-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbottleneck.cpp
264 lines (211 loc) · 6.81 KB
/
bottleneck.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#include <torch/torch.h>
#include <iostream>
torch::nn::Conv2dOptions conv_options(int64_t in_planes, int64_t out_planes, int64_t kerner_size,
int64_t stride=1, int64_t padding=0, bool with_bias=false){
torch::nn::Conv2dOptions conv_options = torch::nn::Conv2dOptions(in_planes, out_planes, kerner_size).stride(stride).padding(padding).bias(with_bias);
//conv_options.stride = stride;
//conv_options.padding = padding;
//conv_options.bias = with_bias;
return conv_options;
}
struct BasicBlock : torch::nn::Module {
static const int expansion;
int64_t stride;
torch::nn::Conv2d conv1;
torch::nn::BatchNorm2d bn1;
torch::nn::Conv2d conv2;
torch::nn::BatchNorm2d bn2;
torch::nn::Sequential downsample;
BasicBlock(int64_t inplanes, int64_t planes, int64_t stride_=1,
torch::nn::Sequential downsample_=torch::nn::Sequential())
: conv1(conv_options(inplanes, planes, 3, stride_, 1)),
bn1(planes),
conv2(conv_options(planes, planes, 3, 1, 1)),
bn2(planes),
downsample(downsample_)
{
register_module("conv1", conv1);
register_module("bn1", bn1);
register_module("conv2", conv2);
register_module("bn2", bn2);
stride = stride_;
if (!downsample->is_empty()){
register_module("downsample", downsample);
}
}
torch::Tensor forward(torch::Tensor x) {
at::Tensor residual(x.clone());
x = conv1->forward(x);
x = bn1->forward(x);
x = torch::relu(x);
x = conv2->forward(x);
x = bn2->forward(x);
if (!downsample->is_empty()){
residual = downsample->forward(residual);
}
x += residual;
x = torch::relu(x);
return x;
}
};
const int BasicBlock::expansion = 1;
struct BottleNeck : torch::nn::Module {
static const int expansion;
int64_t stride;
torch::nn::Conv2d conv1;
torch::nn::BatchNorm2d bn1;
torch::nn::Conv2d conv2;
torch::nn::BatchNorm2d bn2;
torch::nn::Conv2d conv3;
torch::nn::BatchNorm2d bn3;
torch::nn::Sequential downsample;
BottleNeck(int64_t inplanes, int64_t planes, int64_t stride_=1,
torch::nn::Sequential downsample_=torch::nn::Sequential())
: conv1(conv_options(inplanes, planes, 1)),
bn1(planes),
conv2(conv_options(planes, planes, 3, stride_, 1)),
bn2(planes),
conv3(conv_options(planes, planes * expansion , 1)),
bn3(planes * expansion),
downsample(downsample_)
{
register_module("conv1", conv1);
register_module("bn1", bn1);
register_module("conv2", conv2);
register_module("bn2", bn2);
register_module("conv3", conv3);
register_module("bn3", bn3);
stride = stride_;
if (!downsample->is_empty()){
register_module("downsample", downsample);
}
}
torch::Tensor forward(torch::Tensor x) {
at::Tensor residual(x.clone());
x = conv1->forward(x);
x = bn1->forward(x);
x = torch::relu(x);
x = conv2->forward(x);
x = bn2->forward(x);
x = torch::relu(x);
x = conv3->forward(x);
x = bn3->forward(x);
if (!downsample->is_empty()){
residual = downsample->forward(residual);
}
x += residual;
x = torch::relu(x);
return x;
}
};
const int BottleNeck::expansion = 4;
template <class Block> struct ResNet : torch::nn::Module {
int64_t inplanes = 64;
torch::nn::Conv2d conv1;
torch::nn::BatchNorm2d bn1;
torch::nn::Sequential layer1;
torch::nn::Sequential layer2;
torch::nn::Sequential layer3;
torch::nn::Sequential layer4;
torch::nn::Linear fc;
ResNet(torch::IntList layers, int64_t num_classes=1000)
: conv1(conv_options(3, 64, 7, 2, 3)),
bn1(64),
layer1(_make_layer(64, layers[0])),
layer2(_make_layer(128, layers[1], 2)),
layer3(_make_layer(256, layers[2], 2)),
layer4(_make_layer(512, layers[3], 2)),
fc(512 * Block::expansion, num_classes)
{
register_module("conv1", conv1);
register_module("bn1", bn1);
register_module("layer1", layer1);
register_module("layer2", layer2);
register_module("layer3", layer3);
register_module("layer4", layer4);
register_module("fc", fc);
// Initializing weights
/*
for(auto m: this->modules()){
if (m.value.name() == "torch::nn::Conv2dImpl"){
for (auto p: m.value.parameters()){
torch::nn::init::xavier_normal_(p.value);
}
}
else if (m.value.name() == "torch::nn::BatchNormImpl"){
for (auto p: m.value.parameters()){
if (p.key == "weight"){
torch::nn::init::constant_(p.value, 1);
}
else if (p.key == "bias"){
torch::nn::init::constant_(p.value, 0);
}
}
}
}
*/
}
torch::Tensor forward(torch::Tensor x){
x = conv1->forward(x);
x = bn1->forward(x);
x = torch::relu(x);
x = torch::max_pool2d(x, 3, 2, 1);
x = layer1->forward(x);
x = layer2->forward(x);
x = layer3->forward(x);
x = layer4->forward(x);
x = torch::avg_pool2d(x, 7, 1);
x = x.view({x.sizes()[0], -1});
x = fc->forward(x);
return x;
}
private:
torch::nn::Sequential _make_layer(int64_t planes, int64_t blocks, int64_t stride=1){
torch::nn::Sequential downsample;
if (stride != 1 or inplanes != planes * Block::expansion){
downsample = torch::nn::Sequential(
torch::nn::Conv2d(conv_options(inplanes, planes * Block::expansion, 1, stride)),
torch::nn::BatchNorm2d(planes * Block::expansion)
);
}
torch::nn::Sequential layers;
layers->push_back(Block(inplanes, planes, stride, downsample));
inplanes = planes * Block::expansion;
for (int64_t i = 0; i < blocks; i++){
layers->push_back(Block(inplanes, planes));
}
return layers;
}
};
ResNet<BasicBlock> resnet18(){
ResNet<BasicBlock> model({2, 2, 2, 2});
return model;
}
ResNet<BasicBlock> resnet34(){
ResNet<BasicBlock> model({3, 4, 6, 3});
return model;
}
ResNet<BottleNeck> resnet50(){
ResNet<BottleNeck> model({3, 4, 6, 3});
return model;
}
ResNet<BottleNeck> resnet101(){
ResNet<BottleNeck> model({3, 4, 23, 3});
return model;
}
ResNet<BottleNeck> resnet152(){
ResNet<BottleNeck> model({3, 8, 36, 3});
return model;
}
int main() {
torch::Device device("cpu");
if (torch::cuda::is_available()){
device = torch::Device("cuda:0");
}
torch::Tensor t = torch::rand({2, 3, 224, 224}).to(device);
ResNet<BottleNeck> resnet = resnet101();
resnet.to(device);
t = resnet.forward(t);
std::cout<<t.slice(/*dim=*/1, /*start=*/0, /*end=*/5)<<std::endl;
std::cout << t.sizes() << std::endl;
}