-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconv_net.py
94 lines (78 loc) · 2.87 KB
/
conv_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import torch
import torch.nn as nn
import torch.nn.functional as F
nclasses = 43 # GTSRB as 43 classes
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
# CNN layers
self.conv1 = nn.Conv2d(3, 128, padding=(2,2), kernel_size=5)
self.conv2 = nn.Conv2d(128, 128, kernel_size=3)
self.norm1 = nn.BatchNorm2d(128)
self.norm2 = nn.BatchNorm2d(128)
# self.drop1 = nn.Dropout2d(0.2)
self.conv3 = nn.Conv2d(128, 256, padding=(2,2), kernel_size=5)
self.conv4 = nn.Conv2d(256, 256, kernel_size=3)
self.norm3 = nn.BatchNorm2d(256)
self.norm4 = nn.BatchNorm2d(256)
# self.drop2 = nn.Dropout2d(0.2)
self.conv5 = nn.Conv2d(256, 512, padding=(2,2), kernel_size=5)
self.conv6 = nn.Conv2d(512, 512, kernel_size=3)
self.norm5 = nn.BatchNorm2d(512)
self.norm6 = nn.BatchNorm2d(512)
self.fc1 = nn.Linear(512*4*4, 1024)
self.fc2 = nn.Linear(1024, nclasses)
self.localization = nn.Sequential(
nn.Conv2d(3, 8, kernel_size=7),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True),
nn.Conv2d(8, 10, kernel_size=5),
nn.MaxPool2d(2, stride=2),
nn.ReLU(True)
)
# Regressor for the 3 * 2 affine matrix
self.fc_loc = nn.Sequential(
nn.Linear(10 * 4 * 4, 32),
nn.ReLU(True),
nn.Linear(32, 3 * 2)
)
# Initialize the weights/bias with identity transformation
self.fc_loc[2].weight.data.zero_()
self.fc_loc[2].bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))
# Spatial transformer network forward function
def stn(self, x):
xs = self.localization(x)
xs = xs.view(-1, 10 * 4 * 4)
theta = self.fc_loc(xs)
theta = theta.view(-1, 2, 3)
grid = F.affine_grid(theta, x.size())
x = F.grid_sample(x, grid)
return x
def forward(self, x):
# transform the input
x = self.stn(x)
# Perform forward pass
x = F.relu(self.conv1(x))
x = self.norm1(x)
x = F.relu(self.conv2(x))
x = self.norm2(x)
x = F.max_pool2d(x,2)
# x = F.dropout2d(x, p=0.2, training=self.training)
#print(x.shape)
x = F.relu(self.conv3(x))
x = self.norm3(x)
x = F.relu(self.conv4(x))
x = self.norm4(x)
x = F.max_pool2d(x,2)
# x = F.dropout2d(x, p=0.2, training=self.training)
#print(x.shape)
x = F.relu(self.conv5(x))
x = self.norm5(x)
x = F.relu(self.conv6(x))
x = self.norm6(x)
# x = F.max_pool2d(x,2)
x = F.dropout2d(x, p=0.5, training=self.training)
x = x.view(-1, 512*4*4)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x