-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
404 additions
and
0 deletions.
There are no files selected for viewing
202 changes: 202 additions & 0 deletions
202
machine-learning/.ipynb_checkpoints/machine-learning-checkpoint.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from pyspark.ml import Pipeline\n", | ||
"from pyspark.ml.classification import LogisticRegression\n", | ||
"from pyspark.ml.feature import HashingTF, Tokenizer" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Prepare training documents from a list of (id, text, label) tuples.\n", | ||
"training = spark.createDataFrame([\n", | ||
" (0, \"a b c d e spark\", 1.0),\n", | ||
" (1, \"b d\", 0.0),\n", | ||
" (2, \"spark f g h\", 1.0),\n", | ||
" (3, \"hadoop mapreduce\", 0.0)\n", | ||
"], [\"id\", \"text\", \"label\"])\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"+---+----------------+-----+\n", | ||
"| id| text|label|\n", | ||
"+---+----------------+-----+\n", | ||
"| 0| a b c d e spark| 1.0|\n", | ||
"| 1| b d| 0.0|\n", | ||
"| 2| spark f g h| 1.0|\n", | ||
"| 3|hadoop mapreduce| 0.0|\n", | ||
"+---+----------------+-----+\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"training.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.\n", | ||
"tokenizer = Tokenizer(inputCol=\"text\", outputCol=\"words\")\n", | ||
"hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol=\"features\")\n", | ||
"lr = LogisticRegression(maxIter=10, regParam=0.001)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Fit the pipeline to training documents.\n", | ||
"model = pipeline.fit(training)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Prepare test documents, which are unlabeled (id, text) tuples.\n", | ||
"test = spark.createDataFrame([\n", | ||
" (4, \"spark i j k\"),\n", | ||
" (5, \"l m n\"),\n", | ||
" (6, \"spark hadoop spark\"),\n", | ||
" (7, \"apache hadoop\")\n", | ||
"], [\"id\", \"text\"])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 14, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"+---+------------------+\n", | ||
"| id| text|\n", | ||
"+---+------------------+\n", | ||
"| 4| spark i j k|\n", | ||
"| 5| l m n|\n", | ||
"| 6|spark hadoop spark|\n", | ||
"| 7| apache hadoop|\n", | ||
"+---+------------------+\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"test.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Make predictions on test documents and print columns of interest.\n", | ||
"prediction = model.transform(test)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"selected = prediction.select(\"id\", \"text\", \"probability\", \"prediction\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"+---+------------------+--------------------+----------+\n", | ||
"| id| text| probability|prediction|\n", | ||
"+---+------------------+--------------------+----------+\n", | ||
"| 4| spark i j k|[0.15964077387874...| 1.0|\n", | ||
"| 5| l m n|[0.83783256854767...| 0.0|\n", | ||
"| 6|spark hadoop spark|[0.06926633132976...| 1.0|\n", | ||
"| 7| apache hadoop|[0.98215753334442...| 0.0|\n", | ||
"+---+------------------+--------------------+----------+\n", | ||
"\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"selected.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for row in selected.collect():\n", | ||
" rid, text, prob, prediction = row\n", | ||
" print(\"(%d, %s) --> prob=%s, prediction=%f\" % (rid, text, str(prob), prediction))" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.