-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlpips_2imgs.py
70 lines (52 loc) · 1.99 KB
/
lpips_2imgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import stlpips
import time
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-p0','--path0', type=str, default='./imgs/ex_ref.png')
parser.add_argument('-p1','--path1', type=str, default='./imgs/ex_p0.png')
parser.add_argument('-v','--version', type=str, default='0.1')
parser.add_argument('--use_gpu', action='store_true', help='turn on flag to use GPU')
opt = parser.parse_args()
## Initializing the model
##### LPIPS (v0.1)
# stlpips_metric = stlpips.LPIPS(net='alex')
## Distance: 0.722
#####
##### LPIPS trained from scratch
# stlpips_metric = stlpips.LPIPS(net='alex', variant="vanilla")
## Distance: 0.818
#####
##### ST-LPIPS (STv0.0)
# stlpips_metric = stlpips.LPIPS(net='alex', variant="antialiased")
## Distance: 0.682
stlpips_metric = stlpips.LPIPS(net="alex", variant="shift_tolerant")
## Distance: 0.778
# stlpips_metric = stlpips.LPIPS(net="vgg", variant="shift_tolerant")
## Distance: 0.652
#####
if(opt.use_gpu):
stlpips_metric.cuda()
# # Load images
img0 = stlpips.im2tensor(stlpips.load_image(opt.path0)) # RGB image from [-1,1]
img1 = stlpips.im2tensor(stlpips.load_image(opt.path1))
if(opt.use_gpu):
img0 = img0.cuda()
img1 = img1.cuda()
# Compute distance
dist01 = stlpips_metric.forward(img0,img1)
print('Distance: %.3f'%dist01)
##### Load images in the same way as used for computing 2AFC score
# import torchvision.transforms as transforms
# from PIL import Image
# transform_list = []
# # transform_list.append(transforms.Scale(load_size)) # deprecated
# transform_list.append(transforms.Resize(64, Image.BICUBIC))
# transform_list += [transforms.ToTensor(),
# transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))]
# transform = transforms.Compose(transform_list)
# img0 = Image.open(opt.path0).convert('RGB')
# img0 = transform(img0).unsqueeze(0)
# img1 = Image.open(opt.path1).convert('RGB')
# img1 = transform(img1).unsqueeze(0)
# dist01 = stlpips_metric.forward(img0,img1)
# print('Distance: %.3f'%dist01)