forked from Jack-XHP/LabPicV2-MaskRCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
304 lines (273 loc) · 16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
r"""PyTorch Detection Training.
To run in a multi-gpu environment, use the distributed launcher::
python -m torch.distributed.launch --nproc_per_node=$NGPU --use_env \
train.py ... --world-size $NGPU
The default hyperparameters are tuned for training on 8 gpus and 2 images per gpu.
--lr 0.02 --batch-size 2 --world-size 8
If you use different number of gpus, the learning rate should be changed to 0.02/8*$NGPU.
"""
import datetime
import os
import time
import torch
from torch import nn
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
from torchvision.models.detection.roi_heads import RoIHeads
from Utils.group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
from Utils.engine import train_one_epoch, evaluate
from Utils import utils
from Reader.InstanceReader.InstanceReaderCoCoStyle import ChemScapeDataset, MedDataset, LabPicV2Dataset
import numpy as np
#from Utils.Visual import ChemDemo
import detection
import json
np.random.seed(0)
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main(args):
if args.distributed:
utils.init_distributed_mode(args)
print(args)
device = torch.device(args.device)
# Data loading code
print("Loading data")
for dataset in args.dataset:
if dataset not in ['Vessel', 'Material']:
print(dataset + " not in listed dataset")
exit(1)
# dataset, num_classes = utils.get_dataset(args.dataset, "train", get_transform(train=True), args.data_path)
# dataset_test, _ = utils.get_dataset(args.dataset, "val", get_transform(train=False), args.data_path)
# classes = {1:2, 2:2, 3:2, 4:2, 5:0, 6:1, 7:1, 8:1, 9:1, 10:3, 11:3, 12:3, 13:3, 14:4, 15:3, 16:3}
# dataset = ChemScapeDataset(os.path.join(args.data_path, "Train"), args.dataset,
# transforms=utils.get_transform(train=not args.test_only), classes=classes)
# dataset_test = ChemScapeDataset(os.path.join(args.data_path, "Test"), args.dataset,
# transforms=utils.get_transform(train=False), classes=dataset.classes)
classes = {"Vessel": 1, "Syringe": 1, "Pippete": 1, "Tube": 1, "IVBag": 1, "DripChamber": 1, "IVBottle": 1,
"Beaker": 1, "RoundFlask": 1, "Cylinder": 1, "SeparatoryFunnel": 1, "Funnel": 1, "Burete": 1,
"ChromatographyColumn": 1, "Condenser": 1, "Bottle": 1, "Jar": 1, "Connector": 1, "Flask": 1,
"Cup": 1, "Bowl": 1, "Erlenmeyer": 1, "Vial": 1, "Dish": 1, "HeatingVessel": 1, "Transparent": 0,
"SemiTrans": 0, "Opaque": 0, "Cork": 0, "Label": 0, "Part": 0, "Spike": 0, "Valve": 0, "DisturbeView": 0,
"Liquid": 2, "Foam": 2, "Suspension": 2, "Solid": 2, "Filled": 2, "Powder": 2, "Urine": 2, "Blood": 2,
"MaterialOnSurface": 0, "MaterialScattered": 0, "PropertiesMaterialInsideImmersed": 0,
"PropertiesMaterialInFront": 0, "Gel": 2, "Granular": 2, "SolidLargChunk": 2, "Vapor": 2,
"Other Material": 2, "VesselInsideVessel": 0, "VesselLinked": 0, "PartInsideVessel": 0,
"SolidIncludingParts": 0, "MagneticStirer": 0, "Thermometer": 0, "Spatula": 0, "Holder": 0,
"Filter": 0, "PipeTubeStraw": 0}
# classes = {"Vessel": 1, "Liquid": 2, "Cork": 0, "Solid": 2, "Part": 0, "Foam": 2, "Gel": 2, "Label": 0, "Vapor":2, "Other Material":2}
coco_class = {1:1, 2:0, 3:0, 4:0, 5:0, 6:2, 7:2, 8:2, 9:2, 10:2, 11:2, 12:2, 13:2, 14:2, 15:2, 16:2}
subclasses = {"Syringe": 0, "Pippete": 1, "Tube": 2, "IVBag": 3, "DripChamber": 4, "IVBottle": 5, "Beaker": 6,
"RoundFlask": 7, "Cylinder": 8, "SeparatoryFunnel": 9, "Funnel": 10, "Burete": 11,
"ChromatographyColumn": 12, "Condenser": 13, "Bottle": 14, "Jar": 15, "Connector": 16, "Flask": 17,
"Cup": 18, "Bowl": 19, "Erlenmeyer": 20, "Vial": 21, "Dish": 22, "HeatingVessel": 23, }
dataset = LabPicV2Dataset(os.path.join(args.data_path, "Chemistry"), args.dataset, transforms=utils.get_transform(train=not args.test_only), classes=classes, subclasses=subclasses)
med_dataset = LabPicV2Dataset(os.path.join(args.data_path, "Medical"), args.dataset,
transforms=utils.get_transform(train=False), classes=classes,
subclasses=subclasses)
dataset_test = LabPicV2Dataset(os.path.join(args.data_path, "Chemistry"), args.dataset,
transforms=utils.get_transform(train=not args.test_only), classes=classes,
subclasses=subclasses, train=False)
# coco_dataset = ChemScapeDataset(os.path.join(args.data_path, "COCO/SemanticMaps"), ['Vessel'],
# transforms=utils.get_transform(train=not args.test_only), classes=coco_class, subclasses=subclasses, coco=True)
#coco_dataset = dataset_test
# dataset = MedDataset(args.data_path, transforms=utils.get_transform(train=False))
# dataset_test = dataset
# coco_dataset = dataset
num_classes = 3
# print("Dataset {}, num_class {}, class_list {}".format(args.dataset, num_classes, dataset.classes))
print("Creating data loaders")
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset)
# coco_sampler = torch.utils.data.distributed.DistributedSampler(coco_dataset)
test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
med_sampler = torch.utils.data.distributed.DistributedSampler(med_dataset)
else:
train_sampler = torch.utils.data.RandomSampler(dataset)
# coco_sampler = torch.utils.data.RandomSampler(coco_dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
med_sampler = torch.utils.data.RandomSampler(med_dataset)
if args.aspect_ratio_group_factor >= 0:
group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
# coco_batch_sampler = GroupedBatchSampler(coco_sampler, group_ids, args.batch_size)
med_batch_sampler = GroupedBatchSampler(med_sampler, group_ids, args.batch_size)
else:
train_batch_sampler = torch.utils.data.BatchSampler(
train_sampler, args.batch_size, drop_last=True)
# coco_batch_sampler = torch.utils.data.BatchSampler(
# coco_sampler, args.batch_size, drop_last=True)
med_batch_sampler = torch.utils.data.BatchSampler(
med_sampler, args.batch_size, drop_last=True)
data_loader = torch.utils.data.DataLoader(
dataset, batch_sampler=train_batch_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn)
# coco_data_loader = torch.utils.data.DataLoader(
# coco_dataset, batch_sampler=coco_batch_sampler, num_workers=args.workers,
# collate_fn=utils.collate_fn)
med_data_loader = torch.utils.data.DataLoader(
med_dataset, batch_sampler=med_batch_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=args.batch_size,
sampler=test_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn)
print("Creating model")
if args.subclass:
print("predicting subclasses")
model = detection.__dict__[args.model](num_classes=num_classes, pretrained=args.pretrained, num_sub_cls=25)
else:
model = torchvision.models.detection.__dict__[args.model](num_classes=num_classes, pretrained=args.pretrained)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
#lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
if args.resume and os.path.exists(args.resume):
print("loading trained model")
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
if args.test_only:
print("Start testing")
# train_eval_sampler = torch.utils.data.SequentialSampler(dataset)
# data_loader_train = torch.utils.data.DataLoader(
# dataset, batch_size=args.batch_size,
# sampler=train_eval_sampler, num_workers=args.workers,
# collate_fn=utils.collate_fn)
with torch.no_grad():
# for t in np.arange(0.55, 0.75, 0.05):
# demo = ChemDemo(model, device=device, confidence_threshold=t)
# if not os.path.exists(args.output_dir + "/testAnno{}".format(t)):
# os.makedirs(args.output_dir +"/testAnno{}".format(t))
# if not os.path.exists(args.output_dir + "/trainAnno{}".format(t)):
# os.makedirs(args.output_dir + "/trainAnno{}".format(t))
# train_json = {}
# test_json = {}
# for batch_idx, (image, target) in enumerate(data_loader_test):
# print(image[0])
# demo.run_on_image(image, target, args.output_dir + "/testAnno{}".format(t))
# test_json = demo.compute_panoptic(image, target, args.output_dir +"/testAnno{}".format(t), test_json)
#
# with open(args.output_dir + "/testAnno{}/".format(t) + 'test.json', 'w') as f:
# json.dump(test_json, f)
#
# for batch_idx, (image, target) in enumerate(data_loader_train):
# demo.run_on_image(image, target,args.output_dir + "/trainAnno{}".format(t))
# train_json = demo.compute_panoptic(image, target, args.output_dir +"/trainAnno{}".format(t), train_json)
#
# with open(args.output_dir + "/trainAnno{}/".format(t) + 'train.json', 'w') as f:
# json.dump(train_json, f)
evaluate(model, data_loader_test, device=device)
return
else:
print("Start training")
start_time = time.time()
for epoch in range(args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
if args.equal_batch:
if epoch % 2 == 0:
train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq)
else:
for i in range(len(dataset)// len(med_dataset)+1):
train_one_epoch(model, optimizer, med_data_loader, device, epoch, args.print_freq)
# else:
# train_one_epoch(model, optimizer, coco_data_loader, device, epoch, args.print_freq, batch_limit=(len(dataset) // args.batch_size), is_coco=True)
if args.resume:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'args': args},
os.path.join(os.path.dirname(args.resume), "temp.pth"))
os.replace(os.path.join(os.path.dirname(args.resume), "temp.pth"), args.resume)
else:
train_one_epoch(model, optimizer, data_loader, device, epoch, args.print_freq)
# train_one_epoch(model, optimizer, med_data_loader, device, epoch, args.print_freq)
# train_one_epoch(model, optimizer, coco_data_loader, device, epoch, args.print_freq, is_coco=True)
lr_scheduler.step()
if args.output_dir and epoch % 10 == 0:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'args': args},
os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
# evaluate after every epoch
# evaluate(model, data_loader_test, device=device)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description=__doc__)
parser.add_argument('--data-path', default='../LabPicV2_Dataset', help='dataset')
parser.add_argument('--dataset',nargs='*', default=['Vessel'], help='dataset')
parser.add_argument('--model', default='maskrcnn_resnet50_fpn', help='model')
parser.add_argument('--device', default='cuda', help='device')
parser.add_argument('-b', '--batch-size', default=4, type=int,
help='images per gpu, the total batch size is $NGPU x batch_size')
parser.add_argument('--epochs', default=30, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--lr', default=0.02, type=float,
help='initial learning rate, 0.02 is the default value for training '
'on 8 gpus and 2 images_per_gpu')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--lr-step-size', default=10, type=int, help='decrease lr every step-size epochs')
parser.add_argument('--lr-steps', default=[8, 11], nargs='+', type=int, help='decrease lr every step-size epochs')
parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
parser.add_argument('--print-freq', default=20, type=int, help='print frequency')
parser.add_argument('--output-dir', default='.', help='path where to save')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--aspect-ratio-group-factor', default=-1, type=int)
parser.add_argument(
"--test-only",
dest="test_only",
help="Only test the model",
action="store_true",
)
parser.add_argument(
"--subclass",
help="predict subclasses",
action="store_true",
)
parser.add_argument(
"--equal-batch",
help="equal sampling of 3 dataset",
action="store_true",
)
parser.add_argument(
"--pretrained",
help="Use pre-trained models from the modelzoo",
action="store_true",
)
parser.add_argument(
"--distributed",
help="Use distributed gpu to train models",
action="store_true",
)
# distributed training parameters
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
args = parser.parse_args()
if args.output_dir:
utils.mkdir(args.output_dir)
main(args)