forked from phishman3579/java-algorithms-implementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBTree.java
898 lines (804 loc) · 28.6 KB
/
BTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
package com.jwetherell.algorithms.data_structures;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Deque;
import com.jwetherell.algorithms.data_structures.interfaces.ITree;
/**
* B-tree is a tree data structure that keeps data sorted and allows searches,
* sequential access, insertions, and deletions in logarithmic time. The B-tree
* is a generalization of a binary search tree in that a node can have more than
* two children. Unlike self-balancing binary search trees, the B-tree is
* optimized for systems that read and write large blocks of data. It is
* commonly used in databases and file-systems.
* <p>
* @see <a href="https://en.wikipedia.org/wiki/B-tree">B-Tree (Wikipedia)</a>
* <br>
* @author Justin Wetherell <[email protected]>
*/
@SuppressWarnings("unchecked")
public class BTree<T extends Comparable<T>> implements ITree<T> {
// Default to 2-3 Tree
private int minKeySize = 1;
private int minChildrenSize = minKeySize + 1; // 2
private int maxKeySize = 2 * minKeySize; // 2
private int maxChildrenSize = maxKeySize + 1; // 3
private Node<T> root = null;
private int size = 0;
/**
* Constructor for B-Tree which defaults to a 2-3 B-Tree.
*/
public BTree() { }
/**
* Constructor for B-Tree of ordered parameter. Order here means minimum
* number of keys in a non-root node.
*
* @param order
* of the B-Tree.
*/
public BTree(int order) {
this.minKeySize = order;
this.minChildrenSize = minKeySize + 1;
this.maxKeySize = 2 * minKeySize;
this.maxChildrenSize = maxKeySize + 1;
}
/**
* {@inheritDoc}
*/
@Override
public boolean add(T value) {
if (root == null) {
root = new Node<T>(null, maxKeySize, maxChildrenSize);
root.addKey(value);
} else {
Node<T> node = root;
while (node != null) {
if (node.numberOfChildren() == 0) {
node.addKey(value);
if (node.numberOfKeys() <= maxKeySize) {
// A-OK
break;
}
// Need to split up
split(node);
break;
}
// Navigate
// Lesser or equal
T lesser = node.getKey(0);
if (value.compareTo(lesser) <= 0) {
node = node.getChild(0);
continue;
}
// Greater
int numberOfKeys = node.numberOfKeys();
int last = numberOfKeys - 1;
T greater = node.getKey(last);
if (value.compareTo(greater) > 0) {
node = node.getChild(numberOfKeys);
continue;
}
// Search internal nodes
for (int i = 1; i < node.numberOfKeys(); i++) {
T prev = node.getKey(i - 1);
T next = node.getKey(i);
if (value.compareTo(prev) > 0 && value.compareTo(next) <= 0) {
node = node.getChild(i);
break;
}
}
}
}
size++;
return true;
}
/**
* The node's key size is greater than maxKeySize, split down the middle.
*
* @param nodeToSplit
* to split.
*/
private void split(Node<T> nodeToSplit) {
Node<T> node = nodeToSplit;
int numberOfKeys = node.numberOfKeys();
int medianIndex = numberOfKeys / 2;
T medianValue = node.getKey(medianIndex);
Node<T> left = new Node<T>(null, maxKeySize, maxChildrenSize);
for (int i = 0; i < medianIndex; i++) {
left.addKey(node.getKey(i));
}
if (node.numberOfChildren() > 0) {
for (int j = 0; j <= medianIndex; j++) {
Node<T> c = node.getChild(j);
left.addChild(c);
}
}
Node<T> right = new Node<T>(null, maxKeySize, maxChildrenSize);
for (int i = medianIndex + 1; i < numberOfKeys; i++) {
right.addKey(node.getKey(i));
}
if (node.numberOfChildren() > 0) {
for (int j = medianIndex + 1; j < node.numberOfChildren(); j++) {
Node<T> c = node.getChild(j);
right.addChild(c);
}
}
if (node.parent == null) {
// new root, height of tree is increased
Node<T> newRoot = new Node<T>(null, maxKeySize, maxChildrenSize);
newRoot.addKey(medianValue);
node.parent = newRoot;
root = newRoot;
node = root;
node.addChild(left);
node.addChild(right);
} else {
// Move the median value up to the parent
Node<T> parent = node.parent;
parent.addKey(medianValue);
parent.removeChild(node);
parent.addChild(left);
parent.addChild(right);
if (parent.numberOfKeys() > maxKeySize) split(parent);
}
}
/**
* {@inheritDoc}
*/
@Override
public T remove(T value) {
T removed = null;
Node<T> node = this.getNode(value);
removed = remove(value,node);
return removed;
}
/**
* Remove the value from the Node and check invariants
*
* @param value
* T to remove from the tree
* @param node
* Node to remove value from
* @return True if value was removed from the tree.
*/
private T remove(T value, Node<T> node) {
if (node == null) return null;
T removed = null;
int index = node.indexOf(value);
removed = node.removeKey(value);
if (node.numberOfChildren() == 0) {
// leaf node
if (node.parent != null && node.numberOfKeys() < minKeySize) {
this.combined(node);
} else if (node.parent == null && node.numberOfKeys() == 0) {
// Removing root node with no keys or children
root = null;
}
} else {
// internal node
Node<T> lesser = node.getChild(index);
Node<T> greatest = this.getGreatestNode(lesser);
T replaceValue = this.removeGreatestValue(greatest);
node.addKey(replaceValue);
if (greatest.parent != null && greatest.numberOfKeys() < minKeySize) {
this.combined(greatest);
}
if (greatest.numberOfChildren() > maxChildrenSize) {
this.split(greatest);
}
}
size--;
return removed;
}
/**
* Remove greatest valued key from node.
*
* @param node
* to remove greatest value from.
* @return value removed;
*/
private T removeGreatestValue(Node<T> node) {
T value = null;
if (node.numberOfKeys() > 0) {
value = node.removeKey(node.numberOfKeys() - 1);
}
return value;
}
/**
* {@inheritDoc}
*/
@Override
public void clear() {
root = null;
size = 0;
}
/**
* {@inheritDoc}
*/
@Override
public boolean contains(T value) {
Node<T> node = getNode(value);
return (node != null);
}
/**
* Get the node with value.
*
* @param value
* to find in the tree.
* @return Node<T> with value.
*/
private Node<T> getNode(T value) {
Node<T> node = root;
while (node != null) {
T lesser = node.getKey(0);
if (value.compareTo(lesser) < 0) {
if (node.numberOfChildren() > 0)
node = node.getChild(0);
else
node = null;
continue;
}
int numberOfKeys = node.numberOfKeys();
int last = numberOfKeys - 1;
T greater = node.getKey(last);
if (value.compareTo(greater) > 0) {
if (node.numberOfChildren() > numberOfKeys)
node = node.getChild(numberOfKeys);
else
node = null;
continue;
}
for (int i = 0; i < numberOfKeys; i++) {
T currentValue = node.getKey(i);
if (currentValue.compareTo(value) == 0) {
return node;
}
int next = i + 1;
if (next <= last) {
T nextValue = node.getKey(next);
if (currentValue.compareTo(value) < 0 && nextValue.compareTo(value) > 0) {
if (next < node.numberOfChildren()) {
node = node.getChild(next);
break;
}
return null;
}
}
}
}
return null;
}
/**
* Get the greatest valued child from node.
*
* @param nodeToGet
* child with the greatest value.
* @return Node<T> child with greatest value.
*/
private Node<T> getGreatestNode(Node<T> nodeToGet) {
Node<T> node = nodeToGet;
while (node.numberOfChildren() > 0) {
node = node.getChild(node.numberOfChildren() - 1);
}
return node;
}
/**
* Combined children keys with parent when size is less than minKeySize.
*
* @param node
* with children to combined.
* @return True if combined successfully.
*/
private boolean combined(Node<T> node) {
Node<T> parent = node.parent;
int index = parent.indexOf(node);
int indexOfLeftNeighbor = index - 1;
int indexOfRightNeighbor = index + 1;
Node<T> rightNeighbor = null;
int rightNeighborSize = -minChildrenSize;
if (indexOfRightNeighbor < parent.numberOfChildren()) {
rightNeighbor = parent.getChild(indexOfRightNeighbor);
rightNeighborSize = rightNeighbor.numberOfKeys();
}
// Try to borrow neighbor
if (rightNeighbor != null && rightNeighborSize > minKeySize) {
// Try to borrow from right neighbor
T removeValue = rightNeighbor.getKey(0);
int prev = getIndexOfPreviousValue(parent, removeValue);
T parentValue = parent.removeKey(prev);
T neighborValue = rightNeighbor.removeKey(0);
node.addKey(parentValue);
parent.addKey(neighborValue);
if (rightNeighbor.numberOfChildren() > 0) {
node.addChild(rightNeighbor.removeChild(0));
}
} else {
Node<T> leftNeighbor = null;
int leftNeighborSize = -minChildrenSize;
if (indexOfLeftNeighbor >= 0) {
leftNeighbor = parent.getChild(indexOfLeftNeighbor);
leftNeighborSize = leftNeighbor.numberOfKeys();
}
if (leftNeighbor != null && leftNeighborSize > minKeySize) {
// Try to borrow from left neighbor
T removeValue = leftNeighbor.getKey(leftNeighbor.numberOfKeys() - 1);
int prev = getIndexOfNextValue(parent, removeValue);
T parentValue = parent.removeKey(prev);
T neighborValue = leftNeighbor.removeKey(leftNeighbor.numberOfKeys() - 1);
node.addKey(parentValue);
parent.addKey(neighborValue);
if (leftNeighbor.numberOfChildren() > 0) {
node.addChild(leftNeighbor.removeChild(leftNeighbor.numberOfChildren() - 1));
}
} else if (rightNeighbor != null && parent.numberOfKeys() > 0) {
// Can't borrow from neighbors, try to combined with right neighbor
T removeValue = rightNeighbor.getKey(0);
int prev = getIndexOfPreviousValue(parent, removeValue);
T parentValue = parent.removeKey(prev);
parent.removeChild(rightNeighbor);
node.addKey(parentValue);
for (int i = 0; i < rightNeighbor.keysSize; i++) {
T v = rightNeighbor.getKey(i);
node.addKey(v);
}
for (int i = 0; i < rightNeighbor.childrenSize; i++) {
Node<T> c = rightNeighbor.getChild(i);
node.addChild(c);
}
if (parent.parent != null && parent.numberOfKeys() < minKeySize) {
// removing key made parent too small, combined up tree
this.combined(parent);
} else if (parent.numberOfKeys() == 0) {
// parent no longer has keys, make this node the new root
// which decreases the height of the tree
node.parent = null;
root = node;
}
} else if (leftNeighbor != null && parent.numberOfKeys() > 0) {
// Can't borrow from neighbors, try to combined with left neighbor
T removeValue = leftNeighbor.getKey(leftNeighbor.numberOfKeys() - 1);
int prev = getIndexOfNextValue(parent, removeValue);
T parentValue = parent.removeKey(prev);
parent.removeChild(leftNeighbor);
node.addKey(parentValue);
for (int i = 0; i < leftNeighbor.keysSize; i++) {
T v = leftNeighbor.getKey(i);
node.addKey(v);
}
for (int i = 0; i < leftNeighbor.childrenSize; i++) {
Node<T> c = leftNeighbor.getChild(i);
node.addChild(c);
}
if (parent.parent != null && parent.numberOfKeys() < minKeySize) {
// removing key made parent too small, combined up tree
this.combined(parent);
} else if (parent.numberOfKeys() == 0) {
// parent no longer has keys, make this node the new root
// which decreases the height of the tree
node.parent = null;
root = node;
}
}
}
return true;
}
/**
* Get the index of previous key in node.
*
* @param node
* to find the previous key in.
* @param value
* to find a previous value for.
* @return index of previous key or -1 if not found.
*/
private int getIndexOfPreviousValue(Node<T> node, T value) {
for (int i = 1; i < node.numberOfKeys(); i++) {
T t = node.getKey(i);
if (t.compareTo(value) >= 0)
return i - 1;
}
return node.numberOfKeys() - 1;
}
/**
* Get the index of next key in node.
*
* @param node
* to find the next key in.
* @param value
* to find a next value for.
* @return index of next key or -1 if not found.
*/
private int getIndexOfNextValue(Node<T> node, T value) {
for (int i = 0; i < node.numberOfKeys(); i++) {
T t = node.getKey(i);
if (t.compareTo(value) >= 0)
return i;
}
return node.numberOfKeys() - 1;
}
/**
* {@inheritDoc}
*/
@Override
public int size() {
return size;
}
/**
* {@inheritDoc}
*/
@Override
public boolean validate() {
if (root == null) return true;
return validateNode(root);
}
/**
* Validate the node according to the B-Tree invariants.
*
* @param node
* to validate.
* @return True if valid.
*/
private boolean validateNode(Node<T> node) {
int keySize = node.numberOfKeys();
if (keySize > 1) {
// Make sure the keys are sorted
for (int i = 1; i < keySize; i++) {
T p = node.getKey(i - 1);
T n = node.getKey(i);
if (p.compareTo(n) > 0)
return false;
}
}
int childrenSize = node.numberOfChildren();
if (node.parent == null) {
// root
if (keySize > maxKeySize) {
// check max key size. root does not have a min key size
return false;
} else if (childrenSize == 0) {
// if root, no children, and keys are valid
return true;
} else if (childrenSize < 2) {
// root should have zero or at least two children
return false;
} else if (childrenSize > maxChildrenSize) {
return false;
}
} else {
// non-root
if (keySize < minKeySize) {
return false;
} else if (keySize > maxKeySize) {
return false;
} else if (childrenSize == 0) {
return true;
} else if (keySize != (childrenSize - 1)) {
// If there are chilren, there should be one more child then
// keys
return false;
} else if (childrenSize < minChildrenSize) {
return false;
} else if (childrenSize > maxChildrenSize) {
return false;
}
}
Node<T> first = node.getChild(0);
// The first child's last key should be less than the node's first key
if (first.getKey(first.numberOfKeys() - 1).compareTo(node.getKey(0)) > 0)
return false;
Node<T> last = node.getChild(node.numberOfChildren() - 1);
// The last child's first key should be greater than the node's last key
if (last.getKey(0).compareTo(node.getKey(node.numberOfKeys() - 1)) < 0)
return false;
// Check that each node's first and last key holds it's invariance
for (int i = 1; i < node.numberOfKeys(); i++) {
T p = node.getKey(i - 1);
T n = node.getKey(i);
Node<T> c = node.getChild(i);
if (p.compareTo(c.getKey(0)) > 0)
return false;
if (n.compareTo(c.getKey(c.numberOfKeys() - 1)) < 0)
return false;
}
for (int i = 0; i < node.childrenSize; i++) {
Node<T> c = node.getChild(i);
boolean valid = this.validateNode(c);
if (!valid)
return false;
}
return true;
}
/**
* {@inheritDoc}
*/
@Override
public java.util.Collection<T> toCollection() {
return (new JavaCompatibleBTree<T>(this));
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
return TreePrinter.getString(this);
}
private static class Node<T extends Comparable<T>> {
private T[] keys = null;
private int keysSize = 0;
private Node<T>[] children = null;
private int childrenSize = 0;
private Comparator<Node<T>> comparator = new Comparator<Node<T>>() {
@Override
public int compare(Node<T> arg0, Node<T> arg1) {
return arg0.getKey(0).compareTo(arg1.getKey(0));
}
};
protected Node<T> parent = null;
private Node(Node<T> parent, int maxKeySize, int maxChildrenSize) {
this.parent = parent;
this.keys = (T[]) new Comparable[maxKeySize + 1];
this.keysSize = 0;
this.children = new Node[maxChildrenSize + 1];
this.childrenSize = 0;
}
private T getKey(int index) {
return keys[index];
}
private int indexOf(T value) {
for (int i = 0; i < keysSize; i++) {
if (keys[i].equals(value)) return i;
}
return -1;
}
private void addKey(T value) {
keys[keysSize++] = value;
Arrays.sort(keys, 0, keysSize);
}
private T removeKey(T value) {
T removed = null;
boolean found = false;
if (keysSize == 0) return null;
for (int i = 0; i < keysSize; i++) {
if (keys[i].equals(value)) {
found = true;
removed = keys[i];
} else if (found) {
// shift the rest of the keys down
keys[i - 1] = keys[i];
}
}
if (found) {
keysSize--;
keys[keysSize] = null;
}
return removed;
}
private T removeKey(int index) {
if (index >= keysSize)
return null;
T value = keys[index];
for (int i = index + 1; i < keysSize; i++) {
// shift the rest of the keys down
keys[i - 1] = keys[i];
}
keysSize--;
keys[keysSize] = null;
return value;
}
private int numberOfKeys() {
return keysSize;
}
private Node<T> getChild(int index) {
if (index >= childrenSize)
return null;
return children[index];
}
private int indexOf(Node<T> child) {
for (int i = 0; i < childrenSize; i++) {
if (children[i].equals(child))
return i;
}
return -1;
}
private boolean addChild(Node<T> child) {
child.parent = this;
children[childrenSize++] = child;
Arrays.sort(children, 0, childrenSize, comparator);
return true;
}
private boolean removeChild(Node<T> child) {
boolean found = false;
if (childrenSize == 0)
return found;
for (int i = 0; i < childrenSize; i++) {
if (children[i].equals(child)) {
found = true;
} else if (found) {
// shift the rest of the keys down
children[i - 1] = children[i];
}
}
if (found) {
childrenSize--;
children[childrenSize] = null;
}
return found;
}
private Node<T> removeChild(int index) {
if (index >= childrenSize)
return null;
Node<T> value = children[index];
children[index] = null;
for (int i = index + 1; i < childrenSize; i++) {
// shift the rest of the keys down
children[i - 1] = children[i];
}
childrenSize--;
children[childrenSize] = null;
return value;
}
private int numberOfChildren() {
return childrenSize;
}
/**
* {@inheritDoc}
*/
@Override
public String toString() {
StringBuilder builder = new StringBuilder();
builder.append("keys=[");
for (int i = 0; i < numberOfKeys(); i++) {
T value = getKey(i);
builder.append(value);
if (i < numberOfKeys() - 1)
builder.append(", ");
}
builder.append("]\n");
if (parent != null) {
builder.append("parent=[");
for (int i = 0; i < parent.numberOfKeys(); i++) {
T value = parent.getKey(i);
builder.append(value);
if (i < parent.numberOfKeys() - 1)
builder.append(", ");
}
builder.append("]\n");
}
if (children != null) {
builder.append("keySize=").append(numberOfKeys()).append(" children=").append(numberOfChildren()).append("\n");
}
return builder.toString();
}
}
private static class TreePrinter {
public static <T extends Comparable<T>> String getString(BTree<T> tree) {
if (tree.root == null) return "Tree has no nodes.";
return getString(tree.root, "", true);
}
private static <T extends Comparable<T>> String getString(Node<T> node, String prefix, boolean isTail) {
StringBuilder builder = new StringBuilder();
builder.append(prefix).append((isTail ? "└── " : "├── "));
for (int i = 0; i < node.numberOfKeys(); i++) {
T value = node.getKey(i);
builder.append(value);
if (i < node.numberOfKeys() - 1)
builder.append(", ");
}
builder.append("\n");
if (node.children != null) {
for (int i = 0; i < node.numberOfChildren() - 1; i++) {
Node<T> obj = node.getChild(i);
builder.append(getString(obj, prefix + (isTail ? " " : "│ "), false));
}
if (node.numberOfChildren() >= 1) {
Node<T> obj = node.getChild(node.numberOfChildren() - 1);
builder.append(getString(obj, prefix + (isTail ? " " : "│ "), true));
}
}
return builder.toString();
}
}
public static class JavaCompatibleBTree<T extends Comparable<T>> extends java.util.AbstractCollection<T> {
private BTree<T> tree = null;
public JavaCompatibleBTree(BTree<T> tree) {
this.tree = tree;
}
/**
* {@inheritDoc}
*/
@Override
public boolean add(T value) {
return tree.add(value);
}
/**
* {@inheritDoc}
*/
@Override
public boolean remove(Object value) {
return (tree.remove((T)value)!=null);
}
/**
* {@inheritDoc}
*/
@Override
public boolean contains(Object value) {
return tree.contains((T)value);
}
/**
* {@inheritDoc}
*/
@Override
public int size() {
return tree.size();
}
/**
* {@inheritDoc}
*/
@Override
public java.util.Iterator<T> iterator() {
return (new BTreeIterator<T>(this.tree));
}
private static class BTreeIterator<C extends Comparable<C>> implements java.util.Iterator<C> {
private BTree<C> tree = null;
private BTree.Node<C> lastNode = null;
private C lastValue = null;
private int index = 0;
private Deque<BTree.Node<C>> toVisit = new ArrayDeque<BTree.Node<C>>();
protected BTreeIterator(BTree<C> tree) {
this.tree = tree;
if (tree.root!=null && tree.root.keysSize>0) {
toVisit.add(tree.root);
}
}
/**
* {@inheritDoc}
*/
@Override
public boolean hasNext() {
if ((lastNode!=null && index<lastNode.keysSize)||(toVisit.size()>0)) return true;
return false;
}
/**
* {@inheritDoc}
*/
@Override
public C next() {
if (lastNode!=null && (index < lastNode.keysSize)) {
lastValue = lastNode.getKey(index++);
return lastValue;
}
while (toVisit.size()>0) {
// Go thru the current nodes
BTree.Node<C> n = toVisit.pop();
// Add non-null children
for (int i=0; i<n.childrenSize; i++) {
toVisit.add(n.getChild(i));
}
// Update last node (used in remove method)
index = 0;
lastNode = n;
lastValue = lastNode.getKey(index++);
return lastValue;
}
return null;
}
/**
* {@inheritDoc}
*/
@Override
public void remove() {
if (lastNode!=null && lastValue!=null) {
// On remove, reset the iterator (very inefficient, I know)
tree.remove(lastValue,lastNode);
lastNode = null;
lastValue = null;
index = 0;
toVisit.clear();
if (tree.root!=null && tree.root.keysSize>0) {
toVisit.add(tree.root);
}
}
}
}
}
}