forked from zheminzhou/SPARSE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSPARSE.py
153 lines (134 loc) · 10.3 KB
/
SPARSE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse, numpy as np, sys
def _init(argv) :
from modules.A1_db_create import db_create
parser = argparse.ArgumentParser(description='''Create an empty database. Use "SPARSE.py index" to fill in references later''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-n', '--dbname', help='Name for the new database to be generated. ', required=True)
args = parser.parse_args(argv)
return db_create(args.__dict__)
def _index(argv) :
from modules.A2_db_index import db_index
parser = argparse.ArgumentParser(description='''Fill reference genomes into a SPARSE database created by SPARSE.py create''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-n', '--dbname', help='Name for the database folder. REQUIRED. ', required=True)
parser.add_argument('-u', '--update', help='Index the current RefSeq database. Overwrite SEQLIST. ', action='store_true')
parser.add_argument('-s', '--seqlist', help='Load in a tab-delimited file generated by "SPARSE.py query".\nSpecify the absolute path in column "file_path" if your genomes are local. ')
parser.add_argument('-t', '--n_thread', help='Number of threads to use. Default: 20 ', type=int, default=20)
args = parser.parse_args(argv)
return db_index(args.__dict__)
def _mapDB(argv) :
from modules.A3_db_MapDB import db_MapDB
parser = argparse.ArgumentParser(description='''Generate sub-databases for read alignments.''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-n', '--dbname', help='Name for the database folder. REQUIRED. ', required=True)
parser.add_argument('-m', '--mapDB', dest='MapDB', help='Name for the sub-database. REQUIRED. ', required=True)
parser.add_argument('-s', '--seqlist', help='A tab-delimited list of reference to include. It can be generated by "SPARSE.py query". REQUIRED.', required=True)
parser.add_argument('-t', '--n_thread', help='Number of threads to use. Default: 20 ', type=int, default=20)
parser.add_argument('--malt', dest='dbtype', help='Use MALT instead of bowtie2 [default]', default='bowtie2', action='store_const', const='malt')
parser.add_argument('--append', dest='mode', help='Append to existing database instead of overwrite [default]', default='overwrite', action='store_const', const='append')
args = parser.parse_args(argv)
return db_MapDB(args.__dict__)
def _predict(argv) :
from modules.B2_query_reads import query_read
parser = argparse.ArgumentParser(description='''Alignment based taxonomy prediction.''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-n', '--dbname', help='Name for the database folder. REQUIRED ', required=True)
parser.add_argument('-m', '--mapDB', dest='MapDB', help='Comma delimited names for sub-databases. REQUIRED.\n Default: representative,subpopulation,Virus', default='representative,subpopulation,Virus')
parser.add_argument('-w', '--workspace', help='Folder name for all outputs and intermediate results. REQUIRED.', required=True)
parser.add_argument('-1', '--r1', help='SE read or first part of PE reads. REQUIRED. ', required=True)
parser.add_argument('-2', '--r2', help='Second part of PE reads.')
parser.add_argument('-t', '--n_thread', help='Number of threads to use. Default: 20 ', type=int, default=20)
args = parser.parse_args(argv)
return query_read(args.__dict__)
def _mash(argv) :
from modules.B3_query_sample import query_sample
parser = argparse.ArgumentParser(description='''Rapid mash query of an assembly or a read set.''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-n', '--dbname', help='Name for the database folder. REQUIRED.', required=True)
parser.add_argument('-q', '--query', help='A genome in fasta format, or a set of reads in fastq format. REQUIRED. ', required=True)
parser.add_argument('--read', dest='dtype', help='Specify if query is a read set rather than an assembly.', default='fasta', action='store_const', const='read')
args = parser.parse_args(argv)
return query_sample(args.__dict__)
def _query(argv) :
from modules.B1_query_metadata import query_metadata
parser = argparse.ArgumentParser(description='''Retrieve metadata for a set of references.''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-n', '--dbname', help='Name for the database. REQUIRED.', required=True)
parser.add_argument('-s', '--seqlist', help='File name for the output. Default: to screen.', default=None)
parser.add_argument('-d', '--default', help='Default MapDB criteria for updates. Choose from:\nrepresentative, subpopulation, Virus, Eukaryota', default=None)
parser.add_argument('--min', help='Minimum size of genomes to show', type=int, default=None)
parser.add_argument('--max', help='Maximum size of genomes to show', type=int, default=None)
parser.add_argument('--group', help='Filter using the prefix of barcode addresses', default=None)
parser.add_argument('--tag', help='''Filter by relationships between different level of barcodes. i.e.,
"p!=r;p==a" gets references that have the same numbers in p groups and a groups, but different between p groups and r groups''', default=None)
parser.add_argument('--index', help='Filter by index.', default=None)
parser.add_argument('--barcode', help='Filter by barcode.', default=None)
parser.add_argument('--assembly_accession', help='Filter by assembly_accession.', default=None)
parser.add_argument('--refseq_category', help='Filter by refseq_category.', default=None)
parser.add_argument('--assembly_level', help='Filter by assembly_level.', default=None)
parser.add_argument('--taxid', help='Filter by taxid.', default=None)
parser.add_argument('--organism_name', help='Filter by organism_name.', default=None)
parser.add_argument('--species', help='Filter by species.', default=None)
parser.add_argument('--genus', help='Filter by genus.', default=None)
parser.add_argument('--family', help='Filter by family.', default=None)
parser.add_argument('--order', help='Filter by order.', default=None)
parser.add_argument('--class', help='Filter by class.', default=None)
parser.add_argument('--phylum', help='Filter by phylum.', default=None)
parser.add_argument('--kingdom', help='Filter by kingdom.', default=None)
parser.add_argument('--superkingdom', help='Filter by superkingdom.', default=None)
args = parser.parse_args(argv)
return query_metadata(args.__dict__)
def _update(argv) :
from modules.C1_modify_metadata import update
parser = argparse.ArgumentParser(description='''Update metadata.''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-n', '--dbname', help='Name for the database. REQUIRED. ', required=True)
parser.add_argument('-s', '--seqlist', help='A tab-delimited list of references. Needs to be in the same format as the output of "SPARSE query". REQUIRED. ', required=True)
args = parser.parse_args(argv)
return update(args.__dict__)
def _extract(argv) :
from modules.C2_get_specific_reads import get_SSR
parser = argparse.ArgumentParser(description='''Extract species specific reads associated with particular references.''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-w', '--workspace', help='Folders that contain "SPARSE query" outputs. REQUIRED.', required=True)
parser.add_argument('-i', '--ref_id', help='Comma delimited reference indexes to extract. REQUIRED.', required=True)
parser.add_argument('-r', '--ratio', help='The minimum probability to report.', default=0.5, type=float)
args = parser.parse_args(argv)
return get_SSR(args.__dict__)
def _report(argv) :
from modules.D1_sparse_parse import report
parser = argparse.ArgumentParser(description='''Generate a flat-table report for multiple runs. Also tries to identify some potential human pathogens. ''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--level', help='Level to report, default: s. Details see documents for the seqlist format.', default='s')
parser.add_argument('workspaces', metavar='workspace', nargs='+', help='Folders that contain "SPARSE query" outputs. REQUIRED at least one folder.')
args = parser.parse_args(argv)
report(args.level, args.workspaces)
def SPARSE() :
import os
em = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'EM')
if not os.path.isfile(os.path.join(em, 'solve-model')) :
print 'SPARSE is run for the first time. We will compile some C++ codes. '
t = os.curdir
os.chdir(em)
os.system('make')
os.chdir(t)
assert os.path.isfile(os.path.join(em, 'solve-model')), 'Cannot compile EM/solve-model. Try to run `make` from the folder {0} manually.'.format(em)
print 'C++ codes compiled successfully. You will not see these the next time. '
try :
parser = argparse.ArgumentParser(description='''SPARSE (Strain Prediction and Analysis with Representative SEquences)''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('command', help='task to run in SPARSE.')
sys.argv[0] = ' '.join(sys.argv[:2])
exec '_{0}(sys.argv[2:])'.format(sys.argv[1])
except Exception as e :
print '''
Program: SPARSE (Strain Prediction and Analysis with Representative SEquences)
Usage: SPARSE.py <command> [options]
Commands:
init Create empty folder structures for a new SPARSE database
index Load in a list of assemblies (in RefSeq format) and index them into a SPARSE database
query Query metadata info in a SPARSE database
update Update metadata info in a SPARSE database
mapDB Create bowtie2 or MALT sub-databases for metagenomic reads
predict Align reads onto MapDB and do taxonomic predictions, and save all outputs in a specified workspaces
mash Compare an assembly with all genomes in a SPARSE database using MASH
extract Extract species-specific reads from a SPARSE read-mapping result
report Reformat and merge multiple SPARSE workspaces into a flat table. It also predicts human pathogens.
Use SPARSE.py <command> -h to get help for each command.
'''
import traceback
if not isinstance(e, IndexError) :
traceback.print_exception(*sys.exc_info())
sys.exit(0)
if __name__ == '__main__' :
SPARSE()