-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
226 lines (201 loc) · 9.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import torch.nn as nn
import numpy as np
import torchvision.transforms as transforms
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from os.path import join
from os import listdir
from PIL import Image
from torch.nn import functional
from utils import *
import random
import time
from torchinfo import summary
from torchvision.transforms import InterpolationMode
train_on_gpu = torch.cuda.is_available()
class TrainDataset(Dataset):
def __init__(self,dataset_dir,lr_size,hr_size):
super(TrainDataset, self).__init__()
self.image_filenames = [join(dataset_dir, x) for x in listdir(dataset_dir)]
self.lr_transform = transforms.Compose([
transforms.Resize(lr_size,interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor()
])
self.hr_transform = transforms.Compose([
transforms.Resize(hr_size,interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor()
])
def __getitem__(self, index):
hr_image = Image.open(self.image_filenames[index])
hr_image = hr_image.convert("YCbCr")
hr_image,_,_ = hr_image.split()
hr_image = self.hr_transform(hr_image)
lr_image = Image.open(self.image_filenames[index])
lr_image = lr_image.convert('YCbCr')
lr_image,_,_ = lr_image.split()
lr_image = self.lr_transform(lr_image)
return lr_image, hr_image
def __len__(self):
return len(self.image_filenames)
class CReLU(nn.Module):
def __init__(self, inplace=False):
super(CReLU, self).__init__()
def forward(self, x):
x = torch.cat((x,-x),1)
return functional.relu(x)
class CNN(nn.Module):
def __init__(self,upscale_factor):
super(CNN, self).__init__()
self.crelu = CReLU()
self.block_depth = 7
self.mid_depth = 4
self.upscale_factor = upscale_factor
self.conv_layer = nn.Conv2d(1,self.mid_depth*2,kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
self.conv_block=nn.ModuleList()
for i in range(self.block_depth):
self.conv_block.append(nn.Sequential(nn.Conv2d(self.mid_depth*2,self.mid_depth,kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
CReLU()))
self.upscaler = nn.Conv2d(self.mid_depth*self.block_depth*2,1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
def forward(self, x):
# conv layers
old_x = x
depth_list = []
x = self.conv_layer(x)
for i in range(self.block_depth):
x = self.conv_block[i](x)
depth_list.append(x)
x = torch.cat(depth_list,axis=1)
x = functional.interpolate(x,scale_factor=self.upscale_factor,mode='nearest')
#outputs = functional.pixel_shuffle(x, self.upscale_factor)
outputs = self.upscaler(x)
outputs = outputs+functional.interpolate(old_x,scale_factor=self.upscale_factor,mode='bilinear')
return outputs
class Image_Upscaler():
def __init__(self, dataset_dir, validation_dir, out_dir, lr_size, upscale_factor, batch_size, criterion, model):
self.dataset_dir = dataset_dir
self.validation_dir = validation_dir
self.out_dir = out_dir
self.criterion = criterion
self.model = model(upscale_factor)
self.lr_size = (lr_size[1],lr_size[0])
self.hr_size = tuple(x*upscale_factor for x in self.lr_size)
self.col_size = tuple(x*upscale_factor for x in reversed(self.lr_size))
self.batch_size = batch_size
self.trainset = TrainDataset(dataset_dir,self.lr_size,self.hr_size)
self.trainloader = DataLoader(self.trainset,shuffle=True,batch_size=self.batch_size,num_workers=12)
self.valset = TrainDataset(validation_dir,self.lr_size,self.hr_size)
self.valloader = DataLoader(self.valset,shuffle=True,batch_size=self.batch_size,num_workers=12)
self.train_on_gpu = torch.cuda.is_available()
def upscale_image(self,epoch,image=None,fname=None):
if image is None:
img = Image.open(self.dataset_dir+fname)
lr_transform = transforms.Resize(self.lr_size,interpolation=InterpolationMode.BICUBIC) #Resize takes input as height,width
lr_image = lr_transform(img)
elif fname is None:
img = Image.fromarray(image)
lr_image = img
hr_transform = transforms.Resize(self.hr_size,interpolation=InterpolationMode.BICUBIC)
tensorize = transforms.ToTensor()
lr_image = lr_image.convert("YCbCr")
lr_y,lr_cb,lr_cr = lr_image.split()
hr_image = hr_transform(img)
lr_y = tensorize(lr_y)
with torch.no_grad():
output = self.model(torch.unsqueeze(lr_y,1).cuda())
if train_on_gpu:
output = output[0,0].cpu().numpy()
else:
output = output[0,0].numpy()
output *=255.0
output = output.clip(0,255)
output = Image.fromarray(np.uint8(output),mode="L")
lr_cb = lr_cb.resize(self.col_size,Image.BICUBIC)
lr_cr = lr_cr.resize(self.col_size,Image.BICUBIC)
output = Image.merge("YCbCr",(output,lr_cb,lr_cr)).convert("RGB")
ground_name = self.out_dir+str(epoch)+'_ground.png'
output_name = self.out_dir+str(epoch)+'_output.png'
hr_image.save(ground_name)
output.save(output_name)
def train_mod(self):
if train_on_gpu:
self.model.cuda()
optimizer = optim.Adam(self.model.parameters(), lr=1e-5)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,verbose=True)
num_epoch = 200
loss_list = []
val_loss_list = []
for epoch in range(num_epoch): # loop over the dataset multiple times
print('Epoch = %2d'%epoch)
optimizer.zero_grad() # zero the parameter gradients
loss_per_pixel = 0
for _, data in enumerate(self.trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
if train_on_gpu:
inputs, labels = inputs.cuda(), labels.cuda()
# forward + backward + optimize
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
loss.backward()
optimizer.step()
loss_per_pixel += loss.item()/(self.hr_size[0]*self.hr_size[1]*self.batch_size)
loss_per_pixel/=len(self.trainset)
print(f'Train Loss = {loss_per_pixel:.8f}')
scheduler.step(loss_per_pixel)
loss_list.append(loss_per_pixel)
#Visualize every 20 epochs
if (epoch+1)%20==0:
self.upscale_image(epoch,None,random.choice(listdir(self.dataset_dir)))
loss_per_pixel = 0
#validation at end of every epoch
for _, data in enumerate(self.valloader, 0):
# get the inputs; data is a list of [inputs, labels]
running_loss = 0
inputs, labels = data
if train_on_gpu:
inputs, labels = inputs.cuda(), labels.cuda()
# forward + backward + optimize
with torch.no_grad():
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
loss_per_pixel += loss.item()/(self.hr_size[0]*self.hr_size[1]*self.batch_size)
loss_per_pixel /= len(self.valset)
print(f'Validation Loss = {loss_per_pixel:.8f}')
val_loss_list.append(loss_per_pixel)
print('Finished Training')
torch.save(self.model.state_dict(),'model.pt')
#Plot loss vs epochs
np.save('training_loss',np.array(loss_list))
np.save('validation_loss',np.array(val_loss_list))
loss_plotter(loss_list,val_loss_list)
def load_checkpoint(self,path):
self.model.load_state_dict = (torch.load(path))
self.model.cuda()
if __name__ == "__main__":
video = VideoReader("test_vid_360.mp4")
dataset_dir = 'Synla-4096/'
validation_dir = 'Synla-1024/'
upscale_factor = 2
batch_size = 96
criterion = nn.MSELoss(reduction='sum')
model = CNN
test_mode = 0
lr_size = (128,128) if test_mode==0 else (video.width,video.height)
out_dir = 'synla_train_images/'
upscaler = Image_Upscaler(dataset_dir, validation_dir, out_dir, lr_size, upscale_factor, batch_size, criterion, model)
if test_mode==1:
upscaler.load_checkpoint("model.pt")
for frame_idx in range(video.num_frames):
#print(frame_idx)
old_time = time.time()
frame = video.get_frame()
frame_upscaled = upscaler.upscale_image(frame_idx,frame)
print(f"time taken = {time.time()-old_time:.3f}")
video.complete()
final_vid = VideoWriter(out_dir+'/%d_output.png','/test_new.mp4')
final_vid.write_vid()
else:
upscaler.load_checkpoint("model.pt")
upscaler.train_mod()