
+1117.jpg
+10894.jpg
+17332.jpg
+15484.jpg
+20323.jpg
+18291.jpg
+370.jpg
+6260.jpg
+15908.jpg
+5898.jpg
+19903.jpg
+14866.jpg
+17985.jpg
+338.jpg
+7392.jpg
+25072.jpg
+786.jpg
+22298.jpg
+2284.jpg
+8284.jpg
+23211.jpg
+9818.jpg
+3093.jpg
+9567.jpg
+21079.jpg
+11438.jpg
+10096.jpg
+26725.jpg
+13314.jpg
+29910.jpg
+21078.jpg
+20645.jpg
+28814.jpg
+817.jpg
+617.jpg
+8577.jpg
+28760.jpg
+27033.jpg
+1422.jpg
+5140.jpg
+29333.jpg
+301.jpg
+4909.jpg
+25803.jpg
+19612.jpg
+14375.jpg
+18310.jpg
+14177.jpg
+8875.jpg
+10789.jpg
+20034.jpg
+15608.jpg
+26697.jpg
+18228.jpg
+4859.jpg
+15016.jpg
+24359.jpg
+6635.jpg
+25097.jpg
+3846.jpg
+24023.jpg
+8155.jpg
+17039.jpg
+28184.jpg
+26596.jpg
+1183.jpg
+1196.jpg
+28090.jpg
+1143.jpg
+12657.jpg
+8420.jpg
+27313.jpg
+29409.jpg
+20237.jpg
+2188.jpg
+12794.jpg
+11975.jpg
+4506.jpg
+1588.jpg
+26558.jpg
+8757.jpg
+28656.jpg
+17254.jpg
+13904.jpg
+4573.jpg
+19948.jpg
+14241.jpg
+24367.jpg
+9186.jpg
+17980.jpg
+18267.jpg
+1056.jpg
+28993.jpg
+22943.jpg
+19208.jpg
+28757.jpg
+7678.jpg
+12817.jpg
+6397.jpg
+24482.jpg
+14618.jpg
+22145.jpg
+23484.jpg
+14738.jpg
+24464.jpg
+26995.jpg
+9012.jpg
+14993.jpg
+3352.jpg
+14712.jpg
+11650.jpg
+10524.jpg
+19224.jpg
+14368.jpg
+25169.jpg
+10726.jpg
+7984.jpg
+20024.jpg
+16657.jpg
+16495.jpg
+17738.jpg
+29381.jpg
+9418.jpg
+15986.jpg
+4733.jpg
+5245.jpg
+3616.jpg
+12444.jpg
+7810.jpg
+3871.jpg
+28424.jpg
+7759.jpg
+20904.jpg
+2021.jpg
+6783.jpg
+2426.jpg
+5640.jpg
+9957.jpg
+27550.jpg
+2735.jpg
+4284.jpg
+22834.jpg
+8520.jpg
+12288.jpg
+23435.jpg
+17576.jpg
+5373.jpg
+17560.jpg
+16570.jpg
+27484.jpg
+14634.jpg
+5712.jpg
+1022.jpg
+15248.jpg
+12199.jpg
+4053.jpg
+18817.jpg
+15142.jpg
+2170.jpg
+17132.jpg
+271.jpg
+26887.jpg
+17466.jpg
+23897.jpg
+14578.jpg
+14927.jpg
+19350.jpg
+15517.jpg
+14081.jpg
+19138.jpg
+12874.jpg
+3162.jpg
+2445.jpg
+22123.jpg
+24525.jpg
+8272.jpg
+26649.jpg
+25980.jpg
+17550.jpg
+2658.jpg
+28504.jpg
+5929.jpg
+11351.jpg
+26485.jpg
+18108.jpg
+27948.jpg
+2232.jpg
+5561.jpg
+12236.jpg
+29833.jpg
+2388.jpg
+9005.jpg
+11397.jpg
+9364.jpg
+18423.jpg
+9388.jpg
+10337.jpg
+2040.jpg
+7354.jpg
+20322.jpg
+8833.jpg
+24099.jpg
+29203.jpg
+437.jpg
+18111.jpg
+12967.jpg
+9414.jpg
+362.jpg
+19323.jpg
+26341.jpg
+2156.jpg
+17530.jpg
+21122.jpg
+26453.jpg
+11319.jpg
+24173.jpg
+4923.jpg
+21146.jpg
+17490.jpg
+4087.jpg
+20194.jpg
+10470.jpg
+26412.jpg
+28229.jpg
+25285.jpg
+466.jpg
+62.jpg
+7516.jpg
+16898.jpg
+29489.jpg
+5374.jpg
+7465.jpg
+13790.jpg
+28143.jpg
+22285.jpg
+29245.jpg
+1559.jpg
+2409.jpg
+4458.jpg
+24658.jpg
+20402.jpg
+21867.jpg
+26640.jpg
+24087.jpg
+10306.jpg
+15287.jpg
+19652.jpg
+11832.jpg
+5136.jpg
+15448.jpg
+24063.jpg
+2955.jpg
+13385.jpg
+10661.jpg
+9018.jpg
+15965.jpg
+16664.jpg
+14871.jpg
+4109.jpg
+753.jpg
+2108.jpg
+25175.jpg
+5651.jpg
+5639.jpg
+29648.jpg
+5045.jpg
+6024.jpg
+8589.jpg
+29569.jpg
+12931.jpg
+16004.jpg
+24767.jpg
+12587.jpg
+2095.jpg
+10230.jpg
+149.jpg
+14499.jpg
+2586.jpg
+527.jpg
+2471.jpg
+16271.jpg
+29325.jpg
+21072.jpg
+13594.jpg
+4121.jpg
+29364.jpg
+539.jpg
+13614.jpg
+22077.jpg
+19319.jpg
+19273.jpg
+13296.jpg
+28957.jpg
+8227.jpg
+12389.jpg
+6770.jpg
+16079.jpg
+6765.jpg
+19241.jpg
+24156.jpg
+27703.jpg
+6310.jpg
+29393.jpg
+23760.jpg
+217.jpg
+18494.jpg
+16500.jpg
+23824.jpg
+1033.jpg
+18281.jpg
+19843.jpg
+23809.jpg
+2618.jpg
+17375.jpg
+2074.jpg
+11728.jpg
+28448.jpg
+8877.jpg
+8655.jpg
+16501.jpg
+8058.jpg
+13185.jpg
+20396.jpg
+18850.jpg
+24807.jpg
+8934.jpg
+7082.jpg
+17737.jpg
+17095.jpg
+12033.jpg
+12841.jpg
+25586.jpg
+15995.jpg
+2103.jpg
+4810.jpg
+2725.jpg
+4188.jpg
+7286.jpg
+2963.jpg
+26103.jpg
+22299.jpg
+2665.jpg
+4819.jpg
+22913.jpg
+22124.jpg
+11629.jpg
+3695.jpg
+15038.jpg
+28369.jpg
+23341.jpg
+20122.jpg
+14874.jpg
+14743.jpg
+26199.jpg
+14621.jpg
+17784.jpg
+10963.jpg
+24295.jpg
+11517.jpg
+10073.jpg
+14338.jpg
+22262.jpg
+27631.jpg
+25136.jpg
+16961.jpg
+3366.jpg
+26142.jpg
+19447.jpg
+24310.jpg
+8470.jpg
+3412.jpg
+19827.jpg
+25360.jpg
+10509.jpg
+2796.jpg
+11427.jpg
+18041.jpg
+16392.jpg
+8763.jpg
+27970.jpg
+26991.jpg
+21974.jpg
+28632.jpg
+22105.jpg
+26821.jpg
+13669.jpg
+24240.jpg
+24506.jpg
+20854.jpg
+26442.jpg
+25116.jpg
+12488.jpg
+13540.jpg
+27381.jpg
+22448.jpg
+2956.jpg
+13970.jpg
+12347.jpg
+16068.jpg
+11540.jpg
+1135.jpg
+22547.jpg
+26814.jpg
+6376.jpg
+21637.jpg
+22032.jpg
+11026.jpg
+5984.jpg
+14117.jpg
+4818.jpg
+22994.jpg
+10424.jpg
+28352.jpg
+29087.jpg
+4164.jpg
+23409.jpg
+19479.jpg
+12474.jpg
+7795.jpg
+16646.jpg
+23236.jpg
+20704.jpg
+8190.jpg
+28398.jpg
+526.jpg
+19231.jpg
+4348.jpg
+12954.jpg
+5142.jpg
+4134.jpg
+4217.jpg
+4514.jpg
+25507.jpg
+16444.jpg
+10158.jpg
+21500.jpg
+3033.jpg
+6167.jpg
+6108.jpg
+19791.jpg
+22258.jpg
+8669.jpg
+1057.jpg
+2911.jpg
+25607.jpg
+14924.jpg
+27114.jpg
+4198.jpg
+12153.jpg
+7000.jpg
+24671.jpg
+4216.jpg
+24708.jpg
+17526.jpg
+12741.jpg
+7526.jpg
+24993.jpg
+21201.jpg
+10785.jpg
+21735.jpg
+8559.jpg
+1037.jpg
+14089.jpg
+9485.jpg
+14896.jpg
+22682.jpg
+685.jpg
+12088.jpg
+4393.jpg
+21890.jpg
+25279.jpg
+26340.jpg
+4041.jpg
+26374.jpg
+10189.jpg
+2864.jpg
+29699.jpg
+18642.jpg
+17631.jpg
+4343.jpg
+16765.jpg
+12682.jpg
+7514.jpg
+28432.jpg
+21033.jpg
+18563.jpg
+4402.jpg
+5309.jpg
+8415.jpg
+2112.jpg
+4882.jpg
+12206.jpg
+27393.jpg
+18630.jpg
+1104.jpg
+8664.jpg
+23420.jpg
+4778.jpg
+6307.jpg
+8424.jpg
+6316.jpg
+444.jpg
+2094.jpg
+20824.jpg
+26323.jpg
+25262.jpg
+25689.jpg
+17993.jpg
+18539.jpg
+14396.jpg
+456.jpg
+24251.jpg
+25389.jpg
+24161.jpg
+14347.jpg
+21198.jpg
+15426.jpg
+16991.jpg
+12579.jpg
+7203.jpg
+24259.jpg
+14536.jpg
+28520.jpg
+21873.jpg
+6100.jpg
+7541.jpg
+11935.jpg
+26510.jpg
+7099.jpg
+9555.jpg
+19461.jpg
+21753.jpg
+3485.jpg
+24983.jpg
+20080.jpg
+28393.jpg
+27135.jpg
+280.jpg
+6905.jpg
+310.jpg
+14291.jpg
+1952.jpg
+2289.jpg
+27288.jpg
+26094.jpg
+6551.jpg
+27379.jpg
+27291.jpg
+9862.jpg
+26410.jpg
+11403.jpg
+4637.jpg
+25849.jpg
+19217.jpg
+17300.jpg
+16407.jpg
+4570.jpg
+22112.jpg
+17696.jpg
+2921.jpg
+6849.jpg
+7112.jpg
+19813.jpg
+18333.jpg
+23987.jpg
+2930.jpg
+18565.jpg
+10933.jpg
+18902.jpg
+2385.jpg
+14008.jpg
+20472.jpg
+13368.jpg
+5901.jpg
+17671.jpg
+26756.jpg
+21384.jpg
+19438.jpg
+28715.jpg
+19757.jpg
+19676.jpg
+25966.jpg
+19437.jpg
+4136.jpg
+15111.jpg
+2564.jpg
+25023.jpg
+5720.jpg
+2031.jpg
+4853.jpg
+5333.jpg
+27511.jpg
+2362.jpg
+9033.jpg
+17020.jpg
+9658.jpg
+25146.jpg
+28918.jpg
+5328.jpg
+29231.jpg
+2865.jpg
+22468.jpg
+15703.jpg
+7126.jpg
+14233.jpg
+1006.jpg
+18303.jpg
+25923.jpg
+4328.jpg
+16179.jpg
+28521.jpg
+27281.jpg
+27388.jpg
+17665.jpg
+16215.jpg
+19202.jpg
+5437.jpg
+8264.jpg
+28926.jpg
+27054.jpg
+15622.jpg
+23247.jpg
+7423.jpg
+21900.jpg
+11177.jpg
+2082.jpg
+21903.jpg
+11121.jpg
+16796.jpg
+12776.jpg
+21679.jpg
+8005.jpg
+20708.jpg
+19090.jpg
+7878.jpg
+9157.jpg
+26775.jpg
+7920.jpg
+8568.jpg
+15786.jpg
+23582.jpg
+29510.jpg
+29973.jpg
+6981.jpg
+5741.jpg
+21770.jpg
+12181.jpg
+24107.jpg
+27066.jpg
+23249.jpg
+5726.jpg
+8662.jpg
+22600.jpg
+8265.jpg
+18801.jpg
+5940.jpg
+19117.jpg
+2491.jpg
+28800.jpg
+1041.jpg
+11364.jpg
+21176.jpg
+23441.jpg
+12545.jpg
+21963.jpg
+22387.jpg
+21181.jpg
+9636.jpg
+8412.jpg
+17225.jpg
+1414.jpg
+29855.jpg
+13677.jpg
+11005.jpg
+22461.jpg
+650.jpg
+15997.jpg
+12583.jpg
+14972.jpg
+14833.jpg
+29603.jpg
+16083.jpg
+17941.jpg
+22734.jpg
+6938.jpg
+2794.jpg
+3708.jpg
+6829.jpg
+5923.jpg
+13359.jpg
+16509.jpg
+17742.jpg
+7292.jpg
+11806.jpg
+13200.jpg
+28737.jpg
+8701.jpg
+15193.jpg
+13975.jpg
+29374.jpg
+27411.jpg
+21937.jpg
+18512.jpg
+336.jpg
+18717.jpg
+26137.jpg
+24401.jpg
+20620.jpg
+16764.jpg
+3023.jpg
+19737.jpg
+23335.jpg
+29139.jpg
+22830.jpg
+5744.jpg
+3291.jpg
+8541.jpg
+2416.jpg
+19053.jpg
+1310.jpg
+12785.jpg
+13834.jpg
+23053.jpg
+21452.jpg
+15513.jpg
+4505.jpg
+24614.jpg
+17076.jpg
+15492.jpg
+18758.jpg
+14170.jpg
+12535.jpg
+26414.jpg
+24190.jpg
+3243.jpg
+16029.jpg
+25524.jpg
+25843.jpg
+25108.jpg
+13094.jpg
+3363.jpg
+21675.jpg
+13329.jpg
+19801.jpg
+1480.jpg
+8839.jpg
+11383.jpg
+11345.jpg
+6595.jpg
+13845.jpg
+20197.jpg
+8188.jpg
+12428.jpg
+17029.jpg
+9879.jpg
+24811.jpg
+13117.jpg
+2557.jpg
+4191.jpg
+29768.jpg
+17995.jpg
+9674.jpg
+13937.jpg
+8912.jpg
+2821.jpg
+4579.jpg
+29334.jpg
+6886.jpg
+715.jpg
+27790.jpg
+25080.jpg
+1347.jpg
+19103.jpg
+16513.jpg
+29353.jpg
+12855.jpg
+20951.jpg
+20669.jpg
+3750.jpg
+4835.jpg
+25970.jpg
+949.jpg
+24779.jpg
+6337.jpg
+20728.jpg
+4501.jpg
+15923.jpg
+1529.jpg
+7558.jpg
+8776.jpg
+680.jpg
+15645.jpg
+28499.jpg
+28524.jpg
+26666.jpg
+1419.jpg
+5624.jpg
+15409.jpg
+24073.jpg
+10787.jpg
+10326.jpg
+28743.jpg
+4341.jpg
+25388.jpg
+7426.jpg
+26217.jpg
+14657.jpg
+10587.jpg
+18593.jpg
+21194.jpg
+22931.jpg
+11064.jpg
+10878.jpg
+6592.jpg
+20959.jpg
+11709.jpg
+17435.jpg
+11610.jpg
+13395.jpg
+10554.jpg
+9148.jpg
+24033.jpg
+9762.jpg
+16294.jpg
+27434.jpg
+11400.jpg
+3173.jpg
+1704.jpg
+26764.jpg
+22493.jpg
+13468.jpg
+5706.jpg
+23944.jpg
+16044.jpg
+13126.jpg
+18394.jpg
+2207.jpg
+20504.jpg
+20870.jpg
+15177.jpg
+11023.jpg
+10063.jpg
+19130.jpg
+2259.jpg
+1743.jpg
+1281.jpg
+11311.jpg
+7609.jpg
+20898.jpg
+23100.jpg
+27933.jpg
+10914.jpg
+13680.jpg
+1726.jpg
+21553.jpg
+13424.jpg
+9843.jpg
+17486.jpg
+26636.jpg
+19450.jpg
+16100.jpg
+17094.jpg
+25170.jpg
+6396.jpg
+9944.jpg
+4960.jpg
+26873.jpg
+13450.jpg
+17068.jpg
+5337.jpg
+6842.jpg
+1662.jpg
+8710.jpg
+13136.jpg
+20328.jpg
+27176.jpg
+18453.jpg
+780.jpg
+23628.jpg
+7916.jpg
+6259.jpg
+8156.jpg
+24146.jpg
+9245.jpg
+9544.jpg
+23020.jpg
+22139.jpg
+18981.jpg
+26709.jpg
+17031.jpg
+4267.jpg
+29063.jpg
+8536.jpg
+17336.jpg
+26475.jpg
+1521.jpg
+21413.jpg
+29568.jpg
+24417.jpg
+13346.jpg
+23357.jpg
+10979.jpg
+11735.jpg
+11917.jpg
+17929.jpg
+9520.jpg
+309.jpg
+8593.jpg
+9290.jpg
+18674.jpg
+13254.jpg
+5834.jpg
+581.jpg
+22346.jpg
+20274.jpg
+4058.jpg
+12751.jpg
+13576.jpg
+10608.jpg
+7819.jpg
+10858.jpg
+29043.jpg
+1652.jpg
+7868.jpg
+21133.jpg
+4731.jpg
+29679.jpg
+25552.jpg
+10563.jpg
+23729.jpg
+25250.jpg
+1962.jpg
+17359.jpg
+22809.jpg
+19806.jpg
+3127.jpg
+14485.jpg
+23252.jpg
+666.jpg
+8299.jpg
+27068.jpg
+1073.jpg
+220.jpg
+19651.jpg
+26981.jpg
+29680.jpg
+1048.jpg
+79.jpg
+24660.jpg
+2650.jpg
+14674.jpg
+11749.jpg
+25297.jpg
+9688.jpg
+16097.jpg
+6036.jpg
+15797.jpg
+19348.jpg
+9786.jpg
+29816.jpg
+12552.jpg
+28455.jpg
+15870.jpg
+15347.jpg
+23676.jpg
+27343.jpg
+20801.jpg
+20273.jpg
+21018.jpg
+2695.jpg
+4066.jpg
+2890.jpg
+7062.jpg
+4973.jpg
+23957.jpg
+4803.jpg
+27295.jpg
+29739.jpg
+10146.jpg
+3988.jpg
+22580.jpg
+12551.jpg
+22551.jpg
+10281.jpg
+3632.jpg
+25015.jpg
+15071.jpg
+16881.jpg
+19178.jpg
+27154.jpg
+25024.jpg
+28164.jpg
+16902.jpg
+12440.jpg
+21728.jpg
+26074.jpg
+9049.jpg
+26875.jpg
+18883.jpg
+24756.jpg
+19562.jpg
+14979.jpg
+9998.jpg
+8897.jpg
+12011.jpg
+18676.jpg
+15881.jpg
+25665.jpg
+26506.jpg
+20045.jpg
+13421.jpg
+12868.jpg
+28145.jpg
+20697.jpg
+5089.jpg
+18238.jpg
+14981.jpg
+22945.jpg
+1458.jpg
+24647.jpg
+29954.jpg
+23496.jpg
+2912.jpg
+27029.jpg
+25479.jpg
+27305.jpg
+21071.jpg
+21843.jpg
+19887.jpg
+19063.jpg
+26115.jpg
+28786.jpg
+22891.jpg
+23689.jpg
+6909.jpg
+25621.jpg
+11818.jpg
+21420.jpg
+24254.jpg
+18449.jpg
+4851.jpg
+6808.jpg
+10728.jpg
+26882.jpg
+27168.jpg
+3679.jpg
+23402.jpg
+16552.jpg
+16787.jpg
+14724.jpg
+8124.jpg
+2398.jpg
+4410.jpg
+29254.jpg
+16530.jpg
+12862.jpg
+8365.jpg
+9210.jpg
+11630.jpg
+4957.jpg
+17865.jpg
+22527.jpg
+4093.jpg
+18578.jpg
+3873.jpg
+25647.jpg
+10319.jpg
+3018.jpg
+6865.jpg
+18975.jpg
+8161.jpg
+8145.jpg
+15571.jpg
+22323.jpg
+5985.jpg
+18510.jpg
+23354.jpg
+18206.jpg
+25326.jpg
+23233.jpg
+19008.jpg
+9430.jpg
+405.jpg
+19497.jpg
+19702.jpg
+11200.jpg
+15090.jpg
+2155.jpg
+19987.jpg
+5313.jpg
+11617.jpg
+15639.jpg
+10450.jpg
+14868.jpg
+15485.jpg
+13514.jpg
+14018.jpg
+23817.jpg
+17484.jpg
+18914.jpg
+10229.jpg
+12941.jpg
+8499.jpg
+22777.jpg
+20715.jpg
+5513.jpg
+21449.jpg
+4011.jpg
+2444.jpg
+7300.jpg
+20072.jpg
+23910.jpg
+23737.jpg
+15702.jpg
+9379.jpg
+21722.jpg
+22542.jpg
+10891.jpg
+19183.jpg
+22288.jpg
+27249.jpg
+23507.jpg
+8169.jpg
+20833.jpg
+22081.jpg
+18638.jpg
+6332.jpg
+28053.jpg
+25114.jpg
+18262.jpg
+24520.jpg
+7730.jpg
+27732.jpg
+4908.jpg
+10987.jpg
+16965.jpg
+9755.jpg
+6386.jpg
+14890.jpg
+5036.jpg
+1122.jpg
+29202.jpg
+17468.jpg
+26706.jpg
+22019.jpg
+3329.jpg
+19184.jpg
+5381.jpg
+20965.jpg
+820.jpg
+21913.jpg
+24532.jpg
+25331.jpg
+1176.jpg
+19643.jpg
+26833.jpg
+5344.jpg
+23464.jpg
+10499.jpg
+25585.jpg
+17480.jpg
+24170.jpg
+26443.jpg
+8108.jpg
+16933.jpg
+1029.jpg
+14108.jpg
+20720.jpg
+15693.jpg
+7066.jpg
+23593.jpg
+4390.jpg
+3514.jpg
+16757.jpg
+16591.jpg
+23481.jpg
+15188.jpg
+5137.jpg
+13506.jpg
+16447.jpg
+15580.jpg
+13589.jpg
+18003.jpg
+27841.jpg
+6429.jpg
+5457.jpg
+7389.jpg
+2897.jpg
+18286.jpg
+426.jpg
+9339.jpg
+22981.jpg
+28122.jpg
+10239.jpg
+6356.jpg
+2684.jpg
+5917.jpg
+18855.jpg
+10750.jpg
+3193.jpg
+27755.jpg
+6215.jpg
+9909.jpg
+13964.jpg
+8991.jpg
+29417.jpg
+28562.jpg
+27182.jpg
+23404.jpg
+20671.jpg
+16658.jpg
+5243.jpg
+18431.jpg
+27589.jpg
+10962.jpg
+7295.jpg
+3028.jpg
+9075.jpg
+19945.jpg
+1276.jpg
+550.jpg
+15656.jpg
+2615.jpg
+13793.jpg
+24476.jpg
+6402.jpg
+15028.jpg
+25506.jpg
+25391.jpg
+7889.jpg
+27457.jpg
+1369.jpg
+27084.jpg
+27998.jpg
+23028.jpg
+25768.jpg
+15825.jpg
+19704.jpg
+1391.jpg
+27148.jpg
+3395.jpg
+9597.jpg
+17904.jpg
+7079.jpg
+7439.jpg
+10700.jpg
+144.jpg
+10173.jpg
+5428.jpg
+6336.jpg
+19061.jpg
+3377.jpg
+12732.jpg
+2435.jpg
+29846.jpg
+3986.jpg
+27058.jpg
+7196.jpg
+17602.jpg
+7190.jpg
+20265.jpg
+5426.jpg
+4852.jpg
+24677.jpg
+24185.jpg
+13882.jpg
+9793.jpg
+4061.jpg
+16978.jpg
+9536.jpg
+27997.jpg
+10384.jpg
+17767.jpg
+26241.jpg
+3054.jpg
+4064.jpg
+16457.jpg
+18966.jpg
+8691.jpg
+7575.jpg
+3180.jpg
+18759.jpg
+8592.jpg
+17779.jpg
+21761.jpg
+29711.jpg
+1534.jpg
+821.jpg
+26256.jpg
+12707.jpg
+1701.jpg
+9093.jpg
+247.jpg
+1218.jpg
+18444.jpg
+14746.jpg
+12382.jpg
+25385.jpg
+25756.jpg
+11149.jpg
+17633.jpg
+14977.jpg
+22989.jpg
+20288.jpg
+23709.jpg
+15979.jpg
+17362.jpg
+11408.jpg
+27508.jpg
+5674.jpg
+5847.jpg
+8433.jpg
+3323.jpg
+22650.jpg
+9490.jpg
+11404.jpg
+10502.jpg
+18077.jpg
+21051.jpg
+23818.jpg
+14032.jpg
+1803.jpg
+16247.jpg
+2829.jpg
+11839.jpg
+14106.jpg
+7039.jpg
+40.jpg
+1744.jpg
+20059.jpg
+7951.jpg
+8460.jpg
+2397.jpg
+15147.jpg
+7183.jpg
+21851.jpg
+17832.jpg
+3405.jpg
+28813.jpg
+6125.jpg
+11412.jpg
+5201.jpg
+29093.jpg
+29282.jpg
+13637.jpg
+17282.jpg
+2464.jpg
+14131.jpg
+2480.jpg
+2525.jpg
+28286.jpg
+4018.jpg
+20769.jpg
+24172.jpg
+17887.jpg
+15059.jpg
+11534.jpg
+1002.jpg
+9932.jpg
+12442.jpg
+10061.jpg
+11869.jpg
+27991.jpg
+19724.jpg
+1364.jpg
+29150.jpg
+22860.jpg
+14354.jpg
+9039.jpg
+25539.jpg
+5535.jpg
+17227.jpg
+16621.jpg
+794.jpg
+24183.jpg
+2595.jpg
+5822.jpg
+19042.jpg
+15336.jpg
+28742.jpg
+8540.jpg
+22759.jpg
+21544.jpg
+26570.jpg
+28727.jpg
+6478.jpg
+28519.jpg
+28250.jpg
+29387.jpg
+11269.jpg
+4033.jpg
+5909.jpg
+16832.jpg
+26532.jpg
+15798.jpg
+10290.jpg
+14569.jpg
+21729.jpg
+28454.jpg
+10598.jpg
+640.jpg
+18931.jpg
+9462.jpg
+23253.jpg
+26645.jpg
+17976.jpg
+29122.jpg
+8863.jpg
+4050.jpg
+7199.jpg
+28975.jpg
+26044.jpg
+10586.jpg
+10443.jpg
+543.jpg
+19836.jpg
+24143.jpg
+10188.jpg
+17795.jpg
+9150.jpg
+6986.jpg
+20149.jpg
+12478.jpg
+17706.jpg
+19472.jpg
+29698.jpg
+21140.jpg
+22224.jpg
+29290.jpg
+8770.jpg
+6104.jpg
+20064.jpg
+29894.jpg
+28251.jpg
+4554.jpg
+27140.jpg
+23458.jpg
+29840.jpg
+1785.jpg
+5291.jpg
+2846.jpg
+22785.jpg
+25287.jpg
+18409.jpg
+9164.jpg
+5359.jpg
+26600.jpg
+19753.jpg
+15025.jpg
+20893.jpg
+6902.jpg
+8848.jpg
+23210.jpg
+11787.jpg
+5315.jpg
+13982.jpg
+27017.jpg
+23570.jpg
+7886.jpg
+21224.jpg
+18383.jpg
+26684.jpg
+7977.jpg
+11484.jpg
+3804.jpg
+27474.jpg
+10408.jpg
+10193.jpg
+24538.jpg
+16682.jpg
+9697.jpg
+9178.jpg
+16972.jpg
+24345.jpg
+16959.jpg
+4036.jpg
+8004.jpg
+25437.jpg
+13721.jpg
+6178.jpg
+23906.jpg
+3892.jpg
+25290.jpg
+6258.jpg
+5607.jpg
+18770.jpg
+18772.jpg
+19160.jpg
+20326.jpg
+19931.jpg
+4376.jpg
+27640.jpg
+6539.jpg
+17771.jpg
+21816.jpg
+8281.jpg
+6711.jpg
+21295.jpg
+1649.jpg
+28919.jpg
+17588.jpg
+14523.jpg
+5915.jpg
+21364.jpg
+24003.jpg
+17270.jpg
+28282.jpg
+18518.jpg
+21835.jpg
+22018.jpg
+21227.jpg
+6940.jpg
+22988.jpg
+4491.jpg
+8768.jpg
+14619.jpg
+24452.jpg
+21538.jpg
+23416.jpg
+21877.jpg
+17170.jpg
+24011.jpg
+1335.jpg
+5634.jpg
+8450.jpg
+5175.jpg
+24236.jpg
+11257.jpg
+12369.jpg
+2026.jpg
+12406.jpg
+24865.jpg
+24414.jpg
+5951.jpg
+20741.jpg
+27672.jpg
+14449.jpg
+25259.jpg
+28518.jpg
+13662.jpg
+18508.jpg
+2090.jpg
+9645.jpg
+27560.jpg
+9285.jpg
+14384.jpg
+24350.jpg
+2929.jpg
+28277.jpg
+5478.jpg
+19215.jpg
+23369.jpg
+28702.jpg
+856.jpg
+16830.jpg
+28852.jpg
+19370.jpg
+3236.jpg
+14661.jpg
+19418.jpg
+17684.jpg
+25483.jpg
+27525.jpg
+8034.jpg
+7398.jpg
+4261.jpg
+797.jpg
+10663.jpg
+20042.jpg
+2923.jpg
+1163.jpg
+25495.jpg
+21617.jpg
+14196.jpg
+24075.jpg
+20443.jpg
+27108.jpg
+23082.jpg
+26614.jpg
+14195.jpg
+29505.jpg
+26878.jpg
+8735.jpg
+23245.jpg
+17969.jpg
+9864.jpg
+6448.jpg
+8574.jpg
+21797.jpg
+29522.jpg
+18558.jpg
+1693.jpg
+19257.jpg
+20519.jpg
+16775.jpg
+1266.jpg
+21054.jpg
+19962.jpg
+26587.jpg
+26555.jpg
+28644.jpg
+15429.jpg
+9543.jpg
+19973.jpg
+24065.jpg
+25551.jpg
+18613.jpg
+27784.jpg
+25312.jpg
+637.jpg
+14112.jpg
+16073.jpg
+13617.jpg
+12423.jpg
+6114.jpg
+5160.jpg
+2707.jpg
+4941.jpg
+11979.jpg
+4836.jpg
+27635.jpg
+13139.jpg
+2587.jpg
+16022.jpg
+13788.jpg
+1974.jpg
+21558.jpg
+24794.jpg
+2246.jpg
+23170.jpg
+16779.jpg
+10407.jpg
+11817.jpg
+25031.jpg
+27929.jpg
+21173.jpg
+1576.jpg
+24461.jpg
+23607.jpg
+18038.jpg
+4318.jpg
+23161.jpg
+17748.jpg
+1255.jpg
+23873.jpg
+7218.jpg
+21005.jpg
+6792.jpg
+17250.jpg
+15218.jpg
+7141.jpg
+20584.jpg
+2089.jpg
+25929.jpg
+29482.jpg
+12884.jpg
+10904.jpg
+19541.jpg
+1592.jpg
+3647.jpg
+3706.jpg
+27007.jpg
+9638.jpg
+23616.jpg
+21126.jpg
+180.jpg
+10085.jpg
+13157.jpg
+17496.jpg
+13817.jpg
+26561.jpg
+9691.jpg
+6359.jpg
+29553.jpg
+25817.jpg
+29000.jpg
+21130.jpg
+12918.jpg
+2047.jpg
+15306.jpg
+23134.jpg
+29684.jpg
+11060.jpg
+29330.jpg
+4773.jpg
+11230.jpg
+10448.jpg
+24787.jpg
+5786.jpg
+5819.jpg
+17284.jpg
+19921.jpg
+29728.jpg
+3279.jpg
+17381.jpg
+24430.jpg
+12968.jpg
+1751.jpg
+23988.jpg
+18734.jpg
+24389.jpg
+7521.jpg
+1891.jpg
+21929.jpg
+4866.jpg
+21114.jpg
+14934.jpg
+14683.jpg
+21566.jpg
+5335.jpg
+26336.jpg
+23717.jpg
+8059.jpg
+29534.jpg
+5503.jpg
+18064.jpg
+21172.jpg
+10489.jpg
+8212.jpg
+19060.jpg
+20643.jpg
+5439.jpg
+14151.jpg
+26010.jpg
+16002.jpg
+17900.jpg
+24370.jpg
+22221.jpg
+7425.jpg
+10463.jpg
+20255.jpg
+20482.jpg
+14100.jpg
+28192.jpg
+7086.jpg
+7517.jpg
+20855.jpg
+7994.jpg
+5600.jpg
+13949.jpg
+17660.jpg
+15573.jpg
+28692.jpg
+21964.jpg
+1787.jpg
+16932.jpg
+912.jpg
+9639.jpg
+20660.jpg
+3806.jpg
+10508.jpg
+4873.jpg
+530.jpg
+29619.jpg
+18828.jpg
+14435.jpg
+29044.jpg
+1445.jpg
+11961.jpg
+1088.jpg
+8288.jpg
+22205.jpg
+5508.jpg
+8282.jpg
+11271.jpg
+26306.jpg
+26348.jpg
+84.jpg
+14587.jpg
+25788.jpg
+22974.jpg
+26104.jpg
+27578.jpg
+25241.jpg
+19165.jpg
+14854.jpg
+16858.jpg
+19346.jpg
+3280.jpg
+12504.jpg
+17249.jpg
+8047.jpg
+6339.jpg
+4955.jpg
+17131.jpg
+1558.jpg
+28169.jpg
+2402.jpg
+17871.jpg
+14317.jpg
+566.jpg
+24220.jpg
+29965.jpg
+2487.jpg
+683.jpg
+6231.jpg
+14845.jpg
+6896.jpg
+23437.jpg
+7381.jpg
+24670.jpg
+25782.jpg
+19751.jpg
+1431.jpg
+2194.jpg
+8962.jpg
+11603.jpg
+23104.jpg
+19713.jpg
+27213.jpg
+15735.jpg
+1198.jpg
+21415.jpg
+29213.jpg
+11878.jpg
+2115.jpg
+25571.jpg
+26353.jpg
+9307.jpg
+6103.jpg
+7145.jpg
+232.jpg
+12766.jpg
+14358.jpg
+5914.jpg
+8595.jpg
+6184.jpg
+1363.jpg
+2176.jpg
+27905.jpg
+14374.jpg
+9692.jpg
+29208.jpg
+18553.jpg
+16455.jpg
+9849.jpg
+18296.jpg
+28657.jpg
+28854.jpg
+28326.jpg
+28043.jpg
+22.jpg
+14333.jpg
+21303.jpg
+1826.jpg
+8998.jpg
+11959.jpg
+10026.jpg
+13627.jpg
+28527.jpg
+17504.jpg
+18878.jpg
+19221.jpg
+25249.jpg
+23477.jpg
+20537.jpg
+11772.jpg
+9444.jpg
+9475.jpg
+14519.jpg
+16643.jpg
+14238.jpg
+17145.jpg
+18067.jpg
+4248.jpg
+28924.jpg
+5967.jpg
+26497.jpg
+26043.jpg
+16352.jpg
+21148.jpg
+27764.jpg
+21918.jpg
+16788.jpg
+16252.jpg
+20511.jpg
+8177.jpg
+29934.jpg
+24562.jpg
+20329.jpg
+16061.jpg
+25098.jpg
+13354.jpg
+15565.jpg
+17286.jpg
+12063.jpg
+18974.jpg
+12052.jpg
+22270.jpg
+5987.jpg
+2827.jpg
+24593.jpg
+22935.jpg
+15345.jpg
+12704.jpg
+10058.jpg
+21991.jpg
+3923.jpg
+177.jpg
+26839.jpg
+28592.jpg
+29296.jpg
+11077.jpg
+13502.jpg
+10574.jpg
+27127.jpg
+18492.jpg
+1317.jpg
+12479.jpg
+16636.jpg
+2187.jpg
+9798.jpg
+20325.jpg
+12408.jpg
+16163.jpg
+10435.jpg
+23732.jpg
+250.jpg
+14102.jpg
+3413.jpg
+29246.jpg
+22802.jpg
+14221.jpg
+1139.jpg
+9966.jpg
+14543.jpg
+5669.jpg
+5666.jpg
+10993.jpg
+8814.jpg
+28565.jpg
+20810.jpg
+14423.jpg
+2926.jpg
+22568.jpg
+5206.jpg
+25979.jpg
+23061.jpg
+25914.jpg
+26406.jpg
+18896.jpg
+5736.jpg
+11167.jpg
+10967.jpg
+17718.jpg
+20019.jpg
+17470.jpg
+12693.jpg
+13195.jpg
+22304.jpg
+29909.jpg
+25637.jpg
+4335.jpg
+10459.jpg
+15875.jpg
+19068.jpg
+23849.jpg
+6295.jpg
+26333.jpg
+21957.jpg
+29604.jpg
+25644.jpg
+22845.jpg
+21762.jpg
+25548.jpg
+14877.jpg
+1141.jpg
+3769.jpg
+20219.jpg
+21640.jpg
+1624.jpg
+16945.jpg
+148.jpg
+20015.jpg
+24904.jpg
+23949.jpg
+13559.jpg
+7275.jpg
+6148.jpg
+17198.jpg
+7552.jpg
+12894.jpg
+25446.jpg
+4979.jpg
+20145.jpg
+1727.jpg
+26598.jpg
+28435.jpg
+21472.jpg
+13445.jpg
+18344.jpg
+7662.jpg
+14878.jpg
+19571.jpg
+22729.jpg
+5927.jpg
+10552.jpg
+10795.jpg
+28409.jpg
+24546.jpg
+25473.jpg
+1706.jpg
+22639.jpg
+28367.jpg
+18445.jpg
+14053.jpg
+551.jpg
+23273.jpg
+9802.jpg
+8149.jpg
+25590.jpg
+1443.jpg
+16684.jpg
+6499.jpg
+3029.jpg
+11041.jpg
+9500.jpg
+2432.jpg
+26577.jpg
+16734.jpg
+20473.jpg
+5029.jpg
+15887.jpg
+19589.jpg
+11236.jpg
+23785.jpg
+5307.jpg
+24599.jpg
+25077.jpg
+9409.jpg
+1544.jpg
+25320.jpg
+23986.jpg
+7821.jpg
+20745.jpg
+18604.jpg
+11978.jpg
+23976.jpg
+4418.jpg
+19082.jpg
+16376.jpg
+20703.jpg
+14302.jpg
+2352.jpg
+4439.jpg
+5711.jpg
+23739.jpg
+3047.jpg
+2881.jpg
+16152.jpg
+18158.jpg
+21498.jpg
+1138.jpg
+4935.jpg
+18569.jpg
+29957.jpg
+4838.jpg
+14975.jpg
+2446.jpg
+14770.jpg
+2502.jpg
+5816.jpg
+9134.jpg
+12320.jpg
+24952.jpg
+17224.jpg
+27607.jpg
+10654.jpg
+10336.jpg
+1132.jpg
+12345.jpg
+2752.jpg
+2928.jpg
+11807.jpg
+4326.jpg
+6540.jpg
+4888.jpg
+16791.jpg
+29494.jpg
+25848.jpg
+29255.jpg
+26040.jpg
+9187.jpg
+7967.jpg
+9689.jpg
+3553.jpg
+3807.jpg
+10487.jpg
+25643.jpg
+17439.jpg
+23565.jpg
+22748.jpg
+8394.jpg
+5627.jpg
+7569.jpg
+1881.jpg
+3408.jpg
+9893.jpg
+4744.jpg
+23008.jpg
+11326.jpg
+10275.jpg
+29128.jpg
+11706.jpg
+9120.jpg
+22190.jpg
+23810.jpg
+2205.jpg
+16974.jpg
+27737.jpg
+8375.jpg
+9915.jpg
+6937.jpg
+15592.jpg
+1893.jpg
+19854.jpg
+5123.jpg
+28163.jpg
+28505.jpg
+6371.jpg
+27815.jpg
+23406.jpg
+488.jpg
+24137.jpg
+15722.jpg
+26428.jpg
+4152.jpg
+9189.jpg
+8809.jpg
+27019.jpg
+10826.jpg
+9226.jpg
+6388.jpg
+12240.jpg
+2386.jpg
+16017.jpg
+9174.jpg
+29583.jpg
+7656.jpg
+19096.jpg
+25099.jpg
+16314.jpg
+18466.jpg
+22788.jpg
+10846.jpg
+2412.jpg
+27813.jpg
+23908.jpg
+20489.jpg
+22877.jpg
+14940.jpg
+18668.jpg
+17539.jpg
+1829.jpg
+3734.jpg
+19378.jpg
+10350.jpg
+16969.jpg
+2995.jpg
+5187.jpg
+19717.jpg
+9152.jpg
+24666.jpg
+17787.jpg
+6700.jpg
+27494.jpg
+14832.jpg
+11222.jpg
+580.jpg
+14041.jpg
+27409.jpg
+1931.jpg
+19510.jpg
+15354.jpg
+17608.jpg
+8127.jpg
+22857.jpg
+8667.jpg
+5973.jpg
+22859.jpg
+23426.jpg
+3141.jpg
+1922.jpg
+28365.jpg
+1583.jpg
+27308.jpg
+4970.jpg
+17891.jpg
+12030.jpg
+14559.jpg
+23697.jpg
+23190.jpg
+2611.jpg
+2888.jpg
+21840.jpg
+1745.jpg
+19081.jpg
+10262.jpg
+19609.jpg
+8162.jpg
+25427.jpg
+3038.jpg
+8543.jpg
+19662.jpg
+25111.jpg
+8955.jpg
+12152.jpg
+28995.jpg
+2792.jpg
+27966.jpg
+12514.jpg
+6861.jpg
+25366.jpg
+2991.jpg
+17017.jpg
+11318.jpg
+7955.jpg
+3915.jpg
+2879.jpg
+28897.jpg
+24555.jpg
+10742.jpg
+6309.jpg
+1013.jpg
+334.jpg
+27711.jpg
+10634.jpg
+3216.jpg
+9293.jpg
+25684.jpg
+10201.jpg
+26464.jpg
+11658.jpg
+24979.jpg
+11362.jpg
+13566.jpg
+17760.jpg
+10516.jpg
+25746.jpg
+26884.jpg
+3847.jpg
+19145.jpg
+7294.jpg
+25562.jpg
+24791.jpg
+13180.jpg
+9670.jpg
+7462.jpg
+29420.jpg
+27158.jpg
+6853.jpg
+29135.jpg
+29757.jpg
+28858.jpg
+27061.jpg
+10705.jpg
+14066.jpg
+2292.jpg
+5725.jpg
+15526.jpg
+22076.jpg
+8072.jpg
+14090.jpg
+8502.jpg
+7867.jpg
+19122.jpg
+25192.jpg
+22341.jpg
+15815.jpg
+17799.jpg
+27596.jpg
+3106.jpg
+13531.jpg
+22366.jpg
+19181.jpg
+2553.jpg
+6329.jpg
+12604.jpg
+15379.jpg
+7475.jpg
+22376.jpg
+25509.jpg
+18181.jpg
+27059.jpg
+12045.jpg
+28108.jpg
+461.jpg
+20707.jpg
+5941.jpg
+10441.jpg
+6990.jpg
+9442.jpg
+19452.jpg
+10940.jpg
+26055.jpg
+4690.jpg
+15113.jpg
+7970.jpg
+4480.jpg
+29769.jpg
+26665.jpg
+18069.jpg
+12422.jpg
+24292.jpg
+24443.jpg
+12081.jpg
+4869.jpg
+14023.jpg
+5282.jpg
+23255.jpg
+29148.jpg
+27198.jpg
+3201.jpg
+24287.jpg
+18568.jpg
+1208.jpg
+1941.jpg
+27021.jpg
+12108.jpg
+23934.jpg
+19815.jpg
+6841.jpg
+18098.jpg
+14905.jpg
+29605.jpg
+582.jpg
+21860.jpg
+17074.jpg
+13837.jpg
+10195.jpg
+16931.jpg
+21580.jpg
+6651.jpg
+27103.jpg
+24441.jpg
+21066.jpg
+13269.jpg
+12971.jpg
+16772.jpg
+10844.jpg
+17989.jpg
+26634.jpg
+7125.jpg
+2826.jpg
+19706.jpg
+29926.jpg
+11119.jpg
+29477.jpg
+17827.jpg
+8989.jpg
+4400.jpg
+6141.jpg
+13114.jpg
+866.jpg
+13899.jpg
+28561.jpg
+3454.jpg
+14441.jpg
+1842.jpg
+21790.jpg
+809.jpg
+12775.jpg
+19591.jpg
+12355.jpg
+25604.jpg
+23511.jpg
+17605.jpg
+18163.jpg
+29567.jpg
+18260.jpg
+195.jpg
+13170.jpg
+24353.jpg
+9961.jpg
+24954.jpg
+7899.jpg
+19083.jpg
+17438.jpg
+10080.jpg
+11156.jpg
+1997.jpg
+15925.jpg
+14450.jpg
+27847.jpg
+67.jpg
+22944.jpg
+15760.jpg
+20601.jpg
+19761.jpg
+10719.jpg
+11124.jpg
+22782.jpg
+13635.jpg
+27871.jpg
+11329.jpg
+11714.jpg
+17219.jpg
+29029.jpg
+15437.jpg
+10898.jpg
+13820.jpg
+20529.jpg
+2427.jpg
+1531.jpg
+24604.jpg
+8275.jpg
+13193.jpg
+12538.jpg
+27144.jpg
+22766.jpg
+28970.jpg
+2681.jpg
+1735.jpg
+1318.jpg
+28004.jpg
+23844.jpg
+15252.jpg
+18145.jpg
+16800.jpg
+13520.jpg
+3542.jpg
+15456.jpg
+15961.jpg
+12720.jpg
+15263.jpg
+9985.jpg
+28253.jpg
+17126.jpg
+12649.jpg
+23470.jpg
+22837.jpg
+24437.jpg
+26127.jpg
+15103.jpg
+25054.jpg
+29839.jpg
+21606.jpg
+26473.jpg
+5293.jpg
+1105.jpg
+18258.jpg
+16185.jpg
+8775.jpg
+28539.jpg
+14305.jpg
+28094.jpg
+2596.jpg
+7018.jpg
+22843.jpg
+11873.jpg
+25074.jpg
+29058.jpg
+3653.jpg
+14875.jpg
+12655.jpg
+3212.jpg
+11792.jpg
+13732.jpg
+4502.jpg
+10641.jpg
+5390.jpg
+10060.jpg
+16963.jpg
+16519.jpg
+3182.jpg
+17352.jpg
+20836.jpg
+12060.jpg
+344.jpg
+29601.jpg
+20152.jpg
+20487.jpg
+20302.jpg
+17421.jpg
+11664.jpg
+24924.jpg
+24111.jpg
+14831.jpg
+3774.jpg
+10885.jpg
+15365.jpg
+14630.jpg
+12217.jpg
+12676.jpg
+21773.jpg
+20021.jpg
+11725.jpg
+25273.jpg
+10982.jpg
+23581.jpg
+20900.jpg
+18104.jpg
+15677.jpg
+18718.jpg
+20445.jpg
+26283.jpg
+3143.jpg
+12957.jpg
+6491.jpg
+21152.jpg
+27175.jpg
+7339.jpg
+24290.jpg
+11095.jpg
+10784.jpg
+7331.jpg
+5789.jpg
+19850.jpg
+4320.jpg
+15298.jpg
+24363.jpg
+13225.jpg
+18941.jpg
+12860.jpg
+20735.jpg
+15880.jpg
+4295.jpg
+10723.jpg
+11097.jpg
+10908.jpg
+12723.jpg
+22363.jpg
+12721.jpg
+5992.jpg
+21113.jpg
+29677.jpg
+19232.jpg
+21376.jpg
+17909.jpg
+16925.jpg
+18336.jpg
+5591.jpg
+14215.jpg
+25275.jpg
+11690.jpg
+28767.jpg
+28668.jpg
+12020.jpg
+8576.jpg
+25498.jpg
+64.jpg
+22708.jpg
+15975.jpg
+10123.jpg
+6085.jpg
+4455.jpg
+22697.jpg
+28296.jpg
+27380.jpg
+5597.jpg
+25503.jpg
+18231.jpg
+25344.jpg
+11868.jpg
+2117.jpg
+1124.jpg
+22596.jpg
+23294.jpg
+27724.jpg
+28039.jpg
+4082.jpg
+26.jpg
+2957.jpg
+22825.jpg
+10958.jpg
+19205.jpg
+4412.jpg
+27602.jpg
+13667.jpg
+6947.jpg
+29560.jpg
+20464.jpg
+25338.jpg
+8925.jpg
+18144.jpg
+10135.jpg
+27167.jpg
+13436.jpg
+7201.jpg
+9929.jpg
+27292.jpg
+13232.jpg
+11452.jpg
+26260.jpg
+18407.jpg
+21513.jpg
+17543.jpg
+12265.jpg
+4144.jpg
+21037.jpg
+23832.jpg
+19047.jpg
+14236.jpg
+17158.jpg
+10266.jpg
+14432.jpg
+8407.jpg
+208.jpg
+2621.jpg
+21125.jpg
+25364.jpg
+819.jpg
+2010.jpg
+14749.jpg
+20615.jpg
+29237.jpg
+12987.jpg
+18969.jpg
+29469.jpg
+4302.jpg
+13557.jpg
+18080.jpg
+2975.jpg
+16195.jpg
+26949.jpg
+28247.jpg
+3565.jpg
+18249.jpg
+23401.jpg
+11206.jpg
+5609.jpg
+12090.jpg
+5621.jpg
+15046.jpg
+2336.jpg
+26093.jpg
+24744.jpg
+7410.jpg
+28388.jpg
+20300.jpg
+571.jpg
+8210.jpg
+28265.jpg
+17914.jpg
+19624.jpg
+29371.jpg
+29892.jpg
+17091.jpg
+12250.jpg
+3605.jpg
+16545.jpg
+7744.jpg
+4421.jpg
+17578.jpg
+2454.jpg
+13036.jpg
+27065.jpg
+15468.jpg
+29617.jpg
+28385.jpg
+18079.jpg
+4004.jpg
+17205.jpg
+476.jpg
+26215.jpg
+9986.jpg
+2328.jpg
+7325.jpg
+15872.jpg
+4954.jpg
+20594.jpg
+22654.jpg
+21290.jpg
+4861.jpg
+20110.jpg
+6244.jpg
+20177.jpg
+661.jpg
+8351.jpg
+22762.jpg
+15738.jpg
+19339.jpg
+27930.jpg
+21523.jpg
+17492.jpg
+11737.jpg
+17623.jpg
+18294.jpg
+3673.jpg
+11353.jpg
+18753.jpg
+7328.jpg
+7879.jpg
+28161.jpg
+10520.jpg
+3117.jpg
+4654.jpg
+8255.jpg
+4569.jpg
+13709.jpg
+26124.jpg
+24725.jpg
+11529.jpg
+3715.jpg
+5969.jpg
+9452.jpg
+28849.jpg
+9896.jpg
+18802.jpg
+26629.jpg
+11954.jpg
+8870.jpg
+29192.jpg
+26166.jpg
+18670.jpg
+4255.jpg
+6447.jpg
+6764.jpg
+18109.jpg
+12714.jpg
+15316.jpg
+8976.jpg
+13465.jpg
+7262.jpg
+20468.jpg
+24731.jpg
+15630.jpg
+15157.jpg
+7981.jpg
+26792.jpg
+10593.jpg
+17476.jpg
+3353.jpg
+11632.jpg
+6604.jpg
+7434.jpg
+578.jpg
+15716.jpg
+7148.jpg
+14344.jpg
+21842.jpg
+6444.jpg
+17810.jpg
+25041.jpg
+27821.jpg
+27212.jpg
+7456.jpg
+11721.jpg
+12489.jpg
+16578.jpg
+13289.jpg
+8129.jpg
+24746.jpg
+12000.jpg
+28406.jpg
+16638.jpg
+8362.jpg
+4622.jpg
+22861.jpg
+18179.jpg
+5023.jpg
+5920.jpg
+16520.jpg
+3061.jpg
+19823.jpg
+28567.jpg
+4498.jpg
+10511.jpg
+15063.jpg
+28392.jpg
+11106.jpg
+23561.jpg
+25088.jpg
+17542.jpg
+25812.jpg
+12295.jpg
+13469.jpg
+14334.jpg
+20957.jpg
+11226.jpg
+108.jpg
+16101.jpg
+16760.jpg
+9511.jpg
+25205.jpg
+29483.jpg
+25286.jpg
+26693.jpg
+1898.jpg
+1164.jpg
+5330.jpg
+17172.jpg
+9901.jpg
+12486.jpg
+21104.jpg
+20923.jpg
+19102.jpg
+5448.jpg
+13363.jpg
+4593.jpg
+11253.jpg
+21479.jpg
+21612.jpg
+16700.jpg
+26372.jpg
+20556.jpg
+8711.jpg
+3878.jpg
+21806.jpg
+19395.jpg
+10812.jpg
+9065.jpg
+17356.jpg
+21947.jpg
+16783.jpg
+7571.jpg
+18502.jpg
+1328.jpg
+26009.jpg
+3943.jpg
+3738.jpg
+12021.jpg
+836.jpg
+26192.jpg
+28040.jpg
+1684.jpg
+28452.jpg
+17514.jpg
+18154.jpg
+21599.jpg
+19072.jpg
+630.jpg
+14111.jpg
+13132.jpg
+9481.jpg
+23640.jpg
+19570.jpg
+5210.jpg
+24214.jpg
+15784.jpg
+173.jpg
+24343.jpg
+5214.jpg
+20582.jpg
+6725.jpg
+21914.jpg
+26777.jpg
+15057.jpg
+15454.jpg
+3568.jpg
+12370.jpg
+25753.jpg
+27314.jpg
+10831.jpg
+11764.jpg
+6076.jpg
+27958.jpg
+28376.jpg
+28659.jpg
+29938.jpg
+21273.jpg
+19635.jpg
+4996.jpg
+7789.jpg
+11652.jpg
+28415.jpg
+1283.jpg
+12526.jpg
+13235.jpg
+14754.jpg
+22007.jpg
+23038.jpg
+4940.jpg
+24795.jpg
+15159.jpg
+1401.jpg
+16690.jpg
+14107.jpg
+16929.jpg
+23208.jpg
+66.jpg
+6869.jpg
+16024.jpg
+12359.jpg
+24595.jpg
+28869.jpg
+21349.jpg
+11389.jpg
+7808.jpg
+20118.jpg
+21220.jpg
+10442.jpg
+22487.jpg
+11283.jpg
+18149.jpg
+15097.jpg
+4638.jpg
+6403.jpg
+586.jpg
+28547.jpg
+5360.jpg
+7741.jpg
+28387.jpg
+11931.jpg
+22572.jpg
+26544.jpg
+4079.jpg
+23672.jpg
+28058.jpg
+2876.jpg
+11950.jpg
+7369.jpg
+13111.jpg
+5363.jpg
+9854.jpg
+24905.jpg
+3463.jpg
+11125.jpg
+20222.jpg
+4624.jpg
+7929.jpg
+7853.jpg
+22641.jpg
+12166.jpg
+20686.jpg
+29932.jpg
+14313.jpg
+6716.jpg
+28425.jpg
+4632.jpg
+17907.jpg
+19603.jpg
+7459.jpg
+22250.jpg
+23408.jpg
+27664.jpg
+19657.jpg
+18768.jpg
+1095.jpg
+12487.jpg
+23466.jpg
+16479.jpg
+28682.jpg
+9200.jpg
+25558.jpg
+13549.jpg
+28224.jpg
+8550.jpg
+4892.jpg
+27142.jpg
+28619.jpg
+24277.jpg
+10106.jpg
+23451.jpg
+10199.jpg
+2788.jpg
+23218.jpg
+18150.jpg
+18210.jpg
+19754.jpg
+10345.jpg
+29211.jpg
+29010.jpg
+2918.jpg
+230.jpg
+29456.jpg
+19425.jpg
+14247.jpg
+27627.jpg
+22582.jpg
+25299.jpg
+22500.jpg
+26849.jpg
+6056.jpg
+11057.jpg
+21922.jpg
+14383.jpg
+6542.jpg
+17024.jpg
+5150.jpg
+17778.jpg
+27713.jpg
+1286.jpg
+27109.jpg
+7097.jpg
+16244.jpg
+28280.jpg
+19284.jpg
+1250.jpg
+22462.jpg
+3651.jpg
+25318.jpg
+16947.jpg
+29683.jpg
+29008.jpg
+6297.jpg
+27521.jpg
+8163.jpg
+10377.jpg
+28708.jpg
+861.jpg
+22585.jpg
+13437.jpg
+8850.jpg
+17434.jpg
+9282.jpg
+18880.jpg
+6014.jpg
+28368.jpg
+16484.jpg
+16667.jpg
+2394.jpg
+22305.jpg
+13586.jpg
+7336.jpg
+14346.jpg
+18386.jpg
+1540.jpg
+18270.jpg
+6494.jpg
+13154.jpg
+28950.jpg
+15789.jpg
+13879.jpg
+16555.jpg
+20607.jpg
+18076.jpg
+1024.jpg
+26039.jpg
+9743.jpg
+26445.jpg
+8643.jpg
+13070.jpg
+22881.jpg
+24612.jpg
+23893.jpg
+2739.jpg
+19626.jpg
+11157.jpg
+19330.jpg
+28109.jpg
+14804.jpg
+27481.jpg
+27253.jpg
+17410.jpg
+21087.jpg
+13642.jpg
+25659.jpg
+2173.jpg
+29429.jpg
+15126.jpg
+29104.jpg
+2958.jpg
+9296.jpg
+14838.jpg
+15683.jpg
+7477.jpg
+21052.jpg
+20655.jpg
+19307.jpg
+17211.jpg
+11028.jpg
+8312.jpg
+1792.jpg
+29339.jpg
+3496.jpg
+8069.jpg
+5183.jpg
+15250.jpg
+13143.jpg
+22812.jpg
+20343.jpg
+21559.jpg
+13877.jpg
+21388.jpg
+7224.jpg
+9552.jpg
+29525.jpg
+6914.jpg
+1796.jpg
+12627.jpg
+27364.jpg
+2312.jpg
+8080.jpg
+28654.jpg
+18355.jpg
+23125.jpg
+5194.jpg
+24877.jpg
+3925.jpg
+18089.jpg
+22870.jpg
+28478.jpg
+3381.jpg
+22411.jpg
+19986.jpg
+2221.jpg
+12500.jpg
+20207.jpg
+9469.jpg
+6363.jpg
+12592.jpg
+25422.jpg
+21440.jpg
+2209.jpg
+29351.jpg
+43.jpg
+21802.jpg
+27432.jpg
+7623.jpg
+18785.jpg
+19618.jpg
+3648.jpg
+25042.jpg
+11276.jpg
+3649.jpg
+14412.jpg
+24585.jpg
+11006.jpg
+27544.jpg
+23615.jpg
+324.jpg
+5547.jpg
+16131.jpg
+21135.jpg
+21238.jpg
+236.jpg
+12482.jpg
+28111.jpg
+26673.jpg
+17978.jpg
+27040.jpg
+25935.jpg
+25787.jpg
+7393.jpg
+15186.jpg
+13252.jpg
+17267.jpg
+5734.jpg
+11789.jpg
+22916.jpg
+12544.jpg
+13003.jpg
+26275.jpg
+4759.jpg
+19356.jpg
+2869.jpg
+4629.jpg
+23370.jpg
+23566.jpg
+13955.jpg
+11955.jpg
+6358.jpg
+24942.jpg
+26178.jpg
+17531.jpg
+21588.jpg
+17395.jpg
+29059.jpg
+6385.jpg
+16691.jpg
+18934.jpg
+20327.jpg
+15778.jpg
+25652.jpg
+27459.jpg
+23605.jpg
+6156.jpg
+21424.jpg
+22842.jpg
+15561.jpg
+15967.jpg
+2248.jpg
+4588.jpg
+1673.jpg
+27985.jpg
+1840.jpg
+470.jpg
+13765.jpg
+15469.jpg
+14243.jpg
+21116.jpg
+21287.jpg
+19872.jpg
+24743.jpg
+4959.jpg
+25614.jpg
+25661.jpg
+10431.jpg
+9831.jpg
+9234.jpg
+9659.jpg
+14730.jpg
+17811.jpg
+27854.jpg
+15358.jpg
+21745.jpg
+8344.jpg
+20065.jpg
+24419.jpg
+464.jpg
+13840.jpg
+21150.jpg
+19084.jpg
+20358.jpg
+1199.jpg
+20281.jpg
+16159.jpg
+12613.jpg
+9030.jpg
+3199.jpg
+2327.jpg
+22234.jpg
+11277.jpg
+4141.jpg
+5268.jpg
+28599.jpg
+4645.jpg
+21921.jpg
+29022.jpg
+25362.jpg
+10358.jpg
+8750.jpg
+22011.jpg
+24004.jpg
+27568.jpg
+5474.jpg
+7763.jpg
+6400.jpg
+17803.jpg
+17906.jpg
+948.jpg
+18842.jpg
+26639.jpg
+1489.jpg
+970.jpg
+3275.jpg
+13895.jpg
+1334.jpg
+24188.jpg
+27972.jpg
+606.jpg
+18976.jpg
+3627.jpg
+21350.jpg
+7668.jpg
+3066.jpg
+22958.jpg
+6188.jpg
+15129.jpg
+26452.jpg
+25113.jpg
+16432.jpg
+20134.jpg
+12840.jpg
+28553.jpg
+4976.jpg
+7576.jpg
+4627.jpg
+8174.jpg
+19287.jpg
+23757.jpg
+13205.jpg
+15043.jpg
+14403.jpg
+11795.jpg
+26800.jpg
+6987.jpg
+25749.jpg
+17860.jpg
+3803.jpg
+12003.jpg
+49.jpg
+21109.jpg
+12374.jpg
+1118.jpg
+21428.jpg
+6298.jpg
+26365.jpg
+27855.jpg
+2939.jpg
+24281.jpg
+15747.jpg
+3796.jpg
+16648.jpg
+13016.jpg
+18360.jpg
+6143.jpg
+9677.jpg
+5903.jpg
+9965.jpg
+15465.jpg
+540.jpg
+11147.jpg
+15835.jpg
+28847.jpg
+23105.jpg
+11123.jpg
+11442.jpg
+20796.jpg
+29199.jpg
+8393.jpg
+8995.jpg
+2037.jpg
+5686.jpg
+8689.jpg
+7649.jpg
+3350.jpg
+25303.jpg
+24689.jpg
+13186.jpg
+5230.jpg
+20120.jpg
+23291.jpg
+25026.jpg
+26493.jpg
+22013.jpg
+21204.jpg
+11110.jpg
+8597.jpg
+15265.jpg
+12155.jpg
+10117.jpg
+33.jpg
+2847.jpg
+9332.jpg
+27684.jpg
+9047.jpg
+7130.jpg
+28604.jpg
+24339.jpg
+10790.jpg
+2019.jpg
+14039.jpg
+16600.jpg
+29885.jpg
+234.jpg
+24289.jpg
+16404.jpg
+4507.jpg
+611.jpg
+21872.jpg
+25002.jpg
+28205.jpg
+10517.jpg
+5250.jpg
+5157.jpg
+5164.jpg
+1849.jpg
+6412.jpg
+24298.jpg
+2895.jpg
+15585.jpg
+15478.jpg
+15003.jpg
+6732.jpg
+2597.jpg
+28951.jpg
+28324.jpg
+18414.jpg
+15865.jpg
+21531.jpg
+3049.jpg
+4745.jpg
+8451.jpg
+11509.jpg
+28891.jpg
+9111.jpg
+257.jpg
+11122.jpg
+28356.jpg
+14213.jpg
+3547.jpg
+26011.jpg
+9834.jpg
+26096.jpg
+5217.jpg
+5781.jpg
+5787.jpg
+27742.jpg
+4397.jpg
+5546.jpg
+18428.jpg
+18451.jpg
+4158.jpg
+2113.jpg
+2308.jpg
+12736.jpg
+3710.jpg
+26036.jpg
+22518.jpg
+3714.jpg
+9840.jpg
+27610.jpg
+27117.jpg
+1452.jpg
+9595.jpg
+1254.jpg
+22756.jpg
+6647.jpg
+3701.jpg
+24775.jpg
+15281.jpg
+5020.jpg
+20631.jpg
+18576.jpg
+18221.jpg
+23644.jpg
+8698.jpg
+657.jpg
+19892.jpg
+13864.jpg
+4708.jpg
+29571.jpg
+4661.jpg
+7014.jpg
+2574.jpg
+2201.jpg
+25152.jpg
+29731.jpg
+9664.jpg
+888.jpg
+28675.jpg
+16430.jpg
+7009.jpg
+21391.jpg
+11376.jpg
+16777.jpg
+6209.jpg
+24763.jpg
+1651.jpg
+12546.jpg
+19413.jpg
+17487.jpg
+10071.jpg
+8229.jpg
+4914.jpg
+5129.jpg
+24630.jpg
+22012.jpg
+23979.jpg
+17451.jpg
+3586.jpg
+18208.jpg
+17524.jpg
+6090.jpg
+17415.jpg
+17014.jpg
+14865.jpg
+8721.jpg
+25007.jpg
+12415.jpg
+22791.jpg
+2563.jpg
+15780.jpg
+16820.jpg
+26862.jpg
+25852.jpg
+25967.jpg
+2413.jpg
+17252.jpg
+25345.jpg
+1614.jpg
+7989.jpg
+10601.jpg
+6361.jpg
+2825.jpg
+20639.jpg
+184.jpg
+2459.jpg
+2381.jpg
+22422.jpg
+18841.jpg
+24211.jpg
+971.jpg
+7632.jpg
+9905.jpg
+13064.jpg
+2561.jpg
+7291.jpg
+4704.jpg
+5039.jpg
+12988.jpg
+19349.jpg
+12955.jpg
+18957.jpg
+19951.jpg
+20853.jpg
+15384.jpg
+1030.jpg
+15751.jpg
+20944.jpg
+5618.jpg
+7123.jpg
+15245.jpg
+7818.jpg
+20230.jpg
+15509.jpg
+9054.jpg
+1519.jpg
+14192.jpg
+18831.jpg
+594.jpg
+28981.jpg
+23602.jpg
+7274.jpg
+6497.jpg
+2937.jpg
+27761.jpg
+16449.jpg
+8399.jpg
+5956.jpg
+27942.jpg
+21096.jpg
+14991.jpg
+9569.jpg
+14463.jpg
+27119.jpg
+11893.jpg
+11808.jpg
+26602.jpg
+9032.jpg
+16316.jpg
+8730.jpg
+16231.jpg
+26120.jpg
+24559.jpg
+515.jpg
+14941.jpg
+14329.jpg
+6233.jpg
+5610.jpg
+23763.jpg
+2434.jpg
+14785.jpg
+4294.jpg
+13819.jpg
+21714.jpg
+7142.jpg
+10861.jpg
+20809.jpg
+1115.jpg
+736.jpg
+45.jpg
+29463.jpg
+20023.jpg
+5326.jpg
+4830.jpg
+26349.jpg
+4531.jpg
+4146.jpg
+15536.jpg
+21604.jpg
+29748.jpg
+27625.jpg
+8230.jpg
+22930.jpg
+8871.jpg
+3124.jpg
+20463.jpg
+20998.jpg
+727.jpg
+5446.jpg
+13028.jpg
+21329.jpg
+29425.jpg
+21730.jpg
+20817.jpg
+23058.jpg
+1009.jpg
+27490.jpg
+3941.jpg
+20350.jpg
+8731.jpg
+22425.jpg
+10752.jpg
+28153.jpg
+16617.jpg
+5724.jpg
+11312.jpg
+23624.jpg
+13077.jpg
+11245.jpg
+6787.jpg
+1955.jpg
+12779.jpg
+2440.jpg
+15675.jpg
+24837.jpg
+24729.jpg
+14843.jpg
+15136.jpg
+20320.jpg
+4659.jpg
+5190.jpg
+5853.jpg
+24177.jpg
+11415.jpg
+13946.jpg
+4845.jpg
+29857.jpg
+601.jpg
+1214.jpg
+4059.jpg
+16262.jpg
+13203.jpg
+21081.jpg
+2749.jpg
+21342.jpg
+20093.jpg
+13398.jpg
+2161.jpg
+36.jpg
+20629.jpg
+4730.jpg
+15226.jpg
+5692.jpg
+26484.jpg
+13713.jpg
+18429.jpg
+4776.jpg
+233.jpg
+24933.jpg
+22745.jpg
+18124.jpg
+27445.jpg
+18886.jpg
+16878.jpg
+17134.jpg
+9685.jpg
+2171.jpg
+24859.jpg
+2554.jpg
+4460.jpg
+642.jpg
+2342.jpg
+20533.jpg
+27514.jpg
+7511.jpg
+9953.jpg
+8466.jpg
+18747.jpg
+2977.jpg
+6860.jpg
+19468.jpg
+13236.jpg
+10253.jpg
+17549.jpg
+21751.jpg
+11361.jpg
+5398.jpg
+27722.jpg
+17844.jpg
+10227.jpg
+3221.jpg
+27537.jpg
+6930.jpg
+16384.jpg
+26974.jpg
+1394.jpg
+15820.jpg
+19470.jpg
+28667.jpg
+16409.jpg
+1238.jpg
+6326.jpg
+12770.jpg
+29585.jpg
+1709.jpg
+7216.jpg
+21567.jpg
+20778.jpg
+24118.jpg
+15933.jpg
+9936.jpg
+11181.jpg
+15970.jpg
+12223.jpg
+834.jpg
+21642.jpg
+9663.jpg
+5566.jpg
+14929.jpg
+5605.jpg
+20286.jpg
+15308.jpg
+4115.jpg
+16023.jpg
+4754.jpg
+13624.jpg
+14380.jpg
+22200.jpg
+22365.jpg
+6317.jpg
+9853.jpg
+9400.jpg
+27706.jpg
+27441.jpg
+14551.jpg
+11477.jpg
+22614.jpg
+610.jpg
+28201.jpg
+21411.jpg
+3312.jpg
+17783.jpg
+4768.jpg
+19550.jpg
+7626.jpg
+11582.jpg
+28194.jpg
+2023.jpg
+15297.jpg
+5355.jpg
+20894.jpg
+21143.jpg
+6934.jpg
+2901.jpg
+29153.jpg
+21752.jpg
+3777.jpg
+28330.jpg
+27104.jpg
+22280.jpg
+19305.jpg
+24742.jpg
+10273.jpg
+9160.jpg
+27959.jpg
+18946.jpg
+374.jpg
+18666.jpg
+9149.jpg
+27741.jpg
+7806.jpg
+3598.jpg
+24901.jpg
+28214.jpg
+22282.jpg
+15146.jpg
+3768.jpg
+13268.jpg
+5771.jpg
+22826.jpg
+12228.jpg
+20983.jpg
+4728.jpg
+18082.jpg
+1167.jpg
+15515.jpg
+2436.jpg
+3367.jpg
+20719.jpg
+3870.jpg
+21490.jpg
+9921.jpg
+29405.jpg
+13833.jpg
+22317.jpg
+24500.jpg
+12507.jpg
+2745.jpg
+4023.jpg
+10076.jpg
+8200.jpg
+11444.jpg
+187.jpg
+4449.jpg
+16049.jpg
+15273.jpg
+24758.jpg
+17973.jpg
+10731.jpg
+4251.jpg
+24203.jpg
+24944.jpg
+21976.jpg
+13110.jpg
+11722.jpg
+12169.jpg
+17021.jpg
+14109.jpg
+7197.jpg
+10344.jpg
+1120.jpg
+12104.jpg
+19705.jpg
+22898.jpg
+9699.jpg
+28769.jpg
+28418.jpg
+20444.jpg
+2055.jpg
+20654.jpg
+25218.jpg
+5300.jpg
+3386.jpg
+11456.jpg
+13340.jpg
+11460.jpg
+27787.jpg
+2520.jpg
+26193.jpg
+20888.jpg
+12420.jpg
+770.jpg
+19426.jpg
+15318.jpg
+11526.jpg
+3305.jpg
+2367.jpg
+12605.jpg
+9851.jpg
+26741.jpg
+21292.jpg
+23444.jpg
+13290.jpg
+27137.jpg
+24611.jpg
+512.jpg
+23497.jpg
+20017.jpg
+26006.jpg
+11648.jpg
+25888.jpg
+3099.jpg
+27063.jpg
+9071.jpg
+11385.jpg
+22414.jpg
+22208.jpg
+4631.jpg
+19392.jpg
+11853.jpg
+10681.jpg
+7543.jpg
+15929.jpg
+13061.jpg
+4715.jpg
+15251.jpg
+16220.jpg
+17591.jpg
+2738.jpg
+23030.jpg
+22239.jpg
+7618.jpg
+10170.jpg
+3158.jpg
+5613.jpg
+5888.jpg
+7839.jpg
+2175.jpg
+4680.jpg
+15819.jpg
+28637.jpg
+8737.jpg
+16561.jpg
+14460.jpg
+4434.jpg
+23630.jpg
+12282.jpg
+5919.jpg
+2610.jpg
+2313.jpg
+28026.jpg
+4739.jpg
+19692.jpg
+29808.jpg
+12806.jpg
+16208.jpg
+26408.jpg
+20146.jpg
+4263.jpg
+21641.jpg
+25830.jpg
+14928.jpg
+16382.jpg
+16674.jpg
+16257.jpg
+19094.jpg
+21868.jpg
+20486.jpg
+23885.jpg
+14337.jpg
+25442.jpg
+24893.jpg
+29331.jpg
+28218.jpg
+15333.jpg
+19062.jpg
+11887.jpg
+28842.jpg
+19235.jpg
+14938.jpg
+18365.jpg
+6723.jpg
+17586.jpg
+25837.jpg
+18034.jpg
+5471.jpg
+6912.jpg
+841.jpg
+26440.jpg
+15332.jpg
+18371.jpg
+11264.jpg
+22781.jpg
+29700.jpg
+1973.jpg
+5830.jpg
+9571.jpg
+29436.jpg
+24920.jpg
+15863.jpg
+22044.jpg
+14004.jpg
+13105.jpg
+14819.jpg
+16890.jpg
+26417.jpg
+13618.jpg
+812.jpg
+17800.jpg
+20002.jpg
+23118.jpg
+171.jpg
+2258.jpg
+6238.jpg
+27524.jpg
+22631.jpg
+15697.jpg
+24577.jpg
+27667.jpg
+7536.jpg
+4312.jpg
+23048.jpg
+7301.jpg
+19958.jpg
+17668.jpg
+15195.jpg
+10133.jpg
+17058.jpg
+9445.jpg
+17877.jpg
+12513.jpg
+14736.jpg
+21145.jpg
+5021.jpg
+16998.jpg
+8187.jpg
+6690.jpg
+6605.jpg
+10468.jpg
+26630.jpg
+18922.jpg
+13246.jpg
+15026.jpg
+24315.jpg
+21737.jpg
+12739.jpg
+1517.jpg
+27746.jpg
+5918.jpg
+2072.jpg
+5198.jpg
+7607.jpg
+14153.jpg
+9503.jpg
+23297.jpg
+23475.jpg
+414.jpg
+27520.jpg
+4170.jpg
+19636.jpg
+20419.jpg
+21271.jpg
+29944.jpg
+14685.jpg
+21060.jpg
+28711.jpg
+7221.jpg
+28913.jpg
+23076.jpg
+20916.jpg
+2000.jpg
+25955.jpg
+8208.jpg
+16935.jpg
+13308.jpg
+14268.jpg
+10003.jpg
+9070.jpg
+13544.jpg
+13775.jpg
+18873.jpg
+12400.jpg
+2223.jpg
+23706.jpg
+27371.jpg
+10978.jpg
+20142.jpg
+14249.jpg
+21577.jpg
+10880.jpg
+12789.jpg
+9456.jpg
+21322.jpg
+6868.jpg
+24619.jpg
+20317.jpg
+27443.jpg
+7310.jpg
+8474.jpg
+26494.jpg
+6375.jpg
+24878.jpg
+27242.jpg
+2449.jpg
+4398.jpg
+24891.jpg
+25719.jpg
+23611.jpg
+1038.jpg
+16032.jpg
+20672.jpg
+8483.jpg
+2750.jpg
+1227.jpg
+1705.jpg
+16006.jpg
+24221.jpg
+11747.jpg
+21397.jpg
+21801.jpg
+25147.jpg
+3031.jpg
+11170.jpg
+16547.jpg
+17903.jpg
+28978.jpg
+26289.jpg
+3024.jpg
+23978.jpg
+801.jpg
+27554.jpg
+27623.jpg
+8361.jpg
+18068.jpg
+12952.jpg
+16866.jpg
+21516.jpg
+3987.jpg
+3946.jpg
+21050.jpg
+10882.jpg
+2267.jpg
+27341.jpg
+13499.jpg
+10023.jpg
+7864.jpg
+29036.jpg
+13137.jpg
+6782.jpg
+6820.jpg
+21895.jpg
+28185.jpg
+10421.jpg
+5991.jpg
+9478.jpg
+4980.jpg
+28050.jpg
+5966.jpg
+20729.jpg
+4178.jpg
+2732.jpg
+26917.jpg
+13989.jpg
+20826.jpg
+28719.jpg
+4227.jpg
+11522.jpg
+26952.jpg
+5757.jpg
+7158.jpg
+11379.jpg
+25981.jpg
+18671.jpg
+27995.jpg
+4847.jpg
+5281.jpg
+10143.jpg
+28612.jpg
+18273.jpg
+18645.jpg
+23430.jpg
+20263.jpg
+8142.jpg
+25613.jpg
+18455.jpg
+8683.jpg
+19353.jpg
+27489.jpg
+12824.jpg
+12639.jpg
+16784.jpg
+29906.jpg
+14992.jpg
+1762.jpg
+26674.jpg
+17447.jpg
+27312.jpg
+21503.jpg
+9176.jpg
+21989.jpg
+18378.jpg
+14149.jpg
+12118.jpg
+7326.jpg
+3119.jpg
+1899.jpg
+4344.jpg
+24167.jpg
+20920.jpg
+15369.jpg
+8469.jpg
+12823.jpg
+12964.jpg
+24279.jpg
+24929.jpg
+2357.jpg
+15680.jpg
+19135.jpg
+27322.jpg
+6263.jpg
+21759.jpg
+9276.jpg
+5549.jpg
+28116.jpg
+21879.jpg
+21360.jpg
+4958.jpg
+7591.jpg
+21799.jpg
+20592.jpg
+20569.jpg
+19033.jpg
+7219.jpg
+26612.jpg
+5003.jpg
+9385.jpg
+12696.jpg
+22993.jpg
+10711.jpg
+13307.jpg
+18562.jpg
+1106.jpg
+10355.jpg
+20866.jpg
+17821.jpg
+25143.jpg
+24325.jpg
+24529.jpg
+10332.jpg
+2311.jpg
+1069.jpg
+12928.jpg
+13448.jpg
+15609.jpg
+26742.jpg
+10582.jpg
+22597.jpg
+14796.jpg
+13744.jpg
+16886.jpg
+4249.jpg
+24418.jpg
+450.jpg
+17770.jpg
+24257.jpg
+6568.jpg
+14615.jpg
+10120.jpg
+6777.jpg
+4415.jpg
+15446.jpg
+2411.jpg
+17786.jpg
+22100.jpg
+17016.jpg
+3474.jpg
+5035.jpg
+4366.jpg
+19415.jpg
+3027.jpg
+7184.jpg
+3961.jpg
+16298.jpg
+28071.jpg
+5460.jpg
+24112.jpg
+28407.jpg
+22423.jpg
+2702.jpg
+1322.jpg
+4837.jpg
+24516.jpg
+6211.jpg
+23707.jpg
+12615.jpg
+23377.jpg
+10558.jpg
+17247.jpg
+428.jpg
+19020.jpg
+100.jpg
+431.jpg
+5668.jpg
+23857.jpg
+12813.jpg
+8598.jpg
+9341.jpg
+20786.jpg
+2724.jpg
+231.jpg
+21495.jpg
+12232.jpg
+17339.jpg
+24182.jpg
+6022.jpg
+2227.jpg
+16235.jpg
+22590.jpg
+471.jpg
+23361.jpg
+10947.jpg
+14855.jpg
+47.jpg
+27723.jpg
+21978.jpg
+907.jpg
+16558.jpg
+23731.jpg
+14999.jpg
+19107.jpg
+12710.jpg
+2443.jpg
+21525.jpg
+20961.jpg
+28984.jpg
+13831.jpg
+13847.jpg
+26073.jpg
+24886.jpg
+28228.jpg
+4289.jpg
+28278.jpg
+14184.jpg
+3723.jpg
+7599.jpg
+14713.jpg
+2251.jpg
+2447.jpg
+1511.jpg
+3978.jpg
+8381.jpg
+4359.jpg
+4589.jpg
+29165.jpg
+9534.jpg
+65.jpg
+8413.jpg
+22014.jpg
+8823.jpg
+752.jpg
+16900.jpg
+20004.jpg
+8618.jpg
+17670.jpg
+5402.jpg
+9252.jpg
+27552.jpg
+9335.jpg
+17272.jpg
+26797.jpg
+12176.jpg
+20050.jpg
+5438.jpg
+203.jpg
+2976.jpg
+16529.jpg
+6618.jpg
+1081.jpg
+4864.jpg
+13509.jpg
+25160.jpg
+4313.jpg
+3820.jpg
+16556.jpg
+15998.jpg
+1609.jpg
+27036.jpg
+19716.jpg
+23545.jpg
+6761.jpg
+6610.jpg
+8949.jpg
+7347.jpg
+6132.jpg
+29258.jpg
+12588.jpg
+25523.jpg
+21021.jpg
+13131.jpg
+1977.jpg
+4497.jpg
+20161.jpg
+29589.jpg
+28698.jpg
+3218.jpg
+22925.jpg
+14206.jpg
+2672.jpg
+8866.jpg
+7917.jpg
+27011.jpg
+3619.jpg
+2496.jpg
+15008.jpg
+9278.jpg
+15476.jpg
+18559.jpg
+10498.jpg
+12577.jpg
+19941.jpg
+15144.jpg
+8932.jpg
+29180.jpg
+1001.jpg
+19475.jpg
+25622.jpg
+29394.jpg
+16472.jpg
+16503.jpg
+23991.jpg
+15671.jpg
+23852.jpg
+4186.jpg
+3976.jpg
+13370.jpg
+15410.jpg
+6324.jpg
+14273.jpg
+21298.jpg
+14920.jpg
+28052.jpg
+12390.jpg
+28399.jpg
+20056.jpg
+7539.jpg
+12401.jpg
+12974.jpg
+5480.jpg
+16887.jpg
+23540.jpg
+388.jpg
+26439.jpg
+20361.jpg
+3843.jpg
+15628.jpg
+1049.jpg
+10035.jpg
+13035.jpg
+12520.jpg
+18232.jpg
+14282.jpg
+10237.jpg
+25987.jpg
+28038.jpg
+4035.jpg
+7481.jpg
+7447.jpg
+17885.jpg
+4247.jpg
+24696.jpg
+930.jpg
+15850.jpg
+15996.jpg
+18852.jpg
+13123.jpg
+12204.jpg
+23152.jpg
+2836.jpg
+8959.jpg
+14352.jpg
+4641.jpg
+20531.jpg
+14083.jpg
+9360.jpg
+19819.jpg
+1845.jpg
+23060.jpg
+9300.jpg
+2220.jpg
+20905.jpg
+14611.jpg
+9265.jpg
+8402.jpg
+28650.jpg
+11784.jpg
+8078.jpg
+8510.jpg
+13414.jpg
+26018.jpg
+18226.jpg
+28256.jpg
+24640.jpg
+12498.jpg
+1841.jpg
+12576.jpg
+27337.jpg
+19093.jpg
+20685.jpg
+17365.jpg
+23550.jpg
+9705.jpg
+26913.jpg
+19302.jpg
+24127.jpg
+16854.jpg
+6028.jpg
+26972.jpg
+23193.jpg
+22328.jpg
+25090.jpg
+29158.jpg
+24831.jpg
+22478.jpg
+19990.jpg
+14707.jpg
+3687.jpg
+27772.jpg
+5947.jpg
+17986.jpg
+16705.jpg
+3573.jpg
+27851.jpg
+8308.jpg
+16066.jpg
+10985.jpg
+1017.jpg
+8012.jpg
+18557.jpg
+26307.jpg
+11491.jpg
+19917.jpg
+6575.jpg
+5171.jpg
+1876.jpg
+27974.jpg
+21940.jpg
+14848.jpg
+8465.jpg
+29995.jpg
+29772.jpg
+18295.jpg
+24584.jpg
+1302.jpg
+14969.jpg
+25892.jpg
+27924.jpg
+24600.jpg
+2950.jpg
+19779.jpg
+18135.jpg
+29262.jpg
+14204.jpg
+21748.jpg
+28204.jpg
+3984.jpg
+4457.jpg
+6971.jpg
+6059.jpg
+19579.jpg
+22329.jpg
+9546.jpg
+12916.jpg
+21985.jpg
+12548.jpg
+17984.jpg
+5311.jpg
+20986.jpg
+11879.jpg
+14427.jpg
+2337.jpg
+5631.jpg
+25737.jpg
+23576.jpg
+4459.jpg
+3844.jpg
+13439.jpg
+9898.jpg
+18907.jpg
+7965.jpg
+3569.jpg
+25407.jpg
+13951.jpg
+15312.jpg
+29146.jpg
+5654.jpg
+17774.jpg
+9031.jpg
+3434.jpg
+4780.jpg
+17281.jpg
+4012.jpg
+27280.jpg
+5883.jpg
+6623.jpg
+10816.jpg
+12746.jpg
+5665.jpg
+29925.jpg
+19949.jpg
+5101.jpg
+18942.jpg
+26812.jpg
+19908.jpg
+27679.jpg
+15461.jpg
+18537.jpg
+16103.jpg
+9590.jpg
+21086.jpg
+20091.jpg
+15464.jpg
+12348.jpg
+4672.jpg
+6384.jpg
+1758.jpg
+896.jpg
+21673.jpg
+10729.jpg
+14071.jpg
+29354.jpg
+20578.jpg
+6745.jpg
+3074.jpg
+29716.jpg
+6984.jpg
+13444.jpg
+13615.jpg
+29951.jpg
+1866.jpg
+15643.jpg
+9829.jpg
+10362.jpg
+23074.jpg
+1634.jpg
+29088.jpg
+19271.jpg
+14629.jpg
+28585.jpg
+18610.jpg
+10292.jpg
+29283.jpg
+1311.jpg
+7661.jpg
+29186.jpg
+908.jpg
+16594.jpg
+20246.jpg
+15980.jpg
+15382.jpg
+13953.jpg
+25640.jpg
+24311.jpg
+12553.jpg
+26763.jpg
+28987.jpg
+23674.jpg
+4849.jpg
+12263.jpg
+127.jpg
+20995.jpg
+7236.jpg
+1833.jpg
+3226.jpg
+24478.jpg
+17846.jpg
+10254.jpg
+8199.jpg
+18627.jpg
+23304.jpg
+6477.jpg
+14984.jpg
+21105.jpg
+12283.jpg
+22804.jpg
+20307.jpg
+8905.jpg
+21427.jpg
+3571.jpg
+12834.jpg
+15612.jpg
+3678.jpg
+10722.jpg
+23447.jpg
+669.jpg
+21956.jpg
+25657.jpg
+13591.jpg
+20261.jpg
+29288.jpg
+17325.jpg
+24276.jpg
+21674.jpg
+16214.jpg
+6870.jpg
+29745.jpg
+12851.jpg
+12966.jpg
+5554.jpg
+21514.jpg
+11290.jpg
+17750.jpg
+25685.jpg
+12661.jpg
+1501.jpg
+20107.jpg
+4013.jpg
+29963.jpg
+18589.jpg
+10673.jpg
+6559.jpg
+158.jpg
+2541.jpg
+21719.jpg
+13106.jpg
+22071.jpg
+21085.jpg
+16745.jpg
+29712.jpg
+10698.jpg
+16403.jpg
+10392.jpg
+22067.jpg
+8758.jpg
+21410.jpg
+18993.jpg
+10010.jpg
+2598.jpg
+1303.jpg
+20747.jpg
+12340.jpg
+1291.jpg
+17423.jpg
+16260.jpg
+7766.jpg
+2503.jpg
+10972.jpg
+23705.jpg
+9434.jpg
+27981.jpg
+6486.jpg
+3965.jpg
+4523.jpg
+24017.jpg
+20773.jpg
+18597.jpg
+26767.jpg
+14860.jpg
+23521.jpg
+5127.jpg
+2476.jpg
+27012.jpg
+29086.jpg
+16427.jpg
+19434.jpg
+7756.jpg
+7460.jpg
+2455.jpg
+8636.jpg
+8734.jpg
+9529.jpg
+1466.jpg
+20691.jpg
+20450.jpg
+8547.jpg
+27696.jpg
+10491.jpg
+10074.jpg
+2567.jpg
+4486.jpg
+3655.jpg
+3893.jpg
+13753.jpg
+4095.jpg
+28777.jpg
+304.jpg
+26644.jpg
+7091.jpg
+4791.jpg
+3487.jpg
+2768.jpg
+14115.jpg
+9233.jpg
+18248.jpg
+6974.jpg
+22228.jpg
+14252.jpg
+24812.jpg
+18499.jpg
+16429.jpg
+28474.jpg
+9975.jpg
+2195.jpg
+21408.jpg
+14606.jpg
+17477.jpg
+28916.jpg
+15108.jpg
+4790.jpg
+1478.jpg
+2759.jpg
+14936.jpg
+29868.jpg
+26216.jpg
+7902.jpg
+4794.jpg
+7180.jpg
+4510.jpg
+211.jpg
+11022.jpg
+1813.jpg
+21506.jpg
+11214.jpg
+25399.jpg
+5907.jpg
+29645.jpg
+16014.jpg
+25415.jpg
+29343.jpg
+2234.jpg
+8898.jpg
+23657.jpg
+24968.jpg
+21848.jpg
+16899.jpg
+10738.jpg
+29467.jpg
+20755.jpg
+11433.jpg
+17011.jpg
+23220.jpg
+9264.jpg
+10433.jpg
+15399.jpg
+16977.jpg
+29903.jpg
+23830.jpg
+11084.jpg
+10032.jpg
+16300.jpg
+27962.jpg
+2692.jpg
+28923.jpg
+24341.jpg
+29055.jpg
+21942.jpg
+21433.jpg
+27588.jpg
+11766.jpg
+1280.jpg
+24982.jpg
+21943.jpg
+13240.jpg
+14795.jpg
+26012.jpg
+19738.jpg
+13645.jpg
+826.jpg
+12662.jpg
+15128.jpg
+14782.jpg
+2532.jpg
+5881.jpg
+24863.jpg
+2607.jpg
+28630.jpg
+24235.jpg
+1561.jpg
+6537.jpg
+11711.jpg
+18173.jpg
+18781.jpg
+27641.jpg
+17409.jpg
+4771.jpg
+24855.jpg
+29724.jpg
+11591.jpg
+24995.jpg
+13405.jpg
+2744.jpg
+29540.jpg
+9891.jpg
+7345.jpg
+27207.jpg
+1896.jpg
+7770.jpg
+9090.jpg
+28614.jpg
+7004.jpg
+3358.jpg
+25466.jpg
+23805.jpg
+10089.jpg
+1873.jpg
+4646.jpg
+19408.jpg
+1052.jpg
+3194.jpg
+13167.jpg
+3010.jpg
+5897.jpg
+29561.jpg
+17323.jpg
+28677.jpg
+26368.jpg
+16166.jpg
+5507.jpg
+8053.jpg
+14549.jpg
+21738.jpg
+7448.jpg
+9324.jpg
+24246.jpg
+19022.jpg
+17503.jpg
+7792.jpg
+15207.jpg
+20471.jpg
+7986.jpg
+20767.jpg
+3712.jpg
+19142.jpg
+10995.jpg
+15039.jpg
+14481.jpg
+5660.jpg
+16398.jpg
+21670.jpg
+15830.jpg
+4404.jpg
+14093.jpg
+26243.jpg
+24038.jpg
+4137.jpg
+395.jpg
+19264.jpg
+7647.jpg
+21193.jpg
+15672.jpg
+21147.jpg
+10113.jpg
+22128.jpg
+25004.jpg
+20710.jpg
+18037.jpg
+26191.jpg
+25365.jpg
+1490.jpg
+6667.jpg
+12287.jpg
+10543.jpg
+2064.jpg
+8969.jpg
+21546.jpg
+9317.jpg
+18793.jpg
+1872.jpg
+18240.jpg
+15267.jpg
+7163.jpg
+22367.jpg
+3857.jpg
+24965.jpg
+24804.jpg
+13325.jpg
+16642.jpg
+25472.jpg
+12619.jpg
+7559.jpg
+24294.jpg
+4948.jpg
+22377.jpg
+24331.jpg
+18617.jpg
+27002.jpg
+2877.jpg
+5698.jpg
+19999.jpg
+13583.jpg
+7280.jpg
+1897.jpg
+22047.jpg
+10561.jpg
+20682.jpg
+26703.jpg
+29999.jpg
+26171.jpg
+15187.jpg
+10436.jpg
+20768.jpg
+667.jpg
+11204.jpg
+737.jpg
+16000.jpg
+3594.jpg
+23032.jpg
+21151.jpg
+5761.jpg
+14666.jpg
+5851.jpg
+4380.jpg
+12470.jpg
+24243.jpg
+24802.jpg
+14005.jpg
+6616.jpg
+13644.jpg
+13661.jpg
+460.jpg
+1036.jpg
+10098.jpg
+17556.jpg
+24637.jpg
+838.jpg
+24921.jpg
+8899.jpg
+2257.jpg
+16930.jpg
+12815.jpg
+11093.jpg
+5832.jpg
+10615.jpg
+21635.jpg
+16818.jpg
+23128.jpg
+23887.jpg
+29138.jpg
+27333.jpg
+10119.jpg
+13104.jpg
+26512.jpg
+27688.jpg
+25850.jpg
+14278.jpg
+18986.jpg
+11454.jpg
+3755.jpg
+16629.jpg
+28694.jpg
+18223.jpg
+20367.jpg
+6153.jpg
+6135.jpg
+26330.jpg
+22054.jpg
+12674.jpg
+4442.jpg
+8094.jpg
+5122.jpg
+29852.jpg
+27132.jpg
+16040.jpg
+8042.jpg
+5052.jpg
+4092.jpg
+14530.jpg
+11826.jpg
+27238.jpg
+17923.jpg
+27097.jpg
+26735.jpg
+14417.jpg
+25948.jpg
+28935.jpg
+17483.jpg
+22063.jpg
+18822.jpg
+10216.jpg
+29575.jpg
+14719.jpg
+20816.jpg
+25109.jpg
+14246.jpg
+27422.jpg
+6200.jpg
+29784.jpg
+5702.jpg
+12595.jpg
+7549.jpg
+16750.jpg
+19410.jpg
+2973.jpg
+23269.jpg
+14881.jpg
+90.jpg
+22296.jpg
+10865.jpg
+9781.jpg
+11081.jpg
+4597.jpg
+20284.jpg
+8104.jpg
+27982.jpg
+833.jpg
+17902.jpg
+11310.jpg
+13998.jpg
+10753.jpg
+22554.jpg
+23216.jpg
+20950.jpg
+19303.jpg
+4280.jpg
+21582.jpg
+19954.jpg
+15597.jpg
+12200.jpg
+11811.jpg
+1497.jpg
+16109.jpg
+19722.jpg
+8996.jpg
+25494.jpg
+17493.jpg
+10968.jpg
+18752.jpg
+25198.jpg
+5248.jpg
+11991.jpg
+21477.jpg
+23892.jpg
+15361.jpg
+5444.jpg
+10318.jpg
+7781.jpg
+21327.jpg
+16622.jpg
+28511.jpg
+6374.jpg
+20260.jpg
+695.jpg
+10243.jpg
+11324.jpg
+10206.jpg
+20099.jpg
+7406.jpg
+24150.jpg
+8509.jpg
+20577.jpg
+20637.jpg
+25484.jpg
+9289.jpg
+28648.jpg
+3967.jpg
+14844.jpg
+26542.jpg
+391.jpg
+6464.jpg
+13013.jpg
+29136.jpg
+29118.jpg
+24826.jpg
+13356.jpg
+18950.jpg
+22644.jpg
+8467.jpg
+9044.jpg
+7843.jpg
+17328.jpg
+6372.jpg
+2932.jpg
+15167.jpg
+14405.jpg
+21489.jpg
+21120.jpg
+25350.jpg
+29956.jpg
+13196.jpg
+5519.jpg
+11944.jpg
+26201.jpg
+6845.jpg
+3640.jpg
+7436.jpg
+252.jpg
+5548.jpg
+19040.jpg
+16337.jpg
+14126.jpg
+9453.jpg
+1344.jpg
+12835.jpg
+19186.jpg
+8382.jpg
+24487.jpg
+3411.jpg
+19661.jpg
+28958.jpg
+17425.jpg
+18602.jpg
+8486.jpg
+16583.jpg
+19423.jpg
+18083.jpg
+18293.jpg
+2011.jpg
+28434.jpg
+3671.jpg
+10735.jpg
+22473.jpg
+13149.jpg
+15655.jpg
+14834.jpg
+11288.jpg
+29880.jpg
+12591.jpg
+20883.jpg
+26867.jpg
+14343.jpg
+10529.jpg
+13244.jpg
+19162.jpg
+8038.jpg
+8017.jpg
+8070.jpg
+28072.jpg
+1108.jpg
+29134.jpg
+16391.jpg
+21048.jpg
+29071.jpg
+3357.jpg
+29988.jpg
+15955.jpg
+21328.jpg
+876.jpg
+24030.jpg
+22505.jpg
+21024.jpg
+11723.jpg
+26900.jpg
+795.jpg
+2283.jpg
+25855.jpg
+8248.jpg
+17368.jpg
+19533.jpg
+24094.jpg
+24848.jpg
+4706.jpg
+6067.jpg
+14899.jpg
+29472.jpg
+8978.jpg
+7550.jpg
+4515.jpg
+24857.jpg
+3535.jpg
+17621.jpg
+12922.jpg
+22005.jpg
+10159.jpg
+7290.jpg
+7038.jpg
+4215.jpg
+4796.jpg
+19456.jpg
+23953.jpg
+22895.jpg
+4789.jpg
+9309.jpg
+23390.jpg
+19851.jpg
+10171.jpg
+714.jpg
+9538.jpg
+2593.jpg
+9275.jpg
+15984.jpg
+22634.jpg
+23788.jpg
+9402.jpg
+25772.jpg
+26905.jpg
+5207.jpg
+3741.jpg
+10178.jpg
+3762.jpg
+28168.jpg
+1050.jpg
+17841.jpg
+29021.jpg
+20356.jpg
+26032.jpg
+20377.jpg
+5211.jpg
+5664.jpg
+8020.jpg
+1513.jpg
+6979.jpg
+26231.jpg
+20770.jpg
+28297.jpg
+9708.jpg
+18832.jpg
+28091.jpg
+5310.jpg
+23071.jpg
+10546.jpg
+3151.jpg
+3834.jpg
+28976.jpg
+23793.jpg
+4664.jpg
+4607.jpg
+10792.jpg
+12425.jpg
+9813.jpg
+22976.jpg
+28749.jpg
+403.jpg
+6831.jpg
+17656.jpg
+2143.jpg
+23207.jpg
+7415.jpg
+10820.jpg
+12439.jpg
+4522.jpg
+12247.jpg
+19538.jpg
+21708.jpg
+13678.jpg
+10456.jpg
+15350.jpg
+25559.jpg
+1565.jpg
+15670.jpg
+3378.jpg
+27159.jpg
+14144.jpg
+18525.jpg
+16133.jpg
+15957.jpg
+27507.jpg
+16063.jpg
+16003.jpg
+15932.jpg
+15020.jpg
+25378.jpg
+15811.jpg
+5729.jpg
+13978.jpg
+4105.jpg
+19382.jpg
+25176.jpg
+12781.jpg
+15768.jpg
+24931.jpg
+11676.jpg
+4769.jpg
+2286.jpg
+12670.jpg
+24459.jpg
+29704.jpg
+28189.jpg
+18651.jpg
+13664.jpg
+27874.jpg
+23532.jpg
+15254.jpg
+22684.jpg
+8578.jpg
+28857.jpg
+16304.jpg
+12978.jpg
+8214.jpg
+24228.jpg
+18522.jpg
+26514.jpg
+9042.jpg
+14693.jpg
+24481.jpg
+1975.jpg
+28266.jpg
+1818.jpg
+27402.jpg
+29570.jpg
+23418.jpg
+22281.jpg
+13054.jpg
+28428.jpg
+5649.jpg
+1126.jpg
+26061.jpg
+23747.jpg
+18218.jpg
+29485.jpg
+22706.jpg
+28179.jpg
+28765.jpg
+24393.jpg
+25173.jpg
+21291.jpg
+5977.jpg
+8641.jpg
+8914.jpg
+953.jpg
+21528.jpg
+15718.jpg
+20676.jpg
+17382.jpg
+15884.jpg
+6065.jpg
+7115.jpg
+10204.jpg
+12532.jpg
+15061.jpg
+18548.jpg
+29565.jpg
+14452.jpg
+29301.jpg
+21578.jpg
+1656.jpg
+3449.jpg
+2791.jpg
+25349.jpg
+14591.jpg
+2942.jpg
+25759.jpg
+27115.jpg
+29421.jpg
+8716.jpg
+26954.jpg
+1074.jpg
+140.jpg
+782.jpg
+292.jpg
+4504.jpg
+1949.jpg
+29629.jpg
+23614.jpg
+12519.jpg
+3854.jpg
+78.jpg
+24455.jpg
+9990.jpg
+1170.jpg
+16236.jpg
+7181.jpg
+25734.jpg
+12273.jpg
+6508.jpg
+17692.jpg
+9799.jpg
+3272.jpg
+25063.jpg
+15225.jpg
+28386.jpg
+8051.jpg
+9215.jpg
+17925.jpg
+16856.jpg
+20818.jpg
+3515.jpg
+8274.jpg
+284.jpg
+27611.jpg
+28905.jpg
+23336.jpg
+8740.jpg
+26392.jpg
+2688.jpg
+22293.jpg
+9750.jpg
+21718.jpg
+7747.jpg
+5218.jpg
+17935.jpg
+6199.jpg
+23668.jpg
+27617.jpg
+2279.jpg
+13861.jpg
+50.jpg
+24138.jpg
+9820.jpg
+8352.jpg
+12179.jpg
+21014.jpg
+13934.jpg
+7452.jpg
+25096.jpg
+10259.jpg
+8872.jpg
+9924.jpg
+20907.jpg
+23874.jpg
+7296.jpg
+28309.jpg
+5403.jpg
+29514.jpg
+12416.jpg
+3739.jpg
+27699.jpg
+22191.jpg
+16312.jpg
+27820.jpg
+11405.jpg
+22379.jpg
+21499.jpg
+27452.jpg
+1647.jpg
+28839.jpg
+18688.jpg
+19189.jpg
+119.jpg
+8505.jpg
+23046.jpg
+25703.jpg
+2058.jpg
+6982.jpg
+19901.jpg
+23139.jpg
+14340.jpg
+22801.jpg
+14814.jpg
+16884.jpg
+26979.jpg
+6614.jpg
+13008.jpg
+13723.jpg
+27482.jpg
+26539.jpg
+13034.jpg
+15721.jpg
+25957.jpg
+1811.jpg
+24089.jpg
+6900.jpg
+8845.jpg
+20318.jpg
+9622.jpg
+27587.jpg
+27720.jpg
+10830.jpg
+28134.jpg
+1223.jpg
+28160.jpg
+29707.jpg
+9007.jpg
+25124.jpg
+27502.jpg
+18579.jpg
+2396.jpg
+9826.jpg
+25916.jpg
+28554.jpg
+21948.jpg
+17026.jpg
+7704.jpg
+6267.jpg
+25298.jpg
+12269.jpg
+9129.jpg
+23858.jpg
+21142.jpg
+484.jpg
+5981.jpg
+19767.jpg
+7710.jpg
+2172.jpg
+11331.jpg
+22259.jpg
+28221.jpg
+27339.jpg
+12456.jpg
+21395.jpg
+1754.jpg
+11191.jpg
+5442.jpg
+25328.jpg
+16234.jpg
+24727.jpg
+10398.jpg
+5481.jpg
+4038.jpg
+11771.jpg
+810.jpg
+9630.jpg
+6405.jpg
+8207.jpg
+5750.jpg
+7072.jpg
+2855.jpg
+18301.jpg
+29912.jpg
+17457.jpg
+9325.jpg
+4891.jpg
+15068.jpg
+5292.jpg
+13284.jpg
+13496.jpg
+20106.jpg
+11406.jpg
+28013.jpg
+3380.jpg
+5388.jpg
+22110.jpg
+8295.jpg
+24329.jpg
+673.jpg
+27697.jpg
+6070.jpg
+28001.jpg
+23338.jpg
+1757.jpg
+28354.jpg
+12459.jpg
+6733.jpg
+1838.jpg
+22035.jpg
+24186.jpg
+22807.jpg
+26845.jpg
+17119.jpg
+12598.jpg
+2694.jpg
+5095.jpg
+3407.jpg
+23664.jpg
+24927.jpg
+12219.jpg
+7503.jpg
+5026.jpg
+16275.jpg
+8659.jpg
+19242.jpg
+1966.jpg
+16448.jpg
+1003.jpg
+21421.jpg
+25465.jpg
+3428.jpg
+28353.jpg
+9709.jpg
+19209.jpg
+24887.jpg
+13022.jpg
+26933.jpg
+7953.jpg
+14098.jpg
+29917.jpg
+29285.jpg
+19359.jpg
+3939.jpg
+7801.jpg
+10720.jpg
+26016.jpg
+9954.jpg
+24721.jpg
+15366.jpg
+7305.jpg
+28057.jpg
+7.jpg
+25185.jpg
+1940.jpg
+24432.jpg
+19760.jpg
+29630.jpg
+21986.jpg
+25308.jpg
+20012.jpg
+9848.jpg
+16611.jpg
+16914.jpg
+18749.jpg
+27480.jpg
+16477.jpg
+8627.jpg
+12121.jpg
+17023.jpg
+18810.jpg
+10506.jpg
+3179.jpg
+25743.jpg
+16851.jpg
+19932.jpg
+27075.jpg
+11646.jpg
+23681.jpg
+24388.jpg
+19960.jpg
+20234.jpg
+28148.jpg
+28606.jpg
+7565.jpg
+28636.jpg
+20150.jpg
+9354.jpg
+2778.jpg
+5387.jpg
+7424.jpg
+10078.jpg
+14372.jpg
+13208.jpg
+25700.jpg
+22152.jpg
+21646.jpg
+6319.jpg
+7709.jpg
+16299.jpg
+1236.jpg
+1079.jpg
+26421.jpg
+16269.jpg
+23022.jpg
+16048.jpg
+14601.jpg
+29074.jpg
+4383.jpg
+29039.jpg
+3730.jpg
+13173.jpg
+7147.jpg
+6173.jpg
+26148.jpg
+7043.jpg
+13701.jpg
+9099.jpg
+7484.jpg
+19367.jpg
+6033.jpg
+3545.jpg
+3493.jpg
+9331.jpg
+18843.jpg
+1713.jpg
+26675.jpg
+18866.jpg
+9516.jpg
+17370.jpg
+19645.jpg
+7037.jpg
+24047.jpg
+21969.jpg
+9518.jpg
+8495.jpg
+14529.jpg
+24864.jpg
+14631.jpg
+16553.jpg
+15882.jpg
+14476.jpg
+10559.jpg
+23460.jpg
+5701.jpg
+6992.jpg
+23407.jpg
+29035.jpg
+7669.jpg
+4931.jpg
+17927.jpg
+6697.jpg
+23196.jpg
+20104.jpg
+17178.jpg
+24470.jpg
+25230.jpg
+11834.jpg
+1644.jpg
+10581.jpg
+24226.jpg
+18897.jpg
+10935.jpg
+11803.jpg
+5841.jpg
+1860.jpg
+11812.jpg
+23446.jpg
+26387.jpg
+6884.jpg
+18815.jpg
+1982.jpg
+6837.jpg
+852.jpg
+27195.jpg
+12407.jpg
+26657.jpg
+26134.jpg
+19007.jpg
+244.jpg
+20151.jpg
+28626.jpg
+4710.jpg
+21182.jpg
+25485.jpg
+27832.jpg
+2243.jpg
+28260.jpg
+24223.jpg
+291.jpg
+8380.jpg
+18760.jpg
+10851.jpg
+10953.jpg
+16759.jpg
+13133.jpg
+366.jpg
+21511.jpg
+15199.jpg
+19530.jpg
+13372.jpg
+7040.jpg
+29017.jpg
+18468.jpg
+5267.jpg
+7946.jpg
+12590.jpg
+12897.jpg
+10244.jpg
+4765.jpg
+24136.jpg
+28594.jpg
+15001.jpg
+24061.jpg
+16635.jpg
+18603.jpg
+8096.jpg
+24147.jpg
+2765.jpg
+9138.jpg
+23086.jpg
+17625.jpg
+7835.jpg
+4698.jpg
+23260.jpg
+8300.jpg
+22670.jpg
+21619.jpg
+28731.jpg
+4078.jpg
+12195.jpg
+689.jpg
+3452.jpg
+4229.jpg
+8286.jpg
+29030.jpg
+7990.jpg
+28236.jpg
+4848.jpg
+26262.jpg
+7820.jpg
+21488.jpg
+13918.jpg
+4897.jpg
+6280.jpg
+5449.jpg
+7306.jpg
+15604.jpg
+17990.jpg
+26081.jpg
+13255.jpg
+22520.jpg
+29694.jpg
+3643.jpg
+16770.jpg
+13458.jpg
+29688.jpg
+13816.jpg
+24665.jpg
+1293.jpg
+6086.jpg
+23555.jpg
+7293.jpg
+29293.jpg
+15845.jpg
+22163.jpg
+17013.jpg
+18170.jpg
+17864.jpg
+27023.jpg
+28379.jpg
+10825.jpg
+12909.jpg
+28436.jpg
+28653.jpg
+5134.jpg
+25126.jpg
+23473.jpg
+19891.jpg
+29744.jpg
+24229.jpg
+27209.jpg
+2560.jpg
+7579.jpg
+5667.jpg
+223.jpg
+6693.jpg
+7049.jpg
+28774.jpg
+18540.jpg
+18099.jpg
+1393.jpg
+9323.jpg
+11215.jpg
+2015.jpg
+25764.jpg
+16821.jpg
+23682.jpg
+8603.jpg
+26395.jpg
+25583.jpg
+8233.jpg
+7601.jpg
+9559.jpg
+16614.jpg
+22309.jpg
+3110.jpg
+6190.jpg
+24051.jpg
+6789.jpg
+10714.jpg
+21767.jpg
+977.jpg
+21643.jpg
+16946.jpg
+7185.jpg
+9562.jpg
+8936.jpg
+5325.jpg
+17366.jpg
+19052.jpg
+23591.jpg
+18006.jpg
+28628.jpg
+1802.jpg
+18192.jpg
+4844.jpg
+27279.jpg
+14118.jpg
+27121.jpg
+10139.jpg
+10160.jpg
+17360.jpg
+13087.jpg
+28417.jpg
+1968.jpg
+18561.jpg
+21379.jpg
+339.jpg
+29499.jpg
+3341.jpg
+18153.jpg
+22550.jpg
+17600.jpg
+26727.jpg
+20058.jpg
+16436.jpg
+12098.jpg
+15989.jpg
+10944.jpg
+5255.jpg
+13681.jpg
+24207.jpg
+24799.jpg
+28620.jpg
+28132.jpg
+3713.jpg
+17455.jpg
+22701.jpg
+23327.jpg
+12960.jpg
+2481.jpg
+3327.jpg
+8956.jpg
+327.jpg
+11392.jpg
+16486.jpg
+10144.jpg
+26463.jpg
+4867.jpg
+7192.jpg
+4692.jpg
+20081.jpg
+12101.jpg
+29067.jpg
+1548.jpg
+23649.jpg
+993.jpg
+19727.jpg
+5225.jpg
+28119.jpg
+11258.jpg
+24845.jpg
+1670.jpg
+4017.jpg
+18884.jpg
+10057.jpg
+22763.jpg
+6895.jpg
+16379.jpg
+20379.jpg
+6566.jpg
+20552.jpg
+28703.jpg
+3440.jpg
+9894.jpg
+22312.jpg
+13568.jpg
+26548.jpg
+2344.jpg
+4342.jpg
+29389.jpg
+1496.jpg
+6666.jpg
+4823.jpg
+25481.jpg
+862.jpg
+13711.jpg
+23383.jpg
+17886.jpg
+21446.jpg
+21774.jpg
+5324.jpg
+7230.jpg
+18859.jpg
+1691.jpg
+16446.jpg
+13973.jpg
+24071.jpg
+11518.jpg
+14194.jpg
+20226.jpg
+9143.jpg
+18780.jpg
+2878.jpg
+12963.jpg
+1914.jpg
+9231.jpg
+26014.jpg
+18200.jpg
+10533.jpg
+9785.jpg
+25653.jpg
+13422.jpg
+24808.jpg
+24306.jpg
+1908.jpg
+22189.jpg
+4944.jpg
+18227.jpg
+13997.jpg
+10606.jpg
+14078.jpg
+11054.jpg
+26605.jpg
+20501.jpg
+1148.jpg
+17727.jpg
+21207.jpg
+14315.jpg
+3756.jpg
+26154.jpg
+626.jpg
+7769.jpg
+16136.jpg
+22541.jpg
+29315.jpg
+14771.jpg
+21262.jpg
+11323.jpg
+22955.jpg
+20726.jpg
+10734.jpg
+29837.jpg
+16663.jpg
+4591.jpg
+20033.jpg
+13974.jpg
+12113.jpg
+3824.jpg
+29834.jpg
+14522.jpg
+18129.jpg
+14208.jpg
+7408.jpg
+16693.jpg
+26811.jpg
+23202.jpg
+7289.jpg
+9782.jpg
+5004.jpg
+14049.jpg
+6113.jpg
+20698.jpg
+13604.jpg
+19540.jpg
+2063.jpg
+4809.jpg
+22606.jpg
+25798.jpg
+16911.jpg
+5683.jpg
+17862.jpg
+28021.jpg
+27352.jpg
+17626.jpg
+8444.jpg
+25986.jpg
+25046.jpg
+12768.jpg
+24449.jpg
+15949.jpg
+15259.jpg
+27707.jpg
+20562.jpg
+7346.jpg
+18174.jpg
+12747.jpg
+22927.jpg
+10045.jpg
+12716.jpg
+21448.jpg
+13836.jpg
+16849.jpg
+7060.jpg
+15926.jpg
+29457.jpg
+10949.jpg
+6687.jpg
+8751.jpg
+17977.jpg
+6772.jpg
+6031.jpg
+1879.jpg
+29332.jpg
+503.jpg
+29676.jpg
+11417.jpg
+6671.jpg
+15049.jpg
+3085.jpg
+10100.jpg
+1752.jpg
+7403.jpg
+14034.jpg
+5068.jpg
+20030.jpg
+22428.jpg
+21901.jpg
+14007.jpg
+28475.jpg
+18332.jpg
+21883.jpg
+7573.jpg
+10462.jpg
+25052.jpg
+12307.jpg
+21107.jpg
+9315.jpg
+17309.jpg
+16050.jpg
+19596.jpg
+17324.jpg
+5767.jpg
+14298.jpg
+1595.jpg
+17184.jpg
+13702.jpg
+10974.jpg
+7582.jpg
+28552.jpg
+27540.jpg
+17373.jpg
+11586.jpg
+26647.jpg
+8489.jpg
+13670.jpg
+20984.jpg
+11422.jpg
+27971.jpg
+1064.jpg
+22923.jpg
+6075.jpg
+28866.jpg
+1157.jpg
+9745.jpg
+17972.jpg
+20250.jpg
+16624.jpg
+10263.jpg
+28979.jpg
+16867.jpg
+19252.jpg
+12658.jpg
+16564.jpg
+24641.jpg
+9876.jpg
+14479.jpg
+2354.jpg
+14879.jpg
+15853.jpg
+23266.jpg
+6098.jpg
+24068.jpg
+3384.jpg
+7650.jpg
+19154.jpg
+17607.jpg
+28271.jpg
+12905.jpg
+27515.jpg
+22755.jpg
+3269.jpg
+8241.jpg
+9425.jpg
+15139.jpg
+24618.jpg
+14094.jpg
+9431.jpg
+19057.jpg
+9702.jpg
+21981.jpg
+25154.jpg
+857.jpg
+26269.jpg
+28465.jpg
+5633.jpg
+21337.jpg
+6707.jpg
+5022.jpg
+5027.jpg
+28046.jpg
+5487.jpg
+23984.jpg
+11051.jpg
+22394.jpg
+12352.jpg
+1015.jpg
+21339.jpg
+25519.jpg
+17538.jpg
+26317.jpg
+6328.jpg
+5151.jpg
+18188.jpg
+27037.jpg
+29691.jpg
+13265.jpg
+2633.jpg
+723.jpg
+27987.jpg
+23762.jpg
+16320.jpg
+1759.jpg
+11270.jpg
+29805.jpg
+21575.jpg
+12178.jpg
+26894.jpg
+3048.jpg
+19469.jpg
+11874.jpg
+11563.jpg
+20678.jpg
+15386.jpg
+18998.jpg
+23517.jpg
+15331.jpg
+28522.jpg
+21936.jpg
+29828.jpg
+13033.jpg
+25873.jpg
+18071.jpg
+18171.jpg
+5779.jpg
+245.jpg
+14872.jpg
+26420.jpg
+5801.jpg
+8988.jpg
+18829.jpg
+25413.jpg
+18347.jpg
+19194.jpg
+27788.jpg
+1194.jpg
+20785.jpg
+19363.jpg
+28829.jpg
+20784.jpg
+26699.jpg
+21939.jpg
+6901.jpg
+7463.jpg
+21764.jpg
+21535.jpg
+4493.jpg
+21092.jpg
+11870.jpg
+5270.jpg
+1560.jpg
+11396.jpg
+10801.jpg
+11701.jpg
+14074.jpg
+25271.jpg
+16549.jpg
+21829.jpg
+19719.jpg
+19354.jpg
+28634.jpg
+19421.jpg
+29062.jpg
+25901.jpg
+8646.jpg
+13141.jpg
+20566.jpg
+27750.jpg
+7923.jpg
+3062.jpg
+24.jpg
+26998.jpg
+24269.jpg
+629.jpg
+14540.jpg
+7513.jpg
+2708.jpg
+28360.jpg
+11989.jpg
+9094.jpg
+19569.jpg
+23489.jpg
+14939.jpg
+7698.jpg
+27362.jpg
+28375.jpg
+7119.jpg
+17331.jpg
+21205.jpg
+1825.jpg
+18827.jpg
+2953.jpg
+21532.jpg
+24576.jpg
+12790.jpg
+5680.jpg
+21962.jpg
+22820.jpg
+22521.jpg
+17831.jpg
+5112.jpg
+3477.jpg
+17263.jpg
+26355.jpg
+24076.jpg
+11640.jpg
+25642.jpg
+14489.jpg
+10575.jpg
+7164.jpg
+983.jpg
+15659.jpg
+12092.jpg
+15180.jpg
+1447.jpg
+4492.jpg
+1954.jpg
+15021.jpg
+20400.jpg
+20282.jpg
+7342.jpg
+19812.jpg
+24850.jpg
+4490.jpg
+15433.jpg
+13332.jpg
+13199.jpg
+12665.jpg
+21746.jpg
+9912.jpg
+26669.jpg
+27317.jpg
+5396.jpg
+5773.jpg
+28545.jpg
+27806.jpg
+3869.jpg
+29849.jpg
+22122.jpg
+11430.jpg
+5019.jpg
+8194.jpg
+7870.jpg
+2101.jpg
+24605.jpg
+532.jpg
+9001.jpg
+28744.jpg
+14701.jpg
+22055.jpg
+27162.jpg
+12035.jpg
+20934.jpg
+28652.jpg
+25553.jpg
+24953.jpg
+7080.jpg
+19364.jpg
+13517.jpg
+15175.jpg
+24809.jpg
+13526.jpg
+74.jpg
+26460.jpg
+6660.jpg
+113.jpg
+2219.jpg
+19502.jpg
+13908.jpg
+2832.jpg
+13158.jpg
+23516.jpg
+4361.jpg
+7028.jpg
+6659.jpg
+23907.jpg
+16311.jpg
+16848.jpg
+9412.jpg
+9399.jpg
+9655.jpg
+4766.jpg
+3937.jpg
+8703.jpg
+25771.jpg
+5261.jpg
+16708.jpg
+23267.jpg
+10841.jpg
+3572.jpg
+13130.jpg
+25091.jpg
+25711.jpg
+20363.jpg
+10415.jpg
+29460.jpg
+10183.jpg
+7665.jpg
+12578.jpg
+17206.jpg
+18101.jpg
+28535.jpg
+1535.jpg
+9632.jpg
+29539.jpg
+5495.jpg
+23345.jpg
+1635.jpg
+18401.jpg
+572.jpg
+14091.jpg
+18833.jpg
+20319.jpg
+24485.jpg
+28639.jpg
+28373.jpg
+663.jpg
+18888.jpg
+14682.jpg
+4450.jpg
+29444.jpg
+188.jpg
+8924.jpg
+22977.jpg
+13524.jpg
+26517.jpg
+4901.jpg
+27360.jpg
+5220.jpg
+18806.jpg
+25227.jpg
+24382.jpg
+8783.jpg
+22703.jpg
+20192.jpg
+1370.jpg
+21280.jpg
+16084.jpg
+19355.jpg
+4190.jpg
+11665.jpg
+2747.jpg
+17471.jpg
+15310.jpg
+10279.jpg
+5963.jpg
+25005.jpg
+12614.jpg
+8885.jpg
+19294.jpg
+6078.jpg
+16846.jpg
+17781.jpg
+24245.jpg
+8014.jpg
+15328.jpg
+10633.jpg
+21889.jpg
+882.jpg
+4677.jpg
+28442.jpg
+8062.jpg
+21776.jpg
+21808.jpg
+26263.jpg
+4929.jpg
+22150.jpg
+28020.jpg
+28717.jpg
+11872.jpg
+20847.jpg
+27383.jpg
+24239.jpg
+28012.jpg
+3910.jpg
+18028.jpg
+3689.jpg
+1265.jpg
+8125.jpg
+26028.jpg
+11479.jpg
+10874.jpg
+25886.jpg
+24457.jpg
+12387.jpg
+22046.jpg
+23421.jpg
+27462.jpg
+17965.jpg
+20109.jpg
+25062.jpg
+19770.jpg
+15488.jpg
+6224.jpg
+6563.jpg
+14099.jpg
+17584.jpg
+19024.jpg
+9213.jpg
+18438.jpg
+885.jpg
+29814.jpg
+1666.jpg
+19697.jpg
+12249.jpg
+10668.jpg
+7779.jpg
+21726.jpg
+19483.jpg
+12148.jpg
+11621.jpg
+5364.jpg
+4028.jpg
+20743.jpg
+25709.jpg
+11861.jpg
+9852.jpg
+1279.jpg
+22666.jpg
+7973.jpg
+22185.jpg
+18093.jpg
+942.jpg
+6234.jpg
+19121.jpg
+16647.jpg
+4788.jpg
+6803.jpg
+22662.jpg
+25575.jpg
+25266.jpg
+11098.jpg
+29068.jpg
+9133.jpg
+29415.jpg
+24205.jpg
+21569.jpg
+9600.jpg
+10161.jpg
+21536.jpg
+8453.jpg
+27728.jpg
+24693.jpg
+3918.jpg
+19405.jpg
+16155.jpg
+3720.jpg
+11314.jpg
+15317.jpg
+5826.jpg
+5118.jpg
+27319.jpg
+2125.jpg
+5602.jpg
+7353.jpg
+1765.jpg
+18322.jpg
+4642.jpg
+28791.jpg
+25528.jpg
+13545.jpg
+3783.jpg
+1725.jpg
+2022.jpg
+11079.jpg
+28959.jpg
+13802.jpg
+10930.jpg
+13550.jpg
+11486.jpg
+9244.jpg
+24668.jpg
+16149.jpg
+1130.jpg
+3785.jpg
+1596.jpg
+15546.jpg
+3101.jpg
+20972.jpg
+28558.jpg
+25078.jpg
+18025.jpg
+28036.jpg
+2756.jpg
+6936.jpg
+10501.jpg
+16514.jpg
+29368.jpg
+19342.jpg
+16362.jpg
+27918.jpg
+3952.jpg
+18352.jpg
+10321.jpg
+2639.jpg
+21592.jpg
+7220.jpg
+14500.jpg
+5219.jpg
+1769.jpg
+1590.jpg
+16253.jpg
+18798.jpg
+22918.jpg
+15632.jpg
+23090.jpg
+22383.jpg
+29253.jpg
+25928.jpg
+14227.jpg
+13722.jpg
+15418.jpg
+3963.jpg
+13384.jpg
+21754.jpg
+19658.jpg
+5133.jpg
+21426.jpg
+20417.jpg
+3480.jpg
+11692.jpg
+27795.jpg
+3430.jpg
+28794.jpg
+12573.jpg
+17294.jpg
+8793.jpg
+27810.jpg
+18919.jpg
+15647.jpg
+8245.jpg
+12235.jpg
+13774.jpg
+16557.jpg
+28494.jpg
+20158.jpg
+18755.jpg
+13751.jpg
+5351.jpg
+3505.jpg
+15857.jpg
+22484.jpg
+28610.jpg
+2780.jpg
+4630.jpg
+22780.jpg
+10484.jpg
+5051.jpg
+5707.jpg
+11915.jpg
+27348.jpg
+19203.jpg
+22717.jpg
+23285.jpg
+28887.jpg
+6354.jpg
+23718.jpg
+22267.jpg
+25555.jpg
+15081.jpg
+17752.jpg
+28157.jpg
+11686.jpg
+13365.jpg
+5755.jpg
+14607.jpg
+15213.jpg
+24446.jpg
+13915.jpg
+22593.jpg
+12344.jpg
+13542.jpg
+24702.jpg
+29820.jpg
+29310.jpg
+14916.jpg
+26617.jpg
+22850.jpg
+29054.jpg
+11608.jpg
+2378.jpg
+15754.jpg
+29209.jpg
+3037.jpg
+29714.jpg
+8369.jpg
+29850.jpg
+11857.jpg
+22947.jpg
+14191.jpg
+22003.jpg
+2612.jpg
+25267.jpg
+7165.jpg
+5165.jpg
+29252.jpg
+24377.jpg
+4389.jpg
+13142.jpg
+16789.jpg
+28507.jpg
+1711.jpg
+6603.jpg
+19959.jpg
+15286.jpg
+1205.jpg
+19494.jpg
+9870.jpg
+23037.jpg
+8582.jpg
+23684.jpg
+12411.jpg
+4743.jpg
+16319.jpg
+1755.jpg
+7129.jpg
+7242.jpg
+13258.jpg
+25675.jpg
+1566.jpg
+15890.jpg
+20892.jpg
+25809.jpg
+12620.jpg
+25100.jpg
+11108.jpg
+775.jpg
+625.jpg
+308.jpg
+4567.jpg
+1109.jpg
+6763.jpg
+13981.jpg
+9605.jpg
+22984.jpg
+82.jpg
+10819.jpg
+9855.jpg
+5760.jpg
+23837.jpg
+13651.jpg
+3396.jpg
+10548.jpg
+27814.jpg
+719.jpg
+2636.jpg
+490.jpg
+14907.jpg
+15323.jpg
+17652.jpg
+14742.jpg
+22385.jpg
+6919.jpg
+20776.jpg
+5347.jpg
+10033.jpg
+4961.jpg
+7652.jpg
+22728.jpg
+22085.jpg
+25384.jpg
+28208.jpg
+25193.jpg
+16889.jpg
+4094.jpg
+4167.jpg
+28966.jpg
+25606.jpg
+27695.jpg
+26143.jpg
+17603.jpg
+8221.jpg
+11659.jpg
+8709.jpg
+12818.jpg
+19480.jpg
+29239.jpg
+22275.jpg
+5524.jpg
+21863.jpg
+23656.jpg
+15344.jpg
+8804.jpg
+11025.jpg
+21824.jpg
+19373.jpg
+27533.jpg
+6195.jpg
+11992.jpg
+19280.jpg
+11809.jpg
+17015.jpg
+3645.jpg
+2653.jpg
+20137.jpg
+27826.jpg
+19129.jpg
+6387.jpg
+16717.jpg
+16010.jpg
+6278.jpg
+15631.jpg
+14734.jpg
+20457.jpg
+10725.jpg
+22822.jpg
+15964.jpg
+18647.jpg
+2706.jpg
+26020.jpg
+17785.jpg
+24735.jpg
+8957.jpg
+7642.jpg
+22491.jpg
+14592.jpg
+25253.jpg
+12870.jpg
+21954.jpg
+26896.jpg
+10984.jpg
+11969.jpg
+5117.jpg
+12750.jpg
+15532.jpg
+27909.jpg
+1111.jpg
+19797.jpg
+2318.jpg
+6652.jpg
+9238.jpg
+17082.jpg
+106.jpg
+24810.jpg
+16399.jpg
+1604.jpg
+18337.jpg
+17449.jpg
+26877.jpg
+1946.jpg
+3436.jpg
+11131.jpg
+9760.jpg
+5459.jpg
+5926.jpg
+20143.jpg
+26940.jpg
+28087.jpg
+29904.jpg
+21817.jpg
+27197.jpg
+28651.jpg
+17918.jpg
+10915.jpg
+9908.jpg
+21403.jpg
+10444.jpg
+15781.jpg
+25932.jpg
+22619.jpg
+14012.jpg
+13553.jpg
+16528.jpg
+16602.jpg
+10202.jpg
+14472.jpg
+25818.jpg
+24034.jpg
+5933.jpg
+26495.jpg
+13238.jpg
+9124.jpg
+22400.jpg
+23623.jpg
+26847.jpg
+11461.jpg
+891.jpg
+7921.jpg
+29962.jpg
+24994.jpg
+27229.jpg
+6276.jpg
+7067.jpg
+29453.jpg
+28676.jpg
+9860.jpg
+712.jpg
+2867.jpg
+13423.jpg
+27676.jpg
+20057.jpg
+29363.jpg
+19500.jpg
+20595.jpg
+19695.jpg
+1092.jpg
+2370.jpg
+1523.jpg
+17654.jpg
+8745.jpg
+2898.jpg
+21908.jpg
+16850.jpg
+27916.jpg
+28850.jpg
+4968.jpg
+26840.jpg
+422.jpg
+1567.jpg
+10630.jpg
+8700.jpg
+433.jpg
+27940.jpg
+5226.jpg
+23736.jpg
+26273.jpg
+20076.jpg
+5257.jpg
+16171.jpg
+22350.jpg
+6658.jpg
+25464.jpg
+7422.jpg
+24162.jpg
+734.jpg
+12567.jpg
+6071.jpg
+16204.jpg
+15794.jpg
+18442.jpg
+12242.jpg
+8471.jpg
+6051.jpg
+25947.jpg
+1924.jpg
+26053.jpg
+19230.jpg
+10320.jpg
+26511.jpg
+1346.jpg
+5462.jpg
+1616.jpg
+24474.jpg
+791.jpg
+26529.jpg
+23916.jpg
+9119.jpg
+8676.jpg
+17046.jpg
+2754.jpg
+9191.jpg
+9561.jpg
+2208.jpg
+21013.jpg
+2050.jpg
+26808.jpg
+9466.jpg
+21237.jpg
+11906.jpg
+17666.jpg
+7826.jpg
+18620.jpg
+19175.jpg
+10597.jpg
+18607.jpg
+29170.jpg
+10452.jpg
+10107.jpg
+27203.jpg
+4782.jpg
+14665.jpg
+29206.jpg
+5864.jpg
+10712.jpg
+12201.jpg
+1439.jpg
+13698.jpg
+8410.jpg
+8930.jpg
+8545.jpg
+8943.jpg
+5168.jpg
+20970.jpg
+20190.jpg
+10757.jpg
+28750.jpg
+1618.jpg
+20140.jpg
+5262.jpg
+17851.jpg
+3660.jpg
+6198.jpg
+10590.jpg
+27822.jpg
+10762.jpg
+4566.jpg
+961.jpg
+28274.jpg
+26910.jpg
+5821.jpg
+1374.jpg
+6446.jpg
+23794.jpg
+21090.jpg
+23272.jpg
+12132.jpg
+4611.jpg
+7234.jpg
+577.jpg
+27155.jpg
+29582.jpg
+9183.jpg
+27437.jpg
+11251.jpg
+219.jpg
+17194.jpg
+25525.jpg
+6441.jpg
+16919.jpg
+8695.jpg
+1506.jpg
+13838.jpg
+5617.jpg
+24424.jpg
+15392.jpg
+12692.jpg
+5384.jpg
+15030.jpg
+6119.jpg
+389.jpg
+7948.jpg
+1936.jpg
+14733.jpg
+2345.jpg
+1160.jpg
+15255.jpg
+3198.jpg
+7833.jpg
+11485.jpg
+27691.jpg
+18203.jpg
+18091.jpg
+8953.jpg
+11793.jpg
+2533.jpg
+27590.jpg
+11525.jpg
+23716.jpg
+2770.jpg
+28212.jpg
+6207.jpg
+25924.jpg
+23806.jpg
+13098.jpg
+2555.jpg
+15674.jpg
+19577.jpg
+289.jpg
+6434.jpg
+21001.jpg
+9968.jpg
+9477.jpg
+5872.jpg
+24575.jpg
+18730.jpg
+146.jpg
+8678.jpg
+28075.jpg
+15494.jpg
+27775.jpg
+16211.jpg
+9967.jpg
+2332.jpg
+4072.jpg
+29113.jpg
+6788.jpg
+25918.jpg
+3146.jpg
+14104.jpg
+24918.jpg
+20245.jpg
+5065.jpg
+393.jpg
+25104.jpg
+20941.jpg
+12829.jpg
+29848.jpg
+3234.jpg
+2364.jpg
+19984.jpg
+14573.jpg
+25572.jpg
+29247.jpg
+21999.jpg
+11852.jpg
+23914.jpg
+19714.jpg
+13652.jpg
+1278.jpg
+7166.jpg
+8111.jpg
+26404.jpg
+15783.jpg
+24519.jpg
+16297.jpg
+27543.jpg
+28303.jpg
+7906.jpg
+26691.jpg
+70.jpg
+15663.jpg
+9613.jpg
+17874.jpg
+16710.jpg
+28977.jpg
+27961.jpg
+2302.jpg
+7319.jpg
+1681.jpg
+9633.jpg
+20209.jpg
+28121.jpg
+10231.jpg
+20667.jpg
+2002.jpg
+20075.jpg
+27976.jpg
+1359.jpg
+7697.jpg
+29878.jpg
+9299.jpg
+2084.jpg
+11192.jpg
+15031.jpg
+1014.jpg
+9525.jpg
+17585.jpg
+27342.jpg
+11720.jpg
+24340.jpg
+10282.jpg
+12640.jpg
+20838.jpg
+8074.jpg
+26422.jpg
+27268.jpg
+7654.jpg
+12161.jpg
+4172.jpg
+3677.jpg
+27315.jpg
+8739.jpg
+4639.jpg
+1837.jpg
+2716.jpg
+28112.jpg
+12318.jpg
+27542.jpg
+10236.jpg
+29297.jpg
+23312.jpg
+26633.jpg
+28350.jpg
+29431.jpg
+23924.jpg
+6570.jpg
+1575.jpg
+10576.jpg
+25038.jpg
+18799.jpg
+8894.jpg
+24648.jpg
+21075.jpg
+16616.jpg
+12041.jpg
+21319.jpg
+29758.jpg
+2277.jpg
+27044.jpg
+19723.jpg
+16167.jpg
+2535.jpg
+9117.jpg
+2841.jpg
+28405.jpg
+10363.jpg
+8621.jpg
+13672.jpg
+22737.jpg
+28872.jpg
+29056.jpg
+24617.jpg
+2771.jpg
+23332.jpg
+27877.jpg
+26883.jpg
+22482.jpg
+7945.jpg
+10838.jpg
+24960.jpg
+11952.jpg
+19542.jpg
+27747.jpg
+19403.jpg
+13521.jpg
+28968.jpg
+3174.jpg
+21630.jpg
+2131.jpg
+5799.jpg
+16281.jpg
+5279.jpg
+7529.jpg
+27013.jpg
+3764.jpg
+20063.jpg
+29303.jpg
+5483.jpg
+10690.jpg
+28060.jpg
+29125.jpg
+17106.jpg
+16722.jpg
+20310.jpg
+21450.jpg
+25770.jpg
+23870.jpg
+14708.jpg
+7804.jpg
+4667.jpg
+14084.jpg
+22919.jpg
+11497.jpg
+2463.jpg
+29656.jpg
+16240.jpg
+26153.jpg
+24398.jpg
+17239.jpg
+10566.jpg
+29672.jpg
+7205.jpg
+28609.jpg
+13994.jpg
+18049.jpg
+26071.jpg
+26705.jpg
+12726.jpg
+7108.jpg
+17788.jpg
+6130.jpg
+25836.jpg
+13293.jpg
+2407.jpg
+522.jpg
+16688.jpg
+21419.jpg
+24774.jpg
+22581.jpg
+3053.jpg
+5056.jpg
+8580.jpg
+13764.jpg
+1390.jpg
+9239.jpg
+14292.jpg
+2625.jpg
+774.jpg
+21977.jpg
+27316.jpg
+16242.jpg
+5343.jpg
+20498.jpg
+7261.jpg
+371.jpg
+8942.jpg
+1868.jpg
+5005.jpg
+15.jpg
+15858.jpg
+29983.jpg
+24335.jpg
+14655.jpg
+10052.jpg
+13676.jpg
+8498.jpg
+20186.jpg
+13298.jpg
+135.jpg
+13881.jpg
+746.jpg
+7928.jpg
+29328.jpg
+23018.jpg
+21793.jpg
+25805.jpg
+10534.jpg
+18912.jpg
+5812.jpg
+9141.jpg
+2714.jpg
+29703.jpg
+16126.jpg
+29060.jpg
+17441.jpg
+4052.jpg
+22271.jpg
+23900.jpg
+12012.jpg
+22911.jpg
+18237.jpg
+29005.jpg
+27919.jpg
+28216.jpg
+24770.jpg
+20807.jpg
+28761.jpg
+9288.jpg
+2782.jpg
+4513.jpg
+27829.jpg
+8063.jpg
+8441.jpg
+3780.jpg
+290.jpg
+18387.jpg
+3232.jpg
+10059.jpg
+23132.jpg
+25931.jpg
+20835.jpg
+13074.jpg
+6801.jpg
+27528.jpg
+614.jpg
+10094.jpg
+1790.jpg
+6686.jpg
+3959.jpg
+19379.jpg
+4091.jpg
+9660.jpg
+14212.jpg
+10631.jpg
+22957.jpg
+22178.jpg
+28449.jpg
+2947.jpg
+18349.jpg
+10843.jpg
+7359.jpg
+22198.jpg
+23710.jpg
+15512.jpg
+9948.jpg
+4476.jpg
+1270.jpg
+29352.jpg
+5739.jpg
+29157.jpg
+14260.jpg
+23478.jpg
+26300.jpg
+19289.jpg
+26159.jpg
+8670.jpg
+18849.jpg
+9541.jpg
+24914.jpg
+13875.jpg
+20845.jpg
+16158.jpg
+10835.jpg
+10932.jpg
+18908.jpg
+28678.jpg
+29924.jpg
+9725.jpg
+4963.jpg
+21898.jpg
+7059.jpg
+3495.jpg
+246.jpg
+1114.jpg
+17967.jpg
+27261.jpg
+23952.jpg
+865.jpg
+4842.jpg
+8993.jpg
+17853.jpg
+29671.jpg
+6417.jpg
+15435.jpg
+3642.jpg
+27891.jpg
+17992.jpg
+13515.jpg
+9618.jpg
+12334.jpg
+20803.jpg
+29437.jpg
+16122.jpg
+28834.jpg
+5231.jpg
+11273.jpg
+12180.jpg
+24458.jpg
+27289.jpg
+18308.jpg
+2920.jpg
+14350.jpg
+8862.jpg
+14279.jpg
+17814.jpg
+28099.jpg
+7505.jpg
+28538.jpg
+16928.jpg
+8075.jpg
+6342.jpg
+22950.jpg
+19043.jpg
+1948.jpg
+14482.jpg
+14072.jpg
+4499.jpg
+443.jpg
+29149.jpg
+26934.jpg
+21594.jpg
+5048.jpg
+15048.jpg
+4977.jpg
+3957.jpg
+12393.jpg
+2766.jpg
+411.jpg
+21886.jpg
+10959.jpg
+16805.jpg
+17086.jpg
+5719.jpg
+4300.jpg
+28663.jpg
+24730.jpg
+10233.jpg
+12511.jpg
+3916.jpg
+4168.jpg
+1768.jpg
+5592.jpg
+29346.jpg
+12838.jpg
+11032.jpg
+24385.jpg
+6255.jpg
+14328.jpg
+9787.jpg
+5590.jpg
+8564.jpg
+17942.jpg
+7717.jpg
+20425.jpg
+15058.jpg
+11511.jpg
+16542.jpg
+28580.jpg
+3138.jpg
+243.jpg
+23333.jpg
+1764.jpg
+8430.jpg
+29831.jpg
+6643.jpg
+14632.jpg
+18636.jpg
+27687.jpg
+8660.jpg
+18566.jpg
+14517.jpg
+1304.jpg
+26819.jpg
+3521.jpg
+16601.jpg
+14139.jpg
+3919.jpg
+16744.jpg
+16093.jpg
+27921.jpg
+27654.jpg
+8890.jpg
+24361.jpg
+10482.jpg
+20298.jpg
+18740.jpg
+10044.jpg
+17052.jpg
+13528.jpg
+6862.jpg
+1008.jpg
+10286.jpg
+15669.jpg
+9411.jpg
+27179.jpg
+22863.jpg
+7244.jpg
+24919.jpg
+19104.jpg
+26179.jpg
+22869.jpg
+5144.jpg
+4117.jpg
+23859.jpg
+19245.jpg
+22318.jpg
+20780.jpg
+25293.jpg
+15838.jpg
+20921.jpg
+2053.jpg
+25937.jpg
+26680.jpg
+13922.jpg
+14494.jpg
+12749.jpg
+12135.jpg
+18505.jpg
+26864.jpg
+24692.jpg
+12937.jpg
+24462.jpg
+22630.jpg
+27418.jpg
+3359.jpg
+3152.jpg
+24324.jpg
+17310.jpg
+8302.jpg
+2036.jpg
+26609.jpg
+7466.jpg
+8097.jpg
+26265.jpg
+2304.jpg
+17122.jpg
+22196.jpg
+10941.jpg
+2500.jpg
+7232.jpg
+18581.jpg
+19750.jpg
+123.jpg
+4157.jpg
+5840.jpg
+28427.jpg
+1425.jpg
+28370.jpg
+22668.jpg
+4080.jpg
+19039.jpg
+15388.jpg
+11224.jpg
+11160.jpg
+7841.jpg
+23221.jpg
+13358.jpg
+8766.jpg
+20338.jpg
+23685.jpg
+4613.jpg
+25117.jpg
+28838.jpg
+6954.jpg
+11384.jpg
+12383.jpg
+28754.jpg
+13770.jpg
+8569.jpg
+28818.jpg
+29715.jpg
+28223.jpg
+12847.jpg
+20520.jpg
+12771.jpg
+15973.jpg
+447.jpg
+21275.jpg
+440.jpg
+516.jpg
+23172.jpg
+22301.jpg
+25257.jpg
+3157.jpg
+15121.jpg
+32.jpg
+11208.jpg
+17982.jpg
+14624.jpg
+20559.jpg
+27475.jpg
+17416.jpg
+7931.jpg
+25499.jpg
+25905.jpg
+7479.jpg
+1204.jpg
+5565.jpg
+23841.jpg
+26685.jpg
+2643.jpg
+18865.jpg
+109.jpg
+25976.jpg
+7257.jpg
+25236.jpg
+15229.jpg
+4870.jpg
+18696.jpg
+14272.jpg
+95.jpg
+13863.jpg
+18549.jpg
+11927.jpg
+17617.jpg
+4143.jpg
+29061.jpg
+357.jpg
+12663.jpg
+24673.jpg
+12159.jpg
+22775.jpg
+7193.jpg
+17400.jpg
+1942.jpg
+24368.jpg
+14414.jpg
+25341.jpg
+1731.jpg
+15849.jpg
+25891.jpg
+17780.jpg
+24256.jpg
+9910.jpg
+10650.jpg
+3974.jpg
+17733.jpg
+24615.jpg
+25800.jpg
+27260.jpg
+11745.jpg
+26595.jpg
+26534.jpg
+10037.jpg
+13948.jpg
+29187.jpg
+16666.jpg
+4495.jpg
+18081.jpg
+6040.jpg
+23980.jpg
+18278.jpg
+25522.jpg
+15866.jpg
+28345.jpg
+17383.jpg
+6941.jpg
+23773.jpg
+17113.jpg
+17835.jpg
+29982.jpg
+5611.jpg
+23704.jpg
+13072.jpg
+21405.jpg
+7799.jpg
+9284.jpg
+14700.jpg
+17099.jpg
+16393.jpg
+416.jpg
+8473.jpg
+3654.jpg
+23819.jpg
+20432.jpg
+5717.jpg
+15576.jpg
+26112.jpg
+3303.jpg
+9610.jpg
+23553.jpg
+10736.jpg
+23351.jpg
+15712.jpg
+17802.jpg
+9029.jpg
+28721.jpg
+16217.jpg
+24412.jpg
+10883.jpg
+5014.jpg
+4375.jpg
+4814.jpg
+13096.jpg
+20693.jpg
+11105.jpg
+28629.jpg
+2231.jpg
+6189.jpg
+23922.jpg
+11476.jpg
+27817.jpg
+3819.jpg
+19365.jpg
+14761.jpg
+1846.jpg
+13410.jpg
+3466.jpg
+12068.jpg
+7723.jpg
+8119.jpg
+10927.jpg
+13508.jpg
+1034.jpg
+29108.jpg
+22738.jpg
+10102.jpg
+14605.jpg
+6749.jpg
+5143.jpg
+3391.jpg
+7842.jpg
+883.jpg
+4665.jpg
+2900.jpg
+9564.jpg
+20176.jpg
+1398.jpg
+28899.jpg
+25623.jpg
+21845.jpg
+11141.jpg
+22990.jpg
+27870.jpg
+1910.jpg
+23127.jpg
+51.jpg
+7824.jpg
+29179.jpg
+21028.jpg
+24518.jpg
+16597.jpg
+23414.jpg
+16630.jpg
+21208.jpg
+8677.jpg
+21946.jpg
+15694.jpg
+28276.jpg
+10349.jpg
+16739.jpg
+19368.jpg
+11568.jpg
+16715.jpg
+15179.jpg
+23429.jpg
+15475.jpg
+3034.jpg
+17071.jpg
+928.jpg
+13473.jpg
+16366.jpg
+18165.jpg
+9808.jpg
+17010.jpg
+22538.jpg
+28710.jpg
+15035.jpg
+27613.jpg
+441.jpg
+6037.jpg
+25797.jpg
+15796.jpg
+1685.jpg
+5599.jpg
+5322.jpg
+22972.jpg
+13696.jpg
+3164.jpg
+3071.jpg
+11844.jpg
+8167.jpg
+24036.jpg
+21725.jpg
+11074.jpg
+11579.jpg
+7007.jpg
+21461.jpg
+8791.jpg
+25865.jpg
+20312.jpg
+20969.jpg
+23828.jpg
+11538.jpg
+22416.jpg
+6165.jpg
+22567.jpg
+12410.jpg
+29953.jpg
+2572.jpg
+13885.jpg
+5061.jpg
+18586.jpg
+20832.jpg
+24264.jpg
+13045.jpg
+9085.jpg
+2697.jpg
+11895.jpg
+18385.jpg
+28215.jpg
+29812.jpg
+29898.jpg
+24273.jpg
+24098.jpg
+26183.jpg
+1046.jpg
+7386.jpg
+23531.jpg
+22638.jpg
+28705.jpg
+13494.jpg
+9319.jpg
+16147.jpg
+20041.jpg
+1268.jpg
+6115.jpg
+11768.jpg
+2815.jpg
+1539.jpg
+25620.jpg
+16346.jpg
+20308.jpg
+12218.jpg
+8864.jpg
+26531.jpg
+11934.jpg
+561.jpg
+15701.jpg
+27110.jpg
+7307.jpg
+7960.jpg
+4112.jpg
+16326.jpg
+4213.jpg
+240.jpg
+17681.jpg
+20488.jpg
+7226.jpg
+1354.jpg
+28302.jpg
+10426.jpg
+3628.jpg
+25846.jpg
+4368.jpg
+10907.jpg
+22517.jpg
+22138.jpg
+13431.jpg
+4784.jpg
+25101.jpg
+11063.jpg
+22459.jpg
+11987.jpg
+9501.jpg
+16081.jpg
+28740.jpg
+16108.jpg
+29942.jpg
+8133.jpg
+17829.jpg
+26941.jpg
+22115.jpg
+7167.jpg
+23635.jpg
+7382.jpg
+9438.jpg
+11050.jpg
+16953.jpg
+3217.jpg
+15869.jpg
+8852.jpg
+7805.jpg
+22915.jpg
+20915.jpg
+6355.jpg
+20418.jpg
+18621.jpg
+4123.jpg
+2150.jpg
+27306.jpg
+430.jpg
+13852.jpg
+17686.jpg
+2755.jpg
+2637.jpg
+10148.jpg
+14040.jpg
+17327.jpg
+2013.jpg
+21837.jpg
+28167.jpg
+16644.jpg
+505.jpg
+24688.jpg
+21932.jpg
+26760.jpg
+29718.jpg
+3583.jpg
+22929.jpg
+16763.jpg
+802.jpg
+18302.jpg
+26803.jpg
+7377.jpg
+9594.jpg
+11995.jpg
+588.jpg
+13375.jpg
+1173.jpg
+14447.jpg
+20026.jpg
+7583.jpg
+17304.jpg
+13270.jpg
+12972.jpg
+18788.jpg
+17611.jpg
+15974.jpg
+21117.jpg
+25717.jpg
+24680.jpg
+3560.jpg
+1100.jpg
+22410.jpg
+7896.jpg
+24056.jpg
+29250.jpg
+26719.jpg
+23415.jpg
+8490.jpg
+1087.jpg
+16098.jpg
+14327.jpg
+23738.jpg
+26658.jpg
+5393.jpg
+26732.jpg
+6944.jpg
+5327.jpg
+397.jpg
+7042.jpg
+18854.jpg
+3118.jpg
+2573.jpg
+8903.jpg
+8638.jpg
+24330.jpg
+27642.jpg
+4726.jpg
+2247.jpg
+23110.jpg
+15684.jpg
+15564.jpg
+1791.jpg
+2542.jpg
+10988.jpg
+6648.jpg
+10373.jpg
+15335.jpg
+5104.jpg
+5050.jpg
+3211.jpg
+15106.jpg
+17273.jpg
+13554.jpg
+26731.jpg
+1852.jpg
+28837.jpg
+16019.jpg
+4103.jpg
+16774.jpg
+14342.jpg
+24405.jpg
+8609.jpg
+29526.jpg
+9928.jpg
+2303.jpg
+25588.jpg
+16102.jpg
+5249.jpg
+16096.jpg
+8859.jpg
+26257.jpg
+2915.jpg
+28311.jpg
+17961.jpg
+22760.jpg
+14097.jpg
+11645.jpg
+16196.jpg
+22413.jpg
+20355.jpg
+11685.jpg
+17998.jpg
+13777.jpg
+27968.jpg
+7128.jpg
+1348.jpg
+7384.jpg
+3709.jpg
+28669.jpg
+26125.jpg
+18016.jpg
+20659.jpg
+5018.jpg
+29397.jpg
+1786.jpg
+25276.jpg
+19975.jpg
+7506.jpg
+16522.jpg
+8901.jpg
+11912.jpg
+9184.jpg
+27286.jpg
+7546.jpg
+22936.jpg
+17933.jpg
+12536.jpg
+17189.jpg
+619.jpg
+24561.jpg
+28022.jpg
+18376.jpg
+13160.jpg
+26478.jpg
+14511.jpg
+6758.jpg
+12156.jpg
+8258.jpg
+10225.jpg
+4477.jpg
+5998.jpg
+25845.jpg
+10203.jpg
+7919.jpg
+20027.jpg
+11316.jpg
+27082.jpg
+21228.jpg
+22166.jpg
+28878.jpg
+1405.jpg
+24935.jpg
+14013.jpg
+509.jpg
+15215.jpg
+20043.jpg
+6362.jpg
+28327.jpg
+29556.jpg
+16485.jpg
+15092.jpg
+6612.jpg
+11335.jpg
+4273.jpg
+22180.jpg
+11670.jpg
+8764.jpg
+8121.jpg
+7527.jpg
+22232.jpg
+24557.jpg
+28544.jpg
+27134.jpg
+29915.jpg
+20825.jpg
+18546.jpg
+28487.jpg
+16510.jpg
+13717.jpg
+5675.jpg
+8694.jpg
+14614.jpg
+5764.jpg
+24656.jpg
+20324.jpg
+25765.jpg
+16470.jpg
+340.jpg
+5073.jpg
+16219.jpg
+5447.jpg
+21649.jpg
+14971.jpg
+15508.jpg
+28812.jpg
+13766.jpg
+12083.jpg
+1680.jpg
+18351.jpg
+19391.jpg
+16746.jpg
+1231.jpg
+18032.jpg
+4024.jpg
+8516.jpg
+11609.jpg
+21807.jpg
+10396.jpg
+9057.jpg
+25156.jpg
+6510.jpg
+18102.jpg
+2309.jpg
+28687.jpg
+13343.jpg
+7871.jpg
+11440.jpg
+23027.jpg
+21492.jpg
+17041.jpg
+23961.jpg
+22099.jpg
+1856.jpg
+28625.jpg
+6472.jpg
+24358.jpg
+20753.jpg
+708.jpg
+27323.jpg
+21690.jpg
+13428.jpg
+14566.jpg
+11464.jpg
+18739.jpg
+13320.jpg
+13192.jpg
+21487.jpg
+24467.jpg
+11928.jpg
+5807.jpg
+8216.jpg
+5932.jpg
+3324.jpg
+13408.jpg
+1890.jpg
+25625.jpg
+25151.jpg
+6714.jpg
+25457.jpg
+24415.jpg
+16402.jpg
+29743.jpg
+925.jpg
+19471.jpg
+10041.jpg
+12811.jpg
+25243.jpg
+19295.jpg
+11614.jpg
+28666.jpg
+24923.jpg
+19780.jpg
+20937.jpg
+22435.jpg
+29181.jpg
+5162.jpg
+8309.jpg
+22249.jpg
+18595.jpg
+2404.jpg
+22516.jpg
+19006.jpg
+25654.jpg
+15638.jpg
+29116.jpg
+13362.jpg
+10412.jpg
+3374.jpg
+25148.jpg
+5873.jpg
+20583.jpg
+10209.jpg
+18138.jpg
+23136.jpg
+21160.jpg
+4155.jpg
+20292.jpg
+25191.jpg
+18956.jpg
+9487.jpg
+567.jpg
+17495.jpg
+9321.jpg
+26889.jpg
+4601.jpg
+9147.jpg
+5742.jpg
+6607.jpg
+17045.jpg
+13482.jpg
+14308.jpg
+3491.jpg
+15660.jpg
+15194.jpg
+1080.jpg
+14289.jpg
+11010.jpg
+4475.jpg
+27069.jpg
+579.jpg
+14493.jpg
+8405.jpg
+6175.jpg
+7509.jpg
+22058.jpg
+3611.jpg
+18712.jpg
+8727.jpg
+26319.jpg
+6921.jpg
+1061.jpg
+23367.jpg
+18496.jpg
+13112.jpg
+23124.jpg
+2106.jpg
+7800.jpg
+24552.jpg
+3867.jpg
+10086.jpg
+24165.jpg
+23365.jpg
+16920.jpg
+18805.jpg
+15696.jpg
+25945.jpg
+29625.jpg
+24534.jpg
+8827.jpg
+5564.jpg
+25202.jpg
+2687.jpg
+25492.jpg
+26358.jpg
+7311.jpg
+12810.jpg
+10124.jpg
+11769.jpg
+29681.jpg
+9684.jpg
+5121.jpg
+16031.jpg
+5555.jpg
+29335.jpg
+4371.jpg
+8572.jpg
+7412.jpg
+12618.jpg
+9628.jpg
+3722.jpg
+29649.jpg
+10416.jpg
+19021.jpg
+28069.jpg
+12322.jpg
+5380.jpg
+20428.jpg
+18427.jpg
+26302.jpg
+14330.jpg
+13707.jpg
+11680.jpg
+9203.jpg
+8657.jpg
+6602.jpg
+7688.jpg
+15994.jpg
+6712.jpg
+20618.jpg
+29588.jpg
+2029.jpg
+13811.jpg
+4085.jpg
+10934.jpg
+18769.jpg
+14895.jpg
+13636.jpg
+17657.jpg
+22214.jpg
+21009.jpg
+326.jpg
+7976.jpg
+29177.jpg
+6313.jpg
+6321.jpg
+18422.jpg
+2608.jpg
+11858.jpg
+28083.jpg
+13581.jpg
+4270.jpg
+1582.jpg
+27424.jpg
+18906.jpg
+4684.jpg
diff --git a/fetch_data/val_shuffled.flist b/fetch_data/val_shuffled.flist
new file mode 100644
index 00000000..0e4aeb45
--- /dev/null
+++ b/fetch_data/val_shuffled.flist
@@ -0,0 +1,2000 @@
+25531.jpg
+15329.jpg
+23340.jpg
+29014.jpg
+29920.jpg
+193.jpg
+24466.jpg
+29690.jpg
+27615.jpg
+3813.jpg
+25896.jpg
+27553.jpg
+5825.jpg
+16241.jpg
+8748.jpg
+14401.jpg
+26190.jpg
+2806.jpg
+28502.jpg
+22740.jpg
+6243.jpg
+20684.jpg
+4633.jpg
+18533.jpg
+5975.jpg
+3011.jpg
+9515.jpg
+21015.jpg
+2675.jpg
+27938.jpg
+4139.jpg
+5264.jpg
+19139.jpg
+22291.jpg
+13532.jpg
+22967.jpg
+16879.jpg
+14858.jpg
+13361.jpg
+20503.jpg
+4918.jpg
+7673.jpg
+24784.jpg
+9804.jpg
+29194.jpg
+14571.jpg
+25455.jpg
+20215.jpg
+22844.jpg
+10310.jpg
+11117.jpg
+6423.jpg
+24124.jpg
+5334.jpg
+14209.jpg
+10580.jpg
+20448.jpg
+25933.jpg
+10475.jpg
+29401.jpg
+14880.jpg
+29572.jpg
+24299.jpg
+14849.jpg
+15898.jpg
+26683.jpg
+27901.jpg
+22515.jpg
+14501.jpg
+4482.jpg
+12281.jpg
+15377.jpg
+3588.jpg
+2624.jpg
+7830.jpg
+28490.jpg
+18928.jpg
+18354.jpg
+5509.jpg
+28113.jpg
+25761.jpg
+14300.jpg
+20736.jpg
+23043.jpg
+11544.jpg
+7427.jpg
+9484.jpg
+4699.jpg
+2323.jpg
+7464.jpg
+6133.jpg
+22237.jpg
+18272.jpg
+7266.jpg
+19435.jpg
+10453.jpg
+1668.jpg
+9416.jpg
+29836.jpg
+22086.jpg
+22660.jpg
+10523.jpg
+13830.jpg
+4271.jpg
+26168.jpg
+26149.jpg
+27779.jpg
+19789.jpg
+17847.jpg
+15977.jpg
+3111.jpg
+20933.jpg
+4358.jpg
+13418.jpg
+899.jpg
+25720.jpg
+20882.jpg
+28191.jpg
+15554.jpg
+14915.jpg
+6998.jpg
+8137.jpg
+13849.jpg
+26971.jpg
+22313.jpg
+11590.jpg
+5464.jpg
+18972.jpg
+25224.jpg
+3629.jpg
+12138.jpg
+16128.jpg
+16117.jpg
+21457.jpg
+23551.jpg
+6913.jpg
+5430.jpg
+27417.jpg
+2623.jpg
+19216.jpg
+24082.jpg
+19648.jpg
+9472.jpg
+21163.jpg
+26236.jpg
+10361.jpg
+12007.jpg
+4202.jpg
+15381.jpg
+13787.jpg
+7532.jpg
+18609.jpg
+18061.jpg
+14218.jpg
+20203.jpg
+18705.jpg
+1677.jpg
+16723.jpg
+963.jpg
+22129.jpg
+282.jpg
+27726.jpg
+19544.jpg
+3346.jpg
+10322.jpg
+22343.jpg
+19820.jpg
+9857.jpg
+21429.jpg
+7572.jpg
+1306.jpg
+2093.jpg
+4598.jpg
+26177.jpg
+9056.jpg
+356.jpg
+4671.jpg
+6431.jpg
+15401.jpg
+13996.jpg
+28413.jpg
+22883.jpg
+23445.jpg
+28516.jpg
+15707.jpg
+5553.jpg
+16377.jpg
+29755.jpg
+14616.jpg
+4220.jpg
+22238.jpg
+18952.jpg
+4430.jpg
+29545.jpg
+28783.jpg
+15916.jpg
+3460.jpg
+18230.jpg
+20135.jpg
+11333.jpg
+7491.jpg
+29011.jpg
+12713.jpg
+24662.jpg
+5401.jpg
+26238.jpg
+25821.jpg
+28300.jpg
+13740.jpg
+11859.jpg
+8160.jpg
+22532.jpg
+15430.jpg
+18362.jpg
+20993.jpg
+8384.jpg
+286.jpg
+21483.jpg
+2673.jpg
+28270.jpg
+28232.jpg
+8331.jpg
+29215.jpg
+3524.jpg
+7254.jpg
+6949.jpg
+10772.jpg
+467.jpg
+15709.jpg
+28840.jpg
+13808.jpg
+24862.jpg
+21129.jpg
+24070.jpg
+29012.jpg
+11463.jpg
+25778.jpg
+11256.jpg
+21134.jpg
+19588.jpg
+11854.jpg
+25938.jpg
+21367.jpg
+11202.jpg
+14263.jpg
+5094.jpg
+16302.jpg
+8830.jpg
+9914.jpg
+29900.jpg
+12763.jpg
+14175.jpg
+26744.jpg
+19563.jpg
+6399.jpg
+17558.jpg
+6422.jpg
+16078.jpg
+10228.jpg
+29348.jpg
+13219.jpg
+12784.jpg
+23063.jpg
+13171.jpg
+756.jpg
+7418.jpg
+1453.jpg
+17448.jpg
+9686.jpg
+8374.jpg
+8182.jpg
+120.jpg
+23305.jpg
+18784.jpg
+738.jpg
+6833.jpg
+20808.jpg
+13585.jpg
+25789.jpg
+4947.jpg
+20558.jpg
+20232.jpg
+11583.jpg
+29018.jpg
+1721.jpg
+24428.jpg
+12097.jpg
+9280.jpg
+12754.jpg
+29081.jpg
+25676.jpg
+1023.jpg
+17688.jpg
+2167.jpg
+4792.jpg
+25381.jpg
+19925.jpg
+16678.jpg
+3046.jpg
+25252.jpg
+1695.jpg
+18404.jpg
+27455.jpg
+13691.jpg
+27845.jpg
+7334.jpg
+25082.jpg
+14996.jpg
+22447.jpg
+29347.jpg
+9413.jpg
+22308.jpg
+26559.jpg
+20881.jpg
+3564.jpg
+26643.jpg
+28243.jpg
+17999.jpg
+26505.jpg
+677.jpg
+28219.jpg
+17818.jpg
+9004.jpg
+7249.jpg
+16685.jpg
+10047.jpg
+13303.jpg
+18929.jpg
+19734.jpg
+28670.jpg
+22307.jpg
+13178.jpg
+172.jpg
+5341.jpg
+7401.jpg
+15288.jpg
+23114.jpg
+28885.jpg
+15279.jpg
+22724.jpg
+18288.jpg
+7453.jpg
+2843.jpg
+27171.jpg
+22622.jpg
+14886.jpg
+10154.jpg
+17083.jpg
+1913.jpg
+13228.jpg
+13530.jpg
+18443.jpg
+24159.jpg
+15404.jpg
+8916.jpg
+22629.jpg
+7719.jpg
+9653.jpg
+9609.jpg
+1287.jpg
+29216.jpg
+21906.jpg
+11045.jpg
+7118.jpg
+18580.jpg
+16560.jpg
+22027.jpg
+12133.jpg
+17932.jpg
+13230.jpg
+22613.jpg
+10241.jpg
+174.jpg
+11495.jpg
+15549.jpg
+3293.jpg
+29869.jpg
+21803.jpg
+25196.jpg
+15272.jpg
+20214.jpg
+9175.jpg
+7568.jpg
+24834.jpg
+7540.jpg
+11819.jpg
+17506.jpg
+23675.jpg
+15816.jpg
+12506.jpg
+6857.jpg
+12457.jpg
+12144.jpg
+19015.jpg
+29024.jpg
+19876.jpg
+18940.jpg
+25853.jpg
+22952.jpg
+8640.jpg
+81.jpg
+26222.jpg
+22492.jpg
+1320.jpg
+549.jpg
+23981.jpg
+22757.jpg
+16025.jpg
+4764.jpg
+3442.jpg
+22645.jpg
+2538.jpg
+9923.jpg
+17080.jpg
+27639.jpg
+7757.jpg
+1865.jpg
+11702.jpg
+9988.jpg
+11429.jpg
+24046.jpg
+7182.jpg
+26538.jpg
+22101.jpg
+16113.jpg
+5721.jpg
+14.jpg
+17520.jpg
+12064.jpg
+2669.jpg
+26202.jpg
+12678.jpg
+25649.jpg
+23368.jpg
+28016.jpg
+9023.jpg
+15266.jpg
+23947.jpg
+20593.jpg
+22652.jpg
+16595.jpg
+1389.jpg
+6812.jpg
+16566.jpg
+3424.jpg
+22431.jpg
+1082.jpg
+3361.jpg
+13932.jpg
+3239.jpg
+468.jpg
+2183.jpg
+7139.jpg
+24592.jpg
+17391.jpg
+20416.jpg
+10713.jpg
+22022.jpg
+436.jpg
+24084.jpg
+29142.jpg
+8378.jpg
+11537.jpg
+23782.jpg
+21782.jpg
+17535.jpg
+27709.jpg
+5538.jpg
+17420.jpg
+21676.jpg
+5254.jpg
+22653.jpg
+26492.jpg
+26919.jpg
+29521.jpg
+19681.jpg
+27223.jpg
+23891.jpg
+5179.jpg
+5942.jpg
+17302.jpg
+22080.jpg
+24780.jpg
+6248.jpg
+1481.jpg
+19027.jpg
+27960.jpg
+1579.jpg
+11347.jpg
+12547.jpg
+21892.jpg
+7874.jpg
+1235.jpg
+17921.jpg
+5732.jpg
+24651.jpg
+27395.jpg
+11782.jpg
+2366.jpg
+479.jpg
+12541.jpg
+448.jpg
+18664.jpg
+3022.jpg
+17180.jpg
+8967.jpg
+14807.jpg
+24247.jpg
+13969.jpg
+10666.jpg
+24827.jpg
+11426.jpg
+24801.jpg
+2626.jpg
+3779.jpg
+17734.jpg
+16111.jpg
+29410.jpg
+5643.jpg
+19276.jpg
+28713.jpg
+3343.jpg
+23373.jpg
+26466.jpg
+4991.jpg
+6027.jpg
+20608.jpg
+3458.jpg
+7659.jpg
+17241.jpg
+23588.jpg
+2548.jpg
+26252.jpg
+14319.jpg
+12326.jpg
+23014.jpg
+23604.jpg
+2076.jpg
+28888.jpg
+5993.jpg
+29887.jpg
+26135.jpg
+3663.jpg
+26203.jpg
+18141.jpg
+28739.jpg
+14286.jpg
+4429.jpg
+11087.jpg
+17513.jpg
+14415.jpg
+21180.jpg
+22116.jpg
+14956.jpg
+10252.jpg
+15460.jpg
+22335.jpg
+5097.jpg
+13771.jpg
+8613.jpg
+17945.jpg
+5024.jpg
+20217.jpg
+23691.jpg
+28532.jpg
+21178.jpg
+21904.jpg
+6117.jpg
+5159.jpg
+9533.jpg
+19074.jpg
+27734.jpg
+22405.jpg
+10853.jpg
+14240.jpg
+10656.jpg
+24081.jpg
+4047.jpg
+24379.jpg
+7247.jpg
+25587.jpg
+4777.jpg
+26932.jpg
+1468.jpg
+26401.jpg
+590.jpg
+4278.jpg
+15839.jpg
+7161.jpg
+21543.jpg
+2804.jpg
+24469.jpg
+24139.jpg
+18660.jpg
+2137.jpg
+24609.jpg
+4461.jpg
+16673.jpg
+22692.jpg
+23594.jpg
+9236.jpg
+11824.jpg
+17465.jpg
+24999.jpg
+638.jpg
+23385.jpg
+764.jpg
+4717.jpg
+5465.jpg
+9629.jpg
+6182.jpg
+22388.jpg
+2664.jpg
+5571.jpg
+24909.jpg
+17306.jpg
+12973.jpg
+818.jpg
+28936.jpg
+12342.jpg
+28101.jpg
+17345.jpg
+21149.jpg
+8083.jpg
+16468.jpg
+19830.jpg
+1927.jpg
+1554.jpg
+22992.jpg
+18134.jpg
+23911.jpg
+21941.jpg
+21871.jpg
+7828.jpg
+25560.jpg
+9631.jpg
+18001.jpg
+15423.jpg
+11798.jpg
+21707.jpg
+9235.jpg
+5630.jpg
+22095.jpg
+6549.jpg
+9676.jpg
+14546.jpg
+25773.jpg
+9294.jpg
+24322.jpg
+27751.jpg
+24260.jpg
+25799.jpg
+845.jpg
+24679.jpg
+5284.jpg
+18050.jpg
+19828.jpg
+20362.jpg
+15876.jpg
+28912.jpg
+17303.jpg
+26738.jpg
+21585.jpg
+8999.jpg
+7317.jpg
+2539.jpg
+20372.jpg
+24456.jpg
+23552.jpg
+27183.jpg
+22389.jpg
+7223.jpg
+19055.jpg
+12982.jpg
+19478.jpg
+643.jpg
+3267.jpg
+26195.jpg
+7574.jpg
+22295.jpg
+3837.jpg
+24897.jpg
+3733.jpg
+10328.jpg
+11049.jpg
+29357.jpg
+23448.jpg
+7019.jpg
+11533.jpg
+20732.jpg
+23677.jpg
+7138.jpg
+24074.jpg
+13256.jpg
+26778.jpg
+16966.jpg
+22481.jpg
+13330.jpg
+8087.jpg
+26310.jpg
+13574.jpg
+16716.jpg
+8919.jpg
+25432.jpg
+1598.jpg
+1358.jpg
+28377.jpg
+21416.jpg
+26576.jpg
+9316.jpg
+17838.jpg
+16924.jpg
+15176.jpg
+12327.jpg
+1488.jpg
+20981.jpg
+1086.jpg
+12617.jpg
+26182.jpg
+5492.jpg
+13014.jpg
+23080.jpg
+23999.jpg
+18689.jpg
+17330.jpg
+12477.jpg
+29045.jpg
+16419.jpg
+6459.jpg
+22605.jpg
+17518.jpg
+8386.jpg
+29428.jpg
+15181.jpg
+10156.jpg
+18419.jpg
+26698.jpg
+25678.jpg
+1249.jpg
+19943.jpg
+5747.jpg
+24409.jpg
+13388.jpg
+24077.jpg
+21781.jpg
+10288.jpg
+7489.jpg
+25634.jpg
+3836.jpg
+16512.jpg
+17040.jpg
+22890.jpg
+6171.jpg
+24588.jpg
+17755.jpg
+20649.jpg
+26003.jpg
+27583.jpg
+12175.jpg
+29636.jpg
+13122.jpg
+12230.jpg
+20668.jpg
+21200.jpg
+25556.jpg
+869.jpg
+13487.jpg
+7657.jpg
+6440.jpg
+17259.jpg
+2358.jpg
+1547.jpg
+19394.jpg
+29637.jpg
+27120.jpg
+27951.jpg
+18532.jpg
+29123.jpg
+4988.jpg
+1470.jpg
+18615.jpg
+28181.jpg
+16373.jpg
+7775.jpg
+27419.jpg
+12302.jpg
+5278.jpg
+29535.jpg
+11718.jpg
+16273.jpg
+26384.jpg
+26132.jpg
+28023.jpg
+26232.jpg
+6682.jpg
+9718.jpg
+14568.jpg
+17946.jpg
+29893.jpg
+8587.jpg
+12725.jpg
+10733.jpg
+27169.jpg
+14404.jpg
+2020.jpg
+8696.jpg
+6181.jpg
+13046.jpg
+16339.jpg
+24055.jpg
+11450.jpg
+23468.jpg
+9996.jpg
+878.jpg
+28047.jpg
+17683.jpg
+26515.jpg
+19777.jpg
+24580.jpg
+4184.jpg
+7480.jpg
+16228.jpg
+4877.jpg
+14759.jpg
+15393.jpg
+27378.jpg
+14801.jpg
+16504.jpg
+18933.jpg
+25545.jpg
+19196.jpg
+17663.jpg
+922.jpg
+3644.jpg
+18088.jpg
+8654.jpg
+3403.jpg
+2914.jpg
+25511.jpg
+17233.jpg
+6009.jpg
+13305.jpg
+25510.jpg
+26277.jpg
+22026.jpg
+1551.jpg
+22735.jpg
+6191.jpg
+11577.jpg
+14725.jpg
+12953.jpg
+7922.jpg
+22628.jpg
+19689.jpg
+10359.jpg
+15015.jpg
+24333.jpg
+5865.jpg
+7957.jpg
+12085.jpg
+4747.jpg
+7538.jpg
+11877.jpg
+8767.jpg
+788.jpg
+5369.jpg
+14385.jpg
+266.jpg
+6813.jpg
+12174.jpg
+13001.jpg
+26958.jpg
+22683.jpg
+2808.jpg
+3004.jpg
+20449.jpg
+23690.jpg
+4331.jpg
+27477.jpg
+23254.jpg
+13851.jpg
+4373.jpg
+14205.jpg
+10451.jpg
+17431.jpg
+22727.jpg
+2887.jpg
+28892.jpg
+24638.jpg
+24058.jpg
+13695.jpg
+9730.jpg
+7972.jpg
+8310.jpg
+18399.jpg
+5778.jpg
+23627.jpg
+23147.jpg
+9993.jpg
+166.jpg
+4993.jpg
+28488.jpg
+19031.jpg
+9833.jpg
+28178.jpg
+17740.jpg
+28341.jpg
+8892.jpg
+6032.jpg
+17509.jpg
+13166.jpg
+4758.jpg
+6573.jpg
+14154.jpg
+23006.jpg
+1524.jpg
+2591.jpg
+14790.jpg
+8304.jpg
+22182.jpg
+8217.jpg
+19622.jpg
+7913.jpg
+8315.jpg
+20723.jpg
+18266.jpg
+19763.jpg
+14585.jpg
+27248.jpg
+9126.jpg
+26102.jpg
+1700.jpg
+3557.jpg
+19608.jpg
+25751.jpg
+87.jpg
+6438.jpg
+14119.jpg
+22571.jpg
+23279.jpg
+19628.jpg
+19909.jpg
+2616.jpg
+4114.jpg
+9678.jpg
+13780.jpg
+8292.jpg
+6147.jpg
+12291.jpg
+16778.jpg
+8606.jpg
+13592.jpg
+5203.jpg
+19992.jpg
+19505.jpg
+24120.jpg
+8765.jpg
+24438.jpg
+16792.jpg
+19745.jpg
+23827.jpg
+3761.jpg
+7638.jpg
+10568.jpg
+14808.jpg
+5893.jpg
+29132.jpg
+8514.jpg
+13558.jpg
+4268.jpg
+19637.jpg
+26957.jpg
+15583.jpg
+15080.jpg
+10814.jpg
+18275.jpg
+5060.jpg
+21788.jpg
+11193.jpg
+1710.jpg
+5169.jpg
+13697.jpg
+13038.jpg
+7939.jpg
+3781.jpg
+14491.jpg
+28128.jpg
+23933.jpg
+22711.jpg
+5477.jpg
+23971.jpg
+7297.jpg
+17067.jpg
+8602.jpg
+26918.jpg
+4111.jpg
+20848.jpg
+7958.jpg
+15687.jpg
+14755.jpg
+15878.jpg
+4180.jpg
+23982.jpg
+9489.jpg
+25670.jpg
+23751.jpg
+4071.jpg
+6073.jpg
+15220.jpg
+24631.jpg
+1409.jpg
+16137.jpg
+11127.jpg
+26911.jpg
+9262.jpg
+26337.jpg
+7640.jpg
+25125.jpg
+25334.jpg
+25502.jpg
+16087.jpg
+8347.jpg
+21321.jpg
+3251.jpg
+28155.jpg
+29267.jpg
+4005.jpg
+14660.jpg
+29726.jpg
+21775.jpg
+5202.jpg
+3966.jpg
+15083.jpg
+9937.jpg
+7807.jpg
+21705.jpg
+12260.jpg
+23164.jpg
+11699.jpg
+13537.jpg
+7905.jpg
+20375.jpg
+16795.jpg
+929.jpg
+10918.jpg
+9756.jpg
+5109.jpg
+2960.jpg
+27358.jpg
+12112.jpg
+27495.jpg
+5167.jpg
+4272.jpg
+4212.jpg
+6333.jpg
+25433.jpg
+20138.jpg
+21363.jpg
+27988.jpg
+25083.jpg
+19899.jpg
+12856.jpg
+2479.jpg
+18714.jpg
+19282.jpg
+18744.jpg
+3145.jpg
+7472.jpg
+13736.jpg
+6443.jpg
+24551.jpg
+27865.jpg
+27860.jpg
+13556.jpg
+16469.jpg
+29050.jpg
+25431.jpg
+8887.jpg
+27391.jpg
+25121.jpg
+5490.jpg
+12859.jpg
+4468.jpg
+26474.jpg
+9102.jpg
+9667.jpg
+28903.jpg
+17228.jpg
+17222.jpg
+18039.jpg
+75.jpg
+3881.jpg
+22786.jpg
+13427.jpg
+9396.jpg
+4388.jpg
+16654.jpg
+16835.jpg
+13735.jpg
+1248.jpg
+19746.jpg
+10827.jpg
+8040.jpg
+13679.jpg
+28889.jpg
+29687.jpg
+4735.jpg
+25064.jpg
+12711.jpg
+7259.jpg
+19156.jpg
+21253.jpg
+20955.jpg
+20831.jpg
+27950.jpg
+29901.jpg
+29294.jpg
+13910.jpg
+1541.jpg
+9427.jpg
+24736.jpg
+3758.jpg
+13609.jpg
+29220.jpg
+23643.jpg
+21177.jpg
+23160.jpg
+11821.jpg
+10611.jpg
+23089.jpg
+24684.jpg
+2222.jpg
+3592.jpg
+18824.jpg
+19575.jpg
+14583.jpg
+27463.jpg
+2848.jpg
+26628.jpg
+8491.jpg
+26298.jpg
+8225.jpg
+8231.jpg
+20191.jpg
+7316.jpg
+9719.jpg
+24202.jpg
+3389.jpg
+28049.jpg
+19918.jpg
+22151.jpg
+4102.jpg
+3601.jpg
+22910.jpg
+18701.jpg
+19998.jpg
+26050.jpg
+21139.jpg
+8170.jpg
+13598.jpg
+24489.jpg
+29786.jpg
+21265.jpg
+22106.jpg
+23059.jpg
+26955.jpg
+20497.jpg
+8458.jpg
+22996.jpg
+5445.jpg
+23081.jpg
+22457.jpg
+26158.jpg
+21891.jpg
+3550.jpg
+375.jpg
+6239.jpg
+20630.jpg
+17350.jpg
+2333.jpg
+24160.jpg
+6038.jpg
+3799.jpg
+26350.jpg
+15416.jpg
+2433.jpg
+11519.jpg
+8403.jpg
+1137.jpg
+7069.jpg
+7849.jpg
+17159.jpg
+10658.jpg
+19527.jpg
+6179.jpg
+24987.jpg
+6736.jpg
+3.jpg
+24387.jpg
+24189.jpg
+7214.jpg
+20632.jpg
+6653.jpg
+4608.jpg
+2088.jpg
+10618.jpg
+18961.jpg
+7876.jpg
+13401.jpg
+11677.jpg
+24103.jpg
+13457.jpg
+1121.jpg
+3669.jpg
+22833.jpg
+7073.jpg
+18837.jpg
+21820.jpg
+19507.jpg
+10341.jpg
+19673.jpg
+8261.jpg
+18542.jpg
+14150.jpg
+5818.jpg
+23309.jpg
+341.jpg
+27085.jpg
+22268.jpg
+20521.jpg
+14535.jpg
+2498.jpg
+22479.jpg
+27843.jpg
+25580.jpg
+687.jpg
+832.jpg
+12554.jpg
+9873.jpg
+29770.jpg
+14581.jpg
+19080.jpg
+6134.jpg
+331.jpg
+23878.jpg
+11246.jpg
+19907.jpg
+10099.jpg
+17876.jpg
+9072.jpg
+6092.jpg
+19863.jpg
+872.jpg
+3121.jpg
+14393.jpg
+20097.jpg
+3259.jpg
+3237.jpg
+2355.jpg
+3622.jpg
+12734.jpg
+11409.jpg
+10302.jpg
+3229.jpg
+63.jpg
+12324.jpg
+25244.jpg
+12575.jpg
+26943.jpg
+24997.jpg
+8024.jpg
+17705.jpg
+14671.jpg
+12502.jpg
+25570.jpg
+1987.jpg
+1385.jpg
+19783.jpg
+14437.jpg
+2499.jpg
+28836.jpg
+13523.jpg
+25636.jpg
+12699.jpg
+7206.jpg
+27192.jpg
+11611.jpg
+1040.jpg
+11998.jpg
+23721.jpg
+18588.jpg
+3330.jpg
+12341.jpg
+9118.jpg
+22522.jpg
+25732.jpg
+3340.jpg
+14554.jpg
+3742.jpg
+12443.jpg
+24163.jpg
+2622.jpg
+27797.jpg
+20124.jpg
+22300.jpg
+20155.jpg
+20648.jpg
+7735.jpg
+16223.jpg
+5044.jpg
+6249.jpg
+27834.jpg
+7251.jpg
+18771.jpg
+12343.jpg
+7442.jpg
+3735.jpg
+10694.jpg
+22211.jpg
+15602.jpg
+21772.jpg
+16563.jpg
+10567.jpg
+29289.jpg
+9983.jpg
+21308.jpg
+12124.jpg
+8197.jpg
+16335.jpg
+20619.jpg
+10767.jpg
+14133.jpg
+11794.jpg
+9984.jpg
+17735.jpg
+25138.jpg
+7776.jpg
+28028.jpg
+10768.jpg
+8992.jpg
+14544.jpg
+18045.jpg
+20167.jpg
+13728.jpg
+5227.jpg
+5006.jpg
+15391.jpg
+6793.jpg
+20940.jpg
+24141.jpg
+25014.jpg
+11551.jpg
+23572.jpg
+14973.jpg
+4162.jpg
+25102.jpg
+29730.jpg
+14931.jpg
+19333.jpg
+21422.jpg
+1290.jpg
+23804.jpg
+3732.jpg
+17702.jpg
+7330.jpg
+545.jpg
+18679.jpg
+6836.jpg
+15023.jpg
+4171.jpg
+12940.jpg
+21823.jpg
+24522.jpg
+17237.jpg
+27680.jpg
+23016.jpg
+26069.jpg
+18358.jpg
+25893.jpg
+4193.jpg
+26459.jpg
+3370.jpg
+27510.jpg
+27786.jpg
+27771.jpg
+24366.jpg
+25393.jpg
+9795.jpg
+13463.jpg
+23051.jpg
+21119.jpg
+5453.jpg
+1933.jpg
+15394.jpg
+4175.jpg
+18175.jpg
+23708.jpg
+19605.jpg
+23671.jpg
+29126.jpg
+17697.jpg
+22261.jpg
+8826.jpg
+20991.jpg
+17833.jpg
+11943.jpg
+4964.jpg
+28381.jpg
+17689.jpg
+4994.jpg
+19267.jpg
+10238.jpg
+15538.jpg
+18379.jpg
+15743.jpg
+7366.jpg
+28333.jpg
+25791.jpg
+2858.jpg
+19318.jpg
+8965.jpg
+28751.jpg
+3472.jpg
+17878.jpg
+17220.jpg
+4652.jpg
+23801.jpg
+6264.jpg
+14377.jpg
+26049.jpg
+1817.jpg
+5580.jpg
+9356.jpg
+12994.jpg
+10009.jpg
+23865.jpg
+2453.jpg
+29593.jpg
+19641.jpg
+6621.jpg
+15899.jpg
+21662.jpg
+25355.jpg
+16880.jpg
+15992.jpg
+19101.jpg
+28140.jpg
+2727.jpg
+22287.jpg
+13690.jpg
+25807.jpg
+18493.jpg
+25691.jpg
+28679.jpg
+15270.jpg
+2603.jpg
+23324.jpg
+12091.jpg
+4034.jpg
+25067.jpg
+19066.jpg
+7036.jpg
+6722.jpg
+10612.jpg
+7368.jpg
+24950.jpg
+13194.jpg
+10834.jpg
+9748.jpg
+18895.jpg
+28431.jpg
+5652.jpg
+7151.jpg
+25289.jpg
+9642.jpg
+29864.jpg
+16351.jpg
+10777.jpg
+8663.jpg
+6533.jpg
+28536.jpg
+14948.jpg
+6673.jpg
+4679.jpg
+8961.jpg
+24622.jpg
+25145.jpg
+14480.jpg
+26426.jpg
+11825.jpg
+27299.jpg
+28307.jpg
+6530.jpg
+24493.jpg
+14983.jpg
+21549.jpg
+13086.jpg
+16347.jpg
+21002.jpg
+21850.jpg
+6025.jpg
+4206.jpg
+6876.jpg
+13809.jpg
+16554.jpg
+12753.jpg
+20953.jpg
+20213.jpg
+15422.jpg
+5342.jpg
+328.jpg
+22632.jpg
+20130.jpg
+23462.jpg
+20121.jpg
+25390.jpg
+1827.jpg
+4997.jpg
+8779.jpg
+15753.jpg
+13913.jpg
+263.jpg
+23612.jpg
+5432.jpg
+7332.jpg
+22562.jpg
+17960.jpg
+1410.jpg
+21093.jpg
+11513.jpg
+23756.jpg
+26507.jpg
+17776.jpg
+704.jpg
+1633.jpg
+6963.jpg
+21521.jpg
+19920.jpg
+4282.jpg
+3787.jpg
+16825.jpg
+1068.jpg
+28077.jpg
+24105.jpg
+11740.jpg
+24578.jpg
+2893.jpg
+23382.jpg
+29977.jpg
+22768.jpg
+24354.jpg
+227.jpg
+24649.jpg
+28917.jpg
+8534.jpg
+14322.jpg
+8363.jpg
+11286.jpg
+20410.jpg
+6734.jpg
+7544.jpg
+6514.jpg
+17859.jpg
+2157.jpg
+19198.jpg
+8132.jpg
+346.jpg
+7660.jpg
+28081.jpg
+12740.jpg
+165.jpg
+21563.jpg
+20834.jpg
+26469.jpg
+10472.jpg
+28645.jpg
+16541.jpg
+17073.jpg
+6420.jpg
+24825.jpg
+14662.jpg
+13151.jpg
+7252.jpg
+18224.jpg
+10579.jpg
+20185.jpg
+26980.jpg
+18996.jpg
+508.jpg
+16506.jpg
+23453.jpg
+14411.jpg
+13823.jpg
+2083.jpg
+5425.jpg
+28706.jpg
+9768.jpg
+29512.jpg
+16246.jpg
+4802.jpg
+14645.jpg
+13029.jpg
+25051.jpg
+1202.jpg
+19025.jpg
+29016.jpg
+21852.jpg
+20169.jpg
+21716.jpg
+25032.jpg
+19631.jpg
+700.jpg
+21412.jpg
+15014.jpg
+26750.jpg
+22351.jpg
+18199.jpg
+9603.jpg
+14357.jpg
+7991.jpg
+28780.jpg
+4925.jpg
+26907.jpg
+10771.jpg
+6522.jpg
+10240.jpg
+16371.jpg
+22609.jpg
+23504.jpg
+5576.jpg
+10090.jpg
+8630.jpg
+9205.jpg
+17342.jpg
+9599.jpg
+22773.jpg
+14294.jpg
+19149.jpg
+20804.jpg
+23575.jpg
+13047.jpg
+14710.jpg
+20236.jpg
+10167.jpg
+15764.jpg
+19045.jpg
+19511.jpg
+27796.jpg
+5746.jpg
+10149.jpg
+2329.jpg
+6705.jpg
+12621.jpg
+20231.jpg
+4384.jpg
+22507.jpg
+19345.jpg
+26144.jpg
+6598.jpg
+6702.jpg
+5541.jpg
+204.jpg
+23256.jpg
+28944.jpg
+9486.jpg
+24797.jpg
+19504.jpg
+19558.jpg
+12910.jpg
+27799.jpg
+986.jpg
+17896.jpg
+1128.jpg
+25017.jpg
+11654.jpg
+25740.jpg
+28556.jpg
+5788.jpg
+8366.jpg
+5752.jpg
+9892.jpg
+26155.jpg
+23735.jpg
+17276.jpg
+8601.jpg
+13906.jpg
+19926.jpg
+15050.jpg
+27689.jpg
+14171.jpg
+5768.jpg
+3308.jpg
+117.jpg
+28560.jpg
+9479.jpg
+19412.jpg
+1413.jpg
+11313.jpg
+29361.jpg
+23002.jpg
+6520.jpg
+2823.jpg
+8966.jpg
+23506.jpg
+4352.jpg
+28242.jpg
+1345.jpg
+16743.jpg
+27298.jpg
+26888.jpg
+16662.jpg
+17427.jpg
+12777.jpg
+17337.jpg
+12168.jpg
+7900.jpg
+1323.jpg
+18538.jpg
+28063.jpg
+29100.jpg
+29304.jpg
+28583.jpg
+3808.jpg
+25497.jpg
+19116.jpg
+7858.jpg
+24939.jpg
+7131.jpg
+13023.jpg
+21455.jpg
+19952.jpg
+28158.jpg
+29155.jpg
+15455.jpg
+16202.jpg
+27536.jpg
+24323.jpg
+19924.jpg
+13786.jpg
+5247.jpg
+15668.jpg
+22887.jpg
+2275.jpg
+22177.jpg
+15411.jpg
+25648.jpg
+19551.jpg
+7850.jpg
+15291.jpg
+3009.jpg
+17582.jpg
+17413.jpg
+8116.jpg
+20536.jpg
+13220.jpg
+1671.jpg
+6352.jpg
+675.jpg
+13449.jpg
+3469.jpg
+9387.jpg
+18641.jpg
+18932.jpg
+12659.jpg
+21741.jpg
+23912.jpg
+11715.jpg
+21996.jpg
+11481.jpg
+16525.jpg
+7875.jpg
+24821.jpg
+21994.jpg
+28855.jpg
+6513.jpg
+20610.jpg
+17807.jpg
+11846.jpg
+8157.jpg
+18711.jpg
+2874.jpg
+21744.jpg
+29599.jpg
+9549.jpg
+6525.jpg
+7064.jpg
+8218.jpg
+19685.jpg
+16264.jpg
+2722.jpg
+5275.jpg
+15415.jpg
+25333.jpg
+241.jpg
+2018.jpg
+10269.jpg
+2241.jpg
+12319.jpg
+12949.jpg
+26859.jpg
+14036.jpg
+17753.jpg
+26455.jpg
+11448.jpg
+25953.jpg
+27838.jpg
+26829.jpg
+998.jpg
+9076.jpg
+7786.jpg
+26655.jpg
+242.jpg
+585.jpg
+3222.jpg
+14762.jpg
+12744.jpg
+6527.jpg
+12275.jpg
+5299.jpg
+17256.jpg
+18680.jpg
+19911.jpg
+25694.jpg
+13936.jpg
+6155.jpg
+9703.jpg
+26671.jpg
+25186.jpg
+24699.jpg
+17801.jpg
+13124.jpg
+14626.jpg
+4076.jpg
+29856.jpg
+811.jpg
+27975.jpg
+17065.jpg
+12938.jpg
+13301.jpg
+29473.jpg
+13810.jpg
+7802.jpg
+378.jpg
+7397.jpg
+24881.jpg
+15169.jpg
+26739.jpg
+23469.jpg
+13734.jpg
+9220.jpg
+4002.jpg
+5406.jpg
+18690.jpg
+11546.jpg
+3123.jpg
+12820.jpg
+27842.jpg
+20412.jpg
+4648.jpg
+17371.jpg
+1661.jpg
+3490.jpg
+9906.jpg
+20839.jpg
+13071.jpg
+22048.jpg
+5423.jpg
+22566.jpg
+29576.jpg
+25210.jpg
+23223.jpg
+22961.jpg
+12865.jpg
+24949.jpg
+6997.jpg
+9696.jpg
+22424.jpg
+14269.jpg
+6874.jpg
+1536.jpg
+15888.jpg
+23093.jpg
+2678.jpg
+17646.jpg
+7777.jpg
+21214.jpg
+7774.jpg
+26418.jpg
+28015.jpg
+20166.jpg
+3825.jpg
+24201.jpg
+8317.jpg
+14778.jpg
+27354.jpg
+12297.jpg
+24751.jpg
+22045.jpg
+5715.jpg
+16927.jpg
+3904.jpg
+22210.jpg
+19164.jpg
+16728.jpg
+22001.jpg
+29740.jpg
+12380.jpg
+22747.jpg
+5195.jpg
+20352.jpg
+2816.jpg
+5684.jpg
+7932.jpg
+29597.jpg
+765.jpg
+25263.jpg
+26924.jpg
+186.jpg
+29633.jpg
+1240.jpg
+9237.jpg
+25910.jpg
+29842.jpg
+28285.jpg
+29933.jpg
+20746.jpg
+6882.jpg
+19849.jpg
+501.jpg
+10624.jpg
+10257.jpg
+27767.jpg
+9194.jpg
+12635.jpg
+10163.jpg
+26083.jpg
+14443.jpg
+9585.jpg
+4122.jpg
+22546.jpg
+29826.jpg
+23702.jpg
+8328.jpg
+15442.jpg
+13429.jpg
+3246.jpg
+11863.jpg
+15700.jpg
+5302.jpg
+16824.jpg
+13608.jpg
+12499.jpg
+12730.jpg
+4290.jpg
+2139.jpg
+12029.jpg
+29257.jpg
+18063.jpg
+20935.jpg
+27222.jpg
+18024.jpg
+17092.jpg
+19108.jpg
+2908.jpg
+22260.jpg
+2070.jpg
+16758.jpg
+26794.jpg
+4834.jpg
+23293.jpg
+5957.jpg
+2793.jpg
+15851.jpg
+21315.jpg
+16009.jpg
+1251.jpg
+10388.jpg
+2466.jpg
+10638.jpg
+25034.jpg
+15151.jpg
+13741.jpg
+27270.jpg
+4833.jpg
+6023.jpg
+28972.jpg
+7260.jpg
+17444.jpg
+15699.jpg
+23730.jpg
+20254.jpg
+17959.jpg
+21653.jpg
+28331.jpg
+10644.jpg
+23935.jpg
+4600.jpg
+2720.jpg
+6569.jpg
+2528.jpg
diff --git a/models/ade20k/__init__.py b/models/ade20k/__init__.py
new file mode 100644
index 00000000..773cfc46
--- /dev/null
+++ b/models/ade20k/__init__.py
@@ -0,0 +1 @@
+from .base import *
\ No newline at end of file
diff --git a/models/ade20k/base.py b/models/ade20k/base.py
new file mode 100644
index 00000000..8cdbe2d3
--- /dev/null
+++ b/models/ade20k/base.py
@@ -0,0 +1,627 @@
+"""Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch"""
+
+import os
+
+import pandas as pd
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from scipy.io import loadmat
+from torch.nn.modules import BatchNorm2d
+
+from . import resnet
+from . import mobilenet
+
+
+NUM_CLASS = 150
+base_path = os.path.dirname(os.path.abspath(__file__)) # current file path
+colors_path = os.path.join(base_path, 'color150.mat')
+classes_path = os.path.join(base_path, 'object150_info.csv')
+
+segm_options = dict(colors=loadmat(colors_path)['colors'],
+ classes=pd.read_csv(classes_path),)
+
+
+class NormalizeTensor:
+ def __init__(self, mean, std, inplace=False):
+ """Normalize a tensor image with mean and standard deviation.
+ .. note::
+ This transform acts out of place by default, i.e., it does not mutates the input tensor.
+ See :class:`~torchvision.transforms.Normalize` for more details.
+ Args:
+ tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
+ mean (sequence): Sequence of means for each channel.
+ std (sequence): Sequence of standard deviations for each channel.
+ inplace(bool,optional): Bool to make this operation inplace.
+ Returns:
+ Tensor: Normalized Tensor image.
+ """
+
+ self.mean = mean
+ self.std = std
+ self.inplace = inplace
+
+ def __call__(self, tensor):
+ if not self.inplace:
+ tensor = tensor.clone()
+
+ dtype = tensor.dtype
+ mean = torch.as_tensor(self.mean, dtype=dtype, device=tensor.device)
+ std = torch.as_tensor(self.std, dtype=dtype, device=tensor.device)
+ tensor.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
+ return tensor
+
+
+# Model Builder
+class ModelBuilder:
+ # custom weights initialization
+ @staticmethod
+ def weights_init(m):
+ classname = m.__class__.__name__
+ if classname.find('Conv') != -1:
+ nn.init.kaiming_normal_(m.weight.data)
+ elif classname.find('BatchNorm') != -1:
+ m.weight.data.fill_(1.)
+ m.bias.data.fill_(1e-4)
+
+ @staticmethod
+ def build_encoder(arch='resnet50dilated', fc_dim=512, weights=''):
+ pretrained = True if len(weights) == 0 else False
+ arch = arch.lower()
+ if arch == 'mobilenetv2dilated':
+ orig_mobilenet = mobilenet.__dict__['mobilenetv2'](pretrained=pretrained)
+ net_encoder = MobileNetV2Dilated(orig_mobilenet, dilate_scale=8)
+ elif arch == 'resnet18':
+ orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained)
+ net_encoder = Resnet(orig_resnet)
+ elif arch == 'resnet18dilated':
+ orig_resnet = resnet.__dict__['resnet18'](pretrained=pretrained)
+ net_encoder = ResnetDilated(orig_resnet, dilate_scale=8)
+ elif arch == 'resnet50dilated':
+ orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained)
+ net_encoder = ResnetDilated(orig_resnet, dilate_scale=8)
+ elif arch == 'resnet50':
+ orig_resnet = resnet.__dict__['resnet50'](pretrained=pretrained)
+ net_encoder = Resnet(orig_resnet)
+ else:
+ raise Exception('Architecture undefined!')
+
+ # encoders are usually pretrained
+ # net_encoder.apply(ModelBuilder.weights_init)
+ if len(weights) > 0:
+ print('Loading weights for net_encoder')
+ net_encoder.load_state_dict(
+ torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
+ return net_encoder
+
+ @staticmethod
+ def build_decoder(arch='ppm_deepsup',
+ fc_dim=512, num_class=NUM_CLASS,
+ weights='', use_softmax=False, drop_last_conv=False):
+ arch = arch.lower()
+ if arch == 'ppm_deepsup':
+ net_decoder = PPMDeepsup(
+ num_class=num_class,
+ fc_dim=fc_dim,
+ use_softmax=use_softmax,
+ drop_last_conv=drop_last_conv)
+ elif arch == 'c1_deepsup':
+ net_decoder = C1DeepSup(
+ num_class=num_class,
+ fc_dim=fc_dim,
+ use_softmax=use_softmax,
+ drop_last_conv=drop_last_conv)
+ else:
+ raise Exception('Architecture undefined!')
+
+ net_decoder.apply(ModelBuilder.weights_init)
+ if len(weights) > 0:
+ print('Loading weights for net_decoder')
+ net_decoder.load_state_dict(
+ torch.load(weights, map_location=lambda storage, loc: storage), strict=False)
+ return net_decoder
+
+ @staticmethod
+ def get_decoder(weights_path, arch_encoder, arch_decoder, fc_dim, drop_last_conv, *arts, **kwargs):
+ path = os.path.join(weights_path, 'ade20k', f'ade20k-{arch_encoder}-{arch_decoder}/decoder_epoch_20.pth')
+ return ModelBuilder.build_decoder(arch=arch_decoder, fc_dim=fc_dim, weights=path, use_softmax=True, drop_last_conv=drop_last_conv)
+
+ @staticmethod
+ def get_encoder(weights_path, arch_encoder, arch_decoder, fc_dim, segmentation,
+ *arts, **kwargs):
+ if segmentation:
+ path = os.path.join(weights_path, 'ade20k', f'ade20k-{arch_encoder}-{arch_decoder}/encoder_epoch_20.pth')
+ else:
+ path = ''
+ return ModelBuilder.build_encoder(arch=arch_encoder, fc_dim=fc_dim, weights=path)
+
+
+def conv3x3_bn_relu(in_planes, out_planes, stride=1):
+ return nn.Sequential(
+ nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False),
+ BatchNorm2d(out_planes),
+ nn.ReLU(inplace=True),
+ )
+
+
+class SegmentationModule(nn.Module):
+ def __init__(self,
+ weights_path,
+ num_classes=150,
+ arch_encoder="resnet50dilated",
+ drop_last_conv=False,
+ net_enc=None, # None for Default encoder
+ net_dec=None, # None for Default decoder
+ encode=None, # {None, 'binary', 'color', 'sky'}
+ use_default_normalization=False,
+ return_feature_maps=False,
+ return_feature_maps_level=3, # {0, 1, 2, 3}
+ return_feature_maps_only=True,
+ **kwargs,
+ ):
+ super().__init__()
+ self.weights_path = weights_path
+ self.drop_last_conv = drop_last_conv
+ self.arch_encoder = arch_encoder
+ if self.arch_encoder == "resnet50dilated":
+ self.arch_decoder = "ppm_deepsup"
+ self.fc_dim = 2048
+ elif self.arch_encoder == "mobilenetv2dilated":
+ self.arch_decoder = "c1_deepsup"
+ self.fc_dim = 320
+ else:
+ raise NotImplementedError(f"No such arch_encoder={self.arch_encoder}")
+ model_builder_kwargs = dict(arch_encoder=self.arch_encoder,
+ arch_decoder=self.arch_decoder,
+ fc_dim=self.fc_dim,
+ drop_last_conv=drop_last_conv,
+ weights_path=self.weights_path)
+
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ self.encoder = ModelBuilder.get_encoder(**model_builder_kwargs) if net_enc is None else net_enc
+ self.decoder = ModelBuilder.get_decoder(**model_builder_kwargs) if net_dec is None else net_dec
+ self.use_default_normalization = use_default_normalization
+ self.default_normalization = NormalizeTensor(mean=[0.485, 0.456, 0.406],
+ std=[0.229, 0.224, 0.225])
+
+ self.encode = encode
+
+ self.return_feature_maps = return_feature_maps
+
+ assert 0 <= return_feature_maps_level <= 3
+ self.return_feature_maps_level = return_feature_maps_level
+
+ def normalize_input(self, tensor):
+ if tensor.min() < 0 or tensor.max() > 1:
+ raise ValueError("Tensor should be 0..1 before using normalize_input")
+ return self.default_normalization(tensor)
+
+ @property
+ def feature_maps_channels(self):
+ return 256 * 2**(self.return_feature_maps_level) # 256, 512, 1024, 2048
+
+ def forward(self, img_data, segSize=None):
+ if segSize is None:
+ raise NotImplementedError("Please pass segSize param. By default: (300, 300)")
+
+ fmaps = self.encoder(img_data, return_feature_maps=True)
+ pred = self.decoder(fmaps, segSize=segSize)
+
+ if self.return_feature_maps:
+ return pred, fmaps
+ # print("BINARY", img_data.shape, pred.shape)
+ return pred
+
+ def multi_mask_from_multiclass(self, pred, classes):
+ def isin(ar1, ar2):
+ return (ar1[..., None] == ar2).any(-1).float()
+ return isin(pred, torch.LongTensor(classes).to(self.device))
+
+ @staticmethod
+ def multi_mask_from_multiclass_probs(scores, classes):
+ res = None
+ for c in classes:
+ if res is None:
+ res = scores[:, c]
+ else:
+ res += scores[:, c]
+ return res
+
+ def predict(self, tensor, imgSizes=(-1,), # (300, 375, 450, 525, 600)
+ segSize=None):
+ """Entry-point for segmentation. Use this methods instead of forward
+ Arguments:
+ tensor {torch.Tensor} -- BCHW
+ Keyword Arguments:
+ imgSizes {tuple or list} -- imgSizes for segmentation input.
+ default: (300, 450)
+ original implementation: (300, 375, 450, 525, 600)
+
+ """
+ if segSize is None:
+ segSize = tensor.shape[-2:]
+ segSize = (tensor.shape[2], tensor.shape[3])
+ with torch.no_grad():
+ if self.use_default_normalization:
+ tensor = self.normalize_input(tensor)
+ scores = torch.zeros(1, NUM_CLASS, segSize[0], segSize[1]).to(self.device)
+ features = torch.zeros(1, self.feature_maps_channels, segSize[0], segSize[1]).to(self.device)
+
+ result = []
+ for img_size in imgSizes:
+ if img_size != -1:
+ img_data = F.interpolate(tensor.clone(), size=img_size)
+ else:
+ img_data = tensor.clone()
+
+ if self.return_feature_maps:
+ pred_current, fmaps = self.forward(img_data, segSize=segSize)
+ else:
+ pred_current = self.forward(img_data, segSize=segSize)
+
+
+ result.append(pred_current)
+ scores = scores + pred_current / len(imgSizes)
+
+ # Disclaimer: We use and aggregate only last fmaps: fmaps[3]
+ if self.return_feature_maps:
+ features = features + F.interpolate(fmaps[self.return_feature_maps_level], size=segSize) / len(imgSizes)
+
+ _, pred = torch.max(scores, dim=1)
+
+ if self.return_feature_maps:
+ return features
+
+ return pred, result
+
+ def get_edges(self, t):
+ edge = torch.cuda.ByteTensor(t.size()).zero_()
+ edge[:, :, :, 1:] = edge[:, :, :, 1:] | (t[:, :, :, 1:] != t[:, :, :, :-1])
+ edge[:, :, :, :-1] = edge[:, :, :, :-1] | (t[:, :, :, 1:] != t[:, :, :, :-1])
+ edge[:, :, 1:, :] = edge[:, :, 1:, :] | (t[:, :, 1:, :] != t[:, :, :-1, :])
+ edge[:, :, :-1, :] = edge[:, :, :-1, :] | (t[:, :, 1:, :] != t[:, :, :-1, :])
+
+ if True:
+ return edge.half()
+ return edge.float()
+
+
+# pyramid pooling, deep supervision
+class PPMDeepsup(nn.Module):
+ def __init__(self, num_class=NUM_CLASS, fc_dim=4096,
+ use_softmax=False, pool_scales=(1, 2, 3, 6),
+ drop_last_conv=False):
+ super().__init__()
+ self.use_softmax = use_softmax
+ self.drop_last_conv = drop_last_conv
+
+ self.ppm = []
+ for scale in pool_scales:
+ self.ppm.append(nn.Sequential(
+ nn.AdaptiveAvgPool2d(scale),
+ nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
+ BatchNorm2d(512),
+ nn.ReLU(inplace=True)
+ ))
+ self.ppm = nn.ModuleList(self.ppm)
+ self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1)
+
+ self.conv_last = nn.Sequential(
+ nn.Conv2d(fc_dim + len(pool_scales) * 512, 512,
+ kernel_size=3, padding=1, bias=False),
+ BatchNorm2d(512),
+ nn.ReLU(inplace=True),
+ nn.Dropout2d(0.1),
+ nn.Conv2d(512, num_class, kernel_size=1)
+ )
+ self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
+ self.dropout_deepsup = nn.Dropout2d(0.1)
+
+ def forward(self, conv_out, segSize=None):
+ conv5 = conv_out[-1]
+
+ input_size = conv5.size()
+ ppm_out = [conv5]
+ for pool_scale in self.ppm:
+ ppm_out.append(nn.functional.interpolate(
+ pool_scale(conv5),
+ (input_size[2], input_size[3]),
+ mode='bilinear', align_corners=False))
+ ppm_out = torch.cat(ppm_out, 1)
+
+ if self.drop_last_conv:
+ return ppm_out
+ else:
+ x = self.conv_last(ppm_out)
+
+ if self.use_softmax: # is True during inference
+ x = nn.functional.interpolate(
+ x, size=segSize, mode='bilinear', align_corners=False)
+ x = nn.functional.softmax(x, dim=1)
+ return x
+
+ # deep sup
+ conv4 = conv_out[-2]
+ _ = self.cbr_deepsup(conv4)
+ _ = self.dropout_deepsup(_)
+ _ = self.conv_last_deepsup(_)
+
+ x = nn.functional.log_softmax(x, dim=1)
+ _ = nn.functional.log_softmax(_, dim=1)
+
+ return (x, _)
+
+
+class Resnet(nn.Module):
+ def __init__(self, orig_resnet):
+ super(Resnet, self).__init__()
+
+ # take pretrained resnet, except AvgPool and FC
+ self.conv1 = orig_resnet.conv1
+ self.bn1 = orig_resnet.bn1
+ self.relu1 = orig_resnet.relu1
+ self.conv2 = orig_resnet.conv2
+ self.bn2 = orig_resnet.bn2
+ self.relu2 = orig_resnet.relu2
+ self.conv3 = orig_resnet.conv3
+ self.bn3 = orig_resnet.bn3
+ self.relu3 = orig_resnet.relu3
+ self.maxpool = orig_resnet.maxpool
+ self.layer1 = orig_resnet.layer1
+ self.layer2 = orig_resnet.layer2
+ self.layer3 = orig_resnet.layer3
+ self.layer4 = orig_resnet.layer4
+
+ def forward(self, x, return_feature_maps=False):
+ conv_out = []
+
+ x = self.relu1(self.bn1(self.conv1(x)))
+ x = self.relu2(self.bn2(self.conv2(x)))
+ x = self.relu3(self.bn3(self.conv3(x)))
+ x = self.maxpool(x)
+
+ x = self.layer1(x); conv_out.append(x);
+ x = self.layer2(x); conv_out.append(x);
+ x = self.layer3(x); conv_out.append(x);
+ x = self.layer4(x); conv_out.append(x);
+
+ if return_feature_maps:
+ return conv_out
+ return [x]
+
+# Resnet Dilated
+class ResnetDilated(nn.Module):
+ def __init__(self, orig_resnet, dilate_scale=8):
+ super().__init__()
+ from functools import partial
+
+ if dilate_scale == 8:
+ orig_resnet.layer3.apply(
+ partial(self._nostride_dilate, dilate=2))
+ orig_resnet.layer4.apply(
+ partial(self._nostride_dilate, dilate=4))
+ elif dilate_scale == 16:
+ orig_resnet.layer4.apply(
+ partial(self._nostride_dilate, dilate=2))
+
+ # take pretrained resnet, except AvgPool and FC
+ self.conv1 = orig_resnet.conv1
+ self.bn1 = orig_resnet.bn1
+ self.relu1 = orig_resnet.relu1
+ self.conv2 = orig_resnet.conv2
+ self.bn2 = orig_resnet.bn2
+ self.relu2 = orig_resnet.relu2
+ self.conv3 = orig_resnet.conv3
+ self.bn3 = orig_resnet.bn3
+ self.relu3 = orig_resnet.relu3
+ self.maxpool = orig_resnet.maxpool
+ self.layer1 = orig_resnet.layer1
+ self.layer2 = orig_resnet.layer2
+ self.layer3 = orig_resnet.layer3
+ self.layer4 = orig_resnet.layer4
+
+ def _nostride_dilate(self, m, dilate):
+ classname = m.__class__.__name__
+ if classname.find('Conv') != -1:
+ # the convolution with stride
+ if m.stride == (2, 2):
+ m.stride = (1, 1)
+ if m.kernel_size == (3, 3):
+ m.dilation = (dilate // 2, dilate // 2)
+ m.padding = (dilate // 2, dilate // 2)
+ # other convoluions
+ else:
+ if m.kernel_size == (3, 3):
+ m.dilation = (dilate, dilate)
+ m.padding = (dilate, dilate)
+
+ def forward(self, x, return_feature_maps=False):
+ conv_out = []
+
+ x = self.relu1(self.bn1(self.conv1(x)))
+ x = self.relu2(self.bn2(self.conv2(x)))
+ x = self.relu3(self.bn3(self.conv3(x)))
+ x = self.maxpool(x)
+
+ x = self.layer1(x)
+ conv_out.append(x)
+ x = self.layer2(x)
+ conv_out.append(x)
+ x = self.layer3(x)
+ conv_out.append(x)
+ x = self.layer4(x)
+ conv_out.append(x)
+
+ if return_feature_maps:
+ return conv_out
+ return [x]
+
+class MobileNetV2Dilated(nn.Module):
+ def __init__(self, orig_net, dilate_scale=8):
+ super(MobileNetV2Dilated, self).__init__()
+ from functools import partial
+
+ # take pretrained mobilenet features
+ self.features = orig_net.features[:-1]
+
+ self.total_idx = len(self.features)
+ self.down_idx = [2, 4, 7, 14]
+
+ if dilate_scale == 8:
+ for i in range(self.down_idx[-2], self.down_idx[-1]):
+ self.features[i].apply(
+ partial(self._nostride_dilate, dilate=2)
+ )
+ for i in range(self.down_idx[-1], self.total_idx):
+ self.features[i].apply(
+ partial(self._nostride_dilate, dilate=4)
+ )
+ elif dilate_scale == 16:
+ for i in range(self.down_idx[-1], self.total_idx):
+ self.features[i].apply(
+ partial(self._nostride_dilate, dilate=2)
+ )
+
+ def _nostride_dilate(self, m, dilate):
+ classname = m.__class__.__name__
+ if classname.find('Conv') != -1:
+ # the convolution with stride
+ if m.stride == (2, 2):
+ m.stride = (1, 1)
+ if m.kernel_size == (3, 3):
+ m.dilation = (dilate//2, dilate//2)
+ m.padding = (dilate//2, dilate//2)
+ # other convoluions
+ else:
+ if m.kernel_size == (3, 3):
+ m.dilation = (dilate, dilate)
+ m.padding = (dilate, dilate)
+
+ def forward(self, x, return_feature_maps=False):
+ if return_feature_maps:
+ conv_out = []
+ for i in range(self.total_idx):
+ x = self.features[i](x)
+ if i in self.down_idx:
+ conv_out.append(x)
+ conv_out.append(x)
+ return conv_out
+
+ else:
+ return [self.features(x)]
+
+
+# last conv, deep supervision
+class C1DeepSup(nn.Module):
+ def __init__(self, num_class=150, fc_dim=2048, use_softmax=False, drop_last_conv=False):
+ super(C1DeepSup, self).__init__()
+ self.use_softmax = use_softmax
+ self.drop_last_conv = drop_last_conv
+
+ self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1)
+ self.cbr_deepsup = conv3x3_bn_relu(fc_dim // 2, fc_dim // 4, 1)
+
+ # last conv
+ self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
+ self.conv_last_deepsup = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
+
+ def forward(self, conv_out, segSize=None):
+ conv5 = conv_out[-1]
+
+ x = self.cbr(conv5)
+
+ if self.drop_last_conv:
+ return x
+ else:
+ x = self.conv_last(x)
+
+ if self.use_softmax: # is True during inference
+ x = nn.functional.interpolate(
+ x, size=segSize, mode='bilinear', align_corners=False)
+ x = nn.functional.softmax(x, dim=1)
+ return x
+
+ # deep sup
+ conv4 = conv_out[-2]
+ _ = self.cbr_deepsup(conv4)
+ _ = self.conv_last_deepsup(_)
+
+ x = nn.functional.log_softmax(x, dim=1)
+ _ = nn.functional.log_softmax(_, dim=1)
+
+ return (x, _)
+
+
+# last conv
+class C1(nn.Module):
+ def __init__(self, num_class=150, fc_dim=2048, use_softmax=False):
+ super(C1, self).__init__()
+ self.use_softmax = use_softmax
+
+ self.cbr = conv3x3_bn_relu(fc_dim, fc_dim // 4, 1)
+
+ # last conv
+ self.conv_last = nn.Conv2d(fc_dim // 4, num_class, 1, 1, 0)
+
+ def forward(self, conv_out, segSize=None):
+ conv5 = conv_out[-1]
+ x = self.cbr(conv5)
+ x = self.conv_last(x)
+
+ if self.use_softmax: # is True during inference
+ x = nn.functional.interpolate(
+ x, size=segSize, mode='bilinear', align_corners=False)
+ x = nn.functional.softmax(x, dim=1)
+ else:
+ x = nn.functional.log_softmax(x, dim=1)
+
+ return x
+
+
+# pyramid pooling
+class PPM(nn.Module):
+ def __init__(self, num_class=150, fc_dim=4096,
+ use_softmax=False, pool_scales=(1, 2, 3, 6)):
+ super(PPM, self).__init__()
+ self.use_softmax = use_softmax
+
+ self.ppm = []
+ for scale in pool_scales:
+ self.ppm.append(nn.Sequential(
+ nn.AdaptiveAvgPool2d(scale),
+ nn.Conv2d(fc_dim, 512, kernel_size=1, bias=False),
+ BatchNorm2d(512),
+ nn.ReLU(inplace=True)
+ ))
+ self.ppm = nn.ModuleList(self.ppm)
+
+ self.conv_last = nn.Sequential(
+ nn.Conv2d(fc_dim+len(pool_scales)*512, 512,
+ kernel_size=3, padding=1, bias=False),
+ BatchNorm2d(512),
+ nn.ReLU(inplace=True),
+ nn.Dropout2d(0.1),
+ nn.Conv2d(512, num_class, kernel_size=1)
+ )
+
+ def forward(self, conv_out, segSize=None):
+ conv5 = conv_out[-1]
+
+ input_size = conv5.size()
+ ppm_out = [conv5]
+ for pool_scale in self.ppm:
+ ppm_out.append(nn.functional.interpolate(
+ pool_scale(conv5),
+ (input_size[2], input_size[3]),
+ mode='bilinear', align_corners=False))
+ ppm_out = torch.cat(ppm_out, 1)
+
+ x = self.conv_last(ppm_out)
+
+ if self.use_softmax: # is True during inference
+ x = nn.functional.interpolate(
+ x, size=segSize, mode='bilinear', align_corners=False)
+ x = nn.functional.softmax(x, dim=1)
+ else:
+ x = nn.functional.log_softmax(x, dim=1)
+ return x
diff --git a/models/ade20k/color150.mat b/models/ade20k/color150.mat
new file mode 100644
index 00000000..c518b64f
Binary files /dev/null and b/models/ade20k/color150.mat differ
diff --git a/models/ade20k/mobilenet.py b/models/ade20k/mobilenet.py
new file mode 100644
index 00000000..f501266e
--- /dev/null
+++ b/models/ade20k/mobilenet.py
@@ -0,0 +1,154 @@
+"""
+This MobileNetV2 implementation is modified from the following repository:
+https://github.com/tonylins/pytorch-mobilenet-v2
+"""
+
+import torch.nn as nn
+import math
+from .utils import load_url
+from .segm_lib.nn import SynchronizedBatchNorm2d
+
+BatchNorm2d = SynchronizedBatchNorm2d
+
+
+__all__ = ['mobilenetv2']
+
+
+model_urls = {
+ 'mobilenetv2': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/mobilenet_v2.pth.tar',
+}
+
+
+def conv_bn(inp, oup, stride):
+ return nn.Sequential(
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
+ BatchNorm2d(oup),
+ nn.ReLU6(inplace=True)
+ )
+
+
+def conv_1x1_bn(inp, oup):
+ return nn.Sequential(
+ nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
+ BatchNorm2d(oup),
+ nn.ReLU6(inplace=True)
+ )
+
+
+class InvertedResidual(nn.Module):
+ def __init__(self, inp, oup, stride, expand_ratio):
+ super(InvertedResidual, self).__init__()
+ self.stride = stride
+ assert stride in [1, 2]
+
+ hidden_dim = round(inp * expand_ratio)
+ self.use_res_connect = self.stride == 1 and inp == oup
+
+ if expand_ratio == 1:
+ self.conv = nn.Sequential(
+ # dw
+ nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
+ BatchNorm2d(hidden_dim),
+ nn.ReLU6(inplace=True),
+ # pw-linear
+ nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
+ BatchNorm2d(oup),
+ )
+ else:
+ self.conv = nn.Sequential(
+ # pw
+ nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
+ BatchNorm2d(hidden_dim),
+ nn.ReLU6(inplace=True),
+ # dw
+ nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
+ BatchNorm2d(hidden_dim),
+ nn.ReLU6(inplace=True),
+ # pw-linear
+ nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
+ BatchNorm2d(oup),
+ )
+
+ def forward(self, x):
+ if self.use_res_connect:
+ return x + self.conv(x)
+ else:
+ return self.conv(x)
+
+
+class MobileNetV2(nn.Module):
+ def __init__(self, n_class=1000, input_size=224, width_mult=1.):
+ super(MobileNetV2, self).__init__()
+ block = InvertedResidual
+ input_channel = 32
+ last_channel = 1280
+ interverted_residual_setting = [
+ # t, c, n, s
+ [1, 16, 1, 1],
+ [6, 24, 2, 2],
+ [6, 32, 3, 2],
+ [6, 64, 4, 2],
+ [6, 96, 3, 1],
+ [6, 160, 3, 2],
+ [6, 320, 1, 1],
+ ]
+
+ # building first layer
+ assert input_size % 32 == 0
+ input_channel = int(input_channel * width_mult)
+ self.last_channel = int(last_channel * width_mult) if width_mult > 1.0 else last_channel
+ self.features = [conv_bn(3, input_channel, 2)]
+ # building inverted residual blocks
+ for t, c, n, s in interverted_residual_setting:
+ output_channel = int(c * width_mult)
+ for i in range(n):
+ if i == 0:
+ self.features.append(block(input_channel, output_channel, s, expand_ratio=t))
+ else:
+ self.features.append(block(input_channel, output_channel, 1, expand_ratio=t))
+ input_channel = output_channel
+ # building last several layers
+ self.features.append(conv_1x1_bn(input_channel, self.last_channel))
+ # make it nn.Sequential
+ self.features = nn.Sequential(*self.features)
+
+ # building classifier
+ self.classifier = nn.Sequential(
+ nn.Dropout(0.2),
+ nn.Linear(self.last_channel, n_class),
+ )
+
+ self._initialize_weights()
+
+ def forward(self, x):
+ x = self.features(x)
+ x = x.mean(3).mean(2)
+ x = self.classifier(x)
+ return x
+
+ def _initialize_weights(self):
+ for m in self.modules():
+ if isinstance(m, nn.Conv2d):
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+ m.weight.data.normal_(0, math.sqrt(2. / n))
+ if m.bias is not None:
+ m.bias.data.zero_()
+ elif isinstance(m, BatchNorm2d):
+ m.weight.data.fill_(1)
+ m.bias.data.zero_()
+ elif isinstance(m, nn.Linear):
+ n = m.weight.size(1)
+ m.weight.data.normal_(0, 0.01)
+ m.bias.data.zero_()
+
+
+def mobilenetv2(pretrained=False, **kwargs):
+ """Constructs a MobileNet_V2 model.
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ model = MobileNetV2(n_class=1000, **kwargs)
+ if pretrained:
+ model.load_state_dict(load_url(model_urls['mobilenetv2']), strict=False)
+ return model
\ No newline at end of file
diff --git a/models/ade20k/object150_info.csv b/models/ade20k/object150_info.csv
new file mode 100644
index 00000000..8b34d8f3
--- /dev/null
+++ b/models/ade20k/object150_info.csv
@@ -0,0 +1,151 @@
+Idx,Ratio,Train,Val,Stuff,Name
+1,0.1576,11664,1172,1,wall
+2,0.1072,6046,612,1,building;edifice
+3,0.0878,8265,796,1,sky
+4,0.0621,9336,917,1,floor;flooring
+5,0.0480,6678,641,0,tree
+6,0.0450,6604,643,1,ceiling
+7,0.0398,4023,408,1,road;route
+8,0.0231,1906,199,0,bed
+9,0.0198,4688,460,0,windowpane;window
+10,0.0183,2423,225,1,grass
+11,0.0181,2874,294,0,cabinet
+12,0.0166,3068,310,1,sidewalk;pavement
+13,0.0160,5075,526,0,person;individual;someone;somebody;mortal;soul
+14,0.0151,1804,190,1,earth;ground
+15,0.0118,6666,796,0,door;double;door
+16,0.0110,4269,411,0,table
+17,0.0109,1691,160,1,mountain;mount
+18,0.0104,3999,441,0,plant;flora;plant;life
+19,0.0104,2149,217,0,curtain;drape;drapery;mantle;pall
+20,0.0103,3261,318,0,chair
+21,0.0098,3164,306,0,car;auto;automobile;machine;motorcar
+22,0.0074,709,75,1,water
+23,0.0067,3296,315,0,painting;picture
+24,0.0065,1191,106,0,sofa;couch;lounge
+25,0.0061,1516,162,0,shelf
+26,0.0060,667,69,1,house
+27,0.0053,651,57,1,sea
+28,0.0052,1847,224,0,mirror
+29,0.0046,1158,128,1,rug;carpet;carpeting
+30,0.0044,480,44,1,field
+31,0.0044,1172,98,0,armchair
+32,0.0044,1292,184,0,seat
+33,0.0033,1386,138,0,fence;fencing
+34,0.0031,698,61,0,desk
+35,0.0030,781,73,0,rock;stone
+36,0.0027,380,43,0,wardrobe;closet;press
+37,0.0026,3089,302,0,lamp
+38,0.0024,404,37,0,bathtub;bathing;tub;bath;tub
+39,0.0024,804,99,0,railing;rail
+40,0.0023,1453,153,0,cushion
+41,0.0023,411,37,0,base;pedestal;stand
+42,0.0022,1440,162,0,box
+43,0.0022,800,77,0,column;pillar
+44,0.0020,2650,298,0,signboard;sign
+45,0.0019,549,46,0,chest;of;drawers;chest;bureau;dresser
+46,0.0019,367,36,0,counter
+47,0.0018,311,30,1,sand
+48,0.0018,1181,122,0,sink
+49,0.0018,287,23,1,skyscraper
+50,0.0018,468,38,0,fireplace;hearth;open;fireplace
+51,0.0018,402,43,0,refrigerator;icebox
+52,0.0018,130,12,1,grandstand;covered;stand
+53,0.0018,561,64,1,path
+54,0.0017,880,102,0,stairs;steps
+55,0.0017,86,12,1,runway
+56,0.0017,172,11,0,case;display;case;showcase;vitrine
+57,0.0017,198,18,0,pool;table;billiard;table;snooker;table
+58,0.0017,930,109,0,pillow
+59,0.0015,139,18,0,screen;door;screen
+60,0.0015,564,52,1,stairway;staircase
+61,0.0015,320,26,1,river
+62,0.0015,261,29,1,bridge;span
+63,0.0014,275,22,0,bookcase
+64,0.0014,335,60,0,blind;screen
+65,0.0014,792,75,0,coffee;table;cocktail;table
+66,0.0014,395,49,0,toilet;can;commode;crapper;pot;potty;stool;throne
+67,0.0014,1309,138,0,flower
+68,0.0013,1112,113,0,book
+69,0.0013,266,27,1,hill
+70,0.0013,659,66,0,bench
+71,0.0012,331,31,0,countertop
+72,0.0012,531,56,0,stove;kitchen;stove;range;kitchen;range;cooking;stove
+73,0.0012,369,36,0,palm;palm;tree
+74,0.0012,144,9,0,kitchen;island
+75,0.0011,265,29,0,computer;computing;machine;computing;device;data;processor;electronic;computer;information;processing;system
+76,0.0010,324,33,0,swivel;chair
+77,0.0009,304,27,0,boat
+78,0.0009,170,20,0,bar
+79,0.0009,68,6,0,arcade;machine
+80,0.0009,65,8,1,hovel;hut;hutch;shack;shanty
+81,0.0009,248,25,0,bus;autobus;coach;charabanc;double-decker;jitney;motorbus;motorcoach;omnibus;passenger;vehicle
+82,0.0008,492,49,0,towel
+83,0.0008,2510,269,0,light;light;source
+84,0.0008,440,39,0,truck;motortruck
+85,0.0008,147,18,1,tower
+86,0.0008,583,56,0,chandelier;pendant;pendent
+87,0.0007,533,61,0,awning;sunshade;sunblind
+88,0.0007,1989,239,0,streetlight;street;lamp
+89,0.0007,71,5,0,booth;cubicle;stall;kiosk
+90,0.0007,618,53,0,television;television;receiver;television;set;tv;tv;set;idiot;box;boob;tube;telly;goggle;box
+91,0.0007,135,12,0,airplane;aeroplane;plane
+92,0.0007,83,5,1,dirt;track
+93,0.0007,178,17,0,apparel;wearing;apparel;dress;clothes
+94,0.0006,1003,104,0,pole
+95,0.0006,182,12,1,land;ground;soil
+96,0.0006,452,50,0,bannister;banister;balustrade;balusters;handrail
+97,0.0006,42,6,1,escalator;moving;staircase;moving;stairway
+98,0.0006,307,31,0,ottoman;pouf;pouffe;puff;hassock
+99,0.0006,965,114,0,bottle
+100,0.0006,117,13,0,buffet;counter;sideboard
+101,0.0006,354,35,0,poster;posting;placard;notice;bill;card
+102,0.0006,108,9,1,stage
+103,0.0006,557,55,0,van
+104,0.0006,52,4,0,ship
+105,0.0005,99,5,0,fountain
+106,0.0005,57,4,1,conveyer;belt;conveyor;belt;conveyer;conveyor;transporter
+107,0.0005,292,31,0,canopy
+108,0.0005,77,9,0,washer;automatic;washer;washing;machine
+109,0.0005,340,38,0,plaything;toy
+110,0.0005,66,3,1,swimming;pool;swimming;bath;natatorium
+111,0.0005,465,49,0,stool
+112,0.0005,50,4,0,barrel;cask
+113,0.0005,622,75,0,basket;handbasket
+114,0.0005,80,9,1,waterfall;falls
+115,0.0005,59,3,0,tent;collapsible;shelter
+116,0.0005,531,72,0,bag
+117,0.0005,282,30,0,minibike;motorbike
+118,0.0005,73,7,0,cradle
+119,0.0005,435,44,0,oven
+120,0.0005,136,25,0,ball
+121,0.0005,116,24,0,food;solid;food
+122,0.0004,266,31,0,step;stair
+123,0.0004,58,12,0,tank;storage;tank
+124,0.0004,418,83,0,trade;name;brand;name;brand;marque
+125,0.0004,319,43,0,microwave;microwave;oven
+126,0.0004,1193,139,0,pot;flowerpot
+127,0.0004,97,23,0,animal;animate;being;beast;brute;creature;fauna
+128,0.0004,347,36,0,bicycle;bike;wheel;cycle
+129,0.0004,52,5,1,lake
+130,0.0004,246,22,0,dishwasher;dish;washer;dishwashing;machine
+131,0.0004,108,13,0,screen;silver;screen;projection;screen
+132,0.0004,201,30,0,blanket;cover
+133,0.0004,285,21,0,sculpture
+134,0.0004,268,27,0,hood;exhaust;hood
+135,0.0003,1020,108,0,sconce
+136,0.0003,1282,122,0,vase
+137,0.0003,528,65,0,traffic;light;traffic;signal;stoplight
+138,0.0003,453,57,0,tray
+139,0.0003,671,100,0,ashcan;trash;can;garbage;can;wastebin;ash;bin;ash-bin;ashbin;dustbin;trash;barrel;trash;bin
+140,0.0003,397,44,0,fan
+141,0.0003,92,8,1,pier;wharf;wharfage;dock
+142,0.0003,228,18,0,crt;screen
+143,0.0003,570,59,0,plate
+144,0.0003,217,22,0,monitor;monitoring;device
+145,0.0003,206,19,0,bulletin;board;notice;board
+146,0.0003,130,14,0,shower
+147,0.0003,178,28,0,radiator
+148,0.0002,504,57,0,glass;drinking;glass
+149,0.0002,775,96,0,clock
+150,0.0002,421,56,0,flag
diff --git a/models/ade20k/resnet.py b/models/ade20k/resnet.py
new file mode 100644
index 00000000..3e1d521f
--- /dev/null
+++ b/models/ade20k/resnet.py
@@ -0,0 +1,181 @@
+"""Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch"""
+
+import math
+
+import torch.nn as nn
+from torch.nn import BatchNorm2d
+
+from .utils import load_url
+
+__all__ = ['ResNet', 'resnet50']
+
+
+model_urls = {
+ 'resnet50': 'http://sceneparsing.csail.mit.edu/model/pretrained_resnet/resnet50-imagenet.pth',
+}
+
+
+def conv3x3(in_planes, out_planes, stride=1):
+ "3x3 convolution with padding"
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
+ padding=1, bias=False)
+
+
+class BasicBlock(nn.Module):
+ expansion = 1
+
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
+ super(BasicBlock, self).__init__()
+ self.conv1 = conv3x3(inplanes, planes, stride)
+ self.bn1 = BatchNorm2d(planes)
+ self.relu = nn.ReLU(inplace=True)
+ self.conv2 = conv3x3(planes, planes)
+ self.bn2 = BatchNorm2d(planes)
+ self.downsample = downsample
+ self.stride = stride
+
+ def forward(self, x):
+ residual = x
+
+ out = self.conv1(x)
+ out = self.bn1(out)
+ out = self.relu(out)
+
+ out = self.conv2(out)
+ out = self.bn2(out)
+
+ if self.downsample is not None:
+ residual = self.downsample(x)
+
+ out += residual
+ out = self.relu(out)
+
+ return out
+
+
+class Bottleneck(nn.Module):
+ expansion = 4
+
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
+ super(Bottleneck, self).__init__()
+ self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
+ self.bn1 = BatchNorm2d(planes)
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
+ padding=1, bias=False)
+ self.bn2 = BatchNorm2d(planes)
+ self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
+ self.bn3 = BatchNorm2d(planes * 4)
+ self.relu = nn.ReLU(inplace=True)
+ self.downsample = downsample
+ self.stride = stride
+
+ def forward(self, x):
+ residual = x
+
+ out = self.conv1(x)
+ out = self.bn1(out)
+ out = self.relu(out)
+
+ out = self.conv2(out)
+ out = self.bn2(out)
+ out = self.relu(out)
+
+ out = self.conv3(out)
+ out = self.bn3(out)
+
+ if self.downsample is not None:
+ residual = self.downsample(x)
+
+ out += residual
+ out = self.relu(out)
+
+ return out
+
+
+class ResNet(nn.Module):
+
+ def __init__(self, block, layers, num_classes=1000):
+ self.inplanes = 128
+ super(ResNet, self).__init__()
+ self.conv1 = conv3x3(3, 64, stride=2)
+ self.bn1 = BatchNorm2d(64)
+ self.relu1 = nn.ReLU(inplace=True)
+ self.conv2 = conv3x3(64, 64)
+ self.bn2 = BatchNorm2d(64)
+ self.relu2 = nn.ReLU(inplace=True)
+ self.conv3 = conv3x3(64, 128)
+ self.bn3 = BatchNorm2d(128)
+ self.relu3 = nn.ReLU(inplace=True)
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
+
+ self.layer1 = self._make_layer(block, 64, layers[0])
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
+ self.avgpool = nn.AvgPool2d(7, stride=1)
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
+
+ for m in self.modules():
+ if isinstance(m, nn.Conv2d):
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
+ m.weight.data.normal_(0, math.sqrt(2. / n))
+ elif isinstance(m, BatchNorm2d):
+ m.weight.data.fill_(1)
+ m.bias.data.zero_()
+
+ def _make_layer(self, block, planes, blocks, stride=1):
+ downsample = None
+ if stride != 1 or self.inplanes != planes * block.expansion:
+ downsample = nn.Sequential(
+ nn.Conv2d(self.inplanes, planes * block.expansion,
+ kernel_size=1, stride=stride, bias=False),
+ BatchNorm2d(planes * block.expansion),
+ )
+
+ layers = []
+ layers.append(block(self.inplanes, planes, stride, downsample))
+ self.inplanes = planes * block.expansion
+ for i in range(1, blocks):
+ layers.append(block(self.inplanes, planes))
+
+ return nn.Sequential(*layers)
+
+ def forward(self, x):
+ x = self.relu1(self.bn1(self.conv1(x)))
+ x = self.relu2(self.bn2(self.conv2(x)))
+ x = self.relu3(self.bn3(self.conv3(x)))
+ x = self.maxpool(x)
+
+ x = self.layer1(x)
+ x = self.layer2(x)
+ x = self.layer3(x)
+ x = self.layer4(x)
+
+ x = self.avgpool(x)
+ x = x.view(x.size(0), -1)
+ x = self.fc(x)
+
+ return x
+
+
+def resnet50(pretrained=False, **kwargs):
+ """Constructs a ResNet-50 model.
+
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
+ if pretrained:
+ model.load_state_dict(load_url(model_urls['resnet50']), strict=False)
+ return model
+
+
+def resnet18(pretrained=False, **kwargs):
+ """Constructs a ResNet-18 model.
+ Args:
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
+ """
+ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
+ if pretrained:
+ model.load_state_dict(load_url(model_urls['resnet18']))
+ return model
\ No newline at end of file
diff --git a/models/ade20k/segm_lib/nn/__init__.py b/models/ade20k/segm_lib/nn/__init__.py
new file mode 100644
index 00000000..98a96370
--- /dev/null
+++ b/models/ade20k/segm_lib/nn/__init__.py
@@ -0,0 +1,2 @@
+from .modules import *
+from .parallel import UserScatteredDataParallel, user_scattered_collate, async_copy_to
diff --git a/models/ade20k/segm_lib/nn/modules/__init__.py b/models/ade20k/segm_lib/nn/modules/__init__.py
new file mode 100644
index 00000000..bc8709d9
--- /dev/null
+++ b/models/ade20k/segm_lib/nn/modules/__init__.py
@@ -0,0 +1,12 @@
+# -*- coding: utf-8 -*-
+# File : __init__.py
+# Author : Jiayuan Mao
+# Email : maojiayuan@gmail.com
+# Date : 27/01/2018
+#
+# This file is part of Synchronized-BatchNorm-PyTorch.
+# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
+# Distributed under MIT License.
+
+from .batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, SynchronizedBatchNorm3d
+from .replicate import DataParallelWithCallback, patch_replication_callback
diff --git a/models/ade20k/segm_lib/nn/modules/batchnorm.py b/models/ade20k/segm_lib/nn/modules/batchnorm.py
new file mode 100644
index 00000000..18318965
--- /dev/null
+++ b/models/ade20k/segm_lib/nn/modules/batchnorm.py
@@ -0,0 +1,329 @@
+# -*- coding: utf-8 -*-
+# File : batchnorm.py
+# Author : Jiayuan Mao
+# Email : maojiayuan@gmail.com
+# Date : 27/01/2018
+#
+# This file is part of Synchronized-BatchNorm-PyTorch.
+# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
+# Distributed under MIT License.
+
+import collections
+
+import torch
+import torch.nn.functional as F
+
+from torch.nn.modules.batchnorm import _BatchNorm
+from torch.nn.parallel._functions import ReduceAddCoalesced, Broadcast
+
+from .comm import SyncMaster
+
+__all__ = ['SynchronizedBatchNorm1d', 'SynchronizedBatchNorm2d', 'SynchronizedBatchNorm3d']
+
+
+def _sum_ft(tensor):
+ """sum over the first and last dimention"""
+ return tensor.sum(dim=0).sum(dim=-1)
+
+
+def _unsqueeze_ft(tensor):
+ """add new dementions at the front and the tail"""
+ return tensor.unsqueeze(0).unsqueeze(-1)
+
+
+_ChildMessage = collections.namedtuple('_ChildMessage', ['sum', 'ssum', 'sum_size'])
+_MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std'])
+
+
+class _SynchronizedBatchNorm(_BatchNorm):
+ def __init__(self, num_features, eps=1e-5, momentum=0.001, affine=True):
+ super(_SynchronizedBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine)
+
+ self._sync_master = SyncMaster(self._data_parallel_master)
+
+ self._is_parallel = False
+ self._parallel_id = None
+ self._slave_pipe = None
+
+ # customed batch norm statistics
+ self._moving_average_fraction = 1. - momentum
+ self.register_buffer('_tmp_running_mean', torch.zeros(self.num_features))
+ self.register_buffer('_tmp_running_var', torch.ones(self.num_features))
+ self.register_buffer('_running_iter', torch.ones(1))
+ self._tmp_running_mean = self.running_mean.clone() * self._running_iter
+ self._tmp_running_var = self.running_var.clone() * self._running_iter
+
+ def forward(self, input):
+ # If it is not parallel computation or is in evaluation mode, use PyTorch's implementation.
+ if not (self._is_parallel and self.training):
+ return F.batch_norm(
+ input, self.running_mean, self.running_var, self.weight, self.bias,
+ self.training, self.momentum, self.eps)
+
+ # Resize the input to (B, C, -1).
+ input_shape = input.size()
+ input = input.view(input.size(0), self.num_features, -1)
+
+ # Compute the sum and square-sum.
+ sum_size = input.size(0) * input.size(2)
+ input_sum = _sum_ft(input)
+ input_ssum = _sum_ft(input ** 2)
+
+ # Reduce-and-broadcast the statistics.
+ if self._parallel_id == 0:
+ mean, inv_std = self._sync_master.run_master(_ChildMessage(input_sum, input_ssum, sum_size))
+ else:
+ mean, inv_std = self._slave_pipe.run_slave(_ChildMessage(input_sum, input_ssum, sum_size))
+
+ # Compute the output.
+ if self.affine:
+ # MJY:: Fuse the multiplication for speed.
+ output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std * self.weight) + _unsqueeze_ft(self.bias)
+ else:
+ output = (input - _unsqueeze_ft(mean)) * _unsqueeze_ft(inv_std)
+
+ # Reshape it.
+ return output.view(input_shape)
+
+ def __data_parallel_replicate__(self, ctx, copy_id):
+ self._is_parallel = True
+ self._parallel_id = copy_id
+
+ # parallel_id == 0 means master device.
+ if self._parallel_id == 0:
+ ctx.sync_master = self._sync_master
+ else:
+ self._slave_pipe = ctx.sync_master.register_slave(copy_id)
+
+ def _data_parallel_master(self, intermediates):
+ """Reduce the sum and square-sum, compute the statistics, and broadcast it."""
+ intermediates = sorted(intermediates, key=lambda i: i[1].sum.get_device())
+
+ to_reduce = [i[1][:2] for i in intermediates]
+ to_reduce = [j for i in to_reduce for j in i] # flatten
+ target_gpus = [i[1].sum.get_device() for i in intermediates]
+
+ sum_size = sum([i[1].sum_size for i in intermediates])
+ sum_, ssum = ReduceAddCoalesced.apply(target_gpus[0], 2, *to_reduce)
+
+ mean, inv_std = self._compute_mean_std(sum_, ssum, sum_size)
+
+ broadcasted = Broadcast.apply(target_gpus, mean, inv_std)
+
+ outputs = []
+ for i, rec in enumerate(intermediates):
+ outputs.append((rec[0], _MasterMessage(*broadcasted[i*2:i*2+2])))
+
+ return outputs
+
+ def _add_weighted(self, dest, delta, alpha=1, beta=1, bias=0):
+ """return *dest* by `dest := dest*alpha + delta*beta + bias`"""
+ return dest * alpha + delta * beta + bias
+
+ def _compute_mean_std(self, sum_, ssum, size):
+ """Compute the mean and standard-deviation with sum and square-sum. This method
+ also maintains the moving average on the master device."""
+ assert size > 1, 'BatchNorm computes unbiased standard-deviation, which requires size > 1.'
+ mean = sum_ / size
+ sumvar = ssum - sum_ * mean
+ unbias_var = sumvar / (size - 1)
+ bias_var = sumvar / size
+
+ self._tmp_running_mean = self._add_weighted(self._tmp_running_mean, mean.data, alpha=self._moving_average_fraction)
+ self._tmp_running_var = self._add_weighted(self._tmp_running_var, unbias_var.data, alpha=self._moving_average_fraction)
+ self._running_iter = self._add_weighted(self._running_iter, 1, alpha=self._moving_average_fraction)
+
+ self.running_mean = self._tmp_running_mean / self._running_iter
+ self.running_var = self._tmp_running_var / self._running_iter
+
+ return mean, bias_var.clamp(self.eps) ** -0.5
+
+
+class SynchronizedBatchNorm1d(_SynchronizedBatchNorm):
+ r"""Applies Synchronized Batch Normalization over a 2d or 3d input that is seen as a
+ mini-batch.
+
+ .. math::
+
+ y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
+
+ This module differs from the built-in PyTorch BatchNorm1d as the mean and
+ standard-deviation are reduced across all devices during training.
+
+ For example, when one uses `nn.DataParallel` to wrap the network during
+ training, PyTorch's implementation normalize the tensor on each device using
+ the statistics only on that device, which accelerated the computation and
+ is also easy to implement, but the statistics might be inaccurate.
+ Instead, in this synchronized version, the statistics will be computed
+ over all training samples distributed on multiple devices.
+
+ Note that, for one-GPU or CPU-only case, this module behaves exactly same
+ as the built-in PyTorch implementation.
+
+ The mean and standard-deviation are calculated per-dimension over
+ the mini-batches and gamma and beta are learnable parameter vectors
+ of size C (where C is the input size).
+
+ During training, this layer keeps a running estimate of its computed mean
+ and variance. The running sum is kept with a default momentum of 0.1.
+
+ During evaluation, this running mean/variance is used for normalization.
+
+ Because the BatchNorm is done over the `C` dimension, computing statistics
+ on `(N, L)` slices, it's common terminology to call this Temporal BatchNorm
+
+ Args:
+ num_features: num_features from an expected input of size
+ `batch_size x num_features [x width]`
+ eps: a value added to the denominator for numerical stability.
+ Default: 1e-5
+ momentum: the value used for the running_mean and running_var
+ computation. Default: 0.1
+ affine: a boolean value that when set to ``True``, gives the layer learnable
+ affine parameters. Default: ``True``
+
+ Shape:
+ - Input: :math:`(N, C)` or :math:`(N, C, L)`
+ - Output: :math:`(N, C)` or :math:`(N, C, L)` (same shape as input)
+
+ Examples:
+ >>> # With Learnable Parameters
+ >>> m = SynchronizedBatchNorm1d(100)
+ >>> # Without Learnable Parameters
+ >>> m = SynchronizedBatchNorm1d(100, affine=False)
+ >>> input = torch.autograd.Variable(torch.randn(20, 100))
+ >>> output = m(input)
+ """
+
+ def _check_input_dim(self, input):
+ if input.dim() != 2 and input.dim() != 3:
+ raise ValueError('expected 2D or 3D input (got {}D input)'
+ .format(input.dim()))
+ super(SynchronizedBatchNorm1d, self)._check_input_dim(input)
+
+
+class SynchronizedBatchNorm2d(_SynchronizedBatchNorm):
+ r"""Applies Batch Normalization over a 4d input that is seen as a mini-batch
+ of 3d inputs
+
+ .. math::
+
+ y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
+
+ This module differs from the built-in PyTorch BatchNorm2d as the mean and
+ standard-deviation are reduced across all devices during training.
+
+ For example, when one uses `nn.DataParallel` to wrap the network during
+ training, PyTorch's implementation normalize the tensor on each device using
+ the statistics only on that device, which accelerated the computation and
+ is also easy to implement, but the statistics might be inaccurate.
+ Instead, in this synchronized version, the statistics will be computed
+ over all training samples distributed on multiple devices.
+
+ Note that, for one-GPU or CPU-only case, this module behaves exactly same
+ as the built-in PyTorch implementation.
+
+ The mean and standard-deviation are calculated per-dimension over
+ the mini-batches and gamma and beta are learnable parameter vectors
+ of size C (where C is the input size).
+
+ During training, this layer keeps a running estimate of its computed mean
+ and variance. The running sum is kept with a default momentum of 0.1.
+
+ During evaluation, this running mean/variance is used for normalization.
+
+ Because the BatchNorm is done over the `C` dimension, computing statistics
+ on `(N, H, W)` slices, it's common terminology to call this Spatial BatchNorm
+
+ Args:
+ num_features: num_features from an expected input of
+ size batch_size x num_features x height x width
+ eps: a value added to the denominator for numerical stability.
+ Default: 1e-5
+ momentum: the value used for the running_mean and running_var
+ computation. Default: 0.1
+ affine: a boolean value that when set to ``True``, gives the layer learnable
+ affine parameters. Default: ``True``
+
+ Shape:
+ - Input: :math:`(N, C, H, W)`
+ - Output: :math:`(N, C, H, W)` (same shape as input)
+
+ Examples:
+ >>> # With Learnable Parameters
+ >>> m = SynchronizedBatchNorm2d(100)
+ >>> # Without Learnable Parameters
+ >>> m = SynchronizedBatchNorm2d(100, affine=False)
+ >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45))
+ >>> output = m(input)
+ """
+
+ def _check_input_dim(self, input):
+ if input.dim() != 4:
+ raise ValueError('expected 4D input (got {}D input)'
+ .format(input.dim()))
+ super(SynchronizedBatchNorm2d, self)._check_input_dim(input)
+
+
+class SynchronizedBatchNorm3d(_SynchronizedBatchNorm):
+ r"""Applies Batch Normalization over a 5d input that is seen as a mini-batch
+ of 4d inputs
+
+ .. math::
+
+ y = \frac{x - mean[x]}{ \sqrt{Var[x] + \epsilon}} * gamma + beta
+
+ This module differs from the built-in PyTorch BatchNorm3d as the mean and
+ standard-deviation are reduced across all devices during training.
+
+ For example, when one uses `nn.DataParallel` to wrap the network during
+ training, PyTorch's implementation normalize the tensor on each device using
+ the statistics only on that device, which accelerated the computation and
+ is also easy to implement, but the statistics might be inaccurate.
+ Instead, in this synchronized version, the statistics will be computed
+ over all training samples distributed on multiple devices.
+
+ Note that, for one-GPU or CPU-only case, this module behaves exactly same
+ as the built-in PyTorch implementation.
+
+ The mean and standard-deviation are calculated per-dimension over
+ the mini-batches and gamma and beta are learnable parameter vectors
+ of size C (where C is the input size).
+
+ During training, this layer keeps a running estimate of its computed mean
+ and variance. The running sum is kept with a default momentum of 0.1.
+
+ During evaluation, this running mean/variance is used for normalization.
+
+ Because the BatchNorm is done over the `C` dimension, computing statistics
+ on `(N, D, H, W)` slices, it's common terminology to call this Volumetric BatchNorm
+ or Spatio-temporal BatchNorm
+
+ Args:
+ num_features: num_features from an expected input of
+ size batch_size x num_features x depth x height x width
+ eps: a value added to the denominator for numerical stability.
+ Default: 1e-5
+ momentum: the value used for the running_mean and running_var
+ computation. Default: 0.1
+ affine: a boolean value that when set to ``True``, gives the layer learnable
+ affine parameters. Default: ``True``
+
+ Shape:
+ - Input: :math:`(N, C, D, H, W)`
+ - Output: :math:`(N, C, D, H, W)` (same shape as input)
+
+ Examples:
+ >>> # With Learnable Parameters
+ >>> m = SynchronizedBatchNorm3d(100)
+ >>> # Without Learnable Parameters
+ >>> m = SynchronizedBatchNorm3d(100, affine=False)
+ >>> input = torch.autograd.Variable(torch.randn(20, 100, 35, 45, 10))
+ >>> output = m(input)
+ """
+
+ def _check_input_dim(self, input):
+ if input.dim() != 5:
+ raise ValueError('expected 5D input (got {}D input)'
+ .format(input.dim()))
+ super(SynchronizedBatchNorm3d, self)._check_input_dim(input)
diff --git a/models/ade20k/segm_lib/nn/modules/comm.py b/models/ade20k/segm_lib/nn/modules/comm.py
new file mode 100644
index 00000000..b64bf6ba
--- /dev/null
+++ b/models/ade20k/segm_lib/nn/modules/comm.py
@@ -0,0 +1,131 @@
+# -*- coding: utf-8 -*-
+# File : comm.py
+# Author : Jiayuan Mao
+# Email : maojiayuan@gmail.com
+# Date : 27/01/2018
+#
+# This file is part of Synchronized-BatchNorm-PyTorch.
+# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
+# Distributed under MIT License.
+
+import queue
+import collections
+import threading
+
+__all__ = ['FutureResult', 'SlavePipe', 'SyncMaster']
+
+
+class FutureResult(object):
+ """A thread-safe future implementation. Used only as one-to-one pipe."""
+
+ def __init__(self):
+ self._result = None
+ self._lock = threading.Lock()
+ self._cond = threading.Condition(self._lock)
+
+ def put(self, result):
+ with self._lock:
+ assert self._result is None, 'Previous result has\'t been fetched.'
+ self._result = result
+ self._cond.notify()
+
+ def get(self):
+ with self._lock:
+ if self._result is None:
+ self._cond.wait()
+
+ res = self._result
+ self._result = None
+ return res
+
+
+_MasterRegistry = collections.namedtuple('MasterRegistry', ['result'])
+_SlavePipeBase = collections.namedtuple('_SlavePipeBase', ['identifier', 'queue', 'result'])
+
+
+class SlavePipe(_SlavePipeBase):
+ """Pipe for master-slave communication."""
+
+ def run_slave(self, msg):
+ self.queue.put((self.identifier, msg))
+ ret = self.result.get()
+ self.queue.put(True)
+ return ret
+
+
+class SyncMaster(object):
+ """An abstract `SyncMaster` object.
+
+ - During the replication, as the data parallel will trigger an callback of each module, all slave devices should
+ call `register(id)` and obtain an `SlavePipe` to communicate with the master.
+ - During the forward pass, master device invokes `run_master`, all messages from slave devices will be collected,
+ and passed to a registered callback.
+ - After receiving the messages, the master device should gather the information and determine to message passed
+ back to each slave devices.
+ """
+
+ def __init__(self, master_callback):
+ """
+
+ Args:
+ master_callback: a callback to be invoked after having collected messages from slave devices.
+ """
+ self._master_callback = master_callback
+ self._queue = queue.Queue()
+ self._registry = collections.OrderedDict()
+ self._activated = False
+
+ def register_slave(self, identifier):
+ """
+ Register an slave device.
+
+ Args:
+ identifier: an identifier, usually is the device id.
+
+ Returns: a `SlavePipe` object which can be used to communicate with the master device.
+
+ """
+ if self._activated:
+ assert self._queue.empty(), 'Queue is not clean before next initialization.'
+ self._activated = False
+ self._registry.clear()
+ future = FutureResult()
+ self._registry[identifier] = _MasterRegistry(future)
+ return SlavePipe(identifier, self._queue, future)
+
+ def run_master(self, master_msg):
+ """
+ Main entry for the master device in each forward pass.
+ The messages were first collected from each devices (including the master device), and then
+ an callback will be invoked to compute the message to be sent back to each devices
+ (including the master device).
+
+ Args:
+ master_msg: the message that the master want to send to itself. This will be placed as the first
+ message when calling `master_callback`. For detailed usage, see `_SynchronizedBatchNorm` for an example.
+
+ Returns: the message to be sent back to the master device.
+
+ """
+ self._activated = True
+
+ intermediates = [(0, master_msg)]
+ for i in range(self.nr_slaves):
+ intermediates.append(self._queue.get())
+
+ results = self._master_callback(intermediates)
+ assert results[0][0] == 0, 'The first result should belongs to the master.'
+
+ for i, res in results:
+ if i == 0:
+ continue
+ self._registry[i].result.put(res)
+
+ for i in range(self.nr_slaves):
+ assert self._queue.get() is True
+
+ return results[0][1]
+
+ @property
+ def nr_slaves(self):
+ return len(self._registry)
diff --git a/models/ade20k/segm_lib/nn/modules/replicate.py b/models/ade20k/segm_lib/nn/modules/replicate.py
new file mode 100644
index 00000000..b71c7b8e
--- /dev/null
+++ b/models/ade20k/segm_lib/nn/modules/replicate.py
@@ -0,0 +1,94 @@
+# -*- coding: utf-8 -*-
+# File : replicate.py
+# Author : Jiayuan Mao
+# Email : maojiayuan@gmail.com
+# Date : 27/01/2018
+#
+# This file is part of Synchronized-BatchNorm-PyTorch.
+# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
+# Distributed under MIT License.
+
+import functools
+
+from torch.nn.parallel.data_parallel import DataParallel
+
+__all__ = [
+ 'CallbackContext',
+ 'execute_replication_callbacks',
+ 'DataParallelWithCallback',
+ 'patch_replication_callback'
+]
+
+
+class CallbackContext(object):
+ pass
+
+
+def execute_replication_callbacks(modules):
+ """
+ Execute an replication callback `__data_parallel_replicate__` on each module created by original replication.
+
+ The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)`
+
+ Note that, as all modules are isomorphism, we assign each sub-module with a context
+ (shared among multiple copies of this module on different devices).
+ Through this context, different copies can share some information.
+
+ We guarantee that the callback on the master copy (the first copy) will be called ahead of calling the callback
+ of any slave copies.
+ """
+ master_copy = modules[0]
+ nr_modules = len(list(master_copy.modules()))
+ ctxs = [CallbackContext() for _ in range(nr_modules)]
+
+ for i, module in enumerate(modules):
+ for j, m in enumerate(module.modules()):
+ if hasattr(m, '__data_parallel_replicate__'):
+ m.__data_parallel_replicate__(ctxs[j], i)
+
+
+class DataParallelWithCallback(DataParallel):
+ """
+ Data Parallel with a replication callback.
+
+ An replication callback `__data_parallel_replicate__` of each module will be invoked after being created by
+ original `replicate` function.
+ The callback will be invoked with arguments `__data_parallel_replicate__(ctx, copy_id)`
+
+ Examples:
+ > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
+ > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
+ # sync_bn.__data_parallel_replicate__ will be invoked.
+ """
+
+ def replicate(self, module, device_ids):
+ modules = super(DataParallelWithCallback, self).replicate(module, device_ids)
+ execute_replication_callbacks(modules)
+ return modules
+
+
+def patch_replication_callback(data_parallel):
+ """
+ Monkey-patch an existing `DataParallel` object. Add the replication callback.
+ Useful when you have customized `DataParallel` implementation.
+
+ Examples:
+ > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
+ > sync_bn = DataParallel(sync_bn, device_ids=[0, 1])
+ > patch_replication_callback(sync_bn)
+ # this is equivalent to
+ > sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
+ > sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
+ """
+
+ assert isinstance(data_parallel, DataParallel)
+
+ old_replicate = data_parallel.replicate
+
+ @functools.wraps(old_replicate)
+ def new_replicate(module, device_ids):
+ modules = old_replicate(module, device_ids)
+ execute_replication_callbacks(modules)
+ return modules
+
+ data_parallel.replicate = new_replicate
diff --git a/models/ade20k/segm_lib/nn/modules/tests/test_numeric_batchnorm.py b/models/ade20k/segm_lib/nn/modules/tests/test_numeric_batchnorm.py
new file mode 100644
index 00000000..8bd45a93
--- /dev/null
+++ b/models/ade20k/segm_lib/nn/modules/tests/test_numeric_batchnorm.py
@@ -0,0 +1,56 @@
+# -*- coding: utf-8 -*-
+# File : test_numeric_batchnorm.py
+# Author : Jiayuan Mao
+# Email : maojiayuan@gmail.com
+# Date : 27/01/2018
+#
+# This file is part of Synchronized-BatchNorm-PyTorch.
+
+import unittest
+
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+
+from sync_batchnorm.unittest import TorchTestCase
+
+
+def handy_var(a, unbias=True):
+ n = a.size(0)
+ asum = a.sum(dim=0)
+ as_sum = (a ** 2).sum(dim=0) # a square sum
+ sumvar = as_sum - asum * asum / n
+ if unbias:
+ return sumvar / (n - 1)
+ else:
+ return sumvar / n
+
+
+class NumericTestCase(TorchTestCase):
+ def testNumericBatchNorm(self):
+ a = torch.rand(16, 10)
+ bn = nn.BatchNorm2d(10, momentum=1, eps=1e-5, affine=False)
+ bn.train()
+
+ a_var1 = Variable(a, requires_grad=True)
+ b_var1 = bn(a_var1)
+ loss1 = b_var1.sum()
+ loss1.backward()
+
+ a_var2 = Variable(a, requires_grad=True)
+ a_mean2 = a_var2.mean(dim=0, keepdim=True)
+ a_std2 = torch.sqrt(handy_var(a_var2, unbias=False).clamp(min=1e-5))
+ # a_std2 = torch.sqrt(a_var2.var(dim=0, keepdim=True, unbiased=False) + 1e-5)
+ b_var2 = (a_var2 - a_mean2) / a_std2
+ loss2 = b_var2.sum()
+ loss2.backward()
+
+ self.assertTensorClose(bn.running_mean, a.mean(dim=0))
+ self.assertTensorClose(bn.running_var, handy_var(a))
+ self.assertTensorClose(a_var1.data, a_var2.data)
+ self.assertTensorClose(b_var1.data, b_var2.data)
+ self.assertTensorClose(a_var1.grad, a_var2.grad)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/models/ade20k/segm_lib/nn/modules/tests/test_sync_batchnorm.py b/models/ade20k/segm_lib/nn/modules/tests/test_sync_batchnorm.py
new file mode 100644
index 00000000..45bb3c8c
--- /dev/null
+++ b/models/ade20k/segm_lib/nn/modules/tests/test_sync_batchnorm.py
@@ -0,0 +1,111 @@
+# -*- coding: utf-8 -*-
+# File : test_sync_batchnorm.py
+# Author : Jiayuan Mao
+# Email : maojiayuan@gmail.com
+# Date : 27/01/2018
+#
+# This file is part of Synchronized-BatchNorm-PyTorch.
+
+import unittest
+
+import torch
+import torch.nn as nn
+from torch.autograd import Variable
+
+from sync_batchnorm import SynchronizedBatchNorm1d, SynchronizedBatchNorm2d, DataParallelWithCallback
+from sync_batchnorm.unittest import TorchTestCase
+
+
+def handy_var(a, unbias=True):
+ n = a.size(0)
+ asum = a.sum(dim=0)
+ as_sum = (a ** 2).sum(dim=0) # a square sum
+ sumvar = as_sum - asum * asum / n
+ if unbias:
+ return sumvar / (n - 1)
+ else:
+ return sumvar / n
+
+
+def _find_bn(module):
+ for m in module.modules():
+ if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, SynchronizedBatchNorm1d, SynchronizedBatchNorm2d)):
+ return m
+
+
+class SyncTestCase(TorchTestCase):
+ def _syncParameters(self, bn1, bn2):
+ bn1.reset_parameters()
+ bn2.reset_parameters()
+ if bn1.affine and bn2.affine:
+ bn2.weight.data.copy_(bn1.weight.data)
+ bn2.bias.data.copy_(bn1.bias.data)
+
+ def _checkBatchNormResult(self, bn1, bn2, input, is_train, cuda=False):
+ """Check the forward and backward for the customized batch normalization."""
+ bn1.train(mode=is_train)
+ bn2.train(mode=is_train)
+
+ if cuda:
+ input = input.cuda()
+
+ self._syncParameters(_find_bn(bn1), _find_bn(bn2))
+
+ input1 = Variable(input, requires_grad=True)
+ output1 = bn1(input1)
+ output1.sum().backward()
+ input2 = Variable(input, requires_grad=True)
+ output2 = bn2(input2)
+ output2.sum().backward()
+
+ self.assertTensorClose(input1.data, input2.data)
+ self.assertTensorClose(output1.data, output2.data)
+ self.assertTensorClose(input1.grad, input2.grad)
+ self.assertTensorClose(_find_bn(bn1).running_mean, _find_bn(bn2).running_mean)
+ self.assertTensorClose(_find_bn(bn1).running_var, _find_bn(bn2).running_var)
+
+ def testSyncBatchNormNormalTrain(self):
+ bn = nn.BatchNorm1d(10)
+ sync_bn = SynchronizedBatchNorm1d(10)
+
+ self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), True)
+
+ def testSyncBatchNormNormalEval(self):
+ bn = nn.BatchNorm1d(10)
+ sync_bn = SynchronizedBatchNorm1d(10)
+
+ self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), False)
+
+ def testSyncBatchNormSyncTrain(self):
+ bn = nn.BatchNorm1d(10, eps=1e-5, affine=False)
+ sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
+ sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
+
+ bn.cuda()
+ sync_bn.cuda()
+
+ self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), True, cuda=True)
+
+ def testSyncBatchNormSyncEval(self):
+ bn = nn.BatchNorm1d(10, eps=1e-5, affine=False)
+ sync_bn = SynchronizedBatchNorm1d(10, eps=1e-5, affine=False)
+ sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
+
+ bn.cuda()
+ sync_bn.cuda()
+
+ self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10), False, cuda=True)
+
+ def testSyncBatchNorm2DSyncTrain(self):
+ bn = nn.BatchNorm2d(10)
+ sync_bn = SynchronizedBatchNorm2d(10)
+ sync_bn = DataParallelWithCallback(sync_bn, device_ids=[0, 1])
+
+ bn.cuda()
+ sync_bn.cuda()
+
+ self._checkBatchNormResult(bn, sync_bn, torch.rand(16, 10, 16, 16), True, cuda=True)
+
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/models/ade20k/segm_lib/nn/modules/unittest.py b/models/ade20k/segm_lib/nn/modules/unittest.py
new file mode 100644
index 00000000..0675c022
--- /dev/null
+++ b/models/ade20k/segm_lib/nn/modules/unittest.py
@@ -0,0 +1,29 @@
+# -*- coding: utf-8 -*-
+# File : unittest.py
+# Author : Jiayuan Mao
+# Email : maojiayuan@gmail.com
+# Date : 27/01/2018
+#
+# This file is part of Synchronized-BatchNorm-PyTorch.
+# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
+# Distributed under MIT License.
+
+import unittest
+
+import numpy as np
+from torch.autograd import Variable
+
+
+def as_numpy(v):
+ if isinstance(v, Variable):
+ v = v.data
+ return v.cpu().numpy()
+
+
+class TorchTestCase(unittest.TestCase):
+ def assertTensorClose(self, a, b, atol=1e-3, rtol=1e-3):
+ npa, npb = as_numpy(a), as_numpy(b)
+ self.assertTrue(
+ np.allclose(npa, npb, atol=atol),
+ 'Tensor close check failed\n{}\n{}\nadiff={}, rdiff={}'.format(a, b, np.abs(npa - npb).max(), np.abs((npa - npb) / np.fmax(npa, 1e-5)).max())
+ )
diff --git a/models/ade20k/segm_lib/nn/parallel/__init__.py b/models/ade20k/segm_lib/nn/parallel/__init__.py
new file mode 100644
index 00000000..9b52f49c
--- /dev/null
+++ b/models/ade20k/segm_lib/nn/parallel/__init__.py
@@ -0,0 +1 @@
+from .data_parallel import UserScatteredDataParallel, user_scattered_collate, async_copy_to
diff --git a/models/ade20k/segm_lib/nn/parallel/data_parallel.py b/models/ade20k/segm_lib/nn/parallel/data_parallel.py
new file mode 100644
index 00000000..376fc038
--- /dev/null
+++ b/models/ade20k/segm_lib/nn/parallel/data_parallel.py
@@ -0,0 +1,112 @@
+# -*- coding: utf8 -*-
+
+import torch.cuda as cuda
+import torch.nn as nn
+import torch
+import collections
+from torch.nn.parallel._functions import Gather
+
+
+__all__ = ['UserScatteredDataParallel', 'user_scattered_collate', 'async_copy_to']
+
+
+def async_copy_to(obj, dev, main_stream=None):
+ if torch.is_tensor(obj):
+ v = obj.cuda(dev, non_blocking=True)
+ if main_stream is not None:
+ v.data.record_stream(main_stream)
+ return v
+ elif isinstance(obj, collections.Mapping):
+ return {k: async_copy_to(o, dev, main_stream) for k, o in obj.items()}
+ elif isinstance(obj, collections.Sequence):
+ return [async_copy_to(o, dev, main_stream) for o in obj]
+ else:
+ return obj
+
+
+def dict_gather(outputs, target_device, dim=0):
+ """
+ Gathers variables from different GPUs on a specified device
+ (-1 means the CPU), with dictionary support.
+ """
+ def gather_map(outputs):
+ out = outputs[0]
+ if torch.is_tensor(out):
+ # MJY(20180330) HACK:: force nr_dims > 0
+ if out.dim() == 0:
+ outputs = [o.unsqueeze(0) for o in outputs]
+ return Gather.apply(target_device, dim, *outputs)
+ elif out is None:
+ return None
+ elif isinstance(out, collections.Mapping):
+ return {k: gather_map([o[k] for o in outputs]) for k in out}
+ elif isinstance(out, collections.Sequence):
+ return type(out)(map(gather_map, zip(*outputs)))
+ return gather_map(outputs)
+
+
+class DictGatherDataParallel(nn.DataParallel):
+ def gather(self, outputs, output_device):
+ return dict_gather(outputs, output_device, dim=self.dim)
+
+
+class UserScatteredDataParallel(DictGatherDataParallel):
+ def scatter(self, inputs, kwargs, device_ids):
+ assert len(inputs) == 1
+ inputs = inputs[0]
+ inputs = _async_copy_stream(inputs, device_ids)
+ inputs = [[i] for i in inputs]
+ assert len(kwargs) == 0
+ kwargs = [{} for _ in range(len(inputs))]
+
+ return inputs, kwargs
+
+
+def user_scattered_collate(batch):
+ return batch
+
+
+def _async_copy(inputs, device_ids):
+ nr_devs = len(device_ids)
+ assert type(inputs) in (tuple, list)
+ assert len(inputs) == nr_devs
+
+ outputs = []
+ for i, dev in zip(inputs, device_ids):
+ with cuda.device(dev):
+ outputs.append(async_copy_to(i, dev))
+
+ return tuple(outputs)
+
+
+def _async_copy_stream(inputs, device_ids):
+ nr_devs = len(device_ids)
+ assert type(inputs) in (tuple, list)
+ assert len(inputs) == nr_devs
+
+ outputs = []
+ streams = [_get_stream(d) for d in device_ids]
+ for i, dev, stream in zip(inputs, device_ids, streams):
+ with cuda.device(dev):
+ main_stream = cuda.current_stream()
+ with cuda.stream(stream):
+ outputs.append(async_copy_to(i, dev, main_stream=main_stream))
+ main_stream.wait_stream(stream)
+
+ return outputs
+
+
+"""Adapted from: torch/nn/parallel/_functions.py"""
+# background streams used for copying
+_streams = None
+
+
+def _get_stream(device):
+ """Gets a background stream for copying between CPU and GPU"""
+ global _streams
+ if device == -1:
+ return None
+ if _streams is None:
+ _streams = [None] * cuda.device_count()
+ if _streams[device] is None: _streams[device] = cuda.Stream(device)
+ return _streams[device]
diff --git a/models/ade20k/segm_lib/utils/__init__.py b/models/ade20k/segm_lib/utils/__init__.py
new file mode 100644
index 00000000..abe3cbe4
--- /dev/null
+++ b/models/ade20k/segm_lib/utils/__init__.py
@@ -0,0 +1 @@
+from .th import *
diff --git a/models/ade20k/segm_lib/utils/data/__init__.py b/models/ade20k/segm_lib/utils/data/__init__.py
new file mode 100644
index 00000000..f3b008fb
--- /dev/null
+++ b/models/ade20k/segm_lib/utils/data/__init__.py
@@ -0,0 +1,3 @@
+
+from .dataset import Dataset, TensorDataset, ConcatDataset
+from .dataloader import DataLoader
diff --git a/models/ade20k/segm_lib/utils/data/dataloader.py b/models/ade20k/segm_lib/utils/data/dataloader.py
new file mode 100644
index 00000000..039b9ec3
--- /dev/null
+++ b/models/ade20k/segm_lib/utils/data/dataloader.py
@@ -0,0 +1,425 @@
+import torch
+import torch.multiprocessing as multiprocessing
+from torch._C import _set_worker_signal_handlers, \
+ _remove_worker_pids, _error_if_any_worker_fails
+try:
+ from torch._C import _set_worker_pids
+except:
+ from torch._C import _update_worker_pids as _set_worker_pids
+from .sampler import SequentialSampler, RandomSampler, BatchSampler
+import signal
+import collections
+import re
+import sys
+import threading
+import traceback
+from torch._six import string_classes, int_classes
+import numpy as np
+
+if sys.version_info[0] == 2:
+ import Queue as queue
+else:
+ import queue
+
+
+class ExceptionWrapper(object):
+ r"Wraps an exception plus traceback to communicate across threads"
+
+ def __init__(self, exc_info):
+ self.exc_type = exc_info[0]
+ self.exc_msg = "".join(traceback.format_exception(*exc_info))
+
+
+_use_shared_memory = False
+"""Whether to use shared memory in default_collate"""
+
+
+def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id):
+ global _use_shared_memory
+ _use_shared_memory = True
+
+ # Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
+ # module's handlers are executed after Python returns from C low-level
+ # handlers, likely when the same fatal signal happened again already.
+ # https://docs.python.org/3/library/signal.html Sec. 18.8.1.1
+ _set_worker_signal_handlers()
+
+ torch.set_num_threads(1)
+ torch.manual_seed(seed)
+ np.random.seed(seed)
+
+ if init_fn is not None:
+ init_fn(worker_id)
+
+ while True:
+ r = index_queue.get()
+ if r is None:
+ break
+ idx, batch_indices = r
+ try:
+ samples = collate_fn([dataset[i] for i in batch_indices])
+ except Exception:
+ data_queue.put((idx, ExceptionWrapper(sys.exc_info())))
+ else:
+ data_queue.put((idx, samples))
+
+
+def _worker_manager_loop(in_queue, out_queue, done_event, pin_memory, device_id):
+ if pin_memory:
+ torch.cuda.set_device(device_id)
+
+ while True:
+ try:
+ r = in_queue.get()
+ except Exception:
+ if done_event.is_set():
+ return
+ raise
+ if r is None:
+ break
+ if isinstance(r[1], ExceptionWrapper):
+ out_queue.put(r)
+ continue
+ idx, batch = r
+ try:
+ if pin_memory:
+ batch = pin_memory_batch(batch)
+ except Exception:
+ out_queue.put((idx, ExceptionWrapper(sys.exc_info())))
+ else:
+ out_queue.put((idx, batch))
+
+numpy_type_map = {
+ 'float64': torch.DoubleTensor,
+ 'float32': torch.FloatTensor,
+ 'float16': torch.HalfTensor,
+ 'int64': torch.LongTensor,
+ 'int32': torch.IntTensor,
+ 'int16': torch.ShortTensor,
+ 'int8': torch.CharTensor,
+ 'uint8': torch.ByteTensor,
+}
+
+
+def default_collate(batch):
+ "Puts each data field into a tensor with outer dimension batch size"
+
+ error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
+ elem_type = type(batch[0])
+ if torch.is_tensor(batch[0]):
+ out = None
+ if _use_shared_memory:
+ # If we're in a background process, concatenate directly into a
+ # shared memory tensor to avoid an extra copy
+ numel = sum([x.numel() for x in batch])
+ storage = batch[0].storage()._new_shared(numel)
+ out = batch[0].new(storage)
+ return torch.stack(batch, 0, out=out)
+ elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
+ and elem_type.__name__ != 'string_':
+ elem = batch[0]
+ if elem_type.__name__ == 'ndarray':
+ # array of string classes and object
+ if re.search('[SaUO]', elem.dtype.str) is not None:
+ raise TypeError(error_msg.format(elem.dtype))
+
+ return torch.stack([torch.from_numpy(b) for b in batch], 0)
+ if elem.shape == (): # scalars
+ py_type = float if elem.dtype.name.startswith('float') else int
+ return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
+ elif isinstance(batch[0], int_classes):
+ return torch.LongTensor(batch)
+ elif isinstance(batch[0], float):
+ return torch.DoubleTensor(batch)
+ elif isinstance(batch[0], string_classes):
+ return batch
+ elif isinstance(batch[0], collections.Mapping):
+ return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
+ elif isinstance(batch[0], collections.Sequence):
+ transposed = zip(*batch)
+ return [default_collate(samples) for samples in transposed]
+
+ raise TypeError((error_msg.format(type(batch[0]))))
+
+
+def pin_memory_batch(batch):
+ if torch.is_tensor(batch):
+ return batch.pin_memory()
+ elif isinstance(batch, string_classes):
+ return batch
+ elif isinstance(batch, collections.Mapping):
+ return {k: pin_memory_batch(sample) for k, sample in batch.items()}
+ elif isinstance(batch, collections.Sequence):
+ return [pin_memory_batch(sample) for sample in batch]
+ else:
+ return batch
+
+
+_SIGCHLD_handler_set = False
+"""Whether SIGCHLD handler is set for DataLoader worker failures. Only one
+handler needs to be set for all DataLoaders in a process."""
+
+
+def _set_SIGCHLD_handler():
+ # Windows doesn't support SIGCHLD handler
+ if sys.platform == 'win32':
+ return
+ # can't set signal in child threads
+ if not isinstance(threading.current_thread(), threading._MainThread):
+ return
+ global _SIGCHLD_handler_set
+ if _SIGCHLD_handler_set:
+ return
+ previous_handler = signal.getsignal(signal.SIGCHLD)
+ if not callable(previous_handler):
+ previous_handler = None
+
+ def handler(signum, frame):
+ # This following call uses `waitid` with WNOHANG from C side. Therefore,
+ # Python can still get and update the process status successfully.
+ _error_if_any_worker_fails()
+ if previous_handler is not None:
+ previous_handler(signum, frame)
+
+ signal.signal(signal.SIGCHLD, handler)
+ _SIGCHLD_handler_set = True
+
+
+class DataLoaderIter(object):
+ "Iterates once over the DataLoader's dataset, as specified by the sampler"
+
+ def __init__(self, loader):
+ self.dataset = loader.dataset
+ self.collate_fn = loader.collate_fn
+ self.batch_sampler = loader.batch_sampler
+ self.num_workers = loader.num_workers
+ self.pin_memory = loader.pin_memory and torch.cuda.is_available()
+ self.timeout = loader.timeout
+ self.done_event = threading.Event()
+
+ self.sample_iter = iter(self.batch_sampler)
+
+ if self.num_workers > 0:
+ self.worker_init_fn = loader.worker_init_fn
+ self.index_queue = multiprocessing.SimpleQueue()
+ self.worker_result_queue = multiprocessing.SimpleQueue()
+ self.batches_outstanding = 0
+ self.worker_pids_set = False
+ self.shutdown = False
+ self.send_idx = 0
+ self.rcvd_idx = 0
+ self.reorder_dict = {}
+
+ base_seed = torch.LongTensor(1).random_(0, 2**31-1)[0]
+ self.workers = [
+ multiprocessing.Process(
+ target=_worker_loop,
+ args=(self.dataset, self.index_queue, self.worker_result_queue, self.collate_fn,
+ base_seed + i, self.worker_init_fn, i))
+ for i in range(self.num_workers)]
+
+ if self.pin_memory or self.timeout > 0:
+ self.data_queue = queue.Queue()
+ if self.pin_memory:
+ maybe_device_id = torch.cuda.current_device()
+ else:
+ # do not initialize cuda context if not necessary
+ maybe_device_id = None
+ self.worker_manager_thread = threading.Thread(
+ target=_worker_manager_loop,
+ args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
+ maybe_device_id))
+ self.worker_manager_thread.daemon = True
+ self.worker_manager_thread.start()
+ else:
+ self.data_queue = self.worker_result_queue
+
+ for w in self.workers:
+ w.daemon = True # ensure that the worker exits on process exit
+ w.start()
+
+ _set_worker_pids(id(self), tuple(w.pid for w in self.workers))
+ _set_SIGCHLD_handler()
+ self.worker_pids_set = True
+
+ # prime the prefetch loop
+ for _ in range(2 * self.num_workers):
+ self._put_indices()
+
+ def __len__(self):
+ return len(self.batch_sampler)
+
+ def _get_batch(self):
+ if self.timeout > 0:
+ try:
+ return self.data_queue.get(timeout=self.timeout)
+ except queue.Empty:
+ raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout))
+ else:
+ return self.data_queue.get()
+
+ def __next__(self):
+ if self.num_workers == 0: # same-process loading
+ indices = next(self.sample_iter) # may raise StopIteration
+ batch = self.collate_fn([self.dataset[i] for i in indices])
+ if self.pin_memory:
+ batch = pin_memory_batch(batch)
+ return batch
+
+ # check if the next sample has already been generated
+ if self.rcvd_idx in self.reorder_dict:
+ batch = self.reorder_dict.pop(self.rcvd_idx)
+ return self._process_next_batch(batch)
+
+ if self.batches_outstanding == 0:
+ self._shutdown_workers()
+ raise StopIteration
+
+ while True:
+ assert (not self.shutdown and self.batches_outstanding > 0)
+ idx, batch = self._get_batch()
+ self.batches_outstanding -= 1
+ if idx != self.rcvd_idx:
+ # store out-of-order samples
+ self.reorder_dict[idx] = batch
+ continue
+ return self._process_next_batch(batch)
+
+ next = __next__ # Python 2 compatibility
+
+ def __iter__(self):
+ return self
+
+ def _put_indices(self):
+ assert self.batches_outstanding < 2 * self.num_workers
+ indices = next(self.sample_iter, None)
+ if indices is None:
+ return
+ self.index_queue.put((self.send_idx, indices))
+ self.batches_outstanding += 1
+ self.send_idx += 1
+
+ def _process_next_batch(self, batch):
+ self.rcvd_idx += 1
+ self._put_indices()
+ if isinstance(batch, ExceptionWrapper):
+ raise batch.exc_type(batch.exc_msg)
+ return batch
+
+ def __getstate__(self):
+ # TODO: add limited pickling support for sharing an iterator
+ # across multiple threads for HOGWILD.
+ # Probably the best way to do this is by moving the sample pushing
+ # to a separate thread and then just sharing the data queue
+ # but signalling the end is tricky without a non-blocking API
+ raise NotImplementedError("DataLoaderIterator cannot be pickled")
+
+ def _shutdown_workers(self):
+ try:
+ if not self.shutdown:
+ self.shutdown = True
+ self.done_event.set()
+ # if worker_manager_thread is waiting to put
+ while not self.data_queue.empty():
+ self.data_queue.get()
+ for _ in self.workers:
+ self.index_queue.put(None)
+ # done_event should be sufficient to exit worker_manager_thread,
+ # but be safe here and put another None
+ self.worker_result_queue.put(None)
+ finally:
+ # removes pids no matter what
+ if self.worker_pids_set:
+ _remove_worker_pids(id(self))
+ self.worker_pids_set = False
+
+ def __del__(self):
+ if self.num_workers > 0:
+ self._shutdown_workers()
+
+
+class DataLoader(object):
+ """
+ Data loader. Combines a dataset and a sampler, and provides
+ single- or multi-process iterators over the dataset.
+
+ Arguments:
+ dataset (Dataset): dataset from which to load the data.
+ batch_size (int, optional): how many samples per batch to load
+ (default: 1).
+ shuffle (bool, optional): set to ``True`` to have the data reshuffled
+ at every epoch (default: False).
+ sampler (Sampler, optional): defines the strategy to draw samples from
+ the dataset. If specified, ``shuffle`` must be False.
+ batch_sampler (Sampler, optional): like sampler, but returns a batch of
+ indices at a time. Mutually exclusive with batch_size, shuffle,
+ sampler, and drop_last.
+ num_workers (int, optional): how many subprocesses to use for data
+ loading. 0 means that the data will be loaded in the main process.
+ (default: 0)
+ collate_fn (callable, optional): merges a list of samples to form a mini-batch.
+ pin_memory (bool, optional): If ``True``, the data loader will copy tensors
+ into CUDA pinned memory before returning them.
+ drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
+ if the dataset size is not divisible by the batch size. If ``False`` and
+ the size of dataset is not divisible by the batch size, then the last batch
+ will be smaller. (default: False)
+ timeout (numeric, optional): if positive, the timeout value for collecting a batch
+ from workers. Should always be non-negative. (default: 0)
+ worker_init_fn (callable, optional): If not None, this will be called on each
+ worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as
+ input, after seeding and before data loading. (default: None)
+
+ .. note:: By default, each worker will have its PyTorch seed set to
+ ``base_seed + worker_id``, where ``base_seed`` is a long generated
+ by main process using its RNG. You may use ``torch.initial_seed()`` to access
+ this value in :attr:`worker_init_fn`, which can be used to set other seeds
+ (e.g. NumPy) before data loading.
+
+ .. warning:: If ``spawn'' start method is used, :attr:`worker_init_fn` cannot be an
+ unpicklable object, e.g., a lambda function.
+ """
+
+ def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,
+ num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False,
+ timeout=0, worker_init_fn=None):
+ self.dataset = dataset
+ self.batch_size = batch_size
+ self.num_workers = num_workers
+ self.collate_fn = collate_fn
+ self.pin_memory = pin_memory
+ self.drop_last = drop_last
+ self.timeout = timeout
+ self.worker_init_fn = worker_init_fn
+
+ if timeout < 0:
+ raise ValueError('timeout option should be non-negative')
+
+ if batch_sampler is not None:
+ if batch_size > 1 or shuffle or sampler is not None or drop_last:
+ raise ValueError('batch_sampler is mutually exclusive with '
+ 'batch_size, shuffle, sampler, and drop_last')
+
+ if sampler is not None and shuffle:
+ raise ValueError('sampler is mutually exclusive with shuffle')
+
+ if self.num_workers < 0:
+ raise ValueError('num_workers cannot be negative; '
+ 'use num_workers=0 to disable multiprocessing.')
+
+ if batch_sampler is None:
+ if sampler is None:
+ if shuffle:
+ sampler = RandomSampler(dataset)
+ else:
+ sampler = SequentialSampler(dataset)
+ batch_sampler = BatchSampler(sampler, batch_size, drop_last)
+
+ self.sampler = sampler
+ self.batch_sampler = batch_sampler
+
+ def __iter__(self):
+ return DataLoaderIter(self)
+
+ def __len__(self):
+ return len(self.batch_sampler)
diff --git a/models/ade20k/segm_lib/utils/data/dataset.py b/models/ade20k/segm_lib/utils/data/dataset.py
new file mode 100644
index 00000000..605aa877
--- /dev/null
+++ b/models/ade20k/segm_lib/utils/data/dataset.py
@@ -0,0 +1,118 @@
+import bisect
+import warnings
+
+from torch._utils import _accumulate
+from torch import randperm
+
+
+class Dataset(object):
+ """An abstract class representing a Dataset.
+
+ All other datasets should subclass it. All subclasses should override
+ ``__len__``, that provides the size of the dataset, and ``__getitem__``,
+ supporting integer indexing in range from 0 to len(self) exclusive.
+ """
+
+ def __getitem__(self, index):
+ raise NotImplementedError
+
+ def __len__(self):
+ raise NotImplementedError
+
+ def __add__(self, other):
+ return ConcatDataset([self, other])
+
+
+class TensorDataset(Dataset):
+ """Dataset wrapping data and target tensors.
+
+ Each sample will be retrieved by indexing both tensors along the first
+ dimension.
+
+ Arguments:
+ data_tensor (Tensor): contains sample data.
+ target_tensor (Tensor): contains sample targets (labels).
+ """
+
+ def __init__(self, data_tensor, target_tensor):
+ assert data_tensor.size(0) == target_tensor.size(0)
+ self.data_tensor = data_tensor
+ self.target_tensor = target_tensor
+
+ def __getitem__(self, index):
+ return self.data_tensor[index], self.target_tensor[index]
+
+ def __len__(self):
+ return self.data_tensor.size(0)
+
+
+class ConcatDataset(Dataset):
+ """
+ Dataset to concatenate multiple datasets.
+ Purpose: useful to assemble different existing datasets, possibly
+ large-scale datasets as the concatenation operation is done in an
+ on-the-fly manner.
+
+ Arguments:
+ datasets (iterable): List of datasets to be concatenated
+ """
+
+ @staticmethod
+ def cumsum(sequence):
+ r, s = [], 0
+ for e in sequence:
+ l = len(e)
+ r.append(l + s)
+ s += l
+ return r
+
+ def __init__(self, datasets):
+ super(ConcatDataset, self).__init__()
+ assert len(datasets) > 0, 'datasets should not be an empty iterable'
+ self.datasets = list(datasets)
+ self.cumulative_sizes = self.cumsum(self.datasets)
+
+ def __len__(self):
+ return self.cumulative_sizes[-1]
+
+ def __getitem__(self, idx):
+ dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
+ if dataset_idx == 0:
+ sample_idx = idx
+ else:
+ sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
+ return self.datasets[dataset_idx][sample_idx]
+
+ @property
+ def cummulative_sizes(self):
+ warnings.warn("cummulative_sizes attribute is renamed to "
+ "cumulative_sizes", DeprecationWarning, stacklevel=2)
+ return self.cumulative_sizes
+
+
+class Subset(Dataset):
+ def __init__(self, dataset, indices):
+ self.dataset = dataset
+ self.indices = indices
+
+ def __getitem__(self, idx):
+ return self.dataset[self.indices[idx]]
+
+ def __len__(self):
+ return len(self.indices)
+
+
+def random_split(dataset, lengths):
+ """
+ Randomly split a dataset into non-overlapping new datasets of given lengths
+ ds
+
+ Arguments:
+ dataset (Dataset): Dataset to be split
+ lengths (iterable): lengths of splits to be produced
+ """
+ if sum(lengths) != len(dataset):
+ raise ValueError("Sum of input lengths does not equal the length of the input dataset!")
+
+ indices = randperm(sum(lengths))
+ return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(lengths), lengths)]
diff --git a/models/ade20k/segm_lib/utils/data/distributed.py b/models/ade20k/segm_lib/utils/data/distributed.py
new file mode 100644
index 00000000..c3d890e2
--- /dev/null
+++ b/models/ade20k/segm_lib/utils/data/distributed.py
@@ -0,0 +1,58 @@
+import math
+import torch
+from .sampler import Sampler
+from torch.distributed import get_world_size, get_rank
+
+
+class DistributedSampler(Sampler):
+ """Sampler that restricts data loading to a subset of the dataset.
+
+ It is especially useful in conjunction with
+ :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
+ process can pass a DistributedSampler instance as a DataLoader sampler,
+ and load a subset of the original dataset that is exclusive to it.
+
+ .. note::
+ Dataset is assumed to be of constant size.
+
+ Arguments:
+ dataset: Dataset used for sampling.
+ num_replicas (optional): Number of processes participating in
+ distributed training.
+ rank (optional): Rank of the current process within num_replicas.
+ """
+
+ def __init__(self, dataset, num_replicas=None, rank=None):
+ if num_replicas is None:
+ num_replicas = get_world_size()
+ if rank is None:
+ rank = get_rank()
+ self.dataset = dataset
+ self.num_replicas = num_replicas
+ self.rank = rank
+ self.epoch = 0
+ self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
+ self.total_size = self.num_samples * self.num_replicas
+
+ def __iter__(self):
+ # deterministically shuffle based on epoch
+ g = torch.Generator()
+ g.manual_seed(self.epoch)
+ indices = list(torch.randperm(len(self.dataset), generator=g))
+
+ # add extra samples to make it evenly divisible
+ indices += indices[:(self.total_size - len(indices))]
+ assert len(indices) == self.total_size
+
+ # subsample
+ offset = self.num_samples * self.rank
+ indices = indices[offset:offset + self.num_samples]
+ assert len(indices) == self.num_samples
+
+ return iter(indices)
+
+ def __len__(self):
+ return self.num_samples
+
+ def set_epoch(self, epoch):
+ self.epoch = epoch
diff --git a/models/ade20k/segm_lib/utils/data/sampler.py b/models/ade20k/segm_lib/utils/data/sampler.py
new file mode 100644
index 00000000..62a9a43b
--- /dev/null
+++ b/models/ade20k/segm_lib/utils/data/sampler.py
@@ -0,0 +1,131 @@
+import torch
+
+
+class Sampler(object):
+ """Base class for all Samplers.
+
+ Every Sampler subclass has to provide an __iter__ method, providing a way
+ to iterate over indices of dataset elements, and a __len__ method that
+ returns the length of the returned iterators.
+ """
+
+ def __init__(self, data_source):
+ pass
+
+ def __iter__(self):
+ raise NotImplementedError
+
+ def __len__(self):
+ raise NotImplementedError
+
+
+class SequentialSampler(Sampler):
+ """Samples elements sequentially, always in the same order.
+
+ Arguments:
+ data_source (Dataset): dataset to sample from
+ """
+
+ def __init__(self, data_source):
+ self.data_source = data_source
+
+ def __iter__(self):
+ return iter(range(len(self.data_source)))
+
+ def __len__(self):
+ return len(self.data_source)
+
+
+class RandomSampler(Sampler):
+ """Samples elements randomly, without replacement.
+
+ Arguments:
+ data_source (Dataset): dataset to sample from
+ """
+
+ def __init__(self, data_source):
+ self.data_source = data_source
+
+ def __iter__(self):
+ return iter(torch.randperm(len(self.data_source)).long())
+
+ def __len__(self):
+ return len(self.data_source)
+
+
+class SubsetRandomSampler(Sampler):
+ """Samples elements randomly from a given list of indices, without replacement.
+
+ Arguments:
+ indices (list): a list of indices
+ """
+
+ def __init__(self, indices):
+ self.indices = indices
+
+ def __iter__(self):
+ return (self.indices[i] for i in torch.randperm(len(self.indices)))
+
+ def __len__(self):
+ return len(self.indices)
+
+
+class WeightedRandomSampler(Sampler):
+ """Samples elements from [0,..,len(weights)-1] with given probabilities (weights).
+
+ Arguments:
+ weights (list) : a list of weights, not necessary summing up to one
+ num_samples (int): number of samples to draw
+ replacement (bool): if ``True``, samples are drawn with replacement.
+ If not, they are drawn without replacement, which means that when a
+ sample index is drawn for a row, it cannot be drawn again for that row.
+ """
+
+ def __init__(self, weights, num_samples, replacement=True):
+ self.weights = torch.DoubleTensor(weights)
+ self.num_samples = num_samples
+ self.replacement = replacement
+
+ def __iter__(self):
+ return iter(torch.multinomial(self.weights, self.num_samples, self.replacement))
+
+ def __len__(self):
+ return self.num_samples
+
+
+class BatchSampler(object):
+ """Wraps another sampler to yield a mini-batch of indices.
+
+ Args:
+ sampler (Sampler): Base sampler.
+ batch_size (int): Size of mini-batch.
+ drop_last (bool): If ``True``, the sampler will drop the last batch if
+ its size would be less than ``batch_size``
+
+ Example:
+ >>> list(BatchSampler(range(10), batch_size=3, drop_last=False))
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
+ >>> list(BatchSampler(range(10), batch_size=3, drop_last=True))
+ [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
+ """
+
+ def __init__(self, sampler, batch_size, drop_last):
+ self.sampler = sampler
+ self.batch_size = batch_size
+ self.drop_last = drop_last
+
+ def __iter__(self):
+ batch = []
+ for idx in self.sampler:
+ batch.append(idx)
+ if len(batch) == self.batch_size:
+ yield batch
+ batch = []
+ if len(batch) > 0 and not self.drop_last:
+ yield batch
+
+ def __len__(self):
+ if self.drop_last:
+ return len(self.sampler) // self.batch_size
+ else:
+ return (len(self.sampler) + self.batch_size - 1) // self.batch_size
diff --git a/models/ade20k/segm_lib/utils/th.py b/models/ade20k/segm_lib/utils/th.py
new file mode 100644
index 00000000..ca6ef938
--- /dev/null
+++ b/models/ade20k/segm_lib/utils/th.py
@@ -0,0 +1,41 @@
+import torch
+from torch.autograd import Variable
+import numpy as np
+import collections
+
+__all__ = ['as_variable', 'as_numpy', 'mark_volatile']
+
+def as_variable(obj):
+ if isinstance(obj, Variable):
+ return obj
+ if isinstance(obj, collections.Sequence):
+ return [as_variable(v) for v in obj]
+ elif isinstance(obj, collections.Mapping):
+ return {k: as_variable(v) for k, v in obj.items()}
+ else:
+ return Variable(obj)
+
+def as_numpy(obj):
+ if isinstance(obj, collections.Sequence):
+ return [as_numpy(v) for v in obj]
+ elif isinstance(obj, collections.Mapping):
+ return {k: as_numpy(v) for k, v in obj.items()}
+ elif isinstance(obj, Variable):
+ return obj.data.cpu().numpy()
+ elif torch.is_tensor(obj):
+ return obj.cpu().numpy()
+ else:
+ return np.array(obj)
+
+def mark_volatile(obj):
+ if torch.is_tensor(obj):
+ obj = Variable(obj)
+ if isinstance(obj, Variable):
+ obj.no_grad = True
+ return obj
+ elif isinstance(obj, collections.Mapping):
+ return {k: mark_volatile(o) for k, o in obj.items()}
+ elif isinstance(obj, collections.Sequence):
+ return [mark_volatile(o) for o in obj]
+ else:
+ return obj
diff --git a/models/ade20k/utils.py b/models/ade20k/utils.py
new file mode 100644
index 00000000..f337db7d
--- /dev/null
+++ b/models/ade20k/utils.py
@@ -0,0 +1,40 @@
+"""Modified from https://github.com/CSAILVision/semantic-segmentation-pytorch"""
+
+import os
+import sys
+
+import numpy as np
+import torch
+
+try:
+ from urllib import urlretrieve
+except ImportError:
+ from urllib.request import urlretrieve
+
+
+def load_url(url, model_dir='./pretrained', map_location=None):
+ if not os.path.exists(model_dir):
+ os.makedirs(model_dir)
+ filename = url.split('/')[-1]
+ cached_file = os.path.join(model_dir, filename)
+ if not os.path.exists(cached_file):
+ sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
+ urlretrieve(url, cached_file)
+ return torch.load(cached_file, map_location=map_location)
+
+
+def color_encode(labelmap, colors, mode='RGB'):
+ labelmap = labelmap.astype('int')
+ labelmap_rgb = np.zeros((labelmap.shape[0], labelmap.shape[1], 3),
+ dtype=np.uint8)
+ for label in np.unique(labelmap):
+ if label < 0:
+ continue
+ labelmap_rgb += (labelmap == label)[:, :, np.newaxis] * \
+ np.tile(colors[label],
+ (labelmap.shape[0], labelmap.shape[1], 1))
+
+ if mode == 'BGR':
+ return labelmap_rgb[:, :, ::-1]
+ else:
+ return labelmap_rgb
diff --git a/models/lpips_models/alex.pth b/models/lpips_models/alex.pth
new file mode 100644
index 00000000..1df9dfe6
Binary files /dev/null and b/models/lpips_models/alex.pth differ
diff --git a/models/lpips_models/squeeze.pth b/models/lpips_models/squeeze.pth
new file mode 100644
index 00000000..a3bd383b
Binary files /dev/null and b/models/lpips_models/squeeze.pth differ
diff --git a/models/lpips_models/vgg.pth b/models/lpips_models/vgg.pth
new file mode 100644
index 00000000..47e943cf
Binary files /dev/null and b/models/lpips_models/vgg.pth differ
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 00000000..d412392c
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,20 @@
+pyyaml
+tqdm
+numpy
+easydict==1.9.0
+scikit-image==0.17.2
+scikit-learn==0.24.2
+opencv-python
+tensorflow
+joblib
+matplotlib
+pandas
+albumentations==0.5.2
+hydra-core==1.1.0
+pytorch-lightning==1.2.9
+tabulate
+kornia==0.5.0
+webdataset
+packaging
+scikit-learn==0.24.2
+wldhx.yadisk-direct
diff --git a/saicinpainting/__init__.py b/saicinpainting/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/saicinpainting/evaluation/__init__.py b/saicinpainting/evaluation/__init__.py
new file mode 100644
index 00000000..e9c81175
--- /dev/null
+++ b/saicinpainting/evaluation/__init__.py
@@ -0,0 +1,33 @@
+import logging
+
+import torch
+
+from saicinpainting.evaluation.evaluator import InpaintingEvaluatorOnline, ssim_fid100_f1, lpips_fid100_f1
+from saicinpainting.evaluation.losses.base_loss import SSIMScore, LPIPSScore, FIDScore
+
+
+def make_evaluator(kind='default', ssim=True, lpips=True, fid=True, integral_kind=None, **kwargs):
+ logging.info(f'Make evaluator {kind}')
+ device = "cuda" if torch.cuda.is_available() else "cpu"
+ metrics = {}
+ if ssim:
+ metrics['ssim'] = SSIMScore()
+ if lpips:
+ metrics['lpips'] = LPIPSScore()
+ if fid:
+ metrics['fid'] = FIDScore().to(device)
+
+ if integral_kind is None:
+ integral_func = None
+ elif integral_kind == 'ssim_fid100_f1':
+ integral_func = ssim_fid100_f1
+ elif integral_kind == 'lpips_fid100_f1':
+ integral_func = lpips_fid100_f1
+ else:
+ raise ValueError(f'Unexpected integral_kind={integral_kind}')
+
+ if kind == 'default':
+ return InpaintingEvaluatorOnline(scores=metrics,
+ integral_func=integral_func,
+ integral_title=integral_kind,
+ **kwargs)
diff --git a/saicinpainting/evaluation/data.py b/saicinpainting/evaluation/data.py
new file mode 100644
index 00000000..69ddb8d3
--- /dev/null
+++ b/saicinpainting/evaluation/data.py
@@ -0,0 +1,167 @@
+import glob
+import os
+
+import cv2
+import PIL.Image as Image
+import numpy as np
+
+from torch.utils.data import Dataset
+import torch.nn.functional as F
+
+
+def load_image(fname, mode='RGB', return_orig=False):
+ img = np.array(Image.open(fname).convert(mode))
+ if img.ndim == 3:
+ img = np.transpose(img, (2, 0, 1))
+ out_img = img.astype('float32') / 255
+ if return_orig:
+ return out_img, img
+ else:
+ return out_img
+
+
+def ceil_modulo(x, mod):
+ if x % mod == 0:
+ return x
+ return (x // mod + 1) * mod
+
+
+def pad_img_to_modulo(img, mod):
+ channels, height, width = img.shape
+ out_height = ceil_modulo(height, mod)
+ out_width = ceil_modulo(width, mod)
+ return np.pad(img, ((0, 0), (0, out_height - height), (0, out_width - width)), mode='symmetric')
+
+
+def pad_tensor_to_modulo(img, mod):
+ batch_size, channels, height, width = img.shape
+ out_height = ceil_modulo(height, mod)
+ out_width = ceil_modulo(width, mod)
+ return F.pad(img, pad=(0, out_width - width, 0, out_height - height), mode='reflect')
+
+
+def scale_image(img, factor, interpolation=cv2.INTER_AREA):
+ if img.shape[0] == 1:
+ img = img[0]
+ else:
+ img = np.transpose(img, (1, 2, 0))
+
+ img = cv2.resize(img, dsize=None, fx=factor, fy=factor, interpolation=interpolation)
+
+ if img.ndim == 2:
+ img = img[None, ...]
+ else:
+ img = np.transpose(img, (2, 0, 1))
+ return img
+
+
+class InpaintingDataset(Dataset):
+ def __init__(self, datadir, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None):
+ self.datadir = datadir
+ self.mask_filenames = sorted(list(glob.glob(os.path.join(self.datadir, '**', '*mask*.png'), recursive=True)))
+ self.img_filenames = [fname.rsplit('_mask', 1)[0] + img_suffix for fname in self.mask_filenames]
+ self.pad_out_to_modulo = pad_out_to_modulo
+ self.scale_factor = scale_factor
+
+ def __len__(self):
+ return len(self.mask_filenames)
+
+ def __getitem__(self, i):
+ image = load_image(self.img_filenames[i], mode='RGB')
+ mask = load_image(self.mask_filenames[i], mode='L')
+ result = dict(image=image, mask=mask[None, ...])
+
+ if self.scale_factor is not None:
+ result['image'] = scale_image(result['image'], self.scale_factor)
+ result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST)
+
+ if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1:
+ result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo)
+ result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo)
+
+ return result
+
+class OurInpaintingDataset(Dataset):
+ def __init__(self, datadir, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None):
+ self.datadir = datadir
+ self.mask_filenames = sorted(list(glob.glob(os.path.join(self.datadir, 'mask', '**', '*mask*.png'), recursive=True)))
+ self.img_filenames = [os.path.join(self.datadir, 'img', os.path.basename(fname.rsplit('-', 1)[0].rsplit('_', 1)[0]) + '.png') for fname in self.mask_filenames]
+ self.pad_out_to_modulo = pad_out_to_modulo
+ self.scale_factor = scale_factor
+
+ def __len__(self):
+ return len(self.mask_filenames)
+
+ def __getitem__(self, i):
+ result = dict(image=load_image(self.img_filenames[i], mode='RGB'),
+ mask=load_image(self.mask_filenames[i], mode='L')[None, ...])
+
+ if self.scale_factor is not None:
+ result['image'] = scale_image(result['image'], self.scale_factor)
+ result['mask'] = scale_image(result['mask'], self.scale_factor)
+
+ if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1:
+ result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo)
+ result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo)
+
+ return result
+
+class PrecomputedInpaintingResultsDataset(InpaintingDataset):
+ def __init__(self, datadir, predictdir, inpainted_suffix='_inpainted.jpg', **kwargs):
+ super().__init__(datadir, **kwargs)
+ if not datadir.endswith('/'):
+ datadir += '/'
+ self.predictdir = predictdir
+ self.pred_filenames = [os.path.join(predictdir, os.path.splitext(fname[len(datadir):])[0] + inpainted_suffix)
+ for fname in self.mask_filenames]
+
+ def __getitem__(self, i):
+ result = super().__getitem__(i)
+ result['inpainted'] = load_image(self.pred_filenames[i])
+ if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1:
+ result['inpainted'] = pad_img_to_modulo(result['inpainted'], self.pad_out_to_modulo)
+ return result
+
+class OurPrecomputedInpaintingResultsDataset(OurInpaintingDataset):
+ def __init__(self, datadir, predictdir, inpainted_suffix="png", **kwargs):
+ super().__init__(datadir, **kwargs)
+ if not datadir.endswith('/'):
+ datadir += '/'
+ self.predictdir = predictdir
+ self.pred_filenames = [os.path.join(predictdir, os.path.basename(os.path.splitext(fname)[0]) + f'_inpainted.{inpainted_suffix}')
+ for fname in self.mask_filenames]
+ # self.pred_filenames = [os.path.join(predictdir, os.path.splitext(fname[len(datadir):])[0] + inpainted_suffix)
+ # for fname in self.mask_filenames]
+
+ def __getitem__(self, i):
+ result = super().__getitem__(i)
+ result['inpainted'] = self.file_loader(self.pred_filenames[i])
+
+ if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1:
+ result['inpainted'] = pad_img_to_modulo(result['inpainted'], self.pad_out_to_modulo)
+ return result
+
+class InpaintingEvalOnlineDataset(Dataset):
+ def __init__(self, indir, mask_generator, img_suffix='.jpg', pad_out_to_modulo=None, scale_factor=None, **kwargs):
+ self.indir = indir
+ self.mask_generator = mask_generator
+ self.img_filenames = sorted(list(glob.glob(os.path.join(self.indir, '**', f'*{img_suffix}' ), recursive=True)))
+ self.pad_out_to_modulo = pad_out_to_modulo
+ self.scale_factor = scale_factor
+
+ def __len__(self):
+ return len(self.img_filenames)
+
+ def __getitem__(self, i):
+ img, raw_image = load_image(self.img_filenames[i], mode='RGB', return_orig=True)
+ mask = self.mask_generator(img, raw_image=raw_image)
+ result = dict(image=img, mask=mask)
+
+ if self.scale_factor is not None:
+ result['image'] = scale_image(result['image'], self.scale_factor)
+ result['mask'] = scale_image(result['mask'], self.scale_factor, interpolation=cv2.INTER_NEAREST)
+
+ if self.pad_out_to_modulo is not None and self.pad_out_to_modulo > 1:
+ result['image'] = pad_img_to_modulo(result['image'], self.pad_out_to_modulo)
+ result['mask'] = pad_img_to_modulo(result['mask'], self.pad_out_to_modulo)
+ return result
\ No newline at end of file
diff --git a/saicinpainting/evaluation/evaluator.py b/saicinpainting/evaluation/evaluator.py
new file mode 100644
index 00000000..aa9e8040
--- /dev/null
+++ b/saicinpainting/evaluation/evaluator.py
@@ -0,0 +1,220 @@
+import logging
+import math
+from typing import Dict
+
+import numpy as np
+import torch
+import torch.nn as nn
+import tqdm
+from torch.utils.data import DataLoader
+
+from saicinpainting.evaluation.utils import move_to_device
+
+LOGGER = logging.getLogger(__name__)
+
+
+class InpaintingEvaluator():
+ def __init__(self, dataset, scores, area_grouping=True, bins=10, batch_size=32, device='cuda',
+ integral_func=None, integral_title=None, clamp_image_range=None):
+ """
+ :param dataset: torch.utils.data.Dataset which contains images and masks
+ :param scores: dict {score_name: EvaluatorScore object}
+ :param area_grouping: in addition to the overall scores, allows to compute score for the groups of samples
+ which are defined by share of area occluded by mask
+ :param bins: number of groups, partition is generated by np.linspace(0., 1., bins + 1)
+ :param batch_size: batch_size for the dataloader
+ :param device: device to use
+ """
+ self.scores = scores
+ self.dataset = dataset
+
+ self.area_grouping = area_grouping
+ self.bins = bins
+
+ self.device = torch.device(device)
+
+ self.dataloader = DataLoader(self.dataset, shuffle=False, batch_size=batch_size)
+
+ self.integral_func = integral_func
+ self.integral_title = integral_title
+ self.clamp_image_range = clamp_image_range
+
+ def _get_bin_edges(self):
+ bin_edges = np.linspace(0, 1, self.bins + 1)
+
+ num_digits = max(0, math.ceil(math.log10(self.bins)) - 1)
+ interval_names = []
+ for idx_bin in range(self.bins):
+ start_percent, end_percent = round(100 * bin_edges[idx_bin], num_digits), \
+ round(100 * bin_edges[idx_bin + 1], num_digits)
+ start_percent = '{:.{n}f}'.format(start_percent, n=num_digits)
+ end_percent = '{:.{n}f}'.format(end_percent, n=num_digits)
+ interval_names.append("{0}-{1}%".format(start_percent, end_percent))
+
+ groups = []
+ for batch in self.dataloader:
+ mask = batch['mask']
+ batch_size = mask.shape[0]
+ area = mask.to(self.device).reshape(batch_size, -1).mean(dim=-1)
+ bin_indices = np.searchsorted(bin_edges, area.detach().cpu().numpy(), side='right') - 1
+ # corner case: when area is equal to 1, bin_indices should return bins - 1, not bins for that element
+ bin_indices[bin_indices == self.bins] = self.bins - 1
+ groups.append(bin_indices)
+ groups = np.hstack(groups)
+
+ return groups, interval_names
+
+ def evaluate(self, model=None):
+ """
+ :param model: callable with signature (image_batch, mask_batch); should return inpainted_batch
+ :return: dict with (score_name, group_type) as keys, where group_type can be either 'overall' or
+ name of the particular group arranged by area of mask (e.g. '10-20%')
+ and score statistics for the group as values.
+ """
+ results = dict()
+ if self.area_grouping:
+ groups, interval_names = self._get_bin_edges()
+ else:
+ groups = None
+
+ for score_name, score in tqdm.auto.tqdm(self.scores.items(), desc='scores'):
+ score.to(self.device)
+ with torch.no_grad():
+ score.reset()
+ for batch in tqdm.auto.tqdm(self.dataloader, desc=score_name, leave=False):
+ batch = move_to_device(batch, self.device)
+ image_batch, mask_batch = batch['image'], batch['mask']
+ if self.clamp_image_range is not None:
+ image_batch = torch.clamp(image_batch,
+ min=self.clamp_image_range[0],
+ max=self.clamp_image_range[1])
+ if model is None:
+ assert 'inpainted' in batch, \
+ 'Model is None, so we expected precomputed inpainting results at key "inpainted"'
+ inpainted_batch = batch['inpainted']
+ else:
+ inpainted_batch = model(image_batch, mask_batch)
+ score(inpainted_batch, image_batch, mask_batch)
+ total_results, group_results = score.get_value(groups=groups)
+
+ results[(score_name, 'total')] = total_results
+ if groups is not None:
+ for group_index, group_values in group_results.items():
+ group_name = interval_names[group_index]
+ results[(score_name, group_name)] = group_values
+
+ if self.integral_func is not None:
+ results[(self.integral_title, 'total')] = dict(mean=self.integral_func(results))
+
+ return results
+
+
+def ssim_fid100_f1(metrics, fid_scale=100):
+ ssim = metrics[('ssim', 'total')]['mean']
+ fid = metrics[('fid', 'total')]['mean']
+ fid_rel = max(0, fid_scale - fid) / fid_scale
+ f1 = 2 * ssim * fid_rel / (ssim + fid_rel + 1e-3)
+ return f1
+
+
+def lpips_fid100_f1(metrics, fid_scale=100):
+ neg_lpips = 1 - metrics[('lpips', 'total')]['mean'] # invert, so bigger is better
+ fid = metrics[('fid', 'total')]['mean']
+ fid_rel = max(0, fid_scale - fid) / fid_scale
+ f1 = 2 * neg_lpips * fid_rel / (neg_lpips + fid_rel + 1e-3)
+ return f1
+
+
+
+class InpaintingEvaluatorOnline(nn.Module):
+ def __init__(self, scores, bins=10, image_key='image', inpainted_key='inpainted',
+ integral_func=None, integral_title=None, clamp_image_range=None):
+ """
+ :param scores: dict {score_name: EvaluatorScore object}
+ :param bins: number of groups, partition is generated by np.linspace(0., 1., bins + 1)
+ :param device: device to use
+ """
+ super().__init__()
+ LOGGER.info(f'{type(self)} init called')
+ self.scores = nn.ModuleDict(scores)
+ self.image_key = image_key
+ self.inpainted_key = inpainted_key
+ self.bins_num = bins
+ self.bin_edges = np.linspace(0, 1, self.bins_num + 1)
+
+ num_digits = max(0, math.ceil(math.log10(self.bins_num)) - 1)
+ self.interval_names = []
+ for idx_bin in range(self.bins_num):
+ start_percent, end_percent = round(100 * self.bin_edges[idx_bin], num_digits), \
+ round(100 * self.bin_edges[idx_bin + 1], num_digits)
+ start_percent = '{:.{n}f}'.format(start_percent, n=num_digits)
+ end_percent = '{:.{n}f}'.format(end_percent, n=num_digits)
+ self.interval_names.append("{0}-{1}%".format(start_percent, end_percent))
+
+ self.groups = []
+
+ self.integral_func = integral_func
+ self.integral_title = integral_title
+ self.clamp_image_range = clamp_image_range
+
+ LOGGER.info(f'{type(self)} init done')
+
+ def _get_bins(self, mask_batch):
+ batch_size = mask_batch.shape[0]
+ area = mask_batch.view(batch_size, -1).mean(dim=-1).detach().cpu().numpy()
+ bin_indices = np.clip(np.searchsorted(self.bin_edges, area) - 1, 0, self.bins_num - 1)
+ return bin_indices
+
+ def forward(self, batch: Dict[str, torch.Tensor]):
+ """
+ Calculate and accumulate metrics for batch. To finalize evaluation and obtain final metrics, call evaluation_end
+ :param batch: batch dict with mandatory fields mask, image, inpainted (can be overriden by self.inpainted_key)
+ """
+ result = {}
+ with torch.no_grad():
+ image_batch, mask_batch, inpainted_batch = batch[self.image_key], batch['mask'], batch[self.inpainted_key]
+ if self.clamp_image_range is not None:
+ image_batch = torch.clamp(image_batch,
+ min=self.clamp_image_range[0],
+ max=self.clamp_image_range[1])
+ self.groups.extend(self._get_bins(mask_batch))
+
+ for score_name, score in self.scores.items():
+ result[score_name] = score(inpainted_batch, image_batch, mask_batch)
+ return result
+
+ def process_batch(self, batch: Dict[str, torch.Tensor]):
+ return self(batch)
+
+ def evaluation_end(self, states=None):
+ """:return: dict with (score_name, group_type) as keys, where group_type can be either 'overall' or
+ name of the particular group arranged by area of mask (e.g. '10-20%')
+ and score statistics for the group as values.
+ """
+ LOGGER.info(f'{type(self)}: evaluation_end called')
+
+ self.groups = np.array(self.groups)
+
+ results = {}
+ for score_name, score in self.scores.items():
+ LOGGER.info(f'Getting value of {score_name}')
+ cur_states = [s[score_name] for s in states] if states is not None else None
+ total_results, group_results = score.get_value(groups=self.groups, states=cur_states)
+ LOGGER.info(f'Getting value of {score_name} done')
+ results[(score_name, 'total')] = total_results
+
+ for group_index, group_values in group_results.items():
+ group_name = self.interval_names[group_index]
+ results[(score_name, group_name)] = group_values
+
+ if self.integral_func is not None:
+ results[(self.integral_title, 'total')] = dict(mean=self.integral_func(results))
+
+ LOGGER.info(f'{type(self)}: reset scores')
+ self.groups = []
+ for sc in self.scores.values():
+ sc.reset()
+ LOGGER.info(f'{type(self)}: reset scores done')
+
+ LOGGER.info(f'{type(self)}: evaluation_end done')
+ return results
diff --git a/saicinpainting/evaluation/losses/__init__.py b/saicinpainting/evaluation/losses/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/saicinpainting/evaluation/losses/base_loss.py b/saicinpainting/evaluation/losses/base_loss.py
new file mode 100644
index 00000000..e5cd5fa8
--- /dev/null
+++ b/saicinpainting/evaluation/losses/base_loss.py
@@ -0,0 +1,528 @@
+import logging
+from abc import abstractmethod, ABC
+
+import numpy as np
+import sklearn
+import sklearn.svm
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from joblib import Parallel, delayed
+from scipy import linalg
+
+from models.ade20k import SegmentationModule, NUM_CLASS, segm_options
+from .fid.inception import InceptionV3
+from .lpips import PerceptualLoss
+from .ssim import SSIM
+
+LOGGER = logging.getLogger(__name__)
+
+
+def get_groupings(groups):
+ """
+ :param groups: group numbers for respective elements
+ :return: dict of kind {group_idx: indices of the corresponding group elements}
+ """
+ label_groups, count_groups = np.unique(groups, return_counts=True)
+
+ indices = np.argsort(groups)
+
+ grouping = dict()
+ cur_start = 0
+ for label, count in zip(label_groups, count_groups):
+ cur_end = cur_start + count
+ cur_indices = indices[cur_start:cur_end]
+ grouping[label] = cur_indices
+ cur_start = cur_end
+ return grouping
+
+
+class EvaluatorScore(nn.Module):
+ @abstractmethod
+ def forward(self, pred_batch, target_batch, mask):
+ pass
+
+ @abstractmethod
+ def get_value(self, groups=None, states=None):
+ pass
+
+ @abstractmethod
+ def reset(self):
+ pass
+
+
+class PairwiseScore(EvaluatorScore, ABC):
+ def __init__(self):
+ super().__init__()
+ self.individual_values = None
+
+ def get_value(self, groups=None, states=None):
+ """
+ :param groups:
+ :return:
+ total_results: dict of kind {'mean': score mean, 'std': score std}
+ group_results: None, if groups is None;
+ else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
+ """
+ individual_values = torch.cat(states, dim=-1).reshape(-1).cpu().numpy() if states is not None \
+ else self.individual_values
+
+ total_results = {
+ 'mean': individual_values.mean(),
+ 'std': individual_values.std()
+ }
+
+ if groups is None:
+ return total_results, None
+
+ group_results = dict()
+ grouping = get_groupings(groups)
+ for label, index in grouping.items():
+ group_scores = individual_values[index]
+ group_results[label] = {
+ 'mean': group_scores.mean(),
+ 'std': group_scores.std()
+ }
+ return total_results, group_results
+
+ def reset(self):
+ self.individual_values = []
+
+
+class SSIMScore(PairwiseScore):
+ def __init__(self, window_size=11):
+ super().__init__()
+ self.score = SSIM(window_size=window_size, size_average=False).eval()
+ self.reset()
+
+ def forward(self, pred_batch, target_batch, mask=None):
+ batch_values = self.score(pred_batch, target_batch)
+ self.individual_values = np.hstack([
+ self.individual_values, batch_values.detach().cpu().numpy()
+ ])
+ return batch_values
+
+
+class LPIPSScore(PairwiseScore):
+ def __init__(self, model='net-lin', net='vgg', model_path=None, use_gpu=True):
+ super().__init__()
+ self.score = PerceptualLoss(model=model, net=net, model_path=model_path,
+ use_gpu=use_gpu, spatial=False).eval()
+ self.reset()
+
+ def forward(self, pred_batch, target_batch, mask=None):
+ batch_values = self.score(pred_batch, target_batch).flatten()
+ self.individual_values = np.hstack([
+ self.individual_values, batch_values.detach().cpu().numpy()
+ ])
+ return batch_values
+
+
+def fid_calculate_activation_statistics(act):
+ mu = np.mean(act, axis=0)
+ sigma = np.cov(act, rowvar=False)
+ return mu, sigma
+
+
+def calculate_frechet_distance(activations_pred, activations_target, eps=1e-6):
+ mu1, sigma1 = fid_calculate_activation_statistics(activations_pred)
+ mu2, sigma2 = fid_calculate_activation_statistics(activations_target)
+
+ diff = mu1 - mu2
+
+ # Product might be almost singular
+ covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
+ if not np.isfinite(covmean).all():
+ msg = ('fid calculation produces singular product; '
+ 'adding %s to diagonal of cov estimates') % eps
+ LOGGER.warning(msg)
+ offset = np.eye(sigma1.shape[0]) * eps
+ covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
+
+ # Numerical error might give slight imaginary component
+ if np.iscomplexobj(covmean):
+ # if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
+ if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-2):
+ m = np.max(np.abs(covmean.imag))
+ raise ValueError('Imaginary component {}'.format(m))
+ covmean = covmean.real
+
+ tr_covmean = np.trace(covmean)
+
+ return (diff.dot(diff) + np.trace(sigma1) +
+ np.trace(sigma2) - 2 * tr_covmean)
+
+
+class FIDScore(EvaluatorScore):
+ def __init__(self, dims=2048, eps=1e-6):
+ LOGGER.info("FIDscore init called")
+ super().__init__()
+ if getattr(FIDScore, '_MODEL', None) is None:
+ block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
+ FIDScore._MODEL = InceptionV3([block_idx]).eval()
+ self.model = FIDScore._MODEL
+ self.eps = eps
+ self.reset()
+ LOGGER.info("FIDscore init done")
+
+ def forward(self, pred_batch, target_batch, mask=None):
+ activations_pred = self._get_activations(pred_batch)
+ activations_target = self._get_activations(target_batch)
+
+ self.activations_pred.append(activations_pred.detach().cpu())
+ self.activations_target.append(activations_target.detach().cpu())
+
+ return activations_pred, activations_target
+
+ def get_value(self, groups=None, states=None):
+ LOGGER.info("FIDscore get_value called")
+ activations_pred, activations_target = zip(*states) if states is not None \
+ else (self.activations_pred, self.activations_target)
+ activations_pred = torch.cat(activations_pred).cpu().numpy()
+ activations_target = torch.cat(activations_target).cpu().numpy()
+
+ total_distance = calculate_frechet_distance(activations_pred, activations_target, eps=self.eps)
+ total_results = dict(mean=total_distance)
+
+ if groups is None:
+ group_results = None
+ else:
+ group_results = dict()
+ grouping = get_groupings(groups)
+ for label, index in grouping.items():
+ if len(index) > 1:
+ group_distance = calculate_frechet_distance(activations_pred[index], activations_target[index],
+ eps=self.eps)
+ group_results[label] = dict(mean=group_distance)
+
+ else:
+ group_results[label] = dict(mean=float('nan'))
+
+ self.reset()
+
+ LOGGER.info("FIDscore get_value done")
+
+ return total_results, group_results
+
+ def reset(self):
+ self.activations_pred = []
+ self.activations_target = []
+
+ def _get_activations(self, batch):
+ activations = self.model(batch)[0]
+ if activations.shape[2] != 1 or activations.shape[3] != 1:
+ assert False, \
+ 'We should not have got here, because Inception always scales inputs to 299x299'
+ # activations = F.adaptive_avg_pool2d(activations, output_size=(1, 1))
+ activations = activations.squeeze(-1).squeeze(-1)
+ return activations
+
+
+class SegmentationAwareScore(EvaluatorScore):
+ def __init__(self, weights_path):
+ super().__init__()
+ self.segm_network = SegmentationModule(weights_path=weights_path, use_default_normalization=True).eval()
+ self.target_class_freq_by_image_total = []
+ self.target_class_freq_by_image_mask = []
+ self.pred_class_freq_by_image_mask = []
+
+ def forward(self, pred_batch, target_batch, mask):
+ pred_segm_flat = self.segm_network.predict(pred_batch)[0].view(pred_batch.shape[0], -1).long().detach().cpu().numpy()
+ target_segm_flat = self.segm_network.predict(target_batch)[0].view(pred_batch.shape[0], -1).long().detach().cpu().numpy()
+ mask_flat = (mask.view(mask.shape[0], -1) > 0.5).detach().cpu().numpy()
+
+ batch_target_class_freq_total = []
+ batch_target_class_freq_mask = []
+ batch_pred_class_freq_mask = []
+
+ for cur_pred_segm, cur_target_segm, cur_mask in zip(pred_segm_flat, target_segm_flat, mask_flat):
+ cur_target_class_freq_total = np.bincount(cur_target_segm, minlength=NUM_CLASS)[None, ...]
+ cur_target_class_freq_mask = np.bincount(cur_target_segm[cur_mask], minlength=NUM_CLASS)[None, ...]
+ cur_pred_class_freq_mask = np.bincount(cur_pred_segm[cur_mask], minlength=NUM_CLASS)[None, ...]
+
+ self.target_class_freq_by_image_total.append(cur_target_class_freq_total)
+ self.target_class_freq_by_image_mask.append(cur_target_class_freq_mask)
+ self.pred_class_freq_by_image_mask.append(cur_pred_class_freq_mask)
+
+ batch_target_class_freq_total.append(cur_target_class_freq_total)
+ batch_target_class_freq_mask.append(cur_target_class_freq_mask)
+ batch_pred_class_freq_mask.append(cur_pred_class_freq_mask)
+
+ batch_target_class_freq_total = np.concatenate(batch_target_class_freq_total, axis=0)
+ batch_target_class_freq_mask = np.concatenate(batch_target_class_freq_mask, axis=0)
+ batch_pred_class_freq_mask = np.concatenate(batch_pred_class_freq_mask, axis=0)
+ return batch_target_class_freq_total, batch_target_class_freq_mask, batch_pred_class_freq_mask
+
+ def reset(self):
+ super().reset()
+ self.target_class_freq_by_image_total = []
+ self.target_class_freq_by_image_mask = []
+ self.pred_class_freq_by_image_mask = []
+
+
+def distribute_values_to_classes(target_class_freq_by_image_mask, values, idx2name):
+ assert target_class_freq_by_image_mask.ndim == 2 and target_class_freq_by_image_mask.shape[0] == values.shape[0]
+ total_class_freq = target_class_freq_by_image_mask.sum(0)
+ distr_values = (target_class_freq_by_image_mask * values[..., None]).sum(0)
+ result = distr_values / (total_class_freq + 1e-3)
+ return {idx2name[i]: val for i, val in enumerate(result) if total_class_freq[i] > 0}
+
+
+def get_segmentation_idx2name():
+ return {i - 1: name for i, name in segm_options['classes'].set_index('Idx', drop=True)['Name'].to_dict().items()}
+
+
+class SegmentationAwarePairwiseScore(SegmentationAwareScore):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.individual_values = []
+ self.segm_idx2name = get_segmentation_idx2name()
+
+ def forward(self, pred_batch, target_batch, mask):
+ cur_class_stats = super().forward(pred_batch, target_batch, mask)
+ score_values = self.calc_score(pred_batch, target_batch, mask)
+ self.individual_values.append(score_values)
+ return cur_class_stats + (score_values,)
+
+ @abstractmethod
+ def calc_score(self, pred_batch, target_batch, mask):
+ raise NotImplementedError()
+
+ def get_value(self, groups=None, states=None):
+ """
+ :param groups:
+ :return:
+ total_results: dict of kind {'mean': score mean, 'std': score std}
+ group_results: None, if groups is None;
+ else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
+ """
+ if states is not None:
+ (target_class_freq_by_image_total,
+ target_class_freq_by_image_mask,
+ pred_class_freq_by_image_mask,
+ individual_values) = states
+ else:
+ target_class_freq_by_image_total = self.target_class_freq_by_image_total
+ target_class_freq_by_image_mask = self.target_class_freq_by_image_mask
+ pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask
+ individual_values = self.individual_values
+
+ target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0)
+ target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0)
+ pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0)
+ individual_values = np.concatenate(individual_values, axis=0)
+
+ total_results = {
+ 'mean': individual_values.mean(),
+ 'std': individual_values.std(),
+ **distribute_values_to_classes(target_class_freq_by_image_mask, individual_values, self.segm_idx2name)
+ }
+
+ if groups is None:
+ return total_results, None
+
+ group_results = dict()
+ grouping = get_groupings(groups)
+ for label, index in grouping.items():
+ group_class_freq = target_class_freq_by_image_mask[index]
+ group_scores = individual_values[index]
+ group_results[label] = {
+ 'mean': group_scores.mean(),
+ 'std': group_scores.std(),
+ ** distribute_values_to_classes(group_class_freq, group_scores, self.segm_idx2name)
+ }
+ return total_results, group_results
+
+ def reset(self):
+ super().reset()
+ self.individual_values = []
+
+
+class SegmentationClassStats(SegmentationAwarePairwiseScore):
+ def calc_score(self, pred_batch, target_batch, mask):
+ return 0
+
+ def get_value(self, groups=None, states=None):
+ """
+ :param groups:
+ :return:
+ total_results: dict of kind {'mean': score mean, 'std': score std}
+ group_results: None, if groups is None;
+ else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
+ """
+ if states is not None:
+ (target_class_freq_by_image_total,
+ target_class_freq_by_image_mask,
+ pred_class_freq_by_image_mask,
+ _) = states
+ else:
+ target_class_freq_by_image_total = self.target_class_freq_by_image_total
+ target_class_freq_by_image_mask = self.target_class_freq_by_image_mask
+ pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask
+
+ target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0)
+ target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0)
+ pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0)
+
+ target_class_freq_by_image_total_marginal = target_class_freq_by_image_total.sum(0).astype('float32')
+ target_class_freq_by_image_total_marginal /= target_class_freq_by_image_total_marginal.sum()
+
+ target_class_freq_by_image_mask_marginal = target_class_freq_by_image_mask.sum(0).astype('float32')
+ target_class_freq_by_image_mask_marginal /= target_class_freq_by_image_mask_marginal.sum()
+
+ pred_class_freq_diff = (pred_class_freq_by_image_mask - target_class_freq_by_image_mask).sum(0) / (target_class_freq_by_image_mask.sum(0) + 1e-3)
+
+ total_results = dict()
+ total_results.update({f'total_freq/{self.segm_idx2name[i]}': v
+ for i, v in enumerate(target_class_freq_by_image_total_marginal)
+ if v > 0})
+ total_results.update({f'mask_freq/{self.segm_idx2name[i]}': v
+ for i, v in enumerate(target_class_freq_by_image_mask_marginal)
+ if v > 0})
+ total_results.update({f'mask_freq_diff/{self.segm_idx2name[i]}': v
+ for i, v in enumerate(pred_class_freq_diff)
+ if target_class_freq_by_image_total_marginal[i] > 0})
+
+ if groups is None:
+ return total_results, None
+
+ group_results = dict()
+ grouping = get_groupings(groups)
+ for label, index in grouping.items():
+ group_target_class_freq_by_image_total = target_class_freq_by_image_total[index]
+ group_target_class_freq_by_image_mask = target_class_freq_by_image_mask[index]
+ group_pred_class_freq_by_image_mask = pred_class_freq_by_image_mask[index]
+
+ group_target_class_freq_by_image_total_marginal = group_target_class_freq_by_image_total.sum(0).astype('float32')
+ group_target_class_freq_by_image_total_marginal /= group_target_class_freq_by_image_total_marginal.sum()
+
+ group_target_class_freq_by_image_mask_marginal = group_target_class_freq_by_image_mask.sum(0).astype('float32')
+ group_target_class_freq_by_image_mask_marginal /= group_target_class_freq_by_image_mask_marginal.sum()
+
+ group_pred_class_freq_diff = (group_pred_class_freq_by_image_mask - group_target_class_freq_by_image_mask).sum(0) / (
+ group_target_class_freq_by_image_mask.sum(0) + 1e-3)
+
+ cur_group_results = dict()
+ cur_group_results.update({f'total_freq/{self.segm_idx2name[i]}': v
+ for i, v in enumerate(group_target_class_freq_by_image_total_marginal)
+ if v > 0})
+ cur_group_results.update({f'mask_freq/{self.segm_idx2name[i]}': v
+ for i, v in enumerate(group_target_class_freq_by_image_mask_marginal)
+ if v > 0})
+ cur_group_results.update({f'mask_freq_diff/{self.segm_idx2name[i]}': v
+ for i, v in enumerate(group_pred_class_freq_diff)
+ if group_target_class_freq_by_image_total_marginal[i] > 0})
+
+ group_results[label] = cur_group_results
+ return total_results, group_results
+
+
+class SegmentationAwareSSIM(SegmentationAwarePairwiseScore):
+ def __init__(self, *args, window_size=11, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.score_impl = SSIM(window_size=window_size, size_average=False).eval()
+
+ def calc_score(self, pred_batch, target_batch, mask):
+ return self.score_impl(pred_batch, target_batch).detach().cpu().numpy()
+
+
+class SegmentationAwareLPIPS(SegmentationAwarePairwiseScore):
+ def __init__(self, *args, model='net-lin', net='vgg', model_path=None, use_gpu=True, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.score_impl = PerceptualLoss(model=model, net=net, model_path=model_path,
+ use_gpu=use_gpu, spatial=False).eval()
+
+ def calc_score(self, pred_batch, target_batch, mask):
+ return self.score_impl(pred_batch, target_batch).flatten().detach().cpu().numpy()
+
+
+def calculade_fid_no_img(img_i, activations_pred, activations_target, eps=1e-6):
+ activations_pred = activations_pred.copy()
+ activations_pred[img_i] = activations_target[img_i]
+ return calculate_frechet_distance(activations_pred, activations_target, eps=eps)
+
+
+class SegmentationAwareFID(SegmentationAwarePairwiseScore):
+ def __init__(self, *args, dims=2048, eps=1e-6, n_jobs=-1, **kwargs):
+ super().__init__(*args, **kwargs)
+ if getattr(FIDScore, '_MODEL', None) is None:
+ block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
+ FIDScore._MODEL = InceptionV3([block_idx]).eval()
+ self.model = FIDScore._MODEL
+ self.eps = eps
+ self.n_jobs = n_jobs
+
+ def calc_score(self, pred_batch, target_batch, mask):
+ activations_pred = self._get_activations(pred_batch)
+ activations_target = self._get_activations(target_batch)
+ return activations_pred, activations_target
+
+ def get_value(self, groups=None, states=None):
+ """
+ :param groups:
+ :return:
+ total_results: dict of kind {'mean': score mean, 'std': score std}
+ group_results: None, if groups is None;
+ else dict {group_idx: {'mean': score mean among group, 'std': score std among group}}
+ """
+ if states is not None:
+ (target_class_freq_by_image_total,
+ target_class_freq_by_image_mask,
+ pred_class_freq_by_image_mask,
+ activation_pairs) = states
+ else:
+ target_class_freq_by_image_total = self.target_class_freq_by_image_total
+ target_class_freq_by_image_mask = self.target_class_freq_by_image_mask
+ pred_class_freq_by_image_mask = self.pred_class_freq_by_image_mask
+ activation_pairs = self.individual_values
+
+ target_class_freq_by_image_total = np.concatenate(target_class_freq_by_image_total, axis=0)
+ target_class_freq_by_image_mask = np.concatenate(target_class_freq_by_image_mask, axis=0)
+ pred_class_freq_by_image_mask = np.concatenate(pred_class_freq_by_image_mask, axis=0)
+ activations_pred, activations_target = zip(*activation_pairs)
+ activations_pred = np.concatenate(activations_pred, axis=0)
+ activations_target = np.concatenate(activations_target, axis=0)
+
+ total_results = {
+ 'mean': calculate_frechet_distance(activations_pred, activations_target, eps=self.eps),
+ 'std': 0,
+ **self.distribute_fid_to_classes(target_class_freq_by_image_mask, activations_pred, activations_target)
+ }
+
+ if groups is None:
+ return total_results, None
+
+ group_results = dict()
+ grouping = get_groupings(groups)
+ for label, index in grouping.items():
+ if len(index) > 1:
+ group_activations_pred = activations_pred[index]
+ group_activations_target = activations_target[index]
+ group_class_freq = target_class_freq_by_image_mask[index]
+ group_results[label] = {
+ 'mean': calculate_frechet_distance(group_activations_pred, group_activations_target, eps=self.eps),
+ 'std': 0,
+ **self.distribute_fid_to_classes(group_class_freq,
+ group_activations_pred,
+ group_activations_target)
+ }
+ else:
+ group_results[label] = dict(mean=float('nan'), std=0)
+ return total_results, group_results
+
+ def distribute_fid_to_classes(self, class_freq, activations_pred, activations_target):
+ real_fid = calculate_frechet_distance(activations_pred, activations_target, eps=self.eps)
+
+ fid_no_images = Parallel(n_jobs=self.n_jobs)(
+ delayed(calculade_fid_no_img)(img_i, activations_pred, activations_target, eps=self.eps)
+ for img_i in range(activations_pred.shape[0])
+ )
+ errors = real_fid - fid_no_images
+ return distribute_values_to_classes(class_freq, errors, self.segm_idx2name)
+
+ def _get_activations(self, batch):
+ activations = self.model(batch)[0]
+ if activations.shape[2] != 1 or activations.shape[3] != 1:
+ activations = F.adaptive_avg_pool2d(activations, output_size=(1, 1))
+ activations = activations.squeeze(-1).squeeze(-1).detach().cpu().numpy()
+ return activations
diff --git a/saicinpainting/evaluation/losses/fid/__init__.py b/saicinpainting/evaluation/losses/fid/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/saicinpainting/evaluation/losses/fid/fid_score.py b/saicinpainting/evaluation/losses/fid/fid_score.py
new file mode 100644
index 00000000..6ca8e602
--- /dev/null
+++ b/saicinpainting/evaluation/losses/fid/fid_score.py
@@ -0,0 +1,328 @@
+#!/usr/bin/env python3
+"""Calculates the Frechet Inception Distance (FID) to evalulate GANs
+
+The FID metric calculates the distance between two distributions of images.
+Typically, we have summary statistics (mean & covariance matrix) of one
+of these distributions, while the 2nd distribution is given by a GAN.
+
+When run as a stand-alone program, it compares the distribution of
+images that are stored as PNG/JPEG at a specified location with a
+distribution given by summary statistics (in pickle format).
+
+The FID is calculated by assuming that X_1 and X_2 are the activations of
+the pool_3 layer of the inception net for generated samples and real world
+samples respectively.
+
+See --help to see further details.
+
+Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
+of Tensorflow
+
+Copyright 2018 Institute of Bioinformatics, JKU Linz
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+"""
+import os
+import pathlib
+from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
+
+import numpy as np
+import torch
+# from scipy.misc import imread
+from imageio import imread
+from PIL import Image, JpegImagePlugin
+from scipy import linalg
+from torch.nn.functional import adaptive_avg_pool2d
+from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor
+
+try:
+ from tqdm import tqdm
+except ImportError:
+ # If not tqdm is not available, provide a mock version of it
+ def tqdm(x): return x
+
+try:
+ from .inception import InceptionV3
+except ModuleNotFoundError:
+ from inception import InceptionV3
+
+parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
+parser.add_argument('path', type=str, nargs=2,
+ help=('Path to the generated images or '
+ 'to .npz statistic files'))
+parser.add_argument('--batch-size', type=int, default=50,
+ help='Batch size to use')
+parser.add_argument('--dims', type=int, default=2048,
+ choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
+ help=('Dimensionality of Inception features to use. '
+ 'By default, uses pool3 features'))
+parser.add_argument('-c', '--gpu', default='', type=str,
+ help='GPU to use (leave blank for CPU only)')
+parser.add_argument('--resize', default=256)
+
+transform = Compose([Resize(256), CenterCrop(256), ToTensor()])
+
+
+def get_activations(files, model, batch_size=50, dims=2048,
+ cuda=False, verbose=False, keep_size=False):
+ """Calculates the activations of the pool_3 layer for all images.
+
+ Params:
+ -- files : List of image files paths
+ -- model : Instance of inception model
+ -- batch_size : Batch size of images for the model to process at once.
+ Make sure that the number of samples is a multiple of
+ the batch size, otherwise some samples are ignored. This
+ behavior is retained to match the original FID score
+ implementation.
+ -- dims : Dimensionality of features returned by Inception
+ -- cuda : If set to True, use GPU
+ -- verbose : If set to True and parameter out_step is given, the number
+ of calculated batches is reported.
+ Returns:
+ -- A numpy array of dimension (num images, dims) that contains the
+ activations of the given tensor when feeding inception with the
+ query tensor.
+ """
+ model.eval()
+
+ if len(files) % batch_size != 0:
+ print(('Warning: number of images is not a multiple of the '
+ 'batch size. Some samples are going to be ignored.'))
+ if batch_size > len(files):
+ print(('Warning: batch size is bigger than the data size. '
+ 'Setting batch size to data size'))
+ batch_size = len(files)
+
+ n_batches = len(files) // batch_size
+ n_used_imgs = n_batches * batch_size
+
+ pred_arr = np.empty((n_used_imgs, dims))
+
+ for i in tqdm(range(n_batches)):
+ if verbose:
+ print('\rPropagating batch %d/%d' % (i + 1, n_batches),
+ end='', flush=True)
+ start = i * batch_size
+ end = start + batch_size
+
+ # # Official code goes below
+ # images = np.array([imread(str(f)).astype(np.float32)
+ # for f in files[start:end]])
+
+ # # Reshape to (n_images, 3, height, width)
+ # images = images.transpose((0, 3, 1, 2))
+ # images /= 255
+ # batch = torch.from_numpy(images).type(torch.FloatTensor)
+ # #
+
+ t = transform if not keep_size else ToTensor()
+
+ if isinstance(files[0], pathlib.PosixPath):
+ images = [t(Image.open(str(f))) for f in files[start:end]]
+
+ elif isinstance(files[0], Image.Image):
+ images = [t(f) for f in files[start:end]]
+
+ else:
+ raise ValueError(f"Unknown data type for image: {type(files[0])}")
+
+ batch = torch.stack(images)
+
+ if cuda:
+ batch = batch.cuda()
+
+ pred = model(batch)[0]
+
+ # If model output is not scalar, apply global spatial average pooling.
+ # This happens if you choose a dimensionality not equal 2048.
+ if pred.shape[2] != 1 or pred.shape[3] != 1:
+ pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
+
+ pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1)
+
+ if verbose:
+ print(' done')
+
+ return pred_arr
+
+
+def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
+ """Numpy implementation of the Frechet Distance.
+ The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
+ and X_2 ~ N(mu_2, C_2) is
+ d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
+
+ Stable version by Dougal J. Sutherland.
+
+ Params:
+ -- mu1 : Numpy array containing the activations of a layer of the
+ inception net (like returned by the function 'get_predictions')
+ for generated samples.
+ -- mu2 : The sample mean over activations, precalculated on an
+ representative data set.
+ -- sigma1: The covariance matrix over activations for generated samples.
+ -- sigma2: The covariance matrix over activations, precalculated on an
+ representative data set.
+
+ Returns:
+ -- : The Frechet Distance.
+ """
+
+ mu1 = np.atleast_1d(mu1)
+ mu2 = np.atleast_1d(mu2)
+
+ sigma1 = np.atleast_2d(sigma1)
+ sigma2 = np.atleast_2d(sigma2)
+
+ assert mu1.shape == mu2.shape, \
+ 'Training and test mean vectors have different lengths'
+ assert sigma1.shape == sigma2.shape, \
+ 'Training and test covariances have different dimensions'
+
+ diff = mu1 - mu2
+
+ # Product might be almost singular
+ covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
+ if not np.isfinite(covmean).all():
+ msg = ('fid calculation produces singular product; '
+ 'adding %s to diagonal of cov estimates') % eps
+ print(msg)
+ offset = np.eye(sigma1.shape[0]) * eps
+ covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
+
+ # Numerical error might give slight imaginary component
+ if np.iscomplexobj(covmean):
+ # if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
+ if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-2):
+ m = np.max(np.abs(covmean.imag))
+ raise ValueError('Imaginary component {}'.format(m))
+ covmean = covmean.real
+
+ tr_covmean = np.trace(covmean)
+
+ return (diff.dot(diff) + np.trace(sigma1) +
+ np.trace(sigma2) - 2 * tr_covmean)
+
+
+def calculate_activation_statistics(files, model, batch_size=50,
+ dims=2048, cuda=False, verbose=False, keep_size=False):
+ """Calculation of the statistics used by the FID.
+ Params:
+ -- files : List of image files paths
+ -- model : Instance of inception model
+ -- batch_size : The images numpy array is split into batches with
+ batch size batch_size. A reasonable batch size
+ depends on the hardware.
+ -- dims : Dimensionality of features returned by Inception
+ -- cuda : If set to True, use GPU
+ -- verbose : If set to True and parameter out_step is given, the
+ number of calculated batches is reported.
+ Returns:
+ -- mu : The mean over samples of the activations of the pool_3 layer of
+ the inception model.
+ -- sigma : The covariance matrix of the activations of the pool_3 layer of
+ the inception model.
+ """
+ act = get_activations(files, model, batch_size, dims, cuda, verbose, keep_size=keep_size)
+ mu = np.mean(act, axis=0)
+ sigma = np.cov(act, rowvar=False)
+ return mu, sigma
+
+
+def _compute_statistics_of_path(path, model, batch_size, dims, cuda):
+ if path.endswith('.npz'):
+ f = np.load(path)
+ m, s = f['mu'][:], f['sigma'][:]
+ f.close()
+ else:
+ path = pathlib.Path(path)
+ files = list(path.glob('*.jpg')) + list(path.glob('*.png'))
+ m, s = calculate_activation_statistics(files, model, batch_size,
+ dims, cuda)
+
+ return m, s
+
+
+def _compute_statistics_of_images(images, model, batch_size, dims, cuda, keep_size=False):
+ if isinstance(images, list): # exact paths to files are provided
+ m, s = calculate_activation_statistics(images, model, batch_size,
+ dims, cuda, keep_size=keep_size)
+
+ return m, s
+
+ else:
+ raise ValueError
+
+
+def calculate_fid_given_paths(paths, batch_size, cuda, dims):
+ """Calculates the FID of two paths"""
+ for p in paths:
+ if not os.path.exists(p):
+ raise RuntimeError('Invalid path: %s' % p)
+
+ block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
+
+ model = InceptionV3([block_idx])
+ if cuda:
+ model.cuda()
+
+ m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size,
+ dims, cuda)
+ m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size,
+ dims, cuda)
+ fid_value = calculate_frechet_distance(m1, s1, m2, s2)
+
+ return fid_value
+
+
+def calculate_fid_given_images(images, batch_size, cuda, dims, use_globals=False, keep_size=False):
+ if use_globals:
+ global FID_MODEL # for multiprocessing
+
+ for imgs in images:
+ if isinstance(imgs, list) and isinstance(imgs[0], (Image.Image, JpegImagePlugin.JpegImageFile)):
+ pass
+ else:
+ raise RuntimeError('Invalid images')
+
+ block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
+
+ if 'FID_MODEL' not in globals() or not use_globals:
+ model = InceptionV3([block_idx])
+ if cuda:
+ model.cuda()
+
+ if use_globals:
+ FID_MODEL = model
+
+ else:
+ model = FID_MODEL
+
+ m1, s1 = _compute_statistics_of_images(images[0], model, batch_size,
+ dims, cuda, keep_size=False)
+ m2, s2 = _compute_statistics_of_images(images[1], model, batch_size,
+ dims, cuda, keep_size=False)
+ fid_value = calculate_frechet_distance(m1, s1, m2, s2)
+ return fid_value
+
+
+if __name__ == '__main__':
+ args = parser.parse_args()
+ os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
+
+ fid_value = calculate_fid_given_paths(args.path,
+ args.batch_size,
+ args.gpu != '',
+ args.dims)
+ print('FID: ', fid_value)
diff --git a/saicinpainting/evaluation/losses/fid/inception.py b/saicinpainting/evaluation/losses/fid/inception.py
new file mode 100644
index 00000000..e9bd0863
--- /dev/null
+++ b/saicinpainting/evaluation/losses/fid/inception.py
@@ -0,0 +1,323 @@
+import logging
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torchvision import models
+
+try:
+ from torchvision.models.utils import load_state_dict_from_url
+except ImportError:
+ from torch.utils.model_zoo import load_url as load_state_dict_from_url
+
+# Inception weights ported to Pytorch from
+# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
+FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth'
+
+
+LOGGER = logging.getLogger(__name__)
+
+
+class InceptionV3(nn.Module):
+ """Pretrained InceptionV3 network returning feature maps"""
+
+ # Index of default block of inception to return,
+ # corresponds to output of final average pooling
+ DEFAULT_BLOCK_INDEX = 3
+
+ # Maps feature dimensionality to their output blocks indices
+ BLOCK_INDEX_BY_DIM = {
+ 64: 0, # First max pooling features
+ 192: 1, # Second max pooling featurs
+ 768: 2, # Pre-aux classifier features
+ 2048: 3 # Final average pooling features
+ }
+
+ def __init__(self,
+ output_blocks=[DEFAULT_BLOCK_INDEX],
+ resize_input=True,
+ normalize_input=True,
+ requires_grad=False,
+ use_fid_inception=True):
+ """Build pretrained InceptionV3
+
+ Parameters
+ ----------
+ output_blocks : list of int
+ Indices of blocks to return features of. Possible values are:
+ - 0: corresponds to output of first max pooling
+ - 1: corresponds to output of second max pooling
+ - 2: corresponds to output which is fed to aux classifier
+ - 3: corresponds to output of final average pooling
+ resize_input : bool
+ If true, bilinearly resizes input to width and height 299 before
+ feeding input to model. As the network without fully connected
+ layers is fully convolutional, it should be able to handle inputs
+ of arbitrary size, so resizing might not be strictly needed
+ normalize_input : bool
+ If true, scales the input from range (0, 1) to the range the
+ pretrained Inception network expects, namely (-1, 1)
+ requires_grad : bool
+ If true, parameters of the model require gradients. Possibly useful
+ for finetuning the network
+ use_fid_inception : bool
+ If true, uses the pretrained Inception model used in Tensorflow's
+ FID implementation. If false, uses the pretrained Inception model
+ available in torchvision. The FID Inception model has different
+ weights and a slightly different structure from torchvision's
+ Inception model. If you want to compute FID scores, you are
+ strongly advised to set this parameter to true to get comparable
+ results.
+ """
+ super(InceptionV3, self).__init__()
+
+ self.resize_input = resize_input
+ self.normalize_input = normalize_input
+ self.output_blocks = sorted(output_blocks)
+ self.last_needed_block = max(output_blocks)
+
+ assert self.last_needed_block <= 3, \
+ 'Last possible output block index is 3'
+
+ self.blocks = nn.ModuleList()
+
+ if use_fid_inception:
+ inception = fid_inception_v3()
+ else:
+ inception = models.inception_v3(pretrained=True)
+
+ # Block 0: input to maxpool1
+ block0 = [
+ inception.Conv2d_1a_3x3,
+ inception.Conv2d_2a_3x3,
+ inception.Conv2d_2b_3x3,
+ nn.MaxPool2d(kernel_size=3, stride=2)
+ ]
+ self.blocks.append(nn.Sequential(*block0))
+
+ # Block 1: maxpool1 to maxpool2
+ if self.last_needed_block >= 1:
+ block1 = [
+ inception.Conv2d_3b_1x1,
+ inception.Conv2d_4a_3x3,
+ nn.MaxPool2d(kernel_size=3, stride=2)
+ ]
+ self.blocks.append(nn.Sequential(*block1))
+
+ # Block 2: maxpool2 to aux classifier
+ if self.last_needed_block >= 2:
+ block2 = [
+ inception.Mixed_5b,
+ inception.Mixed_5c,
+ inception.Mixed_5d,
+ inception.Mixed_6a,
+ inception.Mixed_6b,
+ inception.Mixed_6c,
+ inception.Mixed_6d,
+ inception.Mixed_6e,
+ ]
+ self.blocks.append(nn.Sequential(*block2))
+
+ # Block 3: aux classifier to final avgpool
+ if self.last_needed_block >= 3:
+ block3 = [
+ inception.Mixed_7a,
+ inception.Mixed_7b,
+ inception.Mixed_7c,
+ nn.AdaptiveAvgPool2d(output_size=(1, 1))
+ ]
+ self.blocks.append(nn.Sequential(*block3))
+
+ for param in self.parameters():
+ param.requires_grad = requires_grad
+
+ def forward(self, inp):
+ """Get Inception feature maps
+
+ Parameters
+ ----------
+ inp : torch.autograd.Variable
+ Input tensor of shape Bx3xHxW. Values are expected to be in
+ range (0, 1)
+
+ Returns
+ -------
+ List of torch.autograd.Variable, corresponding to the selected output
+ block, sorted ascending by index
+ """
+ outp = []
+ x = inp
+
+ if self.resize_input:
+ x = F.interpolate(x,
+ size=(299, 299),
+ mode='bilinear',
+ align_corners=False)
+
+ if self.normalize_input:
+ x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1)
+
+ for idx, block in enumerate(self.blocks):
+ x = block(x)
+ if idx in self.output_blocks:
+ outp.append(x)
+
+ if idx == self.last_needed_block:
+ break
+
+ return outp
+
+
+def fid_inception_v3():
+ """Build pretrained Inception model for FID computation
+
+ The Inception model for FID computation uses a different set of weights
+ and has a slightly different structure than torchvision's Inception.
+
+ This method first constructs torchvision's Inception and then patches the
+ necessary parts that are different in the FID Inception model.
+ """
+ LOGGER.info('fid_inception_v3 called')
+ inception = models.inception_v3(num_classes=1008,
+ aux_logits=False,
+ pretrained=False)
+ LOGGER.info('models.inception_v3 done')
+ inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
+ inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
+ inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
+ inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
+ inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
+ inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
+ inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
+ inception.Mixed_7b = FIDInceptionE_1(1280)
+ inception.Mixed_7c = FIDInceptionE_2(2048)
+
+ LOGGER.info('fid_inception_v3 patching done')
+
+ state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True)
+ LOGGER.info('fid_inception_v3 weights downloaded')
+
+ inception.load_state_dict(state_dict)
+ LOGGER.info('fid_inception_v3 weights loaded into model')
+
+ return inception
+
+
+class FIDInceptionA(models.inception.InceptionA):
+ """InceptionA block patched for FID computation"""
+ def __init__(self, in_channels, pool_features):
+ super(FIDInceptionA, self).__init__(in_channels, pool_features)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch5x5 = self.branch5x5_1(x)
+ branch5x5 = self.branch5x5_2(branch5x5)
+
+ branch3x3dbl = self.branch3x3dbl_1(x)
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
+ branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
+
+ # Patch: Tensorflow's average pool does not use the padded zero's in
+ # its average calculation
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
+ count_include_pad=False)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
+ return torch.cat(outputs, 1)
+
+
+class FIDInceptionC(models.inception.InceptionC):
+ """InceptionC block patched for FID computation"""
+ def __init__(self, in_channels, channels_7x7):
+ super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch7x7 = self.branch7x7_1(x)
+ branch7x7 = self.branch7x7_2(branch7x7)
+ branch7x7 = self.branch7x7_3(branch7x7)
+
+ branch7x7dbl = self.branch7x7dbl_1(x)
+ branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
+ branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
+ branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
+ branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
+
+ # Patch: Tensorflow's average pool does not use the padded zero's in
+ # its average calculation
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
+ count_include_pad=False)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
+ return torch.cat(outputs, 1)
+
+
+class FIDInceptionE_1(models.inception.InceptionE):
+ """First InceptionE block patched for FID computation"""
+ def __init__(self, in_channels):
+ super(FIDInceptionE_1, self).__init__(in_channels)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch3x3 = self.branch3x3_1(x)
+ branch3x3 = [
+ self.branch3x3_2a(branch3x3),
+ self.branch3x3_2b(branch3x3),
+ ]
+ branch3x3 = torch.cat(branch3x3, 1)
+
+ branch3x3dbl = self.branch3x3dbl_1(x)
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
+ branch3x3dbl = [
+ self.branch3x3dbl_3a(branch3x3dbl),
+ self.branch3x3dbl_3b(branch3x3dbl),
+ ]
+ branch3x3dbl = torch.cat(branch3x3dbl, 1)
+
+ # Patch: Tensorflow's average pool does not use the padded zero's in
+ # its average calculation
+ branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
+ count_include_pad=False)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
+ return torch.cat(outputs, 1)
+
+
+class FIDInceptionE_2(models.inception.InceptionE):
+ """Second InceptionE block patched for FID computation"""
+ def __init__(self, in_channels):
+ super(FIDInceptionE_2, self).__init__(in_channels)
+
+ def forward(self, x):
+ branch1x1 = self.branch1x1(x)
+
+ branch3x3 = self.branch3x3_1(x)
+ branch3x3 = [
+ self.branch3x3_2a(branch3x3),
+ self.branch3x3_2b(branch3x3),
+ ]
+ branch3x3 = torch.cat(branch3x3, 1)
+
+ branch3x3dbl = self.branch3x3dbl_1(x)
+ branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
+ branch3x3dbl = [
+ self.branch3x3dbl_3a(branch3x3dbl),
+ self.branch3x3dbl_3b(branch3x3dbl),
+ ]
+ branch3x3dbl = torch.cat(branch3x3dbl, 1)
+
+ # Patch: The FID Inception model uses max pooling instead of average
+ # pooling. This is likely an error in this specific Inception
+ # implementation, as other Inception models use average pooling here
+ # (which matches the description in the paper).
+ branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
+ branch_pool = self.branch_pool(branch_pool)
+
+ outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
+ return torch.cat(outputs, 1)
diff --git a/saicinpainting/evaluation/losses/lpips.py b/saicinpainting/evaluation/losses/lpips.py
new file mode 100644
index 00000000..b5f19b74
--- /dev/null
+++ b/saicinpainting/evaluation/losses/lpips.py
@@ -0,0 +1,891 @@
+############################################################
+# The contents below have been combined using files in the #
+# following repository: #
+# https://github.com/richzhang/PerceptualSimilarity #
+############################################################
+
+############################################################
+# __init__.py #
+############################################################
+
+import numpy as np
+from skimage.metrics import structural_similarity
+import torch
+
+from saicinpainting.utils import get_shape
+
+
+class PerceptualLoss(torch.nn.Module):
+ def __init__(self, model='net-lin', net='alex', colorspace='rgb', model_path=None, spatial=False, use_gpu=True):
+ # VGG using our perceptually-learned weights (LPIPS metric)
+ # def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss
+ super(PerceptualLoss, self).__init__()
+ self.use_gpu = use_gpu
+ self.spatial = spatial
+ self.model = DistModel()
+ self.model.initialize(model=model, net=net, use_gpu=use_gpu, colorspace=colorspace,
+ model_path=model_path, spatial=self.spatial)
+
+ def forward(self, pred, target, normalize=True):
+ """
+ Pred and target are Variables.
+ If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1]
+ If normalize is False, assumes the images are already between [-1,+1]
+ Inputs pred and target are Nx3xHxW
+ Output pytorch Variable N long
+ """
+
+ if normalize:
+ target = 2 * target - 1
+ pred = 2 * pred - 1
+
+ return self.model(target, pred)
+
+
+def normalize_tensor(in_feat, eps=1e-10):
+ norm_factor = torch.sqrt(torch.sum(in_feat ** 2, dim=1, keepdim=True))
+ return in_feat / (norm_factor + eps)
+
+
+def l2(p0, p1, range=255.):
+ return .5 * np.mean((p0 / range - p1 / range) ** 2)
+
+
+def psnr(p0, p1, peak=255.):
+ return 10 * np.log10(peak ** 2 / np.mean((1. * p0 - 1. * p1) ** 2))
+
+
+def dssim(p0, p1, range=255.):
+ return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2.
+
+
+def rgb2lab(in_img, mean_cent=False):
+ from skimage import color
+ img_lab = color.rgb2lab(in_img)
+ if (mean_cent):
+ img_lab[:, :, 0] = img_lab[:, :, 0] - 50
+ return img_lab
+
+
+def tensor2np(tensor_obj):
+ # change dimension of a tensor object into a numpy array
+ return tensor_obj[0].cpu().float().numpy().transpose((1, 2, 0))
+
+
+def np2tensor(np_obj):
+ # change dimenion of np array into tensor array
+ return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
+
+
+def tensor2tensorlab(image_tensor, to_norm=True, mc_only=False):
+ # image tensor to lab tensor
+ from skimage import color
+
+ img = tensor2im(image_tensor)
+ img_lab = color.rgb2lab(img)
+ if (mc_only):
+ img_lab[:, :, 0] = img_lab[:, :, 0] - 50
+ if (to_norm and not mc_only):
+ img_lab[:, :, 0] = img_lab[:, :, 0] - 50
+ img_lab = img_lab / 100.
+
+ return np2tensor(img_lab)
+
+
+def tensorlab2tensor(lab_tensor, return_inbnd=False):
+ from skimage import color
+ import warnings
+ warnings.filterwarnings("ignore")
+
+ lab = tensor2np(lab_tensor) * 100.
+ lab[:, :, 0] = lab[:, :, 0] + 50
+
+ rgb_back = 255. * np.clip(color.lab2rgb(lab.astype('float')), 0, 1)
+ if (return_inbnd):
+ # convert back to lab, see if we match
+ lab_back = color.rgb2lab(rgb_back.astype('uint8'))
+ mask = 1. * np.isclose(lab_back, lab, atol=2.)
+ mask = np2tensor(np.prod(mask, axis=2)[:, :, np.newaxis])
+ return (im2tensor(rgb_back), mask)
+ else:
+ return im2tensor(rgb_back)
+
+
+def rgb2lab(input):
+ from skimage import color
+ return color.rgb2lab(input / 255.)
+
+
+def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255. / 2.):
+ image_numpy = image_tensor[0].cpu().float().numpy()
+ image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
+ return image_numpy.astype(imtype)
+
+
+def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.):
+ return torch.Tensor((image / factor - cent)
+ [:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
+
+
+def tensor2vec(vector_tensor):
+ return vector_tensor.data.cpu().numpy()[:, :, 0, 0]
+
+
+def voc_ap(rec, prec, use_07_metric=False):
+ """ ap = voc_ap(rec, prec, [use_07_metric])
+ Compute VOC AP given precision and recall.
+ If use_07_metric is true, uses the
+ VOC 07 11 point method (default:False).
+ """
+ if use_07_metric:
+ # 11 point metric
+ ap = 0.
+ for t in np.arange(0., 1.1, 0.1):
+ if np.sum(rec >= t) == 0:
+ p = 0
+ else:
+ p = np.max(prec[rec >= t])
+ ap = ap + p / 11.
+ else:
+ # correct AP calculation
+ # first append sentinel values at the end
+ mrec = np.concatenate(([0.], rec, [1.]))
+ mpre = np.concatenate(([0.], prec, [0.]))
+
+ # compute the precision envelope
+ for i in range(mpre.size - 1, 0, -1):
+ mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
+
+ # to calculate area under PR curve, look for points
+ # where X axis (recall) changes value
+ i = np.where(mrec[1:] != mrec[:-1])[0]
+
+ # and sum (\Delta recall) * prec
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
+ return ap
+
+
+def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255. / 2.):
+ # def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.):
+ image_numpy = image_tensor[0].cpu().float().numpy()
+ image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
+ return image_numpy.astype(imtype)
+
+
+def im2tensor(image, imtype=np.uint8, cent=1., factor=255. / 2.):
+ # def im2tensor(image, imtype=np.uint8, cent=1., factor=1.):
+ return torch.Tensor((image / factor - cent)
+ [:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
+
+
+############################################################
+# base_model.py #
+############################################################
+
+
+class BaseModel(torch.nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def name(self):
+ return 'BaseModel'
+
+ def initialize(self, use_gpu=True):
+ self.use_gpu = use_gpu
+
+ def forward(self):
+ pass
+
+ def get_image_paths(self):
+ pass
+
+ def optimize_parameters(self):
+ pass
+
+ def get_current_visuals(self):
+ return self.input
+
+ def get_current_errors(self):
+ return {}
+
+ def save(self, label):
+ pass
+
+ # helper saving function that can be used by subclasses
+ def save_network(self, network, path, network_label, epoch_label):
+ save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
+ save_path = os.path.join(path, save_filename)
+ torch.save(network.state_dict(), save_path)
+
+ # helper loading function that can be used by subclasses
+ def load_network(self, network, network_label, epoch_label):
+ save_filename = '%s_net_%s.pth' % (epoch_label, network_label)
+ save_path = os.path.join(self.save_dir, save_filename)
+ print('Loading network from %s' % save_path)
+ network.load_state_dict(torch.load(save_path, map_location='cpu'))
+
+ def update_learning_rate():
+ pass
+
+ def get_image_paths(self):
+ return self.image_paths
+
+ def save_done(self, flag=False):
+ np.save(os.path.join(self.save_dir, 'done_flag'), flag)
+ np.savetxt(os.path.join(self.save_dir, 'done_flag'), [flag, ], fmt='%i')
+
+
+############################################################
+# dist_model.py #
+############################################################
+
+import os
+from collections import OrderedDict
+from scipy.ndimage import zoom
+from tqdm import tqdm
+
+
+class DistModel(BaseModel):
+ def name(self):
+ return self.model_name
+
+ def initialize(self, model='net-lin', net='alex', colorspace='Lab', pnet_rand=False, pnet_tune=False,
+ model_path=None,
+ use_gpu=True, printNet=False, spatial=False,
+ is_train=False, lr=.0001, beta1=0.5, version='0.1'):
+ '''
+ INPUTS
+ model - ['net-lin'] for linearly calibrated network
+ ['net'] for off-the-shelf network
+ ['L2'] for L2 distance in Lab colorspace
+ ['SSIM'] for ssim in RGB colorspace
+ net - ['squeeze','alex','vgg']
+ model_path - if None, will look in weights/[NET_NAME].pth
+ colorspace - ['Lab','RGB'] colorspace to use for L2 and SSIM
+ use_gpu - bool - whether or not to use a GPU
+ printNet - bool - whether or not to print network architecture out
+ spatial - bool - whether to output an array containing varying distances across spatial dimensions
+ spatial_shape - if given, output spatial shape. if None then spatial shape is determined automatically via spatial_factor (see below).
+ spatial_factor - if given, specifies upsampling factor relative to the largest spatial extent of a convolutional layer. if None then resized to size of input images.
+ spatial_order - spline order of filter for upsampling in spatial mode, by default 1 (bilinear).
+ is_train - bool - [True] for training mode
+ lr - float - initial learning rate
+ beta1 - float - initial momentum term for adam
+ version - 0.1 for latest, 0.0 was original (with a bug)
+ '''
+ BaseModel.initialize(self, use_gpu=use_gpu)
+
+ self.model = model
+ self.net = net
+ self.is_train = is_train
+ self.spatial = spatial
+ self.model_name = '%s [%s]' % (model, net)
+
+ if (self.model == 'net-lin'): # pretrained net + linear layer
+ self.net = PNetLin(pnet_rand=pnet_rand, pnet_tune=pnet_tune, pnet_type=net,
+ use_dropout=True, spatial=spatial, version=version, lpips=True)
+ kw = dict(map_location='cpu')
+ if (model_path is None):
+ import inspect
+ model_path = os.path.abspath(
+ os.path.join(os.path.dirname(__file__), '..', '..', '..', 'models', 'lpips_models', f'{net}.pth'))
+
+ if (not is_train):
+ self.net.load_state_dict(torch.load(model_path, **kw), strict=False)
+
+ elif (self.model == 'net'): # pretrained network
+ self.net = PNetLin(pnet_rand=pnet_rand, pnet_type=net, lpips=False)
+ elif (self.model in ['L2', 'l2']):
+ self.net = L2(use_gpu=use_gpu, colorspace=colorspace) # not really a network, only for testing
+ self.model_name = 'L2'
+ elif (self.model in ['DSSIM', 'dssim', 'SSIM', 'ssim']):
+ self.net = DSSIM(use_gpu=use_gpu, colorspace=colorspace)
+ self.model_name = 'SSIM'
+ else:
+ raise ValueError("Model [%s] not recognized." % self.model)
+
+ self.trainable_parameters = list(self.net.parameters())
+
+ if self.is_train: # training mode
+ # extra network on top to go from distances (d0,d1) => predicted human judgment (h*)
+ self.rankLoss = BCERankingLoss()
+ self.trainable_parameters += list(self.rankLoss.net.parameters())
+ self.lr = lr
+ self.old_lr = lr
+ self.optimizer_net = torch.optim.Adam(self.trainable_parameters, lr=lr, betas=(beta1, 0.999))
+ else: # test mode
+ self.net.eval()
+
+ # if (use_gpu):
+ # self.net.to(gpu_ids[0])
+ # self.net = torch.nn.DataParallel(self.net, device_ids=gpu_ids)
+ # if (self.is_train):
+ # self.rankLoss = self.rankLoss.to(device=gpu_ids[0]) # just put this on GPU0
+
+ if (printNet):
+ print('---------- Networks initialized -------------')
+ print_network(self.net)
+ print('-----------------------------------------------')
+
+ def forward(self, in0, in1, retPerLayer=False):
+ ''' Function computes the distance between image patches in0 and in1
+ INPUTS
+ in0, in1 - torch.Tensor object of shape Nx3xXxY - image patch scaled to [-1,1]
+ OUTPUT
+ computed distances between in0 and in1
+ '''
+
+ return self.net(in0, in1, retPerLayer=retPerLayer)
+
+ # ***** TRAINING FUNCTIONS *****
+ def optimize_parameters(self):
+ self.forward_train()
+ self.optimizer_net.zero_grad()
+ self.backward_train()
+ self.optimizer_net.step()
+ self.clamp_weights()
+
+ def clamp_weights(self):
+ for module in self.net.modules():
+ if (hasattr(module, 'weight') and module.kernel_size == (1, 1)):
+ module.weight.data = torch.clamp(module.weight.data, min=0)
+
+ def set_input(self, data):
+ self.input_ref = data['ref']
+ self.input_p0 = data['p0']
+ self.input_p1 = data['p1']
+ self.input_judge = data['judge']
+
+ # if (self.use_gpu):
+ # self.input_ref = self.input_ref.to(device=self.gpu_ids[0])
+ # self.input_p0 = self.input_p0.to(device=self.gpu_ids[0])
+ # self.input_p1 = self.input_p1.to(device=self.gpu_ids[0])
+ # self.input_judge = self.input_judge.to(device=self.gpu_ids[0])
+
+ # self.var_ref = Variable(self.input_ref, requires_grad=True)
+ # self.var_p0 = Variable(self.input_p0, requires_grad=True)
+ # self.var_p1 = Variable(self.input_p1, requires_grad=True)
+
+ def forward_train(self): # run forward pass
+ # print(self.net.module.scaling_layer.shift)
+ # print(torch.norm(self.net.module.net.slice1[0].weight).item(), torch.norm(self.net.module.lin0.model[1].weight).item())
+
+ assert False, "We shoud've not get here when using LPIPS as a metric"
+
+ self.d0 = self(self.var_ref, self.var_p0)
+ self.d1 = self(self.var_ref, self.var_p1)
+ self.acc_r = self.compute_accuracy(self.d0, self.d1, self.input_judge)
+
+ self.var_judge = Variable(1. * self.input_judge).view(self.d0.size())
+
+ self.loss_total = self.rankLoss(self.d0, self.d1, self.var_judge * 2. - 1.)
+
+ return self.loss_total
+
+ def backward_train(self):
+ torch.mean(self.loss_total).backward()
+
+ def compute_accuracy(self, d0, d1, judge):
+ ''' d0, d1 are Variables, judge is a Tensor '''
+ d1_lt_d0 = (d1 < d0).cpu().data.numpy().flatten()
+ judge_per = judge.cpu().numpy().flatten()
+ return d1_lt_d0 * judge_per + (1 - d1_lt_d0) * (1 - judge_per)
+
+ def get_current_errors(self):
+ retDict = OrderedDict([('loss_total', self.loss_total.data.cpu().numpy()),
+ ('acc_r', self.acc_r)])
+
+ for key in retDict.keys():
+ retDict[key] = np.mean(retDict[key])
+
+ return retDict
+
+ def get_current_visuals(self):
+ zoom_factor = 256 / self.var_ref.data.size()[2]
+
+ ref_img = tensor2im(self.var_ref.data)
+ p0_img = tensor2im(self.var_p0.data)
+ p1_img = tensor2im(self.var_p1.data)
+
+ ref_img_vis = zoom(ref_img, [zoom_factor, zoom_factor, 1], order=0)
+ p0_img_vis = zoom(p0_img, [zoom_factor, zoom_factor, 1], order=0)
+ p1_img_vis = zoom(p1_img, [zoom_factor, zoom_factor, 1], order=0)
+
+ return OrderedDict([('ref', ref_img_vis),
+ ('p0', p0_img_vis),
+ ('p1', p1_img_vis)])
+
+ def save(self, path, label):
+ if (self.use_gpu):
+ self.save_network(self.net.module, path, '', label)
+ else:
+ self.save_network(self.net, path, '', label)
+ self.save_network(self.rankLoss.net, path, 'rank', label)
+
+ def update_learning_rate(self, nepoch_decay):
+ lrd = self.lr / nepoch_decay
+ lr = self.old_lr - lrd
+
+ for param_group in self.optimizer_net.param_groups:
+ param_group['lr'] = lr
+
+ print('update lr [%s] decay: %f -> %f' % (type, self.old_lr, lr))
+ self.old_lr = lr
+
+
+def score_2afc_dataset(data_loader, func, name=''):
+ ''' Function computes Two Alternative Forced Choice (2AFC) score using
+ distance function 'func' in dataset 'data_loader'
+ INPUTS
+ data_loader - CustomDatasetDataLoader object - contains a TwoAFCDataset inside
+ func - callable distance function - calling d=func(in0,in1) should take 2
+ pytorch tensors with shape Nx3xXxY, and return numpy array of length N
+ OUTPUTS
+ [0] - 2AFC score in [0,1], fraction of time func agrees with human evaluators
+ [1] - dictionary with following elements
+ d0s,d1s - N arrays containing distances between reference patch to perturbed patches
+ gts - N array in [0,1], preferred patch selected by human evaluators
+ (closer to "0" for left patch p0, "1" for right patch p1,
+ "0.6" means 60pct people preferred right patch, 40pct preferred left)
+ scores - N array in [0,1], corresponding to what percentage function agreed with humans
+ CONSTS
+ N - number of test triplets in data_loader
+ '''
+
+ d0s = []
+ d1s = []
+ gts = []
+
+ for data in tqdm(data_loader.load_data(), desc=name):
+ d0s += func(data['ref'], data['p0']).data.cpu().numpy().flatten().tolist()
+ d1s += func(data['ref'], data['p1']).data.cpu().numpy().flatten().tolist()
+ gts += data['judge'].cpu().numpy().flatten().tolist()
+
+ d0s = np.array(d0s)
+ d1s = np.array(d1s)
+ gts = np.array(gts)
+ scores = (d0s < d1s) * (1. - gts) + (d1s < d0s) * gts + (d1s == d0s) * .5
+
+ return (np.mean(scores), dict(d0s=d0s, d1s=d1s, gts=gts, scores=scores))
+
+
+def score_jnd_dataset(data_loader, func, name=''):
+ ''' Function computes JND score using distance function 'func' in dataset 'data_loader'
+ INPUTS
+ data_loader - CustomDatasetDataLoader object - contains a JNDDataset inside
+ func - callable distance function - calling d=func(in0,in1) should take 2
+ pytorch tensors with shape Nx3xXxY, and return pytorch array of length N
+ OUTPUTS
+ [0] - JND score in [0,1], mAP score (area under precision-recall curve)
+ [1] - dictionary with following elements
+ ds - N array containing distances between two patches shown to human evaluator
+ sames - N array containing fraction of people who thought the two patches were identical
+ CONSTS
+ N - number of test triplets in data_loader
+ '''
+
+ ds = []
+ gts = []
+
+ for data in tqdm(data_loader.load_data(), desc=name):
+ ds += func(data['p0'], data['p1']).data.cpu().numpy().tolist()
+ gts += data['same'].cpu().numpy().flatten().tolist()
+
+ sames = np.array(gts)
+ ds = np.array(ds)
+
+ sorted_inds = np.argsort(ds)
+ ds_sorted = ds[sorted_inds]
+ sames_sorted = sames[sorted_inds]
+
+ TPs = np.cumsum(sames_sorted)
+ FPs = np.cumsum(1 - sames_sorted)
+ FNs = np.sum(sames_sorted) - TPs
+
+ precs = TPs / (TPs + FPs)
+ recs = TPs / (TPs + FNs)
+ score = voc_ap(recs, precs)
+
+ return (score, dict(ds=ds, sames=sames))
+
+
+############################################################
+# networks_basic.py #
+############################################################
+
+import torch.nn as nn
+from torch.autograd import Variable
+import numpy as np
+
+
+def spatial_average(in_tens, keepdim=True):
+ return in_tens.mean([2, 3], keepdim=keepdim)
+
+
+def upsample(in_tens, out_H=64): # assumes scale factor is same for H and W
+ in_H = in_tens.shape[2]
+ scale_factor = 1. * out_H / in_H
+
+ return nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False)(in_tens)
+
+
+# Learned perceptual metric
+class PNetLin(nn.Module):
+ def __init__(self, pnet_type='vgg', pnet_rand=False, pnet_tune=False, use_dropout=True, spatial=False,
+ version='0.1', lpips=True):
+ super(PNetLin, self).__init__()
+
+ self.pnet_type = pnet_type
+ self.pnet_tune = pnet_tune
+ self.pnet_rand = pnet_rand
+ self.spatial = spatial
+ self.lpips = lpips
+ self.version = version
+ self.scaling_layer = ScalingLayer()
+
+ if (self.pnet_type in ['vgg', 'vgg16']):
+ net_type = vgg16
+ self.chns = [64, 128, 256, 512, 512]
+ elif (self.pnet_type == 'alex'):
+ net_type = alexnet
+ self.chns = [64, 192, 384, 256, 256]
+ elif (self.pnet_type == 'squeeze'):
+ net_type = squeezenet
+ self.chns = [64, 128, 256, 384, 384, 512, 512]
+ self.L = len(self.chns)
+
+ self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)
+
+ if (lpips):
+ self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
+ self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
+ self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
+ self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
+ self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
+ self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
+ if (self.pnet_type == 'squeeze'): # 7 layers for squeezenet
+ self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
+ self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
+ self.lins += [self.lin5, self.lin6]
+
+ def forward(self, in0, in1, retPerLayer=False):
+ # v0.0 - original release had a bug, where input was not scaled
+ in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version == '0.1' else (
+ in0, in1)
+ outs0, outs1 = self.net(in0_input), self.net(in1_input)
+ feats0, feats1, diffs = {}, {}, {}
+
+ for kk in range(self.L):
+ feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
+ diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
+
+ if (self.lpips):
+ if (self.spatial):
+ res = [upsample(self.lins[kk].model(diffs[kk]), out_H=in0.shape[2]) for kk in range(self.L)]
+ else:
+ res = [spatial_average(self.lins[kk].model(diffs[kk]), keepdim=True) for kk in range(self.L)]
+ else:
+ if (self.spatial):
+ res = [upsample(diffs[kk].sum(dim=1, keepdim=True), out_H=in0.shape[2]) for kk in range(self.L)]
+ else:
+ res = [spatial_average(diffs[kk].sum(dim=1, keepdim=True), keepdim=True) for kk in range(self.L)]
+
+ val = res[0]
+ for l in range(1, self.L):
+ val += res[l]
+
+ if (retPerLayer):
+ return (val, res)
+ else:
+ return val
+
+
+class ScalingLayer(nn.Module):
+ def __init__(self):
+ super(ScalingLayer, self).__init__()
+ self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
+ self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
+
+ def forward(self, inp):
+ return (inp - self.shift) / self.scale
+
+
+class NetLinLayer(nn.Module):
+ ''' A single linear layer which does a 1x1 conv '''
+
+ def __init__(self, chn_in, chn_out=1, use_dropout=False):
+ super(NetLinLayer, self).__init__()
+
+ layers = [nn.Dropout(), ] if (use_dropout) else []
+ layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
+ self.model = nn.Sequential(*layers)
+
+
+class Dist2LogitLayer(nn.Module):
+ ''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) '''
+
+ def __init__(self, chn_mid=32, use_sigmoid=True):
+ super(Dist2LogitLayer, self).__init__()
+
+ layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True), ]
+ layers += [nn.LeakyReLU(0.2, True), ]
+ layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True), ]
+ layers += [nn.LeakyReLU(0.2, True), ]
+ layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True), ]
+ if (use_sigmoid):
+ layers += [nn.Sigmoid(), ]
+ self.model = nn.Sequential(*layers)
+
+ def forward(self, d0, d1, eps=0.1):
+ return self.model(torch.cat((d0, d1, d0 - d1, d0 / (d1 + eps), d1 / (d0 + eps)), dim=1))
+
+
+class BCERankingLoss(nn.Module):
+ def __init__(self, chn_mid=32):
+ super(BCERankingLoss, self).__init__()
+ self.net = Dist2LogitLayer(chn_mid=chn_mid)
+ # self.parameters = list(self.net.parameters())
+ self.loss = torch.nn.BCELoss()
+
+ def forward(self, d0, d1, judge):
+ per = (judge + 1.) / 2.
+ self.logit = self.net(d0, d1)
+ return self.loss(self.logit, per)
+
+
+# L2, DSSIM metrics
+class FakeNet(nn.Module):
+ def __init__(self, use_gpu=True, colorspace='Lab'):
+ super(FakeNet, self).__init__()
+ self.use_gpu = use_gpu
+ self.colorspace = colorspace
+
+
+class L2(FakeNet):
+
+ def forward(self, in0, in1, retPerLayer=None):
+ assert (in0.size()[0] == 1) # currently only supports batchSize 1
+
+ if (self.colorspace == 'RGB'):
+ (N, C, X, Y) = in0.size()
+ value = torch.mean(torch.mean(torch.mean((in0 - in1) ** 2, dim=1).view(N, 1, X, Y), dim=2).view(N, 1, 1, Y),
+ dim=3).view(N)
+ return value
+ elif (self.colorspace == 'Lab'):
+ value = l2(tensor2np(tensor2tensorlab(in0.data, to_norm=False)),
+ tensor2np(tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype('float')
+ ret_var = Variable(torch.Tensor((value,)))
+ # if (self.use_gpu):
+ # ret_var = ret_var.cuda()
+ return ret_var
+
+
+class DSSIM(FakeNet):
+
+ def forward(self, in0, in1, retPerLayer=None):
+ assert (in0.size()[0] == 1) # currently only supports batchSize 1
+
+ if (self.colorspace == 'RGB'):
+ value = dssim(1. * tensor2im(in0.data), 1. * tensor2im(in1.data), range=255.).astype('float')
+ elif (self.colorspace == 'Lab'):
+ value = dssim(tensor2np(tensor2tensorlab(in0.data, to_norm=False)),
+ tensor2np(tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype('float')
+ ret_var = Variable(torch.Tensor((value,)))
+ # if (self.use_gpu):
+ # ret_var = ret_var.cuda()
+ return ret_var
+
+
+def print_network(net):
+ num_params = 0
+ for param in net.parameters():
+ num_params += param.numel()
+ print('Network', net)
+ print('Total number of parameters: %d' % num_params)
+
+
+############################################################
+# pretrained_networks.py #
+############################################################
+
+from collections import namedtuple
+import torch
+from torchvision import models as tv
+
+
+class squeezenet(torch.nn.Module):
+ def __init__(self, requires_grad=False, pretrained=True):
+ super(squeezenet, self).__init__()
+ pretrained_features = tv.squeezenet1_1(pretrained=pretrained).features
+ self.slice1 = torch.nn.Sequential()
+ self.slice2 = torch.nn.Sequential()
+ self.slice3 = torch.nn.Sequential()
+ self.slice4 = torch.nn.Sequential()
+ self.slice5 = torch.nn.Sequential()
+ self.slice6 = torch.nn.Sequential()
+ self.slice7 = torch.nn.Sequential()
+ self.N_slices = 7
+ for x in range(2):
+ self.slice1.add_module(str(x), pretrained_features[x])
+ for x in range(2, 5):
+ self.slice2.add_module(str(x), pretrained_features[x])
+ for x in range(5, 8):
+ self.slice3.add_module(str(x), pretrained_features[x])
+ for x in range(8, 10):
+ self.slice4.add_module(str(x), pretrained_features[x])
+ for x in range(10, 11):
+ self.slice5.add_module(str(x), pretrained_features[x])
+ for x in range(11, 12):
+ self.slice6.add_module(str(x), pretrained_features[x])
+ for x in range(12, 13):
+ self.slice7.add_module(str(x), pretrained_features[x])
+ if not requires_grad:
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, X):
+ h = self.slice1(X)
+ h_relu1 = h
+ h = self.slice2(h)
+ h_relu2 = h
+ h = self.slice3(h)
+ h_relu3 = h
+ h = self.slice4(h)
+ h_relu4 = h
+ h = self.slice5(h)
+ h_relu5 = h
+ h = self.slice6(h)
+ h_relu6 = h
+ h = self.slice7(h)
+ h_relu7 = h
+ vgg_outputs = namedtuple("SqueezeOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5', 'relu6', 'relu7'])
+ out = vgg_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5, h_relu6, h_relu7)
+
+ return out
+
+
+class alexnet(torch.nn.Module):
+ def __init__(self, requires_grad=False, pretrained=True):
+ super(alexnet, self).__init__()
+ alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features
+ self.slice1 = torch.nn.Sequential()
+ self.slice2 = torch.nn.Sequential()
+ self.slice3 = torch.nn.Sequential()
+ self.slice4 = torch.nn.Sequential()
+ self.slice5 = torch.nn.Sequential()
+ self.N_slices = 5
+ for x in range(2):
+ self.slice1.add_module(str(x), alexnet_pretrained_features[x])
+ for x in range(2, 5):
+ self.slice2.add_module(str(x), alexnet_pretrained_features[x])
+ for x in range(5, 8):
+ self.slice3.add_module(str(x), alexnet_pretrained_features[x])
+ for x in range(8, 10):
+ self.slice4.add_module(str(x), alexnet_pretrained_features[x])
+ for x in range(10, 12):
+ self.slice5.add_module(str(x), alexnet_pretrained_features[x])
+ if not requires_grad:
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, X):
+ h = self.slice1(X)
+ h_relu1 = h
+ h = self.slice2(h)
+ h_relu2 = h
+ h = self.slice3(h)
+ h_relu3 = h
+ h = self.slice4(h)
+ h_relu4 = h
+ h = self.slice5(h)
+ h_relu5 = h
+ alexnet_outputs = namedtuple("AlexnetOutputs", ['relu1', 'relu2', 'relu3', 'relu4', 'relu5'])
+ out = alexnet_outputs(h_relu1, h_relu2, h_relu3, h_relu4, h_relu5)
+
+ return out
+
+
+class vgg16(torch.nn.Module):
+ def __init__(self, requires_grad=False, pretrained=True):
+ super(vgg16, self).__init__()
+ vgg_pretrained_features = tv.vgg16(pretrained=pretrained).features
+ self.slice1 = torch.nn.Sequential()
+ self.slice2 = torch.nn.Sequential()
+ self.slice3 = torch.nn.Sequential()
+ self.slice4 = torch.nn.Sequential()
+ self.slice5 = torch.nn.Sequential()
+ self.N_slices = 5
+ for x in range(4):
+ self.slice1.add_module(str(x), vgg_pretrained_features[x])
+ for x in range(4, 9):
+ self.slice2.add_module(str(x), vgg_pretrained_features[x])
+ for x in range(9, 16):
+ self.slice3.add_module(str(x), vgg_pretrained_features[x])
+ for x in range(16, 23):
+ self.slice4.add_module(str(x), vgg_pretrained_features[x])
+ for x in range(23, 30):
+ self.slice5.add_module(str(x), vgg_pretrained_features[x])
+ if not requires_grad:
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, X):
+ h = self.slice1(X)
+ h_relu1_2 = h
+ h = self.slice2(h)
+ h_relu2_2 = h
+ h = self.slice3(h)
+ h_relu3_3 = h
+ h = self.slice4(h)
+ h_relu4_3 = h
+ h = self.slice5(h)
+ h_relu5_3 = h
+ vgg_outputs = namedtuple("VggOutputs", ['relu1_2', 'relu2_2', 'relu3_3', 'relu4_3', 'relu5_3'])
+ out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
+
+ return out
+
+
+class resnet(torch.nn.Module):
+ def __init__(self, requires_grad=False, pretrained=True, num=18):
+ super(resnet, self).__init__()
+ if (num == 18):
+ self.net = tv.resnet18(pretrained=pretrained)
+ elif (num == 34):
+ self.net = tv.resnet34(pretrained=pretrained)
+ elif (num == 50):
+ self.net = tv.resnet50(pretrained=pretrained)
+ elif (num == 101):
+ self.net = tv.resnet101(pretrained=pretrained)
+ elif (num == 152):
+ self.net = tv.resnet152(pretrained=pretrained)
+ self.N_slices = 5
+
+ self.conv1 = self.net.conv1
+ self.bn1 = self.net.bn1
+ self.relu = self.net.relu
+ self.maxpool = self.net.maxpool
+ self.layer1 = self.net.layer1
+ self.layer2 = self.net.layer2
+ self.layer3 = self.net.layer3
+ self.layer4 = self.net.layer4
+
+ def forward(self, X):
+ h = self.conv1(X)
+ h = self.bn1(h)
+ h = self.relu(h)
+ h_relu1 = h
+ h = self.maxpool(h)
+ h = self.layer1(h)
+ h_conv2 = h
+ h = self.layer2(h)
+ h_conv3 = h
+ h = self.layer3(h)
+ h_conv4 = h
+ h = self.layer4(h)
+ h_conv5 = h
+
+ outputs = namedtuple("Outputs", ['relu1', 'conv2', 'conv3', 'conv4', 'conv5'])
+ out = outputs(h_relu1, h_conv2, h_conv3, h_conv4, h_conv5)
+
+ return out
diff --git a/saicinpainting/evaluation/losses/ssim.py b/saicinpainting/evaluation/losses/ssim.py
new file mode 100644
index 00000000..ee43a009
--- /dev/null
+++ b/saicinpainting/evaluation/losses/ssim.py
@@ -0,0 +1,74 @@
+import numpy as np
+import torch
+import torch.nn.functional as F
+
+
+class SSIM(torch.nn.Module):
+ """SSIM. Modified from:
+ https://github.com/Po-Hsun-Su/pytorch-ssim/blob/master/pytorch_ssim/__init__.py
+ """
+
+ def __init__(self, window_size=11, size_average=True):
+ super().__init__()
+ self.window_size = window_size
+ self.size_average = size_average
+ self.channel = 1
+ self.register_buffer('window', self._create_window(window_size, self.channel))
+
+ def forward(self, img1, img2):
+ assert len(img1.shape) == 4
+
+ channel = img1.size()[1]
+
+ if channel == self.channel and self.window.data.type() == img1.data.type():
+ window = self.window
+ else:
+ window = self._create_window(self.window_size, channel)
+
+ # window = window.to(img1.get_device())
+ window = window.type_as(img1)
+
+ self.window = window
+ self.channel = channel
+
+ return self._ssim(img1, img2, window, self.window_size, channel, self.size_average)
+
+ def _gaussian(self, window_size, sigma):
+ gauss = torch.Tensor([
+ np.exp(-(x - (window_size // 2)) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)
+ ])
+ return gauss / gauss.sum()
+
+ def _create_window(self, window_size, channel):
+ _1D_window = self._gaussian(window_size, 1.5).unsqueeze(1)
+ _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
+ return _2D_window.expand(channel, 1, window_size, window_size).contiguous()
+
+ def _ssim(self, img1, img2, window, window_size, channel, size_average=True):
+ mu1 = F.conv2d(img1, window, padding=(window_size // 2), groups=channel)
+ mu2 = F.conv2d(img2, window, padding=(window_size // 2), groups=channel)
+
+ mu1_sq = mu1.pow(2)
+ mu2_sq = mu2.pow(2)
+ mu1_mu2 = mu1 * mu2
+
+ sigma1_sq = F.conv2d(
+ img1 * img1, window, padding=(window_size // 2), groups=channel) - mu1_sq
+ sigma2_sq = F.conv2d(
+ img2 * img2, window, padding=(window_size // 2), groups=channel) - mu2_sq
+ sigma12 = F.conv2d(
+ img1 * img2, window, padding=(window_size // 2), groups=channel) - mu1_mu2
+
+ C1 = 0.01 ** 2
+ C2 = 0.03 ** 2
+
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / \
+ ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
+
+ if size_average:
+ return ssim_map.mean()
+
+ return ssim_map.mean(1).mean(1).mean(1)
+
+ def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
+ return
diff --git a/saicinpainting/evaluation/masks/README.md b/saicinpainting/evaluation/masks/README.md
new file mode 100644
index 00000000..cf176bc1
--- /dev/null
+++ b/saicinpainting/evaluation/masks/README.md
@@ -0,0 +1,27 @@
+# Current algorithm
+
+## Choice of mask objects
+
+For identification of the objects which are suitable for mask obtaining, panoptic segmentation model
+from [detectron2](https://github.com/facebookresearch/detectron2) trained on COCO. Categories of the detected instances
+belong either to "stuff" or "things" types. We consider that instances of objects should have category belong
+to "things". Besides, we set upper bound on area which is taken by the object — we consider that too big
+area indicates either of the instance being a background or a main object which should not be removed.
+
+## Choice of position for mask
+
+We consider that input image has size 2^n x 2^m. We downsample it using
+[COUNTLESS](https://github.com/william-silversmith/countless) algorithm so the width is equal to
+64 = 2^8 = 2^{downsample_levels}.
+
+### Augmentation
+
+There are several parameters for augmentation:
+- Scaling factor. We limit scaling to the case when a mask after scaling with pivot point in its center fits inside the
+ image completely.
+-
+
+### Shift
+
+
+## Select
diff --git a/saicinpainting/evaluation/masks/__init__.py b/saicinpainting/evaluation/masks/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/saicinpainting/evaluation/masks/countless/.gitignore b/saicinpainting/evaluation/masks/countless/.gitignore
new file mode 100644
index 00000000..872aa273
--- /dev/null
+++ b/saicinpainting/evaluation/masks/countless/.gitignore
@@ -0,0 +1 @@
+results
\ No newline at end of file
diff --git a/saicinpainting/evaluation/masks/countless/README.md b/saicinpainting/evaluation/masks/countless/README.md
new file mode 100644
index 00000000..67335464
--- /dev/null
+++ b/saicinpainting/evaluation/masks/countless/README.md
@@ -0,0 +1,25 @@
+[![Build Status](https://travis-ci.org/william-silversmith/countless.svg?branch=master)](https://travis-ci.org/william-silversmith/countless)
+
+Python COUNTLESS Downsampling
+=============================
+
+To install:
+
+`pip install -r requirements.txt`
+
+To test:
+
+`python test.py`
+
+To benchmark countless2d:
+
+`python python/countless2d.py python/images/gray_segmentation.png`
+
+To benchmark countless3d:
+
+`python python/countless3d.py`
+
+Adjust N and the list of algorithms inside each script to modify the run parameters.
+
+
+Python3 is slightly faster than Python2.
\ No newline at end of file
diff --git a/saicinpainting/evaluation/masks/countless/__init__.py b/saicinpainting/evaluation/masks/countless/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/saicinpainting/evaluation/masks/countless/countless2d.py b/saicinpainting/evaluation/masks/countless/countless2d.py
new file mode 100644
index 00000000..dc27b73a
--- /dev/null
+++ b/saicinpainting/evaluation/masks/countless/countless2d.py
@@ -0,0 +1,529 @@
+from __future__ import print_function, division
+
+"""
+COUNTLESS performance test in Python.
+
+python countless2d.py ./images/NAMEOFIMAGE
+"""
+
+import six
+from six.moves import range
+from collections import defaultdict
+from functools import reduce
+import operator
+import io
+import os
+from PIL import Image
+import math
+import numpy as np
+import random
+import sys
+import time
+from tqdm import tqdm
+from scipy import ndimage
+
+def simplest_countless(data):
+ """
+ Vectorized implementation of downsampling a 2D
+ image by 2 on each side using the COUNTLESS algorithm.
+
+ data is a 2D numpy array with even dimensions.
+ """
+ sections = []
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ factor = (2,2)
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ a, b, c, d = sections
+
+ ab = a * (a == b) # PICK(A,B)
+ ac = a * (a == c) # PICK(A,C)
+ bc = b * (b == c) # PICK(B,C)
+
+ a = ab | ac | bc # Bitwise OR, safe b/c non-matches are zeroed
+
+ return a + (a == 0) * d # AB || AC || BC || D
+
+def quick_countless(data):
+ """
+ Vectorized implementation of downsampling a 2D
+ image by 2 on each side using the COUNTLESS algorithm.
+
+ data is a 2D numpy array with even dimensions.
+ """
+ sections = []
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ factor = (2,2)
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ a, b, c, d = sections
+
+ ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
+ bc = b * (b == c) # PICK(B,C)
+
+ a = ab_ac | bc # (PICK(A,B) || PICK(A,C)) or PICK(B,C)
+ return a + (a == 0) * d # AB || AC || BC || D
+
+def quickest_countless(data):
+ """
+ Vectorized implementation of downsampling a 2D
+ image by 2 on each side using the COUNTLESS algorithm.
+
+ data is a 2D numpy array with even dimensions.
+ """
+ sections = []
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ factor = (2,2)
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ a, b, c, d = sections
+
+ ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
+ ab_ac |= b * (b == c) # PICK(B,C)
+ return ab_ac + (ab_ac == 0) * d # AB || AC || BC || D
+
+def quick_countless_xor(data):
+ """
+ Vectorized implementation of downsampling a 2D
+ image by 2 on each side using the COUNTLESS algorithm.
+
+ data is a 2D numpy array with even dimensions.
+ """
+ sections = []
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ factor = (2,2)
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ a, b, c, d = sections
+
+ ab = a ^ (a ^ b) # a or b
+ ab += (ab != a) * ((ab ^ (ab ^ c)) - b) # b or c
+ ab += (ab == c) * ((ab ^ (ab ^ d)) - c) # c or d
+ return ab
+
+def stippled_countless(data):
+ """
+ Vectorized implementation of downsampling a 2D
+ image by 2 on each side using the COUNTLESS algorithm
+ that treats zero as "background" and inflates lone
+ pixels.
+
+ data is a 2D numpy array with even dimensions.
+ """
+ sections = []
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ factor = (2,2)
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ a, b, c, d = sections
+
+ ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
+ ab_ac |= b * (b == c) # PICK(B,C)
+
+ nonzero = a + (a == 0) * (b + (b == 0) * c)
+ return ab_ac + (ab_ac == 0) * (d + (d == 0) * nonzero) # AB || AC || BC || D
+
+def zero_corrected_countless(data):
+ """
+ Vectorized implementation of downsampling a 2D
+ image by 2 on each side using the COUNTLESS algorithm.
+
+ data is a 2D numpy array with even dimensions.
+ """
+ # allows us to prevent losing 1/2 a bit of information
+ # at the top end by using a bigger type. Without this 255 is handled incorrectly.
+ data, upgraded = upgrade_type(data)
+
+ # offset from zero, raw countless doesn't handle 0 correctly
+ # we'll remove the extra 1 at the end.
+ data += 1
+
+ sections = []
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ factor = (2,2)
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ a, b, c, d = sections
+
+ ab = a * (a == b) # PICK(A,B)
+ ac = a * (a == c) # PICK(A,C)
+ bc = b * (b == c) # PICK(B,C)
+
+ a = ab | ac | bc # Bitwise OR, safe b/c non-matches are zeroed
+
+ result = a + (a == 0) * d - 1 # a or d - 1
+
+ if upgraded:
+ return downgrade_type(result)
+
+ # only need to reset data if we weren't upgraded
+ # b/c no copy was made in that case
+ data -= 1
+
+ return result
+
+def countless_extreme(data):
+ nonzeros = np.count_nonzero(data)
+ # print("nonzeros", nonzeros)
+
+ N = reduce(operator.mul, data.shape)
+
+ if nonzeros == N:
+ print("quick")
+ return quick_countless(data)
+ elif np.count_nonzero(data + 1) == N:
+ print("quick")
+ # print("upper", nonzeros)
+ return quick_countless(data)
+ else:
+ return countless(data)
+
+
+def countless(data):
+ """
+ Vectorized implementation of downsampling a 2D
+ image by 2 on each side using the COUNTLESS algorithm.
+
+ data is a 2D numpy array with even dimensions.
+ """
+ # allows us to prevent losing 1/2 a bit of information
+ # at the top end by using a bigger type. Without this 255 is handled incorrectly.
+ data, upgraded = upgrade_type(data)
+
+ # offset from zero, raw countless doesn't handle 0 correctly
+ # we'll remove the extra 1 at the end.
+ data += 1
+
+ sections = []
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ factor = (2,2)
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ a, b, c, d = sections
+
+ ab_ac = a * ((a == b) | (a == c)) # PICK(A,B) || PICK(A,C) w/ optimization
+ ab_ac |= b * (b == c) # PICK(B,C)
+ result = ab_ac + (ab_ac == 0) * d - 1 # (matches or d) - 1
+
+ if upgraded:
+ return downgrade_type(result)
+
+ # only need to reset data if we weren't upgraded
+ # b/c no copy was made in that case
+ data -= 1
+
+ return result
+
+def upgrade_type(arr):
+ dtype = arr.dtype
+
+ if dtype == np.uint8:
+ return arr.astype(np.uint16), True
+ elif dtype == np.uint16:
+ return arr.astype(np.uint32), True
+ elif dtype == np.uint32:
+ return arr.astype(np.uint64), True
+
+ return arr, False
+
+def downgrade_type(arr):
+ dtype = arr.dtype
+
+ if dtype == np.uint64:
+ return arr.astype(np.uint32)
+ elif dtype == np.uint32:
+ return arr.astype(np.uint16)
+ elif dtype == np.uint16:
+ return arr.astype(np.uint8)
+
+ return arr
+
+def odd_to_even(image):
+ """
+ To facilitate 2x2 downsampling segmentation, change an odd sized image into an even sized one.
+ Works by mirroring the starting 1 pixel edge of the image on odd shaped sides.
+
+ e.g. turn a 3x3x5 image into a 4x4x5 (the x and y are what are getting downsampled)
+
+ For example: [ 3, 2, 4 ] => [ 3, 3, 2, 4 ] which is now easy to downsample.
+
+ """
+ shape = np.array(image.shape)
+
+ offset = (shape % 2)[:2] # x,y offset
+
+ # detect if we're dealing with an even
+ # image. if so it's fine, just return.
+ if not np.any(offset):
+ return image
+
+ oddshape = image.shape[:2] + offset
+ oddshape = np.append(oddshape, shape[2:])
+ oddshape = oddshape.astype(int)
+
+ newimg = np.empty(shape=oddshape, dtype=image.dtype)
+
+ ox,oy = offset
+ sx,sy = oddshape
+
+ newimg[0,0] = image[0,0] # corner
+ newimg[ox:sx,0] = image[:,0] # x axis line
+ newimg[0,oy:sy] = image[0,:] # y axis line
+
+ return newimg
+
+def counting(array):
+ factor = (2, 2, 1)
+ shape = array.shape
+
+ while len(shape) < 4:
+ array = np.expand_dims(array, axis=-1)
+ shape = array.shape
+
+ output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(shape, factor))
+ output = np.zeros(output_shape, dtype=array.dtype)
+
+ for chan in range(0, shape[3]):
+ for z in range(0, shape[2]):
+ for x in range(0, shape[0], 2):
+ for y in range(0, shape[1], 2):
+ block = array[ x:x+2, y:y+2, z, chan ] # 2x2 block
+
+ hashtable = defaultdict(int)
+ for subx, suby in np.ndindex(block.shape[0], block.shape[1]):
+ hashtable[block[subx, suby]] += 1
+
+ best = (0, 0)
+ for segid, val in six.iteritems(hashtable):
+ if best[1] < val:
+ best = (segid, val)
+
+ output[ x // 2, y // 2, chan ] = best[0]
+
+ return output
+
+def ndzoom(array):
+ if len(array.shape) == 3:
+ ratio = ( 1 / 2.0, 1 / 2.0, 1.0 )
+ else:
+ ratio = ( 1 / 2.0, 1 / 2.0)
+ return ndimage.interpolation.zoom(array, ratio, order=1)
+
+def countless_if(array):
+ factor = (2, 2, 1)
+ shape = array.shape
+
+ if len(shape) < 3:
+ array = array[ :,:, np.newaxis ]
+ shape = array.shape
+
+ output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(shape, factor))
+ output = np.zeros(output_shape, dtype=array.dtype)
+
+ for chan in range(0, shape[2]):
+ for x in range(0, shape[0], 2):
+ for y in range(0, shape[1], 2):
+ block = array[ x:x+2, y:y+2, chan ] # 2x2 block
+
+ if block[0,0] == block[1,0]:
+ pick = block[0,0]
+ elif block[0,0] == block[0,1]:
+ pick = block[0,0]
+ elif block[1,0] == block[0,1]:
+ pick = block[1,0]
+ else:
+ pick = block[1,1]
+
+ output[ x // 2, y // 2, chan ] = pick
+
+ return np.squeeze(output)
+
+def downsample_with_averaging(array):
+ """
+ Downsample x by factor using averaging.
+
+ @return: The downsampled array, of the same type as x.
+ """
+
+ if len(array.shape) == 3:
+ factor = (2,2,1)
+ else:
+ factor = (2,2)
+
+ if np.array_equal(factor[:3], np.array([1,1,1])):
+ return array
+
+ output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(array.shape, factor))
+ temp = np.zeros(output_shape, float)
+ counts = np.zeros(output_shape, np.int)
+ for offset in np.ndindex(factor):
+ part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ indexing_expr = tuple(np.s_[:s] for s in part.shape)
+ temp[indexing_expr] += part
+ counts[indexing_expr] += 1
+ return np.cast[array.dtype](temp / counts)
+
+def downsample_with_max_pooling(array):
+
+ factor = (2,2)
+
+ if np.all(np.array(factor, int) == 1):
+ return array
+
+ sections = []
+
+ for offset in np.ndindex(factor):
+ part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ output = sections[0].copy()
+
+ for section in sections[1:]:
+ np.maximum(output, section, output)
+
+ return output
+
+def striding(array):
+ """Downsample x by factor using striding.
+
+ @return: The downsampled array, of the same type as x.
+ """
+ factor = (2,2)
+ if np.all(np.array(factor, int) == 1):
+ return array
+ return array[tuple(np.s_[::f] for f in factor)]
+
+def benchmark():
+ filename = sys.argv[1]
+ img = Image.open(filename)
+ data = np.array(img.getdata(), dtype=np.uint8)
+
+ if len(data.shape) == 1:
+ n_channels = 1
+ reshape = (img.height, img.width)
+ else:
+ n_channels = min(data.shape[1], 3)
+ data = data[:, :n_channels]
+ reshape = (img.height, img.width, n_channels)
+
+ data = data.reshape(reshape).astype(np.uint8)
+
+ methods = [
+ simplest_countless,
+ quick_countless,
+ quick_countless_xor,
+ quickest_countless,
+ stippled_countless,
+ zero_corrected_countless,
+ countless,
+ downsample_with_averaging,
+ downsample_with_max_pooling,
+ ndzoom,
+ striding,
+ # countless_if,
+ # counting,
+ ]
+
+ formats = {
+ 1: 'L',
+ 3: 'RGB',
+ 4: 'RGBA'
+ }
+
+ if not os.path.exists('./results'):
+ os.mkdir('./results')
+
+ N = 500
+ img_size = float(img.width * img.height) / 1024.0 / 1024.0
+ print("N = %d, %dx%d (%.2f MPx) %d chan, %s" % (N, img.width, img.height, img_size, n_channels, filename))
+ print("Algorithm\tMPx/sec\tMB/sec\tSec")
+ for fn in methods:
+ print(fn.__name__, end='')
+ sys.stdout.flush()
+
+ start = time.time()
+ # tqdm is here to show you what's going on the first time you run it.
+ # Feel free to remove it to get slightly more accurate timing results.
+ for _ in tqdm(range(N), desc=fn.__name__, disable=True):
+ result = fn(data)
+ end = time.time()
+ print("\r", end='')
+
+ total_time = (end - start)
+ mpx = N * img_size / total_time
+ mbytes = N * img_size * n_channels / total_time
+ # Output in tab separated format to enable copy-paste into excel/numbers
+ print("%s\t%.3f\t%.3f\t%.2f" % (fn.__name__, mpx, mbytes, total_time))
+ outimg = Image.fromarray(np.squeeze(result), formats[n_channels])
+ outimg.save('./results/{}.png'.format(fn.__name__, "PNG"))
+
+if __name__ == '__main__':
+ benchmark()
+
+
+# Example results:
+# N = 5, 1024x1024 (1.00 MPx) 1 chan, images/gray_segmentation.png
+# Function MPx/sec MB/sec Sec
+# simplest_countless 752.855 752.855 0.01
+# quick_countless 920.328 920.328 0.01
+# zero_corrected_countless 534.143 534.143 0.01
+# countless 644.247 644.247 0.01
+# downsample_with_averaging 372.575 372.575 0.01
+# downsample_with_max_pooling 974.060 974.060 0.01
+# ndzoom 137.517 137.517 0.04
+# striding 38550.588 38550.588 0.00
+# countless_if 4.377 4.377 1.14
+# counting 0.117 0.117 42.85
+
+# Run without non-numpy implementations:
+# N = 2000, 1024x1024 (1.00 MPx) 1 chan, images/gray_segmentation.png
+# Algorithm MPx/sec MB/sec Sec
+# simplest_countless 800.522 800.522 2.50
+# quick_countless 945.420 945.420 2.12
+# quickest_countless 947.256 947.256 2.11
+# stippled_countless 544.049 544.049 3.68
+# zero_corrected_countless 575.310 575.310 3.48
+# countless 646.684 646.684 3.09
+# downsample_with_averaging 385.132 385.132 5.19
+# downsample_with_max_poolin 988.361 988.361 2.02
+# ndzoom 163.104 163.104 12.26
+# striding 81589.340 81589.340 0.02
+
+
+
+
diff --git a/saicinpainting/evaluation/masks/countless/countless3d.py b/saicinpainting/evaluation/masks/countless/countless3d.py
new file mode 100644
index 00000000..810a71e4
--- /dev/null
+++ b/saicinpainting/evaluation/masks/countless/countless3d.py
@@ -0,0 +1,356 @@
+from six.moves import range
+from PIL import Image
+import numpy as np
+import io
+import time
+import math
+import random
+import sys
+from collections import defaultdict
+from copy import deepcopy
+from itertools import combinations
+from functools import reduce
+from tqdm import tqdm
+
+from memory_profiler import profile
+
+def countless5(a,b,c,d,e):
+ """First stage of generalizing from countless2d.
+
+ You have five slots: A, B, C, D, E
+
+ You can decide if something is the winner by first checking for
+ matches of three, then matches of two, then picking just one if
+ the other two tries fail. In countless2d, you just check for matches
+ of two and then pick one of them otherwise.
+
+ Unfortunately, you need to check ABC, ABD, ABE, BCD, BDE, & CDE.
+ Then you need to check AB, AC, AD, BC, BD
+ We skip checking E because if none of these match, we pick E. We can
+ skip checking AE, BE, CE, DE since if any of those match, E is our boy
+ so it's redundant.
+
+ So countless grows cominatorially in complexity.
+ """
+ sections = [ a,b,c,d,e ]
+
+ p2 = lambda q,r: q * (q == r) # q if p == q else 0
+ p3 = lambda q,r,s: q * ( (q == r) & (r == s) ) # q if q == r == s else 0
+
+ lor = lambda x,y: x + (x == 0) * y
+
+ results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) )
+ results3 = reduce(lor, results3)
+
+ results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) )
+ results2 = reduce(lor, results2)
+
+ return reduce(lor, (results3, results2, e))
+
+def countless8(a,b,c,d,e,f,g,h):
+ """Extend countless5 to countless8. Same deal, except we also
+ need to check for matches of length 4."""
+ sections = [ a, b, c, d, e, f, g, h ]
+
+ p2 = lambda q,r: q * (q == r)
+ p3 = lambda q,r,s: q * ( (q == r) & (r == s) )
+ p4 = lambda p,q,r,s: p * ( (p == q) & (q == r) & (r == s) )
+
+ lor = lambda x,y: x + (x == 0) * y
+
+ results4 = ( p4(x,y,z,w) for x,y,z,w in combinations(sections, 4) )
+ results4 = reduce(lor, results4)
+
+ results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) )
+ results3 = reduce(lor, results3)
+
+ # We can always use our shortcut of omitting the last element
+ # for N choose 2
+ results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) )
+ results2 = reduce(lor, results2)
+
+ return reduce(lor, [ results4, results3, results2, h ])
+
+def dynamic_countless3d(data):
+ """countless8 + dynamic programming. ~2x faster"""
+ sections = []
+
+ # shift zeros up one so they don't interfere with bitwise operators
+ # we'll shift down at the end
+ data += 1
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ factor = (2,2,2)
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ pick = lambda a,b: a * (a == b)
+ lor = lambda x,y: x + (x == 0) * y
+
+ subproblems2 = {}
+
+ results2 = None
+ for x,y in combinations(range(7), 2):
+ res = pick(sections[x], sections[y])
+ subproblems2[(x,y)] = res
+ if results2 is not None:
+ results2 += (results2 == 0) * res
+ else:
+ results2 = res
+
+ subproblems3 = {}
+
+ results3 = None
+ for x,y,z in combinations(range(8), 3):
+ res = pick(subproblems2[(x,y)], sections[z])
+
+ if z != 7:
+ subproblems3[(x,y,z)] = res
+
+ if results3 is not None:
+ results3 += (results3 == 0) * res
+ else:
+ results3 = res
+
+ results3 = reduce(lor, (results3, results2, sections[-1]))
+
+ # free memory
+ results2 = None
+ subproblems2 = None
+ res = None
+
+ results4 = ( pick(subproblems3[(x,y,z)], sections[w]) for x,y,z,w in combinations(range(8), 4) )
+ results4 = reduce(lor, results4)
+ subproblems3 = None # free memory
+
+ final_result = lor(results4, results3) - 1
+ data -= 1
+ return final_result
+
+def countless3d(data):
+ """Now write countless8 in such a way that it could be used
+ to process an image."""
+ sections = []
+
+ # shift zeros up one so they don't interfere with bitwise operators
+ # we'll shift down at the end
+ data += 1
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ factor = (2,2,2)
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ p2 = lambda q,r: q * (q == r)
+ p3 = lambda q,r,s: q * ( (q == r) & (r == s) )
+ p4 = lambda p,q,r,s: p * ( (p == q) & (q == r) & (r == s) )
+
+ lor = lambda x,y: x + (x == 0) * y
+
+ results4 = ( p4(x,y,z,w) for x,y,z,w in combinations(sections, 4) )
+ results4 = reduce(lor, results4)
+
+ results3 = ( p3(x,y,z) for x,y,z in combinations(sections, 3) )
+ results3 = reduce(lor, results3)
+
+ results2 = ( p2(x,y) for x,y in combinations(sections[:-1], 2) )
+ results2 = reduce(lor, results2)
+
+ final_result = reduce(lor, (results4, results3, results2, sections[-1])) - 1
+ data -= 1
+ return final_result
+
+def countless_generalized(data, factor):
+ assert len(data.shape) == len(factor)
+
+ sections = []
+
+ mode_of = reduce(lambda x,y: x * y, factor)
+ majority = int(math.ceil(float(mode_of) / 2))
+
+ data += 1
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ def pick(elements):
+ eq = ( elements[i] == elements[i+1] for i in range(len(elements) - 1) )
+ anded = reduce(lambda p,q: p & q, eq)
+ return elements[0] * anded
+
+ def logical_or(x,y):
+ return x + (x == 0) * y
+
+ result = ( pick(combo) for combo in combinations(sections, majority) )
+ result = reduce(logical_or, result)
+ for i in range(majority - 1, 3-1, -1): # 3-1 b/c of exclusive bounds
+ partial_result = ( pick(combo) for combo in combinations(sections, i) )
+ partial_result = reduce(logical_or, partial_result)
+ result = logical_or(result, partial_result)
+
+ partial_result = ( pick(combo) for combo in combinations(sections[:-1], 2) )
+ partial_result = reduce(logical_or, partial_result)
+ result = logical_or(result, partial_result)
+
+ result = logical_or(result, sections[-1]) - 1
+ data -= 1
+ return result
+
+def dynamic_countless_generalized(data, factor):
+ assert len(data.shape) == len(factor)
+
+ sections = []
+
+ mode_of = reduce(lambda x,y: x * y, factor)
+ majority = int(math.ceil(float(mode_of) / 2))
+
+ data += 1 # offset from zero
+
+ # This loop splits the 2D array apart into four arrays that are
+ # all the result of striding by 2 and offset by (0,0), (0,1), (1,0),
+ # and (1,1) representing the A, B, C, and D positions from Figure 1.
+ for offset in np.ndindex(factor):
+ part = data[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ pick = lambda a,b: a * (a == b)
+ lor = lambda x,y: x + (x == 0) * y # logical or
+
+ subproblems = [ {}, {} ]
+ results2 = None
+ for x,y in combinations(range(len(sections) - 1), 2):
+ res = pick(sections[x], sections[y])
+ subproblems[0][(x,y)] = res
+ if results2 is not None:
+ results2 = lor(results2, res)
+ else:
+ results2 = res
+
+ results = [ results2 ]
+ for r in range(3, majority+1):
+ r_results = None
+ for combo in combinations(range(len(sections)), r):
+ res = pick(subproblems[0][combo[:-1]], sections[combo[-1]])
+
+ if combo[-1] != len(sections) - 1:
+ subproblems[1][combo] = res
+
+ if r_results is not None:
+ r_results = lor(r_results, res)
+ else:
+ r_results = res
+ results.append(r_results)
+ subproblems[0] = subproblems[1]
+ subproblems[1] = {}
+
+ results.reverse()
+ final_result = lor(reduce(lor, results), sections[-1]) - 1
+ data -= 1
+ return final_result
+
+def downsample_with_averaging(array):
+ """
+ Downsample x by factor using averaging.
+
+ @return: The downsampled array, of the same type as x.
+ """
+ factor = (2,2,2)
+
+ if np.array_equal(factor[:3], np.array([1,1,1])):
+ return array
+
+ output_shape = tuple(int(math.ceil(s / f)) for s, f in zip(array.shape, factor))
+ temp = np.zeros(output_shape, float)
+ counts = np.zeros(output_shape, np.int)
+ for offset in np.ndindex(factor):
+ part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ indexing_expr = tuple(np.s_[:s] for s in part.shape)
+ temp[indexing_expr] += part
+ counts[indexing_expr] += 1
+ return np.cast[array.dtype](temp / counts)
+
+def downsample_with_max_pooling(array):
+
+ factor = (2,2,2)
+
+ sections = []
+
+ for offset in np.ndindex(factor):
+ part = array[tuple(np.s_[o::f] for o, f in zip(offset, factor))]
+ sections.append(part)
+
+ output = sections[0].copy()
+
+ for section in sections[1:]:
+ np.maximum(output, section, output)
+
+ return output
+
+def striding(array):
+ """Downsample x by factor using striding.
+
+ @return: The downsampled array, of the same type as x.
+ """
+ factor = (2,2,2)
+ if np.all(np.array(factor, int) == 1):
+ return array
+ return array[tuple(np.s_[::f] for f in factor)]
+
+def benchmark():
+ def countless3d_generalized(img):
+ return countless_generalized(img, (2,8,1))
+ def countless3d_dynamic_generalized(img):
+ return dynamic_countless_generalized(img, (8,8,1))
+
+ methods = [
+ # countless3d,
+ # dynamic_countless3d,
+ countless3d_generalized,
+ # countless3d_dynamic_generalized,
+ # striding,
+ # downsample_with_averaging,
+ # downsample_with_max_pooling
+ ]
+
+ data = np.zeros(shape=(16**2, 16**2, 16**2), dtype=np.uint8) + 1
+
+ N = 5
+
+ print('Algorithm\tMPx\tMB/sec\tSec\tN=%d' % N)
+
+ for fn in methods:
+ start = time.time()
+ for _ in range(N):
+ result = fn(data)
+ end = time.time()
+
+ total_time = (end - start)
+ mpx = N * float(data.shape[0] * data.shape[1] * data.shape[2]) / total_time / 1024.0 / 1024.0
+ mbytes = mpx * np.dtype(data.dtype).itemsize
+ # Output in tab separated format to enable copy-paste into excel/numbers
+ print("%s\t%.3f\t%.3f\t%.2f" % (fn.__name__, mpx, mbytes, total_time))
+
+if __name__ == '__main__':
+ benchmark()
+
+# Algorithm MPx MB/sec Sec N=5
+# countless3d 10.564 10.564 60.58
+# dynamic_countless3d 22.717 22.717 28.17
+# countless3d_generalized 9.702 9.702 65.96
+# countless3d_dynamic_generalized 22.720 22.720 28.17
+# striding 253360.506 253360.506 0.00
+# downsample_with_averaging 224.098 224.098 2.86
+# downsample_with_max_pooling 690.474 690.474 0.93
+
+
+
diff --git a/saicinpainting/evaluation/masks/countless/images/gcim.jpg b/saicinpainting/evaluation/masks/countless/images/gcim.jpg
new file mode 100644
index 00000000..f21e2794
Binary files /dev/null and b/saicinpainting/evaluation/masks/countless/images/gcim.jpg differ
diff --git a/saicinpainting/evaluation/masks/countless/images/gray_segmentation.png b/saicinpainting/evaluation/masks/countless/images/gray_segmentation.png
new file mode 100644
index 00000000..5995bfb4
Binary files /dev/null and b/saicinpainting/evaluation/masks/countless/images/gray_segmentation.png differ
diff --git a/saicinpainting/evaluation/masks/countless/images/segmentation.png b/saicinpainting/evaluation/masks/countless/images/segmentation.png
new file mode 100644
index 00000000..b8744331
Binary files /dev/null and b/saicinpainting/evaluation/masks/countless/images/segmentation.png differ
diff --git a/saicinpainting/evaluation/masks/countless/images/sparse.png b/saicinpainting/evaluation/masks/countless/images/sparse.png
new file mode 100644
index 00000000..401f043b
Binary files /dev/null and b/saicinpainting/evaluation/masks/countless/images/sparse.png differ
diff --git a/saicinpainting/evaluation/masks/countless/memprof/countless2d_gcim_N_1000.png b/saicinpainting/evaluation/masks/countless/memprof/countless2d_gcim_N_1000.png
new file mode 100644
index 00000000..557eca72
Binary files /dev/null and b/saicinpainting/evaluation/masks/countless/memprof/countless2d_gcim_N_1000.png differ
diff --git a/saicinpainting/evaluation/masks/countless/memprof/countless2d_quick_gcim_N_1000.png b/saicinpainting/evaluation/masks/countless/memprof/countless2d_quick_gcim_N_1000.png
new file mode 100644
index 00000000..2121cef5
Binary files /dev/null and b/saicinpainting/evaluation/masks/countless/memprof/countless2d_quick_gcim_N_1000.png differ
diff --git a/saicinpainting/evaluation/masks/countless/memprof/countless3d.png b/saicinpainting/evaluation/masks/countless/memprof/countless3d.png
new file mode 100644
index 00000000..5b4bf5d5
Binary files /dev/null and b/saicinpainting/evaluation/masks/countless/memprof/countless3d.png differ
diff --git a/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic.png b/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic.png
new file mode 100644
index 00000000..91bcb420
Binary files /dev/null and b/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic.png differ
diff --git a/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic_generalized.png b/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic_generalized.png
new file mode 100644
index 00000000..5c613744
Binary files /dev/null and b/saicinpainting/evaluation/masks/countless/memprof/countless3d_dynamic_generalized.png differ
diff --git a/saicinpainting/evaluation/masks/countless/memprof/countless3d_generalized.png b/saicinpainting/evaluation/masks/countless/memprof/countless3d_generalized.png
new file mode 100644
index 00000000..9193f641
Binary files /dev/null and b/saicinpainting/evaluation/masks/countless/memprof/countless3d_generalized.png differ
diff --git a/saicinpainting/evaluation/masks/countless/requirements.txt b/saicinpainting/evaluation/masks/countless/requirements.txt
new file mode 100644
index 00000000..cbf8c87b
--- /dev/null
+++ b/saicinpainting/evaluation/masks/countless/requirements.txt
@@ -0,0 +1,7 @@
+Pillow>=6.2.0
+numpy>=1.16
+scipy
+tqdm
+memory_profiler
+six
+pytest
\ No newline at end of file
diff --git a/saicinpainting/evaluation/masks/countless/test.py b/saicinpainting/evaluation/masks/countless/test.py
new file mode 100644
index 00000000..7809beb7
--- /dev/null
+++ b/saicinpainting/evaluation/masks/countless/test.py
@@ -0,0 +1,195 @@
+from copy import deepcopy
+
+import numpy as np
+
+import countless2d
+import countless3d
+
+def test_countless2d():
+ def test_all_cases(fn, test_zero):
+ case1 = np.array([ [ 1, 2 ], [ 3, 4 ] ]).reshape((2,2,1,1)) # all different
+ case2 = np.array([ [ 1, 1 ], [ 2, 3 ] ]).reshape((2,2,1,1)) # two are same
+ case1z = np.array([ [ 0, 1 ], [ 2, 3 ] ]).reshape((2,2,1,1)) # all different
+ case2z = np.array([ [ 0, 0 ], [ 2, 3 ] ]).reshape((2,2,1,1)) # two are same
+ case3 = np.array([ [ 1, 1 ], [ 2, 2 ] ]).reshape((2,2,1,1)) # two groups are same
+ case4 = np.array([ [ 1, 2 ], [ 2, 2 ] ]).reshape((2,2,1,1)) # 3 are the same
+ case5 = np.array([ [ 5, 5 ], [ 5, 5 ] ]).reshape((2,2,1,1)) # all are the same
+
+ is_255_handled = np.array([ [ 255, 255 ], [ 1, 2 ] ], dtype=np.uint8).reshape((2,2,1,1))
+
+ test = lambda case: fn(case)
+
+ if test_zero:
+ assert test(case1z) == [[[[3]]]] # d
+ assert test(case2z) == [[[[0]]]] # a==b
+ else:
+ assert test(case1) == [[[[4]]]] # d
+ assert test(case2) == [[[[1]]]] # a==b
+
+ assert test(case3) == [[[[1]]]] # a==b
+ assert test(case4) == [[[[2]]]] # b==c
+ assert test(case5) == [[[[5]]]] # a==b
+
+ assert test(is_255_handled) == [[[[255]]]]
+
+ assert fn(case1).dtype == case1.dtype
+
+ test_all_cases(countless2d.simplest_countless, False)
+ test_all_cases(countless2d.quick_countless, False)
+ test_all_cases(countless2d.quickest_countless, False)
+ test_all_cases(countless2d.stippled_countless, False)
+
+
+
+ methods = [
+ countless2d.zero_corrected_countless,
+ countless2d.countless,
+ countless2d.countless_if,
+ # countless2d.counting, # counting doesn't respect order so harder to write a test
+ ]
+
+ for fn in methods:
+ print(fn.__name__)
+ test_all_cases(fn, True)
+
+def test_stippled_countless2d():
+ a = np.array([ [ 1, 2 ], [ 3, 4 ] ]).reshape((2,2,1,1))
+ b = np.array([ [ 0, 2 ], [ 3, 4 ] ]).reshape((2,2,1,1))
+ c = np.array([ [ 1, 0 ], [ 3, 4 ] ]).reshape((2,2,1,1))
+ d = np.array([ [ 1, 2 ], [ 0, 4 ] ]).reshape((2,2,1,1))
+ e = np.array([ [ 1, 2 ], [ 3, 0 ] ]).reshape((2,2,1,1))
+ f = np.array([ [ 0, 0 ], [ 3, 4 ] ]).reshape((2,2,1,1))
+ g = np.array([ [ 0, 2 ], [ 0, 4 ] ]).reshape((2,2,1,1))
+ h = np.array([ [ 0, 2 ], [ 3, 0 ] ]).reshape((2,2,1,1))
+ i = np.array([ [ 1, 0 ], [ 0, 4 ] ]).reshape((2,2,1,1))
+ j = np.array([ [ 1, 2 ], [ 0, 0 ] ]).reshape((2,2,1,1))
+ k = np.array([ [ 1, 0 ], [ 3, 0 ] ]).reshape((2,2,1,1))
+ l = np.array([ [ 1, 0 ], [ 0, 0 ] ]).reshape((2,2,1,1))
+ m = np.array([ [ 0, 2 ], [ 0, 0 ] ]).reshape((2,2,1,1))
+ n = np.array([ [ 0, 0 ], [ 3, 0 ] ]).reshape((2,2,1,1))
+ o = np.array([ [ 0, 0 ], [ 0, 4 ] ]).reshape((2,2,1,1))
+ z = np.array([ [ 0, 0 ], [ 0, 0 ] ]).reshape((2,2,1,1))
+
+ test = countless2d.stippled_countless
+
+ # Note: We only tested non-matching cases above,
+ # cases f,g,h,i,j,k prove their duals work as well
+ # b/c if two pixels are black, either one can be chosen
+ # if they are different or the same.
+
+ assert test(a) == [[[[4]]]]
+ assert test(b) == [[[[4]]]]
+ assert test(c) == [[[[4]]]]
+ assert test(d) == [[[[4]]]]
+ assert test(e) == [[[[1]]]]
+ assert test(f) == [[[[4]]]]
+ assert test(g) == [[[[4]]]]
+ assert test(h) == [[[[2]]]]
+ assert test(i) == [[[[4]]]]
+ assert test(j) == [[[[1]]]]
+ assert test(k) == [[[[1]]]]
+ assert test(l) == [[[[1]]]]
+ assert test(m) == [[[[2]]]]
+ assert test(n) == [[[[3]]]]
+ assert test(o) == [[[[4]]]]
+ assert test(z) == [[[[0]]]]
+
+ bc = np.array([ [ 0, 2 ], [ 2, 4 ] ]).reshape((2,2,1,1))
+ bd = np.array([ [ 0, 2 ], [ 3, 2 ] ]).reshape((2,2,1,1))
+ cd = np.array([ [ 0, 2 ], [ 3, 3 ] ]).reshape((2,2,1,1))
+
+ assert test(bc) == [[[[2]]]]
+ assert test(bd) == [[[[2]]]]
+ assert test(cd) == [[[[3]]]]
+
+ ab = np.array([ [ 1, 1 ], [ 0, 4 ] ]).reshape((2,2,1,1))
+ ac = np.array([ [ 1, 2 ], [ 1, 0 ] ]).reshape((2,2,1,1))
+ ad = np.array([ [ 1, 0 ], [ 3, 1 ] ]).reshape((2,2,1,1))
+
+ assert test(ab) == [[[[1]]]]
+ assert test(ac) == [[[[1]]]]
+ assert test(ad) == [[[[1]]]]
+
+def test_countless3d():
+ def test_all_cases(fn):
+ alldifferent = [
+ [
+ [1,2],
+ [3,4],
+ ],
+ [
+ [5,6],
+ [7,8]
+ ]
+ ]
+ allsame = [
+ [
+ [1,1],
+ [1,1],
+ ],
+ [
+ [1,1],
+ [1,1]
+ ]
+ ]
+
+ assert fn(np.array(alldifferent)) == [[[8]]]
+ assert fn(np.array(allsame)) == [[[1]]]
+
+ twosame = deepcopy(alldifferent)
+ twosame[1][1][0] = 2
+
+ assert fn(np.array(twosame)) == [[[2]]]
+
+ threemixed = [
+ [
+ [3,3],
+ [1,2],
+ ],
+ [
+ [2,4],
+ [4,3]
+ ]
+ ]
+ assert fn(np.array(threemixed)) == [[[3]]]
+
+ foursame = [
+ [
+ [4,4],
+ [1,2],
+ ],
+ [
+ [2,4],
+ [4,3]
+ ]
+ ]
+
+ assert fn(np.array(foursame)) == [[[4]]]
+
+ fivesame = [
+ [
+ [5,4],
+ [5,5],
+ ],
+ [
+ [2,4],
+ [5,5]
+ ]
+ ]
+
+ assert fn(np.array(fivesame)) == [[[5]]]
+
+ def countless3d_generalized(img):
+ return countless3d.countless_generalized(img, (2,2,2))
+ def countless3d_dynamic_generalized(img):
+ return countless3d.dynamic_countless_generalized(img, (2,2,2))
+
+ methods = [
+ countless3d.countless3d,
+ countless3d.dynamic_countless3d,
+ countless3d_generalized,
+ countless3d_dynamic_generalized,
+ ]
+
+ for fn in methods:
+ test_all_cases(fn)
\ No newline at end of file
diff --git a/saicinpainting/evaluation/masks/mask.py b/saicinpainting/evaluation/masks/mask.py
new file mode 100644
index 00000000..3e34d067
--- /dev/null
+++ b/saicinpainting/evaluation/masks/mask.py
@@ -0,0 +1,429 @@
+import enum
+from copy import deepcopy
+
+import numpy as np
+from skimage import img_as_ubyte
+from skimage.transform import rescale, resize
+try:
+ from detectron2 import model_zoo
+ from detectron2.config import get_cfg
+ from detectron2.engine import DefaultPredictor
+ DETECTRON_INSTALLED = True
+except:
+ print("Detectron v2 is not installed")
+ DETECTRON_INSTALLED = False
+
+from .countless.countless2d import zero_corrected_countless
+
+
+class ObjectMask():
+ def __init__(self, mask):
+ self.height, self.width = mask.shape
+ (self.up, self.down), (self.left, self.right) = self._get_limits(mask)
+ self.mask = mask[self.up:self.down, self.left:self.right].copy()
+
+ @staticmethod
+ def _get_limits(mask):
+ def indicator_limits(indicator):
+ lower = indicator.argmax()
+ upper = len(indicator) - indicator[::-1].argmax()
+ return lower, upper
+
+ vertical_indicator = mask.any(axis=1)
+ vertical_limits = indicator_limits(vertical_indicator)
+
+ horizontal_indicator = mask.any(axis=0)
+ horizontal_limits = indicator_limits(horizontal_indicator)
+
+ return vertical_limits, horizontal_limits
+
+ def _clean(self):
+ self.up, self.down, self.left, self.right = 0, 0, 0, 0
+ self.mask = np.empty((0, 0))
+
+ def horizontal_flip(self, inplace=False):
+ if not inplace:
+ flipped = deepcopy(self)
+ return flipped.horizontal_flip(inplace=True)
+
+ self.mask = self.mask[:, ::-1]
+ return self
+
+ def vertical_flip(self, inplace=False):
+ if not inplace:
+ flipped = deepcopy(self)
+ return flipped.vertical_flip(inplace=True)
+
+ self.mask = self.mask[::-1, :]
+ return self
+
+ def image_center(self):
+ y_center = self.up + (self.down - self.up) / 2
+ x_center = self.left + (self.right - self.left) / 2
+ return y_center, x_center
+
+ def rescale(self, scaling_factor, inplace=False):
+ if not inplace:
+ scaled = deepcopy(self)
+ return scaled.rescale(scaling_factor, inplace=True)
+
+ scaled_mask = rescale(self.mask.astype(float), scaling_factor, order=0) > 0.5
+ (up, down), (left, right) = self._get_limits(scaled_mask)
+ self.mask = scaled_mask[up:down, left:right]
+
+ y_center, x_center = self.image_center()
+ mask_height, mask_width = self.mask.shape
+ self.up = int(round(y_center - mask_height / 2))
+ self.down = self.up + mask_height
+ self.left = int(round(x_center - mask_width / 2))
+ self.right = self.left + mask_width
+ return self
+
+ def crop_to_canvas(self, vertical=True, horizontal=True, inplace=False):
+ if not inplace:
+ cropped = deepcopy(self)
+ cropped.crop_to_canvas(vertical=vertical, horizontal=horizontal, inplace=True)
+ return cropped
+
+ if vertical:
+ if self.up >= self.height or self.down <= 0:
+ self._clean()
+ else:
+ cut_up, cut_down = max(-self.up, 0), max(self.down - self.height, 0)
+ if cut_up != 0:
+ self.mask = self.mask[cut_up:]
+ self.up = 0
+ if cut_down != 0:
+ self.mask = self.mask[:-cut_down]
+ self.down = self.height
+
+ if horizontal:
+ if self.left >= self.width or self.right <= 0:
+ self._clean()
+ else:
+ cut_left, cut_right = max(-self.left, 0), max(self.right - self.width, 0)
+ if cut_left != 0:
+ self.mask = self.mask[:, cut_left:]
+ self.left = 0
+ if cut_right != 0:
+ self.mask = self.mask[:, :-cut_right]
+ self.right = self.width
+
+ return self
+
+ def restore_full_mask(self, allow_crop=False):
+ cropped = self.crop_to_canvas(inplace=allow_crop)
+ mask = np.zeros((cropped.height, cropped.width), dtype=bool)
+ mask[cropped.up:cropped.down, cropped.left:cropped.right] = cropped.mask
+ return mask
+
+ def shift(self, vertical=0, horizontal=0, inplace=False):
+ if not inplace:
+ shifted = deepcopy(self)
+ return shifted.shift(vertical=vertical, horizontal=horizontal, inplace=True)
+
+ self.up += vertical
+ self.down += vertical
+ self.left += horizontal
+ self.right += horizontal
+ return self
+
+ def area(self):
+ return self.mask.sum()
+
+
+class RigidnessMode(enum.Enum):
+ soft = 0
+ rigid = 1
+
+
+class SegmentationMask:
+ def __init__(self, confidence_threshold=0.5, rigidness_mode=RigidnessMode.rigid,
+ max_object_area=0.3, min_mask_area=0.02, downsample_levels=6, num_variants_per_mask=4,
+ max_mask_intersection=0.5, max_foreground_coverage=0.5, max_foreground_intersection=0.5,
+ max_hidden_area=0.2, max_scale_change=0.25, horizontal_flip=True,
+ max_vertical_shift=0.1, position_shuffle=True):
+ """
+ :param confidence_threshold: float; threshold for confidence of the panoptic segmentator to allow for
+ the instance.
+ :param rigidness_mode: RigidnessMode object
+ when soft, checks intersection only with the object from which the mask_object was produced
+ when rigid, checks intersection with any foreground class object
+ :param max_object_area: float; allowed upper bound for to be considered as mask_object.
+ :param min_mask_area: float; lower bound for mask to be considered valid
+ :param downsample_levels: int; defines width of the resized segmentation to obtain shifted masks;
+ :param num_variants_per_mask: int; maximal number of the masks for the same object;
+ :param max_mask_intersection: float; maximum allowed area fraction of intersection for 2 masks
+ produced by horizontal shift of the same mask_object; higher value -> more diversity
+ :param max_foreground_coverage: float; maximum allowed area fraction of intersection for foreground object to be
+ covered by mask; lower value -> less the objects are covered
+ :param max_foreground_intersection: float; maximum allowed area of intersection for the mask with foreground
+ object; lower value -> mask is more on the background than on the objects
+ :param max_hidden_area: upper bound on part of the object hidden by shifting object outside the screen area;
+ :param max_scale_change: allowed scale change for the mask_object;
+ :param horizontal_flip: if horizontal flips are allowed;
+ :param max_vertical_shift: amount of vertical movement allowed;
+ :param position_shuffle: shuffle
+ """
+
+ assert DETECTRON_INSTALLED, 'Cannot use SegmentationMask without detectron2'
+ self.cfg = get_cfg()
+ self.cfg.merge_from_file(model_zoo.get_config_file("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml"))
+ self.cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml")
+ self.cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = confidence_threshold
+ self.predictor = DefaultPredictor(self.cfg)
+
+ self.rigidness_mode = RigidnessMode(rigidness_mode)
+ self.max_object_area = max_object_area
+ self.min_mask_area = min_mask_area
+ self.downsample_levels = downsample_levels
+ self.num_variants_per_mask = num_variants_per_mask
+ self.max_mask_intersection = max_mask_intersection
+ self.max_foreground_coverage = max_foreground_coverage
+ self.max_foreground_intersection = max_foreground_intersection
+ self.max_hidden_area = max_hidden_area
+ self.position_shuffle = position_shuffle
+
+ self.max_scale_change = max_scale_change
+ self.horizontal_flip = horizontal_flip
+ self.max_vertical_shift = max_vertical_shift
+
+ def get_segmentation(self, img):
+ im = img_as_ubyte(img)
+ panoptic_seg, segment_info = self.predictor(im)["panoptic_seg"]
+ return panoptic_seg, segment_info
+
+ @staticmethod
+ def _is_power_of_two(n):
+ return (n != 0) and (n & (n-1) == 0)
+
+ def identify_candidates(self, panoptic_seg, segments_info):
+ potential_mask_ids = []
+ for segment in segments_info:
+ if not segment["isthing"]:
+ continue
+ mask = (panoptic_seg == segment["id"]).int().detach().cpu().numpy()
+ area = mask.sum().item() / np.prod(panoptic_seg.shape)
+ if area >= self.max_object_area:
+ continue
+ potential_mask_ids.append(segment["id"])
+ return potential_mask_ids
+
+ def downsample_mask(self, mask):
+ height, width = mask.shape
+ if not (self._is_power_of_two(height) and self._is_power_of_two(width)):
+ raise ValueError("Image sides are not power of 2.")
+
+ num_iterations = width.bit_length() - 1 - self.downsample_levels
+ if num_iterations < 0:
+ raise ValueError(f"Width is lower than 2^{self.downsample_levels}.")
+
+ if height.bit_length() - 1 < num_iterations:
+ raise ValueError("Height is too low to perform downsampling")
+
+ downsampled = mask
+ for _ in range(num_iterations):
+ downsampled = zero_corrected_countless(downsampled)
+
+ return downsampled
+
+ def _augmentation_params(self):
+ scaling_factor = np.random.uniform(1 - self.max_scale_change, 1 + self.max_scale_change)
+ if self.horizontal_flip:
+ horizontal_flip = bool(np.random.choice(2))
+ else:
+ horizontal_flip = False
+ vertical_shift = np.random.uniform(-self.max_vertical_shift, self.max_vertical_shift)
+
+ return {
+ "scaling_factor": scaling_factor,
+ "horizontal_flip": horizontal_flip,
+ "vertical_shift": vertical_shift
+ }
+
+ def _get_intersection(self, mask_array, mask_object):
+ intersection = mask_array[
+ mask_object.up:mask_object.down, mask_object.left:mask_object.right
+ ] & mask_object.mask
+ return intersection
+
+ def _check_masks_intersection(self, aug_mask, total_mask_area, prev_masks):
+ for existing_mask in prev_masks:
+ intersection_area = self._get_intersection(existing_mask, aug_mask).sum()
+ intersection_existing = intersection_area / existing_mask.sum()
+ intersection_current = 1 - (aug_mask.area() - intersection_area) / total_mask_area
+ if (intersection_existing > self.max_mask_intersection) or \
+ (intersection_current > self.max_mask_intersection):
+ return False
+ return True
+
+ def _check_foreground_intersection(self, aug_mask, foreground):
+ for existing_mask in foreground:
+ intersection_area = self._get_intersection(existing_mask, aug_mask).sum()
+ intersection_existing = intersection_area / existing_mask.sum()
+ if intersection_existing > self.max_foreground_coverage:
+ return False
+ intersection_mask = intersection_area / aug_mask.area()
+ if intersection_mask > self.max_foreground_intersection:
+ return False
+ return True
+
+ def _move_mask(self, mask, foreground):
+ # Obtaining properties of the original mask_object:
+ orig_mask = ObjectMask(mask)
+
+ chosen_masks = []
+ chosen_parameters = []
+ # to fix the case when resizing gives mask_object consisting only of False
+ scaling_factor_lower_bound = 0.
+
+ for var_idx in range(self.num_variants_per_mask):
+ # Obtaining augmentation parameters and applying them to the downscaled mask_object
+ augmentation_params = self._augmentation_params()
+ augmentation_params["scaling_factor"] = min([
+ augmentation_params["scaling_factor"],
+ 2 * min(orig_mask.up, orig_mask.height - orig_mask.down) / orig_mask.height + 1.,
+ 2 * min(orig_mask.left, orig_mask.width - orig_mask.right) / orig_mask.width + 1.
+ ])
+ augmentation_params["scaling_factor"] = max([
+ augmentation_params["scaling_factor"], scaling_factor_lower_bound
+ ])
+
+ aug_mask = deepcopy(orig_mask)
+ aug_mask.rescale(augmentation_params["scaling_factor"], inplace=True)
+ if augmentation_params["horizontal_flip"]:
+ aug_mask.horizontal_flip(inplace=True)
+ total_aug_area = aug_mask.area()
+ if total_aug_area == 0:
+ scaling_factor_lower_bound = 1.
+ continue
+
+ # Fix if the element vertical shift is too strong and shown area is too small:
+ vertical_area = aug_mask.mask.sum(axis=1) / total_aug_area # share of area taken by rows
+ # number of rows which are allowed to be hidden from upper and lower parts of image respectively
+ max_hidden_up = np.searchsorted(vertical_area.cumsum(), self.max_hidden_area)
+ max_hidden_down = np.searchsorted(vertical_area[::-1].cumsum(), self.max_hidden_area)
+ # correcting vertical shift, so not too much area will be hidden
+ augmentation_params["vertical_shift"] = np.clip(
+ augmentation_params["vertical_shift"],
+ -(aug_mask.up + max_hidden_up) / aug_mask.height,
+ (aug_mask.height - aug_mask.down + max_hidden_down) / aug_mask.height
+ )
+ # Applying vertical shift:
+ vertical_shift = int(round(aug_mask.height * augmentation_params["vertical_shift"]))
+ aug_mask.shift(vertical=vertical_shift, inplace=True)
+ aug_mask.crop_to_canvas(vertical=True, horizontal=False, inplace=True)
+
+ # Choosing horizontal shift:
+ max_hidden_area = self.max_hidden_area - (1 - aug_mask.area() / total_aug_area)
+ horizontal_area = aug_mask.mask.sum(axis=0) / total_aug_area
+ max_hidden_left = np.searchsorted(horizontal_area.cumsum(), max_hidden_area)
+ max_hidden_right = np.searchsorted(horizontal_area[::-1].cumsum(), max_hidden_area)
+ allowed_shifts = np.arange(-max_hidden_left, aug_mask.width -
+ (aug_mask.right - aug_mask.left) + max_hidden_right + 1)
+ allowed_shifts = - (aug_mask.left - allowed_shifts)
+
+ if self.position_shuffle:
+ np.random.shuffle(allowed_shifts)
+
+ mask_is_found = False
+ for horizontal_shift in allowed_shifts:
+ aug_mask_left = deepcopy(aug_mask)
+ aug_mask_left.shift(horizontal=horizontal_shift, inplace=True)
+ aug_mask_left.crop_to_canvas(inplace=True)
+
+ prev_masks = [mask] + chosen_masks
+ is_mask_suitable = self._check_masks_intersection(aug_mask_left, total_aug_area, prev_masks) & \
+ self._check_foreground_intersection(aug_mask_left, foreground)
+ if is_mask_suitable:
+ aug_draw = aug_mask_left.restore_full_mask()
+ chosen_masks.append(aug_draw)
+ augmentation_params["horizontal_shift"] = horizontal_shift / aug_mask_left.width
+ chosen_parameters.append(augmentation_params)
+ mask_is_found = True
+ break
+
+ if not mask_is_found:
+ break
+
+ return chosen_parameters
+
+ def _prepare_mask(self, mask):
+ height, width = mask.shape
+ target_width = width if self._is_power_of_two(width) else (1 << width.bit_length())
+ target_height = height if self._is_power_of_two(height) else (1 << height.bit_length())
+
+ return resize(mask.astype('float32'), (target_height, target_width), order=0, mode='edge').round().astype('int32')
+
+ def get_masks(self, im, return_panoptic=False):
+ panoptic_seg, segments_info = self.get_segmentation(im)
+ potential_mask_ids = self.identify_candidates(panoptic_seg, segments_info)
+
+ panoptic_seg_scaled = self._prepare_mask(panoptic_seg.detach().cpu().numpy())
+ downsampled = self.downsample_mask(panoptic_seg_scaled)
+ scene_objects = []
+ for segment in segments_info:
+ if not segment["isthing"]:
+ continue
+ mask = downsampled == segment["id"]
+ if not np.any(mask):
+ continue
+ scene_objects.append(mask)
+
+ mask_set = []
+ for mask_id in potential_mask_ids:
+ mask = downsampled == mask_id
+ if not np.any(mask):
+ continue
+
+ if self.rigidness_mode is RigidnessMode.soft:
+ foreground = [mask]
+ elif self.rigidness_mode is RigidnessMode.rigid:
+ foreground = scene_objects
+ else:
+ raise ValueError(f'Unexpected rigidness_mode: {rigidness_mode}')
+
+ masks_params = self._move_mask(mask, foreground)
+
+ full_mask = ObjectMask((panoptic_seg == mask_id).detach().cpu().numpy())
+
+ for params in masks_params:
+ aug_mask = deepcopy(full_mask)
+ aug_mask.rescale(params["scaling_factor"], inplace=True)
+ if params["horizontal_flip"]:
+ aug_mask.horizontal_flip(inplace=True)
+
+ vertical_shift = int(round(aug_mask.height * params["vertical_shift"]))
+ horizontal_shift = int(round(aug_mask.width * params["horizontal_shift"]))
+ aug_mask.shift(vertical=vertical_shift, horizontal=horizontal_shift, inplace=True)
+ aug_mask = aug_mask.restore_full_mask().astype('uint8')
+ if aug_mask.mean() <= self.min_mask_area:
+ continue
+ mask_set.append(aug_mask)
+
+ if return_panoptic:
+ return mask_set, panoptic_seg.detach().cpu().numpy()
+ else:
+ return mask_set
+
+
+def propose_random_square_crop(mask, min_overlap=0.5):
+ height, width = mask.shape
+ mask_ys, mask_xs = np.where(mask > 0.5) # mask==0 is known fragment and mask==1 is missing
+
+ if height < width:
+ crop_size = height
+ obj_left, obj_right = mask_xs.min(), mask_xs.max()
+ obj_width = obj_right - obj_left
+ left_border = max(0, min(width - crop_size - 1, obj_left + obj_width * min_overlap - crop_size))
+ right_border = max(left_border + 1, min(width - crop_size, obj_left + obj_width * min_overlap))
+ start_x = np.random.randint(left_border, right_border)
+ return start_x, 0, start_x + crop_size, height
+ else:
+ crop_size = width
+ obj_top, obj_bottom = mask_ys.min(), mask_ys.max()
+ obj_height = obj_bottom - obj_top
+ top_border = max(0, min(height - crop_size - 1, obj_top + obj_height * min_overlap - crop_size))
+ bottom_border = max(top_border + 1, min(height - crop_size, obj_top + obj_height * min_overlap))
+ start_y = np.random.randint(top_border, bottom_border)
+ return 0, start_y, width, start_y + crop_size
diff --git a/saicinpainting/evaluation/utils.py b/saicinpainting/evaluation/utils.py
new file mode 100644
index 00000000..6d7c15c9
--- /dev/null
+++ b/saicinpainting/evaluation/utils.py
@@ -0,0 +1,28 @@
+from enum import Enum
+
+import yaml
+from easydict import EasyDict as edict
+import torch.nn as nn
+import torch
+
+
+def load_yaml(path):
+ with open(path, 'r') as f:
+ return edict(yaml.safe_load(f))
+
+
+def move_to_device(obj, device):
+ if isinstance(obj, nn.Module):
+ return obj.to(device)
+ if torch.is_tensor(obj):
+ return obj.to(device)
+ if isinstance(obj, (tuple, list)):
+ return [move_to_device(el, device) for el in obj]
+ if isinstance(obj, dict):
+ return {name: move_to_device(val, device) for name, val in obj.items()}
+ raise ValueError(f'Unexpected type {type(obj)}')
+
+
+class SmallMode(Enum):
+ DROP = "drop"
+ UPSCALE = "upscale"
diff --git a/saicinpainting/evaluation/vis.py b/saicinpainting/evaluation/vis.py
new file mode 100644
index 00000000..c2910b4e
--- /dev/null
+++ b/saicinpainting/evaluation/vis.py
@@ -0,0 +1,37 @@
+import numpy as np
+from skimage import io
+from skimage.segmentation import mark_boundaries
+
+
+def save_item_for_vis(item, out_file):
+ mask = item['mask'] > 0.5
+ if mask.ndim == 3:
+ mask = mask[0]
+ img = mark_boundaries(np.transpose(item['image'], (1, 2, 0)),
+ mask,
+ color=(1., 0., 0.),
+ outline_color=(1., 1., 1.),
+ mode='thick')
+
+ if 'inpainted' in item:
+ inp_img = mark_boundaries(np.transpose(item['inpainted'], (1, 2, 0)),
+ mask,
+ color=(1., 0., 0.),
+ mode='outer')
+ img = np.concatenate((img, inp_img), axis=1)
+
+ img = np.clip(img * 255, 0, 255).astype('uint8')
+ io.imsave(out_file, img)
+
+
+def save_mask_for_sidebyside(item, out_file):
+ mask = item['mask']# > 0.5
+ if mask.ndim == 3:
+ mask = mask[0]
+ mask = np.clip(mask * 255, 0, 255).astype('uint8')
+ io.imsave(out_file, mask)
+
+def save_img_for_sidebyside(item, out_file):
+ img = np.transpose(item['image'], (1, 2, 0))
+ img = np.clip(img * 255, 0, 255).astype('uint8')
+ io.imsave(out_file, img)
\ No newline at end of file
diff --git a/saicinpainting/training/__init__.py b/saicinpainting/training/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/saicinpainting/training/data/__init__.py b/saicinpainting/training/data/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/saicinpainting/training/data/aug.py b/saicinpainting/training/data/aug.py
new file mode 100644
index 00000000..b1246250
--- /dev/null
+++ b/saicinpainting/training/data/aug.py
@@ -0,0 +1,84 @@
+from albumentations import DualIAATransform, to_tuple
+import imgaug.augmenters as iaa
+
+class IAAAffine2(DualIAATransform):
+ """Place a regular grid of points on the input and randomly move the neighbourhood of these point around
+ via affine transformations.
+
+ Note: This class introduce interpolation artifacts to mask if it has values other than {0;1}
+
+ Args:
+ p (float): probability of applying the transform. Default: 0.5.
+
+ Targets:
+ image, mask
+ """
+
+ def __init__(
+ self,
+ scale=(0.7, 1.3),
+ translate_percent=None,
+ translate_px=None,
+ rotate=0.0,
+ shear=(-0.1, 0.1),
+ order=1,
+ cval=0,
+ mode="reflect",
+ always_apply=False,
+ p=0.5,
+ ):
+ super(IAAAffine2, self).__init__(always_apply, p)
+ self.scale = dict(x=scale, y=scale)
+ self.translate_percent = to_tuple(translate_percent, 0)
+ self.translate_px = to_tuple(translate_px, 0)
+ self.rotate = to_tuple(rotate)
+ self.shear = dict(x=shear, y=shear)
+ self.order = order
+ self.cval = cval
+ self.mode = mode
+
+ @property
+ def processor(self):
+ return iaa.Affine(
+ self.scale,
+ self.translate_percent,
+ self.translate_px,
+ self.rotate,
+ self.shear,
+ self.order,
+ self.cval,
+ self.mode,
+ )
+
+ def get_transform_init_args_names(self):
+ return ("scale", "translate_percent", "translate_px", "rotate", "shear", "order", "cval", "mode")
+
+
+class IAAPerspective2(DualIAATransform):
+ """Perform a random four point perspective transform of the input.
+
+ Note: This class introduce interpolation artifacts to mask if it has values other than {0;1}
+
+ Args:
+ scale ((float, float): standard deviation of the normal distributions. These are used to sample
+ the random distances of the subimage's corners from the full image's corners. Default: (0.05, 0.1).
+ p (float): probability of applying the transform. Default: 0.5.
+
+ Targets:
+ image, mask
+ """
+
+ def __init__(self, scale=(0.05, 0.1), keep_size=True, always_apply=False, p=0.5,
+ order=1, cval=0, mode="replicate"):
+ super(IAAPerspective2, self).__init__(always_apply, p)
+ self.scale = to_tuple(scale, 1.0)
+ self.keep_size = keep_size
+ self.cval = cval
+ self.mode = mode
+
+ @property
+ def processor(self):
+ return iaa.PerspectiveTransform(self.scale, keep_size=self.keep_size, mode=self.mode, cval=self.cval)
+
+ def get_transform_init_args_names(self):
+ return ("scale", "keep_size")
diff --git a/saicinpainting/training/data/datasets.py b/saicinpainting/training/data/datasets.py
new file mode 100644
index 00000000..c4f503da
--- /dev/null
+++ b/saicinpainting/training/data/datasets.py
@@ -0,0 +1,304 @@
+import glob
+import logging
+import os
+import random
+
+import albumentations as A
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+import webdataset
+from omegaconf import open_dict, OmegaConf
+from skimage.feature import canny
+from skimage.transform import rescale, resize
+from torch.utils.data import Dataset, IterableDataset, DataLoader, DistributedSampler, ConcatDataset
+
+from saicinpainting.evaluation.data import InpaintingDataset as InpaintingEvaluationDataset, \
+ OurInpaintingDataset as OurInpaintingEvaluationDataset, ceil_modulo, InpaintingEvalOnlineDataset
+from saicinpainting.training.data.aug import IAAAffine2, IAAPerspective2
+from saicinpainting.training.data.masks import get_mask_generator
+
+LOGGER = logging.getLogger(__name__)
+
+
+class InpaintingTrainDataset(Dataset):
+ def __init__(self, indir, mask_generator, transform):
+ self.in_files = list(glob.glob(os.path.join(indir, '**', '*.jpg'), recursive=True))
+ self.mask_generator = mask_generator
+ self.transform = transform
+ self.iter_i = 0
+
+ def __len__(self):
+ return len(self.in_files)
+
+ def __getitem__(self, item):
+ path = self.in_files[item]
+ img = cv2.imread(path)
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
+ img = self.transform(image=img)['image']
+ img = np.transpose(img, (2, 0, 1))
+ # TODO: maybe generate mask before augmentations? slower, but better for segmentation-based masks
+ mask = self.mask_generator(img, iter_i=self.iter_i)
+ self.iter_i += 1
+ return dict(image=img,
+ mask=mask)
+
+
+class InpaintingTrainWebDataset(IterableDataset):
+ def __init__(self, indir, mask_generator, transform, shuffle_buffer=200):
+ self.impl = webdataset.Dataset(indir).shuffle(shuffle_buffer).decode('rgb').to_tuple('jpg')
+ self.mask_generator = mask_generator
+ self.transform = transform
+
+ def __iter__(self):
+ for iter_i, (img,) in enumerate(self.impl):
+ img = np.clip(img * 255, 0, 255).astype('uint8')
+ img = self.transform(image=img)['image']
+ img = np.transpose(img, (2, 0, 1))
+ mask = self.mask_generator(img, iter_i=iter_i)
+ yield dict(image=img,
+ mask=mask)
+
+
+class ImgSegmentationDataset(Dataset):
+ def __init__(self, indir, mask_generator, transform, out_size, segm_indir, semantic_seg_n_classes):
+ self.indir = indir
+ self.segm_indir = segm_indir
+ self.mask_generator = mask_generator
+ self.transform = transform
+ self.out_size = out_size
+ self.semantic_seg_n_classes = semantic_seg_n_classes
+ self.in_files = list(glob.glob(os.path.join(indir, '**', '*.jpg'), recursive=True))
+
+ def __len__(self):
+ return len(self.in_files)
+
+ def __getitem__(self, item):
+ path = self.in_files[item]
+ img = cv2.imread(path)
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
+ img = cv2.resize(img, (self.out_size, self.out_size))
+ img = self.transform(image=img)['image']
+ img = np.transpose(img, (2, 0, 1))
+ mask = self.mask_generator(img)
+ segm, segm_classes= self.load_semantic_segm(path)
+ result = dict(image=img,
+ mask=mask,
+ segm=segm,
+ segm_classes=segm_classes)
+ return result
+
+ def load_semantic_segm(self, img_path):
+ segm_path = img_path.replace(self.indir, self.segm_indir).replace(".jpg", ".png")
+ mask = cv2.imread(segm_path, cv2.IMREAD_GRAYSCALE)
+ mask = cv2.resize(mask, (self.out_size, self.out_size))
+ tensor = torch.from_numpy(np.clip(mask.astype(int)-1, 0, None))
+ ohe = F.one_hot(tensor.long(), num_classes=self.semantic_seg_n_classes) # w x h x n_classes
+ return ohe.permute(2, 0, 1).float(), tensor.unsqueeze(0)
+
+
+def get_transforms(transform_variant, out_size):
+ if transform_variant == 'default':
+ transform = A.Compose([
+ A.RandomScale(scale_limit=0.2), # +/- 20%
+ A.PadIfNeeded(min_height=out_size, min_width=out_size),
+ A.RandomCrop(height=out_size, width=out_size),
+ A.HorizontalFlip(),
+ A.CLAHE(),
+ A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
+ A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
+ A.ToFloat()
+ ])
+ elif transform_variant == 'distortions':
+ transform = A.Compose([
+ IAAPerspective2(scale=(0.0, 0.06)),
+ IAAAffine2(scale=(0.7, 1.3),
+ rotate=(-40, 40),
+ shear=(-0.1, 0.1)),
+ A.PadIfNeeded(min_height=out_size, min_width=out_size),
+ A.OpticalDistortion(),
+ A.RandomCrop(height=out_size, width=out_size),
+ A.HorizontalFlip(),
+ A.CLAHE(),
+ A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
+ A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
+ A.ToFloat()
+ ])
+ elif transform_variant == 'distortions_scale05_1':
+ transform = A.Compose([
+ IAAPerspective2(scale=(0.0, 0.06)),
+ IAAAffine2(scale=(0.5, 1.0),
+ rotate=(-40, 40),
+ shear=(-0.1, 0.1),
+ p=1),
+ A.PadIfNeeded(min_height=out_size, min_width=out_size),
+ A.OpticalDistortion(),
+ A.RandomCrop(height=out_size, width=out_size),
+ A.HorizontalFlip(),
+ A.CLAHE(),
+ A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
+ A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
+ A.ToFloat()
+ ])
+ elif transform_variant == 'distortions_scale03_12':
+ transform = A.Compose([
+ IAAPerspective2(scale=(0.0, 0.06)),
+ IAAAffine2(scale=(0.3, 1.2),
+ rotate=(-40, 40),
+ shear=(-0.1, 0.1),
+ p=1),
+ A.PadIfNeeded(min_height=out_size, min_width=out_size),
+ A.OpticalDistortion(),
+ A.RandomCrop(height=out_size, width=out_size),
+ A.HorizontalFlip(),
+ A.CLAHE(),
+ A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
+ A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
+ A.ToFloat()
+ ])
+ elif transform_variant == 'distortions_scale03_07':
+ transform = A.Compose([
+ IAAPerspective2(scale=(0.0, 0.06)),
+ IAAAffine2(scale=(0.3, 0.7), # scale 512 to 256 in average
+ rotate=(-40, 40),
+ shear=(-0.1, 0.1),
+ p=1),
+ A.PadIfNeeded(min_height=out_size, min_width=out_size),
+ A.OpticalDistortion(),
+ A.RandomCrop(height=out_size, width=out_size),
+ A.HorizontalFlip(),
+ A.CLAHE(),
+ A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
+ A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
+ A.ToFloat()
+ ])
+ elif transform_variant == 'distortions_light':
+ transform = A.Compose([
+ IAAPerspective2(scale=(0.0, 0.02)),
+ IAAAffine2(scale=(0.8, 1.8),
+ rotate=(-20, 20),
+ shear=(-0.03, 0.03)),
+ A.PadIfNeeded(min_height=out_size, min_width=out_size),
+ A.RandomCrop(height=out_size, width=out_size),
+ A.HorizontalFlip(),
+ A.CLAHE(),
+ A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
+ A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
+ A.ToFloat()
+ ])
+ elif transform_variant == 'non_space_transform':
+ transform = A.Compose([
+ A.CLAHE(),
+ A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2),
+ A.HueSaturationValue(hue_shift_limit=5, sat_shift_limit=30, val_shift_limit=5),
+ A.ToFloat()
+ ])
+ elif transform_variant == 'no_augs':
+ transform = A.Compose([
+ A.ToFloat()
+ ])
+ else:
+ raise ValueError(f'Unexpected transform_variant {transform_variant}')
+ return transform
+
+
+def make_default_train_dataloader(indir, kind='default', out_size=512, mask_gen_kwargs=None, transform_variant='default',
+ mask_generator_kind="mixed", dataloader_kwargs=None, ddp_kwargs=None, **kwargs):
+ LOGGER.info(f'Make train dataloader {kind} from {indir}. Using mask generator={mask_generator_kind}')
+
+ mask_generator = get_mask_generator(kind=mask_generator_kind, kwargs=mask_gen_kwargs)
+ transform = get_transforms(transform_variant, out_size)
+
+ if kind == 'default':
+ dataset = InpaintingTrainDataset(indir=indir,
+ mask_generator=mask_generator,
+ transform=transform,
+ **kwargs)
+ elif kind == 'default_web':
+ dataset = InpaintingTrainWebDataset(indir=indir,
+ mask_generator=mask_generator,
+ transform=transform,
+ **kwargs)
+ elif kind == 'img_with_segm':
+ dataset = ImgSegmentationDataset(indir=indir,
+ mask_generator=mask_generator,
+ transform=transform,
+ out_size=out_size,
+ **kwargs)
+ else:
+ raise ValueError(f'Unknown train dataset kind {kind}')
+
+ if dataloader_kwargs is None:
+ dataloader_kwargs = {}
+
+ is_dataset_only_iterable = kind in ('default_web',)
+
+ if ddp_kwargs is not None and not is_dataset_only_iterable:
+ dataloader_kwargs['shuffle'] = False
+ dataloader_kwargs['sampler'] = DistributedSampler(dataset, **ddp_kwargs)
+
+ if is_dataset_only_iterable and 'shuffle' in dataloader_kwargs:
+ with open_dict(dataloader_kwargs):
+ del dataloader_kwargs['shuffle']
+
+ dataloader = DataLoader(dataset, **dataloader_kwargs)
+ return dataloader
+
+
+def make_default_val_dataset(indir, kind='default', out_size=512, transform_variant='default', **kwargs):
+ if OmegaConf.is_list(indir) or isinstance(indir, (tuple, list)):
+ return ConcatDataset([
+ make_default_val_dataset(idir, kind=kind, out_size=out_size, transform_variant=transform_variant, **kwargs) for idir in indir
+ ])
+
+ LOGGER.info(f'Make val dataloader {kind} from {indir}')
+ mask_generator = get_mask_generator(kind=kwargs.get("mask_generator_kind"), kwargs=kwargs.get("mask_gen_kwargs"))
+
+ if transform_variant is not None:
+ transform = get_transforms(transform_variant, out_size)
+
+ if kind == 'default':
+ dataset = InpaintingEvaluationDataset(indir, **kwargs)
+ elif kind == 'our_eval':
+ dataset = OurInpaintingEvaluationDataset(indir, **kwargs)
+ elif kind == 'img_with_segm':
+ dataset = ImgSegmentationDataset(indir=indir,
+ mask_generator=mask_generator,
+ transform=transform,
+ out_size=out_size,
+ **kwargs)
+ elif kind == 'online':
+ dataset = InpaintingEvalOnlineDataset(indir=indir,
+ mask_generator=mask_generator,
+ transform=transform,
+ out_size=out_size,
+ **kwargs)
+ else:
+ raise ValueError(f'Unknown val dataset kind {kind}')
+
+ return dataset
+
+
+def make_default_val_dataloader(*args, dataloader_kwargs=None, **kwargs):
+ dataset = make_default_val_dataset(*args, **kwargs)
+
+ if dataloader_kwargs is None:
+ dataloader_kwargs = {}
+ dataloader = DataLoader(dataset, **dataloader_kwargs)
+ return dataloader
+
+
+def make_constant_area_crop_params(img_height, img_width, min_size=128, max_size=512, area=256*256, round_to_mod=16):
+ min_size = min(img_height, img_width, min_size)
+ max_size = min(img_height, img_width, max_size)
+ if random.random() < 0.5:
+ out_height = min(max_size, ceil_modulo(random.randint(min_size, max_size), round_to_mod))
+ out_width = min(max_size, ceil_modulo(area // out_height, round_to_mod))
+ else:
+ out_width = min(max_size, ceil_modulo(random.randint(min_size, max_size), round_to_mod))
+ out_height = min(max_size, ceil_modulo(area // out_width, round_to_mod))
+
+ start_y = random.randint(0, img_height - out_height)
+ start_x = random.randint(0, img_width - out_width)
+ return (start_y, start_x, out_height, out_width)
diff --git a/saicinpainting/training/data/masks.py b/saicinpainting/training/data/masks.py
new file mode 100644
index 00000000..e91fc749
--- /dev/null
+++ b/saicinpainting/training/data/masks.py
@@ -0,0 +1,332 @@
+import math
+import random
+import hashlib
+import logging
+from enum import Enum
+
+import cv2
+import numpy as np
+
+from saicinpainting.evaluation.masks.mask import SegmentationMask
+from saicinpainting.utils import LinearRamp
+
+LOGGER = logging.getLogger(__name__)
+
+
+class DrawMethod(Enum):
+ LINE = 'line'
+ CIRCLE = 'circle'
+ SQUARE = 'square'
+
+
+def make_random_irregular_mask(shape, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10,
+ draw_method=DrawMethod.LINE):
+ draw_method = DrawMethod(draw_method)
+
+ height, width = shape
+ mask = np.zeros((height, width), np.float32)
+ times = np.random.randint(min_times, max_times + 1)
+ for i in range(times):
+ start_x = np.random.randint(width)
+ start_y = np.random.randint(height)
+ for j in range(1 + np.random.randint(5)):
+ angle = 0.01 + np.random.randint(max_angle)
+ if i % 2 == 0:
+ angle = 2 * 3.1415926 - angle
+ length = 10 + np.random.randint(max_len)
+ brush_w = 5 + np.random.randint(max_width)
+ end_x = np.clip((start_x + length * np.sin(angle)).astype(np.int32), 0, width)
+ end_y = np.clip((start_y + length * np.cos(angle)).astype(np.int32), 0, height)
+ if draw_method == DrawMethod.LINE:
+ cv2.line(mask, (start_x, start_y), (end_x, end_y), 1.0, brush_w)
+ elif draw_method == DrawMethod.CIRCLE:
+ cv2.circle(mask, (start_x, start_y), radius=brush_w, color=1., thickness=-1)
+ elif draw_method == DrawMethod.SQUARE:
+ radius = brush_w // 2
+ mask[start_y - radius:start_y + radius, start_x - radius:start_x + radius] = 1
+ start_x, start_y = end_x, end_y
+ return mask[None, ...]
+
+
+class RandomIrregularMaskGenerator:
+ def __init__(self, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, ramp_kwargs=None,
+ draw_method=DrawMethod.LINE):
+ self.max_angle = max_angle
+ self.max_len = max_len
+ self.max_width = max_width
+ self.min_times = min_times
+ self.max_times = max_times
+ self.draw_method = draw_method
+ self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None
+
+ def __call__(self, img, iter_i=None, raw_image=None):
+ coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1
+ cur_max_len = int(max(1, self.max_len * coef))
+ cur_max_width = int(max(1, self.max_width * coef))
+ cur_max_times = int(self.min_times + 1 + (self.max_times - self.min_times) * coef)
+ return make_random_irregular_mask(img.shape[1:], max_angle=self.max_angle, max_len=cur_max_len,
+ max_width=cur_max_width, min_times=self.min_times, max_times=cur_max_times,
+ draw_method=self.draw_method)
+
+
+def make_random_rectangle_mask(shape, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3):
+ height, width = shape
+ mask = np.zeros((height, width), np.float32)
+ bbox_max_size = min(bbox_max_size, height - margin * 2, width - margin * 2)
+ times = np.random.randint(min_times, max_times + 1)
+ for i in range(times):
+ box_width = np.random.randint(bbox_min_size, bbox_max_size)
+ box_height = np.random.randint(bbox_min_size, bbox_max_size)
+ start_x = np.random.randint(margin, width - margin - box_width + 1)
+ start_y = np.random.randint(margin, height - margin - box_height + 1)
+ mask[start_y:start_y + box_height, start_x:start_x + box_width] = 1
+ return mask[None, ...]
+
+
+class RandomRectangleMaskGenerator:
+ def __init__(self, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3, ramp_kwargs=None):
+ self.margin = margin
+ self.bbox_min_size = bbox_min_size
+ self.bbox_max_size = bbox_max_size
+ self.min_times = min_times
+ self.max_times = max_times
+ self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None
+
+ def __call__(self, img, iter_i=None, raw_image=None):
+ coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1
+ cur_bbox_max_size = int(self.bbox_min_size + 1 + (self.bbox_max_size - self.bbox_min_size) * coef)
+ cur_max_times = int(self.min_times + (self.max_times - self.min_times) * coef)
+ return make_random_rectangle_mask(img.shape[1:], margin=self.margin, bbox_min_size=self.bbox_min_size,
+ bbox_max_size=cur_bbox_max_size, min_times=self.min_times,
+ max_times=cur_max_times)
+
+
+class RandomSegmentationMaskGenerator:
+ def __init__(self, **kwargs):
+ self.impl = None # will be instantiated in first call (effectively in subprocess)
+ self.kwargs = kwargs
+
+ def __call__(self, img, iter_i=None, raw_image=None):
+ if self.impl is None:
+ self.impl = SegmentationMask(**self.kwargs)
+
+ masks = self.impl.get_masks(np.transpose(img, (1, 2, 0)))
+ masks = [m for m in masks if len(np.unique(m)) > 1]
+ return np.random.choice(masks)
+
+
+def make_random_superres_mask(shape, min_step=2, max_step=4, min_width=1, max_width=3):
+ height, width = shape
+ mask = np.zeros((height, width), np.float32)
+ step_x = np.random.randint(min_step, max_step + 1)
+ width_x = np.random.randint(min_width, min(step_x, max_width + 1))
+ offset_x = np.random.randint(0, step_x)
+
+ step_y = np.random.randint(min_step, max_step + 1)
+ width_y = np.random.randint(min_width, min(step_y, max_width + 1))
+ offset_y = np.random.randint(0, step_y)
+
+ for dy in range(width_y):
+ mask[offset_y + dy::step_y] = 1
+ for dx in range(width_x):
+ mask[:, offset_x + dx::step_x] = 1
+ return mask[None, ...]
+
+
+class RandomSuperresMaskGenerator:
+ def __init__(self, **kwargs):
+ self.kwargs = kwargs
+
+ def __call__(self, img, iter_i=None):
+ return make_random_superres_mask(img.shape[1:], **self.kwargs)
+
+
+class DumbAreaMaskGenerator:
+ min_ratio = 0.1
+ max_ratio = 0.35
+ default_ratio = 0.225
+
+ def __init__(self, is_training):
+ #Parameters:
+ # is_training(bool): If true - random rectangular mask, if false - central square mask
+ self.is_training = is_training
+
+ def _random_vector(self, dimension):
+ if self.is_training:
+ lower_limit = math.sqrt(self.min_ratio)
+ upper_limit = math.sqrt(self.max_ratio)
+ mask_side = round((random.random() * (upper_limit - lower_limit) + lower_limit) * dimension)
+ u = random.randint(0, dimension-mask_side-1)
+ v = u+mask_side
+ else:
+ margin = (math.sqrt(self.default_ratio) / 2) * dimension
+ u = round(dimension/2 - margin)
+ v = round(dimension/2 + margin)
+ return u, v
+
+ def __call__(self, img, iter_i=None, raw_image=None):
+ c, height, width = img.shape
+ mask = np.zeros((height, width), np.float32)
+ x1, x2 = self._random_vector(width)
+ y1, y2 = self._random_vector(height)
+ mask[x1:x2, y1:y2] = 1
+ return mask[None, ...]
+
+
+class OutpaintingMaskGenerator:
+ def __init__(self, min_padding_percent:float=0.04, max_padding_percent:int=0.25, left_padding_prob:float=0.5, top_padding_prob:float=0.5,
+ right_padding_prob:float=0.5, bottom_padding_prob:float=0.5, is_fixed_randomness:bool=False):
+ """
+ is_fixed_randomness - get identical paddings for the same image if args are the same
+ """
+ self.min_padding_percent = min_padding_percent
+ self.max_padding_percent = max_padding_percent
+ self.probs = [left_padding_prob, top_padding_prob, right_padding_prob, bottom_padding_prob]
+ self.is_fixed_randomness = is_fixed_randomness
+
+ assert self.min_padding_percent <= self.max_padding_percent
+ assert self.max_padding_percent > 0
+ assert len([x for x in [self.min_padding_percent, self.max_padding_percent] if (x>=0 and x<=1)]) == 2, f"Padding percentage should be in [0,1]"
+ assert sum(self.probs) > 0, f"At least one of the padding probs should be greater than 0 - {self.probs}"
+ assert len([x for x in self.probs if (x >= 0) and (x <= 1)]) == 4, f"At least one of padding probs is not in [0,1] - {self.probs}"
+ if len([x for x in self.probs if x > 0]) == 1:
+ LOGGER.warning(f"Only one padding prob is greater than zero - {self.probs}. That means that the outpainting masks will be always on the same side")
+
+ def apply_padding(self, mask, coord):
+ mask[int(coord[0][0]*self.img_h):int(coord[1][0]*self.img_h),
+ int(coord[0][1]*self.img_w):int(coord[1][1]*self.img_w)] = 1
+ return mask
+
+ def get_padding(self, size):
+ n1 = int(self.min_padding_percent*size)
+ n2 = int(self.max_padding_percent*size)
+ return self.rnd.randint(n1, n2) / size
+
+ @staticmethod
+ def _img2rs(img):
+ arr = np.ascontiguousarray(img.astype(np.uint8))
+ str_hash = hashlib.sha1(arr).hexdigest()
+ res = hash(str_hash)%(2**32)
+ return res
+
+ def __call__(self, img, iter_i=None, raw_image=None):
+ c, self.img_h, self.img_w = img.shape
+ mask = np.zeros((self.img_h, self.img_w), np.float32)
+ at_least_one_mask_applied = False
+
+ if self.is_fixed_randomness:
+ assert raw_image is not None, f"Cant calculate hash on raw_image=None"
+ rs = self._img2rs(raw_image)
+ self.rnd = np.random.RandomState(rs)
+ else:
+ self.rnd = np.random
+
+ coords = [[
+ (0,0),
+ (1,self.get_padding(size=self.img_h))
+ ],
+ [
+ (0,0),
+ (self.get_padding(size=self.img_w),1)
+ ],
+ [
+ (0,1-self.get_padding(size=self.img_h)),
+ (1,1)
+ ],
+ [
+ (1-self.get_padding(size=self.img_w),0),
+ (1,1)
+ ]]
+
+ for pp, coord in zip(self.probs, coords):
+ if self.rnd.random() < pp:
+ at_least_one_mask_applied = True
+ mask = self.apply_padding(mask=mask, coord=coord)
+
+ if not at_least_one_mask_applied:
+ idx = self.rnd.choice(range(len(coords)), p=np.array(self.probs)/sum(self.probs))
+ mask = self.apply_padding(mask=mask, coord=coords[idx])
+ return mask[None, ...]
+
+
+class MixedMaskGenerator:
+ def __init__(self, irregular_proba=1/3, irregular_kwargs=None,
+ box_proba=1/3, box_kwargs=None,
+ segm_proba=1/3, segm_kwargs=None,
+ squares_proba=0, squares_kwargs=None,
+ superres_proba=0, superres_kwargs=None,
+ outpainting_proba=0, outpainting_kwargs=None,
+ invert_proba=0):
+ self.probas = []
+ self.gens = []
+
+ if irregular_proba > 0:
+ self.probas.append(irregular_proba)
+ if irregular_kwargs is None:
+ irregular_kwargs = {}
+ else:
+ irregular_kwargs = dict(irregular_kwargs)
+ irregular_kwargs['draw_method'] = DrawMethod.LINE
+ self.gens.append(RandomIrregularMaskGenerator(**irregular_kwargs))
+
+ if box_proba > 0:
+ self.probas.append(box_proba)
+ if box_kwargs is None:
+ box_kwargs = {}
+ self.gens.append(RandomRectangleMaskGenerator(**box_kwargs))
+
+ if segm_proba > 0:
+ self.probas.append(segm_proba)
+ if segm_kwargs is None:
+ segm_kwargs = {}
+ self.gens.append(RandomSegmentationMaskGenerator(**segm_kwargs))
+
+ if squares_proba > 0:
+ self.probas.append(squares_proba)
+ if squares_kwargs is None:
+ squares_kwargs = {}
+ else:
+ squares_kwargs = dict(squares_kwargs)
+ squares_kwargs['draw_method'] = DrawMethod.SQUARE
+ self.gens.append(RandomIrregularMaskGenerator(**squares_kwargs))
+
+ if superres_proba > 0:
+ self.probas.append(superres_proba)
+ if superres_kwargs is None:
+ superres_kwargs = {}
+ self.gens.append(RandomSuperresMaskGenerator(**superres_kwargs))
+
+ if outpainting_proba > 0:
+ self.probas.append(outpainting_proba)
+ if outpainting_kwargs is None:
+ outpainting_kwargs = {}
+ self.gens.append(OutpaintingMaskGenerator(**outpainting_kwargs))
+
+ self.probas = np.array(self.probas, dtype='float32')
+ self.probas /= self.probas.sum()
+ self.invert_proba = invert_proba
+
+ def __call__(self, img, iter_i=None, raw_image=None):
+ kind = np.random.choice(len(self.probas), p=self.probas)
+ gen = self.gens[kind]
+ result = gen(img, iter_i=iter_i, raw_image=raw_image)
+ if self.invert_proba > 0 and random.random() < self.invert_proba:
+ result = 1 - result
+ return result
+
+
+def get_mask_generator(kind, kwargs):
+ if kind is None:
+ kind = "mixed"
+ if kwargs is None:
+ kwargs = {}
+
+ if kind == "mixed":
+ cl = MixedMaskGenerator
+ elif kind == "outpainting":
+ cl = OutpaintingMaskGenerator
+ elif kind == "dumb":
+ cl = DumbAreaMaskGenerator
+ else:
+ raise NotImplementedError(f"No such generator kind = {kind}")
+ return cl(**kwargs)
diff --git a/saicinpainting/training/losses/__init__.py b/saicinpainting/training/losses/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/saicinpainting/training/losses/adversarial.py b/saicinpainting/training/losses/adversarial.py
new file mode 100644
index 00000000..d6db2967
--- /dev/null
+++ b/saicinpainting/training/losses/adversarial.py
@@ -0,0 +1,177 @@
+from typing import Tuple, Dict, Optional
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class BaseAdversarialLoss:
+ def pre_generator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
+ generator: nn.Module, discriminator: nn.Module):
+ """
+ Prepare for generator step
+ :param real_batch: Tensor, a batch of real samples
+ :param fake_batch: Tensor, a batch of samples produced by generator
+ :param generator:
+ :param discriminator:
+ :return: None
+ """
+
+ def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
+ generator: nn.Module, discriminator: nn.Module):
+ """
+ Prepare for discriminator step
+ :param real_batch: Tensor, a batch of real samples
+ :param fake_batch: Tensor, a batch of samples produced by generator
+ :param generator:
+ :param discriminator:
+ :return: None
+ """
+
+ def generator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
+ discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
+ mask: Optional[torch.Tensor] = None) \
+ -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
+ """
+ Calculate generator loss
+ :param real_batch: Tensor, a batch of real samples
+ :param fake_batch: Tensor, a batch of samples produced by generator
+ :param discr_real_pred: Tensor, discriminator output for real_batch
+ :param discr_fake_pred: Tensor, discriminator output for fake_batch
+ :param mask: Tensor, actual mask, which was at input of generator when making fake_batch
+ :return: total generator loss along with some values that might be interesting to log
+ """
+ raise NotImplemented()
+
+ def discriminator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
+ discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
+ mask: Optional[torch.Tensor] = None) \
+ -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
+ """
+ Calculate discriminator loss and call .backward() on it
+ :param real_batch: Tensor, a batch of real samples
+ :param fake_batch: Tensor, a batch of samples produced by generator
+ :param discr_real_pred: Tensor, discriminator output for real_batch
+ :param discr_fake_pred: Tensor, discriminator output for fake_batch
+ :param mask: Tensor, actual mask, which was at input of generator when making fake_batch
+ :return: total discriminator loss along with some values that might be interesting to log
+ """
+ raise NotImplemented()
+
+ def interpolate_mask(self, mask, shape):
+ assert mask is not None
+ assert self.allow_scale_mask or shape == mask.shape[-2:]
+ if shape != mask.shape[-2:] and self.allow_scale_mask:
+ if self.mask_scale_mode == 'maxpool':
+ mask = F.adaptive_max_pool2d(mask, shape)
+ else:
+ mask = F.interpolate(mask, size=shape, mode=self.mask_scale_mode)
+ return mask
+
+def make_r1_gp(discr_real_pred, real_batch):
+ if torch.is_grad_enabled():
+ grad_real = torch.autograd.grad(outputs=discr_real_pred.sum(), inputs=real_batch, create_graph=True)[0]
+ grad_penalty = (grad_real.view(grad_real.shape[0], -1).norm(2, dim=1) ** 2).mean()
+ else:
+ grad_penalty = 0
+ real_batch.requires_grad = False
+
+ return grad_penalty
+
+class NonSaturatingWithR1(BaseAdversarialLoss):
+ def __init__(self, gp_coef=5, weight=1, mask_as_fake_target=False, allow_scale_mask=False,
+ mask_scale_mode='nearest', extra_mask_weight_for_gen=0,
+ use_unmasked_for_gen=True, use_unmasked_for_discr=True):
+ self.gp_coef = gp_coef
+ self.weight = weight
+ # use for discr => use for gen;
+ # otherwise we teach only the discr to pay attention to very small difference
+ assert use_unmasked_for_gen or (not use_unmasked_for_discr)
+ # mask as target => use unmasked for discr:
+ # if we don't care about unmasked regions at all
+ # then it doesn't matter if the value of mask_as_fake_target is true or false
+ assert use_unmasked_for_discr or (not mask_as_fake_target)
+ self.use_unmasked_for_gen = use_unmasked_for_gen
+ self.use_unmasked_for_discr = use_unmasked_for_discr
+ self.mask_as_fake_target = mask_as_fake_target
+ self.allow_scale_mask = allow_scale_mask
+ self.mask_scale_mode = mask_scale_mode
+ self.extra_mask_weight_for_gen = extra_mask_weight_for_gen
+
+ def generator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
+ discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
+ mask=None) \
+ -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
+ fake_loss = F.softplus(-discr_fake_pred)
+ if (self.mask_as_fake_target and self.extra_mask_weight_for_gen > 0) or \
+ not self.use_unmasked_for_gen: # == if masked region should be treated differently
+ mask = self.interpolate_mask(mask, discr_fake_pred.shape[-2:])
+ if not self.use_unmasked_for_gen:
+ fake_loss = fake_loss * mask
+ else:
+ pixel_weights = 1 + mask * self.extra_mask_weight_for_gen
+ fake_loss = fake_loss * pixel_weights
+
+ return fake_loss.mean() * self.weight, dict()
+
+ def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
+ generator: nn.Module, discriminator: nn.Module):
+ real_batch.requires_grad = True
+
+ def discriminator_loss(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
+ discr_real_pred: torch.Tensor, discr_fake_pred: torch.Tensor,
+ mask=None) \
+ -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
+
+ real_loss = F.softplus(-discr_real_pred)
+ grad_penalty = make_r1_gp(discr_real_pred, real_batch) * self.gp_coef
+ fake_loss = F.softplus(discr_fake_pred)
+
+ if not self.use_unmasked_for_discr or self.mask_as_fake_target:
+ # == if masked region should be treated differently
+ mask = self.interpolate_mask(mask, discr_fake_pred.shape[-2:])
+ # use_unmasked_for_discr=False only makes sense for fakes;
+ # for reals there is no difference beetween two regions
+ fake_loss = fake_loss * mask
+ if self.mask_as_fake_target:
+ fake_loss = fake_loss + (1 - mask) * F.softplus(-discr_fake_pred)
+
+ sum_discr_loss = real_loss + grad_penalty + fake_loss
+ metrics = dict(discr_real_out=discr_real_pred.mean(),
+ discr_fake_out=discr_fake_pred.mean(),
+ discr_real_gp=grad_penalty)
+ return sum_discr_loss.mean(), metrics
+
+class BCELoss(BaseAdversarialLoss):
+ def __init__(self, weight):
+ self.weight = weight
+ self.bce_loss = nn.BCEWithLogitsLoss()
+
+ def generator_loss(self, discr_fake_pred: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
+ real_mask_gt = torch.zeros(discr_fake_pred.shape).to(discr_fake_pred.device)
+ fake_loss = self.bce_loss(discr_fake_pred, real_mask_gt) * self.weight
+ return fake_loss, dict()
+
+ def pre_discriminator_step(self, real_batch: torch.Tensor, fake_batch: torch.Tensor,
+ generator: nn.Module, discriminator: nn.Module):
+ real_batch.requires_grad = True
+
+ def discriminator_loss(self,
+ mask: torch.Tensor,
+ discr_real_pred: torch.Tensor,
+ discr_fake_pred: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
+
+ real_mask_gt = torch.zeros(discr_real_pred.shape).to(discr_real_pred.device)
+ sum_discr_loss = (self.bce_loss(discr_real_pred, real_mask_gt) + self.bce_loss(discr_fake_pred, mask)) / 2
+ metrics = dict(discr_real_out=discr_real_pred.mean(),
+ discr_fake_out=discr_fake_pred.mean(),
+ discr_real_gp=0)
+ return sum_discr_loss, metrics
+
+
+def make_discrim_loss(kind, **kwargs):
+ if kind == 'r1':
+ return NonSaturatingWithR1(**kwargs)
+ elif kind == 'bce':
+ return BCELoss(**kwargs)
+ raise ValueError(f'Unknown adversarial loss kind {kind}')
diff --git a/saicinpainting/training/losses/constants.py b/saicinpainting/training/losses/constants.py
new file mode 100644
index 00000000..ae3e5e15
--- /dev/null
+++ b/saicinpainting/training/losses/constants.py
@@ -0,0 +1,152 @@
+weights = {"ade20k":
+ [6.34517766497462,
+ 9.328358208955224,
+ 11.389521640091116,
+ 16.10305958132045,
+ 20.833333333333332,
+ 22.22222222222222,
+ 25.125628140703515,
+ 43.29004329004329,
+ 50.5050505050505,
+ 54.6448087431694,
+ 55.24861878453038,
+ 60.24096385542168,
+ 62.5,
+ 66.2251655629139,
+ 84.74576271186442,
+ 90.90909090909092,
+ 91.74311926605505,
+ 96.15384615384616,
+ 96.15384615384616,
+ 97.08737864077669,
+ 102.04081632653062,
+ 135.13513513513513,
+ 149.2537313432836,
+ 153.84615384615384,
+ 163.93442622950818,
+ 166.66666666666666,
+ 188.67924528301887,
+ 192.30769230769232,
+ 217.3913043478261,
+ 227.27272727272725,
+ 227.27272727272725,
+ 227.27272727272725,
+ 303.03030303030306,
+ 322.5806451612903,
+ 333.3333333333333,
+ 370.3703703703703,
+ 384.61538461538464,
+ 416.6666666666667,
+ 416.6666666666667,
+ 434.7826086956522,
+ 434.7826086956522,
+ 454.5454545454545,
+ 454.5454545454545,
+ 500.0,
+ 526.3157894736842,
+ 526.3157894736842,
+ 555.5555555555555,
+ 555.5555555555555,
+ 555.5555555555555,
+ 555.5555555555555,
+ 555.5555555555555,
+ 555.5555555555555,
+ 555.5555555555555,
+ 588.2352941176471,
+ 588.2352941176471,
+ 588.2352941176471,
+ 588.2352941176471,
+ 588.2352941176471,
+ 666.6666666666666,
+ 666.6666666666666,
+ 666.6666666666666,
+ 666.6666666666666,
+ 714.2857142857143,
+ 714.2857142857143,
+ 714.2857142857143,
+ 714.2857142857143,
+ 714.2857142857143,
+ 769.2307692307693,
+ 769.2307692307693,
+ 769.2307692307693,
+ 833.3333333333334,
+ 833.3333333333334,
+ 833.3333333333334,
+ 833.3333333333334,
+ 909.090909090909,
+ 1000.0,
+ 1111.111111111111,
+ 1111.111111111111,
+ 1111.111111111111,
+ 1111.111111111111,
+ 1111.111111111111,
+ 1250.0,
+ 1250.0,
+ 1250.0,
+ 1250.0,
+ 1250.0,
+ 1428.5714285714287,
+ 1428.5714285714287,
+ 1428.5714285714287,
+ 1428.5714285714287,
+ 1428.5714285714287,
+ 1428.5714285714287,
+ 1428.5714285714287,
+ 1666.6666666666667,
+ 1666.6666666666667,
+ 1666.6666666666667,
+ 1666.6666666666667,
+ 1666.6666666666667,
+ 1666.6666666666667,
+ 1666.6666666666667,
+ 1666.6666666666667,
+ 1666.6666666666667,
+ 1666.6666666666667,
+ 1666.6666666666667,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2000.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 2500.0,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 3333.3333333333335,
+ 5000.0,
+ 5000.0,
+ 5000.0]
+}
\ No newline at end of file
diff --git a/saicinpainting/training/losses/distance_weighting.py b/saicinpainting/training/losses/distance_weighting.py
new file mode 100644
index 00000000..93052003
--- /dev/null
+++ b/saicinpainting/training/losses/distance_weighting.py
@@ -0,0 +1,126 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torchvision
+
+from saicinpainting.training.losses.perceptual import IMAGENET_STD, IMAGENET_MEAN
+
+
+def dummy_distance_weighter(real_img, pred_img, mask):
+ return mask
+
+
+def get_gauss_kernel(kernel_size, width_factor=1):
+ coords = torch.stack(torch.meshgrid(torch.arange(kernel_size),
+ torch.arange(kernel_size)),
+ dim=0).float()
+ diff = torch.exp(-((coords - kernel_size // 2) ** 2).sum(0) / kernel_size / width_factor)
+ diff /= diff.sum()
+ return diff
+
+
+class BlurMask(nn.Module):
+ def __init__(self, kernel_size=5, width_factor=1):
+ super().__init__()
+ self.filter = nn.Conv2d(1, 1, kernel_size, padding=kernel_size // 2, padding_mode='replicate', bias=False)
+ self.filter.weight.data.copy_(get_gauss_kernel(kernel_size, width_factor=width_factor))
+
+ def forward(self, real_img, pred_img, mask):
+ with torch.no_grad():
+ result = self.filter(mask) * mask
+ return result
+
+
+class EmulatedEDTMask(nn.Module):
+ def __init__(self, dilate_kernel_size=5, blur_kernel_size=5, width_factor=1):
+ super().__init__()
+ self.dilate_filter = nn.Conv2d(1, 1, dilate_kernel_size, padding=dilate_kernel_size// 2, padding_mode='replicate',
+ bias=False)
+ self.dilate_filter.weight.data.copy_(torch.ones(1, 1, dilate_kernel_size, dilate_kernel_size, dtype=torch.float))
+ self.blur_filter = nn.Conv2d(1, 1, blur_kernel_size, padding=blur_kernel_size // 2, padding_mode='replicate', bias=False)
+ self.blur_filter.weight.data.copy_(get_gauss_kernel(blur_kernel_size, width_factor=width_factor))
+
+ def forward(self, real_img, pred_img, mask):
+ with torch.no_grad():
+ known_mask = 1 - mask
+ dilated_known_mask = (self.dilate_filter(known_mask) > 1).float()
+ result = self.blur_filter(1 - dilated_known_mask) * mask
+ return result
+
+
+class PropagatePerceptualSim(nn.Module):
+ def __init__(self, level=2, max_iters=10, temperature=500, erode_mask_size=3):
+ super().__init__()
+ vgg = torchvision.models.vgg19(pretrained=True).features
+ vgg_avg_pooling = []
+
+ for weights in vgg.parameters():
+ weights.requires_grad = False
+
+ cur_level_i = 0
+ for module in vgg.modules():
+ if module.__class__.__name__ == 'Sequential':
+ continue
+ elif module.__class__.__name__ == 'MaxPool2d':
+ vgg_avg_pooling.append(nn.AvgPool2d(kernel_size=2, stride=2, padding=0))
+ else:
+ vgg_avg_pooling.append(module)
+ if module.__class__.__name__ == 'ReLU':
+ cur_level_i += 1
+ if cur_level_i == level:
+ break
+
+ self.features = nn.Sequential(*vgg_avg_pooling)
+
+ self.max_iters = max_iters
+ self.temperature = temperature
+ self.do_erode = erode_mask_size > 0
+ if self.do_erode:
+ self.erode_mask = nn.Conv2d(1, 1, erode_mask_size, padding=erode_mask_size // 2, bias=False)
+ self.erode_mask.weight.data.fill_(1)
+
+ def forward(self, real_img, pred_img, mask):
+ with torch.no_grad():
+ real_img = (real_img - IMAGENET_MEAN.to(real_img)) / IMAGENET_STD.to(real_img)
+ real_feats = self.features(real_img)
+
+ vertical_sim = torch.exp(-(real_feats[:, :, 1:] - real_feats[:, :, :-1]).pow(2).sum(1, keepdim=True)
+ / self.temperature)
+ horizontal_sim = torch.exp(-(real_feats[:, :, :, 1:] - real_feats[:, :, :, :-1]).pow(2).sum(1, keepdim=True)
+ / self.temperature)
+
+ mask_scaled = F.interpolate(mask, size=real_feats.shape[-2:], mode='bilinear', align_corners=False)
+ if self.do_erode:
+ mask_scaled = (self.erode_mask(mask_scaled) > 1).float()
+
+ cur_knowness = 1 - mask_scaled
+
+ for iter_i in range(self.max_iters):
+ new_top_knowness = F.pad(cur_knowness[:, :, :-1] * vertical_sim, (0, 0, 1, 0), mode='replicate')
+ new_bottom_knowness = F.pad(cur_knowness[:, :, 1:] * vertical_sim, (0, 0, 0, 1), mode='replicate')
+
+ new_left_knowness = F.pad(cur_knowness[:, :, :, :-1] * horizontal_sim, (1, 0, 0, 0), mode='replicate')
+ new_right_knowness = F.pad(cur_knowness[:, :, :, 1:] * horizontal_sim, (0, 1, 0, 0), mode='replicate')
+
+ new_knowness = torch.stack([new_top_knowness, new_bottom_knowness,
+ new_left_knowness, new_right_knowness],
+ dim=0).max(0).values
+
+ cur_knowness = torch.max(cur_knowness, new_knowness)
+
+ cur_knowness = F.interpolate(cur_knowness, size=mask.shape[-2:], mode='bilinear')
+ result = torch.min(mask, 1 - cur_knowness)
+
+ return result
+
+
+def make_mask_distance_weighter(kind='none', **kwargs):
+ if kind == 'none':
+ return dummy_distance_weighter
+ if kind == 'blur':
+ return BlurMask(**kwargs)
+ if kind == 'edt':
+ return EmulatedEDTMask(**kwargs)
+ if kind == 'pps':
+ return PropagatePerceptualSim(**kwargs)
+ raise ValueError(f'Unknown mask distance weighter kind {kind}')
diff --git a/saicinpainting/training/losses/feature_matching.py b/saicinpainting/training/losses/feature_matching.py
new file mode 100644
index 00000000..c019895c
--- /dev/null
+++ b/saicinpainting/training/losses/feature_matching.py
@@ -0,0 +1,33 @@
+from typing import List
+
+import torch
+import torch.nn.functional as F
+
+
+def masked_l2_loss(pred, target, mask, weight_known, weight_missing):
+ per_pixel_l2 = F.mse_loss(pred, target, reduction='none')
+ pixel_weights = mask * weight_missing + (1 - mask) * weight_known
+ return (pixel_weights * per_pixel_l2).mean()
+
+
+def masked_l1_loss(pred, target, mask, weight_known, weight_missing):
+ per_pixel_l1 = F.l1_loss(pred, target, reduction='none')
+ pixel_weights = mask * weight_missing + (1 - mask) * weight_known
+ return (pixel_weights * per_pixel_l1).mean()
+
+
+def feature_matching_loss(fake_features: List[torch.Tensor], target_features: List[torch.Tensor], mask=None):
+ if mask is None:
+ res = torch.stack([F.mse_loss(fake_feat, target_feat)
+ for fake_feat, target_feat in zip(fake_features, target_features)]).mean()
+ else:
+ res = 0
+ norm = 0
+ for fake_feat, target_feat in zip(fake_features, target_features):
+ cur_mask = F.interpolate(mask, size=fake_feat.shape[-2:], mode='bilinear', align_corners=False)
+ error_weights = 1 - cur_mask
+ cur_val = ((fake_feat - target_feat).pow(2) * error_weights).mean()
+ res = res + cur_val
+ norm += 1
+ res = res / norm
+ return res
diff --git a/saicinpainting/training/losses/perceptual.py b/saicinpainting/training/losses/perceptual.py
new file mode 100644
index 00000000..8c055c2b
--- /dev/null
+++ b/saicinpainting/training/losses/perceptual.py
@@ -0,0 +1,113 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torchvision
+
+from models.ade20k import ModelBuilder
+from saicinpainting.utils import check_and_warn_input_range
+
+
+IMAGENET_MEAN = torch.FloatTensor([0.485, 0.456, 0.406])[None, :, None, None]
+IMAGENET_STD = torch.FloatTensor([0.229, 0.224, 0.225])[None, :, None, None]
+
+
+class PerceptualLoss(nn.Module):
+ def __init__(self, normalize_inputs=True):
+ super(PerceptualLoss, self).__init__()
+
+ self.normalize_inputs = normalize_inputs
+ self.mean_ = IMAGENET_MEAN
+ self.std_ = IMAGENET_STD
+
+ vgg = torchvision.models.vgg19(pretrained=True).features
+ vgg_avg_pooling = []
+
+ for weights in vgg.parameters():
+ weights.requires_grad = False
+
+ for module in vgg.modules():
+ if module.__class__.__name__ == 'Sequential':
+ continue
+ elif module.__class__.__name__ == 'MaxPool2d':
+ vgg_avg_pooling.append(nn.AvgPool2d(kernel_size=2, stride=2, padding=0))
+ else:
+ vgg_avg_pooling.append(module)
+
+ self.vgg = nn.Sequential(*vgg_avg_pooling)
+
+ def do_normalize_inputs(self, x):
+ return (x - self.mean_.to(x.device)) / self.std_.to(x.device)
+
+ def partial_losses(self, input, target, mask=None):
+ check_and_warn_input_range(target, 0, 1, 'PerceptualLoss target in partial_losses')
+
+ # we expect input and target to be in [0, 1] range
+ losses = []
+
+ if self.normalize_inputs:
+ features_input = self.do_normalize_inputs(input)
+ features_target = self.do_normalize_inputs(target)
+ else:
+ features_input = input
+ features_target = target
+
+ for layer in self.vgg[:30]:
+
+ features_input = layer(features_input)
+ features_target = layer(features_target)
+
+ if layer.__class__.__name__ == 'ReLU':
+ loss = F.mse_loss(features_input, features_target, reduction='none')
+
+ if mask is not None:
+ cur_mask = F.interpolate(mask, size=features_input.shape[-2:],
+ mode='bilinear', align_corners=False)
+ loss = loss * (1 - cur_mask)
+
+ loss = loss.mean(dim=tuple(range(1, len(loss.shape))))
+ losses.append(loss)
+
+ return losses
+
+ def forward(self, input, target, mask=None):
+ losses = self.partial_losses(input, target, mask=mask)
+ return torch.stack(losses).sum(dim=0)
+
+ def get_global_features(self, input):
+ check_and_warn_input_range(input, 0, 1, 'PerceptualLoss input in get_global_features')
+
+ if self.normalize_inputs:
+ features_input = self.do_normalize_inputs(input)
+ else:
+ features_input = input
+
+ features_input = self.vgg(features_input)
+ return features_input
+
+
+class ResNetPL(nn.Module):
+ def __init__(self, weight=1,
+ weights_path=None, arch_encoder='resnet50dilated', segmentation=True):
+ super().__init__()
+ self.impl = ModelBuilder.get_encoder(weights_path=weights_path,
+ arch_encoder=arch_encoder,
+ arch_decoder='ppm_deepsup',
+ fc_dim=2048,
+ segmentation=segmentation)
+ self.impl.eval()
+ for w in self.impl.parameters():
+ w.requires_grad_(False)
+
+ self.weight = weight
+
+ def forward(self, pred, target):
+ pred = (pred - IMAGENET_MEAN.to(pred)) / IMAGENET_STD.to(pred)
+ target = (target - IMAGENET_MEAN.to(target)) / IMAGENET_STD.to(target)
+
+ pred_feats = self.impl(pred, return_feature_maps=True)
+ target_feats = self.impl(target, return_feature_maps=True)
+
+ result = torch.stack([F.mse_loss(cur_pred, cur_target)
+ for cur_pred, cur_target
+ in zip(pred_feats, target_feats)]).sum() * self.weight
+ return result
diff --git a/saicinpainting/training/losses/segmentation.py b/saicinpainting/training/losses/segmentation.py
new file mode 100644
index 00000000..3d4a9f94
--- /dev/null
+++ b/saicinpainting/training/losses/segmentation.py
@@ -0,0 +1,43 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from .constants import weights as constant_weights
+
+
+class CrossEntropy2d(nn.Module):
+ def __init__(self, reduction="mean", ignore_label=255, weights=None, *args, **kwargs):
+ """
+ weight (Tensor, optional): a manual rescaling weight given to each class.
+ If given, has to be a Tensor of size "nclasses"
+ """
+ super(CrossEntropy2d, self).__init__()
+ self.reduction = reduction
+ self.ignore_label = ignore_label
+ self.weights = weights
+ if self.weights is not None:
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
+ self.weights = torch.FloatTensor(constant_weights[weights]).to(device)
+
+ def forward(self, predict, target):
+ """
+ Args:
+ predict:(n, c, h, w)
+ target:(n, 1, h, w)
+ """
+ target = target.long()
+ assert not target.requires_grad
+ assert predict.dim() == 4, "{0}".format(predict.size())
+ assert target.dim() == 4, "{0}".format(target.size())
+ assert predict.size(0) == target.size(0), "{0} vs {1} ".format(predict.size(0), target.size(0))
+ assert target.size(1) == 1, "{0}".format(target.size(1))
+ assert predict.size(2) == target.size(2), "{0} vs {1} ".format(predict.size(2), target.size(2))
+ assert predict.size(3) == target.size(3), "{0} vs {1} ".format(predict.size(3), target.size(3))
+ target = target.squeeze(1)
+ n, c, h, w = predict.size()
+ target_mask = (target >= 0) * (target != self.ignore_label)
+ target = target[target_mask]
+ predict = predict.transpose(1, 2).transpose(2, 3).contiguous()
+ predict = predict[target_mask.view(n, h, w, 1).repeat(1, 1, 1, c)].view(-1, c)
+ loss = F.cross_entropy(predict, target, weight=self.weights, reduction=self.reduction)
+ return loss
diff --git a/saicinpainting/training/losses/style_loss.py b/saicinpainting/training/losses/style_loss.py
new file mode 100644
index 00000000..0bb42d7f
--- /dev/null
+++ b/saicinpainting/training/losses/style_loss.py
@@ -0,0 +1,155 @@
+import torch
+import torch.nn as nn
+import torchvision.models as models
+
+
+class PerceptualLoss(nn.Module):
+ r"""
+ Perceptual loss, VGG-based
+ https://arxiv.org/abs/1603.08155
+ https://github.com/dxyang/StyleTransfer/blob/master/utils.py
+ """
+
+ def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 1.0]):
+ super(PerceptualLoss, self).__init__()
+ self.add_module('vgg', VGG19())
+ self.criterion = torch.nn.L1Loss()
+ self.weights = weights
+
+ def __call__(self, x, y):
+ # Compute features
+ x_vgg, y_vgg = self.vgg(x), self.vgg(y)
+
+ content_loss = 0.0
+ content_loss += self.weights[0] * self.criterion(x_vgg['relu1_1'], y_vgg['relu1_1'])
+ content_loss += self.weights[1] * self.criterion(x_vgg['relu2_1'], y_vgg['relu2_1'])
+ content_loss += self.weights[2] * self.criterion(x_vgg['relu3_1'], y_vgg['relu3_1'])
+ content_loss += self.weights[3] * self.criterion(x_vgg['relu4_1'], y_vgg['relu4_1'])
+ content_loss += self.weights[4] * self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1'])
+
+
+ return content_loss
+
+
+class VGG19(torch.nn.Module):
+ def __init__(self):
+ super(VGG19, self).__init__()
+ features = models.vgg19(pretrained=True).features
+ self.relu1_1 = torch.nn.Sequential()
+ self.relu1_2 = torch.nn.Sequential()
+
+ self.relu2_1 = torch.nn.Sequential()
+ self.relu2_2 = torch.nn.Sequential()
+
+ self.relu3_1 = torch.nn.Sequential()
+ self.relu3_2 = torch.nn.Sequential()
+ self.relu3_3 = torch.nn.Sequential()
+ self.relu3_4 = torch.nn.Sequential()
+
+ self.relu4_1 = torch.nn.Sequential()
+ self.relu4_2 = torch.nn.Sequential()
+ self.relu4_3 = torch.nn.Sequential()
+ self.relu4_4 = torch.nn.Sequential()
+
+ self.relu5_1 = torch.nn.Sequential()
+ self.relu5_2 = torch.nn.Sequential()
+ self.relu5_3 = torch.nn.Sequential()
+ self.relu5_4 = torch.nn.Sequential()
+
+ for x in range(2):
+ self.relu1_1.add_module(str(x), features[x])
+
+ for x in range(2, 4):
+ self.relu1_2.add_module(str(x), features[x])
+
+ for x in range(4, 7):
+ self.relu2_1.add_module(str(x), features[x])
+
+ for x in range(7, 9):
+ self.relu2_2.add_module(str(x), features[x])
+
+ for x in range(9, 12):
+ self.relu3_1.add_module(str(x), features[x])
+
+ for x in range(12, 14):
+ self.relu3_2.add_module(str(x), features[x])
+
+ for x in range(14, 16):
+ self.relu3_2.add_module(str(x), features[x])
+
+ for x in range(16, 18):
+ self.relu3_4.add_module(str(x), features[x])
+
+ for x in range(18, 21):
+ self.relu4_1.add_module(str(x), features[x])
+
+ for x in range(21, 23):
+ self.relu4_2.add_module(str(x), features[x])
+
+ for x in range(23, 25):
+ self.relu4_3.add_module(str(x), features[x])
+
+ for x in range(25, 27):
+ self.relu4_4.add_module(str(x), features[x])
+
+ for x in range(27, 30):
+ self.relu5_1.add_module(str(x), features[x])
+
+ for x in range(30, 32):
+ self.relu5_2.add_module(str(x), features[x])
+
+ for x in range(32, 34):
+ self.relu5_3.add_module(str(x), features[x])
+
+ for x in range(34, 36):
+ self.relu5_4.add_module(str(x), features[x])
+
+ # don't need the gradients, just want the features
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, x):
+ relu1_1 = self.relu1_1(x)
+ relu1_2 = self.relu1_2(relu1_1)
+
+ relu2_1 = self.relu2_1(relu1_2)
+ relu2_2 = self.relu2_2(relu2_1)
+
+ relu3_1 = self.relu3_1(relu2_2)
+ relu3_2 = self.relu3_2(relu3_1)
+ relu3_3 = self.relu3_3(relu3_2)
+ relu3_4 = self.relu3_4(relu3_3)
+
+ relu4_1 = self.relu4_1(relu3_4)
+ relu4_2 = self.relu4_2(relu4_1)
+ relu4_3 = self.relu4_3(relu4_2)
+ relu4_4 = self.relu4_4(relu4_3)
+
+ relu5_1 = self.relu5_1(relu4_4)
+ relu5_2 = self.relu5_2(relu5_1)
+ relu5_3 = self.relu5_3(relu5_2)
+ relu5_4 = self.relu5_4(relu5_3)
+
+ out = {
+ 'relu1_1': relu1_1,
+ 'relu1_2': relu1_2,
+
+ 'relu2_1': relu2_1,
+ 'relu2_2': relu2_2,
+
+ 'relu3_1': relu3_1,
+ 'relu3_2': relu3_2,
+ 'relu3_3': relu3_3,
+ 'relu3_4': relu3_4,
+
+ 'relu4_1': relu4_1,
+ 'relu4_2': relu4_2,
+ 'relu4_3': relu4_3,
+ 'relu4_4': relu4_4,
+
+ 'relu5_1': relu5_1,
+ 'relu5_2': relu5_2,
+ 'relu5_3': relu5_3,
+ 'relu5_4': relu5_4,
+ }
+ return out
diff --git a/saicinpainting/training/modules/__init__.py b/saicinpainting/training/modules/__init__.py
new file mode 100644
index 00000000..82e1a909
--- /dev/null
+++ b/saicinpainting/training/modules/__init__.py
@@ -0,0 +1,31 @@
+import logging
+
+from saicinpainting.training.modules.ffc import FFCResNetGenerator
+from saicinpainting.training.modules.pix2pixhd import GlobalGenerator, MultiDilatedGlobalGenerator, \
+ NLayerDiscriminator, MultidilatedNLayerDiscriminator
+
+def make_generator(config, kind, **kwargs):
+ logging.info(f'Make generator {kind}')
+
+ if kind == 'pix2pixhd_multidilated':
+ return MultiDilatedGlobalGenerator(**kwargs)
+
+ if kind == 'pix2pixhd_global':
+ return GlobalGenerator(**kwargs)
+
+ if kind == 'ffc_resnet':
+ return FFCResNetGenerator(**kwargs)
+
+ raise ValueError(f'Unknown generator kind {kind}')
+
+
+def make_discriminator(kind, **kwargs):
+ logging.info(f'Make discriminator {kind}')
+
+ if kind == 'pix2pixhd_nlayer_multidilated':
+ return MultidilatedNLayerDiscriminator(**kwargs)
+
+ if kind == 'pix2pixhd_nlayer':
+ return NLayerDiscriminator(**kwargs)
+
+ raise ValueError(f'Unknown discriminator kind {kind}')
diff --git a/saicinpainting/training/modules/base.py b/saicinpainting/training/modules/base.py
new file mode 100644
index 00000000..a50c3fc7
--- /dev/null
+++ b/saicinpainting/training/modules/base.py
@@ -0,0 +1,80 @@
+import abc
+from typing import Tuple, List
+
+import torch
+import torch.nn as nn
+
+from saicinpainting.training.modules.depthwise_sep_conv import DepthWiseSeperableConv
+from saicinpainting.training.modules.multidilated_conv import MultidilatedConv
+
+
+class BaseDiscriminator(nn.Module):
+ @abc.abstractmethod
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, List[torch.Tensor]]:
+ """
+ Predict scores and get intermediate activations. Useful for feature matching loss
+ :return tuple (scores, list of intermediate activations)
+ """
+ raise NotImplemented()
+
+
+def get_conv_block_ctor(kind='default'):
+ if not isinstance(kind, str):
+ return kind
+ if kind == 'default':
+ return nn.Conv2d
+ if kind == 'depthwise':
+ return DepthWiseSeperableConv
+ if kind == 'multidilated':
+ return MultidilatedConv
+ raise ValueError(f'Unknown convolutional block kind {kind}')
+
+
+def get_norm_layer(kind='bn'):
+ if not isinstance(kind, str):
+ return kind
+ if kind == 'bn':
+ return nn.BatchNorm2d
+ if kind == 'in':
+ return nn.InstanceNorm2d
+ raise ValueError(f'Unknown norm block kind {kind}')
+
+
+def get_activation(kind='tanh'):
+ if kind == 'tanh':
+ return nn.Tanh()
+ if kind == 'sigmoid':
+ return nn.Sigmoid()
+ if kind is False:
+ return nn.Identity()
+ raise ValueError(f'Unknown activation kind {kind}')
+
+
+class SimpleMultiStepGenerator(nn.Module):
+ def __init__(self, steps: List[nn.Module]):
+ super().__init__()
+ self.steps = nn.ModuleList(steps)
+
+ def forward(self, x):
+ cur_in = x
+ outs = []
+ for step in self.steps:
+ cur_out = step(cur_in)
+ outs.append(cur_out)
+ cur_in = torch.cat((cur_in, cur_out), dim=1)
+ return torch.cat(outs[::-1], dim=1)
+
+def deconv_factory(kind, ngf, mult, norm_layer, activation, max_features):
+ if kind == 'convtranspose':
+ return [nn.ConvTranspose2d(min(max_features, ngf * mult),
+ min(max_features, int(ngf * mult / 2)),
+ kernel_size=3, stride=2, padding=1, output_padding=1),
+ norm_layer(min(max_features, int(ngf * mult / 2))), activation]
+ elif kind == 'bilinear':
+ return [nn.Upsample(scale_factor=2, mode='bilinear'),
+ DepthWiseSeperableConv(min(max_features, ngf * mult),
+ min(max_features, int(ngf * mult / 2)),
+ kernel_size=3, stride=1, padding=1),
+ norm_layer(min(max_features, int(ngf * mult / 2))), activation]
+ else:
+ raise Exception(f"Invalid deconv kind: {kind}")
\ No newline at end of file
diff --git a/saicinpainting/training/modules/depthwise_sep_conv.py b/saicinpainting/training/modules/depthwise_sep_conv.py
new file mode 100644
index 00000000..83dd15c3
--- /dev/null
+++ b/saicinpainting/training/modules/depthwise_sep_conv.py
@@ -0,0 +1,17 @@
+import torch
+import torch.nn as nn
+
+class DepthWiseSeperableConv(nn.Module):
+ def __init__(self, in_dim, out_dim, *args, **kwargs):
+ super().__init__()
+ if 'groups' in kwargs:
+ # ignoring groups for Depthwise Sep Conv
+ del kwargs['groups']
+
+ self.depthwise = nn.Conv2d(in_dim, in_dim, *args, groups=in_dim, **kwargs)
+ self.pointwise = nn.Conv2d(in_dim, out_dim, kernel_size=1)
+
+ def forward(self, x):
+ out = self.depthwise(x)
+ out = self.pointwise(out)
+ return out
\ No newline at end of file
diff --git a/saicinpainting/training/modules/fake_fakes.py b/saicinpainting/training/modules/fake_fakes.py
new file mode 100644
index 00000000..45c4ad55
--- /dev/null
+++ b/saicinpainting/training/modules/fake_fakes.py
@@ -0,0 +1,47 @@
+import torch
+from kornia import SamplePadding
+from kornia.augmentation import RandomAffine, CenterCrop
+
+
+class FakeFakesGenerator:
+ def __init__(self, aug_proba=0.5, img_aug_degree=30, img_aug_translate=0.2):
+ self.grad_aug = RandomAffine(degrees=360,
+ translate=0.2,
+ padding_mode=SamplePadding.REFLECTION,
+ keepdim=False,
+ p=1)
+ self.img_aug = RandomAffine(degrees=img_aug_degree,
+ translate=img_aug_translate,
+ padding_mode=SamplePadding.REFLECTION,
+ keepdim=True,
+ p=1)
+ self.aug_proba = aug_proba
+
+ def __call__(self, input_images, masks):
+ blend_masks = self._fill_masks_with_gradient(masks)
+ blend_target = self._make_blend_target(input_images)
+ result = input_images * (1 - blend_masks) + blend_target * blend_masks
+ return result, blend_masks
+
+ def _make_blend_target(self, input_images):
+ batch_size = input_images.shape[0]
+ permuted = input_images[torch.randperm(batch_size)]
+ augmented = self.img_aug(input_images)
+ is_aug = (torch.rand(batch_size, device=input_images.device)[:, None, None, None] < self.aug_proba).float()
+ result = augmented * is_aug + permuted * (1 - is_aug)
+ return result
+
+ def _fill_masks_with_gradient(self, masks):
+ batch_size, _, height, width = masks.shape
+ grad = torch.linspace(0, 1, steps=width * 2, device=masks.device, dtype=masks.dtype) \
+ .view(1, 1, 1, -1).expand(batch_size, 1, height * 2, width * 2)
+ grad = self.grad_aug(grad)
+ grad = CenterCrop((height, width))(grad)
+ grad *= masks
+
+ grad_for_min = grad + (1 - masks) * 10
+ grad -= grad_for_min.view(batch_size, -1).min(-1).values[:, None, None, None]
+ grad /= grad.view(batch_size, -1).max(-1).values[:, None, None, None] + 1e-6
+ grad.clamp_(min=0, max=1)
+
+ return grad
diff --git a/saicinpainting/training/modules/ffc.py b/saicinpainting/training/modules/ffc.py
new file mode 100644
index 00000000..2f8aeb14
--- /dev/null
+++ b/saicinpainting/training/modules/ffc.py
@@ -0,0 +1,433 @@
+# Fast Fourier Convolution NeurIPS 2020
+# original implementation https://github.com/pkumivision/FFC/blob/main/model_zoo/ffc.py
+# paper https://proceedings.neurips.cc/paper/2020/file/2fd5d41ec6cfab47e32164d5624269b1-Paper.pdf
+
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from saicinpainting.training.modules.base import get_activation, BaseDiscriminator
+from saicinpainting.training.modules.spatial_transform import LearnableSpatialTransformWrapper
+from saicinpainting.training.modules.squeeze_excitation import SELayer
+from saicinpainting.utils import get_shape
+
+
+class FFCSE_block(nn.Module):
+
+ def __init__(self, channels, ratio_g):
+ super(FFCSE_block, self).__init__()
+ in_cg = int(channels * ratio_g)
+ in_cl = channels - in_cg
+ r = 16
+
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
+ self.conv1 = nn.Conv2d(channels, channels // r,
+ kernel_size=1, bias=True)
+ self.relu1 = nn.ReLU(inplace=True)
+ self.conv_a2l = None if in_cl == 0 else nn.Conv2d(
+ channels // r, in_cl, kernel_size=1, bias=True)
+ self.conv_a2g = None if in_cg == 0 else nn.Conv2d(
+ channels // r, in_cg, kernel_size=1, bias=True)
+ self.sigmoid = nn.Sigmoid()
+
+ def forward(self, x):
+ x = x if type(x) is tuple else (x, 0)
+ id_l, id_g = x
+
+ x = id_l if type(id_g) is int else torch.cat([id_l, id_g], dim=1)
+ x = self.avgpool(x)
+ x = self.relu1(self.conv1(x))
+
+ x_l = 0 if self.conv_a2l is None else id_l * \
+ self.sigmoid(self.conv_a2l(x))
+ x_g = 0 if self.conv_a2g is None else id_g * \
+ self.sigmoid(self.conv_a2g(x))
+ return x_l, x_g
+
+
+class FourierUnit(nn.Module):
+
+ def __init__(self, in_channels, out_channels, groups=1, spatial_scale_factor=None, spatial_scale_mode='bilinear',
+ spectral_pos_encoding=False, use_se=False, se_kwargs=None, ffc3d=False, fft_norm='ortho'):
+ # bn_layer not used
+ super(FourierUnit, self).__init__()
+ self.groups = groups
+
+ self.conv_layer = torch.nn.Conv2d(in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0),
+ out_channels=out_channels * 2,
+ kernel_size=1, stride=1, padding=0, groups=self.groups, bias=False)
+ self.bn = torch.nn.BatchNorm2d(out_channels * 2)
+ self.relu = torch.nn.ReLU(inplace=True)
+
+ # squeeze and excitation block
+ self.use_se = use_se
+ if use_se:
+ if se_kwargs is None:
+ se_kwargs = {}
+ self.se = SELayer(self.conv_layer.in_channels, **se_kwargs)
+
+ self.spatial_scale_factor = spatial_scale_factor
+ self.spatial_scale_mode = spatial_scale_mode
+ self.spectral_pos_encoding = spectral_pos_encoding
+ self.ffc3d = ffc3d
+ self.fft_norm = fft_norm
+
+ def forward(self, x):
+ batch = x.shape[0]
+
+ if self.spatial_scale_factor is not None:
+ orig_size = x.shape[-2:]
+ x = F.interpolate(x, scale_factor=self.spatial_scale_factor, mode=self.spatial_scale_mode, align_corners=False)
+
+ r_size = x.size()
+ # (batch, c, h, w/2+1, 2)
+ fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1)
+ ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm)
+ ffted = torch.stack((ffted.real, ffted.imag), dim=-1)
+ ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() # (batch, c, 2, h, w/2+1)
+ ffted = ffted.view((batch, -1,) + ffted.size()[3:])
+
+ if self.spectral_pos_encoding:
+ height, width = ffted.shape[-2:]
+ coords_vert = torch.linspace(0, 1, height)[None, None, :, None].expand(batch, 1, height, width).to(ffted)
+ coords_hor = torch.linspace(0, 1, width)[None, None, None, :].expand(batch, 1, height, width).to(ffted)
+ ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1)
+
+ if self.use_se:
+ ffted = self.se(ffted)
+
+ ffted = self.conv_layer(ffted) # (batch, c*2, h, w/2+1)
+ ffted = self.relu(self.bn(ffted))
+
+ ffted = ffted.view((batch, -1, 2,) + ffted.size()[2:]).permute(
+ 0, 1, 3, 4, 2).contiguous() # (batch,c, t, h, w/2+1, 2)
+ ffted = torch.complex(ffted[..., 0], ffted[..., 1])
+
+ ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:]
+ output = torch.fft.irfftn(ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm)
+
+ if self.spatial_scale_factor is not None:
+ output = F.interpolate(output, size=orig_size, mode=self.spatial_scale_mode, align_corners=False)
+
+ return output
+
+
+class SpectralTransform(nn.Module):
+
+ def __init__(self, in_channels, out_channels, stride=1, groups=1, enable_lfu=True, **fu_kwargs):
+ # bn_layer not used
+ super(SpectralTransform, self).__init__()
+ self.enable_lfu = enable_lfu
+ if stride == 2:
+ self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2)
+ else:
+ self.downsample = nn.Identity()
+
+ self.stride = stride
+ self.conv1 = nn.Sequential(
+ nn.Conv2d(in_channels, out_channels //
+ 2, kernel_size=1, groups=groups, bias=False),
+ nn.BatchNorm2d(out_channels // 2),
+ nn.ReLU(inplace=True)
+ )
+ self.fu = FourierUnit(
+ out_channels // 2, out_channels // 2, groups, **fu_kwargs)
+ if self.enable_lfu:
+ self.lfu = FourierUnit(
+ out_channels // 2, out_channels // 2, groups)
+ self.conv2 = torch.nn.Conv2d(
+ out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False)
+
+ def forward(self, x):
+
+ x = self.downsample(x)
+ x = self.conv1(x)
+ output = self.fu(x)
+
+ if self.enable_lfu:
+ n, c, h, w = x.shape
+ split_no = 2
+ split_s = h // split_no
+ xs = torch.cat(torch.split(
+ x[:, :c // 4], split_s, dim=-2), dim=1).contiguous()
+ xs = torch.cat(torch.split(xs, split_s, dim=-1),
+ dim=1).contiguous()
+ xs = self.lfu(xs)
+ xs = xs.repeat(1, 1, split_no, split_no).contiguous()
+ else:
+ xs = 0
+
+ output = self.conv2(x + output + xs)
+
+ return output
+
+
+class FFC(nn.Module):
+
+ def __init__(self, in_channels, out_channels, kernel_size,
+ ratio_gin, ratio_gout, stride=1, padding=0,
+ dilation=1, groups=1, bias=False, enable_lfu=True,
+ padding_type='reflect', gated=False, **spectral_kwargs):
+ super(FFC, self).__init__()
+
+ assert stride == 1 or stride == 2, "Stride should be 1 or 2."
+ self.stride = stride
+
+ in_cg = int(in_channels * ratio_gin)
+ in_cl = in_channels - in_cg
+ out_cg = int(out_channels * ratio_gout)
+ out_cl = out_channels - out_cg
+ #groups_g = 1 if groups == 1 else int(groups * ratio_gout)
+ #groups_l = 1 if groups == 1 else groups - groups_g
+
+ self.ratio_gin = ratio_gin
+ self.ratio_gout = ratio_gout
+ self.global_in_num = in_cg
+
+ module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d
+ self.convl2l = module(in_cl, out_cl, kernel_size,
+ stride, padding, dilation, groups, bias, padding_mode=padding_type)
+ module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d
+ self.convl2g = module(in_cl, out_cg, kernel_size,
+ stride, padding, dilation, groups, bias, padding_mode=padding_type)
+ module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d
+ self.convg2l = module(in_cg, out_cl, kernel_size,
+ stride, padding, dilation, groups, bias, padding_mode=padding_type)
+ module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform
+ self.convg2g = module(
+ in_cg, out_cg, stride, 1 if groups == 1 else groups // 2, enable_lfu, **spectral_kwargs)
+
+ self.gated = gated
+ module = nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d
+ self.gate = module(in_channels, 2, 1)
+
+ def forward(self, x):
+ x_l, x_g = x if type(x) is tuple else (x, 0)
+ out_xl, out_xg = 0, 0
+
+ if self.gated:
+ total_input_parts = [x_l]
+ if torch.is_tensor(x_g):
+ total_input_parts.append(x_g)
+ total_input = torch.cat(total_input_parts, dim=1)
+
+ gates = torch.sigmoid(self.gate(total_input))
+ g2l_gate, l2g_gate = gates.chunk(2, dim=1)
+ else:
+ g2l_gate, l2g_gate = 1, 1
+
+ if self.ratio_gout != 1:
+ out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate
+ if self.ratio_gout != 0:
+ out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g)
+
+ return out_xl, out_xg
+
+
+class FFC_BN_ACT(nn.Module):
+
+ def __init__(self, in_channels, out_channels,
+ kernel_size, ratio_gin, ratio_gout,
+ stride=1, padding=0, dilation=1, groups=1, bias=False,
+ norm_layer=nn.BatchNorm2d, activation_layer=nn.Identity,
+ padding_type='reflect',
+ enable_lfu=True, **kwargs):
+ super(FFC_BN_ACT, self).__init__()
+ self.ffc = FFC(in_channels, out_channels, kernel_size,
+ ratio_gin, ratio_gout, stride, padding, dilation,
+ groups, bias, enable_lfu, padding_type=padding_type, **kwargs)
+ lnorm = nn.Identity if ratio_gout == 1 else norm_layer
+ gnorm = nn.Identity if ratio_gout == 0 else norm_layer
+ global_channels = int(out_channels * ratio_gout)
+ self.bn_l = lnorm(out_channels - global_channels)
+ self.bn_g = gnorm(global_channels)
+
+ lact = nn.Identity if ratio_gout == 1 else activation_layer
+ gact = nn.Identity if ratio_gout == 0 else activation_layer
+ self.act_l = lact(inplace=True)
+ self.act_g = gact(inplace=True)
+
+ def forward(self, x):
+ x_l, x_g = self.ffc(x)
+ x_l = self.act_l(self.bn_l(x_l))
+ x_g = self.act_g(self.bn_g(x_g))
+ return x_l, x_g
+
+
+class FFCResnetBlock(nn.Module):
+ def __init__(self, dim, padding_type, norm_layer, activation_layer=nn.ReLU, dilation=1,
+ spatial_transform_kwargs=None, inline=False, **conv_kwargs):
+ super().__init__()
+ self.conv1 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
+ norm_layer=norm_layer,
+ activation_layer=activation_layer,
+ padding_type=padding_type,
+ **conv_kwargs)
+ self.conv2 = FFC_BN_ACT(dim, dim, kernel_size=3, padding=dilation, dilation=dilation,
+ norm_layer=norm_layer,
+ activation_layer=activation_layer,
+ padding_type=padding_type,
+ **conv_kwargs)
+ if spatial_transform_kwargs is not None:
+ self.conv1 = LearnableSpatialTransformWrapper(self.conv1, **spatial_transform_kwargs)
+ self.conv2 = LearnableSpatialTransformWrapper(self.conv2, **spatial_transform_kwargs)
+ self.inline = inline
+
+ def forward(self, x):
+ if self.inline:
+ x_l, x_g = x[:, :-self.conv1.ffc.global_in_num], x[:, -self.conv1.ffc.global_in_num:]
+ else:
+ x_l, x_g = x if type(x) is tuple else (x, 0)
+
+ id_l, id_g = x_l, x_g
+
+ x_l, x_g = self.conv1((x_l, x_g))
+ x_l, x_g = self.conv2((x_l, x_g))
+
+ x_l, x_g = id_l + x_l, id_g + x_g
+ out = x_l, x_g
+ if self.inline:
+ out = torch.cat(out, dim=1)
+ return out
+
+
+class ConcatTupleLayer(nn.Module):
+ def forward(self, x):
+ assert isinstance(x, tuple)
+ x_l, x_g = x
+ assert torch.is_tensor(x_l) or torch.is_tensor(x_g)
+ if not torch.is_tensor(x_g):
+ return x_l
+ return torch.cat(x, dim=1)
+
+
+class FFCResNetGenerator(nn.Module):
+ def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
+ padding_type='reflect', activation_layer=nn.ReLU,
+ up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True),
+ init_conv_kwargs={}, downsample_conv_kwargs={}, resnet_conv_kwargs={},
+ spatial_transform_layers=None, spatial_transform_kwargs={},
+ add_out_act=True, max_features=1024, out_ffc=False, out_ffc_kwargs={}):
+ assert (n_blocks >= 0)
+ super().__init__()
+
+ model = [nn.ReflectionPad2d(3),
+ FFC_BN_ACT(input_nc, ngf, kernel_size=7, padding=0, norm_layer=norm_layer,
+ activation_layer=activation_layer, **init_conv_kwargs)]
+
+ ### downsample
+ for i in range(n_downsampling):
+ mult = 2 ** i
+ if i == n_downsampling - 1:
+ cur_conv_kwargs = dict(downsample_conv_kwargs)
+ cur_conv_kwargs['ratio_gout'] = resnet_conv_kwargs.get('ratio_gin', 0)
+ else:
+ cur_conv_kwargs = downsample_conv_kwargs
+ model += [FFC_BN_ACT(min(max_features, ngf * mult),
+ min(max_features, ngf * mult * 2),
+ kernel_size=3, stride=2, padding=1,
+ norm_layer=norm_layer,
+ activation_layer=activation_layer,
+ **cur_conv_kwargs)]
+
+ mult = 2 ** n_downsampling
+ feats_num_bottleneck = min(max_features, ngf * mult)
+
+ ### resnet blocks
+ for i in range(n_blocks):
+ cur_resblock = FFCResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation_layer=activation_layer,
+ norm_layer=norm_layer, **resnet_conv_kwargs)
+ if spatial_transform_layers is not None and i in spatial_transform_layers:
+ cur_resblock = LearnableSpatialTransformWrapper(cur_resblock, **spatial_transform_kwargs)
+ model += [cur_resblock]
+
+ model += [ConcatTupleLayer()]
+
+ ### upsample
+ for i in range(n_downsampling):
+ mult = 2 ** (n_downsampling - i)
+ model += [nn.ConvTranspose2d(min(max_features, ngf * mult),
+ min(max_features, int(ngf * mult / 2)),
+ kernel_size=3, stride=2, padding=1, output_padding=1),
+ up_norm_layer(min(max_features, int(ngf * mult / 2))),
+ up_activation]
+
+ if out_ffc:
+ model += [FFCResnetBlock(ngf, padding_type=padding_type, activation_layer=activation_layer,
+ norm_layer=norm_layer, inline=True, **out_ffc_kwargs)]
+
+ model += [nn.ReflectionPad2d(3),
+ nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
+ if add_out_act:
+ model.append(get_activation('tanh' if add_out_act is True else add_out_act))
+ self.model = nn.Sequential(*model)
+
+ def forward(self, input):
+ return self.model(input)
+
+
+class FFCNLayerDiscriminator(BaseDiscriminator):
+ def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, max_features=512,
+ init_conv_kwargs={}, conv_kwargs={}):
+ super().__init__()
+ self.n_layers = n_layers
+
+ def _act_ctor(inplace=True):
+ return nn.LeakyReLU(negative_slope=0.2, inplace=inplace)
+
+ kw = 3
+ padw = int(np.ceil((kw-1.0)/2))
+ sequence = [[FFC_BN_ACT(input_nc, ndf, kernel_size=kw, padding=padw, norm_layer=norm_layer,
+ activation_layer=_act_ctor, **init_conv_kwargs)]]
+
+ nf = ndf
+ for n in range(1, n_layers):
+ nf_prev = nf
+ nf = min(nf * 2, max_features)
+
+ cur_model = [
+ FFC_BN_ACT(nf_prev, nf,
+ kernel_size=kw, stride=2, padding=padw,
+ norm_layer=norm_layer,
+ activation_layer=_act_ctor,
+ **conv_kwargs)
+ ]
+ sequence.append(cur_model)
+
+ nf_prev = nf
+ nf = min(nf * 2, 512)
+
+ cur_model = [
+ FFC_BN_ACT(nf_prev, nf,
+ kernel_size=kw, stride=1, padding=padw,
+ norm_layer=norm_layer,
+ activation_layer=lambda *args, **kwargs: nn.LeakyReLU(*args, negative_slope=0.2, **kwargs),
+ **conv_kwargs),
+ ConcatTupleLayer()
+ ]
+ sequence.append(cur_model)
+
+ sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
+
+ for n in range(len(sequence)):
+ setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
+
+ def get_all_activations(self, x):
+ res = [x]
+ for n in range(self.n_layers + 2):
+ model = getattr(self, 'model' + str(n))
+ res.append(model(res[-1]))
+ return res[1:]
+
+ def forward(self, x):
+ act = self.get_all_activations(x)
+ feats = []
+ for out in act[:-1]:
+ if isinstance(out, tuple):
+ if torch.is_tensor(out[1]):
+ out = torch.cat(out, dim=1)
+ else:
+ out = out[0]
+ feats.append(out)
+ return act[-1], feats
diff --git a/saicinpainting/training/modules/multidilated_conv.py b/saicinpainting/training/modules/multidilated_conv.py
new file mode 100644
index 00000000..d267ee2a
--- /dev/null
+++ b/saicinpainting/training/modules/multidilated_conv.py
@@ -0,0 +1,98 @@
+import torch
+import torch.nn as nn
+import random
+from saicinpainting.training.modules.depthwise_sep_conv import DepthWiseSeperableConv
+
+class MultidilatedConv(nn.Module):
+ def __init__(self, in_dim, out_dim, kernel_size, dilation_num=3, comb_mode='sum', equal_dim=True,
+ shared_weights=False, padding=1, min_dilation=1, shuffle_in_channels=False, use_depthwise=False, **kwargs):
+ super().__init__()
+ convs = []
+ self.equal_dim = equal_dim
+ assert comb_mode in ('cat_out', 'sum', 'cat_in', 'cat_both'), comb_mode
+ if comb_mode in ('cat_out', 'cat_both'):
+ self.cat_out = True
+ if equal_dim:
+ assert out_dim % dilation_num == 0
+ out_dims = [out_dim // dilation_num] * dilation_num
+ self.index = sum([[i + j * (out_dims[0]) for j in range(dilation_num)] for i in range(out_dims[0])], [])
+ else:
+ out_dims = [out_dim // 2 ** (i + 1) for i in range(dilation_num - 1)]
+ out_dims.append(out_dim - sum(out_dims))
+ index = []
+ starts = [0] + out_dims[:-1]
+ lengths = [out_dims[i] // out_dims[-1] for i in range(dilation_num)]
+ for i in range(out_dims[-1]):
+ for j in range(dilation_num):
+ index += list(range(starts[j], starts[j] + lengths[j]))
+ starts[j] += lengths[j]
+ self.index = index
+ assert(len(index) == out_dim)
+ self.out_dims = out_dims
+ else:
+ self.cat_out = False
+ self.out_dims = [out_dim] * dilation_num
+
+ if comb_mode in ('cat_in', 'cat_both'):
+ if equal_dim:
+ assert in_dim % dilation_num == 0
+ in_dims = [in_dim // dilation_num] * dilation_num
+ else:
+ in_dims = [in_dim // 2 ** (i + 1) for i in range(dilation_num - 1)]
+ in_dims.append(in_dim - sum(in_dims))
+ self.in_dims = in_dims
+ self.cat_in = True
+ else:
+ self.cat_in = False
+ self.in_dims = [in_dim] * dilation_num
+
+ conv_type = DepthWiseSeperableConv if use_depthwise else nn.Conv2d
+ dilation = min_dilation
+ for i in range(dilation_num):
+ if isinstance(padding, int):
+ cur_padding = padding * dilation
+ else:
+ cur_padding = padding[i]
+ convs.append(conv_type(
+ self.in_dims[i], self.out_dims[i], kernel_size, padding=cur_padding, dilation=dilation, **kwargs
+ ))
+ if i > 0 and shared_weights:
+ convs[-1].weight = convs[0].weight
+ convs[-1].bias = convs[0].bias
+ dilation *= 2
+ self.convs = nn.ModuleList(convs)
+
+ self.shuffle_in_channels = shuffle_in_channels
+ if self.shuffle_in_channels:
+ # shuffle list as shuffling of tensors is nondeterministic
+ in_channels_permute = list(range(in_dim))
+ random.shuffle(in_channels_permute)
+ # save as buffer so it is saved and loaded with checkpoint
+ self.register_buffer('in_channels_permute', torch.tensor(in_channels_permute))
+
+ def forward(self, x):
+ if self.shuffle_in_channels:
+ x = x[:, self.in_channels_permute]
+
+ outs = []
+ if self.cat_in:
+ if self.equal_dim:
+ x = x.chunk(len(self.convs), dim=1)
+ else:
+ new_x = []
+ start = 0
+ for dim in self.in_dims:
+ new_x.append(x[:, start:start+dim])
+ start += dim
+ x = new_x
+ for i, conv in enumerate(self.convs):
+ if self.cat_in:
+ input = x[i]
+ else:
+ input = x
+ outs.append(conv(input))
+ if self.cat_out:
+ out = torch.cat(outs, dim=1)[:, self.index]
+ else:
+ out = sum(outs)
+ return out
diff --git a/saicinpainting/training/modules/multiscale.py b/saicinpainting/training/modules/multiscale.py
new file mode 100644
index 00000000..65f0a549
--- /dev/null
+++ b/saicinpainting/training/modules/multiscale.py
@@ -0,0 +1,244 @@
+from typing import List, Tuple, Union, Optional
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from saicinpainting.training.modules.base import get_conv_block_ctor, get_activation
+from saicinpainting.training.modules.pix2pixhd import ResnetBlock
+
+
+class ResNetHead(nn.Module):
+ def __init__(self, input_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
+ padding_type='reflect', conv_kind='default', activation=nn.ReLU(True)):
+ assert (n_blocks >= 0)
+ super(ResNetHead, self).__init__()
+
+ conv_layer = get_conv_block_ctor(conv_kind)
+
+ model = [nn.ReflectionPad2d(3),
+ conv_layer(input_nc, ngf, kernel_size=7, padding=0),
+ norm_layer(ngf),
+ activation]
+
+ ### downsample
+ for i in range(n_downsampling):
+ mult = 2 ** i
+ model += [conv_layer(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
+ norm_layer(ngf * mult * 2),
+ activation]
+
+ mult = 2 ** n_downsampling
+
+ ### resnet blocks
+ for i in range(n_blocks):
+ model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
+ conv_kind=conv_kind)]
+
+ self.model = nn.Sequential(*model)
+
+ def forward(self, input):
+ return self.model(input)
+
+
+class ResNetTail(nn.Module):
+ def __init__(self, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
+ padding_type='reflect', conv_kind='default', activation=nn.ReLU(True),
+ up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), add_out_act=False, out_extra_layers_n=0,
+ add_in_proj=None):
+ assert (n_blocks >= 0)
+ super(ResNetTail, self).__init__()
+
+ mult = 2 ** n_downsampling
+
+ model = []
+
+ if add_in_proj is not None:
+ model.append(nn.Conv2d(add_in_proj, ngf * mult, kernel_size=1))
+
+ ### resnet blocks
+ for i in range(n_blocks):
+ model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
+ conv_kind=conv_kind)]
+
+ ### upsample
+ for i in range(n_downsampling):
+ mult = 2 ** (n_downsampling - i)
+ model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1,
+ output_padding=1),
+ up_norm_layer(int(ngf * mult / 2)),
+ up_activation]
+ self.model = nn.Sequential(*model)
+
+ out_layers = []
+ for _ in range(out_extra_layers_n):
+ out_layers += [nn.Conv2d(ngf, ngf, kernel_size=1, padding=0),
+ up_norm_layer(ngf),
+ up_activation]
+ out_layers += [nn.ReflectionPad2d(3),
+ nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
+
+ if add_out_act:
+ out_layers.append(get_activation('tanh' if add_out_act is True else add_out_act))
+
+ self.out_proj = nn.Sequential(*out_layers)
+
+ def forward(self, input, return_last_act=False):
+ features = self.model(input)
+ out = self.out_proj(features)
+ if return_last_act:
+ return out, features
+ else:
+ return out
+
+
+class MultiscaleResNet(nn.Module):
+ def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=2, n_blocks_head=2, n_blocks_tail=6, n_scales=3,
+ norm_layer=nn.BatchNorm2d, padding_type='reflect', conv_kind='default', activation=nn.ReLU(True),
+ up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), add_out_act=False, out_extra_layers_n=0,
+ out_cumulative=False, return_only_hr=False):
+ super().__init__()
+
+ self.heads = nn.ModuleList([ResNetHead(input_nc, ngf=ngf, n_downsampling=n_downsampling,
+ n_blocks=n_blocks_head, norm_layer=norm_layer, padding_type=padding_type,
+ conv_kind=conv_kind, activation=activation)
+ for i in range(n_scales)])
+ tail_in_feats = ngf * (2 ** n_downsampling) + ngf
+ self.tails = nn.ModuleList([ResNetTail(output_nc,
+ ngf=ngf, n_downsampling=n_downsampling,
+ n_blocks=n_blocks_tail, norm_layer=norm_layer, padding_type=padding_type,
+ conv_kind=conv_kind, activation=activation, up_norm_layer=up_norm_layer,
+ up_activation=up_activation, add_out_act=add_out_act,
+ out_extra_layers_n=out_extra_layers_n,
+ add_in_proj=None if (i == n_scales - 1) else tail_in_feats)
+ for i in range(n_scales)])
+
+ self.out_cumulative = out_cumulative
+ self.return_only_hr = return_only_hr
+
+ @property
+ def num_scales(self):
+ return len(self.heads)
+
+ def forward(self, ms_inputs: List[torch.Tensor], smallest_scales_num: Optional[int] = None) \
+ -> Union[torch.Tensor, List[torch.Tensor]]:
+ """
+ :param ms_inputs: List of inputs of different resolutions from HR to LR
+ :param smallest_scales_num: int or None, number of smallest scales to take at input
+ :return: Depending on return_only_hr:
+ True: Only the most HR output
+ False: List of outputs of different resolutions from HR to LR
+ """
+ if smallest_scales_num is None:
+ assert len(self.heads) == len(ms_inputs), (len(self.heads), len(ms_inputs), smallest_scales_num)
+ smallest_scales_num = len(self.heads)
+ else:
+ assert smallest_scales_num == len(ms_inputs) <= len(self.heads), (len(self.heads), len(ms_inputs), smallest_scales_num)
+
+ cur_heads = self.heads[-smallest_scales_num:]
+ ms_features = [cur_head(cur_inp) for cur_head, cur_inp in zip(cur_heads, ms_inputs)]
+
+ all_outputs = []
+ prev_tail_features = None
+ for i in range(len(ms_features)):
+ scale_i = -i - 1
+
+ cur_tail_input = ms_features[-i - 1]
+ if prev_tail_features is not None:
+ if prev_tail_features.shape != cur_tail_input.shape:
+ prev_tail_features = F.interpolate(prev_tail_features, size=cur_tail_input.shape[2:],
+ mode='bilinear', align_corners=False)
+ cur_tail_input = torch.cat((cur_tail_input, prev_tail_features), dim=1)
+
+ cur_out, cur_tail_feats = self.tails[scale_i](cur_tail_input, return_last_act=True)
+
+ prev_tail_features = cur_tail_feats
+ all_outputs.append(cur_out)
+
+ if self.out_cumulative:
+ all_outputs_cum = [all_outputs[0]]
+ for i in range(1, len(ms_features)):
+ cur_out = all_outputs[i]
+ cur_out_cum = cur_out + F.interpolate(all_outputs_cum[-1], size=cur_out.shape[2:],
+ mode='bilinear', align_corners=False)
+ all_outputs_cum.append(cur_out_cum)
+ all_outputs = all_outputs_cum
+
+ if self.return_only_hr:
+ return all_outputs[-1]
+ else:
+ return all_outputs[::-1]
+
+
+class MultiscaleDiscriminatorSimple(nn.Module):
+ def __init__(self, ms_impl):
+ super().__init__()
+ self.ms_impl = nn.ModuleList(ms_impl)
+
+ @property
+ def num_scales(self):
+ return len(self.ms_impl)
+
+ def forward(self, ms_inputs: List[torch.Tensor], smallest_scales_num: Optional[int] = None) \
+ -> List[Tuple[torch.Tensor, List[torch.Tensor]]]:
+ """
+ :param ms_inputs: List of inputs of different resolutions from HR to LR
+ :param smallest_scales_num: int or None, number of smallest scales to take at input
+ :return: List of pairs (prediction, features) for different resolutions from HR to LR
+ """
+ if smallest_scales_num is None:
+ assert len(self.ms_impl) == len(ms_inputs), (len(self.ms_impl), len(ms_inputs), smallest_scales_num)
+ smallest_scales_num = len(self.heads)
+ else:
+ assert smallest_scales_num == len(ms_inputs) <= len(self.ms_impl), \
+ (len(self.ms_impl), len(ms_inputs), smallest_scales_num)
+
+ return [cur_discr(cur_input) for cur_discr, cur_input in zip(self.ms_impl[-smallest_scales_num:], ms_inputs)]
+
+
+class SingleToMultiScaleInputMixin:
+ def forward(self, x: torch.Tensor) -> List:
+ orig_height, orig_width = x.shape[2:]
+ factors = [2 ** i for i in range(self.num_scales)]
+ ms_inputs = [F.interpolate(x, size=(orig_height // f, orig_width // f), mode='bilinear', align_corners=False)
+ for f in factors]
+ return super().forward(ms_inputs)
+
+
+class GeneratorMultiToSingleOutputMixin:
+ def forward(self, x):
+ return super().forward(x)[0]
+
+
+class DiscriminatorMultiToSingleOutputMixin:
+ def forward(self, x):
+ out_feat_tuples = super().forward(x)
+ return out_feat_tuples[0][0], [f for _, flist in out_feat_tuples for f in flist]
+
+
+class DiscriminatorMultiToSingleOutputStackedMixin:
+ def __init__(self, *args, return_feats_only_levels=None, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.return_feats_only_levels = return_feats_only_levels
+
+ def forward(self, x):
+ out_feat_tuples = super().forward(x)
+ outs = [out for out, _ in out_feat_tuples]
+ scaled_outs = [outs[0]] + [F.interpolate(cur_out, size=outs[0].shape[-2:],
+ mode='bilinear', align_corners=False)
+ for cur_out in outs[1:]]
+ out = torch.cat(scaled_outs, dim=1)
+ if self.return_feats_only_levels is not None:
+ feat_lists = [out_feat_tuples[i][1] for i in self.return_feats_only_levels]
+ else:
+ feat_lists = [flist for _, flist in out_feat_tuples]
+ feats = [f for flist in feat_lists for f in flist]
+ return out, feats
+
+
+class MultiscaleDiscrSingleInput(SingleToMultiScaleInputMixin, DiscriminatorMultiToSingleOutputStackedMixin, MultiscaleDiscriminatorSimple):
+ pass
+
+
+class MultiscaleResNetSingle(GeneratorMultiToSingleOutputMixin, SingleToMultiScaleInputMixin, MultiscaleResNet):
+ pass
diff --git a/saicinpainting/training/modules/pix2pixhd.py b/saicinpainting/training/modules/pix2pixhd.py
new file mode 100644
index 00000000..08c6afd7
--- /dev/null
+++ b/saicinpainting/training/modules/pix2pixhd.py
@@ -0,0 +1,669 @@
+# original: https://github.com/NVIDIA/pix2pixHD/blob/master/models/networks.py
+import collections
+from functools import partial
+import functools
+import logging
+from collections import defaultdict
+
+import numpy as np
+import torch.nn as nn
+
+from saicinpainting.training.modules.base import BaseDiscriminator, deconv_factory, get_conv_block_ctor, get_norm_layer, get_activation
+from saicinpainting.training.modules.ffc import FFCResnetBlock
+from saicinpainting.training.modules.multidilated_conv import MultidilatedConv
+
+class DotDict(defaultdict):
+ # https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary
+ """dot.notation access to dictionary attributes"""
+ __getattr__ = defaultdict.get
+ __setattr__ = defaultdict.__setitem__
+ __delattr__ = defaultdict.__delitem__
+
+class Identity(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def forward(self, x):
+ return x
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False, conv_kind='default',
+ dilation=1, in_dim=None, groups=1, second_dilation=None):
+ super(ResnetBlock, self).__init__()
+ self.in_dim = in_dim
+ self.dim = dim
+ if second_dilation is None:
+ second_dilation = dilation
+ self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout,
+ conv_kind=conv_kind, dilation=dilation, in_dim=in_dim, groups=groups,
+ second_dilation=second_dilation)
+
+ if self.in_dim is not None:
+ self.input_conv = nn.Conv2d(in_dim, dim, 1)
+
+ self.out_channnels = dim
+
+ def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout, conv_kind='default',
+ dilation=1, in_dim=None, groups=1, second_dilation=1):
+ conv_layer = get_conv_block_ctor(conv_kind)
+
+ conv_block = []
+ p = 0
+ if padding_type == 'reflect':
+ conv_block += [nn.ReflectionPad2d(dilation)]
+ elif padding_type == 'replicate':
+ conv_block += [nn.ReplicationPad2d(dilation)]
+ elif padding_type == 'zero':
+ p = dilation
+ else:
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
+
+ if in_dim is None:
+ in_dim = dim
+
+ conv_block += [conv_layer(in_dim, dim, kernel_size=3, padding=p, dilation=dilation),
+ norm_layer(dim),
+ activation]
+ if use_dropout:
+ conv_block += [nn.Dropout(0.5)]
+
+ p = 0
+ if padding_type == 'reflect':
+ conv_block += [nn.ReflectionPad2d(second_dilation)]
+ elif padding_type == 'replicate':
+ conv_block += [nn.ReplicationPad2d(second_dilation)]
+ elif padding_type == 'zero':
+ p = second_dilation
+ else:
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
+ conv_block += [conv_layer(dim, dim, kernel_size=3, padding=p, dilation=second_dilation, groups=groups),
+ norm_layer(dim)]
+
+ return nn.Sequential(*conv_block)
+
+ def forward(self, x):
+ x_before = x
+ if self.in_dim is not None:
+ x = self.input_conv(x)
+ out = x + self.conv_block(x_before)
+ return out
+
+class ResnetBlock5x5(nn.Module):
+ def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False, conv_kind='default',
+ dilation=1, in_dim=None, groups=1, second_dilation=None):
+ super(ResnetBlock5x5, self).__init__()
+ self.in_dim = in_dim
+ self.dim = dim
+ if second_dilation is None:
+ second_dilation = dilation
+ self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout,
+ conv_kind=conv_kind, dilation=dilation, in_dim=in_dim, groups=groups,
+ second_dilation=second_dilation)
+
+ if self.in_dim is not None:
+ self.input_conv = nn.Conv2d(in_dim, dim, 1)
+
+ self.out_channnels = dim
+
+ def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout, conv_kind='default',
+ dilation=1, in_dim=None, groups=1, second_dilation=1):
+ conv_layer = get_conv_block_ctor(conv_kind)
+
+ conv_block = []
+ p = 0
+ if padding_type == 'reflect':
+ conv_block += [nn.ReflectionPad2d(dilation * 2)]
+ elif padding_type == 'replicate':
+ conv_block += [nn.ReplicationPad2d(dilation * 2)]
+ elif padding_type == 'zero':
+ p = dilation * 2
+ else:
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
+
+ if in_dim is None:
+ in_dim = dim
+
+ conv_block += [conv_layer(in_dim, dim, kernel_size=5, padding=p, dilation=dilation),
+ norm_layer(dim),
+ activation]
+ if use_dropout:
+ conv_block += [nn.Dropout(0.5)]
+
+ p = 0
+ if padding_type == 'reflect':
+ conv_block += [nn.ReflectionPad2d(second_dilation * 2)]
+ elif padding_type == 'replicate':
+ conv_block += [nn.ReplicationPad2d(second_dilation * 2)]
+ elif padding_type == 'zero':
+ p = second_dilation * 2
+ else:
+ raise NotImplementedError('padding [%s] is not implemented' % padding_type)
+ conv_block += [conv_layer(dim, dim, kernel_size=5, padding=p, dilation=second_dilation, groups=groups),
+ norm_layer(dim)]
+
+ return nn.Sequential(*conv_block)
+
+ def forward(self, x):
+ x_before = x
+ if self.in_dim is not None:
+ x = self.input_conv(x)
+ out = x + self.conv_block(x_before)
+ return out
+
+
+class MultidilatedResnetBlock(nn.Module):
+ def __init__(self, dim, padding_type, conv_layer, norm_layer, activation=nn.ReLU(True), use_dropout=False):
+ super().__init__()
+ self.conv_block = self.build_conv_block(dim, padding_type, conv_layer, norm_layer, activation, use_dropout)
+
+ def build_conv_block(self, dim, padding_type, conv_layer, norm_layer, activation, use_dropout, dilation=1):
+ conv_block = []
+ conv_block += [conv_layer(dim, dim, kernel_size=3, padding_mode=padding_type),
+ norm_layer(dim),
+ activation]
+ if use_dropout:
+ conv_block += [nn.Dropout(0.5)]
+
+ conv_block += [conv_layer(dim, dim, kernel_size=3, padding_mode=padding_type),
+ norm_layer(dim)]
+
+ return nn.Sequential(*conv_block)
+
+ def forward(self, x):
+ out = x + self.conv_block(x)
+ return out
+
+
+class MultiDilatedGlobalGenerator(nn.Module):
+ def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3,
+ n_blocks=3, norm_layer=nn.BatchNorm2d,
+ padding_type='reflect', conv_kind='default',
+ deconv_kind='convtranspose', activation=nn.ReLU(True),
+ up_norm_layer=nn.BatchNorm2d, affine=None, up_activation=nn.ReLU(True),
+ add_out_act=True, max_features=1024, multidilation_kwargs={},
+ ffc_positions=None, ffc_kwargs={}):
+ assert (n_blocks >= 0)
+ super().__init__()
+
+ conv_layer = get_conv_block_ctor(conv_kind)
+ resnet_conv_layer = functools.partial(get_conv_block_ctor('multidilated'), **multidilation_kwargs)
+ norm_layer = get_norm_layer(norm_layer)
+ if affine is not None:
+ norm_layer = partial(norm_layer, affine=affine)
+ up_norm_layer = get_norm_layer(up_norm_layer)
+ if affine is not None:
+ up_norm_layer = partial(up_norm_layer, affine=affine)
+
+ model = [nn.ReflectionPad2d(3),
+ conv_layer(input_nc, ngf, kernel_size=7, padding=0),
+ norm_layer(ngf),
+ activation]
+
+ identity = Identity()
+ ### downsample
+ for i in range(n_downsampling):
+ mult = 2 ** i
+
+ model += [conv_layer(min(max_features, ngf * mult),
+ min(max_features, ngf * mult * 2),
+ kernel_size=3, stride=2, padding=1),
+ norm_layer(min(max_features, ngf * mult * 2)),
+ activation]
+
+ mult = 2 ** n_downsampling
+ feats_num_bottleneck = min(max_features, ngf * mult)
+
+ ### resnet blocks
+ for i in range(n_blocks):
+ if ffc_positions is not None and i in ffc_positions:
+ model += [FFCResnetBlock(feats_num_bottleneck, padding_type, norm_layer, activation_layer=nn.ReLU,
+ inline=True, **ffc_kwargs)]
+ model += [MultidilatedResnetBlock(feats_num_bottleneck, padding_type=padding_type,
+ conv_layer=resnet_conv_layer, activation=activation,
+ norm_layer=norm_layer)]
+
+ ### upsample
+ for i in range(n_downsampling):
+ mult = 2 ** (n_downsampling - i)
+ model += deconv_factory(deconv_kind, ngf, mult, up_norm_layer, up_activation, max_features)
+ model += [nn.ReflectionPad2d(3),
+ nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
+ if add_out_act:
+ model.append(get_activation('tanh' if add_out_act is True else add_out_act))
+ self.model = nn.Sequential(*model)
+
+ def forward(self, input):
+ return self.model(input)
+
+class ConfigGlobalGenerator(nn.Module):
+ def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3,
+ n_blocks=3, norm_layer=nn.BatchNorm2d,
+ padding_type='reflect', conv_kind='default',
+ deconv_kind='convtranspose', activation=nn.ReLU(True),
+ up_norm_layer=nn.BatchNorm2d, affine=None, up_activation=nn.ReLU(True),
+ add_out_act=True, max_features=1024,
+ manual_block_spec=[],
+ resnet_block_kind='multidilatedresnetblock',
+ resnet_conv_kind='multidilated',
+ resnet_dilation=1,
+ multidilation_kwargs={}):
+ assert (n_blocks >= 0)
+ super().__init__()
+
+ conv_layer = get_conv_block_ctor(conv_kind)
+ resnet_conv_layer = functools.partial(get_conv_block_ctor(resnet_conv_kind), **multidilation_kwargs)
+ norm_layer = get_norm_layer(norm_layer)
+ if affine is not None:
+ norm_layer = partial(norm_layer, affine=affine)
+ up_norm_layer = get_norm_layer(up_norm_layer)
+ if affine is not None:
+ up_norm_layer = partial(up_norm_layer, affine=affine)
+
+ model = [nn.ReflectionPad2d(3),
+ conv_layer(input_nc, ngf, kernel_size=7, padding=0),
+ norm_layer(ngf),
+ activation]
+
+ identity = Identity()
+
+ ### downsample
+ for i in range(n_downsampling):
+ mult = 2 ** i
+ model += [conv_layer(min(max_features, ngf * mult),
+ min(max_features, ngf * mult * 2),
+ kernel_size=3, stride=2, padding=1),
+ norm_layer(min(max_features, ngf * mult * 2)),
+ activation]
+
+ mult = 2 ** n_downsampling
+ feats_num_bottleneck = min(max_features, ngf * mult)
+
+ if len(manual_block_spec) == 0:
+ manual_block_spec = [
+ DotDict(lambda : None, {
+ 'n_blocks': n_blocks,
+ 'use_default': True})
+ ]
+
+ ### resnet blocks
+ for block_spec in manual_block_spec:
+ def make_and_add_blocks(model, block_spec):
+ block_spec = DotDict(lambda : None, block_spec)
+ if not block_spec.use_default:
+ resnet_conv_layer = functools.partial(get_conv_block_ctor(block_spec.resnet_conv_kind), **block_spec.multidilation_kwargs)
+ resnet_conv_kind = block_spec.resnet_conv_kind
+ resnet_block_kind = block_spec.resnet_block_kind
+ if block_spec.resnet_dilation is not None:
+ resnet_dilation = block_spec.resnet_dilation
+ for i in range(block_spec.n_blocks):
+ if resnet_block_kind == "multidilatedresnetblock":
+ model += [MultidilatedResnetBlock(feats_num_bottleneck, padding_type=padding_type,
+ conv_layer=resnet_conv_layer, activation=activation,
+ norm_layer=norm_layer)]
+ if resnet_block_kind == "resnetblock":
+ model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
+ conv_kind=resnet_conv_kind)]
+ if resnet_block_kind == "resnetblock5x5":
+ model += [ResnetBlock5x5(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
+ conv_kind=resnet_conv_kind)]
+ if resnet_block_kind == "resnetblockdwdil":
+ model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
+ conv_kind=resnet_conv_kind, dilation=resnet_dilation, second_dilation=resnet_dilation)]
+ make_and_add_blocks(model, block_spec)
+
+ ### upsample
+ for i in range(n_downsampling):
+ mult = 2 ** (n_downsampling - i)
+ model += deconv_factory(deconv_kind, ngf, mult, up_norm_layer, up_activation, max_features)
+ model += [nn.ReflectionPad2d(3),
+ nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
+ if add_out_act:
+ model.append(get_activation('tanh' if add_out_act is True else add_out_act))
+ self.model = nn.Sequential(*model)
+
+ def forward(self, input):
+ return self.model(input)
+
+
+def make_dil_blocks(dilated_blocks_n, dilation_block_kind, dilated_block_kwargs):
+ blocks = []
+ for i in range(dilated_blocks_n):
+ if dilation_block_kind == 'simple':
+ blocks.append(ResnetBlock(**dilated_block_kwargs, dilation=2 ** (i + 1)))
+ elif dilation_block_kind == 'multi':
+ blocks.append(MultidilatedResnetBlock(**dilated_block_kwargs))
+ else:
+ raise ValueError(f'dilation_block_kind could not be "{dilation_block_kind}"')
+ return blocks
+
+
+class GlobalGenerator(nn.Module):
+ def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
+ padding_type='reflect', conv_kind='default', activation=nn.ReLU(True),
+ up_norm_layer=nn.BatchNorm2d, affine=None,
+ up_activation=nn.ReLU(True), dilated_blocks_n=0, dilated_blocks_n_start=0,
+ dilated_blocks_n_middle=0,
+ add_out_act=True,
+ max_features=1024, is_resblock_depthwise=False,
+ ffc_positions=None, ffc_kwargs={}, dilation=1, second_dilation=None,
+ dilation_block_kind='simple', multidilation_kwargs={}):
+ assert (n_blocks >= 0)
+ super().__init__()
+
+ conv_layer = get_conv_block_ctor(conv_kind)
+ norm_layer = get_norm_layer(norm_layer)
+ if affine is not None:
+ norm_layer = partial(norm_layer, affine=affine)
+ up_norm_layer = get_norm_layer(up_norm_layer)
+ if affine is not None:
+ up_norm_layer = partial(up_norm_layer, affine=affine)
+
+ if ffc_positions is not None:
+ ffc_positions = collections.Counter(ffc_positions)
+
+ model = [nn.ReflectionPad2d(3),
+ conv_layer(input_nc, ngf, kernel_size=7, padding=0),
+ norm_layer(ngf),
+ activation]
+
+ identity = Identity()
+ ### downsample
+ for i in range(n_downsampling):
+ mult = 2 ** i
+
+ model += [conv_layer(min(max_features, ngf * mult),
+ min(max_features, ngf * mult * 2),
+ kernel_size=3, stride=2, padding=1),
+ norm_layer(min(max_features, ngf * mult * 2)),
+ activation]
+
+ mult = 2 ** n_downsampling
+ feats_num_bottleneck = min(max_features, ngf * mult)
+
+ dilated_block_kwargs = dict(dim=feats_num_bottleneck, padding_type=padding_type,
+ activation=activation, norm_layer=norm_layer)
+ if dilation_block_kind == 'simple':
+ dilated_block_kwargs['conv_kind'] = conv_kind
+ elif dilation_block_kind == 'multi':
+ dilated_block_kwargs['conv_layer'] = functools.partial(
+ get_conv_block_ctor('multidilated'), **multidilation_kwargs)
+
+ # dilated blocks at the start of the bottleneck sausage
+ if dilated_blocks_n_start is not None and dilated_blocks_n_start > 0:
+ model += make_dil_blocks(dilated_blocks_n_start, dilation_block_kind, dilated_block_kwargs)
+
+ # resnet blocks
+ for i in range(n_blocks):
+ # dilated blocks at the middle of the bottleneck sausage
+ if i == n_blocks // 2 and dilated_blocks_n_middle is not None and dilated_blocks_n_middle > 0:
+ model += make_dil_blocks(dilated_blocks_n_middle, dilation_block_kind, dilated_block_kwargs)
+
+ if ffc_positions is not None and i in ffc_positions:
+ for _ in range(ffc_positions[i]): # same position can occur more than once
+ model += [FFCResnetBlock(feats_num_bottleneck, padding_type, norm_layer, activation_layer=nn.ReLU,
+ inline=True, **ffc_kwargs)]
+
+ if is_resblock_depthwise:
+ resblock_groups = feats_num_bottleneck
+ else:
+ resblock_groups = 1
+
+ model += [ResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation=activation,
+ norm_layer=norm_layer, conv_kind=conv_kind, groups=resblock_groups,
+ dilation=dilation, second_dilation=second_dilation)]
+
+
+ # dilated blocks at the end of the bottleneck sausage
+ if dilated_blocks_n is not None and dilated_blocks_n > 0:
+ model += make_dil_blocks(dilated_blocks_n, dilation_block_kind, dilated_block_kwargs)
+
+ # upsample
+ for i in range(n_downsampling):
+ mult = 2 ** (n_downsampling - i)
+ model += [nn.ConvTranspose2d(min(max_features, ngf * mult),
+ min(max_features, int(ngf * mult / 2)),
+ kernel_size=3, stride=2, padding=1, output_padding=1),
+ up_norm_layer(min(max_features, int(ngf * mult / 2))),
+ up_activation]
+ model += [nn.ReflectionPad2d(3),
+ nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]
+ if add_out_act:
+ model.append(get_activation('tanh' if add_out_act is True else add_out_act))
+ self.model = nn.Sequential(*model)
+
+ def forward(self, input):
+ return self.model(input)
+
+
+class GlobalGeneratorGated(GlobalGenerator):
+ def __init__(self, *args, **kwargs):
+ real_kwargs=dict(
+ conv_kind='gated_bn_relu',
+ activation=nn.Identity(),
+ norm_layer=nn.Identity
+ )
+ real_kwargs.update(kwargs)
+ super().__init__(*args, **real_kwargs)
+
+
+class GlobalGeneratorFromSuperChannels(nn.Module):
+ def __init__(self, input_nc, output_nc, n_downsampling, n_blocks, super_channels, norm_layer="bn", padding_type='reflect', add_out_act=True):
+ super().__init__()
+ self.n_downsampling = n_downsampling
+ norm_layer = get_norm_layer(norm_layer)
+ if type(norm_layer) == functools.partial:
+ use_bias = (norm_layer.func == nn.InstanceNorm2d)
+ else:
+ use_bias = (norm_layer == nn.InstanceNorm2d)
+
+ channels = self.convert_super_channels(super_channels)
+ self.channels = channels
+
+ model = [nn.ReflectionPad2d(3),
+ nn.Conv2d(input_nc, channels[0], kernel_size=7, padding=0, bias=use_bias),
+ norm_layer(channels[0]),
+ nn.ReLU(True)]
+
+ for i in range(n_downsampling): # add downsampling layers
+ mult = 2 ** i
+ model += [nn.Conv2d(channels[0+i], channels[1+i], kernel_size=3, stride=2, padding=1, bias=use_bias),
+ norm_layer(channels[1+i]),
+ nn.ReLU(True)]
+
+ mult = 2 ** n_downsampling
+
+ n_blocks1 = n_blocks // 3
+ n_blocks2 = n_blocks1
+ n_blocks3 = n_blocks - n_blocks1 - n_blocks2
+
+ for i in range(n_blocks1):
+ c = n_downsampling
+ dim = channels[c]
+ model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer)]
+
+ for i in range(n_blocks2):
+ c = n_downsampling+1
+ dim = channels[c]
+ kwargs = {}
+ if i == 0:
+ kwargs = {"in_dim": channels[c-1]}
+ model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer, **kwargs)]
+
+ for i in range(n_blocks3):
+ c = n_downsampling+2
+ dim = channels[c]
+ kwargs = {}
+ if i == 0:
+ kwargs = {"in_dim": channels[c-1]}
+ model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer, **kwargs)]
+
+ for i in range(n_downsampling): # add upsampling layers
+ mult = 2 ** (n_downsampling - i)
+ model += [nn.ConvTranspose2d(channels[n_downsampling+3+i],
+ channels[n_downsampling+3+i+1],
+ kernel_size=3, stride=2,
+ padding=1, output_padding=1,
+ bias=use_bias),
+ norm_layer(channels[n_downsampling+3+i+1]),
+ nn.ReLU(True)]
+ model += [nn.ReflectionPad2d(3)]
+ model += [nn.Conv2d(channels[2*n_downsampling+3], output_nc, kernel_size=7, padding=0)]
+
+ if add_out_act:
+ model.append(get_activation('tanh' if add_out_act is True else add_out_act))
+ self.model = nn.Sequential(*model)
+
+ def convert_super_channels(self, super_channels):
+ n_downsampling = self.n_downsampling
+ result = []
+ cnt = 0
+
+ if n_downsampling == 2:
+ N1 = 10
+ elif n_downsampling == 3:
+ N1 = 13
+ else:
+ raise NotImplementedError
+
+ for i in range(0, N1):
+ if i in [1,4,7,10]:
+ channel = super_channels[cnt] * (2 ** cnt)
+ config = {'channel': channel}
+ result.append(channel)
+ logging.info(f"Downsample channels {result[-1]}")
+ cnt += 1
+
+ for i in range(3):
+ for counter, j in enumerate(range(N1 + i * 3, N1 + 3 + i * 3)):
+ if len(super_channels) == 6:
+ channel = super_channels[3] * 4
+ else:
+ channel = super_channels[i + 3] * 4
+ config = {'channel': channel}
+ if counter == 0:
+ result.append(channel)
+ logging.info(f"Bottleneck channels {result[-1]}")
+ cnt = 2
+
+ for i in range(N1+9, N1+21):
+ if i in [22, 25,28]:
+ cnt -= 1
+ if len(super_channels) == 6:
+ channel = super_channels[5 - cnt] * (2 ** cnt)
+ else:
+ channel = super_channels[7 - cnt] * (2 ** cnt)
+ result.append(int(channel))
+ logging.info(f"Upsample channels {result[-1]}")
+ return result
+
+ def forward(self, input):
+ return self.model(input)
+
+
+# Defines the PatchGAN discriminator with the specified arguments.
+class NLayerDiscriminator(BaseDiscriminator):
+ def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,):
+ super().__init__()
+ self.n_layers = n_layers
+
+ kw = 4
+ padw = int(np.ceil((kw-1.0)/2))
+ sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
+ nn.LeakyReLU(0.2, True)]]
+
+ nf = ndf
+ for n in range(1, n_layers):
+ nf_prev = nf
+ nf = min(nf * 2, 512)
+
+ cur_model = []
+ cur_model += [
+ nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw),
+ norm_layer(nf),
+ nn.LeakyReLU(0.2, True)
+ ]
+ sequence.append(cur_model)
+
+ nf_prev = nf
+ nf = min(nf * 2, 512)
+
+ cur_model = []
+ cur_model += [
+ nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
+ norm_layer(nf),
+ nn.LeakyReLU(0.2, True)
+ ]
+ sequence.append(cur_model)
+
+ sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
+
+ for n in range(len(sequence)):
+ setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
+
+ def get_all_activations(self, x):
+ res = [x]
+ for n in range(self.n_layers + 2):
+ model = getattr(self, 'model' + str(n))
+ res.append(model(res[-1]))
+ return res[1:]
+
+ def forward(self, x):
+ act = self.get_all_activations(x)
+ return act[-1], act[:-1]
+
+
+class MultidilatedNLayerDiscriminator(BaseDiscriminator):
+ def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, multidilation_kwargs={}):
+ super().__init__()
+ self.n_layers = n_layers
+
+ kw = 4
+ padw = int(np.ceil((kw-1.0)/2))
+ sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
+ nn.LeakyReLU(0.2, True)]]
+
+ nf = ndf
+ for n in range(1, n_layers):
+ nf_prev = nf
+ nf = min(nf * 2, 512)
+
+ cur_model = []
+ cur_model += [
+ MultidilatedConv(nf_prev, nf, kernel_size=kw, stride=2, padding=[2, 3], **multidilation_kwargs),
+ norm_layer(nf),
+ nn.LeakyReLU(0.2, True)
+ ]
+ sequence.append(cur_model)
+
+ nf_prev = nf
+ nf = min(nf * 2, 512)
+
+ cur_model = []
+ cur_model += [
+ nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw),
+ norm_layer(nf),
+ nn.LeakyReLU(0.2, True)
+ ]
+ sequence.append(cur_model)
+
+ sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]]
+
+ for n in range(len(sequence)):
+ setattr(self, 'model'+str(n), nn.Sequential(*sequence[n]))
+
+ def get_all_activations(self, x):
+ res = [x]
+ for n in range(self.n_layers + 2):
+ model = getattr(self, 'model' + str(n))
+ res.append(model(res[-1]))
+ return res[1:]
+
+ def forward(self, x):
+ act = self.get_all_activations(x)
+ return act[-1], act[:-1]
+
+
+class NLayerDiscriminatorAsGen(NLayerDiscriminator):
+ def forward(self, x):
+ return super().forward(x)[0]
diff --git a/saicinpainting/training/modules/spatial_transform.py b/saicinpainting/training/modules/spatial_transform.py
new file mode 100644
index 00000000..2de024ba
--- /dev/null
+++ b/saicinpainting/training/modules/spatial_transform.py
@@ -0,0 +1,49 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from kornia.geometry.transform import rotate
+
+
+class LearnableSpatialTransformWrapper(nn.Module):
+ def __init__(self, impl, pad_coef=0.5, angle_init_range=80, train_angle=True):
+ super().__init__()
+ self.impl = impl
+ self.angle = torch.rand(1) * angle_init_range
+ if train_angle:
+ self.angle = nn.Parameter(self.angle, requires_grad=True)
+ self.pad_coef = pad_coef
+
+ def forward(self, x):
+ if torch.is_tensor(x):
+ return self.inverse_transform(self.impl(self.transform(x)), x)
+ elif isinstance(x, tuple):
+ x_trans = tuple(self.transform(elem) for elem in x)
+ y_trans = self.impl(x_trans)
+ return tuple(self.inverse_transform(elem, orig_x) for elem, orig_x in zip(y_trans, x))
+ else:
+ raise ValueError(f'Unexpected input type {type(x)}')
+
+ def transform(self, x):
+ height, width = x.shape[2:]
+ pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
+ x_padded = F.pad(x, [pad_w, pad_w, pad_h, pad_h], mode='reflect')
+ x_padded_rotated = rotate(x_padded, angle=self.angle.to(x_padded))
+ return x_padded_rotated
+
+ def inverse_transform(self, y_padded_rotated, orig_x):
+ height, width = orig_x.shape[2:]
+ pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef)
+
+ y_padded = rotate(y_padded_rotated, angle=-self.angle.to(y_padded_rotated))
+ y_height, y_width = y_padded.shape[2:]
+ y = y_padded[:, :, pad_h : y_height - pad_h, pad_w : y_width - pad_w]
+ return y
+
+
+if __name__ == '__main__':
+ layer = LearnableSpatialTransformWrapper(nn.Identity())
+ x = torch.arange(2* 3 * 15 * 15).view(2, 3, 15, 15).float()
+ y = layer(x)
+ assert x.shape == y.shape
+ assert torch.allclose(x[:, :, 1:, 1:][:, :, :-1, :-1], y[:, :, 1:, 1:][:, :, :-1, :-1])
+ print('all ok')
diff --git a/saicinpainting/training/modules/squeeze_excitation.py b/saicinpainting/training/modules/squeeze_excitation.py
new file mode 100644
index 00000000..d1d902bb
--- /dev/null
+++ b/saicinpainting/training/modules/squeeze_excitation.py
@@ -0,0 +1,20 @@
+import torch.nn as nn
+
+
+class SELayer(nn.Module):
+ def __init__(self, channel, reduction=16):
+ super(SELayer, self).__init__()
+ self.avg_pool = nn.AdaptiveAvgPool2d(1)
+ self.fc = nn.Sequential(
+ nn.Linear(channel, channel // reduction, bias=False),
+ nn.ReLU(inplace=True),
+ nn.Linear(channel // reduction, channel, bias=False),
+ nn.Sigmoid()
+ )
+
+ def forward(self, x):
+ b, c, _, _ = x.size()
+ y = self.avg_pool(x).view(b, c)
+ y = self.fc(y).view(b, c, 1, 1)
+ res = x * y.expand_as(x)
+ return res
diff --git a/saicinpainting/training/trainers/__init__.py b/saicinpainting/training/trainers/__init__.py
new file mode 100644
index 00000000..c59241f5
--- /dev/null
+++ b/saicinpainting/training/trainers/__init__.py
@@ -0,0 +1,30 @@
+import logging
+import torch
+from saicinpainting.training.trainers.default import DefaultInpaintingTrainingModule
+
+
+def get_training_model_class(kind):
+ if kind == 'default':
+ return DefaultInpaintingTrainingModule
+
+ raise ValueError(f'Unknown trainer module {kind}')
+
+
+def make_training_model(config):
+ kind = config.training_model.kind
+ kwargs = dict(config.training_model)
+ kwargs.pop('kind')
+ kwargs['use_ddp'] = config.trainer.kwargs.get('accelerator', None) == 'ddp'
+
+ logging.info(f'Make training model {kind}')
+
+ cls = get_training_model_class(kind)
+ return cls(config, **kwargs)
+
+
+def load_checkpoint(train_config, path, map_location='cuda', strict=True):
+ model: torch.nn.Module = make_training_model(train_config)
+ state = torch.load(path, map_location=map_location)
+ model.load_state_dict(state['state_dict'], strict=strict)
+ model.on_load_checkpoint(state)
+ return model
diff --git a/saicinpainting/training/trainers/base.py b/saicinpainting/training/trainers/base.py
new file mode 100644
index 00000000..f1b1c66f
--- /dev/null
+++ b/saicinpainting/training/trainers/base.py
@@ -0,0 +1,291 @@
+import copy
+import logging
+from typing import Dict, Tuple
+
+import pandas as pd
+import pytorch_lightning as ptl
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.utils.data import DistributedSampler
+
+from saicinpainting.evaluation import make_evaluator
+from saicinpainting.training.data.datasets import make_default_train_dataloader, make_default_val_dataloader
+from saicinpainting.training.losses.adversarial import make_discrim_loss
+from saicinpainting.training.losses.perceptual import PerceptualLoss, ResNetPL
+from saicinpainting.training.modules import make_generator, make_discriminator
+from saicinpainting.training.visualizers import make_visualizer
+from saicinpainting.utils import add_prefix_to_keys, average_dicts, set_requires_grad, flatten_dict, \
+ get_has_ddp_rank
+
+LOGGER = logging.getLogger(__name__)
+
+
+def make_optimizer(parameters, kind='adamw', **kwargs):
+ if kind == 'adam':
+ optimizer_class = torch.optim.Adam
+ elif kind == 'adamw':
+ optimizer_class = torch.optim.AdamW
+ else:
+ raise ValueError(f'Unknown optimizer kind {kind}')
+ return optimizer_class(parameters, **kwargs)
+
+
+def update_running_average(result: nn.Module, new_iterate_model: nn.Module, decay=0.999):
+ with torch.no_grad():
+ res_params = dict(result.named_parameters())
+ new_params = dict(new_iterate_model.named_parameters())
+
+ for k in res_params.keys():
+ res_params[k].data.mul_(decay).add_(new_params[k].data, alpha=1 - decay)
+
+
+def make_multiscale_noise(base_tensor, scales=6, scale_mode='bilinear'):
+ batch_size, _, height, width = base_tensor.shape
+ cur_height, cur_width = height, width
+ result = []
+ align_corners = False if scale_mode in ('bilinear', 'bicubic') else None
+ for _ in range(scales):
+ cur_sample = torch.randn(batch_size, 1, cur_height, cur_width, device=base_tensor.device)
+ cur_sample_scaled = F.interpolate(cur_sample, size=(height, width), mode=scale_mode, align_corners=align_corners)
+ result.append(cur_sample_scaled)
+ cur_height //= 2
+ cur_width //= 2
+ return torch.cat(result, dim=1)
+
+
+class BaseInpaintingTrainingModule(ptl.LightningModule):
+ def __init__(self, config, use_ddp, *args, predict_only=False, visualize_each_iters=100,
+ average_generator=False, generator_avg_beta=0.999, average_generator_start_step=30000,
+ average_generator_period=10, store_discr_outputs_for_vis=False,
+ **kwargs):
+ super().__init__(*args, **kwargs)
+ LOGGER.info('BaseInpaintingTrainingModule init called')
+
+ self.config = config
+
+ self.generator = make_generator(config, **self.config.generator)
+ self.use_ddp = use_ddp
+
+ if not get_has_ddp_rank():
+ LOGGER.info(f'Generator\n{self.generator}')
+
+ if not predict_only:
+ self.save_hyperparameters(self.config)
+ self.discriminator = make_discriminator(**self.config.discriminator)
+ self.adversarial_loss = make_discrim_loss(**self.config.losses.adversarial)
+ self.visualizer = make_visualizer(**self.config.visualizer)
+ self.val_evaluator = make_evaluator(**self.config.evaluator)
+ self.test_evaluator = make_evaluator(**self.config.evaluator)
+
+ if not get_has_ddp_rank():
+ LOGGER.info(f'Discriminator\n{self.discriminator}')
+
+ extra_val = self.config.data.get('extra_val', ())
+ if extra_val:
+ self.extra_val_titles = list(extra_val)
+ self.extra_evaluators = nn.ModuleDict({k: make_evaluator(**self.config.evaluator)
+ for k in extra_val})
+ else:
+ self.extra_evaluators = {}
+
+ self.average_generator = average_generator
+ self.generator_avg_beta = generator_avg_beta
+ self.average_generator_start_step = average_generator_start_step
+ self.average_generator_period = average_generator_period
+ self.generator_average = None
+ self.last_generator_averaging_step = -1
+ self.store_discr_outputs_for_vis = store_discr_outputs_for_vis
+
+ if self.config.losses.get("l1", {"weight_known": 0})['weight_known'] > 0:
+ self.loss_l1 = nn.L1Loss(reduction='none')
+
+ if self.config.losses.get("mse", {"weight": 0})['weight'] > 0:
+ self.loss_mse = nn.MSELoss(reduction='none')
+
+ if self.config.losses.perceptual.weight > 0:
+ self.loss_pl = PerceptualLoss()
+
+ if self.config.losses.get("resnet_pl", {"weight": 0})['weight'] > 0:
+ self.loss_resnet_pl = ResNetPL(**self.config.losses.resnet_pl)
+ else:
+ self.loss_resnet_pl = None
+
+ self.visualize_each_iters = visualize_each_iters
+ LOGGER.info('BaseInpaintingTrainingModule init done')
+
+ def configure_optimizers(self):
+ discriminator_params = list(self.discriminator.parameters())
+ return [
+ dict(optimizer=make_optimizer(self.generator.parameters(), **self.config.optimizers.generator)),
+ dict(optimizer=make_optimizer(discriminator_params, **self.config.optimizers.discriminator)),
+ ]
+
+ def train_dataloader(self):
+ kwargs = dict(self.config.data.train)
+ if self.use_ddp:
+ kwargs['ddp_kwargs'] = dict(num_replicas=self.trainer.num_nodes * self.trainer.num_processes,
+ rank=self.trainer.global_rank,
+ shuffle=True)
+ dataloader = make_default_train_dataloader(**self.config.data.train)
+ return dataloader
+
+ def val_dataloader(self):
+ res = [make_default_val_dataloader(**self.config.data.val)]
+
+ if self.config.data.visual_test is not None:
+ res = res + [make_default_val_dataloader(**self.config.data.visual_test)]
+ else:
+ res = res + res
+
+ extra_val = self.config.data.get('extra_val', ())
+ if extra_val:
+ res += [make_default_val_dataloader(**extra_val[k]) for k in self.extra_val_titles]
+
+ return res
+
+ def training_step(self, batch, batch_idx, optimizer_idx=None):
+ self._is_training_step = True
+ return self._do_step(batch, batch_idx, mode='train', optimizer_idx=optimizer_idx)
+
+ def validation_step(self, batch, batch_idx, dataloader_idx):
+ extra_val_key = None
+ if dataloader_idx == 0:
+ mode = 'val'
+ elif dataloader_idx == 1:
+ mode = 'test'
+ else:
+ mode = 'extra_val'
+ extra_val_key = self.extra_val_titles[dataloader_idx - 2]
+ self._is_training_step = False
+ return self._do_step(batch, batch_idx, mode=mode, extra_val_key=extra_val_key)
+
+ def training_step_end(self, batch_parts_outputs):
+ if self.training and self.average_generator \
+ and self.global_step >= self.average_generator_start_step \
+ and self.global_step >= self.last_generator_averaging_step + self.average_generator_period:
+ if self.generator_average is None:
+ self.generator_average = copy.deepcopy(self.generator)
+ else:
+ update_running_average(self.generator_average, self.generator, decay=self.generator_avg_beta)
+ self.last_generator_averaging_step = self.global_step
+
+ full_loss = (batch_parts_outputs['loss'].mean()
+ if torch.is_tensor(batch_parts_outputs['loss']) # loss is not tensor when no discriminator used
+ else torch.tensor(batch_parts_outputs['loss']).float().requires_grad_(True))
+ log_info = {k: v.mean() for k, v in batch_parts_outputs['log_info'].items()}
+ self.log_dict(log_info, on_step=True, on_epoch=False)
+ return full_loss
+
+ def validation_epoch_end(self, outputs):
+ outputs = [step_out for out_group in outputs for step_out in out_group]
+ averaged_logs = average_dicts(step_out['log_info'] for step_out in outputs)
+ self.log_dict({k: v.mean() for k, v in averaged_logs.items()})
+
+ pd.set_option('display.max_columns', 500)
+ pd.set_option('display.width', 1000)
+
+ # standard validation
+ val_evaluator_states = [s['val_evaluator_state'] for s in outputs if 'val_evaluator_state' in s]
+ val_evaluator_res = self.val_evaluator.evaluation_end(states=val_evaluator_states)
+ val_evaluator_res_df = pd.DataFrame(val_evaluator_res).stack(1).unstack(0)
+ val_evaluator_res_df.dropna(axis=1, how='all', inplace=True)
+ LOGGER.info(f'Validation metrics after epoch #{self.current_epoch}, '
+ f'total {self.global_step} iterations:\n{val_evaluator_res_df}')
+
+ for k, v in flatten_dict(val_evaluator_res).items():
+ self.log(f'val_{k}', v)
+
+ # standard visual test
+ test_evaluator_states = [s['test_evaluator_state'] for s in outputs
+ if 'test_evaluator_state' in s]
+ test_evaluator_res = self.test_evaluator.evaluation_end(states=test_evaluator_states)
+ test_evaluator_res_df = pd.DataFrame(test_evaluator_res).stack(1).unstack(0)
+ test_evaluator_res_df.dropna(axis=1, how='all', inplace=True)
+ LOGGER.info(f'Test metrics after epoch #{self.current_epoch}, '
+ f'total {self.global_step} iterations:\n{test_evaluator_res_df}')
+
+ for k, v in flatten_dict(test_evaluator_res).items():
+ self.log(f'test_{k}', v)
+
+ # extra validations
+ if self.extra_evaluators:
+ for cur_eval_title, cur_evaluator in self.extra_evaluators.items():
+ cur_state_key = f'extra_val_{cur_eval_title}_evaluator_state'
+ cur_states = [s[cur_state_key] for s in outputs if cur_state_key in s]
+ cur_evaluator_res = cur_evaluator.evaluation_end(states=cur_states)
+ cur_evaluator_res_df = pd.DataFrame(cur_evaluator_res).stack(1).unstack(0)
+ cur_evaluator_res_df.dropna(axis=1, how='all', inplace=True)
+ LOGGER.info(f'Extra val {cur_eval_title} metrics after epoch #{self.current_epoch}, '
+ f'total {self.global_step} iterations:\n{cur_evaluator_res_df}')
+ for k, v in flatten_dict(cur_evaluator_res).items():
+ self.log(f'extra_val_{cur_eval_title}_{k}', v)
+
+ def _do_step(self, batch, batch_idx, mode='train', optimizer_idx=None, extra_val_key=None):
+ if optimizer_idx == 0: # step for generator
+ set_requires_grad(self.generator, True)
+ set_requires_grad(self.discriminator, False)
+ elif optimizer_idx == 1: # step for discriminator
+ set_requires_grad(self.generator, False)
+ set_requires_grad(self.discriminator, True)
+
+ batch = self(batch)
+
+ total_loss = 0
+ metrics = {}
+
+ if optimizer_idx is None or optimizer_idx == 0: # step for generator
+ total_loss, metrics = self.generator_loss(batch)
+
+ elif optimizer_idx is None or optimizer_idx == 1: # step for discriminator
+ if self.config.losses.adversarial.weight > 0:
+ total_loss, metrics = self.discriminator_loss(batch)
+
+ if self.get_ddp_rank() in (None, 0) and (batch_idx % self.visualize_each_iters == 0 or mode == 'test'):
+ if self.config.losses.adversarial.weight > 0:
+ if self.store_discr_outputs_for_vis:
+ with torch.no_grad():
+ self.store_discr_outputs(batch)
+ vis_suffix = f'_{mode}'
+ if mode == 'extra_val':
+ vis_suffix += f'_{extra_val_key}'
+ self.visualizer(self.current_epoch, batch_idx, batch, suffix=vis_suffix)
+
+ metrics_prefix = f'{mode}_'
+ if mode == 'extra_val':
+ metrics_prefix += f'{extra_val_key}_'
+ result = dict(loss=total_loss, log_info=add_prefix_to_keys(metrics, metrics_prefix))
+ if mode == 'val':
+ result['val_evaluator_state'] = self.val_evaluator.process_batch(batch)
+ elif mode == 'test':
+ result['test_evaluator_state'] = self.test_evaluator.process_batch(batch)
+ elif mode == 'extra_val':
+ result[f'extra_val_{extra_val_key}_evaluator_state'] = self.extra_evaluators[extra_val_key].process_batch(batch)
+
+ return result
+
+ def get_current_generator(self, no_average=False):
+ if not no_average and not self.training and self.average_generator and self.generator_average is not None:
+ return self.generator_average
+ return self.generator
+
+ def forward(self, batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
+ """Pass data through generator and obtain at leas 'predicted_image' and 'inpainted' keys"""
+ raise NotImplementedError()
+
+ def generator_loss(self, batch) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
+ raise NotImplementedError()
+
+ def discriminator_loss(self, batch) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
+ raise NotImplementedError()
+
+ def store_discr_outputs(self, batch):
+ out_size = batch['image'].shape[2:]
+ discr_real_out, _ = self.discriminator(batch['image'])
+ discr_fake_out, _ = self.discriminator(batch['predicted_image'])
+ batch['discr_output_real'] = F.interpolate(discr_real_out, size=out_size, mode='nearest')
+ batch['discr_output_fake'] = F.interpolate(discr_fake_out, size=out_size, mode='nearest')
+ batch['discr_output_diff'] = batch['discr_output_real'] - batch['discr_output_fake']
+
+ def get_ddp_rank(self):
+ return self.trainer.global_rank if (self.trainer.num_nodes * self.trainer.num_processes) > 1 else None
diff --git a/saicinpainting/training/trainers/default.py b/saicinpainting/training/trainers/default.py
new file mode 100644
index 00000000..86c7f0fa
--- /dev/null
+++ b/saicinpainting/training/trainers/default.py
@@ -0,0 +1,175 @@
+import logging
+
+import torch
+import torch.nn.functional as F
+from omegaconf import OmegaConf
+
+from saicinpainting.training.data.datasets import make_constant_area_crop_params
+from saicinpainting.training.losses.distance_weighting import make_mask_distance_weighter
+from saicinpainting.training.losses.feature_matching import feature_matching_loss, masked_l1_loss
+from saicinpainting.training.modules.fake_fakes import FakeFakesGenerator
+from saicinpainting.training.trainers.base import BaseInpaintingTrainingModule, make_multiscale_noise
+from saicinpainting.utils import add_prefix_to_keys, get_ramp
+
+LOGGER = logging.getLogger(__name__)
+
+
+def make_constant_area_crop_batch(batch, **kwargs):
+ crop_y, crop_x, crop_height, crop_width = make_constant_area_crop_params(img_height=batch['image'].shape[2],
+ img_width=batch['image'].shape[3],
+ **kwargs)
+ batch['image'] = batch['image'][:, :, crop_y : crop_y + crop_height, crop_x : crop_x + crop_width]
+ batch['mask'] = batch['mask'][:, :, crop_y: crop_y + crop_height, crop_x: crop_x + crop_width]
+ return batch
+
+
+class DefaultInpaintingTrainingModule(BaseInpaintingTrainingModule):
+ def __init__(self, *args, concat_mask=True, rescale_scheduler_kwargs=None, image_to_discriminator='predicted_image',
+ add_noise_kwargs=None, noise_fill_hole=False, const_area_crop_kwargs=None,
+ distance_weighter_kwargs=None, distance_weighted_mask_for_discr=False,
+ fake_fakes_proba=0, fake_fakes_generator_kwargs=None,
+ **kwargs):
+ super().__init__(*args, **kwargs)
+ self.concat_mask = concat_mask
+ self.rescale_size_getter = get_ramp(**rescale_scheduler_kwargs) if rescale_scheduler_kwargs is not None else None
+ self.image_to_discriminator = image_to_discriminator
+ self.add_noise_kwargs = add_noise_kwargs
+ self.noise_fill_hole = noise_fill_hole
+ self.const_area_crop_kwargs = const_area_crop_kwargs
+ self.refine_mask_for_losses = make_mask_distance_weighter(**distance_weighter_kwargs) \
+ if distance_weighter_kwargs is not None else None
+ self.distance_weighted_mask_for_discr = distance_weighted_mask_for_discr
+
+ self.fake_fakes_proba = fake_fakes_proba
+ if self.fake_fakes_proba > 1e-3:
+ self.fake_fakes_gen = FakeFakesGenerator(**(fake_fakes_generator_kwargs or {}))
+
+ def forward(self, batch):
+ if self.training and self.rescale_size_getter is not None:
+ cur_size = self.rescale_size_getter(self.global_step)
+ batch['image'] = F.interpolate(batch['image'], size=cur_size, mode='bilinear', align_corners=False)
+ batch['mask'] = F.interpolate(batch['mask'], size=cur_size, mode='nearest')
+
+ if self.training and self.const_area_crop_kwargs is not None:
+ batch = make_constant_area_crop_batch(batch, **self.const_area_crop_kwargs)
+
+ img = batch['image']
+ mask = batch['mask']
+
+ masked_img = img * (1 - mask)
+
+ if self.add_noise_kwargs is not None:
+ noise = make_multiscale_noise(masked_img, **self.add_noise_kwargs)
+ if self.noise_fill_hole:
+ masked_img = masked_img + mask * noise[:, :masked_img.shape[1]]
+ masked_img = torch.cat([masked_img, noise], dim=1)
+
+ if self.concat_mask:
+ masked_img = torch.cat([masked_img, mask], dim=1)
+
+ batch['predicted_image'] = self.generator(masked_img)
+ batch['inpainted'] = mask * batch['predicted_image'] + (1 - mask) * batch['image']
+
+ if self.fake_fakes_proba > 1e-3:
+ if self.training and torch.rand(1).item() < self.fake_fakes_proba:
+ batch['fake_fakes'], batch['fake_fakes_masks'] = self.fake_fakes_gen(img, mask)
+ batch['use_fake_fakes'] = True
+ else:
+ batch['fake_fakes'] = torch.zeros_like(img)
+ batch['fake_fakes_masks'] = torch.zeros_like(mask)
+ batch['use_fake_fakes'] = False
+
+ batch['mask_for_losses'] = self.refine_mask_for_losses(img, batch['predicted_image'], mask) \
+ if self.refine_mask_for_losses is not None and self.training \
+ else mask
+
+ return batch
+
+ def generator_loss(self, batch):
+ img = batch['image']
+ predicted_img = batch[self.image_to_discriminator]
+ original_mask = batch['mask']
+ supervised_mask = batch['mask_for_losses']
+
+ # L1
+ l1_value = masked_l1_loss(predicted_img, img, supervised_mask,
+ self.config.losses.l1.weight_known,
+ self.config.losses.l1.weight_missing)
+
+ total_loss = l1_value
+ metrics = dict(gen_l1=l1_value)
+
+ # vgg-based perceptual loss
+ if self.config.losses.perceptual.weight > 0:
+ pl_value = self.loss_pl(predicted_img, img, mask=supervised_mask).sum() * self.config.losses.perceptual.weight
+ total_loss = total_loss + pl_value
+ metrics['gen_pl'] = pl_value
+
+ # discriminator
+ # adversarial_loss calls backward by itself
+ mask_for_discr = supervised_mask if self.distance_weighted_mask_for_discr else original_mask
+ self.adversarial_loss.pre_generator_step(real_batch=img, fake_batch=predicted_img,
+ generator=self.generator, discriminator=self.discriminator)
+ discr_real_pred, discr_real_features = self.discriminator(img)
+ discr_fake_pred, discr_fake_features = self.discriminator(predicted_img)
+ adv_gen_loss, adv_metrics = self.adversarial_loss.generator_loss(real_batch=img,
+ fake_batch=predicted_img,
+ discr_real_pred=discr_real_pred,
+ discr_fake_pred=discr_fake_pred,
+ mask=mask_for_discr)
+ total_loss = total_loss + adv_gen_loss
+ metrics['gen_adv'] = adv_gen_loss
+ metrics.update(add_prefix_to_keys(adv_metrics, 'adv_'))
+
+ # feature matching
+ if self.config.losses.feature_matching.weight > 0:
+ need_mask_in_fm = OmegaConf.to_container(self.config.losses.feature_matching).get('pass_mask', False)
+ mask_for_fm = supervised_mask if need_mask_in_fm else None
+ fm_value = feature_matching_loss(discr_fake_features, discr_real_features,
+ mask=mask_for_fm) * self.config.losses.feature_matching.weight
+ total_loss = total_loss + fm_value
+ metrics['gen_fm'] = fm_value
+
+ if self.loss_resnet_pl is not None:
+ resnet_pl_value = self.loss_resnet_pl(predicted_img, img)
+ total_loss = total_loss + resnet_pl_value
+ metrics['gen_resnet_pl'] = resnet_pl_value
+
+ return total_loss, metrics
+
+ def discriminator_loss(self, batch):
+ total_loss = 0
+ metrics = {}
+
+ predicted_img = batch[self.image_to_discriminator].detach()
+ self.adversarial_loss.pre_discriminator_step(real_batch=batch['image'], fake_batch=predicted_img,
+ generator=self.generator, discriminator=self.discriminator)
+ discr_real_pred, discr_real_features = self.discriminator(batch['image'])
+ discr_fake_pred, discr_fake_features = self.discriminator(predicted_img)
+ adv_discr_loss, adv_metrics = self.adversarial_loss.discriminator_loss(real_batch=batch['image'],
+ fake_batch=predicted_img,
+ discr_real_pred=discr_real_pred,
+ discr_fake_pred=discr_fake_pred,
+ mask=batch['mask'])
+ total_loss = total_loss + adv_discr_loss
+ metrics['discr_adv'] = adv_discr_loss
+ metrics.update(add_prefix_to_keys(adv_metrics, 'adv_'))
+
+
+ if batch.get('use_fake_fakes', False):
+ fake_fakes = batch['fake_fakes']
+ self.adversarial_loss.pre_discriminator_step(real_batch=batch['image'], fake_batch=fake_fakes,
+ generator=self.generator, discriminator=self.discriminator)
+ discr_fake_fakes_pred, _ = self.discriminator(fake_fakes)
+ fake_fakes_adv_discr_loss, fake_fakes_adv_metrics = self.adversarial_loss.discriminator_loss(
+ real_batch=batch['image'],
+ fake_batch=fake_fakes,
+ discr_real_pred=discr_real_pred,
+ discr_fake_pred=discr_fake_fakes_pred,
+ mask=batch['mask']
+ )
+ total_loss = total_loss + fake_fakes_adv_discr_loss
+ metrics['discr_adv_fake_fakes'] = fake_fakes_adv_discr_loss
+ metrics.update(add_prefix_to_keys(fake_fakes_adv_metrics, 'adv_'))
+
+ return total_loss, metrics
diff --git a/saicinpainting/training/visualizers/__init__.py b/saicinpainting/training/visualizers/__init__.py
new file mode 100644
index 00000000..4770d1f1
--- /dev/null
+++ b/saicinpainting/training/visualizers/__init__.py
@@ -0,0 +1,15 @@
+import logging
+
+from saicinpainting.training.visualizers.directory import DirectoryVisualizer
+from saicinpainting.training.visualizers.noop import NoopVisualizer
+
+
+def make_visualizer(kind, **kwargs):
+ logging.info(f'Make visualizer {kind}')
+
+ if kind == 'directory':
+ return DirectoryVisualizer(**kwargs)
+ if kind == 'noop':
+ return NoopVisualizer()
+
+ raise ValueError(f'Unknown visualizer kind {kind}')
diff --git a/saicinpainting/training/visualizers/base.py b/saicinpainting/training/visualizers/base.py
new file mode 100644
index 00000000..675f0168
--- /dev/null
+++ b/saicinpainting/training/visualizers/base.py
@@ -0,0 +1,73 @@
+import abc
+from typing import Dict, List
+
+import numpy as np
+import torch
+from skimage import color
+from skimage.segmentation import mark_boundaries
+
+from . import colors
+
+COLORS, _ = colors.generate_colors(151) # 151 - max classes for semantic segmentation
+
+
+class BaseVisualizer:
+ @abc.abstractmethod
+ def __call__(self, epoch_i, batch_i, batch, suffix='', rank=None):
+ """
+ Take a batch, make an image from it and visualize
+ """
+ raise NotImplementedError()
+
+
+def visualize_mask_and_images(images_dict: Dict[str, np.ndarray], keys: List[str],
+ last_without_mask=True, rescale_keys=None, mask_only_first=None,
+ black_mask=False) -> np.ndarray:
+ mask = images_dict['mask'] > 0.5
+ result = []
+ for i, k in enumerate(keys):
+ img = images_dict[k]
+ img = np.transpose(img, (1, 2, 0))
+
+ if rescale_keys is not None and k in rescale_keys:
+ img = img - img.min()
+ img /= img.max() + 1e-5
+ if len(img.shape) == 2:
+ img = np.expand_dims(img, 2)
+
+ if img.shape[2] == 1:
+ img = np.repeat(img, 3, axis=2)
+ elif (img.shape[2] > 3):
+ img_classes = img.argmax(2)
+ img = color.label2rgb(img_classes, colors=COLORS)
+
+ if mask_only_first:
+ need_mark_boundaries = i == 0
+ else:
+ need_mark_boundaries = i < len(keys) - 1 or not last_without_mask
+
+ if need_mark_boundaries:
+ if black_mask:
+ img = img * (1 - mask[0][..., None])
+ img = mark_boundaries(img,
+ mask[0],
+ color=(1., 0., 0.),
+ outline_color=(1., 1., 1.),
+ mode='thick')
+ result.append(img)
+ return np.concatenate(result, axis=1)
+
+
+def visualize_mask_and_images_batch(batch: Dict[str, torch.Tensor], keys: List[str], max_items=10,
+ last_without_mask=True, rescale_keys=None) -> np.ndarray:
+ batch = {k: tens.detach().cpu().numpy() for k, tens in batch.items()
+ if k in keys or k == 'mask'}
+
+ batch_size = next(iter(batch.values())).shape[0]
+ items_to_vis = min(batch_size, max_items)
+ result = []
+ for i in range(items_to_vis):
+ cur_dct = {k: tens[i] for k, tens in batch.items()}
+ result.append(visualize_mask_and_images(cur_dct, keys, last_without_mask=last_without_mask,
+ rescale_keys=rescale_keys))
+ return np.concatenate(result, axis=0)
diff --git a/saicinpainting/training/visualizers/colors.py b/saicinpainting/training/visualizers/colors.py
new file mode 100644
index 00000000..9e9e3918
--- /dev/null
+++ b/saicinpainting/training/visualizers/colors.py
@@ -0,0 +1,76 @@
+import random
+import colorsys
+
+import numpy as np
+import matplotlib
+matplotlib.use('agg')
+import matplotlib.pyplot as plt
+from matplotlib.colors import LinearSegmentedColormap
+
+
+def generate_colors(nlabels, type='bright', first_color_black=False, last_color_black=True, verbose=False):
+ # https://stackoverflow.com/questions/14720331/how-to-generate-random-colors-in-matplotlib
+ """
+ Creates a random colormap to be used together with matplotlib. Useful for segmentation tasks
+ :param nlabels: Number of labels (size of colormap)
+ :param type: 'bright' for strong colors, 'soft' for pastel colors
+ :param first_color_black: Option to use first color as black, True or False
+ :param last_color_black: Option to use last color as black, True or False
+ :param verbose: Prints the number of labels and shows the colormap. True or False
+ :return: colormap for matplotlib
+ """
+ if type not in ('bright', 'soft'):
+ print ('Please choose "bright" or "soft" for type')
+ return
+
+ if verbose:
+ print('Number of labels: ' + str(nlabels))
+
+ # Generate color map for bright colors, based on hsv
+ if type == 'bright':
+ randHSVcolors = [(np.random.uniform(low=0.0, high=1),
+ np.random.uniform(low=0.2, high=1),
+ np.random.uniform(low=0.9, high=1)) for i in range(nlabels)]
+
+ # Convert HSV list to RGB
+ randRGBcolors = []
+ for HSVcolor in randHSVcolors:
+ randRGBcolors.append(colorsys.hsv_to_rgb(HSVcolor[0], HSVcolor[1], HSVcolor[2]))
+
+ if first_color_black:
+ randRGBcolors[0] = [0, 0, 0]
+
+ if last_color_black:
+ randRGBcolors[-1] = [0, 0, 0]
+
+ random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels)
+
+ # Generate soft pastel colors, by limiting the RGB spectrum
+ if type == 'soft':
+ low = 0.6
+ high = 0.95
+ randRGBcolors = [(np.random.uniform(low=low, high=high),
+ np.random.uniform(low=low, high=high),
+ np.random.uniform(low=low, high=high)) for i in range(nlabels)]
+
+ if first_color_black:
+ randRGBcolors[0] = [0, 0, 0]
+
+ if last_color_black:
+ randRGBcolors[-1] = [0, 0, 0]
+ random_colormap = LinearSegmentedColormap.from_list('new_map', randRGBcolors, N=nlabels)
+
+ # Display colorbar
+ if verbose:
+ from matplotlib import colors, colorbar
+ from matplotlib import pyplot as plt
+ fig, ax = plt.subplots(1, 1, figsize=(15, 0.5))
+
+ bounds = np.linspace(0, nlabels, nlabels + 1)
+ norm = colors.BoundaryNorm(bounds, nlabels)
+
+ cb = colorbar.ColorbarBase(ax, cmap=random_colormap, norm=norm, spacing='proportional', ticks=None,
+ boundaries=bounds, format='%1i', orientation=u'horizontal')
+
+ return randRGBcolors, random_colormap
+
diff --git a/saicinpainting/training/visualizers/directory.py b/saicinpainting/training/visualizers/directory.py
new file mode 100644
index 00000000..bc42e005
--- /dev/null
+++ b/saicinpainting/training/visualizers/directory.py
@@ -0,0 +1,36 @@
+import os
+
+import cv2
+import numpy as np
+
+from saicinpainting.training.visualizers.base import BaseVisualizer, visualize_mask_and_images_batch
+from saicinpainting.utils import check_and_warn_input_range
+
+
+class DirectoryVisualizer(BaseVisualizer):
+ DEFAULT_KEY_ORDER = 'image predicted_image inpainted'.split(' ')
+
+ def __init__(self, outdir, key_order=DEFAULT_KEY_ORDER, max_items_in_batch=10,
+ last_without_mask=True, rescale_keys=None):
+ self.outdir = outdir
+ os.makedirs(self.outdir, exist_ok=True)
+ self.key_order = key_order
+ self.max_items_in_batch = max_items_in_batch
+ self.last_without_mask = last_without_mask
+ self.rescale_keys = rescale_keys
+
+ def __call__(self, epoch_i, batch_i, batch, suffix='', rank=None):
+ check_and_warn_input_range(batch['image'], 0, 1, 'DirectoryVisualizer target image')
+ vis_img = visualize_mask_and_images_batch(batch, self.key_order, max_items=self.max_items_in_batch,
+ last_without_mask=self.last_without_mask,
+ rescale_keys=self.rescale_keys)
+
+ vis_img = np.clip(vis_img * 255, 0, 255).astype('uint8')
+
+ curoutdir = os.path.join(self.outdir, f'epoch{epoch_i:04d}{suffix}')
+ os.makedirs(curoutdir, exist_ok=True)
+ rank_suffix = f'_r{rank}' if rank is not None else ''
+ out_fname = os.path.join(curoutdir, f'batch{batch_i:07d}{rank_suffix}.jpg')
+
+ vis_img = cv2.cvtColor(vis_img, cv2.COLOR_RGB2BGR)
+ cv2.imwrite(out_fname, vis_img)
diff --git a/saicinpainting/training/visualizers/noop.py b/saicinpainting/training/visualizers/noop.py
new file mode 100644
index 00000000..4175089a
--- /dev/null
+++ b/saicinpainting/training/visualizers/noop.py
@@ -0,0 +1,9 @@
+from saicinpainting.training.visualizers.base import BaseVisualizer
+
+
+class NoopVisualizer(BaseVisualizer):
+ def __init__(self, *args, **kwargs):
+ pass
+
+ def __call__(self, epoch_i, batch_i, batch, suffix='', rank=None):
+ pass
diff --git a/saicinpainting/utils.py b/saicinpainting/utils.py
new file mode 100644
index 00000000..d0914320
--- /dev/null
+++ b/saicinpainting/utils.py
@@ -0,0 +1,174 @@
+import bisect
+import functools
+import logging
+import numbers
+import os
+import signal
+import sys
+import traceback
+import warnings
+
+import torch
+from pytorch_lightning import seed_everything
+
+LOGGER = logging.getLogger(__name__)
+
+
+def check_and_warn_input_range(tensor, min_value, max_value, name):
+ actual_min = tensor.min()
+ actual_max = tensor.max()
+ if actual_min < min_value or actual_max > max_value:
+ warnings.warn(f"{name} must be in {min_value}..{max_value} range, but it ranges {actual_min}..{actual_max}")
+
+
+def sum_dict_with_prefix(target, cur_dict, prefix, default=0):
+ for k, v in cur_dict.items():
+ target_key = prefix + k
+ target[target_key] = target.get(target_key, default) + v
+
+
+def average_dicts(dict_list):
+ result = {}
+ norm = 1e-3
+ for dct in dict_list:
+ sum_dict_with_prefix(result, dct, '')
+ norm += 1
+ for k in list(result):
+ result[k] /= norm
+ return result
+
+
+def add_prefix_to_keys(dct, prefix):
+ return {prefix + k: v for k, v in dct.items()}
+
+
+def set_requires_grad(module, value):
+ for param in module.parameters():
+ param.requires_grad = value
+
+
+def flatten_dict(dct):
+ result = {}
+ for k, v in dct.items():
+ if isinstance(k, tuple):
+ k = '_'.join(k)
+ if isinstance(v, dict):
+ for sub_k, sub_v in flatten_dict(v).items():
+ result[f'{k}_{sub_k}'] = sub_v
+ else:
+ result[k] = v
+ return result
+
+
+class LinearRamp:
+ def __init__(self, start_value=0, end_value=1, start_iter=-1, end_iter=0):
+ self.start_value = start_value
+ self.end_value = end_value
+ self.start_iter = start_iter
+ self.end_iter = end_iter
+
+ def __call__(self, i):
+ if i < self.start_iter:
+ return self.start_value
+ if i >= self.end_iter:
+ return self.end_value
+ part = (i - self.start_iter) / (self.end_iter - self.start_iter)
+ return self.start_value * (1 - part) + self.end_value * part
+
+
+class LadderRamp:
+ def __init__(self, start_iters, values):
+ self.start_iters = start_iters
+ self.values = values
+ assert len(values) == len(start_iters) + 1, (len(values), len(start_iters))
+
+ def __call__(self, i):
+ segment_i = bisect.bisect_right(self.start_iters, i)
+ return self.values[segment_i]
+
+
+def get_ramp(kind='ladder', **kwargs):
+ if kind == 'linear':
+ return LinearRamp(**kwargs)
+ if kind == 'ladder':
+ return LadderRamp(**kwargs)
+ raise ValueError(f'Unexpected ramp kind: {kind}')
+
+
+def print_traceback_handler(sig, frame):
+ LOGGER.warning(f'Received signal {sig}')
+ bt = ''.join(traceback.format_stack())
+ LOGGER.warning(f'Requested stack trace:\n{bt}')
+
+
+def register_debug_signal_handlers(sig=signal.SIGUSR1, handler=print_traceback_handler):
+ LOGGER.warning(f'Setting signal {sig} handler {handler}')
+ signal.signal(sig, handler)
+
+
+def handle_deterministic_config(config):
+ seed = dict(config).get('seed', None)
+ if seed is None:
+ return False
+
+ seed_everything(seed)
+ return True
+
+
+def get_shape(t):
+ if torch.is_tensor(t):
+ return tuple(t.shape)
+ elif isinstance(t, dict):
+ return {n: get_shape(q) for n, q in t.items()}
+ elif isinstance(t, (list, tuple)):
+ return [get_shape(q) for q in t]
+ elif isinstance(t, numbers.Number):
+ return type(t)
+ else:
+ raise ValueError('unexpected type {}'.format(type(t)))
+
+
+def get_has_ddp_rank():
+ master_port = os.environ.get('MASTER_PORT', None)
+ node_rank = os.environ.get('NODE_RANK', None)
+ local_rank = os.environ.get('LOCAL_RANK', None)
+ world_size = os.environ.get('WORLD_SIZE', None)
+ has_rank = master_port is not None or node_rank is not None or local_rank is not None or world_size is not None
+ return has_rank
+
+
+def handle_ddp_subprocess():
+ def main_decorator(main_func):
+ @functools.wraps(main_func)
+ def new_main(*args, **kwargs):
+ # Trainer sets MASTER_PORT, NODE_RANK, LOCAL_RANK, WORLD_SIZE
+ parent_cwd = os.environ.get('TRAINING_PARENT_WORK_DIR', None)
+ has_parent = parent_cwd is not None
+ has_rank = get_has_ddp_rank()
+ assert has_parent == has_rank, f'Inconsistent state: has_parent={has_parent}, has_rank={has_rank}'
+
+ if has_parent:
+ # we are in the worker
+ sys.argv.extend([
+ f'hydra.run.dir={parent_cwd}',
+ # 'hydra/hydra_logging=disabled',
+ # 'hydra/job_logging=disabled'
+ ])
+ # do nothing if this is a top-level process
+ # TRAINING_PARENT_WORK_DIR is set in handle_ddp_parent_process after hydra initialization
+
+ main_func(*args, **kwargs)
+ return new_main
+ return main_decorator
+
+
+def handle_ddp_parent_process():
+ parent_cwd = os.environ.get('TRAINING_PARENT_WORK_DIR', None)
+ has_parent = parent_cwd is not None
+ has_rank = get_has_ddp_rank()
+ assert has_parent == has_rank, f'Inconsistent state: has_parent={has_parent}, has_rank={has_rank}'
+
+ if parent_cwd is None:
+ os.environ['TRAINING_PARENT_WORK_DIR'] = os.getcwd()
+
+ return has_parent