diff --git a/colabs/Errors_raised_in_HUB.ipynb b/colabs/Errors_raised_in_HUB.ipynb new file mode 100644 index 0000000..3c4b832 --- /dev/null +++ b/colabs/Errors_raised_in_HUB.ipynb @@ -0,0 +1,650 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "Errors raised in HUB.ipynb", + "provenance": [] + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "language_info": { + "name": "python" + }, + "accelerator": "TPU" + }, + "cells": [ + { + "cell_type": "code", + "metadata": { + "id": "CADuLZmrUYyK", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "b689b2df-bc5a-44da-9bbc-c3636038aebc" + }, + "source": [ + "!pip install hub" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Collecting hub\n", + " Downloading hub-2.0.11-py3-none-any.whl (188 kB)\n", + "\u001b[K |████████████████████████████████| 188 kB 5.3 MB/s \n", + "\u001b[?25hCollecting humbug>=0.2.6\n", + " Downloading humbug-0.2.7-py3-none-any.whl (11 kB)\n", + "Collecting types-click\n", + " Downloading types_click-7.1.5-py3-none-any.whl (12 kB)\n", + "Collecting google-cloud-storage~=1.42.0\n", + " Downloading google_cloud_storage-1.42.3-py2.py3-none-any.whl (105 kB)\n", + "\u001b[K |████████████████████████████████| 105 kB 60.2 MB/s \n", + "\u001b[?25hCollecting lz4\n", + " Downloading lz4-3.1.3-cp37-cp37m-manylinux2010_x86_64.whl (1.8 MB)\n", + "\u001b[K |████████████████████████████████| 1.8 MB 50.1 MB/s \n", + "\u001b[?25hCollecting pillow==8.2.0\n", + " Downloading Pillow-8.2.0-cp37-cp37m-manylinux1_x86_64.whl (3.0 MB)\n", + "\u001b[K |████████████████████████████████| 3.0 MB 33.3 MB/s \n", + "\u001b[?25hCollecting typing-extensions>=3.10.0.0\n", + " Downloading typing_extensions-3.10.0.2-py3-none-any.whl (26 kB)\n", + "Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from hub) (1.19.5)\n", + "Collecting google-auth~=2.0.1\n", + " Downloading google_auth-2.0.2-py2.py3-none-any.whl (152 kB)\n", + "\u001b[K |████████████████████████████████| 152 kB 60.3 MB/s \n", + "\u001b[?25hRequirement already satisfied: google-auth-oauthlib~=0.4.5 in /usr/local/lib/python3.7/dist-packages (from hub) (0.4.6)\n", + "Collecting types-requests\n", + " Downloading types_requests-2.25.9-py3-none-any.whl (22 kB)\n", + "Collecting boto3-stubs[essential]\n", + " Downloading boto3_stubs-1.18.58-py3-none-any.whl (53 kB)\n", + "\u001b[K |████████████████████████████████| 53 kB 2.5 MB/s \n", + "\u001b[?25hCollecting pathos\n", + " Downloading pathos-0.2.8-py2.py3-none-any.whl (81 kB)\n", + "\u001b[K |████████████████████████████████| 81 kB 9.8 MB/s \n", + "\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from hub) (4.62.3)\n", + "Collecting boto3\n", + " Downloading boto3-1.18.58-py3-none-any.whl (131 kB)\n", + "\u001b[K |████████████████████████████████| 131 kB 72.4 MB/s \n", + "\u001b[?25hRequirement already satisfied: cachetools<5.0,>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from google-auth~=2.0.1->hub) (4.2.4)\n", + "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.7/dist-packages (from google-auth~=2.0.1->hub) (4.7.2)\n", + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.7/dist-packages (from google-auth~=2.0.1->hub) (0.2.8)\n", + "Requirement already satisfied: setuptools>=40.3.0 in /usr/local/lib/python3.7/dist-packages (from google-auth~=2.0.1->hub) (57.4.0)\n", + "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.7/dist-packages (from google-auth-oauthlib~=0.4.5->hub) (1.3.0)\n", + "Collecting google-api-core<3.0dev,>=1.29.0\n", + " Downloading google_api_core-2.1.0-py2.py3-none-any.whl (94 kB)\n", + "\u001b[K |████████████████████████████████| 94 kB 4.0 MB/s \n", + "\u001b[?25hRequirement already satisfied: protobuf in /usr/local/lib/python3.7/dist-packages (from google-cloud-storage~=1.42.0->hub) (3.17.3)\n", + "Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from google-cloud-storage~=1.42.0->hub) (1.15.0)\n", + "Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /usr/local/lib/python3.7/dist-packages (from google-cloud-storage~=1.42.0->hub) (2.23.0)\n", + "Collecting google-resumable-media<3.0dev,>=1.3.0\n", + " Downloading google_resumable_media-2.0.3-py2.py3-none-any.whl (75 kB)\n", + "\u001b[K |████████████████████████████████| 75 kB 4.7 MB/s \n", + "\u001b[?25hCollecting google-cloud-core<3.0dev,>=1.6.0\n", + " Downloading google_cloud_core-2.1.0-py2.py3-none-any.whl (27 kB)\n", + "Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /usr/local/lib/python3.7/dist-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage~=1.42.0->hub) (1.53.0)\n", + "Collecting google-crc32c<2.0dev,>=1.0\n", + " Downloading google_crc32c-1.3.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (38 kB)\n", + "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.7/dist-packages (from pyasn1-modules>=0.2.1->google-auth~=2.0.1->hub) (0.4.8)\n", + "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage~=1.42.0->hub) (3.0.4)\n", + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage~=1.42.0->hub) (2021.5.30)\n", + "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage~=1.42.0->hub) (1.24.3)\n", + "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage~=1.42.0->hub) (2.10)\n", + "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.7/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib~=0.4.5->hub) (3.1.1)\n", + "Collecting botocore<1.22.0,>=1.21.58\n", + " Downloading botocore-1.21.58-py3-none-any.whl (8.0 MB)\n", + "\u001b[K |████████████████████████████████| 8.0 MB 21.9 MB/s \n", + "\u001b[?25hCollecting jmespath<1.0.0,>=0.7.1\n", + " Downloading jmespath-0.10.0-py2.py3-none-any.whl (24 kB)\n", + "Collecting s3transfer<0.6.0,>=0.5.0\n", + " Downloading s3transfer-0.5.0-py3-none-any.whl (79 kB)\n", + "\u001b[K |████████████████████████████████| 79 kB 8.6 MB/s \n", + "\u001b[?25hCollecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1\n", + " Downloading urllib3-1.25.11-py2.py3-none-any.whl (127 kB)\n", + "\u001b[K |████████████████████████████████| 127 kB 64.4 MB/s \n", + "\u001b[?25hRequirement already satisfied: python-dateutil<3.0.0,>=2.1 in /usr/local/lib/python3.7/dist-packages (from botocore<1.22.0,>=1.21.58->boto3->hub) (2.8.2)\n", + "Collecting botocore-stubs\n", + " Downloading botocore_stubs-1.21.58-py3-none-any.whl (41 kB)\n", + "\u001b[K |████████████████████████████████| 41 kB 186 kB/s \n", + "\u001b[?25hCollecting mypy-boto3-sqs>=1.18.53\n", + " Downloading mypy_boto3_sqs-1.18.58-py3-none-any.whl (28 kB)\n", + "Collecting mypy-boto3-dynamodb>=1.18.53\n", + " Downloading mypy_boto3_dynamodb-1.18.58-py3-none-any.whl (55 kB)\n", + "\u001b[K |████████████████████████████████| 55 kB 3.3 MB/s \n", + "\u001b[?25hCollecting mypy-boto3-s3>=1.18.53\n", + " Downloading mypy_boto3_s3-1.18.58-py3-none-any.whl (84 kB)\n", + "\u001b[K |████████████████████████████████| 84 kB 2.9 MB/s \n", + "\u001b[?25hCollecting mypy-boto3-lambda>=1.18.53\n", + " Downloading mypy_boto3_lambda-1.18.58-py3-none-any.whl (40 kB)\n", + "\u001b[K |████████████████████████████████| 40 kB 5.8 MB/s \n", + "\u001b[?25hCollecting mypy-boto3-rds>=1.18.53\n", + " Downloading mypy_boto3_rds-1.18.58-py3-none-any.whl (83 kB)\n", + "\u001b[K |████████████████████████████████| 83 kB 1.6 MB/s \n", + "\u001b[?25hCollecting mypy-boto3-ec2>=1.18.53\n", + " Downloading mypy_boto3_ec2-1.18.58-py3-none-any.whl (308 kB)\n", + "\u001b[K |████████████████████████████████| 308 kB 52.2 MB/s \n", + "\u001b[?25hCollecting mypy-boto3-cloudformation>=1.18.53\n", + " Downloading mypy_boto3_cloudformation-1.18.58-py3-none-any.whl (58 kB)\n", + "\u001b[K |████████████████████████████████| 58 kB 6.1 MB/s \n", + "\u001b[?25hRequirement already satisfied: multiprocess>=0.70.12 in /usr/local/lib/python3.7/dist-packages (from pathos->hub) (0.70.12.2)\n", + "Collecting ppft>=1.6.6.4\n", + " Downloading ppft-1.6.6.4-py3-none-any.whl (65 kB)\n", + "\u001b[K |████████████████████████████████| 65 kB 3.9 MB/s \n", + "\u001b[?25hCollecting pox>=0.3.0\n", + " Downloading pox-0.3.0-py2.py3-none-any.whl (30 kB)\n", + "Requirement already satisfied: dill>=0.3.4 in /usr/local/lib/python3.7/dist-packages (from pathos->hub) (0.3.4)\n", + "Installing collected packages: urllib3, typing-extensions, jmespath, google-auth, google-crc32c, google-api-core, botocore-stubs, botocore, s3transfer, ppft, pox, mypy-boto3-sqs, mypy-boto3-s3, mypy-boto3-rds, mypy-boto3-lambda, mypy-boto3-ec2, mypy-boto3-dynamodb, mypy-boto3-cloudformation, google-resumable-media, google-cloud-core, boto3-stubs, types-requests, types-click, pillow, pathos, lz4, humbug, google-cloud-storage, boto3, hub\n", + " Attempting uninstall: urllib3\n", + " Found existing installation: urllib3 1.24.3\n", + " Uninstalling urllib3-1.24.3:\n", + " Successfully uninstalled urllib3-1.24.3\n", + " Attempting uninstall: typing-extensions\n", + " Found existing installation: typing-extensions 3.7.4.3\n", + " Uninstalling typing-extensions-3.7.4.3:\n", + " Successfully uninstalled typing-extensions-3.7.4.3\n", + " Attempting uninstall: google-auth\n", + " Found existing installation: google-auth 1.35.0\n", + " Uninstalling google-auth-1.35.0:\n", + " Successfully uninstalled google-auth-1.35.0\n", + " Attempting uninstall: google-api-core\n", + " Found existing installation: google-api-core 1.26.3\n", + " Uninstalling google-api-core-1.26.3:\n", + " Successfully uninstalled google-api-core-1.26.3\n", + " Attempting uninstall: google-resumable-media\n", + " Found existing installation: google-resumable-media 0.4.1\n", + " Uninstalling google-resumable-media-0.4.1:\n", + " Successfully uninstalled google-resumable-media-0.4.1\n", + " Attempting uninstall: google-cloud-core\n", + " Found existing installation: google-cloud-core 1.0.3\n", + " Uninstalling google-cloud-core-1.0.3:\n", + " Successfully uninstalled google-cloud-core-1.0.3\n", + " Attempting uninstall: pillow\n", + " Found existing installation: Pillow 7.1.2\n", + " Uninstalling Pillow-7.1.2:\n", + " Successfully uninstalled Pillow-7.1.2\n", + " Attempting uninstall: google-cloud-storage\n", + " Found existing installation: google-cloud-storage 1.18.1\n", + " Uninstalling google-cloud-storage-1.18.1:\n", + " Successfully uninstalled google-cloud-storage-1.18.1\n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "tensorflow 2.6.0 requires typing-extensions~=3.7.4, but you have typing-extensions 3.10.0.2 which is incompatible.\n", + "tensorboard 2.6.0 requires google-auth<2,>=1.6.3, but you have google-auth 2.0.2 which is incompatible.\n", + "google-cloud-translate 1.5.0 requires google-api-core[grpc]<2.0.0dev,>=1.6.0, but you have google-api-core 2.1.0 which is incompatible.\n", + "google-cloud-translate 1.5.0 requires google-cloud-core<2.0dev,>=1.0.0, but you have google-cloud-core 2.1.0 which is incompatible.\n", + "google-cloud-language 1.2.0 requires google-api-core[grpc]<2.0.0dev,>=1.6.0, but you have google-api-core 2.1.0 which is incompatible.\n", + "google-cloud-firestore 1.7.0 requires google-api-core[grpc]<2.0.0dev,>=1.14.0, but you have google-api-core 2.1.0 which is incompatible.\n", + "google-cloud-firestore 1.7.0 requires google-cloud-core<2.0dev,>=1.0.3, but you have google-cloud-core 2.1.0 which is incompatible.\n", + "google-cloud-datastore 1.8.0 requires google-api-core[grpc]<2.0.0dev,>=1.6.0, but you have google-api-core 2.1.0 which is incompatible.\n", + "google-cloud-datastore 1.8.0 requires google-cloud-core<2.0dev,>=1.0.0, but you have google-cloud-core 2.1.0 which is incompatible.\n", + "google-cloud-bigquery 1.21.0 requires google-cloud-core<2.0dev,>=1.0.3, but you have google-cloud-core 2.1.0 which is incompatible.\n", + "google-cloud-bigquery 1.21.0 requires google-resumable-media!=0.4.0,<0.5.0dev,>=0.3.1, but you have google-resumable-media 2.0.3 which is incompatible.\n", + "google-cloud-bigquery-storage 1.1.0 requires google-api-core[grpc]<2.0.0dev,>=1.14.0, but you have google-api-core 2.1.0 which is incompatible.\n", + "google-api-python-client 1.12.8 requires google-api-core<2dev,>=1.21.0, but you have google-api-core 2.1.0 which is incompatible.\n", + "firebase-admin 4.4.0 requires google-api-core[grpc]<2.0.0dev,>=1.14.0; platform_python_implementation != \"PyPy\", but you have google-api-core 2.1.0 which is incompatible.\n", + "datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.\n", + "albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.2.9 which is incompatible.\u001b[0m\n", + "Successfully installed boto3-1.18.58 boto3-stubs-1.18.58 botocore-1.21.58 botocore-stubs-1.21.58 google-api-core-2.1.0 google-auth-2.0.2 google-cloud-core-2.1.0 google-cloud-storage-1.42.3 google-crc32c-1.3.0 google-resumable-media-2.0.3 hub-2.0.11 humbug-0.2.7 jmespath-0.10.0 lz4-3.1.3 mypy-boto3-cloudformation-1.18.58 mypy-boto3-dynamodb-1.18.58 mypy-boto3-ec2-1.18.58 mypy-boto3-lambda-1.18.58 mypy-boto3-rds-1.18.58 mypy-boto3-s3-1.18.58 mypy-boto3-sqs-1.18.58 pathos-0.2.8 pillow-8.2.0 pox-0.3.0 ppft-1.6.6.4 s3transfer-0.5.0 types-click-7.1.5 types-requests-2.25.9 typing-extensions-3.10.0.2 urllib3-1.25.11\n" + ] + }, + { + "output_type": "display_data", + "data": { + "application/vnd.colab-display-data+json": { + "pip_warning": { + "packages": [ + "PIL", + "google" + ] + } + } + }, + "metadata": {} + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mE15LG7eVPko" + }, + "source": [ + "# **Attribute Error:** \n", + "After installing hub package using pip, restart the runtime and then run 'import hub' command." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "aH8t0AsIX3rL" + }, + "source": [ + "import hub" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "CB_LeiwJa7_B" + }, + "source": [ + "Load Dataset" + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "4iAqQf4jYCkK", + "outputId": "b6d2c31a-8e52-4e93-bf9e-d9e2acd91c13" + }, + "source": [ + "# USING GPU\n", + "dataset_path = 'hub://activeloop/mnist-train'\n", + "ds = hub.load(dataset_path)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Opening dataset in read-only mode as you don't have write permissions.\n", + "hub://activeloop/mnist-train loaded successfully.\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8zomipMya_5l" + }, + "source": [ + "# **ReadOnlyModeError:**\n", + "The above command does not download dataset on local and is present only in read-only mode. So, if you want to make modifications, you have to first get it into writing format. \n", + "Although you could try using the read_only parameter of `hub.load `instead of `hub.dataset` which toggles between read mode and write." + ] + }, + { + "cell_type": "code", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 365 + }, + "id": "1aWgnwxUZYVE", + "outputId": "2189cd8d-453b-47ac-f06f-40d63b670cea" + }, + "source": [ + "ps = hub.dataset(dataset_path)\n", + "ps.create_tensor('test')" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Opening dataset in read-only mode as you don't have write permissions.\n", + "hub://activeloop/mnist-train loaded successfully.\n" + ] + }, + { + "output_type": "error", + "ename": "ReadOnlyModeError", + "evalue": "ignored", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mReadOnlyModeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mps\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mhub\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mps\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_tensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'test'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/humbug/report.py\u001b[0m in \u001b[0;36mwrapped_callable\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 443\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfeature_report\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcallable\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparameters\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 444\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 445\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 446\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mwrapped_callable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/hub/core/dataset.py\u001b[0m in \u001b[0;36mcreate_tensor\u001b[0;34m(self, name, htype, dtype, sample_compression, chunk_compression, **kwargs)\u001b[0m\n\u001b[1;32m 289\u001b[0m \u001b[0mchunk_compression\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mchunk_compression\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 290\u001b[0m \u001b[0mversion_state\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mversion_state\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 291\u001b[0;31m \u001b[0;34m**\u001b[0m\u001b[0mmeta_kwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 292\u001b[0m )\n\u001b[1;32m 293\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mversion_state\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"meta\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtensors\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/hub/core/tensor.py\u001b[0m in \u001b[0;36mcreate_tensor\u001b[0;34m(key, storage, htype, sample_compression, chunk_compression, version_state, **kwargs)\u001b[0m\n\u001b[1;32m 55\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 56\u001b[0m )\n\u001b[0;32m---> 57\u001b[0;31m \u001b[0mstorage\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mmeta_key\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmeta\u001b[0m \u001b[0;31m# type: ignore\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 58\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/hub/core/storage/lru_cache.py\u001b[0m in \u001b[0;36m__setitem__\u001b[0;34m(self, path, value)\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_forward_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 151\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmaybe_flush\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 152\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 153\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__delitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/hub/core/storage/provider.py\u001b[0m in \u001b[0;36mmaybe_flush\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 161\u001b[0m \"\"\"\n\u001b[1;32m 162\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mautoflush\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 163\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mflush\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 164\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 165\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mabstractmethod\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/hub/core/storage/lru_cache.py\u001b[0m in \u001b[0;36mflush\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirty_keys\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirty_keys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 62\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 63\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext_storage\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 64\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext_storage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mflush\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/hub/core/storage/lru_cache.py\u001b[0m in \u001b[0;36m_forward\u001b[0;34m(self, path, remove_from_dirty)\u001b[0m\n\u001b[1;32m 227\u001b[0m \"\"\"\n\u001b[1;32m 228\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext_storage\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 229\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_forward_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcache_storage\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mremove_from_dirty\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 230\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 231\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_forward_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mremove_from_dirty\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/hub/core/storage/lru_cache.py\u001b[0m in \u001b[0;36m_forward_value\u001b[0;34m(self, path, value, remove_from_dirty)\u001b[0m\n\u001b[1;32m 245\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 246\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcachable\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 247\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext_storage\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtobytes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 248\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnext_storage\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/hub/core/storage/s3.py\u001b[0m in \u001b[0;36m__setitem__\u001b[0;34m(self, path, content)\u001b[0m\n\u001b[1;32m 70\u001b[0m \u001b[0mReadOnlyError\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mIf\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mprovider\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mread\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0monly\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 71\u001b[0m \"\"\"\n\u001b[0;32m---> 72\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheck_readonly\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_update_creds\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/hub/core/storage/provider.py\u001b[0m in \u001b[0;36mcheck_readonly\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0;34m\"\"\"Raises an exception if the provider is in read-only mode.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 149\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_only\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 150\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mReadOnlyModeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 151\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mflush\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mReadOnlyModeError\u001b[0m: Modification when in read-only mode is not supported!" + ] + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "AaxWE97NoY1k" + }, + "source": [ + "ps = hub.load(dataset_path)\n", + "ps.create_tensor('test')" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WHVA1VGLzMOU" + }, + "source": [ + "#To create dataset\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "MZSK8YJAo3FE" + }, + "source": [ + "def empty(path, overwrite=False, \n", + " public=True, memory_cache_size=256, \n", + " local_cache_size=0, creds=None, token=None)\n", + "\n", + "#DatasetHandlerError: If a Dataset already exists at the given path and overwrite is False.\n", + "\n", + "#path can be The full path to the dataset. Can be:-\n", + "# - a Hub cloud path of the form hub://username/datasetname. To write to Hub cloud datasets, ensure that you are logged in to Hub (use 'activeloop login' from command line)\n", + "# - an s3 path of the form s3://bucketname/path/to/dataset. Credentials are required in either the environment or passed to the creds argument.\n", + "# - a local file system path of the form ./path/to/dataset or ~/path/to/dataset or path/to/dataset.\n", + "# - a memory path of the form mem://path/to/dataset which doesn't save the dataset but keeps it in memory instead. Should be used only for testing as it does not persist." + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AZz1aadXJuxG" + }, + "source": [ + "#Ingests a dataset from a source and stores it as a structured dataset to destination\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "9xFbmxjdKCa8" + }, + "source": [ + "\n", + "\n", + "def ingest(src, dest, images_compression='auto', \n", + " dest_creds=None, progress_bar=True, \n", + " summary=True, **dataset_kwargs)\n", + "\n", + "#SamePathException: If the source and destination path(src) are same.\n", + "#AutoCompressionError: If the source director(src, dest) is empty or does not contain a valid extension.\n", + "#InvalidFileExtension: If the most frequent file extension is found to be 'None' during auto-compression.\n", + "if images_compression == \"auto\":\n", + " images_compression = get_most_common_extension(src)\n", + " if images_compression is None:\n", + " raise InvalidFileExtension(src)\n", + "#Invalid Path Exception: If the source directory(dest) does not exist.\n", + "\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kLFROMLa4su8" + }, + "source": [ + "#Download and ingest a kaggle dataset and store it as a structured dataset to destination\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "56IJSZUq46UI" + }, + "source": [ + "\n", + "def ingest_kaggle(tag, src, dest, exist_ok=False, \n", + " images_compression='auto', dest_creds=None, \n", + " kaggle_credentials=None, progress_bar=True, summary=True, **dataset_kwargs)\n", + "\n", + "\n", + "#SamePathException Error:If the source and destination path are same.\n", + "\n", + "# if os.path.isdir(src) and os.path.isdir(dest):\n", + "# if os.path.samefile(src, dest):\n", + "# raise SamePathException(src)\n" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ycBkn-nI6o--" + }, + "source": [ + "#Loads an existing dataset\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "sL4zLo-j84y3" + }, + "source": [ + "def load(path, read_only=False, memory_cache_size=256, \n", + " local_cache_size=0, creds=None, token=None, verbose=True)\n", + "\n", + "#DatasetHandlerError: If a Dataset does not exist at the given path.\n", + "# if not dataset_exists(storage):\n", + "# raise DatasetHandlerError(\n", + "# f\"A Hub dataset does not exist at the given path ({path}). Check the path provided or in case you want to create a new dataset, use hub.empty().\"\n", + "# )" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9MRkdgLE_BAS" + }, + "source": [ + "#Initializes a new or existing dataset in Classes\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "I1xb1-sO_VXz" + }, + "source": [ + "class dataset_cl \n", + "(\n", + "storage, index=None, group_index='', read_only=False, public=True, token=None, verbose=True, version_state=None, **kwargs)\n", + "\n", + "#Errors Raised:\n", + "#ValueError: If an existing local path is given, it must be a directory.\n", + "#ImproperDatasetInitialization: Exactly one argument out of 'path' and 'storage' needs to be specified. This is raised if none of them are specified or more than one are specifed.\n", + "#InvalidHubPathException: If a Hub cloud path (path starting with hub://) is specified and it isn't of the form hub://username/datasetname.\n", + "#AuthorizationException: If a Hub cloud path (path starting with hub://) is specified and the user doesn't have access to the dataset.\n", + "#PathNotEmptyException: If the path to the dataset doesn't contain a Hub dataset and is also not empty." + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KJulXrrWA6Zl" + }, + "source": [ + "#Creates a tensor group. Intermediate groups in the path are also created.\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "cellView": "code", + "id": "COEWRYpoBeAn" + }, + "source": [ + "#@title Default title text\n", + "def create_tensor(self, name, htype='generic', \n", + " dtype='unspecified', sample_compression='unspecified', \n", + " chunk_compression='unspecified', **kwargs)\n", + "\n", + "\n", + "##Errors Raised:\n", + "\n", + "#TensorAlreadyExistsError: Duplicate tensors are not allowed.\n", + "#TensorGroupAlreadyExistsError: Duplicate tensor groups are not allowed.\n", + "#InvalidTensorNameError: If name is in dataset attributes.\n", + "#NotImplementedError: If trying to override 'chunk_compression'.\n", + " \n", + " \"\" # if not the head node, checkout to an auto branch that is newly created\n", + " auto_checkout(self.version_state, self.storage)\n", + " name = name.strip(\"/\")\n", + "\n", + " while \"//\" in name:\n", + " name = name.replace(\"//\", \"/\")\n", + "\n", + " full_path = posixpath.join(self.group_index, name)\n", + "\n", + " if tensor_exists(full_path, self.storage, self.version_state[\"commit_id\"]):\n", + " raise TensorAlreadyExistsError(name)\n", + "\n", + " if full_path in self._groups:\n", + " raise TensorGroupAlreadyExistsError(name)\n", + "\n", + " if not name or name in dir(self):\n", + " raise InvalidTensorNameError(name) \"\"" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7VkuKk10Gisq" + }, + "source": [ + "#Initializes a new tensor.\n", + "\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "-7pMXVxNGJS_" + }, + "source": [ + "class tensor \n", + "(key, storage, version_state, index=None)\n", + "\n", + "#TensorDoesNotExistError: If no tensor with key exists and a tensor_meta was not provided.\n", + ">> key (str): The internal identifier for this tensor." + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lVmtiwB__FaP" + }, + "source": [ + "# Extends the end of the tensor by appending multiple elements from a sequence. Accepts a sequence, a single batched numpy array, or a sequence of `read()` outputs, which can be used to load files" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "OLYeMDAx_MHh" + }, + "source": [ + "def extend(self, samples: Union[np.ndarray, Sequence[SampleValue]]):\n", + " \"\"\"Extends the end of the tensor by appending multiple elements from a sequence. Accepts a sequence, a single batched numpy array,\n", + " or a sequence of `hub.read` outputs, which can be used to load files. See examples down below.\n", + "\n", + " Example:\n", + " numpy input:\n", + " >>> len(tensor)\n", + " 0\n", + " >>> tensor.extend(np.zeros((100, 28, 28, 1)))\n", + " >>> len(tensor)\n", + " 100\n", + "\n", + " file input:\n", + " >>> len(tensor)\n", + " 0\n", + " >>> tensor.extend([\n", + " hub.read(\"path/to/image1\"),\n", + " hub.read(\"path/to/image2\"),\n", + " ])\n", + " >>> len(tensor)\n", + " 2 \"\"\"\n", + "\n", + "#Error Raises:\n", + "#TensorDtypeMismatchError: TensorDtypeMismatchError: Dtype for array must be equal to or castable to this tensor's dtype\n", + " " + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jWK_nmM9E2kF" + }, + "source": [ + "# Computes the contents of the tensor in numpy format." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "Mc4MonToE1xL" + }, + "source": [ + " def numpy(self, aslist=False) \n", + "\n", + " \"\"\"Computes the contents of the tensor in numpy format.\n", + "\n", + " Args:\n", + " aslist (bool): If True, a list of np.ndarrays will be returned. Helpful for dynamic tensors.\n", + " If False, a single np.ndarray will be returned unless the samples are dynamically shaped, in which case\n", + " an error is raised.\n", + "\n", + "\n", + " Returns:\n", + " A numpy array containing the data represented by this tensor.\n", + " \"\"\"\n", + "\n", + " return self.chunk_engine.numpy(self.index, aslist=aslist)\n", + "\n", + "#Error Raises: \n", + "#DynamicTensorNumpyError: If reading a dynamically-shaped array slice without `aslist=True`.\n", + " " + ], + "execution_count": null, + "outputs": [] + } + ] +} \ No newline at end of file diff --git a/colabs/hub_tensorflow.ipynb b/colabs/hub_tensorflow.ipynb new file mode 100644 index 0000000..bc601ad --- /dev/null +++ b/colabs/hub_tensorflow.ipynb @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"hub .ipynb","provenance":[]},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"},"accelerator":"GPU"},"cells":[{"cell_type":"markdown","source":["# Install and Load hub"],"metadata":{"id":"vn5vo5tCIo7V"}},{"cell_type":"code","source":["!pip install black\n","!pip install blackcellmagic\n","%load_ext blackcellmagic"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"5zcH0zXXVl9E","executionInfo":{"status":"ok","timestamp":1647882106808,"user_tz":-330,"elapsed":13435,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}},"outputId":"877459d7-0663-4b3d-ab59-c9f34c79f7ef"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting black\n"," Downloading black-22.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB)\n","\u001b[K |████████████████████████████████| 1.4 MB 5.3 MB/s \n","\u001b[?25hCollecting typed-ast>=1.4.2\n"," Downloading typed_ast-1.5.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (843 kB)\n","\u001b[K |████████████████████████████████| 843 kB 38.2 MB/s \n","\u001b[?25hCollecting click>=8.0.0\n"," Downloading click-8.0.4-py3-none-any.whl (97 kB)\n","\u001b[K |████████████████████████████████| 97 kB 6.7 MB/s \n","\u001b[?25hCollecting mypy-extensions>=0.4.3\n"," Downloading mypy_extensions-0.4.3-py2.py3-none-any.whl (4.5 kB)\n","Collecting pathspec>=0.9.0\n"," Downloading pathspec-0.9.0-py2.py3-none-any.whl (31 kB)\n","Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from black) (2.0.1)\n","Collecting platformdirs>=2\n"," Downloading platformdirs-2.5.1-py3-none-any.whl (14 kB)\n","Requirement already satisfied: typing-extensions>=3.10.0.0 in /usr/local/lib/python3.7/dist-packages (from black) (3.10.0.2)\n","Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from click>=8.0.0->black) (4.11.2)\n","Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->click>=8.0.0->black) (3.7.0)\n","Installing collected packages: typed-ast, platformdirs, pathspec, mypy-extensions, click, black\n"," Attempting uninstall: click\n"," Found existing installation: click 7.1.2\n"," Uninstalling click-7.1.2:\n"," Successfully uninstalled click-7.1.2\n","\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","flask 1.1.4 requires click<8.0,>=5.1, but you have click 8.0.4 which is incompatible.\u001b[0m\n","Successfully installed black-22.1.0 click-8.0.4 mypy-extensions-0.4.3 pathspec-0.9.0 platformdirs-2.5.1 typed-ast-1.5.2\n","Collecting blackcellmagic\n"," Downloading blackcellmagic-0.0.3-py3-none-any.whl (4.2 kB)\n","Collecting black<22.0,>=21.9b0\n"," Downloading black-21.12b0-py3-none-any.whl (156 kB)\n","\u001b[K |████████████████████████████████| 156 kB 4.9 MB/s \n","\u001b[?25hRequirement already satisfied: jupyter<2.0.0,>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from blackcellmagic) (1.0.0)\n","Requirement already satisfied: click>=7.1.2 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (8.0.4)\n","Requirement already satisfied: typed-ast>=1.4.2 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (1.5.2)\n","Collecting tomli<2.0.0,>=0.2.6\n"," Downloading tomli-1.2.3-py3-none-any.whl (12 kB)\n","Requirement already satisfied: mypy-extensions>=0.4.3 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (0.4.3)\n","Requirement already satisfied: pathspec<1,>=0.9.0 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (0.9.0)\n","Requirement already satisfied: platformdirs>=2 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (2.5.1)\n","Requirement already satisfied: typing-extensions>=3.10.0.0 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (3.10.0.2)\n","Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from click>=7.1.2->black<22.0,>=21.9b0->blackcellmagic) (4.11.2)\n","Requirement already satisfied: ipywidgets in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (7.6.5)\n","Requirement already satisfied: jupyter-console in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.2.0)\n","Requirement already satisfied: notebook in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.3.1)\n","Requirement already satisfied: nbconvert in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.6.1)\n","Requirement already satisfied: ipykernel in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.10.1)\n","Requirement already satisfied: qtconsole in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.2.2)\n","Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->click>=7.1.2->black<22.0,>=21.9b0->blackcellmagic) (3.7.0)\n","Requirement already satisfied: tornado>=4.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.1.1)\n","Requirement already satisfied: jupyter-client in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.3.5)\n","Requirement already satisfied: traitlets>=4.1.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.1.1)\n","Requirement already satisfied: ipython>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.5.0)\n","Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (1.0.18)\n","Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.8.1)\n","Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (57.4.0)\n","Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.8.0)\n","Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.4.2)\n","Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.7.5)\n","Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (2.6.1)\n","Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.2.5)\n","Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (1.15.0)\n","Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.2.0)\n","Requirement already satisfied: nbformat>=4.2.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.1.3)\n","Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (1.0.2)\n","Requirement already satisfied: widgetsnbextension~=3.5.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (3.5.2)\n","Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /usr/local/lib/python3.7/dist-packages (from nbformat>=4.2.0->ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.3.3)\n","Requirement already satisfied: jupyter-core in /usr/local/lib/python3.7/dist-packages (from nbformat>=4.2.0->ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.9.2)\n","Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (21.4.0)\n","Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.18.1)\n","Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.4.0)\n","Requirement already satisfied: terminado>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from notebook->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.13.3)\n","Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-packages (from notebook->jupyter<2.0.0,>=1.0.0->blackcellmagic) (2.11.3)\n","Requirement already satisfied: Send2Trash in /usr/local/lib/python3.7/dist-packages (from notebook->jupyter<2.0.0,>=1.0.0->blackcellmagic) (1.8.0)\n","Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.7/dist-packages (from jupyter-client->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (22.3.0)\n","Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from jupyter-client->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (2.8.2)\n","Requirement already satisfied: ptyprocess in /usr/local/lib/python3.7/dist-packages (from terminado>=0.8.1->notebook->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.7.0)\n","Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from jinja2->notebook->jupyter<2.0.0,>=1.0.0->blackcellmagic) (2.0.1)\n","Requirement already satisfied: defusedxml in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.7.1)\n","Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.8.4)\n","Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.4)\n","Requirement already satisfied: bleach in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.1.0)\n","Requirement already satisfied: testpath in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.6.0)\n","Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (1.5.0)\n","Requirement already satisfied: webencodings in /usr/local/lib/python3.7/dist-packages (from bleach->nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.5.1)\n","Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from bleach->nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (21.3)\n","Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->bleach->nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (3.0.7)\n","Requirement already satisfied: qtpy in /usr/local/lib/python3.7/dist-packages (from qtconsole->jupyter<2.0.0,>=1.0.0->blackcellmagic) (2.0.1)\n","Installing collected packages: tomli, black, blackcellmagic\n"," Attempting uninstall: tomli\n"," Found existing installation: tomli 2.0.1\n"," Uninstalling tomli-2.0.1:\n"," Successfully uninstalled tomli-2.0.1\n"," Attempting uninstall: black\n"," Found existing installation: black 22.1.0\n"," Uninstalling black-22.1.0:\n"," Successfully uninstalled black-22.1.0\n","Successfully installed black-21.12b0 blackcellmagic-0.0.3 tomli-1.2.3\n"]}]},{"cell_type":"code","source":["!pip3 install hub"],"metadata":{"id":"9QHbnKDPhRC6","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1647882288187,"user_tz":-330,"elapsed":3209,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}},"outputId":"58ff20e7-1489-4afa-85ec-e8e9ed9fb0c2"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Requirement already satisfied: hub in /usr/local/lib/python3.7/dist-packages (2.3.1)\n","Requirement already satisfied: boto3 in /usr/local/lib/python3.7/dist-packages (from hub) (1.21.22)\n","Requirement already satisfied: humbug>=0.2.6 in /usr/local/lib/python3.7/dist-packages (from hub) (0.2.7)\n","Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from hub) (8.0.4)\n","Requirement already satisfied: pathos in /usr/local/lib/python3.7/dist-packages (from hub) (0.2.8)\n","Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from hub) (1.21.5)\n","Requirement already satisfied: pillow in /usr/local/lib/python3.7/dist-packages (from hub) (7.1.2)\n","Requirement already satisfied: numcodecs in /usr/local/lib/python3.7/dist-packages (from hub) (0.9.1)\n","Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from hub) (4.63.0)\n","Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from humbug>=0.2.6->hub) (2.23.0)\n","Requirement already satisfied: botocore<1.25.0,>=1.24.22 in /usr/local/lib/python3.7/dist-packages (from boto3->hub) (1.24.22)\n","Requirement already satisfied: s3transfer<0.6.0,>=0.5.0 in /usr/local/lib/python3.7/dist-packages (from boto3->hub) (0.5.2)\n","Requirement already satisfied: jmespath<2.0.0,>=0.7.1 in /usr/local/lib/python3.7/dist-packages (from boto3->hub) (1.0.0)\n","Requirement already satisfied: python-dateutil<3.0.0,>=2.1 in /usr/local/lib/python3.7/dist-packages (from botocore<1.25.0,>=1.24.22->boto3->hub) (2.8.2)\n","Requirement already satisfied: urllib3<1.27,>=1.25.4 in /usr/local/lib/python3.7/dist-packages (from botocore<1.25.0,>=1.24.22->boto3->hub) (1.25.11)\n","Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.25.0,>=1.24.22->boto3->hub) (1.15.0)\n","Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from click->hub) (4.11.2)\n","Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->click->hub) (3.7.0)\n","Requirement already satisfied: typing-extensions>=3.6.4 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->click->hub) (3.10.0.2)\n","Requirement already satisfied: pox>=0.3.0 in /usr/local/lib/python3.7/dist-packages (from pathos->hub) (0.3.0)\n","Requirement already satisfied: multiprocess>=0.70.12 in /usr/local/lib/python3.7/dist-packages (from pathos->hub) (0.70.12.2)\n","Requirement already satisfied: dill>=0.3.4 in /usr/local/lib/python3.7/dist-packages (from pathos->hub) (0.3.4)\n","Requirement already satisfied: ppft>=1.6.6.4 in /usr/local/lib/python3.7/dist-packages (from pathos->hub) (1.6.6.4)\n","Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->humbug>=0.2.6->hub) (2.10)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->humbug>=0.2.6->hub) (2021.10.8)\n","Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->humbug>=0.2.6->hub) (3.0.4)\n"]}]},{"cell_type":"code","source":["%%black\n","import hub"],"metadata":{"id":"BOZDs1cKgqDl"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["%%black\n","import tensorflow as tf\n","import pathlib\n","import os\n","import matplotlib.pyplot as plt\n","# import pandas as pd\n","import numpy as np\n","from PIL import Image\n","from tqdm import tqdm\n","\n","np.set_printoptions(precision=4)\n"],"metadata":{"id":"jaEIv15DMzVc"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# Load Hub datasets\n","\n"],"metadata":{"id":"XKAON2t7I9Eh"}},{"cell_type":"code","source":["%%black\n","#Look for different datasets in Hub\n","print(hub.list('activeloop')) "],"metadata":{"id":"ddzgz_uqimBc"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# Visualise the data through the link given in the output\n","![image.png]()"],"metadata":{"id":"eIoPIYZHT4Mb"}},{"cell_type":"markdown","source":["Load CIFAR-10 data from Hub"],"metadata":{"id":"CoNGJylRoIqS"}},{"cell_type":"code","source":["%%black\n","#load CIFAR-10 dataset from HUB\n","ds_cifar10_hub = hub.load('hub://activeloop/cifar10-train')"],"metadata":{"id":"-ieOoRUaDexu"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["Details about CIFAR-10 data"],"metadata":{"id":"7I4DaBSQn-Tq"}},{"cell_type":"code","source":["%%black\n","ds_cifar10_hub # details about cifar10 data"],"metadata":{"id":"i3z-qnzgDfjC"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["Normalise the data"],"metadata":{"id":"IvRVA2JlY9xT"}},{"cell_type":"code","source":["%%black\n","# Normalise the data\n","\n","def to_model_fit(item):\n"," x = item['images']/255 # normalize\n"," y = item['labels']\n"," return (x, y)\n","\n","\n","ds_cifar10_hub_tf = ds_cifar10_hub.tensorflow()\n","ds_cifar10_hub_tf = ds_cifar10_hub_tf.map(lambda x: to_model_fit(x))\n","ds_cifar10_hub_tf\n"],"metadata":{"id":"L--KwHBIDiRh"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# Batching and Shuffling Data"],"metadata":{"id":"CqWZz4l4J5IM"}},{"cell_type":"markdown","source":["Shuffle entire dataset"],"metadata":{"id":"evQv8SnZoQbd"}},{"cell_type":"code","source":["%%black\n","batch_size = 10\n","\n","# shuffling on the entire dataset\n","shuffle_buffer = len(ds_cifar10_hub)\n","\n","def visualize_img_label_in_first_batch_TF_ds(ds, batch_size):\n"," for image, label in ds:\n"," for b in range(batch_size):\n"," print(f'Image size: {image.numpy()[b].shape}')\n"," print(label.numpy()[b])\n"," plt.imshow(image.numpy()[b])\n"," plt.show()\n"," break\n","\n"],"metadata":{"id":"8iGSqtC9Dldf"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["Shuffled batched data "],"metadata":{"id":"fRK-ckTZoOof"}},{"cell_type":"code","source":["%%black\n","ds_cifar10_hub_tf_shuffled_batched = ds_cifar10_hub_tf.shuffle(shuffle_buffer).batch(batch_size)"],"metadata":{"id":"PRqOrAujDpVT"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["Visualize first batch in ds_cifar10_hub_tf_shuffled_batched"],"metadata":{"id":"aik0fvO2of06"}},{"cell_type":"code","source":["%%black\n","visualize_img_label_in_first_batch_TF_ds(ds_cifar10_hub_tf_shuffled_batched, batch_size)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"d1RSas_uDufk","executionInfo":{"status":"ok","timestamp":1647159912732,"user_tz":-330,"elapsed":82452,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}},"outputId":"0a5e71bc-67ef-404e-e530-8830fe27b735"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[9]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcpElEQVR4nO2da2yc53Xn/2eGQ1K8i6Iky7rYsuKb4jRKKrjZNkizKVp4gwBOgIWRYBH4Q1AViwbYAN0PRhbYZIF+SIsmQT4sslA2Rt0ijZM2CWIsjN2mRlI32dSOHN9kK75IpqwrJZKixMuQczv9MGOANp7/ITUkh0qe/w8QNHwOn/c97zPv4cw8/znnmLtDCPGbT2GzHRBCdAYFuxCZoGAXIhMU7EJkgoJdiExQsAuRCV1rmWxm9wH4GoAigP/t7l+Kfn/btjHft29f0hYJgHbdhpWMwdnaUSKDU4UutjnRVjhqGn5h4SW3Kc16WwsZHpDT1lq1d3/EaxWY1lvitrT/Z948jampqaSx7WA3syKA/wngDwGcBfALM3vM3V9mc/bt24ef/PPPkrZ6o07PVSAXVihEb0zafDLDJ6WRPhPxD4h9jGzN5b3+eQz3tO8A0PBae/Ma129r+5YPnpdo/YuF9C1eKPD1rdf5vRjdH40Gt9Vq/JiM6LqY7SMf+X06Zy1v4+8F8Lq7n3L3CoBHAdy/huMJITaQtQT7bgBnlv18tjUmhLgB2fANOjM7YmbHzOzY1NTkRp9OCEFYS7CfA7B32c97WmNvw92Puvthdz+8bdvYGk4nhFgLawn2XwC43cz2m1k3gE8CeGx93BJCrDdt78a7e83MPgvg/6EpvT3s7i+tPI/s4Ea7nMQW7Qa3SyNQBZjv0a5pRPs79ZEtPR7tFEe78fF6tKtqrC+xGpK+tnjt+U59dM/VqtFaURM9Zqx2XN+xgDXq7O7+OIDH13IMIURn0DfohMgEBbsQmaBgFyITFOxCZIKCXYhMWNNufDswmSSST5iM0670E8kT8THT0kq7MlMsGbVnY8cMpR9yXUD7a9UO7UqY8b1DEnKcv85FcmO0HhZIdsVALq3X0+sYJeTUmVoaPCd6ZRciExTsQmSCgl2ITFCwC5EJCnYhMqGju/EOvsPYTomjdneK257Hdq3b3o0PbOFufHjUtnxhrHeyUbS+7Zb3iss3sSQqvtPddmnDoOhWLUyEITERlgRLr0d0K+qVXYhMULALkQkKdiEyQcEuRCYo2IXIBAW7EJnQ2UQYd5qYUKff7OdyXb1NeS2U3qJabW30M4nkk4hAeYtt5O93IUjEiFo1RR1hQhmKSF5GuuoAKyTCNHiSSdQ9xwrk2oh/LSO1xJIuP2J0X83PXU2Ol+fn6ZwtW0bIebgTemUXIhMU7EJkgoJdiExQsAuRCQp2ITJBwS5EJqxJejOzcQCzAOoAau5+OJ7hVGKr1ap0FpPK6oFEEslr9ailUSi9sfH2auFF6k8XuBQZCoAkO8wDeSqS3vhV85p8AJe84gy1yMeAyMgOGal8YQ26ILOtyu/hSxcvUtuZ06eS40sLXHrbuf2m9JylMp2zHjr7v3d39WIW4gZHb+OFyIS1BrsD+Ecze8bMjqyHQ0KIjWGtb+M/6O7nzGwHgB+Z2a/c/cnlv9D6I3AEAPbs2bPG0wkh2mVNr+zufq71/yUAPwBwb+J3jrr7YXc/vG3btrWcTgixBtoOdjPrN7PBtx4D+CMAx9fLMSHE+rKWt/E7AfygJaV0Afg7d/+/0QR3oFZLyxpsPDxeoLmEWW/1Nts/tZH11v5bpyiljPtRZXKYBdlmQSskC87FijkCXL6y6LqiNk7BuRz83inU0seM7oFIelssL1Lb6fFxajt/9gy1VatLyfFisFSXL6Yltlq1Que0HezufgrAe9udL4ToLJLehMgEBbsQmaBgFyITFOxCZIKCXYhM6GyvN3dUKizrrQ3pLZBj6kGhxDCzLSrYR/40RvJU2HwrKAJZtxKfF2XZERkq8rFUjIo5Bj5GEiDJYiyQ4qEAUAgktLjYJ7dViFQ2OXGJzllaSkthADA7O0ttlyfOU1u9xrMYe7q7iYVfV6FOJMDgvtcruxCZoGAXIhMU7EJkgoJdiExQsAuRCR3fja9W07uS0Q45s9Sd73BGbZfCunBB8gHzcbHM6341gnMNDQ1RWymoQWd1nuxQILZqme8iz81MU9vQ2A5q6x4aozZWq61S4+tRDGraFYPklKX5OWq7euFccvzaFK+kVqnw9Y3una1BNNWL3NggN93SEq9pV6+Q9Qj80yu7EJmgYBciExTsQmSCgl2ITFCwC5EJCnYhMmETpLe0ZLAwz6UhWHpOT18vP1fkR5Bz40GNtAJJvKlWgsSJ82npBwAuB/MWZmeobWmO2ybPn02OX7s8QeeUZ7jtPe95N7UdPPTb1FbadnNyvDC0k86pBbfj4swVaps8fZralq5NpQ2BlNcV1SEMbizW2mwlrEgOSmIFAOqk1VQkYeuVXYhMULALkQkKdiEyQcEuRCYo2IXIBAW7EJmwovRmZg8D+BiAS+5+T2tsFMB3ANwKYBzAA+7OtZEWjUaDSmxPP/UTOq9Wv5Yc37qDZ10NDYxS22B/MG+IN58sdpHlCrS85x//AbX99F9+Rm0TdV4XzpkfAAYG+tOGQOYrVdLrCwBDQfbdvi7eCmmpbyQ5Xtu5n86pDOzitsuXqa06dZXa6sT/qEZhUIYQ7lyarTcCG/hBa430c7MYZN/1ELnO11iD7q8B3PeOsYcAPOHutwN4ovWzEOIGZsVgb/Vbf2fC8/0AHmk9fgTAx9fZLyHEOtPuZ/ad7n6h9fgimh1dhRA3MGveoPNm6Q76HT0zO2Jmx8zs2JUrK36sF0JsEO0G+4SZ7QKA1v+04r67H3X3w+5+eOvWrW2eTgixVtoN9scAPNh6/CCAH66PO0KIjWI10tu3AXwYwJiZnQXwBQBfAvBdM/sMgNMAHljNyaqVJVw+fzJpO3PqZT6vln77f/Ysl6e2lIgEBWCwn8trB+85RG0jw+nii9VA7ui/iW9n7Dx4N7WN9g3zYw7zQpV7992SHO+hM4Dn/+Un1OZdXP5BkCFotfS8S689Q+c0br6N2ioLgXRo/DZeIDpalWSNAUBPka9WIZDeAuUtbPXFDhl1AKuQ7LZANVw52N39U8T0ByvNFULcOOgbdEJkgoJdiExQsAuRCQp2ITJBwS5EJnS04GSjUcXCtXRxw21DW+i82bl0VtNShff4qld4RtZceZ7aXnmR923bOronOd5DJDkAGDjA5aR7dqePBwBe4LpLeXGBzyPfZdzS20fn3HnofdR2U4Vnmy3M82yzApHeMH2Gzin389eeWu8gtSGwXZ5KZ/RNX+H97fbftI/aSkHPtmqVy5QN5zKxFdPXXS9yIY31o4t60emVXYhMULALkQkKdiEyQcEuRCYo2IXIBAW7EJnQUemtWqniwrnzSVvUo2pxgUgaUUO3IAPJAklj/iqXk6yYlq/6iwN0zhx4tlY5yLzyWtAHLpAORwbSGXFTU6TnGQCUuqmpt8ht9Yn0cwkAi4tpWdSqwXUN80y/ehd/XWrUAsmukV7jK9d4v7zuLn7NO7dxmRUFfkOWy7xw58k33kiO9/Txm3jnWLpoakPSmxBCwS5EJijYhcgEBbsQmaBgFyITOpsI446FpXSrpHqDJ36MDKfbAjXITisAYJEnJRSDemDlCt+pL3ank3VGRnk7qd4Sbw3V18N3fYt1vhMblEHD1oF0UkhtlifPvHF6nNquvHyc2saWeGnwXtJSaqnKr7k8z3fq54s86clnuG1k7Ob0+HC6PRUAzJV5MtR2krQCAIUg2WVymicUvfp6ejd+9z5eK3HHGGtvpt14IbJHwS5EJijYhcgEBbsQmaBgFyITFOxCZMJq2j89DOBjAC65+z2tsS8C+GMAb+kJn3f3x1c6VqHUg/5d6ZpspWKQFDKbllb6+nibnsYU7TWJqXNnqc0GuSRz57vTtdpu3rufzqk2eAJEbyC9DffzumqVGj+mk/PNXeMJPksVLjW9/nMuaxX6eQKQ19PH7Onibbm2dPG2VtMNLkMhSGyam0uvx113vpfOuTrN12qgxJ+XixcuUlt3cH//pwfuS453FbkcfWU6nchTCGTl1byy/zWAlDdfdfdDrX8rBroQYnNZMdjd/UkAvBSnEOLXgrV8Zv+smb1gZg+bmRqvC3GD026wfx3AAQCHAFwA8GX2i2Z2xMyOmdmxudnZNk8nhFgrbQW7u0+4e93dGwC+AeDe4HePuvthdz88MBgU+hdCbChtBbuZLc9M+QQAni0hhLghWI309m0AHwYwZmZnAXwBwIfN7BCaKTbjAP5kNSdbXFzC8VdOJW1DQ1xG67F0mtd25xllNp/OugKASlDv7pbb7qC22fl0S6mnnvpXOqfR4LLQcJB5dedd76Y2K/C0t6HhtBxWDSSZrf1BzbUdvOba+SkuUXkt7UfD+DXvu/kearvp9kPUdmL8JLVNHf9lcnzkCm+HVaxwmaxR4/fcTWN86+qW2+6ktp3b05JjhScBYu5aWtrs6+Nt1FYMdnf/VGL4myvNE0LcWOgbdEJkgoJdiExQsAuRCQp2ITJBwS5EJnS04ORSeQHjx59N2nqDDLbSlnT2z6XuoD3OAJcgRrbvpLbRm/dQ2yun0oUBl5bSkhwAFIu8CGGpxLOaSkEroW1bgy8neTrL68Kbad8BoFDmmW2nZvi1vXaSS28L5fS87UNc5vvYh3hmmy9yHerNM+PUNrwlLbHVgqqddxw8SG2LM7xtVKmHP9fd/LIxRTI0q0tctjVye3iDS4N6ZRciExTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmdFR6q1UqmD6XloD27NtN5929/0ByfG6C9xp7Y/w8tf3OAS6t7LnlVmrrJfn4lQrvK1cO+oYNBvn9S/Nc4nntzRPUNnstXUHsn578GZ3jBS5TvnTiHLVdmOHyVamUzm7rHd1O51QKXDY6/uSPqe2ln/1/ahvckb6vruzjvh/8HS6/3h7cO688/8/UNj3JszAH+tNFOBtBYdErM+l7v1bjGXt6ZRciExTsQmSCgl2ITFCwC5EJCnYhMqGju/Fb+vvx7sO/m7Tt3sNrnd0xkq5n9tq5eTrn9Wluuzg1RW2/euUlatvSl/ajXucJCzNB4sT8wgK1jS/wXXxb5AkoU5PpFkRTszyRZGGB7xRPzfEkmfmgHlsPScgZGdtH54zdklZdAGBwgl/zlat8B3pqKZ1kMjHDr/m3DvF6d8PvuZvarl7lz/VgDw+1sqcTaAqk9iIAzJL7I6p5qFd2ITJBwS5EJijYhcgEBbsQmaBgFyITFOxCZMJq2j/tBfA3AHai2e7pqLt/zcxGAXwHwK1otoB6wN15ZgoAd6BC5Jrxc2nJCADGSunEhIlFLv2M7d4bOMLliWefTdfIA4CR4XSNtK6gllxvD6+td21ugtouT6UTWgBg/96bqa2M9Pm238STO147zhNrRgbTSRoAUOzm63htMi0rTk1wCfDRH/6c2n41/iq11bt4Is8wSTKp1LjsWV3i3YYnL/HEoLk5fswS+D1SsLT01lXiNe2qJOHFwWsXruaVvQbgz9z9IIAPAPhTMzsI4CEAT7j77QCeaP0shLhBWTHY3f2Cu/+y9XgWwAkAuwHcD+CR1q89AuDjG+WkEGLtXNdndjO7FcD7ADwFYKe7X2iZLqL5Nl8IcYOy6mA3swEA3wPwOXd/23cN3d2B9IcFMztiZsfM7NhiUF9dCLGxrCrYzayEZqB/y92/3xqeMLNdLfsuAMkvIbv7UXc/7O6He3t618NnIUQbrBjsZmZo9mM/4e5fWWZ6DMCDrccPAvjh+rsnhFgvVpP19nsAPg3gRTN7rjX2eQBfAvBdM/sMgNMAHljpQKWiYddIWhqanueSjPem3xFcqPM5g11c8rpC2u0AwAIvJ4ezZ9LyYL3Oa4UNDQ1RW6HA/9ZOT09S2/hJLkMVi+lj7t3DpcipSX6u7i6eebV9dJja3rXnt5Pju8f+gM45/uo4tb3+JvdxZDDd4gkAtg2nfZy4wrMKX3r+eWobDtpyVapcilyq8PP1byE16MCPVyMm5+6tHOzu/lMA7Bnnz5wQ4oZC36ATIhMU7EJkgoJdiExQsAuRCQp2ITKhowUnu7qK2LEtLYU4eGHDyYtpqWxkhMtaQ0M8E2pulhecfPLnT1Pb7LW0jzfv2kXnDBPpBwBqdZ61d/UqL7BYLvNvIrLz9fUG8tQYb0M1PJQusgkA27ePUVtX47bkeH3mFjpntI9/6aq39K/UVi7zVl/Tnl7jpVlekPSFY89R27Zu7uOObXytikUuo/WQrMlakJ3Jbp1AedMruxC5oGAXIhMU7EJkgoJdiExQsAuRCQp2ITKho9Ib4KiRDLGRIS7/FAvpwnsHhkfonFKQrTU7y+WTkUAqaxC9Y9dNvE9dpcr7kM3NcnnNAhGlJyhEWJ5PF0s8GWTKHdi/m9rGto1S2xaSrQUAi6SV2qXJU3TOfIXLYfUlno64VOcZZd5Ir2ODpY0B6BvgElo5KHJ68jQvILr1vbzg52IlHRN14jsA9BG5LuoPp1d2ITJBwS5EJijYhcgEBbsQmaBgFyITOrobb1ZEaUt6t5s3xwGM7DAWi3znEfUg8aCbJ8ncdfdd1DYzlU6g6Q7aP/V0c9vQQNBaiW+40zpzAK9rNxioHTuDhJbubn6LWFBDr2soXQOw1MOTePqwldoO3vZBanv2VV7rtEHWsX+Q77j3BirDvgN3UNsbb/LWUFPzvE5hsZDe4S8E4VkHU5SCe4NahBC/USjYhcgEBbsQmaBgFyITFOxCZIKCXYhMWFF6M7O9AP4GzZbMDuCou3/NzL4I4I8BXG796ufd/fH4YAUUSmnZy8ClCf4niSclNLjyhu7ubmq7411cWsFt6WSMQACksiEAFAqBrciTIIJDUm+iOe7RAQM/glmNalrq2z56gM5ZuMqTkAaLvN7gjpFXqK1SOpsctwa/38qLPOlm69h2alt0LrOeu/gStc1MX0mObx/jtQ0rnpY268FzuRqdvQbgz9z9l2Y2COAZM/tRy/ZVd/+rVRxDCLHJrKbX2wUAF1qPZ83sBACeEymEuCG5rs/sZnYrgPcBeKo19Fkze8HMHjYz/vUnIcSms+pgN7MBAN8D8Dl3vwbg6wAOADiE5iv/l8m8I2Z2zMyOzc/z4gRCiI1lVcFuZiU0A/1b7v59AHD3CXevu3sDwDcA3Jua6+5H3f2wux/u7+ffORZCbCwrBrs1t5O/CeCEu39l2fjyrcJPADi+/u4JIdaL1ezG/x6ATwN40cze6ovzeQCfMrNDaGoz4wD+ZMUjGZeAPOpbQ4yFQPyxIG2sK7B1R34gPc8sksm4jx5cdD3I2ovmUVtwXZGPEcUGlzBnp9LSW32RZ9+hvkRNXuHvCkd73kVt41fStfecuw4r8rA4/eY492OU1yI8P8+fz+lrl5Pj1UDKq9bTF1CtcTl6NbvxP0VaUo01dSHEDYW+QSdEJijYhcgEBbsQmaBgFyITFOxCZEJn2z854CwdLVB/jBgLRApb6XgOLoMUCpGMFpyP0GhEmXmRzsf/DkdKGZcB+bmCBEFY4IcH0tvctfT5rk1P0jndRS41eVSSNNDRFsrpApeVRV74stjLC5JOT05TW63G74/FoG1UpZJeq8Uybx02OXkpOV6t8Iw9vbILkQkKdiEyQcEuRCYo2IXIBAW7EJmgYBciEzorvYFnWEV9w5hsZGGhxEBeM26zQHqr1dO2RlDdMspQi/RBs2A9gkM6NfJJQd1LoMH9aNS51NSopefNzs/QOcP9vOBkFylUCgD1Oi8e2SDFI7uNS1RdVf58nnj6GJ/Xz33cubWP2vo87Utjlst83ZaW8ix6nqlFCPEbhYJdiExQsAuRCQp2ITJBwS5EJijYhciEjktvjEiiYplcBSI/NOdE5+K2ejXIUqO1HNsr2BhJaJEsF6p57bgRHC+SFRtBv7SF8mxyfHGRv76M9PM+I8VAH6xUeD+CBskCGxngWXR7hkeo7dJkui8bAIwGmXS3bB2gtj6S7Veo8SfmTCnd6y1aJ72yC5EJCnYhMkHBLkQmKNiFyAQFuxCZsOJuvJn1AngSQE/r9//B3b9gZvsBPApgG4BnAHzanXyjfxnNPpBJC51ToDuMfDfYg/ZJ1WCXM9zpDpN1yPGCOnPxpnp7CTRsWnS0RnDRjXqgTgTtmsqL6V1rwyidE9X4qzd4PbZKvUxti8X0tV2t8Z3zniGe0HL3rfupbXJ6itqqg7zt1Xw97UvPFu5HTymdWGMFHtKruXuXAHzE3d+LZnvm+8zsAwD+AsBX3f1dAK4A+MwqjiWE2CRWDHZvMtf6sdT65wA+AuAfWuOPAPj4hngohFgXVtufvdjq4HoJwI8AnAQw4+5vvY8+C2D3xrgohFgPVhXs7l5390MA9gC4F8Bdqz2BmR0xs2Nmdmx+nn/TSQixsVzXjpO7zwD4MYB/B2DEzN7aDdgD4ByZc9TdD7v74f5+3mNbCLGxrBjsZrbdzEZaj7cA+EMAJ9AM+v/Y+rUHAfxwo5wUQqyd1STC7ALwiDV1kQKA77r7/zGzlwE8amZ/DuBZAN9c6UAGR4m1JwpkF9YmKchZgQf16bzNrxdYg9TPC4Qt8+tvGQVEEmUMq10X1skL5EEL5hUDBXBke1oqW5rn55ov84953V0L1GZdvdRW6N+RHF+sB8kz/bxeXGmYJ9D0dg1RW3mIH3NpIb2Q/Vt48kzDiB9BBtiKwe7uLwB4X2L8FJqf34UQvwboG3RCZIKCXYhMULALkQkKdiEyQcEuRCZY3J5onU9mdhnA6daPYwAmO3Zyjvx4O/Lj7fy6+XGLu29PGToa7G87sdkxdz+8KSeXH/IjQz/0Nl6ITFCwC5EJmxnsRzfx3MuRH29Hfryd3xg/Nu0zuxCis+htvBCZsCnBbmb3mdkrZva6mT20GT60/Bg3sxfN7DkzO9bB8z5sZpfM7PiysVEz+5GZvdb6n/dC2lg/vmhm51pr8pyZfbQDfuw1sx+b2ctm9pKZ/ZfWeEfXJPCjo2tiZr1m9rSZPd/y43+0xveb2VOtuPmOmXVf14HdvaP/ABTRLGt1G4BuAM8DONhpP1q+jAMY24TzfgjA+wEcXzb2lwAeaj1+CMBfbJIfXwTwXzu8HrsAvL/1eBDAqwAOdnpNAj86uiZolg8eaD0uAXgKwAcAfBfAJ1vj/wvAf76e427GK/u9AF5391PeLD39KID7N8GPTcPdnwQw/Y7h+9Es3Al0qIAn8aPjuPsFd/9l6/EsmsVRdqPDaxL40VG8yboXed2MYN8N4MyynzezWKUD+Ecze8bMjmySD2+x090vtB5fBLBzE335rJm90Hqbv+EfJ5ZjZreiWT/hKWzimrzDD6DDa7IRRV5z36D7oLu/H8B/APCnZvahzXYIaP5lx0o9JDaOrwM4gGaPgAsAvtypE5vZAIDvAficu19bbuvkmiT86Pia+BqKvDI2I9jPAdi77GdarHKjcfdzrf8vAfgBNrfyzoSZ7QKA1v+XNsMJd59o3WgNAN9Ah9bEzEpoBti33P37reGOr0nKj81ak9a5r7vIK2Mzgv0XAG5v7Sx2A/gkgMc67YSZ9ZvZ4FuPAfwRgOPxrA3lMTQLdwKbWMDzreBq8Ql0YE3MzNCsYXjC3b+yzNTRNWF+dHpNNqzIa6d2GN+x2/hRNHc6TwL4b5vkw21oKgHPA3ipk34A+DaabweraH72+gyaPfOeAPAagH8CMLpJfvwtgBcBvIBmsO3qgB8fRPMt+gsAnmv9+2in1yTwo6NrAuC30Czi+gKaf1j++7J79mkArwP4ewA913NcfYNOiEzIfYNOiGxQsAuRCQp2ITJBwS5EJijYhcgEBbsQmaBgFyITFOxCZMK/Ac5PjfgjWgvIAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[5]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbYklEQVR4nO2de4ycZ3XGnzOzN98vMbYX27kSSMItAeNCoVyCQAnQJqAqIhIoUiOMKpCKRKVGVCq0/xSqAuKPCmRK1FBxv0SkaiCkESXcGuKExHZuTux449vu2vHerzPznf4xY3WTvs/Z9ezsrOF9ftJqZ7+z7/edeb/vzDfzPnPOMXeHEOIPn9JyOyCEaA8KdiEyQcEuRCYo2IXIBAW7EJmgYBciEzoWM9jMrgPwJQBlAP/q7p+d5//dLG1rtQLIjjMfkR/lcvq1sVzmB4ueVlEtqK2jg78OR0+NHy8axW21gvtYq3Ebk3Sb830e70vnfrI7u7qoraenmw8MnAzPda1GbbOzM+n9BRcjM9VqBYqiSE6INauzm1kZwEEA7wJwDMCDAG5298fZmFLJvKs7/fpSqVTpsZpxMQqWUnBxVIMAXLNmRXL7uvX84gjiAWNDE9S25YJV1FYKXsnY+XQv0zEG7v/IxDS1nRkZo7ZitpI+lvHzkh5Rp7vMJ5JdUwBQWPp5b9++jY654opXUFtwecCdG8dHh6jtWN/h5PbKLN9fpZJ+8Tg9NIZKpZq8QBbzNn4XgGfc/bC7zwL4NoAbFrE/IcQSsphg3wbg6Jy/jzW2CSHOQxb1mX0hmNluALuX+jhCiJjFBPtxADvm/L29se0FuPseAHuA+mf2RRxPCLEIFvM2/kEAl5vZJWbWBeCDAO5qjVtCiFbT9J3d3atm9nEA96Auvd3u7o/NN64gUk604s5speClih2nPo6vTHd3dVIbe19SDlaYI0FmRXcPP1ZwaiIFpUQmxcCfc3wZ8GNFc5wWfwCLxMFgHsuB+GbBfMzMzia3V6tc/ZmanOJ+dHHloii4vHbq1CC1zRIfS8blQbP03Eci5KI+s7v73QDuXsw+hBDtQd+gEyITFOxCZIKCXYhMULALkQkKdiEyYcm/QbdQms1SYzAJCgC6goynjkCWKxPZKJSFgufV0bOa2kaHeALK+ARPoHEihxXOZaEiSOCIklM8kMqcPO8gjyTUX7tIxiEAlAI/akVaYjt16hQdMxHM77oNG6lt/bp11HZq8DS1dXWmJyt4yohFtjS6swuRCQp2ITJBwS5EJijYhcgEBbsQmdDW1XhHa2vNRfuKVmg7O3myS42U+wGAHlLqqqeDr+DPBqWFqsHa9Oo1fJ9dQQJNrZZefS7Y8jiAwvlcTc7w9fjJmXQCR32f6e3h6Q9OaAcpL1XfZ7AyTXY5GSS7TE5MUtvw6Di1HQvKnVVm0nXmAGDzprXU1kp0ZxciExTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmtFV6MwdKBXl9CdSTGkvUaKJuHQBYJOM4r022ZWO6S8uuV/By+Y8ePEZtx8e49LZ5Ha911l3iCTTekZ7I2SAjpyj4fJw5fYbaZgZ4sg7LhPHgpIXtk0L/+TyWiRwW3eWijkFFlXtZCVo8RRUAS6RgH6vjBwA1MlvRHOrOLkQmKNiFyAQFuxCZoGAXIhMU7EJkgoJdiExYlPRmZkcAjAGoAai6+854AMCS0SJJxspExqlFMk5gC6SaqGhcqZbOAOupjNIxb3rlDmq789dPUtvRE8PUVgavoVfuSk/wmpX8eV24eQO19WxIy40AcHqQy3JOpTdOjbQ0AoAgMQ/VStCiil0j5JoCAAR1CCM6O3g4WS1oR0buuYHKF2cPElqhs7/D3Xk1PSHEeYHexguRCYsNdgfwUzN7yMx2t8IhIcTSsNi38W9x9+NmthnAvWb2pLvfP/cfGi8CeiEQYplZ1J3d3Y83fg8CuBPArsT/7HH3ne6+s9WNIIQQC6fpYDezVWa25uxjAO8GcKBVjgkhWsti3sZvAXCn1W/XHQC+6e4/mW9QgXRWWaBMNNPpBmaRLMezkzxok+QkO+zkiX465h3v4NLb9X90EbU9fex5anuuf4TarJJuXfT6rVxeu2QrvwyOV/m4g88FLZSm0ye0HJyXkvG5LwVvCy2SS0kWYJTZ5oGPXWR/AEDqkdb3WeNyXo340sLarAAWEezufhjAa1voixBiCZH0JkQmKNiFyAQFuxCZoGAXIhMU7EJkQlsLTq5dsxJ/8qYrk7bZKpcmhsfScpIHr1VW4rb+kyep7cyZIWobr6Rlw2qJ947rAu+H9pEPvJnaVm/lRSwPDvBeZH2PPJz2o59n2I1M8Ky9J4eCXnVRoUfS/y5owYdS0IPPgmKOq9au5H7U0j3WrrrsQjrmkm1bqG3fYwepbdZ5OE1M8eKcU7Ppa4Rm7AGokbn3oNKq7uxCZIKCXYhMULALkQkKdiEyQcEuRCa0dTV+ZU8Xrn75xUnbmZH0qikAHD2RrnXWNzhIxwyP8mSRsTG++owSX808PTWe3D7bwZNFLr30cmorpvkK7frNF1Dbe6+9gdqGd16T3H7/V/6Rjpmt8lpyp4fTzxkAakH2kpH7SFHw+a3O8tZbUVW4svVwP8jtrKsyRsfcdO27qW0raQEGAD/+xaPn7AcATJPVeA/mqiBzX2g1XgihYBciExTsQmSCgl2ITFCwC5EJCnYhMqGt0tvI6ATuvu+BpK2/n9dcGxqZSm6fCYp0lYJn1hkUCyuV+cBpTwtAp05z2XBmkstJjx06Sm3/+cBhavuLv7mK2jbveGVy+0suSm8HgL2HfkVtA0Pc/1Xda6kNlh5XCaTNai1IbIraedV4XbgVRLQ7/NwAHXPPT3gpxQ986GZq+++Hn6G2k8M8eamEtIwW1WWkCS+S3oQQCnYhMkHBLkQmKNiFyAQFuxCZoGAXIhPmld7M7HYA7wMw6O6vamzbCOA7AC4GcATATe7Oi7c1mJyu4NGDx5K2Upm/7jgzRS2jnMsxRRH1kwokHtIWyI1PY7WLZ0ld8+4/o7bf3MPln9okb7tURTfxgw7B4wM8A+zUBJcVK/TEAKUindHnQS+vUiAbeVBTsCjxC4Eljk11rqNj/uex56jtTyf43F95GW/n9eSRE9TWQWU0OiSsNcdYyJ393wBc96JttwG4z90vB3Bf428hxHnMvMHe6Lf+4oTnGwDc0Xh8B4AbW+yXEKLFNPuZfYu7n63H3I96R1chxHnMor8u6+5uQX9kM9sNYPdijyOEWBzN3tkHzKwXABq/aX0od9/j7jvdfWeTxxJCtIBmg/0uALc0Ht8C4EetcUcIsVQsRHr7FoC3A9hkZscAfBrAZwF818xuBdAH4KaFHzItvZQDaaVGC+9F8kMg40QST8HbDLFMukoXl5NsAy8c+eb3vp/aXvXaK6htxQYu51Vmh5PbH+/ro2OeOsYLcFZL/FgzXqE2poaVa7x0ZFQsEfy0oFbm0luFfMKsOW81dWacn8+Tzz5LbZtXBbJilUuYBS3OSYc0Jb3NG+zuznL63nnORxNCLBv6Bp0QmaBgFyITFOxCZIKCXYhMULALkQltLTgJ8F5f1WqgrRAsSF6LlIlYtuA7rdXS46aCnlx9R3lRyeNPchln0+ZN1GbONZmOStqXy1/7Njqm5/sHqa1zIt2HDACcFOAEgCpJSeR7a1ZIBbprXALsKBFblffZW9HFj7Z27WpqGx3nmW2xUEas4QUe7jCJ7uxCZIKCXYhMULALkQkKdiEyQcEuRCYo2IXIhLZLbwwmyQGxAtH6YwXSW5HOlBoa4X289j+4l9om+tMZagDwzuvfQG1XvP7V1NZZ2pjc/vq38HICN9+0n9q+9737qG0o6GNnpfQ8dndwuc6M33uqNX6sGZ5QBida33TBi2xeuY33sFuxaiW17T90ktqqQVHSjhpxsgiKsC5RwUkhxB8ACnYhMkHBLkQmKNiFyAQFuxCZ0PbV+GZW1tnCY6tX6YF58gvIavHEJE/E6B98cX+N/2Nz9yFqqw5tpzafuJDasDLd56mniy9Z3/rht1LbH79qK7UND09Qm1XSx1vdHbSMilbjq/xkj07wxKCxyfRK93SZX/oXbeV19369n9fye7qPt4Yy4/23Ck8rDWGtRGKLrl/d2YXIBAW7EJmgYBciExTsQmSCgl2ITFCwC5EJC2n/dDuA9wEYdPdXNbZ9BsBHAJzVGj7l7ncv5IBLIZedKyWSpAHE/nV2pCUeL/HkjokgmWHz1nTSCgCs6N5AbT4ZCCylkfR20hYKAFYal67edPWl/FjVoKLc5FRyc22WJw1VgrpwHSWegNLRzWUtdBLbBTvokOPDad8B4NP/8mNqm53hyToocR/d02Ho4JJuMyzkzv5vAK5LbP+iu1/d+FlQoAshlo95g93d7wfAvxkihPi9YDGf2T9uZvvM7HYz4+85hRDnBc0G+5cBXAbgagAnAXye/aOZ7TazvWbGqzgIIZacpoLd3QfcvebuBYCvAtgV/O8ed9/p7rxUihBiyWkq2M2sd86f7wdwoDXuCCGWioVIb98C8HYAm8zsGIBPA3i7mV2NepLNEQAfXUIfmyKqJVcq8dc4C9o/lYnNgtfMKCPu2WM8S6q37xi1bd92AbUV42lpq7snyDYrceltapJntoFktgFAJ9JSU2WW+zE9E0h5JDMMAHpmV1CbdaefW9c6/pxHqulagwDw/BiX5Yoab2FWkHZYdSORdJvp8RQwb7C7+82JzV9rqRdCiCVH36ATIhMU7EJkgoJdiExQsAuRCQp2ITKhvQUnjUtiTbWzCbPXmnsdKwf7LBMpxJ2PmZrhcsxswbPlTg8MUNupvqeobdO69D671/GWRkUgUxYzXGqqVYIsta70/JeDDMHKLJ+r4eFRarOCy4NrN6xLbt+4bpyO2byJF/t86faXUtuhowepDaXg+qbFI6OCk8wQuMBNQog/JBTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmtFV6M/CCjk0ob/GxgsKRFshrpWBgJ8l6qwYy32yFP7FqlUtNnTUuJ808zzPisHJzeswkP9W1aS6hzQbyWhEURCxWpG09XTxDzZ3P4+FnuBTZPzBEbVe9PC2V9azupmM2bemltmtecyW1/fzXXBINLrmmaCZedGcXIhMU7EJkgoJdiExQsAuRCQp2ITKhvYkwAe1sCxUlyVhQn45ZOoIabtOz3DY0zlez+0/w1eepzXyyKrPphJdama8+z47wpJDaLF+Nr/GcFjhRIbrXBQpEJ7cdP3Ga2h7ce5jaSiQzZHMvb3Ww5sLj1HZJ73pq6wgu4khpaCKnpSl0ZxciExTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmLKT90w4AXwewBXU1YI+7f8nMNgL4DoCLUW8BdZO784yE+Y/T0jGhLdinB+Nq5KWxHCSETAUdjY4+z2Wt3hU91DY5w0WZCpHKSuWgRdXEGb6/cV6DDt0rqalaS19aG9ZzCXA8SLoZGOcTOTTFz9nREyPJ7c+f4TXtesf4fGCajysX/LzUgu5PXHBsLQu5s1cBfNLdrwLwRgAfM7OrANwG4D53vxzAfY2/hRDnKfMGu7ufdPeHG4/HADwBYBuAGwDc0fi3OwDcuFROCiEWzzl9ZjeziwFcA+ABAFvc/WTD1I/623whxHnKgr8ua2arAfwAwCfcfXTuZ2J3dzNLfmAxs90Adi/WUSHE4ljQnd3MOlEP9G+4+w8bmwfMrLdh7wUwmBrr7nvcfae772zn99+FEC9k3mC3+i38awCecPcvzDHdBeCWxuNbAPyo9e4JIVrFQt7GvxnAhwHsN7NHGts+BeCzAL5rZrcC6ANw09K4yCkFGWrNSHnzwZSVqKVR4VxzOT2UloUA4Hg3l7wGh9ItjQDgopl0NtfqldyPqWKG2o4M8Gyzles3UVutkr60fvksr633mwefprY+IqEBwIqV/DqYqaSlssoUz/SbGOUy3+8ePURtgcoKL6qBNdDlWsi8we7uvwSXpt/ZWneEEEuFvkEnRCYo2IXIBAW7EJmgYBciExTsQmRCWwtOOgCnfWuiDLb09qLgkkUkvUWSXRFkLllHWmIrmsywG5/hckzf89z22FGeXPiKl21Lbu+9eCsdM9bPn/PP9z9LbSOTY9T23Gha2jp4gktez5/mfnSs4Of6yh1BkdDVq5Pb16/n8uXIGM9ifPSJo9RWBCfbjee2lZgp2p/aPwkhGAp2ITJBwS5EJijYhcgEBbsQmaBgFyIT2tvrzQGmlpHaF/VhxBSNaT7rjY8riETC5USgM/CxCp4t1zfOx/3isZPU9urLd6S37+KFhJ4dOUVt//Ew7zk3Osl9nKqmpcOKBQ3iujqpqVrjOWWHBrmsNXhR+nirXrKZjplZtYbahqeDopLBcytZIBOT7R6XRg1sxIdzHiGE+L1EwS5EJijYhcgEBbsQmaBgFyIT2rsaD76yHn2xv5mF9WiFPKz5FRzMa+lV32DBPTRasHpbCU7N4TM8meR3B48nt187zVsrjQY+npzmq+DVUhe1WZm0eQrOi4P7GJTyw8g4P2e/PZBWGg48wxWNt934Bmp7w65XUNvTd/2W2uDBdUVMTeS6hOjOLkQmKNiFyAQFuxCZoGAXIhMU7EJkgoJdiEyYV3ozsx0Avo56S2YHsMfdv2RmnwHwEQBntY1Pufvd8+8vvT1SyngizHxHa4LAkRJIXbhAVqkFz6scSF7loF3QdPDEnz6RTlw5cSbZdxMA0Hein9qqlSCBo8xrtXkt7WPNedKKR/paQCko/jZr6Rp0Dz3F5+PK4zz557q3vpzavv+TB6itVuEyq1t6HqNrp5lLfyE6exXAJ939YTNbA+AhM7u3Yfuiu/9zE8cVQrSZhfR6OwngZOPxmJk9ASBdwlQIcd5yTp/ZzexiANcAOPt+5eNmts/MbjezdPtQIcR5wYKD3cxWA/gBgE+4+yiALwO4DMDVqN/5P0/G7TazvWa2twX+CiGaZEHBbmadqAf6N9z9hwDg7gPuXvP6qspXAexKjXX3Pe6+0913tsppIcS5M2+wW72+09cAPOHuX5izvXfOv70fwIHWuyeEaBULWY1/M4APA9hvZo80tn0KwM1mdjXqctwRAB9dEg+XgKjFU5QRx2veBe2HglZTEbUal942bFpLbRdelG7zNENqwgFAhSe2hbJiKP+QubIgl6uZlkYAUAs8mSKX+ONHR+iYb/7gHn6wFbxtlEUtzKLnzY/WUhayGv9LpM/rvJq6EOL8Qd+gEyITFOxCZIKCXYhMULALkQkKdiEyob0FJw0olc49X4cXqWxOtIiy5SJZjqtoTYonwVxY8DpsQTpUZzl9SqtBZpiBt10KFEB40NIIZB6LqOBkk9PowVw9Nzia3D45PkTHjI4OU9uWl/K0EA/m2KMip03lsKn9kxCCoGAXIhMU7EJkgoJdiExQsAuRCQp2ITKhrdKbobkikXxMcxUnI8nOAgeZLZLriqBwZOH8tbYcPLWJYd7rrZ8UnJya5X4818cLLHaUo35uvOAkE5oitS46L6EsFxWxJP30elbxzMF1a9ZT2+wkP1aUIRj2F5T0JoRoJQp2ITJBwS5EJijYhcgEBbsQmaBgFyIT2pv11kZiCS0cec77LAouq0QFJ6O6l17j++zdsZnabrzx+uT2SpU/rwP7D1JbRwe/RGqs9x34HEf1N5uV3kqBDLV2dU9ye7mzm44ZHpmmtrGJCWqrRSc0uubaVHFSd3YhMkHBLkQmKNiFyAQFuxCZoGAXIhPmXY03sx4A9wPobvz/993902Z2CYBvA7gAwEMAPuzuUSOhlhOtuEfEtc6iFeHWLpuWkE7SAAAz/jo8OsVXhJ9+7lhy++RTPHmmUpmhNg/m2Avuv5MEIG9y6Tk61R0d3Lh+/erk9kqVJ/H86vFBagvSYAALEnIi5YUYm7u6OQu5s88AuNbdX4t6e+brzOyNAD4H4Ivu/jIAQwBubbFvQogWMm+we52zt4XOxo8DuBbA9xvb7wBw45J4KIRoCQvtz15udHAdBHAvgEMAht397Hu1YwB4jV0hxLKzoGB395q7Xw1gO4BdAK5Y6AHMbLeZ7TWzvS3+yCuEOAfOaTXe3YcB/AzAmwCsN7OzC3zbARwnY/a4+05339nkepoQogXMG+xm9hIzW994vALAuwA8gXrQ/3nj324B8KOlclIIsXhsPjnJzF6D+gJcGfUXh++6+z+Y2aWoS28bAfwOwIfcnWs4AEol847O1t3em5fezo/PE0bqowHxq3B3iSeg9G5Mq6nbt/K6av3P88SPwwNT1FY4V269SMtQRSBeRbX8ojPW08n92LEtnTQ0PjFGx5w5zecjkt4qBZfz2pXs4gXgni6GN6/O7u77AFyT2H4Y9c/vQojfA/QNOiEyQcEuRCYo2IXIBAW7EJmgYBciE+aV3lp6MLNTAPoaf24CcLptB+fIjxciP17I75sfF7n7S1KGtgb7Cw5sttfddy7LweWH/MjQD72NFyITFOxCZMJyBvueZTz2XOTHC5EfL+QPxo9l+8wuhGgvehsvRCYsS7Cb2XVm9pSZPWNmty2HDw0/jpjZfjN7xMz2tvG4t5vZoJkdmLNto5nda2ZPN35vWCY/PmNmxxtz8oiZvacNfuwws5+Z2eNm9piZ/VVje1vnJPCjrXNiZj1m9lsze7Thx983tl9iZg804uY7ZtZ1Tjt297b+oJ4qewjApQC6ADwK4Kp2+9Hw5QiATctw3LcCeB2AA3O2/ROA2xqPbwPwuWXy4zMA/rrN89EL4HWNx2sAHARwVbvnJPCjrXOCemHZ1Y3HnQAeAPBGAN8F8MHG9q8A+Mtz2e9y3Nl3AXjG3Q97vfT0twHcsAx+LBvufj+AMy/afAPqdQOANhXwJH60HXc/6e4PNx6PoV4cZRvaPCeBH23F67S8yOtyBPs2AEfn/L2cxSodwE/N7CEz271MPpxli7ufbDzuB7BlGX35uJnta7zNX/KPE3Mxs4tRr5/wAJZxTl7kB9DmOVmKIq+5L9C9xd1fB+B6AB8zs7cut0NA/ZUdbatt8v/4MoDLUO8RcBLA59t1YDNbDeAHAD7h7qNzbe2ck4QfbZ8TX0SRV8ZyBPtxADvm/E2LVS417n688XsQwJ1Y3so7A2bWCwCN37wtyRLi7gONC60A8FW0aU7MrBP1APuGu/+wsbntc5LyY7nmpHHscy7yyliOYH8QwOWNlcUuAB8EcFe7nTCzVWa25uxjAO8GcCAetaTchXrhTmAZC3ieDa4G70cb5sTqxQS/BuAJd//CHFNb54T50e45WbIir+1aYXzRauN7UF/pPATgb5fJh0tRVwIeBfBYO/0A8C3U3w5WUP/sdSvqPfPuA/A0gP8CsHGZ/Ph3APsB7EM92Hrb4MdbUH+Lvg/AI42f97R7TgI/2jonAF6DehHXfai/sPzdnGv2twCeAfA9AN3nsl99g06ITMh9gU6IbFCwC5EJCnYhMkHBLkQmKNiFyAQFuxCZoGAXIhMU7EJkwv8Cvo6i9lS4le8AAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[3]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAamklEQVR4nO2da2yc53mm74dz5lGkSFGULFs+NrGd2E5YJ7vNdrPttvAGLZy0RZCgCPwjqIpFA2yA7g8jC2yywP5IF5sE+VFkoTRG3EWawzYJ4hRGt6kRbDbdrG36bEs+i7JFSyIpimdyyJl59seMFrLx3i+p4cyQ8ntfgKDh+/D9vme++e75ht89z/Oau0MI8e6na7cTEEJ0BoldiESQ2IVIBIldiESQ2IVIBIldiETI7mSymd0D4OsAMgD+yt2/HPv94eFhP3r06E52KdpA1HyNWLNeq9GYdRkJkHEABh6LEnkC7uEcK5UNOieT4bLoisT2ApOTk5idnQ0eyKYzN7MMgL8E8DsAzgB43MwecvcTbM7Ro0cxMTERjFWr1di+mk2zpTTznYRY7s1+x6GZ4xHbk0eiXqvQWHl1lcZy+XxwPJMLjwOANftBM/LkqhthUc9On6Jz+gZHaKynbziSCH/zQxNvZM2cHx/60IdobCcf4+8G8Kq7v+7uGwC+B+DeHWxPCNFGdiL2wwDevOznM40xIcQepO036MzsmJlNmNnEzMxMu3cnhCDsROxTAI5c9vM1jbG34e7H3X3c3cdHRvjfQkKI9rITsT8O4GYzu97M8gA+BeCh1qQlhGg1Td+Nd/eKmX0OwP9E3Xp7wN1faHZ7mUym2alXLbG7rXvFgajWuEU1P3OGxnp6+4LjAwf4bZ3ozWeLnB+RQ1WeXwiOz735Mp2TizgGfQOxT6etPYfj58eVb29HpqG7Pwzg4Z1sQwjRGfQNOiESQWIXIhEkdiESQWIXIhEkdiESYW+X8IjWEfO1Yj5OpLLNN1ZobGU+XCRTJJYcAJR69vE8IlSdF+ssTr8ZHC9U1/gGI8U/7aBTTV91ZRciESR2IRJBYhciESR2IRJBYhciEd61d+OvhiKTTuYRrTGJxYxfD/JZXvhRXlsKjk+feZ3OGRo+QGPz8+HtAUAl4gpU5s4Gx0v5HJ1TKvBCmGaJnY8sFjv2W3QODKIruxCJILELkQgSuxCJILELkQgSuxCJILELkQhXhfXGrYnOWmh7JY9apDilq4u8f8dqXWI7iyx3ZMZjJWLLnTl7ms55/H8/QmPT56ZprLvAn8EHb7s9OG49vCAntjpRszRzjrT6tNKVXYhEkNiFSASJXYhEkNiFSASJXYhEkNiFSIQdWW9mNglgCUAVQMXdx1uRVCto1g6L2Vqt3leztH5/kQrBrtgpwqveNpbnw3taX6Rzlue4vVbK8L5wpSw/HjPnwktUlQb20zn7bmy99RajU+dPK3z2f+Xusy3YjhCijehjvBCJsFOxO4B/MLMnzOxYKxISQrSHnX6M/4i7T5nZAQA/M7MX3f0Xl/9C403gGABce+21O9ydEKJZdnRld/epxv/TAH4M4O7A7xx393F3Hx8Zia1tLYRoJ02L3cx6zKzv0mMAvwvg+VYlJoRoLTv5GD8K4McN2yAL4G/c/e9bktU76Ghjxndto0o+x6J1b5GGk6USjS0sXQyO53J8eyMHhmmsv7eXxirVDRqbfuNUcDy7ukzn3EQjVzdNi93dXwdwRwtzEUK0EVlvQiSCxC5EIkjsQiSCxC5EIkjsQiTCVdFwstXE7LUYe8V62ysUSkUaK5OKuI0sv75cc/1hGstn+b6mpsLruQFAb/9AcHx9c5POKZe5lRdjr59XurILkQgSuxCJILELkQgSuxCJILELkQhJ3o2PQZdPwtV9N74dma+vr9PY+dkLwfFT596kc26/8SCNbRq/G3/iBC+2HO3vCY6Xy2t0zvJSuH/e1Y6u7EIkgsQuRCJI7EIkgsQuRCJI7EIkgsQuRCIkab1dzRZaW4jVb0QO1fzCAo2triwFxws1vozThVOv0Vix2EdjpULkmuXh/U2/xS3ApfnWL3C0F845XdmFSASJXYhEkNiFSASJXYhEkNiFSASJXYhE2NJ6M7MHAPwegGl3v70xNgTg+wCOApgE8El3D6/3I961bG7yXm2FQrgH3f7efjpn9uUXaay0j+9raHiIxoaLheD44rkcnbO6GK7Y24q9YK/F2M6V/dsA7nnH2P0AHnH3mwE80vhZCLGH2VLsjfXW594xfC+ABxuPHwTw8RbnJYRoMc3+zT7q7pf6955DfUVXIcQeZsc36LzeLJt+4dLMjpnZhJlNzMzM7HR3QogmaVbs581sDAAa/0+zX3T34+4+7u7jIyMjTe5OCLFTmhX7QwDuazy+D8BPWpOOEKJdbMd6+y6AjwIYNrMzAL4I4MsAfmBmnwVwGsAn25mkaC9NFr0hmw/bWgCwsroaHB/sGaRzBoduoLGhI/xT4cjNYzS2ORteGmpxdJjOKWYjR6Ra5rEMPx57gS3F7u6fJqHfbnEuQog2om/QCZEIErsQiSCxC5EIErsQiSCxC5EIe6bhZP2LeFeGWZOmkTdXneSohcej2wvPubRFhjl/H44+a1Z5ZVU6h0cAj1wPRg7wb0kfOnJNcPw973k/nfN8aZLG9o9y6+2W26+jsfOnTwTHN6qbdE5/P7fQKuu8yWZXzwEas+irxmddeYSjK7sQiSCxC5EIErsQiSCxC5EIErsQiSCxC5EIe8Z6i0FtuUiDP4uYEzGbL2ppUKuvuX2trYfXQwMAizh2XZlwM0eAW28eWWOtXObNHKsxX668QkPDI2Ebqlxdp3O6I5VoXb29NLa8yq9Z5Wp3cHxoNGwNAsDFGdqeAfPTfI24/ddz6w0xa5mePq1tYKkruxCJILELkQgSuxCJILELkQgSuxCJcFXcjed3JZu84x57i6vyu9YLi4vB8TdOn6Fz5uZ4++xz507TWDHPX5rqJi/iyGTC8yxyPFYvzvPt1fi+ahV+F39wKJzH7XfeTufc/Gu30JiT5wUAK/Ph1wUAcl354PhaxGWYmpqisUr+JI0NHLqV51Eo0pg3VSRz5ejKLkQiSOxCJILELkQiSOxCJILELkQiSOxCJMJ2ln96AMDvAZh299sbY18C8CcALvlKX3D3h3eSSKSmhRZ31Grcsujq4htcXbhAY4/+6pc09vhTzwTHT7/OLbRyeZnGBvrDthAADA8N0NjSIu+DZqQfXs548Uyuwu213kLkOK5zm3KuP3xqDZb49aVY4M8529NDY755kcaAcLHOmbfeoDNmZub4vrKTNHZ4mlt2Y0duojFWJBPTRDNs58r+bQD3BMa/5u53Nv7tSOhCiPazpdjd/RcA+FudEOKqYCd/s3/OzJ41swfMjC/NKYTYEzQr9m8AuBHAnQDOAvgK+0UzO2ZmE2Y2MTPDvzoqhGgvTYnd3c+7e9XdawC+CeDuyO8ed/dxdx8fGeGN/oUQ7aUpsZvZ2GU/fgLA861JRwjRLrZjvX0XwEcBDJvZGQBfBPBRM7sT9ZWIJgH86c5TiS3XRCy2yBI+r57k1Un/+PBPaeypJydorEysvrVl3ottoJ9XO/XluPWWrZRpLBd53vmusMWWiVTzDfTyHC2yfNXiIrcV9xWHguMbc+fpnOd+9XMaO3gtX+KpwF05rKyFbcrpmXN0zkA/vwUVs21rm6s8kQixfomtZEuxu/unA8PfakMuQog2om/QCZEIErsQiSCxC5EIErsQiSCxC5EIe6bhZLRBJHEmJl87Qef8zbf/isZOvfQijfV0l2hsaDhsJy108dzHRnglVyHL51VWua2V2eCNHjPEeuvJ8aq3DHj3xYvrfF+W4deKUiEc649U+p2ePktjCyf4ty9Hxw7T2OLqWnD80KGjdI6v8ec8O82tw0IuZqF1pqlkDF3ZhUgEiV2IRJDYhUgEiV2IRJDYhUgEiV2IRNgz1lvMmlhfCTcUPPkEbw65MM0bCvZ2c/unt7eXxlZXwlVNg4ORRokRewobYVsIAHrzORpbXuUVbMVM2GIz53PWVnllW62LnyJ9A300VrVw/itL/Dkf2s+3t1nix6O7lx//TClcwXbdDTfSOQtTr9CYVXk1ojmvRoxDLLuYW9dEoZyu7EIkgsQuRCJI7EIkgsQuRCJI7EIkwp65G7+xzvt3zZ0L31kvgs/Z31+gsYVl/h5XjiyFNDMbdgXmc/wwHhzkd5jzNd67rme4n8aGhniskAvftV6O9Iur1nj+Pd3cnShFlnLKlcLPe6Myz+eA33EfufYGGhscPEJjG+Xw6+kFXvDUPch70OVnlmisUl6nsebKYCLFYU1sTVd2IRJBYhciESR2IRJBYhciESR2IRJBYhciEbaz/NMRAH8NYBR1L+C4u3/dzIYAfB/AUdSXgPqku4e9qQbVSgUXZ8O9xJ56/FE67/CBsNU0HFkostjNlzRaWuM91zZWeaFDH7Ghzs1M0zmo8n5mRw5yi6eW5dYhMtx4qVbDRS3ZyFJTaxu8P10+Mq8ry4/j8spccLxvH9/XbO4ojc0tXUtj15e6aWwoG7ZnV0lvOgDYzHFr88ISfz0H5sNLTQHAgYiNViNNFiOtDZtiO1f2CoA/d/dbAXwYwJ+Z2a0A7gfwiLvfDOCRxs9CiD3KlmJ397Pu/mTj8RKAkwAOA7gXwIONX3sQwMfblaQQYudc0d/sZnYUwF0AHgUw6u6Xev+eQ/1jvhBij7JtsZtZL4AfAvi8uy9eHvN60/fgXxhmdszMJsxsYvYCX+5WCNFetiV2M8uhLvTvuPuPGsPnzWysER8DELxL5e7H3X3c3ceH9+9vRc5CiCbYUuxmZqivx37S3b96WeghAPc1Ht8H4CetT08I0Sq2U/X2GwA+A+A5M3u6MfYFAF8G8AMz+yyA0wA+udWGFhfn8cjf/10w9tOf/JTO+/UP3hEc/7XruEWy/8BBGqsadwjLb83S2NpK2JYbHuKfWFbXuB1TjbzXlqvcXtvc4NVVJdLzbn2dV/NdXI54PJHlsEZGeEXf3JnwUk5zZT6n57b301h1/RCPXeA22nsHw8eqJ89P/U3nPfm6B7hd6t7c8k+xpc9ayZZid/dfglfU/XZr0xFCtAt9g06IRJDYhUgEiV2IRJDYhUgEiV2IROhow8n1tXW89OLzwdjs7Hk675/+z6+C49XyLXTOQD+3eNbWeOVSpKAMPYVwQ8RNUrUEAJmeHhrLZiKHP2LHFEgeADDUF7YjpzfCVWgAUNvklX4rK9zm6+7l9uZqb9iyOz3PrTwrDNMYevnrOb3Kq+9uHA7vb6ArYq/leGVeKbI8mEeWyrJmWk5GzqtmWljqyi5EIkjsQiSCxC5EIkjsQiSCxC5EIkjsQiRCh9d6c9QQtkn++b/4EJ1VrYZthvMXePXa0hK3jIBYg0Xe6LFSDq/Nls/z5pY17vCgEHFW+orcXivkudWUL4RfUqtxq6YYsYxWFvl6dAsLfP24TCF8jEv9/HlVu/jzsognWqty6zBjYZu1Yvw126zyCsG1Cs8xu8ljMSs1Q0JR560JdGUXIhEkdiESQWIXIhEkdiESQWIXIhE6eje+1F3C++54XzC2f5j3cXvssSeD49PnztE5+RwvuOiOLBeUrfH3vxzI0kp5fgc/g8gyThXeO62ryu9a9xb5c1tZCS93tLTI75xX1yLv+XmeR6mH9wCskGWjMpH+ebXFcO71idzWKG1yV2Zz6a3g+ErPETqnmuPFS9ML3J14afIJGrv2xttobGgk3F8v0gqvqcu0ruxCJILELkQiSOxCJILELkQiSOxCJILELkQibGm9mdkRAH+N+pLMDuC4u3/dzL4E4E8AzDR+9Qvu/nBsW7lsBqP7B4KxqWm+wuv/feyZ4Phdt91M59xyK7c6nn08vD0AyEcKRvpI77dillcsZLt40U2twC20XGSbMVuR1WJcJEtXAUBlOVJYM8T7wvXtO0Bjp069Fhzvz0V66y2ELVYAuDj1OI1d9759NFYmBVErq7znYS3Ht/fyqSka681yr2z+zIs0VsyF5xX38SWvPGIRM7bjs1cA/Lm7P2lmfQCeMLOfNWJfc/f/esV7FUJ0nO2s9XYWwNnG4yUzOwngcLsTE0K0liv6LGBmRwHcBeDRxtDnzOxZM3vAzPjylkKIXWfbYjezXgA/BPB5d18E8A0ANwK4E/Ur/1fIvGNmNmFmExfnF1uQshCiGbYldjPLoS7077j7jwDA3c+7e9XdawC+CeDu0Fx3P+7u4+4+PriPf5daCNFethS7mRmAbwE46e5fvWx87LJf+wSA8FIvQog9wXbuxv8GgM8AeM7Mnm6MfQHAp83sTtTtuEkAf7rVhtbX1vDKC+H3hIkXJum805NnguN/+Pv/ms7Zf4BbRqenwpVQADBa4lVes+vhyrGbDvN9ra4u0Fhf5JOOd/H34ZlZXuVVJJVo/YO8kmsD3JZb2+RVam++yW2ozXK4j5tt8j/lLr71v2hsoI8vu1S+wCvY1vLhedkSt8lefv0lGpud46/nHR++k8bOv36CxlYuhs/HG277dTonWwwvh+VVvrTZdu7G/xJAyPSNeupCiL2FvkEnRCJI7EIkgsQuRCJI7EIkgsQuRCJ0tOGk16ooL88FY0sXIs0jydI/Bw+N0DkLi0s0NjPLK556Rnml0dMvvxEc7+7jVWjDJV71FlksCKt8BSL0kuo7AFhcDlcPHjjArataD4+9OcOtpso6t+WKpAnn4iJvspkB395QL28SOneeW6lvTIft0kNH+OtsxDYEgJEe/noO5Hml4tRJbr0ZaWRajmgi1xuuHl1f5q+XruxCJILELkQiSOxCJILELkQiSOxCJILELkQidNR6y+czuP7IUDC2tHyQzisUw1ZTPrIO2RsvnaKx4VFepbayyauhTk+Fba2l93DL6LYjvCILxg//2fMzNHbwIO8K1o9wdVs5YpOVjVtNhdXwmm0AX1cOAAqFsPV2IGJtDvRw66qryteqK6/w/FfmpoPjgzeNBccB4GAfrxA82M2fc3YhXJ0JAKP7uHV4air8Wr/8wtPBcQDIkvUK19d4frqyC5EIErsQiSCxC5EIErsQiSCxC5EIErsQidBR6y1jht5i2Mq54xZuJw0NhdfempmZpXOeeuokjY0d5vbPhXO8Wq6nyO0TxvpGhcYsw63DpTXeOHCjxi2qoX1ha3N+lVdQLUSqvCpZnuN6pGxvlVS3DQ9fQ+dYiW+wmOOVeVXnlXQ33RK20fYN8Gaf5RV+DgwW+fWxss6baRYH+bp4A5n9wfEu5zbwRoWcH5FzSld2IRJBYhciESR2IRJBYhciESR2IRJhy7vxZlYE8AsAhcbv/627f9HMrgfwPQD7ATwB4DPuzm8hA9goV/DGqfBd4e4cv/M4ti98t/KlSb780DORu/F33HWUxl5+5TSNfXD8juD4LbddS+dYF39ey8v87vO+wfBzBoBsnrsCS6vhbfbu53fB8z08j4OklxwAZIqRO+QVD473RHrJdfP6ExTyvPdbV5Hnf6i/GBzP1FbonFoXz9Fr4ecFAJ7h1861LH9y770tvGzU4BC/gz9/MdzLsfsvf0jnbOfKXgbwW+5+B+rLM99jZh8G8BcAvubuNwG4COCz29iWEGKX2FLsXudSfWGu8c8B/BaAv22MPwjg423JUAjREra7PnumsYLrNICfAXgNwLy7X/rGyBkA/FsxQohdZ1tid/equ98J4BoAdwN4z3Z3YGbHzGzCzCYWV/g3nYQQ7eWK7sa7+zyAnwP4ZwD2mf3/VivXAAjeLXP34+4+7u7j/T18MQUhRHvZUuxmNmJm+xqPSwB+B8BJ1EX/R41fuw/AT9qVpBBi52ynEGYMwINmlkH9zeEH7v53ZnYCwPfM7D8DeArAt7baUM2yKOfCSzbNTE/SeX3r4SVt3vu+f0nn/MEf9tHYhbk3aeyuD3LL64//+NPB8SNjvKiiUo70flvntlw1UgTR1xO2k2J09/Mcq1VuJ2Wy/BSJFfJ0Wdgqi1lXXVluoVU2I+th1XiOmWx4f9Uyt942I33cNir8dcmSvnsAsBIpNho9dH1wvKdvkM7ZP3Y0OF4gvemAbYjd3Z8FcFdg/HXU/34XQlwF6Bt0QiSCxC5EIkjsQiSCxC5EIkjsQiSCuXMrpOU7M5sBcKmsbBgAbyLXOZTH21Eeb+dqy+M6dw/62x0V+9t2bDbh7uO7snPloTwSzEMf44VIBIldiETYTbEf38V9X47yeDvK4+28a/LYtb/ZhRCdRR/jhUiEXRG7md1jZi+Z2atmdv9u5NDIY9LMnjOzp81sooP7fcDMps3s+cvGhszsZ2b2SuN/XvLU3jy+ZGZTjWPytJl9rAN5HDGzn5vZCTN7wcz+XWO8o8ckkkdHj4mZFc3sMTN7ppHHf2qMX29mjzZ0830zC6+lxnD3jv4DkEG9rdUNAPIAngFwa6fzaOQyCWB4F/b7mwA+AOD5y8b+C4D7G4/vB/AXu5THlwD8+w4fjzEAH2g87gPwMoBbO31MInl09JgAMAC9jcc5AI8C+DCAHwD4VGP8vwH4t1ey3d24st8N4FV3f93rrae/B+DeXchj13D3XwB4Zy/ge1Fv3Al0qIEnyaPjuPtZd3+y8XgJ9eYoh9HhYxLJo6N4nZY3ed0NsR8GcHn3iN1sVukA/sHMnjCzY7uUwyVG3f1s4/E5AKO7mMvnzOzZxsf8tv85cTlmdhT1/gmPYhePyTvyADp8TNrR5DX1G3QfcfcPAPg3AP7MzH5ztxMC6u/sqL8R7QbfAHAj6msEnAXwlU7t2Mx6AfwQwOfd/W3rH3fymATy6Pgx8R00eWXshtinABy57GfarLLduPtU4/9pAD/G7nbeOW9mYwDQ+H96N5Jw9/ONE60G4Jvo0DExsxzqAvuOu/+oMdzxYxLKY7eOSWPfV9zklbEbYn8cwM2NO4t5AJ8C8FCnkzCzHjPru/QYwO8CeD4+q608hHrjTmAXG3heEleDT6ADx8TMDPUehifd/auXhTp6TFgenT4mbWvy2qk7jO+42/gx1O90vgbgP+xSDjeg7gQ8A+CFTuYB4LuofxzcRP1vr8+ivmbeIwBeAfCPAIZ2KY//DuA5AM+iLraxDuTxEdQ/oj8L4OnGv491+phE8ujoMQHwftSbuD6L+hvLf7zsnH0MwKsA/geAwpVsV9+gEyIRUr9BJ0QySOxCJILELkQiSOxCJILELkQiSOxCJILELkQiSOxCJML/A/Fjaex6yTwGAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[2]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbkUlEQVR4nO2dXYwkZ3WG39PV1T3/O57987LeYJs4SmwUDBpZRCBEQCAHIRmkyIIL5AuLJQFLQSIXliMFR8oFRMHIF4hoiS1MRDCEH2FFVoJjIVncGNbE2MYO+AcTvKy9u17vzuzs9HR31clFl2Hs1HtmpmemZ/H3PtJqe+rr6jr1dZ3++d5+zzF3hxDitU9jpwMQQowGJbsQiaBkFyIRlOxCJIKSXYhEULILkQjNzexsZtcCuB1ABuCf3f0z0f0nJyd9dna2dqzRsOhItVuHlQ3N+LGiMYZ7GYwFMUbHik4tGiMPGR0qnPlgxzDELZZ0LYjSg0iGiaMx9PUxXIwgMcbXTv3m06fPYGlpqXZ06GQ3swzAFwC8B8BzAH5kZve4++Nsn9nZWXz8439RO9Zut+mxGo36DyC9Xm8DEf+WVqtFx5pNPiVs7rvdLt2ndD5mxj9YFf3ggiv5RUCmCs0mP1Y0ljUzOlYGF2O/36/dHr9O8TgGlxuJoyzoWK9ff41EL9DjLX4t5s2cjlnwhsXmAwBKMtYv+PVt5Im+7fYv0H028zH+GgBPufsz7t4FcDeA6zbxeEKIbWQzyX4QwK9W/f1ctU0IcQGy7Qt0ZnbYzI6a2dGlpaXtPpwQgrCZZD8G4NCqvy+ptr0Cdz/i7vPuPj85ObmJwwkhNsNmkv1HAK4ws8vMrAXgQwDu2ZqwhBBbzdCr8e7eN7ObAPwnBtLbne7+02ifXq+LY8f+35s/gHiFnI1Fq+BFwVdo85yvqEar8UVRv4IbqQIOPtYMVna95KvPHpxbRl6+85yfVzNYcUcwVILHET03PA5+DTScB9LrB8fy+hgjqbcVxNHMArWGR4GiCFbjyfPZL1boPtaon4/oWtyUzu7u9wK4dzOPIYQYDfoFnRCJoGQXIhGU7EIkgpJdiERQsguRCJtajR8GZtQoiUQCcNkicgUN416LjgUAvR6RSPo8dnf+eJFWk2VcampEY0RG82A+Ol0e//mVDh3LAjlvpVMvh0WGkFaLj+VMUwTQyvl8jI/Xy2itSG50PldlyQ00kSEnGmtk9cdrBuafBpmP6LLXO7sQiaBkFyIRlOxCJIKSXYhEULILkQgjX41ntbj6pHwQwEsIBQujaAQln6KSRNFjspXkYVfjo5XdyJySt8fo2NSui2q3d5a5qeL02VN07MwCr0FQBqvW7HmODDK93hk6ZuDzuH/vHB37vcn9tduzyPAUlZAq+Vhkvoqea3atxrUSyT5BHTy9swuRCEp2IRJByS5EIijZhUgEJbsQiaBkFyIRRi+9Edkrlq+I9MZ3CbutRCaTyFzDpJXQkBPUOisCOcZIvTsA2LtnHx1rkLp2Cy+do/ssB91nVoI5jiTMnNQNnJgKZMPpKTo2e1F92zAA8H4kKy7Ubp+b5cfKNt6pqRoLZK8GTzVmavHAHBZ1yKHH2fAeQojfSZTsQiSCkl2IRFCyC5EISnYhEkHJLkQibEp6M7NnASwCKAD03X0+ur8DKIl2UQYyjpX1kkYkXUWyRaMbuLUCbSVy5tFjBTXBIrkxb/MWRO2JaTp28mS9g205cL2VgVNqbJxLZe2gZdfeffXy4O7du+k+c3v20rGZWe5s65xfpGNP//zx2u293jLdxyNNN5TXhqsbyKTgsgyuNyYtB065rdDZ/9TduUdSCHFBoI/xQiTCZpPdAXzPzB4ys8NbEZAQYnvY7Mf4t7v7MTPbB+A+M/sfd39g9R2qF4HDADA1NbnJwwkhhmVT7+zufqz6/wSA7wC4puY+R9x93t3nx8bHN3M4IcQmGDrZzWzSzKZfvg3gvQAe26rAhBBby2Y+xu8H8J2qKF4TwL+6+3+Ee7jToo2hm4i8JhUFL14YObI6gZUrlt7qY88CySVyJ/WCzlC7Jrgrq9nkkldvpV5iy8DnY6xd75QDAAQS4OzsLjp26NDv1W5vBnJdr89jPHOWy2sIinrO7q6XAM8t8OKWxfJZfqxA7s1JGycAsKjdFOmJFrvoNv4+PXSyu/szAN407P5CiNEi6U2IRFCyC5EISnYhEkHJLkQiKNmFSISRFpx0d/SI3hT1tQJxZfWCnlyRc6nRCFxNAbTgZNDjy8BlraLgMt/EJJfeiuDcut1O7fZIimzmbTrGCkcCQCvoOffkU0/Xbl84Vx/fIA4+V1PT/NeXU5P8x1pGJMcicDAGlxU8MKJNBhJsHl7fhGAfJr2p15sQQskuRCoo2YVIBCW7EImgZBciEUa+Gs/qrjWiYm308fgKM1s5B4AyMDM0m0GbHmZYCFo1RSvnec5XuvOcx7G8fJ7v16pf0R4b4yvupfFj9QOD0s+efoaO/eIXv6rdHqkTsxddRMf27edj5xb5PDZQfwKt9nDnPDM+Q8eaY3w1viyW6JiVpC5jcJ3SzA3SSO/sQiSCkl2IRFCyC5EISnYhEkHJLkQiKNmFSIQRS2+85VEW1O/KmvWvSVnGX6u8DMaCOnNRbS9q1skCiSSQcdqTE0EcQT2z4CV6Zqa+NVRU2Xdxmbs7nj/1Eh17aZG3UOqR+S8DmXLxHJcUd+/h9e66PR7/0mJ9PblWIG3O7OZtqCZ38TZUE20uvZ09zc+tUQbOmy1E7+xCJIKSXYhEULILkQhKdiESQckuRCIo2YVIhDWlNzO7E8D7AZxw9zdW2+YAfB3ApQCeBXC9u3ONpsLB665FchKToZoZd1BFLZl6gVQTwRxxzUA2jNx3M9O8ztxkUFcNDf60EZUSjYzv0ztX3zIKAPKxeikPAFrjXA7r9E7VbregpVE7cOZlGX8+I7m0u1LfIuzFUyfoPgtL3KE2PcWfs5mp+lZTAGBNfq32l+vr8jWCll0FkbBDWZmO/JYvA7j2VdtuBnC/u18B4P7qbyHEBcyayV71Wz/9qs3XAbirun0XgA9scVxCiC1m2O/s+939eHX7eQw6ugohLmA2vUDngy8J9IuCmR02s6NmdnSFtBMWQmw/wyb7C2Z2AACq/+lqh7sfcfd5d59vt/kCjBBiexk22e8BcEN1+wYA392acIQQ28V6pLevAXgngD1m9hyATwP4DIBvmNmNAH4J4Pr1HMzAnWNRuUkmveWBnJE1ttjZBl60sZVzWWily2W+aeJQA4CpKd7uqNfnkky/W39uS+e56ypqMzQ9w11e7fHAyZXVF4GcCOS1ud28qOTEBJ8PD3oyTRF5s9fljr0XTxynY2cPHKRjBw9cHMTBZcqznXqpL2pRxSS2SHpbM9nd/cNk6N1r7SuEuHDQL+iESAQluxCJoGQXIhGU7EIkgpJdiEQYacFJMyAntqxmk0sGTNiyyOETONHagVsuUKEw1qqPpBn0bLOcu6SaY1yO8eB1uGFceuuQPnBLS1wmywJnmwfnNje3h45ddeVVtdunyBwCwNQUd/qVxp/rfo8/afuIVOZBQc/Fc4t0zJ0Xh4yksjJw+/WZE5T0gAMAJ27KzbrehBCvAZTsQiSCkl2IRFCyC5EISnYhEkHJLkQijFh6M7Tb9YfMjEsaDa+Xmrzg+1iTSzw5KRwJAFlQmJG55Yw4vABgbu4SOtYrg95gZxboWHBqWFio723G5B0AaLW5lGdBs7rpad6rbv/c5bXbc/ACnOcWueT1YjDWHuPzP04KRO7q7ab7/PrXv6ZjRT/oy+b83LrdQLIj0982/kQzZdkC/6je2YVIBCW7EImgZBciEZTsQiSCkl2IRBj5anyTtPGxwOjA/ABFr761DwA0+vx1zPniLRqsfxKARl6/+jw1xVd2i4I/3uJZvuK+a4abQs6c5yvTK536OWmN8ceLVpjd+bEQrPB7Vl9r7tTZM3Sf06d5B7Fmzs1LKIOagmR1uhE4nqJ6iMvLvHbd+aBtVK9b3+IJALrkOp4Y5+c8TgxKUX1FvbMLkQhKdiESQckuRCIo2YVIBCW7EImgZBciEdbT/ulOAO8HcMLd31htuxXARwGcrO52i7vfu54DMsUjKJ0FJ2JIEdTo6pMaXQDQADd+TE/ymnFTs/tqt/ecT+Pz/3uMjuV5YLoxHv9yl3fDHRuvlwctkGSieex2ufRW8mnE2eVztduXznMJqhnMR7MZGDwCrcyJyyQLTCa75yIplT8vS4H0lgVvq71efe26xiRvlZUTKTJqX7aed/YvA7i2Zvvn3f3q6t+6El0IsXOsmezu/gCA0yOIRQixjWzmO/tNZvaImd1pZrz9phDigmDYZP8igDcAuBrAcQCfY3c0s8NmdtTMjnY6/PuaEGJ7GSrZ3f0Fdy/cvQTwJQDXBPc94u7z7j4/NjY2bJxCiE0yVLKb2YFVf34QwGNbE44QYrtYj/T2NQDvBLDHzJ4D8GkA7zSzqwE4gGcBfGx9h/Pq3wYhcoI3uH2tQVxXADA5PUvH8vEZOnbqpXo56aknn6H7MOkHAC697PV0rFvwp2ZmF18iaRPX3vllLgsVvcBxWPCWRpFc2u/XDzLXIwDkY/w5awSuyFYrcMSR+oXtFr92Zmf59bF0jjsVu0RCA4CJoE5eizjYPGr/FE0+Yc1kd/cP12y+Y8NHEkLsKPoFnRCJoGQXIhGU7EIkgpJdiERQsguRCCMtOAmAWqVKIpEAQEakiYv2XUz3aU9y+SR6jeOeJuDU8ZO128147Fdd9Ud0bGySF4HMAhlqcoI781aW6l1qvS4/M3fulJoYn6Rj7THe/om10Vpe5o69lRX+C8tGg89x5B7MiNSXZXzu80DKawWSXSQrRkJZRvp59fpcyuv16s85kuT0zi5EIijZhUgEJbsQiaBkFyIRlOxCJIKSXYhEGK305kBJnDz9oHrhxQf21m7fc8kf0H2OneTupCKQNCYnuCRz2WWX1W5vX36I7hOYtdApuRzWOX+eji0EPeLKTn0vsmZQcHJigstrY1O76FiW8/oEWaP+0sozLmstOp8Py/hEMnkNiKUyRtQHLnq8Vjs4VvBcM3dbt+C9DLvknD2QsPXOLkQiKNmFSAQluxCJoGQXIhGU7EIkwkhX4x1An/xQPzJj7N27J3jEehbPnKVjTfTpGDp8v4bXr+KvlMGqadCqKWrJ1I/qjwUru21i4shzrjJE7p/eOW5OKXJuhLFW/Qp/VDotz/l8WNDjKQt6K7HaddGq9VRQL24lWPlH0FLKg3ZeJVGHondiJ/PBWqWt9XhCiNcQSnYhEkHJLkQiKNmFSAQluxCJoGQXIhHW0/7pEICvANiPgdZ1xN1vN7M5AF8HcCkGLaCud/eX1n489vrCNZnTp+sf1pv1pg8AaJTcLNLvcTmpG0hN5vWSXU5qiAFAg54vgIKfc/TEhDIUMXGw2AGg7HNZqFgJzCkNPlft2fozsCaXtfI2N8k0AlkrUJsAEIkt0ADHAkNLI+OSXVRH0YLjlaRFWLM9XE07xnre2fsAPuXuVwJ4K4BPmNmVAG4GcL+7XwHg/upvIcQFyprJ7u7H3f3H1e1FAE8AOAjgOgB3VXe7C8AHtitIIcTm2dB3djO7FMCbATwIYL+7H6+GnsfgY74Q4gJl3cluZlMAvgXgk+7+ii/EPihWXfs1wswOm9lRMzva6fDveEKI7WVdyW5mOQaJ/lV3/3a1+QUzO1CNHwBwom5fdz/i7vPuPj82xiubCCG2lzWT3cwMg37sT7j7bauG7gFwQ3X7BgDf3frwhBBbxXpcb28D8BEAj5rZw9W2WwB8BsA3zOxGAL8EcP2aj2RAgzi9ioJLPCdO1H5oQNbi0kRZ8DpzRZe71BDEkTeJoyyQ1zywlBV9LodFjrjIXVX06s8tOGMYqRcHAHkgaxV9Ln06GWuNc/ddUfCDlR7NMZe8WH03BHXm8nbQTiqYEA+ug6LDn2smzzabPI6S1mwcTs4d7Or+A3Al891r7S+EuDDQL+iESAQluxCJoGQXIhGU7EIkgpJdiEQYacFJg8GI5OGBK6hPJCprBDJZIBmxGADAwWUt1sqpEcgdwaFCt5aFviYuNbHdIrkxy4NjBcUcLSiK2Vk8U7u9Pc6LVLba03Ss1+eT1etFzrz6+KP59eBJa+aRw5GPLS5yKTgnElt4nQ5he9M7uxCJoGQXIhGU7EIkgpJdiERQsguRCEp2IRJhpNJbRCS9dXv1soWX/LUqD1xjHjmoAkmjTwpENjMu/TCXHxBLK42of1lQcJKFX0byoPP4ox58Uc+5Xqe+4OfCi/y8JnYFkmKDu+V6He6+G5+or6GQ5/zS7wQWQeqiA9Dt8+Is58/xHoLMZBc5/UJJl6B3diESQckuRCIo2YVIBCW7EImgZBciEUa+Gh+tTjN6ZDXeysCUENTvcuZoQdzChy3VN/qBKtCMaqcFBIM2RIxF0Gqq3+NLu0WrzeOIzCTEvLR89hTfJ1h9LhuTdKzX5yaT8RZ5zKDuXpbx9k9RrcSlc4t8v6BeH8jxij6f34xcV5GapHd2IRJByS5EIijZhUgEJbsQiaBkFyIRlOxCJMKa0puZHQLwFQxaMjuAI+5+u5ndCuCjAE5Wd73F3e+NH4ybOCIjDDNceGAWKaOWQMGxyqBdE4gJoih4HM1AemuENcY2XpMv2q/XD+aDjgAe1FVrZnyMFdjLmnyf6Uludjl55nxwLH4GRVE/V2Vn43XrAMAD2XN5qd78AwBecnmwZIauYO4bHs19PevR2fsAPuXuPzazaQAPmdl91djn3f0fN3xUIcTIWU+vt+MAjle3F83sCQAHtzswIcTWsqHv7GZ2KYA3A3iw2nSTmT1iZnea2UVbHJsQYgtZd7Kb2RSAbwH4pLsvAPgigDcAuBqDd/7Pkf0Om9lRMzvaWebmfiHE9rKuZDezHINE/6q7fxsA3P0Fdy98sGLxJQDX1O3r7kfcfd7d58fG66uGCCG2nzWT3Qa1k+4A8IS737Zq+4FVd/sggMe2PjwhxFaxntX4twH4CIBHzezhatstAD5sZldjoHs8C+Bjaz6Sc+nCAicak1aiOlxh86SgjljYVoeoLhbUhGsENdwaxl9rmWQEAP1IpiTzG5xy2LaoEfSoimroFVZ/ae2a4Us7s3N87PTCcTrWavNPjMzFWAYuwCyQFIse/yra63B5sJ2Fvb5qiZ4zVg8xunzXsxr/AxJOrKkLIS4o9As6IRJByS5EIijZhUgEJbsQiaBkFyIRRl5wkstekcTDiutFrrFAFgocYGUga1FBJtTrOKH7ruQxRkUPQWTALAsKLDZy/nBR+6rgOWNDMzO7eByB5DW7ixecHJ+comNnF+qLQPb6fA7LoJDp0mLkbOOP2SZtqADQufLIzcfiD64pvbMLkQhKdiESQckuRCIo2YVIBCW7EImgZBciEUYqvbk7+lTy2Lj0Fh5rWGdbNEZcXmGxzGAsco1F59wYotBjoxEUjgz64rECoQAQqJvIiGSX51zmywJn2Otet4+OLXe6dOyM17sHm81ImuWPF0lv40G9hsiZ1ye96rq9oLAoub6j603v7EIkgpJdiERQsguRCEp2IRJByS5EIijZhUiEkbvemDQwjHEsluS4tJIFMlQkaxkJMpKMhnW2NYI+drm16BhzQwUtyhCEERb1jExv7Xa7dvvEJHevTc/M0LFuN5DDlnihR6ocBrEvLwePF/QQnBzn7rsskDB7RO8tgifGIt2ToHd2IRJByS5EIijZhUgEJbsQiaBkFyIR1lyNN7MxAA8AaFf3/6a7f9rMLgNwN4DdAB4C8BF350umGKxM98iP+/v94Ef/ZEU7ap+UN7nhotniq9lRzTW2bB0snIdEK/WRYhDVJuuV9fNYBvXRyrLeiAHEhpGgaxQu3n1J7fa5oMWTBefcWV6hY/3AMMLUiSIwSp1bOEvHsqguXDjHfL9Op/7cioKvxueBeYmxnst0BcC73P1NGLRnvtbM3grgswA+7+6/D+AlADdu+OhCiJGxZrL7gHPVn3n1zwG8C8A3q+13AfjAtkQohNgS1tufPas6uJ4AcB+ApwGccf+NWfg5AAe3J0QhxFawrmR398LdrwZwCYBrAPzheg9gZofN7KiZHWXfTYQQ28+Glpbc/QyA7wP4EwCzZr9pwn0JgGNknyPuPu/u82Nj9T+hFEJsP2smu5ntNbPZ6vY4gPcAeAKDpP/z6m43APjudgUphNg861m/PwDgLjPLMHhx+Ia7/7uZPQ7gbjP7ewD/DeCOtR7IzNDK69/dQ1MLUS3ynIc/FtT8imquhXXhSCB5IMdEjxeZMaJabZFBoiQGicjsEkmYgRqG9hiXMPfu3Vu7nT3/ALB0fpmOlUUwx7wxF8bbE7Xbu10uNwa+JjSDNlpR/cLI6MVk1izj18AwebRmsrv7IwDeXLP9GQy+vwshfgfQL+iESAQluxCJoGQXIhGU7EIkgpJdiESwyHm15QczOwngl9WfewCcGtnBOYrjlSiOV/K7Fsfr3b1W9xxpsr/iwGZH3X1+Rw6uOBRHgnHoY7wQiaBkFyIRdjLZj+zgsVejOF6J4nglr5k4duw7uxBitOhjvBCJsCPJbmbXmtnPzOwpM7t5J2Ko4njWzB41s4fN7OgIj3unmZ0ws8dWbZszs/vM7Mnqf16ZcXvjuNXMjlVz8rCZvW8EcRwys++b2eNm9lMz+6tq+0jnJIhjpHNiZmNm9kMz+0kVx99V2y8zswervPm6WdAHrA53H+k/ABkGZa0uB9AC8BMAV446jiqWZwHs2YHjvgPAWwA8tmrbPwC4ubp9M4DP7lActwL46xHPxwEAb6luTwP4OYArRz0nQRwjnRMMzM9T1e0cwIMA3grgGwA+VG3/JwB/uZHH3Yl39msAPOXuz/ig9PTdAK7bgTh2DHd/AMDpV22+DoPCncCICniSOEaOux939x9XtxcxKI5yECOekyCOkeIDtrzI604k+0EAv1r1904Wq3QA3zOzh8zs8A7F8DL73f14dft5APt3MJabzOyR6mP+tn+dWI2ZXYpB/YQHsYNz8qo4gBHPyXYUeU19ge7t7v4WAH8G4BNm9o6dDggYvLIjrHuyrXwRwBsw6BFwHMDnRnVgM5sC8C0An3T3hdVjo5yTmjhGPie+iSKvjJ1I9mMADq36mxar3G7c/Vj1/wkA38HOVt55wcwOAED1/4mdCMLdX6gutBLAlzCiOTGzHIME+6q7f7vaPPI5qYtjp+akOvaGi7wydiLZfwTgimplsQXgQwDuGXUQZjZpZtMv3wbwXgCPxXttK/dgULgT2MECni8nV8UHMYI5sUGhvjsAPOHut60aGumcsDhGPSfbVuR1VCuMr1ptfB8GK51PA/ibHYrhcgyUgJ8A+Oko4wDwNQw+DvYw+O51IwY98+4H8CSA/wIwt0Nx/AuARwE8gkGyHRhBHG/H4CP6IwAerv69b9RzEsQx0jkB8McYFHF9BIMXlr9ddc3+EMBTAP4NQHsjj6tf0AmRCKkv0AmRDEp2IRJByS5EIijZhUgEJbsQiaBkFyIRlOxCJIKSXYhE+D+JA6mMmnOXdQAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[8]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYYUlEQVR4nO2db4xcZ3XGf2fu7NqO7cQxIa5rLBLSVFUEJaBtmhaEKAiUIqSAVEXwAeVDhBEiUlHphyiVSipVKlQFRKWKyjQRoaKEFIKIqqgljZAivgQcGpyEtCWkSbHrP4E4+F+8uzNz+mFu0Ca658zund07Ju/zkyzP3nfuvWfeuc/c3feZc465O0KIVz69WQcghOgGiV2IQpDYhSgEiV2IQpDYhSgEiV2IQuhPs7OZXQd8HqiAf3D3T2XP33rRxb7z0j2NY5kBaGatY1xP2kXRMvYOX3LbU+WmbZujnh82sHUdRjRVqSiaN//86CFO/+K5xtHWYjezCvg74F3AIeD7Znavu/8o2mfnpXv4k7/9euPYYBS/Mquaw+z14l9MLJmp/MMj26/5fJZc2NlYRtsPOGtxpbY9lye/GDpVOBLu0/I7H84wHgzmo+fxa+6NksOlcbRQJxBNfzYf0bX/Vx99b7xPODKZa4An3f0pd18C7gKun+J4QogNZBqx7wF+uuLnQ/U2IcR5yIYv0JnZPjM7YGYHzpw8sdGnE0IETCP2w8DeFT+/pt72Etx9v7svuPvC1gsvnuJ0QohpmEbs3weuNLPLzWwe+ABw7/qEJYRYb1qvxrv7wMxuBv6NsfV2h7s/nu5kQL956TFbAaVq/kzqBavjAJXHB+xV0UpxvsIfkYU+bLnC3H6FvMV+ra3NzIVo87rbxhFfxpEbkpkWyWUFyfvZ3k2ItifHC6/TeA6n8tnd/T7gvmmOIYToBn2DTohCkNiFKASJXYhCkNiFKASJXYhCmGo1fq2YQb9qtgYGE/Zropc4Nf1kMIoBoApsPoBRYK0sp5ZLWwutJUmCR8gGZBW2SQBqH8X6nqvrO2Bks/ooNnUtur6TF6Y7uxCFILELUQgSuxCFILELUQgSuxCF0OlqfA9jc/AF/uUkcSVamc5KMFXZevYoXvsfJXFEK51ZQk6eWBMvnXoWx3mylpxG0WnZwOTaCeYxC6/KRpOhvCxVQlSWKrm+o0SjLAFJd3YhCkFiF6IQJHYhCkFiF6IQJHYhCkFiF6IQOk+EmY+sqKQjTFRXLbe8siJjLa2VIMYqS4RJXlduT2WDiWWXFlBb+5kyMyk3FTvsoWRJvcEgyLQGXWJ7pgk+Le3GqHadJ68rqst4fpiyQoiZIrELUQgSuxCFILELUQgSuxCFILELUQhTWW9m9jRwChgCA3dfyJ7vwCjK1km8kMhGs6RnVJW0eMoYZXW/ghhTeypzalpnhmUtiIZrPloeRztjrsukt17yAnrRG5C1cWqbcJj5eQmx9ZZkdUaWYlaXcS1BBfyBu/9sHY4jhNhA9Gu8EIUwrdgd+LaZPWxm+9YjICHExjDtr/FvdffDZnYpcL+Z/ae7P7jyCfWHwD6AV+369SlPJ4Roy1R3dnc/XP9/HPgmcE3Dc/a7+4K7L2zbsXOa0wkhpqC12M1sq5ltf/Ex8G7gsfUKTAixvkzza/wu4Jt165o+8E/u/q+Tdgq7E6WWRuCFJK2ORsN2NkjUigeSljtJHJmluBGWV1v755XKKHIi0+ut3dynxUrbHDGNY+3mZmuxu/tTwBvb7i+E6BZZb0IUgsQuRCFI7EIUgsQuRCFI7EIUQqcFJyE2DLLssF6wV2iFkSY15fUm29QTbHu8tmlvmT3YwpJp3aOsS1K3MRtc4/Z8aEKGY9oILhkKst6S11W1uHR0ZxeiECR2IQpBYheiECR2IQpBYheiELpt/4RT0ZyZMCJp4RMer0XSCpNWwVvUVWu5qm7Ja85X+Nd+vjznJlvdj2m1it9iVXpSIGkrp+hcaejZYHZ9ZC3MsrqBa5/HKkgOU/snIYTELkQpSOxCFILELkQhSOxCFILELkQhdGy9JQkvWfunYCw3oDKLpKVVFlhU2fHaJplYVtcu33Ht58oszMyWa+O8ZTX5WtphafzRfq3txoSkdVjesmvt+1TefJ+W9SaEkNiFKAWJXYhCkNiFKASJXYhCkNiFKISJ1puZ3QG8Fzju7q+vt+0EvgZcBjwN3ODuJ1Z3ysBGS+uIRZZGZp/En2PZuTJrJbTe0rY/bY2czA5LPqNbZFD1krnyli2Novjbzn1KEmObY7Z7V/I48kCCwbTgXTSYWNhZCDVfAq572bZbgAfc/UrggfpnIcR5zESx1/3Wn3vZ5uuBO+vHdwLvW+e4hBDrTNu/2Xe5+5H68VHGHV2FEOcxUy/Q+bjMRtJ11vaZ2QEzO3Dy+VX+WS+EWHfaiv2Yme0GqP8/Hj3R3fe7+4K7L1y44+KWpxNCTEtbsd8L3Fg/vhH41vqEI4TYKFZjvX0VeDtwiZkdAj4JfAq428xuAp4Bbljd6RwbDZpHEtvCRoGNk1lQ7TrxpFlePmwullklx8uyq7yXWWjxUJVkV/WCIpZJEh3D0XI8mBTu7Fn2yptfW5YFmGfzZadq2UYroG0tyux6TItKBm9O2jqsisuwRkwUu7t/MBh656R9hRDnD/oGnRCFILELUQgSuxCFILELUQgSuxCF0GnBSXdYHjRbQ8PA1gLoRdZKWqGwbWZbMhhQJQfMcsaW0/528efwXDK2PFhq3P7C4rlwn7PnXgjH5rdsDse2XbA9HEu9vhZk1lWbHnHp8bLDZfuNsmOuPSMuizGy3paHzdY26M4uRDFI7EIUgsQuRCFI7EIUgsQuRCFI7EIUQqfW2+LSMv9z+GjjmCeZXGEmWpr11i6jLM94ah71JNMoSNgDYGCJ3ZgEkllvS4GFGW2H3CWzs4vhWP/5M+FYL3vh0bmSsTRbbu3OW3vrLR7K489suRYFJy2wo5eWZL0JUTwSuxCFILELUQgSuxCFILELUQidrsYPR86p080JGVmiQC+q1ZbWd0srw60rbvE0jqpkjTb5qO17vHqetRka9ZpjqTbNxfvEZ0pX6peTFeZe1P4pyzRK67tlrb5iquDaGbVxf8hX1dMYM6Ulx4yo+sHFk9Q11J1diEKQ2IUoBIldiEKQ2IUoBIldiEKQ2IUohNW0f7oDeC9w3N1fX2+7Dfgw8Gz9tFvd/b5Jx6qqHtu3b2scG7WoQWeJveaZDZIlySREyRNusa01zJy3Xmz/DF+Ik0xGSc24TZuba8ZZ9laHrYTAkyyTan5TOBadL7Xe8kyYeKiFjZYlwoxSey2OI0vISWvQtaCqmq/9XhLgaq76LwHXNWz/nLtfXf+bKHQhxGyZKHZ3fxB4roNYhBAbyDR/s99sZgfN7A4zU+N1Ic5z2or9C8AVwNXAEeAz0RPNbJ+ZHTCzA2dP/qLl6YQQ09JK7O5+zN2HPl51+CJwTfLc/e6+4O4LF1x4Uds4hRBT0krsZrZ7xY/vBx5bn3CEEBvFaqy3rwJvBy4xs0PAJ4G3m9nVjA2Rp4GPrOZkBswHWWC5VRZZb1nW2/p/hSB2a7IadPFYP+kbdejo4TiQF2Lr7aIdOxq3V3PxWz1MPKMsO2zHzkvDsf7c1sbti0txTbuqimPM3uth4stF8WcWVeJExhmYgKXZa8k1EsSYtn8Krbx4n4lid/cPNmy+fdJ+QojzC32DTohCkNiFKASJXYhCkNiFKASJXYhC6LTgpLszWAoKTrYpAJhZb0m9yWFiafQTa2VT1Zzd1k+y7wbLcTuearF5LgCWjv1fOLY1ed39UbO1dexEnN6w7cLt4Zgn7Z/mTpwKxxYHzTGeSTL93vC7vxOOMR9nFi4Rz/HS8nLj9sGgeTtMyMxLrtM5i6+DTfPz4diZs80ZjmfPxhbr5iDjsJ/YqLqzC1EIErsQhSCxC1EIErsQhSCxC1EIErsQhdCp9VYZbJ1v/nyZ68fWRJQwFPXxGh8vscOSPmpV8vm3fPps4/b/ffTx+HiLS3EcZ2PrqvrZsXBs1I+toWPB2PKmeD72XL43HLNNsT343KFnwrEjgdV31VuuDff5tUvjegenE5sy67V35mzzfmcDCxhgcTG2G9PCl8n1OBrFxTnng+uxH+/Ctq3NVmSV2LK6swtRCBK7EIUgsQtRCBK7EIUgsQtRCJ2uxm+an+OKvbsax+b6SY20IPlgPklA2bZlSzg2SvIc5pM6aC+caC6F3Xv25+E+cfoGbJrfE471elfGx5yLX/cwiH9zUJsOYOclO8Ox/nKc+HH8aOwYvHax2bl49Wvjlf/FYbxCzjBOdukRx7g1uK62XnRhuM/moIUW5Ekyi4txck1GlJQzNxdfPaMgmSurkac7uxCFILELUQgSuxCFILELUQgSuxCFILELUQiraf+0F/gysItxGsB+d/+8me0EvgZcxrgF1A3ufiI7Vq9nbNvabGssB7XCAKqgH48lWQnPnXk+HLMkSWbTXJyQs2Vbc2bCb/7+G8N9lkeJHRO0wgLob4rfGh/GiTxblptfmyfth84N4mSd3gWxDXXl1W8Ix6rNzfM4SuzS4SC20AZn43nsb4nnamnYvN/ZM83WIMDWrReEY73EIj5x8nQ4dvp0PDYK7rmLie05GDa/Z1nLqNXc2QfAJ9z9KuBa4GNmdhVwC/CAu18JPFD/LIQ4T5kodnc/4u4/qB+fAp4A9gDXA3fWT7sTeN9GBSmEmJ41/c1uZpcBbwIeAna5+5F66CjjX/OFEOcpqxa7mW0DvgF83N1Prhzz8R8KjX8smNk+MztgZgd+cSL9k14IsYGsSuxmNsdY6F9x93vqzcfMbHc9vhs43rSvu+939wV3X7jo4ovXI2YhRAsmit3G3/y/HXjC3T+7Yuhe4Mb68Y3At9Y/PCHEerGarLe3AB8CHjWzR+pttwKfAu42s5uAZ4AbJh1ocXmZpw4fbR47F2c8VVWzXRMbE3AmqSOWZb1lrZy29ILpWkpqliVRLg2STK7EHsxaZUUtqiyrj5bMx3IS4/YkO2x7kHU4v3VbuM+5M/E1YMuJpZRYb1GtuXPJ9ZZlmyXOFqdfiK+DYWKXRkSZbQBVYNsuJe3GJord3b9LWPKRd07aXwhxfqBv0AlRCBK7EIUgsQtRCBK7EIUgsQtRCJ0WnFxcGvDkocbv3oAnRlpQ5M889oyM2LqqNsWZbf1eHMcwGFtOLJJR8nHas6TlVVa70OODLgWf371kHwuyCgGWEwvw3FJs85wcNWeV9QaxBTUcJL5WkgHWi5P2wtuZ9WJ7bTFxyUZZiBYf05JsSrPmIIdBIUqAoTUH4klBTN3ZhSgEiV2IQpDYhSgEiV2IQpDYhSgEiV2IQujUesMM+s1FG5PEqzDrrYqy0MitpvnEektqWMaZY734eEOLfRxPPmstmZHlxdhrGgbHnEvmapRk0S0l2VpVkGEHsBhkqY2SLLo0MyxxZnuJ9RkdM7qmIJ+PDEvezyxTMTpfVjwyctiGw+kKTgohXgFI7EIUgsQuRCFI7EIUgsQuRCF0uhpv1mO+37xy7UkiTLRy2gsSCABGSZLMuaQ+XbYCGtUES8IgycdhkGRVpCvkSassDwrKZXOVWRBRkgZAP6uTFxwyydNgkKzUZzu2WT2vevFr9mQ+qmQ+zOP428RoyWuukpqCEbqzC1EIErsQhSCxC1EIErsQhSCxC1EIErsQhTDRejOzvcCXGbdkdmC/u3/ezG4DPgw8Wz/1Vne/Lz+aY4GtMRwmtkUw1ktaNWUl7bK0G+vFYz5sPmhqqySJCdl+nthyWeKHWdAqaxQnmWQWTz9oMwRgWS+kYGwUzCHkd57Masre6izhpQ3ZXGVJPlVyXUXXcfae5a+6mdX47APgE+7+AzPbDjxsZvfXY59z979Z81mFEJ2zml5vR4Aj9eNTZvYEsGejAxNCrC9r+pvdzC4D3gQ8VG+62cwOmtkdZqbm60Kcx6xa7Ga2DfgG8HF3Pwl8AbgCuJrxnf8zwX77zOyAmR04e+rkOoQshGjDqsRuZnOMhf4Vd78HwN2PufvQx19q/yJwTdO+7r7f3RfcfeGC7ReuV9xCiDUyUew2Xn68HXjC3T+7YvvuFU97P/DY+ocnhFgvVrMa/xbgQ8CjZvZIve1W4INmdjVjO+5p4CMTj+TOKGhp40mrm8iisn5cAy39HEssoyppC2QW2B2ZrZK0VholdfLSDLDEOuxXzW/pKLPyMrsxq8mXZLBFltco6YeVZRzOzcWXajZXUQZbv9/ueMNkLLMie9lkBdlykVbS4yUxrGY1/rs0X10TPHUhxPmEvkEnRCFI7EIUgsQuRCFI7EIUgsQuRCF0XHDSmOs3f75YYkNZUNiwl2RCeVJwMmOun2Q1DYPYg9cEeRZdRpJslmb7RbZc1lops4US523Cfs17Vpa0akqyvAZL8dgwyR6MbMXRIMkay46XZJul7lpifUZOauLaMhdYm1kMurMLUQgSuxCFILELUQgSuxCFILELUQgSuxCF0Kn1hjse2CvDYZzhU0VWU+IzZNlJGVlhwygrywexLTTKKl9m1lXWB86SzKvg8zuz3rKyhlEW3Xi/tRfTzHrOZf3+svjT/nxhhmCW+Rhbm5ndm/bMSzMLM4Mz2mftBSd1ZxeiECR2IQpBYheiECR2IQpBYheiECR2IQqhU+vN8dBiGybF9Qa+1Lg9K+aYZb1lVsdw2HwugEFgsQ1HsRXWn4ttHEtsqKzPV5b1FvUiy3qsJfUrGSWFGSObLz1oy9ec9cXLrLIquEairDxIpwNLst6yY2aW3TDsB5hl8639Pq07uxCFILELUQgSuxCFILELUQgSuxCFMHE13sw2Aw8Cm+rnf93dP2lmlwN3Aa8CHgY+5B4sm9e4O8uD5qd4ko4RrlUmK7QtcgsASHJa4rpqWcG4dOU/diDa4kGNt2ylO2MQtCYC6Fl2+QT3kaB22iTyUn5rT6DJ2mFFrasmkV2PbRJosuQfC/bJnKbV3NkXgXe4+xsZt2e+zsyuBT4NfM7dfwM4Ady0imMJIWbERLH7mNP1j3P1PwfeAXy93n4n8L4NiVAIsS6stj97VXdwPQ7cD/wEeN79l7/jHQL2bEyIQoj1YFVid/ehu18NvAa4Bvit1Z7AzPaZ2QEzO/DC6VMtwxRCTMuaVuPd/XngO8DvATvMfrlC8xrgcLDPfndfcPeFLdu2TxWsEKI9E8VuZq82sx314y3Au4AnGIv+j+qn3Qh8a6OCFEJMz2oSYXYDd5pZxfjD4W53/xcz+xFwl5n9JfAfwO2TDuTuDJYjdy62DCI7IUpMgTzJpJ8kd2QWSZRkkpHtk52rrf0TnS+bj2wsap8EeSJMm/ZbbecqI7Kv2s5v2zjy1xa1ckresxYxTBS7ux8E3tSw/SnGf78LIX4F0DfohCgEiV2IQpDYhSgEiV2IQpDYhSgEa9N6pvXJzJ4Fnql/vAT4WWcnj1EcL0VxvJRftThe6+6vbhroVOwvObHZAXdfmMnJFYfiKDAO/RovRCFI7EIUwizFvn+G516J4ngpiuOlvGLimNnf7EKIbtGv8UIUwkzEbmbXmdl/mdmTZnbLLGKo43jazB41s0fM7ECH573DzI6b2WMrtu00s/vN7Mf1/xfPKI7bzOxwPSePmNl7Oohjr5l9x8x+ZGaPm9kf19s7nZMkjk7nxMw2m9n3zOyHdRx/UW+/3MweqnXzNTObX9OB3b3Tf0DFuKzV64B54IfAVV3HUcfyNHDJDM77NuDNwGMrtv01cEv9+Bbg0zOK4zbgTzuej93Am+vH24H/Bq7qek6SODqdE8YZrNvqx3PAQ8C1wN3AB+rtfw98dC3HncWd/RrgSXd/yselp+8Crp9BHDPD3R8EnnvZ5usZF+6Ejgp4BnF0jrsfcfcf1I9PMS6OsoeO5ySJo1N8zLoXeZ2F2PcAP13x8yyLVTrwbTN72Mz2zSiGF9nl7kfqx0eBXTOM5WYzO1j/mr/hf06sxMwuY1w/4SFmOCcviwM6npONKPJa+gLdW939zcAfAh8zs7fNOiAYf7KTle7ZWL4AXMG4R8AR4DNdndjMtgHfAD7u7idXjnU5Jw1xdD4nPkWR14hZiP0wsHfFz2Gxyo3G3Q/X/x8HvslsK+8cM7PdAPX/x2cRhLsfqy+0EfBFOpoTM5tjLLCvuPs99ebO56QpjlnNSX3uNRd5jZiF2L8PXFmvLM4DHwDu7ToIM9tqZttffAy8G3gs32tDuZdx4U6YYQHPF8VV8346mBMbF2i7HXjC3T+7YqjTOYni6HpONqzIa1crjC9bbXwP45XOnwB/NqMYXsfYCfgh8HiXcQBfZfzr4DLjv71uYtwz7wHgx8C/AztnFMc/Ao8CBxmLbXcHcbyV8a/oB4FH6n/v6XpOkjg6nRPgtxkXcT3I+IPlz1dcs98DngT+Gdi0luPqG3RCFELpC3RCFIPELkQhSOxCFILELkQhSOxCFILELkQhSOxCFILELkQh/D+W+2e+iWiOrwAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[3]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAY0UlEQVR4nO2dW4xVZZbH/wuo4lYFUgVVlgUIIkZREbVUSJuOl7S3dKImo9EH4oNpOpM2GZOeB3WS0UnmwZ6MGh8mTsqRND1xWpj2RiZmph3S0fSDSIEIKDMiyv1SIJQgXiiKNQ9nkynMXv86tavOPuj3/yWEU9+q7+y1v71XnXO+/1lrmbtDCPHjZ0y9HRBClIOCXYhEULALkQgKdiESQcEuRCIo2IVIhHEjmWxmdwB4HsBYAP/i7k+z329qavLW1tZc2/jx48N5EydOzB1vaGgI53z99deh7dChQ6Ht5MmToW3MmPy/jUXly6Lzxo2LL9upU6dyx9n6Mj+OHz8e2vr7+0Nb5GO0hkP5wTh9+nQhW0R0vwF8Hb/77rvQduLEiWH7we7vyI9vv/0WJ0+etDxb4WA3s7EA/gnAzwDsAbDOzFa7+8fRnNbWVjz++OO5tosuuig81hVXXJE73tHREc5Zv359aOvu7g5te/fuDW0TJkzIHR8YGAjnRME31DwWFFOnTg1tfX19ueNsfdlN+s4774Q2tlZtbW2545MnTw7nsD8ebK3YH+jojz67LldeeWVou/jii0Pbjh07QtvatWtDW3Ru7P6eN29e7vi6devCOSN5G389gE/d/TN3PwngFQB3j+D5hBA1ZCTB3glg96Cf92RjQohzkJpv0JnZMjPrMbOer776qtaHE0IEjCTY9wKYNejnmdnYWbh7t7t3uXtXU1PTCA4nhBgJIwn2dQDmm9lcM2sE8ACA1aPjlhBitCm8G+/up8zsEQD/hYr0ttzdP2JzzCyUZNir/pQpU4bt34IFC0LbkiVLQtsbb7wx7GMVkXcALqFFEuVQ8yKpbN++feGchQsXhralS5eGtjVr1oS2SN5ka8V21ceOHRvamHIRSVSTJk0K50yfPr3QsXbu3BnamP9dXV2545EKBcT+f/RRHIIj0tnd/S0Ab43kOYQQ5aBv0AmRCAp2IRJBwS5EIijYhUgEBbsQiTCi3fjh4u7hl/5ZxlOUtMCSI5i0wpIZmKwVSUMsqYIlmcyaNSu0XXLJJaGNJVxE582yrj755JPQdt1114W2a6+9NrS99957ueNHjhwJ55jlJmsB4JIdu2aRbDtt2rRwTmdn/K3vXbt2hbajR4+GNnY9b7755tzx3bt3544DwPvvv587zrIU9couRCIo2IVIBAW7EImgYBciERTsQiRCqbvxp0+fxjfffJNrY7vxbJe2CGynniUsRDvCLIGD2RYvXhza2E73qlWrQltUhqm9vT2cc+DAgdC2efPm0MauWVQ6i61H0R13ZpszZ07uOEt2Yee1Z8+e0MZgiU3Hjh3LHWdrf/DgwdxxVtpLr+xCJIKCXYhEULALkQgKdiESQcEuRCIo2IVIhFKlt1OnToWSAUsYieSk5ubmQn6whAUmDUUJL0Ulo/PPPz+0zZ49O7SxJI7Dhw/njjP5kp1z9HxApdVQRHTe7JoxHxsbG4d9LCDuQBN19wG4FMlq+THZlrWU2rp1a+44uy6RlMoSjfTKLkQiKNiFSAQFuxCJoGAXIhEU7EIkgoJdiEQYkfRmZjsAHAcwAOCUu+f3scno7+8PpQtaO4u03Ilgclgk5QFclosy9iJ5B+C+r1+/PrTNmDEjtDH5Kjo3lunX0tIS2iKpFOAS1QUXXJA7HmXDAdxHBrvWkTzIJKre3t7QxuYxeY3dc5HszOTB6B5g8t9o6Ow3u3ssxgohzgn0Nl6IRBhpsDuAP5rZejNbNhoOCSFqw0jfxt/o7nvNrA3A22b2P+7+7uBfyP4ILAP4Z1shRG0Z0Su7u+/N/u8F8DqA63N+p9vdu9y9i204CCFqS+FgN7PJZtZ85jGA2wBsGS3HhBCjy0jexrcDeD3LVBoH4N/c/T/ZBHcPC+KNHz8+nBdJMpEUBnA5pqGhIbSxllKRRMKKCTKpiWWUffXVV6HtwgsvDG1R2yWWQcUkL7aO7DkjaaipqSmcwwo9smtdJGOSSaxMUmStvlj2HWu/Fd2PRYpssszBwsHu7p8BuKrofCFEuUh6EyIRFOxCJIKCXYhEULALkQgKdiES4QfR640VNoxgEgSTk9gXfyLZkPnOZKEpU6aENia7sAxBlnkVwWQhZmPZd5HExoplMimvaMHMqFAl64nGMtTYdWGw4xW5ZpGP7N7WK7sQiaBgFyIRFOxCJIKCXYhEULALkQil7sYPDAyEu7ssASXabWXJMyzZpUiCARDXk2NqAdsp3r59e2hbuXJlaGNEO7tsrVhLI7Yzfd5554W2qBYaW1+2484UD3ZuUULRoUOHwjkMptawnXCmakTPye6dSO1ga6hXdiESQcEuRCIo2IVIBAW7EImgYBciERTsQiRCqdKbmYWSDKvVFsk1TK6LEiAA3iKHER2vaL07Vldt27ZtoY21lOrs7MwdZy2emBzGasYx6Y2dd0TR9k/sPoikt6LtxlhbLiavMXk2msckRSZFRuiVXYhEULALkQgKdiESQcEuRCIo2IVIBAW7EIkwpPRmZssB/BxAr7tfkY21AFgJYA6AHQDud/e4n07GmDFjwk6urDZZJA0xOYPW4iLSCrNFMCmP1Rdjx2Ltn5jU9OWXX+aOs2wt5uP5558f2tg1i6RP1j6JyXVsjVlmXnSP9PX1hXMY7JzZ9WTrH0mOTNqMpEMmyVVzZ/8WwB3fG3sMwBp3nw9gTfazEOIcZshgz/qtH/ne8N0AVmSPVwC4Z5T9EkKMMkU/s7e7+/7s8QFUOroKIc5hRrxB55UPCeEHBTNbZmY9ZtbDaqgLIWpL0WA/aGYdAJD93xv9ort3u3uXu3ex7/oKIWpL0WBfDeCh7PFDAN4cHXeEELWiGunt9wBuAjDdzPYAeBLA0wBWmdnDAHYCuL+ag7l7KL0UKQJZtHghk3GYfMLkvCLHYjIUk1CKZJsxeYqdM8t6Y+sfnRu7LiwTjRVfZNmDkcTGriVry8XWg2VuFmlhxnyM7iu2vkMGu7s/GJhuHWquEOLcQd+gEyIRFOxCJIKCXYhEULALkQgKdiESodSCk+4eyiQskyuSeIr2BmMwuaOI9Fb0+ViBSCYNRc9ZpCgjwDPRmBwWXTP2fOyasWKO/f39oS3KAmT3DpM2i0qRLOstWkd2ztFajTTrTQjxI0DBLkQiKNiFSAQFuxCJoGAXIhEU7EIkQum93iLphck/UQZV0awxJkMxokwjdiyWbcbmFc3MmzVrVu44k7w2bNgQ2thaHTny/Wpl/08kNTU3Nxc61rFjx0Iby5aLCqawDDUmkzEbuy5M6ovkaCblFZGB9couRCIo2IVIBAW7EImgYBciERTsQiRCqbvxQLxjuWvXrnBO1IKo6G42g1XAjXZH2c5o1NoHAObMmRPaFixYENouu+yy0HbBBRfkju/fvz93HAA+//zz0Hb48OHQxnbBIxWCrVXRHXeWCBMlmbBkoqhFWdFjAVyViWwsIUe78UKIEAW7EImgYBciERTsQiSCgl2IRFCwC5EI1bR/Wg7g5wB63f2KbOwpAL8AcCj7tSfc/a0qnguNjY25NpZUcfTo0dxxJpNFxwG4LMfmRckTN9xwQzhnyZIloY1Jb0x2YbJRlHDBOuiyendFZcV9+/bljrPrzJKhmHTFarVFctj06dPDOey8mDzIEmGKnDc75+i6sOSwal7Zfwvgjpzx59x9UfZvyEAXQtSXIYPd3d8FEP9ZEkL8IBjJZ/ZHzGyTmS03s2mj5pEQoiYUDfYXAMwDsAjAfgDPRL9oZsvMrMfMetjnRiFEbSkU7O5+0N0H3P00gBcBXE9+t9vdu9y9i22oCSFqS6FgN7OOQT/eC2DL6LgjhKgV1UhvvwdwE4DpZrYHwJMAbjKzRQAcwA4Av6zmYA0NDWEGG5N4ohpdRfn2229DW1tbW2hbunRp7vjixYvDOSyDqmidPCavRPPYuyomvTHYuUWSF6urFkmsANDb2xvaWGbe/Pnzc8dvv/32cA7LsCsKq10XyXnsY28UR7t37w7nDBns7v5gzvBLQ80TQpxb6Bt0QiSCgl2IRFCwC5EICnYhEkHBLkQilFpwcmBgAF9++WWujRVEjDLAWHYSy2xjxS0vvfTS0HbLLbcM2w8m87HihUVbCUXHYzIfO+eNGzeGtiLZctu2bQvn9PX1hbZDhw6FtqjIJgDcdtttueOsDRXLomNyGLuvWDHKzs7O3PHZs2eHc6J2Xlu3bg3n6JVdiERQsAuRCAp2IRJBwS5EIijYhUgEBbsQiVB6r7cIJpVFxfq++OKLcA6Tag4ePBja7rvvvtAWSWxF5TUGk8qY/MN8iZg3b15oY+vICiLOnTs3d/yDDz4I5zD5dcaMGaHt1ltvDW2RPMiy6Nh5sQxMdg9HWWpAnKnICnBG2YMsW1Kv7EIkgoJdiERQsAuRCAp2IRJBwS5EIpS6Gz9p0iRcddVVubampqZwXrQzzXbVo/ZDQJxEAAAzZ84MbVEyA9sBZbaisBp0UZIM292fOHFiaLvssstC28cffxzapk3LbyVw5ZVXhnPYLviiRYtCG2ujFSXXsDZObMedrWN0zgDfqY8UG3ad2fNF6JVdiERQsAuRCAp2IRJBwS5EIijYhUgEBbsQiVBN+6dZAH4HoB2Vdk/d7v68mbUAWAlgDiotoO5397h/D4DGxsawrhaTO4rUrWOthFhSAmtPFCWZsNZVTD5hdeaYxMOIZByWkMOkSCYntbe3h7Yo0SSqtwYACxcuDG2szhxLDIrWn0mi7F5kx2LzWPutqDVUY2NjOKeIpFvNK/spAL929wUAFgP4lZktAPAYgDXuPh/AmuxnIcQ5ypDB7u773X1D9vg4gK0AOgHcDWBF9msrANxTKyeFECNnWJ/ZzWwOgKsBrAXQ7u5n3kcfQOVtvhDiHKXqYDezJgCvAnjU3c/6rqFXPmDmfsg0s2Vm1mNmPewrikKI2lJVsJtZAyqB/rK7v5YNHzSzjszeASB3R8bdu929y927pkyZMho+CyEKMGSwWyWz4iUAW9392UGm1QAeyh4/BODN0XdPCDFaVJP19hMASwFsNrMzvYCeAPA0gFVm9jCAnQDuH+qJ3D3MHDt+/Hg4L8puY62EWEYcy/JiHzWmTp2aO85kMiaRsMwl9pxMRotsTOZjciNrNcXWMarXx+a0tbWFNtY+qcjHw0juAngdP3bN2Fqx9Y+kW1ZjMXqXzO6bIYPd3f8MIDqLuNKfEOKcQt+gEyIRFOxCJIKCXYhEULALkQgKdiESodSCk/39/Thw4ECurUjmGCuGePnll4e2Sy65JLSxrKZIHmTSFct6Y1lNDCbnRf4zSYb5wc6NXbNIDmPSFZPeWEYZk6iiIpZFW2ixlkzsWrPjRa2tIvmyKHplFyIRFOxCJIKCXYhEULALkQgKdiESQcEuRCKUKr25eygbsR5rUSHC5ubmcA7LamKSBpsXSSsnTpwI57AMNZYlxYpAMh8jeZDJZOz5GCzbLCo4yaQrJr21tLSENvacUbZcVMQU4D3nmCzHZEoml0ZrxYpsRufMrrNe2YVIBAW7EImgYBciERTsQiSCgl2IRCh1N37q1Km48847c22TJ08O50U702znke1ms8QPtrMe7cYzP9huPKurxuYxdu7cmTve0dERzmGtiQ4fPhza1q5dG9o+//zz3HF2zqxuYNQ2DABaW1tDW3RfNTU1hXPYjjvzke3ws/M+cuTIsOdE58wSnvTKLkQiKNiFSAQFuxCJoGAXIhEU7EIkgoJdiEQYUnozs1kAfodKS2YH0O3uz5vZUwB+AeBQ9qtPuPtb9GDjxoXJDky+iuQEJhmxWmesHhiVLoIWPkzmY+fFYH4cPXo0tEVJFe3tcUdt1ppo+/btoW3Lli2hbffu3bnjrJYcaw3F5kVtuQBg2rRpueNsfZn0VqRGIcCl1EjSZc8XJd2whJtqdPZTAH7t7hvMrBnAejN7O7M95+7/WMVzCCHqTDW93vYD2J89Pm5mWwF01toxIcToMqzP7GY2B8DVAM58deoRM9tkZsvNLP/9khDinKDqYDezJgCvAnjU3Y8BeAHAPACLUHnlfyaYt8zMesysh9X3FkLUlqqC3cwaUAn0l939NQBw94PuPuDupwG8COD6vLnu3u3uXe7exb7DLISoLUMGu1VqJ70EYKu7PztofHBmxb0A4q1ZIUTdqWY3/icAlgLYbGYbs7EnADxoZotQkeN2APhlNQeM6q4VqcfGJC8mnzCpick/0fGYLMSkEJbVxCQexpQpU3LH2Xmxmmt9fX2hjUle0bmxLDomTzE/2PpH7caYbMuuS1Eby7SM5NkibaiYD9Xsxv8ZQF4kUk1dCHFuoW/QCZEICnYhEkHBLkQiKNiFSAQFuxCJUGrBSTMLZS+WpRbJJEzWYvIay3hiRPIg853Jg6xtUZS9BnAZJ4LJU0zyYoUZWfutSDpka79nz57QxrIH2X0QwdajaAFRZmPHi9aEPV90zio4KYRQsAuRCgp2IRJBwS5EIijYhUgEBbsQiVCq9ObuoawxYcKEcF4kozHJhclTUYG/oZ4zsjGZjz0f6xvGpJoosw0AWlpacseZhMb8Z/NYf74ok44Vy2T3QNHed5FcyrIK2TVjGYJMsmNrHN2P7D6NJDZJb0IIBbsQqaBgFyIRFOxCJIKCXYhEULALkQilSm9ALE+wzLFIgmBSBytgyWzsOaMMNiZ3MHmN1dGfMWPGsP0AeCZaRNEeZUWKWJ44cSKcU6ToKMAlqsj/ovcAk+XYWjHpLbIVkesYemUXIhEU7EIkgoJdiERQsAuRCAp2IRJhyN14M5sA4F0A47Pf/4O7P2lmcwG8AqAVwHoAS9097j1Tea5CO9qRje2oFk1OYfPGjctfLrYLy+rMMT8mTZoU2o4cORLaopZBbW1t4RyWNLRr167Qtnfv3tAWtXmiiRpk7VniSpG6cCzpht1XRRNymJpQZE6RunvVvLJ/B+AWd78KlfbMd5jZYgC/AfCcu18M4CiAh4d9dCFEaQwZ7F7hzMtTQ/bPAdwC4A/Z+AoA99TEQyHEqFBtf/axWQfXXgBvA9gOoM/dzyj7ewB01sZFIcRoUFWwu/uAuy8CMBPA9QAurfYAZrbMzHrMrId9Y0wIUVuGtRvv7n0A/gRgCYDzzOzMjtVMALm7Ne7e7e5d7t7V2to6ImeFEMUZMtjNbIaZnZc9ngjgZwC2ohL0f5H92kMA3qyVk0KIkVNNIkwHgBVmNhaVPw6r3P0/zOxjAK+Y2d8D+ADAS0M9kbuHX+BnkgyTQiJYokAkTw3lRyR3nDwZK46sZhmbx9o/7du3L7RFNehYggxLTmHS4bFjx0JbtFZMuiqanFKkpiBL/mF+RK3IgGLtmoDY/yJyNGPIYHf3TQCuzhn/DJXP70KIHwD6Bp0QiaBgFyIRFOxCJIKCXYhEULALkQhWZAu/8MHMDgHYmf04HUB+alS5yI+zkR9n80Pz40J3zy1gWGqwn3Vgsx5376rLweWH/EjQD72NFyIRFOxCJEI9g727jscejPw4G/lxNj8aP+r2mV0IUS56Gy9EItQl2M3sDjP7XzP71Mweq4cPmR87zGyzmW00s54Sj7vczHrNbMugsRYze9vMtmX/T6uTH0+Z2d5sTTaa2V0l+DHLzP5kZh+b2Udm9lfZeKlrQvwodU3MbIKZvW9mH2Z+/F02PtfM1mZxs9LM4kqhebh7qf8AjEWlrNVFABoBfAhgQdl+ZL7sADC9Dsf9KYBrAGwZNPYPAB7LHj8G4Dd18uMpAH9d8np0ALgme9wM4BMAC8peE+JHqWsCwAA0ZY8bAKwFsBjAKgAPZOP/DOAvh/O89Xhlvx7Ap+7+mVdKT78C4O46+FE33P1dAN+vB303KoU7gZIKeAZ+lI6773f3Ddnj46gUR+lEyWtC/CgVrzDqRV7rEeydAHYP+rmexSodwB/NbL2ZLauTD2dod/f92eMDANrr6MsjZrYpe5tf848TgzGzOajUT1iLOq7J9/wASl6TWhR5TX2D7kZ3vwbAnQB+ZWY/rbdDQOUvOyp/iOrBCwDmodIjYD+AZ8o6sJk1AXgVwKPuflYZnDLXJMeP0tfER1DkNaIewb4XwKxBP4fFKmuNu+/N/u8F8DrqW3nnoJl1AED2f1yXqoa4+8HsRjsN4EWUtCZm1oBKgL3s7q9lw6WvSZ4f9VqT7NjDLvIaUY9gXwdgfraz2AjgAQCry3bCzCabWfOZxwBuA7CFz6opq1Ep3AnUsYDnmeDKuBclrIlVir69BGCruz87yFTqmkR+lL0mNSvyWtYO4/d2G+9CZadzO4C/qZMPF6GiBHwI4KMy/QDwe1TeDvaj8tnrYVR65q0BsA3AfwNoqZMf/wpgM4BNqARbRwl+3IjKW/RNADZm/+4qe02IH6WuCYCFqBRx3YTKH5a/HXTPvg/gUwD/DmD8cJ5X36ATIhFS36ATIhkU7EIkgoJdiERQsAuRCAp2IRJBwS5EIijYhUgEBbsQifB/JbfhWgv6WtgAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[6]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAeRUlEQVR4nO2dW4xc15We/1X36q5qdje72SSbpEhZGtkaXySZFpRY8XjGGEMxjJENBIb9YOjBGA6CMTAGJg+CA8QOkAdPENvwQ+CAjoXRBI4vM7ZhYaDJjKNMorkAsimH1o1ydCNNUmQ3b82+VXVVnVp5qGJAKvvf3exLNe39fwDB6r1qn7Nrn7PqnLP/WmuZu0MI8etPbrsHIIQYDHJ2IRJBzi5EIsjZhUgEObsQiSBnFyIRChvpbGYPAfgagDyA/+zuX4q9v1QqebVSCdriEmDYZmax0cWGsj7IJmN76mYZtWVZh9pyOX5o8oU8tRkZTT7Pv9e7kbln2wOAXI5v08kxi7M+GTh27sTGz4n0ie0rF5srfsz4rm5+PhYWF9FoNoMDWbezm1kewH8E8LsAzgD4qZk94e4vsT7VSgUPPvC+oK3dbtN9ZcRhiqVSbHzrs8UOtJEvncj90fL8PLVdvXyZ2oZHRqltfHwnteXIZ6vX67RPq9Witnyen6TDQ0PU1u6Ev8hi389d5+dAzGU7ZF8AUCBOZh67qeW2TtaltmKFn4+1Wi2yv/B51W7zz8X48x/9JbVt5Db+fgCvuvvr7t4C8B0AD29ge0KILWQjzj4N4PR1f5/ptwkhbkE29My+FszsCIAjAFCplLd6d0IIwkau7GcB7L/u7339thtw96PuftjdD5eK/JlGCLG1bMTZfwrgTjM7ZGYlAJ8E8MTmDEsIsdms+zbe3Ttm9lkAf42e9PaYu78Y62PGV3cLBT6UmHxF+3T5qmlMMqqU+aNGo9kItl+cmaF9mktL1DZcqVLbaH2E2ox/NDhRDJrNJu0Tm/uYrRVRUJaXl4PtxWKR9ikPcVtUlYsuWoePdaEYkcKM27zNz8XYnWtMbWLEzuEiOS4xtWNDz+zu/iSAJzeyDSHEYNAv6IRIBDm7EIkgZxciEeTsQiSCnF2IRNjyX9DdiNEglJjE0yHRP9FQhsj21hvckXXCASPzV+don0JE5hvZsYP3i4x/KBJUUSqF5asKiTYEeKDRasTkvMXFxWB7TE7aXd5HbflIKEwpMseFYtiWJ+0AkM9zCa1c4eNod7i85l2uHbJjXYoEejEJ0yJzoSu7EIkgZxciEeTsQiSCnF2IRJCzC5EIA16Nd7oaGwsUKJLV83KJDz+WeiqW26sYye+WJznGapEV/Hqdr5wP1YeprVzlNouMMZaqi2+Qz1UnkhqpHFnhP3ToULB9KRIYVC7wa0+5EMnvlq1wWyk8xhWPBLtQC1CKBPLkYnn+IioEW42PBWyxPtGcgdQihPi1Qs4uRCLI2YVIBDm7EIkgZxciEeTsQiTCwANh8qSsUSw4hQV3xPJtrUSqnMT6nT33/yXI/X9kpPJIdSgWmMLlqVI5YovIWrmIONT18IdrNrg8VYxImNWYBAgul+a64Rx0YyV+XJqNS9RWNN5vcpzn6zvXDM9VtTZF++QiZZwKEeltpcEDg0qRfIOsok0uIkVWq+HzIzZ2XdmFSAQ5uxCJIGcXIhHk7EIkgpxdiESQswuRCBuS3szsJIAFABmAjrsfjr0/lzOUScH6WOmcThaWJjpdHpHVBY8yunL5MrUtzkfyyZHcZLVhLv0UI/JascTlmHJMssvdfD6zFefSW9bknznX4PPobd5v99R4sL27fIX2ubRwntpKkUg/r8VKVJFjFjvfIufV4tICtdWH6tQWi2BjkYpd5+Og24voypuhs/+2u1/chO0IIbYQ3cYLkQgbdXYH8Ddm9qyZHdmMAQkhtoaN3sY/6O5nzWwXgB+b2cvu/vT1b+h/CRwBgKEqf0YVQmwtG7qyu/vZ/v+zAH4I4P7Ae466+2F3P1wuryNlkhBiU1i3s5vZsJnVr70G8GEAL2zWwIQQm8tGbuOnAPywn9ixAOC/uvt/i3Vot9uYmXkzaBsbG6P9VlpMNuKyULPRoLarV7j8MxSJ8ioSuWZqahftU98xSm2wWILFSBmfLo8Aay3MhtvnLtA+lQ6fq/FamdqsGIlEG94d3t6e22gf37+T2k6dnaG2iwtcDhub2BtsL5cjUl6by1dFIgMDQDFy51rIR8p5kYSlzRV+XGiC1kgy1XU7u7u/DuA96+0vhBgskt6ESAQ5uxCJIGcXIhHk7EIkgpxdiEQYaMLJbreLBknK125zaajRJPXBjEtvtUiCv92Tk9TmkVpZ9ZGwjLZrF5feRke5pHjpPE9u2Z3nctLCVZ6YsbEUjugbKfLPNVLh3/l33XUHtZ25wqPenvy748H2hz78Adrn7jveRW2l8bCEBgCTs3weT83NB9tzxhNOViO1+6qRX4Fm3YzaupEkoS0i58Xq9rFahrEah7qyC5EIcnYhEkHOLkQiyNmFSAQ5uxCJMNDV+EqlirvuekfQ5pEf8M9eCOcmm509R/sMR0oyGd8VupHSUCxYJ5fjQRWNxfBqMAC05nhwR26ZZ/oqt3k+ObYYu7LCSxNVdu2htnyVr0zvrfOcaw8Oh1e79912kPbJVfjpuPcQD5KZGufBSyuvhM+RuUigUbvASzx1YmXFInnm2pGV+k4zHPASy7tXypMxajVeCCFnFyIR5OxCJIKcXYhEkLMLkQhydiESYaDSWy5nKJfCOc1KRS53jIyEZbQ2zU3HSzUBQM65PDE1ySWe6nBYaqoUI+WHLp+mtkKTl6HKd7lUVq7yubrUCOuKhVwkMGj/QWrLxQJoIsmCD77rULhPnY9jaJjnu0Oe2zqVA9RWOB8+R1bmuYTWbvO5zzpcQiuV+XlQjsh5+XxYYmtHZL7uOi7TurILkQhydiESQc4uRCLI2YVIBDm7EIkgZxciEVaV3szsMQAfBTDr7u/st40D+C6AgwBOAviEu/OaSn1yZqiSEjnlEpcmGiRiKx8JX2tGorz2TPF8ZqM7eM64jHw3Llzk0Wv5uV/ycYzxiLLMK9TGCxABJZKXb29EUvSMlBIC4MaPy45Iya4KGX6rxUsa5fiuUC5zCbDlPDrsApHYuthB+xQj0WaxvIeFSNRbqcB1SlbKKdbHIqXDGGvp8acAHnpL26MAnnL3OwE81f9bCHELs6qz9+utv/XXHw8DeLz/+nEAH9vkcQkhNpn1PrNPufu1rADn0avoKoS4hdnwAp33UszQh2czO2Jmx8zsWKPJn6OFEFvLep19xsz2AED//3BRcADuftTdD7v74SpbtRFCbDnrdfYnADzSf/0IgB9tznCEEFvFWqS3bwP4IIAJMzsD4AsAvgTge2b2GQCnAHxirTvMEbms0+ERPhdmw9LWzHl6Q4Hpffuobc/0NLUVCnxKLsy+GWxfOv0q7bNvhMuD+ci+xiOy1sXLPFru4L5wiaoxEjkIAOUil5MmJiaorTY2Tm1DJOFnJxI1xqRNAJhvcMHx1VM88eiJF34RbL/z3f+U9unk+XEpFbhMiS4/1pnzOUYuLCuWKzzSj20vVv5pVWd3908R04dW6yuEuHXQL+iESAQ5uxCJIGcXIhHk7EIkgpxdiEQYaMLJbjfD4sJc0LawuED7zc6G654NV3nywum9XF7LRaKamo1lart05rVge7XJ67mN74/UUctzmaTb5VJTbZh/7qnpyZvfV0T2LJUjP4SKJFHsElmxPsaj72rDI9R2+RIPqmyd5BLs7Gw44ef01ZO0T3XyDmor5Xl9u7bzeUSeX1eHhsLHMyajDZPo0Xwk8k5XdiESQc4uRCLI2YVIBDm7EIkgZxciEeTsQiTCQKU3M0OpFN7lSpNLXjvHw5Fc42Nvo30md++mtiySrO/S7Hlqy61cDbbv2xVJvEgkEgAoVrmsVShEJJRIHTsWSFepDdM+i/M8IqvV4rZcg0tNGTm1qnX+ubJIYNji4hK1vXTiZWrbuzcsRdZzi3wcizyKbvS291LbcotvM5Yfsks+eLnCj3O5HJY9jUTQAbqyC5EMcnYhEkHOLkQiyNmFSAQ5uxCJMNDV+Czr4OrVcEBDrOTOMMlnxjN+AedPn6K20XEejNFa5PndxofDOcF21HkZp3bGc661lrgCMR4p19RurlCbk+/v4RoP4MgyPpMLCzxAaXIvLxfQJuNg+QQB4I15nsvvH//hH6nt+M9eoLbf++hHg+1DztOan5nhY/Qun4/RSN5ARAKbMpK7rptxtaOxHF7573Yj6gm1CCF+rZCzC5EIcnYhEkHOLkQiyNmFSAQ5uxCJsJbyT48B+CiAWXd/Z7/tiwB+H8CF/ts+7+5PrratLOtiYSkc0DA1sYv2GxkJlxk6c+4M7dOK2JbPc1muzCvuYHIsnCOtCy6vFUpc8ipHAmEsH8nv1uWSzPJiI9h+7tQvaZ9YENJd7/gNaoukO0OLyIPliMTaaXJZa26eB5m0M34aF0gwSd75OHLGj2fjSrgEGABUIifPzJv8fKzWdgTbs8hx7qyE56qb8fJUa7my/ymAhwLtX3X3e/r/VnV0IcT2sqqzu/vTAPgvTYQQvxJs5Jn9s2b2nJk9ZmaRnw4JIW4F1uvsXwfwNgD3ADgH4MvsjWZ2xMyOmdmxVjtS7lYIsaWsy9ndfcbdM3fvAvgGgPsj7z3q7ofd/XCpyBedhBBby7qc3cyuL3PycQA8EkEIcUuwFunt2wA+CGDCzM4A+AKAD5rZPegFnp0E8Adr2Vk+n0edRV/lI1Fv9XDUW+s1npesUuTfY9VSpBRPhY9jD4nyWpjjpYmcpwTDxC4uN166zNdEm8v8c3srLKNNTe/lA6lwycgjH6C5xB/L2ith28gOLjfu3DFBbadnuQz10ht8rv7H/wpHy/3WfW+nfYYq/PxYmOWy7dJ8OEchALx5nuc2rIyEIxwrpCwUAGQk310n8qi8qrO7+6cCzd9crZ8Q4tZCv6ATIhHk7EIkgpxdiESQswuRCHJ2IRJhoAkn8/k8xkfDv6zNVbgkA1IKqWI8UeLoKI82K5W5vDY+wmWog7cfCLafPc3lqazDx3j+wiy1NSOllUZHwtF3ADBeD/9wKTM+xnKFJ8zMnCcwbCzPUdtKK5xg8cQFXlrpr//uOLX91dPHqO3+e7iMtncyPFcWib6rRiQv5Pn18coil952T4ZLmAHApaVwhGC7w31ix0i4vFk+Ei2pK7sQiSBnFyIR5OxCJIKcXYhEkLMLkQhydiESYaDSm3cdjQapUxapNzY8FJaGhogkBwCTk1x6u3SZS16R3JFYXJ4PthfLXO7Iurwu2/Iyt1XKXA7L5flcVYeHg+3NPJeTChVuazR5hF17ntdLO/nmhWD7T196g/Z54n8+T20H9k9T2/vfx6W3iR3hiMkFPnRUq1zaHK5xCa07xGXKfESymzgYTqiaIZwsEwDKpfAxK5S4dKwruxCJIGcXIhHk7EIkgpxdiESQswuRCINdjYejk4UDJDyyOupZeIncuuFtAUCnw1e6J3aGVz8B4PZ9PC/c0FA4MCFvPKii2+Ur56XIyn8sEKYQUS4WWuGNju7l+d0s8pXvK3w1fnGBj/HnL54Mtj/7Ei+D9K533kttD977bmrLF/hELrTDqsZUJP9fscLVlXwhvLoPALVyWAkBgHKRu1qGcJDS0gqfX1h45d9yPOBJV3YhEkHOLkQiyNmFSAQ5uxCJIGcXIhHk7EIkwlrKP+0H8GcAptAr93TU3b9mZuMAvgvgIHoloD7h7rwOEoBOlmFuPpy3bGwsXAIHAOavhMv7NImMBwDdLg9KGBrigQ4rGZcu5q+GpZCZGV7aZ+Eqz9NWLPKgheEar4LtOf4d3bawbNRaCZeFAqIxSFhc4NLbT46/TG1X2+FxfPgjH6d97rj9DmqrR4J1MufnQa4QHsdwjQcaFUgfAGiR3HoA0GpzWyki5+WI9GYRPZqe35FjuZYrewfAH7v73QAeAPCHZnY3gEcBPOXudwJ4qv+3EOIWZVVnd/dz7v6z/usFACcATAN4GMDj/bc9DuBjWzVIIcTGualndjM7COBeAM8AmHL3a3mBz6N3my+EuEVZs7ObWQ3A9wF8zt1vyOLg7g7ytGBmR8zsmJkda7V4OVkhxNayJmc3syJ6jv4td/9Bv3nGzPb07XsABNO/uPtRdz/s7odLJb5IIYTYWlZ1djMz9Oqxn3D3r1xnegLAI/3XjwD40eYPTwixWawl6u39AD4N4Hkzu1af5/MAvgTge2b2GQCnAHxitQ15t4tGoxG0NZtnab9OO3z7X8y4NHHnIb6E0FjiZXqOvcFzpDFJxsFlvlIk99jUBI+giiXDy7rcduViWAZcXFqgfa42+OPViVf4cRmZ2E9tv/3A+4Lt9Z3hskUAUIjMo0VKfcXkpmI5LG9mEWm2E9EiY/2qVV6uKReRS42U5ipFJEA2DrYtYA3O7u5/DxAhEPjQav2FELcG+gWdEIkgZxciEeTsQiSCnF2IRJCzC5EIA004mcvlMERKOeXzPGljuxOOJjr56rlgOwC8duo0tR2Y5BFU5SqPRGt3w9+NXedSzanzF/n2eJAU9u7aQW1TUzx5ZIMkKXzlTDhyEADOXgnLoQAwfds7qO09991PbaVyeI4jU4Wcc9moVOKlkGLnTo7YIrtCm0i9AFCtRs4dIvMBQIecwzGqxFcALrFF5+KmRyCE+JVEzi5EIsjZhUgEObsQiSBnFyIR5OxCJMJApbd8IY+xsXAiRY9EE4HICZXye2iX06+/SG0Hdx+ktj27eCTaUD1cI85zfBrHJ3iU18IVLsuNjvKkmENDvKYYymHJbrJ6gHZZGuZJJQ+94+18X5Gzxy0cmVcp80iubofrcjFJKZZcNPOwjUlyqxGT1wqF9blTqxWWSxcWeKRipRKOsIvNha7sQiSCnF2IRJCzC5EIcnYhEkHOLkQiDHQ1vpAvYOfOcJknM/69UyqHgyCGI2WcXo6sSrbaPHddLeNBIZfOnQy218d4YMr0vj3U9lpjkdrykZXdq1f5Ku3cwkp4HO98gPbZd3tYZQBWCayI5FUrl1jAU2Q13nkAikciaCplnvut2QrPR4zYivvKCt9es8nPq1ggT5aFlQu2Sg/wwBqtxgsh5OxCpIKcXYhEkLMLkQhydiESQc4uRCKsKr2Z2X4Af4ZeSWYHcNTdv2ZmXwTw+wAu9N/6eXd/MrqtXA5lIpOM7ODyT4fICdUhHrTyvvf/FrX94vjT1Da8wqW3K/NhaWh2npdI2pvxKV5e4lLNpatclpvYySXHciUslbWvhstCAcB4vU5ty61lauu0ucwzlA8f58oQl8myQkR+jUiR7YhEVSySfrFyTBFbPlLOq7XCj2erFQnyIZ9tej8vr7VMyqjl83ye1qKzdwD8sbv/zMzqAJ41sx/3bV919/+whm0IIbaZtdR6OwfgXP/1gpmdADC91QMTQmwuN/XMbmYHAdwL4Jl+02fN7Dkze8zMwoHqQohbgjU7u5nVAHwfwOfcfR7A1wG8DcA96F35v0z6HTGzY2Z2bHmZPw8LIbaWNTm7mRXRc/RvufsPAMDdZ9w9c/cugG8ACFYMcPej7n7Y3Q8PDfEE+0KIrWVVZ7de6YlvAjjh7l+5rv36CI+PA3hh84cnhNgs1rIa/34AnwbwvJkd77d9HsCnzOwe9OS4kwD+YLUN5XM5DNfCMs9QjZc7KpKIoeVFnjutNsqXEN77zz5Ebb98+Rlq2zkVzv223ApHLQHAuSsz1LZjit/pzC3PUdvB26aorVwNz1WzwaW3+QuRiLIRHtHXdv65S6Xw/HfBpbcOuJRXI+cNAHSWeb/luavB9jdeP0n7TE/vo7bJyXDUJgBYZPxd8HpT5Ur4PMgikX4sEtRyfD9rWY3/eyA40qimLoS4tdAv6IRIBDm7EIkgZxciEeTsQiSCnF2IRBhw+acCxsbDUk5thEtlnVY42iwr8Ggni0T/VOtc5hua5pF0eaL+FJtcTlrocnmt0YlEa0USPS41eNLD2kh4/KwdAIYrPAnkyTd/SW0ref7ZduwKl70qRRKL7tk9SW1j4/z8mL3Ay2gtLoaj9nbt2kX7jI7y86P3s5MwVVKSCQCswOfY2TWXJKKMwUenK7sQySBnFyIR5OxCJIKcXYhEkLMLkQhydiESYbDSW76A+sho0LbU5IktykS2iMknHR4whFKVyyB3/cYHqe3i3Llg++QIl2oO7ArXPAOAxYXL1Hb+dR4x/EIkYmuERKmNjPAklSOVcN0wANi3705qq+7k2cnaubB0WC7y+ehGohgvLXFbN+OC0xiRWevDXIosRJJbxuqvFUu8H0uaCgBtUretUOTyK9j5HdHedGUXIhHk7EIkgpxdiESQswuRCHJ2IRJBzi5EIgxUejMzFEmtt1w7HNkGADkiQWSRBH8rbR4xVGhHJI0cl4aGKweC7SwhJgDU6lzyOnjgILXdftvt1HbixeeobWIinIxy5ySPKLtw7iS1XWlyyStHohEBoEISfnad10N7802eFLO5wve158AhamuR86rd4duL5HlEJ3KeNpcXqK0SqUtYIdFyZZJUsjeO8DzmIlF5urILkQhydiESQc4uRCLI2YVIBDm7EImw6mq8mVUAPA2g3H//X7j7F8zsEIDvANgJ4FkAn3Z3HiUAoOuOlZVw/rR2JMCgRFbjrcBX1S2yGu9dvtza8sgqLSutk+fbazbD5YcAYOY8t+3ZG175B4A7f/O91FaploPtQ0NcZajWwmWtAKDTmKe2diTaqEAUiizjAU/FSLAOIiW2ltr83Mk8rNjkIudON6LylMj8AkCtznPy5SI56Frt8P5iigG64fnwiJSwliv7CoDfcff3oFee+SEzewDAnwD4qrvfAeAKgM+sYVtCiG1iVWf3Hov9P4v9fw7gdwD8Rb/9cQAf25IRCiE2hbXWZ8/3K7jOAvgxgNcAzLn7tUDcMwB4cLMQYttZk7O7e+bu9wDYB+B+AG9f6w7M7IiZHTOzYwsL/BdGQoit5aZW4919DsDfAvgnAEbN7NoC3z4AZ0mfo+5+2N0P1+u8xrYQYmtZ1dnNbNLMRvuvqwB+F8AJ9Jz+X/Tf9giAH23VIIUQG2ctgTB7ADxuZnn0vhy+5+5/aWYvAfiOmf07AP8bwDdX21CWZZifD8tNLBgAAMqlsNxRrfI+9UgASrPBgzFyef79lyPSWyEiq+RzfHsTO7lUU4zkQYsF3iyRXG3diIxjkcCPao3n+cMKl9FYrrZOpKJRocrv/MqVWHI1bssXw8cmFjDSbK7v/BiucXlzaZnPVUZktG4rIm3G6jyxPqu9wd2fA3BvoP119J7fhRC/AugXdEIkgpxdiESQswuRCHJ2IRJBzi5EIlgsSmbTd2Z2AcCp/p8TAC4ObOccjeNGNI4b+VUbx23uHkw4OFBnv2HHZsfc/fC27Fzj0DgSHIdu44VIBDm7EImwnc5+dBv3fT0ax41oHDfyazOObXtmF0IMFt3GC5EI2+LsZvaQmf3CzF41s0e3Ywz9cZw0s+fN7LiZHRvgfh8zs1kze+G6tnEz+7GZvdL/P1w/aevH8UUzO9ufk+Nm9pEBjGO/mf2tmb1kZi+a2R/12wc6J5FxDHROzKxiZj8xs5/3x/Fv++2HzOyZvt9818x4+GMIdx/oPwB59NJa3Q6gBODnAO4e9Dj6YzkJYGIb9vsBAPcBeOG6tn8P4NH+60cB/Mk2jeOLAP7VgOdjD4D7+q/rAP4PgLsHPSeRcQx0TgAYgFr/dRHAMwAeAPA9AJ/st/8nAP/yZra7HVf2+wG86u6vey/19HcAPLwN49g23P1pAJff0vwweok7gQEl8CTjGDjufs7df9Z/vYBecpRpDHhOIuMYKN5j05O8boezTwM4fd3f25ms0gH8jZk9a2ZHtmkM15hy93P91+cBhMuxDobPmtlz/dv8LX+cuB4zO4he/oRnsI1z8pZxAAOek61I8pr6At2D7n4fgH8O4A/N7APbPSCg982O3hfRdvB1AG9Dr0bAOQBfHtSOzawG4PsAPufuN1SnGOScBMYx8DnxDSR5ZWyHs58FsP+6v2myyq3G3c/2/58F8ENsb+adGTPbAwD9/2e3YxDuPtM/0boAvoEBzYmZFdFzsG+5+w/6zQOfk9A4tmtO+vu+6SSvjO1w9p8CuLO/slgC8EkATwx6EGY2bGb1a68BfBjAC/FeW8oT6CXuBLYxgec15+rzcQxgTszM0MtheMLdv3KdaaBzwsYx6DnZsiSvg1phfMtq40fQW+l8DcC/3qYx3I6eEvBzAC8OchwAvo3e7WAbvWevz6BXM+8pAK8A+O8AxrdpHP8FwPMAnkPP2fYMYBwPoneL/hyA4/1/Hxn0nETGMdA5AfBu9JK4PofeF8u/ue6c/QmAVwH8OYDyzWxXv6ATIhFSX6ATIhnk7EIkgpxdiESQswuRCHJ2IRJBzi5EIsjZhUgEObsQifB/Aa2WYVeCVumBAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[5]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAdvElEQVR4nO2dWYxc55Xf/+fW2hvZXJpkcxFJLdbiRYs5ghwLhjyDGSjGALKBwLAfDD0Yw0EwBmJg8iA4QOwAefAEsQ0/OaBjYTSB4yVeYGHgJKPReKDxIJBF2RIlS7EkS5TEfW32XuvJQ5UylOb7n26yu6tpff8fQLD6nvruPfXde+pWff8655i7Qwjx7qdYbweEEINBwS5EJijYhcgEBbsQmaBgFyITFOxCZEJ5JYPN7H4AXwdQAvBf3f3LSzz/mtD5LLBdzbtfqVSitlqlyv2IHAnoREayT7PglV2t/FrwF2DEEbYdAMrR/gIXr8r7YFAnmI8imMZyObp6+GtrttkZDZwkc7Uwv4hGs5k02tXq7GZWAvASgD8EcAzAUwA+7e4vBGO8oBcd94MFReh6EEmVwDYUBCC74DZu2EjH3LBrN7VVK/xNotPlIT0XXPmdcvr9u1oeomOKVovavOB+WK3G91mkX1sVFTpmc537WA3OdcPb1FYmb9+dRpeOmQvmozrK749bNg1TG5yf6+NT08nt3W6TjikPpefx73/+C0xNTSev4pV8jL8bwCvu/qq7NwF8F8ADK9ifEGINWUmw7wLw5mV/H+tvE0Jcg6zoO/tyMLODAA6u9XGEEDErCfbjAPZc9vfu/ra34e6HABwCrp0FOiFyZCUf458CcJOZ7TezKoBPAXh0ddwSQqw2V31nd/e2mX0OwP9GT3p72N1/veQ4kFXQUFq5co0qUhlaoaIRSEPEyVabrwa3qazCV4oBoCjxU9NdnOc2suh7w/uup2P27d1Jba12g9peOfoqtZ09dyG5vdnmK8werNTXR/hKfYkvrKPTJMbgIghEEswt8pX6mXMXqc073MmphYW0HzV+fYyV0tecd/lxVvSd3d1/CuCnK9mHEGIw6Bd0QmSCgl2ITFCwC5EJCnYhMkHBLkQmrPkv6C7HANRIIoxFGU9XkR3mgZZXBNJbJZD52LBmkDix2ODSVbng0190uJy3c/M2arvnvnuT229+/210zJYtm6itE0iH7z1xK7U9dfjp5PbXXztGx5RI8gwALLb4fHQ6XM7rtoj/zs/zcIWfl3Zw7Uy1uSTaaKTlNQDoEjm6ZDxjcvZSen/dQOLTnV2ITFCwC5EJCnYhMkHBLkQmKNiFyISBrsYXBtRL6VXQKAGFrYNHZal4+av4Ha4U1WojikFtqM73Vw3KMG3h5awmJvmK+13/4h5qu/k9NyW3Nxf5anAjUAyqVb4ifN3efdS2ZfNEcvurL71Cx5w4wVfq5+b4Sne9xuef1bU78cY/y8b+/5y9yBNaTk7PUFuXXNsAYEF5L6YcNZr8nLGyZUFOkO7sQuSCgl2ITFCwC5EJCnYhMkHBLkQmKNiFyISBSm8lAzbyJiIU76QTJLoeCQ0BoczH92lkXKXK3zNbXLnCjr28W8yHPnw3tW2Z2EptczNpaag2xLuVVKuBLej64kHXmlotfWnd+v5b6Jjb7/wAtZWDFlszc7PcdindbeXGG2+gY3711GFq85d+S21zwXXVMu6/d9PS21AgKc6TuodXKzkLId5FKNiFyAQFuxCZoGAXIhMU7EJkgoJdiExYkfRmZkcBzADoAGi7+4Ho+UVhGKmnD9mNUtiIyYI6YlwUAjqBZBeUwoOT4w2NcHlqIqjvdv1111FbpeDZcguzi9Q2MpZuk1Qf5vsrB+2OulFdtQWeLddtp+vyDW/aTMeMDI9SWzXIKKsP88vYjdSuc143cMdmfs7Ol7gcVh/ifpSG+H2VKXaLTe7jcD19PsslfpzV0Nk/6u7nVmE/Qog1RB/jhciElQa7A/gbM3vazA6uhkNCiLVhpR/j73X342a2DcBjZvZ/3f2Jy5/QfxM4CAAVfY4QYt1YUfi5+/H+/2cA/BjAP/tBt7sfcvcD7n6gFK1+CSHWlKsOdjMbMbOxtx4D+CMAz6+WY0KI1WUlH+O3A/hxPxOsDOC/u/v/CkdYAaulM6zCPDSiTRRB0ls1UPIioky64bF0gcjf++Dv0TH7dvPMtokJLkMNj6QlNAAol7mM5q10K6ThMpeMhjaMUVspkHIunDlPbSdeSxd0bDV4wcbhvTwjLspvNJIBBgAbyDx25ufomK0TfD7237aP2s5cukBtUVHPUiV9PkuBJlqppNMp10R6c/dXAdx+teOFEINFS2ZCZIKCXYhMULALkQkKdiEyQcEuRCYMtOCkWYFKJS0BRUoZk8PCtmzB/sKifAW33XzDjcntH3jvzXTMcJ1XnNy8ZQO1bd06Tm2zQYHFU6fSOUkTO/bQMcMj3I8oDXBsjGdlXTx3Krn96SefpWPef+B+arvjg3dRW5S2V+2kr6wgUQ57b+RztXUy3cMOAI69zvvHvfLyUWq7OJ0uilmucYl1hMivRXDl684uRCYo2IXIBAW7EJmgYBciExTsQmTCQFfjCwNqpfQho9V4tyvPaonq07E2TgBQKfMpWSTJE3PB6viWLTwRZs/uXdTWbKYTWgCgubBAbaxO3sWpi3RMJ5oPkqQBAKWCr4LvvfnW5PYyUWMAYMeundQWHAoIWisNkQSguYv8mqrXR6it3eXHGt/CE5smFwLl4jfp66cT1KCrDqfPWdTZTHd2ITJBwS5EJijYhcgEBbsQmaBgFyITFOxCZMJApTeYoUyknLD9E5ETIgkt0vK8yyuaTc2kkxIAYIHUEdv9JpeMJndupzar8SSZuTleI60IpKHbPnBTcvuLv3mZjvnbnz1BbXt2cenwzg/ybl8Tu/Ylt49v4okkpQq/HJttXsMtkuWqROqrD6drIQLA7DSXNmHcx+k53pbr9EUufc510jX0rMlr6y0upn3sBte27uxCZIKCXYhMULALkQkKdiEyQcEuRCYo2IXIhCWlNzN7GMAfAzjj7u/rb9sM4HsA9gE4CuCT7s61hX/aF82i8kB6YwlskfQWKXne7lBbbYRLMo2FtPxz7jxv++MdLoWcPH6C2mYXeNbbpq2Twbh0ptQPfvRjOubIM7xF3333foTabn7Pe6lt44Z0XbvuED8xM1NT1FYLrtTRYd4qq7mYnkfr8mtnLmgNNd3gctgbx/j5/O1rr1HbIrlE6lUuzc4vpNtodbv82l7Onf0vAbyzEuBDAB5395sAPN7/WwhxDbNksPf7rb/z1vUAgEf6jx8B8PFV9ksIscpc7Xf27e5+sv/4FHodXYUQ1zAr/rmsu7sZLyVjZgcBHASAWvBzSCHE2nK1d/bTZjYJAP3/z7Anuvshdz/g7gcqQTF/IcTacrXB/iiAB/uPHwTwk9VxRwixVixHevsOgPsAbDWzYwC+CODLAL5vZp8F8DqATy7nYAZDqZS+u1vgihdpOSGS3oylygEwrmigDF4QcbqTLgx49gyX3hYCCW36EpeaZub5uIIUUQSADpGUxkbH6Jj9+6+ntp27eFHMQL1Ch9xGPLi9dJ3LRs0WlzC7XT4fBdLjmi2eRXfyTLqFFgD88pkXqO3Zl1+itlI18LGUviAXF/l8lMrpb87dQHJeMtjd/dPE9AdLjRVCXDvoF3RCZIKCXYhMULALkQkKdiEyQcEuRCYM9CdtZkCtmn5/aQY9tGql9Jgwsy0wFgV/j6sEcl53uJbc/tobPKPp8b//B2r76Efvo7ZWe57amos8K2t4LN1v7IN33kXHbNn0JrVt2JjOXgOAbpf3Ipu/dD65vejyrLGiw1+zE8kWANpRL8B2+njzbe57KygqOXXpErV1ncuD7UBWHCLyYDXoswf2A7Xg+tWdXYhMULALkQkKdiEyQcEuRCYo2IXIBAW7EJkwUOmtVi6wd2s6++eNaf6+UyJyggXyWiSDRH3gIlluZDTdY21sjGeUwfj+Nk/wAj8OLg0tzPFsuU4n3W9sx44tdMzu3byAZX2IF3OsVrnMszCfLohYNi5BtQNZrlLmMpQHc7zQSF8HpWpaogSA6/ZzuXH7y0ep7bXTp6mtRfoEAkBBipJ2WzzzcZj0+4vkaN3ZhcgEBbsQmaBgFyITFOxCZIKCXYhMGOhqfNkcW0vpFcazwQ/4G0ZWhAs+plzwl1ZcZduociWdCLMtWFUfHRultqFhXgxvZGQjtV0qeFJIs5Ve0fYgaSXQLdBlvbcALJBWUwAvG25BbkdtZJzaRoIaelHdtVI1Pf+bNnKVoX2OFkvG8DCvJbdtQ3qFHAA8mMd2N30G2HaA19DzQIXSnV2ITFCwC5EJCnYhMkHBLkQmKNiFyAQFuxCZsJz2Tw8D+GMAZ9z9ff1tXwLwJwDO9p/2BXf/6VL7ane7uDibTtSolLi0UlTSElURtHgKlA4UgWQXSW+sd9G2iW10yMRWbmu3+MEqZS7LbdrEkziM1GqrDnOpqRR0141abHU9kPOIbFStDtMxQ3Uua1mQ7NLt8OSabiU9xwsLC3RMI0haiY41VEtLswDgQa+sMnttgfTmpO5eKUjkWs6d/S8B3J/Y/jV3v6P/b8lAF0KsL0sGu7s/AYB3LhRC/E6wku/snzOzI2b2sJltWjWPhBBrwtUG+zcA3ADgDgAnAXyFPdHMDprZYTM7vNDk33eEEGvLVQW7u5929473foj7TQB3B8895O4H3P3AUJX/plsIsbZcVbCb2eV1jD4B4PnVcUcIsVYsR3r7DoD7AGw1s2MAvgjgPjO7A71qbkcB/OlyDlaYoUZa2tSNZwy1SmlJI6pBF0lvgSmsXcfqoA0Pczlp5+QOvr9SMP1E5gOADZt5PblylciUQaZcpDYC/KuXlbg8yE5NAT6m0+ZnplrlslbXeK22hcV0vb65ubQEDADz83x/5TKXB+sVfh0023yfjG5wpUa1EhlLBru7fzqx+VtXfCQhxLqiX9AJkQkKdiEyQcEuRCYo2IXIBAW7EJkw0IKTZoZ6LS0BlTpRmlra5pH0FglsQSbXcJ3LJyMjV97+aXiU76/R4Vlj0W8NLZDsjEgyBcmGA4B2m8uNnSDLqxTNsad97AbZa+0WP1YRtI1qtvg8zi/Mpf0IstAiKTI610N1nlnoi3yOWYZglHHIpLdwDLUIId5VKNiFyAQFuxCZoGAXIhMU7EJkgoJdiEwYqPTW8QLnW+neWycXeJ8vpsiUjcsZ4yNcQNk2wfuoTe7gBSJZnUor8ffMsY38WBvGeYGfEimyCcRSE3vVQe3CkKhHWWORy2HlclrqG6rz7LVIXltc5AUi2510fzsA2DCWzhCcnU1LcgBQLfP5rZKsQgBh78FScI2USulx0TkrESlV0psQQsEuRC4o2IXIBAW7EJmgYBciEwa6Gj/bNPyfo+k6bi/P8HHjJJlkz+b0vgBg/zZeK2zPLr5CPr5pA7XNzc8ntxdB+6SxcX6sqHYdS47o2YJUDbIa22zyGmjRsa4mGQPgSUqLi7z2mwf1/1qBAtGJ/Ce19zpB8k+7zVf3o9X4zVt4bcDz5/g+u920LVJCaCVFrcYLIRTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmLKf90x4AfwVgO3p5Fofc/etmthnA9wDsQ68F1Cfd/WK0L0eBdjldp2uo4JLMPTelZbRb9/CaX+Mb0wk3ALB5y1Zq64JLMqVaWirbNrmTjqlUuY+RTFIf4tKhR/XTuun372aTzy+TfgDAgppx1Qr3sVxKy6KtFj9Wq8XlwWicB1XjHGRcOUheGudJWdOXLlGbBXX+KkFiU4O87Irx11WQ8xLdvZdzZ28D+HN3vw3APQD+zMxuA/AQgMfd/SYAj/f/FkJcoywZ7O5+0t1/2X88A+BFALsAPADgkf7THgHw8bVyUgixcq7oO7uZ7QNwJ4AnAWx395N90yn0PuYLIa5Rlh3sZjYK4IcAPu/u05fbvPfbyOQXDDM7aGaHzexwp3PlbWuFEKvDsoLdzCroBfq33f1H/c2nzWyyb58EcCY11t0PufsBdz9QCvp5CyHWliWD3XqZEN8C8KK7f/Uy06MAHuw/fhDAT1bfPSHEarGcrLcPA/gMgOfM7Jn+ti8A+DKA75vZZwG8DuCTS+1odMjw4VvTNcimm1yi2j+ZzhzbupnXcBsJss3qQQufqakpatswnpbsNo3zbKdKmU9xpcaz9kpBi6dKEdSna6azwzqdQJ6K+h1FLZ6CbD8mlUXZd41Gg3sRyJRRllqDyHlW5XNfDj6BbtzEZdtyhdfXi+TNWoW0RAvuxcwWSaVLBru7/xz8jP/BUuOFENcG+gWdEJmgYBciExTsQmSCgl2ITFCwC5EJAy04Wa8UuGlnWmIrb7qRjivX0lJIJDN4kNXUaPPihd1A4hkeSWe9WVB4Mcpsa7eCopKBj17l2VWs+OLiPM96i3wcHuaZbZHk1SL+s0KUQNzWqhtIh40ml+zYueavCmiD7296Jl10FACeeYnLts+9NE1tQ/V0hmYlaBk1NJ7OtJxrcUlRd3YhMkHBLkQmKNiFyAQFuxCZoGAXIhMU7EJkwkClt6JUwtjGdMZZZeNmOq6DTnJ71KOs3UqPAYBOh8snUdHD+YX0uKGgZ1uny6fYgoyyIsiWazv3sSAKVaXMM7m6QcHGaD6iHmsFkY0iubTR4NJblBFXCrLvWBHIyI9mcO2cvsAltNdnRqjtjcYuamtPp/fZbfEGiKMzadt8k/uuO7sQmaBgFyITFOxCZIKCXYhMULALkQmDXY0vCtSG0yuW7aDtEntPqgSrsCW2LA2gsciTQlrBaubiQnpluggSYaIkmVaHv+ZywW3eDZJkyD7dg7ZWQduiiCipZWFhgVi4AhG13uo4Py+tBrc5SfKpVPmxmkFizdQUXyGfmud+DG/gahM8XS9xcYZ3U+s0Zsm+AoWEeyCEeDehYBciExTsQmSCgl2ITFCwC5EJCnYhMmFJ6c3M9gD4K/RaMjuAQ+7+dTP7EoA/AXC2/9QvuPtPo3113dBsp99fFjtMqgHqo6RdU9AiqRzU7woUL2AxqIPWTcs49RqvaBYlaSyQVk0AUAQSVW2IH6+1kJaNZmfn6JhSIA+WA/+jRJgWqScXyXxFUDewa1zm63QjmTXtR7vNZbIzp89R2z/+4gVqO370PLV5iSdLlappW6XGx3S7ZB6DeoLL0dnbAP7c3X9pZmMAnjazx/q2r7n7f17GPoQQ68xyer2dBHCy/3jGzF4EwPP1hBDXJFf0nd3M9gG4E8CT/U2fM7MjZvawmfGWqkKIdWfZwW5mowB+CODz7j4N4BsAbgBwB3p3/q+QcQfN7LCZHZ6d40UjhBBry7KC3cwq6AX6t939RwDg7qfdveO9H11/E8DdqbHufsjdD7j7gVHSZEEIsfYsGexmZgC+BeBFd//qZdsnL3vaJwA8v/ruCSFWi+Wsxn8YwGcAPGdmz/S3fQHAp83sDvTkuKMA/nSpHXXdMUtaHpXq3BXaSijIDCssyOQq8xY55aF0eyoAaJB6bBcu8bY/9WB/tTq3Vau8Zlwl8L82lra1mryWHM9Qi1tUFUEdNyYBLQa15FpRTbuCn8+4RdWl9LGCVlMXpvnXzRNT3H8Pwsk7QX29hfT1szh/gY4pLH2eux3ekms5q/E/RzovMdTUhRDXFvoFnRCZoGAXIhMU7EJkgoJdiExQsAuRCQMtONl1w2IjLaFEMoOVtia3zweyULfDCwNOjG+gtvoIl7zOXUj76EHW2O7dk9QWSW9REctIeqvXa8ntUfukmZm0PAXERSUtyDpkGXHzDV7sM2J8nP8au1rl81Gtpq+36Wk+H2cv8AzBRoe3eEJ9lJoKnowGI3PcdT5X3uL+Ux+ueIQQ4ncSBbsQmaBgFyITFOxCZIKCXYhMULALkQkDld6mFyv4n79JV7Q6+9qv6LhWLS1R1bbeQsdYixf/21Y6TW3bN3Gp6fiJ48ntH7qdS4CT23iPrygTrVOL5KSg0GY5LTUZ2Q4ARZ0fy4PCjM3A/5nptHwV9WzbGEiioxu4TLkwz7P2ClLgshQUJK0P8/lAiUuzpQofVyFFJQGg2Upn2XWDnnO1Wlpi7QaSre7sQmSCgl2ITFCwC5EJCnYhMkHBLkQmKNiFyISBSm+tbgWnGhNJ27lZnk1UZilDF3hPrnbjIrW9eYlLbxVwuWNk097k9s7zXK5789xRatuzg2f63XJjOtMPAN5zM5d4NmxMSzydNn9dC5d4gcWLM3zcyQu8uOHps+l93njdRjrmllt4huBIUIY8ygIsV9LXTlFw2XD3RFrWAoBNYzx97fyloHdfMP/VSvp49fo+OqYytCW5vXH2H7kP1CKEeFehYBciExTsQmSCgl2ITFCwC5EJS67Gm1kdwBMAav3n/8Ddv2hm+wF8F8AWAE8D+Iy78yVOAO3WHC68eThp63T5ivCmrekEidLQGB1z/s2z3JGCr7Y2+cI6KqX0ivDJMm9Xf+oET/x44kWuCtQe+zW17djyErXt3ZlWNXbv4K95bp7X63v1DF99PjafVlYAoDx2fXJ7pc7ru733whlqQ5P73wgSRubm09fV2TP8envtBH/NC5XrqG1kD096qgX16azElCiedGPJJk1AUQ7qGlLLP9EA8Pvufjt67ZnvN7N7APwFgK+5+40ALgL47DL2JYRYJ5YMdu8x2/+z0v/nAH4fwA/62x8B8PE18VAIsSostz97qd/B9QyAxwD8FsCUu7/1q4pjAPhnWSHEurOsYHf3jrvfAWA3gLsB8KoR78DMDprZYTM77G1eZEAIsbZc0Wq8u08B+BmADwEYN7O3Fvh2A0iWcXH3Q+5+wN0PWLB4IIRYW5YMdjObMLPx/uMhAH8I4EX0gv5f9Z/2IICfrJWTQoiVs5xEmEkAj5hZCb03h++7+1+b2QsAvmtm/xHArwB8a6kddTsdzM9OJ207rr+djtsweXNyezlonzR1/A1qm23ytjrlgktljdm0NFSU63RMdYS3LRqevIHaZqZ4Db3nL3BZ8cjxtJxXcf4Vqlbh7/kd4zJUaYzX3itNpc/z373Bk3/OvMETa7ZN8Dme6/LkmlOX0kkyJ6d4Tb5zc7wWXrPDx7XbfD4a8/ycdVon0tuD+n8dpDXiVpNLiksGu7sfAXBnYvur6H1/F0L8DqBf0AmRCQp2ITJBwS5EJijYhcgEBbsQmWDuQZrXah/M7CyA1/t/bgXAi8gNDvnxduTH2/ld82OvuyfTEQca7G87sNlhdz+wLgeXH/IjQz/0MV6ITFCwC5EJ6xnsh9bx2JcjP96O/Hg77xo/1u07uxBisOhjvBCZsC7Bbmb3m9lvzOwVM3toPXzo+3HUzJ4zs2fMLF0Jc22O+7CZnTGz5y/bttnMHjOzl/v/83S5tfXjS2Z2vD8nz5jZxwbgxx4z+5mZvWBmvzazf9PfPtA5CfwY6JyYWd3MfmFmz/b9+A/97fvN7Ml+3HzPzHhFyhTuPtB/AErolbW6Hr3ymc8CuG3QfvR9OQpg6zoc9yMA7gLw/GXb/hOAh/qPHwLwF+vkx5cA/NsBz8ckgLv6j8cAvATgtkHPSeDHQOcEgAEY7T+uAHgSwD0Avg/gU/3t/wXAv76S/a7Hnf1uAK+4+6veKz39XQAPrIMf64a7PwHgnYndD6BXuBMYUAFP4sfAcfeT7v7L/uMZ9Iqj7MKA5yTwY6B4j1Uv8roewb4LwJuX/b2exSodwN+Y2dNmdnCdfHiL7e5+sv/4FIDt6+jL58zsSP9j/pp/nbgcM9uHXv2EJ7GOc/IOP4ABz8laFHnNfYHuXne/C8C/BPBnZvaR9XYI6L2zA6QUydrzDQA3oNcj4CSArwzqwGY2CuCHAD7v7m8rdTPIOUn4MfA58RUUeWWsR7AfB7Dnsr9pscq1xt2P9/8/A+DHWN/KO6fNbBIA+v8H7VHWDnc/3b/QugC+iQHNiZlV0Auwb7v7j/qbBz4nKT/Wa076x77iIq+M9Qj2pwDc1F9ZrAL4FIBHB+2EmY2Y2dhbjwH8EYDn41FryqPoFe4E1rGA51vB1ecTGMCcmJmhV8PwRXf/6mWmgc4J82PQc7JmRV4HtcL4jtXGj6G30vlbAP9unXy4Hj0l4FkAvx6kHwC+g97HwRZ6370+i17PvMcBvAzgbwFsXic//huA5wAcQS/YJgfgx73ofUQ/AuCZ/r+PDXpOAj8GOicAPoBeEdcj6L2x/PvLrtlfAHgFwP8AULuS/eoXdEJkQu4LdEJkg4JdiExQsAuRCQp2ITJBwS5EJijYhcgEBbsQmaBgFyIT/h9/e5XYlTSvagAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[2]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAeKUlEQVR4nO2dfYxc53Xen3PvzOzscndJLr9NUtYXZX3Vkm1GcWIllhTEUFUDsovCsNEK+sOIgiIGasAtIKhF7RZF4QS1Df9RuKVr1Urh2FZjK1ZcN7ErpFAc1LJJWR+kqA9KpiSullySK3K/Z2fmnv4xw4BS3ufskrs7y+g+P4Dg7Hv2vffMu/fMnXmfOeeYu0MI8c4nW2sHhBC9QcEuRElQsAtREhTsQpQEBbsQJUHBLkRJqCxnspndCeCrAHIA/83dvxj9/vDQkG/ZvClpyzL+upPnaVuFjANAnhm1WWDLK7Vg3oW/Nnq7RW1zjXlqawS2WC5lPgbrYdwWEYq2Rdp6qQi90RperC2LrqvIljMbn8P8GD85gbOT08mJFx3sZpYD+M8AfhfAMQC/MLNH3f05NmfL5k34j//+3yRt6/rr9Fzrh4eT41s3DtA5w3UemH11HtDDm3dRW2Uw7Yd7m85pTE9Q2+EXD1Hbiy+/QG2tJj9flqXX0ayPzrEspzYYt3nBp7UWmsnxoggmRS9iwQtt9FrFTtdu8zVcaKZ9B4B2i9sG+vhaDQ3yUBtal/7bZMbnLCykbyKffeCP6JzlvI2/BcARd3/F3RcAfAfA3cs4nhBiFVlOsO8E8Pp5Px/rjgkhLkFWfYPOzO4zs/1mtn9yamq1TyeEICwn2EcB7D7v513dsbfg7vvcfa+77x0eGlrG6YQQy2E5wf4LAHvM7AozqwH4JIBHV8YtIcRKc9G78e7eMrPPAPhLdKS3B92dby+jswv+nj2XJ20jG9fTeRuG0rvug3xTHRn4bmuR86ed1bkq4FZNjkeSnFmwUz9zmtra82eprdnix7R8Ljme54N0TrW2jtoiSbTd5rvnfbX0WkW74CHBRn0k5xVIb8dHSoIFxiKQUiPprV7hthpZ4nZ7gc5BQfwIFI1l6ezu/iMAP1rOMYQQvUHfoBOiJCjYhSgJCnYhSoKCXYiSoGAXoiQsazf+Qunvq+P6a65OO1LhrztZRuQTNOgc9yDLi1oAzwJpyJjcwTPUZib/zveM/pbpqdepzQsuvVkRyGFFOlEjkgcn3uT+t9s8uaNo85XcunkkOV7rS0tyAFCQTLmOH9wWyWEFkdE8SMiJbGGyjnM/UPBQaxP/Fxo86aZBbJHvurMLURIU7EKUBAW7ECVBwS5ESVCwC1ESerobb3mG2gBLyAh2Mslut0Ubo0HCRWRDY5LbmrPJ4dk5Xnrq9dd4btDCzClqqwY7/MdPc/8PHzmZHJ9v8j/19DRf+4mJM9S2desWatu+ZWNy/EO/uZfOKYI/S54HpbNIsgvAa7WxXXpgkR3t6KILnsD8XDpBCQBarbSqtLDAr4HZ2fS52tqNF0Io2IUoCQp2IUqCgl2IkqBgF6IkKNiFKAk9ld4AwEnLJmsFUkgrXYur2UpLYQAwO80ltNnpaWorgopmRmSXiYljdM7xY7+itrlp7v/oOE/yeeKXM9Q220oX5hs/yeXBdpOf6+wZXifv9ARP1jl4KP03O37yBJ3zkTtup7aBft7RJkptKogcFnXxYX9nAMizoDVUIHvNzwf15ObTvszN8+tjbi6dCMOSagDd2YUoDQp2IUqCgl2IkqBgF6IkKNiFKAkKdiFKwrKkNzM7CmAKQBtAy915ShMAwGFFOpNndopngI2PpeWrM2fH6Zz5QLZozHHpqgjqiLVaad+bDS7lHR/jz+vF13gm1GunuJx09Q3vpbadO7Ylx19/7Sidc/Dg89Q2M83ltdlZvo5tklX2N/9vP51zxe7d1Hb9denahQCQ57yuHevzZIHEmgdtnCyobRhMixLzMEsy4qameMahE/89yOZbCZ39dnfnV7QQ4pJAb+OFKAnLDXYH8GMzO2Bm962EQ0KI1WG5b+NvdfdRM9sK4Cdm9ry7P37+L3RfBO4DgMt271zm6YQQF8uy7uzuPtr9fxzAIwBuSfzOPnff6+57t2zZtJzTCSGWwUUHu5mtM7Ohc48BfATAwZVyTAixsiznbfw2AI+Y2bnj/Im7/0U0obXQwKnRl5O2559/ls47NnokOd5ucsmrGukgRVDcErzlTk4ypWZJBhIAPP8Sz747W+ygtmuuvZLarr58F7Vt2phuu7RjCy8OOT3NJcBI/pmZjSTHseR4Y4Fnm/3siZ9T2549l1FbpZLO9AOA7vX5d8jzQEIL7oGZ88KXlSAjLuo5Vq2kpcN6nWf6GSmkmZHnCywj2N39FQA3Xex8IURvkfQmRElQsAtREhTsQpQEBbsQJUHBLkRJ6GnByenpSfzNXz+WtI2OvkLntdvp7KqBPi6DZDX+1GqBDmIWyHJFWmI79DyXp14Y41LThs28COF1e95Nbbff/jvU1iQ+/vIAl7Vu+gd7qG3HLv5FqHW0bx9w5PnnkuM//8VTdM5YUBRzZoZLmAP9A9SWVdJ/a/Pg0s945lgeXDt5oLwhKHCZEf/7+7iPOUmjq+R8ju7sQpQEBbsQJUHBLkRJULALURIU7EKUhJ7uxjcXGhgju+7tBq9nVsnSO+RVkgzQsXE/wt34oFjYGeLiy6O8fdKN7/0NbrvhOmq7/cO3UVu1ymuuzU+n6+St37CRzjkzw+v1fTiod9dX5+v4a++7Njl+1z+6i8753L+6n9qOvjpKbSMbuGKQkd3pPNq1Ji3KACAPQia3QB1CsBtPdupz8ASfCknkyfPIByFEKVCwC1ESFOxClAQFuxAlQcEuRElQsAtREnoqvRkcfUhLQxl4AkqlINJEk+trWVCDzrMoCYLX/Xrj9FRyfKbNjxfkMuCy3duprbXA5bAf/vkj1LZ5a7quXUESQgBgyw5en27TRp5kcubsCWrbsHF9cnzPe7jceM89/4zaHvvx/6a2G67liTy1Wj05XgkkKotkuaCWXG58XsW49JaTxJtoTq2Svk9nWVA/j1qEEO8oFOxClAQFuxAlQcEuRElQsAtREhTsQpSERaU3M3sQwEcBjLv7jd2xEQDfBXA5gKMAPuHuby52rByOAZJV1rRARiNZapWMZ3/Varw+Wl7hctLZBl+SF984nRy3nMt111xzFbXd/Gu/RW0nx7msdXxsnNqefCrdbu+2j9xB57xrhK/V1BSvC3dg/9PUtn3LtuR4/dfTkhwAfPi2W6ntL/+CdxYbP8XX6l3b0q2yWk3esivLgsyxCv9bZ8E1bEFGnBHpLQuK2uVEekPQ/mkpd/ZvArjzbWP3A3jM3fcAeKz7sxDiEmbRYO/2W3/7y/vdAB7qPn4IwMdW2C8hxApzsZ/Zt7n7uTadx9Hp6CqEuIRZ9gaduzsA+uHCzO4zs/1mtn9yhld0EUKsLhcb7CfMbAcAdP+nO0buvs/d97r73uF1fHNDCLG6XGywPwrg3u7jewH8YGXcEUKsFkuR3r4N4DYAm83sGIDPA/gigIfN7NMAXgXwiaWczMzQR6SBLMhCAslCqtWH6JS+AS7xeMalppOn0vIaAIyeTmei7XnP9dyPvmFq+7NH/pzaZmd51tuJcd5u6sCB/cnxHLzV1BU7/ym1jZ9KZ/oBwA//V7qVFwD09/cnx3fsTGflAcD6kc3UtnM3b4f12muvU9uuLSSjr83vc+1AlmtVAgktkNf4B10ATjLYgjmFXbj0tmiwu/uniIk3HBNCXHLoG3RClAQFuxAlQcEuRElQsAtREhTsQpSEHhecBGpEGvBqWqoBAFTTUlm1fwOdkgfSW0GkDgA4M80zyobWk2O2eJ+6b/33/0ptp4PMtvoQl+w2bNxKbXOzc8nxn/31/6VzJia4H8ObuFQ2Oc2fd6ualkWPjh6nc65fP0Jt27fxophHDj1BbXPTaZmy3s91LWeyFgAPvgSa1ddRmwWSGGsD5877DhrJsAvaH+rOLkRZULALURIU7EKUBAW7ECVBwS5ESVCwC1ESeiu9mSGvpnPaKxWewYZaWobK1nHpzepB1lsgT/Rt4NlVV1+ZllZeeeEAndNa4FljKNJ97wBg4Y1T1DbQ4Jl5g5aWa1pBf7vnnnue2j7wwY3UtmsnL1A0djL9vN15/7IzZ3jN0o0buRRZq3HJa/z4WHJ8+/aowGnQL63NazJYIOn212vUBvK3KdrBhUqUvELSmxBCwS5ESVCwC1ESFOxClAQFuxAloae78bAcTnbWrc53fa0vvbNutWAHP+eJNY2M795ue/d2ajt5Ml1zbTqoF1ep8nM1jc/bNhhsqzqvJ8eSfNz4LvLOq/dQ2/U33UhtRw4+RW2tuenkeFZw38dG36C2dYNBi6oZXjPu1MmTyfFNG/n10WxzxaBvgF+nERYUlKv3kRp0Qe5Mq51WXTyQmnRnF6IkKNiFKAkKdiFKgoJdiJKgYBeiJCjYhSgJS2n/9CCAjwIYd/cbu2NfAPB7AM7pGg+4+48WO5ZbjlYlLb0VVZ7oYKQGXZFzOWm2zXWLos5ruJ2d4TXoJibTctLgyC46Z25yktr6BnmyzolZ7v9MxmuTeS3dgqgI5CQP2h1t38alpukJngizZST93Can0zXyAMAq/HlF7cEiW6ORPl/R5AlKMw2eoNRot6htOJDKalXuo9eqaQNpewZw6S1iKXf2bwK4MzH+FXe/uftv0UAXQqwtiwa7uz8OYKIHvgghVpHlfGb/jJk9Y2YPmtnFfa1ICNEzLjbYvwbgKgA3AxgD8CX2i2Z2n5ntN7P9Z6f510OFEKvLRQW7u59w97Z3qth/HcAtwe/uc/e97r53/eDAxfophFgmFxXsZnZ+m5CPAzi4Mu4IIVaLpUhv3wZwG4DNZnYMwOcB3GZmNwNwAEcB/P5STuaWoVkh2UtBllpG2vG0nMsgU02+jTA+xj9OHDrMX7cmJtK13+oV/ppZH+Z18rIan9eo8ZplRUakGgCVyfRe6vQMr+/26pGXqG3mLN+b/cCv0zd0tPZbk6taGD/OZc/BjXwdh4d4ZqF7+nl7O+jj1OS26QVuywMJsF7jMnG7mbZl4MejRegCFg12d/9UYvgbF3wmIcSaom/QCVESFOxClAQFuxAlQcEuRElQsAtREnpacNKRoZWnZRIDl5rydvo1aY6MA8DomzyT69CLh6jt6MGfUttwNZ1BZZt41lseSCR9ffxLRpbVqe3M2bPUNjOX1rbyjK9VX38gC/FkOYyPpeU1ICjCOc+lq63bNlHbGyd4O6zGAi9iOUWy3mrBfa7PuI/z8zxrb26KX8ONOpcH66T9k0U1R4kcHbU2051diJKgYBeiJCjYhSgJCnYhSoKCXYiSoGAXoiT0uNeb0YytPJAMCqJeTc5yyejQsz+jtmMvPEFtcxM8y2to5+7keH+dy2StWS6TnZ3h2XezLZ7RN5BzqalVT2dKzQfZZs1ZXnzx4W/+CbXVB/nzLor0H3T9Rp6NeMutt1LbkSNHqK3V4vrg7GxaRsuLYH2DvmyNSA9rzlBTe/ZMcMx0GLaD4pZWSV/7XgRFO6lFCPGOQsEuRElQsAtREhTsQpQEBbsQJaG3u/EwsNcXQ7DLmad38F9/42RyHABOvHKA2qpB+6T6Bp6MYaQdz9z4UTqnUuNLvImU4wOAy/r4TrcXXIU4UaR3+Keq/HgzM3ztvcl3hE+Pc+VitpneIT9ylNeZm5nlu+p5H08yaRc86amfzKsF9eIQ7Gj3V/jfsw2+VsU8bwPWJNd3qwjWo5o+V+HajRei9CjYhSgJCnYhSoKCXYiSoGAXoiQo2IUoCUtp/7QbwB8D2IZOu6d97v5VMxsB8F0Al6PTAuoTznrtnH9CkmRQrfP2T339aTnspaf/jM4pqlzX2h7UOitmXqO2yZOvJMdbA0N0zob1I9yP7Vu5bdtmals3wGvXHXwm3b7qlwe4FNlocOlqco7bWkEHomY7/XceHB7mkzJ+QG9xP4omTwwypOWrRlALL69wP2rBc25HSTJBu6nWXFqWKwLZs1JLP2cP5Lql3NlbAD7n7tcD+CCAPzCz6wHcD+Axd98D4LHuz0KIS5RFg93dx9z9ye7jKQCHAewEcDeAh7q/9hCAj62Wk0KI5XNBn9nN7HIA7wPwBIBt7n6ulvBxdN7mCyEuUZYc7GY2COB7AD7r7m/5kOHuDqS/72pm95nZfjPbPzk1vSxnhRAXz5KC3cyq6AT6t9z9+93hE2a2o2vfASD5pWd33+fue9197/BQ8GVwIcSqsmiwm5mh04/9sLt/+TzTowDu7T6+F8APVt49IcRKsZSstw8BuAfAs2b2VHfsAQBfBPCwmX0awKsAPrHYgcwcWZ7Oytm4aSedl9XSUtMdH/3HdM4rTz5Obf0LaQkNAOobuDQ08N5rkuNbdl5G56wbXk9tyHj2WjOoq+ZBK6cb96bP99xLr/JznR2lNpA2QwCQV9LZWgCQ96WzyqaCj3LHXuN+tFpcXms3g5ZSV6XlzUqQvRbJfPXg/tgMMjcjH5vNdEy0M144cKGazm4sgrp1iwa7u/8UoA3Lfmex+UKISwN9g06IkqBgF6IkKNiFKAkKdiFKgoJdiJLQ04KTBkMlSxcAfPnIr+i80dfTstHW6ht0zu038oyyhfp7qC0f4hlsGdJFGxttLpM1SRskAEDQgsiDDDADLyo4NLguOZ7Vg+dV4xLg1k08a6+d8aKNo+OnkuPRckxPc1muGaxxtB79JCOxtm4DndOa4225Fua5DUHWWzuQDpttYgvafDEpz4NrSnd2IUqCgl2IkqBgF6IkKNiFKAkKdiFKgoJdiJLQY+kN6LO0TDL++lPJcQC4YiQteV13I8/DmWxxWagayDitINuMZRRVA+mnEskxFhRYDHp2eSBfTbx5JjneX+PrceU1e6htLih6eGqM99pbIJlceVCwsRpkos00eNZYUB8S9XVp6S3v30jnOHg2X1RTsjnHpcNWMyjc2U6vlQU952hhyeDi0J1diJKgYBeiJCjYhSgJCnYhSoKCXYiS0Nvd+MxQraVP+Vu/+SE6j9U6m1ngO+dV0mYKAKzCX+MqQX23VpG2FcGuaZvstAJAJdg5bQUJDcHmM46+mm5fVR3kiTAetE8qWtzHka3bqW2GtFfKgxpprajFU7AetRpvHTayOd1GK+vnCT6Z87Awfskha/Nrx4p0iycAKBbSyTXm/GQVTyeUaTdeCKFgF6IsKNiFKAkKdiFKgoJdiJKgYBeiJCwqvZnZbgB/jE5LZgewz92/amZfAPB7AM5lQzzg7j8KD+YOJ3JC1N6HSVt5UAMtCyQ0C1oaZUGmRl6kbUVQWM0rkSzHpZXcuY+Tk1PUduLkRHJ8/QjvqD124ji1DQxxWavZ4FJZjciljQWe0DI7z9sdBXlBqFX5Wm3anJYH8/6gBp1FYcGTZLxN5DAAGZPKAFRwNjnenA/kuoKtPb8Wl6KztwB8zt2fNLMhAAfM7Cdd21fc/T8t4RhCiDVmKb3exgCMdR9PmdlhALwLoxDikuSCPrOb2eUA3gfgie7QZ8zsGTN70Mx4grAQYs1ZcrCb2SCA7wH4rLtPAvgagKsA3IzOnf9LZN59ZrbfzPafmeTJ/UKI1WVJwW5mVXQC/Vvu/n0AcPcT7t72TkmVrwO4JTXX3fe5+15337theHCl/BZCXCCLBruZGYBvADjs7l8+b3zHeb/2cQAHV949IcRKsZTd+A8BuAfAs2Z2rlDcAwA+ZWY3o7PXfxTA7y92IHdHi7StQZDhk2VpWxa0SMpzLpHkVf6080iyy9O2PCqsFkhoRZB9F8l5Tx1NZ7YBQP9weuvk+ZeP0jkTb6blOgDYuo1Ldlng40A93VKq2ZijczyoyRfdly7btYPaRkY2Jcdr/ek2WQDgRDYEgCLnrbLcuEy5UOW2Ik9fj0UgEbca6Y/EQYm8Je3G/xTprMpYUxdCXFLoG3RClAQFuxAlQcEuRElQsAtREhTsQpSEnhacdC/QINJLq8VdyYg0kQfSW7UaFGzMguwkcq6OjRX5i9o4BVlIgbTSCDLKRsdOUNuRY+mWTKdPc3mtUgmyBwM1rB1kKjZIBtv8HJfeWkFqWzXw8YbrrqG2jRtIdlsg81mFy2R5cH1UgutqPpJ72TGD7LuFLC0BWhZcv9QihHhHoWAXoiQo2IUoCQp2IUqCgl2IkqBgF6Ik9FR6KwpHo5GWxKrVIF+H9AeLikpGWWNhtlwg8Ti4HMYJ+spV+PK/OcsLfRx4+llqe3XsVHK8Xudy0q7du6gt6h12aiJ9LgBottKZik6KdgKAt7ltw/o6tV357suoLSdrnAXSWxY8Z9T4vIL0AgSAtgXHJL4UwfWNPH2dSnoTQijYhSgLCnYhSoKCXYiSoGAXoiQo2IUoCb3NegPQbKczm9qB3MFkkizo9eYFz8iK+rllgfRWI9lJFhZK5JlcRSABvvbGOLVNz/LntvNdu5Pj6waH6JxqjT/nIuhHNzczw23z6ey2dlQSseDn2rmdF77csSPdzw0AqlUiUSXLKnZtwbXYDtRXy/i8alDE0gbSJdbdguubZExKehNCKNiFKAsKdiFKgoJdiJKgYBeiJCy6G29mdQCPA+jr/v6fuvvnzewKAN8BsAnAAQD3uDvfJu5SkHZIFtVxu4idRwT13YogGaPVDNpQkc3WaC8+2qlfIMkiAHD4xV9RW60+QG17rk7XYztzdpLOmZw6Q22z02eprUl23AFgvpFu81UEO931Gt+x/sBNN1Lb0CBfD55LEuzGcwElvDtaUEMvvEiIqpT38edVIaeyQKFayp29AeAOd78JnfbMd5rZBwH8IYCvuPvVAN4E8OklHEsIsUYsGuze4Vy+ZbX7zwHcAeBPu+MPAfjYqngohFgRltqfPe92cB0H8BMALwM44+7nEs2PAdi5Oi4KIVaCJQW7u7fd/WYAuwDcAuDapZ7AzO4zs/1mtn9ymn/jSgixulzQbry7nwHwVwB+A8AGs7+tYr8LwCiZs8/d97r73uFB3hNbCLG6LBrsZrbFzDZ0H/cD+F0Ah9EJ+n/S/bV7AfxgtZwUQiyfpSTC7ADwkJnl6Lw4POzuPzSz5wB8x8z+A4BfAvjGYgdyAAXRIPJIMmAJKFGNrkB6awe1wppNLg05SdSwoL5YnvNzvXw0+WYIAPD0M89R2+bNm6ltZNNIcnziTd7+qS+QvOaCxJV2IB0yia1NEqEAYBPxHQBuuPZqaqsELZkKcj4PEpQCF1EEyTpR0pMHshxbYQuu4WotXZMvknoXDXZ3fwbA+xLjr6Dz+V0I8fcAfYNOiJKgYBeiJCjYhSgJCnYhSoKCXYiSYB61ulnpk5mdBPBq98fNAHj/oN4hP96K/Hgrf9/8eLe7b0kZehrsbzmx2X5337smJ5cf8qOEfuhtvBAlQcEuRElYy2Dft4bnPh/58Vbkx1t5x/ixZp/ZhRC9RW/jhSgJaxLsZnanmb1gZkfM7P618KHrx1Eze9bMnjKz/T0874NmNm5mB88bGzGzn5jZS93/N66RH18ws9HumjxlZnf1wI/dZvZXZvacmR0ys3/RHe/pmgR+9HRNzKxuZj83s6e7fvy77vgVZvZEN26+a2a1Czqwu/f0H4AcnbJWVwKoAXgawPW99qPry1EAm9fgvL8N4P0ADp439kcA7u8+vh/AH66RH18A8C97vB47ALy/+3gIwIsAru/1mgR+9HRN0KlFO9h9XAXwBIAPAngYwCe74/8FwD+/kOOuxZ39FgBH3P0V75Se/g6Au9fAjzXD3R8H8PYE87vRKdwJ9KiAJ/Gj57j7mLs/2X08hU5xlJ3o8ZoEfvQU77DiRV7XIth3Anj9vJ/XslilA/ixmR0ws/vWyIdzbHP3se7j4wB429LV5zNm9kz3bf6qf5w4HzO7HJ36CU9gDdfkbX4APV6T1SjyWvYNulvd/f0A/iGAPzCz315rh4DOKzt4AZPV5msArkKnR8AYgC/16sRmNgjgewA+6+5v6WrRyzVJ+NHzNfFlFHllrEWwjwI4v4k4LVa52rj7aPf/cQCPYG0r75wwsx0A0P2fN2hfRdz9RPdCKwB8HT1aEzOrohNg33L373eHe74mKT/Wak26577gIq+MtQj2XwDY091ZrAH4JIBHe+2Ema0zs6FzjwF8BMDBeNaq8ig6hTuBNSzgeS64unwcPVgT6xRO+waAw+7+5fNMPV0T5kev12TVirz2aofxbbuNd6Gz0/kygH+9Rj5ciY4S8DSAQ730A8C30Xk72ETns9en0emZ9xiAlwD8HwAja+TH/wDwLIBn0Am2HT3w41Z03qI/A+Cp7r+7er0mgR89XRMA70WniOsz6Lyw/NvzrtmfAzgC4H8C6LuQ4+obdEKUhLJv0AlRGhTsQpQEBbsQJUHBLkRJULALURIU7EKUBAW7ECVBwS5ESfj/+M0lKSMSQlMAAAAASUVORK5CYII=\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[7]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcyUlEQVR4nO2da4ycZ3XH/2fusxfven1JFjskJKRFqC0BWRFVUUWLWqWoUkCqEHxA+YBwVRWpSO2HiEqFSv0AVQHxoaIyJSJUlEu5iAhFlDSqhFqpKQ7NlbQlBENsbG98We/u7Nzf0w8zrpzo+Z9d72XW8Px/kuXZ5+zzvmeeec+8O89/zjnm7hBC/OJT2msHhBCTQcEuRCYo2IXIBAW7EJmgYBciExTsQmRCZTuTzeweAJ8CUAbw9+7+0ej3Fxb2+dEjh5K2bm9A57Xb3fT4enocAIbDgtqKQG40agFK5bTVjM8qisAPbkJwyNDGjlkUgcQamCy4HUTPu1xK2yKldzDk1wCcnysWj9PWEvFvBLfFa89f0OHw+iXuyMNGo5wcX2t10On0k1O3HOxmVgbwtwB+B8BpAN8zs4fc/QdsztEjh/DQNz+WtJ06tUTP9czTP06OP/nk83TOlSsdauv2htRWSq8hAGB6ppocr9b4pFYr8KPNL45K8MpUqvzC6XbSl8h6iwdS9MZYq/PnVqvyy3F6qpEcHwz42l++vExtcP6uMxhEgZS21af4Apcr/FzlMre11vhrvbbKb0xepI9ZqfDX7Jdeu5Ac/9a3H6dztvNn/N0Annf3F9y9B+BLAO7dxvGEELvIdoL9CIAXr/n59HhMCHEDsusbdGZ23MxOmtnJi5dWdvt0QgjCdoL9DIBbrvn56HjsZbj7CXc/5u7HDizs28bphBDbYTvB/j0Ad5rZa8ysBuDdAB7aGbeEEDvNlnfj3X1gZh8A8M8YSW8PuPuz0Zy1Vhv//tiTSdvD3/oPOu/8uV5yvN/n7nsg1Vgkuxjf2b24vJ6eYoHkEqhJZoH/4BMdfX5MTysG0bkiCXC9y/0oCr6zDqRfs0hOGhaBvObcj0gOc7Ibv9rhvkfSbBFIaKUyX2OzOrWxIw56/Hg/OnUpOd7t8ue1LZ3d3R8G8PB2jiGEmAz6Bp0QmaBgFyITFOxCZIKCXYhMULALkQnb2o2/XoqiQK+dThbornNppVTUkuP1IFukCOSpoadloY1gmVKRzFcKkla8iPwIpEOk5TUgkhUjCS3KzOO26Hk7kTCjpJtKkITkQSJMVDSVZuZ58LxIYgqAOFMqzIgL5FJySCvx17lKbFEmou7sQmSCgl2ITFCwC5EJCnYhMkHBLkQmTHQ3fjgocOlCejfeB+kyRgBQIoXQPEhAsWC3tRzsWEY7uzQJItqNL4VF3LgtOCac7wg3683keFROaa21Rm1mQUJOkDRUkPX36DmDP69olzncBievp4MnjERLb0FRvrjKHD+fkZnuQVIL26gPfNedXYhMULALkQkKdiEyQcEuRCYo2IXIBAW7EJkwUemt2xvg1E/TnV9anSBRg8hXwyCRxMNqZ1EyQ1BjjCSZhMkHgfQWJnBE+s+Q22q1tPRWb07ROUVQn661zst/h3XhiI+hgBasY2SL1pHVoAvvc6WoH1bURitqKxZcc2RVHFw+rjbSr5kSYYQQCnYhckHBLkQmKNiFyAQFuxCZoGAXIhO2Jb2Z2SkAqxil9Azc/Vg4wR2DQVquYVlSo/OkZYuojVNwuJBymUskkcTDCJO1ojpzYUIcN3b7aTmyCN7X9y8cpLbaVFrKA4DlyxeojcmiQdLY7kDWqhRl7BWRjV9Ykcwa29LXXHS9lYk8GF03O6Gz/5a781ddCHFDoD/jhciE7Qa7A/iOmT1uZsd3wiEhxO6w3T/j3+LuZ8zsMIBHzOy/3f271/7C+E3gOADMzPDPf0KI3WVbd3Z3PzP+fwnANwDcnfidE+5+zN2PNRu8R7UQYnfZcrCb2bSZzV59DOB3ATyzU44JIXaW7fwZfxOAb4yzbCoA/tHdvx1NKNzR66UlmWrQyslZxlBQeDEq/xcVDYznXX/W2xbUuvFBt2ZjwlAkvXX73Mn9+w9TW9TKqb2+mvajCAo9RsU+A8lrOAyOSWwWZa8FhBl2W2lDFdii5xxfIGm2HOzu/gKAN2x1vhBiskh6EyITFOxCZIKCXYhMULALkQkKdiEyYaIFJw08KyeSJgrWryvMlOPvY3HfsOsnymiK5JOwOGDQm61U4i+bEVsk4rQ7XWqrNXgPvub0LLX1++lj9khWHgAcOsCz76I1bq2vU9uAnG/YS/ccBIB+j69Hv8+LbPb7fWrbiowWS3lsPVRwUojsUbALkQkKdiEyQcEuRCYo2IXIhInuxo9SWtKJCY6glVA5nRrLdp4BAEWQeBBsjJaCXXzWSijcNQ3eTqP2PvXGNLUdPXIrta2vt5Pjy1fSiSkA4M53kZfOvUhtjSBluT9IH3Mq2ME/cPhV1BalrcwGyTXdTnqnvhfs4PdJshYAdDp8F79D1n6jYxYkWcfB5zSr6QsrKMuoO7sQuaBgFyITFOxCZIKCXYhMULALkQkKdiEyYaLSW7lcxsxMWnoxu0znFUR4KUXtnzxICAgSUMrl60/IYf4BXK4DgHqdS1d33HEntTXqU9S2cmUlOT4zxRNa5ubnqG15+Qq1/ezcWWqr1KrJ8YWFA3ROuZyeAwClMr9Uqw1uK4ZpCbO1ukbn9No8EaZa4/LazMw8tbVbLWobkASaos/PVa+npepIOtadXYhMULALkQkKdiEyQcEuRCYo2IXIBAW7EJmwofRmZg8A+H0AS+7+K+OxBQBfBnAbgFMA3uXuXDsbUzhvNeQWtXJKvyf5kGfKlVnLqNFMamHyGgAY8zFIyarXueS1+Koj1NZocHltLZCNpqbTUlMk87GWXEBcJ68StOyam0vLUHNz+/m5otp6gaTUbvFMtEYz/bzn5rkE6Pt4Fl1rlUtovSAjLqobyKS3bptfw15Jy4O+TentcwDuecXY/QAedfc7ATw6/lkIcQOzYbCP+61fesXwvQAeHD9+EMA7dtgvIcQOs9XP7De5+9WvT53DqKOrEOIGZtsbdD4q00I/tZrZcTM7aWYn28HXEIUQu8tWg/28mS0CwPj/JfaL7n7C3Y+5+7Em2SwRQuw+Ww32hwDcN358H4Bv7ow7QojdYjPS2xcBvBXAQTM7DeDDAD4K4Ctm9j4APwHwrs2crCgcrQ4pbmiB7EIy2ML2SUWghwVF+Tw4JissWS7xbK1X3/IafrzgvfbZZ/6b2qanuZx36NCh5PjUFJfyorZFy8vL1Fat8ue9f34hOV6p1OicUonbGk3u/6Dg/rOinkNS5HF0Ll7sM8rM67R4ltrsLM8sZNLn0tI57gdZ+0ii3DDY3f09xPS2jeYKIW4c9A06ITJBwS5EJijYhcgEBbsQmaBgFyITJt7rDUQSi/qvMYnNtpjZZlGhyujtr0ifb/FVt9ApBw8eprb1Ns+Suv3226ktKorJinC2O/zbi1PTM9R29Oirqa3T5dlyLGuvFEmsgW043FqmYn+Q9rEX+D7o82zKapDpVwt630WZkZVqWnJcXOS976xIJ5mWg8KcurMLkQkKdiEyQcEuRCYo2IXIBAW7EJmgYBciEyYqvZWshCbpAVZxLneASG9FlKFW5u9jwyDrrQhsNx85mhw/cOhmOufySrr3GgBYoDeWAlUx6i3X6aQlpUuXeD1QNgcAbr55kdrm5tN9+wCgP0hnlUXnqlSDe0+QzVVv8kw0pkT1AymyCKS3IkiZZFmRwKjPIaNaI9l+RRAT/fT6mnEfdGcXIhMU7EJkgoJdiExQsAuRCQp2ITJhorvxRVGg1Urvxg5JnTkAKJHd5wJ8t3LofKfbne/e3nIrT0A5THbdWy3eEihq/1QK3mq7vWC3OKiv1yH1zJpTPNnl5kXekmn/PLdFtfz6ZEf7/Esv0TkeqAzz+/nO/77A5kX6OmhW+esStcOK6vVF86Kad+Vy2tZu85p2+5rp3f2wLiO1CCF+oVCwC5EJCnYhMkHBLkQmKNiFyAQFuxCZsJn2Tw8A+H0AS+7+K+OxjwB4P4CrOsqH3P3hjY5VuKPTT8sTHtUfIwkGw0Cqido4HTzAE1emp3ibnsuXX9mmfnyuwI9Gg8t8g6CumgWZMMOCyzidXto2H0ho8wsHAj/4/SCq1cZ0uUhubLWvUJtf4Ofq9OepbYpIjpWgdVUkr0USWkSUJFMQeTBKaqnV0/6Xtim9fQ7APYnxT7r7XeN/Gwa6EGJv2TDY3f27ANK3NCHEzw3b+cz+ATN7ysweMLPga1ZCiBuBrQb7pwHcAeAuAGcBfJz9opkdN7OTZnayG9TqFkLsLlsKdnc/7+5Ddy8AfAbA3cHvnnD3Y+5+rF7n/beFELvLloLdzK6tVfROAM/sjDtCiN1iM9LbFwG8FcBBMzsN4MMA3mpmd2HU1OYUgD/czMmsZKg306dcW+NZamZpmYGNA0C93qS2cpnbLl5cpjam1szM8uN1e7zFU9jSKGhttRa0jdpPZLT9+xfoHAvqo3mQ2lauBLXfSBuquX08+657kWcPttur1NYLpLKZ6XT24P45LrFOTaVbV21ki7LUul2exWhkjR08JgpSny6SgTcMdnd/T2L4sxvNE0LcWOgbdEJkgoJdiExQsAuRCQp2ITJBwS5EJky04GSlXMKB+bT0cmmJS14sY+jgYZ69Nr//ILWtBxKJe5BRRloXlSv8y0JRa6LegGdyra7wdk21QPJamE9LSg2SJQUA5SAVrRRk33mQAdbvpm3rK/x17q+vUVujweXNYY/Pa5M2VE6yLwFgdm4ftU1NTXPbNJflKhW+juy6sgoPT2d9rVRwUgihYBciExTsQmSCgl2ITFCwC5EJCnYhMmGi0ptZCTUiUxV9LuMcXjyUHP+lX34dnXN5hWdQDYY8SyrK5Co8/d64fCU41+UVahsW3A/W3w4AyoEM1SLSVhlcThoEcg0rhggAq1f4c/vZ6ReT4xcvLtE5Dn4NVJjUBKDZ4Jl0VdJrr7TGi1suvXSO2mo13iNufo4XbGo2g9dsPS0FF0G/QiNZhRG6swuRCQp2ITJBwS5EJijYhcgEBbsQmTDR3fjhYICLF9K7oAsLh+m8X/3VNyTHWx2+C37p0kVqq1X50z5w4CZuO5xWEn78k5/SOWd/dpra5mb4Dm2jypNrut11ajvz4qnk+KVgN3hAkkWAuK7a+jr3o9chdfKMn2sYqCT9IHGlF7ShqnbSu+dTs3wHf3qG23qdYO1XuDpRrdaprdlMJ9A0p7ky5EOyUx+0mdKdXYhMULALkQkKdiEyQcEuRCYo2IXIBAW7EJmwmfZPtwD4PICbMGr3dMLdP2VmCwC+DOA2jFpAvcvdeeE0AF4A/V5aGrjt1tvpvNnZdF215089T+d0O1wyMnAZanqGtwW6QmSoflC3bmYmqEsWJDp0W1zGWW3xVkisXh+CNk5RssswqDNnxu8VzFYMuUxWBIlBgaKEgslQAPpElovackW19WZmZqnNKnw92sFrRmXKIHnJZnlNO8Zm7uwDAH/q7q8H8GYAf2xmrwdwP4BH3f1OAI+OfxZC3KBsGOzuftbdvz9+vArgOQBHANwL4MHxrz0I4B275aQQYvtc12d2M7sNwBsBPAbgJnc/Ozadw+jPfCHEDcqmg93MZgB8DcAH3f1lHyh99EEx+anKzI6b2UkzO9np8q88CiF2l00Fu40aoX8NwBfc/evj4fNmtji2LwJIliBx9xPufszdjzXq/PveQojdZcNgNzPDqB/7c+7+iWtMDwG4b/z4PgDf3Hn3hBA7xWay3n4DwHsBPG1mT4zHPgTgowC+YmbvA/ATAO/a6EDDosDqWlq+OnPmbHIcAJrTaQmi2+7SOTVSewwA5hZ4a6grLZ7VNL0vLbvc+upX0znPPvl9aru4xJ9ztcyllVKVZ0MxLJD5opZXpRLXvCyQ7FhWViS9DYK6exa0oSqV+XqwbLNK1FqJWgCPagMGLZ6aU1zuZWHYaXN5sBiSv5IDjXLDYHf3fwMXad+20XwhxI2BvkEnRCYo2IXIBAW7EJmgYBciExTsQmTCZNs/lQyVRvqUp0+fovNYgcg777yDzmnMzlNbP3iPO3+ey2HLZ9Ntgc7+9Md0TucKTwSsBy18BoGPBfiXkyrkkMWQf3sxyhoLOkMBQYHICpPYggPWpnihx/lDvCBpY4pnog376ec27PH1GAy4pHvh0kvUZkFm4dzcArXtI8UvV1d40dQhWV8Hfy11ZxciExTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmTFR6AxxmRK4pcRnnxy+mC0t2wTPUFg7cTG39diC7rPNCle0r6T51vrxM50wHGWVRllR1dpraBkEfuP4gLcl0utyPQZCJBj4ttBUky64o8fvLMOhht37mRWorWXAZEyWq2+PPOeo5Nyz4tVOrRa9L1Mcubev3eS9Ddy43MnRnFyITFOxCZIKCXYhMULALkQkKdiEyYaK78aVSCTPT6VpcLyFox0PKakVJCefOJYvdAgB6Pb4zakWwM01aCVnUmyh4O7V+YLzC/egX/HysjltUV60cJHBUhtxWKqJknXQNwEGwVvVprkDUGrymYC1QJ5qkFmGkhFRqQYLSkF+nvaCl1GDApYuV1fR1HO3Gt9aJ2lEE9QSpRQjxC4WCXYhMULALkQkKdiEyQcEuRCYo2IXIhA2lNzO7BcDnMWrJ7ABOuPunzOwjAN4P4Kpu8CF3fzg6lruj30tLA/1h0FanlpZJymUuuXT7XAbpEwkNABzcxt4ZSxZIUEHNtSKQvKol3tKoMcVlKFqEzgMpb22Nn2vIpZx60IZqQNzoBCLg1Ay/HBuz6TZOAFCpcz8q5bREVaty+RXgNeiG3RVqq9f4GjeDBKDOMF2nsBW0N1tfT69HJL1tRmcfAPhTd/++mc0CeNzMHhnbPunuf7OJYwgh9pjN9Ho7C+Ds+PGqmT0H4MhuOyaE2Fmu6zO7md0G4I0AHhsPfcDMnjKzB8xs/w77JoTYQTYd7GY2A+BrAD7o7isAPg3gDgB3YXTn/ziZd9zMTprZyW6HJ/4LIXaXTQW7mVUxCvQvuPvXAcDdz7v70N0LAJ8BcHdqrrufcPdj7n6s3uAbakKI3WXDYDczA/BZAM+5+yeuGV+85tfeCeCZnXdPCLFTbGY3/jcAvBfA02b2xHjsQwDeY2Z3YSTHnQLwh5s6I1ObAvnKnckuXIKaneO2QzUu4/SCOmhryxeS4wYu43iJt+PpBa16mjPc/+k5/hfSkGTttduB1BRIRmt9vh6DQHqrT6V9rAXr4dVL1Nbup9ceAGaavG1Uici2ax1+rmaTZ8Q1prl0GGVTdjtcEqvV08es1Xl41urp9bVA6t3Mbvy/IR2ioaYuhLix0DfohMgEBbsQmaBgFyITFOxCZIKCXYhMmGjBSTNDtZqWNcz4t+tK5XT2T3UqylzibZw6QVFJawRy2IG0H0VQhLBMni8ANIJMqHbvPLW1uhepjRVfLFX5cz7wqnQRUADo96eobW6eS16LiwfTxxvw17nb4TJfu8OLLxYFnzdNilg2m3N0zuoKz2wrCn59rK8HbaMG/LU2T6+xBUVY11uryfHIP93ZhcgEBbsQmaBgFyITFOxCZIKCXYhMULALkQmT7fVmQI0kSpWrXD45uDibHN9/MMjWal2htv6Qn6tS40syP5eWa0olLkFFxS3NuCw3HASZdFE/OkKvx7Oh9gVZdOUyl+U6bS4NXV5OS4fVoC/bcMhlo0qZZyr2g2KaS+fT10Gtwp9Xa41ntrVawXV64DC1NfYF52ul13HVudw4N5eWFMtlfv/WnV2ITFCwC5EJCnYhMkHBLkQmKNiFyAQFuxCZMFHprV6v4I7bDyVt7YJLZb1SWppY73LpZxBkDBUFz7zq97j80yYy2tR0WhoEAHP+fjo3k5ZPAKDMlTKsrPC1qtXS0tYw6NlWqfDLYHk53YcMAAKlDHUiYZ4/xwtHVsq8yKY797HXDYo5VtOyaK/Lpc0Ba1QHoGSBFBkUlSyXuTw4GKavx+g6nduXzpST9CaEULALkQsKdiEyQcEuRCYo2IXIhA13482sAeC7AOrj3/+qu3/YzF4D4EsADgB4HMB73T1s01qtlHDz4fSOa99uovNeOJNOqri0yuvMDZzvqFYR7IKDJ1wsv5TeUV27whMWahX+ftpf47XOajU+b22dKw2lUvolaDT4TvdwmK6tBwDdLk/WmZnmO9OVWnr9ewPue6fLL59Bn7+egyDJ59DB9HVVKfPnVQwiG9/Fv3yRv54XL7xEbZVq2v9qmSfkNInaUQraP23mzt4F8Nvu/gaM2jPfY2ZvBvAxAJ9099cCuAzgfZs4lhBij9gw2H3E2vjH6vifA/htAF8djz8I4B274qEQYkfYbH/28riD6xKARwD8CMCy+/8nEp8GcGR3XBRC7ASbCnZ3H7r7XQCOArgbwOs2ewIzO25mJ83s5Moa/4wthNhdrms33t2XAfwrgF8HMG9mV3cJjgI4Q+accPdj7n5s3wzf0BFC7C4bBruZHTKz+fHjJoDfAfAcRkH/B+Nfuw/AN3fLSSHE9tlMIswigAdtVDCtBOAr7v4tM/sBgC+Z2V8B+C8An93oQKWSYbaRljVed2u6XRAAHJxLJ5o8+8OzdM6FVS6HRS2IzHl2R428N/Zb/OPJ2pBLNe1AWilXgvp0zud1e2lpK0p2MZDCgAC6Hb4eF51Ldiwfo1zjsmenFyQoRckuQXLKygWSRLWebp8EAJ02f17B5YFgiWEl7n+DJC/decfNdM7iwnxyvBpIihsGu7s/BeCNifEXMPr8LoT4OUDfoBMiExTsQmSCgl2ITFCwC5EJCnYhMsE8kHF2/GRmLwH4yfjHgwB4QbLJIT9ejvx4OT9vftzq7slCjxMN9ped2Oykux/bk5PLD/mRoR/6M16ITFCwC5EJexnsJ/bw3NciP16O/Hg5vzB+7NlndiHEZNGf8UJkwp4Eu5ndY2b/Y2bPm9n9e+HD2I9TZva0mT1hZicneN4HzGzJzJ65ZmzBzB4xsx+O/9+/R358xMzOjNfkCTN7+wT8uMXM/tXMfmBmz5rZn4zHJ7omgR8TXRMza5jZf5rZk2M//nI8/hoze2wcN182s3S6HMPdJ/oPQBmjsla3A6gBeBLA6yftx9iXUwAO7sF5fxPAmwA8c83YXwO4f/z4fgAf2yM/PgLgzya8HosA3jR+PAvgfwG8ftJrEvgx0TUBYABmxo+rAB4D8GYAXwHw7vH43wH4o+s57l7c2e8G8Ly7v+Cj0tNfAnDvHvixZ7j7dwFcesXwvRgV7gQmVMCT+DFx3P2su39//HgVo+IoRzDhNQn8mCg+YseLvO5FsB8B8OI1P+9lsUoH8B0ze9zMju+RD1e5yd2vVuM4B4AX0t99PmBmT43/zN/1jxPXYma3YVQ/4THs4Zq8wg9gwmuyG0Vec9+ge4u7vwnA7wH4YzP7zb12CBi9s2P0RrQXfBrAHRj1CDgL4OOTOrGZzQD4GoAPuvvLOi5Mck0Sfkx8TXwbRV4ZexHsZwDccs3PtFjlbuPuZ8b/LwH4Bva28s55M1sEgPH/S3vhhLufH19oBYDPYEJrYmZVjALsC+7+9fHwxNck5cdercn43Ndd5JWxF8H+PQB3jncWawDeDeChSTthZtNmNnv1MYDfBfBMPGtXeQijwp3AHhbwvBpcY96JCayJmRlGNQyfc/dPXGOa6JowPya9JrtW5HVSO4yv2G18O0Y7nT8C8Od75MPtGCkBTwJ4dpJ+APgiRn8O9jH67PU+jHrmPQrghwD+BcDCHvnxDwCeBvAURsG2OAE/3oLRn+hPAXhi/O/tk16TwI+JrgmAX8OoiOtTGL2x/MU11+x/AngewD8BqF/PcfUNOiEyIfcNOiGyQcEuRCYo2IXIBAW7EJmgYBciExTsQmSCgl2ITFCwC5EJ/wcVlzKhDw3u9AAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"markdown","source":["# Resizing CIFAR-10 to (28,28,3) using Hub transformation feature"],"metadata":{"id":"TR-wGO-RKKg-"}},{"cell_type":"markdown","source":["Append the label and image to the output sample"],"metadata":{"id":"XQ8tdj5jomN8"}},{"cell_type":"code","source":["%%black\n","@hub.compute\n","def resize(sample_in, sample_out, new_size): \n"," # Append the label and image to the output sample\n"," sample_out.labels.append(sample_in.labels.numpy())\n"," sample_out.images.append(np.array(Image.fromarray(sample_in.images.numpy()).resize(new_size)))\n"," \n"," return sample_out\n","\n","\n"],"metadata":{"id":"4KZKqZVpDweF"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["visualize some of the images from the dataset"],"metadata":{"id":"dMmwbaN7seB-"}},{"cell_type":"code","source":["%%black\n","def visualize_first_N_img_label_in_hub_ds(ds, number_images):\n"," N = 0\n"," for item in ds:\n"," if N <= number_images:\n"," print(f'Image size: {item.images.numpy().shape}')\n"," print(item.labels.numpy())\n"," plt.imshow(item.images.numpy())\n"," plt.show()\n"," N += 1\n"," else:\n"," break\n","\n"],"metadata":{"id":"iKEAxW7FENld"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["Visualize first 4 images in ds_cifar10"],"metadata":{"id":"BX3iFBqBorpv"}},{"cell_type":"code","source":["%%black\n","# Visualize first 4 images in ds_cifar10\n","visualize_first_N_img_label_in_hub_ds(ds_cifar10_hub, 4)"],"metadata":{"id":"wIM7cO0g79sF","colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"status":"ok","timestamp":1647159913715,"user_tz":-330,"elapsed":1007,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}},"outputId":"a1b4dd2a-7a3c-4311-b84c-5b075145c5c5"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[6]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAfMklEQVR4nO2da2yc53Xn/2dunOGdFC+SKNmy5UvtNLbiqIbXyXaTBi3coKgTYJFNPgT+EFRF0QAN0P1gZIFNFtgPyWKTIB8WWSgbt+4im8vm0hiFsW1qpDDaFK7l2PG9tizLkSiKokRS5HCGcz37YcZb2fv8H9IiOVTy/H+AoOF7+LzvmWfe877zPn+ec8zdIYT41Sez2w4IIXqDgl2IRFCwC5EICnYhEkHBLkQiKNiFSITcVgab2X0AvgogC+B/uPsXYr+fz+e9r1gM2lqtFh2XQVgezBo/ViHHr2P5iC2XzVKbWfiAZpFrZsTHZpO/55ggmo35SKTUtrf5sdr8aJaJvIEI7Xb4vcV8j+4v4r9FJpnZMhE/shn+ebJzAADaERnbYycCGxPdX5jF5VWUK+vBg111sJtZFsB/A/DbAM4CeNLMHnH3F9mYvmIRR+56b9C2vLxIj9WXCX/Q4wU+Gdft6ae2yfEBapsYHaS2QjYf3J7rK9ExyPIpXlxaprZ6k7+3sdERasu0GsHttVqNjllfX6e2Yil8cQaAFvjFqlItB7ePjA7TMXC+v3qtTm1ZhD8XgF9chgb55zwwwM+PfJ7PRzXio8duCJnwORJ7z00PXzy++I3v88NwDzbkbgAn3f2Uu9cBfBvA/VvYnxBiB9lKsM8AOHPFz2e724QQ1yBbembfDGZ2DMAxAOjr69vpwwkhCFu5s88COHjFzwe6296Cux9396PufjSX589WQoidZSvB/iSAm83sBjMrAPg4gEe2xy0hxHZz1V/j3b1pZp8G8NfoSG8PufsLsTHr6+t44cXwryxfvEjHjZMFUNvDV0YnWkPUZqUpaltrc1Wg3AqvkLsV6JjKOl9RrVT5CnmjxaWmixHNsZgL+9hs8v1lyWowEH/0qqyvUVuzHX7ftr6HjslEVLlGRE0o5fh5UCYr2outJh3T389X4y3Dv50aUWsAABE5r7IeVlCajfB2AMjmwp9LY71Kx2zpmd3dHwXw6Fb2IYToDfoLOiESQcEuRCIo2IVIBAW7EImgYBciEXb8L+iuJAOglCOyUeSP664nEtuhaZ4QMjU5Tm2lmLQSyWqq1sIJI+sNLgt5ZH+FUiSBJpII421+vJHxcAJQs8H3V8hzPyLJiMgW+IdWq4fnqtHk89Ef2V9ugPtYjIxrWlgezESy6JqRDLVYpuXgAE++Kq9VqK3RDEtssYTD1ZXLwe3taPaoECIJFOxCJIKCXYhEULALkQgKdiESoaer8WaOooUTEIaGuCu3zIwFt+8p8cyJfJuXWiov8uSUVptf/6qVsO8ZngeD4UiZq1xkFXn58iofF/nUxofCK8KrKzxppR5JaKmSJA0gXldtkJR2atR5okamxd9YPpKQ0yKluAAgR5bPazU+ppDnH2imzRNoauUlagNJogKAPnIaN9tcMbi8FlZkWpF6grqzC5EICnYhEkHBLkQiKNiFSAQFuxCJoGAXIhF6Kr3lzDDWFz5kKSKtjJAkiMlhXvOrRdoPAYj0MQGyuUghNFJHrNaOSD8RnSwXScZo1bhE5Vl+jb5wIdxlptXg73q1wpM0Ki0uUw6WIt1daqT9E/h7zhiXjbJ9kU4sa1xm7c+HfcxFWiutR+oGVhtcemtHmnYtl7mPy5Xw+VMmUi8ArDfC50A9UmtQd3YhEkHBLkQiKNiFSAQFuxCJoGAXIhEU7EIkwpakNzM7DWAVHTWr6e5HowfLGiZHwxLKUJ5LXsVi2JbJcqmjFKnv1mhyGaodyeTqtKH//6lH6sW16lyWa3skoywieXmOZ2Wt1sMZbK0Wn99KpNVUM2JbXeP+zy6G/chn+P6Gy3zuG+d5e7DqZS4dXjdxU3D71NQBOsaGwvXdAKC2dInaymWePXh5lUtvFy+HZdbTZ7gfrWw4dGt1Ltdth87+QXfnn4QQ4ppAX+OFSIStBrsD+Bsze8rMjm2HQ0KInWGrX+Pf7+6zZjYF4Mdm9rK7P37lL3QvAscAoBh5LhdC7CxburO7+2z3/wsAfgjg7sDvHHf3o+5+tJDTU4MQu8VVR5+ZDZjZ0JuvAfwOgOe3yzEhxPayla/x0wB+2G2XlAPwv9z9/8QG5HNZ7J8MFyIcLnDJYLA/LDVZRLpCJAPJItlmtSqXcTJEltszxNtQDQzwbK2Vy1zEGBnmGWWrkSKQb8yG91mu8UeoAp8OzPRHsvbyPDPv9KVw9l3NI0VCI1lvI8ND1Hbv7VzxXZkLy6xeiRxrgmdT1ip8Psplfu/sy/N9Htwbfm9TU9N0zPxKWMq79Mp5Ouaqg93dTwG482rHCyF6ix6ihUgEBbsQiaBgFyIRFOxCJIKCXYhE6G3ByaxhfCicjZarh6UaAOjLh93s7wv3NQOAWpXLU41Iv67R0XBfOQBwUqSw3uLXzEYjUgxxkPeBO7cQ7uUFAK+9wbOhFlbD7y1SuxDXR3rmfeRfH6G2A/u4/9976lRw+z+e5NJQs80z/XIZLpWtLi9QW6UcnsehIS6FocWz74pFPq5AsjMBoN/4uGYr/OFcd3A/HTO0GO4F+OzrfC50ZxciERTsQiSCgl2IRFCwC5EICnYhEqG3q/G5HKbG9wRt1UW+ap2xsJtl0jYHAKqxWlwWqccWaZPErozVBl9FHh3jCS31Fl9hPnX2HLUtrnAfWX26bKRl1HCR728qF171BYDiIlcMbh7eG9w+N879mF++QG21Cp/jp195hdoypB1SYyDSumqEJ6Agw0NmZISrQ0PtSLspUqfQ6yt0zCGSUNaX5/OrO7sQiaBgFyIRFOxCJIKCXYhEULALkQgKdiESocfSWx5jE5NB29ggb9eUyYSTCJZXluiYxlqZ768Va//EC7I5ScgZHOR15hrgtpdOcclorcZbCRWLfdxWCPtYGuCy0FiWy5RPnZyntmadnz61kbD0NjnG58PA5bBGk0uzlTqvhbdGas3Vm/w9W0RKjXQHQz4TaR2WidTey4XnsVnj0qYT2ZbkagHQnV2IZFCwC5EICnYhEkHBLkQiKNiFSAQFuxCJsKH0ZmYPAfg9ABfc/de728YBfAfAIQCnAXzM3bkO9i97A4iMZpH2OIy+SD2wfoSzggAgF7nGZTKRenJElusr8fZPF8/zrLHKRT5lN45ziarGVSgUicR26+EZOiYT2WEzy+d4JSJ95rLhOnlDBf657Bk7TG2Hb76O2l7/xZPU9vIrs8HthVxE1nIu2zabPGQyJOMQAPIFPo/tdvi8akd0PrPweRpRBjd1Z/9zAPe9bduDAB5z95sBPNb9WQhxDbNhsHf7rS++bfP9AB7uvn4YwEe22S8hxDZztc/s0+4+1319Hp2OrkKIa5gtL9B5p5g6/SM9MztmZifM7MRqJfKwKYTYUa422OfNbB8AdP+n9YTc/bi7H3X3o0P9fNFJCLGzXG2wPwLgge7rBwD8aHvcEULsFJuR3r4F4AMAJszsLIDPAfgCgO+a2acAvAHgY5s5WNsd1fVwcT1r8MwlIJyhtLbGC/LVG/w61szwbxjlCpfKVoht5iCfRm/y/V0/wYWSw/u5VFNZ5+NmbrkzuL3g/BFq6TIv3FkaDRcIBQBc4plcB/fuC25fXuPZfDf+2s3UNjzGs/aGx26jtqWF8PwvXeYttPIReTDjPOOw0Y5kU/JkSrQa4fM7kkRHW5FFkt42DnZ3/wQxfWijsUKIawf9BZ0QiaBgFyIRFOxCJIKCXYhEULALkQg9LTjpcLQsLE94ixcAZDJDqciLVA4Ocanm3AKX+V4/u0BtuXzYj8I878u2Ps/3d/MUl9c+9AEuQ702+/ZUhX9haCZc0HNiT7gAJABcWOBFJUdHIzJUm/tfIAUWLyyEs9AAIFdcpraF5Tlqm53jWWr5fPg8GB3mWli1ygUsz/H7o0W0snZElstYeJxFMjAjbQL5cd75ECHELyMKdiESQcEuRCIo2IVIBAW7EImgYBciEXoqvWWzGYyODgZtzRyX3srlcMaWN7iccXmVZzW98QsuNZXLXMYpFcPXxrnXefbddJEXIZyZuZ7aRvffQG351UgKFSnCeeDOu/mQ81wOKzW5dNgCz6RbWwvb9vWHpUEAqLf4+7KB8HkDAAcG9lPb0GhYcly9dJ6OuTB/idoaxuXG9TovYokM18oG+sJZmPVqRFIkBSyNyHiA7uxCJIOCXYhEULALkQgKdiESQcEuRCL0dDW+3WpidTm80pmr81ptedLqBrwEGnJZbqyU+Ur92BBP/BgdCK+aVpf4avzUfl7DbeaOf0Ntz5+tU9srJ7nt3n3jwe3Ly3zM9OFw3ToAyKBCbfUaX6kf9fDK+soFvtJdqvNaePvGw+8LAJZbvC5c/o6x4PZqJLHmHx59hNrOnuHvORtp8RRrzMTybhqxNmWN8FyxpDFAd3YhkkHBLkQiKNiFSAQFuxCJoGAXIhEU7EIkwmbaPz0E4PcAXHD3X+9u+zyAPwDwpg7xWXd/dDMHzBIFohX5o38nskWGtIUCgJZx6W2JKzxYWYnUH6uF5at9I1yu+40PfpDaDtx6D7X94M8eora9kaSQbD1cX2/21Gt8fzfeTm3FPTdR24BzubSyGO71WWqHpTAAqFe5zHdxldtGJ3nS0J69h4Lbq+VhOibDTWgVePJPrAZdo8GlT2uGE7rMeaJXsxkO3a1Kb38O4L7A9q+4+5Huv00FuhBi99gw2N39cQC8nKkQ4peCrTyzf9rMnjWzh8yMfzcTQlwTXG2wfw3AYQBHAMwB+BL7RTM7ZmYnzOxEucKfW4QQO8tVBbu7z7t7y93bAL4OgJZBcffj7n7U3Y8O9vOqLUKIneWqgt3M9l3x40cBPL897gghdorNSG/fAvABABNmdhbA5wB8wMyOAHAApwH84WYOZgCMKAMtksUD8DY4kU488Gpkf5ESbuN7eNuovf1hqe+uo7fQMbfdy+W1pQtcbuxr8sy8Gw8coLY2eXN7p3jtt+Y6lzArkWy5epOPa1TDp1YLXDZ8bfYstT33/Alqu/ce7uOeveGsw5XVsDQIAKRjFABg4hCXWduxdk31iIxGJN3LC7wdVm017GSbZBsCmwh2d/9EYPM3NhonhLi20F/QCZEICnYhEkHBLkQiKNiFSAQFuxCJ0NOCk+5Am2T4VGtcMiiQLK9cjhf4y2a4HHPTXv7XvcUSv/4duv5gcPud7+eZbftuvYPanvnHP6O26w5yH/e+693UVpg8HNye6x+hYyrrXAKsrvDMtvlzZ6htaT4so7UaPHutNBQu6AkAExP8sz5z7mlqm943E9zerESyLKu8jZOtLVFby8MZhwDgTHMGUOoLv7fCXv6eV/pIJmgkonVnFyIRFOxCJIKCXYhEULALkQgKdiESQcEuRCL0VHozM+Sz4UMuRQoKttbDMkOpv0THZDNc6piKZLadmeOZRofvCpXiAw68O7y9A5fQGqtr1DYyxKWyyVuOUNtaLtwT7YWnn6RjalXux8oKn4+Ls7+gtmwrLH0Wi/yUm7khLJMBwB238MKXzSzPRMtnR8PbCzwrMrfOi0pW3pilNiYrA0Azclstk76E/Xv4+5omPQTz+Uh/OO6CEOJXCQW7EImgYBciERTsQiSCgl2IROhtIky7jVo1vNLZ38ddsWJ4tTKf4TXQvMVtpUHeGur3/93vU9u9v/uh4PbhiWk6Zv7US9SWjfi/vMpr0C2c/mdqO7caXhH+u7/8SzpmsMQTLtZrPGFk7zRXDIaHwivJr5/lyTP1yHyM7z9Ebbe8+73UhlZfcPPiMq93VyHqDwAsVbmP5vwcXq/yRK8yadnkZa4K3BYWGdDmIpTu7EKkgoJdiERQsAuRCAp2IRJBwS5EIijYhUiEzbR/OgjgLwBMo9Pu6bi7f9XMxgF8B8AhdFpAfczdeYEuAA5H20ltuDZPIrBmWLZoeqTFU6TmV7FvmNqOvJfLOH35sET14jO8BtrSudeorVbj0srq0iK1nTn5IrWVPZwclG/xYw3muBQ5XOTJGJNjXHqbmz8f3N6MtPmqrHKZ78zrPOkGeIFayuVwDb1ijp8fzb4parvU5OdOqcRr6PUP8aStUi4sD65WVuiYZjssAUaUt03d2ZsA/tTdbwdwD4A/NrPbATwI4DF3vxnAY92fhRDXKBsGu7vPufvPuq9XAbwEYAbA/QAe7v7awwA+slNOCiG2zjt6ZjezQwDeA+AJANPuPtc1nUfna74Q4hpl08FuZoMAvg/gM+7+locJd3eQxwUzO2ZmJ8zsxFqV13IXQuwsmwp2M8ujE+jfdPcfdDfPm9m+rn0fgGDDa3c/7u5H3f3oQKmwHT4LIa6CDYPdzAydfuwvufuXrzA9AuCB7usHAPxo+90TQmwXm8l6ex+ATwJ4zsye6W77LIAvAPiumX0KwBsAPrbxrhxAWEZrN/lX/Fw+XDOuFan5VQfPTpoe4XXh/vqRv6K28emwxDO1L9wWCgDqFZ69ls+HJRcAGBzgEk8uw6WyASIP7p0K1ywDgOoqV0xLWe7jpYWL1Naohz+boSKXoOplLr29+vQJapt7+RVqqzVJS6Y8n8NWbH4PcCkSA/wczvRx6bNIZLQx8Lm67V03BLeXiqfomA2D3d3/HgDL+QvnfAohrjn0F3RCJIKCXYhEULALkQgKdiESQcEuRCL0tOAk3NBuhxf2C5HMq2KOFOvL8MKAHmkJ1K7zzKuLF8PZWgBQXgjbSg2endQGf1/jY1wOG90/SW3NVo3aZs+FffRIPlQmw0+DepNLmFnjhSoHimG5lCQwdvYXM0ayGFt1Lm9myPm2UuFyY72PyHUAhvbzuV8r8VZZq20uy62vhe+5e4ZvpGMmiJSay/PPUnd2IRJBwS5EIijYhUgEBbsQiaBgFyIRFOxCJEJvpTcYMhbOoir28QwfJxlsA6WwvAMAA0MT1FZp8AykPUM85z5H/Khfnqdj2hm+v0qeS03T0+GsJgBo17mMc+sdB4Lbf/qTx+iYuleoLW9c3qyW+bjhoXDWXiHHT7msRfqhrfPP7PU5LqMtL4c/s5qt0TGTt/B74MxoJGvP+We9dJHPVWE9LGEOzEQyFSvhrMJ2RL3UnV2IRFCwC5EICnYhEkHBLkQiKNiFSISersZnDCjkwteXSo0nGGRJC6J2pD5apcGTGbJ5nlTRV+Crrfl82I9CP2+DNDLME3LOL/BV/MpMeFUdAKYO3kRtsxfCdeHe9Rvvo2PKC+eo7dQrvLXSWpknfuSy4fkfGeG19YzUJwSAuVnu4y/eiCTC9IXnf3iaKzmT4xEfI6qALfLPemyJh9rM1Hhw+4FRfg6cfDGc8FSr8iQv3dmFSAQFuxCJoGAXIhEU7EIkgoJdiERQsAuRCBtKb2Z2EMBfoNOS2QEcd/evmtnnAfwBgIXur37W3R+NHixnmJ4MX18aly7RcdVWWJJZ47kM8AxvDZWLJGMMD/PkgwJprVRd4zXoSpGaYKhz24mf/pTabryVS3Znz4YlmUykXl9/H68ll43Im6USl5rWymHprVrlkmgz0gJssMT9uPc9t1BbkSTkNLO8tl6rwZNWqme49JZZLVLbVP8Qtb3nlneFx4zyLuhPzb0e3N5s8Pe1GZ29CeBP3f1nZjYE4Ckz+3HX9hV3/6+b2IcQYpfZTK+3OQBz3derZvYSgJmddkwIsb28o2d2MzsE4D0Anuhu+rSZPWtmD5kZb40qhNh1Nh3sZjYI4PsAPuPuKwC+BuAwgCPo3Pm/RMYdM7MTZnZipcKfyYQQO8umgt3M8ugE+jfd/QcA4O7z7t5y9zaArwO4OzTW3Y+7+1F3Pzrczyt5CCF2lg2D3cwMwDcAvOTuX75i+74rfu2jAJ7ffveEENvFZlbj3wfgkwCeM7Nnuts+C+ATZnYEHTnuNIA/3GhHhYLhuoPhu/uIcdni5JmwFDK/wLPX6i0u1QwO8re9VuEZVK12Obg9G7lmLi5wSXG1zGWS9Qb3I+vcNjQYXjqZP79Ix5xd43JS27lkNz3JZUprh7OvlpZ5vbi+Af6ZjY5w6aqQ5fNfqxMJNsflxrUa31+9HGl51ebjbjq4l9r27w3P45mzXGK9tBCOiWakhdZmVuP/HkDoE49q6kKIawv9BZ0QiaBgFyIRFOxCJIKCXYhEULALkQg9LTiZzRmGx0jmGJESAGBsKhs2DPCigRfneQHL9Uj7pFyBFxtkw9oNnmHXaHE/Lle5DDUQyfJar3CprLoeLjhZj/jYitjcydwDKK9E2j8Nhwt3Dg/z4pzVKt/fxUt8rgYHefadZcL3M2ty2baQ40VH+7hCjEKBz9Whmw5RW7US9uXxx1+kY5595UJ4X+tcztWdXYhEULALkQgKdiESQcEuRCIo2IVIBAW7EInQU+nNzJArhg9ZHOa57uOD4WtSrsplrXyJZ/+sRPpuocWvf6XiVHhInh+rVeP90Ar93I98js9HNsslx5qHfak3uNzokcw24woVvM4lwBYx5SPZZihwuXF5iUtv1TrvbzYyGpZSc0SSA4BMZO4r4NLW/MVValuKZDiuroWzGP/2717mxyIq5Xpd0psQyaNgFyIRFOxCJIKCXYhEULALkQgKdiESoafSW7ttKLOCfdlBOm5wIKzj5EtcFxqIpCeNjHCprLzCe5GVV8IFAMuVSNbbOrcNFXjBxiLpKwcAzRqXHHO58PW7ELms5/t4tpYZH9gfKdyZIaZmi0tDhVKkB98olxsXF7nktUqkyOFxPveVSM+5V0/zAqIvP3eG2qbHeTbl9AHy3jL8PJ0gBTjnV7kMqTu7EImgYBciERTsQiSCgl2IRFCwC5EIG67Gm1kRwOMA+rq//z13/5yZ3QDg2wD2AHgKwCfdPdqmtV4Hzr4RttWW+er50GR4BbdYiiRA8MV9jI/zt11e43XQlpfDtqVLPHFiiS/eItvmq+Bt50pDq8VX+NEO22JXdcvwRJhsjs9VNZI05GTRPU/aQgFAs8JbVLUi9elakeSa5XJ4HOsKBQCLEUXm9En+gS5fWqO2+ho/4N6RcGuo266foWOYi6+eX6FjNnNnrwH4LXe/E532zPeZ2T0AvgjgK+5+E4AlAJ/axL6EELvEhsHuHd7saJjv/nMAvwXge93tDwP4yI54KITYFjbbnz3b7eB6AcCPAbwGYNn9/31ZOwuAf+cQQuw6mwp2d2+5+xEABwDcDeDXNnsAMztmZifM7MTlMi92IITYWd7Rary7LwP4CYB/BWDUzN5cvTkAYJaMOe7uR9396MhgpMK+EGJH2TDYzWzSzEa7r0sAfhvAS+gE/b/t/toDAH60U04KIbbOZhJh9gF42Myy6Fwcvuvuf2VmLwL4tpn9ZwBPA/jGRjtyy6GVnwjaGoWjdFytHU78yDTDrY4AoDjC5aTRSf4NYyzDEzXGK+HEhOVF3i5o+SKX16prfPpbTS7nwfk1ut0M+7he5Y9QhUKk3l2O+7+6zhM1quSRLR9RZ4cy4eQOAGhnuKTUaPB57BsIS5jFPK93N1rgPt6IUWp79528DdWtd9xJbYduuim4/e57uNx49lw5uP0fXuMxsWGwu/uzAN4T2H4Kned3IcQvAfoLOiESQcEuRCIo2IVIBAW7EImgYBciEcwj2VXbfjCzBQBv5r1NAOA6Qe+QH29FfryVXzY/rnf3yZChp8H+lgObnXB3Lq7LD/khP7bVD32NFyIRFOxCJMJuBvvxXTz2lciPtyI/3sqvjB+79swuhOgt+hovRCLsSrCb2X1m9s9mdtLMHtwNH7p+nDaz58zsGTM70cPjPmRmF8zs+Su2jZvZj83s1e7/Y7vkx+fNbLY7J8+Y2Yd74MdBM/uJmb1oZi+Y2Z90t/d0TiJ+9HROzKxoZv9kZj/v+vGfuttvMLMnunHzHTOLpEYGcPee/gOQRaes1Y0ACgB+DuD2XvvR9eU0gIldOO5vArgLwPNXbPsvAB7svn4QwBd3yY/PA/j3PZ6PfQDu6r4eAvAKgNt7PScRP3o6JwAMwGD3dR7AEwDuAfBdAB/vbv/vAP7onex3N+7sdwM46e6nvFN6+tsA7t8FP3YNd38cwNvrJt+PTuFOoEcFPIkfPcfd59z9Z93Xq+gUR5lBj+ck4kdP8Q7bXuR1N4J9BsCV7S53s1ilA/gbM3vKzI7tkg9vMu3uc93X5wFM76IvnzazZ7tf83f8ceJKzOwQOvUTnsAuzsnb/AB6PCc7UeQ19QW697v7XQB+F8Afm9lv7rZDQOfKjs6FaDf4GoDD6PQImAPwpV4d2MwGAXwfwGfc/S2laXo5JwE/ej4nvoUir4zdCPZZAAev+JkWq9xp3H22+/8FAD/E7lbemTezfQDQ/f/Cbjjh7vPdE60N4Ovo0ZyYWR6dAPumu/+gu7nncxLyY7fmpHvsd1zklbEbwf4kgJu7K4sFAB8H8EivnTCzATMbevM1gN8B8Hx81I7yCDqFO4FdLOD5ZnB1+Sh6MCdmZujUMHzJ3b98hamnc8L86PWc7FiR116tML5ttfHD6Kx0vgbgP+ySDzeiowT8HMALvfQDwLfQ+TrYQOfZ61Po9Mx7DMCrAP4WwPgu+fE/ATwH4Fl0gm1fD/x4Pzpf0Z8F8Ez334d7PScRP3o6JwDuQKeI67PoXFj+4xXn7D8BOAngfwPoeyf71V/QCZEIqS/QCZEMCnYhEkHBLkQiKNiFSAQFuxCJoGAXIhEU7EIkgoJdiET4vyrWWZ/xQ9u6AAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[9]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAf8ElEQVR4nO2dW5BdZ5Xf/+vc+n5vdasltdSSLAkZ+YpQbOwAGQI2hJShZuKCB8IDNZ5KQSVUJg8upiqQqjwwqQDFQ0LKBNeYCcGQAQaXYTJ4jAfDGNvIN1mybFnWXepuXVunL+d+Vh7OcZXsfP+v25L6tJj9/1WpdPpb/e29zt577X36+5+1lrk7hBD/+EmttANCiNagYBciISjYhUgICnYhEoKCXYiEoGAXIiFkrmSymd0N4JsA0gD+p7t/Nfb7Pb19PjQyGrSViwt0XrVcDI67G52TzbVTW66N29LZHLWlUuH9FQtzdE65VKA2r9WozcDfWyqd5vNS4ft3V3cPndMWOR5eq1JbocDPGRCWdOtepzOKBX6sahE/YvIxM1Wr3I96PbY9Pi+T4eGUyfBz5ghfBzFVvE7cKCwUUCqVgxfPZQe7maUB/DcAHwZwAsDvzOwRd3+FzRkaGcWfff2/B20nXn2O7uvM4f3B8VqNuz+6/l3Utn7zdmobWL2e2to7wvs7sO8pOufowT3UVpnlN4l05L31DvRRW6a9Mzi+64730znXbeXHqnjxPLXt2/sCtdXr5eB4uRK+cQPAK/teprb8zFlqK5VL1FYph4Ps/Dl+o5pb4D5Wa3xfq1YNUtvAYDe11Xw2vK8KnYJiIXwn+PsnnqZzruRj/C4AB939kLuXATwM4J4r2J4QYhm5kmBfC+D4JT+faI4JIa5Bln2BzszuM7PdZrZ7Nn9xuXcnhCBcSbCfBDB+yc/rmmNvwd0fcPed7r6zp5f/rSmEWF6uJNh/B2CLmW00sxyATwF45Oq4JYS42lz2ary7V83sCwD+Fg3p7UF33xebU6vVkL8QXt0d6ucrmb4qLNd5ppfOGVu/iftR58ucqTpfpa0vhOWf4oVzdI4X+Mru2uERals/fh21jV+3gdrWrF0XHB8hkicAZLNt1FbtD6/uA8D4utV8XjW8Gl8scnlt5gJXJ86e5apAJiKzwsKr8QND/D23d3EfL+YvUFtbOw+nunPpMJsJ+5K/OEPnlEvh1XhnmhyuUGd3958D+PmVbEMI0Rr0DTohEoKCXYiEoGAXIiEo2IVICAp2IRLCFa3Gv2PcgUpY9iqXuBy2sBCWcSa28m/nzs3PU1ssGWNwOJJkkg3fG7ds2UrnvO+2ndS2djQskwFAX98qaqtkeLZcZ3tYxslEMqisGslsm+dyWImcSwDo7AhLdgP9XG7cvOl6atu//zVqg3E/SqWwlNrXO0DnRBIfcTE/TW2O8HUKxDPpLlwIX6uFBZ50wzLiYhmAerILkRAU7EIkBAW7EAlBwS5EQlCwC5EQWroa7/U6qiQRwqp8hbkt1xEcv3iWlyoaWs1Xute/myeZjIyvobYsW6aN1A+qVPnK/6uTPIFm4dAZvs0UX/V97eWXguPv3c5Xut+/673UFlvdzUfqExw7eio4nstGagPmeGLT8CquvBw7/jrfJinTNVfgak0+z6+rTJbXBuzt5UlDsXp9rLxerE5eW1v4WjTunp7sQiQFBbsQCUHBLkRCULALkRAU7EIkBAW7EAmh5dJbaSEseXR3cEmmdzCcFHLrTTfTOeObtlDbbCTx47VDx6ktvxCWT+ZmeK2wczNcXpuc4vXMeiOJMEjxBIlHf/Cj4Hj2Xn5f/8Dtd1JbNstlxdWruUwJD8tXMxfC3U8A4PkXePecTKROXlcPl+yqtbB0WJ7j5ywdeQTGur7UalwSPXeey3kphCW7WDup/v5wwlY60mZKT3YhEoKCXYiEoGAXIiEo2IVICAp2IRKCgl2IhHBF0puZHQEwC6AGoOruvOAaAEsZ2tqyQVsl3UPnFTrCjewP53mbnhd/8yy1nT/H66qdPMVrjGXT4ZSibIpnJ5VIGyQAKBa5bWwVPzWnp45SWy/JhpqdydM5Bw4f5n6MDVNbNst9HBsPt4ZaQ8YB4NgUlz1fe5nbRsa4THnkGJG8Kvyc1cvcVovU/2vPcXmwLRO+7gGgUAxvs7eXS4oZ0jLKIs/vq6Gz/zN3IqoKIa4Z9DFeiIRwpcHuAH5hZs+Z2X1XwyEhxPJwpR/j73T3k2Y2AuAxM3vV3Z+89BeaN4H7AKB/gH/VUAixvFzRk93dTzb/Pw3gJwB2BX7nAXff6e47u7rDC21CiOXnsoPdzLrMrOfN1wA+AmDv1XJMCHF1uZKP8aMAfmKNCncZAP/b3f9vbEIqlUFn52jQdnqGZ6IdPB6WXV7Zx+8tqYgsVIu0mirM8kKEaSKxFUpc1pqZ5bbZSGulIyf2U1tXB5cpt23eFjZEJMB/+PXfU9uGjRupbes23vZqaCicldXWzs9LXy+XrlJVXtxyvsSfWayFUmGGZ9/VarxIaHsHl9Dm8nybvZHMvLb2cKZauRxriRbOwKzXuWx42cHu7ocA3HS584UQrUXSmxAJQcEuREJQsAuREBTsQiQEBbsQCaGlBSfT6Qz6B8NZVAePH6DzJo+Es7I6s7zw4sV5XsxxLn+a2iwiXczMhqWymQKXajIkyw8AhkdHqK2jJyxdAcDaCS6CjBMZ5/BLv6Vz0sZluUqNZ3mdOcuLad5ww/bg+HVbNtE545Hste7bbqG2Pa8eo7ZSMVzItJSNZL2By2R15xLx1FS4vx0A5Nq4rNg3wK4DLgMXCuGMz7rz96UnuxAJQcEuREJQsAuREBTsQiQEBbsQCaGlq/Gl0jzeeCNcG+7VNw7Seacm3wiO1yJJKz19XdS2bcsEte3YvoPaJs+EV0CPnuF+rFodTvwBgA2beZJJzxBfqZ++wPfnZ8PKxbGjfMX6TKRF1fbrqQkf3hpecQeA+TmyWswX9+Flrgrse5qrCVu28TZgo2v7g+NPP/tkcBwApqZ58lKlwlfjiwXu/4VI26uO7rCPsZX1edJGLZYIoye7EAlBwS5EQlCwC5EQFOxCJAQFuxAJQcEuREJoqfQ2P5fH008+FnZklNROA7B5+w3B8Y5Im57t12+htm1b11FbrRhOJAEAT4XlpHnwhjiZbDgRAwDS6bDkAgCVKk+cmJ89T2195bA0VK05nXPsNE8aau8+yffVO0BtmzZPBMc98nwpzITrqgHAq8+8SG1e4NfBjrvuDo7fcCNPyCns5tLbGwePUFtnJ6+e3Nc/RG2N7mn/P/k8Py+lUvhYuaQ3IYSCXYiEoGAXIiEo2IVICAp2IRKCgl2IhLCo9GZmDwL4OIDT7r6jOTYI4AcAJgAcAXCvu3OdoEmlXMXp42GZ6pab/gWd19YWrk02yFUyjK3hdcTOR1r/HD/IZa1yPSyHpYyncqUzXAqpOa+hh2qsfVVYAgQAr4X3190Xrv0HAOfmeBZdKsezB+vO5bxGN+/QJD6ju52fs4k149TWnuZ+pBCuG3jDDp5x2N/PJdFHCr+gtqlJHgJrR9ZQW83CNQyzkRZm+XxYHtyfDbdKA5b2ZP8LAG8XK+8H8Li7bwHwePNnIcQ1zKLB3uy3/vbH3T0AHmq+fgjAJ66yX0KIq8zl/s0+6u6TzddTaHR0FUJcw1zx12Xd3c2M/tFkZvcBuA8AslleQ10Isbxc7pN92szGAKD5P+264O4PuPtOd9+ZybT0q/hCiEu43GB/BMBnm68/C+CnV8cdIcRysRTp7fsAPghg2MxOAPgygK8C+KGZfQ7AUQD3LmVnqVQGnd2DQVs2ouLMzIQ/OLQNcolkoco1niLv1oSOgR5qa6sb2SCX3jxyhIsVnuXV3sEnpiLtmuqp8LzuIS795JzLjekOntnmOa591i383qzGpbxUmr/nbFeO2jq6ua1aCsus505O0zlDXbwN1T0fu4vadr90hNrmIsUoi6UzwfESafEEAP094Ws/k+bnZNFgd/dPE9OHFpsrhLh20DfohEgICnYhEoKCXYiEoGAXIiEo2IVICC39lksu14ax9eFsI0vx+06xGM7wmc5z93P9PMurUuVSjUW+5VeYC2dQVZz7nsnwwpHVNLd19vIMsJGhGWrz82G5phzpUWZ17n9HRwe1pSJZh3UP769W4zJlKhsp9pnmPs7N8yxGIwUY2yLXW/4Ml+U6OsPSMQC8//Ybqe21N45S295XpoLjc3mejZgjhUzr9VgGoBAiESjYhUgICnYhEoKCXYiEoGAXIiEo2IVICC2V3twAt7C8UolIQwuzYWmlLSILzeYjhSOLvNDjQp7LOFmS9NbTxSW0VQNcqukd5Blgq/r5e6tl+qit0BY+juc38Ky3Um2S2hDJzKtVI9l3JEOwluLZiBaR3voHefZdvRbxkVxXfX38+OZ4LRbMzEZkz0pYmgWAm7evprb+nvD18+ijvLjlmelw4dZqJI70ZBciISjYhUgICnYhEoKCXYiEoGAXIiG0ttyrO0BWcDN1vrLbF/7OP8b7yPI4gHdt4vXputv5Smza+P1vPh9eiS0uXKRzOroq1LZtC1+pH9+wjtpS2Q3UNjcT9nF8bIz7cZgWB0bvIDn4AAYHeLJOJhNONorkacAjiTXtXZ3UVi1GVqDJ/rKxxCtwtWZouJva5ha4KjA/E052AYC1q8I17z7xLz9C5/z1z/4uOJ7J8IOoJ7sQCUHBLkRCULALkRAU7EIkBAW7EAlBwS5EQlhK+6cHAXwcwGl339Ec+wqAPwbwZt+aL7n7zxfbVk9XJz5w+3uCtk3X30TnnTp5Mji+dg2XrrZu2Uxtq1eNUFvauZw3S5IgSpFkEUvx7XV38USY7m4ueaVzXDrMEgmzMB9uMQQAt+7gUt7E1glqq9S5rOjkOVKtc5nM0/xYpbP8Uq0UuZ5XJ4khqQx/zlk79wOReaUKPx6ZNK9tWCuHr6tVEZnvzn/63uD4b599mc5ZypP9LwDcHRj/hrvf3Py3aKALIVaWRYPd3Z8EwPNFhRC/F1zJ3+xfMLM9ZvagmfFkYyHENcHlBvu3AGwGcDOASQBfY79oZveZ2W4z2z03z5P7hRDLy2UFu7tPu3vN3esAvg1gV+R3H3D3ne6+s7uLLzgIIZaXywp2M7s0q+KTAPZeHXeEEMvFUqS37wP4IIBhMzsB4MsAPmhmNwNwAEcA/MlSdtbZ2YH33PiuoO3dt3DprbAjLKN19fGsK17pDHDj0koqIpEMdoXriEW6P0XvpnXSmgiI1xJDROIplcLtnzZft57O6chxCbAwzzP6PBW5fCxs80h9t7pzWy1yzmItj8qF8PGo1fl7TmUi10fkjM6e4xLs0cPHqe2OO28Jji9UeD3ETiIPRpTexYPd3T8dGP7OYvOEENcW+gadEAlBwS5EQlCwC5EQFOxCJAQFuxAJoaUFJ1OpFDpIpld3O2+h1NVJ3IwU14sVNrSY9BaTeDwsldUrXEKLyUkWKXpYjYiHMXnFScHM7n6eIVit8X3V6pEqkKTFEwA4asHxVMz5GrfVMlwSdURONilwavWwfwDQFnnP2Ro/Z11FPs+nwxIgAJw5NB0cX7eNFx09mwp/GzV2ePVkFyIhKNiFSAgKdiESgoJdiISgYBciISjYhUgILZXe0uk0evrCEpBHss0WSmH5xEu8J1eJzAGA+bl5aitX+LxSKZxtVq1y6aoSyVCrRPa1EOkbtjDPs6GqJJOuZ7CPzunp433x+nuGqa09F+7nBgA11rvPIn3ZwG09PbwA57nT/DgWC2GJql7nxZUM/H3Va/ya6+3h8vGG9aPUVlgIX48eKc7Z1xOWsNMROVdPdiESgoJdiISgYBciISjYhUgICnYhEkJLV+NnZvL460f+JmirZX9N5124EE4UmLt4ls5JRXIjYiv109PhfQFAjWTXDEbaSQ0MD1FbW5of/vnz4ZZAAHDg9f3Ulp8Lrz6Pb+QtntJZroT09nD/N27kde3WjYfr9W3ctJbOGWzjWRw97dzHeqQWIdLh5JRKja90pyMtntIRH0cnIspFL1+pr3g4KSfNRQEMDobfcyaSHKYnuxAJQcEuREJQsAuREBTsQiQEBbsQCUHBLkRCWEr7p3EA3wUwika7pwfc/ZtmNgjgBwAm0GgBda+7X4htKz87h8eeeCpo61+3jc7zWlhOeuGpJ+icDet4/a7hIS4nnTwxRW1VUresc5AnkpRTPElm+gRvCfShXbdT2803vpvaFkrF4Hgqy0/14WNHqe3A629Q28t7X6C2/r5wE88//KNP0jl3vHsrteUiPbbWjY1TW5lIbxYp1harG1ghtfUAIJWJ1LXr54k8HSR5pZ7mEjETIiMlFJf0ZK8C+FN3vx7AbQA+b2bXA7gfwOPuvgXA482fhRDXKIsGu7tPuvvzzdezAPYDWAvgHgAPNX/tIQCfWC4nhRBXzjv6m93MJgDcAuAZAKPuPtk0TaHxMV8IcY2y5GA3s24APwLwRXfPX2pzdwfCxbvN7D4z221mu8tlnvgvhFhelhTsZpZFI9C/5+4/bg5Pm9lY0z4G4HRorrs/4O473X1nLse/HyyEWF4WDXZrtE/5DoD97v71S0yPAPhs8/VnAfz06rsnhLhaLCXr7Q4AnwHwspm92Bz7EoCvAvihmX0OwFEA9y62oYHBIfyrT//roK1tZAudtzAblsNef/klOmdsNZdjUpE6XR3tPIOqXA+38Nm6g/s+MMYz4haGeR20j3/0n1NbZ08Htc0T6S3SqQlV0tYKAIrV8PYA4PTp89R29PCp4HhnJz++UyfOUduRfa9TW6rIfTw0FfzAiV0f2UnnbJhYQ22xbLlUeyRNLctlOWO15ozPyVn4nMWkt0WD3d1/A4Bt4kOLzRdCXBvoG3RCJAQFuxAJQcEuREJQsAuREBTsQiSElhacNAPacuH7y4FX99J5+Yth6c1j2UllnjE0F2n/ZBHtor0tnGtUWeDtmC6e4T5OH+NZb3/zt+HCnABwYTayv7mLwfGeXi559Q2EW3IBQFekUOKJE2F5DQBGhsOFJdt7uRT565/x93z+9T3UVivzFlsHp8IFRE9EWmht2c6l1L7eTm4b4C22Ojp51ltfV/i6yrbz4pGdneHz4s6vXz3ZhUgICnYhEoKCXYiEoGAXIiEo2IVICAp2IRJCS6W3erWC2XNhGe2XP/0ZnXd86kRwPFUJZ6EBwJ49eWqLpQZVqzyrCSTT6LFHf0mn5LJcurr5lluprZzrobZ8aYHaDh0LZ3mdO8f7w5WLPOvt1NQRajt8hG9z5y3vCY7/28//ezrn2ad/S23VizwjLl/iRVEK4ZoqOLSby56/fm6S2royXObL5rhUlm7j10EPkd7WbZigc+75w08Fx8tV/vzWk12IhKBgFyIhKNiFSAgKdiESgoJdiITQ0tX4bDaHsdGxoG3LxEY6zxFeLc5EWiulIyvuqTS/x3mdJ67k2rvChixPclizJpwQAgAfvOsuauvpjCRctPPada/sDdflO3CQt3FavXaC2oqRtkvpDu7j3gOvBsdfOXCAzumc2E5tp07x9zzQz20juXBduM5uXsfv/BRvh3Xu5EFqO3M2nHQDAMVaJGmLFAicnOHh+b4PhedUedk6PdmFSAoKdiESgoJdiISgYBciISjYhUgICnYhEsKi0puZjQP4LhotmR3AA+7+TTP7CoA/BnCm+atfcvefx7ZVrVZx/ky4ZdBt/+R9dN77PvCB4HhbG088yETktVj7p3qkFVIa4f1VylzvKJR50sq5E4ep7XyRJ1ycP8vbLh0iEtup0+EEJADoHuHtjtDGZUXLcemtXA0npzz2q9/QORs230Bt44NcwmxP8cu4kyQilYq8Bt2h/D5q6+7htfxqzpOopi7MUdvw8ERwfKHCr8Vf/urZ4PjsLK+vuBSdvQrgT939eTPrAfCcmT3WtH3D3f/rErYhhFhhltLrbRLAZPP1rJntB8Bvs0KIa5J39De7mU0AuAXAM82hL5jZHjN70Mz415iEECvOkoPdzLoB/AjAF909D+BbADYDuBmNJ//XyLz7zGy3me2eneN/JwkhlpclBbuZZdEI9O+5+48BwN2n3b3m7nUA3wawKzTX3R9w953uvrOnm1dfEUIsL4sGuzVapHwHwH53//ol45dmtHwSAG/pIoRYcZayGn8HgM8AeNnMXmyOfQnAp83sZjTkuCMA/mSxDaVShi7StuZcvkjnvbDnueD4yAhfJhgdGaa2SoXLWhcuzFAbimEfM3W+vbUbuaw1PsA/6Zw8wOugzc/xmmsjo6uD451D/XROup3LSQsFfl7GxtZT29SpcN3As+fC7akAYGxNpC1XpNXXXIkff2TC11ulzuXStg6S3QigLZJNWT53htqQCteZA4BRknVYLvEWZuxw8KO0tNX43wAIvcOopi6EuLbQN+iESAgKdiESgoJdiISgYBciISjYhUgILS04mTKgLRvO5CkVueT11FOPB8e9wmWh3k5eULBS4dlJxQJvKZUh98YNE+N0zo7brqe2zeu5LDdzPCxdAcDUhbPUlusIS02bh8KSHACcOcMzsm7YtoPa3n3DNmp7+H99NzieQbgAJABU5vn5LJe5zWNVFtvD5zrWjmli4yZqO338Nb6vFM/C7Oji+9u+fWtwvLjAz8v42Ehw/Fc5LvHpyS5EQlCwC5EQFOxCJAQFuxAJQcEuREJQsAuREFoqvdXrdSwUSAHGSBHIuz768fD2yjxLKh2R1+o1XsjP01w+SWfCslF7Fy+8ODXDpbzZGd737HyB+2/tvAjkay8eCo6f+y3PyNq0kUto771uC7WVIxlxHbmw1OSRjMNYhl0qzS9V0ioNAFCokz6BNX58N6zj0ltx7hy1Xd/Ls+Wefe4Fajt1NCznFeb59e0LF4Lj5RLPiNSTXYiEoGAXIiEo2IVICAp2IRKCgl2IhKBgFyIhtDbrLWXo6g7LV32RSnk9q8JZQaWIzNAeuY/ljGdeeQfPlmvrDM+rF3l20uxsntrSnbzQ48hmXiBycyfPenv9cLjXG4xLillSBBQATk4eo7ahYV7wk9nKBS4nlUq8GOV8JCOuFMkOq5TCUm+mnculo2tWUdvRyWlqmz5Gjj2A4hx/b2/sezE4PjTE/fCBwfB4pDCnnuxCJAQFuxAJQcEuREJQsAuREBTsQiSERVfjzawdwJMA2pq//1fu/mUz2wjgYQBDAJ4D8Bl35/1qANTrRSzMkuSPOr/vZK07OD49zVc4X3/lCLW1Z/iKe66Pr4IPk3ZTa4b76JxMJMFnqG+I2iK5OigWwkkQADAyEl7hX7smvHoLAJNTU9R24MB+apsob6Q2ppTMzvJztrDAV7rzF7mqEVuNr5XDiUjpNp60sm8vbx0Wa8k0MjJKbWtv5LX8RlaF5w2v4nUD24n/j//DE3TOUp7sJQB/4O43odGe+W4zuw3AnwP4hrtfB+ACgM8tYVtCiBVi0WD3Bm/eOrPNfw7gDwD8VXP8IQCfWBYPhRBXhaX2Z083O7ieBvAYgDcAzLj7m0nBJwCsXR4XhRBXgyUFu7vX3P1mAOsA7ALwrqXuwMzuM7PdZrZ7dpYUrhBCLDvvaDXe3WcAPAHgdgD9ZvbmAt86ACfJnAfcfae77+zp4V9RFEIsL4sGu5mtMrP+5usOAB8GsB+NoP+j5q99FsBPl8tJIcSVs5REmDEAD5lZGo2bww/d/VEzewXAw2b2nwG8AOA7i26p7qiTNj6pyH0nUwkncfSSVlIA8NzTv6K2qWmeSGJZnhSya9d7guN33r6Tzrl4kUtNe55/htrmizzx48Cx49R26MiR4Hhhgf8J5c6LuLX38mSMfH6W2mZJi6r5PJcNI6XkkElza1/kE+OajWF5cGBojM4ZWcMlrzW33EBtg5EadLlYbUNmiyQvwcPxkoq0oFo02N19D4BbAuOH0Pj7XQjxe4C+QSdEQlCwC5EQFOxCJAQFuxAJQcEuREKwWM2qq74zszMAjjZ/HAbANbDWIT/eivx4K79vfmxw96Be2tJgf8uOzXa7Oxeo5Yf8kB9X1Q99jBciISjYhUgIKxnsD6zgvi9FfrwV+fFW/tH4sWJ/swshWos+xguREFYk2M3sbjN7zcwOmtn9K+FD048jZvaymb1oZrtbuN8Hzey0me29ZGzQzB4zs9eb//PeSsvrx1fM7GTzmLxoZh9rgR/jZvaEmb1iZvvM7N81x1t6TCJ+tPSYmFm7mT1rZi81/fhPzfGNZvZMM25+YBbpYxbC3Vv6D0AajbJWmwDkALwE4PpW+9H05QiA4RXY7/sB3Apg7yVj/wXA/c3X9wP48xXy4ysA/kOLj8cYgFubr3sAHABwfauPScSPlh4TNLJ9u5uvswCeAXAbgB8C+FRz/H8A+DfvZLsr8WTfBeCgux/yRunphwHcswJ+rBju/iSA828bvgeNwp1Aiwp4Ej9ajrtPuvvzzdezaBRHWYsWH5OIHy3FG1z1Iq8rEexrAVxafWEli1U6gF+Y2XNmdt8K+fAmo+4+2Xw9BYAXIV9+vmBme5of85f9z4lLMbMJNOonPIMVPCZv8wNo8TFZjiKvSV+gu9PdbwXwUQCfN7P3r7RDQOPOjsaNaCX4FoDNaPQImATwtVbt2My6AfwIwBfd/S1dIVp5TAJ+tPyY+BUUeWWsRLCfBDB+yc+0WOVy4+4nm/+fBvATrGzlnWkzGwOA5v+nV8IJd59uXmh1AN9Gi46JmWXRCLDvufuPm8MtPyYhP1bqmDT3/Y6LvDJWIth/B2BLc2UxB+BTAB5ptRNm1mVmPW++BvARAHvjs5aVR9Ao3AmsYAHPN4OrySfRgmNiZoZGDcP97v71S0wtPSbMj1Yfk2Ur8tqqFca3rTZ+DI2VzjcA/NkK+bAJDSXgJQD7WukHgO+j8XGwgsbfXp9Do2fe4wBeB/B3AAZXyI+/BPAygD1oBNtYC/y4E42P6HsAvNj897FWH5OIHy09JgBuRKOI6x40biz/8ZJr9lkABwH8HwBt72S7+gadEAkh6Qt0QiQGBbsQCUHBLkRCULALkRAU7EIkBAW7EAlBwS5EQlCwC5EQ/h+CqIklWmKmUgAAAABJRU5ErkJggg==\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[9]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbNklEQVR4nO2de2yc13nmn3eGd5GURN0sS3KZuN4m2bRxDFZN62zWcZDCG3jhpF0YCdDABYKoWDTABuj+YaRAkwL9I11sEuSPIoUSG3WLNJc2ycZbeNM43iaOm9Y27diSbNmWbFE3UxQpieJlyLm++8eMu7Jznpc0L0PZ5/kBgobn5fm+M2e+Z76Z8/B9j7k7hBBvfgobPQAhRHuQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhI7VdDaz2wB8GUARwNfc/fPR72/fvt2Hh4dXc0rRZhqNBo3VajUa6+goJtu9wa3eQoHfe6xgNAbwGDtbdLQ3MmNjY5iamko+vRWL3cyKAP4CwAcBnAHwuJnd7+7Psj7Dw8MYHR1NxqKLSqwBwZ9TmPFLf2G+RGMXLk7R2NDQ1mR7vbJI+/T29dFYsaubxtz4m0SDyDr9VvTGZ//+/TS2mo/x+wEcd/eX3L0C4JsA7ljF8YQQ68hqxL4HwOkrfj7TahNCXIWs+wKdmR0ws1EzG52cnFzv0wkhCKsR+1kA+674eW+r7VW4+0F3H3H3kR07dqzidEKI1bAasT8O4AYze4uZdQH4KID712ZYQoi1ZsWr8e5eM7NPAfhHNBc373X3Z1Z6vMh2ERtHuXSZxi6eeYnGTh9N97s8M0/73HzrB2hssLeHxqJ7lpHV+ByvtlX57O7+AIAH1mgsQoh1JMc3OCGyRGIXIhMkdiEyQWIXIhMkdiEyYVWr8WuJCl+uL9H8FozHzp0+QWOH/uVhGqsupBNoOvvTCTIAsDDDbb7BoSEaY8kuAE+SyfFq051diEyQ2IXIBIldiEyQ2IXIBIldiEy4albjo9JIYvU4eNmvapmXnnr59EkaG+zrpbG+LQPJ9vOXZmmfC+O/kCH9b+zadx2NocCLTNEadGFNuzcnurMLkQkSuxCZILELkQkSuxCZILELkQkSuxCZcNVYb2JtYAkvUbLL5MULNDY2dorGykG/gZ6uZHtpbob2ee7pn9PYNcPX09iWa4LtCsh8RHlXb1YbWHd2ITJBYhciEyR2ITJBYhciEyR2ITJBYhciE1ZlvZnZGIBZAHUANXcfWYtBidXArKY67XH2zBkaO3GKx04f59s/bR/oT7bv3b6J9hk/xTPsDo8+TmMjt2yhsb7BzenAm9NdC1kLn/397j61BscRQqwj+hgvRCasVuwO4Idm9oSZHViLAQkh1ofVfox/r7ufNbOdAB40s+fc/VXFxFtvAgcA4LrrgmojQoh1ZVV3dnc/2/r/PIDvAdif+J2D7j7i7iM7duxYzemEEKtgxWI3s01mNvDKYwC/DeDIWg1MCLG2rOZj/C4A32tlCHUA+Ft3/8HKD8cLIq7MJ1kHb4VkSnm0mZAHzyvIrrIVvw+nj9lo1GiPaq1KY7OlRRo7M3GRxiZIrF7fSfvs3cmf83OPP0ZjO6/ZTWP/7td/4cNmC37pFzx4XaJ9o4KXLDgkLLpG1pAVi93dXwLwrjUcixBiHZH1JkQmSOxCZILELkQmSOxCZILELkQmXEUFJyNPYyVHW6H1Fg2DFi/knRzc8grttdCWi2KvP3Ld8DCN9Q0M0tjM/AKNwdLP7cjp87RLb0c3jXUsVmjsmZ/9hMa27dmVbN+69620j9X462mBhxZdc40CP2YQWlN0ZxciEyR2ITJBYhciEyR2ITJBYhciE66i1fi1fd8JExYCopV1NNKxRlDfrVrjq8hdXektkgDAwicQrQizLkXaZ+vW7TT23vfdQmOHn3qOxsZOpOvJ1Wt8ro4Xz9FYz/C1NFZ//hiNHf7JPyfbf+M/83Tr3r50/TwAqEcJLVGMh1BbgRPFHJkV5ukIId5MSOxCZILELkQmSOxCZILELkQmSOxCZMLVY72FRbpWcrwoOSVIdAgOWfN0Usux49z6WViYp7G3vf3tNNbdza2yQuTxEBrOj9cILoPfuvk/0NipE2dp7Gt/+bVke22BW5GnJqdprLuPJ8ncMMTvWc//dDTZviNIhHnbzaxuHVAKEps6G3wcXcFrdrF0OdlerpRpH2ZhVqq8j+7sQmSCxC5EJkjsQmSCxC5EJkjsQmSCxC5EJixpvZnZvQBuB3De3d/ZahsC8C0AwwDGANzp7pdWM5BGYJWxBLCw9ls9qP0WvcUFFsnps6eS7f/7gX+gfWZm0rYKAPzWFK/H9v7/eCuNdXdzG4rNY7TBUK3Oo/0DAzR2+x2309jx519Itv/o/zxI+8xU+Wv23FmeEbfVemmsZzH9Yv/rD35I+3Rs41lvhV1baGx+mr/WnQ2e7Tc+cybZfnmWH29xMb0t11xphvZZzp39rwDc9pq2uwE85O43AHio9bMQ4ipmSbG39lt/7S59dwC4r/X4PgAfXuNxCSHWmJV+Z9/l7uOtx+fQ3NFVCHEVs+oFOm9+ceYFUswOmNmomY1OTk6u9nRCiBWyUrFPmNluAGj9T1ea3P2gu4+4+8iOHbwUkBBifVmp2O8HcFfr8V0Avr82wxFCrBfLsd6+AeAWANvN7AyAzwL4PIBvm9knAJwEcOfqh8KtCeaVXbp0gXa5fOm1a4pXHK7I7bVzk9wO+5fRx5LtTzzzNO0zc5FncpWrPAPs3//qO2ls5w5eILJYTL+kM7Ml2md6mo9xeO9eGrt2704a+/1P/l6y/fTZF2mfR58+RGPleZ61d+wMt+X6rkn3u3DkCO1T+i4N4fqbb6KxS3Oz/JiBJVa29PxHGWwNUvw0KnC6pNjd/WMk9IGl+gohrh70F3RCZILELkQmSOxCZILELkQmSOxCZEKbC046gLSd0AiyglgVyMszU7TLT3/2CI2dfDmdZQQAUzPchro0n7ZWCpv4nm095U00dv5CNP6f0tjw8D4aYxlxZ8/wv16sVrhds1Di8zE3y2Od5Mp6+6/zQo9PHT9MY5VZnuF4ZprbWn1d6fnYu7mH9jkx+iSNFbv5/bFw7RCNXa5x65Oais6vq3I5rSMP0ht1ZxciEyR2ITJBYhciEyR2ITJBYhciEyR2ITKhrdbbwmIJzxxNZ4h1dHTSfswauhRka03P8WJ9p8b5HmWbd26jsaHN6cKG27bzPP3JF8dp7OgRbjU9+CNemHHzIC+wWOxIGznlCreuKuV08UIA+ME/8lhncKtgGXF92/nr/K4b30ZjP3/keRorBeU0X7gwkWzvrXNLdGuNF9k8/q9P0Nj0Dm7nXSzwMXZW0v1qQQHOUilt5c3OLNA+urMLkQkSuxCZILELkQkSuxCZILELkQltXY2fn5/Dzx77WTK2MDNP+23qSa+c3n77HbRPzfkWSU8cfo7GNg9spbGFRnpl+tqdvGx+dYKvjl6e58kRpWN89XlrkIyxaXN6rvq3csegZxNfKd68hdd+2zw4SGODg+ktlHr7+2ifW279DRq7PMXdlSNHXqKxejWdRXVqOnAZOrlj0HGOr5DPXuKx2gB3UAq96ZqCZ09zJ2eG6KWyyJOadGcXIhMkdiEyQWIXIhMkdiEyQWIXIhMkdiEyYTnbP90L4HYA5939na22zwH4JIBXCpt9xt0fWOpY5XIFL42lbZLL5y/Rfje85YZke28vT2Z4+WW+jdPJE6dorH8Tt0jK1bRVZkHywcI0t2NQ4NtQ/fL1vFbb9Ts209jA1rQddv48t662DvH3/N37+BzPznDrsIu4eT0NbuUNBs/rg7e9n8YuXuI16CbOpK+DqTK3G/su8+PtDOzGDuPJRnsGeH26TbuuSbafHRujfSqldD1ED2o5LufO/lcAbku0f8ndb2z9W1LoQoiNZUmxu/vDAPguiUKINwSr+c7+KTM7ZGb3mhn/szMhxFXBSsX+FQDXA7gRwDiAL7BfNLMDZjZqZqOlEv9uK4RYX1YkdnefcPe6uzcAfBXA/uB3D7r7iLuP9PXxxS8hxPqyIrGb2e4rfvwIAL6zvRDiqmA51ts3ANwCYLuZnQHwWQC3mNmNaO7nNAbgD5Zzska9jvnLaQuotMg/4nf3pWt0XZ7ldtLJ02M0tmUzt0/q8zwbyhbTW+6MnztO+4y/zLd4skL6eABw5+/+Do015vh66f995MfJ9pOHeN29bZv5NkPnjnF7cM+119HY5Wq69hs6uSU6tI1nD/7qr7yTxiof5pfxvff8TbJ9YZa/zi9Pz9EYOoItmSrczpubukBj15LrsauXZ99t37kl2T51nsw7liF2d/9YovmepfoJIa4u9Bd0QmSCxC5EJkjsQmSCxC5EJkjsQmRCWwtONryBSjltsZXKvODk8RNpa+t7/+s7tM8jP/kJjZlzO2lihtsukydPJ9s7ueOCapCF1HUNz/L654d/SmPlGW7nPXvshWT7/ATPvpue5GPcso1vaTQZFF+cuZx+Pbdu4X9YVamnxw4AP/7xkzTWO8i37Nq6Pb0N1VSVW2GlMn9eZwPLzrv5ddVH5gMAipNpO3LLNn59FItp6b54jBff1J1diEyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhLZab8WOIjYPpe2EavC2MzOXLgD47FNP0T4TJ07QWCF42n0dPNOoq5DOePJKtL8Wt2P27t5DY0PBnnOXgiIgbx3+lWT7yTov6Dl9kdtQ9e50dhUATAQZgqVS2s6bvsizsqzIi1EuWjD+0os0VuhKW32NIs9e8y4+jhK4z1qv8dgmMg4A6N+cfq2LRS6KhqfntxjMoe7sQmSCxC5EJkjsQmSCxC5EJkjsQmRCe1fji0X0k9X4jgG+zVDlQjqJYOqFdGIKAOzr50kERlbVAWB2ga8wLxbSCRLWy5NFuo2vjk5O8FpyTzz6NI3tGhigsQuXppPtlxf4Cv5ckMizMMW3QkLgNHSQ1e7eTr5F0mLgakxOp58XANQLfI77OtKr4Fbg97lCDz8egtV4eJWG5uf5/M+Q7cO2buNOCBps7vlroju7EJkgsQuRCRK7EJkgsQuRCRK7EJkgsQuRCcvZ/mkfgL8GsAvN7Z4OuvuXzWwIwLcADKO5BdSd7s6zFQC4AY2u9PuL17ll0EUSAjqrvHbadYNDNFYLrJrZwKIqDvYn2wtd3HpbmOBbVJWnS3wcF2ZpbKrB36Ony+ljDt/0a7TPuUmeCDN9iY+/v5/bpYultF1a7eRztRjUfluocsurUODXTg95bdy4TVYP7LViB5dMocZtxUaDH/P8ZNpWrPHLGx1d6edcqwfzxA/3//sD+CN3fweA9wD4QzN7B4C7ATzk7jcAeKj1sxDiKmVJsbv7uLs/2Xo8C+AogD0A7gBwX+vX7gPw4fUapBBi9byu7+xmNgzg3QAeBbDL3cdboXNofswXQlylLFvsZtYP4DsAPu3ur/obSnd3NL/Pp/odMLNRMxstzfHvw0KI9WVZYjezTjSF/nV3/26recLMdrfiuwEkK927+0F3H3H3kb5+Xq1DCLG+LCl2MzM092M/6u5fvCJ0P4C7Wo/vAvD9tR+eEGKtWE7W280APg7gsJm9UvTtMwA+D+DbZvYJACcB3LnUger1Bqan05ZSucQznjZV0lbZjmuupX0unExvqQMAx8dO0thklWe9DQ2l7bxCD//EMt/gbmS9yi2jWqlMY4tl7snULG3/TJ7jW0bNz3EL0KvcTurr7qOxCsketO5u2qe2yJ9z1yZu83lgNy2W09dVo8CfV6XGr8XuTp4x2dXDn1t/X9q2BYBeEqsGc19gWXu8y9Jid/dHwPPmPrBUfyHE1YH+gk6ITJDYhcgEiV2ITJDYhcgEiV2ITGhrwUk0DFgg2ytx1wU1S9sd80FdwPGg0ON4sE3PXCUoKHghnQFW7OTWVSnIdnJaNBBYqPEMMCdb/wBAF7GGzk5y6y3KlLKggOHkpSDJ0dL9vM7H3tnLLczBLm551YP0sOYfd/4ixQ5+n+sF3wKsEGzJ1BnYchaM38k1YsG5CkakS+Yd0J1diGyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhLZab2aGDkvbGlVikQDA3ELal7s4w/chu1jhXl6tkz9tr3HLbpFlcpHMKgCoelQokZ9r0+ZBGisWeT9WENGDt3VmTy15riDGikAGW6yhEe2/Fj5nPsf1RtqW86BIZXQumm2G5vXNg7xfg4wxcF9RY8HgtdSdXYhMkNiFyASJXYhMkNiFyASJXYhMaOtqfKNex9zsXDI2M5PeLggA5kkJ6vl5Xi8uWhgd3MJXurt7eR0xeq5ghba3gydAdHbxc0Ur3Z2Bm8BW4+tRQk6wghsVNYu6FdmckBp5AFAPkmTo6jPi8VdJv3rwvIodfO47gu2fonH09PBtr7rJ6+lklR4Aukktv8gR0J1diEyQ2IXIBIldiEyQ2IXIBIldiEyQ2IXIhCWtNzPbB+Cv0dyS2QEcdPcvm9nnAHwSwGTrVz/j7g9Ex6rVapi6cCEZq1a4zbC4mE40qVR4AkpnD68j1tnD7bCFBb7TLKs/FiW0IIi5B9s/1bnVVIjqp/URSybKQAkso8iyi2AWUFTTLqJU4nX+Isuug9laQSJMNFeRtRVbmMHzJt16gm3FmPUWJeosx2evAfgjd3/SzAYAPGFmD7ZiX3L3/7mMYwghNpjl7PU2DmC89XjWzI4C2LPeAxNCrC2v6zu7mQ0DeDeAR1tNnzKzQ2Z2r5ltXeOxCSHWkGWL3cz6AXwHwKfdfQbAVwBcD+BGNO/8XyD9DpjZqJmNlstBcXghxLqyLLGbWSeaQv+6u38XANx9wt3r7t4A8FUA+1N93f2gu4+4+whbVBBCrD9Lit2ay4/3ADjq7l+8on33Fb/2EQBH1n54Qoi1Yjmr8TcD+DiAw2b2VKvtMwA+ZmY3omkcjAH4g6UO1HBHtUrssqBIWkdH2kaLPih0B1sJRS4I21UH4JlojcBxqQf2WmQZFQPLrtgV1EjrTM9jF5lDILaMojHGVlOaIJErtI22bNlCY9VqlcbKxJ6tB9l3K7XXosy8Wo2PEXUWe/2vSz3Yyms5q/GPIC2P0FMXQlxd6C/ohMgEiV2ITJDYhcgEiV2ITJDYhciEthac7OjowLZt25KxArg1VK+nLYhqLdj2J7BWFhd5ZpsVg2wosoVPI8gMqwRWSLERZMsFRMUoG562ZKK5WmkmWlTUs0H8yFqNe28N8joDcRHIyPJiBSerjSCrMJjfldpy4VZZxGKLbE92zXm03RiNCCHeVEjsQmSCxC5EJkjsQmSCxC5EJkjsQmRCW623YrGIwcH0PmuNelSQL/2eVK7wTKKZUnpPOQDo6AwyyoIYtUKCTK7OIJOrFlh2jch2IfYaAIDYgxZk34VpewGNwGpqEMvRg/tLI7CNKgu8uGiU9dZgmWNBwcloNiKb1YOefcFeb13EViwENh/bcy7KHNSdXYhMkNiFyASJXYhMkNiFyASJXYhMkNiFyIS2Wm8AYOT9xYIstUo1XW9+scyz12hhS8RZTR2BdeHETqoEWVflIMvLVrjfWGTJMOulUePzu8IdyhDtAudkjNHecW5BxlYHH0lnkWdM8nMFsbAAZ2A3RhMZZaMRuzTqU6umrytlvQkhJHYhckFiFyITJHYhMkFiFyITllyNN7MeAA8D6G79/t+7+2fN7C0AvglgG4AnAHzc3fkSOAA4TyQol6NEh3SsUlmkfSrB8SpVvnoeJWOwWm1RfbGeYI+qQlBXrR6s8EerxWx+LdhOKqpBFyVWdAXPm7G4yF+zqJZcMRhHNP9srqIdhUuloEZh4IT0BMku0fhrlfRY6Co9gJ6e9HUVjW85d/YygFvd/V1obs98m5m9B8CfA/iSu/8ygEsAPrGMYwkhNoglxe5NXskX7Wz9cwC3Avj7Vvt9AD68LiMUQqwJy92fvdjawfU8gAcBvAhg2t1f+dx1BsCe9RmiEGItWJbY3b3u7jcC2AtgP4C3LfcEZnbAzEbNbHRhgX8XEkKsL69rNd7dpwH8E4DfBLDF7N92M98L4Czpc9DdR9x9pDfaM10Isa4sKXYz22FmW1qPewF8EMBRNEX/X1q/dheA76/XIIUQq2c5iTC7AdxnZkU03xy+7e7/YGbPAvimmf0ZgJ8DuGepA7k7rRcWJa5QSyawoFiNLgBAaENxmMUT2VMeJLuwrYmAePzRtkBG0lqKQbJIIZqPFW535MQC7OrqCsbB53Glll1nZ/p5h9sxBeOI5j4aRxexygCgr7sv2R5di+x1iWzUJcXu7ocAvDvR/hKa39+FEG8A9Bd0QmSCxC5EJkjsQmSCxC5EJkjsQmSCRfbJmp/MbBLAydaP2wFMte3kHI3j1Wgcr+aNNo5fcvcdqUBbxf6qE5uNuvvIhpxc49A4MhyHPsYLkQkSuxCZsJFiP7iB574SjePVaByv5k0zjg37zi6EaC/6GC9EJmyI2M3sNjN73syOm9ndGzGG1jjGzOywmT1lZqNtPO+9ZnbezI5c0TZkZg+a2bHW/1s3aByfM7OzrTl5ysw+1IZx7DOzfzKzZ83sGTP7b632ts5JMI62zomZ9ZjZY2b2dGscf9pqf4uZPdrSzbfMjKcQpnD3tv4DUESzrNVbAXQBeBrAO9o9jtZYxgBs34Dzvg/ATQCOXNH2PwDc3Xp8N4A/36BxfA7Af2/zfOwGcFPr8QCAFwC8o91zEoyjrXOCZnZrf+txJ4BHAbwHwLcBfLTV/pcA/uvrOe5G3Nn3Azju7i95s/T0NwHcsQHj2DDc/WEAF1/TfAeahTuBNhXwJONoO+4+7u5Pth7PolkcZQ/aPCfBONqKN1nzIq8bIfY9AE5f8fNGFqt0AD80syfM7MAGjeEVdrn7eOvxOQC7NnAsnzKzQ62P+ev+deJKzGwYzfoJj2ID5+Q14wDaPCfrUeQ19wW697r7TQD+E4A/NLP3bfSAgOY7O+KdlNeTrwC4Hs09AsYBfKFdJzazfgDfAfBpd5+5MtbOOUmMo+1z4qso8srYCLGfBbDvip9pscr1xt3Ptv4/D+B72NjKOxNmthsAWv+f34hBuPtE60JrAPgq2jQnZtaJpsC+7u7fbTW3fU5S49ioOWmd+3UXeWVshNgfB3BDa2WxC8BHAdzf7kGY2SYzG3jlMYDfBnAk7rWu3I9m4U5gAwt4viKuFh9BG+bEmgXV7gFw1N2/eEWorXPCxtHuOVm3Iq/tWmF8zWrjh9Bc6XwRwB9v0BjeiqYT8DSAZ9o5DgDfQPPjYBXN716fQHPPvIcAHAPwIwBDGzSOvwFwGMAhNMW2uw3jeC+aH9EPAXiq9e9D7Z6TYBxtnRMAv4ZmEddDaL6x/MkV1+xjAI4D+DsA3a/nuPoLOiEyIfcFOiGyQWIXIhMkdiEyQWIXIhMkdiEyQWIXIhMkdiEyQWIXIhP+H2bIhEK3l+KSAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[4]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAeoklEQVR4nO2dW4xk13We/1Wn7l1d3dPTPT09F94ZW4RhU8KAkWPBUGzYYBQjlIBAkB4EPggew7CACHAeCBmIFCAPchBJ0JOCUUSYDhRdYkkQYQiJZUKI4hdaQ4UiKY5EjnjRcNgzPdPT97pXrTxUDdAk9r+7Od1dPdb+P2Aw1XvXPmedfc46p2r/tdYyd4cQ4lef3GEbIIQYD3J2IRJBzi5EIsjZhUgEObsQiSBnFyIR8nsZbGYPA/gigAzAf3P3z8ben8uZ5/Ph+0vOLLajcHPcukjfrcmNvX4/2J4zfs+M3U0HMdkzx+2PzVUuF95jlvFT3e/3aN9gcGtz5Wxc7DRHtmeRY84y3lfIh4+72+3SMf3IeYnNY+x0DgbhawcAioXwOYsdM+vbanTQ7vSCnXarOruZZQBeAvAHAN4A8CMAH3X3F9mYYjHz+dlysK9SqcT2FWzP5zI6hl30ANCLTDy7sQDA6tp6sL2cK9IxEzl+cWy0m7QvVy3Rvkopsr+JiWD71NQ0HbOycoP2dbbatC925XQ7xJkiHp3l+flkDgEAUxPhawoAFuaOBNsvX71Kx2x1+PVRr4e3BwC9Lp+Rra012nfqZD3YXijwaydPbmJ//39fwo3VRnCW9/Ix/iEAF939FXfvAPg6gEf2sD0hxAGyF2c/CeDStr/fGLUJIW5D9vSdfTeY2VkAZ4H4dyshxMGylyf7ZQCnt/19atT2Ftz9nLufcfczuciikxDiYNmLs/8IwP1mdreZFQF8BMCT+2OWEGK/ueWP8e7eM7NPAPjfGEpvj7v7T2NjDEAhC6+49ntcChn0B+HtFfmqdLvH5aTYqm9sNX56shpsr5MVcADobGzRvkGzQ/uqBa5OTFV5X7USXpmuFQt0zPUmX3EfOO8rl7liMDc3G2xfWVnh2yO2A8CJhWO0L4voAseOzQTbC5F9vXrpTdpXLESuj2l+HdR4F45OTQXbLSJdbDXIdRWRSPb0nd3dvwfge3vZhhBiPOgXdEIkgpxdiESQswuRCHJ2IRJBzi5EIhz4L+i2Y2Yokqg3i0SOHZk9GmzfajbomEKfy2u9iCxnkcCgheNh+ef4XNg+AHj14i9o32w+LLkAwPETx2lfrheJsiPSYT0iNR2dmqR9nkUkQCIZAUB1IixTZjk+93PzYbkOAMoR6XBjnQeZ9Dws6U5Nc9tP9iJRbxGPyRf4uFLGZcoBCbypT4YDZADAu2E5OhoRSXuEEL9SyNmFSAQ5uxCJIGcXIhHk7EIkwlhX47Msh6l6eOU3FgRx7Fh4FXxpeZmOKZf46ufayirtm5+do32lUniFv1LhK8UnT/NVdZZCCgC6Hb5qXQQPACoVw8fdaPIUWKdP8CATL4RXfQGgGEmP1emEg3xmj/JV8HyO76vd5gFFk/Xwyj8ANEnqr401HpDTbvO0VEdnuXJRmYikkTK+zXwnPI+tLX7Oeu2wyhBLM6cnuxCJIGcXIhHk7EIkgpxdiESQswuRCHJ2IRJhrNJbPp/HLAlqGQy47NJptYLt8yQwBQCqZR7AUSJ58ABgYY5Lb91uOPBm+foSHTNJpEYAyEeqnAw6fD4K+Vj5p7D00myEq9kAiFZpyZX5XLU7XBpqd8K560oRSXRzfYP2TdS4vNYnZbkAYPlGWGIrFbjsGatE1iHHBQAbm5u0LxeZ5M562P4Oq6oDoEZkW1p2C3qyC5EMcnYhEkHOLkQiyNmFSAQ5uxCJIGcXIhH2JL2Z2WsANgD0AfTc/Uz0/QByCEtKnXZYXgOAPpE7erEoqRbPT5fP+D1uffUG7TOEJRKPSD+XFxdp31SNy3LVPI8oW2/znGss6qlY5qe6Gym91Y1ITZaLSIe98JwMMj5XpUieuVhZo0akfFWxFJbsigUuAVbLXCYrRSL91lZ5NOXaKj9ntTIp/xSRiKv18JhcZMx+6Oz/0t2v78N2hBAHiD7GC5EIe3V2B/B3ZvaMmZ3dD4OEEAfDXj/Gv8/dL5vZMQDfN7OfufsPt79hdBM4CwCVUuQ7mRDiQNnTk93dL4/+XwLwHQAPBd5zzt3PuPuZYnGsP8UXQmzjlp3dzCbMbPLmawB/COCF/TJMCLG/7OVROw/gOzYMEcoD+B/u/r/iQxxGNJTYU5/JSb0+l4zaLR6RdaTCI54KOS675HPhryGtDpc7iiWeSLPTDidlBIDOOk+wWKzxiL5iMSwNWYHb2O9x6aoSiR7sRqKyJuvTwfZymc+HRZIyxiLKuqR8EgAYkdhidqAbua4afK76Hf7sLOZrtK8+M0PM4ElH17fC0nI/Ej16y87u7q8A+K1bHS+EGC+S3oRIBDm7EIkgZxciEeTsQiSCnF2IRBjzr1wMORIpFUuUV5kIyz8ti9Qhi9RR629x+QTGp+T4/HywvbccCcnqcXltgtRlA4D2Bpeapo6HpRoAaDR4tB9jdp4n2Wxvcvsz47+ILDDJq8SlvFaTH3OpyMflilzWWiPnutvlcl3W55JXq8VlOQy4vFmJSH15Ipe2unzur12/Fmzv9rjterILkQhydiESQc4uRCLI2YVIBDm7EIkw1tX4bq+Py9fCubhYsAsATLTDq+61Kb7i3ooER9QyvjJ6cuEI7StVw0EyWbjCEADgSJXnLJuucjsmj8/SvjYp8QQAL115M7yv6Trf3hY/gFaDr+4WIvPYXQ+Pa7W5EjIwvpqdRQJ5Njd52ageiYfq9Pkczk3zUlMzdX59vLzxCu07eoSPY4ddJyoUAAy64fyF+WyZjtGTXYhEkLMLkQhydiESQc4uRCLI2YVIBDm7EIkwVunN3dHuhWW0Gzd42aVqI1waaiYSKFCIHFq5FpHsGuu0b5PJUDxtHbJIYEJ7g8tQc5M8uOPnL79K+2rlsGxUq3AZp92O5Otb4EE31ueBMD2Sqy1ShQobrUhpqEguvytXw3IjAGAQPu7aVDhHHgC0mjyYqBfJT1cpc3lwcoJLsDdI0FMrUhJtsha+PmLln/RkFyIR5OxCJIKcXYhEkLMLkQhydiESQc4uRCLsKL2Z2eMA/gjAkrv/xqhtBsA3ANwF4DUAH3b3SOzXaGf5DMdmwtE6vRbPPzZZC+cz80h+tyzP72OVCpdBIsF3aDTD++v0+L5KEa3pXb92H+27cuUq7Wu3uZGzc+F8crFSWQNwCa0akSk7DZ4DMKuQCMEcl9e2boQjIgFgrcH7puo8om+zEZ6r/oDPR6nA5yOW4+3kHadp3yCiz66sh6/9QaSU0/RM+DyzHI/A7p7sfwXg4be1PQbgKXe/H8BTo7+FELcxOzr7qN7623/x8giAJ0avnwDwwX22Swixz9zqd/Z5d18cvb6CYUVXIcRtzJ4X6HyYYoZ+iTSzs2Z23szOx3J1CyEOllt19qtmtgAAo/+X2Bvd/Zy7n3H3M4VIaiEhxMFyq87+JIBHR68fBfDd/TFHCHFQ7EZ6+xqA9wOYNbM3AHwawGcBfNPMPg7gdQAf3s3OcmaolcJP93fdewcdV6mGI7lyGTf/yqVF2tfr8Wizidox2re6GY5CyoxLeRaRXDbWeKLEa0vXaV8k8AogMtrmJpc2B8432Ghs0b7NdR6VVa+GJdYO+L7cuKyVRSSl+mR4XwBQqYavkXw+EqE2ySPsshwfF5PKXv3lJdpn+fD1U4xEsG2QSNB+pIzajs7u7h8lXb+/01ghxO2DfkEnRCLI2YVIBDm7EIkgZxciEeTsQiTCWBNOZgbUimE5YaLKo6sKxbCcNDXNkyGSoCsAwMoyr4f10wsv0b7eIHxvLBV5csiZCV7j683Ll2nf8nUuvbV6XBpaZ3Ke8fu6c8UIq6s8mDGS7xOddrizWuVy0szRKdpnEfvbPf7LTCdSVLPFk2w6uDTbiyUQjdSx6w+4jZXItc/IF8JynRm/8PVkFyIR5OxCJIKcXYhEkLMLkQhydiESQc4uRCKMVXorFgo4dTwcVRaTJo5Mh+WrzLiMU5jlktfxuaO076kf/B/aNxiE9zc9yeWOK4s8Mmz+CJfQpqe4nLe6xGWj60tXwts7wpMyTkTqkE1Fxk1OcOlzcioso03UIvXhmvy4Xrn4Ou3LSNQYADSIBNjpcN2w0+bXYpbx56OBa5iVcjhpKgD0LTwn3Uh4Y5fUgfNI5J2e7EIkgpxdiESQswuRCHJ2IRJBzi5EIox1Nd7hcBJ1USLBLgBfAe1u8fxopYyvkHuB9/VJsAsA5HJhG6N3zEiZoTvvvJv2sTJOAHBqkeeTK5XCNtaneLBFFpmrpSUerPMv/vlDtO/4iRPB9p5zdWJ9+RrtW7nOA3KWV/l1kM/CgTBzszzoZhDJ4zbo85X6qRpXUFYi+QY9F57/TpPPVb8bDshh/gXoyS5EMsjZhUgEObsQiSBnFyIR5OxCJIKcXYhE2E35p8cB/BGAJXf/jVHbZwD8MYCbWsmn3P17O22r0+nil5feCPbVJrg0tLERllamSzwAIlZmqJ/nMl81Ukqo0wzLHcfmeNBNKceDO+695yQfFzm2XKFC+4pEeqtU+DHniPQDAN7kklF7nUuA3anwcR9d4JJXrsfn6s7Tp2hfqbxO+9a3VoPtxSK/9PPG+3qR4JQsUlKqTwJyACArh699j5Qpq5EgpFKBBwzt5sn+VwAeDrR/wd0fHP3b0dGFEIfLjs7u7j8EcGMMtgghDpC9fGf/hJk9Z2aPmxn/HCuEuC24VWf/EoB7ATwIYBHA59gbzeysmZ03s/Nt8hM/IcTBc0vO7u5X3b3vwx/ifhkA/ZG0u59z9zPufqZUGOtP8YUQ27glZzezhW1/fgjAC/tjjhDioNiN9PY1AO8HMGtmbwD4NID3m9mDABzAawD+ZDc7GwwGaDTDcsIAXP7pkPI+M3M8B9pgwL8ytFpcPjl9+jTte/GFnwfbC3lu+8JxHr02F5HsMuPRSwWuoqFYCp/SapXnu4tFvaF5nHetc8nrxrWlYLvneCRXpcztiNlfn+RRauuN8Nqy9/k1UClzadMi+e66kXpY9UqV9vXJ9VOv8n0ViMoXqf60s7O7+0cDzV/ZaZwQ4vZCv6ATIhHk7EIkgpxdiESQswuRCHJ2IRJhrL9yMTPksrBu1G5x2aJE5I52h0cFlcqRxJFdLmv1OzzyamMlHEHV2OQS1N133Ev7KiWuk9SqPPpu6giXhrq9sKTU70eiriIljWZnuR1LkTJUi9fCktczLzxHx9x33x18X9f4HL+5yBNV9hC+Rqbr/LgKkTJOpRKXAHuRqLd2i0uOA3IZVGem6Zj1zXDEYUR505NdiFSQswuRCHJ2IRJBzi5EIsjZhUgEObsQiTBW6a2QL+D4bDiKqlTg950qSb5YqXKhoReRmgqRWl71Mo+Wu/fkfLB9usqlsBPHuHxSK3Gppj7BJZ5WLpJwchCeq/U1flzlCb69QpWH2F25xhNOXrrRCLb//OJVvr2lSB24tUhyyy7ve+BdC8H2WpkfV7/BJV0M+Dlz59dVOVLLsE+iOi2LJL7sk1pv4DboyS5EIsjZhUgEObsQiSBnFyIR5OxCJMJYV+PdAM+F7y/lSI6uQj48plDi96rWBl9R7XbDq58AMDVZp30PPjgbbK8U+ApoocDziOUj+cz6Ax6MgUgetxIpa1Sr8dXgYiQgxwf8EimQcwkAL/4snK9vq8Fzv6EfLvMFAO02H1ckwVUAkMuVgu0eSdY2yPHrY70ZCZRq8POSzyKlyjrhlfVem2+v0w5f3x65bvRkFyIR5OxCJIKcXYhEkLMLkQhydiESQc4uRCLspvzTaQB/DWAew3JP59z9i2Y2A+AbAO7CsATUh919JbYtHwAdUsl1YyscOAEAucmwLNdc3aBjWC42AKhWeP6xLMclktXltWB7OyK9rW1yqabb5+WfvM0DV2Llpgq5cKBGox8J7uBKEzqkXBcAVEmpKQC4cmUx2N52HuDTziLyWkSmzMo8OKXRCB9crxPJeVjk+1pr8fN5ZZlf/g5uIzx8Ps34iamwuY9Iirt5svcA/Lm7PwDgvQD+zMweAPAYgKfc/X4AT43+FkLcpuzo7O6+6O4/Hr3eAHABwEkAjwB4YvS2JwB88KCMFELsnXf0nd3M7gLwbgBPA5h395uf1a5g+DFfCHGbsmtnN7MagG8B+KS7vyWJtw+j9oNfXM3srJmdN7PzrU7kp5JCiANlV85uZgUMHf2r7v7tUfNVM1sY9S8ACBbkdvdz7n7G3c/EsnUIIQ6WHZ3dzAzDeuwX3P3z27qeBPDo6PWjAL67/+YJIfaL3US9/Q6AjwF43syeHbV9CsBnAXzTzD4O4HUAH95pQ71+D9dJCaUTx47ScUyW6w14VNDM0Rm+vXUu8/V6vK9N5JpISjv87OKrtC9nPEKpGCnJdMddJ/g2a+Eor9YWl3H6ERmqFymHVYrYuLoSlilfuvw6HXP3XDhfHADMTE7RvvwMj1Tc2gp/dVzphe0DgDyJHASAjSa/5lYifQPnc2XEDQvG5dctkievR/LZAbtwdnf/B/ASUr+/03ghxO2BfkEnRCLI2YVIBDm7EIkgZxciEeTsQiTCWBNOdrpdXHrzzWBfocCjgpj8c/p0uJQUwKUJAFjfjElvXEfLWERZj0tXFy6+QvvyZHsA8OalcNQYAMzO8Gi5qalwuamXX75Ix8RKBv2bf/3btK/kXPI6Mh2OLKys819RLq+GZVkAGHS4TBm7dtY3wxGTW22e3LIRkRtzxbC0CQCtLrcxVsppQJJErmxyeXB2kpfsYujJLkQiyNmFSAQ5uxCJIGcXIhHk7EIkgpxdiEQYb603AD0PyzzLa1xmqFfDSQpjElqWj0gdkeR/W81I4ktya/QBl2omK3xfSzf4vp59nkeHTVSu0b52i0lbkQi7SMLGCy9zO+ar4dp3ADA5Ec5dcPw4H7P8+hXaZ5Ekm0vX+HycOhWOpuwP+PbaEfm1scWTnPYi2+zHrpF6LdjeiYRTbhEpsh+JwNSTXYhEkLMLkQhydiESQc4uRCLI2YVIhLGuxuezPI4cDa/G1usTdFy5EDbzxjpfGa1UwgEQANDt8DxdnVgOr0L43lgs8XJBnT4P/Fi6we1v9fh9eGYyHOwCAKfuCc9vl5TdAoD1DR6A8tobfKW7OMezBec8vL9alc+VHeMBPvUKD7rZXF2nfa+9/lqw/d5/dgcd0yHlmACg0+d55iKCR3QV/w6SQ69S5nPVbrLgq72VfxJC/AogZxciEeTsQiSCnF2IRJCzC5EIcnYhEmFH6c3MTgP4awxLMjuAc+7+RTP7DIA/BnBTm/mUu38vtq3+YICNRjj4YzDgEtWJ+WPB9mJEXmu0eV64iSqXcSzPpTfLwlEGhWIk91hEQms0+b6KlXDwDwDUjoYDJwCgmwtLXr08l97K03weB3kur21EApHuv+fOsB1XNumY3hYPFlnbvMH3dd/9tO+NSy8H27sRiZWVYwKAzUjpsEHk2Vmr8jlmcuQWKXsGAFk1nOMPkbyGu9HZewD+3N1/bGaTAJ4xs++P+r7g7v9lF9sQQhwyu6n1tghgcfR6w8wuADh50IYJIfaXd/Sd3czuAvBuAE+Pmj5hZs+Z2eNmxn/+JIQ4dHbt7GZWA/AtAJ9093UAXwJwL4AHMXzyf46MO2tm583sfK8f+T2hEOJA2ZWzm1kBQ0f/qrt/GwDc/aq79919AODLAB4KjXX3c+5+xt3P5CP1vIUQB8uO3mdmBuArAC64++e3tS9se9uHALyw/+YJIfaL3azG/w6AjwF43syeHbV9CsBHzexBDOW41wD8yU4bymU5VCfCEkQ/UkKp3Q3LcvlI2Z9CgUcMZRkfF7v/5YgKlS/c2teTdkRutDy3sTrFj21jIxxdVanwckHXrnFZK58nEg+AIxU+V9XpsLxZK3N5bX5uivZd9xW+ryqXB48dC+eg21jnkXKRoEjkeFAZ6qT0FgBM1vn8r6+Fow6vX79Ox3guLL/2elxi3c1q/D8gHDcX1dSFELcX+hItRCLI2YVIBDm7EIkgZxciEeTsQiTCWBNO5sxQroRlo5xxOanZaQfbSwMuT1UiSSANXJ4oRuQ8ZGHdpT41Q4e01nlZq06ey435Epfzmh2e9DDLwsfdDU/h0I4mrxm02OLyz8xJHiLRXVwKtleM76s8yed+bioc+QgA15d/SftmpkiEI9NRAWz2+GT92sIJ2jdwbn+jwWXWxla4byYi5bH8oVlEG9STXYhEkLMLkQhydiESQc4uRCLI2YVIBDm7EIkwVunNzFAkMe3VSEK+fj8chpSBhydlRCYbbo/LIL1I9J0T2zc2uOTSjERXxewvl/mp6UTqtnWb4b7GGpeTinkekTU5w+UfFEvcjkY4ui0rcuktVjPPSb0/IB5RViLRg9Mzc3xf6zwK0HL8nLU2tmhfsxE51+TaH0aXEzw8j1kkZ4Se7EIkgpxdiESQswuRCHJ2IRJBzi5EIsjZhUiEsUe9TRC5Jh9MczcaR9rLZV4PbXOT1xSLJZwslricVCHJMqNjIrfTJkk0CADzx+6gfa2IZDc9EZ6TwlxE1orky+yCS3a9PpcAK7WJsB2krhmAcKbDm3ZEZKjZOV77rjgIX+JZpIZdqcSvK3c+H9Uqt6MSO25yPTabPDkn63MiyQF6sguRDHJ2IRJBzi5EIsjZhUgEObsQibDjaryZlQH8EEBp9P6/cfdPm9ndAL4O4CiAZwB8zN15FAmGi60FslqYi6zsFrOwmRZbwc/x+9hgwJefiwW+SstK6wwG3PZyxI6pSb56GyszVC7yoKEBqV1UrfEx3TY/ba1mg/a1e1wVqBbD56wQCZ7ZavB9lSdJLjkAzQ6f/yY5toLz85zluFqTy/hKfT/y6Gw0+TW3uhoubRUr5VQsstX9veWgawP4PXf/LQzLMz9sZu8F8JcAvuDu9wFYAfDxXWxLCHFI7OjsPuSmaF0Y/XMAvwfgb0btTwD44IFYKITYF3Zbnz0bVXBdAvB9AL8AsOruNz9nvAGA5xUWQhw6u3J2d++7+4MATgF4CMCv73YHZnbWzM6b2fl25LuVEOJgeUer8e6+CuAHAH4bwLSZ3VyFOQXgMhlzzt3PuPuZElm0EUIcPDs6u5nNmdn06HUFwB8AuICh0//b0dseBfDdgzJSCLF3dvOoXQDwhJllGN4cvunuf2tmLwL4upn9JwD/D8BXdtpQzgyVYljyYHnmAMAHJAddxuWTep1LNTHpLZb3i0kkHpHepio8P1ot8knHI6Wtmm0+VzYIS5uDLi/jNDnBJcBIXEUkHAfYIiW7Cl1+zprNSNBNjgeFXF/boH2by+EcgNPTs3TM8lb4PANAORLZ5M7P58oNLituEMmxErl2WF/s2t7R2d39OQDvDrS/guH3dyHEPwH0CzohEkHOLkQiyNmFSAQ5uxCJIGcXIhEslrNq33dmdg3A66M/ZwFwPWh8yI63Ijveyj81O+5092Btq7E6+1t2bHbe3c8cys5lh+xI0A59jBciEeTsQiTCYTr7uUPc93Zkx1uRHW/lV8aOQ/vOLoQYL/oYL0QiHIqzm9nDZvZzM7toZo8dhg0jO14zs+fN7FkzOz/G/T5uZktm9sK2thkz+76ZvTz6/8gh2fEZM7s8mpNnzewDY7DjtJn9wMxeNLOfmtm/G7WPdU4idox1TsysbGb/aGY/GdnxH0ftd5vZ0yO/+YaZRWpKBXD3sf4DkGGY1uoeAEUAPwHwwLjtGNnyGoDZQ9jv7wJ4D4AXtrX9ZwCPjV4/BuAvD8mOzwD492OejwUA7xm9ngTwEoAHxj0nETvGOicYpoitjV4XADwN4L0AvgngI6P2/wrgT9/Jdg/jyf4QgIvu/ooPU09/HcAjh2DHoeHuPwRw423Nj2CYuBMYUwJPYsfYcfdFd//x6PUGhslRTmLMcxKxY6z4kH1P8noYzn4SwKVtfx9mskoH8Hdm9oyZnT0kG24y7+6Lo9dXAMwfoi2fMLPnRh/zD/zrxHbM7C4M8yc8jUOck7fZAYx5Tg4iyWvqC3Tvc/f3APhXAP7MzH73sA0Chnd2DG9Eh8GXANyLYY2ARQCfG9eOzawG4FsAPunub0kxM845Cdgx9jnxPSR5ZRyGs18GcHrb3zRZ5UHj7pdH/y8B+A4ON/POVTNbAIDR/0uHYYS7Xx1daAMAX8aY5sTMChg62Ffd/duj5rHPSciOw5qT0b7fcZJXxmE4+48A3D9aWSwC+AiAJ8dthJlNmNnkzdcA/hDAC/FRB8qTGCbuBA4xgedN5xrxIYxhTmyY+O8rAC64++e3dY11Tpgd456TA0vyOq4VxretNn4Aw5XOXwD4i0Oy4R4MlYCfAPjpOO0A8DUMPw52Mfzu9XEMa+Y9BeBlAH8PYOaQ7PjvAJ4H8ByGzrYwBjveh+FH9OcAPDv694Fxz0nEjrHOCYDfxDCJ63MY3lj+w7Zr9h8BXATwPwGU3sl29Qs6IRIh9QU6IZJBzi5EIsjZhUgEObsQiSBnFyIR5OxCJIKcXYhEkLMLkQj/HxyX73FdLOfSAAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["Image size: (32, 32, 3)\n","[1]\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPsAAAD5CAYAAADhukOtAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAd6ElEQVR4nO2dWYzk13Xev1Nrr7NvPYtmhhRDg1pI0Q2akiiaFC2DFhRQDBJCehD4IJhGYAER4jwQdBApQR5kJ5Is2ImMkcWYDhQttkRonCiJaMIAYUuhONyGy1DiNsPZetbu6b3Wk4eqCYbM/U73dE9Xj3W/HzCY6nvq/v+nbtWpf9X96pxj7g4hxC8/hdV2QAjRGxTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmlJYz2czuBvA1AEUAf+buX4ruv2btOt+8ZYRYuQRoln5PKhSMzvHgfSwSGw38mEYm8hkLnM0i/5d0RBiVUoNzBQcMhdn4gV/+yVaAK3222P2lnY3Nik+Vtp47fQJTk+PJZ2bJwW5mRQD/CcDHABwD8JSZ7Xf3l9mczVtG8KU/ejhpa7fb9Fz91WpyvNLXR+e0i+k5ANB0/kZQQpHaiq30eJm7Hr46vMT9aLB3FsQvgkKLWL1M5zQb/IitAnnQwJKCPfpdR/ibj+Bc7XbgP5kYvpkGfkSv01YrWKvofGS8Ga5V2o9/9y/vo3OW8zH+FgCvufsb7l4H8B0A9yzjeEKIFWQ5wb4DwNFL/j7WHRNCXIWs+AadmT1gZgfM7MDkhfGVPp0QgrCcYD8OYNclf+/sjr0Nd9/n7qPuPrpm7fplnE4IsRyWE+xPAbjOzPaaWQXApwDsvzJuCSGuNEvejXf3ppl9DsD/Rkd6e9jdX1poXpvsqpaqfLe43k7vcs5cmKJzyoN8+7ZY7qc2OJ/XJju7zWDnvDXfoLb5C3PUVunjakILfEd4em46OV4wfryhwbXU5sG52sHusxFZcam74MESh7vx7DmLNv6jHffIx2g3nq0HALTJqrSXqAowlqWzu/uPAPxoOccQQvQG/YJOiExQsAuRCQp2ITJBwS5EJijYhciEZe3GXy6tdguTM2lpqNHgEtXZM+eS48eOn6Zzin2D1DY0zH/cUy1wiYqpcvUm973daFLb7FR6LQCgv8z9QIHLLlP1tBxZr3Pp55q911Hbu6/dTW39USISkYZCyShIdvHA2I50OZYXtNSEnCUSSW8F8tjagey5FHRlFyITFOxCZIKCXYhMULALkQkKdiEyoae78dMzM/jJ//kpsfGd6QLSSTJzNb5rOt9K7+ADQLnCbcU2f/9rkQ3Veec77q1gp3iwwnez+40/NX1VXjqrVagnx2dmuGJw4OCz1Hb67Alqu2bvXmrbtGlTcrx/YIDO8ai8VJBk0iYlmgDA2PPZ61p4UXINSxpaQiJMNEdXdiEyQcEuRCYo2IXIBAW7EJmgYBciExTsQmRCbxNhWm1MTKfrrnlQ+81INkOpwuvWDQTSVbHAbRVUqG0eafmnGbxnTs3OUNvcDLdVjctrQ86TZIrkoZWrvO7e/PQ8tb1+9P8rGPz/OHJyjNrWrUnXtdu1cyeds3nTRn689Tx5qVQIuvgQWW6pyS6s4Q7A690tdD7W3SWuQXf5/uvKLkQmKNiFyAQFuxCZoGAXIhMU7EJkgoJdiExYlvRmZocBTAFoAWi6+2h0/7Y75uppmaFcjlwhWUEtnsnl4DYrBm16AkWj3khLVI3A9eGBIWqbmpyltsk6bw1VCzKoKpW0dDhc4Q+sWORy40yzxucFGYK1sxeS4xMTPLtxcIjLgyMj26nt2r3XUNtQJS1TVsk6AXE9xEZQFs7BJcAoM4/JcpE6yCTAqFbfldDZ73T3s1fgOEKIFUQf44XIhOUGuwP4sZk9bWYPXAmHhBArw3I/xt/m7sfNbAuAx8zsFXd/4tI7dN8EHgCAvsE1yzydEGKpLOvK7u7Hu/+fBvAogFsS99nn7qPuPlrpC/qiCyFWlCUHu5kNmtnwxdsAfhPAi1fKMSHElWU5H+O3Ani029amBOC/ufv/iia03TFXS8tXtQZ/32Gtc/qC9kNRTlCQYBe2EmK2maBYZl8/P1m1HBSObPB58zUuyzWNZHkFj6sSZI3FlwN+zFIpfczIj6lZvo4XXj1EbWfPcTFouC+dfbdzB8++Wx9k2FWC7MGof1W7yYuSNokqF2VTtjwtH6+I9ObubwC4canzhRC9RdKbEJmgYBciExTsQmSCgl2ITFCwC5EJPS046e6ok+wfa/GsINbXql0INLSIalAYsMjf/9qFtHxSClaxEWSvVUpcOhzq51lZs3VeILKJtI9BWzzUmtxYDYpzFoMsLyfXkUY7kKBIQU8AKBT48zJ2/jS1nail+/q9duQtOmfz5nSfOgDYvn0XtQ0NDVNbXzWQiYn02fBAeiO971pBIUpd2YXIBAW7EJmgYBciExTsQmSCgl2ITOjtbjyAZlCLi9EiO7jz01N0TinYIm8Fm/ilQp3aWAJNuRwlHwRLHNSSi4rhDQVtr5rk7TsoF4dG4EezxdejYPygTrI7WsGOe6sYFV3jpqhWm1l6rZpBMbnJE+PUduTkYWqrVviO+8DAALWxhK6oTl65nH5c9Rqva6gruxCZoGAXIhMU7EJkgoJdiExQsAuRCQp2ITKh54kwtUZaymF15gCgTX7cz9rmAEAzqNM2F8gT5UDWKhKpqVric5zUhAMA86BdUCCHeZvrUCwPYrbFE1Dq4OcqBPXp6sFzViY6pRf4uRoF/rgiea1QDGroWTppKMirCesXtgMNsz7Ha+hNzgTaIZM3a/x4LF7mZifpHF3ZhcgEBbsQmaBgFyITFOxCZIKCXYhMULALkQkLSm9m9jCATwA47e7v7Y5tAPBdAHsAHAZwn7vzVKEu7XYbs/NpKaQUaSFt4mYgT83NnKK2SoWLKxu28rZA/UQ9KQSyVjGoJeeFBrVdGE/XTgOAuWkur+zee31yfKoxSOeMj1+gtmqVZ2s1iIwKAEbS1NqRhsaXMZzXCg5ZQXqNC8WgFl7QeqsVpQ9GWYC1GWprTxxNjp87/gY/F6lP1wjkv8Vc2f8cwN3vGHsQwOPufh2Ax7t/CyGuYhYM9m6/9fPvGL4HwCPd248A+OQV9ksIcYVZ6nf2re5+snt7DJ2OrkKIq5hlb9B55zer9FuTmT1gZgfM7ECrXlvu6YQQS2SpwX7KzEYAoPs/rdLv7vvcfdTdR4uV6hJPJ4RYLksN9v0A7u/evh/AD6+MO0KIlWIx0tu3AdwBYJOZHQPwBQBfAvA9M/ssgCMA7lvMyRyOVpNIHoF8sr7anxxfM8hlobmB4KEZl4zK0zxbro9Uc9yyZQudM9/PixDWm1x66+/jj604kF4PABhYsyY5vm5whM7Ztol/vYqy7+YDOWyWzBs7wyXRxswEtZWdr1WpydthFdvp57rRCIqVFvnat8Gfz3bQKgtz/HyTJw4nx2vjfK2mp9PPWZMU+gQWEezu/mliumuhuUKIqwf9gk6ITFCwC5EJCnYhMkHBLkQmKNiFyISeFpyEO9BMSyFrB4bptHVERjt+8i06Zy74AU8tyFKzsSPUtndjWmLbsmsHnfPKiRPU5m2eXTUwwyXAtYNc/nnh6PPJ8aFtPOtqqMoLZr75i5eprTW4ntrWXff+9Lm2v5vOmTlyiNqKQabfGueZXrPTaTlvdor+DgyV8hC1Tc7z4pb96zZT28Z+/lxPk8w8BD0JjWWJBgVOdWUXIhMU7EJkgoJdiExQsAuRCQp2ITJBwS5EJvRceiu00jLDtiEud5waT8skjWGuTZSGuZRXMC6fNBu8bubum9+THB8PeqXV1wfZa8aXv7CGy2sTkzyDamo+Ldm1Z3lGWW2eS5FrAz+OTnPJa+ZMumDm7nXr6Jzt16flOgCYeJlnts0c53Lp+Km0bXKGF/RskexGALgwx19z/eu59Da8i9uapD/b/BzPRmQ9+CzQ63RlFyITFOxCZIKCXYhMULALkQkKdiEyoae78aViERvWpHfJNw3x3fOJ8+laXBv6eAJHtcx3JZsNvvu85dp0+yQAuGZkV3L8pbd4m551Vd7+qRm0T9qyje9aFzZx5WKmlH7/LgxzP8bPjFHb7i28HdZshfs/3kon3pwfP0PnFEbeRW07b7iV2o4fe4Xa5udmk+PlIn99eNBPqtjmtfBqEzy55gy4gtKcTftYKPJrcYu0IovQlV2ITFCwC5EJCnYhMkHBLkQmKNiFyAQFuxCZsJj2Tw8D+ASA0+7+3u7YFwH8NoCLOspD7v6jhY5VKRexe9uGpO2f/NZH6bwjb+xJjk/N80SM2jyXhZo1Lr3t2c7lH2+nJRnftI3OuRDIazOz3P+dm3hLqabzxJvpmXTCiPfxmnxDzmvJFdtc49m6lrehmjmdltimj6dlJgBo1PjjGtzKJcDt7/kItbUbF5Ljp0+8TufMTnOZDMF6rBnkCVYl8JqCTqKwMcvP5SThxYOWXIu5sv85gLsT419195u6/xYMdCHE6rJgsLv7EwDO98AXIcQKspzv7J8zs4Nm9rCZ8c+BQoirgqUG+9cBXAvgJgAnAXyZ3dHMHjCzA2Z2oEYKKwghVp4lBbu7n3L3lru3AXwDwC3Bffe5+6i7j1b7+IaOEGJlWVKwm9nIJX/eC+DFK+OOEGKlWIz09m0AdwDYZGbHAHwBwB1mdhMAB3AYwO8s5mRFc6wppqWhD97MJa9b3pNurzQ1y2t0NZy/jzWaXJ5ozvKvGnPz6fPtrfP2T7M1Lp9MBy2eymX+1IxP8lZIfXvT2W1zNb5Wvm4TtR0fO0ltr77J22/dsD4tHb51JtjrbXPpqtXHsyKHdt9MbR+5dk9y/PxRLr39/Jmnqe302M+pbdB4/ULUePut+RapJ9fmUmSpnJ5TJzUegUUEu7t/OjH8zYXmCSGuLvQLOiEyQcEuRCYo2IXIBAW7EJmgYBciE3pacLLdbGL6fFqeOPYml+p37tibHN8xspXOKQ1wqaYdtF2aPHuW2iYm0r5v3LCRzpmZ41LI7FyQETfNpZqp6bXUdv2116SPNxNIP3NcAtzcz7PlyjX+2H711z6UHD8/y+ccHktnqAFAvcDbULXmeGsokJZM29+ffk0BwOb3f4zamuPp4qcAcP7Qk9T25otPUdvZ13+RHC9U+HNWKKVlOQuKqerKLkQmKNiFyAQFuxCZoGAXIhMU7EJkgoJdiEzoqfRWLBSxrn8waZs6x/uNnSTZP5u28X5da4v8oQ0O8z5qWMslu6KlZaPhIE1/bdDDzgtL6wN36GXe22zz5rTUNDDAswpnA5nvxj08o+/XR3m22RzJLJzlyhCu28UzBE+d4/LgiTGeSTf25tHk+FtBP7f5QLbtX8cLX657b6pUY4ebrv8gte1482By/OBPeGnHM2NvJsfdeEFPXdmFyAQFuxCZoGAXIhMU7EJkgoJdiEzo6W58uVjEyIZ0EofVeYLE+VOnk+PPH3yNznn2RV4rbOuOXdT2kV+/ndp2bE77Pj/Od0CLpWCrPtiNL5X4U/Ou7bxMf39fOTlerfD39TWVAWrDMPex0eJ+TJEEoLkWV1AOvXqY2sZr6XZSAHDzNWkFAgCmt6TX8c2TXP05dISrHc+/wV9zU1Wu8mxaw9f4hq1pxWP0dp6Q8+xPH0uOH3ktSJ6hFiHELxUKdiEyQcEuRCYo2IXIBAW7EJmgYBciE8ydJwQAgJntAvAXALai0+5pn7t/zcw2APgugD3otIC6z92D/jfA+uEhv2P0fUnb+96VbhcEAGs3pqWVp1/iEskrgYzz4TvvorYm+Hr847tuS46v7+Nz+vp5UkWpzOWYuXku523eyNdqoJpONKoH7Z8irBi00QquFVZO14x79cgxOucP/8NXqe3saZ7s8mu3pp8XAPjEP/tMctxrvG7di0/9jNpONLl0+NIEb9fULvJafj43kRy/LoiJ468+kxz/yeP7ceH82aSTi7myNwH8nrvfAOBWAL9rZjcAeBDA4+5+HYDHu38LIa5SFgx2dz/p7s90b08BOARgB4B7ADzSvdsjAD65Uk4KIZbPZX1nN7M9AD4A4EkAW939YovPMXQ+5gshrlIWHexmNgTg+wA+7+5v6xnsnS/+yS+uZvaAmR0wswO1Bv9JrBBiZVlUsJtZGZ1A/5a7/6A7fMrMRrr2EQDJH7C7+z53H3X30Wo5/bttIcTKs2Cwm5mh04/9kLt/5RLTfgD3d2/fD+CHV949IcSVYjFZbx8G8BkAL5jZc92xhwB8CcD3zOyzAI4AuG+hAzVabZyZSEtKr5R5VlPx9Lnk+FsnTybHAeD2u+6gtof+9e9T2x//yX+mtv/x1/uT47+yg7d/KleK1DY4vIbaWi1ej23D2g3UtnlDeuskyqKrVHhmWyFolTXd4gXl6qX0deTrf/pf6JyXX3mB2qpl7uOj+/+S2nZeT6Te6/4RndNf5a2m1jh/zNuHqAlNsh4AMEMyAb3O5dLdO9I1BQ8E67RgsLv73wFg4iIXrIUQVxX6BZ0QmaBgFyITFOxCZIKCXYhMULALkQk9LThZqVaxY8+7k7YWpui8RiOdoVQZ5FrHyC7etsiNZ6nt2s7b+/zND7+fHJ8a44UXB/p5tlO1PyhGSQUQoFriP04aGkivyUA/z7CrBHJNX4X76H38sZ2ZSz+fLx16mc75jd/g4s6NN91Ibd/4My7n/fSJ/5kcv2YbLw5ZGeBy6dkxXqjy+Vd/QW3lQb6OW9ekfWnNcfm1nxQQ5a8aXdmFyAYFuxCZoGAXIhMU7EJkgoJdiExQsAuRCT2V3hyOJtJyQqvN5bBKNS0bDfKkMUxO84KNp07zDLuz53nNzGNj6ew7b/KiHH1VLrk0GlxaicqAVsv8aRuspmW5YonLSf19PMurr49Ldu0iF3reOnMqbXA+55P33kttH/rQh6jt6FFexPLR/X+dHH/2+d10Tmu+Tm3jpy5QW/3ccWortXjh0dnmdHL8jfGjdM5ANS2X1mpzdI6u7EJkgoJdiExQsAuRCQp2ITJBwS5EJvR0N77ZbOHsRHpHu9Hk7XhKhfR7kjf5bvazB1+ktvfd+KvBPF4HjbU7qpf4jnu9wXfBT548S23zQXuiSlBPrkxOFyVIlCs8saYc7Py3nLc7mp5P7wpv2MTbC2zayGv5TU1OUtu2kW3Udn48rbz8+Mc/onPmp2eo7dy59M45AMwYv3aWgoSoIlEo1m9Ntz0DgC1b04+5GdQu1JVdiExQsAuRCQp2ITJBwS5EJijYhcgEBbsQmbCg9GZmuwD8BTotmR3APnf/mpl9EcBvA7iobTzk7lzPQKf2W8vSco0VeR206dl0UsvcNJdBxs6kJT4A+KM//hNqO/LaEe5HPS1rvHacJ9Z4kOATtXhqtLisZS3eFqhI3r8tEN8sqHXmxtsdRXIePP24+we57+fO8eesGrSomrzAZblaLe3/4cM8ecYCSbfBnxZ4kDQUJTaxGoCDVV5jcXYm7WM7eL0tRmdvAvg9d3/GzIYBPG1mj3VtX3X3/7iIYwghVpnF9Ho7CeBk9/aUmR0CwEu3CiGuSi7rO7uZ7QHwAQBPdoc+Z2YHzexhM+P1lIUQq86ig93MhgB8H8Dn3X0SwNcBXAvgJnSu/F8m8x4wswNmdqBZ50UehBAry6KC3czK6AT6t9z9BwDg7qfcveXubQDfAHBLaq6773P3UXcfLQW/wRZCrCwLBruZGYBvAjjk7l+5ZHzkkrvdC4BnngghVp3F7MZ/GMBnALxgZs91xx4C8GkzuwkdVeEwgN9Z8GSlEjZs3ECsPDtsjmQh1YL2T4UgA2lifILaNm7eQm1rN6SzkJqB3NF2Xs+s2eAyVKvJJa+odl27kfYlkvlqNe5jm0hoAIAg661AriMTQfba3//k76ntzjvvpLaXXj5Ebexh14PnrBi8FtvB6yqSS1u14CtsPe3L0SO8Bl2xmq5p1wi+Ki9mN/7vkJZUQ01dCHF1oV/QCZEJCnYhMkHBLkQmKNiFyAQFuxCZYB5JK1eYtRvW+m133Za0tYNsItIxCsVATCgFRRkteshBxhPLKCoUuVTTrPM2VO0Wl7xagYzTDhaLPZ3NBpfypmd49mCtxuXBRiPwn6xjdLyBfl64c8/evdR24OlnqG1iMl24M8oCjGKiFdiCzlaAhTmCSQoF/rrqG0hn2M1PT6DVaiZPpiu7EJmgYBciExTsQmSCgl2ITFCwC5EJCnYhMqGnvd4MBrO0nFAu8/cdKxLZosXljHI5yJ2PErkCiaTKJLZgTiVYYUMftUVSWSvSKYk0FMmDGzexTESgEfjhQdYbkw7bbS5tzsxwmXLs1Clq27OHy3JTM+kssNm5dC+6DvwF0gxluUASDZ4z9twUSI/Dji39mjs9P8XnUIsQ4pcKBbsQmaBgFyITFOxCZIKCXYhMULALkQk9ld4cBve0zODtoBcZyVCKEomizLBQlitxicrICQuRI8HxioG0Ug4KIjYavKggLSwZuBj1oysaX6tmi8tyTOkrB4+5f3gdte14F+/1FvU3myP9+SJJMXrtWJH7H2XLRccsksWKi4SmswcvnD9L5+jKLkQmKNiFyAQFuxCZoGAXIhMU7EJkwoK78WbWB+AJANXu/f/K3b9gZnsBfAfARgBPA/iMe9DrCJ1d3/p8eoeR7XQDANsAjXZ2w93PqD5dsHvuJEGiHSROWNAuqBDsdJf7uc2LfDe+GuwWc5ZWj60Ztaiqp18K7SBZJDrebD1KuuG71vPN9FpFrzewxCsAHpwrSnapVLiaENVLZAyQGnRh8swijlsD8FF3vxGd9sx3m9mtAP4AwFfd/d0AxgF89nIdFkL0jgWD3TtcLD9a7v5zAB8F8Ffd8UcAfHJFPBRCXBEW25+92O3gehrAYwBeBzDh7hc/dx0DsGNlXBRCXAkWFezu3nL3mwDsBHALgF9Z7AnM7AEzO2BmB9j3OCHEynNZuznuPgHgbwF8EMA6M7u4s7ATwHEyZ5+7j7r7aDnYpBBCrCwLBruZbTazdd3b/QA+BuAQOkH/T7t3ux/AD1fKSSHE8lnMnv8IgEesUzyuAOB77v7fzexlAN8xs38P4FkA31zMCZ32yOFyB2slBOMySLVapbY4kYTbypW0HBbJfCVwCa0VJGM0ozp5UcIFkQFZzTIglqEsStapBkk+5fSnuOhckYQWrXGDyGsAUGin17gdnKsZ2IpBj6d2IB1Gz9lSWrBxiY37t2Cwu/tBAB9IjL+Bzvd3IcQ/APQLOiEyQcEuRCYo2IXIBAW7EJmgYBciE2wp2/5LPpnZGQBHun9uAsALZvUO+fF25Mfb+Yfmx25335wy9DTY33ZiswPuProqJ5cf8iNDP/QxXohMULALkQmrGez7VvHclyI/3o78eDu/NH6s2nd2IURv0cd4ITJhVYLdzO42s5+b2Wtm9uBq+ND147CZvWBmz5nZgR6e92EzO21mL14ytsHMHjOzV7v/r18lP75oZse7a/KcmX28B37sMrO/NbOXzewlM/sX3fGerkngR0/XxMz6zOxnZvZ8149/2x3fa2ZPduPmu2Z2eQUi3L2n/wAU0SlrdQ2ACoDnAdzQaz+6vhwGsGkVzns7gJsBvHjJ2B8CeLB7+0EAf7BKfnwRwL/q8XqMALi5e3sYwC8A3NDrNQn86OmaoJOnOtS9XQbwJIBbAXwPwKe6438K4J9fznFX48p+C4DX3P0N75Se/g6Ae1bBj1XD3Z8AcP4dw/egU7gT6FEBT+JHz3H3k+7+TPf2FDrFUXagx2sS+NFTvMMVL/K6GsG+A8DRS/5ezWKVDuDHZva0mT2wSj5cZKu7n+zeHgOwdRV9+ZyZHex+zF/xrxOXYmZ70Kmf8CRWcU3e4QfQ4zVZiSKvuW/Q3ebuNwP4LQC/a2a3r7ZDQOedHQg6T6wsXwdwLTo9Ak4C+HKvTmxmQwC+D+Dz7j55qa2Xa5Lwo+dr4sso8spYjWA/DmDXJX/TYpUrjbsf7/5/GsCjWN3KO6fMbAQAuv+fXg0n3P1U94XWBvAN9GhNzKyMToB9y91/0B3u+Zqk/FitNeme+7KLvDJWI9ifAnBdd2exAuBTAPb32gkzGzSz4Yu3AfwmgBfjWSvKfnQKdwKrWMDzYnB1uRc9WBPrFKb7JoBD7v6VS0w9XRPmR6/XZMWKvPZqh/Edu40fR2en83UAv79KPlyDjhLwPICXeukHgG+j83Gwgc53r8+i0zPvcQCvAvgbABtWyY//CuAFAAfRCbaRHvhxGzof0Q8CeK777+O9XpPAj56uCYD3o1PE9SA6byz/5pLX7M8AvAbgLwFUL+e4+gWdEJmQ+wadENmgYBciExTsQmSCgl2ITFCwC5EJCnYhMkHBLkQmKNiFyIT/Cw67s5At/GQ5AAAAAElFTkSuQmCC\n"},"metadata":{"needs_background":"light"}}]},{"cell_type":"markdown","source":["list the resize measurement and seed"],"metadata":{"id":"Pkf0aF9hqr55"}},{"cell_type":"code","source":["%%black\n","resize_size = (28,28)\n","\n","# We use the same seed to shuffle both the tf.data and Hub datasets so \n","# that we can efficiently compare them\n","shuffle_common_seed = 21\n"],"metadata":{"id":"4qqCx8crHO6A"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["Evaluate resize dataset"],"metadata":{"id":"uXvI1ah5rFzo"}},{"cell_type":"code","source":["%%black\n","# Hub path of new resized dataset -- this could be any path format (hub, s3, etc)\n","path_dataset_resized = './cifar10-dataset-resized-256x256'\n","\n","# We use the overwrite=True to make this code re-runnable\n","ds_cifar10_hub_resized = hub.like(path_dataset_resized, ds_cifar10_hub, overwrite = True)\n","\n","resize(new_size=resize_size).eval(ds_cifar10_hub, ds_cifar10_hub_resized, num_workers = 2)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"tVz0bEBwE2cT","outputId":"9420ab99-3646-493e-c407-41a2e8fb06fd","executionInfo":{"status":"ok","timestamp":1647163803594,"user_tz":-330,"elapsed":840815,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}}},"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["Evaluating resize: 100%|██████████| 50000/50000 [14:00<00:00, 59.51it/s]\n"]}]},{"cell_type":"markdown","source":["Normalize the data"],"metadata":{"id":"OSja_vmnrScC"}},{"cell_type":"code","source":["%%black\n","def to_model_fit(item):\n"," x = item['images']/255 # normalize\n"," y = item['labels']\n"," return (x, y)"],"metadata":{"id":"hU5x3gq0oL_c"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["Fit the model"],"metadata":{"id":"9jS5Hl1ZrWmC"}},{"cell_type":"code","source":["%%black\n","ds_cifar10_hub_tf = ds_cifar10_hub_resized.tensorflow()\n","\n","ds_cifar10_hub_tf = (ds_cifar10_hub_tf\n"," # calling to_model_fit\n"," .map(lambda x: to_model_fit(x))\n"," .batch(batch_size)\n"," .shuffle(len(ds_cifar10_hub_resized), seed=shuffle_common_seed)\n"," .prefetch(tf.data.AUTOTUNE))\n"],"metadata":{"id":"Bxw6RP0NF0MG"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["visualise the labeled data from batch"],"metadata":{"id":"IJSb6WWwrbp8"}},{"cell_type":"code","source":["%%black\n","visualize_img_label_in_first_batch_TF_ds(ds_cifar10_hub_tf, batch_size)"],"metadata":{"id":"A0JXebfyn29r"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# Train the Model"],"metadata":{"id":"hm8CiCXpQExW"}},{"cell_type":"code","source":["%%black\n","num_classes = 10\n","cifar10_class = ['airplane', 'automobile','bird','cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck']"],"metadata":{"id":"wOerqMwBiEa5"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["compile the model"],"metadata":{"id":"PggNk5CYrjUr"}},{"cell_type":"code","source":["%black\n","def train_with_simple_CNN_function(ds):\n"," model = tf.keras.Sequential([\n"," tf.keras.layers.InputLayer(input_shape=(resize_size[0], resize_size[1], 3)),\n"," tf.keras.layers.Conv2D(16,3,padding='same',activation='relu'),\n"," tf.keras.layers.MaxPooling2D(),\n"," tf.keras.layers.Conv2D(32,3,padding='same',activation='relu'),\n"," tf.keras.layers.MaxPooling2D(),\n"," tf.keras.layers.Conv2D(64,3,padding='same',activation='relu'),\n"," tf.keras.layers.MaxPooling2D(),\n"," tf.keras.layers.Dropout(0.2),\n"," tf.keras.layers.Flatten(),\n"," tf.keras.layers.Dense(128,activation='relu'),\n"," tf.keras. layers.Dense(len(cifar10_class), activation='softmax')\n"," ])\n","\n"," # Compile the model, we are using the Adam optimizer, the SparseCategoricalCrossentropy loss\n"," # and SparseCategoricalAccuracy because our labels are not categorical \n"," model.compile(\n"," optimizer='adam',\n"," loss=tf.keras.losses.SparseCategoricalCrossentropy(),\n"," metrics=[tf.keras.metrics.SparseCategoricalAccuracy()]\n"," )\n","\n"," # Start training over 2 epoch\n"," history = model.fit(ds, epochs = 2)\n"," model.summary()"],"metadata":{"id":"jPA70A6UP-Z7"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["call the training function and run iteration"],"metadata":{"id":"vtveQrlDrtg9"}},{"cell_type":"code","source":["%%black\n","train_with_simple_CNN_function(ds_cifar10_hub_tf)"],"metadata":{"id":"FTOFhjauH_wY"},"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git a/colabs/hub_torch.ipynb b/colabs/hub_torch.ipynb new file mode 100644 index 0000000..eb6cf02 --- /dev/null +++ b/colabs/hub_torch.ipynb @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"hub_torch.ipynb","provenance":[]},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","source":["# Install and load Hub"],"metadata":{"id":"5s4MWEw5fAMp"}},{"cell_type":"code","source":["!pip install black\n","!pip install blackcellmagic\n","%load_ext blackcellmagic"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"5zcH0zXXVl9E","executionInfo":{"status":"ok","timestamp":1647882106808,"user_tz":-330,"elapsed":13435,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}},"outputId":"877459d7-0663-4b3d-ab59-c9f34c79f7ef"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting black\n"," Downloading black-22.1.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.4 MB)\n","\u001b[K |████████████████████████████████| 1.4 MB 5.3 MB/s \n","\u001b[?25hCollecting typed-ast>=1.4.2\n"," Downloading typed_ast-1.5.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (843 kB)\n","\u001b[K |████████████████████████████████| 843 kB 38.2 MB/s \n","\u001b[?25hCollecting click>=8.0.0\n"," Downloading click-8.0.4-py3-none-any.whl (97 kB)\n","\u001b[K |████████████████████████████████| 97 kB 6.7 MB/s \n","\u001b[?25hCollecting mypy-extensions>=0.4.3\n"," Downloading mypy_extensions-0.4.3-py2.py3-none-any.whl (4.5 kB)\n","Collecting pathspec>=0.9.0\n"," Downloading pathspec-0.9.0-py2.py3-none-any.whl (31 kB)\n","Requirement already satisfied: tomli>=1.1.0 in /usr/local/lib/python3.7/dist-packages (from black) (2.0.1)\n","Collecting platformdirs>=2\n"," Downloading platformdirs-2.5.1-py3-none-any.whl (14 kB)\n","Requirement already satisfied: typing-extensions>=3.10.0.0 in /usr/local/lib/python3.7/dist-packages (from black) (3.10.0.2)\n","Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from click>=8.0.0->black) (4.11.2)\n","Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->click>=8.0.0->black) (3.7.0)\n","Installing collected packages: typed-ast, platformdirs, pathspec, mypy-extensions, click, black\n"," Attempting uninstall: click\n"," Found existing installation: click 7.1.2\n"," Uninstalling click-7.1.2:\n"," Successfully uninstalled click-7.1.2\n","\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","flask 1.1.4 requires click<8.0,>=5.1, but you have click 8.0.4 which is incompatible.\u001b[0m\n","Successfully installed black-22.1.0 click-8.0.4 mypy-extensions-0.4.3 pathspec-0.9.0 platformdirs-2.5.1 typed-ast-1.5.2\n","Collecting blackcellmagic\n"," Downloading blackcellmagic-0.0.3-py3-none-any.whl (4.2 kB)\n","Collecting black<22.0,>=21.9b0\n"," Downloading black-21.12b0-py3-none-any.whl (156 kB)\n","\u001b[K |████████████████████████████████| 156 kB 4.9 MB/s \n","\u001b[?25hRequirement already satisfied: jupyter<2.0.0,>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from blackcellmagic) (1.0.0)\n","Requirement already satisfied: click>=7.1.2 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (8.0.4)\n","Requirement already satisfied: typed-ast>=1.4.2 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (1.5.2)\n","Collecting tomli<2.0.0,>=0.2.6\n"," Downloading tomli-1.2.3-py3-none-any.whl (12 kB)\n","Requirement already satisfied: mypy-extensions>=0.4.3 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (0.4.3)\n","Requirement already satisfied: pathspec<1,>=0.9.0 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (0.9.0)\n","Requirement already satisfied: platformdirs>=2 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (2.5.1)\n","Requirement already satisfied: typing-extensions>=3.10.0.0 in /usr/local/lib/python3.7/dist-packages (from black<22.0,>=21.9b0->blackcellmagic) (3.10.0.2)\n","Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from click>=7.1.2->black<22.0,>=21.9b0->blackcellmagic) (4.11.2)\n","Requirement already satisfied: ipywidgets in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (7.6.5)\n","Requirement already satisfied: jupyter-console in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.2.0)\n","Requirement already satisfied: notebook in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.3.1)\n","Requirement already satisfied: nbconvert in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.6.1)\n","Requirement already satisfied: ipykernel in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.10.1)\n","Requirement already satisfied: qtconsole in /usr/local/lib/python3.7/dist-packages (from jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.2.2)\n","Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->click>=7.1.2->black<22.0,>=21.9b0->blackcellmagic) (3.7.0)\n","Requirement already satisfied: tornado>=4.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.1.1)\n","Requirement already satisfied: jupyter-client in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.3.5)\n","Requirement already satisfied: traitlets>=4.1.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.1.1)\n","Requirement already satisfied: ipython>=4.0.0 in /usr/local/lib/python3.7/dist-packages (from ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.5.0)\n","Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.4 in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (1.0.18)\n","Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.8.1)\n","Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (57.4.0)\n","Requirement already satisfied: pexpect in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.8.0)\n","Requirement already satisfied: decorator in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.4.2)\n","Requirement already satisfied: pickleshare in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.7.5)\n","Requirement already satisfied: pygments in /usr/local/lib/python3.7/dist-packages (from ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (2.6.1)\n","Requirement already satisfied: wcwidth in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.2.5)\n","Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.7/dist-packages (from prompt-toolkit<2.0.0,>=1.0.4->ipython>=4.0.0->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (1.15.0)\n","Requirement already satisfied: ipython-genutils~=0.2.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.2.0)\n","Requirement already satisfied: nbformat>=4.2.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.1.3)\n","Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (1.0.2)\n","Requirement already satisfied: widgetsnbextension~=3.5.0 in /usr/local/lib/python3.7/dist-packages (from ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (3.5.2)\n","Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /usr/local/lib/python3.7/dist-packages (from nbformat>=4.2.0->ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.3.3)\n","Requirement already satisfied: jupyter-core in /usr/local/lib/python3.7/dist-packages (from nbformat>=4.2.0->ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.9.2)\n","Requirement already satisfied: attrs>=17.4.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (21.4.0)\n","Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.18.1)\n","Requirement already satisfied: importlib-resources>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets->jupyter<2.0.0,>=1.0.0->blackcellmagic) (5.4.0)\n","Requirement already satisfied: terminado>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from notebook->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.13.3)\n","Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-packages (from notebook->jupyter<2.0.0,>=1.0.0->blackcellmagic) (2.11.3)\n","Requirement already satisfied: Send2Trash in /usr/local/lib/python3.7/dist-packages (from notebook->jupyter<2.0.0,>=1.0.0->blackcellmagic) (1.8.0)\n","Requirement already satisfied: pyzmq>=13 in /usr/local/lib/python3.7/dist-packages (from jupyter-client->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (22.3.0)\n","Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.7/dist-packages (from jupyter-client->ipykernel->jupyter<2.0.0,>=1.0.0->blackcellmagic) (2.8.2)\n","Requirement already satisfied: ptyprocess in /usr/local/lib/python3.7/dist-packages (from terminado>=0.8.1->notebook->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.7.0)\n","Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from jinja2->notebook->jupyter<2.0.0,>=1.0.0->blackcellmagic) (2.0.1)\n","Requirement already satisfied: defusedxml in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.7.1)\n","Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.8.4)\n","Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.4)\n","Requirement already satisfied: bleach in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (4.1.0)\n","Requirement already satisfied: testpath in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.6.0)\n","Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.7/dist-packages (from nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (1.5.0)\n","Requirement already satisfied: webencodings in /usr/local/lib/python3.7/dist-packages (from bleach->nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (0.5.1)\n","Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from bleach->nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (21.3)\n","Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->bleach->nbconvert->jupyter<2.0.0,>=1.0.0->blackcellmagic) (3.0.7)\n","Requirement already satisfied: qtpy in /usr/local/lib/python3.7/dist-packages (from qtconsole->jupyter<2.0.0,>=1.0.0->blackcellmagic) (2.0.1)\n","Installing collected packages: tomli, black, blackcellmagic\n"," Attempting uninstall: tomli\n"," Found existing installation: tomli 2.0.1\n"," Uninstalling tomli-2.0.1:\n"," Successfully uninstalled tomli-2.0.1\n"," Attempting uninstall: black\n"," Found existing installation: black 22.1.0\n"," Uninstalling black-22.1.0:\n"," Successfully uninstalled black-22.1.0\n","Successfully installed black-21.12b0 blackcellmagic-0.0.3 tomli-1.2.3\n"]}]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"aumgJyBDUary","executionInfo":{"status":"ok","timestamp":1647410981456,"user_tz":-330,"elapsed":17507,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}},"outputId":"28d47353-bbb3-4eec-975a-63df780d5f58"},"outputs":[{"output_type":"stream","name":"stdout","text":["Collecting hub\n"," Downloading hub-2.3.1-py3-none-any.whl (287 kB)\n","\u001b[?25l\r\u001b[K |█▏ | 10 kB 18.4 MB/s eta 0:00:01\r\u001b[K |██▎ | 20 kB 20.1 MB/s eta 0:00:01\r\u001b[K |███▍ | 30 kB 24.5 MB/s eta 0:00:01\r\u001b[K |████▌ | 40 kB 16.1 MB/s eta 0:00:01\r\u001b[K |█████▊ | 51 kB 6.9 MB/s eta 0:00:01\r\u001b[K |██████▉ | 61 kB 8.0 MB/s eta 0:00:01\r\u001b[K |████████ | 71 kB 8.7 MB/s eta 0:00:01\r\u001b[K |█████████ | 81 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████▎ | 92 kB 8.2 MB/s eta 0:00:01\r\u001b[K |███████████▍ | 102 kB 9.0 MB/s eta 0:00:01\r\u001b[K |████████████▌ | 112 kB 9.0 MB/s eta 0:00:01\r\u001b[K |█████████████▋ | 122 kB 9.0 MB/s eta 0:00:01\r\u001b[K |██████████████▉ | 133 kB 9.0 MB/s eta 0:00:01\r\u001b[K |████████████████ | 143 kB 9.0 MB/s eta 0:00:01\r\u001b[K |█████████████████ | 153 kB 9.0 MB/s eta 0:00:01\r\u001b[K |██████████████████▏ | 163 kB 9.0 MB/s eta 0:00:01\r\u001b[K |███████████████████▍ | 174 kB 9.0 MB/s eta 0:00:01\r\u001b[K |████████████████████▌ | 184 kB 9.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████▋ | 194 kB 9.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████▊ | 204 kB 9.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████ | 215 kB 9.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████████ | 225 kB 9.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▏ | 235 kB 9.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▎ | 245 kB 9.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▌ | 256 kB 9.0 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▋ | 266 kB 9.0 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▊ | 276 kB 9.0 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▉| 286 kB 9.0 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 287 kB 9.0 MB/s \n","\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from hub) (1.21.5)\n","Collecting numcodecs\n"," Downloading numcodecs-0.9.1-cp37-cp37m-manylinux2010_x86_64.whl (6.2 MB)\n","\u001b[K |████████████████████████████████| 6.2 MB 22.9 MB/s \n","\u001b[?25hCollecting boto3\n"," Downloading boto3-1.21.20-py3-none-any.whl (132 kB)\n","\u001b[K |████████████████████████████████| 132 kB 43.3 MB/s \n","\u001b[?25hRequirement already satisfied: pillow in /usr/local/lib/python3.7/dist-packages (from hub) (7.1.2)\n","Collecting pathos\n"," Downloading pathos-0.2.8-py2.py3-none-any.whl (81 kB)\n","\u001b[K |████████████████████████████████| 81 kB 9.5 MB/s \n","\u001b[?25hCollecting humbug>=0.2.6\n"," Downloading humbug-0.2.7-py3-none-any.whl (11 kB)\n","Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from hub) (4.63.0)\n","Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from hub) (7.1.2)\n","Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from humbug>=0.2.6->hub) (2.23.0)\n","Collecting botocore<1.25.0,>=1.24.20\n"," Downloading botocore-1.24.20-py3-none-any.whl (8.6 MB)\n","\u001b[K |████████████████████████████████| 8.6 MB 27.6 MB/s \n","\u001b[?25hCollecting jmespath<1.0.0,>=0.7.1\n"," Downloading jmespath-0.10.0-py2.py3-none-any.whl (24 kB)\n","Collecting s3transfer<0.6.0,>=0.5.0\n"," Downloading s3transfer-0.5.2-py3-none-any.whl (79 kB)\n","\u001b[K |████████████████████████████████| 79 kB 6.8 MB/s \n","\u001b[?25hCollecting urllib3<1.27,>=1.25.4\n"," Downloading urllib3-1.26.8-py2.py3-none-any.whl (138 kB)\n","\u001b[K |████████████████████████████████| 138 kB 42.9 MB/s \n","\u001b[?25hRequirement already satisfied: python-dateutil<3.0.0,>=2.1 in /usr/local/lib/python3.7/dist-packages (from botocore<1.25.0,>=1.24.20->boto3->hub) (2.8.2)\n","Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil<3.0.0,>=2.1->botocore<1.25.0,>=1.24.20->boto3->hub) (1.15.0)\n","Collecting ppft>=1.6.6.4\n"," Downloading ppft-1.6.6.4-py3-none-any.whl (65 kB)\n","\u001b[K |████████████████████████████████| 65 kB 776 kB/s \n","\u001b[?25hRequirement already satisfied: dill>=0.3.4 in /usr/local/lib/python3.7/dist-packages (from pathos->hub) (0.3.4)\n","Collecting pox>=0.3.0\n"," Downloading pox-0.3.0-py2.py3-none-any.whl (30 kB)\n","Requirement already satisfied: multiprocess>=0.70.12 in /usr/local/lib/python3.7/dist-packages (from pathos->hub) (0.70.12.2)\n","Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->humbug>=0.2.6->hub) (3.0.4)\n","Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->humbug>=0.2.6->hub) (2.10)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->humbug>=0.2.6->hub) (2021.10.8)\n","Collecting urllib3<1.27,>=1.25.4\n"," Downloading urllib3-1.25.11-py2.py3-none-any.whl (127 kB)\n","\u001b[K |████████████████████████████████| 127 kB 10.0 MB/s \n","\u001b[?25hInstalling collected packages: urllib3, jmespath, botocore, s3transfer, ppft, pox, pathos, numcodecs, humbug, boto3, hub\n"," Attempting uninstall: urllib3\n"," Found existing installation: urllib3 1.24.3\n"," Uninstalling urllib3-1.24.3:\n"," Successfully uninstalled urllib3-1.24.3\n","\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.\u001b[0m\n","Successfully installed boto3-1.21.20 botocore-1.24.20 hub-2.3.1 humbug-0.2.7 jmespath-0.10.0 numcodecs-0.9.1 pathos-0.2.8 pox-0.3.0 ppft-1.6.6.4 s3transfer-0.5.2 urllib3-1.25.11\n"]}],"source":["!pip3 install hub"]},{"cell_type":"code","source":["%%black\n","import matplotlib.pyplot as plt"],"metadata":{"id":"JmJ66lOfheCP"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["%%black\n","import hub\n","from PIL import Image\n","import numpy as np\n","import numpy as np\n","import pandas as pd\n","import random\n","import os, time\n","import torch\n","from torchvision import datasets, transforms, models\n","\n","ds_train = hub.load('hub://activeloop/fashion-mnist-train')\n","ds_test = hub.load('hub://activeloop/fashion-mnist-test')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"JBJbpknSVOvH","executionInfo":{"status":"ok","timestamp":1647410992818,"user_tz":-330,"elapsed":11374,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}},"outputId":"bcbdb8ae-5bdc-42f7-ff6e-2e14cebfa9d8"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["NumExpr defaulting to 2 threads.\n","Opening dataset in read-only mode as you don't have write permissions.\n","hub://activeloop/fashion-mnist-train loaded successfully.\n","This dataset can be visualized at https://app.activeloop.ai/activeloop/fashion-mnist-train.\n","Opening dataset in read-only mode as you don't have write permissions.\n","hub://activeloop/fashion-mnist-test loaded successfully.\n","This dataset can be visualized at https://app.activeloop.ai/activeloop/fashion-mnist-test.\n"]}]},{"cell_type":"markdown","source":["# Load and visualise data using the link in the output\n","Train data\n","\n","![image.png]()\n","\n","Test data(no labels)\n","\n","![image.png]()\n"],"metadata":{"id":"38jKrzUiWGSv"}},{"cell_type":"code","source":["%%black\n","ds_train = hub.load('hub://activeloop/fashion-mnist-train')\n","ds_test = hub.load('hub://activeloop/fashion-mnist-test')"],"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"m8rymZ-zWAFy","executionInfo":{"status":"ok","timestamp":1647411006635,"user_tz":-330,"elapsed":3667,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}},"outputId":"f986474d-3481-448d-fd11-22c1869401e1"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Opening dataset in read-only mode as you don't have write permissions.\n","hub://activeloop/fashion-mnist-train loaded successfully.\n","This dataset can be visualized at https://app.activeloop.ai/activeloop/fashion-mnist-train.\n","Opening dataset in read-only mode as you don't have write permissions.\n","hub://activeloop/fashion-mnist-test loaded successfully.\n","This dataset can be visualized at https://app.activeloop.ai/activeloop/fashion-mnist-test.\n"]}]},{"cell_type":"code","source":["%%black\n","Image.fromarray(ds_train.images[0].numpy()).resize((100,100))"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":117},"id":"08rebET1ZQWf","executionInfo":{"status":"ok","timestamp":1647256935605,"user_tz":-330,"elapsed":31,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}},"outputId":"3f9cde76-3a08-45ef-e798-7fea8a3e9fb0"},"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":[""],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAGQAAABkCAAAAABVicqIAAAOgklEQVR4nO1ayXIkR3J97h6RS22oAtDobm5D2YiiaUwXmUn//xW6SCaTaTQcTg97QQO1ZGaE+9MhC71whsMGTQcdGIcqoDIrXoa7h/t7HgX8On4dv47/F0N+6RdNjeHxwUT8yXvTLwXJy46n/QOIQPDTKI8BEbyfyPrLjb8Zy/mKCCDBH999/sIvWomo9durbY398YM5/y/NJWpNv1jtLlfTcDcFELWQIsIHtIdBQAB5JIggAE3N5up6u1ro6XRkFZZDAch5KYIHB5EAKPI4kPlhRZvl7rMvr1qZ8jhKEQ5SJrz3lswgDx88EuQ8Ure+fPrFdSpHK1WrYMh6536OZs7W+tg/j1qJBiDNand9c3OtQ1aPHEnL5dXt8e5umO8iP4hmmf//dBARFQDarq+vn1zt5KRK6dFkHw9vX//Rp3cb890yVAgSfLS5pFlfXl3tLmAUSo/cMKb9KoZ6rB8aSVISIaMGH+UTggDT8mK33awpIZS2BiPlzBLLwzC5e1QPWEpt14pPUxmLPwKEBAmE9ZvterWMKISm/f2J3bK/ypu7+/1hGIfxeJq0Wy7XFyuc3t4dQD7GXDHvhLzYbFZ9G6WjiIzlzldNv1nfDPe3t/vD/nAnquvd7vLqAnc/NAmEP85cEOmW682mzyY5hyiGNotZajJr3zZd17bJBttcXu52a2RYAqU+zvGa8ma3261aOGFJVCL6KXUaU9QS1oY0/bam5XrZ8ii66xfZ2ulTQebYt3Z1fX21XeWY4JpULS+HaZrKOE3TNFZpbAnR1LQ67Qe9uLjZGJrxcStJi6vnz643ixQBipk1C4nx/u3bYTyNlZozLHetKcrberDtbrcc74s9DqTZff71F9erNgWhEkJoQiteAcuEBENSm5XhufP2+ulO2pjKz4J8VJ/759/+9qubZaNOnPeNwtq1LddjhaCMYwn38AhcXK6++nJ5rLcvfx7k3SCA/vk33z5ZdSZCCMEgHcyrvpbqIhz2d4fTMJUattjutp8/kTy+ehGPM1fePH22S1AAEMEMo5rBcIrEKYsg3EXT4vrZ7sl65LC/f2SqF1VVIemEikBEdL4SAUggkLvlqVTk7dMnq6bu96fyCan+o8oQ0+nUZ6V7iImKQFUQEeeSmBap30zFA2m1u7A4/PDqEI8tWj6djj0zvYSEqqiKKAiSISSkyYtwkqLdqquH+1e3Ax9dGRlBkmSIkBIiKsIIkCQhYgJAKNIusijd4/EgIqoqIiIICSJAipoAxBlEVYQERDW3XaN4NIiamapSNBgRUb24NF1WciYrVTWpRIgWQ+pXi+bRIGo5m+JcvKPWMo1Fe1UwziwrTCgRUosSue/b/Ikg79ihpqZJwoggIaDXMk6WYRoMmWNaGAAkJhLI7WK5/IR6Ih+QYM1tm+l0DyhUGF4rYFkLAFEVBYOiIhxHJtFutb3/pCwswpmDatv2XS4RHqEiFAGD0JQ1BKJqqvDqIqY+FrYN8uLi7fHTfDJTR11uVn2bnDMFnam8mqmqyPw0IhAQmrQc975YBVPbf1LuEhEHtF9dfXa9btMEQqmCmXxrzgJCKQjBjNt2ON69mDZXuTDl/PMglDkX6vLm8y+erFpVDSVEQFHLEilLAAqCDhGIpaYP3v/puMPyVKmPKFrarq8v122GymwcilrWTMvioChJkAIRS8k57e+lL/enyX+eEslDANNLKQGBiEJAEKIeDDUJUAChqipJenU0y4rD8PLN/eFnicTsSRKI4+vF9d0UpjbTCqoIGUHCARElNJs6PUYGLr5YjsP++z+9vP15SiSCOZo43r9+sx9dRQwCEkhJ6FFrCcBEVDSZIKqPhXLZbV5898P3L17efxqDnPl67pd9hmvMygYQNYW5sBICyJw9AwgX2HqV7+vdm7f74cO0Ig9iDJw5AgAwHv7y7Tf/8M3zpkZxigoJRFWJIFTnjCACgCQDmlYSXRyPY/0gd8l5d80gwQed+b4yPv3nf/1q2xeWSp0vR52NKUaCoTyXFQKSevOGpTg+SpDn/SrvVeZHY/XFP/3LjR+nqAFSAEpwjgsxRszrFkQQEE2tdW1WUSszyLspH97Id7JJLaWUzOzq68+vF+O+eLwLB4+HJ4MoVAR0+JxzVCW1y/Wy0Xkl8iAmKRQK8b5jAuhiuV6vln13+bsdynEYeZ4WCI+5/sr5FQjSPQAVuLC7fHZ3e/sehPOG+8uuwmJ7+eTmenexvni6Op1OQ4GqgbODPaChoioqCpAR9ABUlQXeXX1+9+JHReuDlsIcohC5uLx+8uz5k6vLi1XbTHWqATnvm3M7YFbV548AUaGIKlyj3T3989JmEH68ANVkyVSs6bp2e3l5eXm1vbhYdUIPyeYsrkkBQgUE1UxjKkFRy42BBEUkHM1mt108gHxkH81N23ZNtna1u7zYbtfLvuu6LiEikHKMY4GGCURMleGSk4zDfqLmbtP2Sg8PCoN5vV139pc13tqm7RaLZd+kfvv8+dV23WcE1VgjoGbhU4QiRNQ0G9wlZ5RyONE6Re5TVC/VwUCWzap9iC7VnLMKJOWmadquXy67bN326bOrzbJRnyrPseQK1yYiQgxKUdUkOWEyFZjZOdNxTpoprZZnELG02F5fLkwlNzmnlNuuyyLWb9etgeHhJOjVI6htt/LjsUjK4m7SmlkChpKRuzbXk3iNCIpBky0XeQbRtNx9+dvf7BrV3GRTkWQZrNSc6uBZvDqFDC/TabLL9UXgVAALr5pyZwos1rFA05iWGtUJFSPEUt/muUtki93zr7/95kmrmpskCIpo1FI8ECWqRMRZmJa7vdqlWTaFCPiQHcHUJW0ya/FaA5oMCIqmpDNI2n71d7/9zWeXWSQlQ3gAEmZWq8+yg5xJ8HQ6vKi1y52uW4iKmcZEFI86VaRw1qm68+yYiPA4E+588+0/fvn0ojMSwQj3WWISZAgoBFQ1dU3Zn77f7xHXm6vEUkIEcYjpeKq0nLMn1uJByEzJWWUYy6xPuptvfnezyBIRAMPd5xpEzi8EBGK5X5Qu7l4OSaZ8ucRwKKBPp9Pxfj/ZYtW1YeJ1XrSogFFlnCqB1Mr2yWefb1HJIM8CBHPNFouYi4tARDXlfnmIN99F0xHHQyXrdDoN+1PJTTCcQlJFVWc641pDTCM9T188u9o048i5aqnQCIGoiIDu1UsEjCxjtJ+XF7eH379682JntcwGBXWhuV+0yQQwqJiqziQAoqlJJX3ZfX6zzhwPrpZM7Zz3ISKWEuo4jl6cFj5WNF/fvPyPf/vv6Q//uW6SGWBNt+j7vmvmMJpT30zMGEqoNV1b05P+yaYVn4ZqmUyiomcFranJMkUVhiPCg9rdNDfT76fXt68W3WKRRfOSrS03qwYkI85S7JzSCWhq+m5Mlk3C5+5xeKiZ2dx2FTBQy1TqHBB0TciLy+dfLYrlbrlqzfJis1kvF11ihJ/7z7NUPVMLa7p+TKMNx8PRpDEIC6mWk4ioQcDqw/44OUUY8CqSal19s7o9jGg36y6n3PRd0zZKvlcxIhDOIlLE2n5R05H7/f7YIhvDvQZSTSZiluGIctoPFckEQXcyTtb//dfHt3elWa+7JidVIcMJMs7UYG4nzMIb2vQrphNO4zgZCEZEOAA6xBID4eU0jmHnAk36FO1y1Zbb2zEvF12TjKyllggGI4IBBEPO3WF3l2axljRocVHWKQjSDCIRpFpJiKiTU+RBWENURUTzEkXbJgnCaynu1d09GAxATUVmdjlhirzetemkE1UxHVzMLJlEuHtAzQDSaVBVUdVEiKj5qQq7FhKlgKVMDtCnyedtfE4qlppM+FTzatelk42TR52G0CRmWWpErU5Rg4jELP9VdU68Cj8NlrJGFHpEmSZqgo9jnXsVCBJq1gRJKZ76ZUon2d/d3bfMhEa4oE6lelABUYgqVG3OE+c9FjCKuU9Rw+tUISHh8S7xekBTIuhNCoiapWNdvHyxuew7rVMtriy1xszQ7ewCsVmdKwgwPKQW8SisEeExE1aFkgHSS4VFMGoryQxRSzqN7Z//uLJu1Qz7WiOiOmGm5waH6JzEIhiqACJqcBSSQSdBAZ2QBDICIQgnROA1GqjU4XRKBfvXf1zkvjcSdPcaPLfKSPLcraEH5lOHCJ9NI8RcOsC5iRMhmJd+Jn0RZDnt704JGN58x2ncbxvJObyWUklnuKqqmIrOhRaiACQYcW7WQAUqiiDVFFEDYoQ41FLKKfdajm/+/GJMQH2Lu9vXL57dXG1aiTqehhrhFSJzaZhz/vmo6pyeZpL9XqOKCauTYppaQjU1XWsW09s//+H7moDYD69u37x8ddKuTZKUmGqZuz4iOncB3zF5YO4KyoO7HgoDQublJlEA2vat1OH21Yvvv2cC6D7WWorKdNFnEzRWk+MMMjvlASQIURXO/SABiHe6Y+7dQUxZa5SS/fT2xf/8cDsizQJovJM6vf6vi/Vqs7tYZToftI2K4rwSIauHqLB6nDfNh6eKmuYejNTjfgjhcP/6h+/+NADpfMo1vR1uf99uttfPvs67lUHM5iMsfdB4EIFPpUJRx7HMgRYPQhhkOBhBJYbbV7enadi/efVmfze3bAUESjkAWO1u7nS91kZMTFQeXCwIAqCXsUBQTqeJEPfqeGgMEwy6e2ji8eWLV/fHw93r13cEfszq9x6Sdb/JkpquSSYAqWbK4iFgOZ4mCOowFEI8agDvQEBGeKhxePPq9nA87d/u52uJH+mT6Q7T63/vTKxfLJrGJEpo05kPQ4XEuD9OEEYtDiAYD+Y6TxIMirIeD6exTNP56PHHh/5iKeesEF2sV12XxYdq3TKXw3EiYtgfJsh7JXc+Q37/nPM7w32uYn8V5AO41arrstahWL/I5XiYiBgP5afu/1vjp3++IF2Tk3ips7nGSkSJn7z9l4HMwokeYklYPQj4L8L4WyB/5dJP/3jg1/Hr+Mvxv7G/O+UCBivnAAAAAElFTkSuQmCC\n"},"metadata":{},"execution_count":73}]},{"cell_type":"markdown","source":["# Data Transformation"],"metadata":{"id":"ViWoY9DIX2Yw"}},{"cell_type":"code","source":["%%black\n","def transform(sample_in):\n"," return {'images': tform(sample_in['images']), 'labels': sample_in['labels']}\n","\n","tform = transforms.Compose([\n"," transforms.ToPILImage(), # Must convert to PIL image for subsequent operations to run\n"," transforms.RandomRotation(20), # Image augmentation\n"," transforms.ToTensor(), # Must convert to pytorch tensor for subsequent operations to run\n"," transforms.Normalize([0.5], [0.5]),\n","])\n"],"metadata":{"id":"-1_fbaF6XFrw"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# List the Batch size w.r.t data"],"metadata":{"id":"mWeA1LQKOakp"}},{"cell_type":"code","source":["%%black\n","batch_size = 32\n","\n","train_loader = ds_train.pytorch(num_workers = 2, shuffle = True, transform = transform, batch_size = batch_size)\n","test_loader = ds_test.pytorch(num_workers = 2, transform = transform, batch_size = batch_size)\n"],"metadata":{"id":"zIEderPPaIJH"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["%%black\n","# device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n","#device = torch.device(\"cpu\")\n"],"metadata":{"id":"o_i_AyVQaPAD"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# Model define"],"metadata":{"id":"up2W8LGRX2lJ"}},{"cell_type":"code","source":["%%black\n","# Simple model can be trained on a CPU\n","device = torch.device(\"cpu\")\n","\n","net = models.resnet18(pretrained=True)\n","# Convert model to grayscale\n","net.conv1 = torch.nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)\n","\n","# Update the fully connected layer based on the number of classes in the dataset\n","net.fc = torch.nn.Linear(net.fc.in_features, len(ds_train.labels.info.class_names))\n","\n","classifier=net.to(device)\n","\n","# Specity the loss function and optimizer\n","criterion = torch.nn.CrossEntropyLoss()\n","optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.1)"],"metadata":{"id":"lECz786EbSvZ"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# Model Training"],"metadata":{"id":"GirEhgBIbcG7"}},{"cell_type":"code","source":["%%black\n","def train_model(loader, test_loader, model, epochs = 1):\n"," for epoch in range(epochs): # loop over the dataset multiple times\n","\n"," # Zero the performance stats for each epoch\n"," running_loss = 0.0\n"," start_time = time.time()\n"," total = 0\n"," correct = 0\n"," \n"," for i, data in enumerate(loader):\n"," # get the inputs; data is a list of [inputs, labels]\n"," inputs = data['images']\n"," labels = torch.squeeze(data['labels'])\n","\n"," inputs = inputs.to(device)\n"," labels = labels.to(device)\n","\n"," # zero the parameter gradients\n"," optimizer.zero_grad()\n","\n"," # forward + backward + optimize\n"," outputs = model(inputs.float())\n"," loss = criterion(outputs, labels)\n"," loss.backward()\n"," optimizer.step()\n"," \n"," _, predicted = torch.max(outputs.data, 1)\n"," total += labels.size(0)\n"," correct += (predicted == labels).sum().item()\n"," accuracy = 100 * correct / total\n"," \n"," # Print performance statistics\n"," running_loss += loss.item()\n"," if i % 10 == 0: # print every 10 batches\n"," batch_time = time.time()\n"," speed = (i+1)/(batch_time-start_time)\n"," print('[%d, %5d] loss: %.3f, speed: %.2f, accuracy: %.2f %%' %\n"," (epoch + 1, i, running_loss, speed, accuracy))\n","\n"," running_loss = 0.0\n"," plt.plot(running_loss, speed)\n"," plt.plot(running_loss, accuracy)\n"," print('Testing Model Performance')\n"," test_model(test_loader, model)\n","\n"," print('Finished Training')\n"," return accuracy, running_loss, speed"],"metadata":{"id":"qbqI-1ZgbbMW"},"execution_count":null,"outputs":[]},{"cell_type":"code","source":["%%black\n","def test_model(loader, model):\n"," start_time = time.time()\n"," total = 0\n"," correct = 0\n"," with torch.no_grad():\n"," for i, data in enumerate(loader):\n"," # get the inputs; data is a list of [inputs, labels]\n"," inputs = data['images']\n"," labels = torch.squeeze(data['labels'])\n","\n"," inputs = inputs.to(device)\n"," labels = labels.to(device)\n","\n"," # zero the parameter gradients\n"," optimizer.zero_grad()\n","\n"," # forward + backward + optimize\n"," outputs = model(inputs.float())\n","\n"," _, predicted = torch.max(outputs.data, 1)\n"," total += labels.size(0)\n"," correct += (predicted == labels).sum().item()\n"," accuracy = 100 * correct / total\n"," \n"," print('Finished Testing')\n"," print('Testing accuracy: %.1f %%' %(accuracy))\n"," plt.plot(accuracy)"],"metadata":{"id":"UuB2pTLVbS77"},"execution_count":null,"outputs":[]},{"cell_type":"markdown","source":["# Calculate Loss, Speed and Accuracy for epoch"],"metadata":{"id":"TcV9BbNPOPWk"}},{"cell_type":"code","source":["%%black\n","train_model(train_loader, test_loader, net, epochs = 1)"],"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"d816E3WRbrxi","executionInfo":{"status":"ok","timestamp":1647257709154,"user_tz":-330,"elapsed":771879,"user":{"displayName":"JAIVANTI DHOKEY","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"17702932951656635647"}},"outputId":"94ca7ade-a278-4949-f39b-e57107da0121"},"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["[1, 0] loss: 2.653, speed: 0.02, accuracy: 12.50 %\n"]},{"output_type":"display_data","data":{"text/plain":[""],"application/javascript":["/* Put everything inside the global mpl namespace */\n","window.mpl = {};\n","\n","\n","mpl.get_websocket_type = function() {\n"," if (typeof(WebSocket) !== 'undefined') {\n"," return WebSocket;\n"," } else if (typeof(MozWebSocket) !== 'undefined') {\n"," return MozWebSocket;\n"," } else {\n"," alert('Your browser does not have WebSocket support. ' +\n"," 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n"," 'Firefox 4 and 5 are also supported but you ' +\n"," 'have to enable WebSockets in about:config.');\n"," };\n","}\n","\n","mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n"," this.id = figure_id;\n","\n"," this.ws = websocket;\n","\n"," this.supports_binary = (this.ws.binaryType != undefined);\n","\n"," if (!this.supports_binary) {\n"," var warnings = document.getElementById(\"mpl-warnings\");\n"," if (warnings) {\n"," warnings.style.display = 'block';\n"," warnings.textContent = (\n"," \"This browser does not support binary websocket messages. \" +\n"," \"Performance may be slow.\");\n"," }\n"," }\n","\n"," this.imageObj = new Image();\n","\n"," this.context = undefined;\n"," this.message = undefined;\n"," this.canvas = undefined;\n"," this.rubberband_canvas = undefined;\n"," this.rubberband_context = undefined;\n"," this.format_dropdown = undefined;\n","\n"," this.image_mode = 'full';\n","\n"," this.root = $('
');\n"," this._root_extra_style(this.root)\n"," this.root.attr('style', 'display: inline-block');\n","\n"," $(parent_element).append(this.root);\n","\n"," this._init_header(this);\n"," this._init_canvas(this);\n"," this._init_toolbar(this);\n","\n"," var fig = this;\n","\n"," this.waiting = false;\n","\n"," this.ws.onopen = function () {\n"," fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n"," fig.send_message(\"send_image_mode\", {});\n"," if (mpl.ratio != 1) {\n"," fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n"," }\n"," fig.send_message(\"refresh\", {});\n"," }\n","\n"," this.imageObj.onload = function() {\n"," if (fig.image_mode == 'full') {\n"," // Full images could contain transparency (where diff images\n"," // almost always do), so we need to clear the canvas so that\n"," // there is no ghosting.\n"," fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n"," }\n"," fig.context.drawImage(fig.imageObj, 0, 0);\n"," };\n","\n"," this.imageObj.onunload = function() {\n"," fig.ws.close();\n"," }\n","\n"," this.ws.onmessage = this._make_on_message_function(this);\n","\n"," this.ondownload = ondownload;\n","}\n","\n","mpl.figure.prototype._init_header = function() {\n"," var titlebar = $(\n"," '
');\n"," var titletext = $(\n"," '
');\n"," titlebar.append(titletext)\n"," this.root.append(titlebar);\n"," this.header = titletext[0];\n","}\n","\n","\n","\n","mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n","\n","}\n","\n","\n","mpl.figure.prototype._root_extra_style = function(canvas_div) {\n","\n","}\n","\n","mpl.figure.prototype._init_canvas = function() {\n"," var fig = this;\n","\n"," var canvas_div = $('
');\n","\n"," canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n","\n"," function canvas_keyboard_event(event) {\n"," return fig.key_event(event, event['data']);\n"," }\n","\n"," canvas_div.keydown('key_press', canvas_keyboard_event);\n"," canvas_div.keyup('key_release', canvas_keyboard_event);\n"," this.canvas_div = canvas_div\n"," this._canvas_extra_style(canvas_div)\n"," this.root.append(canvas_div);\n","\n"," var canvas = $('');\n"," canvas.addClass('mpl-canvas');\n"," canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n","\n"," this.canvas = canvas[0];\n"," this.context = canvas[0].getContext(\"2d\");\n","\n"," var backingStore = this.context.backingStorePixelRatio ||\n","\tthis.context.webkitBackingStorePixelRatio ||\n","\tthis.context.mozBackingStorePixelRatio ||\n","\tthis.context.msBackingStorePixelRatio ||\n","\tthis.context.oBackingStorePixelRatio ||\n","\tthis.context.backingStorePixelRatio || 1;\n","\n"," mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n","\n"," var rubberband = $('');\n"," rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n","\n"," var pass_mouse_events = true;\n","\n"," canvas_div.resizable({\n"," start: function(event, ui) {\n"," pass_mouse_events = false;\n"," },\n"," resize: function(event, ui) {\n"," fig.request_resize(ui.size.width, ui.size.height);\n"," },\n"," stop: function(event, ui) {\n"," pass_mouse_events = true;\n"," fig.request_resize(ui.size.width, ui.size.height);\n"," },\n"," });\n","\n"," function mouse_event_fn(event) {\n"," if (pass_mouse_events)\n"," return fig.mouse_event(event, event['data']);\n"," }\n","\n"," rubberband.mousedown('button_press', mouse_event_fn);\n"," rubberband.mouseup('button_release', mouse_event_fn);\n"," // Throttle sequential mouse events to 1 every 20ms.\n"," rubberband.mousemove('motion_notify', mouse_event_fn);\n","\n"," rubberband.mouseenter('figure_enter', mouse_event_fn);\n"," rubberband.mouseleave('figure_leave', mouse_event_fn);\n","\n"," canvas_div.on(\"wheel\", function (event) {\n"," event = event.originalEvent;\n"," event['data'] = 'scroll'\n"," if (event.deltaY < 0) {\n"," event.step = 1;\n"," } else {\n"," event.step = -1;\n"," }\n"," mouse_event_fn(event);\n"," });\n","\n"," canvas_div.append(canvas);\n"," canvas_div.append(rubberband);\n","\n"," this.rubberband = rubberband;\n"," this.rubberband_canvas = rubberband[0];\n"," this.rubberband_context = rubberband[0].getContext(\"2d\");\n"," this.rubberband_context.strokeStyle = \"#000000\";\n","\n"," this._resize_canvas = function(width, height) {\n"," // Keep the size of the canvas, canvas container, and rubber band\n"," // canvas in synch.\n"," canvas_div.css('width', width)\n"," canvas_div.css('height', height)\n","\n"," canvas.attr('width', width * mpl.ratio);\n"," canvas.attr('height', height * mpl.ratio);\n"," canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n","\n"," rubberband.attr('width', width);\n"," rubberband.attr('height', height);\n"," }\n","\n"," // Set the figure to an initial 600x600px, this will subsequently be updated\n"," // upon first draw.\n"," this._resize_canvas(600, 600);\n","\n"," // Disable right mouse context menu.\n"," $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n"," return false;\n"," });\n","\n"," function set_focus () {\n"," canvas.focus();\n"," canvas_div.focus();\n"," }\n","\n"," window.setTimeout(set_focus, 100);\n","}\n","\n","mpl.figure.prototype._init_toolbar = function() {\n"," var fig = this;\n","\n"," var nav_element = $('
');\n"," nav_element.attr('style', 'width: 100%');\n"," this.root.append(nav_element);\n","\n"," // Define a callback function for later on.\n"," function toolbar_event(event) {\n"," return fig.toolbar_button_onclick(event['data']);\n"," }\n"," function toolbar_mouse_event(event) {\n"," return fig.toolbar_button_onmouseover(event['data']);\n"," }\n","\n"," for(var toolbar_ind in mpl.toolbar_items) {\n"," var name = mpl.toolbar_items[toolbar_ind][0];\n"," var tooltip = mpl.toolbar_items[toolbar_ind][1];\n"," var image = mpl.toolbar_items[toolbar_ind][2];\n"," var method_name = mpl.toolbar_items[toolbar_ind][3];\n","\n"," if (!name) {\n"," // put a spacer in here.\n"," continue;\n"," }\n"," var button = $('');\n"," button.click(method_name, toolbar_event);\n"," button.mouseover(tooltip, toolbar_mouse_event);\n"," nav_element.append(button);\n"," }\n","\n"," // Add the status bar.\n"," var status_bar = $('');\n"," nav_element.append(status_bar);\n"," this.message = status_bar[0];\n","\n"," // Add the close button to the window.\n"," var buttongrp = $('
');\n"," var button = $('');\n"," button.click(function (evt) { fig.handle_close(fig, {}); } );\n"," button.mouseover('Stop Interaction', toolbar_mouse_event);\n"," buttongrp.append(button);\n"," var titlebar = this.root.find($('.ui-dialog-titlebar'));\n"," titlebar.prepend(buttongrp);\n","}\n","\n","mpl.figure.prototype._root_extra_style = function(el){\n"," var fig = this\n"," el.on(\"remove\", function(){\n","\tfig.close_ws(fig, {});\n"," });\n","}\n","\n","mpl.figure.prototype._canvas_extra_style = function(el){\n"," // this is important to make the div 'focusable\n"," el.attr('tabindex', 0)\n"," // reach out to IPython and tell the keyboard manager to turn it's self\n"," // off when our div gets focus\n","\n"," // location in version 3\n"," if (IPython.notebook.keyboard_manager) {\n"," IPython.notebook.keyboard_manager.register_events(el);\n"," }\n"," else {\n"," // location in version 2\n"," IPython.keyboard_manager.register_events(el);\n"," }\n","\n","}\n","\n","mpl.figure.prototype._key_event_extra = function(event, name) {\n"," var manager = IPython.notebook.keyboard_manager;\n"," if (!manager)\n"," manager = IPython.keyboard_manager;\n","\n"," // Check for shift+enter\n"," if (event.shiftKey && event.which == 13) {\n"," this.canvas_div.blur();\n"," // select the cell after this one\n"," var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n"," IPython.notebook.select(index + 1);\n"," }\n","}\n","\n","mpl.figure.prototype.handle_save = function(fig, msg) {\n"," fig.ondownload(fig, null);\n","}\n","\n","\n","mpl.find_output_cell = function(html_output) {\n"," // Return the cell and output element which can be found *uniquely* in the notebook.\n"," // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n"," // IPython event is triggered only after the cells have been serialised, which for\n"," // our purposes (turning an active figure into a static one), is too late.\n"," var cells = IPython.notebook.get_cells();\n"," var ncells = cells.length;\n"," for (var i=0; i= 3 moved mimebundle to data attribute of output\n"," data = data.data;\n"," }\n"," if (data['text/html'] == html_output) {\n"," return [cell, data, j];\n"," }\n"," }\n"," }\n"," }\n","}\n","\n","// Register the function which deals with the matplotlib target/channel.\n","// The kernel may be null if the page has been refreshed.\n","if (IPython.notebook.kernel != null) {\n"," IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n","}\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":[""],"text/html":["
"]},"metadata":{}}]},{"cell_type":"code","source":[""],"metadata":{"id":"a0hBXlH8syAm"},"execution_count":null,"outputs":[]}]} \ No newline at end of file