-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
303 lines (262 loc) · 9.07 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import argparse
import numpy as np
import time
from sklearn.model_selection import KFold
from sklearn.metrics import classification_report
from utils.load_dataset import load_bbc_dataset
from utils.load_dataset import load_news_groups_dataset
from utils.load_dataset import load_yahoo_answers_dataset
from utils.load_dataset import load_ohsumed_dataset
from utils.load_dataset import load_reuters_dataset
from models.tfidf_model import TfIdfModel
from models.doc2vec_model import Doc2VecDBOWModel, Doc2VecDMModel
from models.lda_model import LDAModel
from models.lsa_model import LSAModel
from models.han_model import HANModel
from models.hwan_model import HWANModel
from models.sif_model import SIFModel
from models.bow_model import BOWModel
from models.psif_model import PSIFModel
from models.longformer_model import LongformerBERTModel
import logging
import multiprocessing
cores = multiprocessing.cpu_count() - 1
def histogram_of_dataset():
from nltk import tokenize
from keras.preprocessing.text import Tokenizer, text_to_word_sequence
from utils.preprocess import clean_string
from collections import Counter
texts = []
sentences = []
paras = []
list_of_senten_num = []
list_of_senten_len = []
for sentence in x_train['text']:
text = clean_string(sentence)
sentences = tokenize.sent_tokenize(text)
list_of_senten_num.append(len(sentences))
for s in sentences:
list_of_senten_len.append(len(s))
print("Histogram of senten_num")
print(Counter(list_of_senten_num))
print("Histogram of senten_len")
print(Counter(list_of_senten_len))
def cross_validation(
benchmark_models,
x_train,
y_train,
x_test=None,
y_test=None,
n_splits=5
):
cv = KFold(n_splits=n_splits, random_state=42, shuffle=False)
logging.info("Number of splits in sample: " + str(n_splits))
for model in benchmark_models:
scores = []
trainig_times = []
for train_text, train_target in cv.split(x_train, y_train):
model.build_model()
t0 = time.time()
model.train(x_train[train_text], y_train[train_text])
trainig_times.append((time.time() - t0))
model.fit(x_train[train_text], y_train[train_text])
scores.append(model.evaluate(x_train[train_target], y_train[train_target]))
logging.info(classification_report(y_train[train_target], model.predict(x_train[train_target])))
logging.info(model.__class__.__name__ + ": average training time: " + str(np.average(np.array(trainig_times))))
logging.info(model.__class__.__name__ + ": training time std: " + str(np.std(np.array(trainig_times))))
logging.info(model.__class__.__name__ + ": average score: " + str(np.average(scores)))
logging.info(model.__class__.__name__ + ": score std: " + str(np.std(scores)))
def train_test_validator(
benchmark_models,
x_train,
y_train,
x_test,
y_test,
epochs=5
):
logging.info("Number of realisations in sample: " + str(epochs))
for model in benchmark_models:
scores = []
trainig_times = []
for step in range(epochs):
model.build_model()
t0 = time.time()
model.train(x_train, y_train)
trainig_times.append(time.time() - t0)
model.fit(x_train, y_train)
scores.append(model.evaluate(x_test, y_test))
logging.info(classification_report(y_test, model.predict(x_test)))
logging.info(model.__class__.__name__ + ": average training time: " + str(np.average(np.array(trainig_times))))
logging.info(model.__class__.__name__ + ": training time std: " + str(np.std(np.array(trainig_times))))
logging.info(model.__class__.__name__ + ": average score: " + str(np.average(np.array(scores))))
logging.info(model.__class__.__name__ + ": average score std: " + str(np.std(np.array(scores))))
def parse_args():
parser = argparse.ArgumentParser(
description="Benchmark for documents embedding methods")
parser.add_argument(
"--dataset_path",
dest="dataset_path",
required=True,
help="Path to dataset")
parser.add_argument(
"--models_path",
dest="models_path",
required=True,
help="Path to models")
parser.add_argument(
"--pretrained_path",
dest="pretrained_path",
required=True,
help="Path to pretrained embedding model")
parser.add_argument(
"--dataset_name",
dest="dataset_name",
choices=['bbc','yahoo','20newsgroups', 'reuters', 'ohsumed'],
required=True,
help="Name of dataset")
parser.add_argument(
"--restore",
dest="restore",
required=False,
action='store_true',
help="Path to models")
parser.add_argument(
"--logging",
dest="logging",
required=False,
type=str,
default="",
help="Path to logging file")
parser.add_argument(
"--hwan_features_algorithm",
dest="hwan_features_algorithm",
required=True,
help="HWAN statistical features algrithm")
parser.add_argument(
"--hwan_features_operation",
dest="hwan_features_operation",
required=True,
help="HWAN statistical features operation")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
if args.logging:
logging.basicConfig(
filename=args.logging,
format='%(asctime)s : %(levelname)s : %(message)s',
level=logging.INFO)
else:
logging.basicConfig(
format='%(asctime)s : %(levelname)s : %(message)s',
level=logging.INFO)
logging.info(args.dataset_path)
num_categories = 0
embedding_size = 100
load_dataset = None
validator = None
if args.dataset_name == "bbc":
load_dataset = load_bbc_dataset
num_categories = 5
validator = cross_validation
elif args.dataset_name == "yahoo":
load_dataset = load_yahoo_answers_dataset
num_categories = 10
validator = cross_validation
elif args.dataset_name == "20newsgroups":
load_dataset = load_news_groups_dataset
num_categories = 20
validator = cross_validation
elif args.dataset_name == "reuters":
load_dataset = load_reuters_dataset
num_categories = 91
validator = train_test_validator
elif args.dataset_name == "ohsumed":
load_dataset = load_ohsumed_dataset
num_categories = 23
validator = train_test_validator
x_train, x_test, y_train, y_test = load_dataset(args.dataset_path)
longformer = LongformerBERTModel(
dataset_name=args.dataset_name,
embedding_size=embedding_size,
num_categories=num_categories,
epochs=10,
batch_size=4,
)
hwan = HWANModel(
text = x_train['text'],
labels = y_train['target'],
num_categories = num_categories,
pretrained_embedded_vector_path = args.pretrained_path,
max_features=5000000,
max_senten_len=100,
max_senten_num=30,
embedding_size=embedding_size,
validation_split=0.1,
verbose=True,
batch_size=16,
epochs=100,
features_algorithm=args.hwan_features_algorithm,
features_operation=args.hwan_features_operation)
han = HANModel(
text=x_train['text'],
labels=y_train['target'],
num_categories=num_categories,
pretrained_embedded_vector_path=args.pretrained_path,
max_features=5000000,
max_senten_len=100,
max_senten_num=30,
embedding_size=embedding_size,
validation_split=0.1,
verbose=True,
batch_size=64,
epochs=100)
doc2vecdm = Doc2VecDMModel(
negative=10,
vector_size=embedding_size,
window=5,
workers=cores,
min_count=1)
doc2veccbow = Doc2VecDBOWModel(
negative=10,
vector_size=embedding_size,
window=5,
workers=cores,
min_count=1)
psif = PSIFModel(
pretrained_embedded_vector_path=args.pretrained_path,
embedding_size=embedding_size,
num_clusters=40)
sif = SIFModel(
text=x_train['text'],
labels=y_train['target'],
pretrained_embedded_vector_path=args.pretrained_path,
embedding_size=embedding_size)
lda = LDAModel(
n_components=embedding_size,
max_features=None,
max_df=0.95,
min_df=1,
epochs=10,
cores=cores)
lsa = LSAModel(
svd_features=embedding_size,
n_features=None,
n_iter=10,
max_df=0.95,
min_df=1)
tfidf = TfIdfModel(
n_features=None,
max_df=0.95,
min_df=1)
bow = BOWModel(
max_features=None,
max_df=0.95,
min_df=1)
benchmark_models = [bow, tfidf, lsa, lda, sif, psif, doc2vecdm, doc2veccbow, han, hwan, longformer]
validator(
benchmark_models,
x_train['text'],
y_train['target'],
x_train['text'],
y_train['target'])