-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradar-target-generation-and-detection.m
242 lines (187 loc) · 7.68 KB
/
radar-target-generation-and-detection.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
clear all
clc;
close all;
%% Radar Specifications
%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Frequency of operation = 77GHz
% Max Range = 200m
% Range Resolution = 1 m
% Max Velocity = 100 m/s
%%%%%%%%%%%%%%%%%%%%%%%%%%%
%speed of light = 3e8
%% User Defined Range and Velocity of target
% define the target's initial position and velocity. Note : Velocity
% remains contant
R_Target = 110; % initial distance of the target
v_Traget = -20; % speed of the target. The velocity varies from -70 to +70 m/s
%% FMCW Waveform Generation
% Design the FMCW waveform by giving the specs of each of its parameters.
% Calculate the Bandwidth (B), Chirp Time (Tchirp) and Slope (slope) of the FMCW
% chirp using the requirements above.
%Operating carrier frequency of Radar
fc= 77e9; % carrier freq [Hz= 1/s]
% Initial conditions of Radar
max_range = 200; % the radar maximum range [m]
d_res = 1; % range resolution [m]
c = 3*10^8 ; % ligth speed [m/s]
% Sweep time for each chirp is defined as rule by 5.5 times of
% round trip time for Maximum Range
Tchirp = 5.5 * 2 * max_range / c; % Tchirp
% Bandwidth for the each chirp for given resolution
Bandwidth = c/(2*d_res);
% The slope of the chirp
Slope = Bandwidth/Tchirp;
%The number of chirps in one sequence. Its ideal to have 2^ value for the ease of running the FFT
%for Doppler Estimation.
Nd=128; % #of doppler cells OR #of sent periods % number of chirps
%The number of samples on each chirp.
Nr=1024; %for length of time OR # of range cells
% Timestamp for running the displacement scenario for every sample on each
% chirp
t=linspace(0,Nd*Tchirp,Nr*Nd); %total time for samples
%Creating the vectors for Tx, Rx and Mix based on the total samples input.
Tx = zeros(1,length(t)); %transmitted signal
Rx = zeros(1,length(t)); %received signal
Mix = zeros(1,length(t)); %beat signal
%Similar vectors for range_covered and time delay.
r_t = zeros(1,length(t));
td = zeros(1,length(t));
%% Signal generation and Moving Target simulation
% Running the radar scenario over the time.
for i=1:length(t)
%For each time stamp update the Range of the Target for constant velocity.
r_t(i) = R_Target + v_Traget*t(i);
tau(i) = (2*r_t(i))/c;
%For each time sample we need update the transmitted and
%received signal.
Tx(i) = cos(2*pi * (fc*t(i) +Slope*(t(i)^2) / 2));
Rx(i) = cos(2*pi * (fc*(t(i)-tau(i)) + 0.5*Slope*(t(i)-tau(i))^2));
%Now by mixing the Transmit and Receive generate the beat signal
%This is done by element wise matrix multiplication of Transmit and
%Receiver Signal
Mix(i) = Tx(i).*Rx(i);
end
%% RANGE MEASUREMENT
%reshape the vector into Nr*Nd array. Nr and Nd here would also define the size of
%Range and Doppler FFT respectively.
Mix = reshape(Mix,[Nr,Nd]);
%run the FFT on the beat signal along the range bins dimension (Nr) and
%normalize.
signal_fft = fft(Mix,Nr);
% Take the absolute value of FFT output
signal_fft = abs(signal_fft)./Nr;
% Output of FFT is double sided signal, but we are interested in only one side of the spectrum.
% Hence we throw out half of the samples.
signal_fft = signal_fft(1:Nr/2+1);
%plotting the range
figure ('Name','Range from First FFT')
subplot(2,1,1)
plot(signal_fft);
xlabel('f [Hz]')
ylabel('[FFT(f)]')
axis ([0 200 0 0.5]);
grid on;
title("Range FFT");
%% RANGE DOPPLER RESPONSE
% The 2D FFT implementation is already provided here. This will run a 2DFFT
% on the mixed signal (beat signal) output and generate a range doppler
% map.You will implement CFAR on the generated RDM
% Range Doppler Map Generation.
% The output of the 2D FFT is an image that has reponse in the range and
% doppler FFT bins. So, it is important to convert the axis from bin sizes
% to range and doppler based on their Max values.
Mix=reshape(Mix,[Nr,Nd]);
% 2D FFT using the FFT size for both dimensions.
sig_fft2 = fft2(Mix,Nr,Nd);
% Taking just one side of signal from Range dimension.
sig_fft2 = sig_fft2(1:Nr/2,1:Nd);
% Shift the zero-frequency component to the center of the output
sig_fft2 = fftshift (sig_fft2);
%Generate a Range Doppler Map
RDM = abs(sig_fft2);
RDM = 10*log10(RDM) ;
%use the surf function to plot the output of 2DFFT and to show axis in both
%dimensions
doppler_axis = linspace(-100,100,Nd);
range_axis = linspace(-200,200,Nr/2)*((Nr/2)/400);
figure(2),surf(doppler_axis,range_axis,RDM);
xlabel("Velocity")
ylabel("Range")
zlabel("f [Hz]")
title("Range-Doppler Plot")
%% CFAR implementation
%Slide Window through the complete Range Doppler Map
%Select the number of Training Cells in both the dimensions.
Tr = 12;
Td = 8;
%Select the number of Guard Cells in both dimensions around the Cell under
%test (CUT) for accurate estimation
Gr = 4;
Gd = 4;
n_TrainCells = (2*(Td+Gd+1)*2*(Tr+Gr+1)-(Gr*Gd)-1);
% offset the threshold by SNR value in dB
offset = 1.2;
%Create a vector to store noise_level for each iteration on training cells
noise_level = zeros(1,1);
%design a loop such that it slides the CUT across range doppler map by
%giving margins at the edges for Training and Guard Cells.
%For every iteration sum the signal level within all the training
%cells. To sum convert the value from logarithmic to linear using db2pow
%function. Average the summed values for all of the training
%cells used. After averaging convert it back to logarithimic using pow2db.
%Further add the offset to it to determine the threshold. Next, compare the
%signal under CUT with this threshold. If the CUT level > threshold assign
%it a value of 1, else equate it to 0.
% Use RDM[x,y] as the matrix from the output of 2D FFT for implementing
% CFAR
%
% normalized the RDM
RDM = RDM/max(max(RDM));
CUT = zeros(size(RDM,1),size(RDM,2));
for i = Tr + (Gr+1) : Nr/2 - (Gr+Tr)
for j = Td + (Gd+1) : Nd- (Gd+Td)
noise_level = zeros(1,1);
% Grid Size: (2Tr + 2Gr + 1) * (2Td+ 2Gd +1)
for p = (i-Tr-Gr) : (i+Tr+Gr)
for q = j - (Td + Gd) : j + (Gd + Td)
%Summing All Cells in Training except Guard Band and CUT
if (abs(p-i)>Gr || abs (q-j)>Gd)
noise_level = noise_level + db2pow(RDM(p,q)); % db2pow convert log to linear
end
end
end
% Average the noise_level over all training band
threshold = pow2db(noise_level/n_TrainCells);
% Add the SNR offset to the threshold
threshold = threshold + offset;
% Measure the signal cell in Cell Under Test (CUT) and compare
% against threshold
if(RDM(i,j)<threshold)
RDM(i,j) = 0;
else
RDM(i,j) = 1;
end
end
end
%Select the number of Training Cells in both the dimensions.
% The process above will generate a thresholded block, which is smaller
% than the Range Doppler Map as the CUT cannot be located at the edges of
% matrix. Hence,few cells will not be thresholded. To keep the map size same
% set those values to 0.
for i = 1 : Nr/2
for j = 1 : Nd
if (RDM(i,j) ~= 0 && RDM(i,j) ~= 1 )
RDM(i,j) = 0;
end
end
end
%display the CFAR output using the Surf function like we did for Range
%Doppler Response outp ut.
figure(3),surf(doppler_axis,range_axis,RDM);
colorbar;
doppler_axis = linspace(-100,100,Nd);
range_axis = linspace(-200,200,Nr/2)*((Nr/2)/400);
xlabel("Velocity")
ylabel("Range")
zlabel("f [Hz]")
title("CFAR applied to RDM")