forked from zheminzhou/SPARSE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathipopt_nlp.h
111 lines (86 loc) · 3.95 KB
/
ipopt_nlp.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#ifndef __IPOPT_NLP_H__
#define __IPOPT_NLP_H__
//=============================================================================
// ipopt_nlp.h
// : This is the header file for solving model using IPOPT
//
// Author: Tae-Hyuk (Ted) Ahn
// Created: 04/01/2013
// Modified:
//
// Copyright (c) 2013 Tae-Hyuk Ahn (ORNL). All rights reserved.
//=============================================================================
#include "IpTNLP.hpp"
#include <set>
using namespace Ipopt;
class IPOPT_NLP : public TNLP
{
public:
// Default constructor
IPOPT_NLP(const std::string & input_filepath,
const int & number_threads);
// Default destructor
virtual ~IPOPT_NLP();
// Method to return some info about the nlp
virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
Index& nnz_h_lag, IndexStyleEnum& index_style);
// Method to return the bounds for my problem
virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
Index m, Number* g_l, Number* g_u);
// Method to return the starting point for the algorithm
virtual bool get_starting_point(Index n, bool init_x, Number* x,
bool init_z, Number* z_L, Number* z_U,
Index m, bool init_lambda,
Number* lambda);
// Method to return the objective value
virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value);
// Method to return the gradient of the objective
virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f);
// Method to return the constraint residuals
virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g);
// Method to return:
// 1) The structure of the jacobian (if "values" is NULL)
// 2) The values of the jacobian (if "values" is not NULL)
//
virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
Index m, Index nele_jac, Index* iRow, Index *jCol,
Number* values);
// Method to return:
// 1) The structure of the hessian of the lagrangian (if "values" is NULL)
// 2) The values of the hessian of the lagrangian (if "values" is not NULL)
//
virtual bool eval_h(Index n, const Number* x, bool new_x,
Number obj_factor, Index m, const Number* lambda,
bool new_lambda, Index nele_hess, Index* iRow,
Index* jCol, Number* values);
// This method is called when the algorithm is complete so the TNLP can store/write the solution
virtual void finalize_solution(SolverReturn status,
Index n, const Number* x, const Number* z_L, const Number* z_U,
Index m, const Number* g, const Number* lambda,
Number obj_value,
const IpoptData* ip_data,
IpoptCalculatedQuantities* ip_cq);
private:
// IPOPT_NLP();
IPOPT_NLP(const IPOPT_NLP&);
IPOPT_NLP& operator=(const IPOPT_NLP&);
//@}
//unsigned int unique_number_aligned_reads;
unsigned int unique_number_aligned_reads;
// unique number of aligned genomes
Index unique_number_aligned_genomes;
// unique number of aligned genomes
std::string output_filename;
// vector of vector for aligned genome index
std::vector< std::vector<unsigned int> > *aligned_genome_index_data;
// vector of vector for aligned q-value
std::vector< std::vector<double> > *aligned_qvalue_data;
// vector for genome index info
std::vector<std::string> *genome_index_info;
// for total number of reads
std::vector<std::string> *reads_info;
std::vector<double> *reads_weights;
// for minimum_percentage_chance_genome
double min_relative_abundance_genome;
};
#endif