-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest1.py
142 lines (123 loc) · 4.84 KB
/
test1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from cmath import tanh
from matplotlib.image import imsave
import torch
import torch.nn as nn
import numpy as np
import torchvision.transforms as transforms
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from os.path import join
from os import listdir
from PIL import Image
from torch.nn import functional
import matplotlib.pyplot as plt
import random
train_on_gpu = torch.cuda.is_available()
class TrainDataset(Dataset):
def __init__(self,dataset_dir):
super(TrainDataset, self).__init__()
self.image_filenames = [join(dataset_dir, x) for x in listdir(dataset_dir)]
self.lr_transform = transforms.Compose([
transforms.Resize((100,100)),
transforms.ToTensor()
])
self.hr_transform = transforms.Compose([
transforms.Resize((200,200)),
transforms.ToTensor()
])
def __getitem__(self, index):
hr_image = Image.open(self.image_filenames[index])
hr_image = hr_image.convert("YCbCr")
hr_image = self.hr_transform(hr_image)
lr_image = Image.open(self.image_filenames[index])
lr_image = lr_image.convert('YCbCr')
lr_image = self.lr_transform(lr_image)
return lr_image, hr_image
def __len__(self):
return len(self.image_filenames)
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv_layer = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
nn.Tanh(),
nn.Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
nn.Tanh(),
nn.Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
nn.Tanh(),
nn.Conv2d(128, 1 * (2 ** 2), kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
)
def forward(self, x):
# conv layers
x = self.conv_layer(x)
outputs = functional.pixel_shuffle(x, 2)
return outputs
def upscale_image(epoch,fname,model):
img = Image.open('train_data/291/'+fname)
lr_transform = transforms.Resize((100,100))
hr_transform = transforms.Resize((200,200))
tensorize = transforms.ToTensor()
lr_image = lr_transform(img)
lr_image = lr_image.convert("YCbCr")
lr_y,lr_cb,lr_cr = lr_image.split()
hr_image = hr_transform(img)
lr_y = tensorize(lr_y)
with torch.no_grad():
output = model(torch.unsqueeze(lr_y,1).cuda())
output = output[0,0].cpu().numpy()
output *=255.0
output = output.clip(0,255)
output = Image.fromarray(np.uint8(output),mode="L")
lr_cb = lr_cb.resize((200,200),Image.BICUBIC)
lr_cr = lr_cr.resize((200,200),Image.BICUBIC)
output = Image.merge("YCbCr",(output,lr_cb,lr_cr)).convert("RGB")
ground_name = 'data/'+str(epoch)+'_ground.png'
output_name = 'data/'+str(epoch)+'_output.png'
hr_image.save(ground_name)
output.save(output_name)
def train_mod(model,criterion,trainloader):
if train_on_gpu:
model.cuda()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,verbose=True)
num_epoch = 200
for epoch in range(num_epoch): # loop over the dataset multiple times
print('Epoch = %2d'%epoch)
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
lr_image,hr_image = data
inputs, labels = torch.unsqueeze(lr_image[:,0,:,:],1),torch.unsqueeze(hr_image[:,0,:,:],1)
if train_on_gpu:
inputs, labels = inputs.cuda(), labels.cuda()
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print(loss.item())
scheduler.step(loss.item())
upscale_image(epoch,random.choice(listdir('train_data/291/')),model)
# ground_name = 'data/'+str(epoch)+'_ground.png'
# output_name = 'data/'+str(epoch)+'_output.png'
# o_img = ((outputs[0,0,:,:].detach()).cpu()).numpy()
# o_img*=255
# o_img = np.clip(o_img,0,255)
# o_img = np.uint8(o_img)
# plt.imsave(ground_name,labels[0,0,:,:].detach(),cmap='gray')
# plt.imsave(output_name,o_img,cmap='gray')
print('Finished Training')
torch.save(model.state_dict(),'model.pt')
def data_loader():
trainset = TrainDataset('train_data/291/')
trainloader = DataLoader(trainset,shuffle=True,batch_size=12)
criterion = nn.MSELoss()
model = CNN()
return model,criterion,trainloader
def main():
model,criterion,trainloader = data_loader()
train_mod(model,criterion,trainloader)
if __name__ == "__main__":
main()