-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTest_drone-detection_Yolov10.py
266 lines (193 loc) · 7.91 KB
/
Test_drone-detection_Yolov10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
# -*- coding: utf-8 -*-
"""
Created on ago 2024
@author: Alfonso Blanco
"""
#######################################################################
# PARAMETERS
######################################################################
# dataset
# https://universe.roboflow.com/drone-detection-pexej/drone-detection-data-set-yolov7/dataset/1
dirname= "Test1"
#dirnameYolo="runs\\train\\exp\\weights\\last.pt"
dirnameYolo="last33epoch.pt"
import cv2
import time
Ini=time.time()
#from ultralytics import YOLOv10
from ultralytics import YOLO
#model = YOLOv10(dirnameYolo)
model = YOLO(dirnameYolo)
class_list = model.model.names
print(class_list)
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import os
import re
import imutils
########################################################################
def loadimages(dirname):
#########################################################################
# adapted from:
# https://www.aprendemachinelearning.com/clasificacion-de-imagenes-en-python/
# by Alfonso Blanco García
########################################################################
imgpath = dirname + "\\"
images = []
TabFileName=[]
print("Reading imagenes from ",imgpath)
NumImage=-2
Cont=0
for root, dirnames, filenames in os.walk(imgpath):
NumImage=NumImage+1
for filename in filenames:
if re.search("\.(jpg|jpeg|JPEG|png|bmp|tiff)$", filename):
filepath = os.path.join(root, filename)
image = cv2.imread(filepath)
#convert image rgb to bgr
# https://stackoverflow.com/questions/61500121/opencv-python-reading-image-as-rgb
# doesn´t improve
#image = image[...,::-1]
image = cv2.resize(image, (640,640), interpolation = cv2.INTER_AREA)
#print(filepath)
#print(image.shape)
images.append(image)
TabFileName.append(filename)
Cont+=1
return images, TabFileName
def unconvert(width, height, x, y, w, h):
xmax = int((x*width) + (w * width)/2.0)
xmin = int((x*width) - (w * width)/2.0)
ymax = int((y*height) + (h * height)/2.0)
ymin = int((y*height) - (h * height)/2.0)
return xmin, ymin, xmax, ymax
# ttps://medium.chom/@chanon.krittapholchai/build-object-detection-gui-with-yolov8-and-pysimplegui-76d5f5464d6c
def Detect_drone_detectionWithYolov10 (img):
Tabcrop_drone_detection=[]
y=[]
yMax=[]
x=[]
xMax=[]
Tabclass_name=[]
Tabclass_cod=[]
Tabconfidence=[]
# https://blog.roboflow.com/yolov10-how-to-train/
results = model(source=img)
for i in range(len(results)):
# may be several plates in a frameh
result=results[i]
xyxy= result.boxes.xyxy.numpy()
confidence= result.boxes.conf.numpy()
class_id= result.boxes.cls.numpy().astype(int)
print(class_id)
out_image = img.copy()
LabelTotal=""
for j in range(len(class_id)):
con=confidence[j]
Tabconfidence.append(con)
label=class_list[class_id[j]] + " " + str(con)[0:4]
print(label)
LabelTotal=LabelTotal+" " + label
box=xyxy[j]
crop_drone_detection=out_image[int(box[1]):int(box[3]),int(box[0]):int(box[2])]
Tabcrop_drone_detection.append(crop_drone_detection)
y.append(int(box[1]))
yMax.append(int(box[3]))
x.append(int(box[0]))
xMax.append(int(box[2]))
#
Tabclass_name.append(label)
Tabclass_cod.append(class_id[j])
return Tabconfidence, Tabcrop_drone_detection, y,yMax,x,xMax, Tabclass_name, Tabclass_cod, LabelTotal
def plot_image(image, boxes, imageCV, TabFileName):
"""Plots predicted bounding boxes on the image"""
cmap = plt.get_cmap("tab20b")
#class_labels = PASCAL_CLASSES
class_labels=class_list
colors = [cmap(i) for i in np.linspace(0, 1, len(class_labels))]
im = np.array(image)
height, width, _ = im.shape
# Create figure and axes
fig, ax = plt.subplots(1)
fig.suptitle(TabFileName)
# Display the image
ax.imshow(im)
# box[0] is x midpoint, box[2] is width
# box[1] is y midpoint, box[3] is height
# Create a Rectangle patch
Cont=0
print(boxes)
for box in boxes:
assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
class_pred = box[0]
conf=box[1]
conf=str(conf)
box = box[2:]
upper_left_x = box[0] - box[2] / 2
upper_left_y = box[1] - box[3] / 2
rect = patches.Rectangle(
(upper_left_x * width, upper_left_y * height),
box[2] * width,
box[3] * height,
linewidth=2,
edgecolor=colors[int(class_pred)],
facecolor="none",
)
# Add the patch to the Axes
ax.add_patch(rect)
plt.text(
upper_left_x * width,
upper_left_y * height,
s=class_labels[int(class_pred)] + " conf: " + str(conf[:3]),
color="red",
verticalalignment="top",
bbox={"color": colors[int(class_pred)], "pad": 0},
)
Cont+=1
#if Cont > 1: break # only the most predicted box
#break
# rect with true fracture
plt.show()
###########################################################
# MAIN
##########################################################
imagesComplete, TabFileName=loadimages(dirname)
print("Number of images to test: " + str(len(imagesComplete)))
ContError=0
ContHit=0
ContNoDetected=0
for i in range (len(imagesComplete)):
gray=imagesComplete[i]
Tabconfidence, TabImgSelect, y, yMax, x, xMax, Tabclass_name, Tabclass_cod, LabelTotal =Detect_drone_detectionWithYolov10(gray)
Tabnms_boxes=[]
#print(gray.shape)
#if TabImgSelect==[]:
if len(TabImgSelect)==0:
print(TabFileName[i] + " NON DETECTED")
ContNoDetected=ContNoDetected+1
continue
else:
#ContDetected=ContDetected+1
print(TabFileName[i] + " DETECTED ")
#for z in range(len(TabImgSelect)-1,0, -1):
for z in range(len(TabImgSelect)):
#if TabImgSelect[z] == []: continue
if len(TabImgSelect[z]) == 0: continue
gray1=TabImgSelect[z]
#cv2.waitKey(0)
# may be several tumors, positives and negatives
#print(x[z])
text_color = (255,255,255)
cv2.putText(gray, LabelTotal ,(20,20)
, cv2.FONT_HERSHEY_SIMPLEX , 1
, text_color, 2 ,cv2.LINE_AA)
start_point=(x[z],y[z])
end_point=(xMax[z], yMax[z])
color=(255,0,0)
img = cv2.rectangle(gray, start_point, end_point,color, 2)
plot_image(img, Tabnms_boxes, img, TabFileName[i])
print("")
print("NO detected=" + str(ContNoDetected))
print("")
print( " Time in seconds "+ str(time.time()-Ini))